
HAL Id: tel-00092684
https://theses.hal.science/tel-00092684

Submitted on 12 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Decision-Making and TaskCoordination in
Dynamic, Uncertain andReal-Time Multiagent

Environments
Sébastien Paquet

To cite this version:
Sébastien Paquet. Distributed Decision-Making and TaskCoordination in Dynamic, Uncertain
andReal-Time Multiagent Environments. Other [cs.OH]. Université Laval, 2005. English. �NNT :
�. �tel-00092684�

https://theses.hal.science/tel-00092684
https://hal.archives-ouvertes.fr

SÉBASTIEN PAQUET

Distributed Decision-Making and Task

Coordination in Dynamic, Uncertain and

Real-Time Multiagent Environments

Thèse présentée
à la Faculté des études supérieures de l’Université Laval
dans le cadre du programme de doctorat en informatique
pour l’obtention du grade de Philosophiæ Doctor, (Ph.D.)

Faculté de Sciences et Génie
UNIVERSITÉ LAVAL

QUÉBEC

Janvier 2006

c©Sébastien Paquet, 2006

Résumé

La prise de décision dans l’incertain et la coordination sont au coeur des systèmes

multiagents. Dans ce type de systèmes, les agents doivent être en mesure de percevoir

leur environnement et de prendre des décisions en considérant les autres agents. Lorsque

l’environnement est partiellement observable, les agents doivent être en mesure de gérer

cette incertitude pour prendre des décisions les plus éclairées possible en considérant

les informations incomplètes qu’ils ont pu acquérir. Par ailleurs, dans le contexte

d’environnements multiagents coopératifs, les agents doivent être en mesure de coordon-

ner leurs actions de manière à pouvoir accomplir des tâches demandant la collaboration

de plus d’un agent.

Dans cette thèse, nous considérons des environnements multiagents coopératifs com-

plexes (dynamiques, incertains et temps-réel). Pour ce type d’environnements, nous

proposons une approche de prise de décision dans l’incertain permettant une coor-

dination flexible entre les agents. Plus précisément, nous présentons un algorithme

de résolution en ligne de processus de décision de Markov partiellement observables

(POMDPs).

Par ailleurs, dans de tels environnements, les tâches que doivent accomplir les agents

peuvent devenir très complexes. Dans ce cadre, il peut devenir difficile pour les agents

de déterminer le nombre de ressources nécessaires à l’accomplissement de chacune des

tâches. Pour résoudre ce problème, nous proposons donc un algorithme d’apprentissage

permettant d’apprendre le nombre de ressources nécessaires à l’accomplissement des

tâches selon les caractéristiques de celles-ci. Dans un même ordre d’idée, nous proposons

aussi une méthode d’ordonnancement permettant d’ordonner les différentes tâches des

agents de manière à maximiser le nombre de tâches pouvant être accomplies dans un

temps limité.

Toutes ces approches ont pour but de permettre la coordination d’agents pour

l’accomplissement efficace de tâches complexes dans un environnement multiagent par-

tiellement observable, dynamique et incertain. Toutes ces approches ont démontré leur

efficacité lors de tests effectués dans l’environnement de simulation de la RoboCup-

Rescue.

Abstract

Decision-making in uncertainty and coordination are at the heart of multiagent

systems. In this kind of systems, agents have to be able to perceive their environment

and take decisions while considering the other agents. When the environment is partially

observable, agents have to be able to manage this uncertainty in order to take the

most enlightened decisions they can based on the incomplete information they have

acquired. Moreover, in the context of cooperative multiagent environments, agents

have to coordinate their actions in order to accomplish complex tasks requiring more

then one agent.

In this thesis, we consider complex cooperative multiagent environments (dynamic,

uncertain and real-time). In this kind of environments, we propose an approach of

decision-making in uncertainty that enable the agents to flexibly coordinate themselves.

More precisely, we present an online algorithm for partially observable Markov decision

processes (POMDPs).

Furthermore, in such complex environments, agent’s tasks can also become quite

complex. In this context, it could be complicated for the agents to determine the

required number of resources to accomplish each task. To address this problem, we

propose a learning algorithm to learn the number of resources necessary to accomplish

a task based on the characteristics of this task. In a similar manner, we propose a

scheduling approach enabling the agents to schedule their tasks in order to maximize

the number of tasks that could be accomplish in a limited time.

All these approaches have been developed to enable the agents to efficiently coordi-

nate all their complex tasks in a partially observable, dynamic and uncertain multiagent

environment. All these approaches have demonstrated their effectiveness in tests done

in the RoboCupRescue simulation environment.

Avant-propos

J’aimerais profiter de ces quelques lignes pour remercier les personnes qui ont colla-

boré à l’aboutissement de cette thèse. Dans un premier temps, j’aimerais remercier mon

directeur de recherche, M. Brahim Chaib-draa, pour ses précieux conseils, sa disponi-

bilité et ses encouragements. Il a toujours été présent pour m’aider à faire avancer mes

recherches.

J’aimerais également remercier tous les étudiants stagiaires qui ont travaillé avec moi

sur ce projet: Nicolas Bernier, Ludovic Tobin et Stéphane Ross. Ils m’ont beaucoup

aidé lors de la programmation en vue des compétitions et pour la rédaction de certains

articles. Sans le très bon travail, nous n’aurions pas pu terminer 6e et 2e lors des

compétitions internationales de la RoboCupRescue simulation de 2003 et 2004.

De plus, j’aimerais remercier le CRSNG, le RDDC-Valcartier et le laboratoire DAMAS

pour leur support financier tout au long de mes études graduées.

Par ailleurs, il m’est important de mentionner la collaboration des membres du

DAMAS sans qui mes études n’auraient pas été aussi plaisantes: Frédérick Asselin,

Patrick Beaumont, Mathieu Bergeron, Nicolas Bernier, Étienne Bolduc, Charles Des-

jardins, Vincent Dumouchel, Simon Hallé, Marc-André Labrie, Jean-Claude Lacombe,

Julien Laumonier, Philippe Lefebvre, Ève Levesque, Thierry Moyaux, Jean-François

Morissette, Philippe Pasquier, Mathieu Pelletier, Pierrick Plamondon, Stéphane Ross,

Martin Soucy et Ludovic Tobin.

J’aimerais également remercier ma compagne Sara pour sa gentillesse, sa patience,

sa compréhension et son support tout au long de mes études. Finalement, j’aimerais

remercier et dédier cette thèse à mes parents et à ma soeur pour leurs extraordinaires

amour, compréhension, générosité et attention qu’ils ont toujours eus à mon égard.

Sébastien Paquet

À mes parents Yvon et Gloria.

Nul ne peut solutionner le monde!

Mais localement, tout problème peut

être amenuisé!

Contents

Résumé ii

Abstract iii

Avant-propos iv

1 Introduction 1

1.1 RoboCupRescue Simulation . 2

1.2 Online POMDP Algorithm . 3

1.3 Task Allocation Learning . 4

1.4 Task Scheduling in Complex Multiagent Environments 5

1.5 Contributions . 6

1.6 Outline . 8

2 RoboCupRescue 10

2.1 RoboCupRescue Simulator . 11

2.1.1 RoboCupRescue Simulator Modules 11

2.1.2 Time Management . 14

2.1.3 Simulation’s Progress . 14

2.1.4 Evaluation Function . 16

2.1.5 Graphical Representation of the Simulation 17

2.2 Rescue Agents . 18

2.3 Environment Complexity . 21

2.4 Multiagent Testbed . 23

3 Online POMDP Algorithm 25

3.1 Literature Review . 26

3.1.1 POMDP Model . 27

3.1.2 Optimal Value Iteration Algorithm 31

3.1.2.1 α-vectors . 32

3.1.2.2 Example . 34

3.1.2.3 Complexity of the Optimal Value Iteration Algorithm . 39

3.1.3 Offline Approximation Algorithms 39

vii

3.1.3.1 Value Iteration Approaches 40

3.1.3.2 Policy Iteration Approaches 44

3.1.3.3 Value Function Approximations 45

3.1.3.4 Reusable Trajectories 46

3.1.3.5 Belief State Bounds 46

3.1.4 Online Approximation Algorithms 47

3.1.4.1 Online Search Approaches 47

3.1.4.2 History-Based Approaches 49

3.1.5 Factored POMDP . 50

3.2 Motivations . 53

3.3 Using the Factored Representation . 54

3.4 Online Decision Making . 57

3.4.1 Belief State Value Approximation 58

3.4.2 RTBSS Algorithm . 59

3.4.2.1 Detailed Description 61

3.4.2.2 Example . 62

3.4.2.3 Complexity . 68

3.4.2.4 Error Bounds . 69

3.5 Hybrid Approaches . 71

3.5.1 RTBSS-QMDP . 71

3.5.2 RTBSS-PBVI-QMDP . 72

3.5.3 RTDPBSS . 72

3.5.4 Proof of the Usefulness of a Hybrid Approach 73

3.6 Experimentations . 75

3.6.1 Tag . 75

3.6.1.1 Description of the Tag Environment 76

3.6.1.2 Results . 77

3.6.2 RockSample . 80

3.6.2.1 Environment Description 80

3.6.2.2 Results . 82

3.6.3 Offline Computation Time . 88

3.7 Experimentations in RoboCupRescue 89

3.7.1 RoboCupRescue viewed as a POMDP 91

3.7.2 Application of RTBSS on RoboCupRescue 92

3.7.3 Local Reward Function . 94

3.7.4 Results . 96

3.8 Discussion . 98

3.8.1 Advantages . 99

3.8.2 Disadvantages . 100

3.9 Contributions . 100

viii

4 Task Allocation Learning 103

4.1 Introduction . 103

4.2 Literature Review on Coordination Learning 105

4.2.1 Coordination Learning via Reinforcement Learning 105

4.2.1.1 Game Theory Test Environments 107

4.2.1.2 Emergence of the Coordination 108

4.2.1.3 Sharing Perceptions and Experiences 110

4.2.1.4 Other Approaches . 111

4.2.2 Coordination Learning Using Execution Traces 113

4.2.3 Other Learning Methods . 114

4.3 Tasks Allocation Learning: Our Motivations 115

4.4 Application Domain . 116

4.5 Problem Definition . 118

4.6 Tree Construction . 119

4.6.1 Tree Structure . 119

4.6.2 Recording the Agents’ Experiences 120

4.6.3 Update of the Tree . 121

4.6.3.1 Add Instances . 121

4.6.3.2 Update Q-values . 122

4.6.3.3 Expand the Tree . 123

4.6.4 Use of the Tree . 124

4.6.5 Algorithm Characteristics . 125

4.7 Experiments . 127

4.7.1 Fire Areas Allocation . 128

4.7.2 Choice of Buildings on Fire . 128

4.8 Results and Discussion . 130

4.9 Contributions . 136

5 Task Scheduling in Complex Multiagent Environments 137

5.1 A New Methodology for Task Scheduling in Complex Multiagent Envi-

ronments . 139

5.1.1 First Step: Scheduling Problem Definition 139

5.1.2 Second Step: Scheduler Type Definition 141

5.1.3 Third Step: Scheduling Algorithm Definition 142

5.2 Application to the RoboCupRescue Environment 142

5.2.1 First Step: Scheduling Problem Definition 143

5.2.2 Second Step: Scheduler Type Definition 145

5.2.2.1 Centralized Scheduler 145

5.2.2.2 Decentralized Scheduler 146

5.2.3 Third Step: Scheduling Algorithm Definition 147

5.2.3.1 Earliest Due Date Algorithm 147

ix

5.2.3.2 Hodgson’s Scheduling Algorithm 148

5.2.3.3 Scheduling Strategies 148

5.2.3.4 Rescheduling Strategy 150

5.3 Learning Mechanism for the Estimation of the Civilian’s Death Time . 151

5.3.1 K-Nearest-Neighbors: Introduction 152

5.3.2 KNN for the RoboCupRescue 156

5.4 Experimentations . 158

5.4.1 K-Nearest-Neighbors Experiments 158

5.4.2 Centralized Versus Decentralized Scheduler 161

5.4.2.1 First Experiment . 161

5.4.2.2 Second Experiment . 163

5.4.3 Centralized Versus Decentralized Execution 164

5.4.4 Comparison With Another Team 165

5.5 Contributions . 166

6 Conclusion 168

6.1 Summary . 168

6.1.1 Online POMDP Algorithm . 169

6.1.2 Task Allocation Learning . 170

6.1.3 Task Scheduling in Complex Multiagent Environments 171

6.2 Future Work . 172

6.2.1 Online POMDP . 172

6.2.2 Learning Task’s Characteristics 173

6.2.3 Scheduling . 173

Bibliographie 174

A Notations 191

A.1 Notations for Chapter 2 . 191

A.2 Notations for Chapter 3 . 191

A.3 Notations for Chapter 4 . 193

A.4 Notations for Chapter 5 . 194

List of Tables

2.1 Meaning of the building’s fierceness attribute values 17

2.2 Score rules used to evaluate the area burned based on the building’s

fierceness attribute . 17

2.3 Maximal number of messages per time step. 22

3.1 Number of policies . 31

3.2 Comparison of our approach on the Tag problem 78

3.3 RockSample test parameters . 82

3.4 Results for the RockSample(4, 4) problem 83

3.5 Results for the RockSample(5, 5) problem 85

3.6 Results for the RockSample(5, 7) problem 86

3.7 Results for the RockSample(7, 8) problem 87

3.8 Results for the RockSample(10, 10) problem 88

3.9 Results of RTBSS for the RockSample(10, 10) problem 88

3.10 Percentage of cleared roads during the 2004 RoboCupRescue interna-

tional competition. Results reported by Kleiner et al. (2006). 99

4.1 Percentage of saved buildings during the 2004 RoboCupRescue interna-

tional competition. Results reported by Kleiner et al. (2006). 135

5.1 Links between the multiagent problem and the scheduling problem . . . 144

List of Figures

2.1 RoboCupRescue simulator architecture 12

2.2 Communication between the simulator modules during the initialization

phase . 15

2.3 Communication between the simulator modules during one cycle of the

simulation . 16

2.4 Example of a RoboCupRescue situation 18

2.5 Communication organization. 20

3.1 POMDP Example . 29

3.2 Tree representation of some policies . 30

3.3 Example of a value function of a policy 33

3.4 Value iteration example at a horizon of 1 36

3.5 Value function at a horizon of 2 . 38

3.6 Value function without dominated α-vectors 38

3.7 The optimal policy for a belief state . 39

3.8 The optimal action for a belief state . 39

3.9 Dynamic Bayesian network . 51

3.10 Reward function network . 51

3.11 Examples of factored belief states . 55

3.12 Offline-Online approaches comparison 58

3.13 A search tree . 59

3.14 POMDP Example . 63

3.15 Example of an execution of the RTBSS algorithm (Step 1) 64

3.16 Example of an execution of the RTBSS algorithm (Step 2) 65

3.17 Example of an execution of the RTBSS algorithm (Step 3) 66

3.18 Example of an execution of the RTBSS algorithm (Step 4) 67

3.19 Example of an execution of the RTBSS algorithm (Step 5) 67

3.20 The Tag problem . 76

3.21 Average reward on Tag . 79

3.22 Average deliberation time on Tag . 79

3.23 Rewards for different depth on Tag . 80

3.24 RockSample[7,8] . 81

xii

3.25 Rewards for different depth on RockSample(4,4) 84

3.26 Solution quality versus offline computation time for the Tag environment 89

3.27 Solution quality versus offline computation time for the RockSample(5,7)

environment . 90

3.28 Solution quality versus offline computation time for the RockSample(7,8)

environment . 90

3.29 Reward function’s graph . 95

3.30 Scores obtained on seven different simulations 97

3.31 Number of agents blocked . 97

3.32 Number of roads blocked . 98

4.1 Collaboration between the FireStation and the FireBrigade agents . . . 117

4.2 Structure of a tree . 120

4.3 Example of fire areas . 127

4.4 Initial situation . 132

4.5 Comparison with other strategies . 133

4.6 Percentage of intact buildings . 134

4.7 Number of leaves in the tree . 135

5.1 Information exchange with the centralized and the decentralized approaches146

5.2 Damage progression for 250 civilians 152

5.3 Instance database . 153

5.4 Example of an instance classification with one missing attribute 154

5.5 Graphical representation of the instance database 155

5.6 Instance database with query points . 155

5.7 Prediction efficiency of the KNN approach 159

5.8 Comparison of the performances of different strategies to deal with miss-

ing attribute values . 160

5.9 Comparison of the computation time of different strategies to deal with

missing attribute values . 160

5.10 Comparison of the performance between the centralized and the dis-

tributed scheduler approaches . 162

5.11 Number of bytes sent by the centralized and the decentralized approaches162

5.12 Performances when the constraint on the message’s length is modified . 163

5.13 Strategies compared in our tests . 164

5.14 Comparison of three different scheduling strategies 165

5.15 Comparison with the ResQFreiburg team 166

List of Algorithms

3.1 Exact value iteration algorithm . 34

3.2 The RTBSS algorithm . 60

4.1 Algorithm used to update the tree . 122

4.2 Algorithm used to find the required number of agents 125

4.3 Algorithm used to allocate a fire area 129

4.4 Algorithm used to choose a fire . 131

5.1 Hodgson’s scheduling algorithm . 149

Chapter 1

Introduction

Distributed Decision-making and task coordination are at the heart of multiagent

systems. These systems are composed of many interacting autonomous software entities

(agents) that have to perceive their environment, reason on these perceptions and choose

some actions in order to achieve their goals. These actions’ choices are complicated

by the fact that agents are not alone in the considered environment and this forces

them to consider the other agents in their decisions. Moreover, agents may have to

coordinate themselves to accomplish complex tasks that need more than one agent to

be accomplished. These tasks may be so complicated that the agents may not know

the number of agents required to accomplish the tasks or the time they have before the

tasks become obsolete.

Similarly, the distributed decision-making process may be even more complex if

the environment is partially observable, dynamic, uncertain and real-time. Partially

observable means that an agent can only perceive a small part of the environment,

which forces the agent to take its decision with incomplete information. Dynamic and

uncertain means that the environment is in constant evolution and that an agent cannot

know with certainty how the world will evolve or how its actions will impact the world.

And finally, real-time means that the agent has to respect some time constraints when

making its decisions.

Studying such multiagent systems in so complex environments may sound quite

difficult and in deed it is, but this reflects the reality, since the real world has all these

characteristics. One should therefore overcome difficulties sustained by such systems

in order for autonomous agents to be effective in real life applications like Mars rovers

(Estlin et al. (2005)), unmanned vehicles (Karim and Heinze (2005)), rescue robots

(Nourbakhsh et al. (2005)), etc.

This thesis considers complex multiagent systems in which agents evolve in dynamic,

uncertain and real-time environments. In this context, it proposes some approaches to

Chapter 1. Introduction 2

enable the agents to make good decisions and to coordinate themselves in order to

accomplish their tasks as efficiently as possible. Briefly, this thesis proposes:

• an online POMDP algorithm that allows agents to choose efficient actions in large

partially observable environments;

• a learning algorithm that allows agents to learn the required number of resources

to accomplish a complex task;

• a scheduling approach that allows agents to optimize the number of tasks accom-

plished in a short time.

1.1 RoboCupRescue Simulation

The test-bed environment that motivated us and that has been used to test our

approaches is the RoboCupRescue simulation (Kitano (2000)). This environment con-

sists of a simulation of an earthquake happening in a city. The goal of the agents

(representing firefighters, policemen and ambulance teams) consists in minimizing the

damages caused by a big earthquake, such as civilians buried, buildings on fire and roads

blocked. The RoboCupRescue simulation environment has all the complex characteris-

tics mentioned previously and it is thus a complex test-bed for cooperative multiagent

systems.

In the RoboCupRescue simulation there are three main types of agents: FireBrigade,

PoliceForce and AmbulanceTeam. The FireBrigade agents have to extinguish fires, the

PoliceForce agents have to clear the roads and the AmbulanceTeam agents have to

rescue civilians. In a simulation, there can be up to 38 of these rescue agents that

have to cooperate with each other in order to maximize the number of survivors and to

minimize the damages caused by the fires.

All rescue agents only have really limited perceptions, therefore the environment is

highly partially observable. In addition, all rescue agents have to respect a hard real-

time constraint since they have to return their actions in less than a second after they

received their perceptions. Rescue agents have limited communication capabilities and

they have limited amount of resources. Moreover, rescue agents have to deal with an

highly dynamic environment in which the fires can spread fast and the civilians health

can deteriorate rapidly.

A complex cooperative multiagent environment like the RoboCupRescue simulation

demands flexible algorithms that can cope with this complexity. The following sub-

sections give an overview of the algorithms that are presented in detail in the following

chapters of this thesis.

Chapter 1. Introduction 3

1.2 Online POMDP Algorithm

Agents evolving in the RoboCupRescue simulation environment have to choose an

action at each time step even though they only have an incomplete representation

of their environment. When faced with a partially observable environment like the

RoboCupRescue simulation, a general model for sequential decision problems consists

in using Partially Observable Markov Decision Processes (POMDPs).

A lot of problems can be modelled with POMDPs, but very few can be solved be-

cause of their computational complexity (POMDPs are PSPACE-complete (Papadim-

itriou and Tsitsiklis (1987))). The main problem with POMDPs is that their complexity

makes them applicable only on small environments. However, most problems of inter-

est have a huge state space, which motivates the search for approximation methods

(Hauskrecht (2000); Pineau et al. (2003); Smith and Simmons (2005); Spaan and Vlas-

sis (2005)). This is especially the case for multiagent systems where there is often a

huge state space with autonomous agents interacting with each other.

Most recent algorithms for solving POMDPs learn a complete policy offline, defining

which action to take in all possible situation. While these approximation approaches

are quite efficient on small problems, they often cannot deal with larger environments.

In this thesis, instead of computing a complete policy offline, we present an online

approach based on a look-ahead search in the belief state space to find the best action

to execute, at each cycle in the environment (Paquet et al. (2005b,c)). Our algorithm,

called RTBSS (Real-Time Belief Space Search), only explores reachable belief states

starting from the agent’s current belief state. By doing an online search, we avoid the

overwhelming complexity of computing a policy for every possible situation the agent

could encounter. Since there is no computation offline, the algorithm is immediately

applicable to previously unseen environments, if the environments’ dynamics are known.

On the other hand, if the agent has some time offline and online, we have also developed

some hybrid algorithms that can improve the offline policies with an online search.

With the RTBSS algorithm, presented in Chapter 3, we have developed a local re-

ward function that dynamically defines the rewards as they are needed for the POMDP

algorithm. This enables the rewards to be defined only for reachable states and not

for the whole state space. In addition, this reward function is used as a coordination

mechanism between the PoliceForce agents. All these agents are executing their own

instance of our RTBSS algorithm and the coordination among these agents is con-

trolled by the reward function. In fact, this function defines sort of smooth boundaries

between the PoliceForce agents so that they can efficiently divide the different tasks

among themselves. This coordination mechanism is quite flexible and it can adjust to

environment changes.

Chapter 1. Introduction 4

With the POMDP algorithm and the local reward function, PoliceForce agents can

be coordinated in order to divide simple tasks that can be achieved by only one agent.

However, if the tasks are more complex and if they need to be accomplished by more

than one agent, then the coordination process needs to regroup the agents in order to

achieve the tasks. Moreover, if there is some uncertainty, the agents may even not know

how many agents are required to accomplish each task. In this case, the first step in

order to achieve good performances consists in learning the required number of agents

(considered here as resources) to accomplish each task. In the next sub-section, we

briefly present the selective perception reinforcement learning algorithm that has been

developed to this end.

1.3 Task Allocation Learning

As mentioned previously, if agents are faced with complex tasks, it might be hard

for them to determine how many agents are required to accomplish each task, which is

important information for the coordination process. Without this information, agents

would not be able to divide up the different tasks efficiently.

To learn the required number of agents for each task, we have developed a selective

perception reinforcement learning algorithm (Paquet et al. (2004b)), which is useful to

manage a large set of possible task descriptions with discrete or continuous variables. It

enables us to regroup common task descriptions together, thus greatly diminishing the

number of different task descriptions. Starting from this, the reinforcement learning

algorithm can work with a relatively small state space.

The algorithm that we developed to this end is presented in Chapter 4 and has been

applied to the FireBrigade agents. Notice that these agents need to estimate the number

of FireBrigade agents necessary to extinguish a fire. These tasks of extinguishing fires

are quite complex because the number of required agents depends on many factors like:

the fire’s intensity, the building’s size, the building’s composition, etc.

Our tests in the RoboCupRescue simulation environment showed that the FireBri-

gade agents are able to learn a compact representation of the state space, facilitating

their task of learning good expected rewards. Furthermore, agents were also able to

use those expected rewards to choose the right number of agents to assign to each

task. With this information, agents coordinate themselves on the different tasks in an

effective way, thus improving the group performance.

In the next sub-section, we introduce another approach that not only has to learn an

estimation of a task characteristic, but also has to carefully schedule the tasks, because

the order in which the tasks are accomplish influences a lot the performances of the

rescuing agents.

Chapter 1. Introduction 5

1.4 Task Scheduling in Complex Multiagent Envi-

ronments

In complex multiagent systems like the RoboCupRescue, the agents could faced

with many tasks to accomplish. Moreover, when the tasks have different deadlines, the

order in which the tasks are accomplished becomes quite important. In such settings,

agents have to decide how many agents to assign to each task and in which order they

should accomplish the tasks. To achieve that, agents need a good scheduling algorithm

that can maximize the number of tasks accomplished before their deadline.

The scheduling approach, presented in Chapter 5, has been applied to the Ambu-

lanceTeam agents. These agents have to rescue the civilians, but the number of civilians

that can be rescued depends a lot on the order in which they are rescued. Further-

more, the scheduler agents have to be able to adapt the schedules frequently to take the

dynamic changes of the environment into consideration. Another challenge is that the

RoboCupRescue environment is partially observable, therefore the tasks are not known

at the beginning of the simulation. Agents thus have to explore the environment to

find the tasks and then incorporate them in their schedule. Notice that since we are

considering uncertain environments, the tasks’ parameters could even change between

two observations. In this case, the system’s performance depends not only on the max-

imization of the optimization criterion, but also on the agents’ capacity to adapt their

schedule efficiently.

In Chapter 5, we analyze the advantages and the disadvantages of distributing or

not the scheduling process in a complex multiagent system. More precisely, we study

the impact on the agents’ efficiency and on the amount of information transmitted

when using centralized and decentralized scheduling. We also study the usefulness of

distributing the execution of the tasks in a scheduling problem and thus accomplishing

goals in parallel, compared to the strategy of concentrating all resources to accomplish

one goal at a time.

In similarity with the approach presented in the previous section, agents also had

to learn to estimate one of the characteristics of the tasks. One important parameter

that the AmbulanceTeam agents have to learn is the expected death time of the civil-

ians. This parameter is quite important for the AmbulanceTeam agents to make good

schedules. To this end, a K-Nearest-Neighbors (KNN) approach has been used to learn

the damage progression of the civilians which is used to estimate the expected death

time.

Now that the main approaches of this thesis have been briefly presented, we empha-

size in the next section the contributions of these approaches to the multiagent research

community.

Chapter 1. Introduction 6

1.5 Contributions

The problems of decision-making and task coordination are really important to the

field of multiagent systems. When the environment is only partially observable, the de-

cision process of the agents may become quite hard. Agents then have to choose their

actions based on incomplete information. It becomes difficult for the agents to stay

coordinated when they cannot perceive the other agents and when the environment is

in constant changes. The main contributions of this thesis is to propose coordination

and decision-making algorithms capable of dealing with such complex cooperative mul-

tiagent systems. To be more precise, here is a list of the main contributions of this

thesis:

An online POMDP algorithm. We have conceived a real online POMDP al-

gorithm. Most POMDP algorithms try to solve the problem offline by defining a

policy for all possible situations the agent could encounter. This offline process

is quite complex and this limits the applicability of most offline approaches to

small problems. Many claimed online algorithms need in fact a lot of executions

in the environment to learn a good policy. Our algorithm is different, because it

does not need any calculation time offline and it is immediately efficient, even in

previously unseen configurations of the environment.

Pruning strategy. We have defined a pruning strategy to accelerate the search

in the belief state space. We have combined a limited depth first search strategy

with a pruning strategy that uses dynamically updated bounds based on the

solutions found at the maximal depth of the search. The pruning of the tree

is also accelerated by sorting the actions in order of their expected efficiency.

Since the more interesting actions are tried first, there is more chance that the

first branches developed have better values, thus better bounds for the pruning

condition.

Theoretical bound. The algorithm has a theoretical bound, thus we can guar-

anty that the distance between the policy defined by our algorithm and the op-

timal policy is bounded. The error gets smaller as the agent evolves in the envi-

ronment because of the discount factor.

Hybrid approaches. We developed some hybrid approaches that use the RTBSS

online search strategy mixed with approximate offline strategies. We present three

new algorithms: RTBSS-QMDP, RTBSS-PBVI-QMDP and RTDPBSS. The re-

sults show that the performances of the hybrid approaches are often better than

the performances of the online approach or the offline approach taken alone.

Chapter 1. Introduction 7

Belief state for dynamic environments. We have conceived an approach to

maintain a belief state based on the real agent’s observations. This helps the

agent to manage the highly dynamic and unpredictable parts of the environment.

During the search in the belief state space, the agent considers some variables

fixed and concentrate only on the most important parts of the environment to

choose its actions. This approach is possible with the RTBSS algorithm because

it is an online algorithm that can readjust its belief states between each execution

in order to stay up to date with the agent’s observations.

Local reward function. We defined a local reward function enabling an agent

using RTBSS to redefine a reward function before each action’s choice. This

enables to define the reward function only for the current situation, which is

really useful when there are a lot of possible situations. This again is possible

because the agent’s policy is dynamically defined thus the reward function can be

modified before the action’s search.

Flexible coordination approach. Our local reward function can be used to

dynamically coordinate many agents in an environment without any coordination

related messages. This new multiagent POMDP coordination approach has shown

to be effective and quite flexible to control many agents in a highly dynamic

environment.

Learning required resources. Most coordination learning approaches consider

that the number of required resources to accomplish a task is known or that they

have enough information to have a probability distribution over the number of

required resources. In our approach, we consider that the tasks are complex

and that the agents have to learn this information since it is not available. We

developed, to this end, an algorithm to learn the required number of resources for

each task.

Reduction of the task description space. The tasks considered in our simu-

lations are described with discrete and continuous attributes. Therefore, there are

a lot of possible task descriptions. To manage this complexity, we have adapted a

selective perception reinforcement learning algorithm to the problem of learning

the required number of resources to accomplish a task. With this algorithm we can

find a generalization of the task description space, thus allowing the reinforcement

learning algorithm to work on smaller task description spaces.

Coordination algorithm. We proposed a coordination algorithm using the in-

formation learned about the number of resources needed for a task. This algorithm

uses really few messages between the agents, which is interesting in environments

with limited and/or unreliable communications.

Chapter 1. Introduction 8

Links between multiagent and scheduling systems. We show some possi-

ble links between multiagent systems and task scheduling systems. We present

a design model defining in a structured way the main steps necessary to extract

from a multiagent system the scheduling problem and mostly how to structure

the solution to this scheduling problem.

Reduction of the communication. We show that a decentralized scheduling

system can offer the same performances as a centralized one, while diminishing

the amount of information transmitted between the agents. This is done in the

objective of being more robust to constraints on the communications.

K-Nearest-Neighbors algorithm. We have presented a K-Nearest-Neighbors

algorithm to estimate the value of an uncertain parameter of a task. We have

presented results showing the efficiency of the predictions in the RoboCupRescue

simulation. We have also presented a strategy to manage the missing attribute

values by simply ignoring them when calculating the distances between the in-

stances. We have presented results showing that ignoring the missing values is

a more efficient approach than trying to estimate their values when many values

are missing.

RoboCupRescue approaches. All the approaches presented in this thesis are

also good contributions to the RoboCupRescue simulation community. These

approaches can be reused and improved by other participants in the RoboCup-

Rescue simulation competition. This can contribute to improve the approaches

specifically developed for rescue operations.

1.6 Outline

This thesis is structured in 6 chapters, which are briefly presented in the following:

Chapter 1 , i.e. the current chapter, introduces the context of this research. It

then briefly presents the approaches presented in this thesis and it emphasizes the

contributions of this thesis.

Chapter 2 presents our test-bed environment: the RoboCupRescue simulation.

The most important characteristics of this environment are presented, followed

by a discussion on some of its challenges that make it a really interesting and

hard testbed for multiagent algorithms. This environment is described at the

beginning of this thesis to define the context in which our approaches have been

developed.

Chapter 1. Introduction 9

Chapter 3 presents our online POMDP algorithm. In the first part of this chap-

ter, we review the literature on POMDP algorithms. Then we describe the formal-

ism of our online algorithm and some hybrid algorithms, followed by some results

on standard POMDPs. Afterwards, we present the adaptation of our basic online

POMDP algorithm to the RoboCupRescue environment and some results showing

its efficiency in such an environment. In addition, we explain our local reward

function and how it is used to coordinate the PoliceForce agents.

Chapter 4 proposes a reinforcement learning algorithm to learn the required

number of agents (considered as resources) to accomplish a complex task. This

chapter considers more complex tasks than Chapter 3. These tasks take more

time to be accomplished and some of their characteristics are unknown, like the

required number of resources. The coordination mechanism thus has to estimate

the unknown characteristics before the agents could be coordinated. At the be-

ginning of this chapter, we briefly review the literature on coordination learning

algorithms. We then describe in detail our selective perception reinforcement

learning algorithm. Finally, we present the results obtained by testing our algo-

rithm in the RoboCupRescue simulation.

Chapter 5 considers tasks with varying deadlines that need to be schedule in

order to maximize the number of tasks accomplished before the end of the sim-

ulation. The first part of this chapter presents different scheduling approaches.

Afterwards, we describe how the AmbulanceTeam agents estimate the deadlines of

the tasks using a new application of the K-Nearest-Neighbors learning algorithm.

Finally, we present results showing the performances of this scheduling approach

in the RoboCupRescue simulation environment.

Chapter 6 summarizes this thesis and presents some open problems for future

work.

Chapter 2

RoboCupRescue

This chapter presents the RoboCupRescue simulation environment which has been

used as a testbed for most of the algorithms presented in this thesis. The most important

characteristics of this environment are presented, followed by a discussion on some of its

challenges that make it a really interesting and hard testbed for multiagent algorithms.

The simulation project of the RoboCupRescue is one of the activities of the RoboCup

Federation (RoboCup (2003)), which is an international organization, registered in

Switzerland, to organize international effort to promote science and technology us-

ing soccer games and rescue operations by robots and software agents. RoboCup is

an international joint project to promote artificial intelligence, robotics, and related

fields. It is an attempt to foster artificial intelligence and intelligent robotics research

by providing standard problems where wide range of technologies can be integrated and

examined.

RoboCup chose to use soccer game as a central topic of research, aiming at innova-

tions to be applied for socially significant problems and industries. The ultimate goal of

the RoboCup project is by 2050, develop a team of fully autonomous humanoid robots

that can win against the human world champion team in soccer. The first interna-

tional RoboCupSoccer competition took place in 1997 in Nagoya, Japan. Since then,

the activities of the RoboCup Federation have been diversified. In 2001, the RoboCup

Federation initiated the RoboCupRescue project in order to specifically promote re-

search in socially significant issues. Currently, the RoboCup Federation has 12 leagues

regrouped in three major domains:

• RoboCupSoccer

– Simulation League

– Small Size Robot League (f-180)

– Middle Size Robot League (f-2000)

Chapter 2. RoboCupRescue 11

– Four-Legged Robot League

– Humanoid League

– E-League

– RoboCup Commentator Exhibition

• RoboCupRescue

– Rescue Simulation League

– Rescue Robot League

• RoboCupJunior

– Soccer Challenge

– Dance Challenge

– Rescue Challenge

As mentioned before, our work has been done in the RoboCupRescue Simulation

League. The RoboCupRescue simulation environment consists of a simulation of an

earthquake happening in a city (Kitano et al. (1999); Kitano (2000)). The goal of

the agents (representing firefighters, policemen and ambulance teams) is to minimize

the damages caused by a big earthquake, such as buried civilians, buildings on fire

and blocked roads. Figure 2.4 on page 18 shows an illustration of a RoboCupRescue

simulation.

In the next sections, we first describe the RoboCupRescue simulator, then we present

the different agents that have to be implemented and finally we explain why this envi-

ronment is an interesting testbed environment for multiagent algorithms.

2.1 RoboCupRescue Simulator

In this section, the RoboCupRescue simulator is presented. First, we present all

the modules constituting the simulator. Then we present how the time is managed and

how the different modules interact between each other during the simulation.

2.1.1 RoboCupRescue Simulator Modules

The RoboCupRescue simulation is composed of a number of modules that communi-

cate between each other using the TCP protocol. These modules consist of: the kernel,

the rescue agents (FireBrigade, PoliceForce, etc.), the civilian agents, the simulators

Chapter 2. RoboCupRescue 12

Kernel

FireBrigade

PoliceForce

AmbulanceTeam

AmbulanceCenter

PoliceOffice

FireStation

Civilian AgentsViewer GIS

Blockades Simulator

Misc Simulator

Fire Simulator

Collapse Simulator

Traffic Simulator

Rescue Agents

Simulators

Figure 2.1: RoboCupRescue simulator architecture.

(FireSimulator, TrafficSimulator, etc.), the GIS (Geographical Information System) and

the viewers. All these modules can be distributed on different computers. Figure 2.1

presents the relations between these modules. More precisely, these modules can be

described as:

Kernel: The kernel is at the heart of the RoboCupRescue simulator. It controls

the simulation process and it manages the communications between the modules.

For example, all messages between the agents have to go trough the kernel. There

are no direct communications between the agents. When the kernel receives the

messages, it verifies them to make sure that they respect some predefined rules.

Then it sends the valid messages to their intended recipients. The kernel is also

responsible for the integration of all the simulation results returned by the sim-

ulators. Moreover, the kernel controls the time steps of the simulation and it

manages the synchronization between the modules.

GIS: The GIS module provides the initial configuration of the world at the be-

ginning of the simulation, i.e. locations of roads, buildings and agents. During

the simulation, this module is responsible for providing all the geographical infor-

mation to the simulators and the viewers. It also records the simulation logs, so

that the simulation can be analyzed afterwards.

Chapter 2. RoboCupRescue 13

Simulators: The simulator modules are responsible for the dynamic aspects of

the world. They manage all dynamic parts of the world, including the effects of the

agents’ actions. To achieve that, they manipulate the environment information

provided by the GIS module. There are five simulators:

Fire simulator: The fire simulator controls the fire propagation, which de-

pends on the buildings’ compositions, the wind, the amount of water thrown

by the FireBrigade agents and the distance between the buildings. This is

the most important simulator module because the fires have a huge impact

on the simulation.

Traffic simulator: The traffic simulator is in charge of simulating the agents’

movements in the city. It has to deal with blockades and traffic jam.

Collapse simulator: The collapse simulator simulates the impact of the

earthquake on the buildings. It controls how badly a building is damaged

by the earthquake and how deeply the agents are trapped in the buildings.

Blockades simulator: The blockade simulator simulates the impact of the

earthquake on the roads. It generates all the blockades on the roads.

Misc simulator: The misc simulator simulates the agents’ injuries and the

agents’ actions: load, unload, rescue and clear.

Civilian Agents: This module controls the civilian agents, which have to be

rescued by the rescue agents. These agents have really simple behaviors. They

scream for help if they are trapped in buildings or they simply move around in

the city, trying to reach a refuge.

Viewer: The viewer module graphically presents the information about the world

provided by the GIS module. It is possible to have more than one viewer connected

to the kernel at the same time. There are 2D and 3D viewers available.

Rescue agents: These modules control the rescue agents. For the competition,

participants have to develop these modules. There are six different modules or

type of agents that have to be developed:

FireBrigade: There are between 0 to 15 agents of this type that have to

extinguish fires.

PoliceForce: There are between 0 to 15 agents of this type that have to

clear the roads.

AmbulanceTeam: There are between 0 to 8 agents of this type that have

to rescue agents or civilians that are trapped in collapse buildings.

Chapter 2. RoboCupRescue 14

FireStation: This is the FireBrigade’s control station which is responsible

for the communications between the FireBrigade agents and the other type

of agents.

PoliceOffice: This is the PoliceForce’s control station which is responsible

for the communications between the PoliceForce agents and the other type

of agents.

AmbulanceCenter: This is the AmbulanceTeam’s control station which is

responsible for the communications between the AmbulanceTeam agents and

the other type of agents.

2.1.2 Time Management

The RoboCupRescue system simulates 5 hours after the earthquake has happened.

It is a discrete simulation in which each time step corresponds to one minute. Therefore,

the simulation is executed in 300 time steps. It is the kernel that is responsible for

managing the time of the simulation. To achieve that, it should impose a real-time

constraint for all the modules; the kernel does not wait for the modules’ responses. If

the kernel receives an information from a module too late, this information is discarded.

This is an important constraint that the participants have to keep in mind, because

it limits the time allowed for an agent to reason about its next action. Therefore, all

the algorithms developed for the agents have to be fast and efficient. In the current

settings of the environment, the complete loop of the kernel takes two seconds, which

leaves approximately one second for all the modules to compute their actions.

2.1.3 Simulation’s Progress

The first step of a simulation consists for all the modules to connect to the kernel.

Figure 2.2 illustrates the initialization process. At the beginning of the connection

process, the GIS module sends the initial configuration of the world to the kernel. The

kernel then forwards this information to the simulator modules and it sends to the

rescue agents only their perceptual information. At the same time, the viewer ask the

GIS for the graphical information about the world. Afterwards, the simulation starts.

As mentioned before, the simulation is composed of 300 cycles and each one of them is

composed of the following steps (see Figure 2.3):

1. At the beginning of every cycle, the kernel sends to the rescue agents all their

sensors information (visual and auditive). The visual information of an agent con-

tains all the objects that are in a 10 meters radius around the agent. The auditive

Chapter 2. RoboCupRescue 15

Kernel Simulators

Agents

GIS

Viewers

Initial configuration
of the world

(1)

Information request

(1)

(2)

Initial configuration
of the world

(2)
Partial information

about the world

(2)
Requested
information

Figure 2.2: Communication between the simulator modules during the initialization

phase.

information contains all voice messages and radio messages. The communication

between the agents is explained in section 2.2.

2. Each agent module then uses the sensors information received to decide which

actions it should do. Notice that the actions include the physical actions and the

communication actions.

3. The kernel gathers all the actions received from the agents and it sends them to

the simulator modules. The actions received are sometimes filtered by the kernel.

For example, if the kernel receives an action from a dead agent, the action would

not be considered. Also, since the simulation proceeds in real-time, the kernel

ignores all the actions that do not arrive in time. Only accepted actions are sent

to the simulator modules.

4. The simulator modules individually compute how the world will change based

upon its internal state and the actions received from the kernel. Then, each

simulator modules sends its simulation results to the kernel.

5. The kernel integrates the results received from the simulator modules and it sends

them to the GIS module and to the simulator modules. The kernel only integrates

the results that are received on time.

Chapter 2. RoboCupRescue 16

Kernel Simulators

Agents

GIS

Viewers

Integrated
simulation results

(5)

Information request

(7)

(3)

Agents’ actions

(1) Sensors
information

(8)
Requested
information

(2)Actions

Simulation results

(4)

Integrated
simulation results

(5)
(6)

Update
notification

Figure 2.3: Communication between the simulator modules during one cycle of the

simulation.

6. The kernel increases the simulation clock and it notifies the viewers about the

update.

7. The viewers request the GIS to send the updated information of the world.

8. The GIS keeps track of the simulation results and it sends to the viewers the

information they requested. Finally, the viewers visually display the information

received from the GIS.

2.1.4 Evaluation Function

In the RoboCupRescue simulation, the performance of the rescue agents is evaluated

by considering the number of agents that are still alive, the healthiness of the survivors

and the unburned area. As we can see in the following equation, the most important

aspect is the number of survivors. Therefore, agents should try to prioritize the task of

rescuing civilians.

Score =

(
nA +

H

Hini

)√
B

Bini
(2.1)

where nA is the number of living agents, H is the remaining number of health points

(HP) of all agents, Hini is the total number of HP of all agents at the beginning, Bini is

Chapter 2. RoboCupRescue 17

Fierceness Meaning

0 Intact building.

1 Small fire.

2 Medium fire.

3 Huge fire.

4 Not on fire, but damage by the water.

5 Extinguished, but slightly damage.

6 Extinguished, but moderately damage.

7 Extinguished, but severely damage.

8 Completely burned down.

Table 2.1: Meaning of the building’s fierceness attribute values.

Fierceness Score rules

0 No penalty.

1 or 5 1
3

of the building’s area is considered destroyed.

4 Water damage, also 1
3

of the building’s area is considered destroyed.

2 or 6 2
3

of the building’s area is considered destroyed.

3, 7 or 8 The whole building is considered destroyed.

Table 2.2: Score rules used to evaluate the area burned based on the building’s fierce-

ness attribute.

total buildings’ area at the beginning and B is the undestroyed area which is calculated

using the fierceness value of all buildings. The fierceness attribute indicate the intensity

of the fire and how badly the building has been damaged by the fire. This attribute

can take values from 0 to 8, as presented in Table 2.1. Using these fierceness values,

Table 2.2 presents the rules used to evaluate the unburned area of each building.

2.1.5 Graphical Representation of the Simulation

In order to see the evolving simulation, the RoboCupRescue simulator has a viewer

module responsible for the graphical representation of the simulation. Figure 2.4

presents an example of a RoboCupRescue situation. Buildings are represented as poly-

gons. Gray polygons means that the buildings are not on fire. If the building is on

fire, then it is yellow, or orange. If the building was on fire and then extinguished, it

is blue. Green buildings represent refuges where the injured agents have to be sent.

White buildings represent the three center agents (FireStation, PoliceOffice and Am-

bulanceTeam). The darker a building is, the more damage it is.

Chapter 2. RoboCupRescue 18

Figure 2.4: Example of a RoboCupRescue situation.

Agents are represented as circles: FireBrigade (red), PoliceForce (yellow), Ambu-

lanceTeam (white) and Civilians (green). Again, the darker an agent is, the more

injured it is. The blue lines represent the water thrown by the FireBrigade agents on

the fires.

A little ”x” on a road means that this road is blocked. When a PoliceForce agent

clears a road, the ”x” disappears.

2.2 Rescue Agents

The objective of the RoboCupRescue simulation project is to study rescue strate-

gies, and also collaboration and coordination strategies between rescue teams (Taka-

hashi et al. (2002)). Participants in the RoboCupRescue championship have to develop

software agents representing teams of firefighters, polices and paramedics, in order to

Chapter 2. RoboCupRescue 19

manage the disaster the best way they can. These agents have to:

• determine where are the emergencies with the highest priorities,

• choose which roads to clear so that strategic places can be reached,

• choose where to dig in order to rescue the most civilians,

• carry injured civilians to the refuges,

• choose which fires to extinguish in priority,

• etc.

For the current testbed, there are approximately 100 agents representing groups

of people (civilian families, firefighter teams, police forces, ambulance teams). This

grouping has been done to simplify the simulation. However, the objective of the

RoboCupRescue committee is to have more than 10 000 agents in the simulation to make

it more realistic (Tadkoro et al. (2000)). The number of agents will be increased when

the computer hardware will support that many deliberative agents in one simulation.

In the simulation, agents can accomplish different actions that can be divided in two

classes (Koch (2002)): actions shared by all agents and actions specialized and available

to only some types of agents.

• Shared actions:

– Move (except for building agents);

– Speak to near agents;

– Communicate by radio with all the agents of the same type and their center

agent;

– Do nothing.

• Specialized actions :

– FireBrigade agents can extinguish fires;

– PoliceForce agents can clear roads;

– AmbulanceTeam agents can dig to rescue civilians and they can transport

other agents (civilians or rescue agents);

– Center agents (FireStation, PoliceOffice and AmbulanceCenter) can commu-

nicate with the other center agents.

Chapter 2. RoboCupRescue 20

FireBrigade PoliceForce

AmbulanceTeam

AmbulanceCenter

FireStation PoliceOffice

Figure 2.5: Communication organization. Links between different types of agents

indicate that a message can be sent by radio between these two types of agents.

The coordination and the collaboration between the agents are really important,

because the agents’ efficiency can be improved if the agents collaborate with each other.

The firefighter agents, the police agents and the paramedic agents work faster if they

work in teams. For example, if there are many FireBrigade agents that cooperate to

extinguish the same fire, then the fire will be extinguished mush faster than if only one

agent tries to extinguish it (Ohta et al. (2001)).

There are two different communication actions: Say and Tell. With the Say action,

an agent can speak to all agents in a 30 meters radius around it. With the Tell action,

agents communicate by radio. All radio messages are broadcasted to the other agents

following the communication organization presented on Figure 2.5. For example, if a

FireBrigade agent sends a message by radio, it will be received at the next time step

by all the other FireBrigade agents and by the FireStation agent.

One should note that this communication organization limits the ability to com-

munication between heterogeneous agents. For example, a FireBrigade agent cannot

directly send a message to a PoliceForce agent. The message has to go from the Fire-

Brigade agent to the FireStation agent, to the PoliceOffice agent and finally to the

PoliceForce agent. As we can see, it needs at least three time steps for a message to go

from a FireBrigade agent to a PoliceForce agent. This communication constraint is only

one of the many constraints imposed by the RoboCupRescue simulation environment.

In the next section, we present why it is such a complex problem.

Chapter 2. RoboCupRescue 21

2.3 Environment Complexity

The RoboCupRescue simulation is a complex environment that imposes many con-

straints like:

• A real-time constraint on the agents’ response time. All agents have to return

their action in less than a second after they received their perceptions.

• The agents’ perceptions are limited to a 10 meters radius.

• The length and the number of messages that an agent can send or received are

limited.

• The FireBrigade agents have a limited amount of water available.

• The civilians die if they are not saved on time.

• The time left before a civilian dies is unknown.

• The fires are spreading fast if they are not controlled rapidly.

• Rescue agents can easily create traffic jam.

One of the most important problems in the RoboCupRescue simulation is the partial

observability of the environment. In the simulation, agents have only a local perception

of their surroundings. Agents only perceive the objects that are in a 10 meters radius

around them. Consequently, there is no agent that has a complete view of the envi-

ronment state. Even more than that, the RoboCupRescue simulation is a collectively

partially observable environment (Nair et al. (2003)). This means that even if all the

agents’ perceptions are regrouped, these agents would not have a perfect vision of the

situation.

This uncertainty complicates the problem greatly. Agents have to explore the en-

vironment, they cannot just work on the visible problems. Therefore, one major prob-

lem for the agents is to acquire useful information in a reasonable time (Kitano et al.

(1999)). Agents also have to communicate with each other to improve their local per-

ceptions, even though they will never have a perfect knowledge about the environment.

Communications are quite restricted, but they are still really important, because the

coordination between the agents depends a lot on the efficiency of the communications

between them.

As mentioned before, agents have to communicate to compensate for their restrictive

local perceptions. However, agents have to be really careful about the messages they

send, because it is really easy to loose a message due to the limitations on the number of

Chapter 2. RoboCupRescue 22

Agent’s type Receive Send

Mobile agents 4 4

Center agents 2n 2n

Table 2.3: Maximal number of messages per time step that an agent can send or

receive. n is the number of mobile agents of the same type as the center agent. The

center agents are: FireStation, PoliceOffice and AmbulanceCenter. And the mobile

agents are: FireBrigade, PoliceForce and AmbulanceTeam.

messages that can be sent or received and because of the communication organization

presented in Figure 2.5. The maximum number of messages that can be sent or received

during one time step of the simulation are presented in Table 2.3. As we can see, center

agents have better communication capabilities because they can receive and send more

messages than the mobile agents. Each center agent can receive and send 2n messages

per time step where n is the number of mobile agents of the same type as the center

agent. For example, if there are 10 FireBrigade agents, then the FireStation agent

can send and receive 20 messages per time step. Since center agents can receive more

messages, they normally have a better knowledge of the global situation. Therefore,

center agents are the best agents to serve as the center of coordination for the mobile

agents of the same type.

With such communication constraints, there is a good chance that a message gets

lost and that it does not reach its intended recipient. For example, consider the case

where 10 FireBrigade agents each sends one message during one time step. This is

really under the limitation of the agents, because they could each send 4 messages in

one time step. However, even with only one message sent per agent, each agent will

receive 9 messages, which is more than twice the number of messages an agent can

receive in one time step. Consequently, each agent will lost 5 messages. The situation

can be much worst if the agents have more than one message to send or if there are

messages coming from other types of agents trough the center agent. It then becomes

really important for the agents to have a good strategy to choose which messages they

should send or listen to.

Moreover, the communications in the RoboCupRescue simulation are situated com-

munications (Noda (2001)), which means that the information contained in a message

depends a lot on the position of this information on the map. For example, an infor-

mation about a fire is useless if the agent does not transmit the position of the fire.

For the communication between the agents, the complexity happens when agents have

to choose which are the most important messages to listen to. For example, a message

coming from a near agent has more chance to be useful than a message coming from

a far agent, because normally we need more coordination messages for agents working

Chapter 2. RoboCupRescue 23

on the same problem. Consequently, to efficiently choose which messages to listen to,

each agent has to estimate the position of the other agents in the city. This could be

quite hard since agents are always moving.

Another difficulty of the RoboCupRescue environment is that agents are heteroge-

neous. They have different capabilities and there is no agent that can do everything

by itself. Consequently, agents have to collaborate with each other if they want to

accomplish their tasks efficiently (Paquet et al. (2004a)). Agents have to coordinate

their actions in order to profit from each other’s capabilities.

In the simulation, it is also really important to efficiently manage the resources,

because there is a lot of work to do with few resources. Logistic and more particularly

distributed logistic become then a complex problem. There are a lot of problematic

situations in the simulated city and the agents have to be assigned to the problems that

will maximize their actions’ results.

2.4 Multiagent Testbed

The RoboCupRescue simulation environment is a good testbed for multiagent algo-

rithms, because it has some really interesting characteristics for research in this domain.

Here are some of its advantages as a testbed environment:

• The environment is complex enough to be realistic.

• The testbed is easily accessible.

• The testbed covers a lot of different multiagent problems.

• The testbed enables to compare the approaches developed with the other partic-

ipants at the competition.

The RoboCupRescue simulation environment offers a complex testbed allowing

many multiagent research opportunities or more generally many artificial intelligence

research opportunities (Kitano et al. (1999)). These opportunities are present in do-

mains like:

Multiagent planning. There are many heterogeneous agents that have to plan

and act in an hostile and dynamic environment.

Anytime and real-time planning. Agents have to plan while following some

real-time constraints.

Chapter 2. RoboCupRescue 24

Robust planning. Planning has to be done with incomplete information. The

planning system has to be able to efficiently replan if some information changes.

Resources management. Resources are really limited in the simulation, thus

it becomes important to manage them efficiently.

Learning. Tasks are also quite complicated, thus agents have to learn how to

assign the resources to the different tasks. They also have to learn some dynamic

aspects of the environment in order to estimate its evolution.

Information gathering. Agents have to explicitly plan for information gather-

ing actions in order to improve the agents’ global vision of the environment.

Coordination. Agents have to coordinate their actions because more than one

agent is usually needed to accomplish the tasks.

Decision-making in large scale systems. Agents have to analyze many pos-

sibilities and choose an action to accomplish in a really huge partially observable

state space.

Scheduling. There are many civilians that have to be rescued and each of them

has a different estimated death time and a different rescue time. These dynamic

tasks have to be schedule in order to maximize the number of civilians rescued.

In the next chapters, we present some ideas and some algorithms that we have

developed in order to tackle some of these challenges.

Chapter 3

Online POMDP Algorithm

As described in Chapter 2, the RoboCupRescue simulation environment is partially

observable. Agents evolving in this environment have to choose an action at each time

step even though they only have an incomplete representation of their environment.

When faced with a partially observable environment like the RoboCupRescue simula-

tion, a general model for sequential decision problems is to use the Partially Observable

Markov Decision Processes (POMDPs).

A lot of problems can be modelled with POMDPs, but very few can be solved be-

cause of their computational complexity (POMDPs are PSPACE-complete (Papadim-

itriou and Tsitsiklis (1987))). The main problem with POMDPs is that their complexity

makes them applicable only on small environments. However, most problems of inter-

est have a huge state space, which motivates the search for approximation methods

(Hauskrecht (2000)). This is especially the case for multiagent systems where there is

often a huge state space with autonomous agents interacting with each other.

POMDPs have generated a lot of interest in the AI community and many ap-

proximation algorithms have been developed recently (Pineau et al. (2003); Braziunas

and Boutilier (2004); Poupart (2005); Smith and Simmons (2005); Spaan and Vlassis

(2005)). They all share in common the fact that they solve the problem offline. This

means that they specify, prior to the execution, the action to execute for all possible

situations the agent could encounter in the environment. This plan, linking an envi-

ronment state with the chosen action, is called a policy. While these approximation

algorithms can achieve very good performances, they are still not applicable on large

problems, where there are too many possible situations to completely solve the problem

offline.

In this chapter, instead of computing a complete policy offline, we present an online

approach based on a look-ahead search in the belief state space to find the best action

to execute at each cycle in the environment (Paquet et al. (2005b,c)). Our algorithm,

Chapter 3. Online POMDP Algorithm 26

called RTBSS (Real-Time Belief Space Search), only explores reachable belief states

starting from the agent’s current belief state. This online exploration has to be as

fast as possible, since our algorithm has to work under some real-time constraints in

the RoboCupRescue simulation. To achieve that, we opted for a factored POMDP

representation and a branch and bound strategy. By pruning some branches of the

search tree, our algorithm is able to search deeper, while still respecting the real-time

constraints.

By doing an online search, we avoid the overwhelming complexity of computing a

policy for every possible situation the agent could encounter. Since there is no computa-

tion offline, the algorithm is immediately applicable to previously unseen environments,

if the environments’ dynamics are known. Other approaches have used an online search

for POMDPs, but they were not immediately efficient without any offline computa-

tions. For example, the BI-POMDP algorithm needs the underlying MDP to be solved

offline to choose in which order to expand the search (Washington (1997)). Similarly,

the RTDP-BEL algorithm (Geffner and Bonet (1998)) needs successive trials in the en-

vironment in addition to the solution for the underlying MDP, thus it needs an offline

training before becoming efficient.

In the first part of this chapter, we present a more detailed literature review on

POMDP algorithms. Then we describe the formalism of our online algorithm and

some hybrid algorithms, followed by some results on standard POMDPs and finally we

present an adaptation of our method for a complex multiagent environment and some

results showing its efficiency in such environments. The results show that it is possible

to achieve relatively good performances by using a very short amount of time online.

The tradeoff between the solution quality and the computing time is very interesting.

3.1 Literature Review

In this section, we present a literature review covering many methods for solving

partially observable Markov decision problems. Firstly, we present the POMDP model,

followed by an example of the optimal value iteration algorithm. Afterwards, we present

offline approximation methods, which construct a complete policy offline, before the

agent has to be effective in the environment. Then we present online methods, which

need to be executed in the environment in order to define the agent’s policy. Finally,

we present how the POMDP model can be factorized by representing it with random

variables and how this can help to find approximated solutions.

Chapter 3. Online POMDP Algorithm 27

3.1.1 POMDP Model

Partially Observable Markov Decision Processes (POMDPs) provide a general frame-

work for acting in partially observable environments (Astrom (1965); Smallwood and

Sondik (1973); Kaelbling et al. (1998)). A POMDP is a model for planning under un-

certainty, which gives the agent the ability to effectively estimate the outcome of its

actions even though it cannot exactly observe the environment. Formally, a POMDP

is represented as a tuple 〈S, A, T, R, γ, Ω, O〉 where:

• S is the set of all the environment states. A state is a description of the environ-

ment at a specific moment and it should capture all information relevant to the

agent’s decision-making process.

• A is the set of all possible actions.

• T (s, a, s′) is the transition function, which gives the probability of ending in state

s′ if the agent performs action a in state s, Pr(s′|s, a).

• R(s, a) is the reward function which gives the reward associated with doing action

a in state s.

• γ is the discount factor (0 < γ ≤ 1).

• Ω is the set of all possible observations.

• O(s′, a, o) is the observation function which gives the probability of observing o if

action a is performed and the resulting state is s′, Pr(o|a, s′).

In a POMDP, the states are not directly observable. At any given time, the agent

only has access to some observation o ∈ Ω that give some incomplete information

about the current state. Since the states are not observable, the agent cannot choose

its actions based on the states. It rather has to consider a complete history of its past

actions and observations to choose its current action. The history at time t is defined

as:

ht := {a0, o1, . . . , ot−1, at−1, ot} (3.1)

This explicit representation of the past is really expensive in memory. To reduce the

length of the past actions and observations considered, some researchers have worked

on approaches to learn a more compact representation of the past (McCallum (1996);

Dutech and Samuelides (2003)). Instead of memorizing all actions and observations,

they learn smaller histories for different situations.

Chapter 3. Online POMDP Algorithm 28

However, it is not necessary to explicitly represent histories, because it is possible to

summarize all relevant information from previous actions and observations in a proba-

bility distribution over the state space S, which is called a belief state (Astrom (1965)).

A belief state at time t is defined as the posterior probability distribution that gives

the probability of being in each state knowing the complete history:

bt(s) := Pr(st = s|ht) (3.2)

It has been shown that the belief state bt is a sufficient statistic for the history ht

(Smallwood and Sondik (1973)), therefore the agent can choose its actions based on the

current belief state bt instead of all past actions and observations. Furthermore, the

belief state bt can be computed from the previous belief state bt−1, the previous action

at−1 and the current observation ot. This is done with the belief state update function

τ(b, a, o): if bt = τ(bt−1, at−1, ot), then

bt(s
′) = ηO(s′, at−1, ot)

∑

s∈S

T (s, at−1, s
′)bt−1(s) (3.3)

where η is a normalizing constant.

Now that the agent has a way to estimate in which state it is, it needs to choose

an action based on its belief state. This action is determined by the agent’s policy π,

which is a function that maps a belief state to the action the agent should execute in

this belief state. Therefore, it defines the agent’s strategy for all the possible situations

it could be faced with. This strategy should maximize the amount of reward earned

over a finite or infinite time horizon. More precisely, the optimal policy π∗ is the policy

that maximizes the expected sum of discounted rewards:

π∗ = argmax
π∈Γ

E

[
∞∑

t=0

γt
∑

s∈S

bt(s)R(s, π(bt))

]

(3.4)

Where γ is the discount factor (0 < γ ≤ 1), bt(s) is the probability that the agent

is in state s according to the belief state bt and π(bt) is the action prescribed by the

policy π in the belief state bt.

Graphically, a policy can be represented as a tree structure. For example, Figure 3.2

shows policies for different horizons for a problem with two actions and two observations

which is described in Figure 3.1. At the horizon of 1, the agent can only do one action,

therefore there are only two possible policies: doing action a1 or doing action a2. From

the horizon 2, the agent has to consider the possible observations. The policy has to

contain actions for all possible observations. For example, the policy P121 specifies that

the agent executes action a1, then if it observes o1, it does policy P2 and if it observes

Chapter 3. Online POMDP Algorithm 29

States: {s1, s2}
Actions: {a1, a2}
Observations: {o1, o2}
Discount factor: γ = 0.9

Reward Function

• R(s1, a1) = 2

• R(s1, a2) = 1

• R(s2, a1) = 1

• R(s2, a2) = 3

Transition Function

• T (s1, a1, s1) = 0.3

• T (s1, a1, s2) = 0.7

• T (s1, a2, s1) = 0.1

• T (s1, a2, s2) = 0.9

• T (s2, a1, s1) = 0.6

• T (s2, a1, s2) = 0.4

• T (s2, a2, s1) = 0.8

• T (s2, a2, s2) = 0.2

Observation Function

• O(s1, a1, o1) = 0.9

• O(s1, a1, o2) = 0.1

• O(s1, a2, o1) = 0.9

• O(s1, a2, o2) = 0.1

• O(s2, a1, o1) = 0.5

• O(s2, a1, o2) = 0.5

• O(s2, a2, o1) = 0.5

• O(s2, a2, o2) = 0.5

Figure 3.1: POMDP Example.

o2, it does policy P1. For our example problem at a horizon of 2, there are 8 possible

policies, illustrated in Figure 3.2. For a horizon of 3, there are 128 possible policies and

Figure 3.2 presents three examples of these. Table 3.1 presents the number of possible

policies for horizons of 1 trough 5. As we can see, the number of possible policies grows

rapidly. In fact, the number of policies |Γt| for a horizon of t is given by:

|Γt| = |A|
|Ω|t−1

|Ω|−1 (3.5)

This last equation shows that the number of states does not have an impact on

the number of possible policies. However, it has a big impact on the time needed to

evaluate each policy, which is in O(|S|2).

Chapter 3. Online POMDP Algorithm 30

For a horizon of 1, there are 2 possible policies (P1 and P2):

a1 a2

P1 P2

For a horizon of 2, there are 8 possible policies:

a1

P111

o1 o2

P1 P1

a1

P112

o1 o2

P1 P2

a1

P121

o1 o2

P2 P1

a1

P122

o1 o2

P2 P2

a2

P211

o1 o2

P1 P1

a2

P212

o1 o2

P1 P2

a2

P221

o1 o2

P2 P1

a2

P222

o1 o2

P2 P2

For a horizon of 3, there are 128 possible policies:

a1

P1111111

o1 o2

P111 P111

a1

P1111112

o1 o2

P111 P112

a1

P1111121

o1 o2

P111 P121

Figure 3.2: Tree representation of some policies at three different horizons.

Chapter 3. Online POMDP Algorithm 31

Horizon Number of Policies

1 2

2 8

3 128

4 32 768

5 2 147 483 648

Table 3.1: Number of policies for a problem with two actions and two observations.

3.1.2 Optimal Value Iteration Algorithm

There are many optimal POMDP algorithms: the Enumeration algorithm (Sondik

(1971)), the algorithm of Monahan (1982), the One-Pass algorithm (Smallwood and

Sondik (1973)), the linear support algorithm (Cheng (1988)), the Witness algorithm

(Littman (1996)), the Incremental Pruning algorithm (Zhang and Liu (1996); Cassandra

et al. (1997)), the algorithm of Zhang and Zhang (2001), etc. All these algorithms

exactly solve POMDPs for a fixed horizon. Some of them are faster than the others,

but all of them are still completely impractical for problems with more than a few dozen

states.

In this section, we present the Enumeration algorithm (Sondik (1971)) which is a

simple exact value iteration algorithm that can find an optimal policy for a specified

horizon. This algorithm uses dynamic programming to compute increasingly more ac-

curate values for each belief state b. The basic idea behind the value iteration algorithm

is to construct policies gradually, one horizon at a time, and to reuse the calculation

made for the preceding horizon. For example, in Figure 3.2, we can see that the policies

at the horizon of 3 are reusing the policies created at the horizon of 2.

To construct those policies, the value iteration algorithm needs to evaluate the

value of a belief state. Formally, let V be a value function that takes a belief state

as parameter and returns a numerical value in R of this belief state. The initial value

function is:

V0(b) = max
a∈A

∑

s∈S

b(s)R(s, a) (3.6)

Afterwards, the value function at the horizon of t is constructed from the value

function at the horizon t− 1 by using the following recursive equation:

Vt(b) = max
a∈A

[
∑

s∈S

b(s)R(s, a) + γ
∑

o∈Ω

Pr(o|b, a)Vt−1(τ(b, a, o))

]

(3.7)

Where τ(b, a, o) is the belief update function defined in Equation 3.3 and Pr(o|b, a)

is the probability of observing o if action a is performed in belief state b, which is defined

Chapter 3. Online POMDP Algorithm 32

as (for a detailed proof see Littman (1994b)):

Pr(o|b, a) =
∑

s′∈S

O(s′, a, o)
∑

s∈S

T (s, a, s′)b(s) (3.8)

The value function in Equation 3.7 returns the maximum expected sum of discounted

rewards that the agent can receive in the next t time steps, for any belief state b.

Therefore, the optimal policy for a horizon of t is simply to choose the action that

maximizes Vt(b):

π∗
t (b) = argmax

a∈A

[
∑

s∈S

b(s)R(s, a) + γ
∑

o∈Ω

Pr(o|b, a)Vt−1(τ(b, a, o))

]

(3.9)

This last equation associates an action to a specific belief state, which has to be

done for all possible belief states in order to define a complete policy. The problem is

that there is an infinite and uncountable number of belief states. It is thus impossible to

calculate a policy for all individual belief states. Consequently, the idea is to define the

value of a specific policy over the entire belief state space. To do so, we cannot simply

calculate a numerical value for a policy, since it is not the same for all belief states. We

thus have to find a function for each policy that takes a belief state as parameter and

returns the value of the policy for this belief state.

3.1.2.1 α-vectors

A value function for a policy is represented as a linear function with a term for each

state. The variable for each term is the probability of being in the corresponding state

and the coefficient is the expected reward of being in this state. Figure 3.3 presents an

example of such a function for the policy P1 of our POMDP example (Figure 3.1 and

Figure 3.2). The value function for the policy P1 is: V (b) = 2b(s1)+1b(s2). This means

that the expected reward of the policy P1 if the agent is in state s1 is 2, and if the agent

is in state s2 it is 1. This function can be represented more compactly with a vector

containing only the coefficients for all states: α = [2, 1]. There is one α-vector for each

policy and each α-vector has |S| terms, i.e. as many coefficients as there are states.

Thus, an α-vector represents an |S|-dimensional hyperplane that defines the expected

reward of a policy.

A key result by Smallwood and Sondik (1973) shows that the optimal value function

for a finite-horizon POMDP is piecewise-linear and convex. Therefore, the value func-

tion Vt(b) at any horizon t can be represented by a set of α-vectors: Γt = {α0, α1, . . . , αm}.
With this representation, the value of a belief state is the maximum value returned by

one of the α-vectors for this belief state and the best policy is the one associated with

Chapter 3. Online POMDP Algorithm 33

1

2

3

0 1

P1

4

5

b(s2)

V
(b

)

Figure 3.3: Example of a value function of a policy.

the α-vector that returned the best value.

Vt(b) = max
α∈Γt

∑

s∈S

α(s)b(s) (3.10)

Algorithm 3.1 presents the exact value iteration algorithm showing how the α-vectors

are created. The first step is to create one set Γa,∗
t for each action. Each of these set

contains only one α-vector representing the immediate reward if the agent execute action

a (lines 2-5). Then, there is an initialization step that corresponds to the horizon t = 0.

Since the agent cannot do any actions, the value function equals zero for all belief states

(lines 6 and 7). For all succeeding horizons t, we iterate over all actions to generate

the Γa
t sets. To do so, for each observation, we create a new α-vector for each α-vector

in the Γt−1 set (lines 12 and 13). We thus have one Γa,o
t set for each observation and

each Γa,o
t set has |Γt−1| α-vectors. Afterwards, we calculate the set Γa

t by doing the

cross-sum1 over all the α-vector sets for the current action a (line 16). When we have

all the Γa
t sets for all the actions, we can calculate the Γt set by doing the union over

all the Γa
t sets (line 18).

The Γt set contains all the α-vectors representing the exact value function for a

horizon of t. However, at first, Γt often contains many unnecessary α-vectors. This

is why all the dominated α-vectors are removed at line 19. A dominated α-vector is

an α-vector that does not return the best value for any belief state, thus it is never

used to calculate the value function. Removing dominated α-vectors helps to keep to a

minimum the number of α-vectors representing the value function.

1The symbol ⊕ denotes the cross-sum operator. A cross-sum operation is defined over two sets,

A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn}, and produces a third set, C = {a1 + b1, a1 + b2, . . . , a1 +

bn, a2 + b1, a2 + b2, . . . , am + bn}

Chapter 3. Online POMDP Algorithm 34

1: Function Exact-Value-Iteration(Horizon)

Returns: A set of α-vectors representing the value function.

Inputs: Horizon: The maximal horizon.

Statics: The POMDP model.

2: for all a ∈ A do

3: αa,∗(s) = R(s, a)

4: Γa,∗ ← {αa,∗}
5: end for

6: α0 = [0, 0, . . . , 0] {Initialization with a vector containing only zeros.}
7: Γ← {α0}
8: for t = 1 to t = Horizon do

9: for all a ∈ A do

10: for all o ∈ O do

11: for all α
′ ∈ Γ do

12: αa,o(s) = γ
∑
s′∈S

T (s, a, s′)O(s′, a, o)α
′
(s′)

13: Γa,o
t ← Γa,o

t

⋃
{αa,o}

14: end for

15: end for

16: Γa
t = Γa,∗⊕Γa,o1

t ⊕Γa,o2

t ⊕· · ·⊕Γ
a,o|Ω|

t {The cross-sum over all sets of α-vectors.}
17: end for

18: Γt =
⋃

a∈A

Γa
t

19: Γt = Remove-Dominated-Vectors(Γt)

20: Γ = Γt

21: end for

22: return Γ

Algorithm 3.1: Exact value iteration algorithm.

3.1.2.2 Example

This section presents an example of an execution of the exact value iteration algo-

rithm as described in Algorithm 3.1. The problem defined in Figure 3.1 is used for this

example. The first step of the algorithm is to create a set Γa,∗ for each action.

Γa1,∗ =

[
R(s1, a1)

R(s2, a1)

]
=

[
2

1

]
(3.11)

Chapter 3. Online POMDP Algorithm 35

Γa2,∗ =

[
R(s1, a2)

R(s2, a2)

]

=

[
1

3

]

(3.12)

Afterwards, the algorithm begins at a horizon of t = 0, which means that the agent

cannot make any action, thus each belief state has a value of 0, which is represented

with one α-vector, in which all coefficients for all states equal zero. The α-vector P0

represents the values for the policy consisting of doing nothing.

Γ0 =

([
0

0

])

P0

(3.13)

For the horizon t = 1, we begin by constructing the α-vector sets for the action a1

(lines 12-13). There is one α-vector set for each observation and each set contains one

vector for each vector in Γ0.

Γa1,o1

1 =

γ
∑
s′∈S

T (s1, a1, s
′)O(s′, a1, o1)P0(s

′)

γ
∑
s′∈S

T (s2, a1, s
′)O(s′, a1, o1)P0(s

′)

=

[
0.9× (0.3× 0.9× 0 + 0.7× 0.5× 0)

0.9× (0.6× 0.9× 0 + 0.4× 0.5× 0)

]
=

[
0

0

]
(3.14)

Γa1,o2

1 =

γ
∑
s′∈S

T (s1, a1, s
′)O(s′, a1, o2)P0(s

′)

γ
∑
s′∈S

T (s2, a1, s
′)O(s′, a1, o2)P0(s

′)

=

[
0.9× (0.3× 0.1× 0 + 0.7× 0.5× 0)

0.9× (0.6× 0.1× 0 + 0.4× 0.5× 0)

]
=

[
0

0

]
(3.15)

Then, we combine all the α-vector sets for the action a1 with the cross-sum operator.

Γa1

1 = Γa1,∗ ⊕ Γa1,o1

1 ⊕ Γa1,o2

1

=

[
2

1

]
⊕
[

0

0

]
⊕
[

0

0

]
=

[
2

1

]

P1

(3.16)

By doing the same calculations for the action a2, we obtain:

Γa2

1 =

[
1

3

]

P2

(3.17)

Chapter 3. Online POMDP Algorithm 36

0 1

P1

P2

1

2

3

4

5

b(s2)

V
(b

)
V

(b
)

Figure 3.4: Value iteration example at a horizon of 1.

Finally, the solution set for the horizon of 1 is obtained by doing the union of the

α-vector sets of all the actions (see Figure 3.4 for a graphical representation).

Γ1 = Γa1

1 ∪ Γa2

1 =

[
2

1

]

P1

[
1

3

]

P2

 (3.18)

Now, for the horizon t = 2, we begin by constructing the α-vector sets for the

action a1. To achieve this, for the observation o1, we need to construct two vectors, the

first one if the policy P1 is executed afterwards and the second one if the policy P2 is

executed afterwards.

Γa1,o1

2 =

γ
∑
s′∈S

T (s1, a1, s
′)O(s′, a1, o1)P1(s

′)

γ
∑
s′∈S

T (s2, a1, s
′)O(s′, a1, o1)P1(s

′)

γ
∑
s′∈S

T (s1, a1, s
′)O(s′, a1, o1)P2(s

′)

γ
∑
s′∈S

T (s2, a1, s
′)O(s′, a1, o1)P2(s

′)

=

[
0.9× (0.3× 0.9× 2 + 0.7× 0.5× 1)

0.9× (0.6× 0.9× 2 + 0.4× 0.5× 1)

]

[
0.9× (0.3× 0.9× 1 + 0.7× 0.5× 3)

0.9× (0.6× 0.9× 1 + 0.4× 0.5× 3)

]

=

[
0.801

1.152

][
1.188

1.026

]

(3.19)

Chapter 3. Online POMDP Algorithm 37

The same calculations can be done for the observation o2, resulting in:

Γa1,o2

2 =

[
0.369

0.288

][
0.972

0.594

]
(3.20)

Then, we combine all the α-vector sets for the action a1 with the cross-sum operator.

Γa1

2 = Γa1,∗ ⊕ Γa1,o1

2 ⊕ Γa1,o2

2

=

[
2

1

]
⊕
[

0.801

1.152

][
1.188

1.026

]
⊕
[

0.369

0.288

][
0.972

0.594

]

=

[
3.17

2.44

]

P111

[
3.773

2.746

]

P112

[
3.557

2.314

]

P121

[
4.16

2.62

]

P122

(3.21)

By doing the same calculations for the action a2, we obtain:

Γa2

2 =

[
1.99

4.62

]

P211

[
2.791

4.728

]

P212

[
2.719

4.152

]

P221

[
3.52

4.26

]

P222

(3.22)

Finally, the solution set for the horizon of 2 is obtained by doing the union of the

α-vector sets of all the actions (see Figure 3.5 for a graphical representation).

Γ2 = Γa1

2 ∪ Γa2

2 (3.23)

Γ2 =

[
3.17

2.44

]

P111

[
3.773

2.746

]

P112

[
3.557

2.314

]

P121

[
4.16

2.62

]

P122

[
1.99

4.62

]

P211

[
2.791

4.728

]

P212

[
2.719

4.152

]

P221

[
3.52

4.26

]

P222

As we can see in Figure 3.5, some of the α-vectors are dominated, which means

that for all belief states, there is an α-vector that has a bigger value. All dominated α-

vectors can be removed from the Γ set because they do not contribute to the definition

of the value function. An α-vector can be dominated by one α-vector or by a group of

α-vectors. It is easier to determine when an α-vector is dominated by one α-vector. For

example, in Figure 3.5, P211 is dominated by P212. However, it is harder to determine

if an α-vector is dominated by a group of α-vectors. To do so, we have to use a linear

programming algorithm, which can take a lot of time. In Figure 3.5, P112 is dominated

by the α-vectors P122 and P212. After removing all dominated α-vectors in our example,

we are left with only three α-vectors to define the value function at a horizon of 2 (see

Figure 3.6).

Γ2 =

[
4.16

2.62

]

P122

[
2.791

4.728

]

P212

[
3.52

4.26

]

P222

 (3.24)

Chapter 3. Online POMDP Algorithm 38

0 1

P111

1

2

3

4

5

P112

P121

P122

P211

P212

P221

P222

b(s2)

V
(b

)
V

(b
)

V
(b

)

Figure 3.5: Value function at a horizon

of 2.

0 1

1

2

3

4

5

P122

P212

P222

b(s2)

V
(b

)
V

(b
)

V
(b

)

Figure 3.6: Value function at a horizon

of 2 without dominated α-vectors.

When the Γt set as been created for the desired horizon t, the agent can use it

to determine its best policy. To present how it is done, we will use an example. Let

b = [0.2, 0.8] be the agent current belief state, as illustrated in Figure 3.7. By using

Equation 3.10, the agent can calculate the value of its belief state, which is the maximum

value return by one of the α-vectors. The optimal policy for the horizon of t is then

the α-vector that returned this best value. In our example, we can see that the agent

should execute the policy P212, which means that the agent should execute the action

a2, then if it observes o1, it should execute a1 and if it observes o2, it should execute a2.

Keeping a complete policy tag for all α-vectors takes a lot of memory, because these

tags grow really fast. A more convenient way that takes less memory is to keep only the

first action of the policy as illustrated in Figure 3.8. By doing so, the agent does not

have a direct access to the optimal policy anymore. The agent has to find each action

individually. It finds the first action, then it recalculates its belief state considering

the new observation to find the next action. In our example in Figure 3.8, if the agent

perceives o1, it ends up in belief state b1 (best action a1) and if it perceives o2, it ends

up in belief state b2 (best action a2). As we can see, the two approaches return the

same overall policy, but by keeping only the first action for each α-vectors, the size of

the tags stays constant.

Chapter 3. Online POMDP Algorithm 39

0 1

1

2

3

4

5

P122

P212

P222

bb(s2)

V
(b

)
V

(b
)

V
(b

)

Figure 3.7: The optimal policy for a

belief state.

0 1

1

2

3

4

5

a1

a2

a2

b(s2)

V
(b

)

b1 b2 b

Figure 3.8: The optimal action for a

belief state.

3.1.2.3 Complexity of the Optimal Value Iteration Algorithm

For every horizon, the first step is to generate all the α-vectors (or policies) for all

set of actions and observations with the following equation:

Γa,o
t ← αa,o

i (s) = γ
∑

s′∈S

T (s, a, s′)O(s′, a, o)α
′

i, ∀α
′

i ∈ Γt−1 (3.25)

In the worst case, this generates O(|A||Ω||Γt−1|) α-vectors. Then, we have to apply

the cross-sum operator which generates in the worst case: O(|A||Γt−1||Ω|) α-vectors.

Finally, the time needed to calculate each vector depends on the number of states. We

have to update all the entries of the α-vector (|S| entries) by iterating over all states.

Thus, the complexity for each α-vector is of O(|S|2). Therefore, the complexity in the

worst case to generate the Γt set from the Γt−1 set is:

O(|S|2|A||Γt−1||Ω|) (3.26)

|Γt−1| = |A|
|Ω|t−1−1

|Ω|−1

Consequently, the complexity depends a lot on the number of α-vectors conserved

at each horizon. This is why it is important to remove all dominated α-vectors in order

to keep the Γt set as small as possible.

3.1.3 Offline Approximation Algorithms

Due to their complexity, optimal POMDP algorithms are quite useless. They

can only be applied to really small problems of only ten to twenty states. In con-

Chapter 3. Online POMDP Algorithm 40

sequence, many researchers have worked on improving the applicability of POMDP

approaches by developing approximation approaches that can be applied to bigger

problems (Hauskrecht (2000); Murphy (2000); Aberdeen (2003a)). In this section, we

present offline algorithms, i.e. algorithms that calculate the agent’s policy for all pos-

sible situations before the agent has to perform in the environment. There are two

main categories of offline approaches: value iteration approaches and policy iteration

approaches. Value iteration approaches try to approximate the value function in or-

der to extract the agent’s policy from this approximate value function. On the other

hand, policy iteration approaches work directly on a representation of the agent’s pol-

icy. These last approaches often represent the policy as a finite state controller that is

improved over time.

3.1.3.1 Value Iteration Approaches

In this section, we present examples of approximation POMDP algorithms that

approximate the value function by updating it only for some selected belief states.

Thus, not all the α-vectors are updated, but only the α-vectors that define the value

function at specific belief states. The idea is that instead of planning over the complete

belief space of the agent (which is intractable for large state spaces), planning is carried

out only on a limited set of belief states that are chosen or sampled by using the POMDP

model.

Some methods choose some belief states at the beginning (Lovejoy (1991); Littman

et al. (1995); Hauskrecht (1997)). They can choose belief states at some given interval,

or randomly, or at the position of the states of the underlying MDP. These methods

are called fixed grid-based methods because their grid of chosen belief states over the

belief state space stays constant. Some other methods prefer to use variable problem

dependant sets of belief states and consequently, they can be seen as variable grid-based

methods (Cheng (1988); Brafman (1997); Hauskrecht (1997); Zhou and Hansen (2001);

Bonet (2002)). This enables them to have more belief states to represent the value

function in the most important regions of the the belief state space.

Finally, we present PBVI (Pineau et al. (2003)), HSVI (Smith and Simmons (2004))

and Perseus (Spaan and Vlassis (2005)), which are three recent variations of the point-

based approach. These algorithms consider a starting belief state from which they

try to predict the belief states that will be reachable by the agent. The point-based

approach consists in updating not only the values of the chosen belief states, but also

their gradient. The value function is thus improved for all the belief state space and

not only for the chosen belief states. These three methods are distinguished by the

approach they use for choosing belief states and by the method they use to update the

value function at these chosen belief states.

Chapter 3. Online POMDP Algorithm 41

Fixed Grid-based Methods It is well known (Sondik (1978)) that an optimal

policy for a POMDP with n states can be obtained by solving the belief-space MDP

whose state space consists of all probability distributions over the state space of the

POMDP, i.e., an n-dimensional simplex. Grid approximations attempt to solve the

belief-space MDP directly by placing a discrete, finite grid on this n-dimensional space

and restricting their calculations to the points of this grid. The computational effort

required for approximating the value function on a k point grid is roughly equivalent

to that of solving a k state MDP.

It is possible to use a fixed regular grid (Lovejoy (1991)) or a fixed random grid

(Hauskrecht (1997)). With the regular grid, all the grid points are equally spaced in

the belief space. The grid construction is simple and fast, and the regularity of the grid

facilitates simple value interpolation algorithms to estimate the value function between

the grid points. With a random grid, it takes more time to do the interpolation for

estimating the value of new points.

The QMDP method of Littman et al. (1995) can be viewed as a fixed grid based

method in which the grid consists of the states of the underlying MDP. The first step is

to solve the POMDP as if it was completely observable. The solution to the underlying

MDP gives a value V (s) to each state. Thus the grid points are at the position of each

state. For a non-grid belief state b, its value is estimated as the sum of the values of all

the states pondered by the probability of being in each of these states:

V (b) =
∑

s∈S

b(s)V (s) (3.27)

This method performs relatively well, but it causes the agent to act as if it will

end up in a state of perfect information, i.e., a belief state corresponding to one of the

underlying MDP’s states. Consequently, the agent does not learn how to efficiently use

the information gathering actions. For example, the agent would not learn how to use

a sensing action if the only effect of a sensing action is to clarify its belief state, because

during the learning phase, there are no uncertain belief states considered.

Variable Grid-based Methods On the other hand, variable grid methods use a

problem dependent grid that may change during the solution process. These methods

concentrate the effort where it is most needed and they obtain good approximations

with a much smaller grid than the fixed methods. However, interpolation is harder to

perform, and thus some variable grid construction methods are quite complex, requiring

considerable computation time and space (e.g., Cheng (1988)).

Brafman (1997) has developed a variable grid algorithm for obtaining approximate

solutions to POMDPs in the infinite horizon case. The first points of the grid are

Chapter 3. Online POMDP Algorithm 42

the ones corresponding to the underlying MDP. These first points are used to get an

initial estimate of the value function. Then, it uses this estimation to generate new grid

points that could improve the value function. The value function is then estimated using

these new grid points. This algorithm can loop between the steps of generating new

grid points and calculating the new estimate of the value function. At the beginning,

the grid points are the states of the underlying MDP. When looking for new grid points,

for each pair of grid points, the algorithm generates a grid point in the middle and if

this grid point has a good chance to be visited, then it is added to the grid point set.

Hauskrecht (1997) has also developed a variable grid algorithm. It starts by adding

all the points corresponding to the states of the underlying MDP, then it adds the suc-

cessor belief points, which are generated using a one-step stochastic simulation (Equa-

tion 3.3).

Another variable grid approach is the algorithm developed by Zhou and Hansen

(2001). These authors tried to combine the advantages of the fixed and variable grid

based methods by sub-sampling the fixed grid proposed by Lovejoy (1991). Such algo-

rithm allows both fast interpolation and increased resolution in the most useful areas of

the belief space. However, it still needs a lot of grid points to achieve good performances.

Bonet (2002) has developed a variable grid-based algorithm which is ǫ-optimal.

However, to attain such guaranty, his algorithm needs a lot of grid points. In fact,

grid-based methods in general do not scale well for large state spaces since the size of

the grid tends to grow exponentially with the number of states.

Point-based Approaches The point-based approach is an improvement of the

variable grid-based approach. In the point-based approach, some representative belief

states are sampled like in the variable grid-based approach. However, in the point-

based approach, the belief states are sampled by starting in the initial belief state and

by simulating some random interactions of the agent with the POMDP environment.

By doing so, the belief states sampled have more chance of being reached during the

execution of the agent. Another important improvement is that the point-based ap-

proach does not just update the value at the sampled belief states, but also updates

their gradient. This means that the value function is defined for all the belief state

space and not just for the sampled belief states. In the following, we present three

examples of point-based approaches.

The first point-based approach is the Point-Based Value Iteration (PBVI) algorithm

(Pineau et al. (2003); Pineau (2004)). PBVI maintains a set B of reachable belief states

from the starting belief state b0. To do so, PBVI iteratively expands its set B by adding a

new belief state for each belief state already in B, using a one step stochastic exploration

strategy. For each belief state b ∈ B and for each action a ∈ A, PBVI samples a state

Chapter 3. Online POMDP Algorithm 43

s from the distribution b, a resulting state s′ from the distribution T (s, a, ∗) and an

observation o from the distribution O(s′, a, ∗). From these samples, it generates a new

belief state ba by using the belief update function: ba = τ(b, a, o). Finally, it keeps only

the new belief state which is the farthest away from any point already in B. To sum

up, PBVI interleaves phases of belief state set expansion and value iteration, that is

why it is considered as an anytime algorithm. The value iteration phase only tries to

improve the values at the sampled belief states. Consequently, PBVI only keeps one

α-vector for each sampled belief states. In fact, PBVI can keep less α-vectors than

sampled belief states if one α-vector maximizes more than one belief state. After each

value iteration phase, PBVI proposes a solution that improves as the number of belief

states in B grows.

Another algorithm based on the value iteration approach is the HSVI algorithm

(Smith and Simmons (2004, 2005)). Instead of keeping only one lower bound like

PBVI, HSVI also maintain an upper bound. The lower bound is a set of α-vectors

like PBVI and the upper bound is represented as a convex hull defined with a set of

belief points. At the beginning, the lower bound is initialized with only one α-vector

representing the worst possible case if the same action is applied indefinitely. The upper

bound is initialized with the solution of the underlying MDP. Afterwards, the bounds

are updated at specified belief points. For the lower bound, the update at a belief state

b consists at adding a new α-vector defining the value function at b, as in the PBVI

algorithm. For the upper bound, the update at a belief state b consists at adding a new

belief point in the set defining the convex hull. The belief point added is the best belief

point obtained after trying all possible actions from b. The belief points are chosen by

doing a search in the tree of the belief states attainable from the initial belief state b0.

The search is directed by using the lower and upper bounds.

Spaan and Vlassis have developed an algorithm called Perseus (Spaan and Vlassis

(2004); Vlassis and Spaan (2004); Spaan and Vlassis (2005)), which is an adaptation of

the PBVI algorithm. Perseus operates on a large set of belief states which are gathered

by simulating random interactions of the agent with the POMDP environment. Then, a

number of value function updates are performed on this belief state set. The algorithm

ensures that in each value function update the value of all belief states in the belief state

set is improved (or at least does not decrease). Contrary to PBVI, Perseus updates

only a random subset of belief states. The key idea is that, in each value iteration step,

it is possible to improve the value of all points in the belief set by only updating the

value and its gradient of a subset of the points. This allows to compute value functions

that consist of only a small number of vectors (relative to the belief set size), leading

to significant speedups.

The point-based approaches are quite interesting because they can concentrate the

computation on the attainable belief states. Therefore, attainable belief states have

Chapter 3. Online POMDP Algorithm 44

more chance to be optimized. Even if they are not optimized, all the other belief states

are also defined in the value function, because point-based approaches keep an α-vector

for each sampled belief state and not just its value. One disadvantage of these methods

is that they only optimize over a relatively small number of belief points, which is

sometimes too small to give a good solution. Another drawback is that the α-vectors

can become really hard to manage in big state spaces, because they have as many

elements as there are states in the environment.

3.1.3.2 Policy Iteration Approaches

Instead of learning a value function and then extracting a policy, some methods

directly try to optimize the policy. Most methods in this case restrict the space of

policies to policies that can be represented as finite state controllers (FSCs). Starting

from that, their approach consists in searching for the best policy represented by a

finite state controller of some limited size. Policies represented by FSCs are defined by

a (possibly cyclic) directed graph π = 〈N, E〉, where each node n ∈ N is labeled by an

action a and each edge e ∈ E by an observation z. Each node has one outward edge

per observation. A policy is executed by taking the action associated with the “current

node” and updating the current node by following the edge labeled by the observation

made. Many algorithms have been developed to search in the space of FSCs:

• policy iteration (PI) (Hansen (1997, 1998); Hansen and Zhou (2003); Poupart and

Boutilier (2003a)),

• gradient ascent (GA) (Aberdeen and Baxter (2002); Aberdeen (2003b); Meuleau

et al. (1999a)),

• branch and bound (B&B) (Meuleau et al. (1999b)),

• belief-based stochastic local search (BBSLS) (Braziunas and Boutilier (2004)).

In our experiments on the Tag problem (see Table 3.2 on page 78), our approach is

compared with two of these algorithms (BBSLS and BPI), which are briefly presented

here.

BBSLS Braziunas and Boutilier developed an algorithm called Belief-Based Stochas-

tic Local Search (BBSLS) (Braziunas and Boutilier (2004)). This algorithm searches in

the space of finite-state controllers (FSCs) in order to find an approximate policy for a

POMDP problem. One of the drawbacks of traditional gradient ascent methods is that

they have a tendency to get trapped in local optima. In order to have a method that

Chapter 3. Online POMDP Algorithm 45

can escape from the local optima, BBSLS adds local moves inspired from the dynamic

programming approach. These local moves enable to choose policies at unreachable

belief states that would not be chosen by the local search. These moves are those that

would give good rewards if the pre-condition belief state was met. To make sure these

new moves are considered, they are added in a tabu list, which prevent them from being

removed. This is to let some time to the local search to adjust to these new moves.

The local search is done by doing global moves that correspond to direct stochastic

hill-climbing, and are designed to increase controller value immediately, often taking

advantage of earlier local moves. To sum up, at each step, the BBSLS algorithm per-

forms one or more local moves to get out of local optima, followed by a sequence of

global moves to improve the controller.

BPI Poupart and Boutilier developed an algorithm called bounded policy iteration

(BPI) (Poupart and Boutilier (2003a); Poupart (2005)). Traditional policy iteration

algorithms are guaranteed to converge to an optimal policy, however the size of the

controller often grows intractably. In contrast, gradient ascent methods restrict their

search to controllers of a bounded size, but may get trapped in local optima. The BPI

algorithm improves the policy much like policy iteration algorithms (Hansen (1998)),

but while keeping the size of the controller fixed. However, in order to get out of a local

optimum, the controller is allowed to slightly grow by adding one (or a few) node(s) to

escape the local optimum.

Policy iteration methods are quite interesting because they often converge rapidly.

However, it might be hard to find the best policy representation for each problem. Also,

gradient search methods can get trapped in local minima.

3.1.3.3 Value Function Approximations

Some methods are trying to directly approximate the POMDP’s value function.

Bertsekas and Tsitsiklis (1996) developed a technique called neuro-dynamic program-

ming in which they train a neural network by dynamic programming to approximate

the Q-functions. Another approach is the one of Parr and Russel (1995) in which they

use a smooth and differentiable function that is optimized by gradient descent. Another

way to approximate a POMDP’s value function is to use particle filtering to do approx-

imate tracking of the belief state and using a nearest-neighbor function approximation

for the value function (Thrun (2000)).

Chapter 3. Online POMDP Algorithm 46

3.1.3.4 Reusable Trajectories

Kearns et al. have developed an algorithm to evaluate the quality of POMDP

policies by doing an exploration of trajectories in a tree structure (Kearns et al. (2000)).

Their algorithm is not used to construct a POMDP policy. These authors consider that

they already have a finite set of policies and, from this set, they are trying to choose

the best policy. To evaluate each policy, they suppose that they have a generative

model of the POMDP to generate m trajectory trees. The best policy is the policy

that maximizes the average reward returned by applying the policy in the trajectory

trees. Each node of the tree contains a state and an observation. From a node, there

is a branch for each possible action. When an action is tried in a state, the generative

model is called and it returns the resulting state, observation and reward.

To generate the trajectory trees, they need to know the underlying states, which

is not normally accessible in a POMDP. To take the partial observability into consid-

eration, they have developed another algorithm in which they generate m observation

histories instead of m trajectory trees. With these observation histories, they estimate

the expected value of a belief state for a specific policy π as the average return of the

histories that are accepted by the policy π. An history is accepted by a policy if the

actions returned by the policy would have been the same as the actions recorded in

the history. The observation history approach needs a less powered generative model

then the trajectory trees approach. However, both approaches need similar amounts

of experiences given by the generative model of the POMDP in order to obtain good

estimates.

3.1.3.5 Belief State Bounds

Varakantham et al. (2005) have worked on using belief state bounds to speedup

exact and approximate POMDP algorithms. The key idea was to notice that in some

problems, a large part of the belief state space is unreachable. Thus, it would be more

efficient to concentrate the computation on the reachable belief states. Their techniques

for exploiting belief region reachability exploit three key domain characteristics: (i)

not all states are reachable at each decision epoch, because of limitations of physical

processes or progression of time; (ii) not all observations are obtainable, because not

all states are reachable; (iii) the maximum probability of reaching specific states can

be tightly bounded. These authors introduce polynomial time techniques based on

Lagrangian analysis to compute tight bounds on belief state probabilities. These bounds

can then be used to speedup most existing exact and approximate POMDP algorithms.

Chapter 3. Online POMDP Algorithm 47

3.1.4 Online Approximation Algorithms

Usually, with offline approaches, the algorithm returns a complete policy defining

which action to execute in every possible belief state. Such an approach is not applicable

for problems having a very large belief state space, because there are too many situations

to consider. In large POMDPs, a more fruitful way of thinking might be an online view,

in which the policy is calculated only for belief states that have been reached online.

In this section, we present some online search approaches that are using local search

algorithms to construct a policy online based on the current belief state.

These kind of approaches are also known as agent-centered search (Koenig (2001)).

Agent-centered search methods usually do not plan all the way from the start state to

a goal state. Instead, they decide on the local search space, search it, and determine

which actions to execute within it. Then, they execute these actions (or only the first

action) and repeat the overall process from their new state, until they reach a goal

state.

We also present in this section some history-based algorithms which are classified

here as online algorithms because they need to interact with the environment to gather

some experiences in order to define their policies based on the agent observation history.

These methods do not consider the availability of the POMDP model, therefore their

policies are not based on the belief states because they would not be able to maintain

such belief states without the POMDP model.

3.1.4.1 Online Search Approaches

An online algorithm takes as input the current belief state and return the single

action that seems to be the best for this particular belief state. In this online view, the

online POMDP algorithm is itself simply a policy, but one that may need to perform

some non trivial computation at each belief state in order to return the best action

(Kearns et al. (2002)). Consequently, online POMDP algorithms are really interesting to

manage large belief state spaces, because they concentrate only on the most important

belief states. However, they may take a lot of time choosing an action to ensure some

optimality guaranties. Here, we present three examples of online search methods.

BI-POMDP Washington developed the BI-POMDP algorithm (Washington (1997)),

which expands an AND/OR tree to find an approximate policy for the POMDP. The

nodes of the tree are belief states. The actions form the OR branches, since the optimal

action is a choice among the set of actions. The observations form the AND branches,

since the utility of an action is a sum of the utility of the belief state implied by each

Chapter 3. Online POMDP Algorithm 48

possible observation multiplied by the probability of this observation. An iterative AO*

algorithm (Nilsson (1980)) is then used to expand the tree.

However, the AO* algorithm does not specify in which order the AND nodes are ex-

panded. The BI-POMDP algorithm uses a strategy that chooses the node that presents

the greatest potential to change the estimated value of the overall path. The chosen

node is the one with the largest difference between the lower and the upper bounds.

For the lower bound, the BI-POMDP algorithm uses the solution of the underlying

MDP as an estimation of the value function for the POMDP. For the upper bound,

the BI-POMDP uses the worst case MDP, which consists in minimizing the expected

rewards instead of maximizing them. Normally, the solution to the underlying MDP

would be the upper bound and the worst case MDP would be the lower bound, but

Washington uses disutilities instead of utilities, thus the bounds are reversed. When

the bounds are equal, it means that the algorithm has found the optimal policy since

the optimal policy has a value between the lower and upper bounds.

The BI-POMDP can be executed online where to choose each action, it does a search

for a given time. However, the BI-POMDP algorithm also needs some time offline to

calculate the solution of the underlying MDP, which is used to calculate the bounds.

RTDP-BEL The RTDP-BEL algorithm learns some heuristic values for the belief

states visited by successive trials in the environment (Geffner and Bonet (1998)). At

each belief state visited, the agent evaluates all possible actions. For each action a, the

agent estimates the expected reward of taking action a in the current belief state b with

the following equation:

Q(a, b) = R(a, b) + γ
∑

o∈O

P (o|b, a)V (b′) (3.28)

Where V (b′) is the value learned for the belief state b′. If the belief state b′ has no

value in the table, then it is initialized to the QMDP value. Consequently, the underlying

MDP has to be solved before the execution of the RTDP-BEL algorithm.

The agent then executes the action that returned the greatest Q(a, b) value. After-

wards, the value V (b) in the table is updated with the Q(a, b) value of the best action.

Finally, the agent executes the chosen action and it makes the new observation, ending

up in a new belief state. This approach is repeated until the goal is reached by the

agent.

The RTDP-BEL algorithm learns a heuristic value for each belief state visited.

Therefore, in order to have an estimated value for each belief state in memory, it needs

to discretize the belief state space to have a finite number of belief states. It might be

Chapter 3. Online POMDP Algorithm 49

difficult to find the best discretization for a given problem. In practice, this algorithm

needs a lot of memory to store all the learned belief state values.

Planning for factored POMDP Another online algorithm is the one presented

by McAllester and Singh (1999), where these authors used an online exploration of the

belief state space, similar to the one used by the BI-POMDP algorithm. The difference

is that they do not explore all observations for each possible action in a given belief

state, they rather sample C observations from a generative model for each action. Also,

at the leaves of the tree, they did not use any estimation of the value function, they

simply gave a value of zero for the leaves. Their search algorithm is a complete depth

limited search. Their algorithm is an adaptation of the online MDP algorithm presented

in Kearns et al. (2002). They have also used a belief state factorization approach taken

from Boyen and Koller (1998) to simplify the belief state calculations.

3.1.4.2 History-Based Approaches

When the model of the environment is unknown, it is possible to construct POMDP’s

policies based on the past actions and observations instead of the belief state (Chrisman

(1992); McCallum (1996); Dutech (2000); Littman et al. (2001)). In such settings, the

agent does not know the transition function, the observation function and the reward

function. These algorithms are able to construct good policies based on the agent’s

past, but they normally need a lot of experiences.

The UTree algorithm (McCallum (1996)) uses the agent’s past experiences to con-

struct a simplified tree representation of the state space. This tree regroups past ex-

periences that have similar rewards. Afterwards, based on its current past actions and

observations, the agent can go down the tree and find the corresponding abstract state

(a leaf of the tree), which contains the Q-values defining the agent’s policy.

Another approach based on past observations and actions is the Predictive State

Representation (PSR) (Littman et al. (2001); Rudary and Singh (2003); Singh et al.

(2003); James and Singh (2004); Singh et al. (2004); Rosencrantz et al. (2004)). How-

ever, instead of basing its action choice on past actions and observations, it base its

action on predictive tests. This algorithm learns predictive tests from past experi-

ences. These predictive tests are arrays of future actions and observations (for example,

a1o1a2o2). The correct prediction for this example test given past experiences until time

k is the probability of these observations occurring (in order) given that these actions

are taken (in order) (i.e. P (Ok = o1, Ok+1 = o2|Ak = a1, Ak+1 = a2)). A PSR is a set

of tests that is sufficient information to determine the prediction for all possible tests

(a sufficient statistic).

Chapter 3. Online POMDP Algorithm 50

3.1.5 Factored POMDP

The traditional POMDP model is not necessarily suited for large environments

because it requires enumerating explicitly all the states for the transition, observation

and reward functions. The planning problem becomes quite hard when the number

of states increases. This is called the curse of dimensionality : in a problem with n

physical states, the policy π is defined over all belief states in an (n − 1)-dimensional

continuous space (Pineau (2004)). Consequently, the complexity of a POMDP problem

is highly dependant on the number of states.

To tackle the curse of dimensionality, many researchers have tried to exploit the

structure of the problems to factorize the state space. Most environments are structured

and can thus be described as a set of different features which allows representing the

states much more compactly. The states can then be defined with a set of random

variables. Let X = {X1, . . . , XM} be the set of M random variables that fully describe

a state, and Di be the set of all possible values for the random variable Xi. We suppose

that each variable has a finite number of possible values. Therefore, a state is defined

by assigning a value to each variable: s = {X1 = x1, . . . , XM = xM} where xi ∈ Di.

Consequently, the number of states is: |S| = D1D2 · · ·DM . We also use a more compact

representation for factored states: s = {xi}Mi=1, as suggested by Sallans (2002).

When the states are factorized, it is then possible to represent the POMDP com-

ponents compactly and still be able to optimally solve the POMDP (Boutilier and

Poole (1996)). The transition and observation functions of a POMDP can typically be

compactly represented as a dynamic Bayesian network (DBN) (Dean and Kanazawa

(1989)), which is a graphical representation for stochastic processes that exploits con-

ditional independence. Conditional independence refers to the fact that some variables

are probabilistically independent of each other when the values of other variables are

held fixed (Pearl (1988)).

Figure 3.9 presents an example of a dynamic Bayesian network that specifies a tran-

sition function for a specific action. In this example, variables are considered boolean

variables. The acyclic graph represents the dependencies between the variables’ values

at time t and their values at time t + 1. For example, the value of X2 at time t + 1

depends on the values of X1 and X2 at time t. The transition probabilities can then be

specified in conditional probability tables (CPT). These CPTs can be represented even

more compactly with a decision tree (Boutilier et al. (1996, 2000)), algebraic decision

diagrams (Hansen and Feng (2000); Hoey et al. (1999)) or horn rules (Poole (1993,

1997)).

The reward function can also be represented using the same compact representations

(see Figure 3.10). The reward function can be represented in a structured fashion using

Chapter 3. Online POMDP Algorithm 51

X1

X2

X1

X2

X3 X3

X1

T

T

F

F

T

T

F

F

X2

T

F

T

F

T

F

T

F

X’2

1

1

0

0.5

1

1

0

0.5

X1

X21

0 0.5

T

T

F

F

Conditional

Probability Table

Decision

Tree

t t + 1

Figure 3.9: Dynamic Bayesian network.

Reward

X1

X2

X3

X1

X2

1

X3 X3

X3

-2 2 1

3 -1

T

T

T T

T

F

F

FF

F

Figure 3.10: Reward function network.

a value node and a decision tree describing the influence of various combinations of

variables on rewards (as with decision tree CPTs) (Boutilier and Poole (1996)). Leaves

of the tree represent the reward associated with the states consistent with the labeling

of the corresponding branch.

When a policy is represented as a mapping from belief states to actions, the agent’s

belief state has to be quickly updated at each time step during the execution of the pol-

icy. As mentioned before, the belief state updates are done using the belief state update

function presented in Equation 3.3. In a factored POMDP setting, it might be possible

to factor the belief states into products of marginals (unconditional probabilities) by

exploiting the conditional independence of some variables describing an environment

state.

According to the factored representation of states, the belief state definition has to

be slightly modified. In this context, a belief state b is defined as a full joint probability

distribution over all random variables: b = P(X1, . . . , XM). Without anymore assump-

tions, we are not gaining anything since the full joint probability table has as many

cells as there are states in the environment. It is however really useful if we consider

Chapter 3. Online POMDP Algorithm 52

some independence between the variables. Then, the full joint probability table can be

split into smaller tables. At the extreme, if all environment variables are considered

independent from one another, then the belief state can be reformulated as a product

of the variables’ probability distributions: b = P(X1) · · ·P(XM). It follows that the

probability of being in a state can easily be computed by doing the product of the vari-

ables’ probabilities. In general, if the variables can be partitioned into probabilistically

independent subsets, the joint probability distribution can be compactly represented

by the product of the marginal distributions of each subset.

If at every time-step belief states can be factored into sets of marginals, then be-

lief state monitoring algorithms can focus only on factored belief states which have a

reduced dimensionality equal to the sum of the size of each marginal. The size of a

marginal is exponential in the size of the subset of variables it corresponds to, however

for small subsets, this effectively reduces dimensionality (Poupart (2005)). Unfortu-

nately, as observed by Boyen and Koller (1998), even in the extreme case in which the

initial belief state is completely factored (all state variables are mutually independent),

correlations introduced by the transition and observation functions tend to render most

(if not all) state variables correlated after some time.

Nevertheless, many of those correlations are weak in practice and this suggests an

approximation scheme where we force some subsets of variables to remain independent

by breaking at each time step any correlation that could creep in. Boyen and Koller

(1998) proposed to project at each time step the exact joint distribution of the belief

state onto a predetermined set of marginals that partition state variables into mutually

independent subsets. They also showed theoretically that this approximation technique

can significantly speed up belief state monitoring, while ensuring that the KL diver-

gence2 between exact and approximate belief states remains bounded irrespective of

the number of projection operations performed.

It has also been shown theoretically that planning, in a rapidly mixing POMDP,

based on an accurate belief state simplication results in a bounded deviation from the

optimal rewards (McAllester and Singh (1999)). These last authors have developed an

online POMDP algorithm, based on the factorization approach of Boyen and Koller

(1998), that expands a search tree of future actions and observations to find the actions

that maximizes the expected reward.

During the execution of a POMDP policy, belief state monitoring is conducted only

to facilitate action selection. Thus, although the KL divergence between exact and

2Given two probability mass functions p(x) and q(x), D(p‖q), the Kullback-Leibler divergence (or

relative entropy) between p and q is defined as: D(p‖q) =
∑

x
p(x)log p(x)

q(x) . Even though it is not

a true distance between distributions (because it is not symmetric and does not satisfy the triangle

inequality), it is still often useful to think of the KL-divergence as a ”distance” between distributions

(Cover and Thomas (1991)).

Chapter 3. Online POMDP Algorithm 53

approximate belief states remains bounded, the policy may be altered since the action

selected for every approximate belief state may be different from the one prescribed

by the exact belief state (Poupart (2005)). Therefore, for the agent’s performances,

it is more important to select the best actions than to have a perfect belief state at

each time step. Consequently, it might be more interesting to evaluate the belief state

factorization based on the decision quality compared to a distance from the perfect

belief state. To do so, Poupart and Boutilier have developed algorithms to select sets

of marginals that directly minimize the impact on decision quality rather than KL

divergence (Poupart and Boutilier (2001)).

The algorithm of Poupart and Boutilier (2003b) finds a linear projection of the

belief state, which facilitates the planning phase. However, it is also possible to con-

sider non-linear projections (Roy and Gordon (2003)). With their E-PCA algorithm,

Roy and Gordon uses Exponential-family Principal Component Analysis to project the

beliefs onto a non-linear projection. The belief state compression is often better, but

the planning phase becomes harder with non-linear projections. Roy has shown that

it is possible to adapt a grid-based approach to work with non-linear projections (Roy

(2003)), however his approach does not offer any theoretical guarantees about its dis-

tance from the optimal performance.

Another approach using belief state factorization is the work of Sallans (2000) in

which he used factored representations of belief states to reduce the number of parame-

ters for learning the POMDP dynamics as well as an optimal value function. Finally, it

is worth mentioning the work of Doshi and Gmytrasiewicz (2005), which uses particle

filters to estimate the agent’s belief states in a multiagent environment. To efficiently

take the other agents into consideration, these last authors have incorporated the beliefs

of the other agents in the POMDP model (Gmytrasiewicz and Doshi (2005)).

Now that we have presented many POMDP algorithms, we present in the next

section the motivations that motivated us to develop another POMDP algorithm.

3.2 Motivations

As previously explained, our main motivation was the RoboCupRescue simulation

environment (see Chapter 2) in which we needed a decision-making approach for the

PoliceForce agents. These agents are evolving in a highly dynamic and uncertain en-

vironment in which they have to choose efficient actions while maintaining an effective

coordination with all other rescue agents. Here is a list of the principal constraints that

our algorithm has to manage:

• The environment is partially observable;

Chapter 3. Online POMDP Algorithm 54

• The environment is highly dynamic;

• The algorithm has to be efficient in large state spaces;

• The algorithm has to be efficient in previously unknown instances of the environ-

ment (in new cities in the RoboCupRescue simulation);

• The agent’s response time has to respect a real-time constraint;

• The algorithm should take the other agents into consideration to maintain a good

coordination.

These constraints are not only present in the RoboCupRescue simulation environ-

ment, but also in many other environments. For example, autonomous robots that are

conceived to work in the real world have to manage these constraints, because the real

world is highly dynamic and uncertain. The real world has an infinite state space in

which it is really easy for a robot to end-up in unknown places. In order to stay efficient

in a fast changing world, a robot has to react rapidly to changes in its environment.

Moreover, the robot is often not alone, it has to interact with other robots or humans.

In real world applications, a POMDP algorithm should guarantee a fast agent re-

sponse time. Moreover, an agent should be immediately efficient in any configuration

of the modeled environment. This last constraint eliminates all offline approaches, be-

cause the agent does not have time to learn a complete policy before its execution.

Most offline POMDP algorithms are not flexible enough to manage little changes in

the environment. Offline POMDP algorithms normally have to recompute a complete

policy after each changes which can take hours or days for complex POMDPs. In our

case, we need an algorithm that can manage environment changes while limiting the

time needed to compute the agent’s policy. In such settings, an online algorithm seems

the most appropriate approach.

To sum up, those constraints motivated us to develop our online POMDP algorithm

that can ensure a quick response time in a huge state space. In the following, we

describe in detail how our online POMDP algorithm works, but first we describe how

we have incorporated the factorization approach in our algorithm.

3.3 Using the Factored Representation

In this thesis, we are interested in POMDPs with large state spaces. In such envi-

ronments, it might become hard for the agent to find the best actions because of the

curse of dimensionality. However, as explained in section 3.1.5, factorizing the state

space can help to reduce the impact of the curse of dimensionality. Consequently, we

Chapter 3. Online POMDP Algorithm 55

b =

X1 X2 X3

0

0

0

1

0

0.25

0.05

0.50

0

0.10

0.10

0.10

0.30

0.15

0.45

b′ =

X1 X2X3

0

0

0

1

0

P (X2 = x1 ∧X3 = x1)

P (X2 = x1 ∧X3 = x2)

...

...

...

P (X2 = x6 ∧X3 = x4)

Figure 3.11: Examples of factored belief states with all independent variables (left)

or with two dependent variables (right).

consider that our approach is applied in POMDP environments that can be specified

using a factored representation. This means that an environment state is described as

a set of random variables each of which representing a characteristic of a state. Con-

sequently, the transition, observation and reward functions can be represented with

dynamic Bayesian networks and decision trees (as presented in section 3.1.5).

For the belief state factorization, we consider that we can identify independent

subsets of variables via domain knowledge or via an algorithm that can find such subsets

automatically (Boyen and Koller (1998); Poupart (2005)). These algorithms are quite

interesting, because even if some variables are dependent, they are still able to factorize

the belief state with minimal degradation of the solution’s quality.

To illustrate how the factorization can be useful, let’s suppose an environment that

can be described by 3 variables X1, X2 and X3. Each of these variables can respectively

take 5, 6 and 4 different values, which means that the environment has 120 states.

In Figure 3.11, we can see two examples of belief states. On the left, all variables are

considered independent and there is one vector representing the probability distribution

of each variable. On the right, the variables X2 and X3 are considered dependant, which

means that there is one vector for the two variables. This vector represents the combined

probability distribution of these two dependant variables. In general, there will be one

vector for each independent subsets of variables identified by the factorization algorithm.

By maintaining the probabilities on variables instead of states, it is much easier to

update the belief state and the expected value of a belief state can be calculated much

faster. For example, let’s suppose that we want to know the reward of being in the

belief state shown in Figure 3.11(left) for a specific action a (RB(b, a)). This current

reward is the first step when evaluating a belief state and, as shown by Equation 3.7,

it involves a summation on all states:

RB(b, a) =
∑

s∈S

b(s)R(s, a) (3.29)

Chapter 3. Online POMDP Algorithm 56

However, when looking at our example, we see that it might not be necessary to sum

on all 120 states since many of them are not possible. For example, the agent cannot

be in any of the 24 states where the variable X1 has the first value, because there is

a zero probability for this to happen. In fact, if we remove all impossible states, we

end up with only 20 states. To calculate the possible number of states, we only have

to multiply the number of possible values for each variable (1× 5× 4 in our example).

More formally, the number of possible states for a specified belief state ω(b) is defined

as:

ω(b) = {{xi}Mi=1 | (∀xi) Pr(Xi = xi|b) 6= 0} (3.30)

This function returns all the states the agent could be in, according to a belief

state. We know that a state is impossible if one of the variables has a probability of

zero according to b. In the worst case, this function returns the set S, i.e. all states. If

the variables are ordered approximately according to their certainty, this subset of states

can be constructed quite rapidly because each time we encounter a variable with a zero

probability, we can immediately exclude all the corresponding states. The following

equation can then be computed much more rapidly than Equation 3.29:

RB(b, a) =
∑

s∈ω(b)

b(s)R(s, a) (3.31)

The only difference in this equation is that the summation is defined on a subset of

states (ω(b)) instead of the whole state space. The less uncertainty the agent has, the

smaller the subset of possible states is and the faster the computation of Equation 3.31

is, compared to Equation 3.29. If the agent directly perceives some characteristics of

the environment, then the probability distribution of the corresponding variables would

be represented by a vector containing only zeros except for the perceived value which

would have a value of 1. Therefore, if all these observable variables are explored first

when constructing the set ω(b) then a lot of states can be eliminated early on, which

accelerates the construction of ω(b). Often, there are also different degrees of partial

observability for some variables in a POMDP and that can be used by ordering the

variables according to their certainty in order to further accelerate the construction of

ω(b).

Now that we consider only possible states, we would also like to have a function

that returns the states that are reachable from a certain belief state. For this, we define

a new function α(a, b, o) that takes as parameters the current belief state b, the action

performed a and the observation perceived o, and returns all reachable states.

α(a, b, o) = {s′ | (∀s ∈ ω(b)) T (s, a, s′) 6= 0 ∧ O(s′, a, o) 6= 0} (3.32)

In other words, the α function returns the set of subsequent states with transition

and observation probabilities greater than zero. It follows that the probability of making

Chapter 3. Online POMDP Algorithm 57

an observation can also be calculated more efficiently using α and ω, because it iterates

on less states:

Pr(o | a, b) =
∑

s′∈α(a,b,o)

O(s′, a, o)
∑

s∈ω(b)

T (s, a, s′)b(s) (3.33)

The belief state update function τ(b, a, o) can also be computed more efficiently with

a factored representation (Boyen and Koller (1998); Poupart (2005)). If we use our ω

and α functions, we can rewrite the belief state update function. If b′ = τ(b, a, o), then

∀s′ ∈ α(a, b, o):

b′(s′) = ηO(s′, a, o)
∑

s∈ω(b)

T (s, a, s′)b(s) (3.34)

3.4 Online Decision Making

As mentioned above, offline POMDP algorithms are still mostly limited to small

problems. Even state of the art approximation algorithms can at best be applied

on medium sized problems. The main problem of such approaches is that they have

to construct and represent a policy for all possible situations. Therefore, the policy

construction step takes normally a lot of time before the agent can be efficiently executed

in the environment.

On the other side, an online POMDP algorithm does not have to construct a policy

for all possible situations. The policy is constructed online while the agent is evolving in

the environment. In other words, the policy construction steps and the execution steps

are interleaved with one another as shown in Figure 3.12. Normally, online approaches

need a little more execution time because the policy might not be optimal in long term,

since the policy is locally constructed. However the policy construction time is normally

smaller, because online approaches only consider reachable belief states. Consequently,

the overall time for the policy construction and execution is normally less for online

approaches (Koenig (2001)). In some situations, the overall time is important. For

instance, if someone is asking a robot to get him a coffee, he do not really care if the

robot plans motionless for a moment before getting the coffee. However, he would want

to have its coffee as fast as possible.

In our work, instead of computing a policy offline, we adopted an online approach

where the agent only explores belief states that can be reached from the current belief

state. This is also called an agent-centered search approach (Koenig (2001)). This

allows avoiding searching for a complete policy, thus avoiding a lot of computations.

The advantage of such a method is that it can be applied on very large problems. It

also allows having a model for decision making in large stochastic environments. In this

section, we explain in detail how the algorithm for online decision-making works.

Chapter 3. Online POMDP Algorithm 58

Policy Construction Policy Execution

Offline Approaches

Online Approaches

Small policy construction step between policy execution steps

Figure 3.12: Comparison between offline and online approaches.

3.4.1 Belief State Value Approximation

In Section 3.1.1, we have described how it was possible to exactly compute the value

of a belief state using dynamic programming (Equation 3.7). In this section, we instead

explain how we estimate the value of a belief state for our online approach by using a

look-ahead search. The main idea is to construct a tree where the nodes are belief states

and where the branches are a combination of actions and observations (see Figure 3.13).

During the execution, a new tree is calculated each time the agent has to choose an

action. In our approach, we use a tree with estimated values at the fringe to estimate

the value of the current belief state b0. As the tree is expanded, the estimates become

more accurate, which is guaranteed by the discount factor (Washington (1997)). In

other words, the tree estimates the value of the current belief state b0, by exploring all

reachable belief states for a given horizon.

Formally, to describe how the tree is built, we have defined a new function that

takes as parameters a belief state b and a depth d and returns an estimation of the

value of b by performing a search of depth d. For the first call, d is initialized at D, the

maximum depth allowed for the search.

δ(b, d) =

U(b) , if d = 0

max
a∈A

[
RB(b, a) + γ

∑
o∈Ω

(Pr(o | b, a)× δ(τ(b, a, o), d− 1))

]
, if d > 0

(3.35)

where RB(b, a) is computed using Equation 3.31, Pr(o|b, a) using Equation 3.33 and

τ(b, a, o) using Equation 3.34.

When d = 0, we are at the bottom of the search tree. In this situation, the value of

a belief state is given by a utility function U(b). This function gives an idea of the real

Chapter 3. Online POMDP Algorithm 59

b
0

b
1

b
2

b
3

a
1

a
2

a
n

o
1

o
2 o

n

...

...

Figure 3.13: A search tree.

value of this belief state (if the function U(b) was perfect, there would be no need for

a search). This utility function has to be defined for each problem.

When d > 0, the value of a belief state at a depth of D− d is simply the immediate

reward for being in this belief state added to the maximum discounted reward of the

subtrees underneath this belief state.

Finally, the agent’s policy is dynamically calculated each time the agent has to

choose an action. The action a to perform in a certain belief state b is simply the action

that returns the best expected value evaluated with a search of depth D:

π(b, D) = argmax
a∈A

[
RB(b, a) + γ

∑

o∈Ω

(Pr(o | b, a)× δ(τ(b, a, o), D − 1))

]
(3.36)

It is important to notice that this equation is not used to define the policy for all

possible belief states. This function is called only with the current agent’s belief state

when the agent has to choose an action online.

3.4.2 RTBSS Algorithm

Now that we have formally given an overview of our approach, in this section we go

into detail to describe our online POMDP algorithm, called RTBSS (Real-Time Belief

State Search). Its name is due to the fact that it does a search in the belief state space

online while satisfying a real-time constraint. Since it is an online algorithm, it must

be applied each time the agent has to make a decision. RTBSS is used to construct

the search tree, defined by Equation 3.35, and to find the best action the agent should

perform in the current belief state (see Algorithm 3.2).

Chapter 3. Online POMDP Algorithm 60

1: Function RTBSS(b, d) returns the estimated value of b.

Inputs: b: The current belief state.

d : The current depth.

Statics: D : The maximal search depth.

action: The best action.

2: if d = 0 then

3: return U(b)

4: end if

5: actionList← Sort(b, A)

6: max← −∞
7: for all a ∈ actionList do

8: curReward← RB(b, a)

9: uBound← curReward + Heuristic(b, a, d)

10: if uBound > max then

11: for all o ∈ Ω do

12: curReward← curReward + γPr(o|a, b)RTBSS(τ(b, a, o), d− 1)

13: end for

14: if curReward > max then

15: max← curReward

16: if (d = D) then

17: action← a

18: end if

19: end if

20: end if

21: end for

22: return max

Algorithm 3.2: The RTBSS algorithm.

The RTBSS algorithm does not completely develop the tree defined by the Equa-

tion 3.35. In order to speed up the search, our algorithm uses a ”Branch and Bound”

strategy to cut some useless sub-trees. To achieve that, the algorithm needs a lower

bound on the maximal expected value. The bound is defined empirically during the

search in order to have an accurate bound. During the search, the value of the bound

is always the value of the best complete branch searched.

More precisely, here is how the bound is calculated and used. In any given belief

state, the RTBSS algorithm checks if it would be possible to improve the value return

for one of the actions in this belief state. This means that for each belief state visited

during the search, the RTBSS algorithm has to explore at least one action. Since the

algorithm only has to return the maximum value for all possible actions, it can prune

some actions if these actions have no chance to improve the current maximum value.

Chapter 3. Online POMDP Algorithm 61

At line 9 of the algorithm, the upper bound is evaluated as the immediate reward

plus the heuristic value. The value returned by the Heuristic function has to be an

upper bound. In other words, the Heuristic function returns the maximal value that

the algorithm can find if it explores the current action up to the maximal depth D.

Afterwards, at line 10, if the upper bound value is not greater than the current maximum

value, then the action is pruned and the following subtree will not be expanded. The

current maximum value serves as a lower bound, since the algorithm is guarantied to

return at least this current maximum value. In order for the current maximum value

to be a lower bound, the utility function (U(b)) at the leaves of the tree has to return

a lower bound on the expected value of the belief state b.

A default lower bound heuristic might be set to the value we would get with a

blind policy, that is the best policy consisting of always doing the same action until

we reach a terminal state. Depending on the problem, this can often be improved by

a smarter heuristic. Also, one can always set the lower bound to 0 for all belief states

which has the effect of finding the best action for the finite horizon d if the rewards are

positive. For the upper bound, the maximum possible discounted reward one can get

in an environment is Rmax(s, a)/(1−γ), although setting the upper bound to this value

will generally yield no pruning. For problems where only the terminal state receives a

positive reward, a good heuristic might be to consider that we will always reach the

terminal state from any belief state, therefore setting the upper bound to the reward

one gets by doing an action that reach the terminal state. But again, depending on the

problem, it might be possible to generate smarter heuristics. In some problems where

there is no evident way of conceiving good heuristics, it is always possible to not use

the action pruning by always returning Rmax(s, a)/(1− γ) or even infinity for all belief

states. It is also not necessary to sort the actions when the pruning is not used (line 5

of Algorithm 3.2).

3.4.2.1 Detailed Description

Now, let’s look more closely at how the algorithm works. The first call to the

algorithm is RTBSS(b, D), where b is the current belief state and D is the maximal

depth for the search.

Lines 2-4 are executed when the algorithm reaches the maximal depth allowed for

the search. At this point, the algorithm returns the utility value of the current belief

state (U(b)). If the pruning is on, then this value has to be a lower bound on the

expected value of b.

If the current node is not a leaf of the tree, the next step of the algorithm is to sort

the actions according to the current belief state at line 5. This is done in order to try

Chapter 3. Online POMDP Algorithm 62

the actions that are the most promising first because it generates more pruning early in

the search tree. If we do not want to hinder the algorithm, we have to sort the actions

really fast. This sort function is not mandatory, but if it is possible for a given problem

to roughly sort the actions, then it helps the depth first algorithm to choose the most

promising actions first, which improve the chance to find good bounds early during the

search, which would help to prune more subtrees.

Afterwards, for each action a, we calculate at line 8 the immediate reward if the

action a is executed in the current belief state b. Then, at line 9, we evaluate the upper

bound as the immediate reward plus the heuristic value.

At line 10, the pruning condition is verified. Thus, if the upper bound is not greater

than the maximum value, the action is not explored and the algorithm tries another

action for the current belief state. If there is no pruning, then the reward of the current

action a is calculated by summing the expected reward of each observation (lines 11-13).

To achieve that, at line 12, the RTBSS algorithm is recursively called.

Lines 14-19 are used to record the best value for the current node among all the

actions tried. It is also used to specify the policy by recording the action that returned

the best value if we are at the root of the tree (lines 16-18). At the end at line 22, the

maximal value for the current node is returned to the parent node.

To clearly illustrate how the RTBSS algorithm works, we show in the next section

an example of its execution in a simple environment.

3.4.2.2 Example

This example uses the same environment that was used at the beginning of this

chapter for an example of the value iteration algorithm. The example is represented

again in Figure 3.14. For the purpose of this example, let’s suppose that the current

belief state of the agent is b = [0.1, 0.9] and that the maximal depth of the search is

D = 2. For this problem, the best action in state s1 is a1 and in state s2 is a2. Therefore,

the Sort function returns the action a1 first if the most probable state is the state s1

and returns the action a2 first if the most probable state is the state s2. If both states

are equally probable, the Sort function uniformly randomly chooses between a1 and

a2. Also, let’s suppose that the Heuristic function considers that it is possible to get

the maximal reward (Rmax) after each action. Rmax is the maximal reward for all states

and all actions of the underlying MDP.

Heuristic(b, a, d) =
d∑

i=1

γiRmax (3.37)

Chapter 3. Online POMDP Algorithm 63

States: {s1, s2}
Actions: {a1, a2}
Observations: {o1, o2}
Discount factor: γ = 0.9

Reward Function

• R(s1, a1) = 2

• R(s1, a2) = 1

• R(s2, a1) = 1

• R(s2, a2) = 3

Transition Function

• T (s1, a1, s1) = 0.3

• T (s1, a1, s2) = 0.7

• T (s1, a2, s1) = 0.1

• T (s1, a2, s2) = 0.9

• T (s2, a1, s1) = 0.6

• T (s2, a1, s2) = 0.4

• T (s2, a2, s1) = 0.8

• T (s2, a2, s2) = 0.2

Observation Function

• O(s1, a1, o1) = 0.9

• O(s1, a1, o2) = 0.1

• O(s1, a2, o1) = 0.9

• O(s1, a2, o2) = 0.1

• O(s2, a1, o1) = 0.5

• O(s2, a1, o2) = 0.5

• O(s2, a2, o1) = 0.5

• O(s2, a2, o2) = 0.5

Figure 3.14: POMDP Example.

Finally, let’s suppose that the utility function at the leaves of the tree is:

U(b) = max
a∈A

RB(b, a) (3.38)

Now, let’s see how the RTBSS algorithm works on this problem. First, the RTBSS

algorithm starts with the current belief state at the root of the search tree, as shown in

Figure 3.15. The first action tried is the action a2, which is the first action returned by

the Sort function, because the state s2 is the most probable state in the initial belief

state [0.1, 0.9]. Afterwards, the algorithm has to explore an observation. The choice of

an observation is not important because all observations have to be explored. For the

purpose of this example, we have always chosen o1 before o2. Therefore, the next step

of the algorithm is to consider the possibility of observing o1, and thus the search ends

Chapter 3. Online POMDP Algorithm 64

Figure 3.15: Example of an execution of the RTBSS algorithm (Step 1).

up in belief state [0.83, 0.17].

τ([0.1, 0.9], a2, o1) = η[O(s1, a2, o1)(T (s1, a2, s1)b(s1) + T (s2, a2, s1)b(s2)),

O(s2, a2, o1)(T (s1, a2, s2)b(s1) + T (s2, a2, s2)b(s2))]

= η[0.9(0.1× 0.1 + 0.8× 0.9), 0.5(0.9× 0.1 + 0.2× 0.9)]

= η[0.657, 0.135]

= [0.83, 0.17] (3.39)

In the belief state [0.83, 0.17], the algorithm tries the action a1, because the state

s1 is the most probable state. Then, the algorithm explores the possibility of observing

o1 and it calculates the resulting belief state [0.49, 0.51], using a similar equation as

the Equation 3.39. At this point, the algorithm has attained the limit depth, thus it

returns U(b) = 2.02.

U(b) = max [RB([0.49, 0.51], a1), RB([0.49, 0.51], a2)]

= max [(R(s1, a1)b(s1) + R(s2, a1)b(s2)), (R(s1, a2)b(s1) + R(s2, a2)b(s2))]

= max [(2× 0.49 + 1× 0.51), (1× 0.49 + 3× 0.51)]

= max [1.49, 2.02]

= 2.02 (3.40)

Now that the algorithm has reached the maximal depth, it backtracks and it explores

the other observation, as presented in Figure 3.16. The belief state reached when

Chapter 3. Online POMDP Algorithm 65

Figure 3.16: Example of an execution of the RTBSS algorithm (Step 2).

considering the observation o2 is [0.10, 0.90] (calculation similar to Equation 3.39). At

this moment, the action a1 has been completely explored, thus we can calculate its

value:

curReward = RB([0.83, 0.17], a1) +

γ
∑

o∈O

Pr(o|a1, [0.83, 0.17])RTBSS(τ([0.83, 0.17], a1, o), 0)

= 2 ∗ 0.83 + 1 ∗ 0.17 + 0.9 ∗ (0.64 ∗ 2.02 + 0.36 ∗ 2.8)

= 3.90 (3.41)

Afterwards, the RTBSS algorithm calculates the upper bound for the action a2 with

the Heuristic function, which returns the value: 4.04.

uBound = RB([0.83, 0.17], a2) + Heuristic([0.83, 0.17], a2, 1)

= (R(s1, a2)b(s1) + R(s2, a2)b(s2)) +

1∑

i=1

0.9i × 3

= (1× 0.83 + 3× 0.17) + 0.9× 3

= 4.04 (3.42)

Since this last value is greater than the value for the action a1 (3.90), the RTBSS

algorithm has to explore the action a2, which is shown in Figure 3.17. After the same

calculations as the ones done for the action a1, the algorithm finds that the action a2

has a value of 3.64. The estimated value for the belief state [0.83, 0.17] is then 3.90,

which is the greatest value among all possible actions.

Chapter 3. Online POMDP Algorithm 66

Figure 3.17: Example of an execution of the RTBSS algorithm (Step 3).

Then, the RTBSS algorithm has to backtrack to explore the observation o2 at the

top of the tree has shown in Figure 3.18. After exploring the action a2 for the belief

state [0.35, 0.65], the algorithm then evaluates if it can prune the action a1. It this case,

the algorithm can prune the action a1 because the value of the upper bound for the

action a1 (4.05) is not greater than the value of action a2 (4.05).

The value for the belief state [0.35, 0.65] is thus 4.05, as shown in Figure 3.19. The

algorithm then backtracks all the way to the top of the tree and it evaluates if it can

prune the action a1. In this situation it can because the upper bound for the action a1

(6.23) is not greater than the value of action a2 (6.34).

uBound = RB([0.10, 0.90], a1) + Heuristic([0.10, 0.90], a1, 2)

= (R(s1, a1)b(s1) + R(s2, a1)b(s2)) +
2∑

i=1

0.9i × 3

= (2× 0.10 + 1× 0.90) + 0.9× 3 + 0.92 × 3

= 6.23 (3.43)

The algorithm has thus finished and the value, at the root of the tree, of the current

belief state [0.1,0.9] is 6.34. In fact, the algorithm does not return the value of the

current belief state, but it returns the best action found, which is the action a2 in this

example.

As we can see in this example, the RTBSS algorithm has estimated the expected

rewards of the agent’s current belief state by doing a limited search of depth 2. However,

Chapter 3. Online POMDP Algorithm 67

Figure 3.18: Example of an execution of the RTBSS algorithm (Step 4).

Figure 3.19: Example of an execution of the RTBSS algorithm (Step 5).

Chapter 3. Online POMDP Algorithm 68

the algorithm has explored less than half of the search tree, because two actions have

been pruned.

Now that the RTBSS algorithm has been presented in detail, in the next section,

we evaluate the complexity of this algorithm.

3.4.2.3 Complexity

With the RTBSS algorithm the agent finds at each turn the action that has the

maximal expected value up to a certain horizon of D (the maximal depth of the search).

As a matter of fact, the performance of the algorithm strongly depends on the depth

of the search. In the worst case, the number of nodes generated for the search is:

O((|A||Ω|)D), where |A| is the number of actions and |Ω| the number of observations.

This is if no pruning is done, consequently with a good pruning heuristic, it is possible

to do much better in practice.

Therefore, our algorithm is efficient if the number of actions and observations is kept

small. Otherwise, the search cannot be done deeply enough since the branching factor

becomes too big. If there are many observations, it is possible to use a sampling of the

observations in order to explore only the most probable observations (McAllester and

Singh (1999)). However, in our work, we only considered exploring all the observations

in order to stay optimal in our limited horizon of D.

For each node, we also have to sort the actions according to the current belief state,

which has a complexity of O(|A|log(|A|)). Sorting the actions adds some complexity,

but it also helps the pruning process to cut more subtrees. If it is possible to efficiently

sort the actions according to their expected efficiency, then it is normally worth it to

do so, because it removes a lot of calculations if more subtrees are pruned.

The belief state also has to be updated at each node. A complete belief state update

has a complexity of O(|S|2), where |S| is the number of states. However, the dependance

on |S| can be improved by associating each node in the search tree with a more efficiently

computable simplified belief state approximating the true belief state at that node

(McAllester and Singh (1999)). In sections 3.1.5 and 3.3, we have presented some

factorization techniques that could be used to efficiently compute good approximations

of the belief state.

Finally, if we consider the complexity of the pruning heuristic function (CH) and the

utility function used at the leaves of the tree (CU), then the complexity of the RTBSS

algorithm in the worst case is: O((|A||Ω|)D |A|log(|A|) |S|2 CHCU). It is important to

notice that this is the worst case complexity, in practice the RTBSS algorithm is much

better because of the pruning and the factorization.

Chapter 3. Online POMDP Algorithm 69

In the next section, we present the theoretical bound showing that our belief state

value estimate remains within some bounds of the optimal value.

3.4.2.4 Error Bounds

For any belief state b and depth d, RTBSS(b, d) calculates an estimate of the value

of b. In this section, we show that the error between RTBSS(b, d) and the optimal

value function V ∗ is bounded. As mentioned before, RTBSS explores all reachable

belief states, up to a certain depth, from the current belief state.

Lemma 3.1. For any belief state b, any depth d and when U(b) = RB(b) (RB(b) is

the reward for being in the belief state b), the error of the RTBSS algorithm is bounded

by:

|RTBSS(b, d)− V ∗(b)| ≤ γd max(|Rmax − Vmin| , |Rmin − Vmax|)

Where, Rmax and Rmin are the maximum and the minimum possible rewards respec-

tively, and:

Vmax =

∞∑

i=0

γiRmax =
Rmax

1− γ
Vmin =

∞∑

i=0

γiRmin =
Rmin

1− γ
(3.44)

Proof. If U(b) = RB(b), RTBSS is equivalent to using a dynamic programming ap-

proach to obtain the optimal value for a horizon of d (V ∗
d), thus: RTBSS(b, d) = V ∗

d (b).

So,

|RTBSS(b, d)− V ∗(b)|= |RTBSS(b, d)− V ∗
d (b)|+

|V ∗
d (b)− V ∗(b)| divide in two parts

= |V ∗
d (b)− V ∗(b)| RTBSS(b, d) = V ∗

d (b)

≤ γd |V ∗
0 (b)− V ∗(b)| Bertsekas (2001)

= γd |RB(b)− V ∗(b)| V ∗
0 (b) = RB(b)

≤ γd max(|Rmax − Vmin| , |Rmin − Vmax|) see text

The last line is due to the fact that the bound is maximized when RB(b) = Rmax

and V ∗(b) = Vmin or when RB(b) = Rmin and V ∗(b) = Vmax.

This value of Vmax is valid only if the agent can get Rmax each turn. If we are in a

goal searching problem, where the agent receives Rmin until it reaches the goal where it

gets Rmax, then:

Vmax = γGRmax +

G−1∑

i=0

γiRmin (3.45)

Chapter 3. Online POMDP Algorithm 70

Where G represents the shortest distance to the goal. Even in these settings, Vmin

does not change, since the agent may never find the goal.

Theorem 3.1. In the context of a discounted reward problem, the error of the

RTBSS algorithm gets smaller as the agent acts in the environment. More precisely,

the error at a certain time t1 is bounded by:

∣∣∣V̂ t1(bt1)− V ∗,t1(bt1)
∣∣∣ ≤ γt1+d max(|Rmax − Vmin| , |Rmin − Vmax|)

Where,

V ∗,t1(bt1) = γt1V ∗(bt1) +

t1−1∑

i=0

γiri V̂ t1(bt1) = γt1RTBSS(bt1 , d) +

t1−1∑

i=0

γiri (3.46)

Proof. When the rewards are discounted, the total reward of the agent is defined

as: R =
∑∞

t=0 γtrt, where rt is the reward received at time t. Consequently, the optimal

and the estimated expected total reward at a certain time t1 are:

Therefore, the error bound at a certain time t1 is:∣∣∣V̂ t1(bt1)− V ∗,t1(bt1)
∣∣∣ =

∣∣∣∣γ
t1RTBSS(bt1 , d) +

t1−1∑
i=0

γiri−
(

γt1V ∗(bt1) +
t1−1∑
i=0

γiri

)∣∣∣∣ Substitution

= γt1 |RTBSS(bt1 , d)− V ∗(bt1)| Simplification

≤ γt1+d max(|Rmax − Vmin| , |Rmin − Vmax|) Lemma 3.1

Theorem 3.1 shows that RTBSS gets closer to the optimal as the agent progresses,

because of the discount factor. Moreover, Bertsekas and Tsitsiklis (1996) showed that

if the estimated value is sufficiently close to the optimal value, then the greedy policy

based on the estimated value must be an optimal policy. More precisely, they showed

that if |V̂ − V ∗| = ǫ and if π is a greedy policy based on V̂ , then:

∣∣∣V̂ π − V ∗
∣∣∣ ≤ 2γǫ

1− γ
(3.47)

Finally, according to the same authors, there exists some ǫ0 such that if ǫ < ǫ0,

then π is an optimal policy. In our case, since RTBSS can be seen as a greedy policy

and that the error of RTBSS is reduced as the agent acts in the environment, then the

policy also gets closer to the optimal policy, because of the discount factor.

Chapter 3. Online POMDP Algorithm 71

3.5 Hybrid Approaches

Even though the algorithm we propose is an online approach, which has unique

properties over offline approaches, we can see that it is possible to combine this online

approach with existing offline approaches, if we do not need those properties for a

specific problem. For example, in the RoboCupRescue, it would not be possible to

use hybrid approaches, because the state space is too big and we need the agents to

be efficient in unknown cities. However, in simpler problems, it might be possible to

use hybrid approaches. The three offline algorithms that we have used are: the QMDP

algorithm (section 3.1.3.1), the PBVI algorithm (section 3.1.3.1) and the RTDP-BEL

algorithm (section 3.1.4.1). Using these three offline algorithms with our online RTBSS

algorithm, we propose three new hybrid approaches that combine offline and online

computation: RTBSS-QMDP, RTBSS-PBVI-QMDP and RTDPBSS.

3.5.1 RTBSS-QMDP

The RTBSS-QMDP approach uses the QMDP algorithm to compute an approxi-

mation of the value function offline. Then, RTBSS-QMDP algorithm uses the QMDP

approximation as the leaf value function in the search tree of the RTBSS algorithm. In

other words, the only modification to the RTBSS algorithm is that the U(b) function

at the leaves of the tree returns VMDP (b). Since we know that VMDP (b) introduces a

certain error ǫ on the value of the belief state b, the advantage of using the RTBSS

algorithm in combination with QMDP is to reduce this error. Since the RTBSS algo-

rithm returns an exact value up to depth d, it will multiply the error ǫ by a factor of

γd, where d is the depth of the search done by RTBSS. Consequently, the deeper is the

search, the less is the error of the algorithm (see proof in section 3.5.4). This improved

evaluation of a belief state should generate a better policy for the agent.

The advantage of using the QMDP algorithm over the other offline algorithms is that

it rapidly gives a good estimate of the belief state values, even in large state spaces.

However, the inconvenient is that by using QMDP as the RTBSS leaf values, we cannot

do any action pruning in the tree since QMDP is an upper bound on the exact value

function V ∗. We recall that the action pruning can only be done if the leaf value is a

lower bound on the exact value function V ∗(b) and if the pruning Heuristic function

returns an upper bound on the exact value V ∗(b). Nevertheless, the experiments show

that only a search depth of 3 or 4 can give very good results and improve the results of

both algorithms when used alone.

Chapter 3. Online POMDP Algorithm 72

3.5.2 RTBSS-PBVI-QMDP

In order to reintroduce the action pruning into the RTBSS-QMDP algorithm, we

propose the RTBSS-PBVI-QMDP algorithm, where PBVI is used to compute a lower

bound on the exact value function V ∗(b) and QMDP is used to compute an upper

bound on the exact value function V ∗(b). Therefore, the only modification to the

RTBSS algorithm is that the U(b) function at the leaves of the tree returns VPBV I(b)

and the pruning Heuristic function returns VMDP (b). What we want to show with

this approach is that it might be possible to compute a quick policy with PBVI, then

use this policy as a lower bound and use the QMDP algorithm to do some action pruning

in the search tree of the RTBSS algorithm. By doing so, it might be possible to search

deeper and thus reduce the error introduced by the approximate PBVI policy used at

the leaves of the search tree.

3.5.3 RTDPBSS

The RTDPBSS algorithm is basically a combination of the RTDP-BEL algorithm

and the RTBSS algorithm, without the action pruning. Instead of choosing an action

based directly on the value of the approximation function, as done in RTDP-BEL, the

RTDPBSS algorithm adds a depth search of depth d, where the leaf values are given by

the approximate value function of the RTDP-BEL approach, but where parent nodes

compute the exact values with the immediate rewards. This approach has the advantage

of reducing the error of the approximate value function by a factor of γd. The RTDP-

BEL approximate value function will always have an error, even after convergence,

because of the belief state discretization. Moreover, by searching deeper, the RTDPBSS

algorithm improves the approximate value function with a much more precise belief

state value.

The only inconvenient of this approach is that it necessitates more time online to

choose actions than in RTDP-BEL, since we do a full depth search. Therefore, the

RTDPBSS algorithm requires more time to run a certain number of simulations during

the learning phase. However, the results show that the RTDPBSS algorithm tends to

converge much more rapidly toward a very good policy than the RTDP-BEL algorithm.

In the next section, we present a proof that the hybrid approach can always reduce

the error of an approximate offline approach.

Chapter 3. Online POMDP Algorithm 73

3.5.4 Proof of the Usefulness of a Hybrid Approach

The intuition behind a hybrid approach is that for any approximate value function

V (b) with error bounds [infb ǫ(b), supb ǫ(b)] (where ǫ(b) = |V (b) − V ∗(b)|) on the exact

value function V ∗(b), we can always get a lower error bound by computing an exact

value function up to a certain horizon d and use the approximation V (b) at the last

horizon. This should in fact multiply the error bound of V (b) by a factor of γd, as

demonstrated in the following proof.

Theorem 3.2. For any algorithm that computes an approximate value function V (b)

with error function ǫ(b), defining the error on the exact value function V ∗(b) such that

ǫ(b) = |V (b)−V ∗(b)|, the error bounds of the RTBSS algorithm doing a search of depth

d with U(b) = V (b) will have supb ǫRTBSS(b) <= γd supb ǫ(b) and infb ǫRTBSS(b) >=

γd infb ǫ(b) on the exact value function V ∗(b).

Proof. The following proof uses many terms, which are defined as:

• P (bd) = P (o0|b0, a0
max)P (o1|b1, a1

max) · · ·P (od−1|bd−1, ad−1
max)

• ai
max = argmaxaR(bi, a) + γ

∑
oi P (oi|bi, a)VRTBSS(d−i−1)(b

i+1)

• bd = τ(bd−1, ad−1
max, o

d−1)

• s(b) = −1 when V (b) < V ∗(b)

• s(b) = 1 when V (b) ≥ V ∗(b)

• ǫmax = supb ǫ(b)

• ǫmin = infb ǫ(b)

Where, P (bd) represents the probability of reaching the leaf belief state bd at search

depth d. In the search tree, P (bd) corresponds to the product of the observations

probability encountered by following the path from the root b to the leaf bd.

Proof of Theorem 3.2: if U(b) = V (b), the error of the RTBSS algorithm (ǫRTBSS(d)(b))

is bounded by:

Chapter 3. Online POMDP Algorithm 74

ǫRTBSS(d)(b) = |VRTBSS(d)(b)− V ∗(b)| Definition of the error

= |V ∗
d−1(b) + γd

∑
P (bd)U(bd)− V ∗(b)| Definition of VRTBSS(d)(b)

= |V ∗
d−1(b) + γd

∑
P (bd)V (bd)− V ∗(b)| Definition of U(b)

= |V ∗
d−1(b) + γd

∑
P (bd)(V ∗(bd)+

s(bd)ǫ(bd))− V ∗(b)| Definition of V (b)

= |V ∗
d−1(b) + γd

∑
(P (bd)V ∗(bd)+

P (bd)s(bd)ǫ(bd))− V ∗(b)| Distributivity

= |V ∗
d−1(b) + γd

∑
(P (bd)V ∗(bd))+

γd
∑

(P (bd)s(bd)ǫ(bd))− V ∗(b)| Split sum

= |V ∗(b) + γd
∑

(P (bd)s(bd)ǫ(bd))− V ∗(b)| Definition of V ∗(b)

= |γd
∑

(P (bd)s(bd)ǫ(bd))| Simplification

In the worst case:

|γd
∑

(P (bd)s(bd)ǫ(bd))| ≤ |γd
∑

(P (bd)s(bd)ǫmax)| ǫ(bd) ≤ ǫmax

= |γdǫmax

∑
(P (bd)s(bd))| Simplification

≤ |γdǫmax|
∑

(P (bd)s(bd)) ≤ 1

= γdǫmax

In the best case:

|γd
∑

(P (bd)s(bd)ǫ(bd))| ≥ |γd
∑

(P (bd)s(bd)ǫmin)| ǫ(bd) ≥ ǫmin

= |γdǫmin

∑
(P (bd)s(bd))| Simplification

≥ | − γdǫmin|
∑

(P (bd)s(bd)) ≥ −1

= γdǫmin

Consequently, ǫRTBSS(d)(b) ∈ [γdǫmin, γ
dǫmax]

This theorem has a pretty strong implication. It means that for any offline algo-

rithm computing an approximate value function with error bounds [ǫmin, ǫmax], we can

always get a better approximation by combining this offline algorithm with our RTBSS

algorithm online. In the next section, we present results for the hybrid approaches that

confirm this claim.

Chapter 3. Online POMDP Algorithm 75

3.6 Experimentations

As mentioned before, the conception of the RTBSS algorithm has been motivated by

the RoboCupRescue simulation environment. However, it is a general algorithm that

can be applied to any POMDP environment. In this section, we present the results of

RTBSS on two problems found in the POMDP literature: Tag (Pineau et al. (2003))

and RockSample (Smith and Simmons (2004)). Our primary goal was to develop an

approach applicable in the RoboCupRescue simulation environment, but it is hard to

evaluate the performances of our approach in such a complex environment. This is

why we first compare our approach with state of the art POMDP algorithms in smaller

environments.

It is important to notice that the Tag and RockSample problems do not totally

do justice to our algorithm because we can affirm that it is better to apply an offline

algorithm in order to have a better solution, even if we need to wait a few hours or days

before having the solution. An inconvenient with offline approaches is that each time

the environment slightly changes, we have to wait another few hours or days. Thus,

if the environment is not exactly the same from one execution to another, the offline

approaches become really expensive. We have used those two environments because

they were popular and because they enabled us to compare the RTBSS’s performances

with the best offline performances. Our results show that even if they have all the

necessary time, offline approaches have difficulty catching up with the performances

obtained by our RTBSS algorithm on big environments.

In all the results presented in this thesis, if there is no citation beside the name of

the algorithm in the tables, then the results have been obtained with our own imple-

mentation of the algorithm. Therefore, the performances may slightly differ from other

implementations.

3.6.1 Tag

We tested our algorithm in Tag, introduced for the first time by Pineau et al. (2003).

This environment has also been used recently in (Poupart and Boutilier (2003a); Vlassis

and Spaan (2004); Pineau (2004); Spaan and Vlassis (2004); Smith and Simmons (2004);

Braziunas and Boutilier (2004); Spaan and Vlassis (2005); Smith and Simmons (2005)).

For this environment, we need to use an approximate POMDP algorithm, because of

its medium size of 870 states. In this environment, we can compare our approach with

many other recent approaches. Such a comparison would not be possible in much bigger

POMDPs because the majority of the other approaches would not be applicable as we

will see later. The results show that our algorithm can obtain good results with a small

amount of computation time.

Chapter 3. Online POMDP Algorithm 76

26 27 28

23 24 25

20 21 22

10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9

A

B

Figure 3.20: The Tag problem.

3.6.1.1 Description of the Tag Environment

The Tag environment consists in an agent A that has to catch another agent B.

The environment configuration is presented in Figure 3.20. The agent A cannot see the

agent B, except if both agents are at the same position. To find B, the agent A has to

move in the environment where it thinks B should be. If it finds B, it can tag it and

its goal has been achieved.

With a factored representation, a state in this problem is described with two vari-

ables: X1 = {0 . . . 28} is the state of the agent A and X2 = {0 . . . 28 and tagged} is

the state of agent B. Agent A can choose between 5 actions: North, South, East, West

and Tag. The initial position of the agents is randomly chosen (without the trivial case

where the two agents start at the same position). In this problem, the transition and

observation functions are deterministic, which means that there is no uncertainty about

the actions and the observations of agent A. However, the environment stays highly

partially observable because the agent A does not know where the agent B is.

Agent B has a perfect vision and a simple behavior. It moves away from A with

a probability of 0.8 and it stays at the same position with a probability of 0.2. For

example, if B can do two actions to get away from A (see Figure 3.20), then each of

these two actions would have a probability of 0.4, and always 0.2 to stay in place. Thus,

even if A is practically blind, it can have a good idea of B’s position, because it knows

that it always tries to go away from it. Thus, B has a good chance to be in the opposite

corner.

Notice that the agent A receives a reward of −1 for each move action it does in the

environment, a reward of +10 if the Tag action succeeds and a reward of −10 if the

Tag action fails. The agent tries to maximize the discounted sum of its rewards with a

discount factor γ = 0.95.

Chapter 3. Online POMDP Algorithm 77

To apply our RTBSS algorithm, some functions have to be defined. The first function

we need is the Heuristic function used in the pruning condition to evaluate the best

utility value possible from each belief state up to the maximal depth D. For Tag, this

utility function simply considers that it will be possible, with the highest probability

of any of the states, to tag the agent B at each action until the maximum depth D.

This gives the maximum reward agent A could get. By doing so, we are sure that the

Heuristic function always overestimates the true value.

The second function we need is the U(b) function which gives an estimation of the

value of the belief state b at the fringe of the search tree. For this function, we used the

immediate reward R(b).

The last function we need is the Sort function that sorts the actions. For Tag, this

function simply sorts the move actions according to the most probable position of the

agent B. The move action that goes toward the most probable position of B is tried

first. For other problems, these functions have to be defined considering the problem’s

characteristics.

3.6.1.2 Results

On the Tag problem, the RTBSS algorithm obtains very good results with no offline

computation time and with less then a second online. In Table 3.2, we can see that the

RTBSS algorithm obtains the best results. This can be explained by the fact that, at a

depth of 12, the RTBSS algorithm can explore all possible positions for agent B, thus

it can have a good idea of the best action to take in order to catch agent B.

The RTBSS-PBVI-QMDP hybrid algorithm also obtains good results. However, it

is important to notice that the result presented is only for the starting position of 0

for the agent A. This is because we have only calculated the policy of PBVI for this

starting position. Since PBVI needs the starting belief state, we have to generate one

policy for each starting position for the agent A. For our tests, we generated one policy

in 10 hours for the starting position 0. This policy obtained an average reward of

−10.61. On the other hand, the hybrid approach obtained an average reward of −5.40.

This shows that the hybrid approach is quite efficient to improve a weak offline policy.

Another example of that is the RTBSS-QMDP approach that obtained a much better

result (-6.11) than the QMDP approach alone.

The RTDP-BEL and the RTDPBSS algorithms are not good on Tag. They were not

able to converge, because they were not guided enough. The reward can be quite far

in Tag, and they had some trouble finding the other agent. These methods act almost

randomly at the beginning, thus they were not able to catch the agent B often enough

to learn how to catch the agent B. These methods need a lot of memory to store all the

Chapter 3. Online POMDP Algorithm 78

Method Reward
Offline

Time (s)

Online

Time (s)

QMDP -16,75 0.875 -

RTDP-BEL -12.15 3645 0,001

RTDPBSS -9.60 24540 0,556

PBVI Pineau et al. (2003) -9,18 180880 -

BBSLS Braziunas and Boutilier (2004) ∽ -8.3 ∽ 100000 -

BPI Poupart (2005) -6,65 250 -

HSVI1 Smith and Simmons (2004) -6,37 10113 -

HSVI2 Smith and Simmons (2005) -6,36 24 -

Perseus Spaan and Vlassis (2004) -6,17 1670 -

PBVI Pineau (2004) ∽ -6,12 ∽ 900000 -

RTBSS-QMDP(5) -6.11 0.875 0,311

RTBSS-PBVI-QMDP(4) -5.40∗ 36000 0,220

RTBSS(12) -5.03 0 0,750

Table 3.2: Comparison of our approach on the Tag problem. For RTBSS, the reward

and the computation time are averages over 5000 simulations. The number between

parenthesis beside the RTBSS based methods is the depth of the search D used to

obtain these results. *: For this result, the agent A always starts in position 0.

belief states encountered, thus they often ran out of memory, even with one Gigabyte

of memory.

Figures 3.21 and 3.22 compare our RTBSS algorithm with a version without prun-

ing (i.e. complete limited search of depth D). Figure 3.21 presents the performance

of our algorithm in function of the depth of the search used. The rewards obtained

are the same whether we use the pruning or not; the slight variation comes from ran-

domness in the tests. We see that our algorithm does not require any pruning to work

properly. However, if we are able to find a good pruning heuristic for a problem, it

greatly improves the algorithm’s speed, as shown in Figure 3.22. The complexity is still

exponential but it grows slower than the brute force version.

Figure 3.23 compares the progression of the performances for the RTBSS and the

RTBSS-QMDP approaches for different depths of the search. We can see that the

RTBSS-QMDP approach starts with really bad scores. This can be explained by the

fact that at low depths, the algorithm is almost the same as QMDP , which is not good on

Tag. However, with higher depths, the RTBSS-QMDP approach becomes to be good,

because the search gives more information about the reachable belief states. At the

depths of 4 and 5, we can see that the QMDP approach is useful, because the RTBSS-

QMDP algorithm obtains better results than the RTBSS algorithm. The results stop

Chapter 3. Online POMDP Algorithm 79

-10

-8

-6

-4

4 6 8 10 12

Depth

R
e

w
a

rd
s

without pruning

with pruning

Figure 3.21: Average reward on Tag for different search depths D.

0,000

2,000

4,000

6,000

8,000

10,000

12,000

4 6 8 10 12 14

Depth

T
im

e
 (

s
)

without pruning

with pruning

Figure 3.22: Average deliberation time on Tag for different search depths D.

Chapter 3. Online POMDP Algorithm 80

-18,00

-16,00

-14,00

-12,00

-10,00

-8,00

-6,00

-4,00

1 2 3 4 5 6 7 8 9 10 11 12

Depth

R
e
w

a
rd

RTBSS

RTBSS-QMDP

Figure 3.23: Rewards for different depth on Tag.

at depth 5, because at greater depths, the RTBSS-QMDP algorithm needs more than

one second on average to choose an action.

3.6.2 RockSample

We have also tested our RTBSS algorithm in a bigger environment, the RockSample

problem which was presented for the first time by Smith and Simmons (2004). For this

problem, we have only results for the HSVI algorithm, however it was one of the best

on the Tag problem, thus it should be a good comparison.

3.6.2.1 Environment Description

In the RockSample problem, an agent has to explore the environment and sample

some rocks (see Figure 3.24), a little bit like a real robot should do on the planet Mars.

The agent receives rewards by sampling rocks and by leaving the environment (by going

to the extreme right of the environment). A rock can have a scientific value or not and

Chapter 3. Online POMDP Algorithm 81

A

E
X

IT

Figure 3.24: RockSample[7,8].

the agent has to sample only good rocks. At the beginning, the agent knows the position

of each rock, but not their scientific value. In order to verify if a rock is good, the agent

can use an imperfect sensor. This sensor helps the agent to see if a rock is good or not

before choosing to go to this rock and sample it.

We define RockSample[n, k] as an instance of the RockSample problem with a grid

size of n × n and with k rocks. With a factored representation, the POMDP model

is as follows. A state is characterized by k + 1 variables: Position, which can take

the values {(1, 1), (1, 2), . . . , (n, n)} and k variables Rocki, which can take the values

{Good, Bad}. There is also an additional terminal state at the extreme right of the

environment. Thus, for the RockSample[n, k] environment, there are n2×2k +1 states.

Moreover, the agent can execute k+5 actions: {North, South, East, West, Sample,

Check1, . . . , Checkk}. The moving actions are totally deterministic. The Sample action

samples the rock at the agent’s current location. If the rock is good, the agent receives

a reward of 10 and the rock becomes bad (indicating that nothing more can be gained

by sampling it). If the rock is bad, the agent receives a reward of −10. If the agent

moves into the terminal state at the extreme right of the environment, it receives a

reward of 10. All other moves have no rewards.

Each Checki action applies the long-range sensor to rock i, returning a noisy ob-

servation from {Good, Bad}. The sensor is more precise if the agent is closer from the

rock. The noise in the long-range sensor reading is determined by the efficiency η,

which decreases exponentially as a function of the Euclidean distance from the target.

The efficiency of the long-range sensor is defined as being η = 2−d/d0 , where d is the

distance and d0 is a tunable constant called the half efficiency distance (η = 1/2 when

d = d0). At η = 1, the sensor always returns the correct value. At η = 0, it has a

50/50 chance of returning Good or Bad. At intermediate values, these behaviors are

Chapter 3. Online POMDP Algorithm 82

Problem η d0

RockSample[4,4] e−d -

RockSample[5,5] 2−d/d0 4

RockSample[5,7] 2−d/d0 20

RockSample[7,8] 2−d/d0 20

RockSample[10,10] 2−d/d0 20

Table 3.3: RockSample test parameters, which are the same parameters as those used

by Smith and Simmons (2004, 2005).

combined linearly. The initial belief is that every rock has equal probability of being

Good or Bad.

3.6.2.2 Results

We have compared many algorithms on four instances of the RockSample problem.

For all tests, the discount factor was set to γ = 0.95. Table 3.3 shows the values for

the constants: η (the efficiency) and d0 (the half efficiency distance). For the results

presented, the reward and the calculation time are averages over 5000 simulations.

Moreover, the QMDP approach used in the RockSample environments has slightly been

modified compared to the basic algorithm presented in section 3.1.3.1. The only modi-

fication is that it does not consider a check action on a rock that has a zero probability

to be Good. Also, the convergence value for the QMDP algorithm was set to 5× 10−15.

RockSample[4,4] In this environment, since it is rather small, we can see in

Table 3.4 that most offline and hybrid approaches succeeded in finding the optimal

policy (average reward around 18). Our algorithm, RTBSS, which is done entirely

online, is not so far behind and has no computation time offline. In addition, the

proposed hybrid approaches developed with our algorithm performed as well as the

offline and other hybrid approaches, but at a fraction of the offline time and within

acceptable online time.

The QMDP approach alone did not yield very good results in this environment since

it is an information gathering problem, which is not well supported by an algorithm

that solves the underlying MDP. So most of the time, the agent got stuck doing a lot

of check actions far from the rocks, since it did not learn to optimize its check actions,

which hindered a lot its performances.

With our RTBSS approach, we got pretty good results, although the path chosen

by the agents to visit the rocks was not optimal, thus getting a bit lower results than

Chapter 3. Online POMDP Algorithm 83

Algorithm Reward

Offline

Time

(s)

Online

Time

(s)

QMDP 8.6 0.188 0

Perseus 16.1 2104 0

RTBSS(4) 16.5 0 0.001

RTBSS-PBVI-QMDP(2) 17.4 8229 0.014

PBVI 17.9 10200 0

RTDP-BEL 18.0 486 0.002

RTBSS-QMDP(5) 18.0 0.188 0.036

HSVI Smith and Simmons (2004) 18.0 577 -

HSVI2 Smith and Simmons (2005) 18.0 0.75 -

RTDPBSS(2) 18.1 1272 0.022

Table 3.4: Results for the RockSample[4, 4] problem. This problem has 257 states, 9

actions and 2 observations. The number between parenthesis beside the RTBSS based

methods is the depth of the search D used to obtain these results.

the best policies. This was probably caused by our heuristic function for the leaf value

which simply returned the value the agent would get with a blind policy (always move

east and head straight to the exit). We also only used a heuristic action pruning in this

problem, which limited our depth search to a depth of 6 to stay in respectable online

time.

With the Perseus algorithm, we got pretty inconsistent policies, some were quite

good and others were pretty bad and got stuck doing check indefinitely on already

sampled rocks. This was probably caused by the approximation done in the algorithm

that did not seem to always optimize the value function for key belief states. To get

more consistent policies, we modified slightly the algorithm to be sure that it would

always choose the best vector for some specific belief states at each iteration. The

specific belief states we chose were belief states in which the agent was in a position

where there was a good rock with a probability of 1 and a belief state where the agent

was in a position adjacent to the exit. This had the effect of rapidly propagating the

high rewards that the agent can get in the environment and generally yielded more

consistent policies. However, even with this modification, we ended up with 3 bad

policies out of 10. The bad policies had only average rewards of 4.3, 7.8 and 7.9.

The PBVI algorithm tended to yield better and more consistent policies than the

Perseus algorithm. Still, in some rare cases, we got bad policies similar to those obtained

with Perseus, which seemed to be caused when the value function did not successfully

converge within the maximum horizon. Out of 10 policies, 2 were bad (7.6 and 7.6)

and the others were all optimal or very close to the optimal policy.

Chapter 3. Online POMDP Algorithm 84

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

1 2 3 4 5 6 7

Depth

R
e
w

a
rd

RTBSS

RTBSS-QMDP

Figure 3.25: Rewards for different depth on RockSample[4,4].

With our proposed hybrid approach RTBSS-QMDP, we used the policy computed

by QMDP that did not yield good results. With only a depth of 2, the RTBSS-QMDP

algorithm got significantly better results than QMDP and similar results to our online

RTBSS algorithm. At a depth of 4, the algorithm found the optimal policy and did not

show further improvement at deeper depths. Figure 3.25 shows a comparison of the

performances of the RTBSS algorithm and the RTBSS-QMDP algorithm for different

depths.

With the RTDP-BEL algorithm, we used a discretization factor of 20 and a max-

imum number of steps of 251 per simulation. It succeeded finding the optimal policy

within 5000 simulations. However, the algorithm did pretty badly in the first 2500

simulations, always taking the maximum number of steps at each simulation, which

considerably slowed its learning process in these first simulations. As a result, the algo-

rithm did not show faster convergence rate than other offline approaches such as HSVI

or Perseus.

Our proposed RTDPBSS algorithm showed quite an improvement over the RTDP-

BEL algorithm in the time it took to converge to the optimal policy. We used the same

Chapter 3. Online POMDP Algorithm 85

Algorithm Reward

Offline

Time

(s)

Online

Time

(s)

RTDP-BEL 7.3 1444 0.003

QMDP 13.9 0.625 0.002

Perseus 14.0 36000 0

RTBSS(6) 18.5 0 0.131

HSVI Smith and Simmons (2004) 19.0 10208 -

PBVI 19.1 36000 0

RTBSS-PBVI-QMDP(2) 19.2 36000 0.020

RTBSS-QMDP(4) 19.3 0.625 0.627

RTDPBSS(2) 19.4 18636 0.054

Table 3.5: Results for the RockSample[5, 5] problem. This problem has 801 states, 10

actions and 2 observations. The number between parenthesis beside the RTBSS based

methods is the depth of the search D used to obtain these results.

parameters as for the RTDP-BEL algorithm, that is, a discretization factor of 20 and a

maximum number of steps of 251. Even at a search depth of 2, the algorithm attained

the optimal policy around 3 times faster than the RTDP-BEL algorithm and showed

better behaviors in the first simulations compared to RTDP-BEL algorithm.

RockSample[5,5] The QMDP approach alone did not yield very good results in

this environment for the same reasons mentioned for the RockSample[4, 4] problem.

With our RTBSS approach, we got pretty good results, although the path chosen by

the agents to visit the rocks was not optimal, thus getting a bit lower results than the

best policies.

With the Perseus algorithm, we got pretty inconsistent policies for this environment

too. The best result reported in Table 3.5 is 14.0, but the average over 10 policies

was only 9.5. Again, the PBVI algorithm tended to yield better and more consistent

policies than the Perseus algorithm. However, the average over ten policies was 12.1,

which is way worse than the best score (19.1) reported in the table.

With our proposed hybrid approach RTBSS-QMDP, we used the policy computed

by QMDP that did not yield good results. The improvement is quite good, because

at a depth of 4, the RTBSS-QMDP algorithm obtained the second best score. The

RTBSS-QMDP algorithm is quite interesting because in most problems, it can obtain

really good results with a short amount of time offline and online.

In the RockSample[5,5] environment, the RTDP-BEL algorithm obtained surpris-

ingly bad results. It was not able to converge at all, even after 20,000 simulations.

Chapter 3. Online POMDP Algorithm 86

Algorithm Reward

Offline

Time

(s)

Online

Time

(s)

Perseus 12.5 36000 0.001

QMDP 17.3 4 0.015

PBVI 18.9 36000 0

RTBSS-PBVI-QMDP(2) 20.3 36000 0.177

RTBSS(5) 22.7 0 0.070

HSVI Smith and Simmons (2004) 23.1 10263 -

RTBSS-QMDP(2) 23.7 4 0.104

RTDPBSS(2) 24.5 41117 0.234

RTDP-BEL 24.7 8773 0.006

Table 3.6: Results for the RockSample[5, 7] problem. This problem has 3201 states,

12 actions and 2 observations. The number between parenthesis beside the RTBSS

based methods is the depth of the search D used to obtain these results.

Our proposed RTDPBSS algorithm showed quite an improvement over the RTDP-BEL

algorithm. At only a search depth of 2, the algorithm attained very good results after

only 7500 simulations. This shows that it can be quite useful to guide the search of the

RTDP algorithm with a deeper search online.

RockSample[5,7] Again in this environment, the QMDP approach alone did not

yield very good results. With our RTBSS approach, we got pretty good results, really

close to the HSVI algorithm.

The Perseus algorithm was quite bad in this environment. The best result reported

in Table 3.6 is 12.5, but the average over 10 policies was only 5.5. Again, the PBVI al-

gorithm tended to yield better and more consistent policies than the Perseus algorithm.

However, the average over ten policies was 13.5, which is way worse than the best score

(18.9) reported in the table.

With our proposed hybrid approach RTBSS-QMDP, we used the policy computed

by QMDP that did not yield good results. The improvement is quite good, because at

a depth of only 2, the RTBSS-QMDP algorithm obtained one of the best scores.

In the RockSample[5,7] environment, the RTDP-BEL and the RTDPBSS algorithms

obtained the best results. It took 30,000 simulations for the RTDP-BEL algorithm to

find a good policy. For the RTDPBSS algorithm it took only 7500 simulations to find

a policy as good as the one found by the RTDP-BEL algorithm. However, the time of

each simulation is far bigger for the RTDPBSS algorithm. Therefore, the RTDPBSS

algorithm is really interesting only if the simulations have a cost. For some problems, it

might be cheaper to take more time to do a simulation and to learn with less simulations.

Chapter 3. Online POMDP Algorithm 87

Algorithm Reward

Offline

Time

(s)

Online

Time

(s)

PBVI 4.3 36000 0

Perseus 8.3 36000 0.001

RTDP-BEL 8.7 8362 0.029

RTBSS-PBVI-QMDP(2) 13.1 36000 0.559

HSVI Smith and Simmons (2004) 15.1 10266 -

QMDP 15.5 24 0.048

RTDPBSS(2) 17.2 47007 0.356

RTBSS(5) 19.0 0 0.022

RTBSS-QMDP(2) 20.3 24 0.320

HSVI2 Smith and Simmons (2005) 20.6 1003 -

Table 3.7: Results for the RockSample[7, 8] problem. This problem has 12545 states,

13 actions and 2 observations. The number between parenthesis beside the RTBSS

based methods is the depth of the search D used to obtain these results.

RockSample[7,8] In this environment, the QMDP approach was not bad at all.

It obtained better results than the HSVI approach, as shown in Table 3.7. In this

big environment, the HSVI algorithm did not have time to converge to a good policy.

However, the HSVI2 algorithm obtained really good results in a short amount of time.

Moreover, in this environment, the RTBSS approach obtained a good result with

really little computation time. With these results, we can see that the approaches that

use some online calculations are less hindered by the growth of the environment size.

The Perseus and the PBVI algorithms were really bad in this environment. After

10 hours of calculations, they never obtained a good policy and they often obtained the

worst policies with average rewards of 0. The environment is just too big for these two

approaches to find good policies in 10 hours.

The RTBSS-QMDP approach obtained the second best result with a search depth

of only 2. If we look at the results from all the problems tested, the RTBSS-QMDP

approach seems to be the more consistent. It can always find good results with a really

short amount of time offline and online.

In the RockSample[7,8] environment, the RTDP-BEL algorithm obtained bad re-

sults. It ran out of memory before reaching 20,000 simulations. On the other hand, the

RTDPBSS algorithm showed quite an improvement over the RTDP-BEL algorithm. At

only a search depth of 2, the algorithm attained a reasonably good result after only

2500 simulations. However, it took it a lot of time to do these 2500 simulations.

Chapter 3. Online POMDP Algorithm 88

Algorithm Reward

Offline

Time

(s)

Online

Time

(s)

QMDP 11.2 208 0.029

RTBSS-QMDP(2) 19.2 208 1.234

RTBSS(7) 20.0 0 1.441

HSVI2 Smith and Simmons (2005) 20.4 10014 -

Table 3.8: Results for the RockSample[10, 10] problem. This problem has 102 401

states, 19 actions and 2 observations. The number between parenthesis beside the

RTBSS based methods is the depth of the search D used to obtain these results.

Depth Reward Online Time (s)

1 5.1 0.000

2 17.3 0.000

3 18.8 0.000

4 18.0 0.001

5 19.6 0.011

6 18.8 0.133

7 20.0 1.441

Table 3.9: Results of the RTBSS algorithm for different search depth in the

RockSample[10, 10] problem.

RockSample[10,10] In this big environment of 102 401 states, the RTBSS and

RTBSS-QMDP algorithms obtained competitive results with the HSVI2 algorithm, as

shown in Table 3.8. More precisely, in Table 3.9, we can see that the RTBSS algorithm

obtained good results with a short amount of time online. For example, at depth 3,

the RTBSS algorithm already obtained an average reward of 18.8 with less than a

millisecond on average to choose an action. This shows that the RTBSS algorithm can

stay strong in big environments.

3.6.3 Offline Computation Time

Another huge advantage of our algorithm is its adaptability to environment changes.

Let’s suppose that we have the RockSample problem but at each new execution in

the environment, the initial position of the rocks changes or the shape of the grid

changes. With offline algorithms, it would require recomputing a new policy for the new

configuration while our algorithm could be applied right away. Therefore, our RTBSS

algorithm is more suited to environments in which the initial configuration can change

Chapter 3. Online POMDP Algorithm 89

- 20

- 18

- 16

- 14

- 12

- 10

- 8

- 6

10
2

10
4

10
6

RTBSS
PBVI

HSVI

BBSLS
BPI

Time (sec)

R
e

w
a

rd

870 states- 4

Figure 3.26: Solution quality versus offline computation time for the Tag environment.

and when the agent has to be deployed rapidly. For instance, in the RoboCupRescue

simulation, agents have to be deployed immediately in previously unknown cities; they

do not have the time to learn a good policy because the situation is deteriorating rapidly.

Figures 3.26 to 3.28 show that our RTBSS algorithm is the best one if only a small

amount of time is allowed for offline computation. On this figure, the line represent-

ing the RTBSS performance is different from the others because it does not use any

offline computation time to construct a policy. It shows how much time it takes for

offline approaches to catch up (if they do) with the performances that RTBSS can have

immediately. On big environments, offline approaches need too much time offline to

obtain good results, but our online RTBSS algorithm can obtain good results immedi-

ately. This becomes really important if the agents have to be deployed rapidly in an

environment that can change from one execution to the other.

3.7 Experimentations in RoboCupRescue

In this section, we present results in a much more complete environment: the Robo-

CupRescue simulation. This environment, presented in Chapter 2, consists of a sim-

ulation of an earthquake happening in a city. The goal of the agents (representing

Chapter 3. Online POMDP Algorithm 90

0

5

10

15

20

25

30

102 104
10

310

RTBSS
HSVI

Time (sec)

R
e

w
a

rd

3201 states

Figure 3.27: Solution quality versus offline computation time for the RockSample[5,7]

environment.

0

5

10

15

20

25

30

10
2

10
4

10310

RTBSS
HSVI

Time (sec)

R
e
w

a
rd

12545 states

Figure 3.28: Solution quality versus offline computation time for the RockSample[7,8]

environment.

Chapter 3. Online POMDP Algorithm 91

firefighters, policemen and ambulance teams) is to minimize the damages caused by a

big earthquake, such as civilians buried, buildings on fire and roads blocked. In this

dynamic environment, there are a lot of uncertainties that complicate the work of the

agents.

In the RoboCupRescue simulation, we have applied the RTBSS algorithm to control

the policeman agents. Their task is to clear the most important roads as fast as possible,

which is crucial to allow the other rescuing agents to perform their tasks. However, it

is not easy to determine how the policeman agents should move in the city because

they do not have a lot of information. They have to decide which road to prioritize and

coordinate themselves so that they do not try to clear the same road.

In this section, we present how we applied our RTBSS algorithm in the RoboCup-

Rescue simulation. In fact, we have been interested in only a subproblem of it which

can be formulated as: Having a partial knowledge of the roads that are blocked or not,

the buildings on fire and the position of other agents, which sequence of actions should

a policeman agent perform?

3.7.1 RoboCupRescue viewed as a POMDP

The first task in order to apply our RTBSS algorithm is to define the RoboCup-

Rescue simulation as a POMDP from the point of view of a policeman agent. The

different actions an agent can do can be represented as four move actions (North, South,

East, West) and a Clear action. The Clear action clears the road on which the agent

is. A state can be described by approximately 1500 random variables, depending on

the simulation:

• Roads : There are approximately 800 roads in a simulation and they can either be

blocked or cleared. Consequently, there are 2800 possible configurations.

• Buildings : There are approximately 700 buildings in a simulation and they can

either be on fire or not. Therefore, there are 2700 possible configurations.

• Agents position: An agent can be on any of the 800 roads and there are usually

30 to 40 agents. Then, in the worst case there are 80040 possible configurations.

This modeling is a simplification from the original RoboCupRescue simulation be-

cause we consider that the variables representing the roads and the buildings can have

only two values. In reality, a road and a building can be blocked or on fire at different

degrees. However, for a policeman agent it is not really important since a road has to

be cleared no matter how bad it is blocked and a fire has to be extinguished no matter

how big the fire is.

Chapter 3. Online POMDP Algorithm 92

Consequently, if we estimate the number of states, we obtain 2800 × 2700 × 80040

states. This is a huge number of states, way beyond the capacity of most POMDP

algorithms. However, a strong majority of them are not possible and will not ever be

reached. The state space of RoboCupRescue is too important to even consider applying

offline algorithms. We must therefore adopt an online method that allows finding a good

solution very quickly.

3.7.2 Application of RTBSS on RoboCupRescue

Due to the complexity of the RoboCupRescue simulation, the basic RTBSS al-

gorithm has been slightly modified to take the specificity of multiagent systems into

consideration for the transition model and the maintenance of the belief state. The

main idea is to abstract some of the dynamic parts of the environment in order to

respect the real-time constraint. Most of the algorithm is the same as the standard

RTBSS algorithm that has been presented previously. The modifications were simply

done to improve its applicability in such complex, dynamic and uncertain environment.

First of all, in the RoboCupRescue simulation, the online search in the belief state

space represents a search in the possible paths that an agent can take. In the tree, the

probability of going from one belief state to another depends on the probability that the

road used is blocked. One specificity of this problem is that we have to return a path to

the simulator, thus the RTBSS algorithm has been modified to return the best branch

of the tree instead of only the first action. This is a very simple modification that shows

that the RTBSS algorithm can be easily modified to return a longer plan instead of only

the first action. Depending of the problem considered, it might be interesting to return

a longer sequence of actions.

Since the environment is real-time dynamic and it contains so many states, we had

to add another simplification in order for the belief state to be updated in a timely

manner. The idea is to consider factored beliefs in which some of the variables are kept

fixed during the search. Therefore, the agent does not have to maintain beliefs over

these variables. Consequently, the agent’s belief state can be maintained more rapidly

while doing the search in the reachable belief state space. In other words, the agent

considers that some parts of the environment are static during its search in the tree.

For example, in the RoboCupRescue, all variables are considered static except the

position of the agent and the variables about the roads, which are the most important

variables for the policeman agent decisions. For the other variables, like the position of

the other agents and the position of the fires, the agent considers that they keep the

last value observed. Consequently, all those fixed variables are represented in the belief

state by a vector containing only zeros except for the last value observed which has

Chapter 3. Online POMDP Algorithm 93

a probability of one. Therefore, the function ω (Equation 3.30) only returns a small

subset of states.

To sum up, the agent focuses on the most important variables for which it maintains

its beliefs as precisely as possible. The other less important variables are considered

fixed between the agent’s observations. Which means, that the values of the fixed

variables are only modified when the agent perceives a new value.

The fixed variables are not ignored during the search, but the agent does not update

them. For example, if a firefighter agent is considered to be on road r3, it will stay there

during the whole search. We know that in practice it moves, but to simplify the search,

we consider that it stays at the same position. We update the value of the fixed variables

only when the agent perceives a new value. In our model, we consider the observations

to be both the direct agent’s observations and the information received by messages. We

are in a cooperative multiagent system, therefore all agents have complete confidence

in the information received from the other agents.

In the RoboCupRescue, we could estimate the position of all other agents by consid-

ering their position, their tasks and their speed. However, since the agents’ behaviors

are quite complex, the estimated probabilities would be only weak approximates. Even

if it would be possible to obtain relatively good approximations, this would proba-

bly take a lot of computation time. Consequently, the price to pay is too important

compared to the gain we could have made.

In complex dynamic multiagent environments, it is often more valuable to rely on

observations than on predictions, because there are too many things moving in the

simulation. Therefore, the agent should focus on the more important parts of the

environment. To efficiently take all the unpredicted parts of the environment into

consideration, the agent can shorten its loop of observation and action to keep its

belief state up-to-date. This can be done because our RTBSS algorithm can find an

action very quickly. Consequently, an agent using the RTBSS algorithm makes frequent

observations. Therefore, it does not need a complicated model to predict the movement

of the less important parts of the world, because these less important parts do not have

time to move a lot between observations.

Since the RTBSS algorithm is executed online, the agent’s belief state can be up-

dated with the new agent’s observations before each decision about the action to exe-

cute. Therefore, there is a less negative impact in considering some variables to be fixed

during a local search than to consider them fixed for the complete planning process.

Generally, in realistic environments, the agent can more precisely perceive the objects

around it, therefore its belief state is normally more precise for the near objects. Since

the agent is choosing its actions based on a local search, the agent will only consider

well known near objects during the search. This reduces the impact of considering some

Chapter 3. Online POMDP Algorithm 94

variables fixed because the far objects of the world would not be considered during the

search anyway. Moreover, we can do an analogy with a robot in a room. This robot

needs to have a good knowledge of the objects in the room, it is normally less important

for the robot to have good beliefs about the objects in the other rooms.

3.7.3 Local Reward Function

Another advantage of using our RTBSS online POMDP algorithm is that the re-

ward function does not have to be defined for all the states. The reward function can

be adjusted before each action’s decision to consider all the moving parts in the envi-

ronment. This enables the algorithm to be applied in a very dynamic environment like

the RoboCupRescue. This is possible because the algorithm solves a new problem each

time it has to find an action, thus it does not matter if the reward function changes

from one action’s decision to another.

For the particular problem of the policeman agents in the RoboCupRescue simula-

tion, we have defined a local reward function that gives a reward for clearing a road

that depends on the position of the fires and on the position of the other agents. This

enables the agent to efficiently compute its estimated rewards based on its current belief

state without having to explicitly store all rewards for all possible states. The rewards

are only defined for the current situation, which greatly simplify the reward function

definition. For example, we do not have to define the rewards considering agents in the

north part of the city if there are no agents at this position.

More precisely, here is how our local reward function works. A policeman agent

needs to assign a reward to each road in the city, which are represented as nodes in

a graph (see Figure 3.29). The reward values change in time based on the position

of the other agents and the fires, therefore the RTBSS agent needs to recalculate the

rewards at each turn. To calculate the reward values, the RTBSS agent propagates

some rewards over the graph, starting from the rewarding roads, which are the position

of the other agents and the fires. For example, if a firefighter agent is on road r1 then

this road would receive a reward of 5, the roads adjacent to r1 in the graph would receive

a reward of 4, the roads adjacent to the roads adjacent to r1 would receive 3, and so on.

For the fires, we draw concentric circles around the fires at different perimeters. The

roads around the fires then receive rewards based on in which perimeter they are.

In our settings, each policeman agent is running its own RTBSS algorithm based

on its own perceptions. However, policeman agents have to be coordinated, because

we do not want all agents to take the same road since they could block each other.

Therefore, we have to maintain some degree of dispersion among the policeman agents.

This needed coordination is obtained using our local reward function. It is only with

the reward function that a policeman agent considers the other policeman agents.

Chapter 3. Online POMDP Algorithm 95

FF : 3

F : 3

FF : 5

P : -2

P : -1

FF : 4

F : 1

FF: 3

F : 3

P : -3

FF: 4

P : -1

FF : 4

FF : 2

FireFighter (FF)

Fire (F)

Policeman (P)

2 6

1

4

6
33

Figure 3.29: Reward function’s graph.

To make sure the agents do not work on the same tasks, the RTBSS agent propa-

gates negative rewards around the other policeman agents, thus they end up repulsing

each other. The rewards are propagated exactly like the firefighter example described

before, the only difference is that we propagates negative rewards. With this simple

modification of the local reward function, we were able to disperse efficiently, and thus

dynamically coordinate up to fifteen agents acting in a real-time dynamic environment.

Figure 3.29 shows an example of a reward graph. The nodes represent the roads and

the reward source is identified in each node. The big number over a node is the total

reward, which is the sum of all rewards identified in the node. As we can see, roads

around the firefighter agent receive positive rewards, while roads around the policeman

agent receive negative rewards. For example, there is a firefighter at the bottom center

node. The rewards induced by this firefighter are represented in the road nodes as

FF . We can see that the road where the agent is receives a reward of 5 because of

the presence of the firefighter (FF = 5). The roads connected to the firefighter’s road

receive a reward of 4 (FF = 4). And so on, for all connected roads to the connected

roads.

This reward propagation tells the policeman agent that it is not just the road where

the firefighter is that is important to clear but also adjacent roads so that the firefighter

could move more freely afterwards. It also helps the policeman agent to consider the

uncertainty about the position of the other agents. Since the policeman agent is not

sure about the position of the other agents, it is a good idea to enlarge the impact of

the agent’s position to adjacent roads because it could be the case that the firefighter

is not exactly at the specified position.

If we look at the total rewards on our example, the policeman agent using this

reward function would want to go to roads near the fire at the right and not necessarily

go to the firefighter at the bottom because there is already a policeman agent near

Chapter 3. Online POMDP Algorithm 96

it. Consequently, agents are coordinating themselves simply by propagating negative

rewards. This is a nice way to coordinate agents in an online multiagent POMDP,

because it gives us a very flexible coordination process. In our example, policeman

agents repulse each other, but if some roads become very important, then many agents

would try to clear them. In other words, if roads all have approximately the same values,

then the agents would be dispersed. However, if some roads become more important,

then more agents would try to clear them. And when these important roads are cleared,

the agents can be dispersed again. This really flexible behavior gave us pretty goad

results in the RoboCupRescue simulation, as presented in the next section.

3.7.4 Results

In such a huge problem as RoboCupRescue, it was impossible to compare our ap-

proach with other POMDP algorithms. Therefore, we compared our algorithm RTBSS

with a heuristic method for the policeman agents.

To demonstrate the efficiency of RTBSS, we have compared it with our last approach

for the policemen, which was an intuitive approach in which agents cleared roads ac-

cording to some priorities. Each policeman agent received a sector for which it was

responsible at the beginning of the simulation. Policeman agents cleared roads in this

order: roads asked by the other agents, roads around refugees and fires and finally, all

the roads in their sector.

The results that we have obtained on 7 different maps are presented in Figure 3.30.

For our results, the maximal depth D was set to 10. We have tried many values, and

it was D = 10 that gave us the best tradeoff between performance and calculation

time. By using our RTBSS algorithm, it improved the average score by 11 points. This

difference is very important because in competitions, a few tenths of a point can make a

big difference. For example, at the 2004 international competition, our DAMAS-Rescue

team missed the first place by 0.4 points. Furthermore, on the graph we show a 95%

confidence interval that suggest that our algorithm allows more stable performances.

Figure 3.31 shows a comparison of the number of agents that are blocked at each

cycle. As we mentioned above, one of the goals of the policeman agents is to clear the

roads so that other agents can navigate freely in the city. The fewer agents that are

blocked, the better the performances are. The results show that our method allows

prioritizing the most important roads since on average, there are one or two fewer

blocked agents. This means that those agents save civilians instead of waiting for

policeman agents. Furthermore, Figure 3.32 shows the number of roads that are blocked

at each cycle in the simulation. We see that RTBSS allows the policeman agents to

clear the roads faster. Briefly, with RTBSS, agents clear the most important roads

faster than with the heuristic approach.

Chapter 3. Online POMDP Algorithm 97

30

40

50

60

70

80

90

Kob
e-

Por
tu

ga
l2
00

4-
Fin

al

Fol
ig
no

-P
or

tu
ga

l2
00

4-
Sem

iF
in
al

Kob
e-

Por
tu

ga
l2
00

4-
Sem

iF
in
al

Kob
e-

Por
tu

ga
l2
00

4-
R
ou

nd
2

Kob
e-

Por
tu

ga
l2
00

4-
R
ou

nd
1

Fol
ig
no

-P
or

tu
ga

l2
00

4-
R
ou

nd
1

Kob
e-

G
er

m
an

O
pe

n2
00

4-
R
ou

nd
1

Maps

S
c
o

re RTBSS

Heuristic approach

Figure 3.30: Scores obtained on seven different simulations.

0

2

4

6

8

10

12

14

0 50 100 150 200 250

Time

N
u
m

b
e
r

o
f

b
lo

c
k
e
d
 a

g
e
n
ts

RTBSS

Heuristic approach

Figure 3.31: Number of agents blocked.

Chapter 3. Online POMDP Algorithm 98

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

Time

N
u

m
b

e
r

o
f
b

lo
c
k
e

d
 r

o
a

d
s

RTBSS

Heuristic approach

Figure 3.32: Number of roads blocked.

Another import result which supports this approach is our performance in the 2004

RoboCupRescue international competition. We finished in second place at this com-

petition, really close to first place. Part of our success was because our PoliceForce

agents were efficiently clearing the roads. Table 3.10 shows the percentage of cleared

roads for all the maps used during the competition. In this table, the results of all the

semifinalist teams are presented. We can see that our team (DAMAS) was the best

team on six maps, which is the best score among the participants. In addition, we

got the best percentage and by far the best standard deviation, which shows that our

agents were the most consistent. With our RTBSS algorithm, our agents were able to

efficiently adapt their behavior to all maps.

3.8 Discussion

Now that we have presented our online POMDP algorithm (RTBSS), we summarize

in this section some of its advantages and some of its disadvantages. This should

help people to see if the RTBSS algorithm is a good approach to solving one of their

problems.

Chapter 3. Online POMDP Algorithm 99

ResQ Damas Caspian BAM SOS SBC ARK B.Sheep

Final-VC 74,68 82,22 71,79 70,43 N/A N/A N/A N/A

Final-Random 77,84 86,51 77,66 63,10 N/A N/A N/A N/A

Final-Kobe 92,25 93,74 92,08 92,05 N/A N/A N/A N/A

Final-Foligno 96,41 97,72 97,22 96,07 N/A N/A N/A N/A

Semi-VC 67,93 79,57 68,86 57,90 67,22 57,85 53,27 80,53

Semi-Random 82,53 87,44 77,47 81,93 82,26 79,53 80,30 78,76

Semi-Kobe 92,40 93,65 92,71 92,51 92,62 92,56 93,55 99,72

Semi-Foligno 95,45 97,08 95,58 96,37 96,93 97,07 95,92 83,44

Round2-Kobe 92,52 93,52 91,46 92,46 92,78 93,45 92,25 99,50

Round2-Random 87,74 90,03 87,62 87,71 87,86 88,73 85,03 99,97

Round2-VC 91,34 91,62 90,74 89,87 91,40 90,92 N/A 98,86

Round1-Kobe 89,19 89,51 87,78 88,21 88,30 87,70 91,12 81,17

Round1-VC 91,90 92,13 91,74 91,84 N/A 91,81 91,54 99,82

Round1-Foligno 95,84 96,92 96,52 96,36 94,19 96,62 97,63 80,15

Number of wins 0 6 0 0 0 0 2 6

AVG %: 87,72 90,83 87,09 85,49 88,17 87,62 86,73 90,19

STD %: 8,25 5,09 8,59 11,25 8,93 11,59 13,63 9,96

Table 3.10: Percentage of cleared roads during the 2004 RoboCupRescue international

competition. Results reported by Kleiner et al. (2006).

3.8.1 Advantages

• The RTBSS algorithm does not need any offline computation. This enables the

agent to be efficient in previously unknown environments, if the model of the

environment is known at runtime. For example, the agent would be effective in

any RockSample environments or in any city of the RoboCupRescue simulation,

without any loss of time. With standard approaches, the agent would have to learn

a new policy for each new configuration before acting in this new configuration.

• The RTBSS algorithm is able to manage large state spaces, since it only performs

local searches in the belief state space; it does not need to define a policy for all

possible situations. The policy is dynamically constructed online.

• The RTBSS algorithm is applicable in real-time environments, because we can

easily control the time it takes to find an action by limiting the maximal depth

of the search.

• It is possible to use the agent’s real observations to maintain approximate belief

states in a dynamic environment, because the RTBSS algorithm is executed online.

Chapter 3. Online POMDP Algorithm 100

• It is possible to define a local reward function that can be adjusted at each turn

to take into consideration the dynamic parts of the environment. This means that

the reward function does not have to be defined for all possible states, but only

for the current situation.

3.8.2 Disadvantages

• The branching factor depends on the number of actions and observations. Thus

if there are a lot of observations and/or actions, it might not be possible to search

deeply enough. However, if the number of actions and/or observations increases,

it has a negative impact on all existing approaches.

• If the offline time is not a problem, it might be more interesting to use an offline

algorithm since they normally give better results if they have the time to converge.

However, if the problem is too big, it might be better to use our RTBSS algorithm,

because the offline approach would not have time to converge. A good compromise

might be to use hybrid approaches that have shown to be quite efficient.

• Two problem dependant functions have to be defined which might be hard for

some problems: a heuristic function for the pruning condition and a belief state

utility function to evaluate the leaves of the tree.

• The RTBSS algorithm needs a model of the environment.

• The RTBSS algorithm needs some time online between each action’s choice.

3.9 Contributions

In this chapter, we have presented our Real-Time Belief State Search (RTBSS)

algorithm, which is a new online algorithm for partially observable Markov decision

processes (POMDP). In this last section, we summarize our contributions:

An online POMDP algorithm. We have conceived a real online POMDP al-

gorithm. Most POMDP algorithms try to solve the problem offline by defining a

policy for all possible situations the agent could encounter. This offline process

is quite complex and this limits the applicability of most offline approaches to

small problems. Many claimed online algorithms need in fact a lot of executions

in the environment to learn a good policy. Our algorithm is different, because it

does not need any calculation time offline and it is immediately efficient, even in

previously unseen configurations of the environment.

Chapter 3. Online POMDP Algorithm 101

Pruning strategy. We have defined a pruning strategy to accelerate the search

in the belief state space. We have combined a limited depth first search strategy

with a pruning strategy that uses dynamically updated bounds based on the

solutions found at the maximal depth of the search. The pruning of the tree

is also accelerated by sorting the actions in order of their expected efficiency.

Since the more interesting actions are tried first, there is more chance that the

first branches developed have better values, thus better bounds for the pruning

condition.

Theoretical bound. The algorithm has a theoretical bound, thus we can guar-

anty that the distance between the policy defined by our algorithm and the opti-

mal policy is bounded.

Hybrid approaches. We presented some hybrid approaches that use the RTBSS

online search strategy mixed with approximate offline strategies. We presented

three new algorithms: RTBSS-QMDP, RTBSS-PBVI-QMDP and RTDPBSS. The

results show that the performances of the hybrid approaches are often better than

the performances of the online approach or the offline approach taken alone. Our

results have shown that RTBSS-QMDP is the most consistent approach over all

the test environments.

Experimentations on standard POMDPs. We have compared our algorithm

with state of the art POMDP algorithms on two POMDP problems: Tag (Pineau

et al. (2003)) and RockSample (Smith and Simmons (2004)). We obtained com-

petitive results with much less computation time and we were much better on the

biggest environments.

Belief state for dynamic environments. We have conceived an approach to

maintain a belief state based on the real agent’s observations. This helps the

agent manage the highly dynamic and unpredictable parts of the environment.

During the search in the belief state space, the agent considers some variables

fixed and concentrates only on the most important parts of the environment to

choose its actions. This approach is possible with the RTBSS algorithm because

it is an online algorithm that can readjust its belief states between each execution

in order to stay up to date with the agent’s observations.

Local reward function. We defined a local reward function enabling an agent

using RTBSS to redefine a reward function before each action’s choice. This

enabled defining the reward function only for the current situation, which is really

useful when there are a lot of possible situations. This again is possible because

the agent’s policy is dynamically defined thus the reward function can be modified

before the action’s search.

Chapter 3. Online POMDP Algorithm 102

Flexible coordination approach. Our local reward function can be used to

dynamically coordinate many agents in an environment without any coordination

related messages. This new multiagent POMDP coordination approach has shown

to be effective and quite flexible in controlling many agents in a highly dynamic

environment.

Stable performances. At the RoboCupRescue competition, our agents using

the RTBSS algorithm obtained the best and the most stable results. We obtained

by far the best standard deviation. This shows that our agents were efficient

in all maps used at the competition. This proves our claim that the RTBSS

algorithm can be immediately efficient in previously unseen configurations of an

environment.

Chapter 4

Task Allocation Learning

4.1 Introduction

The concept of coordination is often used and thus understood by most people.

People can recognize a situation where there is good coordination, but it is often easier

to recognize the absence of coordination. People often only notice a lack of coordination

when they are faced with the consequences, like a collision, a delay or simply the failure

of a task.

The coordination can be defined as the process managing the dependencies between

different activities (Malone and Crowston (1994)). Consequently, if there are no depen-

dencies between the agents’ activities, then there are no reasons to try to coordinate

them. Agents can then all act independently. However, in most multiagent systems,

there are many dependencies between the agents’ goals, their capacities and the re-

sources they are using. In these conditions, coordination becomes quite important.

In fact, the coordination can be seen as the process enabling the agents to act

together and help each other with some positive interactions (a task can help or improve

another task), instead of harming each other with some negative interactions (a task

can block or diminish the efficiency of another task) (Paquet (2001)).

Furthermore, solutions to coordination problems can be divided into three general

classes (Boutilier (1996)):

• Those based on communication in which agents can communicate and negotiate

together to: (i) determine the allocation of the tasks; (ii) solve conflicts and (iii)

share resources.

• Those based on conventions in which agents use predefined conventions imposed

by the system designer to assure a joint optimal action.

Chapter 4. Task Allocation Learning 104

• Those based on learning, in which agents can learn coordination policies (or con-

ventions) by repetitive interactions with the other agents.

In environments where the communications are limited or uncertain, approaches

highly based on communication are not really appropriate. In such environments, the

quantity of information that can be sent is limited and some messages may never reach

their recipients. Consequently, approaches highly based on communication may become

inefficient, since the agents’ coordination relies on uncertain communications.

The second approach consists of defining all the coordination conventions a priori.

This is a good method for solving a coordination problem in the required time. It is

simple and fast to apply, because the system designer only has to define the coordination

rules by himself. The difficulty is not in the complexity of defining the rules, but in the

quantity of the rules necessary to obtain good coordination in all possible situations.

In complex environments, the number of possible situations is huge and the number

of coordination rules is thus also really huge. Moreover, this approach does not offer

a great deal of flexibility, because if the environment changes, the rules have to be

adjusted manually. This readjustment can become really tedious if there are many rules

to readjust manually. Each minor modification of the environment can then require a

huge workload to readjust the rules.

The third approach enables reducing the number of rules that the system designer

has to define by using learning techniques. Therefore, the system designer does not

have to define all the coordination conventions for all possible situations. Moreover,

an approach based on learning enables obtaining a multiagent system that can gradu-

ally adapt itself to environment changes. In this thesis, learning is considered as any

process that modifies the different agent components in order to better align them to

the information returned by the environment, thus improving the global performance

of the agent (Russel and Norvig (2003)).

In this chapter, we focus on learning algorithms used to improve the coordination

between the agents. More precisely, we consider cooperative multiagent environments

in which agents have to divide up the different tasks among themselves in order to

accomplish them efficiently. However, if agents are faced with complex tasks, it might

be hard for them to determine how many agents are required to accomplish each task,

which is important information for the coordination process. Without this information,

agents would not be able to divide up the different tasks efficiently.

To learn the required number of agents for each task, we have developed a selective

perception reinforcement learning algorithm (Paquet et al. (2004b)), which is useful to

manage a large set of possible task descriptions with discrete or continuous variables. It

enables us to regroup common task descriptions together, thus greatly diminishing the

Chapter 4. Task Allocation Learning 105

number of different task descriptions. Starting from this, the reinforcement learning

algorithm can work with a relatively small state space.

Our tests in the RoboCupRescue simulation environment showed that the agents

are able to learn a compact representation of the state space, facilitating their task

of learning good expected rewards. Furthermore, agents were also able to use those

expected rewards to choose the right number of agents to assign to each task. This

information helped the agents to efficiently coordinate themselves on the different tasks,

thus improving the group performance.

In the remaining sections of this chapter, we describe our selective perception rein-

forcement learning algorithm used to learn the required number of resources necessary

to efficiently accomplish a task. Then, we present the results obtained by testing our

algorithm in the RoboCupRescue simulation. But first, we present a literature review

on coordination learning algorithms in the next section.

4.2 Literature Review on Coordination Learning

Coordination learning between software agents is an important domain in multiagent

research (Panait and Luke (2003)). In this section, we present some methods used for

coordination learning. This state of the art is not exhaustive, but it is representative of

the different approaches developed in this domain. The different methods are divided

into three categories. The first category contains the methods using reinforcement

learning techniques, in which agents learn some utility values for all possible actions

in all possible states. The second category contains the approaches that record an

execution trace during the execution of the tasks. These execution traces are then

analyzed to find some explanations for the failure or the success of the tasks. These

explanations are then used to modify the agents behavior in order to act more efficiently

if similar situations are encountered in the future. Finally, the last category regroups

all the other approaches that do not fit in the first two categories.

4.2.1 Coordination Learning via Reinforcement Learning

Reinforcement learning (RL) is used to learn which action to perform in all possible

situations in order to maximize a numeric reward. The agent does not receive any

information about the action it is supposed to do, as is the case in many learning

techniques. Instead, the agent has to discover, by trying the actions, which is the

one that gives the best reward in each situation. In the most interesting case, the

actions can affect not only the immediate reward, but also the subsequent rewards.

Chapter 4. Task Allocation Learning 106

These two characteristics (trial and error and delayed rewards) are the most important

characteristics that distinguish RL from the other learning techniques (Sutton and

Barto (1999)).

RL techniques are really interesting for the agents to learn optimal behaviors be-

cause they only need a scalar retroaction from the system. Moreover, these techniques

can be used when there are some uncertainties about the evolution of the environ-

ment. However, the convergence of the RL algorithms (like TD(λ) (Sutton (1988)) or

Q-Learning (Watkins and Dayan (1992))) has only been proved for Markov decision

processes (MDP). MDPs are used for sequential decision problems where the agent

needs to make many decisions and where each decision can have an impact on the sub-

sequent decisions (Cassandra (1998)). Basic MDPs can be really useful to model the

agent’s behavior in a specific environment.

However, basic MDPs are not well adapted to multiagent systems, because in an

MDP the other agents are not considered. Furthermore, in an MDP, the environment

is considered stationary, which means that the state transitions have invariant prob-

abilities (Buffet (2000)). For example, the condition of stationarity enables proving

the convergence of the Q-learning algorithm to an optimal policy (Mitchell (1997)).

However, in multiagent systems where agents are learning, the stationarity condition

does not hold anymore, because agents are modifying their behaviors. Some researchers

have tried to adapt MDPs to multiagent systems, as for example: the work of Boutilier

(1996) on MMDPs and the work of Bernstein et al. (2002) on decentralized MDPs in

partially observable environments (DEC-POMDP).

As shown by Boutilier (1996), a multiagent system can be represented with an MDP.

Consequently, it is possible to use classic learning algorithms for multiagent systems.

In such a case, a system state is a composition of the state of all agents and an action

is a joint action composed of all the individual actions of all agents. This approach

works well in theory, but in practice, the number of states and actions, in this central

vision of the problem, often becomes too big for reinforcement learning algorithms to

be applied.

It could also be possible to use a decentralized approach (Becker et al. (2003);

Bernstein et al. (2005); Beynier and Mouaddib (2004, 2005)), but it is hard to solve

the problem using such an approach (Bernstein et al. (2002); Goldman and Zilberstein

(2004)), because there are two main difficulties:

1. Transitions are uncertain. Other agents are unpredictable elements of the envi-

ronment, thus the state transitions viewed from the point of view of an agent

are uncertain. Agents do not know in which states they could end up after their

actions.

Chapter 4. Task Allocation Learning 107

2. The environment is partially observable. Since the agents perception is local,

they cannot know the global state of the system. Consequently, such a problem is

categorized as a partially observable Markov decision process (POMDP). However,

most POMDP techniques are limited to really small environments.

As we can see, classic reinforcement learning algorithms need adaptation to make

them applicable in multiagent environments. The next sub-sections present some rein-

forcement learning methods to learn how to coordinate agents in a multiagent system.

These methods have been categorized in four main groups:

1. Methods using game theory test environments.

2. Methods where the coordination emerges without agents considering the other

agents.

3. Methods where the agents exchange their perception and/or their experiences to

improve their coordination.

4. Other methods that do not fit in the previous categories.

4.2.1.1 Game Theory Test Environments

All the methods presented here use utility tables to represent explicitly the situations

with good coordination and those with bad coordination (Littman (1994a); Boutilier

(1996); Chalkiadakis and Boutilier (2003); Kapetanakis and Kudenko (2002)). Each

agent has access to the utility table defining the utility for all the agents. It is thus easy

for the agents to determine the good situations from the bad ones. Good situations are

simply the ones in which the agents receive the greatest rewards. The agents objective

is then to coordinate their actions in order to receive the maximal reward in the utility

tables considering the anticipated actions of the other agents.

In a multiagent Markov decision process (MMDP), the multiagent system is mod-

elled as if there was only one agent which has the objective of producing an optimal

policy for the joint MDP (Boutilier (1996)). A joint MDP is a standard MDP, but

containing all possible states and actions for all the agents. An MMDP is a 5-tuple

(α, S, A, T, R), in which α is a finite collection of N agents, S = S1 × . . . × SN is the

joint state set and A = A1× . . .×AN is the joint action set. A joint action (a1, . . . , aN)

represents the concurrent execution of each action ai by the agent i. The transition

function T and the reward function R are defined over joint states and joint actions.

In an MMDP, the agents have to coordinate themselves, because the actions are

chosen in a distributed manner. In general, there is more than one optimal policy in

Chapter 4. Task Allocation Learning 108

an MMDP. Since each agent can choose its policy individually based on one optimal

joint policy, there is no guarantee that all agents will choose the same optimal joint

policy. For example, suppose a problem with two agents in which the agents have to

choose the same action to receive the greatest reward. If there are two possible actions,

then there are two optimal policies: both agents taking the first action, or both agents

taking the second action. In such problems, agents have to be coordinated to choose

the same optimal joint policy. In his approach, Boutilier (1996) supposed that each

agent has some a priori knowledge of the other agents’ policies and that this knowledge

is updated during the execution. At each step, each agent records the actions executed

by the other agents. After many experiments, each agent can obtain a probability

distribution for each possible action of the other agents. The agents can then use these

probability distributions to choose the most probable joint action.

Reinforcement learning algorithms need a good exploration of the possible strategies

in order to converge on a stable solution. Chalkiadakis and Boutilier (2003) have

developed an approach to try to solve the exploration problem in multiagent settings.

They use bayesian models to weight the explorations with the expected gain using the

notion of information value. This method requires that each agent has a model of the

other agents, because each agent has to estimate the value of an action by considering

the influence of this action on the future action choices of the other agents. Agents

use bayesian networks to maintain beliefs on the world model and on the other agents’

strategies. This method has only been tested on small utility tables.

One of the problems with the majority of the reinforcement learning algorithms is

that they do not guarantee the convergence to the optimal joint action in scenarios where

there are big penalties associated with bad coordination situations. Even approaches

where the agents build a predictive model of the other agents have not proved the

convergence to an optimal joint action (Claus and Boutilier (1998)). By modifying the

action selection strategy of the Q-learning algorithm, Kapetanakis and Kudenko (2002)

have shown that it is possible to improve the probability of convergence to the optimal

joint action. In fact, they showed that one can converge to the optimal joint action

with a probability which is near to 100%. However, this approach has only been tested

on a really simple problem with only two agents with three actions each.

4.2.1.2 Emergence of the Coordination

This part presents five reinforcement learning methods where the agents do not try to

model the other agents. The other agents are only seen as environment components like

any other component and there is no communication between the agents. In these kinds

of methods, the coordination can emerge because the rewards received are generally

global rewards.

Chapter 4. Task Allocation Learning 109

The first approach is called incremental reinforcement learning and it consists of

progressively increasing the problem complexity. By doing so, it can use the solutions

of the simpler tasks to find better solutions for the more complex tasks (Dutech et al.

(2001)). This incremental learning is done along two axes: gradually increasing the

number of agents and gradually increasing the tasks’ complexity. The authors have

shown that they can obtain better results with the incremental algorithm than with a

standard reinforcement learning algorithm. Another similar approach called behavior

transfer, developed by Taylor and Stone (2005), uses the information learned in simpler

tasks to accelerate the learning of more complex tasks. One drawback of these two

approaches is that they are highly dependant on the problem, because the system

designer has to define all the progressive steps. In some problems, it might not be easy

to define such progressive tasks.

Another approach to enable the agents to learn a cooperative task is to give the

agents a share description of the environment and a global reinforcement (Crites and

Barto (1998)). In this approach, the coordination emerges because they are learning

from the same rewards. The rewards may seem to contain noise for an agent because

it does not know the behavior of the other agents. However, the authors have demon-

strated that it is still possible to learn a cooperative task in these conditions. One

difficulty with this approach is the credit assignment problem, that is, the problem

of properly assigning rewards for an overall performance change to each agent in the

system that contributed to that change (Sen and Weiss (2000)).

A similar approach to the preceding one is the isolated and concurrent reinforcement

learners approach (Sen and Weiss (2000)). In this approach, each agent maximizes the

rewards received from the environment without considering the other agents. This

method has many limitations, because it does not give a good coordination: (i) when

the actions of the agents are highly coupled (i.e. the actions of an agent has a big

impact on the other agents plans); (ii) when the rewards are delayed and; (iii) when

there are many optimal behaviors.

Sen and his colleagues have shown that it was possible to obtain a good coordina-

tion between the agents without using any communication (Sen et al. (1994); Sen and

Sekaran (1998)). These authors have used the Q-learning algorithm to make two agents

learn how to push a block to a specified position. Agents were not communicating, but

they still needed to be coordinated to push in the right direction. In order for this

approach to work, the agents have to be able to perceive each other’s action all the

time. In more complex systems, this condition generally does not hold.

In this same vein, Abul et al. (2000) have presented two coordination mechanisms

for agents using reinforcement learning. In the first mechanism, called perceptual co-

ordination mechanism, the other agents are included in the state description and the

Chapter 4. Task Allocation Learning 110

coordination information is learned from the state transitions. In the second mecha-

nism, called observation coordination mechanism, the other agents are also included in

the state description, but with the rewards obtained by the nearby agents. The rewards

observed are used to construct an optimal policy. This approach has the same problem

as Sen’s approach: agents have to perceive all other agents at all times.

The emergence of the coordination is quite interesting, because the agents can obtain

a good coordination without any communication and the communications can often be

limited or costly. For the coordination to emerge, these methods normally suppose that

the agents can perceive each other. Consequently, in partially observable environments,

the coordination is harder to obtain because the agents cannot perceive each other all

the time. It is harder to stay coordinated when the other agents are not visible. In the

next section, we present methods in which the agents can communicate their perceptions

or experiences in order to improve their coordination.

4.2.1.3 Sharing Perceptions and Experiences

In this section, five approaches, using information sharing in the context of coor-

dination learning, are presented. The information shared can simply be the agent’s

perceptions so that all agents can profit from the encountered situations. By doing so,

each agent has more examples from which it can learn.

In a prey-predator domain, Tan (1993) has studied the impact of sharing the agents’

perceptions, the agents’ policies and the agents’ episodes. His results show that the

agents that share their learned policies are more efficient than independent agents.

However, it is important to notice that the coordination is somehow easy in this sim-

plified domain. Notice that, in this domain, agents are homogeneous and consequently

the coordination is facilitated.

Another way to share information is to share learned values to hold all the knowledge

learned in common. In this optic, Berenji and Vengerov (1999, 2000) have developed an

approach in which the agents can share their experiences by sharing their learned values

from the Q-learning algorithm. They have shown that K cooperative agents learning

in separate worlds during N time steps were more efficient than K independent agents

learning during K ∗N time steps.

Another approach is the one developed by Mataric (1994) where the global behavior

of an agent is represented as a group of many basic behaviors. The behaviors that are

of the most interest here are the social behaviors. Mataric (1997) has shown that three

types of reinforcement are important when learning social behaviors. The first type is

the individual perception of the progression toward the goal, i.e. that the agent receives

a reward for each action getting it closer to the goal. The second type is the perception

Chapter 4. Task Allocation Learning 111

of the other agents, i.e. that the observed behavior of the other agents is seen as positive

reinforcements. In practice, this means that the agent receives a reward if it repeats the

behavior of an agent it just has seen. The third type is the observation of the rewards

received by the other agents. A shared reward is given to all agents participating in a

local social interaction. For example, if an agent reaches its goal because another agent

has moved out of the way, then both agents would receive a reward.

Bonarini and Trianni (2001) have done reinforcement learning using fuzzy classifier

systems. Each agent has a set of rules in fuzzy logic which are used to choose the best

behavior. Their behaviors are similar than the ones described by Mataric (1994). To

improve the learning process, agents share their rewards. When an agent receives a

reward, it communicates this reward to the agents that have helped. In fact, in their

problem, agents communicated rewards to all agents in a short perimeter, determined

by the communication range, around the agent that received the reward.

Another approach proposed by Ghavamzadeh and Mahadevan (2002) is to use the

dynamic fusion of individual solutions, represented as MDPs, to build the global solu-

tion. Each MDP represents the individual solution if the agent was acting alone in the

environment. The fusion of all the individual solutions from all the agents gives the

solution for the global multiagent MDP in which all agents act together. The authors

have developed a new temporal difference algorithm called MAPLE (MultiAgent Pol-

icy LEarning). This algorithm uses Q-learning and the dynamic fusion to build global

solutions which are efficient in the complete multiagent problem. The main drawback

of this approach is that each agent needs an individual solution of the problem at the

beginning. They gave an example, where it is the system designer that gives each agent

an individual optimal policy to solve the problem alone. Another limitation is that they

suppose that the system is completely observable by all agents.

4.2.1.4 Other Approaches

In the approach of Prasad et al. (1996), the coordination is reached by giving each

agent one or more roles which structures the agents’ interactions. To improve the

coordination, agents learn which role to undertake in all situations. To learn which

role to assume, agents learn the three following values by reinforcement. First, they

learn an estimation of the final state’s value if the agent undertakes a certain role in

the current situation. Secondly, they learn the probability of reaching a good final state

if the agent undertakes a certain role in the current situation. And finally, they learn

a cost value representing the computation time needed if a certain role is undertaken.

With these values, the agents can use a reinforcement learning algorithm to learn which

role to undertake in all situations in order to maintain good coordination between the

agents.

Chapter 4. Task Allocation Learning 112

In another approach, Stone and Veloso (1999) have developed an algorithm called

TPOT-RL in which the states are factorized. TPOT-RL can learn a set of effective

policies (one for each team member) with very few training examples. It relies on learned

action-dependent features which coarsely generalize the state space. This algorithm is

applicable in environments which are complex, non-Markovien, multiagent, with a big

state space and where the learning opportunities are limited. Results in the RoboCup

Soccer show that this algorithm enables a team of agents to learn to cooperate in order

to reach a specific goal.

Tumer et al. (2002) and Agogino and Tumer (2005) have studied how to define the

rewards so that if each agent is maximizing its own rewards, then the whole group

of agents would reached a desired global solution. To do so, the authors have used

the concept of collective intelligence presented by Wolpert and Tumer (2000). For the

learning process to be effective, all agents need to see how their behavior has influenced

the rewards received. To achieve that, each agent A uses a utility function which is

the sum of the rewards received by the all the agents minus the sum of the rewards if

agent A had not have been there. This kind of utility function helps to obtain a more

cooperative behavior from the agents and thus it helps the group to be more efficient.

Makar et al. (2001) and Ghavamzadeh et al. (2005) have used a hierarchical structure

to accelerate the learning process of the cooperative behaviors. Each agent uses the

MAXQ decomposition (Dietterich (1998)) to decompose the main task in sub-tasks.

The coordination is learned using the joint action in the highest levels of the hierarchy.

The hierarchical approach enables the agents to learn to coordinate themselves faster

by sharing information at the sub-task level instead of trying to coordinate themselves

at the primitive action level. The authors of this approach have also proposed a new

model MSMDP (Multiagent Semi-Markov Decision Process) to deal with cooperative

actions in the hierarchy that may take some time to be completed (Ghavamzadeh and

Mahadevan (2004)). This model is used in their COM-Cooperative HRL algorithm in

which the agents’ objective aims to learn a policy to optimize the communication needed

for proper coordination, given the communication cost. The hierarchical decomposition

enables their approaches to be applicable on big problems. Furthermore, since the

agents in a hierarchical approach are only communicating at the highest levels and since

actions at these levels normally take more time, then the agents are communicating less.

Now that we have presented some coordination learning algorithms based on rein-

forcement learning, in the next section, we explore other kinds of learning algorithms

that interpret the agents’ past experiences in order to improve their future experiences.

Chapter 4. Task Allocation Learning 113

4.2.2 Coordination Learning Using Execution Traces

In the previous section, we presented reinforcement learning approaches in which

agents learn by modifying the probability of taking a specific action in the given situa-

tion. In fact, the learning process is a statistical process using the rewards received.

Other types of learning methods try to interpret the obtained results in order to

improve the agents’ future performances. With such methods, agents analyze the past

situations in order to find the causes of success or failure of their actions. To achieve

that, agents use execution traces containing a lot of information recorded during the

execution of their tasks. During the learning process, these execution traces are cleaned

and generalized. They are then used to improve the agents’ behavior.

Sugawara and Lesser have developed one of these methods. In this method, agents

learn new behavioral rules from the failure situations, in order not to repeat them next

time (Sugawara and Lesser (1995, 1998)). Agents record execution traces and when an

undesirable situation happens, they analyze their traces to find the cause of the failure.

Then, they add new behavioral rules so that this bad situation never happens again.

Each agent individually learns its own set of rules. The rules specify what non-local

information is needed in each situation to obtain a good coordination. By doing so, the

agents learn what and when to communicate in order to optimize their success.

Another method using execution traces has been developed by Garland and Al-

terman in which agents learn coordinated procedures (Garland and Alterman (2001);

Garland (2000)). In their approach, agents learn from the successful situations. In fact,

their approach is a case-based approach where agents use the past cases to improve the

coordination between them. The past cases, called coordinated procedures, are orga-

nized around coordination points. These coordination points represent moments during

an activity when an agent cannot progress without the help of the other agents.

In fact, Garland and Alterman have used two coordination learning techniques in

their work: coordinated procedures and operator probabilities. The coordinated pro-

cedures are partial plans constituted of coordination points and individual actions that

have shown to be successful in the past. The operator probabilities give the success

probability of each action. These probabilities are used during the planning phase to

decide when the agents should cooperate and when they should adapt the coordinated

procedures to the current situation.

In the next section, we present other learning methods that try to improve the

agents’ coordination. These methods do not really fit in the previous categories, and

thus they are presented separately.

Chapter 4. Task Allocation Learning 114

4.2.3 Other Learning Methods

Ahmadi et al. (2002) have developed an approach, applied in the RoboCupRescue,

which learns iteratively an approximation of the value of a message. Agents then use

these messages values to choose which messages to listen to. Their approach gave good

results for the PoliceForce agents in the RoboCupRescue, but it really depends on the

application; it uses a lot of constants set empirically.

Prasad and Lesser have worked on a method describing an instance based learn-

ing approach (COLLAGE) to learn to coordinate software agents (Prasad and Lesser

(1999); Prasad (1997)). In their approach, agents start with a set of coordination

strategies, and their objective is to learn to choose the best coordination strategy for

all possible situations. To do this, the multiagent system is executed on many coordina-

tion problems and the agents record the performances of their coordination strategies

on each situation presented. In their results, the authors show that agents improve

their performances by choosing better coordination strategies. This method of learning

to choose coordination strategies from a predefined set has also been explored by other

researchers (Excelente-Toledo and Jennings (2002)). Notice that these methods are

only applicable if it is possible to predefine a set of coordination procedures, which is

not necessarily the case for complex coordination problems.

Horling and Lesser (1999) have worked on a way to diagnose a coordination problem

to improve the learning process. Agents have a set of coordination rules which are

represented using the task specification language TAEMS (Decker and Lesser (1993)).

The authors use a causal model to link the coordination problem (e.g. exceeding time,

wrong utilization of the resources, etc.) with the cause (e.g. broken resource, wrong

estimation of a task duration, etc.). This enables the agent to have a more precise

return from the environment, which helps to find the coordination rules to adjust.

Similarly, Jensen et al. (1999) have developed an approach using TAEMS which

enables agents to use the task structure to learn the relations between different tasks.

The objective is to learn the effects of one agent’s actions on the other agents. This

knowledge could be quite useful to coordinate agents by preventing conflicts and by

taking advantage of the beneficial relations between the actions. In this context, agents

can learn the following relations between the actions:

• Enables : the execution of a task enables another task to be executed;

• Disables : the execution of a task disables another task to be executed;

• Facilitates : the execution of a task facilitates or improves the execution of another

task;

• Hinders: the execution of a task hinders the execution of another task;

Chapter 4. Task Allocation Learning 115

In another approach, Bui et al. (1998) have developed a framework to deal with

incomplete information. In this framework, agents learn a probability distribution

for each source of uncertainty via repeated interactions. Bui and his colleagues have

applied their approach in an appointment application. In this application, each agent

has to learn a probability distribution on its user’s preferences. Afterwards, each agent

sends its learned information about its user to all other agents. These communications

help the agents to have a better vision of the situation, and consequently a better

coordination.

It is also possible, as shown by Haynes and Sen (1998), to use a case-based mul-

tiagent learning approach to learn complementary behaviors. In the Haynes and Sen

approach, each agent starts with a set of basic behaviors that can be modified based

on its interactions with the environment. When an action cannot be executed, it is

considered as a negative case and the agent modifies its behavior rules so that it never

happens again.

4.3 Tasks Allocation Learning: Our Motivations

Now that we have presented many coordination learning algorithms, in this sec-

tion we present the motivations that led us to develop another coordination learning

algorithm. Our main motivation was the RoboCupRescue simulation environment (see

Chapter 2) in which we needed a coordination approach for the FireBrigade agents.

These agents evolve in a complex environment with complex tasks and consequently

they have to learn the right number of resources to assign to a task. Here is a list of

the principal constraints that our algorithm has to manage:

• A learning algorithm is interesting because the dynamics of the RoboCupRescue

environment can change;

• The algorithm has to be efficient with complex tasks described with many at-

tributes;

• The algorithm has to deal with tasks having discrete and continuous variables;

• The information learned has to be general enough so that it could be applied to

previously unseen task descriptions;

• The algorithm has to be as close as possible to the optimal, because there are few

resources and many tasks.

In the cooperative multiagent learning domain, most researchers have focused on

coordinating agents’ actions, but most of them consider that the characteristics of the

Chapter 4. Task Allocation Learning 116

tasks are known (Shehory and Kraus (1998); Excelente-Toledo and Jennings (2004)).

Other approaches supposed that they have access to a probability distribution over the

amount of resources needed for a task (Beynier and Mouaddib (2004)).

In our case, the required number of resources for each task is completely unknown.

Thus we focused our attention on developing an algorithm enabling agents to learn

this important task’s characteristic. Some researchers considered that the number of

resources is unknown, but for very simplified tasks requiring only one or two resources

(Garland and Alterman (2004)). Here, we present a more general approach that allows

us to deal with many resources in a complex task description space.

4.4 Application Domain

The resource allocation problem that motivated this work requires an efficient allo-

cation of FireBrigade agents to the tasks of extinguishing fires. Therefore, throughout

this chapter, we consider FireBrigade agents to be resources that are allocated to fires.

These FireBrigade agents evolve in the RoboCupRescue simulation environment.

In this chapter, only the agents responsible for extinguishing fires are considered,

i.e. the FireBrigade agents which extinguish fires and the FireStation agent which

constitutes their communication center. All those agents are in contact by radio, but

they are limited on the number of messages they can send as well as the length of those

messages. Furthermore, in the simulation, each individual agent receives visual infor-

mation of only the region surrounding it. Therefore, agents rely on the communication

to acquire some knowledge about the environment. One should note that, since the

center agent has more communication capabilities, it normally has a better global view

of the situation than the FireBrigade agents.

As mentioned before, the task of the FireBrigade agents consists in extinguishing

fires. Therefore, at each step in time, each FireBrigade agent has to choose which burn-

ing building to extinguish. However, in order to be effective, FireBrigade agents have

to coordinate their choices about the burning buildings to extinguish, because more

than one agent is often required to extinguish a building on fire. In our problem, we do

not consider the importance of a task, and we suppose that the agents have a utility

function allowing them to order the different fires according to the fires’ priorities. Ev-

idently, the agents’ choices about the different burning buildings to extinguish depends

on: (i) the number of available FireBrigade agents, (ii) their distance from those fires.

As previously stated in chapter 2, the FireStation agent has a better global view of

the situation. Therefore it can suggest good fire areas to FireBrigade agents. On the

other hand, the FireBrigade agents have a more accurate local view, consequently they

Chapter 4. Task Allocation Learning 117

FireStation Agent

FireBrigade Agent FireBrigade Agent

It looks at the global view (Fire areas)

They look at the local view (Individual buildings on fire)

Fire area suggestionFire area suggestion

Figure 4.1: Collaboration between the FireStation and the FireBrigade agents.

can choose more efficiently which particular building on fire to extinguish in the given

area (see Figure 4.1). By doing so, we can take advantage of the better global view of

the FireStation agent and the better local view of the FireBrigade agent at the same

time.

The main decision for the FireBrigade agents is to choose how many agents to send

to the most important fires. However, the problem is that they do not know how many

agents are required for each building on fire. The required number of agents depends

on the characteristics of the building. For example, a small building on fire may require

only two agents to extinguish it, but a bigger one may require 10 agents. In order to

be effective, FireBrigade agents have to learn the number of agents required for each

task (i.e., the task of extinguishing a building on fire) which is described as:

• the fire’s fierceness (3 possible values),

• the building’s composition (3 possible values),

• the building’s size (continuous value),

• the building’s damage (4 possible values).

In these conditions, there are many possible task descriptions. In fact, with the

continuous attributes, there is an infinite number of task descriptions. With such a huge

number of task descriptions, it is necessary to find an algorithm that can generalize the

information learned on one task to similar tasks. In the next sections, we present our

selective perception reinforcement learning algorithm which enables the FireBrigade

agents to learn the best number of resources to extinguish each fire.

Chapter 4. Task Allocation Learning 118

4.5 Problem Definition

In this chapter, we consider agents accomplishing tasks in an uncertain and dynamic

environment where most tasks require more than one agent to be accomplished. In this

case, agents are forced to coordinate their tasks’ choices and they need to know the

required number of agents to accomplish each task. This can be hard to estimate if

subtle changes in a task description can change the required number of agents.

To make this estimation, we propose a new approach that uses a selective percep-

tion reinforcement learning algorithm to learn the expected reward if a certain number

of agents tries to accomplish a certain type of task. An advantage of learning ex-

pected rewards instead of directly learning the number of agents is that the rewards

can encapsulate the time needed to accomplish a task. A task taking more time to be

accomplished has a smaller expected reward, due to the discount factor.

In our approach, an agent dynamically learns a tree representation of the task

description space in order to reduce the number of task descriptions considered. This

approach has been used before to find a compact representation of the state space

to facilitate the definition of the agent’s policy (McCallum (1996); Uther and Veloso

(1998); Ron et al. (1994); Moore (1993); Chapman and Kaelbling (1991)).

In our work, we use approximately the same tree structure as the U-Tree algorithm

(McCallum (1996)) to which we have made some modifications. Firstly, we do not use

the tree to calculate Q-values for every possible basic action that an agent can take.

We use the tree to calculate the expected reward of a particular goal decision of the

agent. It still has to find the actions to accomplish this goal. In other words, the tree

is used at the goal decision level, not at the action decision level.

To be more precise, we do not consider states, but task descriptions and our objective

is not to find a policy for the agent, but to evaluate the capability of a given group

of agents to accomplish a task. Therefore, the only implicit action is to accomplish a

task, but it is never explicitly considered in the model. Our model can be described as

a tuple < D, N, R, T > where:

• D is the set of all possible task descriptions.

• N is the number of available agents.

• R is a reward function that gives the reward if a task is accomplished.

• T is a transition function that gives the probability to go from one task description

to another. In other words, it gives the probability that the task description

changes while some agents are accomplishing it.

Chapter 4. Task Allocation Learning 119

The transition function is useful to take the dynamic aspects of the environment

into consideration. It takes time to accomplish a task and, during this time, some

characteristics of the current task may change and this may have an impact on the

required number of agents.

Moreover, a task description is described in a factored way by a set of discrete or

continuous attributes: {A1, A2, . . . , An}. As previously stated, the number of different

task descriptions can be huge, especially if there are continuous attributes. The primary

objective of building a tree representation of the task description space is to reduce the

number of task descriptions considered. The next section explains how the tree is built

and how it is used to estimate the required number of agents to accomplish each task.

4.6 Tree Construction

Our algorithm uses a tree structure similar to a decision tree in which each leaf of

the tree represents an abstract task description that regroups many task descriptions.

This compact representation is iteratively expanded when new experiences are gathered

by the learning agents.

At the beginning, all tasks are considered to be the same, so there is only the root

of the tree. After each simulation, agents add new experiences to the tree and the

tree is expanded. Those experiences are tasks that the agents tried to accomplish in

the simulation with their associated rewards. All experiences are stored in the leaves

of the tree. To expand the tree, the algorithm tests for each leaf l whether it would

be interesting to divide the experiences stored in l by adding a new test on a task’s

attribute. The addition of a new test refines the agents’ view of the task description

space.

An advantage of this algorithm is that it distinguishes only tasks that really need

to be distinguished. Therefore, the task description space is reduced, thus facilitating

the reinforcement learning process.

4.6.1 Tree Structure

The algorithm presented here is an instance-based algorithm in which a tree is used

to store all agents’ experiences which are kept in the leaves of the tree. The other nodes

of the tree, called center nodes, are used to divide the instances with a test on a specific

attribute. Each leaf of the tree also contains a Q-value indicating the expected reward

if a task that belongs to this leaf is chosen. In our approach, a leaf l of the tree is

considered to be a task description (a state) for the learning algorithm.

Chapter 4. Task Allocation Learning 120

Building

composition

Fire

intensity

Number of

agents

LN Building

size

LN LN LN LN

LN LN

Wood

Steel frame
Reinforced concrete

Weak

Moderate
Strong

t1 > t1

t2 > t2

Figure 4.2: Structure of a tree.

An example of a tree is shown in Figure 4.2. Each rectangular node represents a test

on the specified attribute. The words on the links represent possible values for discrete

variables. The tree also contains a center node testing on a continuous attribute, the

“Building size”. A test on a continuous attribute always has two possible results, it is

either less or equal to the threshold or greater than the threshold. The oval nodes (LN)

are the leaf nodes of the tree where the agents’ experiences and the Q-values are stored.

Furthermore, in a complete tree, there are always many nodes “Number of agents”.

These nodes are used to evaluate the number of required agents for a task, as we will

see later.

4.6.2 Recording the Agents’ Experiences

In the RoboCupRescue, each simulation takes 300 time steps. During a simulation,

each FireBrigade agent records, at each time step t, its experience about which fire it

is trying to extinguish. More precisely, an experience is recorded as an instance that

contains the task in consideration (dt ∈ D), the number of agents that tried the same

task (nt) and the reward it obtained (rt). Each instance also has a link to the preceding

instance and the next one, thus making a chain of instances. Consequently, an instance

at time t is defined as:

it = 〈it−1, dt, nt, rt, it+1〉 (4.1)

Chapter 4. Task Allocation Learning 121

In our case, dt contains all the attributes describing a fire. Moreover, we have one

chain for each fire that an agent chooses to extinguish. A chain contains all instances

from the time an agent chooses to extinguish a fire until it changes to another fire.

Therefore, during a simulation, each FireBrigade agent records many instances orga-

nized in many instance chains.

In the U-Tree algorithm (McCallum (1996)), there is only one chain of instances

which links all instances in the simulation. In our case, it is better to use many instance

chains because the tasks are independent. In fact, our concept of instance chains is closer

to the concept of episode described by Xuan et al. (2004). Each task tried is seen as

an independent episode.

Moreover, all those instances regrouped in many instance chains are only recorded

during a simulation. Agents do not have time to learn during a simulation, because they

have to act while respecting the real-time constraint of the RoboCupRescue simulation.

Therefore, the learning process only takes place after a simulation, when the agents

have time to learn. At this time, the FireBrigade agents regroup all their instances

together, then the tree is updated with all those new instances and the resulting tree

is returned to each agent. By regrouping their instances, agents can accelerate the

learning process.

To sum up, all FireBrigade agents and the FireStation agent have the same tree

learned from all the FireBrigade agents’ experiences. Afterwards, as is explained in

section 4.6.4, the FireStation agent uses the learned tree to assign FireBrigade agents

to fire areas and each FireBrigade agent uses the learned tree to choose which fire to

extinguished in the assigned area.

4.6.3 Update of the Tree

This section presents the algorithm used to update the tree using all the new

recorded instances. Algorithm 4.1 shows an abstract version of the algorithm and

the following subsections present each function used in more detail.

4.6.3.1 Add Instances

The first step is simply to add all the new instances, recorded by the FireBrigade

agents, to the leaves they belong to (Algorithm 4.1, lines 2-4). To find those leaves,

the algorithm starts at the root of the tree and heads down the tree choosing at each

center node the branch indicated by the result of the test on the instance’s attribute,

which could be one of the attributes of the task description d or the number of agents

n. When building the tree, the number of agents that tried to accomplish the task is

Chapter 4. Task Allocation Learning 122

1: Procedure Update-Tree(Instances)

Input: Instances : all instances to add to the tree.

Static: Tree: the tree.

2: for all i in Instances do

3: Add-Instance(Tree, i)

4: end for

5: Update-Q-Values(Tree)

6: Expand(Tree)

7: Update-Q-Values(Tree)

Algorithm 4.1: Algorithm used to update the tree.

considered as a normal task attribute. By doing so, the learning algorithm adds center

nodes testing on the number of agents which will be useful later to evaluate the required

number of agents to accomplish a task.

4.6.3.2 Update Q-values

The second step updates the Q-values of each leaf node to take into consideration

the new instances which were just added (Algorithm 4.1, line 5). The objective here

is to have precise Q-values when the time comes to expand the tree. The updates are

done with the following equation:

Q′(l)← R̂(l) + γ
∑

l′

T̂ (l, l′)Q(l′) (4.2)

where Q(l) is the expected reward if the agent tries to accomplish a task belonging

to the leaf l, γ is the discount factor (0 ≤ γ ≤ 1), R̂(l) is the estimated immediate

reward if a task that belongs to the leaf l is chosen, T̂ (l, l′) is the estimated probability

that the next instance would be stored in leaf l′ given that the current instance is stored

in leaf l. Those values are calculated directly from the recorded instances. R̂(l) is the

average reward of all the instances stored in leaf l. T̂ (l, l′) is the number of times that

the following instance of an instance stored in leaf l is in leaf l′, divided by the total

number of instances in leaf l. More formally, here are the equations defining those

values:

R̂(l) =

∑
it∈Il

rt

|Il|
(4.3)

T̂ (l, l′) =
|{it | it ∈ Il ∧ L(it+1) = l′}|

|Il|
(4.4)

Chapter 4. Task Allocation Learning 123

where L(i) is a function returning the leaf l of an instance i, Il represents the set of

all instances stored in leaf l, |Il| is the number of instances in leaf l and rt is the reward

obtained at time t when nt agents were trying to accomplish the task dt.

To update the Q-values, the equation 4.2 is applied iteratively until the average

squared error is less than a small specified threshold. The error is calculated using the

following equation, which is the average squared difference between the new and the

old Q-values:

E =

∑
l

(Q′(l)−Q(l))2

nl
(4.5)

where nl is the number of leaf nodes in the tree.

4.6.3.3 Expand the Tree

After the Q-values have been updated, the third step checks all leaf nodes to see

if it would be useful to expand a leaf and replace it with a new center node (Algo-

rithm 4.1, line 6). The objective is to divide the instances more finely and to refine

the agent’s representation of the task description space, in order to help the agent to

predict rewards.

To find the best test to divide the instances in each leaf, the agent tries all possible

tests, i.e. it tries to divide the instances according to each attribute describing a task

or the number of agents. After all attributes have been tested, it chooses the attribute

that maximizes the error reduction as shown in equation 4.6 (Quinlan (1993b)).

The error measure considered is the standard deviation (sd(Il)) on the instances’

expected rewards. Therefore, a test is chosen if, by splitting the instances, it ends up

reducing the standard deviation on the expected rewards. If the standard deviation is

reduced, it means that the rewards are closer to one another. Thus, the tree moves

toward its objective of dividing the instances in groups with similar expected rewards,

in order to help the agent to predict rewards. In fact, the test is chosen only if the

expected error reduction is greater than a certain threshold, if not, it means that the

test does not add enough distinction, so the leaf is not expanded.

The expected error reduction obtained when dividing the instances Il of leaf l is

calculated using the following equation where Ik denotes the subset of instances in Il

that have the kth outcome for the potential test:

∆error = sd(Il)−
∑

k

|Ik|
|Il|

sd(Ik) (4.6)

The standard deviation is calculated on the expected reward of each instance which

Chapter 4. Task Allocation Learning 124

is defined as:

QI(it) = rt + γT̂ (L(it), L(it+1))Q(L(it+1)) (4.7)

where T̂ (L(it), L(it+1)) is calculated using equation 4.4 and Q(L(it+1)) using equa-

tion 4.2.

As mentioned earlier, one test is tried for each possible instance’s attribute. For a

discrete attribute, we divide the instances according to their value for this attribute.

For instance, if an attribute has three possible values, it generates three subsets, thus

adding three children nodes to the tree. We then use Equation 4.6 and record the error

reduction for this test. For a continuous attribute, we have to test different thresholds

to find the best one. A continuous attribute always divides the instances into two

subsets, the first one is for the instances with a value less or equal to the threshold for

the specified attribute and the second subset is for the instances with a value greater

than the threshold.

To find the best threshold, we have used the technique described by Quinlan (1993a).

The instances are first sorted according to their value for the attribute being considered.

Afterwards, we examine all m − 1 possible splits, where m is the number of different

values. For example, with an ordered list of values {v1, v2, ..., vm}, we try all possible

thresholds. So, we try the value v1 as a threshold, thus dividing the instances in two

subsets, those less or equal and those greater than v1. We calculate and record the error

reduction for this division. Then, we do the same thing for the other possible values,

v2 to vm−1. At the end, we keep only the threshold with the best error reduction value.

There are different ways that can be used to expand the tree (McCallum (1996);

Uther and Veloso (1998); Pyeatt and Howe (1995)), but we have used an approach that

has been shown to be effective in decision tree algorithms (Quinlan (1993b)) and that

enabled us to have a fast algorithm and to consider continuous attributes.

At the end, when the tree has been updated, the Update-Q-Values function is

called again to take the new tree structure into consideration (Algorithm 4.1, line 7).

The updates are done exactly the same way as in section 4.6.3.2.

4.6.4 Use of the Tree

During a simulation, all learning agents use the same learned tree to estimate the

number of agents that are required to accomplish a task. Since the number of agents is

considered as an attribute when the tree is learned, if different numbers of agents are

tested, different leaves and thus different rewards may be found, even with the same task

description. Consequently, to find the required number of agents for a particular task,

the algorithm can test different numbers of agents and look at the expected rewards

returned by the tree.

Chapter 4. Task Allocation Learning 125

1: Function Number-Agents-Required(d, N) returns an integer

Inputs: d : a task description.

N : the number of available agents.

Statics: Tree: the tree learned.

Threshold : the limit to surpass.

2: for n = 1 to N do

3: expReward← Expected-Reward(Tree, d, n)

4: if expReward ≥ Threshold then

5: return n

6: end if

7: end for

8: return ∞
Algorithm 4.2: Algorithm used to find the required number of agents for a given task

description d.

Algorithm 4.2 presents the function used to estimate the required number of agents

for a given task. In this algorithm, the function Expected-Reward at line 3 returns

the expected reward if n agents are trying to accomplish a task described as d. To this

end, it finds the corresponding leaf in the tree, considering the task description d and

the number of agents n, and records the expected reward for this abstract task.

The Expected-Reward function is called for all possible numbers of agents until

the expected reward returned by the tree is greater than a specified Threshold. If the

expected reward is greater then the Threshold, it means that the current number of

agents should be enough to accomplish the task. If the expected reward is always

under the Threshold, even with the maximum number of agents, the function returns

∞, meaning that the task is considered impossible with the available number of agents

N . The Threshold value is set empirically and it corresponds to the minimum expected

reward needed to accomplish a task. The agent stops when the Threshold is exceeded

because the objective here is to find the minimum number of agents for each task.

4.6.5 Algorithm Characteristics

First of all, let’s look at the algorithm complexity. The first step of the algorithm

used to update the tree is to add all the new instances recorded during the last simula-

tion. In the worst case, this step takes O(|I|Dmax), where |I| is the number of instances

to add and Dmax is the maximal depth of the tree. Therefore, as the tree grows, this

step takes more time. However, in our RoboCupRescue experiments, the maximum

depth of the tree was always relatively small (≤ 30).

Chapter 4. Task Allocation Learning 126

The second step is to update the Q-values using Equation 4.2. The reward and the

transition function (Equations 4.3 and 4.4) do not take time, because they are simply

updated each time a new instance is added to a leaf. The complexity of Equation 4.2

depends on the number of subsequent leaf nodes link to the current leaf node. To

update the Q-values, the algorithm has to visit all the leaves and in the worst case,

all the leaves are connected together, thus the complexity is O(|L|2), where |L| is the

number of leaves in the tree. This complexity is multiplied by the number of iterations

needed until convergence of the Q-values. Since the Q-values are normally only slightly

modified when the new instances are added, it generally does not take a lot of iterations

to converge. Most of the time, it took less then 10 iterations in our tests.

The third step of the algorithm is to expand the tree. To achieve that, the algorithm

has to visit all the leaves of the tree one time. For each leaf, it has to evaluate all possible

splits using all the attributes describing a task. For a discrete attribute, there is only

one split to try. For a continuous attribute, there are as many possible splits as there

are different values for this continuous attribute in the current leaf. In the worst case,

there are as many attribute values as there are instances in the leaf. Therefore, the

complexity in the worst case is: O(|L|ndnc|I|max), where |L| is the number of leaves in

the tree, nd and nc are the number of discrete and continuous variables used to describe

a task and |I|max is the maximum number of instances in a leaf.

The last step of the algorithm does another update of the Q-values. Consequently,

the total complexity of the algorithm is: O(|I|Dmax) + 2O(|L|2) + O(|L|ndnc|I|max).

The most expensive step is the expansion step, because it manipulates all the instances

stored in all the leaves of the tree. In our tests, the time to update the tree was not a

big factor since it was executed offline. It always took less time to learn the tree than

to run a simulation.

Moreover, for this algorithm, we suppose that all the FireBrigade agents have the

same vision of the situation, i.e. they see the same fires. In the RoboCupRescue it

is almost always the case, because the agents are close to one another when they are

extinguishing fires and the fires can be seen from a far distance.

Another hypothesis is that all the agents have the same learned tree. The tree is

learned offline after each simulation, using all the instances gathered by the FireBrigade

agents during the simulation. The communications between the agents are really limited

during a simulation, thus we wanted the agents to have some common ground on which

to base their decisions in order to reduce the amount of communication necessary to

maintain the coordination between the agents.

In the next section, we present some experiments in which we described in more

detail how the learned trees are used. We also present results showing the quality of

the solutions found and the speed at which the tree grows when we add new instances.

Chapter 4. Task Allocation Learning 127

Figure 4.3: Example of fire areas. There are four active fire areas on this map, which

are identified by the circles.

4.7 Experiments

In this section, we present how our learning algorithm, previously presented, can be

used in the RoboCupRescue simulation to help the FireBrigade agents to coordinate

themselves on the buildings on fire to extinguish. All tests have been made on the

RoboCupRescue simulator used at the 2004 international competition. Since there

could be a lot of fires, agents do not consider all fires at once. They choose separately

which fire area to extinguish and which specific building in the chosen fire area to

extinguish. Fire areas are simply groups of close buildings on fire. Figure 4.3 shows an

example of a situation with four fire areas. To make their decision, agents use the tree

created offline to estimate the required number of agents for each building on fire. All

agents have the same tree and it does not change during a simulation.

As previously stated in section 4.4, the FireStation agent has a better global view

Chapter 4. Task Allocation Learning 128

of the situation and therefore it can suggest fire areas to FireBrigade agents. The

FireBrigade agents have however a more accurate local view, consequently they choose

which particular building on fire to extinguish in the given area. By doing so, we

can take advantage of the better global view of the FireStation agent and the better

local view of the FireBrigade agent at the same time. In the next two sub-sections,

we present how the FireStation agent chooses the fire areas and how the FireBrigade

agents choose the buildings on fire to extinguish.

4.7.1 Fire Areas Allocation

To allocate the fire areas, the FireStation agent has a list of all fire areas; see

Algorithm 4.3. For each fire area, it has to estimate the number of agents that are

required to extinguish this area. To achieve that, it makes a list of all the buildings

that are at the edge of the fire area (line 8). Agents only consider buildings at the edge

because those are the buildings that have to be extinguished to stop the propagation

of the fire. For each burning building at the edge, the FireStation agent finds the

number of agents required to extinguish the fire (to do so, at line 12, Algorithm 4.3

calls Algorithm 4.2). The agent then estimates the required number of agents for the

fire area as the maximum number of agents returned for one building in the area. The

FireStation agent does the same thing with all fire areas, ending up with a number of

agents (nz) for each area z.

Afterwards, for each area z, the FireStation agent calculates the average distance of

the nz closest FireBrigade agents from z (line 17). Then, it chooses the fire area z with

the smallest average distance. Consequently, the nz closest FireBrigade agents from

the chosen area z are assigned to z. The FireStation agent then removes the assigned

area and FireBrigade agents from its lists (lines 25-26) and continues the process with

the remaining agents and the remaining fire areas. It continues until there is no agent

or fire area left. At the end, the FireStation agent sends each FireBrigade agent their

assigned fire area.

4.7.2 Choice of Buildings on Fire

To choose a building to extinguish (see Algorithm 4.4), a FireBrigade agent builds

a list of all the buildings on fire in the fire area specified by the FireStation agent.

This list is sorted according to a utility function that gives an idea about the usefulness

of extinguishing a fire (line 2). The utility function U(fi) gives a value to a fire fi

based on the buildings and the civilians in danger if fi propagates to buildings close

by. The utility function considers all buildings in danger by the given fire fi. Buildings

Chapter 4. Task Allocation Learning 129

1: Function Assign-Fire-Areas(Agents, FireAreas) returns a fire area per agent

Inputs: Agents: a list of all available agents.

FireAreas: a list of all fire areas.

2: while FireAreas.size() > 0 ∧ Agents.size() > 0 do

3: nbAgents← Agents.size()

4: smallestDistance←∞
5: chosenArea← null

6: chosenAgents← null

7: for each fireArea in FireAreas do

8: borderBuildingsList← Get-Border-Buildings(fireArea)

9: nz ← 0

10: for each borderBuilding in borderBuildingsList do

11: d← Get-Task-Description(borderBuilding)

12: nbRequiredAgents← Number-Agents-Required(d, nbAgents)

13: if nz < nbRequiredAgents then

14: nz ← nbRequiredAgents

15: end if

16: end for

17: 〈averageDistance, listAgents〉 ← Average-Distance(Agents,nz)

18: if smallestDistance > averageDistance then

19: smallestDistance← averageDistance

20: chosenArea← fireArea

21: chosenAgents← listAgents

22: end if

23: end for

24: agentsAssigned[chosenArea]← chosenAgents

25: FireAreas← FireAreas− chosenArea

26: Agents← Agents− chosenAgents

27: end while

28: return agentsAssigned

Algorithm 4.3: Algorithm used by the FireStation agent to allocate a fire area to

each FireBrigade agent.

in danger are near buildings which are not on fire, but that may catch fire if fire

fi is not extinguished. For each building in danger, the utility function returns the

amount of points lost if the building in danger catches fire. The utility function uses

the official score function (Equation 2.1 at page 16) and it considers that the building

will completely burn and that civilians trapped in it will die. More formally, the utility

Chapter 4. Task Allocation Learning 130

function U(fi) is calculated using the following equations:

U(fi) =
∑

b∈D(f)

(Scoreini − ScoreLost(b)) (4.8)

Scoreini =

(
A +

Hini

Hini

)√
Bini

Bini
= A + 1

ScoreLost(b) =

(
A− nCiv(b) +

Hini − sumHP (b)

Hini

)√
Bini − area(b)

Bini

where, D(fi) is the set of all buildings in danger from the fire fi, Scoreini is the

initial score at the beginning of the simulation, ScoreLost(b) is the score lost if the

building in danger b catches fire, nCiv(b) returns the number of civilians trapped in b,

sumHP (b) returns the sum of the health points (HP) of all the civilians trapped in b

and area(b) returns the area of b.

All FireBrigade agents have approximately the same list of buildings on fire. To

choose their building on fire they go through the list, one building at a time. For each

building, they use the tree to find the expected required number of agents to extinguish

the fire (to do so, at line 6, Algorithm 4.4 calls Algorithm 4.2).

The FireBrigade agents choose the burning buildings following a prefixed order given

to them at the beginning of the simulation. Knowing the sorted list of buildings on

fire, the order of all FireBrigade agents and the number of agents required for each fire,

each FireBrigade agent can choose the fire it should extinguish. For example, suppose

that there are two fires requiring 5 and 3 agents respectively and that the FireBrigade

agent A has to choose one of them. If the agent A’s rank is 3, it would choose the first

fire, because the five first agents have to go to the first fire. However, if the agent A’s

rank is 7, it would choose the second fire, because the agents ranked 6, 7 and 8 have

to go to the second building on fire. With this coordination process, if all FireBrigade

agents actually have the same information, they should be well coordinated on which

buildings to extinguish.

4.8 Results and Discussion

As mentioned before, experiments have been done in the RoboCupRescue simulation

environment. We have made our tests on a situation with a lot of fires, but with all

roads cleared. The simulations started with 8 fires, but the agents began to extinguish

fires only after 30 simulation steps (to allow fires to propagate). Figure 4.4 shows a

view of the city at time 30, just before the FireBrigade agents begin to work. This gave

us a hard situation to handle for the FireBrigade agents. Those agents started with an

Chapter 4. Task Allocation Learning 131

1: Function Choose-Fire(Fires, nbAgents, rank) returns a fire

Inputs: Fires: a list of all fires.

rank: the agent’s rank in the group of FireBrigade agents.

nbAgents: the number of agents assigned to the same fire area.

2: sortedF ires← Sort-Fires(Fires)

3: currentIndex← 0

4: for each fire in sortedF ires do

5: d← Get-Task-Description(fire)

6: nbRequiredAgents← Number-Agents-Required(d, nbAgents)

7: currentIndex← currentIndex + nbRequiredAgents

8: if currentIndex ≥ rank then

9: return fire

10: end if

11: end for

12: return first fire in sortedF ires

Algorithm 4.4: Algorithm used to choose a fire in the fire area specified by the

FireStation agent.

empty tree and they learned from one simulation to another to distinguish the tasks

that had to be distinguished and the expected rewards associated with those tasks.

Our experiments have been done with the simulator used in the 2004 RoboCup-

Rescue international competition. With this simulator, the attributes used to describe

a task d were:

• the fire’s fierceness (3 possible values),

• the building’s composition (3 possible values),

• the building’s size (continuous value),

• the building’s damage (4 possible values).

All these attributes lead to a number of possible instances which is quite important.

In fact, with the continuous attribute “building’s size”, there is an infinite number of

instances. However, since the tests were done only in one city, the number of different

buildings was only 730 in our tests. In the case where we consider 15 agents, the number

of possible instances for our tests climbed up to 394 200 (3× 3× 730× 4× 15).

We have compared the results obtained by our agents with two other strategies,

as described in Figure 4.5). The first one is the strategy of the team ResQFreiburg

Chapter 4. Task Allocation Learning 132

Figure 4.4: Initial situation.

(Brenner et al. (2005)) which finished first at the 2004 RoboCupRescue simulation

world competition. This team used data-mining techniques to evaluate the propagation

of the fires and a priority function to choose which fire to extinguish. If we look at the

performance of ResQFreiburg on our test map, they only obtained an average percentage

of intact buildings of 59%.

The second one is our strategy, but without the learning part, thus all agents choose

the first building on the list. The comparison described in Figure 4.5 shows the advan-

tage of learning the required number of agents to accomplish a task. If all agents go to

the same building, they obtained an average percentage of intact buildings of 63% and

after learning, they obtained 84%. This is a substantial improvement showing that the

information learned is really useful. They learned how many agents are required for

all possible situations so they were able to divide the tasks efficiently between them.

Notice that the substantial improvement is mainly due to the fact that agents are able

to split themselves on the first two or three tasks and accomplish them all at once.

Chapter 4. Task Allocation Learning 133

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

ResQFreiburg No Learning With Learning

P
e

rc
e

n
ta

g
e

 o
f
in

ta
c
t
b

u
ild

in
g

s

Figure 4.5: Comparison with other strategies.

Thus, the more efficient they become at estimating the required number of agents, the

faster they become at accomplishing all their tasks.

Another interesting result is that our agents were able to attain such good perfor-

mances with trees having less than 2000 leaves. Therefore, they just distinguished 2000

task descriptions out of the 394 200 possible task descriptions. In other words, our

agents were able to perform efficiently with an internal task description space of only

0.5% of the complete task description space (the percentage is the number of leaves in

the tree divided by the number of possible task descriptions). This shows a very good

reduction of the task description space, enabling the learning algorithm to work on an

easier problem with less possible states.

Moreover, Figure 4.6 presents results with different γ values for the equation 4.2.

It shows the evolution of the percentage of intact buildings at the end of a simulation.

Every point represents an average over 10 simulations. We have tested all γ values from

0 to 1 with an increment of 0.1, but here, for an improved visibility, we present only

four representative learning curves. As we can see, with high γ values, the learning

process is less effective. With 0.9, the agents do not get better at all, and with 1, it

was even worse. With a value of 0.8, the agents have some trouble learning at the

beginning, but eventually they start to catch up after approximately 70 simulations.

We have observed that with a higher gamma value, agents normally need more time to

learn. With the small γ values of 0.3 and 0.5, the learning curves are quite smooth. The

best γ value we found was 0.5. Since we obtained better results with γ values greater

than 0, it shows that it is important to consider future rewards. However, since we

obtained better results with smaller γ values, it shows that it is not efficient to consider

rewards too far away. This is the case in the RoboCupRescue simulation, because the

simulation evolves fast and the fires have to be extinguished rapidly. With bigger γ

Chapter 4. Task Allocation Learning 134

0,7

0,72

0,74

0,76

0,78

0,8

0,82

0,84

0,86

10 20 30 40 50 60 70 80 90 100

Number of Simulations

P
e
rc

e
n
ta

g
e
 o

f
in

ta
c
t
b
u
ild

in
g
s

 = 0.3 = 0.5 = 0.8 = 0.9

Figure 4.6: Percentage of intact buildings over 100 simulations for different γ values.

values, the agents choose buildings that take too much time to extinguish, because they

consider far rewards.

In each simulation, agents were able to gather approximately 2000 instances. Of

course, with our algorithm, the necessary memory always grows to store all those in-

stances, but since they did not take too much space, this was not really a problem.

Moreover, after the learning phase, the instances are not necessary anymore, therefore

when the tree is used at the execution time it is really small.

Since we are expanding a tree, the growth could be exponential. However, it is not

the case, because we are only expanding leaves that help to predict rewards. There-

fore, the growth of the tree is controlled and in our tests it was even sub-linear (see

Figure 4.7).

Another import result which supports this approach is our performance in the 2004

RoboCupRescue international competition. We finished in second place at this compe-

tition, really close to first place. One part of our success is due to the fact that we were

quite good at extinguishing fires. Table 4.1 shows the percentage of saved buildings for

all the maps used during the competition. In this table, the results of all the semifinal-

ist teams are presented. We can see that our team (DAMAS) was the best team on 5

maps, which is the best score among the participants.

Chapter 4. Task Allocation Learning 135

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90

Number of simulations

N
u

m
b

e
r

o
f
le

a
v
e

s

Figure 4.7: Number of leaves in the tree over 100 simulations.

ResQ Damas Caspian BAM SOS SBC ARK B.Sheep

Final-VC 47,21 54,13 81,67 43,19 N/A N/A N/A N/A

Final-Random 24,04 26,38 15,03 12,35 N/A N/A N/A N/A

Final-Kobe 38,24 61,89 38,38 13,51 N/A N/A N/A N/A

Final-Foligno 91,15 62,77 60,92 34,56 N/A N/A N/A N/A

Semi-VC 23,45 23,60 25,49 27,14 19,12 25,10 26,36 27,22

Semi-Random 23,18 28,73 18,09 19,55 22,82 21,45 17,09 18,91

Semi-Kobe 96,49 76,76 94,32 95,41 24,32 90,54 55,27 94,19

Semi-Foligno 36,22 38,06 32,72 37,79 31,89 28,48 26,82 23,23

Round2-Kobe 70,27 37,03 59,73 95,41 48,38 61,49 10,54 95,54

Round2-Random 99,04 60,91 54,68 99,16 63,55 97,60 80,70 99,52

Round2-VC 10,23 11,57 10,23 13,53 12,67 71,99 N/A 36,51

Round1-Kobe 99,46 98,92 99,73 99,73 99,05 98,78 67,16 91,89

Round1-VC 97,25 99,53 79,70 99,76 N/A 98,90 99,53 99,53

Round1-Foligno 98,99 98,99 36,13 45,99 32,53 54,29 43,59 29,86

Number of Wins 3 5 2 2 0 1 0 3

Table 4.1: Percentage of saved buildings during the 2004 RoboCupRescue international

competition. Results reported by Kleiner et al. (2006).

Chapter 4. Task Allocation Learning 136

4.9 Contributions

In this chapter, we have presented a learning algorithm which is useful to learn the

required number of agents for each different task in a complex cooperative multiagent

environment. In this last section, we summarize our contributions:

Learning required resources. Most coordination learning approaches consider

that the number of required resources to accomplish a task is known or that they

have enough information to have a probability distribution over the number of

required resources. In our approach, we consider that the tasks are complex and

that the agents have to learn this information since it is not available.

Reduction of the task description space. The tasks considered in our simu-

lations are described with discrete and continuous attributes. Therefore, there are

a lot of possible task descriptions. To manage this complexity, we have adapted a

selective perception reinforcement learning algorithm to the problem of learning

the required number of resources to accomplish a task. With this algorithm we can

find a generalization of the task description space, which helps the reinforcement

learning algorithm to work on smaller task description spaces.

Splitting criteria. Unlike the basic U-Tree algorithm, our algorithm can deal

with discrete and continuous attributes. The splitting criteria is inspired from

decision trees algorithms to make sure that similar task descriptions are stored in

the same nodes. We also present a method to dynamically find good thresholds

for the continuous variables.

Coordination algorithm. We proposed a coordination algorithm using the in-

formation learned about the number of resources needed for a task. This algorithm

uses really few messages between the agents, which is interesting in environments

with limited and/or unreliable communications.

Experiments. We have presented some tests in the RoboCupRescue environ-

ment showing that the agents can efficiently learn and that the learned informa-

tion is really helpful to improve the agents’ performances. The agents obtained

good results with an internal task description space of only 0.5% of the complete

task description space. We have also shown results taken during the 2004 interna-

tional competition showing that we were the most efficient team in extinguishing

fires.

Chapter 5

Task Scheduling in Complex

Multiagent Environments

In complex multiagent systems, the agents could be faced with many tasks to ac-

complish. Moreover, when the tasks have different deadlines, the order in which the

tasks are accomplished becomes quite important. In such settings, agents have to de-

cide how many agents to assign to each task and in which order they should accomplish

the tasks. To achieve that, agents need a good scheduling algorithm that can maximize

the number of tasks accomplished before their deadline.

The common understanding of scheduling in Artificial Intelligence is that it is a spe-

cial case of planning in which the actions are already chosen, leaving only the problem of

determining a feasible order. This is an unfortunate trivialization of scheduling (Smith

et al. (2000)). In this chapter, we define scheduling as the problem of assigning limited

resources to tasks over time to optimize one or more objectives (Dean and Kambhampati

(1996); Mali and Kambhampati (1999)). We restrain ourselves to scheduling problems

in which all tasks have the same value and where the set of tasks is not accomplishable

in the time allowed. To link the domains of multiagent systems and scheduling systems,

we consider agents to be resources that can accomplish tasks. We talk about an agent

accomplishing a task and about the allocation of an agent to a task. In other words,

these are scheduling problems in which the agents have to schedule the tasks in order

to maximize the number of tasks accomplished.

Furthermore, in multiagent systems, the scheduling can be done in a centralized

or decentralized way (Durfee (1999); Paquet et al. (2005a)). Likewise, the execution

can also be done in a centralized or decentralized way. Centralized scheduling means

that there is one agent responsible for scheduling the tasks of all the agents. On the

other hand, in decentralized scheduling each agent is responsible for the scheduling of

its tasks. Moreover, an execution is considered distributed if the agents can accomplish

Chapter 5. Task Scheduling in Complex Multiagent Environments 138

many tasks in parallel. If all agents always accomplish the same task together, then it

is considered a centralized execution.

Moreover, in a dynamic environment, the scheduling process has to be able to adapt

the schedule frequently to take the changes into consideration (Vieira et al. (2003)).

Another challenge is when the environment is partially observable, because then the

tasks are not known at the beginning, thus the agents have to explore the environment

to find the tasks and then incorporate them in their schedule. Notice that since we are

considering uncertain environments, the tasks’ parameters could even change between

two observations. In this case, the system’s performance depends not only on the

maximization of the optimization criterion, but also on the agents’ capacity to adapt

their schedule efficiently. The scheduling task then becomes a reactive process (Smith

(1994)), because agents have to react to changes in the environment by adjusting their

schedule.

In this chapter, we analyze the advantages and the disadvantages of distributing or

not the scheduling process in a complex multiagent system. More precisely, we study

the impact on the agents’ efficiency and on the amount of information transmitted

when using centralized and decentralized scheduling. We also study the usefulness of

distributing the execution of the tasks in a scheduling problem and thus accomplishing

goals in parallel, compared to the strategy of concentrating all resources to accomplish

one goal at a time.

In similarity with the approach presented in Chapter 4, we also had to learn to esti-

mate one of the characteristics of the tasks. In this chapter, we consider the work of the

AmbulanceTeam agents, which are responsible to rescue the civilians in the RoboCup-

Rescue simulation. One important parameter that they have to learn is the expected

death time of the civilians. This parameter is quite important for the AmbulanceTeam

agents to make good schedules. To this end, we present the K-Nearest-Neighbors (KNN)

approach that has been used to learn the damage progression of the civilians which is

used to estimate the expected death time.

This chapter is organized as follows. First, the scheduling approach that has been

used is presented, followed by the K-Nearest-Neighbors learning algorithm. Finally, we

present results showing the performances of this scheduling approach in the RoboCup-

Rescue simulation environment.

Chapter 5. Task Scheduling in Complex Multiagent Environments 139

5.1 A New Methodology for Task Scheduling in Com-

plex Multiagent Environments

In a task scheduling system, we generally use a set of resources to accomplish a set

of tasks in an order maximizing an optimization criterion (French (1982)). For example,

we could want to accomplish the set of tasks as fast as possible or accomplish as many

tasks as possible in a given time. The major problem in task scheduling systems is

to decide how to distribute the resources efficiently and in which order. This thesis

focuses on multiagent systems in which the work of some agents can be described as a

task scheduling system. So, agents are considered as resources that can complete tasks.

Evidently, not all multiagent systems can be modeled as a task scheduling system. In

several cases however, such approach can be useful, particularly in environments where

agents have to accomplish tasks and the order of these tasks influences the efficiency of

all the multiagent system.

These kinds of task scheduling systems raise many questions: To which model does

our task scheduling system correspond? Which scheduling algorithm to use? Who is

responsible for the scheduling? With all these questions, it is possible to get lost in the

search for answers. This is why we use a methodology to answer these questions in a

structured way. This work methodology has three steps which should be handled in

this order:

1. Scheduling problem definition.

2. Scheduler type definition.

3. Scheduling algorithm definition.

5.1.1 First Step: Scheduling Problem Definition

The task scheduling problem has to be defined in the first step. This means that

we have to extract the scheduling problem from the multiagent system and to define

it formally. Firstly, we have to identify the characteristics of the scheduling problem

which consist of defining the set of tasks to execute, the task’s parameters (execution

cost, deadline, release time, etc.) and the optimization criterion to maximize. When the

scheduling problem has been carefully analyzed, we can formalize it. This formalization

is not absolutely necessary, but it facilitates the presentation and the comprehension of

the problem.

A lot of notations for task scheduling problems exist because these kinds of problems

have been widely studied. In particular, in the context of task allocation for systems

Chapter 5. Task Scheduling in Complex Multiagent Environments 140

with one or many processors (Gonzalez (1977)) and in distributed computing (Norman

and Thanisch (1993)). Among all existing notations, those used in industrial engineering

seemed to be the most useful to multiagent systems. This notation defined by Lawer

et al. (1982) is used in many books and articles that discuss scheduling theory (Pinedo

(1995); Blazewick (2001)). We briefly present the notation to help the reader understand

the description of the scheduling systems used in this thesis. We do not present the

notation exhaustively, we only concentrate on the symbols that are used to defined our

scheduling problems.

A scheduling problem, with the goal of managing a set of tasks T , is described with

three fields separated with the character ”|”, as in: α | β | γ.

• α : the machines’ environment. This field tells how many machines are present

and what their characteristics are. This field can be filled with the following

symbols:

1 : Mono-machine environment.

Pm : Multi-machines environment where m represents the number of ma-

chines.

• β : the constraints and the characteristics. This field tells for example, if the

tasks have deadlines or if there is a cost to change from one task to another.

It is possible that this field stays empty when constraints and characteristics are

implicitly defined in the field γ. This field can be filled with the following symbols:

pj : The execution cost of the task j.

dj : The deadline of the task j.

sjk : The cost to change from task j to task k.

• γ : the optimization criterion. This field defines what the scheduler is supposed

to optimize, for instance the number of tasks executed before a deadline (
∑

Uj)

or the time to complete all the tasks (
∑

Cj).

∑
Cj : The sum of completion times of all tasks.∑
Uj : The sum of unit penalty of all tasks where:

Uj =

{
1 if Cj > dj

0 if not

In other words,
∑

Uj means that the scheduler tries to minimize the number of tasks

exceeding their deadline, i.e. tasks for which their completion time Cj is greater than

their deadline dj.

Chapter 5. Task Scheduling in Complex Multiagent Environments 141

In this notation, a machine corresponds to a resource used to complete tasks. For ex-

ample, a multi-machine system means that there is more than one resource to complete

tasks, or many agents in a multiagent context. In our approach, the terms ”resource”,

”agent” and ”machine” are all synonyms. Because of the multiagent purpose of this

thesis, we will henceforth use the word ”agent” to indicate an entity that can accomplish

a task.

5.1.2 Second Step: Scheduler Type Definition

The scheduler, in a scheduling system, represents the abstraction level where the

tasks ordering is decided to maximize the optimization criterion. To build a good

schedule, such a system has to have a good knowledge of the environment’s elements

describing the tasks.

We can create two main categories of scheduler: centralized and decentralized. In

the centralized approach, the schedule of the tasks is done by only one agent. This

agent has to schedule and distribute the tasks for all the agents. To do that, it needs a

global knowledge of the environment that it can acquire by exploration or by inter-agent

communication. Especially in a dynamic and partially observable environment, this can

demand a lot of messages because the state of the environment has to be transferred

frequently to regroup all the agents’ perceptions (Xuan and Lesser (2002)). Agents have

therefore to find the right level of messages to exchange in order to be well coordinated

without sending everything they know (Xuan et al. (2001)).

The main problem with the centralized scheduler is that it generally depends a lot

on communications. When the communications are limited, the performances of such

an approach deteriorate. Furthermore, the loss of the centralized scheduler agent can

be catastrophic.

In the distributed approach, the schedule of the tasks is not under the responsibility

of one agent, but many agents (Jones and Rabelo (1998)). Each agent schedules its own

tasks according to what it knows about the environment. However, to stay coordinated,

the agents need to synchronize themselves using communications, transferring only the

information pertinent to the synchronization. In theory, the distributed approach needs

less communications and it is more robust to casualties or harder communication con-

straints, because the scheduler is distributed. However, it could be harder to implement

because of the need to synchronize the agents and we can expect some loss of efficiency

in the schedules. In the distributed approach, there are no agents that have a global

view of the situation to generate an optimal schedule.

It is important to make a distinction between a distributed scheduler and a dis-

tributed execution. Normally, in scheduling theory, when a schedule is made for more

Chapter 5. Task Scheduling in Complex Multiagent Environments 142

than one machine, it is still done by one centralized process that schedules the tasks for

all machines. Here, it is really the scheduler that is distributed, which means that there

is no centralized process scheduling the tasks. The goal is to use multiagent concepts

to improve standard scheduling algorithms when they are used in multiagent settings.

5.1.3 Third Step: Scheduling Algorithm Definition

In this third step, we have to choose the task scheduling algorithm to solve the

problem defined in the first step. Many optimal and approximation algorithms already

exist in the literature to solve different types of scheduling problems (Pinedo (1995);

Jones and Rabelo (1998); Blazewick (2001)). For some simpler problems, there are even

optimal algorithms that can be executed in polynomial time (see Section 5.2.3). There

are also some good approximation algorithms for NP-Hard problems. This shows the

advantage of formalizing a multiagent problem in a scheduling formalism because, by

doing so, we can search in the scheduling theory literature to find good algorithms to

solve such a problem. This helps to take advantage of both multiagent and scheduling

domains.

When looking at available scheduling algorithms for the problem defined in step 1,

we can really see the complexity of our scheduling problem. We can then choose to

relax some constraints, if possible, to reduce its complexity. In section 5.2.3, we present

the algorithms that we have chosen for different scheduling problems.

5.2 Application to the RoboCupRescue Environment

We have previously explained how to extract a scheduling system from a multiagent

system. In this section, we show how to use it in a multiagent system by explaining all

the steps and specifically focus on the scheduler part.

We have tested our approach in the RoboCupRescue simulation environment where

we focused only on the work of the AmbulanceTeam agents. In the RoboCupRescue

simulation there can be between 0 to 8 AmbulanceTeam agents that are in charge

of rescuing civilians. These civilians are wounded when they are buried in collapsed

buildings and they can die if they are not saved fast enough. The health of injured

civilians can worsen with time. Therefore, the AmbulanceTeam agents have to dig in

the detritus of the collapsed buildings to save the civilians that are trapped. Afterwards,

they have to transport them to refuges where they can be treated. The AmbulanceTeam

agents are helped in their work by the AmbulanceCenter agent with which they are in

contact by radio (see Figure 2.5 on page 20).

Chapter 5. Task Scheduling in Complex Multiagent Environments 143

In this complex environment, cooperation between the agents is really important,

because the time needed to accomplish a task depends on how many agents are working

on it. Agents work faster if they work together. For example, if there are many

AmbulanceTeam agents working together to dig in a collapsed building, they will reach

the buried civilians faster than if only one agent is trying to do the same work.

More specifically, we are interested in systems where the set of tasks is not initially

known because the environment is partially observable. Thus, the agents have to explore

the environment to find the tasks to accomplish. In the RoboCupRescue, this means

that the AmbulanceTeam agents have to explore the collapsed buildings to find the

injured civilians. These civilians are seen as tasks and since the health state of a

civilian is uncertain, the parameters of the tasks could change in time. For example, if

one civilian catches on fire, its expected death time would drop rapidly. In other words,

the deadline of the task would be reduced.

Notice that, there are also important constraints on the communications in the

RoboCupRescue: agents are limited in the number of messages they can send or receive

and the messages’ length is also limited. With these limitations, it becomes primordial

to manage the communications efficiently.

5.2.1 First Step: Scheduling Problem Definition

In the RoboCupRescue simulation environment, the goal of the AmbulanceTeam

agents is to rescue as many civilians as possible. To achieve that, agents have to sort

out the civilians to rescue. This problem can be modelled as a task scheduling problem

in which rescuing a civilian is considered as a task and all AmbulanceTeam agents

are considered as resources that can accomplish a task. With this approach, we can

reformulate the problem by saying that the agents’ goal is simply to perform as many

tasks as possible. Therefore, the problem is now to find the sequence of tasks that will

accomplish their goal. In the RoboCupRescue environment, the task’s duration (pj)

is the time needed to save a civilian and the deadline of a task (dj) is the civilian’s

estimated death time.

This scheduling problem is very complex, because the scheduler has to allocate tasks

that have different costs and deadlines to many agents. The cost of a task depends on

how many agents work on it at the same time. There is also a cost to change from one

task to another, i.e. when an AmbulanceTeam agent has to move from one civilian to

another. Finally, an overload of tasks often happens, i.e. it is impossible to complete

all tasks before their deadline. In other words, it is impossible to save all the civilians.

Table 5.1 presents some links that we can make between our multiagent problem

issued from the RoboCupRescue and the scheduling problem. With the notation pre-

Chapter 5. Task Scheduling in Complex Multiagent Environments 144

Multiagent problem Scheduling problem

Set of civilians to rescue Set of tasks (T)

Set of AmbulanceTeam agents Set of resources (Pm)

Time needed to dig up a civilian Execution cost of the task (pj)

Death time of a civilian Deadline of the task (dj)

Moving time between civilians Cost to change from one task to another (sjk)

Table 5.1: Links between the multiagent problem and the scheduling problem.

sented in section 5.1.1, the scheduling problem can be formally expressed as:

Pm|sjk|
∑

Uj (5.1)

This means that m agents (Pm) evolve in an environment where there is a cost to

switch from one task to the other (sjk). The goal is to maximize the number of tasks

accomplished before their deadline (
∑

Uj). The task execution cost (pj) and the task

deadline (dj) are not explicitly represented because they are implicitly considered in the

parameter
∑

Uj. This problem as it is defined has been proven to be NP-Hard (Pinedo

(1995)). So that it can be solvable in polynomial time, we relaxed some constraints and

made some changes to the original problem. We now detail these aspects.

In the original problem, we consider that there is a cost to switch from one task

to another. This is problematical because the cost could be different for each pair of

tasks (taskx, tasky) and thus, it increases the complexity of the problem. We therefore

relaxed this constraint by giving a value of 0 for each sjk. However, even if we have

relaxed this constraint, we still need a way to take the travelling time from one civilian

to another into consideration. Hence, we added a unique estimation of the switching

time to the task’s execution cost. We say that it is a unique estimation because it does

not depend on the preceding task or the agent accomplishing the task. In practice, this

means that the time to rescue a civilian (pj) is equal to the unique estimated time to

move to the civilian’s location plus the time to dig him up. This latest time is known,

but the estimated time to move to the civilian’s location is in fact the distance between

the position of the civilian and the building farthest away multiplied by a constant K.

This is the worst case estimation pondered by a constant determined experimentally

by looking at some simulations.

In this thesis, we have considered two types of problems. The first one considers

a distributed execution of the schedule and the second one considers a centralized

execution of the schedule. With distributed execution and if we take into consideration

that sjk = 0, the problem can be defined as:

Pm||
∑

Uj (5.2)

Chapter 5. Task Scheduling in Complex Multiagent Environments 145

With the centralized execution, the scheduling problem definition is again slightly

modified by setting m = 1. In other words, it means that we consider that we have only

one agent. In practice this is not true, thus it results in all agents working on the same

civilian because, for the scheduler, the group of agents is only one indivisible resource.

Although this modification of considering only one resource can reduce the efficiency

of the schedules, it has a substantial advantage because there is an optimal algorithm

working in polynomial time for this modified problem. Notice that such modification is

logical in the RoboCupRescue simulation because the execution time of a task depends

on the number of agents working on it. In fact, if there are n agents working on one

task, then the execution time will be n times less. Formally, the scheduling problem

can now be defined as:

1||
∑

Uj (5.3)

This means that we consider a centralized execution in which all agents are consid-

ered to be one big resource working on one task at a time and trying to maximize the

number of tasks accomplished in the time allowed.

5.2.2 Second Step: Scheduler Type Definition

In the second step, the system designer must choose between centralized and dis-

tributed scheduling. In this thesis, we compare both approaches in order to schedule

the tasks of the AmbulanceTeam agents in the RoboCupRescue simulation. In the cen-

tralized approach there is one agent responsible for the scheduling of all tasks. In the

distributed approach, all agents are in charge of the scheduling process.

5.2.2.1 Centralized Scheduler

With a centralized scheduler, there is one agent taking alone the decision about the

ordering of tasks. This agent has to gather information about the environment, make a

schedule for each task and each agent and send the schedule to all agents so that they

can execute it.

In the RoboCupRescue simulation, the “best agent” to serve as the central scheduler

is the AmbulanceCenter agent. This agent has better communication capabilities, so it

can receive and send more messages. This means that it should have a better global

view of the situation, enabling it to make good schedules. Briefly, this means that each

agent sends the information it has about the civilians to the AmbulanceCenter agent.

Afterwards, this agent schedules all the tasks, deciding in which order they should be

accomplished and by how many resources (agents). Finally, it sends the assignments

Chapter 5. Task Scheduling in Complex Multiagent Environments 146

AA

A

3
:
b
lt

blt: best local task

S

A A A

4:
bg

t 4
:

b
g

t

4: bgt

1:
at

i

bgt: best global task

ati: information on all tasks
b) Decentralizeda) Centralized

3:
b
lt

3: blt

3: blt

3:
b
lt

3:
b
lt1
:

a
ti

1: ati

Figure 5.1: Information exchange when using the centralized (a) and the decentralized

(b) scheduling approaches. On the arrows, the type of the message is identified with

the number referring to the step in the scheduling process.

to all AmbulanceTeam agents that only have to conform to them. In brief, the steps of

the scheduling process are:

1. All the AmbulanceTeam agents send all their perceptions about possible tasks to

the scheduler agent, which is the AmbulanceCenter.

2. The scheduler agent combines all the information received to construct its list of

possible tasks.

3. The scheduler agent applies a scheduling algorithm to schedule the tasks.

4. The scheduler agent sends the first task of the schedule to all agents.

Figure 5.1 a) presents a graphic representation of the information exchanged between

the agents when using the centralized approach. As we can see, at step 1 all the agents

send the information they know about all possible tasks. These messages can be quite

long. Afterwards, at step 4, the scheduler agent sends the first task of the schedule to

all agents, which then accomplish this most important task.

5.2.2.2 Decentralized Scheduler

In this approach, we can see the scheduler as an entity composed of many agents.

Each agent has its own local perception about the environment and the tasks to ac-

complish. The scheduling is done in two steps. Firstly, each agent chooses locally its

best task to accomplish using a scheduling algorithm and given its local knowledge.

Chapter 5. Task Scheduling in Complex Multiagent Environments 147

Secondly, all agents exchange their best local task. Then each agent uses a scheduling

algorithm to find the task to accomplish among the set of best tasks. In brief, the steps

of the scheduling process are:

1. All agents build their own list of possible tasks.

2. All agents apply a scheduling algorithm to find the best local task to accomplish.

3. All agents broadcast their best local task to all other ambulance team agents.

4. All agents build a list with all the best local tasks received.

5. All agents apply a scheduling algorithm to find the best global task to accomplish.

Figure 5.1 b) presents a graphic representation of the information exchanged between

agents when using the decentralized approach. As we can see, agents send messages

only at step 3 and those messages are quite small because they contain only the infor-

mation about one task. Therefore, the decentralized approach is less demanding on the

communication because agents do not send big messages, like the ones send at step 1

of the centralized approach.

5.2.3 Third Step: Scheduling Algorithm Definition

For this thesis, we have mainly used two scheduling algorithms: the Earliest Due

Date algorithm (EDD) (Jackson (1955)) and the Hodgson’s scheduling algorithm (Moore

(1968)). In the next two sections, these two algorithms are presented. Then, we present

the scheduling strategies we have developed using these two basic algorithms.

5.2.3.1 Earliest Due Date Algorithm

The Earliest Due Date algorithm (EDD) is quite simple. To schedule a set of

tasks, the EDD algorithm sorts all the tasks in the ascending order of their deadlines.

Consequently, the first task to execute is the task with the earliest deadline. This

algorithm can be executed in time O(nlogn) (Brucker (2001)), where n is the number

of tasks. This algorithm is particularly interesting because it is optimal if there is no

overload, i.e. if it is possible to accomplish all the tasks in the given time. Although

some overload could happen in our environment, the performances of this algorithm

stay good, as presented in our results, and its simplicity enabled us to demonstrate how

we can distribute the decision making in a scheduling system.

Since EDD is a greedy algorithm, it is possible to just find the first task to accomplish

without having to schedule all the tasks. This first task is simply the task with the

Chapter 5. Task Scheduling in Complex Multiagent Environments 148

earliest feasible deadline. This property of the EDD algorithm is interesting in dynamic

environments where the agents have to react to changes in the environment. With this

algorithm, the scheduling can be done really fast, because the scheduler agent only has

to do one iteration over the tasks to find the next task to accomplish. This type of

greedy algorithm is well adapted to a problem of decentralized decision making because

it is never necessary to reconsider a decision previously made. This enables agents to

find the next task to accomplish in time O(n), where n is the number of tasks. This

property also helped agents to save a lot of messages in the decentralized approach.

5.2.3.2 Hodgson’s Scheduling Algorithm

The Hodgson’s scheduling algorithm is an optimal algorithm to solve our simplified

problem (1||∑Uj). This algorithm can find the optimal schedule in time O(nlogn),

where n is the number of tasks. This algorithm is based on the (EDD) algorithm

presented in the previous section.

The Hodgson’s scheduling algorithm is presented in Algorithm 5.1. In short, it

begins by sorting all the tasks in increasing order of their deadlines and then it gives

priority to tasks with lower execution costs. To do so, it goes through the ordered task

list and when it encounters a task that could not be executed before its deadline, it

removes the task from the previously scheduled task list that has the biggest execution

time.

In the RoboCupRescue simulation, this algorithm receives a set of civilians to rescue

and it returns the schedule that should rescue as many civilians as possible. Only

civilians that could be rescued are returned and those that cannot be rescued before

their deadline are discarded.

5.2.3.3 Scheduling Strategies

In this section, we present the different scheduling strategies that we have tested in

the context of RoboCupRescue. We have looked at strategies to distribute the scheduler

and to distribute the execution of the schedules.

Central Scheduler and Central Execution. This first strategy is used in the

simplified version of the problem (1||
∑

Uj). In the RoboCupRescue simulation, it

means that we consider all the AmbulanceTeam agents to be only one indivisible re-

source and that the objective of the scheduling system is to maximize the number of

civilians rescued before their deadlines.

Chapter 5. Task Scheduling in Complex Multiagent Environments 149

1: Function HodgsonScheduling(T)

returns T’, an optimal list of scheduled tasks respecting their deadline.

Input: T , a set of tasks to schedule.

Local Variable: Tk, the task in T ′ with the greatest execution cost.

2: T ← EDD(T)

3: n← |T |
4: T ′ ← ⊘
5: for i← 0 to n do

6: T ′ ← T ′ ∪ {Ti}
7: if

∑
j∈T ′

pj > di then

8: Tk ∈ T ′ such that pk = max
j∈T ′

(pj)

9: T ′ ← T ′ − {Tk}
10: end if

11: end for

12: return T’

Algorithm 5.1: Hodgson’s scheduling algorithm.

This modification of the original problem can reduce the efficiency of the task

scheduling, because the scheduler do not consider splitting the AmbulanceTeam agents.

However, it has a big advantage because the Hodgson’s scheduling algorithm (presented

in section 5.2.3.2) can find an optimal schedule in polynomial time for this modified

problem. Moreover, as mentioned before, this modification is logical for our problem

because the time to dig out a civilian is inversely proportional to the number of Ambu-

lanceTeam agents digging in the collapse building.

Central Scheduler and Distributed Execution. For this second strategy, we

have conserved the original multi-machine scheduling problem (Pm). Therefore, the

scheduler can now divide the agents to work on more than one civilian at a time.

However, we still have some simplifying constraints. The AmbulanceTeam agents are

divided in m groups and the number of groups m stays constant. Furthermore, two

groups cannot work on the same civilian.

These simplifications enabled us to have a fixed task execution cost. Hence, for a

total of n agents, the task execution cost will be of n/m times less than the cost of

doing the task alone, because there are n/m agents in each group. Moreover, we now

have the opportunity to work on m civilians at a time, which was impossible with the

first strategy. Thus, we have the opportunity to save more than one urgent civilian.

However, this modification can also reduce the efficiency, because each task will be done

Chapter 5. Task Scheduling in Complex Multiagent Environments 150

more slowly. In fact, the execution cost of each task is multiplied by m compared to

the first strategy.

There is no existing optimal algorithm to solve this NP-Hard problem in polyno-

mial time (Pinedo (1995)). Therefore, after some tests, we chose the approximation

algorithm EDD which seemed to be the most efficient. In short, the tasks are sorted in

increasing order of their deadline time, then the first group of agents is assigned to the

task with the smallest feasible deadline, the second group to the second civilian, and

so on if there are more groups.

Distributed Scheduler and Central Execution. This third strategy also works

with the simplified version of the problem (1||
∑

Uj). The difference here is that the

scheduling process has been distributed among the AmbulanceTeam agents, as presented

in section 5.2.2.2. The scheduling algorithm used in this decentralized scheduling ap-

proach is also the EDD algorithm. We have chosen this algorithm because it is possible

to have a distributed version that does not loose in efficiency. If we look at the central-

ized and decentralized schedulers presented in sections 5.2.2.1 and 5.2.2.2 respectively,

it is easy to see that, with the EDD scheduling algorithm, the decentralized approach

returns the same task as the centralized approach, because at the end, agents choose

the task with the earliest deadline in both approaches. The difference is in the num-

ber of messages exchanged by the two approaches. In section 5.4.2, we present results

comparing the centralized and the distributed schedulers.

5.2.3.4 Rescheduling Strategy

As stated in many previous places, the RoboCupRescue environment is uncertain

and dynamic and consequently agents have to be able the reschedule when changes

happen (Smith (1994)). One method to do that would be to reschedule each time

that something changes in the environment. However, this method could make agents

to change from one task to another before completing any, if each time something

changes, the scheduler modifies the first task in the schedule.

To circumvent this, we have used a strategy that follows the following principle: if

a task is being executed, it will be executed until the end. If during the execution of

this task, a new information is received, it is stored and it is only when the task is

completed that the agents take the new information into consideration to reschedule

and choose the next task to accomplish.

All the algorithms presented in this section consider that the deadlines of the tasks

are known. In other words, they consider that they know the exact death time of each

civilian. In practice, this is not really the case. The agents do not know the exact death

Chapter 5. Task Scheduling in Complex Multiagent Environments 151

time of a civilian, they can only approximate it using their partial perceptions. In the

next section, we present the learning approach that we have developed to estimate the

death time of a civilian.

5.3 Learning Mechanism for the Estimation of the

Civilian’s Death Time

In order for the schedules to be valid and efficient, the predictions about the civilian’s

death times have to be as precise as possible. To obtain the best possible predictions, we

have used an instance based K-Nearest-Neighbors (KNN) learning algorithm. However,

we have modified the basic KNN learning algorithm to adapt it to partially observable

environments in which many attribute values can be missing.

In the RoboCupRescue simulation, AmbulanceTeam agents have to predict the civil-

ian’s death times in order to identify the civilians with the highest priorities. To achieve

this, the rescue agents have to determine how the damage attribute of a civilian evolves

during the simulation. The damage is the number of health points (HP) that an injured

civilian looses per time step (HPt = HPt−1 − damage). If the number of health points

reaches zero, then the civilian is considered as dead. A civilian HP is initially set to

10000. An injured civilian’s damage is always ascending, i.e. that it increases at each

time step, until the civilian dies or the civilian reaches a refuge, in which case it is set

to 0. Figure 5.2 shows the progression of the damage attribute for many civilians. As

we can see in the figure, there are some tendencies in the damage progression of the

civilians. In the following we present how we have used a KNN learning algorithm to

approximate these curves for a new civilian.

As stated previously, the position and the health status of the civilians are unknown

at the beginning of the simulation. All rescuing agents have to search in the collapsed

buildings to find the buried civilians. When a civilian is found, the rescuing agents can

see the current state of health of the civilian. A priori, the rescuing agent does not

know how the health of the civilian will evolve. The rescuing agent can however come

back later to take a second look at the civilian state of health. The fact that the state

of health of the civilians is not known at every time step is the most important source

of uncertainty that the AmbulanceTeam agents have to deal with when scheduling the

civilians to rescue. In the next section, a KNN learning algorithm that can deal with

such uncertainty is presented.

Chapter 5. Task Scheduling in Complex Multiagent Environments 152

Figure 5.2: Damage progression for 250 civilians. Each line represents the progression

of the damage value for one civilian.

5.3.1 K-Nearest-Neighbors: Introduction

As mentioned before, we have developed an instance based K-Nearest-Neighbors

(KNN) learning algorithm to learn to predict the death time of a civilian agent. In

this section, we briefly present the K-Nearest-Neighbors approach, in which an instance

corresponds to a point in a n dimension space. An instance x is described by a vector

of n attributes:

(a1(x), a1(x), ... an(x)) (5.4)

where ai(x) is the value of the ith attribute of the instance x; n is the number of

attributes per instance.

Each instance is associated with a class. For example, in Figure 5.3, there are five

instances with their associated class. The objective of the KNN algorithm is to find the

class of a new unclassified instance by using the previously classified instances.

When all the attribute’s values are present, it is possible to use the standard KNN

learning algorithm. It normally consists in finding the k closest neighbors of the instance

to classify by using a distance function. The most popular distance function is the

euclidian distance. The distance between two instances xi and xj is defined by d(xi, xj)

Chapter 5. Task Scheduling in Complex Multiagent Environments 153

Instance xi Class of xi

< 5, 8, 3, 7, 6 > A

< 2, 4, 1, 3, 5 > A

< 8, 3, 2, 8, 9 > B

< 6, 4, 8, 2, 1 > A

< 4, 5, 7, 1, 9 > B

Figure 5.3: Instance database.

where:

d(xi, xj) =

√√√√
n∑

r=i

(ar(xi)− ar(xj))
2 (5.5)

When the k neighbors of an instance xq have been identified, then the instance

xq can be classified by considering the values of its neighbors. In a discrete case, the

equation used to classify the instance xq is:

f̂(xq)← argmax
vǫV

k∑

i=1

δ(v, f(xi)) (5.6)

where f̂(xq) is the estimated class of the instance xq, V is the set of all possible classes

for the classification function and:

δ(a, b) =

{
1 if a = b

0 if not
(5.7)

In our approach, an instance corresponds to a progression curve of the damage

value for a civilian. An instance has 300 attributes, one for each time step in the

RoboCupRescue simulation. The attribute value is the damage value observed at the

time in question. For example, if the civilian’s damage at time 84 is 120, then the 84th

attribute has the value 120. In the next section, we present how the instances are used

to estimated the death time of a civilian, but first we present a method to deal with

missing attributes in the general case.

It is necessary to consider missing attributes because the health state of a civilian is

not known at each time step of the simulation, since the RoboCupRescue environment is

partially observable. In our case, the instances in the instance database are completely

defined, i.e. that they have a value for each attribute. The missing attribute values are

only for the instances to classify, since they are dynamically built during the simulation.

In other words, during the learning phase, all the attribute values are known, but when

a new instance has to be classified, then a number between 0 and n− 1 values can be

missing.

Chapter 5. Task Scheduling in Complex Multiagent Environments 154

Let xq be the instance to classify based on the instance database presented in

Figure 5.3. As we can see, the value of the third attribute is missing.

xq =< 5, 4, ?, 2, 8 >

If we evaluate the distance between the query instance xq and each of

the instances present in the instance database, then by omitting the third

attribute, we obtain:

d(xq, x1) =
√

45

d(xq, x2) =
√

19

d(xq, x3) =
√

47

d(xq, x4) =
√

50

d(xq, x5) =
√

4

If we set k = 3, then the three closest neighbors are x1, x2 and x5. The class

of x1 and x2 is A and the class of x5 is B. Using Equation 5.6, we find that

the estimated class of xq is A.

Figure 5.4: Example of an instance classification with one missing attribute.

When there are some missing attribute values, the only modification to the KNN

algorithm is when choosing the k nearest neighbors. In our approach, we simply ignore

the missing attribute values when calculating the distance function:

d(xi, xj) =

√∑

c∈C

(ac(xi)− ac(xj))2 (5.8)

where C is the set of available attribute values in the instance to classify.

Consequently, even if the attribute values are available in the instance database,

if they are not available for the query instance, then they are not considered when

evaluating the distance between the instances. Figure 5.4 shows an example of the

approach. To better understand the approach, lets represent the instances in a two

dimension space. The x axis represents the attributes and the y axis represents the

values for these attributes. We can now see that each instance in the database is

represented by a curve. As an example, if we use the instances presented in Figure 5.3,

then we obtain the curves presented in Figure 5.5.

It is also possible to represent the query instance xq in the graphical representation

of the instance database. As shown in Figure 5.6, the query instance is represented as

a set of points. If there are some missing attributes, then there are no points for the

Chapter 5. Task Scheduling in Complex Multiagent Environments 155

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Attributes

V
a

lu
e

s

x1

x2

x3

x4

x5

Figure 5.5: Graphical representation of the instance database.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Attributes

V
a

lu
e

s

x1

x2

x3

x4

x5

xq

Figure 5.6: Instance database with query points.

Chapter 5. Task Scheduling in Complex Multiagent Environments 156

corresponding x coordinates. The approach then consists in finding the k closest curves

from the set of points representing xq, by using the Equation 5.8. When the k closest

curves have been identified, then the algorithm uses the classification equation 5.6 to

classify xq, based on the k nearest neighbors.

This technique that simply ignores missing attributes is in contrast with the ap-

proaches that try to approximate the missing attribute values like the EM and the

k-means approaches (Caruana (2001); Acuna and Rodriguez (2004)). In our context,

as shown in section 5.4.1, it was more efficient to ignore the missing attributes. In the

next section, we present how we have applied our algorithm in the RoboCupRescue.

5.3.2 KNN for the RoboCupRescue

The proposed solution is particularly suited for problems in which there is a corre-

lation between the attributes in an instance. This is exactly the case when we want to

predict the death time of a civilian based on the damage observed at some time steps.

In the RoboCupRescue simulation, it is really important to have a good estimation

of the death time of the civilians in order to have good schedules. To do this, the rescue

agent has to determine how the civilian’s damage will evolve in time. This task is not

easy because the civilian’s damage is an uncertain parameter in the simulation. It is

impossible to perfectly predict the damage progression in time. The only think possible

is to try to approximate it.

On the other hand, it is interesting to notice the similarities in the evolution of the

damages as presented in Figure 5.2 on page 152. This figure presents the evolution of

the damage for 250 civilians. We can see some tendencies based on the starting damage

value. However, it is impossible to predict the direction that the damage will take since

the rescue agent does not know the civilian’s starting damage value. The civilians’

damage values are unknown at the beginning of the simulation, and consequently the

rescue agents have to find the civilians in order to see their health state. Another

difficulty is that the curves are crossing each other. This complicates the problem

because with few observations it is harder to identify the curve that could best predict

the future observations.

In order to predict the death time of a civilian, we use the K-Nearest-Neighbors

learning algorithm presented previously. In our case, an instance corresponds to a

progression curve of the damage value for a civilian. An instance has 300 attributes,

one for each time step in the RoboCupRescue simulation. The attribute value is the

damage value observed at the time in question. For example, if the civilian’s damage

at time 84 is 120, then the 84th attribute has the value 120.

Chapter 5. Task Scheduling in Complex Multiagent Environments 157

During the learning phase, the damage values are recorded for all time steps, for

all the civilians. This constitutes the instance database. Moreover, in our model, there

are as many classes as there are instances in the instance database. As it can be seen

on Figure 5.2, there are many instances that can be really close from one another.

Therefore, it could be interesting to reduce the number of instances in the database in

order to accelerate the algorithm (Grudzinski and Duch (2000); Morring and Martinez

(2004)). Since there is one class for each instance, it is not necessary to have two

similar curves giving similar predictions. Therefore, we only keep one instance for each

possible prediction. In other words, each instance in the database has to respect a

minimal distance δ between the other instances. During the learning phase, when we

add an instance in the database, we make sure that the new instance is at a distance

of at least δ from the other instances already present in the database. If this condition

is not met, then the new instance is discarded. This is also done to improve the online

efficiency of the algorithm. During the simulation, the algorithm has to be executed

under a strict real-time constraint, thus if the database is smaller, then it is faster to

calculate a prediction.

The value of the parameter δ depends on the problem and the targeted performances.

If the δ parameter is small, then there will be less instances discarded. This may improve

the precision, but it will also take more time to calculate a prediction. In our problem,

we have fixed δ to 50. As our tests have shown, this was a good compromise between

precision and speed for our specific problem. With this value, the number of instances in

the database has been reduce by 68% (from 2700 to 860 instances). This huge reduction

is mainly due to the fact that there was a lot of similar instances.

A classification of an instance is required when an agent wants to estimate the death

time of an injured civilian. More precisely, the rescue agent has to create an instance

based on its past observations about the civilian’s damage. In these condition, the

rescue agent has to determine the class to which its new instance belongs. At this

step, our approach for the instance’s missing attributes is quite useful. The reason is

that there are many more missing attribute values than available attribute values, since

it is not possible to observe all the civilian’s damage values at each time step of the

simulation. Each time a new observation is made about a civilian’s damage, it fills one

hole in the instance representing the progression of the civilian’s damage. After the

agent has created the instance with all the available values, it then finds the nearest

instance xn in the database:

xn = argmin
xi∈X

d(xq, xi) (5.9)

where X is the set of instances in the database and xn is the nearest instance of the

instance xq.

Chapter 5. Task Scheduling in Complex Multiagent Environments 158

This corresponds to find the curve in the instance database that best represents the

observed points for the query instance. When the closest instance has been found, the

rescue agent uses it to predict the civilian’s damage evolution, which then can be used

to predict the death time of the civilian.

5.4 Experimentations

This section presents the experimentations that have been done to test our schedul-

ing approach. In the first set of experiments, we present results showing the efficiency

of our K-Nearest-Neighbors approach to estimate the death time of a civilian. Then, we

present results comparing the efficiencies of a centralized and a decentralized scheduler.

Afterwards, we present results comparing the efficiencies of a centralized and a decen-

tralized execution of the schedules. Finally, we compare the results of our scheduling

approach with the results of another RoboCupRescue team.

5.4.1 K-Nearest-Neighbors Experiments

Firstly, we have compared the prediction accuracy of the K-Nearest-Neighbors

(KNN) approach with an approach that only considers the current damage value of

the civilian (HP/DMG). With the latest approach, the estimated death time is simply

calculated by dividing the health points (HP) value of the civilian by its damage value

(DMG). With the KNN approach, we use the damage estimated progression to simu-

late the diminution of the HP value at each time step. In this case, the estimated death

time is the time step reached when the HP value reaches 0.

The results comparing the prediction efficiency of the KNN and the HP/DMG ap-

proach are presented in Figure 5.7. These results have been obtained on 26 simulations.

Each time a rescue agent had to estimate a civilian death time, we have recorded the

estimation from the two approaches. Afterwards, we have compared these estimations

with the real death time of the civilian. The results are average differences between the

estimated and the real value. Each line on the graphic represents the average of all the

predictions made within a 10 time steps interval. For example, the first line represents

the average for all the predictions that have been made between the time steps 0 and 10.

As we can see in Figure 5.7, the KNN approach makes much better predictions then the

HP/DMG approach. For example, at time 110, the average error in the predictions for

the KNN approach is around 1. This means that on average, the agents are predicting

the death time of a civilian at ±1 time step. For the same predictions, at the same

time, the HP/DMG approach is only estimating the death time of a civilian at ±26

time steps. After time step 150, the KNN approach is almost perfect in its predictions.

Chapter 5. Task Scheduling in Complex Multiagent Environments 159

0

10

20

30

40

50

60

70

80

90

1
0

3
0

5
0

7
0

9
0

1
1

0

1
3

0

1
5

0

1
7

0

1
9

0

2
1

0

2
3

0

2
5

0

2
7

0

2
9

0

Time

E
rr

o
r

KNN

HP/DMG

Figure 5.7: Prediction efficiency of the K-Nearest-Neighbors (KNN) approach. This

graphic presents the error made by the KNN approach compared to the approach

HP/DMG, which consists in dividing the current HP value of a civilian by its damage

value (DMG). The error is the average difference between the prediction and the real

value.

As explained in section 5.3.2, we are ignoring the missing attribute values in the

query instance xq. Another popular strategy when dealing with missing attributes is to

approximate the values of all missing attribute values using a KNN algorithm (Dixon

(1979)). With this kind of imputation strategy, the estimated value of each missing

attribute value is the average of the same attribute for the k-nearest neighbors. In our

tests, reported on Figure 5.8, we have tested two values for k: 2 and 15. We have tested

with different percentage of missing attribute values. We can see that our approach of

no imputation is among the best approaches with the 2-nearest neighbors imputation

method. We can also see on Figure 5.9 that our approach is much faster than the other

two approaches. In our case, it is thus better to do no imputation and to simply ignore

all missing attribute values of the query instance.

Chapter 5. Task Scheduling in Complex Multiagent Environments 160

0

0,5

1

1,5

2

[0%-30%[[30%-40%[[40%-50%[[50%-60%[[60%-70%[[70%-80%[[80%-90%[[90%-100%[

Percentage of missing attribute values

E
rr

o
r No imp.

2-NN imp.

15-NN imp.

Figure 5.8: Comparison of the performances of different strategies to deal with missing

attribute values. The error is the average difference between the prediction and the real

value.

0

5

10

15

20

25

30

35

40

45

50

[0%-30%[[30%-40%[[40%-50%[[50%-60%[[60%-70%[[70%-80%[[80%-90%[[90%-100%[

Percentage of missing attribute values

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

m
s
)

No imp.

2-NN imp.

15-NN imp.

Figure 5.9: Comparison of the computation time of different strategies to deal with

missing attribute values.

Chapter 5. Task Scheduling in Complex Multiagent Environments 161

5.4.2 Centralized Versus Decentralized Scheduler

The objective of our experiments was to compare the performance and the robust-

ness of a decentralized scheduling system with a centralized one. In our environment,

the performance is measured based on the number of civilians saved before their death,

i.e. the number of tasks accomplished before their deadline. The robustness test is used

to determine the capacity of the system to maintain good performances when faced with

hard communication constraints. The communication burden is evaluated by consider-

ing the amount of information (measured in bytes) transmitted by the agents.

Our first experiment shows that it is possible to implement a distributed task

scheduling system that offers the same performances as a centralized approach, by

generating the same tasks ordering while diminishing the communication burden. In

our second experiment, we show that a decentralized scheduling system is more robust,

i.e. less sensitive to hard communication constraints.

5.4.2.1 First Experiment

The goal of this first experiment is to compare the performances and the commu-

nication burden of the decentralized scheduling approach compared to the centralized

approach. For our experiments, we have created six different simulation scenarios.

Those scenarios were designed to bring to the fore the work of the ambulance team

agents. Therefore, we have simplified the simulations to remove everything that could

interact with the ambulance team agents. To be more precise, we have removed the

blocked roads as well as all the fires. The scores obtained in those simulations are conse-

quently only dependant on the number of civilians alive, that is only on the ambulance

team agents work. For our six scenarios, we have used three different maps and we have

used each of them twice with a different number of agents. Each of these scenarios has

the same importance, i.e. all scenarios have similar complexity.

Figure 5.10 presents the comparison between the performances of each approach.

The centralized approach is slightly better in five scenarios out of six. However, this

difference is really subtle and if we consider the 95% confidence interval, the two ap-

proaches can be considered equal.

However, the diminution of the communication burden, as shown in Figure 5.11, is

really at the advantage of the decentralized approach. In this figure which presents the

comparison of the number of bytes sent by the agents, the ordinate axis represents the

number of bytes sent in average during one simulation. We can see that the distributed

approach enables reducing the quantity of information sent. On average, there is a 30%

reduction. This is mainly because the agents do not have to send all the information

Chapter 5. Task Scheduling in Complex Multiagent Environments 162

70

75

80

85

90

95

100

105

1 2 3 4 5 6
Scenarios

S
c
o

re

centralized distributed

Figure 5.10: Comparison of the performance between the centralized and the dis-

tributed scheduler approaches.

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6

Scenarios

b
y
te

s
 s

e
n

t

centralized distributed

Figure 5.11: Number of bytes sent by the centralized and the decentralized approaches.

Chapter 5. Task Scheduling in Complex Multiagent Environments 163

75

77

79

81

83

85

87

89

91

93

95

24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

maximum message size (bytes)

s
c
o
re

centralized

distributed

Figure 5.12: Performances when the constraint on the message’s length is modified.

they have about all possible tasks, but only the information about the most interesting

task. In the centralized approach, there are a lot of redundancies in the messages

received by the scheduler, because in the worst case, all agents can send the same

information about a given task to the central scheduler.

In short, the decentralized approach is able to obtain the same performance with

30% less information sent. In the next section, we can see the impact of this bandwidth

economy on the approach’s robustness.

5.4.2.2 Second Experiment

In this second experiment, we tested the robustness of the two approaches. More

precisely, our goal was to know which approach can perform well even when the commu-

nications are really limited. We tested the performances of the AmbulanceTeam agents

on different configurations in which we modified the maximum length of a message. We

did six series of tests with message length limits ranging from 24 to 80 bytes.

Figure 5.12 compares the results of both approaches. Those results show that the

decentralized approach is more stable. If the message length is more than 36 bytes, the

performances are not affected by a diminution of the exchange capacity. The centralized

approach is less stable, its performances decrease rapidly when we limit the commu-

nication. Therefore, if the agents evolve in a system in which the communication are

limited, the distributed approach seems a better option, because it can obtain good

performances with fewer messages.

Chapter 5. Task Scheduling in Complex Multiagent Environments 164

Strategy 1 Strategy 2

Step 1 1 ||
∑

Uj Pm ||
∑

Uj

Step 2 centralized centralized

Step 3 Hugdson’s algorithm EDD

Figure 5.13: Strategies compared in our tests.

5.4.3 Centralized Versus Decentralized Execution

The goal of this experiment consisted in comparing the two strategies briefly pre-

sented in Figure 5.13. We aimed to verify if dividing agents in many teams with an

approximation scheduling algorithm is better or not compared to keeping the agents

in one group with an optimal scheduling algorithm. For this experimentation, we have

used the same six scenarios as the previous experimentations. Each scenario was used a

dozen of times in three different sets of tests. The first set of tests investigates the first

strategy, i.e. the one group approach. The other sets of tests investigates the second

strategy in which we divide the agents in two and three groups (m = 2 et m = 3).

In theory, the first strategy is better for some sets of tasks and for others the second

approach is the preferred one. In these conditions, our objective was to find which

approach is the best depending on the tasks distribution in the simulation and whether

there is one approach that seems to be more efficient in all scenarios.

In addition, we want to test if there is a limit when dividing the agents in groups.

We can suppose that if the agents are too divided, the performances would drop because

the agents would not be enough to accomplish some hard tasks.

Figure 5.14 presents the results of this first experimentation. The average obtained

for each scenario is represented on the horizontal axis. One can observe that using one

group or three groups do not seem to be the best strategies. For all the scenarios, these

strategies have the worst score three times each. Also they only obtain the best score

one time each. On the other hand, dividing the agents into two groups seems to be a

more stable strategy. This solution obtains the best score four times and it is never

the worst. It is thus the best strategy for this scheduling system. However, we have to

accept that it is not the best strategy for all scenarios.

Besides, those results confirm the hypothesis that it is not always advantageous to

divide the agents into many groups. Too many divisions can have a negative impact

on the performance. In our tests, we can see that even with only three groups, the

performances begin to be more unstable. This can be explained by the fact that when

we divide the agents, the time necessary to accomplish a task increases, thus penalizing

other urgent tasks.

Chapter 5. Task Scheduling in Complex Multiagent Environments 165

70

80

90

100

110

120

130

1 2 3 4 5 6

Scenarios

S
c
o

re

one team two teams three teams

Figure 5.14: Comparison of three different scheduling strategies.

5.4.4 Comparison With Another Team

This experimentation has been done for testing concretely and objectively our global

approach, which is to model the multiagent problem as a task scheduling problem. The

preceding tests compared different scheduling systems, but how does our approach

compare to other methods? To achieve that, we have used the same six scenarios in

order to measure the performances obtained by the agents of another team. The other

team is the ResQFreiburg team that finished first at the 2004 international competition

in Portugal. In brief, their approach consisted of choosing the civilians to rescue using

genetic algorithms (Kleiner et al. (2005)). We have compared their agents with our

agents using the strategy of dividing the agents into two groups.

Figure 5.15 shows the results of those comparisons. The ordinate axis corresponds

to the average score obtained for each scenario. The performances are quite similar,

but we can see that our approach is the best in four scenarios out of six. If we look

more closely, those results show that dividing the agents into two groups is not always

the best division to do. If we look at the figures 5.14 and 5.15, we can see that the

scheduling strategy with only one group would have been the best and would have beat

ResQFreiburg in the first scenario.

To sum up, those results are convincing and show that our approach consisting of

modelling the system with a task scheduling formalism seems to have a good potential.

It helps to extract the important characteristics of the problem and afterwards to use

efficient algorithms to solve the problem.

Chapter 5. Task Scheduling in Complex Multiagent Environments 166

70

80

90

100

110

120

130

1 2 3 4 5 6

Scenarios

S
c
o
re

Our team ResQ Freiburg

Figure 5.15: Comparison with the ResQFreiburg team.

5.5 Contributions

In this chapter, we presented a scheduling approach for the problem of rescuing

civilians in the RoboCupRescue simulation. This scheduling approach uses a K-Nearest-

Neighbors learning algorithm to learn one task characteristic. In this last section, we

summarize our contributions:

Links between multiagent and scheduling systems. We have showed some

possible links between multiagent systems and task scheduling systems. We pre-

sented a methodology defining in a structured way the main steps necessary to

extract from a multiagent system the scheduling problem and mostly how to struc-

ture the solution to this scheduling problem. We have also emphasized the use-

fulness of keeping the domains of task scheduling and multiagent systems linked.

Those two domains can help each other to find good solutions to common prob-

lems.

Reduction of the communication. We have showed that a decentralized schedul-

ing system can offer the same performances as a centralized one, while diminishing

the amount of information transmitted between the agents. This was done in the

objective of being more robust to constraints on the communications.

Experimentations in the RoboCupRescue. We have demonstrated the effi-

ciency of the decentralized approach on two experiments in a complex environ-

ment (partially observable, uncertain and real-time). We have shown that the

Chapter 5. Task Scheduling in Complex Multiagent Environments 167

decentralized approach is more robust to changes in the communication capaci-

ties, while being as efficient as the centralized approach. Furthermore, we have

demonstrated the efficiency of our scheduling approach by comparing our agents

with the agents of the wining team of the 2004 RoboCupRescue international

competition.

Distribution of the execution. We have tested different divisions of the re-

sources in order to accomplish the tasks faster. We have tested with one, two

or three groups. The strategy with one group has the advantage of using an

optimal algorithm. However, when the resources are divided, we have to use an

approximation scheduling algorithm.

K-Nearest-Neighbors Algorithm. We have presented a new application of

the K-Nearest-Neighbors algorithm to estimate the value of an uncertain param-

eter of a task. We have presented results showing the efficiency of the predictions

in the RoboCupRescue simulation. We have also presented a strategy to manage

the missing attribute values by simply ignoring them when calculating the dis-

tances between the instances. We have presented results showing that ignoring

the missing values is a more efficient approach than trying to estimate their values

when many values are missing.

Chapter 6

Conclusion

The problems of decision-making and task coordination are really important to the

field of multiagent systems. When the environment is only partially observable, the

decision process of the agents may become quite hard. Agents then have to choose

their actions based on incomplete information. It becomes difficult for the agents to

stay coordinated when they cannot perceive the other agents and when the environment

is in constant changes.

In such complex cooperative multiagent systems, this thesis presents some algo-

rithms to coordinate the agents in order to accomplish complex tasks that need more

than one agent to be accomplished. This thesis also presents an online POMDP algo-

rithm that can choose efficient actions in large partially observable environments.

In this chapter, we first present a summary of the approaches developed in this

thesis and we finish by presenting some open problems for future work.

6.1 Summary

In this thesis, we have addressed different issues that arises when dealing with com-

plex cooperative multiagent systems. In Chapter 2, we described our test-bed environ-

ment: the RoboCupRescue simulation. We showed that it was a complex environment

that imposes many constraints such as: real-time constraints, partial observability, lim-

ited communications, limited resources, etc. We also emphasized the fact that the Robo-

CupRescue simulation environment offers many research opportunities like: Multiagent

planning, anytime planning, resources management, learning, information gathering,

coordination, scheduling, etc.

We then presented, in the following chapters, our original approaches to deal with

Chapter 6. Conclusion 169

different problems in cooperative multiagent systems. All these approaches have been

tested in the RoboCupRescue environment to show their applicability and efficiency

in such a complex cooperative multiagent environment. The next three sub-sections

summarize these approaches and the results obtained.

6.1.1 Online POMDP Algorithm

In Chapter 3, we have presented our Real-Time Belief State Search (RTBSS) algo-

rithm, which is a new online algorithm for partially observable Markov decision pro-

cesses (POMDP). The RTBSS algorithm is based on a look-ahead search in the belief

state space to find the best action to execute at each cycle in the environment. This

algorithm only explores reachable belief states starting from the agent’s current belief

state.

By doing an online search, we avoid the overwhelming complexity of computing a

policy for every possible situation the agent could encounter. Since there is no computa-

tion offline, the algorithm is immediately applicable to previously unseen environments,

if the environments’ dynamics are known.

This online exploration has to be as fast as possible, since our algorithm has to work

under some real-time constraints in the RoboCupRescue simulation. To achieve that,

we opted for a factored POMDP representation and a branch and bound strategy. We

have combined a limited depth first search strategy with a pruning strategy that uses

dynamically updated bounds based on the solutions found at the maximal depth of the

search. The pruning of the tree is also accelerated by sorting the actions in order of

their expected efficiency. Since the more interesting actions are tried first, there is more

chance that the first branches developed have better values, thus better bounds for the

pruning condition.

In addition, we presented some hybrid approaches that use the RTBSS online search

strategy mixed with approximate offline strategies. We presented three new algorithms:

RTBSS-QMDP, RTBSS-PBVI-QMDP and RTDPBSS. The RTBSS-QMDP algorithm

uses the QMDP value function as the utility of the belief states at the leaves of the

RTBSS search tree. The RTBSS-PBVI-QMDP algorithm uses the PBVI value function

as a lower bound at the leaves of the tree and the QMDP value function as an upper

bound for the pruning function. Finally, the RTDPBSS algorithm is exactly like the

RTDP algorithm except that the RTDPBSS algorithm does a deeper search online when

choosing the actions. The results of our experiments showed that the performances of

the hybrid approaches are often better than the performances of the online approach

or the offline approach taken alone. Our results have shown that RTBSS-QMDP is the

most consistent approach over all the test environments.

Chapter 6. Conclusion 170

We have conceived an approach to maintain a belief state based on the real agent’s

observations. This helps an agent to manage the highly dynamic and unpredictable

parts of the environment. During the search in the belief state space, the agent con-

siders some variables fixed and concentrate only on the most important parts of the

environment to choose its actions. This approach is possible with the RTBSS algo-

rithm because it is an online algorithm that can readjust its belief states between each

execution in order to stay up to date with the agent’s observations.

Moreover, we defined a local reward function enabling an agent using RTBSS to re-

define a reward function before each action’s choice. This enabled to define the reward

function only for the current situation, which is really useful when there are a lot of pos-

sible situations. This again is possible because the agent’s policy is dynamically defined

at each time step by the online RTBSS algorithm. Therefore, the reward function can

be modified before each decision, because the RTBSS algorithm does a new search for

each action’s choice. This local reward function can be used to dynamically coordinate

many agents in an environment without any coordination related messages. This new

multiagent POMDP coordination approach has shown to be effective and quite flexible

to control many agents in a highly dynamic environment.

6.1.2 Task Allocation Learning

In Chapter 4, we have presented a learning algorithm which is useful to learn the

required number of agents for each different task in a complex cooperative multiagent

environment. Most coordination learning approaches considered that the number of

required resources to accomplish a task is known or that they have enough informa-

tion to have a probability distribution over the number of required resources. In our

approach, we considered that the tasks are complex and that the agents have to learn

this information since it is not available.

The tasks considered in our simulations are described with discrete and continuous

attributes. Therefore, there are a lot of possible task descriptions. To manage this

complexity, we have adapted a selective perception reinforcement learning algorithm to

the problem of learning the required number of resources to accomplish a task. With

this algorithm we can find a generalization of the task description space, thus allowing

the reinforcement learning algorithm to work on smaller task description spaces.

Furthermore, we proposed a coordination algorithm using the information learned

about the number of resources needed for a task. This algorithm uses really few mes-

sages between the agents, which is interesting in environments with limited and/or

unreliable communications.

We have presented some tests in the RoboCupRescue environment showing that

Chapter 6. Conclusion 171

the agents can efficiently learn and that the learned information is really helpful to

improve the agents’ performances. The agents obtained good results with an internal

task description space of only 0.5% of the complete task description space. We have

also shown results taken during the 2004 international competition showing that we

were the most efficient team to extinguish fires.

6.1.3 Task Scheduling in Complex Multiagent Environments

In Chapter 5, we presented a scheduling approach for the problem of rescuing civil-

ians in the RoboCupRescue simulation. We analyzed the advantages and the disad-

vantages of distributing or not the scheduling process in a complex multiagent system.

More precisely, we studied the impact on the agents’ efficiency and on the amount of

information transmitted when using centralized and decentralized scheduling. We also

study the usefulness of distributing the execution of the tasks in a scheduling problem

and thus accomplishing goals in parallel, compared to the strategy of concentrating all

resources to accomplish one goal at a time.

We have showed that a decentralized scheduling system can offer the same perfor-

mances as a centralized one, while diminishing the amount of information transmitted

between agents. This was done in the objective of being more robust relatively to

constraints on the communications.

We have also tested different divisions of the resources in order to accomplish the

tasks faster. We have tested with one, two or three groups. The strategy with one

group has the advantage of using an optimal algorithm. However, when the resources

are divided, we have to use an approximation scheduling algorithm. The results in the

RoboCupRescue simulation have shown that the best approach was to divide the agents

in two groups.

In similarity with the approach presented in Chapter 4, we also had to learn to

estimate one of the characteristics of the tasks. To this end, we developed a K-Nearest-

Neighbors (KNN) approach that has been used to learn the damage progression of

the civilians which is used to estimate the expected death time of the civilians. We

have presented results showing the efficiency of the predictions in the RoboCupRescue

simulation. We have also presented a strategy to manage the missing attribute values

by simply ignoring them when calculating the distances between the instances. We have

presented results showing that ignoring the missing values is a more efficient approach

than trying to estimate their values when many values are missing.

Chapter 6. Conclusion 172

6.2 Future Work

The algorithms presented in this thesis are a contribution to the field of cooperative

multiagent systems. However, there is much work to do in order to developed near

optimal cooperative multiagent systems in complex environments. In this section, we

present some ideas on how the approaches presented in this thesis could be extended.

These ideas are divided according to the main three chapters of this thesis.

6.2.1 Online POMDP

One improvement for our RTBSS algorithm could be to reuse the information com-

puted previously in the simulation. This would allow being able to explore in greater

depth without using more computation time. During a search to choose an action, the

RTBSS algorithm calculates many estimated values for the belief states encountered

during the search. It would be interesting to reuse these estimations if the same belief

states are encountered in future searches. The RTDPBSS algorithm, presented in this

thesis, is a first step toward this goal, but this algorithm took a lot of memory. On the

bigger problems, this algorithm often ran out of memory before reaching the time limit.

This is one drawback of this approach, because recording belief states values takes a

lot of space since there are an infinite number of possible belief states. The RTDPBSS

algorithm used some discretization of the belief state space in order to limit the number

of belief states considered, but this has a negative impact on the performances, because

many different belief states are regrouped together. To sum up, it would be interesting

to find an efficient way to record past estimated belief state values in order to accelerate

the search.

Moreover, when using the factorization, it could be interesting to study the impact

of removing not only values with a 0 probability, but also values with a really small

probability. By doing so, the set of possible states ω would be smaller. However, it

would be important to be careful not to remove useful values.

In addition, it would be interesting to have a way to automatically find the best

depth for the search. This best depth would have to be dependant on the available time

to search in the belief state space online.

Another future work could be to look at other hybrid approaches. In our experi-

ments, the hybrid approaches have often shown some improvements compared to com-

pletely online or offline approaches. Therefore, we think that the hybrid approaches

have the most potential to deal with complex POMDP environments.

Chapter 6. Conclusion 173

6.2.2 Learning Task’s Characteristics

In Chapter 4, we presented a reinforcement learning based on selective perception.

This algorithm adds some state distinctions by growing a tree representation of the state

space. The tree was grown for a fix number of simulations. It would be interesting to

define a measure of performance that could automatically find the best depth of the

tree. This measure of performance would have to balance the quality of the state’s

distinction with the time needed by the reinforcement learning algorithm if there are

more states.

6.2.3 Scheduling

For the scheduling approach presented in Chapter 5, we have presented results in

which the agents were divided in one, two or three groups. As our results have shown,

there was no perfect division that was the best in all situations. Consequently, it would

be interesting to develop a scheduling algorithm that can find the optimal division in

all situations while still respecting the real-time constraints.

Another improvement of our scheduling approach would be to consider the moving

time between two tasks (sjk). In our experiments, we have used a constant time, but the

scheduler agent could generate better schedules if the real moving time was considered.

The problem with these flexible moving times is that they are different from one task

pair to another. Therefore, this complicates the scheduling problem, which is already

NP-Hard. Using better estimations for the moving times could be a first step to improve

the schedules.

Bibliography

Aberdeen, D. (2003a). A (revised) survey of approximate methods for solving par-

tially observable markov decision processes. Technical report, National ICT Australia.

Aberdeen, D. and Baxter, J. (2002). Scaling Internal-State Policy-Gradient Methods

for POMDPs. In Proceedings of the Nineteenth International Conference on Machine

Learning, pages 3–10, Sydney, Australia.

Aberdeen, D. A. (2003b). Policy-Gradient Algorithms for Partially Observable

Markov Decision Processes. PhD thesis, The Australian National University.

Abul, O., Polat, F., and Alhajj, R. (2000). Multiagent Reinforcement Learning Using

Function Approximation. IEEE Transactions on Systems, Man, and Cybernetics -

Part C: Application and Reviews, 30(4).

Acuna, E. and Rodriguez, C. (2004). The Treatment of Missing Values and its Effect

in the Classifier Accuracy. In Banks, D., House, L., McMorris, F., Arabie, P., and

Gaul, W., editors, Classification, Clustering and Data Mining Applications, pages

639–648, Berlin-Heidelberg. Springer-Verlag.

Agogino, A. K. and Tumer, K. (2005). Multi Agent Reward Analysis for Learning

in Noisy Domains. In Proceedings of the Fourth International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS-05), pages 81–88, Utrecht,

Netherlands.

Ahmadi, M., Sayyadian, M., and Habibi, J. (2002). A Learning Method for Evaluat-

ing Messages in Multi-Agent Systems. In Proceedings of the Agent Communication

Languages and Conversation Policies, AAMAS’02 Workshop, Bologna, Italy.

Astrom, K. J. (1965). Optimal Control of Markov Decision Processes with Incomplete

State Estimation. Journal of Mathematical Analysis and Applications, 10:174–205.

Becker, R., Zilberstein, S., Lesser, V., and Goldman, C. V. (2003). Transition-

Independent Decentralized Markov Decision Processes. In Proceedings of the Sec-

ond International Joint Conference on Autonomous Agents and Multi Agent Systems

(AAMAS-03), pages 41–48, Melbourne, Australia. ACM Press.

BIBLIOGRAPHY 175

Berenji, H. R. and Vengerov, D. A. (1999). Cooperation and Coordination Be-

tween Fuzzy Reinforcement Learning Agents in Continuous-State Partially Observ-

able Markov Decision Processes. In Proceedings of the 8th IEEE International Con-

ference on Fuzzy Systems (FUZZ-IEEE’99).

Berenji, H. R. and Vengerov, D. A. (2000). Learning, Cooperation, and Coordination

in Multi-Agent Systems. Technical Report IIS-00-10, Intelligent Inference Systems

Corp.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The Complex-

ity of Decentralized Control of Markov Decision Processes. Mathematics of Operations

Research, 27(4):819–840.

Bernstein, D. S., Hansen, E. A., and Zilberstein, S. (2005). Bounded Policy Iteration

for Decentralized POMDPs. In Proceedings of the 19th International Joint Conference

on Artificial Intelligence (IJCAI-05), Edinburgh, Scotland.

Bertsekas, D. P. (2001). Dynamic Programming and Optimal Control, volume 2.

Athena Scientific.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena

Scientific.

Beynier, A. and Mouaddib, A. (2005). A Polynomial Algorithm for Decentralized

Markov Decision Processes with Temporal Constraints. In Proceedings of the Fourth

International Autonomous Agents and Multiagent Systems Conference (AAMAS-05),

Utrecht, Netherlands.

Beynier, A. and Mouaddib, A.-I. (2004). Non-Communicative DEC-MDP for coop-

erative Multi-agent systems. In Proceedings of the ECAI Workshop on Multi-Agent

Decision Processes : Theories and Models.

Blazewick, J. (2001). Scheduling computer and manufacturing processes. Springer.

Bonarini, A. and Trianni, V. (2001). Learning Fuzzy Classifier Systems for Multi-

Agent Coordination. Information Sciences, 136:215–239.

Bonet, B. (2002). An Epsilon-Optimal Grid-Based Algorithm for Partially Observ-

able Markov Decision Processes. In Proceedings of The Nineteenth International

Conference on Machine Learning (ICML-2002), pages 51–58.

Boutilier, C. (1996). Planning, Learning and Coordination in Multiagent Decision

Processes. In Proceedings of TARK-96: Theoretical Aspects of Rationality and Knowl-

edge, De Zeeuwse Stromen, Hollande.

BIBLIOGRAPHY 176

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic Dynamic Pro-

gramming with Factored Representations. Artificial Intelligence, 121:49–107.

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996). Context-Specific

Independance in Bayesian Networks. In Proceedings of the Twelfth Conference on

Uncertainty in Artificial Intelligence (UAI-96), pages 115–123, Portland, OR.

Boutilier, C. and Poole, D. (1996). Computing Optimal Policies for Partially Ob-

servable Decision Processes Using Compact Representations. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence (AAAI-96), pages 1168–

1175, Portland, OR.

Boyen, X. and Koller, D. (1998). Tractable Inference for Complex Stochastic Pro-

cesses. In In Proceedings of the Fourteenth Conference on Uncertainty in Artificial

Intelligence, pages 33–42.

Brafman, R. I. (1997). A Heuristic Variable Grid Solution Method for POMDPs.

In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97),

pages 76–81, Providence, Rhode Island. AAAI Press / MIT Press.

Braziunas, D. and Boutilier, C. (2004). Stochastic local search for pomdp controllers.

In The Nineteenth National Conference on Artificial Intelligence (AAAI-04).

Brenner, M., Kleiner, A., Exner, M., Degen, M., Metzger, M., Nussle, T., and Thon, I.

(2005). ResQ Freiburg: Deliberative Limitation of Damage. In Nardi, D., Riedmiller,

M., and Sammut, C., editors, RoboCup-2004: Robot Soccer World Cup VIII, Berlin.

Springer Verlag.

Brucker, P. (2001). Scheduling Algorithms. Springer.

Buffet, O. (2000). Apprentissage par renforcement dans un système multi-agents.

Master’s thesis, Université Henri Poincarré - Nancy I.

Bui, H. H., Venkatesh, S., and Kieronska, D. (1998). A Framework for Coordination

and Learning among Team of Agents. Lecture Notes in Computer Science, 1441.

Caruana, R. (2001). A Non-Parametric EM-Style Algorithm for Imputing Missing

Values. In Proceedings of the Artificial Intelligence and Statistics.

Cassandra, A., Littman, M. L., and Zhang, N. L. (1997). Incremental Pruning: A

Simple, Fast, Exact Method for Partially Observable Markov Decision Processes.

In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence

(UAI-97), pages 54–61.

Cassandra, A. R. (1998). Exact and approximate algorithms for partially observable

markov decision processes. PhD thesis, Brown University.

BIBLIOGRAPHY 177

Chalkiadakis, G. and Boutilier, C. (2003). Coordination in Multiagent Reinforce-

ment Learning: A Bayesian Approach. In Proceedings of the Second International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-03), Mel-

bourne, Australia.

Chapman, D. and Kaelbling, L. P. (1991). Learning from delayed reinforcement in

a complex domain. In Proceedings of the Twelfth International Joint Conference on

Artificial Intelligence.

Cheng, H. (1988). Algorithms for Partially Observable Markov Decision Processes.

PhD thesis, University of British Columbia - School of Commerce.

Chrisman, L. (1992). Reinforcement Learning with Perceptual Aliasing: The Percep-

tual Distinctions Approach. In Proceedings of the National Conference on Artificial

Intelligence, pages 183–188.

Claus, C. and Boutilier, C. (1998). The Dynamics of Reinforcement Learning in

Cooperative Multiagent Systems. In Proceedings of the 15th National Conference on

Artificial Intelligence (AAAI-98), pages 746–752, Madison.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley.

Crites, R. H. and Barto, A. G. (1998). Elevator Group Control Using Multiple

Reinforcement Learning Agents. Machine Learning, 33(2-3):235–262.

Dean, T. and Kambhampati, S. (1996). Planning and Scheduling. In Tucker, A. B.,

editor, The CRC Handbook of Computer Science and Engineering, pages 614–636.

CRC press.

Dean, T. and Kanazawa, K. (1989). A Model for reasoning About Persistence and

Causation. Computational Intelligence, 5(3):142–150.

Decker, K. S. and Lesser, V. R. (1993). Quantitative Modeling of Complex En-

vironments. International Journal of Intelligence Systems in Accounting, Finance,

and Management, 2(4):215–234. Special issue on Mathematical and Computational

Models of Organizations: Models and Characteristics of Agent Behavior.

Dietterich, T. G. (1998). The MAXQ Method for Hierarchical Reinforcement Learn-

ing. In Proceedings of the International Conference on Machine Learning, pages

118–126, San Francisco.

Dixon, J. K. (1979). Pattern Recognition with Partly Missing Data. IEEE Transac-

tions on Systems, Man, and Cybernetics, 9:617–621.

BIBLIOGRAPHY 178

Doshi, P. and Gmytrasiewicz, P. (2005). Approximating State Estimation in Multia-

gent Settings using Particle Filters. In In Proceedings of the Fourth International Au-

tonomous Agents and Multiagent Systems Conference (AAMAS-05), Utrecht, Nether-

lands.

Durfee, E. H. (1999). Distributed Problem Solving and Planning. In Weiss, G.,

editor, Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence,

chapter 3, pages 121–164. The MIT Press, Cambridge, MA.

Dutech, A. (2000). Solving POMDPs Using Selected Past Events. In Proceedings of

the European Conference on Artificial Intelligence (ECAI-2000), Berlin.

Dutech, A., Buffet, O., and Charpillet, F. (2001). Multi-Agent Systems by Incremen-

tal Gradient Reinforcement Learning. In Proceedings of the Seventeenth International

Joint Conference on Artificial Intelligence IJCAI-01, pages 833–838, Seattle.

Dutech, A. and Samuelides, M. (2003). Apprentissage par renforcement pour les

processus décisionnels de markov partiellement observés. Revue d’Intelligence Artifi-

cielle, 17(4).

Estlin, T., Gaines, D., Fisher, F., and Castano, R. (2005). Coordinating Multiple

Rovers with Interdependent Science Objectives. In Proceedings of the Fourth In-

ternational Autonomous Agents and Multiagent Systems Conference (AAMAS-05),

Utrecht, Netherlands.

Excelente-Toledo, C. B. and Jennings, N. R. (2002). Learning to Select a Coordi-

nation Mechanism. In Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS-02), Bologna, Italie.

Excelente-Toledo, C. B. and Jennings, N. R. (2004). The Dynamic Selection of

Coordination Mechanisms. Journal of Autonomous Agents and Multi-Agent Systems,

9(1-2):55–85.

French, S. (1982). Sequencing and Scheduling. Wiley.

Garland, A. and Alterman, R. (2001). Learning Procedural Knowledge to Better

Coordinate. In Proceedings of the Seventeenth International Joint Conference on

Artificial Intelligence IJCAI-01, pages 1073–1083, Seattle.

Garland, A. and Alterman, R. (2004). Autonomous Agents that Learn to Better

Coordinate. Autonomous Agents and Multi-Agent Systems, 8(3):267–301.

Garland, A. E. (2000). Learning to Better Coordinate in Joint Activities. PhD thesis,

Brandeis University.

BIBLIOGRAPHY 179

Geffner, H. and Bonet, B. (1998). Solving Large POMDPs Using Real Time Dynamic

Programming. Working notes. Fall AAAI symposium on POMDPs.

Ghavamzadeh, M. and Mahadevan, S. (2002). A Multiagent Reinforcement Learning

Algorithm by Dynamically Merging Markov Decision Processes. In Proceedings of the

First International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS-02), Bologna, Italie.

Ghavamzadeh, M. and Mahadevan, S. (2004). Learning to Communicate and Act

using Hierarchical Reinforcement Learning. In Proceedings of the Third International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2004),

pages 1114–1121, New-York.

Ghavamzadeh, M., Mahadevan, S., and Makar, R. (2005). Hierarchical Multiagent

Reinforcement Learning. Submitted to the Journal of Autonomous Agents and Multi-

Agent Systems.

Gmytrasiewicz, P. and Doshi, P. (2005). A Framework for Sequential Planning in

Multi-Agent Settings. Journal of Artificial Intelligence Research, 24:49–79.

Goldman, C. V. and Zilberstein, S. (2004). Decentralized Control of Cooperative

Systems: Categorization and Complexity Analysis. Journal of Artificial Intelligence

Research, 22:143–174.

Gonzalez, M. J. (1977). Deterministic processor scheduling. ACM Computing Sur-

veys, 9(3):173–204.

Grudzinski, K. and Duch, W. (2000). SBL-PM: A Simple Algorithm for Selection

of Reference Instances for Similarity Based Methods. In Proceedings of Intelligent

Information Systems (IIS-2000), pages 99–108. Physica Verlag (Springer).

Hansen, E. A. (1997). An Improved Policy Iteration Algorithm for Partially Observ-

able MDPs. In Tenth Neural Information Processing Systems Conference (NIPS-97),

Denver, Colorado.

Hansen, E. A. (1998). Solving POMDPs by Searching in Policy Space. In Four-

teenth Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 211–219,

Madison, Wisconsin.

Hansen, E. A. and Feng, Z. (2000). Dynamic Programming for POMDPs Using a

Factored State Representation. In Proceedings of the Fifth International Conference

on Artificial Intelligence Planning Systems, pages 130–139, Breckenridge, CO.

BIBLIOGRAPHY 180

Hansen, E. A. and Zhou, R. (2003). Synthesis of Hierarchical Finite-State Controllers

for POMDPs. In Proceedings of the 13th International Conference on Automated

Planning and Scheduling (ICAPS-03), Trento, Italy.

Hauskrecht, M. (1997). Incremental Methods for Computing Bounds in Partially

Observable Markov Decision Processes. In Proceedings of the Fourteenth National

Conference on Artificial Intelligence (AAAI-97), pages 734–739.

Hauskrecht, M. (2000). Value-Function Approximations for Partially Observable

Markov Decision Processes. Journal of Artificial Intelligence Research, 13:33–94.

Haynes, T. and Sen, S. (1998). Learning cases to resolve conflicts and improve group

behavior. International Journal of Human-Computer Studies, 48:31–49.

Hoey, J., St-Aubin, R., Hu, A., and Boutilier, C. (1999). SPUDD: Stochastic Planning

Using Decision Diagrams. In Proceedings of the Fifteenth Conference on Uncertainty

in Artificial Intelligence (UAI-99), pages 279–288, Stockholm.

Horling, B. and Lesser, V. (1999). Using Diagnosis to Learn Contextual Coordination

Rules. In Proceedings of the AAAI-99 Workshop on Reasoning in context for AI

Applications, pages 70–74.

Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness.

Research Report 43, Management Science, University of California, Los Angeles, CA.

James, M. and Singh, S. (2004). Learning and Discovery of Predictive State Rep-

resentations in Dynamical Systems With Reset. In Proceedings of the Twenty First

International Conference on Machine Learning (ICML-2004), Banff, Canada.

Jensen, D., Atighetchi, M., Vincent, R., and Lesser, V. (1999). Learning Quantitative

Knowledge for Multiagent Coordination. In 16th National Conference on Artificial

Intelligence (AAAI-99), pages 24–31, Orlando.

Jones, A. and Rabelo, J. (1998). Survey of job shop scheduling techniques. Technical

report, National Institute of Standards and Technology, Gaithersburg, MD.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and Acting

in Partially Observable Stochastic Domains. Artificial Intelligence, 101.

Kapetanakis, S. and Kudenko, D. (2002). Reinforcement Learning of Coordination

in Cooperative Multi-Agent Systems. In Proceedings of the 19th National Conference

on Artificial Intelligence (AAAI-02).

BIBLIOGRAPHY 181

Karim, S. and Heinze, C. (2005). Experiences with the Design and Implementation

of an Agent-based Autonomous UAV Controller. In Proceedings of the Fourth In-

ternational Autonomous Agents and Multiagent Systems Conference (AAMAS-05),

pages 19–26, Utrecht, Netherlands.

Kearns, M., Mansour, Y., and Ng, A. Y. (2000). Approximate Planning in Large

POMDPs via Reusable Trajectories. In Solla, S., Leen, T., and Muller, K.-R., editors,

Advances in Neural Information Processing Systems 12. MIT Press.

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A Sparse Sampling Algorithm

for Near-Optimal Planning in Large Markov Decision Processes. Machine Learning,

49(2-3):193–208.

Kitano, H. (2000). Robocup rescue: A grand challenge for multi-agent systems. In

Proceedings of ICMAS 2000, Boston, MA.

Kitano, H., Tadokor, S., Noda, H., Matsubara, I., Takhasi, T., Shinjou, A., and

Shimada, S. (1999). Robocup-rescue: Search and rescue for large scale disasters as a

domain for multi-agent research. In Proceedings of the IEEE Conference on Systems,

Man, and Cybernetics (SMC-99).

Kleiner, A., Brenner, M., Brauer, T., Dornhege, C., Gobelbecker, M., Luber, M.,

Prediger, J., Stuckler, J., and Nebel, B. (2006). Successful Search and Rescue in

Simulated Disaster Areas. In Noda, I., Jacoff, A., Bredenfeld, A., and Takahashi, Y.,

editors, RoboCup-2005: Robot Soccer World Cup IX. Springer Verlag, Berlin.

Kleiner, A., Brenner, M., Bräuer, T., Dornhege, C., Göbelbecker, M., Luber, M.,

Prediger, J., and Stückler, J. (2005). Resq freiburg: Team description and evaluation.

In Nardi, D., Riedmiller, M., and Sammut, C., editors, RoboCup-2004: Robot Soccer

World Cup VIII. Springer Verlag.

Koch, E. (2002). Simulation multiagent de situations d’urgence dans le cadre de la

RobocupRescue. Master’s thesis, Facultés Universitaires Notre Dame de la Paix.

Koenig, S. (2001). Agent-Centered Search. AI Magasine, 22(4):109–131.

Lawer, E., Lenstra, J., and Kan, A. R. (1982). Recent developments in deterministic

sequencing scheduling : A servey. Deterministic and Stochastic Scheduling, pages

35–74.

Littman, M. L. (1994a). Markov Games as a Framework for Multi-Agent Reinforce-

ment Learning. In Proceedings of the Eleventh International Conference on Machine

Learning, pages 157–163, San Francisco, CA. Morgan Kaufmann.

BIBLIOGRAPHY 182

Littman, M. L. (1994b). The witness algorithm: Solving partially observable markov

decision processes. Technical Report CS-94-40, Brown University.

Littman, M. L. (1996). Algorithms for Sequential Decision Making. PhD thesis,

Brown University.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Learning Policies for

Partially Observable Environments: Scaling Up. In Proceedings of the 12th Interna-

tional Conference on Machine Learning (ICML-95).

Littman, M. L., Sutton, R. S., and Singh, S. (2001). Predictive Representation of

State. In Proceedings of Advances in Neural Information Processing Systems (NIPS-

2001), Vancouver.

Lovejoy, W. S. (1991). Computationally Feasible Bounds for POMDPs. Operations

Research, 39(1).

Makar, R., Mahadevan, S., and Ghavamzadeh, M. (2001). Hierarchical Multi-Agent

Reinforcement Learning. In Proceedings of the Fifth International Conference on

Autonomous Agents (Agents-2001), pages 246–253, Montreal, Canada.

Mali, A. D. and Kambhampati, S. (1999). Distributed Planning. In The Encyclopae-

dia of Distributed Computing. Kluwer Academic Publishers.

Malone, T. W. and Crowston, K. (1994). The Interdisciplinary Study of Coordination.

ACM Computing Surveys, 26(1).

Mataric, M. J. (1994). Interaction and Intelligent Behavior. PhD thesis, Mas-

sachusetts Institute of Technology.

Mataric, M. J. (1997). Learning Social Behavior. Robotics and Autonomous Systems,

20:191–204.

McAllester, D. and Singh, S. (1999). Approximate Planning for Factored POMDPs

using Belief State Simplification. In Proceedings of the 15th Annual Conference on

Uncertainty in Artificial Intelligence (UAI-99), pages 409–416, San Francisco, CA.

Morgan Kaufmann Publishers.

McCallum, A. K. (1996). Reinforcement Learning with Selective Perception and Hid-

den State. PhD thesis, University of Rochester, Rochester, New-York.

Meuleau, N., Kim, K.-E., Kaelbling, L. P., and Cassandra, A. R. (1999a). Solving

POMDPs by searching the space of finite policies. In Proceedings of the Fifteenth

Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 417–426, San

Francisco. Morgan Kaufmann.

BIBLIOGRAPHY 183

Meuleau, N., Peshkin, L., Kim, K.-E., and Kaelbling, L. P. (1999b). Learning Finite-

State Controllers for Partially Observable Environments. In Proceedings of the Fif-

teenth Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 427–436,

San Francisco. Morgan Kaufmann.

Mitchell, T. M. (1997). Machine Learning. MIT Press and The McGraw-Hill Com-

pagnies, Inc.

Monahan, G. E. (1982). A Survey of Partially Observable Markov Decision Processes:

Theory, Models and Algorithms. Management Science, 28(1-16).

Moore, A. W. (1993). The parti-game algorithm for variable resolution reinforcement

learning in multidimensional state spaces. In Proceedings of Advances of Neural

Information Processing Systems (NIPS 6), pages 711–718. Morgan Kaufmann.

Moore, J. (1968). An n job, one machine sequencing algorithm for minimizing the

number of late jobs. Management Sci., 15:102–109.

Morring, B. D. and Martinez, T. R. (2004). Weighted Instance Typicality Search

(WITS): A Nearest Neighbor Data Reduction Algorithm. Intelligent Data Analysis,

8(1):61–78.

Murphy, K. P. (2000). A Survey of POMDP Solution Techniques. Technical report,

U.C. Berkeley.

Nair, R., Tambe, M., and Marsella, S. (2003). Team Formation for Reformation

in Multiagent Domains like RoboCupRescue. In Kaminka, G., Lima, P., and Roja,

R., editors, Proceedings of RoboCup-2002 International Symposium, Lecture Notes in

Computer Science. Springer Verlag.

Nilsson, N. (1980). Principles of Artificial Intelligence. Tioga Publishing.

Noda, I. (2001). Rescue Simulation and Location-based Communication Model. In

Proc. of SCI-2001.

Norman, M. G. and Thanisch, P. (1993). Models of machines and computation for

mapping in multicomputers. ACM Computing Surveys, 25(3):263–302.

Nourbakhsh, I., Sycara, K., Koes, M., Yong, M., Lewis, M., and Burion, S. (2005).

Human-Robot Teaming for Search and Rescue. In IEEE Pervasive Computing: Mo-

bile and Ubiquitous Systems, pages 72–78.

Ohta, M., Takahashi, T., and Kitano, H. (2001). RoboCup-Rescue Simulation: in

case of Fire Fighting Planning. In Stone, P., Balch, T., and Kraetzschmar, G., editors,

RoboCup 2000, volume 2019 of Lecture Notes in Artificial Intelligence, pages 351–356.

Springer-Verlag.

BIBLIOGRAPHY 184

Panait, L. and Luke, S. (2003). Cooperative Multi-Agent Learning: The State of

the Art. Technical Report GMU-CS-TR-2003-1, Department of Computer Science,

George Mason University.

Papadimitriou, C. and Tsitsiklis, J. N. (1987). The complexity of markov decision

processes. Mathematics of Operations Research, 12(3):441–450.

Paquet, S. (2001). Coordination de plans d’agents: Application à la gestion des

ressources d’une frégate. Master’s thesis, Université Laval.

Paquet, S., Bernier, N., and Chaib-draa, B. (2004a). Comparison of Different Coor-

dination Strategies for the RoboCupRescue Simulation. In Proceedings of The 17th

International Conference on Industrial and Engineering Applications of Artificial In-

telligence and Expert Systems (IEA/AIE 2004), volume 3029 of Lecture Notes in

Artificial Intelligence, pages 987–996, Ottawa, Canada. Springer-Verlag.

Paquet, S., Bernier, N., and Chaib-draa, B. (2004b). Selective Perception Learning

for Tasks Allocation. In AAMAS-04 Workshop on Learning and Evolution in Agent

Based Systems, New York.

Paquet, S., Bernier, N., and Chaib-draa, B. (2005a). Multiagent Systems Viewed as

Distributed Scheduling Systems: Methodology and Experiments. In Proceedings of

the Eighteenth Canadian Conference on Artificial Intelligence (AI-2005), Victoria,

Canada.

Paquet, S., Tobin, L., and Chaib-draa, B. (2005b). An Online POMDP Algorithm for

Complex Multiagent Environments. In Proceedings of The fourth International Joint

Conference on Autonomous Agents and Multi Agent Systems (AAMAS-05), Utrecht,

The Netherlands.

Paquet, S., Tobin, L., and Chaib-draa, B. (2005c). Prise de Décision en Temps-réel

pour des POMDPs de Grande Taille. Revue d’intelligence artificielle: numéro spécial

- Décision et planification dans l’incertain.

Parr, R. and Russel, S. (1995). Approximating Optimal Policies for Partially Observ-

able Stochastic Domains. In Proceedings of the fourteenth International Joint Con-

ference on Artificial Intelligence (IJCAI-95), pages 1088–1094, Montreal, Canada.

Morgan Kauffman.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann.

Pineau, J. (2004). Tractable Planning Under Uncertainty: Exploiting Structure. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA.

BIBLIOGRAPHY 185

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based value iteration: An

anytime algorithm for pomdps. In Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI-03), pages 1025–1032, Acapulco, Mexico.

Pinedo, M. (1995). Scheduling: Theory, Algorithms and Systems. Prentice Hall.

Poole, D. (1993). Probabilistic Horn Abduction and Bayesian Networks. Artificial

Intelligence, 64(1):81–129.

Poole, D. (1997). Probabilistic Partial Evaluation: Exploiting Rule Structure in

Probabilistic Inference. In Proceedings of the Fifteenth International Joint Conference

on Artificial Intelligence (IJCAI-97), pages 1284–1291, Nagoya, Japan.

Poupart, P. (2005). Exploiting Structure to Efficiently Solve Large Scale Partially

Observable Markov Decision Processes. PhD thesis, University of Toronto.

Poupart, P. and Boutilier, C. (2001). Vector-Space Analysis of Belief-State Approx-

imation for POMDPs. In Proceedings of the Seventeenth Conference on Uncertainty

in Artificial Intelligence (UAI-2001), pages 445–452, Seattle.

Poupart, P. and Boutilier, C. (2003a). Bounded Finite State Controllers. In Advances

in Neural Information Processing Systems 16 (NIPS-2003), Vancouver, Canada.

Poupart, P. and Boutilier, C. (2003b). Value-Directed Compression of POMDPs.

In Proceedings of Advances in Neural Information Processing Systems (NIPS-2003),

volume 15.

Prasad, M. N., Lesser, V., and Lander, S. (1996). Learning Organizational Roles

in a Heterogeneous Multi-Agent System. In Proceedings of the Second International

Conference on Multiagent Systems, pages 291–298.

Prasad, M. V. N. (1997). Learning Situation-Specific Control in Multi-Agent Systems.

PhD thesis, University of Massachusetts Amherst.

Prasad, M. V. N. and Lesser, V. R. (1999). Learning Situation-Specific Coordination

in Cooperative Multi-agent Systems. Autonomous Agents and Multi-Agent Systems,

2(2):173–207.

Pyeatt, L. D. and Howe, A. E. (1995). Decision tree function approximation in

reinforcement learning. Technical Report TR CS-98-112, Colorado State University,

Fort Collins, Colorado.

Quinlan, J. R. (1993a). C4.5 Programs for Machine Learning. Morgan Kaufmann,

San Mateo, CA.

BIBLIOGRAPHY 186

Quinlan, J. R. (1993b). Combining instance-based and model-based learning. In

Proceedings of the Tenth International Conference on Machine Learning, pages 236–

243, Amherst, Massachusetts. Morgan Kaufmann.

RoboCup (2003). RoboCup Official Site. [Online]. http://www.robocup.org (Page

visited on february 23, 2003).

Ron, D., Singer, Y., and Tishby, N. (1994). Learning probabilitic automata with

variable memory length. In Proceedings of Computational Learning Theory. ACM

press.

Rosencrantz, M., Gordon, G., and Thrun, S. (2004). Learning Low Dimentional Pre-

dictive Representations. In Proceedings of the Twenty First International Conference

on Machine Learning (ICML-2004), Banff, Canada.

Roy, N. (2003). Finding Approximate POMDP Solutions Through Belief Compres-

sion. PhD thesis, Carnegie Mellon University.

Roy, N. and Gordon, G. (2003). Exponential Family PCA for Belief Compression

in POMDPs. In Proceedings of Advances in Neural Information Processing Systems

(NIPS-2003), volume 15, pages 1043–1049.

Rudary, M. and Singh, S. (2003). A Nonlinear Predictive State Representation.

In Proceedings of Advances in Neural Information Processing Systems (NIPS-2003),

Vancouver.

Russel, S. and Norvig, P. (2003). Artificial Intelligence A Modern Approach. Pearson

Education, Upper Saddle River, New Jersey, second edition.

Sallans, B. (2000). Learning Factored Representations for Partially Observable

Markov Decision Processes. In Proceedings of Advances in Neural Information Pro-

cessing Systems (NIPS-2000), pages 1050–1056, Denver.

Sallans, B. (2002). Reinforcement Learning for Factored Markov Decision Processes.

PhD thesis, University of Toronto.

Sen, S. and Sekaran, M. (1998). Individual Learning of Coordination Knowledge.

Journal of Experimental and Theoretical Artificial Intelligence, 10:333–356. (special

issue on Learning in Distributed Artificial Intelligence Systems).

Sen, S., Sekaran, M., and Hale, J. (1994). Learning to coordinate without sharing

information. In Proceedings of the National Conference on Artificial Intelligence,

pages 426–431.

http://www.robocup.org

BIBLIOGRAPHY 187

Sen, S. and Weiss, G. (2000). Learning in Multiagent Systems. In Weiss, G., ed-

itor, Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence,

chapter 6, pages 259–298. MIT press.

Shehory, O. and Kraus, S. (1998). Methods for task allocation via agent coalition

formation. Artificial Intelligence, 101(1-2):165–200.

Singh, S., James, M., and Rudary, M. (2004). Predictive State Representations: A

New Theory for Modeling Dynamical Systems. In Proceedings of the Twenty First

International Conference on Machine Learning (ICML-2004), Banff, Canada.

Singh, S., Littman, M., Jong, N., Pardoe, D., and Stone, P. (2003). Learning Predic-

tive State Representations. In Proceedings of the Twentieth International Conference

on Machine Learning (ICML-2003).

Smallwood, R. D. and Sondik, E. J. (1973). The Optimal Control of Partially Observ-

able Markov Processes over a Finite Horizon. Operations Research, 21(5):1071–1088.

Smith, D. E., Frank, J., and Jonsson, A. K. (2000). Coordination of multiple agents

in distributed manufacturing scheduling. In The Fifth International Conference on

Artificial Intelligence Planning and Scheduling, pages 61–94.

Smith, S. F. (1994). Reactive scheduling systems. Intelligent Scheduling Systems,

pages 155–192.

Smith, T. and Simmons, R. (2004). Heuristic search value iteration for pomdps. In

Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence(UAI-04),

Banff, Canada.

Smith, T. and Simmons, R. (2005). Point-based POMDP Algorithms: Improved

Analysis and Implementation. In Proceedings of the 21th Conference on Uncertainty

in Artificial Intelligence(UAI-05), Edinburgh, Scotland.

Sondik, E. J. (1971). The Optimal Control of Partially Observable Markov Processes.

PhD thesis, Stanford University.

Sondik, E. J. (1978). The Optimal Control of Partially Observable Markov Processes

Over the Infinite Horizon: Discounted Costs. Operations Research, 26(2).

Spaan, M. T. J. and Vlassis, N. (2004). A Point-Based POMDP Algorithm for Robot

Planning. In In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2399–2404, New Orleans, Louisiana.

Spaan, M. T. J. and Vlassis, N. (2005). Perseus: Randomized Point-based Value

Iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195–220.

BIBLIOGRAPHY 188

Stone, P. and Veloso, M. (1999). Team-Partitioned, Opaque-Transition Reinforce-

ment Learning. In Asada, M. and Kitano, H., editors, RoboCup-98: Robot Soccer

World Cup II, volume 1604 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

Sugawara, T. and Lesser, V. (1995). Learning Coordination Plans in Distributed

Problem-Solving Environments. In Proceedings of the First International Conference

on Multiagent Systems (ICMAS-95).

Sugawara, T. and Lesser, V. R. (1998). Learning to Improve Coordinated Actions

in Cooperative Distributed Problem-Solving Environments. Machine Learning, 33(2-

3):129–153.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences.

Machine Learning, 3:9–44.

Sutton, R. S. and Barto, A. G. (1999). Reinforcement Learning. MIT press.

Tadkoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Shinjoh, A., Koto,

T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayama, M., Ohta, M., Tayama, M.,

Matsui, T., Kaneda, T., Chiba, R., Takeuchi, K., Nobe, J., Noguchi, K., and Kuwata,

Y. (2000). The RoboCup-Rescue: an IT challenge to emergency response problem in

disaster. In Industrial Electronics Society, 2000. IECON 2000. 26th Annual Confer-

ence of the IEEE. IEEE.

Takahashi, T., Tadokoro, S., Ohta, M., and Ito, N. (2002). Agent Based Approach in

Disaster Rescue Simulation - From Test-Bed of Multiagent System to Practical Appli-

cation. In Birk, A., Coradeschi, S., and Tadokoro, S., editors, RoboCup 2001, volume

2377 of Lecture Notes in Artificial Intelligence, pages 102–111. Springer-Verlag.

Tan, M. (1993). Multi-Agent Reinforcement Learning: Independant vs. Cooperative

Agents. In Proceedings of the Tenth International Conference on Machine Learning,

pages 330–337.

Taylor, M. E. and Stone, P. (2005). Behavior Transfer for Value-Function-Based Re-

inforcement Learning. In The Fourth International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS-2005), pages 53–59.

Thrun, S. (2000). Monte Carlo POMDPs. In Proceedings of Advances in Neural

Information Processing Systems (NIPS-2000), volume 12, pages 1064–1070.

Tumer, K., Agogino, A. K., and Wolpert, D. H. (2002). Learning Sequences of Actions

in Collectives of Autonomous Agents. In Proceedings of the First International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS-02), Bologna,

Italie.

BIBLIOGRAPHY 189

Uther, W. T. B. and Veloso, M. M. (1998). Tree based discretization for continuous

state space reinforcement learning. In Proceedings of the Fifteenth National Confer-

ence on Artificial Intelligence, pages 769–774, Menlo Park, CA. AAAI-Press/MIT-

Press.

Varakantham, P., Maheswaran, R., and Tambe, M. (2005). Exploiting Belief Bounds:

Practical POMDPs for Personal Assistant Agents. In In Proceedings of the Fourth

International Autonomous Agents and Multiagent Systems Conference (AAMAS-05),

Utrecht, Netherlands.

Vieira, G. E., Herrmann, J. W., and Lin, E. (2003). Rescheduling manufacturing

systems: a framework of strategies, policies, and methods. Journal of Scheduling,

6(1):35–58.

Vlassis, N. and Spaan, M. T. J. (2004). A fast point-based algorithm for POMDPs. In

Benelearn 2004: Proceedings of the Annual Machine Learning Conference of Belgium

and the Netherlands, pages 170–176, Brussels, Belgium. (Also presented at the NIPS-

16 workshop ‘Planning for the Real-World’, Whistler, Canada, Dec 2003).

Washington, R. (1997). BI-POMDP: Bounded, Incremental Partially-Observable

Markov-Model Planning. In Proceedings of the 4th European Conference on Planning,

volume 1348 of Lecture Notes in Computer Science, pages 440–451, Toulouse, France.

Springer.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.

Wolpert, D. and Tumer, K. (2000). An Introduction to Collective Intelligence. Tech-

nical Report NASA-ARC-IC-99-63, NASA Ames Research Center.

Xuan, P. and Lesser, V. (2002). Multi-agent policies: From centralized ones to decen-

tralized ones. In Proceedings of the first international joint conference on Autonomous

agents and multiagent systems, pages 1098–1105. ACM Press.

Xuan, P., Lesser, V., and Zilberstein, S. (2001). Communication decisions in multi-

agent cooperation: Model and experiments. In Proceedings of the Fifth International

Conference on Autonomous Agents, pages 616–623.

Xuan, P., Lesser, V., and Zilberstein, S. (2004). Modeling Cooperative Multiagent

Problem Solving as Decentralized Decision Processes. Autonomous Agents and Multi-

Agent Systems. (under review).

Zhang, N. L. and Liu, W. (1996). Planning in Stochastic Domains: Problem Char-

acteristics and Approximation. Technical Report HKUST-CS96-31, Department of

Computer Science, Hong Kong University of Science and Technology.

BIBLIOGRAPHY 190

Zhang, N. L. and Zhang, W. (2001). Speeding Up the Convergence of Value Iteration

in Partially Observable Markov Decision Processes. Journal of Artificial Intelligence

Research, 14:29–51.

Zhou, R. and Hansen, E. A. (2001). An Improved Grid-Based Approximation Algo-

rithm for POMDPs. In Proceedings of the Seventeenth International Joint Conference

on Artificial Intelligence (IJCAI-2001), pages 707–716.

Appendix A

Notations

This appendix defines the different symbols used in the equations presented in each

chapter of this thesis.

A.1 Notations for Chapter 2

• nA: the number of living agents.

• H : the remaining number of health points (HP) of all agents.

• Hini: the total number of HP of all agents at the beginning.

• Bini: total buildings’ area at the beginning of the simulation.

• B: the undestroyed buildings’ area.

A.2 Notations for Chapter 3

• S: the set of all the environment states.

• A: the set of all possible actions.

• T (s, a, s′): the transition function, which gives the probability of ending in state

s′ if the agent performs action a in state s, Pr(s′|s, a).

• R(s, a): the reward function which gives the reward associated with doing action

a in state s.

• γ: the discount factor (0 < γ ≤ 1).

Appendix A. Notations 192

• Ω: the set of all possible observations.

• O(s′, a, o): the observation function which gives the probability of observing o if

action a is performed and the resulting state is s′, Pr(o|a, s′).

• ht: the agent’s history at time t.

• at: the action made by the agent at time t.

• ot: the observation perceived by the agent at time t.

• st: the state of the agent at time t.

• bt(s): the belief state at time t for the state s. In other words, the probability of

being in state s according to belief state bt.

• π: the agent’s policy (π∗ is the optimal policy).

• π(b): the action prescribed by the policy π in the belief state b.

• Γ: the set of all possible policies.

• V (b): the value function, which returns the expected reward if the agent is in

belief state b.

• τ(b, a, o): the belief update function, which returns the new belief state if the

agent performs action a in belief state b and perceives o.

• Q(a, b): the expected reward of taking action a in the belief state b.

• RB(b, a): the reward for being in belief state b and doing action a.

• ω(b): the number of possible states for a specified belief state b.

• M : the number of variables describing a state.

• α(a, b, o): returns all reachable states considering: the current belief state b, the

action performed a and the observation perceived o.

• D: the maximal depth of the online search.

• δ(b, d): returns an estimation of the value of being in belief state b by performing

a search of depth d.

• U(b): the estimated utility of belief state b.

• π(b, D): the agent’s online policy. Returns the action that has the best expected

value evaluated with a search of depth D.

Appendix A. Notations 193

• RTBSS(b, d): the estimated value of belief state b returned by the algorithm

RTBSS with a search of depth d.

• Rmax and Rmin: the maximum and the minimum possible rewards respectively for

a given problem.

• Vmax and Vmin: the maximum and the minimum expected rewards respectively for

a given problem.

A.3 Notations for Chapter 4

• D: the set of all possible task descriptions.

• N : the number of available agents.

• R: the reward function that gives the reward if a task is accomplished.

• T : the transition function that gives the probability to go from one task descrip-

tion to another.

• it: an instance recorded at time t.

• dt: the task description at time t (dt ∈ D).

• nt: the number of agents that tried the task dt at time t.

• rt: the reward obtained at time t.

• l: a leaf of the search tree (represents a task description).

• Q(l): the expected reward if the agent tries to accomplish a task belonging to the

leaf l.

• R̂(l): the estimated immediate reward if a task that belongs to the leaf l is chosen.

• T̂ (l, l′): the estimated probability that the next instance would be stored in leaf l′

given that the current instance is stored in leaf l.

• Il: the set of all instances stored in leaf l.

• nl: the number of leaf nodes in the tree.

• sd(Il): the standard deviation on the instances’ expected rewards stored in leaf l.

• Ik: the subset of instances in Il that have the kth outcome for the potential test.

Appendix A. Notations 194

A.4 Notations for Chapter 5

• α: the machines’ environment.

• Pm: multi-machines environment where m represents the number of machines.

• β: the constraints and the characteristics of the problem.

• pj: the execution cost of the task j.

• dj: the deadline of the task j.

• sjk: the cost to change from task j to task k.

• γ: the optimization criterion.

•
∑

Cj: the sum of completion times of all tasks.

•
∑

Uj : the sum of unit penalty of all tasks.

• x: an instance for the KNN algorithm.

• ai(x): the value of the ith attribute of the instance x.

• n: the number of attributes per instance.

• d(xi, xj): the distance between two instances xi and xj .

• f̂(xq): the estimated class of the instance xq.

• V : the set of all possible classes for the classification function.

• C: the set of available attribute values in the instance to classify.

	Résumé
	Abstract
	Avant-propos
	Introduction
	RoboCupRescue Simulation
	Online POMDP Algorithm
	Task Allocation Learning
	Task Scheduling in Complex Multiagent Environments
	Contributions
	Outline

	RoboCupRescue
	RoboCupRescue Simulator
	RoboCupRescue Simulator Modules
	Time Management
	Simulation's Progress
	Evaluation Function
	Graphical Representation of the Simulation

	Rescue Agents
	Environment Complexity
	Multiagent Testbed

	Online POMDP Algorithm
	Literature Review
	POMDP Model
	Optimal Value Iteration Algorithm
	-vectors
	Example
	Complexity of the Optimal Value Iteration Algorithm

	Offline Approximation Algorithms
	Value Iteration Approaches
	Policy Iteration Approaches
	Value Function Approximations
	Reusable Trajectories
	Belief State Bounds

	Online Approximation Algorithms
	Online Search Approaches
	History-Based Approaches

	Factored POMDP

	Motivations
	Using the Factored Representation
	Online Decision Making
	Belief State Value Approximation
	RTBSS Algorithm
	Detailed Description
	Example
	Complexity
	Error Bounds

	Hybrid Approaches
	RTBSS-QMDP
	RTBSS-PBVI-QMDP
	RTDPBSS
	Proof of the Usefulness of a Hybrid Approach

	Experimentations
	Tag
	Description of the Tag Environment
	Results

	RockSample
	Environment Description
	Results

	Offline Computation Time

	Experimentations in RoboCupRescue
	RoboCupRescue viewed as a POMDP
	Application of RTBSS on RoboCupRescue
	Local Reward Function
	Results

	Discussion
	Advantages
	Disadvantages

	Contributions

	Task Allocation Learning
	Introduction
	Literature Review on Coordination Learning
	Coordination Learning via Reinforcement Learning
	Game Theory Test Environments
	Emergence of the Coordination
	Sharing Perceptions and Experiences
	Other Approaches

	Coordination Learning Using Execution Traces
	Other Learning Methods

	Tasks Allocation Learning: Our Motivations
	Application Domain
	Problem Definition
	Tree Construction
	Tree Structure
	Recording the Agents' Experiences
	Update of the Tree
	Add Instances
	Update Q-values
	Expand the Tree

	Use of the Tree
	Algorithm Characteristics

	Experiments
	Fire Areas Allocation
	Choice of Buildings on Fire

	Results and Discussion
	Contributions

	Task Scheduling in Complex Multiagent Environments
	A New Methodology for Task Scheduling in Complex Multiagent Environments
	First Step: Scheduling Problem Definition
	Second Step: Scheduler Type Definition
	Third Step: Scheduling Algorithm Definition

	Application to the RoboCupRescue Environment
	First Step: Scheduling Problem Definition
	Second Step: Scheduler Type Definition
	Centralized Scheduler
	Decentralized Scheduler

	Third Step: Scheduling Algorithm Definition
	Earliest Due Date Algorithm
	Hodgson's Scheduling Algorithm
	Scheduling Strategies
	Rescheduling Strategy

	Learning Mechanism for the Estimation of the Civilian's Death Time
	K-Nearest-Neighbors: Introduction
	KNN for the RoboCupRescue

	Experimentations
	K-Nearest-Neighbors Experiments
	Centralized Versus Decentralized Scheduler
	First Experiment
	Second Experiment

	Centralized Versus Decentralized Execution
	Comparison With Another Team

	Contributions

	Conclusion
	Summary
	Online POMDP Algorithm
	Task Allocation Learning
	Task Scheduling in Complex Multiagent Environments

	Future Work
	Online POMDP
	Learning Task's Characteristics
	Scheduling

	Bibliographie
	Notations
	Notations for Chapter 2
	Notations for Chapter 3
	Notations for Chapter 4
	Notations for Chapter 5

