

17 mai 2006 Habilitation à diriger des recherches

Alice Sinatra

I DE L'OPTIQUE QUANTIQUE AUX CONDENSATS DE BOSE-EINSTEIN

Π

CONTRIBUTION A L'ETUDE DU POMPAGE OPTIQUE DE L'HELIUM 3 POUR DES APPLICATIONS MEDICALES

Etudes à Milan Thèse de Laurea en Physique en 1994. Thèse de doctorat 1997, directeur : Luigi Lugiato

Bourse Marie Curie a l'ENS 1997-1999 Groupe Atomes Froids, Laboratoire Kastler Brossel

Maître de Conference au Collège de France 1999-2000 Chaire Physique Atomique de Claude Cohen-Tannouji

Maître de conférence Université Paris VI 2000-présent Groupe Fluides Quantiques, Laboratoire Kastler Brossel Tesi de Laurea : D. Zibetti, M. Guerzoni

Stages de Magistère : H. Nguyen, P. Diener

Stage de DEA : M. Abboud, G. Reinaudi

Thèse de Doctorat : M. Abboud

Stage durant le doctorat : E. Witkowska

TRAVAUX

Optique quantique

Génération d'états comprimés du champ Mesures Quantiques Non Destructives (QND) en optique Compression de spins nucléaires

Gaz dégénérés

Dynamique de phase dans les condensats de Bose-Einstein Dynamique spatiale turbulente dans un mélange de condensats Formalisme de Wigner pour un gaz dégénéré à T≠0 Formation d'un réseau de vortex Expériences de piégeage et refroidissement d'atomes (⁶Li+⁷Li, He*)

Pompage de l'hélium pour des application médicales

Expériences et modélisation du pompage optique en champ fort

Optique quantique

Génération d'états comprimés du champ Mesures QND réalisées à IOTA Corrélations de deux modes près des conditions EIT Compression de spins nucléaires Projets

Gaz dégénéres

Dynamique de phase dans les condensats de Bose-Einstein
Dynamique spatiale turbulente dans un mélange de condensats
Formalisme de Wigner pour un condensat à T≠0
Formation d'un réseau de vortex
Expériences de piégeage et refroidissement d'atomes
Projets

Pompage de l'hélium pour des application médicales Expériences en champ fort et modélisation Projets

Ligne de recherche (1)

"Contrôle des fluctuations quantiques"

SYTEMES ETUDIES ET DEMARCHE

•Le système évolue vers un état stationnaire "classique" $\langle AB \rangle \longrightarrow \langle A \rangle \langle B \rangle$ Traitement *linéarisé* des fluctuations des variables autour de l'état stationnaire $\delta A = (A - \langle A \rangle)$

•Les propriétés quantiques se manifestent dans les moments d'ordre >1 des fluctuations : les variances < $(\delta A)^2$ >

•Les covariances $< \delta A \delta B >$ renseignent sur les corrélations quantiques entre différents modes du champ

Contrôle des fluctuations quantiques de la lumière

Génération d'états comprimés du champ électromagnétique, Corrélations quantiques entre 2 modes du champ EM Mesures quantiques non destructives en optique Préparation d'un état quantique

Contrôle des fluctuations quantiques des atomes

. . .

Etats comprimés de spins Transfert de corrélations quantiques champ --> atomes, Mémoire quantique Corrélations non locales entre échantillons atomiques Mesure QND des fluctuations d'intensité d'un faisceau cohérent

Principe : "Lire" les fluctuation d'intensité d'un faisceau (signal) par mesure directe des fluctuation de phase d'un deuxième faisceau (mètre)

Réalisation avec des atomes froids en cavité (IOTA) :

Modélisation réaliste

Identifier le meilleur point de fonctionnement dans l'espace des paramètres
Résultats théoriques (semi-classiques et quantiques) directement comparables à l'expérience

THEORIE ET EXPERIENCE

Expérience: Vs|m = 0.36 \xrightarrow{s} QND \xrightarrow{s} \xrightarrow{m} QN

 $\mathbf{Cm} = \mathbf{0.60}$

Cs = 0.97

CONTRÔLE DES FLUCTUATIONS ATOMIQUES

Peut-on utiliser les spins nucléaires de l' ³He pour l'information quantique ?

Exploiter les très longs temps de cohérence des spins nucléaires $T_1 > 300$ h mesuré

Lumière comprimée

Spins comprimés mémoire quantique

Lumière comprimée

Correlations non locales entre deux spins macroscopiques

Expérience d'intrication de spins sur les alcalins,

Polzik, Nature (2001) : 10^{12} atoms $\tau = 0.5$ ms

Etats comprimés du champ et états comprimés de spin

Un mode du champ EM

Y=i(a[†]-a) $X=(a+a^{\dagger})$

Etat coherent $\Delta X = \Delta Y = 1$

Etat comprimé

<u>∆</u>X >1 $\Delta Y < 1$

Transfert de corrélations quantiques au spin nucléaire

Transfert de compression de spin au métastable ou au fondamental

L'échange tend à égaliser les fonctions de corrélations $\langle s_i s_j \rangle = \langle i_i i_j \rangle$ Quand l'échange est dominant $(\gamma_m \gg \Gamma)$

$$\left(\frac{\Delta I^2}{N/4} - 1\right) = \frac{N}{n} \left(\frac{\Delta S^2}{n/4} - 1\right)$$

Une faible compression dans le métastable maintient une forte compression dans le fondamental

Conditions de résonance dans un champ magnétique

PROJETS

Etats comprimés de spin

- •Revisiter les schémas de génération de corrélations quantiques, mesures QND
- Non-linéarité des atomes près des conditions de piégeage cohérent de population Y_1 , (

PROJETS

Manipuler les spins nucléaires de l'hélium au niveau des fluctuations quantiques

• En utilisant les collisions d'échange

Vérification expérimentale : transfert de bruit dépendant de la quadrature, mesure de bruit atomique des métastables en absence/présence d'atomes dans l'état fondamental...

• Sans utiliser les collisions d'échange

Peut-on mesurer les fluctuations quantiques du spin nucléaire par RMN ?

Couplage?

Ligne de recherche (2)

"Gaz dégénérés - Condensats de Bose-Einstein"

SYTEMES ETUDIES ET DEMARCHE

Systèmes quantiques macroscopiques bien isolés de l'environnement

le champ atomique contient déjà une non-linéarité !

Physique statistique Matière condensée Optique non-linéaire Information quantique

 → dynamique de phase des condensats de Bose-Einstein
 → Turbulence : description multimode du champ

Approches

Condensat quasi pur → description quantique à 1 ou 2 modes Pertes : méthodes d'optique quantique (équation pilote) Equation de Gross-Pitaevskii pour la fonction d'onde du condensat

Fraction non condensée (température initialement non nulle, turbulence) → Méthodes perturbatives (Bogoliubov) Méthodes d'optiques quantique (fluctuations thermiques + quantiques) Méthode de champ classique Préparation et mesure de la phase relative entre deux condensats

Description d'un état de phase

$$ert \phi
angle_N = rac{1}{\sqrt{N!}} \left(rac{a^\dagger e^{i\phi} + b^\dagger e^{-i\phi}}{\sqrt{2}}
ight)^N ert 0
angle$$
 $n = N_b - N_a \,, \qquad e^{-i\,lpha\,n} ert \phi
angle_N = ert \phi + lpha
angle_{N-1}$

n et ϕ : variables conjuguées

DYNAMIQUE DE LA PHASE RELATIVE \ophi

$$\bar{N}_a = \bar{N}_b = \frac{N}{2}$$
 $E(N_a, N_b) \simeq \bar{E} + \frac{1}{2}n(\mu_a - \mu_b) + \frac{\hbar}{4}n^2\chi$

Brouillage : $t_B = 2/(\chi N^{1/2})$ Résurgence: $t_R = q\pi/\chi$ q=1, 2, 3...

Comme un état cohérent dans un milieu Kerr ...

EFFET DES PERTES DE PARTICULES

Rb, N = 300, $\omega/2\pi = 500 \text{ Hz}$

$$|\langle c_a^{\dagger} c_b \rangle|_{t=t_R} = |\langle c_a^{\dagger} c_b \rangle|_{t=0} e^{-\lambda t_R}$$

Observation des résurgences possible avec des petits condensats

DYNAMIQUE DE PHASE DANS UN MELANGE

Extension de travaux précédents → condensats a et b interagissants et non stationnaires

 $\mathbf{g}_{\mathbf{a}\mathbf{a}} \oplus \mathbf{g}_{\mathbf{a}\mathbf{b}} \oplus \mathbf{g}_{\mathbf{b}\mathbf{b}}$

→ Fluctuations du nombre total N de particules

Formule générale pour $\langle \psi_{b}^{+} \psi_{a} \rangle$: $|\langle \hat{\psi}_b^{\dagger} \hat{\psi}_a \rangle| \simeq \bar{N} |\bar{\phi}_a| |\bar{\phi}_b| \exp\{-\frac{1}{2} (\Delta N)^2 \chi_s^2\} \exp\{-\frac{1}{2} \bar{N} \chi_d^2\}$ $t = t_{\rm R}$ $egin{aligned} \chi_{\mathrm{s}} &= rac{1}{2} \left[\left(\partial_{N_{\mathrm{a}}} + \partial_{N_{\mathrm{b}}} ight) \left(heta_{\mathrm{a}} - heta_{\mathrm{b}} ight) ight] (ar{N}_{\mathrm{a}}, ar{N}_{\mathrm{b}}) \ \chi_{\mathrm{d}} &= rac{1}{2} \left[\left(\partial_{N_{\mathrm{a}}} - \partial_{N_{\mathrm{b}}} ight) \left(heta_{\mathrm{a}} - heta_{\mathrm{b}} ight) ight] (ar{N}_{\mathrm{a}}, ar{N}_{\mathrm{b}}). \end{aligned}$ $i\hbar\partial_t\phi_\epsilon = \left[-\frac{\hbar^2}{2m}\Delta + U_\epsilon + N_\epsilon g_{\epsilon\epsilon} |\phi_\epsilon|^2 + N'_\epsilon g_{\epsilon\epsilon'} |\phi'_\epsilon|^2\right]\phi_\epsilon$ e=a,b

DYNAMIQUE DE PHASE DANS UN MELANGE

1) Application aux cas : $g_{aa} \sim g_{ab} \sim g_{bb}$ (stable 2 $g_{ab} < g_{aa} + g_{bb}$) Longs temps de cohérence : $\chi_d \propto \frac{g_{aa} + g_{bb} - 2g_{ab}}{g_{aa}}$ $\chi_s \propto \frac{g_{aa} - g_{bb}}{g_{aa}}$

2) Solution "respirante" $\phi_a = \phi_b$ (stable $g_{ab} < g_{aa}, g_{bb}$) $\chi_s = 0 !$ $\overline{N}_a g_{aa} + \overline{N}_b g_{ab} = \overline{N}_b g_{bb} + \overline{N}_a g_{ab}$

- 3) Expérience JILA 1997 $g_{aa}: g_{ab}: g_{bb} = 1,03:1:0,97$
- $\Delta N=0 \qquad \text{temps de cohérence } t_c >> 1s \\ \Delta N/N=8\% \qquad t_c=0,42 \text{ s} \qquad \text{expérience : } t_c \sim 0,15 \text{ s}$

Fonction de Wigner

$$\hat{\sigma} \Leftrightarrow W \qquad \hat{\psi} \Leftrightarrow \psi \qquad \hat{a} \Leftrightarrow \alpha \qquad \left\langle \alpha \, \alpha^* \right\rangle_W = \frac{1}{2} \left\langle \hat{a}^* \hat{a} + \hat{a} \, \hat{a}^* \right\rangle$$

1) Echantillonner *W* de la fraction non condensée à l'équilibre dans l'approximation de Bogoliubov $\psi(r) = a_{\phi} \phi(r) + \psi_{\perp}(r)$

Diagonalisation + échantillonnage Gaussien

$$\begin{pmatrix} \psi_{\perp} \\ \psi_{\perp}^* \end{pmatrix} = \sum_{k} b_k \begin{pmatrix} u_k \\ v_k \end{pmatrix} + b_k^* \begin{pmatrix} v_k^* \\ u_k^* \end{pmatrix} \qquad P_k(b_k) \propto \exp\left(-2 \left|b_k\right|^2 \tanh\left(\frac{\varepsilon_k}{2k_B T}\right)\right)$$

<u>Ou</u> "mouvement Brownien" pour le champ non condensé : ne nécessite pas la diagonalisation de l'opérateur de Bogoliubov.

2) Echantillonner la distribution de probabilité conditionnelle $P[N_0 | \psi_{\perp}]$

Distribution de probabilité de N₀ : nombre d'atomes dans le condensat

DESCRIPTION D'UN GAZ DEGENERE A T≠0

3) Evolution

Evolution déterministe avec l'équation de Gross-Pitaevskii

$$i\hbar\partial_t\psi = \left[-\frac{\hbar^2}{2m}\Delta + U(r,t) + g|\psi|^2\right]\psi$$

Bruit quantique et bruit thermique seulement dans l'état initial

Dans le régime de Bogoliubov : équivalence avec (Castin, Dum)

$$\langle r|\hat{\rho}|s\rangle_{TW} = \langle r|\hat{\rho}|s\rangle + O(\frac{1}{\sqrt{N}})$$

 $\varepsilon_{max}/k_{B}T$

WIGNER : AU DELA DU TRAITEMENT PERTURBATIF

Brouillage des oscillations dans un piège 1D

$$\omega \rightarrow 0.8\omega$$

 $\mu = 3.1\hbar\omega, N = 10^3, k_BT = 30\hbar\omega$

GPE : oscillations non brouillées.

ρ(0) Wigner et Bogoliubov

Cohérence de phase à T≠0

• Temps de cohérence d'un condensat à l'équilibre dépendance en T/T_c , interactions, taille du système N

Compréhension des processus physiques importants Validation d'une approche de champ classique

• Situation dynamique dans des cas relevants expérimentalement

Pour les GROS condensats : dépendance en température de t_B **Pour les petits :** limite sur T pour observer les résurgences de phase

PROJETS

Plusieurs projets intéressants ... sur la puce ... (équipe de Jakob Reichel)

Condensats dans des potentiels double/multi puits Atomes ultra-froids + cavité optique de grande finesse Création d'etats intriqués *atomes-champ*, *atome-atome*

et encore ...

Dynamique de phase

Compression de spin avec les condensatsAdapter le schéma de Sørensen (Nature 2001)pour un piégeage magnétique.Peut-on utiliser Rb $|F = 1, m_F = -1 > , |F = 2, m_F = 1 > ?$

Ligne de recherche (3)

"Pompage optique de l'hélium 3 pour l'imagerie médicale"

L'IMAGERIE DES POUMONS AVEC L'HELIUM POLARISE

IRM des poumons

Proton

³He polarisé

Projet européen PHIL (2000-2004)

Valider l'IRM de l'He3 comme outil de diagnostic : emphysème et maladies obstructives chroniques

POMPAGE OPTIQUE PAR ECHANGE DE METASTABILITE

Métastables : $n = 10^{10}$ -10¹¹ at/cm³

Métastables / fondamental : $n / N = 10^{-6}$ Puissances laser : $P_I = 0.5-2 W$

CONDITIONS STANDARD DE POMPAGE

Gaz à faible pression < 1 mbar. Faible champ magnétique ~ mT

=> Polarisation nucléaire ~ 80%. Temps de construction ~ 20 s (5 W)

+ COMPRESSION pour amener le gaz à 1 bar

POMPAGE EN CHAMP FORT

m_

RESULTATS MARQUANTS EN CHAMP FORT

	line	Р	$T_{1 \ dech}$	P_{laser}	M_{stat}	t_b	\mid $R_a \mid$
		mbar	s	W		s	mbar/s
	$f_{4\ m}$	8	2100	0.5	0.62	70	0.072
				0.25	0.59	85	0.056
	$f_{4\ m}$	32	1490	0.5	0.40	96	0.134
				0.25	0.35	100	0.113
	$f_{4\ m}$	67	1190	0.5	0.29	117	0.165
				0.25	0.26	203	0.085
	$f_{2\ m}$	8	2100	0.5	-0.75	120	0.051
				0.25	-0.71	118	0.048
	$f_{2\ m}$	32	1490	0.5	-0.56	138	0.131
				0.25	-0.49	214	0.074
	$f_{2\ m}$	67	1190	0.5	-0.37	180	0.137
				0.25	-0.28	300	0.062
ĺ	C ₉ [8]	1	270	0.05	0.50	40	0.013
Ì	C_9 [16]	1.33	400	1.1	0.56	11	0.068
	C ₉ [9]	1.33	900	4.5	0.78	6.5	0.160

Taux de production d'aimantation |R_a| compétitif

Modélisation du pompage en champ fort (équations de taux) redistribution collisionnelle dans le 2³P

Pour améliorer les résultats à 1.5 T

Adapter la forme des cellules aux fortes pressions (en cours à Cracovie)
Plus de puissance de pompe pour les très fortes pressions

Changer la valeur du champ (en cours à Cracovie)

Construction d'un prototype de polariseur à fort champ (Xavier Maître)

- A Milan : L. Lugiato, F. Castelli, D. Zibetti, M. Guerzoni, G. Strini K. Wang,
- A Palma : M. Hoyuelos, M. San Miguel,
- A Orsay : P. Grangier, J.-F. Roch, J.-Ph. Poizat, Ph. Grelu, K. Vigneron,
- A Paris : Y. Castin, J. Dalibard, R. Dum, G. Shlyapnikov,
- P. Fedichev C. Salomon, F. Schreck, G. Ferrari, M.-O. Mewes,
- F. Gerbier, M. Leduc, F. Pereira Dos Santos, F. Perales,
- J. Wang, G. Leonard, C. Cohen-Tannouji, P.-J. Nacher,
- G. Tastevin, M. Abboud, X. Maître, M. Pinard, G. Reinaudi,
- A. Dantan, F. Laloë, E. Giacobino, Z. Dissi, X. Monnin,
- F. Hulin-Hubard, L. Krikorian, M. Bonnamy, V. Da Costa,
- T. Tardieux, A.-F. Seyer, E. Witkowska, N. Neveux
- A Urbana : A. Leggett, C. Lobo
- A Cracovie : T. Dohnalik, A. Nikiel, K. et M. Schukanek