

Production de domaines recombinants PRODH en vue de l'analyse structurale & Caractérisation de la région 51-160 de la protéine KIN17 humaine par RMN et Modélisation Moléculaire

Ludovic Carlier

► To cite this version:

Ludovic Carlier. Production de domaines recombinants PRODH en vue de l'analyse structurale & Caractérisation de la région 51-160 de la protéine KIN17 humaine par RMN et Modélisation Moléculaire. Biophysique [physics.bio-ph]. Université de Rouen, 2006. Français. NNT: . tel-00124229

HAL Id: tel-00124229 https://theses.hal.science/tel-00124229

Submitted on 12 Jan 2007 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Production de domaines recombinants PRODH en vue de l'analyse structurale

&

Caractérisation de la région 51-160 de la protéine KIN17 humaine par RMN et Modélisation Moléculaire

Ludovic CARLIER

Présenté en vue d'obtenir le titre de Docteur de l'Université de Rouen

10 juillet 2006

Contexte biologique

Expression des protéines PRODH sauvage et mature

Production de 4 domaines PRODH

Conclusions

Contexte biologique

Expression des protéines PRODH sauvage et mature

Production de 4 domaines PRODH

Conclusions

Production de domaines recombinants PRODH

Contexte biologique

Production de domaines recombinants PRODH

Contexte biologique

Le catabolisme de la proline

Contexte biologique

Hypothèses sur la régulation de PRODH chez les eucaryotes

- Enzyme localisée dans la matrice mitochondriale et fixée à la membrane interne
- Lactate : inhibiteur compétitif de PRODH
- Activité enzymatique :
 - nécessite la présence d'un accepteur d'électrons de la chaîne respiratoire
 - inhibée par le KCN
 - indépendante en dinucléotide de type NAD⁺ ou NADP⁺

\rightarrow cofacteur FAD ou FMN ?

Troubles de l'activité de PRODH chez les eucaryotes

Hyperprolinémie de type I

- Maladie rare récessive associée à un taux élevé de proline
- Possibilité de troubles neurologiques sévères :
 - retard mental
 - retard psychomoteur
 - épilepsie

→ mutations du gène PRODH associées à ces troubles

Troubles de l'activité de PRODH chez les eucaryotes

PRODH et schizophrénie

- Le syndrome de Digeorge :
 - microdélétion de la région q11 du chromosome 22 contenant PRODH
 - prévalence de la schizophrénie de 20 à 30 fois supérieure

- Recherche de variations nucléotidiques du gène PRODH :
 - relation entre hyperprolinémie de type I et schizophrénie
 - aucune relation entre hyperprolinémie de type I et schizophrénie

Contexte biologique

Objectifs de l'étude

- PRODH : responsable de l'hyperprolinémie de type l
 - implication dans la schizophrénie ?
 - Cofacteur ? Inhibiteur naturel ? mécanismes d'action ?

Stratégie d'étude structurale d'une protéine par RMN

Stratégie d'étude structurale d'une protéine par RMN

Conditions de l'analyse par RMN :

- protéine de taille raisonnable (< 45 kDa)
- protéine soluble, stable, en quantité

Production dans un organisme recombinant

PRODH humaine : enzyme de 70 kDa

Recherche des domaines structuraux

Stratégie de préparation de l'échantillon

- 1) Surexpression de PRODH humaine sous forme **soluble**
- 2) Digestion enzymatique ménagée suivie sur MALDI-TOF :

3) Surexpression des domaines de taille compatible avec l'analyse RMN

4) Etude structurale de ces domaines par RMN

Production de domaines recombinants PRODH

Contexte biologique

Expression des protéines PRODH sauvage et mature

Production de 4 domaines PRODH

Conclusions

Expression de PRODH sauvage et mature

Production de domaines recombinants PRODH

Expression de PRODH sauvage

- optimisation des paramètres :
 - ajout de détergents
 - diminution de la température
 - diminution de l'inducteur

Expression de PRODH sauvage et mature

Prédiction du peptide signal de PRODH

- Les signaux d'adressage mitochondrial :
 - localisés en N-terminal de la séquence protéique
 - longueur et composition de séquence variable

Expression de PRODH sauvage et mature

Production de domaines recombinants PRODH

Expression de PRO564

- changer d'organisme de production ?

- criblage à moyen débit de plusieurs paramètres : partenaire de fusion...

Production de domaines recombinants PRODH

Contexte biologique

Expression des protéines PRODH sauvage et mature

Production de 4 domaines PRODH

Conclusions

Production de domaines recombinants PRODH

Structure du domaine catalytique de PutA

- tonnelet α 8 β 8 de 350 aa

- cofacteur FAD
- inhibiteur lactate

Production de domaines recombinants PRODH

Analyse bio-informatique : organisation de PRODH

• report de la structure secondaire de PutA sur l'alignement de séquences

domaine N-termina		1 ^{ère} insert	ion		2 ^{ème} insertion	domaine catalytique de PRODH	
20	110	151	202	244	245		

\rightarrow présence de 2 insertions

Analyse bio-informatique : sélection de 4 domaines

domaine 1 ^{ère} N-terminal insertior	domaine catalytique de PRODH	
--	------------------------------	--

domaine N-terminal		1 ^{ère} insertion		2 ^{ème} insertion	domaine catalytique de PRODH
36 1	13	151 2	03 241	345	600

Analyse bio-informatique : sélection de 4 domaines

Criblage des conditions d'expression en microplaques

	PROentier	PROcatal	PROter	PROinser
partenaires de fusion	7	7	7	7
souches d'expression	2	2	3	3
températures d'expression	2	2	2	2
TOTAL	28	28	42	42

- PROcatal : MBP / Rosetta / 20°C
- PROentier : MBP / Rosetta / 20°C
- PROinser: MBP / Rosetta / 20°C
- PROter : NusA / Rosetta / 20°C

→ expression suffisante de protéine soluble pour les 4 domaines

Production de domaines recombinants PRODH

Production à grande échelle et obtention des protéines cibles

Production de domaines recombinants PRODH

Production de domaines recombinants PRODH

Production de PROentier

- séparation du partenaire MBP sur résine de nickel :

→ PROentier séparée de son partenaire rendement : 1 mg / L de culture

Production de domaines recombinants PRODH

Bilan de la production de PROcatal, PROter, et PROinser

- PROcatalPROinser
- instabilité de la protéine de fusion
- partenaire de fusion clivé mais non séparé

- **PROter** toxicité de la protéine de fusion
 - profil de dégradation protéolytique

Production de domaines recombinants PRODH

Contexte biologique

Expression des protéines PRODH sauvage et mature

Production de 4 domaines PRODH

Conclusions

• production des protéines PRODH sauvage et mature (PRO564) :

corps d'inclusion

• sélection et production des domaines PROentier, PROcatal, PROter, et PROinser dans le cadre de la plate-forme 3PM :

Contexte biologique

Caractérisation structurale par RMN et Modélisation Moléculaire

Relations structure-activité

Conclusions et perspectives

Contexte biologique

Etude structurale de la région 51-160 de KIN17

Les dommages de l'ADN

Etude structurale de la région 51-160 de KIN17

Contexte biologique

La réponse aux dommages de l'ADN

Etude structurale de la région 51-160 de KIN17

Contexte biologique

La réponse aux dommages de l'ADN

Contexte biologique

Caractéristiques fonctionnelles de KIN17

- Distribution en « foyers intra-nucléaires »
- Régulation positive après irradiation par des rayons UV et γ
 dépendance XPA et XPC : mécanisme de réparation NER
- Liaison à l'ADN et l'ADN courbe (recombinaison illégitime)
- Liaison à l'ARN

→ KIN17 impliquée dans la réplication et la réponse cellulaire aux dommages de l'ADN

Organisation de KIN17 humaine

Contexte biologique

Objectifs de l'étude : caractérisation structurale et fonctionnelle

Etude structurale de la région 51-160 de KIN17

Contexte biologique

Caractérisation structurale par RMN et Modélisation Moléculaire

Relations structure-activité

Conclusions et perspectives

Etude structurale de la région 51-160 de KIN17

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

Etude structurale de la région 51-160 de KIN17

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

Etude structurale de la région 51-160 de KIN17

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

Attribution des raies de résonance de la chaîne principale et des chaînes latérales

K2 : protéine de 14 kDa

→ expériences 3D triple résonance ¹H, ¹⁵N, ¹³C en solvant H₂O

 \rightarrow expériences 3D double résonance ¹H, ¹³C en solvant D₂O

Etude structurale de la région 51-160 de KIN17

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

Stratégie classique de calcul de la structure par RMN et Modélisation Moléculaire

- 1) extraction des paramètres structuraux
- 2) recueil des contraintes RMN
 - angles dièdres
 - collecte et attribution des nOe ¹H-¹H
- 3) calcul de la structure
 - dynamique moléculaire

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

1) Détermination de la topologie des feuillets β

- paramètres structuraux RMN :
 - déplacements chimiques secondaires
 - nOe caractéristiques ¹H-¹H
 - liaisons hydrogène

\rightarrow présence d'un feuillet β triple brin anti-parallèle

Etude structurale de la région 51-160 de KIN17

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

2) Identification des extrémités flexibles déstructurées

→ extrémités G1-P12 et K108-K111 déstructurées

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

3) Processus itératif géré par le Programme d'Attribution automatique

Etude structurale de la région 51-160 de KIN17

Etude structurale du domaine K2 par RMN et Modélisation Moléculaire

3) Processus itératif géré par le Programme d'Attribution automatique

Etude structurale de la région 51-160 de KIN17

Evaluation de la qualité des structures

- RMSD: 0.43 Å (F15-L106)
- aucune violation de distance
 > 0.5 Å et d'angle dièdre > 10°
- angles φ et ψ : > 99 % régions permises du diagramme de Ramachandran
- faibles valeurs de déviation par rapport à la géométrie idéale

\rightarrow ensemble de structures RMN de bonne qualité

Etude structurale de la région 51-160 de KIN17

Description de la structure tridimensionnelle du domaine K2

Contexte biologique

Caractérisation structurale par RMN et Modélisation Moléculaire

Relations structure-activité

Conclusions et perspectives

Etude structurale de la région 51-160 de KIN17

Le domaine K2 adopte un repliement de type Winged Helix

• DALI : score significatifs

Winged Helix canonique

Etude structurale de la région 51-160 de KIN17

Le repliement Winged Helix : un motif de liaison à l'ADN

mode de reconnaissance classique

sillon sillon mineur majeur

mode de reconnaissance atypique

Etude structurale de la région 51-160 de KIN17

Le domaine K2 est-il capable de lier l'ADN ?

H1 W1 \rightarrow rmsd de 2.7 Å W¹ sur 66 carbones α K2 de KIN17 H2 Mecl H2 **H3** \rightarrow divergence structurale : hélice H3 H2.5

Etude structurale de la région 51-160 de KIN17

Le domaine K2 est-il capable de lier l'ADN ?

\rightarrow surface électrostatique H3-W1 de K2 peu polaire

Zheng et al., (1999), *Genes Dev*, **13**, 666-674. Melckebeke et al., (2003), *J Mol biol*, **333**, 711-720. Safo et al., (2005), *J Bacteriol*, **187**, 1833-1844. Garcia-Castellanos et al., (2004), *J Biol Chem*, **279**, 17888-17896.

Etude structurale de la région 51-160 de KIN17

Fonction du Winged Helix du domaine K2?

• Liaison partenaire protéique ?

Etude structurale de la région 51-160 de KIN17

Le domaine K2 présente une surface H2-H2.5 ultra conservée

→ surface électrostatique H2-H2.5 neutre plutôt hydrophobe

 \rightarrow interactions protéine-protéine ?

interactions protéine-protéine intra-moléculaires ?

	10	20	30	40	50	60	70	80	90
							I		
Humain	MGK-SDFLTPKAIAN	RIKSK <mark>GL</mark> QKI	RWY <mark>CQMC</mark> QK	CRDENGFKCH	CMSE <mark>SH</mark> QRQ	LLLASENPQQF	MDYFSEEFRN	IDFLELLRRR	GTKRV
Plante	MGK-NDFLTPKAIAN	RIKAK <mark>GL</mark> QKI	R <mark>WYCQMC</mark> QK	CRDENGFKCH	CMSE <mark>SH</mark> QRQ	MQVFGQNPTRV	VDG <mark>YS</mark> EE <mark>F</mark> EÇ	TFLDLMRRS <mark>H</mark>	RFSRI
Spore	MGR-AEAGTPKAISN	ALKS <mark>KGL</mark> QRI	R <mark>WYCSAC</mark> QK	OMRDENGFKCH	TQSEGHIRQ	MNVIAMNPGKR	IQD <mark>FS</mark> NQ <mark>F</mark> LF	RDFISLLRTA <mark>H</mark>	GEKKI
Ver	MGK-HEKGSSKDLAN	RTKS <mark>KGL</mark> QKI	K <mark>FFCQMC</mark> QK	CRDANGFKCH	LTSEAHQRQ	LLLFAENSNSY	LRQ <mark>FS</mark> ND <mark>F</mark> EK	(NFMQLLRTSY	GTKRV
Neurospore	MPK-AEVGSAKYLAN	KMKSR <mark>GL</mark> NRI	RWYCQLCEKS	CRDENGYKMH	CQSP <mark>SH</mark> TAK	ALEAGANFKGV	QDT <mark>FS</mark> DQ <mark>F</mark> LK	DFIAQLKTS <mark>H</mark>	GEKEI
Levure	MADYDSAKYWSK	QGARR <mark>GL</mark> QK1	RYYCQICQR	CKDANGFQSH	NKSP <mark>SH</mark> LRK	ISQVTAEDAR-	RYNIQFEK	(GFLQLLKQR <mark>H</mark>	GEKWI
Humain	MGK-SDFLTPKAIAN	RIKSK <mark>GL</mark> QKI	.R <mark>wycomcoky</mark> mc « doi	ocrdengfkce otif prédi gt de zin	смзезн _о ро t с »	LLLASENPQQF	moyfseefrn région N motif V	^{IDFLELLRRRF} I-termina <i>Vinged H</i>	_{gtkrv} Ie du Ielix
	•				Кз —				
					+		— К2 -		

\rightarrow étude structurale du domaine K3 par RMN

Etude structurale de la région 51-160 de KIN17

Etude du domaine K3 de KIN17 par RMN

Le « doigt de zinc » a-t-il une position préférentielle autour du domaine « Winged Helix » ?

comparaison des déplacements chimiques des groupements amides du *Winged Helix* entre K2 et K3

cartographie des déplacements chimiques ¹H-¹⁵N

Etude structurale de la région 51-160 de KIN17

Etude du domaine K3 de KIN17 par RMN

Etude structurale de la région 51-160 de KIN17

Etude du domaine K3 de KIN17 par RMN

→ positionnement du Winged Helix au niveau de la surface ultra conservée

Contexte biologique

Caractérisation structurale par RMN et Modélisation Moléculaire

Relations structure-activité

Conclusions et perspectives

Etude structurale de la région 51-160 de KIN17

Conclusions

- K2 adopte un repliement *Winged Helix*
- incapacité structurale de lier l'ADN selon les modes de reconnaissance connus
- études biochimiques : pas de liaison à l'ADN ni à l'ARN
- surface fonctionnelle conservée, implication interactions « doigt de zinc »

Perspectives

étude structurale de K3 : rôle du Winged Helix ?
 → rôle structural, fonctionnel ?

- SAXS : reconstituer la structure de la protéine entière
- recherche de partenaires biologiques
- Caractérisation de l'interaction du *Winged Helix* avec des partenaires biologiques par RMN