
HAL Id: tel-00121655
https://theses.hal.science/tel-00121655

Submitted on 21 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conditional Scheduling Strategies Using Timed
Automata

Abdelkarim Aziz Kerbaa

To cite this version:
Abdelkarim Aziz Kerbaa. Conditional Scheduling Strategies Using Timed Automata. Modeling and
Simulation. Université Joseph-Fourier - Grenoble I, 2006. English. �NNT : �. �tel-00121655�

https://theses.hal.science/tel-00121655
https://hal.archives-ouvertes.fr

��� ����� �� 	
����

����� � ����
��� �
� ���� ��� � �� ���
�
��� � ���� ����

THÈSE

���� �� ����� �� Docteur

de l’université Joseph Fourier !"#!� �!$� % Informatique

&'(&)'(*)+ ,)- .')/.0'* 1234567 8 49:/0/+/ 4567
École Doctorale Mathématiques, Sciences et Technologies de l’Information,

Informatique

��;"�$<;� �< "��<�$�� ��=�!>��?�$< �� @ A#<�=�� @BBC ���
Abdelkarim Aziz KERBAA49D(90*+' E F(/)/ *9 3*GH*'GH* I& (')/0.99*,,*

J26 49K.'L)/0M+*
J26 3*GH*'GH* I& (')/0.99*,,*

TITRE

NOPQORS TUV W XYPWZ[[Q[\U]U[O ^Z[WTO TZ[[U__UV

`OT_TVQ[O WUV abOZ] QOUV cU]dZPTVRV

JURY

e$�<��! fAg fhij fk l�;"!��$<
m�!# nghhmo k n�����<���

m��p$� e ienfo k n�����<���
A��� qermn k !��#<��� �� <sp"�

q��!�" ���� tAuve k w�x�!��#<��� �� <sp"�
y�"? !$� et m ezq k m{�? !$�<���

2

^Z[WTO TZ[Q_ N\�UWb_T[S NOPQOUS TUV `VT[S c T]UW

abOZ] QOQ

e=������!? e � !� jmntee

A#<�=�� @ k @BBC

Remerciements

Je voudrais exprimer ma gratitude à Oded Maler, Directeur de Recherche au

CNRS et chercheur au laboratoire Verimag, pour m’avoir donné l’opportunité de

faire cette thèse. Je le remercie en particulier pour sa disponibilité et pour les

longues discussions qui ont permis de jeter les bases de modélisation de ce travail.

Ce fut la période où il fallait se montrer très engagé par rapport aux Automates

Temporisés. Je le remercie d’avoir toujours été impliqué dans mon sujet et de la

liberté et l’autonomie qu’il a fini par m’accorder pour mener mes recherches dans

des directions qui me plaisaient particulièrement et qui m’ont permis d’aboutir

aux types de résultats que je voulais au départ pour cette thèse. Tout ceci, m’a

permis donc de porter un double regard sur les problèmes d’ordonnancement, un

qui tient plus à l’informatique et basé sur les automates, puis l’autre qui trouve

aussi son originalité dans certains aspects de la Recherche Opérationnelle, ma dis-

cipline d’origine, et c’est heureux . . . Enfin, voilà Oded, merci pour tout.

Je me dois de remercier particulièrement Marius Bozga, Chercheur à Verimag

pour avoir accepté de co-diriger cette thèse. Il a toujours montré sa disponibilité et

fait preuve de beaucoup de patience lors des discussions souvent longues concer-

nant mes recherches. Par ses conseils avisés et son grand savoir faire en matière

d’implémentation, et les cours qu’il n’a pas hésité à me donner au début, j’ai ap-

pris à mieux concevoir mes programmes, ce qui m’a permis de bien mettre en

oeuvre mes résultats de recherches. Je le remercie d’avoir été à l’écoute des idées

que je pouvais proposer, d’avoir su encourager les orientations que j’ai pu donner

à mes recherches et pour ses critiques constructives appréciables qui ont permis de

faire aboutir cette thèse. Ce fut pour moi un privilège et un grand plaisir d’avoir

travaillé dans une ambiance toujours joviale avec un esprit aussi instructif. Merci

Marius, merci beaucoup.

Je tiens à exprimer ma reconnaissance à Anatoli Iouditski, Professeur à l’Uni-

versité Joseph Fourier, pour m’avoir fait l’honneur de présider le jury de cette

thèse.

Je remercie Eric Rutten, Chercheur à l’INRIA, pour avoir accepté d’examiner

4

ce travail.

Eugène Asarin, Professeur à l’Université Paris 7 et ancien membre de l’équipe,

trouvera ici l’expression de mes remerciements.

Je n’aurai garde d’oublier tout le personnel administratif de Verimag, de l’école

doctorale et de la bibliothèque de l’IMAG.

Je remercie toutes les personnes sympathiques parmi mes camarades thésards

et autres, pour toutes les pauses café passées à parler d’informatique, d’avenir, du

temps qu’il va faire demain, des choses de la vie, de tout et n’importe quoi, ainsi

que tous ceux parmi les chercheurs qui m’ont témoigné leur sympathie au cours

de mon séjour scientifique parmi eux.

Plus personnellement, je remercie mes amis de Grenoble et les personnes que

j’ai pu rencontrer, je ne peux tous les citer, qui m’ont témoigné leur affection et

leur sympathie durant ce séjour, spécialement ceux que j’ai connu à la cité uni-

versitaire du village olympique et à la résidence Ouest, pour les heureux moments

qu’on a pu partager et toutes les sorties qui m’ont permis d’oublier le stress de

cette pénible épreuve.

� ������ ���� 	
 � � ��
 �
���� � � �� ������� � � �� � ���� ��
� �
�� �� ��
���
 �� ���

��
� �
 ���� �� � �� �
��
� � � ���� 	
 ���� ��� �
 � � ���� �� ��
��� ��� ���� ��� � �
�
�

����� 	
 ���� ���
���� ���� � ���� ���� ��� �� �� ������� � ����
���� �� ��� �� ��
��
�� ���� �� ������ ��� ����� 	
 � � ���� ������� �� � ��
���� �� �� � �����
��� � ������� �

�
 ! ��� �� � ������ " �
� �� � � � ��� ! ��� 	
 � �
���� ��
� �� ��� ��� �� ��
� ��� ��� �
���
��� ��� ��� �
��
 ����� 	
 �" ��
� ��� � �� ���� �� � � ! �� �� ���

Table des matières

� ���������	�� �

� �
�
�� ������� ���� ����� ���
������ !

" #$%& '�$() *�)+��,	�- �.

2.1 Problem Definition . 19

2.2 Types of Schedules . 23

 /��+,	�- #$%& '�$() *�)+��,	�- ".

0 12$�� 3 ,-��	�)4 % 5�� *)���+%� 6$�)
7

4.1 Basic Definitions . 37

4.2 Path Enumeration Algorithms . 40

4.3 Non-Enumerative Algorithms . 44

4.4 Depth-First Shortest Path . 46

8 9+��	%�	� 3 ,-��	�)4 % 5�� *)���+%� 6$�) 8�

5.1 How to Direct the Search . 51

5.2 Best first BF . 52

5.3 Best-first DF . 53

5.4 Bounded-width Best-first BF . 54

5.5 Best-first DF with Non-standard Backtracking (DFSBT) 55

5.6 Estimation function for DAG scheduling 60

5.7 Experimental Results . 62

5

6 TABLE DES MATIÈRES

�� ���
������ ���
� ���
������� �!

� ����	�	��$, 6�+�+�+��+ '�$()% �.

6.1 The problem . 69

6.2 Non Clairvoyant Scheduling . 71

6.3 Conditional Precedence Graphs . 74

6.4 Feasible schedules . 76

7 /��+,	�- �6' *�)+��,	�- 6��� ,+4 ��

7.1 The basic model . 81

7.1.1 Modeling ordinary tasks . 82

7.1.2 Modeling Boolean tasks . 83

7.1.3 The Global Model . 84

7.2 Global Model as Game Graph . 85

7.3 Non Lazy Strategies . 89

7.3.1 Types of strategies . 90

7.3.2 Greedy strategies . 92

7.3.3 Restricting to non-lazy strategies 94

7.4 Chain Decomposition . 97

� *)���+%� *��$�+-	+% 	� '$4+ '�$()% �� �

8.1 Exact algorithms . 102

8.1.1 Depth first min-max . 102

8.1.2 Other method : Breadth first à la Dijkstra 105

8.1.3 Domination relations . 106

8.2 Heuristic : Depth First Search with selective Backtracking 108

8.3 Estimation Functions for Conditional Scheduling 113

8.4 Experimental Results . 119

. ����,�%	�� �"�

Introduction

Le problème d’ordonnancement optimal peut être défini comme étant la re-

cherche d’une allocation des ressources sur l’axe de temps pour exécuter un en-

semble de tâches afin de minimiser certains critères sous certaines contraintes.

C’est un problème d’optimisation combinatoire dont l’essence est l’ensemble des

tâches et des ressources. Les problèmes d’ordonnancement viennent de la Re-

cherche Opérationnelle et sont formulés dans différents contextes, les plus représentatifs

étant les systèmes informatiques, la productique et l’ordonnancement de projets

[Bak74, Jr.76, Pin95, BEP+96, Bru97].

Les contraintes de précédences constituent une partie importante de tout problème

d’ordonnancement et surgissent dans différents domaines. Elle peuvent être uti-

lisées en productique pour exprimer un ordre technologique comme par exemple

dans le problème d’ordonnancement d’ateliers de type job-shop [Fis73], ou peuvent

surgir sous forme de dépendance entre tâches dans le contexte de l’ordonnance-

ment de projets ou en programmation parallèle [Gra66, Man67, ACD74, KI99b,

TKK00]. Les contraintes de précédences ont deux représentations classiques uti-

lisant les graphes orientés sans circuit (DAG pour
� ������� � �� ���� ���� �

). La

première est le graphe
���� ���
�����

, où les arcs représentent les tâches et les

noeuds représentent des évènements temporels dans un ordonnancement. La deuxième

est le graphe
���� ���
�����
� où les noeuds correspondent aux tâches et les arcs

capturent les précédences entre ces dernières. La première est principalement uti-

lisée dans le contexte d’ordonnancement de projets [TP78, Weg99], alors que la

dernière est largement utilisée en productique ainsi qu’en ordonnancement de pro-

grammes informatiques [Jr.76, Pin95, BEP+96, Bru97]. Aussi, en programmation

parallèle, le DAG est un modèle abstrait employé pour représenter le diagramme

de flots de données et est habituellement extrait automatiquement du programme

7

8 TABLE DES MATIÈRES

pendant la phase de compilation.

Les méthodes exactes pour résoudre le problème d’ordonnancement DAG sont

essentiellement basées sur la programmation dynamique [RCG72] et la program-

mation mathématique. Cependant, ce problème étant NP difficile au sens fort

[GJ79], il demeure impossible (à moins que P=NP) de le résoudre de manière

polynomiale, ni même de lui trouver un schéma d’approximation pleinement poly-

nomial. C’est pourquoi un bon nombre de recherches ont été menées dans l’objectif

de trouver des solution proches de l’optimum dans un temps relativement raison-

nable [Gra66, Man67, ACD74, TKK00]. La plupart de ces méthodes sont basées

sur les algorithmes de listes de priorités.

Un cadre de travail pour exprimer et résoudre les problèmes d’ordonnance-

ment en utilisant les automates temporisés a été développé au cours des dernières

années [Abd02], [AAM06], [AM02]. L’automate temporisé [AD94] est l’outil na-

turel pour modéliser l’évolution de l’

���

du problème d’ordonnancement comme

résultat d’actions discrètes (commencement et terminaison d’une tâche) et du pas-

sage de temps. Des outils tels que Kronos [Yov97], IF [BFG+99, BGM02] et Up-

paal [LPY97] exploitent le fait que le problème d’atteignabilité pour les automates

temporisés est décidable et est ainsi justiciable à l’algorithmique de vérification

(model-checking). Bien que la motivation initiale pour les automates temporisés

fût la vérification des propriétés qualitatives, ce travail donnera une évidence addi-

tionnelle quant à l’applicabilité de tels modèles à certains problèmes d’ordonnan-

cement de programmes, qui suggèrent parfois une meilleure qualité de solutions

que celle basées sur les listes de priorités.

En pratique, il existe des situations habituelles qui présentent de l’incertitude

par rapport à l’ensemble des tâches devant être exécutées. Par exemple, on peut

avoir le cas où les tâches doivent être ordonnancées seulement sous certaines condi-

tions bien spécifiques. Cette situation est typique des programmes contenant des

instructions
�! ��� �� ���� �

. Malheureusement, le modèle basique du graphe de tâches

ne capture pas de tels comportements conditionnels. L’incertitude conditionnelle

dans l’ordonnancement des programmes a retenu plus d’attention ces dernières

années ; les lecteurs intéressés peuvent trouver des résultats préliminaires dans

[KW00].

TABLE DES MATIÈRES 9

Dans cette thèse nous considérons le problème de l’ordonnancement efficace

des programmes conditionnels sur une architecture de processeurs homogènes

et parallèles. Nous introduisons une nouvelle représentation appelée Graphe de

Précédences Conditionnel (CPG pour
 ���������� � ������� �� ���� �

), qui est une

extension du modèle DAG pour représenter le problème d’ordonnancement condi-

tionnel. Cette représentation couvre deux types de contraintes : contraintes de

précédences et contraintes d’activation. L’approche traditionnelle de la program-

mation par contraintes a été employée pour résoudre un problème similaire dans

[KW02]. Dans ce travail, nous étendons le cadre de travail des automates tem-

porisés pour modéliser et résoudre le problème d’ordonnancement conditionnel

[BKM04]. L’espace d’états est représenté par un automate de jeux temporisé défini

comme un produit d’interaction d’automates pour chaque tâche et dans lequel on

cherche des stratégies pire cas optimales. Plusieurs techniques de recherche sont

proposées et évaluées. En outre, pour améliorer l’efficacité d’une telle approche,

nous présentons de nouveaux résultats théoriques concernant les propriétés de do-

mination entre différents types de stratégies, et qui seront utilisés pour renforcer

le modèle initial dans le but de restreindre l’espace d’état de recherche. Nous in-

vestiguerons l’efficacité d’une telle méthodologie d’un point de vue expérimental

sur un ensemble de benchmarks, puis nous apporterons un nouveau résultat d’ap-

proximabilité afin de montrer la qualité des solutions obtenues d’un point de vue

théorique.

Organisation de la thèse

La thèse comporte deux parties. Dans la première on étudie l’ordonnancement

sur graphe de tâches
�
���� ������

. Cette première partie est organisée comme suit :

Chapitre 2 : On introduit le problème d’ordonnancement sur graphe de tâches

déterministe. Différents types d’ordonnancement sont décrits, formalisés et clas-

sifiés selon un critère de domination. Enfin, la qualité théorique des ordonnance-

ments de listes est donnée.

Chapitre 3 : Ce chapitre décrit notre approche globale. Celle-ci consiste à

transformer le problème en produit d’automates tel que les traces d’exécution

10 TABLE DES MATIÈRES

dans l’automate global correspondent aux ordonnancements réalisables.

Chapitre 4 : Ce chapitre donne un rappel sur les techniques exactes de re-

cherche de plus court chemins dans un graphe acyclique positivement pondéré.

Chapitre 5 : Ce chapitre présente plusieurs heuristiques basées sur une re-

cherche guidée qui permet de trouver de bons chemins en un temps relativement

raisonnable. La fonction d’estimation utilisée est décrite ainsi que ses propriétés.

Enfin, les résultats expérimentaux sur des exemples de benchmarks sont présentés

à la fin du chapitre.

Dans la seconde partie du document, du
��� ��
���� ����� � est introduit dans le

problème. Le type d’incertitude qu’on étudie provient du fait que l’ensemble des

tâches devant être exécutées dépend essentiellement du résultat d’autres tâches

qui ne devient connu qu’après leurs terminaison. C’est une situation typique des

programmes contenant des instructions
�! ��� �� ���� �

. Cette seconde partie est or-

ganisée comme suit :

Chapitre 6 : Ce chapitre introduit le problème aux travers d’un exemple de pro-

gramme. Après avoir donné la façon d’ordonnancer (clairvoyant vs. non-clairvoyant),

on donne le modèle CPG qui sert à spécifier le programme avec une sémantique

opérationnelle bien définie.

Chapitre 7 : Ce chapitre présente le modèle d’automates temporisés augmentés

par des automates booléens, qui sera ensuite réduit en se focalisant sur les ordon-

nancements non-lazy et immédiats sur un graphe de jeux orienté et pondéré. Des

propriétés de domination entre les différents types de stratégies sont montrées ainsi

qu’une preuve formelle montrant que la déviation des stratégies
���� �������

de

l’optimum est au maximum 2. Enfin, on présente l’adaptation de la décomposition

en châınes pour un codage efficace de l’automate produit.

Chapitre 8 : Ce chapitre décrit les algorithmes exacts et approchés de recherche

dans les graphes de jeux. Il présente les façons les plus prometteuses de recherche

en avant sans avoir à construire tout le graphe. La recherche est guidée par une

TABLE DES MATIÈRES 11

fonction d’estimation qui est expliquée en détail ainsi que ses propriétés. Enfin,

les résultats expérimentaux et théoriques sont présentés afin d’évaluer la qualité

des ordonnancements obtenus par notre approche.

12 TABLE DES MATIÈRES

Chapitre 1

Introduction

The problem of optimal scheduling can be defined as searching for an alloca-

tion of ressources over the time axis to execute a set of tasks in order to minimize

some criterion under some specific constraints. It is a combinatorial optimiza-

tion problem for which the essence are tasks and ressources. The scheduling pro-

blems come from Operational Research, and are formulated in several contexts,

the most representative being computer systems, manufacturing and project sche-

duling [Bak74, Jr.76, Pin95, BEP+96, Bru97].

Precedence constraints are an important part of any scheduling problem and

arise in different areas. They can be used in manufacturing to express a technolo-

gical order like in the job-shop scheduling problem [Fis73], or may rise up in the

form of tasks dependencies in the context of project scheduling or parallel pro-

cessing of computer programs [Gra66, Man67, ACD74, KI99b, KI99a, TKK00].

Precedence constraints have two classical representations using directed acyclic

graphs (DAG). The first one is the task-on-arc graph, where arcs stand for tasks

and nodes represent time events in a schedule, and the second is the task-on-

node graphs where nodes correspond to tasks and arcs capture precedence bet-

ween them. The former is principally used in the context of projects scheduling

[TP78, Weg99], while the latter is widely used in manufacturing and computer

scheduling problems [Jr.76, Pin95, BEP+96, Bru97]. In parallel processing, the

DAG is an abstract model used to represent the dataflow chart of the program

and is usually extracted during the compilation process.

Exact methods for solving DAG scheduling problem are essentially based on

13

14 CHAPITRE 1. INTRODUCTION

dynamic programming [RCG72] and mathematical programming. However, since

this problem is shown to be strongly NP hard [GJ79], it is impossible (unless

P=NP) to solve it polynomially, or to get a fully polynomial time approximation

scheme. This is why a large body of research was conducted toward getting near

optimal solutions within a reasonable execution time [Gra66, Man67, ACD74,

TKK00]. Most of these methods are based on list scheduling.

In the last couple of years a framework for expressing and solving scheduling

problems using timed automata has been developed [Abd02], [AAM06], [AM02]

and have been applied successfully to different case studies [NY00, BF01]. The

timed automaton [AD94] is the natural tool for modeling the evolution of the
�����

of the scheduling problem as a result of discrete actions (starting or ending

a task) and of the passage of time. Tools such as Kronos [Yov97], IF [BFG+99,

BGM02], and Uppaal [LPY97] exploit the fact that the reachability problem for

timed automata is decidable and hence can be subject to algorithmic verification

(model-checking). Although the initial motivation for TA models was verification

of qualitative properties, as for example in reactive systems [KY03, ACMR03,

MR02, AGS02], this work will give additional evidence for the applicability of such

models to certain problems of programs scheduling, which suggest, sometimes, a

better quality of solutions than classical approaches based on priority lists.

In real world applications, there are usual situations that present uncertainty

with respect to the set of tasks to be executed. For example, it may be the case

that tasks have to be scheduled only under some specific conditions. This typical

situation is in scheduling of programs containing
�! ��� �� ���� �

instructions. Unfor-

tunately, the basic model of task graph do not capture such conditional behaviour.

Conditional uncertanty in program scheduling has retained more attention in last

few years ; readers interested can find some preliminary results in [KW00].

In this thesis we consider the problem of efficiently scheduling conditional pro-

grams on architecture of parallel homogeneous processors. We introduce a new

representation named Conditional Precedence Graph, which is an extension of

the DAG model, to represent conditional scheduling problem. In this represen-

tation, we have two types of constraints : precedence constraints and activation

constraints. Traditional constraint programming approach has been used to solve

similar problem in [KW02]. In this work, we extend the timed automata fra-

mework to model and solve conditional scheduling problem [BKM04]. The state

15

space is represented by a timed game automaton which is a product of interac-

ting automata for each task, and in which we search for the optimal worst case

strategies. Several search techniques are proposed and evaluated. In addition, to

improve the efficiency of such an approach, we present new theoretical results

concerning domination properties between different types of strategies, and will

use them to strengthen the initial model in order to restrict the state space search.

We investigate the efficiency of such a methodology from experimental side on a

set of benchmarks, and come up with a new approximability result in order to

demonstrate the quality of the obtained solutions from theoretical aspect.

Organization of the thesis

The first part of the thesis studies
������ �������

task graph scheduling. We

introduce the problem in Chapter 2 and present some known results about different

classes of solution and the the worst-case performance of (greedy) list scheduling.

In Chapter 3, we present timed automata and show how they can be used to

model the problemn and reduce its solution to finiding shortest paths in directed

weighted graphs. In Chapter 4 we survey exact algorithms for finding shortest

paths followed, in Chapter 5, by a discussion of several heuristics for guiding

the search with and without guarantee of optimality. Finally, we discuss their

theoretical quality and test their empirical performance on a set of benchmark

examples.

The second part is dedicated to the problem of conditional scheduling where

the set of tasks to be executed is not known completely in advance but becomes

known progressively as other tasks terminate. In chapter 6 we give the problem

statement and introduce the conditional precedence graph model. The modeling

framework based on timed game automata is presented in Chapter 7 as well as

classification of strategies and approximability results. Finally we present exact

and heuristic algorithms for searching game graphs with and without optimality

(Chapter 8) and test them on a set of examples.

16 CHAPITRE 1. INTRODUCTION

Première partie

Deterministic Task Graph

Scheduling

17

Chapitre 2

Task-Graph Scheduling

2.1 Problem Definition

In non technical terms, the problem of scheduling can be phrased as follows.

There is some quantity of work to be performed. This quantity is distributed over

several units of work that we call
�����

, each having a
�
������, the time it takes to

terminate it once started. Tasks are related to each other by
� ������� �� �����������

that prevent some tasks from being performed before other tasks have terminated.

The scheduling problem is to assign to each task an interval of time in which

it is executed while respecting the precedence constraints and optimizing some

performance measure, for example, the termination time of the last task (called

“makespan” in the context of job-shop scheduling). The mathematical object that

describes the tasks and their relationships is the
���� � ��� �

.

� +��	�	�� " �� �#$%& '�$() � � ���� � ��� � �� � ���� ��
G = (P,≺, d)

�
 �� ����

P = {p1, . . . , pm}
�� � � �� �! m

������
≺

�� � ������ � ������������ �������� �� P�� ������� ��� ���
d : P → N

�� � !
� ����� ����� ������� � �
������ �� ���� ���� �

In a world of unlimited resources, only the precedence constraints restrict the

times when tasks can be executed. Hence the optimal schedule can be obtained

by a greedy approach : start every task as soon as it is
�������

, that is, all its

predecessors have terminated. Such problems are common in project management

where the solution method is called Pert/cpm (critical path method). A critical

path is a path in the task graph whose sum of task durations is maximal. For the

19

20 CHAPITRE 2. TASK GRAPH SCHEDULING

2

1662

16 2

8

P1

P6

P7 P5

P4P3

P2

Fig. 2.1 – A task graph.

graph appearing in Figure 2.1 the critical path is p2 · p6 · p7 whose length is 20 and

hence no schedule can terminate all tasks before 20 time units. The computation

of the longest path is polynomial in the size of the graph. The Pert method also

assigns to each task an interval between the earliest time it can start and the latest

time it can start executing without affecting global termination time. The earliest

start time of a task is simply the length of the longest path leading to it. The latest

start time of a task which is not on the critical path depends on how much it can

be postponed without becoming critical, for example task p3 may start anywhere

in the interval [2, 12] and still terminate not later than p6. Needless to say, tasks

on the critical path admit no margins and any postponement beyond their earliest

start time will delay global termination.

The scheduling problem becomes much more difficult after the introduction of
��� �
��� �����������. Resources are re-usable objects (machines, containers) allo-

cated to tasks during their execution and cannot be used by more than one task

at a time. When their number is limited it may happen that two or more tasks are

ready for execution (in terms of precedence constraints) but only one of them can

execute because of a conflict on a resource. In that case, the scheduler must decide

to which task to give the resource and allow it to execute while letting the others

wait. Such decisions make the scheduler a much more complicated object (unlike

2.1. PROBLEM DEFINITION 21

the greedy scheduler when resources are unbounded) and renders the problem of

finding the optimal schedule NP-hard.

There are many versions of scheduling problems and we will focus in this work

on a commonly-used variant of the task-graph scheduling problem which is motiva-

ted by the execution of a computer programs on a parallel architecture consisting

of a fixed number of
���������

machines with negligible communication costs. In

this case the resource constraint is expressed by the number n of machines, and no

more than n tasks can execute simultaneously. It should be noted that our frame-

work applied to the task graph scheduling problem (with and without deadlines

and release times) initially in [Ker02] and taken again in [Abd02, AKM03], applies

as well to the case where there are different types of machines, like the job-shop

scheduling problem [AAM06]. We also assume that tasks cannot be preempted

once started but this assumption can be relaxed as well [AM02].

Before defining formally what feasible schedules are in this setting, let us note

that the structure of the task graph imposes by itself a limit on the number of

simultaneously executing tasks. The
� ����

of a partial order relation is the maximal

number of uncomparable elements, and since the order here means precedence, the

width of the task graph bounds the number of concurrent tasks. Hence beyond

that number, additional machines cannot improve the optimum.

Let us denote by Π(p) the set of immediate predecessors of p. Given a set

of n parallel identical machines, we look for a schedule that minimizes the total

execution time and respects both the precedence and resource constraints.

� +��	�	�� " �" ��+$%	� ,+ $�� �(�	4$, *�)+��,+%�
� ! ������� � �� ��
�� ! �� � ���� � ��� � G = (P,≺, d)

���
n
������ �� �� ������ �� �� ��

�� � !
� ����� st : P → R+
���������� �� � ����� ��� � �! ���� ���� � �� � ������ �������

� ������� �� � ��� ��� � �! � ���� �� en(p) = st(p) + d(p)
� � � �� ��
�� �� ! ������� �! ��

������ �� �

� � � ������� �� � ! �� ����� p, p′ ∈ P
�
p ≺ p′ ⇒ en(p) ≤ st(p′)

�

� � � �� �
���� � ����� t ∈ R+

������ �� �� � ��� n �� ��
���� ��������� �! �� � ! ���

[st(p), en(p)]
�

�� � ���� �� �! �� � � �� ��
�� ��
max{en(p) : p ∈ P}

� �� �� ��� �� � �� ��
�� �� �
� �� ��
�� �� �� � ���� �� �� � ���� ���

22 CHAPITRE 2. TASK GRAPH SCHEDULING

0 2 18 20 268 16

P1

P3

P2

P4

P5

P6

P7

(a)

0 2 18 20 268 16

P1

M1

M2

M3

P3

P6P7

P5P4

P2

(b)

Fig. 2.2 – (a) An optimal schedule of the task graph of Figure 2.1 when the

number of machine is unlimited. (b) An optimal schedule on 3 machines.

Note that the precedence constants constitute a
����
� ����� of

��� ���� �� �����������

of the form st(p)− st(p′) ≥ d(p), a special class of a convex linear program solved

easily by finding the earliest start time of each task. On the other, the resource

constraints (2) reduce eventually to a combination of constraints that disallow two

tasks to execute simultaneously : [st(p), en(p)]∩[st(p′), en(p′)] 6= ∅. Such conditions

are
����
� ������ of the form

st(p) − st(p′) ≥ d(p) ∨ st(p′) − st(p) ≥ d(p′)

rendering the set of feasible solutions highly non-convex with exponentially many

disconnected sets of feasible solutions. This is what makes the problem NP-hard.

The schedule of Figure 2.2-(a) is an optimal schedule for the graph of Figure 2.1

when the number of machines is unlimited and we have a distinct machine for each

task. Since the width of the graph is 3, the same schedule can be obtained using

3 machines, see Figure 2.2-(b).

On the other hand, if we have only 2 machines the number of enabled tasks

may exceed the number of available machines and the conflict should be resolved

2.2. TYPES OF SCHEDULES 23

0 2 8 2416 18 20 32 0 2 16 18 20 22 24 30 1820 8 24 26 28

P1

P2

P4P3 P5

P6P7

S1

P2

P4P1 P6 P7

P3 P5

S2 S3

P3

P1

P6P7

P4

P2

P5

Fig. 2.3 – Three feasible schedules of the task graph of Figure 2.1 on 2 machines.

by the scheduler. We can see in schedules S1 and S2 of Figure 2.3 that at t = 2, p2

is already occupying one machine where both p3 and p4 become enabled. Schedule

S1 gives the remaining machine to p3 while S2 gives it to p4. Unlike the case of

infinitely many machines, an optimal schedule may be obtained by choosing at

some point not to execute an enabled task. For example, schedule S3 achieves the

optimum while not starting task p2 immediately although it is enabled at t = 0.

2.2 Types of Schedules

In principle, the set of feasible schedules is an infinite and uncountable subset

of R
m
+ , for any instance of the task graph scheduling problem, because an arbitrary

amount of idle time can be inserted at any machine between adjacent pairs of tasks.

There are certain interesting finite subsets of the set of feasible, some of which are

guaranteed to contain the optimum and our algorithms will take advantage of this

fact. To explain these classes of schedules we need the following auxilary definition

of the well known
��! � �� �! �

.

� +��	�	�� " �
 ��+5� *)	5� � ���
st

�� � ! ������� � �� ��
��� � ! ������� � �� ��
��
st′

�� � ��! � �� �! � �! st
�! �� ��� �� � ����

p
�
 �� ����

st′(p) < st(p)
���

st′(p′) = st(p′)
! �� ����� p′ 6= p

� � ��! � �� �! � �� ����� �! ! �� ����� p′ 6= p
�

en(p′) ≤ st(p)
��� ����

en(p) ≤ st′(p)
�

Shifts and local shifts are best illustrated graphically using the Gantt chart that

corresponds to the schedule (see Figure 2.4). A shift just moves the execution

interval of p earlier (while maintaining precedence and resource constraints). A

local shift restricts this leftward “movement” of the interval by disallowing its left

endpoint to cross the right endpoint of another task. If st′ is a left shift of st, its

24 CHAPITRE 2. TASK GRAPH SCHEDULING

p1

p2

p3

p1

p2

p3

p1

p2

p3

Fig. 2.4 – A schedule, a local shift of p3 and a general shift of p3.

length is, of course, lesser or equal to the length of st. Given a schedule st, we say

that a task is
�������

at time t if en(p′) ≤ t for every p′ ≺ p. We are now in the

position to define various classes of feasible schedules.

� +��	�	�� " �0 �#�(+% �5 *�)+��,+%� � ! ������� � �� ��
��
st

�� �

� � ����� ��� �!
en(p) ∈ N

! �� ����� p �
� � ��� ������� �! �� ��� ��� � � ����� �� �! � �
� � � �� ������ �! �� ��� ��� � � �� �! � �
� � ������� �! �� ��� �� � � ��� � t

�� ����� �� � �
� ��� �! ����� � ����� �� �� �� ���
�� ��

n
��� �� ��� �� � ����

p
������� ��

t
�
 �� ����

st(p) > t
�

All these classes form an inclusion hierarchy where the class of greedy schedules

is the smallest. All classes except the greedy schedules are known to intersect the

class of optimal schedules for
�����

problem (see Figure 2.5). In the framework

of timed automata, these property of immediate and non lazy schedules has been

exploited in [Abd02, AAM06]1 to restrict the analysis of timed automata to a

finite (and relatively-small) number of runs.

Before describing our modeling framework we mention a known result concer-

ning the deviation of a greedy schedule from the optimum. When resources are

bounded, a greedy approach might miss the optimum. For example it might be

the case that a non-critical task p is enabled while a critical one p′ is not. Thus p

will get the machine and still occupy it when p′ becomes enabled. Postponing p′

1An exact reinvention of the well known active schedules (or left shifted schedules) used in

Operational Research, initially in the context of the job-shop, to restrict the search space to a

small set of schedules (cf. [Bak74] pp. 181).

2.2. TYPES OF SCHEDULES 25

Feasible

Integer

Immediate

Non lazy

Greedy

Optimal

Feasible

Integer
Immediate

Non lazy

Greedy

Optimal

Fig. 2.5 – The inclusion relation between schedule classes for a given problem.

For every scheduling problem there is a non-lazy optimal schedule. Some problems

admit a Greedy solution (right) and some problems do not (left).

may delay termination, and this could be avoided by a non-greedy schedule that

would let p wait and the machine idle, anticipating p′, and executing p some time

later. Since the Greedy solution is so easy to compute, it is worthwhile to compare

its performance with an optimal algorithm. In the literature greedy algorithms

are called
��� � � �� ��
����

and they are based on the following principles : at any

moment start as many tasks as you can. If the number of idle machines is smaller

than the number of enabled tasks than choose tasks according to a fixed priority

relation. Variants of list scheduling differ in the way the priority relation is defi-

ned but they all give an implicit priority to tasks that are already enabled. For

example in the
 ������� � ��� � �� ��
����

which is a variant of list scheduling, the

priority list is sorted by the non increasing order of the
��� ���

, where the level of

each task can be defined as the longest path from this task in the original task

graph. Ties are broken by preferring tasks that have more immediate successors.

The following result gives an upper bound on the performance of a greedy

schedule (employing any priority) compared to the optimal one. The following

proof is an adaptation from [DRV00].

#)+��+4 " �� �'�$)$4 ��'7"�� ���
G = (P,≺, d)

�� � �������� ������� � ��� �
�� �� � �� ��
��� �� m

������ �� � ���
Copt

max

�� � ���� �� �! �� � �� ��� �� � �� ��
��� ���

CL
max

�� � ���� �� �! � � �� ��
�� � �� �� �� � � ������� ��� � L �! G
� �� �� �� �� �� �

CL
max ≤ (2 − 1/m)Copt

max

26 CHAPITRE 2. TASK GRAPH SCHEDULING

Proof We first have to show the following lemma :

�+44$ " �� �� ��� �� ���� � ��� ����� �� ����
c
��

G
�
 �� ���� �

tm ≤ (m − 1) ×
∑

p∈c

d(p)

�� ���
tm

�� �� � ����� �� �� ��� ��

Proof Let pi1 the latest finishing task in the schedule i.e.

st(pi1) + d(pi1) = CL
max

Now consider t1 the largest instant smaller than st(pi1) such that there exists an

idle machine during the interval [t1, t1 + 1[(t1 = 0 if such a time step does not

exist). Since st(L) is a list schedule, no task is free at t1, otherwise the idle machine

would schedule it. In addition, it must be a task pi2 which is a predecessor (not

necessarily an immediate one) of pi1 that is being executed at time t1 ; otherwise

pi1 would have been started at time t1 by the idle machine. By the definition of

t1, we know that all machines are occupied between the termination of pi2 and the

beginning of pi1 .

We start the construction again from pi2 so that we obtain a task pi3 in a way

that all machines are occupied between the termination of pi3 and the beginning

of pi2 . Repeating the process, we end up with a set of l tasks pil, pil−1
, ..., pi1 that

forms a path c in G such that all machines are occupied except perhaps during

their execution. In other words, the idleness of some machines can only occur

during the execution of these l tasks, during which at least one processor is active

(the one that schedules the task). Hence :

tm ≤ (m − 1) ×
l

∑

j=1

d(pil)

.

We have,

m × CL
max = tm +

∑

p∈P

d(p)

which comes from a geometrical interpretation of the Gantt chart : its total rec-

tangular surface is m×CL
max can also be expressed by the sum of tasks durations

2.2. TYPES OF SCHEDULES 27

and the total idle time.

because every schedule is longer than the longest path, a-fortiori c we have

∑

p∈c

d(p) ≤ Copt
max

in addition,

∑

p∈P

d(p) ≤ m × Copt
max(we have equality if there is no idle time)

finally we obtain,

m × CL
max = tm +

∑

p∈P d(p)

≤ (m − 1) ×
∑

p∈c d(p) +
∑

p∈P d(p)

≤ (m − 1) × Copt
max + m × Copt

max

12$4(,+ " �� � ��
�� � �� �� ��� � ������� � �� ��
�� st
! �� �� � ���� � ��� � �! � �
�� � ��

�� � ������ �� �� ��� � � ����� ��! � �� �! � �� � �������� �� � � �� ��
�� st′
�� ����� �� ! ���

st
�� � � ����� ��! � �� �! � �! ���� p2

� ��
st′
� � � ��� �� ��! � �� �! � �� � �������� ��� �� ��

�� ��� ��� � ��� ���� ! �� �� �� �� ��� ��� �� ��� �� � � �� ��� �� � ����� � �� ��
���

28 CHAPITRE 2. TASK GRAPH SCHEDULING

1 4

1

2 2 2

4

4

p7

p4 p2 p3

p1

p5 p6

p8

Fig. 2.6 – A task graph

p3

p4

p8 p2

p6

p7

st p5

p5

p6

p7

p8

p4

p3

st′
p2

p1

p1

Fig. 2.7 – Possible schedules for the task graph of figure 2.6

Chapitre 3

Modeling Task Graph Scheduling

with Timed Automata

Our approach to scheduling consists in transforming the problem into a pro-

duct of timed automata such that the runs of the global automaton correspond

to feasible schedules, and hence the optimal schedule is the shortest run in the

automaton in terms of total elapsed time.

Timed automata [AD94] are automata augmented with continuous clock va-

riables whose values grow uniformly at every state. Clocks can be reset to zero

at certain transitions and tests on their values can be used as conditions for the

enabledness of transitions. Hence they are ideal for describing concurrent time-

dependent behaviors. Our definition below is an “open” version of timed auto-

mata which can refer to the states of other automata, ranging over Q′, in their

transition guards. The clocks constraints that we use are slightly less general than

in the standard definition of timed automata. Instead of considering a general

model using synchronizations, we choose this open version because it is sufficient

to capture precedence constraints.

� +��	�	��
 �� �#	4+� 3���4$��� �
�� �� �� ��� �� ��������� ��

A = (Q, C, I, ∆, s, f)
�� ���

	 Q
�� � � ���� � �� �! ������ �

	 C
�� � � ���� � �� �! ������ �

	 I
�� �� � ���� ��� ��������� ����������� � ��������� �� ����� q ∈ Q

� ����
� �����

Iq
�! �� �	
������� �! �� � ! ��� c ≤ u

� ! �� � �� � ����� c
��� ����� ��

u �

29

30 CHAPITRE 3. MODELING TASK GRAPH SCHEDULING

	 ∆
�� � ���������� �������� ���������� �! ���� ���� �! �� � ! ��� (q, φ, ρ, q′)

�� ���
	 q

���
q′
��� ������

�
	 φ = φ1 ∧ φ2

�� �� � ���������� �
��� �� ���
φ1

�� � ! ���
�� ����������� ��� �
�
�� �� �! �� �� ������ � �� �! ������ Q′ ��� φ2

�� � ����
� ����� �! �����������
�! �� � ! ��� (c ≥ l)

! �� � �� � ����� c
��� ��� � ����� �� l �

	 ρ ⊆ C
�� � � �� �! ������ �� �� ��� �� �

	 s
���

f
��� �� � ������� ��� � ��� ������� ���� ����� ��� �

A
����� ���
����� is a function v : C → R+ ∪ {0}, or equivalently a |C|-

dimensional vector over R+. A configuration of the automaton is hence a pair (q,v)

consisting of a discrete state (also known as
��������) and a clock valuation. Every

subset ρ ⊆ C induces a reset function Resetρ defined for every clock valuation v

and every clock variable c ∈ C as

Resetρ v(c) =

{

0 if c ∈ ρ

v(c) if c 6∈ ρ

That is, Resetρ resets to zero all the clocks in ρ and leaves the other clocks un-

changed. We use 1 to denote the unit vector (1, . . . , 1) and 0 for the zero vector.

A
����

of the automaton is one of the following :

– A discrete step : (q,v)
0

−→ (q′,v′), where there exists δ = (q, φ, ρ, q′) ∈ ∆,

such that v satisfies φ and v′ = Resetρ(v).

– A time step : (q,v)
t

−→ (q,v + t1), t ∈ R+ and v + t1 satisfies Iq.

A
�
�

of the automaton starting from a configuration (q0,v0) is a finite sequence

of steps

ξ : (q0,v0)
t1−→ (q1,v1)

t2−→ · · ·
tn−→ (qn,vn).

The
��� ���� ���� �� of such a run is n and its

� ����� ���� ��
is t1 + t2 + · · ·+ tn. Note

that discrete transitions take no time.

For every task p we build a 3-state automaton with one clock c and a set of

states Q = {p, p, p} where p is the
�������

state before the task starts, p is the
����� �

state where the task executes and p is a
� ���

state indicating that the task

has terminated. The transition from p to p resets the clock and can be taken only

if all the automata corresponding to the tasks in Π(p) are in their final states. The

transition from p to p is taken when c = d(p).

31

p1 p2 p3

c1 = 2 c2 = 16 c3 = 6

p
1
/

c3 := 0c2 := 0c1 := 0

p
1
/

c4 := 0

c4 = 16

p4

p
3
∧ p

4
/

c5 := 0

p5

p
1
∧ p

2
/

c6 := 0

c6 = 2c5 = 8

p6

c7 := 0

p
3
∧ p

6
/

c7 = 2

p7

p2

p
2

p3

p
3

p1

p
1

p4

p
4

p
5

p6

p
6

p7

p
7

p5

Fig. 3.1 – The automata for the task graph of Figure 2.1

� +��	�	��
 �" �#	4+� 3���4$��� 5�� $ #$%& � ��� ����� ���� p ∈ P
��� ���

� ������� ��� �� �
��� ���� ��
Ap = (Q, {c}, I, ∆, s, f)

� ���
Q = {p, p, p}

�� ��� �� �
������� ����� ��

p
��� �� � � ��� ����� ��

p
� �� � ������� ���������� ��� true

! �� p
���

p
���

c ≤ d(p)
��

p
� �� � ���������� �������� ∆

�������� �! �� � �� � ����������� �

start : (p,
∧

p′∈Π(p)

p′, {c}, p)

���

end : (p, c = d(p), ∅, p)

Note that the clock is active only in state p and its value in p is not important

as it is reset to zero before being tested. The automata for the task graph of

Figure 2.1 appear in Figure 3.1.

To obtain the timed automaton representing the whole scheduling problem we

need to compose the automata for the individual tasks. The composition takes care

of the precedence constraints by allowing an automaton to make a start transition

only when the automata for its predecessors are in their respective final states.

Mutual exclusion constraints are enforced by forbidding
���� ������ global states,

that is, states of the form q = (q1, . . . , qn) where more than m automata are in

their respective active states.

� +��	�	��
 �
 �/���$, 12�,�%	�� ��4(�%	�	�� � ���
G = (P,≺, d)

�� � ����
� ��� � ��� ���

Ai = (Qi, Ci, I i, ∆i, si, f i)
�� �� � �
��� ���� ������� ������ �� ����

32 CHAPITRE 3. MODELING TASK GRAPH SCHEDULING

����
pi
� �� ��� �
�
�� �� ��
���� ����������� ����
� ���

m
������ ��� �� �� � �
���

����� A = (Q, C, I, ∆, s, f)
�
 �� ����

Q
�� �� � ����������� �! Q1 × . . . × Qn ��

� �� ����� ������ ������� C = C1 ∪ . . . ∪ Cn � s = (s1, . . . , sn)
�
f = (f 1, . . . , fn)

� �� �
���� ��� ��������� ! �� � � ����� ����� q = (q1, . . . qn)

��
Iq = Iq1 ∧ . . . ∧ Iqn

��� �� �
���������� �������� ∆

�������� �� � �� � �
� ��� �! �� � ! ���

((q1, . . . , qj, . . . , qn), φ2, ρ, (q1, . . . , rj, . . . , qn))

�
 �� ���� �� � � �
��� ��� ���� �� ������ ��� � �� ����� ������� (qj , φ1 ∧ φ2, ρ, rj) ∈ ∆j

! �� � �� � j
���

φ1

�� ������ �� ��
(q1, . . . , qn)

�

In the automata derived from tasks, the formula φ1 in the guard for the start

transition specifies that the automata for the preceding tasks are in their respective

final states. This way runs of the product automaton satisfy precedence constraints

by construction. A run of A is
���� ���� if it starts at (s, 0) and the last step is

a transition to f . From every complete run ξ one can derive in an obvious way a

schedule where st(pi) is the time the starti transition is taken. The length of the

schedule coincides with the metric length of ξ. Note that the interleaving semantics

inserts some redundancy as there could be more than one run associated with a

feasible schedule in which several tasks start at the same time.

The construction just described, although it gives an exact representation of

the scheduling problem is very inefficient when implemented. Each global state is

represented as a 2n-tuple consisting of the state and clock of
�����

task automa-

ton. When we treat thousands of tasks, just scanning the states and generating

successors becomes a very heavy procedure. We take advantage of the fact that

the number of concurrently active tasks is bounded by the width of the graph,

and create a more efficient translation with fewer automata. The idea is to use an

automaton for a chain of linearly-ordered tasks. If p ≺ p′ than after terminating

p the automaton moves to state p′. If p′ has additional predecessors in another

chain, they are mentioned in the guard of its corresponding start transition. This

is formalized below.

� +��	�	��
 �0 ��)$	� � � ����� �� � ������� ���������� � �� (P,≺)
�� � �
�� ��

P ′

�! P
�
 �� ���� ! �� ����� p, p′ ∈ P ′ ���� �� p ≺ p′ �� p′ ≺ p

�

� +��	�	��
 �8 ��)$	� ���+�� � ����� �������� �! � ������� ���������� � �� (P,≺

)
�� � � �� �! ������ H = {H1, . . .Hk}

�����! ����

33

P2 P1

P6

P7 P5

P4P3

Fig. 3.2 – A chain covering of the task graph of Figure 2.1

� � � ���
Hi

�� � ��� ����� ������� �
�� �� �! P
�

� �
Hi ∩ Hj = ∅

� �
� i 6= j
� � ⋃

i≤k Hi = P

An example of a chain cover for our task graph appears in Figure 3.2.

The
�� ������ � �������� ��� of a task p ∈ Hi are the predecessors of p outside its

chain, that is,

Π′(p) = Π(p) ∩ (P − Hi).

Given a chain H = p1 ≺ p2 ≺ · · · ≺ pk its automaton consists of a pair of states

{pi, pi} for every pi and a final state f . The start transition from pi to pi is then

enabled if for every j 6= i and p′ ∈ Π(P) ∪ Hj , the automaton for the chain Hj is

in a state beyond p′. We denote this condition by :
∧

p′∈Π′(p)

> p′.

The resulting automata appear in Figure 3.3. Applying the mutual exclusion com-

position to the chain automata we obtain an automaton isomorphic to the product

of the task automata with the same properties with respect to feasible schedules.

It is worth mentioning that chain covers are related to the width of a partial

order via Dilworth’s theorem [Dil50].

#)+��+4
 �� �� 	,����) � �� � � ���� �! � ������� ����� �� �	
�� �� �� � � ���� ��
�
� ��� �! ������ � ����� �� ����� ���

34 CHAPITRE 3. MODELING TASK GRAPH SCHEDULING

c1 = 2 c2 = 6

c1 := 0 c2 := 0

f

p2

p2

c1 = 16

p6

p6

p7

p7

c1 = 2

f

p1

c2 = 2

p1

p3

c2 := 0

p3

p5

p5

c2 = 6

f

p4

p4

c3 = 16

> p1/c3 := 0

> p1/c1 := 0

> p3/c1 := 0 > p4/c2 := 0

Fig. 3.3 – The automata for the chain cover of Figure 3.2

Although the computation of the width and its associated cover is polynomial,

we do not compute it exactly but use a fast and simple algorithm to approximate it

[Ker02]. An exact algorithm is obtained via a transformation into a max-flow min-

cut problem, and the greedy algorithm used here and initially in [Ker02] constitutes

a good approximation [FRS03]. The use of chain automata improves significantly

the efficiency of the initial model in terms of size and analysis, particularily in

practice, because in the most of real applications we have to deal with task graphs

that have a very small width compared to the number of tasks.

Figure 3.4 depicts part of the automaton obtained by composing the automata

of Figure 3.2 when there are 2 machines. This automaton has only 3 clocks (the

number of chains in the cover). In the initial state, where tasks P2, P1 and P4 are

waiting, there are only two possible successors, to start P2 (state (p2 p1 p4)) or to

start P1 (state (p2 p1 p4)). The transition to the state (p2 p1 p4) is disabled because

task P1 has not terminated. No start transition can be taken from (p2, p3, p4)

35

because all the machines are occupied in this state.

As mentioned in Section 2, previous results [Abd02, AAM06] show that it is

sufficient to explore finite set of runs that correspond to non-lazy schedules in order

to find the optimum. However, the detection of a useless waiting that makes a run

lazy cannot always be done at the moment the
����

transition is taken. Suppose

we are in a global state q in which a task pi is enabled, a processor is available and

among the active tasks, task pj has the least remaining execution time d. If the du-

ration of pi is less than d then choosing to wait will clearly lead to laziness because

pi could be executed without blocking. If, however the duration of pi is larger than

d, the laziness depends on the number of tasks that may become enabled after

the termination of pj, their durations, their successors and so on. For this reason

we generate runs that correspond to the larger class of immediate schedules which

are easier to generate without lookahead : at every global state q in which there is

at least one free machine we generate a
�����

successor for each enabled task and

one
����

transition of duration d. Thus the whole problem can be reduced to fin-

ding the shortest path in a weighted acyclic graph which corresponds to these runs.

36 CHAPITRE 3. MODELING TASK GRAPH SCHEDULING

p2 p5 p4

p2 p3 p4p6 p1 p4 p2 p3 p4

p2 p3 p4

p2 p3 p4

p2 p3 p4p6 p3 p4
p2 p3 fp2 p3 p4

p6 p3 p4 p2 p5 p4p6 p3 p4 p2 p3 f p2 p5 p4

p6 p3 p4

p6 p3 f

p6 p3 f

p7 p3 f

p7 p5 f

p7 p5 f

p7 p5 f

f p5 f

p2 p5 p4

p2 p5 f

p2 p5 f

p6 p5 f

p6 p5 f

p7 p5 f

p7 f f

p7 f f

p2 p3 p4p2p1p4p6 p1 p4

p2 p1 p4

c2 := 0

c2 := 0

c2 = 2
c1 := 0

c1 := 0

c1 = 16

c2 := 0
c1 = 16

c2 = 2
c1 := 0

c2 := 0 c3 := 0

c3 := 0
c1 := 0

c1 := 0
c2 := 0 c3 = 16c3 := 0c1 = 16

c2 := 0
c2 = 6

c2 = 2

c3 = 16 c2 = 6

c3 = 16
c1 := 0

c2 := 0
c2 = 6

c1 = 16

c3 := 0

c1 := 0

c1 := 0
c2 := 0

c1 = 16

c3 := 0

p2 p5 fp6 p3 f

c1 := 0 c3 = 16 c1 := 0 c3 = 16

c3 = 16

c1 := 0

c1 = 2

c2 = 6

c1 := 0

c2 := 0

c1 = 2

c2 = 6

c3 = 16

c2 := 0

c1 = 16

c1 := 0

c1 = 2

c2 = 6

c1 := 0

c1 = 2
f f f

c2 := 0

p6 p3 p4

p6 p3 p4 p2 p3 f

p2 p1 p4 p2 p1 p4

Fig. 3.4 – The timed automaton obtained by composing the automata of Fi-

gure 3.3 for the case of 2 machines. The two runs corresponding to the schedules

S1 and S3 are indicated by the dashed and dotted lines, respectively.

Chapitre 4

Shortest Paths in Acyclic

Graphs : Exact Algorithms

In this chapter we survey various approaches for finding shortest paths in

acyclic graphs with non-negative edge weights. Although some of the concepts

and results carry over to more complex graphs, we ourselves to the type of graphs

that we use for modeling and solving our scheduling problems. Readers interested

by more detailed formalism can consult [Nil71, Zha99, CLRS01]

4.1 Basic Definitions

� +��	�	�� 0 �� �� 	�+��+� '�$() � � �������� � ��� � ��
G = (Q, δ)

�� ���
Q

�� �
� ���� � �� ���

δ ⊆ Q × Q
�� � � �� �! �������� ��� �� ���� � ��� ��� ������������

We denote the fact that (q, q′) ∈ δ by q → q′ and the fact that (q, q′) belongs

to the
��������� � ����
�� of δ by q ⇒ q′. We would like sometime to be able to refer

to a
�� ���� � ����

from q to q′, and since there are no multiple edges between any

two nodes, we can unify such a path with a sequence of states of the form

ξ = q · q1 · · · qk−1 · q
′ (4.1)

with k ≥ 1, also written sometimes as

q → q1 → · · · → qk−1 → q′.

37

38 CHAPITRE 4. EXACT ALGORITHMS FOR SHORTEST PATH

We use the notation q
ξ

=⇒ q′ to denote the fact that ξ is a path from q to q′ which

is defined recursively as

q
q·q′

=⇒ q′ if q → q′

q
ξ·q′

=⇒ q′ if ∃q′′ s.t. q
ξ

=⇒ q′′ and q′′ → q′

We say that a
����

such as (4.1) is of
��� ���� ���� �� k. A graph is acyclic if q 6⇒

q for every q and in this case ⇒ is a
������ � ������������ relation. Our graphs,

which are constructed (more or less) as direct products of chains admit some extra

properties. First, they have distinguished
�� �����

and
� ���

states, s and f which

are, respectively, the minimal and maximal elements of ⇒. Secondly, all paths

between a pair of nodes have the same number of edges, which eliminates the

possibility of δ including a pair (q, q′) which is connected by a longer path.These

graphs can be be partitioned into levels Q0, Q1, . . . , Qk such that Qi consists of all

nodes reachable from s by paths of length i. We use the term
���� �� ���� ��

for

them. We define the auxiliary
�
 ����� �� and

� �������� �� functions, respectively, as

σ(q) = {q′ : q → q′} and π(q) = {q′ : q′ → q},

and extend them to sets. Hence Qi = σ(Qi−1) = π(Qi+1). We call k the
��� ��

of

the graph. Paths in the graph admit the obvious
� ��� �

relation with ξ ≺ ξ · ξ′,

visulaizable in a tree form. Figure 4.1 depicts such a graph and an enumeration of

its paths.

� +��	�	�� 0 �" ��+	-)�+� � 	�+��+� '�$() � � � ���� ��� �������� � ��� � ��
G =

(Q, δ, w)
�� ���

(Q, δ)
�� � �������� � ��� � ���

w : δ → N
�� � ������ ���� � ������ �

� ��� �� ��� �� �

By transitivity we can lift w to paths by letting

w(ξ · q · q′) = w(ξ · q) + w(q, q′).

We sometimes write such weighted paths as

q
d1−→ q1

d2−→ · · · qk−1
dk−→ q′

Finally in our algorithm descriptions we will sometimes represent such paths as

sequences of
���
 �� ����� of the form

(q, v0) · (q1, v1) · · · (qk−1, vk−1) · (q
′, vk)

4.1. BASIC DEFINITIONS 39

f f f f f f f f

s

q1 q2

q4q3

q6q5

f

s

q1 q2

q3 q3q4 q4

q5 q6 q5 q6 q5 q6 q5 q6

Fig. 4.1 – A depth-4 ranked directed acyclic graph and the structure of all its

paths from s t of .

where v0 = 0 and vi = vi−1 + di, that is, vi = w(q · q1 · · · qi). A path whose first

state is s and last state is f is called a
���� ���� path. For every pair of states q

and q′ we let Π(q, q′) = {ξ : q
ξ

−→ q′} denote the set of paths from q to q′.

� +��	�	�� 0 �
 �6��+��	$, �����	�� � � � �������� !
� ����� ��� ������� � ��� � � ���� �
��� �������� � ��� � �� � !
� ����� V : Q × Q → N ∪ {∞}

��� � �� ��

V (q, q′) = min{w(ξ) : ξ ∈ Π(q, q′)}.

In other words, the potential function assigns to every pair of states the shortest

path between them. We adopt the convention that V (q, q′) = ∞ when Π(q, q′) = ∅.

A path ξ ∈ Π(q, q′) such that w(ξ) = V (q, q′) is called �� ��� ��.

� +��	�	�� 0 �0 ���%� �� ��4+ $�� '� � ��� � �������� � ���� ��� � ��� �� �� � !
� ��
����� ←

V
������������ �� ��� →

V
���������� �� ��� ��� � �� �� �

←

V (q) = V (s, q)
��� →

V (q) = V (q, f)

We want to compute the shortest path between s and f , that is,

V (s, f) =
←

V (f) =
→

V (s).

40 CHAPITRE 4. EXACT ALGORITHMS FOR SHORTEST PATH

4.2 Path Enumeration Algorithms

As
←

V (f) is the minimal cost over all complete paths we can just enumerate

and compare them. There are two common ways to perform the enumeration, by

exploring the graph either in the depth-first (DF) or the breadth-first (BF) order.

We will comment on the relative algorithmic advantages of those after we describe

them below. These algorithms are wasteful and impractical for graphs which are

not trees and are presented here for semantic and didactic purposes without trying

to “optimize” them.

The DF algorithm uses a
���� ����� �� � ��� �
�� �����

S, a data structure

that keeps elements ordered according to the temporal order in which they have

been inserted, and provides for removal and extraction of the
����

element.The

sequence of stack elements represents a path starting from s augmented with

additional information for search purposes. Stack elements are thus of the form

(q, v, L) where q is a node in the path, v is the cost of the path until q and L is the

list of the unexplored successors of q, that is, successors that lead to paths that

have not yet been generated. The operation Path(S) extracts from the stack the

corresponding path. The Push operation inserts elements at the end of the stack

and the Pop operation removes the last element. We assume a Last operation that

makes the last element accessible and manipulable without being removed.

3,-��	�)4 0 �� ��� 6$�) 1��4+�$�	�� �

4.2. PATH ENUMERATION ALGORITHMS 41

←

V (f) := ∞

Push(S, (s, 0, σ(s))

while S
�� � �� ��� �� do

(q, v, L) := Last(S)

if L = ∅ then

Pop(S)

if q = f ∧ v <
←

V (f) then
←

V (f) := d

OptPath := Path(S)

else

q′ :=
� �� � ���� ��� �� L

L := L − {q′}

L′ := σ(q′)

v′ := v + w(q, q′)

Push(S, (q′, v′, L′))

end

The set of all enumerated paths is illustrated in Figure 4.2. The algorithm is

under-specified with respect to the ����� in which the successors of a given node

are explored. When this order coincides with the left-to-right order in the figure,

partial paths are explored according to the order appearing in Figure 4.3-(a). The

content of the stack while visiting the path s · q1 · q4 · q5 · f is :

(s, 0, {q2}) · (q1, 3, ∅) · (q4, 5, {q6}) · (q5, 10, ∅) · (f, 13, ∅).

The breadth-first algorithm uses a
���� �� ��� �� � ��� �
�� 	
 �
� F which, like

the stack, maintains elements according to their insertion order but removes them

in the same order, that is, from the other side of the queue. The elements of F

are of the form (ξ, q, v) where ξ is a path leading to q, and v = w(ξ). Insertion

to the queue is done via the Enq operation while the Deq operation extracts and

removes the first element.

3,-��	�)4 0 �" ��� 6$�) 1��4+�$�	�� �

42 CHAPITRE 4. EXACT ALGORITHMS FOR SHORTEST PATH

s

q1 q2

q4q3

q6q5

f

3 1

7

3 6

2

6 5

7

3 2

5

3 1

623 7

6 667 75 55

23232323

s, 0

q2, 1q1, 3

q4, 7q3, 8q4, 5q3, 6

q6, 14q5, 12q6, 14q5, 13q6, 12q5, 10q6, 12q5, 11

f, 16f, 15f, 16f, 16f, 14f, 13f, 14f, 14

Fig. 4.2 – A weighted acyclic graph and the paths emanating from s. Each node

represents a unique path whose length is written inside the node.

15

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

1

132

3 8 14 19

4 6 9 11

5 7 10 12

17 20 22

16 18 21 23

(a) (b)

Fig. 4.3 – The order of path exploration according to DF path enumeration (a)

and BF path enumeration (b).

4.2. PATH ENUMERATION ALGORITHMS 43

←

V (f) := ∞

Enq(F, (s, s, 0))

while F 6= ∅ do

(ξ, q, v) := Deq(F)

if q = f then

if v <
←

V (f) then
←

V (f) := v

OptPath := ξ

else

for
����

q′ ∈ σ(q) do

Enq(F, (ξ · q′, q′, v + w(q, q′)))

end

end

Like the DF algorithm, this one is not specific about the order in which succes-

sors of a given node are generated. Assuming a left-to-right order among successors,

paths are generated according to the order depicted in Figure 4.3-(b). Note that

for graphs like ours, if both algorithms use the same order among successors, they

generate
���� ���� paths in the

��� �
order. Albeit the difference between DF and

BF order, both algorithms are similar in the sense that they start with (s, 0) and

accumulate the cost as they
� � ���� the path.

Both algorithms admit “reversed” versions that enumerate all the paths leading

to f (Figure 4.4) and compute the cost-to-go
→

V (s). These versions are obtained

by interchanging s by f and σ by π. This is equivalent to running Algorithms 4.1

and 4.2 on the reversed graph, the graph obtained by replacing every (q, q′) ∈ δ

by (q′, q) and flipping s and f .

Enumeration is an exponential process for any decent problem and these algo-

rithms are not practical. The DF algorithm has a relative advantage in terms of

memory usage as it keeps at most one complete path in memory at every moment,

while the BF algorithm may need to store an exponential number of partial paths

before reaching one complete path. Hence for prohibitively large graphs the DF

algorithm will, at least, always give
� �� � solution, optimal or not (provided, of

course, that the graph is acyclic).

44 CHAPITRE 4. EXACT ALGORITHMS FOR SHORTEST PATH

23

75 65

23 7 6 3 7 2 6

3 1 3 1 1313

s, 14 s, 16 s, 13 s, 15 s, 14 s, 16 s, 14 s, 16

q2, 15q1, 11q2, 15q1, 11q2, 14q1, 10q2, 15q1, 11

q4, 9q3, 8q4, 8q3, 8

q6, 2q5, 3

f, 0

s

q1 q2

q4q3

q6q5

f

3 1

7

3 6

2

6 5

5 7

3 2

Fig. 4.4 – All the paths leading to f .

4.3 Non-Enumerative Algorithms

Algorithm 4.1 and 4.2 compute and compare the cost-to-come for the final state

but not for intermediate states along the paths. The following principle [Bel57]

allows one to use much more efficient algorithms.

#)+��+4 0 �� ��+,,4 $� 6�	��	(,+ ��+,87�� ���
q′′

�� � ���� ��� ������ �� ��
�� ��� �� ���� ! ��� q

�� q′
� �� ��

V (q, q′) = V (q, q′′) + V (q′′, q′). (4.2)

Note that for a node q residing on an optimal
���� ���� path, (4.2) specializes into

←

V (f) =
←

V (q)+
→

V (q) =
→

V (s),

as can be demonstrated if Figure 4.5.

The Bellman principle can be rephrased as defining
→

V and
←

V recursively :

→

V (f) = 0
→

V (q) = min{w(q, q′)+
→

V (q′) : q′ ∈ σ(q)}
(4.3)

and
←

V (s) = 0
←

V (q) = min{
←

V (q′) + w(q′, q) : q′ ∈ π(q)}
(4.4)

4.3. NON-ENUMERATIVE ALGORITHMS 45

s

q1 q2

q4q3

q6q5

f

3 1

7

3 6

2

6 5

5 7

3 2

s

q1 q2

q4q3

q6q5

f

5

12

13

0

8

13

10

8

10

3

6

3 1

14

2

0

Fig. 4.5 – Cost-to-come (above each node) and cost-to-go (below each node) for

the example. The optimal path is denoted by thicker arrows.

These can be exploited for finding shortest paths without enumerating all

paths.We start with a BF algorithm which uses a FIFO queue F containing nodes

that need to be explored and an array
←

V that contains temporary and, eventually,

the final values of the cost-to-come. In this sense the algorithm is an incremental

realization of equation (4.3). Unlike the path enumeration algorithms, every node

is inserted only once into F , at the price of having to scan F each time a new

successor is generated.

3,-��	�)4 0 �
 ��� *)���+%� 6$�) �

46 CHAPITRE 4. EXACT ALGORITHMS FOR SHORTEST PATH

←

V (s) = 0
←

V (q) = ∞
! �� �� � q 6= s

Enq(F, s)

repeat

q := Deq(F)

for
�����

q′ ∈ σ(q) do

if q′ 6∈ F then

Enq(F, q)
←

V (q′) := min{
←

V (q′),
←

V (q) + w(q, q′)}

end

until F = ∅

The behavior of the algorithm on our example, when successors are generated

from left to right is illustrated in Figure 4.6. The correctness of the algorithm stems

from the fact that a node q reaches the front of the queue after all its predecessors

has been explored and the shortest path that leads to it has been determined.

Thus, at this point
←

V (q) is indeed its cost-to-come. Algorithm 4.3 can be viewed

as a specialized version of Dijkstra’s algorithm, adapted for ranked acyclic graphs,

whose complexity is linear in the size of the graph. For cyclic graphs one should

indeed use Dijkstra’s algorithm which is super-linear. For acyclic graphs which are

not ranked, one should first perform a topological sort and generate nodes in an

order consistent with the topological order, that is, never generate a node before

its predecessor. This comes for free for ranked graphs.

As in the path enumeration algorithms, the algorithm can be run backwards,

starting from f and using π instead of σ. In this case it will compute the cost-to-go

(See Figure 4.7) The backward version can be viewed as a specialization of the

Bellman-Ford algorithm for ranked acyclic graphs.

4.4 Depth-First Shortest Path

While the BF algorithm can be seen as an improved and non-redundant version

of the BF path enumeration, the DF algorithm described below differs from its

enumerative version in the sense that is computes the
��������� � rather then the

4.4. DEPTH-FIRST SHORTEST PATH 47

623 7

6 7

s, 0

q2, 1q1, 3

q4, 7q3, 8q4, 5q3, 6

q6, 12q5, 10q6, 12q5, 11

f, 13f, 14

32

55

13

Fig. 4.6 – Computing cost-to-come by forward BF, interpreted as selective path

enumeration. We show all valued nodes that have been computed, but at each

level, when there are several copies for a node q, we show only the successors of

the valued node (q, v) such that v =
←

V (q)

23

75 65

23 7 6

3 1

s, 13 s, 15

q2, 14q1, 10q2, 15q1, 11

q4, 9q3, 8q4, 8q3, 8

q6, 2q5, 3

f, 0

Fig. 4.7 – Computing cost-to-go by backward BF.

48 CHAPITRE 4. EXACT ALGORITHMS FOR SHORTEST PATH

cost-to-come and can be seen as an algorithmic realization of equation (4.4). To

explain why this is the only way to exploit Bellman’s principle in a DF manner,

let us look at the information obtained by a DF path enumeration algorithm after

having explored the paths s · q1 · q3 · q5 · f and s · q1 · q3 · q6 · f (see Figure 4.1). At

this point there is no node for which all the
�� ��� ��� paths have been exhausted

but all the paths �
�� ���� from q3 have been explored.

Hence the DF algorithm goes down from s to f and when it “backtracks”

from a node q it is an indication of having computed its cost-to-go, which is

communicated to its predecessor as a possibility for computing the cost-to-go of

the predecessor as in equation (4.4). The Bellman principle is exploited when q is

later reached via another path and its already-computed cost is used instead of

going down the graph again.

It is worth mentioning that the need to communicate the cost-to-go to one’s

predecessors corresponds to what is called in some programming circles
� ��� ���

�
����� where some computation needs to be done after backtracking, in contrast

with the
���� ���
����� inherent in the cost-to-come algorithm where accumulated

values are sent down. This type of recursion requires more information to be kept

on the LIFO stack which includes triples of the form (q, Current, L) where q is a

node, Current is its successor being currently explored and L is a set of unexplo-

red successors. In addition, the algorithm uses an array
→

V to store temporary and

final values of the cost-to-go as well as a bit-array Finished to indicate whether

the definitive cost-to-go of a node has already been computed.This prevents the

value function from being recomputed when a node is revisited.

3,-��	�)4 0 �0 ��� *)���+%� 6$�) �

4.4. DEPTH-FIRST SHORTEST PATH 49

→

V (f) := 0
→

V (q) := ∞
! �� ����� q 6= f

F inished(q) := false
! �� ����� q

Push(S, (s,⊥, σ(s)))

while S
�� � �� ��� �� do

(q, Current, L) := Last(S)

if Current = q′ then
→

V (q) = min{
→

V (q), w(q, q′)+
→

V (q′)}

if L = ∅ then

Finished(q) := true

Pop(S)

else

q′ :=
� �� � ���� ��� �� L

L := L − {q′}

Current := q′

if ¬Finished(q′) then

Push(S, (q′,⊥, σ(q′))

end

The behavior of the algorithm is illustrated in Figure 4.8 The DF algorithm is

linear in the number of nodes. Amateurs of duality can develop a “height-first-

search” version of this algorithm which computes cost-to-come by starting at f ,

going recursively to s and then propagating down.

This conclude the discussion on polynomial graph algorithms that work on

graphs that are small enough the be given explicitly using some representation

of δ or of its inverse (if we go backward). All this is very nice but not of much

help for many real problems, including ours, where the graph is given implicitly

as a product of many small graphs and the only viable solution is
��� to generate

the whole graph beforehand but rather on-the-fly, and explore as few nodes as

possible, without deviating too much from the optimum.

50 CHAPITRE 4. EXACT ALGORITHMS FOR SHORTEST PATH

s

q1 q2

q4q3

q6q5

f

3 1

7

3 6

2

6 5

7

3 2

5

3 1

623 7

6 75 5

23

s, 13

q2, 14q1, 10

q4q3q4, 8q3, 8

q6, 12q5q6, 2q5, 3

ff, 0

Fig. 4.8 – The behavior of the shortest path DF algorithm. Dashed nodes indicate

visits to nodes after their cost-to-go has been computed. The cost is written inside

nodes and (the explored part of) the optimal path is indicated by a thicker line

Chapitre 5

Shortest Paths in Acyclic

Graphs : Heuristic Algorithms

In this chapter we present several heuristic versions of the generic algorithms

of Chapter 4 in order to be able to find reasonable paths with bounded effort.

5.1 How to Direct the Search

Any search algorithm that does not run to completion, will be stopped after

having explored only a subset of the set of paths and partial paths in the graph.

It is our goal to direct the search toward interesting paths that are more likely to

give the optimum. At the end of our time-bounded search we want nearly-optimal

paths to be included in the explored subtree.

The most general situation where search guidance is manifested is the following.

We have two (or more, not necessarily distinct) partial paths ξ and ξ′ we have to

choose which one to explore further, that is, continue with some ξ · q or ξ′ · q′. Let

us use the cost-to-come notation
←

V (ξ) to denote the length of a path. We want to

define a measure of goodness for each of these paths according to which we make

our decision. A natural measure would be something of the form

E(ξ · q) =
←

V (ξ · q) + V (q)

where V (q) is some domain-specific function (see more details in Section 5.6) that

approximates somehow the cost-to-go
→

V (q), the length of the best path from q

51

52 CHAPITRE 5. HEURISTIC ALGORITHMS FOR SHORTEST PATH

s

q

q′

f

←
V (q′)

V (q)

· · ·

V (q′)

· · ·

←
V (q)

Fig. 5.1 – Choosing between ξ · q and ξ′ · q′.

to f (see Figure 5.1). In many cases V (q) <
→

V (q) for every q : it is a lower-bound

(optimistic estimation) of the cost-to-go. Note the
←

V (q) is “a bird in hand”,

something that we know that can be achieved while V (q) is a wishful thinking.

Let us call algorithms that, this way or another, use E to guide the exploration

as
������ ���

algorithms and see the possible best-first variations of the BF and DF

search strategies.

5.2 Best first BF

The standard BF algorithm explores paths in an order consistent with their

logical length, that is, all paths consisting of k transitions will be explored before

any path with k + 1 transitions (see the left part of Figure 5.2). This is a major

drawback of applying BF on large graphs because at some depth the number of

partial paths explodes and we do not have any complete solution.

A best-first version of BF (used in [Ker02] and [AKM03]) maintains the queue

ordered according to E. Let us consider first a degenerate version of E which

only summarizes the past without “predicting” the future, E(q) =
←

V (q). The

influence of using this E as a selection criterion on the exploration order, amounts

to deforming the path tree such that (vertical) distance between nodes corresponds

5.3. BEST-FIRST DF 53

3

1

3 2 7 6

5 6 75

6 6 5 7

2

3

23

3

3 2 2

3 1

623 7

6 67 75 55

23232323

6

Fig. 5.2 – From breadth-first (left) to best-first (right) : paths are explored accor-

ding to their metric, rather than logical, length.

to the length of the path between them (right of Figure 5.2). This way no path

is explored before any shorter path. In particular, the optimal path (thick line) is

not reached before all partial paths of smaller length) those above the horizontal

dashed line) are explored. This gives a slight improvement compared to standard

BF but not much. The reason is that any partial path which is explored deeper,

becomes inferior to a less developed path. Hence the BF nature of the search,

along with its main defficiency, is maintained.

Using E(q) =
←

V (q) + V (q) we can distinguish between two partial paths ξ · q

and ξ′ · q′ that have similar metric length but q is a more advanced state than

q′. However, the BF nature of the algorithm still remains. For example, when ξ is

much shorter than ξ′, we are most likely to have E(ξ · q) < E(ξ′ · q′) and we will

have to postpone the exploration of ξ′ and develop ξ. To direct the algorithm to

go “deeper” we need to discount the optimistic nature of V by letting E(q) =
←

V

(q) + (1 + α) · V (q) where α is parameter representing the fact the V (q) is an

optimistic estimation. The choice of α may depend on the structure of the problem,

for example on some ratio between the width of the task graph and the number of

machines that characterize the plausibility of realizing the optimistic estimation.

It may also depend on the length of the path so far.

5.3 Best-first DF

The unguided DF algorithm explores sons in an arbitrary order, for example

leftmost-first. Hence when run on a large graph, it will explore some leftmost

54 CHAPITRE 5. HEURISTIC ALGORITHMS FOR SHORTEST PATH

subtree of the search tree. Replacing the arbitrary order by a best-first order

(according to E), the explored paths will concentrate on the leftmost part of the

re-ordered search tree. Not surprisingly the pros and cons of DF are the opposite

of those of BF. It will produce many complete solutions but they will be all close

to each other : they will all make the same decisions at early stages and will differ

only in late decisions.

Another particularity of best-first DF is that it always compares
����� ���,

paths of the form ξ · q and ξ · q′. This property, combined with the particularity

of graphs originating from scheduling problems may lead to a situation where

E(ξ · q) = E(ξ · q′) for almost all q and q′. This is because
�����

transitions

do not affect
←

V and V immediately, but this can be fixed either by collapsing

several transitions or by using a more sophisticated E with some look ahead (see

Section 5.6). As noted there, the solutions produced by best-first DF will be similar

those produced by list scheduling in the sense that they will tend to prefer action

over waiting. This can be overcome by a more intelligent V that will take the

blocking effect of a
�����

action into account.

5.4 Bounded-width Best-first BF

This is the variant used in our previous work [Ker02, AKM03]. It attempts to

benefit from the advantages of BF (a diversity of paths) while avoiding explosion

in the number of paths. At each level Qi we select the best w paths, compute

their successors, and select the best w paths among them and so on. The number

w can be fixed or vary according to the level. Unlike DF, it is supposed to give

some chance to paths that are not so promising in the first steps but can prove

later to be good. However, upon closer inspection we see that the benefits of

waiting are manifested only when we go to some depth. Consider a good path

ξ = s · q1 · · · qk · · · f such that its prefixes up to s · q1 · · · qk are inferior to their

brothers and cousins in the corresponding levels. At early levels when the number

of paths is small, the prefixes of ξ may be included in the best w paths, but as we

go deeper, prefixes of ξ will have to compete with more and more cousins and are

likely to be removed from the queue.

5.5. BEST-FIRST DF WITH NON-STANDARD BACKTRACKING (DFSBT)55

5.5 Best-first DF with Non-standard Backtra-

cking (DFSBT)

If the previous section is an attempt to deform BF to become more depth like,

non-standard backtracking makes DF more breadth like. The idea is illustrated in

Figure 5.3. Suppose we go down along the leftmost (in terms of E) path. Instead

of backtracking to the brother of the last node, we compare all the brothers of

nodes along the path and backtrack to the best among them (note that they all

are maintained in the stack). When the graph is a tree it is relatively-easy to

see what goes on in terms of partial coverage of the path tree. Playing with the

discount factor, one can make the system backtrack to arbitrary levels and finish

the search with an interesting set of explored paths.

However when we deal with non-tree graphs a major difference with respect

to classic DF is manifested : there when you backtrack from a node, you have

computed its exact cost-to-go, and if you reach it through another path you can

use the memorized value instead of going down again. This is not the case with

non-standard backtracking.

Suppose that we backtrack to q′2 and then its best son is again q3. Now we

have several possibilities. We can take the value of q3 (which is based only on one

path emanating from q3) and add it to the cost-to-come of q′2. This is interesting

only if the path to q′2 is shorter than the path to q2. Alternatively we may use the

opportunity to explore other continuations from q′2. Which should we choose using

E and the information gathered from the explored path ? Using E in the strict

sense we will go down until the one before last branch and then take the brother of

the already-explored leaf. How to combine already-accumulated knowledge is not

a simple thing. One advantage of DF is that going down we discover something

about conflicts and bottlenecks that we do not see immediately. Is there a way to

summarize this knowledge in order to guide the search after backtracking ?

The algorithm can turn until no other neighbor path is better than the best

path gotten. Solutions hence found are not necessarily optimal (because of the

revisiting rule), but good.

Algorithm 5.1 is the main routine for DFSBT . It searches for an initial path

by invoking the procedure computePath from the root q0 of the graph. As long as

the stop condition is false, it backtracks to a selected node, computes new partial

56 CHAPITRE 5. HEURISTIC ALGORITHMS FOR SHORTEST PATH

s

q1

q2

q3

f

q′2

· · ·

Fig. 5.3 – Non-standard backtracking : after exploring s · q1 · q2 · q3 · · · f we may

backtrack to s · q1 · q
′
2.

path rooted at qchoice then improves the current path using propagateUpward if

the new propagated cost is less than the current one. The algorithm is linear in

the size of the graph and terminates with the best solution found.

Before giving the algorithm, let us introduce some notations :

q0 : the initial state (the root of the graph),

qsplit : the state where we want to update,

qchoice : the new choice that we want to make at qsplit

S(q) : the choice made for q. S(q) ∈ σ(q)

P (q) : the parent node for q, if q is in the current path

H(q) : the cost of the current path starting at q

T (q) : the time to reach q in the current path

3,-��	�)4 8 �� �� 5% � 	�) %+,+��	�+ �$�&��$�&	�- �

5.5. BEST-FIRST DF WITH NON-STANDARD BACKTRACKING (DFSBT)57

Algorithm
���� �

begin

computePath(q0,⊥, 0)

while
�
¬stop condition

�
do

qsplit := ⊥
�

qchoice := ⊥

findBackTrackNode(q0)

computePath(qchoice, qsplit, T (qsplit) + w(qsplit, qchoice))

if (H(qchoice) + w(qsplit, qchoice)) < H(qsplit))

S(qsplit) := qchoice

P (qchoice) := qsplit

propagateUpward(qsplit)

endif

end while

end

The procedure computePath goes down recursively from a node q and constructs

a complete path by selecting the best successor at every state using a selection rule

bestOf . The choice made at q is memorized in S(q). During the search process,

the cost-to-come for each explored node is computed and stored in T (q).

Several stop conditions have been implemented, and gives the algorithm an
������ � ��� ���

:

– no more improvement : the algorithm stops when all other backtracking

nodes have greater estimation than the cost of the best strategy found.

– time bound : the algorithm stops when a time limit is released.

– memory bound : the algorithm stops when no more memory is available.

6���+���+ 8 �� ���4(��+% $ 6$�) � +-	��	�- 5��4 $ ���+ �

58 CHAPITRE 5. HEURISTIC ALGORITHMS FOR SHORTEST PATH

Algorithm
����
��� ��� �q, p, t�

q
� �� � �
����� �����

p
� �� � ������ ����� �! q

t
� �� � ���� �� ��� � �� q

begin

P (q) := p

T (q) := t

if q
�� ���� ����

H(q) := 0

endif

if S(q) 6= ⊥
���
��

else

begin

q′ := bestOf(σ(q))

computePath(q′, q, t + w(q, q′))

H(q) := H(q′) + w(q, q′)

S(q) := q′

end

endif

end

Note that each time a node q is encountered, the condition S(q) 6= ⊥ is checked.

This prevents from re-exploring an already chosen node ; because the selection rule

is deterministic if leads necessarily to the same choice S(q) and finally to the same

cost H(q).

The backtracking rule consists of choosing the most promising node likely to im-

prove the current path among all the pending successors of each node in the current

Path.

6���+���+ 8 �" �*+,+��	�� �5 $ �$�&��$�&	�- +�-+ �

5.5. BEST-FIRST DF WITH NON-STANDARD BACKTRACKING (DFSBT)59

Algorithm
� ���� ��� ������ ����q��

begin

if q
�� ���� ����

return

else

begin
� ����� � ��� � ��� ����� q′ ∈ σ(q)\{S(q)}

if qchoice = ⊥ ∨ q′
�� � ��� � ��� ����� ���� qchoice

qsplit := q

qchoice := q′

endif

FindBacktrackingNode(S(q))

end

end

The procedure is guided by the selection of the most promising node according to

some estimation criterion. The estimation can be parameterized by the discount

factor α as shown in section 5.2.

The procedure PropagateUpward updates the values of the current path, and stops

at the initial state.

6���+���+ 8 �
 ��$�&�$�� (��($-$�	�� �

PropagateUpward(q)

begin

h := H(S(q)) + w(q, S(q))

H(q) := h

if P (q) 6= ⊥

PropagateUpward(P (q))

end

60 CHAPITRE 5. HEURISTIC ALGORITHMS FOR SHORTEST PATH

5.6 Estimation function for DAG scheduling

All algorithms presented in the present chapter use an estimation function in

the selection rule on the newly generated states. To be more specific, a state q in

the global automaton is a generalized section in the task graph. From q, we have a

finite set of possible actions, most of them are
�����

transitions for enabled tasks,

and one is a
����

transition that terminate one or more tasks, leading hence to a

new state. We can either use state-based or action-based measures. State based

measures are more suited to breadth first search because there we have to compare

successors of different states, while action-based measures are more suited for a

depth first search where we compare successors of the same state.

Simple estimation functions V (q) that give a lower bound on the time remai-

ning until termination from a state, can be obtained by relaxing some constraints

from the original problem. However, reader interested by more improved lower

bounds is refered to [HC94, JR94, FB73]. The first, µ, relaxes resource constraints.

It can be constructed by first associating with each task p the length µ(p) of the

longest path in the task graph from p to some terminal task. Then, the estimation

µ̄ of the value of the global state, is the maximum of µ over all tasks which are

waiting or active in this state, i.e. the tasks that are in the section of the task graph.

The estimation for each task can be computed as follow :

µ(p) = d(p) + max
p′:p≺p′

µ(p′).

From µ we can define first estimation function µ̄ over the states and clock

values of the Ap automaton by letting µ̄(p, c) = µ(p), µ̄(p, c) = µ(p) − c and

µ̄(p, c) = µ(p) − d(p).

The second estimation, ν, relaxes the precedence constraints and gives the

lower bound implied by the ratio between the amount of remaining work and the

number of machines :

ν(q) = d
∑

p∈P

(d(p) − cq(p))/me,

where cq(p) is the amount of time elapsed from the beginning of p in q.

5.6. ESTIMATION FUNCTION FOR DAG SCHEDULING 61

....

wait
start start

q∗qlq1

q

w(q, q∗) = d

Fig. 5.4 – The start successors and wait successor of q

��%+��$�	�� 8 �� �'�++�	�+%%� ���
� � �� �������� ��� �� �
� � �! �� �� � ����� ��
����� �� �� � ��� � ����� � ���

σ(q) = {q1, · · · , ql, q∗}
�� �� � �
 ����� ��� �! � � ���

��� �����
q

�� ���
q1, · · · , ql

��� �� � � �� � �� ������ ������ � ��� ����� ������������
���

q∗
�� �� � � �� ����� � ��� �� � ���� ���������� � �� � �� ��� �! ����� ���������� ��

� �� ������� ��� �������� ��� � � � �� � � ���
µ(q) = µ(q1) = · · · = µ(ql)

�� � �� � ��

ν(q) = ν(q1) = · · · = ν(ql)
� �� �� � ��� �� ����� �� � �� ��� �! � ���� ���������� �!

���� ��
w(q, q∗) = d

��� ���� �� �� ��� �� ����� �� �� � �������� � ��� ��� �� ��
���� ��
q

��� �� �� � �
� ��� �! ����� � ����� k
��

q
� �� ���� �� ��� � � � ����

µ(q∗) = µ(q)− d��! � � ��� �� ���� ����� � ��������� ���
ν(q∗) = ν(q) − b k

m
× dc

� �� � ����������� �
�� ���� �! �� � ����� ������ �� �� � ���� ���� � � ���� ������

E(q∗) ≥ E(qi) = E(q)
�

� 	
����� �� ������ �� �� �� �� � ��� �
d
����� �� �� � ����������� � �� ��� ���� ! ���

�� � ����� ������ �� �� �� ��� �� � � �� �� �������� � ���� ��� �� ��
k = m

���� �� �� �� �
� ��� �� �� ���
� �� ��

q
� � � � �� �� � ! ���� �� ��
��� � � ������ ��� �
� �� ��� �
�� ���

� ��������� �� ��� qi
�� �

We can give the priority to the qi which starts the critical p which has the

maximum number of immediate successors in the task graph. This way, the so-

lutions found by a depth first search are always better than those produced by

critical path scheduling, and for which the
� ���� ��� � � ��! ��� ���� �� �
��������.

In addition, solutions obtained by DFS heuristics employing this selection rule

have great chances to produce solutions very close to the optimum at a very early

stage of the search. Note that this does not necessarily mean that this heuristic

generates only greedy schedules ; playing with the parameter α of the estimation

(see Section 5.2), one can let the algorithm backtrack to an edge which includes

waiting. The question is then to know if it is better to include waiting sooner or

later in the schedule. Answering such a question remains open for future work.

62 CHAPITRE 5. HEURISTIC ALGORITHMS FOR SHORTEST PATH

5.7 Experimental Results

We have implemented a tool that, given a task graph, it translates it into chains

automata, and explores its underlying state space according to different strategies.

To appreciate the contribution of the chain decomposition based model, we

have tested a depth first search with domination on particular task graphs which

have a fixed chains structure. The method used is exhaustive. The results are

summerized in table 5.1. As one can see, the time and memory consumption are

drastically reduced.

It should be noted here that the problem becomes more difficult to solve (in

terms of state space cardinality) when we have more machines because the state

space with m − 1 machines is included in that of m machines.

We have tested our heuristics on a set of benchmarks problems from [TKK00,

TK02] having up to few thousands of tasks on an architecture Pentium 1.4 Ghz,

2 Gb of memory. The task graphs have different topologies and tasks’s durations

have different distributions. These benchmarks are issued from random genera-

tions as well as industrial applications such as robot control and compilation of

programs. The results are shown in tables 5.2 and 5.3. As we can see, our chain

decomposition algorithm, although not optimal, it gets a number of chains very

close to the exact width. We also note that when the number of tasks is about

thousands, the number of chains does not exceed few hundreds (see table 5.3).

The bounded width heuristic was tested with several values of w ; the best

results have been obtained by w = 5 and selected for presentation. The execution

time was from few seconds for graphs with small number of chains to few minutes

for graphs with great number of chains. As one can see, this heuristic gives good

schedules for which the average deviation from the optimum is less than 0.21%

(see table 5.2 column BFS-w). Let us mention the fact that a less quality schedules

were obtained for w ≥ 5.

The selective backtracking heuristic was implemented with several selection

and backtracking rules. The results are depicted in table 5.2, column DFSBT.

The time bound lets the algorithm turns until 7’30”, although it can stops earlier

for some instances or more for other, returning good solutions. Here again, the

5.7. EXPERIMENTAL RESULTS 63

Instance T C m opt |Q| |Σ| tnc tc % memnc memc %

3-10 31 3 1 60 4963 7262 0’00” 0’00” 0 0 0 0

2 30 18403 37142 0’00” 0’00” 0 0 0 0

3 20 28073 66152 0’00” 0’00” 0 0 0 0

3-15 46 3 1 90 15618 23042 0’00” 0’00” 0 0 0 0

2 46 59403 120737 0’03” 0’01” 66.66 71 MB 42 MB 40.84

3 30 92433 219827 0’06” 0’03” 50 142 MB 61 MB 57.04

3-20 61 3 1 120 35723 52922 0’03” 0’00” 100 68 MB 30 MB 55.88

2 60 137603 280682 0’08” 0’01” 87.5 251 MB 95MB 62.15

3 40 216343 516902 0’15” 0’04” 73.33 423 MB 106 MB 74.94

3-25 76 3 1 150 68278 101402 0’05” 0’02” 60 125 MB 50 MB 60

2 76 265003 541727 0’18” 0’04” 77.77 600 MB 158 MB 73.66

3 50 419303 1004627 0’35” 0’06” 82.85 1074 MB 274 MB 74.48

3-30 91 3 1 180 116283 172982 0’07” 0’01” 85.71 260 MB 74 MB 71.53

2 90 453603 928622 0’38” 0’08” 78.94 1164 MB 247 MB 78.78

3 60 720813 1730252 1’38” 0’16” 83.67 2152 MB 509 MB 76.34

Tab. 5.1 – The comparison table for the effect of chain decomposition on parti-

cular graphs. Column Instance designs the input example and colum C gives the

number of chains. Columns T stands for the number of tasks. m, opt, |Q| and Σ

show respectively, the number of machines, the optimal solution, the number of

generated states (w.r.t. domination) and the number of transitions in the state

space reduced to non lazy runs. tnc, tc, memnc and memc stand for the time and

memory consumption without and with chain decomposition. % stands for the

percentage improvement

64 CHAPITRE 5. HEURISTIC ALGORITHMS FOR SHORTEST PATH

BFS-w DFSBT

Instance T M opt best % time best % time

proto151 80 16 119 119 0% 0’01” 119 0% 0’04”

proto054 158 12 630 630 0% 0’00” 630 0% 0’00”

proto001 473 4 1178 1182 0.3% 0’02” 1178 0% 0’04”

proto000 452 20 537 537 0% 0’01” 537 0% 0’00”

proto018 730 10 700 704 0.5% 0’03” 700 0% 7’30”

proto074 1007 12 891 894 0.3% 0’02” 947 6.28% 0’10”

proto027 1055 5 2000 2003 0.15% 2’22” 2001 0.05% 7’30”

proto021 1145 20 605 612 1.15% 0’02” 650 7.4% 3’05”

proto228 1187 8 1570 1574 0.25% 0’13” 1570 0% 7’30”

proto071 1193 20 629 634 0.79% 0’04” 656 4.29% 7’30”

proto026 1239 8 1500 1501 0.06% 1’44” 1500 0% 2’00”

proto025 1258 10 1188 1191 0.25% 0’13” 1189 0.084% 7’30”

proto271 1348 12 1163 1164 0.08% 0’06” 1189 2.235% 7’30”

proto028 1424 9 1504 1505 0.066% 0’38” 1504 0% 0’43”

proto237 1566 12 1340 1342 0.15% 0’10” 1357 1.268 % 7’30”

proto231 1694 16 - 1137 - - 1183 - 3’35”

proto235 1782 16 - 1150 - - 1165 - 7’30”

proto233 1980 19 1118 1121 0.268% 0’20” 1135 1.52% 7’30”

proto294 2014 17 1257 1261 0.31% 0’12” 1335 6.2% 7’30”

proto295 2168 18 1318 1322 0.3% 4’37” 1337 1.44% 7’30”

proto292 2333 3 8009 8009 0% 0’41” 8011 0.025% 7’30”

proto298 2399 10 2471 2473 0.08% 0’39” 2485 0.56% 7’30”

Tab. 5.2 – The results for the big examples. Column T , M represents respectively

the number of tasks and the number of machines. Opt stands for the optimum.

The rest of the table give respectively, the best solution found (best), the running

time (time) and the deviation from the optimum (%) for respectively the bounded

width heuristic BFS-w with w = 5 and the selective backtracking DFSBT. The

time bound for DFSBT was set to 7’30”

5.7. EXPERIMENTAL RESULTS 65

heuristic gives schedules that are very close to the optimum, with average deviation

less than 6.5%.

Due to its anytime aspect, the DFSBT heuristique was able to find more op-

timal schedules than the BFS-w.

Instance T C width %

proto151 80 16 13 23.07%

proto054 158 11 8 37.5%

proto001 473 125 106 17.92%

proto000 452 43 35 22.85%

proto018 730 175 137 27.73%

proto074 1007 66 52 26.92%

proto027 1055 788 783 0.63%

proto021 1145 88 74 18.91%

proto228 1187 293 239 22.59%

proto071 1193 124 95 30.52%

proto026 1239 674 641 5.14%

proto025 1258 282 230 22.60%

proto271 1348 127 97 30.92%

proto028 1424 455 392 16.07%

proto237 1566 152 117 29.91%

proto231 1694 101 79 27.84%

proto235 1782 218 167 30.53%

proto233 1980 207 159 30.18%

proto294 2014 141 108 30.55%

proto295 2168 965 892 8.18%

proto292 2333 318 243 30.86%

proto298 2399 303 229 32.31%

Tab. 5.3 – The greedy and exact width for the big examples. Column T , C and

width represents respectively the number of tasks, the number of chains compu-

ted by our greedy algorithm and the exact width of the graph. % represents the

deviation of C from the exact width

66 CHAPITRE 5. HEURISTIC ALGORITHMS FOR SHORTEST PATH

Deuxième partie

Scheduling under Uncertainty

67

Chapitre 6

Conditional Precedence Graphs

In the first part of the thesis, the model presented was
������ �������

in the sense

that the set of tasks to be executed is known in advance to the scheduler. The only

non-determinism in the specification of the problem comes from the scheduler’s

decisions and once they are chosen, the system exhibits a unique run/schedule

with pre-determined start times for each task. In this second part, we extend

the framework to a new problem of scheduling under uncertainty. The kind of

uncertainty which we want to study comes from the fact that the set of tasks to

be executed depends essentially on the “outcome” of other tasks which becomes

known only after their termination. A typical case is the scheduling of programs

with
�! ��� �� ���� �

instructions where evaluation of conditions and, hence, the choice

of branches are not known in advance.

6.1 The problem

Consider the following program :

69

70 CHAPITRE 6. CONDITIONAL PRECEDENCE GRAPHS

� ���� � ���
�
y

x0 := f0(y)

x1 := f1(y)

if x0 = 0

then

x2 := f2(y)

x3 := f3(y)

x4 := f4(x2, x3)

Each fi is a function (task) with a known computation time. All functions except

f4 depend only on some inputs available when the program is invoked and hence

can be executed immediately. The functions have no side effects and their only

dependencies are via argument passing. Using data-flow analysis we can deduce

that f4 cannot be executed before both f2 and f3 terminate. In addition, these three

statements are executed
����������� ��, only if x0 = 0 holds, a fact to be revealed

only after the termination of f1. This kind of situations can be captured by the
����������� � ������� �� ���� � (CPG). Figure 6.1 represents the CPG associated

with the above program where each statement xi = fi is represented as a task pi

with a given duration and the condition x0 = 0 is modeled as a special Boolean

task b with a zero duration. The precedence constraints between tasks are drawn

as arrows and the conditional invocation of p2, p3 and p4 is represented by arcs

emanating from the boolean node b indicating under which value of b the tasks

have to be executed (1 for b and 0 for ¬b).

Suppose we have to execute this program as quickly as possible on a two pro-

cessors architecture, assuming negligible communications cost. At time t = 0 we

have two tasks, p0 and p1, ready and we can start executing both. If after the

termination of p0 at t = 3, b evaluates to false, then all we need to do is to wait for

the termination of p1 at t = 7. If, however, b evaluates to true, p2 and p3 become

enabled, but since p1 still occupies one processor (we assume no preemption), we

can only execute them sequentially, a fact that will delay the execution of p4 re-

sulting in termination at t = 15. The only reasonable alternative to this strategy

is to postpone the execution of p1 until t = 3 and then base our decision on the

evaluation of b. If it turns out to be false, we start p1 and terminate with a slight

delay at t = 10. If, however, b is true, we have two free processors on which we

6.2. NON CLAIRVOYANT SCHEDULING 71

1 1
1

3

2 2

8

7

p0

p3p2

p4

p1

b

Fig. 6.1 – A conditional task graph representation of the program.

can execute p2 and p3 in parallel and only then execute p1 and p4 and terminate

at t = 13. The schedules obtained by these two strategies (we call them s1 and s2,

respectively) on the two cases (b and ¬b) are illustrated in Figure 6.2.

Which strategy do we prefer ? The answer depends on our evaluation criteria.

If we want to be optimal with respect to the
� ���� ��� �, we will prefer strategy

s2 because max{10, 13} < max{7, 15}. If, however, we estimate the probability of

b to be true by λ ∈ [0, 1] and want to optimize with respect to the
������ � ��� �

,

we should compare the expected termination times of the two strategies, that is,

(1− λ) · 10 + λ · 13 and (1− λ) · 7 + λ · 15, in order to choose. It is not hard to see

that s1 is preferable when λ < 3/5 and that s2 is preferable otherwise.

6.2 Non Clairvoyant Scheduling

The only uncertainty in problem is due to the fact that not all tasks need to be

executed at every invocation (instance) of the program. Whether or not some task

should be executed is not known in advance but is revealed as the computation

goes on. Hence the program admits a finite number of execution “scenarios”, each

72 CHAPITRE 6. CONDITIONAL PRECEDENCE GRAPHS

p0

p1

7

p0

p1

¬b

s1(¬b)

s2(¬b)

10

p0 p2

p3

p4

p0

p1

p3p2 p4

p1

s1(b)

s2(b)

15

s1

s2

13

b

Fig. 6.2 – The results of applying strategies s1 and s2 to instances b and ¬b.

corresponding to a subset of the set of tasks. We call this scenarios
������ ���

of the

scheduling problem. A naive approach to solve this problem would be to enumerate

all instances and solve a (deterministic) scheduling problem for each of them,

but this approach ignores the dynamic nature of the uncertainty and assumes a

“clairvoyant” scheduler who sees into the future. The optimal schedule achieved

by such a scheduler gives only a
��� �����
�� on the worst-case computation time

of the entire program. As an illustrations consider the CPG of Figure 6.3 : a

clairvoyant scheduler can achieve an optimal solution of length 7 (Figure 6.4),

while a non-clairvoyant scheduler cannot do better than 9 (Figure 6.5).

The fact that the uncertainty is
��
���� allows us to compute a dynamic sche-

duling strategy �� ���� �, without the overhead associated with online re-scheduling.

The scheduler can then be implemented as a simple add-on to the compiled code

which is invoked when tasks terminate and decides, based on a pre-computed look-

up table, which tasks to execute next (or to wait for the next event). In the next

section we give a more detailed yet intuitive explanation of the abstract problem

that we solve.

6.2. NON CLAIRVOYANT SCHEDULING 73

1 0

5
2

5

2 2

p3 p0 p4

p1
p2

b

Fig. 6.3 – An example CPG.

 2 5 7 2 5 7

p0

p3

p4

p1

p0 p3

p4 p2

(a) Optimal schedule for b (b) Optimal schedule for instance ¬b

Fig. 6.4 – The optimal clairvoyant schedules for the CPG of figure 6.3.

74 CHAPITRE 6. CONDITIONAL PRECEDENCE GRAPHS

 2 5 7

2 5 7 9

 2 5 7

2 5 7 9

(a) The tree−like Gantt chart (b) The full schedules

p0

p3

p4

p4

p2

p1

b

¬b

p0

p3

p4

p1

p0

p3

p4

p2

Fig. 6.5 – An optimal non clairvoyant strategy for the CPG of figure 6.3.

6.3 Conditional Precedence Graphs

In what follow we extend the task graph model (cf. previous chapters) to

express conditional execution. This is done by introducing a special type of Boolean

tasks with the following features :

1. They can be preceded by other tasks ;

2. They take zero time to execute ;

3. They terminate with a result which is either true or false ;

4. The execution of other tasks may depend on the results of the Boolean tasks ;

The second hypothesis can be relaxed if testing the condition takes non-

negligible amount of time. Such tests can be decomposed into an ordinary task

and a zero duration test.

To express the activation conditions of tasks we will use functions over a set

B of Boolean variables that encode the results of the Boolean tasks. To simplify

the presentation we restrict ourselves to the class F(B) of functions that can be

written as a conjunction of positive and negative occurrences (literals) of distinct

Boolean variables, e.g. b1 ∧ ¬b2 ∧ b3. We denote by V (f) the set of variables

appearing in f . The partial order on Boolean functions is defined as f ≤ f ′ if

6.3. CONDITIONAL PRECEDENCE GRAPHS 75

for every Boolean vector v, f(v) ≤ f ′(v). Syntactically this means that the set of

literals in f is a superset of those of f ′. We say that f and f ′ are contradictory

if f ∧ f ′ = false, which is the case when at least one variable appears positively

in one and negatively in the other. Note that the conjunctions can be evaluated

to true only if
�� �

variable values are known, while their falsity can be sometimes

deduced from partial information.

� +��	�	�� � �� �����	�	��$, 6 �+�+�+��+ '�$() �
� ����������� � ������� �� ���� � � � �� ��

G = (P, B,≺, A, d)
�� ���

P = {p1, . . . , pn}�� � � �� �! ������ B = {b1 . . . , bm}
�� � � �� �! � ������ ������

≺
�� � ������ � ������

����� � ������� �� �������� �� P ∪ B
�
A : P ∪ B → F(B)

�� �� ���������� !
� �����
��������� � � ������ !
� ����� ���� B

�� ����� ����� ���
d : P → N

�� ���� �� ����
�
������� �

We use notation Ap for A(p) and say that task p is
���� � �� ����

than p′ if

Ap < Ap′. We denote this fact by p @ p′. We say that a Boolean task b influences

a task p if b ∈ V (Ap) and denote it by b ⇀ p.

� +��	�	�� � �" ����%	%�+�� �6' � � �� �� ���������� �� �� � ! �� ��� ��� �� �
���������� � ����

	 � � �� ��
������ � ! �� ����� b ∈ B
� ���

p ∈ P ∪ B
� �!

b ⇀ p
�� ��

b ≺ p
� � �

���� ��� �� �� ��
��� ��! ��� �� �� ����� �� ��� �� �� � �� �� �� �� ��
����
	 � � ������������� � ! �� �����

p, p′ ∈ P
�!

p ≺ p′
�� ��

Ap
���

A′
p

��� ���
������������� �

The first assumption can be relaxed if we want to move to the realm of
�� ��
�

����� � �� ��
����, used extensively in hardware. The idea is that if you have many

processors you may save time by executing alternative conditional branches in

parallel and then using only the outcome of the branches that really need to be

executed. In that case we replace non-speculation with the weaker
��� ����
������

condition : if p � b then b 6⇀ p. In other words, the termination of a task cannot

be pre-requisite for determining whether it is to be executed.

We allow consistent CPGs to include precedence p′ ≺ p when p′ @ p, that is, p

may depend on a task p′ which might not be executed in all situations where p

is. We interpret it as a
����������� ��� ����� ��, that is p′ needs to wait for p only

76 CHAPITRE 6. CONDITIONAL PRECEDENCE GRAPHS

when Ap evaluates to true. Nevertheless, we disallow precedence between tasks

whose activation functions are contradictory.

12$4(,+ � �� � ��
�� ��� ��� ��� ���� �� � �� �! �� � ! �� ��� ��� � ������ �

����� � ������ (y1, y2, y3, y4, y5)

p1 : x1 := y1

p2 : x2 := y2

p3 : x3 := f(x2)

b1 : if h(x3)

p4 : x4 := g(x2)

else

p5 : x5 := f5(x1)

b2 : if h(x5)

p6 : x6 := y3

p7 : x7 := y4

else

p8 : x8 := y5

p9 : x9 := f9(x5)

p10 : x10 := f10(x1, x3, x4)

p11 : x11 := f11(x3, x7)

�������� ������ ��� ��� ��� �� � ����� ��� ����� ����� ��� �� � � �� �! ���� �� ��� ���
���� �������� ���� ���� ��� ��� ��� �� � ���������� ���������� � ��� �� ��� ��� ���� �
��
�� � ���������� ��������� �! p7 Ap7 = ¬b1 ∧ b2

�� ���� � �� ���� �� ��
Ap11 = true

� �� �
� ������� ��

p7 ≺ p11

� ���� ���� �! �� � ���� �� �� ��� ��� �
� ��� ���� ���� �� p3

�! � ��
��� �� �

6.4 Feasible schedules

The definition of feasible schedules for ordinary deterministic task-graph pro-

blems is simple. It is an assignment of start times to all tasks such that prece-

dence constraints are satisfied and that the number of tasks active simultaneously

6.4. FEASIBLE SCHEDULES 77

1

1
0

0

0

0
0

0

0

1

0

p1p2

p3

p5

p6

b1

b2

p8

p7

p9

p11
p10

p4

Fig. 6.6 – The CPG of the above program

78 CHAPITRE 6. CONDITIONAL PRECEDENCE GRAPHS

at every moment is bounded by the number of machines. The adaptation of the

definition to CPGs is more involved because different values of the B variables

correspond to different sets of tasks to be executed.

An
������ ��

of the scheduling problem is an augmented Boolean vector v :

B → {0, 1, ?} where v(b) = ? (“don’t care”) indicates that Ab(v) is false and b

need not be executed. Such situations may occur when the program admits nested
�!

statements. A partial instance is an instance which may be undefined for some

variables whose values are not known yet. We say that v′ �� ����� v if it agrees

with v on all variables defined in v. The set of tasks associated with an instance

v is

Pv = {p ∈ P ∪ B : Ap(v) = true}.

A
� �� ��
��

for an instance v is a function st : Pv → R+ indicating the start

times of tasks. From st we can derive for each task its termination time, en(p) =

st(p) + d(p) and its execution interval I(p) = [st(p), en(p)). The number of active

tasks at time t is β(t) = |{p : t ∈ I(p)}|.

� +��	�	�� � �
 ��+$%	� ,+ *�)+��,+%� � � �� ��
��
st
! �� �� ������ �� v

�� ! �������
�� �� ���� �����
�� � ���

k
������ �� �!

� � � ������� �� � ! �� ����� p ∈ Pv

�
st(p) ≥ max{en(p′) : p′ ∈ Pv ∧ p′ ≺ p}

� �
���� ��� ����� ���� �! ��� �� � ��� � �������� ��� ���� ���� �������

� � � �� �
��� ����������� � ! �� ����� t ∈ R+

�
β(t) ≤ k

� � � � ��� ���� k
�����

� �� �� ����� � ���
���� ��
��� �

The length of a schedule is defined as the termination time of the last task,

that is, maxp∈Pv en(p). We would like to obtain schedules that are optimal for

all instances, but since instances reveal themselves progressively as more Boolean

tasks are evaluated, we should restrict ourselves to
��
��� � �� ��
���� ������� ���

that can base their decisions only on information available at decision time.

At any given moment the state of a scheduling problem, of the type definable

by a CPG, consists of the following information :

1. Which tasks have already been executed, and for the Boolean tasks also

what their result was.

2. Which tasks are currently executing and for how long.

6.4. FEASIBLE SCHEDULES 79

3. For which tasks it is known whether they should be executed.

4. Which tasks, among those that should be executed, are enabled for execution

(all their predecessors have terminated and not all machines are busy).

The state of the schedule determines which future evolution is possible. Pas-

sage of time increases the elapsed execution time of active tasks and allows

them eventually to terminate. Termination of tasks may cause the evalua-

tion of Boolean tasks and make some other tasks enabled. Starting a task,

an action performed by the scheduler, moves a task from the waiting list to

the active list and resets its timer. These actions belong to three categories :

(a)
� ����� ������� ������� : these are actions that will always happen at

certain states. They include termination of a task p exactly d(p) time

after its initiation, and the re-evaluation of a task activation function

when some new Booleans terminate.

(b)
� �� ��
��� ������� : these are the decisions of whether or not to start an

enabled task.

(c)
��������� ������� : the choices of the results of Boolean tasks on which

we have no control. Note that they are, nevertheless, deterministic with

respect to time and happen immediately after they become enabled.

A scheduling strategy is thus a function that assigns to each state of the

schedule one of the scheduler actions enabled at this state, including the

special waiting “action” which means to do nothing and wait for the next

event, while the active tasks keep on executing. In the next chapter we

show how to extend the timed automaton modeling framework and use it to

formalize the notion of a scheduling strategy, where the state of the schedule

is represented by the state any clock values of the automaton.

80 CHAPITRE 6. CONDITIONAL PRECEDENCE GRAPHS

Chapitre 7

Modeling Conditional Scheduling

with Timed Automata

The model described in Chapter 3 was designed for (unconditional) task graphs.

This model can easily be extended to express the behavior of Boolean tasks and

their effects on the activation conditions for tasks. For the scheduling problem

defined by CPGs, the resulting model is the composition of interacting automata

consisting of timed automata for ordinary tasks and Boolean tasks. For the ordi-

nary tasks we add an initial state expressing the fact that we don’t know yet if

the task have to be executed or not. Once the activation of a task evaluates to

true, then the rest of the automaton is the same as the deterministic model

As in the deterministic case we first describe the basic model which is then

reduced, by focusing on non-lazy and immediate schedules to a weighted directed

graph. We also adapt the chain decomposition techniques to obtain a more efficient

encoding of the automaton.

7.1 The basic model

The model for the CPGs scheduling problem is a product of interacting timed

automata of two types : timed automata for ordinary tasks and automata for

Boolean ones.

81

82 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

Πp/c := 0

p?

Ap¬Ap

p

c = d(p)

p

p

Fig. 7.1 – Modeling ordinary tasks with timed automata.

7.1.1 Modeling ordinary tasks

For each ordinary task p we construct a timed automaton Ap with four states

and one clock c as depicted in Figure 7.1. State p? is the initial state where it

is not known yet whether p is to be executed. Once Ap evaluates to true, the

automaton moves to a waiting state p. We
���

leave this state and move to the

active state p as soon as the condition Πp holds, where Πp is a conjunction of

conditions indicating that for every p′ ≺ p, automaton Ap′ is in its terminal state.

Whether or not to take this transition when Πp holds is a
�������� �! �� � � �� ��
���

and when it is taken the clock is reset to zero. After spending d(p) time in the

active state the automaton moves to the terminal state p. If Ap evaluates to false,

the automaton goes from p? directly to p. In the rest of the section, we will use

the notation Ap =? to denote the fact that Ap is not yet evaluable. Formally we

have,

� +��	�	�� 7 �� �#	4+� $���4$��� 5�� ���	�$�� �$%& � ��� ����� �������� ����

p ∈ P
��� ��� ������� ��� �� �
��� ���� ��

Ap = (Q, {c}, I, ∆, s, f)
� ���

Q =

{p, p?, p, p}
�� ��� �� � ������� ����� ��

p?
��� �� � � ��� ����� ��

p
� �� � ������� ������

����� ��� true
! �� p

���
p
�
c ≤ d(p)

��
p
���

Ap =?
��

p?
� �� � ���������� ��������

7.1. THE BASIC MODEL 83

∆
�������� �! �� � ! �
� ����������� �

start : (p,
∧

p′∈Π(p)

p′, {c}, p)

end : (p, c = d(p), ∅, p)

activate : (p?, Ap, ∅, p)

skip : (p?,¬Ap, ∅, p)

7.1.2 Modeling Boolean tasks

The automaton for each boolean task is shown in Figure 7.2 has four states :

one initial state where the boolean task is not yet evaluated, and three terminal

states, the state b? which indicates that the activation condition of b is false and

hence it has not to be executed, and the states b and ¬b where the automaton

should move immediately to as soon as its activation condition evaluates to true

and all its predecessors have terminated. The choice between these two transitions

is the source of uncertainty in this scheduling problem. The evaluation of activation

conditions of other tasks that mention b is done on the basis of the states of the

corresponding Ab automata, where b? is interpreted as “unknown” and b? as “don’t

care”.

� +��	�	�� 7 �" ����,+$� $���4$��� � ��� ���� ������� ���� b ∈ B
��� ��� �����

���
���� �� �
��� ���� �� Ab = (Q, {}, I, ∆, s, f)
� ���

Q = {b?, b?, b,¬b}
�� ���

b?
�� �� � ������� ����� ��� �� � � ��� ������ ���

b
�
¬b

���
?
� �� � ������� ���������� ���

true
! �� �� � � ��� ������ ��� Ib? = Ab? ∧ ¬Π(b)

! �� b?
� �� � ���������� �������� ∆

�������� �� �� � ! �� ��� ��� ����������� �

branch : (b?, (Πb ∧ Ab), {b,¬b})

don′t care : (b?,¬Ab, ?)

84 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

Ab ∧ Πb

¬Ab

¬b

b?

b

Ab ∧ Πb

b?

Fig. 7.2 – Modeling boolean tasks with automata.

7.1.3 The Global Model

The whole scheduling problem can be captured by the global automaton re-

presenting the mutual exclusion composition of all automata (ordinary tasks and

boolean ones). Assuming k machines, the
���� ������ global states, which are tuples

of the form q = (q1, · · · , qn), where more than k automata are in their respective

active states, are forbidden. The precedence constraints are respected by construc-

tion, since an automaton is allowed to make its start transition only when the

automata for its predecessors are in their final states. Here, every complete run in

this global automaton A corresponds to a feasible schedule for a given instance,

and the set of all runs of the automaton corresponds to all combinations of stra-

tegies and instances.

� +��	�	�� 7 �
 �/���$, 12�,�%	�� ��4(�%	�	�� � ���
Api = (Qpi, Cpi, Ipi, ∆pi, spi, f pi)

�� �� � �
��� ���� ������� ������ �� ���� ���� pi

���
Abj = (Qbj , Cbj , Ibj , ∆bj , sbj , f bj)

�� �� � �
��� ���� ������� ������ �� ���� ���� bj

� �� ��� �
�
�� �� ��
���� ��������
���� ����
� ���

M
������ ���

Ap1‖ . . .Apn‖Ab1‖ . . . ‖Abm
�� � ��� �� � �� � �
��� ��

��� A = (Q, C, I, ∆, s)
�� ���

Q
�� �� � ����������� �! Qp1×. . .×Qpn×Qb1×. . .×Qbm

�� � �� ����� ������ ������� C = Cp1 ∪ . . . ∪ Cpn
�
s = (sp1 , . . . , spn, sb1 , . . . , sbm)

� �� �

7.2. GLOBAL MODEL AS GAME GRAPH 85

���� ��� ��������� ! �� � � ����� ����� q = (q1, . . . , qn, qb1 , . . . , qbm)
��

Iq = Ip1 ∧ . . . ∧

Ipn ∧ Ib1 ∧ . . . ∧ Ibm
��� �� � ���������� �������� ∆

��� �� ! ��� ���� �� �� ! �� ��� �

! �� �� � Api
���� �
��� ���� �

qi
φ1∧φ2 ρ
−→ q′i (q1, . . . , qi, . . . , qn, qb1 , . . . , qbm) � φ1 ∧ q /∈ Q∧

(q1, . . . , qi, . . . , qn, qb1 , . . . , qbm)
φ2 ρ
−→ (q1, . . . , q

′
i, . . . , qn, qb1, . . . , qbm)

��� ! �� �� � Abj
������� �
��� ���� �

qbj

φ1
−→ q′bj

(q1, . . . , qn, qb1 , . . . , qbm) � φ1

(q1, . . . , qn, qb1 , . . . , qbj
, . . . , qbm) −→ (q1, . . . , qn, qb1 , . . . , q

′
bj

. . . , qbm)

�� ���
Q∧ = {q ∈ Q/∃j ∈ 1, n s.t. qbj

= bj? ∧ q � Πbj
∧Abj

}
� �� �� � � �� �! ������

�� ��� � ������� � �� ����� �

Q∨ = Q \ Q∧
��� ��� ���� �� � � �� ��
��� �� ��������� �

� �����
q
�� ��� �� �� ������� � �! �� � �� � � �
����� ���

12$4(,+ 7 �� � ��
�� ��� �� ��� � ! ���� ��� �! �� � � ����� �
��� ���� ������ �� ! ���
�� � �� �! � ��
�� ��� � � ������� ! ��� (p0, p1)

� � � �� ��� � �� ����� p0

� ������� �� �����

(p0, p1)
� ���� ����� ��� �� � ������
������� �� � � ��� �� �� ����� p1

����� ������� ���
�� �������� s1

� ��� �� � � ����� �� �� ���� ! �� �� � ���� ������� �! p1

����� ������� ���
�� �� � �������� s2

� �� � ���� ������� �! p0

� ����� ����� �� �� � �� ���� �! �� � ���
 � �!

b
����� �� ������� � � ��� ��� �� ��� ����� ������ �� ���� ��� �� ��� s1

� �� �� ���� ���
�� ��

p1
���
� ��� �� � � ����� � ��� ���� �	
 ������ �� �� b

�� ��
 �
p2

���
p3

��� ����
�� �� ��
��� � �	
 ������ ��� ������� �� � �
� �! ���� �� 15

� ��� s2

�� �� ���� ��� �� �����

p1

��� ���� p2

���
p3

��� �� �� ��
��� �� ����� ��� ������� �� � � �� ��
�� �! ���� ��

13
� � ��� ���� �� � ! ��� �� �� �� � start2

���
start3

��� �� ��
��� �� � ��! ��� � �� � ��� ��
�� �
�� �� ����! ��� �! �� � ������������ � �� ������ � �� ��� � ���� �� ���� ��� �� �� � �� �
����������� ��� �� �� ���� �� �� �� � ��� � ��� ��

7.2 Global Model as Game Graph

After having composed tasks automata together with Boolean ones, we obtain

a global timed automaton where some of the actions are issued by the scheduler

86 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

end0

¬b b

end1

end3 c3 = 2

end1 c1 = 7

c4 = 8

end0

¬b b

end2end2

end3 c3 = 2

end1 c1 = 7

end4end4

start0

start2start1

start3

start3

start1

start4

start4

c0 = 3

c2 = 2

c0 := 0

start1

c1 := 0 c2 := 0

c3 := 0c1 = 7c2 := 0start2c1 = 7end1

c2 = 2

c3 := 0

c4 := 0

c4 = 8

c4 := 0

c1 := 0

c1 := 0

s1 s2

p0, p1

0

p0, p1

p1p0, p1

p1, 3 p1, p2, p3p1

p1, p2, p3p3p1, 3, p2, p3p1, 3

¬b p1, 3, p2, p3 ¬b p1, p2, p3

p1, p3, 2p1, 5, p3

p1, p4p1, 7, p3

p1, p4p1, 7

p1, p4p4

p4p4

bb

0

0 3

3

3

3

5

5

5

5

3

3

10

3

33

37

5

5

7

7

7 12

1315

c0 = 3

Fig. 7.3 – Part of the global automaton for the example of Figure 6.1. In the states

we write only the waiting tasks, the executing tasks and the values of their non

zero clocks. The numbers on the lower right corners stand for the total elapsed time

to reach the state via a non-lazy run. The branches correspond to the schedules

of Figure 6.2.

7.2. GLOBAL MODEL AS GAME GRAPH 87

· · ·· · · · · ·

q0

q1

0

3
b

b

4

00

4 10

1

· · ·

q2 q3

q4 q5 q6

q7 q8

q9 q10 q11

0 3

· · · · · ·

q12

¬b

¬b

Fig. 7.4 – Part of the game graph for our example, with AND nodes denoted by

squares. The sub-graph of strategy s2 is marked.

(the
�����

transitions) and some by the environment (the
���� ��

transitions). This

is a special case of the timed game automaton of [AMPS98]. After restricting

this automaton to non-lazy or immediate runs, the automaton is reduced into a

kind of a discrete game graph, also known as AND-OR graph [Nil71], [Zha99]

or alternating automaton. Such a graph has two types of nodes, the OR nodes

which corresponds to global states where the scheduler (“player 1”) has to choose

an enabled transition, and the AND nodes corresponding to states where the

adversary (“player 2”) chooses between b and ¬b transitions. Figure 7.4 shows

part of the the game graph obtained for our example.

The game automaton can be viewed as a special case of an acyclic game graph

called AND/OR graph which is defined as follow :

� +��	�	�� 7 �0 �3�� ��� -�$() 5�� �	4 +� -$4+ $���4$��� � ���
A = (Q =

Q∨∪Q∧, C, I, ∆)
�� � ��� �� � �� � �
��� ���� �

��� ������� ������ � ���� ��� ���� ��
� ��� � �� �� � ������� �������� � ��� �

G = (Q′ = Q
′

∨ ∪ Q
′

∧, δ = δ∨ ∪ δ∧ , w)
�� ���

Q′ = Q × R
|C| �� � � ���� � �� �! � ���� ��������� �� ���� ��� ��� �� ����� ����

� ����� ���
Q
′

∧ = {(q, v1, . . . , vn)/q ∈ Q∧}
���

Q
′

∨ = {(q, v1, . . . , vn)/q ∈ Q∨}
�

88 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

δ ⊆ Q × R
+ × Q

�� � � �� �! �������� ��� �� ���� � ��� ��� ������������ ��������� ��
���� ��� ��� �� ������������ ��� w

�� � � ���� � !
� ����� �� ��� �� � � �� �� ���
�� ��� ������� ������ � ���� �� ��� �

q
φtρ
−→ q′ ∈ ∆ (v1, . . . , vn) � φt

(q, v1, . . . , vn)
0

−→ (q′, v
′

1, . . . , v
′

n)

v′
i =

{

vi if ci /∈ ρ

0 otherwise.
���

∀θ′, θ′ ≤ θ ⇒ Iq(v1 + θ′, . . . , vn + θ′)

(q, v1, . . . , vn)
θ

−→ (q, v1 + θ, . . . , vn + θ)

We use the same notations as in chapter 4. The outcome of applying a particular

strategy is represented as a binary tree-like partial sub-graph rooted at the initial

state in which every OR node has exactly �� � �
 ����� �� and every AND node has
�� � ��� �
 ����� ��� (see Figure 7.4). The worst case performance of such a strategy,

also known as its
���
 �

, is the length of the longest path in that sub-graph.

The game graph of the automaton we have to deal with doesn’t contain any

directed cycle. We use Gq to denote the sub-automaton rooted at state q. Gq

represent the “residual” game which remains to be played after reaching q. A

state q ∈ Q is said to be terminal if it has no successor (σ(q) = ∅).

� +��	�	�� 7 �8 �($��	$, %��$�+-� �
� �������� �� � ������� !
� ����� s : Q∨ → Q

� �
 �� ����

s(q ∈ Q∨) = q′/q′ ∈ σ(q)

� � ��� �� ��� ��� ����� �� � ���� ��� � �
��� ��� � �� ����� ! �� ����� q ∈ Q∨
�� �

δ∨����������� �� ������� ! ��� 	 ��� ��� ���� �� ��� � ! �� s(q)
�

� ������� �������� �� � �������� !
� ����� ����� �� � �� ��� � �� ! �� �� � � ���� ��

Q∨

A particular property of the game graphs obtained for CPGs is that all strategies

define sub-graphs which are trees with the same type of binary branching.

7.3. NON LAZY STRATEGIES 89

� +��	�	�� 7 �� �6$�) $�����	�- �� $ %��$�+-� � �� � ����
π = q1, · · · , qn

�
 ��
����

∀i/qi ∈ Q∨ : qi+1 = s(qi)

� ��� ��� � � � ����� �� �� ������ � � ! �� ��� �� � �
 ����� �� ��������� �� �� � ��������
!
� ����� �

� +��	�	�� 7 �7 ���%� �5 $ %��$�+-� �
�� � ���� �! � � �� �� ��������

s
��� ������ ! ��� � �����

q
�� �� � ���� �� � � ! ��� q����� �� ����
��� �� ! �� ��� �

‖s‖ =
→

V (q) =











0
�!

q
�� ���� ����

(1)

w(q, s(q))+
→

V (s(q))
�!

q ∈ Q∨ (2)

maxq′∈σ(q) w(q, q′)+
→

V (q′)
�!

q ∈ Q∧ (3)

In other words, the cost of s is equal to the cost of the longest path in the tree

defined by s. Hence, to compare two given strategies s1 and s2, it suffice to compare

the costs of their longest paths.

7.3 Non Lazy Strategies

The model described previously is quite inefficient for at least two reasons. The

first is that due to the staying condition in the waiting state, the scheduler may

decide to wait an arbitrary amount of time before taking its transition to start

a given task. We have seen in Chapter 2 that waiting is useless in general, and

hence, we can try to understand better which waiting is useless in the context of

adversarial scheduling. The second reason is that the parallelism of the CPG can

be exploited to understand how the chain decomposition can be applied in this

context.

This section will focus on new theoretical results characterizing the domina-

tion properties between types of strategies. From these results, we will introduce a

new model for our tasks which restrict the model to the non-lazy runs and conse-

quently avoid useless waiting. Moreover, we will extend the Graham bound from

the non-adversarial case and show that the greedy approach is a 2-approximation

algorithm.

90 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

7.3.1 Types of strategies

We generalize definition and results of the Chapter 2 concerning types of sche-

dules to types of strategies.

A strategy is said to be
! �������

if for all instance v of boolean variables, the

corresponding schedule is feasible. We say that a set of strategies is
��� ����� if it

always contains an optimal solution.

� +��	�	�� 7 �� ��44+�	$�+ %��$�+-� � �� ��� ������ �������� �� � ! ������� �����
���� �� ��� � �� � �! �� � ����� ��� �� ����� �� ��! � �� �! ��� �� ����� � �� ��
��� ��� � �� ��
���� �������� �� ��� � ! �� ����� �� �� �������� �������� �

This definition suggest the following lemma :

�+44$ 7 �� �� � � �� �! ��� ������ ������� ��� �� �� ��� �����

Proof : for all instances v of boolean variables, the schedule stv in the strategy can

be transformed in a new schedule st
′

v where all termination times of every tasks

are at most equal to those in stv ; hence Cmax(st
′

v) ≤ Cmax(stv) ≤ maxv Cmax(stv).

Since the sequence of the boolean variables is preserved in the new strategy st
′

v

by definition, then the value of st
′

v is at worst decreased.

� +��	�	�� 7 �. �%+4 	 ,+5��%) 	5�+� %��$�+-� � � � �� � ��! ���� �! ��� �������� �� �
! ������� �������� �� ����� �� � ����� ��! � �� �! � �� � ������� ����� � ��� ������ �� � ���
� ���� � �	
 �� �� �! ������� ��������� �

Note that a global left shift of a tasks which activate a boolean variable may lead

to a deterioration of the sequence of the boolean variables, which may lead to

another branching structure of the strategy.

Since the branching structure does not change during a global left shift, the

following result holds :

�+44$ 7 �" �� � � �� �! � �� � ��! ���� �! ��� ������� ��� ���� �� ��� �����

7.3. NON LAZY STRATEGIES 91

The notion of semi left-shifted strategy is not so strict, in the sense that due

to preservation of the boolean sequence, a global shift is always possible for tasks

which activate booleans without delaying the starting times of the remaining tasks

of all sub schedules in that strategy. We try to strengthen the notion of semi left-

shifted strategy by introducing another type of strategies which we call
��� ����

��������
.

� +��	�	�� 7 ��� ����� ,$�� %��$�+-� � � ��� ����� �������� �� � ! ������� ��������
�� ����� �� ����� �� � ����� �� �! � �� � �������� � �� � ��! � �� �! � ����� � �� ����� � �� �
���� �� ��� ���
 ��
���

�+44$ 7 �
 �� � � �� �! � �� ����� ������� ��� ��� �� ��� �����

Proof : this can be proved by showing that every feasible strategy stL can be

transformed into a non-lazy strategy stNL by a sequence of local and global shifts.

This means that every complete schedule defined by all instance of the strategy SL

can be globally left shifted without increasing the value of the strategy. Suppose

we want to shift a task pj earlier. If pj does not activate a boolean task then

we are done. Suppose now that pj activates a boolean task, then the sequence of

boolean variables may change1. However, its effect is not important because the

new schedules obtained by the shift of pj in every instance are all at least as good

as the older ones, consequently, the max of them, which define the cost of the

strategy, is at least as good as the previous strategy.

Figure 7.6 shows a global left shift of the task p2 which changes the activation

order of booleans b1 and b2.

#)+��+4 7 ��

� �
Non delay strategies ⊆ NLS ⊆ SLSS ⊆ IS

� �
Optimal strategies ∩ NLS 6= ∅

It should be noted that theorem 7.1.2 says that it suffice to explore only the set

NLS because it always contain an optimal solution, although some solutions which

are optimal may exist outside NLS.

1the fact that we can shift a boolean task earlier than another means that they are mutually

independent

92 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

3
2

2
2

4 4

3
5

6

p1
p2

b2

p8

p7
p9

¬b2

¬b2

b2

p4

p3
p6

p5

b1
b1

¬b1

¬b1

b1

Fig. 7.5 – An example CPG.

7.3.2 Greedy strategies

Let us denote stv the schedule for an instance v, and Cmax(stv) the completion

time of stv. We say that a strategy is greedy if every schedule stv under all ins-

tances in that strategy is a non-delay one. Although the set of greedy (non-delay)

strategies are not necessarily optimal, we can show that any greedy approach

constitutes a 2-approximation scheme for the CPG scheduling problem.

#)+��+4 7 �" ���
Cmax(st

L)
�� �� � ���� �� �! � � ����� �������� ! �� �� � ��

G =

(P, B,≺, A, d)
� �� ��

Cmax(st
L) ≤ (2 − 1/m) × Cmax(st

opt)

�� ���
Cmax(st

opt)
�� �� � ���� �! �� � � ���� ��� � �� ��� �� ��������

Proof : Let stopt
v∗ be the longest schedule in stopt, where v∗ stands for the corres-

ponding instance of boolean variables i.e.

Cmax(st
opt
v∗) = max

v∈{0,1}n
Cmax(st

opt
v),

Now let vL the instance of booleans such that stLvL is the longest schedule in

stL ; and let G = (PvL ,≺, d) be the task graph for the instance vL of boolean

7.3. NON LAZY STRATEGIES 93

(a) (b)

(c) (d)

¬b1

¬b1

p8

p7

p7

¬b2

¬b1
p3

p4

p2

p7

p8

b2
p9

p1

b1
p5

p6

¬b2

p8

b2
p9

¬b2

p3
p7

p4

b1
p5

p6 p8

p1

p2

b2

b1

p3

p4
p9

p5

p6 p9

p1
p4

p3 p2

p8

p7

p1 p4

p3 p2

p9

p1

p5

p6 p8

p7

p1 p6

p5

p2

p2 p9

p2

p1

p4

p3

p8

p7

p2

p1
p5

p6 p8

p2

p1

p4

p3

p9

p2

p1
p5

p6 p9

p7

p2

Fig. 7.6 – A possible strategy for CPG of Figure 7.5 and a left shift of task p2.

(a) and (c) are the tree-like schedules ; (b) and (d) are the full schedules

94 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

variable ; and let tm be the total idle time in stLvL . By lemma 2.1, we know that

there exists a path c in the CPG such that :

tm ≤ (m − 1) ×
∑

p∈c

d(p)

We know that

m × Cmax(st
L
vL) = tm +

∑

p∈P
vL

d(p)

On the other hand,

∑

p∈P
vL

d(p) ≤ max
v∈{0,1}n

∑

p∈Pv

d(p)

by the work preservation principle we have :

max
v∈{0,1}n

∑

p∈Pv

d(p) ≤ m × Cmax(st
opt)

hence,

m × Cmax(st
L) = tm +

∑

p∈P
vL

d(p)

≤ (m − 1) ×
∑

p∈c d(p) + m × Cmax(st
opt)

≤ (m − 1) × Cmax(st
opt) + m × Cmax(st

opt)

Cmax(st
L) ≤ (2 − 1/m) × Cmax(st

opt)

Although the set of non-delay strategies doesn’t always contain an optimal

solution, this theorem claims that any non-delay strategy is guaranteed to be

within half to the optimum (the worst case guarantee).

7.3.3 Restricting to non-lazy strategies

Since the set of feasible schedules is infinite, the number of executions in the

timed automaton is also uncountable due to the staying condition in the waiting

state p which is always true. A key results from [AAM06] allows us to consider

only a
� ���� �
�� ��

of the runs that we call
��� ����� �
��

. This result can be

generalized to our problem using lemma 7.3 as follow,

7.3. NON LAZY STRATEGIES 95

� +��	�	�� 7 ��� ��$�� ��� � � ���� �
� �� � �
� �� ����� �� � �� � ����� �� �
� �� ��
��� � �������� � �� � ��� � ��! ��� �������� � ����� ����� �� � � ����� ����� ��� ����
�� � ��� � �
���� ���� ������� � ������

Note that this definition does not mean that the all waiting are useless. For

example, the start1 transition from state (p0, p1) (cf. Figure 7.3) can be taken at

any time before condition c0 = 3 becomes true, i.e. anywhere in the interval [0, 3].

Such a waiting could be useful if something has changed during this waiting, for

example
�� � � ��� �� �� ����� � ����� �� or

�� � ���
 � �! � ������� ���� ��� ��������
.

But if the delayed action is taken in the
��� � � ����� �����, the waiting is useless

and the schedule can be replaced by another schedule of a lesser or equal length

in which the lazy action is taken as soon as it is enabled.

Restricting the state space to non-lazy strategies amounts to transforming the

timed automaton in order to detect and avoid lazy runs. Whenever a global state

has several outgoing transitions, the continuations to consider are those in which

a start transition is taken immediately, and those in which time (and clock va-

lues) advances by the exact amount needed to satisfy the condition for the nearest

end transition. State (p0, p1), for example, has two continuation, one is a result of

starting p1 immediately and the other is the result of waiting 3 time units until

c0 = 3 and the end0 transition is taken.

The above observation allows us to consider only a finite subset of runs cor-

responding to the finite subset of non-lazy schedules. In this work we attempt to

strengthen the definition of non-laziness [Abd02] to captures the useless waiting

only during the time processing of the modeled task. For example, if the scheduler

decides to not start a task pj at time t when there are available machines, then

if there is no blocking situation (all machines becomes occupied) or none of the

booleans became activated in the interval [t, t + dj] , then the run is lazy.

The model of Figure 7.7 shows the timed automaton for a task pj, modeling

the laziness detection and avoidance. The automaton associated with each task

p ∈ P is Ap = (Qp, {c}, I, ∆, s, f) with Q = {p?, p, p, p, ṗ, plazy} where the initial

state is p? and the final state is p. In this automaton all transitions are taken as

soon as possible. The staying conditions are as follow :

96 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

p_{lazy}

cj := 0

m = m − 1

m = m + 1

pj

pj

¬Apj

cj := 0 ṗj

pj

pj?

Apj

V

p′∈Π(p)
p′,

[m > 0]

[m > 0]

[(m = 0) ∨ ∃ new active bi]

[cj = dj]
[cj = dj]

m = 0

true

true

cj ≤ dj

¬(m = 0 ∨ ∃ new active bj)

Fig. 7.7 – laziness avoidance.

I(p?) ≡ Ap?

I(p) ≡ m = 0

I(p) ≡ c ≤ d(p)

I(p) ≡ true

I(ṗj) ≡ cj ≤ dj ∧ ¬(∃ new active bi ∨ m = 0)

I(plazy) ≡ true

The transition relation ∆ consists of the following transitions :

activate : (p?, Ap, ∅, p)

skip : (p?,¬Ap, ∅, p)

suspend : (p,
∧

p′∈Π(p)

p′, {c}, ṗ)

7.4. CHAIN DECOMPOSITION 97

resume : (ṗ, ∃ new active bi ∨ m = 0, ∅, p)

cut : (ṗ, c = d(p), ∅, plazy)

start : (p,
∧

p′∈Π(p)

p′, {c}, p)

end : (p, c = d(p), ∅, p)

Where m stands for the number of machines which become available at any instant.

As soon as a task automaton reaches a lazy state, the global state is cut.

Since we favor the generation of greedy strategies, the question whether it is

better to block task or not is very relevant, but unfortunately not yet answered in

this thesis.

7.4 Chain Decomposition

As for the deterministic problem, we can benefit from the chain decomposi-

tion when implementing the model. The boolean tasks are considered as usual as

well as the boolean dependencies. Here again, the precedence constraints are not

completely removed by construction, so we need additional data structure to keep

track of the finished tasks at each global state during the composition process.

The activation constraints are completely preserved in the chain, so no additional

information is needed. As an example, the CPG described of Figure 7.8 can be

represented as a special kind of precedence graph on which we can apply the chain

decomposition algorithms. Figure 7.9 shows the automaton for each chain. The

number of states for each intermediate task is reduced by one since the final state

p is not always needed.

98 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

p1

b

p0

p3
p2

p4

Fig. 7.8 – The new CPG on which we can apply the chain decomposition algo-

rithm.

7.4. CHAIN DECOMPOSITION 99

> p2/c1 := 0

p0?

Ap0
¬Ap0

p0

c1 := 0

p0

p3?

Ap3
¬Ap3

p3

c1 := 0

p3

p4?

¬Ap4
Ap4

p4

c1 = 8

p4

c1 = 3

p1?

Ap1
¬Ap1

p1

c2 := 0

p1

c2 = 7

p2?

¬Ap2

Ap2

p2

c3 := 0

p1
p2

c3 = 2

p2

c1 = 2

p4

Fig. 7.9 – Timed automata for chains.

100 CHAPITRE 7. MODELING CPG SCHEDULING PROBLEM

Chapitre 8

Shortest Strategies in Game

Graphs : Optimal and heuristic

Algorithms

In this chapter we will describe exact and approximate techniques for searching

game graphs. We investigate the more promising ways to do this by forward search,

generating the game graph on the fly. Of course, one can think about backward

search procedures to find optimal paths, but they are not of much help because the

game graph has to be constructed entirely. Forward procedures avoid this complete

construction by pruning useless reachable states. One way to do this is to extend

the two exhaustive Breadth First and Depth First algorithms of the previous part.

The chapter is organized as follow : section 1 and 2 give formal presentation of the

two algorithms’s extensions with possible improvements. In section 3 we explain

the estimation function and its properties, we will show by the way, the quality

of the schedules generated by the heuristic. Finally, we give some experimental

results.

All along this chapter, we will consider a game graph G = (Q, δ, w), represen-

ting the global model for the scheduling problem

101

102 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

8.1 Exact algorithms

The computation of the optimal strategy is a by product of computing the
���
 � !
� ����� h : Q → R+ where h(q) is the value of the best strategy for the

residual game Gq. This function is defined recursively as :

h(q) =











0 if q is terminal

minq′∈σ(q) w(q, q′) + h(q′) if q ∈ Q∨
maxq′∈σ(q) w(q, q′) + h(q′) if q ∈ Q∧

There are various ways to compute h, one of them is the
�������� ���
 � ������

���� procedure, also known as
����� �� � ������� ���, which starts with the final

states and propagates values according to the definition of h until h(q0) is defined,

where q0 is the initial node having no predecessor. This approach suppose the total

construction of the game graph which is exponential in the size of the CPG. If we

don’t want to construct the whole game graph, we can use the forward version of

dynamic programming generating the successors forward. This procedure is called

Depth-first min-max, and is presented below.

8.1.1 Depth first min-max

The forward depth-first algorithm, which was used in [BKM04], is obtained by

invoking h(q0) and following literally the recursive definition. If the game graph

has a tree structure, this procedure has the same complexity as dynamic program-

ming, however on non-tree graphs (i.e. dags), the algorithm can easily become

exponential since the same node can be reached via many paths. Consequently we

use an algorithm that combines depth-first search with memorization : whenever

h(q) is computed for the first time, the result is stored as E(q) and subsequent

invocations of h(q) are answered using this value.

3,-��	�)4 � �� �� +(�) ��%� 4 	��4$2 �

8.1. EXACT ALGORITHMS 103

integer function
�
(q)

if q
�� ���� ����

return(0)

elsif E(q)
�� ��� � ��

return(E(q))

elsif q ∈ Q∨ then

begin

E
��
∞

for
�����

σ
�
 �� ����

δ∨(q, σ)
�� ��� � ��

do

E ′ := w(q, σ) + h(δ∨(q, σ))

E := min{E, E ′}

E(q) := E

return
�
E
�

end

elsif q ∈ Q∧ then

begin

E
��

h(δ∧(q,¬b))

E ′ ��h(δ∧(q, b))

E := max{E, E ′}

E(q) := E

return(E)

end

The derivation of a strategy from the value function is standard : we traverse the

game graph from q0, and for every q ∈ Q∨ s(q) = σ from which the minimum is

obtained via the transition σ.

Algorithm 8.1 is (time and space) linear in the size of the game graph but this

is not of much help because the game graph by itself is exponential in the size of

the CPG. The largest problems that we could solve with this algorithm had up to

20 tasks and 4 Booleans. We have preferred this algorithm over backward dynamic

programming because it is more easily amenable to techniques that find optimal

or nearly-optimal solutions without exploring the whole graph.

104 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

Improvements

Techniques for pruning the search space are based on two related ideas :

– Do not explore paths that can easily be shown not to lead to an improvement

of the value function computed so far ; this is usually based on an auxiliary
����� ����� !
� ����� µ̄(q) which approximates h(q). If this function is �� ���
������

, that is, µ̄(q) ≤ h(q) for every q, we need not explore δ-successors of

an OR node q satisfying E ≤ w(q, q′) + µ̄(q′) where E is a value obtained

via an already explored successor. We refer to the above condition as a
��! �

�
����� ����
.

– Replace the arbitrary order of exploration by a more “intelligent” policy,

which explores the more promising successors first. Such a policy can be

obtained again using the estimation or another heuristic rule (such as longest

task first, most successors first, ...etc.).

The depth first min-max procedure can be seen as a variation of the well known
��� ������� � �����

issued from the Artificial Intelligence community [Nil71, Zha99].

However, while the
��� �������

procedure uses the cost-to-come to a final state as

value for nodes, the depth first min-max uses the cost-to-go from the node in

question, which make it more adapted to our problem. The first is a generaliza-

tion of the Branch and Bound procedures, while the other is a generalization of

the forward dynamic programming. The domination test between nodes (see sec-

tion 8.1.3) in the alpha beta search is reduced to a simple revisiting test in the

depth first min max, which is lowest to compute, as well as the safe cutting tests

are adapted according to the cost-to-come...etc.

The motivation of using the cost-to-go instead of the standard alpha beta search is

that it facilitates the calculation of the cost of each strategy by backward propaga-

tion of this potential values during the search, especially in the heuristique search

DFSBT (see section 8.2). All along the node of the tree of each strategy, instead

of comparing the cost to come to the leafs and take the max between them, we

just have to propagate backward the cost-to-go along each node.

8.1. EXACT ALGORITHMS 105

8.1.2 Other method : Breadth first à la Dijkstra

The following algorithm is a variant of standard game graph search algorithms. It

is an extension of the well known Dijkstra algorithm to game graphs [Mal04]. It

explores all reachable partial strategies and finds the optimal worst-case strategy.

As usual, it maintains a queue
��������, containing reachable partial strategies

that are the frontier of the search process, that is, strategies that have been rea-

ched but their successors have not.

Before describing this algorithm, let us begin with some definitions.

Valued node A valued node is a couple (q, T) where q is a state in Q. T is a

non-negative number representing the length of the path leading to q.

Successors of a valued node the successors of a valued node are defined

Suc(q, T) = (q′, T + w(q, q′)) where q → q′

Macro node A macro node is a set of valued nodes

K = {(q1, T1), · · · , (qk, Tk)}.

Intuitively, a macro node represents a set of states reachable from the initial

state by following a partial strategy under all continuations of AND nodes

that have been revealed.

Successor of a macro node A successor of a macro node is obtained by picking

an element (q, T) on it and replacing it either by any Suc(q, T) if q is an OR

node, or by the set of all its extended successors if it is an AND node. We

use Suc(M) to denote the set of successors of M , each being a macro node.

We are now ready to give the algorithm :

3,-��	�)4 � �" ��� 5����	+� *)���+%� 6$�) �

106 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

Frontier := {{(q0, 0)}}

repeat forever
� ��� �� � � ��� � �� ����� ���� � ���� ���� K

! ��� Frontier

if K
�������� ���� ���� ���� � ���� then

K
�� �� ��� ��

����

else

for
�����

K ′ ∈ Suc(K) do
��� ���

K ′ �� Frontier
� �� ��� K

! ��� Frontier

Each terminal macro node {(q1, T1), · · · , (qk, Tk)} represents the outcome of fol-

lowing a particular strategy, where Ti is the length of the schedule obtained by

that strategy on all instances of the adversary in the AND nodes. Choosing the

macro node which minimizes max{Ti} amounts to choosing the worst case opti-

mal strategy. This way, we can sort the Frontier list by increasing order of macro

nodes’s costs and stop the algorithm as soon as we reaches the first macro node

containing only terminal nodes. This avoid us to explore the whole strategy space

by forbidding macro nodes with higher cost than those computed so far.

Figure 8.2 shows the space of reachable partial strategies of the AND/OR graph

of figure 8.1. The annotation on macro nodes represent the order of exploration.

The optimal final macro node is {(q7, 2), (q11, 3)}.

This algorithm can be improved by taking into account a “
��� �������” relation

among macro nodes. Intuitively, a macro node dominates another if any node of

the former dominates one of the latter.

8.1.3 Domination relations

� +��	�	�� � �� ��+��	�	�� � +��++� ���+%� �� ��� �� ��
(q, T)

��� ������ (q′, T ′)
��� � � ���� (q, T) ≤ (q′, T ′)

��

	 q′
�� ��������� ! ��� q

���
	 T ≤ T ′

8.1. EXACT ALGORITHMS 107

q2

q1

q3

q4 q5 q6

q7 q8
q9

q11

q10

q12

1 1

1 1

11

1 11

1 2

1

Fig. 8.1 – An AND/OR graph example

1

2

4

3

{q1}

{(q7, 2), (q8, 2)} {(q4, 2), (q5, 2), (q6, 2)}

{(q5, 2), (q6, 2), (q7, 3)}

{(q6, 2, (q7, 3), (q8, 3)}

{(q7, 3), (q8, 3), (q9, 3)}
{(q7, 3), (q8, 3), (q10, 3)}

{(q7, 2), (q11, 3)} {(q7, 2), (q12, 4)}

{(q7, 3), (q9, 3), (q11, 4)} {(q7, 3), (q9, 3), (q12, 5)} {(q7, 3), (q10, 3), (q11, 5)}{(q7, 3), (q11, 3), (q10, 4)}

Fig. 8.2 – The space of partial strategies of the graph of figure 8.1

108 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

� +��	�	�� � �" ���4 	�$�	�� � +��++� 4$��� ���+%� ���
K = {(q1, T1), · · · , (qk, Tk)}���

K ′ = {(q′1, T
′
1), · · · , (q

′
k, T

′
k)}

�� �� � � ���� ����� � �� ��� �� ��
K

��� ������

K ′ ��� � � ���� K ≤ K ′ ��

∀(qi, Ti) ∈ K
�
∃(q′j , T

′
j) ∈ K ′ �
 �� ���� (qi, Ti) ≤ (q′j , T

′
j)

� �������� � � ��� �� ��
K

���
K ′ ���
� ���������� ��������� �� ��� �������

��� � � ���� K ./ K
′ ��

¬(K ≤ K
′

) ∧ ¬(K
′

≤ K)

We use domination as follows : whenever K and K ′ are macro nodes in the

Frontier and K ≤ K ′, then there is no need to explore K ′. This means that

the Frontier will be restricted to contain only uncomparable macro nodes.

This algorithm is quite inefficient due to its high time/space complexity. The

storage requirements for each macro node grows exponentially in the number of

boolean variables. Consequently, the domination relations become very heavy to

compute. In addition, the list Frontier is known to increase exponentially in the

depth of the graph of macro nodes. All these facts make the algorithm very costly

and hence very inefficient when implemented.

8.2 Heuristic : Depth First Search with selective

Backtracking

In the deterministic problem, we have presented two heuristic algorithms.

There, the time/space complexity are both linear in the size of the graph. It is not

the case for the adversarial case. The generalization of the bounded width breadth

first heuristic requires to select w macro nodes at each level of the search process,

which may reach an exponential size for each macro node. The DFSBT presented

below, is supposed to store one strategy at time. This reduces considerably the

memory consumption and decreases the time complexity severely compared to the

8.2. HEURISTIC : DEPTH FIRST SEARCH WITH SELECTIVE BACKTRACKING109

bounded width heuristic. In addition, while the bounded width heuristic fails to

obtain solutions for large instances, the DFSBT can be parameterized so that

it is guaranteed to get at least one initial solution. This is why the generaliza-

tion of BFS − w is excluded from consideration and we have chosen to focus our

presentation on the generalization of the DFSBT to the adversarial problem.

Now let us introduce the notations used before giving the algorithm :

q0 : the initial state (the root of the game graph),

qsplit : the OR state where we want to update,

qchoice : the new choice that we want to make at qsplit

S(q) : the choice made for q. S(q) ∈ δ∨(q) if q is an OR node

P (q) : the parent node for q, if q is in the strategy

H(q) : the cost of the strategy starting at q

T (q) : the time to reach q in the current strategy

The Algorithm 8.3 is the main routine for DFSBT . It searches for an initial

strategy by invoking the procedure computeStrategy from the initial state q0 of

the game graph. Then, iteratively it tries to improve the current strategy . For

doing this, it searches a candidate node for improvement (qsplit) and computes an

alternative strategy for it, following qchoice. If this new strategy is better than the

old one, then the global strategy is updated. This process continues until some

stop condition is met, and it returns the best solution found so far.

3,-��	�)4 � �
 �� 5% � 	�) %+,+��	�+ �$�&��$�&	�- �

110 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

Algorithm
���� �

begin

computeStrategy(q0,⊥, 0)

while
�
¬stop condition

�
do

qsplit := ⊥
�

qchoice := ⊥

findBacktrackNode(q0)

computeStrategy(qchoice, qsplit, T (qsplit) + w(qsplit, qchoice))

if (H(qchoice + w(qsplit, qchoice)) < H(qsplit))

S(qsplit) := qchoice

P (qchoice) := qsplit

propagateUpward(qsplit)

endif

end while

end

Several stop conditions have been implemented :

– no more improvement : the algorithm stops when all other backtracking

nodes have greater estimation than the cost of the best strategy found.

– time bound : the algorithm stops when a time limit is released.

– memory bound : the algorithm stops when no more memory is available.

The procedure computeStrategy goes down recursively from a node q, and

constructs a complete strategy by choosing always the immediate ’best’ successor

for OR nodes. During the search process, the cost-to-come T (q) for each explored

node are computed forward and the costs-to-go H(q) are propagated backward.

6���+���+ � �� ���4(��+% $ %��$�+-� � +-	��	�- 5��4 $ ���+ �

8.2. HEURISTIC : DEPTH FIRST SEARCH WITH SELECTIVE BACKTRACKING111

Algorithm
����
��� ������� �q, p, t�

q
� �� � �
����� �����

p
� �� � ������ ����� �! q

t
� �� � ���� �� ��� � �� q

begin

P (q) := p

T (q) := t

if q
�� ���� ����

H(q) := 0

endif

if q ∈ Q∨
if S(q) 6= ⊥

���
��

else

begin

q′ := bestOf(δ∨(q))

computeStrategy(q′, q, t + w(q, q′))

H(q) := H(q′) + w(q, q′)

S(q) := q′

end

endif

if q ∈ Q∧
foreach q′ ∈ δ∧(q)

computeStrategy(q′, q, t + 0)

H(q) := max{H(q′)/q′ ∈ δ∧(q)}

endif

end

Note that each time a node q is encountered, the condition S(q) 6= ⊥ is checked.

This prevents from visiting an already explored node. Revisiting is not necessary

because the selection rule is the same,and leads necessarily to the same choices as

the ones already defined from q and its successors.

The backtracking rule consists on choosing the most promising node likely to

improve the current strategy among all the pending successors of actual nodes in

112 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

that strategy. The cost of a strategy from a node q is equal to the cost of the

longest path from q in this strategy. Consequently, if we want to improve a given

strategy, we need only to improve the costs of nodes contained in the longest path

in the current strategy. This is why, each time an AND node q is encountered, the

procedure FindBacktrackNode follows with the successor which has the maximal

cost equal to H(q) 1.

6���+���+ � �" �*+,+��	�� �5 $ �$�&��$�&	�- +�-+ �

Algorithm
� ���� ��� ������ ����q��

begin

if q
�� ���� ����

return

ifq ∈ Q∧ then
� �����

q′ ∈ δ∧(q) s.t. H(q) = H(q′)

FindBacktrackNode(q′)

endif

if q ∈ Q∨ then
� ����� � ��� � ��� ����� q′ ∈ δ∨(q)\{S(q)}

if qchoice = ⊥ ∨ q′
�� � ��� � ��� ����� ���� qchoice

qsplit := q

qchoice := q′

endif

FindBacktrackingNode(S(q))

endif

end

The procedure PropagateUpward updates the values in the strategy according

to the new choice made at the backtracking. It stops as soon as it reaches the same

value.

6���+���+ � �
 ��$�&�$�� (��($-$�	�� �

1In this work, it is supposed that the AND edges have zero costs

8.3. ESTIMATION FUNCTIONS FOR CONDITIONAL SCHEDULING 113

PropagateUpward(q)

begin

if q ∈ Q∨
h := H(S(q)) + w(q, S(q))

if q ∈ Q∧
h := max{H(q′)/q′ ∈ δ∧(q)}

if h < H(q)

H(q) := h

if P (q) 6= ⊥

PropagateUpward(P (q))

endif

end

8.3 Estimation Functions for Conditional Sche-

duling

For unconditional precedence graphs, an estimation function that gives a lower

bound on the time remaining until termination from a state, can be constructed

by first associating with each task p the length µ(p) of the longest path in the

task graph from p to some terminal task. Then, an estimation µ̄ of the value of

the global state, is the maximum of µ over all tasks which are waiting or active in

this state.

In the conditional setting this is more involved due to precedence constraints

between tasks that have
��� ����� ���������� ����������. Consequently the distance

from a task to termination is not a single number but is
������ �� ��� ������

. Let

µ : P×{0, 1}n → R+ be a partial function defined over all v such that Ap(v) is true.

When Ap(v) is false we use the notation µ(p, v) = ⊥. The intended meaning of

µ(p, v) is the total amount of work that needs to be done for instance v before task

p has started. Since computation of longest pathsis done (explicitly or implicitly)

within the (max, +)-algebra we need to extend these two operations to R+ ∪ {⊥}

by letting r + ⊥ = ⊥ and max{r,⊥} = r for every r ∈ R+.

A simple way to understand this function (although not the most efficient

114 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

way to compute it) is the following : for each instance v let Gv be the sub-graph

consisting of the tasks whose activation conditions are satisfied by v. If p does not

belong to Gv then µ(p, v) = ⊥, otherwise let µ(p, v) be the longest path in Gv

from p to termination. This function can be computed backwards on the whole

graph, starting from terminal nodes :

µ(p, v) =

{

⊥ if Ap(v) = false

d(p) otherwise

and computing for other nodes as

µ(p, v) = d(p) + max
p′:p≺p′

µ(p′, v).

This computation can be done symbolically (and off-line) using the syntax of

A without necessarily enumerating all instances. From µ we can define an es-

timation function µ̄ over the states and clock values of the Ap automaton by

letting µ̄(p?, c, v) = µ̄(p, c, v) = µ(p, v), µ̄(p, c, v) = µ(p, v) − c and µ̄(p, c, v) =

µ(p, v) − d(p).

The function µ̄ is �� ��� ����� because it takes into account precedence constraints

but ignores resource constraints. In other words it assumes sufficiently many ma-

chines so that every task can be executed once all of its predecessors have ter-

minated. A complementary way to obtain lower-bounds on schedule length is to

ignore precedence constraints and take into account resource constraints, that is,

dividing the total amount of work by the number of machines. The estimation

νk = max
v

∑

p∈Pv

d(p)/m

is equally optimistic as it ignores the possibility that a machine can be idle at

certain times because no task is enabled. Like µ, estimation ν can be defined for

global states of the game automaton by restricting summation to tasks that have

not terminated.

12$4(,+ � �� � ��
�� � �� �� ��� �� � ��� ����� ������ ��� �! �� � �� �! � �
�� � ���
��� �� � ����� � �� � �� �� �� � ���� ��� �����
���� �� � � ������� ������ ��� �! �������� �
� �� �
�� �� � � � ���� �� � � ����� ����� q = (p1, p2?)

�� �� � � ����� �
��� ���� �! �� �
 �� �! � ��
�� � �� �

p1
��� ���� ������ �
� � �� p2

���
p3
� � � �� �� ����� �� � ���
 �� �!

8.3. ESTIMATION FUNCTIONS FOR CONDITIONAL SCHEDULING 115

b1
���

b2
��� ��� ����� ���� ����� � �� �������� �� � ���� ��� ���� ! ��� � ����
����

���� ������ �� �! ������� ��������� ���
� ���
��� �� ��
���� ��� �� � �� � ����� �����
! �� p2

������� ���� �� �� � � �� ��
� ���
 � �! ��� ���� ��� ����� �� ��� �� � ������ ��� �
��� ���

µ̄(p, v) = max{4, 5, 4, 4}

�

When dealing with more than 8 variables, this calculation becomes impractical

when using tables like Table 8.1. One way to improve this calculations is to use the
� ����� � ������� � ������� ������

. The estimations for each task are computed

off-line from each instance graph as in figure 8.4 and stored as BDDs. Figure 8.5 (a)

shows the Shannon decision tree for p2, and figure 8.5 (b) gives the corresponding

Arithmetic Decision Diagram for the task p2. Note that the decision tree is always

exponential in the number of variables ; however, the arithmetic decision diagram

can be much smaller due to the simplification and the sharing of isomorphic paths.

Using these estimations in the DFSBT, we can always obtain a greedy initial

strategy, which means that the worst case performance of the heuristic is better

than 50% of the optimum.

116 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

1

1
0

0

0

0
0

0

0

1

0

p1p2

p3

p5

p6

b1

b2

p8

p7

p9

p11
p10

p4

Fig. 8.3 – A CPG with input and output dependencies

8.3. ESTIMATION FUNCTIONS FOR CONDITIONAL SCHEDULING 117

p2

p2
p2

p2 p1

p3

p5

p9

p11p8
p10

p1p2

p5

p9

p11p10

p6 p7

p1

p3

p4

p10 p11

p1

p3

p4

p10 p11

¬b1b2¬b1¬b2

b1b2b1¬b2

Fig. 8.4 – All instances of the CPG

118 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

0 0 3 4 3 ⊥ ⊥ ⊥ ⊥ 1 1 1 1

0 1 4 5 4 ⊥ 3 1 2 ⊥ 1 1 1

1 0 1 4 3 2 ⊥ ⊥ ⊥ ⊥ ⊥ 1 1

1 1 1 4 3 2 ⊥ ⊥ ⊥ ⊥ ⊥ 1 1

Tab. 8.1 –

4 5

0 1

0 1

0 1

(a)

0 1

10

(b)

4 4 4 5

p2 p2

b1

b2b2
b2

b1

Fig. 8.5 – The longest path estimation of process p2. (a) The Shannon decision

tree and (b) the corresponding Arithmetic Decision Diagram

8.4. EXPERIMENTAL RESULTS 119

8.4 Experimental Results

We have implemented a prototype tool that generates random CPGs, translates

them into timed automata with chain decomposition, and generates only strict

non-lazy runs. It implements all algorithms described inthis thesis. All the results

were obtained on an architecture Pentium 1.4 Ghz, 2 Go of memory. Table 8.2

shows results for different CPGs on 3 machines. Applying an exact depth first

min-max with a best first search, we could solve problems up to 20 tasks with 4

booleans. Beyond that, we have to use the sub-optimal heuristic.

2 3 4

opt time nb st opt time nb st opt time nb st

8 38 0′′ 79 30 0′′ 218 36 0′′ 758

10 31 0′′ 1388 36 0′′ 152 28 0′′ 281

12 38 0′′ 169 29 0′′ 2668 47 1′′ 1870

14 53 0′′ 1455 59 2′′ 12060 42 2′10′′ 191042

20 71 8′7′′ 2386599 61 10′45′′ 2610496 61 0′′ 1278

Tab. 8.2 – Results for exact dfs on 3 machines. The number of tasks varies from

8 to 20 and the number of booleans is from 2 to 4. opt represents the value of

the optimum, time and nb st stands respectively for the time and the number of

generated global states.

We have tested our heuristic on large size CPGs Setting the time bound to 1

minute, we could solve problems with up to 200 tasks and 7 booleans as shown

in table 8.3. The results of the largest problems we have treated with the time

bound was set to 5 minutes are reported in table 8.4. As one can check, the average

worst-case deviation from the lower bound is about 1.73%.

120 CHAPITRE 8. SHORTEST STRATEGIES IN GAME GRAPHS

3 4 5

α best LB imp best LB imp best LB imp

100,6 0 263 260 339 203 195 303 166 156 290

100,6 0.66 263 260 339 203 195 303 166 156 291

100,7 0 321 316 6000 245 190 904 194 190 206

100,7 0.66 321 316 287000 247 190 266000 200 190 351000

120,7 0 360 354 438 278 266 393 218 213 284

120,7 0.66 360 354 648 279 266 227 218 213 175

100,10 0 474 467 45 383 350 193 347 333 262

100,10 0.66 475 467 2455 383 350 12 349 333 13

150,7 0 428 413 36 325 310 33 255 248 26

150,7 0.66 428 413 43 325 310 12 255 248 26

200,7 0 559 543 8 429 407 6 345 326 7

200,7 0.66 559 543 20000 429 407 19000 345 326 18000

Tab. 8.3 – Results for large CPGs on different machines (column 3, 4 and 5).

best stands for the best result, LB is a lower bound, and imp is the number of

backtracking points. The time bound execution is 1 minute

3 4 5

best LB imp best LB imp best LB imp

300,10 1391 1371 32 1067 1029 186 898 823 14301

300,12 1410 1385 7 1070 1039 1011 902 831 2822

400,10 1809 1790 13410 1373 1342 2124 1110 1074 6277

500,8 2320 2308 424 1783 1731 8142 1558 1391 6939

Tab. 8.4 – Heuristic results for larger CPGs with 5 minutes time bound.

Chapitre 9

Conclusion

All along this thesis we have considered two problems of scheduling dependent

tasks under resource constraints. The first problem is deterministic, whereas the

second involves conditional uncertainty. The deterministic task graph scheduling

can be solved with existing techniques, most of them based on list scheduling. In

this work we have used the timed automata technology in order to evaluate its

performance on such problems.

For the deterministic problem, we have first considered the naive model which

construct a product of automata, one for each task. By exploiting the structural

properties of the partial order in the task graph, using the Dilworth theorem, we

have reduced the size of the product by decomposing the task graph into chain

cover and building an automaton for each chain in the task graph. This model is

very efficient because most of real applications have usually small width compared

to the number of tasks.

The non laziness phenomenon was redefined, better formalized and adapted

to our problem. Hence, we have proposed a new model based on timed automata

with additional features that avoids useless waitings. In this model, the useless

waiting is detected during the processing time of the task.

On the algorithmic side, we have investigated several search techniques. Pre-

viously, the search defined in [AKM03] was more breadth like. In this work, we

attempt to render the search more depth like, and we have proposed the selective

backtracking heuristic DFSBT. Moreover, we have shown that using a standard es-

timation function in a depth first search, the procedure is naturally guided toward

121

122 CHAPITRE 9. CONCLUSION

non-delay schedules. This means that, theoretically, the quality of the obtained

solution is always better than a standard list scheduling, for which a good worst

case performance is guaranteed. In addition, the DFSBT can be parameterized so

that an idle time can alway be inserted in the schedule during the backtracking

process. Furthermore, a non-lazy strategy that favors waiting is always possible.

However, while such a heuristic is known to fail to obtain good schedules in a

reasonable amount of time, the greedy guided search can always obtain schedules

close to the optimum at a very early stage of the search process.

The generalization to the conditional problem was not straightforward. First we

had to define the conditional precedence graphs which capture the whole situation

with a well defined semantics. Secondly, we had to verify that all the results

for the deterministic case, including the fact the non-lazy schedules achieve the

optimum, and that the approximation ratio for Greedy schedules is at most 2, can

be transferred to the conditional case. The timed automaton models had to be

extended to accomedate for conditional dependencies and the chain decomposition

procedure had to be safely adapted for a mixture of ordinary and Boolean tasks.

We have investigated and implemented several forward search procedures for

searching the game graph representing the global automaton in order to select

the best heuristic. Two exact methods were proposed. The first is based on a

generalization of the Bellman principle to game graphs, and the second extends

the Dijkstra algorithm. As it turned out that the min-max depth first procedure

[BKM04] has a lower complexity than the breadth first one [Mal04], which was

not obvious a-priori, we have chosen to generalize the DFSBT heuristic to get sub

optimal strategies. This way the DFSBT was parameterized and well tuned, and

revealed to be more powerful than the bounded width heuristic due to its low

memory requirements.

To guide the search, we have proposed two simple lower bounds that estimate

the remaining time from a global state. Instead of using heavy tables to store es-

timation values, which are always exponential in the number of boolean variables,

the storage and computing time requirements were reduced more significantly

using a BDD representation. Here again, the search is guided naturally toward

non-delay strategies, for which the maximum deviation is theoretically within half

to the optimum.

In the next steps of the work, we envisage two major directions. The first aims

123

to extend the models to treat more complex scheduling with additional constraints,

and the other concerns a better understanding of the state space exploration and

the problem itself.

To make the model more realistic, we can :

1. Add more complex timing constraints such as relative deadlines or synchro-

nization constraints between tasks. Such constraints are in principle easily

included in the TA model, however, important properties concerning non-

laziness are lost.

2. Extend the framework to speculative execution.

3. Add new sources of uncertainty such as the combination of the discrete

uncertainty treated in this thesis with preemption and temporal uncertainty

concerning the duration of atomic tasks.

4. Consider the problem with heterogeneous processors and/or cyclic tasks/activities.

5. Develop a front end for extracting automatically the CPGs via data flow

analysis from programs.

Further directions suggest :

1. To understand how to take benefit from the advantage of the DFSBT heu-

ristic in order to include useful waitings in an already explored schedule.

Suppose we go down a path with a greedy strategy, then we may discover

something about bottlenecks in the current schedule. For example it may be

the case that a blocking situation occurs because we have chosen to start

the wrong tasks instead of waiting another future enabled one. We can then

analyze the reasons of this blocking and backtrack in order to include the

useful waiting. Is there a way to get benefit from the already accumulated

knowledge ?

2. To establish the complexity of the conditional problem. The problem is NP

hard because the deterministic problem is reduced to it ; but is not complete

for NP. On the other hand, we know that it is in NEXPTIME since we can

check if a given strategy is feasible is in O(2n), where n is the number of

boolean variables. Is it another problem known to be NEXPTIME complete

from which it can be reduced ?

3. Construct a parallelized version of the DFSBT.

124 CHAPITRE 9. CONCLUSION

Conclusion

Tout au long de cette thèse nous avons considéré deux problèmes d’ordonnance-

ment de tâches dépendantes sous contraintes de ressources. Le premier problème

est déterministe, alors que le deuxième présente de l’incertitude conditionnelle.

L’ordonnancement de graphe de tâches déterministe peut être résolu avec des

techniques existantes, la plupart sont basées sur des ordonnancements de listes.

Dans ce travail nous avons utilisé la technologie des automates temporisés afin

d’évaluer leur performance sur de tels problèmes.

Dans le cas déterministe, nous avons d’abord considéré le modèle naΞıf qui

construit un produit d’automates, un pour chaque tâche. En exploitant les pro-

priétés structurelles de l’ordre partiel dans le graphe de tâches, en utilisant le

théorème de Dilworth, nous avons réduit la taille du produit en décomposant

le graphe de tâches en châınes couvrantes et en construisant un automate pour

chaque châıne dans le graphe de tâches. Ce modèle est très efficace car la plupart

des applications réelles ont habituellement une petite largeur de graphe en com-

paraison avec le nombre de tâches.

Le phénomène de la non-paresse a été redéfini, mieux formalisé puis adapté à

notre problème. Ainsi, nous avons proposé un nouveau modèle basé sur les auto-

mates temporisés avec de nouvelles caractéristiques qui évitent les attentes inutiles.

Dans ce modèle, les attentes inutiles sont détectées durant le temps d’exécution

de chaque tâche.

D’un point de vue algorithmique, nous avons investigué plusieurs techniques

de recherche. Auparavant, la recherche définie dans [AKM03] était plus en largeur.

Dans ce travail, nous tentons de rendre la recherche plus en profondeur, ainsi nous

125

126 CHAPITRE 9. CONCLUSION

avons proposé l’heuristique profondeur d’abord avec backtrack sélectif (DFSBT).

De plus, nous avons montré qu’en utilisant une fonction d’estimation standard

dans une recherche d’abord en profondeur, la procédure est guidée naturellement

vers des ordonnancement sans attente. Ceci veut dire que, théoriquement, la qua-

lité des solutions obtenues est toujours meilleurs que celle des ordonnancements

de listes, pour lesquels une bonne performance pire cas est garantie. D’autre part,

l’heuristique DFSBT peut être paramétrée de sorte que des attentes peuvent tou-

jours être insérées dans un ordonnancement donné durant la phase de backtrack.

Par conséquent, une stratégie qui préfère attendre est toujours possible. Toutefois,

alors qu’il est largement connu que de telles heuristiques sont incapables d’obte-

nir de bonnes solutions en un temps raisonnable, le DFSBT obtient toujours des

solutions très proches de l’optimum au tout début du processus de recherche.

La généralisation au problème conditionnel n’était pas directe. D’abord, nous

avons eu à définir le graphe de précédences conditionnel qui capture la totalité de

la situation avec une sémantique opérationnelle bien définie. Ensuite, nous avons

eu à vérifier que tous les résultats concernant le cas déterministe, y compris le fait

que les ordonnancements non-paresseux atteignaient l’optimum, ainsi que la garan-

tie de performance des ordonnancements sans attente est au plus 2, peuvent être

généralisés au cas conditionnel. Les modèles d’automates temporisés ont dû être

étendus pour être accommodés aux dépendances conditionnelles et la procédure

de décomposition en châınes a dû être adaptée de manière sûre pour une mixture

de tâches ordinaires et booléennes.

Nous avons investigué et implémenté plusieurs procédures de recherche en

avant pour parcourir un graphe de jeu représentant l’automate global afin de

sélectionner la meilleure heuristique. Deux méthodes exactes ont été proposées.

La première est basée sur une généralisation du principe de Bellman aux graphes

de jeux, et la seconde généralise l’algorithme de Dijkstra. Comme il s’est avéré que

la procédure min-max en profondeur d’abord [BKM04] a une complexité inférieure

à celle qui va en largeur d’abord [Mal04], ce qui n’était pas évident a-priori, nous

avons choisi de généraliser l’heuristique DFSBT pour avoir des stratégies sous op-

timales. De cette façon, DFSBT a été paramétrée et bien ajustée, et s’est révélée

plus avantageuse que l’heuristique à largeur bornée dû à sa faible complexité en

mémoire.

127

Pour guider la recherche, nous avons proposé deux bornes inférieures qui es-

timent le temps restant à partir d’un état global. Au lieu d’utiliser des tableaux

pour stocker les valeurs d’estimations, dont la taille et le parcours sont tou-

jours exponentiels par rapport au nombre de variables booléennes, les besoins

en mémoire et en temps ont été réduits d’une façon très significative en uti-

lisant la représentation en BDD (de
� ����� � ������� � �������

). Encore une

fois, nous avons pu montrer que la recherche est dirigée naturellement vers des

stratégies initiales qui sont sans attente, et pour lesquelles la déviation maximum

est théoriquement à moitié de l’optimum.

128 CHAPITRE 9. CONCLUSION

Bibliographie

[AAM06] Y. AbdeddaΞım, E. Asarin, and O. Maler. Scheduling with timed au-

tomata.
�� ��������� ���
��� � ���� ��

, 354(2) :272–300, 2006.

[Abd02] Y. AbdeddaΞım.
� �� ��
���� � ��� ��� �� �
��� ���. PhD thesis, INPG

Grenoble, November 2002.

[ACD74] T. L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list

schedules for parallel processing systems.
 ���
�������� �! �� � � � ,

17(12) :685–690, 1974.

[ACMR03] K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten. Using controller-

synthesis techniques to build property-enforcing layers. In
����

,

pages 174–188, 2003.

[AD94] R. Alur and D. L. Dill. A theory of timed automata.
�� ���������

 ���
��� � ���� ��
, 126(2) :183–235, 1994.

[AGS02] Karine Altisen, Gregor GΞoßler, and Joseph Sifakis. Scheduler modeling

based on the controller synthesis paradigm.
� ������� � �������

, 23(1-

2) :55–84, 2002.

[AKM03] Y. AbdeddaΞım, A. Kerbaa, and O. Maler. Task graph scheduling

using timed automata. In
���� ������������� � ���� ��� ��� � ������
���

� ��������� �������
� ������ ����� � ����� �� ��� ����� � ���� ���� ���
 � ������ �������� � ����������, page 237. IEEE Computer Society,

2003.

[AM02] Y. AbdeddaΞım and O. Maler. Preemptive job-shop scheduling using

stopwatch automata. In Joost-Pieter Katoen and Perdita Stevens, edi-

tors,
����� ��� � �� ������� ! �� �� � �����
 ����� ��� �������� �! ����

����� ��� ������������� ��! ���� ��� �� � � ����� �
��� ��� ��! ��
��� �� �� �� ���� ��� � ������� �! � �! ������ � ���� ����� ���� �����

129

130 BIBLIOGRAPHIE

���� ��� �� ��� ����� ����� � ����������, volume 2280 of
����
�� � ����

�� ���
��� � ���� ��
, pages 113–126. Springer, 2002.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for

timed automata. In
�� � ����� ��� �������
� �� ������ � ��
 ��
��

��� �������, pages 469–474. Elsevier, 1998.

[Bak74] K. R. Baker.
������
 ����� �� � �	
�� ���� ��� � �� ��
����

. John Wiley

and Sons, 1974.

[Bel57] R.E. Bellman.
� ���� �� � ������� ���. Princeton University press,

Princeton, NJ, 1957.

[BEP+96] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
� �� ��
���� ����
��� ��� � ��
! ���
���� � ������ ��. Springer-Verlag

New York, Inc., New York, USA, 1996.

[BF01] G. Behrmann and A. Fehnker. Efficient guiding towards cost-

optimality in uppaal. In
�� � � ���� � ����������� �! �� � ��� �� �

����������� ��! ���� �� �� ����� ��� � �� ������� ! �� �� � �����
 �����
��� �������� �! �������

, pages 174–188, London, UK, 2001. Springer-

Verlag.

[BFG+99] M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and

L. Mounier. IF : An Intermediate Representation and Validation En-

vironment for Timed Asynchronous Systems. In J.M. Wing, J. Wood-

cock, and J. Davies, editors,
����������� �! �� ��� ���
��
� �� ���� ���,

volume 1708 of
�� �

, pages 307–327. Springer, September 1999.

[BGM02] M. Bozga, S. Graf, and L. Mounier. If-2.0 : A validation environment

for component-based real-time systems. In K.G. Larsen Ed Brinksma,

editor,
����������� �! �� ��� � �� ����� ��� � ��� ����, volume 2404

of
�� �

, pages 343–348. Springer, July 2002.

[BKM04] M. Bozga, A. Kerbaa, and O. Maler. Scheduling acyclic branching

programs on parallel machines. In
����������� �! �� � ���� ���� � ����

��� � ������� �������
� ����� ����� � ��� � ���� ��� ���� � � ������
� ���
� ��, pages 208–217. IEEE Computer Society, 2004.

[Bru97] P. Brucker.
� �� ��
���� � �� �������. Springer, Berlin, 1997.

[CG72] E. G. Coffman and R. L. Graham. Optimal scheduling for two pro-

cessors systems.
� ��� ��!

, 13 :200–213, 1972.

BIBLIOGRAPHIE 131

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
������
 �����

�� � �� �������� � ����� � ������. MIT Press, McGraw-Hill, september

2001.

[Dil50] R. P. Dilworth. A decomposition theorem for partially ordered sets.
��� � � ��� � ��

, pages 161–165, 1950.

[DRV00] A. Darte, Y. Robert, and F. Vivien.
� �� ��
���� ��� �
��� ���� � �����

����������. Birkhauser Boston, 2000.

[FB73] E. B. Fernández and B. Bussell. Bounds on the number of processors

and time for multiprocessor optimal schedule.
���� ������������ ��

 ���
����, C-22(8) :745–751, august 1973.

[Fis73] M. L. Fisher. Optimal solution of scheduling problems using lagrange

multipliers : Part i.
�� �������� � �� �����, 21(5) :1114–1127, 1973.

[FRS03] S. Felsner, V. Raghavan, and J. Spinrad. Recognition algorithms for

orders of small width and graphs of small dilworth number.
�����

,

20(4) :351–364, 2003.

[GJ79] M. R. Garey and D. S. Johnson.
 ���
��� ��� �������������� � �

�
��� �� �� � �� ���� �! �� � ��� ����� ��� � W. H. Freeman, 1979.

[Gra66] R. L. Graham. Bounds for certain multiprocessor anomalies.
� �� �

������ ��������� � �
����, 45 :1563–1581, Nov. 1966.

[HC94] Y. Hu and B. S. Carlson. Improved lower bounds for the scheduling

optimization problem. In
�� � ���������� �! �� � ���� ���� ��������

������ �������
� �� ���
��� ��� ������� ��� � ��
, pages 295–298,

London, England, June 1994.

[Jr.76] E.G. Coffman Jr.
� �� ��
���� �� ���
��� ��� ��� �� �� �������

.

Wiley, New York, 1976.

[JR94] K.K. Jain and V. Rajaraman. Lower and upper bounds on time for

multiprocessor optimal schedules.
���� ������������ �� � ���� ��� ���

� ������
��� �������
, 05(8) :879–886, 1994.

[Ker02] A. Kerbaa. Ordonnancements sur graphe de tâches à l’aide d’auto-

mates temporisés.
��� �� � ��� ����� ���� ����, June 2002.

132 BIBLIOGRAPHIE

[KI99a] Y. K. Kwok and A. Ishfaq. Benchmarking and comparison of the

task graph scheduling algorithms.
� �
���� �! � ���� ��� ��� � ������
���

 ���
����, 59(3) :381–422, 1999.

[KI99b] Y. K. Kwok and A. Ishfaq. Static scheduling algorithms for alloca-

ting directed task graphs to multiprocessors.
� � ���
�� �
���

,

31(4) :406–471, 1999.

[KW00] A. A. Kountouris and C. Wolinski. Hierarchical conditional depen-

dency graphs as a unifying design representation in the codesis high-

level synthesis system. In
����

, pages 66–72, 2000.

[KW02] A. A. Kountouris and C. Wolinski. Efficient scheduling of conditio-

nal behaviors for high-level synthesis.
� � ������������ �� � �����

�
��� ����� � ��������� ��������, 7(3) :380–412, 2002.

[KY03] Ch. Kloukinas and S. Yovine. Synthesis of safe, qos extendible, appli-

cation specific schedulers for heterogeneous real-time systems.
�����

,

00 :287, 2003.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
������������� ��
����� �! � �! ����� ����� ! �� ��������� ���� �����! ��,
1(1-2) :134–152, Dec 1997.

[Mal04] O. Maler. On optimal and sub-optimal control in the presence of

adversaries. In
������ �� �� � �� ����� � ���� ������� �������

, pages

1–12. IFAC, 2004. Invited talk.

[Man67] G. K. Manacher. Production and stabilization of real-time task sche-

dules.
��
���� �! �� � � �

, 14(3) :439–465, July 1967.

[MR02] H. Marchand and E. Rutten. Managing multi-mode tasks with time

cost and quality levels using optimal discrete control synthesis.
�����

,

00 :241, 2002.

[Nil71] N. J. Nilsson.
������� �� ������ � ��� ��� �� � ���� ���� ����� ��� �� ��

.

McGraw-Hill, june 1971.

[NY00] P. Niebert and S. Yovine. Computing optimal operation schemes for

chemical plants in multi-batch mode. In � ����� �������� ���
������
��� ������, volume 1790 of

�� �
. Springer Verlag, March 2000.

BIBLIOGRAPHIE 133

[Pin95] M. Pinedo.
� �� ��
���� � �� ����� � �� ������� ��� �������

. Prentice

Hall, Englewood Cliffs, NJ, 1995.

[RCG72] C. Ramamoorthy, K. Chandy, and M. Gonzalez. Optimal scheduling

strategies in a multiprocessor system.
���� ����� � �� ���
����,

C-21 :137–146, 1972.

[TK02] T. Tobita and H. Kasahara. A standard task graph set for fair evalua-

tion of multiprocessor scheduling algorithms.
��
���� �! � �� ��
����

,

5(5) :379–394, 2002.

[TKK00] T. Tobita, M. Kouda, and H. Kasahara. Performance evaluation of

minimum execution time multiprocessor scheduling algorithms using

standard task graph set. In
��� ��

, 2000.

[TP78] F. B. Talbot and J. H. Patterson. An efficient integer programming

algorithm with network cut for solving resource-constrained scheduling

problems.
� ���� �� ��� � ���� ���

, 24(11) :1163–1174, 1978.

[Weg99] J. Weglarz.
���� ��� � �� ��
���� � � ����� � ������ � �� ������� ��� �� �

� ���������. Kluwer Academic Publishers, Dordrecht, 1999.

[Yov97] S. Yovine. Kronos : A verification tool for real-time systems.
� �! �����

����� ! �� ���������� �����! ��
, 1(1-2) :123–133, 1997.

[Zha99] W. Zhang.
� ���������� � ����� � � �� �������� ��� ��� ���� �� ���������

��� ��� ���������. Springer, December 1999.

Résumé

Cette thèse développe une méthodologie pour résoudre les problèmes d’ordon-

nancement de programmes conditionnels où savoir si une tâche doit être exécutée

n’est pas connue à l’avance mais dynamiquement. Le modèle utilisé est à base

d’automates temporisés représentant l’espace d’états à explorer. Le problème est

donc formulé comme le calcul d’une stratégie gagnante (pire cas optimale) dans

un jeu contre l’environnement. Dans un premier temps nous étudions le problème

d’ordonnancement sur graphes de tâches déterministe puis nous étendons l’étude

au problème d’ordonnancement avec incertitude conditionnelle. Pour les deux

problèmes nous étudions différentes classes d’ordonnancements et de stratégies

pour réduire l’espace d’états, des décompositions en châınes pour réduire sa taille,

puis nous investiguons plusieurs classes d’algorithmes exactes pour en évaluer l’ef-

ficacité et à partir desquels nous dérivons de bonnes heuristiques. Des résultats

expérimentaux sur plusieurs exemples de benchmarks sont présentés afin de mon-

trer l’efficacité de chaque algorithme et la précision des heuristiques proposées,

puis des bornes théoriques sont déduites pour prouver la garantie de performance

pire cas de chaque heuristique.

Abstract

In this thesis we develop a methodology for solving conditional scheduling

problems where knowing if a task have to be executed is not known in advance

but dynamically. The model used is based on timed automata representing the

state space to be explored. The problem is formulated as a game against the

environment from which we search for a winning strategy (worst case optimal).

In the first part we study the deterministic problem of the task graph scheduling

and then we extend the framework to the conditional problem. For each problem

we study different types of schedules and strategies in order to reduce the state

space search, decompositions into chains are proposed to reduce its size, then we

investigate several exact algorithms in order to evaluate their efficiency and from

which we derive some good heuristics. Experimental results on sets of benchmarks

are presented to evaluate the efficiency of each algorithm and the precision of the

proposed heuristics, then we deduce theoretical bounds to show the worst case

guarantee of each heuristic.

