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Mirta GORDON Présidente

Kaustav BANERJEE Rapporteur

Dusan PETRANOVIC Rapporteur
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Resumé

La fréquence d’opération des circuits intégrés continue de monter donc l’inductance
des interconnexions devient non négligeable. Il est donc nécessaire de pouvoir la cal-
culer de façon précise pour une analyse à posteriori correcte. Dans cette thèse, nous
développons une nouvelle approche pour le calcul de l’impédance propre et mutuelle
dans les interconnexions. Notre méthode alternative est moins chère, du point vu du
calcul, que celle du PEEC. Elle est aussi plus stable mais tout de même aussi précise.
Nous résoudrons le problème de capturer la dépendance en fréquence de l’impédance,
conséquence des effets de proximité et de peau.

Nous étendons notre analyse a l’étude de l’impédance propre et mutuelle des dis-
positifs passifs, plus spécifiquement les inducteurs intentionnels. Nous incluons un
modèle RLC utile pour capturer des informations importantes comme la fréquence de
résonance ou le facteur de qualité.

Nous dérivons une expression originale pour le délai d’une ligne de transmission
RLC excitée par une rampe avec un temps de montée non nul et avec une capacité de
charge placée à la fin de la ligne.

Nous présentons une application utile des effets inductifs dans les circuits intégrés.
Ce que nous montrons est la faisabilité pour transmettre des signaux à la vitesse maxi-
male, celle de la lumière dans le milieu de transmission.

Abstract

With the onset of Gigahertz frequencies on integrated circuits (IC), inductance effects
need to be accurately computed for posterior timing and noise simulations. In this the-
sis, we develop a consistent, accurate and computationally inexpensive approach to self
and mutual impedance extraction of interconnects. Our alternative method is computa-
tionally much less expensive than the PEEC alternative, significantly more stable, while

i



ii

equally accurate. We solve the problem of capturing the correct frequency dependence
of the inductance and resistance extraction, one that fully accounts for proximity effects
as function of frequency. Furthermore, we correctly generalize our treatment to incor-
porate nonuniform current distributions as needed to model the skin effect, that starts
manifesting in digital IC’s at frequencies near 15 GHz.

We extend our analysis to the study of passive inductor devices, both for self and
mutual impedance computations. An RLC extraction method is presented in order to
capture important information such as self-resonance frequency and quality number.

We derive an original equation for the delay of an RLC transmission line under a
ramp excitation, with a finite load capacitance.

We present a useful application of inductance in digital IC’s. What we demonstrate
in this work is the feasibility to propagate signals at the maximum speed, that of light
in the medium.
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Introduction (français)

Conception de circuits intégrés

Les avancés en microélectronique représentent un des plus merveilleux accomplisse-
ments dans l’histoire de la science et de la technologie. Gordon Moore [1] en 1965
étudiait les projections de coût d’introduction de nouvelles technologies. Il a trouvé
un optimum quand les nouveaux procédés (noeuds de technologie) avec une plus petite
taille (toutes les dimensions ajustées par le paramètre d’échelle λ ≈ 0.7) sont intro-
duits de façon constante une fois par an. Etant donné que le nombre de transistors est
proportionnel à l’inverse du carré du paramètre d’échelle, i.e. 1/λ2 ≈ 1/0.49 ≈ 2, le
nombre de transistors d’une technologie double tous les ans. En 1975, le PDG d’Intel,
corrigea son observation par rapport à l’introduction de nouvelles technologies, d’une
tous les ans à une tous les deux ans. Le nombre de transistors double donc tous les
deux ans. Cette observation empirique devint une véritable prophétie, voir la Figure 1.
Les entreprises de conception et de production ciblent leurs investissements sur de nou-
velles technologies de façon à satisfaire cette “Loi de Moore”. Ce qui a été projeté
pour durer 10 ans a survécu 36 ans de croissance exponentielle comme la Figure 1 le
montre. La croissance de l’industrie microélectronique est caractérisée par ce simple
graphique. La courbe permet de comprendre deux résultats importants : le coût associé
à la mise en place d’une fonction en microélectronique décroı̂t de façon exponentielle
avec le temps. La seconde conclusion : la performance (vitesse) associée à la fonc-
tion mise en place croit exponentiellement. La vitesse d’horloge des processeurs Intel,
présents dans le graphique, a doublé à chaque nouvelle génération. La raison de cette
amélioration en performance est en fait simple : la vitesse d’opération d’un circuit dig-
ital dépend de la vitesse de l’horloge qui contrôle l’exécution du système. La vitesse
maximale de l’horloge est limitée par la vitesse de propagation d’un signal à travers
une concaténation d’un nombre fixe (typiquement moins de dix) de fonctions logiques.

1
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Figure 1: Nombre de transistors dans un processeur pour une année donnée

Le temps de propagation du signal dans une fonction logique, sans prendre en compte
les effets dus aux fils, est égal à la somme des temps de transit des transistors qui com-
posent la fonction logique. Les deux ingrédients de base qui contrôlent la performance
d’une fonction logique sont le temps de transit d’un transistor et le délai dans un fil.

Examinons, premièrement, le délai dans les transistors. Le temps de transit τtr peut-
être estimé comme :

τtr =
L2

µ(Vgs − Vthr)
(1)

avec L la longueur du canal, µ la mobilité des électrons, Vgs le voltage dans la grille et
Vthr la quantité de voltage nécessaire pour produire la transition dans le transistor.

Sous un changement de technologie (toutes les dimensions réduites par λ ≈ 0.7) et
avec des voltages réduits par la même échelle, le temps de transit τtr, est aussi réduit
par λ. Le temps de transit est le temps minimal nécessaire pour qu’une charge dans la
grille du transistor produise une charge équivalente à travers le canal, jusqu’à la grille
du prochain transistor. Le temps de transit a évolué de 0.5 ns pour une technologie
6 µm en 1978, jusqu’à 0.01 ns pour une technologie 90 nm en 2005 [2]. Le temps
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de transit a toujours été un élément clé dans la quête d’une meilleure performance des
circuits intégrés. Pour décrire la performance du système à partir de la performance
des transistors nous devons d’abord imposer une contrainte, celle de la performance des
fils qui connectent les transistors (l’interconnexion). Durant les 25 premières années du
développement technologique, la performance de l’interconnexion était majoré par le
délai d’un nombre fixe d’étapes logiques multiplié par τtr [3]. Cet argument explique
pourquoi le délai du système δsystem décroı̂t avec λ:

δsystemi = λδsystemi−1 (2)

La décroissance exponentielle du délai du système produit une croissance exponentielle
de la performance. Un nombre croissant de transistors et une croissance dans le nombre
de fils sont inévitablement liés. Aux premiers jours de la technologie de silicium (Si), il
était possible de placer tous les signaux et fils de masse dans deux couches de métal, au
plus. Avec l’augmentation de la densité de transistors dans une puce, il a été nécessaire
d’augmenter le nombre de couches de métal pour pouvoir placer l’interconnexion (il
est possible de mettre 10 couches de métal pour une technologie 65 nm en 2006). Il
existe deux groupes de fils dans une puce de nos jours: les fils locaux, placés dans les
deux premières couches de métal et qui représentent 90% de l’interconnexion et les fils
globaux, placés dans les couches supérieures qui servent à connecter différents blocs de
transistors. Le fils locaux ont des longueurs à l’échelle de λ, donc la supposition que leur
délai est majoré par celui des transistors est toujours valide. Les fils globaux, quant à
eux, ont une échelle qui n’est pas contrôlée par celle de la technologie. Leurs longueurs
sont de l’ordre du millimètre, donc l’estimation du délai du système est sérieusement
affectée par le délai des fils globaux. Pour cette raison, le comportement électrique de
ce type de fils doit être connu avec une assez bonne précision.

Le délai dans les transistors continue de décroı̂tre avec la technologie, le délai des
fils globaux devient donc le principal contributeur au délai du système. Cette crise a
encouragé les concepteurs à placer des répéteurs dans les longues lignes de signaux
critiques. Cette solution n’est pas très désirable, étant donné que ces répéteurs consom-
ment une grande fraction de l’énergie totale du système, proche de 60% actuellement.
La théorie de circuits rudimentaire nous indique qu’une impulsion appliquée dans une
extrémité d’un conducteur se propage jusqu’à l’autre extrémité avec une constante de
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Année 2005 2010 2015
Fréquence Maximal (GHz) 5.2 15.08 33.4

Table 1: Fréquence maximale dans une puce pour chaque technologie. Projections
faites par le ITRS 2005 [2]

temps donnée par:
τsig = RC (3)

avec R et C la résistance et la capacité du fil, respectivement. Il est donc vital de pouvoir
connaı̂tre les paramètres RC des fils globaux dans un circuit intégré pour pouvoir donner
une bonne estimation de sa performance. Cette prémisse a stimulé Mentor Graphics
pour réaliser des développements technologiques très importants dans ce domaine [4].

L’intérêt de cette thèse est sur le problème subséquent : Considérez la propagation
d’un signal dans un fil, contrôlé par un transistors dans un système digital. Le signal
de sortie d’un transistor, qui est en même temps le signal d’entrée du fil, est celui d’un
interrupteur imparfait: une transition linéale d’un état de bas voltage (0 logique) vers
un état de haut voltage (1 logique). Cette transition peut être bien approximée par
une rampe avec un temps de montée de τtr. La transformée de Fourier de cette rampe
contient une amplitude appréciable jusqu’à une fréquence de fmax ≈ 1

πτtr
.

Dans la Table 1 nous présentons fmax pour des technologies présentes et futures.
Notez que fmax est proportionelle à 1/λ.

Pour des fréquences allant jusqu’à 1 GHz, la propagation d’un signal peut être bien
approximée en considérant seulement les contributions de la capacité et la résistance des
segments qui forment un fil. La superposition de différents segments, chacun représenté
par un élément RC, devient la solution de l’équation unidimensionnelle de diffusion.
Des expressions pour le délai des systèmes RC pour une rampe en entrée sont connues
dans la littérature [5].

La technologie a réussi à réduire le délai des fils dominés par RC. Le remplace-
ment de l’aluminium (Al) par le cuivre (Cu)∗ et le remplacement de l’oxyde de silicium
(SiO2) par des matériaux organiques (une réduction de 30% de la constante diélectrique)
sont les principaux responsables de cette réduction. Nous sommes près des limites de
ce que la technologie peut faire pour améliorer R et C. D’abord, le cuivre n’a pas de

∗Le cuivre est 1.6 fois moins résistif que l’aluminium
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Figure 2: Résistance et réactance comme fonction de la fréquence pour un fil de Cu,
avec une longueur d’un mm, avec une section transversale rectangulaire de dimensions
5 µm × 1 µm avec deux fils de masse comme retour, de la même longueur et de section

transversale de 7 µm × 1 µm, les fils sont séparés de 5 µm.

concurrent et ensuite, il est très difficile de trouver des diélectriques qui puissent ac-
commoder la croissance du cuivre avec une constante diélectrique plus petite et avec
des propriétés thermiques meilleures que ce que nous avons aujourd’hui.

Si τtr décroı̂t a chaque changement de technologie, le contenu maximal des fréquences
dans la propagation des signaux augmente. Pour des fréquences supérieures à 1 GHz,
la partie imaginaire de l’impédance, i.e. la réactance (la fréquence angulaire multipliée
par l’inductance) d’un fil d’une longueur de l’ordre du millimètre, devient importante
et il est alors nécessaire de la prendre en considération (voir Figure 2 pour clarifica-
tion). La variation de la résistance avec la fréquence est aussi appréciable, il est donc
nécessaire de prendre les deux phénomènes en considération pour une extraction et une
simulation RL.

La fréquence n’est pas la seule variable qui déclenche la dominance des effets in-
ductifs sur les effets de résistance et de capacité. La longueur des fils est aussi impor-
tante. Dans le chapitre 3, nous donnons les intervalles de longueur pour lesquels le
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calcul d’inductance est important. L’intervalle de longueur des fils correspond à celui
des interconnexions globales. C’est dans ce groupe d’interconnexions qu’une analyse
soigneuse des effets inductifs doit être faite.

L’inductance dans les interconnexions est un phénomène incontournable. La bonne
utilisation de l’inductance peut résulter en une performance optimale dans un circuit
intégré. Nous abordons ce sujet dans le chapitre 6. La bonne caractérisation de l’inductance
des fils est essentielle pour la conception et la validation des interconnexions globales
dans un circuit intégré de haute performance.

Le sujet principal de cette dissertation est la caractérisation précise de l’inductance
des fils en général. Cette caractérisation permettra la subséquente simulation, dans
le domaine temporel et/ou fréquentiel, de circuits contenant des fils susceptibles à
l’inductance et pour l’analyse du bruit entre les signaux.

A cet effet nous développons un code qui permet le calcul précis de l’inductance
de segments arbitraires, placés en n’importe quelle disposition. Ce code de calcul
est présenté dans le chapitre 2. Le contenu de ce chapitre n’ajoute rien de nouveau
à ce qui est déjà connu, mis a part une nouvelle façon récursive de calculer la dis-
tance géométrique moyenne entre deux rectangles quelconques. Il est juste un com-
pendium de formules connues dans la littérature, choisies par leur précision. Nous avons
validé la précision et l’efficacité de ce simulateur avec la référence de la communauté
FastHenry [6]. Ce simulateur est le noyau de calcul de tous nos outils pour l’extraction
d’inductance parasite, ainsi que l’inductance intentionnelle, dans les circuits intégrés.

Dans le chapitre 3, nous développons une nouvelle approche pour l’extraction de
l’inductance propre et mutuelle dans les interconnexions d’un circuit intégré. Notre
nouvelle approche est significativement moins gourmande en temps de calcul que celle
du PEEC (circuit équivalent avec des éléments partiels) [7] tout en gardant la même
précision. Avec notre méthode, nous sommes capables de bien capturer le comporte-
ment monotone de la résistance et de l’inductance comme fonction de la fréquence.
Nous avons même inclus le traitement nécessaire pour prendre en compte la non-uniformité
du courant qui commence à se manifester dans les circuits intégrés digitaux à des
fréquences de plus de 15 GHz. Une demande de brevet [8], déposée aux Etats Unis,
couvre la technologie présentée dans ce chapitre.

Dans le chapitre 4, nous ajoutons à notre analyse l’étude des inducteurs passifs, tant
pour l’impédance propre que pour l’impédance mutuelle. Une méthode d’extraction
RLC est présentée dans ce chapitre. L’originalité de notre approche réside dans la
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simplicité trouvée dans l’extraction de l’impédance mutuelle entre deux inducteurs
(équation (4.29) qui permet son calcul efficace). Dans le chapitre nous présentons un
exemple de validation. Un article dans une conférence de l’IEEE [9], une demande
de brevet aux Etats-Unis [8] et un produit commercial en phase de test sont associés
à ce travail. Le domaine d’application de cet outil est les circuits analogues de radio
fréquences (RF): bluetooth, WiFi, téléphonie mobile, etc.

Dans le chapitre 5, nous dérivons une nouvelle expression (équation (5.41)) pour le
délai d’une ligne de transmission RLC excitée par une rampe et avec une capacité de
charge non nulle. Ce résultat est lié au travail d’extraction dans le sens qu’une ligne de
signal avec ses fils de retour, dans un milieu homogène, peut être représentée comme
une ligne de transmission. Finalement, dans le chapitre 6, nous présentons une appli-
cation utile de l’inductance dans les circuits intégrés digitaux. Ce travail a été présenté
en ICCAD, en IEEE’s transactions on CAD et un brevet américain a été récemment oc-
troyé [10–12]. Avant ce travail, la présence d’inductance dans un dessin était un motif
de préoccupation. Nous démontrons que l’inductance peut être utilisée positivement
pour assurer que la propagation des signaux dans les fils soit linéaire avec la longueur
et non pas quadratique comme en RC. Un délai linéaire avec la longueur se traduit par
une réduction dans le nombre de répéteurs et donc une réduction considérable de la
consommation de puissance, qui est de nos jours, un véritable casse-tête.

Contributions de cette thèse

Les principales contributions de ce travail sont résumées ci-dessous:

• Un simulateur performant et précis pour le calcul de l’impédance partielle de
configurations qui contiennent des fils avec une section transversale rectangulaire.
Ce simulateur est le noyau de calcul des applications présentées dans cette thèse.

• Une nouvelle méthodologie pour l’extraction d’impédance, basée sur un traite-
ment qui reconnaı̂t correctement les boucles de circuits. Elle capture de façon
précise les effets de proximité et de peau. Nous donnons un traitement valide
pour des fréquences de l’ordre de 50 GHz. L’algorithme a été implémenté dans
un outil commercial [13] qui a été prouvé précis et performant par de nombreux
clients. Il a été utilisé dans une grande variété de problèmes: dessins en RF,
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dessins digitaux complexes (e.g. processeur ARM) et “Systems on Chip (SoC)”
(système sur une seule puce).

• Un outil pour calculer l’impédance propre d’un inducteur intentionnel et l’impédance
mutuelle entre deux inducteurs intentionnels. L’outil inclut les effets RLC de
l’inducteur de façon à pouvoir capturer sa fréquence de résonance et son facteur
de qualité. Cet outil permet aux concepteurs d’expérimenter et d’optimiser le
placement de plusieurs inducteurs dans une puce, de façon à minimiser le bruit
parmi eux. L’implémentation commerciale de cet outil pour la vérification de
bruit entre inducteurs est en train d’être lancée sur le marché.

• Une nouvelle expression pour le délai d’une ligne de transmission RLC excitée
par une rampe et avec une capacité de charge non nulle (voir [10, 11]).

• Une méthode pour optimiser la vitesse de propagation d’un signal dans un fil
d’horloge. La bonne utilisation de l’inductance est la clé de cette méthodologie.
Elle propose une configuration composée par un fil de signal pris en sandwich par
deux fils de masse. La méthode trouve des intervalles denses pour les paramètres
de la configuration en sandwich qui assurent une vitesse de propagation optimale.



Chapter 1

Introduction

1.1 IC design

The advance in microelectronics constitutes one of the most marvelous technological
feasts in the history of science and technology. Gordon Moore [1], while analyzing in
1965 cost projections for introducing new technologies, found an optimum when new
processes (technology nodes) with smaller feature size (all dimensions scaled by the
scale factor λ ≈ 0.7) are introduced at a constant rate of once a year. The total num-
ber of transistors being proportional to the square of the inverse of the scale parameter,
i.e. 1/λ2 ≈ 1/0.49 ≈ 2, would double every year. In 1975, the then chairman of the
board of Intel, corrected a bit downward his observation regarding the introduction of
new technology nodes, from one every year to one every two years, meaning transistor
doubling every 24 months. Looking over a significantly longer time period, on mi-
croprocessors, doubling happens every two years. This empirical observation became
a self fulfilling prophecy, see Fig. 1.1. Manufacturing companies and design houses
target their investments in new technology so as to satisfy “Moore’s law”. What was
initially projected to last nearly 10 years has survived 36 years of unfettered growth of
an exponential nature as the figure demonstrates. The growth in the microelectronics
industry is unequivocally characterized by this simple graph. The figure permits to un-
derstand two important results: The cost associated with implementing a function in
microelectronics, decreases exponentially with time, sustaining the explosive growth
of the technology. The second conclusion: The performance (speed) associated with
the implemented function growths exponentially. The speed of operation of the Intel
microprocessor chips represented in Fig. 1.1, identifiable by the chip clock’s frequency;

9
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Figure 1.1: Number of transistors in a processor in a given year.

has been growing at a factor of two per generation. The reason for this performance
increase is in fact simple: the speed of operation of a digital circuit, implemented as a
synchronous system is accounted by the speed of the clock which controls the execution
of the engine. The maximum speed of a clock is limited by the speed of propagation
of a signal through a concatenation of a bounded number of logic functions, typically
less than ten, between storage registers. The speed of propagation of a signal on a logic
function, not counting for wires effects, is the sum of the transit times of the transistors
on the logic function. The two basic ingredients that control function performance are
transit time on a transistor and time delay on a wire.

Let us first examine the transistor time delay. The transit time τtr can be estimated
as [3]:

τtr =
L2

µ(Vgs − Vthr)
(1.1)

With L the channel length, µ the electron mobility, Vgs the gate voltage and Vthr the
voltage threshold.

Under technology scaling (all dimensions reduced by λ ≈ 0.7,) and applied voltages
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reduced by the same scale, the transit time, using the previous equation, is reduced by
λ. The transit time is the minimum time in which a charge placed on the gate of one
transistor results in the transfer of a similar charge through the transistor’s channel onto
the gate of a subsequent transistor. The transit time evolved from 0.5 ns at 6 µm tech-
nologies around 1978 to 0.01 ns at 90 nm technologies in 2005 [2]. Transit time has
been historically one key figure of merit in the unabated search for higher performance.
To jump from transistor performance to system performance, we first impose a con-
straint, that will need to be revisited, that amounts to assuming a constant delay penalty
introduced by wire delay, fully justifiable when the wires that connect the transistors are
short. In that case, and this has been the rule rather than the exception, during the first
25 years of technology development, the minimum clock period for the implementation
of a given function will be well approximated by the delay of a fixed number of logic
stages (100 is a reasonable estimate) times τtr [3]. This simple argument explains the
experimental fact that system delay δS ystem scales with λ:

δS ystemi = λδS ystemi−1 (1.2)

The exponential decrease of the system delay (λ is smaller than one), is source of the
exponential increase in performance. To connect an exponentially increasing number of
transistors with an exponentially growing number of wires is unavoidable. In the early
days of silicon (Si) technology it was feasible to layout all signal wires as well as power
and ground wires in at most two layers. As the transistor density increased it became
necessary to slowly augment the number of metal layers needed for signal propagations
(10 metal layers is doable at 65 nm in 2006). The chip layout, resembles the brain, with
wires playing the role of synapses, a quasi two dimensional structure containing one
very dense layer of transistor in one plane and a few planes of wires. The dimensionality
of the system is that of a 2D plus epsilon. In the x-y plane, features (transistors) have
dimensions of the order of the technology node (65 nm today) extended over length
scale of the order of 1 cm (5 orders of magnitude larger), while in the vertical direction
the active scale (not considering the substrate) is of the order of 10 µm. Manufacturing
considerations, due to yield, put bounds on the chip linear dimensions, to be roughly
upper limited to less than 15 mm on the side. It is not difficult to understand the two
following features associated with Rent’s rule on wirelength distribution on a chip [14].
Wires can be classified into two groups, one group providing the bulk of the interconnect
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is local, with average length decreasing as λ and a second group providing for the
interconnections among macro groups of transistors, whose average length does not
scale [15]. At 90 nm technology node (2005), the average length of the first group
of wires is in the neighborhood of 150 µm and accounts for over 90% of the wires.
These local wires do not modify the basic assumption that the delay of the circuit is
mostly determined by transistor delay. On the other hand, the global wires, in particular
those whose lengths are larger than 1 mm (less than 1% of the total fraction) seriously
affect the performance estimates. The wire delay associated with those wires impacts
performance in a significant way and as such their electrical behavior needs to be known
with sufficient accuracy. As it turns out, (we give quantitative bounds on chapter 3,
equations (3.5) and (3.9)) global wires are the ones sensitive to inductance effects at
frequencies starting at 1 GHz (this threshold is soft, and given as a qualitative estimate.)
It is not surprising to understand why in the Integrated Circuit (IC) world, the concern
about electromagnetic effects associated with inductance were not manifest until very
recently, since they demand long wires and high frequency propagation, both factors
that are beginning to show up at current nodes.

To further estimate the importance of wire propagation on system delay, it is useful
to consider the following picture of a wire: For short wires, and anything shorter than
100 µm qualifies as such, an isolated wire segment can be treated as a resistor coupled
to a capacitor to ground. Rudimentary circuit theory tells us that a pulse applied at one
end of the wire, propagates to the other end with a time constant given by

τsig = RC (1.3)

with R and C the resistance and capacitance of the wire respectively. These values are
computed using the following expressions:

R = ρ
L

w.t
(1.4)

and
C = ε

A
d

(1.5)

where L, w and t are the wire’s length, width and thickness, respectively. The constant
ρ is the resistivity of the wire, ε the relative dielectric permittivity of the media, d is a
representative distance to a neighbor conductor and A is the area facing the neighbor
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Isolated Dense Local Global
τsig = ρε

L2

t.d ρε L2

p.w τsig constant τsig ∝ 1
λ2

Table 1.1: Wire delay

conductor.

To get an order of magnitude of the parameters, we distinguish two types of wires,
isolated wires whose capacitance is dominated by coupling to a large fixed plane such
as substrate, and tightly coupled wires, whose capacitance is dominated by coupling to
its neighbor.

The capacitance for these two kinds of wire is given by:

Cisolated = ε
L.w
h

(1.6)

with h the distance to the fixed plane.

Ccoupled = ε
L.t
p

(1.7)

with p the wire separation.

Notice that τsig in this rudimentary calculation is scale invariant for an isolated wire.
In table 1.1 the wire delay for the different kinds of wire is presented.

Under scaling, therefore, for a local (shrinking) wire RC remains constant, while
for a global wire of fixed length the delay growths quadratically with scaling, leading
to a fast exponential growth. The best one can do technologically for these global wires
is either find a three dimensional mapping to ensure close proximity or do not scale
the vertical dimensions of the upper metal layers. Today’s technologist apply the last
recipe in production while doing R&D in fully three dimensional chips. For a local wire
of 100 µm of minimum width τtr > τsig while for a 1 mm wire at 250 nm technology
(1997) the inverse is true. A more complete relative picture of this phenomena is shown
in Fig. 1.2. There are other factors that make this simple picture rather approximate, but
do not change the qualitative behavior that emerges from its simplest incarnation.

Signal contribution to system delay grows in importance with scaling, becoming
the dominant factor in limiting the performance of digital systems for technology nodes
since 250 nm (1997) causing a major interconnect crisis.
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Figure 1.2: Delay relative to 250 nm node of global wiring and gate versus feature
size [2].
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Year 2005 2010 2015
On-chip maximum frequency (GHz) 5.2 15.1 33.4

Table 1.2: On-chip frequency limit per technology node based on fanout of four
inverter delay. Projections made by the ITRS 2005 [2]

This crisis instigated designers to include buffers as signal boosters in the path of
long critical wires, a not altogether desirable proposition, since these buffers consume
a large fraction of the power budget, nearly 60% at last count. On the verification side
the crisis lead to the the need to compute accurately the total and coupling capacitance
of the interconnect. As such, the crisis led to important technology developments at
Mentor Graphics on RC extraction [4].

Our interest in this thesis is in a follow up concern, that we proceed to explain: Con-
sider signal propagation in wires, driven by transistors, on digital systems. The signal
output of a transistor, input to a wire, is that of an imperfect switch from a low voltage
(a logic zero) to a high voltage (a logic one). This transition is well approximated by a
ramp whose rise time is τtr. The Fourier transform of a ramp signal contains appreciable
amplitude up to a frequency fmax ≈ 1

πτtr
.

In table 1.2 we show fmax for current and future technology nodes. Notice that fmax

scales as 1/λ.

For frequencies up to roughly 1 GHz, signal propagation on a wire is well approxi-
mated as arising from the contributions due to capacitance and resistance of the multiple
segments that make a wire. The superposition of different segments, each one repre-
sented by a RC lumped element, becomes in the continuum limit the one dimensional
diffusion equation. Approximate solutions for the delay of such systems under a step
function input are known [5].

Technology has contributed to diminish the delay due to wires dominated by RC.
The replacement of aluminium (Al) by copper (Cu)∗ and the replacement of SiO2 by
organic compounds of smaller dielectric constants (a 30% decrease of ε) are the main
components. We are close to the limits of what technology can do to improve R and
C. First, Cu has no competitor, and, second, it is very difficult to find insulators that
can accommodate Cu growth with smaller dielectric constant and compatible thermal
properties than what we have today.

∗Copper is 1.6 times less resistive than Aluminum.
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Figure 1.3: Resistance and reactance as a function of frequency for a copper wire,
1 mm long, with rectangular cross-section of 5 µm× 1 µm and two return ground wires

of same length and rectangular cross-section of 7 µm × 1 µm, with a 5 µm wire
separation.

As τtr decreases with scaling, the maximum frequency content on wire propagation
increases. For frequencies above 1 GHz, the reactance part of the serial impedance
(reactance is equal to angular frequency times inductance-ωL) of a millimeter scale wire
segment becomes appreciable and needs to be included. See Fig. 1.3 for clarification.
The resistance variation with frequency is appreciable, both phenomena need to be
accounted for in RL extraction and simulation.

Frequency is not the only variable that impacts the onset of inductance effects on and
above resistance and capacitance effects. The length of the wire also matters. In chap-
ter 3, we show the bounds on lengths appropriate for inductance calculations (equations
(3.5) and (3.9)). It is the regime of wire lengths corresponding to global interconnect,
where a careful analysis of inductance effects needs to be undertaken.

Technology plays a secondary role in localizing or mitigating inductance effects. We
can quote one isolated instance of using manufacturing technology to this end. During
the design of a DEC Alpha superscalar RISC microprocessor [16], ground planes were
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added in between signal planes so as to reduce the area of the circuit loops and hence
the inductance of the signals. Including ground planes in a design is very expensive and
interferes with routing, so this methodology was rapidly abandoned.

Inductance in interconnect is an unavoidable phenomena and if well used, can ben-
efit the power dissipation for a given performance of an IC. We shall address this ap-
plication domain in chapter 6. Good characterization of wire inductance is essential
during the design and validation of global wiring for high performance IC’s.

The topic of this dissertation is the accurate characterization of wire inductance for
downstream simulations of circuits containing wires sensitive to inductance.

This we do by first developing a code that permits the accurate computation of
inductance for arbitrary segments immersed in a layout, in whatever relative placement
and orientation under uniform current distribution. This is the topic of chapter 2. The
content in this chapter, is not original, with the exception of a new method for computing
the geometric mean distance in between arbitrarily oriented segments in a plane. It
is mostly a compendium of published formulae selected for their accuracy, that we
validated against the 3D field solver FastHenry [6]. The simplicity and efficiency of the
resulting code is demonstrated initially with a calibration against toy examples, and later
validated with large designs from Industry. The resulting simulator, is the workhorse
that permitted us to address the impedance extraction of wires in an IC.

In chapter 3, we develop a consistent, accurate and computationally inexpensive ap-
proach to self and mutual impedance extraction of interconnects. System complexity,
in addition to accuracy is a figure of merit that needs to be considered. The key differ-
ence between the problem treated in chapter 2 and the one in chapter 3 is one of size.
In the core engine, described in chapter 2, we consider configurations consisting of at
most a few tens of well identified wire segments. In chapter 3, we attack the problem
with three to four orders of magnitude more segments, and unidentified current loops.
Prior to our work there were two contributing groups to inductance extraction, one in
industry, Sequence, whose results are patented [17] and the other group from Columbia
University [18] implemented by one of our competitors Cadence. Both groups use the
loop inductance formalism. The resulting approaches and code are oversimplifications
of the problem that lead to large errors in the computation of inductance. For this reason,
most of the academic community, embarked in a different approach based on the Partial
Element Equivalent Circuit (PEEC) method due to Ruehli [7]. The PEEC formalism
is discussed in Chapter 3 and its pitfalls are shown. The alternative formalism that we
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develop in chapter 3 is computationally much less expensive than the PEEC alternative,
significantly more stable, while equally accurate. We solve the problem of capturing
the correct frequency dependence of the inductance and resistance extraction, one that
fully accounts for proximity effects as function of frequency, whose presence materi-
alizes in the regime of 4-15 GHz. Furthermore, we correctly generalize our treatment
to incorporate nonuniform current distributions as needed to model the skin effect, that
starts manifesting in digital IC’s at frequencies near 15 GHz. Validation to field solver
simulations and experimental data is included. A US patent application [8] covers the
description of the method presented in this chapter.

In chapter 4, we extend our analysis to the study of passive inductor devices, both
for self and mutual impedance computations. An RLC extraction method is presented.
The originality of the approach lies in the simplicity encountered in the extraction of the
mutual impedance among two inductors (equation (4.29)) permitting efficiency into the
implementation. A validation example is shown in this chapter. An IEEE conference
paper [9], a patent application [8] and a product in beta release are associated with this
work. The domain of application is Radio Frequency (RF) analog circuits as used in
telecommunications, up and including cellular phones.

In chapter 5, we derive an original equation (equation (5.41)) for the delay of an
RLC transmission line under a ramp excitation, with a finite load capacitance. This
work was published on IEEE [10, 11]. This result is connected to the extraction work
by the simple fact, that in a homogeneous media, a configuration consisting by a signal
wire and its parallel return paths can be represented by a transmission line. Signal
propagation on these lines is at the core of our interest, ergo the importance of the
derived delay expressions. In chapter 6, we present a useful application of inductance in
digital IC’s. This work has been published in ICCAD, IEEE’s transactions on CAD, and
a US patent has been awarded [10–12]. Prior to this work, the presence of inductance
in digital systems was taken as a concern. What we demonstrate in this work is the
feasibility to propagate electromagnetic waves in the dielectric at the speed of light in
the medium, with delay linear with the length, instead of quadratic as in RC diffusion,
and as such, needing significantly less power injection, a very important concern at
65 nm and beyond. Short distance propagation with transmission lines was known and
understood before this work, and considered useful for short distance propagation. Our
work permits a large jump into multiple millimiter length scale with complicated route
configurations. This line of work is in progress.
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1.2 Inductance extraction in IC

Maxwell solvers have been developed for a variety of applications. Some of them have
been validated in Printed Circuit Boards (PCB), e.g. HFSS [19], Momentum [20], Son-
net [21], etc. Extensions to IC’s are nearly beyond the realm of the possible. The
number of variables rapidly exceeds many millions for even the simplest problems. A
localized circuit representation with parameters, which are frequency dependent in the
regime of interest, determined with field solver accuracy is a realizable characteriza-
tion to the study of electromagnetic effects in an IC. At low frequencies and for simple
geometrical features resistance computations are straightforward. Calculation at a sys-
tem level is simply a task of breaking each wires into rectangular shapes and applying
well known formulae and the most computationally expensive part is that associated
with keeping track of the connectivity [4]. At higher frequencies resistance calculations
cannot be separated from inductance calculations. Capacitance, being a localized phe-
nomena, is computable using surface methods by considering a small window around
each conductor. The shielding to electric field penetration in the quasistatic case, pro-
vided by the presence of other conductors justifies this approach. There is a number of
well developed capacitance engines, at the field solver level (FASTCAP [22]) and at the
system level (Mentor xRC [4]). Inductance, in the intermediate frequency region does
not benefit from shielding. Inductance is a property of current loops. It is not at all easy
to recognize which are the constitutive loops within an IC. For instance, looking at the
SEM photograph of a typical interconnect in Fig. 1.4 one can easily realise how diffi-
cult this task is. This ambiguity led to the development of an alternative treatment in
which the computation of the electromagnetic parameters -resistance, capacitance and
inductance- is done in terms of the contributions of each and every segment in a layout,
without distinguishing which segment is associated with which loop. This is the Par-
tial Element Equivalent Circuit (PEEC) model [7]. Calculating the contribution of each
wire segment in an IC layout and furthermore, computing the inductance and capacitive
coupling among all of them, results in a netlist that is unmanageable by the most power-
ful circuit simulators. Neglecting magnetic couplings, even the smallest ones, in order
to reduce the size of the netlist, may result in a loss of stability of the circuit. Plenty
of effort has been invested so as to find methods in which inductive coupling between
far wires in a PEEC formalism can be safely neglected without affecting stability. The
results today are meager.
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Figure 1.4: SEM photograph of a typical interconnect.

A different approach to inductance and resistance extraction is within the loop for-
malism. One needs to recognize the return path of each signal wire in a layout. Previous
work considered as return candidates the two closest ground wires to any signal [23].
The results are highly inaccurate and miss completely the significant variations in re-
sistance and inductance in the frequency range of two to fifteen GHz, today explorable
by the technology. We present a realistic interpretation for the loop identification, one
that realizes that the current distribution for the return path as well as the choice of
participants is frequency dependent. We can evaluate it from first principles. Both the
correct frequency behavior for R and L are reproduced. Moreover, we can handle the
skin effect at higher frequencies, in signal wires and large conduction planes, with lim-
ited increase in computational demand. Our approach is valid up to 50 GHz, sufficient
for design exploration over the next decade.

1.3 Contributions

The main contributions presented in this thesis are summarized as follows:

• A fast and accurate partial impedance simulator for configurations containing
wires with rectangular cross-section. This tool is the calculation kernel for the
applications presented in this work.
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• A new methodology (algorithm and code) for impedance extraction, based on a
loop treatment that correctly identifies loop configurations. It captures accurately
proximity and skin effect. We provide a treatment valid up to frequencies and
distances where radiation effects need to be considered, roughly 50 GHz. The
resulting algorithms have been incorporated into a commercial tool [13] and vali-
dated by multiple customers for accuracy and performance. The commercial tool
has been used for validation of Radio Frequency (RF) designs, complex digital
designs, (e.g., ARM microprocessors.) and Systems on Chip (SoC).

• A 3D electromagnetic tool to compute self impedance of intentional inductors and
mutual impedance between two intentional inductors. The tools includes RLC ef-
fects so as to capture inductor’s self resonance frequency and quality factor. This
tool permits the designer to experiment and optimize the placement of inductors
so as to minimize the magnetic noise among them. This tool is being released as
a commercial tool for noise checking [24].

• An accurate formula for time delay of a transmission line fed by a signal with
nonzero rise time including corrections due to finite load capacitance, See [10,
11].

• A method for optimizing the signal propagation speed of a clock wire. The use of
inductance is paramount. It proposes a tree configuration consisting of the clock
signal wire sandwiched between two parallel ground wires. Ranges of values for
the physical parameters of the ground-signal-ground layout are found such as to
ensure transmission line behavior for signals propagating on the configuration for
short τtr. These results have been published in [10, 11] and a US patent has been
awarded [12].

1.4 Thesis outline

This thesis is organized as follows:

In chapter 2, we present a quasimagnetostatic electromagnetic volume formulation
and its application to impedance simulation. Resistance and inductance expressions
collected from different sources are identified, and used in the implementation of an
impedance simulator.
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In chapter 3, we present an impedance extraction methodology based in a novel
extension of the loop treatment. The method permits extraction in a broad regime of
frequencies and has been amply validated.

In chapter 4, we present a natural simplification to compute the mutual impedance
between two intentional inductors that we insert in a quasi electromagnetic treatment
used for self impedance characterization and noise analysis.

In chapter 5, a new expression for the time delay of a transmission line fed by a
signal with nonzero rise time and finite load capacitance is derived.

In chapter 6, a method of optimizing the signal propagation speed on a SBHT is
proposed as a method for clock distribution in high performance IC applications.

In Chapter 7, we include some concluding remarks.

1.5 Mentor Graphics

This work has been carried out in its totality at Mentor Graphics. Mentor Graphics is
a US company that provides engineering solutions to the design and manufacturing of
IC’s and PCB. The solution space includes software, and hardware software combina-
tions, and the overall domain is usually referred to as Computer Aided Design of Elec-
tronic Circuits (CAD) or Electronic Design Automation (EDA). Mentor Graphics, in
business since 1982, is the third largest provider of CAD products in the Electronic In-
dustry, capturing twenty percent of the total market of four billion US dollars ( $4×109).
The total number of players in this industry exceeds 60. Mentor Graphics headquarters
are located in Oregon, USA. It has nearly 4000 employees distributed over more than 20
countries with 28 engineering sites worldwide. Mentor Graphics spends well over 20%
of its raw income in R&D and engineering activities. The company is structured into
5 divisions according to technology segments. Scalable Verification, Design to Silicon,
and Integrated PCB-FPGA (Field Programmable Gate Arrays) Systems Design are the
three major Areas of focus. In the analog mixed signal domain as well as in the high fre-
quency parasitic extraction, the Mentor center of excellence is located in Montbonnot,
France. Our team develops technology for implementation in verification tools, known
in the market place as Calibre suite of tools, globally the number one contender in the
verification market, casting nearly 50% of a total verification market of: USD 450M. I
have been a student member of the R&D team working in inductance extraction since
2001. I have been recently invited and accepted a staff position within the group.



Chapter 2

A 3D impedance simulator

Simulateur d’impédance 3D

Résumé

Dans ce chapitre nous présentons, dans un premier temps, une brève discussion sur les
équations électromagnétiques qui sont la base de notre traitement. Dans la deuxième
partie, les équations de la première partie sont assemblées dans un simulateur d’impédance.
Ce simulateur sert de noyau de calcul pour les applications présentées dans les autres
chapitres de cette thèse. La précision du simulateur ainsi que sa performance, sont com-
parées à un simulateur d’impédance utilisé dans la communauté comme le standard de
référence.

2.1 Introduction

This chapter is divided into two parts: the first one where the fundamental equations
in electromagnetism and their derivation to impedance simulation applications, are pre-
sented; the second part, where the equations of the first part are put together into an
implementation of an impedance simulator. The computational core of this simulator is
the main building block of the applications presented in the other chapters of the thesis.

In detail, the chapter is divided as follows:

In section 2.2 a brief description of the electromagnetic physics in conductor closed
circuits is presented. Maxwell’s equations in the magneto-quasistatic approximation

23
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Figure 2.1: A conductor loop

(MQS) are discussed. In the same section, we apply the MQS equations to the un-
physical case of a closed circuit composed of one rectilinear conductor. The equations
are further generalized to n-segment circuits. This is the basis of the partial induc-
tance treatment. We caution the reader that what looks as an unphysical application
of Maxwell’s equations is in fact a mathematical trick useful to break down the entire
problem into subproblems that are easier to understand and, hence, easier to solve. In
section 2.3 we compile well known expressions, some of them analytical, other approx-
imations, for the solution of the MQS equations in the low frequency domain for the
particular cases that interest us in this thesis. In particular, we present expressions for
the partial self and mutual inductance of rectilinear conductors.

In section 2.4 we present our implementation of a core for impedance calculation.
This core uses the expressions presented in section 2.3. At the end of this section we
compare accuracy and performance of our implementation against the community’s
golden standard FastHenry [6].
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2.2 Basic concepts

Consider a time varying current I circulating through a closed circuit made up of a
conductor (Fig. 2.1). The conductor is surrounded by a dielectric. The flowing of
this current generates an electric field ~E and a magnetic field ~H. Fields ~E and ~H are
related through the Maxwell’s Equations which in sinusoidal steady state, for an angular
frequency ω, are given by [25]:

~∇ × ~E = − jωµ ~H (2.1)
~∇ × ~H = jωε~E + ~J (2.2)
~∇ · ~E =

ρ

ε
(2.3)

~∇ · µ ~H = 0 (2.4)

Where ~J(~x) is the current density at the source ~x and ρ(~x) is the charge density; µ and
ε are the magnetic permeability and dielectric permittivity of the material at the source,
respectively.

The current distribution is null outside the conductor. The charge density is null
inside the conductor but not on its surface. For non-ferromagnetic material, the mag-
netic permeability is equal to that of free space, i.e. µ0 = 4π × 10−7 H/m. The di-
electric permittivity of the medium is proportional to the permittivity of free space,
ε0 = 8.854× 10−12 F/m, i.e. ε = εr ε0 with the coefficient εr generally referred to as the
relative dielectric permittivity or dielectric constant (e.g. εr ≈ 11.9 for Si, εr ≈ 3.9 for
SiO2). It is generally accepted to consider εr = 1 inside the conductor.

In addition, within the conductor’s homogeneous media, the use of Ohm’s law is
applicable, that written in three dimensional form reads:

~J(~x) = σ~E(~x) (2.5)

where σ is the conductivity of the material the conductor is made off.

For an observation point ~x inside the conductor, we substitute (2.5) in (2.2). For
high conductivities, e.g. copper (σ = 5.8 × 107

f/m), the term σ~E is several orders
of magnitude larger than the counterpart ωε ~E, even for frequencies of the order of 100
GHz which are beyond the frequency limit of this study. For this reason it is safe to
neglect this term. This rends (2.2) into
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Figure 2.2: A conductor segment with rectangular cross-section.

~∇ × ~H = ~J (2.6)

The term ωε~E that is neglected corresponds to the displacement current inside the con-
ductor. By neglecting this term we fall into the magneto-quasistatic domain [25].

A solution to (2.1) together with (2.6) is given by

~E(~x) = − jωµ
4π

∫

Ω̄

~J(~x′)

‖~x − ~x′‖
dΩ′ − ~∇V(~x) (2.7)

with V(~x) referred to as the scalar potential and Ω̄ is the volume of all conductors.

Equating (2.7) and (2.5) results in the relationship

~J(~x)
σ
+

jωµ
4π

∫

Ω̄

~J(~x′)

‖~x − ~x′‖
dΩ′ = −~∇V(~x). (2.8)

Expression (2.8) in the quasistatic domain is supplemented by the current conserva-
tion equation

~∇ · ~J = 0. (2.9)

For a given V we can compute ~J by solving equation (2.8) together with (2.9). We
search a discretization of the unknown current distribution ~J(~x). Once ~J is known, the
electro-magnetic fields ~H and ~E can be computed. In the next section we explain in
detail a widely used discretization technique.
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Figure 2.3: A conductor of rectangular cross-section partitioned into filaments
(m = 12).

2.2.1 2D Volume discretization for an isolated conductor

Divide the conductor in Fig. 2.1 into short segments. Each segment can be thought of as
a straight conductor with rectangular cross-section as in Fig. 2.2. We consider a perfect
ground below the conductor. We take the conductor shorted to a perfect ground at one
end. If we apply a sinusoidal input voltage between one end of the conductor and the
perfect ground, current flows inside this closed circuit. Neglecting displacements cur-
rents, we make the approximation that the current inside the conductor flows parallel
to its walls along the direction of the applied potential difference, i.e. along the con-
ductor’s longitudinal direction (Fig. 2.2). The electromagnetic fields generated by this
current can be computed by solving (2.8) together with (2.9).

We break the conductor into m rectilinear filaments of finite volume and constant
cross-section as in Fig. 2.3. We denote the longitudinal direction of filament k as ˆ̀k.
With this discretization, current distribution inside each filament can be considered uni-
form and hence, the unknown current distribution inside filament k is given by

~J(~x) =
Ik

Ak

ˆ̀k (2.10)

with Ik the unknown current inside filament k and Ak its transverse area. Defining the
delta functions:

δk(~x) =






1 if ~x ∈ Filk

0 else
(2.11)
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the current distribution at any point of the conductor can be expressed as the finite sum:

~J(~x) ≈
m∑

k=1

Ik

Ak
δk(~x) ˆ̀k (2.12)

We substitute (2.12) in (2.8). By linearity (2.8) becomes

m∑

k=1





Ikδk(~x) ˆ̀k

σAk
+

jωµ Ik

4πAk

∫

Ω̄k

ˆ̀k

‖~x − ~x′‖
dΩ′





= −~∇V(~x). (2.13)

where Ω̄k represents the volume of filament k.

Consider the inner product of two functions f and g whose domain is in the space
X:

< f , g >=
∫

X

f g dx (2.14)

Take as weight functions the set of functions wi(~x) such that

wi(~x) =
δi(~x) ˆ̀i

Ai
. (2.15)

We use the method of moments [26]: For i = 1, . . . ,m, we apply the inner product
between the weight function wi and both sides of the inhomogeneous equation (2.13).
For the left hand side, the real part of the resulting expression is:

∫

Ω





m∑

k=1

Ikδk(~x) ˆ̀k

σAk



 ·
δi(~x) ˆ̀i

Ai
dΩ (2.16)

with Ω the union of all filament volumes. This integral is equal to zero outside the
volume of filament i because of the function δi, we can reduce the integration domain
to Ω̄i. In this domain of integration the sum in (2.16) is nonzero only when k = i, this
reduces to
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∫

Ω̄i

Ii ˆ̀i

σAi
·

ˆ̀i

Ai
dΩ =

Ii

σA2
i

∫

Ω̄i

1 dΩ

=
Ii

σA2
i

(Aili)

=
liIi

σAi

(2.17)

where li is the length of filament i.

With the same reasoning regarding the delta functions, the imaginary part of the in-
ner product between the weight function wi and the left hand side of the inhomogeneous
equation (2.13) results in

ω

m∑

k=1





µ

4πAiAk

∫

Ω̄i

∫

Ω̄k

ˆ̀i · ˆ̀k

‖~x − ~x′‖ dΩ′ dΩ





Ik (2.18)

The resulting inhomogeneous equation is:

(

li

σAi

)

Ii + jω
m∑

k=1





µ

4πAiAk

∫

Ω̄i

∫

Ω̄k

ˆ̀i · ˆ̀k

‖~x − ~x′‖ dΩ′ dΩ





Ik = −
∫

Ω̄i

~∇V(~x) ·
ˆ̀i

Ai
dΩ (2.19)

The right hand side of (2.21) can be rewritten as

∫

Ω̄i

~∇V(~x) ·
ˆ̀i

Ai
dΩ =

∫

Ai

1
Ai





∫

li

~∇V(~x) · ˆ̀i dL





dA

=
1
Ai

∫

Ai

(Vb − Va) dA = V̄b − V̄a

(2.20)

with functions Va and Vb defined as the potential on the points in the filament’s end
faces and V̄a and V̄b are the voltage at the end faces.

Replacing (2.20) in (2.19) results in:
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(

li

σAi

)

Ii + jω
m∑

k=1





µ

4πAiAk

∫

Ω̄i

∫

Ω̄k

ˆ̀i · ˆ̀k

‖~x − ~x′‖ dΩ′ dΩ





Ik = V̄b − V̄a (2.21)

We can write (2.21), for i = 1, . . . ,m, as a m × m linear system of the form:

ZI = V, (2.22)

With (Z)i,k given by:

When i = k (called the partial self impedance of filament i):

(Z)i,i =
li

σAi
+

jωµ
4πAi

2

∫

Ω̄i

∫

Ω̄i

ˆ̀i · ˆ̀k

‖~x − ~x′‖ dΩ′ dΩ (2.23)

and when i , k (called the partial mutual impedance between filament i and filament k):

(Z)i,k =
jωµ

4πAiAk

∫

Ω̄i

∫

Ω̄k

ˆ̀i · ˆ̀k

‖~x − ~x′‖ dΩ′ dΩ (2.24)

The real part in (2.23) is the resistance of the filament and the imaginary part is
the reactance. The reactance divided by ω is known as the partial self inductance of the
filament. In (2.24), the reactance divided byω is known as the partial mutual inductance
between two different filaments.

The vector I corresponds to the currents flowing through the m filaments and V is
the difference between the average potential of the two ends of each of the m filaments.

We apply a sinusoidal potential of vio volts at one end of the conductor and ground
the other end. From (2.20) we are free to consider the same potential difference vio for
all filaments. In other words, the corresponding system (2.22) is written as:

ZI = vioum, (2.25)

with um being the vector of dimension m with all entries equal to one. For non-singular
Z, the vector of filamentary currents is equal to

I = vio





∑m
k=1(Z−1)1,k
...

∑m
k=1(Z−1)m,k





, (2.26)
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I

V

Figure 2.4: A n-conductor configuration (n = 3). A sinusoidal is applied to one
conductor while the others are set to ground.

with (Z−1)i,k being the element ik of the matrix Z−1.

The total current going through the conductor is equal to the sum of the currents
going through each filament:

I =
m∑

i=1

Ii = vio

m∑

i=1

m∑

k=1

(Z−1)i,k. (2.27)

This equation can be written as





m∑

i=1

m∑

k=1

(Z−1)i,k





−1

I = vio. (2.28)

By Ohm’s law, the coefficient multiplying the current in the left hand side of (2.28) is
the total input/output self impedance of the conductor.

We resume: to compute the self impedance of a conductor, we first break it into m

filaments, we compute the m × m partial impedance matrix Z, we invert it and sum its
entries. The self impedance is then the inverse of this sum.

2.2.2 The n-conductor impedance matrix

Consider a system of n rectilinear conductors with constant cross-section (for example
Fig. 2.4 with 3 conductors). Each conductor is partitioned into mi filaments, with i =

1, . . . , n. In order to avoid confusions we use the index kc when referring to conductors
and the index k f when referring to filaments, i.e. kc = 1c, . . . , nc and k f = 1 f , . . . ,m f .

Equation (2.21) being local to the volumes of the filaments can be generalized to
the n-conductor case by considering all conductors’ filaments together in a single Z
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matrix. We apply a potential difference to one of the conductors and leave the other
n − 1 conductors quiet. With this voltage right hand side, the corresponding ZI = V
system is solved for the unknown current vector I. As for the 1-conductor case, the
current in one conductor will be equal to the sum of currents in the filaments into which
the conductor was partitioned, i.e. from the filamentary current vector we obtain a
current vector I(kc) with n elements corresponding to the total current inside each of the
n conductors:

I(kc) =





∑

i f ∈ conductor 1c

(I)i f

∑

i f ∈ conductor 2c

(I)i f

...
∑

i f ∈ conductor nc

(I)i f





(2.29)

From (2.21), there exists a n × n matrix Z that multiplied by I(kc) results in the
potential vector where the only nonzero element corresponds to the active conductor.
In other words

ZI(kc) = vioe(kc) (2.30)

with e(kc) the vector with element kc equal to one and other elements equal to zero and
with vio the difference of potential applied to the active conductor.

Setting vio equal to 1 and repeating the process for the other n− 1 conductors results
in a collection of n vectors of currents I(kc), for kc = 1c, . . . , nc. From (2.30) for kc =

1c, . . . , nc, the matrix Z is the inverse of the matrix Y whose columns are the vectors
I(kc), i.e.

Z = Y−1 :=
[

I(1c)| . . . |I(nc)
]−1

(2.31)

The matrix Z corresponds to the partial impedance matrix of the n-conductor con-
figuration. This is the n × n matrix with elements equal to the self partial impedance of
each conductor in the diagonal, and the partial mutual impedance among the conductors
in the off-diagonal.

To resume, the method is as follows: for kc = 1c, . . . , nc we apply a sinusoidal
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potential of one volt at one end of conductor kc and ground the other end. All other
conductors are grounded at both ends (see Fig. 2.4). The corresponding linear system
(2.22) is

ZI = e(kc) (2.32)

the i f -th entry in e(kc) is equal to one if filament i f belongs to conductor kc, and equal to
zero if not.

After solving for I in (2.32), the k-th column of Y is formed by summing currents
of filaments inside each of the n conductors:

(Y)k =





∑

i f ∈ conductor 1c

(I)i f

∑

i f ∈ conductor 2c

(I)i f

...
∑

i f ∈ conductor nc

(I)i f





. (2.33)

Once the process has been repeated for the n conductors, we invert Y to obtain the
n-conductor partial impedance matrix Z.

2.3 Low frequency impedance simulation

We will consider the low frequency domain. In this domain the current distribution
~J is uniform in all the conductor’s cross-section∗. We do not need to discretize the
conductors’ cross-sections (m = 1 for all conductors). From the methodology presented
in the previous section, this amounts to compute the partial impedance matrix Z using
(2.23) for each conductor and (2.24) among conductors.

From (2.23), the static (DC) resistance of a conductor of length L and with constant
cross-section of area A is given by

RDC =
L
σA
. (2.34)

∗See section 3.9
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Figure 2.5: Two parallel wires of length L and constant cross-section, sharing the
same perpendiculars

and its partial self inductance is

L = µ

4πA2

∫

Ω̄

∫

Ω̄

1
‖x − x′‖ dΩ dΩ′. (2.35)

with Ω̄ the conductor’s volume.

From (2.24), the partial mutual inductance between two conductors with volumes
Ω̄i and Ω̄k, respectively, is given by

Lik =
µ

4πAiAk

∫

Ω̄i

∫

Ω̄k

ˆ̀i · ˆ̀k

‖x − x′‖ dΩ dΩ′. (2.36)

with Ai and Ak the area of the constant cross-section of conductor i and k, respectively.

2.3.1 Partial inductance of 2D configurations

We consider two parallel conductors of equal length L and ends sharing the same per-
pendicular with rectangular and constant cross-sections of area Ai and Ak, as shown in
Fig. 2.5. For simplicity we call this kind of configuration a 2D configuration. We use
the 2D terminology in the sense that the two wires share the same limits in the length
coordinate, leaving just the limits in the two-dimensional cross-sections as free vari-
ables. Notice that despite the chosen name the computation of the inductance of a 2D
configuration is in fact a 3D problem.
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Exact Solutions

Exact solutions to both (2.35) and (2.36) for 2D configurations, are known in the liter-
ature. The one for the partial self inductance is due to Ruehli [7] and is given by:
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L = 2 µ L
π

{

1
4

[

1
W

sinh−1 W
αt
+

1
T

sinh−1 T
αw
+ sinh−1 1

r

]

+
1

24

[

T 2

W
sinh−1 W

T αt(r + αr)
+

W2

T
sinh−1 T

W αw(r + αr)

+
T 2

W2 sinh−1 W2

T r(αt + αr)
+

W2

T 2 sinh−1 T 2

W r(αw + αr)

+
1

W T 2 sinh−1 W T 2

αt(αw + αr)
+

1
T W2 sinh−1 T W2

αw(αt + αr)

]

− 1
60

[

T 2(αr + r + T + αt)
(r + αr)(r + T )(T + αt)(αt + αr)

+
W2(αr + r +W + αw)

(r + αr)(r +W)(W + αw)(αw + αr)

+
αr + αw + αt + 1

(αw + αr)(αt + αr)(αw + 1)(αt + 1)

]

− 1
6

[

1
W T

tan−1 W T
αr
+

T
W

tan−1 W
T αr

+
W
T

tan−1 T
W αr

]

− 1
20

[

1
r + αr

+
1

αw + αr
+

1
αt + αr

]}

(2.37)

where L,w, t are the length, width and thickness of the conductor, respectively, W =

w/L, T = t/L, r =
√

W2 + T 2, αw =
√

W2 + 1, αt =
√

T 2 + 1 and αr =
√

W2 + T 2 + 1.

For 2D configurations, the partial mutual inductance between two rectangular wires
(2.36) can be expressed exactly as a weighted sum of 16 partial self inductance values.
This result is due to Zhong and Koh [27]. The expression for the partial mutual induc-
tance between parallel wires of length L and respective cross-section areas wa × ta and
wb × tb is given by:

La,b =
1

8 wa wb ta tb

4∑

i=1

4∑

k=1

(−1)i+kA2
ai,bk
Lai,bk (2.38)

withLai,bk the partial self inductance of the segment of length L and cross-section equal
to the rectangle formed with vertices ai and bk (see Fig. 2.6). The value Aai,bk being the
area of this rectangle. For the general case in which the parallel segments are located
in any placement, the corresponding expression becomes a weighted sum of 64 partial
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a 1

a 3a 4

a 2

b1 b2

b3b4

Figure 2.6: The cross-sections of two parallel wires

self inductance values.

The reader may notice the high complexity of using these exact solutions to com-
pute partial self and mutual inductance of wire segments. For a realizable simulator
capable of computing inductance of millions of wire segments, the use of simpler ap-
proximations is a priority, leaving these complex solutions just for particular cases in
which great accuracy is needed.

Approximations

Equation (2.36) can be rewritten as

Lik =
1

AiAk

∫

S i

∫

S k





µ

4π

L∫

0

L∫

0

1
‖x − x′‖ dl dl′





︸                            ︷︷                            ︸

L f il

dS dS ′, (2.39)

where S i and S k are the cross-section of conductor i and k, respectively. For two differ-
ent cross-section points s and s′, the integral inside the brackets in (2.39) corresponds
to the partial mutual inductance between two infinitesimally thin parallel filaments of
equal length L passing through s and s′ (see Fig. 2.5). The exact solution to this integral
is known and given by [28]

L f il =
µL
2π



ln





L
d
+

√

1 +
L2

d2



 −
√

1 +
d2

L2 +
d
L



 , (2.40)

with d the distance between the cross-section points s and s′ and ln(x) the natural loga-
rithm function.
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When L � d, expression (2.40) can be approximated by

L f il ≈
µL
2π

[

ln
(

2L
d

)

+
d
L
− 1

]

. (2.41)

Substituting (2.41) in (2.39) results in the following approximation to the mutual induc-
tance between two long and parallel conductors:

L = µL
2π

[

ln
(

2L
dg

)

+
da

L
− 1

]

(2.42)

with dg and da the geometric mean distance (GMD) and the arithmetic mean distances
(AMD) of the conductors’ cross-section, respectively. The GMD and AMD are given
by:

ln(dg) =
1

AiAk

∫

S i

∫

S k

ln ‖x − x′‖ ds ds′, (2.43)

da =
1

AiAk

∫

S i

∫

S k

‖x − x′‖ ds ds′. (2.44)

When the center-center distance between two identical parallel conductors tends to
zero, i.e. the conductors occupy the exact same volume in space, the expression (2.39),
becomes the partial self inductance of the conductor:

L =
∫

S i

∫

S i

1
A2

i





µ

4π

L∫

0

L∫

0

1
‖x − x′‖ dl dl′




dS dS ′. (2.45)

This expression contains infinite poles, which are integrable nevertheless. Once again,
if the length of the conductor is larger than the cross-section dimensions, expression
(2.42) approximates well to the partial self inductance of the conductor, when replacing
both dg and da in the expression by the GMD and the AMD of the conductor’s cross-
section to itself, respectively [28].

2.3.2 GMD of a rectangle to itself

The GMD of a single rectangle of area w×h to itself, it is to a very good approximation
given by [28]:
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Figure 2.7: General configuration of two rectangles.

ln(GMD) ≈ ln(w + h) − 3/2. (2.46)

2.3.3 GMD between two different rectangles

The GMD of two rectangles, as shown in Fig. 2.7, is given by:

ln (GMDA,B) =
1

A × B

y2∫

y1

z2∫

z1

y4∫

y3

z4∫

z3

ln
√

(y − y′)2 + (z − z′)2 dz′dy′dz dy, (2.47)

with A = (y2 − y1) × (z2 − z1) and B = (y4 − y3) × (z4 − z3), the areas of the rectangles.

For the case when two identical rectangles are located on the same plane, i.e. y1 = y3

or z1 = z3, we can use the following approximation to their GMD [28]:

ln (GMD) = ln (a) + ln (k), (2.48)

with a the center to center distance between the rectangles and ln (k) a tabulated correc-
tion value that depends on the ratios between separation and cross-section dimensions.

To compute the GMD between two coplanar rectangles with same thickness but
different width (Fig. 2.8.a,) we use the methodology presented in [10] that we proceed
to explain in detail. This consist on partitioning the rectangle with maximum width,
rectangle B in the figure, in n = bB/Ac pieces of cross-sectional area Bi = A, for i =

1, . . . , n and a remaining piece of cross-sectional area Bn+1. The following proposition,
permits us to approximate the original GMD using the expression (2.48) for identical
rectangles.
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Figure 2.8: a) Front view of two wires with rectangular cross-section, b) Partitioning
of the wire with larger width.

Proposition 1 Given two rectangles of area A and B, as shown in Fig. 2.8.b, it holds

that:

ln(GMDA,B) =
A

∑n
i=1(ln(GMDA,Bi)) + Bn+1 ln(GMDA,Bn+1)

B
. (2.49)

Proof: Call G (y, y′, z, z′) :=
√

(y − y′)2 + (z − z′)2 and dΩ := dy′dy dz′dz.

From (2.47) it follows that

ln (GMDA,B) =
1

A × B

z2∫

z1

z2∫

z1

y2∫

y1

yn+4∫

y3

ln(G) dΩ.

Partitioning the last integral

ln (GMDA,B) =
1

A × B

z2∫

z1

z2∫

z1

y2∫

y1

n+3∑

i=3

yi+1∫

yi

ln(G) dΩ

=

n+2∑

i=3





1
A × B

z2∫

z1

z2∫

z1

y2∫

y1

yi+1∫

yi

ln(G) dΩ





+
1

A × B

z2∫

z1

z2∫

z1

y2∫

y1

yn+4∫

yn+3

ln(G) dΩ,
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therefore

ln(GMDA,B) =
n+2∑

i=3





Bi−2

B
1

A × Bi−2

z2∫

z1

z2∫

z1

y2∫

y1

yi+1∫

yi

ln(G) dΩ





+
Bn+1

B
1

A × Bn+1

z2∫

z1

z2∫

z1

y2∫

y1

yn+4∫

yn+3

ln(G) dΩ.

Using (2.47) and since Bi = A for i < n + 1:

ln(GMDA,B) =
A
B

n∑

i=1

(ln(GMDA,Bi)) +
Bn+1

B
ln(GMDA,Bn+1).

In (2.49), all but the last term correspond to calculations of GMD’s of identical
rectangles. To compute the last term GMDA,Bn+1 we use recursion with (2.49) but with
A changed to Bn+1 and B changed to A. We continue until the last remaining term is
either negligible or strictly of zero size. We find that a recursion depth of 4 suffices
to achieve an upper bound of 1% of error in the computation of the partial mutual
inductance for realistic configurations.

We have verified empirically that the recursion method remains accurate for rectan-
gles that are non coplanar. Each of the GMD’s between non coplanar rectangles in the
recursion can be approximated by the corresponding GMD between the same rectangles
rotated around their centers so as to become coplanar. This approximation is explained
in Fig. 2.9.

As a consequence of this approximation, together with Proposition 1, a similar re-
cursion method can be applied when the rectangles do not have the same thickness. We
partition the thickest rectangles into segments of thick equal to that of the finest rectan-
gle. Only GMD’s of rectangles with equal thickness but possibly different width need
to be computed. We use for these the original recursion.

When the thickness or width of one rectangle is much larger than that of the other
rectangle, the recursion method can become quite expensive. This kind of situation
arises when computing the mutual inductance between, for example, a thin signal wire
and a ground plane. Ground planes can have width of chip size, i.e., orders of magnitude
wider than typical signal wires.

The exact solution to (2.47) can be calculated exactly observing that
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Figure 2.9: Approximation of the non-coplanar configuration. Dotted lines represent
the approximated configuration for which the GMD is computed.

∂4F(y − y′, z − z′)
∂y∂z∂y′∂z′

= − ln
[

(y − y′)2 + (z − z′)2
]

− 25
6

(2.50)

where

F(y, z) =
y4 − 6y2z2 + z4

24
ln(y2 + z2) − yz

3

(

y2 tan−1 z
y
+ z2 tan−1 y

z

)

(2.51)

Using the above observation, equation (2.47) evaluates to

ln(GMDA,B) =
1

A × B

[

−1
2

F(y − y′, z − z′)|y2
y1

∣
∣
∣
y4

y3

∣
∣
∣
∣

z2

z1

∣
∣
∣
∣
∣

z4

z3

− 25
12

w1w2t1t2

]

(2.52)

with w1 = y2 − y1, w2 = y4 − y3, t1 = z2 − z1 and t2 = z4 − z3.

This is an expression with 33 terms, most of them a combination of hyperbolic
functions.

Therefore, we use this expression only when the recursion method is more expen-
sive. Several heuristics are implemented in order to decide when to use the recursion
methodology or the exact formula.
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2.3.4 What if d ≥ L?

The previous expressions are valid for configurations where transverse dimensions are
much smaller than longitudinal dimensions, i.e., L � d. In other words, using (2.42) to
compute self inductance of a short and wide (or thick) wire or using (2.42) to compute
mutual inductance between two short and wide wires separated by a large distance, may
result in large inaccuracies. To this effect, new expressions need to be used to assure
the robustness of the method.

Self inductance of short and wide wires

We concentrate our attention in wires that have their transverse dimensions of the order
of (or larger than) their length. For a wire with this characteristic, approximation (2.42)
is not longer valid.

The trivial workaround that one could propose is to simply break the wire into m

filaments, with m large enough so as to assure that the transverse dimension of each of
the filaments are smaller than their length.

Take for instance a wire with length L and width w = 2L. Suppose the thickness to
be much smaller than the length. This wire would need to be partitioned in its width
into at least m = 20 filaments in order to comply ws < 0.1L, with ws the width of the
filaments in which the wire was partitioned.

The self inductance of the wire is then computed using (2.28), i.e., one needs to
compute the m × m self and mutual inductance interactions among filaments, as well
as the static resistance of the m filaments. Some of the mutual inductance interactions
will certainly violate the condition l > d but their weight in the final sum will be negli-
gible compared to the self interactions of the n wires and the mutual interaction of the
filaments satisfying the condition l > d.

As an example, let us take a wire of length L = 10µm with rectangular cross-section
w = 100µm and t = 1µm. In table 2.1 we show how the self inductance accuracy
improved by using the partitioning scheme. Results are compared against (2.37).

Although precision has been recovered with this method, the overhead created by
computing the O(m2) values and inverting the matrix makes it unattractive for IC simu-
lation in which inductance of million of wires need to be calculated.

For the example given above, we use of the Ruehli’s expression which is exact and
it is about one order of magnitude slower than using (2.42). This increase in complexity
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Nb. of filaments 1 10 100 Ruehli
Self induct.(in pH) .437 .684 .686 .686

Table 2.1: Self inductance of a wire of length L = 10µm and rectangular cross-section
w = 100µm and t = 1µm. Comparisons between Ruehli’s expression and the

partitioning scheme.

is the price we pay in order to achieve good accuracy.

Mutual inductance of short wires separated by large distance

There are two possible cases when computing the mutual inductance between short
wires that have center-center distance much larger than their lengths. The trivial case is
when the width of both wires is much smaller than the center-center distance. In this
case both wires see each other as filaments, so it is reasonable to think that the original
formula for filaments (eq. (2.40)) with d replaced by their center-center distance would
suffice.

Take for instance one configuration consisting of two wires with L = 10µm, w =

1µm and t = 1µm, with a center-center distance of d = 100µm. The mutual inductance
of this configuration using the exact (2.38) is 0.1 pH, which is exactly the same result
when using (2.40). Furthermore, varying the width of both wires to w = 30µm results
in no noticeable difference in the mutual inductance. This seems to verify that for long
distance, the use of the filamentary expression is valid as long as w < d/3.

The other case is when two short and wide wires have an edge-edge distance close
to zero, i.e. w ≈ d. In this case using the filamentary approximation is not accurate. We
could also partition the wires into filaments such that the condition d > w is recovered.
Taken n and m as the respective number of filaments in which the wires were broken,
the mutual inductance of the original configuration would be equal to the sum of the
m.n mutual inductance terms between filaments at each wire. This is a O(n2) approach
in the worst case (when n ≈ m). This result in a method that could be several orders
of magnitude slower than the original method, where no wires were partitioned, when
high accuracy is required. Again, using such approach, albeit very accurate, becomes
unattractive for real IC designs for which the number of wires can exceed a million.

For this case we prefer to use the exact expression due to Zhong and Koh which is
one order of magnitude slower than using (2.42).
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Figure 2.10: Two parallel filaments.

l+m

l+m

d

Figure 2.11: The amplified configuration of the two parallel filaments.

2.3.5 General partial mutual inductance (3D configurations)

Previous equations for 2D configurations are useful for computing partial inductance of
configurations placed in any relative position, what we call 3D configurations. Take for
instance the configuration of the two parallel filaments, with the end of one filament at
the same orthogonal line as the start of the other filament. These filaments are shown in
Fig. 2.10.

We denote as Ll;d the partial inductance of the 2D configuration given by two par-
allel filaments i and k with length l and separation d. In other words

Ll;d =
µ

4π

l∫

0

l∫

0

ˆ̀i · ˆ̀k

‖x − x′‖ dx dx′ (2.53)

with ˆ̀i and ˆ̀k the unit vector in the longitudinal direction of filament i and k, respec-
tively.

Consider the extension of the previous configuration to one in which both filaments
have the same length l + m. Without loss of generality, we take this configuration to
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l

d m

δ
Figure 2.12: Two parallel filaments.

be parallel to the x-axis. See Fig. 2.11. From (2.53), the partial mutual inductance
between this two filaments is given by the double integral:

Ll+m;d =

l+m∫

0

l+m∫

0

F(x, x′) dx dx′. (2.54)

with F(x, x′) = µ ˆ̀i · ˆ̀k/(4π
√

(x − x′)2 + d2). Partitioning the integral limits we can
rewrite (2.54) as:

Ll+m;d =

l∫

0

l∫

0

F(x, x′) dx dx′ +

l∫

0

l+m∫

l

F(x, x′) dx dx′ +

l+m∫

l

l∫

0

F(x, x′) dx dx′

+

l+m∫

l

l+m∫

l

F(x, x′) dx dx′

=

l∫

0

l∫

0

F(x, x′) dx dx′ + 2

l∫

0

l+m∫

l

F(x, x′) dx dx′ +

l+m∫

l

l+m∫

l

F(x, x′) dx dx′

(2.55)

From (2.55) and (2.53) the partial mutual inductance between the two original fila-
ments in Fig. 2.10 is:

L =
Ll+m;d − (Ll;d + Lm;d)

2
. (2.56)

Consider the same configuration as before but with one filament shifted by a dis-
tance δ as shown in Fig. 2.12 and with both filaments having length equal to l + m + δ.
The corresponding double integral is given by:



2.3. Low frequency impedance simulation 47

Ll+m+δ;d =

l+δ∫

0

l+δ∫

0

F(x, x′) dx dx′ +

l+δ∫

0

l+m+δ∫

l+δ

F(x, x′) dx dx′ +

l+m+δ∫

l+δ

l+δ∫

0

F(x, x′) dx dx′

+

l+m+δ∫

l+δ

l+m+δ∫

l+δ

F(x, x′) dx dx′

=

l+δ∫

0

l+δ∫

0

F(x, x′) dx dx′ + 2

l+δ∫

0

l+m+δ∫

l+δ

F(x, x′) dx dx′ +

l+m+δ∫

l+δ

l+m+δ∫

l+δ

F(x, x′) dx dx′

=

l+δ∫

0

l+δ∫

0

F(x, x′) dx dx′ + 2

l∫

0

l+m+δ∫

l+δ

F(x, x′) dx dx′ + 2

l+δ∫

l

l+m+δ∫

l+δ

F(x, x′) dx dx′

+

l+m+δ∫

l+δ

l+m+δ∫

l+δ

F(x, x′) dx dx′

(2.57)

The third term at the last equality in (2.57) correspond to a configuration as the one
in Fig. 2.10, but with l changed to δ. From (2.56):

l+δ∫

l

l+m+δ∫

l+δ

F(x, x′) dx dx′ = Ll+m;d − (Ll;d +Lm;d). (2.58)

Replacing (2.58) in (2.57) and reordering, results in the partial mutual inductance be-
tween the two filaments of Fig. 2.12:

L =
Ll+m+δ;d +Lδ;d − (Ll+δ;d + Lm+δ;d)

2
. (2.59)

Notice the convergence of (2.59) to (2.56) when δ = 0. In the case of overlapping
filaments, that is δ < 0, the same expression applies but taking absolute value of the
expressions where δ appears, that may be negative, i.e.:

L =
L|l+m+δ|;d + L|δ|;d − (L|l+δ|;d +L|m+δ|;d)

2
. (2.60)

Expression (2.59) also holds for wires with finite cross-section. Each terms in this
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w1
w2

l

d

mδ

Figure 2.13: Two parallel wires with different widths w1 and w2.

expression is to be calculated using the expressions for partial mutual inductance of 2D
configurations presented in the previous sections.

In the case of wires with finite cross-section, it may be possible to face a config-
uration as the one in Fig. 2.13. The first term of (2.59) for this configuration will
correspond to the mutual inductance between two wires with center-center distance d

greater than zero, but with their cross-sections sharing space. Although this kind of
configuration is totally unphysical, its corresponding double volumetric integral (2.36)
is solvable and furthermore (2.38), is the exact solution to this integral.

For two collinear wires (d = 0) with identical cross-section, expression (2.59) will
result in the calculation of the mutual inductance of two identical wires with zero center-
center distance which corresponds to the self inductance of one of the wires. For this
case, (2.59) becomes:

L = Ll+m+δ + Lδ − (Ll+δ + Lm+δ)
2

, (2.61)

with Ll defined as the partial self inductance of the wire of length l and cross-section
identical to that of the two original wires.

When the wires do not have identical cross-section, (2.59) will result in calculations
of partial mutual inductance between two concentric wires with different cross-section.
Once again, the expression due to Zhong and Koh is the exact solution to the double
volumetric integral (2.36) for this particular case.

2.3.6 Partial mutual inductance of nonparallel wires

Consider the two filaments shown in Fig. 2.14. The mutual inductance between these
two filaments is given by [28]:
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l

m

R2

R4R3
R1

Figure 2.14: Two general filaments. R1, R2, R3 and R4 are the distances between
their ends. Notice that these filaments are not necessarily located on the same plane.

L = µk
2π

[

(u + l) tanh−1 m
R1 + R2

+ (v + m) tanh−1 l
R1 + R4

− u tanh−1 m
R3 + R4

− v tanh−1 l
R2 + R3

− Ωd

2
√

1 − k2

] (2.62)

where

Ω = tanh−1 d2k + (u + l)(v + m)(1 − k2)

dR1

√
1 − k2

− tanh−1 d2k + (u + l)v(1 − k2)

dR2

√
1 − k2

+ tanh−1 d2k + uv(1 − k2)

dR3

√
1 − k2

− tanh−1 d2k + u(v + m)(1 − k2)

dR4

√
1 − k2

,

k =
α2

2lm
,

α2 =R4
2 − R3

2 + R2
2 − R1

2,

d2 =R3
2 − u2 − v2 + 2uvk,

u =
2m2l(R2

2 − R3
2 − l2) + α2l(R4

2 − R3
2 − m2)

4l2m2 − α4 ,

v =
2l2m(R4

2 − R3
2 − m2) + α2m(R2

2 − R3
2 − l2)

4l2m2 − α4 .

(2.63)

We approximate the partial mutual inductance of two nonparallel wires with finite
cross-section, considering the two filaments passing through each of their centers and
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using (2.62).

2.3.7 Summary

We present in tables 2.2 and 2.3 a quick reference to the equations for partial self and
mutual inductance used in each case.

Type of configuration Expression used
Thin wire (w, t � L) (2.42)

Otherwise (2.37)

Table 2.2: Partial self inductance expressions

Type of configuration Expression used
2D: thin and near wires (w, t, d � L) (2.42)

2D: short wires with w, t � d (2.40) with d the center-center distance
2D: short wires with w, t ≈ d (2.38)

3D: wires: parallel (2.56), (2.59) and (2.60)
3D: wires: collinear (2.61)

3D: wires, nonparallel (2.62)

Table 2.3: Partial mutual inductance expressions

2.4 3D magneto-quasistatic field solver

All the previous expressions for resistance and inductance of both 2D and 3D configu-
rations are implemented in a low frequency impedance simulation tool. The simulator
receives an input file where n wires are defined. The output of this tool are the resistance
and partial inductance matrices:

R =





R1 0 . . . 0
0 R2 . . . 0
...
...
. . .

...

0 0 . . . Rn





(2.64)
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Figure 2.15: A wire defined for the simulator

L =





L1 L1,2 . . . L1,n

L2,1 L2 . . . L2,n
...

...
. . .

...

Ln,1 Ln,2 . . . Ln





(2.65)

where Ri and Li are the resistance and partial self inductance of the i-th wire, re-
spectively. The value Li,k corresponds to the partial mutual inductance between wire i

and wire k.

2.4.1 Syntax of the input file

The syntax of the input file needed for the 3D impedance simulator is as follows:

*Comment Line

n=<number of wires>

<length units>

N1 w=<val> t=<val> x1=<val> x2=<val> y1=<val> y2=<val> z=<val> s=<val>

:

:

Nn w=<val> t=<val> x1=<val> x2=<val> y1=<val> y2=<val> z=<val> s=<val>

END

The values w and t are the width and thickness of the corresponding wire, re-
spectively. The coordinates of the center points at each end of the wire are given by
(x1, y1, z) and (x2, y2, z) (see Fig. 2.15). The value s is the conductivity of the material
in which the wire is made off. All values are in agreement with the units defined in the
<length units> line. For instance a value equal to 1e-6 corresponds to all distance
values given in µm and the conductivity as f/µm.
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Figure 2.16: Partial self inductance: Comparison between FastHenry and the
analytical expression.

2.4.2 Accuracy of the simulator

We proceed to compare the accuracy of this simulator against the golden standard used
in the academical community. This is the 3D impedance simulator FastHenry [6] from
MIT.

We compare accuracy of our inductance expressions, both for 2D and 3D configu-
rations. We start by comparing the partial self inductance expression for several config-
urations with the corresponding values from FastHenry.

In the L � d approximation the term da/L in (2.42) is small compared to the other
terms. Furthermore, there are not known analytical expressions neither for the AMD
of a rectangle to itself, nor for the AMD between two rectangles. We prefer to replace
AMD in the inductance expressions by the corresponding GMD for which, as we have
shown in previous sections, analytical expressions as well as accurate approximations
exist. We do this to improve performance of the computations.

Results agree to within 1% in accuracy, as shown in Fig. 2.16. The method is
computationally efficient as we will see in the next section.

Regarding partial mutual inductance, we have chosen several configurations with
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Figure 2.17: Partial mutual inductance: Comparison between FastHenry and our
simplified expression.

different width values and center to center separation in order to validate our recursive
approach to the calculation of the GMD between the two cross-sections (see section
2.3.3). In Fig. 2.17 the comparison between results from FastHenry and our simulator
are shown.

As a second test case we use a configuration consisting of a dodecagon spiral induc-
tor as shown in Fig. 2.18. We partitioned the inductor at each vertex in order to have
straight segments. We choose this configuration as a test case since partial inductance of
both 2D and 3D configurations are computed, so to validate accuracy of all the previous
expressions.

The resistance matrix for this configuration was exactly the same in FastHenry and
in our simulator. This is due to the fact that both FastHenry and our simulator use the
resistance formula (2.34).

For purposes of illustration, the partial inductance matrix for the segments in the
first turn of the inductor given by FastHenry is:
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Figure 2.18: A dodecagon spiral inductor with 2 turns. With width=4µm,
thickness=0.65µm, interwire separation=5µm and outer radius=100µm.

L =




8.25 0.734 −0.317 −0.532 −0.307 0.66 3.89 0.639 −0.299 −0.499 −0.287 0.571
0.735 8.06 0.723 −0.309 −0.521 −0.303 0.647 3.78 0.624 −0.292 −0.489 −0.282
−0.317 0.721 7.89 0.706 −0.303 −0.512 −0.296 0.634 3.68 0.611 −0.286 −0.48
−0.532 −0.311 0.708 7.71 0.696 −0.298 −0.502 −0.293 0.619 3.57 0.599 −0.28
−0.308 −0.521 −0.304 0.695 7.52 0.682 −0.293 −0.491 −0.285 0.608 3.47 0.585

0.66 −0.304 −0.512 −0.3 0.681 7.35 0.666 −0.288 −0.484 −0.281 0.594 3.37
3.89 0.647 −0.298 −0.503 −0.291 0.668 7.17 0.656 −0.283 −0.474 −0.273 0.582
0.638 3.78 0.635 −0.291 −0.491 −0.287 0.656 6.99 0.642 −0.276 −0.463 −0.269
−0.299 0.624 3.68 0.619 −0.284 −0.484 −0.281 0.642 6.82 0.628 −0.27 −0.455
−0.499 −0.293 0.612 3.57 0.609 −0.28 −0.473 −0.277 0.626 6.64 0.616 −0.264
−0.287 −0.489 −0.286 0.599 3.47 0.595 −0.274 −0.463 −0.27 0.616 6.47 0.602
0.571 −0.283 −0.48 −0.282 0.584 3.37 0.58 −0.27 −0.456 −0.265 0.602 6.29




∗ 10−11H (2.66)

And the corresponding partial inductance matrix given by our simulator is:

L =





8.24 0.739 −0.316 −0.532 −0.309 0.661 3.86 0.639 −0.298 −0.499 −0.288 0.571
0.739 8.06 0.725 −0.31 −0.522 −0.303 0.648 3.76 0.625 −0.292 −0.489 −0.282
−0.316 0.725 7.88 0.712 −0.305 −0.512 −0.297 0.634 3.65 0.612 −0.286 −0.479
−0.532 −0.31 0.712 7.7 0.699 −0.299 −0.503 −0.292 0.621 3.58 0.599 −0.281
−0.309 −0.522 −0.305 0.699 7.52 0.686 −0.293 −0.493 −0.286 0.608 3.48 0.585
0.661 −0.303 −0.512 −0.299 0.686 7.35 0.672 −0.287 −0.483 −0.28 0.595 3.38
3.86 0.648 −0.297 −0.503 −0.293 0.672 7.17 0.659 −0.282 −0.473 −0.274 0.582
0.639 3.76 0.634 −0.292 −0.493 −0.287 0.659 6.99 0.646 −0.276 −0.463 −0.269
−0.298 0.625 3.65 0.621 −0.286 −0.483 −0.282 0.646 6.81 0.632 −0.27 −0.454
−0.499 −0.292 0.612 3.58 0.608 −0.28 −0.473 −0.276 0.632 6.64 0.619 −0.264
−0.288 −0.489 −0.286 0.599 3.48 0.595 −0.274 −0.463 −0.27 0.619 6.46 0.606
0.571 −0.282 −0.479 −0.281 0.585 3.38 0.582 −0.269 −0.454 −0.264 0.606 6.29





∗ 10−11H (2.67)
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Figure 2.19: A polygonal inductor of 30 sides and 10 turns. With width=4µm,
thickness=0.65µm, interwire separation=5µm and outer radius=100µm.

Avg. Run time.(in s)
FH 4.2

Our Sim. 0.27

Table 2.4: Average run time to compute the impedance matrix of the spiral presented
in Fig. 2.19

The average relative error in the values of the entire 24×24 partial inductance matrix
was less than 0.5% with a maximum relative error of 2%.

2.4.3 Performance

We proceed to compare the performance of our simulator against FastHenry. We chose
as a test case a polygonal inductor of 30 sides and 10 turns, as shown in Fig. 2.19.

We forced both FastHenry and our simulator to compute the impedance matrix of
this configuration 100 times†. The resulting time of computation was then divided by

†this is done in order to have a comparison that is the most independent possible of the execution
environment (cpu usage by other processes, memory, etc)
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100. The average run time to compute the impedance matrix for this configuration
are presented in table 2.4. As can be seen in the table our simulator was one order of
magnitude faster than FastHenry, with a relative error of less than 2%.

The simplicity and accuracy of this simulator have made of this tool the computa-
tional core of the three applications presented in the following chapters.



Chapter 3

Integrated circuits impedance
extraction

Extraction d’impédance dans les circuits intégrés

Résumé

Les fréquences employées dans les circuits intégrés continuent d’augmenter. Les effets
d’inductance parasite sur la performance des circuits deviennent très significatifs. Par
conséquent, une modélisation efficace et une analyse des phénomènes d’inductance de-
viennent une problématique d’un grand intérêt pour les concepteurs de circuits. Dans ce
chapitre, nous présentons une méthodologie utile pour l’extraction des impédances dans
les circuits intégrés. Cette méthodologie permet aux concepteurs d’avoir des valeurs
mesurables des effets inductifs présents dans leur dessins. Cette méthodologie a été
lancée sur le marché de la conception aidée par ordinateur (CAO), comme un produit
de la société Mentor Graphics. Des brevets mondiaux pour protéger cette nouvelle
technologie ont été également déposés.

3.1 Introduction

With integrated circuits reaching tenths of GHz new phenomena need to be captured
in the wire behavior. As we incrementally move up in frequency the characterization
of wires evolve from simple resistance in series with a capacitance to ground, to a

57
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L

dx

c.dx
r.dx l.dx

L

r.dx

c.dx

dx

a) b)

Figure 3.1: The RC and RLC representations of a wire of length L.

distributed version of the same [5] (Fig. 3.1.a). When inductance is important, we move
up from the concatenation of RC segments, to an RLC distributed circuit (Fig. 3.1.b).
To accurately capture in the wires the finite nature of the speed of light, the wires need to
be represented as a distributed concatenation of RC or RLC lumped elements as shown
in Fig. 3.1. When the number of elements tend to infinity and dx tends to zero this
representation becomes an exact solution to the diffusion equation:

∂2V(x, t)
∂x2 = rc

∂V(x, t)
∂t

(3.1)

for the RC case and to the telegraphist equation:

∂2V(x, t)
∂x2 = lc

∂2V(x, t)
∂t2 + rc

∂V(x, t)
∂t

(3.2)

for the RLC case, with V(x, t) the voltage at the position x and at the time t. Both equa-
tions are direct consequences of the Maxwell equations (2.1-2.4) treated in the temporal
domain [29]. A discretization using distributed lump representation, as in Fig. 3.1, re-
produces exact solution to (3.2). For wire lengths of the order of the wavelength λ it
suffices to set a sufficiently large number of lumped elements, say n > 10, or equiva-
lently setting dx ≤ λ/10 in the distributed representation.

With this lower bound to the number of lumped elements for each wire, we can
get an idea of the complexity associated with the problem: It suffices to notice that a
leading edge digital circuit at 65 nm contains O(3 ∗ 109) transistors, and O(1010) wires.
Each wire is distributed in average O(10) segments, the data to be computed and hence
to be stored for this example would amount to:

• O(1011) values for resistance, capacitance and inductance

• O(1022) values for mutual capacitance and mutual impedance among segments
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A monumental computation indeed, as well as a large memory usage. In what follows,
we present a divide-and-conquer methodology to extract the high frequency behavior in
a way that is both computationally economical and with varying degrees of accuracy:
from field solver accuracy, when such is demanded, to moderate accuracy for studies
that only demand the knowledge of bounds, as in noise applications.

The application domains of the technology presented in this thesis are:

• Parasitic extraction of self impedance

• Parasitic extraction of mutual impedance

• Frequency dependence of the self and mutual impedance

• Timing representation

• Synthesis of clock structures accounting for inductance phenomena

• Impedance extraction of intentional devices , e.g. Inductors.

• Mutual impedance extraction among intentional inductors

This chapter is divided as follows:
In section 3.2 we describe the layout preprocessing steps, necessary for the impedance

extraction. In section 3.3, we describe the approach widely used in the academic
community for representation of parasitics in IC, the partial electric equivalent circuit
(PEEC) [7]. We give detail of some of the recent techniques incorporated to the PEEC
treatment in order to reduce its inherent limitations in IC.

In section 3.4 we present the loop impedance approach for representing circuits.
We describe its advantages over the PEEC method as well as its applicability in IC. In
section 3.5 we present our implementation of the impedance extraction tool for IC using
the loop impedance approach. We start in this section with the self impedance extraction
part of the flow for low frequency. We include in the same section, the extension of our
self impedance extraction tool to the high frequency domain. We continue in section 3.6
with the second part of our flow, that of the low frequency mutual impedance extraction.
We also include details of the heuristics implemented in our tool so as to greatly improve
its performance. In section 3.8 an IC testcase to validate our methodology is presented.

We end the chapter in section 3.9 with an informal discussion about the frequency
dependence of the current distribution in a conductor. We include an informal proof to
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demonstrate why and how the distribution of currents ceases to be homogeneous with
the increase of frequency.

3.2 Layout preprocessing

We start with a layout file representing the IC configuration. As a preprocessing step,
a standard layout versus schematics (LVS) checking is performed [4]. The LVS pro-
cess consists in comparing a schematics∗ of the IC configuration to its corresponding
geometrical layout representation. By matching nodes and net names in the schemat-
ics with those in the geometrical layout, interconnect wires and their connectivity are
recognized. This information is stored in a special database referred to as the Persistent
Hierarchical DataBase (PHDB).

In a second preprocessing step, using the information in the PHDB, shapes in the
layout file belonging to wire nets are broken in such a way as to only have straight seg-
ments of wire with constant width. This is done by searching for changes in direction
and/or changes in width. Every time such a discontinuity is found, the wire is broken
at this point. Each segment is considered to be a rectangle. Further partitioning re-
finements as those for fulfilling the maximal length bound of segments, for a particular
wavelength, are also performed.

The broken layout will be represented in a database where geometrical information
for each segment constituting the wire is stored. Each wire segment is represented by
the center line coordinates of the extremes, width of the rectangle, layer and resistivity.
Additional placeholders for each segment are created. These will be used downstream
to store the resistance and inductance parameters for each segment. At the end of each
wire segment, a linking table pointing to other wire segments’ nodes, will be used to
store both the coupling capacitance, and coupling impedance with other wire segments.
This defines our “Parasitic Database”, that we refer from here on as the PDB.

The next preprocessing step in our extraction flow, not explained in this thesis, is the
extraction of total capacitance for each wire segment as well as the computation of the
coupling capacitance among wire segments. The values computed in this step are stored
in the corresponding placeholders found in the PDB. This process is done preserving
the hierarchy in the initial design. For further information about capacitance extraction
we refer the reader to [4].

∗A topological representation consisting of devices and wires
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3.3 Partial elements approach (PEEC)

Inductance is a property of current loops. The specification of what constitutes a loop
within an IC is not always self evident when analyzing the layout. This possible am-
biguity led to the development of an alternative treatment for the computation of the
electromagnetic parameters resistance, capacitance and inductance, in terms of the con-
tributions of each and every segment in a layout, without distinguishing which seg-
ment is associated with which loop [7]. The entire signal and power/ground network
is represented in a large matrix. Each segment contributes to partial resistance, partial
self inductance and partial mutual inductance, following the formulation of chapter 2.
During circuit simulation the system is solved and the frequency dependent currents
branches are computed. Our system consists of a set of metal interconnects which is a
passive system†. For a passive system, the partial inductance matrix is positive definite,
but not necessarily diagonally dominant. The ratio of non diagonal elements to diago-
nal ones decreases with distance as the inverse of the logarithm of the relative distance
((2.40)). The main consequence of the slow falloff is the inability to neglect small off
diagonal terms in the dense partial inductance matrix. One cannot neglect them without
putting into peril the positiveness of the eigenvalues. In [30] examples are shown were
the sparsification of a partial inductance matrix results in the matrix having nonpositive
eigenvalues, violating passivity of the system. It is only for systems that are positive
definite and diagonally dominant where we can ensure that the elimination of small non
diagonal terms in the matrix does not alter the sign of the lowest eigenvalues. A passive
system with this characteristic remains passive after reduction. The price to pay keeping
a PEEC formalism is that of dealing with unstable systems. The matrix dimensionality,
for frequencies below the emergence of the skin effect, is determined by the total num-
ber of segments on the layout. Furthermore, at higher frequencies, the dimensionality of
the matrix is multiplied by the number of filaments in a segment, needed for describing
non uniform current distribution, rendering the PEEC formalism unattractive for high
frequency extraction.

3.3.1 Implementation of the PEEC formalism

Partial self inductance, as well as static resistance of each wire segment in the PDB are
computed. In a second step the partial mutual inductance between any two wire seg-
†A system where no energy is produced
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ments is computed. To compute partial inductance we use the expressions as presented
in tables 2.2 and 2.3. The value of partial self inductance will be stored in the corre-
sponding placeholder of the PDB. All the partial mutual inductance values are stored in
the linking table built to this effect.

The PDB is thought as a graph were nodes are connected by RLC elements. This
will make possible the building of the equivalent netlist for posterior analysis. For
passive systems, timing and noise simulation complexity ranges from O(n3) when the
system is dense (i.e. O(n2) coupling elements), to O(n3/2) when the system is sparse,
with n the number of individual wire segments. Given the dense nature of the PEEC
approach, the O(n3) bound is reached. This makes simulation unfeasible for modern cir-
cuits for which n = O(1010). Great amount of effort has been invested to find techniques
to sparsify the partial inductance matrix so to alleviate the dominant O(n3) cost.

3.3.2 Shift-truncate potential method

Truncating the partial inductance matrix by just setting to zero small elements in the
off-diagonal may lead to losing the positive definiteness of the inductance matrix L.
In [30,31] a sparsification scheme for L that guarantees conservation of the passivity is
proposed. This methodology consists in assuming the return of currents of all segments
to be at a finite distance r0, instead of the conventional but not physical approach r0 = ∞.
The term 1/‖~x − ~x′‖ in (2.36) is replaced by the function

f (~x, ~x′, rO) =






(

1
‖~x−~x′‖ −

1
r0

)

if ‖~x − ~x′‖ ≤ r0

0 else
(3.3)

The choice of a small value of r0 greatly increases the sparsity of the system. A small
r0 models very well the behavior in the high frequency regime since currents return
through the nearest ground wires. It is the low frequency behavior the one which is
very difficult to capture with this methodology. With a small r0 the approximated circuit
model will result in an important loss in accuracy compared to the original PEEC model.

In [30, 31], an iterative algorithm to search for the optimal r0 is presented. The fact
that the low frequency behavior of linear circuits is dominated by the smallest poles in
the circuit is used. As r0 increases, the dominant poles of the circuit stop changing since
more return conductors are added to the representation. Using a moment expansion of
the impulse response at ω = 0 the ratio of two successive moments, (m j/m j+1) quickly
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converges to the dominant pole, with increasing j [32]. The stop condition for the
iterative method is fulfilled when the relative difference between the ratio of moments
in one step and the ratio of moments in the previous step is smaller than a certain
tolerance.

At each iteration, for a new value r0, one has to compute the corresponding shell
partial inductance matrix and then compute the ratio between the two consecutive mo-
ments to check for the stop condition, making of this methodology a very expensive
one. Furthermore, no guarantee is given that for general configurations, the resulting
shell radius r0 will not be large enough so as to lose any sparsification and hence deprive
this method of any advantage against the full partial inductance one.

3.3.3 The reluctance matrix (K = L−1) method

In [33] a different methodology for sparsification of the partial inductance matrix is
proposed. This methodology consists in using the reluctance matrix K = L−1. The
methodology in that paper is based in the belief, not yet formally proven, that the reluc-
tance matrix is diagonal dominant. Such a matrix has the property that its rows fulfill
the relationship:

|Kii | >
∑

j,i

|Ki j |. (3.4)

This property together with the fact that elements in the diagonal are always posi-
tive [33] assure that any sparsification in the off-diagonal elements of K will result
in a positive definite matrix. This, we remind, is to differ with the matrix L for which
any sparsification might render the equivalent circuit system unstable.

Being able to sparsify K has the trivial advantage of making the circuit representa-
tion smaller and therefore improving the performance of the circuit simulation.

The obvious problem of this method is the cost involved in computing the inverse of
L. Furthermore, circuit simulators need to be modified to account for this new K matrix.
Simulators able to directly work with the K matrix have been implemented [34, 35].
Also, EDA companies like Mentor Graphics and Synopsys have recently included the
direct treatment of the K matrix in their timing simulators: Eldo [36] and HSpice [37],
respectively. Exemplary uses of this methodology have shown instabilities.

For other Spice-based simulators with no support of the K matrix an equivalent
model using known Spice elements is possible. This circuit representation was intro-
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duced in [38]. Although the use of this clever description improves the performance
vis-a-vis the original full L matrix simulation, its performance is even worse than that
of the simulators that treat K directly. This is mainly due to the fact that non passive
devices (current and voltage sources) need to be included in the description.

3.3.4 Double inverse method

In the same line of reluctance models, in [39] the use of the inverse of a windowed
version of the L matrix denoted as the susceptance matrix S ‡ is proposed. The first
step is to construct, for each conductor segment j, a partial inductance matrix L( j) with
segment j and all conductor segments within a window around it. The submatrices S ( j)

are computed by inverting the L( j) matrices.
Once the susceptance matrices S ( j) are computed for all j, they are merged into

one complete and sparse susceptance matrix S . The matrix is not symmetric since
S ( j)

i j , S (i)
i j . The matrix S is rendered symmetric by setting its i j and ji elements to the

value that results when choosing from S ( j)
i j and S (i)

i j the one with the smallest magnitude.
This susceptance matrix is proven in [39] to be diagonal dominant and with diagonal

elements positive, i.e. the matrix is positive definite and any truncation of off-diagonal
terms does not affect its positiveness. Once the matrix has been truncated, it is inverted
and the resulting partial inductance matrix L̃ = S −1 is used for simulation.

The main disadvantage of this methodology is in the fact that inverting a sparse
matrix does not necessarily results into a sparse matrix. In other words, no formal
guarantee is given in that paper that the new “windowed” partial inductance matrix L̃
will be sparse so as to show any advantage in the use of this matrix vis-a-vis the original
full partial matrix in simulations.

3.4 Loop impedance approaches

In the loop impedance approach, circuit loops formed by signal wires and their corre-
sponding return path, as well as power wires with their ground returns are considered.
In the PC board world the loops are easily identifiable, the grounded backplane provides
the natural return path. In the IC world, this is not that simple, there are multiple routes

‡Notice that both the reluctance and susceptance refer to the inverse of L. Reluctance being the
historical name. The difference in name, and hence notation, is the result of the two groups working
independently and in parallel.
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that can make up the current loop. The ground and power nets close to the signal wires
are the main candidates to form the return path. The substrate, being low conductivity
media is one among many possible return paths for the signal currents, giving often
negligible contribution to the return path current. An important matter is then that of
identifying which ones among the multiple choices provides the correct answer.

Once the return path of a signal/power wire is known, the loop impedance of the
circuit formed by the signal/power and its return path is computed and the correspond-
ing netlist is generated. Only the loop impedance of the signal lines and the mutual
inductance among loops is included in the netlist, i.e. the size of the netlist is reduced
by implicitly including the contribution of the ground in the loop treatment.

For the rest of this discussion we consider only loops formed by a signal and its
return path. Similar reasoning may be applied for the loops formed by a power line and
its return.

3.4.1 Previous work in the loop approach

A commercial tool from Sequence, named Columbus [23], includes a loop approach for
impedance extraction. This tool breaks the signal lines into rectilinear pieces and then
form circuits considering the signal line segment plus the two closest grounds. Instead
of using known expressions for partial inductance, they perform extrapolation of values
for inductance located in an “interconnect library”. This library is filled by considering
several different signal-two-ground configurations with different physical parameters
(width, thickness, spacing).

The main disadvantage of this tool is the fact that choosing only the two closest
grounds can ensure accuracy only in the very high frequency limit (section 3.5.7), so for
designs with lower frequencies the accuracy is uncertain. Another evident disadvantage
is the time incurred in filling the interconnect library and the possible inaccuracy that
extrapolation from this library may produce.

In [18], a different divide-and-conquer methodology for the impedance extraction
in IC using the loop approach is presented. The methodology in that paper amounts
to divide the entire layout into disconnected regions where only grounds belonging
to a region are considered as return path of the signals in the same region, and only
signals within the same region are consider to interact. The layout is partitioned using
“halos”. A halo is one of the six semi-infinite imaginary boundaries emanated from the
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Figure 3.2: The halo of a ground segment consists of six semi-infinite boundaries R1,
R2, R3, R4, R5 and R6.

power/ground faces as shown in Fig. 3.2. As the main rule, any halo emanating from
a power/ground that is blocked by a signal wire parallel to the power/ground wire is
neglected. The non blocked halos divide the chip into a collection of disjoint interaction
regions. Loop circuits will be formed with signals and power/grounds belonging to the
same region and loop impedance for each loop circuit is computed as well as loop
inductance among all loops in a region. This partitioning of the layout can easily result
into two signal lines belonging to different regions but sharing the ground wire in the
boundary, as shown in Fig 3.3. The mutual inductance between two loops sharing a
return path may be large. In other words, with their partitioning methodology truncation
of important values in the inductance matrix may occur, significantly affecting accuracy.

This methodology is included in the commercial tool from Cadence: Assura RCX-
PL [40].

3.4.2 Our contribution

For this thesis, we have developed a methodology for impedance extraction in IC using
the loop approach. Instead of arbitrary breaking the layout into disconnected regions,
we explore the layout, breaking the wires into 2D configurations (see chapter 2) formed
by a single signal segment and the power/grounds segments that, we demonstrate, form
its return path.
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Figure 3.3: Two signal lines sharing the same power/ground line but lying in two
different regions
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Our new methodology becomes self-explanatory in the following sections.

3.5 A new loop impedance extraction scheme

We develop a new impedance extraction scheme using as a basis the loop impedance
formalism. We consider the industry standard practice of layout in two orthogonal
directions (x,y) as recommended for lithography considerations. This style is called
“Manhattan layout” [41].

A detailed description of our divide-and-conquer scheme for impedance extraction
is presented in the following sections.

3.5.1 Qualified list generation, filtering

There is a limited set of wire parameters (length, thickness and sheet resistance) for
which inductance effects in timing analysis are important [42].

We provide the expressions for the lower and upper limits for the lengths of signal
paths (Lmin and Lmax, respectively) for a given frequency f , such that inductance is
significant.

We are not interested in short wires where the delay due to transistors dominates the
total delay. The lower bound can be determined from the condition that the signal rise
time Trise be smaller than the time it takes to a signal to travel through the wire from
source to destination and back to the source (first reflexion), at the speed of light in the
medium (υ), this results in the lower bound Lmin:

Lmin =
Triseυ

2
(3.5)

The time delay for line of length L is lower bounded by the time of flight, given by
the linear expression [29]:

t f =
√

lcL (3.6)

with l and c the inductance and capacitance per-unit length, respectively. When the
diffusion part of the delay dominates, the time delay of the distributed RLC line follows
the quadratical expression [43]
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Figure 3.4: Time delay for a RLC line as a function of length and represented as the
maximum value between time of flight and diffusion delay. Values used:

r = 5000Ω/m, l = 10−7H/m and c = 10−10F/m.

tdi f f =
rc
2

L2 (3.7)

with r the resistance per unit length. This is known as the Elmore delay. Which one of
the time delay expressions is valid depends on the length of the particular wire. This
can be easily understood by observing Fig. 3.4, where both (3.6) and (3.7) are plotted
as a function of length. We will compute inductance only for those wires that fall in
region I. This is to say, wires with maximum length Lmax such that

δrc = δlc ⇒
rcL2

max

2
=
√

lcLmax (3.8)

and therefore

Lmax =
2
r

√

l
c

(3.9)

The process of filtering consists in identifying and storing in the prequalified list the
signal paths whose total length from source to destination L satisfies Lmin ≤ L ≤ Lmax.
Signals not belonging to this interval are insensitive to dynamic impedance and can be
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treated as distributed RC networks, or alternatively as single lumped π sections, depend-
ing on their length: For small lengths, propagation can be considered as instantaneous,
and lumped description applies. For very long wires, there is too much attenuation, due
to multiple reflections that make the inductance effects disappear. Only a small percent-
age of the total number of signals, survives the filtering scheme, roughly O(10−2n) with
n the total number of wires.

Notice that for the range of wire lengths where inductance is important, the signals
cannot be treated as lumped objects for which standard circuit theory applies. It is
accepted practice [10,42,44] to use lumped circuit elements for lengths that are smaller
than λ

10 with λ the wave length which is given by

λ =
υ

f
(3.10)

The maximum frequency content of a pulse with time rise Trise is approximately
given by:

fmax =
1
πTrise

. (3.11)

From (3.10) and (3.11), the lower bound (3.5) can be rewritten as:

Lmin ≈
λ

6
. (3.12)

Any wire where inductance effects are important violates the L < λ/10 bound, therefore
we must treat the circuit containing the wire as a distributed RLC circuit (Fig. 3.1.b).

Filtering is the first active computational step in our impedance extraction scheme.

3.5.2 Frequency selection

Impedance extraction is better physically represented in the frequency domain than
in the time domain. Both the real and imaginary part of the impedance matrix are
frequency dependent. There are two choices for impedance extraction: Narrow band
extraction for which one fixes one frequency, and broadband extraction for which one
fixes a maximum frequency. Broadband is useful for simulation of digital systems. In
the broadband mode one performs the extraction such that is valid for the open interval
Ω

Ω = { f : 0 < f < fmax =
1

π ∗ Trise
} (3.13)
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Figure 3.5: A typical bundle. The signal wire is in blue, the power/ground wires in
green.

with Trise the minimum rise time of signals on the circuit.

The maximum frequency, fmax, is the result of computing a realistic upper limit to
the signal content of a finite pulse. In the low frequency part of the spectrum, when
2π fL � R, one can omit L extraction.

3.5.3 The power grid

The power and ground grid in its totality, or power and ground separately, needs to be
considered for impedance calculation. In the presence of multiple power/grounds only
the one attached to the analyzed wire is loaded. In what follows, we use the term ground
indistinctly to label ground or power wires.

3.5.4 Fracturing

Only the signal lines that survive filtering are to be processed. In the preprocessing step
these signal lines are broken into segments and each of the segment’s information is
stored in the PDB. We partition each segment into individual configurations that con-
tain one signal and a set of parallel ground wires of the same length and sharing same
perpendiculars, structures that we call bundles. An example of a bundle is shown in
Fig. 3.5. We do this to maximize the use of expressions for inductance of 2D config-

urations (tables 2.2 and 2.3). In first order, there is no inductance coupling between
horizontal and vertical wires ( ˆ̀i · ˆ̀k = 0 in (2.21)), we fracture vertical (in Y) and
horizontal (in X) wires segments separately.
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Y

X

Z

Y

Figure 3.6: Looking for ground wires using scan lines emanating from the signal
segment’s end

To explain the method, we resort to present the flow as if each signal segment were
to be analyzed separately. The reader will be reminded that the process of bundle gen-
eration for multiple signal segments is done in a single pass. This is computationally
simpler, while less obvious to follow.

At the starting coordinate of the signal segment we throw orthogonal scan lines in all
directions looking for ground wires in the vicinity, as shown in Fig. 3.6. Those ground
wires intersected by these scan lines are placed into a queue. From this queue we chose
the n grounds closest to the signal segment, using as metric, the euclidean distance
between the wires’ centers. We cut the signal segment and the ground segments in the
queue so as to have a bundle with length equal to that of the shortest wire segment in
the collection. This is shown in Fig. 3.7. If the signal segment was broken to form the
bundle, we repeat the scan process from the coordinate where the cut was performed,
otherwise we continue with the next signal segment in the list.

In pseudocode:

for horizontal and vertical wires
for each signal segment in the PDB

store in a list the ground wire segments intersected by the scan lines
chose from the list the n closest return wire segments
break all wire segments and form the bundle
if the signal segment was broken

repeat bundling from the coordinate where the signal was cut
else continue.

end
end



3.5. A new loop impedance extraction scheme 73

G

G

B
U

N
D

L
E

 1

B
U

N
D

L
E

 7

G

G

G
S

Figure 3.7: Partitioning of the design into bands such that wires inside it have equal
length. The dotted lines represent where the partitioning has been performed. In this
example, the signal path has been broken into 7 bundles (represented with the gray

boxes). Only the n = 3 closest ground wires are chosen.

3.5.5 Loop impedance of a bundle

Consider a closed circuit representing a signal wire in parallel with n ground wires, the
type of configuration we are interested in when computing loop impedance of a bundle
(see Fig. 3.8.)

Applying Kirchoff voltage laws to the circuit shown in Fig. 3.8, at angular frequency
ω, gives:
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Figure 3.8: Equivalent circuit
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



Rs + jωLs jωLs,g1 . . . jωLs,gn

jωLg1,s Rg1 + jωLg1 . . . jωLg1,gn

...
...

...

jωLgn,s jωLgn,g1 . . . Rgn + jωLgn









Is

I1
...

In





=





Vin − Vout

−Vout
...

−Vout





in matrix form
Z(ω)I(ω) =V(ω).

(3.14)

where Rs and Ls are the static resistance and partial self inductance of the signal wire,
respectively; Rgi and Lgi are the static resistance and partial self inductance of the i-
th ground wire, respectively. The value Li, j represents the partial mutual inductance
between wires i and j.

The loop impedance of this circuit is the scalar complex value Zloop = Rloop+ jωLloop

that satisfies the relationship
ZloopIs = Vin. (3.15)

The loop treatment, as here defined, reduces the full circuit, into an equivalent and much
simpler representation as shown in Fig. 3.8.

In the simplest case of a single return path (n = 1), (3.14) reduces to a 2x2 linear
system with trivial solution given by

Is =
Vin

Zs + Zg1 − 2 ∗ Zs,g1

(3.16)

The loop impedance in this case is then:

Zloop = Rs + Rg1 + jω
(

Ls + Lg1 − 2 ∗ Ls,g1

)

(3.17)

The general solution to (3.15) is not an analytical expression except at very low
frequencies. An earlier analysis due to Krauter and Mehrotra (K&M) in [45] provides
a simple approximation to the loop impedance of the circuit in Fig. 3.8. The basic
assumption being that the current on the return wires should be computed entirely in
terms of their resistance, totally neglecting the reactance contribution. For low enough
frequencies, all reactance elements ωL are clearly smaller than the resistance parts,
ensuring the validity of this approximation. The resulting expressions for Lloop and
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Rloop are:

Rloop = Rs + RGND

RGND = (R−1
g1
+ . . . + R−1

gn
)−1

Lloop = Ls +

n∑

i=1

αiLs,gi +

n∑

i=1

αi

n∑

j=1

α jLgi,g j

αi =
−RGND

Rgi

for i > 0

Equation (3.14) represents a system of n + 1 equations with n + 2 unknowns (the
n + 1 currents and the potential Vout). The system is completed with Kirchoff’s current
law.

Is +

n∑

i=1

Ii = 0. (3.18)

Once the n + 2 unknowns, for a particular frequency and for a particular Vin has been
found, the loop impedance Zloop for that frequency is given by Zloop = Vin/Is.

To solve this problem we rewrite (3.14) as

ZI =





1
0
...

0





− Vout





1
1
...

1





, (3.19)

We solve the two associated systems

Zx =





1
0
...

0





and Zy =





1
1
...

1





.

and rewrite (3.19) as
I = x − Vouty (3.20)
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summing the rows on both side of (3.20) and using (3.18) results in

Vout =

∑

xi
∑

yi
,

therefore
Is = x1 −

∑

xi
∑

yi
y1.

We set Vout = 1v. By virtue of (3.15)

Zloop =

(

x1 −
∑

xi
∑

yi
y1

)−1

.

Two linear systems need to be solved, one for x the other for y. Both systems involve
the same matrix Z. For this, we use a matrix factorization that takes advantage of the
symmetry of the matrix, the LDLT factorization.

The current coefficients αi for each wire in the bundle are stored for future reference.
These coefficients are given by

αi = −
Ii

Is
(3.21)

and for the signal wire
αs = 1

These complex coefficients are frequency dependent.

3.5.6 LDLT factorization

We first review the LDLT factorization [46] for real matrices followed by our extension
to factorizing complex matrices as we need for the solution of nodal equations ZI = V.

Real matrices

Consider A a n × n real symmetric, positive definite matrix (SPD) i.e. it satisfies: AT =

A; and xT Ax > 0 for any x , 0.

Given such matrix, there exists a lower triangular unit matrix L and a diagonal
matrix D such that
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LDLT = A. (3.22)

The proof is available in [46]. Consequently, for a linear system of the form Ax = b with
A SPD, it can be rewritten as LDLT x = b and its solution can be found by performing
one forward elimination to solve Ly = b, followed by n divisions to solve Dy = z, and
finally one backward substitution to solve LT x = y.

The standard algorithm for LDLT factorization is:

Algorithm 1 (LDLT ) Given A, n × n real SPD matrix. This algorithm returns a
triangular unit matrix L and a vector d whose elements represent the nonzero elements
of a diagonal matrix D such that A = LDLT .

for j = 1 : n
sum=A( j, j)
for i = 1 : j − 1

v(i) = L( j, i)d(i)
sum=sum−L( j, i)v(i)

end
d( j)=sum
v( j)=sum
for i = j + 1 : n

sum=A( j, i)
for k = 1 : j − 1

sum=sum−L(i, k)v(k)
end
L(i, j)=sum/v( j)

end
end

It is known from [46] that the positive definiteness of A guarantees the completion
of the algorithm and ensure that all the diagonal elements of D are strictly positive.
One can construct the diagonal matrix D1/2 with entries equal to the square root of the
elements of D. It follows that (3.22) can be rewritten as

(LD1/2)(LD1/2)T = L̂L̂T = A. (3.23)

This form of rewriting of the LDLT factorization is known as the Cholesky factor-
ization [46].
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To build the matrix L̂ we use the following recursion procedure [47]:

L̂ii =

√√

aii −
i−1∑

k=1

L̂2
ik (3.24)

and

L̂ ji =
1
L̂ii



ai j −
i−1∑

k=1

L̂ik L̂ jk



 for j > i. (3.25)

LDLT and Cholesky factorization algorithms require access to only the upper trian-
gular part and the diagonal of A. We can use the lower triangular part of A to store the
lower part of L and use an additional vector to store the diagonal elements of L. This
simple recipe renders both algorithms memory efficient.

Complex matrices

We propose a natural and straightforward extension of Algorithm 1 to the complex case.

The LDLT algorithm for general complex matrices is:

Algorithm 2 (LDLT ) Given Z = A + jB a n × n complex symmetric matrix. Upon
completion, this algorithm returns a complex triangular unit matrix L and a diagonal
matrix D, such that Z = LDLT . The matrix L is represented by a real n × n matrix G
where G(i, j) = Re(L(i, j)) and G( j, i) = Im(L(i, j)) for i > j. Two real vectors dr and di

correspond to the real and imaginary parts of the diagonal elements of D, respectively.

for j = 1 : n
sumr = A( j, j)
sumi = B( j, j)
for i = 1 : j − 1

vr(i) = G( j, i)dr(i) −G(i, j)di(i)
vi(i) = G(i, j)dr(i) +G( j, i)di(i)
sumr = sumr − (G( j, i)vr(i) −G(i, j)vi(i))
sumi = sumi − (G(i, j)vr(i) +G( j, i)vi(i))

end
dr( j) = sumr
d j( j) = sumi
vr( j) = sumr
vi( j) = sumi
for i = j + 1 : n

sumr = A( j, i)
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sumi = B( j, i)
for k = 1 : j − 1

sumr = sumr − (G(i, k)vr(k) −G(k, i)vi(k))
sumi = sumi − (G(k, i)vr(k) +G(i, k)vi(k))

end
G(i, j) = (sumr∗vr( j)+sumi∗vi( j))/(vr( j)2 + vi( j)2)
G( j, i) = (sumi∗vr( j)+sumr∗vi( j))/(vr( j)2 + vi( j)2)

end
end
Memory consumption can be reduced by overwriting the lower parts of A and B with

the lower and upper parts of G (i.e., the real and imaginary parts of L), respectively.
The extension of the Cholesky factorization to the complex case consists in sim-

ply changing the real operations in (3.24) and (3.25) to complex operations. For our
application we prefer to use the LDLT factorization since the expensive square roots
calculations are avoided.

Existence of the LDLT factorization for complex matrices

In general, algorithm 2 breaks when a value d(i) = dr(i) + jdi(i) is found to be zero.
In some cases, this can be avoided by performing what is known as pivoting. This is,
interchange rows and columns in the original matrix Z until a d different from zero is
found. This results in a factorization, of a permuted matrix PZPT , of the form LDLT

where L is lower triangular and D is block diagonal with blocks of size 1 or 2.
The LDLT and Cholesky factorizations are known to exist without pivoting for com-

plex hermitian positive definite matrices [46]. The impedance matrix Z, is complex and
symmetric but not hermitian.

For a complex symmetric (not hermitian) matrix Z = A + jB, with A, and B, real
SPD matrices, Higham in [48] shows that an LDLT factorization for PZPT exists. He
denotes this kind of matrices as CSPD.

It is easy to show that the pivots d(i) = dr(i) + jdi(i) in Algorithm 2 result from the
following recursion:

d(i) =
det(Zi)

det(Zi−1)
(3.26)

where det(Zi) is the determinant of the submatrix Zi = Z(1 : i, 1 : i). By construction
d(1) = Z(1, 1). Higham proved that a CSPD matrix is nonsingular, i.e., its determinant
its nonzero. He also proved that each submatrix Zi of a CSPD matrix is also CSPD.
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Figure 3.9: Loop impedance of a bundle

For this reason d(i) , 0 for i = 1, . . . , n. This means that no pivoting is necessary to
compute the LDLT factorization of a CSPD matrix and hence for this kind of matrices
Algorithm 2 runs to completion.

The real part of the impedance matrix Z is the resistance matrix which is trivially
positive definite. The imaginary part corresponds to the inductance matrix times a posi-
tive value, the angular frequency. For passives circuits the inductance matrix is positive
definite. Algorithm 2 is guaranteed to arrive to completion when applied to matrix Z.

Since Cholesky factorization is a special case of the LDLT factorization, we can
ensure that the former exists under the same constraints as the later.

3.5.7 Localized return path

How many return wires to include in a bundle depends on the frequency. For low
frequencies, the real part of the impedance dominates. This is to say, currents in a
signal line will tend to return through as many power/ground so as to minimize the
resistance. At higher frequencies, when the imaginary part of the impedance starts to
be significant, the currents will prefer those return wires in the vicinity so as to reduce
the size of the loop and therefore reduce the inductance. For consistency and in order to
capture the frequency behavior of the impedance we choose a fixed number n of return
wires in a bundle for any frequency. The value of n is selected such as to give a close fit
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to the impedance at intermediate frequencies. Choosing a fixed value of n guarantees
the correct monotonicity of both the resistance and the inductance with frequency.

We show in Fig. 3.9 the loop resistance and inductance as a function of frequency
of a bundle with 11 return wires. In that figure we also show what would be the loop
resistance and inductance of the same bundle if we took only the closest 9 or 7 return
wires. We observe that taking the closest 7 returns approximates very well the loop
impedance for frequencies above 500 MHz.

The reader may notice that at higher frequencies the contribution of some of the
wires, specially those at large distance from the signal, is negligible. Instead of chang-
ing the number of return paths according to the frequency we prefer to keep a fixed
number of return paths. The choice of a fixed number of return wires is ensures a smooth

representation of the frequency dependence of both the resistance and inductance.

3.5.8 Loop self impedance associated with a signal segment

The loop self impedance associated with a signal segment is computed using our divide-
and-conquer scheme. Each signal segment is partitioned into a series connection of
bundles for which loop impedance is computable as presented in the previous sections.
The loop impedance of a circuit composed of two elements in series is equal to the
sum of the loop impedance of each element plus twice the mutual impedance between
the segments. This extends to the general case in which a circuit is formed by the
series connection of m elements, i.e. the self impedance of a signal wire segment in
the database is the sum of the loop self impedance of the bundles into which it was
partitioned plus twice the mutual impedance among all bundles. We call the mutual
impedance between bundles belonging to the same wire segment: forward coupling.

The forward coupling between bundles decays quadratically with distance [49].
In fact, the forward coupling between two bundles is negligible compared to the self
impedance values, when the length of the bundles is an order of magnitude larger than
their transverse dimensions [11].

Forward coupling corrections

This subsection provides a method for computing the mutual interaction among bundles
belonging to the same signal wire.
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Figure 3.10: A signal line broken into 5 PDB segments. The boundaries of the
bundles into which each segment is broken are shown with crosses.

To this effect we proceed as follows: Given a signal wire path from source to des-
tination, broken into segments, each segment further partitioned into multiple subseg-
ments to form a non overlapping set of bundles, as shown in Fig 3.10. We use the fact
that in the loop formalism, the mutual inductance between bundles falls off as a power
of the separation of the bundles [49]. We group all bundles in a wire segment and com-
pute the forward coupling values only between adjacent bundles, i.e. for n bundles we
compute n − 1 forward couplings. The correction to the self impedance of the wire
segment is equal to twice the sum of the n − 1 forward coupling values.

The mutual loop inductance between two bundles is given by [49]:

La,b =
∑

i∈bundlea

∑

j∈bundleb

αiα jLi, j (3.27)

with Li, j the partial mutual inductance between wire segment i in bundle a and wire
segment j in bundle b. The coefficients α are calculated and stored in the self impedance
step. We remind

αi = −
Ii

Is
and αs = 1

3.5.9 High frequency impedance

The frequency spectrum on IC applications can be classified in the following fashion

• Low frequencies ( f ≤ 500MHz, i.e. R >> ωL) negligible inductance effects,
static resistance and Capacitance suffices to describe wires.

• Mid frequencies (500MHz < f < 10GHz, i.e. R > ωL), while ωL non neg-
ligible. Uniform current distribution, inductance changes with frequency due to
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proximity effects. RLC distributed description applies. Dynamic Resistance re-
places static resistance. R changes with frequency.

• High frequencies (10GHz < f < 40GHz, i.e ωL comparable to or larger than R),
current ceases to be uniform inside the conductors and as frequency increases it
crowds towards the surfaces. Proximity effects continues to play a role.

Consider the last regime, where current inside the conductors ceases to be uniform.
In order to account for the physics of current crowding§, the conductors are broken into
filaments, to discretize the non constant current distribution. The current distribution in
each filament of small transverse area is considered uniform across its area (chapter 2).
For a bundle with wires partitioned into filaments, this results in a linear system of the
form:

ZI = V,

where Z is the partial impedance matrix including all filaments contained in a wire seg-
ment, I is the vector of unknown currents at each filament and V the vector of voltages.
Given a bundle (one signal plus return wires in parallel), the voltage vector V is given
by

Vi = Vin − Vout if i ∈ signal wire

Vi = −Vout otherwise.
(3.28)

The value Vout is the unknown voltage at the end of the signal line (Fig. 3.8). Without
loss of generality we assume Vin = 1v. We solve this system in the following fashion,
call

x = Z−1e (3.29)

y = Z−11 (3.30)

with vector e the vector with ones for filaments in the signal wire, and zero for the rest
of the filaments. The vector 1 is a vector with all entries equal to 1.

With x and y the ZI = V system can be rewritten as
§The reader is invited at the end of this chapter where a discussion about frequency phenomena,

together with an informal demonstration of skin and proximity effects are presented
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I = x − Vouty

Since the sum of all currents in I has to be zero (Kirchoff’s law) the unknown voltage
Vout is given by

Vout =

∑

x
∑

y

with
∑

x and
∑

y the sum of the elements in x and y, respectively. Therefore the un-
known vector I is given by

I = x −
∑

x
∑

y
y

The loop impedance of the bundle is then given by the inverse of the current going
through the signal wire. This current is equal to the sum of currents passing through the
filaments into which the signal was partitioned, i.e.

Zloop =





∑

i∈signal

Ii





−1

Volumetric discretization

Currents in a conductor’s cross-section crowds near its surface as the frequency in-
creases. In unidimensional treatment, the current inside the conductor decays exponen-
tially going inside from the surface [25]. An important parameter to measure the current
crowding is the skin depth. This is the distance from the conductor’s surface where 63%
(1 − 1/e) of the total current is concentrated (Fig 3.11. The formula for the skin depth
is given by [25]:

δ =
( √

πµσ f
)−1

(3.31)

withσ the conductivity of the metal (e.g. σ = 5.8×107
f/m for copper), µ the magnetic

permeability, i.e. for non ferromagnetic material µ = µ0 = 4π × 10−7 H/m and f the
frequency.

To take advantage of this exponential decay, we partition the conductor into fila-
ments with transverse dimensions that increase exponentially as we move towards the
center. In Figure 3.12 the partitioning is shown:
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δx=

I−I/e

J(x)

x=0

Conductor

Figure 3.11: Unidimensional Current distribution of a conductor.

Filaments width and thickness follows the following parametrization

wi = λ
iw0 and ti = λ

it0

where w0 and t0 are the width and thickness of the filaments at the corners. For a
given frequency and λ we find the optimal number of filaments into which the wire is
going to be partitioned. We force the extra condition to be fulfilled

w0(1 + λ) < δ and t0(1 + λ) < δ

to ensure an accurate discretization of the conductor’s volume.

3.6 Mutual impedance

We are interested in the impedance coupling between signal nets in an IC. Given the
size and the number of nets a design can have, it is expensive to compute the mutual
impedance among all nets. We only consider the interaction among signal wires that
have survived filtering (section 3.5.1). We take advantage of the fracturing already per-
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Figure 3.12: A Conductor partitioned into filaments

S1,3S1,2

S1,1

S2,1

S2,2

S2,3

Figure 3.13: Two signal nets as partitioned in the PDB. For clearness not all couplings
are shown.
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formed when the wires are included into the PDB. The resulting mutual loop impedance
between two signal paths will be distributed according to this fracturing of wires. In
Fig. 3.13 this idea is illustrated. In the figure, the black dots represent the boundaries
of each signal segment in the PDB. The curved lines represent the inductive coupling
among the segments. Each segment will be represented as a resistance in series with an
inductance, as seen in previous sections. Each segment in a signal path is coupled with
all the segments in another signal path.

To compute the mutual loop impedance associated with two signal segments we
need to compute the mutual impedance between two loops, each one of them consisting
of the signal segments and its corresponding return paths. In the self impedance step,
each signal and its return path is represented as the series connection of bundles. There-
fore, the total mutual loop impedance between the two signal segments is equal to the
sum of the mutual impedance values among the bundles in one signal segment and the
bundles in the other signal segment.

In the following section we explain in detail how the loop mutual impedance be-
tween two bundles is computed.

3.6.1 Mutual impedance between two bundles

Each bundle of size n + 1 can be thought as a parallel connection of n simple loops
(Fig. 3.14). Each loop being formed by the signal and one wire in the return path.
The mutual coupling between two bundles is then the weighted sum of the magnetic
coupling between all loops in one bundle and all loops in the other bundle. The weights
coefficients given by the percentage of the total current going through each loop, i.e.
the values of alpha computed with (3.21).

We approximate the mutual impedance between two bundles with the following
expression [49]:

Za,b = jω
∑

i∈a

∑

j∈b
αiα jLi, j (3.32)

whereLi, j is the partial inductance between segment i in bundle a and segment j in bun-
dle b. The current coefficients αi and α j correspond to the current coefficients computed
in the self impedance step. The coefficients alpha are complex numbers. The resulting
real part of Za,b is known as the mutual resistance between the two bundles.
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Figure 3.14: A system of 2 bundles. The signal line in light gray, the ground wires in
dark gray

3.6.2 Accuracy

We refer the reader to section 3.8 where the accuracy of this methodology is demon-
strated with a testcase.

3.6.3 Detailed implementation

As a function of separation, the mutual loop inductance between two closed circuits
falls off, at long distances, with the square (in 2D) or cube (in 3D) of the distance
between the centers of the loops [49]. We are therefore interested in those signal loops
that are “close” to the victim signal loop.

In order to implement these notions we proceed as follows:

1. Given the victim signal path, we define its ”interaction cylinder” of diameter W,
as in Fig. 3.15, with W such that there are ground/power wires along the entire
cylinder.

2. We consider “aggressors” those signals that stay close to the victim during most
of its journey. In other words, those signal wires that have most of their length
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L cyl
W

Figure 3.15: Interaction cylinder.

inside the victim’s interaction cylinder. From experiments we have found that
using a coverage of 70% results in a good compromise between accuracy and
performance. This value is adjustable.

3. This cylinder is cut in pieces of length Lcyl. This cut results in regions that we
call ”interaction regions”. We do this so as to assure that mutual inductance
among signal segments in different interaction regions be small enough so as to
discard them. In Fig. 3.16 an exemplary interaction region is shown. Signal S2 is
considered as the aggressor of signal S1.

4. To compute the mutual impedance between a wire segment in the victim signal
and another wire segment in any of the aggressors we perform bundling, as for
the self impedance but considering only two ground returns. In Fig. 3.17 the
bundling of both the victim and the aggressor is Fig. 3.16 is displayed. The mutual
impedance values between bundles in the victim and bundles in the aggressors are
computed.

5. Mutual impedance between any pair of bundles within an interaction region are
computed. Mutual impedance between bundles belonging to different interaction
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Figure 3.16: Interaction region. Other signal lines omitted for simplicity.

b2,1

b1,1

b2,2

b1,2 b1,3

Figure 3.17: Bundling in the interaction region.
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regions is neglected.

Given that bundles are connected in series, the mutual impedance between a wire
segment in the victim and another wire segment in the aggressor is given by the alge-
braic sum of all mutual impedances between the bundles in which the victim segment
was fractured and the bundles in which the aggressor segment was fractured:

ZS 1,S 2 =
∑

a∈S 1

∑

b∈S 2

Za,b (3.33)

where Za,b is given in (3.32).

3.7 Mutual and self impedance in the presence of a ground
plane

When a ground plane participates as return path for currents, in general its width is much
larger than the skin depth δ for any except very low frequencies. Therefore, skin effect
like computations, are mandatory for ground planes, starting at the lowest frequencies
in which inductance is important (nearly 1 GHz).

We discuss here the inclusion of ground planes for the general treatment of self and
mutual impedance. We present the method with an example, with as many subtleties
as reasonable to envision. Simultaneously, we wish the reader to understand that the
implementation is obviously more general.

We consider all signal wires and ground planes starting and beginning in the same
perpendicular. For signals with different length the layout can be fractured as to fulfill
this premise. We show this in Fig. 3.18.

Consider as example a configuration consisting of 3 ground planes with 7 signal
lines as displayed in figure 3.19. The problem consists in finding the impedance matrix
of the configuration in which each signal line chooses the three ground planes as return
path.

Current density in a ground plane, at any but very low frequencies is larger nearest
the signal and decreases as we separate from the signal (see section 3.9). For this reason,
we finely partition the ground plane in the “shadow” of the signal wires. The farther we
are from the shadow of a signal line, the more homogeneous the current in the ground
plane will be. We partition the cross-section of the ground plane with filaments whose
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Figure 3.18: Partitioning the layout so as to have wires with same length.



3.7. Mutual and self impedance in the presence of a ground plane 93

X 0,2 X 0,3 X 0,4 X 0,5 X 0,6 X 0,7X 0,1X

Figure 3.19: Cross section view of an exemplary configuration with n = 10
conductors (7 signals, 3 ground planes).
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Figure 3.20: Partitioning of the ground plane in the shadow of signal i.

width increases exponentially with the distance to the center of the signal’s shadow.
The partition of the ground plane is therefore signal dependent.

For signal i, we break the ground plane with an exponential partitioning starting
from the center of each signal’s shadow. The method is trivial for a single signal line.
For multiple signals, we increase exponentially the width of the cross-sections and we
stop at the center of the shadows of two neighbor signals, as seen in figure 3.20.

In detail: we start with a filament of width w0 centered at x0,i. The x coordinates of
the center of each filament and their respective widths are stored in four vectors using
the following recursion:

To the right:

w+(i) = w+(i − 1)δw

x+(i) = x+(i − 1) + 0.5(w+(i − 1) + w+(i))
(3.34)

To the left:

w−(i) = w−(i − 1)δw

x−(i) = x−(i − 1) − 0.5(w−(i − 1) + w−(i))
(3.35)

with w+(1) = w−(1) = w0, x−(1) = x+(1) = x0,i and δw > 1 the growth coefficient.

Notice that the last width on the right or on the left may not correspond exactly to
the one obtained with the recursion given in (3.34) or (3.35). Its value is adjusted so as
to exactly cover the interval.

Once the ground planes are partitioned, we proceed to compute the partial impedance
matrix for a given frequency f consisting of the self impedance of all the signals and all
the ground plane filaments, and the mutual impedance values among themselves, i.e:
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Z(i, i) = Ri + j(2π fLi) and Z(i, k) = j(2π fLi,k). (3.36)

with Ri and Li the static resistance and the partial inductance of filament i, respectively.
Li,k the partial mutual inductance between filaments i and k.

Reduced impedance matrix

Given ns signal segments and ng ground planes of same length. Call m the total number
of filaments into which the signal segments and the ground planes are partitioned. The
ns × ns loop impedance matrix Z can be computed from the m × m partial impedance
matrix Z̃ in the following fashion:

1. For i = 1, . . . , ns,

1.1 solve the linear system Z̃Ii = Vi, with Vi formed as: for k = 1, . . . ,m,
Vi(k) = 1 if filament k belongs to conductor i and Vi(k) = 0, otherwise.

1.2 create a vector I of size ns: for k = 1, . . . , ns, I(k) =
∑

r∈cond k Ii(r)

1.3 assign to the i-th column of the ns × ns matrix Y the vector I

end for

2. Invert the ns × ns matrix Y to obtain Z.

Since ns linear systems will be solved using the same matrix Z̃ we can decompose
the matrix using our modified version of the LDLT factorization for complex and sym-
metric matrices (see section 3.5.6) to reduce the O(nsm3) operations into O(m3+ns∗m2)
operations.

Validation

The above method was implemented and tested. We exemplify with a configuration as
the one shown in Fig. 3.19, with the following parameters:

• Length of the wires: 1000 µm

• Thickness of the signal wires: 1.5 µm
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• Thickness of the ground planes: 1 µm

• Width of signal wires: 1.5 µm

• Width of ground planes: 1000 µm

• Position of the signal wires: x0,1 = −400 µm, x0,2 = −300 µm, x0,3 = −200 µm,
x0,4 = 200 µm, x0,5 = 250 µm, x0,6 = 350 µm and x0,7 = 450 µm. The ground
planes are centered at x = 0 µm

• Height of the ground planes: first one at z = 0 µm, second one at z = 3 µm and
third one at z = 9 µm

• Height of the signal wires: signal 1, 4 and 6 at z = 4 µm; signal 2 and 5 at
z = 5 µm; signal 3 and 7 at z = 2 µm

The error in computing the 7 × 7 impedance matrices with our algorithm vis-a-vis
the matrix produced using FastHenry [6] is less than 1% up to the maximum frequency
tested (20 GHz). The resistance vector and the inductance matrix from our methodology
are:

| 9.13 |

| 9.19 |

| 11.1 |

R = | 9.13 |

| 9.19 |

| 9.13 |

| 11.1 |

| 3.05e-10 1.13e-16 5.67e-18 9.18e-18 4e-18 8.46e-18 5.86e-18 |

| 1.13e-16 3.05e-10 1.05e-17 4.79e-18 1.96e-18 3.78e-18 2.1e-18 |

| 5.67e-18 1.05e-17 1.54e-10 2.93e-18 1.27e-18 3.2e-18 3.52e-18 |

L = | 9.18e-18 4.79e-18 2.93e-18 3.05e-10 5.35e-16 9.41e-17 6.67e-18 | H

| 4e-18 1.96e-18 1.27e-18 5.35e-16 3.05e-10 1.12e-16 3.71e-18 |

| 8.46e-18 3.78e-18 3.2e-18 9.41e-17 1.12e-16 3.05e-10 1.77e-17 |

| 5.86e-18 2.1e-18 3.52e-18 6.67e-18 3.71e-18 1.77e-17 1.54e-10 |

From FastHenry:
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| 9.12614 |

| 9.18347 |

| 11.05080 |

R = | 9.12615 |

| 9.18347 |

| 9.12614 |

| 11.05080 |

| 3.04e-10 1.21e-16 6.81e-18 1.07e-17 4.77e-18 1e-17 7.3e-18 |

| 1.21e-16 3.04e-10 5.41e-18 5.58e-18 2.31e-18 4.51e-18 2.69e-18 |

| 6.81e-18 5.41e-18 1.54e-10 3.63e-18 1.62e-18 3.98e-18 4.42e-18 |

L = | 1.07e-17 5.58e-18 3.63e-18 3.04e-10 3.47e-16 1.05e-16 8.43e-18 | H

| 4.77e-18 2.31e-18 1.62e-18 3.47e-16 3.04e-10 1.19e-16 4.54e-18 |

| 1e-17 4.51e-18 3.98e-18 1.05e-16 1.19e-16 3.04e-10 1.74e-17 |

| 7.3e-18 2.69e-18 4.42e-18 8.43e-18 4.54e-18 1.74e-17 1.54e-10 |

Notice that the differences in the offdiagonal terms of the inductance matrix are
important, but these terms are, in most of the cases, eight orders of magnitude smaller
than those in the diagonal. This difference are simply due to numerical errors.

External and independent validation

Independent validation of the ground plane method has been performed by a well known
taiwanese foundry. Their battery of testcases consisted in 528 different configurations.
The 528 configurations are divided in four groups:

1. One signal wire on top of one ground plane (Fig. 3.21.a)

2. One signal wire with a ground plane above and a second ground plane below
(Fig. 3.21.b)

3. Two signal lines with a ground plane above and a second ground plane below
(Fig. 3.21.c)

4. Two signal lines with a ground plane above and a second ground plane below and
with two ground wires in the same plane (Fig. 3.21.d)
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Figure 3.21: The four types of ground plane configuration

Varying the thickness, width and position of the wires and ground planes, as well as
their length, their edge-to-edge separation, and the frequency of operation produced the
528 configurations.

Comparisons were made by the foundry against their “gold results”. In Figures 3.22,
3.23 and 3.24 we present the histogram of the distribution of the relative errors between
our tool and the gold results for self inductance of the signals, self resistance, and mutual
inductance between the two signals for the configurations belonging to groups 3 and 4
(188 of the total), respectively. A further study of the “gold data” used by the validator,
shown that the presence of outliers was due to misuse of the tool to generate the gold
results.

3.8 Testcase validation for IC

We designed a testcase to validate our impedance extraction methodology. The layout
consists of two signal lines surrounded by 4 ground lines. We generate two netlists,
the first one, with partial elements computed as in the PEEC approach, the second one,
using our loop impedance extraction flow. The interconnect layout with its geometrical
characteristics is shown in Fig. 3.25. In both approaches, the lines were broken into
wire segments with length smaller than 100 µm. We do this to ensure a good distributed
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Figure 3.22: Distribution of relative error for loop resistance of signal wires
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Figure 3.23: Distribution of relative error for loop inductance of signal wires
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Figure 3.24: Distribution of relative error for mutual inductance between signal wires

GND1

GND2

GND3

GND4

S2

S1

S1_out

S2_out

Figure 3.25: IC configuration. The length of the wires is 1mm, the width of signal S1
and S2 is 1µm, the width of grounds G1, G2, G3 and G4 is 5µm. Wires in black are in

a metal layer 1µm thick those in gray are in a metal layer 0.75µm thick.
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Figure 3.26: Voltage at the output nodes of both the quiet and the active line.

representation of the wires. For the timing analysis we fed the signal line S1 with a
Heaviside voltage pulse of 1 volt and left the signal S2 quiet. The idea is to compare
the responses of the active and the quiet line (noise), analyzing both the PEEC and the
loop netlists, such as to validate our loop self and mutual impedance methodology. We
simulate the presence of devices (drivers and receivers) at the ends of each line with
a resistor of value Rtr = 50Ω at nodes S1 and S2 and a capacitor to ground of value
Cload = 1fF at the node S1 out and S2 out. The capacitance among signal segments
and between signal segments and ground are included. These are computed in the
preprocessing part of the extraction, as we mentioned in section 3.2.

In Fig. 3.26 the waveforms at the nodes S1 out and S2 out as a function of time
for both netlists are presented. The waveforms coming from the loop approach sit well
on top of those coming from the PEEC approach. Our loop approach overestimates
the maximum peak of noise in the quiet line by 10%, a very good precision for noise
analysis.

Performance of standard timing simulators such as Eldo [36] or HSpice [37] de-
pends on the size of the input netlist. The size of a netlists is determined by two pa-
rameters: the number of elements and the number of nodes. To understand what is an
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C1   n3  0  c1
C2   n6  0  c2
C12  n3  n6  c12
K12  L1  L2  k12

L1   n1  n2   l1
L2   n4  n5   l2
R1   n2  n3   r1
R2   n5  n6   r2

n1

l1
n2

r1

n3
c12

n6

r2
n5

l2

k12

c1 c2

n4

Figure 3.27: The circuit representation of a typical netlist in Spice syntax. The
number of nodes is 6, the number of elements is 8.

element and what is a node see Fig. 3.27 where a netlist and its corresponding circuit
representation are displayed.

In table 3.1 the number of RLC elements in both netlists is shown. With the loop
impedance method the number of impedance coupling elements is reduced to 5% of the
original PEEC number. The number of nodes has been reduced to a third of the original
PEEC number, due to the fact that ground wire segments are now implicitly considered
in our treatment. For this reason the number of capacitors also reduces to a third of
those in the original PEEC netlist. The number of circuit elements reduces to 10% of
the elements in the original PEEC netlist. This results in an obvious improvement of
performance: it takes five times more CPU time to analyze the PEEC netlist than the
netlist produced with our methodology.

3.8.1 Performance in real-life designs

We present performance results of our impedance extraction tool when used in three
real-life designs:

1. testcase 1: a digital design with 12000 transistors

2. testcase 2: a digital design with 235000 transistors
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resistors inductors capacitors impedance Total Average
couplings run time (s)

PEEC 70 70 118 2415 2673 10.2
Loop 26 26 34 128 214 1.9

Table 3.1: Number of RLC elements in both the PEEC netlist and the netlist produced
by our loop impedance extraction flow. Impedance couplings correspond to both

mutual inductance and mutual resistance.

Testcase CPU time (s) memory (MB) PDB wire segments No. of nets
1 241 80 363040 21923
2 3027 158 287183 109165
3 5883 513 213105 1596940

Table 3.2: Runtime of impedance extraction for three digital IC’s.

3. testcase 3: a 32-bit RISC microcomputer

In table 3.2 we present results in CPU time and memory usage for impedance ex-
traction. The third column corresponds to the number of wire segments in the PDB
after the preprocessing and the filtering parts were done. The last column corresponds
to the number of nets¶ in the design. Runs were performed in a Sun Fire V-210 server
with dual 1GHz-processor and 4GB of RAM.

We observe how the run for testcase 3, that has fewer PDB wire segments to consider
than both testcase 2 and testcase 1, consumes the most in CPU time. This is due to
the filtering, since testcase 3 has 10 times more nets to prequalify (section 3.5.1) than
testcase 2. Without the filtering step, the testcase 3 run would take 100 times more CPU
time to finish and also 100 times more memory. This shows how important the filtering
step is for complex designs.

Our tool has proven to be able to handle complex designs like this RISC micropro-
cessor in less than 2 hours and using a very modest amount of memory. There are no
known alternative methods with this level of performance and compactness that provide
the field solver accuracy achieved by our tool.

¶A collection of wire segments electrically connected
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3.9 Frequency dependence of the current distribution

The current distribution ~J within each conductor depends on the frequency of operation.

For frequencies in which skin depth δ is smaller than transverse dimensions, the
resistance of a conductor grows as the inverse of δ, i.e. the resistance grows as the
square root of the frequency [29]. Furthermore, the inductance of a wire tends to an
asymptotic finite value. This means that the ratio r/ jωL tends to zero when omega
tends to infinity, i.e. the reactance part of the impedance dominates the resistance. The
currents in the interior of the cross-section crowd into the portions nearer the surface of
the wire so to minimize the dominant term of the impedance, i.e. the inductance.

This can be seen from the solution to (2.25) for a conductor which has been broken
into m equal filaments. This complex system can be solved using the associated real
system [46]





R −ωL
ωL R









Ire

Iim



 = vio





um

0



 (3.37)

where R and L are the partial resistance and partial inductance matrices of the m fila-
ments, respectively. The vectors Ire and Iim are the real and imaginary parts of the vector
I, respectively.

In the low frequency regime, where the impedance is completely dominated by its
real part, we can neglect the imaginary part of Z. The system (3.37) becomes a diagonal
system. The trivial solution to this system is the Ire with entries equal to the inverse of
the resistance of the corresponding filament times the term vio and Iim = 0. Since
all filaments have the same resistance, then all entries in the solution vector will be
identical, i.e. homogeneous current distribution.

In the high frequency limit, it is the imaginary part ωL that dominates. We can
neglect the real part of Z. Therefore system (3.37) can be written as the two real systems

−ωLIim = vioum and

ωLIre = 0.
(3.38)

Since the inductance matrix L is non singular, the second system directly implies Ire =

0.

In our magneto-quasistatic approximation all currents inside filaments flow in the
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same direction, therefore signs of the entries in Iim are the same. From the first system
in (3.37) we conclude that all entries in Iim are negative.

From the above results, the vector Ĩ defined as Ĩ = −Iim is solution to the real system

ωLĨ = vioum. (3.39)

Since L is symmetric and positive definite, so it is ωL. Therefore, the solution vector
Ĩ for the above system is the unique vector that minimizes the associated quadratic
functional [50]

ωĨTLĨ − vioĨT um. (3.40)

The above functional can be rewritten as

ω

m∑

i=1

m∑

j=1

Li j Ĩi Ĩ j − vio

m∑

i=1

Ĩi. (3.41)

The second term in (3.41) goes unbounded to −∞ due to the fact that entries in the
vector Ĩ are positive. The first term, on the contrary grows unbounded as the square
of the currents. The minimum is attained by giving maximum magnitude to pairs of
entries i and j in the solution such that their companion coefficients Li j are the smallest
ones. From (2.21) the element Li j is given by

Li j =





µ0

4πaia j

∫

Ω̄i

∫

Ω̄′j

li · l j

‖~x − ~x′‖dΩ
′dΩ





. (3.42)

The coefficients Li j decrease with the distance between the filaments. Therefore, in a
equi-partitioned wire with square cross-section, the filaments in the four corners will
have the smallest Li j terms among them and hence their corresponding current magni-
tude Ii and I j will be the largest so as to minimize the first term in (3.42). This can be
seen in Fig. 3.28 where currents in an isolated wire with rectangular cross-section tend
to crowd to the corners of the conductor when frequency increases. In this figure the
real part of the impedance matrix is not neglected and the complete system is solved
numerically for a large value of m. What is printed in the figure is the magnitude of
the entries in the solution current vector. The figure shows that our result is indeed the
asymptotic behavior of the current distribution when ω grows. This effect is known as
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the “skin effect”.

Furthermore, the presence of other conductors in the vicinity changes the distribu-
tion of the currents traveling inside the conductor. This is known as the “proximity
effect”. Consider for instance two parallel conductors. We feed one end of each con-
ductor with a sinusoidal voltage vio and each of the other ends connected to ground.
Fracturing both conductors into n filaments each, the corresponding linear system for
this configuration is





Za,a Za,b

Zb,a Zb,b









Ia

Ib



 = vio





um

um





ZI = viou2m

(3.43)

with Za,a and Zb,b the partial impedance matrix of filaments in conductor a and conduc-
tor b, respectively. The off-diagonal term being the partial mutual inductance between
filaments in conductor a and filaments in conductor b. The associated real system for
(3.43) is given by





Ra,a 0
0 Rb,b

−ωLa,a −ωLa,b

−ωLb,a −ωLb,b

ωLa,a ωLa,b

ωLb,a ωLb,b

Ra,a 0
0 Rb,b









Ia
re

Ib
re

Ia
im

Ia
im





= vio





um

um

0
0





(3.44)

Once again, for the low frequency limit the linear system (3.44) can be approximated
to a diagonal system with trivial solution Ire

i = vio/Rii and Iim
i = 0. In other words,

uniform current distribution among filaments.

For the high frequency limit we neglect the real part of Z. This lead us to two real
systems

−ω




La,a La,b

Lb,a Lb,b









Ia
im

Ib
im



 = vio





um

um





and ω





La,a La,b

Lb,a Lb,b









Ire
a

Ire
b



 = vio





0
0





(3.45)

the second system implies Ire
a = 0 and Ire

b = 0
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We consider the case in which currents in one conductor flow opposite to the cur-
rents in the other conductor. This condition can be forced by changing the right hand
side of the first system in (3.45) to

vio





um

−um



 (3.46)

The resulting real system is

ω





La,a La,b

Lb,a Lb,b









Ia
im

Ia
im



 = vio





−um

um





ωLIim = viou′2m.

(3.47)

The block inductance matrix is positive definite, therefore the solution vector Iim =

[Iim
a Iim

b ]T to (3.47) is the unique minimum of the functional

IimTLIim − vioIimT u′2m. (3.48)

The above functional can be rewritten as

m∑

i=1

m∑

j=1

[

(La,a)i j (Ia
im)i (Ia

im) j + (Lb,b)i j (Ib
im)i (Ib

im) j + 2(La,b)i j (Ia
im)i (Ib

im) j

]

−vio

2m∑

i=1

Ĩi.

(3.49)
The first two terms in the double summation are always positive, since they correspond
to multiplication of currents in the same conductor. The third term are negative since
currents in filaments of conductor a are opposite to currents in in filaments of conductor
b. For this reason, the largest entries in Iim will be those that maximize these negative
terms. In other words, they are those (Ia

im)i and (Ib
im) j such that the coefficients (La,b)i j

are the largest ones. The largest inductance values between filaments in conductor a

and filaments in conductor b are of those filaments at minimum distance. This can be
seen in Fig. 3.28.(b) where the currents of two conductors crowd to their facing sides
when both currents travel in opposite direction.

If currents in both conductors go in the same direction the minimum of (3.49) is
attained when the third term in the summation, which is now positive, is minimized, i.e.
currents will crowd in the farthest points of the conductors.
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Figure 3.28: Current distribution at 10GHz, darker color means more current. (a)
cross-section of an isolated conductor (Skin effect). (b) two facing conductors with

opposite currents (Skin and proximity effects).





Chapter 4

Intentional inductors

Inducteurs intentionnels

Résumé

Les dispositifs communiquants ont bénéficie de beaucoup d’attention ces dernières
années. Un grand effort a été investi pour que ces dispositifs puissent communiquer
entre eux sans utiliser de fils électriques. Les dispositifs précédents étaient encom-
brants, or l’espace a toujours été un souci. Les nouvelles avancées dans la concep-
tion d’IC ont rendu possible l’intégration des émetteurs-récepteurs à l’intérieur d’une
micro-plaquette. Non seulement la taille des dispositifs a été réduite mais également la
robustesse de leur intercommunication s’est bien améliorée.

Les composants clefs dans un émetteur-récepteur sont ses dispositifs passifs. Dans
ce chapitre nous focalisons notre attention dans un des dispositifs passifs : l’inducteur.
Une brève discussion au sujet des inducteurs intentionnels et de leur représentation
électrique est présentée. Nous développons une méthode et les expressions pour cal-
culer l’impédance d’entrée d’un inducteur intentionnel, valable tant pour les basses
que pour les hautes fréquences. Nous completons avec une méthode pour calculer
l’impédance mutuelle entre deux inducteurs intentionnels.

111



112 Chapter 4. Intentional inductors

4.1 Introduction

Communicating devices are getting a lot of attention during the last years. Plenty of
effort has been invested in making these devices communicate among themselves wire-
lessly. Previous devices were bulky and space was a concern. New advances in IC
design have made possible to integrate transceivers inside a single chip.

Important components in a transceiver are the passive devices. In this chapter we
will focus our attention in one of these passive devices: the inductor.

When designing an inductor an important factor to consider is its self-resonance fre-
quency. This is the frequency at which the current traveling the inductor is maximum.
Another important factor in designing an inductor is the “quality factor” Q. The higher
the value of Q the more energy can be stored for a given loss. The quality factor of
an inductor is mainly determined by its physical layout, the material used in its con-
struction and the dielectric in which the inductor has been placed. Designers face a big
challenge, they need transceivers fitting in a single chip, operating at a given frequency
with minimum loss. The availability of tools to accurately predict the electromagnetic
parameters of an inductor during the design stage is paramount to the success of its
correct operation.

This chapter is divided as follows:

In section 4.2 a brief discussion about intentional inductors and their electrical rep-
resentation is presented. In section 4.3 we present the methodology and expressions
to compute the self impedance of an intentional inductor, at low and high frequency.
In section 4.4 we formulate the computational scheme for mutual impedance between
intentional inductors. The coupled approach in which all inductors are treated together
is presented. In section 4.5 we present a method to compute impedance of a system
of n-inductors by considering each inductor separately. In this section the coupled ap-
proach and ours are contrasted in terms of complexity. In section 4.6 we extend the self
impedance model with the inclusion of capacitance couplings in the intentional induc-
tors. This we do so as to be able to capture the self-resonance frequency, otherwise not
feasible. A validation testcase to our method is presented in section 4.8. We conclude
this chapter in section 4.7 with some details regarding our implementation.



4.2. Intentional inductors 113

Input

GNDGND

Input output

GND GND

Z loop

output

Figure 4.1: The equivalent loop RL circuit of a two-port inductor configuration

4.2 Intentional inductors

Consider the inductor configuration as a two-port system: The input, output and ground
nodes, as shown in Fig. 4.1. In real circuits these ground nodes would be metal pads
connected to a resistive substrate or ground plane. In our approximate treatment we
consider the two ground nodes as connected by a perfect conductor, therefore electri-
cally equivalent. This approximation is accurate as long as the input and output nodes
are located sufficiently close to each other so as to minimize the impedance of the path
between the ground nodes permitting us to represent the inductor as a closed loop.

4.2.1 Self resonance frequency and quality factor

The self-resonance frequency is the frequency fres for which the current traveling the
inductor is maximum. The impedance of a serial RLC tank, as shown in Fig. 4.2, is
given by

Z = R + j
(

ωL − 1
ωC

)

(4.1)

The maximum current passing through the tank is attained when the imaginary part of
Z is zero, i.e. for fres such that

fres =
1

2π
√
LC

(4.2)

Intentional inductors are devices that store energy dissipating a small amount of it.
The dissipation of energy is minimized when the quality factor Q is maximum. The
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C

R L

Figure 4.2: A serial RLC tank

quality factor Q is given by the expression [51]

Q =
ω (Wm +We)

Pl
(4.3)

with ω = 2π f , the angular frequency; Wm and We the time average of the stored mag-
netic and electric energy, respectively; and Pl the average power dissipated.

A minimum value of Pl and maximum values of Wm and We results in the maximum
quality factor. Below the self resonance frequency, the quality factor is well approxi-
mated by [51]

Qind =
ωL
R

(4.4)

For a general inductor at any frequency, the quality factor is given by [51]

Qind =
Im(Zin)
Re(Zin)

(4.5)

with Zin the input impedance. In our work, we use (4.5) as the quality factor of an
intentional inductor.

4.3 Self impedance

Short circuiting the output node of the inductor to ground and injecting a potential dif-
ference V1 between the input node of the inductor and ground, generates a loop current
Iloop on the inductor. This current is determined using Ohm’s law in the frequency do-
main:

Zloop( f )Iloop( f ) = V1 (4.6)
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Input output Input output

Figure 4.3: Breaking the inductor into segments

Input output

Z 1

Z2

Z 3Z 5

Z6

Z 7

Z8

Z4

Figure 4.4: The equivalent lumped RL circuit of a two-port inductor configuration.
For simplicity mutual inductance between segments is not presented, but taken into

account in our study.

where Zloop is the loop impedance of the inductor and f the frequency. In the absence
of capacitive effects, the real part of Zloop corresponds to the loop resistance of the
inductor and its imaginary part corresponds to the loop self inductance of the inductor
times ω = 2π f , the angular frequency.

An intentional inductor is built as a concatenation of n rectilinear segments, as seen
in Fig. 4.3. Each segment i is described as a RL lumped element with resistance and
partial self inductance Ri and Li, respectively, as shown in Fig. 4.4. Although not
shown in the figure, we consider the mutual inductance between segments i and j that
we denote asLi j. Inductors in IC design are made of metal wires with rectangular cross-
section, the partial values of inductance, as well as the resistance of each segment, can
be computed using the equations compiled in table 2.2 and 2.3.

Currents and voltage drops in each segment of the inductor are related by the fol-
lowing linear system:
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



Z1,1 Z1,2 . . . Z1,n

Z2,1 Z2,2 . . . Z2,n
...

...
. . .

...

Zn,1 Zn,2 . . . Zn,n









I1

I2
...

In





=





V1 − V2

V2 − V3
...

Vn − Vn+1





ZI = V

(4.7)

With Zi, j the partial mutual impedance between segment i and segment j and I j the
current in segment j. The value V j is the voltage at node j, where V1 is the input voltage
and Vn+1 is the output voltage. For i = j, Zi,i is the partial self impedance of segment i.
This linear system has n current unknowns, Ii, as well as n−1 nodal voltages unknowns,
Vi. Applying Kirchoff’s currents law (KCL) at each node results in I1 = I2 = . . . = In.
This reduces the current unknowns to only one common current. Therefore the linear
system is complete. We can sum all rows of system (4.7) and end with a single equation
ZloopI = V1 − Vn+1 with Zloop given as

Zloop =

n∑

i=1

Ri + jω





n∑

i=1

Li +

n∑

i=1

n∑

j=1

Li j




, (4.8)

with ω the angular frequency, i.e. ω = 2π f , where f is the frequency. This result was
first introduced by Greenhouse [52].

4.3.1 Self impedance at high frequency

In chapter 3, we showed that at high frequencies current inside a conductor ceases to
be uniform. Volumetric methods as FastHenry [6] discretize the volume of the straight
conductor with rectangular cross-section into several “filaments”. Each filament being a
segment with transversal dimensions small enough as to assure constant current through
its cross-section. For a high frequency model we use volumetric discretization.

We start by breaking each segment in the inductor into m filaments, as shown in
Fig. 4.5.

Given that currents along the cross-section crowd around the borders of the inductor,
a reasonable partitioning scheme would be one in which filaments at the boundaries of
the segment have smaller cross-section than those in the middle of the conductor. This
is what tools as FastHenry do. Notice in Fig. 4.5 the increase of the filaments’ width
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Figure 4.5: Non-uniform partitioning of the inductor’s cross-section

and thickness when we approach the cross-section’s center.

The associated KVL linear system for this new circuit written in block form is iden-
tical to the linear system in (4.7). The extension is that each scalar Zi, j in the Z matrix
is replaced by a submatrix defined as the mutual impedance matrix between filaments
in segment i and filaments in segment j:

Zi,j =





jωLi1, j1 jωLi1, j2 . . . jωLi1, jm

jωLi2, j1 jωLi2, j2 . . . jωLi2, jm
...

...
. . .

...

jωLim, j1 jωLim, j2 . . . jωLim, jm





(4.9)

with Lik, jr the partial mutual inductance between the k-th filament in segment i and the
r-th filament in conductor j.

When i = j the scalar Zi,i is replaced by the impedance matrix among the filaments
of segment i, i.e:

Zi,i =





Ri1 + jωLi1 jωLi1,i2 . . . jωLi1,im

jωLi2,i1 Ri2 + jωLi2 . . . jωLi2,im
...

...
. . .

...

jωLim,i1 jωLim,i2 . . . Rim + jωLim





(4.10)
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With Rik andLik the resistance and partial self inductance of the k-th filament in segment
i, respectively.

Each current I1 in (4.7) is replaced by a subvector of the form:

Ij =





I j1

I j2
...

I jm





(4.11)

where I jk is the value of current in the k-th filament of segment j.

Similarly, the vector V at the right hand side of (4.7) is replaced by a block vector
V:

V =





V1

V2
...

Vn





(4.12)

To reduce the size of the problem, the unknown voltage drop in all filaments within
a segment is taken to be equal to the unknown average voltage drop between the two
end faces of the conductor. The block elements in (4.12) are therefore:

Vj =





V j − V j+1

V j − V j+1
...

V j − V j+1










m times (4.13)

The block version of system (4.7) consists of m × n unknown currents and n − 1
unknown node voltages. Furthermore, due to current conservation, the total current in
one segment must be equal to the total current going through the next segment. There-
fore, the sum of filament currents in one segment will be equal to the sum of filament
currents in the next segment. The remaining n − 1 equations are given by

m∑

k=1

Iik =

m∑

k=1

I(i+1)k , for i = 1, . . . , n − 1 (4.14)

The block version of system (4.7) together with (4.14) can be rewritten as a single
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(m ∗ n + n − 1)2 system of the form





Z A
AT N









I
Ṽ



 =





Vio

0



 (4.15)

With block A defined as

A =





−1
...

−1

0
...

0

0
...

0

0
...

0

. . .

0
...

0

1
...

1

−1
...

−1

0
...

0

0
...

0

. . .

0
...

0

0
...

0

1
...

1

−1
...

−1

0
...

0

. . .

0
...

0
...

...
...

...
...

0
...

0

0
...

0

0
...

0

0
...

0

. . .

1
...

1





(4.16)

The n blocks in (4.16) have m rows and n−1 columns each. Block N is the (n−1)×(n−1)
null matrix. In the unknowns, Ṽ corresponds to the n − 1 unknown nodal voltages
Ṽ = (V2 V3 . . . Vn)T .

In the independent vector, Vio is given by

Vio =





V1
...

V1

0
...

0
−Vn+1
...

−Vn+1










m times






m(n − 2) times






m times

(4.17)
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and vector 0 is the null vector of size n − 1.

The current in each segment is given by the sum of currents flowing through each
filament in which the segment has been broken into. According to (4.14) the total
current in one segment is equal to that in the other segments. This means that the total
current I flowing through the inductor must fulfill the relationship:

ZI = V1 − Vn+1 (4.18)

with Z the input-output impedance of the inductor, the value we are interested to com-
pute. We close the circuit, i.e. make vn+1 = 0v and set input potential of v1 = 1v. We
solve for I in (4.15) with these boundary conditions. From (4.14), the total current go-
ing through the inductor is equal to the current going through the first segment, i.e., the
sum of the first m entries in I. From the total current we can compute

Zloop =





m∑

k=1

I1k





−1

(4.19)

This frequency dependent loop impedance is in fact the loop impedance of the in-
ductor taken as a two-port RL circuit with one of the ports short circuited.

4.4 Mutual impedance between inductors

Designers frequently use multiple intentional inductors in an IC. Each one of these
devices occupies an amount of real estate on the chip in the order of 100 µm2. Design
and manufacturing considerations favor placing the different inductors closely spaced
so as to minimize the occupied area and as such improve on the manufacturing yield.
To be able to do it safely, a quantitative measure of the electromagnetic noise that one
inductor induces on another is essential. We attempt to compute the noise.

4.4.1 Frequencies much smaller than fres

Given two inductors a and b partitioned into n(a) and n(b) rectilinear segments, respec-
tively. The associated KVL system, written in block form, is given by:





Za,a Za,b

Zb,a Zb,b









Ia

Ib



 =





Va

Vb



 (4.20)
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where Za,a and Zb,b are the segment-segment partial self impedance matrices of inductor
a and b, respectively (see (4.7)). These diagonal blocks are size n(a) × n(a) and n(b) × n(b),
respectively. The offdiagonal block elements correspond to the partial mutual induc-
tance between segments in inductor a and segments in inductor b times the angular
frequency ω. The size of these blocks is n(a) × n(b) and n(b) × n(a). Block elements Ia and
Ib correspond to the currents in the respective inductor. Block elements Va and Vb are
the nodal voltages at the respective inductor. The size of the total system is (n(a) + n(b))2

This system is reducible to a 2 × 2 system. The diagonal elements in this reduced
matrix are the loop self impedance of each inductor; its offdiagonal elements correspond
to the mutual impedance between the two inductors. This reduction can be done in two
steps, one in which inductor a is active and inductor b quiet and the second step just the
other way around.

In the 2×2 total system what we are looking for is the two current vectors such that:

ZI1 =





1
0



 (4.21)

and

ZI2 =





0
1



 (4.22)

Trivially, the current matrix Y with columns equal to vectors I1 and I2 is the inverse of
the impedance matrix Z.

To solve the system (4.20) we proceed as follows: in a first step we make the induc-
tor a active by injecting an input/output voltage difference of V1 − V0 = 1v, this creates
voltages at each node in the inductor. The voltage vector Va is therefore equal to:

Va =





1 − V2

V2 − V3
...

Vn





(4.23)

and Vb is set to zero to make inductor b quiet. In the second step we interchange a and
b.

For each one of these two steps we solve (4.20) for currents in each inductor. Since
currents in all segments are identical, the total current in one inductor will be equal to
the current of the first segment. We then construct the matrix Y as:
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Y =




Ia
I
1 Ia

II
1

Ib
I
1 Ib

II
1



 (4.24)

where superindices I and II represent at what step the current column was computed.

Inverting this 2×2 matrix results in the matrix Z of loop impedance we are interested
in:

Z =




Za Za,b

Zb,a Zb



 (4.25)

From the off-diagonal element Za,b we can obtain the coupling coefficient between
the two inductors. This is a figure of merit for noise analysis. It is defined as:

κ =
La,b√
LaLb

=
Im(Za,b)

√
Im(Za)Im(Zb)

(4.26)

For a passive system, the eigenvalues of the matrix Im(Z)/ω are positive. This means
that the determinant of the matrix has to be positive, i.e.

det(L) = LaLb − L2
a,b ≥ 0 (4.27)

condition (4.27) trivially leads to |κ| ≤ 1.

4.4.2 Frequencies around or above fres

At higher frequencies, the two inductors are broken into filaments as the one-inductor
case. Block elements Za and Zb in (4.20) become themselves block matrices with block
elements in the diagonal given as in(4.10) and in the offdiagonal as in (4.9). The offdiag-
onal block elements Za,b and Zb,a in (4.20) correspond to block matrices with elements
given by the mutual impedance among filaments of inductor a and inductor b.

Segments in inductors a and b are broken into m(a) and m(b) filaments, respectively.
We recall that inductors a and b were broken into n(a) and n(b) rectilinear segments,
respectively. This makes of (4.20) a dense linear system of size (n(a)m(a) + n(b)m(b))2.

We do as for the low frequency case: to activate one inductor at a time in order to
look for the 2 × 2 impedance matrix. Due to the current redistribution at each node
of the inductors, the total current of each inductor will be equal to the sum of currents
inside the filaments of their first segments. The matrix Y is in this case given by
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Y =




∑m
k=1 I I

1k
∑m

k=1 I II
1k

∑m
k=1 I I

1k

∑m
k=1 I II

1k



 (4.28)

and the loop impedance matrix for the configuration is as before given as Zloop = Y−1.

4.5 Approximations to full impedance extraction

Finding the impedance matrix of a 2-inductor system can become expensive. Further-
more, the 2-inductor linear system generalizes easily to a n-inductor linear system. The
complexity of the linear system grows rapidly with the number of inductors and be-
comes rapidly unmanageable.

We propose an alternative method to compute the loop impedance matrix Z in (4.25)
without requiring to explicitly solve the huge associated linear system. Our methodol-
ogy is based in the approximation that current distribution in the segments of an inductor
is not affected by the presence of another inductor.

We have verified by means of simulations that the modification of current distribu-
tion in a “victim” inductor due to the “aggressor” decays rapidly with their separation.
For edge-edge distances of about 30 µm between the victim and the aggressor, the vari-
ation in current and hence the variation in the self impedance of the victim inductor
accounts to less than 1% for tested configurations. Furthermore, we found that for fre-
quencies as high as 30 GHz the presence of an aggressor inductor, at this distance, does
not affect the current distribution inside the volume of the victim inductor.

We compute Za and Zb separately. During a second step, compute Za,b with the low
frequency approximation given as the sum of all mutual inductance between segments
in one inductor and all segments in the other, i.e:

Za,b = jω
n(a)
∑

i=1

n(b)
∑

k=1

Lik (4.29)

4.5.1 Complexity of the coupled approach

Consider the general case of two inductors a and b with respectively n(a) and n(b) number
of segments and with m(a) and m(b) filaments per segment, we define the size of the
configuration as the total number of filaments in the configuration:
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N = n(a)m(a) + n(b)m(b)

The general problem of computing the impedance matrix of this 2-inductor config-
uration is divided into two main steps:

1. Fill the partial impedance matrix Z

2. Solve the ZI = V system for two different vectors V

Step 1, consists in computing the partial self impedance of each filament in each
inductor and the partial mutual impedance among all filaments in both inductors. We
denote the cost for computing the resistance and partial self inductance of a filament
as Tr and Tl, respectively. The cost for computing the mutual inductance between two
filaments, we denote as Tm. Notice from tables (2.2) and (2.3) that both T l and Tm are
case dependent. Without loss of generality, for this analysis, we consider both figures
as constants for any case.

The total cost for step 1 is then:

Tstep 1 = N(Tr + Tl) +
N2 − N

2
Tm (4.30)

Once the impedance matrix Z is filled, we proceed to step 2 where the linear system
(4.20) is solved twice. This linear system can be rewritten as a block system of the form





Za,a Za,b

Zb,a Zb,b

Aa 0
0 Ab

Aa
T 0

0 Ab
T 0









Ia

Ib

Ṽa

Ṽb





=





V(a)
io

V(b)
io

0





(4.31)

where matrices Aa and Ab are the block matrices of size m(a) × n(a) and m(b) × n(b), as
defined in (4.16). Vectors Ṽa and Ṽb are the unknown node voltages of inductor a and
inductor b, respectively. Vectors V(a)

io and V(b)
io are the input/output vector of size m(a)n(a)

and m(a)n(a), respectively, defined as in (4.17).

System (4.31) has rank N + n(a) + n(b) − 2. The cost of solving the linear system
(4.31) twice, using a direct method (cubic complexity), would be:

Tstep 2 = 2(N + n(a) + n(b) − 2)3 (4.32)
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The total complexity of this method is then given by

Tcoupled = N(Tr + Tl) +
N2 − N

2
Tm + 2(N + n(a) + n(b) − 2)3 (4.33)

4.5.2 Complexity of the decoupled method

The big advantage in our decoupled method is in the size of the linear systems to be
solved, instead of solving systems of rank N we will be solving separate systems of size
n(a)m(a) and size n(b)m(b). These systems correspond to finding the loop self impedance
of each inductor as with the 1-inductor configuration case. The last step is that of
computing the mutual loop impedance between the two inductors using (4.29).

The complexity of the decoupled method is:
Step 1: we compute the partial self inductance and resistance for all filaments. We

compute the partial mutual inductance among all filaments in each of the inductors and
then the partial mutual inductance between segments of one inductor and segments of
the other. The cost is

Tstep 1 = N(Tr + Tl) + Tm

(

(n(a)m(a))2 − (n(a)m(a))
2

+
(n(b)m(b))2 − (n(b)m(b))

2

)

+ Tm(n(a)n(b))

(4.34)
Step 2: we compute the loop self impedance of each inductor. Using a direct method

as with the method in 3.5.6. This means that the cost of step 2 is given by:

Tstep 2 = (n(a)m(a) + n(a))3 + (n(b)m(b) + n(b))3 (4.35)

Step 3: we compute the mutual loop inductance between the two inductors us-
ing (4.29). The cost of this sum is

Tstep 3 = n(a)n(b) (4.36)

The total complexity of our method is then given by

Tours = N(Tr + Tl) + Tm

(

(Na)2 − Na

2
+

(Nb)2 − Nb

2
+ n(a)n(b)

)

+ n(a)n(b) (4.37)

with Na = n(a)m(a) and Nb = n(b)m(b) the total number of filaments in a and b, respec-
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tively.

Complexity ratio between the coupled and the decoupled approaches

We recall (4.33) and (4.37). In Fig. 4.6 values of the performance ratio Tcoupled/Tours as
a function of n and for different values of m are presented. We observe how the per-
formance ratio rapidly attains its asymptotic value when both the number of filaments
and the number of segments increased. For two inductors with 20 segments each and
only one filament per segment the complexity of our decoupled methodology is already
seven times smaller than that of the coupled case. Notice that the cubic term in Tours

grows linearly with the number of inductors, while the cubic term in Tcoupled grows
cubicly with the number of inductors. Therefore, for a 4-inductor configuration, the
performance ratio would be around 28. This generalizes to the following formula for
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Figure 4.7: The 2-inductor configuration

the n-inductor case:

Tcoupled

Tours
(n) =

14
8

n2 (4.38)

For inductors with a small number of segments, the term dependent of Tr, Tl and
Tm dominates the computation easily hiding the performance gains of our method.
Nonetheless, the process of computing the impedance matrix is easily parallelizable,
therefore, given enough processors, the dominance of the impedance calculation can be
overcame. Furthermore, our methodology is very useful in layout exploration. Design-
ers face the problem of placing the inductors in a minimum space and in a way such
as the noise among them is minimum. For this problem, our decoupled methodology
shows its benefits: we compute once the self impedance of each inductor and then we
only need to update the mutual impedance among inductors using expression (4.29) for
each change in position.

4.5.3 Accuracy

We proceed to analyze the accuracy of our decoupled methodology vis-a-vis computing
the entire N system. We have layout and simulated two polygonal inductors as shown
in Fig. 4.7. Both metal width and separation were chosen such as skin and proximity
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methodology

effects be fully developed. We have selected as operating frequency f = 20 GHz to
validate our approach into frequencies well beyond a regime where we have reasons to
expect accurate results.

We break the inductors into filaments so as to capture the frequency effects (sec-
tion 4.4.2). We solve the coupled linear system for the 2-inductor configuration for a
given separation. We start with the two inductors as near as possible (without touching)
and then increase their separation until 190 µm. With our method we compute only once
the self impedance of each inductor, and for each separation we use the approximation
given in (4.29) to compute the mutual impedance.

In Fig. 4.8 we present the relative errors in impedance between the coupled approach
and ours. As expected, the errors in our approach are larger when the inductors are lo-
cated very near one another, but are smaller than 0.5% which is an excellent agreement.
Notice that errors tend to asymptotically converge to a value around 0.01% instead of
0%, i.e. a difference in the fifth significant digit, due to numerical rounding errors.
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4.6 RLC representation

In the previous sections we have considered the magneto-quasistatic (MQS) description
of the inductor, ignoring the capacitance in our treatment. The presence of capacitance
needs to be considered for accuracy. Furthermore, the inclusion of capacitance in the
model is compulsory if we want to compute the self resonance frequency of an inductor.
In the MQS (RL-only) representation, the resonances cannot be captured. We proceed
to include first the capacitance to ground and in a second improved approximation the
capacitance among the segments of the inductor.

To compute the capacitance matrix C of the configuration we use the public domain
electro-static solver FastCap, from MIT [22]. We provide as input the discretization
into panels for each of the inductor’s segments for accurate capacitance extraction. For
an inductor with n segments, the capacitance matrix resulting from FastCap will be of
rank n. The capacitance matrix is given in the standard Maxwell representation: the
capacitance between segment i and segment j is equal to the negative of the offdiagonal
element Ci j; to obtain the capacitance to ground of segment i, we subtract from the
total capacitance Cii the absolute values of the sum of entries in the i-th row of the
capacitance matrix, i.e.

Ci = Cii − |
∑

j,i

Ci j| (4.39)

4.6.1 First model: include only capacitance to ground

Consider a configuration consisting of one inductor with n segments and each segment
broken into m filaments. Our first RLC model for this inductor consists on a concate-
nation of n T-elements as shown in Fig. 4.9. The KVL equations for this system are
similar to the case were capacitances were not included. The impedance matrix Z is
identical to that of the RL model, i.e, with elements being the partial impedance among
the filaments inside all segments. As in the RL configuration, our linear system has
n ∗ m current unknowns as well as n − 1 node voltage unknowns. The remaining n − 1
equations are those relating currents in one segment and the next. This equations are
similar to those in (4.14). The only difference will be the capacitance to ground at each
node. In Fig. 4.10 a node of the inductor is presented in detail. Kirchoff’s law in this
node states that the current exiting segment i, must be the equal to the current entering
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Figure 4.10: The inter-segment node where capacitance to ground are included

into segment i + 1, plus the current going to ground due to the capacitance C i. This is
to say

Ii = Ii+1 + ICi (4.40)

where ICi is the current going to the ground through Ci, i.e.

ICi = jωVi+1Ci (4.41)

Expression (4.40) together with (4.41) results in the new current redistribution equa-
tions, when each of the segments are broken into m filaments:

m∑

k=1

Iik =

m∑

k=1

I(i+1)k + jωVi+1Ci, for i = 1, . . . , n − 1 (4.42)

As with the RL case, the linear system ZI = V and equations (4.42) can be joined
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Figure 4.11: The inter-segment node where capacitance to ground and coupling
capacitance are included. Arrows represent the direction of currents relative to the

reference node

into a single linear system where the unknowns are to be found. The resulting system
has the same shape as the one in (4.15) with block N replaced by a diagonal matrix with
nonzero elements equal to − jωCi, for i = 1, . . . , n.

The input impedance of the inductor is given by the inverse of the current going
through the first segment, i.e.

Zin =





m∑

k=1

I1k





−1

(4.43)

4.6.2 Second, enhanced model: adding coupling capacitance among
segments

We enhance our capacitance model with the inclusion of coupling capacitance among
the segments. The nodal equations include the presence of the capacitive coupling
among the segments as well as the capacitance to ground. In Fig. 4.11 we observe one
node of the configuration. Kirchoff’s law in this node result in the equation:

Ii = I j + ICi +
∑

j,i

ICi j (4.44)

where ICi is the current going to the ground through Ci and ICi j is the current going
through the coupling capacitance between segment i and segment j. This coupling
current is related to Ci j and the node voltages Vi+1 and V j+1 via KVL as

ICi j = jω(Vi+1 − V j+1)Ci j (4.45)
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Expression (4.44) together with (4.41) and (4.45) results in the new current redistri-
bution equations, when each of the segments are broken into m filaments:

m∑

k=1

Iik =

m∑

k=1

I(i+1)k + jω




Vi+1Ci +

∑

j,i

(Vi+1 − V j+1)Ci j




(4.46)

which can be rewritten into

m∑

k=1

Iik =

m∑

k=1

I(i+1)k + jω




Vi+1




Ci +

∑

j

Ci j




−

∑

j,i

V j+1Ci j




(4.47)

The linear system ZI = V together with (4.47) can be rewritten in block form as in





Z A
AT −jωC









I
Ṽ



 =





Vio

0



 (4.48)

with C the capacitance matrix.

4.7 Implementation

We implemented an impedance simulator for intentional inductors. For this purpose,
our methodology, presented in this chapter, has been implemented in a stand alone
program. The program has four parts:

1. Input: the parameters for the n-inductor configuration are read

2. Layout: the n-inductor configuration is generated from the input parameters

3. Calculation engine: the impedance matrix of the n-inductor configuration is com-
puted

4. Output: graphical and written information is output

We proceed to explain in detail each of the previous steps including the data struc-
tures.

4.7.1 Data structure

We created a structure called inductor. This structure contains all the properties nec-
essary to represent an inductor. The properties of this structure are:
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• type: the type of inductor. See: Layout section.

• w: the metal width

• s: the metal separation

• t: the metal thickness

• R: the inductor’s radius. This is the distance from the geometric center to the outer
edge

• ns: number of sides

• nt: number of turns

• dx, dy, dz: the coordinates of the inductor’s geometric center

• nboffil: the number of filaments into which each segment of the inductor is
partitioned.

• rot: rotation clockwise in number of segments

• For non planar inductor we include R_via, the resistance per via and N_via, the
number of vias to place when changing metal layers

• wires: this is a list with the geometrical representation of all filaments inside the
inductor

A exemplary inductor explaining each of the properties is shown in Fig. 4.12.

4.7.2 Input

The input consists on the physical and geometrical parameters for the n-inductor con-
figuration. An example of an input file defining a 4-inductor system would be:
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Figure 4.12: A polygonal inductor with nt=2, ns=8 and rot=0.

n=4

units=1e-6

type=1 w=2 s=3 t=1.96 R=50 ns=4 nt=2 dx=0 dy=0 dz=0 rot=0

type=2 w=3 s=1 t=0.65 R=100 ns=8 nt=2 dx=0 dy=200 dz=3 rot=0

type=3 w=6 s=1 t=0.65 R=100 ns=4 nt=2 dx=200 dy=0 dz=3 rot=0

+ R_via=50 N_via=25

type=4 w=5 s=5 t=1.96 R=50 ns=12 nt=3 dx=100 dy=0 dz=0 rot=0

+ R_via=50 N_via=25

The first line indicates the number of inductors in the configuration. The second line
indicates the length units. In this case units=1e-6 represents microns. The remaining
lines contain the geometrical information for each inductor. For instance, the line

type=2 w=3 s=1 t=0.65 R=100 ns=8 nt=2 dx=0 dy=200 dz=3 rot=0

corresponds to an inductor of type 2 (see next section) with metal width equal to 3 length
units, microns in this case; the edge-edge metal spacing is 1µm; the metal thickness is
0.65µm; the radius of the inductor is 100µm; the number of sides and turns is 8 and 2,
respectively; and the coordinates of the inductor’s geometrical center are (0, 200, 3)µm.



4.7. Implementation 135

A) Square Inductor

C) Square symmetric Inductor D) Polygonal symmetric Inductor

B) Polygonal Inductor

Figure 4.13: The four common types of implemented inductors

4.7.3 Layout

After reading the input file, we layout the inductors according to their type parameter.
We have implemented the layout of 4 different types of inductor:

• Type 1: square inductor (Fig. 4.13.A)

• Type 2: polygonal inductor (Fig. 4.13.B)

• Type 3: symmetric square inductor (Fig. 4.13.C)

• Type 4: symmetric polygonal inductor (Fig. 4.13.D)
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For resistance
and inductance

For capacitance

Figure 4.14: Partition of the inductor at the corners

Type 1 and Type 2 are coplanar inductors, this means that all the wires in the inductor are
located at the same layer. Symmetric inductors, on the other hand, have segments that
cross. This is done by putting one of the segments in a different layer. The connections
between the rest of the inductor and this segment are done through vias∗.

Since our 2D expressions for resistance and inductance work only for wires with
parallelepiped shape, we partition the inductors at each corner into segments with rect-
angular shape. As can be seen in Fig. 4.14 this partitioning creates an unphysical over-
lap region. We break the inductor into disjoint polygons in order to avoid the unphysical
overlap, as shown in figure 4.14.

We briefly describe how we construct each type of inductor:

Square inductor

The length of the first 3 segments in the square inductor at the i-th turn follows the
sequence:

Li
1,2,3 = 2 ∗ r − (i − 1)2(w + s) (4.49)

The fourth segment at each turn follows this sequence:

∗For wires that change planes, we will conserve the resistance of the vertical segment (vias). Given
that the interlayer space in a typical IC is many orders of magnitude smaller than the length of the wires,
we can ignore the reactance of the via, which is proportional to its length, for all frequencies of interest.
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2 r − 2(w+s)
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2 r − 3(w+s)

Figure 4.15: Construction of a square inductor of outer length 2r

Li
4 = 2 ∗ r − (2i − 1)(w + s) (4.50)

In Fig. 4.15 we show an example of a square inductor.

Polygonal inductor

For this particular case we use the parametrization of a circular spiral and find the inter-
section points according to the number of sides of the inductor. The inner distance d of
the circular spiral is related to the metal spacing s as shown in Fig. 4.16, where we dis-
play the intersection of a 8-side polygonal inductor with 2 turns with the corresponding
circular spiral.

Symmetric square inductor

We generate this inductor in three sweeps: first, we generate the segments in the upper
half; next, those in the lower half. As a last sweep we join the two halves with diag-
onal segments belonging to different layers. We show the construction of one 2-turns
symmetric square inductor in Fig. 4.17.



138 Chapter 4. Intentional inductors

r 

θ=2π/n

d

r  −
d/n

s

Figure 4.16: Construction of a 8-side polygonal inductor by intersection with a
circular spiral

2nd sweep
1st sweep

3rd sweep
2r−2(w+s)

2r

2r w
+s

w+s

Figure 4.17: Construction of a 2-turn symmetric square inductor
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2nd sweep
1st sweep

3rd sweep

Figure 4.18: Construction of a 8-side 2-turn symmetric polygonal inductor by
intersection with concentric circles

Symmetric polygonal inductor

As for the symmetric square inductor we generate this inductor in three sweeps. Each
half of the inductor will be intersected to the Nt concentric circles with decreasing radius
so as to ensure that the segments in the inductor have the required separation s. We show
an exemplary 8-side 2-turn symmetric polygonal inductor in Fig. 4.18.

The wires in structure inductor are constructed using the layout methodology for
the particular type of inductor. If the property nboffil is different to 1, each of the
inductor’s segment will be partitioned into that many filaments. The filaments with
different cross-section area as shown in Fig. 4.5. The filaments will be stored in the
wire structure ordered according to the segment they belong. For instance, the first
nboffil elements of inductor->wire correspond to the filaments in which the first
segment of the inductor is partitioned.

4.7.4 The engine

Following the method presented in section 4.5, we consider each inductor separately.
With the geometrical information about the filaments in the property wire of the struc-
ture inductor, we compute the resistance and partial self inductance of each filament
and the partial mutual inductance among them. The resistance of the filaments is stored
in a vector R and the inductance matrix is stored in a symmetric matrix L. If a ca-
pacitance model is desired, a FastCap input file representing the inductor is built. We



140 Chapter 4. Intentional inductors

compute the capacitance matrix for each of the segments in the inductor without break-
ing it into filaments†. An external system call to FastCap is performed using the FastCap
input file. The capacitance matrix is stored in a matrix C.

With R, L and the optional C we implicitly build the extended impedance matrix Z
as in (4.48). This matrix is decomposed using a modified version of the LDLT factoriza-
tion for complex and symmetric matrices (see section 3.5.6). With this decomposition
we proceed to solve the extended system for currents in each filament. We sum the cur-
rents in the filaments in the first segment and the inverse of this sum is what we consider
the input impedance of the inductor.

If the configuration consists of more than one inductor we proceed to compute the
mutual impedance among inductors. We do this iteratively taking two inductors in the
configuration at a time, computing the mutual inductance between segments in one
inductor and segments in the other. Using (4.29) we compute the mutual impedance
between these two inductors.

4.7.5 Output

We output the impedance matrix of the system for the frequency f . This matrix cor-
respond to the n × n complex matrix with elements in the diagonal equal to the self
impedance of the n inductors and elements in the off-diagonal equal to the mutual
impedance among the n inductors.

4.8 Validation testcase

We proceed to compare results from our implementation against the tool for intentional
inductors simulation ASITIC, from UC Berkeley [53]. We consider a square inductor
(Fig. 4.19) with following characteristics:

• Inner radius: R = 125 µm

• Metal thickness: t = 1 µm

• Metal width: w = 10 µm

• Metal spacing: s = 5 µm

†We neglect displacement currents inside the conductors
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Figure 4.19: A square inductor with an exit segment in lower metal layer

• Number of turns: nt = 3.25

• Resistivity: ρ = 0.017 Ω.µm (Cu)

• We assume null resistance for vias

• The inductor is placed at z = 3 µm over a high resistivity substrate and surrounded
by a dielectric layer of thickness t = 20 µm with relative permittivity εr = 3.9
(S iO)

• The exit bridge is located 1 µm below the inductor’s metal layer

Using the 2port command in ASITIC we obtain the Z-parameters for the inductor
when considered as a two-port. This is a 2x2 matrix of the form:

Z2port =





Z11 Z12

Z21 Z22



 (4.51)

The relationship between currents and voltage drops in the two-port structure (Fig. 4.20)
are related by the Z-parameters in the following way:





Z11 Z12

Z21 Z22









I1

I2



 =





V1

V2



 (4.52)
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I 1

V1

I 2

V22−port

Figure 4.20: A two-port structure

Short circuiting the end ports, i.e., setting V2 = 0 and forcing an input potential of
V1 = 1 v, results in the following expression for the inductor’s input impedance Zin:

Zin = Z11 −
Z12Z21

Z22
(4.53)

We layout the inductor with the given parameters. We create an input file for the
capacitance simulator. Using the capacitance matrix and the impedance matrix we com-
pute the input impedance of the inductor as explained in section 4.6.2.

In Fig. 4.21 we show the values of the real and imaginary parts of the input impedance
coming from ASITIC (using (4.53)) and our model, both as a function of frequency.
Both models agree very well. The most noticeable difference is in the self-resonance
frequency: for our model is f = 6.8 GHz and for ASITIC is f = 6.4 GHz. This dif-
ference is due to the over simplified parallel plate approximation used for capacitance
simulation in ASITIC. We use instead an accurate capacitance simulator. We verify this
by including results from FastHenryand FastCap in Fig. 4.21. This later results agree
with the self-resonance frequency predicted by our method.

In Fig. 4.22 we show the quality factor Qind = Im(Zin)/Re(Zin) for the inductor, for
both models, as a function of frequency. We consider only a small window around
the maximum quality factor, which is usually the frequency at which the inductor will
operate in an RF design.

4.9 A DRC implementation

A Design Rule Checking (DRC) has been implemented using our intentional induc-
tor methodology. Designers using more than one intentional inductor in their designs
can easily verify if the inductive coupling between any two inductors is more than an
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Figure 4.21: Real and imaginary parts of Z as a function of frequency
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accepted value.
To use this tool, the designer feeds it with a layout file (GDSII, Oasis, etc) where

the inductors are located. In a separated file the electric rules are included.
The tool recognizes the inductors and proceed to compute the input impedance of

each one as presented in previous sections. In a second step, the mutual impedance
between any pair of inductors is computed. The inductance coupling coefficient

K =
Im(Za,b)

√
Im(Za)Im(Zb)

is computed for any two pair of inductors and compared with the rules given by the
user. If any of the rules is violated, the user gets a warning.



Chapter 5

Time delay in the RLC domain

Temps de réponse dans le domaine RLC

Résumé

Des expressions pour le temps de réponse d’une signal dans le domaine RC sont bien
connues. En 2000 Davis et Meindl (DM) donnent des solutions exactes à l’équation
du Télégraphiste dans le domaine temporel, pour une ligne de transmission ouverte,
stimulée par un signal d’entrée avec un temps de montée nul. Ils proposent aussi des
expressions pour le temps de réponse de la dite ligne. Dans ce chapitre j’introduis une
correction à l’expression de DM pour le temps de réponse d’une ligne de transmission
ouverte quand le signal d’entrée présente un temps de montée diffèrent de zéro. Une
fois cette expression dérivée, nous la complétons avec la correction nécessaire quand
on ajoute au bout de la ligne, un dispositif avec une capacité finie.

Ce chapitre est une extension d’un des résultats présentés dans l’article [11].

5.1 Introduction

With clock frequencies rising, inductance effects become noticeable and start playing an
important role in time delay. Delay expressions for RC interconnects are well known.
Those expressions are accurate when inductance is negligible but become unphysical
otherwise. For this reason new time expressions with inductance taken into account
are needed in order to get an accurate description of the waveforms and hence the time

145
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R tr

C load

x

L

r.dx

c.dx

dx

Figure 5.1: The RC representation of a wire.

delay in signal lines. In [54] exact solutions for the telegraphist equation in the time
domain are presented. These expressions, although very useful are restrained to the
case in which an open ended interconnect is fed by a Heaviside step pulse. What we
propose in this work are corrections to these RLC expressions due to non-zero rise time
of the input signal and the presence of a load capacitance at the end of the line.

This chapter is divided as follows: In section 5.2 a brief description of general RC
expressions are presented. In section 5.3 we present a summary of the exact solutions to
the telegraphist equations in the time domain as presented in [54]. In section 5.4, time
delay expressions for an open-ended line with a Heaviside step pulse are presented.
This expression being the direct consequence of the solutions presented in section 5.3.
In section 5.5, we present our corrections to the time delay expressions in the presence
of finite rise-time and load capacitance at the end of the line. In the last section our
concluding remarks are presented.

5.2 Previous work - RC domain

At low frequencies, the real part of the impedance dominates its imaginary part, i.e.
r >> ωl. The inductance can be discarded. This is referred to as the RC domain. Wires
in this domain are well represented by RC networks (Fig. 5.1), satisfying the diffusion
equation:

∂2V(x, t)
∂x2 = rc

∂V(x, t)
∂t

(5.1)
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with r and c representing the capacitance and resistance per unit length of the wire.
The function V(x, t) is the potential at a position x of the wire and at a time t. We
consider wires with transversal dimensions much smaller than longitudinal dimensions.
Therefore, a one dimensional model for the potential suffices, with the spatial variable
in the longitudinal direction of the line. Transversal dimensions are averaged over. This
equation can be derived from (2.8) by standard methods [55].

Solutions to this equation are useful to derive expressions for the time delay. For
instance, an important value to know is the time it takes for the output voltage to reach
one half the amplitude of the input signal Vdd, i.e. V(L, t50%) = 1/2Vdd. This figure
is known as the 50% time delay. Notice that 50% of the input voltage is above the
threshold in which transition at a transistor attached to the output of the line occurs.

Taking the leading term of a series expansion for the solution of (5.1) at the far end
of the line, Sakurai [5] derives a well known approximation to the 50% delay of an RC
line feed by a Heaviside step pulse of arbitrary amplitude. The expression is given by

t50% = 0.377rcL2 + 0.693 (RtrcL + CloadrL + RtrCload) , (5.2)

where L is the length of the line, Rtr is the load resistance at the beginning of the line
and Cload is the total load capacitance at the end of the line (see Fig. 5.1). Values Rtr and
Cload are used to represent respectively the resistance of the driver and the capacitance
of the receiver attached to the line. It is the interest of the designer to minimize this
delay.

This approximate expression, turns out to be a lower bound on the delay of an RC
line. This is due to the fact that the distributed RC representation of the wire is ap-
proximated as a single RC lumped element with resistance equal to r.L and capacitance
equal to c.L. In Fig. 5.2 we show the comparison between the distributed model and the
single lumped element for typical values of the parameters. In this figure we observe
how the t50% is underestimated when taking a single lumped element.

For illustration purposes, we display in Fig. 5.3 the devices’ contribution to the
delay (second term of (5.2)) against the total delay including the quadratic term. From
the graph we can observe how the quadratic term starts to dominate the delay for wires
in the centimeter range. The engineering answer is to put repeaters in this position in
order to maintain the linear term dominating the delay [56]. The function of a repeater
is to restore the signal voltage value V(L, t) to Vdd.
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and the single lumped element representations are displayed. For a wire of rectangular
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Figure 5.4: The RLC representation of a wire.

5.3 Distributed RLC lines

For a single line represented by RLC networks, as in Fig. 5.4, the PDE that generalizes
(5.1) is the telegraphist equation:

∂2V(x, t)
∂x2 = lc

∂2V(x, t)
∂t2 + rc

∂V(x, t)
∂t

(5.3)

Equation (5.3) replaces (5.1), and the additional parameter l is the inductance per
unit length of the line. It can be derived from the Maxwell’s equations [55].

Solutions to (5.3) in the frequency domain have been studied in detail in the liter-
ature [29]. Applying inverse Laplace transform to these solutions in order to obtain
solutions in the time domain is not possible for the general case. In most of the works
approximations to the solutions in the Laplace space are used. For these simpler expres-
sions it is possible to apply the inverse Laplace transform and thereby obtain expressions
in the time domain. For special boundary conditions these time domain approximations
are accurate.

In [54] an exact solution in the time domain for an open ended line fed by a Heav-
iside step pulse is given. This approximation is valid when the parameters r and c are
constant for the domain of interest. This is the case in our application. The representa-
tion, while exact, is an infinite series involving modified Bessel functions.

We make extensive use of results presented in [54], and refer the reader to the orig-
inal article for details. Note is given to the corresponding equations in the original
paper.
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5.3.1 Time domain solutions

Following [54], the solution for a semi-infinite line fed by a Heaviside step pulse Vin, at
x = 0, in the transformed Laplace coordinates s, x is

Vin f (x, s) = Vin(s)
Z(s)

Z(s) + Rtr
e−Φ(x,s) (5.4)

where

Φ(x, s) = x
√

lcs(s + r
l ) (5.5)

Z(s) = Z0

√

s+ r
l

s (5.6)

Z0 =

√

l
c (5.7)

An interesting limit is r going to zero. In this limit one can calculate exactly the
inverse Laplace transform given in the time domain. This gives rise to a close form
expression:

Vin f (x, t) = Vdd
Z0

Z0 + Rtr
u0(t − x

√
lc) (5.8)

where Vdd, the power supply voltage, is the amplitude of the pulse and u0 is a Heaviside
unit step function. This is the solution for a traveling wave in a lossless line, i.e. the
wave travels without attenuation.

For finite r, the front end voltage wave form can be expressed as

Vin f (x, t = x
√

lc) = Vdd
Z0

Z0 + Rtr
e−(rx/2Z0) (5.9)

Equation (5.9) (equation (25) in [54]) is a known expression in the transmission line
literature. It does not reflect important parts of the behavior we are interested in.

A better representation to describe the transient voltage near the wave front is given
by (equation (32) in [54]):

Vin f (x, t′)
Vdd

=

[ Z0

Rtr + Z0
e−(rx/2Z0)t′ I0

(

rx
2Z0

√

t′2 − 1
)

+
1
2

e−(rx/2Z0)t′( f (t′) − f (1))
]

u0(t′ − 1)
(5.10)

where (equation (27) in [54])
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f (t′) =
∞∑

k=0

1
k!

(

rx
2Z0

)k

(t′ − 1)k(4 − (1 + Γ)2Γk−1)

= 4e(rx/4Z0)(t′−1) − (1 + Γ)2

Γ
e(rx/4Z0)Γ(t′−1)

(5.11)

with the normalized time t′ given by

t′ =
t

x
√

lc
(5.12)

and with Γ the reflection coefficient:

Γ =

Rtr
Z0
− 1

Rtr
Z0
+ 1
. (5.13)

The function I0(x) being the modified Bessel function I of zero-th order.

5.3.2 Finite lines

In [54] a more appropriate boundary condition is given by a finite line with an arbitrary
source impedance and open circuit termination, as seen in Fig. 5.4.

The complete expression in the time domain is given by (equation 42 in [54])

V f in(x, t) = 2Vin f (x, t) + 2Vdd
Z0

Z0 + Rtr
e−σt

×
q∑

n=1

n∑

i=0

∞∑

j=0

{

n(n − 1 + j)!
i! j!(n − i)!

(−1)iΓn−i+ j

×





(

t − tn

t + tn

)(i+ j)/2

Ii+ j

(

σ

√

t2 − (tn)2
)

+
1

1 − Γ

∞∑

k=1

(

t − tn

t + tn

)(i+ j+k)/2

× Ii+ j+k

(

σ

√

t2 − (tn)2
)

(4 − (1 + Γ)2Γk−1)





× u0(t − tn)
}

,

(5.14)

with q =
⌊

0.5
(

t
x
√

lc
+ 1.0

)⌋

, tn = (2n+ 1)x
√

lc, σ = r/(2l) and Ik(−) the modified Bessel
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function I of order k-th.

The first term before the first reflection gives 2Vin f (L, t), the other terms give the later
reflections that occur at odd multiples of t f = L

√
lc each one attenuated by exponential

decay.

Expression (5.14) differs from traditional lossless transmission line theory, in which
a matched source of impedance Rtr = Z0, i.e. Γ = 0, absorbs all power from the
transmission line leaving only the first reflection. In interconnects, the impedance varies
with the frequency and moreover is a complex number since the voltage and current
ratio are out of phase. This makes the match of impedance unrealistic. Only in the
lossless case, is the impedance at any point of the line constant and real.

There are two useful expressions in the first reflection approximation (good for
rx/2Z0 < 1 and arbitrary source impedance)

V f in(x, t′)
Vdd

=
2Z0

Rtr + Z0
e−(rx/2Z0)t′u0(t′ − 1)

+ e−(rx/2Z0)t′ ( f (t′) − f (1))u0(t′ − 1)
(5.15)

The first term in this expression is the fast rising “LC” portion and the second term
is the slow rising “RC” portion. Accounting for the next reflection leads to equation

V f in(x = L, t)

=2Vdd






Z0

Rtr + Z0
e−(rx/2Z0)t′ I0

(

rx
2Z0

√

t′2 − 1
)

+
1
2

e−(rx/2Z0)t′
(

t′ − 1
t′ + 1

)0.5

(4 − (1 + Γ2))I1

(

rx
2Z0

√

t′2 − 1
)

+
1
2

e−(rx/2Z0)t′(−(t − 1) f ′(1) + f (t′) − f (1))






× (u0(t′ − 1) − u0(t′ − 3)) + Vddu0(t′ − 3)

(5.16)

In Fig. 5.5 one can notice the overshoot, a phenomena that one wishes to minimize
to prevent damage. Notice that the maximum overshoot occurs when t′ = 3 this means
that the expression for the peak overshoot is given by
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Figure 5.5: Finite line first reflection approximation compared to complete compact
model. Figure taken from [54]

V(L, t = 3t f )
Vdd

=
2Z0

Z0 + Rtr
e−(3rL/2Z0)

×






I0

(

rL
2Z0

√
8
)

+ (Γ + 3)
(

1
2

)1/2

I1

(

rL
2Z0

√
8
)

+
(Γ(Γ + 3) + 4)

2
I2

(

rL
2Z0

√
8
)






(5.17)

Equation (5.17) really express overshoot when its value is greater than one. If the re-
sult is less than one, one can assume that there is not overshoot, thus a better expression
for the peak overshoot would be

Vovershoot

Vdd
= max

(

1,
V(L, t = 3t f )

Vdd

)

(5.18)

5.4 Time delay expressions in the RLC domain

In the RLC domain, Sakurai’s approximation is no longer valid. In this domain the
requirement for t50% = t f , is the condition for which the front end voltage of a finite line



154 Chapter 5. Time delay in the RLC domain

is greater than half Vdd, i.e.

V f in(L, t f ) > 0.5 Vdd (5.19)

Using equation (5.14) together with (5.9), we rewrite the condition to

4Z0

Rtr + Z0
e−(rL/2Z0) > 1, (5.20)

therefore

erL/2Z0 <
4Z0

Rtr + Z0
(5.21)

with leads to the resulting condition:

rL
Z0
< 2 ln

4Z0

Rtr + Z0
. (5.22a)

Moreover the relationship

Rtr < 3Z0 (5.22b)

must hold, otherwise the logarithmic term in the right-hand side of (5.22a) becomes
negative, making the satisfaction of this condition impossible.

We impose, a safeguard to the sub-domain, for the purpose of protecting the remains
of the circuit to overshoot that can among other things damage a transistor situated at
the end of the line. In Fig. 5.6 it is shown the normalized peak overshoot for some
values of Z0 and Rtr. This figure is the result of applying equation (5.17). Notice that
we can avoid overshoot if the condition Rtr

Z0
≥ 1 holds.

We shall then introduce as constraint:

Rtr ≥ Z0. (5.22c)

If the previous conditions can be satisfied for reasonable values of the parameters
such as to be useful in a feasible design, the wire would be operating as a transmission
line. This is to say, the domain where the delay is linear with the distance and the
speed of propagation is that of the speed of light in the medium, the fastest propagation
physically possible.

This time of flight propagation requires satisfaction of (5.22a). For safe designs
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Figure 5.6: Verification of simplified overshoot expression
(Z0 = 266.5Ω, r = 37.87Ω/cm). Figure taken from [54].

with no overshoot the condition (5.22c) has to be fulfilled.

The propagation time delay is then given by the following model:

τ =
√

lcL

when
rL
Z0
< 2 ln

4Z0

Rtr + Z0
and Z0 ≤ Rtr

(5.23)

In [54] this region of transmission line behavior is called Region I. Wires which do
not fulfill (5.22a) can be considered as belonging to the RC domain. For these wires
Sakurai’s expression is valid.

There are cases for realistic values of the parameters, where the direct application of
Sakurai’s expression leads to a lower value, than the corresponding RLC delay. These
cases are unphysical. Sakurai’s expression in neglecting the wave behavior, does not
take into account causality effects, maximum speed of signal propagation. The expres-
sion becomes clearly invalid when the predicted time delay is shorter than that of a
signal propagating at the speed of light in the medium. As can be seen in Fig. 5.7, the
RC delay expression violates causality for wires shorter than a centimeter. In this graph
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Figure 5.7: Time delay in function of wire length in the RC and RLC domains. For a
wire of rectangular cross-section with width 5µm and thickness of 0.65µm.

we can observe the wire lengths for which each of the two domains is applicable.

5.5 New time delay expression for nonzero rise time and
finite load capacitance

The function VDM(t) := V f in(L, t) given in (5.14) corresponds to the response of a finite
and open-ended wire to a Heaviside step pulse with amplitude Vdd. A correction to t50%

is necessary when the input signal has nonzero rise time Trise. For wires in region I, the
correction in zeroth order is given by:

t50% = t f +
Trise

2
. (5.24)

We shall improve on this approximation.

We want to find the expression of Vout(t) = V(x = L, t) for a general input signal.
We know that the response to an input signal I(t) is related to the transfer function T (t)
of the line as:
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T (t) ∗ I(t) = Vout(t), (5.25)

where f ∗ g means the convolution of f and g:

f (t) ∗ g(t) =

∞∫

−∞

f (τ)g(t − τ)dτ. (5.26)

If I(t) is a Heaviside unit step function H(t), then Vout(t) = VDM(t)/Vdd. Thus, we
have:

T (t) ∗ H(t) =
VDM(t)

Vdd
. (5.27)

Convoluting both sides of equation (5.25) with H(t) and similarly convoluting both
sides of equation (5.27) with I(t) we have:

(T (t) ∗ I(t)) ∗ H(t) = Vout(t) ∗ H(t) (5.28)

and
(T (t) ∗ H(t)) ∗ I(t) =

VDM(t)
Vdd

∗ I(t) (5.29)

equating (5.28) and (5.29) we obtain

Vout(t) ∗ H(t) =
VDM(t)

Vdd
∗ I(t). (5.30)

Differentiating both sides of equation (5.30) we arrive to:

Vout(t) =
1

Vdd

d
dt

(VDM(t) ∗ I(t)). (5.31)

This means that the response Vout to any general input signal I(t) is a function of the
response to a Heaviside step pulse, VDM(t).

Consider now a Heaviside function with non-zero rise time, with amplitude Vdd, i.e.
I(t) is of the form:

I(t) =






0 if t ≤ 0
Vddt
Trise

if 0 < t ≤ Trise

Vdd if t > Trise

. (5.32)
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Figure 5.8: Voltage response for both a step and a finite rise time Heaviside functions.

By virtue of (5.31), the response, Vout(t), to this input signal is given by:

Vout(t) =
1

Vdd

∞∫

−∞

VDM(τ)
dI(t − τ)

dt
dτ. (5.33)

Using (5.32) to compute the time derivative of I(t − τ) leads to

Vout(t) =
1

Trise

t∫

t−Trise

VDM(τ)dτ. (5.34)

We assign values of the parameters (Rtr, L, r, l and c) in (5.16) such that the resulting
configuration be in Region I. We evaluate numerically (5.34). Results are shown in Fig.
5.8. Notice that the derivative of Vout(t) has its first two discontinuities at t = t f and at a
point t = p, that we shall identify. To this effect, we derivate (5.34):

V ′out(t) =
1

Trise
[VDM(t) − VDM(t − Trise)] . (5.35)

The first two discontinuities of (5.35) are at t = t f and t = t f + Trise, since VDM has a
discontinuity at t = t f . We conclude that: p = t f + Trise.
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Evaluating (5.34) at t = t f + Trise

Vout(t f + Trise) =
1

Trise

t f +Trise∫

t f

VDM(τ)dτ. (5.36)

From the mean value theorem, it follows that:

Vout(t f + Trise) ≈ VDM(t f +
Trise

2
). (5.37)

Consider now the linear approximation to Vout(t) in the interval t f ≤ t ≤ t f + Trise:

Vout(t) ≈
VDM(t f + Trise/2)

Trise
(t − t f ). (5.38)

Impose Vout(t) = 0.5Vdd, which is feasible since we take solutions in Region I, and
obtain:

t50% = t f +
Trise

2

(

Vdd

VDM(t f + Trise/2)

)

, (5.39)

which is the corrected expression for the 50% time delay in the presence of a nonzero
rise time. It improves significantly over the naive shift in the delay computation pre-
sented in (5.24). The expression (5.39) has been derived for Trise < 4t f , since at this
point other discontinuities are encountered in VDM(t). It is worth noticing that if the
condition Trise < 4t f is fulfilled then the function VDM(t) is well approximated by the
simpler expression (5.16).

We verify numerically that the relative error incurred in the delay calculation, re-
sulting from the linear approximations presented above, is very small for Trise ≤ 2t f .
For this purpose we take an exemplary line with parameters such as to belong to re-
gion I. The line is fed with a Heaviside function of amplitude Vdd with time rise Trise.
In Fig. 5.9 we present the relative difference between results from time simulation and
results obtained using (5.39) as a function of Trise.

The error increases with Trise, and for Trise = 2t f is a reasonable 3%. The error
becomes large by the time we reach the upper limit Trise = 4t f . We can summarize
these bounds in the following fashion:
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Figure 5.9: Relative error in t50% when using (5.39) as a function of Trise/t f .
Parameters used: r = 5000 Ω/m, l = 2 × 10−7 H/m, c = 2 × 10−10 H/m, L = 5 mm,

Rtr = 50 Ω

Expression (5.39), is a solution to the delay estimate for a signal in Region I if

Trise ≤ 2
√

lcL = 2t f . (5.40)

As a matter of fact, for fixed Trise, the L dependence in (5.39) displays both linear
and quadratic behavior. The quadratic term in length is not present in the zero rise
time solution. Its contributions is nonetheless negligible due to (5.23). Both (5.23) and
(5.40) have been previously derived in the literature for RLC behavior using alternative
methods, see [44] and [57].

5.5.1 Finite Period and Finite Load Capacitance Effects

Clocks have a finite period. It is provable that corrections to (5.39) due to a finite clock
period are negligible for a clock period of reasonable bandwidth (clock period larger
than 6 Trise.)

To preserve the validity of TL description, load capacitance must be small compared
to line capacitance. The presence of a finite lumped load capacitance in the delay calcu-
lation can be treated as a two-step procedure: the propagation delay of the line with zero
load plus the delay associated with charging the load capacitance. To compute the last
term we treat the line as a resistance of value Z0. In the standard Sakurai [5] treatment
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we estimate that the total delay becomes:

t50% = t f +
Trise

2

(

Vdd

VDM(t f + Trise/2)

)

+ 0.693Z0Cload , (5.41)

if Trise < 2t f , rL
Z0
< 2 ln 4Z0

Rtr+Z0
and Cload

cL << 1. Otherwise,

t50% = 0.377rcL2 + 0.693(RtrcL + (Z0 + Rtr)Cload). (5.42)

The previous expressions characterize the extended transmission line domains and
distributed capacitance-resistance domains. A complementary analysis of the finite ca-
pacitance effects can be seen in [58].

5.5.2 Follow up work in this domain

In a recent paper from UCLA [59], a simplified and efficient model for the response
of a single transmission line considering non-zero rise time and load capacitance is
presented. Their approach consists in first considering the capacitive loaded line as an
open line by adding the contribution of Cload into the inductive and capacitive parts of
the line. Using an efficient and accurate piecewise linear approximation to (5.14) and
using our result in (5.31) they achieve very high accuracy in both the waveform and the
delay prediction for the general case.

5.6 Concluding remarks

In this chapter we have mostly displayed the relevant equations for RLC lines from a
recent paper of Davis and Meindl. This equations permit to extend the delay calcula-
tion to the RLC domain. We have not dwelled on other approaches, namely those who
replace a transmission line with a discrete single RLC section. The reason why we are
doubtful of the results of a single RLC section is that it will show instantaneous propa-
gation, moreover, the effects of inductance will be overemphasized - it is the smoothing
effect due to several reflections that lead to the correct behavior. As a side remark we
should add, that in the RC domain the replacement of the full RC network with a single
section is significantly less dangerous, we would say even permissible in a restricted
sub-domain. Monotonicity in the time behavior of RC signals supports the validity of
the approximation. No such behavior is guaranteed in the RLC domain.
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As corrections to DM expressions we derived new expression(s) for the time delay
calculation in the RLC domain in the presence of finite Trise (5.39). We propose a
general expression accounting for transmission line, finite rise time as well as finite
lumped Cload effects.



Chapter 6

Optimal design of clock trees

Conception optimale d’arbres d’horloge

Résumé

Dans ce chapitre nous proposons une méthodologie de conception pour des arbres
d’horloge. Cette méthodologie consiste à trouver un intervalle de valeurs des paramètres
géométriques de façon à assurer que les signaux se déplacent à la vitesse de la lumière
dans le milieux, i.e., la plus grande vitesse possible. Cette méthodologie est très utile
pour les concepteurs qui cherchent à créer des horloges avec un temps de réponse min-
imum. Pour assurer un temps de désynchronisation minimal, nous étudions les arbres
H, dont le signal est entouré par deux arbres de masse. Cette configuration permet un
contrôle réalisable des valeurs d’inductance de boucle. Ceci permet donc l’utilisation
en notre faveur de ce que la plupart des spécialistes préfèrent réduire et négliger :
l’inductance.

Ce chapitre est une extension d’un des résultats présentés dans les articles [10]
et [11]. Un brevet américain, protégeant cette technologie, a été attribué en Avril
2006 [12].

6.1 Introduction

Circuit designers and technology engineers work vigorously towards developing tech-
niques to minimize inductance influence so as not to perturb well developed and under-

163
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stood design styles. We take a different twist - that of making good use of inductance
effects on wire line delays so as to attempt to minimize these delays by a careful bal-
ancing of the electric and magnetic content on the energy content of a line such that
as an end effect the propagation of a voltage perturbation on the line can be as fast as
possible: the speed of light on the medium, the maximum possible speed of propa-
gation of a signal. The way we attack this problem is by a combination of nonlinear
optimization techniques, with the solution of known linear partial differential equations.
The proposed methodology can be used as a pre-estimator and or as a verifier of layout
techniques for wires that carry critical signals on a high speed logic design. We find
that in fact an extensive set of technology parameters (wire widths, lengths, separations
and thicknesses) can be set so as to satisfy this desideratum. Our resulting parameter
values fall well within what is possible and doable with current technologies.

We shall illustrate our methodology on what is perhaps the most important wire con-
figuration for today’s top speed microprocessors: The Clock. The clock is unarguably
one of the most important components of a synchronous digital design. Its signal must
arrive with minimum tolerance (skew) to all synchronized elements within a synchro-
nization region. The size of the maximum synchronization region is determined by the
ability of the signal to reach all its destinations within a predetermined interval. What
is the interval: A rule of thumb would say larger than the rise time of the signal, and
significantly shorter than the period of the clock. For generations of digital designs the
whole chip has been considered as the synchronization region. In todays world of Ultra
Very Large Scale Integration (UVLSI) a new regime is being explored. Let us elaborate:
thanks to miniaturization, rise times which are controlled by the transistor propagation
delays are of the order of 15 pico-seconds at todays leading edge technologies. This
number scales as 1/Λ, where Λ is the scaling factor: The ratio of the critical dimension
at the new technology over the precedent technology.

Thus the range for an aggressive 4 GHz design are

1.5 × 10−11s < t < 0.25 × 10−9s .

To be able to minimize the latency during a clock period one wishes for t to be com-
fortably close to the lower limit. A realizable expected goal for the propagation time
across the synchronization region is t ≈ 10−10s. And its variance in arriving to different
destinations to be smaller than a predetermined budget of ∆t ≤ 5 × 10−11s. This last



6.2. The model problem 165

figure is what we call the skew. What is the maximum distance that a signal can travel
within this time period: The absolute bound is given by signals propagating at the speed
of light in the medium:

c =
3 × 108

√
εrµr

m
s

;

where εr is the relative permittivity of the surrounding dielectric and µr is the magnetic
permeability of the medium. For today’s designs where εr ≈ 2 the maximum possi-
ble synchronization distance for this aggressive processor choice is 3cm, comparable
to the linear chip dimension. It is the advent of UVLSI that has made the global clock
discipline a new hard concern in the design of digital systems. The faster the clock,
the shorter the synchronization distance. Similarly the corresponding synchronization
budget for the skew forces a maximum ∆l < 1.5cm between different paths of the clock
between source and destination to arrive within the pre-specified budget. A path syn-
chronization to an accuracy of 1.5cm is not so hard to achieve. But the truth is that this
bound is very optimistic. Indeed it presumes the ideal situation in which the propaga-
tion signals on the different parts of the clock circuit can in fact be considered as the
propagation over transmission lines, at the speed of light. Signal propagation over wires
do not necessarily fall within this regime. Most wires in fact operate within the regime
of RC “diffusion lines”, whose speed of propagation- or rather diffusion- are signifi-
cantly smaller than the speed of light with uncertainties which in the diffusion delay
regime are difficult to control. This is due to their sensitivity to the signal activity in
nearby lines. This complicated picture forces an iterative procedure of design followed
by verification and redesign in order to control the time delay and skew bounds.

The purpose of this work is to contribute to the state of the art and design effort
towards finding appropriate regimes for the wire distribution and its environment such
that the theoretical limits regarding signal arrival times and length variations can be
satisfied.

6.2 The model problem

Given a routing plane with clock input C0, and with multiple destinations Pi, i =

1, . . . , n, we want to find the layout of interconnection that minimizes both the delay

D = max t(C0, Pi)
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and the skew
S = max{|t(C0, Pi) − t(C0, P j)|},

where t(C0, Pi) is the time that the signal needs to arrive from C0 to Pi.
There are several approaches to layout clocks [60]:

1. Balanced H trees, as seen in figure 6.1.a)

2. Centrally driven grids, as seen in figure 6.1.b)

3. Length-matched serpentine 6.1.c)

4. A variation of 1 and 2: here the global wiring is done with balanced H trees,
supported by grids near the transistor destination.

The configuration choices presented above are the result of years of experience in
the RC domain.

In the new domain of RLC only a subset of these choices survive. The reason for
the additional chopping is the controllability of the inductance effects. In particular
Configurations 2 and 3 fall into the category of configurations where it is difficult to
bound prior to knowing the full layout the magnitude of the inductance, and therefore
its main impact on the delay.

We are driven to examine carefully Balanced H-trees with the possible inclusion of
grids very near the terminal devices. These inclusions we anticipate will not affect our
conclusions, and we omit their analysis in this study.

There are other authors who have previously considered inductance effects in wire
delay. We discussed relevant results in the previous section. We need to add to this list
a recent study done by [61] contribution which we use as a starting point in our work.
In that paper, the H-tree clock signal layout is considered. This design consists of: The
association for each segment of clock wire two parallel segments of ground, one at each
side of the line. This is the so called “sandwich style”, as we can see in figure 6.2, a
technique adopted earlier by IBM [60].

The Stanford group studies the upper and lower bounds on chip clock loop induc-
tance. This information provides some insights into the timing problem of delay, with-
out answering the fundamental question of minimizing the time delay or the skew. The
reason being is that Inductance minimization by itself does not produce desirable con-
figuration for time delay since the resulting configuration (ground wires very close to
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Figure 6.1: Different clock layouts [60]: a) A balanced clock H, b) centrally driven
grid and c) length-matched serpentine.

the signal line), is one in which the mutual capacitances reaches their upper limit. Both
components: Capacitance and inductance need to be simultaneously optimized to solve
the fundamental problem posed at the introduction of the Stanford paper.

We shall address the fundamental timing optimization problem for sandwich Bal-
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Figure 6.2: Example of a configuration using the “Sandwich style”. The blue line
represents the signal wire. The two other green lines represent the ground neighbors.

anced H-trees. We attack this problem using the fundamental equations of transmission
line theory in the time domain as recently derived by Davis and Meindl and presented in
chapter 5. The determination of the r, c and l parameters will be the result of accurate
3D evaluations. We finally address the resulting nonlinear r,l,c coupled optimization
using well known techniques.

6.2.1 Balanced H trees

We will focus our analysis in the balanced H tree clock layout. See figure 6.3. This kind
of networks have some very positive features. Topologically, an H tree has the property
of connecting its nodes in a way such that the Manhattan L1 distance between the root
and any of the leaves is minimal, fulfilling the restriction that they have to be equal.
This type of configuration guarantees minimum skew, and searches to minimize delay
a-posteriori.

In a world of high frequencies, where inductance effects become relevant, a key
advantage of the sandwiched style balanced H trees is the controllability of the loop
inductance.

For a Sandwich Balanced H-Tree (SBHT) as in figure 6.3, the total loop inductance
of any path can be calculated as the sum of the loop inductances of the straight wires
that conform it, this means that, given a path P(C0, Pi) = {C0,N1,N2, ...,Nk = Pi} we
have

Lloop(P(C0, Pi)) =
k∑

j=1

Lloop({N j−1,N j}), where N0 = C0 (6.1)

This proposition, the cascade rule, was empirically proposed by [62]. Using a test
problem we were able to verify the accuracy of this proposition, and as such its suit-
ability. With the H tree as in figure 6.4 we have calculated the total loop inductance
from the clock source C0 to all the destinations Pi. Then we have compared it to the
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Figure 6.3: An example of an H-tree designed in a sandwich style.

sum of the loop inductances of the pieces (N j,N j+1) that form each path P(C0, Pi). In
table 6.1 the values of the loop inductance of each of the complete paths and the ap-
proximate values using the cascade rule are shown. We used for this experiment the 3D
inductance simulation tool, FastHenry [6] from MIT. We verify also that the inclusion
of extra ground wires further away do not sensibly modify this important result.

Pi Total l of P(C0, Pi) Cascade rule
P1 0.687 0.687
P2 0.688 0.687
P3 0.688 0.687
P4 0.688 0.687
P5 0.689 0.687
P6 0.689 0.687
P7 0.689 0.687
P8 0.689 0.687

Table 6.1: Values of the total loop inductance of path (C0 − Pi) compared to the value
of using the cascade rule. Values in nH.

It is in fact a very important benefit to be able to locally bound the inductance values
well before a detailed routing of signals is attempted. This automatically leads to the
selection of SBHT for clock design.

The problem of calculating the loop inductance of complex paths of signal wires, in
a SBHT configuration where the wires are allowed to change their widths and lengths
with each change of direction, is now reduced to the problem of finding the loop induc-
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Figure 6.4: A test H-tree (sandwich style), with source C0 and eight destinations Ni.

tance of a 3-wire sandwich of same length, a consequence of (6.1), which is substan-
tially simpler to solve.

6.3 Time delay minimization

We can forego the skew minimization, since it is automatically included by design on
SBHT.

In the presence of coupling with nearby ground wires, wire length L is just one of
the variables that determines time delay. The other relevant variables, that impact on the
delay of the signal are: wire separation; wire width and thickness; and driver resistance.
We have the challenge of finding technically feasible configurations that minimize the
propagation delay. A configuration is defined as the complete characterization of all the
variables for a specific technology and a specific realization of the layout of the clock.
We use the 50% metric as has become standard practice, i.e., we translate our problem
into one of finding configurations in the RLC regime that minimize the 50% time delay.
Thus, our problem is:
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min t50%

{Subject to some constraints relative to the technology}
(6.2)

6.4 Transmission line propagation

6.4.1 Domains of Validity

G1 G2w

S2S1

L

t

Figure 6.5: The model problem. A sandwich style bus.

We consider the model problem of the SBHT clock system (figure 6.5). The vari-
ables of this problem are those that define a given configuration:

1. L: length of the wires.

2. t: thickness of the corresponding metal layer.

3. w: width of the signal line.

4. G1,G2: widths of the ground wires.

5. S 1, S 2: edge-edge spacing between the signal wire and its neighbors.

6. Rtr: The effective resistance of the driving transistor.

A key goal is to find domains of the physical variables where the configurations
belong to region I, i.e. fulfilling constraints in (5.23). Inserting r, l and c for a given
configuration and testing if inequalities in (5.23) are satisfied is extremely inefficient.
We use instead a method for solving nonlinear equations to identify the feasible do-
mains. To this effect we take some variables as external parameters. The signal wire’s
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width w is the result of a specific routing configuration and as such is a natural param-
eter. The variable t takes only a few discrete values, another parameter. The driver’s
strength measured by Rtr is external to the wire configuration and determined by tran-
sistor dynamics, we take it as a parameter, and so is the length of the line L, determined
by the chip dimensions and the particular starting point of the routing. We are left with
s and g as independent variables which are natural ones in the sense that variables vary
on a continuous fashion while parameters take discrete values.

We define the functional F:

F =
rL
Z0
− 2 ln(

4Z0

Rtr + Z0
), (6.3)

We search domains where F ≤ 0 is satisfied, i.e. to fulfill (5.22a).
To ensure safe operation of the circuit we add the restriction Z0 ≤ Rtr (from (5.22c))

that guarantees the absence of overshoots [54], and the corresponding functional:

P = Z0 − Rtr, (6.4)

i.e., the solution domains must satisfy P ≤ 0.
This approach is complemented a-posteriori with the insight gained during the search

of minima. In fact it is found that continuous regions in the space of the independent
variables can be found such that they belong to the region bounded by equation (5.23).
It is the richness of this spectrum what provides viability to the method as a design
assistance tool for clock tree layout.

6.4.2 The functions

The functions F and P in (6.3) and (6.4), respectively, can be generated from the knowl-
edge of the following three functions:

1. r: the resistance per unit of length of the configuration.

2. l: the inductance per unit of length of the configuration.

3. c: the total capacitance per unit of length of the wire.

Since we are interested in the computation of the time delay of a three-wire circuit
we have to compute the values of r and l of the configuration in terms of the corre-
sponding values for its constituents. In so doing we arrive to an equivalent description
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in terms of a single wire of loop inductance l and loop resistance r in the presence of an
ideal ground.

6.4.3 Resistance

We have seen, in chapter 2 that for configurations where there is no skin effect, the
closed form for the resistance per unit length in a wire of cross-section area A is given
by

rw =
ρ

A
(6.5)

with ρ the resistivity of the material the wires are made of (e.g. ρ = 1.72 × 10−6Ω.cm
for Cu).

Wires have rectangular cross-section: the signal one with A = w × t and the ground
wires with A = G × t.

Given the circuit as in figure 6.6, we are interested in finding an equivalent series
resistor using the same overall voltage drop V , Ohm’s law V = RI, and the same I the
total current of the circuit.

rr
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g1  VV

II
22

rr
g2

Figure 6.6: A sandwich-style design with resistance only.

From Ohm’s law:

V = rsI1 + rg1I2,

V = rsI1 + rg2I3.
(6.6)
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Since we are considering the symmetric problem we have

rg1 = rg2 and

I2 = I3,

since

I1 = I2 + I3,

therefore

I2 =
1
2

I1.

Given this, it follows that

V = (rs +
rg

2
)I1. (6.7)

Therefore the equivalent resistance is

r = rs +
rg

2
, (6.8)

where

rs =
ρ

w × t
,

rg =
ρ

G × t
.

6.4.4 Inductance

For the calculation of the inductance for the configuration of interest, the sandwich con-
figuration, under uniform current distribution we use the formulas presented in chap-
ter 2.

Using a similar analysis as we have done with the equivalence resistance of the
circuit, we can derive the expression for the equivalent loop inductance.

In figure 6.7 we represent the circuit considering the partial inductances as well. We
have, from Ohm’s law in the Fourier domain:



6.4. Transmission line propagation 175

V = (rsI1 + rg1I2) + jω(lsI1 + lg1I2 − 2ls,g1I2 − 2ls,g2I3 − lg1,g2I2) (6.9)

where ω is the frequency in radians per second, i.e. ω = 2π f with f the frequency in
hertz.
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Figure 6.7: SBHT design including resistance and inductance.

Given the symmetry of our problem, it follows that

ls,g1 = ls,g2 and

I2 = I3,

since

I1 = I2 + I3,

we have

I2 =
1
2

I1,

therefore the imaginary part of V is

Imag(V) = ω(ls + 2ls,g +
1
2

lg,g +
1
2

lg)I1. (6.10)
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Finally the equivalent loop inductance of the circuit is given by

l = ls − 2ls,g +
1
2

lg,g +
1
2

lg. (6.11)

In the above equations, the values ls and lg are the partial self inductances of the
signal wire and of one ground wire, respectively; the values ls,g and lg,g are the signal-
ground and ground-ground mutual inductances, respectively.

6.4.5 Capacitance

The equivalent capacitance per unit length of a sandwich element ctot is given by:

ctot = cs,g1 + cs,g2 + cr, (6.12)

with cs,g1 and cs,g2 the mutual capacitance between the signal wire and each of the
ground wires. The value cr is the sum of the capacitances of the signal wire to sub-
strate and other wires not participating in the return path. All of the previous quantities
are per unit length. Given the symmetry of the problem: cs,g := cs,g1 = cs,g2.

At variance with resistance and inductance, there are no closed form expressions for
the capacitance. We need to perform multiple calculations of the capacitance. The itera-
tive of simulators for this task is out of the question since the task is CPU intensive. We
attack the problem in a more efficient way: We use function approximation techniques,
that perform data fitting to 3D simulation results. The choice of functional form, that
is arbitrary is guided by experience. The parameter fitting process is the result of a non
linear least square fit.

In order to choose a sensible functional form for the representation, we perform 3D
simulations with the capacitance simulator ICARE, from LETI [63] with representative
values of the independent parameters.

We consider separately the capacitance of the signal wire respect to its neighbor
(cs,g), and its capacitance respect to the layer beneath plus the capacitance with the
substrate (cr).

Mutual capacitance

In figure 6.8 we display the mutual capacitance as a function of S , the dots represent
observations, i.e., 3D simulation using ICARE. At simple sight, an exponential depen-
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dency seems natural.

Similarly as a function of its width, the mutual capacitance is displayed in figure
6.9. It is suggestive of something approximating a square root behavior.
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Figure 6.8: Observations: mutual capacitance as function of distance.

Based on these observations we propose the following functional form for the mu-
tual capacitance between the signal wire and one of its ground neighbors∗:

cs,g(S ,w) ≈
(

β1e−α1S + β2

( S
0.25

)−α2
)

β3wα3 . (6.13)

The problem of fitting function (6.13) to a given set of observations can be con-
sidered as a nonlinear least square problem with variables that separate [64], in the
following fashion:

First, given a collection of values of variable S , S = {S 1, S 2, . . . , S n}, we can obtain
their respective observation values yi = cs,g(S i,w) (we set w = 1) using ICARE. Now the
original problem is represented as the problem of fitting the data (S i, yi) to the equation

c1(S ) = β1e−α1S + β2

( S
0.25

)−α2

(6.14)

∗This parameterization is used extensively by Mentor Graphics in Capacitance Extraction Tools
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Figure 6.9: Observations: mutual capacitance as function of width.

Our task is to find the values β = (β1, β2) and α = (α1, α2) that minimize the nonlin-
ear functional

r(β,α) =
n∑

i=1

[

yi − c1(β,α; S i)
]2 (6.15)

Defining φ1(α; S i) = e−α1S i and φ2(α; S i) =
(

S i
0.25

)−α2
, the functional r(β,α) can be

rewritten as

r(β,α) = ‖y − Φ(α)β‖2 (6.16)

where {Φ}i, j = φ j(α; S i) and y = (y1, . . . , yn)T , i = 1, . . . , n; j = 1, 2.

As explained in the classical paper [64], the aim is to minimize a modified functional
which depends only on the nonlinear parameters α, and then proceed to obtain the linear
parameters a.

In order to obtain the separation of variables, we consider the modified functional

r2(α) = ‖y − Φ(α)Φ+(α)y‖2, (6.17)

where Φ+(α) is the Moore-Penrose generalized inverse of Φ(α). Once optimal parame-
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ters α̂ have been found by minimizing (6.17), then the linear parameters β̂ are obtained
as the solution of the linear least square problem.

min ‖y − Φ(α̂)β‖2. (6.18)

Once we obtain α̂ and β̂ we can compute the value of α3 and β3 fixing some value of
S = S k we generate a data set by performing simulations for w = {w1,w2, . . . ,wm}, we
call the resulting observations yi = cs,g(S k,wi). The problem becomes fitting the data
(wi, yi) to the equation

c2(w) = c1(S k)β3wα3 . (6.19)

This new least square problem is also nonlinear, and we again use the non linear
least square method of Golub and Pereyra.

We use a modified version of the algorithm proposed by Golub and Pereyra [65] to
find the values of the linear parameters β = (β1, β2, β3) and the non-linear parameters
α = (α1, α2, α3) which best fit the mutual capacitance to (6.13). In figures 6.10 and 6.11
we display the fit.
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Figure 6.10: fit of c1, and chosen observation values.
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Figure 6.11: fit of c2 and chosen observation values.

Capacitance to the substrate and to lower layers

Values of cr in function of S , for different values of w are shown in figure 6.12. There
is very weak dependence of cr versus S . For this reason, we will calculate once, using
the simulator, the value of cr for the given parameter w and a value of S pre-specified
by the user. During the optimization phase, the value of cr will remain constant.

6.5 Minimization

6.5.1 The objective function

Let’s examine first the monotonicity of F and P respect to variables s and g. The
derivative of F respect to Z0 is given by

dF
dZ0
= −rLRtr + rLZ0 + 2 Rtr Z0

(Rtr + Z0) Z0
2 . (6.20)

Clearly, functional F is monotonically decreasing with respect to Z0.

The loop inductance of a sandwich element is evidently monotonically increasing
with s. The coupling capacitance cs,g is monotonically decreasing with s. Therefore,
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Figure 6.12: cr observations as function of S .

functional Z0 is monotonically increasing with respect to s. This implies F is monoton-
ically decreasing with s and P monotonically increasing with s.

Simulations with FastHenry show that Z0 as a function of g displays a single mini-
mum (Fig. 6.13), consequently, P as function of g, have at most two vanishing points.
Furthermore, it is verifiable that F, as function of g, has at most one point where it
vanishes.

We take advantage of monotonicity of both functionals F and P in order to find the
solution set for variables s and g. We consider two independent problems: The first one
in which solution sets for s are found for a fixed value of g, and the second one in which
solution sets for g are found for a fixed value of s.

In the first problem we search the two values of s: s = sF and s = sP where
functionals F and P respectively vanish. Notice that by virtue of monotonicity of func-
tionals F and P, the solution set in s is a continuous interval. This property is critical
for successful clock synthesis using this method. This solution interval, if it exists, is
the intersection of the following two intervals: [sF, sP] and [smin, λ/10), with smin the
technology’s minimum feasible metal spacing and λ the wavelength. The upper bound
λ/10 being the limit of validity of the TL representation.

Regarding to variable g, the interval, if it exists, where F(g) ≤ 0 is [gF, λ/10) with
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Figure 6.13: Z0 as a function of g.

gF the value of g where F vanishes. This interval has to be intersected with the intervals
of g where P(g) ≤ 0. We find this intersection by obtaining the values of g where P

vanishes, if they exist, and then identify these intervals by inspection.

6.5.2 Tools

To solve the minimization problem we built an integrated tool-set. In the following list
we enumerate and briefly describe the tools of the set. In figure 6.14 a diagram flow is
presented.

1. The program LR3.c: This C program calculates the loop inductance and the loop
resistance of a 3-wire bus. This program uses the low frequency formulae of
chapter 2.

2. The subroutine varpro.f: This is a Fortran77 implementation of the algorithm
of Golub and Pereyra, for the resolution of the non-linear least square problem
whose variables separate. This implementation is due to J. Boldstad, given to us
by Professor Pereyra.

3. The program Capa.c: The C implementation of the capacitance calculator. This
program uses the results obtained with the subroutine varpro to compute the total
capacitance of the signal wire with the parameterization given in (6.13).



6.5. Minimization 183

4. The subroutine fun.c: The C implementation of functionals F and P. This subrou-
tine calls the programs LR3.c and Capa.c, and returns the value of the functional
F.

5. The driver program TL.c: This is the main program of the minimization problem.
The program dialogs with the user to obtain the parameters and the functional is
minimized. Results are output.

Results

ICARE

VARPRO

Capa LR3

Fun

TL

Figure 6.14: All the tools.

6.5.3 Results

We solve the two nonlinear equations F = 0 and P = 0 using Newton’s method [50].
We approximate the derivatives using finite differences, approach that is tractable since
the evaluation of the functionals is computationally inexpensive. To ensure the conver-
gence from any initial point we include the method of bisection [50], at a small extra
computational cost.

Some results are displayed in table 6.2. For all configurations we set t = 0.65 µm
and we use Cu for conductors.

The table can be read as follows: Consider ID number one. We fixed L the common
length of the three wires to be 2500 µm, the driver circuit has Rtr = 100Ω and the width
of the signal wire is fixed at 6 µm. For a separation between the edge of the signal
wire and the edge of either ground wire given by s = 2µm, there is a continuum of
solutions for the width of the ground wires starting at 5.3µm and ending at 59.0µm. On
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Table 6.2: Some Results
ID L (µm) Rtr(Ω) w (µm) g (µm) s (µm)

s = 2 µm s = 5 µm g = 6 µm g = 8 µm
1 2500 100 6.0 [5.3, 59.0] (*, *) [0.28, 4.0] [0.26, 4.0]
2 8.0 [5.3, 83.0] (*, *) [0.27, 4.5] [0.26, 4.5]
3 10.0 [5.3, 756.0] [5.3, 314.0] [0.31, 20.0] [0.29, 22.0]
4 150 6.0 [5.3, -) [5.3, 1105.0] [0.5, 34.0] [0.45,37.0]
5 8.0 [5.3, -) [5.3, -] [0.49, 41.0] [ 0.45, 44.0]
6 10.0 [5.3, -) [5.3, -) [0.91, 560.0] [0.77, 621.0]
7 5000 100 6.0 [5.3, 58.0] (*, *) [0.37, 4.0] [0.34, 4.0]
8 8.0 [5.3, 81.0] (*, *) [0.35, 4.5] [0.33, 4.5]
9 10.0 [5.3, 653.0] [5.3, 291.0] [0.42, 20.0] [0.38, 21.0]

10 150 6.0 [5.3, -) [5.3, 892.0] [0.78, 34.0] [0.66, 36.0]
11 8.0 [5.3, -) [5.3, -) [0.71, 40.0] [0.62, 43.0]
12 10.0 [5.5, -) [5.3, -) [1.9, 515.0] [1.6, 566.0]
13 10000 100 6.0 [5.3, 57.0] (*, *) [0.71, 4.0] [0.8, 4.0]
14 8.0 [5.3, 80.0] (*, *) [0.6, 4.5] [0.5, 4.5]
15 10.0 [5.3, 643.0] [5.3, 288.0] [1.2, 20.0] [0.81, 21.0]
16 150 6.0 [7.6, -) [5.3, 874.0] [2.3, 33.0] [1.9, 36.0]
17 8.0 [5.7, -) [5.3, -) [2.0, 40.0] [1.6, 43.0]
18 10.0 [23.0, -) [5.6, -) [4.8, 497.0] [4.0, 544.0]

Note: We take smin = 0.2 µm and w ≥ 5.3 µm (to upper bound DC wire resistance by
50Ω/cm.) ’-’ means that the corresponding variable is bounded by g < 0.1λ and (*, *)

means not feasible. ID is a identification tag used as reference.
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the same column, for the separation between the signal wire and the ground wires of
5µm there are no feasible solutions. On the next column, for ground wire width equal
to 6µm the corresponding interval in the separation between the signal wire and either
ground wire is from 0.28µm to 4.0µm. For the width of the ground wire equal to 8µm
the corresponding interval in the s variable becomes: from s = 0.26µm to s = 4.0µm.
The remaining of the table is straightforward to read.

These intervals represent valid configurations for signal propagation at the speed of
light. They are continuous in terms of the independent variables and rich enough to
permit a synthesis methodology.

6.6 Frequency-Dependent Effects

In general, RLC parameters are frequency dependent in accordance to well understood
phenomena: proximity and skin effects and dielectric relaxation. The range of frequen-
cies that we need to evaluate the frequency response is determined by the rise time of
the signal. The frequency spectrum will contain appreciable content up to frequencies
bounded by:

fmax =
1
π Trise

. (6.21)

The rise time Trise is determined by technology and circuit considerations (e.g.
Trise ≈ 30 ps at 130 nm.) The signal spectrum will be appreciable up to O(10) GHz
at 130 nm. We proceed to estimate the deviations from constant values for the electro-
magnetic parameters RLC due to skin and proximity effect.

We remind that the parameter that controls the skin effect, the skin depth δ, can be
computed from [55]:

δ =

√

1
µ0π fσ

. (6.22)

To minimize its influence, meaning uniform current distribution throughout the
transverse cross-section, we take the thickness of the metal layer t < 2δwith δ ≈ 650 nm
for Cu at 10 GHz. There also exists the simultaneous need to minimize r which itself
calls for thicker metal. A compromise of t ≈ δ is what we use. In practice we set
t = 650 nm. Simulations run using FastHenry permitted us to verify that skin effect
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Table 6.3: Relative Decrease of Loop Inductance from Quasi-static to 10 GHz.

g (in µm) % decrease in l
10 5.1%
15 5.2%
30 4.9%
50 4.5%

Note: t = 0.65µm, w = 10µm and s = g.

corrections are in fact negligible up to 10 GHz. With the help of process technology we
can consistently prevent skin effect corrections at lower process dimension and higher
frequencies by performing reverse scaling of the upper metal layers where the clock
trees are layout.

With regards to capacitance, the dielectric response times are much shorter than the
rise times of the fastest signals, demanding frequencies well above the upper limits we
are presently considering.

On the proximity effect: Its main effects are to increase r and decrease l as f in-
creases. The modifications to the constant parameter assumption can be significant for
wide wires separated by short distances. Let us consider first the changes on l. Among
the terms in (6.11) it is the partial self inductance contribution the most sensitive to
proximity effects, the current on each wire tends to redistribute towards the surfaces
closer to the neighbor wires. The classical quasi-static treatment of chapter 2 is re-
placed by FastHenry simulations. The partial self inductance for wires described on
table 6.2, can decrease up to 4% from the quasi-static values when computed at fre-
quencies near 10 GHz. On the other hand the variation in partial mutual inductance,
over the same frequency range, is less than 1% for all the configurations displayed on
Table 6.2. The combined effect is that the loop inductance decreases by less than 6% in
going from the quasi-static values to 10 GHz. See table 6.3.

The relative variation of the resistance due to proximity effect is larger than the
corresponding reactance variation. See table 6.4.

The net result on our solution space is that an increase of r(ω) and a decrease of l(ω)
makes inequality (5.23) more restrictive.

We verify the impact on the solution intervals when proximity effects are included.
We focus our attention on the solution intervals for s, the most suitable running vari-
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Table 6.4: Relative Increase of Loop Resistance from Static to 10 GHz.

g (in µm) % increase in r
10 25%
15 26%
30 26%
50 25%

Note: t = 0.65µm and w = 10µm.

Table 6.5: s1 change in Table 6.2 when Proximity Effects are Considered.

ID Previous s1 (in µm) New s1 (in µm)
1 0.28 0.33
7 0.37 0.56

13 0.71 1.8

Note: g = 6µm.

able. We take a collection of configurations from table 6.2 and their respective solution
intervals for s. We use FastHenry to compute the parameters r and l for a given value of
s in the interval at the maximum frequency considered, 10 GHz. For these parameters
we check if inequality (5.23) is satisfied.

The main modification for a given interval in s, (s1, s2), and given w and g is to
increase s1 so as to compensate in (5.23) the increase in r and the decrease in l. Fur-
thermore, this compensation is more important for longer wires. See table 6.5.

The existence and nature of the solution intervals does not change. Moreover, the
utilization of 3D field solvers does not undermine the efficiency of our approach that
relies on the utilization of simpler algorithms during the iterative process. In fact, we
need 3D field solvers basically to update the lower bound s1 on the solution interval.
The characteristic impedance Z0 decreases with increasing frequency. This results in
relaxation of (6.4) and consequently an increase in the upper bound s2.

Feasible solutions at 130 nm for transmission line behavior do exist up to lengths L

of the order of chip dimension (cm scale.) The upper limit depends on specific details
of the technology and the particular wire under consideration (through rs.)

Consider the technology scale down factor Λ with Λ ≈ 0.7 from generation to
generation. Lmax is determined by the equality limit in (5.23). Both under ideal and
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nonideal scaling (do not scale t)
Lmax ≈ Λ2. (6.23)

This implies that chip-length wires, at 90 nm and beyond will require repeaters to en-
sure transmission line behavior, just as they do in the RC domain to preserve linearity.
With regards to Lmin, whose value is determined by (5.40), its scaling behavior is given
by Lmin ≈ Λ, making even shorter wires capable of undergoing transmission line prop-
agation on scaled down technologies. At 130 nm, and Trise = 30 ps we have this lower
limit at about 2.2 mm, we expect this lower limit to be about 800µm at 45 nm.

We started our analysis from DM solutions with zero rise time, and constant RLC
parameters. The frequency content of a Heaviside pulse extends from zero to infinity.
In this open frequency interval, RLC parameters cannot be considered constant. Con-
sistency in the formalism is restored once we properly account for the corrections due
to nonzero rise time using (5.16) and (5.39). The presence of finite rise time chops the
high frequency limit at current technology down to 10 GHz. This upper limit scales up
as 1/Λ. We have verified in previous sections the almost constancy of the electromag-
netic parameters in the frequency regime under consideration for present technology.
We have also verified that the perturbations to the constancy of the parameters only
modifies the lower limits of the separation intervals. Since the transmission line repre-
sentation, as given by solutions to (5.3), holds valid down to the regime where uniform
current distribution is applicable, our treatment becomes a posteriori justifiable and
self-consistent.

6.7 Presence of extra wires

We introduce among the spectrum of variables that can impact on our calculation, the
addition of extra wires that could contribute to the current return path, e.g. external
power/ground grids. The method described for a simple sandwich element generalizes
to the presence of multiple (same length) ground wires, in the uniform current approx-
imation, in the following way: The loop resistance of a signal wire connected to n

ground wires in parallel becomes [45]:

rloop = rs + rGND, (6.24)

where rGND = (r−1
g1 + . . . + r−1

gn )−1 and rgi is the resistance of the ground wire i.
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Similarly, the loop inductance becomes [45]:

lloop =

n∑

i=0

αi

n∑

j=0

α jli, j, (6.25)

with α0 = 1 and αi =
−rGND

rgi
for i > 0.

Clearly, (6.24) and (6.25) become (6.8) and (6.11), respectively, for the sandwich
element (1 signal, 2 grounds.)

The capacitance remains the same as in (6.12) since it is insensitive to the presence
of non nearest neighbors ground wires on the same layer, due to shielding.

6.8 Solution space for an entire tree

We have in previous sections developed a method to find solution intervals for each
branch (sandwich element) of an SBHT. We can use separability to compute the elec-
trical parameters such that the whole tree operates in Region I. We have on the other
hand omitted the effect of reflections on the solution space. Reflections occur at each
physical discontinuity such as the T’s on the tree. Reflections are rarely accounted for
in the timing behavior of digital systems, an approximation that is no longer sustainable
in the electromagnetic domain. Reflections are an unavoidable consequence of wave
propagation phenomena.

Consider a T-junction. The magnitude of the reflection coefficient is proportional
to the difference between signal line impedances at the T-junction. Thus, to eliminate
the effects of reflection, the combined impedance of the downstream branches should
be matched with the impedance of the upstream branch. The impedance of a branch
is a function of its RLC parameters which can be altered by modifying the physical
parameters of the branch. Such procedure does not alter the RLC parameters of other
branches, since ground wire segments in one branch are sufficiently separated from
signals in other branches not to perturb these signals’ return path. Thus, by adjusting the
appropriate physical parameters of downstream branches we could achieve the required
impedance matching with the upstream branch. In this fashion we minimize the effects
due to reflections. This process is performed iteratively over branches of the SBHT.
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6.8.1 Reflections

Consider an SBHT of depth n. At each T-junction we have two identical branches
in parallel, to equalize the impedance, and thus eliminate reflections, each one of the
downstream branches must have twice the impedance of the upstream branch, i.e.:

Zi = 2Zi−1 = . . . = 2iZ1 for i = 2, . . . , n. (6.26)

where the subindex i characterizes the depth of the tree.

Now,

Zi = Zi,0

√

p + ri
li

p
, (6.27)

with Zi,0 =

√

li
ci

, and p the Laplace complex variable.

The following high frequency approximation is made: Zi ≈ Zi,0. This is an accurate
approximation for the high frequency part of the impedance. For p = j2π fmax with
fmax ≈ 10 GHz, the error in this approximation is small, getting even smaller as we move
to higher frequencies. The propagation delay in Region I (see Fig. 5.8,) is governed by
the time response during

0 ≤ t ≤ t f + Trise. (6.28)

The upper limit of this interval is much lower than the settling time of the signal at
the end of the line. Since we are only interested in the time period (6.28) to guarantee
minimum delay, we are able to use the short time behavior of the signal. Due to well
know theorems of Laplace transforms, the short time behavior of Vout(t) is entirely
dominated by the high frequency components of its transform. Henceforth we are well
justified to make the replacement Z0 for Z.

The above discussion also implies that at T-junctions we do not need to match DC
resistance. Hence, we are free to keep, for routing purposes, common w and g on
all branches. This feature constitutes an important advantage for clock tree routing
purposes.

To minimize reflections, for fixed w and g, we vary si from one level of the tree to
the next in such a way as to satisfy (6.26).† The modification demanded by impedance
matching on our previous analysis translates into an iterative process. The first step

†We neglect effects due to vias present at the T-junctions, their dimension being negligible vis-a-vis
the wavelength.
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Figure 6.15: A SBHT example

consists of choosing a driver of strength Rtr feeding the main branch and find its so-
lution interval (s1,1, s1,2). Choose a value s1 belonging to this interval, subsequently
find the values of si for the remaining levels using (6.26). Notice that the appropriate
L that enters into (5.23) is the sum of the L’s corresponding to the father plus those
corresponding to the sons up to the leaf. We denote this length as Ln.

The computation proceeds as follows: We consider the SBHT as being just a branch
of length Ln. We search for the minimum allowable s call it s1. The appropriate values
for the remaining branches si, are obtained by solving iteratively (6.26).

The process stops at iterate i if si+1 is larger than a given maximum acceptable value
(e.g. 0.1λ.) We update the values si restarting the process but with n redefined as n = i.
This is to say we assume the tree has a depth i.

We proceed with a simple toy model, in which we generate a tree uniformly embed-
ded in a rectangle, as shown in Fig. 6.15. For such tree, the length Ln is calculated using
the following expression:
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Ln =

n∑

i=1

Ln,i, (6.29)

where

Ln,i =






Lw
2bi/2c+1 if i is odd,

Lh
2i/2+1 if i is even.

(6.30)

with Lw, Lh the dimensions of the rectangle where the SBHT is embedded (Fig. 6.15.)

We return to table 6.2. We assume that Lh = Lw = 2L. We found that for the regime
of parameters considered, the maximum tree depth is n = 3 (two T-junctions.) For
example, take the parameters of ID 1 with g = 8µm. Searching a configuration layout
for n = 4, we obtain: s1 = 0.36µm, s2 = 5.0µm, s3 = 1422.07µm and s4 = ∞. For
n = 3 the outputs becomes: s1 = 0.34µm, s2 = 4.2µm, s3 = 705.0µm. This update
step permits a significant area reduction (≈ 50%) at the last level of the tree. Narrowing
the signal line, permits the exploration of longer depths. These results are expected
on general grounds: Except for small s, the rate of growth of Zi,0 with s is slow, since
the total capacitance c rapidly reaches an asymptotic constant value (the capacitance
to the substrate and the other lower metal layers), while the loop inductance varies
logarithmically as a function of s. It is expected then, that for deeper levels of the
tree the resulting interwire separation becomes too large to be acceptable, since (6.26)
demands an exponential growth of functions Zi. The inability to continue to deeper
levels can be overcame by using repeaters. The branches downstream from the repeater
get effectively decoupled from the original problem. The method can be restarted from
the repeater on as a new SBHT. The resulting configuration would be that of an SBHT
with repeaters located at some T-junctions.

6.8.2 Repeater Insertion

The previous method looses efficiency beyond a few branches (typically two or three)
due to the unacceptably large separations s demanded. To continue to deeper levels we
use repeaters to be able to restart the algorithm, since the remaining levels of the tree
will decouple in the presence of repeaters. The procedure continues until the overall
length to be considered violates the lower bound (5.40) (L = 1.5 mm at 130 nm.) A full
clock of course, needs to layout in such a way as to arrive to multiple no equidistant
final destinations. This is achieved by the introduction of grid like interconnect in the
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vicinity of receivers [60, 66]. The longer paths of the clock layout with SBHT, to be
followed in the neighborhood of the receivers with grid like interconnect structures. The
presence of the grid interconnect does not affect the results of this work, since the grids
extend over a length scale bounded by o(100)µm length domain in which inductance
effects are negligible. The delay contribution arising from these short branches can be
adjusted by more traditional means such as resistance matching, and buffer insertion
near the destinations, always necessary ingredients to minimize skew.

Inserting repeaters amounts to inserting a finite load capacitance Cload . To preserve
the validity of transmission line behavior, load capacitance of the repeater must be small
compared to line capacitance. The load capacitance can be adjusted by properly sizing
the transistors on the repeater. The presence of repeaters adds some extra delay, that is
typically small compared to the chip length line delay (expression (5.41)).

6.9 A Synthesis Example

For illustration purposes we include as example an SBHT that incorporates the synthesis
methodology presented in this chapter.

The flow is as follows: We are given a square area of Lw = Lh, where an SBHT of
depth n has to be embedded. We fix n = 6, Lw = Lh = 2.4 cm and assume a common
metal layer thickness for the entire tree of t = 0.65 µm. The resistance of the device
driving the tree is fixed to Rtr = 80 Ω.

As explained in Section VII, interwire separation s becomes unacceptable after a
depth of two-to-three. To ensure acceptable separations at any level of the tree we
construct the exemplary SBHT with repeaters every two levels. The branch lengths at
each level of the tree are chosen based on (6.30).

We take for the first two levels common signal and ground width w = 7µm and
g = 14µm, respectively. From (6.30), L6,1 = 12 mm and L6,2 = 6 mm. Solving both
F = 0 and P = 0, the solution interval of separations for the first level of the tree results
in s = (0.7, 1.73) µm. We take as first separation s1 = 1.5µm, thus providing a safety
net against high frequency effects (see Section VI.)

Forcing impedance matching at the first T-junction results in a separation for the
second level of the tree of s2 = 94.5µm. We place repeaters of Rtr = 80 Ω at each of
the two ends of this level and restart the procedure for the following two levels of the
SBHT. Taking advantage of the decoupling, we are free to reduce the signal and ground



194 Chapter 6. Optimal design of clock trees

Table 6.6: Values of the physical parameters at each level of the tree

Depth i L6,i (in mm) wi (in µm) si (in µm)
1 12 7 1.5
2 6 7 94.5
3 6 5 2.
4 3 5 93.2
5 3 3 0.8
6 1.5 3 9.53

Note: gi = 2wi and ti = 0.65µm for all i.

widths in the following levels for further space saving. Alternatively, we could have
kept the widths of the signal and ground wires for simplicity of the layout.

On the third and fourth level we take common signal and ground width w = 5µm
and g = 10µm, respectively. Since two branches are connected in parallel to the repeater
the effective resistance of the repeater is twice its nominal resistance, i.e. Rtr = 160 Ω.
From (6.30), L6,3 = 6 mm and L6,4 = 3 mm. The corresponding solution interval for the
third level is then s = (1.6, 33.7) µm. Using s3 = 2 µm and forcing impedance matching
results in a separation s4 = 93.2µm for the fourth level. We place eight new repeaters
with Rtr = 80 Ω and restart for the last step of the procedure. For the fifth and sixth
level w = 3µm, g = 6µm, L6,5 = 3 mm and L6,6 = 1.5 mm. The corresponding solution
interval is s = (0.62, 6.2) µm. We take s5 = 0.8 µm and impedance matching leads us
to s6 = 9.53µm.

In table 6.6 we summarize the resulting separations and the other physical parame-
ters for each level of the tree.

This SBHT has 32 source-destination paths of length L6 = 3.15 cm, with repeaters
every two levels, and 32 endpoint receivers. Local wiring can be attached to these 32
endpoint receivers to properly feed the logic.

For deeper levels of the tree, s decreases, which indeed ensures the absence, at these
levels, of unexpected large mutual inductance coupling between the branches which
might jeopardize the validity of the cascade rule (see section 6.10.)

To make the example more realistic, we embed it on a power-ground grid. We of
course preserve our dedicated ground wiring for the clock signal, albeit we incorporate
the grid layout for standard power delivery.

We use FastHenry to simulate the effects of the power-ground grid on the vicinity
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Table 6.7: Change in loop resistance and loop inductance when a ground grid is
included

Config. (R,L) at 1 GHz (R,L) at 10 GHz
Without grid (195 Ω,15.6 nH) (233 Ω,15.5 nH)

Including grid (191 Ω,16.1 nH) (229 Ω,15.4 nH)

1 2 3 nn−1

I D
.....

Figure 6.16: Labeling of a path, from source I to destination D.

of a a complete SBHT.

Consider two configurations, one with the SBHT and no grid, and the other, a worst
case configuration, consisting of the SBHT in the presence of a same layer grid with an
interwire separation of 300 µm. Results in table 6.7 show that both loop resistance and
loop inductance of the tree are modified by the presence of the grid by a maximum of
3% for frequencies starting at 1 GHz.

The domains of validity of region I are essentially unaffected, since in addition,
the capacitance coupling to the signal is essentially unaffected by the presence of these
extra wires due to total screening.

The SBHT is a stable layout structure capable of transmitting signals efficiently,
provided they are adequately driven.

6.10 inductance cascade rule

We prove the cascade rule for the loop inductance of any path in an SBHT. For conve-
nience we label a path consisting on n branches as in Fig. 6.16. Each edge in the graph
represents a sandwich element.

We denote as i− j the path that starting at edge i includes all branches up an including
edge j; Li− j the loop inductance of the path i− j; Li− j,k the mutual inductance between
the path i− j and branch k;Li the loop inductance of branch i;Li, j the mutual inductance
between branches i and j.
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Figure 6.17: Two overlapping branches.

A straightforward application of (6.11) leads to the loop inductance of the path 1−2:

L1−2 = L1 + L2 + 2L1,2. (6.31)

Similarly for n = 3:
L1−3 = L1−2 + L3 + 2L1−2,3. (6.32)

Using (6.31) and the fact that L1−2,3 = L1,3 + L2,3,

L1−3 = L1 + L2 +L3 + 2(L1,2 +L1,3 + L2,3). (6.33)

it is immediately apparent that for the general path 1−n

L1−n =

n∑

i=1

Li + 2
n−1∑

i=1

n∑

j=i+1

Li, j. (6.34)

Now,Li, j includes mutual inductance between orthogonal sandwich elements which
are zero. We examine the leading term that gives the largest contribution to the previous
sum, since it provides maximum overlap between the two loops.
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Fig. 6.17, which in terms of partial inductance reduces to:

Li, j =lsi,s j

+
1
4

(lgi1,g j1 + lgi1,g j2 + lgi2,g j1 + lgi2,g j2)

− 1
2

(lgi1,s j + lgi2,s j + lg j1,si + lg j2,si)

(6.35)

with li, j the partial mutual inductance between wires i and j.

We use narrow wire approximations on this simplified analysis. The results can be
recasted in terms of GMD’s.

The expression for li, j derived from (2.40) with L2 >> d2 is

li, j =
µ

2π

(

ln
(

2L
d

)

+
d
L
− 1

)

(6.36)

Substituting this expression in (6.35) results in

Li, j =

µ

4π





1
2

ln





(

1 −
ε2i
d2

) 

1 −
ε2j

d2


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



−1
4

ln
((

1 −
(εi − ε j)2

d2

) (

1 −
(εi + ε j)2

d2

))]

(6.37)

with d the distance center-center between the two signal wires si and s j; εi and ε j the
signal-ground distance at sandwich element i and j, respectively.

Since ε/d < 1, (6.37) is well approximated to

Li, j ≈
µ(ε4i + ε

4
j )

2πd4 . (6.38)

The distance d is generally O(1) mm while the distances εi and ε j are O(10)µm.
Therefore the mutual inductance between two parallel branches in a path of an SBHT
is negligible. The reader can verify using the same approach that the remaining terms
in the sum (6.34) are also negligible. This is to be expected on physical grounds, since
these terms correspond to mutual inductance between two magnetic dipoles. This com-
pletes the verification of the cascade rule.
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6.11 Concluding remarks

We propose a natural way to exploit inductance, using sandwich configurations with
controllable return paths and low impedance drivers and repeaters, to sustain speed of
light propagation in the medium and the absence of undesirable overshoots. We develop
a methodology to obtain appropriate values for the parameters of the lines and drivers.
The technique, that is computationally efficient, can be used in synthesis of clock trees.
The amount of real estate necessary in upper metal layers is reasonable, maximum
separations at 130 nm can be made smaller than 100 µm.

The synthesis method is the result of rigorous analysis based on transmission line
representation exact equations. The resulting wire configurations, for particular driver
strengths and signal rise times behave as transmission lines.

The signal delay associated with the configurations is stable with respect to process
variations, unlike an RC system whose diffusion delay is very sensitive to the exact
values of the process parameters. It is the constancy of the speed of light the source of
stability. To ensure a safety net with regards to process variations, it suffices to choose
as initial configuration one whose s is sufficiently separated from s1 so as to guarantee
that under any combination of process fluctuations the lower limit will not be violated.
The upper limit s2 is easily controllable.

We carefully examine most known factors that could impact on our analysis such as
perturbations due to power-ground grids on the RLC parameters, and frequency depen-
dence of the same electromagnetic parameters.

We verify the almost constancy of the electromagnetic parameters in the frequency
regime under consideration for f ≤ 10GHz. We develop simple and yet accurate tech-
niques permitting the calculation of l, c in CPU times usually attributable to extractors
rather than field solvers, keeping the precision of the latter. We verify that the pertur-
bations to the constancy of RLC only modifies lower limits of the separation intervals,
barely affecting our synthesis strategy.

Moreover, it is well known that, with scaling accompanied by growth in overall chip
dimensions, full chip synchronization is at a crossroad. Our approach to find config-
urations whose wire delay is dictated by speed of light propagation finds a natural set
of applications in local and global clock design. It helps a bit, in making the clock pe-
riod easily predictable, significantly less dependent on process parameter variations. A
separate analysis including nonlinearities associated with drivers and receivers is forth-
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coming, issues such as repeater locations, strength, input and output impedance and
skew control will be discussed elsewhere, so will be the sensitivity to process varia-
tions.

We found that working in the time domain and exploiting monotonicity of the func-
tionals were paramount in the current study. The classical alternative to our approach is
to pose the problem in the frequency domain, with parameters that are frequency depen-
dent and perform the inverse Laplace transform numerically. This alternative approach
is loaded with numerical instabilities, that we could avoid. Given the monotonicity
properties of the functionals that determine the allowed intervals, the frequency domain
approach can be avoided.





Chapter 7

Conclusions

We considered reserving this chapter for apologies explaining what went wrong, how
could we do it better if we had four more years, and things of that nature. In a rather
remarkable fashion the technology we developed does significantly better than the al-
ternatives coming from Sequence, Cadence/Columbia and Synopsys. Maybe we can
omit the apologies. We have, on the other hand, some saying into what would amount
to be desirable problems to solve to improve our understanding on the subject matters
discussed in this dissertation. We start by refreshing the state of the art in dynamic
impedance extraction when this work started in 2002, while in passing inserting newer
developments from our competitors in academia and industry. As of 2002 and be-
fore, Sequence submitted their first patent applications to 3D loop inductance treatment.
Work that included no frequency dependent behavior for resistance or inductance. Se-
quence’s technology requires external calibration for each process. Any and all wires in
the design are included, technique that results in the output of large amounts of super-
fluous data. Model Order reduction techniques were not and are not on their toolbox kit.
Sequence main merit: being first at releasing a product. Not a technological contender
in terms of accuracy or predictive power. Columbia researchers [18, 67], working with
Cadence introduced a well thought approach to inductance extraction. A key ingredient
in their approach is a partitioning strategy into a set of disconnected regions generated
by “halos” as briefly discussed in chapter 3. The halo technology is touted as one that
preserves passivity. No poles with negative real part in the complex s plane. This ob-
servation is made without proof. Plausibility comes about in the following way: Each
three dimensional region that the halo construct generates has on its boundaries ground
wires or the continuation of ground wires, no signal wires on the boundary. Signal wires

201
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couplings to other signals in different regions are arbitrarily set to zero, even if the re-
gions have a common boundary. These configurations, would otherwise generate the
largest mutual couplings, making them the leading candidates to violate the diagonal
dominance in the inductance matrix.

Computation of the R,L loop matrices is done within each interaction region, in a
3D formalism. Their partitioning mechanism and ours are notably different. In our for-
malism, we can in most cases quantitatively determine that we are dropping negligible
terms. Both the tube construct around the victim wire, and the inclusion of a number of
return wires well beyond nearest neighbors, leads to a ratio of mutual loop inductance
to self loop inductance that falls off as a power of the separation [49, 68]. Neglecting
mutual couplings beyond a tube interaction region is thereby justifiable. On the other
hand, we face the curse of long range couplings. These terms are unavoidable and nec-
essary in our treatment, so diagonal dominance will not be present, since for example,
when signal wires share a return path, the fall off on the mutual inductance with distance
is only logarithmic, and its ratio to the self inductance can be close to one. When our
treatment and PEEC are compared for accuracy, as in chapter 3 and as in a recent in-
dependent validation, we feel comfortable with our results (Fig. 3.22-3.24). In practice
we found that the possible presence of poles with real part negative, while close to zero,
barks but does not bite. Neglecting pole contributions with the wrong sign does not
impact the quality of the frequency response, except of course at very low frequencies,
which is immaterial.

Comparing our treatment to PEEC [7] for all but toy examples is almost unfair. The
PEEC approach does not scale. It requires keeping the entire system of wire segments
for the whole design in a huge dense matrix, and then attempt to solve this system, an
n3 complexity problem. We replace this problem with a large collection of very small
problems. The relative performance advantage of our method is simply overwhelming.
The follow ons to PEEC, in terms of inverse methods, now employed by Synopsys, do
not fare better. They need to invert the full matrix, and then neglect, or partition, invert
and then neglect, with the second approach not quite developed in the literature.

7.1 Contributions and forthcoming additions

What have we added to the knowledge base of the community? The core engine is
a reliable engineering tool, but not an original contribution. Our conception and im-
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plementation of the loop approach in chapter 3 is new and physically meaningful. We
personally cannot claim credit for most of the system level features, such as the geo-
metrical engine to bound the search for nearby grounds and signals. That particular
engine has been engineered by colleagues in our design to silicon engineering division.
The system level performance of the flow is positively impacted by the work of another
member of our division who developed a Model Order reduction engine, that reduces
the size of the netlist to be simulated by nearly a factor of 100 [69–71].

Our tool [13] is capable of capturing frequency phenomena in wire impedance char-
acterization for frequencies up to 50 GHz, that correspond to millimeter wavelengths in
Si, significantly shorter than global wires. A full wave treatment of Maxwell Equations
is mandatory for larger frequencies. Work in progress in this domain is taking place in
our team [72]. Regarding other emerging concerns, substrate impact on impedance is
one of the first that comes to mind. For frequencies below 15 GHz we have verified
with FastHenry that our treatment can account for substrates, simply by treating it as
a uniform plane of given thickness of low conductivity. This treatment parallels that
of ground planes discussed in chapter 3. For higher frequencies, better methods are
recommended, and are being studied by colleagues in our group [73]. Another natu-
ral extension is that of incorporating non-Manhattan routes in a loop formalism. The
simplified bundle construct will loose most of its effectiveness. The decomposition into
separate x and y routes is no longer tenable. The practical impact of these extensions
can be localized typically to small analog features within a larger design. The core en-
gine does not change. The problem as posed is not intellectually demanding but remains
to be done.

Our incursion in the RF domain has two components of novelty. The first one is a
simplified expression for the mutual impedance among two inductors or other passive
devices (see equation (4.29)). The decoupling of the n-inductor problem into lower di-
mensionality single inductor problems with a simply computable correction factor to
account for the dominant interaction, is a computationally efficient procedure. It is in
fact a good approximation for not too closely coupled objects [9]. For short distances
we compute the coupling using the full matrix. The second one is the RL+C approach
we used for predicting the quality factor and impedance of intentional inductors is com-
petitive in accuracy with full RLC field solvers (HFSS, Sonet, etc). It is more accurate
than ASITIC, and the underlying description is simple and compelling. Our method
demands the separate accurate computation of the capacitance matrix. This we do with
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the help of the work of another team member [74, 75]. We can deal with problems of
meaningful size to RF designers, which is a significant improvement over HFSS.

Our simple extension of the work of Davis and Meindl [54] in a direction that per-
mits us to account for finite rise time and load capacitance effects, in predicting time de-
lay for RLC lines (equation (5.41)) is novel and well quoted in the literature. Follow up
approximations to our results were recently presented by researchers from UCLA [59].
While studying propagation delay in RLC interconnects we found some limited under-
standing of electromagnetic phenomena in IC’s by members of the CAD community.
In fact a number of contributors proposed time delay expressions for signals in the RLC
domain, using a lump representation, as a π or T circuit. The conclusions deriving from
such simplification are fully inadequate, for two basic reasons: the first one shown in
chapter 5, that identifies the length of signals for which there is a manifestation of RLC
effects, length that falls within the domain L ≥ λ/6 that demands distributed repre-
sentation. The transfer function for a distributed chain has a completely different high
frequency behavior than the single lumped reduced circuit. RLC analysis at high fre-
quency phenomena, is incompatible with reduced lumped RLC circuits, a low order
representation valid for small frequencies.

Our contribution to the synthesis of clock trees: using inductance as a vehicle to
propagate signals over chip level scale dimensions with signal delay proportional to
the length of the wire. This is a novel idea, that addresses a problem mentioned at
the introduction, we are referring to the dominance of the wire delay over logic delay
as a key impediment to the continuous exponential growth of the performance curve.
We mentioned in the introduction, that the exponential performance growth was well
accounted for a system delay that is dominated by the transistor delay with wires being a
perturbation. This is tantamount to a wire being represented as a contributor to the load
capacitance. A valid description for short distances, and consistent with instantaneous
propagation. Well for long wires, at current frequencies, finite effects of speed of light
propagation are present. Our aim on this work is to propose one method to permit signal
propagation on chip to travel as fast as is physically possible, the speed of light in the
medium. It is one of the possible approaches to extend the visible life of increased
performance to future technology nodes.

A more complete analysis of the clock problem including nonlinearities associated
with drivers and repeaters in the presence of inductance is forthcoming, issues such
as repeater locations, strength, input and output impedance and skew control will be
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discussed elsewhere.

As an interesting note we point the reader to the fact that the new generation of
microprocessors from IBM, the POWER6, includes an H-tree clock, working in trans-
mission line mode [76]. This proves the applicability in real life of our contribution.

7.2 Engineering and commercial novelties

A patent protecting the clock tree application was granted in mars 2006 [12]. The patent
protecting the impedance extraction in IC and the intentional inductors simulator was
filed in February 2006 [8].

The self-impedance part of our impedance extractor for IC was released as a com-
mercial tool in 2004 and followed a 1-year beta testing period. During this period,
several customers validated the performance as well as the accuracy of our tool against
their own results coming from measurements and from impedance simulators such as
FastHenry. Following its commercial launch, the tool has been used in the design flow
of RF devices by a well-known mobile phone company. It has been applied to problems
in the digital domain, with designs containing several hundred of thousand transistors.
The mutual impedance part of our tool was implemented in 2005 and launched in the
same year. Customers doing noise analysis have been well impressed by its accuracy.
A noise estimator that warns the designer if safe limits on magnetic noise coupling are
violated is in Beta testing by customers. It is intended to be used for RF applications
in exploring layout configurations consisting of multiple inductors. It has been val-
idated, against measurements, by a customer in a Phase Locked-Loop (PLL) design.
The n-inductor noise problem falls within the category of inherent parallel problems, a
concurrent implementation in a shared memory environment is forthcoming.

7.3 Additional references

The following papers, patents and patents applications are related to this work:

• R. Escovar and R. Suaya, “Optimal design of clock trees for multi-gigahertz ap-
plications,” Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 23, no. 3, pp. 329– 345, Mar. 2004.
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• ——, “Transmission line design of clock trees,” in Proc. IEEE/ACM Interna-

tional Conference on CAD, Nov. 2002, pp. 334–340.

• R. Escovar, S. Ortiz, and R. Suaya, “Mutual inductance extraction and the dipole
approximation,” in International Symposium on Physical Design (ISPD), April
2004.

• ——, “An improved long distance treatment for mutual inductance,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 24,
no. 5, pp. 783–793, May 2005.

• ——, “Mutual inductance between intentional inductors: Closed form expres-
sions,” in IEEE International Symposium on Circuits and Systems (ISCAS), May
2006.

• R. Suaya, R. Escovar, S. Thelapurath, S. Ortiz, and D. Petranovic, “Extracting
impedance effects from a circuit design using an electronic design automation
synthesis tool,” U.S. Patent application, Feb. 2006.
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inductance effects,” U.S. Patent, number 7,013,442, March 2006.



Conclusion (français)

Nous avons voulu réserver ce chapitre pour nous excuser de ce qui a mal tourné et de ce
que nous aurions pu améliorer si nous avions eu quatre années de travail supplémentaires.
Cependant, la technologie que nous avons développée améliore de manière significative
les solutions proposées par Sequence, Cadence/Columbia et Synopsys. Nous pouvons
donc omettre les excuses. En échange, nous avons beaucoup de choses à dire sur les
problèmes que l’on devrait résoudre pour améliorer notre compréhension des thèmes
discutés dans cette dissertation.

Nous commençons par rappeler la situation dans l’extraction dynamique d’impédance
quand ce travail a commencé en 2002, au même temps que nous ajoutons les nouveaux
développements de nos concurrents dans le milieu universitaire et l’industriel parus du-
rant la réalisation de ce travail. Déjà en 2002, Sequence avait soumis ses premières
applications de brevet pour le traitement 3D de l’inductance en boucle. Ce travail
n’incluait aucun comportement lié à la fréquence pour la résistance ou l’inductance.
La technologie de Sequence exigeait le calibrage externe pour chaque processus. Tous
les fils dans la conception devaient être considérés en même temps, ce qui aboutis-
sait à la production de grandes quantités de données superflues car les techniques de
réduction d’ordre n’étaient pas et ne sont toujours pas présentes dans leur outil. Le
principal mérite de Sequence est d’être le premier à lancer sur le marché ce produit,
bien qu’il ne soit pas un bon concurrent en termes d’exactitude ou de performance.

Les chercheurs de Columbia [18, 67], travaillant pour Cadence, ont présenté une
approche bien conçue de l’extraction d’inductance. L’ingrédient principal, dans leur
approche, est une stratégie de division dans un ensemble de régions débranchées, pro-
duites par des “halos”, comme il en a été brièvement discuté dans le chapitre 3. La
technologie de halo est sensée préserver la passivité des circuits, i.e., pas de pôles avec
la partie réelle négative dans le plan s complexe.

Cette observation est faite sans preuve, mais sa plausibilité vient du fait que chaque
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région tridimensionnelle, produite par les halos, a des fils de masse dans ses frontières
et qu’aucun fil de signal n’est sur ces frontières. Des accouplements de fils de signal
à d’autres signaux, dans différentes régions, sont arbitrairement égalisés à zéro, même
si les régions ont une frontière commune. Ces configurations produiraient, autrement,
les plus grands accouplements mutuels, qui sont les principaux candidats pour violer la
dominance diagonale de la matrice d’inductance. Le calcul des matrices de boucle R et
L est fait à l’intérieur de chaque région, en utilisant un formalisme 3D. Leur mécanisme
de partition est différent du nôtre. Dans notre formalisme, nous pouvons, dans la
plupart des cas, déterminer de façon quantitative, les couplages que nous négligeons.
L’utilisation du tube d’interaction autour du fils victime, ajouté à la sélection d’un nom-
bre de fils de retour, au-delà des deux plus proches, assure que le rapport d’inductance
propre et d’inductance mutuelle décroı̂t comme une puissance de la distance [49, 68].

Il est alors justifié de négliger les couplages inductifs au-delà du tube d’interaction.
Malgré cela, nous sommes toujours soumis à la malédiction des couplages de longue
distance. Ces termes sont inévitables et nécessaires dans notre traitement, donc la dom-
inance diagonale ne sera pas présente, étant donné, par exemple, que quand deux sig-
naux partagent le même fil de masse leur couplage décroı̂t en fonction du logarithme
de la distance, et le rapport avec l’inductance propre peut être approximativement égal
à un. Quand nous comparons la précision de notre traitement avec celui du PEEC, telle
qu’elle est montrée dans le chapitre 3, nous sommes satisfaits de nos résultats. Négliger
la contribution de pôles avec le signe incorrect n’affecte pas la qualité de la réponse
fréquentielle.

Il est injuste de comparer notre traitement avec celui du PEEC pour des exemples
de grande taille. Pour le PEEC, il faut considérer tous les fils dans un énorme système
linéaire dense et essayer de le résoudre. Nous faisons autrement en divisant le problème
en petits sous-problèmes. L’avantage relatif des performances de notre méthode est
accablant. Les améliorations existantes pour le PEEC, basées sur les méthodes inverses
ne font pas mieux. Pour ces méthodes, il faut inverser la matrice, puis négliger des
termes pour ensuite la réinverser.

Contributions et futures améliorations

Qu’avons-nous ajouté à la connaissance de la communauté? Notre noyau de calculs
est un outil très fiable pour l’ingénierie, bien qu’il ne soit pas une contribution origi-
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nale. Notre conception et notre réalisation de la méthode de boucle, présentées dans le
chapitre 3 est une nouvelle contribution avec un vrai contenu physique. Nous ne pou-
vons pas prendre tout le crédit pour le développement de cet outil, la partie géométrique,
qui reconnaı̂t les fils, a été développée par nos collègues de la division “design to sili-
con”.

Notre outil [13] est capable de capturer les phénomènes fréquentiels dans l’impédance
des fils, pour des fréquences allant jusqu’à 50 GHz, ce qui correspond à des longueurs
d’onde d’un millimètre en silice (Si), beaucoup plus petites que les fils globaux. Un
traitement complet des équations de Maxwell est nécessaire pour les plus hautes fréquences.
Du travail dans ce domaine est déjà en progrès dans notre équipe [72]. D’autres facteurs
intéressants à considérer sont les effets que le substrat peut avoir sur l’impédance des
fils. Pour des fréquences de moins de 15 GHz, nous avons vérifié avec FastHenry que
notre traitement pouvait prendre en compte le substrat comme un autre fil mais avec
une résistivité beaucoup plus élevée. Cette façon de traiter le substrat est parallèle à
celle de traiter les plans de masse, présentée dans le chapitre 3. Pour de plus hautes
fréquences, d’autres méthodes plus précises sont nécessaires. Le travail sur ce sujet est
aussi en progrès grâce aux collègues de notre équipe [73]. Une autre extension naturelle
de notre méthode est celle qui consiste à incorporer dans notre traitement de boucle, le
routage de fils non-Manhattan. Cependant, la séparation en x et y n’est plus possible,
mais le noyau de calculs est capable de considérer des ” bundles ” avec des fils qui ne
sont pas parallèles. Le problème n’est pas difficile à résoudre et sera fait ultérieurement.

Notre incursion dans le domaine des RF a deux directives : La première est l’expression
simplifiée de l’impédance mutuelle entre deux inducteurs, ou celle d’autres dispositifs
passifs (voir équation (4.29)). Le découplage du problème de n inducteurs en problèmes
de plus petites dimensions est très efficace en termes de performance. La deuxième est
le modèle RL+C, utilisé pour prédire la fréquence de résonance et le facteur de qualité
d’un inducteur, comparable en précision à celle des outils RLC plus complexes (HFSS,
Sonet, etc). Il est plus précis qu’ASITIC tout en gardant la même simplicité dans la
description. Notre méthode demande le calcul précis de la matrice de capacités par
un outil externe. Nous utilisons pour cette tâche un outil d’un autre membre de notre
équipe [74, 75]. Nous pouvons traiter des problèmes de taille importante pour les con-
cepteurs de RF, ce qui représente une nette amélioration vis-à-vis des outils comme
HFSS.

Notre extension au travail de Davis et Meindl [54] , qui nous permet de considérer
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un temps de montée du signal d’entrée différent de zéro, et une capacité de charge à
la fin de la ligne, est nouvelle et a été très citée dans la littérature. Des approxima-
tions de notre résultat ont été récemment présentées par des chercheurs à l’UCLA [59].
Durant notre étude du temps de propagation en RLC, nous avons trouvé des membres
de la communauté avec une connaissance limitée des phénomènes électromagnétiques.
En effet, quelques-uns proposaient des expressions pour le délai d’un signal dans le do-
maine RLC en utilisant des modèles simplifiés, valables uniquement pour des longueurs
d’onde très grandes, i.e. pour de très basses fréquences.

Notre contribution à la synthèse des arbres d’horloge : utiliser l’inductance pour
assurer la propagation des signaux à la vitesse maximale, celle de la lumière dans
le milieu. C’est une nouvelle idée qui vient répondre à la problématique présentée
dans l’introduction, celle de la dominance du délai des interconnexions sur le délai
des dispositifs. Notre contribution est une des nombreuses approches pour assurer un
incrément de la performance dans les technologies futures.

Comme note intéressante, nous attirons l’attention du lecteur vers le nouveau pro-
cesseur d’IBM, le POWER6, à paraı̂tre en 2007 [76]. Ce processeur contient un arbre
d’horloge en H qui a été conçu de manière à assurer un comportement de ligne de
transmission. Celui-ci démontre l’applicabilité dans la vie réelle de notre contribution.

Nouveautés commerciales

Un brevet sur l’application des arbres d’horloge a été adjugé en mars 2006 [12], ainsi
qu’un autre brevet, sur notre méthode d’extraction d’impédance dans les circuits intégrés
et des inducteurs intentionnels, a été déposé en Février 2006 [8].

La partie pour le calcul de l’impédance propre de notre méthode a été lancée sur
le marché en 2004 après avoir suivi un an de période d’essai. Durant cette période, de
nombreux clients ont pu valider nos résultats avec leurs propres résultats, provenant de
mesures ou d’autres outils. Après le lancement commercial, l’outil a été utilisé dans la
conception de dispositifs RF chez un constructeur très connu de téléphones portables.
Il a aussi été utilisé dans le domaine numérique pour la conception de circuits intégrés
avec plusieurs centaines de millions de transistors.

La partie d’impédance mutuelle a été lancée en 2005. Les clients intéressés par
l’analyse du bruit dans les interconnexions ont été très impressionnés par la précision
et l’efficacité de notre outil. Concernant les inducteurs, un outil de vérification a été
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développé, permettant aux concepteurs de placer plusieurs inducteurs dans une même
plaque, en s’assurant que le bruit entre les inducteurs ne dépasse pas une certaine limite.
L’outil a été validé par un client en RF, en utilisant des mesures faites sur la conception
d’une boucle à verrouillage de phase (PLL).
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