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Résumé

Traitement de données dans les groupes de Lie :
une approche algébrique.

Application au recalage non-linéaire
et à l'imagerie du tenseur de di�usion.

Ces dernières années, le besoin de cadres mathématiques rigoureux de traiter des données
appartenant à des espaces non-linéaires s'est développé considérablement dans le domaine de
l'imagerie médicale. Pour aborder cette question, nous nous sommes concentrés au cours de
cette thèse sur la mise au point de cadres généraux pour traiter plusieurs types de données
non-linéaires. Contrairement à la tendance actuelle dans notre communauté, nous ne nous
sommes pas appuyés dans tous les cas sur la géométrie riemannienne, qui peut être coûteuse en
temps de calcul ou bien encore ne pas avoir certaines propriétés souhaitables. Au lieu de cela,
nous avons généralement employé des approches de type algébrique, c'est-à-dire des approches
basées sur les propriétés algébriques des espaces non linéaires que nous avons considérés, qui
sont tous des groupes de Lie.

Tout d'abord, nous présentons dans ce travail un cadre de traitement général pour les
matrices symétriques et dé�nies positives (également appelées ici �tenseurs� par abus de lan-
gage). Ce cadre, nommé log-euclidien, est très simple à utiliser et a d'excellentes propriétés
théoriques. En particulier, ce cadre permet de mener des calculs invariants par similitude et
par inversion matricielle, et la moyenne log-euclidienne est une généralisation aux tenseurs
de la moyenne géométrique des nombres strictement positifs. L'utilisation de ce cadre puis-
sant est illustrée dans le cas du traitement des images de tenseurs de di�usion obtenues par
résonance magnétique.

En second lieu, nous avons proposé plusieurs cadres, appelés polya�nes, pour paramétrer
avec un nombre restreint de degrés de liberté �exibles des transformations localement rigides
ou a�nes, d'une manière qui garantit leur inversibilité et assure d'excellentes propriétés
théoriques. L'utilisation de ces cadres est exempli�é avec succès dans le cas du recalage lo-
calement rigide de coupes histologiques et du recalage 3D localement a�ne d'IRM du cerveau
humain. De manière remarquable, le problème de la fusion de plusieurs transformations
linéaires locales en une transformation globale inversible est étroitement lié au problème du
calcul d'une valeur moyenne dans les groupes de Lie des transformations rigides ou a�nes.

Ceci nous a menés à proposer deux cadres généraux originaux pour le calcul de statistiques
dans les groupes de Lie en dimension �nie : d'abord le cadre log-euclidien, qui généralise notre
travail sur les tenseurs. Et en second lieu, un cadre basé sur la notion nouvelle de moyenne
bi-invariante, dont les propriétés d'invariance généralisent aux groupes de Lie celles de la
moyenne arithmétique dans les espaces euclidiens. Sont présentés ici une théorie générale de
la moyenne bi-invariante ainsi que ses propriétés remarquables dans un certain nombre de cas
spéci�ques (en particulier les transformations rigides).
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En�n, nous avons généralisé notre cadre log-euclidien aux déformations géométriques
régulières et inversibles (c'est-à-dire les di�éomorphismes) a�n de fournir une manière simple
de calculer des statistiques sur ce type spéci�que de données. Des résultats préliminaires
prometteurs sont présentées à la �n de ce travail, ce qui ouvre la voie à un cadre général et
cohérent pour les statistiques en anatomie computationnelle.
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Abstract

In recent years, the need for rigorous frameworks to process data belonging to non-linear
spaces has grown considerably in the medical imaging community. To address this issue, we
have focused during this thesis on proposing novel and general frameworks to process several
types of data living in non-linear spaces. Contrary to the current trend in our community,
we have not relied in all cases on Riemannian geometry, which can either be quite compu-
tationally expensive or even lack desirable properties in a number of situations. Instead, we
have generally used algebraic-oriented approaches, i.e. approaches rooted in the algebraic
properties of the non-linear spaces we have considered, which are all Lie groups.

First, we present in this work a general processing framework for symmetric positive-
de�nite matrices (also called here �tensors� by abuse of language). This framework, named
Log-Euclidean, is very simple to use and has excellent theoretical properties. In particular, it
allows to perform computations which are invariant with respect to similarities and matrix
inversion, and the Log-Euclidean mean is a generalization to tensors of the geometric mean of
positive numbers. The use of this powerful framework is exempli�ed in the case of di�usion
tensor MRI.

Second, we have proposed several frameworks, called polya�ne, to parameterize with
a small number of �exible degrees of freedom locally rigid or a�ne transformations, in a
way that guarantees their invertibility and ensures as many natural properties as possible.
The use of these frameworks is exempli�ed successfully with the locally rigid registration of
histological slices and with the locally a�ne 3D registration of MR scans of the human brain.
Interestingly, fusing several local linear transformations into a global invertible transformation
is closely linked to the problem of computing a mean value in the Lie groups of rigid or a�ne
transformations.

This has led us to propose two novel general frameworks for computing statistics in �nite-
dimensional Lie groups: �rst a Log-Euclidean framework, which generalizes our work on
tensors. Second, a framework based on the novel notion of bi-invariant mean, whose invariance
properties generalize to Lie groups those of the arithmetic mean in Euclidean spaces. A general
theory of the bi-invariant mean as well as its remarkable properties in a number of speci�c
cases (in particular rigid transformations) are presented.

Finally, we have generalized our Log-Euclidean framework to invertible geometrical defor-
mations (i.e., di�eomorphisms) in order to provide simple tools to compute statistics on this
special type of data. First experiments showing promising results are presented brie�y at the
end of this work, which opens the way to a consistent integrative framework for statistics in
computational anatomy.
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1.1 Data Processing in Lie Groups and Medical Imaging
In recent years, the need for rigorous frameworks to process data belonging to non-linear
spaces has grown considerably in the medical imaging community.

First, a number of imaging modalities, like di�usion tensor MRI (DTI or DT-MRI) [Le
Bihan 91,Basser 02,Özarslan 03], provide researchers and clinicians with data which do not
belong to a linear space, and nonetheless require post-processing (re-sampling, regularization,
statistics, etc.). See for instance [Lenglet 06b] for examples of Riemannian statistics on
di�usion tensors.

Second, the one-to-one registration of medical images naturally deals with data living in
non-linear spaces, since many types of invertible geometrical deformations belong to groups
of transformations, which are not vector spaces. Some of these groups are �nite-dimensional,
as in the case of rigid or a�ne transformations; see for instance [Boisvert 06] for statistics on
rigid transformations, in the context of the analysis of the statistical properties of the human
scoliosis. Some groups of transformations relevant in medical imaging can also be in�nite-
dimensional, as in the case of groups of di�eomorphisms parameterized with time-varying
velocity vector �elds [Trouvé 98].

During our Ph.D. thesis, we have focused on proposing novel and general mathematical
frameworks to rigorously process several types of data living in non-linear spaces. Firstly,
we have sought to de�ne a general processing framework for symmetric positive-de�nite ma-
trices, often referred to as `tensors' by abuse of language in this work. Secondly, we have
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concentrated on parameterizing invertible geometrical transformations with a small number
of �exible degrees of freedom, with a local rigid or a�ne behavior. This is closely related to
the question of computing a mean value in the Lie groups of rigid or a�ne transformations,
which is a topic we have investigated in detail. This has led to the generalization to linear
transformations of our framework for tensors, as well as the de�nition of a novel general notion
of mean in Lie groups, called the bi-invariant mean. Last but not least, we have generalized
our ideas on tensors to general (i.e., non-linear) invertible geometrical deformations, in order
to provide simple tools to compute statistics on this special type of data.

The various types of non-linear data we have been studying have one feature in common:
they all belong to mathematical spaces which are called Lie groups. These very remarkable
entities are both smooth manifolds (i.e. nearly identical to vector spaces locally, but possibly
very `curved' globally) and algebraic groups (i.e. are endowed with a nice `multiplication'
operation between elements of the space).

One should note that a classical and very general framework to process data in smooth
manifolds such as Lie groups is provided by Riemannian geometry, which has been increasingly
used in our community in recent years (see Chapter 2, Section 2.4 for more details on this
topic). However, contrary to the current trend, we have not relied in all cases on Riemannian
geometry. As we have found in this work, this remarkable framework can either be quite
computationally expensive or even lack desirable properties in a number of situations. Instead,
we have generally used algebraic-oriented approaches, i.e. approaches rooted in the algebraic
properties of the non-linear spaces we have considered.

Essentially, we have followed this original approach in order to �nd a satisfying balance
between the remarkable mathematical properties of our frameworks and their simplicity, which
is of paramount importance from a practical point of view. Fortunately, these two antagonistic
characteristics can sometimes be relatively easy to conciliate: our Log-Euclidean framework
for tensors presented in Chapter 3 is particularly striking in this respect.

In the rest of this Section, we detail the di�erent situations of data processing we have
considered, as well as their respective importance in medical imaging.

1.1.1 Tensor Processing
Symmetric positive-de�nite matrices (or SPD matrices) of real numbers, also called by abuse
of language `tensors' in this work, appear in many contexts, as illustrated in Fig. 1.1.

In medical imaging, their use has become common during the last ten years with the grow-
ing interest for Di�usion Tensor Magnetic Resonance Imaging (DT-MRI or simply DTI) [Le
Bihan 91]. In this imaging technique based on Nuclear Magnetic Resonance (NMR), the
assumption is made that the random di�usion of water molecules at a given position in a
biological tissue is Gaussian. As a consequence, a di�usion tensor image is an SPD matrix-
valued image in which each volume element (or voxel) is the covariance matrix of the local
di�usion process. Variability tensors also provide a powerful framework to model the local
anatomical variability of organs such as the brain, as shown in [Fillard 05c]. More generally,
structure tensors are widely used in image analysis, especially for segmentation, grouping,
motion analysis and texture segmentation [Broxand 03], and can also be used in certain regu-
larization techniques for medical image registration [Clatz 05,Stefanescu 04]. Tensors are also
used intensively in mechanics, for example with stress or deformation tensors [Salencon 01].
Deformation tensors can be also used to inject priors in non-linear medical image registration
as in [Commowick 05,Pennec 05]. Moreover, metric tensors are becoming a common tool in
numerical analysis to generate adapted meshes to reduce the computational cost of solving
partial di�erential equations (PDEs) in 3D [Mohammadi 97].
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Figure 1.1: Examples of the use of tensors. Top left: variability tensors describing the
local variability of the human brain, sampled along sulcal lines on the cortex [Fillard 05c]. Top
right: structure tensors in a 2D slice extracted from a MR scan of the brain in [Clatz 05].
Structure tensors describe the local structure of intensity variations in images; here, the
intensity of the image is displayed in grey levels below tensors. Bottom right: di�usion
tensors describing the local characteristics of the di�usion of water molecules in the brain,
on a slice of di�usion tensor MRI (DT-MRI). Bottom left: adapted mesh generated via
the use of metric tensors to solve more e�ciently a wave propagation partial di�erential
equation [Alauzet 03]. In three of these images, a tensor S is represented via a translated
version of the ellipsoid of equation xT .S−2.x = 1 and is colored according to the direction of
its �rst eigenvector.
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As a consequence, there has been an increasing need to carry out computations on these
objects, for instance to interpolate, restore, enhance images of symmetric positive-de�nite
matrices. To this end, one needs to de�ne a complete operational framework. This is neces-
sary to fully generalize to the SPD case the usual statistical tools or PDEs on vector-valued
images. The framework of Riemannian geometry [Gallot 93], brie�y presented in Chapter 2,
is particularly well-adapted to this task, since many statistical tools [Pennec 06a] and PDEs
available for vectors can be generalized to non-linear spaces in this framework.

One can directly use a Euclidean structure on square matrices to de�ne a metric on
the space of SPD matrices. This is straightforward, but unfortunately, although Euclidean
distances are well-adapted to general square matrices, they are unsatisfactory for tensors,
which are very speci�c matrices, for two main reasons.

First, symmetric matrices with null or negative eigenvalues typically appear on clinical
DT-MRI data as soon as we perform on tensors Euclidean operations which are non-convex.
Example of such situations are the estimation of tensors from di�usion-weighted images, the
regularization of tensors �elds, etc. To avoid obtaining non-positive eigenvalues, which are
di�cult to interpret physically, it has been proposed to regularize only features extracted from
tensors, like �rst eigenvectors [Coulon 04] or orientations [Chefd'hotel 04]. This is only partly
satisfactory, since such approaches do not take into account all the information carried by
tensors.

Second, an SPD matrix corresponds typically to a covariance matrix, and the value of
its determinant is a direct measure of the dispersion of the associated Gaussian multivariate
random variable (MRV). Indeed, for a given MRV, we know with a con�dence say of 95%
that a sample of the MRV will be located within a region called a con�dence region, which is
the multidimensional equivalent of a con�dence interval. For Gaussian MRVs, the con�dence
regions are ellipsoids, and the volumes of these ellipsoids are proportional to the square root of
the determinant of the covariance matrix. But the Euclidean averaging of SPD matrices leads
often to a swelling e�ect: the determinant of the Euclidean mean can be strictly larger than
the original determinants. The reason is that the induced interpolation of determinants is
polynomial and not monotonic in general. In DTI, di�usion tensors are assumed to be covari-
ance matrices of the local Brownian motion of water molecules. Introducing more dispersion
in computations amounts to introducing more di�usion, which is physically unacceptable. For
illustrations of this e�ect, see [Feddern 04,Chefd'hotel 04]. As a consequence, the determinant
of a mean of symmetric positive-de�nite matrices should remain bounded by the values of the
determinants of the averaged matrices.

To fully circumvent these di�culties, more sophisticated Riemannian metrics have been
recently proposed for tensors, called �a�ne-invariant [Pennec 06b, Fletcher 04a, Lenglet 06a,
Moakher 05]. With these metrics, symmetric matrices with negative and null eigenvalues
are at an in�nite distance from any tensor. The swelling e�ect is not present, and the sym-
metry with respect to inversion is respected. But the price paid for this success is a high
computational burden in practice, essentially due to the curvature induced on the space of
symmetric positive-de�nite matrices. This leads in many cases to slow and hard to implement
algorithms (especially for PDEs) [Pennec 06b]. We have proposed in this work a simpler and
less computationally expensive alternative to the a�ne-invariant framework, while preserving
as many natural properties as possible. Our framework, called Log-Euclidean, is presented in
Chapter 3 and its application to the processing of di�usion tensors is described in Chapter
4. Interestingly, our approach is based on a novel Lie group structure for tensors, which can
be smoothly extended into a novel vector space structure compatible with many of the usual
algebraic properties of this remarkable matrix space.
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1.1.2 Parameterization of Geometrical Transformations
In Chapters 5 and 6, we focus on the parameterization of locally rigid or a�ne geometrical
deformations with a small number of �exible degrees of freedom. In order to emphasize the
relevance of this type of parameterization of geometrical deformations in medical imaging, we
will �rst brie�y present the general problem of medical image registration and the di�erent
types of parameterization of transformations which exist in the literature. For more details
on medical image registration, the interested reader can refer to the reviews of medical image
registration of [Hill 01] and [Maintz 98].

Medical Image Registration. In medical imaging, one of the most fundamental problems
is that of �nding correspondences between some representations of two (or more) anatomies
(i.e. images, volumes, surfaces, sets of lines or points, etc.). This is very useful to compare
anatomies, for example to analyze the anatomical di�erences existing between normal and
pathological subjects, or to quantify the evolution of a disease, or to build anatomical at-
lases, i.e. models incorporating various types of prior knowledge about a particular type of
anatomy (i.e., an organ or a set of organs, etc.). In this context, the general process of �nding
corresponding points is called registration. In many cases, correspondences are obtained via
a geometrical transformation: most registration algorithms look for an optimal way of geo-
metrically `deforming' one of the representations into the others. We only consider this quite
general case in this work.

If the representations to be registered correspond to the same anatomy (i.e. come from the
same subject), possibly imaged with two di�erent modalities, the registration is referred to as
intra-subject. In this case, assuming that no deformations or changes have been introduced
between the acquisitions of these two representations (e.g., in the case of the brain, no surgical
operation has been carried out, and little time has elapsed between the acquisitions, since aging
modi�es the size of the ventricles, etc.), then true correspondences exist, and can be found
only via the search of the true rigid transformation between the two representation.

But in the case of representations from di�erent anatomies, the registration is called
inter-subject, and the problem of �nding `good' correspondences between these anatomies
is much more di�cult, possibly meaningless in certain areas (e.g., some folding patterns of
the cortex of the human brain, called sulci, exist for certain individuals and not in others,
see [Rivière 02, Rivière 00]). In the inter-subject case, a rigid registration is obviously not
su�cient between most anatomies (e.g., human brains, livers or bones vary considerably
in size and shape). Thus, existing algorithms resort to non-rigid registration: they non-
rigidly deform one anatomy to �t the other. Here, a crucial issue is certainly the amount
of non-rigidity introduced by the algorithm. On the one hand, the fewer the parameters
or equivalently degrees of freedom (DOFs), the smaller the risk of introducing artifactual
deformations during the registration. But on the other hands, many DOFs are needed to
take into account the �ne variations that can exist from one anatomy to another. Finding an
adequate number of adapted DOFs for a speci�c application can thus be quite a challenging
task, and the question of the parameterization of the correspondences to be established during
a registration procedure is therefore central in medical image registration. Chapters 5 and 6
of this thesis are mainly devoted to this topic.

Other key issues are the following: how can one quantify the `goodness' of a given set of
correspondences? For a chosen measure of goodness, how can one compute a transformation
optimizing this goodness? Also, what should we expect a priori in terms of deformations, i.e.
are some of them more likely than others? Thus, in the �eld of medical image registration,
much e�ort is still currently devoted to the following problems:



6 Chapter 1. Introduction

� De�ning proper parameterizations of the classes of geometrical transformations used
for medical image registration. This topic will be detailed below.

� Finding adequate measures of similarity (or similarity criteria) between anatomies,
which are scalar-valued functions of the representations of the anatomies and of the
correspondences found between them. Intuitively, similarity measures quantify the
`goodness' of correspondences with respect to the registered anatomies. See for ex-
ample [Holden 00] for a comparison between 8 similarity measures in the context of the
rigid registration of 3D MR brain scans.

� Designing e�cient optimization methods, adapted to the similarity measure and the
parameterization used. For example, in Chapter 5, we use a Levenberg-Marquardt gra-
dient descent strategy to optimize a image similarity measure called the `sum of squared
di�erences' (SSD) with respect to the parameters of a polyrigid transformation. Com-
pletely di�erent optimization methods can be used depending on the circumstances.
For instance, linear algebraic techniques can be used to compute optimal solutions in
closed forms in the case of the rigid or a�ne image registration algorithm based on
block-matching presented in [Ourselin 00]. Whereas in situations where the gradient of
the simularity measure is too expensive to compute, methods such as Powell's multidi-
mensional direction set method can be relied on, as in the case of the maximization of
the mutual information to rigidly register 3D images of di�erent modalities [Maes 97].

� De�ning relevant priors on correspondences, depending on the precise type of regis-
tration considered. Indeed, in most non-linear registration algorithms, some kind of
regularization technique is used to prevent irregular deformations from being obtained,
which are implicitly assumed to be anatomically very unlikely. Currently, a substan-
tial e�ort is being devoted to �nding e�cient ways of using statistical priors on defor-
mations, instead of arbitrary mathematical priors chosen for purely technical reasons.
See [Pennec 05,Commowick 05, Stefanescu 04] for two examples of strategies to inject
statistical priors in non-linear registration. Finally, one should note that in the case of
a single anatomy which has been mechanically deformed (for example during a surgi-
cal operation), it makes most sense to rely on realistic mechanical models to constrain
deformations, as done in [Clatz 05].

Parameterization of Geometrical Deformations. We now present the various types of
parameterization that exist in the literature of medical image registration, since this speci�c
topic is at the heart of the results presented in Chapters 5 and 6.

At the beginning of the spectrum, we have simple parametric transformations such as rigid
or a�ne transformations, which have a very small number of degrees of freedom, and can be
e�ciently used for intra-patient registration.

For both inter-subject or intra-subject registration, in order to introduce more DOFs, ge-
ometrical deformations are often parameterized with splines or radial basis functions (RBFs),
such as B-Splines [Rueckert 99], Thin-Plate-Splines [Bookstein 99], Geodesic Interpolating
Splines [Camion 01], or more recently Polyharmonic Clamped-Plate Splines [Marsland 03]
and radially symmetric basis functions [Rohde 03]. An alternative is provided by �nite ele-
ments models, as in [Ferrant 99,Ashburner 99] or more recently [Clatz 05] in the context of
the use of a mechanical deformable model of the human brain. Another way of introducing
more DOFs is to model deformations locally with a few intuitive parameters which can code
for a large variety of local deformations such as translations, rotations, swelling, etc. Di�erent
types of locally rigid or a�ne deformations have been proposed (also called `piecewise' rigid
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or a�ne), as in [Little 96], which was recently used in [Pitiot 06] in the context of the regis-
tration of histological slices, in [Hellier 01] in an adaptative hierarchical framework for general
medical image registration, and in [du Bois d'Aische 05] for the locally rigid registration of
articulated structure. The family of novel transformations described in this thesis, called
polyrigid and polya�ne transformations, belong to this category, and have inspired another
variants of such transformations, such as the other local rigid or a�ne parameterization of
deformations presented in [Narayanan 05] and the local parameterization of articulated rigid
structures of [Papademetris 05]. Another type of local parameterization derived from the
principles of �uid mechanics and based on `vortex particles', limited to 2D deformations, was
also presented in [Cuzol 05]. Interestingly, one should also note that a number of authors
increase locally and adaptively the number of DOFs during the registration procedure. This
can be done for example with B-splines [Noblet 05,Park 03, Schnabel 01], RBFs [Rohde 03]
or local a�ne components [Hellier 01].

At the end of the spectrum, dense deformation �elds de�ning a displacement at every
voxel [Thirion 98, Cachier 02, Cachier 03, Chefd'hotel 02, Hermosillo 02, Stefanescu 04], and
di�eomorphisms generated by time-varying vector �elds de�ning a velocity vector at every
voxel and at each (discretized) instant between times 0 and 1 [Trouvé 98,Trouvé 00,Camion 01,
Beg 03,Miller 03,Guo 04, Joshi 00,Beg 05,Trouvé 05b,Glaunes 04,Allassonnière 05] exhibit
the highest number of degrees of freedom, and can be used for inter-subject registration.

Each of the above-mentioned transformations has its particular domain of application. In
the case of anatomical structures incorporating rigid elements (such as bone articulations,
or structures which are subject to simple local deformations, like histological slices), rigid
and a�ne transformations clearly do not have enough degrees of freedom. On the contrary,
deformation �elds have too many DOFs and thus can be easily misled by local minima of
the similarity criterion. For the existing intermediate transformations, e.g. B-Splines, the
degrees of freedom of the transformation are not really adapted since many control points
are required to reconstruct several locally rigid behaviors, especially when rotations are sub-
stantial. Clearly, in this case or in the case of structures which are subject to simple local
deformations, locally rigid or a�ne transformations like the ones described in Chapter 5 and
6 are particularly well adapted. Fig. 1.2 illustrates the interest of this type of geometrical
deformations in the case of the correction of the posture of the human head and neck.

Guaranteeing the Invertibility of Geometrical Deformations. A desirable property
of geometrical deformations between anatomies is invertibility, which is not guaranteed by
many algorithms based on the parameterizations mentioned above. Although there is no
reason to believe that a true one-to-one correspondence exists between any two anatomies,
guaranteeing the invertibility of geometrical deformations between two anatomies constitutes
a powerful safeguard against nonsensical results (e.g., transformations with numerous local
foldings) and uncontrolled changes of topology. In the absence of a satisfying way of modeling
and evaluating the local uncertainty of correspondences between two anatomies, it makes
good sense to guarantee the invertibility of the transformations used for the inter-subject
registration.

In our review of the literature, we have found three main ways of guaranteeing the invert-
ibility of the geometrical deformations yielded by a non-rigid registration algorithm. They
are the following:

� Explicit constraints on parameters: although parameterizations such as B-splines
or RBFs do not yield invertible transformations in general, it is possible to guarantee
the invertibility of the result by imposing explicit constraints on the parameters of
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Figure 1.2: Posture correction for CT scans of head and neck with a locally a�ne
transformation. Top: �rst subject (on the left: sagittal view, on the right: coronal view).
Middle: second subject. Bottom: second anatomy after posture correction with a trans-
formation with two a�ne components: one for the neck and one for the head. Note how the
posture is largely corrected with only a few degrees of freedom (only 2× 12); to facilitate the
visual comparison between the anatomies, and in particular the position of bones, a vertical
red line is drawn in each of the images at the same position. The registration was carried out
with the algorithm of [Commowick 06a].
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these transformations. For example, imposing values of parameters corresponding to
small deformations will always result in invertible transformations. See [Noblet 05]
and [Choi 00] for su�cient conditions on B-splines coe�cients to guarantee invertibility,
and [Rohde 03] for similar conditions imposed on RBFs coe�cients. The locally rigid or
a�ne parameterization proposed in [Narayanan 05] also yields invertible deformations,
provided some upper bound on the translation part is respected.

� Penalization of non-invertibilities: in [Pennec 05] and [Ashburner 99], the resulting
deformations are guaranteed to be invertible because non-invertible transformations are
heavily `penalized': they are given an in�nite energy (i.e., intuitively, a zero probabil-
ity of appearing) in an energy minimization framework. Interestingly, this strategy is
independent of the parameterization used.

� Intrinsic invertibility: some types of parameterization intrinsically guarantee the in-
vertibility of geometrical deformations, which means that regardless of the value chosen
for the parameters, the result will always be invertible (well, at least from a theoretical
point of view; of course, from a numerical point of view, this can be more di�cult to
ensure). With just a few DOFs, this is the case of rigid and a�ne transformations,
and with a very large number of DOFs, this is also the case of the di�eomorphisms
obtained via the integration of time-varying vector �elds, as in [Trouvé 98]. Intuitively,
in this setting, large invertible deformations are obtained little by little via the composi-
tion of small invertible deformations, an idea which was also used in the context of the
`�uid' registration algorithm of [Christensen 96]. This principle is now quite widely used
to generate invertible transformations, see for example [Chefd'hotel 02], [Stefanescu 04]
and [Grenander 06]. Between linear transformations and general di�eomorphisms, apart
from the locally linear transformations described in this thesis, only Geodesic Interpo-
lating Splines [Camion 01] guarantee the invertibility of resulting deformations for any
choice of parameters with a small or moderate number of degrees of freedom.

We have seen that there are a number of situations in medical image registration where
the use of locally rigid and a�ne geometrical deformations is particularly relevant, especially
if these transformations are invertible. In this thesis, we have addressed this issue from the
following angle: how is it possible to fuse local rigid or a�ne deformations into a global in-
vertible transformation? Moreover, to what extent is it possible to devise of fusion technique
which is compatible with the algebraic properties of the Lie groups of rigid and a�ne trans-
formations? In Chapters 5, 6 and 7, we present several answers to these questions, along with
adapted numerical methods to compute and optimize our novel transformations in practice.

1.1.3 Statistics on Invertible Linear Transformations
As we will see in this thesis, the question of the fusion of several local rigid or a�ne com-
ponents into a global invertible transformation is closely linked to the problem of computing
a mean value in the Lie groups of rigid or a�ne transformations. This is the reason why
we have investigated this general question in this work. This is quite an important topic for
statistics in Lie groups, since the mean is certainly the most fundamental statistic which can
be computed, and is in many cases the �rst step to compute more elaborate statistics (e.g.,
higher order moments). In the medical imaging community, computing statistics on rigid
or a�ne transformations are an important task, for example in order to evaluate quantita-
tively the performances of linear registration algorithms with respect to a bronze standard as
in [Nicolau 03,Glatard 06], or to better characterize some pathologies as in [Boisvert 06] in
the context of the analysis of the statistical properties of the human scoliosis.
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In di�erential geometry, for a Lie group endowed with a Riemannian metric, the natural
choice of mean is called the Fréchet mean [Pennec 06a]. But this Riemannian approach is
fully compatible with the group operations (i.e., multiplication and inversion) only if a bi-
invariant metric exists, which is for example the case for compact groups such as rotations
[Pennec 06a,Moakher 02]. The bi-invariant Fréchet mean enjoys many desirable invariance
properties, which generalize to the non-linear case the properties of the arithmetic mean: it
is invariant with respect to left- and right-multiplication, as well as inversion. Unfortunately,
bi-invariant Riemannian metrics do not always exist. In particular, in this work, we prove in
Chapter 7 that such metrics do not exist in any dimension for rigid transformations, which
form the simplest Lie group involved in medical image registration.

In this thesis, we have tried to overcome the lack of existence of bi-invariant Riemannian
metrics for many Lie groups. To this end, we have proposed to de�ne a bi-invariant mean
generalizing the Fréchet mean induced by bi-invariant metrics, even in cases when such metrics
do not exist. Our theory of bi-invariant means is presented in Chapter 7, as well as the way of
computing higher order moments in this context. Alternatively, we have also proposed in this
work a simpler approach to statistics of linear invertible transformations, provided by a Log-
Euclidean framework for these transformations, presented in Section 6.4. Interestingly, for
matrices, the bi-invariant and Log-Euclidean means are both generalizations of the geometric
mean of positive numbers, since their determinants are both exactly equal to the geometric
mean of the determinant of the data. The Log-Euclidean mean is much simpler to compute,
but has fewer invariance properties and is limited to transformations not too far away from
the identity, contrary to the bi-invariant mean.

1.1.4 Statistics on Di�eomorphisms
Currently, a large variety of non-linear registration algorithms have been proposed to deal with
the non-rigid registration of medical images [Hill 01]. However, much work remains to be done
to quantitatively compare these algorithms. To this end, having a consistent framework to
compute statistics on general invertible transformations would be very useful. For instance
it could lead to the non-linear generalization of bronze standard techniques such as the one
presented in [Nicolau 03] in the case of rigid transformations.

Alternatively, statistics on invertible transformations could prove very valuable to inject
better priors in non-linear registration algorithms. Computing statistics on global deforma-
tions would allow to introduce much more information than in [Commowick 05] and [Pen-
nec 05] with local statistics on deformation tensors.

The computation of statistics is closely linked to the issue of the parameterization of di�eo-
morphisms. Many algorithms, as in [Chefd'hotel 02,Pennec 05], provide dense transformations
which are guaranteed to be di�eomorphic, and parameterize them via their displacement �eld.
This simple parameterization provides a simple way of performing statistics, which was used
in [Charpiat 05b] to compute second-order moments, and in a similar way in [Rueckert 03],
this time on B-splines coe�cients. But Euclidean means of displacement �elds do not nec-
essary yield invertible deformations and such statistics are therefore not entirely satisfactory
for di�eomorphisms. In [Marsland 04], it was proposed to parameterize arbitrary di�eomor-
phisms with the control points of Geodesic Interpolating Splines [Camion 01], and then to
perform Euclidean operations on these low-dimensional parameters. However, although this
guarantees the invertibility of the results, this may not be adequate for the whole variety of
invertible transformations used in medical imaging.

To fully take into account the group structure of di�eomorphisms, it has been proposed
to parameterize dense deformations with Hilbert spaces of time-varying velocity vector �elds,
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which yield geometrical deformations via the integration of an Ordinary Di�erential Equation
(ODE) during one unit of time [Trouvé 98,Beg 05]. In [Vaillant 04], it is suggested that the
linear space of initial momenta of the geodesics in these spaces could provide an appropriate
setting for statistics on di�eomorphisms. However, this is illustrated in [Vaillant 04] only in
the low-dimensional and very speci�c case of landmark matching. To our knowledge, this
statistical framework has not been used yet in the general case, certainly because of the
iterative nature of the computation of the mean in this setting, which requires very stable
numerical algorithms to converge.

In Chapter 8, we present the generalization to di�eomorphisms of our Log-Euclidean
framework. Such a simple framework would be potentially very useful, since it would allow
to perform statistics vectorial way on the logarithms of transformations. Without relying on
Riemannian geometry, contrary to the approach of [Vaillant 04], such a framework would yield
simple processing algorithms compatible with a number of algebraic properties of di�eomor-
phisms, in particular inversion, since Log-Euclidean frameworks are inversion-invariant.

1.2 Manuscript Organization
In this thesis, our contributions are detailed in six Chapters, which essentially correspond to
the journal articles and research reports we have published so far, except for the last one,
which contains promising preliminary results that have been presented in October at the
international conference MICCAI'2006 in Copenhagen.

In Chapter 2, before we actually begin to detail our novel results, the fundamental math-
ematical tools used throughout this thesis are presented. First, we will present the properties
of the basic tools we use to de�ne novel types of invertible geometrical transformations: �rst
order di�erential equations (ODEs). Then, we detail the the notion of Lie group, which is
particularly useful to analyze the properties of transformations groups such as rigid or a�ne
transformations. Finally, we brie�y present the powerful framework of Riemannian geometry,
which is widely used to generalize many types of classical processing to non-linear spaces.

Then, we focus on the processing of symmetric positive-de�nite matrices, also called by
abuse of language in this thesis `tensors'. This type of data appears in many contexts, and in
the past years the need for a general processing framework for tensors has grown continuously.

In Chapter 3, we present the theoretical properties of a novel and general Riemannian
processing framework for tensors, called Log-Euclidean. Our approach is based on a new Lie
group structure for tensors, which can smoothly be extended into a vector space structure.
Remarkably, the original algebraic structure we propose here for symmetric and positive-
de�nite matrices is compatible with the usual algebraic properties of this set: the inverse of a
tensor is its usual inverse and the matrix exponential is the group exponential of our Lie group
structure. Interestingly, our novel framework does not introduce any super�uous complexity,
since Log-Euclidean Riemannian computations can be converted into Euclidean ones once
tensors have been transformed into their matrix logarithms, which makes classical Euclidean
processing algorithms particularly simple to recycle.

In Chapter 4, we focus on the application of our Log-Euclidean framework to the process-
ing of di�usion tensors. In the medical imaging community, this particular case is of great
importance since di�usion tensor imaging is an emerging imaging modality whose importance
has been growing considerably. In particular, most attempts to reconstruct non-invasively
the connectivity of the brain are based on DTI. Theoretical aspects of the Log-Euclidean
framework are presented this time shortly and from a practical point of view. The Euclidean,
a�ne-invariant and Log-Euclidean frameworks are compared experimentally, with interpola-
tion and regularization tasks on synthetic and clinical 3D DTI data.
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After tensors, we put the emphasis on geometrical transformations in the rest of this thesis.
In Chapter 5, we introduce two novel classes of transformations, called polyrigid and

polya�ne, that we originally proposed in 2003 to parameterize and locally rigid or a�ne
di�eomorphic deformations with a small number of �exible degrees of freedom. They can
describe compactly large rigid or a�ne movements, unlike most free-form deformation classes.
Very �exible, this tool can be readily adapted to a large variety of situations, simply by tuning
the number of rigid or a�ne components and the number of parameters describing their
regions of in�uence. The whole framework is exempli�ed successfully with the registration of
histological slices.

In Chapter 6, we propose an alternative to our original polyrigid and polya�ne transforma-
tions. The novel framework presented here is called Log-Euclidean polya�ne, and overcomes
the limitations of our original transformations in terms of invariance properties. Moreover,
the remarkable properties of Log-Euclidean polya�ne transformations (LEPTs) allow the fast
computation of these transformations on regular grids. Essentially, these nice results are ob-
tained thanks to a much better compatibility between LEPTs and the algebraic properties of
the Lie groups of rigid or a�ne transformations. Interestingly, this compatibility is obtained
via the implicit use of a Log-Euclidean framework for linear transformations, which is the
generalization to rigid or a�ne transformations of the framework presented for tensors in
Chapter 3. The Log-Euclidean framework for linear transformations, as well as its gener-
alization to abstract Lie groups, is presented. The results obtained here on the 3D locally
a�ne registration of MR scans of the human brain suggest that our Log-Euclidean polya�ne
framework provides a general and e�cient way of fusing local rigid or a�ne components into a
global invertible transformation without introducing artifacts, independently of the way local
deformations are �rst estimated.

The Log-Euclidean polya�ne fusion of local rigid or a�ne components presented in Chap-
ter 6 is implicitly based on a Log-Euclidean averaging of the local linear components. This
has led us to investigate the problem of computing mean values of data living in general Lie
groups.

In Chapter 7, we de�ne a novel and general notion of mean in �nite-dimensional Lie groups
(e.g. the rigid or a�ne groups) which is this time fully compatible with the algebraic structure
of these groups, contrary to the Log-Euclidean mean which is only invariant with respect
to inversion and to the adjoint representation of the group. Indeed, the bi-invariant mean
we propose generalizes to any Lie group the invariance properties of the arithmetic mean.
Interestingly, we do not rely on Riemannian geometry but on the algebraic properties of
Lie groups to de�ne this mean. In fact, going beyond Riemannian metrics was unavoidable:
we prove that there is no bi-invariant Riemannian metric for rigid transformations, in any
dimension. Also, we brie�y present the way to compute higher order moments based on
this novel type of mean. Finally, we use the bi-invariant mean to de�ne a last class of
polya�ne transformations, called left-invariant polya�ne, which allows to fuse local rigid or
a�ne components arbitrarily far away from the identity.

In Chapter 8, we brie�y present the generalization to di�eomorphisms of our Log-Euclidean
framework. This framework allows to perform statistics on di�eomorphisms in a simple vec-
torial way via the logarithms of these transformations, with excellent theoretical properties
such as inversion-invariance.

In Chapter 9, we summarize and discuss our contributions and detail our publications.
And last but not least, we put into light the various perspectives of our research work.
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1.3 Global Picture
In this work, we present several approaches for the processing of multiple types of data, in
di�erent contexts. This complexity makes it di�cult to have a clear view of the structure
of this thesis. However, we have found that most of our contributions can be presented in
a simple way within a two-column table. These columns stand for the two main families of
processing frameworks we have proposed: the Log-Euclidean and the bi-invariant one. Each
line of this table stands for a speci�c type of data. Fig. 1.3 presents this table, which puts
into light the various interconnections between the Chapters of this thesis.

Frameworks

Processing

Type of

Data

Finite-Dimensional
Lie Groups

A�ne-invariant
Riemannian frameworks
proposed in 2004 [Pennec 06a]

Bi-Invariant

Linear
Transformations

Log-Euclidean

Chapter 6 Chapter 7

Chapter 8

Chapter 6 Chapter 7

Chapter 6 Chapter 7

Tensors

Fusion of
Linear

Transformations

Di�eomorphisms Perspective.

Chapters 3 and 4

Figure 1.3: Global view of this thesis. Lines: various types of data, and columns:
processing frameworks (either the Log-Euclidean one or the bi-invariant one). Chapter 5
does not appear in this table, because the polya�ne fusion of linear transformations presented
in this chapter belongs neither to the Log-Euclidean nor the bi-invariant framework.
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Chapter 2

Fundamental Mathematical Tools

In this chapter, we introduce the mathematical tools used in this thesis. First order di�eren-
tial equations are the basic tool we use to construct invertible geometrical transformations.
The theory of Lie groups is particularly useful to analyze the properties of transformations
groups such as rigid or a�ne transformations. And Riemannian geometry is a very powerful
framework used more and more to process data belonging to non-linear spaces.

Although some of the notions and mathematical properties presented here are quite ad-
vanced, we have tried to make our presentation as intuitive as possible. Rather than technical
details, we hope that the usefulness and vision behind each tool will be the most salient items
in this short presentation.
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2.1 Notations
Notations. In the sequel of this work, we will use a number of notations, which are listed
below. We begin with notations for usual matrix groups and submanifolds:

� GL(n) is the group of real invertible n× n matrices, and more generally, for any (�nite
dimensional) vector space E, GL(E) will be the group of invertible linear operations
acting on E.

� SL(n) is the special linear group, i.e. the subgroup of matrices of GL(n) whose deter-
minant is equal to 1.

� O(n) is the group of orthogonal transformations, i.e. square matrices satisfying R.RT =
Id, where Id is the identity matrix and RT is the transposed matrix of R.

� SO(n) is the special orthogonal group, better known has the group of rotations. It is the
subgroup of O(n) whose elements satisfy det(R) = 1.

� SE(n) is the group of special Euclidean transformations, i.e. the group of rigid displace-
ments.

� M(n) is the space of real n × n square matrices.

� Sym+
⋆ (n) is the space of symmetric positive-de�nite real n × n matrices.

� Sym(n) is the vector space of real n × n symmetric matrices.

� Diag(λ1, ..., λn) will be the diagonal matrix constructed with the real values (λi)i∈1...n

in its diagonal.

� For any square matrix M , Sp(M) is the spectrum of M , i.e. the set of its eigenvalues.

General (abstract) Lie group and di�erential calculus notations:

� When G is a Lie group, its neutral element will be written e, and a typical element of G
will be m. The Lie algebra of G will be written g.

� The tangent space of G at point m will be referred to as TmG, which can be intuitively
thought of as the linear space `best approximating' G around m. For general di�eren-
tiable manifolds, the same notation will be used (i.e. we will write TmE for the tangent
space of a manifold E at a given point m).

� We denote Lm (resp. Rm) the left- (resp. right-)multiplication by an element m ∈ G.
Furthermore, we will let Inv : G → G be the inversion operator.

� Let φ : E → F be a di�erentiable mapping between two smooth manifolds (which are
not necessarily Lie groups). Its di�erential (or tangent map) at a point m ∈ E will
be written DmΦ, which is a linear mapping from TmE to TΦ(m)F . This means that
to a tangent vector located at m (which is basically an in�nitesimal displacement) it
associates a tangent vector at Φ(m) (another in�nitesimal displacement, `living' in a
di�erent vector space).
In the sequel of this thesis, we will let the action of DmΦ on an in�nitesimal displacement
v in TmE be written DmΦ.v.
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2.2 First Order Ordinary Di�erential Equations
A classical way of obtaining invertible smooth geometrical transformations is to use �rst or-
der ordinary di�erential equations (ODEs) [Tenenbaum 85]. The fundamental idea is that
composing iteratively small invertible deformations guarantees that the resulting (possibly
large) deformations will remain invertible. This was for example noted in the work of Chris-
tensen et al. on �uid deformations, who used the expression `topology-preserving' rather than
`invertible'. Indeed, on page 1439 of [Christensen 96], one can read:

�We note that the above procedure assures that the concatenated transformation of the
template into the study preserves the topology of the template. This is because each of the
propagated template transformations preserve topology (due to the fact that the Jacobian of
the transformation is positive globally) and the concatenation of topology-preserving transfor-
mations produces a topology-preserving transformation.�

2.2.1 De�nition
To obtain invertible smooth geometrical deformations with �rst order ODEs, any point x of
R

n can be displaced little by little (in fact, in�nitesimally) and in a reversible manner via the
continuous integration during one unit of time of an evolution equation. A �rst order ODE
is an equation of the following form:

ẋ(s) = V (x, s). (2.1)

Of course, the integration of (2.1) is a well-de�ned mathematical operation only if the
velocity vector �eld V (x, s) is smooth enough (for instance C1) with respect to x. The principle
of obtaining geometrical transformations via the continuous addition of in�nitesimally small
deformations during one unit of time is illustrated in Fig. 2.1.

A particular case of interest is when V (x, s) does not depend on s. Then, the ODE is
called stationary or equivalently autonomous. For instance, the ODE de�ning Log-Euclidean
polya�ne transformations in Chapter 6 is stationary.

In the work of Trouvé, Younes, Miller, Joshi and others [Trouvé 98,Trouvé 00,Camion 01,
Beg 03,Miller 03,Guo 04,Guo 04,Joshi 00,Beg 05,Trouvé 05b,Glaunes 04,Allassonnière 05],
ODEs are used to generate very general di�eomorphisms1, with a very high number of degrees
of freedom (theoretically in�nite).

On the contrary, we mainly use ODEs in this work to de�ne novel classes of di�eomor-
phisms with a small number of �exible degrees of freedom. These transformations, called
polyrigid and polya�ne, are described in Chapters 5 (original polyrigid transformations), 6
(Log-Euclidean polya�ne transformations) and 7 (left-invariant polya�ne transformations).
We rely in Chapter 8 on autonomous �rst order ODEs to generalize the notion of logarithm
to di�eomorphisms.

2.2.2 Life Span of a Solution to an ODE
In order to de�ne a geometrical transformation via the ODE (2.1), it is necessary to prove
�rst that the position at time 1 exists, whatever the initial position may be. This is what
we do in the next chapters for polyrigid and polya�ne transformations. This is a necessary
precaution since for an arbitrary ODE, the existence is not always insured, however smooth
the velocity function V may be. Consider for instance, the 1D evolution

ẏ(s) = V (y) = y2.

1 i.e. smooth invertible transformations, whose inverse is also smooth
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x0: position at time 0

x(s): position at time s

ẋ = V (x, s)

T (x0) = x(1): position at time 1

Figure 2.1: Integration of velocity vector �elds. Left: integration of a vector �eld
between time 0 and time 1. The value at a point x0 of the global transformation is given
by x(1). Right: example of a single rotation. Velocity vectors are displayed in blue. The
magenta point corresponds to the initial condition and the green point is the position reached
at time 3 (not time 1 so that the trajectory be longer and thus more visible).

Its solution with an initial position y0 is y(s) = 1
1/y0−s . Thus, we see that for 1/y0 > 0, the

life-span of the solution only extends between −∞ and 1
y0
, and if 1

y0
< 1, then the position

at time 1 is absolutely unde�ned, the particle having gone to in�nity before that.

2.2.3 Flow of a First Order ODE
De�nition 2.1. The �ow associated to a �rst order ODE is the family of mappings Φ(., s) :
R

n → R
n parameterized by a time parameter s ∈ R, such that for a �xed x0, s 7→ Φ(x0, s) is

the unique solution of ẋ = V (x) with initial condition x0 at time 0.
Intuitively, for a �xed s, the mapping x 7→ Φ(x, s) gives the way the ambient space is

deformed by the integration of the ODE during s units of time. It is always a di�eomorphism,
i.e. a di�erentiable one-to-one mapping between the ambient space and itself, whose inverse is
also di�erentiable. This invertibility property simply comes from the fact that all deformations
induced by the ODE are reversible since one can go back in time by simply multiplying the
velocity vector V (x) by −1! The smoothness of the �ow comes from the smoothness of V (x).

2.2.4 One-Parameter Subgroups
De�nition 2.2. Let (G, .) be a group (i.e., the multiplication `.' is associative and there exists
a neutral element e and each element of G has a unique inverse). Then a family of elements
g(s) of G parameterized by s ∈ R is called a one-parameter subgroup of G if and only if:

(a) g(0) = e, i.e. the neutral element of G
(b) for all s, t in R : g(s).g(t) = g(s + t).

Furthermore, if one knows how to di�erentiate functions valued in G (e.g., G is a Lie
group), and if g(s) is di�erentiable at 0, then dg

dt (0) is called the in�nitesimal generator of the
subgroup.
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One-parameter subgroups are particularly useful to describe a crucial property of the �ow
of stationary �rst order ODEs. Furthermore, they are closely linked to the notion of group
exponential, described in the next Section. These remarkable subgroups will also be at the
heart of our de�nition of bi-invariant means in Lie groups in Chapter 7.

Interestingly, the in�nitesimal generator of a one-parameter subgroup contains all the
information about the subgroup, and can generate it entirely, which explains its name. See
for example [Godement 82] for more details on this topic in the case of Lie groups.

We have the following result: the �ow Φ(., s) of an autonomous �rst-order ODE is a
one-parameter subgroup of the group of di�eomorphisms. In other words: Φ(., s) ◦ Φ(., t) =
Φ(., s + t). This implies in particular that the deformations of space given at time 1 by
Φ(., 1) are twice that observed at time 0.5 via Φ(., 0.5). The in�nitesimal generator of the
�ow is simply V (x). This is not surprising since it is quite clear how V (x) in�nitesimally
generates the �ow: this is done precisely by integrating the associated ODE. These results
will be used in Chapter 6 to prove the particularly nice properties of Log-Euclidean polya�ne
transformations and in Chapter 8 to generalize the notion of logarithm to di�eomorphisms.

2.3 Lie Groups
2.3.1 De�nition of Lie groups
We start by recalling the basic properties of Lie groups, along with the convenient notions
which are classically used to describe these properties. Typical examples of such groups
are groups of geometrical transformations (e.g., rigid or a�ne transformations), where the
multiplication is the composition of mappings. Such groups are particularly important in
medical imaging, since the two most basic types of transformations used to register medical
images, i.e. rigid and a�ne transformations, are both Lie groups.

In simple terms, a Lie group is �rst a group in the algebraic sense, i.e. a set of elements
in which a multiplication between elements is de�ned. This multiplication is assumed to have
neat and intuitive properties: it is associative (i.e., (a.b).c = a.(b.c)), has a neutral element e
and each element a has a unique inverse a−1.

Second, a Lie group has a structure of (smooth, i.e. C∞) di�erential manifold. This means
that it is locally similar to a vector space, but can be quite `curved' globally.

Third, the algebraic and di�erential structures are compatible: inversion and (left- and
right-) multiplications are smooth mappings. This means that it is possible to inde�nitely
di�erentiate them. For more formal de�nitions and more details, please refer to classical
di�erential geometry books like [Sternberg 64] or [Gallot 93].

2.3.2 Examples
Many usual spaces can be viewed as Lie groups. Namely:

� Vector spaces (with their addition)

� Multiplicative matrix groups: GL(n), O(n), SO(n), etc., with the usual matrix multi-
plication.

� Geometric transformation groups such as rigid transformations, similarities, a�ne trans-
formations... which can anyway also be looked upon as matrix groups via their `faithful'
representation based on homogeneous coordinates.
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� In�nite-dimensional Lie groups of di�eomorphisms have also been recently gaining much
importance in computational anatomy [Trouvé 98].

2.3.3 Lie Algebra and Adjoint Representation
We will need a number of notions classically used to describe the properties of Lie groups.
They are the following:

� To vector v tangent to G at the identity can be associated in a one-to-one manner a
left-invariant vector �eld de�ned by Xv(m) = DeLm.v, i.e. simply by left-multiplying
v.

� (TeG, +, .) is by construction a vector space, and can also be given a structure of Lie
algebra, i.e. one can give it an extra algebraic operation which is a bi-linear inner product
called the Lie bracket, denoted here [ , ]. This operation closely re�ects the multiplicative
properties of the group G. In particular, for commutative Lie groups, the Lie bracket is
always null.
We can identify TeG with the set of left-invariant vector �elds, and since this set is a Lie
subalgebra of vector �elds on G, the inner product [ , ] on TeG can be actually de�ned
from the general Lie bracket on smooth vector �elds.
As mentioned previously, the notation for the Lie algebra of G will be in this thesis g.
It has a number of remarkable algebraic properties (in addition to its associativity and
bi-linearity) which are the following:

i) ∀a, b ∈ g, [a, b] = −[b, a] (`anti-commutativity'), which implies [a, a] = 0

ii) ∀a, b, c ∈ g, [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 (Jacobi identity).

Simple examples of Lie brackets are given by GL(n) and its multiplicative subgroups,
like SL(n) or SO(n). In these cases, the Lie algebra is a vector space of square matrices,
and the Lie bracket between two elements M and N of this algebra is the commutator of
these two matrices, i.e. [M, N ] = M.N −N.M . In particular, the Lie algebra of GL(n)
is M(n), that of SL(n) is the vector subspace of M(n) of matrices with a trace equal
to zero, and the Lie algebra of SO(n) is the vector space of skew symmetric matrices.
For a complete account on Lie Algebras, see [Bourbaki 89].

� G can be `represented' by a group of matrices acting on g, via what is called its adjoint
representation, Ad(G). The properties of this representation and the existence of bi-
invariant metrics for the group G are highly linked.
The expression `representation' means that one can map each element of the group into
a linear operator (i.e., a matrix) which acts on the Lie algebra. More precisely, an
element m of G acts on an element v of g by Ad(m).v = `m.v.m−1' 2. This operation is
called a representation in the sense of representation theory (see [Lang 04] for a complete
treatment), which means that this mapping is compatible with the Lie group structure
of G. This compatibility consists of the following properties:

2To be completely rigorous, one has to resort to the (more complicated) di�erentials of left- and right-
multiplication. This yields: Ad(m).v = ` m.v.m

−1 ' = Dm−1Lm.DeRm−1 .v = DmRm−1 .DeLm.v by
associativity of the group multiplication. In the matrix case, we have the (simple this time) formula:
Ad(R).M = R.M.R

−1, which only uses two matrix multiplications and one matrix inversion.
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i) Ad(e) = Id

ii) ∀m ∈ G, Ad(m−1) = Ad(m)−1

iii) ∀m,n ∈ G, Ad(m.n) = Ad(m).Ad(n)

iv) Ad : G → GL(g) is smooth.

This amounts to saying that Ad is a smooth group homomorphism (or Lie group homo-
morphism).

2.3.4 Matrix Exponential and Logarithm
The Matrix Exponential and Logarithm. Before we present the general group expo-
nential and logarithm, let us recall the fundamental properties of the matrix exponential and
logarithm, which correspond to the group exponential and logarithm of the Lie group of n×n
invertible matrices, GL(n). They are the generalization to matrices of the well-known scalar
exponential and logarithm.

De�nition 2.3. The exponential exp(M) of a matrix M is given by exp(M) =
∑∞

n=0
Mk

k! .
Let G ∈ GL(n). If there exists M ∈ M(n) such that G = exp(M), then M is said to be a
logarithm of N .

In general, the logarithm of a real invertible matrix may not exist, and if it exists it may
not be unique. The lack of existence is a general phenomenon in connected Lie groups. One
generally needs two exponentials to reach every element [Wüstner 03]. The lack of uniqueness
is essentially due to the in�uence of rotations: rotating of an angle α is the same as rotating
of an angle α + 2kπ where k is an integer. Since the logarithm of a rotation matrix directly
depends on its rotation angles (one angle su�ces in 3D, but several angles are necessary when
n > 3), it is not unique.

Principal Logarithm of a Matrix. When a real invertible matrix has no (complex) eigen-
value on the (closed) half line of negative real numbers, then it has a unique real logarithm
whose (complex) eigenvalues have an imaginary part in ] − π, π[ [Cheng 01]. In this case
this particular logarithm is well-de�ned and called principal. We will write log(M) for the
principal logarithm of a matrix M whenever it is de�ned.

Numerical Computation. Thanks to their remarkable algebraic properties, and essentially
their link with one-parameter subgroups (see next Section for more details on this topic),
matrix exponential and logarithms can be quite e�ciently numerically computed.

In practice, we have used in this work the popular `Scaling and Squaring Method'
[Higham 05] to compute numerically matrix exponentials, as well as the `Inverse Scaling and
Squaring Method' [Cheng 01] to compute matrix logarithms. More details on these methods
can be found in Chapter 6, Sections 6.3 and 6.4.5. Interestingly, we generalize these methods
in Chapter 8 to compute this time the exponential of a vector �eld and the logarithm of a
di�eomorphisms.

2.3.5 Lie Group Exponential and Logarithm
Let us now de�ne the general group exponential and logarithm in Lie groups. For more details
on these properties, see [Godement 82]. Basically, these properties are very similar to those
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of the matrix exponential and logarithm, which are a particular case of such mappings. One
should note that this particular case is actually quite general, since most classical Lie groups
can be looked upon as matrix Lie groups anyway [Hall 03]. But all Lie groups are not (at
least directly) multiplicative matrix groups, as in the case of the Lie group structure we have
recently proposed by symmetric positive-de�nite matrices, which is described in Chapter 3.
This is the reason why we do not limit ourselves to the matrix case.

De�nition 2.4. Let G be a Lie group and let v be an tangent vector at the identity, i.e. an
element of the Lie Algebra g. The group exponential of v, denoted exp(v), is given by the value
at time 1 of the unique function g(t) de�ned by the following ordinary di�erential equation
(ODE): {

dg
dt = DeLg(t).v

g(0) = e.
(2.2)

Eq. (2.2) has particularly nice properties. g(t) is in fact de�ned for all t, and yields a
continuous one-parameter subgroup (also called one-parameter Lie subgroup), which means
that g(0) = e, g(t+t′) = g(t).g(t′) = g(t′).g(t). The velocity vector v is called the in�nitesimal
generator of this subgroup. See [Gallot 93], pages 27-29 for proofs of these properties. In fact,
Eq. (2.2) is the equivalent of the matrix di�erential equation, which is a nice and classical
linear ODE: {

dG
dt = G.V
G(0) = Id,

whose solution is well-known from classical ODE theory to be G(t) = exp(tV ), where exp is
the matrix exponential [Tenenbaum 85].

One-Parameter Subgroups vs. Group Exponential. We have just seen that for all
v belonging to g, exp(t.v) is a one-parameter subgroup of G: the additive subgroup (t.V )t

of g is mapped into a multiplicative subgroup of G by the exponential. Conversely, we have
the interesting result that all continuous one-parameter subgroups of G are of this form (
[Sternberg 64], Section V, Theorem 3.1, page 223). This provides a simple way of computing
the group exponential in situations where one-parameter subgroups are easy to obtain.

The Exponential as a Local Di�eomorphism. Very much like the exponential map
associated to a Riemannian metric, the group exponential is di�eomorphic locally around 0.
More precisely, we have the following theorem:

Theorem 2.1. The group exponential is a di�eomorphism from a open neighborhood of 0 in
g to a open neighborhood of e in G, and its di�erential map at 0 is the identity.

Proof. Since the exponential is a smooth mapping, the fact that its di�erential map is invert-
ible at e allows for the use of the `Implicit Function Theorem', which guarantees that it is
a di�eomorphism from some open neighborhood of 0 to a open neighborhood of exp(0) = e.
For more details, see [Gallot 93], page 28.

This theorem implies that one can de�ne without ambiguity a logarithm in a open neigh-
borhood of e: for every g in this open neighborhood, there exists a unique v in the open
neighborhood of 0 in g, such that g = exp(v). In the following, we will write v = log(g) for
this logarithm, which is the (abstract) equivalent of the (matrix) principal logarithm.
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2.3.6 Baker-Campbell-Hausdor� Formula
Before presenting brie�y the principles of Riemannian geometry, let us focus on a last fun-
damental property of the group exponential and logarithm: the Baker-Campbell-Hausdor�
formula (or BCH formula). Intuitively, this formula shows how much log(exp(v). exp(w))
deviates from v + w due to the (possible) non-commutativity of the multiplication in G.
Remarkably, this deviation can be expressed only in terms of Lie brackets between v and
w [Godement 82].

Theorem 2.2. Series form of the BCH formula ( [Godement 82], Chapter VI). Let v, w be
in g. If they are small enough, then the logarithm of the product exp(v). exp(w) is always
well-de�ned and we have the following development:

log(exp(v). exp(w)) = v + w + 1/2([v, w])
+1/12([v, [v, w]] + [w, [w, v]])
+1/24([[v, [v, w]], w]) + O((‖v‖ + ‖w‖)5).

(2.3)

Following [Godement 82], let us write H : g×g → g the mapping de�ned near 0 such that
H(v, w) = log(exp(v). exp(w)). A fundamental property of this function is the following: it is
not only C∞ but also analytic around 0, which means that H(v, w) (near 0) is the sum of an
absolutely converging multivariate in�nite series (the usual multiplication is replaced here by
the Lie bracket). This implies in particular that all the (partial) derivatives of this function
are also analytic.

We use twice the BCH formula in the sequel of this thesis, namely in Chapter 7 to prove
the existence and uniqueness of the bi-invariant mean in any Lie group, and in Chapter 3 to
compare the traces of the Log-Euclidean and a�ne-invariant means of symmetric positive-
de�nite matrices.

2.4 Riemannian Geometry
The geometry of non-linear spaces based on Riemannian metrics is extremely powerful, and
allows the generalization to these spaces of many type of data processing techniques such
as statistics [Pennec 96,Pennec 06a] or non-linear �ltering [Pennec 06b]. Intuitively, the idea
behind this geometry is to endow a smooth manifold with a distance between points compatible
with its smooth di�erentiable structure. With this type of distance, one can compute shortest
paths between points (i.e. geodesics), generalize the notion of arithmetic mean (with the
so-called Fréchet mean, see Chapter 7, Section 7.2 for details), generalize usual di�erential
operators such as the Laplacian (for a presentation of the Laplace-Beltrami operator, see for
example [Gallot 93], Chapter IV), give a precise de�nition to the intuitive notion of curvature,
etc.

For the processing of medical images and of related geometrical transformations or data,
Riemannian geometry has been increasingly used in the last decade, and particularly in the
past few years. One can �nd below a non-exhaustive list of situations where the use of
Riemannian geometry has been particularly fruitful in our domain and in related research
areas:

� Statistics on rotations: bi-invariant Riemannian metrics are particularly useful to
compute statistics on rotations [Pennec 96,Pennec 98a,Moakher 02].

� Statistics on rigid transformations: left-invariant Riemannian metrics are quite
straightforward to use in order to compute in 2D and 3D [Pennec 98b], either in the
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context of 2D images mosaicing [Vercauteren 06] or the statistical study of human spine
scoliosis [Boisvert 06].

� Processing of symmetric positive-de�nite matrices (so-called `tensors'): in
2004, several teams have proposed to use a�ne-invariant Riemannian metrics to pro-
cess di�usion-tensor images (DT-MRI) [Moakher 05, Fletcher 04a, Batchelor 05, Pen-
nec 06b, Lenglet 06a], which allow for the estimation, regularization, interpolation or
segmentation of this type of images with particularly nice properties. In Chapters 3 and
4, we present an alternative family of Riemannian metrics, called Log-Euclidean, which
are particularly well-adapted to the processing of di�usion tensors and of symmetric
positive-de�nite matrices in general.

� Metrics on parametric probability density functions: in [Lenglet 06a], a�ne-
invariant Riemannian metrics on tensors are de�ned via the use of a Fisher-Rao Rie-
mannian metric on the space of Gaussian probability functions of mean zero. Intuitively,
this choice of metric is based on the idea that the larger the intrinsic local uncertainty on
the estimation of parameters is, the `closer' parameters should be locally. This approach
can be used in more general situations than simple Gaussians. Indeed, in [Peter 06], a
Fisher-Rao Riemannian metric is used on a subspace of mixtures of 2D Gaussians. This
allows to de�ne a metric which is invariant under re-parameterization on N -tuples of
points modeling the shapes of anatomical structures.

� Metrics on shape spaces of N-tuples of points: much e�ort has been devoted
to analyze mathematically the properties of shape spaces, i.e. of the information con-
tained in sets of points which is invariant with respect to any rigid transformation and
scaling. D.G. Kendall was the founder of the theory of shape spaces of N -tuples of
points [Kendall 84], and his framework is particularly useful for computing statistics
on shapes [Kendall 89, Le 93]. It has been widely used in the Computer Vision and
medical image processing communities. See for example [Davies 02] for an advanced
information theory-based optimization strategy to �nd `good' correspondences between
continuous shape instances, in order to apply Kendall's theory to discretized versions
of continuous shapes. Shape theory can be used in practice to study many types of
shapes; in particular, the application of shape spaces theory to the statistical analysis
of the shape of the human ear canal is presented in [Paulsen 04]. For a very pleasant
introduction to shape spaces, see [Small 96].

� Metrics on shape spaces of continuous objects: theoretically, shape spaces of
continuous objects are far more complex to deal with than N -tuples of points, except
in a few exceptional cases such as in the following. For instance, a large variety of
Riemannian frameworks have been proposed to deal with 2D closed curves [Klassen 03,
Joshi 05,Michor 06]. Very recently, an extension of some of these approaches to 3D
closed curves has been presented in [Klassen 06]. An alternative framework to deal
with 2D closed curves, although outside the framework of Riemannian geometry, can be
found in [Charpiat 05a], where di�erentiable approximations of the Hausdor� distance
on compact sets are used to compute �rst and second-order moments of 2D closed curves
of arbitrary topology in a level set framework. A Riemannian framework has also been
proposed for a particular �nite-dimensional parameterization of 3D shapes called `M-
reps' (for `medial-representations') [Fletcher 04b]. For advanced statistical tests on M-
reps taking into account the speci�c direct product structure of this non-linear space,
see [Terriberry 05].
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� Metrics on di�eomorphisms: this time in a in�nite-dimensional setting, right-
invariant or left-invariant metrics on subgroups of di�eomorphisms have been increas-
ingly used in computational anatomy, thanks to the work of Trouvé, Younes, Miller
and others. See for example [Miller 06,Holm 04b,Holm 04a] for recent accounts on the
remarkable properties of geodesics in this in�nite-dimensional setting. Also, see [Vail-
lant 04] for statistics on low-dimensional di�eomorphisms in this framework. One should
note that these metrics de�ned on di�eomorphisms are not strictly speaking Riemannian
metrics, since no classical di�erential structure (only a �weak� one) has been identi�ed
yet for the groups of di�eomorphisms considered in this type of approaches, and the
collection of scalar products in the spaces �playing the role of tangent spaces� is there-
fore not �smooth� in any fully rigorous sense [Trouvé 95]. However, we are very close to
Riemannian geometry and many of the usual properties of Riemannian geometry apply
in this in�nite-dimensional setting.

� Metrics on images and shapes via semi-direct product spaces with di�eomor-
phisms: more recently, it has been proposed to induce metrics on images and contin-
uous shapes from the existing metric structures on di�eomorphisms. See [Trouvé 05b,
Trouvé 05a] for rigorous presentations of the theoretical aspects of this framework,
and [Xu 06,Lorenzen 05,Davis 04] for practical applications, such as computing mean
images of the human brain. In this context, a trade-o� between geometrical deforma-
tions and di�erences in shape or image intensities has to be chosen.

For a general introduction to Riemannian geometry, see for instance [Gallot 93] or
[do Carmo 92].

2.4.1 Riemannian Metrics
Riemannian metrics (or distances) are compatible with the di�erentiable structure of di�er-
entiable manifolds. In Riemannian geometry, the idea is to de�ne smoothly in each tangent
space TmE a scalar product < ., . >TmE . The distance between two points m and n is then
obtained by computing the minimal length of a smooth curve c(t) joining them in one unit of
time. We recall that the length l(c) of c is classically given by:

l(c) =

∫ 1

0

∥∥∥∥
dc

dt
(t)

∥∥∥∥
Tc(t)E

dt.

Thanks to the smoothness of the scalar product, Riemannian distances are inde�nitely di�er-
entiable.

2.4.2 Riemannian Geodesics
A smooth curve of minimal Riemannian length between two points is called a geodesic, and if
there exists a unique geodesic between two points, this curve is called a minimizing geodesic.
Interestingly, for any given point in a smooth manifold endowed with a Riemannian metric,
there exists an open neighborhood of this point which is weakly geodesically convex, i.e. where
any couple of points can be joined by a minimizing geodesic. Interestingly, geodesics satisfy
a second-order di�erential equation, and thus can be practically computed via the numerical
integration of an ODE (see [Gallot 93], page 80, for more details on this ODE, which can be
neatly expressed in terms of �rst order Christo�el symbols).

When two points are `far' apart, there can fail to be any geodesic between them (think
of a set with several connected components) or on the contrary several geodesics (possibly
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an in�nity) can join these points (think of antipodal points on a sphere). For details on the
existence and possible uniqueness of geodesics, see for example [Gallot 93].

2.4.3 Riemannian Exponential and Logarithm
In Section 2.3.5, we recalled the general notions of exponential and logarithm in Lie groups.
Remarkably, these notions can be generalized in the framework of Riemannian geometry
without relying on any Lie group structure.

De�nitions. At a given point m of E, the Riemannian exponential expm is de�ned as the
mapping TmE → E which associates to a velocity vector v of TmE the position obtained at
time 1 by the unique geodesic starting at time 0 at m with the initial speed v. In fact, contrary
to the group exponential, the Riemannian exponential expm is only de�ned in general in an
open neighborhood of 0 in TmE, since Riemannian geodesics may go out of the manifold in
�nite time (e.g., when there are `holes'), which is not the case of continuous one-parameter
subgroups. Riemannian manifolds such that for all m, expm is de�ned on the whole tangent
space TmE are called geodesically complete.

Exactly as in the Lie group case, expm is a local di�eomorphism, and is di�eomorphic in
an open neighborhood of 0 in TmE, which is mapped into a open neighborhood of m in E.
As a consequence, its inverse mapping, the Riemannian logarithm logm, is well-de�ned locally
in an open neighborhood of m. logm associates to a given point n near m the unique velocity
vector v close to 0 in TmE such that expm(v) = n. Moreover, the norm of v in TmE is equal
to the length of the geodesic between m and n. In this sense, the logarithm map logm locally
`unfolds' (near m) the manifold E into the tangent space TmE, while conserving distances
along geodesics starting from m, which are mapped by logm in TmE into the straight lines
passing through 0.

The notions of Riemannian exponential and logarithm are exempli�ed on the unit sphere
in Fig. 2.2.

Riemannian Exponential vs. Group Exponential. In Lie groups endowed with a Rie-
mannian metric, the group and Riemannian exponentials are closely related in a number of
situations. In particular, in the cases where bi-invariant Riemannian metrics exist, geodesics
are given by the translated versions of one-parameter subgroups, and in particular, the Rie-
mannian exponential at e is simply the group exponential (possibly rescaled). See Chapter 7,
Section 7.2 for more details on this subject.

From a practical point of view, the most favorable situation is certainly when the Rie-
mannian exponential is a function of the matrix exponential, which allows the direct use of
very e�cient numerical algorithms, like the ones described in Section 2.3.4. Particularly nice
examples of such favorable situations are given by left-invariant metrics on rigid transfor-
mations [Pennec 96] and a�ne-invariant metrics on tensors [Pennec 06b] (where the space of
symmetric positive-de�nite matrices is looked upon as an homogeneous space). Otherwise, the
numerical integration of the second-order ODE satis�ed by geodesics can be more di�cult,
and the computation of the Riemannian logarithm even harder.

2.4.4 Fréchet Mean
The framework of Riemannian geometry allows to generalize many usual statistical tools
in non-linear spaces. For a presentation of this topic, the interested reader can refer to
[Pennec 06a].
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n = expm(v)

v = logm(n) ∈ TmS
2

expm(t.v)

m ∈ S
2 (unit sphere)

TmS
2 (tangent space at m)

Figure 2.2: Riemannian exponential and logarithm on the unit sphere S
2, where the

geodesics associated to the usual Riemannian metric are all great circles. Let v = logm(n).
When t varies between 0 and 1, expm(t.v) moves smoothly between m and n along the great
circle between them. The norm of v, drawn in red, is equal to the length of the geodesic
between m and n, which is a portion of great circle (called an orthodrome), in blue.
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Among statistics, the most fundamental is certainly the mean. In the general setting of
metric spaces, i.e. the sets on which a distance is de�ned (e.g., Riemannian manifolds), one
can generalize the classical arithmetic mean in a straightforward way.

Indeed, to de�ne a notion of mean value compatible with the metric, one can rely on the
intuitive idea of minimal variance or dispersion to de�ne the mean, because a metric provides
a way of quantifying how close (or far away) two elements are from each other in a metric
space (E, dist). More precisely, the mean can be de�ned as the point E(X) which minimizes
some kind of dispersion of the data (Xi)

N
i=1 around itself (with respect to some non-negative

normalized weights (wi)), for example:

E(Xi) = arg min
Y ∈E

∑

i

wi.dist(Xi, Y )α. (2.4)

The case α = 2 corresponds in vector spaces to the arithmetic mean, and in other spaces to
their generalization, called the Fréchet mean. For α = 1, one obtains the generalization of the
median. One should note that the dispersion may have several minimizers. For instance, this
is classically the case in vector spaces for α = 1, essentially because in this case the dispersion
it is not strictly convex, contrary to the case α > 1. Even when α > 1, the dispersion of the
data Xi should not be too high in order to guarantee that the dispersion has a unique global
minima [Pennec 06a].
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Chapter 3

Log-Euclidean Metrics on Tensors

We concentrate in this Chapter and the next on the processing of symmetric positive-de�nite
matrices (SPD matrices), also called by abuse of language `tensors' in this work. This type
of data appears in many contexts, and in the past years the need for a general processing
framework for tensors has grown continously.

One should note that although the tensor space is non-linear, it is one of the most simple
cases of non-linear manifold that exists. It can be seen as a multidimensional generalization
of positive numbers, and has many speci�c properties that make it extremely close to a
vector space. So close that we even show in this Chapter that it can be looked upon as a
vector space from an non-classical point of view! This remarkably simple non-linear space is
therefore a particularly nice pedagogical entry point for the beginner into the harduous topic
of Riemannian geometry.

In this Chapter, we present the theoretical properties of a novel and general Riemannian
processing framework for tensors, called Log-Euclidean. Our approach is based on a novel Lie
group structure for tensors, which can smoothly be extended into a vector space structure.
The novel algebraic structure we propose here for symmetric and positive-de�nite matrices is
compatible with the usual algebraic properties of this set: the inverse of a tensor is its usual
inverse and the matrix exponential is the group exponential of our Lie group structure.

Our novel framework does not introduce any super�uous complexity, since Log-Euclidean
Riemannian computations can be converted into Euclidean ones once tensors have been trans-
formed into their matrix logarithms, which makes Euclidean processing algorithms particu-
larly simple to recycle.

A general device based on this principle has been patented by the INRIA [Arsigny 05d]
(which does not restrict the use of our framework for either research or teaching purposes).

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Di�erential Properties of Matrix Exponential . . . . . . . . . . . . . 33
3.2.2 Algebraic Properties of SPD Matrices . . . . . . . . . . . . . . . . . 33
3.2.3 Di�erential Properties of SPD Matrices . . . . . . . . . . . . . . . . 34
3.2.4 Compatibility Between Algebraic and Di�erential Properties . . . . 34

3.3 Log-Euclidean Means . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Multiplication of SPD Matrices . . . . . . . . . . . . . . . . . . . . . 35



30 Chapter 3. Log-Euclidean Metrics on Tensors

3.3.2 Log-Euclidean Metrics on the Lie Group of SPD Matrices . . . . . . 37
3.3.3 A Vector Space Structure on SPD Matrices . . . . . . . . . . . . . . 39
3.3.4 Log-Euclidean Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Comparison with the A�ne-Invariant Mean . . . . . . . . . . . . 40
3.4.1 Elementary Metric Operations and Invariance . . . . . . . . . . . . . 40
3.4.2 A�ne-Invariant Means . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Geometric Interpolation of Determinants . . . . . . . . . . . . . . . 41
3.4.4 Criterion for the Equality of the Two Means . . . . . . . . . . . . . . 42
3.4.5 Larger Anisotropy in Log-Euclidean Means . . . . . . . . . . . . . . 42
3.4.6 Linear and Bilinear Interpolation of SPD Matrices . . . . . . . . . . 45

3.5 Probabilities and Statistics with Log-Euclidean Metrics . . . . . 46
3.5.1 General Riemannian Statistical Framework . . . . . . . . . . . . . . 47
3.5.2 Random Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Fréchet Means and Covariances with Log-Euclidean Metrics . . . . . 48
3.5.4 General Log-Euclidean Statistical Framework . . . . . . . . . . . . . 50

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Abstract. In this work we present a novel and general Riemannian processing framework
for tensors, called Log-Euclidean. Our approach is based on two novel algebraic structures on
symmetric positive-de�nite matrices. First, a Lie group structure which is compatible with
the usual algebraic properties of this matrix space. Second, a new scalar multiplication that
smoothly extends the Lie group structure into a vector space structure. The Riemannian
metrics compatible with these novel algebraic structures are called Log-Euclidean.

To evaluate the relevance of a given Riemannian metric, the properties of the associated
notion of mean are of great importance. Indeed, most computations useful in practice involve
averaging procedures. This the reason why we detail in the Chapter the remarkable prop-
erties of the Fréchet mean associated to Log-Euclidean metrics, which is simply called the
Log-Euclidean mean. Interestingly, this means corresponds to an arithmetic mean in the do-
main of matrix logarithms. We detail the invariance properties of this novel geometric mean
and compare it to the recently-introduced a�ne-invariant mean. The two means have the
same determinant and are equal in a number of cases, yet they are not identical in general.
One can show that the Log-Euclidean mean has a larger trace whenever they are not equal.
Furthermore, the Log-Euclidean mean is much easier to compute.

Finally, we present in this Chapter the Log-Euclidean statistical framework for tensors.
As expected, it is particularly simple to use, since Log-Euclidean Riemannian statistics are
simply Euclidean statistics on the logarithms of tensors.

Related Publications. The Log-Euclidean framework for tensors was presented at the
international conference MICCAI'05 [Arsigny 05a]. The theoretical aspects of this work will
be published in the SIAM Journal for Matrix Analysis and Applications [Arsigny 06e], and
the application of this framework to di�usion MRI, described in Chapter 4, was published in
the international journal Magnetic Resonance in Medicine [Arsigny 06f]. Much of this work
was originally published in an INRIA research report [Arsigny 05b].

As a co-author, we have also used the Log-Euclidean framework for tensors to intro-
duce statistics on deformation tensors in non-linear registration, within a framework called
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`Riemannian Elasticity' [Pennec 05]. Our Log-Euclidean framework was also used indirectly
in [Commowick 05] to better constraint non-linear registration with strain tensors, in an alter-
native way. Furthermore, our novel framework was used to design a novel framework to jointly
estimate and regularize di�usion tensors from di�usion-weighted images, in [Fillard 06a,Fil-
lard 05b,Fillard 06b].

Moreover, still as a co-author, we have contributed to better process and analyse variability
tensors, in the context of the modeling of the local variability of the human brain. Using
this time the a�ne-invariant framework for tensor processing, this work was presented in
[Fillard 05c,Fillard 06c,Fillard 06d]. Still with the a�ne-invariant framework, we have also
explored the interest of Riemannian processing on structure tensors [Fillard 05a].

Publications by other Authors. In recent months, our Log-Euclidean framework for
tensors has begun to be used on a regular basis by several teams, in various contexts. For
example, in our research team, it is used in [Peyrat 06b,Peyrat 06a] to study the statistical
variability of the di�usion tensors of canine hearts. At Rutgers university, in [Norris 06],
the Log-Euclidean framework is used to compute the isotropic material closest to a given
anisotropic material, in the context of continuum mechanics. In [Goodlett 06], at the Univer-
sity of North Carolina, the Log-Euclidean framework is used to generate unbiased atlases of
di�usion tensor images of the human brain. At the University of California in Los Angeles,
the Log-Euclidean framework is used in [Lepore 06] to perform statistical tests on deforma-
tion tensors steming from a registration procedure to compare morphologically two groups of
individuals (HIV/AIDS patients vs. normals).

3.1 Introduction
In Section 1.1.1, we have seen that symmetric positive-de�nite matrices of real numbers appear
in many contexts and have been increasingly used in medical imaging, in particular in di�usion
MRI. As a consequence, there has been a growing need to carry out computations with these
objects, for instance to interpolate, restore, enhance images of symmetric positive-de�nite
matrices. To this end, one needs to de�ne a complete operational framework. This is necessary
to fully generalize to the SPD case the usual statistical tools or PDEs on vector-valued images.
The framework of Riemannian geometry [Gallot 93] is particularly adapted to this task, since
many statistical tools [Pennec 06a] and PDEs can be generalized this framework.

As we have seen in Section 2.4.4, the classical generalization of the Euclidean mean to
Riemannian manifolds is called the Fréchet mean. Most computations useful in practice
involve averaging procedures, and the properties of the mean are therefore of great importance.
Means are computed either explicited or implicited for example during the interpolation, the
regularization and the extrapolation of SPD matrices. A simple illustration of this fact is
given by the classical regularization technique based on the heat equation, which is equivalent
to the convolution of the original data with Gaussian kernels.

To de�ne a Riemannian metric on the space of SPD matrices, one can directly use the
usual Euclidean structure on square matrices. This is straightforward, and in this setting,
the Riemannian mean of a system of SPD matrices is their arithmetic mean, which is an SPD
matrix since SPD matrices form a convex set. However, as we pointed out in the Introduction
of this thesis, although Euclidean distances are well-adapted to general square matrices, they
are unsatisfactory for tensors, for two main reasons. First, symmetric matrices with null
or negative eigenvalues typically appear on clinical DT-MRI data as soon as we perform on
tensors Euclidean operations which are non-convex, which is unacceptable in many cases,
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like DT-MRI. Second, Euclidean averaging of SPD matrices leads often to a swelling e�ect:
the determinant of the Euclidean mean can be strictly larger than the original determinants,
which is not acceptable in DT-MRI where this amounts to introducing more di�usion in the
images.

To fully circumvent these di�culties, other metrics have been recently proposed for SPD
matrices. With the a�ne-invariant metrics proposed in [Pennec 06b,Fletcher 04a,Lenglet 06a,
Moakher 05], negative and null eigenvalues are at an in�nite distance. The swelling e�ect has
disappeared, and the symmetry with respect to inversion is respected. These new metrics
lead to the de�nition of an a�ne-invariant generalization of the geometric mean of positive
numbers on symmetric positive-de�nite matrices. But the price paid for this success is a high
computational burden in practice, essentially due to the curvature induced on the space of
symmetric positive-de�nite matrices. This leads in many cases to slow and hard to implement
algorithms (especially for PDEs) [Pennec 06b].

We propose here a new Riemannian framework on tensors, which leads to a novel gen-
eralization of the geometric mean to SPD matrices. It fully overcomes these computational
limitations while conserving excellent theoretical properties. This is obtained with a new fam-
ily of metrics named Log-Euclidean. Such metrics are particularly simple to use. They result
in classical Euclidean computations in the domain of matrix logarithms. As a consequence,
there is a closed form for the Log-Euclidean mean, contrary to the a�ne-invariant case. It
results in a drastic reduction of computation times: the Log-Euclidean mean is approximately
20 times faster to compute.

The remainder of this Chapter is organized as follows. In Section 3.2, we present some
fundamental properties of the space of symmetric positive-de�nite matrices which are used
afterwards. Then we proceed in Section 3.3 to the theory of Log-Euclidean metrics which is
based on two novel algebraic structures on SPD matrices: a Lie group structure and a new
scalar multiplication which complements the new multiplication to obtain a new vector space
structure. The de�nition of the Log-Euclidean mean is deduced from these new structures.
Contrary to the a�ne-invariant mean, there is a closed form for the Log-Euclidean mean and
it is simple to compute. In Section 3.4 we highlight the similarities and di�erences between
a�ne-invariant and Log-Euclidean means. They are quite similar, since they have the same
determinant, which is the classical geometric mean of the determinants of the averaged SPD
matrices. They even coincide in a number of cases, and yet are di�erent in general. We
prove that Log-Euclidean means are strictly more anisotropic when averaged SPD matrices
are isotropic enough. Last but not least, we present the general statistical Log-Euclidean
framework for tensors, which is particularly simple to use, since Log-Euclidean Riemannian
statistics are simply Euclidean statistics on the logarithms of tensors.

3.2 Preliminaries

We begin by describing the fundamental properties of the tensor space used in this Chapter.
First, we present the di�erential properties of the matrix exponential. Then, we examine
the general properties of SPD matrices. These properties are of two types: algebraic and
di�erential. On the one hand, SPD matrices have algebraic properties because they are a
special kind of invertible matrices, and on the other hand they can be considered globally as
a smooth manifold and therefore have di�erential geometry properties. These properties are
not independent: on the contrary, they are compatible in a profound way. This compatibility
is the heart of the approach developed here.
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3.2.1 Di�erential Properties of Matrix Exponential
The exponential plays a central role in Lie groups (see [Bourbaki 89,Sternberg 64,Gallot 93]).
We consider here only the matrix version of the exponential, which is a tool that we extensively
use in the next sections. Its fundamental properties are detailled in Chapter 2, Section 2.3.
In the following, we describe some of its classical di�erential properties.
Theorem 3.1. exp : M(n) → GL(n) is a C∞ mapping. Its di�erential map at a point
M ∈ M(n) acting on an in�nitesimal displacement dM ∈ M(n) is given by:

DM exp .dM =
∞∑

k=1

1

k!

(
k−1∑

l=0

Mk−l−1.dM.M l

)
. (3.1)

Proof. The smoothness of exp is simply a consequence of the uniform absolute convergence
of its series expansion in any compact set of M(n). The di�erential is obtained classically by
a term by term derivation of the series de�ning the exponential.

We see here that the non-commutativity of the matrix multiplication complicates seriously
the di�erentiation of the exponential, which is much simpler in the scalar case. However,
taking the trace in Eq. (3.1) yields:
Corollary 3.1. We have the following simpli�cation in terms of traces:

Trace(DM exp .dM) = Trace(exp(M).dM). (3.2)

We shall also use in the following this property on determinants:
Proposition 3.1. Let M ∈ M(n). Then det(exp(M)) = exp(Trace(M)).
Proof. This is easily seen in terms of eigenvalues of M . The Jordan decomposition of M
[Lang 04] assure that Trace(M) is the sum of its eigenvalues. But the exponential of a
triangular matrix transforms the diagonal values of this matrix into their scalar exponential.
The determinant of exp(M) is simply the product of its eigenvalues, which is precisely the
exponential of the trace of M .

3.2.2 Algebraic Properties of SPD Matrices
SPD Matrices have remarkable algebraic properties. First, there always exists a unique real
and symmetric logarithm for any SPD matrix, which is its principal logarithm. Second, if
the space of SPD matrices is not a subgroup of GL(n), it is stable with respect to inversion.
Moreover, its spectral decomposition is particularly simple1.
Theorem 3.2. For any S ∈ Sym(n), there exists an orthonormal coordinate system in which
S is diagonal. This is in particular the case for SPD matrices. Sym+

⋆ (n) is not a subgroup
of GL(n), but it is stable by inversion. Moreover, the matrix exponential exp : Sym(n) →
Sym+

⋆ (n) is one-to-one and onto.
Proof. For a proof of the �rst assertion, see elementary linear algebra manuals, or [Lang 04].
For the second assertion, we see from Section 2.3.4 that SPD matrices have a unique real
logarithm whose eigenvalues have an imaginary part between−π and +π, since the eigenvalues
of SPD matrices are real and always positive. It is simple to see that this real logarithm, called
the principal logarithm, can be obtained simply by replacing its eigenvalues by their natural
logarithms, which always yields a symmetric matrix.

1 This is due to the fact that SPD matrices are normal operators, like rotations and antisymmetric matrices
[Lang 04].
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Thanks to the existence of an orthonormal basis in which an SPD matrix (resp. a sym-
metric matrix) is diagonal, the logarithms (resp. the exponential) has a particularly simple
expression. In such a basis, taking the log (resp. the exp ) of a is simply done by applying
their scalar version to eigenvalues:

{
log(R.Diag(λ1, ..., λN ).RT ) = R.Diag(log(λ1), ..., log(λN )).RT

exp(R.Diag(λ1, ..., λN ).RT ) = R.Diag(exp(λ1), ..., exp(λN )).RT .

These formulae provide a particularly e�cient method to calculate the logarithms and expo-
nentials of symmetric matrices, whenever the cost of a diagonalization is less than that of the
many matrix multiplications (in the case of the exponential) and inversions (in the case of
the logarithm) used in the general matrix case by classical algorithms [Higham 05,Cheng 01].
For small values of n, and in particular n = 3, we found such formulae to be extremely useful.

3.2.3 Di�erential Properties of SPD Matrices
This time from the point of view of topology and di�erential geometry, the space of SPD
matrices has also many particularities. The properties recalled here are elementary and will
not be detailed. See [Arsigny 05b] for complete proofs.

Proposition 3.2. Sym+
⋆ (n) is an open convex half-cone of Sym(n) and is therefore a sub-

manifold of Sym(n), whose dimension is n(n + 1)/2.

3.2.4 Compatibility Between Algebraic and Di�erential Properties
We have seen that exp is a smooth bijection. We show here that the logarithm, i.e. its
inverse, is also smooth. As a consequence, all the algebraic operations on SPD matrices
presented before are also smooth, in particular the inversion. Thus, the two structures are
fully compatible.

Theorem 3.3. log : Sym+
⋆ (n) → Sym(n) is C∞. Thus, exp and its inverse log are both

smooth, i.e. they are di�eomorphisms. This is due to the fact that the di�erential of exp is
nowhere singular.

Proof. In fact, we only need to prove the last assertion. If it is true, the Implicit Function
Theorem [Schwartz 97] applies and assures that log is also smooth. Since the di�erential of
exp at 0 is simply given by the identity, it is invertible by continuity in a neighborhood of 0.
We now show that this propagates to the entire space Sym(n). Indeed, let us then suppose
that for a point M , the di�erential DM/2 exp is invertible. We claim that then DM exp is also
invertible, which su�ces to prove the point. To show this, let us take dM ∈ Sym(n) such
that DM exp .dM = 0. If DM exp is invertible, we should have dM = 0. To see this, remark
that exp(M) = exp(M/2). exp(M/2). By di�erentiation and applying to dM , we get:

DM exp .dM = 1/2((DM/2 exp .dM). exp(M/2) + exp(M/2).(DM/2 exp .dM)) = 0.

This implies by multiplication by exp(−M/2):

exp(−M/2)(DM/2 exp .dM). exp(M/2) + (DM/2 exp .dM) = 0.

Since A−1. exp(B).A = exp(A−1.B.A) we have also by di�erentiation:
A−1.DB exp(dB).A = DB exp(A−1.dB.A). Using this simpli�cation and the hypothesis that
DM/2 exp is invertible, we obtain:

exp(−M/2).dM. exp(M/2) + dM = 0.
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Let us rewrite this equation in an orthonormal basis in which M is diagonal with a rotation
matrix R. Let (λi) be the eigenvalues of M and let dN := R.dM.RT . Then we have:

dN = −Diag(exp(−λ1/2), ..., exp(−λN/2)).dN.Diag(exp(λ1/2), ..., exp(λN/2)).

Coordinate by coordinate this is writen as:

∀i, j : dNi,j(1 + exp(−λi/2 + λj/2)) = 0.

Hence for all i, j : dNi,j = 0 which is equivalent to dM = 0. And we are done.

Corollary 3.2. In the space of SPD matrices, for all α ∈ R, the power mapping: S 7→ Sα is
smooth. In particular, this is true for the inversion mapping (i.e. when α = −1).

Proof. We have Sα = exp(α log(S)). The composition of smooth mappings is smooth.

3.3 Log-Euclidean Means
We focus in this section on the construction of Log-Euclidean means. They are derived from
two new structures on SPD matrices.

The �rst is a Lie group structure [Bourbaki 89] i.e. an algebraic group structure that is
compatible with the di�erential structure of the Space of SPD Matrices. The second structure
is a vector space structure. Indeed, one can de�ne a logarithmic scalar multiplication that
complements the Lie group structure to form a vector space structure on the space of SPD
matrices. In this context, Log-Euclidean metrics are de�ned as bi-invariant metrics on the
Lie group of SPD matrices. The Log-Euclidean mean is the Fréchet mean associated to these
metrics. It is particularly simple to compute.

3.3.1 Multiplication of SPD Matrices
It is a priori not obvious how one could de�ne a multiplication on the space of SPD matrices
compatible with classical algebraic and di�erential properties. How can one combine smoothly
two SPD matrices to make a third one, in such a way that Id is still the identity and the usual
inverse remains its inverse? Moreover, if we obtain a new Lie group structure, we would also
like the matrix exponential to be the exponential associated to the Lie group structure, which
a priori can be di�erent.

The �rst idea that comes to mind is to use directly matrix multiplication. But then
the non-commutativity of matrix multiplication between SPD matrices stops the attempt: if
S1, S2 ∈ Sym+

⋆ (n), S1.S2 is an SPD matrix (or equivalently, is symmetric) if and only if S1

and S2 commute. To overcome the possible asymmetry of the matrix product of two SPD
matrices, one can simply take the symmetric part (i.e. the closest symmetric matrix in the
sense of the Frobenius norm [Higham 89]) of the product and de�ne the new product ⋄:

S1 ⋄ S2 :=
1

2
(S1.S2 + S2.S1).

This multiplication is smooth, conserves the identity and the inverse. But S1 ⋄ S2 is not
necessarily positive! And since the subset of SPD matrices is not closed in Sym(n), one
cannot de�ne in general a closest SPD matrix, but only a closest symmetric semi-de�nite
matrix [Higham 89].

In [Pennec 06b], a�ne-invariant distances between two SPD matrices S1, S2 are of the
form:

d(S1, S2) = ‖ log(S
−1/2
1 .S2.S

−1/2
1 )‖. (3.3)
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where ‖.‖ is a Euclidean norm de�ned on Sym(n). Let us de�ne the following multiplication
⊚:

S1 ⊚ S2 := S
1/2
1 .S2.S

1/2
1 .

With this multiplication, the a�ne-invariant metric constructed in [Pennec 06b] can be in-
terpreted then as a left-invariant metric. Moreover, this multiplication is smooth, compatible
with matrix inversion and matrix exponential, and the product truly de�nes an SPD matrix.
Everything works �ne, except that it is not associative. This makes everything fail, because
associativity is an essential requirement of group structure. Without it, many fundamental
properties disappear. For Lie groups, the notion of adjoint representation does not exist
anymore without associativity.

Theorem 3.3 points to an important fact: Sym+
⋆ (n) is di�eomorphic to its tangent space

at the identity, Sym(n). But Sym(n) has an additive group structure, and to obtain a group
structure on the space of SPD matrices, one can simply transport the additive structure of
Sym(n) to Sym+

⋆ (n) with the exponential. More precisely, we let:

De�nition 3.1. Let S1, S2 ∈ Sym+
⋆ (n). We de�ne their logarithmic product S1 ⊙ S2 by:

S1 ⊙ S2 := exp(log(S1) + log(S2)). (3.4)

Proposition 3.3. (Sym+
⋆ (n),⊙) is a group. The neutral element is the usual identity matrix,

and the group inverse of an SPD matrix is its inverse in the matrix sense. Moreover, whenever
two SPD matrices commute in the matrix sense, then the logarithmic product is equal to their
matrix product. Furthermore, the multiplication is commutative.

Proof. The multiplication is de�ned by addition on logarithms. It is therefore associative
and commutative. Since log(Id) = 0, the neutral element is Id and since log(S−1) =
− log(S), the new inverse is the matrix inverse. Finally, we have exp(log(S1) + log(S2))
= exp(log(S1)). exp(log(S2)) = S1.S2 when [S1, S2] = 0.

Theorem 3.4. The logarithmic multiplication ⊙ on Sym+
⋆ (n) is compatible with its structure

of smooth manifold: (S1, S2) 7→ S1 ⊙S−1
2 is C∞. Therefore, Sym+

⋆ (n) is given a commutative
Lie group structure by ⊙.

Proof. (S1, S2) 7→ S1 ⊙ S−1
2 = exp(log(S1) − log(S2)). But since exp and log and the addi-

tion are smooth, their composition is also smooth. By de�nition (see [Gallot 93], page 29),
Sym+

⋆ (n) is a Lie group.

Proposition 3.4. exp : (Sym(n), +) → (Sym+
⋆ (n),⊙) is a Lie group isomorphism. In par-

ticular, one-parameter subgroups of Sym+
⋆ (n) are obtained by taking the matrix exponential

of those of Sym(n), which are simply of the form (t.V )t∈R where V ∈ Sym(n). As a conse-
quence, the Lie group exponential in Sym+

⋆ (n) is given by the classical matrix exponential on
the Lie Algebra Sym(n).

Proof. We have explicitly transported the group structure of Sym(n) into Sym+
⋆ (n) so exp

is a morphism. It is also a bijection, and thus an isomorphism. The smoothness of exp then
assures its compatibility with the di�erential structure.

Let us recall the de�nition of one-parameter subgroups. (S(t))t∈R is such a subgroup if and
only if we have ∀t, s : S(t+s) = S(t)⊙S(s) = S(s)⊙S(t). But then log(S(t+s) = log(S(t)⊙
S(s)) = log(S(t)) + log(S(s)) by de�nition of ⊙. Therefore log S(t) is also a one-parameter
subgroup of (Sym(n), +), which is necessarily of the form t.V where V ∈ Sym(n). V is
the in�nitesimal generator of S(t). Finally, the exponential is obtained from one-parameter
subgroups, which are all of the form (exp(t.V ))t∈R (see [Sternberg 64], Chap. V).
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Thus, we have given the space of SPD matrices a structure of Lie group that leaves
unchanged the classical matrix notions of inverse and exponential. The new multiplication
used, i.e. the logarithmic multiplication, generalizes the matrix multiplication when two SPD
matrices do not commute in the matrix sense.

The associated Lie Algebra is the space of symmetric matrices, which is di�eomorphic and
isomorphic to the group itself. The associated Lie bracket is the null bracket: [S1, S2] = 0 for
all S1, S2 ∈ Sym(n).

To our knowledge, this Lie group structure is new in the literature. For a space as com-
monly used as SPD matrices, this is quite surprising. Probably, the reason is that the Lie
group of SPD Matrices is not a multiplicative matrix group, contrary to most Lie groups.

3.3.2 Log-Euclidean Metrics on the Lie Group of SPD Matrices
Now that we have given Sym+

⋆ (n) a structure of Lie group, we turn to the task of exploring
metrics compatible with this new structure. Among Riemannian metrics in Lie groups, bi-
invariant metrics are the most convenient, as will be detailled in Chapter 7. In the case of
our Lie group structure for tensors, the situation regarding bi-invariant metrics is particularly
simple, since our multiplication ⊙ is commutative.

Proposition 3.5. Any metric <, > on TIdSym+
⋆ (n) = Sym(n) extended to Sym+

⋆ (n) by left-
or right-multiplication is a bi-invariant metric.

Proof. The commutativity of the multiplication implies that Ad(Sym+
⋆ (n)) = {Id}, which is

trivially an isometry group.

De�nition 3.2. Any bi-invariant metric on the lie group of SPD matrices is also called a
Log-Euclidean metric, because it corresponds to a Euclidean metric in the logarithmic domain
as is shown in Corollary 3.3.

Corollary 3.3. Let <,> be a bi-invariant metric on Sym+
⋆ (n). Then its geodesics are simply

given by the translated versions of one-parameter subgroups, namely:

(exp(V1 + t.V2))t∈R where V1, V2 ∈ Sym(n). (3.5)

The exponential and logarithmic maps associated to the metric can be expressed in terms of
matrix exponential and logarithms in the following way:

{
logS1

(S2) = Dlog(S1) exp .(log(S2) − log(S1))

expS1
(L) = exp(log(S1) + DS1 log .L).

(3.6)

The scalar product between two tangent vectors V1, V2 at a point S is given by:

< V1, V2 >S=< DS log .V1, DS log .V2 >Id . (3.7)

From this equation, we get the distance between two SPD matrices:

d(S1, S2) = ‖ logS1
(S2)‖S1 = ‖ log(S2) − log(S1)‖Id. (3.8)

where ‖.‖ is the norm associated to the metric.

Proof. Theorem 7.1 in Chapter 7 states that geodesics are obtained by translating one-
parameter subgroups and Prop. 3.4 gives the form of these subgroups in terms of matrix
exponential. By de�nition, the metric exponential expS1

: TS1Sym+
⋆ (n) → Sym+

⋆ (n) is the
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mapping that associates to a tangent vector L the value at time 1 of the geodesic start-
ing at time 0 from S1 with an initial speed vector L. Di�erentiating the geodesic equa-
tion Eq. (3.5) at time 0 yields an initial vector speed equal to DV1 exp .V2. As a conse-
quence, expS1

(L) = exp(log(S1) + (Dlog(S1) exp)−1.L). The di�erentiation of the equality
log ◦ exp = Id yields: (Dlog(S1) exp)−1 = DS1 log. Hence the formula for expS1

(L). Solving in
L the equation expS1

(L) = S2 provides the formula for logS1
(S2).

The metric at a point S is obtained by propagating by translation the scalar product on
the tangent space at the identity. Let LS : Sym+

⋆ (n) → Sym+
⋆ (n) be the logarithmic multipli-

cation by S. We have: < V1, V2 >S=< DSLS−1 .V1, DSLS−1 .V2 >. But simple computations
show that DSLS−1 = DS log. Hence Eq. (3.7). Finally, we combine Eq. (3.6) and Eq. (3.7)
to obtain the (simple this time!) formula for the distance.

Corollary 3.4. Endowed with a bi-invariant metric, the space of SPD matrices is a �at
Riemannian space: its sectional curvature (see [Gallot 93], page 107) is null everywhere.
Proof. This is clear, since it is isometric to the space Sym(n) endowed with the Euclidean
distance associated to the metric.

In [Pennec 06b], the metric de�ned on the space of SPD matrices is a�ne-invariant. The
action act(A) of an invertible matrix A on the space of SPD matrices is de�ned by:

∀S, act(A)(S) = A.S.AT .

A�ne-invariance means that for all invertible matrix A, the mapping
act(A) : Sym+

⋆ (n) → Sym+
⋆ (n) is an isometry. This group action describes how an SPD

matrix, assimilated to a covariance matrix, is a�ected by a general a�ne change of coordi-
nates.

Here, the Log-Euclidean Riemannian framework will not yield full a�ne-invariance. How-
ever, it is not far from it, because we can obtain invariance by similarity (isometry plus
scaling).
Proposition 3.6. We can endow Sym+

⋆ (n) with a similarity-invariant metric, for instance
by choosing < V1, V2 >:= Trace(V1.V2) for V1, V2 ∈ Sym(n).
Proof. Let R ∈ SO(n) be a rotation and s > 0 be a scaling factor. Let S be an SPD matrix.
V is transformed by the action of s.R into act(sR)(S) = s2.R.S.RT . From Eq. (3.8), the
distance between two SPD matrices S1 and S2 transformed by sR is:

d(act(sR)(S1), act(sR)(S2)) = Trace({log(act(sR)(S1)) − log(act(sR)(S2))}2).

A scaling by a positive factor λ on an SPD matrix corresponds to a translation by log(λ).Id
in the domain of logarithms. Furthermore, we have log(R.S.RT ) = R. log(S).RT for any SPD
matrix S and any rotation R. Consequently, the scaling zeros out in the previous formula
and we have:

d(act(sR)(S1), act(sR)(S2)) = Trace({R.(log(S1) − log(S2)).R
T }2)

= Trace({log(S1) − log(S2)}2)

= d(S1, S2).

Hence the result.

Thus, we see that the Lie group of SPDMatrices with an appropriate Log-Euclidean metric
has many invariance properties: Lie group bi-invariance and similarity-invariance. Moreover,
Theorem 7.1 in Chapter 7 shows that the the inversion mapping: S 7→ S−1 is an isometry.
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3.3.3 A Vector Space Structure on SPD Matrices
We have already seen that the Lie group of SPD Matrices is isomorphic and di�eomorphic
to the additive group of symmetric matrices. We have also seen that with a Log-Euclidean
metric, the Lie group of SPD Matrices is also isometric to the space of symmetric matrices
endowed with the associated Euclidean metric. There is more: the Lie group isomorphism exp
from the Lie Algebra of symmetric matrices to the space of SPD matrices can be smoothly
extended into an isomorphism of vector spaces. Indeed, let us de�ne the following operation:
De�nition 3.3. The logarithmic scalar multiplication ⊛ of an SPD matrix by a scalar λ ∈ R

is:
λ ⊛ S = exp(λ. log(S)) = Sλ. (3.9)

When we assimilate the logarithmic multiplication to an addition and the logarithmic
scalar multiplication to a usual scalar multiplication, we have all the properties of a vector
space. By construction, the mapping exp : (Sym(N), +, .) → (Sym+

⋆ (n),⊙, ⊛) is a vector
space isomorphism. Since all algebraic operations on this vector space are smooth, this de�nes
what could be called a `Lie vector space structure' on SPD matrices.

Of course, this result does not imply that the space of SPD matrices is a vector subspace
of the vector space of square matrices. But it shows that we can view this space as a vector
space when we identify a SPD matrix to its logarithm. The question of whether or not the
SPD matrix space is a vector space depends on the vector space structure we are considering,
and not on the space itself.

From this point of view, bi-invariant metrics on the Lie group of SPD Matrices are simply
the classical Euclidean metrics on the vector space (Sym(n),+, .). Thus, we have in fact
de�ned a new Euclidean structure on the space of SPD matrices by transporting that of its
Lie Algebra Sym(n) on SPD matrices. But this Euclidean structure does not have the defects
mentioned in the introduction of this Chapter: matrices with null eigenvalues are at in�nite
distance and the symmetry principle is respected. Moreover, with an appropriate metric,
similarity-invariance is also guaranteed.

3.3.4 Log-Euclidean Mean
We present here the de�nition of the Log-Euclidean mean of SPD matrices and its invariance
properties.
Theorem 3.5. Let (Si)

N
1 be a �nite number of SPD matrices. Then their Log-Euclidean

Fréchet mean exists and is unique. It is given explicitly by:

ELE(S1, ..., SN ) = exp

(
1

N

N∑

i=1

log(Si)

)
. (3.10)

The Log-Euclidean mean is similarity-invariant, invariant by group multiplication and inver-
sion, and is exponential-invariant (i.e. invariant with respect to scaling in the domain of
logarithms).
Proof. When one expresses distances in the logarithm domain, one is faced with the classical
computation of an Euclidean mean. Hence the formula by mapping back the results with exp
in the domain of SPD matrices. Now, this mean does not depend on the chosen Log-Euclidean
metric, and since there exist similarity-invariant metrics among Log-Euclidean metrics, this
property propagates to the mean. The three last invariance properties are reformulations in
the domain of SPD matrices of classical properties of the arithmetic mean in the domain of
logarithms.



40 Chapter 3. Log-Euclidean Metrics on Tensors

A�ne-Invariant Metrics Log-Euclidean Metrics
Riemannian Exponential: expS1

(L) =

S
1/2
1 . exp(S

−1/2
1 .L.S

−1/2
1 ).S

1/2
1 exp(log(S1) + DS1 log .L)

Riemannian Logarithm: logS1
(S2) =

S
1/2
1 . log(S

−1/2
1 .S2.S

−1/2
1 ).S

1/2
1 Dlog(S1) exp .(log(S2) − log(S1))

Dot product: < L1, L2 >S=

< S−1/2.L1.S
−1/2, S−1/2.L2.S

−1/2 >Id < DS log .L1, DS log .L2 >Id
Distance: d(S1, S2) =

‖ log(S
−1/2
1 .S2.S

−1/2
1 )‖ ‖ log(S2) − log(S1)‖

Geodesic between S1 and S2:
S

1/2
1 . exp (tW )) .S

1/2
1 exp ((1 − t) log(S1) + t log(S2))

with W = log
(
S
−1/2
1 .L.S

−1/2
1

)

Invariance properties
Lie group bi-invariance,

A�ne-invariance Similarity-invariance

Table 3.1: Comparison between a�ne-invariant and Log-Euclidean metrics. Note on the one
hand the important simpli�cations in terms of distance and geodesics in the Log-Euclidean
case. On the other hand, this results in the use of the di�erentials of the matrix exponential
and logarithm in the exponential and logarithm maps.

3.4 Comparison with the A�ne-Invariant Mean
We compare in this section the Log-Euclidean mean to the recently-introduced a�ne-invariant
mean [Pennec 06b,Moakher 05, Lenglet 06a, Fletcher 04a]. To this end, we �rst recall the
di�erences between a�ne-invariant metrics and Log-Euclidean metrics in terms of elementary
operators, distance and geodesics. Then we turn to a study of the algebraic properties of
Fréchet means in the Log-Euclidean and a�ne-invariant cases.

3.4.1 Elementary Metric Operations and Invariance

Distances, geodesics and Riemannian means take a much simpler form in the Log-Euclidean
than in the a�ne-invariant case. Invariance properties are comparable: some Log-Euclidean
metrics are not only bi-invariant but also similarity-invariant. These properties are sum-
marized in Table 3.1. However, we see in this table that the Riemannian exponential and
logarithmic are complicated in the Log-Euclidean case by the use of the di�erentials of the
matrix exponential and logarithm. This is the price to pay to obtain simple distances and
geodesics. Interestingly, using spectral properties of symmetric matrices, one can obtain a
closed form for the di�erential of both matrix logarithm and exponential and it is possible
compute them very e�ciently. See [Fillard 05b] for more details.

3.4.2 A�ne-Invariant Means

Let (Si)
N
i=1 be a system of SPD matrices. Contrary to the Log-Euclidean case, there is

in general no closed form for the a�ne-invariant Fréchet mean EAff (S1, ..., SN ) associated
to a�ne-invariant metrics. The a�ne-invariant mean is de�ned implicitly by a barycentric
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equation, which is the following:
N∑

i=1

log(EAff (S1, ..., SN )−1/2.Si.EAff (S1, ..., SN )−1/2) = 0. (3.11)

This equation is equivalent to the following other barycentric equation, given in [Moakher 05]

N∑

i=1

log(EAff (S1, ..., SN )−1.Si) = 0. (3.12)

The two equations are equivalent simply because for all i:

EAff (S1, ..., SN )−1/2.Si.EAff (S1, ..., SN )−1/2 = A.EAff (S1, ..., SN )−1.Si.A
−1

with A = EAff (S1, ..., SN )−1/2. The fact that log(A.S.A−1) = A. log(S).A−1 for any SPD
matrix S and any invertible matrix A su�ces to conclude.

To solve Eq. (3.11), the only known strategy is to resort to an iterative numerical proce-
dure, such as the Gauss-Newton gradient descent method described in [Pennec 06b].

3.4.3 Geometric Interpolation of Determinants
The de�nition of the Log-Euclidean mean given by Eq. (3.10) is extremely similar to that of
the classical scalar geometrical mean. We classically have:

De�nition 3.4. The geometrical mean of positive numbers d1, ..., dN ,is given by

E(d1, ..., dN ) = exp

(
1

N

N∑

i=1

log(di)

)
.

The Log-Euclidean and a�ne-invariant Fréchet means can both be considered as gener-
alizations of the geometric mean. Indeed, their determinants are both equal to the scalar
geometric mean of the determinants of the original SPD matrices. This fundamental property
can be thought of as the common property that should have all generalizations of the geometric
mean to SPD matrices.

Theorem 3.6. Let (Si)
N
i=1 be N SPD matrices. Then the determinant of their Log-Euclidean

and a�ne-invariant means is the geometric mean of their determinants.

Proof. From Proposition 3.1 we know that det(exp(M)) = exp(Trace(M)) for any square
matrix M . Then for the geometric mean, we get:

det(ELE(S1, ..., SN )) = exp(Trace(log(ELE(S1, ..., SN ))))

= exp

(
Trace( 1

N

N∑

i=1

log(Si))

)

= exp

(
1

N

N∑

i=1

log(det(Si))

)

= exp (E(log(det(S1, ..., SN )))) .

For a�ne-invariant means, there is no closed form for the mean. But there is the barycen-
tric equation given by Eq. (3.11). By applying the same formula as before after having taken
the exponential and using det(S.T ) = det(S).det(T ) we obtain the result.
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Theorem 3.6 shows that the Log-Euclidean and a�ne-invariant means of SPD matrices
are quite similar. In terms of interpolation, this result is satisfactory, since it implies that the
interpolated determinant, i.e. the volume of the associated interpolated ellipsoids, will vary
between the values of the determinants of the source SPD matrices. Indeed, we have:

Corollary 3.5. Let (Si)
N
i=1 be N SPD matrices. Then the determinant of their Log-Euclidean

and a�ne-invariant means are within the interval [ inf
i∈1...N

(Si), sup
i∈1...N

(Si)].

Proof. This is simply a consequence of the monotonicity of the scalar exponential and of the
scalar integral.

Corollary 3.6. Let S1 and S2 be two SPD matrices. The geodesic interpolations provided by
the a�ne-invariant and Log-Euclidean metrics lead to a geometric interpolation of determi-
nants. As a consequence, this interpolation of determinants is monotonic.

Proof. Indeed, in both cases, the interpolated determinant Det(t) is the geometric mean of
the two determinants, i.e. at t ∈ [0, 1]: Det(t) = exp((1 − t) log(det(S1)) + t log(det(S2))).
This interpolation is monotonic, since the di�erentiation yields:

d

dt
Det(t) = Det(t) log(det(S2.S

−1
1 )).

As a consequence Det(t) is equal to det(S1). exp(t. log(det(S2.S
−1
1 ))) and the sign of d

dtDet(t)
is constant and given by log(det(S2.S

−1
1 )).

3.4.4 Criterion for the Equality of the Two Means
In general, Log-Euclidean and a�ne-invariant means are close, yet they are not identical.
Nonetheless, there are a number of cases where they are identical, for example when the
logarithms of averaged SPD matrices all commute with one another. In fact, we have more:

Proposition 3.7. Let (Si)
N
i=1 be N SPD matrices. If the Euclidean mean of the associated

logarithms commutes with all log(Si), then the Log-Euclidean and the a�ne-invariant means
are identical.

Proof. Let L̄ := 1
N

∑N
i=1 log(Si). The hypothesis is that [L̄, log(Si)] = 0, ∀i. This implies

that log(exp(−1
2 L̄).Si. exp(−1

2 L̄)) = log(Si) − L̄, ∀i . We see then that exp L̄, i.e. the
Log-Euclidean mean, is the solution of Eq. (3.11), i.e. is the a�ne-invariant mean.

So far, we have not been able to prove the converse part of this proposition. However, the
next subsection provides a partial proof, valid when SPD matrices are isotropic enough, i.e.
close to a scaled version of the identity. The intensive numerical experiments we have carried
out strongly suggest that the result given in the next section is true in general. The full proof
of this assertion will be the subject of future work.

3.4.5 Larger Anisotropy in Log-Euclidean Means
In Section 3.4.6, we will verify experimentally that a�ne-invariant means tend to be less
anisotropic then Log-Euclidean means. The following theorem accounts for this phenomenon
when SPD matrices are isotropic enough.
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Theorem 3.7. Let (Si)
N
i=1 be a �nite number of SPD matrices close enough to the identity, so

that we can apply the Baker-Campbell-Hausdor� formula in all cases (see Chapter 2, Section
2.3.6). When the logarithm of the Log-Euclidean mean does not commute with all log(Si),
then we have the following inequality:

Trace(EAff (S1, ..., SN )) < Trace(ELE(S1, ..., SN )). (3.13)
Proof. The idea is to see how the two means di�er close to the identity. To this end, we
introduce a small scaling factor t and see how the two means vary when t is close to zero. For
all i, let Si,t be the version of Si scaled by t in the logarithmic domain. Around the identity,
we can use the Baker-Campbell-Hausdor� (BCH) formula to simplify the barycentric equation
(Eq. (3.11)). Let us denote in both Riemannian cases: E(St) = E(S1,t, ..., SN,t) and E(S) :=
E(S1, ..., SN ). We will also use the following notations: log(Si) := Li, L̄t;Aff := log(EAff (St))
and L̄LE := log(ELE(S)).

First, we use twice the BCH formula to obtain the following approximation:
log(EAff (St)

−1/2.Si,t.EAff (St)
−1/2) = tLi − L̄t;Aff − t3 1

12 [Li, [Li, L̄t;Aff ]]
+t3 1

24 [L̄t;Aff , [L̄t;Aff , Li]] + O(t5).
(3.14)

Then we average over i to obtain the following approximation Lemma:
Lemma 3.1. When t is small enough, we have:

L̄t;Aff = tL̄LE +
t3

12.N

N∑

i=1

[Li, [L̄LE , Li]] + O(t5). (3.15)

Proof. To obtain the approximation, note that the second factor
t3 1

24 [L̄t;Aff , [L̄t;Aff , Li]] in Eq. (3.14) becomes a O(t5). Indeed, when the sum over i is
done, Li becomes L̄LE . But we can replace L̄LE by its value in term of a�ne-invariance mean
using Eq. (3.14). Then, using the fact that [L̄t;Aff , L̄t;Aff ] = 0 we see that we obtain a O(t5).

Note also that thanks to the symmetry with respect to inversion, L̄t;Aff becomes −L̄t;Aff

when t is changed into −t, i.e. t 7→ L̄t;Aff is odd. As a consequence, only odd terms appear
in the development in powers of t.

Next, we take the exponential of Eq. (3.15) and di�erentiate the exponential to obtain:

EAff (St) = ELE(St) + DtL̄LE
exp .

(
t3

12.N

N∑

i=1

[Li, [L̄LE , Li]]

)
+ O(t5).

Then we use several properties to approximate the trace of a�ne-invariant means. First,
we use Corollary 3.1 to simplify the use of the di�erential of the exponential. Then we
approximate the exponential by the �rst two terms of its series expansion. We obtain:

Trace(EAff (St)) = Trace(ELE(St)) + t3.F (t, Li, L̄LE) + O(t5),

with F (t, Li, L̄LE) = Trace
(
exp(tL̄LE). 1

12.N

∑N
i=1[Li, [L̄LE , Li]]

)
. This expression can be

simpli�ed:

F (t, Li, L̄LE) = Trace
(

(Id + tL̄LE).
1

12.N

N∑

i=1

[Li, [L̄LE , Li]]

)
+ O(t2)

=
t

12.N

N∑

i=1

Trace
(
L̄LE .[Li, [L̄LE , Li]]

)
+ O(t2)

= − t

12.N

N∑

i=1

Trace
(
L2

i .L̄
2
LE − (Li.L̄LE)2

)
+ O(t2).
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As a consequence, the di�erence between the two traces can be written:

Trace(EAff (St)) − Trace(ELE(St)) = − t4

12.N

N∑

i=1

Trace
(
L2

i .L̄
2
LE − (Li.L̄LE)2

)
+ O(t5).

To conclude, we use the following Lemma:

Lemma 3.2. Let A, B ∈ Sym(n). Then: Trace(A2.B2 − (A.B)2) ≥ 0. The inequality is
strict if and only if A and B do not commute.

Proof. Let (Ai) (resp. (Bi)) be the column vectors of A (resp. B). Let <,> be the usual
scalar product. Then we have:

{ Trace(A2.B2) =
∑

i,j < Ai, Aj >< Bi, Bj >

Trace((A.B)2) =
∑

i,j < Ai, Bj >< Bi, Aj > .

Let us now chose a rotation matrix R that makes A diagonal:
R.A.RT = Diag(λ1, ..., λn) =: D. Let us de�ne C := R.B.RT and use the notations (Ci)
and (Di) for the column vectors of C and D. We have:

{ Trace(A2.B2) =
∑

i,j < Di, Dj >< Ci, Cj >=
∑

i λ
2
i < Ci, Ci >

Trace((A.B)2) =
∑

i,j < Di, Cj >< Ci, Dj >=
∑

i,j λi.λj < Ci, Cj > .

Then the Cauchy-Schwarz inequality yields:

|
∑

i,j

λi.λj < Ci, Cj > | ≤
∑

i

λ2
i < Ci, Ci >,

which proves the �rst point. But the Cauchy-Schwarz inequality is an equality if and only if
there is a constant µ such that D.C = µC.D. But only µ = 1 allows the inequality of the
lemma to be an equality. This is equivalent to C.D = D.C, which is equivalent in turn to
A.B = B.A. Hence the result.

End of Proof of Theorem 3.7 When we apply Lemma 3.2 to the obtained estimation
for the trace, we see that for a t 6= 0 small enough, the trace of the a�ne-invariant mean is
indeed strictly inferior to the trace of the Log-Euclidean mean whenever the mean logarithm
does not commute with all logarithms log(Si).

Corollary 3.7. By invariance of the two means with respect to scaling, the strict inequality
given in Theorem 3.7 is valid in a neighborhood of any SPD matrix of the form λId with λ > 0.

Corollary 3.8. When the dimension is equal to 2, the Log-Euclidean mean of SPD matrices
which are isotropic enough is strictly more anisotropic than their a�ne-invariant mean when
those means do not coincide.

Proof. In this case, there are only two eigenvalues for each mean. Their products are equal
and we have a strict inequality between their sum. Consequently, the largest eigenvalue of the
Log-Euclidean mean is strictly larger than the a�ne-invariant one, and we have the opposite
result for the smallest eigenvalue.
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3.4.6 Linear and Bilinear Interpolation of SPD Matrices
Volume elements (or voxels) in clinical DT images are often spatially anisotropic. Yet, in
many practical situations where DT images are used, it is recommended (see [Basser 00]) to
work with isotropic voxels to avoid spatial biases. A preliminary resampling step with an
adequate interpolation method is therefore important in many cases. Proper interpolation
methods are also required to generalize to the SPD case usual registration techniques used on
scalar or vector images. The framework of Riemannian metrics allows a direct generalization
to SPD matrices of classical resampling methods with the use of associated Fréchet means
instead of the Euclidean (i.e. arithmetic) mean.

In the Riemannian case, the equivalent of linear interpolation is geodesic interpolation.
To interpolate between two SPD matrices, intermediate values are taken along the shortest
path joining the two matrices. Fig 3.1 presents a typical result of linear interpolation between
two SPD matrices. The Euclidean, a�ne-invariant and Log-Euclidean results are given. The
`swelling e�ect' is clearly visible in the Euclidean case: the volume of associated ellipsoids is
parabolically interpolated and reaches a global maximum between the two extremities! This
e�ect disappears in both Riemannian cases, where volumes are interpolated geometrically.
As expected, Log-Euclidean means are a little more anisotropic than their a�ne-invariant
counterpart.

Figure 3.1: Linear interpolation of two SPD matrices. Above: linear interpolation
on coe�cients. Middle: a�ne-invariant interpolation. Below: Log-Euclidean interpola-
tion. The coloring of ellipsoids is based on the direction of dominant eigenvectors. Note
the characteristic swelling e�ect observed in the Euclidean case, which is not present in both
Riemannian frameworks. Note also that Log-Euclidean means are slightly more anisotropic
their a�ne-invariant counterparts.

To resample images, bi-(resp. tri-)linear interpolation generalizes in 2D (resp. in 3D) the
linear interpolation and o�ers an e�cient compromise between simplicity and accuracy in the
scalar and vector cases. With this technique, the value at any given point is inferred from
known values measured at the vertices of a regular grid whose elementary cells are rectangles
in 2D (resp. right parallelepipeds in 3D), which is usually the case with MR images. More
precisely, the interpolated value at a given point is given by the weighted mean of the values
at the vertices of the current cell. The weights are the barycentric coordinates of the current
point with respect to the vertices of the current cell.

Fig. 3.2 presents the results of the bilinear interpolation of four SPD matrices placed at
the extremities of a rectangle. Again, a large `swelling e�ect' is present in Euclidean results
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and not in both Riemannian results, and Log-Euclidean means are slightly more anisotropic
than their a�ne-invariant equivalent. One should note that the computation of the a�ne-
invariant mean here is iterative, since the number of averaged matrices is larger than 2 (we
use the Gauss-Newton method described in [Pennec 06b]), whereas the closed form given by
Eq. 3.10 is used directly in the Log-Euclidean case. This has a large impact on computation
times: 0.003s (Euclidean), 0.009s (Log-Euclidean) and 1s (a�ne-invariant) for a 5 × 5 grid
on a Pentium M 2 GHz. Computations were carried out with Matlab�, which explains the
poor computational performance. Here, Log-Euclidean means were calculated approximately
100 times faster than a�ne-invariant means because the logarithms of the four interpolated
tensors were only computed once, instead of computing them each time a new barycenter is
calculated. When only one mean is computed, the typical ratio is closer to 20, since between
15 and 20 iterations are typically needed (for 3×3 SPD matrices) to obtain the a�ne-invariant
mean with a precision of the order of 10−12.

One should note that from a numerical point of view the computation of Log-Euclidean
means is not only much faster but also more stable than in the a�ne-invariant case. On syn-
thetic examples, as soon as SPD matrices are quite anisotropic (for instance with the dominant
eigenvalue larger than 500 times the smallest), numerical instabilities appear, essentially due
to limited numerical precision (even with double precision). This can complicate greatly the
computation of a�ne-invariant means. On the contrary, the computation of Log-Euclidean
means is more stable since the logarithm and exponential are taken only once and thus even
very large anisotropies can be dealt with. In applications where very high anisotropies are
present, such as the generation of adapted meshes [Mohammadi 97], this phenomenon could
severely limit the use of a�ne-invariant means, whereas no such limitation exists in the Log-
Euclidean case.

Figure 3.2: Bilinear interpolation of 4 SPD matrices at the corners of a regular
grid. Left: Euclidean interpolation. Middle: a�ne-invariant interpolation. Right: Log-
Euclidean interpolation. Again, a characteristic swelling e�ect is observed in the Euclidean
case and not in both Riemannian frameworks. As expected, Log-Euclidean means are slightly
more anisotropic than their a�ne-invariant counterparts.

3.5 Probabilities and Statistics with Log-Euclidean Metrics
In this Section, we present the Riemannian statistical framework for the tensor space endowed
with Log-Euclidean metric. It is particularly simple, since it is the same as the usual Euclidean
framework when one identi�es a tensor to its logarithm.

Practically, one simply uses the usual tools of Euclidean statistics on the logarithms and
maps the results back to the Tensor Vector Space with the exponential. We recall that this
is theoretically fully justi�ed because the tensor space endowed with a Log-Euclidean metric
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and our novel vector space structure is isomorphic, di�eomorphic and isometric to the vector
space of symmetric matrices with the associated2 Euclidean norm.

Applications of statistics on tensors include for example DT-MRI segmentation [Lenglet 06a],
the injection of statistical priors in medical image registration [Commowick 05, Pennec 05],
tensor based morphometry [Lepore 06], computing mean di�usion tensor images of organs
such as the heart [Peyrat 06b] or the brain [Goodlett 06]. In the four latter references, statis-
tics are computed in our Log-Euclidean framework, which has already begun to be used on a
regular based by several teams.

3.5.1 General Riemannian Statistical Framework
The tensor space with a Log-Euclidean metric is a Riemannian space, exactly as the tensor
space with an a�ne-invariant metric. In [Pennec 06a], the statistical framework in Riemannian
spaces is fully presented from a geometrical point of view.

In these spaces, one usually generalizes the classical expectation of a random-variable with
the notion of Fréchet expectation. It is de�ned as the set of points which minimize the metric
dispersion of the random variable. Let (G, d(., .)) be a Riemannian space with its distance
and S : Ω → G a G-valued random variable. Let dP be the probability measure associated
to S de�ned on the space of all possible outcomes Ω (see [Billingsley 95] for a complete
description of the classical probabilistic framework, particularly for technical requirements
such as measurability, which will not be mentioned here).

With these notations, the Fréchet mean E(S) of S is de�ned by:

E(S) = arg min
T

∫

Ω
d2(T, S(ω))dP (ω). (3.16)

A priori, existence and uniqueness are only guaranteed when the values taken by S are
contained in a region of G that is small enough. See [Pennec 06a] page 13 for the statement
of Karcher's theorem.

When the Fréchet expectation is uniquely de�ned, one can also compute centered mo-
ments of superior order like the covariance. This is done this time using vectors, namely the
logarithms centered on the mean. More precisely, the covariance matrix (see [Pennec 06a]
page 17) is de�ned by:

CovE(S)(S) = E(logE(S)(S). logE(S)(S)T ) =

∫

Ω
logE(S)(S(ω)). logE(S)(S(ω))T dP (ω). (3.17)

Within this framework, many usual statistical tools can be used, like Mahalanobis distance,
generalizations of the normal law, etc. See [Pennec 06a] for more details.

3.5.2 Random Tensors
Thanks to the isometric isomorphism between the tensor space with a Log-Euclidean metric
and the Euclidean vector space of symmetric matrices, the theory of tensor-valued random
variables is greatly simpli�ed. Every notion of probabilities and statistics on vectors is readily
generalized in the tensor case.

Indeed, one can de�ne the classical vector spaces of random tensors, e.g., the classical Lα

Banach spaces of measurable tensor-valued functions:
2 By associated, we mean that the metric on the space of symmetric is the same as that used on the space

of symmetric matrices viewed as the Lie algebra of our Lie group structure for tensors.
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De�nition 3.5. We can de�ne for β ≥ 1 the Banach vector space (Lβ(Ω, Sym+
⋆ (n)),⊙, ⊛, ‖.‖β)

of Lβ-integrable tensor-valued random variables by identi�cation with the vector space of
symmetric matrices-valued random variables with the same integrability requirement. S ∈
Lβ(Ω, Sym+

⋆ (n)) if and only if:

∫

Ω
‖ log(S(ω))‖βdP (ω) < ∞. (3.18)

The associated norm ‖S‖β is simply:

‖S‖β =

(∫

Ω
‖ log(S(ω))‖βdP (ω)

) 1
β

. (3.19)

One can also compute characteristic functions in the same manner, etc.

3.5.3 Fréchet Means and Covariances with Log-Euclidean Metrics

Computing means and expectations is particularly simple with Log-Euclidean metrics, much
more than in the general Riemannian case. Indeed, we have:

For any L2 tensor-valued random variable S, its Log-Euclidean Fréchet mean ELE(S), also
called Log-Euclidean mean, is de�ned and uniquely so. It is given as in the Euclidean case by:

Theorem 3.8. Let <,> be a Log-Euclidean metric on the tensor space. Let S be a L2

tensor-valued random variable. Then its Fréchet mean is well de�ned and we have:

ELE(S) = exp

(∫

Ω
log(S(ω))dP (ω)

)
. (3.20)

In particular, The Log-Euclidean mean of N tensors is given by:

ELE(S1, ..., SN ) = exp

(
1

N

∑

i

log(Si)

)
. (3.21)

In the case of L1 random tensors, one can no longer de�ne the Fréchet mean as usual, since
the L2 metric dispersion used to this e�ect is not well-de�ned (it is only so for L2 random
tensors!). But in this very general case, like in the vector case, one can generalize the Fréchet
expectation by de�ning the expectation directly from Eq. (3.20).

Proof. When one expresses everything in the logarithm domain, one is faced with the classical
computation of expectations and means in a Euclidean vector space. Hence the result by
mapping back the results with exp in the tensor domain.

This theorem shows in a simple way that it is not necessary to suppose that the random
tensor hits almost surely a small enough region of the tensor space. The usual integrability
condition on vectors apply.
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Exponential-Invariance. As announced in Section 3.3, there is a last invariance property
associated to Log-Euclidean metrics:

Proposition 3.8. The Log-Euclidean mean in the tensor space is exponential-invariant. By
this, we mean that if a scaling is applied in the logarithmic domain to a random tensor, then
the resulting mean is scaled identically with respect to the Log-Euclidean mean of the same
tensor-valued random variable. For example, the mean of the square root of a random tensor
is the square root of its mean.

Proof. This simply results from the factorization of a scalar factor for in the expectation of
random vector.

Actually, this last invariance property is quite remarkable. In [Alauzet 03], in the context
of the generation of adapted meshes via metric tensors, it was proposed to compute mean
tensors with the following strategy:

1. Transform the data (Si) into (Sβ
i ), with β > 0, for example β = 1

2

2. Compute the arithmetic mean
∑

i wiS
β
i of the (Sβ

i )

3. Obtain a mean tensor via
(∑

i wiS
β
i

) 1
β

This points a very interesting fact: we can in fact process tensors via their square roots
or their squared versions, or any of their powers. The results can be obtained from processed
data by taking the inverse power in a �nal step.

In DT-MRI (see Chapter 4 for more details on this imaging technique), is it really more
justi�ed to process tensors than their square roots? We will see in Chapter 4 than the
square roots of di�usion tensors have a physical meaning: they give directly the geometry of
the statistical con�dence regions associated to the local Brownian di�usion process of water
molecules. Therefore, it would be very interesting to have processing algorithms which are
invariant with respect to the taking of square roots.

The exponential-invariance of the Log-Euclidean mean precisely guarantees that the Log-
Euclidean mean is invariant with respect to the taking of square roots and more generally
of any power. Neither the Euclidean mean nor of the a�ne-invariant mean are exponential-
invariant or invariant to the taking of square roots.

Log-Euclidean Covariance. Like for the mean, there are considerable simpli�cations in
the computations of other moments. Their form is exactly the usual one. For covariances, we
get:

Proposition 3.9. Let us endow the tensor space with a Log-Euclidean metric. Let S : Ω →
Sym+

⋆ (n) be a tensor-valued random variable. Then the associated covariance matrix Cov(S)
is:

Cov(S) = E(logELE(S)(S). logELE(S)(S)T )

=
∫
Ω(log(S(ω)) − log(ELE(S))).(log(S(ω)) − log(ELE(S))T )dP (ω).

(3.22)

Proof. This is done by replacing logELE(S)(S(ω)) by its value and taking into account the scalar
product at the Fréchet mean from Eqs. (3.6) and (3.7). The di�erential of the logarithm is
canceled out by the di�erential of the exponential like in the computation of distances.
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3.5.4 General Log-Euclidean Statistical Framework
All probabilistic and statistical notions of the Euclidean framework are directly transposed
by the logarithm in the Log-Euclidean framework. Hence, Kolmogorov's Strong Law of Large
Number applies for Log-Euclidean means, and so does the Central Limit theorem and all the
others vectorial theorems in statistics. One can for example use Principal Component Analysis
to analyze data, use Gaussian distributions, etc. This yields a much simpler framework than
in [Fletcher 04a,Lenglet 06a] where part of the a�ne-invariant framework statistics for tensors
is presented. One can proceed in this domain exactly like for vector-valued random variables.
As examples, we formulate the Strong Law of Large Numbers for tensors and generalize the
normal law to tensors. Other generalizations are straightforward and left to the reader.

Kolomogorov's Strong Law of Large Numbers for Tensors. Let (Sn) be a sequence of
independent identically distributed L1 tensor-valued random variables. Then in the L1 sense
and almost surely for ω ∈ Ω:

1

N

N∑

k=1

log(Si)(ω) −→
N→∞

E(log(S)). (3.23)

which by continuity of exp yields with the Log-Euclidean means:

ELE ((Si)i=1..N (ω)) −→
N→∞

ELE(S) almost surely and in the L1 sense. (3.24)

Proof. As mentioned in the theorem, only the continuity of the exponential is necessary to
extend the vector case to the tensor case. For a vectorial proof, see [Billingsley 95].

De�nition 3.6. A random tensor T is said to follow a normal law of mean S0 and covariance
Σ if and only if log(S) follows a classical normal law of mean log(S0) and covariance Σ.

3.6 Conclusions
In this work, we have presented a particularly simple and e�cient Riemannian processing
framework for tensors, called Log-Euclidean. The associated Fréchet mean, called the Log-
Euclidean mean, is a generalization of the geometric mean to SPD matrices. It is simply an
arithmetic mean in the domain of matrix logarithms. This mean corresponds to a bi-invariant
mean in a novel structure of Lie group on SPD matrices, or equivalently to a Euclidean mean
when this structure is smoothly extended into a vector space by a novel scalar multiplication.

The Log-Euclidean mean is similar to the recently introduced a�ne-invariant mean, which
is another generalization of the geometric mean to SPD matrices. Indeed, the Log-Euclidean
mean is similarity-invariant and the two means have the same determinant, which is the
geometric mean of the determinants of averaged SPD matrices. However, they are not equal:
the Log-Euclidean trace is larger when the two means di�er. The most striking di�erence
between the two means resides in their computational cost: the Log-Euclidean mean can be
calculated approximately 20 times faster than the a�ne-invariant mean. This property can
be crucial in applications where large amounts of data are processed. This is especially the
case in medical imaging with di�usion tensor imaging and in numerical analysis with the
generation of adapted meshes.

Furthermore, we have presented in this Chapter the general Log-Euclidean statistical
framework for tensors. It is particularly simple to use, since Log-Euclidean Riemannian
statistics are simply Euclidean statistics on the logarithms of tensors. Our framework is for
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example used in [Peyrat 06b, Peyrat 06a] to study the statistical variability of the di�usion
tensors of canine hearts and in [Lepore 06] to perform statistical tests on deformation tensors
steming from a registration procedure to compare morphologically two groups of individuals
(HIV/AIDS patients vs. normals).
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Chapter 4

Log-Euclidean Processing of Di�usion
Tensors

In this Chapter, we focus on the application of the Log-Euclidean framework for tensors to the
processing of a speci�c type of tensors: di�usion tensors. Indeed, this speci�c type of tensor
is particularly relevant in the medical imaging community, since di�usion tensor imaging is an
emerging imaging modality whose importance has been growing considerably. In particular,
most attempts to reconstruct non-invasively the connectivity of the brain are based on DTI.

This Chapter was entirely published in the international journal Magnetic Resonance in
Medicine [Arsigny 06f]. In this publication, we wrote a condensed and intuitive presentation
of the theory of Log-Euclidean metrics on tensors, detailed in the previous Chapter. One
can still �nd it in Section 4.2. This short presentation should help the reader assimilate the
results obtained from (quite) a mathematical perspective in Chapter 3.
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Abstract. Di�usion tensor imaging is an emerging imaging modality whose importance has
been growing considerably. However, the processing of this type of data (i.e. symmetric
positive-de�nite matrices), called `tensors' here, has proved di�cult in recent years. Usual
Euclidean operations on matrices su�er from many defects on tensors, which have led to
the use of many ad hoc methods. Recently, a�ne-invariant Riemannian metrics have been
proposed as a rigorous and general framework in which these defects are corrected. These
metrics have excellent theoretical properties and provide powerful processing tools, but also
lead in practice to complex and slow algorithms. To remedy this limitation, a new family
of Riemannian metrics called Log-Euclidean is proposed in this Chapter. They also have
excellent theoretical properties and yield similar results in practice, but with much simpler
and faster computations. This new approach is based on a novel vector space structure for
tensors. In this framework, Riemannian computations can be converted into Euclidean ones
once tensors have been transformed into their matrix logarithms. Theoretical aspects are
presented and the Euclidean, a�ne-invariant and Log-Euclidean frameworks are compared
experimentally. The comparison is carried out on interpolation and regularization tasks on
synthetic and clinical 3D DTI data.

4.1 Introduction
Di�usion tensor imaging (DT-MRI or DTI or equivalently DT imaging) [Basser 94] is an
emerging imaging modality whose importance has been growing considerably. In particular,
most attempts to reconstruct non-invasively the connectivity of the brain are based on DTI
(see [Mori 02, Lenglet 04, Fillard 03,Vemuri 01,Basser 00, Poupon 00] and references within
for classical �ber tracking algorithms). Other applications of DT-MRI also include the study
of diseases such as stroke, multiple sclerosis, dyslexia and schizophrenia [Le Bihan 01].

The di�usion tensor is a simple and powerful model used to analyze the content of
Di�usion-Weighted images (DW-MRIs). It is based on the assumption that the motion of
water molecules can be well approximated by a Brownian motion in each voxel of the image.
This Brownian motion is entirely characterized by a symmetric and positive-de�nite matrix,
called the `di�usion tensor' [Basser 94]. In this Chapter, we restrict the term `tensor' to mean
a symmetric and positive-de�nite matrix.

As we mentionned in the previous Chapter, with the increasing use of DT-MRI and other
types of tensors, there has been a growing need to generalize to the tensor case many usual
vector processing tools. In particular, regularization techniques are required to denoise them.
Furthermore, classical tasks like interpolation also need to be generalized to resample DT im-
ages, for example to work with isotropic voxels, as recommended in [Basser 00]. It would also
be very valuable to generalize to tensors classical vector statistical tools, in order to analyze
the variability of tensors or model the noise that corrupts them. Previous attempts to do so
are only partially satisfactory: for example, it was proposed in [Basser 03] to de�ne a Gaus-
sian distribution on tensors as a Gaussian distribution on symmetric matrices, without taking
into account the positive-de�niteness constraint. This becomes problematic with Gaussians
whose covariance is large: in this case, non-positive eigenvalues do appear with a signi�cant
probability.
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Many ad hoc approaches have already been proposed in the literature to process ten-
sors (see [Westin 02, Chefd'hotel 04] and references within). But in order to fully gener-
alize to tensors the usual PDEs or statistical tools used on scalars or vectors, one needs
to de�ne a consistent operational framework. The framework of Riemannian metrics [Pen-
nec 99,Gallot 93] has recently emerged as particularly adapted to this task [Pennec 06b,Batch-
elor 05,Lenglet 06a,Fletcher 04a].

4.1.1 The Defects of Euclidean Calculus
The simplest Riemannian structures are the Euclidean ones, and we detail here the defects of
Euclidean calculus in the speci�c context of DT-MRI.

Let S1 and S2 be two tensors. An example of Euclidean structure is given by the so-called
`Frobenius distance': dist2(S1, S2) = (Trace((S1 −S2)

2)). This straightforward metric leads a
priori to simple computations. Unfortunately, though Euclidean distances are well-adapted to
general square matrices, they are unsatisfactory for tensors, which are very speci�c matrices.
Typically, symmetric matrices with null or negative eigenvalues appear on clinical data as
soon as we perform on tensors Euclidean operations which are non-convex. Example of such
situations are the estimation of tensors from di�usion-weighted images, the regularization
of tensors �elds, etc. The noise in the data is at the source of this problem. To avoid
obtaining non-positive eigenvalues, which are di�cult to interpret physically, it has been
proposed to regularize only features extracted from tensors, like �rst eigenvectors [Coulon 04]
or orientations [Chefd'hotel 04]. This is only partly satisfactory, since such approaches do not
take into account all the information carried by tensors.

After a di�usion time ∆, we know with a con�dence say of 95% that a water molecule is
located within a region called a con�dence region, which is the multidimensional equivalent
of a con�dence interval. The larger the volume of these regions, the larger is the dispersion
of the random displacement of water molecules. In the case of Brownian motion, the random
displacement is Gaussian, and con�dence regions are therefore ellipsoids. The volumes of these
ellipsoids are proportional to the square root of the determinant of the covariance matrix of the
displacement. In DT-MRI, this covariance matrix is equal to the di�usion tensor multiplied
by 2∆ [Basser 94]. The value of the determinant of the di�usion tensor is therefore a direct
measure of the dispersion of the local di�usion process. But the Euclidean averaging of tensors
generally leads to a tensor swelling e�ect [Feddern 04,Chefd'hotel 04,Tschumperlé 01]: the
determinant (and thus the dispersion) of the Euclidean mean of tensors can be larger than the
determinants of the original tensors! Introducing more dispersion in computations amounts
to introducing more di�usion, which is physically unrealistic.

4.1.2 Riemannian Metrics
To fully circumvent these di�culties, a�ne-invariant Riemannian metrics have been recently
proposed for tensors by several teams, as pointed out in the previous Chapter. The applica-
tion of these metrics to the averaging of tensors and the de�nition of a Riemannian anisotropy
measure were presented [Moakher 05,Batchelor 05]. The generalization of principal compo-
nent analysis (PCA) to tensors was given in [Fletcher 04a]. The a�ne-invariant statistical
framework and its application to the segmentation of DT-MRI was presented in [Lenglet 06a].
PDEs within the a�ne-invariant framework were studied in [Pennec 06b] with applications
to the interpolation, extrapolation and regularization of tensor �elds.

With a�ne-invariant metrics, symmetric matrices with negative and null eigenvalues are
at an in�nite distance from any tensor and the swelling e�ect disappears. Practically, this
prevents the appearance of non-positive eigenvalues, which is particularly di�cult to avoid
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in Euclidean algorithms. But the price paid for this success is a high computational burden,
essentially due to the curvature induced on the tensor space. This substantial computational
cost can be seen directly from the formula giving the distance between two tensors S1 and
S2 [Pennec 06b]:

dist(S1, S2) =

∥∥∥∥log

(
S
− 1

2
1 .S2.S

− 1
2

1

)∥∥∥∥ , (4.1)

where ‖.‖ is a Euclidean norm on symmetric matrices. In general, a�ne-invariant computa-
tions involve an intensive use of matrix inverses, square roots, logarithms and exponentials.

We present in this Chapter a new Riemannian framework to fully overcome these compu-
tational limitations while preserving excellent theoretical properties. Moreover, we obtain this
result without any unnecessary complexity, since all computations on tensors are converted
into computations on vectors. This framework is based on a new family of metrics named
Log-Euclidean, which are particularly simple to use. They result in classical Euclidean com-
putations in the domain of matrix logarithms. In the next section, we present the theory of
Log-Euclidean metrics (more details on this theory can be found in a research report, see [Ar-
signy 05b]). In the Methods section, we describe the adaptation of classical processing tools
to the Log-Euclidean framework for interpolation and regularization tasks. We also present
a highly useful tool for the visualization of di�erence between tensors: the absolute value of
a symmetric matrix. Then, we show that the a�ne-invariant and Log-Euclidean frameworks
perform better than the Euclidean one for the interpolation and regularization of our synthetic
and clinical 3D DT-MRI data. A�ne-invariant and Log-Euclidean results are very similar,
but computations are simpler and experimentally much faster in the Log-Euclidean than in
the a�ne-invariant framework.

4.2 Theory
In this Section, we present brie�y the theoretical results obtained in Chapter 3, this time from
an intuitive and practical point of view.

4.2.1 Matrix Exponential, Logarithm and Powers
The notions of matrix logarithm and exponential are central in the theoretical framework pre-
sented here. For any matrix M , its exponential is given by: exp(M) =

∑∞
k=0 Mk/k!. As in

the scalar case, the matrix logarithm is de�ned as the inverse of the exponential. One should
note that for general matrices, neither the uniqueness nor the existence of a logarithm is guar-
anteed for a given invertible matrix [Culver 66,Bourbaki 89]. However, the important point
here is that the logarithm of a tensor is well-de�ned and is a symmetric matrix. Conversely,
the exponential of any symmetric matrix yields a tensor. This means that under the matrix
exponentiation operation, there is a one-to-one correspondence between symmetric matrices
and tensors.

This one-to-one correspondence can be seen quite intuitively thanks to the simple spec-
tral decomposition of these matrices. Indeed, the matrix logarithm L of a tensor S can be
calculated in three steps:

1. perform a diagonalization of S, which provides a rotation matrix R and a diagonal
matrix D with the eigenvalues of S in its diagonal, with the equality: S = RT .D.R.

2. transform each diagonal element of D (which is necessarily positive, since it is an eigen-
value of S) into its natural logarithm in order to obtain a new diagonal matrix D̃.
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3. recompose D̃ and R to obtain the logarithm with the formula L = log(S) = RT .D̃.R.

Conversely, the matrix exponential S is obtained by replacing the natural logarithm with
the scalar exponential. One also generalizes of the notion of powers (and in particular square
roots) to tensors by replacing their eigenvalues by the corresponding scalar power (for example
by their square roots).

4.2.2 De�nition of Log-Euclidean Metrics
Based on the speci�c properties of the matrix exponential and logarithm on tensors that we
presented above, we can now de�ne a novel vector space structure on tensors. This is quite
a surprising result: in the sense of this new algebraic structure, tensors can be also looked
upon as vectors! As will be shown in the rest of this Chapter, this novel viewpoint provides
a particularly powerful and simple-to-use framework to process tensors.

Since there is a one-to-one mapping between the tensor space and the vector space of
symmetric matrices, one can transfer to tensors the standard algebraic operations (addition
�+� and scalar multiplication �.�) with the matrix exponential. This de�nes on tensors a
logarithmic multiplication ⊙ and a logarithmic scalar multiplication ⊛, given by:

{
S1 ⊙ S2

def
= exp (log(S1) + log(S2))

λ ⊛ S
def
= exp (λ. log(S)) = Sλ.

The logarithmic multiplication is commutative and coincides with matrix multiplication when-
ever the two tensors S1 and S2 commute in the matrix sense. With ⊙ and ⊛, the tensor space
has by construction a vector space structure, which is not the usual structure directly derived
from addition and scalar multiplication on matrices.

When one considers only the multiplication ⊙ on the tensor space, one has a Lie group
structure [Gallot 93], i.e. a space which is both a smooth manifold and a group in which
multiplication and inversion are smooth mappings. This type of mathematical tool is for
example particularly useful in theoretical physics [Tarantola 06]. Here, the smoothness of
⊙ comes from the fact that both the exponential and the logarithm mappings are smooth
[Arsigny 05b]. Among Riemannian metrics in Lie groups, the most convenient in practice are
bi-invariant metrics, i.e. metrics that are invariant by multiplication and inversion. When
they exist, these metrics are used in di�erential geometry to generalize to Lie groups a notion of
mean which is completely consistent with multiplication and inversion. This approach applies
particularly well in the case of the group of rotations [Pennec 96, Pennec 98a,Moakher 02].
However, such metrics do not always exist, as in the case of the groups of Euclidean motions
[Woods 03,Pennec 06a] and a�ne transformations. It is remarkable that bi-invariant metrics
exist in our tensor Lie group. Moreover, they are particularly simple. Their existence simply
results from the commutativity of logarithmic multiplication between tensors. We have named
such metrics Log-Euclidean metrics, since they correspond to Euclidean metrics in the domain
of logarithms. From a Euclidean norm ‖.‖ on symmetric matrices, they can be written:

dist(S1, S2) = ‖ log(S1) − log(S2)‖. (4.2)

From Eq. (4.2), it is clear that Log-Euclidean metrics are also Euclidean distances for the
vector space structure we de�ned earlier. We did not de�ne them directly from the latter
algebraic structure to emphasize the fact that they are also Riemannian metrics, like a�ne-
invariant metrics.



58 Chapter 4. Log-Euclidean Processing of Di�usion Tensors

As one can see, the Log-Euclidean distance is much simpler than the equivalent a�ne-
invariant distance given by Eq. (4.1), where matrix multiplications, square roots and inverses
are used before taking the norm of the logarithm. The greater simplicity of Log-Euclidean
metrics can also be seen from Log-Euclidean geodesics in the tensor space. In the Log-
Euclidean case, the shortest path γLE(t) going from the tensor S1 at time 0 to the tensor S2

at time 1 is a straight line in the domain of logarithms. This geodesic is given by:

γLE(t) = exp ((1 − t) log(S1) + t log(S2)) .

Its a�ne-invariant equivalent γA�(t) involves the use of square roots and inverses and takes
the following form:

γA�(t) = S1
1
2 . exp

(
t log

(
S1

− 1
2 .S2.S1

− 1
2

))
.S1

1
2 .

Contrary to the classical Euclidean framework on tensors, one can see from Eq. (4.2)
that symmetric matrices with null or negative eigenvalues are at an in�nite distance from any
tensor and therefore will not appear in practical computations. The same property holds for
a�ne-invariant metrics [Pennec 06b].

4.2.3 Invariance Properties of Log-Euclidean Metrics
Log-Euclidean metrics satisfy a number of invariance properties, i.e. are left unchanged by
several operations on tensors. First, distances are not changed by inversion, since taking the
inverse of a system of matrices only results in the multiplication by −1 of their logarithms,
which does not change the value of the distance given by Eq. (4.2). Also, Log-Euclidean
metrics are by construction invariant with respect to any logarithmic multiplication, i.e. are
invariant by any translation in the domain of logarithms. However, there is more. Although
Log-Euclidean metrics do not yield full a�ne-invariance as the a�ne-invariant metrics de�ned
in [Pennec 06b], a number of them are invariant by similarity (orthogonal transformation and
scaling) [Arsigny 05b]. This means that computations on tensors using these metrics will be
invariant with respect to a change of coordinates obtained by a similarity. In this work, we
use the simplest similarity-invariant Log-Euclidean metric, which is given by:

dist(S1, S2) =
(
Trace

(
{log(S1) − log(S2)}2

)) 1
2 .

4.2.4 Log-Euclidean Computations on Tensors
From a practical point of view, one would like operations such as averaging, �ltering, etc.
to be as simple as possible. In the a�ne-invariant case, such operations rely on an intensive
use of matrix exponentials, logarithms, inverses and square roots. In our case, the space of
tensors with a Log-Euclidean metric is in fact isomorphic (the algebraic structure of vector
space is conserved) and isometric (distances are conserved) with the corresponding Euclidean
space of symmetric matrices. As a consequence, the Riemannian framework for statistics and
analysis is extremely simpli�ed. To illustrate this, let us recall the notion of Fréchet mean
[Pennec 99, Jones 02], which is the Riemannian equivalent of the Euclidean (or arithmetic)
mean. Given a Riemannian metric, the associated Fréchet mean of N tensors S1,..., SN with
arbitrary positive weights w1, ..., wN is de�ned as the point E(S1, ..., SN ) minimizing the
following metric dispersion:

E(S1, ..., SN ) = arg min
S

N∑

i=1

wi dist2(S, Si),
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where dist(., .) is the distance associated to the metric. The Log-Euclidean Fréchet mean is a
direct generalization of the geometric mean of positive numbers and is given explicitly by:

ELE(S1, ..., SN ) = exp

(
N∑

i=1

wi log(Si)

)
. (4.3)

The closed form given by Eq. (4.3) makes the computation of Log-Euclidean means straight-
forward. On the contrary, there is no closed form for a�ne-invariant means EA�(S1, ..., SN )
as soon as N > 2 [Moakher 05]. The a�ne-invariant is only implicitly de�ned through the
following barycentric equation:

N∑

i=1

wi log
(
EA�(S1, ..., SN )−1/2.Si.EA�(S1, ..., SN )−1/2

)
= 0. (4.4)

In the literature, this equation is solved iteratively, for instance using a Gauss-Newton method
as detailed in [Pennec 06b, Lenglet 06a, Fletcher 04a]. This optimization method has the
advantage of having quite a fast convergence speed, like all Newton methods.

Contrary to the a�ne-invariant case, the processing of tensors in the Log-Euclidean frame-
work is simply Euclidean in the logarithmic domain. Tensors can be transformed �rst into
symmetric matrices (i.e. vectors) using the matrix logarithm. Then, to simplify even more
computations, these matrices with 6 degrees of freedom can be represented by 6D vectors in
the following way:

log(S) ≃ ~S =
(
log(S)1,1, log(S)2,2, log(S)3,3,

√
2. log(S)1,2,

√
2. log(S)1,3,

√
2. log(S)2,3

)T
,

where log(S)i,j is the coe�cient of log(S) placed in the (i, j) position. With this represen-
tation, the classical Euclidean norm between such 6D vectors is equal to a Log-Euclidean
similarity-invariant distance between the tensors they represent. Note that this holds only
for the particular similarity-invariant distance used in this work. To deal with another Log-
Euclidean distance, one should adapt the 6D vector representation to the metric by changing
adequately the relative weights of the matrix coe�cients.

Once tensors have been transformed into symmetric matrices or 6D vectors, classical vector
processing tools can be used directly on these 6D representations. Finally, results obtained
on logarithms are mapped back to the tensor domain with the exponential. Hence, vector
statistical tools or PDEs are readily generalized to tensors in this framework.

4.2.5 Comparison of the A�ne-Invariant and Log-Euclidean Frameworks
As will be shown experimentally in the Results section, Log-Euclidean computations provide
results very similar to their a�ne-invariant equivalent, presented in [Pennec 06b]. The reason
behind this is the following: the two families of metrics provide two di�erent generalizations
to tensors of the geometric mean of positive numbers. By this we mean that the determinants
of both Log-Euclidean and a�ne-invariant means of tensors are exactly equal to the scalar
geometric mean of the determinants of the data [Arsigny 05b]. This explains the absence of
swelling e�ect in both cases, since the interpolation of tensors along geodesics yields in both
cases the same monotonic interpolation of determinants.

The two Riemannian means are even identical in a number of cases, in particular when
averaged tensors commute in the sense of matrix multiplication. Yet, the two means are dif-
ferent in general, as shown theoretically in [Arsigny 05b] (the trace of the Log-Euclidean mean
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is always larger (or equal) than the trace of the a�ne-invariant mean) and experimentally in
the Results section. More precisely, Log-Euclidean means are generally more anisotropic than
their a�ne-invariant equivalent. We observed that this resemblance between the two means
extends to general computations which involve averaging, such as regularization procedures,
as is shown in the Results section.

4.3 Methods
4.3.1 Interpolation
Voxels in clinical DT images are often quite anisotropic. Algorithms tracking white matter
tracts can be biased by this anisotropy, and it is therefore recommended (e.g. see [Basser 00])
to use isotropic voxels. A preliminary resampling step with an adequate interpolation method
is therefore important for such algorithms. Adequate interpolation methods are also required
to generalize to the tensor case usual registration techniques used on scalar or vector images.
The framework of Riemannian metrics allows a direct generalization of classical resampling
methods, by re-interpreting them as computing weighted means of the original data. Then the
idea is to replace the Euclidean mean by its Riemannian counterpart, i.e. the Fréchet mean.
See [Pennec 06b] for a more detailed discussion of this topic. This way one can generalize the
classical linear, bilinear and trilinear interpolations to tensors with a Riemannian metric. For
both metrics mentioned in this work, this entails in one case using directly Eq. (4.3) and in
the other case iteratively solving Eq. (4.4).

4.3.2 Regularization
DT images are corrupted by noise, and regularizing them can be a crucial preliminary step
for DTI-based algorithms that reconstruct the white matter connectivity. As shown in [Pen-
nec 06b], Riemannian metrics provide a general framework to regularize to tensors usual vector
regularization tools.

Practically, an anisotropic regularization is very valuable, since it allows a substantial
reduction of the noise level while sharp contours and structures are mostly preserved. We
focus here on a simple and typical Riemannian criterion for the anisotropic regularization of
tensor �elds, which is based on Φ-functions [Tschumperlé 05,Chefd'hotel 04]. In this context,
the regularization is obtained by the minimization of a Φ-functional Reg(S) given by:

Reg(S) =

∫

Ω
Φ

(
‖∇S‖S(x)(x)

)
dx,

where Ω is the spatial domain of the image and Φ(s) a function penalizing large values of
the norm of the spatial gradient ∇S of the tensor �eld S(x). The spatial gradient is de�ned
here as ∇S = ( ∂S

∂x1
, ∂S

∂x2
, ∂S

∂x3
), where x1, x2 and x3 are the three spatial coordinates, and

where ∂S
∂xi

is the matrix describing how S(x) linearly varies near x in the ith spatial direction.
Note that ∂S

∂xi
is only symmetric and not necessarily positive de�nite because it is given by

an in�nitesimal di�erence between two tensors, which is a non-convex operation. For more
details on how spatial gradients can be practically computed, see [Pennec 06b] Section 5.

Here, we use the classical function Φ(s) = 2
√

1 + s2/κ2 − 2 [Chefd'hotel 04]. We would
like to emphasize that contrary to the Euclidean case, the norm of ∇S depends explicitly on
the current point S(x) (see [Pennec 06b,Arsigny 05b] for more details) and is given by:

‖∇S‖2
S(x) =

3∑

i=1

∥∥∥∥
∂S

∂xi
(x)

∥∥∥∥
2

S(x)

.



4.3. Methods 61

In general, this dependence on the current point leads to complex resolution methods. Thus,
in the a�ne-invariant case, these methods rely on an intensive use of matrix inverses, square
roots, exponentials and logarithms [Pennec 06b]. However, in the Log-Euclidean framework
the general Riemannian formulation is extremely simpli�ed. The reason is that the dependence
on the current tensor disappears on the logarithms of tensors [Arsigny 05b], so that the norm
of the gradient is given by:

‖∇S(x)‖S(x) = (< ∇S(x),∇S(x) >S(x))
1
2 = ‖∇ log(S(x))‖Id,

where Id is the identity matrix. This means that only the scalar product at the identity
needs to be used. The transformation of tensors into their matrix logarithms transforms
Riemannian computations at S(x) into Euclidean computations at Id. As a consequence, the
energy functional can be minimized directly on the vector �eld of logarithms. The regularized
tensor �eld is given in a �nal step by the matrix exponential of regularized logarithms.

In the regularization experiments of this Chapter, the minimization method used is a �rst-
order gradient descent with a �xed time step dt. We use an explicit �nite di�erence scheme on
logarithms in the Log-Euclidean case (see [Fillard 05b] for details about numerical schemes
and others aspects of the implementation) and the geodesic marching scheme described in
[Pennec 06b] in the a�ne-invariant case. In the Euclidean framework, we also use a�ne-
invariant geodesic marching rather than a classical explicit scheme to limit the appearance of
non-positive eigenvalues, proceeding similarly as in [Chefd'hotel 04]. Homogeneous Neumann
boundary conditions are used, parameters were empirically chosen to be κ = 0.05, dt = 0.1,
and 100 iterations are performed in the results shown in Fig. 4.5 and 50 iterations for those
shown in Fig. 4.6.

4.3.3 Absolute Value of a Symmetric Matrix
When several variants of an algorithm are used to process tensors images, visualization tools
are quite valuable to inspect the results. A simple solution is to visualize an image of the norm
of the (Euclidean) di�erence between tensors. Regrettably, all information about orientation
is lost in this case.

To visualize simultaneously the magnitude and the orientation of di�erences, one can use
the absolute value of a symmetric matrix. Similarly to the exponential or square root, it is
de�ned as the symmetric positive semi-de�nite matrix obtained by replacing the eigenvalues
of the original matrix by their absolute values. Thus, this absolute value retains all the
information about the magnitude and the orientation of any symmetric matrix, and can
still be visualized directly with the usual ellipsoid representation. As a consequence, this
mathematical tool is very useful to visualize the di�erence between two tensors, as can be
seen in the Results section. We �rst introduced this tool in [Fillard 05c].

4.3.4 Materials
The experiments in this study are carried out partly on synthetic tensor images, and partly
on a clinical DTI volume. The clinical scan of the brain was acquired with a 1.5-T MR imag-
ing system (Siemens Sonata) with actively shielded magnetic �eld gradients (G maximum,
40 mT/m). A sagittal spin-echo single shot echo-planar parallel Grappa di�usion-weighted
imaging sequence with acceleration factor two and six non collinear gradient directions was
applied with two b values (b=0 and 1000s.mm−2. Field of view: 24.0×24.0 cm; image matrix:
128 × 128 voxels; 30 sections with a thickness of 4mm; nominal voxel size: 1.875 × 1.875 ×
4mm3. TR/TE= 4600/73 ms. The gradient directions used were as follows: [(1/

√
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2);



62 Chapter 4. Log-Euclidean Processing of Di�usion Tensors

(−1/
√

2, 0, 1/
√

2); (0, 1/
√

2, 1/
√

2); (0, 1/
√

2,−1/
√

2); (1/
√

2, 1/
√

2, 0); (−1/
√

2, 1/
√

2, 0)]
providing the best accuracy in tensor components when six directions are used [Basser 98].
The acquisition time of di�usion-weighted imaging was 5 minutes and 35 seconds. Image
analysis was performed on a voxel-by-voxel basis by using dedicated software (DPTools,
http://fmritools.hd.free.fr). Before performing the tensor estimation, an unwarping
algorithm was applied to the DTI data set to reduce distortions related to eddy currents in-
duced by the large di�usion-sensitizing gradients. This algorithm relies on a three-parameter
distortion model including scale, shear, and linear translation in the phase-encoding direc-
tion [Haselgrove 96]. The optimal parameters were assessed independently for each section
relative to the T2-weighted corresponding image by the maximization of the mutual informa-
tion. However, due to the low signal-to-noise ratio in these images, part of the distortions
remained. The tensors were estimated using the method described in [Fillard 05b], with a
small regularization. The parameters of this estimation were set to λ = 0.25 and κ = 0.1. 50
iterations were used.

Figure 4.1: Geodesic interpolation of two tensors. Left: interpolated tensors. Right:
graphs of the determinants of the interpolated tensors. Top: linear interpolation on coe�-
cients. Middle: a�ne-invariant interpolation. Bottom: Log-Euclidean interpolation. The
coloring of ellipsoids is based on the direction of dominant eigenvectors, and was only added
to enhance the contrast of tensor images. Note the characteristic swelling e�ect observed in
the Euclidean case due to a parabolic interpolation of determinants. This e�ect is not present
in both Riemannian frameworks since determinants are monotonically interpolated. Note also
that Log-Euclidean means are more anisotropic their a�ne-invariant counterparts.

4.4 Results
4.4.1 Interpolation
Results of the (geodesic) linear interpolation of two synthetic tensors are presented in Fig.
4.1. One can clearly see the swelling e�ect characteristic of the Euclidean interpolation, which
has no physical interpretation. On the contrary, a monotonic (and identical) interpolation
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of determinants is obtained in both Riemannian frameworks. The larger anisotropy in Log-
Euclidean means is also clearly visible in this �gure.

Figure 4.2: Bilinear interpolation of 4 tensors at the corners of a grid. Left:
Euclidean reconstruction. Middle: a�ne-invariant reconstruction. Right: Log-Euclidean
interpolation. Note the characteristic swelling e�ect observed in the Euclidean case, which is
not present in both Riemannian frameworks. Note also that Log-Euclidean means are slightly
more anisotropic than their a�ne-invariant counterparts.

Fig. 4.2 shows the results obtained for the bilinear interpolation of four synthetic tensors
with three methods: Euclidean (linear interpolation of coe�cients), a�ne-invariant and Log-
Euclidean. Again, there is a pronounced swelling e�ect in the Euclidean case, which does
not appear in both Riemannian cases. Also, there is a slightly larger anisotropy in Log-
Euclidean means. One should note that the computation of the a�ne-invariant mean here is
iterative, since the number of averaged tensor is greater than 2 (we use the Gauss-Newton
method described in [Pennec 06b]), whereas the closed form given by Eq. (4.3) is used
directly in the Log-Euclidean case. This has a large impact on computation times: 0.003s
(Euclidean), 0.009s (Log-Euclidean) and 1s (a�ne-invariant) for a 5×5 grid on a Pentium M
2 GHz. Computations were carried out in the Matlab�framework, which explains the poor
computational performance. A C++ implementation would yield much lower computation
times, but the ratio would be comparable. This clearly demonstrate that Log-Euclidean
metrics combine greater simplicity and performance, as compared to a�ne-invariant metrics,
at least in terms of interpolation tasks.

From a numerical point of view, one should note that the computation of Log-Euclidean
means is more stable than in the a�ne-invariant case. On synthetic examples, we noticed that
for large anisotropies (for instance with the dominant eigenvalue larger than 500 times the
smallest), large numerical instabilities appear, essentially due to limited numerical accuracy
of the logarithm computations (even with double precision). This can complicate greatly
the computation of a�ne-invariant means. In the case of our clinical DTI data, this type of
phenomenon also occurs, although to a lesser degree. We observed that the computation of
the a�ne-invariant mean can in this case be 5 to 10 times longer than usual at times, when
the averaged data presents a substantial inhomogeneity. On the contrary, the computation
of Log-Euclidean means is much more stable since the logarithm and exponential are taken
only once and thus even very large anisotropies can be dealt with. Of course, on clinical DT
images anisotropies are not so pronounced and drastic instabilities will not appear. But for
the processing of other types of tensors with much higher anisotropies, this could be crucial.

To compare the Euclidean and Riemannian bilinear interpolations on clinical data, we
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Figure 4.3: Bilinear interpolation in a real DTI slice. Left: Original DTI slice, before
down-sampling. Middle: Euclidean interpolation. Right: Log-Euclidean interpolation. Half
the columns and lines of the original DTI slice were removed before reconstruction with a
bilinear interpolation. The slice is taken in the mid-sagittal plane and displayed in perspective.
Again, the coloring of ellipsoids is based on the direction of dominant eigenvectors, and was
only added to enhance the contrast of tensor images. Note how the tensors corresponding to
the Corpus Callosum (in red, above the large and round tensors corresponding to a part of
the ventricles) are better reconstructed (more anisotropic) in the Log-Euclidean case.

Similarity Measure Eucl. interpol. A�.-inv. interpol. Log-Eucl. interpol.
Mean Euclidean Error 0.2659 0.2614 0.2611

Mean A�ne-invariant Error 0.2703 0.2586 0.2584
Log-Euclidean Error 0.2694 0.2577 0.2575

Table 4.1: Mean reconstruction errors for the clinical slice reconstruction experi-
ment. The three interpolation results are quite close. However, both Riemannian frameworks
perform slightly better than the Euclidean one, independently of the similarity measure consid-
ered. This is essentially due to the better Riemannian reconstruction of the Corpus Callosum.

have reconstructed by bilinear interpolation a down-sampled DTI slice. One column out of
two and one line out of two were removed. The slice was chosen in the mid-sagittal plane
where strong variations are present in the DT image. The results in Fig. 4.3 show that the ten-
sors corresponding to the corpus callosum are better reconstructed in the Log-Euclidean case.
A�ne-invariant results are very similar to Log-Euclidean ones and not shown here. In other
regions, the di�erences between the interpolations are much smaller. The mean reconstruction
errors for all three frameworks are shown in Tab. 4.1. We assessed the reconstruction errors
with three similarity measures: with our Euclidean, Log-Euclidean and a�ne-invariant met-
rics, we computed the mean distance between original and reconstructed tensors. As can be
seen in this table, Log-Euclidean and a�ne-invariant results are quantitatively slightly better
than Euclidean results, independently of the similarity measure considered. This is essentially
due to the better reconstruction of the Corpus Callosum in both Riemannian cases.

4.4.2 Regularization
To compare the Euclidean, a�ne-invariant and Log-Euclidean frameworks, let us begin with
a simple example where we restored a noisy synthetic image of tensors. The eigenvalues of
the original tensors were set to (2, 1, 1). We added some isotropic Gaussian white noise of
variance 0.5 on the b0 image and each of the 6 synthetic di�usion-weighted images, and ten-
sors were estimated with the method presented in [Fillard 05b] with parameters λ = 0.25 and
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Figure 4.4: Regularization of a synthetic DTI slice. Left: original synthetic data.
Middle Left: noisy data. Middle Right: Euclidean regularization. Right: Log-Euclidean
regularization. The original data is correctly reconstructed in the Log-Euclidean case, as
opposed to the Euclidean case where the result is spoiled by the swelling e�ect.

κ = 0.1 (the regularization was small). Results are shown in Fig. 4.4: surprisingly, although
no anisotropic �ltering other than the one described in the Methods Section was used, the
boundaries between the two regions are kept perfectly distinct, thanks to the strong gradients
in this area. Furthermore, the impact of the Euclidean swelling e�ect is clearly visible. On the
contrary, both Riemannian frameworks yield very good results, the only extremely small dif-
ference being as predicted slightly more anisotropy for Log-Euclidean results. A�ne-invariant
results are not shown here because they are very close to the Log-Euclidean ones. Like in the
interpolation reconstruction experiment, we assessed the reconstruction errors with the Eu-
clidean, Log-Euclidean and a�ne-invariant metrics. For each metric, we computed the mean
distance between original and reconstructed tensors. The quantitative results are shown in
Tab. 4.2: as expected a�ne-invariant and Log-Euclidean results are close and yield much
better results than in the Euclidean case, regardless of the similarity measure used.

Similarity Measure Eucl. regul. A�.-inv. regul. Log-Eucl. regul.
Mean Euclidean Error 0.228 0.080 0.051

Mean A�ne-invariant Error 0.533 0.142 0.119
Log-Euclidean Error 0.532 0.135 0.111

Table 4.2: Mean reconstruction errors for the synthetic regularization experiment.
Both Riemannian results are much better than the Euclidean one, independently of the sim-
ilarity measure considered. This is due to the absence of swelling e�ect in both Riemannian
cases.

Let us now turn to a clinical DTI volume, which presents a substantial level of noise. A
quantitative evaluation or validation of the restoration results presented here remains to be
done, and this general problem will be the subject of future work. However, as shown in Fig.
4.5, both Riemannian results are qualitatively satisfactory: the smoothing is done without
blurring the edges in both Riemannian cases, contrary to the Euclidean results which are
spoiled by a pronounced swelling e�ect, especially in the regions of high anisotropy. Also note
that to a lesser degree, this swelling e�ect is present in regions with much less anisotropy,
in fact almost everywhere except in the ventricles. The a�ne-invariant and Log-Euclidean
results are very similar to each other, with only slightly more anisotropy in the Log-Euclidean
case.
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Figure 4.5: Regularization of a clinical DTI volume (3D). Top Left: close-up on a
slice containing part of the left ventricle and nearby. Top Right: Euclidean regularization.
Bottom Left: Log-Euclidean regularization. Bottom Right: highly magni�ed view (×100)
of the absolute value of the di�erence between Log-Euclidean and a�ne-invariant results. The
absolute value of tensors is taken to allow the simultaneous visualization of the amplitude and
orientation of the di�erences. See the Methods section for a de�nition of the absolute value.
Note that there is no tensor swelling in the Riemannian cases. On the contrary, in the
Euclidean case, a swelling e�ect occurs almost everywhere (except maybe in the ventricles),
in particular in regions of high anisotropy. Last but not least, the di�erence between Log-
Euclidean and a�ne-invariant results is very small. Log-Euclidean results are only slightly
more anisotropic than their a�ne-invariant counterparts.
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To highlight this similarity, we display in Fig. 4.5 the absolute values of the (Euclidean)
di�erences between a�ne-invariant and Log-Euclidean results. The de�nition of the absolute
value of a symmetric matrix is given in the Methods section, and this mathematical tool is
much useful to visualize the di�erence between two tensors. We can see in Fig. 4.5 that
the di�erences are mainly concentrated along the dominant directions of di�usion, which is
explained by the larger anisotropy in Log-Euclidean means. However, this relative di�erence
is very small, of the order of less than 1%.

A regularization of DT images should not only correctly regularize the determinants of
tensors, but also adequately regularize other scalar measures associated to tensors. In Fig.
4.6, the e�ect of the Log-Euclidean regularization on the fractional anisotropy (FA) and on
the norm of the gradient are shown. In this experiment, only half of the regularization used to
obtain the results of Fig. 4.5 is kept. As one can see, the regularization, which is performed
directly on the tensors, induces a regularization of the FA and gradient norm. Qualitatively,
major anisotropic structures have been preserved, including for example the internal capsule,
while the noise has been substantially reduced.

As in the case of interpolation, the simpler Log-Euclidean computations are also signi�-
cantly faster: our current implementation in C++ requires for 100 iterations 30 minutes in the
Log-Euclidean case instead of 122 minutes for a�ne-invariant results on a Pentium Xeon 2.8
GHz with 1 Go of RAM. Our implementation has not been optimized yet and will be improved
in the near future. Consequently, the values given here are only upper bounds of what can be
achieved. However, the di�erence in computation times is typical and Log-Euclidean compu-
tations can even be 6 or 7 times faster than their a�ne-invariant equivalent [Arsigny 05b].
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Figure 4.6: Log-Euclidean regularization of a clinical DTI volume (3D): typical
e�ect on FA and gradient. Top left: FA before Log-Euclidean regularization. Top
right: FA after regularization. Bottom left: Log-Euclidean norm of the gradient before
regularization. Bottom right: Log-Euclidean norm of the gradient after regularization. The
e�ect of the Log-Euclidean regularization on scalar measures like FA and the norm of the
gradient is qualitatively satisfactory: the noise has been reduced while most structures are
preserved.
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4.5 Discussion and Conclusions
4.5.1 The Defects of Euclidean Calculus
As shown in the Results section, Log-Euclidean metrics correct the defects of the classical Eu-
clidean framework [Tschumperlé 01]: the positive-de�niteness is preserved and determinants
are monotonically (geometrically, in fact) interpolated along geodesics. Log-Euclidean results
are very similar to those obtained in the a�ne-invariant framework, only recently introduced
for di�usion tensor calculus [Pennec 06b,Batchelor 05,Lenglet 06a,Fletcher 04a]. This is not
surprising: we have shown that the two families of metrics are very close, since their respective
Fréchet means are both generalizations to tensors of the geometric mean of positive numbers.
Yet, these two metrics are di�erent, and it is striking that this similarity in results is obtained
with much simpler and faster algorithms in the Log-Euclidean case. This comes from the fact
that all Log-Euclidean computations on tensors are equivalent to Euclidean computations on
the logarithms of tensors, which are simple vectors.

Of course, this large simpli�cation is obtained at the cost of a�ne-invariance, which is
replaced by similarity-invariance for a number of Log-Euclidean metrics, like the one used in
this study. This means that a�ne-invariant results cannot be biased by the coordinate system
chosen, whereas Log-Euclidean results potentially can. However, invariance by similarity is
already a strong property, since it guarantees that computations are not biased neither by
the spatial orientation nor by the spatial scale chosen. Moreover, the very large similarity
between the Log-Euclidean and a�ne-invariant results on typical clinical DT images show
that this loss of invariance does not result in any signi�cant loss of quality. One would have
to change the system of coordinates very anisotropically, for instance rescaling one coordinate
by a factor of 20 and leaving the other two unchanged, to substantially bias Log-Euclidean
results. But such situations do not occur in medical imaging, where the usual changes of
coordinates (e.g. changing current coordinates to Talairach coordinates) are not anisotropic
enough to induce such a bias.

In terms of regularization, the Log-Euclidean framework also has the advantage of taking
into account simultaneously all the information carried by tensors, like the a�ne-invariant one.
This is not the case in methods based on the regularization of features extracted from tensors,
like their dominant direction of di�usion [Coulon 04] or their orientation [Chefd'hotel 04].
An alternative representation of tensors are Cholesky factors, which are used in [Wang 04].
However, with this representation, tensors can leave the set of positive de�nite matrices during
iterated computations, and the positive-de�niteness is not easily maintained, as mentioned
in [Wang 04]. Also, it is unclear how the smoothing of Cholesky factors a�ect tensors, whereas
the smoothing of tensor logarithms can be interpreted as a geometric regularization of tensors
which geometrically smoothes determinants.

In this Chapter, we have presented results obtained only with one particular Log-Euclidean
metric, inspired from the classical Frobenius norm on matrices. The relevance of this particular
choice will be investigated in future work. This is necessary, because it has been shown
[Zhang 04] that the choice of Euclidean metric on tensors can substantially in�uence the
registration of DT images. This should also be the case in the Log-Euclidean framework.

Moreover, in this work, we have assumed that di�usion tensors are positive-de�nite. This
assumption is consistent with the choice of Brownian motion to model the motion of water
molecules. It could be argued that our framework does not apply to di�usion tensors which
have been estimated without taking into account this constraint, and can therefore have
non-positive eigenvalues. But these non-positive eigenvalues are di�cult to interpret from a
physical point of view, and are essentially due to the noise corrupting DW-MRIs! The problem
lies therefore in the estimation method and not in our framework. Non-positive eigenvalues
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can be avoided for example by using a simultaneous estimation and smoothing of tensors,
which relies on spatial correlations between tensors to reduce the amount of noise. In this
work, we have used the method described in [Fillard 05b], which was inspired by the approach
developed in [Wang 04].

4.5.2 Conclusions and Perspectives
In this work, we have presented a particularly simple and e�cient Riemannian framework for
di�usion tensor calculus. Based on Log-Euclidean metrics on the tensor space, this framework
transforms Riemannian computations on tensors into Euclidean computations on vectors in
the domain of matrix logarithms. As a consequence, classical statistical tools and PDEs usu-
ally reserved to vectors are simply and e�ciently generalized to tensors in the Log-Euclidean
framework.

In this Chapter, we have only focused on two important tasks: the interpolation and the
regularization of tensors. But this metric approach can be e�ectively used in all situations
where di�usion tensors are processed. Indeed, we have presented e�cient Log-Euclidean
extrapolation techniques in [Arsigny 05b], and Log-Euclidean statistics presented in Chapter
3. Another important task is the estimation of tensors from DW-MRIs. Adapting ideas
from [Wang 04] to the Log-Euclidean framework, we have completed a joint estimation and
regularization of di�usion tensors directly from the Stejskal-Tanner equations [Fillard 05b]
and we have recently adapted this estimation approach to the Rician nature of the noise
corrupting MR images [Fillard 06a,Fillard 06b]. This type of joint estimation and smoothing
is largely facilitated by the Log-Euclidean framework because all computations are carried
out in a vector space.

In future work, we will study in further detail the restoration of noisy DT images. In
particular, we plan to quantify the impact of the regularization on the tracking of �bers in
the white matter of the human nervous system. We also intend to use these new tools to
model and reconstruct better the anatomical variability of the human brain with tensors as
we began to do in [Fillard 05c]. Also, the generalization of our approach to more sophisticated
models of di�usion like generalized di�usion tensors [Özarslan 03] or Q-balls [Tuch 04] is a
challenging task we plan to investigate.
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Chapter 5

Original Polyrigid and Polya�ne
Transformations

After having focused on tensor processing in the previous two Chapters, we put the stress on
geometrical deformations and their processing in the sequel of this thesis.

In this Chapter, we present two novel classes of transformations, called polyrigid and
polya�ne, which parameterize locally rigid or a�ne di�eomorphic deformations with a small
number of �exible degrees of freedom.
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Abstract. We describe in this Chapter a novel kind of geometrical transformations, named
polyrigid and polya�ne. These transformations e�ciently code for locally rigid or a�ne
deformations with a small number of intuitive parameters. They can describe compactly
large rigid or a�ne movements, unlike most free-form deformation classes. Very �exible, this
tool can be readily adapted to a large variety of situations, simply by tuning the number of
rigid or a�ne components and the number of parameters describing their regions of in�uence.

The displacement of each spatial position is de�ned by a continuous trajectory that fol-
lows a di�erential equation which averages the in�uence of each rigid or a�ne component.
We show that the resulting transformations are di�eomorphisms, smooth with respect to
their parameters. We devise a new and �exible numerical scheme to allow a trade-o� be-
tween computational e�ciency and closeness to the ideal di�eomorphism. Our algorithms
are implemented within the Insight Toolkit, whose generic programming style o�ers rich fa-
cilities for prototyping. In this context, we derive an e�ective optimization strategy of the
transformations which demonstrates that this new tool is highly suitable for inference.

The whole framework is exempli�ed successfully with the registration of histological slices.
This choice is challenging, because these data often present locally rigid deformations added
during their acquisition, and can also present a loss a matter, which makes their registration
even more di�cult.

Related Publications. Part of this Chapter was �rst published in an INRIA research
report [Arsigny 03a] and during the international conference MICCAI'03 [Arsigny 03b], where
this work was awarded the `Best Student Presentation in Medical Image Processing and
Visualization'. This work was extended to be published in the international journal Medical
Image Analysis in 2005 [Arsigny 05c].

5.1 Introduction
As we have seen in the Introduction of the thesis in Section 1.1.2, locally rigid or a�ne
transformations with a small or moderate number of degrees of freedom are particularly
relevant for the registration of medical images in a number of situations. This includes the
the case of anatomical structures incorporating rigid elements (such as bone articulations, or
structures which are subject to simple local deformations, like histological slices), as well as
the case of structures which are subject to simple local deformations, like histological slices.

Our goal in this Chapter is be to de�ne new parametric transformations that exhibit a
locally rigid or a�ne behavior, and that can be e�ciently implemented. Also, a very desirable
property is invertibility, which is not guaranteed in the approaches based on splines or other
interpolation techniques, except in the case of the Geodesic Interpolating Splines [Camion 01],
which are limited to the interpolation of a sparse set of displacements.

An approach was proposed in [Little 96] to smoothly interpolate a deformation outside
independent rigidly moving regions. This computationally e�cient approach is unfortunately
�parameterized� by the motion and the arbitrarily complex shape of each rigidly-moving region.
As a consequence, it is not straightforward to use this model for inference (i.e. non-rigid
registration). Moreover, the invertibility of the interpolated transformation is not always
ensured. This interpolation method is used in [Pitiot 03], which deals with the registration of
histological slices. This is a pivotal issue for the fusion of MR images and histological slices,
which is a promising technique for building precise atlases of brain structures [Ourselin 01a],
[Bardinet 02].

Our idea is to use simple fuzzy regions de�ned by very few parameters: mainly the position
of the center, a typical radius of in�uence and the associated rigid or a�ne transformation.
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We show in Section 5.2 that a simple average of the displacement induced by each region leads
to invertibility problems. Thus, we develop an in�nitesimal approach where the displacement
is obtained by the integration of the average speed. To address the implementation e�ciency,
we investigate in Section 5.3 several numerical schemes. The result is a new family of invertible
and fully parametric transformations that we called polyrigid and polya�ne transformations.
The Insight Toolkit (ITK) is a very attractive framework for the implementation of these
new transformations, since it provides a base class for all parametric transformations and
powerfull registration tools that greatly facilitate the rapid development of new algorithms.
We describe also in Section 5.3 how Polyrigid Transformations are implemented within this
framework. This code is freely available on the Internet 1. We show in Section 5.4 that this
new general tool is well-suited for the non-rigid registration of articulated-like object. This is
exempli�ed on 2D histological slices. In Section 5.5, we also present preliminary results that
show how polyrigid transformations can be re�ned to describe precisely regions of in�uence
of a complex shape.

5.2 Theory of Polyrigid and Polya�ne Transformations
5.2.1 Regions of In�uence and Interpolation of Sparse Data
Simple Parameterization of Regions of In�uence
In order to model transformations having several distinct rigid behaviors in di�erent regions,
it is necessary to de�ne how each component of the global transformation is anchored geo-
metrically. One could of course choose to have regions of in�uence of arbitrary shape, like
in [Little 96], but this is not convenient for inference. Having a reduced number of parameters
describing the shape and extent of each region of in�uence allows for simple optimization of
these parameters, which is a highly desirable feature for registration purposes.

We propose here a Gaussian model for regions of in�uence: to each region we have an
anchor point a ∈ R

n, and in addition we also have two other parameters, a typical distance
σ and a parameter p such that the in�uence of the i-th component is described by a �weight�
wi(x) = pi.G(ai,σi)(x) where G(ai,σi) is the Gaussian of mean ai and of standard deviation σi.
Thus, instead of using regions in which the transformation is purely rigid like in [Little 96],
we propose �fuzzy� regions, which makes the transitions or interpolations between the regions
straightforward to handle.

In order to obtain a global transformation from several weighted components, the classical
way of mixing each local behavior is to average the displacements according to the weights
[Sheppard 68]:

T (x) =

∑
i wi(x)Ti(x)∑

i wi(x)
. (5.1)

Here, the transformations (Ti)i∈1···N are rigid transformations. They are parameterized by
the rotation matrixes (Ri) and the translations (ti). Their action on a point is given by:

∀x ∈ R
n, Ti(x) = Ri.x + ti.

Weaknesses of the Classical Averaging
The transformation obtained via (5.1) is smooth, both with respect to spatial coordinates and
its parameters. Nonetheless, it has several major drawbacks:

1The FTP address is the following:
ftp://ftp-sop.inria.fr/epidaure/Softs/Arsigny/MediaReview/PolyTransfosSrcMediaReview
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� Its invertibility is not guaranteed, and indeed will not be assured in many cases, for
example if the displacements are large.

� In the favorable case where the inverse exists, it has in general no simple form and has
to be estimated by an ad hoc technique, for instance using a general deformation �eld,
which is iteratively optimized to obtain the inverse

� Is the behavior of this direct averaging procedure really qualitatively satisfactory? In
Fig. 5.1, an example shows that in the case of a mixture of rotations, points do not in
general turn around the centers of the rotations. On the contrary the approach proposed
here has this property.
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Figure 5.1: Simple averaging (left) versus proposed approach (right) . Here, the polyrigid
transformation has two rotation components, which have exactly opposite angles. We consider in
this �gure the various trajectories of points originally in the segment joining the two centers. These
trajectories are constituted by all the �nal positions of the initial points as we progressively increase
the angle of rotation from 0 to 2π radians. On top, the two relative weights p1 and p2 are equal
whereas on the bottom that of the left component is substantially higher than the other, hence the
greater in�uence of the transformation anchored in the left. The form of trajectories show that points
moving under the action of a polyrigid transformation do turn around the centers of rotations of the
transformation. This property is not veri�ed in the case of the classical averaging.

These reasons have led us to develop a new kind of averaging procedure tackling the
above-mentioned problems.
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5.2.2 A Framework with ODEs
Invertibility and ODEs
The challenge facing us at this point is the following: how to mix several transformations
according to some weight functions in an invertible way? As explained in more details Section
2.2, a classical way of obtaining invertible and smooth transformations is to use ordinary
di�erential equations (ODEs) [Tenenbaum 85]. A particle governed by an ODE follows an
equation of the form:

ẋ(s) = V (x, s).

If V is smooth (for instance C1) with respect to x (spatial coordinates) and s (time), and if
the solution x(s) is de�ned for all time, then the �ow Φ(x, s) associated to the ODE de�nes a
family of di�eomorphisms. This operator associates to a given starting position the position
reached at time s by the particle following the evolution prescribed by the ODE.

More precisely, for each s ∈ R, we have that x 7→ Φ(x, s) is a di�eomorphism from R
n to

R
n. Our approach is based on this key result.

The Case of Rigid Transformations
From the classical results of linear algebra, it is obvious that a rigid transformation is in-
vertible, and its inverse is simply obtained by inverting the rotation part and adapting the
translation component in the appropriate way. But another viewpoint can be used to prove
the invertibility, using ODEs. More precisely, we can associate to a rigid transformation the
following ODE, where the nature of the Ai matrix is explained just below:

ẋ(s) = Vi(x, s) = ti + Ai(x − s ti) for s ∈ [0, 1]. (5.2)

This is obtained by di�erentiating the trajectory equation x(s) = sti + exp(sAi). At time
0, we start with the initial position and the image for the rigid transformation is obtained
at time 1. Since Vi is smooth and trajectories are de�ned for all time, the above-mentioned
result applies.

In Eq. (5.2), we denote by Ai one of the logarithms of the rotation matrix Ri, which veri�es
the equality: exp(Ai) = Ri where exp is the matrix exponential. Since Ri is a rotation, it
always has a real logarithm, which is a skew symmetric matrix. For example, in 3D, let
r = (rx, ry, rz)

T be a rotation vector associated to a rotation R. We can then de�ne a skew
symmetric matrix A associated to r that is a logarithm of R with the relation:

A =




0 −rz ry

rz 0 −rx

−ry rx 0


 .

A Continuous Averaging Procedure with ODEs
In order to insure the invertibility of our averaged transformation, let us de�ne a new ODE.
The idea is simply to average according to weights the velocity vectors associated to each
component, instead of averaging the �nal results:

ẋ(s) = V (x, s) =

∑
i wi(x)Vi(x, s)∑

i wi(x)
(5.3)

Ideally, we would like to de�ne our averaged transformation as T (x) = Φ(x, 1), where Φ is
the �ow associated to the ODE (5.3).
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This means that each component will in�uence the motion of a particle accordingly with
the weights modeling its in�uence in space. The result obtained at time 1 is the image of
initial position x under the action of the average transformation.

5.2.3 Theoretical Properties of Polyrigid Transformations
Existence and Invertibility of Polyrigid Transformations
Since in (5.3) V (x, s) is C∞ with respect to spatial position and time, it only remains to be
proved that the evolution does not lead to explosion towards in�nity before time 1.

Theorem 5.1. All solutions of Eq. (5.3) have an in�nite life-span, i.e. they are de�ned for
all time, whatever the rigid transformations may be. The polyrigid transformations de�ned
via Φ(., 1) are thus well-de�ned and di�eormorphic.

Proof. There exists three positive constants C1, C2 and C3 such that ‖V (x, s)‖2 ≤ C1+C2|s|+
C3‖x‖. For instance, take C1 = maxi ‖ti‖2 and C2 = maxi ‖Aiti‖2 and C3 = maxi ‖Ai‖2 where
‖Ai‖2 refers to the Frobenius norm of matrix Ai, equal here to the L2 norm of the associated
rotation vector. This yields via a classical bounding that ∀s, ‖Φ(x, s)‖ ≤ eC3|s|(‖Φ(x, 0) +
(1− e−C3|s|)(C1/C3 + |s|C2/C3)), which su�ces to prove the result because it shows that the
position of the particle evolving with Eq. (5.3) is contained within a sphere whose radius
grows exponentially this time.

A Simple Inverse. The inverse of the transformation is obtained here in a simple fashion:
it su�ces to go back in time! The skew matrix is changed into its opposite, the translation
also and s becomes 1 − s. The inverse transformation thus takes here a simple form.

Di�erentiability with Respect to the Parameters
We have just seen that any given system of rigid transformations can be averaged so as to yield
a di�eomorphism. But, what smoothness can be guaranteed with respect to the parameters?
Di�erentiability is crucial so as to enable simple optimization of the transformation in a
registration framework. We have the following result:

Theorem 5.2. Polyrigid transformation are C∞ with respect to all parameters.

Proof. This comes from the di�erentiability of the �ow of an ODE. Indeed, let us de�ne the
new ODE ż(s) = W (z, s) where z = (x, p), x being the spatial coordinates of a particle and p
the parameters of the polyrigid transformation written in a vectorial fashion, and where the
velocity vector W (z, s) = (V (x, s), 0). Thus, x evolves according to (5.3) and that p does not
change as time goes by. W is C∞ and the solutions are de�ned for all time since those of (5.3)
are. This implies the di�erentiability of the �ow associated to this ODE, which is exactly the
di�erentiability of the polyrigid transformation with respect to its parameters.

5.2.4 Extension to Polya�ne Transformations
A Simple Extension via the Real Logarithm
One may wonder to what extent it is possible to use the framework presented above to
work with locally a�ne transformations. This can be done in a direct way if each a�ne
transformation (Mi, ti) has a linear part Mi that admits a real logarithm, i.e., if there exists
Ai ∈ M(n) such that exp(Ai) = Mi. Then, we can adopt all coordinates of Ai as new
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scalar parameters to work with, and all the results of this section hold for this other type of
transformation, that we could call polya�ne.

Unfortunately, not all real invertible matrices Mi ∈ GL(n) have a real logarithm. Even
among real matrices with a positive determinant, this is not true. This is unsatisfactory,
because compositions of a dilatation and a rotation are deformations that are essential to the
a�ne generalization of polyrigid transformations.

A General Extension
In order to de�ne polya�ne transformations, what we basically need is simply a smooth
trajectory from the identity to any given a�ne transformation. By di�erentiating with respect
to time we want to obtain a simple ODE. To de�ne such an evolution, we have the following
general result: any element of a real connected Lie Groups is equal to the product of two
exponentials [Wüstner 03]. Indeed, in the linear part of a�ne transformations, the singular
value decomposition yields that Mi = eAi .eSi with Ai and Si respectively skew and symmetric
matrices. An equivalent of Eq. (5.2) for polya�ne transformations is thus:

ẋ(s) = ti + (Ai + esAiSie
−sAi).(x − s ti). (5.4)

All results mentioned above still hold in this case and hence we can de�ne general polya�ne
transformation, smooth both w.r.t. spatial coordinates and parameters. But other parameter-
ization could be chosen: we can also write Mi = eS̃i .eAi by regrouping the factors of the SVD
di�erently, where S̃i 6= Si in general. Several extensions are possible and will be investigated
in future work.

5.2.5 Summary of the properties of Polyrigid Transformations
In this section, we de�ned a new class of transformations, modeling a mixture of rigid trans-
formations, whose in�uence is geometrically anchored in a simple way. These transformations
are di�eomorphisms and smooth with respect to all of their parameters. The following ta-
bles summarize the various parameters of the transformations (Table 5.1), and the number of
scalar parameters obtained in 2 dimensions or 3 dimensions (Table 5.2), where a comparison
is be made with B-Splines.

Region parameters Deformation parameters
Anchor points: (ai) Rotation vectors: (ri)

Standard deviations: (σi) Translation vectors: (ti)

Relative weights: (pi)

Table 5.1: The two types of parameters of polyrigid transformations.

Number of components 2D B-Spline equivalent 3D B-Spline equivalent
2 13 3 control points 21 3 c.p.
3 20 5 c.p. 32 5 c.p.
4 27 6 c.p. 43 7 c.p.
N 7N − 1 7N−1

4 c.p. 11N − 1 11N−1
6 c.p.

Table 5.2: Summary of the various types of parameters for polyrigid transformations, and a
comparison between their number of parameters and that of the B-Splines.
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5.3 Implementation of Polyrigid Transformations
5.3.1 Discretization Schemes
Since in the general case there does not exist a closed form for the position of a point moving
under the action of a polyrigid transformation, it is a necessity to resort to a numerical
scheme to integrate the ODE de�ning the transformation. In other words, the trajectory of a
point moving via (5.3) has to be sampled: a number of intermediate points N and a rule for
obtaining the successive positions (xi)i∈0···N have to be chosen, so that the curve de�ned by
the points converges toward the real continuous curve given by the ODE.

In our domain of application, i.e. medical imaging, we have an additional constraint, due
to the volume of data much must be processed in common applications. Thus, the numerical
scheme should be as computationally inexpensive as possible. This is all the more true here
that we make use in Section 5.3 of the �rst and second derivatives of the numerical scheme,
which forbids the use of classical schemes such as Runge-Kutta's.

The Consistent First Order Scheme
The consistence of a numerical scheme is a crutial notion. It is a condition that must be
veri�ed to insure the convergence towards the continuous solution when the time step goes
to zero. It simply means that when we take the Taylor expansion of the solution of the ODE
with respect to time around zero, a numerical scheme must have the same expansion up to
a certain order. We say also that a scheme is of a certain order when the coe�cients of its
Taylor series vanish after that order.

The consistent �rst order scheme is simply given in the following way: we de�ne the
operators T

1/N
1 and T

k/N
1 by:





T
1/N
1 (x, s) = x + 1

N V (x, s).

T
k/N
1 (x) = T

1/N
1 (., (k − 1)/N) ◦ · · · ◦ T

1/N
1︸ ︷︷ ︸(x, 0).

k compositions

(5.5)

The points (xi) are obtained recursively using:
{

x0 = x.

for 1 ≤ n ≤ N : xn = T
1/N
1 (xn−1, (k − 1)/N) = T

k/N
1 (x0).

(5.6)

This simply means that starting at x0, we jump from xn−1 to xn by adding 1
N times the

velocity vector V (xn−1,
n−1
N ).

An E�cient Second Order Scheme
The scheme described above is not really satisfactory. In the case of a single rigid compo-
nent, the approximation makes points move along a diverging spiral instead of a circle (if the
transformation is a rotation). This is regrettable, and a simple way of suppressing this ap-
proximation is to use the following second-order scheme using new operators T

1/N
2 and T

k/N
2 :





T
1/N
2 (x, s) = x +

∑
i wi(x)( 1

N
ti+(e

Ai
N −Id)(x−sti))∑

i wi(x) .

T
k/N
2 (x) = T

1/N
2 (., (k − 1)/N) ◦ · · · ◦ T

1/N
2︸ ︷︷ ︸(x, 0)

k compositions

. (5.7)
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Instead of averaging the velocity vectors of each component, we average instead the displace-
ments that would be observed if each component was acting alone during a small interval of
time of length 1

N . This scheme is �rst-order consistent, but not second-order consistent (it
captures only part of the second-order terms). But it is exact in the case of a single compo-
nent, and its convergence is much faster than the �rst one as shown in Fig. 5.2. Furthermore,
the diverging spiral phenomenon observed for the �rst scheme disappears.

Derivatives of the Transformation
Computing the derivatives of the transformation with respect to its parameters is necessary to
use a gradient descent approach. Let us consider for instance a simple registration strategy,
where we want to register two images I and J with the sum of square di�erences (SSD)
criterion. This does not imply that our approach is restricted to that particular case: one
could obviously compute the derivatives for other criteria. We take two images, J and I, and
we want to register J onto I using the inverse of a polyrigid transformation Tp, where p are
the parameters of the transformation. In this case, the criterion to be minimized is:

S(I, J ◦ Tp) =

∫

Ω
‖I(x) − J ◦ Tp(x)‖2 dx.

The gradient of S with respect to p is the following:

∂S

∂p
(I, J ◦ Tp) = 2

∫

Ω
(J ◦ Tp(x) − I(x)).(∇J ◦ Tp)(x).

∂Tp

∂p
(x) dx.

In the last equation, the symbol �.� denotes the matrix product. In order to compute the
derivatives of the transformation with respect to the parameters, we simply computed the
derivatives of each of the schemes. This is done again with a recursive formulation:

∂T
k
N

p (x)

∂p
=

∂T
1
N

p

(
·, k−1

N

)

∂p

(
T

k−1
N

p (x)

)
+

∂T
1
N

p

(
·, k−1

N

)

∂x

(
T

k−1
N

p (x)

)
.
∂T

k−1
N

p (x)

∂p
.

For a �rst-order gradient descent, only the above gradient is necessary. But for a second-
order gradient descent, we will also need the second-order derivative:

∂2S
∂p2 (I, J ◦ Tp) = 2

{
∂Tp

∂p (x)T .(∇J ◦ Tp)(x)T .(∇J ◦ Tp)(x).
∂Tp

∂p (x)

+(J ◦ Tp(x) − I(x))
∂Tp

∂p (x)T .(∂2J
∂x2 ◦ Tp(x)).

∂Tp

∂p (x)

+(J ◦ Tp(x) − I(x))
∂Tp

∂p (x).
∂2Tp

∂p2(x)

}
.

(5.8)

A useful approximation is obtained by keeping only the �rst term of this equation. It has
the nice property of being symmetric positive, and is a good approximation of the Hessian as
long as that the di�erence of intensities (J ◦ Tp(x) − I(x)) is small. Therefore, the more we
will be close to a �good� solution, the more valid this approximation is. For detailed formulas,
we refer the reader to Appendix 5.7.

5.3.2 Implementation with the Insight Toolkit
In order implement these new transformations, we chose to use the framework of the Insight
Toolkit2, which is a rich and rapidly developing set of tools dedicated to the segmentation

2http://www.itk.org
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Figure 5.2: First scheme (on the left) versus second scheme (on the right). From top
to bottom: discretization levels of 3, 5, 7 and 20. As in Fig. 5.1, various trajectories are displayed,
these trajectories being obtained when the two opposite rotations see their angle increase progressively
between 0 and 2π. Here, the rotation on the left has a larger relative weight than that on the right,
which lessens the in�uence of the latter.
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and registration of medical images. Thanks to the generic nature of its programming style, it
was the ideal choice to develop our new approach quickly.

The polyrigid transformations were implemented as a new transformation class:
PolyRigidTransform<TScalarType,Dimension,Dimension>. It is templated by the dimen-
sion of the space, and thus can be used in both 2D and 3D applications. Its testing and
the development of related registration algorithms were greatly facilitated by ITK, since it
provides many tools that can be applied to any ITK transformation.

Fig. 5.3 shows the registration framework chosen by ITK. The experiments presented in
next section are carried out using our new class of transformation, the SSD similarity criterion
(called here a �metric�), with a bilinear interpolation.

For the �rst-order gradient descent, we used the already implemented ITK optimizer
itk::RegularStepGradientDescentOptimizer, in which the step of the gradient is reduced
if the change of direction is too abrupt. This prevents the algorithm from going systematically
too far in the direction of the gradient.

For the second-order gradient descent, we have implemented our own optimizer. This
enabled us to adapt completely the optimization to the registration strategy studied in Sec-
tion 5.4. Fig. 5.4 presents the new ITK classes designed to this e�ect. In order to take
into account the information given by an approximation of the Hessian, we chose to modify
the itk::ImageToImageMetric class, which provides access only to the �rst derivative of the
similarity measure. Other classes were also modi�ed, so as to perform a registration pro-
cedure making use of the Hessian, which is handled by the new class ImageRegistration-
MethodWithHessian.

Figure 5.3: ITK's registration framework.

5.4 Registration of Histological Slices
5.4.1 Object of the Study and Experimental Setup
In order to demonstrate the feasibility and power of polyrigid transformations for registration
purposes, we present in this section some preliminary results on the registration of histological
slices (Fig. 5.5). These images are acquired in such a way that locally rigid or even a�ne
deformations are frequently introduced locally during the acquisition process. E.g., a gyrus
has been rotated in the top left corner in Fig. 5.5. The aim of this study is to show that
simple polyrigid transformations can substantially and naturally reduce the impact of such
non-linear deformations, while preserving the anatomical di�erences, i.e. whithout introducing
unrealistic deformations.
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itk::Transformation<TScalarType,NInputDimension,NOutputDimesion>

iPolyRigidTransformation<TScalarType,Dimesion,Dimension>

Transformation

Registration method

itk::CostFunction

SingleValuedCostFunctionWithHessian

ImageToImageMetricWithHessian<TFixedImage,TMovingImage>

MeanSquaresImageToImageMetricForGaussNewtonGD<TFixedImage,TMovingImage>

Metric

itk::NonLinearOptimizer

SingleValuedNonLinearOptimizerWithHessian

PrivateLevenbergMarquardtBaseOptimizer

PrivateLevenbergMarquardtOptimizer

Optimizer

itk::ProcessObject

RegistrationMethodWithHessian<TFixedImage,TMovingImage>

Figure 5.4: Implemented classes (boxes with a single rectangle) and their relations to
each other and existing ITK classes (boxes with two nested rectangles). A hollow triangle
at the end of an arrow stands for inheritance and and simple lines for dependence (conventions of the
UML 1.3 standard). The classes belong to four di�erent �families�: that of the registration method,
metric, optimizer and transformation. For more clarity, these groups have been put into dashed
boxes.
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The slices studied in this paper have been kindly provided by P. Thompson and A. Pitiot
from the LONI (UCLA), and are consecutive myelin-stained histological sections (or autora-
diographs). Stemming from a human brain, it is during three steps that the arti�cial de-
formations of a locally rigid nature are introduced. These steps are the cutting process, the
successive chemical treatments, and the glass mounting step. The dimensions of the slices are
226 by 384 pixels. The registration of these slices has an additional di�culty: the absence
of matter in the lower-left-hand corner of the second slice. Most non-rigid registration algo-
rithms are misled by such a defect because they will try to correct it, and in so doing they
introduce irrelevant arti�cial deformations. During the acquisition process, the calibration of
the optical setup remained unchanged. Therefore, the assumption that the various structures
present in the images have the same grey level is valid, and we can safely use the sum of
square di�erences criterion.

In �gure 5.5, we see the results obtained with classical robust rigid and a�ne registration
procedures [Ourselin 01b]. These methods are not able to register properly the rotated gyrus
and at the same time all other gyri. This defect is due to the lack of degrees of freedom in
these linear transformations. In the a�ne case, it is also due to the fact that the extra degrees
of freedom, modeling dilatations and shearing, are not used to model the actual deformations
appearing in the image. This suggests to use transformations with more degrees of freedom,
and if possible, degrees of freedom that are adapted to the real deformations observed. This
is precisely what polyrigid transformations are aiming at for this application.

Figure 5.5: Histological slices (on the left) and Images of absolute di�erences for a�ne
(third starting from the left) and rigid (on the right) registrations. The whiter the grey
level, the worse the registration is locally. We see in both cases that in many places, the edges of
the gyri have not been registered precisely, because of the in�uence of the rotated gyrus in the top
left corner and also because some other (smaller) non-linear deformations have taken place. We see
also on the left that in order to register better the rotated gyrus, the a�ne registration gives poorer
results for many edges than the rigid registration. Indeed, this better registration of the gyrus has
been obtained at the cost of a dilatation of the slice, which in this situation is not appropriate.

During the experiments, the initialization used is the following:

� All rigid components are initially set to the identity.

� Anchor points are sampled on a regular grid, except in the �rst experience, where a
manual initialization is done.
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� Initial relative weights are all equal.

� (σi) are initialized at a high value, here 40, so that the in�uence of all regions extends
in a good half of the images.

Four rigid components are used in the experiments. This number is a good compromise
between the necessity of having enough degrees of freedom to register correctly the slices and
the obvious risk of introducing too many degrees of freedom, which results in large unrealistic
deformations. This is precisely what occurs when more components are used. All in all, these
four components are parameterized by 27 scalar parameters, which is the equivalent of only
6 control points for the B-splines (24 scalar parameters).

The second numerical scheme is used here, since it outperforms the other. The level of
discretization is chosen very low, i.e. almost all results are obtained using no intermediate
point between the starting position and the �nal position of a point. The deformed grids
shown in the �gures of this section show that the obtained transformations are invertible.
Since inverting them was not necessary in this study, it is not necessary here to use more
points. In fact, increasing the number of discretization points used leads to very similar
results, which shows that such a precision is not necessary here. But for other applications, if
discontinuities appear or if it is necessary to use also the inverse transformation, then a �ner
discretization is of course essential.

5.4.2 Limitations of the First-Order Gradient Descent.
A simple way to minimize the similarity criterion between the images is to use a �rst-order
gradient descent, i.e. to make the parameters evolve in the steepest direction of descent,
which is given by the gradient. Unfortunately, this approach cannot be directly used for our
model. The partial derivatives in the gradient show di�erences of several orders of magnitudes!
Qualitatively we have ‖ ∂

∂ri
Tp‖ >> ‖ ∂

∂ti
Tp‖ >> other derivatives. This implies that the

classical gradient descent will make rotations evolve enormously, the translations a little, and
the other parameters almost not.

For rotations and translations, the di�erence of magnitude of their respective partial
derivative can be intuitively understood in the following way: for a small variation of the
angle of rotation, points far away from the center of rotation will move proportionally to
their distance to the center of rotation. In other words, the further away from the center, the
higher will be the variation in position, and a small variation can result in a large one at a
distance. On the other hand, a variation in translation will a�ect all the points uniformly,
and a small variation always yields a small modi�cation in position. Therefore, we tend to
have large partial derivative with respect to rotations as compared to partial derivatives with
respect to translations. This di�culty is often encountered in situations where parameters of
di�erent natures are to be optimized simultaneously.

A simple remedy is to renormalize the amplitudes of the partial derivatives. Typically,
dividing the amplitude of the rotation partial derivative by a factor 1000 is needed to obtain
the optimization at least of both rotations and translations. Fig. 5.6 shows the behavior of
the registration as the scaling evolves.

As we see in the deformed grid of Fig. 5.7, the �nal transformation is notably non-linear.
But the anchor points have not moved from their initial position, which does not allow for
an accurate registration in the upper left-hand corner. We can see in Fig. 5.8 that the edges
were much better registered than with using a robust rigid transformation. But the incapacity
to optimize the regions of in�uence thwarted the better registration of the upper-left-hand
corner.
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Figure 5.6: SSD criterion evolution for a polyrigid registration with a simple �rst order
gradient descent. The only modi�cation to the gradient was the rescaling of the rotation partial
derivative, which is much larger in magnitude than the others. The �gure shows the SSD evolution
during registration for three values of the rotation scaling: 100, 300 and 1000. Thus, we see that an
important rescaling (at least of a factor 300) is necessary to improve the registration process, which
is otherwise ine�cient. The registration results only in the optimization of the rotations, the other
parameters hardly evolving during the registration procedure.
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Figure 5.7: Polyrigid registration result with a simple �rst-order gradient descent. From
left to right and from top to bottom: (1) The deformed image. (2) The image of absolute di�erence
between the deformed image and the �xed image. (3) A representation of the regions of in�uence: a
grey level is attributed to each region, and this color is displayed if and only if the local weight of the
region represents more than 90 percents of the total weight. The anchor points are represented here
by small squares. (4) A regular grid deformed like the deformed image. (5) An image of the regions
of in�uence, a grey level being displayed if and only if its associated weight is the largest one. (6)
An image of the regions of in�uence displaying at each point the weighted average of the grey levels
according to the local weights. Thus, we see that a non-linear deformation has been obtained, as show
the curved lines of the initially regular grid. The defect of this registration is that anchor points have
not moved from their initial positions.
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Figure 5.8: Rigid (on the left) versus polyrigid registration with a simple �rst-order
gradient descent and a rescaling for rotations (on the middle) and Levenberg-Marquardt
second-order descent(on the right). This demonstrates that the absence of matter in the lower
left-hand corner has thwarted the polyrigid registration algorithm. In the case of the simple �rst-order
gradient descent, most edges have been very �nely registered, much better than in the rigid case.
Nonetheless, we see that the gyrus lying in the upper left-hand corner still has not been completely
correctly registered, because of the incapacity of the algorithm to optimize the region parameters,
which have small derivatives in magnitude. On the contrary, on the right, the Levenberg-Marquardt
method has allowed the algorithm to register the previously rotated gyrus. The result is much better
qualitatively than for the �rst order descent, and edges are much more �nely registered than in the
rigid case. However, some amount of unnatural deformations has been added at the vertical frontier
between the gyrus and the rest of the slice. This phenomenon is due to the simple forms of the
respective rigid regions
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Of course, one could think of estimating a relevant renormalization for each type of pa-
rameter. This could be done by computing some kind of average amplitude for each partial
derivative, and them dividing the derivatives by that value so as to obtain values of approxi-
mately the same amplitude. But this renormalization would have to be carried out for each
pair of images to be registered. It would surely not be e�cient for all iterations, and it is
not so clear why all partial derivatives should have approximately the same amplitude. In
the case of a pure translation, forcing the rotation vectors to evolve would not be convenient!
This calls for some type of adaptive renormalizing method.

5.4.3 Registration Results using a Levenberg-Marquardt Algorithm
To renormalize the partial derivatives in an adaptive way, a simple idea is to perform a second-
order gradient descent scheme. The renormalization is handled by multiplying the gradient
by the inverse of a matrix re�ecting the second variations of the criterion. Here, this matrix is
the approximation of the Hessian described in Section 5.3. The computation of this positive
matrix term (in the sense of quadratic forms) can be done only at the expense of a very little
cost, since it only requires the knowledge of the transformation's gradient and of the images
intensities.

In order to perform an e�cient 2nd-order gradient descent, the Levenberg-Marquardt
algorithm (LM) was used (see [Bazaraa 93], pages 312-314). At each iteration, a trust indicator
is updated, which tunes the gradient descent between a simple �rst-order gradient descent and
a quasi Gauss-Newton descent based on the truncated Hessian. This way, we obtain naturally
a renormalization of the various parameters and also a faster convergence, especially when we
are close to the minimum.

Figures 5.8 and 5.9 show that the Levenberg-Marquardt performs much better than a �rst-
order descent, both quantitatively and qualitatively. Three major local rigid transformations
have been correctly identi�ed. The edges have been very �nely registered as compared to
rigid registration, as we see in Figure 5.8. This good result is obtained in spite of a very
crude initialization which proves the robustness of the proposed registration algorithm. The
only remaining problem is the large deformations occurring at the vertical frontier between
the originally rotated gyrus and the other gyri. This is partly due to the simple spherical
form chosen for the regions of in�uence, and partly to the discontinuity that originally made
the gyrus rotate. The polyrigid deformations are smooth transformations and therefore they
cannot properly model discontinuous deformations.

5.4.4 Alternating Optimization
The renormalizing process via a second-order approach can be avoided by simply optimizing
the parameters alternatively. Moreover, with more than 4 rigid components, the renormaliza-
tion introduced in the second-order descent is no longer su�cient: the same defects as in the
�rst-order gradient descent appear again.

As a consequence, we introduce here a strategy optimizing alternatively the various param-
eters. There is no single way of optimizing alternatively the parameters, and it is theoretically
di�cult to decide which parameters to group, and how many iterations of optimization are
to be used for each group at each iteration of the global optimization. Our tests led us to
optimize on the one hand the deformation parameters and on the other the region parameters,
one iteration at a time for each. We also use here a Levenberg-Marquardt strategy for each
group, to speed up the convergence. This yields a stable and e�cient optimization algorithm.

Fig. 5.10 shows the result of the registration. We can clearly see that the registration
process has identi�ed and satisfactorily estimated at least three independent rigid behavior. At
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Figure 5.9: SSD criterion evolution for a polyrigid registration with a Levenberg-
Marquardt (LM) versus a simple �rst-order optimization scheme. This shows that using a
second-order descent has greatly enhanced the �nal results quantitatively, and also qualitatively as is
shown is the next �gures.
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the same time, the deliberate simplicity of the regions of in�uence forbids a precise description
of the frontiers between the regions. At this point of the registration process, we could resort
to a classical non-rigid registration algorithm to make the registration more precise in this
sector. But more simply, we can make use of the �exibility of polyrigid transformations by
re�ning the parameters describing the regions of in�uence, as is shown in the next section of
this report.

5.5 Results with more Complex Regions
5.5.1 The Shape of the Regions of In�uence.
The assumption that each fuzzy region can be accurately described by a simple Gaussian
weight can be too strong in certain cases. But generally speaking, we can be very �exible
with the weights because the only limitation is to keep the weights (strictly) positive and
smooth with respect to spatial coordinates and parameters. Therefore very complex regions
can be used, the simplest way being to use mixtures of simple probability distributions. But
other solutions could be used, such as introducing explicitly an pre-de�ned shape for a region.
More precisely, if R is a region, we can de�ne an associated weight with w(x) = 1R ⋆ Gσ(x).
1R is simply the function returning 1 if x ∈ G and 0 elsewhere. Gσ is a Gaussian of standard
deviation σ, that smoothes 1R through a convolution. Thus, combinations of pre-de�ned
regions and simply parameterized regions provides quite a rich framework for modeling an
application-speci�c polyrigid transformation.

We present here preliminary results in which we have simply increased the number of
anchor points per region. Therefore, regions are modeled via a mixture of Gaussian. This
more general form for the weights wi(x) can be written as follows:

wi(x) = pi

ni∑

j=1

G
aj

i ,σj
i
(x).

In other terms, each component i has its own number ni of anchor points (aj
i )j∈1···ni , which

all have their speci�c standard deviation σj
i .

5.5.2 Results Obtained with Three Anchor Points
In order to see whether we can obtain better results than in the previous section, we present
here the results with three anchor points per region. One could think of re�ning progressively
the number of points, and this is a issue that will be addressed in future work. The present
experiment simply consists in making the whole registration proceed with three anchor points,
using the most e�cient optimization algorithm presented in this report, i.e. the alternating
LM strategy.

The experimental setup is identical, except for anchor points, which are initialized on the
vertices of equilateral triangles placed on a regular grid.

We obtain here much better results, as show Fig. 5.11. The frontier that was lacking in
precision is substantially re�ned here, introducing less arti�cial deformations. However, some
amount of unrealistic deformation remains. That was to be expected, since it was because of
a rift that the gyrus rotated. To proceed further, it would be necessary to make a distinction
between the empty background and matter. A possibility would be to add this knowledge in
the weights de�ning the in�uence of each region, for instance with a geodesic distance. The
weight of a region would then be all the stronger as the current point is close in some geodesic
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Figure 5.10: Polyrigid alternating LM registration. The gyrus has been as correctly registered
as can be. Due to the Gaussian model, the vertical frontier on the left of it has a circular form,
which results in some unnatural deformations. These deformations are marginal but nonetheless
non-negligible. However, only 4 rigid components (i.e. 27 scalar parameters) have been necessary
here to register very �nely most of the slices, without being disturbed by the lack of matter in the
lower-left-hand corner of one the registered slice.
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sense. This would result in a di�erent smoothing. The in�uence of a region close spatially but
separated from the current point by a rift of empty background would be seriously lessened.
As a consequence, the frontiers between the regions would be more realistic, since they would
bear more resemblance with the rifts where they appear.

Figure 5.11: Polyrigid alternating LM registration with 3 anchors points per region.
The result is quite satisfactory: thanks to the Gaussian mixture model, a realistic frontier has been
automatically inferred which brings the originally rotated gyrus into a precise registration. All edges
have been correctly registered. Few arti�cial deformations are introduced, thanks to the fact that we
have only used four di�erent regions having independent rigid motions. As the deformations of the
regular grid show, the transformation is still invertible. It should also be noted that this result has been
obtained with a fully automatic and crude initialization, and without resorting to a multi-resolution
framework. This demonstrates the robustness of the registration algorithm.
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5.6 Conclusions and Perspectives
Conclusions. We have presented in this Chapter a novel and innovative type of geometrical
transformations: polyrigid and polya�ne transformations. These transformations have several
rigid or a�ne components, which means that a given number of fuzzy regions are de�ned,
on which the global transformation is mostly rigid or a�ne. The parameters coding the
transformation are simple and intuitive, and provide a compact representation for locally
rigid or a�ne movements.

In a rigorous mathematical framework, we have shown that these transformations are
smooth and invertible. We have designed a new and e�cient numerical scheme for the practical
implementation in any dimension in the polyrigid case, and devise a complete optimization
strategy for its application to non-rigid registration (Section 5.4).

Polyrigid transformations are exempli�ed successfully on the 2D registration of histological
slices. Most non-linear artifacts generated during the acquisition process of the slices have
been corrected, and it remains only a residual deformation due to the smoothness of polyrigid
transformations. For this speci�c application, further developments would be needed to model
the tearing process that has taken place, which is discontinuous by nature.

As shown in Section 5.5, there are many ways of adapting the polyrigid transformations
to new applications, by modifying the shape and parameterization of the regions of in�uence.
In order to make the polyrigid transformations more accurate, it should also be possible to
de�ne adaptive strategies progressively re�ne the shape of regions where it is necessary.

Perspectives. We have presented in Section 5.2 the extension of our framework to polya�ne
transformations. We believe it is possible to use such an extension in the �eld of shape
statistics. More precisely, one could model the variability of the shape around its mean via
the statistical analysis of these variations in a certain space of transformations. By choosing as
adequately as possible this space of deformations, a model with a limited number of parameters
could be derived. Polya�ne transformations are in our opinion a good candidate for doing
so, because they can take into account both local rotations, translations or swellings.

In the same vein, another application would be the building of new anatomical atlases, in
the case of dataset presenting rigid by part deformations or simple local deformations. Using
adapted transformations to establish correspondences between the various instances would
surely lead to more accurate results. In the case of local swellings or shearings, it would be
interesting to compare the performances of these new transformations to those obtained for
example with B-Splines, for an equal number of degrees of freedom.
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5.7 Appendix: First Derivatives of Original Polyrigid Transfor-
mations

In this Appendix, we focus in 3D on the �rst derivatives of the second numerical scheme which
can be used to discretize our original polyrigid transformations. This scheme was introduced
in Section 5.3.1.

Di�erentiation with Respect to Parameters
Let us denote:

M
1
N
i (x, s) =

1

N
ti + (e

Ai
N − Id)(x − sti).

This is the modi�cation �proposed� by the i-th component at a given time s and point x for
the second scheme. Conversely, let us write the real modi�cation:

M
1
N (x, s) =

∑
i wi(x)( 1

N ti + (e
Ai
N − Id)(x − sti))∑

i wi(x)
.

Then let pi be a parameter of a rigid transformation Tp, and more speci�cally a parameter
of the i-th component. When we compute the derivative of T

1/N
2 (x, s) with respect to pi, we

get the following simpli�cation:

∂T
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∂
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Then, it only remains to see what form take the derivatives of the modi�cations and of the
weights. If we assume that weights have a Gaussian expression as follows:

wi(x) = pi

(2πσ2
i )n/2 exp

(
−‖x−ai‖2

2σ2
i .

)
. (5.9)

Then, we obtain:




∂
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For derivatives of the modi�cations, we have:
∂

∂ti
M

1
N
i (x, s) =

1

N
Id − s

(
e

Ai
N − Id

)
. (5.11)

It remains to be seen how one can di�erentiate (e
Ai
N − Id) with respect to the rotation vector

ri.

Derivation with Respect to the Rotation vector
The computation of the derivative of a matrix exponential of a matrix function has no simple
form as in the case of scalars. Indeed, when we take M(p) = exp(A(p)), we do not have in
general ∂

∂pM(p) = { ∂
∂pA(p)}M(p). This simply comes from the non-commutation of A(p)

and ∂
∂pA(p).
Let us denote Bx, By, Bz the following matrices:

Bx =




0 0 0
0 0 −1
0 1 0


 , By =




0 0 1
0 0 0
−1 0 0


 , Bz =




0 −1 0
1 0 0
0 0 0


 .

We have the following result:

∀a ∈ {x, y, z}, ∂

∂ra
exp

(
1

N
A

)
=

∑

n>0

1

n!Nn

n∑

i=1

Ai−1.Ba.A
n−i.

This simply stems from the derivation of each term of the series de�ning the exponential.

Spatial Derivatives
Finally, let us consider the spatial derivative of our scheme, which one must also compute in
order to obtain the derivative of the transformation with respect to its parameters. We have:

∂T
1/N
p (x, s)

∂x
=

1

N

∑
i(M

1
N
i (x, s) ∂wi(x)

∂x + wi(x) ∂
∂xM

1
N
i (x, s))∑

i wi(x)

−(
∑

i wi(x)M
1
N
i (x, s))(

∑
i

∂wi(x)
∂x )

(
∑

i wi(x))2

=
1

N

∑
i(M

1
N
i (x, s) ∂wi(x)

∂x + wi(x)(e
Ai
N − Id))∑

i wi(x)

−M
1
N (x, s)

(
∑

i
∂wi(x)

∂x )

(
∑

i wi(x))
.
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And �nally, the spatial derivative of the weights is given by:
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Chapter 6

Log-Euclidean Polya�ne
Transformations

In this Chapter, we propose an alternative to the polyrigid and polya�ne transformations
described in the previous Chapter. The novel framework presented here is called Log-Euclidean
polya�ne, and overcomes the limitations of our original transformations in terms of invariance
properties. The remarkable properties of Log-Euclidean polya�ne transformations (LEPTs)
allow the fast computation of these transformations on regular grids.

Essentially, these nice results are obtained thanks to a much better compatibility between
LEPTs and the algebraic properties of the Lie groups of rigid or a�ne transformations. In-
terestingly, this compatibility is obtained via the implicit use of a Log-Euclidean framework
for linear transformations, which is the generalization to rigid or a�ne transformations of the
framework we describe for tensors in Chapter 3.
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Abstract. In the previous Chapter, we proposed a general framework called polya�ne to
parameterize deformations with a �nite number of rigid or a�ne components, while guaran-
teeing the invertibility of global deformations. However, this framework lacks some important
properties: the inverse of a polya�ne transformation is not polya�ne in general, and the
polya�ne fusion of a�ne components is not invariant with respect to a change of coordinate
system. We present here a novel general framework, called Log-Euclidean polya�ne, which
overcomes these defects.

We also detail a simple algorithm, the Fast Polya�ne Transform, which allows to compute
very e�ciently Log-Euclidean polya�ne transformations and their inverses on regular grids.
The results presented here on real 3D locally a�ne registration of MR scans of the human
brain suggest that our novel framework provides a general and e�cient way of fusing local rigid
or a�ne deformations into a global invertible transformation without introducing artifacts,
independently of the way local deformations are �rst estimated.

Finally, we show in this Chapter that the Log-Euclidean polya�ne framework is implicitly
based on a Log-Euclidean framework for rigid and a�ne transformations, which generalizes to
linear transformations the Log-Euclidean framework we recently proposed for tensors, which
is described in Chapter 3. We detail in this Chapter the properties of this novel framework,
which allows a straightforward and e�cient generalization to linear transformations of classical
vectorial tools, with excellent theoretical properties. In particular, we propose here a simple
generalization to locally rigid or a�ne deformations of a visco-elastic regularization energy
used for dense transformations. Also, we brie�y present the extension of the Log-Euclidean
framework to any �nite-dimensional Lie group, as well as its properties in this very general
case.

Related Publications. Most of the material of Chapter was published in an INRIA re-
search report [Arsigny 06a], and the results of this work were presented during the Third
International Workshop on Biomedical Image Registration (WBIR'06) [Arsigny 06c]. The
Log-Euclidean polya�ne framework and the Log-Euclidean framework for rigid and a�ne
transformations were also used in [Commowick 06a,Commowick 06b] to propose an e�cient
and general 3D registration framework which allows to register local areas in the images using
a�ne transformations having few degrees of freedom. This was exempli�ed in detail in two
cases: bone registration in the lower abdomen area and critical brain structures segmentation.

6.1 Introduction
In this Chapter, we continue to focus on the parameterization of non-rigid geometrical de-
formations with a small number of �exible degrees of freedom. This type of parameteriza-
tion is particularly well-adapted for example to the registration of articulated structures [Pa-
pademetris 05] and to the registration of histological slices [Pitiot 06,Arsigny 05c]. After a
global a�ne (or rigid) alignment, this sort of parameterization also allows a �ner local registra-
tion with very smooth transformations [Commowick 06a,Narayanan 05,Cuzol 05,Rueckert 99].

In Chapter 5, we parameterized deformations with a small number of rigid or a�ne
components, which can model smoothly a large variety of local deformations. We provided a
general framework to fuse these components into a global transformation, called polyrigid or
polya�ne, whose invertibility is guaranteed. However, this framework lacks some important
properties: the inverse of a polya�ne transformation is not polya�ne in general, and the
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polya�ne fusion of a�ne components is not invariant with respect to a change of coordinate
system (i.e. is not a�ne-invariant). Here, we present a novel general framework to fuse
rigid or a�ne components, called Log-Euclidean polya�ne, which overcomes these defects
and yields transformations which can be very e�ciently computed.

The sequel of this Chapter is organized as follows. First, we present the Log-Euclidean
polya�ne framework and its intuitive properties. Then, we describe the Fast Polya�ne
Transform (FPT), which is a numerical algorithm that allows to compute very e�ciently Log-
Euclidean polya�ne transformations (LEPTs) and their inverses on a regular grid. Afterward,
we apply the FPT to a real 3D example, where a�ne components are estimated with the
algorithm of [Commowick 06a, Commowick 06b]. Without introducing artifacts, our novel
fusion ensures the invertibility of the global transformation. Then, we present the properties of
the Log-Euclidean framework for rigid and a�ne transformations on which our polya�ne Log-
Euclidean framework is implicitely based. This Log-Euclidean framework is the analogous of
the framework we presented in Chapter 3 for tensors. Also, the extension of the Log-Euclidean
framework to any �nite-dimensional Lie group is presented, as well as its properties in this
very general case.

6.2 A Log-Euclidean Polya�ne Framework
6.2.1 Previous Polya�ne Framework
Before presenting our novel polya�ne framework let us brie�y recall the original polya�ne
framework, described in detail in the previous Chapter. The idea is to de�ne transformations
that exhibit a locally a�ne behavior, with nice invertibility properties. Following the sem-
inal work of [Little 96], we model here such transformations by a �nite number N of a�ne
components. Precisely, each component i consists of an a�ne transformation Ti and of a
non-negative weight function wi(x) which models its spatial extension: the in�uence of the
ith component at point x is proportional to wi(x). Furthermore, we assume that for all x,∑N

i=1 wi(x) = 1, i.e. the weights are normalized.

Fusion of Displacements. In order to obtain a global transformation from several weighted
components, the classical approach to fuse the N components simply consists in averaging
the associated displacements according to the weights [Sheppard 68]:

T (x) =

N∑

i=1

wi(x)Ti(x). (6.1)

The transformation obtained using (6.1) is smooth, but this approach has one major drawback:
although each component is invertible, the resulting global transformation is not invertible in
general. To remedy this, we proposed in the previous Chapter to rely on the averaging of some
in�nitesimal displacements associated to each a�ne component instead. The resulting global
transformation is obtained by integrating an Ordinary Di�erential Equation (ODE), which is
computationally more expensive but guarantees its invertibility and also yields a simple form
for its inverse. The nice invertibility properties of this approach are illustrated by Fig. 6.1.

Polya�ne Framework. The polya�ne approach can be decomposed into three steps:

� Step 1: Associating Velocity Vectors to A�ne Transformations. For each
component i, one de�nes a family of velocity vector �elds Vi(., s) parameterized by s,
which is a time parameter varying continuously between 0 and 1. Vi(., s) satisfy a
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Figure 6.1: Guaranteeing invertibility with in�nitesimal fusion. Right (in blue):
regular grid deformed by the fusion of two a�ne transformations, using the direct averaging
of displacements. Left (in red): regular grid deformed by the in�nitesimal fusion of the
transformations in the polya�ne framework. Top: two translations are fused. Bottom:
two rotations of opposite angles are fused. Note how the regions of overlap disappear when
in�nitesimal fusion is used. The translations used were the following: t1 = (3, 1)T and
t2 = (−1.5, 3)T , and the two rotations of opposite angles of magnitude 0.63 radians where
centered on (−2, 0) and (+2, 0). The fusion was carried out with the following weights (given
here in unnormalized form): wi(x) = 1/(1 + ((x1 − ci)/σ)2), where c1 = −2, c2 = +2 and
σ = 5 (smooth transition between the two components).
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consistency property with Ti: when integrated between time 0 and 1, they should give
back the transformation T . Hence the following de�nition:

De�nition 6.1. The family of vector �elds V (., s), where s belongs to [0, 1], is consistent
with the transformation T if and only if its integration between time 0 and 1 gives back
the transformation T :

1. for any initial condition x0 one can integrate between 0 and 1 the di�erential
equation ẋ = V (x, s) so that x(1) exists.

2. x(1) is equal to T (x0).

Several possible choices exist to associate velocity vector to a�ne transformations. One
of the main contributions of this work is precisely to propose a novel choice for such
speed vectors. Interestingly, we do not know at present how many other choices exist
and whether they might have even better properties than the ones we have found so far.

� Step 2: Fusing Velocity Vectors instead of Displacements. The idea is then
to average the vector �elds Vi(., s) according to the weight functions wi(x) to de�ne
an ODE fusing the N components. Weight functions are very important and model
the in�uence in space of each component. They controls in particular the sharpness of
transitions between the fused a�ne transformations. Also, they can take into account
the geometry of anatomical regions of interest, as will be the case in the experimental
results on 3D MRI data given in the sequel.
The Polya�ne ODE fusing velocity vectors according to weights functions is the in-
�nitesimal analogous of (6.1) and writes:

ẋ = V (x, s)
def
=

∑

i

wi(x)Vi(x, s). (6.2)

� Step3: Integration of the Polya�ne ODE. In this in�nitesimal framework, the
value at point x0 of the global transformation T fusing the N components is obtained
via the integration of Eq. (6.2) between 0 and 1, with the initial condition x(0) = x0.
This principle was �rst illustrated in Chapter 2 by Fig. 2.1.

What Velocity Vectors for A�ne Transformations at Step 1? Let us take an a�ne
transformations T = (M, t), where M is the linear part and t the translation. To de�ne a
family of velocity vector �elds consistent with T , it was proposed in [Arsigny 05c] to rely on
the matrix logarithm of the linear part M of T . More precisely, let L be the principal matrix
logarithm of M . The family of speed vector �elds V (., s) we associated to T writes:

V (x, s) = t + L(x − s t) for s ∈ [0, 1]. (6.3)

Well-De�nedness of the Principal Logarithm. One should note that using principal
logarithms of the linear part of a�ne transformations at the �rst step of the polya�ne frame-
work is not always possible.

The theoretical limitation implied by this particular choice of velocity vectors is the follow-
ing: principal logarithms are not always well-de�ned. More precisely, the principal logarithm
of an invertible matrix M is well-de�ned if and only if the (complex) eigenvalues of M do not
lie on the (closed) half-line of negative real numbers [Cheng 01].
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For rotations, this means quite intuitively that the amount of (local) rotation present in
each of the components should be strictly below π radians in magnitude. This can be clearly
seen in the domain of matrix logarithms, where this constraint corresponds to imposing that
the imaginary part of eigenvalues be less then π in magnitude. Fig. 6.2 illustrates this general
situation, which is not speci�c to rotations.

For general invertible linear transformations with positive determinant, the interpretation
of this constraint on eigenvalues is not so clear, since rotational and non-rotational deforma-
tions are intertwined. However, one should note the closed half-line of negative number is a set
of null (Lebesgue) measure in the complex plane, which indicates that very few linear transfor-
mations with positive determinant (corresponding to extremely large deformations) will not
have a principal matrix logarithm. From a practical point of view, one can anyway just check
whether the constraint is satis�ed by computing numerically the eigenvalues of M , which only
amounts to solving a third degree polynomial equation for 3D a�ne transformations.
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Imaginary part of eigenvalues

−π

+π

Forbiden domain: imaginary part larger than or equal to π

Figure 6.2: Constraints imposed on a�ne transformations by the use of the prin-
cipal matrix logarithm. Left: only a�ne transformations whose (complex) eigenvalues do
not lie on the (closed) half-line of negative real numbers have a principal logarithm and can be
handled by our framework. Simplifying things a bit, this corresponds intuitively to imposing
that (local) rotations be smaller in magnitude than π radians. This can be seen more clearly
on the principal logarithms of these admissible a�ne transformations: the imaginary part of
their eigenvalues must be smaller than π in magnitude. This is illustrated on the right on
this �gure. A more detailed discussion of this constraint is given in Subsection 6.2.1.

In the context of medical image registration, we do not believe this restriction to be
problematic, since a global a�ne alignment of the images to be registered is always performed
�rst. This factors out the largest rotations and it would be very surprising from an anatomical
point of view to observe very large deformations (e.g., local rotations close to 180 degrees) of an
anatomical structure from one individual to another after the anatomies of these individuals
have already been a�nely aligned.

Heavy Computational Burden at Step 3. Now, from a practical point of view, integrat-
ing the ODE given by Eq. (6.2) with the velocity vectors of Eq. (6.3) is quite computationally
expensive, especially when one wishes to do this for all the points of a 3D regular grid, for
example a 256×256×100 grid, which is commonly in the case for T1-weighted MR images. We
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will see in the rest of this section how one can drastically reduce this complexity by slightly
modifying the speed vectors of Eq. (6.3).

6.2.2 Simpler Velocity Vectors for A�ne Transformations
Let us see now how one can de�ne much simpler velocity vectors for a�ne transformations than
the ones given in Eq. (6.3). The basic idea is to rely on the logarithms of the transformations
themselves, and not only on the logarithms of their linear parts. These logarithms can be
de�ned in an abstract way in the context of the theory of Lie groups, as detailed in Chapter
2. Interestingly, thanks to the faithful representation of these transformations obtained with
homogeneous coordinates, these logirithms can be computed in practice via matrix logarithms.

Details about our numerical implementation of the matrix logarithm are given in the
Subsection 6.4.5 of the Appendix.

Homogeneous Coordinates. Homogeneous coordinates are a classical tool in Computer
Vision. They are widely used to represent any n-dimensional a�ne transformation T by (n +
1)×(n+1) matrix, written here T̃ . Such a representation is called by mathematicians `faithful'
(in the sense of representation theory), which means that there is no loss of information in
this representation. T̃ takes the following form:

T ∼ T̃
def
=

(
M t
0 1

)
, (6.4)

where M is the linear part of T (n × n matrix) and t its translation. In this setting, points
x of the ambient space are represented by n + 1-dimensional vectors x̃, adding an extra `1'
after their coordinates:

x ∼ x̃
def
=

(
x
1

)
.

This way, the action of the a�ne transformation on a point x can be obtained simply in terms
of matrix multiplication and is given by T̃ .x̃.

Principal Logarithms of A�ne Transformations. Using homogeneous coordinates, the
principal logarithm of the a�ne transformations themselves can be computed in a simple way.

The main point here is that the principal logarithm of an a�ne transformation T is
represented in homogeneous coordinates by the matrix logarithm of its representation T̃ .
This matrix logarithm takes the following form:

log
(
T̃

)
=

(
L v
0 0

)
,

where log stands for the principal matrix logarithm. L is an n × n matrix and v an n-
dimensional vector. Exactly as in the former subsection, L is the principal matrix logarithm
of M . But v is not equal in general to the translation t. Actually, the di�erence between our
novel approach and the previous one resides essentially in this v.

Interestingly, the well-de�nedness of the principal logarithm of an a�ne transformation
T is equivalent to the well-de�nedness of the principal logarithm of its linear part M . The
reason for this is that the principal matrix logarithm of an invertible matrix is well-de�ned if
and only if the imaginary parts of its (complex) eigenvalues of M do not lie on the (closed)
half-line of negative real numbers [Cheng 01], as mentioned before. Because of the form taken
by T̃ (see Eq. (6.4)), the spectrum of T̃ is exactly that of its linear part M plus an extra
eigenvalue equal to 1. Hence the equivalence of the existence of both principal logarithms.
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Simpler Velocity Vectors for A�ne Transformations at Step 1 of the Polya�ne
Framework. Using now principal logarithms of a�ne transformations instead of the prin-
cipal logarithms of their linear parts, one can now associate to an a�ne transformation T a
simpler family of velocity vector �elds than in Eq. (6.3) in the following way:

V (x, s) = V (x) = v + L.x for s ∈ [0, 1]. (6.5)

What is remarkable here is that the velocity vector �eld at time s associated to T does not
depend on s! To prove the consistence of this speed vector with T , let us write the associated
ODE:

ẋ = v + L.x. (6.6)
While the mathematical form taken by (6.6) might seem unfamiliar, it is much simpler (and
more familiar) when expressed in homogeneous coordinates. It simply writes:

˙̃x = log(T̃ ).x̃, (6.7)

which is this time a linear ODE. It is well-known from the theory of linear ODEs [Tenen-
baum 85] that Eq. (6.7) can be solved analytically and that its solutions are well-de�ned for
all time. With an initial condition x0 at time 0, the value x(s) of the unique mapping x(.)
satisfying Eq. (6.6) is given in terms of matrix exponential by:

x̃(s) = exp
(
s. log

(
T̃

))
.x̃0. (6.8)

By letting s be equal to 1, we thus see that our new velocity vectors are truly consistent with
the transformation T .

The ODE of Eq. (6.6) is called autonomous (or equivalently stationary). Such ODEs have
some very nice mathematical properties, which can be expressed in terms of one-parameter
subgroups of transformations. These properties are detailled in Chapter 2, Sect. 2.2. In
short, the �ow Φ(., s) of an autonomous ODE is a one-parameter subgroup of the group of
di�eomorphisms, which means the (possibly) large deformations obtained at time 1 result of
the composition of a large number of artitrarily small identical deformations.

One-Parameter Subgroups of A�ne Transformations. From the explicit form taken
by the solutions of this ODE (see Eq. (6.8)), we can see that the associated �ow is simply the
family of a�ne transformations (T s(.)), where T s is the a�ne transformation represented by
exp(s. log(T̃ )), i.e. the sth power of T .

From the general properties of �ows associated to autonomous ODEs, we know that the
family of transformations (T s(.)) is a one-parameter subgroup of di�eomorphisms. From this
point of view, its in�nitesimal generator is the vector �eld V (x) = v+L.x. From the viewpoint
of the a�ne group (in contrast to di�eomorphisms), (T s) is also a one-parameter subgroups of
a�ne transformations, whose in�nitesimal generator is this time the principal logarithm of T .
Interestingly, it can be shown with the classical tools of Lie groups theory that all continuous
one-parameter subgroups of a�ne transformations are of this form [Sternberg 64].

6.2.3 Log-Euclidean Polya�ne Transformations
An Autonomous ODE for Polya�ne Transformations. With the velocity vectors
de�ned by Eq. (6.5), one can de�ne a novel type of polya�ne transformations using the steps
2 and 3 of the Polya�ne framework. In the sequel, we will refer to these new polya�ne
transformations as Log-Euclidean polya�ne transformations (or LEPTs). This name comes
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from our work on di�usion tensors [Arsigny 05a,Arsigny 05b], where we have already used
principal logarithms to process this other type of data.

More precisely, let (Mi, ti) be N a�ne transformations, and let (Li, vi) be their respective
principal logarithms. Then one can fuse them according to the weights wi(x) with the follow-
ing ODE, which is this time autonomous, i.e. without any in�uence of the time parameter s
in the second member of the equation:

ẋ =
∑

i

wi(x) (vi + Li.x) . (6.9)

Exactly as in the case of the non-autonomous polya�ne ODE based on Eq. (6.3), solutions
to this novel ODE are well-de�ned for all time s (i.e. never go in�nitely far in a �nite time,
do not `blow up'), regardless of the initial condition. The proof is extremely similar (although
simpler, in fact) to that given in [Arsigny 05c] for the previous polya�ne framework.

Now, we know from the general properties of stationary ODEs (which where presented
above) that the �ow T (s, .) of this ODE forms a one-parameter subgroup of di�eomorphisms:
T (0, .) is the identity and T (r, .) ◦ T (s, .) = T (r + s, .).

One-Parameter Subgroups of LEPTs. Exactly like in the a�ne case, the ODE given
by (6.9) de�nes not only a one-parameter subgroup of di�eomorphisms, it also yields a one-
parameter subgroup of Log-Euclidean polya�ne transformations. More precisely, a simple
change of variable (s 7→ s

2) shows that the �ow at time 1
2 , written here T (1

2 , .), corresponds
to a polya�ne transformation whose parameters are the same weights as the original ones,
but where the a�ne transformations have been transformed into their square roots (i.e. their
logarithms have been multiplied by 1

2). Similarly, the �ow at time s, T (s, .) corresponds to a
polya�ne transformations with identical weights but with the sth power of the original a�ne
transformations.

As a consequence, T (s, .) can be interpreted as the sth power of the Log-Euclidean
polya�ne transformation de�ned by T (1, .). In particular, the inverse of T (1, .) (resp. its
square root) is given simply by T (−1, .) (resp. T (1/2, .)), which is the polya�ne transforma-
tion with identical weights but whose a�ne transformations have been inverted (resp. have
been transformed into their square roots).

One should note that our previous polya�ne transformations do not have the same re-
markable algebraic properties as Log-Euclidean polya�ne transformations. In our previous
framework, the inverse of a polya�ne transformation was not even in general a polya�ne
transformation. LEPTs have very intuitive and satisfactory properties, because they are
based on a fusion of velocity vectors much better adapted to the algebraic properties of a�ne
transformations than the speed vectors we previously used.

In the next Section, we will see how this speci�c algebraic property of our novel framework
can be used to alleviate drastically the computational cost of Step 3 of the polya�ne framework
(i.e. the cost of the integration of the polya�ne ODE).

A�ne-Invariance of LEPTs. Contrary to the previous polya�ne framework, our novel
Log-Euclidean framework has another sound mathematical property: a�ne-invariance. This
means the Log-Euclidean polya�ne fusion of a�ne transformations is invariant with respect to
any a�ne change of coordinate system. This type of fusion is thus a fusion between geometric
transformations and not matrices since it does not depend at all on the arbitrary choice of
coordinate system chosen to represent them.
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To see why this is so, let us see how the various ingredients of our framework are a�ected
by a change of coordinate system induced by an a�ne transformation A. In homogeneous
coordinates, these changes are the following:

� a point x̃ becomes Ã.x̃

� a weight function x̃ 7→ wi(x̃) becomes ỹ 7→ wi(Ã
−1.ỹ)

� an a�ne transformation T̃i becomes Ã.T̃i.Ã
−1.

In our new coordinate system, the Log-Euclidean polya�ne ODE writes in homogeneous
coordinates:

˙̃y =
∑

i

wi(Ã
−1.ỹ) log

(
Ã.T̃i.Ã

−1
)

.ỹ. (6.10)

Then, using the property log
(
Ã.T̃i.Ã

−1
)

= Ã. log
(
T̃i

)
.Ã−1, the simple change of variable

ỹ 7→ Ã.x̃ shows that a mapping s 7→ x̃(s) is a solution of the Log-Euclidean polya�ne ODE
(6.9) if and only if s 7→ Ã.x̃(s) is a solution of (6.10). This means that the solutions of
the Log-Euclidean polya�ne ODE in the new coordinate system are exactly the same as in
the original coordinate system: our novel polya�ne framework is therefore not in�uenced
by the choice of a coordinate system. Our previous polya�ne framework does not have this
property, because it does not take su�ciently into account the algebraic properties of a�ne
transformations.

Another Reason Why our Novel Polya�ne Framework is Called Log-Euclidean.
In the special case where all the weight functions wi(x) do not depend on x, the Log-Euclidean
polya�ne fusion of the a�ne transformations Ti simply yields an a�ne transformations T ,
which is given by the following Log-Euclidean mean:

T = exp

(∑

i

wi log(Ti)

)
.

This is another reason why we refer to our novel polya�ne framework as Log-Euclidean.
Indeed, the use of a generalization to rigid and a�ne transformations of our Log-Euclidean
framework for tensors (which is presented in Chapter 3) is implicit in this novel framework.
More details on the Log-Euclidean framework for linear transformations will be presented in
Section 6.4.

Synthetic Examples. Examples of 2D LEPTs are shown in Figs. 6.3, 6.4 and 6.5. In
these examples, one can see how antagonistic a�ne transformations (i.e. transformations
whose direct fusion results in local singularities) can be globally fused into a regular and
invertible polya�ne transformation.

Closeness to Previous Polya�ne Framework. Interestingly, we have observed in our
experiments that the Log-Euclidean and the previous polya�ne frameworks provide similar
results. Fig. 6.6 illustrates the striking closeness between both frameworks. Notable di�er-
ences only appear when very large deformations are fused.

Therefore, the advantage of our Log-Euclidean polya�ne framework over the previous one
does not reside in the quality of its results, which are very close to those of the previous one.
Rather, it resides in its much better and more intuitive mathematical properties, which allow
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for much faster computations, as will be shown in the next Section. This situation is some-
how comparable to the closeness between the a�ne-invariant and Log-Euclidean Riemannian
frameworks used to process di�usion tensors, detailed in Chapter 4. They also yield very
similar results, but in a simpler and faster way in the Log-Euclidean case.
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Figure 6.3: Fusing velocity vectors of two translations. Top (in red and green): Log-
Euclidean polya�ne speed vectors (with the novel framework) of two a�ne transformations
to be fused. Bottom (in blue): on the left, fused speed vectors, and on the right, regular
grid deformed after integration of the autonomous ODE. Note how the antagonism between
the two translations results in a progressive compression along the boundary between the two
components. The fusion was carried out with two functions of the �rst coordinate as weights,
as in Fig. 6.1.

6.3 Fast Polya�ne Transform
In this Section, we show how one can use the speci�c algebraic properties of the Log-Euclidean
polya�ne framework to obtain fast computations of LEPTs. In particular, we propose an
e�cient algorithm to evaluate a Log-Euclidean polya�ne transformations on a regular grid.
If N is the number of intermediate points chosen to discretize the continuous trajectory
of each point, we present here an algorithm only requiring log2(N) steps to integrate our
autonomous polya�ne ODE, provided that the trajectories of all the points of the regular



108 Chapter 6. Log-Euclidean Polya�ne Transformations

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 6.4: Fusing velocity vectors of two rotations. Top (in red and green): Log-
Euclidean polya�ne speed vectors (with the novel framework) of two a�ne transformations
to be fused. Bottom (in blue): on the left, fused speed vectors, and on the right, regular
grid deformed after integration of the autonomous ODE. Note how regular and invertible the
fused polya�ne transformation, however antagonistic the two fused rotations are locally. The
fusion was carried out with two radial functions of the �rst coordinate as weights, as in Fig.
6.1.
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Figure 6.5: Fusing velocity vectors of a translation and an anisotropic swelling. Top
(in red and green): Log-Euclidean polya�ne speed vectors (with the novel framework) of
two a�ne transformations to be fused. Bottom (in blue): on the left, fused speed vectors,
and on the right, regular grid deformed after integration of the autonomous ODE. Again,
note how locally antagonistic displacements are invertibly fused, resulting in compressions or
swelling at the boundary between the two components. The fusion was carried out with two
radial functions of the �rst coordinate as weights, as in Fig. 6.1.
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Figure 6.6: Closeness between the Log-Euclidean polya�ne framework and the
previous polya�ne framework. Superimposed deformed grids in both cases. Top: whole
grid and bottom: close-up. The blue grid corresponds to Log-Euclidean results and the
green one to the previous framework (on top of the blue grid), in the case of the fusion of two
rotations presented in Fig. 6.4.
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grid are computed simultaneously. This drastic drop in complexity is somehow comparable
to that achieved by the `Fast Fourier Transform' in its domain.

Surprisingly, the key to this approach lies in the generalization to the non-linear case of
a popular method which is widely used to compute numerically the exponential of a square
matrix.

6.3.1 Matrix Exponential and the `Scaling and Squaring' Method
The matrix exponential of a square matrix can be computed numerically in a large number
of ways, with more or less e�ciency [Moler 78]. One of the most popular of these numerical
recipes is called the `Scaling and Squaring' method, which is for example used by Matlab �
to compute matrix exponentials [Higham 05]. Fundamentally, this method is very e�cient
because it takes advantage of the very speci�c algebraic properties of matrix exponential,
which are in fact quite simple, as we shall see now. For any square matrix M , we have:

exp(M) = exp

(
M

2

)
. exp

(
M

2

)
= exp

(
M

2

)2

. (6.11)

This comes from the fact that M commutes with itself in the sense of matrix multiplication.
Iterating this equality, we get for any positive integer N :

exp(M) = exp

(
M

2N

)2N

, (6.12)

Then, the key idea is to realize that the matrix exponential is much simpler to compute
for matrices close to zero. In this situation, one can for example use just a few terms of the
in�nite series of exponential, since high-order terms will be completely negligible. An even
better idea is to use Padé approximants, which provide excellent approximations by rational
fractions of the exponential around zero with very few terms. For more (and recent) details
on this topic, see [Higham 05].

The `Scaling and Squaring' Method for computing the matrix exponential of a square
matrix M can be sketched as follows:

1. Scaling step: divide M by a factor 2N , so that M
2N is close enough to zero (according to

some criterion based on the level of accuracy desired: see [Higham 05] for more details).

2. Exponentiation step: exp
(

M
2N

)
is computed with a high accuracy using for example

a Padé approximant.

3. Squaring step: using Eq. (6.12), exp
(

M
2N

)
is squared N times (only N matrix multi-

plications are required.) to obtain a very accurate estimation of exp(M).

In the rest of this Section, we will see how one can generalize this method to compute
with an excellent accuracy polya�ne transformations based on autonomous ODEs.

6.3.2 A `Scaling and Squaring' Method for LEPTs
Goal of the Method. We would like to compute e�ciently and with a good accuracy the
values of a Log-Euclidean polya�ne transformation at the vertices of a regular n-dimensional
(well, 2D or 3D in practice) grid. The method described below will be referred to as the `Fast
Polya�ne Transform' (or FPT) in the rest of this Chapter.
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Algebraic Properties of Log-Euclidean Polya�ne Transformations Revisited. Let
T (s, .) be the �ow associated to the autonomous polya�ne ODE (6.9), as in Subsection 6.2.3.
As mentioned before, this �ow is a one-parameter subgroup of LEPTs:

T (0, .) = Id and for all r, s: T (r, .) ◦ T (s, .) = T (r + s, .) .

As a consequence, Exactly as Eq. (6.11) for the matrix exponential, we obtain for r = s = 1
2 :

T (1, .) = T

(
1

2
, .

)
◦ T

(
1

2
, .

)
= T

(
1

2
, .

)2

.

Iterating this equality, we get for any positive integer N :

T (1, .) = T

(
1

2N
, .

)2N

. (6.13)

Intuitively, Eq. (6.13) means that what the deformation observed at time 1 results of 2N

times the repetition of the small deformations observed at time 1
2N . The total deformation is

entirely determined by the initial (and small) deformations occurring just at the beginning of
the integration of our ODE (which is a well-known and general phenomenon with autonomous
ODEs).

Fast Polya�ne Transform. We can now generalize the `Scaling and Squaring' Method
to the Log-Euclidean polya�ne case. This method, called the `Fast Polya�ne Transform',
follows the usual three steps:

1. Scaling step: divide V (x) (the �eld of velocity vectors) by a factor 2N , so that V (x)
2N is

close enough to zero (according to the level of accuracy desired).

2. Exponentiation step: T
(

1
2N , .

)
is computed using an adequate numerical scheme.

3. Squaring step: using Eq. (6.13), T
(

1
2N , .

)
is squared N times (in the sense of the

composition of transformations; only N compositions are required.) to obtain an accu-
rate estimation of T (1, .), i.e. of the polya�ne transformation to be computed (e.g., an
average relative error of the order of 0.5%).

From a practical (or numerical) point of view, two points remain to be clari�ed. First
what numerical scheme can be used to compute T

(
1

2N , .
)
with a good precision during the

`exponentiation step'? Second, how should the composition (which is the multiplication
operator for transformations) be performed during the `squaring step'?

Exponentiation Step. Exactly as in the matrix exponential case, integrating an ODE
during a very short interval of time (short with respect to the smoothness of the solution) is
quite easy. We can use any of the methods classically used to integrate ODEs during short
periods of times, like explicit schemes or Runge-Kutta methods, which are based on various
uses of the Taylor development to compute solutions of ODEs (see [Lambert 91] for more
details on these methods).

The simplest of these schemes is undoubtedly the �rst-order explicit scheme. In our case,
it simply consists in computing the following value:

First Order Explicit Exponentiation Scheme (E.S):
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T

(
1

2N
, x

)

E.S.

def
= x +

1

2N
.V (x).

Generalizing the ideas already developed in [Arsigny 05c] for the previous polya�ne frame-
work, we can also use a second-order scheme which takes into account the a�ne nature of
all components, and which is exact in the case of a single component. We will refer to this
scheme as the a�ne exponentiation scheme in the following. It writes:

Second Order A�ne Exponentiation Scheme (A.S):

T

(
1

2N
, x

)

A.S.

def
=

N∑

i=1

wi(x).T
1

2N

i (x),

where T
1

2N

i is the 2Nth root of the a�ne transformation Ti. We will see later in this Section
that the accuracy of this numerical scheme is slightly better than that of the explicit scheme,
probably because it takes into account the linear nature of the components.

Composing Discrete Transformations. In this work, we are evaluating our transforma-
tion at a �nite number of vertices of a regular grid. Practically, one has to resort to some
kind of interpolation/extrapolation technique to calculate the value of such a transformation
at any spatial position. Numerous possibilities exist in this domain, such a nearest-neighbor
interpolation, bi- or tri-linear interpolation, continuous representations via the use of a basis
of smooth functions like wavelets, radial basis functions... In the following, we use bi- and
tri-linear interpolations, which are simple tools guaranteeing a continuous interpolation of
our transformation. The best type of interpolation technique for the purposes of our Fast
Polya�ne Transform remains to be determined and will be the subject of future work.

Algorithmic Complexity. Note that to compute polya�ne transformations using the
FPT, the weight functions need only be evaluated once per voxel, and not at every step
of the integration of the ODE, as was done in [Arsigny 05c]. When weight functions are
stored in the computer memory as 3D scalar images, this o�ers the opportunity of removing
them from the computer RAM after the exponentiation step. This could be particularly useful
when a large number of a�ne components are used on high-resolution images.

Furthermore, the equivalent of 2N intermediate points is achieved in only N steps, in
contrast with the 2N steps required by a traditional method. After the 2Nth root has been
computed, only N compositions between transformations need to be computed, which is
an operation based on interpolation techniques and therefore not very computationally ex-
pensive. Let Nvox be the number of voxels and let Npts be the number of intermediary
points chosen to integrate the polya�ne ODE. The complexity of our new algorithm is thus
O(Nvox. log2(Npts)), whereas the complexity of traditional methods of integration of this ODE
is O(Nvox.Npts).

Computing the Inverse of a Polya�ne Transformation. As pointed out in Subsection
6.2.3, in our new framework the inverse of a polya�ne transformation is simply the polya�ne
transformation associated with the opposite vector �eld (i.e. the polya�ne transformation
with the same weights but inverted a�ne components). As a consequence, the inverse of a
polya�ne transformation can be also computed using the Fast Polya�ne Transform. Actually,
any power (square root, etc.) a polya�ne transformation can be computed this way.
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6.3.3 2D Synthetic Experiments
Throughout this results Section, we measure the accuracy of our results by computing the
relative di�erence of the results with respect to accurate estimations of the real (continuous)
transformations. These reference transformations are obtained by a classical integration (i.e.,
a �xed time step was used) of the Log-Euclidean polya�ne ODE for each of the pixels of the
grid, using a small time step: 2−8.

One should note that several parameters in�uence the accuracy of the results:

� the scaling 2N

� the geometry of the regular grid

� the interpolation method

� the extrapolation method.

Thus, compared to the classical estimation method with a �xed time step, our fast transform
possesses three new sources of numerical errors: the geometry of the regular grid (the trans-
formation is evaluated only at a �nite number of points, the more points the more precise
the result will be), the interpolation method and the fact that regardless of the extrapolation
method, some part of the information about what happens outside of the regular grid is lost.
It is therefore important to check that the accuracy of the results obtained with the FPT are
not spoiled by these new sources of error.

A Typical FPT. Figs. 6.7 and 6.8 display the results of a typical Fast Polya�ne Transform,
using two rotations of opposite angles, and a scaling of 26 (and therefore 6 squarings). The
regular grid chosen to sample the transformation is of 50×40 pixels. The a�ne exponentiation
scheme is used.

On average, the results are quite good: the average relative error is approximately equal
to 0.6%. However, much higher errors (around 11%) are obtained at the boundary, which
comes from the fact that the bi-linear interpolation we use here does not take into account
the rotational behavior of the transformation outside of the grid.

Using Bounding Boxes to Correct Boundary E�ects. The numerical errors stemming
from the loss of information at the boundary of the regular grid can be drastically reduced for
example by enlarging the regular grid used. A simple idea consists in adding to the regular
grid some extra points so that it contains the points of boundary deformed by Euclidean
fusion of the a�ne components. This is illustrated by Fig. 6.9.

Fig. 6.10 presents the accuracy of the results given by the FPT, this time using a regular
grid extended in the way described just above. This time, errors are much lower: the relative
accuracy of the resulting estimation of the polya�ne transformation is on average of 0.21%
(instead of approximately 0.6% without an enlarged grid), and the maximal relative error is
below 3.2% (instead of 11% without an enlarged grid). This simple and e�cient technique,
which drastically reduces the e�ect of boundary e�ects on the FPT, is used systematically in
the rest of this Chapter.

In�uence of Scaling. What scaling should be chosen when the FPT is used? Of course,
this depends on the quantity of high frequencies present in the polya�ne transformations.
The more sharp changes, the smaller the scaling should be and the �ner the sampling grid
should also be.
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Figure 6.7: Fast polya�ne transform for two rotations. A scaling factor of 26 was
used in this experiment, and there are therefore 6 squaring steps. Note how the deformation
is initially very small, and increases exponentially. The accuracy of the FPT results was
measured with respect to the results given by a classical integration (voxel by voxel) of the
polya�ne ODE with 28 intermediate points. The relative error of the resulting estimation
of the polya�ne transformation is below 0.6% on average and the maximal relative error, as
expected, is made at the boundary and is below 11%.
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Figure 6.8: Fast polya�ne transform for two rotations: errors localization and
evolution. Left: the errors at the vertices of our 50 × 40 regular grid are displayed as an
image, after a FPT with 6 squarings. Note how the maximal relative errors are concentrated
on the boundary of our grid. This is due to the inaccuracy of our extrapolation technique,
which is only bi-linear and does not deal very precisely with the a�ne nature of the polya�ne
transformation. Right: the evolution of errors along squarings is displayed. The relative
error of the resulting estimation of the polya�ne transformation is below 0.6% on average
and the maximal relative error is below 11%.
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Figure 6.9: Enlarging the original regular grid with a bounding box. In red (plus
signs): the original regular grid used to sample the Log-Euclidean polya�ne fusion between
two rotations. In green (stars): grid deformed by direct fusion of the two rotations, which
can be computed at a very low computational cost. In blue (plus signs): regular grid
extended so that it now contains the green points. This enlarging procedure considerably
reduces the impact on the Fast Polya�ne Transform of the loss of information beyond the
boundaries of the regular grid, as shown in this Section.
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Figure 6.10: Using an enlarged sampling grid: impact on errors localization and
evolution for the fast polya�ne transform for two rotations. Left: the errors at the
vertices of our 50 × 40 regular grid are displayed as an image, after a FPT with 6 squarings.
Note how the maximal errors are concentrated this time on the region of highest compression.
Right: the evolution of errors along squarings is displayed. This time, errors are much lower:
the relative error of the resulting estimation of the polya�ne transformation is on average
below 0.21% (instead of below 0.6% without an enlarged grid), and the maximal relative error
is below 3.2% (instead of 11% wihtout an enlarged grid).

Fig. 6.11 displays the performance in accuracy of the FPT when the number of iterationsN
varies. In this experiment, we use the same fusion of rotations as in the previous experiment.
In this case, the optimal scaling is 25. Larger scalings do not result in better accuracy,
essentially because of the missing information at the boundary.

We observed in the experiments on real 3D medical images described in the sequel of this
Chapter that even much smaller scalings (typically 23 or 22) could be used without sacri�cing
the accuracy of the result. In short, introducing even a small number of intermediate points
substantially regularizes the fused transformation with respect to the direct fusion, since this
su�ces to remove singularities in practice. Using more intermediary points, i.e. 5 or more
squarings, o�ers the possibilities to be very close to the ideal polya�ne transformation, which
provides a simple way to compute the inverse of the fused transformation with an excellent
accuracy, as will be shown in this subsection.

Moreover, one should also note from Fig. 6.11 that our Fast Polya�ne Transform is very
stable: using unnecessary iterations (or equivalently a very large scaling) does not result in
numerical instabilities. The result is mostly independent of N for N > 6.

Comparison between Numerical Schemes. Here, we compare the explicit a�ne expo-
nentiation schemes. We perform this comparison on our three favorite examples: the fusion
of two rotations, the fusion of two antagonistic translations as in Fig. 6.3, and the fusion
between a translation and an anisotropic swelling as in Fig. 6.5. The accuracy of the FPT
using both numerical schemes is compared in all three cases. Fig. 6.12 shows the results.

Both numerical schemes make the FPT converge toward the same accuracy as the number
of squarings increases, but the convergence is slightly faster in the a�ne exponentiation case:
the average error is 40% smaller in the a�ne case for scalings smaller than 26. Interestingly,
the two numerical schemes are identical for the fusion of the two translations, because the
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Figure 6.11: Fast polya�ne transform for two rotations: in�uence of scaling.
Above: regular grids deformed by polya�ne transformations obtained with the FPT us-
ing di�erent values of the scaling factor. The scaling factors are the following: 21, 22, 24, 26,
210 and 215. Note how close the results are when the number of squarings N is larger or equal
to 7. Below: accuracy of the estimations when N varies. The results are extremely stable
for N > 6: it is unnecessary to use larger scalings in the example considered here. However,
remarkably, using larger scalings does not change the results: our FPT is very stable. The rel-
ative error of the resulting estimation of the polya�ne transformation converges toward 0.2%
on average and the maximal relative error converges toward 2% for large Ns. The residual
maximal error is essentially due to the sampling of the transformation on a grid and the use
of an interpolation method between the points of the grid, since an extended grid is used to
drastically reduce errors at the boundary of the grid.
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linear parts of these two a�ne translations are equal to the identity.
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Figure 6.12: Comparison between numerical schemes. From left to right and
then from top to bottom: fusion between two rotations, two translation and �nally a
translation and an anisotropic swelling. A.S. stands for `a�ne exponentiation scheme' and E.S.
for `explicit exponentiation scheme'. Interestingly, the two numerical schemes are identical
for the fusion of the two translations, because the linear parts of these two a�ne translations
are equal to the identity. Both numerical schemes make the FPT converge toward the same
accuracy as the number of squarings increases, but the convergence is substantially faster in
the case of the a�ne exponentiation scheme: in the two cases where the schemes yield di�erent
results, the average relative error is 40% smaller in the a�ne case for scalings smaller than
26.

Inverting Polya�ne Transformations with the FPT. As pointed out previously, in our
novel framework, the inverse of a polya�ne transformation is simply (and quite intuitively) the
polya�ne transformation with the same weights and with inverted a�ne components. This
inverse can also be computed using the Fast Polya�ne Transform, and in this experiment we
tested the accuracy of the inversion obtained this way. The a�ne exponentiation scheme was
used for exponentiation along with a 50 × 40 grid.

Fig. 6.13 presents with deformed grids the evolution of the accuracy of inversion when
the number of squarings varies, in our example of fusion between two rotations. Fig. 6.14
presents the quantitative results in the three cases of fusion used in the previous experiment.
We thus see that an excellent quality of inversion can be achieved using a small number of
squarings, typically 6.
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Figure 6.13: Inverting a polya�ne transformation with the FPT. From left to right
and then from top to bottom: our regular grid is deformed by the composition between
the FPT of the fusion between two rotations and the FPT of its inverse, for di�erent numbers
of squarings N . One can see that an excellent accuracy of inversion is already achieved with
6 squarings.
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Figure 6.14: Inverting a polya�ne transformation with the FPT: quantitative re-
sults. From left to right and then from top to bottom: fusion between two rotations,
two translation and �nally a translation and an anisotropic swelling. The composition be-
tween the FPT of the transformation of the FPT of its inverse is carried out, for di�erent
numbers of squarings. The errors displayed are relative with respect the polya�ne trans-
formation considered: the displacements are expected to be close to zero (i.e. the resulting
transformation is expected to be close to the identity), and the errors are measured with
respect to the displacements observed originally. One can see that an excellent accuracy of
inversion is already achieved with 6 squarings. As expected, the maximal errors are observed
at the boundary of the grid, which can be �xed for example by using a larger grid to compute
the FPT.
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6.3.4 3D Registration Example
In Chapter 5, we had seen how it was possible to optimize the parameters of polyrigid or
polya�ne transformations in medical image registration experiments. However, this leads in
practice to a high computational cost, and with Olivier Commowick (Ph.D. candidate in our
team and also working for DOSISoft SA, Cachan, France), we have worked toward drastically
reducing this cost.

To obtain short computation times (typically 10 minutes for whole 3D volumes in the
locally a�ne case), our locally a�ne registration algorithm, presented in [Commowick 06a,
Commowick 06b], estimates a�ne components using the direct fusion. The FPT is used in
a �nal step to ensure the invertibility of the �nal transformation, as well as to compute its
inverse. We have observed experimentally that this yields quite satisfactory results, as we will
see below.

3D Atlas Registration Experiment. Let us consider a real 3D example of locally a�ne
registration, between an atlas of 216×180×180 voxels and a T1-weighted MR image, with our
multi-resolution and robust block-matching algorithm, without regularization. Seven struc-
tures of interest are considered: eyes (1 a�ne component each), cerebellum (2 components),
brain stem (2 components), optic chiasm (1 component), 1 supplementary component (set to
the identity) elsewhere. Weight functions are de�ned in the atlas geometry using mathemat-
ical morphology and a smoothing kernel in a preliminary step and remain unchanged during
the registration process.

Philosophy of our Locally A�ne Algorithm. Here, the idea is to use a registration
procedure capable of registering �nely a number of �xed structures of interest, with very
smooth transformations. In contrast, many registration algorithms are able to register �nely
the intensities of the images of two anatomies, but this is done in most cases at the cost of
the regularity of the resulting spatial transformation. This lack of smoothness leads to serious
doubts regarding the anatomical likelihood of such transformations.

Fig. 6.15 provides a comparison between the typical smoothness of dense transformation
and locally a�ne registration results. Interestingly, much smoother deformations are obtained
in the locally a�ne case with an accuracy in the structures of interest which is comparable to
the dense transformation case of [Stefanescu 04]. More details on this subject can be found
in [Commowick 06b].

LEPTs as a Powerful Post-Processing Tool. As we mentionned before, our locally a�ne
registration algorithm estimates a�ne components using the direct fusion. The FPT is used
in a �nal step to ensure the invertibility of the �nal transformation, as well as to compute its
inverse. Here, the scaling used in 28 and the FPT is computed in 40s on a Pentium4 Xeon�2.8
GHz on a 216 × 180 × 180 regular grid.

As shown by Fig. 6.16, the direct fusion of components estimated by our locally a�ne
algorithm can lead to singularities, which is not the case when the FPT is used. Remarkably,
both fusions are very close outside of regions with singularities. This means that no artifacts
are introduced by the FPT, which justi�es a posteriori the estimation of a�ne components
with the (faster) direct fusion.
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Figure 6.15: Locally a�ne vs. dense-transformation: smoothness of deformations.
Left: results of dense transformation algorithm [Stefanescu 04]. Right: locally a�ne case.
Top: deformed grids (axial slices). Middle and bottom: the contours of our structures
of interest (eyes, brain stem, cerebellum, optic chiasm) are displayed on the subject (middle
: axial slice, bottom: sagittal slice). These contours are obtained by deforming those of the
atlas. Note how smoother deformations and contours are in the locally a�ne case, although
both accuracies are comparable.
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Figure 6.16: Singularity removal with LEPTs. A 3D regular grid is deformed with the lo-
cally a�ne transformation obtained with the algorithm of [Commowick 06a,Commowick 06b],
two slices are displayed. From left to right: polya�ne fusion and direct fusion (two axial
slices are displayed: one on top, one at the bottom). Note how the singularities of the direct
fusion disappear with LEPTs. Remarkably, this is obtained without introducing any artifacts:
outside singularities, both fusions yield very close results.
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6.4 A Log-Euclidean Framework for Rigid and A�ne Transfor-
mations

As we have seen in Section 6.2.3, the problem of fusing into a global invertible transformation
several local rigid or a�ne components is closely linked to the averaging of rigid or a�ne
transformations. Indeed, in the case where all the weight functions wi(x) do not depend on
x, fusing several rigid or a�ne components in the Log-Euclidean polya�ne framework results
in a Log-Euclidean averaging of these components. This means that the obtained global
transformation T is rigid or a�ne (which is quite intuitive, since it would be surprising in this
particular case to get a non-linear result) and is given as a Log-Euclidean mean:

T = exp

(∑

i

wi log(Ti)

)
. (6.14)

In our original polya�ne framework, we also have this natural property, but this time the
global rigid or a�ne transformation is obtained in the following way:

T = (L, t), with: L = exp

(∑

i

wi log(Li)

)
and t =

∑

i

wi.ti. (6.15)

The averaging procedure given by (6.15) is not entirely satisfactory, since it does not take into
account the semi-direct product nature of the rigid and the a�ne groups. The averaging is
carried out independently on the linear parts and the translation parts, which results in the
case of a�ne transformations in the absence of a�ne-invariance: the averaging depends on the
current coordinate system, and is only an averaging of matrices and not an averaging between
geometrical deformations (which should not depend on the arbitrary choice of coordinate
system). As we will see in this Section, a Log-Euclidean averaging has no such defect.

In the rest of this Section, we present the properties the general Log-Euclidean framework
for linear transformations. Similarly to the Log-Euclidean framework for tensors which is
presented in Chapter 3, it is simple to use and also has some excellent theoretical properties
(althouth slightly fewer here than in the particularly neat tensor case). This framework can
for example be used to compute statistics on linear transformations, which is an important
issues in the medical imaging community, as detailled in Section 1.1.3. In this framework,
the only restriction imposed on linear transformation to be processed is the following: their
principal logarithm has to be well-de�ned (i.e. the processed transformations should not be
too far away from the identity, in the sense of the precise criterion given in Section 2.3.4).
At the end of this Section, we also present brie�y the Log-Euclidean framework for general
(possibly abstract) Lie groups.

We recently found out that in 2002, Alexa already proposed in [Alexa 02] to process
linear geometrical transformations via their logarithms, in the context of the interpolation of
transformations for computer graphics, and had also suggested to perform statistics on these
transformations via their logs. One should note that our approach, which we developped
independently, goes considerably deeper into the analysis of the properties of this framework.
In particular, we were the �rst to our knowledge to put into light the geometric interpolation
of determinants provided by the Log-Euclidean mean, as well as the invariance properties
of this framework (i.e., inversion-invariance and a�ne-invariance). The extension of the Log-
Euclidean framework to abstract Lie groups presented at the end of this Section is also entirely
novel to our knowledge.
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6.4.1 Log-Euclidean Metrics
The basic idea behind the Log-Euclidean framework for linear transformations is the following:
the spaces of rigid or a�ne transformations can be linearized around the identity in a way
that is compatible with many algebraic properites of these Lie groups. This linearization is
simply given by the group logarithm that we described in Chapter 2. Once this linearization
has been carried out, usual vector processing tools can be readiliy generalized on logarithms
and the result is mapped back to the transformation space by the exponential when necessary.

Log-Euclidean Distances. Then, let T1 and T2 be two admissible a�ne transformations.
A Log-Euclidean distance (or metric) between the two transformations will be of the following
form:

dist(T1, T2) = ‖ log(T1) − log(T2)‖, (6.16)
where ‖.‖ is a Euclidean norm, for example the Frobenius norm, which is de�ned by ‖M‖Frob =(
Trace(MT .M)

) 1
2 . This is the norm we will be using in the rest of this Chapter.

Log-Euclidean Mean. As in the tensor case, one can associate to Log-Euclidean distances
a generalization of the arithmetic mean, in the classical way, called the Fréchetmean. The Log-
Euclidean mean E(T1, ..., T2)LE of N admissible transformations T1, ...TN with non-negative
weights w1, ..., wN (such that

∑
i wi = 1) is de�ned as the point minimizing the following

metric dispersion:

E(T1, ..., TN )LE = arg min
admissible T

N∑

i=1

wi dist2(T, Ti).

As in the tensor case, classical Euclidean geometry on the principal logarithms of the trans-
formations show that the Log-Euclidean mean is indeed well-de�ned for transformations close
enough to a scaled version of the identity. In this case, it is simply given by exponential of
the arithmetic mean of data:

E(T1, ..., TN )LE = exp

(
N∑

i=1

wi. log(Ti)

)
. (6.17)

For admissible transformations very far away from the identity, it might be possible that
the arithmetic mean of their logarithms lies outside the logarithmic domain of admissible
transformations! To our knowledge, although the set of complex numbers whose imaginary
part lies in ] − π, π[ is obviously convex, the set of real matrices whose eigenvalues are all in
this domain is only open, and not convex. This set of matrices is only locally convex.

In practice, to check the well-de�nedness of the Log-Euclidean mean, it su�ces to check
that the Euclidean mean of the logarithms is still admissible. However, having a simple
and general criterion on the Ti ensuring that all convex combinations of their logarithms are
admissible would be very desirable, and this will be the subject of future work.

The Log-Euclidean Mean as a Geometric Mean. Exactly as in the tensor case, the
determinant of the homogeneous representation of the Log-Euclidean mean is equal to the
scalar geometric mean of the determinants of the data. In other words, we have:

det(E(T1, ..., TN )) = exp

(∑

i

wi ln (det(Ti))

)
,
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where ln is the (scalar) natural logarithm.
This can be shown with the same techniques as for tensors (well, actually nothing more

than Jordan or Schur decompositions of matrices), see Section 3.4.3 for more details. The
Log-Euclidean mean is therefore a generalization of the scalar geometric mean to a�ne trans-
formations. The determinant of a�ne transformations has a very simple physical interpre-
tation: it describes how volumes are changed by the a�ne transformation. Above 1, the
transformation dilates volumes, and below 1, there is a contraction. The geometric interpola-
tion of the determinants of the data performed by Log-Euclidean averaging thus guarantees
that determinants are monotonically interpolated. This is not true for the arithmetic mean
of a�ne-transformation, since Euclidean operations do not take into account the group struc-
ture of a�ne transformations. The arithmetic mean of several a�ne transformations can for
example introduce more dilation than there originally was in the data, which is the `swelling
e�ect' well-known in the tensor case [Arsigny 05a].

6.4.2 Invariance Properties
Invariance by Inversion. It can be easily seen that any Log-Euclidean distance on a�ne
transformations is invariant by inversion: the principal logarithm of an inverted transforma-
tion is simply the logarithm of the original transformation multiplied by −1, which does not
change the value the distance (see Eq. (6.16)).

Rotational Invariance. A number of Log-Euclidean distances on a�ne transformations
are rotation-invariant. This means that when the coordinate system is changed by a rotation,
the Log-Euclidean distance between two a�ne transformations is unchanged. To see this,
let us recall how an a�ne change of coordinates a�ects a�ne transformations. Let T be an
a�ne transformation used to deformed locally the ambient space and let A be another a�ne
transformation, used this time to change the coordinate system. When the point x is changed
into A.x, then the a�ne transformation T is classically changed into A.T.A−1. The principal
logarithm of A.T.A−1 is simply A. log(T ).A−1. Using this equation, we get in homogeneous
coordinates:

log(A.T.A−1) ∼
(

M2.L.M−1
2 −M2.L.M−1

2 .t2 + M2.v
0 0

)
, (6.18)

where A = (M2, t2) and where L and v are respectively the linear part and the translation
part of log(T ). As consequence, when M2 is a rotation matrix R and when t2 is equal to zero,
we get:

‖ log(A.T.A−1)‖2
Frob. = ‖R.L.RT ‖2

Frob. + ‖R.v‖2
Eucl. = ‖L‖2

Frob. + ‖v‖2
Eucl. = ‖ log(T )‖2

Frob.,

which precisely means that this Log-Euclidean distance is rotation-invariant.

And Translation-Invariance? How does the choice of the origin of the coordinate system
have an impact on Log-Euclidean metrics? To see this, let us re-write Eq. (6.18) in the case
where the a�ne change of coordinate system is a pure translation and writes A = (Id, t2).
Then Eq. (6.18) becomes:

log(A.T.A−1) ∼
(

L −L.t2 + v
0 0

)
,

which implies in turn that we have:

‖ log(A.T.A−1)‖Frob. = ‖L‖2
Frob. + ‖v − L.t2‖2

Eucl.,
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which depends on t2 and is not equal in general to ‖ log(T )‖2
Frob.. Changing the origin of the

coordinate system by a translation t2 results in shifting by −L.t2 the translation part v of
the logarithm of the current a�ne transformation T , which changes the norm of log(T ) in
general. The Log-Euclidean Frobenius distance is therefore not translation-invariant.

A�ne-Invariance of the Log-Euclidean Mean. Although Log-Euclidean distances are
not even translation-invariant in general, the Log-Euclidean mean is a�ne-invariant: it is not
biased at all by the current coordinate system. To see this, let T1, ..., TN be N a�ne trans-
formations with logarithms (L1, v1), ..., (LN , vN ), and let w1, ..., WN N be N non-negative
weights. Using Eq. (6.18), we have:

log(E(A.T1.A
−1, ..., A.TN .A−1)LE) =

∑
i wi log(A.Ti.A

−1)
=

∑
i wiA. log(Ti).A

−1

= A. (
∑

i wi log(Ti)) .A−1

= A. log (E(T1, ..., TN )) .A−1

= log
(
A.E(T1, ..., TN ).A−1

)

which implies the a�ne-invariance of the Log-Euclidean mean:
E(A.T1.A

−1, ..., A.TN .A−1)LE = A.E(T1, ..., TN )LE.A−1.

6.4.3 Regularization of Locally A�ne Transformations
One of the great advantages of the Log-Euclidean framework is that classical vector tools can
be readily recycled in this framework. Once a�ne-transformations have been transformed into
their principal logarithm, one can simply perform Euclidean operations on them. This allows
the direct generalization of classical vectorial regularization tools to locally a�ne deformations,
which we use in our locally a�ne registration algorithm [Commowick 06a,Commowick 06b].

To speed up computations in our locally a�ne algorithm, we estimate the a�ne transfor-
mations of the components in two very simple steps. First, a separate estimation of modi-
�cations from the block-matching results, and second a regularization of the resulting a�ne
components. Compared to a coupled estimation of the local transformations in one step, this
is much faster and yields similar results in practice.

Elastic-Like Regularization. Here, the idea is essentially to quantify the regularity of
a locally a�ne transformation by a measure of its deviation with respect to a global a�ne
transformation. This can be done with the following elastic-like regularity energy:

Reg(Ti, wi) =
1

2
.

N∑

i=1

∑

j>i

pi,j‖ log(Ti) − log(Tj)‖2, (6.19)

where Ω is the (bounded) image domain chosen for the registration experiment, and where
the correlation weights pi,j between the components are de�ned in the following way:

pi,j =

(∫

Ω
wi(x).wj(x)dx

)
× 1

2

(
1∫

Ω wi(x)dx
+

1∫
Ω wj(x)dx

)
,

One can show that this non-negative energy is equal to zero if and only if only components
are equal, i.e. if the global transformation is a�ne.

This type of energy takes into account the spatial extensions of the components and their
spatial relationships. Thus, the di�erences between two components with a large `overlap'
(i.e., a large correlation weight) will be more penalized than components `far apart' (i.e., with
a small pi,j).
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Elastic-Like Regularization and Log-Euclidean Means. From a practical point of
view, to regularize the current locally a�ne transformation, we perform in [Commowick 06a,
Commowick 06b] a gradient descent of the elastic-like energy given in (6.19). The partial
derivative of this energy yields:

∂

∂ log(Tk)
Reg(Ti, wi) =

∑

j 6=k

pj,k (log(Tk) − log(Tj)) .

As a consequence, performing a gradient descent of our elastic-like energy simply results in
replacing a�ne transformations Ti by Log-Euclidean means between all a�ne transformations,
the weights depending on the correlation weights pi,j and on the time step used (which should
be small enough to ensure that the weights used are all non-negative). This guarantees the
a�ne-invariance of our regularization approach, since performing Log-Euclidean means of
a�ne transformations is an a�ne-invariant operation. This was not obvious at all, since the
Log-Euclidean metric we use is only rotation-invariant, and not a�ne-invariant.

Extensions to Other Types of Regularizations. Since usual vectorial processing tools
are easily recycled in the Log-Euclidean framework, other types of regularization techniques,
such as �uid-like regularization (i.e. elastic-like regularization on the small modi�cations made
to the components between the iterations of the registration algorithm), can be generalized to
locally a�ne transformations in the same straightforward way as elastic-like regularization.
In [Commowick 06a, Commowick 06b] for example, we use visco-elastic regularization (i.e.
elastic-like and �uid-like regularization), exactly as was done in [Stefanescu 05] in the dense-
transformation algorithm case.

Synthetic 2D Experiment. To illustrate the e�ect of our locally a�ne elastic regulariza-
tion, let us regularize a synthetic polya�ne transformation using the Log-Euclidean elastic-like
regularization energy of Eq. (6.19). 9 components were regularly de�ned on the grid, and
their a�ne transformations were chosen randomly. A gradient descent on the energy (6.19)
was performed, and the result is shown in Fig. 6.17. Note how the 9 components all converge
toward the same global a�ne transformation as the degree of regularization increases.

6.4.4 Log-Euclidean Framework for General Lie Groups
In this Section, we have presented the Log-Euclidean frameworks for rigid or a�ne transfor-
mations. Of course, it can be extended to any Lie subgroup of invertible matrices (e.g., GL(n)
itself, SL(n), etc.). In fact, such an extension is also available for any �nite-dimensional Lie
group. Indeed, since Lie algebras are by de�nition vector spaces, one can always perform
vectorial operations on data living in a Lie group via their group logarithm. Of course, this
is only entirely justi�ed only close to the identity, where the group logarithm is well-de�ned.

By construction, this framework is inversion-invariant. Furthermore, the Log-Euclidean
mean is invariant with respect to the adjoint representation: if the data (xi) is shifted in the
following fashion: (xi) 7→ (m.xi.m

−1), so is their Log-Euclidean mean; this property is the
abstract equivalent of the a�ne-invariance of the Log-Euclidean mean of a�ne transforma-
tions. This is a simple consequence of the properties of the logarithm and the exponential
presented in the Lemma 7.1 of Chapter 7.

In the matrix case, the general properties of the Log-Euclidean framework are of course
valid. There is in this case one extra property in terms of determinants: the determinant
of the Log-Euclidean mean is equal to the geometric mean of the determinants of the data.
The Log-Euclidean mean is therefore a generalization to invertible matrices of the (scalar)
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Figure 6.17: Log-Euclidean regularization of a polya�ne transformation. From
left to right and then from top to bottom: regular grid deformed by original polya�ne
transformation (with 9 a�ne components), the same regular grid deformed by the increasingly
regularized polya�ne transformation. Note how the 9 components all converge toward a Log-
Euclidean mean of the original a�ne transformations as the regularization increases.
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geometric mean of positive numbers. Interestingly, we will see in Chapter 7 that this is not the
only possible generalization: the bi-invariant mean presented therein also has this property
(see Section 7.6.3 for more details on this subject).

6.4.5 Numerical Implementation of Matrix Logarithm.
In this work, we have used the `Inverse Scaling and Squaring' method [Cheng 01] to compute
matrix logarithms. This method, similarly to the `Scaling and Squaring' method in the
exponential case, is based on the idea that computing the logarithm of a matrix close to
the identity is easier than computing the logarithm of a general matrix. Like in the case of
the matrix exponential, this computation can be done very accurately and at a very small
computational cost using Padé approximants.

In order to transform a matrix into another matrix closer to the identity, the `Inverse
Scaling and Squaring' method uses the computation of successive square roots. Once the 2N th

root of a matrix M has been computed, one can use the following equality to compute the
logarithm of M :

log(M) = 2N . log
(
M2−N

)
. (6.20)

Actually, (6.20) is nothing more than Eq. (6.12) in the domain of logarithms.
More details on how square roots can be iteratively computed and on the choice of the

level of squarings N can be found in [Cheng 01].
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6.5 Conclusion and Perspectives
In this Chapter, we have presented a novel framework to fuse rigid or a�ne components into
a global transformation, called Log-Euclidean polya�ne. Similarly to the previous polya�ne
framework of [Arsigny 05c], it guarantees the invertibility of the result. However, this is
achieved with more intuitive properties than previously: for example the inverse of a LEPT is
a LEPT with identical weights and inverted a�ne components. Moreover, this novel fusion is
a�ne-invariant, i.e. does not depend on the choice of coordinate system. We have also shown
that the speci�c properties of LEPTs allow their fast computations on regular grids, with an
algorithm called the `Fast Polya�ne Transform', whose e�ciency is somehow comparable to
that of the Fast Fourier Transform.

In the example of locally a�ne 3D registration presented here, we use LEPTs in a �nal step
to fuse the a�ne components estimated during the algorithm of [Commowick 06a]. With the
FPT, this is done very e�ciently. Remarkably, the novel fusion is very close to the direct fusion
in regions without singularities. This suggests that our novel framework provides a general and
e�cient way of fusing local rigid or a�ne deformations into a global invertible transformation
without introducing artifacts, independently of the way local a�ne deformations are �rst
estimated.

We have also presented in this Chapter a Log-Euclidean framework for rigid and a�ne
transformations, as well as its extension to any �nite-dimensional real Lie group. This frame-
work generalizes to linear transformations the Log-Euclidean framework which is described
in Chapter 3 for tensors. Interestingly, this framework allows a straightforward and e�cient
generalization to linear transformations of classical vectorial tools, with excellent theoretical
properties. In particular, we have already used this framework in [Commowick 06a] to de�ne
a simple visco-elastic regularization energy for locally rigid or a�ne deformations. In future
work, we are planning to use this simple framework to compute statistics on rigid and a�ne
local components of deformations, which could help to better constraint non-rigid registra-
tion algorithms, as some of us begun to do in [Pennec 05] and [Commowick 05] with (local)
statistics on Cauchy-Green deformation tensors.

Remarkably, we have seen in this Chapter that the Log-Euclidean mean of linear trans-
formations can be seen as a generalization to invertible linear transformations of the (scalar)
geometric mean of positive number. This comes from the fact that the determinant of the
mean is equal to the geometric mean of the data. In Chapter 7, we will see that at least
another such generalization exists, called the bi-invariant mean.
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Chapter 7

Bi-Invariant Means in Lie Groups

In the previous Chapter, we relied implicitly on the Log-Euclidean mean of linear transfor-
mations to obtain intuitive invariance properties for polya�ne transformations. This type of
mean generalizes to rigid and a�ne transformations the geometric mean of positive number,
in a way which is invariant by inversion.

In this Chapter, we de�ne another general notion of mean in �nite-dimensional Lie groups
(e.g., the rigid or a�ne groups) which is this time fully compatible with the algebraic structure
of these groups, contrary to the Log-Euclidean mean which is only invariant by inversion and
invariant with respect to the action of the adjoint representation. Indeed, the bi-invariant
mean presented below generalizes to any Lie group the invariance properties of the arithmetic
mean. Interestingly, we do not rely on Riemannian geometry but on the general algebraic
properties of Lie groups to de�ne this mean. In fact, going beyond Riemannian metrics was
unavoidable: we prove in this Chapter that no bi-invariant Riemannian metric exist for rigid
transformations, in any dimension.

Finally, we use the bi-invariant mean to de�ne a last class of polya�ne transformations,
called left-invariant polya�ne, which allows to fuse local rigid or a�ne components arbitrarily
far away from the identity.
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Abstract. In this Chapter, we present a general framework to de�ne rigorously a novel type
of mean in Lie groups, called the bi-invariant mean. This mean enjoys many desirable invari-
ance properties, which generalize to the non-linear case the properties of the arithmetic mean:
it is invariant with respect to left- and right-multiplication, as well as inversion. Previously,
this type of mean was only de�ned in Lie groups endowed with a bi-invariant Riemannian
metric, like compact Lie groups such as the group of rotations. But Riemannian bi-invariant
metrics do not always exist. In particular, we prove in this work that such metrics do not
exist in any dimension for rigid transformations, which form but the most simple Lie group
involved in bio-medical image registration.

To overcome the lack of existence of bi-invariant Riemannian metrics for many Lie groups,
we propose in this thesis to de�ne bi-invariant means in any �nite-dimensional real Lie group
via a general barycentric equation, whose solution is by de�nition the bi-invariant mean. The
existence and uniqueness of this novel type of mean is shown, provided the dispersion of
the data is small enough. The convergence of an e�cient iterative algorithm for computing
this mean is also shown. The intuition of the existence of such a mean was �rst given by
R.P.Woods (without precise de�nition) in the case of matrix groups [Woods 03]. Moreover,
we brie�y present how empirical higher order moments can be computed based on this novel
notion of mean.

In the case of rigid transformations, we give a simple criterion for the general existence
and uniqueness of the bi-invariant mean, which happens to be the same as for rotations. We
also give closed forms for the bi-invariant mean in a number of simple but instructive cases,
including 2D rigid transformations. For general linear transformations, we show that similarly
to the Log-Euclidean mean the bi-invariant mean is a generalization of the (scalar) geometric
mean, since the determinant of the bi-invariant mean is exactly equal to the geometric mean
of the determinants of the data.

Finally, we use this new type of mean to de�ne a novel class of polya�ne transformations,
called left-invariant polya�ne, which allows to fuse local rigid or a�ne components arbitrarily
far away from the identity, contrary to Log-Euclidean polya�ne fusion, which we are presented
in Chapter 6.
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Related Publications. Most of this Chapter was published in an INRIA research report
[Arsigny 06g].

7.1 Introduction
As we have seen in the Introduction of this thesis, in Section 1.1.3, the need for rigorous
frameworks to compute statistics in non-linear spaces has grown considerably in the bio-
medical imaging community in recent years.

Among statistics, the most fundamental is certainly the mean, which extracts from the
data a central point, minimizing in some sense the dispersion of the data around it. In this
Chapter, we focus on the generalization of the Euclidean mean to Lie Groups, which are a large
class of non-linear spaces with relatively nice properties. Classically, in a Lie group endowed
with a Riemannian metric, the natural choice of mean is called the Fréchet mean [Pennec 06a].
But this Riemannian approach is completely satisfactory only if a bi-invariant metric exists,
which is for example the case for compact groups such as rotations [Pennec 06a,Moakher 02].
The bi-invariant Fréchet mean enjoys many desirable invariance properties, which generalize
to the non-linear case the properties of the arithmetic mean: it is invariant with respect to
left- and right-multiplication, as well as inversion. Unfortunately, bi-invariant Riemannian
metrics do not always exist. In particular, in this work, we prove the novel result that such
metrics do not exist in any dimension for rigid transformations, which form but the most
simple Lie group involved in bio-medical image registration.

To overcome the lack of existence of bi-invariant Riemannian metrics for many Lie groups,
we propose in this thesis to de�ne a bi-invariant mean generalizing the Fréchet mean induced
by bi-invariant metrics, even in cases when such metrics do not exist. The intuition of the
existence of such a mean was actually �rst given in [Woods 03] (without precise de�nition),
along with an e�cient algorithm for computing it (without proof of convergence), in the case
of matrix groups.

In this work, we present a general framework to de�ne rigorously bi-invariant means, this
time in any �nite dimensional real Lie group. To do this, we rely on a general barycentric
equation, whose solution is by de�nition the bi-invariant mean. The existence and uniqueness
of this novel type of mean is shown, provided the dispersion of the data is small enough.
The convergence of the iterative algorithm of [Woods 03] is also shown. Moreover, we brie�y
present how empirical higher order moments can be computed based on this novel notion of
mean.

In the case of rigid transformations, we have been able to determine a simple criterion for
the general existence and uniqueness of the bi-invariant mean, which happens to be the same
as for rotations. We also give closed forms for the bi-invariant mean in a number of simple
but instructive cases, including 2D rigid transformations. Interestingly, for general linear
transformations, we show that similarly to the Log-Euclidean mean, the bi-invariant mean
is a generalization of the (scalar) geometric mean, since the determinant of the bi-invariant
mean is exactly equal to the geometric mean of the determinants of the data.

Finally, this new type of mean is used to de�ne a novel class of polya�ne transformations,
called left-invariant polya�ne, which allows to fuse local rigid or a�ne components arbitrarily
far away from the identity, contrary to Log-Euclidean polya�ne fusion.

The sequel of this Chapter is organized as follows. First, we detail some fundamental
notions and properties about means and invariant Riemannian metrics in Lie groups. Using
these properties, we prove that bi-invariant Riemannian metrics do not exist for rigid trans-
formations. Then, we detail some advanced properties of the exponential and logarithm in
Lie groups not described in Chapter 2. In the next Section, we rely on these properties to
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obtain a novel de�nition of bi-invariant means in any �nite-dimensional real Lie groups, along
with a proof of its existence and uniqueness and we also prove the convergence of the e�cient
iterative scheme proposed in [Woods 03] to compute this mean in practice. Then, we explicit
the form taken by the bi-invariant mean in a number of simple cases where a closed form exists
for this mean, e.g. the Heisenberg group. Afterwards, we focus on linear transformations, and
in particular on rigid transformations and tensors. Before concluding, we rely on bi-invariant
means to de�ne a novel class of polya�ne transformations, called left-invariant polya�ne,
which allows to fuse local rigid or a�ne components arbitrarily far away from the identity.

7.2 Means in Lie Groups
Please refer to Chapter 2, Section 2.3 for a short presentation of Lie groups and of their
fundamental properties.

7.2.1 Means and Algebraic Invariance
Lie groups are not vector spaces in general but have a more complicated structure: instead of a
(commutative) addition `+' and a scalar multiplication `.', they only have a (non-commutative
in general) multiplication `×' and an inversion operator (which corresponds to the scalar
multiplication by −1 for vector spaces).

In order to generalize to Lie groups the invariance properties of the arithmetic mean, one
can rely on the invariance properties that the mean should a priori satisfy.

Indeed, in the case of vector spaces, the arithmetic means presents strong invariance
properties: invariance with respect to any translation and with respect to any multiplication
by a scalar. This means that the arithmetic mean is invariant with respect to all the algebraic
operations induced by the vector space structure. It makes good sense that the notion of
mean and the algebraic structure should be compatible.

In the case of groups, the invariance with respect to left- and right-multiplications (the
group can be non-commutative) and the inversion operator are the equivalent of the invariance
properties of the mean in vector spaces. When we translate a given set of samples or a
probability measure, it is reasonable to wish that their mean be translated exactly in the
same way, and the same property is desirable when we take the inverses of the samples.

Example 7.1. The Geometric Mean of Positive Numbers. We can give to the set of
positive numbers a structure of commutative group with the usual scalar multiplication. In
this context, let (xi) be N positive numbers and (wi) be N non-negative normalized weights
(
∑

i wi = 1). The arithmetic mean of the data is invariant with respect to multiplication, but
not with respect to inversion:

Σiwi
1

xi
6= 1

Σiwixi
, in general. (7.1)

Thus the arithmetic mean is not fully adapted to this multiplicative structure. On the contrary,
the geometric mean, written here E((xi), (wi)), is fully adapted. It is given by:

E((xi), (wi)) = exp(Σiwi log(xi)). (7.2)

We recall the classical convexity inequality between the two means:

exp(Σiwi log(xi)) < Σiwixi, (7.3)

whenever the data is not reduced to a single point.



7.2. Means in Lie Groups 137

Means and Distances. A well-established approach to de�ne a notion of mean compat-
ible with algebraic operations is to de�ne �rst a distance (or metric) compatible with these
operations and then to rely on this distance to de�ne the mean [Pennec 06a].

We have seen in Section 2.4.4 that in the general setting ofmetric spaces, one can generalize
the classical notion of arithmetic mean by relying on the intuitive idea of minimal variance or
dispersion. The mean can be de�ned as the point E(X) which minimizes a metric dispersion
with respect to the data (Xi)

N
i=1 and the non-negative weights (wi) in the following way:

E(Xi) = arg min
Y ∈E

∑

i

wi.dist(Xi, Y )α. (7.4)

The case α = 2 corresponds in vector spaces to the arithmetic mean, and in more general
(non-linear) spaces we recall that this provides the Fréchet mean.

7.2.2 Bi-Invariant Fréchet Means via Invariant Metrics in Lie Groups
In the case of Lie groups, we will see here how one can (or cannot) de�ne a distance compatible
with algebraic operations and the di�erentiable structure of these groups. We recall that the
distances (or metrics) compatible with the di�erentiable structure of di�erentiable manifolds
are called Riemannian metrics. See Chapter 2, Section 2.4 for a short presentation of this
general type of metrics.

Invariance Properties of Riemannian Metrics. Let us now detail the di�erent types
of invariance (or compatibility) that can exist between a Riemannian metric on a Lie group
and its algebraic properties. They are the following:

� `left-invariance': the metric is invariant with respect to any multiplication on the left.
Another useful way of phrasing this is to say that left-multiplications are isometries of
G, i.e. do not change distances between elements of G.
In terms of scalar products and di�erentials, this means precisely that for any two points
m and h of G and any vectors v and w of TmG, we have:
< DmLh.v, DmLh.w >Th.mG=< v,w >TmG .

� `right-invariance': invariance with respect to any multiplication on the right.

� `inversion-invariance': invariance with respect to inversion. The inversion operator is
then an isometry of G.

These properties are not independent. This simply comes from the fact that for any two
elements m,n of G, we have (m.n)−1 = n−1.m−1. This implies for example that the left-
multiplication can be obtained smoothly from one right-multiplication and two inversions in
the following way: Lm = Inv ◦ Rm−1 ◦ Inv.

A simple (but rarely mentioned in classical references on Lie groups) consequence of this
is that all right-invariant metrics can be obtained from left-invariant metrics by `inversion',
and vice versa. Indeed, we have:

Proposition 7.1. Let <,> be a left-invariant Riemannian metric de�ned on G. Then the
`inverted' metric ≪,≫, de�ned below, is right-invariant, and moreover we have <,>e=≪,≫e.

For any two points m and h of G and any vectors v and w of TmG, we de�ne the inverted
metric ≪,≫ as follows:

≪ v, w ≫m
def
= < DmInv.v, DmInv.w >Tm−1G

.
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Proof. Actually, the proof relies only on di�erentiating the equality (h.m)−1 = m−1.h−1. This
yields:

Dh.mInv ◦ DmLh = Dm−1Rh−1 ◦ DmInv.

This allows to show directly that:

≪ DmRh.v, DmRh.w ≫Th.mG=≪ v, w ≫TmG ,

which means that ≪,≫ is right-invariant.
Last but not least, the equality <,>e=≪,≫e comes from the fact that quite intuitively

DeInv = −Id, where Id is the identity operator in TeG. This can be easily seen from the
classical result De exp = D0 log = Id and the equality (valid in an open neighborhood of e)
m−1 = exp(− log(m)), where exp and log are the group exponential and logarithm, presented
in detail in Chapter 2.

Corollary 7.1. `Left-invariance' (resp. `right-invariance') and `inversion-invariance' imply
`right-invariance' (resp. `left-invariance').

Proof. We have just seen in Proposition 7.1 that right-invariant metrics can be obtained
by composition between left-invariant metrics and the inversion operator, and vice versa
for left-invariant metrics. If left-multiplications and inversion are isometries, so are right-
multiplications by composition.

Riemannian metrics which are simultaneously left- and right- invariant are called bi-
invariant. On these special metrics, we have the very interesting result:

Theorem 7.1. Bi-invariant metrics have the following properties:

1. A bi-invariant metric is also invariant w.r.t. inversion
2. It is bi-invariant if and only if for all m ∈ G, the adjoint operator Ad(m) (see de�nition in

Section 2.3.3) is an isometry of the Lie algebra g

3. One-parameter subgroups of G are geodesics for the bi-invariant metric

Proof. See [Sternberg 64], chapter V.

From this result and Proposition 7.1, we see that any two invariance properties imply the
third.

Bi-Invariant Means. We have seen that a metric structure induces a notion of mean
called the Fréchet mean. The Fréchet mean associated to a bi-invariant metric is called
the bi-invariant mean. Actually, it does not depend on the particular choice of bi-invariant
metric, since whenever the bi-invariant mean is uniquely de�ned, it is given as the solution
of a barycentric equation [Pennec 06a] which is independent from the arbitrary choice of bi-
invariant metric.

Since the metric inducing the notion of mean is bi-invariant, so is the mean, which is then
fully compatible with the algebraic properties of the Lie group. As a consequence, this notion
of mean is particularly well-adapted to Lie groups [Pennec 06a]. However, contrary to left-
or right- invariant metrics, which always exist1, bi-invariant metrics may fail to exist, and we
will now see under which conditions bi-invariant metrics exist for a given Lie group.

1It su�ces to propagate an arbitrary scalar product de�ned on TeG to all tangent spaces by left- or right-
multiplication to generate all left- or right-invariant Riemannian metrics.
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Compactness of the Adjoint Representation From Theorem 7.1, we see that if a bi-
invariant metric < ., . > exists for the Lie group G, then ∀m ∈ G, Ad(m) is an isometry of g

and can thus be looked upon as an element of the orthogonal group O(n) where n = dim(G).
Then, note that O(n) is a compact group, and that therefore Ad(G) is necessarily included in a
compact set, a situation called relative compactness. This notion provides indeed an excellent
criterion, since we have:

Theorem 7.2. The Lie group G admits a bi-invariant metric if and only if its adjoint repre-
sentation Ad(G) is relatively compact.

Proof. We have already seen the �rst implication. For the converse part, the theory of dif-
ferential forms and their integration can be used to explicitly construct a bi-invariant metric.
This is done in [Sternberg 64], Theorem V.5.3.

Compactness, Commutativity and Bi-Invariant Metrics. In the case of compact Lie
groups, we have the property that their adjoint representation is the image of a compact set by
a continuous mapping and is thus also compact. Then, Theorem 7.2 implies that bi-invariant
metrics exist in such a case. In particular, this is the case of rotations, for which bi-invariant
means have been extensively studied and used [Pennec 06a]. This is also trivially the case
of commutative Lie groups, where only one type of multiplication exists, which reduces the
adjoint representation to {Id}. An illustration of this situation is given by the Lie group
structure on symmetric positive-de�nite matrices we present in Chapter 3.

As shown by Theorem 7.2, the general non-compact and non-commutative case is not so
nice, and one has to carefully check the properties of the adjoint representation of the Lie
group to see whether a bi-invariant metric exists or not. This veri�cation has to be done all
the more carefully that non-commutativity and non-compactness of the group are necessary
but not su�cient to prevent the existence of bi-invariant metrics, as shown in the following
paragraph.

An Example in the Non-Compact and Non-Commutative Case. We have already
seen that any compact or commutative Lie group has at least one bi-invariant metric. From
this remark, one can easily construct an example of non-compact and non-commutative group
having a bi-invariant metric: let G1 be a commutative non-compact group and G2 be a compact
non-commutative group. They both have a bi-invariant metric. Let G = G1×G2 be their direct
product, i.e. the group obtained with the multiplication (g′1, g

′
2).(g1, g2) = (g′1.g1, g

′
2.g2). Then

G is neither commutative nor compact, but has a bi-invariant metric! In fact, let < ., . >1 and
< ., . >2 be respectively a bi-invariant metric of G1 and G2. Then < PG1(.), PG1(.) >1 + <
PG2(.), PG2(.) >2 is a bi-invariant metric of G, where PGi is the canonical projection on Gi.

One typical example of such a situation is the Lie group of matrices of the form s.R, where
s is a positive scalar and R a rotation matrix (group of rotations and scalings). It can be seen
as the direct product of (R⋆

+,×) (commutative and non-compact) with (SO(n),×) (compact
and non-commutative).

7.2.3 Absence of Bi-Invariant Metrics for Rigid Transformations
As we have seen in the previous Subsection, bi-invariant metrics always exist for compact
groups, which is the case of rotations. But when one tries to extend the use of bi-invariance
metrics to more general transformation groups, one is very limited. In biomedical imaging,
the simplest possible registration procedure between two anatomies uses rigid transformations.
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Such transformations seem quite close to rotations and one could hope for the existence of
bi-invariant metrics. But we have the following general result, which is new to our knowledge2:

Proposition 7.2. The action of the adjoint representation Ad of the group of rigid transfor-
mations SE(n) at the point (R, t) on an in�nitesimal displacement (dR, dt) is given by:

Ad(R, t).(dR, dt) = (R dR RT , −R dR RT t + R dt).

As a consequence, no bi-invariant Riemannian metric exists on the space of rigid transforma-
tions (for n > 1, of course).

Proof. In the case of matrix Lie groups, we have the following formula [Hall 03] Ad(h).dh =
h.dh.h−1 for dh ∈ g. Classically, using homogeneous coordinates, the Lie group of rigid
transformations is faithfully represented by the following matrix Lie group [Sattinger 86]:

(R, t) ∼
(

R t
0 1

)
.

Using this, we get:

Ad(R, t).(dR, dt) ∼
(

R t
0 1

)
.

(
dR dt
0 0

)
.

(
RT −RT .t
0 1

)
,

which yields the announced formula. In this formula, the translation `t' introduces a un-
bounded term which prevents the adjoint group from being bounded. Applying Theorem 7.2,
it is then clear that no bi-invariant metric exists for rigid transformations in nD (n>1).

We thus see that the Riemannian approach based on bi-invariant metrics cannot be extended
to rigid transformations, and even less so to a�ne transformations. Other examples of non-
compact and non-commutative groups with no bi-invariant metrics can be found in Section
7.5.

One should note that our result contradicts a statement in [Woods 03], which claimed that
a bi-invariant metric existed when n = 2. The reference backing this claim was [Sattinger 86],
in which it is only stated that though SE(2) is non-compact, it has a bi-invariant measure
(Chapter 7, page 92). But whereas the existence of a metric implies that of a measure (see
[Pennec 06a], page 6: such a measure can be obtained via the square roof of the determinant
of the metric), the existence of a measure does not imply the existence of a metric. This
subtle mistake is of no consequence, since there truly are examples of non-compact groups
which have bi-invariant metrics. As long as the group is commutative, such metrics obviously
exist (think of vector spaces!).

In the sequel, we will see how it is possible to de�ne general bi-invariant means in Lie
groups without relying on bi-invariant Riemannian means, which can fail to exist. The key
to our approach is to use the general algebraic properties of Lie groups, and in particular the
group exponential and logarithm.

2We have recently found that the non-existence of bi-invariant Riemannian metrics for SE(3) was already
known in the literature [Zefran 99]. However, our result does not depend on the dimension and is obtained
in a very economical way, using short and abstract arguments rather than long and direct computations as
in [Zefran 99] for n = 3.
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7.3 Advanced Properties of the Exponential and Logarithm
Before de�ning general bi-invariant means in Lie groups, we detail in this Section some ad-
vanced properties of the group exponential and logarithm, which will be very useful in the
sequel. Please refer to Chapter 2, Section 2.3 for the general de�nition of the exponential and
logarithm in Lie groups, along with their fundamental algebraic and di�erential properties.

7.3.1 Preliminary Result
A very useful property of the (Riemannian) exponential map is that given any point, there
exists a open neighborhood of this point, called geodesically convex, in which for any coupe of
points, there exists a unique minimizing geodesic between them (see for example [Gallot 93],
page 84-85). We now prove an similar result for the group exponential:

Theorem 7.3. Let Φ : G × g → G × G, de�ned by Φ(g, v) = (g, g. exp(v)). Then Φ is always
locally di�eomorphic. More precisely, for all g in G, it de�nes a di�eomorphism from some
open neighborhood of (g, 0) to a open neighborhood of (g, g).

Proof. Since Φ is smooth, one can apply anew the `Implicit Function Theorem' provided that
the di�erential of Φ at (g, 0) is invertible. To see this, note that we have:

{
∂Φ
∂g |(g,v)=(e,0) = (Id, Id)
∂Φ
∂v |(g,v)=(e,0) = (0, DeLg ◦ Id) = (0, DeLg),

where we have used the fact the property that the di�erential of the exponential at 0 is the
identity (see Theorem 2.1). Since Lg is a di�eomorphism, its di�erential at e, DeLg, is always
invertible. As a consequence, the di�erential of Φ is also always invertible, and the `Implicit
Function Theorem' applies. This proof is very similar to the proof given in [Gallot 93] to
show the analogous property of the metric exponential.

7.3.2 Group Geodesics.
Theorem 7.3 essentially shows that for every point g of G, there exists a open neighborhood
of g in which every couple of points can be joined by a unique `group geodesic' of the form
g. exp(t.v) such that g. exp(v) = h. By symmetry, the same result also holds for the geodesics
of the type exp(t.v).g. In fact, those two types of `group geodesic' are the same, since we have
the following result:

Theorem 7.4. For all g in G, there exists a two open neighborhoods Vg and Ṽg of 0 in g such
that for all g in G and for all v in Vg, there exist a unique w in Ṽg such that g. exp(t.v) =
exp(t.w).g for all t ∈ R. More precisely, w = Ad(g).v. Moreover, in this open neighborhood
of 0, the relationship g. exp(v) = exp(w).g implies w = Ad(g).v.

The proof of this theorem is simply based on the following relationships between the
Adjoint representation, the exponential and the logarithm:

Lemma 7.1. Let v be in g and g in G. Then we have:

g. exp(v).g−1 = exp(Ad(g).v).

Also, for all g in G, there exists a open neighborhood Wg of e such that for all m in Wg:
log(m) and log(g.m.g−1) are well-de�ned and are linked by the following relationship:

log(g.m.g−1) = Ad(g). log(m).
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These equations are simply the generalization to (abstract) Lie groups of the well-known
matrix properties: G. exp(V ).G−1 = exp(G.V.G−1) and G. log(V ).G−1 = log(G.V.G−1).

Proof. The �rst relationship of this Lemma can be proved in the following way:
(g. exp(t.v).g−1)t is a continuous one-parameter subgroup, whose in�nitesimal generator is
d
dtg. exp(t.v).g−1|t=0 = Ad(g).v (see Proposition 1.81 on page 29 of [Gallot 93]). Using the fact
that continuous one-parameter subgroups are of the form exp(t.w), we obtain the �rst equal-
ity. To prove the second (and this time local) equality, we see that since Ψg : m 7→ g.m.g−1 is
smooth and Ψg(e) = e, there exists a open neighborhood of e where log(m) and log(g.m.g−1)
are well-de�ned. Then the second equality is deduced from the �rst.

Proof. Proof of Theorem 7.4: just see that g. exp(t.v) = g. exp(t.v).g−1.g and apply Lemma
7.1.

G

g ∈ G

V
x

x(t) = x. exp(t.v)

y

V
G

x ∈ V
ẋ(0) = x.v ∈ TxG

x(t) = x. exp(t.w)

x(t) = x. exp(t.v)

Figure 7.1: Properties of Group Geodesics. Left: group geodesic convexity, which means
that for any point g of G, there exists a open neighborhood V of g, such that any couple of
points x and y in V can be joined by a unique group geodesics of the form x(t) = x. exp(t.v)
satisfying x. exp(v) = y. Note that the geodesic is entirely contained in V. Right: at any
point g, a unique group geodesic is associated to any initial velocity vector, provided this
speed is small enough.

De�nition of Group Geodesics. Essentially, we have just shown that the exponential
and its translated versions can be looked upon as some sort of `group geodesic' in a Lie group.
Any couple of points can be joined by a unique `group geodesic', provided they are close
enough. This leads to the following de�nitions:

De�nition 7.1. Any continuous path of G of the form g. exp(t.v), which has the property of
Theorem 7.4 (i.e. v is small enough) is called a group geodesic. Furthermore, an open set
O of G is called groupwise geodesically convex (or GGC) if and only if any couple of
points of O can be joined by a group geodesic. We have just shown that every g in G has a
groupwise geodesically convex open neighborhood.

To conclude this subsection, let us now present a last property for group geodesics, which
generalizes the other well-known property of (metric) geodesics. The properties of group
geodesics are illustrated in Fig. 7.1.
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Proposition 7.3. Let g be in G and z be in the tangent space at g. Then there exists a unique
smooth path of the form g. exp(t.v) that g(0) = g and d

dtg|t=0 = z. When z is small enough,
this smooth path is a group geodesic.
Proof. The only possible choice is v = DgLg−1.z, since DgLg−1 is always invertible.

7.4 Bi-Invariant Means in Lie Groups
7.4.1 A Geometric De�nition of the Mean
Let us recall the classical de�nition of a mean in an a�ne space F , i.e. a space of points,
associated to a vector space E such that to any couple of points M,N we can associate the
vector −−→

MN , which is simply the di�erence between the two points: M +
−−→
MN = N . In

this context, the barycenter (or mean) of a system of points (Xi)i=1..n associated to the non-
negative normalized weights (wi) (

∑
i wi = 1) is the unique point M that veri�es the following

equation, called barycentric:
Σiwi

−−−→
MXi =

−→
0 . (7.5)

This equation means geometrically that M is the mean of the (Xi) with respect to the weights
(wi). Since F is a �at space, we can get a closed form for M :

M = X1 + Σiwi
−−−→
X1Xi. (7.6)

This kind of mean or averaging procedure is the direct generalization in the a�ne case of
the arithmetic mean of real numbers. It gives a geometrical interpretation to the weighted
mean: at the mean, the sum of the weighted displacements to each of the sample points is
null, i.e. the mean is at the center of the data (with respect to the weights).

Fréchet Means and Barycenters. The Fréchet mean m of N points (xi) with respect
to the non-negative normalized weights wi which is induced by a Riemannian metric on a
manifold is de�ned implicitly by the following barycentric equation [Pennec 06a]:

N∑

i=1

wi logm (xi) = 0, (7.7)

where logm is the logarithmic map at the point m, which is de�ned only locally around this
point. In the particular case of bi-invariant metrics, this equation is written as:

N∑

i=1

wi log(m−1.xi) = 0, (7.8)

where this time log is the inverse of the group exponential, de�ned locally around the neutral
element e: the (metric) logarithmic map is expressed simply in term of group logarithm. Eq.
(7.8) has particularly nice invariance properties: left-, right- and inverse-invariance, since it
derives from a bi-invariant metric. One should note that Eq. (7.7) (and (7.8) in the bi-
invariant case) provides a geometrical de�nition of the mean, exactly as in the case of a�ne
spaces. The Fréchet mean is de�ned as a barycenter, i.e. the element positioned at the center
of the data in a vectorial sense. This situation is illustrated in Fig. 7.2.

The key idea developed in this Section in the following: although bi-invariant metrics may
fail to exist, the group logarithm always exists in a Lie group and one can try to de�ne a bi-
invariant mean directly via Eq. (7.8). As will be shown in the next subsections, this equation
has all the desirable invariance properties, even when bi-invariant metrics do not exist.
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G

TmG

m xj

xi ∈ G

logm(xi) ∈ TmG

logm(xj)

m satis�es:
∑

i wi logm(xi) = 0.

Figure 7.2: Geometric Property of the Fréchet mean. When well-de�ned, the Fréchet
mean of a set of points (xi) with non-negative (normalized) weights (wi) satis�es a barycentric
equation. This has a geometric interpretation: in the tangent space at the mean m, 0 (i.e.
m) is precisely the barycenter of the vectors logm(xi) associated to the weights wi. In this
geometrical sense, m is at the center of the points xi.

7.4.2 Stability of the Classical Iterative Scheme
To compute Fréchet means associated to Riemannian metrics, a very e�cient iterative strategy
can be used to solve iteratively the barycentric equation given by Eq. (7.7) [Pennec 06a]. In
the case of bi-invariant metrics, this yields the following algorithm:

1) Initialize for example m0 := x1.

2) Update the estimate of the mean by: mt+1 := mt. exp
(∑N

i=1 wi log(mt
−1.xi)

)
.

3) Test convergence. If not reached, go to step 2.

It was proposed in [Woods 03] to compute empirically bi-invariant means of invertible
matrices with the same algorithm, even though no bi-invariant Riemannian metrics exist for
such transformations. This works well in practice, but no precise de�nition of bi-invariant
means was given in [Woods 03]. Furthermore, no proof of convergence of the iterative strategy
was given, and neither the existence nor uniqueness of bi-invariant means were proved.

Here, one of our contributions is to provide a general and precise de�nition of bi-invariant
means, which is valid for any �nite-dimensional real Lie group, via Eq. (7.8). This will allow
us to show the existence and uniqueness of the bi-invariant mean provided the dispersion of
the data is small enough.

Interestingly, the mapping Φ : m 7→ m. exp
(∑N

i=1 wi log(m−1.xi)
)
plays a central role our

approach. Let us now detail some of its properties.

Proposition 7.4. Let (wi) be N �xed non-negative weights. Then mapping Ψ : g
N+1 →

g de�ned by Ψ(v1, ..., vN , z) = log
(
exp(z). exp

(∑N
i=1 wi log(exp(−z). exp(vi))

))
is analytic

near 0.

Proof. The multivariate nature of Ψ complicates the proof a little bit, but this comes from the
simple fact that Ψ is a composition of other analytic mappings: namely the mapping H de�ned
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in Subsection 2.3.6, the mapping v 7→ −v and the weighted sum (v1, ..., vN ) 7→ ∑
i wi.vi. This

su�ces to ensure that near 0, Ψ is the sum an absolutely converging in�nite multivariate series
whose variables are the v1, ..., vN and z. For more details on multivariate analytic functions
in Lie algebras, see [Godement 82], Chapter VI.

Actually, Ψ is also an analytic function of the non-negative normalized weights (wi). Since
these weights live in a compact set, we can guarantee the existence and uniqueness of the
bi-invariant mean independently of the weights considered (provided the dispersion of the data
is small enough). But for more simplicity and clarity, we will skip these details in this thesis
and consider �xed weights (wi) in the proofs.

In the following, ‖.‖ will be any norm on g such that for all x, y in g, we have: ‖[x, y]‖ ≤
‖x‖.‖y‖.

Corollary 7.2. Let us suppose that the xi and m are su�ciently close to e.Then we have the
following development:

log(Φ(m)) = l̄ + O((
N∑

i=1

‖ log(xi)‖ + ‖ log(m)‖)2), (7.9)

where l̄ =
∑

i wi log(xi).

Proof. Successive applications of the BCH formula (see Chapter 2, Section 2.3.6 for a descrip-
tion of this powerful tool) yield the �rst term (l̄) of the in�nite series of Ψ, which is intuitively
the usual arithmetic mean obtained when all the data and m commute. The bound obtained
on the deviation with respect to l̄ is a direct consequence of the fact that Ψ is analytic: the
order of any remaining term of the in�nite series is equal or larger to two and as a consequence
the other terms can be bounded by a O((

∑N
i=1 ‖ log(xi)‖ + ‖ log(m)‖)2).

Corollary 7.2 has the following consequence:

Corollary 7.3. For all α in ]0, 1[, there exists a R > 0 such that whenever ‖ log(xi)‖ ≤ α.R
and ‖ log(m)‖ ≤ R then we also have ‖ log(Φ(m))‖ ≤ R.

Proof. Just notice in Eq. (7.9) that the norm of the �rst order term is less or equal than α.R
and that for the second-order term, which is a O((

∑N
i=1 ‖ log(xi)‖+ ‖ log(m)‖)2), there exists

a constant C such that the second-order term is bounded in the following way:

‖O((
N∑

i=1

‖ log(xi)‖ + ‖ log(m)‖)2)‖ ≤ C.(N.αN + 1).R2.

Since R2 is a o(R), C.(N.αN + 1).R2 ≤ (1− α).R provided that R is su�ciently small. From
this we obtain ‖ log(Φ(m))‖ ≤ α.R + (1 − α).R = R, which concludes the proof.

Corollary 7.3 shows that provided the xi and m are close enough to e, we can iterate
inde�nitely Φ over the successive estimates of the `mean' of the xi. This shows that the
iterative scheme presented before is stable and remains inde�nitely well-de�ned when the
data is close enough to e (that is, without taking numerical errors into account). For the
moment, we have only considered the case where all elements are close to e. We will see in
the next subsection how this extends to the general case, where all the data are only assumed
to be close to one another, possibly very far from e.
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7.4.3 Convergence: Special Case
The Bi-Invariant Mean as a Fixed Point. Let α be in ]0, 1[. Accordingly with Corollary
7.3, let us take the same R > 0 such that for all i, ‖ log(xi)‖ ≤ α.R and ‖ log(m)‖ ≤ R. Then,
we know from Corollary 7.3 that ‖ log(Φ(m))‖ ≤ R.

Now, let us de�ne Ω = {m ∈ G : ‖ log(m)‖ ≤ R}. From Corollary 7.3, we know that Φ
de�nes a mapping from Ω to Ω. Now, let us note that m̃ ∈ Ω is a solution of Eq. (7.8) if
and only if m̃ is a �xed point of Φ, i.e. Φ(m̃) = m̃. To show the existence of a solution of Eq.
(7.8), we can therefore use a �xed point Theorem.

The mathematical literature abounds with �xed point theorems. Let us �rst consider
Brouwer's �xed point theorem:

Theorem 7.5. Brouwer's Fixed Point Theorem [Samelson 63]. Let Ψ : Bn → Bn be a
continuous mapping, where Bn is the n-dimensional Euclidean closed ball, i.e. Bn = {x ∈
R

n :
∑

i(xi)
2 ≤ 1}. Then Ψ has at least one �xed point.

Corollary 7.4. With the assumptions made at the beginning of this subsection, then Eq. (7.8)
has at least one solution in Ω.

Proof. In our case, this result applies, since we can de�ne Ψ : log(Ω) → log(Ω) by Ψ(v) =
log(Φ(exp(v))). Since log(Ω) is precisely a closed ball, and thus homeomorphic to the Eu-
clidean closed ball, then Brouwer's theorem applies and guarantees the existence of at least
one �xed point of Ψ, which is also a �xed point of Φ and therefore a solution of Eq. (7.8).

The existence of a solution to Eq. (7.8) is thus guaranteed. However, in order to prove the
convergence of the iterative strategy to a �xed point of Φ, the mathematical tool we need is
another type of �xed point theorem. We will now recall Picard's �xed point Theorem, which
is the following:

Theorem 7.6. Picard's Fixed Point Theorem. Let (E, d) be a complete metric space and
f : E → E be a K−contraction, i.e. for all x, y of E, d(f(x), f(y)) ≤ K.d(x, y), with
0 < K < 1. Then f has a unique �xed point p in E and for all sequence (xn)n > 0 verifying
xn+1 = f(xn), then xn → p when n → +∞, with at least a K−linear speed of convergence.

Proof. This is classical undergraduate topology. The usual proof consists of taking any se-
quence satisfying xn+1 = f(xn), and of showing that it is a Cauchy sequence and thus
has a limit in E, which is the unique �xed point of E. Moreover, one can show that
d(xn+1, p) ≤ K.d(xn, p), which prooves that the speed of convergence is at least K−linear.

Here, (Ω, d) is the complete metric space in which the successive evaluations of the `mean'
live. The distance d is simply given by d(m,n) = ‖ log(m)− log(n)‖. To obtain the existence,
uniqueness of a solution of Eq. (7.8) and linear convergence of our iterative scheme to this
point, it only remains to show that Φ is a contraction. This leads to the following Proposition:

Proposition 7.5. When the number R in Corollary 7.3 is chosen small enough, Φ is a
contraction.

Proof. Let us consider E = log(Ω) with Θ : E → E de�ned as in the proof of Corollary 7.4 by
Θ(v) = log(Φ(exp(v))). The key idea is to see that Θ is smooth with respect to log(m) and
the (log(xi)), with the property that the norm of the di�erential of Θ is uniformly bounded
in the following way:

‖Dlog(m)Θ‖ ≤ O(‖ log(m)‖ +
∑

i

‖ log(xi)‖). (7.10)
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In fact, Eq. (7.10) is a simple consequence of the fact that Ψ is analytic: Dlog(m)Θ is simply
one of its partial derivative, which is therefore also analytic. Its value at 0 is precisely 0, and
therefore all the terms of its in�nite series are of order one or larger, which yields the bound
in O(‖ log(m)‖ +

∑
i ‖ log(xi)‖).

With the bound given by Eq. (7.10), we can ensure that when R is small enough, there
exists β in ]0, 1[ such that ‖Dlog(m)Θ‖ ≤ β for all m. Then we have the classical bound:

‖Θ(v) − Θ(w)‖ ≤ (sup
z∈E

‖DzΘ‖)‖v − w‖ ≤ β‖v − w‖.

Since β < 1, Θ is by de�nition a contraction, and so is Φ.

Corollary 7.5. As a consequence, when the data (xi) are given close enough to e, there exists
a open neighborhood of e in which there exists a unique solution to Eq. (7.8). Moreover,
the iterative strategy given above always converges towards this solution, provided that the
initialization to this algorithm is chosen su�ciently close to the data (so that Corrolary 7.2
can apply). Moreover, the speed of convergence is at least linear.
Proof. Just apply Picard's Theorem to Φ and recall that being a �xed point of Φ is equivalent
to being a solution of Eq. (7.8).

7.4.4 Convergence: General Case
In the previous subsection, we have shown the existence and uniqueness of a solution of the
exponential barycentric equation living in a open neighborhood of e, as long as the data were
all close enough to e. In fact, this can be greatly generalized, as shown by the following result:
Theorem 7.7. Let g be in G. Then there exists a groupwise geodesically convex open neigh-
borhood V of g, such that whenever the data (xi) are in V, then there exists a unique solution
of Eq. (7.8) in an open neighborhood of g. Moreover, the classical iterative strategy always
converges towards this solution, provided the initialization is taken close enough to g; also,
the speed of convergence is at least linear.
Proof. Just multiply the data by g−1 on the left to shift all the points in an adequate open
neighborhood of the neutral element. Then one can run the iterative scheme to obtain the
unique solution of the barycentric equation which lives close to e. Then just multiply on the
left by g this solution to �nd the unique solution of the barycentric equation with the real
data. Then note that the normal (non-shifted) iterative scheme is just the shifted version of
the scheme associated to the shifted data.

This leads to the following de�nition:
De�nition 7.2. Let the (xi)

N
i=1 be some data belonging to a small enough groupwise geodesi-

cally convex set of G. Then, for any system of (normalized) non-negative weights (wi)
N
i=1,

we call bi-invariant mean of (xi) with respect to the weights (wi) the unique solution (in a
neighborhood of the data) of the group barycentric equation (7.8).
Proposition 7.6. The bi-invariant mean is left-, right- and inverse-invariant.
Proof. The data is by hypothesis close enough to one another so that we can apply Lemma
7.1, so that we have:

Ad(m).
(∑N

i=1 wi log(m−1.xi)
)

=
∑

i wi log
(
m.(m−1.xi).m

−1
)

∑N
i=1 wi log(xi.m

−1).
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Since Ad(m) is invertible, the usual barycentric equation, which is left-invariant, is equivalent
to a right-invariant barycentric equation, which shows that the barycenter is both left- and
right-invariant. Now, to prove the invariance with respect by inversion, note that:

(−1) ×
(∑N

i=1 wi log(m−1.xi))
)

=
∑

i wi log
(
(m−1.xi)

−1
)

∑N
i=1 wi log(x−1

i .(m−1)−1),

which shows that whenever m is the bi-invariant mean of the xi, m−1 is that of the xi
−1,

which is exactly inverse-invariance.

Some Comments on Bi-Invariant Means. We have rigorously generalized to any real
Lie group the notion of bi-invariant mean normally associated to bi-invariant Riemannian
metrics, even in the case where such metrics fail to exist. This novel mean enjoys all the
desirable invariance properties, and can be iteratively computed in a very e�cient way.

One should note that as usual with means in manifolds, the bi-invariant mean only exists
provided the data are close enough to one another: the dispersion should not be too large.
In the next section, we will see more precisely in various situations what practical limitation
is imposed on the dispersion of the data. One does not seem to lose much in this regard
with respect to existing Riemannian bi-invariant means: we will show for example that the
bi-invariant mean of rigid transformations exists if and only if the bi-invariant mean of their
rotation parts exists.

In the general case, it would be very interesting to have more precise criteria for the exis-
tence and uniqueness of the bi-invariant mean, such as the ones that exist in the Riemannian
case and which are based on the concept of regular geodesic balls (see [Pennec 06a], pages 8
and 9). Generalizing these powerful Riemannian criteria to the bi-invariant case will be the
subject of future work. The key di�culty for this generalization is that our bi-invariant mean
is not de�ned via the minimization of a metric dispersion, but only via a barycentric equation.
Our bi-invariant mean is thus somehow more like a critical point than a minimizer, which is
weaker and more di�cult to handle theoretically.

7.4.5 Higher Order Moments
In this Section, we have presented a complete and rigorous framework for de�ning and com-
puting the bi-invariant mean in any �nite-dimensional Lie group. Based on this remarkable
choice of mean, how can one compute more sophisticated statistics, and in particular higher
order moments?

Linearization of the Data around the Mean. Let us suppose that we have N samples
(xi) of a random variable X living in a Lie group G. Let us also assume that their bi-invariant
mean m is well-de�ned. Then, around m, the initial speeds of group geodesics provide a local
linearization of G compatible with the notion of bi-invariant mean. By this we mean that the
arithmetic mean of the vectors associated to the data (xi) is precisely 0, which generalizes the
property of the Fréchet mean associated to a Riemannian metric given by Eq. (7.7). In the
following, let us write v(x) for this linearization.

To see why this linearization has this property, let us recall that the unique group geodesic
γm,x(t) starting from m and joining a (close enough) point x is given by
γm,x(t) = m. exp(t. log((m−1.x)). As a consequence, for any datum xj , v(xj) is equal to
v(xj) = DeLm. log(m−1.xj). From the barycentric equation (7.8), we obtain
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∑

i

v(xi) =
∑

i

DeLm. log(m−1.xi) = DeLm.

(∑

i

log(m−1.xi)

)
= 0,

which is the announced result.

Computing Higher Order Moments. With the linearization x 7→ v(x) around E(xi),
one can represent the data (xi) by vectors belonging to the tangent space of G at E(xi). Then,
exactly as in the Riemannian case (see [Pennec 06a] Section 5 for a de�nition of the Rieman-
nian covariance), one can for example compute from these vectors the empirical covariance
matrix Ĉov(X) of the random variable X with respect to any Riemannian metric de�ned on
G, with

Ĉov(X)
def
=

1

N − 1

∑

i

v(xi).v(xi)
T ,

where the transposition operator .T is the one associated to the chosen Riemannian metric
at E(xi). Higher order empirical moments can be computed in the same way. In fact, using
a Riemannian metric for computing moments of order 2 or higher is unavoidable, since this
requires computing scalar products of vectors, which is precisely what Riemannian metrics are
all about. In the case where no bi-invariant Riemannian metric exists, one can for example
rely on left-invariant, or right-invariant Riemannian metrics to perform this task.

7.5 Bi-Invariant Means in Simple Cases
Let us now detail several insightful cases where the algebraic mean can be explicitly or directly
computed, without using the classical iterative scheme.

7.5.1 Bi-Invariant Mean of Two Points
There is a closed form for the bi-invariant mean of two points:
Proposition 7.7. Let x be in G and y be in a GGC open neighborhood of x. Then their
bi-invariant mean m with respect to the couple of weights (1 − α, α) is given by:

m = x. exp
(
α log(x−1.y)

)
= x.(x−1.y)α. (7.11)

Proof. We can simply check that m is a solution to the adequate barycentric equation. We
have:

log(m−1.x) = log(exp(−α log(x−1.y)).x−1.x) = −α log(x−1.y).

Also, we have that:
log(m−1.y) = log(exp(−α log(x−1.y)).x−1.y) = log(n−α.n),

with n = x−1.y. Therefore:
{

α. log(m−1.y) = log(nα×(1−α))

(1 − α). log(m−1.x) = log(n−α×(1−α)) = −α. log(m−1.y).

Thus, m is the bi-invariant mean of x and y.

Notice that the explicit formula given by Eq. (7.11) is quite exceptional. In general, there
will be no closed form for the bi-invariant mean, as soon as N > 2. However, there are some
speci�c groups where a closed form exists for the bi-invariant mean in all cases, and we will
now detail some examples of this rare phenomenon.
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7.5.2 Scalings and Translations in 1D
Here, we will devote some time to a very instructive group: the group of scalings and trans-
lations in 1D. The study of this (quite) simple group is relevant in the context of this work,
because it is one of the most simple cases of non-compact and non-commutative Lie groups
which does not possess any bi-invariant Riemannian metric. This group has many of the
properties of rigid or a�ne transformations, but with only two degrees of freedom, which
simpli�es greatly the computations, and allows a direct (2D) geometric visualization in the
plane. For these reasons, this is a highly pedagogical case. In the rest of this Subsection, we
will let this group be written ST (1).

Elementary Algebraic Properties of ST (1).

� An element g of ST (1) can be uniquely represented by a couple (λ, t) in R
⋆
+ × R. λ

corresponds to the scaling factor and t to the translation part.

� The action of ST (1) on scalars is given by: (λ, t).x = λ.x + t for every scalar x.

� The multiplication in ST (1) is: (λ′, t′).(λ, t) = (λ′.λ, λ′.t + t′). ST (1) is thus a semi-
direct product between the multiplicative group (R⋆

+,×) and the additive group (R,+).
Both groups are commutative, but this semi-direct product is not.

� Inversion: (λ, t)−1 = ( 1
λ ,− t

λ).

� ST (1) can be faithfully represented by the subgroup of triangular matrices of the form:
(

λ t
0 1

)
.

� The elements of the Lie algebra of ST (1) are of the form (dλ, dt), where dλ and dt are
any scalars.

� The group exponential exp(dλ, dt) has the following form:

exp(dλ, dt) =

{
(edλ, dt

dλ(edλ − 1), when dλ 6= 0,
(1, dt), when dλ = 0,

where eλ is the scalar exponential of λ. Thus, we see that the group exponential is
simply given by the scalar exponential on the scaling part, whereas the translation part
mixes the multiplicative and additive in�uences of both components. Moreover, we see
geometrically than in the upper half plane R+ × R, the curve given by exp(s.(dλ, dt))
with s varying in R is on a straight line, whose equation is t = dt

dλλ − 1.

� ST (1) is entirely groupwise geodesically convex: any two points can be joined by a
unique group geodesic. In particular, the group logarithm is always well-de�ned and
given by:

log(λ, t) =

{
(ln(λ), t. ln(λ

1−λ), when λ 6= 1,

(0, t), when λ = 1,

where ln(λ) is the natural (scalar) logarithm of λ. Same remark as for the exponential:
we get the classical logarithm on the scaling part and a mixture of the multiplicative
and additive logarithms on the translation part. We recall that in the case of an additive
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group such (R, +), both additive exponential and logarithm are simply the identity. This
is what we get both for the exponential and the logarithm when there is no scaling.
The unique group geodesic joining (λ, t) and (λ′, t′) of the form (λ, t). exp(s.(dλ, dt))
with s in [0, 1] has its parameters (dλ, dt) given by:

(dλ, dt) =

(
ln(

λ′

λ
),

(
t′ − t

λ

)
.

(
ln(λ′

λ )
λ′

λ − 1

))
. (7.12)

Absence of Bi-Invariant Metrics. ST (1) is one of the most simple non-compact and non-
commutative Lie groups. In terms of bi-invariant metrics, it exhibits the typical tendency of
such Lie groups: it has no such metric. As usual (see Section 7.2), to see this, we use the
fact it is necessary and su�cient that the adjoint representation of ST (1) be not bounded
to ensure that no bi-invariant metric exists for this group. To show this, we use again the
classical matrix representation of ST (1):

Ad((λ, t)).(dλ, dt) ∼
(

λ t
0 1

)
.

(
dλ dt
0 0

)
.

(
1
λ − t

λ
0 1

)

∼
(

dλ −t.dλ + λ.dt
0 0

)

= (dλ,−t.dλ + λ.dt).

Both factors `t' and `λ' in −t.dλ + λ.dt are not bounded and thus Ad(ST (1)) cannot be
bounded. As a consequence, ST (1) has no bi-invariant metric. Both (R+

⋆,×) and (R,+) are
commutative and thus have bi-invariant metrics, but interestingly, their semi-direct product
has no such metric.

A Closed Form for the Bi-Invariant Mean. We recall that the bi-invariant mean in a
Lie group is de�ned implicitly by a barycentric equation, given by Eq. (7.8). Here, since we
have explicit formulae for the group exponential and logarithm, one can use these formulae
to try to solve directly the barycentric equation. This leads to the following result:

Proposition 7.8. Let ((λi, ti)) be N points in ST (1) and (wi) be N non-negative (normalized)
weights. Then the associated bi-invariant mean (λ̄, t̄) is given explicitly by:

{
λ̄ = e

∑
i wi ln(λi), (weighted geometric mean of scalings),

t̄ = 1
Z .

∑
i wi.αi.ti, (weighted arithmetic mean of translations in�uenced by scalings),

(7.13)
with: 




αi =
ln(

λi
λ̄

)
λi
λ̄
−1

; note that αi = 1 when λi = λ̄.
Z =

∑
i wi.αi

.

Proof. Just replace in the barycentric equation the exponentials and logarithms by the for-
mulae given above. Since the scaling component is independent from the translation one, we
simply obtain the geometric mean, which is the bi-invariant mean for positive numbers. The
translation part can be handled simply using directly Eq. (7.12), which yields this simpli�ed
expression for the barycentric equation:

∑

i

wi

(
ti − t̄

λ̄

)
.

(
ln(λi

λ̄
)

λi

λ̄
− 1

)
= 0.

Hence the result.
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Comparison Between Group and Metric Geodesics. In Figure 7.3, one can visually
compare the group geodesics to some of their left-invariant and right-invariant (metric) coun-
terparts.

Interestingly, one of the left-invariant metrics on ST (1) induces an isometry between this
group and Poincaré half-plane model for hyperbolic geometry (see [Gallot 93], page 82-83 for
more details on this space). The scalar product of this scalar metric is the most simple at
the (1, 0): it is the usual Euclidean scalar product. Geodesics take a very particular form in
this case: they are the set of all the half-circles perpendicular to the axis of translations and
of all (truncated below the axis of translations) lines perpendicular to the axis of translations
(these lines can be seen as half-circles of in�nite diameter anyway).

Thanks to Proposition 7.1, we know that the right-invariant Riemannian metric whose
scalar product at (1, 0) is the same as the previous metric can be obtained simply by `inverting'
this left-invariant metric. As a consequence, its geodesics can be computed simply by inverting
the initial conditions, computing the associated left-invariant geodesic and �nally inverting
it. The right-invariant geodesics visualized in Fig. 7.3 are by consequence some sort of
`inverted half-circles'. In fact, simple algebraic computations show that these geodesics are
all half-hyperbolas.

One should note that the simple form taken by left-invariant geodesics is indeed excep-
tional. In general, there are no closed form for neither left- nor right-invariant geodesics,
and group geodesics are simpler to compute, since in most practical cases they only involve
the computation of a matrix exponential and a matrix logarithm, for which very e�cient
methods exist [Higham 05, Cheng 01]. Another nice Lie group where left-invariant metrics
(and by consequence also right-invariant metrics) take a simple (closed) form is the group
of rigid transformations. See [Boisvert 06] for examples of left-invariant statistics on rigid
transformations in the context of a statistical study of human scoliotic spines.

Extension to ST (n). One can directly generalize the results obtained for ST (1) to the
more general group ST (n) of scalings and translations in nD. Instead of being a scalar, the
translation is in this general case a n−dimensional vector. This does not change anything:
all the algebraic properties of ST (1) are also valid for ST (n). In particular, one can use Eq.
(7.13) to compute bi-invariant means in ST (n).

7.5.3 The Heisenberg Group
With the group ST (1), we had seen a simple case of mixing between a 1D multiplicative group
and a 1D additive group. In this subsection, we study instead a 3D group where this time 2
additive groups (one 2D and the other 1D) are mixed.

The Heisenberg group. It is the group of 3D upper triangular matrices M of the form:

M =




1 x z
0 1 y
0 0 1


 .

To simplify notations, we will also write (x, y, z) to represent an element of this group.

Elementary Algebraic Properties. They are the following:

� Multiplication: (x1, y1, z1).(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1.y2). The �rst
two parameters thus live in a 2D additive group which is independent of the third
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Figure 7.3: Examples of geodesics in the group of scalings and translations in 1D.
Top row: two examples of left- and right- and group geodesics. Bottom row: two examples
of geodesics with each time three possible orientations. Blue: group geodesics, red: left-
invariant geodesics and green: right-invariant geodesics. Note the particular form taken by
group geodesics, which are part of straight lines and of the left-invariant geodesics, which are
half-circles perpendicular to the horizontal axis. Right-invariant geodesics are also given in a
closed form and are in fact half-hyperbolas.

parameter, whereas the third additive parameter is in�uenced by the �rst two. The
Heisenberg group is thus a semi-direct product between (R2, +) and (R, +), which is not
commutative.

� Inversion: (x, y, z)−1 = (−x,−y,−z + x.y). Neutral element: (0, 0, 0).

� As in the ST (1) case, the Heisenberg group is entirely groupwise geodesically convex
and we have: {

exp((dx, dy, dz)) = (dx, dy, dz + 1
2 .dx.dy)

log((x, y, z)) = (x, y, z − 1
2x.y).

The unique group geodesic joining (xm, ym, zm) and (x, y, z) of the form
(xm, ym, zm). exp(s.(dx, dy, z)) with s in [0, 1]. Its parameters (dx, dy, dz) are given
by:

(dx, dy, dz) =

(
x − xm, y − ym, z − zm +

1

2
.(xm.ym − x.y + xm.y − x.ym)

)
. (7.14)

Bi-Invariant Metrics and Bi-invariant Means. As in the ST (1) case, no bi-invariant
metrics exists and one has the closed form for the bi-invariant mean. Interestingly, the bi-
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invariant mean yields a simple arithmetic averaging of the �rst two parameters. The third
parameter is also averaged arithmetically, except that this arithmetic mean is `corrected' by
a quadratic function of the �rst two parameters of the data.

Proposition 7.9. The action of the adjoint representation Ad of the Heisenberg group at a
point (x, y, z) on an in�nitesimal displacement (dx, dy, dz) is given by:

Ad(x, y, z).(dx, dy, dz) = (dx, dy,−y dx + x dy + dz).

As a consequence, no bi-invariance metric exists for the Heisenberg group.

Proof. Proceed exactly as in Proposition 7.2.

Proposition 7.10. Let ((xi, yi, zi)) be N points in the Heisenberg group and (wi) be N non-
negative (normalized) weights. Then the associated bi-invariant mean (x̄, ȳ, z̄) is given explic-
itly by:

(x̄, ȳ, z̄) =

(∑

i

wixi,
∑

i

wiyi,
∑

i

wizi +
1

2

(
x̄.ȳ −

∑

i

wixi.yi

))
.

Proof. Just replace in the barycentric equation the exponentials and logarithms by the for-
mulae given above. Since the �rst two components are additive and independent from the
third one, their bi-invariant mean is simply their arithmetic mean. The third coe�cient case
can be handled simply using directly Eq. (7.14), which yields this simpli�ed expression for
the barycentric equation:

∑

i

wi

(
zm − zi +

1

2
.(xm.ym − xi.yi + xm.yi − xi.ym)

)
.

Hence the result.

7.5.4 On a Subgroup of Triangular Matrices
We can generalize the results obtained on the Heisenberg group to the following subgroup of
triangular matrices:

De�nition 7.3. Let UT (n) be the group of n × n upper triangular matrices M of the form:

M = λ.Id + N,

where λ is any positive scalar, Id the identity matrix and N an upper triangular nilpotent
matrix (Nn = 0) with only zeros in its diagonal.

The Heisenberg group is the subgroup of matrices of UT (3) whose λ is always equal to
1. The situation in this case is particularly nice, since thanks to the fact that N is nilpotent,
one can perform exactly all the usual algebraic operations in UT (n):

� Group exponential:

exp(dM) = exp(dλ.Id + dN) = exp(dλ.Id). exp(dN)

= edλ.
∑n−1

k=0
dNk

k! .

� Group logarithm:

log(M) = log(λ.Id + N) = log
(
(λ.Id).(Id + 1

λ .N)
)

= ln(λ).Id +
∑n−1

k=1
(−1)k+1

k (N
λ )k.
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� Inversion:
(M)−1 = (λ.Id + N)−1 = λ−1.(Id + N

λ )−1

= λ−1.
∑n−1

k=0(−1)k.(N
λ )k.

� Multiplication:

M ′.M = (λ′.Id + N ′).(λ.Id + N) = (λ′.λ).Id + (λ′.N + λ.N ′ + N ′.N).

Using these closed forms, one can derive the following equation:

log(M ′.M) = ln(λ′.λ).Id +
n−1∑

k=1

(−1)k+1

k
.

(
1

λ
.N +

1

λ′ .N
′ +

1

λ′.λ
.N.N ′

)k

,

which in turns allows us to compute the equation satis�ed by the bi-invariant mean M̄ =
λ̄.Id + N̄ in UT (n):

−∑
i wi log(M̄−1.Mi) =

∑
i wi log(M̄.Mi

−1) = 0
⇐⇒

∑
i wi

(
ln(λ̄.λi

−1).Id +
∑n−1

k=1
(−1)k+1

k .
(

1
λi

−1 .Ni
−1 + 1

λ̄
.N̄ + 1

λ̄.λi
−1 .Ni

−1.N̄
)k

)
= 0,

(7.15)
where Ni

−1 is the nilpotent part of Mi
−1. From Eq. (7.15), we see that λ̄ is simply the

geometric mean of the λi, and that the coe�cient of N̄ can be recursively computed, starting
from coe�cients above the diagonal. The key idea is that the kth power of a nilpotent matrix
N will have non-zero coe�cients only in its kth upper diagonal.

As a consequence, to compute the coe�cients of M̄ above the diagonal, one only needs to
take into account the the following terms: 1

λi
−1 .Ni

−1+ 1
λ̄
.N̄ . These coe�cients will simply be a

weighted arithmetic mean of the coe�cients in the data, the weights being equal to (wi.
λi

λ̄
)/S

with S =
∑

j wj .
λj

λ̄
. Using this result, then one can compute the coe�cients above, which are

an weighted arithmetic mean of the corresponding coe�cients in the data, with a quadratic
correction involving the previous coe�cients. The same phenomenon appears for the next
set of coe�cients above, with an even more complex correction involving all the previously
computed coe�cients. One can continue this way until all the coe�cients of the mean have
been e�ectively computed.

7.6 Linear Transformations
7.6.1 General Rigid Transformations
We recall that the Lie group of rigid transformations in the n-dimensional Euclidean space,
written here SE(n), is the semi-direct product between (SO(n),×) (rotations) and (Rn, +)
(translations) de�ned has follows:

� An element of SE(n) is uniquely represented by a couple (R, t) ∈ SO(n) × R
n and its

action on a point x of R
n is given by (R, t).x = R.x + t.

� Multiplication: (R′, t′).(R, t) = (R′.R, R′.t + t′).

� Neutral element: (Id, 0), inverse: (RT ,−RT .t).
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� Representation of (R, t) by a (n + 1) × (n + 1) matrix using homogenous coordinates:
(

R t
0 1

)
.

� Lie algebra: thanks to the matrix representation of SE(n), it is simple to see that
the Lie algebra of SE(n) can be faithfully represented by the following vector space of
matrices: (

dR dt
0 0

)
,

where dR is any skew n×n matrix and dt any vector of R
n. In this representation, the

Lie bracket [., .] is simply given by the matrix Lie bracket: [A,B] = A.B − B.A.

� Group exponential: it can be computed using directly the matrix representation, or by
identifying the one-parameter subgroups of SE(n). This yields:

exp(dR, dt) =

(
edR, edR.

(∫ 1

0
e−u.dRdu

)
.dt

)
,

where edR is the matrix exponential of dR.

Existence of the Logarithm. From Section 7.3, we know that it is only de�ned locally in a
neighborhood of the neutral element (Id, 0). However, since we have a faithful representation
of SE(n) in terms of matrices, we can use the matrix criterion for the existence of the principal
logarithm: from Subsection 2.3.4, we know that an invertible matrix with no (complex)
eigenvalue on the closed half-line of negative real numbers has unique matrix logarithm with
eigenvalues having imaginary parts in ] − π, π[. In the case of rotations, this means that the
various angles of rotation (there can be several angles of rotation in the general n-dimensional
case, whereas only one exists in 2D or 3D) of a rotation R should not go outside ]−π, π[ if we
want the logarithm of R to be well-de�ned. Otherwise, one cannot de�ne a unique logarithm.
This is typically the case for −Id in 2D (i.e. a rotation of 180 degrees), whose two `smallest'
real logarithms are the following:

(
0 −π
π 0

)
and

(
0 π
−π 0

)
.

Going back to SE(n), we have the following result:

Proposition 7.11. The logarithm of a rigid transformation (R, t) is well-de�ned if and only
if the logarithm of its rotation part R is well-de�ned.

Proof. The logarithm of (R, t) is well-de�ned if and only if the matrix representing (R, t)
has a principal logarithm, which is equivalent to the fact that it has no eigenvalue on the
closed negative line. Then, this is equivalent to the fact that R has no eigenvalue on the
closed negative line, since the eigenvalues of the upper triangular matrix (in terms of blocks)(

R t
0 1

)
depend only on the blocks in its diagonal, i.e. only on R, and not t. As a

consequence, the logarithm of a rigid transformation is well-de�ned if and only if the logarithm
of its rotation part is well-de�ned.
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Criterion for the Existence of the Bi-Invariant Mean. We have seen in Section 7.2.3
that no bi-invariant metric exists in the rigid case. One may now ask the question: is there
a simple criterion for the existence of the bi-invariant mean of rigid transformations? When
bi-invariant metrics exist, one has ideed such a criterion, as mentioned before: the bi-invariant
mean exists and is unique as long as all the data is strictly included in a regular geodesic ball
of radius r such that the geodesic ball of radius 2.r is still regular ( [Pennec 06a], page 9).

In the case of 3D rotations, this means that the data is included in a regular geodesic ball
of radius strictly inferior to π/2. This is equivalent to saying that there exists a point R such
that for all the rotations Ri of the data, the rotation R−1.Ri has an angle of rotation strictly
smaller than π/2 [Pennec 98a]. This implies that for all Ri and Rj in the data, the angle of
rotation of Rj

−1.Ri is smaller than π − C where C is a positive constant.
In n dimensions, the situations is more complicated, since an arbitrary rotation has several

angles of rotations. We have the following result: any rotation can be decomposed into a
sum of independent 2D rotations [Lang 04]. For more details on this remarkable spectral
decomposition, see Lemma 7.2 below. If the data are included in a regular geodesic ball of
radius r such that the geodesic ball of radius 2.r is still regular, then for any couple of data
Ri and Rj , all of the angles of rotations of Rj

−1.Ri are bounded by π−C. This simply comes
from the fact that the principal logarithm of Rj

−1.Ri is well-de�ned (which imposes that the
angles of rotations are all stricly smaller than π) and from compactness of the regular geodesic
ball in which the data are included.

Remarkably, one can guarantee the existence and uniqueness of the bi-invariant mean of
rigid transformations directly from a Riemannian criterion on their rotation parts:

Theorem 7.8. Let (Ri, ti) be N rigid transformations such that the bi-invariant Fréchet mean
of their rotation parts is well-de�ned (i.e., satis�es the criterion given above). Then for any
set of non-negative weights (wi), there exists a unique bi-invariant mean for (Ri, ti).

Proof. Let use write R̄ for the bi-invariant Fréchet mean of the rotations parts of the data. The
bi-invariant mean of the data is necessarily of the form (R̄, t), since in an open neighborhood
of the rotation parts, R̄ is the only solution of the rotation part of the bi-invariant barycentric
equation, which does not depend on translations.

R̄ is included in the same geodesic ball as the rotations and therefore, for any Ri of the
data, the angles of rotations of R̄−1.Ri are all smaller than or equal to π − C, where C is a
positive constant smaller than π.

Let us now check whether there exists a unique translation t̄, which satis�es the barycentric
equation of bi-invariant means, which writes here:

∑

i

wi log((R̄, t̄).(Ri, ti)
−1) = 0. (7.16)

From Proposition 7.11, we know that the logarithm of (R̄, t).(Ri, ti)
−1) is well-de�ned for any

value of t, since the logarithm of R̄.Ri
T is well-de�ned for all i. Now, does there exist a unique

value of t (by de�nition t̄) satisfying Eq. (7.16)?
We have: (R̄, t).(Ri, ti)

−1 = (R̄.RT
i , R̄.(−RT

i .ti)+t). Let us write M(dR) = edR.
∫ 1
0 e−u.dRdu.

In terms of translations, Eq. (7.16) writes:

∑
i wiM

(
log(R̄.RT

i )
)−1

.
(
R̄.(−RT

i .ti) + t̄
)

= 0.
⇐⇒(∑

i wiM
(
log(R̄.RT

i )
)−1

)
.t̄ =

∑
i wiM

(
log(R̄.RT

i )
)−1

.RT
i .ti.

(7.17)
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Thus, we see that the existence and uniqueness of t̄ is equivalent to the invertibility of the
following matrix:

∑
i wi M

(
log(R̄.RT

i )
)−1. Under the assumptions described above on ro-

tations, this matrix is indeed invertible by Lemma 7.2 (see below), and this concludes the
proof.

Lemma 7.2. Let (dRi) be N a skew symmetric matrices, such that the norm of their largest
(complex) eigenvalue is always smaller than π − C, with C > 0.

Let M(dR) be equal to edR.
∫ 1
0 e−u.dRdu for any skew symmetric matrix. Then for all

dRi, M(dRi) is invertible, and for any non-negative weights (wi),
∑

i wiM(dRi)
−1 is also

invertible.

Proof. The key idea is to see the form taken by M(dR) in an appropriate orthonormal basis.
From classical linear algebra, we know that any skew symmetric matrix dR has a remarkable
spectral decomposition. More precisely, there exists a speci�c decomposition of the geomet-
rical space R

n in a direct sum of mutually orthogonal subspaces, which are all stable for
dR [Lang 04]. These subspaces are of two kinds:
� k (possibly equal to zero) 2-dimensional vector subspaces Ek.
� A single subspace F of dimension n − 2.k (the orthogonal complement of the other sub-
spaces), which is the kernel of dR.
For any Ej , there exists an orthonormal basis of Ej such that dR restricted to Ej is in this
basis of the following matrix form: (

0 −θj

θj 0

)
.

θj (6= 0) is the jth angle of rotation of the n−dimensional rotation edR. This spectral decom-
position allows for the explicit computation of M(dR) is the various subspaces mentionned
above. First, in the kernel F of dR, M(dR) is simply the identity. In an Ej , we have:

exp(dR)|Ej ∼
(

cos(θj) −sin(θj)
sin(θj) cos(θj)

)
.

A few extra manipulations yield:

M(dR)|Ej =

(
exp(dR).

∫ 1

0
exp(−u.dR)du

)
|Ej ∼

(
sin(θj)

θj

cos(θj)−1
θj

− cos(θj)−1
θj

sin(θj)
θj

)
.

The decomposition detailed above shows that whenever for all j, |θj | < 2.π, M(dR) is
always invertible (which is more than we need), since the determinant of the latter matrix
is equal to

(
sin(θj)

θj

)2
+

(
cos(θj)−1

θj

)2
, which is positive for |θj | < 2.π. Furthermore, a direct

computation shows that the inverse of M(dR) takes the following form in Ej :

M(dR)−1|Ej ∼
( θj . sin(θj)

2.(1−cos(θj)
θj

2

−θj

2
θj . sin(θj)

2.(1−cos(θj)

)
.

For |θj | < π − C, some elementary calculus shows that there exists a constant K > 0, such
that θj . sin(θj)

2.(1−cos(θj)
> K. As a consequence, we have:

M(dR)−1|Ej ∼
(

a b
−b a

)
,
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with a > K > 0. Under the assumption that for all j, |θj | < π − C, this has the interesting
consequence that M(dR)−1 has the following decomposition:

M(dR)−1 = S + A,

where S is a symmetric positive-de�nite matrices with all its eigenvalues larger than K and
where A is a skew symmetric matrix. Then let us take N skew matrices whose eigenvalues
are smaller than π − C. Any convex combination of the M(dRi)

−1 writes:

∑

i

wiM(dRi)
−1 =

(∑

i

wiSi

)
+

(∑

i

wiAi

)
= S̃ + Ã,

where S̃ is still symmetric de�nite positive and Ã is skew symmetric.
∑

i wiM(dRi)
−1 is

therefore invertible, since any matrix of the form S̃ + Ã is invertible. To see this, just remark
that if there exists one x such that (S̃ + Ã).x = 0, this implies xT .S̃.x + xT .Ã.x = 0. Then
notice that xT .Ã.x = (xT .Ã.x)T = −xT .Ã.x = 0. Thus (S̃ + Ã).x = 0 implies xT .S̃.x = 0,
which is equivalent (S̃ is symmetric positive-de�nite) to x = 0. Consequently S̃ + Ã is
invertible and this ends the proof.

7.6.2 2D Rigid Transformations
Contrary to the general case, 2D rigid transformations have a particularity: one has a closed
form for the bi-invariant mean. The reason behing this is that SO(2), the group of 2D
rotations, is commutative. As a consequence, one can compute explicitely the bi-invariant
mean of the rotation parts of the data and deduce from it the translation part using the
barycentric equation, like in the proof of Theorem 7.8. More precisely, we have:

Proposition 7.12. Let (Ri, ti) be N 2D rigid transformations, such that the angles of rotation
of the rotations Ri.R

T
j are all strictly inferior to π (regular geodesic ball criterion in 2D). Then

the bi-invariant mean (R̄, t̄) associated to the weights (wi) is given explicitely by:
{

R̄ = R1. exp
(
+

∑
i wi log

(
RT

1 .Ri

))

t̄ =
∑

i wi Z−1.M
(
log

(
R̄.RT

i

))−1
.RT

i .ti,
(7.18)

with the following formulae for M and Z:

M

((
0 −θ
θ 0

))−1
def
=

(
θ. sin(θ)

2.(1−cos(θ)
θ
2

− θ
2

θ. sin(θ)
2.(1−cos(θ)

)
, Z

def
=

∑

i

wiM
(
log(R̄.RT

i )
)−1

.

Example of Bi-Invariant Mean. Let us take a look at the example chosen in [Pennec 06a],
page 31. Let f1 = (π/4,−

√
2/2,

√
2/2), f2 = (0,

√
2, 0) and f3 = (−π/4,−

√
2/2,−

√
2/2) be

three rigid transformations. The �rst coe�cient corresponds to the angle of rotation (chosen
here in [−π, π[) and last two to the translation.

We can compute exactly the bi-invariant mean of these rigid transformations with (7.18).
Furthermore, we can easily calculate the Log-Euclidean mean of these transformations, given
in a closed form by Eq. (6.17). A left-invariant Fréchet mean can also be computed explicitely
in this case thanks to the simple form taken by the corresponding geodesics (see [Pennec 06a]
for more details). And �nally, thanks to Proposition 7.1, the analogous right-invariant Fréchet
mean can be computed by inverting the data, computing their left-invariant mean and then
inverting this Fréchet mean. This yields (after a number of simple but tedious algebraic
manipulations):
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� Left-invariant Fréchet mean: (0, 0, 0),

� Log-Euclidean mean:
(

0,
√

2−π
4

3 , 0

)
≃ (0, 0.2096, 0),

� Bi-invariant mean:
(

0,
√

2−π
4

1+π
4
.(
√

2+1)
, 0

)
≃ (0, 0.2171, 0),

� Right-invariant Fréchet mean:
(
0,

√
2

3 , 0
)
≃ (0, 0.4714, 0).

Interestingly, we thus see that the mean rotation is exactly the same in all four cases. But the
mean translations are di�erent, and the bi-invariant mean is located nicely between the left-
and right-invariant Fréchet means. This is quite intuitive, since the bi-invariant mean can
be looked upon as an in-between alternative with regard to left- and right-invariant Fréchet
means. Remarkably, the Log-Euclidean mean (which is much simpler to compute) is very
close to the bi-invariant mean, which is a result somehow comparable to what are observed
on di�usion tensors in Chapter 4 (in this context, the bi-invariant mean of tensors will be
referred to as the a�ne-invariant mean; please refer to Section 7.6.4 to understand why).

7.6.3 General Linear Transformations
The Bi-Invariant Mean as a Geometric Mean. It is possible to show that in the linear
group GL(n), the determinant of the bi-invariant mean is equal to the scalar geometric mean
of the determinant of the data. This mean can thus be looked upon as a generalization to
invertible linear transformations of the geometric mean of positive numbers. This generaliza-
tion is not the only possible one, since the Log-Euclidean mean, which we have described
in Chapter 6, has the same property. However, the Log-Euclidean mean is restricted to lin-
ear transformations whose principal logarithm is well-de�ned, which is not the case for the
bi-invariant mean.
Proposition 7.13. Let Ti be N linear transformations in GL(n) and let (wi) be N (normal-
ized) non-negative weights, such that their bi-invariant mean E(Ti) exists. Then, we have:

{
if det(Si) > 0, for all i, then det(E(Ti)) = exp (

∑
i wi. ln(det(Si))) ,

if det(Si) < 0, for all i, then det(E(Ti)) = − exp (
∑

i wi. ln(−det(Si))) ,

Proof. When the bi-invariant mean is well-de�ned, then all of the determinants of the data
have the same sign, which is also the sign of E(Ti). Otherwise, one of the products E(Ti)

−1.Ti

would have a negative determinant and its principal logarithm would fail to exist.
To prove our result, we will rely only on two ingredients: the barycentric equation (7.8)

and the following property: det(M) = exp(Trace(log(M))), which holds for any square matrix
with a principal logarithm. This (classical) equality can be shown for example using the Jordan
(or Schur) decomposition of the matrix M .

Taking the trace of the barycentric equation and then the (scalar) exponential, we get:
1 = Πi exp

(
wiTrace

(
ln

(
det

(
E(Ti)

−1.Ti

))))
.

Then, using det(A.B) = det(A).det(B) and ln(a.b) = ln(a) + ln(b) and det(E(Ti)
−1.Ti) =

|det(E(Ti))|−1.|det(Si)|, we get the geometrical interpolation of determinants:

1 = |det (E(Ti))|−1 . exp

(∑

i

wi. ln (|det(Si)|)
)

,

which yields the result.
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Practical Computation of the Bi-Invariant Mean. Whe have seen in Section 7.4 that
an e�ciently iterative scheme could be used to compute bi-invariant means. It relies on suc-
cessive computations involving inversions, exponentials and logarithms. To actually compute
numerically the exponential and logarithm, we recommend using modern and e�cient algo-
rithms like the `Scaling and Squaring' method for the matrix exponential [Higham 05] and
the `Inverse Scaling and Squaring Method' [Cheng 01] for the matrix logarithm.

In the case of rigid and a�ne transformations, one can use their representation by matrices
given by homogeneous coordinates, and use the general iterative scheme on these matrices to
compute their bi-invariant mean.

7.6.4 Tensors
Let us now say a few words about the tensor case. As explained in Chapter 3, a number
of teams proposed almost simultanously in 2004 to endow this space with a�ne-invariant
metrics. Interestingly, the Fréchet mean associated to a�ne-invariant Riemannian metrics on
the tensor space coincides with the bi-invariant mean of tensors, looked upon as elements of
GL(n). Indeed, the a�ne-invariant Fréchet mean EAff (S1, ..., SN ) of N tensors S1, ..., SN is
de�ned implicitely by the following barycentric equation:

N∑

i=1

wi. log(EAff (S1, ..., SN )−
1
2 .Si.EAff (S1, ..., SN )−

1
2 ) = 0, (7.19)

which happens to be exactly equivalent our general equation (7.8) for bi-invariant means (just
multiply (7.19) on the left by EAff (S1, ..., SN )−

1
2 and on the right by EAff (S1, ..., SN )+

1
2 to

obtain (7.8)). Intuitively, this means that our bi-invariant mean naturally uni�es into a very
general framework a number of well-established notions of means for various types of data
living in Lie groups (e.g, tensors, rotations, translations).

7.7 Left-Invariant Polya�ne Transformations
Why (Again) a Novel Polya�ne Framework? The properties of the Log-Euclidean
polya�ne framework presented in Chapter 6 are excellent, and do not su�er from the defects
of our original polya�ne framework. However, this Log-Euclidean framework is limited to
rigid or a�ne transformations whose principal logarithm is well-de�ned, i.e. which are close
enough to the identity. So far, we did not �nd this restriction limiting in our work on 3D
locally a�ne registration, mainly because we perform �rst a global a�ne alignment of images
before any locally a�ne registration. Still, it would be very interesting to have an in�nitesimal
strategy of fusion capable of handling any type of local rigid or a�ne deformations (provided
their dispersion is not too large, of course), regardless of their distance to the identity.

Before presenting the last polya�ne frameworks of this thesis, let us brie�y recall the two
polya�ne frameworks we have already presented in Chapters 5 and 6.

7.7.1 Polya�ne Transformations
The idea is to de�ne transformations that exhibit a locally rigid or a�ne behavior, with nice
invertibility properties. Following the seminal work of [Little 96], we model such transfor-
mations by a �nite number N of a�ne components. Precisely, each component i consists
of an a�ne transformation Ti and of a non-negative weight function wi(x) which models its
spatial extension: the in�uence of the ith component at point x is proportional to wi(x).
Furthermore, we assume that for all x,

∑N
i=1 wi(x) = 1, i.e. the weights are normalized.



162 Chapter 7. Bi-Invariant Means in Lie Groups

Fusion of Displacements. In order to obtain a global transformation from several weighted
components, the classical approach to fuse the N components, given in [Sheppard 68], simply
consists in averaging the associated displacements according to the weights:

T (x) =
N∑

i=1

wi(x)Ti(x). (7.20)

The transformation obtained using (7.20) is smooth, but this approach has one major draw-
back: although each component is invertible, the resulting global transformation is not in-
vertible in general. To remedy this, we proposed in Chapter 5 to rely on the averaging of some
in�nitesimal displacements associated to each a�ne component instead. The resulting global
transformation is obtained by integrating an Ordinary Di�erential Equation (ODE), which is
computationally more expensive but guarantees its invertibility and also yields a simple form
for its inverse.

Log-Euclidean Polya�ne Transformations. However, the �rst polya�ne framework we
proposed lacks some important properties: the inverse of a polya�ne transformation is not
polya�ne in general, and the polya�ne fusion of a�ne components is not invariant with
respect to a change of coordinate system.

This is the reason why we proposed a novel framework in Chapter 6, called Log-Euclidean
polya�ne, which overcomes these defects. We also showed that this novel type of geometrical
deformations can be computed very e�ciently (as well as their inverses) on regular grids, with
a simple algorithm called the Fast Polya�ne Transform.

Let us now see what the Log-Euclidean polya�ne fusion consists of. Let (Ti) be N a�ne (or
rigid) transformations, and let (log(Ti)) be their logarithms. Using these logarithms, one can
fuse the Ti in�nitesimally according to the weights wi(x) with a stationary (or autonomous)
ODE, called the `Log-Euclidean polya�ne ODE'. In homogeneous coordinates, this ODE is
the following:

ẋ =
∑

i

wi(x) log(Ti).x, (7.21)

which is a nice in�nitesimal analogous of Eq. (7.20). The value at a point x of the Log-
Euclidean polya�ne transformation (LEPT) de�ned by (7.21) is given by integrating (7.21)
between time 0 and 1 with x as initial condition.

7.7.2 A Novel Type of Polya�ne Transformations
Left-Invariant Polya�ne Transformations (LIPTs). To de�ne our novel polya�ne fu-
sion, called left-invariant, we will rely on bi-invariant means of rigid or a�ne transformations.

Let (Ti) be N a�ne (or rigid) transformations, let (wi(x)) be some non-negative weights
functions. Let also (αi) be N non-negative weights, which intuitively correspond to the global
weights of components, whereas weight functions provide local information. Finally, let T̄ be
the weighted left-invariant mean of the Ti and the weights (αi). The bi-invariant polya�ne
transformation Φ associated to all of these data is de�ned as follows:

1. Starting from a position x0, the following ODE (in homogeneous coordinates) is in-
tegrated during one unit of time, which yields a �nal position Ψ(x0) in homogeneous
coordinates:

ẋ =
∑

i

wi(x) log(T̄−1.Ti).x. (7.22)
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2. We obtain the value at x0 of the LIPT Φ by computing: Φ(x0) = T̄ .Ψ(x0).

This allows to fuse in�nitesimally the Ti provided only that the logarithms of the T̄−1.Ti

exist, which does not require that any of the logarithms of the Ti exist. The properties of
this fusion are quite nice: left-invariance and a�ne-invariance. They are summarized in the
following Proposition:

Proposition 7.14. The left-invariant polya�ne fusion Φ of the components (Ti, wi(x)) with
respect to the global weights (αi) has the following invariance properties:

� left-invariance: any left-multiplication (by an a�ne transformation) of the Ti results in a
left-multiplication of Φ

� a�ne-invariance: the fusion does not depend on the current choice of coordinate system
� at any point x such that wi(x) = αi for all i, we have Φ(x) = T̄ .x, i.e. x moves according
to the mean transformation.

Proof. Proof of left-invariance: let A be an a�ne transformations, and let us replace the Ti by
A.Ti. By construction, T̄ is bi-invariant and is replaced by A.T̄ and thus Eq. (7.22) remains
unchanged:

ẋ =
∑

i

wi(x) log
(
T̄−1.A−1.A.Ti

)
.x =

∑

i

wi(x) log
(
T̄−1.Ti

)
.x.

Since the value of Φ is obtained by left-multiplying by T̄ in a second step, Φ is replaced by
A.Φ, which means that our novel polya�ne fusion is left-invariant.

A�ne-invariance: let us change the current coordinate system by transforming x into
y

def
= A.x in homogeneous coordinates. This results in the following changes:

� a weight function x 7→ wi(x) becomes y 7→ wi

(
A−1.y

)
.

� an a�ne transformation Ti becomes A.Ti.A
−1.

� the bi-invariant mean becomes A.T̄ .A−1.
In the new coordinate systems, the left-invariant polya�ne ODE becomes:

ẏ =
∑

i

wi

(
A−1.y

)
log

(
A.T̄−1.A−1.A.Ti.A

−1
)
.y = A.

(∑

i

wi

(
A−1.y

)
log

(
T̄−1.Ti

)
)

.A−1.y,

which yields:
d

dt

(
A−1.y

)
=

∑

i

wi

(
A−1.y

)
log

(
T̄−1.Ti

)
.
(
A−1.y

)
. (7.23)

This means that x(t) is a solution of Eq. (7.22) if and only if y(t) = A.x(t) is a solution
of (7.23), i.e. of the left-invariant polya�ne ODE in the novel coordinate system. As a
consequence, a change of coordinate system does not a�ect the left-invariant polya�ne fusion,
i.e. this fusion is a�ne-invariant.

Finally, at a point x such that wi(x) = αi, we have:

∑

i

wi(x). log(T̄−1.Ti).x =

(∑

i

αi log(T̄−1.Ti)

)
.x = 0.x = 0,

by construction of the bi-invariant mean T̄ . This implies that X is a �xed point of Ψ.
Therefore, we have Φ(x) = T̄ .x at this point.
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Log-Euclidean vs. Left-Invariant Polya�ne Transformations. The price paid for the
in�nitesimal fusion of local rigid or a�ne components regardless of their distance to the iden-
tity is the following: the fusion is not inversion-invariant, i.e. the inverse of a left-invariant
polya�ne transormation is not left-invariant polya�ne (but right-invariant polya�ne in fact).
However, a�ne-invariance is preserved, i.e. independence with respect to the choice of coor-
dinate system.

Computing Left-Invariant Polya�ne Transformations. The �rst step of the left-
invariant polya�ne fusion, the ODE (7.22) is a simple Log-Euclidean polya�ne ODE, which
can be integrated very e�ciently using the Fast Polya�ne Transform described in [Arsigny 06a].
The second step is very simple to compute: it only consists in applying an a�ne transfor-
mation, which is the bi-invariant mean T̄ . We recall that this mean can be very e�ciently
numerically computed in homogeneous coordinates using the e�cient iterative scheme de-
scribed previously in this Chapter.

Right-Invariant Polya�ne Transformations (RIPTs). We have just de�ned LIPTs.
What about right-invariant polya�ne transformations? With the same notations as before,
one can indeed de�ne such transformations, by slightly modifying the left-invariant polya�ne
ODE:

1. Starting from a position x0, the following ODE (in homogeneous coordinates) is inte-
grated during one unit of time, which yields a �nal position ΨR(x0):

ẋ =
∑

i

wi

(
T̄ .x

)
log

(
T̄−1.Ti

)
.x. (7.24)

2. We obtain the value at x0 of the right-invariant polya�ne transformation ΦR by com-
puting: ΦR(x0) = T̄ .ΨR(x0).

With exactly the same type of techniques as in the proof of Proposition 7.14, one can show
that type of fusion is right-invariant and also a�ne-invariant. It is much less intuitive, since
the weight functions wi are geometrically deformed by T̄−1 before being used in the fusion.
With have the interesting following relationship between LIPTs and RIPTs:

Proposition 7.15. The inverse of a LIPT is the RIPT with inverted components, and vice
versa.

Proof. Inverting the left-invariant polya�ne fusion results in the following two steps:

1. multiplying by T̄−1

2. Integrating the following ODE during one unit of time:

ẋ = −
∑

i

wi(x) log
(
T̄−1.Ti

)
.x =

∑

i

wi(x) log
(
Ti

−1.T̄
)
.x (7.25)

Let us use the change of variable y = T̄ .x in (7.25). This yields:

ẋ = T̄−1.ẏ =
∑

i

wi

(
T̄−1.y

)
log

(
Ti

−1.T̄
)
.T̄−1.y = T̄−1

(∑

i

wi

(
T̄−1.y

)
. log

(
T̄ .T−1

i

)
)

.y,
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which yields the simpler equation:

ẏ =
∑

i

wi

(
T̄−1.y

)
log

(
T̄ .T−1

i

)
.y, (7.26)

which is the ODE associated to the �rst step of the right-invariant fusion of the inverses of
the Ti with the same weights as originally.

Thus, x(t) is the solution of (7.25), second step of the inversion of our LIPT if and only if
T̄ .x(t) is a solution of the �rst step of the RIPT with inverted components. As consequence,
the two steps of the inversion of our LIPT are equivalent to the two steps the RIPT with
inverted components. The inverse of a LIPT is therefore the RIPT with inverted components
and vice versa.

And Bi-Invariant Polya�ne Transformations? So far, we have not been able to de�ne
a bi-invariant polya�ne fusion, i.e. an in�nitesimal fusion of local a�ne transformations which
would be simultanously left- and right- and inversion-invariant. Is such a fusion possible? We
do not know yet, and this will be the subject of future work.

7.8 Conclusions and Perspectives
In this Chapter, we have presented a general framework to de�ne rigorously a novel type of
mean in Lie groups, called the bi-invariant mean. This mean enjoys many desirable invariance
properties, which generalize to the non-linear case the properties of the arithmetic mean: it
is invariant with respect to left- and right-multiplication, as well as inversion. Previously,
this type of mean was only de�ned in Lie groups endowed with a bi-invariant Riemannian
metric, like compact Lie groups such as the group of rotations [Pennec 06a,Moakher 02]. But
Riemannian bi-invariant metrics do not always exist. In particular, we have proved in this
work that such metrics do not exist in any dimension for rigid transformations, which form
but the most simple Lie group involved in bio-medical image registration.

To overcome the lack of existence of bi-invariant Riemannian metrics for many Lie groups,
we have proposed in this Chapter to de�ne bi-invariant means in any �nite-di-
mensional real Lie group via a general barycentric equation, whose solution is by de�nition
the bi-invariant mean. We have shown the existence and uniqueness of this novel type of
mean, provided the dispersion of the data is small enough, and the convergence of an e�cient
iterative algorithm for computing this mean has also been shown. The intuition of the ex-
istence of such a mean was �rst given in [Woods 03] (without any precise de�nition), along
with an e�cient algorithm for computing it (without proof of convergence), in the case of
matrix groups. Moreover, we have brie�y presented how empirical higher order moments can
be computed in a simple way based on this novel notion of mean.

In the case of rigid transformations, we have been able to determine a simple criterion
for the general existence and uniqueness of the bi-invariant mean, which happens to be the
same as for rotations. We have also given closed forms for the bi-invariant mean in a number
of simple but instructive cases, including 2D rigid transformations. Interestingly, for general
linear transformations, we have shown that similarly to the Log-Euclidean mean, that we
presented in Chapter 6, the bi-invariant mean is a generalization of the (scalar) geometric
mean, since the determinant of the bi-invariant mean is exactly equal to the geometric mean
of the determinants of the data.
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Last but not least, we have used this new type of mean to de�ne a novel class of polya�ne
transformations, called left-invariant polya�ne, which allows to fuse local rigid or a�ne com-
ponents arbitrarily far away from the identity, contrary to Log-Euclidean polya�ne fusion,
which we described in Chapter 6.

In future work, we are planning to compare the statistics obtained via the bi-invariant
mean and the Log-Euclidean framework to other types of statistics on rigid or a�ne trans-
formations such as the Log-Euclidean ones, which were presented in the previous Chapter, or
left-invariant Riemannian statistics [Boisvert 06]. These statistics could prove very useful for
example to constraint locally rigid or a�ne registration algorithms such as the one described
in [Commowick 06a] and used in the previous Chapter. On this subject, one should note that
both Log-Euclidean and bi-invariant frameworks can be used in practice in a simple way to
compute statistics in any matrix groups (provided of course that the dispersion of the data
is not too large, but this restriction also applies to Riemannian frameworks), whereas in the
Riemannian left- and right-invariant cases, this depends very much on the form taken by
geodesics in these cases. For rigid transformations, left-invariant geodesics are linked to the
matrix exponential in a straightforward way and thus can be simply computed. However, to
our knowledge, this is not the case for left-invariant Riemannian metrics on a�ne transforma-
tions, which makes the use of such metrics quite di�cult in this case. No such problem occurs
with our novel frameworks, which only rely on computations based on the matrix exponential
and logarithm.
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Chapter 8

Statistics on Di�eomorphisms in a
Log-Euclidean Framework

We brie�y present in this Chapter the generalization to di�eomorphisms of our Log-Euclidean
framework, presented in Chapter 3 in the tensor case and generalized to linear transformations
and �nite-dimensional Lie groups in Chapter 6. Such a framework could prove very useful in
computational anatomy, since it allows usual statistics to be performed on di�eomorphisms in
a simple vectorial way on the logarithms of transformations, with excellent theoretical proper-
ties such as inversion-invariance. This yields in particular a closed form for the computation of
mean di�eomorphisms, contrary to the iterative and possibly unstable computation suggested
in [Vaillant 04]. Without relying on Riemannian geometry, such a framework provides simple
processing algorithms compatible with a number of algebraic properties of di�eomorphisms.

As explained in this short Chapter, our non-linear generalization of the Log-Euclidean
framework to general invertible deformations still poses some theoretical problems that are
yet to be completely solved, due to the in�nite-dimensional nature of di�eomorphisms. How-
ever, the encouraging partial theoretical evidence of the well-foundedness of our approach we
present here, along with the promissing preliminary experimental results that we have already
obtained have led us to present this work-in-progress `as is' at the end of this thesis.
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Abstract. In this Chapter, we focus on the computation of statistics of invertible geomet-
rical deformations (i.e., di�eomorphisms), based on the generalization to this type of data
of the notion of principal logarithm. Remarkably, this logarithm is a simple 3D vector �eld,
and can be used for di�eomorphisms close enough to the identity. This allows to perform
vectorial statistics on di�eomorphisms, while preserving the invertibility constraint, contrary
to Euclidean statistics on displacement �elds. We also present here two e�cient algorithms to
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compute numerically logarithms of di�eomorphisms and exponentials of vector �elds, whose
accuracy is studied on synthetic data. Finally, we apply these tools to compute the mean of
a set of di�eomorphisms, in the context of a registration experiment between an atlas an a
database of 9 T1 MR images of the human brain.

Related Publications. This work was presented at the international conference MIC-
CAI'2006 [Arsigny 06b], as well as at the International Workshop on the Mathematical Funda-
tions of Computational Anatomy (MFCA-2006) [Arsigny 06d], which was one of the numerous
MICCAI'2006 satellite workshops.

8.1 Introduction
In this Chapter, we focus on the computation of statistics of general di�eomorphisms, i.e. of
geometrical deformations (non-linear in general) which are both one-to-one and regular (as
well as their inverse). To quantitatively compare non-linear registration algorithms, or in
order to constrain them, computing statistics on global deformations would be very useful as
was done in [Commowick 05] with local statistics.

As we have seen in the Introduction of this thesis in Section 1.1.4, the computation of
statistics is closely linked to the issue of the parameterization of di�eomorphisms. Statistics
on displacement �elds are not fully satisfactory, since the Euclidean means of such parameter
do not always provide an average transformation which is invertible. In [Marsland 04], it
was proposed to parameterize arbitrary di�eomorphisms with Geodesic Interpolating Spline
control points [Camion 01], but although this guarantees the invertibility of the results, this
low-dimensional parameterization may not be adequate for the whole variety of invertible
transformations used in medical imaging.

To fully take into account the group structure of di�eomorphisms, it has been proposed
to parameterize dense deformations with Hilbert spaces of time-varying velocity vector �elds,
which can be given an in�nite-dimensional Lie group structure [Trouvé 98,Beg 05]. In [Vail-
lant 04], it is suggested that the linear space of intial momenta of the right-invariant geodesics
in these spaces could provide an appropriate setting for statistics on di�eomorphisms. How-
ever, this is illustrated in [Vaillant 04] only in the �nite-dimensional case of landmark match-
ing. To our knowledge, this statistical framework has not been used yet in the general case,
certainly because of the iterative nature of the computation of the mean in this setting, which
requires very stable numerical algorithms to converge.

In this Chapter, we introduce a novel parameterization of di�eomorphisms, based on the
generalization of the principal logarithm to non-linear geometrical deformations. Interest-
ingly, this corresponds to parameterizing di�eomorphisms with stationnary velocity vectors
�elds. As for matrices, this logarithm can be used only for transformations close enough to
the identity. However, our preliminary numerical experiments on 3D non-rigid registration
suggest that this limitation a�ects only very large deformations, and may not be problem-
atic for image registration results. This novel setting is the in�nite-dimensional analogous of
the Log-Euclidean framework proposed in Chapter 3 for tensors and in Chapter 6 for linear
transformations. In this framework, usual Euclidean statistics can be performed on di�eomor-
phisms via their logarithms, whith excellent mathematical properties like inversion-invariance.

The rest of this Chapter is organized as follows. In the next Section, we present the
Log-Euclidean framework for di�eomorphisms, which is closely linked to the notion of one-
parameter subgroups. Then, we present two e�cient algorithms to compute the exponential of
a vector �eld and the logarithm of a di�eomorphism, which are exempli�ed on synthetic data.
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Finally, we successfully apply our framework to non-linear registration results to compute a
Log-Euclidean mean deformation between a 3D atlas and a dataset of 9 T1 MR images of
human brains.

8.2 A Log-Euclidean Framework for Di�eomorphisms
To generalize the notion of principal logarithm to di�eomorphisms, we will rely on its close
link with one-parameter subgroups. Remarkably, one-parameter subgroups of di�eomorphisms
take a simple form, and by analogy with the �nite-dimensional case, we will de�ne logarithms
of di�eomorphisms as being the in�nitesimal generators of these subgroups.

Exponential and One-Parameter Subgroups. Let us brie�y recall the link between one-
parameter subgroups and the group exponential detailed in Chapter 2. Let (G, .) be a group,
which can typically be a matrix multiplicative group. Then a family of elements (g(s))s∈R

of G is a one-parameter subgroup of G if and only if g(0) is the neutral element e of G and
for all s, t: g(s).g(t) = g(s + t). When such a subgroup belongs to a (�nite-dimensional) Lie
group and is continuous, it is also di�erentiable, and its derivative at 0, dg

ds (0), is called its
in�nitesimal generator.

Examples of such subgroups are given by the exponential in the following way :
(exp(s.M))s∈R

is a one-parameter subgroup, where M belongs to the Lie algebra of G (i.e.,
is an element of the tangent space TeG). Conversely, we have the remarkable result that all
continuous one-parameter subgroups are precisely of the form (exp(s.M))s∈R

. As a conse-
quence, once one-parameter subgroups are identi�ed in a Lie group, its exponential mapping
is immediately known. This also yields the form taken by the logarithm, which is the (local)
inverse of the exponential.

One-Parameter Subgroups of Di�eomorphisms. In the case of di�eomorphisms, what
do continuous one-parameter subgroups look like? Quite intuitively, they are all obtained via
the integration of stationary ODEs (also called autonomous), i.e ODE whose velocity vector
does not depend on time [Tenenbaum 85].

Let ẋ = V (x) be a stationary ODE, where the vector �eld V (x) is smooth enough. The
�ow associated to this ODE is the family of mappings ΦV (., s) : R

n → R
n parameterized by a

time parameter s, such that for a �xed x0, s 7→ ΦV (x0, s) is the unique solution of ẋ = V (x)
with initial condition x0 at time 0.

Intuitively, for a �xed s, the �ow x 7→ ΦV (x, s) gives the way the ambient space is deformed
by the integration of the ODE during s units of time. Remarkably, the �ow is a one-parameter
subgroup of di�eomorphisms. This implies in particular that the deformations of space given
at time 1 by ΦV (., 1) are twice that observed at time 0.5 via ΦV (., 0.5). The in�nitesimal
generator of this subgroup is V (x). Conversely, all continuous one-parameter subgroups of
di�eomorphisms are �ows of some stationary ODE. See [Tenenbaum 85] for more details.

Exponentials of Vector Fields and Logarithms of Di�eomorphisms. Here, we pro-
pose to de�ne the exponential exp(V ) of a (smooth) vector �eld V (x) as the �ow at time 1 of
the stationary ODE ẋ = V (x). This is the only possible de�nition generalizing to vector �elds
the equivalence between one-parameter subgroups and exponential that exists in the �nite-
dimensional case. Intuitively, the logarithm log(Φ) of a di�eomorphism Φ �close enough� to
the identity is the unique vector �eld �near� zero such that exp(V ) = Φ.
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In the �nite-dimensional case, the existence and uniqueness of such a logarithm can be
proved by showing that the exponential is continuously di�erentiable and that its di�erential
mapping at zero is the identity. This implies that the exponential is di�eomorphic near zero,
i.e. is a smooth one-to-one mapping between an open neighborhood of zero and an open
neighborhood of the identity. In this context, �near� zero and �close to� the identity mean
belonging to one of these open neighborhoods.

In the in�nite-dimensional case of di�eomorphisms, let V be a regular vector �eld, let t
be a non-zero scalar, and let Φt.V (x, 1) be the �ow at time 1 associated to t.V (x). Then, a
simple change of variable (s 7→ t.s) shows that:

limit
t7→0

Φt.V (x, 1) − x

t
= limit

t7→0

exp(t.V )(x) − exp(0)(x)

t
= V (x),

which means intuitively that D0 exp .V = V , which suggests that the di�erential of the ex-
ponential is the identity, and that we have existence and uniqueness of the logarithm locally
around the identity. To be entirely rigorous and to complete the proof, it is necessary to de�ne
precisely the smoothness required of V , i.e. to de�ne properly the space of di�eomorphisms
we are considering.

Can one just consider the very general spaces of Cr or C∞ di�eomorphisms of R
n? Well,

the answer is negative in these cases [Milnor 83]: the group exponential �fails to be one-to-
one or surjective near the identity� ( [Banyaga 97], page 8). How come the properties of the
exponential are so di�erent in our in�nite-dimensional case than in the �nite-dimensional one?
Essentially, the reason is that these spaces are too large.

In [Trouvé 95], Trouvé proposed a novel family of smaller in�nite-dimensional groups of
di�eomorphisms, partly motivated by practical reasons: �at the very end [it is important] to
have an appropriate numerical scheme to solve various pattern recognition problems in this
framework [i.e. with di�eomorphisms]�. This family of groups has remarkable properties and
can be e�ectively used in practive to deal with di�eomorphisms. In recent years, this group
has been increasingly relied on in the medical imaging community and can be now used to
process medical images in a variety of contexts [Trouvé 98, Trouvé 00, Camion 01, Beg 03,
Miller 03,Guo 04,Joshi 00,Beg 05,Trouvé 05b,Glaunes 04,Allassonnière 05].

Are these groups locally exponential [Glöckner 06], i.e. is their exponential locally di�eo-
morphic around zero? We do not have a de�nitive proof yet, but the following result suggests
this is the case: �many (but not all) in�nite-dimensional Lie groups G are locally exponential�
( [Glöckner 06], page 5) and this is the case in particular for in�nite-dimensional Lie groups
whose tangent spaces are Banach spaces (the so-called Banach-Lie groups), see [Glöckner 06],
page 3, or [Milnor 83]. This shows for that in�nite-dimensional groups which are not exceed-
ingly large, the usual properties of the exponential in �nite dimensions still hold.

The groups of di�eomorphisms proposed by Trouvé are not exactly a Banach-Lie groups
(otherwise we would be able to conclude once and for all). But they are very close to be
so: Banach spaces �play the role of tangent spaces� in these groups. The technical di�culty
here comes from the fact that no proper di�erential structure has been identi�ed yet for these
groups, only a �weak di�erentiable structure�. Furthermore, these groups are not exactly Lie
groups, since they have no Lie bracket. But they are not far from being ones, since their
group exponentials are well-de�ned and play a central role in the de�nition of their weak
di�erentiable structures [Trouvé 95].

Alain Trouvé's groups of di�eomorphisms have therefore a good chance of providing a
fully rigorous in�nite-dimensional setting in which our framework for di�eomorphisms is well-
founded (locally around the identity). Even if for some rather technical reason it turned out
otherwise, this could simply mean that we have not identi�ed yet the adequate spaces of
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di�eomorphisms in which our Log-Euclidean framework can be used in completely rigorous
way. Finding the answers to these technical questions will be the object of future work.

Log-Euclidean Statistics on Di�eomorphisms. On di�eomorphisms whose logarithm is
well-de�ned, one can perform Euclidean operations, since these logarithms are simple vector
�elds. In particular, one can de�ne a distance between these di�eomorphisms via a norm
‖.‖ on vector �elds: dist(Φ1, Φ2) = ‖ log(Φ1) − log(Φ2)‖. Remarkably, this type of distance
is inversion-invariant, since log(Φ−1) = − log(Φ). In the case of Hilbert norms, the point
that minimizing the weighted sum of squared distances to the data is the Log-Euclidean
mean, given by exp(

∑
i wi log(Φi)). This mean is inversion-invariant, and is also invariant

with respect to the taking of square roots, since log(Φ
1
2 ) = 1

2 log(Φ). More generally, in this
setting, one can perform any kind of statistics on di�eomorphisms via vectorial statistics on
their logarithms, which allows a straightforward generalization of classical analysis tools like
Principal Component Analysis (PCA) on di�eomorphisms.

8.3 Computation of Exponentials and Logarithms
Fast Computation of Exponentials. Here, we present an e�cient algorithm to compute
exponentials of velocity vectors on regular grids, which generalizes to any initial vector �eld
the Fast Polya�ne Transform we detail in Section 6.3 for Log-Euclidean polya�ne transfor-
mations. Exactly, as in Chapter 6, our approach is based on a non-linear generalization of the
popular `Scaling and Squaring' method, widely used to compute matrix exponentials. The ba-
sic idea is that the matrix exponential is much simpler to compute for matrices close to zero, for
example using Padé approximants. In particular, one can compute very accurately exp

(
M
2N

)

and obtain exp(M) = exp( M
2N )2

N by squaring recursively N times the result [Higham 05].
In the non-linear case, one can follow exactly the same steps as for matrices and generalize

the `Scaling and Squaring' to vector �elds in the following way:

1. Scaling step: divide V (x) by a factor 2N , so that V (x)/2N is close enough to zero
(according to the level of accuracy desired).

2. Exponentiation step: ΦV

(
1

2N , .
)
can be computed with a �rst-order explicit numerical

scheme, i.e.: ΦV

(
1

2N , x
)

= x + V (x)
2N . Alternatively, more accurate numerical schemes

such as Runge-Kutta's can be used.

3. Squaring step: N recursive squarings of ΦV

(
1

2N , .
)
yield an accurate estimation of

ΦV (1, .) (only N compositions of mappings are used).

Intuitively, this means that we obtain the deformations at time 1 as a result of 2N times
the composition of the (very) small deformations observed at time 1

2N . This allows a fast
integration of stationary ODEs on regular grids, compared to classical integrations based on
�xed time-steps. To perform the composition of (sampled) deformations on regular grids, we
use bi- or tri-linear interpolation, which guarantees the continuity of the interpolation in an
simple way.

Fast Computation of Logarithms. Exactly as for exponentials, we use here a non-linear
generalization of the popular `Inverse Scaling and Squaring' method (ISS), widely used to
compute matrix logarithms. Anew, the idea is that logarithms are much simpler to compute
for matrices close to the identity, for instance with Padé approximants. To transform a matrix
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M so that it is closer to the identity, the ISS algorithm performs recursive computations of
square roots. Then the identity log(M) = 2N . log(M2−N

) is used to compute log(M).
Let Φ be a di�eomorphism. To compute its logarithm V , we use the following non-linear

generalization of the ISS algorithm:

1. Scaling step: chose a scaling factor 2N (according to the level of accuracy desired).

2. Square rooting step: Φ2−N is computed by N successive recursive takings of square
roots (see below).

3. Computation of logarithm step: log(Φ) is given by 2N . log(Φ2−N
), where log(Φ2−N

)

is simply estimated by Φ2−N − Id (where Id is the identity).

In order to compute square roots, we perform here a gradient descent on the functional
ESQRT(T ) = 1

2 .
∫
Ω ‖T ◦ T −Φ‖2(x)dx, with 1

2 .(Φ− Id) as initialization. The (L2) gradient of
this energy is the following:

∇ESQRT(T ) = (DT t) ◦ T.(T ◦ T − Φ) + |det(D(T−1))|(T − Φ ◦ T−1),

where DT is the Jacobian of T and where `.' and `M t' are matrix multiplication and transposi-
tion. Exactly as in the matrix case, this requires the inversion of T , which we also perform by
gradient descent on EINV(T ) = 1

2 .
∫
Ω ‖Φ ◦ T − Id‖2(x)dx, with an initialization of −(Φ− Id).

The (L2) gradient is given by:

∇EINV(T ) = (DΦt) ◦ T.(Φ ◦ T − Id).

Figure 8.1: Fast computation of the exponential of a random vector �eld. From left
to right: the two last iterations (scaling of 28) of our fast computation of the exponential and
the evolution of the average relative accuracy with N . Note how deformations increase expo-
nentially from one iteration to another. The relative accuracy obtained on average converges
toward of 0.3%, which is approximately obtained for N = 7.

Experiments on 2D Synthetic Data. In these experiments, we evaluate the accuracy of
our algorithms on 2D random deformations, sampled on a 40 × 40 regular grid. To generate
a random vector �eld, random displacements are computed on a 11 × 11 regular grid (Gaus-
sian white noise of standard deviation 0.2, coordinates of grid points in [−5, 5]) , which are
smoothly interpolated on the �ner grid using bilinear interpolation.

We measure the accuracy of the fast computation of the exponential by computing the
relative di�erence with respect to a very accurate estimation of the continuous transformation,
obtained by a classical integration (i.e., with �xed time step, here 2−8 ) of the stationary
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ODE associated to the random vector �eld, for each voxel of the grid. Fig. 8.1 presents the
results, which show that a typical accuracy on average of 0.3% percent can be obtained with
7 squarings.

To evaluate the accuracy of the fast computation of the logarithm, we �rst estimate the
exponential of the random vector �eld with our fast algorithm (with 8 squarings). Then, the
logarithm of this di�eomorphism is computed and is compared to the original vector �eld
(10 iterations are used for each gradient descent). Fig. 8.2 presents the results, which show
that an accuracy of 3% percent can be obtained on average with 6 recursive computations of
square roots.
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Figure 8.2: Fast computation of the logarithm of a random deformation. From left
to right: random vector �eld (logarithm), then di�erence between original and estimated
logarithms (for N = 8), evolution of accuracy with N . The relative accuracy obtained on
average converges toward of 3%.

8.4 Statistics on 3D Di�eomorphisms
In this Section, we compute Log-Euclidean statistics on the registration results obtained
between a 256×256×60 arti�cial T1 MR image of a human brain (coming from the BrainWeb1),
referred to here as the `atlas', and a dataset of 9 T1 images. The images of the dataset
are �rst globally aligned with the atlas using a robust block-matching a�ne registration
algorithm. Then, a �ne registration is performed using a dense transformation registration
algorithm guaranteeing the invertibility of the global deformations [Stefanescu 04]. Statistics
are performed on the deformations from the atlas to each of the subjects' geometry obtained
in the non-linear registration step.

To compute logarithms of di�eomorphisms and exponential of vector �elds, we used the
fast algorithms presented in the former section. A scaling of 28 is used in both cases, and a
maximal number of 10 iterations is used during each gradient descent.On the 256 × 256 × 60
grid, using a Intel M processor 2.13GHz with 1 Go of RAM, an exponential was computed in
typically 30s and a logarithm in 60 minutes.

Fig. 8.3 presents the results obtained on mean global deformations. We see in particular
that the Log-Euclidean mean deformation tends to increase the size of ventricles, which are
smaller in the atlas than in the dataset. We also compared the Log-Euclidean mean to the
Euclidean mean of displacements, which is not guaranteed to be invertible. In this example,
both means are quite close to each other, although locally, one can observe in the region of
large mean deformations relative di�erences of the order of 30%, for example in the ventricles.

1Web site: http://www.bic.mni.mcgill.ca/brainweb/
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Figure 8.3: Deformation of atlas with Log-Euclidean mean di�eomorphism. From
left to right, images of: regular grid deformed by Log-Euclidean mean deformations,
Jacobian of Log-Euclidean mean deformations, norm of Log-Euclidean mean deformations,
and �nally norm of di�erence between mean Euclidean and Log-Euclidean deformations of
atlas. The largest mean deformations are observed in the ventricles, on the cortex and the
skull; this is due to the anatomical di�erences between the atlas and the population. On
the Jacobian map, we see in particular that high values are obtained in the ventricles: this
comes the fact that the atlas has on average smaller ventricles than in the population. In this
example, both means are quite close to each other, although locally, one can observe in the
region of large mean deformations relative di�erences of the order of 30%, for example in the
ventricles.
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8.5 Conclusions and Perspectives
In this Chapter, we have presented the generalization to di�eomorphisms of our Log-Euclidean
framework, based on the generalization of the notion of principal logarithm to invertible de-
formations. This logarithm is a simple 3D vector �eld, and is well-de�ned for di�eomorphisms
close enough to the identity. In the set of di�eomorphisms whose logarithm is well-de�ned,
one can perform Euclidean operations, since these logarithms are simple vector �elds. This
yields the in�nite-dimensional analogous of the Log-Euclidean framework proposed in [Ar-
signy 05a] for tensors. As a consequence, this framework can be used to perform vectorial
statistics on di�eomorphisms which always preserve the invertibility constraint, contrary to
Euclidean statistics on displacement �elds.

From a theoretical point of view, our non-linear generalization of the Log-Euclidean frame-
work still poses some problems due to the in�nite-dimensional nature of di�eomorphsims that
are yet to be completely solved. Addressing these technical problems will be one of our prior-
ities in future work. In particular, it would be desirable to have a simple characterization of
the conditions under which the principal logarithm of di�eomorphism exists, similarly to the
simple criterion we have on the eigenvalues of invertible matrices.

However, from a practical point of view, we have presented in this work two e�cient
algorithms which successfully generalize to the non-linear case two popular algorithms used
to compute the matrix exponential and logarithm. In practice, this allows for example the
computation of Log-Euclidean means of 3D global deformations, as we have shown in the
context of a registration experiment between an atlas an a database of 9 subjects. This type
of statistics could prove very useful to quantitatively compare registration algorithms, or to
constrain them. This opens the way to a consistent integrative framework for statistics in
computational anatomy. In the domain of image and shape statistics, the Log-Euclidean
framework for di�eomorphisms could provide an interesting setting to build models with a
constant topology.
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9.1 Contributions and Publications
In this Ph.D. thesis, we have mainly concentrated on developing novel and rigorous mathemat-
ical frameworks to process various types of data belonging to Lie groups. We have not relied in
all cases on Riemannian geometry, which can be computationally expensive or lacks desirable
properties. Instead, we have generally used algebraic-oriented approaches, i.e. approaches
rooted in the algebraic properties of the non-linear spaces we have considered. Relying on the
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algebraic properties of these groups, we have endeavored to �nd an adequate balance between
desirable theoretical properties and simplicity, which is of paramount importance in practice.

In this manuscript, we have presented in detail our methodological contributions, along
with some of their applications. The content of Chapters 3 to 8 is essentially novel and and
gave rise to seven publications as �rst author during the three years of the Ph.D.

We have also collaborated with others as co-author, mainly to apply our novel tools in
di�erent contexts, which has led to a number of publications whose content has been but
brie�y described if at all in the previous chapters of this document. This work is put into
light in this Section.

9.1.1 General Log-Euclidean Framework for Tensors
We have presented in Chapter 3 the theoretical properties of a novel and general Riemannian
processing framework for tensors, called Log-Euclidean. Our approach is based on a novel Lie
group structure for tensors, which can smoothly be extended into a vector space structure.
Remarkably, the novel algebraic structure we have proposed for symmetric and positive-de�nite
matrices is compatible with the usual algebraic properties of this set: the inverse of a tensor
is its usual inverse and the matrix exponential is the group exponential of our Lie group
structure.

Our novel framework does not introduce any super�uous complexity, since Log-Euclidean
Riemannian computations can be converted into Euclidean ones once tensors have been trans-
formed into their matrix logarithms, which makes classical Euclidean processing algorithms
particularly simple to recycle.

We have also analyzed theoretically the similarities and di�erences between the a�ne-
invariant mean of [Pennec 06b] and the Log-Euclidean mean. They are quite similar, since
they have the same determinant, which is the classical geometric mean of the determinants
of the averaged SPD matrices. They even coincide when there is enough commutativity (in
the sense of matrix multiplication) in the data, and yet are di�erent in general. We have
proved that when the data are close enough to a multiple of the identity, Euclidean means
are strictly more anisotropic than a�ne-invariant means. Also, we have presented the general
statistical Log-Euclidean framework for tensors, which is now used on a regular basis by
several teams [Peyrat 06b,Goodlett 06,Lepore 06].

The theoretical aspects of this work will be published in the SIAM Journal for Matrix
Analysis and Applications. An INRIA research report on this topic is also available. Moreover,
a French patent is pending on a general image processing device based on our Log-Euclidean
framework:

� Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric Means
in a Novel Vector Space Structure on Symmetric Positive-De�nite Matrices. SIAM
Journal on Matrix Analysis and Applications, 2006. Note: in press.

� Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and Sim-
ple Computations on Tensors with Log-Euclidean Metrics. Research Report RR-5584,
INRIA, Sophia-Antipolis, France, May 2005.

� Vincent Arsigny, Xavier Pennec, Pierre Fillard, and Nicholas Ayache. Dispositif per-
fectionné de traitement ou de production d'images de tenseurs. French patent �ling
number 0503483, April 2005.
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9.1.2 Di�usion Tensor Processing
In Chapter 4, we have focused on the application of the Log-Euclidean framework for tensors to
the processing of a speci�c type of tensors: di�usion tensors. An experimental comparison has
been carried out between our framework and the Euclidean and a�ne-invariant frameworks
[Pennec 06b] on interpolation and regularization tasks on synthetic and clinical 3D DTI data.
Both Riemannian results are very close and are substantially better than the Euclidean ones.
Log-Euclidean results are obtained in a much faster and simpler way than in the a�ne-
invariance case, which makes this framework particularly appealing for the processing of this
kind of tensor.

This work was presented during the peer-reviewed international conference MICCAI'05
and was published in the international journal Magnetic Resonance in Medicine:

� Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-Euclidean
Metrics for Fast and Simple Calculus on Di�usion Tensors. Magnetic Resonance in
Medicine, 56(2):411-421, August 2006.

� Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and Simple
Calculus on Tensors in the Log-Euclidean Framework. In J. Duncan and G. Gerig,
editors, Proceedings of the 8th Int. Conf. on Medical Image Computing and Computer-
Assisted Intervention - MICCAI 2005, Part I, volume 3749 of LNCS, Palm Springs,
CA, USA, October 26-29, pages 115-122, 2005. Springer Verlag.

With Pierre Fillard and others, inspired by [Wang 04], I have worked as co-author on
the joint estimation and smoothing of di�usion tensors. This type of procedure is largely
facilitated by the use of our Log-Euclidean framework, which allows to process tensors in a
vectorial way. For the �rst time to our knowledge, we have proposed a rigorous way of taking
into account the Rician noise of MR scans during the estimation of di�usion tensors. The
positive impact on the tracking of white matter �bers in the brain and the spine has also been
demonstrated in this work.

Our work was presented at the peer-reviewed Third IEEE Symposium on Biomedical
Imaging and has been submitted to NeuroImage. A preprint of this work also appeared as an
INRIA research report:

� Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Clinical DT-MRI
Estimation, Smoothing and Fiber Tracking with Log-Euclidean Metrics. NeuroImage,
2006. Note: Submitted.

� Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Clinical DT-MRI
estimation, smoothing and �ber tracking with log-Euclidean metrics. In Proceedings of
the Third IEEE International Symposium on Biomedical Imaging (ISBI 2006), Crystal
Gateway Marriott, Arlington, Virginia, USA, pages 786-789, April 2006.

� Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Joint Estimation
and Smoothing of Clinical DT-MRI with a Log-Euclidean Metric. Research Report
RR-5607, INRIA, Sophia-Antipolis, France, June 2005.

9.1.3 Structure Tensor Processing
With Pierre Fillard and others, I have investigated as co-author the use of a�ne-invariant
metrics for the processing of structure tensors, which are a powerful tool which can be used
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in such image processing tasks as edge or corner detection and anisotropic smoothing. In an
article presented at the peer-reviewed international workshop DSSCV'05 [Fillard 05a], we have
in particular compared the images of gradient of structure tensors provided by a�ne-invariant
and Euclidean metrics.

In the presence of a substantial amount of noise, we have found that a�ne-invariant
metrics are less adapted for the processing of structure tensors than Euclidean ones, essentially
because they give the same `weight' to large and small tensors. This is problematic, because
small tensors are mainly generated by the noise, whereas large tensors re�ect in most cases
signi�cant structures in the image. On the contrary, in the case of a very high signal-to-noise
ratio, a�ne-invariant metrics provide a magni�cation of low-contrast structures present in the
image, which could prove valuable depending on the application considered.

� Pierre Fillard, Vincent Arsigny, Nicholas Ayache, and Xavier Pennec. A Riemannian
Framework for the Processing of Tensor-Valued Images. In Ole Fogh Olsen, Luc Flo-
rak, and Arjan Kuijper, editors, Deep Structure, Singularities, and Computer Vision
(DSSCV), number 3753 of LNCS, pages 112-123, June 2005. Springer Verlag.

9.1.4 Statistics on Anatomical Variability via Tensors
With Pierre Fillard and other co-authors (including Paul M. Thompson and Kiralee M.
Hayashi from our associated team LONI at UCLA), we have developed a new mathemat-
ical model of normal brain variation based on a large set of cortical sulcal landmarks (72
per brain) delineated in each of 98 healthy human subjects scanned with 3D MRI. We have
proposed an original method to compute an average representation of the sulcal curves, which
constitutes the mean anatomy in this context. After global (a�ne) alignment of the individual
data across subjects, the second order moment distribution of the sulcal position is modeled
as a sparse �eld of covariance tensors, called here variability tensors.

To extrapolate this information to the full brain, we �rst used a�ne-invariant Riemannian
metrics. We have generalized radial basis function interpolation and harmonic di�usion partial
di�erential equations to tensor �elds. As a result, we have obtained a dense 3D variability
map which agrees well with prior results on smaller samples of subjects. "Leave one (sulcus)
out" tests have shown that our model is globally able to recover the missing information
on brain variation when there is a consistent neighboring pattern of variability. Finally,
we have proposed an innovative method to analyze the asymmetry of brain variability. As
expected, the greatest asymmetries have been found in regions that include the primary
language areas. Interestingly, any such asymmetries in anatomical variance, if it remains
after anatomical normalization, could explain why there may be greater power to detect
group activation in one hemisphere versus the other in fMRI studies. Future applications of
this work include the detection of genetic and demographic factors that contribute to brain
structure variance, abnormality detection in individuals and groups, and improved nonlinear
registration techniques that draw on tensor-valued statistical information regarding brain
variation.

This work was presented in 2005 at the peer-reviewed international conference IPMI'05
and will be published in the international journal NeuroImage. An INRIA research report of
this work was also recently published:

� Pierre Fillard, Vincent Arsigny, Xavier Pennec, Kiralee M. Hayashi, Paul M. Thompson,
and Nicholas Ayache. Measuring Brain Variability by Extrapolating Sparse Tensor
Fields Measured on Sulcal Lines. NeuroImage, 2006. Note: In press.
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� Pierre Fillard, Vincent Arsigny, Xavier Pennec, Paul Thompson, and Nicholas Ayache.
Extrapolation of Sparse Tensor Fields: Application to the Modeling of Brain Variability.
In Gary Christensen and Milan Sonka, editors, Proc. of Information Processing in
Medical Imaging 2005 (IPMI'05), volume 3565 of LNCS, Glenwood springs, Colorado,
USA, pages 27-38, July 2005. Springer.

� Pierre Fillard, Vincent Arsigny, Xavier Pennec, Kiralee M. Hayashi, Paul M. Thompson,
and Nicholas Ayache. Measuring Brain Variability by Extrapolating Sparse Tensor
Fields Measured on Sulcal Lines. Research Report 5887, INRIA, Avril 2006.

9.1.5 Statistics on Deformation Tensors in Non-Linear Registration
I have also participated as co-author in the development of two novel frameworks to inject
statistics in non-linear registration. Both approaches are based on �rst computing local statis-
tics on deformation tensors resulting from prior registration experiments and then imbedding
these statistics as prior knowledge in a non-linear registration algorithm. Both of these frame-
works were presented during the peer-reviewed international conference MICCAI'05.

In Pennec et al. [Pennec 05], statistics are performed on deformation tensors in our Log-
Euclidean framework (i.e., a mean and a covariance matrix are computed for each voxel).
Then, these statistics are injected in a Riemannian and anisotropic generalization of the clas-
sical St Venant-Kircho� elastic energy, called Riemannian elastic energy. The idea is simply
to replace the usual isotropic Euclidean distance between the identity and the Cauchy-Green
deformation tensor by an anisotropic Riemannian distance (here a Log-Euclidean Mahalanobis
distance). Preliminary results (without any actual statistics yet) have shown that this frame-
work can be quite easily implemented in a non-rigid registration algorithms.

In Commowick et al. [Commowick 05], simple statistics on the natural logarithms of the
determinant of deformation tensors and on the matrix logarithm of Cauchy-Green deformation
tensors are proposed to quantify in an isotropic and anisotropic way the local deformability
of tissues. Then, these simple measures (a single scalar or tensor per voxel, vs. a mean
tensor plus a 6x6 covariance matrix in Pennec et al.) are used in a registration algorithm
with an inhomogeneous regularization [Stefanescu 04], to replace heuristic scalar maps of
deformability. Our experiments, carried out on an image database of 36 patients with brain
tumors, have shown quantitatively better segmentations with the proposed method, and also
qualitatively more consistent from an anatomical point of view.

� Xavier Pennec, Radu Stefanescu, Vincent Arsigny, Pierre Fillard, and Nicholas Ayache.
Riemannian Elasticity: A statistical regularization framework for non-linear registra-
tion. In J. Duncan and G. Gerig, editors, Proceedings of the 8th Int. Conf. on Medical
Image Computing and Computer-Assisted Intervention - MICCAI 2005, Part II, volume
3750 of LNCS, Palm Springs, CA, USA, October 26-29, pages 943-950, 2005. Springer
Verlag.

� Olivier Commowick, Radu Stefanescu, Pierre Fillard, Vincent Arsigny, Nicholas Ayache,
Xavier Pennec, and Grégoire Malandain. Incorporating Statistical Measures of Anatom-
ical Variability in Atlas-to-Subject Registration for Conformal Brain Radiotherapy. In
J. Duncan and G. Gerig, editors, Proceedings of the 8th Int. Conf. on Medical Im-
age Computing and Computer-Assisted Intervention - MICCAI 2005, Part II, volume
3750 of LNCS, Palm Springs, CA, USA, October 26-29, pages 927-934, 2005. Springer
Verlag.
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9.1.6 Polyrigid and Polya�ne Transformations
In Chapter 5, we have presented our original framework for polyrigid and polya�ne transfor-
mations. These transformations e�ciently code for locally rigid or a�ne deformations with a
small number of �exible and intuitive parameters. There exists very few classes of transfor-
mations in the literature that are intrinsically invertible, and guaranteeing the invertibility of
these novel transformations is certainly our key contribution here.

From a mathematical point of view, we have shown that our novel transformations are
di�eomorphisms, and smooth with respect to their parameters. For the numerical implemen-
tation of these transformations, we have devised a new and �exible numerical scheme to allow
a trade-o� between computational e�ciency and closeness to the ideal di�eomorphism. In this
context, we have also derived an e�ective optimization strategy of the transformations which
demonstrates that this new tool is highly suitable for inference. The whole framework is ex-
empli�ed successfully with the registration of histological slices, providing results comparable
to [Pitiot 06], obtained with a completely di�erent approach.

This work has been published in the international journal Medical Image Analysis, and
was presented at the peer-reviewed international conference MICCAI'03, where this work was
awarded the `Best Student Presentation in Medical Image Processing and Visualization'. An
INRIA research report on this topic was also published to ensure a timely dissemination of
this innovative approach.

� Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Polyrigid and Polya�ne Trans-
formations: a Novel Geometrical Tool to Deal with Non-Rigid Deformations - Appli-
cation to the registration of histological slices. Medical Image Analysis, 9(6):507-523,
December 2005.

� Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Polyrigid and Polya�ne Trans-
formations: A New Class of Di�eomorphisms for Locally Rigid or A�ne Registration.
In Randy E. Ellis and Terry M. Peters, editors, Proc. of MICCAI'03, Part II, volume
2879 of LNCS, Montreal, pages 829-837, November 2003. Springer Verlag.

� Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. A novel family of geometrical
transformations: Polyrigid transformations. Application to the registration of histolog-
ical slices. Research report 4837, INRIA, 2003.

In Chapter 6, we have presented a novel framework to fuse rigid or a�ne components into
a global transformation, called Log-Euclidean polya�ne. Similarly to our original polya�ne
framework, it guarantees the invertibility of the result. However, contrary to our original
framework, this is achieved with very intuitive properties: for example the inverse of a Log-
Euclidean polya�ne transformation (LEPT) is a LEPT with identical weights and inverted
a�ne components. Moreover, this novel fusion is a�ne-invariant, i.e. does not depend on
the choice of coordinate system. We have also shown that contrary to previous polya�ne
transformations, the speci�c properties of LEPTs allow their fast computations on regular
grids, with an algorithm called the `Fast Polya�ne Transform' (FPT), whose e�ciency is
somehow comparable to that of the Fast Fourier Transform.

We have also detailed in Chapter 6 a Log-Euclidean framework for rigid and a�ne trans-
formations, as well as its extension to any �nite-dimensional real Lie group. This framework
generalizes to linear transformations the Log-Euclidean framework described in Chapter 3 for
tensors.

We recently found out that in 2002, Alexa already proposed in [Alexa 02] to process
linear geometrical transformations via their logarithms, in the context of the interpolation
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of transformations for computer graphics, and had also suggested to perform statistics on
these transformations via their logs. One should note that our approach, which we developed
independently, goes considerably deeper into the analysis of the properties of this framework.
In particular, we were the �rst to our knowledge to put into light the geometric interpolation
of determinants provided by the Log-Euclidean mean, as well as the invariance properties of
this framework (i.e., inversion-invariance and a�ne-invariance). The extension of the Log-
Euclidean framework to abstract Lie groups presented in this Thesis is also entirely novel to
our knowledge.

Our Log-Euclidean polya�ne framework has been presented at the peer-reviewed interna-
tional workshop WBIR'06, and the most of the results obtained in Chapter 6 were published
in an INRIA research report. A journal publication of this work is currently being prepared.

� Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A Log-
Euclidean Polya�ne Framework for Locally Rigid or A�ne Registration. In J.P.W.
Pluim, B. Likar, and F.A. Gerritsen, editors, Proceedings of the Third International
Workshop on Biomedical Image Registration (WBIR'06), volume 4057 of LNCS, Utrecht,
the Netherlands, pages 120-127, 9 - 11 July 2006. Springer Verlag.

� Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A Fast and
Log-Euclidean Polya�ne Framework for Locally A�ne Registration. Research Report
RR-5865, INRIA Sophia-Antipolis, March 2006.

As mentioned in Chapter 6, we have worked as a co-author with Olivier Commowick
(Ph.D. student in the Asclepios team and also working for DOSISoft SA, Cachan, France),
toward drastically reducing the cost of using polya�ne transformations in 3D medical image
registration procedures. To obtain short computation times (typically 10 minutes for whole
3D volumes in the locally a�ne case), the locally a�ne registration algorithm presented
in [Commowick 06a, Commowick 06b] estimates a�ne components using the direct fusion,
and relies on a Log-Euclidean regularization scheme of local a�ne components. The FPT is
used in a �nal step to ensure the invertibility of the �nal transformation, as well as to compute
its inverse.

In the journal version of this work [Commowick 06b], two applications of our fast and
robust 3D polya�ne registration algorithm are considered. First, bone registration in the
lower abdomen area. Second, the segmentation of critical brain structures in the context of
conformal radiotherapy planning. In both cases, it is shown that our locally a�ne registration
approach yields the same accuracy in the structures of interest as the dense transformation
algorithm of [Stefanescu 04], but with much smoother deformations, which is more satisfactory
from an anatomical point of view. This work has also been presented during the peer-reviewed
Third IEEE Symposium on Biomedical Imaging (ISBI'06) [Commowick 06a]:

� Olivier Commowick, Vincent Arsigny, Jimena Costa, Nicholas Ayache, and Grégoire
Malandain. An E�cient Locally A�ne Framework for the Registration of Anatomical
Structures. Submitted to Medical Image Analysis, 2006.

� Olivier Commowick, Vincent Arsigny, Jimena Costa, Nicholas Ayache, and Grégoire
Malandain. An E�cient Locally A�ne Framework for the Registration of Anatomical
Structures. In Proceedings of the Third IEEE International Symposium on Biomedical
Imaging (ISBI 2006), Crystal Gateway Marriott, Arlington, Virginia, USA, pages 478-
481, April 2006.
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9.1.7 Statistics in Finite-Dimensional Lie Groups

In Chapter 7, we have presented a general framework to de�ne rigorously a novel type of
mean in Lie groups, called the bi-invariant mean. This mean enjoys many desirable invariance
properties, which generalize to the non-linear case the properties of the arithmetic mean: it is
invariant with respect to left- and right-multiplication, as well as inversion. Previously, this
type of mean was only de�ned in Lie groups endowed with a bi-invariant Riemannian metric,
like compact Lie groups such as the group of rotations. But Riemannian bi-invariant metrics
do not always exist. In particular, we have proved in this work that such metrics do not
exist in any dimension for rigid transformations, which form but the most simple Lie group
involved in medical image registration.

To overcome the lack of existence of bi-invariant Riemannian metrics for many Lie groups,
we have proposed in this thesis to de�ne bi-invariant means in �nite-dimensional real Lie
groups via a general barycentric equation, whose solution is by de�nition the bi-invariant
mean. The intuition of the existence of such a mean was �rst given by R.P.Woods (without
precise de�nition) in [Woods 03], along with an e�cient algorithm for computing it (without
proof of convergence), in the case of matrix groups.

We have shown the existence and uniqueness of this novel type of mean provided the
dispersion of the data is small enough, as well as the convergence of the e�cient iterative
algorithm of Woods. We have also brie�y investigated how centered empirical higher order
moments can be computed based on this novel notion of mean.

In the case of rigid transformations, we have given a simple a precise criterion for the
general existence and uniqueness of the bi-invariant mean, which happens to be the same
as for rotations. We have also given closed forms for the bi-invariant mean in a number of
simple cases, including 2D rigid transformations. For general linear transformations, we have
shown that the bi-invariant mean is a generalization of the (scalar) geometric mean like the
Log-Euclidean mean.

In practice, one should note that both Log-Euclidean and bi-invariant frameworks can
always be e�ciently used to compute statistics in matrix Lie groups (provided of course that
the dispersion of the data is not too large, but this restriction also applies to Riemannian
frameworks), whereas in the Riemannian case, the tractability of such an approach depends
very much on the form taken by geodesics. For rigid transformations, left-invariant geodesics
are linked to the matrix exponential in a straightforward way and thus can be simply com-
puted and used in practice. However, to our knowledge, this is not the case for left-invariant
Riemannian metrics on a�ne transformations, which makes the use of such metrics quite dif-
�cult in this case. No such problem occurs with either the Log-Euclidean or the bi-invariant
framework, which only rely on computations based on the matrix exponential and logarithm.

We have used this new type of mean to de�ne a novel class of polya�ne transformations,
called left-invariant polya�ne, which allows to fuse local rigid or a�ne components arbitrarily
far away from the identity, contrary to Log-Euclidean polya�ne fusion, which we are presented
in Chapter 6.

Most of this work was recently published in an INRIA research report:

� Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Bi-invariant Means in Lie
Groups. Application to Left-invariant Polya�ne Transformations. Research Report
RR-5885, INRIA Sophia-Antipolis, April 2006.
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9.1.8 Statistics on Di�eomorphisms
In Chapter 8, we have generalized our Log-Euclidean framework to invertible geometrical
deformations (i.e., di�eomorphisms) in order to provide simple tools to compute statistics on
this special type of data. This yields in particular a closed form for the computation of mean
di�eomorphisms, contrary to the iterative computation suggested in [Vaillant 04].

Our novel framework is based on the generalization to this type of data of the notion
of principal logarithm. This logarithm is a simple 3D vector �eld, and is well-de�ned for
di�eomorphisms close enough to the identity. This allows to perform vectorial statistics on
di�eomorphisms, while preserving the invertibility constraint, contrary to Euclidean statistics
on displacement �elds.

Due to the in�nite-dimensional nature of di�eomorphisms, our non-linear generalization
of the Log-Euclidean framework to general invertible deformations still poses some theoretical
problems that are yet to be completely solved. However, from a practical point of view, we
have proposed two e�cient algorithms to compute numerically logarithms of di�eomorphisms
and exponentials of vector �elds, whose accuracy has been studied on synthetic data. With
these tools, for the �rst time to our knowledge, we have been able to compute a mean which
takes into account the invertible nature of a set of high-dimensional 3D di�eomorphisms
obtained with the algorithm of [Stefanescu 04], in the context of a registration experiment
between an atlas an a database of 9 T1 MR images of the human brain.

This work was presented at the peer-reviewed international conference MICCAI'06 as well
as in its satellite International Workshop on the Mathematical Foundations of Computational
Anatomy (MFCA-2006):

� Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A Log-
Euclidean Framework for Statistics on Di�eomorphisms. In Proc. of the 9th Interna-
tional Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI'06), LNCS, vol 4190, part I, pages 924-931, 2-4 October 2006, Springer-
Verlag.

� Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. Statistics
on Di�eomorphisms in a Log-Euclidean Framework. In Proc. of International Workshop
on the Mathematical Foundations of Computational Anatomy (MFCA-2006), pages 16-
17, 1st of October, 2006.

9.2 Short Term Perspectives
However thorough we tried to be during this Ph.D., we did not have the time to cover all of
the questions raised and all of the possibilities opened up by our work. In the near future, it
would be interesting to go further in a number of directions, which are presented below.

9.2.1 Tensor Processing
Which Metrics for which Tensors? We have shown in this work that there are indeed
several generalizations of the geometric mean to SPD matrices. Other variants may exist, and
we will investigate other possible generalizations in future work. This is important, since situ-
ations in applied mathematics, mechanics, medical imaging, etc. where SPD matrices need to
be processed are highly varied. As a consequence, the relevance of each generalization of the
geometric mean and of the associated metric framework may depend on the application con-
sidered. We have already begun the assess the respective relevances of the Log-Euclidean and
a�ne-invariant frameworks in DT-MRI [Arsigny 05a] and for structure tensors [Fillard 05a].
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Study of Anatomical Variability. We have recently begun to use the Log-Euclidean
framework to simplify the approach proposed in [Fillard 05c,Fillard 06d] to model and analyze
the anatomical variability of the human brain cortex. Working in our vector space structure
for tensors could allow for simple strategies to reduce the e�ect of the aperture problem, which
induces in our current approach a substantial uncertainty in the estimation of the anatomical
variability in the direction tangential to the sulcal lines of our database.

9.2.2 Locally Rigid or A�ne Transformations
Methodological Issues
Updating Weight Functions with Simple Strategies. In Chapter 5, we have presented
a general way of optimizing the parameters of polyrigid transformation for medical image
registration. However, this approach is quite computationally expensive, and this has incited
us to devise alternative strategies to drastically reduce this cost. This has led to the fast
approach presented in [Commowick 06b], which we have brie�y mentioned in Chapter 6. But
in the latter setting, with weight functions, i.e. the geometry of the fused rigid or a�ne
components, remain unchanged during the registration procedure. In future work, it would
be desirable to devise a simple and adapted way of also optimizing these parameters, which
are of a very di�erent nature than those of the local linear transformations. To this end, it
could be very interesting to adapt to our novel framework the ideas presented in [Pitiot 06]
in the speci�c context of the piecewise a�ne registration of histological slices.

Numerical Accuracy of the FPT. In Chapter 6, we have presented a very e�cient nu-
merical algorithm, called the `Fast Polya�ne Transform', to compute Log-Euclidean polya�ne
transformations on regular grids. We have also experimentally veri�ed and studied its con-
vergence in a number of cases. However, it would be desirable to analyze the theoretical
properties of this algorithm, in order to clarify the relationships between its numerical accu-
racy and the characteristics of the regular grid, the sampling step and the parameters of the
transformation considered.

Applications
Anatomical Atlases. An application of polyrigid and polya�ne transformations is the
building of new anatomical atlases, for example in the case of dataset presenting articulated
structures. Using adapted transformations to establish correspondences between the various
instances would surely lead to more accurate results. This approach was recently used and
compared to other non-linear registration techniques in [Commowick 06c] in the context of
radiotherapy planning.

Representing Arbitrary Di�eomorphisms. As in [Marsland 04] in the case of Geodesic
Interpolating Splines (GIS), polyrigid and polya�ne transformations could be used to param-
eters arbitrary di�eomorphisms with a limited number of intuitive degrees of freedom.

Exactly like GIS, our novel transformations guarantee the invertibility of the resulting
transformations. But they naturally code with very few parameters for a large panel of local
deformations, whereas GIS are limited to local translations. This could prove a substantial
advantage for polya�ne transformations in this speci�c task.

Shape Statistics. Similarly to the parameterization of shapes via `M-reps' [Pizer 03], one
could model the variability of a shape around its mean via the statistical analysis of these
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variations in a certain space of transformations. By choosing as adequately as possible this
space of deformations, a model with a limited number of parameters could be derived.

Polya�ne transformations are a good candidate for doing so in a simple way, because
they can code for a large variety of local deformations with few degrees of freedom: local
rotations, translations, swellings, shearing, etc., while guaranteeing the invertibility of the
resulting global transformation. This o�ers a larger panel of local deformations than M-reps,
which require for example the modi�cation of the parameters of several of its `medial atoms'
to code for local rotations or shearing, whereas only a single a�ne component component can
be involved to do so in the polya�ne case.

9.2.3 General Statistics in Lie Groups
Quantitative Comparison of Existing Frameworks. In future work, we are planning to
compare the statistics obtained via the bi-invariant mean and the Log-Euclidean framework
to other types of statistics on rigid or a�ne transformations such as left-invariant Riemannian
statistics, which are used in [Boisvert 06] in the context of the statistical analysis of the human
spine scoliosis. Are there any signi�cant di�erences between these various alternatives? Do
they lead to substantially di�erent results when used to constraint non-linear registration
algorithms? This topic will be very interesting to investigate.

9.2.4 Statistics on Di�eomorphisms
Theoretical Issues. From a theoretical point of view, our non-linear generalization of the
Log-Euclidean framework to general invertible deformations still poses some problems due
to the in�nite-dimensional nature of di�eomorphisms that are yet to be completely solved.
Addressing these technical problems will be one of our priorities in future work. In particular,
it would be desirable to have a simple characterization of the conditions under which the
principal logarithm of di�eomorphism exists, similarly to the simple criterion we have on the
eigenvalues of invertible matrices (e.g., could this linear criterion be directly transferred to
the �eld of Jacobian matrices associated by di�erentiation to a di�eomorphism?).

Numerical Issues. Similarly to the FPT case, it would be highly desirable to analyze the
convergence properties of our numerical algorithms for computing the exponential of a vector
�eld and the logarithm of a di�eomorphism.

9.3 More Global Perspectives
In this thesis, we have presented quite a large number of approaches and frameworks, which
are closely intertwined. We have gone much into �ne details and endeavored to develop our
ideas as far as we could, in di�erent directions. We adopt here a more global perspective, to
better visualize what are the interesting opportunities and directions of research opened up
by this work, on a larger scale.

9.3.1 Natural Extensions of this Work
Global Picture
At the end of the Introduction, we had presented a simple way of representing our contri-
butions, within a two-column table. In Fig. 9.1, we have added to this table the natural
extensions of our work. They are presented below.
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Type of

Data

Frameworks

Processing

Other types
of data?

A�ne-invariant
Riemannian frameworks
proposed in 2004 [Pennec 06a]

Extension to
Perspective.

BCH-Lie groups?

Extension to
BCH-Lie groups?

Perspective.

Finite-Dimensional
Lie Groups

Bi-Invariant

Linear
Transformations

Log-Euclidean

Chapter 6 Chapter 7

Chapter 8

Chapter 6 Chapter 7

Chapter 6 Chapter 7

Just combine
Chapters 6 and 8.

Simple extension.

Tensors

Fusion of
Linear

Transformations

Di�eomorphisms
Fusion of

Di�eomorphisms

Chapters 3 and 4

Figure 9.1: Global Picture of this thesis. Lines: various types of data, and columns:
processing frameworks (either the Log-Euclidean one or the bi-invariant one). Chapter 5
does not appear in this table, because the polya�ne fusion of linear transformations presented
in this chapter belongs neither to the Log-Euclidean nor the bi-invariant framework. The
natural perspectives of this work are displayed in blue.
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Bi-Invariant Means with In�nite Dimensions
In Chapter 7, we have presented a theory of bi-invariant means in �nite-dimensional real
Lie groups. To what extent could this type of mean be extended in the in�nite-dimensional
case, and in particular to di�eomorphisms? We saw in Chapter 8 that the logarithm could
be de�ned without ambiguity in in�nite-dimensional Lie groups which are locally exponential,
i.e. where the exponential is a local di�eomorphism near zero.

To prove the existence and uniqueness of the bi-invariant mean, we have not only used
the fact that �nite-dimensional Lie groups are locally exponential, but also the fact that
the group multiplication is analytic in exponential coordinates. This is essentially what the
Baker-Campbell-Hausdor� formula presented in Section 2.3.6 is all about. Does there exist
any in�nite-dimensional Lie groups with this property? The answer is positive, as explained
in [Glöckner 06], and locally exponential Lie groups with this property are called BCH-Lie
groups. This property is stronger than that of being locally exponential: all locally exponential
Lie groups are not BCH.

As a consequence, it would be very interesting to investigate whether one can generalize
our construction of the bi-invariant mean to general BCH-Lie groups. Provided there exist
some interesting groups of di�eomorphisms which are BCH, this could provide a statistical
framework for di�eomorphisms with particularly natural invariance properties.

Fusion of Local Di�eomorphic Transformations
In this thesis, we have presented several frameworks, called polya�ne, to fuse local linear
transformations into a global invertible transformation. Our Log-Euclidean, left-invariant
and right-invariant polya�ne frameworks are mainly based on the fact that one can construct
of fusion PDE from the logarithms of the local linear components. Consequently, one can
generalize these approaches to local di�eomorphic transformations, provided their logarithms
are well-de�ned.

Thus, one can perform of Log-Euclidean fusion of a �nite number of local di�eomorphic
components (Φi(x), wi(x)) via the following ODE:

ẋ =
∑

i

wi(x). log(Φi)(x),

which generalizes to local di�eomorphisms the Log-Euclidean polya�ne ODE of Eq. (6.7). To
generalize LIPTs and RIPTs, it would be necessary to rely on a generalization to di�eomor-
phisms of the bi-invariant mean. As explained above, this could prove possible for BCH-Lie
groups of di�eomorphisms.

This type of fusion could prove very interesting to take into account the respective deforma-
bilities of anatomical structures. Some of them could be deformed using very few degrees of
freedom (e.g., in a linear way), some a little more (e.g., di�eomorphic B-Splines, locally a�ne
deformations) and others could be deformed much more. This type of fusion allows to `glue'
all of these local transformations into a global invertible deformation.

Processing other Types of Data
We brie�y present here two types of data for which a general and rigorous processing frame-
work with completely satisfying invariance properties is still to be developed.

More Sophisticated Di�usion Models. A generalization of the Log-Euclidean or bi-
invariant (i.e., a�ne-invariant) frameworks for tensors would be very valuable to process to
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the more sophisticated di�usion models proposed in the recent years in the di�usion imaging
community. These models include generalized di�usion tensors [Özarslan 03] and Q-balls
[Tuch 04].

To what extent would it possible to rely on a Lie group approach to process these types of
data? To do so in a direct way, it would be necessary to identify either a Lie group structure
for these spaces or a larger Lie group in which they can be embedded. Is it possible to do so
in a relevant way, i.e. in a manner which is compatible with the physical properties of these
data? This remains to be seen.

Alternatively, to process this type of data, one could rely on other powerful approaches such
as constructing Riemannian metrics which are invariant with respect to an homogeneous man-
ifold structure, as done in [Pennec 06a] to de�ne a�ne-invariant metrics on tensors. Another
method consists in using Fisher-Rao metrics on these sophisticated di�usion models, which
can be looked upon as parametric probability distributions. This was done in [Lenglet 06a]
in the case of di�usion tensors, which yielded (again) a�ne-invariant metrics.

Toeplitz Hermitian Positive-De�nite Matrices. As suggested recently to us by F. Bar-
baresco (Thales group, France), our Log-Euclidean framework can be extended in a straight-
forward way to positive-de�nite Hermitian matrices, i.e. the complex equivalent of tensors.
This comes from the fact that the (complex) matrix exponential provides a one-to-one corre-
spondence between Hermitian matrices and positive-de�nite Hermitian matrices, exactly as
in the real case.

In Doppler radar technology however, Toeplitz positive-de�nite Hermitian matrices play a
very important role, and performing rigorous statistics on these matrices with natural invari-
ance properties would be very valuable. Unfortunately, Log-Euclidean means of such matrices
are not Toeplitz in general, and it would be very interesting to see how our ideas could be
adapted to the speci�c properties of this matrix subspace.

9.3.2 Bi-Invariant Framework vs. Riemannian Geometry
In Chapter 7, in the general Lie group case, we have shown the existence and uniqueness of
the bi-invariant mean in �nite-dimensional Lie groups, provided the dispersion of the data
is not too large. In speci�c cases, in particular rigid transformations, we have been able to
determine more precisely when such means are well-de�ned. Furthermore, we have shown
that it is possible to compute centered higher order moments from this notion of mean, which
opens the way for a general bi-invariant statistical framework.

Our construction of the bi-invariant mean essentially relies on the idea that their is a
direct analogy between translated version of one-parameter subgroups and the geodesics of
Riemannian geometry. Indeed, we have seen in Chapters 2 and 7 that the di�erential proper-
ties of the group and Riemannian exponential are very much alike. To what extent are these
two approaches similar?

In [Woods 03], Woods suggested that one-parameter subgroups could be interpreted as
geodesics for some bi-invariant semi-Riemannian metrics. Furthermore, he claimed that many
of the results of Riemannian geometry could be generalized without modi�cation to the semi-
Riemannian case. Unfortunately, this point of view was only sketched in [Woods 03], and to
our knowledge did not give rise to any mathematical or technical publication clarifying the
intuitions of Woods.

As a consequence, it would be highly desirable to go further than the results of Chapter
7, and in particular, to systematically compare the properties of the bi-invariant (algebraic)
framework to that of classical Riemannian geometry. For instance, is the measure of the
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(algebraic) cut locus of null measure (i.e., is the set of elements for which the logarithm is not
well-de�ned negligible in the connected component of the identity)? Does there exist a general
and precise criteria for the well-de�nedness of the bi-invariant mean in terms of geodesic balls
as in the Riemannian case? Only then will we know whether our bi-invariant framework is as
powerful as that of Riemannian geometry to perform statistics in Lie groups.

9.3.3 Medical Image Registration
In the medical imaging community, a vast number of registration techniques have been pro-
posed during the last �fteen years to address the di�cult task of establishing correspondences
between di�erent anatomies. With rigorous frameworks to perform a statistical analysis on
the results of registration algorithms, i.e. on geometrical transformations, one can hope to
better understand in the near future the di�erences between these algorithms from a quanti-
tative point of view. A better understanding of the characteristics of these tools will certainly
pave the way for more clever and relevant registration techniques, better taking into account
the speci�city of each imaging modality, the deformability of the di�erent types of biological
tissues considered and the interdependence in the variation in size and shape of organs from
one individual to another, from one gender to another, from one age in life to another.

More modestly, with the tools presented in this work, one can perform statistics on linear
transformations and even on di�eomorphisms whose logarithm is well-de�ned. We hope that
this will help develop more comparison techniques between linear and non-linear registration
algorithms, such as the one presented in [Nicolau 03, Glatard 06] in the rigid case. These
statistics could also help to better constraint non-rigid registration algorithms (in particular
constraint them more globally), with respect to what we begun to do in [Pennec 05] and
[Commowick 05] with (local) statistics on Cauchy-Green deformation tensors. With global
statistics, one can hope to capture the correlations in deformability between organs, which
is of paramount importance to ensure that the deformations induced during the registration
procedure are truly anatomically consistent.

9.4 Epilogue
During this work, we have striven to propose simple and rigorous frameworks for the processing
of various types of data which arise in the growing discipline of computational anatomy. The
results we have achieved in this thesis were made possible on the one hand by the multiplicity
of situations and opportunities encountered in this young research �eld, and on the other
hand by the inexhaustible abundance of the abstract mathematical world, which provide us
with incredibly e�cient ways of modeling and dealing with practical problems.

We hope that this double profusion and the many challenges still present in this domain
will continue to attract the bright minds it needs to keep on progressing and continue to
provide the medical community with some of the novel tools and insights it still lacks today.
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