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INTRODUCTION GENERALE

0.1 Introduction et motivations

L’évaluation des actifs et la gestion de portefeuille, deux problémes fondamentaux de
finance, ont subi de nombreux bouleversements pendant ces derniéres décennies. Si le calcul
actuariel était pratiquement le seul outil mathématique utilisé par les financiers jusqu’au dé-
but des années 70, le développement des mathématiques financiéres a totalement transformé
le monde de la finance.

Les bouleversements s’opérent d’abord dans la diversification et la prolifération des
produits financiers (produits dérivés, structurés...), ensuite, dans la sophistication de ces
produits permettant une fiabilité accrue dans leur évaluation, et enfin dans le développement
des théories de la gestion de portefeuille.

Les impacts sur les activités financiéres et économiques sont profonds. Ils entrainent
une multiplication du nombre d’intervenants sur le marché financier (gérants de fonds,
entreprises industrielles et commerciales...) augmentant ainsi la liquidité du marché, une
satisfaction accrue des besoins de ces derniers, et surtout une meilleure gestion des risques.
Pour les financiers, une meilleure gestion des risques signifie une amélioration dans la cou-
verture des positions risquées limitant ainsi des pertes éventuelles. Dans le monde industriel
et économique, elle permet surtout une meilleure planification budgétaire et encourage les
investissements pour I'avenir. En résumé, ces bouleversements contribuent significativement
aux développements économiques ces derniéres décennies.

Un des principaux moteurs de ces innovations est, sans aucun doute, le développement
de la théorie de 'optimisation et du controle stochastique. Développé dans les années 70, le
controle stochastique a recu de nouvelles attentions de la communauté des mathématiques
financiéres. La recherche se tourne désormais vers des nouveaux champs d’applications de
cette théorie qui s’étendent & de multiples domaines, en particulier, en économie et en
industrie. De nombreux problémes laissés en suspens par les industriels, économistes et
financiers trouvent ainsi des éléments de réponse dans la théorie du controle stochastique.

Le controle stochastique est 'étude des systémes dynamiques soumis aux perturbations
aléatoires qui peuvent étre controlées dans le but d’optimiser certains critéres de performance

tels que la maximisation des profits et de I'utilité de la valeur liquidative terminale.
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12 INTRODUCTION GENERALE

Cette thése présente quelques applications du contrdle stochastique, en particulier, au
risque de liquidité et aux options réelles, deux thémes parmi les plus étudiés actuellement
dans la littérature économique et financiére. Elle s’organise de la maniére suivante.

Dans la premiére partie, ’étude porte sur la sélection du portefeuille optimal sous un mo-
déle de risque de liquidité. Ici, on entend par liquidité, la liquidité du marché qui correspond
a la possibilité pour un investisseur d’effectuer une transaction au prix affiché et pour un
volume important sans affecter le cours du titre. Elle est d’autant plus forte que le nombre
de titres admis sur le marché est important et que la fréquence des transactions est élevée.
Dans les modéles classiques du marché financier, on fait ’hypothése d’un marché financier
parfaitement liquide, ce qui ne correspond guére a la réalité du marché. En effet, le marché
de la plupart des actifs est peu liquide et représente donc un risque pour les investisseurs
concernés. Ces derniers affectent généralement une décote pour de tels actifs. Dans cette
partie, on étudie un probléme de sélection de portefeuille optimal d’un investisseur sous un
modéle de risque de liquidité. Le critére consiste & maximiser 'espérance de 'utilité de la
valeur terminale de liquidation du portefeuille sous certaines contraintes de solvabilité. Des
méthodes numériques d’itération d’une stratégie optimale sont également traitées dans le
chapitre 2 de la premiére partie.

Dans la deuxiéme partie de la thése, seront traités deux problémes d’optimisation sto-
chastique, assimilables aux options réelles. Par analogie avec ’option du financier, on parle
d’option réelle pour caractériser la position d’un industriel qui bénéficie d’une certaine flexi-
bilité dans la gestion de I’entreprise, par exemple, un projet d’investissement. Il est, en effet,
possible de limiter ou d’accroitre le niveau d’investissement compte tenu de 1’évolution des
perspectives économiques et de rentabilité, tout comme un financier peut exercer ou non
son option sur un sous-jacent. Cette flexibilité détient une valeur qui est tout simplement
la valeur de 'option réelle. Le premier probléme, dans le chapitre 3, concerne la résolution
d’un probléme d’optimisation de changement de régime & deux états. Le deuxiéme pro-
bléme, dans le chapitre 4, traite un probléme couplé de controle singulier et de changement
de régime dans le cadre de la politique de dividende avec investissement réversible.

Enfin, dans la troisiéme et derniére partie, on étudie I'existence d’un équilibre dans un
marché compétitif sous asymétrie d’information.

Dans la résolution des problémes des deux premiéres parties, et dans une moindre me-
sure, de la derniére partie, des techniques de contréle stochastique seront utilisées. L’ap-
proche typique consiste a exprimer le principe de la programmation dynamique lié¢ a chaque
problématique afin d’obtenir une caractérisation par EDP (Equations aux Dérivées Par-
tielles) des fonctions de valeur. Par cette approche, on est capable de montrer dans le
probléme de risque de liquidité et les deux options réelles que les fonctions de valeur corres-
pondantes sont 'unique solution au systéme d’inégalités variationnelles d’Hamilton-Jacobi-
Bellman associé. Autrement dit, les fonctions de valeur satisfont & fois les propriétés de
viscosité et le principe de comparaison.

Dans chaque probléeme des deux premiéres parties, on peut obtenir les solutions, en
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particulier le contréle optimal correspondant, soit d’une maniére explicite (chapitre 3 et 4),
soit par une méthode itérative (chapitre 1 et 2).
Dans la suite de cette introduction, nous allons exposer la problématique de chaque

chapitre ainsi que les résultats importants obtenus.

0.2 Un modéle de risque de liquidité

0.2.1 Aspects théoriques

Dans larticle de référence de Merton [53], Pauteur a examiné un probléme en temps
continu de consommation-investissement d’un individu. Dans une optique de gestion de
portefeuille, il cherche & déterminer la proportion optimale de richesse que 'investisseur
doit détenir pour chaque actif du marché en fonction de son prix. En utilisant le critére de
maximisation d’utilité et des techniques de controle stochastique, il a obtenu une formule
explicite de la fonction de valeur et la stratégie optimale correspondante. Comme dans tous
les modeles classiques en mathématiques financiéres, il considére une parfaite élasticité des
actifs, en supposant que les transactions n’ont aucun impact sur le prix de l’actif.

Cependant, la littérature sur la microstructure du marché a montré théoriquement et
empiriquement que les grosses transactions influencent significativement le prix de l'actif
sous-jacent, démontrant ainsi ’existence du risque de liquidité. Si 'hypothése d’un mar-
ché parfaitement liquide ne représente que peu d’importance pour les décisions d’allocation
d’actifs sur le long terme, 'impact de prix da au risque de liquidité influence significative-
ment les décisions d’investissement des gros investisseurs focalisant sur un horizon de temps
relativement court.

Dans la littérature actuelle, trois principales approches ont été suggérées pour formaliser
cette notion de risque de liquidité. Dans les travaux de Back [3] et de Kyle [48], 'impact
des stratégies de trading sur les prix est expliqué par la présence d’un agent initié. Dans la
littérature sur la manipulation du marché, les prix sont considérés dépendants directement
des stratégies de transaction. Dans [20], Cuoco et Cvitanic considérent un modeéle de dif-
fusion pour les dynamiques de prix avec des coefficients dépendant de la stratégie des gros
investisseurs, alors que Frey [30], Platen et Schweizer[58], Papanicolaou et Sircar [56], Bank
et Baum [4], Cetin, Jarrow et Protter [14] développent un modéle en temps continu ou les
prix dépendent des stratégies via une fonction de réaction. Dans [16], Cetin, Soner et Touzi
se placent dans le cadre du modéle développé par Cetin, Jarrow et Protter [14], afin d’étu-
dier le probleme de couverture des options, en particulier, le probléme de sur-réplication, en
présence de coiit de liquidité. La troisiéme et derniére approche établit que le colt de tran-
saction est également un facteur déterminant dans le comportement des investisseurs. Pour
cela, on peut se référer aux travaux de Davis-Norman [22], Korn [47], Oksendal et Sulem
[55], Vayanos [65] et de Lo, Mamayski et Wang [50] qui illustrent parfaitement l'influence

des colits de transaction sur la liquidité du marché et les prix.
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Dans notre étude, on considére un modéle prenant en compte a la fois le colit de tran-
saction et la manipulation du marché, deux phénoménes qui font simultanément partie de
la réalité du marché financier. Inspiré des papiers récents de Subramanian et Jarrow [63] et
de He et Mamaysky [38], notre modeéle suppose I'existence d’un gros investisseur dont les
transactions influencent les cours des actifs : un achat entraine une hausse de prix, alors
qu’une vente entraine une baisse.

Comme dans 'article de Merton [53], on considére un marché comportant un actif sans-
risque avec un taux d’intérét constant r > 0 et un actif risqué gouverné par un brownien
géométrique. L’objectif est d’obtenir la stratégie optimale, autrement dit, la proportion
optimale de chaque actif, maximisant 'espérance de 'utilité de la valeur liquidative au
temps terminal T sous la contrainte de solvabilité suivante : sa valeur liquidative & chaque
instant doit étre positive, t € [0,T], L(Z;) := L(Xy,Y:, P1) > 0, 0u X, Y et P processus
représentant respectivement la quantité de cash, le nombre cumulé d’actif risqué et son prix
dans le portefeuille.

On considére, en particulier, un coiit de transaction fixe, k > 0, et une fonction d’impact
de prix exponentielle : lors d’une transaction de y actions de 'actif risqué, le prix de 'actif
passe du prix pré-trade p a un prix post-trade pe?, avec A > 0, une constante positive
donnée. Ainsi, quand un agent achéte y parts de lactif risqueé, il doit payer k + ype Y. De

méme, une vente de y parts résulterait en une réception de — k + ype Y.

Formulation du probléme. L’hypothése de cotlit de transaction fixe impose un modéle & tran-

saction discréte. On modélise ainsi ce probléme d’optimisation par une stratégie de controle
impulsionnel o = (75, &)<t : 71 < ...y, < ... < T représentent les temps d’intervention de

Iinvestisseur, et &,, le nombre d’actif risqué acheté ou vendu lors de ces interventions.

Le probléme d’investissement. On étudie le probleme de maximisation de l'espérance de

I'utilité de la richesse liquidative terminale et considére la fonction de valeur suivante :

v(t,z) = sup E[U(L(Zr))], (t,2)€]0,T]xS. (0.2.1)

a€A(t,z)
ou A(t, z) représente I’ensemble des controles impulsionnels admissibles. Ce probléme d’op-
timisation est associé par le principe de la programmation dynamique a l'inégalité quasi-

variationnelle d’Hamilton-Jacobi-Bellman [7] suivante :

ov

ot

min | —

Ly, v—Hv| = 0, sur [0,T)xS. (0.2.2)

Résultats. 1’objectif principal est d’obtenir une caractérisation rigoureuse de la fonction de
valeur, et d’extraire, si possible, la stratégie optimale correspondante. Un recours aux notions
de viscosité s’avére étre un outil puissant pour la résolution de ce probléme. Mais compte

tenu de la non-linéarité de la fonction d’impact de prix et de la contrainte de solvabilité,
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plusieurs difficultés techniques apparaissent : la discontinuité de la fonction de valeur sur la
frontiére de solvabilité et a 'instant terminal 7.

Pour montrer les propriétés de viscosité de la fonction de valeur, on utilise la notion
de solution de viscosité sous contrainte introduite par Soner [62] et on considére seulement
les solutions discontinues. En effet, la continuité de la fonction de valeur & l'intérieur de
la région de solvabilité ne peut s’obtenir que d’une maniére indirecte, autrement dit, apres
avoir prouvé le théoréme de comparaison. Ce dernier s’obtient en utilisant les techniques
développées par Ishii [40] et Barles [5].

Théoréme. La fonction de valeur v est continue sur [0,T) x S et est l'unique solution de
viscosité (sur [0,T) x S) sous contrainte (0.2.2) satisfaisant les conditions auz bords et au
temps terminal et la condition de croissance :

o(t,2)| < K(l—k(m—i—%)y, V(t,2) € [0,T) x S (0.2.3)

pour un certain réel positif K < oo.

0.2.2 Aspects numériques

Comme dans la plupart des problémes de contréle stochastique, il s’avére impossible
d’obtenir explicitement ’expression de la fonction de valeur et la stratégie optimale corres-
pondante. Pour résoudre ces problémes, on se tourne alors vers la résolution numérique de
I'inégalité quasi-variationnelle d’Hamilton-Jacobi-Bellman (IQVHJIB) associée en faisant ap-
pel, généralement, aux méthodes des différences finies. L’algorithme de Howard, qui cherche
a calculer d’une maniére itérative la fonction de valeur et la stratégie optimale, est connu
pour son efficacité dans la résolution de ces types d’équations. Dans [I7], Chancelier, Ok-
sendal et Sulem font appel a cet algorithme pour résoudre numériquement une IQVHJIB de
dimension 2 associée a un probléme de consommation optimale pour un portefeuille avec
cotit de transaction fixe et proportionnel. Cependant, dans notre étude, la résolution numé-
rique par 1’algorithme de Howard n’est pas évidente compte tenu de la dimension de notre
probléme et surtout de la complexité de notre région de solvabilité.

Dans ’étude d’un probléme de sélection de portefeuille optimal [47], Korn a présenté
une suite de problémes de temps d’arrét optimaux et prouvé sa convergence vers la fonction
de valeur initiale. Dans [I7], les auteurs ont proposé une méthode itérative pour résoudre
le probléme de controle impulsionnel. Ils considérent une fonction de valeur auxiliaire ou le
nombre de transactions est majoré par un nombre positif.

Dans ce chapitre, nous montrons que les deux méthodes itératives coincident et que
notre probléme de contrdle impulsionnel se réduit & un probléme itératif de problémes
d’arrét optimaux. Avec un recours aux méthodes de Monte Carlo, nous donnons également

un algorithme d’approximation numérique pour chacun de ces problémes d’arrét optimaux.

Convergence du schéma itératif. Nous introduisons les sous-ensembles de A(t, z) : A, (¢, 2) =

{a = (7h,&k)k=0,...n € A(t, 2)}, et considérons les fonctions de valeur, vy, obtenues quand
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I'investisseur ne peut effectuer qu’au plus n interventions :

vp(t, z) == i‘up()t )E[U(L(ZT))] (t,2) €[0,T] x S. (0.2.4)

Nous définissons également une suite itérative de problémes d’arrét optimaux :

ot B pulr, 200)]
TES: T
po(t:z) = wolt,2),

ou S désigne l'ensemble des temps d’arrét a valeur dans [¢t,T]. Nous obtenons le résultat

suivant :
Théoréme. Les deux suites itératives v, et @y, coincident et convergent vers la fonction de

valeur initiale v :

SOn(t, Z) = Un(t7 Z)7
lim o,(t,2z) = o(t,z), (t,2)€]0,T]xS.

n—oo

Etudes et résultats numériques. Compte tenu de la dimension de notre probléme et surtout

de la complexité de notre région de solvabilité, une résolution numérique par les méthodes
des différences finies s’avére extrémement fastidieuse. Nous choisissons ainsi les méthodes

de Monte Carlo pour le calcul de la suite itérative
Unt1(t,z) = sup E [eiT(Tft)an(T, X0te g POLPY 2 e S
TGSt’T
et les regions de transaction et de non-transaction. Elles consistent & discrétiser notre espace-
temps et a calculer de nombreuses espérances conditionnelles associées qui représentent les
approximations des fonctions de valeur v,, & chaque point de la grille. Pour cela, nous utili-

sons une méthode, basée sur le calcul de Malliavin, suggérée par Fournié, Lasry, Lebuchoux,

Lions et Touzi [29] et développée par Bouchard, Ekeland et Touzi [10].

0.3 Options réelles et controle stochastique

0.3.1 Solution explicite & un probléme de changement de régime optimal
a deux états

Dans ce chapitre, on étudie la théorie d’arrét optimal et sa généralisation appliquées au
probléme de changement de régime. Pour cela, on considére un processus stochastique de
diffusion uni-dimensionnelle, X, qui peut prendre un nombre fini de régimes ou d’états. Les
régimes peuvent étre changés lors d’une suite de temps d’arrét décidés par 'opérateur, avec
des cotits fixes. Un exemple illustrant parfaitement cette étude est le probléme d’investisse-

ment d’une firme dans un environnement incertain, ot ’'on gére plusieurs sites de production
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opérant dans différents modes ou régimes selon les différentes perspectives économiques. Le
processus X représente le prix des matiéres premieres consommeées ou des biens produits et
sa dynamique change selon le régime sous lequel il opére. Le projet de ’entreprise génére un
flux selon une fonction de profit qui dépend du prix X et du choix de régime. Le probléme
est de trouver la stratégie optimale de changement de régime qui maximise ’espérance des
profits résultant de ce projet.

Plusieurs auteurs ont traité le probléme de changement de régime, Bensoussan et Lions
[7] et Tang et Yong [64], ainsi que son application a l’évaluation d’options, aux options
réelles et aux problémes d’investissement dans un environnement incertain, Brekke et Ok-
sendal [12], Duckworth et Zervos [27], Hamadéne et Jeanblanc [37], et Guo [35]. Dans [37],
les auteurs ont recours aux notions d’équations différentielles stochastiques rétrogrades et
d’enveloppe de Snell pour résoudre un probléme de changement de régime & deux états, cor-
respondant aux états d’une centrale électrique : en fonctionnement ou a ’arrét. Aprés avoir
prouvé l'existence d’une stratégie optimale et en avoir fourni une expression, ils donnent
également une méthode de simulation et quelques résultats numeériques. Dans [12] et [27]
traitant un probléme & deux régimes, des solutions explicites ont été obtenues. Leur méthode
de résolution est de construire une solution au systéme de la programmation dynamique en
devinant la forme & priori de la stratégie optimale, puis de la valider & posteriori par véri-
fication. Dans ces deux travaux, il n’y a pas de changement de régime dans le processus de
diffusion car le changement de régime se résume au changement de fonction de profit.

Dans notre étude, nous considérons un modele dont le changement de régime concerne

a la fois le processus de diffusion et la fonction de profit.

Formulation du probléme. On considére d’abord que le processus de diffusion X est un

brownien géométrique et peut prendre un nombre fini de régimes. Chaque régime correspond
a un couple de tendance et volatilité (b;, ;). On modélise ce probléme d’optimisation par
une stratégie de controle impulsionnel o = (7, Kp)nen+ ol les 7, représentent les temps

d’intervention de 'opérateur et x, le nouveau régime a l'instant 7,.

On pose g;; comme coiit (algébrique) de changement de régime 4 au régime j avec la

convention g;; = 0 et suppose que ces cotuts satisfont les relations d’arbitrage suivantes :

git < Gijt+gjk, ViFj, jFk €lg (0.3.1)

Ces relations triangulaires signifient qu’il est toujours préférable, en terme de cott, de faire
en une fois un seul investissement que de faire deux investissements successifs équivalents.

Elles empéchent également tout arbitrage consistant a faire des aller-retour i « j : 0 <
ij + gjis Vi F# 7.

Le probléeme d’investissement. Quand ’état initial du systéme est (z,1%), le profit espéré pour
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une stratégie de controle o = (7, kp)n>1 € A donnée, est

o

o0
—rt T8 7 —rThn
/ THXEL =Y e g,

0

Ji(z,a) = E

n=1
Avec r > 0, le taux d’actualisation. Pour la suite de ce chapitre, on pose f;(.) = f(.,1).

L’objectif est de maximiser ce profit espéré sur toutes les strategies de A. Ainsi, on

définit les fonctions de valeur

*

vi(z) = 51613 Ji(z,a), xzeRY, iely. (0.3.2)
(64

On obtient la caractérisation par EDP des fonctions de valeur par les notions de solution

de viscosité comme suit :

Théoréme Les fonctions de valeur v;, i € Iy, sont les solutions uniques avec les conditions
de croissance linéaire sur (0,00) et les conditions au bord v;(0") = max ey, [—gi;] au systeme

d’inégalités variationnelles :

min {rvi — Lv; — fi, v; — mix(vj — gij)} = 0, z€(0,00), i€y (0.3.3)
JF

Résultats explicites pour un modeéle a deux régimes. L’objectif principal est d’obtenir des so-

lutions explicites dans le cas de modéle a deux régimes : ’expression des fonctions de valeur
et la stratégie optimale correspondante.

Un recours aux notions de solution de viscosité s’avére étre un outil puissant pour dé-
terminer la solution au systeme d’inégalités variationnelles. On obtient ainsi directement la
propriété de “smooth-fit” des fonctions de valeur et la structure des régions de “switching”.
On considére et obtient les solutions explicites dans les cas suivants :

— Le couple tendance et volatilité de la diffusion prend deux valeurs différentes selon les

régimes, et les fonctions de profit sont identiques et de type puissance.

— Iln’y a pas de “switching” dans le processus de diffusion et les deux différentes fonctions

de profit satisfont une condition générale, incluant les fonctions de type puissance.

Pour chacun des deux cas, on considére également les cas suivants : les deux cofts
de “switching” sont positifs, et I'un des deux cotits est négatif. Ce dernier cas est, par
ailleurs, trés intéressant en terme d’applications ot une firme choisit entre 'ouverture ou
la fermeture d’une activité. Lors de la fermeture, la firme pourrait recouvrir une partie du

coit de 'ouverture.

0.3.2 Un probléme couplé de controle singulier et de changement de ré-
gime pour une politique de dividende avec investissement réversible

L’évaluation d’une entreprise est non seulement un probléme fondamental en finance
d’entreprise mais également un des piliers fondateurs du marché financier. Plusieurs mé-

thodes sont utilisées par les intervenants des marchés d’actions, en particulier les analystes
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financiers, dont les plus fréquemment utilisées sont le “Discounted Cash Flow”, les différents
multiples tels que le “Price Earnings Ratio” et le “EBITDA multiple”. Cependant, la valeur
d’une entreprise provient théoriquement de sa capacité a générer des bénéfices afin de les
distribuer aux actionnaires. Elle représente donc la valeur actualisée des dividendes futurs.
La méthode de “Discounted Dividends Flow” est ainsi, parmi toutes les méthodes, la plus
pertinente.

La valeur d’une entreprise dépend d’un ensemble de parameétres tels que le prix, la
demande et le niveau de compétition, tous soumis aux aléas du marché dans lequel elle
opére. Mais, elle dépend aussi et surtout de la capacité du manager a identifier et exécuter
la meilleure politique de dividende et d’investissement maximisant I'intérét des actionnaires.
S’il ne peut fixer le niveau du “cash-flow” généré car soumis & un environnement incertain,
il peut, par contre, fixer quasi-arbitrairement les niveaux de dividende et d’investissement,
avec la faillite comme seule contrainte. Les meilleurs managers sont ceux qui arrivent a
identifier cette politique optimale.

Depuis les années 90, des mathématiciens ont tenté de modéliser et de résoudre ces
problémes de gouvernance d’entreprise comme un probléme d’optimisation et de contréle
stochastique. Parmi les premiers travaux sur la politique de dividende optimale, on peut
mentionner ceux de Jeanblanc et Shiryaev [43] et de Choulli, Taksar et Zhou [I8]. Ma-
thématiquement, ces études sont formulées comme des problémes de contréle stochastique
singulier. D’autres travaux sont portés sur la politique d’investissement optimale. Les théo-
ries sur la politique d’investissement, dans un environnement incertain pour une entreprise
pouvant opérer les activités de production sous différents modes ou régimes, ont conduit
aux recherches sur les problémes de changement de régime ou “optimal switching problems”,
qui a récemment re¢u beaucoup d’attention de la communauté des mathématiciens, voir
Brekke et Oksendal [12], Duckworth et Zervos [27], Hamadéne et Jeanblanc [37], Ly Vath
et Pham [51].

Cependant, étudier séparément les deux points de recherche en finance d’entreprise, la
politique optimale de dividende et d’investissement dans un environnement incertain, ne
satisfait guére les réalités économiques d’une entreprise, compte tenu de la forte interaction
entre ces deux facteurs. Notre étude porte donc sur le probléme couplé de contrdle singu-
lier et de changement de régime. Elle est une extension de 1’étude faite par Décamps et
Villeneuve [24], qui considérent linteraction entre la politique de dividende et d’investis-
sement irréversible dans un environnement incertain. Notre but est de relaxer I’hypothése
d’irréversibilité de 'investissement, c’est-a-dire, de 'opportunité de croissance. Autrement
dit, quand une entreprise, opérant sous une certaine technologie, a 'opportunité d’investir
pour la croissance future dans une nouvelle technologie, elle peut décider, une fois cette
technologie installée, de retourner dans ’ancienne technologie en recevant en compensation
une partie du coiit investi.

Notre étude est suffisamment riche pour adresser plusieurs questions posées dans la

littérature des options réelles : les effets des contraintes financiéres sur les décisions d’inves-
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tissement, quand est-il optimal de retarder la distribution de dividende afin d’investir...

Formulation du probléme. La formulation mathématique de ce probléme nous ameéne & consi-

dérer un probléme couplé de contréle singulier et de changement de régime pour une diffusion
uni-dimensionnelle. Le processus de diffusion considéré, X, représente la dynamique de la

réserve de cash :
dXt = /.thdt + O'th — dZt — th, XO_ = T, (034)

ou /i, représentent les quantités de cash générées par Uentreprise selon que I'on est sous le
régime I; € {0,1}. Z représente les dividendes totaux distribués jusqu’a l'instant ¢ alors que
K est le cotit lié aux décisions d’investissement et de désinvestissement.

On considére g > 0 le cott de I'investissement dans la nouvelle technologie : le passage
du régime 0 au régime 1, tandis que le désinvestissement, du régime 1 au régime 0, apporte
un cash de (1 —\)g, avec 0 < A < 1.

Le probléme d’investissement. Notre objectif est de maximiser la valeur recue par les action-

naires, c’est-a-dire, la somme actualisée des dividendes futurs recus jusqu’a la perpétuité

ou la faillite éventuelle de l'entreprise. On cherche donc & obtenir la valeur optimale de

T
/ €_ptdZt
0

ou est T est l'instant de faillite de ’entreprise

) .
I’entreprise,

vi(x) = supE , reR, i=0,1, (0.3.5)

acA

T = T = inf{t >0 : XM < 0},
et éventuellement la politique de dividende et d’investissement optimale correspondante.

Résultats. Ce probléme couplé nous ameéne via le principe de la programmation dynamique
a un systéme d’inégalités variationnelles. On utilise pour cela 'approche de solution de

viscosité. On obtient ainsi :

— la continuité des fonctions de valeur v;, i = 0, 1, et qu’elles sont 'unique solution de

viscosité au systéme d’inégalités variationnelles associé.

— la régularité des fonctions de valeur : elles sont de classe C! sur (0,00) et de C? sur

I’union des régions de continuité et de distribution de dividende.

Le résultat majeur de notre étude est la caractérisation de I'intuition naturelle que le mana-
ger préfére retarder le paiement de dividende si 'investissement offre suffisamment d’oppor-
tunité de croissance. Nous obtenons qualitativement les régions de “switching” qui peuvent
prendre différentes formes dépendant des taux de profit de chaque technologie et des coiits
de transition. Les résultats ci-dessous donnent les descriptions qualitatives et explicites de

la structure de la solution & notre probléme de controle :
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Résultats Principaux. Nous distinguons les différents cas suivants :

(i) Si Uopportunité de croissance est trop faible, i.e. py < Seuily,,
* au régime 0, il est optimal de ne jamais investir,

* au régime 1, il est optimal de distribuer toute la réserve de cash comme dividende

et de désinvestir et revenir au régime 0.

(1) Si Uopportunité de croissance est quantitativement moyenne, i.e. Seuil, < pu <

Sewilys,

* au régime 0, il est optimal de ne jamais investir,

* au régime 1, il est optimal de toujours rester dans ce régime quand [’entreprise n’est
pas en faillite. Mais dés que 'on s’approche de la faillite, c’est-a-dire, quand x = 0, 4l

faut désinvestir et revenir au régime 0.

(13) Si Uopportunité est suffisamment forte, i.e. p1 > Seuilys,
* au régime 1, il est optimal de toujours rester dans ce régime quand l’entreprise n’est
pas en faillite, par contre, lorsque ['on s’approche de la faillite, il faut désinvestir et
revenir au régime 0,

* au régime 0, il faut distinguer deuz cas :

cas 1.) Il est optimal d’investir dés que le processus de réserve de cash dépasse un
certain seuil xyj;, alors que dés qu’il passe sous un certain seuil a, il est optimal de
distribuer comme dividende tout le cash excédant un certain seuil Zg et d’abandonner

toute opportunité de croissance (avec To < a < x’al).

cas 2.) Le manager retarde tout paiement de dividende afin d’investir dans la nouvelle

technologie dés que la réserve de cash dépasse x(),.

0.4 Equilibre de marché compétitif sous asymétrie d’informa-
tion

Les théories classiques des modeéles du marché financier supposent que tous les inter-
venants du marché ont accés aux mémes informations. Il est cependant clair que cette
hypothése ne correspond pas a la réalité du marché. Tous les intervenants n’ont pas accés
aux mémes informations, autrement dit, il y a une asymétrie d’information. L’asymétrie
d’information peut s’avérer de plusieurs maniéres : certains ont accés aux informations
confidentielles et non publiques, tandis que d’autres constituent, & partir d’'un ensemble
d’informations publiques et non-matérielles, des informations propriétaires et pertinentes
pour les décisions d’investissement.

Ces derniéres années, de nombreux mathématiciens s’intéressent aux problémes posés
par "asymétrie d’information. En général, cette asymétrie d’information est modélisée par
le fait que certains agents du marché possédent des informations additionnelles a celles pu-

bliquement disponibles. Une information additionnelle pourrait étre, par exemple, le futur
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prix de liquidation d’un actif risqué. Utilisant la théorie de grossissement de filtration dé-
veloppée par Jeulin [44] et puis Jacod [42], plusieurs études telles que celles de Pikovsky et
Karatzas et de Grorud et Pontier [33] cherchent a résoudre des problémes de maximisation
dans un marché ou deux investisseurs ont différents niveaux d’information. Les prix des
actifs évoluent selon une diffusion exogeéne. Cependant, 'inconvenient des modéles ci-dessus
est que l'agent ordinaire ne peut déduire du marché l'information additionnelle ou “insider
information” que détient ’agent initié.

Par contre, dans Kyle [48] and Back [3], le marché est compétitif et I’agent ordinaire
peut obtenir des “feedbacks” du marché concernant I'information additionnelle. Dans Biais et
Rochet [§], ou 'on peut trouver d’intéressantes études faites sur I'asymétrie d’information,
I'objectif est d’analyser la formation de prix dans une version dynamique du modéle de
Grossman et Stiglitz [34] et ou les techniques de controle stochastique sont utilisées.

Dans le méme cadre, notre étude considére un marché financier avec un actif risqué
et un actif sans risque. Un agent ordinaire, un agent initié et des “noise-traders” forment
I’ensemble des intervenants du marché. Si le premier ne peut observer que la dynamique
du prix de l'actif risqué, 5, le deuxiéme a, de plus, la connaissance de Z, l'offre totale de
Pactif. Comme dans Back [3], en se basant sur l’observation du prix de l'actif risqué, I’agent
ordinaire peut partiellement déduire l'information additionnelle de ’agent initié.

Tous deux possédent une fonction d’utilité du type CARA. Chaque agent, consideré

comme rationnel, cherche & maximiser ’espérance de l'utilité de sa richesse terminale.

Formulation du probléme. On suppose que le processus Z est gouverné par l’e.d.s suivante :

dZ, = (a(t)Zy + b(t)) dt + y(£)dWs, Zo = z0 € R (0.4.1)

L objectif de l’étude. Notre objectif est de déterminer si une condition d’équilibre peut étre

atteinte par un processus de prix linéaire, étant donné un processus linéaire Z. On définit

comme admissible un processus de prix de la forme suivante :

dS, = S,[(a(t)Z, + B(t))dt + o(t)dWy], 0<t<T (0.4.2)

Résultats. Utilisant des techniques du controle stochastique et la théorie du filtrage, nous
montrons que l'existence d’un équilibre de marché compétitif sous asymétrie d’information
est directement liée a I'existence de solution d’un certain systéme d’équations non-linéaires.
Cependant, on ne peut déterminer si I’ensemble des solutions de ce systéme d’équations est
vide ou non.

Nous avons aussi entrepris ’étude d’un cas particulier ou la dynamique de I'offre totale
est un mouvement brownien. Nous avons montré que 1’équilibre peut étre atteint et obtenu

explicitement la dynamique linéaire du processus de prix admissible correspondant.
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Chapter 1

A Model of Optimal Portfolio
Selection under Liquidity Risk and
Price Impact: Theoretical Aspect

Joint paper with Mohamed MNIF and Huyén PHAM, to appear in Finance and Stochastics

Abstract : We study a financial model with one risk-free and one risky asset subject to
liquidity risk and price impact. In this market, an investor may transfer funds between
the two assets at any discrete time. Each purchase or sale policy decision affects the price
of the risky asset and incurs some fixed transaction cost. The objective is to maximize
the expected utility from terminal liquidation value over a finite horizon and subject to a
solvency constraint. This is formulated as an impulse control problem under state constraint
and we characterize the value function as the unique constrained viscosity solution to the

associated quasi-variational Hamilton-Jacobi-Bellman inequality.

Keywords: portfolio selection, liquidity risk, impulse control, state constraint, discontinuous

viscosity solutions.
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1.1 Introduction

Classical market models in mathematical finance assume perfect elasticity of traded assets :
traders act as price takers, so that they buy and sell with arbitrary size without changing
the price. However, the market microstructure literature has shown both theoretically and
empirically that large trades move the price of the underlying assets. Moreover, in practice,
investors face trading strategies constraints, typically of finite variation, and they cannot
rebalance them continuously. We then usually speak about liquidity risk or illiquid markets.
While the assumption of perfect liquidity market may not be practically important over a
very long term horizon, price impact can have a significant difference over a short time
horizon.

Several suggestions have been proposed to formalize the liquidity risk. In [48] and [3],
the impact of trading strategies on prices is explained by the presence of an insider. In
the market manipulation literature, prices are assumed to depend directly on the trading
strategies. For instance, the paper [20] considers a diffusion model for the price dynamics
with coefficients depending on the large investor’s strategy, while [30], [58], [56], [4] or [14]
develop a continuous-time model where prices depend on strategies via a reaction function.
While the assumption of price-taker may not be practically important for investors mak-
ing allocation decision over a very long time horizon, price impact can make a significant
difference when investors execute large trades over a short time of horizon. The market mi-
crostructure literature has shown both theoretically and empirically that large trades move
the price of the underlying securities. Moreover, it is also well established that transaction
costs in asset markets are an important factor in determining the trading behavior of mar-
ket participants; we mention among others [22] and [45] for the literature on arbitrage and
optimal trading policies, and [65], [50] for the literature on the impact of transaction costs
on agents’ economic behavior. Consequently, transaction costs should affect market liquid-
ity and asset prices. This is the point of view in the academic literature where liquidity is
defined in terms of the bid-ask spread and/or transaction costs associated with a trading
strategy. On the other hand, in the practitioner literature, illiquidity is often viewed as
the risk that a trader may not be able to extricate himself from a position quickly when
need arises. Such a situation occurs when continuous trading is not permitted, for instance,
because of fixed transaction costs.

Of course, in actual markets, both aspects of market manipulation and transaction costs
are correct and occur simultaneously. In this paper, we propose a model of liquidity risk
and price impact that adopts both these perspectives. Our model is inspired from the
recent papers [63] and [38], and may be described roughly as follows. Trading on illiquid
assets is not allowed continuously due to some fixed costs but only at any discrete times.
These liquidity constraints on strategies are in accordance with practitioner literature and
consistent with the academic literature on fixed transaction costs, see e.g. [54]. There is an

investor, who is large in the sense that his strategies affect asset prices : prices are pushed
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up when buying stock shares and moved down when selling shares. In this context, we
study an optimal portfolio choice problem over a finite horizon : the investor maximizes his
expected utility from terminal liquidation wealth and under a natural economic solvency
constraint. In some sense, our problem may be viewed as a continuous-time version of the
recent discrete-time one proposed in [I5] . We mention also the paper [2], which studies an
optimal trade execution problem in a discrete time setting with permanent and temporary
market impact.

Our optimization problem is formulated as a parabolic impulse control problem with
three variables (besides time variable) related to the cash holdings, number of stock shares
and price. This problem is known to be associated by the dynamic programming principle
to a Hamilton-Jacobi-Bellman (HJB) quasi-variational inequality, see [7]. We refer to [43],
[47], [13] or [55] for some recent papers involving applications of impulse controls in finance,
mostly over an infinite horizon and in dimension 1, except [47] and [55] in dimension 2. There
isin addition, in our context, an important aspect related to the economic solvency condition
requiring that liquidation wealth is nonnegative, which is translated into a state constraint
involving a nonsmooth boundary domain. The model and the detailed description of the
liquidation value and solvency region, and its formulation as an impulse control problem are
exposed in Section [[.2] Our main goal is to obtain a rigorous characterization result on the
value function through the associated HJB quasi-variational inequality. The main result is
formulated in Section [L.3l

The features of our stochastic control problem make appear several technical difficulties
related to the nonlinearity of the impulse transaction function and the solvency constraint.
In particular, the liquidation net wealth may grow after transaction, which makes nontrivial
the finiteness of the value function. Hence, the Merton bound does not provide as e.g. in
transaction cost models, a natural upper bound on the value function. Instead, we provide
a suitable “linearization” of the liquidation value that provides a sharp upper bound of the
value function. The solvency region (or state domain) is not convex and its boundary even
not smooth, in contrast with transaction cost model (see [22]), so that continuity of the
value function is not direct. Moreover, the boundary of the solvency region is not absorbing
as in transaction cost models and singular control problems, and the value function may be
discontinuous on some parts of the boundary. Singularity of our impulse control problem
appears also at the liquidation date, which translates into discontinuity of the value function
at the terminal date. These properties of the value function are studied in Section [I.4]

In our general set-up, it is then natural to consider the HJB equation with the concept
of (discontinuous) viscosity solutions, which provides by now a well established method
for dealing with stochastic control problems, see e.g. the book [28]. More precisely, we
need to consider constrained viscosity solutions to handle the state constraints. Our first
main result is to prove that the value function is a constrained viscosity solution to its
associated HJB quasi-variational inequality. Our second main result is a new comparison

principle for the state constraint HJB quasi-variational inequality, which ensures a PDE



28 CHAPTER 1. LIQUIDITY MODEL: THEORETICAL ASPECTS

characterization for the value function of our problem. Previous comparison results derived
for variational inequality (see [40], [64]) associated to impulse problem do not apply here.
In our context, we prove that one can compare a subsolution with a supersolution to the
HJB quasi-variational inequality provided that one can compare them at the terminal date
(as usual in parabolic problems) but also on some part Dy of the solvency boundary, which
represents an original point in comparison principle for state-constraint problem. Section
is devoted to the PDE viscosity characterization of the value function. We conclude in
Section [L.6] with some remarks.

1.2 The Model

This section presents the details of the model. Let (£2, F,P) be a probability space equipped
with a filtration (F;)o<¢<7 supporting an one-dimensional Brownian motion W on a finite
horizon [0,T], T' < co. We consider a continuous time financial market model consisting of
a money market account yielding a constant interest rate r > 0 and a risky asset (or stock)
of price process P = (P;). We denote by X; the amount of money (or cash holdings) and
by Y; the number of shares in the stock held by the investor at time ¢.

Liquidity constraints. We assume that the investor can only trade discretely on [0, 7).

This is modelled through an impulse control strategy o = (7, G )n>1: 71 < ... T < ... <
T are stopping times representing the intervention times of the investor and (,, n > 1, are
F,-measurable random variables valued in R and giving the number of stock purchased
if ¢, > 0 or sold if ¢, < O at these times. The sequence (7,,(,) may be a priori finite or
infinite. The dynamics of Y is then given by :

Yo = Y., Th<s<Tp+ (1.2.1)
YTn+1 = an + <n+l- (1.2.2)

Notice that we do not allow trade at the terminal date 7', which is the liquidation date.

Price impact. The large investor affects the price of the risky stock P by his purchases
and sales : the stock price goes up when the trader buys and goes down when he sells
and the impact is increasing with the size of the order. We then introduce a price impact
positive function Q({, p) which indicates the post-trade price when the large investor trades
a position of ¢ shares of stock at a pre-trade price p. In absence of price impact, we have
Q(¢,p) = p. Here, we have Q(0,p) = p meaning that no trading incurs no impact and @ is
nondecreasing in ¢ with Q(¢,p) > (resp. <) p for ¢ > (resp. <) 0. Actually, in the rest of

the paper, we consider a price impact function in the form
Q(¢,p) = pe*,  where A > 0. (1.2.3)

The proportionality factor e*¢ represents the price increase (resp. discount) due to the ¢

shares bought (resp. sold). The positive constant A measures the fact that larger trades
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generate larger quantity impact, everything else constant. This form of price impact function
is consistent with both the asymmetric information and inventory motives in the market
microstructure literature (see [48]).

We then model the dynamics of the price impact as follows. In the absence of trading,

the price process is governed by
dP; = Ps(bds+ ocdWy), T, <8< Tpt1, (1.2.4)

where b, o are constants with ¢ > 0. When a discrete trading AY; := Y; — Y- = (a1
occurs at time s = 7,41, the price jumps to Ps = Q(AYs, Py—), i.e.

PTn+l = Q(Cn—&-lap.,-; ) (125)

+1

Notice that with this modelling of price impact, the price process P is always strictly

positive, i.e. valued in R* = (0, 00).

Cash holdings. We denote by 0((,p) the cost function, which indicates the amount for

a (large) investor to buy or sell ¢ shares of stock when the pre-trade price is p :

0(¢,p) = CQ((p).

In absence of transactions, the process X grows deterministically at exponential rate r :
dXs = rXsds, Tn<8<Tpi1- (1.2.6)

When a discrete trading AY; = (,4+1 occurs at time s = 7,41 with pre-trade price P,—- =
P7'7+1’ we assume that in addition to the amount of stocks 8(AY, Ps-) = 0(Cng1, P - 1),
n n4
there is a fixed cost £ > 0 to be paid. This results in a variation of cash holdings by AXj

= X; — Xy- = —0(AY,, P ) — k, ie.
X = X - —0(§n+1,PT; ) — k. (1.2.7)

n+1 +1
The assumption that any trading incurs a fixed cost of money to be paid will rule out
continuous trading, i.e. optimally, the sequence (7,,,(,) is not degenerate in the sense that

for all n, 7, < Thq1 and (, # 0 a.s. A similar modelling of fixed transaction costs is
considered in [54] and [47].

Liquidation value and solvency constraint. The solvency constraint is a key issue in port-

folio/consumption choice problem. The point is to define in an economically meaningful way
what is the portfolio value of a position in cash and stocks. In our context, we introduce
the liquidation function £(y,p) representing the value that an investor would obtained by
liquidating immediately his stock position y by a single block trade, when the pre-trade
price is p. It is given by :

Uy,p) = —0(-y.p).
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If the agent has the amount z in the bank account, the number of shares y of stocks at the
pre-trade price p, i.e. a state value z = (z,y,p), his net wealth or liquidation value is given
by :

L(Z) = maX[Lo(Z),Ll(Z)]lyZO+L0(Z)1y<0, (1.2.8)
where
Lo(z) =+ Uy, p) =k,  Li(z) = =

The interpretation is the following. Lo(z) corresponds to the net wealth of the agent when
he liquidates his position in stock. Moreover, if he has a long position in stock, i.e. y > 0,
he can also choose to bin his stock shares, by keeping only his cash amount, which leads
to a net wealth L;(z). This last possibility may be advantageous, i.e. Li(z) > Lo(z), due
to the fixed cost k. Hence, globally, his net wealth is given by . In the absence of
liquidity risk, i.e A = 0, and fixed transaction cost, i.e. k = 0, we recover the usual definition
of wealth L(z) = « + py. Our definition of liquidation value is also consistent with
the one in transaction costs models where portfolio value is measured after stock position
is liquidated and rebalanced in cash, see e.g. [2I] and [55]. Another alternative would be
to measure the portfolio value separately in cash and stock as in [25] for transaction costs
models. This study would lead to multidimensional utility functions and is left for future
research.

We then naturally introduce the liquidation solvency region (see Figure 1) :
S = {z=(z,y,p) eERxRxRL : L(z) >0},
and we denote its boundary and its closure by
oS = {ZZ(CL’,y,p)ERXRXRj_ :L(z):O} and S = SUJIS.

Remark 1.2.1 The function L is clearly continuous on {z = (x,y,p) € RxRxR* :y # 0}.
It is discontinuous on zg = (z,0, p) € S, but it is easy to check that it is upper-semicontinuous
on zy, so that globally L is upper-semicontinuous. Hence S is closed in R x R x R%. We
also notice that L is nonlinear in the state variables, which contrasts with transaction costs

models.

Remark 1.2.2 For any p > 0, the function y — £(y, p) = pye™V is increasing on [0, 1/],
decreasing on [1/A, 00) with 1(0,p) = limy oo {(y,p) = 0 and I(1/\,p) = pe~!/A. We then
distinguish the two cases :

* if p < kXe, then I(y,p) < k for all y > 0.

* if p > ke, then there exists an unique y, (p) € (0,1/\] and y,(p) € [1/\, 00) such that
Iy, (p);p) = Uy,(p),p) = k with I(y,p) < k for all y € [0,y,(p)) U (y,(p),00). Moreover,
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y, (p) (resp. y,(p)) decreases to 0 (resp. increases to co) when p goes to infinity, while y, (p)
(resp.y,(p)) increases (resp. decreases) to 1/\ when p decreases to ke.

The boundary of the solvency region may then be explicitly obtained as follows (see Figures
2 and 3) :

o8 = 9, SUPSUFSUIFSUBSUISS,

where

;S = {z=(z,y,p) ERxRXR] :2+L(y,p) =k, y <0}

S = {z:(az,y,p)E]RXRXR*Jr :O§x<k‘,y:0}

IS = {,2’:(:1:,y,p)E]RX}RX]R*Jr :sz,y>0,p<k)\e}

HS = {z=(z,y,p) ERxRxRY :2=0,0<y<y,(p), p=>kle}

BS = {z=(z,y,p) ERxR xR, :2=0, y>y,(p), p>kde}

0yS = {z=(v,y.p) ERXRXRL x4+ L(y,p) =k, 3 (p) <y <u,(p), p>kle}.

In the sequel, we also introduce the corner lines in 9S :

Dy = {(0,0)} xRy C &S, Dy = {(k,0)} xR, C 9,8
Ci = {(0,y,(p).p) PR} C 9fS, (2 = {0,y,(p).p) :pERL} C 9 S.

Admissible controls. Given t € [0,T], z = (z,y,p) € S and an initial state Z,~ = z,

we say that the impulse control strategy o = (7, (n)n>1 is admissible if the process Z; =
(X,,Ys, Py) given by ([.2.1)-(T:2.2)-(T.2.4)- (T.2.5)-([.2.6)-(T.2.7) (with the convention o =
t) lies in S for all s € [t,T]. We denote by .A(t, 2) the set of all such policies. We shall see
later that this set of admissible controls is nonempty for all (t,z) € [0,7] x S.

Remark 1.2.3 We recall that we do not allow intervention time at 7', which is the liquida-
tion date. This means that for all & € A(t, z), the associated state process Z is continuous
at T, i.e. Zp— = Zr.

In the sequel, for ¢ € [0,7], z = (z,y,p) € S, we also denote Zo"* = (XIH* o, POP),
t < s < T, the state process when no transaction (i.e. no impulse control) is applied between
t and T, i.e. the solution to :

rX? 0
dz? = 0 |ds+ 0 | dWws, (1.2.9)
bPY oP?

starting from z at time t.

Investment problem. We consider an utility function U from R, into R, strictly increas-
ing, concave and w.l.o.g. U(0) = 0, and s.t. there exist K > 0, v € [0,1) :

Uw) < Kw’, Yw >0, (1.2.10)
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Figure 3: The solvency region when p > khe
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We denote Uy, the function defined on S by :

We study the problem of maximizing the expected utility from terminal liquidation wealth

and we then consider the value function :

v(t,z) = sup E[UL(Zr)], (t,2)€][0,T]xS. (1.2.11)

acA(t,z)
Remark 1.2.4 We shall see later that for all a € A(t,z) # 0, Ur(Zr) is integrable so
that the expectation in (|1.2.11]) is finite. Since U is nonnegative and nondecreasing, we

immediately get a lower bound for the value function :

U(t, Z) > U(O) =0, vt e [O,T], Z = ($’y7p) €S
We shall also see later that the value function v is finite in [0, 7] x S by providing a sharp
upper bound.

Notice that in contrast to financial models without frictions or with proportional trans-
action costs, the dynamics of the state process Z = (X,Y, P) is nonlinear and then the
value function v does not inherit the concavity property of the utility function. The sol-
vency region is even not convex. In particular, one cannot derive as usual the continuity of
the value function as a consequence of the concavity property. Moreover, for power-utility
functions U(w) = Kw"”, the value function does not inherit the homogeneity property of
the utility function.

We shall adopt a dynamic programming approach to study this utility maximization
problem. We end this section by recalling the dynamic programming principle for our

stochastic control problem.
Dynamic programming principle (DPP). For all (t,z) € [0,T) x S, we have

v(t,z) = SE(IE )]E[U(’T, Z)], (1.2.12)
ae 4

where 7 = 7(«) is any stopping time valued in [t, 7| depending on « in ([1.2.12)). The precise
meaning is :

(i) for all a € A(t, z), for all T € T; 1, set of stopping times valued in [t,T7] :
Elv(r, Z;)] < wv(t,2) (1.2.13)
(i) for all € > 0, there exists &° € A(t, z) s.t. for all 7 € Ty 7 :
o(t,z) < Elu(r, Z9)] +e. (1.2.14)

Here Z¢ denotes the state process starting from z at ¢ and controlled by &°.
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1.3 Quasi-variational Hamilton-Jacobi-Bellman inequality and
main result

In this section, we introduce some notations, recall the dynamic programming quasi-variational
inequality associated to the impulse control problem ([1.2.11]) and formulate the main result.
We define the impulse transaction function from S x R into R x R x R% -

[(z,¢) = (x=0(¢,p)—ky+¢QW D), z=(z,y,p) €S, CER,

This corresponds to an immediate trading at time ¢ of { shares of stock, so that from ([1.2.2))-

(1.2.5)-(1.2.7) the state process jumps from Z,- = z € S to Z; = I'(z,(). We then consider
the set of admissible transactions :

Clz) = {CeR :I'(2,() € S} = {¢eR :L('(z,() > 0},

in accordance with the solvency constraint and the set of admissibles controls A(t, z). We

introduce the impulse operator H defined by :

He(t,z) = Cilcl?)SO(t,F(z,C)), (t,2) €[0,T] x S,

for any measurable function ¢ on [0,T] x S. If for some z € S, the set C(z) is empty, we
denote by convention Hp(t, z) = —oo.
We also define £ as the infinitesimal generator associated to the system (|1.2.9) corres-

ponding to a no-trading period :

The HJB quasi-variational inequality arising from the dynamic programming principle
(1.2.12)) is then written as :

min —%—ﬁv,’l}—H’U = 0, on [0,T)xS. (1.3.1)

This divides the time-space liquidation solvency region [0,7) x S into a no-trade region
NT = {(t,2)€[0,T)xS : v(t,z) > Hv(t,2)},
and a trade region
T = {(t,2) €[0,T) xS :v(t,z) = Hvu(t,2)}.

The rigorous characterization of the value function through the quasi-variational inequality
(1.3.1)) together with the boundary and terminal conditions is stated by means of constrained

viscosity solutions. Our main result is the following theorem, which follows from the results

proved in Sections and [L.5]
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Theorem 1.3.1 The value function v is continuous on [0,T) x S and is the unique (in

[0,T) x S) constrained viscosity solution to (1.3.1) satisfying the boundary and terminal

condition :
. lim v(t',2) = 0, V(t,2)€[0,T)x Dy (1.3.2)
(t 7zz/) E—»g(t,z)
lim v(t,?)) = max[Up(z),HUL(2)], Vz€S, (1.3.3)

(t,2") = (T, 2)
t<T,z €8

and the growth condition :

w(t,2)| < K(1+(x+§))7, (t,2) € [0,T) x S (1.3.4)

for some positive constant K < oo.

Remark 1.3.1 Continuity and uniqueness of the value function for the HIBQVI
hold true in [0,7) x S in the class of functions satisfying the growth condition ,
associated to the terminal condition ((1.3.3)) (as usual in parabolic problems) but also to some
specific boundary condition . This last point is nonstandard in constrained control
problems, where one gets usually an uniqueness result for constrained viscosity solutions
to the corresponding Bellman equation without any additional boundary condition, see e.g.
[67] or [55]. Here, we have to impose a boundary condition on the non-smooth part Dy of
the solvency boundary. Notice also that the terminal condition is not given by Up,. Actually,
it takes into account the fact that just before the liquidation date T, one can do an impulse
transaction : the effect is to lift-up the utility function Uy, through the impulse transaction

operator H.

1.4 Properties of the value function

1.4.1 Some properties on the impulse transactions set

In order to show that the value function of problem is finite, which is not trivial a
priori, we need to derive some preliminary properties on the set of admissible transactions
C(z). Starting from a current state z = (z,y,p) € S, an immediate transaction of size ¢
leads to a new state 2’ = (2/,y/,p') = I'(2, (). Recalling the expression of the price

impact function, we then have :

Lo(T(2,Q)) = o' +£y/,p) =k = @+ Ly, p) =k +pl(e ™ =) —k
= Lo(z) + pg(y,C) — k, (1.4.1)

with

9(y:¢) = (e =€) (1.4.2)



36 CHAPTER 1. LIQUIDITY MODEL: THEORETICAL ASPECTS

It then appears that due to the nonlinearity of the price impact function, and in contrast
with transaction costs models, the net wealth may grow after some transaction : L(T'(z, ())
> L(z) for some z € S and ¢ € C(z). We first state the following useful result.

Lemma 1.4.1 For all z € S, the set C(z) is compact, eventually empty. We have :

Clz) = 0 if z€SUJFSUOIS,
——€C(z) C (—-y,0) if z€ 058,

0,—y] if z€0,S
—yelz) { Z5.0) if z€d/8

Moreover,
Cz) = {—y} if 2€(0;8SUIS) NN
where

8Z’AS:8€+SH{Z€5:3/§ }, Ny = {z€8 :pgly) <k},

> =

and g(y) = maxcer 9(y, ¢).

The proof is based on detailed and long but elementary calculations on the liquidation net
wealth L(D(2, ¢)) = max [Lo(T(2, €)), L1 (T(2, )] Tyscso+ Lo(T(2, O)) Lysc<o and is rejected
in Appendix.

Remark 1.4.1 Actually, we have a more precise result on the compactness result of C(z).
Let z € S and (zy,), be a sequence in S converging to z. Consider any sequence ((,), with
Cn € C(zp), 1.e. L(T'(2n,Cn)) >0

max [LO(Zn) +pn9(yna gn) —k,x — H(Cnapn) - k] 1yn+Cn20
+ [LO(ZH) +png(yna Cn) - k] 1yn+Cn<0 > 0.

Since ¢(y,¢) and —6((,p) goes to —oo as ¢ goes to infinity, and g(y, () goes to —oo as ¢
goes to —oo, this proves that the sequence ((,) is bounded. Hence, up to a subsequence,
(Cn) converges to some ¢ € R. Since the function L is upper-semicontinuous, we see that
the limit ¢ satisfies : L(I'(z,{)) > 0, i.e. ¢ lies in C(2).

We can now check that the set of admissible controls is not empty.
Corollary 1.4.1 For all (t,z) € [0,T) x S, we have A(t,z) # 0.

Proof. By continuity of the process ZS’“, t < s < T, it is clear that it suffices to prove
A(t,z) # 0 for any t € [0,T) x S. Fix now some arbitrary ¢ € [0,T). From Lemma

the set of admissible transactions C(z) contains at least one nonzero element for any z €
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05S U 8;8 U 0, 8§\ Dg. So once the state process reaches this boundary part, it is possible
to jump inside the open solvency region S. Hence, we only have to check that A(t, z) is
nonempty when z € 95S U 0fS U 0YS U Dy. This is clear when z € 0YS U Dy, : indeed,
by doing nothing the state process Zs = Zo"* = (ze"(=9,0, PY'P), t < s < T, obviously
stays in S, since z > 0 and so L1(Zs) > 0 for all t < s < T. Similarly, when z € dgS U
d*S, by doing nothing the state process Z, = Ze'* = (0,y, PY"P), t < s < T, also stays in
Ssince y > 0 and so L1(Zs) > 0forallt <s<T. O

We next turn to the finiteness of the value function, which is not trivial due to the
impulse control. As mentioned above, since the net wealth may grow after transaction due
to the nonlinearity of the liquidation function, one cannot bound the value function v by
the value function of the Merton problem with liquidated net wealth. We then introduce a

suitable “linearization” of the net wealth by defining the following functions on S :

L(z) = x+§(1—e_)‘y), and L(z) = :er% z=(z,y,p) €S.

Lemma 1.4.2 For all z = (z,y,p) € S, we have :

0 < L(z) < L(z) < L(2) (1.4.3)
and for all ¢ € C(z)
L(I(z,0) < L(z)—k (1.4.4)
L(I'(z,¢)) < L(z)—k. (1.4.5
In particular, we have C(z) = 0 for all z € N := {z € S : L(z) < k}.
Proof. 1) The inequality L < L is clear. Notice that for all y € R, we have
0 < 1—e M- )ye ™, (1.4.6)
This immediately implies for all z = (z,y,p) € S,
Lo(z) < L(2). (1.4.7)

If y > 0, we obviously have L;(z) = 2 < L(z) and so L(z) < L(z). If y < 0, then L(z) =

Lo(z) < L(z) by (L4.7).

2) For any z = (z,7,p) € S and ¢ € R, a straightforward computation shows that

LT(0) = L) —k+ 2 —1-xeX) < L(z) —k,

A
from (1.4.6). Similarly, we show (1.4.5). Finally, if z € A/, we have from (1.4.5), L(T'(z,¢))
< 0 for all ¢ € C(2), which shows with (1.4.3) that C(z) = 0. O

As a first direct corollary, we check that the no-trade region is not empty.



38 CHAPTER 1. LIQUIDITY MODEL: THEORETICAL ASPECTS

Corollary 1.4.2 We have NT # (. More precisely, for each t € [0,T), the t-section of
NT, i.e. NT(t) = {z €S8 : (t,2) € NT} contains the nonempty subset N of S.

Proof. This follows from the fact that for any z lying in the nonempty set N of S, we have
C(z) = 0. In particular, Hv(t, z) = —co < v(t, z) for (t,z) € [0,T) x N. O
As a second corollary, we have the following uniform bound on the controlled state

process.

Corollary 1.4.3 For any (t,z) € [0,T] x S, we have almost surely for allt < s <T :

- - P07t7p
sup L(Zs) < sup L(Zy) < L(Z%%%) = X% 4 22 (1—e ™), (1.4.8)
a€A(t2) acA(t2) A
_ _ P07t7p
sup L(Z) < sup L(Z) < L(ZI") = XP0" 4 —=—, (1.4.9)
a€A(t,2) a€A(t,?) A
sup | X,| € ———L(Z0), (1.4.10)
a€A(t,z) e—1
e -
sup Py, < S L(z04%). (1.4.11)
acA(t,z) e—1

Proof. Fix (t,z) € [0,T] xS and consider for any o € A(t, z), the process L(Z,), t < s < T,
which is nonnegative by (1.4.3). When a transaction occurs at time s, we deduce from
(1.4.4) that the variation AL(Z,) = L(Zs) — L(Z,-) is always negative : AL(Z,) < —k <

0. Therefore, the process I}(Zs) is smaller than its continuous part :
L(Zs) < L(Z,) < L(Z%%), t<s<T, as. (1.4.12)

which proves ([1.4.8)) from the arbitrariness of «. Relation (1.4.9) is proved similarly.
From the second inequality in (1.4.9), we have for all a € A(¢, z) :

. P
X, < L(Z22%%) - 7 t<s<T, as. (1.4.13)
< L(Z%%%), t<s<T, as. (1.4.14)

By definition of L and using ([1.4.13)), we have :

= P _
0 < L(Z) < max (L(Zf’t’z) = (1= Aae™), L(Z0%) — =2

|
N———

_ P, 1
< L(Z%%) — 78 (1 — 6) , t<s<T, as.

since the function y — Aye™¥ is upper bounded by 1/e. We then deduce

e -
P, < —elL(ZSOW), t<s<T, as. (1.4.15)
e p—
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and so (1.4.11) from the arbitrariness of a. By recalling that Xg + Ps/A > 0 and using
(1.4.15), we get

—%E(ngt%) < X, t<s<T, as.
e p—
By combining with (1.4.14) and from the arbitrariness of a, we obtain (|1.4.10)). O

As a third direct corollary, we state that the number of intervention times is finite. More

precisely, we have the following result :

Corollary 1.4.4 For any (t,z) € [0,T] x S, a = (Tn, () € A(t, 2), the number of inter-

vention times strictly between t and T 1is finite a.s. :

Niy(ow) = Card{n :t<m,<T}
171= - T P Ty
< - L(Zt)—L(ZT)+/ rXo+ 5 ds—i—/ TPAW,| < o0 d(b4.16)
t t

Proof. Fix some (t,2) € [0,7] x S and a € A(t,z), and consider Z; = (X, Ys, Ps),
t < s < T, the associated controlled state process. By applying It6’s formula to L( s) =
Xs + Ps/\ between t and T', we have :

0 < L(Zp-) = E(Zt)+/tT<rX +Ij\)ds+/ PdW+ZAL 5)

t<s<T

T

- P

L(Zt)—i-/ <TX+)\>CZ +/ —~PsdWg — kENy(w),
t

by (1.4.5). We deduce the required result :

IN

Ni(a) < ;[L(Zt)—L(ZT—)—i-/tT(TX +1:>ds+/ PdW} < 00 a.s.
O
1.4.2 Bound on the value function
We can now give a sharp upper bound on the value function.
Proposition 1.4.1 For allt € [0,T], 2 = (z,y,p) € S, we have
sup Up(Zr) < U (i (Z%W)) e L'(P). (1.4.17)
acA(t,z)
In particular, the family {Ur(Z7), o € A(t,2)} is uniformly integrable and we have
o(t,z) < wy(t,z) = E [U (i (Z‘”’Zm L (h2)e0,T] xS, (1.4.18)

with

vo(t,z) < Ke!TDL(2), (1.4.19)
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where p 1s a positive constant s.t.

v b+ +02r(1 —-)

e > (1.4.20)

p

Proof. Fix (t,z) € [0,T] xS and consider for some arbitrary a € A(t, z), the process L(Zy),
t < s < T, which is nonnegative by (1.4.3)). By (|1.4.8]), we have :

N . potp
L(Zs) < L(Zs) < L(Z9%%) = Xob* 4 T(l —e M), t<s<T. (1.4.21)

From the arbitrariness of o and the nondecreasing property of U, we get the inequality in
.4.17)). From the growth condition ({1.2. on the nonnegative function U and since clearly
1.4.17). F heg h condition ([1.2.10) h gative f ion U and si learl

0,t,p

]X%t’x 7 and (Pg’t’p)V are integrable, i.e. in L'(P), we have U (X%t’x + PT)\ (1- e)‘y))

€ L'(P). This clearly implies ((1.4.18].

Consider now the nonnegative function :

olt2) = STOLEYT = T (24 L)

and notice that ¢ is smooth C? on [0,T] x (S \ Dg). We claim that for p large enough, the

function ¢ satisfies :

0 _
- a—f(t, 2) = Lo(t,z) > 0, Y(tz)€[0,T] xS\ D. (1.4.22)
Indeed, a straightforward calculation shows that for all t € [0,T), z = (z,y,p) € S\ Dy :
_aa(f(tv Z) - 590(757 Z)

_ 2
= T (5)2 [Aa:2+B(§(1—e’\y)) +20at (1 - )|, (14.23)
where

A= p—ry, B:p—b’y—i—%azfy(l—’y), C—p—w.
Hence, is satisfied whenever A > 0 and BC — A% > 0, which is the case for p larger
than the constant in the r.h.s. of .

Fix some (t,z) € [0,T) x S. If z = (0,0, p) then we clearly have vy (¢, z) = U(0) and so
inequality follows from U(0) < K; (see (L.2.10)). Consider now the case where z
€ 8\ Dy and notice that the process Zo"* = (XI5 y, PYP) never reaches {(0,0)} x RY .
Consider the stopping time

Tp = inf{s>t :|Z0"*|> R} AT

so that the stopped process (Zg/’fﬁfR)tgng stays in the bounded set {z = (z,y,p) € S\ Dy :

0
|z| < R} on which ¢(t,.) is smooth C? and its derivative in p, a—? is bounded. By applying
Ito’s formula to (s, Zo"%) between s = t and s = Tx, we have :

Tr, Z3r%) = ot (% 20yas+ [ 28 (s 200)gpOtrgw,
90( R, TR) - @(’2)+ ] 8t+ ® (Sv s )S+ ] ap(sv s )G s LR
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Since the integrand in the stochastic integral is bounded, we get by taking expectation in
the last relation :

Tr o
Blo(Tn 227 = w9 +E| [ (55 +00) (5. 20%0as| < et
t

where we used in the last inequality (1.4.22)). Now, for almost w € 2, for R large enough (>
R(w)), we have Tr = T so that ¢(Tr, Z7,,) converges a.s. to (T, Zr). By Fatou’s lemma,

we deduce that E[o(T, Zr)] < ¢(t, z). Since p(T,z) = L(z)”, this yields

E[i (Z%t’zﬂ < ot 2). (1.4.24)

Finally, by the growth condition (1.2.10]), this proves the required upper bound on the value
function wv. O

Remark 1.4.2 The upper bound of the last proposition shows that the value function lies
in the set of functions satisfying the growth condition :

s s |u(t, 2)|
T = -0, T — R —_— .
G,([0,T] x S) {u [0,T] xS , [O’s;?lzg T @t o) < oo}

Remark 1.4.3 The upper bound ([1.4.18) is sharp in the sense that when A\ goes to zero
(no price impact), we find the usual Merton bound :

o(t,2) < EUX" +yPp?)] < Ke!T (x4 py).

As a corollary, we can explicit the value function on the hyperplane of S :
SY = Ry x{0}xR: C S,

where the agent does not hold any stock shares.

Corollary 1.4.5 For any t € [0,T), z = (x,0,p) € SY, the investor optimally does not
transact during [t,T), i.e.

v(t,z) = E {U (X%t’xﬂ =U (:cer(Tft)>.

Proof. For z = (x,0,p) € SY, let us consider the no impulse control strategy starting from
z at ¢ which leads at the terminal date to a net wealth L(Z2"*) = X3"" = ze" T, We
then have v(t,2) > E[U(X%’t7x)] = U(ze"T=1). On the other hand, we have from (1.4.18) :
v(t,z) < wolt,z) = E[U(X%t’m)]. This proves the required result. O
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1.4.3 Boundary properties

We now turn to the behavior of the value function on the boundary of the solvency region.
The situation is more complex than in models with proportional transaction costs where the
boundary of the solvency region is an absorbing barrier and all transactions are stopped.
Here, the behavior depends on which part of the boundary is the state, as showed in the

following proposition.

Proposition 1.4.2 1) We have

v = Hv on [0,T)x (8, S\ DyUdSS) (1.4.25)

and
Ho = 0 on [0,T)x (8;SUG*S) NN, (1.4.26)

2) We have

v > Ho on [0,T)x dSUIRSUISUDy. (1.4.27)

and
v = 0 on [0,T) x Dy, (1.4.28)
v(t,z) = Uke’™), (t,2) €[0,T) € Dy. (1.4.29)

Proof. 1. a) Fix some (¢,2) € [0,T) x (0, S\ Dy U9, S) and consider an arbitrary a =
(Tn, Cn)n>1 € A(t,z). We claim that 7 = ¢ a.s. i.e. one has to transact immediately at
time ¢ in order to satisfy the solvency constraint.

* Consider first the case where z € 9, S\ Dy. Then on [t,71], Xs = 2”7, Y, = y <
0, Py = pP? and so L(Z,) = LO(Zg’t’Z). Hence, by integrating between ¢ and 71, we get :

71
0 < e*’"(ﬁ*t)Lg(Zgl’t’Z) = / e W) POye=N (b — r)du + odW,].  (1.4.30)
t

By Girsanov’s theorem, one can define a probability measure Q equivalent to P under which
W, = W, + (b — r)s/o is a Brownian motion. Under this measure, the stochastic integral
ftTl e*T(“*t)PBye*)‘yaqu has zero expectation from which we deduce with ([1.4.30)) that

T1 R
/ e T POeNGdW, = 0 a.s.
¢

Since y # 0 and PY > 0 a.s., this implies 71 = t a.s.
* Consider the case where z € 6;8. Then on [t, 7], Xs = 2e" V<0, Y, =y, P, =
pP?, and so L(Zs) = Lo(Zs). By the same argument as above, we deduce 71 = t. Applying

the dynamic programming principle ([1.2.12) for 7 = 71, we clearly deduce ([1.4.25)).
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b) Fix some (t,z = (z,y,p)) € [0,T) x (0, SU 8;”\8) NN¢. Then, from Lemma , C(2)
= {—y} and so Hu(t,z) = v(t,I'(2z, —y)) = v(t,0,0,p). Now, from Corollary [1.4.5] we have
for all zp = (0,0,p) € Do, v(t,20) = U(0) = 0, which proves and so ([1.4.26).

2. Fix some ¢t € [0,T) and 2z € 9YS U JFS U 67S. Then by Lemma [1.4.1] C(z) = (), hence
Huo(t,z) = —oo and so (1.4.27) is trivial. For z = (k,0,p) € Dy, we have by Lemma [1.4.1]
C(z) = {0} and so Ho(t,z) = v(t,I(2,0)) = v(¢,0,0,p) = 0 by (L.4.28). Therefore, from
Corollary , we have for z = (k,0,p) € Dy : v(t,z) = U(ke"T=9) > 0 = Hu(t,z). O

Remark 1.4.4 The last proposition and its proof means that when the state reaches
9, S\ Dy U BZFS, one has to transact immediately since the no transaction strategy is
not admissible. Moreover, if one is in (9, S U 8;”\8) N N¢, one jumps directly to Dy where
all transactions are stopped. On the other hand, if the state is in 0YSUOFSUOTS U Dy, one
should do not transact : admissible transaction does not exist on 9YS U 9fS U 0f'S while
the only zero admissible transaction on Dy is suboptimal with respect to the no transac-
tion control. In the remaining part 95S of the boundary, both decisions, transaction and
no-transaction, are admissible : we only know that one of these decisions should be chosen
optimally but we are not able to be explicit about which one is optimal. A representation
of the behavior of the optimal strategy on the boundary of the solvency region is depicted
in Figures 2 and 3.

The next result states the continuity of the value function on the part Dy of the solvency

boundary, as a direct consequence of ((1.4.18)) and (|1.4.28).

Corollary 1.4.6 The value function v is continuous on [0,T) x Dy :

lim  o(t,2) = w(t,z) =0, V(t,z)€[0,T) x Dy.
(,2")=(t,2)
Remark 1.4.5 Notice that except on Dy, the value function is in general discontinuous on

the boundary of the solvency region. More precisely, for any t € [0,T), z € Dy, we have

from (T.4.25)-(T.4.26) :

lim v(t,2) = 0,

2 €9, S\ Dy
while from Corollary :

lim o(t,2) = U(keT9).

/
z —z

2 e 8Y

This shows that v is discontinuous on [0,7") X Dg. Similarly, one can show that v is discon-
tinuous on [0,7) x (9fSN I/ S).
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1.4.4 Terminal condition

We end this section by determining the right terminal condition of the value function. We

set
v*(T,z) == limsup w(t,7'), ©.(T,2):= liminf o(t,2)
(t,2") = (T 2) (t,2) — (T, 2)
t<T,2 €8 t<T,z €S

Proposition 1.4.3 We have
v.(T,2) = v*(T,z) = U(z), Vz€S,
where
U(z) = max|[Ur(z),HUL(2)].

Proof. 1) Fix some 2z € S and consider some sequence (ty, zm)m € [0,T) x S converging
to (T, z) and s.t. limy, v(tm, 2m) = v«(T, z). By taking the no impulse control strategy on

[tm, T], we have
V(tm,2zm) > E UL(Z%tm’Zm)}.

Since Z%tm’zm converges a.s. to z when m goes to infinity by continuity of the diffusion

Z%b% in its initial conditions (¢, z), we deduce by Fatou’s lemma that :
v (T, z) > Up(z). (1.4.31)

Take now some arbitrary ¢ € C(z). Consider first the case where L(I'(z,()) > 0. We claim
that for m large enough, ¢ € C(z,,). Indeed,

* suppose that ¢ # —y. Then, by continuity of the function 2’ — L(T'(2,¢)) on {2’ =
(@, y,p) + v # ¢}, we deduce that L(I'(zy,,()) converges to L(I'(z,¢)) > 0 and so for m
large enough, ¢ € C(zp)-

* Suppose that ( = —y, i.e. L(I'(z,¢)) = x4+ £(y,p) — k > 0. Notice that

LT (zm: Q) = max | Lo(zm) =k +pg(—ys Ym): m + Y6 P = k] 1,420
+ Lo(zm)1y,,—y<o-

We then see that liminf,, oo L(I'(z2;,¢)) > L(I'(z,()), and so for m large enough, ¢ €
C(zm).

One may then consider the admissible control with immediate impulse at ¢,, with size ¢
and no other impulse until 7" so that the associated state process is Ztm#m = Z0:tmI'(zm.()
and thus

Oty 2m) > E[UL (Z%tm’”ZWO)].
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Sending m to infinity, we obtain :
v (T,z) > Ur(T'(z)), (1.4.32)

for all ¢ in C(2) s.t. L(I'(z,¢)) > 0. This last inequality holds obviously true when
L(I'(2,¢)) = 0 since in this case UL(I'(2,()) = 0 < v,(T,2). By combining with (L.4.31)),
we get vy (T, 2) > U(2).

2) Fix some z € S and consider some sequence (¢, 2m)m € [0, T) xS converging to (T, z)
and s.t. limy, v(tm, 2m) = v*(T, z). For any m, one can find &™ = (77, (™), € A(tm, 2m)
s.t.

Wtzm) < E[UL(ZP)] +— (1.4.33)

m

where Z™ = (X m ym Pm) denotes the state process controlled by & and given in T by :

T T
o= 7m = zm—i—/ B(z;”)ds+/ S(ZMdWs+ Y AZD
b b tm<u<T
= zm + (T(em: (") — 2m) Lopo=t,, + RY (1.4.34)

with B(z) = (rz,0,bp) and ¥(z) = (0,0, 0p) and

T T
R? = B(Z;")der/ S(ZMdWe+ > AZP (1.4.35)
tm

tm tm<s<T

We rewrite ([1.4.33)) as
Oltmzm) < E (UL, )+ BE) — UL(zm + B} Lo,
1
+ Ur(zm + RT)] + p- (1.4.36)

We claim that R7' converges a.s. to 0 as m goes to infinity. Indeed, from the uniform

bounds (|1.4.10))-(1.4.11)), we have

|B(Z{)| +[5(Z)]

IN

(r+ (b+ o)V —— L(Z2")
e —_—

< Cte L(Z%%%), t, <s<T, a.s.,

for some positive Cte independent of m. We then deduce that the Lebesgue and stochastic
integral in converge a.s. to zero as m goes to infinity, i.e. ¢, goes to T". On the
other hand, by same argument as in Remark [1.4.1], we see that for each ¢,, < s < T, the
jump AZ!" is uniformly bounded in m. Moreover, by , we have

1
N; (&™) < =
tm (O )—k

o o T . pm TO' .
L(Z?JL)—L(ZT’”-H/ rX{ 4 = ds+/ L PdWL | (14.37)
tm tm

Similarly as above, by the uniform bounds in (1.4.10)-(1.4.11)), the integrals in ([1.4.37))

converge to zero as m goes to infinity. From the left-continuity of the state process Z™ and
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the continuity of L, we deduce that L(Z/%) — L(Z ) converge to zero as m goes to infinity.
Therefore, Ztm <s<T AZ;” goes to zero as m goes to infinity, which proves the required zero
convergence of R7'.

By Remark the sequence of jump size ((]"), is bounded, and up to a subsequence,
converges, as m goes to infinity, to some { € C(z). Moreover, it is easy to check that the
family {U(X%tm’xm + Pg’tzhpm (1 — e m)),m > 1} is uniformly integrable so that from
, the family {Uz(Z5), m > 1} is also uniformly integrable. Therefore, we can send

m to infinity into ((1.4.33) (or ([1.4.36))) by the dominated convergence theorem and get :

(T2 S B [{ULT0) - U} msup Ly, + V()

m—00

< max  Ur(2), sup Ur(I'(z,Q))
(ec(z)
By completing with (1.4.31)), this proves v, (T, 2) = v*(T, z) = U(2). O

Remark 1.4.6 The previous result shows in particular that the value function is discon-
tinuous on 7'. Indeed, recalling that we do not allow any impulse transaction at 7', we have
v(T,z) = Up(z) for all z € S. Moreover, by Proposition , we have v(T~,2) = U(z),
hence v(., z) is discontinuous on T for all z € {z € S : HUL(2) > UL(2)} # 0.

1.5 Viscosity characterization

In this section, we intend to provide a rigorous characterization of the value function by

means of (constrained) viscosity solution to the quasi-variational inequality :

Ov
min | —— Ly, v —Hv 0, (1.5.1)

together with appropriate boundary and terminal conditions.

As mentioned previously, the value function is not known to be continuous a priori and
so we shall work with the notion of discontinuous viscosity solutions. For a locally bounded
function u on [0,T) x S (which is the case of the value function v), we denote by u, (resp.
u*) the lower semi-continuous (lsc) (resp. upper semi-continuous (usc)) envelope of u. We
recall that in general, u, < u < u*, and that w is Isc iff u = wu,, u is usc iff w = v*, and w is
continuous iff u, = u* (= u). We denote by LSC([0,7) x S) (resp. USC([0,T) x S)) the
set of Isc (resp. usc) functions on [0,T) x S.

We work with the suitable notion of constrained viscosity solutions, introduced in [62]
for first-order equations, for taking into account boundary conditions arising in state con-
straints. The use of constrained viscosity solutions was initiated in [67] for stochastic control

problems arising in optimal investment problems. The definition is given as follows :
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Definition 1.5.1 (i) Let O C S. A locally bounded function u on [0,T) x S is a viscosity
subsolution (resp. supersolution) of in [0,T) x O if for all (t,z) € [0,T) x O and ¢
€ CH2([0,T) x S) s.t. (u* —)(t,2) = 0 (resp. (ux —)(t,2) = 0) and (t,2) is a mazimum
of u* — ¢ (resp. minimum of u, — ) on [0,T) x O, we have

min |~ 2 (4, 2) — Lo(t, 2),u* (£ 2) — Hu' (L, 2)

IN

0 (1.5.2)

(resp. > 0). (1.5.3)

(ii) A locally bounded function u on [0,T) xS is a constrained viscosity solution of (1.5.1)) in
[0,T) xS if u is a viscosity subsolution of (1.5.1)) in [0,T) x S and a viscosity supersolution

of (1.5.1) in [0,T) x S.

Remark 1.5.1 There is an equivalent formulation of viscosity solutions, which is useful for

proving uniqueness results, see [19] :

(i) Let O C S. A function u € USC([0,T) x S) is a viscosity subsolution (resp. supersolu-

tion) of (T.5.1) in [0,T) x O if

1
min |—qg — rxq1 — bpgs — §U2p2M33,u(t, z) — Hu(t,z)] < 0 (1.5.4)

(resp. > 0) (1.5.5)

for all (t,z = (z,y,p)) € [0,T) x O, (q0,q = (g:)1<i<3, M = (Mij)1<ij<3) € J>Tu(t,z)
(resp. J2u(t, 2)).

(ii) A locally bounded function u on [0,T) x S is a constrained viscosity solution to (1.5.1)) if
u* satisfies (1.5.4) for all (t,2) € [0,T) xS, (qo,q, M) € J>tu*(t, z), and u, satisfies (1.5.5)
for all (t,2) € [0,T) x S, (qo0,q, M) € J> u.(t, 2).

Here J2%u(t, 2) is the parabolic second order superjet defined by :

J*Tu(t,2) = {(q,q. M) ERxR® x §* :

u(t',2) —u(t,z) — gt —t) —q.(z/ — 2) — (' — 2).M (2’ — 2) -

lim sup <0
(=) = (t,2) 1 —t[+ |2 — 2f?
(t',2') €0, T) xS
S3 is the set of symmetric 3 x 3 matrices, J> u(t, z) is its closure :
Jrtu(t,r) = {(qo, ¢, M) = lim (¢, q™ M™) with (¢F",q"™, M™) € J*Tu(ty, 2m)
m—0o0

and  lim (£, 2m, W(tm, 2m)) = (t,z,u(t,z))},

m—00

and J>~u(t,z) = —J>H(—u)(t,x), J> u(t,z) = —J>H(—u)(t, z).
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1.5.1 Viscosity property

Our first main result of this section is the following.

Theorem 1.5.1 The value function v is a constrained viscosity solution to (1.5.1)) in [0,T") x
S.

Remark 1.5.2 The state constraint and the boundary conditions is translated through
the PDE characterization via the subsolution property, which has to hold true on the whole
closed region S. This formalizes the property that on the boundary of the solvency region,
one of the two possible decisions, immediate impulse transaction or no-transaction, should

be chosen optimally.

We need some auxiliary results on the impulse operator H.

Lemma 1.5.1 Let u be a locally bounded function on [0,T) x S.
(i) Hus < (Hu).. Moreover, if u is lsc then Hu is also lsc.
(11) Hu* is usc and (Hu)* < Hu*.

Proof. (i) Let (t,,2,) be a sequence in [0,T) x S converging to (t,2) and s.t. Hu(t,,2,)
converges to (Hu)«(t, z). Then, using also the lower-semicontinuity of u. and the continuity

of I', we have :

Hux(t,z) = sup u«(t,[(2,()) < sup liminfu,(t,, ['(zp,())
¢eC(z) ceCz) "

< liminf sup w(tn,T(2n,¢)) < lim Hu(tn,z,) = (Hu)«(t, 2).
Suppose now that u is Isc and let (¢,2) € [0,7) x S and let (t,, 2n)n>1 be a sequence in
[0,T) x S converging to (t, z) (as n goes to infinity). By definition of the lsc envelope (Hu).,
we then have :

Hu(t,z) = Hu«(t,z) < (Hu)«(t,z) < liminf Hu(t,, z),

n—oo

which shows the lower-semicontinuity of Hu.
(ii) Fix some (t, 2) € [0,7) x S and let (t,, 2,)n>1 be a sequence in [0,T) x S converging to
(t,z) (as n goes to infinity). Since u* is usc, I' is continuous, and C(z,) is compact for each

n > 1, there exists a sequence (fn)nzl with fn € C(zy) such that :

~

Hu (tn, 2n) = u(tn,T(2n,C)), Yn>1.

By Remark , the sequence (CAn)n21 converges, up to a subsequence, to some (ecC (2).
Therefore, we get :

HU*(tvz> = U*(t7F<Zaé)> > thUPU*(tnaF(znaén)) = limsupHU*<tnazn)7

n—oo n—oo
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which proves that Hu™* is usc.
On the other hand, fix some (t,z) € [0,T] x S and let (t,,2,)n>1 be a sequence in
[0,T] x S converging to (¢, 2) and s.t. Hu(t,,2,) converges to (Hu)*(t,z). Then, we have

(Huw)*(t,2) = lim Hu(tp,z,) < limsupHu"(tn,2,) < Hu*(t, 2),

n—oo n—00

which shows that (Hu)* < Hu*. O

We may then prove by standard arguments, using DPP (|1.2.13]), the supersolution pro-
perty.

Proof of supersolution property on [0,7) x S.
First, for any (¢, 2) € [0,T] x S, we see, as a consequence of (DPP) ((1.2.13)) applied to 7 = t,

and by choosing any admissible control « € A(t, z) with immediate impulse at ¢ of arbitrary
size ¢ € C(z), that v(t,2) > Huv(t,z). Now, let (£,2) € [0,T) x S and ¢ € C*2([0,T) x S)
st. vs(t,2) = ¢(t,2) and » < vy on [0,T) x S. Since v > Hv on [0,T] x S, we obtain by
combining with Lemma [1.5.1] (i) that Hv.(£,2) < (Hv).(£,2) < v.(£, 2), and so it remains
to show that
dp — _ .

- E@’ zZ)— Lp(t,z) > 0. (1.5.6)
From the definition of v,, there exists a sequence (£, 2m)m>1 € [0,T) X S s.t. (tm, 2m) and
V(tm, 2m) converge respectively to (¢,z) and v.(t,Z) as m goes to infinity. By continuity
of o, we also have that v, := v(tm, 2m) — @(tm, 2m) converges to 0 as m goes to infinity.
Since (t,2) € [0,T) x S, there exists n > 0 s.t. for m large enough, t,, < T and B(zp,,n/2)
C B(z,n) :={|# — 2| <n} C S. Let us then consider the admissible control in A(t,, zm)
with no impulse until the first exit time 7, before T' of the associated state process Z; =
Z&tmEm from B(zm,n/2)

Tm = inf{s>ty, : | Z0moAm 5] > n/2} AT.

Consider also a strictly positive sequence (A, )m s.t. hy, and ~y, /by, converge to zero as m
goes to infinity. By using the dynamic programming principle (1.2.13)) for v(t,,, z;,) and 7.,
= Tm A (tm + him ), We get :
A 0 mycm fa 07 my~m
U(tmv Zm) = Ym *+ Qp(tm) Zm) > E[U(Tmy Z*’t ? )] > E[@(Tma Z. b2 )7

Tm Tm

since p < v, <won [0,T)xS. Now, by applying It6’s formula to ¢ (s, ZS"”"’Z'") between t,,
and 7,, and noting that the integrand of the stochastic integral term is bounded, we obtain

by taking expectation :

Ym 1 Fim 580 0.t .2
e _ _ - _ sbm s Zm > . 5.
™ +E [hm /tm < p E@) (s, Z, )ds 0 (1.5.7)
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By continuity a.s. of Zg’t’"’Zm, we have for m large enough, 7,, = t,, + h;,, and so by the
mean-value theorem, the random variable inside the expectation in converges a.s. to
(—%—f — Lo)(t,Z) as m goes to infinity. Since this random variable is also bounded by a
constant independent of m, we conclude by the dominated convergence theorem and obtain

(1.5.6).

We next prove the subsolution property, by using DPP (|1.2.14]) and contraposition

argument.

Proof of subsolution property on [0,T) x S.

Let (£,2) € [0,T) xS and ¢ € CY2([0,T) xS) s.t. v*(£,2) = p(t, 2) and ¢ > v* on [0,T) x S.
If v*(¢,z) < Hv*(t, Z) then the subsolution inequality holds trivially. Consider now the case

where v*(t,Z) > Hv*(t, Z) and argue by contradiction by assuming on the contrary that

By continuity of ¢ and its derivatives, there exists some dy > 0 s.t. t + dy < T and for all
0<d<dy:
dp

- St )~ Lo(t) > g YV (t2) € (F—0)4,T+0) x B(,6)NS.  (1.5.8)

From the definition of v*, there exists a sequence (tm,2m)m>1 € ((t —30/2)4,t + §/2) x
B(2,6/2) NS s.t. (tm,2zm) and v(ty,, 2,) converge respectively to (f,z) and v*(f,2) as m
goes to infinity. By continuity of ¢, we also have that v, := v(tm, 2m) — @(tm, 2m) converges
to 0 as m goes to infinity. By the dynamic programming principle (1.2.14)), given m > 1,

there exists @ = (#, (") >1 s.t. for any stopping time 7 valued in [t,,, T], we have

Ot 2m) < E[U(T,Z;n)H%.

Here Z™ is the state process, starting from z,, at ¢,,, and controlled by &™. By choosing 7
=7 = 7" AN7§" where

" = inf {3 >t 2™ ¢ B(zm,a/Q)} A (tm + 8/2)

is the first exit time before t,, + 8/2 of Z™ from the open ball B(z,,,/2), we then get :

A~

=m —m 5 ~m 1
(tm,2m) < Elu(7 ’Z?mv*)ngn<7A'1m] + Efo(7", I(Zzm.—, (7 ))17A'1mﬁ7'§”] + m
~ - 1
S E[U(i—m, Z;m,f)ngﬂ<{—im] + E[Hv(i—m, Z%m,f)].f—imgq—gﬂ] + E (159)

Now, since Hv < v < v* < p on [0,T) x S, we obtain :

A 1
QO(tm, Zm) +Ym < E[‘P(%m’ Z.,:m,—)] + E
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By applying It6’s formula to ¢(s, Z;“) between t,, and 7,,, we then get :

m Oy . 1 n_._ 1
m < E —+L , 20 d — < —ZE[fn —tn —
Ym < Mm <8t+ @)(8 S)S]er S ElT I+
from ([1.5.8]). This implies
lim E[7,] = ¢t (1.5.10)
m—0o0
On the other hand, we have by (1.5.9))
1
V(tm, zm) < sup o, )P[rj" <M+ sup  Ho(t, PR <7+ —.
I\tj _t\‘<¢; ‘\t: —tl‘ <z; m
z' —z| < z' =z <

From (|1.5.10f), we then get by sending m to infinity :

v (t,z) < sup  Ho(t',2).
[t —t| <8
|z —z| <6

Hence, sending § to zero and by Lemma [L.5.1] (i), we have

v¥(t,z) < lim  sup Ho(t,Z) = (Hv)*(t,z) < H(2),
510 [t —tl <é
|2/ — 2| <8

which is the required contradiction.

1.5.2 Comparison principle

We finally turn to uniqueness question. Our next main result is a comparison principle for
constrained (discontinuous) viscosity solutions to the quasi-variational inequality . It
states that we can compare a viscosity subsolution to on [0,T) x S and a viscosity
supersolution to on [0,7) x S, provided that we can compare them at the terminal

date (as usual in parabolic problems) but also on the part Dy of the solvency boundary.

Theorem 1.5.2 Suppose u € G([0,T]xS) NUSC([0,T)
(1.5.1) in [0,7) x S and w € G,([0,T] x S) N LSC([0,T)
to in [0,T) x S such that :

x 8) is a viscosity subsolution to
X 5) 15 a viscosity supersolution

u(t,z) < liminf w(t',2"), V (¢,2) € [0,T) x D{1.5.11)
(', 2") = (t, 2)
u(T, z) := Ii/msup u(t,?) < w(T,z) = . lzl/gnjréf , w(t,2), VzeS8.(1.5.12)
(ii )T:’(Z’;) t,< T,z e’s

Then,

u < w on [0,T] xS.
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Remark 1.5.3 Notice that one cannot hope to derive a comparison principle in the whole
closed region S since it would imply the continuity of the value function on S, which is not
true, see Remark [I.4.5]

In order to deal with the impulse obstacle in the comparison principle, we first produce
some suitable perturbation of viscosity supersolutions. This strict viscosity supersolution
argument was introduced by [41], and used e.g. in [1] for dealing with gradient constraints

in singular control problem.

Lemma 1.5.2 Let v' € (0,1) and choose p’ s.t.

! 2 2 2 !
: Y P4t toir(l—y) 2
p > T = VbV (c”—b)

Given v > 0, consider the perturbation smooth function on [0,T] x S :

$u(t,z) = /T [i(z)’*’ +u< ] (1.5.13)

Let w € LSC([0,T) x S) be a viscosity supersolution to in [0,T) x S. Then for any
m > 1, any compact set C of R x R x R, the usc functwn
Wy, = W+ *ﬁbu
m
15 a strict viscosity supersolution to in [0,T) x SNK : there exists some constant §

(depending on K) s.t.

1
min |—qg — rrq) — bpgs — 502p2M33,wm(t, z) — Hwm(t,2)| > pg (1.5.14)

forall (t,z = (x,y,p)) € [0,T)xSNK, (0,9 = (¢:)1<i<3, M = (Mij)1<ij<3) € J> wm(t, 2).
Moreover, for v € (0,7') and v > 0, if w € G,([0,T] x S), and u is also a function in
G,([0,T) x 8), then for any t € [0,T], m > 1,

lim (u—wp)(t,z) = —oo. (1.5.15)

2| =00

Proof. We set
’ ~ / / 6)\y
fl(ta Z) = e (T_t)L(Z)’Y ) f2(ta Z) = ¢ o (p +p8_>\y> .
From , we have for all t € [0,T), z€ S\N ={z€8 : L(z) >k} :
AT(z0) < T (L(z) = k), ¥Cel(2),

and so

(fi — Hf)(t,2) > e @D [i(z)'yl—(f/(z)—k)"’/] >0 (1.5.16)
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Notice that relation (1.5.16)) holds trivially true when z € A since in this case C(z) = () and
so Hf(t,z) = —oo. We then deduce that for any compact set K of R x R x R* | there exists

some constant dg > 0 s.t.
fi-Hfi > &, on [0,T)xSNK.

Moreover, a direct calculation shows that for all (t,2) € [0,T] x S, ¢ € C(2), fa(t,T(2,¢))
= fao(t, z), and so

fa—=Hfz = 0.
This implies

¢y —Hoéy = fi+ve — H(fi+vfe) > (fi —Hf1) +v(fo—Hf2)
> 6, on [0,T)xSNK. (1.5.17)

On the other hand, the same calculation as in (1.4.23) shows that for p’ large enough,

actually strictly larger than 11/7, b2+r2+Z§T(1_7,), we have 787751 —Lf1 >0o0n [0,T) xS.

Hence, for any compact set K of R x R x R, there exists some constant d; > 0 s.t.
0
—% —Lfi > 6 on [0,T)xSNK.

A direct calculation also shows that for all (¢,z) € [0,7] x S :

Of2 Tty |/ NG / X
e L Rl )
since p' > (02 — b) vV b. This implies that for any compact set K of R x R x R* | there exists

some constant d; > 0 s.t.

2, _ o of:
- SE Lo, = —% £f1+v< - £f2>
> 6 on [0,T)xSNK. (1.5.18)

By writing the viscosity supersolution property of w, we deduce from the inequalities

(1.5.17)-(1.5.18)) the viscosity supersolution of w,, to

min[—awm—ﬁwm,wm—me] > — on [0,T)xSNK,
ot m

and so ([1.5.14), where we set 6 = Jp A 6. Finally, since u,w € G([0,T] x S), we have for

some positive constant K :

(u—wp)(t,2) < K {1+ <x—|— %)W] —% [(m—i— f\)wl y <e;y —i—pe_/\y)]

— —00, as |z| = oo,
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since v/ > v and v > 0. O

We now follow general viscosity solution technique, based on the Ishii technique (see
[19]) and adapt arguments from [40], [55] for handling with specificities coming from the
nonlocal intervention operator H and [5], [1] for the boundary conditions. The general idea
is to build a test function so that the minimum associated with the (strict) supersolution
cannot be on the boundary. However, the usual method in [62] does not apply here since
it requires the continuity of the supersolution on the boundary, which is precisely not the
case in our model. Instead, we adapt a method in [5], which requires the smoothness of the
boundary. This is the case here except on the part Dy of the boundary, but for which one
has proved directly in Corollary [[.4.6] the continuity of the value function.

Proof of Theorem [1.5.2]
Let v and w as in Theorem We (re)define w on [0,7) x 9S by :
w(t,z) = lim inf w(t',2'), V(t,z)e[0,T)x IS, (1.5.19)

(t', 2" — (t, 2)
(t',2")eo,T) xS

and construct a strict viscosity supersolution to ([1.5.1)) according to Lemma |1.5.2] by con-

sidering for m > 1, the usc function on [0,7T) x S :
1

Wy = W+ —¢y, (1.5.20)
m

where ¢, is given in ([1.5.13)) for some given v > 0. Recalling the definitions (1.5.12)) of u and
won {T} x 8, we have then an extension of u and w,,, which are usc and lsc on [0,7] x S.

In order to prove the comparison principle, it is sufficient to show that supjy 71, su—wp)
< 0 for all m > 1, since the required result is obtained by letting m to infinity. We argue

by contradiction and suppose that there exists some m > 1 s.t.

o= sup (u—wpy) > 0.
[0,T)1xS

Since u — wy, is usc on [0,T] X 8, limy,|_ o (u — W, )(2) = —o0 by (1.5.15), (u — wm)(T}.)
< 0 by (1.5.12), and (u—wp,)(t,z) < 0 for (¢t,2) € [0,T) x Dy by (1.5.11]), there exists a an

open set K of R x R x R% with closure K compact s.t.

Arg max (u—wy) # 0 C [0,T) xS\ DoNK.
[0,T]xS
Take then some (tg, z0) € [0,T) x S\ Do NK s.t. u = (u — wpm)(to, 20) and distinguish the
two cases :
e Case 1.: zp € 0S\ Dy N K.
* From (1.5.19)), there exists a sequence (¢, 2;)i>1 in [0,7) x S N K converging to (to, zo)
S.t. wm(ti, zi) tends to w,(to, 20) when i goes to infinity. We then set 5; = |t; — o, &; =
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|2; — 20| and consider the function ®; defined on [0,7]2 x (SN K)?2

O;(t,t',2,2") = u(t,z) —wn(t,2') — it t' 2,2 (1.5.21)
t—t12 |z—22  [d(Z) 4
(1, 2,2) = |t —tol? ot 4 ! —1) .
QO@(, ,Z,Z) ‘ 0‘ +‘Z ZO‘ + 261 + 2€i + d(ZZ)

Here d(z) denotes the distance from z to 0S. We claim that for zg ¢ Dy, there exists an
open neighborhood Vy C K of 2y in which this distance function d(.) is twice continuously
differentiable with bounded derivatives. This is well-known (see e.g. [31]) when z lies in
the smooth parts 0S \ (Dy U C1 U C3) of the boundary 0S. This is also true for zy €
Dy U C1 UC5. Indeed, at these corner lines of the boundary, the inner normal vectors form
an acute angle (positive scalar product) and thus one can extend from zy the boundary
to a smooth boundary so that the distance d is equal, locally on a neighborhood of zg, to
the distance to this smooth boundary. Notice that this is not true when zg € Dy, which
forms a right angle. Now, since ®; is usc on the compact set [0,7]% x (SN K)?, there exists
(ti,th, 2:,21) € [0,T)% x (SN K)? that attains its maximum on [0, T]? x (SN K)?
i = sup Q;(t,V,2,2) = ®;(t;, 1), 2, 2)).
[0,T]2 % (SNK)2

Moreover, there exists a subsequence, still denoted (fi,fg,éi,éé)izl, converging to some
(to, th, 20, 20) € [0,T)? x (SN K)2. By writing that ®;(to,t;, 20,2) < it 1, 2, 20), we

have :

w(to, 20) — Wk, ) — % (ts — to| + |2 — 20|) (1.5.22)
< o= ulti 2) — w2 — (|t —to]* + |2 — 20*) — Ry (1.5.23)
< u(ti, z) —wn(®;,2) — ([ — tol* + |2 — 20|*) , (1.5.24)
where we set
R — |t — 1 ik - £]? n (d(ié) 3 1>4'
203 2¢; d(z;)

From the boundedness of u, w,, on [0, T] x SNK, we deduce by inequality (1.5.23) the bound-
edness of the sequence (R;);>1, which implies #y = £} and 2y = 2). Then, by sending i to in-

finity into (|1.5.22) and (|1.5.24)), with the upper-semicontinuity (resp. lower-semicontinuity)
of u (resp. wy,), we obtain p = u(tg, 20) — wm(to, 20) < u(to, 20) — wm(to, 20) — |fo — to|?
— |20 — 20|*. By the definition of s, this shows :

fo :% = to, 7:“() :26 = 20. (1.5.25)

Sending again 4 to infinity into (1.5.22)-(1.5.23)-(1.5.24]), we thus derive that p < lim; pu; =
@ — lim; R; < u, and so

& =82 a2 (deE)
! L -1 0 1.5.27
26 - 2¢e; " d(z) o ( )
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as i goes to infinity. In particular, for i large enough , we have #;, tz < T (since tg < T),
d(z}) > d(z;)/2 > 0, and so 2, € S. For ¢ large enough, we may also assume that Z;, 2/ lie
in the neighborhood Vy of zg so that the derivatives upon order 2 of d at Z; and 2] exist and

are bounded.

* We may then apply Ishii’s lemma (see Theorem 8.3 in [I9]) to (%;, %, 2, 2) € [0,T) x
[0,T) x SNV x SNV, that attains the maximum of ®; in (1.5.21)). Hence, there exist 3 x 3
matrices M = (Mjl)1§j7l§3 and M = (Mj/‘l)lﬁj,lﬁ3 s.t. :

(go,q, M) € J*Tu(ly, %),
(qg,q’,M’) € JF wn(t, 2

(2N

where
_ Oy Yy _ _ AP,
w0 = 5 — (b1, 21),  q = (gh<jes = Dawilli, 1), 2, %) (1.5.28)
C00i s ¥ oA A
Q@ = tz(tl,tz,zt;), ¢ = (d)i<j<s = —Dagi(ti, 1, 2,2).  (1.5.29)
and
M 0 YR Sy a2
( 0 —MI> < Dz’zlwi(ti,t;,zi,z;)—l—si (Dz’zlcpi(ti,t;,z,;,zg)) (1.5.30)

By writing the viscosity subsolution property (1.5.4]) of u and the strict viscosity superso-

lution (1.5.14) of w,,, we have :

min [—qo — riq1 — bpigs — 502p?M33,u(t¢, Zi) — Hu(t;, zz)} < 0 (1.5.31)

1 o
min |:_Q6 —ri - bpzq?; - 50- pz M337wm( ) z) me(t;, A;):| 2 E (1532)

We then distinguish the following two possibilities in ((1.5.31)) :
1. u(fz,éz) Hu(fz,éz) < 0.
Since, from (1.5.32)), we also have: wy, (£}, 21) — Hwy, (], 21) > %, we obtain by combining

’L’Z

these two inequalities :
AP AN AP oAl o
pi < u(tiv Zi) (tw Zz) < Hu(t’h Zi) - me(tw Zz) E
Sending ¢ to co, and by ([1.5.26), we obtain :

- J
po < limsup Hu(t;, 2;) — liminf Huw,, (£, 21) — —
1—00 1= m
J
< Hulto, 20) = Hwm(to, 20) — -,
from (|1.5.25]) and where we used the upper-semicontinuity of Hu and the lower-semicontinuity
of Hwy, (see Lemma [1.5.1]). By compactness of C(zg), and since u is usc, there exists some
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Co € C(z0) s.t. Hu(to,z0) = u(to,I'(20,C0)). We then get the desired contradiction :

po < Hu(to, z0) — Hwm/(to, 20) — %
< u(to, I'(20,¢0)) — wim(to, I'(20, C0)) — 0 < p- 2
m m
2. —qo — riiq1 — bpigs — 20*p? M3z < 0.
Since, from 1} we also have: —q| — riiq) — bplgy — 20 2p2 MYy > E’ we obtain by
combining these two inequalities :

N . R R 1 R . 1)
— (qo — qp) — r(Ziqn — Ziqh) — b(Pigs — Pigs) — 502(1%2]\/—’33 — PP Msg) < e (1.5.33)

Now, from (|1.5.28])-(1.5.29)), we explicit :

~

R t; — 1 5 5 Y 4
Qo = 2(ti—to)+(ﬁ-2)’ q = 4(Zi—20)|zi_20|2+(zs-zl)
) G (dED Y
% 5 4 - (%) d(z)

and we see by (1.5.25) and (1.5.27) that go — q(), Z:q1 — Z}¢} and p;q3 — plqs converge to zero
when i goes to infinity. Moreover, from ([1.5.30)), we have :

1 1
50 D Mss — S0B Mgy < &, (1.5.34)
where
& = A (Dzz’soi({ivf;?éi?éé)"i_gi (Dzz/%(tu wzu 1)) )AT
—Ig+P Y A 13+P ~i
= 4 c i AT
(" ) == (i) )
with

Ai - (07 Oaﬁia 07 Oaﬁ;) ) PZ = 4’22 - ZO|2I3 + 8( - ZO)( - ZO)

A&\ papac dz) "
G —1) pachpazy 4 (55 1) Dd(s!)

Here T denotes the transpose operator. After some straightforward calculation, we then get :

BN 3P, —2Q; (P2 O .
& =3 - + A; _9P, 30, teil Q2 AT,

which converges also to zero from (|1.5.25) and ([1.5.27)). Therefore, by sending ¢ to infinity
into (|1.5.33f), we see that the limsup of its l.h.s. is nonnegative, which gives the required
contradiction : 0 < —d/m.

Qi = 12(
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e Case 2. : zg € SNK.

This case is dealt similarly as in Case 1. and its proof is omitted. It suffices e.g. to consider

the function

\I/i(t,Z,Z/) = U(t,Z) 7wm(t7 Z,) 71/}1'(757272/)
1

/’2
2

Vit 2,2) = |t—to]>+|z— 20 + |2 — 2

Y

for ¢+ > 1, and to take a maximum (fi,éi,ég) of ¥;. We then show that the sequence
(ti, Zi, 2)i>1 converges to (to, 20, 20) as i goes to infinity and we apply Ishii’s lemma to get

the required contradiction.

By combining previous results, we then finally obtain the following PDE characterization

of the value function.

Corollary 1.5.1 The value function v is continuous on [0,T) x S and is the unique (in
[0,T) x S) constrained viscosity solution to (1.5.1) lying in G,([0,T] x S) and satisfying the
boundary condition :

lim wo(t',2) = 0, V(t,z)€[0,T)x Dy,
o o2 (t,2) € 0,T) x Dy

and the terminal condition

(T, z):= lim v(t,?)) = U(z), Vz€S.
CInEd
Proof. From Theorem , v* is an usc viscosity subsolution to in [0,7T) x S and
Uy 1S a lsc viscosity supersolution to in [0,7) x S. Moreover, by Corollary and
Proposition we have v*(t, z) = v.(t,z) = 0 for all (¢,2) € [0,T) x Dy, and v*(T,z) =
v.(T,z) = U(z) for all z € S. Then by Theorem we deduce v* < v, on [0,7] X S,
which proves the continuity of v on [0,7) x S. On the other hand, suppose that ¢ is another
constrained viscosity solution to with limy ... v(t', 2") = 0 for (t,2) € [0,T) x Do
and 9(T~,z) = U(z) for z € S. Then, 0*(t,2) = vi(t,2) = v*(t,2) = (¢, 2) for (t,2) €
[0,T) x Dy and o*(T, 2) = v(T,2) = v*(T,2) = 04(T, 2) for z in S. We then deduce by
Theorem [L.5.2] that v* < 9, < 0* < v, on [0,T] x S. This proves v = ¢ on [0,T) x S. O

1.6 Conclusion

We formulated a model for optimal portfolio selection under liquidity risk and price impact.
Our main result is a characterization of the value function as the unique constrained visco-
sity solution to the quasi-variational Hamilton-Jacobi-Bellman inequality associated to this
impulse control problem under solvency constraint. The main technical difficulties come

from the nonlinearity due to price impact, and the state constraint. They are overcome
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with the specific exponential form of the price impact function : a natural theoretical
question is to extend our results for general price impact functions. Once we have provided
a complete PDE characterization of the value function, the next step, from an applied view
point, is to numerically solve this quasi-variational inequality, see Chapter 2. Moreover,
from an economic viewpoint, it would be of course interesting to analyse the effects of
liquidity risk and price impact in our model on the optimal portfolio in a classical market

without frictions, e.g. the Merton model.

Appendix : Proof of Lemma [1.4.1

We first prove the following elementary lemma.

Lemma 1.A.1 For any y € R, there exists an unique ((y) € R s.t.

9y) = maxg(y,() = (e —XW), (1LA1)

The function g is differentiable, decreasing on (—o0,0), increasing on (0,00), with g(0) =
0, limy—,— o0 §(y) = 00, limy—.00 G(y) = e~L/A, and for all p > 0,

>| =

y,p) +pg(y) <0 if y<O0 and —L(y,p)+pg(y) <0 if 0<y<

Proof. (i) For fixed y, a straightforward study of the differentiable function ¢ — g¢,(¢) =
g(y, ¢) shows that there exists an unique ((y) € R such that :

(W) = g,Cly) = eM—eMUI+X(y) =0,

() > (resp. <) 0 <= (< (resp.>)((y)

G(y, C
/
9y

This proves that g, is increasing on (—o00,{(y)) and decreasing on ({(y), c0) with

maxgy(C) = g(CW) = (),
i.e. (L.A.1). Since g (—=1/A) = e > 0, we notice that ((y) is valued in (—1/X, c0) for all
y € R. Moreover, since the differentiable function (y,() — G(y,() := g,(¢) is decreasing in

oG oG
yon R : o < 0 and decreasing in ¢ on (—1/X,00) : ac < 0, we derive by the implicit

functions theorem that ((y) is a differentiable decreasing function on R. Since G(y, —1/))
= e~ goes to zero as y goes to infinity, we also obtain that ((y) goes to —1/\ as y goes
to infinity. By noting that for all ¢, G(y, () goes to co when y goes to —oo, we deduce that
C(y) goes to oo as y goes to —oo. Since G(0,0) = 0, we also have ((0) = 0. Notice also that
G(y, —y) = Aye™¥ : hence, when y < 0, G(y, —y) < 0 = G(y,{(y)) so that {(y) < —y, and
when y > 0, G(y, —y) > 0 = G(y,{(y)) so that {(y) > —v.
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(ii) By the envelope theorem, the function g defined by g(y) = max¢cr g(y,¢) = 9(y,((y))

is differentiable on R with

_ g, - NV

7w = 3,0:(0) = XX, yek
Since ((y) > (resp. <) 0iff y < (resp. >) 0 with ((0) = 0, we deduce the decreasing (resp.
increasing) property of g on (—o00,0) (resp. (0,00)) with g(0) = 0. Since ((y) converges
to —1/X as y goes to infinity, we immediately see from expression (1.A.1) of g that g(y)
converges to e 1 /) as y goes to infinity. For y < 0 and by taking ¢ = —y/2 in the maximum

in (1.A.1), we have g(y) > —y(e=™ — e~*/2)/2, which shows that §(y) goes to infinity as
y goes to —0o. When y < 0, we have 0 < ((y) < —y, and thus by (1.A.1)), we get :

gly) < —y (e -0,

and so £(y,p) +pg(y) < pye® < 0 for all p > 0. When y > 0, we have ((y) < 0 and thus
by (1.A.1), we get : g(y) < —C(y)e®). Now, since the function ¢ — —(e*¢ is decreasing
on [—~1/X,0], we have for all 0 <y < 1/\, —1/X < —y < {(y) and so

gly) < ye .

This proves pg(y) < ¢(y,p) for all 0 <y < 1/X and p > 0. |

Proof of Lemma m. For any z € S, we write C(2) = Co(z) U C1(2) where Co(z) =
{¢eR : Ly(T'(2,¢)) > 0} and Ci(2) = {¢ € R : L1(I'(2,¢)) > 0,y + ¢ > 0}. From
and by noting that the function ¢ — pg(y, () goes to —oo as |(| goes to infinity,
we see that Co(z) is bounded. Since the function ¢ — pé((, p) goes to infinity as ¢ goes to
infinity, we also see that C;(z) is bounded. Hence, C(z) is bounded. Moreover, for any z =
(z,y,p) € S, the function ¢ — L(I'(z,()) is upper-semicontinuous : it is indeed continuous
on R\ {—y} and upper-semicontinuous on —y. This implies the closure property and then

the compactness of C(z).

* Fix some arbitrary z € 9¥S. Then, for any ¢ € R, we have Ly(I'(z,¢)) = z—k+pg(0,{)—k.
Since ¢(0,¢) < 0 for all ¢ € R and = < k, we see that L(I'(z,{)) < 0 for all ¢ € R. On
the other hand, we have Li(I'(2,({)) = = — 0((,p) — k. Since 6(¢,p) > 0 for all { > 0,
and recalling that x < k, we also see that Li(I'(z,()) = x — 6(¢,p) — k < 0 for all { > 0.
Therefore L(I'(z,¢)) < 0 for all ( € R and so C(z) is empty.

* Fix some arbitrary z € 0§S. Then, for any ( € R, we have Lo(I'(z,()) = (y,p) — k +
pg(y,¢) — k. Now, we recall from Remark that ¢(y,p) < p/(Ae) < k. Moreover, by
Lemma[L.A 1] we have pg(y, () < pg(y) < p/(Xe) < k. This implies Lo(T'(z,¢)) < 0 for any
¢ € R. On the other hand, we have L;(I'(z,()) = —60((,p) — k. Since 0((,p) > —p/(Xe) for
all ¢ € R, we get L1(I'(2,()) < p/(Ae) —k < 0. Therefore C(z) is empty.

* Fix some arbitrary z € 0fS. Then, for any ¢ € R, we have Lo(I'(2,()) = ¢(y,p) — k +
pg(y,¢) — k. Now, we recall from Remark that ¢(y,p) < k. Moreover, since 0 < y <
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1/A, we get from Lemma : pg(y,¢) < pgly) < L(y,p) < k for all ¢ € R. This implies
Lo(T'(2,¢)) < 0 for any ¢ € R. On the other hand, we have Li(I'(z,¢)) = —6(¢,p) — k.
Since the function ¢ — 6((,p) is increasing on [—1/\,00) and y < 1/, we have for all ¢
> —y, 0(¢,p) = 0(—y,p) = —L(y,p), and so —0(¢,p) — k < {(y,p) —k < 0. This implies
Li(I'(z,¢)) < 0 for all ¢ € R and thus C(z) is empty.

* Fix some arbitrary z € 095S. Then for ( = —1/A, we have 6((,p) = —p/(Xe) and y + ¢
> 0 (see Remark [[.2.2)). Hence, L(I'(z, —1/X)) > L1(I'(z,—1/X)) > 0 and so —1/X € C(z).
Moreover, take some arbitrary ¢ € C(z) = Cp(z) U C1(2). In the case where ¢ € Cy(z), i.e.
Lo(T'(2,Q)) = (y,p) — k+ pg(y,{) — k > 0, and recalling that ¢(y,p) < k, we must have
necessarily ¢g(y,¢) > 0. This implies —y < ¢ < 0. Similarly, when ¢ € C1(z), i.e. —0(¢,p)—k
>0 and y + ¢ > 0, we must have —y < ¢ < 0. Therefore, C(z) C (—v,0).

* Fix some arbitrary z € 8, S U 9/S. Then we have L(I'(z,—y)) = L1(TI'(z,—y)) = 0,
which shows that ¢ = —y € C(z). Consider now the case where z € J, S U 82“/\8. We claim
that C1(z) = {—y}. Indeed, take some ¢ € Ci(z), i.e. z —0(¢,p) —k > 0and y+ ¢ > 0.
Then, 6(¢,p) > 0(—y,p) = —€(y,p) (since ¢ — O({,p) is increasing on [—1/\, 00) and —y
> —1/X) andso 0 <z —6(¢,p) —k <z+{(y,p) — k = 0. Hence, we must have ( = —y.
Take now some arbitrary ¢ € Co(z). Hence, Lo(I'(2,()) = pg(y,{) — k > 0, and we must
have necessarily g(y,() > 0. Since y < 0, this implies 0 < ¢ < —y. We have then showed
that C(z) C [~y,0]. Consider now the case where z € 9/S and take some arbitrary ¢ €
C(z) = Co(z) U Cy(2). If ¢ € Cy(2), then similarly as above, we must have pg(y,{) — k > 0.
Since y > 0, this implies —y < ( < 0. If ¢ € C1(2), i.e. z —0((,p) —k > 0and y+ ¢ > 0,
and recalling that x < k, we must have also —y < ¢ < 0. We have then showed that C(z)
C [~y,0).

Notice that for z € (9, S U 8} 8) N Ny, we have Lo(I'(z,¢)) < pg(y) — k < 0 for all ¢
€ R. Hence, Cy(z) = 0. We have already seen that Ci(z) = {—y} when z € 9, S U 62“)‘8
and so C(z) = {—y} when z € (9, S U 8;’)‘8) N N.






Chapter 2

A Model of Optimal Portfolio
Selection under Liquidity Risk and
Price Impact: Numerical Aspect

Joint work with Mohamed MNIF.

Abstract : We investigate numerical aspects of a portfolio selection problem studied in the
first chapter, in which we suggest a model of liquidity risk and price impact and formulate
the problem as an impulse control problem under state constraint. We show that our impulse
control problem could be reduced to an iterative sequence of optimal stopping problems.
Given the dimension of our problem and the complexity of its solvency region, we use
Monte Carlo methods instead of finite difference methods to calculate the value function, the
transaction and no-transaction regions. We provide a numerical approximation algorithm

as well as numerical results for the optimal transaction strategy.

Keywords: impulse control problem, Optimal transaction strategy, Monte Carlo method,

Malliavin calculus.
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2.1 Introduction

In this chapter, we investigate numerical aspects of a portfolio selection problem studied in
the first chapter, in which we suggest a model of liquidity risk and price impact. Transactions
are allowed only in discrete times and incur some fixed costs. Under the impact of liquidity
risk, prices are pushed up when buying stock shares and moved down when selling shares.
The investor maximizes his expected utility of terminal liquidation wealth, under a solvency
constraint. This problem is formulated as an impulse control problem under state constraint.
In the first chapter, we characterize the value function as the unique constrained viscosity
solution to the associated Hamilton-Jacobi-Bellman Quasi- Variational Inequality (HJIBQVI)
(1.3.1). We recall that our associated HJBQVI has, in addition to time variable, three
variables : x, y, and p, respectively the cash holding, the stock holding, and the stock share
price.

Hamilton-Jacobi-Bellman equations are usually solved by using numerical methods based
on finite difference methods. The Howard algorithm, which consists in computing two se-
quences: the optimal strategy and the value function, is known to be efficient for the resolu-
tion of these types of equation. From Barles and Souganidis [6], we know that a monotone,
stable and consistant scheme insures the convergence of the algorithm to the unique viscosity
solution of the HIBQVI. This algorithm has a complexity in O(N™) where N is the number
of points of the grid in one axis and n the dimension of the equation. Chancelier, Qksendal,
and Sulem [I7] used the Howard algorithm to solve numerically a bi-dimensional HJBQVI
related to a problem of optimal consumption and portfolio with both fixed and proportional
transaction costs. They solved the problem in a bounded domain and they assumed zero
Neumann boundary conditions on the localized boundary. The disadvantage of the finite
difference method is its suitability to only solve HJB equations when the solvency region
has a simple shape such R’} or when its boundaries are straight. In [I7], the solvency region
presents some corners. However the authors simplify the problem by omitting the points of
the domain where either the number of shares or the amount of money in the portfolio is
non-positive.

Korn [47] studied the problem of portfolio optimization with strictly positive transaction
costs and impulse control. He presented a sequence of optimal stopping problems where the
reward function is expressed in terms of the impulse operator. He proved the convergence
of the sequence of optimal stopping problems towards the value function of the initial
problem. Chancelier, Oksendal and Sulem [I7] suggested an iterative method to solve the
impulse control problem. They considered an auxiliary value function where the transactions
number is bounded by a positive number.

In this chapter, we prove that both iterative methods coincide. We study numerically
our problem by reducing the impulse control problem to an iterative sequence of optimal
stopping problems. Then, we introduce a numerical approximation algorithm for every

optimal stopping problem based on ideas of Monte Carlo numerical procedure which re-
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quires the computation of many conditional expectations. Several methods can be used
for the valuation of these regression functions. We choose the Malliavin Calculus based
Method suggested by Fournié, Lasry, Lebuchoux, Lions, and Touzi [29] and then developed
by Bouchard, Ekeland, and Touzi [10]. Our numerical approach named value-iteration algo-
rithm could be adapted to any shape of the solvency region and we do not need to assume
any artificial boundary condition.

The paper is organized as follows. We first show that the value function could be
obtained as the limit of an iterative procedure when each step is an optimal stopping problem
and the reward function is related to the impulse operator. We then provide a numerical
method based on Malliavin calculus and give numerical results for the optimal transaction

strategy.

2.2 Convergence of the iterative scheme

We first introduce the following subsets of A(t, z), the set of the admissible impulse control

strategies :
An(t,2) == {a = (Th, & )k=0,..n € AL, 2)}

and the corresponding value function v,, which describes the value function when the in-

vestor is allowed to trade at most n times:

vn(t, 2) = iUI()t )E[UL(ZT)] (t,z) € [0,T] x S. (2.2.1)

Fort € [0,T] and z = (z,y,p) € S, if z, y are both nonnegative, we clearly have L(Zg’t’z) >
0, and so Ay(¢, z) is nonempty. Otherwise, if x < 0, y > 0 or z > 0, y < 0, due to the
diffusion term P%Y*_ it is clear that the probability for L(Zg’t’z) to be negative before time
T, is strictly positive, so that Ay(¢,z) is empty. Hence, the value function for n = 0 is

initialized to:

—00 otherwise

0,t,2 .
[adl > >
vo(t,z):{ E[UL(ZT )} if 2>0,y>0

We now show the convergence of the sequence of the value functions v, towards our initial

value function v.

Lemma 2.2.1 For all (t,z) € S
lim v,(t,2) = v(t, 2).
n—oo

Proof. From the definition of A, (t, z), we have:

Ap(t,z) C Apsa(t,z) C Alt, 2).
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As such,
Un(tvz) < UnJrl(t’Z) < U(ta Z)a

which gives the existence of the limit and the first inequality:

lim v, (t,2) < v(t,z). (2.2.2)
n—oo
Given € > 0, from the definition of v, there exists an impulse control « = (71, 72,...;£1,&2,...) €
A(t, z) such that
E[UL(Z7)] > v(t,z) — ¢, (2.2.3)

with Z¢ diffusing under the impulse control «.

We now set the control

On = (Tla T2y -3 Tn—1,T; 517527 '-'7§n—17y7'n_1)7

where 7,1 < 7 < min{7,,T}. We see that a,, € A, (¢, z) and consider the corresponding

process Z(@n) . Using Fatou lemma, we obtain:

lim inf E[UL(Z*™)] > Efliminf UL(Z*)] = E[UL(Z$)] (2.2.4)

n—od n—oo

Using (2.2.3) and (2.2.4), we obtain

liminf v, (t,2) > liminfE[UL(Z:(Fa"))] > v(t,z) —e.

n—oo n—oo

As we obtain the latter inequality with an arbitrary € > 0, and combining with the relation
(2.2.2]), we obtain the desired result:

lim v,(t,2) = v(t, 2).
n—oo

Theorem 2.2.1 We define ¢, (t, z) iteratively as a sequence of optimal stopping problems:

pun(tz) = sup E[Hpn(r, 200,
TGSt’T
wolt,z) = wolt,z),

where Sy is the set of stopping times in [t,T]. Then
on(t,z) = vu(t, 2).
Remark 2.2.1 Theorem [2.2.1] together with Lemma [2.2.T] show that
lim o,(t,2) = v(t,z), (t,z)€[0,T] xS.
n—00

so that the iteration scheme for ¢, provides an approximation for v.
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Remark 2.2.2 The value function ,, satisfies the system of variational inequalities, which

can be solved by induction starting from ¢q:

Oon
B %tJrl - ESO”*H y Pn+l — HSDTL = 0, (t7 Z) € [OvT) X S,

min

together with the terminal condition:
on+1(T,2) = Hon(T, 2).

Proof of Theorem We show by induction that v, (t,z) = ¢n(t, z), for all n. First,
we have vg = ¢g. Considering an impulse control strategy an = (7,€) € Ai(t,2), we

clearly have

¥1 (t7 Z) > E[HSDO(T’ ZSJJJ)]’
> E[Huvo(r, Z207)].
From the definition of the operator H, we obtain
©1(t,z) > Elug(r,T(Z%02,€))], Vai = (1,€) € Ai(t, 2). (2.2.5)

Let Z(@1) be the diffusion of Z, starting at time ¢, with Zt(al) = 2z, and evolving under the
impulse control a;. Relation (2.2.5) becomes:

o1(t,2) > Eluo(r, 2], Va1 =(r,6) € Ai(t,2). (2.2.6)

Given the arbitrariness of a; and by using the dynamic programming principle applied to

v1(t, z), we obtain
w1(t,z) > vi(t, 2).
From the definition of 1, for a given ¢ > 0, there exists 7* such that
p1(t,2) —e < E[Hpo(r*, Z27)). (2.2.7)
From the compactness of the set of admissible transactions, there exists £* such that

pi(t,z)—e < Eug(rt, T(2%%,€%)),
Elvo(*, 2],

IN

where Z™) is the processus starting at time ¢, with Zt(*) = z, and evolving under the impulse
control o := (77,£*).

Using the dynamic programming principle applied on v (¢, z), we obtain

e1(t,z) —e < vt 2).
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The latter inequality is satisfied for any value of € > 0, as such, we have

901(7‘5, Z) < Ul(t,Z),
which leads to ¢1(t, 2) = vi(t, 2), for all (¢,2) € [0,T) x S.
By induction, assuming that for a given n, we have ¢, (t, z) = v, (¢, z), we will prove that

On+1(t,2) = vpy1(t, 2). By definition, we have for any a,11 = (71, .oy Tnt1, €15 s Ent1) €

An-l—l(t’ Z);

Pn+1 (t, Z) > E[Hson(Tla Z7(')1’t7z)]7
Z E[Un(Tlv]-—‘(Zg{t7za§1))]a
> Elvy(r1, Z7(—ll+1))]7 (2.2.8)

Zt(n+1)

where Z("t1) is the diffusion starting at time ¢, with = z and evolves under the

control a,+1. Given the arbitrariness of the control a,41 and by using the dynamic pro-
gramming principle applied to v,1, relation (2.2.8) becomes:
Ony1(t,2) = vpy(t, 2).

To prove the opposite inequality, we use the definition of ¢,11. For any € > 0, there exists
7* such that

ons1(t,2) —e < E[Hen(r*, 257, (2.2.9)
< E[Hoa (1%, 2557 (2.2.10)
From the compactness of the set of admissible transactions, there also exists £* such that
Hop (7%, Z55%) = v, (7, Zi‘f*)),

where Z(@") the processus starting at time ¢, with Z; = z, evolves under the impulse
control o = (7%,£*). Using the dynamic programming principle applied on v,41, the
relation (2.2.10) becomes

Elv, (7%, Zg)f*))],

< upga(t, 2).

The inequality is obtained for any given ¢, this leads to the required inequality

IN

Pn+1 (t7 Z) —€

(PnJrl(taz) = UThLl(ta Z)

2.3 Numerical study

The objective of this section is the computation of a sequence of optimal stopping problem:
Upt1(t,z) = sup E [eiT(T*t)an(T, X0te g POLPY 2 e S
TESt’T
and the associated trade region and the no-trade region. We choose the Monte Carlo

numerical procedure for the implementation.
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2.3.1 The Monte Carlo method

Let T,, = {t; = IT/m}o<i<m be the partition of the time interval T = [0,7]. We denote
by h; the time step %, and by S, ;7 the subset of S; 7 defined by

Sm,t,T = {T GSt,T; T E Tm}.

Let h, := (hg, hy, hy) = (1/My,1/Ms,1/M3), where (My, Ma, M3) € N*3 denotes the finite
difference step in the state coordinate z = (z,y,p). Since the liquidation solvency region is
unbounded, we localize Sto D ={z € Sst. — L1 <z <Ly, Ly <y<Ly 0<2< L3},
where Li, Ly and L3 are positive constants. We define the grid:

Qy = {Z = (ihx,jhy, k‘hp) eD,—MLi <1< MLi,—MsLo < j < Mslo,0< k< M3L3}.

z

For the implementation, we simulate N independent Brownian motions as follows :
Wion — Wi ~ N(0, hy).
Then, the price path is given by

2
PO — Poe(b—%)hz+U(th+1 —th)
liy1 2]

For the approximation of the value function v, at the point (¢, Z)) where Z? is the random
vector (XP,y, Z?) (the randomness is only in the third component of this vector), t € Ty,
two cases are possible :

Case 1: If Z; € [ My, My]| x [—~Ma, M) x [—Ms, Ms], then

N(Qp,)
Z?: Z zilAi(Z?)v
=1

where N () := Card{z s.t. z € Qp_} and (Ai)lgz‘gN(th) is a Borel partition of S defined
by

A; = {zESs.t. |zi — 2z =  min |zj—z]}.
1<G<N(Qn,)

|.| denotes the canonical Euclidean norm, and we take v, (t, Z9) ~ v, (t, Z0).
Case 2: If Z, ¢ [—My, M| x [—May, My] x [—Ms, Ms], |Z° — Z9| could be large. To

approximate vy, (t, Z{), we use the growth condition of the value function

ep(T_t) p

o(t, z) < (x4 S(1 —e M) (2.3.11)
% A
where p is a positive constant s.t. p > ﬁ% (See Proposition [1.4.1{in Chapter

1).
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The approximation of v,(t, Z}) is given by

(x0+ Pt“(l;e**y))”

vn(t, Z29) = vy (t, 20 _ 2.3.12
n( t ) n( t ) (X? I PE(I—)\efky))'Y ( )
The discrete time approximation for the value function v, is given by :
Unt1(t,z) = sup E [efT(T*t)'an(T, Xﬂvt»“,y,ﬁf’tp)] , (t2) € Ty x Q.
TESm,t’T
The Snell envelop is computed by backward induction :
Unt1(tm, 2) = Hop(tm, 2)
and
Un41(ti—1,2) = max {an(tl_l,z); e_rhtE[UnH(tl, Zg)|-7:tl,1]} , 1<1<m,
where 7, | = O‘(Ptj,j <1 —1) is the discrete-time filtration. Hence :
E[Un+1(tla Zg)|ft171] = E[Un+1(tlv Zg)|Pt171] = p(tl—lvpt?_1)7 I1<l<m.

2.3.2 Estimation of the conditional expectation using Malliavin Calculus

Here, we are interested in computing the conditional expectation E[v, (t+h, Z},,)|P;]. From
the definition of v,, we have v, < v. The main idea of the Malliavin method consists in
using the Malliavin integration by part formula in order to get rid of the Dirac point masses

in the following expression :

Elvn(t+ h, Z),,)0p(P)]
E[o,(P)]

Elvn(t+ h, Z{1,,)|Pr = p) (2.3.13)

2
2

We focus on the calculation of E[v, (t+h, Zp,,)8,(Pf)]. We recall that P = poelb= T tHoWe,

We now define

-2
’lA)n,thh,;p,y(BT’) = ’Un(t +h,x, Y, e(b*T)(t+h)+0'Br)7
and
1 p 0.2
i = —(In— — (b— —)t).
Dt a( npo ( 5 )t)
We obtain :
E['Un(t + h, Z?+h)5p(Pt0)] = E[@n:t+h7X?+h,y(Wt+h)6ﬁt (Wt)]

By the independence of Brownian motion’s increments, we have :

wq

Vit

w9 dw1 d’wg

)@(\/5)77

Elon 40,y Wirn)dp,(We)] = / / Onth, Xy gy (W1 + w2) 65, (w1) ( N
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where ¢ is the density of standard one dimensional normal distribution. Using the growth
condition of the value function v (2.3.11)) we obtain

Ellva(t +h, Z2 )] < <. (2.3.14)

Recalling that d,(wy) is a derivative of 1,, >4, using (2.3.14) and by integration by parts

formula with respect to w; variable and then with respect to variable wo, we get :

Elontvh, X,y (Wiern)0p, (W]

. Wy Wi — W,
= F Un,t+h,Xt+h,y(Wt+h)1[ﬁt,oo)(Wt) <—tt + t+hh t>:| (2315)
By denoting Ay := % - w, it follows that :
Elon(t+ h, Zeyn)6p(P)] = E [on(t + hy Ziyn) o) (Pr) An] -

2.3.3 Variance reduction by localization

By using Monte Carlo Method, we recover a convergence rate of the order v N for the
conditional expectation estimator where IV is the simulation number. However, the variance

of the estimator explodes as h tends to zero since lim sup Ay, = co and lihm i%f Ajp = —oo0.
h—0 -

To find a remedy to this problem, we introduce localizing functions. Such functions catch
the idea that the relevant information for the computation of E[g(S;yp)|S: = x| is located in
the neighborhood of . Let ¢ be an arbitrary localizing function. By definition, ¢ is smooth,
bounded and it satisfies ¢(0) = 1. Recalling the same arguments as in and using
, we obtain a family of alternative representations of the conditional expectation

given by (2.3.13) :
Elvn(t+ h, Z1)6,(P)] = Evn(t+ hy Zyn) 65, (We)o(We — py)]
= E[lw,>p, vt +h, Z00) (W — p) A — @' (Wi — pr))] -

Moreover, it is possible to reduce the Monte Carlo estimator variance by a convenient choice

of the localizing function. We consider the integrated mean square error :
J(p) = /RE w,sp, vt + R, 224 3) AL de, (2.3.16)

where we adopted the following notation : Ay, = (W — p)Ap — ¢’ (W; — py) and we
are interested in minimizing J respect to the subset { ¢ smooth, bounded and ¢(0) = 1}.

Following [10], we prove that the optimal localizing function is given by :

1
Bva(t + h, Z?+h>Ai]> ’

o(x) = e""* where vy =
E2(t+h, Z) ;)]

In conclusion, we obtain

Elva(t+h, Zyin)8,(P)] = E [vn(t + hy Zy i)y € WP (4, — yh)] .
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2.3.4 Algorithm and discrete value function formula

The algorithm computes two sequences {vy, ¢, }n>1 by performing the following steps.
Parameters: €, A, k, L1, Lo, L3, N the number simulation, T, My, Ms, M3 and m.
Initialisation: vo = (vo(t,2))(t,2)eTmxQp,» 7 = 0

Step 1: Compute Hv,, and ¢, on T, x £, defined by

Hop(t,z) =  sup v,(t,1(2,Q)), (t,2) € Ty X Qp.,
eC(z)
N(Qn,)
where I'(z,() = (2,9,p) = Z 2, (x — Cpe™ — K,y + ¢, pe?), z € Q. and
i=1

C(z) = {C € Rst. L(D(2,¢)) := max [ﬁo(z), Ll(z)] 1,50 + Lo(2)1y<0 > 0},

Lo(z) is the closest point of the grid (ihy)_ a1, <i<i, L, to the point = — I(y, p) — k.

Step 2: According to the previous section, we are able to calculate the value function :
Unt1(t;,2) = max {an(tl,z);e_Thtﬁn(tl,z)} ,0<I<m—1,z€Qy,

Let us denote P the i-th price simulation such that 1 <7 < N, where N is the simulation

number. Then, we define the estimators of p, by :

N ) )
0(i W(z) _A(z) .
&3 vnltinn, 2001 e ™ Min TP (40 — )
~ i=1
Pnltnz) = @ 0 ’
F D Ao Mun T4l )
i=1
(i) Wt(i) Wt(i) _Wt(i) ) 1 9 ]
! +1 N .
where z = (x7y7p)7 Ah = tll - +1h = 3 p%l - E(an% - (b - %)tl) and W(z) i-th

simulation of W.

Taking into account the growth condition of the value function, we truncate the estimator p,:

1
Pty 2) = pu(ty, 2) A —e”T =) (z + %)W,
vy

which improves the algorithm.

Step 3: Stopping test: If ||vp+1 — Vnlloo < €, stop, otherwise go to step 1.

2.3.5 Numerical results

The computation is achieved with a cluster of 13 Intel Xeon Processors running at 2.8 Ghz
with 2 Giga Bytes of RAM. Numerical tests are performed with the following numerical
constants

v=0.5, r=0.1, «=0.12, 0 =0.3.
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We take
Li=Ly=L3=10, T=1, hpy =1, hy =0.5, h, =1, hy =0.1.

According to Bouchard and Touzi [I1], in order to achieve an error estimate of the order
of n=1/2, we have to choose a number N of simulated trajectories such that N = O(n/?).
Contrary to the policy iteration algorithm (named Howard algorithm), the value-iteration
algorithm needs more iterations to converge. This explains that several days are necessary
to achieve the whole computation. We equally mention that by using the probabilistic
approach, we do not need to assume any boundary condition as in [I7]. However when the
trajectories are outside our bounded domain, we approximate the value function by taking
into account the growth condition (see (2.3.12)).

A partition of the solvency region S is displayed in figures —— for different
values of P and A. It consists of three regions: Buy (B), Sell (S), and No-Trade (NT)
regions. The domain between R1 and R2 corresponds to the region reached by the state
variable after a purchase or a sale of risky asset, dictated by the optimal strategy. Due to
the presence of fixed costs, the lines R1 and R2 do not coincide with D1 and D2 boundaries
of the no-transaction region.

We equally try to see the sensitivity of different parameters and variables.

D1

Figure 2.1: The optimal transaction policy for p=2, A=0.5 and k=1

* First, there is a reduction in the No-Trade region when the price of the risky asset P
increases, i.e. the line D1 moves downwards while the line D2 marginally moves upwards
(see Figures (12.1)-(2.2)). The interpretation of this observation is the following :

e in the case where the investor has a significant long position in the risky asset, he
is required to reduce his risky asset position when the share price goes up. This

phenomenon has also been observed in the Merton model [53].
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e in the case where the investor has a significant short position in the risky asset, he is

required to buy back shares in order to reduce the risk when the share price goes up.

* Second, we look at the impact of the coefficient of the impact price A\. We notice that
when A increases, the NT region widens (see Figures (2.2))-(2.3)). In particular, the line
D1 significantly moves upwards. Economically, it means that when the liquidity impact

increases, the investor should trade less frequently.

12

10 7|

—2 0 2 4 6 10 12 14 16

Figure 2.2: The optimal transaction policy for p=3, A=0.5 and k=1

—2 [} z 4 6 ] 10 12 14 16

Figure 2.3: The optimal transaction policy for p=3, A=0.6 and k=1
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Chapter 3

Explicit solution to an optimal
switching problem in the two-regime
case

Joint paper with Huyén PHAM, to appear in SIAM Journal on Control and Optimization.

Abstract : This paper considers the problem of determining the optimal sequence of stopping
times for a diffusion process subject to regime switching decisions. This is motivated in the
economics literature, by the investment problem under uncertainty for a multi-activity firm
involving opening and closing decisions. We use a viscosity solutions approach combined
with the smooth-fit property, and explicitly solve the problem in the two regime case when
the state process is of geometric Brownian nature. The results of our analysis take several

qualitatively different forms, depending on model parameter values.

Keywords: Optimal switching, system of variational inequalities, viscosity solutions, smooth-

fit principle.
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3.1 Introduction

The theory of optimal stopping and its generalization, thoroughly studied in the seventies,
have received a renewed interest with a variety of applications in economics and finance.
These applications range from asset pricing (American options, swing options) to firm in-
vestment and real options. We refer to [26] for a classical and well documented reference
on the subject.

In this paper, we consider the optimal switching problem for a one dimensional stochastic
process X. The diffusion process X may take a finite number of regimes that are switched at
stopping time decisions. For example in the firm’s investment problem under uncertainty, a
company (oil tanker, electricity station ....) manages several production activities operating
in different modes or regimes representing a number of different economic outlooks (e.g.
state of economic growth, open or closed production activity, ...). The process X is the
price of input or output goods of the firm and its dynamics may differ according to the
regimes. The firm’s project yields a running payoff that depends on the commodity price
X and on the regime choice. The transition from one regime to another one is realized
sequentially at time decisions and incurs certain fixed costs. The problem is to find the
switching strategy that maximizes the expected value of profits resulting from the project.

Optimal switching problems were studied by several authors, see [7] or [64]. These
control problems lead via the dynamic programming principle to a system of variational
inequalities. Applications to option pricing, real options and investment under uncertainty
were considered by [12], [27], [37], and [35]. In this last paper, the drift and volatility of the
state process depend on an uncontrolled finite-state Markov chain, and the author provides
an explicit solution to the optimal stopping problem with applications to Russian options.
In [37], the authors solve a two-regime (operating and closed) switching problem. Their
approach consists in using the notions of Backward SDE and Snell envelope to prove the
existence of an optimal strategy as well as providing its expression. In [12], an explicit
solution is found for a resource extraction problem with two regimes (open or closed field),
a linear profit function and a price process following a geometric Brownian motion. In
[27], a similar model is solved with a general profit function in one regime and equal to
zero in the other regime. In both models [12], [27], there is no switching in the diffusion
process : changes of regimes only affect the payoff functions. Their method of resolution
is to construct a solution to the dynamic programming system by guessing a priori the
form of the strategy, and then validate a posteriori the optimality of their candidate by a
verification argument.

Our model combines regime switchings both on the diffusion process and on the general
profit functions. We use a viscosity solutions approach for determining the solution to the
system of variational inequalities. In particular, we derive directly the smooth-fit property
of the value functions and the structure of the switching regions. Explicit solutions are

provided in the following cases :
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* the drift and volatility terms of the diffusion take two different regime values, and the
profit functions are identical of power type,

* there is no switching on the diffusion process, and the two different profit functions
satisfy a general condition, including typically power functions.

We also consider the cases for which both switching costs are positive, and for which
one of the two is negative. This last case is interesting in applications where a firm chooses
between an open or closed activity, and may regain a fraction of its opening costs when
it decides to close. The results of our analysis take several qualitatively different forms,
depending on model parameter values, essentially the payoff functions and the switching
costs.

The paper is organized as follows. We formulate in Section the optimal switching
problem. In Section [3.3] we state the system of variational inequalities satisfied by the value
functions in the viscosity sense. The smooth-fit property for this problem, proved in [57],
plays an important role in our subsequent analysis. We also state some useful properties
on the switching regions. In Section [3.4] we explicitly solve the problem in the two-regime

case when the state process is of geometric Brownian nature.

3.2 Formulation of the optimal switching problem

We consider a stochastic system that can operate in d modes or regimes. The regimes can be
switched at a sequence of stopping times decided by the operator (individual, firm, ...). The
indicator of the regimes is modelled by a cadlag process I; valued in I; = {1,...,d}. The
stochastic system X (commodity price, salary, ...) is valued in R% = (0,00) and satisfies
the s.d.e.

dX; = bItXtdt+UItXtth7 (321)

where W is a standard Brownian motion on a filtered probability space (2, F,F = (F¢)¢>0, P)
satisfying the usual conditions. b; € R, and o; > 0 are the drift and volatility of the system

X once in regime I; = ¢ at time ¢.

A strategy decision for the operator is an impulse control « consisting of a double
SEQUENCE T1, ...y Trye-vy Kly-veshn, ..., B € N* = N\ {0}, where 7,, are stopping times, 7,
< Tpt1 and 7, — 00 a.s., representing the switching regimes time decisions, and &, are
Fr,-measurable valued in [z, and representing the new value of the regime at time ¢t = 7,,.
We denote by A the set of all such impulse controls. Now, for any initial condition (z,1)
€ (0,00) x Iz, and any control o = (7, kn)n>1 € ‘A, there exists a unique strong solution

valued in (0, 00) X I to the controlled stochastic system :

Xo = =z, I)- =1, (3.2.2)
dX; = bnnXtdt“‘U,ththy L = kp, T <t<Tpy1, n>0. (323)
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Here, we set 79 = 0 and kg = i. We denote by (X% I*) this solution (as usual, we omit
the dependence in « for notational simplicity). We notice that X®* is a continuous process
and I' is a cadlag process, possibly with a jump at time 0 if 7; = 0 and so Iy = x1.

We are given a running profit function f : Ry xI; — R and we set f;(.) = f(.,4) fori €
I;. We assume that for each ¢ € I, the function f; is nonnegative and is Hélder continuous

on Ry : there exists v; € (0,1] s.t.
|filx) = fi(z)] < Clz—2z|", Va,&eRy, (3.2.4)

for some positive constant C'. Without loss of generality (see Remark , We may assume
that f;(0) = 0. We also assume that for all ¢ € I, the conjugate of f; is finite on (0, 00) :

fily) = sg%)[fi(a:)—:ny] < oo, Yy >0. (3.2.5)

The cost for switching from regime 7 to j is a constant equal to g;;, with the convention g;;

= 0, and we assume the triangular condition :

ik < Gij + Gjk, JF k. (3.2.6)

This last condition means that it is less expensive to switch directly in one step from regime
i to k than in two steps via an intermediate regime j. Notice that a switching cost g;; may
be negative, and condition (3.2.6)) for i = k prevents arbitrage by switching back and forth,

ie.
gij+ 95 > 0, i#j€el (3.2.7)
The expected total profit of running the system when initial state is (x,4) and using the

impulse control & = (7, kp)n>1 € A s

o) ) ) oo
Ji(w.a) = E / TP At =S e g,

0 n=1

Here r > 0 is a positive discount factor, and we use the convention that e~"™®) = 0 when

Tn(w) = co. We also make the standing assumption :

r > b:=maxb;. (3.2.8)

i€ly

The objective is to maximize this expected total profit over all strategies a. Accordingly,

we define the value functions

vi(x) = 31613 Ji(z,a), xeRL, iely. (3.2.9)

We shall see in the next section that under (3.2.5) and (3.2.8)), the expectation defining
Ji(x) is well-defined and the value function v; is finite.
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Remark 3.2.1 The initial values f;(0) of the running profit functions received by the firm
manager (the controller) before any decision are considered as included into the switching
costs when changing of regime. This means that w.l.o.g. we may assume that f;(0) = 0.
Indeed, for any profit function f;, and by setting f; = f; — f;(0), we have for all 2 > 0, a €
A,

o
Ji(z,a) = FE Z/ e F(X] by )t — Ze G mn]
Tn n=1

0o n ) 00
= E Z/r . e—rt (f(Xtmﬂa /fnfl) + fl@n71 (O)> dt — Z e_m—ngnnl,nn]
n— n=1

Ln=1
[ oo Tn . _ i fﬂ (0)
- E rt X n— dt JroN T/
0 K 0) — Kn— 0
- Ze’”’l (gm ,mﬂrf"( b )>]
Z n—1s r
Z() _ xz - a
= f”(n)—i—E / th t 7IZ dt Ze TTng"‘nlvnn]’
0 n=1

with modified switching costs that take into account the possibly different initial values of

the profit functions :

iy = g+ ZOZHO)

3.3 System of variational inequalities, switching regions and
viscosity solutions

We first state the linear growth property and the boundary condition on the value functions.

Lemma 3.3.1 We have for all i € 1 :

—aa:.: < . + AR _|_ — \v/ \vé . 3.
%Z{[ 9] vilz) r—b Ijle?;{ T I;lezﬂl?[ 9ial, Yo >0, ¥y > 0. (3:3.1)

In particular, we have v;(0%) = max;er,[—gij].

Proof. By considering the particular strategy & = (7,,, f,) of immediate switching from
the initial state (x,7) to state (x,j), j € I; (eventually equal to i), at cost g;; and then

doing nothing, i.e. 71 =0, k1 = j, T, = 00, Ry, = j for all n > 2, we have
S8} -~ .
J,-(a:, O~z) = E[/ eirtfj(Xf’])dt - gij} R
0

where X*7 denotes the geometric brownian in regime j starting from z at time 0. Since 1
is nonnegative, and by the arbitrariness of j, we get the lower bound in (3.3.1]).
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Given an initial state (Xo, Ip-) = (x,7) and an arbitrary impulse control o = (7, kp,),
we get from the dynamics (3.2.2)-(3.2.3), the following explicit expression of X% :

XM = (i)
n—1
= x ( el (T =m) Zka ) eb"“"(t_T")Zf;t, Tn <t < Tpht1, n€N|(3.3.2)
l

TIHTI+1
=0
where
) o2
Zl, = exp|o(W,—W,)— ?](t —8) ], 0<s<t, jel, (3.3.3)

Here, we used the convention that 7p = 0, kg = %, and the product term from [ to n — 1 in
(13.3.2) is equal to 1 when n = 1. We then deduce the inequality Xf’i < zeb* M, for all t,

where

n—1
M, = (H Zgl,rz+1> Z,’::J, Tn <t < Tpy1, neEN. (3.3.4)
=0

Now, we notice that (M) is a martingale obtained by continuously patching the martingales
(ZEm=',) and (Z7r,) at the stopping times 7,, n > 1. In particular, we have E[M;] = My

Tn—1,t

=1 for all ¢.

We set f(y) = maxjer, fiy), y > 0, and we notice by definition of f; in (3.2.5) that
FXP 1) < yXP' + f(y) for all t,y. Moreover, we show by induction on N that for all N

>1,n<...<7n,kp=14 kp €ly,n=1,...,N:
N
—TTn ..
_;e G < EHE?ILZ([ gijl, a.s.

Indeed, the above assertion is obviously true for N = 1. Suppose now it holds true at

> 0, then we have
— 271:[;11 e MG e S 25:1 e”"™g, | ., and we conclude by the induction hypothesis
atstep N. If g, . <0, then by , and since 7y < Tn41, we have —e™"™Ng, o —
e TN s =€ NGy ey, and s0 — S € G n S > e G o

with K, = kp forn = 1,...,N — 1, Ky = Kny+1. We then conclude by the induction

step N. Then, at step N + 1, we distinguish two cases : If Grnrn i1

hypothesis at step N.
It follows that

Ji(z,0) < E [ /0 s (yx@tht +f (y)) dt + r;g?[—gij]}

- / e~ Olyr BIM,)dt + / e f(y)dt + max|—g;;]
; 0 jely
_w W gy

REETARTA A
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From the arbitrariness of «, this shows the upper bound for v;.
By sending x to zero and then y to infinity into the r.h.s. of (3.3.1]), and recalling that
fi(00) = £;(0) = 0 for i € I, we conclude that v; goes to maxjey,[—g;;] when z tends to

Zero. Od

We next show the Hélder continuity of the value functions.

Lemma 3.3.2 For alli € Iy, v; is Holder continuous on (0,00) :
lvi(z) —vi(z)] < Clr—2z|", Vz,z€(0,00), with |z —z| <1,
for some positive constant C, and where v = min;ecr, v; of condition (3.2.4]).

Proof. By definition (3.2.9) of v; and under condition (3.2.4)), we have for all z, & € (0, c0),
with |[x — 2] < 1:

lvi(z) —vi(2)] < sup |Ji(z, @) — Ji(Z, )|
acA

Sy . . oo .
< s | [Ten | - | ]
acA 0
it |y & |
< CsupF / e THIXP - X T at
acA 0
* Vri (v oy i
= Csup/ E [e_rt\x—j;\ Y (4)] Itdt]
acAJO
o8] .
< Clo—z] sup/ e~ O My | dt (3.3.5)
acAJo

by (3.3.2) and (3.3.4). For any o = (7, fin)n € A, by the independence of (Z7"_ = ), in
(3.3.3), and since

VEn 0'2
E HZ?:MH ]:Tn} = FE [exp <’an (Veen — 1)%(%4_1 — Tn)> an] <1, as.,
we clearly see that E|M;|" < 1 for all t > 0. We thus conclude with (3.3.5). O

The dynamic programming principle combined with the notion of viscosity solutions are
known to be a general and powerful tool for characterizing the value function of a stochastic
control problem via a PDE representation, see [28]. We recall the definition of viscosity

solutions for a P.D.E in the form
H(z,v,D,v,D?v) = 0, z€ O, (3.3.6)

where O is an open subset in R™ and H is a continuous function and non-increasing in its

last argument (with respect to the order of symmetric matrices).
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Definition 3.3.1 Let v be a continuous function on O. We say that v is a viscosity solution
to (3.3.6) on O if it is

(i) a wviscosity supersolution to (3.3.6) on O : for any * € O and any C? function ¢ in a

neighborhood of T s.t. T is a local minimum of v — ¢, we have :
H(z,v(%), Dyp(7), Diyp(7)) > 0.

and

(ii) a viscosity subsolution to (3.3.6) on O : for any & € O and any C? function ¢ in a

neighborhood of T s.t. T is a local mazimum of v — ¢, we have :
H(z,v(z), Dap(z), D, 0(x)) < 0.
Remark 3.3.1 1. By misuse of notation, we shall say that v is viscosity supersolution
(resp. subsolution) to by writing :
H(z,v, Dyv,D?,v) > (resp. <) 0, z€ O, (3.3.7)

2. We recall that if v is a smooth C? function on O, supersolution (resp. subsolution) in the
classical sense to , then v is a viscosity supersolution (resp. subsolution) to (3.3.7)).
3. There is an equivalent formulation of viscosity solutions, which is useful for proving
uniqueness results, see [19] :

(i) A continuous function v on O is a viscosity supersolution to if

H(z,v(z),p,M) > 0, VYzeO, Y(p,M)e J> vz).
(ii) A continuous function v on O is a viscosity subsolution to if
H(z,v(z),p,M) < 0, YzeO,VY(p,M)ec J> v(z).
Here J2%v(z) is the second order superjet defined by :
J>Tu(x) = {(p,M)eR" x S" :

v(@) —v(z) —p.(a/ —z) — L(2' — 2).M(2/ — )

lim su <0
i 2" — z|? - ’
zeO
S™ is the set of symmetric n x n matrices, and J? " v(z) = —J>T(—v)(z).

In the sequel, we shall denote by £; the second order operator associated to the diffusion

X when we are in regime i : for any C? function ¢ on (0, c0),

1
Lip = iagsczgo”—}—bixgo/.

We then have the following PDE characterization of the value functions v; by means of

viscosity solutions.
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Theorem 3.3.1 The value functions v, © € 1y, are the unique viscosity solutions with linear
growth condition on (0,00) and boundary condition v;(07) = maxjer,[—gi;] to the system of

variational inequalities :
min {rvi — L — fi, vi — m;mx(vj - gij)} = 0, z€(0,00), i€ly (3.3.8)
JFi

This means

(1) Viscosity property : for each i € 1g, v; is a viscosity solution to

J#i

min {rvi — Liv; — fi, v — max(vj — gij)} = 0, z€(0,00). (3.3.9)

(2) Uniqueness property : if w;, i € Iy, are viscosity solutions with linear growth conditions

on (0,00) and boundary conditions w;(07) = max ey, [—gi;] to the system of variational

inequalities (3.3.8)) , then v; = w; on (0,00).

Proof. (1) The viscosity property follows from the dynamic programming principle and is

proved in [57].

(2) Uniqueness results for switching problems has been proved in [64] in the finite horizon

case under different conditions. For sake of completeness, we provide, in Appendix, a proof

of comparison principle in our infinite horizon context, which implies the uniqueness result.
O

Remark 3.3.2 For fixed ¢ € Iz, we also have uniqueness of viscosity solution to equation
in the class of continuous functions with linear growth condition on (0, c0) and given
boundary condition on 0. In the next section, we shall use either uniqueness of viscosity
solutions to the system or for fixed i to equation , for the identification of an

explicit solution in the two-regime case d = 2.

We shall also combine the uniqueness result for the viscosity solutions with the smooth-

fit property on the value functions that we state below.

For any regime ¢ € Iz, we introduce the switching region :
S; = {x € (0,00) :vi(z) = ?gf(vj - gw)(:z:)} .
S, is a closed subset of (0, 00) and corresponds to the region where it is optimal for the oper-
ator to change of regime. The complement set C; of S; in (0, 00) is the so-called continuation
region :
C = {x € (0,00) :vi(z) > I?sz(vj — gw)(x)} )
where the operator remains in regime ¢. In this open domain, the value function v; is smooth

C? on C; and satisfies in a classical sense :

rvi(z) — Livi(z) — fi(xz) = 0, z€C;.
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As a consequence of the condition (3.2.6]), we have the following elementary partition prop-
erty of the switching regions, see Lemma 4.2 in [57] :

S, = U#iSij, i€y,
where
Sij = {z €l vilz) = (v; — gij)(x)}.

S;; represents the region where it is optimal to switch from regime ¢ to regime j and stay
here for a moment, i.e. without changing instantaneously from regime j to another regime.
The following Lemma, gives some partial information about the structure of the switching

regions.
Lemma 3.3.3 For alli # j in 1y, we have
Sij C Qij=A{z €l : (L; — Li)vj(x) + (f; — fi)(x) —rgij = 0}

Proof. Let x € §;;. By setting ¢; = vj — g;5, this means that z is a minimum of v; — ¢;
with v;(z) = ¢;(x). Moreover, since x lies in the open set C; where v; is smooth, we have

that ¢; is C? in a neighborhood of . By the supersolution viscosity property of v; to the

PDE (3.3.8)), this yields :

roj(z) — Lipj(x) — fi(x) > 0. (3.3.10)
Now recall that for z € C;, we have

rvj(z) — Ljvi(x) = fi(z) = 0,
so that by substituting into (3.3.10)), we obtain :

(£; = Li)vj(x) + (fj — fi)(x) —rgy; = 0,
which is the required result. O
We quote the smooth fit property on the value functions, proved in [57].

Theorem 3.3.2 For alli € 1y, the value function v; is continuously differentiable on (0, 00).

Remark 3.3.3 In a given regime ¢, the variational inequality satisfied by the value function
v; is a free-boundary problem as in optimal stopping problem, which divides the state
space into the switching region (stopping region in pure optimal stopping problem) and
the continuation region. The main difficulty with regard to optimal stopping problems for
proving the smooth-fit property through the boundaries of the switching regions, comes
from the fact that the switching region for the value function v; depends also on the other

value functions v;. The method in [57] use viscosity solutions arguments and the condition
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of one-dimensional state space is critical for proving the smooth-fit property. The crucial
conditions in this paper require that the diffusion coefficient in any regime of the system X
is strictly positive on the interior the the state space, which is the case here since o; > 0 for
all ¢ € Iy, and a triangular condition on the switching costs. Under these conditions,
on a point x of the switching region S; for regime ¢, there exists some j # i s.t. x € S,

i.e. vi(z) = v;(x) — gij, and the C! property of the value functions is written as : v}(z) =

vi(z) since g;; is constant.
The next result provides suitable conditions for determining a viscosity solution to the

variational inequality type arising in our switching problem.

Lemma 3.3.4 Fizi € 1;. Let C be an open set in (0,00), S = (0,00) \ C supposed to be an
union of a finite number of closed intervals in (0,00), and w, h two continuous functions
on (0,00), with w = h on S such that

w is C1' ondS (3.3.11)
> h on C, (3.3.12)

w is C? on C, solution to
rw—Lw—f; = 0 on C, (3.3.13)

and w is a viscosity supersolution to
rw—Liw—f; > 0 on int(S). (3.3.14)

Here int(S) is the interior of S and 0S = S \ int(S) its boundary. Then, w is a viscosity

solution to
min {rw — Liw — fi,w—h} = 0 on (0,00). (3.3.15)

Proof. Take some Z € (0,00) and distinguish the following cases :

x T € C. Since w = v is C? on C and satisfies rw(z) — Liw(z) — fi(¥) = 0 by ,
and recalling w(z) > h(z) by (3.3.12), we obtain the classical solution property, and so a
fortiori the viscosity solution property of w at T.

* & € §. Then w(z) = h(z) and the viscosity subsolution property is trivial at z.
It remains to show the viscosity supersolution property at z. If & € int(S), this follows
directly from . Suppose now Z € 9S, and to fix the idea, we consider that Z is on
the left-boundary of S so that from the assumption on the form of S, there exists ¢ > 0 s.t.
(z —&,Z) C C on which w is smooth C? (the same argument holds true when 7 is on the
right-boundary of S). Take some smooth C? function ¢ s.t. Z is a local minimum of w — ¢.
Since w is C' by , we have ¢/(Z) = w'(Z). We may also assume w.l.o.g (by taking
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e small enough) that (w — ¢)(Z) < (w — ¢)(z) for € (z —€,z). Moreover, by Taylor’s

formula, we have :

so that
1
/go'(a‘c—tn)—w'(i:—tn)dt > 0, Vo<n<e.
0

Since ¢'(Z) = w'(Z), this last inequality is written as

/1 ¢(T—tn) —¢'(@) W' (@ -ty —w'(z)
0 n n

dt > 0, YVOo<n<e, (3.3.16)

Now, from (3.3.13), we have rw(z) — Liw(z) — fi(z) = 0 for x € (Z — ,Z). By sending =

towards Z into this last equality, this shows that w”(Z7) = lim, ~z w”(z) exists, and
1
rw(z) — bizw'(Z) — 5a?:ﬁzu/’(a:«‘) — fi(z) = o. (3.3.17)

Moreover, by sending n to zero into (3.3.16]), we obtain :

1
/0 - '@ + '@ )dt > 0,

and so ¢"(Z) < w”(z7). By substituting into (3.3.17)), and recalling that w'(z) = ¢'(Z), we
then obtain :

rw(z) — Lip(@) — fi(z) = 0,
which is the required supersolution inequality, and ends the proof. O

Remark 3.3.4 Since w = h on §, relation (3.3.14)) means equivalently that h is a viscosity
supersolution to

rh—Lh—f; > 0 on int(S). (3.3.18)

Practically, Lemma shall be used as follows in the next section : we consider two C*
functions v and h on (0, 00) s.t.

v(z) = h(z), v'(x) = h'(x), = €08
v > h on C,

v is C? on C, solution to

ro—Lv—fi; = 0 on C,
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and h is a viscosity supersolution to (3.3.18). Then, the function w defined on (0, 00) by :

B v(z), zeC
wlz) = {h(:c), res

satisfies the conditions of Lemma and is so a viscosity solution to . This Lemma,
combined with uniqueness viscosity solution result may be viewed as an alternative to the
classical verification approach in the identification of the value function. Moreover, with
our viscosity solutions approach, we shall see in subsection [3.4.2] that Lemma [3.3.3] and
smooth-fit property of the value functions in Theorem [3.3:2] provide a direct derivation for

the structure of the switching regions and then of the solution to our problem.

3.4 Explicit solution in the two-regime case

In this section, we consider the case where d = 2. In this two-regime case, we know from
Theorem that the value functions v;, ¢ = 1,2, are the unique continuous viscosity
solutions with linear growth condition on (0, c0), and boundary conditions v;(0") = (—g;;)+

:= max(—g;j,0), j # i, to the system :

min {rv, — Liv, — f1,v, — (v, —g,,)} = 0 (3.4.1)
min {rv, — Lov, — fo,v, — (v, — g,,)} = O. (3.4.2)
Moreover, the switching regions are :
Si =S8 = {&>0 :v(x) =vj(x) —gj}, 4,7=1,2,i#}].
We set
z; = infS; € [0,00] Z7 = supS; € [0, 00,

with the usual convention that inf ) = oco.
Let us also introduce some other notations. We consider the second order o.d.e for ¢ =
1,2:

rv—Liv—f; = 0, (3.4.3)
whose general solution (without second member f;) is given by :
v(z) = Az™ 4 Bx™i

for some constants A, B, and where
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We also denote

o .

Vi(x) = E[/ e_thi(Xf’Z)dt},
0

with X%! the solution to the s.d.e. dX; = b;X;dt + aiXtth, Xp = z. Actually, V;

is a particular solution to ode (3.4.3), with boundary condition V;(0T) = f;(0) = 0. It

corresponds to the reward function associated to the no switching strategy from initial

state (z,7), and so V; < ;.

Remark 3.4.1 If g;; > 0, then from (3.2.7)), we have v;(07) = 0 > (—gji)+ —gij = v;(07) —
gij- Therefore, by continuity of the value functions on (0, 00), we get z; > 0.

We now give the explicit solution to our problem in the following two situations :
* the diffusion operators are different and the running profit functions are identical.
* the diffusion operators are identical and the running profit functions are different

We also consider the cases for which both switching costs are positive, and for which
one of the two is negative, the other being then positive according to . This last case
is interesting in applications where a firm chooses between an open or closed activity, and

may regain a fraction of its opening costs when it decides to close.

3.4.1 Identical profit functions with different diffusion operators

In this subsection, we suppose that the running functions are identical in the form :
filz) = folx) = 27, 0<y<1, (3.4.4)

and the diffusion operators are different. A straightforward calculation shows that under

(BAT), we have

N 1
V;(.CE) = K;z7, with K; = T
r—byy + 507y(1 =)

>0, 1=1,2.

We show that the structure of the switching regions depends actually only on the sign
of Ko — K1, and of the sign of the switching costs g2 and go1. More precisely, we have the

following explicit result.

Theorem 3.4.1 Leti, j = 1,2, i # j.
1) If K; = Kj, then

vi(r) = Vi(2) + (=gij)+» @€ (0,00),
S = { @ if Gij >0
i = )
(0,00) 4 gij <0
It is always optimal to switch from regime i to j if the corresponding switching cost is

non-positive, and never optimal to switch otherwise.
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2) If K; > K, then we have the following situations depending on the switching costs :
a) gij < 0 : we have S; = (0,00), S; = 0, and
v =Vi—gy, v o=V
b) Gij > 0:
o if gji > 0, then S; = [z}, 00) with z} € (0,00), S; =0, and
m; 7 *
vi(z) = {sz+%@%x<xi (3.4.5)
vj(z) — gij, x> ]
vi(z) = Vi(z), € (0,00) (3.4.6)

where the constants A and x; are determined by the continuity and smooth-fit condi-

tions of v; at x;, and explicitly given by :

.- g \7
= d k 3.4.7
o (mT—VKw—K) (347)

+

A= (G - K) (e (3.4.8)

%
[

When we are in regime i,it 1s optimal to switch to regime j whenever the state process

X exceeds the threshold x;, while when we are in regime j, it is optimal never to

switch.

e if gj; <0, then S; = [z, 00) with z} € (0,00), S; = (0,z%], and

vj(2) = gij, T >}
vi(z) vile) = gji - TS (3.4.10)
! Bz™i +Vj(x), x>z}

where the constants A, B and T < z; are determined by the continuity and smooth-fit

conditions of v; and v; at x7 and T}, and explicitly given by :

1
5 . [ _mj_ (gjz' + gijym;r) !
= — —
’ (Ki — Kj)(y —m; ) (1 —y™ )
g = U
L, y
—m. _
B = (KZ — KJ)(mj_ B V)xz T+ mz—'i_gmii "
+ -
m; —m;
m m, +
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1

with y solution in (0, (— Zﬁ ) mt

ij

> to the equation :

_ +t_ -
m;r(’V - mj ) (1 - ymi 7) (gijymj + gji)
_ T +
+ m; (m:_ -7) <1 —y" 7) <gijym’ + gji) =0

When we are in regime t, it is optimal to switch to regime j whenever the state process
X exceeds the threshold x7, while when we are in regime j, it is optimal to switch to

regime i for values of the state process X under the threshold 7.

Economic interpretation.

In the particular case where o7 = o9, then Ko — K7 > 0 means that regime 2 provides a
higher expected return bs than the one by of regime 1 for the same volatility coefficient o;.
Moreover, if the switching cost g,, from regime 2 to regime 1 is nonnegative, it is intuitively
clear that one has always interest to stay in regime 2, which is formalized by the property
that S, = (). However, if one receives some gain compensation to switch from regime 2
to regime 1, i.e. the corresponding cost g,, is negative, then one has interest to change of
regime for small values of the current state. This is formalized by the property that S
= (0,73]. On the other hand, in regime 1, one has interest to switch to regime 2, for all
current values of the state if the corresponding switching cost g¢,, is non-positive, or from
a certain threshold z7] if the switching cost g,, is positive. A similar interpretation holds
when by = by, and Ky — K7 > 0, i.e. 09 < 01. Theorem [3.4.1] extends these results for
general coefficients b; and o;, and show that the critical parameter value determining the
form of the optimal strategy is given by the sign of Ky — K7 and the switching costs. The

different optimal strategy structures are depicted in Figure 1.

Proof of Theorem [3.4.1]
1) If K; = K, then Vi, = V] We consider the smooth functions w; = V; + (—gij)+ for i,j
= 1,2 and j # i. Since V; are solution to 1} we see that w; satisfy :

rw; — Lw; — fi = r(=gij)+ (3.4.11)
Wy — (wj - gij) = Gij + (—gij)+ - (_gji)+- (3.4.12)

Notice that the Lh.s of (3.4.11)) and (3.4.12)) are both nonnegative by (3.2.7). Moreover, if
gij > 0, then the Lh.s. of (3.4.11)) is zero, and if g;; < 0, then g; > 0 and the Lh.s. of

(3.4.12)) is zero. Therefore, w;, ¢ = 1,2 is solution to the system :
min {rwi — Eiwi — fi,wi — (’U)j — gij)} = 0.

Since V;(07) = 0, we have w;(07) = (—gi;)+. Moreover, w; satisfy like V; a linear growth
condition. Therefore, from uniqueness of solution to the PDE system —, we
deduce that v; = w;. As observed above, if g;; < 0, then the Lh.s. of is zero, and
so §; = (0,00). Finally, if g;; > 0, then the Lh.s. of is positive, and so S; = 0.
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Regime 2

Regime 1

Regime 2

Regime 1

Regime 2

Regime 1

Figure |
continue
Regime 2
v, =V, X
continue
Regime 1
v, :V1 X

Figurel.la: f, =f,, K =K,, 9,,>0, g, >0

continue

Regime 2

v, =V,

[

Regime 1

I I I
switch v, =V, -0y,

Figurel.2.a: f, =f,, K,>K,, g,,<0

switch continue
| |

IE:

]

i o
continue x, switch

X

Figure 1.2.bii: f, =f,, K,>K,, 9,,>0, g,,<0

switch v, =v,-g,,
| | |

y *

v, =V,

continue X

Figurel.1b: f, =f,, K, =K,, 9,,>0, g, <0

continue
v, =V, X
continue 1 qutch [
- I [N |
v, =Ax™ +V, Xy v,=V,-0;, X

Figurel.2.bi: f, =f,, K,>K,, 9,,>0, g,, =0
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2) We now suppose w.l.o.g. that Ko > Kj.
a) Consider first the case where g, < 0, and so g,, > 0. We set w; = Va —g,, and wg = Va.

Then, by construction, we have w; = wg — g,, on (0,00), and by definition of Vi and Vs :

Ky — K,
—— X

rwy (z) = Liwy(2) - fi(z) = K

T—rg, >0, Yx>0.

On the other hand, we also have rws — Lows — fo = 0 on (0,00), and wy > w; — g,, since
915+, > 0. Hence, wy and wy are smooth (hence viscosity) solutions to the system (3.4.1))-
(3.4.2), with linear growth conditions and boundary conditions wy(0%) = V;(0%) — g,, =
(=910) 4, wa(0T) = V3(0t) = 0 = (—g,,)4+. By uniqueness result of Theorem , we
deduce that v1 = wy, v2 = we, and thus §; = (0,00), S2 = 0.

b) Consider now the case where g, > 0. We already know from Remark that z7 >
0, and we claim that 27 < oco. Otherwise, v; should be equal to V}. Since v, > v, — g,
>V, — g,y, this would imply (V, — V,)(z) = (K3 — K})z" < g,, for all > 0, an obvious
contradiction. By definition of z¥, we have (0,z]) C C;. We shall prove actually the
equality : (0,z7) = C1, i.e. S; = [27,00). On the other hand, the form of Sy will depend
on the sign of g,,.

e Case: g, > 0.

We shall prove that Co = (0,00), i.e. So = (). To this end, let us consider the function

w,(z) = Axm1++f/1(x), 0<z<uz
' ‘/;(x)fgmv $Zl‘1,

where the positive constants A and z, satisfy

mi 9 9
Az + V() = Vilz,) — g1 (3.4.13)
Amfa™ 4 V(@) = V(@) (3.4.14)

and are explicitly determined by :

+
m
(K2 - Kl)mfly = m+ 1_7912 (3415)
1
A = (Ky— Ky)—La) ™, (3.4.16)
m

1

Notice that by construction, w, is C? on (0,z,) U (x,,0), and C* on z,.

* By using Lemma we now show that w, is a viscosity solution to
min{rw1 — Liw, — f1,w, — (V, —912)} = 0, on (0,00). (3.4.17)
We first check that

w, (x) > V(x)—g, VO0<z<uz, (3.4.18)
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ie.
G(z) := Ammf—i-f/l(x)—f@(m)—i-gm > 0, VO<z<uz,.

Since A >0,0<y<1< mT, Ky — K1 > 0, a direct derivation shows that the second
derivative of G is positive, i.e. G is strictly convex. By , we have G'(x,) = 0 and so
G’ is negative, i.e. G is strictly decreasing on (0,z,). Now, by (3.4.13), we have G(z,) =0
and thus G is positive on (0, z, ), which proves .

By definition of w, on (0,x,), we have in the classical sense
rw, — Liw, — fi = 0, on (0,z,). (3.4.19)
We now check that
rw, —Liw, —fi > 0, on (z,00), (3.4.20)

holds true in the classical sense, and so a fortiori in the viscosity sense. By definition of w,

on (z,,00), and Ki, we have for all z > z,,

Ky — K
rw, ($) - £1w1 (ZL’) - fl(x) = QTllmA/ — 795, Vo > Ty,
so that (3.4.20) is satisfied iff 225127 —rg,, > 0 or equivalently by (3.4.15) :
Jr
ml T
> rK; = (3.4.21)
mi — v r—biy+30iy(1—7)

Now, since v < 1 < mT, and by definition of mf, we have

1 1
iafmf(’Y -1) < 50%77”L1+(ml+ -1) =r— blmf,

which proves (3.4.21)) and thus (|3.4.20)).
Relations (3.4.13)-(3.4.14]), (3.4.18])-(3.4.19)-(3.4.20) mean that conditions of Lemma

m are satisfied with C = (0,z,), h = V, — g,,, and we thus get the required assertion

(13.4.17]).
* On the other hand, we check that

V() > w,(xz)—g,, V>0, (3.4.22)
which amounts to show
H(z) = Axmir—i—f/l(:r)—f@(x)—gm < 0, VO<z<uz,.

Since A >0,0<y<1< mf, Ky — K1 > 0, a direct derivation shows that the second
derivative of H is positive, i.e. H is strictly convex. By (3.4.14), we have H'(z,) = 0 and
so H' is negative, i.e. H is strictly decreasing on (0,z,). Now, we have H(0) = —g,, <0
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and thus H is negative on (0,x,), which proves (3.4.22)). Recalling that VQ is solution to
7“‘72 - £2‘72 — f2 = 0 on (0,00), we deduce obviously from (3.4.22)) that VQ is a classical,

hence a viscosity solution to :
rnin{rV2 — LoV, — f2,V, — (w, — 921)} = 0, on (0,00). (3.4.23)

* Since w,(07) = 0 = (—g,,)¢, V,(07) = 0 = (—g,,)¢, and w,, V, satisfy a linear
growth condition, we deduce from (3.4.17), (3.4.23)), and uniqueness to the PDE system

B41)-B42), that

A~

v, = w, v, =1V, on (0,00).

This proves z¥ = z,, S, = [x,,00) and S, = 0.

e Case : g, < 0.
We shall prove that Sy = (0, z3]. To this end, let us consider the functions

w, () Az™i + Vi(z), z< z,
' w2($)_9127 ngl
w (l‘) _ w, (EC) _Ag21v T <7,
2 Ba™2 +V,(x), x> I,,

where the positive constants A, B, z, > ,, solution to

Az:nr'i_f/l(gl) = 2\ L) = G912 = BQTQ z(ll — 12 3.4.24
Ampa™ 7 1V (z) = wi(z,) = Bmya '+ V(z 3.4.25

3.4.26
3.4.27

_mt r
A:anl +V1(£2)*921 =

+ ~
Amfzri 4+ V/(z,) =

~~ I~ I~
~— — ~— ~—

exist and are explicitly determined after some calculations by

1
o mi ¥
52 — [ my (.921 +;912y 1 )eri (34:28)
(K1 — K)(y —my )(1 —y™ 77)
z, = % (3.4.29)
K — K + _ y—my + + —mo
B = ( 1 2)(m1 z)gl — ml gl2£1 (3430)
my — My
_ my —m7 o o ’y—mJr o —m7
A = Bzl — (K; — Kp)z]™™ — g,z ™, (3.4.31)

1

with y solution in (O, (—QA) T”1+> to the equation :

_ +_ -
mi (v —mj3) (1 —y™ ”) (9121/’”2 +921)

- Moy — m;
+my (mf —7) (1 -y ”) (912y 1 921) = 0. (3.4.32)
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1
Using (3.2.7), we have y < (-2 < 1. As such, 0 < ¥y < z;. Furthermore, by
8 g 1

12
using (3.4.29) and the equation (3.4.32) satisfied by y, we may easily check that A and B

are positive constants.

Notice that by construction, w, (resp. w,) is C? on (0,z,) U (z,,00) (resp. (0,Z,) U
(Z,,00)) and C* at z, (resp. Z,).
* By using Lemma [3.3:4] we now show that w;, i = 1,2, is a viscosity solution to the

system :
min {rw; — Lyw; — fi,w; — (wj —gi;)} = 0, on (0,00), 4,5 =1,2, j # 13.4.33)

Since the proof is similar for both w;, i = 1,2, we only prove the result for w;. We first
check that

wy > we —¢g,, VOi<z<uz. (3.4.34)

From the definition of w; and wy and using the fact that g,, +¢,, > 0, it is straightforward

to see that
wy > wy—g,, V0<zx<T,. (3.4.35)
Now, we need to prove that
G(x) = Ax™ +V(x) — Ba™ —V,(x)+g, >0, VT, <z<z, (3.4.36)

We have G(z,) = g,, + ¢, > 0 and G(z,) = 0. Suppose that there exists some z, € (Z,,z,)
such that G(z,) = 0. We then deduce that there exists z, € (Z,,z,) such that G'(z,) = 0.
As such, the equation G'(z) = 0 admits at least three solutions in [Z,,z ] : {Z,,z,,z,}.
However, a straightforward study of the function G shows that G’ can take the value zero
at most at two points in (0, 00). This leads to a contradiction, proving therefore .

By definition of wy, we have in the classical sense
rw; — Lyw; — f =0, on(0,z,). (3.4.37)
We now check that
rw; — Lyw; — f >0, on (z,,00) (3.4.38)

holds true in the classical sense, and so a fortiori in the viscosity sense. By definition of w,

on (z,,00), and K1, we have for all z > z_,

Ky - K,

H(z) :=rwi(z) — Liwy(z) — f(x) e

27 +my LBz™ —rg,,, Vo > z ,(3.4.39)

where L = (0% — 0%)(mj; — 1) + by — by.

We distinguish two cases :
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- First, if L > 0, the function H would be non-decreasing on (0, co) with hm H(x)=—o0
and lim H(x) = +o00. As such, it suffices to show that H(z;) > 0. From m m,

rT—00
we have

+ —
my — My

H(zy) = (K2- K) e

—(m] — v)mQL} —rg12 + mfm;glgL.

Using relations (3.4.21), (3.4.24), (3.4.25), (3.4.29) and the definition of m] and m; , we

then obtain

mi (m{ —my) m;
H(z = 111 2.y ! —r>0
) Ky(mi =) Ky(my =)

- Second, if L < 0, it suffices to show that
Ky — K,

K
which is rather straightforward from (3.4.21)) and (3.4.29) .

Relations (3.4.34)), (3.4.37)) (3.4.38) and the regularity of w;, i = 1,2, as constructed, mean
that conditions of Lemma are satisfied and we thus get the required assertion (3.4.33]).

' —rgi2 >0, Vz>zx,

* Since w, (07) = 0 = (—g,,)4, w,(0%) = —g,, = (—gy, )+, and w,, V, satisfy a linear

growth condition, we deduce from (3.4.33|) and uniqueness to the PDE system (3.4.1)-(3.4.2)),
that

v, = w,, v, = w,, on (0,00).

This proves 7 = z,, S, = [r,,00) and 75 = T2, S, = (0, Z2].

3.4.2 Identical diffusion operators with different profit functions

In this subsection, we suppose that £1 = Lo = L, i.e. by = by = b, 01 = 09 = 0 > 0. We
then set m™ = m} = mJ, m™ = m; = m;, and X* = X®»! = X2, Notice that in this

case, the set Q;j, ¢, j = 1,2, ¢ # j, introduced in Lemma [3.3.3] satisfies :
Qij = {zeC; :(fj— fi)(x) —rgi; >0}
C Qij = {33‘ >0 : (fJ — fz)(x) — 1055 > 0} . (3.4.40)
Once we are given the profit functions f;, f;, the set Qij can be explicitly computed.

Moreover, we prove in the next key Lemma that the structure of Qij, when it is connected,

determines the same structure for the switching region ;.

Lemma 3.4.1 Leti,j = 1,2, i # j.
1) Assume that

sup(V; = Vi)(x) > gy (3.4.41)
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o If there erists 0 < z;; < oo such that
Qij = [zij,00), (3.4.42)
then 0 < x7 < 0o and
Si = [zj,00).
o If g;j < 0 and there exists 0 < Z;; < oo such that
Qij = (0,], (3.4.43)
then 0 < x7 < 0o and
Si = (0,z].
2) If there exist 0 < Z;; < Tjj < oo such that
Qij = 255 Tig)- (3.4.44)
Then 0 < 7 < T < oo and
S = [z, 7]

3) If gi; < 0 and Qij = (0,00), then S; = (0,00) and S; = 0.

Proof. 1) e Consider the case of condition (3.4.42)). Since S; C Qij by Lemma m this
implies z} := inf §; > z;; > 0. We now claim that 27 < oo. On the contrary, the switching

region S; would be empty, and so v; would satisfy on (0,00) :
rv; — Lv; — fi = 0, on (0,00).
Then, v; would be on the form :
vi(z) = Az™ + Ba™ +Vi(z), x> 0.

Since 0 < v;(0") < oo and wv; is a nonnegative function satisfying a linear growth condition,
and using the fact that m~ < 0 and m™ > 1, we deduce that v; should be equal to V. Now,
since we have v; > v; — g;j > VJ — gij, this would imply :

Vi(x) = Vi(z) < gij, Vo >0.

This contradicts condition (3.4.41) and so 0 < z < oo.
By definition of z}, we already know that (0,z}) C C;. We prove actually the equality,

ie. § = [z}, 00) or vi(x) = vj(x) — gi; for all x > 7. Consider the function

' _ vi(z), O<z<azf
wilw) = { vi(x) — gij, x>z
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We now check that w; is a viscosity solution of
min {rw; — Lw; — fi , wi — (v;j —gij)} = 0 on (0,00). (3.4.45)

From Theorem [3.3.2] the function w; is C*! on (0, 00) and in particular at ¥ where w}(z}) =

vi(af) = v; («7). We also know that w; = v; is C? on (0, z}) C C;, and satisfies rw; — Lw; — f;

=0, w; > (v;—gi;) on (0,z7). Hence, from Lemma we only need to check the viscosity
supersolution property of w; to :

rw; — Lw; — fi > 0, on (x,00). (3.4.46)

For this, take some point £ > z7 and some smooth test function ¢ s.t. Z is a local minimum
of w; — . Then, Z is a local minimum of v; — (¢ + g¢45), and by the viscosity solution

property of v; to its Bellman PDE, we have
rvi(T) — Lo(Z) — f3(z) = 0.
Now, since z7 > z;;, we have T > z;; and so by , T e Q@] Hence,
(fi = f)(@) —rgij = 0.
By adding the two previous inequalities, we also obtain the required supersolution inequal-
ity :
rwi(Z) — Lo(z) — fi(z) = 0,

and so (3.4.45)) is proved.

Since w;(07) = v;(0") and w; satisfies a linear growth condition, and from uniqueness
of viscosity solution to PDE (3.4.45)), we deduce that w; is equal to v;. In particular, we
have v;(x) = v;(x) — g;; for x > z}, which shows that S; = [z, 00).

e The case of condition is dealt by same arguments as above : we first observe that
0 <z} :=supS; < oo under , and then show with Lemma that the function

) . Uj(l')_gijy O<$<§Z;k
wi(r) = { v; (), x> T

is a viscosity solution to
min {rw; — Lw; — fi , wi — (v; —gij)} = 0 on (0,00).

Then, under the condition that g;; < 0, we see that gj; > 0 by (3.2.7), and so v;(07) = —g;;
= (—gji)+ — 9ij = v;(0") — g;;; = w;(0T). From uniqueness of viscosity solution to PDE
(3.4.45)), we conclude that v; = w;, and so S; = (0, z}].

2) By Lemma |3.3.3| and (]3.4.40[), the condition (3.4.44) implies 0 < z;; < z7 < 7 < Ty;

< 0o. We claim that f < z}. Otherwise, S, = {z}} and v; would satisfy rv; — Lv; — f; =
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0 on (0,z) U (Z},00). By continuity and smooth-fit condition of v; at Z}, this implies that

v; satisfies actually
rv; — Lv; — fi = 0, z€(0,00),
and so is in the form :
vi(z) = A2™ + Ba™ +Vi(z), x € (0,00)

Since 0 < v;(0") < co and v; is nonnegative function satisfying a linear growth condition,
this implies A = B = 0. Therefore, v; is equal to Vi, which also means that S; = 0, a

contradiction.

We now prove that S; = [z}, z}]. Let us consider the function

wi(xz) = {v-(vi(x)7 z € (0,27) U (2], 00)

T) = Gijs x € [z}, Z]],

which is C! on (0, 00) and in particular on 2¥ and z} from Theorem Hence, by similar
arguments as in case 1), using Lemma [3.3.4] we then show that w; is a viscosity solution of

min {rw; — Lw; — fi , w; — (v; —gi;)} = 0. (3.4.47)

Since w;(0") = v;(07) and w; satisfies a linear growth condition, and from uniqueness of
viscosity solution to PDE (3.4.47)), we deduce that wj; is equal to v;. In particular, we have
vi(z) = vj(x) — gij for x € [z}, Z}], which shows that S; = [z}, z]].

VRRa}

3) Suppose that g;; < 0 and Q,;j = (0, 00). We shall prove that S; = (0,00) and S; = (). To

this end, we consider the smooth functions w; = V gij and w; = V Then, recalling the
ode satisfied by ‘7j, and inequality 1} we get :

rwj — Lw; — fj = 0, wj — (w; — g5i) = gij + 955 > 0.
Therefore w; is a smooth (and so a viscosity) solution to :

min [rw; — Lwj — fj,wj — (w; —gj)] = 0 on (0,00).
On the other hand, by definition of Qij, which is supposed equal to (0, 00), we have :

rwi(x) — Lwi(z) — file) = rVj(x) — LVj(x) — fi(z) + f3(2) — fi(x) —rgy;
= fj(x) = fi(x) —rgy; = 0, Va>0.

Moreover, by construction we have w; = w; — g;;. Therefore w; is a smooth (and so a

viscosity) solution to :

min [rw; — Lw; — fi,w; — (wj —gi5)] = 0 on (0,00).
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Notice also that g;; > 0 by (3.2.7) and since g;; < 0. Hence, w;(07) = —g;; = (—gij)+
= v;(07), w;(07) = 0 = (—gji)+ = vj(07). From uniqueness result of Theorem [3.3.1] we
deduce that v; = w;, v; = w;, which proves that S; = (0,00), S; = 0. O

We shall now provide explicit solutions to the switching problem under general assump-

tions on the running profit functions, which include several interesting cases for applications :

(HF) There exists £ € Ry s.t the function F := f, — f
is decreasing on (0, ), increasing on [z, 00),

and F(oc0) := lim F(x) >0, g¢g,, > 0.
T— 00

Under (HF'), there exists some z € Ry (z > 2 if £ > 0 and z = 0 if £ = 0) from which F
is positive : F(z) > 0 for z > z. Economically speaking, condition (HF) means that the
profit in regime 2 is “better” than profit in regime 1 from a certain level z, eventually equal
to zero, and the improvement becomes then better and better. Moreover, since profit in
regime 2 is better than the one in regime 1, it is natural to assume that the corresponding
switching cost g,, from regime 1 to 2 should be positive. However, we shall consider both
cases where g,, is positive and non-positive. Notice that F(z) < 0if 2 > 0, F(z) =0 if &

= 0, and we do not assume necessarily F(co) = oo.

Example 3.4.1 A typical example of different running profit functions satisfying (HF') is
given by

fil) = k™, i=1,2, withO<~y <7y <1, ki €Ry, ks >0. (3.4.48)

1
In this case, & = (%)72*71, and lim, o F(z) = occ.

Another example of profit functions of interest in applications is the case where the

profit function in regime 1 is f; = 0, and the other f5 is increasing. In this case, assumption
(HF) is satisfied with 2 = 0.

The next proposition states the form of the switching regions in regimes 1 and 2, de-

pending on the parameter values.

Proposition 3.4.1 Assume that (HF) holds.
1) (i) If rg,, > F(00), then x¥ = oo, i.e. S1 = 0.
(ii) If rg,, < F(c0), then z7 € (0,00) and S, = [z}, 00).

2) (i) If rg,, > —F(&), then S, = 0.
(i) If 0 < rg,, < —F(Z), then 0 < 2} <z} <z}, and S, = [2},7]].

(iii) If g,, < 0 and —F(c0) < rg, < —F(&), then 0 = 2% <z} < z¥, and S, = (0, Z}].
() If rg,, < —F(c0), then Sa = (0,00).
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Proof. 1) From Lemma [3.3.3] we have

Q, = {z>0 :F(z)>rg,}. (3.4.49)

Since g,, > 0, and f;(0) = 0, we have F'(0) = 0 < rg,,. Under (HF), we then distinguish

the two following cases :

(i) If rg,, > F(c0), then Q,, = 0, and so by Lemma and (3.4.40), S; = 0.

(i) If rg,, < F(oc0), then there exists Z,, € (0,00) such that
Qm = [&12700)' (3450)
Moreover, since
A A o A
(Vo—WVi)(z) = E [/ e‘”F(Xf)dt] , Vx>0,
0

and F' is lower-bounded, we obtain by Fatou’s lemma :

liminf(Va — Vi)(z) > E[ /O ooe”F(oo)dt] _F (;’O) > 9.,

r—00

Hence, conditions (|3.4.41)-(3.4.42)) with ¢ = 1, 5 = 2, are satisfied, and we obtain the first
assertion by Lemma 1).

2) From Lemma we have
Qy = {x>0:—F(z)>rg,}. (3.4.51)
Under (HF'), we distinguish the following cases :
» (il) If rg,, > —F(&), then Q,, = 0, and so S, = 0.
(i2) If rg,, = —F (&), then either £ = 0 and so Sy = Q,, = 0, or & > 0, and so Q,, = {i},

S, C {z}. In this last case, v, satisfies rv, — Lv, — f, = 0 on (0,%) U (z,00). By continuity

and smooth-fit condition of v, at #, this implies that v, satisfies actually
rv, —Lv, — f, = 0, z¢€(0,00),
and so is in the form :
v,(x) = Az™ + Bx™ + V,(z), z e (0,00)

Recalling that 0 < v,(0") < oo and v, is a nonnegative function satisfying a linear growth
condition, this implies A = B = 0. Therefore, v, is equal to VQ, which also means that S,

= (.
» If rg,, < —F(z), we need to distinguish three subcases depending on g,, :

e If g,, > 0, then there exist 0 <z, < <, < oo such that
Q21 = [£217j21]~ (3.4.52)

We then conclude with Lemma 2)fori=2,j=1
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o If g,, <0 with rg,, > —F(00), then there exists Z,, < 00 s.t.

Q21 = (07 5721]'

Moreover, we clearly have sup,-o(Vi — V2)(z) > (Vi — V2)(0) = 0 > g,,. Hence,
conditions (3.4.41) and (3.4.43) with ¢ = 2, j = 1 are satisfied, and we deduce from
Lemma 1) that So = (0, z5] with 0 < Z5 < oo.

e If rg,, < —F(c0), then Q,, = (0,00), and we deduce from Lemma, 3) fori =2,
j =1, that So = (0, 00).

Finally, in the two above subcases when Sy = [z},Z]] or (0,Z}], we notice that z} < 27
since So C C1 = (0,00) \ S, which is equal, from 1), either to (0,00) when 27 = oo or to
(0,27). O

Remark 3.4.2 In our viscosity solutions approach, the structure of the switching regions
is derived from the smooth fit property of the value functions, uniqueness result for viscosity
solutions and Lemma [3.3.3] This contrasts with the classical verification approach where
the structure of switching regions should be guessed ad-hoc and checked a posteriori by a

verification argument.

Economic interpretation.

The previous proposition shows that, under (HF'), the switching region in regime 1 has two
forms depending on the size of its corresponding positive switching cost : If g,, is larger
than the “maximum net” profit F'(co) that one can expect by changing of regime (case 1)
(i), which may occur only if F'(0co) < o0), then one has no interest to switch of regime, and
one always stay in regime 1, i.e. C; = (0, 00). However, if this switching cost is smaller than
F(00) (case 1) (ii), which always holds true when F(co0) = oo ), then there is some positive
threshold from which it is optimal to change of regime.

The structure of the switching region in regime 2 exhibits several different forms de-
pending on the sign and size of its corresponding switching cost g,, with respect to the
values —F(0c0) < 0 and —F(z) > 0. If g,, is nonnegative larger than —F(Z) (case 2) (i)),
then one has no interest to switch of regime, and one always stay in regime 2, i.e. Cy =
(0,00). If g,, is positive, but not too large (case 2) (ii)), then there exists some bounded
closed interval, which is not a neighborhood of zero, where it is optimal to change of regime.
Finally, when the switching cost g,, is negative, it is optimal to switch to regime 1 at least
for small values of the state. Actually, if the negative cost g,, is larger than —F(c0) (case
2) (iii), which always holds true for negative cost when F(oo) = 00), then the switching
region is a bounded neighborhood of 0. Moreover, if the cost is negative large enough (case
2) (iv), which may occur only if F(c0) < o0), then it is optimal to change of regime for
every values of the state.

By combining the different cases for regimes 1 and 2, and observing that case 2) (iv)
is not compatible with case 1) (ii) by (3.2.7), we then have a priori seven different forms
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for both switching regions. These forms reduce actually to three when F(o0) = co. The

various structures of the switching regions are depicted in Figure II.

Finally, we complete results of Proposition by providing the explicit solutions for
the value functions and the corresponding boundaries of the switching regions in the seven

different cases depending on the model parameter values.
Theorem 3.4.2 Assume that (HF) holds.
1) Ifrg,, < F(c0) and rg,, > —F(Z), then

v (z) = Az +V(2), @<z
' 0, (%) = g1z x>z

v(@) = V(2),

where the constants A and x7 are determined by the continuity and smooth-fit conditions of

v, at T -
N 9 * 9 *
A(&l) +‘/1(£1) = 2(£1) _912
s\ymT— > * > *
Am+(£1) ! + Kl(gl) = 2/<§1)‘

In regime 1, it 1s optimal to switch to regime 2 whenever the state process X exceeds the

threshold x7, while when we are in regime 2, it 1s optimal never to switch.

2) If rg,, < F(o0) and 0 < rg,, < —F(z), then

v (z) = Ay 4V (2), =<zt (3.4.53)
! Uz(x) — G125 x ZQT
Agz™" +V, (), r <z}

v,(z) = v, (x) — 9o,  Z, Sz ST (3.4.54)

Byx™ +V,(x), x>z,

where the constants Ay and x7 are determined by the continuity and smooth-fit conditions of
v, at z7, and the constants Az, Be, x}, T, are determined by the continuity and smooth-fit

e * F¥
conditions of v, at x} and T :

w\mT 9 * *\m ¥ *
Ar(z))™ +Vi(z]) = Ba(x))™ +Vy(2]) — g1, (3.4.55)
Aymt (@)™ T e V(@) = Bom (2™ T4V (@) (3.4.56)
w\mT 9 * N ¥ *
Az(z))™ +Vy(z)) = A(z)™ +Vi(z)) — gy (3.4.57)
Agmt (@)™ T 4 V(@) = At (@)™ T+ V(@) (3.4.58)
—sx\ym™T 7 (=% —*\m~ Or o —%
Al(xz) + ‘/1(332) - g21 = B2($2) + ‘/2(’];2) (3459)
Aymt (@)™ T 4 V(@) = Bam (@)™ TN+ V/(@). (3.4.60)
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continue  switch continue
| | |

TR

| ]
continue X, switch X

Figure 11.2: rg,, <F() ,0<rg,, <—F()

continue

X
continue X

Figure 11.4: rg,, >F(), rg, >-F(X)

switch continue

L

continue

Figure 11.6: rg,, > F(0), g,, <0, F(0) <rg,, <—F(X)

106
Figure I
) continue
Regime 2 - Regime 2
v, =V, X
Regime 1 ‘ } } } Regime 1
continue  x; switch X
Figure 1.1 rg,, <F(0) ,rg,, > -F(X)
switch continue
Regime 2 ——— Regime 2
e ‘
Regime 1 ‘ } [ } Regime 1
continue X, switch x
Figure 11.3: rg,, <F(®) ,g,, <0, —F(c0) <rg,, <—F(X)
continue  switch continue ]
Regime 2 — Regime 2
1w
Regime 1 Regime 1
continue X
Figure 11.5: rg,, >F(c0), 0<rg,, <-F(X)
switch
Regime 2 [ |
N ‘
Regime 1

continue

Figure I1.7: rg,, > F(e0), g,, <—F(c0)
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In regime 1, it 1s optimal to switch to regime 2 whenever the state process X exceeds the
threshold 7, while when we are in regime 2, it is optimal to switch to regime 1 whenever

the state process lies between x; and T7.

3) If rg,, < F(0) and g,, < 0 with —F(c0) < rg,, < —F(&), then

v (z) = A" + V(@) @ <
' ,U2($) — Y125 T QT
B v, () — gy, 0<z<ZT)
vp() = { Bx™ +V,(z), x> T,

where the constants A and z] are determined by the continuity and smooth-fit conditions
of v, at x7, and the constants B and T} are determined by the continuity and smooth-fit
conditions of v, at T
A<§1) V ('T ) = B(gr)m* + Vg(gf) — 012

Am* (@)™ T+ V(@) = Bmo (@)™ '+ V()

AE)™ + V(&) — g, = B@E)™

AmtP @)™ V4 VI(E) = Bmo (@)™ L+ V(3.
4) If rg,, > F(c0) and rg,, > —F (&), then v, = Vi, v, = Va. It is optimal never to switch
in both regimes 1 and 2.

5) If rg,, > F(o0) and 0 < rg,, < —F(&), then

Az™" +V,(2), r <z
Uy (‘T) = Uy (JI) — 921> 1; <z< j;

Ba™ +V,(x), T > I,

where the constants A, B, z, T, are determined by the continuity and smooth-fit conditions

of v, at x} and T}

A)™ + V() = V(@) — gu

Amt (@)™ T+ V(@) = V()
Vi(3) — g, = BEO™ + V()

VI(z) = Bm~ (@)™ '+ V(@)

1 2

In regime 1, it is optimal never to switch, while when we are in regime 2, it s optimal to

switch to regime 1 whenever the state process lies between z and T7.

6) If rg,, > F() and g,, < 0 with —F(c0) < rg,, < —F(Z), then

vl(x) =
ggl, 0<z <7

vy(7) = Vy(z), x>z,

/—/‘\<>
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where the constants B and T, are determined by the continuity and smooth-fit conditions of

v, at T, :
Vi(@) —gs = B@)™ +V,(z)
VI(zX) = Bm~ (@)™ "4+ V/(@).

1 2

In regime 1, it is optimal never to switch, while when we are in regime 2, it is optimal to
switch to regime 1 whenever the state process lies below 7.

7) If rg,, > F(0) and rg,, < —F(c0), then v, = V. and v, = v, — g,,. In regime 1, it
15 optimal never to switch, while when we are in regime 2, it is always optimal to switch to

regime 1.

Proof. We prove the result only for the case 2) since the other cases are dealt similarly and
are even simpler. This case 2) corresponds to the combination of cases 1) (ii) and 2) (ii) in
Proposition We then have S, = [z],00), which means that v, = v, —g,, on [z}, 00)
and v, is solution to rv, — Lv, — f, = 0 on (0,z*). Since 0 < v,(0%) < o0, v, should have
the form expressed in (3.4.53)). Moreover, S, = [z}, Z}], which means that v, = v, —g,, on
[z}, 2], and vy satisfies on C, = (0,z) U (Z},00) : rv2 — Lva — f, = 0. Recalling again
that 0 < v,(0") < oo and v, satisfies a linear growth condition, we deduce that v, has the
form expressed in . Finally, the constants A, 7, which characterize completely v,,
and the constants Ay, Be, 2, T, which characterize completely v,, are determined by the
six relations ([3.4.55))-(3.4.56))-(3.4.57))-(3.4.58)-(3.4.59))- (3.4.60) resulting from the continuity

alnd smootn- condailtions or v, at r, and v, at r, and r_ , and recallin at o < x°.
d smooth-fit conditions of v, at z* and v, at & and 77, and recalling that z% < z*. D

Remark 3.4.3 In the classical approach, for instance in the case 2), we construct a pri-
ori a candidate solution in the form (3.4.53))-(3.4.54)), and we have to check the existence
of a sextuple solution to (3.4.55))-(3.4.56))-(3.4.57)-(3.4.58)-(3.4.59)-(3.4.60)), which may be

somewhat tedious! Here, by the viscosity solutions approach, and since we already state the

smooth-fit C! property of the value functions, we know a priori the existence of a sextuple
solution to (3.4.55)-(3.4.56))-(3.4.57)-(3.4.58)-(|3.4.59)- (3.4.60)).

Appendix: Proof of comparison principle

In this section, we prove a comparison principle for the system of variational inequalities
(3.3.8]). The comparison result in [64] for switching problems in finite horizon does not apply
in our context. Inspired by [4I], we first produce some suitable perturbation of viscosity
supersolution to deal with the switching obstacle, and then follow the general viscosity

solution technique, see e.g. [19].

Theorem 3.A.1 Suppose u;, i € 1y, are continuous viscosity subsolutions to the system of
variational inequalities (3.3.8) on (0,00), and w;, i € Iy, are continuous viscosity superso-
lutions to the system of variational inequalities (3.3.8) on (0,00), satisfying the boundary



APPENDIX 109

conditions u;(01) < w;(07), i € Iy, and the linear growth condition :
lui(z)| + |wi(z)] < Ci1+ Cax, Vz e (0,00), i€ ly, (3.A.1)
for some positive constants C1 and Cy. Then,
w; < w;, on (0,00), Vi€l

Proof. Step 1. Let u; and w;, i € Iy, as in Theorem We first construct strict
supersolutions to the system (3.3.8) with suitable perturbations of w;, i € I;. We set

h(z) = C}+ChP, x>0,

where C7, C%, > 0 and p > 1 are positive constants to be determined later. We then define
for all A € (0,1), the continuous functions on (0, 00) by :

w} = (1= Nwi + A(h+ i), i€ lg,

where a; = m;n gji. We then see that for all A € (0,1), 7 € I :
Ve

w) — Iglgg((wj\ —gij) = A+ (1= Nw; — I?Qf‘[(l = N (wj = gij) + Aoy — Agij]
> (1 Vs~ max(us — g)] + ) (@ + it~ o)
J#i JFi
> ] . i ey
2 Amin (ozz + r]n?gl(gm ag)>
> v (3.A.2)

where v := m}ln o + m;n(gij — «j)| is a constant independent of i. We now check that v
1ely JF#

> 0,ie v = a; + m;n(gij —a;) > 0, Vi € I;. Indeed, fix ¢ € Iy, and let k € Iz such that
JFT
m;n(gij — o) = gik, — oy, and set i such that oy = m;én gji = gii- We then have
Ji Ji
o g & —ming:x > g —mingix > 0,
v; Gii + Gik I]I;Zil 9ik Gik IJI;Z? 9jk =

by (3.2.6) and thus v > 0.

By definition of the Fenchel Legendre in 1} and by setting f (1) = maxey, fi(l), we
have for all 7 € I,

filz) < F)+z < f1)+142P, Vz>0.

Moreover, recalling that » > b := max; b;, we can choose p > 1 s.t.

1
p=r=pb=go'pp—1) > 0,
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where we set ¢ := max; 0; > 0. By choosing
c; > 2 i, o> L
(2

we then have for all 7 € I,

1
rC1 + ChaP[r — pb; — §Ji2p(p = 1] - fi(z)
> 1Ol + pCha® — fil)
1, Va>0. (3.A.3)

rh(z) — Lih(z) — fi(x)

Y

From 1j and li we then deduce that for all ¢ € I, A € (0, 1), wi)‘ is a supersolution
to

min {Twz-)‘ — Liw) — fi,wd — mix(w;-‘ - gij)} > X6, on (0,00), (3.A4)
JF#

where 6 = v A1 > 0.

Step 2. In order to prove the comparison principle, it suffices to show that for all A € (0,1) :

max sup (uj —w?) < 0

7€l (0, +00) ’
since the required result is obtained by letting A to 0. We argue by contradiction and

suppose that there exists some A € (0,1) and i € I; s.t.

0 := max sup (uj—w])f) = sup (uj—w}) > 0. (3.A.5)
7€la (0,+00) (0,400)

From the linear growth condition (3.A.1)), and since p > 1, we observe that u;(z) — w}(z)

1
goes to —oo when z goes to infinity. By choosing also Cf > max; w;(0"), we then have

u;(01) — w}(0F) = u;(0F) — w;(07) + A(w;(0F) — C]) < 0. Hence, by continuity of the
functions u; and w?, there exists zg € (0, 00) s.t.

0 = wui(zo) — wi(zo).
For any € > 0, we consider the functions
Oe(z,y) = wi(x) —wi(y) — ¢=(,y),
6:(avy) = glo—wolt+ ole —yP,

for all z,y € (0,00). By standard arguments in comparison principle, the function ®. attains
a maximum in (z.,y.) € (0,00)2, which converges (up to a subsequence) to (zg, o) when &

goes to zero. Moreover,

lim ==L = . (3.A.6)
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Applying Theorem 3.2 in [19], we get the existence of M., N. € R such that:

(psaMs) € J27+ui($5)a
(Qz-:aNz-:) € J27_w£\(ys)

where
1 3
Pe = Dw¢a($aa ya) = g(xa - ya) + (-Ta — xo)
1

qe = _Dyfbe(xe?ya) = g(@'a - ye)

and
M, 0 2
< O6 _N ) < D2¢6(x67y6)+E(D2¢a(xaaya)) (3.A.7)
g

with

3 _ 241 _1
D2¢E(‘T67y8) = < (xe xf) + c 18 > 9
1>

- 15
By writing the viscosity subsolution property (3.3.9)) of w; and the viscosity strict superso-
lution property 1) of w;\, we have the following inequalities:

min {Tui(xg) — <i(:cg —Ye) + (ze — x0)3> bixe — %O’?:E?Mg — filxe),
(o) ~max(uy — g)(a) | <0 @GAS)
. A 1 L 59
min § rw; (ys) - g(xs - ys)biys - 501' yzNe — fi(ye) )
W) - max(u} - g | 2 0 (3A9)

We then distinguish the following two cases :

(1) wi(z:) — maxjxi(u; — gi5)(xe) < 0in (3.A.8).
By sending € — 0, this implies

ui(xo) — mgx(uj = gij)(x0) < 0. (3.A.10)
e
On the other hand, we have by (3.A.9) :
w(ye) = max(w; = gig) () = N,

so that by sending ¢ to zero :

wi)‘(xo) — j;ilx(w])-‘ —gij) (o) > A6. (3.A.11)



112 CHAPTER 3. OPTIMAL SWITCHING PROBLEM

Combining (3.A.10) and (3.A.11)), we obtain :

0 = ui(zo) —w(zg) < —A5+ I?Qf(uj — gij)(z0) — I;lgf(w? — gij)(%0)
< —Ad+ max(u; — w})(zo)
jF#
< A+,

which is a contradiction.
(2) rui(z:) — (%(alc5 —ye) + (ze — m0)3) bixe — %afngs — fi(ze) < 0in (3.A.8).
Since by (3.A.9), we also have :
1 1
Twz{\(ys) - g(xs - ys)biys - §Uz2y2N€ - fi(ys) > Ao,

this yields by combining the above two inequalities :

1
Tui($€) - Tw;\(ys) - gbz‘(ws - y€)2 - (336 - xO)gbixe

1 1
+500ENe = SofalMe + fiye) = filze) < A6 (3.A12)
Now, from (3.A.7)), we have :

3 3
*0"21'2M5 - *UzygNe < 2780'1'2(558 - ya)2 + iazzwg(xs - xO)Q (35(568 - xO)Q + 2) )

so that by plugging into (3.A.12) :

1 3
r (Uz(l's) - wz)\(ys)> < gbi(ms - y£)2 + (338 - $0)3bixe + 27601‘2(1'5 - ye)2

+ gagazg(xs — :co)2 (35(% — :co)2 + 2) + filys) — fi(xe) — A

By sending ¢ to zero, and using (3.A.6)), continuity of f;, we obtain the required contradic-
tion: r < —Xd < 0. This ends the proof of Theorem [3:A.T] O



Chapter 4

A mixed singular/switching control
problem for a dividend policy with
reversible technology investment

Joint paper with Huyén PHAM and Stéphane VILLENEUVE, submitted to Annals of
Applied Probability.

Abstract : We consider a mixed stochastic control problem that arises in Mathematical
Finance literature with the study of interactions between dividend policy and investment.
This problem combines features of both optimal switching and singular control. We prove
that our mixed problem can be decoupled in two pure optimal stopping and singular control
problems. Furthermore, we describe the form of the optimal strategy by means of viscos-
ity solution techniques and smooth-fit properties on the corresponding system of variational
inequalities. Our results are of quasi-explicit nature. From a financial viewpoint, we charac-
terize situations where a firm manager decides optimally to postpone dividend distribution
in order to invest in a reversible growth opportunity corresponding to a modern technology.
In this paper, a reversible opportunity means that the firm may disinvest from the modern
technology and return back to its old technology by receiving some gain compensation. The

results of our analysis take qualitatively different forms depending on the parameters values.

Keywords: mixed singular / switching control problem, viscosity solution, smooth-fit prop-

erty, system of variational inequalities.
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4.1 Introduction

Stochastic optimization problems that involve both bounded variation control and/or opti-
mal switching are becoming timely problems in the applied probability literature and more
particulary in Mathematical Finance. On one hand, the study of singular stochastic control
problems in corporate Finance originates with the research on optimal dividend policy for
a firm whose cash reserve follows a diffusion model, see Jeanblanc and Shiryaev [43] and
Choulli, Taksar and Zhou [18]. On the other hand, the combined singular / stopping control
problems have emerged in target tracking models, see Davis and Zervos [23] and Karatzas,
Ocone, Wang and Zervos [46] as well as in Mathematical Finance from firm investment
theory. For instance, Guo and Pham [36] have studied the optimal time to activate produc-
tion and to control it by buying or selling capital while Zervos [68] has applied this type of
mixed problems in the field of real options theory. Finally, the theory of investment under
uncertainty for a firm that can operate a production activity in different modes has led to
optimal switching problems which have received a lot of attention in recent years from the
applied mathematics community, see Brekke and Oksendal [12], Duckworth and Zervos [27],
Hamadeéne and Jeanblanc [37], Ly Vath and Pham [51].

In this paper, we consider a combined stochastic control problem that has emerged in a
recent paper by Décamps and Villeneuve [24] with the study of the interactions between div-
idend policy and investment under uncertainty. These authors have studied the interaction
between dividend policy and irreversible investment decision in a growth opportunity. Our
aim is to extend this work by relaxing the irreversible feature of the growth opportunity. In
other words, we shall consider a firm with a technology in place that has the opportunity
to invest in a new technology that increases its profitability. The firm self-finances the op-
portunity cost on its cash reserve. Once installed, the manager can decide to return back to
the old technology by receiving some cash compensation. The mathematical formulation of
this problem leads to a combined singular control/switching control for a one dimensional
diffusion process. The diffusion process may take two regimes, old or new, that are switched
at stopping times decisions. Within a regime, the manager has to choose a dividend policy
that maximizes the expected value of all payouts until bankruptcy or regime transition. The
transition from one regime to another incurs a cost or a benefit. The problem is to find the
optimal mixed strategy that maximizes the expected returns.

Our analysis is rich enough to address several important questions that have arisen
recently in the real option literature E| What is the effect of financing constraints on
investment decision? When is it optimal to postpone dividends distribution in order to
invest? Basically, two assumptions in the real option theory are that the investment decision
is made independently of the financial structure of the investment firm and also that the cash
process generated by the investment is independent of any managerial decision. In contrast,

our model studies the investment under uncertainty with the following set of assumptions.

! See the book of Dixit and Pyndick [26] for an overview of this literature.
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The firm is cash constrained and must finance its investments on its cash benefits, and the
cash process generated by the investment depends only on the managerial decision to pay or
not dividends, to quit or not the project. Our major finding is to characterize the natural
intuition that the manager will delay dividend payments if the investment is sufficiently
valuable.

As usual in stochastic control theory, the problem developed in this paper leads via the
dynamic programming principle to a Hamilton Jacobi Bellman equation which forms in this
paper a system of coupled variational inequalities. Therefore, a classical approach based
on a verification theorem fails since it is very difficult to guess the shape of both the value
function and optimal strategy. To circumvent this difficulty, we use a viscosity solution
approach and uniqueness result combined with smooth-fit properties for determining the
solution to the HJB system. As by product, we also determine the shape of switching
regions. Our findings take qualitatively different forms depending on both the profit rates
of each technology and transition costs.

The paper is organized as follows. We formulate the combined stochastic control problem
in Section .2l In Section [4.3] we characterize by means of viscosity solutions, the system
of variational inequalities satisfied by the value function, and we also state some regularity
properties. Section[d.4)is devoted to qualitative results concerning the switching regions and
in Section [£.5] we give the quasi-explicit computation and description of the value function

and the optimal strategies.

4.2 Model formulation : a mixed switching/singular control
problem

We consider a firm whose activities generate cash process. The manager of the firm acts in
the best interest of its shareholders and maximizes the expected present value of dividends
up to bankruptcy when the cash reserve becomes negative. The firm has at any time the
possibility to invest in a modern technology that increases the drift of the cash from pg to
w1 without affecting the volatility . This growth opportunity requires a fixed cost g > 0
self-financed by the cash reserve. Moreover, we consider a reversible investment opportunity
for the firm : the manager can decide to return back to the old technology by receiving some
fixed gain compensation (1 — \)g, with 0 < X < 1.

The mathematical formulation of this mixed singular/switching control problem is as
follows. Let W be a Brownian motion on a filtered probability space (2, F,F = (F¢)¢>0,P)
satisfying the usual conditions.

- A strategy decision for the firm is a singular/switching control a = (Z, (7,)n>1) € A where
Z € Z, the set of F-adapted cadlag nondecreasing processes, Zy- = 0, (7,,)n is an increasing
sequence of stopping times, 7, — 00. Z represents the total amount of dividends paid until
time ¢, (75,) the switching technology (regimes) time decisions. By convention regime i = 0

represents the old technology and ¢ = 1 the modern technology.
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- Starting from an initial state (z,7) € R x {0,1} for the cash-regime value, and given a

control o € A, the dynamics of the cash reserve process of a firm is governed by :

dXt = ,ultdt + O'th - dZt — th, Xof = T, (421)
where :
Iy = Z (i172n§t<72n+1 +(1- i)172n+1§t<7—2n+2) , Iop- =1 (4.2.2)
n>0
Kt = Z (gi7171172n+1§t<7'2n+2 + glfi,i172n+2§t<T2n+3) )
n>0
with

O0<po<m o>0,
go1 = g>0, gio=—-(1-XNg<0, 0<A<L.
(Here we used the convention 79 = 0). We denote by (X, I*) the solution to (4.2.1)-(4.2.2)

(as usual, we omit the dependance in the control o when there is no ambiguity). The time

of strict bankruptcy is defined as
T = T%H = inf{tzo LX< 0},

and we set by convention Xf’i = X;“:’i for t > T. Thus, for t € [T A 7o, T ATont1), the cash
reserve X% is in technology i (its drift term is p;), while for t € [T ATopy1, T ATonya), X%
is in technology 1 — ¢ (its drift term is puq1—;). Moreover,

Tl x,i

TATont1 (TAT2ni1)~ gii1—i on {TQn_A,_l < T}
Tl _ x,0 B o
TATont2 X(T/\TszrQ)f g1—-ii On {72n+2 < T}

The optimal firm value is

vi(x) = supE reR, i=0,1. (4.2.3)

acA

i
/ eiptdZt
0

Notice that v; is nonnegative, and v;(x) = 0 for < 0. Since T = T%%* is obviously

nondecreasing in z, the value functions v; are clearly nondecreasing.

Remark 4.2.1 For any > 0, ¢ = 0,1, and given an arbitrary control a = (Z, (1)n>1) €
A, let us consider the control & = (Z, (Th)n>1) € A with Zy = Zy + n, fort > 0,and 0 < 7
< x. Then, by stressing the dependence of the state process on the control, we have X,

= XFTM for 0 < ¢ < TG = 7T We deduce

(Tm,i,&)— ~
/ eiptdZt
0

which implies from the arbitrariness of « :

(Tz—n,i,a)—
vi(x) > E = E / e Pdz,
0

)

vi(x) > wvi(x—m), 0<n<uaz.

This shows in particular that v is increasing on (0, c0).
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4.3 Dynamic programming and general properties on the value
functions

We first introduce some notations. We denote by R®' the cash reserve in absence of divi-

dends distribution and in regime ¢, i.e. the solution to
dRy = pidt+ocdW, Ry = =. (4..3.1)

The associated second order differential operator is denoted L; :

1
Lip(x) = uicp’(w)+502<p"(w)-

In view of the dynamic programming principle, recalled below (see (4.3.20))), we formally

expect that the value functions v;, ¢ = 0, 1, satisfy the system of variational inequalities :
min [pvi(z) — Livi(z),vj(x) — 1,vi(z) — vi—i(z — gin—i)] =0, x>0,i=0,1. (4.3.2)

This statement will be proved rigorously later by means of viscosity solutions. For the

moment, we state a standard first result for this system of PDE.

Proposition 4.3.1 Suppose that ;, i = 0,1, are two smooth functions on (0,00) s.t.

@i(07) := limg o pi(x) > 0, and
min [/)902(%) - Ez@z(x)v gD;(.’L’) - 17 902(1') - 901—1‘(35 - gi,l—i)] > 07 T > 07 i = 07 11 (433)
where we set by convention p;(x) = 0 for x < 0. Then, we have v; < ¢;, i = 0, 1.

Proof. Given an initial state-regime value (z,7) € Ry x {0, 1}, take an arbitrary control o
= (Z,(mn),n > 1) € A, and set for m > 0, Oy, , = inf{t > T A1, : X" >m} /oo as.
when m goes to infinity. Apply then Ito’s formula to e *lp; (X} Z) between the stopping
times T'A 7o, and T 2n+1 : = T A Topt1 A Om . Notice that for T Ao, <t < Ty o041, th’i

stays in regime i. Then, we have

. . Tm,2n+1 .
g (X2 ) = ol ) [ P L) (X0

T TATon

m,2n

Tm,2n+1 ot ; .y Tm,2n+1 gt s .y

[ emagoxehaw - [ ez
T NATon TNATon

D D 10 GO EIe sl ] (4.3.4)

TATon §t<7—m,2n+l

where Z¢ is the continuous part of Z. We make the convention that when T' < 7,,, (T'A0)~
= T for all stopping time 6 > 7, a.s., so that (4.3.4) holds true a.s. for all n,m (recall
that ¢;(X%") = 0). Since ¢} > 1, we have by the mean-value theorem ;(X{"") — cpi(Xf_’i)

< Xf’i — th,’i = —(Zy — Zy-) for T AN 19y, <t < Ty 2n+1. By using also the supersolution
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inequality of ¢;, taking expectation in the above Itd’s formula, and noting that the integrand

in the stochastic integral term is bounded by a constant (depending on m), we have

E |:e_me,Zn+180i(Xm’i )] < E [e_p(T/\m")(Pi(X;iQn)} —E [/

Tm,2n+1 TNAT2n

Tm,2n+1

e_ptdZtc}

~E > e P2y — Z-) |,

TNTon §t<7—'m,2n+1

and so

E[e_p(TAT%)SDi(X%/imn)} 2z E

Tr;,2n+l ot . Ny
e P dZt+€ 4 m,2n+lgpi(X o )
T/\TZn Tm,2n+1

By sending m to infinity, with Fatou’s lemma, we obtain :

E [T o (X71))|

T NATon
(TAT2n+1)" T .
> E / eHdZy + e (xT). (4.3.5)
TNATon
Now, as ¢;(x) > p1-i(x — gi1—;) and recalling X%’/i\mn“ = XEC;ATZHH), —gi,1—i on {Tapq1 <

T}, we have

" J),i . .
@i(X(mj}/\T2n+l)—) > Sol—i(X(T/\TQn+1)—_gz,l—z)

Tl

= gol—i(X(T/\TszA)) on {TQn+1 < T}. (4.3.6)

Moreover, notice that ¢; is nonnegative as ;(07) > 0 and ¢; > 1. Hence, since gol,i(X(z:’FiAﬁnH))

= goi,l(X;“:’i) = 0on {T < 79,41}, we see that inequality 1D also holds on {T < 79,41}
and so a.s. Therefore, plugging into (4.3.5), we have

—p(TAT2n) . ( X L5 (Izaner)” —pt —p(TAT2n41) (XTS
E |e cpZ(XTATQn) > E e PdZ; +e ‘Pl—Z(XT/\TQnH) .

TATon
Similarly, we have from the supersolution inequality of ¢1_; :
—p(TA ) i (Thmns2)™ —p(TA ) i
EP’W%mwwﬂZE/ etz + eI (Xpn, |
TATon+1

By iterating these two previous inequalities for all n, we then obtain

(T/\Tzn)7 .
oilx) > E /O erldz, + e P T g (X2 )|

(TAT2n) ™~
Z E / €_ptdZt
0

since ; is nonnegative. By sending n to infinity, we obtain the required result from the

, Vn >0,

arbitrariness of the control a. O

As a corollary, we show a linear growth condition on the value functions.
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Corollary 4.3.1 We have,

wz) < z+ ™ @) < e+ Py 1-Ng z>o0. (4.3.7)

p p
Proof. We set po(x) = = + %, o1(z) =z + % + (1 = X)g, on (0,00), and ¢;(x) = 0 for

x < 0. A straightforward computation shows that we have the supersolution properties for

wi, 1 =0,1:

Y

min [ppo(z) — Lowo(x), po(x) — 1,¢0(2) — p1(z — g)] 0, x>0,
min [pp1(z) — Lip1(2), ¢i(2) = 1, 01(z) —po(z + (1= N)g)] > 0, z>0.
We then conclude from Proposition O

The next result states the initial-boundary data for the value functions.

Proposition 4.3.2 1) The value function vy is continuous on (0,00) and satisfies

vo(0) = gﬁ)lvo(l') = 0. (4.3.8)

2) The value function vy satisfies

v1(01) = 1;?3@1(9;) = v((1—=N)g). (4.3.9)

Proof. 1) a) We first prove (4.3.8). For = > 0, let us consider the drifted Brownian R®!,
defined in (4.3.1), and denote 6y = inf{t >0 : R{"' = 0}. It is well-known that :

E| sup R — 0, as z]0. (4.3.10)
0<t<6p
We also have
sup RPY | 0, as. as x|0. (4.3.11)
0<t<6p

Fix some r > 0, and denote 6, = inf{t >0 : R"" = r}. It is also well-known that
Pl6o>6,] — 0, as x|0. (4.3.12)

Let o = (Z, (Tn)n>1) be an arbitrary policy in A, and denote n = T A0, = T%*Af,.. Since
to < p1 and go1 + gio > 0, we notice that Xf’o < Rf’l —7; < Rf’l for all t > 0. Hence T’
< by, Z; < Rf’l for t < T, and in particular Z, - < R%’l. We then write :

T n-
E / e Ptdz, / e PtdZ,
0 0

E[Z,-]+E

= E +E

T
1T>77 / e_ptdZt
n

T
/ 6_ptdZt
n

< E[RY']+E [1T>9Tefmo(xgv_°)} : (4.3.13)

IN

1T>7]]E .7:77
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where we also used in the last inequality the definition of the value function vg. Now, since

T < 6y, we have n < 0y. Moreover, since vg is nondecreasing and 1 < 6., we have UO(X;;LO)

< wo(r). Thus, inequality (4.3.13) yields

0 < vo(z) < E| sup R +wo(r)P[lo>6,] — 0, as z]0, (4.3.14)

0<t<6y

from (4.3.10)-(4.3.12)). This proves vo(0") = 0.

b) We next prove the continuity of vg at any y > 0. Let a = (Z, (tn)n>1) € A, X¥0 be

the corresponding process and T' = T%% its bankruptcy time. According to (4.3.10)) and
(4.3.12), given a fixed r > 0, for any arbitrary small € > 0, one can find 0 < § < y s.t. for
0<x<9,

E | sup Rf’l

0<t<6g

Then, following the same lines of proof as for (4.3.13))-(4.3.14)), we show

.
E / e Ptdz,
0

for any 0 < = < § and stopping time 6 s.t. Xg’o < z. Given 0 < x < J, consider the

+ Uo(’I”)IP)[Q() > HT] < g,

IN

€, (4.3.15)

state process X¥~%Y starting from y — x in regime 0, and controlled by «. Denote 6 its
bankruptcy time, i.e. 0 = 79209 = inf{t > 0 : Xty*m’0 < 0}. Notice that Xtyfgc’0 =
Xiu’o—acfortg 6 < T, and so

xy0 = Xy 4r <

0
/ eiptdZt
0

< vy —z) +e.

From (4.3.15)), we then have

T T
/ €7ptdZt / 67ptdZt
0 0

From the arbitrariness of «, and recalling that vy is nondecreasing, this implies

E = E +E

0 < w(y) —wvwly—z) < e

which shows the continuity of vg.
2) Given an arbitrary control o = (Z,(7)n>1) € A, let us consider the control & =
(Z,(Fn)n>1) € A defined by Z = Z, 7 = 0, 7, = Th_1, n > 2. Then, for all 2 > 0,
and by stressing the dependence of the state process on the control, we have Xf’l’a =
XHImNe0e g0 < ¢ < ToLE = Pr+1-Ng0.a We deduce

(Ta:,l,&)f N
/ €_ptdZt
0

Tr+(1=X)g,0,00)—

( )
/ €_ptdZt s
0

vi(z) > E = E
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which implies from the arbitrariness of « :
vi(z) > wolx+(1—N)g), x>0. (4.3.16)

On the other hand, starting in the regime ¢ = 1, for x > 0, let o = (Z, (7,)n>1) be an

arbitrary control in A. We denote T} = T A1 = T%5L% A 1, and we write :

T T
/ €_ptdZt / e_ptdZt
0 0

The first term in the r.h.s. of (4.3.17)) is dealt similarly as in (4.3.13))-(4.3.14) : we set n; =

T1 A6, with 0, = inf{t > 0 : Rf’l = r} for some fixed r > 0, and we notice that Xf’l =
R — 2, < Ry for t < m. Hence Tt < 0y = inf{t > 0 : Ry =0}, and Z,_ < Ry}’ <

supg<s<g, B¢ Then, as in (4.3.13)-(4.3.14), we have :

Ty
/ e_ptdZt
0

For the second term in the r.h.s. of (4.3.17)), since there is a change of regime at 71 from ¢

=1 to ¢« = 0, and by definition of the value function vy, we have :

T T
E | 17>y / e Ptdz, / e Ptdz,
T1 T1

.
E = E +E |17>n / e Ptdz, (4.3.17)

T1

E < E| sup R

0<t<6o

+ 01 (r)P[8y > 6,]. (4.3.18)

= E ]-T>T1]E

Fr

0<t<6y

< E[lrsne PMug(X5)]
< E|lrsnuo(X5 4 (1= V)]
< E|v < sup Rf’l +(1— A)g)] . (4.3.19)

Here, we used in the second inequality the fact that X&' = Xle +(1—N)gon {r <T}, and
1

in the last one the observation that th’l < Rf’l fort <7,and 7y =Ty < 6gon {r <T}.
Hence, by combining (4.3.16))-(4.3.17)-(4.3.18)-(4.3.19)), we obtain :

vo(z + (1 = A)g)

< wvi(x) < E| sup Rf’l +vi(r)P[6y > 0,] + E

0<t<6o

Vo ( sup R+ (1 - A)g)] .
0<t<60o

Finally, by using the continuity of vy, the limits (4.3.10])-(4.3.11)-(4.3.12)), as well as the
linear growth condition (4.3.7)) of vg, which allows to apply dominated convergence theorem,
we conclude that v1(07) = vo((1 — \)g). O

Remark 4.3.1 There is some asymmetry between the two value functions vg and v1. Ac-
tually, vg is continuous at 0 : vo(0") = v(0~) = 0, while it is not the case for vy, since

v1(0%) = vo((1 — N)g) > 0 = v1(07) : When the reserve process in regime 0 approaches
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zero, we are ineluctably absorbed by this threshold. On the contrary, in regime 1, when the
reserve process approaches zero, we have the possibility to change of regime, which pushes
us above the bankruptcy threshold by receiving (1 — A)g. In particular, at this stage, we
do not know yet the continuity of v; on (0,00). This will be proved in Theorem as
a consequence of the dynamic programming principle. In the sequel, we set by convention
v;(0) = v;(0%") for ¢ = 0, 1.

The following dynamic programming principle holds : for any (z,i) € Ry x {0,1}, we

have
(TNOATL) ™
(DP) vi(z) = supIE/ e Ptdz,
acA 0

+ efp(T/\G/\n) (’Ui(X;cvig)lT/\0<T1 + vl—i(Xffi)lTlST/\@)}(4'3'20)

where 6 is any stopping time, possibly depending on o € A in (4.3.20)).

We then have the PDE characterization of the value functions v;.

Theorem 4.3.1 The value functions v;, i = 0,1, are continuous on (0,00), and are the
unique viscosity solutions with linear growth condition on (0,00) and boundary data vo(0)

=0, v1(0) = vo((1 — X)g) to the system of variational inequalities :

min [pv;(z) — Livi(z), vj(z) — 1, vi(z) —vi—i(@ — gi1—i)] =0, x>0, i=0,1.(4.3.21)

1

Actually, we prove some more regularity results on the value functions.

Proposition 4.3.3 The value functions v;, i = 0,1, are C' on (0,00). Moreover, if we set
fori=0,1:

Si = {x>0 :v(zx) = vi—i(w—gi1-i)}
D; = {z>0 :vj(z) =1},

then v; is C? on the open set C; UD; of (0,00), and we have in the classical sense
pvi(z) — Livi(x) = 0, x€C;.

The proofs of Theorem [£.3.1] and Proposition [£.3.3] follow and combine essentially argu-
ments from [36] for singular control, and [57] for switching control, and are postponed to
Appendix A and B.

S; is the switching region from technology ¢ to 1 — i, D; is the dividend region in
technology ¢, and C; is the continuation region in technology . Notice from the boundary
conditions on v; that S; contains 0. We denote S§ = 81\ {0}.
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4.4 Qualitative results on the switching regions
4.4.1 Benchmarks

We consider the firm value without investment/disinvestment in technology i = 0 :

.
Volz) = supE[ / AN (4.4.1)
0

ZeZ

where Ty = inf{t > 0 : X; < 0} is the time bankruptcy of the cash reserve in regime 0 :
dXt = ,uodt + O'th — dZt, XO— = .

It is known that Vo, as the value function of a pure singular control problem, is characterized
as the unique continuous viscosity solution on (0, 00), with linear growth condition to the

variational inequality :
min |pVy — LoVo, Vi —1] = 0, x>0, (4.4.2)
and boundary data
Vo(0) = 0.

Actually, Vj is C? on (0,00) and explicit computations of this standard singular control
problem are developed in Shreve, Lehoczky and Gaver [61], Jeanblanc and Shiryaev [43], or
Radner and Shepp [59] :

fo(z) -
Vo(z) = Ry 0=z <o
T —Zo+ %, T > 2o,
where
_ 1 +\2
fO(fE) _ emgm_emoac’ i‘O _ — _1n<(m(1)2> ’
mgy — My (mg)

and m; <0< ma“ are roots of the characteristic equation :

In other words, this means that the optimal cash reserve process is given by the reflected
diffusion process at the threshold &y with an optimal dividend process given by the local time
at this boundary. When the firm starts with a cash reserve x > Zg, the optimal dividend
policy is to distribute immediately the amount = — %y and then follows the dividend policy
characterized by the local time.

As a second benchmark, we consider the firm value problem in technology ¢ = 1 with

nonnegative constant liquidation value L to be fixed later :

wh(z) = ;uIZ)E
€

T
/ e Ptdz, + eI L| (4.4.3)
0
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T; = inf{t > 0 : X; <0} is the time bankruptcy of the cash reserve in regime 1 :
dXt == Mldt—FUth —dZt, XO— = .

Again, as value function of a pure singular control problem, wlL is characterized as the unique
continuous viscosity solution on (0,00), with linear growth condition to the variational
inequality :
min [pwl LiwF | (wl) —-1] = 0, z>0, (4.4.4)
and boundary data
wh(0) = L. (4.4.5)

Actually, w! is C2 on (0, 00) and explicit computations of this singular control problem are
developed in Boguslavskaya [9] :
oIfLZ%,then:

wh(z) = z+L, z>0.

The optimal strategy is to distribute the initial cash reserve immediately, and so to liquidate
the firm at X; = 0 by changing of technology to regime ¢ = 0 and receiving L.
o If L < %, then

1—LR) (21)
by = [ TR+ L) 0
T —xy+ 5 >
p
with
fila) = emiT—emiT hy(a) = €Mt
m; <0< mf, the roots of the characteristic equation :

1
p— pim — 502m2 = 0,

and 2! the solution to

h1($)f{(x)—h/1($)f1(fﬂ)+f1($) _m
fi(@) fi(x) p

The optimal cash reserve process is given by the reflected diffusion process at the threshold

L

x¥ with an optimal dividend process given by the local time at this boundary. When the firm
starts with a cash reserve z > :1:1L , the optimal dividend policy is to distribute immediately
the amount = — 2 and then follows the dividend policy characterized by the local time. In

the sequel, we shall denote
Vi = wF and & = 2z  when L =Vu((1—-N\yg).

L = Vo((1 = \)g) is the minimal received liquidation value when one switches to regime 0

at z = 0 and do not switch anymore.
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Remark 4.4.1 It is known (see e.g.|9]) that Vy and w! are concave on (0,00). As a
consequence, VO and wlL are globally Lipschitz since their first derivatives are bounded near

zero. By convention, we set Vo(z) = wk(z) = 0 for z < 0.

Remark 4.4.2 We have vy > Vo and v; > ‘71 on (0,00). This is rather clear since the class
of controls over which maximization is taken in VO and Vl is included in the class of controls
of vg and vy. This may be justified more rigorously by a maximum principle argument and
by noting that vg and vy are (viscosity) supersolution to the variational inequality satisfied

respectively by 9y and Vi, with the same boundary data.

We first show the intuitive result that the value function for the dividend policy problem

is nondecreasing in the rate of return of the cash reserve.

Lemma 4.4.1

Vi(z) > Volz+(1—=Ng), VYz>0.

Proof. We set wy(z) = Vi(z — (1 — N)g) for & > (1 — \)g. From (4.4.4), we see that i
satisfies on [(1 — A)g, 00) :

wi(z) = V(@—(1-XNg) > 1
(pwr — Low)(z) = (p—L1Vi+ (1 — po)V]) (@ — (1 —N)g) > 0,
since uy > po and Vi is increasing. Moreover, wi((1 — \)g) = Vl(()) = Vg((l —A)g). By

standard maximum principle on the variational inequality 1' we deduce that wy > Vj
on [(1 — A)g,00), which implies the required result. O

The next result specifies conditions under which the value function in the old technology
is larger than the value function in the modern technology after paying the switching cost

from the old to the modern regimes.

Lemma 4.4.2 Suppose that Vo((1 — N)g) < %. Then,

Vo(w) > Vile—g), Y220, ifandonlyif "—F0 < 3 +g- i
p
Proof. Similar arguments as in Lemma 2.1 in Decamps and Villeneuve [24]. O

Remark 4.4.3 Using the same argument as in the proof of Lemma[4.4.T] the above Lemma
shows also that if Lpuo > %1 + g — 0, then there exists Zg; > ¢ s.t.

> 5o _ Volz), =z <in
max (Vb(‘r)7vl(x g)) - { Vl(l' _9)7 > iOl
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4.4.2 Preliminary results on the switching regions

In this section, we shall state some preliminary qualitative results concerning the switching

regions.
Lemma 4.4.3 Ifz € S; then x — gi1—; ¢ S1-i.
Proof. Since v;(z) > v;(x — Ag) for every x > 0 and i € {0, 1}, we have for x € S;,
vi—i(@ = gin—i) = vi(z) > vilz —Ag) = viT — gin—i — G1-i;)-
Therefore, x — gi1—; ¢ S1—; for z € S;. O
Let us recall the notation Sf = S; \ {0}. We have the following inclusion :

Lemma 4.4.4 S§ C D;.

Proof. We make a proof by contradiction by assuming that there exists some x € S \ D;.
According to Proposition [4.3.3] we have vj(z 4+ (1 — A)g) = v}(z) > 1, and so z + (1 — A)g
¢ Dy. Applying Lemma with ¢ = 1 implies 4+ (1 — \)g € Cy. Therefore,
pvi(z) — Livi(z) = poi(x) — Lovi(x) + (ko — p1)vy ()
= puo(z + (1= N)g) — Lovo(z + (1 = N)g) + (o — p1)vy (2)
= (o —p1)vi(z) since x4+ (1—-N)geC
< 0,

which contradicts Theorem H.3.11 m|

We now introduce the following definition.

Definition 4.4.1 y is a left boundary of the closed set D; if there is some § > 0 such that
y — € does not belong to D; for every 0 < e < 4.

Lemma 4.4.5 Let y > 0 be a left boundary of D;.

- If there is some € > 0 such that (y — e,y) C C;, then v;(y) = i
p
- If not, vi(y) =
P

Proof. Since y is a left boundary of D;, there is some € > 0 such that (y —e,y) C C; US,;.
Therefore, two cases have to be considered.

*x Case 1: If (y — e,y) C C;. Then, according to Proposition v; 18 twice differentiable
at z, for y — e < z < y and satisfies v(y) = 1 and v/ (y) = 0. Therefore, we have

2

0 = puile) — Lwvile) = puie) — pei(w) — Tvl (@),
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By sending x to y, we obtain that v;(y) = i
p

* Case 2 : If not, there is an increasing sequence (y, ), valued in §;, and converging to y
which therefore belongs to S;. We then have v;(yn) = v1—i(yn — gi,1—i) and also v;(yn) >1
for n great enough since y is a left boundary of D;. Thus, y, — ¢i,1—i ¢ D1—;. Moreover,
according to Lemma we also have y, — gi1—i ¢ S1—; and therefore, y, — gi1—i € C1—;
or equivalently
pv1—i(Yn — gin—i) — L1—iv1—i(Yyn — gi1—i) = 0.
H1—q

By letting n tends to oo, we obtain vi_;i(y — gi1—i) = . Since y € §;, this implies
P
L
vi(y) = vi—i(y — gin—i) = Mp ..

]
The next result shows that the switching region from modern technology ¢ = 1 to the
old technology ¢ = 0 is either reduced to the zero threshold or to the entire state reserve

domain R, depending on the gain (1 — \)g for switching from regime 1 to regime 0.
Proposition 4.4.1 The two following cases arise :

(i) Tf vo((1 — N)g) < % then Sy = {0}.

(ii) If vo((1 — \)g) > % then Si = D1 = R,

Proof. (i) Assume vp((1 —N)g) < iy
p
We shall make a proof by contradiction by considering the existence of some zg € S7. By

Lemma [£.4.4] one can introduce the finite nonnegative number

x=inf{y >0 :[y,z0] C D1}.

Hence, x is a left boundary of D;. Moreover, Lemma 4.4.5| gives v1(x) = adl or M—.

PP

1. We first check that x > 0. If not, we would have: v1(y) = y + vo((1 — A)g) for any
0 < y < xg. But, in this case, we have for 0 < y < =z,

pui(y) — Livi(y) = p(y + vo((1 = A)g)) — 1.

Therefore, under the assumption (i), pvi(y) — L1v1(y) < 0 for y small enough which

is a contradiction.

2. We now prove that vi(x) = B To see this, we shall show that the closed set Dy is
p
an interval of Ry. Let a,b € D; with a < b, we want to show that (a,b) C D;. If
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not, from Lemma we can find a subinterval (¢, d) with ¢,d € Dy and (¢, d) C Cy.
But, for ¢ < x < d, we have
2

0 = pu(e) - Lin(e) = puile) - meh(e) - Tol(2).

By sending x to ¢ and d, we obtain that vi(c) = vi(d) = M1 Shich contradicts the

fact that v is strictly increasing. Since Dj is an interval of Ry, we have x = inf D;.

Thus, recalling that x > 0, we can find from Lemma [£.4.4] some ¢ > 0 such that

(x — &,x) C Cy, and deduce from Lemma [4.4.5| that v;(x) = 2
p

3. We now introduce
z=inf{y > x|y € S1}.

Observe that 24 (1—\)g € Dy. Moreover, according to Lemma|d.4.3) 2+ (1—\)g ¢ Sy
and thus a left neighborhood of 4+ (1 — A)g belongs to Cyp. We first prove that
Z 4 (1 — A)g cannot be a left boundary of Dy. On the contrary, we would have from

Lemma [£.4.5]

v (@) = @+ (1—N)g) = % < % = u(x),

o
which contradicts the fact that v; is increasing. Therefore, z + (1 — \)g €Dy, and we
can find y < Z such that y 4+ (1 — \)g is a left boundary of Dy. Hence,

v1(Z) = vw(@+(1-Ng) = T—-y+vy+1-Ng) < z—y+uv(y).

Since the reverse inequality is always true, we obtain that y € S&; which contradicts the
definition of Z. We conclude that Z cannot be strictly positive, which is a contradiction
with the first step. This proves finally that S; is empty, i.e. S; = {0}.

(ii) Assume that vo((1 — \)g) > HL . Let y be a left boundary of D;. We shall prove that
p

y necessarily equals zero. If not, according to Lemma [4.4.5) v1(y) < H < v1(0) where the

second inequality comes from the hypothesis and (4.3.9). Since the function vy is strictly
increasing, we get the desired contradiction. Therefore, D; = [0,a]. It remains to prove
that a is infinite. From Lemma[4.4.4] the open set (a,c0) belongs to C; if a < co. Using the
regularity of v; on Cy, we get by the same reasoning as in the proof of Lemma that

vi(a) = &, which gives the same contradiction as before. Hence, D; = [0,00). We then

have for any x > 0,
vi(z) = z+v((1—A)g) < vo(z+ (1= A)g).
Since the reverse inequality is always true by definition, we conclude that &y = [0,00). O

The next proposition describes the structure of the switching region from technology ¢
= 0to ¢ = 1, in the case where the growth rate p; in the modern technology i = 1, is large

enough.
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Proposition 4.4.2 Suppose that

B S g4 g—0, and Vo((1-N)g) < 2

p p

Then, there exists x; € [g,00) s.t.
SS = [$81,OO).

Proof. We first notice that S§ # (). On the contrary, we would have vy = Vo, and so Vg(ﬂ;)
> vy (z — g) > Vi(z — g) for all z, which is in contradiction with Lemma |4.4.2, Moreover,
since vi(x — g) = vo(x) > 0 for all x € §F, we deduce that S§ C [g,00) and so

zry = InfS; € [g,00).

Let us now consider the function

_ UU($)7 :C<l‘81
wol@) = {m(z—g), x>

We claim that wy is a viscosity solution, with linear growth condition and boundary data
wo(0T) =0, to
min [pwo(z) — Lowo (), wp(x) — 1, wo(x) —vi(z —g)] = 0, = >0,

For x < ), this is clear since wg = vg on (0,zy;). For z > x{j;, we see that wj > 1 and

pwo — Lowo = (pv1 — Liv1 + (1 — po)vi)(z — g)
> (m1 = po)vi(z —g) > 0.

Hence, the viscosity property is also satisfied for x > x{j;. It remains to check the viscosity
property for x = zj;. The viscosity subsolution property at x{j; is trivial since wo(zf;) =
vi(x}; — g). For the viscosity supersolution property, take some C? test function ¢ s.t. z;
is a local minimum of wy — ¢. From the smooth-fit condition of the value function vy at the
switching boundary, it follows that wq is C1 at xfy;. Hence w}(z8;) = ¢'(xf;). Moreover,
since wy = vy is C? for z < xfy;, we also have ¢ (zf;) < wij(zi]) = limg s w"(z). Since

pwo(z) — Lowo(x) > 0 for z < zf;, we deduce by sending x to xf; :
puo(iy) — Log(ay) > O,

This implies the required viscosity supersolution inequality at x = ;. By uniqueness, we

conclude that wy = vy, which proves that S§ = [z{;, 00). O

4.5 Main result and description of the solution

We give an explicit description of the structure of the solution to our control problem, which

depends crucially on parameter values.



130 CHAPTER 4. MIXED SINGULAR/SWITCHING CONTROL PROBLEM

4.5.1 The case : Vp((1—\)g) > "

Theorem 4.5.1 Suppose that Vo((1—\)g) > %. Then, we have vo(z) = Vo(x) and vi(x) =
Vol +(1=Ng) =2+ (1 —Ng—z0+ “—po. It is optimal to never switch from regime 0 to
regime 1. In regime 1, it is optimal to distribute all the surplus as dividends and to switch

to regime 0.

Proof. Under the condition of the theorem, and since vy > Vo, we have vo((1 — \)g) > %.
By Proposition [£.4.1] this implies S; = D; = Ry. Recalling also the boundary data v;(0)
=vg((1—=N)g), we get vi(x) = z+vo((1—A)g) for z > 0. We next prove that the region S
is empty. To see this, we have to prove that for > g, vo(x) > vi(x — g). Let us consider
for x > ¢ the function 6(z) = vo(z) — (x — g+ vo((1 — A)g)). Since A > 0, we have 0(g) > 0.
Moreover, 0'(z) = vj(z) —1 > 0. Thus, §(z) > 0 for x > ¢ which is equivalent to S5 = 0.

As a consequence, vy is a smooth solution of the variational inequality
min [pv(z) — Lov(z),v'(z) — 1] =0,

with initial condition v(0) = 0. By uniqueness, we deduce that vy = Vg. To close the proof,
it suffices to note that Vo((1—\)g) > % implies that (1 —\X)g > Zg. Therefore, vo((1—\)g)
:(1—)\)9—2?04-%. O

4.5.2 The case : Vp((1—\)yg) < =

First observe that in this case, we have

w((1-X)g) < %

Indeed, on the contrary, from Theorem , we would get vy = Vo, and so an obvious
contradiction Vp((1 — \)g) > “—pl with the considered case. From Proposition , we then

have S§; = {0} so that v; is the unique viscosity solution to
min [pvl — Livy,v] — 1] = 0, >0,

with the boundary data v1(0) = vo((1 — A)g). Therefore, v; is the firm value problem in
technology ¢ = 1 with liquidation value vo((1 — A)g) :

Gy

vi(z) = supE [/ e PtdZ; + e P (1= N)g) |, (4.5.1)
ZeZ 0

The form of vy is described in (4.4.3)) with liquidation value L = vy((1 — \)g) : we denote

z1 = x¥ the corresponding threshold.

~

Remark 4.5.1 Since v; and Vj are increasing with vi(z1) = Vi(21) = %, we have 21 <

Z1.
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Notice that the expression of vy is not completely explicit since we do not know at this

stage the liquidation value vo((1 — A)g). The next result give an explicit solution when

M g 3?1 _|_ g _ j"O'
p
Theorem 4.5.2 Suppose that
Vo((1=Ng) < % < %-l-ﬁil—kg—i“o. (4.5.2)

Then vy = Vo and vi = V4. It is never optimal, once in regime © = 0, to switch to regime i

= 1. In regime 1, it is optimal to switch to regime O at the threshold x = 0.

Proof. From Lemma [£.4.7] and Lemma [£.4.2] and recalling the variational inequalities
(4.4.2) and 1} we see that Vj and V; are viscosity solutions to

min [p%(x)—ﬁo%(:v), %’(:ﬂ)—l,%(x)—vl(x—g)} =0, z>0,
min [pVi(e) = L1Vi(2) , V{(2) =1, Vi(@) = Volw + (1= Ng)| = 0, @>0,

together with the boundary data Vp(01) = 0 and V;(0%) = Vo((1 — \)g). By uniqueness to
this system of variational inequalities, we conclude that (vg,v1) = (%, Vl) O
In the sequel, we suppose that

FLZH o 4+ g — . (4.5.3)

P

From Proposition [£.4.2] the switching region from regime 0 to regime 1 has the form :
S = {z>0 :wo(z) = vi(z—9)} = [z51,00),

for some zf; € [g,00). Moreover, since 1 < #; (see Remark [4.5.1)), the above condition

1} implies “17;“0 > 11 + g — Z9. By same arguments as in Remark , there exists
some Zo1 > g S.t.

Vo(z), <%
(;U - 9)7 xr > To1

max (Vo(ac),vl(:v — g)) = {
U1
Following [24], we introduce the pure stopping time problem

vo(x) = sggE [e_p(TATO) max (%(Rf}(\)TO),vl (Rf}?TO — g))] , (4.5.4)

where 7 denotes the set of stopping times valued in [0, co]. We also denote & the exercice

region for v :

& = {x >0 :7p(x) = max (VO(az),vl(:c - g)) }

The next result shows that the original mixed singular/switching control problems may

be reformulated as a coupled pure optimal stopping time and pure singular problem.
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Theorem 4.5.3 Suppose that

Vo((1=Nyg) < % and % > 21+ g — Zo. (4.5.5)
Then, we have
Vg = g
and v1 given by . Moreover,
& = @gm<fm:m@y:%@&uuaa»

Proof. The proof follows along the lines of those of Theorem 3.1 in [24]. We will give only
the road map of it in our context and omit the details.
Let us first note that the process (e‘p(“\TO)vo(Rf/’\oTo

the function max(Vp,v1(. — g)). Therefore, according to Snell envelope theory, we have

))t>0 is a supermartingale that dominates

vy > Ug.

To prove the reverse inequality, it is enough to show that ¥, > 1 (see Proposition 3.4 in
[24]) and to use the uniqueness result of Theorem [£.3.1] To this end, we will precise the
shape of the exercise region &. According to Lemma 4.3 by Villeneuve [66], Zo; does not

belong to &. Thus, the exercise region can be decomposed into two subregions
Eoo = {ZC < Zo1 : Uo(.ﬁ) = ‘A/o(.%)}

and
Eo = {x > To1 - ’U()(.%') = 1}1(33 — g)} .
Two cases have to be considered :
Case (i). If the subregion &y is empty, the optimal stopping problem defined by vy can be
solved explicitly, and we have, see [24] Lemma 3.3,

mta mn T
by = 4 et mea L@0 —9) @ <
Vg = e0 01 —e™o0 Fo1
vi(x —g) x>z, .
The smooth-fit principle allows us to conclude that o), > 1 since v] > 1.

Case (ii). If the subregion £y is non empty, we can prove using the arguments of Proposition
3.5 and Lemma 3.4 in [24] that

£ = [0,0] U [z, ),
with a > Zg and the value function vy satisfies

vo(x) = Ae™T 4 Be™ " for x € (@, x5;).
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The smooth fit principle gives 7(a) = Vy(a) > 1 and @ (xf;) = v} (zf; —g) > 1. Clearly, Gy
is convex in a right neighborhood of @ since V; is linear at a. Therefore, if 7y remains convex
on (a,zy,), the proof is over. If not, the second derivative of @y given by A(mar)Qe’”arlj +

B(mg )€™ ® vanishes at most one time on (a,xf;), say in d. Hence,
1= v(a) < (20) (x) < W(d) for x € (a,d),
and
1< oh(ai) < Bh(w) < T(d) for @ € (d, ),
which completes the proof. O

Notice that the representation (4.5.1)-(4.5.4) of pure optimal singular and stopping prob-
lems for vy and vy is coupled, and so not easily computable. We decouple this representation

by considering the sequence of pure optimal stopping and singular control problems, starting
from VI(O) = V; and %(0) = VO:

Vo(k) (z) = Sug[g; [e—p(TATO) max (%(Rf}?ﬂ)), Vl(k—l)(Ri}?To _ g))] k>,
TE

- (k) i (k)

Vi (z) = supE / e Pz, + e PV (1= Ng) |, k> 1.
Zez 0

The next result shows the convergence of this procedure.
Proposition 4.5.1 Under the conditions [4.5.5) of Theorem[{.5.3, we have for all z > 0 :

lim U9(2) = w(@),  lim V@) = w@).
Proof. We will first prove that the increasing sequence (V()(k), Vl(k)) converges uniformly
on every compact subsets of R,. To see this, we will apply Arzela-Ascoli Theorem by first
proving the equi-continuity of the functions Vi(k). Let us first remark that the functions f/l(k)
are Lipschitz continuous uniformly in & since they are concave with bounded first derivative
(see Remark 2|) independently of k. Let us also check that the functions Vo( ) are Lipschitz
continuous umformly in k. Using the inequality max(a,b) — max(c,d) < max(a — ¢,b — d),

and by setting
A, y) = max (Vo(RSNr,) = Vo(RY ) i (RS, — ) = DRI, - 9))
we get by recalling also that Vy is Lipschitz (see Remark :
V@) - V) < supE e Az, y)]

Te€T
To) ,0
< Ko SEgE {e PN\ RE — RZ/\TO@
T
< Koz —y|supE [e‘p(TATO)IuoT AT+ UWTATO\}
Te€T
< Kilz -yl
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According to Corollary , the set {(Vo(k) (x), Vl(k) (x)), k € N} is bounded for every x > 0.

Therefore, Arzela-Ascoli Theorem gives that the increasing sequence (%(k), Al(k)) converges

uniformly on every compact subset of Ry to some (VO(OO), Vl OO)).
On the other hand, for a fixed &, (Vo(k), ‘71(k)) is the unique viscosity solution with linear

growth to the system of variational inequalities
k . o (k=1
Fé )(uo,u{), u() = min (puo — Loug, ugp — max(Vp, V1( )(. — g))) =0,

Fi(up,uf,u)) = min (pu1 — Liug, ) — 1) = 0,

with initial condition uo(0) = 0, u1(0) = V¥ ((1 = A)g).

Since ‘A/l(k_l) converges uniformly on every compact subset of Ry, the Hamiltonian Fék

)
converges to Fy on every compact subset of R x R x R, with
Fo(u,v',v") = min (pu — Lou,u — max(Vo, V(. — g))) = 0.

According to standard stability results for viscosity solution, see for instance Lemma 6.2

page 73 in Fleming and Soner [28], the couple (Vb(oo),vl(oo)) is a viscosity solution of the

system of variational inequalities

min (pf/ooo — LoVE, VE© — max(Vo, V(. — g))) = 0, (4.5.6)
min <p‘71°° — LV, (V) — 1) = 0, (4.5.7)

with initial conditions V;®°(0) = V§°((1—\)g) and V°(0) = 0. By uniqueness to the system

(4.5.6])-(4.5.7), we conclude that Voo = Up = vg and Vo = . O
0 1

We will close this section by describing the optimal strategy. According to Proposition
, the value functions can be constructed recursively starting from (VO, ‘71) Two cases

have to be considered :

Case A : Vo(l)((l —\)g) = Vo((1 = A)g). Then we have

Al(l)(a:) = supE
ZeZ

-
/ Cerdz, + e (1 - )\)g)]
0

= supE
ZeZ

T .
/ e PtdZ; + e PV ((1 — N)g)
0

Therefore, we deduce by a straightforward induction that the sequence (V(](k)) . 1S constant
for k > 1 and the sequence (‘A/'l(k))k is constant for K > 0. Therefore, we deduce from
. ~ (1) ~
Proposition that vo = Vj; 7 and v = V1.
In regime 0, the optimal strategy consists in computing the optimal thresholds a and ),

associated to the optimal stopping problem ‘70(1)' It is optimal to switch from regime 0 to
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regime 1 if the state process R” crosses the threshold zj; while it is optimal to pay dividends
and therefore abandon the growth opportunity forever if R? falls below the threshold a. At
the level a, it is too costly to wait reaching the threshold x{j; even if the growth option is
valuable. The shareholders prefer to receive today dividends than waiting a more profitable
payment in the future.

In regime 1, the optimal strategy consists in paying dividends above #; and switching

to regime 0 only when the manager is being forced by its cash constraints.

Case B : Vo(l)((l —\)g) > Vo((1 = N)g). Let us introduce the sequence

000 (@) = supE [ EDRIY —g)], k=1,
TeT

40 n 50

6;"(x) = supE / e Pz, + e P17 (1 - Ng) |, k> 1.
Zez 0

starting from égo) =V and é(()o) =Vp. Proceeding analogously as in the proof of Proposition
, we can prove that the sequence (9(()k), 9§k)) converges to (9(()00)79?0)) solution of the

system of variational inequalities :
min (p05° — Lo, 05 — 67°(. — g)) =0,

with initial conditions 85°(0) = §3°((1 — A)g) and 65°(0) = 0.
Note that the function égo corresponds to the managerial decision to accumulate cash re-
serve at the expense of shareholder’s dividend payment in order to invest in the modern
technology.

The key feature of our model in case B, which has to be viewed as the analogue of

Proposition 3.5 in [24], can be summarized as follows :

* If the net expected value evaluated at the threshold £y dominates the firm value running
under the old technology that is 63°(9) > Vp(do) then the manager postpones dividend
distribution in order to invest in the modern technology and thus vy = égo Moreover, in
regime 1, the manager always prefers to run under the modern technology until the cash
process X} reaches zero forcing the manager to return back in regime 0 with the value
05°((1 — \)g), that is v; = 65°.

* If, on the contrary égo(ﬁ:o) < Vo(#o) then the manager optimally ignores the strategy
égo. Several situations can occur. For small values of the cash process (X)) < a), the
manager optimally runs the firm under the old technology and pays out any surplus above
#o as dividends. For high values of the cash process (X > zf;), the manager switches
optimally to regime one. For intermediary values of the cash process (a < X? < x§;), there
is an inaction region where the manager has not enough information to decide whether or

not the investment is valuable.
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We sumimarize all the results in Synthetic Table 1 and Figure 1.

Synthetic table 1

£<V,(@-2)9) Vo(@-2)g)< <20t 5+ g - %, &>ma{\70(<1—z>g),ﬂ+&+g—&]
P p_p P P
Volx)= Vo () vo(0)= Vo (x) vo(0)= V7 (x)
vl(x):x+<1—ﬂ>g—io+% Vi (x) = V; (x) V1 (x) = V" (x)
Switch continue <«dividends
1 X[1 | X
%
Switch Switch
See figure 1
b continue ._ldividends w10 continue | «dividends .
% 1-2)g %
Figure 1
| continue ‘ dj@ndi X
swjtch X
continue dividends continue switch
—
0 | | | X
1-2g % a Xgl
CASE A: V" ((1-2)g) =V, (1-2)g)
1 continue | djidendi X continue ‘ dividends
switch X switch X
i itch dividends cagtinue switch
0 continue switc <o ‘ : ‘ )
. Contin. N
~ ) o Xo 0 a (1-2)g Xo1
CASE B *: V| ((l—i?g)> V, (1-21)g) CASE B:00(%,) <V, (%)
057 (%,) >V, (%)
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Appendix A : Proof of Theorem 4.3.1

We divide the proof in several steps.

Proof of the continuity of v; on (0, 00).

We prove that v is continuous at any y > 0. We fix an arbitrary small € > 0. Applying the
dynamic programming principle (DP) to vq, there exists a control a = (Z,(1y)n>1) € A
s.t.

IN

v1(y) —

€ (7’1/\T)7 T " )
3 E / e PtdZy + e PN >(v1<X%: )r<r +v0(XY; )171§T) :
0

(T1/\T)7
= E / e Ptdz; + e P Dy (XU 1, < | (4.A.1)
0

with 7' = T% 1% the bankruptcy time of the process X¥%1 and since v; (X%l) = 0 for X:%l
< 0.

For any 0 < = < v, let § = TY~%1% be the bankruptcy time of the process X¥~%1.2 We
notice that § < T and XY~%1® = X¥bha _ g for all 0 <t < § < T. Applying the dynamic
programming principle (DP), we then have

(9/\7’1)_
vly—z) > E / e PtdZ, + ¢ PONT) (vl (Xgﬂ:’l)l(KT1 + ’U()(Xgl_x’l)lngg)]
0

v
=

1

(9/\7’1)_
/ e PtdZ; + efﬂ(MTl)vg(Xfi’*m’l)lTlgg
0

(AT~ (TAT1)™
= F / e PdZy + e M Doy (X4 1 <7 | —E / e Pz,
0 ONT1
+ E [e—p(e/\ﬂ)vo(Xgl—x,l)1T1S9 _ e—p(TAn)vO(Xgl,l)lﬁgT} (4.A.2)

Notice that § — T as = goes to zero. Hence, by the continuity of vy and the dominated

convergence theorem, one can find 0 < §; <y s.t. for 0 < x < 7 :

E [e*P(Q/\ﬂ)UO(Xg;x,l)1T1§0 _ e*P(T/\ﬁ)fUO(Xﬂz{l,l)lTlST} > _g. (4.A.3)

We also have

(T/\Tl ) -
-E / e Ptdz,
0

AT1

Z —E [Z(T/\Tl)_ - ZG/\’H]

From the dominated convergence theorem, one can find 0 < do < y s.t. for 0 < & < J9 :

(T/\7'1)7
/ €_ptdZt
0

AT

—E

9
> —= 4.A4
> - (4.A.4)



138 CHAPTER 4. MIXED SINGULAR/SWITCHING CONTROL PROBLEM

Plugging inequalities (4.A.3]) and (4.A.4)) into (4.A.2)), we obtain for 0 < x < min{dy, J2}

(Tl/\T)7 9
/ e Pdz, + €_p(TlAT)vo(Xy’1)1ngT _ %€
0

vifly—z) > E 4 3

Using the inequality (4.A.1]), and recalling that v; is nondecreasing, this implies
0<wi(y) —uily — =) <e,

which shows the left-continuity of v1. By proceeding exactly in the same manner, we may
obtain for a given y > 0 and any arbitrary € > 0, the existence of 0 < § < y such that for
all 0 < x < 9,

0<wvi(y+z)—vi(y) <e

which shows the right-continuity of v;. a

Proof of supersolution property.

Fix i € {0,1}. Consider any T € (0,00) and ¢ € C?(0,00) s.t. T is a minimum of v; — ¢
in a neighborhood B.(Z) = (T —¢,T+¢) of T, T > ¢ > 0, and v;(T) = p(T). First, by
considering the admissible control @ = (Z,7,,n > 1) where we decide to take immediate
switching control, i.e. 7; = 0, while deciding not to distribute any dividend Z = 0, we

obtain
Ul(f) > Uifl(f — gi’lfl). (4A5)

On the other hand, let us consider the admissible control & = (Z ,Tn,n > 1) where we
decide to never switch regime, while the dividend policy is defined by Zy = n for ¢t > 0, with
0 <7 < e. Define the exit time 7. = inf{t > 0, X" ¢ B.(Z)}. We notice that 7. < T

From the dynamic programming principle (DP), we have

Te AR R .
p(z) = v(@) > E[/ @”dzﬁep““h)vxxzkh)]
0

v

T=N\h

TeNh R .
E[ /O P dZ, + e PR o X )]. (4.A.6)

Applying It6’s formula to the process e"’tgo(th’i) between 0 and 7. A h, and taking the

expectation, we obtain
. Te AR .
Bler i) = e@ B[ [ e gt L (X7
0

+E| > e Pp(X) — (X2 - (4.A.7)
0<t<7Ah
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Combining relations (4.A.6) and (4.A.7), we have
Te A . TeAh ~
B[ oo o] | [T eraz)
0 0

—E| Y e p(XT) —p(XI] | = o (4.A.8)
0<t<7-Ah

* Take first n = 0. We then observe that X is continuous on [0, 7- A h] and only the first
term of the relation (4.A.8) is non zero. By dividing the above inequality by h with h — 0,

we conclude that
(pe = Lip)(T) = 0. (4.A.9)

* Take now n > 0 in 1' We see that Z jumps only at t = 0 with size 7, so that

e[ e - o] —n- @ m - e@) 2o, @A
By sending h — 0, and then dividing by n and letting n — 0, we obtain
o'(T)—1>0. (4.A.11)
This proves the required supersolution property
min [(pp — Lip)(@), ¢’ (&) — 1,vi(T) — v1-(T — gi,1—i)] > 0. (4.A.12)
Proof of the subsolution property.
We prove the subsolution property by contradiction. Suppose that the claim is not true.

Then, there exists > 0 and a neighborhood B.(Z) = (T —&,T +¢) of T, T > & > 0, a C?
function ¢ with (¢ — v4)(Z) = 0 and ¢ > v; on B.(Z), and 1 > 0, s.t. for all x € B.(T) :

pp(x) — Lip(x) >, (4.A.13)
ox)—1 >n, (4.A.14)
vi(x) —vic1(x —g,,,) > (4.A.15)

For any admissible control o = (Z,7,,n > 1), consider the exit time 7. = inf{¢t > 0, Xf’i ¢
B.(z)}. We notice that 7. < T. Applying It6’s formula to the process e ?to(X"") between
0 and (7- A71)~, and by noting that before (7. A71)~, X** stays in regime i and in the ball
B.(T), we obtain

E e ) (X0, )] = e@ +E

(TeNT1)™

(TenT1)™ _ . _ .
/0 e (—pp(X[") + ﬁw(Xf’z))dt]

(TenT1)™ .
B[ iz
0

+E| > e Pp(X7) — (X (4.A.16)

0<t<TATy
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From Taylor’s formula and (4.A.14)), and noting that AXf’i =—AZ;forall 0 <t <7 ATq,
we have
P(XT) (X)) = AXP (X +2AXT)
< —(1+n)AZ (4.A.17)

Plugging the relations (4.A.13]), (4.A.14]), and (4.A.17) into (4.A.16)), we obtain
(TeNT1) ™ _ .

u(@) =pE > E / ez + e T (X )
O £

(TeANT1) ™

/ e Pldt

0

(TeNT1) ™
+nE / e Ptdz;| | .
0

(TeAT1)™ _ . - i
E / e Ptdz, + e P go(Xf’Z)lTscl +e M @(Xfiz)lngn
0 1

(TeAT1)™
+n | E / e Pdt
0

+E

v

(TeNT1) ™
+E / e_ptdZt
0

Notice that while Xff € B.(T), XZ" is either on the boundary dB.(Z) or out of B.(T).

However, there is some random variable ~ valued in [0, 1] s.t.

> . (4.A.18)

X0 = XM yAxT
= stf' —yAZ,. € IB.(T).
Then similarly as in (4.A.17]), we have
AXD) = (X7 < —4(1+n)AZ,. (1.A.19)

Noting that X = X&' + (1 — v)AZ,., we have

vi(XO) >y (X2 + (1 - 9)AZ,. (4.A.20)

Recalling that o(X ) > v;( X)), inequalities (4.A.19) and (4.A.20) imply

P(X, ) > 0i(X2) + (1+n)AZ,
Plugging into (4.A.18) and using (4.A.15)), we have

(TeNT1)™ . .
vi(z) 2 E [/ e MdZ + e (X0 ) <y + e Mo (X)) 1 <o,
0

TeATL (TeAT1)™
+ n E / e_ptdt + / e_ptdZt + e m 17’1§‘ra + ’76_pTE/\T1AZTE 17'£<‘r1
0 0

+E[e " AZ 1 or ] (4.A.21)
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We now claim that there exists a constant ¢, > 0 such that for any admissible control

E

Te ATY (TenT1)™
/ e Pldt + / e P dZy + e P <, + e PTNAZL oy | > cf4.A22)
0 0

The C? function ¥ (x) = ¢, [1 — (I_E)Q}, with

2

—1
. 2 1, €
0<e, Smln{<p+€ﬂi+620 ) ,2}.
satisfies
min{_p¢+£i¢+1al_¢,a —711‘1'1} = O’ on Ez—:(f)a (4A23)
v = 0, ondB.(7),. o
Applying 1t6’s formula, we then obtain
0<c,=1@) < E [e‘P(TE’\Tl)zp(XfT’zATI)_)]
TeAT1 (renT1)™
+E [ / e”tdt} + E / e Ptdz, (4.A.24)
0 0
Noting that ¢'(x) < 1, we have
BXPH — (X)) < (X5 - X)) =44z,
Plugging into (4.A.24)), we obtain
o Te\T1
0<¢, < E {e_ple(Xff)lTlng} +E [/ e_ptdt}
1 0
(TeNT1)™
+E / e PdZ| +E [ve PTAZ 1 ory] (4.A.25)
0

Since ¢ (x) <1 for all z € B.(T), this proves the claim (4.A.22)).
Finally, by taking the supremum over all admissible control «, and using the dynamic

programming principle (DP), (4.A.21)) implies v;(Z) > v;(T) +nc,, which is a contradiction.
Thus we obtain the required viscosity subsolution property :

min [(pp — Lip)(@), ' (@) = 1,0i(T) = vi-1(T — gi,i-1)] < 0. (4.A.26)
O

Proof of the uniqueness property.

Suppose u;, ¢ = 0,1, are continuous viscosity subsolutions to the system of variational
inequalities on (0,00), and w;, i = 0,1, continuous viscosity supersolutions to the system
of variational inequalities on (0, 00), satisfying the boundary conditions u;(07) < w;(0T),

1 =0,1, and the linear growth condition :

lui(z)] + |wi(z)] < C1 + Cax, VYa € (0,00), i =1,2, (4.A.27)
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for some positive constants C; and Cy. We want to prove that
u; <w;,  on (0,00), 1=0,1,

Step 1. We first construct strict supersolutions to the system with suitable perturbations
of w;, 1 =0,1. We set

hz(a;) :Ai+Bix+C'x2, x>0,

where
wpB1+Co?+1 C (B m\> C (B o\ n +
Ay = bl (Voo bl (A Lo 0 0
0 P +7\ ; +7\ ; +wo(07) + w1 (07),
3 g
A = Ag+ = Z
1 0+2g+)\a
2
BO = 3)31:2_’_77
A
1
C —_— Tg-

We then define for all v € (0, 1), the continuous functions on (0, c0) by :
w] = (1 —y)w; +~vhi, i=0,1.

We then see that for all v € (0,1),7 =0, 1:

wz(x) - wli(fﬂ - gi,l—i)

(1—7) [wi(z) —wi—i(z —g,,_,)] + 7 [hi(®@) — hii(@ —g,,_,)] |
> v [(2092‘,171‘ +Bi — Brg)r +Ai — A1 — ngl_i + Blfigm—i] )

’yg, i=0,1. (4.A.28)

v

Furthermore, we also easily obtain
hi(z)—1 = B;j+20z—-1>1. (4.A.29)
A straight calculation will also provide us with the last required inequality, i.e.

phz(a;) — ﬁzhz(m) > 1. (4.A.30)

Combining (4.A.28)), (4.A.29), and (4.A.30), this shows that w] is a strict supersolution of
the system : for i = 0,1, we have on (0, c0)

min {pwz(m) — Liw] (x), w]'(x) =1, w] () — w] | (z — gi1_i)| = ymin{l, g} =®.A.31)
Step 2. In order to prove the comparison principle, it suffices to show that for all 4 € (0, 1):

max  sup (u; —w,) <0,
{01} (0400)



APPENDIX A 143

since the required result is obtained by letting v to 0. We argue by contradiction and

suppose that there exist some v € (0,1) and i € {0,1}, s.t.

6 := max sup (u; —w))= sup (u; —w;)>0. 4.A.32
j€{0,1}(07+oo)( j —wj) ((HOO)( ) ( )

Notice that u;(z) — w] (z) goes to —oo when z goes to infinity. We also have hm+ ui(x) —
z—0

lim w] (z) < ~( lim w;(z) — A;) < 0. Hence, by continuity of the functions u; and w;,
z—0 z—0
there exists zg € (0,00) s.t.

0 = u;(z0) — w; (z0).
For any € > 0, we consider the functions
(I)E(x7y) = ul(x) - wZ(y) - ¢€($,y),
1 1
Pe(z,y) = Z’l“ — zo|* + %W -yl
for all x,y € (0,00). By standard arguments in comparison principle, the function ®.

attains a maximum in (z.,y.) € (0,00)2, which converges (up to a subsequence) to (xg,zg)

when € goes to zero. Moreover,

li |$€ - y£|2 o

im ———— =
e—0 £

Applying Theorem 3.2 in [19], we get the existence of M., N. € R such that:

0. (4.A.33)

(pé‘:ME) € J2’+Ui($5),
(QSaNS) € JQ’_w?(ys),

and
( ]\g z?r > < D?*¢c(ae,y:) + e(D*Plae, ye))?, (4.A.34)
where
Pe = Dype(xe,ye) = é(:ﬂs — o) + (22 — x0)3,
4 = —Dyde(ze,ye) = é(xa —Ye),
D?¢.(we,y) = < 3 __“Tf)z +: _1% ) .
€ £

By writing the viscosity subsolution property of u; and the viscosity supersolution property
(4.A.31) of w,, we have the following inequalities:

. 1 - 1
win () ~ (e = 00+ 02— 20)*) i = oM,
1

(5(:35 — ) + (e — x0)3> — 1, u((we) — ur—i(we — gmi)} < 0, (4.A.35)

. 1
min { o] ) = (o = ) = 507

i (ye) — w;1(xe - giﬂl_i)} > 0. (4.A.36)
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We then distinguish the following three cases :

* Case 1: ui(ze) — ur—i(ve — g,,_;) < 0in (4.A.35).

From the continuity of w; and by sending € — 0, this implies
ui(wo) < ur—i(wo —g,,_,)- (4.A.37)
On the other hand, from , we also have
wZ(ya) - w?—l(xe - gi,l—i) >0,
which implies, by sending € — 0 and using the continuity of w; :

wZ(xO) Z w;‘y—l(xo - gi,l—i) + 5 (4A38)

Combining (4.A.37)) and (4.A.38]), we obtain

0= UZ(xO) - w;y(xo) < ul—i(mo - gi,lfi) - wz—1(930 - gi,l—i) — 0,
S 0 — 55

which is a contradiction.

* Case 2 ((ze — ye) + (2 — 20)®) — 1 < 0 in (4.A.35)
Notice that by (4.A.36)), we have
1

g(we _ys) -1 > 57
which implies in this case

(2 — x0)® < —0.

By sending € to zero, we obtain again a contradiction.

*x Case 3 : pu;(xe) — (%(a@E —Ye) + (2 — a:o)3) i — %JQM€ < 0in (4.A.35)
From (4.A.36)), we have
1 1
pwi (ye) = —(ze = ye)pi = 50°Ne > 6,
which implies in this case

p (ui(ze) — w] (ye)) — piw= — m0)* — EGQ(ME — N.) < -4, (4.A.39)

2
From (4.A.34]), we have
1 3
502(M5 —N;) < 502(% —x0)? [1 + 3e(we — 20)] -
Plugging it into (4.A.39)) yields
3
p (ui(we) = w] (ye)) < pi(we — 20)* + 0™ (we — w0)* [1 + 3(we — 20)] = 0.

By sending ¢ to zero and using the continuity of u; and w;', we obtain the required contra-
diction : pf < —¢§ < 0. This ends the proof. O
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Appendix B : Proof of Proposition [4.3.3

C'! property
We prove in three steps that for a given i € 0,1, v; is a C! function on (0,00). Notice first
that since v; is a strictly nondecreasing continuous function on (0, c0), it admits a nonneg-

ative left and right derivative v/ () and v/ (z) for all z > 0.

Step 1. We start by proving that v/~ (z) > v/ (z) for all 2 € (0, 00).

Suppose on the contrary that there exists some zq such that v}~ (z¢) < v} (x0). Take then

some ¢ € (v, (2),v/" (2)), and consider the function
1 2
plx) = vi(wo) + a(x — x0) + 5 (z — @0)7,

with € > 0. Then z( is a local minimum of v; — ¢;, with ¢'(zg) = ¢ and ¢"(z9) = %

Therefore, we get the required contradiction by writing the supersolution inequality :

0_2 02

0 < pui(zo) — i’ (wo) — 7@"(960) = pvi(zo) — piq — 2

and choosing € small enough.

Step 2. We now prove that for i = 0,1, v; is C* on (0, 0)\S;.

Suppose there exists some zo ¢ S; s.t. ) (xg) > v/ (x0). We then fix some ¢ €

(vf(a:o), v} (20)) and consider the function

1
o(x) = vi(z0) + q(T — 70) — %(ﬁ — x0)?,
with & > 0. Then g is a local maximum of v; — ¢, with ¢'(z9) = ¢ > 1, ¢"(x9) = —%.

Since xo ¢ S;, the subsolution inequality property implies :
2

o
pui(zo) — pig + 5 <0,
which leads to a contradiction, by choosing ¢ sufficiently small. By combining the results

from step 1 and step 2, we obtain that v; is C'' on the open set (0, 00)\S;.

Step 3. We now prove that v; is C1 on (0, 00).
From Step 2, we have to prove the C' property of v; on S;. Fix then some x¢ € S; so that

vi(zo) = vi—i(xo — gi1—i). Hence, x¢ is a minimum of v; — v1—;(. — g;,1—i), and so

v} (20) — vy (%0 — gii—i) < v} (x0) — vy, (z0 — gia—i)- (4.B.1)

Now, from Lemma 4.4.3] 2o — ¢, 1—; belongs to the open set (0,00)\S1—;. From step 2, v1_;
is C1! on (0,00)\S1_;, and so vllti(xo — Gii—i) = v;:i(xo — gin—i). From 1} we thus
obtain

vl (z0) < vf(xo),
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which is the required result, since the reverse inequality is already satisfied from Step 1.

C? property
We now turn to the proof of the C? property of v; on the open set C; U D; of (0, c0).
Step 1. First, we prove that v; is C? on C;. By standard arguments, we check that v; is a

viscosity solution to
pvi(x) — Livi(x) =0, x€C;. (4.B.2)

Indeed, let T € C; and ¢ a C? function on C; s.t. T is a local maximum of v; — ¢, with v; (z) =
©(Z). Then, ¢'(z) = vj(T) > 1. By definition of C;, we also have v;(Z) > vi_;(x — gi1-4)
and so from the subsolution viscosity property (4.A.26)) of v;, we have

pp(T) — Lip(T) < 0.

The supersolution inequality for (4.B.2) is immediate from (4.A.12)).

Now, for any arbitrary bounded interval (x1,z2) C C;, consider the Dirichlet boundary

linear problem:

pw(z) — Liw(x) =0, on (x1,x2) (4.B.3)
w(z1) = vi(x1), w(ze) = vi(x2). (4.B.4)

Classical results provide the existence and uniqueness of a smooth C? function w solution
on (z1,z2) to (4.B.3)-(4.B.4). In particular, this smooth function w is a viscosity solution
to (4.B.2) on (z1,22). From standard uniqueness results for (4.B.3))-(4.B.4), we get v; =

w on (21, r2). From the arbitrariness of (21, x2) C C;, this proves that v; is smooth C2 on C;.

Step 2. Tt is clear that v; is C? on D;. We now prove that v; is C? on C; UD;, i.e. v; is also
C? on any point 29 € C; N D;. We need to prove that lim v”;(x) = lini v”i(x) = 0. We set
zlxy zlxg

xq = inf {z < xq, (z,20) C C; UD;}, xp = sup {x > xg, (xg,z) C C; UD;},

and we distinguish the three following cases :
* Case 1: (zq,20) C C; and [zg, ) C D;.
By definition of D;, we then have for all = € [z, x}), vi(x) = x — 29 + vi(zg). From the

viscosity supersolution property of v;, this implies
p(x — xo) + pvi(xo) — i >0, Va € (g, xp).
Hence, by sending = | xar , we obtain

pvi(xo) — pi > 0. (4.B.5)
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On the other hand, from the above step 1, we also know that v; is a classical C? solution

to the equation (4.B.2), and so
pvi(x) — Livi(x) =0, Vz € (24, 70). (4.B.6)

By sending z 1 z, and using the fact that v; is C on (0,00), in particular, v}(zy) =
vi(zg) = 1, we obtain the existence of v/ (z;) s.t.

02

—v"i(zy) = 0. (4.B.7)

pvi(To) — pi — 5

Plugging it into (4.B.5), we obtain v/ (zy) > 0 = v/(z§). Suppose now that v/(zy) > 0.
This leads to a contradiction since it would mean that v} is strictly non decreasing in a left
neighbourhood of zy, i.e. v] < v)(xg) = 1, which is impossible given the viscosity superso-

lution property. Therefore, v”(zq) exists and v” is continuous on z.

* Case 2 : (xa,xo] Cc D;NS; and (l’o,xb) c C;.

We show actually that this case is impossible. Indeed, we would have
vi(x) = v1i(x — gi,lfi) =z —x0 +vi(z0), VT € (24,0,

and so (xq — gi,1—i, To — gi1—i) C Di—;. Hence, from the viscosity supersolution property of

v; and v1_;, this would imply

pv1—i(xo — gii—i) — f1—i > 0, (4.B.8)
pvi(xo) — pi > 0. (4.B.9)

We then consider the functions w; and wq_; :

wilz) = x —xo + vi(zg), = > x0
! vi(x), z < o,
wii(z) = x — (20 — gin—i) + vi—i(®o — gi1—i), T > To — Gi1—i,
= v1—i(x), xr < X0 — Gil—i-

We now claim that (w;);ei1—4y are viscosity solutions on (0,00) to
min [pw;(z) — Lijw;(x), w)(z) — 1, wj(z) —wi_j(z —g,, ;)] =0, x>0, (4B.10)

Let us check the viscosity solution property of w;. Take some T € (0,00) and ¢ a C?
function s.t T is local minimum of w; — ¢ with w;(Z) = ¢(Z). If T < x¢, given the definition
of w; and noting that w; < v;, we obtain that T is also a local minimum of v; — ¢ with
v;(T) = ¢(T). From the viscosity supersolution of v; and observing that v;_; > wy_;, this

yields

min [pp(T) — Lip(@), ¢'(T) — L, ¢(@) —w1-i(T — g,,_,)] = 0.
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If £ > zg, we have

¢'T) = w(@) =1, (4.B.11)
¢'(T) < wi(T) =0, (4.B.12)
’(UZ(T) = wl,i(T). (4.B.13)

From (4.B.11)-(4.B.12)), we have after straightforward calculation :

pp(T) — Lip(T) 2 po(T) — pi = pvi(T) —pi = 0, (4.B.14)

by (4.B.9). Hence, from (4.B.11)), (4.B.13)), and (4.B.14)), we obtain

min [/OSO(E) - Ei@(f)v (Pl(f) -1, (p(f) - wl—i(f - gi,l—i)] > 0,

which proves the viscosity supersolution property of w; to .

We now turn to the viscosity subsolution property of w;. Let T € (0,00) and ¢ a C? s.t
T is a local maximum of w; — . If T < z¢ and using the definition of w;, we obtain the
required desired subsolution property. If T > zp, we have ¢/(T) = w}(Z) = 1, and so the

desired subsolution property.

By proceeding in the same manner, we also obtain that wj_; is a viscosity solution to
(4.B.10). Hence, wj, j = 0,1, satisfy the same boundary constraints and linear growth
as vj, j = 0,1, which proves, by uniqueness property, that w; = v;, j = 0,1. This is a
contradiction given the definition of w;.

x Case 3: (xq, 0] C D; with (24, 20] NS; = 0, and (z9, ) C C;.
In this case, we distinguish two separate possibilities:

- (1) w0 + g1-ii € S1-i

Let x € (x4, 0], we have

vi(x) = x—x0+vi(zo),
vi—i(zo + g1-ii) = xo—x+vi—i(x + gi1-i), (4.B.15)
> xo—x + vi(x) (4.B.16)

But we also have v;(z9) = vi—i(zo + g1—i,i). As such, the inequalities in (4.B.15)-(4.B.16)

become equalities, and

Vi4i(@ + g1-ii) = ¢ — xo + vi—i(zo + g1-i,i)

e (zq+ 9144, T0 + g1-ii] C D1
We now consider the following functions:

wiz) = x —xo + vi(z), > xp
’ B Ui(x)v x < o,
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w_i(z) = x — (2o + g1-i4) +v1-i(To + g1-ii), T > To+ G1-iis
o Ul*i(l‘)’ <20+ g1-ii-

By the same arguments as above, we obtain that (w;),—o,1 are viscosity solutions to
min [pu;(z) — Liuj(x), uwi(x) — 1, uj(x) —uy—j(z — 9,._,)] =0, Vx>0,

and due to the uniqueness property, w; = v; for ¢ = 0,1, which is a contradiction given the
definition of w;.

- (ii) o + g1-ii & S1—i

Let z1 = inf{z > z9 + g1—i, = ¢ S1—;}. By the continuity of (v;)i—0,1, we have 1 > zg +
g1—i ;- Recall that v;(x) = z—xzo+v;(z0) for all z € (24, xo) C D;. Moreover, since zg ¢ S;, we
have v;(z9) > v1—i(x0—¢i,1—i). Consider the function h(x) = x—zo+vi(xo) —vi—i(z—gi1-i)
so that h(xp) > 0. Let xo = sup{x > xo,h(z) > 0}. Given the continuity of h, we have

xg > x0. We fix . = min{z; — g1, x2}. We now consider the following functions:

() — x —x0+vi(z0), x € (20,%c),
wi(@) { vi(x), z ¢ (xo, ),

Wl—g = VUl—y, on (0,00)

We may easily prove that (w;);—o,1 are viscosity solutions to (4.3.21), which implies from

uniqueness property that w; = v;, j = 0,1, a contradiction.

We therefore conclude that v; is C? on C; U D;, which ends the proof. O
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Chapter 5

Competitive market equilibrium
under asymmetric information

In revision with Decisions in Economics and Finance.

Abstract : This paper studies the existence of competitive market equilibrium under asym-
metric information. There are two agents involved in the trading of the risky asset: an
“informed" trader and an “ordinary" trader. The market is competitive and the ordinary
agent can infer the insider information from the risky asset’s price dynamics. The definition
of market equilibrium is based on the law of supply-demand as described by a Rational
Expectations Equilibrium of the Grossman and Stiglitz (1980) model. We show that equi-
librium can be attained by linear dynamics of an admissible price process of the risky asset

for a given linear supply dynamics.

Keywords: insider trading, stochastic filtering theory, equilibrium, utility maximization.
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5.1 Introduction

In recent years, financial mathematicians have been focusing on the model of asymmetric
information. Asymmetric information arises when agents in the market do not have the same
information filtration. They generally make an assumption regarding the extra information
that is accessible uniquely by the “informed trader” or the “insider trader”. This extra
information could be, for example, the future liquidation price of the risky asset. Using
the results of enlargement of filtration first developed by Jeulin [44] and then Jacod [42],
many papers such as those of Pikovsky and Karatzas and Grorud and Pontier [33] focused on
solving utility maximization problems in a security market where two investors have different
information levels. In these papers, the security prices are assumed to evolve according to an
exogenous diffusion. In Hillairet [39], different types of asymmetric information, including
“initial strong”, “progressive strong” and “weak” information are studied. However, the
drawback of the above models is that “ordinary” or “uninformed” agents cannot infer the

insider information.

On the other hand, in Kyle [48] and Back [3], the market is competitive and the ordinary
agents can obtain feedbacks from the market regarding the insider information. There
have also been several other studies, published in the economic literature, on the impact
of asymmetric information on stock price. The first such paper is the seminal paper of
Grossman-Stiglitz [34], followed by those of Glosten-Milgrom [32]. In Biais-Rochet [§], we
may find a very insightful survey of the literature on these areas, including those cited above.
In [34], the agents are competitive and market is Walrasian, i.e. price equals supply and
demand. The only exogenous part of this model may come from irrational traders, often
called noise traders. In [8], the objective is to analyse the price formation in a dynamic

version of Grossman and Stiglitz model where stochastic control techniques can be used.

In the same framework, in our paper, we consider a financial market consisting of two
traders, an “ordinary” agent and an “informed” agent and noise traders. While the ordinary
agent can only observe the risky asset’s price dynamics, the “informed” agent has also access
to the total supply of the risky asset. As in Back [3], based on the observation of risky asset’s
price dynamics, “the ordinary” agent can infer the additional information of the “informed”
agent. The purpose of the study is to see whether an equilibrium condition can be attained
by linear dynamics of an admissible price process of the risky asset for a given linear supply
dynamics. Like in the Grossman-Stiglitz model, the market is Walsarian, i.e. the agents

involved in the market are competitive agents.

Our studies show that the existence of linear competitive market equilibrium under
asymmetric information is directly related to the existence of solution to some associated
nonlinear equations. Indeed, the equilibrium condition can be explicitly expressed in the

form of a system of nonlinear equations. However, we may not determine whether the asso-
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ciated system of nonlinear equations leads to a nonempty set of solution. We nevertheless
find that in the particular case where the total supply is a Brownian motion, the equilibrium

can be reached and we explicitly obtain the linear dynamics of an admissible price process.

The plan of the paper is organized as follows. We define the model and the equilibrium
condition in section [5.2] while in section we use stochastic control techniques and
filtering theory to solve agents’ CARA optimization problem and then determine their
optimal trading portfolio. In section [5.4] and section [5.5] we express the characterization of
a potential equilibrium price and explicitly calculate the linear dynamics of an admissible

price process in the particular case where the total supply dynamics is a Brownian motion.

5.2 The model

We consider a financial market with a risky stock and a risk-free bond. The risk-free interest
rate is assumed to be zero. We are given a standard Brownian motion, W=(W¢),c[o,7) on
a filtered probability space (Q, F,F = (F)icpo,1], P) satisfying the usual conditions. 7" is a

fixed time at which all transactions are liquidated.

5.2.1 Information and agents

There are two rational competitive traders:

e The first one is an “informed” trader (insider trader), agent I, whose information is
described by the filtration, F, as he can observe both the risky asset price S = (.S})
and the total supply of the risky asset Z = (Z;). He has a Constant Absolute Risk
Aversion (CARA) with coefficient n, > 0, i.e. his utility function is equal to U, (v) =

- eXP(—mU)-

e The second trader is an ordinary economic agent, agent O, whose information is only
given by the price observation. We denote by F° the structure of his filtration. He
also has a Constant Absolute Risk-Aversion (CARA) with coefficient 7, > 0, i.e. his

utility function is in the form : U, (v) = — exp(—n,v).
We assume that the supply Z of the risky asset is a gaussian process, governed by the s.d.e:
dZy = (a(t)Zy + b(t)) dt + v (t)dWy, Zy = 29 € R, (5.2.1)
where a, b, and v are deterministic continuous functions from [0, 7] into R.

5.2.2 Admissible price function

The purpose of this study is to find out whether an equilibrium condition can be attained

by linear admissible price processes of the risky asset for a given linear supply dynamics as
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defined in (5.2.1). An admissible price process under (P,F) is a process in the form of :
dsS; = Si[(a(t)Z+ B(t))dt +o(t)dWy], 0<t<T (5.2.2)

where «a and (3 are continuous functions from [0,7] into R, and o a continuous function
from [0,7] into R% . We define S as the set of admissible price processes of risky asset.
The purpose is therefore to determine all set of functions (a, 3,0), i.e. admissible price

processes, satisfying an equilibrium condition.

5.2.3 Equilibrium

Given an admissible price process S, a trading strategy for the “informed” agent (resp.
the ordinary agent) is a F (resp. FO)—predictable process X integrable with respect to S.
X = (X;) represents here the amount invested in the stocks at time ¢t. We denote by A(F)
(resp. A(FO)) this set of trading strategies, X = (X;)o<t<7, which satisfy the integrability

criteria:
T
/ | X¢|2dt < 00, Pa.s. (5.2.3)
0

Each rational agent’s goal, with its own filtration, is to maximize his expected utility
from terminal wealth. We now formulate the definition of market equilibrium based on the
law of supply-demand as described by a Rational Expectation Equilibrium of the Grossman
and Stiglitz model.

Definition 5.2.1 A market equilibrium is a pair (XI,XO) and an element S € S such
that :

(i) X" is the solution of the insider agent’s optimization problem :
T .
ds,
UI U, —|—/ Xt = L s
0 St
where v, € R 1is the initial capital of the insider.
(i) X is the solution of the ordinary agent’s optimization problem :

T dS
UO (UO +/ Xt ~ t s
0 St

where v, € R is the initial capital of the ordinary agent.

max [E
XEA(F)

max E
X€A(FO)

(#ii) the market clearing conditions hold :
XI+X = Z, 0<t<T.

If (XI,XO, S”) 1s a market equilibrium, then we say that S is an equilibrium pricing rule.



5.3. CARA UTILITY MAXIMIZATION 157

5.3 CARA utility maximization

In this section, we determine the optimal trading portfolio of the ordinary and insider agents.

5.3.1 “Informed” agent’s optimization problem

Given an admissible price process S, the self-financed wealth process of the investor with a

trading portfolio X € A(F) has a dynamics given by :

dVy = X;—
= X [Oé(t)Zt + ﬁ(t)] dt + XtO'(t)th.

The investor with initial wealth v, and constant risk aversion 7, > 0 has to solve the

optimization problem :

\71 (UI) = sup E [_ €xp (_TZIVT)] . (531)
XeA(F)

We consider the related dynamic optimization problem : for all (¢,v,2) € [0,7] x R x R,

Jj(t,’l),Z) = sup E[_ exp (_771VT) “/t = U7Zt = Z} ’ (532)

XcA(F)
so that
I, (v;) = J; (0,0, 2,).
The nonlinear dynamic programming equation associated to the stochastic control problem
(15.3.2) is :
0J,

5 (t,v,2) —i—sggﬁle(t,v,z) = 0, (5.3.3)

together with the terminal condition J, (T, v, 2) = —exp(—n,v). Here L£* is the second order

linear differential operator associated to the diffusion (V, Z) for the constant control X =

T
. aJ, 0J, 1, 0%,
L], = zlaz+f] 50 + [az + b] 5 T35 5

o 0%J, +1 502 J,

Tovaz T 27 a2

We make the logarithm transformation:
J, (t,v,z) = —exp|—n,v — ¢(t, 2)].
Then the Bellman equation (5.3.3)) becomes:

87¢
0z

0
ﬁ—i-ﬁqu—l—sup

1
Y Sup nx(az+3) — =

2 N, xo + 7y

2
] =0, (5.3.4)
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together with the terminal condition :
o(T,z) = 0, (5.3.5)

Here Lz is the second order linear operator associated to the diffusion Z :

Lz¢ = (az+ b)gﬁ + 1’72 22(5
The maximum in is attained for :
i) = [a(t)z + 80 — o)) 2, z)] . (5.3.6)
n,o 0z
Substituting into gives :
‘Z‘f+£z¢+ L <az+@—m‘;f>2— Loy g‘j) Y (5.3.7)

This is a semi-linear equation for ¢ but with a quadratic term in a—¢ We are therefore
z

looking for a quadratic solution :

¢(t, 2) = P ()2 +Q, (t)z + x, (t)

2

where P,, @),, and X, are deterministic functions valued in R. By substituting and cancelling
quadratic terms in z, we see that (5.3.7) holds iff P,, @, and x, satisfy:

0 = PI+2{a7%} P,+% (5.3.8)
PI(T) = 0
0 = Q, + [a - B} Q,+ % @ —~yoP,] +bP, (5.3.9)
o o
QI(T) = 07
2
X](T) = 0.

By solving these differential equations, we obtain:

P(t) = exp [2 /tT (a— ?) (u)du] (5.3.11)

/tT ;f(s) exp [—2 /ST (a - %) (u)du] ds,

Q,(t) = exp [/tT (a - B) (U)dU} (5.3.12)



5.3. CARA UTILITY MAXIMIZATION 159

/tT [f?(a —Po)+ P,b] (5) exp [/T (a1 (u)du] ds,

T 32 a
x; () = /t {ﬂ +(b— 75)@] + ;72]31] (u)du. (5.3.13)

202

The main result of this section can then be stated as follows:

Theorem 5.3.1 The value function for problem (5.3.2) is equal to:

J,(t,v,z) = —exp <—771U - %ZQPI (1) —Q,(t)z — X,(t)) ,

where P, Q, and x, are expressed in (5.3.11), (5.3.12), and (5.3.13)). Moreover, the optimal
trading portfolio for problem (5.3.1) is given by X} = 2 ,(t, Z;), 0 <t < T, where &,(t, 2) is
defined on [0,T] x R by :

z,(t,z) = @, (t)z+ H, (1), (5.3.14)
1
B0 = o la) o). (53.15)
1
H,(t) = o0 [6(t) = a(t)7(1)Q, (1)] - (5.3.16)
Proof. See Appendix 1. O

5.3.2 Ordinary agent’s optimization problem

We now focus on the ordinary agent’s optimization problem. To do so, we need to decompose

the price process (Sy); in its own filtration F° = (fto)te[(),T]; which is generated by the price
O

process, F, = o(Ss,s < t).

We define:
Z = E(ZI7),
T(t) = ]E[(Zt—Zt)ﬂ.

From Kalman Bucy filter results (see Theorem 10.3 in [49]), Z; and I'; are solution of the

system of equations:

{ C?Zt = |a(t)Z + b(t)]1 dt + iy lo(t)y(t) + agt)F(t)] awy, (5.3.17)

I'(t) = 2at)0(t)—

where W° a (P, FO)—Brownian motion, the so-called innovation process.
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We may obtain explicitly the expression of I'(¢) by solving the Riccati equation (|5.3.17))
(See page 4-7 [60]):

exp (— fg [—2a(s) +2 (S)(a)(s)} ds)
1+T(0 fo z exp ( fo [ )+ QV(U)(%“)} du) ds.
The dynamics of an admissible price process under (P, FO) is then given by :

s, = S [(a(t)Zt + ﬁ(t)) dt + a(t)thO} . (5.3.18)

I(t) = T(0)

The equivalent optimization problem for the ordinary agent with an initial wealth v, and
constant risk aversion 1, > 0 is :
J,(v,) = sup E[—exp(—n,Vr)]. (5.3.19)
XeAF°)
We consider the related dynamic optimization problem : for all (¢,v,2) € [0,7] x R x R,
J,(tv,z) = sup E[—exp(—n, V)| Vi =v,2Z; = 2], (5.3.20)
XeA®F©)
so that 7, (v,) = J,(0,v,, 2,)-
Using the same arguments as in Theorem [5.3.1] we obtain the following results for ordinary

agent:

Theorem 5.3.2 The optimal trading portfolio for problem (5.3.19)) is given by X’to =2, (t, Zt),
0<t<T, where Z,(t,2) is defined on [0,T] x R by :

Bo(t2) = ®(t)z+ Hy(t), (5.3.21)
1 _

P, () = m[a(t)—a(th(ﬂpo(t)], (5.3.22)
1 _

H, () = m[ﬁ(t)—a(t)v(t)%(t)], (5.3.23)

P.t) = exp [2 /t ! (a— 7{?) (s)ds}
/tT jzeXp [—2 ST (a - 7:) (u)du} (s)ds, (5.3.24)
Qo(t) = exp [/tT <a - 7:) (s)ds] /tT [0’% o — P yo] + P b]
T

exp [— / <a _ 7;‘) (u)du} (5)ds, (5.3.25)

1
5y = —loy+al]. (5.3.26)
o

with
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5.4 Characterization of the equilibrium price

In this section, we give a characterization of a market equilibrium as defined in Definition
[.2.1] Using the optimal strategy of each agent determined in the previous section, we find

that the equilibrium condition can be explicitly expressed as a nonlinear system.

Theorem 5.4.1 The equilibrium condition is equivalent to the following nonlinear system

of at most three equations with three unknown variables, o, 3, and o :
oo B() = a(OT(HQ0 (1)) + - [B(1) — o ()1 (DQ, ()] = 0,
m%%) [a(t) —a(t)y(t) P, (t)]N— 1 = 0, (5.4.1)
[a(t) — o(@)7(t) P, (t)] Var(Zy) =
Proof. The equilibrium pricing rule is given by

X, (t, Z) + X (t, Z;) = Zi. (5.4.2)

To simplify the calculations, we assume w.l.o.g. that the gaussian process (Z; — Z, Zt) is
centered. The equilibrium (5.4.2)) is equivalent to

E[Xl(t7 Zt) +Xo(taZt)] = E[Zt]’ (543)
Var [X, (t. Z) + X (t, Zt)} = Var(Zy). .
Using (5.3.14)) and ([5.3.21)), the equilibrium condition becomes:
Ho(t)+H1(t) = 0,
(®,(t) = 1)I(#) =0 (5.4.4)
(®,(t) +P,(t) —1)Var(Z;) = 0.
Since I'(t) > 0, the above equilibrium condition is also written as:
Hy()+ H,(t) = o,
o (t)—1 ) = 0, (5.4.5)
o, (t)Var(Z;) = 0.
and the required results are obtained by substituting the expression of H,,H,, ®,, and ®,.
O

Remark 5.4.1 While the explicit expression of the equilibrium condition is in the form of
a nonlinear system, we do not know whether this system leads to a nonempty set of solution.

Recall that Q,, @,, P,, P,, and 7 are dependent on the unknown variables «, (3, and o,

see (5.3.11)), (5.3.12), (5.3.24)), and (5.3.25).

Remark 5.4.2 In the case of a non-degenerated model, i.e. Z # 0, the equilibrium is

equivalent to the following system:

P [B(1) — o (FQ0 (D] + 2 [B(1) — oy (1Q, ()] = 0,
o [a(t) — o) (OP, (1) — 1 0,
a(t) — o()7(t) P, (t) — 0.
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5.5 Equilibrium in the case: Z;, = W,
We take the particular case of Z; = Wy, ie. a(t) = b(t) = 0and y(t) = 1.

Proposition 5.5.1 In the case of Zy = Wy, the equilibrium is reached and the linear dy-

namics of an admissible price process is given by

ds, = Sila(t)Zdt + o(t)dWy]. (5.5.6)
with
L 1) ()
o(t)y = m [,u(t)+3 e <1 M?} >], (5.5.7)
alt) = o(t)u(), (5.5.8)
where
Hr

t) = ———  and 15 any arbitrary positive constant.
1(t) T4 o (T 1) i y yp

Remark 5.5.3 The equilibrium condition does not depend on the CARA coefficient of the
ordinary agent. In economic sense, this means that the “informed” agent defines his trading
strategy in order to maximise his expected utility from terminal wealth and imposes his

optimal trading strategy upon the ordinary trader.

a(t)

Proof of proposition |5.5.1] Let us set u(t) = Ok From ([5.3.26), (5.3.17)), and (5.3.8)),
we obtain :
) = 1+p®00),
F.(t) = 1-[1+u@®)@)? (5.5.9)
Po = —p(t)* +2pt)[1 + u(t)L(t)]Po(t).
While the first relation in becomes:
dZ, = [1+p@T@®))dW; . (5.5.10)
Thus
~ t
Var(Z;) = / [1+ u(s)T(s))%ds. (5.5.11)
0
The equilibrium pricing rule becomes :
1
- [6(t) = o (@) (1 + u(O)T'(#))Q0 (1))
1
o [6(t) —o@)Q, ()] = 0, (5.5.12)
1
UIU(t) [M(t) - PI (t)] -1 =0, (5513)

[u(t) = (1 + w(OT) B, (0] Var(Zy) = 0. (5.5.14)
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The latter relation is equivalent to, for all t € [0,T7:
ult) — (1+ pOT) P, () = 0, (5.5.15)
or
Var(Z) = 0, Yse [0, (5.5.16)

We show that the degenerated case ([5.5.16]) cannot happen. Assume that there exists ¢ such
that the latter equation (5.5.16)) is satisfied, then by using (5.5.11)), we have

1+ u(s)I'(s) = 0,Vse [0,¢.
As T’y = s, we obtain:
1
p(s) = —3 Vs € [0,t]. (5.5.17)

We recall that p = %, as such, a straight calculation gives us the expression of a and o in the

interval [0, t], whose values would explode at time 0, leading to non admissible price function.

As such, relation ([5.5.14]) is equivalent to
p(t) — (1 +p@I@)) P, (t) = 0, (5.5.18)

By deriving any of the latter equation and using the expressions of ' and PO in 1D , We

obtain the following equation for u:

a(t)
o = b te[0,T] (5.5.19)
As such,
() ! (5.5.20)

T (T )

which raises no problem of definition in the case of 1, > 0.

From equation ([5.5.12) and (|5.5.13)),we obtain the explicit expression of o and 3, and there-
fore a.

o L2 ()
o(t) = o u(t) + 5 - (1— = )] (5.5.21)
a(t) = o(t)u(t) (5.5.22)
gty = 0 (5.5.23)
where pu(t) = #(TT—t) (5.5.24)

We check that when p, > 0, p and o are positive for ¢ € [0, 7. O
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Appendix: Proof of Theorem [5.3.1

We set:

Bt2) = SR + Q02+ x, (1)
g(tavv'z) = _nzv_¢(t7z)

Where P,, Q,, and x, are expressed as above [see(5.3.11)), (5.3.12]), (5.3.13))]
By differentiating, we obtain:

99 _ 00 09 _ 99 _ 99

ot otov . Moz "o
‘ng = —771(042 + ﬁ)$ - £z¢

By applying Ito’s formula to g(t, Vi, Z;) for any X € A(F) between ¢ and T, we obtain :

T
0
9TV, Zr) = g(t,Vi, Ze) + / 9+£XUg) (u, Vi, Zy)du
t

(
+ /tT(agXU (9w v 2,08,
(

LS nIX(aZJrB)) (4, Zu)du

# [ (vt - Gz am,

T
= g(t, Vi, Zy) —/t <gf + Ly¢+n,Xu(aZ + B)

1 8¢
—Z1n X -
2 77[ O-+’Yaz

2
) (u, Zy)du

[ (nxeot + GO 20w am,

_1/T 09|’
2 /i

n,Xo + 5, (u, Zy,)du. (5.A.1)
We now consider the exponential local (P, F)-martingale for any X € A(F) :

& = exp{— /t ' <771Xua(u) + (Z—f)(u, zm(u)> iB,
2

(u, Zu)du.} .

0
n,Xo + ’y£

From PDE (5.3.4)) satisfied by ¢, relation (5.A.1)) yields for all X € A(F) :

X
exp (9(T, Vi, Z1)) = exp(g(t, Vi, Zy)) 2L (5.A.2)
t
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Since g(T, v, z) = —n,v and £~ is a (P, F)-supermartingale, we obtain by taking conditional
expectation in the previous inequality :
El—exp(—n,Vr)|Vi=v,Yi=y] < —exp(g(t,v,2)),
for all X € A(FF) and so :
Jr(t,v,z) < —exp(g(t,v,z)). (5.A.3)

Consider now the control strategy X; = Z(t, Zy), 0 <t < T, where & is defined in (5.3.6)
or more explicitly in (5.3.14). Then, we clearly have X € A(F), and we have now equality
in (5.A.2)) since z attains the supremum in the PDE (5.3.4)) :

X
exp (9(T. Vi Zr)) = exp(g(t,vt,zm.? (5.A.4)
Observe that :
m X ) + (00w Zr () = Zuln (o) + P, () +

n, H(u)o(u) + @, (u)y(u).

Since Z is a Gaussian process, it follows that for some é > 0, we have :

2
exp (5 (u, Zu))

Therefore by Lipster, Shiryaev (1977, p.220), §X is a (P,F)-martingale and so by taking
conditional expectation in (5.A.4), we have :

9¢

E 1, Xyu0 + 7&

< oQ.

E[—exp(—mVT)| Vi=v,2 = Z] = —€eXp <g<t7vvz)>7

for the wealth process V' controlled by the trading portfolio X. This last equality combined

with (5.A.3) ends the proof. O
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RESUME : Nous étudions quelques applications du controéle stochastique aux options réelles
et au risque de liquidité. Plus précisément, dans la premiére partie, nous nous intéressons a
un probléme de sélection du portefeuille optimal sous un modéle de risque de liquidité, puis
dans la deuxiéme partie, a deux options réelles: un probléme de changement de régime et
un probléme couplé de controle singulier et de changement de régime pour une politique de
dividende avec investissement réversible, et enfin, dans la derniére partie, a ’existence d’un
équilibre dans un marché compétitif sous asymétrie d’information. Dans la résolution de ces
problémes, surtout dans les deux premiéres parties, des techniques de controle stochastique
seront utilisées. L’approche typique consiste & exprimer le principe de la programmation
dynamique lié a chaque problématique afin d’obtenir une caractérisation par EDP des fonc-
tions de valeur. Par cette approche, nous montrons, dans le probléme de risque de liquidité
et les deux options réelles, que les fonctions de valeur correspondantes sont 'unique solu-
tion du systéme d’inégalités variationnelles d’HJB associé. Dans chaque probléme des deux
premiéres parties, on peut obtenir les solutions, en particulier les controles optimaux, soit
d’une maniére explicite, soit par une méthode itérative.

MoTs-CLES : sélection de portefeuille, controle impulsionnel, risque de liquidité, controle
singulier, changement de régime optimal, solution de viscosité, inégalités variationnelles,
principe de “smooth-fit”, information asymeétrique, équilibre, théorie du filtrage.

DiISCIPLINE : MATHEMATIQUES

ABSTRACT : We study stochastic control applications to real options and to liquidity risk
model. More precisely, we investigate, in the first part, a model of optimal portfolio selection
under liquidity risk and price impact, then, in the second part, two real option problems:
an optimal switching problem and a mixed singular/switching control problem for a divi-
dend policy with reversible investment, and finally, in the third part, a competitive market
equilibrium problem under asymmetric information. In the resolution of these problems,
stochastic control techniques will be intensively used. The typical approach consists in ex-
pressing the dynamic programming principle related to each case, in order to obtain a PDE
characterization of the value functions. Based on this approach, we show, in the liquidity
risk problem and both real options, that the corresponding value functions are unique so-
lution to the associated system of HJB variational inequalities. In each problem of the first
two parts, we obtain the solutions, in particular the optimal control, either explicitly or via
an iterative method.

KEY WORDS : portfolio selection, impulse control, liquidity risk, mixed singular/switching
control problem, viscosity solution, optimal switching, variational inequalities, smooth-fit
principle, asymmetric information , stochastic filtering theory, equilibrium.
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