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Sommaire détaillé

Les derniéres années ont vu I'émergence des applications des nanotechnologies, alors
que dans un avenir proche il est raisonnable de prévoir que les nanotechnologies vont
pénétrer des domaines d'application principaux comme 1'énergie, les matériaux, les
dispositifs électroniques etc. Le développement explosif des nanotechnologies a été
animé par les progrés considérables accomplis dans la fabrication contrdlée et la

manipulation des nanostructures.

Découverts il y a quinze ans par Sumio Iijima [1] les nanotubes de carbone (NTC)
sont devenus rapidement les fanions de la nanotechnologie avec les nanoparticules,
les nanofils, les fullerenes et les couches moléculaires. Les nanotubes existent en
plusieurs variétés et peuvent étre classifiés par leur hélicité (appelée chiralité plus
tard), nombre de feuillets, la présence des pentagones-heptagones dans leur structure,
etc. La forme la plus simple est le nanotube de carbone monofeuillet (SWNT), qui
peut étre visualis¢ comme une feuille de graphite, ressemblant & un nid d'abeilles,

roulée dans un cylindre.

Si les nanotubes de carbone occupent le role qu'ils ont aujourdhui, cela est
exclusivement dii a leurs exceptionnelles propriétés structurales, mécaniques,
¢lectroniques et optiques. Du point de vue électronique, seul le changement de la
direction de roulement du graphite, a pour résultat des tubes métalliques ou semi-
conducteurs. Les tubes métalliques sont des conducteurs balistiques sur des longueurs
de l'ordre du micrométre, capables de ce fait de supporter trés efficacement des
courants sans perte de puissance par effet Joule. Ceci signifie également que les
nanotubes peuvent soutenir des densités de courant énormes. Les tubes semi-
conducteurs ont un bandgap dépendant de leur diamétre, et possédent des mobilités de

porteurs surpassant de loin ceux du matériel archétypal de 1'¢lectronique, le silicium.
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En se rapportant aux propriétés mécaniques, les nanotubes de carbone sont souvent
appelés "les fibres ultimes"; ils sont aussi durs que le diamant. Néanmoins les
nanotubes restent flexibles grace a leur facteur d'aspect (rapport longueur-diametre)
¢levé. Ils peuvent aussi supporter des déformations de quelques pourcents tout en
restant élastiques. La liste de leurs avantages ne doit pas s'arréter ici, puisque les
nanotubes de carbone possedent des propriétés optiques, thermiques,

¢lectromécaniques et magnétiques également intéressantes.

Bien que de mieux en mieux contrdlée, la synthése des nanotubes de carbone
implique des mécanismes qui ne sont pas parfaitement compris a l'heure actuelle.
Cette chaine manquante est directement responsable de l'incapacité de synthétiser des
nanotubes avec des propriétés contrdlés, et est probablement la raison principale pour
laquelle les NTC ne sont pas employés sur une plus grande échelle. Toutefois des
progres géants sont faits chaque jour dans la synthése [3, 4, 5], la functionalization [6,
7, 8], la solubilisation [9, 10] et le triage [11, 12] des nanotubes. Etant donné cette
tendance, il est raisonnable d'extrapoler que dans les années a venir il sera possible
d'avoir des nanotubes avec des propriétés bien controlées, aux colts inférieurs,

engendrant une pléthore d'applications.

Hormis ceci, un aspect essentiel laisse envisager la conception des dispositifs a base
de nanotubes est l'accord toujours meilleur entre les prévisions théoriques et les
données expérimentales. Comme note latérale, c'est par des calculs théoriques simples
que la nature métallique-semiconducteur des nanotubes, leurs modules de Young et
les transitions optiques ont été prédits dés tout début. Tandis qu'une partie importante
des efforts de recherches sur les NTC se concentre sur 1'amélioration des techniques
de fabrication et de manipulation, une autre partie augmente sans interruption la
compréhension physique des nanotubes, et d'autres essayent de développer des

applications.

Une courte analyse de l'activité de brevetage sur des applications a base de nanotubes
de carbone indique que les zones principales sont occupées par I'émission de champ,
le stockage d'énergie, les composites, la nanoélectronique, les capteurs et les
actionneurs, etc. Dans chacune de ces applications possibles les nanotubes sont loin
de réaliser leur potentiel. D'ailleurs d'autres applications sont rajoutées a cette liste

chaque jour. Nous pouvons alors sans risque dire que le secteur de recherches



s.3. Sommaire détaillé

d'applications a base de nanotubes est toujours dans sa petite enfance offrant

beaucoup d'occasions de développement.

Dans cette thése nous nous sommes focalisés sur l'application possible des nanotubes
de carbone dans la détection biochimique ayant une vraie importance pour les
biotechnologies, la médecine et méme pour la défense et la sécurité. Notre but
principal est d’avancer les modeles théoriques des nanotubes et de les employer en
tant qu'outils prédictifs, non pas dans le but de calculer des propriétés fondamentales,
mais plutoét pour concevoir des potentiels dispositifs d'intérét pratique. De ce fait, le
modele général de cette thése consiste a proposer des dispositifs de captage et a les
modeler et les simuler comme preuve de concept, parfois doublée par des assertions

de faisabilité basées sur des modeles semblables expérimentalement prouvés.

Valider théoriquement des dispositifs potentiels est évidemment le choix le moins
coliteux dans un contexte ou la manipulation des nanotubes est encore limitée, lente et
par conséquence colteuse. Ceci ne signifie pas nécessairement qu'on doive accepter la
validité¢ des calculs sans y réfléchir, au moins dans les approximations grossieres
parfois utilisées. Dans cette situation une idée serait d'établir des mode¢les théoriques
suffisamment rapides et précis au moins a un premier ordre. Si le dispositif proposé
s’avérait opérationnel en théorie il pourrait alors étre pratiquement réalisé et
caractérisé, rapportant des données qui pourraient étre employées pour améliorer les
modeles théoriques. Un avantage additionnel de la simulation est l'intuition gagnée

dans les mécanismes intimes d'opération d'un dispositif.

Parfois les modéeles utilisés dans cette thése peuvent sembler plutot simples au lecteur,
et en effet ils le sont. Cependant on doit se rappeler que le grand nombre d'atomes
qu'un dispositif de captage typique peut avoir est un goulot d'étranglement important.
Le probléme récurrent dans cette thése est une certaine dépendance carrée ou cubique
dans le nombre d'atomes qui peut rendre la simulation intraitable. Bien que le but des
nanotechnologies soit de miniaturiser des dispositifs et de diminuer ainsi le nombre
d'atomes, il existe souvent des simulations qui impliquent 10° atomes ou méme plus.
Le stockage d'une matrice ayant 10°x10°=10"" éléments est cotiteux mais ce n'est rien
comparé au temps de calcul nécessaire pour inverser ou diagonaliser une telle matrice
qui exigerait (10°)’ opérations. Ceci explique les différentes approches numériques

que nous avons été forcés d'adopter pour résoudre les différents problémes.
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Nous proposons deux architectures différentes de capteur dans cette thése. Le premier
capteur implique un principe électromécanique et peut étre utilisé pour mesurer des
forces faibles de quelques piconewtons ou des masses de quelques zeptograms. Le
deuxieéme capteur est basé sur les changements de conductance qu'un nanotube de
carbone éprouverait une fois exposé aux acides aminés aromatiques. Les deux

dispositifs ont des applications intéressantes dans la détection biochimique.

Le contenu de cette these est divisé en cinq chapitres. Le Chapitre I présente une
bréve introduction a la structure et aux propriétés des nanotubes de carbone. Des
¢léments cristallographiques de base comme les vecteurs de translation, la premicre
zone de Brillouin etc. sont établis a partir de ceux du graphite. La structure
¢lectronique du graphene basé¢ sur le modele classique de liaisons fortes sera
employée pour arriver a la structure de bande des nanotubes en imposant des
conditions aux limites périodiques. Nous avons insisté ici a présenter seulement ces
propriétés qui sont relevantes pour cette thése, a savoir les propriétés de transport de
charge et les propriétés mécaniques. Les sections correspondantes contiennent a part
des prévisions théoriques, des mesures expérimentales qui généralement sont en bon

accord avec la théorie.

Dans le Chapitre II nous détaillons la théorie de transport quantique dans les
nanostructures pour le cas général des dispositifs multi-terminaux. Les deux capteurs
a base de nanotubes mentionnés ci-dessus ont une sortie intégralement électrique (un
courant typiquement) et ce chapitre servira ainsi de base théorique pour tous les
calculs de transport rencontrés en Chapitre III et Chapitre V. Nous avons choisi
d'arriver au formalisme de transport de Landauer-Biittiker a partir de la base
rigoureuse des fonctions de Green de non-équilibre a plusieurs corps. Ainsi le chemin
général que ce chapitre suit est une série d'hypothéses appliquées au cas général afin
de simplifier la théorie vers des modeles qui sont a la fois numériquement traitables et
qui approximent suffisamment bien les propriétés de transport dans les nanotubes de
carbone. Car nous emploierons souvent des bases vectorielles non-orthogonales dans
nos calculs, nous verrons a la fin de ce chapitre les changements nécessaires pour

adapter la théorie de transport a cette situation.

La premiere contribution de cette thése se trouve dans le Chapitre III qui contient un

ensemble des calculs théoriques que nous avons effectués afin de valider le principe
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d'opération d'un capteur électromécanique a base de nanotubes de carbone. Le
dispositif proposé est une croix de nanotubes dans laquelle un tube joue le rdle de
poutre, se pliant sous les forces externes, et 1'autre le role de support mécanique et de
potentiometre transformant la flexion de la poutre en une différence de courant
¢lectrique. La mesure des forces, aussi basses que quelques piconewtons, est
démontrée avec ce dispositif par des calculs de mécanique moléculaire. Nous
montrons ¢également dans ce chapitre qu'a température ambiante, la caractéristique
flexion-courant est monotone. Par conséquent le dispositif proposé peut étre employé
comme capteur. Dans une autre configuration, basée sur le changement de fréquence
de résonance libre de la poutre, nous prouvons que le méme dispositif peut détecter
théoriquement des corps moléculaires pesant quelques kilodaltons, la masse d'une
petite protéine comme le streptavidin l'est. Ainsi ce dispositif est trés utile dans la

spectroscopie de masse et la détection biochimique.

Dans le Chapitre IV nous développons l'appareil de flots matriciels continus qui est
un ¢lément clé pour les calculs de transport du Chapitre V. Bien que cette théorie ait
été¢ développée par Moody Chu, notre contribution a été de l'appliquer et de 1'étendre
pour ¢étudier des problemes de transport quantique. Ce chapitre est plutot
mathématique par essence et essaye d'introduire des notions d'analyse fonctionnelle
comme l'espace de Hilbert de matrices et les dérivés de Fréchet, et d'établir également
un paralléle avec 1'espace de Hilbert de I'équation de Schrodinger qui est plus familier
aux physiciens. Une fois que ces concepts sont mis en place la théorie des flots
matriciels est illustrée par deux exemples. Tandis que le premier est utilisé seulement
pour familiariser le lecteur avec les ingrédients de base de cette théorie, le second a
des applications pratiques importantes et sera employée dans le Chapitre V. Ce
deuxieme exemple est une méthode qui permet de "fagonner" une paire généralisée de
matrices comme les matrices Hamiltoniennes et de recouvrement, tout en préservant
leur spectre. En ce qui concerne la théorie de Chu nous l'avons étendue pour

augmenter la flexibilité de "fagonnage" en modifiant la fonction objectif.

Méme si les Chapitres II et IV pourraient étre fusionnés dans un seul chapitre
théorique, pour la clarté nous avons choisi d'inclure avant chaque type de capteur la
théorie nécessaire pour comprendre le chapitre correspondant. Ainsi toute la théorie a

la base du Chapitre III se trouve dans II et pour le Chapitre V se trouve dans II et
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IV, découpant de ce fait la thése en deux parties indépendantes groupées autour des

deux capteurs.

La validation du deuxiéme capteur fait I'objet du Chapitre V et est la deuxieme
contribution principale de cette thése. Dans ce chapitre nous avons essay¢ de répondre
a la question de savoir si les capteurs de conductance a base de nanotubes de carbone
pourraient détecter les quatre acides aminés aromatiques: Histidine, Phénylalanine,
Tryptophane et Tyrosine. Car les dispositifs réalistes de nanotube de carbone ont un
grand nombre d'atomes, il est extrémement difficile de réaliser des calculs auto-
cohérents dans la pratique, et nous avons ainsi choisi une approche alternative. Les
quatre acides aminés sont étudiés sur une couche simple de graphene. Puis, un
procédé basé sur les flots matriciels décrits en Chapitre I'V est employé pour obtenir
les matrices efficaces de Hamiltonien et de recouvrement qui préservent une bonne
fidélité spectrale autour du niveau de Fermi, une condition nécessaire pour des calculs
de transport. Avec ce modele minimal nous pourrons calculer efficacement la

conductance des capteurs a base de nanotubes de carbone considérablement grands.
Chapitre I - Nanotubes de carbone: Structure et propriétés

Ce chapitre offre une vue d'ensemble de la structure et des propriétés des nanotubes
de carbone. La terminologie et la physique de base sont développées pour servir au
reste de cette thése qui se concentre sur des dispositifs a base de nanotubes de
carbone. Ici nous avons choisi seulement ceux parties de la théorie de nanotubes qui
sont fondamentaux pour la compréhension des chapitres suivants. Pour une vue
d'ensemble de la théorie de nanotubes de carbone nous renvoyons le lecteur aux
Références 13, 14, 15. Un autre but de ce chapitre est d'offrir un certain ensemble de
données expérimentales qui viendront en support, et seront référencées dans les

chapitres suivants.

Les ¢éléments de base de la cristallographie des nanotubes sont le sujet de la Section 1,
qui commence avec le graphite et la graphene qui facilitent la visualisation de la
structure des nanotubes, et 1'obtention d'une approximation de premier ordre de leurs
propriétés électroniques et mécaniques. La cellule unit¢é d'un nanotube peut étre
regardée comme une super-cellule de graphene qui s'avérera extrémement utile pour
le calcul de la structure de bande et des densités des états de nanotubes monofeuillets.

Pour ces nanotubes toutes les propriétés structurales comme le diametre, les
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Figure 1. La cellule unité d'un nanotube (4, 2) délimitée par le
rectangle OADB. Le tube est obtenu en pliant AD sur OB. Les
cercles gris représentent les atomes inéquivalents du tube.

dimensions de la cellule unité et le nombre d'atomes, sont dépendantes d'un seul

vecteur, le vecteur chiral, défini par deux nombres entiers.

Dans la Section 2, les propriétés électroniques des nanotubes monofeuillet sont
dérivées de ceux du graphene dans une approximation de liaisons-fortes. La plupart
des dérivations détaillées dans la Section 2 suivent de prés la Référence 13. La
technique de "zone-folding" est appliquée dévoilant la quantification du vecteur
transversal d'onde dans les nanotubes de carbone et la célébrée nature métallique ou

semi-conductrice des nanotubes selon leur vecteur chiral.

Les régimes principaux de la théorie mésoscopique de transport sont briévement
rappelés dans la Section 3, afin d'identifier les échelles relevantes de temps et
longueur pour les nanotubes de carbone. Nous passons en revue des résultats
expérimentaux des régimes de transport dans les NTC. Un certain nombre
d'excellentes revues sont disponibles a ce sujet [16, 17, 18, 19]. Pour les nanotubes
métalliques on a constaté que le libre-parcours moyen typique peut atteindre quelques

micrometres, alors que les bandgaps des tubes semi-conducteurs sont conformes aux
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Figure 2. Quelques structures des nanotubes de carbone en vue latérale (haut)
et axiale (bas). De gauche a droite (12, 0) est un zigzag (8, 4) un chiral et
(6, 6) un nanotube armchair.

prévisions théoriques. Des problémes liés aux barrieres de Schottky, ou plus
généralement aux contacts nanotubes-métaux, sont étudiés a la fin de cette section,
ainsi que l'influence enduite par dopage ou défauts sur des propriétés de transport des
nanotubes.

Dans la Section 4 nous tournons notre attention vers les propriétés mécaniques des
nanotubes pour lesquelles il y a un certain nombre d'excellentes revues [16, 20, 21].
D'abord une succincte étude des méthodes computationnelles disponibles pour la
simulation de nanotube est offerte. Pour les nanotubes, la théorie a initialement prévu
des modules de Young énormes, mais une recherche plus minutieuse a établi qu'a la
base de ces résultats il y avait la définition inappropriée de I'épaisseur de la paroi.
Enfin, les résultats théoriques et expérimentaux des propriétés mécaniques des NTC
comme le module de Young, la rigidité de flexion et torsion, etc. sont énumérés a la

fin de ce chapitre.
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La structure d'un nanotube de carbone peut étre regardée comme le résultat de
l'enroulement d'une feuille de graphene dans un cylindre. Par rapport a la Figure 1
ceci signifie de joindre les segments AD et OB. Lors de l'inspection, "l'enroulement"
de la feuille de graphene peut étre réalisé le long de différentes directions ayant pour
résultat une grande variété de structures tubulaires. Quelques exemples de nanotubes
sont donnés dans la Figure 2. Dans la Section 2 nous prouvons que la direction

d'enroulement a un rapport avec les propriétés électroniques du nanotube résultant.

La structure d'un nanotube de carbone est uniquement déterminée par un seul vecteur
appelé vecteur chiral et marqué C, sur la Figure 1, qui par le procédé d'enroulement
décrit ci-dessus, devient la circonférence du tube. Le vecteur chiral peut étre exprimé
en fonction des vecteurs de translation de graphene avec l'aide de deux nombres
entiers (n,m) . Les tubes qui ont » = m sont connus comme "armchair", ceux qui ont
m = 0 comme "zigzag", et tous les autres tubes sont appelés génériquement nanotubes
"chiraux". D'autre part I'axe du tube est parallele & un deuxieme vecteur appelé

vecteur de translation et marqué T .

La structure de bandes des nanotubes de carbone monofeuillet peut étre obtenue dans
une premicre approximation a partir des relations de dispersion du graphene, en
imposant des conditions de bord périodiques le long du vecteur chiral C,. Dans
l'espace réciproque, le vecteur d'onde li¢ a C, se quantifie, alors que ceux associés au
vecteur de translation T restent continus pour les tubes de longueur infinie. Ces
considérations sont équivalentes a I'échantillonnage des relations de dispersion du
graphene le long du K, , aux p translations consécutives le long du K, a partir de

I', produisant la structure de bandes des nanotubes:

K
e, (k) =¢,, [k”K_2||+pK1 (1)
2

Les structures de bande d'un nanotube métallique (10, 10) et d'un semi-conducteur

(14, 0) sont présentées dans la Figure 3 avec leur densité d'états correspondante.

Pour les NTCs métalliques un développement de la surface de Fermi autour de
n'importe lequel des six points spéciaux K, rapporte une vitesse de Fermi
Vi ~10°m/s, indépendante de la chiralité. Ainsi, dans I'absence de la diffusion

¢lectronique, la conductance intrinseque d'un tube métallique devrait étre 2G, (ou
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Figure 3. (haut) Structures de bandes pour un nanotube métallique (10, 10) et
un tube semi-conducteur (14, 0), et (bas) leur densité des états correspondante.

G, =2¢*/h est le quantum de conductance) car il y a deux canaux ouverts au niveau
de Fermi, chacun ayant une conductibilit¢ G,. D'autre part les NTCs semi-
conducteurs ont un bandgap E, ~(0.9eV)/d,, ou d, est le diamétre du tube en

nanometres.

L'hybridation sp> du carbone produit le lien covalent le plus dur en nature. Une feuille
de graphene a un module de Young prés de 1TPa, qui a été prévu et plus tard
démontré d'étre le méme pour les nanotubes. La Section 4 couvre les propriétés
mécaniques de base des nanotubes de carbone monofeuillet a partir des prévisions
théoriques et finalisant par des mesures expérimentales. On ne considére pas les
propriétés de vibrations. Dans cette thése nous nous sommes intéressés
principalement aux propriétés élastiques "macroscopiques" comme la flexion et plus
généralement la déformation des nanotubes, qui peuvent étre caractérisés avec l'aide
des quantités classiques de la théorie d'élasticité comme le module de Young, la

rigidité, le stress et ainsi de suite.
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A la base de la rigidité du graphite sont les liaisons fortes o, faiblement aidées par les
liaisons . Comme le stress axial est principalement transformé dans une déformation
des liaisons G et de leurs angles, une résistance considérable a la déformation axiale
doit étre prévue. Au contraire, les stress normaux sur la surface du tube ne déforment
pas les hexagones considérablement, ayant pour résultat une souplesse relativement
¢levée dans cette direction. En fait, les feuillets d'un NTC peuvent méme collapser
ensemble si le stress est suffisamment grand. Sous un stress axial, les nanotubes de
carbone supportent des déformations de 5-10%. Celles-ci, cumulées avec leur rigidité

et élasticité, ont mené divers auteurs a les appeler les fibres ultimes.
Chapitre II - Théorie du transport dans les nanostructures

Le but de ce chapitre est de présenter le formalisme a la base des calculs modernes de
transport dans les nanostructures, le formalisme des fonctions de Green de non-
équilibre (NEGF). La théorie de transport résultante est construite sur les fondements
rigoureux des statistiques quantiques de non-équilibre. NEGF donne acces aux
densités et aux courants de particules sous des champs forts et interactions fortes,
¢tant de ce fait plus général que la théorie de la réponse linéaire de Kubo. Par
plusieurs hypotheéses de simplification, NEGF rameéne au formalisme de Landauer-
Biittiker largement appliqué, qui devrait étre utilisé seulement dans le régime cohérent
de transport. Bien que ce soit ce dernier formalisme que nous employons dans cette
these, nous avons décidé qu'au lieu de donner une dérivation phénoménologique de la
valeur moyenne du courant de particules, il serait préférable de commencer par sdes
statistiques quantique de non-équilibre et de simplifier la théorie jusqu'au modele

utilisé.

Dans la Section 1, la théorie générale de transport NEGF dans les nanostructures sera
détaillée. Nous commencerons par pointer les formules de statistiques quantiques
d'équilibre pour calculer les valeurs moyennes des opérateurs dans le grand ensemble
canonique. Pour des opérateurs a un corps, il est cependant plus efficace d'évaluer les
fonctions de Green, qui contiennent suffisamment d'information pour calculer les
moyennes d'opérateurs a un-corps. Puis I'image de non-équilibre est présentée, ce qui
menera a l'extension des fonctions de Green a leurs versions ordonnées sur contour.
Pour des raisons pratiques ces fonctions de Green sont projetées sur 1'axe réel a 1'aide

des regles de continuation de Langreth, qui introduisent les fonctions de Green moins
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(plus) et retardées (avangées). D'ici a la fin de la premiére section nous suivrons de
pres les dérivations de Jauho en établissant les équations de transport non élastiques
[67, 68]. La valeur moyenne du courant est obtenue a partir de la définition de
I'opérateur courant dans le contexte général a plusieurs corps, a l'exception des
contacts métalliques qui admettent une description de champ moyen. A la fin de cette
section l'application de I'hypothése selon laquelle les contacts restent en équilibre
méme apres "le couplage" des champs externes et interactions, aura comme résultat la

formule de Meir-Wingreen [69].

La Section 2 traitera de la situation du transport élastique, qui, comme indiquée plus
tot, est la théorie de choix pour les calculs de cette these. La formule de Fisher-Lee
[70], une extension de la formule a un canal de Landauer, est dérivée de la valeur
moyenne du courant de Meir-Wingreen, précédemment obtenue, en ajoutant
I'hypothése que dans la région centrale les électrons n'interagissent pas. Cette
supposition transforme le probléme de transport en un probléme de champ moyen a
un corps, pour lequel des méthodes efficaces de calcul peuvent étre congus (voir le
Chapitre III et le Chapitre V.) La formule de transmission de Fisher-Lee est
transformée en formule de Todorov [71] démontrant que le formalisme de Landauer-
Biittiker est une théorie de diffusion élastique. Nous finirons cette section et le
chapitre en considérant les ensembles de base non-orthogonaux, qui sont d'intérét
principal puisque la plupart des modeles hamiltoniens, soit des liaisons fortes soit ab
initio, emploient de telles bases pour des raisons d'efficacité. Nous prouverons que la
théorie de transport reste inchangée si les différentes matrices décrivant le formalisme

satisfait certaines regles de représentation.

Des phénomenes de transport au dela de la théorie de la réponse linéaire ne peuvent
pas étre modelés seulement par des fonctions de Green d'équilibre. Heureusement il
existe une extension du formalisme d'équilibre au régime de réponse non linéaire, qui
est basée sur la fonction de Green non-équilibre, également connue sous le nom de
formalisme de Keldysh-Kadanoff-Baym [74, 75].

GLIY =~i{T [ MY) ()

Ce formalisme suppose que pour ¢ < ¢, le systéme est en équilibre thermodynamique

décrit par un hamiltonien I:IO. Commengant par #,, des couplages entre des sous-
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ensembles décrits par une interaction dépendante du temps V(t) sont introduites. Ce
dernier terme d'interaction peut contenir, en plus des couplages de sous-ensembles, un
champ externe dépendant du temps. Ainsi pour ¢>f, le systtme n'est plus en
équilibre et ne peut pas correctement &tre décrit par la fonction de Green de
Matsubara. Cependant, car I'état du systéme a été connu avant ¢#,, cet état peut étre
employé en tant que condition initiale et étre formellement intégré en utilisant
'opérateur d'évolution temporelle. Dans des suppositions générales, cette intégration

est équivalente a une intégration ordonnée sur contour.

Bien qu'un outil formel puissant, la fonction de Green ordonnée sur contour est

remplacée dans la pratique par les quatre fonctions de Green en temps réel

G (L1 =i(J' (1)) (3.2)
G (11 = —i(PP' ") (3.b)
¢ 11 =8¢ {{IM.PD)) @
Ga=iod (s} @a

appelées les fonctions de Green moins, plus, retardées et avancées respectivement.
Les définitions (3.c-d) contiennent [I'anti-commutateur {21,]%} =AB+BA. La
fonction de Green (avangée) retardée peut étre interprétée comme l'amplitude de
probabilité quantique pour annihiler un électron (trou) de spin ¢’ a (r’,#') sachant
qu'un électron (trou) de spin o a été créé plus tot a (r,¢) . Réciproquement la fonction
de Green moins (plus) est la densité résolue en énergie des €lectrons (trous). Il n'est
pas difficile de prouver que G<(1,1') contient toute l'information nécessaire pour

calculer n'importe quelle moyenne d'opérateur a un corps,
y i A < !
<A(1)> = —ilim AG (LT) (4

y compris la densité de particules et l'opérateur de courant. Ainsi, a l'aide de la
machinerie des fonctions de Green de non-équilibre (NEGF), a partir de la définition

de la moyenne du courant de particules,

1,(=-2¢:0,(N,)= —2e-at§;é;wéw - —%QHN ]> 5)
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une formule compacte est obtenue

@ TS TS

I k dEZ( (E)G (E)-%;, (E)G; (E))=

B poopt’

2e p+ < > > < (6)
-2 [T AETHE(E)G (B)— X (E)G(E)

Cette formule simple indique qu'afin d'obtenir le courant a travers une région on doit
simplement calculer la trace des taux résolus en énergie de dispersion-dans moins de

dispersion-de.

Si le terminal « reste en équilibre thermique avec le potentiel chimique, méme aprés
que le couplage hamiltonien ait ét¢ allumé, alors les fonctions de Green moins (plus)
en (6) peuvent étre remplacées par leur version d'équilibre pour obtenir la bien connue

formule de Meir-Wingreen [69].
B %f:o dETr|L (E)iG™(E)+ f(E— )T (E)AE)| (1)

L'approximation des électrons indépendants dans la région centrale implique que les

seules self-énergies a inclure sont celles des contacts, qui résultent dans

=2 [T (B E-n) - FE-p )= L )

!
l = a =

7, (E)= Tr[ra(E)G"(E)ra,(E)Ga(E)] 8.b)

connue comme la formule de Fisher-Lee. Cette formule sera employée dans toute
cette thése particulierement dans le Chapitre III et le Chapitre V pour le calcul des
courants de particules ou la transmission des dispositifs a base de nanotubes de
carbone. Comme montré dans le chapitre précédent, des mesures expérimentales
indiquent un couplage faible électron-phonon dans les nanotubes de carbone, a la
température ambiante pour des longueurs de <lpum. Ainsi pour des nanotubes de

carbone une région "centrale" non-inter-agissante est une approximation appropriée.

Une autre formule du courant de particules basée sur la théorie de dispersion a été
développée dans la Référence 71, a laquelle nous renvoyons le lecteur pour les

suppositions générales et la dérivation de cette formule. Ici nous prouvons
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I'équivalence exacte de la formule de Todorov a la formule de la Fisher-Lee (8). Cette
équivalence est intéressante pour deux raisons. D'abord elle prouve encore que la
formule de Fisher-Lee est valide pour le tunneling élastique seulement. Ensuite, la
formule de Todorov simplifie les manipulations algébriques que nous employons pour
montrer que dans une approximation de champ-moyen la valeur moyenne du courant
de particules est uniquement déterminée par les propriétés spectrales (c.-a-d. des
valeurs propres et des vecteurs propres) du hamiltonien autour du niveau de Fermi.

L'équivalence des deux formules est capturée dans la relation

o0

T, (E)=Tr [T (EYGL(E)T (E)Gi(E)] =
=Tr,[A,(E)t, (E)A (E)t, (E)']= (9
= 47" Tr, [p (E)t, . (E)p . (E)t, (E)']

Pour des raisons pratiques, le formalisme de transport, soit dans la dérivation de
Fisher-Lee soit dans celle de Todorov, doit étre étendue a des bases non-orthogonales.
La plupart des calculs modernes de transport sont faits avec des extensions des codes
de chimie quantiques [76, 79, 80], ou les combinaisons linéaires des orbitales
atomiques ou les ondes planes sont le choix typique. Les ondes planes ne satisfont pas
la supposition de localisation de I'espace réel, que nous avons employée en dérivant
les formules de transport de ce chapitre. Ainsi nous nous concentrons sur les orbitales
atomiques. A part leurs avantages évidentes les orbitales atomiques souffrent d'un
inconvénient, a savoir leur manque d'orthogonalité. Nous montrons comment la non-
orthogonalité peut étre simplement prise en considération, avec pratiquement aucune

modification, par une simple convention de représentation.

L'essence de la non-orthogonalit¢ est le fait que I'équation de Schrdédinger
H | ¢n> =¢,
de valeur propre généralisée H) )y, =¢, 1)y, < Hy, =¢ Sy, . Une autre équation

77/}”> peut assumer diverses formes matriciels, parmi lesquelles la forme

d'intérét est I'équation définissant la fonction de Green a un corps G(E )[Ef ~H } =7].
Cette équation peut aussi assumer différentes formes, mais nous employons

principalement une forme particuliére

G(E)y [Eln - Hu] =I; =1=G(E); = [Elu - Hu]il (10)
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La méme est valide pour tous les produits d'opérateur. Par exemple la trace d'un

opérateur dans une base non-orthogonale s'écrit

Trn[gl] = Zan :Z<an A an>: Z{an

v 1 —_—
v) A4, (iila,) =
n n nv,

= S ila ), )4 = S (Al) 4 = A =Y 4 =y

n,U, 280 U,

=Tr, [A;]=Tr[I;A ] = Tr[A;] = Tr[I;Ay]

En appliquant ces observations nous pouvons choisir une représentation utile pour la
trace de I'Equation (8.b)
,]:).',u/(E) =Tr [ra;ll (E)GE‘;TT (E)ra';ll (E)GZ';TT (E)] (12)

dans laquelle, l'intérieur de la trace, assume une représentation conformée a (11) et a
la fonction de Green (10). Ceci donne 1'idée qu'un formalisme cohérent (dans le sens
des représentations d'opérateurs) peut étre obtenu si on considére des hamiltoniens,
des self-énergies et des fonctions d'élargissement de niveau ( H,3,1) étre de type 11,
et des fonctions de Green, des densités des états et des fonctions spectrales (G, ﬁ,ﬁ)

de type TT, ainsi

(I:],i,f‘)ﬁ(H“sEu:Fll) (13a)

(é,ﬁala) — (Gyp.prmsAy) (13.b)

Ce sont les conventions que nous employons dans toute cette thése pour tous les

calculs de transport.

Chapitre III - Capteur électromécanique a base de NTC
pour la mesure des masses et forces

Un potentiel capteur ¢€lectromécanique a base des nanotubes de carbone est
théoriquement étudié¢ dans ce chapitre. Un tel dispositif n'a pas été expérimentalement
démontré. Cependant, un des buts de ce chapitre est de démontrer qu'un tel dispositif
fonctionnerait en conditions normales, et pourrait aussi étre fabriqué avec des
techniques actuelles de micro- et de nano-fabrication. A 1'aide de la modélisation et de
la simulation nous prouvons par la suite que le dispositif mentionné ci-dessus peut

mesurer des forces faibles de 1'ordre de dizaines de piconewtons (pN), ou avec des
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Figure 4. La représentation schématique du principe d'opération d'un capteur de
flexion a base de nanotubes de carbone, y compris la polarisation électronique.

modifications mineures il peut détecter des corps petits pesant des kilodaltons (kDa)
(zeptograms (zg)). Le méme dispositif peut étre utilisé de ce fait dans deux
configurations distinctes, une pour mesurer des forces, l'autre pour peser des petits
corps. Dans les deux configurations la sortie est un signal électrique, un courant
différentiel.

Nous commengons ce chapitre avec une section décrivant le principe d'opération du
dispositif central, nommé capteur de flexion, qui est commun au force-métre et a la
nanobalance. Puis les différences des deux configurations sont mises en évidence.
Quelques considérations pratiques sont énumérées a la fin de la Section 1 afin de
prouver qu'un tel dispositif peut étre réalisé expérimentalement. La Section 2 consiste
en I'évaluation du comportement mécanique et de la sensibilité du dispositif sous des
forces de l'ordre du pN. A cette fin un champ de force classique est paramétrisé par

des calculs ab initio. Par la suite la mécanique moléculaire est employée pour étudier
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Figure 5. Caractéristiques de énergie-deformation comme obtenues
avec SIESTA (DFT) et NAMD (CHARMM), respectivement. L'encart
détaille I'erreur autour de I'origine (les courbes ont été décalées pour
une meilleure visualisation).

la réponse du capteur a I'impulsion unité, rapportant des informations sur le frottement

et la stabilit¢ mécanique.

La Section 3 se concentre sur la transduction de la flexion de la poutre dans un signal
¢lectrique dans le régime de transport cohérent. Une méthode efficace basée sur le
partitionnement d'espace réel est développée afin de calculer la conductance multi-
terminaux de Landauer-Biittiker. Plusieurs questions liées a I'importance des effets
thermiques dans le fonctionnement du capteur sont traitées. Avec un procédé simple,
nous incluons des effets de température non-nulle par la dynamique moléculaire, dans
des calculs de conductance quantique. Ce procédé a comme conséquence une
caractéristique flexion-courant thermiquement liss€. Cette caractéristique montre un

comportement monotone et constitue la preuve-de-concept de notre dispositif.

Le mode d'opération de la nanobalance est caractéris¢é dans la Section 4 ou nous
¢tablissons qu'une seule molécule de streptavidin peut étre détectée; une sensibilité
sans précédent pour un dispositif électromécanique. Les simulations paramétriques
trouvées a la fin de cette section montrent une grande robustesse du capteur par
rapport aux parametres difficilement-controlables d'opération et de dispositif comme

la position de la molécule le long de la poutre et le rayon de cette dernicre.
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Figure 6. Différentes courbes concernant le comportement mécanique du capteur de
flexion (a) RMSD différentiel de tous les atomes de la poutre, (b) Flexion de la poutre
le long d'axe de z (d'un atome trouvé sur la pointe).

Bien que le capteur de mesure de force et la nanobalance différent par la maniére
d'actionnement, elles sont toutes les deux basées sur un dispositif central qui
transforme la déformation mécanique d'une poutre dans un signal électrique (illustré
dans la Figure 4). Ce dispositif implique deux nanotubes de carbone perpendiculaires,
c.-a-d. une croix des nanotubes. Trois des quatre extrémités des nanotubes sont fixées
aux contacts métalliques et le restant est libre pour se déplacer. C'est a cette dernicre
extrémité qu'une force de déformation sera appliquée. Du point de vue mécanique un
tube est une poutre et l'autre est un appui linéaire. L'appui est placé sous la poutre afin
de retenir son mouvement vertical, qui est nécessaire parce que les longs nanotubes

tendent a se plier et se coller au substrat, attirés par des forces de van der Waals.

A part la stabilité mécanique, les trois contacts métalliques servent de contacts
¢lectriques au dispositif. Dans cette thése nous adoptons une polarisation simple de
CC avec les deux bornes d'appui mises a +V (ou V est un certain potentiel) et la borne
de la poutre a -V. En équilibre, quand aucune force externe n'est appliquée sur la
poutre, les courants traversant les deux branches d'appui, devraient étre
approximativement égaux. Cependant si une force externe est appliquée, la flexion
¢lastique de la poutre, modifie la longueur et par conséquent le rapport des courants
des deux branches. C'est ce courant différentiel que nous "mesurons" afin d'obtenir la
flexion de la poutre. Brievement, le capteur est un potentiometre moléculaire dont la
mise en action pourrait étre effectuée par exemple par la motilité¢ cellulaire ou par

n'importe quelle autre excitation externe.
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La mesure des forces avec le capteur précédemment décrit n'exige aucune addition.
La flexion de la poutre est transformée en un courant différentiel qui est capturé par
I'¢lectronique d'interface. Le module et le signe de la force externe peuvent étre
obtenus en multipliant la constante élastique du systéme, par la flexion précédemment
déterminée. La deuxiéme application que nous avons trouvée pour notre capteur est la
pesée des petits corps ou la détection moléculaire. La transduction d'un événement de
liage moléculaire dans un signal électrique est basée sur la différence d'oscillation de
fréquence entre le mode fondamental d'une poutre libre contre la poutre avec un corps
attaché. En mesurant ce décalage de fréquence on pourrait obtenir des informations
précises sur la masse de corps joint qui pourrait étre une macromolécule, un virus ou
n'importe quelle autre petite particule. La détection de décalage de fréquence est

cependant suffisante pour donne une signature d'un événement de liage.

La deuxiéme section de ce chapitre est consacrée a la modélisation et simulation du
capteur de flexion. La Figure 5 montre les courbes d'énergie-déformation qui ont été
utilisées pour fitter les parametres du champ de force CHARMM utilisés dans toutes
les simulations de dynamique moléculaire (MD) de ce chapitre. Une fois que le
champ de force CHARMM a été correctement paramétré nous avons effectué
plusieurs simulations de MD pour mieux comprendre le comportement dynamique du
capteur de flexion. Dans la premicre simulation MD, la poutre, mesurant 36nm a été
poussée avec une force constante de 10pN également distribuée entre ses dix atomes

terminaux, l'autre extrémité du tube étant fixé.

Trois positions différentes du nanotube (5,5) d'appui, mesurant 20nm, ont été choisies
pour étudier l'influence du frottement; a 1/3, 1/2 et 2/3 du bord de la poutre. Par
opposition au cas de poutre libre, I'appui rajoute du frottement. Le travail mécanique
qui est effectué¢ pour déplacer la poutre contre le frottement, se transforme en chaleur

comme il peut étre observé dans le RMSD différentiel (Figure 6.)

La troisiéme section se concentre sur le comportement électrique du capteur lorsque
l'on essaie de montrer que la flexion de la poutre se transforme en courant différentiel
comme expliqué dans la Figure 4. Nous supposons qu'a la température zéro, le
tunnelage de la jonction est cohérent, ce qui n'est pas une supposition triviale. Nous
supposons également que la fluctuation thermique de la jonction se produit assez

lentement que I'électron reste cohérent dans tout son chemin, de la poutre jusqu'a
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Algorithme 1. Méthode rapide d'élimination pour calculer
les fonctions de Green de la jonction

LET K,=FES,—H,
G4 = K4_1 PoX, = K4JG4KZJ
LET K, _=ES,_—-H  FOR p=13

_ v ]! _ et
gpoc - [Knoo;OO _Knoo;OIgnocKnoo;Ol i Zpoo - KpoopgpooKpoop
LET K, =ES, —H, FOR p=13

—1

Gp = (Kp _ZDOO) i Zp = KLJGpKDJ

LET K, =ES,—-H,
-1
G,=(K,-%,-%,-X,-%,)

0o N o 1 A WD R

l'appui. L’effet tunnel assisté par des phonons est également ignoré dans ce
traitement. Cependant nous tenons compte de la température finie en prenant la
moyenne sur l'ensemble de positions nucléaires pour le calcul des courants de
branche. Prendre en compte la température finie dans nos calculs a été nécessaire
parce que, en pratique, notre capteur fonctionne a la température ambiante. De plus a
la température zéro dans le régime balistique le mécanisme de captage est non-

monotone et il n'a donc pas d'utilisation pratique.

La méthode que nous avons utilisée dans nos calculs de transport ressemble a celle
décrite dans la Reference 104. Cependant nous avons modifié cette technique pour
inclure des contacts multiples en présence de 1'effet tunnel a travers une jonction non-
covalente. Nous avons employé un hamiltonien de liaisons-fortes [105] seulement
pour les orbitales m, auxquels nous avons rajouté le facteur cosinus de Slater-Koster
pour expliquer le couplage inter-tube anisotrope. Une enveloppe exponentielle a été
¢galement considérée pour limiter le domaine d'interaction entre les atomes non-

covalents des deux tubes distincts.

Apres le remplissage de la matrice hamiltonienne, une méthode d'élimination rapide,
basée sur les self-énergies a été utilisée pour inverser une matrice de systéme
autrement importante. Bref, selon cette méthode des self-€énergies ont été propagées
des contacts vers la jonction. Pratiquement seules les fonctions de Green de la
jonction ont été¢ obtenues par inversion car son hamiltonien est dense par rapport aux

autres domaines ou l'interaction inter-tube pourrait étre négligée.
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Figure 7. Caractéristique globale courant-flexion du
capteur plus une ligne de régression linéaire.

Dans I'Algorithme 1, nous avons condensé¢ toutes les étapes qui permettent le calcul
des fonctions de Green de la jonction. Une fois que ces fonctions sont calculées, a une
énergie donnée, les transmissions entre les quatre extrémités différentes de la jonction

sont obtenues avec

T, (E)=Tr[T (E)YG,(E)T (E)G,(E)'|

Aprés le calcul des courants, nous avons convolué les valeurs trouvées pour les
différentes positions d'échantillonnage avec une fonction gaussienne qui donne la
courbe de la Figure 7. Cette figure parvient a montrer un accroissement global
monotone du courant différentiel entre les deux branches d'appui, validant le principe

d'opération du capteur de flexion.

Dans la dernieére section nous avons utilis¢ de nouveau la mécanique moléculaire
comme dans la Section 2 afin d'évaluer la réponse en fréquence du systéme, avec et
sans un corps moléculaire joint (streptavidin). L'appui a été placé au 2/3 de la
longueur de la poutre, plus prés de I'extrémité libre. Ces simulations montrent que le
capteur mécanique est suffisamment sensible pour détecter une seule molécule de
streptavidin, qui peése seulement quelques kDa. La réponse du capteur a cette
molécule a été une baisse de fréquence de quatre fois. Apres la validation réussie du
capteur mécanique par la mécanique moléculaire, nous avons poursuivi par une phase

de caractérisation du comportement du capteur en fonction des paramétres non
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Figure 8. La dépendance du mode fondamental de la position de molécule le long de
la poutre (gauche) et du rayon de la poutre (droit).

contrdlables de dispositif. Parmi ces paramétres, les plus importants sont la position
du streptavidin le long de la poutre et le rayon de cette derniére, puisque sa longueur
est plus ou moins contrdlable, et sa chiralité n'influence pas, a un premier ordre, son

module de flexion. Briévement nous avons fait une analyse de sensibilité.

Les résultats de ces analyses sont tracés dans la Figure 8. La figure gauche prouve
que si le streptavidin se colle au milieu de la poutre a la place de sa pointe, le décalage
de fréquence reste toujours d'au moins deux fois. Naturellement le capteur cesse de
détecter la molécule quand celle-ci se colle pres de l'extrémité fixée de la poutre. Le
deuxiéme graphique indique qu'en assumant une grande déviation du rayon du
nanotube (de 3.5 a 7.5A), le décalage de fréquence continue a étre important bien que
le décalage de fréquence relative défini comme Af/f, diminue moyennement de
77% a 66%. Nous avons ainsi trouvé un domaine extrémement étendu des conditions
d'opération et un décalage de fréquence impressionnant méme pour une protéine si
petite comme le streptavidin. Ainsi le capteur proposé est relativement peu sensible
aux fluctuations de fabrication le rendant extrémement appropri¢ a l'intégration a

grande échelle.
Chapitre IV - Flots matriciels et renormalisation

La puissante machinerie mathématique des flots matriciels continus est présentée dans
ce chapitre. Cette méthodologie a été proposée comme solution a une classe de
problémes de valeurs propres inverses et compte sur des transformations

infinitésimales de congruence agissant sur une paire de matrices dont le spectre
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devrait étre conservé [111]. A l'aide d'une fonction objectif spécialement congue, la
paire de matrices transformée peut étre attirée vers la structure affine déterminée.
Ainsi la théorie des flots matriciels permet de trouver une paire de matrices ayant un
ensemble donné de valeurs propres et étant la plus proche possible d'une structure
affine. Cette théorie sera employée dans le Chapitre V dans le contexte d'une
méthode de réduction d'ordre d'un modéle hamiltonien que nous avons proposée dans

le but de simplifier les calculs de transport quantiques dans les nanostructures.

Nous commengons ce chapitre avec une courte vue d'ensemble de l'analyse
fonctionnelle qui présente des matrices en tant que "vecteurs" ordinaires dans un
espace Hilbert, construit sur un sous-groupe de l'ensemble de matrices inversibles
plus le produit intérieur des matrices de Frobenius. Des fonctions des matrices et les
fonctionnelles linéaires sont présentées apres, suivies de la définition de la dérivée de
Fréchet. Le théoréme de représentation de Riesz-Fréchet, qui occupe un role central
dans le formalisme de ce chapitre, est énoncé. Ce théoréme fournit un moyen de

calculer le gradient d'une fonctionnelle de la dérivée de Fréchet.

La Section 1 est consacrée a la théorie des flots matriciels. Un simple flot est d'abord
détaillé afin de présenter au lecteur les diverses entités que cette théorie utilise, telles
que les surfaces iso-spectrales et affines, la fonction objectif comme distance entre ces
deux surfaces, des projecteurs affines, des gradients fonctionnels et le flot lui-méme
comme équation différentielle ordinaire (ODE). Ce flot est généralisé par la suite aux
paires des matrices, qui sont plus prés de notre contexte impliquant de valeurs propres
généralisées. Pour une flexibilité maximale nous généralisons également la fonction
objectif, du simple produit intérieur de Frobenius a une version pondérée de ce
produit. Une formule trés compacte résulte pour le gradient de la fonctionnelle qui
sera instantiée en Chapitre V. Nous finissons le chapitre courant en mentionnant
quelques perspectives et des développements ultérieurs pour la théorie des flots

matriciels.

Dans notre travail nous nous sommes seulement concentrés sur des matrices réelles
inversibles n xn , appartenant a un certain sous-groupe du groupe linéaire général, un
groupe de Lie d'ordre n”. Il est cependant trivial d'appliquer les résultats obtenus ici a
GL (K) défini par rapport a un corps générique K tels que le corps des nombres

complexes C.
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Un espace Hilbert nécessite, a part un espace vectoriel (ou linéaire), un produit
intérieur. Pour les matrices un choix naturel est le produit intérieur de Frobenius
défini comme
— _ T
(A,B)= ;AUBU =Tr|A"B] (14)
A l'aide du produit intérieur de Frobenius n'importe quelle matrice dans I'espace peut

étre exprimée comme une combinaison linéaire avec de coefficients réels dans une

base de I'espace des matrices
_ k k — k
A_Ek:<E ,A>E _Ek:AkE (15)

Dans beaucoup d'autres situations il est plus commode de définir 1'espace Hilbert des
matrices sur un sous-espace comme par exemple l'ensemble des toutes les matrices
réelles symétriques marquées s, (R) ou d'un autre groupe de Lie tels que O, (R), le

groupe des matrices orthogonales réelles.

Une fonction de matrice en général f :U (R)— 1V (R) lie les deux espaces Hilbert
des matrices U (R),V (R)C GL,(R), chacun équipés du produit intérieur de
Frobenius définis dans 'Equation (14). Dans ce cadre, 1'analyse fonctionnelle établit
qu'une dérivée généralisée connue sous le nom de dérivée de Fréchet [Df (A)](&)

peut étre définie par la relation suivante:
f(A+8)= f(A)+[DF(A)]3)+0@)  (16)

Intuitivement la dérivée de Fréchet [Df (A)](S), qui se lit "dérivé de f en A
actionnant sur 8", est le changement de premier ordre de la valeur de la fonction a un
certain point A dans l'espace Hilbert, en appliquant une perturbation infinitésimale o
a A . Ainsi cette dérivée est "vectorielle", le long de la "direction" 8 dans l'espace

Hilbert des matrices.

Un autre cas spécial, d'intérét particulier, est quand le co-domaine de la fonction f,
est R lui-méme, c.-a-d. f est une fonctionnelle. L'analyse fonctionnelle a un résultat
important au sujet des fonctionnelles linéaires agissant sur les espaces Hilbert, connu

sous le nom du théoréme de représentation de Riesz-Fréchet.
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[DF(A)](8)=(B,8)=(VF(A),s) 17)

Cette équation est extrémement utile dans le contexte des flots matriciels car elle

fournit un moyen de calculer le gradient d'une fonctionnelle de la dérivée de Fréchet.

Le terme de flot matriciel représente une €quation ordinaire continue (ODE) définie
dans 1'espace abstrait de Hilbert des matrices par rapport a un paramétre virtuel de
"temps". Les différents constituants de 'ODE sont congus afin d'amener le systéme
"évolutif' dans un état désirable qui est typiquement la solution optimale d'une

certaine fonction objectif.

D'une fagon générale les techniques de flots matriciels peuvent étre utilisées quand
l'on veut trouver une matrice avec une certaine structure linéaire ou affine, qui
simultanément a un certain spectre. La méthode est extrémement flexible, et devrait
plutdt étre apergue comme un environnement puisqu'elle permet de dériver de

nouveaux flots aprés une certaine recette.

Premiérement deux surfaces sont définies, une incluant toutes les matrices d'une
certaine structure affine, et l'autre incluant toutes les matrices qui ont un spectre
donné. Ensuite une fonction de distance est définie entre ces deux surfaces qui devient
la fonction objectif @ minimiser. Pour I’optimisation de cette fonction le théoréme de
Riesz-Fréchet (17) offre le moyen de calculer le gradient, qui est ensuite utilisée pour
définir un flot "de descente maximale" en fonction du paramétre de temps virtuel

mentionné ci-dessus.
dQ=-VFQ) (3

Enfin un solveur ODE intégrera ce flot, et le minimum de la fonction objectif sera

obtenu aprés que suffisamment de temps virtuel soit passé.

Typiquement dans les calculs de chimie quantique une base non-orthogonale est
employée. Dans ce cas on est obligé de tenir compte également du tenseur de la
métrique ou, comme connue par les physiciens, la matrice de recouvrement. Dans
l'espace "fondamental" de Hilbert, I'équation de Schrédinger n'écrit plus Hy, =< v,
mais plutot Hy, =¢ Sy, . Il sera ainsi nécessaire de modifier la théorie définie, dans

la sous-section précédente, aux paires des matrices.



s.27. Sommaire détaillé

De nouveau il y a deux contraintes importantes, une liée au spectre et l'autre a la
structure, chacune définit une surface particuliére. La premiere surface est définie

comme

M(A.B) = {(T"AT,T'BT) € 5,(R) x5,(R)[T € GL,(R)}  (19)

La matrice T est une transformation de congruence, qui appliquée a la paire (A,B) ne
change pas ses valeurs propres. La deuxiéme surface, qui est liée aux contraintes

structurales, est le produit de deux sous-espaces affines par un opérateur de projection

731(2)(X) - PI(ZZ) + Z<l)1{2)7x - P1(22)>g17(;);jkP1122) (20)
ik

Minimiser la distance entre ces deux surfaces produira une paire de matrice
(X,Y)=(T'AT,T'BT)  (21)

qui est iso-spectrale a (A,B), et qui s’approche autant que possible, dans le sens des

moindres carrés, de la structure imposée par 1'opérateur de projection P .

La fonction objectif que nous utilisons ici est la distance entre les surfaces iso-

spectrales et affines
F(T) = %(HU o(T"AT - R(TTAT))HZ + HV o(T"BT — 732(TTBT)>H2) =

=3 {lvex-ReO)f +[Ve(v R )= =
= () + F(T)

Cette fonction objectif est identique a Chu exceptant un différence importante. Nous

1/2

avons généralisé la norme standard de Frobenius ||A||:<A,A> avec la norme

"pondéré" de Frobenius [Wo A.

Apres plusieurs manipulations et avec 1'aide du théoréme de représentation de Riesz-

Fréchet (17) nous pouvons identifier le gradient de la fonction objectif

VE(T) = 2AT [, (X) = R, (X)) + R(0)]+ 2BT [, (Y) = B (e, (Y) + R (0)]  (23)
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A l'aide du gradient trouvé, nous procédons encore une fois par flot "de descente

maximale" identique a (18) dans la recherche de la solution optimale.

Chapitre V - Capteur de conductance a base de nanotubes
de carbone pour la détection des acides amines physisorbés

Dans ce chapitre nous présentons des calculs théoriques sur un capteur de
conductance a base de nanotubes de carbone. Une méthodologie, pour des calculs
rapides de conductance quantique des dispositifs de captage visant les acides aminés
aromatiques dans l'approximation des liaisons fortes, est développée. Les flots
matriciels qui ont été¢ décrits dans le chapitre précédent seront maintenant appliqués
pour obtenir un hamiltonien d'ordre réduit optimisé pour des calculs de transport.
Avec ce hamiltonien nous utilisons un algorithme de complexité lin€aire pour calculer

la conductance quantique dans le régime de transport cohérent.

Dans la Section 1 nous expliquons briévement comment un transistor a effet de
champ de NTC peut étre utilis€ comme capteur chimique. Les défis du calcul ab initio
de la conductance d'un tel dispositif, ainsi que la solution que nous proposons, sont
développés dans la Section 2. Cette solution implique 1'exécution des calculs ab initio
sur un ad-systeme de référence considérablement plus petit, plus précisément chacun
des quatre acides aminés sur une feuille de graphene. Ces calculs sont détaillés dans la
Section 3, ou entre autres résultats, nous constatons que l'adsorption induit des états
pres du niveau de Fermi et également un certain décalage du point de la neutralité de
charge. La Section 4 est consacrée a une méthode nouvelle que nous avons
développée dans le but d'obtenir des modeles hamiltoniens optimisés pour des calculs
de transport. A la base de cette méthode sont les puissants flots matriciels généralisés
présentés dans le chapitre précédent, dont on démontre maintenant 1’application dans
une situation concrete. Une méthode efficace de calcul de conductance est présentée a
la fin de ce chapitre dans la Section 5, ou les premiers résultats sur la modification

des spectres de transmission due a 1'adsorption moléculaire sont également présentés.

Un capteur de conductance de NTC est fondamentalement un dispositif similaire au
transistor a effet de champ. Le nanotube lie deux contacts métalliques, et son niveau
de Fermi est controlé par une tension de grille de dessous. L'élément sensible est le
nanotube lui-méme qui signifie que sa surface est extérieurement exposée, n'étant pas

couverte des oxydes ou n'importe quels autres matériaux. Par rapport aux nanofils ou
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Figure 9. Densité totale des états pour le graphene
pur et pour les quatre ad-systémes, soulignant les pics
spectraux dépendants d'acides aminés prés du niveau

de Fermi (ici mis a zéro)..

d'autres transistors chimiques, tous les atomes d'un nanotube de carbone sont des
atomes de surface, ce qui est la clef pour expliquer I'excellente sensibilité de ce type

de dispositifs.

Nous proposons un flot général pour étudier des capteurs de conductance a base de
NTC (bien que non limité¢ & des NTC ou a des sondes chimiques) qui comprend les

étapes suivantes:
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1. Structure électronique ab initio auto-cohérente de la molécule ciblé sur
graphene.

2. Réduction d'ordre du modele hamiltonien conservant le spectre autour du
niveau de Fermi.

3. Transfert des paramétres du hamiltonien au capteur NTC et calculs de transport.

Les méthodes développées sont soumises a une étude de cas, ou les molécules ciblées
sont les quatre acides aminés aromatiques HIS, PHE, TRP et TYR. Chaque acide
aminé a ¢été individuellement placé sur une couche étendue de graphene et relaxé en
NAMD. Les géométries obtenues peuvent étre apergues dans la Figure 10. Exceptant
le tryptophane, qui a deux anneaux aromatiques, et qui s'est relaxé dans une
configuration de "stack", tous les trois autres acides aminés se sont relaxés dans des

configurations de "bridge".

Pour chaque ad-systéme, consistant en un acide aminé aromatique sur une feuille de
graphene, des calculs ab initio auto-cohérents ont été exécutés avec SIESTA [102], un
code DFT qui utilise des pseudopotentiels et pseudo orbitales atomiques localisés
(PAOs).

On a observé que la physisorption change le niveau Fermi d'environ 150meV. Des
bandes sans dispersion prés de Er sont évidentes dans chaque cas, alors que leurs
positions spectrales dépendent du type d'acide aminé. Ces signatures individualisées
pourraient s'avérer extrémement utiles dans le contexte de l'identification d'acide

aminé par les capteurs de conductance NTC.

La densité totale des états comme montrée dans la Figure 9 souligne les états induits
preés du niveau de Fermi par la physisorption, et leur dépendance de l'acide aminé
adsorbé. Ces états occupent les orbitales du groupe a-carboxyliques des acides
aminés. Il est intéressant de noter que les orbitales des anneaux aromatiques de
chaque acide aminé sont occupées seulement par des états trouvés a 3eV du niveau de
Fermi, et ne peuvent donc pas influencer la conductance intrinséque d'un nanotube de
carbone. Par conséquent, on peut conclure que, bien que responsables du mécanisme
de liaison, ce ne sont pas les anneaux aromatiques des acides aminés qui pourraient

changer la conductance des nanotubes, mais plutot les ions carboxyliques ou aminés.
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Figure 10. Transfert des charges Mulliken des orbitales 2p, de graphene. La
figure montre également la maille hexagonale de graphene pour servir
d'indication de la configuration d'empilement des acides aminés.

Comme prévu, les bandes sans dispersion correspondent aux états localisés dans
l'espace réel dans la proximité d'un groupe oa-carboxylique. Les charges Mulliken
calculés par SIESTA ont été utilisées pour étudier le possible transfert de charge. Les
charges du graphene de 'ad-systéme ont été soustraites, pour chaque acide aminé, des
charges du graphene pur, et ensuite convoluées par une fonction gaussienne pour
obtenir la Figure 10. L'amplitude du transfert de charge situe notre cas dans le régime
de physisorption. Comme il peut étre observé, 1'écrantage des charges ioniques a
l'intérieur du graphene est fortement localisé. Ceci nous permet de transférer les
¢léments de matrice du hamiltonien et de la matrice de recouvrement, de ces petits
systémes de référence a un capteur de conductance NTC qui aurait un nombre

considérable d'atomes, et évite des calculs cohérents insurmontables.
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La Section 4 présente une solution qui consiste en la projection du probléme dans un
sous-espace réduit, suivi des transformations de congruence infinitésimales (flots iso-
spectrals) comme présent¢ en Chapitre IV, afin de corriger le spectre autour du
niveau de Fermi. Cet algorithme est alors appliqué aux quatre ad-systémes se
composant des acides aminés aromatiques sur le graphene qui aura comme résultat un

modele hamiltonien optimal pour des calculs de transport.

Le transport ¢élastique dans les nanostructures est déterminé par les propriétés
spectrales proche du niveau de Fermi. Ceci signifie que seulement quelques vecteurs
propres du hamiltonien avec les valeurs propres correspondantes a l'intérieur d'un
certain intervalle d'énergie centré a Er contribuent a la moyenne de l'opérateur de
courant. Heureusement dans beaucoup de situations d'intérét pratique, cet ensemble de
vecteurs propres projette notamment sur un sous-ensemble de la base de PAO, comme
il se produit par exemple avec les bandes © du nanotube de carbone. Dans ce cas, les
matrices hamiltoniennes et de recouvrement peuvent simplement étre projetées sur un
sous-espace réduit de Hilbert, ou les calculs sont accélérés jusqu'a quelques ordres de

grandeur avec une perte mineure de précision numérique.

Nous commengons par des matrices hamiltonienne et de recouvrement ab initio auto-
cohérentes. Ensuite nous obtenons, par des transformations appropriées, une paire de
matrices effectives et réduites, qui posseéde un spectre correct autour du niveau de
Fermi. Fondamentalement cette méthode consiste en 1'élimination des PAOs basée sur
la densité des états projetée, suivie d'un flot matriciel pour récupérer la sparsité et
pour corriger le spectre. On peut démontrer que la valeur moyenne du courant peut
étre calculée directement dans un sous-espace de Hilbert représenté par le sous-
ensemble des PAOs

[ Glv) =0 m0,)=elw,). & lmomlt 24

Calculer des valeurs moyennes dans ce sous-espace de Hilbert est extrémement
efficace. C'est exactement le but de la méthode qu'on va détailler, qui offre un cadre
formel pour trouver un sous-espace minimal de Hilbert dans lequel la valeur moyenne

du courant peut étre calculée avec n'importe quelle précision numérique.

La premicre étape dans 1'algorithme de réduction du modele décide quels PAOs seront

projetés pour obtenir un sous-espace réduit de Hilbert. Il n'est pas difficile de voir que



s.33. Sommaire détaillé

l'ensemble défini en (24) est contenu dans la densité des états projetée sur les orbitales
(PDOS) définie comme

pu(B) =~ [ Ak Re[{x, (0)])8,, () (7, PE—<,K) (25)

k Bz n,p

Nous avons utilisé la PDOS donnée par SIESTA en décidant quels PAO ¢éliminer de

la base. L'ensemble de base de l'espace Hilbert réduit est alors pris pour étre

{#)]le,

filtrée en énergie p, était plus grande qu'un seuil donn¢ £, ont €té retenus. Cependant

>€p}, ce qui veut dire que seulement ces PAOs pour lesquels la PDOS

cette sorte de troncation de base a comme conséquence des erreurs dans structure de
bande. Les bandes sans dispersion, que nous avons attribuées plus tot aux états
localisés, sont décalées par quelques dizaines de meV d'une fagon non-prévisible. A
l'origine de ces erreurs sont, trés probablement, les nombres de condition grands de la
paire des matrices (H,S) que nous n'avons pas pris en compte pendant I'élimination

des orbitales de base.

Corriger les erreurs de troncation de base peut étre réalis¢é simplement en
diagonalisant la paire projetée (H ,S ), au point I' par exemple, suivie par le
remplacement de ses valeurs propres par les valeurs exactes prises de la paire initiale
(H,S). Le seul probléme est que l'ainsi trouvé hamiltonien perd sa sparsité. Nous
montrons cependant, que par un flot isospectral la sparsité peut étre récupéré,
rapportant de ce fait une paire sparse qui a un spectre correct autour du niveau de

Fermi.

L'utilisation d'un flot iso-spectral généralisé implique l'identification des parameétres
des deux principales surfaces, M et )V comme marqués dans le chapitre précédent.
Dans notre cas l'ensemble iso-spectral M est construit autour (H,,S ). Par rapport
aux notations du Chapitre IV, nous identifions (A,B)= (H »S,). Le sous-espace
affine que nous considérons ici, a une structure triviale, impliquant seulement deux
matrices constantes Pﬁn
(20). Pour notre but nous définissons ces deux matrices comme (P’,P))=(H ,S).

a l'intérieur de l'opérateur de projection défini par Equation

Les derniers parametres exigés sont les deux poids (U,V) apparaissant dans la

définition de la fonction objectif F'(T) en (22) qui sont discutés ci-dessous.
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Figure 11. (haut) Perturbation du hamiltonien du graphene, avant (gauche) et
apres (droit) le flot iso-spectral de renormalisation. (bas) La structure des
bandes avant (gauche) et apres (droite) le flot iso-spectral de renormalisation.
En cyan sont les bandes du hamiltonian initial, et en noir celles du hamiltonien
projeté et renormalizé.

Le premier choix pour (U,V) serait (I,I,), ou I est I'élément neutre du produit
Hadamard des matrices, étant simplement une matrice ayant toutes les entrées égales
a un. Néanmoins nous exploitons la flexibilité de ce cadre et nous choisissons (U, V)
différemment, afin de réaliser des autres buts subtils. Pour V nous prenons

simplement I_, comme nous souhaitons conserver la matrice de recouvrement. La

Figure 11 (haut-gauche) montre la différence diagonale du hamiltonien entre 1'ad-
systéme HIS+GPH et le GPH pur. Comme on peut observer, la perturbation d'énergie
des sites se prolonge presque dans toute la cellule d'unité. Ceci pourrait poser un

probléme pour l'export des ¢léments de matrice hamiltoniens vers un capteur NTC. En
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conséquence nous pouvons choisir U afin de confiner cette perturbation plus prés de
la molécule adsorbée. Ainsi pour U nous prenons I et nous annulons celles éléments
de matrice sur lesquels nous souhaitons localiser la perturbation. Simultanément pour
l'ad-systéme nous avons modifié la matrice P en remplagant la sub-matrice
hamiltonienne correspondant aux orbitales de graphene par le hamiltonien projeté du

graphene pur H ;.

Aprées avoir identifié tous les ingrédients, nous mettons T =1 comme état initial et
nous intégrons avec un solveur ODE le flot "de descente maximale" d, T = —-VF(T),
avec l'aide du gradient (23). En raison de la forme triviale des opérateurs de projection

R, on obtient une formule simplifiée de gradient

VFT)=2HT

UoUo(X—P/)|+28 T[Y—P{|

En prenant T_ comme limite de flot, la solution recherchée est simplement
(H,.S,)= (TOTOI:I T, TS, T ). La structure de bande que nous avons calculée avec
(H,,S,) est montrée a la droite des bandes de la paire projetée (H, ,S ) dans la
Figure 11 (bas). Remarquons la reproduction parfaite de la structure des bandes de
(H,S) a l'intérieur du [,uL,uR], la Figure 11 (haut) montre également le confinement
réussi de la perturbation. La paire résultée (H,,S,) est, comme prévue, trés sparse, et
les interactions sont pratiquement limités au troisiéme voisin le plus proche. Ceci
permet l'implémentation de méthodes trés efficaces de calcul de conductance

quantique, que nous décrirons dans la prochaine section.

Puisque dans la Section 5 nous ne traitons seulement que des dispositifs a deux
bornes, nous avons développé une méthode efficace pour calculer les fonctions de
Green nécessaires. Tout d'abord, il faut noter que n'importe quelle méthode efficace
de calcul de conductance exploite le modele de sparsité des matrices impliquées. Ceci
a pour conséquence que la conductance dun dispositif a deux bornes est
completement déterminée par la connaissance des fonctions de Green de surface des
contactes gg;(’R);W,(E ) et des fonctions de Green de gauche a droite (de transfert) de la
région centrale G, (E)
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Algorithme 3. Méthode de décimation pour le calcul
des fonctions de Green de surface

1. LT K, ,=ES,—H, FOR i,j=0,1
2. REPEAT
3. Ky, =Ko — K01;,171K1711;’171K10;n71
4. Kll;n = Kll;n—l o KOl;n—lK;ll;n—lKIO;n—l o KlO;n—lK;ll;n—lKOI;n—l
5. Ky, = _K01;n71K1711;n71 0ln—1
6. K, = _KIO;n—lell;nflKIO;nfl
7. LET K, ,=K,, FOR i,j= 0,1
8. UNTIL ||K01;n +||K10m <2
9. Gy = Ka(;;,z
10. G, =K,

11;n

Pour les fonctions de Green de transfert G., o (£), nous avons opté pour une
méthode d'élimination qui est exacte et €galement ordre-N, au moins pour des
systémes 1D comme les nanotubes de carbone sont [104]. Cette méthode exploite la

structure bloc tri-diagonale de H¢ et Sc et suit les étapes décrites dans I'Algorithme 2.

Algorithme 2. Méthode d'élimination pour le calcul
des fonctions de Green de transfert

1. LET K=ES,—H,.—X,(E)—X,(E),
A=K, B=I

2. FOR i=2,n

3. A= Ki+l;i+l - Ki+l;iA;1Ki;i+l
4. B, = _BiAlei;iH

5. ENDFOR

6. G,=BA

Le calcul des fonctions de Green de surface a été réalisé par 'une méthode trés

efficace appelée la méthode de décimation qui est récapitulée dans 1'Algorithme 3.

Nous avons appliqué cette méthode a un nanotube semi-conducteur (11,0) mesurant

approximativement 15nm, empilé entre des contacts métalliques simulés par des tubes
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(11,0) semi-infinis idéaux. Le résultat est présenté dans la Figure 12 en noir, et est,
comme prévu, égal a la fonction de transmission d'un nanotube infini (11,0). La forme
globale et les discontinuités dans la transmission se conforment bien aux calculs des
liaisons fortes non-orthogonaux validant la méthode que nous avons décrite dans ce

chapitre.

[EEEN
- N
I

+ 5(HIS

— (11,0
— (11,0
11,0

+ 2EHIS;,

G (2e?%h)
SN WROON®OY

8 10 12 14

6 4 2 0 2 4 &

E (eV)

Figure 12. Spectre de transmission du capteur a base de NTC
(11,0) pour le nanotube sans et avec HIS acides aminées.

Puis des molécules d'acide aminé ont été ajoutées aléatoirement le long du tube
assurant un espacement minimum entre deux acides aminés voisins. Les matrices
hamiltoniennes et de recouvrement du capteur ont été par la suite perturbées aux
endroits d'adsorptions. Des spectres de transmission calculés pour ces cas sont tracés
dans la Figure 12 avec des lignes épaisses. L'abaissement de la transmission en
fonction du nombre de molécules d'histidine adsorbé sur la surface du tube est évident
a de grandes énergies loin du niveau de Fermi. Malheureusement prés de Er le
transfert de charge semble trop faible pour modifier la transmission. Il est vrai
cependant que nous n'avons pas inclus les orbitales moléculaires de 1'acide aminé dans
les calculs, ni nous n'avons pas considéré un éventuel décalage du point de neutralité
de la charge da a l'adsorption. Par contre les méthodes développées dans ce chapitre
sont généralement valables et n'attendent que d'étre appliquées a d'autres capteurs

chimiques.
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Introduction

The last years have seen nanotech applications approaching rapidly a tangible
existence, while in the near future it is reasonable to expect nanotechnologies pervade
key application areas like energy, materials, devices and so on. The explosive
development of nanotech has been fueled by the considerable progress made in

controllably fabricating and manipulating nanostructures.

Discovered fifteen years ago by Sumio lijima [1] carbon nanotubes have quickly
become one of nanotech logos along with nanoparticles, nanowires, fullerenes and
molecular layers [2]. Nanotubes come in several varieties and can be classified by
their helicity (later named chirality), number of walls, the presence of pentagons-
heptagons, etc. The simplest form is the single-wall carbon nanotube (SWNT), which

can be visualized as a rolled honeycomb graphite sheet into a cylinder.

If carbon nanotubes occupy the role they do today, it is only due to their exceptional
structural, mechanical, electronic and optical properties. From the electronic point of
view, simply changing the graphite rolling direction, results in metallic or
semiconducting tubes. The metallic tubes are ballistic conductors over micrometer
length scales being thus able to carry currents very effectively without loosing power
through Joule heating. This also means that nanotubes can support huge current
densities. Semiconducting tubes have bandgaps depending on their diameter, and
achieve carrier mobilities surpassing by far those of the archetypal material in
electronics, silicon. When referring to mechanical properties of carbon nanotubes they
are often called the ultimate fibers; nanotubes are as strong as diamond. Nevertheless
nanotubes retain a high flexibility due to their high length to diameter aspect ratios.
They also support several percent strains and remain elastic under large deformations.

The list of nanotube advantages does not have to stop here, since carbon nanotubes
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possess equally interesting optical, thermal, electromechanical and magnetic

properties.

Although increasingly better controlled, the synthesis of carbon nanotubes involves
mechanisms that are not perfectly understood at this moment. This missing chain is
directly responsible for the inability to synthesize nanotubes with controlled features,
and is probably the main reason for which CNTs are not used on a larger scale.
However giant steps are made everyday in synthesis [3, 4, 5], functionalization [6, 7,
8], solubilization [9, 10] and sorting [11, 12] of nanotubes. Given this trend it is
reasonable to extrapolate that in several years it will be possible to have nanotubes
with well controlled properties at significantly lower costs, enabling a plethora of

applications.

Aside from this, an essential aspect that allows envisioning the design of carbon-
nanotube based devices is the increasingly better agreement between theoretical
predictions and experimental data. As a side note, it is actually via simple theoretical
calculations that the metallic/semiconducting nature of nanotubes, their Young's
moduli and optical transitions were predicted in the first place. While an important
part of the CNT research efforts focus on improving fabrication and manipulation
techniques, another thread is continuously expanding the physical understanding of
nanotubes, and others are trying to develop applications.

A brief analysis of the patenting activity on carbon nanotube based applications
reveals that the major slots in the pie chart are taken by field emission, energy storage,
composites, nanoelectronics, sensors and actuators, etc. In each of these possible
applications nanotubes are far from achieving their potential. Moreover other
applications are added on this list everyday. We can safely state then that the
nanotube application research area is still in its infancy offering many development

opportunities.

In this thesis we concentrate on the possible application of carbon nanotubes in
biochemical detection relevant for biotechnologies, medicine and even for defense
and security. Our primary goal is to move one step forward the theoretical models of
nanotubes and use them as predictive tools, not in calculating fundamental properties,
but rather in designing novel devices of potential practical interest. Thereby, the

general pattern of this thesis consists in proposing sensing devices and modeling and



11. Introduction

simulating them as proof of concept, sometimes doubled by feasibility assertions

based on similar, experimentally-proven models.

Validating devices theoretically is obviously the less expensive choice in a context in
which nanotube manipulation is still limited, time-consuming and thus expensive.
This doesn't necessarily mean that one has to blindly accept the validity of any
calculations, at least within the gross approximations sometimes one has to employ. In
this situation an idea would be to build theoretical models sufficiently fast and
accurate at least to a first order. If the proposed device would prove operational in
theory it could be practically realized and characterized yielding data that could be
used in improving the theoretical models. An additional advantage of simulation is the

insight gained into the intimate operation mechanisms of a device.

Sometimes the models used in this thesis may appear rather simple to the reader, and
indeed they are. However one has to remember that the large number of atoms a
typical device may have is a major bottleneck. The recurrent problem in this thesis is
a certain square or cubic scaling in the number of atoms which drives simulation in
the intractable realm. Although the goal of nanotech is to miniaturize devices and thus
decrease the number of atoms, it is often the case for simulations to involve 10° atoms
or more. Storing a matrix with 10°x10°=10"" elements is costly but this is nothing
compared to the time it would take to invert or diagonalize such a matrix that would
require (10°)’ operations. This somehow explains the different numerical approaches

we were forced to take in solving the problems at hand.

Two different sensor structures are proposed in this thesis. The first involves an
electromechanical principle and can be used either in measuring piconewton forces or
zeptogram masses. The second sensor is based on conductance changes that a carbon
nanotube would experience when exposed to aromatic amino acids. Both devices have

interesting applications in biochemical sensing.

The content of this thesis is split in five chapters. Chapter I provides a succinct
introduction to the structure and properties of carbon nanotubes. Basic
crystallographic elements like lattice vectors, first Brillouin zone etc. are established
starting from those of graphite. The standard tight-binding electronic structure of
graphene will be used to derive the band structure of nanotubes within the zone-

folding approximation. We have insisted here in presenting only those properties that
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are relevant for this thesis, namely the transport and mechanical properties. Both this
sections would contain apart theoretical predictions, experimental measurements that

generally are found to support theory.

In Chapter II we detail the transport theory in nanostructures in the general multi-
terminal device setting. Both the aforementioned nanotube sensors have an electric
output, typically a current, and thus this chapter will serve as a theoretical background
for transport calculations in Chapter III and Chapter V. We have chosen to arrive at
the Landauer-Biittiker transport formalism starting from the rigorous ground of many-
body non-equilibrium Green's functions. Thus the general scheme this chapter follows
is a series of hypotheses applied to the general case in order to simplify the theory
down to models that are both numerically tractable and that approximate well the
transport properties of carbon nanotubes. As we will use non-orthogonal basis sets in
our calculations we also discuss the changes required to adapt the transport theory to

this situation.

The first contribution of this thesis is Chapter III which contains an ensemble of
theoretical calculations we have performed in order to validate the operation principle
of a carbon nanotube-based electromechanical sensor. The proposed device is a
nanotube cross in which one tube plays the role of a cantilever, bending under
external forces, and the other as a bearing and a potentiometer that transduces the
deflection of the cantilever into an electric current imbalance. Measuring forces as
low as a few piconewtons is demonstrated with this device via molecular mechanics
calculations. We also prove in this chapter that at room temperature the deflection-
current characteristic is monotonic and thus it can be used as a sensor. In yet another
configuration, based on the frequency shift of the cantilever, the same device shows in
theory that it can detect molecular bodies weighting a few kilodaltons, the mass of a
small protein like streptavidin is. Thus this device is very useful in mass spectroscopy

and biochemical detection.

In Chapter IV we develop the apparatus of continuous matrix flows which is a key
element for the transport calculations of Chapter V. Although this theory in itself has
been developed by Moody Chu, our modest contribution was to apply and extend it
for quantum transport. This chapter is rather mathematical in scope and tries to

accustom notions of functional analysis like the matrix Hilbert space and Fréchet
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derivatives, and also to establish a parallel with the Schrodinger equation Hilbert
space that is more familiar to physicists. Once these concepts are set in place the
theory of matrix flows is illustrated over two examples. While the first is used only to
familiarize the reader with the basic ingredients this theory uses, the second has
important practical applications and will be used in Chapter V. This second example
is a method allowing "shaping" a generalized matrix pair like Hamiltonian and
overlapping matrices, while preserving their spectrum. With respect to Chu's theory
we have extended this framework to increase the "shaping" flexibility by modifying

the goal function.

Although Chapters II and IV should have probably been merged together into a
theoretical background chapter, for the sake of clarity we felt the need to include
before each type of sensor the theory necessary to understand its corresponding
chapter alone. Thus all the theory at the base of Chapter III is found in II and for
Chapter V is found in II and IV, decoupling thus the thesis in two independent parts

grouped around the two sensors.

The validation of the second sensor is the object of Chapter V and it is the second
main contribution of this thesis. In this chapter we have tried to answer the question of
whether carbon nanotube conductance sensors could detect the four aromatic amino
acids Histidine, Phenylalanine, Tryptophan and Tyrosine. As realistic carbon
nanotube devices would have a large number of atoms, self-consistent calculations
would be extremely difficult to achieve in practice, and we have thus chosen an
alternative approach. The four amino acids are studied onto a simple graphene layer.
Then, a procedure based on the matrix flows described in Chapter IV is used to
obtain effective Hamiltonian and overlapping matrices that preserve a good spectral
accuracy around the Fermi level, relevant for transport calculations. With this
minimal model we will be able to calculate effectively the conductance of large

carbon nanotube based sensors.
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CHAPTER L.

Carbon nanotubes: Structure and properties

Introduction

An introductory overview of the structure and properties of carbon nanotubes is
provided in this chapter. The basic terminology and physics are set in place to serve as
a backbone for the rest of this thesis which is focused on carbon nanotube devices.
Here we have selected only those features of the now-vast and perpetually expanding
nanotube theory that are fundamental for the understanding of the following chapters.
For a complete yet introductory overview of the theory of carbon nanotubes we refer
the reader to References 13, 14, 15. Another goal of this section is to provide the
reader with a certain body of experimental data that would come in support and be

referenced by subsequent chapters.

Basic crystallography elements of nanotubes are the subject of Section 1 beginning
with graphite and graphene which facilitates both visualizing the structure of
nanotubes and obtaining a first order approximation of their electronic and
mechanical properties. The unrolled nanotube unit cell can be viewed as a super-cell
of graphene which will prove to be extremely helpful in determining the band
structure and densities of states of single-wall nanotubes (SWNTs). For SWNTs all
their structural properties like diameter, unit cell length and number of atoms, are

shown to depend on a single vector, the chiral vector, defined by two integer numbers.

In Section 2, the electronic properties of single-wall nanotubes are derived in a simple
tight-binding approximation from those of graphene. Most of the derivations in
detailed in Sections 2 follow closely Reference 13. The zone-folding technique is

applied revealing the quantization of the transversal wave vector in carbon nanotubes
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and the celebrated metallic or semiconducting nature of nanotubes depending on their

chiral vector alone.

The main regimes of the mesoscopic transport theory are quickly reminded in
Section 3 in order to identify the relevant length and time scales for carbon
nanotubes. We then review experimental evidence of transport regimes in SWNT. A
number of excellent reviews are available on this topic [16, 17, 18, 19]. For metallic
nanotubes it was found that the typical mean free-path is at least in the order of
100nm, while bandgaps in semiconducting tubes are consistent with theoretical
predictions. Problems related to Schottky barriers and in general with contacting
nanotubes by metallic leads are discussed at the end of this section together with

doping and defect influence on nanotube transport properties.

In Section 4 we turn our attention to the mechanical properties of nanotubes. At first a
brief review of the computational methods available for nanotube simulation is
provided. The reader is referred to a number of excellent reviews dealing with carbon
nanotube mechanical properties [16, 20, 21]. Theory has predicted initially for SWNT
huge Young's moduli, but on close investigation it has been established that at the
base of these results was the inappropriate definition of the tube wall thickness.
Finally theoretical and experimental evaluations of SWNT mechanical properties like
Young's modulus, bending and torsion stiffness, etc. are enumerated at the end of this

chapter.

1. Crystal structure
1.1. Graphite and graphene

From elementary chemistry we know that a carbon atom has six electrons, two of
which fill completely the first shell (1s%), are called core electrons, and are strongly
bound to the nucleus. The remaining four populate the weakly spaced 2s* and 2p’
levels, are called valence electrons, and are higher in energy than core electrons.
There is a small energy separation between the 2s and 2p orbitals which facilitates re-
hybridization. This gives rise to a high coordination flexibility of the carbon atom in
forming new compounds and explains the large variety of carbon-based materials in

nature.
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Figure I.1. Graphite atomic structure in ABAB stacking. The
unit cell of graphite and its four inequivalent atoms are
represented with black lines. The interlayer spacing and the
carbon-carbon bond length are also displayed.

Among carbon mono-atomic crystals the best known are diamond and graphite. The
coordination of a carbon atom in these materials is essentially different but the bonds
are covalent in both and are the strongest in nature. Graphite is essentially a layered
hexagonal lattice with carbon atoms forming covalent sheets stacked on top of each
other in an ABAB sequence as in Figure I.1. The typical layer separation is 3.35A
and the carbon-carbon bond length is 1.42A. In graphite the carbon atoms are sp*
hybridized, i.e. one 2s electron mixes with two 2p electrons. This hybridization forms
covalent ¢ bonds that make an angle of 120°. Thus each sp hybridized atom has three
coplanar neighbors leading to the hexagonal lattice of the layers seen in Figure I.1.

The last electron occupies the remaining 2p, orbital forming weak interlayer © bonds.

A single layer of graphite is called graphene. Figure 1.2 shows the unit cell of
graphene as a shaded rhombus together with its corresponding reciprocal lattice and
first Brillouin zone (BZ) as a shaded hexagon. The real-space lattice vectors are

designated in this figure by a, ,, and the reciprocal lattice vectors by b, ... In terms of

1(2)
the normal Euclidian coordinate system, the lattice vectors are given by

12)

(L.1)

Y
al(z) = [761,:*:5(1

where a is the lattice constant (a = Hal(z)u) and for the typical carbon-carbon bond
length in graphene of 1.42A it has the value a = V3 x1.42A=2.46A..
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Figure 1.2. Graphene (left) unit cell in gray with lattice vectors a; and the
two inequivalent atoms represented by gray and white circles, and (right)
reciprocal lattice with lattice vectors b; and first Brillouin zone in gray
together with its high symmetry points I', M, K and K'.

The reciprocal lattice vectors of graphene are found as usually by solving the linear

system of equations engendered by a, -b, =276, which yields

27 2T
b, = [E’ij] (I.2)

corresponding to a reciprocal lattice constant of 477/ J3a . As it can be observed from
Figure 1.2 the first Brillouin zone is hexagonal but rotated by 90° with respect to a
hexagon of the real-space lattice. The first Brillouin zone is characterized by four high
symmetry points [', K, K' and M, representing its center, two opposing corners and the
center of an edge respectively. Since the graphene unit cell contains two atoms the
corner points K and K' are not equivalent and are treated separately. The
crystallographic elements we have developed so far for graphene will be used in the

following in explaining the structure and electronic properties of carbon nanotubes.

1.2. Single-wall carbon nanotubes

The structure of a carbon nanotube can be viewed mentally as resulting from rolling a
properly cut graphene layer into a cylinder. Referring to Figure I.3 this means
bringing together the AD and OB segments. Upon inspection, the "rolling" of the
graphene sheet can be achieved along different directions resulting in a large variety

of tube structures. A few nanotube examples are given in Figure 1.4. In the next
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Figure 1.3. The unrolled unit cell of a (4, 2) carbon nanotube
delimited by the rectangle OADB. The tube is obtained by folding
AD onto OB. Gray circles represent the tube's inequivalent atoms.

section we will prove that the rolling direction is in a very close relationship to the

electronic properties of the resulting nanotube.

The structure of a carbon nanotube is uniquely determined by a single vector called
chiral vector and labeled C, in Figure 1.3, which through the rolling process
described above gets mapped onto the circumference. On the other hand the axis of
the tube is parallel to a second vector called translation vector and labeled T.
Considering the one-dimensional nature of a nanotube T is actually its lattice vector.
An infinite tube can thus obtained by repeating cells along the translation vector.

Using the lattice vectors a,,, defined in (I.1) we can express the chiral vector as
C, =na, +ma, =(n,m) (1.3)

where (n,m) are two integer numbers. Due to the six fold symmetry of the hexagonal
lattice m can be constrained to the values 0 <m <n. Within this convention the
examples of Figure 1.4 are indexed from left to right with chiral vectors (12, 0), (8, 4)
and (6, 6) respectively. Tubes having n =m are known as armchair, those having

m =0 as zigzag, and all other tubes are named chiral nanotubes.
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Figure 1.4. A few carbon nanotube structures from side view (top) and axial
view (bottom). From left to right (12, 0) is a zigzag (8, 4) a chiral and (6, 6) an
armchair nanotube.

The tube's diameter is given by its circumference divided by =, i.e. d, =C,/m which
in terms of the lattice constant and the two integer indices has the value
d = (a/ W)\/nz +m* 4 nm . The (6, 6) tube in Figure 1.4 has for instance a diameter
of 8.13A.

The tilt angle of the hexagons with respect to the direction of the tube's axis is called
the chiral angle and can be computed by projecting the chiral vector C, onto a,
which gives its cosine

cosfh = Coa _ 2ntm

”Ch '31” N 2\/712 +m® + nm

As stated earlier the translation vector T is the lattice vector of the one-dimensional

nanotube. This vector can be derived from the chiral vector, by defining it to be the
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vector normal to C, that intercepts starting from the origin O the first graphene lattice
point. Using the form

T=ta, +1a, (1.4)
and T-C, =0 the expressions of 7,,, are readily obtained

2m+n B 2n+m
d, d, (L.5)

2

(tlatz) :[

where d,, is the greatest common divisor of 2m +n and 2n + m . Referring to Figure
1.3, C, =(4,2) that results in a translation vector T =(4,—5). Using the above
relations (I.5), the length of the translation tube can also be calculated, and one
obtains T :\/§Ch /d z - The two vectors C,,T define the unrolled unit cell of a
carbon nanotube as a,,, is defining it for graphene. One can note that the unit cell of
a nanotube is in fact a super-cell of graphene. Consequently the electronic structure of
a tube can be derived from that of graphene, a property that we exploit in the
following section.

To obtain the number of atoms in the nanotube's unit cell one divides its area to that
of the graphene unit cell (the rhombus in Figure I.2) that gives the number of

inequivalent atom pairs or equivalently the number of hexagons

_T=C,| 20 +m’ +nm)
" Jaxa) d, (1.6)

N

If a graphene unit cell contains two atoms, it results then that a carbon nanotube unit
cell contains 2N atoms. The 56 atoms of the (4, 2) nanotube are emphasized in
Figure 1.3. The basic structural elements we have introduced in this section will help

in the following section elucidate the electronic structure of carbon nanotubes.

2. Electronic structure

2.1. Graphene band structure

The large number of atoms in a carbon nanotube's unit cell hinders at a first view

simple analytical results. Nevertheless due to the close relationship between the unit
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cell of the nanotube and graphene, the electronic structure of the former can be
derived from the electronic structure of the latter by imposing proper boundary

conditions. We thus start with graphene electronic structure.

Periodic systems like graphene are treated in solid state physics using Bloch basis
functions, a proper ansatz that respects the translational symmetry of these systems.
These functions are defined with the help of an atomic, localized, orbital basis set
{|u>} whose real-space projections we label ¢, (r) = (r|u). Bloch functions assume
the well known definition

kR,

X, (k1) = ﬁz p,(r—R e (1.7)

In the case of graphene ¢, (r) is a 2p, orbital localized either on site A or B seen in
Figure 1.2. The sum in Equation (I.7) runs over all equivalent atom position R, in
all unit cells. Born-von-Karman boundary conditions are imposed over JN cells in
each graphene lattice direction a,,, which quantizes the wave vector k. However for

large enough N the first Brillouin zone can be considered continuous.

With the above definition the basis overlap can be computed explicitly

S, (K) = (x, (k)

X,,(k)> _ Z MR, f drgo:j (r— R/1 )e,(r—R)) (L8)

14 ’Rl/

If the atomic orbitals are considered to be confined inside a disc of radius R. <a/2,
where a is the graphene lattice constant, one can observe that the right hand side of
(I.8) cancels whenever HR y RVH > a . With the help of the three vectors R, defined
in Figure 1.2, and by changing the variable (r —R A) —r inside integrals, the basis

overlap becomes

S, = [dre (), () =1=S,,(K)
S5 (K) =Y [drel(mp,(r—R) =D e s, =5,/ (k) = S, (K)

where in S,,(k) we have used the fact that ¢, (r) is normalized. In S, ,(k) we
labeled the integral with s, which is invariant under a 27 /3 rotation in the x-y plane

and therefore has the same value for all R, .
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Obtaining the Hamiltonian matrix elements follows the same lines yielding

H (k) = [[dr (0, (r) =, = H, (k)
Hp(R) =3 e [ drg,nfp,(r—R) = D" 1, = 1,/ (k) = H,,(K)

except for the different labeling of the two involved integrals. The hopping integral ¢,
is sometimes denoted —v,. The normalizing factor 1/ JN appearing in (I.7) has been
ignored since it cancels anyway in Schrodinger's equation (see below) where it

appears both in the left and the right hand side.

Inserting the values of R,, defined in Figure 1.2, into the definition of f(k) and

taking its absolute value, one obtains

k.a k.a
|f(k)|:\/14—4cos@cosi—|—4cosZL (1.9)
2 2 2
We now write the eigenstates of the graphene layer as a linear combination over the
Bloch basis

¥, (kr) =, x, (k) +Bx;(kr)  (1.10)

and setup Schrodinger's equation

[ €o tOf(k)][an]_g(k)[ 1 Sof(k)][an]
LS g 8 T s 1 g @D

This eigenvalue equation is solved by setting its determinant to zero and yields the

energy dispersion relations (eigenvalues)

gy 1| f(K))
e (K)=2—0l*"1
1K) =7 Tolfa 1)
and also the eigenvectors
1 k
b or) = 1= =L e+ ken| @)

V27 |F ()
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The dispersion relations are plotted Figure 1.5 for the parameter values ¢, =0,
t,=—-3.033eV and s, =0.129. The upper surface represents the 7 anti-bonding
band while the lower one represents the 7w bonding band. There are six special points
labeled K in the first Brillouin zone where these bands intersect and become
degenerate. As mentioned in the previous section only two of them are inequivalent
and (K and K' in Figure 1.2). The other four can be obtained by translations along the

reciprocal lattice vectors.

-1

%

Figure I.5. Energy dispersion relations for graphene and its
high symmetry points.

The Fermi level passes through the plane formed by the six K points, i.e. E, =¢,
because the unit cell contains two electrons which fully occupy the lower 7 band
leaving the 7 band empty. As the density of states is zero at the Fermi level
graphene is a zero-gap semiconductor or a semi-metal. This particularity of graphene
band structure will reflect, as shown in the following, in nanotubes being either

metallic or semiconducting depending on their chiral vector only.

2.2. Zone-folding band structure of SWNTs

The band structure of single-wall carbon nanotubes can be obtained in a first
approximation from the dispersion relations of graphene by imposing periodic

boundary conditions along the chiral vector C,. In reciprocal space the wave vector



25. Electronic structure

Figure 1.6. Quantization of the transversal wave vector
and the first Brillouin zone of a carbon nanotube (a line
parallel to K5) inside the BZ of graphene.

associated with C, gets quantized, while the one associated with the translational

vector T remains continuous for infinite length tubes.

The unit cell of a carbon nanotube is the rectangle OADB delimited by the orthogonal
C, and T vectors in Figure 1.3 and is simultaneously a super-cell of graphene. As
shown earlier there are 2N carbon atoms in this unit cell and thus N pairs of 7 and

7" bands should be expected.

Before imposing the periodic boundary conditions it is convenient first to look at the
reciprocal space of the graphene super-cell whose lattice vectors are obtained as

usually by solving for K, ,, in

C, K =2r TXK =0
C, K,=0 T-K, =2n

which in term of the reciprocal lattice vectors of graphite b, , after some algebra,

write

K, = 1/N<_tzb1 +t1b2> (I.14.a)
K, =1/N(mb,—nb,)  (L14.)

The periodic boundary conditions force the wavefunction to satisfy
U(r+C,) =" h(r) = Y(r)

which is equivalent to k-C, =27p where p is an integer number. Projecting this
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equation onto K, we obtain the quantization of the transversal wave vector k = pK, .

As NK, is a vector of the reciprocal super lattice and simultaneously of the reciprocal

lattice and ¢,¢, are relatively prime it results that p =0,N —1 yields N distinct
quantization directions. Thus the a carbon nanotube has N sub-bands labeled by p .
On the contrary the projection of k onto K, can have a continuous value and

represents the first Brillouin zone of the carbon nanotube.

The first Brillouin zone of a carbon nanotube, which is a line segment, is depicted in
Figure 1.6 inside the hexagonal BZ of graphene. As stated previously the band
structure of a carbon nanotube is obtained from the dispersion relations of graphene

(I.12) by sampling along K, at p consecutive translations along K, starting from I'

K
e, (K) =¢, [k er PKi| (L15)
2
with p=0,N—1 and k € (—=/|[T|,=/||T])

Figure 1.6 reveals a crucial fact about the band structure of carbon nanotubes. If,
referring to this figure, the length ratio of the YK segment to that of K, is an integer,
then the bands of the tube pass through the K point of graphene and thus they have a
zero gap. In this situation a carbon nanotube is metallic, as its density of states at the
Fermi level is finite (see Figure I.7 (bottom)). If however this condition is not
satisfied then there is a gap between the bands, and the tube is thus semiconducting.
As the length of this YK segment is ((2n +m)/ 3)||K1|| the above condition
transforms to (2n+ m) or equivalently (n —m) is divisible by 3. It follows then that
in theory one third of nanotubes should be metallic and two thirds semiconducting, in

particular armchair tubes being always metallic.

The band structures of a metallic (10, 10) and a semiconducting (14, 0) are plotted in
Figure 1.7 (top). Their corresponding densities of states (DOS) are calculated by

integrating along each band using

|
p(E):Zp:fdkakep(k) 8(,()=E) (116

In the density of states, the intrinsic one-dimensionality of the nanotubes gives rise to
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a discrete set of singularities, called van Hove singularities. These singularities occur
at wave vectors where the bands are dispersionless, or d,¢,(k) =0 and determine the

optical properties of carbon nanotubes which are beyond the scope of this thesis.

1 (10,10) 15 (14,0)
10 10
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Figure 1.7. (top) Band structures for a metallic (10, 10) nanotube and a
semiconducting (14, 0) tube, and (bottom) their corresponding density of states.

For metallic SWNTs a development of the Fermi surface around any of the six special
K points yields a Fermi velocity v, ~10°m/s, independent of chirality. Thus, in the
absence of electron scattering the intrinsic conductance of a metallic tube should be
2G,, where G, =2¢*/h is the conductance quantum, as there are two open channels
at the Fermi level, each one having a conductance G,. On the other hand
semiconducting SWNTs have a bandgap £, ~(0.9¢eV)/d,, where d, is the tube's
diameter in nanometers. The next section will present a series of experimental and
theoretical results that confirm or constrain the validity of the results obtained so far

in the simple tight-binding approximation.
3. Transport properties

Perhaps the most striking feature of carbon nanotubes is that they can be either

metallic or semiconducting based on their chirality only. As discussed in the previous
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section the electronic properties of single-wall carbon nanotubes (SWNTs) are in a
close relationship to those of graphene. Graphene has a varying, finite bandgap
throughout the first Brillouin zone except for the six special K points (see Figure L.5).
When a graphene sheet is rolled into a SWNT the transversal wave vector is quantized
while the longitudinal vector remains continuous. The process of imposing periodic
boundary conditions on a graphite sheet is thus equivalent to sampling the k space of
graphene along a certain direction (K, / ||K2||) at discrete intervals ( pK, ). Depending
on whether the quantized sampling direction, shown in Figure 1.6, crosses one of the

six special K points the resulted tube is either metallic or semiconducting.

The above conclusions are probably valid for geometrically perfect SWNTs at zero
temperature in the independent-electrons approximation. Unfortunately thus far real-
life carbon nanotubes have almost always a certain degree of structural defects and
often are doped by surface adsorbed impurities. Finite temperature effects should also
be of concern as electron-phonon interactions can change radically the transport
regime. In the next subsection we briefly define the concepts of mean free path and
phase relaxation length from mesoscopic physics, which upon measurement will help

identifying the transport regime in real-life carbon nanotubes.
3.1. Transport regimes

Mesoscopic physics, which studies transport in samples of low dimensions, has
enabled in the past the identification of several transport regimes depending on the
relation the sample's length L (in the direction of the particle flow) bears to the mean-
free path (L, ) and the phase relaxation length (L, ) [22, 23]. Of course other length,
and time scales are used in mesoscopic physics nomenclature, e.g. localization length,
Fermi wavelength, transit time, thermal diffusion length, etc., but we consider here
only the aforementioned two lengths as they offer enough insight into the transport

mechanisms we focus on.

The mean-free path L, is associated with those scatterers inside a two terminal
sample that can change the momentum of an electron traversing the sample from one
lead to the other. Such scatterers can be for instance boundaries between different
materials, charged or magnetic impurities, phonons, etc. On the other hand,
mesoscopic physics establishes that electron-electron interactions do not contribute to

L, as in this type of scattering the total momentum is conserved and incident and
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emergent electrons are indistinguishable quantum mechanical particles. The mean
free-path is considered to be the length after which the standard deviation of an
electron's momentum due to scattering exceeds a certain amount. This length is thus a
measure of the degree of uniformity of the sample and also at finite temperature of the

strength of the electron-phonon interactions.

In analogy, the phase relaxation length L is associated with dynamical scatterers that
tend to destroy the phase of a propagating electron wavefunction. This would be the
case of phonons but also of electron-electron interactions and magnetic impurities.
Another result from mesoscopic physics reveals that on static scatterers (with no
freedom degrees) all collisions are elastic and do not contribute to phase relaxation.
Thus the phase relaxation length can be defined as the length after which the mean
spread of the phase of an electron wavefunction exceeds a certain value. This quantity
gives thus a measure of the density and strength of dynamic scatterers inside the
sample. At zero or low temperatures electron-electron interactions and magnetic

impurities dominate as scattering mechanisms.

Now, in terms of the above defined lengths one defines three transport regimes,
namely classical, diffusive and ballistic. In the classical regime the length of the
sample is greater then both the mean-free path and phase relaxation length, i.e.
L>L,,L,. This regime satisfies Ohm's law where the resistance of the sample scales
linearly with its length and the electron can be viewed as a classical, localized
particle. The diffusive regime defined by L > L >> L, corresponds to the picture of a
coherent electron (a wave) that gets scattered elastically many times inside the
sample. These frequent, coherent scatterings lead to weak or strong Anderson
localization of the wavefunction reducing drastically the sample's conductance.

Finally, in the ballistic regime defined by L, ,L_ > L the electron is to be viewed as a

m?

wavefunction that extends over the entire sample.

Early experimental evidence revealed that metallic single-wall nanotubes, up to a few
micrometers long, are ballistic wires even at room temperature. A first proof of
ballistic conduction in individual carbon nanotubes came from Frank et al. [24] that
measured the conductance of multi-wall nanotubes contacted by liquid mercury. They
observed conductance quantization which is the signature of ballistic transport.

Single-wall carbon nanotube conductance quantization has also been observed by
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Tans et al. and Bockrath et al. [25, 26]. Other groups have focused their work on
determining the phase relaxation length and/or the mean free path. For example Liang
et al. [29] detected Fabry-Perot interference for a 530nm SWNT at 4K. Additionally
they found that the mean free path was superior to the tube's length, concluding that
the transport regime must have been ballistic. At room temperature Bachtold and
coworkers [30] used electrostatic force microscopy to get the voltage profile along
metallic SWNTs longer than 1pum. They found that most of the voltage drop occurs at

contacts, proving once more that the measured nanotube was ballistic.

While the mean free path seems to oscillate experimentally around 1pum at cryogenic
temperatures, this is not the case for room temperature measurements. Recently, Gao
et al. [31], using a non-invasive four-point configuration based on MWNT voltage
probes, showed a clear linear scaling of the resistance with length which is the
signature of Ohm's regime. The same reference presents mean free paths in the 100-
300nm interval. However, Javey et al. [32] conclude that for nanotube devices below

~100nm the transport regime is surely not diffusive and thus ballistic.

Although theory predicts that semiconducting SWNTs should be intrinsic
semiconductors, initial measurements performed by several groups [33, 35, 36] have
found p-type conduction in nanotube-based field effect transistors (FETs). Hole or p-
type doping of SWNTs has since then been attributed to unwanted oxygen adsorption
caused by air exposure of the samples. Transconductances on the order of 200nA/V
[33] and hole mobilities in the 100-10,000cm?*/V-s range have been measured. The
surprisingly high mobility can be attributed to the lack of surface states present in

typical silicon-based devices.

Nanotubes will certainly occupy a major role in the next-generation electronics since
the list of intrinsic transport properties doesn't stop with ballistic conduction and huge
mobilities. Recently, intrinsic superconductivity has been observed in nanotube ropes
[27] and also important noise suppression [28] which enriches the physics available

for novel nanotube-based devices.

3.2. Contacts and doping in nanotube-based devices

As argued at the end of Section 2.2 a metallic nanotube should have at low bias a

conductance of 4e’/h corresponding to a resistance of approximately 6.5kQ2. This
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value has indeed been achieved recently [29, 37] via Au or Pd evaporation over
SWNT contacting ends followed by high temperature annealing. Earlier experiments
on carbon nanotube devices displayed nevertheless contact resistances on the order of
MQ [25, 35]. For multi-wall nanotubes, Kasumov et al. [34] have demonstrated
resistances as low as 2kQ for Au contacts and as high as a few MQ for other
contacting metals. Alternatively the contact resistance can be reduced by local
electron irradiation of the contact region which induces defects and thus presumably
enhances the bonding between the tube and the underlying metal [39]. The poor tube-
metal contact is however not very clear at this moment despite a few tentative

theoretical explanations.

The problem of contacts is even more critical in the case of semiconducting devices.
The Fermi level of most of the metals used so far for contacting nanotubes resides in
their bandgap. Schottky barriers are found to arise for both n and p operating regions
[40, 41]. Relatively good contacts on the order of hundreds of KQ were obtained for
semiconducting SWNT samples by Zhou et a/ [33]. Probably in the near future the
contact resistances will continue to decrease until the intrinsic conductance of the tube

will be directly probed.

There are situations in which the large Schottky barriers are beneficial [42]. Finite-
size metallic nanotubes weakly coupled to leads can behave as quantum dots,
exhibiting Coulomb blockade and other single-electron transport phenomena like the
Kondo effect etc. [43, 44]. Owing to their relatively large Coulomb charging energy
and level spacing carbon nanotubes have a certain potential for realizing single
electron transistors at relatively high temperatures. We will however not deal with

strongly correlated electron transport in this thesis.

Both p- and n-type nanotube doping have been studied in the past. The initial research
wave focused on doping with electron donor alkali metals [45, 46, 47, 48, 49].
However alkali metals are not stable in air for which other doping strategies are to be
developed. Using scanning tunneling spectroscopy the influence of boron and
nitrogen doping on the electronic structure of carbon nanotubes has been investigated
[50, 51]. Both B- and N-doped tubes are metallic regardless of the electronic nature of
the undoped host nanotube. Nevertheless the LDOS reveals localized acceptor (donor)

states close to the Fermi level responsible for p-type (n-type) doping.
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We conclude the section dedicated to transport properties of carbon nanotubes with
the observation that molecular adsorption can have an important effect on the
conductance of carbon nanotubes. This effect has fostered the idea that extremely
compact and sensitive carbon nanotube chemical sensors could be achieved, a concept
that was tested already for NO, and NH; by Kong et a/. [52]. In Chapter V we study
theoretically the intrinsic conductance change of a similar carbon nanotube sensor

aiming at detecting aromatic amino acids.
4. Mechanical properties

The sp® hybridization of carbon is known to produce the toughest covalent bond in
nature. A graphene layer has a Young's modulus close to 1TPa which was expected
and later proved to be conserved in nanotubes. This section will cover the basic
mechanical properties of single-wall carbon nanotubes starting from theoretical
predictions and ending with experimental measurements. We do not touch on
vibrational properties as in this thesis we are interested mainly in the "macroscopic”
elastic properties like bending and more generally the deformation of nanotubes
which can be characterized with the help of classical elasticity theory quantities like

Young's modulus, stiffness and strength and so on.

At the base of graphite's stiffness are the strong c-bonds faintly helped by the n-bonds
which also account for the weak interlayer interactions. Rolling a graphene sheet into
a carbon nanotube would naturally increase the total strain energy. Small diameter
tubes are accordingly less stable than the larger ones. As axial strain is mainly
transferred into a deformation of the o-bonds and their inter-bond angles a
considerable tensile strength is to be expected. On the contrary loads normal to the
tube's surface do not distort the hexagons considerably, resulting in a relatively high
softness in this direction. In fact the walls of a SWNT can even collapse together if
this load is large enough. Under tensile stress carbon nanotubes have been found to
yield at 5-10% strain which cumulated with their strength and elastic recovery of their
structural properties from large deformations led various authors to name them the
ultimate fibers.
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4.1. Molecular dynamics and continuum models

We begin our review of the mechanical properties of carbon nanotubes by a brief
introduction into the theoretical models available for predicting carbon nanotube
mechanical properties. We often make reference to classical continuum elastic theory
which although questionable for nanometric objects, it is known to have produced the
first predictions of nanotube mechanical properties that still constitute a good

approximation.

The central quantity involved in classic elasticity theory is the material's Young's
modulus Y defined as the ratio of the second derivative of the strain energy E to the
sample's volume V', ie. Y =(1/V)0’E. Similarly Y can be obtained from the
deflection d of a cantilever of length / subject to a force F' at its free end
13
d=— (L1
3YI (I.17)
where / is the moment of inertia of the cross-section. For tubular structures classical

elasticity theory gives / as

_ (R} —RY)
4

I (L.18)

defined in terms of the tube's outer (inner) radius R, (R,) respectively. For SWNTs,
defining the tube's thickness is not self-evident, and was even a source of confusion
since early molecular simulations predicted Young's moduli of 5TPa (5 times stronger
than diamond or graphene). In literature either 0.7A or 3.5A seem to have been
established over the years as the wall thickness of nanotubes. With the latter
thickness, which corresponds to the spatial extent of the m orbitals of a carbon atom,

the Young's modulus is close to 1TPa which seems more realistic.

As measuring the mechanical properties of nanotubes involves the manipulation of
objects of nanometric diameters, bending forces on the order of nN and the ability of
measuring strains of a few nm, it is of no surprise that the first results on the
mechanical properties came actually from calculations. Simplified analytical models
with periodic boundary conditions were initially used for evaluating the Young's

modulus of nanotubes and graphene from the Morse potential for instance. Latter
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molecular dynamics (MD) imposed itself as the common choice allowing the

simulation of finite systems composed of nanotubes in a variety of configurations.

There is currently a large force-field variety to drive MD simulations. For carbon
based systems analytic many-body force-fields such as Tersoff-Brenner and
Stillinger-Weber have long been available. The Tersoff-Brenner potential works
particularly well for crystalline, amorphous and molecular phases of carbon, such as
diamond, graphite, fullerenes, and nanotubes and has been thoroughly tested in a
variety of settings. An important bonus for the Tersoff-Brenner potential is that it is
reactive, i.e. chemical bonds can form and break during the simulation. Consequently
the neighbor list of each atom is dynamic slowing down to a certain extent the
simulation. Therefore, for larger systems it is often convenient to turn to simpler,
fixed-topology force-fields like CHARMM, Amber, etc.

When accuracy becomes critical ab initio molecular dynamics schemes are involved
in which the inter-atomic forces are computed at each time step by solving the
appropriate Schrodinger's equation within the Born-Oppenheimer approximation.
Both tight-binding MD and density functional theory MD simulations are in this
category. Some of the results obtained with this and other kind of simulations together

with a few experimental results are reviewed in the following subsection.

Interestingly all the above models confirmed a classical elasticity textbook behavior,
at least under moderate strains. For instance as demonstrated recently, depending on
their aspect ratio 1 =1/d, alone (length over diameter), carbon nanotubes can behave
as shells at low g, as rods at intermediate p and as soft bending wires at large p
[53]. In fact continuum models were never completely abandoned and still find
application in the simulation of extremely large carbon nanotube systems. The
validity of these models was thoroughly analyzed by Harik [54]. Much theoretical
progress has been made recently with the work of Belytschko [55] on the shell theory
of SWNTs that reproduces even tube buckling and Girifalco [56] on the van der

Waals forces interactions between continuum nanotube models.

4.2. Elastic properties of SWNTs

At the moment there is still a matter of debate of what the value of Young's modulus

is, of its scaling with the nanotube's diameter and of its chirality dependence. This is
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due to intrinsic experimental uncertainties on the measured system and uncontrolled
setup parameters. In the years to come experimental values will probably converge
and approach the desired accuracy. In its turn theory has still to explain exotic
mechanical effects in MWNTs and SWNT ropes like the rippling mechanism made
responsible for the large drop in Young's modulus of MWNTs of diameters > 10 nm
observed by Poncharal et al [S7].

Using the Tersoff-Brenner potential Robertson et al. [58] found the strain energy of a
SWNT to scale as the inverse square of the tube's diameter, i.e. d,” and a Young’s
modulus of ~1TPa. Other calculations [59] using the same force-field reported a
Young’s modulus as high as 5.5TPa, which according to our earlier discussion is not
surprising since a wall thickness of ~0.6A was used in this study. More accurate semi-
empirical tight-binding and DFT calculations [60, 61] were later on performed
concluding on a Young’s modulus of approximately 1.2TPa and 1.06TPa
respectively. Comparison with boron-nitride nanotubes [61, 62] confirmed that carbon

nanotubes are superior in strength and are the strongest fibers known yet.

Srivastava et al. [62] using the Tersoff-Brenner potential has computed both the
bending and torsion stiffness for several armchair and zigzag carbon nanotubes. Their
results indicate a bending stiffness K scaling as d”* and a torsion stiffness scaling as
d>”', both in very good agreement with the cubic scaling predicted by the continuum
elastic theory. The corresponding bending Young’s modulus for a small diameter
SWNT was found to be about 0.9TPa being lower than the tensile modulus calculated
from tight-binding or DFT. The found shear modulus of SWNTs was around 0.3TPa

and it did not dependent strongly on tube diameters.

The first measurement of the Young’s modulus was achieved by Treacy et al. [63]
although for multi-wall nanotubes. Mean-square vibration amplitudes were
determined with the help of a transmission electron microscope in the temperature
range of 27 to 800°C. While the average value of the measured Young’s modulus was
~1.8TPa, there was a considerable standard deviation attributed to experimental
uncertainties. The same method of measuring thermal vibration was later on applied
to SWNTs at room temperature [64] yielding a mean Young’s modulus of ~1.3TPa.

By measuring the restoring force Wong et al. [65] gave a modulus of about ~1.3TPa
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and Salvetat et al. [66] obtained about 1TPa for SWNT ropes laid over porous

alumina.

The mechanical properties presented so far will support the various affirmation and
choices we made in modeling the carbon nanotube electromechanical sensor of
Chapter III. Without disclosing too much, we have also obtained via ab initio
density functional theory calculations with SIESTA a Young’s modulus of 1.04TPa
for a (5, 5) carbon nanotube. Moreover at 0°C the tube did not yield at neither tensile

nor compressive strains of £10%.
Conclusions

In this chapter we have briefly looked into the structural, mechanical and electronic
properties of carbon nanotubes. Right from the beginning we established the strong
connection between nanotubes and a single sheet of graphite, a graphene layer. The
single-wall carbon nanotubes are indexed by the chiral vector, as a function of which
all the other properties were shown to depend on and be uniquely determined by.
Sampling the m dispersion relations for graphene we were able to find the
unidimensional band structure of SWNTs. From both the band structure and density
of states it was concluded that nanotubes can be either metallic or semiconducting in a
1:2 ratio respectively. Transport measurements have demonstrated that metallic tubes
are ballistic in devices inferior to a few hundreds nanometers, and that Schottky
barriers form at the interface between metallic leads and semiconducting nanotubes.
As the phase relaxation length also exceeds the micrometer we could conclude that
transport in short nanotubes should be coherent. Nanotubes were also proven to be
extremely sensitive with respect to doping, a property exploited in Chapter V in the
context of a nanotube-based chemical sensor. With respect to mechanical properties
both calculations and measurements begun to agree on the cube scaling of the
stiffness with respect to the tube's diameter, and a terapascal Young's modulus for
small diameter SNWTs.



CHAPTER 1L

Transport theory in nanostructures

Introduction

The aim of this chapter is to present the formalism at the base of modern transport
calculations in nanostructures, the non-equilibrium Green's functions (NEGF)
formalism. The resulting transport theory is build upon the solid grounds of non-
equilibrium quantum statistics. NEGF gives access to particle densities and currents
under strong driving field and strong interactions, encompassing thereby Kubo's linear
response theory. Under several simplifying hypotheses NEGF reduces to the widely
employed Landauer-Biittiker formalism which should be constrained only to coherent
transport regime. Although it is this last formalism that we will use in this thesis, we
felt that instead of giving a phenomenological derivation of the particle current
expectation value, it would be preferable to start from non-equilibrium quantum

statistics and simplify the theory down to the utilized model.

In Section 1 the general NEGF transport theory in nanostructures will be detailed. We
start by pin pointing the equilibrium quantum statistics formulae for computing
operator expectation values in the grand canonical ensemble. For single-particle
operators it is however more efficient to evaluate Green's functions instead, which
contain sufficient information for computing the averages of one-body operators. The
non-equilibrium picture is introduced next which will lead to the extension of Green's
functions to their contour ordered versions. For practical purposes these Green's
functions are projected onto the real axis via Langreth's continuation rules yielding
the lesser (greater) and retarded (advanced) Green's functions. Henceforth to the end
of the first section we follow closely the derivations due to Jauho in establishing the
inelastic transport equations [67, 68]. The current expectation value is obtained from

the definition of the current operator in a many-body context, except for the leads
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which are assumed to be non-interacting, i.e. they admit a mean field, effective
particle description. At the end of this section applying the hypothesis according to
which the leads remain in equilibrium even after switching on the driving fields and

interactions will result in the Meir-Wingreen formula [69].

Section 2 will deal with the elastic transport situation, which as stated earlier is the
theory of choice for this thesis' calculations. The Fischer-Lee formula [70], an
extension of the Landauer one-channel formula, is derived from the previously
obtained Meir-Wingreen current expectation value by adding the non-interacting
central region electrons hypothesis. This assumption transforms the problem into an
entirely one-body mean field transport picture for which efficient calculation schemes
can be devised (see Chapter III and Chapter V.) The Fischer-Lee transmission
formula is transformed into Todorov's formula [71] evidencing the elastic scattering
view on which Landauer-Biittiker formalism relies. We end this section and the
chapter by considering non-orthogonal basis sets, which is of major interest as most of
the Hamiltonian models, either tight-binding or ab initio, use such basis sets for
efficiency reasons. We show there that the transport theory remains unaffected as long

as different matrices entering the formalism satisfy certain representation rules.

1. Non-equilibrium transport

1.1. Non-equilibrium Green's functions

We begin this chapter with a succinct introduction to the main results of non-
equilibrium many-body quantum statistics. The reader is assumed to be familiar with

the standard equilibrium quantum statistics theory detailed in many books. [72, 73]

Standard quantum statistics describes the behavior of many-particle systems at finite
temperature within the grand canonical ensemble. The system is thus assumed to be in
thermodynamic equilibrium with a number of "reservoirs" with whom it can exchange
both energy and particles. One of the main result of this theory is a compact formula

for computing the quantum statistical average of a generic operator A,

~ Tr[e "™ 41 Tr[pA
<A> - [ —B(A—uN) ]E [pA ] (H°1)
Tr[e "] Tr[p]

Equation (II.1) contains the definition of the density "matrix" operator
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ﬁEe’ﬂ(ﬁ”“‘N ', a function of both the system's Hamiltonian H and the particle

number N . The thermodynamic state of the system is thus defined by two
parameters, namely 3 =1/k,T also known as the inverse temperature, and p the
chemical potential. The trace in (IL.1) runs over a basis of the particle Fock space with
all allowed number of particles. This formula includes as particularizations the
canonical ensemble in which the number of particles in the system is hold fixed which
restricts the trace over a Hilbert space of given number of particles, and the many-

body ground state at zero temperature or 3 — co.

Obviously evaluating (IL.1) is for all but the simplest situations a formidable task.
However for one-body operators, like the particle charge and current density, one tries

instead to compute the Matsubara Green's function defined by
G =T MY]) (12

in which the shorthand notation 1= (r,7,0) has been used, and ¥ (1) represents the
field operator in Heisenberg's picture that annihilates one particle of spin ¢ from the
space-time point (r,7). In the above Green's function definition 7, corresponds to the
Wick time-ordering operator with respect to the imaginary time 7 =if, a
mathematical trick introduced by Matsubara to cope with finite temperature effects.

For two generic operators A,B
TLA(T)B(r)] = 0(r — T A(T)B(r") — 0(1' — 7)B(7") A(T)
where 6(7) is the usual Heaviside unit step function.

The Matsubara Green's function contains sufficient information for the calculation of
any one-particle operator averages like mentioned earlier. Moreover the linear
response theory gives access to transport properties like the particle current via the
Kubo formula. However transport phenomena beyond the linear response theory
cannot be modeled based on equilibrium Green's functions only. Fortunately there
exists an extension of the equilibrium formalism to non-linear response regime which

is based on the so called non-equilibrium Green's function

61 =i (LM M))  a3)
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which is identical to (IL2) except for the time-ordering operator 7. that now is
defined along the contour displayed in Figure II.1. The contour-ordered Green's

function formalism is also known as Keldysh-Kadanoff-Baym formalism [74, 75].

T
p—
: N,
— < N

Figure I1.1. Complex contour used to compute non-
equilibrium Green's functions.

We will not go into details of how this contour is obtained, however we describe the
physical considerations at the base of this formalism. Initially, for # <¢, (see Figure
II.1) the system is assumed in thermodynamic equilibrium being described by a
Hamiltonian f[o. Starting with ¢, couplings between previously non-interacting
subsystems or parts of the above system, described by a time-dependent interaction
Hamiltonian V(t) , are turned on. This latter interaction term can contain, additionally
to the subsystem couplings, an external time-dependent driving field. Thus at ¢ > ¢,
the system is no longer in equilibrium and cannot properly be described by the
Matsubara Green's function in (I1.2). However, as the state of the system was known
before ¢,, this state can be used as initial condition and formally integrated using the
time evolution operator. Under general assumptions this integration is shown to be

equivalent with a contour-ordered integration (see Figure IL.1).

In Equation (I1.3) the thermal average is taken with respect to f[o which is possible
due to the fact that the contour begins and ends at 7, when the couplings V(t) have

not been yet applied.

Although a powerful formal tool, the contour-ordered Green's function is replaced in

practice by the four real-time Green's functions

G- (L) = i (' (1)) (IL4.2)
G (L) ==i{d(M)' (1)) (IL4.b)
G 1) =i ({05 1})  arae
c'aty=iol -o({dm.'a)})
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called lesser, greater, retarded and advanced Green's functions respectively.
Definitions (Il.4.c-d) contain the fermion anti-commutator defined by
{21,3’} = AB+ BA. The retarded (advanced) Green's function can be interpreted as
the quantum probability amplitude to annihilate an electron (hole) of spin o' at
(r’,¢") knowing that an electron (hole) of spin ¢ has been created earlier at (r,?).
Conversely the lesser (greater) Green's function is the energy-resolved density of
electrons (holes). It is not difficult to prove that G=(1,1) contains all the necessary

information required to compute any one-particle operator ensemble average
9 1 9 < I
(Am) ==ilim AMG (L1) (115

including the particle density and current operators which we approach in the next

subsection.

The last result that we will however not prove here is Langreth theorem which
provides the means to "project”" contour-ordered integrals onto the real-time axis. Let
A,B,C denote three contour-ordered correlation functions (Green's functions or self-

energies) satisfying
C(r, 7= f dr, A(T,7,)B(1,,7")
C
then the real-time projections of the above equations are

400
) = [ a4 )BT )+ AV @B, (6.a)

+oo
Ct )= [ ana e 0)B (1,1 (IL6.b)

Langreth theorem together the continuation rules given by (Il.4.a-d) allow one to
transfer Dyson-like integral equations from the contour to real-time. This will prove
extremely useful in the context of the transport theory developed in the following

subsection.
1.2. Inelastic transport equations

This subsection focuses on the theory of non-equilibrium transport through
nanostructures. The derivations start from the definition of the particle current thermal

average. With the help of the non-equilibrium Green's functions (NEGF) apparatus
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1" I

Figure I1.2. A generic electronic multi-terminal device showing biasing
and "real-space" Hamiltonian partitioning.

we obtain a compact formula for this quantity. Most of this subsection's derivations
follow closely Reference 67.

The studied system, sketched in Figure I1.2, is a multi-terminal device comprising an
interacting scattering central region coupled to M leads. The leads are supposedly
terminated with infinite particle reservoirs. To be consistent with the NEGF
formalism, initially the leads are decoupled from the central region and all different
subsystems are considered to be in thermal equilibrium and have a given chemical
potential. As discussed earlier at a certain time f, the coupling Hamiltonian 14
between these subsystems is being turned on which causes particles to flow from one
lead to another. Thus the overall Hamiltonian can be partitioned into

H=H,+V=H.+> H, |+ ZVQ] (IL.7.a)
H, = Zy:ga;vél;véa;v (IL7.b)
I}u = I}ac + ACa = Z(Va;v,uél;véu + h'c') (IL7.¢)

defined with respect to ¢/ operators that create an electron in lead « into the single-
t

v

particle state |1/>a =

O> and d ., which does the same but in a state of the central
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region. It can already be noticed that (IL.7.b) assumes non-interacting electrons in the
leads. However in the central region any interactions are allowed including electron-
phonon and electron-electron correlations. Thus I:IC is not specified in (IL7) being
problem dependent. Lastly (IL.7.c) describes tunneling between states on the leads and
the central region via matrix elements of the type V., , < |V |u> which for the

scope of this thesis we assume to be time-independent. The basis states {|

are mutually orthogonal and moreover they are localized in real-space to allow for the

partition in (IL.7.a). A tight-binding-like single particle basis can be used for this
purpose.

In this thesis we consider only spin independent transport and the spin degeneracy is
included numerically by a prefactor of 2. The particle current from lead « into the

central-region is given by the time-derivative of the particle number in the same lead
A 2ze A~
1,(6)==2¢-0,(N,)=—2e- 32 oo =77 <[HN}> (IL8)

Because N, commutes both with A and A _ it results upon insertion of (IL7.c) into
(IL.8) that

LO=2(n (6,4) V(0] s

U,
Using the following definitions for the two lesser Green's functions

Gy (60 =i(E0, (0d, (1))
Gz, () =i(d](1E,, ()

the current in (I1.9) becomes

2
1,()= fZ(Va i G (60 =V, G (1)) =

VL

“2[rEY (E)-V.,,G5, ()

01//1 /Lau QUL QY[
o0 27'('

(11.10)

where in the last equation the inverse Fourier transform from the energy to real-time

plane has been used. At this point the only unknown variable is the lesser Green's
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function G_, (E) which we search for below starting from the general contour-

;i

ordered Green's function G, , (7,7") defined in (IL.3). Dyson's equation is still valid

at non-equilibrium except for the fact that all quantities should be ordered on the

contour of Figure II.1, thus

/ /
G(l;l/,/t (T’T ) = Zj;dTlG(l;V,a;V (T’ Tl )I/a;z/,u’Gu/,u (TI’T )
W

Using Langreth's analytic continuation rules (I1.6) we transform the contour-ordered
integral onto the real-axis

+00
G, (LtY=>V Ji N dzl[(;r (t.1)G (.Y + G, . (L1)G (1, t/)]

(e RZNeRY
!
1

Since in steady-state the Green's functions depend only on time differences ¢ —¢ we
can Fourier transform the above equation in the energy plane, where time convolution

becomes a simple multiplication. Following the same steps for G (7,7’) we arrive

JIReRZ

at the following expressions for the lesser Green's functions

Gy (EY=3 "V 1|Gly o (BYG (E)+ G, 0, (EYGE (E)]
W

. . !’
RN} [RZRR JONT!

G (EY=> V2, |Gl (E)G, . (E)+ G (E)GL,,.,., ()]
'
Before inserting the last two equations into Equation (I.10) we identify the lesser and
greater lead self-energies
<Gy — * <)
Zu,#/ (E) - Va;u,;ﬂGa;uﬂu;u (E)Vu;v,/l (II,] 1)

v

and with the help of the relation G"—G* =G~ — G~ (see (I1.4.a-d)) we obtain the

particle current average

2e +00
L="J dEY (S5, (E)G, (E)=X, (E)G(E))=
o

N (11.12)
== ﬁ ) dETr[Zj(E)G>(E)—ZZ(E)G<(E)]

The trace in the last equation runs over all indices p that belong to the central region,

while boldface quantities represent matrices written in basis {| ,u>} This simple
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formula says that in order to get the current through an interacting region one has to
simply take the trace over energy resolved scattering-in rate minus the scattering-out

rate.

If we assume that lead o remains in thermal equilibrium with chemical potential 1,
even after the coupling Hamiltonian has been turned on, then the lesser and greater

Green's functions in (II.12) can be replaced by their equilibrium versions

G (E) =il f(E —p,)—1]A(E)
G (E)=if (E—u,)AE)=i(e"* " +1) A(E)

where we have used the spectral function, defined by A(E)= i[G’(E )—G(E )]. In
analogy with the spectral function we also define the level broadening function
I'(E)= i[2>(E )—Z<(E)] which we insert into (I1.12) to obtain the well known to
Meir-Wingreen formula [69].

I = % j: :C dE Tr[FQ(E)iG<(E) + f(E— ua)ra(E)A(E)] (I1.13)

In the following section by adding the non-interacting central region hypothesis we
transform the Meir-Wingreen formula into the Fischer-Lee formula. We thus arrive at
an elastic transport theory equivalent of the famous Landauer-Biittiker formalism that

will be used intensively in the following chapters of this thesis.

2. Equilibrium elastic transport

2.1. Fisher-Lee current formula

The theoretical foundations of the general non-equilibrium interacting transport
within the NEGF formalism were laid down in the previous section culminating with
a compact formula for the particle current expectation value given by Equation
(II.12). Here we apply two more hypotheses that will simplify even further this

formula rendering it computationally tractable for carbon nanotube transport studies.

The first hypothesis assumes that even after coupling the leads to the central region at
t, via V the leads remain in thermal equilibrium and have a certain chemical

potential 1 . This hypothesis has already been used in deriving the Meir-Wingreen
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formula (II.13). The second hypothesis assumes that the central region is non-
interacting that is to say electrons in this region behave like free particles in the one-
body potential created by nuclei. "Free" means here that electrons don't interact with
phonons and interact with other electrons via an effective mean field. In practical
calculations the mean field theory chosen to describe the electrons in the central
region and also in the leads is typically Hartree-Fock, Density Functional Theory or

some semi-empirical tight-binding scheme.

The latter hypothesis brings the problem down to an entirely one-body problem since
the leads were already assumed to be non-interacting (see (IL.7.b)). Solving this
problem is considerably simpler than a many-body problem and allows thereby
studying transport through considerably larger nanostructures. Non-interacting
electrons in the central region implies that the only self-energies to be included are the
lead self-energies. In matrix notation

EONE)=2P(E)+ ) EI(E)

o'=a

(IL.14)

In steady-state the Keldysh equation relates the lesser and greater Green's functions to

the total self-energies given above, and the retarded/advanced Green's functions, i.e.
G (E)=G'(E)X7(E)G(E)  (IL15)
Inserting the Equations (I1.14) and (I1.15) together with

L (E)=i[f(E-p)—1T(E)  (IL16.a)
X (E)=1if(E—p,)T,(E) (IL.16.b)

into (IL.12) results after a few manipulations in

I = Z% [ BT, (B E-p)~ fE-p =1 (L17.a)

(1/7:0( (1/7:0(

T, .(E)=Tr[[ (E)G'(E)T (E)G‘(E)| (IL17.b)

known as the Fisher-Lee formula, in which 7 (E) is the energy-resolved
transmission from lead a to . This formula will be used throughout this thesis
especially in Chapter III and Chapter V for computing particle currents or

transmission spectra of carbon nanotube based devices. As seen from the previous
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chapter experimental evidence shows a weak electron-phonon coupling in carbon
nanotubes at room temperature over <1um lengths. Thus for carbon nanotubes a non-

interacting "central" region is suitable.
2.2. Todorov's scattering current formula

Another particle current formula based on scattering theory was developed in
Reference 71 to which we refer the reader for the general assumptions made there
and derivation of that formula. Here we prove the exact equivalence of Todorov's
formula to Fisher-Lee's formula (II.17) obtained in the previous subsection. This
equivalence is interesting for two reasons. First it proves again that Fisher-Lee
formula is valid for elastic tunneling only, and second, Todorov's formula simplifies
algebraic manipulations we will use latter to prove an important fact. Within a mean-
field approximation the particle current expectation value is uniquely determined by
the spectral properties (i.e. eigenvalues and eigenvectors) of the Hamiltonian around

the Fermi level.

In a first step we express the level broadening functions I' (£) in terms of the lead

spectral functions A (E) and couplings V¢,

I (E)=i[Z(E)—Z!(E)| = V¢, i[GL(E) = GL(E)|V,c = Vo, A (E)V,

which we then insert into the transmission function 7 ,(E) given by Equation
(IL.17.b) to obtain
T, .(E)=Tr. [T (E)GL(E)T,(E)GL(E)| =
= Tie [V AL (E)WV, GL(E)Ve, A (B, GL(BE) = (1L18)
=Tr, (A (E)V,GL(E)V A (E)V,  GLE)V,,]

Matrices were labeled with indices showing to which subsystem of Figure I1.2 they
refer to. In the last equality the cyclic invariance of the trace was used. We have
labeled the traces in order to emphasize that the final trace will run over the infinite

lead space instead of the finite central-region space as was initially.

Next we define the operator #(EF)= V+ VG’(E )17. Since we have assumed no direct

coupling between any two leads (see Equation (II.7.c)) we note that formally the
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block matrix V,_, E<M|I}‘u' > with (i) € a(a’) vanishes. The same happens to
\%

aq?

V. leading to

t,.(E) =V, GL(E)V,,

ao aC

This matrix block t_,(£) is then identified and replaced into Equation (IL.18)
yielding

T, (E) =Tr [T (E)GL(E)T,(EYGL(E)| =
=Tr, [A(E)t, (E)A (E)t, (E)|= (119
— 47* Tr, |p (E)t,, (E)p (EDt,, (E)']

where in the last equality we used the fact that for non-interacting electrons in the
leads, the spectral function is A (E)=2np (£) where p_(E) is the lead-projected
density of states. This transmission function reinserted into (I.17.a) gives Todorov's

particle current formula as described in [71].

Although equivalent, the Fisher-Lee and Todorov transmission formulae differ in
philosophy. The former involves a trace over central-region states and describes finite
life-time particles escaping into the leads due to complex imaginary self-energies. The
latter however is a trace over lead states, in which the central-region is treated as a
black-box scatterer. Both these formulas will be used in this thesis since they offer

advantages in particular situations.
2.3. Non-orthogonal basis sets

For practical calculations the elastic transport formalism either in the Fisher-Lee or
Todorov's derivation need to be extended to non-orthogonal basis sets. Most of the
modern transport calculations are done with extensions of quantum chemistry codes
[76, 77, 78, 79, 80] where linear combinations of atomic orbitals or plane waves are
the typical basis set choice. However plane waves don't satisfy the real-space
localization assumption we have used in deriving the transport formulae of this
chapter so we focus on atomic orbitals. Besides their advantages in quantum chemical
calculations atomic orbitals suffer from one drawback, namely their lack of

orthogonality. In this subsection we show how non-orthogonality can be
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straightforwardly taken into account in transport calculations with practically no

overhead by a proper notation convention.

Let {|y>} denote the atomic orbital basis set. The essence of non-orthogonality is the
fact that the identity operator expressed in this basis is not the identity matrix I but
rather a general symmetric and positive definite matrix S known as the overlap

matrix or Gram matrix or metric tensor. Thus by definition this matrix' elements are
S = ()= (v]w).

The algebraic manipulations in a non-orthogonal basis is greatly simplified by

defining the dual basis

7)=2_S. |1
I

> (11.20)
It is straightforward to verify that <,u|ﬁ> = <17|u> =6, and <17|ﬂ> = S,f#l. With the
help of this dual basis the four closure relations of the spanned Hilbert space can be
obtained.
2_N) =2l = 2 1w) s, Kl = 207) S, (=1 qyap
14 v 144 v
Observing that the two basis sets yield four matrix representations for an operator 0

depending on the position at the left or right of a direct or dual orbital it is at this point

convenient to introduce the following notations (which are similar to [81])

A

O O

9,

OTl;uV 05 = <’a V> (IL.22.a) OTT;W =0" = <,a
o

b =05 =(1lOly)  (122.0) Oy, =07 =1

7)  (I1.22.b)
7)  (IL22.d)

According to Reference 81 an index is proper (improper) when referring to a ket (bra)
of the direct basis or to a bra (ket) of the dual basis. Direct (dual) basis is represented
in our notation by a down-pointing 1 (up-pointing T) sign called the external index in

contrast with the internal matrix indices v, . Thus e.g. O, is the proper-proper

1l
representation of operator O while O,, is its improper-proper representation. A
general vector |¢> also admits four representations following the same conventions as

operators
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"=@Y) (123.a) Y=
Wlv)  ar23.e) Y=Y

=(v[¢)  (11.231)
=(¥[7)  (1.23.9)

N

|||
|||
N

U, =V
Uy, =1,
With these notations the representations of the identity operator are I, =S, I, = S
and I, =1, =1I. We define a proper matrix multiplication a multiplication of two
operator representations having opposite inner external indices, i.e. A B, or A, B,

where X,yE{l,T}. Using the closure relations (IL.21) one can express then any

operator sequence AB in terms of proper matrix multiplications
AygB, =ALL B, = A, 1B, = A, B, (I1.24)
The same holds true for the action of an operator on a vector, 2!| ¢> yielding

A=A v = A Iny = A v

n>:€n

which the generalized eigenvalue form known from quantum chemistry

n> can assume various matrix forms among

H, v, =¢,I,v;, & Hy, =¢ Sy, . Another equation of interest to us is the equation
defining the Green's function associated with a one-body Hamiltonian
G(E)[Ef —H }Ei . Again this equation can assume different forms but we will

however use mainly one particular form
-1
G(E)[El, —H, |=1; =1= G(E); = El, —Hy] (IL.25)

We turn now our attention to the representation of the trace in non-orthogonal bases.
Let |an> denote an eigenvector of an operator A corresponding to the eigenvalue a, .
Writing the trace of A in the basis of its eigenvectors and then using the closure
relation (I1.21) we find

TolA)=3 e, =) e, dla,) =3 (e )4, (ila,) =
=2 _(#a,){a,|v)4; Z<|> =2 8Ar =) 4= (11.26)

=Tr [Ay]=Tr[InA ] = Tr[Au] = Tr[I,Aq]

where the last three equalities were obtained using representation transformations

based on proper matrix multiplications. Traces in non-orthogonal bases are thus taken
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over either proper-proper (Tl) or improper-improper (1T) operator representations.

Applying the above we can select a useful representation for the trace of Equation
(IL.17.b)

1, .(E)= Tr[Fm“(E)G’C;”(E)Fu,;“(E)G”C;”(E)] (11.27)

which yields inside the trace a 1T representation consistent with (I1.26) and also
consistent with the representation of the Green's function in (I1.25). This gives insight
into the fact that a coherent formalism (in the sense of operator representations) can
be obtained if one considers Hamiltonians, self-energies and level broadening
functions (FI ,f),f) to be of type ll, and Green's functions, densities of states and

spectral functions (G, p, 4) of type TT, thus

(ﬁ)i,f’)%(H“,E“,ru) (11.28.3)

(G.p,A) = (Gr.prsAn)  (IL28.b)

These are the conventions we use throughout this thesis when performing transport
calculations. Even though for the sake of brevity we sometimes drop external indices
it should always be remembered that in non-orthogonal bases operators assume the

representations defined by (I1.28)
Conclusions

A series of derivations aimed at establishing the transport theory in nanostructures
were detailed in this chapter. After arguing why the equilibrium quantum statistical
picture is not appropriate for describing transport phenomena under strong
perturbations, we have introduced the apparatus of non-equilibrium Green's functions.
Contour ordering replaces the normal real-time ordering but with the help of
Langreth's continuation rules many of the equilibrium Green's functions can be
extended to the non-equilibrium case. A compact formula for the particle current
expectation value in multi-terminal devices was obtained in terms of Green's
functions, which reduces to Meir-Wingreen formula assuming leads in equilibrium.
Adding the non-interacting electrons hypothesis in the central region brought the
current expectation value to the familiar Fisher-Lee formula employed throughout this

thesis. Using the cyclic invariance of the trace we were then able to prove the
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equivalence of Fisher-Lee formula with Todorov's derivation which relies on an
elastic scattering picture. As transport calculation often reuse quantum chemistry
codes we had to show that nothing changes in the transport theory when working in a
non-orthogonal basis set. We were thus able to prove that if representations (I1.28) are

respected the transmission formulae remain unchanged.



CHAPTER III.

A CNT-based electromechanical sensor for mass and
force measurements

Introduction

A potential carbon-nanotube-based electromechanical sensor is theoretically
investigated in this chapter. Such a device has not yet been experimentally
demonstrated, however, among the purported goals of this chapter is to prove that
such a device would operate in normal conditions and moreover it could be
manufactured with state-of-the-art micro- and nano-fabrication techniques. By means
of modeling and simulation we will prove later that the aforementioned carbon-
nanotube device can measure low-magnitude forces on the order of tens of
piconewtons (pN), or with minor modifications it can detect small bodies weighting
kilodaltons (kDa) or equivalently zeptograms (zg). The same device can thereby be
used in two distinct configurations, one for measuring forces and another for
weighting small bodies. In both configurations the output is an electric signal, which

is a current imbalance, i.e. the difference between two currents.

Cell motility is one of the central research fields in biology that is trying to explain the
myriad of mechanical functions cells accomplish on a regular basis, ranging from
migration and division to neural plasticity. Quantifying the forces developed by cells
during these processes would shed light into many of the underlying mechanisms (For
a review on cell motility and force measurements please consult Reference 82.)
Measuring these forces [83, 84, 85] is however a challenging task primarily because
of their small magnitude but also because it involves accessing active regions of less
than a few micrometers. We will argue in this chapter that carbon nanotubes are
appropriate for this task because of their unique structural and mechanical properties.

In particular, the force-meter sensor configuration detailed later satisfies all the
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abovementioned requirements, namely it can measure pN forces and it has nanometric

features.

The second application we target with our proposed device is biochemical sensing. A
current priority for homeland security agencies is fast, sensitive and specific detection
of biowarfare agents but many other applications like health diagnosis or proteomics
would benefit from an integrated biosensing technology. An excellent review on the
available sensing techniques is contained in Reference 86. Several papers have
reported the conversion of bio-molecular recognition into micro-cantilever deflections
[87, 88, 89]. Furthermore, mass measurements on the order of femtograms (fg) were
achieved using carbon nanotube-based cantilevers [57]. Compared to
microcantilevers, carbon nanotubes offer the advantage of a far better scale
compatibility with elementary biological processes. This scale compatibility comes as
the first of four requirements for future generation biosensors as identified in
Reference 89, followed by label-free detection, scalability in view of massive

parallelization and wide dynamic range.

We start this chapter with a section describing the operation principle of the core
device referred to as strain transducer which is common to both the force meter and
the nanobalance. The differences of the two configurations are underlined next. A few
practical considerations are listed at the end of Section 1 in order to show that such a
device can be realized experimentally. Section 2 consists in an assessment of the
mechanical behavior and the sensitivity of the device under forces on the order of pN.
For this purpose a classical molecular mechanics force-field is parameterized via
highly accurate ab initio calculations and then used to study the unit step response of

the transducer yielding information about friction and mechanical stability.

Section 3 focuses on the transduction of the cantilever's deflection into an electrical
signal in the coherent transport regime. An efficient real-space partitioning scheme is
developed in order to compute the multi-terminal Landauer-Biittiker conductance.
Several issues related to the importance of thermal effects in the proper operation of
the sensor are discussed. With a simple procedure we include non-zero temperature
effects through molecular dynamics in quantum conductance calculations that results
in a thermally smeared displacement-current characteristic. This characteristic

displays monotonic behavior and constitutes the proof-of-concept for our device.
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The nanobalance operation mode is characterized in Section 4 where we establish that
a single streptavidin molecule can be detected; an unprecedented sensitivity for an
electromechanical device. Parametric simulations found at the end of this section
display a large robustness of the transducer with respect to hard to control operation
and device parameters like the binding position of the molecule along the cantilever

and the cantilever's radius.

1. Sensor structure and operating principle

1.1. A carbon nanotube-based strain transducer

Although the force measuring sensor and the nanobalance differ in the way they are
actuated, they are both based on a core device which transduces the mechanical
deformation of a cantilever into an electrical signal. This device will be named
hereafter strain transducer. In this section we describe the operation principle of the

transducer and the basic setups for measuring with it either forces or masses.

The proposed transducer is sketched in Figure III.1 and involves two perpendicular
carbon nanotubes, i.e. a nanotube cross. Three of the four nanotube ends are clamped
to metallic leads and the remaining one is free to move. It is at this end that a bending
force will be applied. From the mechanical point of view one tube is a cantilever and
the other is a linear bearing. The bearing is placed underneath the cantilever in order
to restrain its vertical movement, which is necessary because long nanotubes tend to
bend and stick to the substrate attracted by van der Waals forces. Naturally one might
raise questions about cantilever-bearing friction. As it will be shown in Section 2, the
inter-tube friction does not impede the cantilever from bending laterally under an
external force, although it modifies the amplitude of thermal fluctuations especially in

the region of the junction.

Apart mechanical stability, the three metallic leads serve as electrical contacts to the
device. In this thesis we adopt a simple DC biasing scheme with the two terminals of
the bearing set to +V (where V is some potential) and the single terminal of the
cantilever set to -V. In steady-state, when no external force is applied on the
cantilever, the currents flowing through the two branches of the bearing should be
approximately equal. In practice there will always be an offset owing to unequal

branch-length or differences in the doping or structural imperfections of the branches.
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Figure III.1. Schematic representation of the operation principle of a carbon
nanotube-based strain transducer, including electronic biasing.

However if an external force is applied, the cantilever will bend elastically, modifying
the length and consequently the current ratio of the two branches. It is this branch
current imbalance that we "measure" in order to obtain the deformation of the

cantilever.

As seen in Chapter I for a ballistic tube the conductance doesn't scale with length so
regardless of the cantilever's deflection no substantial branch current difference
should be recorded. Therefore some scattering should be induced in the bearing to

force length-scaling which can be achieved in practice by doping or structural defects.

The integrity of the junction is maintained mainly by van der Waals forces, the
vertical bending stiffness of the cantilever and additionally by hydrophobic-
hydrophilic forces if the system is in water. However a positive off-plane force (along
y) could compromise the weak junction formed between the tubes. This undesirable

effect can be tackled either by mechanically confining the applied force in the x-z
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plane or by adding a third tube, a bearing on top of the cantilever in a bearing-lever-
bearing sequence. However we will not look into this solution in this thesis and leave

it for future work.

Summarizing, the sensor is basically a molecular potentiometer whose actuation could
be performed for instance by cell motility or by any other external excitation. Even
though it performs the same task as a lateral force microscope this sensor has the huge
advantage of being embeddable, allowing the fabrication of sensor arrays containing a

large number of devices.

1.2. Force meter sensor configuration

Measuring forces with the previously described transducer is straightforward and
doesn't require any additions. The cantilever's deflection is transformed into a current
difference which is captured by front-end electronics. Both the magnitude and the
sign of the external force can be obtained by multiplying the spring constant of the
system with the previously determined deflection using an equation similar to (I.17).
Inspecting this equation one immediately realizes that except for the case of perfectly
controlled nanotube dimensions and assembly, which is hard to achieve with today's
technology, the Young's modulus and moment of inertia of the cantilever is
undetermined. However this incertitude can be eliminated altogether by a calibration
phase in which the strain transducer is pushed by forces within a known set of values

and the branch current displacement is measured yielding the force-current curve.

Later on we will prove that with carbon nanotube dimensions and inter-lead spacing
feasible in the near future such a device could measure forces as low as a few pN.
This is quite remarkable for such a trivial device that doesn't rely on laser
interferometry or other complex front-ends. Also, the force sensor might become one
day suitable for large scale integration and could be used for instance in mapping the
force field that cell motility produce. Other applications could certainly be imagined

in which a single AFM tip would not be sufficient.

1.3. Nanobalance sensor configuration

The second type of application we found for our transducer is small mass weighting

or molecular detection. Transduction of a molecular binding event into an electrical
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signal is based on the oscillating frequency difference between the fundamental mode
of a free cantilever versus the cantilever with a body attached on it; kind of a
nanometric resonance mass spectrometer. By measuring this frequency shift one
could obtain precise information about the mass of the attached body which could be
a macromolecule, virus or any other small particle. The frequency shift detection

alone is however enough in getting a signature of a binding event.

Accordingly, there are two operating modes of this device configuration which we
call nanobalance. The first involves measuring the frequency shift from which the
mass of the attaching body can be inferred, and the second involves just detecting a

frequency drop which is the signature of molecular binding.

As the resonance frequency is in the GHz range front-end electronics would be
relatively expensive for this device. However if the system is brought to
electromechanical resonance and forced to asymmetrically stay in just one x-z semi-
plane, then, at low frequencies it would appear like the cantilever has a "static"
deflection about half the oscillation amplitude. In the single-molecule detector mode
of this device the actuator's frequency is initially locked on the resonance frequency
of the free cantilever. When a body attaches to the cantilever, the normal modes of the
latter will get shifted by an amount that depends on the weight of the body and the
elastic properties of the transducer; to name a few, tube radius, length, number of
walls, attachment position and so on. If the frequency shift is large enough the
cantilever will be pushed off resonance and a major drop in the amplitude of
oscillation will be recorded. On the contrary in the balance mode the drop in the
cantilever's fundamental mode frequency should be determined. This would yield the

mass of the particle attached to the cantilever.

1.4. Practical considerations

To be of any practical interest, the proposed transducer should satisfy a few
manufacturability constraints, and should prove robust enough to face real-life
environment constraints. Due to limitations in computational resources theory one is
often forced to appeal to common sense arguments. Below we point just a few of

these practical considerations.
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The force in the force meter configuration should be confined in the x-y plane
otherwise it could undo the weak inter-tube junction. Pre-tensioning is possible but
tube-tube sandwich junctions would probably behave better. From a theoretical point
of view it would be interesting to see how the currents flowing through two parallel

bearings would compose in the coherent transport regime.

In the nanobalance mode we have not mentioned how the actuation can be achieved.
We see at least two ways. A forth electrode at the tip of the cantilever could
electrostatically bend the cantilever as demonstrated by Poncharal et al. [57]. Second,
Lorentz forces might be used to bend the cantilever since a current is supposed to
flow through it. The second solution seems more appropriate for the case where the
sensor is immersed in some ionic solution that would effectively screen any

electrostatic field created by a nearby electrode.

A still unanswered question regards the point of immersion of these devices. It is
well-known that in MEMS manufacturing capillarity forces can fracture suspended
parts. Nevertheless processing techniques have been developed during the years that
might help alleviate this problem, which we don't know if it would affect nanotubes

anyway.
2. Mechanical transducer behavior

2.1. Mechanical models, suitability and limitations

This section is dedicated to modeling and simulation of the strain transducer whose
operation principle has been outlined in the previous section. We feel again the need
to warn the reader of the simplicity of the models we are about to employ.
Nevertheless present computational resources do not allow for significantly more and
moreover many interesting conclusions can already be derived even from these

idealized models.

The mechanical properties of single-wall carbon nanotubes have been listed in
Chapter I, together with the common choices available for their modeling. Here we
re-discuss some concepts in the light of the particularities our system has. The starting
choice would be the continuum Euler-Bernoulli beam theory [90], that has been

validated in moderate strain regimes for nanotube-based AFM tips [91, 92],
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nanotweezers [93], electro-mechanical resonators [57] and nano-switches [94].
However, above a certain threshold, bending or compressive stress can induce
buckling in nanotubes, a process accompanied by sp*-sp> re-hybridization. Another
argument against using this continuum theory is the inter-tube interaction. Atomic-
scale fluctuations of the van der Waals potential coupled with the position-dependent
shape of the cross junction, yield pseudorandom friction forces. These phenomena can
hardly be taken into account by a continuum theory, although attempts have been

made with shell theories extended by homogeneous van der Waals potentials [56, 95].

Since studying friction is important in assessing the strain transducer's sensitivity we
have to adopt an atomistic description of the system. A natural choice for modeling
nanotubes in such situations is molecular dynamics. Carbon nanotubes were studied
extensively using various force-fields ranging from ab initio [61], tight-binding [96],
Tersoff-Brenner [97] and even classical force-fields like CHARMM [98]. We adopted
the last type of force-field as implemented in the freely available program NAMD
[99]. This force-field is incomparably faster than ab initio and semi-empirical
methods allowing simulations with more than 10° atoms for a few nanoseconds.
Compared with the Brenner potential, that was successful in describing carbon-carbon
interactions, the CHARMM force field was also parameterized for a large spectrum of
organic molecules, notably for amino-acids and phospholipids [100]. This advantage
becomes obvious when simulating the sensor, or just part of it, in contact with a

cellular membrane or with a protein like it will be done in Section 4.

2.2. Ab initio energy-strain curve

Force-fields in CHARMM's class were previously used for modeling carbon
nanotubes [98, 101] being nevertheless focused on hydrophobic-hydrophilic effects
and not on the nanotube mechanics at large deformations. Thus we have decided to
obtain a new set of carbon atom parameters for nanotubes that would accurately
reproduce the mechanical properties within a reasonable range of strains. As
discussed in Chapter 1.4 accurate experimental information about Young's modulus
and Poisson's ratio of carbon nanotubes is still missing from literature [65], forcing
the parameterization procedures to rely on ab initio calculations. All quantum
mechanical computations presented throughout this chapter were performed with
SIESTA [102], within the density functional theory (DFT).
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Mechanical transducer behavior

Table I1I.1. Mean bond length, angles and Urey-

Bradley terms

(5.5 (8,0) (6,3)
chirality (n, m)
mean mean mean
A 1.430 1.438 1.434
bond (A) B 1.434 1.438 1.426
C 1.434 1.431 1.442
AB 118.640 116.789 119.614
angle (°) AC 118.645 119.719 119.239
BC 119.460 119.719 117.305
AB 2463 2.449 2472
UB (A) AC 2.463 2.481 2.482
BC 2476 2.481 2.450
improper (°) 84.004 87.191 84.954

A first set of simulations were performed in order to obtain statistics on bond length,
angle, Urey-Bradley (UB) and improper dihedral values as required by the CHARMM
force-field, formally defined by Equation (IIL.1). In this equation the first bracket

delimits the energy contribution of the bonded atoms while the second bracket

corresponds to non-bonded atoms.
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Three different nanotubes were selected for this purpose, one armchair (5,5), one

zigzag (8,0) and one chiral (6,3) having approximately the same diameters. The

nanotubes, considered infinitely long, were relaxed in a variable-cell until residual
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Table I11.2. CHARMM force-field parameters as used in
molecular dynamics simulations

k 189.581 (kcal/mole/A?) 1o 1.433 (A)
ke  115.724 (kcal/mole/deg®) 0 118.892 (deg)
kus  22.699 (kcal/mole/A?) rous 2.467 (A)

intra-tube
gwaw  -0.105 (kcal/mole) Ryw  4.000 (A)
inter-tube
gaw  -0.070 (kcal/mole) Ryaw/2 1.992 (A)

forces fell below 0.01eV/A. We used a LDA Hamiltonian, an integration grid cutoff
of 60Ry, a double-C (DZ) atomic orbital basis set with an energy shift of 160meV or
equivalently a confinement/cutoff radius of 2.85A. The results are summarized in
Table III.1.

In general we found that there are three inequivalent bonds for chiral nanotubes, while
armchair and zigzag tubes have only two. This yields as well three inequivalent angles
and UBs, and nine inequivalent improper dihedrals. The improper dihedrals histogram
revealed that there is no unique equilibrium value, leading to the exclusion of this
term from the total energy. The final values for 7, 6,, 1, and R ,, are presented in
Table II1.2.

2.3. Molecular mechanics force-field parameter fitting

The second phase of the parameterization procedure consisted in fitting the spring
constants k, k,, k,, and the Lennard-Jones well-depth ¢, against energy versus
strain curves as obtained with SIESTA. Since our calculations are similar with those
performed in Reference 61 and rely on the same code, we took into account their
calculated Poisson's ratio v of 0.14 when preparing pre-strained tubes for relaxation.
As opposed to the same reference we extended the study to strains in the range [-
10,10]% with a step of 1%, in order to obtain well-behaved parameters even at large
deformations. The system under study was a (5, 5), 5 cells-long carbon nanotube. To

accelerate the forthcoming relaxation, for each strain we took the already relaxed tube
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Figure II1.2. Energy-strain characteristics as obtained with SIESTA
(DFT) and NAMD (CHARMM) respectively. The inset details the
error around origin (the curves were shifted for better visualization).

and modify its length to /,(1+¢) and radius to 7 (1—v-¢), where here ¢ =Al/I,
represents the tensile strain. A full energy minimization was again performed, but not

before constraining the boundary atoms in planes perpendicular to the tube's axis.

In order to maintain physical relevant quantities like positive spring constants and a
negative Lennard-Jones well-depth we used Lagrange multipliers within the goal
function involved in the fitting process. Figure III.2 shows the comparative energy-
strain curves, where the one corresponding to CHARMM was obtained using the
optimized force-field parameters summarized in Table IIL.2; these parameters were
used in every molecular dynamics simulation throughout the remainder of this
chapter. The Young's modulus extracted from the DFT curve corresponds to 1.04TPa
which is a realistic value for this type of nanotube. A closer look at the same figure
reveals that the DFT curve is asymmetric with respect to zero strain and is especially
noticeable at large strains. In order to include this anharmonic behavior we had to add
an intra-tube Lennard-Jones potential term that has different parameters from the

inter-tube one.

2.4. Coordinate relaxation and simulation

Once the CHARMM force-field was properly parameterized as described in the
previous section we have performed several MD simulations aimed at gaining insight

into the dynamical behavior of the strain transducer. In the first MD simulation, the
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Figure II1.3. Different curves relevant to the mechanical behavior of the strain
transducer (a) Differential RMSD of all atoms of the cantilever. (b) Cantilever's
deflection along z-axis (from one atom found on the tip).

cantilever measuring 36nm was pushed upon with a constant force of 10pN equally

distributed between its ten terminal atoms while fixing the other end of the tube.

Turning on the force at the initial simulation step was equivalent with applying a unit
step function stimulus, that excited simultaneously all the frequency modes of the
system. Lacking dissipation the cantilever would oscillate indefinitely. Nevertheless
this impulse response type of simulation contains a lot of information about the
mechanical properties of the system. For instance the continuous component of the
spectrum gives the final displacement as would be obtained in the presence of
dissipation.

Three different positions of the (5,5) bearing tube, measuring 20nm, were chosen to
study the influence of the friction; at 1/3, 1/2 and 2/3 from either edge of the
cantilever. Relaxation under van der Waals forces was performed before any
dynamical simulation, resulting in the formation of the non-covalent junction between
the tubes. As before the simulation step of the molecular dynamics was of 1fs and the
total simulation time was of 0.5ns (corresponding to 2GHz). The fundamental's mode

frequency agrees well with the classical Euler cantilevered beam value of ~2.17GHz.

This time interval proved to be sufficient in capturing at least one period of the
cantilever's fundamental mode (Figure I11.3). Although this interval suffices to obtain
an estimate of the fundamental mode's frequency, it is not long enough to allow the

extraction of the superior modes via Fourier analysis. The same is true for the quality
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Figure II1.4. Cantilever's deflection along the ordinate for the free
cantilever case and for the three other positions of the bearing. The

oscillations appear as a consequence of friction-induced heating as
explained in the text.

factor, which would have been and interesting quantity to compare in the with/without

bearing situations.

2.5. Friction and junction stability

Except for the inter-tube van der Waals interactions, there should be in principle no
deflection along y since the applied force is constrained in the x-z plane. However
Figure II1.4 reveals a different situation. Even if initially at constant height, the
cantilever's tip starts to oscillate with increasing vertical amplitude. A closer
examination confirmed that the motion of the cantilever is stick-and-slip like due to
rapid fluctuations of the van der Waals potential of the underlying tube. As we will
see in the next section this spurious movement will greatly influence the charge
transport through the junction as the latter is extremely sensitive to the inter-tube
distance.

As opposed to the free cantilever case, the bearing adds friction. The mechanical work
that is done to move the cantilever against friction, transforms to heat as can it be
observed in the differential RMSD (Figure II1.3 (a).)

A magnitude of the friction forces at the level of the cantilever-bearing junction can

be obtained by measuring the free oscillation frequency shift or by energy balance.
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Measuring the dumping of the oscillation amplitude would also be useful but a large
simulation time would be required in this case. We can conclude already though, that

friction is well bellow 10pN which is the value of the imposed bending force.

3. Electrical behavior. Strain-current characteristic

3.1. Hamiltonian models, suitability and limitations

The molecular mechanics simulations we have described in the previous section
managed to prove that from the mechanical point of view the strain transducer
operates indeed as expected. The cantilever remains at all times in contact with the
bearing and its lateral motion doesn't seem to be perturbed too much by friction. We
concentrate in this section on the electrical behavior of the transducer in trying to
prove that the deflection of the cantilever transforms into a branch current difference

as explained in Figure II1.1.

Modeling transport through carbon nanotube cross-junctions is truly a very delicate
task. First, there is the problem of identifying the transport regime through the
junction which should not be treated with ease. The tunneling current through the
junction strongly depends on the inter-tube distance that in turn fluctuates
considerably at room temperature. Although not mentioned yet, we have performed
other MD simulations at room temperature to sample thermal motion around the
equilibrium cantilever deflection, and these simulations show indeed large
fluctuations, in agreement to the equipartition theorem. This adds thermal activated
transport on the list of possibilities. Also, because the tunneling current is very weak it
means that electrons accumulate on the cantilever where they dwell for a while before
tunneling into the bearing. Thus charging effects may be of concern. Phonon assisted
tunneling is another possibility as charges accumulated in the cantilever would tend to
bring it closer to the depleted bearing shrinking the gap until a charge tunnels relaxing
the electrostatic attraction and distancing again the junction. These are in fact just a

few many-body effects that could influence transport in our system.

The second difficulty associated with modeling transport through carbon nanotube
cross-junctions is the large number of atoms involved that hinder diagonalization
based approaches. A DFT-level computation of a carbon nanotube cross-junction was

previously realized [103] but it involved only around 250 atoms in a fixed
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configuration. Our system has a few thousand atoms forcing us to consider a
simplified tight-binding description. Moreover a current imbalance at the two
terminals of the bearing is expected only when its conductance scales in the two
branches with length, that requires a clear delimitation of the bearing from the leads,

along with the need to include the leads in the overall system.

We assume that at zero temperature, junction tunneling is phase-coherent, which in
the light of our previous discussion is not self-evident. However, due to the short
lengths of the nanotube segments involved in our simulations, it is safely to affirm
that the transport within the tubes is coherent, ballistic. We also assume that thermal
fluctuation of the junction happens slowly enough that the electron remains coherent
throughout its path from the cantilever's lead to one of the bearing leads. Phonon-
assisted tunneling is also ignored in this treatment. We do however take into account
finite temperature by averaging over the ensemble of nuclear positions when
computing branch currents from the transmission spectra. Including finite temperature
in calculations was necessary both because in practice our sensor should work at room
temperature and because at zero temperature in the ballistic regime the sensing

mechanism can be non-monotonic being thus of no practical use.

The scheme we used in our transport calculations is similar with the one described in
Reference 104. However we modified this technique to include multiple leads in the
presence of tunneling through a non-covalent junction. We used the tight-binding
Hamiltonian [105] detailed in Equation (IIL2) including only 7 orbitals but as
opposed to typical calculations we included the cosine factor of Slater-Koster's TB

scheme that accounts for the anisotropic inter-tube coupling.

~ R Ac_c =1, | A n
H = Z (801/ + 560V - eV(l’;/)) C:Cl/ + (Z) tOuy eXp [%] CZC# } +
v V=L
(111.2)
a —r
+ Z Toup €08(6,,) €xp %]éf@u
(v=p)

An exponential decay was also considered to limit the interaction range between non-
covalently bonded atoms of the two distinct tubes. The first square bracket in the
Hamiltonian delimits intra-tube sites and hopping while the second describes inter-

tube interaction.
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Figure IIL.5. Real-space partitioning and the Hamiltonian of the system.

The voltage biasing of the system corresponds to Figure III.1, and was chosen this
way to amplify the length difference of the two branches. Any other scheme involving
a voltage drop on the bearing would wash-out this effect since the intra-tube

conductance is unquestionably higher than the inter-tube one.

A controversial issue might be the electrostatic potential profile we adopted in this
study. The cantilever can be considered in equilibrium with its lead and thus we
considered that the potential on this tube is uniform and equal to —V. For the bearing a
constant potential was considered as well even though it contained doping atoms that
could hinder an effective screening of the local field produced by the cantilever,
especially in the region of the junction. We believe that a charge self-consistent tight-

binding method could clarify this issue and leave it for future work.
3.2. Real-space partitioning for conductance calculations

The central quantity in the Landauer-Biittiker formalism is the transmission matrix
which can be computed, using the Fisher-Lee relation derived in Chapter I1.2.1, from
the Green's functions of the system (see Equation (IL.17)). To accelerate the
computation of the Green's functions we partitioned the system as in Figure IILS5.
Pristine, infinite (5,5) CNTs were placed at the end of each the first three domains of

the transducer's tubes (denoted with H,,;) to simulate the effect of electron
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normal
regions

infinite leads

Figure I11.6. Real-space sub-partition of the Hamiltonian
in rings of 20 atoms (black). In the nearest-neighbor TB
bonds correspond to hopping integrals. The white bonds

represent interactions between rings.

reservoirs, i.e. leads. The bearing tube was artificially "doped" by modifying the on-
site energy from ¢, to a random value equally distributed in [60 —leV,SO—i-leV]
which appears as 0¢, in the Hamiltonian of Equation (II1.2). The leads along with
the tubes they contact were set to an electrochemical potential 1 of +0.5eV by

shifting the on-site energy by —elV = .

After completing the Hamiltonian's matrix elements, a fast, self-energy-based
elimination method that is described in the following was used to invert an otherwise
large system matrix. Briefly, according to this method self-energies were propagated
backwards from leads to junction as illustrated in Figure IIL.5. Practically just the
junction Green's functions were obtained by inversion because its Hamiltonian is not
sparse as opposed to the other domains where the inter-tube interaction could be
neglected. After computing the Green's functions and self-energies for the junction,
the Fisher-Lee relation in conjunction with the Landauer-Biittiker formula allowed us
to obtain the energy-dependent conductance functions: G,, G, and G,,, which were

further integrated to obtain the three currents /,, ;.

An important simplification is obtained by partitioning the Hamiltonian in several
domains, as depicted in Figure IILS. Except for the junction every other domain is
free of inter-tube interaction terms in the Hamiltonian. Thus the Hamiltonian of these
domains is sparse making it possible to apply very fast matrix-inversion algorithms.

On the contrary the junction's Hamiltonian has many non-zero terms corresponding to
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Table II1.3. Tight-binding Hamiltonian parameters

g0 (=Er) 0 (eV) d 2 (A)

8eo 1 (eV) T -0.346 (eV)
w=w=-u;  -0.5(eV) Ag.g 3.35(A)

to -2.77 (eV) 8 0.45 (A)
ac.c 1.43 (A) S0 0.129

non-bonded inter-tube hopping, even though their number was reduced to only those
pairs that fall within the cutoff distance of 7A. This is why the Green's functions of
the junction could be obtained only by direct inversion. However it should be noted
that the matrix to invert was compact with respect to the overall system's matrix and

in consequence it did not dominate the computation time.

For non-junction domains, a further refinement can accelerate the computation. The
Hamiltonian of these domains can be sub-partitioned by splitting it in units of 20
atoms (see Figure I11.6) and then identify the interactions between successive units.
The Hamiltonian becomes thus block-tridiagonal and easily invertible through
elimination methods. However, there is a difference between leads (domains 1o to
30) and the cantilever-bearing complex (domains 1 to 4), in that the Hamiltonian of
the leads is a semi-infinite periodic matrix and a different procedure is required to

calculate its Green's functions. This procedure will be detailed in the next subsection.

Hloo Vlocl
\]]Tool Hl VlJ
H3<x: V3oo3
V. H, V
H= vi v H v v (I11.3)
1J 3J f 2J 4J
VZVJ I’_I_z V2<>oz
VZLOZ HZOC
VIJ H4

The parameters used in the construction of the Hamiltonian and overlap matrix are
listed in Table IIL.3. Orbital overlapping was considered in order to improve the

calculation accuracy and also because it added no significant complexity, as the
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overlap matrix is very similar and practically constructed in parallel with the
Hamiltonian, by plugging the value of 0.129 in those positions occupied by nearest-
neighbors (or covalently bonded) atoms. A cosine factor was considered for non-
bonded atoms. The coarse-partitioned Hamiltonian looks like in Equation (IIL.3),
where V matrices represent interactions between domains. By convention all the
omitted elements are zero. The overlap matrix has the same pattern as H. Let K
denote the inverse of the retarded Green's function, a notation we will very often
employ in this thesis. It follows that K has the same pattern as H and is defined by

Gll GIZ G18

G, G, — G
K(E)=(ES-H)=G(E) ' =| ' 7 7 (I1L4)

Gy Gy, - Gy

The elimination procedure we mentioned earlier works as follows. Within the identity
I=K-G we can recognize the (8,5) block &, = K} ,G,; +K,G,, =0 from where
one can express Gg; as a function of G,;. For brevity we have omitted the energy
dependence. Similarly, looking at other lines and columns we can express generally

G,;,i = 5 as a function of G,;. Summarizing

0y = Gys = _KilKZJGSS =G KZJGSS (ITL.5.a)
1
05,05 = G5 = <K KlToclK Klool) K,,Gss =
- (ITL.5.b)
= ( )2 ) K,,Gss =-GK,,G;
1
05,0, = Gy = (Ks 3oc3K K3003> K,,G; =
(ITL5.c)
=— (K3 ) K;,G;, =-GK;,Gs;
-
045,075 = G5 = (K -K, K, KéooZ) KéJGSS
S . (11L.5.d)
= ( E2oc) K;,Gss =—-G,K;,Gs;
-1
05 = G5 = (KJ —L,-X, X - 23) =G, (ITL.5.e)

where the last equation was derived by replacing G,s,i =5 with their found values
(IIL.5.a-d) into o&,,. Thus at the end we obtain the junction Green's function
G, = G, which describes the propagation of electrons in the region of the junction

(see Figure IIL.5). Assuming that once an electron escapes the junction it is reflected
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Algorithm III.1. Fast elimination method for computing
the junction's Green's functions

. LET K,=ES,—H,
G4:K4_17 E4:K4JG4KZJ
. LET K, _=ES,_—-H  FOR p=13
_ i ! _
gvoc - [Kpoo;OO _pr;OIgD%Kvoo;Ol i Zpoc - KpoopgpooKpocp
. LET K, =ES, —H, FOR p=13
-1
GD:(KP_ZDOC‘) i ZD:KLJGpKDJ

. LET K, =ES,—-H,
-1
G,=(K,-%,-%,-X,-%,)

0o N o 1 A WD R

from neither one of the two bearing branches we can then compute the currents via

Fischer-Lee relation in Equation (I1.17) from G, .

Only assuming reflectionless bearing branches the currents computed from G, will
be equal to the currents deep inside the leads (see Reference 22 and discussions
therein). This assumption is somehow contradictory. We have stated earlier that the
bearing is disordered to allow conductance length-scaling, or this disorder would
naturally induce back-scattering. The validity of these -calculations is thus
questionable. However our goal is to prove that the strain transducer is monotonic and

for this purpose qualitative calculations should suffice.
3.3. Free lead surface Green's functions

Matrices that have an o sub-index, like for instance K, in Equation (IIL.5.b), are
semi-infinite. Fortunately for these matrices it suffices to compute just the Green's
function sub-matrix that corresponds to atoms interacting with atoms in adjacent
regions. This sub-matrix, called the surface Green's function, was calculated using the

relation captured in

1
g = | Ko — K KLoo;m] (IT1.6)

pOC;OlngC

where K
and K

00 18 With respect to Figure I11.6 the K matrix of the rightmost black ring

oo Stands for the interaction between any two successive black rings. The
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Figure IIL.7. Smeared conductance functions. (left) Inter-tube conductances vary
strongly with small displacements of the cantilever. (right) Intra-tube conductance is
insensitive to cantilever's position (the curves were shifted for better visualization).

above equation is then solved starting from g, =1 which is then iterated to

convergence, using two previous iterates in a linear mixing scheme (Pulay mixing).

In Algorithm IIL.1 we have condensed all the steps described in the last two
subsections that allow the computation of the junction Green's functions. Once these
functions are calculated at a given energy, the transmissions between the four

different extremities of the junction are obtained using (I1.17.b), i.e.

T, (E)=Tr[T (EYG,(E)T (E)G}(E)'|

with a,o/ = 1,_4 , a=a and I' (E) are the usual level broadening functions defined
by I' (E)= i[Z; (E)—X(E )T]. The required self-energies appearing in this formula
are readily available at steps 2 and 6 of Algorithm III.1. Finally using (II.17.a) one
obtains either the lead currents /, or as in electrical engineering the loop currents
1, which summed over o' yield I, . At this point we remind the reader that, since
the calculations are performed a non-orthogonal basis, the matrices involved in
Algorithm III. assume the representations defined by (I1.28)

3.4. The strain-current characteristic

Initial zero temperature simulations with the cantilever deflected at different positions
proved the transducer to be non-monotonic. As "classically" counter-intuitive this
may appear it is acceptable within coherent transport theory. Since the bearing

branches contain less than a few thousand atoms each, conductance fluctuation is
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Figure I11.8. Overall current-deflection characteristic of
the sensor plus a linear fitting line.

possible, and this could further be enhanced by the sharp doping distribution we used.
Probably even more important is the atomic detail of the junction. Deflections as low
as 0.5A give rise to important fluctuations in G, and G,, as can be observed in
Figure I11.7, while G,, seems to be insensitive in the same conditions. The energy-
dependent conductances G ., follow throughout this thesis the definition

G, (E)=(2¢’/n)T, (E).

X, 00

The zero-temperature, non-monotonic sensing curve constrains the operation of the
transducer at finite temperatures, where thermal fluctuations would smear the sharp
conductance fluctuations. This is however not a constraint since the sensor either in
the force meter or nanobalance configuration is supposed to work in biocompatible

conditions that include a 300K ambient temperature.

In view of taking into account thermal effects we took samples from the dynamical
trajectory of the system as obtained in the previous section. We did that instead of
properly sampling the trajectory of a thermally fluctuating cantilever around each
equilibrium deflection of interest, because the molecular mechanics relaxation of the
transducer is very slow. This inconvenience is caused by the low fundamental
frequency mode of the cantilever which somewhere at 2GHz, having correspondingly
a period of 0.5ns. We plan however in the future to use internal coordinates in a

conjugate gradient minimization to accelerate relaxation.



75. Electrical behavior. Strain-current characteristic

Me: 1.24e+014 13 Max 12484014 13
%10 x 10

12 12

- 10 . g BF 10
eigFreq(1)=2.17489e+009 o e e eigFreq(1)=5.19791e+008 . e g o ooy

K]

8
%10

i x10

t=250ps

r

.
:

Figure IIL9. (top) Shell theory model of free (left) and body-attached (right) sensor
showing the fundamental mode four fold frequency drop. (bottom) Atomistic free-
cantilever tip (gray) and streptavidin-(green-blue) bound tip (black).

We took thus around a given junction position twenty five closely located samples
from a molecular mechanics simulation. The length of the distribution interval was of
~2A, consistent with thermal displacement fluctuations as known from the classical
cantilever theory. After computing the currents as described in the previous
subsection we convoluted the found values for the different sampling positions with a
thermal-smearing function yielding the curve in Figure IIL.8. This is actually a
second smearing and it was considered here in order to obtain the ensemble average
of branch currents. This should not be confused with the smearing applied to obtain
the smooth conductance functions of Figure IIL.7, as this first smearing corresponds
to the thermal broadening of the Fermi-Dirac distribution.

Figure III.8 manages to display an overall monotonic increase of the current
difference between the two branches of the bearing validating the operation principle
of the strain transducer. We are however aware of the limitations of the model

involved here which should not be interpreted quantitatively but rather qualitatively.
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4. Modal analysis

4.1. Molecular and continuum shell simulations

In this section our goal is to validate the nanobalance operation principle by showing
that resonant frequency shifting occurs when an external body (typically a molecule)
binds to the cantilever tube. The system under study in this section is the biotin-
streptavidin complex. Biotin can be modified to accommodate non-covalent binding
on the surface of the nanotube as demonstrated in Reference 7. In Figure IIL.9

(bottom) this complex can be recognized at the tip of the carbon nanotube cantilever.
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Figure II1.10. Root Mean Square Displacement (left) and its derivative (right) for
the free (black) and molecule attached (gray) cantilevers.

We employed again molecular mechanics as in Section 2 of this chapter in order to
assess the frequency response of the system, with and without the streptavidin
attached. The bearing was placed at 2/3 of cantilever's length closer to the latter's tip.
Figure II1.10 shows that the cantilever’s deflection in the molecule-attached case is
retarded with respect to the free cantilever. This proves that the mechanical transducer
is sensitive enough to detect a single molecule of streptavidin which weights only a
few kDa. The frequency drop is four fold from ~2.2GHz in the free cantilever case to
0.5GHz in the molecule attached case which is rather important. Already seen in the
RMSD (left) but highlighted the dRMSD figure (right), is the abundance of additional
modes introduced by the protein (noise like looking) reducing the quality factor of the

nanotube cantilever, which is however not severe.

Our molecular mechanics simulations were performed in vacuum where proteins

generally unfold. Thus we had to stabilize the structure of streptavidin by adding
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Figure I11.11. Fundamental's mode dependence on molecule position along the
cantilever (left) and on cantilever's radius (right).

virtual bonds between the center of mass of several domains of this molecule, defined
by peptides of ten or so residues. We also had to use a relative dielectric constant of

20 which proved sufficient at stabilizing the structure of the protein.
4.2. Sensitivity analysis of the resonance frequency shift

Following the successful validation of the mechanical transducer via molecular
mechanics was a characterization phase of transducer's behavior with respect to
uncontrolled device parameters. As mentioned somewhere at the beginning of this
chapter in practice many parameters depending on either the fabrication process or the
thermodynamics of tube-target binding are hard if not impossible to control having to
be treated statistically. Here we focus on the variations associated with the binding
position of the streptavidin along the cantilever and cantilever's radius since its length
is more or less controllable and its chirality doesn't influence to a first order its

bending modulus as discussed in Chapter I. Briefly we perform a sensitivity analysis.

As molecular dynamics is computationally too demanding, to achieve any kind of
parametric characterization, a continuous, shell theory was employed for this task
following closely the details of Reference 106. From the energy-strain curve in
Figure I11.2 we have obtained a Young's modulus of 1.04TPa at a shell thickness of
3.44A which is in relative good agreement with experimentally determined values and
other calculations as listed in Chapter 1.4.2. The streptavidin molecule was replaced

by a simple sphere with a corresponding diameter and mean density.
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The results of sweeping the two parameters, namely the binding position and tube's
radius are plotted in Figure II1.11 (left) and (right) respectively. The left figure shows
that if streptavidin binds instead of the cantilever's tip somewhere at its middle the
frequency shift still remains two fold. Naturally the transducer ceases to detect the
molecule when the latter binds close to the clamped end of the cantilever. The second
graph reveals that assuming a large deviation in tube's radius (from 3.5 to 7.5A) the
frequency shift continues to be important although the relative frequency shift defined
as Af/ f, decreases mildly from 77% to 66%.

We have thus found an unexpectedly large range of working conditions and an
impressively frequency shift even for such a small protein like streptavidin is. Thus
the proposed transducer is relatively insensitive to manufacturing fluctuations making
it extremely suitable for large scale integration. The specificity of such molecular
detectors is determined by the specificity of the protein-ligand complex which begins

to be more and more within the reach of bio-chemistry.
Perspectives and further developments

The benefits of such sensors lie in their reduced features, and integrated electronic
read-in circuitry that would eliminate the need of massive and expensive laboratory
sensing instruments. The primary goal of this chapter was to prove rather qualitatively
and not necessarily quantitatively that such a molecular transducer is operational. We
do consider however that further studies are required before any fabrication plans are
made for one of these devices. We lay out a few studies that we consider for the

future.

Concerning the mechanical behavior of the strain transducer, one of the most difficult
parts to achieve was the relaxation of the cantilever under an external force. In
Section 2 we focused mainly on the unit step response of the transducer because
obtaining the final displacement of the cantilever was beyond our reach. As stated
earlier with a relatively short, and thus high-frequency, cantilever we were barely able
to simulate 0.5ns which is close to a period of the cantilever's fundamental mode. Due
to low dumping, waiting for the cantilever to stabilize would be impossible via
molecular mechanics. There are at least two solutions for this problem. The first
involves using cantilever internal coordinates within a conjugate gradient

minimization which is known to accelerate the convergence by up to one order of
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magnitude [107]. The second solution would rely on a continuum shell theory plus
van der Waals forces to obtain the deflection of the cantilever at the equilibrium
position. Then the axis of the cantilever could be extracted and imposed on the
molecular mechanics model. This yields a pre-conditioned solution that can be refined

for instance through a heat-bath coupled molecular mechanics relaxation.

Running room temperature, close to equilibrium deflection, simulations is the next
important thing to do. This would produce better thermalized trajectories for smearing
the junction tunneling currents. A thermostat would probably also bring the
simulations closer to a realistic environment. Apart temperature the presence of the
transducer in water might influence importantly the mechanical behavior of the
system. As adding a water box around our system would increase intractably the
number of atoms in molecular mechanics simulations, simplified systems involving
short tubes dragged in water at different speeds should give an idea of what values per
unit length the viscosity forces should have.

Studying a bearing-cantilever-bearing sandwich would be interesting from both
mechanical and transport point of view. Mechanically it would give some insight into
the nanotribology of this system. Naturally one may expect that the friction would
increase even further but as the friction is caused by atomic scale fluctuations in the
van de Waals potential and since the two bearing lattices would most probably be
parallel-incommensurate how would then increase the mechanical resistance.
Electrically the problem would shed light onto how coherent conductances compose,
and maybe the current-strain characteristic would benefit from a linearization from

this composition.

Although we have assumed during the transport calculation that the bearing was
doped we have not yet used a defected or doped nanotube in molecular mechanics.
Again for nanotribology reasons an imperfect nanotube bearing would expectedly
influence the mechanics of the transducer. A step closer to reality would however be
made for the transport model if instead of the sharp random distribution of virtual
dopants used in Section 3 one would use tight-binding parameters for boron (B) or
nitride (N) in realistic densities as obtained by Latil et al. [108]

Concerning the transport calculations, future work will have to take into account more

thoroughly and systematically the influence of temperature on the operation of the
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transducer. Thermal activated transport and phonon-assisted tunneling are just a few
effects that would surely change quantitatively our resulted current-strain
characteristic. Schottky barriers could also influence especially in the case of a short

bearings contacted by metallic leads.

For the nanobalance configuration we plan to study several other small protein-ligand
complexes and see if antibodies or DNA strands can be used as well. A true
sensitivity characterization would be achieved if the mass-frequency-shift curve

would be obtained and composed with the strain-current curve.
Conclusions

A carbon nanotube electromechanical sensor was the subject of several studies aiming
at validating the operation principle outlined in Section 1. There are two distinct
configurations which allow either to measure forces as low as a few piconewtons or to
weight small molecular bodies as light as a few kilodaltons. The first series of
simulations were focused on the mechanical behavior of the transducer independent
of configuration. Molecular mechanics force-filed parameters were obtained from a
calculated ab initio energy-strain curve. The extracted Young's modulus was found in
good agreement with respect to previous calculations and experimental data. Unit step
response of the transducer was assessed with the fitted force-field parameters. The
fundamental mode frequency of the free cantilever agrees with Euler-Bernoulli beam
theory. When the bearing is added, friction shifts the modes and introduces noise in
the spectrum, but is found however to be weak enough not to impede the lateral
bending of the cantilever. Another series of simulations at room temperature showed
that the junction is stable although is hold together only by weak van der Waals
interactions. In the third section we have introduced a fast method for computing the
junction Green's functions with which we were able to compute the multi-terminal
conductances resulting in the current-strain characteristic. This final curve showed
monotonic behavior at room temperature which is our proof of concept. We have
concluded this chapter with another series of molecular and continuum mechanics
simulations in order to demonstrate that the nanobalance configuration is sensitive
enough to detect a single streptavidin molecule. Moreover we proved that our
transducer is relatively insensitive to the cantilever's diameter and the binding position

of the streptavidin molecule along the tube.



CHAPTER V.

Matrix flows and renormalization

Introduction

The powerful mathematical apparatus of continuous matrix flows is introduced in this
chapter. This framework was proposed as solution to a class of inverse eigenvalue
problems and relies on infinitesimal congruence transformations acting on a pair of
matrices whose spectrum one wishes to conserve [111]. Through a properly designed
goal function, the congruently transformed pair of matrices can be attracted towards a
specific affine structure. Thus the matrix flow theory allows one to find a pair of
matrices having a given set of eigenvalues and being as close as possible to a given
affine structure. This theory will be used in Chapter V in the context of a
Hamiltonian model order reduction we have proposed for the purpose of simplifying

transport calculations in nanostructures.

We start this chapter with a succinct functional analysis overview that insists in
presenting matrices as ordinary "vectors" in a Hilbert space build upon a subgroup of
the set of invertible matrices plus the matrix Frobenius inner product. Matrix
functions and linear functionals are introduced next, followed by the definition of the
Fréchet derivative. The Riesz-Fréchet representation theorem, which occupies a
central role in this chapter's formalism, is stated. This theorem provides the means to

compute the gradient of a functional from its Fréchet derivative.

Section 2 is dedicated to the matrix flow framework. A simple flow is at first detailed
in order to introduce the reader to the various entities that this framework employs,
like the isospectral and affine surface, the goal function as the distance between the
two surfaces, affine projectors, functional gradients and the flow itself as an ordinary

differential equation (ODE). This flow is generalized then to matrix pairs, which is
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more close to our generalized eigenvalue context. For maximum flexibility we also
extend the goal functional from the simple Frobenius inner product to a weighted
version of this product. A very compact formula results for the gradient of the
functional which will be instantiated in Chapter V. We end the current chapter by
mentioning a few perspectives and further developments for the matrix flow

framework.

1. Matrix spaces and functions

1.1. The matrix Hilbert space

Matrix sets can form vector spaces and Hilbert spaces when extended with some inner
product. These spaces were intensively studied in the fields of statistics and
econometrics [112, 113] and penetrated physics as well in the form of Group Theory
[114] and Renormalization Group [115]. In this section we develop to a minimal
extent the theory of these spaces and list a few useful properties along with a few

hints on how these methods can be applied to problems in quantum physics.

Throughout this chapter we will not employ the Dirac bra-ket notation that is familiar
among physicists. This is mainly due to the fact that quantum physics focuses on
vectors in some Hilbert space H and their modification under the action of linear
operators that map H onto itself. Here we are concerned with general nonlinear
functions that can be defined on a Hilbert space and take values into another space.
However we have included Table IV.1 that sketches a few equivalences between

Dirac notations and notations used in this chapter.

Referring to the same Table IV.1 it is interesting to note that although we treat
matrices in this chapter as abstract vectors in some Hilbert space, the same matrices
correspond to linear operators that act on an "underlying" Hilbert space. The
"underlying" space can correspond for instance to the space spanned by the states of a
particle in a potential, or equivalently the eigenstates found by solving the

Schrodinger equation H |wn> =g,

wﬂ>. This equation can simply be re-written in
matrix form in which case the Hamiltonian operator becomes a matrix H and
eigenstates become vectors. The matrix Hilbert space is build onto the set of these
matrices, operators in the "underlying" space. In the following chapter this

correspondence will become evident.
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Table I'V.1. Some equivalencies between Dirac's notation
and notations used in this chapter

Description Dirac This chapter
vector |¥).]#) A,B
inner product (elv) (B,A)
basis set {1, {E},
vector coordinate b, =(v|¥) 4,=(E"A)
Gram matrix S.=(uly) g, =(F.E)
linear operator O|¢) not used
function(al) not used f(A),F(A)
operator average (v]|Ov) not used

In our work we focused only on invertible real matrices nxn belonging to some
subgroup of the general linear group, a Lie group of order »°. It is however
straightforward to extend the results obtained here to GL, (K) defined over a generic
field K like the complex number field C is. We are aware of the fact that the
methods developed here have to be extended to complex matrices in order to become

generally applicable to quantum physics.

Apart a vector (or linear) space which as mentioned previously is a subspace
U, (R)C GL,(R), a Hilbert space has to be also equipped with an inner product
<-,->:L{n(R)xL{n(R)—>R. For matrices a natural choice is the Frobenius inner

product defined as

(A.B)= ZAijBij =Tr[A'B] 1y

leading to the definition of the Frobenius norm
JAl={a.A)"  ava)

The Frobenius inner product has many useful properties among which the adjoint

property both with respect to the normal matrix product and with respect to the
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Hadamard (or element-wise) matrix product labeled o and defined via

C,=[AoB],=A,B, (1v.3)

In the former case the so called adjoint property refers to the following relations

(ABC)=(B'A.C)  (1v.4.0)
(A.BC)=(AC".B)  (1v.4.m)

which follow from definition (IV.1) using the cyclic invariance of the trace. For
example for (IV.4.a)

(A.BC)=Tr|A(BC)"|=Tr[AC"B"|=Tr[(B"A)C"|=(B"A.C)

The second adjoint property, with respect to the Hadamard matrix product is very

similar

(A,BoC)=(BoA,C)  (1y.5.9)
(A,BoC)=(AoC,B)  (1v.5.p)

and its proofis straightforward once we note that according to (IV.1) and (IV.3)

(A.B)=> 4,B,=> [Ao B],j

i,j i.j

Now we turn our attention to the basis definition of the matrix Hilbert space. A simple
basis set {E" }k< ,» which of course is not unique, is for instance the set consisting in
matrices that are zero except for a single entry which is equal to one, which writes

explicitly

1 0 - 00 ---0
00 .. 00 ..0
L A o E R D S | O A R )

The set (IV.6) admits a more compact definition using the integer part and modulo »
division {Ek‘Ei'fj =6, 1kn0 0<k<n’0<i,j< n} which is nothing more than

J,kmodn >
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a decomposition of the vector index k into matrix indices 7, j. It is very easy to
verify that this basis is orthonormal, i.e. <Ek,Ek/> =0

— k,k/ .

With the help of the Frobenius inner product any matrix can be expressed as a linear

combination with real coefficients over the previously defined basis
_ k k— k
A= Z};<E A)E' = zk:AkE av.7)

where italics were used for A, to emphasize that it is a scalar. Using the basis
definition (IV.6) it can be seen that 4, is the matrix element 4, oan

corresponding to the single non-zero entry in E* .

In many other situation it is more convenient to define the matrix Hilbert space over a
subspace like for instance the set of all real symmetric matrices labeled s, (R) or
another Lie-group like O, (R), the group of real orthogonal matrices as it will be

exemplified latter.

1.2. Matrix functions and the Fréchet derivative

Before getting into the development of matrix flow theory, the concepts and notations
for the derivatives of matrix functions need to be established. The reader is referred to
References 112, 113, 116 for a thorough introduction to these concepts within a
mathematically rigorous framework. Many theorems and their associated proofs will
be omitted here for the sake of brevity and notations will be adapted so as to use the

scheme introduced in the previous subsection (see also Table IV.1).

A matrix function in general f:U (R)— 1 (R) bridges two matrix Hilbert spaces
U, (R),V (R)C GL,(R), each equipped with the Frobenius inner product defined in
Equation (IV.1). Within this setup, functional analysis establishes that a generalized
derivative known as the Fréchet derivative [Df (A)](é) can be defined via the
following relationship:

f(A+8) = f(A)+[DF(A)](B)+0B)  (1v.8)

where 8 is a matrix of infinitesimal norm and (O(d) a higher order term in &
satisfying
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Jow|
lol=o |3

Alternatively the Fréchet derivative can be defined through

e

as being the unique linear operator [Df (A)] that for all vanishing norm matrices
belonging to some subgroup & € U/ (R) converges in norm to (A +d8)— f(A). The
action of this operator produces another function [Df (A)] U,R)—V (R).
Intuitively the Fréchet derivative [Df (A)](S) , which reads the "derivative of f at A
acting on 9", is the first order change in the function's value at some point A in the
Hilbert space when applying an infinitesimal matrix perturbation 8 on A . It is thus a
"vector" derivative along the "direction" 6 in the matrix Hilbert space. Higher
Fréchet derivatives can be defined in a similar manner. Although they could prove
useful for computing the Hessian they are somehow beyond the scope of this thesis

and are left aside for the moment.

It will often be the case in practice for the matrix function to have several arguments,
in which case partial Fréchet derivatives can also be defined. For instance for a two
argument function f(A,B): U, (R)xW (R)— )V (R) the two partial derivatives can

be identified from

f(A+8,.B)= f(A,B)+|D,/(A,B)|(8,)+0O(,)
f(AB+8;)= f(A,B)+[D,/(A,B)|(8;)+ O(3;)

Another special case of particular interest to us is when the codomain of the f
function, namely V (R) is R itself, i.e. f is a functional. To emphasize functionals
we will use majuscules to label them. Functional analysis has an important result
concerning linear functionals acting on Hilbert spaces known under the name of

Riesz-Fréchet representation theorem that states

THEOREM. (Riesz-Fréchet) Let F:U (R) — R be a linear functional acting on a
Hilbert space. Then for VA € U/ (R) there exist a unique B € I/ (R) such that



87. Matrix spaces and functions

F(A)=(B,A)  (1v.9)

The proof of this theorem can be found in any functional analysis book [116]. If
(IV.9), in which the inner product is as usually the Frobenius inner product, is applied
to the result of the Fréchet derivative of F, [DF(A)|(8) which is also a functional, it
follows that

[DF(A)](3)=(B,8)=(VF(A).8)  (1v.10)

In order to prove that the B matrix of the last equation is exactly the gradient of the
functional ' we use the matrix basis set {Ek }k<nz defined in (IV.6). Computing the
derivative along one of the basis "vectors" E* can be achieved by replacing & with
E* into (IV.8), i.e.

F(A+E")— F(A) =[DF(A)|(/E") + O(/E") = t{[DF (A)](E*) + O(tE")

where ¢ is a small real parameter necessary to render infinitesimal the norm of E*,
which is equal to one according to (IV.6). In the last equality the linearity of
derivative operator with respect to scalar-matrix multiplication has been used. Upon
dividing the left and the rightmost terms of the latter equation by ¢ and taking the

limit, one obtains

i FA+ E)—F(A) _ 9F(A)
=0 t 04,

=[DF(A)|(E")

By definition the projection of the functional gradient onto a basis vector E* is equal
to the partial derivative of the functional with respect to each "coordinate" of its

argument A, i.e.

OF(A)
04,

(VF(A).E )= — [DF(A)|(E")

The latter identity along with the fact that any other matrix & can be written as a
linear combination over {Ek} (see (IV.7)) proves Equation (IV.10). This equation is
extremely useful in the context of matrix flows as it provides the means to compute
the gradient of a matrix functional from the Fréchet derivative. A few examples will

be given in the following sections.
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Many of the simple derivatives from basic calculus are still valid in this setup, e.g.
derivatives of constant and linear functions. One very useful property namely the
chain rule has also its equivalent in the matrix space. Let f(A)= g(h(A)) and
0, =h(A+9d,)—h(A) then

S(A+8,)— f(A)=g(h(A+3,))— g(h(A)) = g(h(A)+8,) — g(h(A)) =
=[Dg(h(A))|(3,)+ O@B,) =
=[Dg(h(A))]([Dh(A)](3,)+O(B,))+O(8,) <
<[Dg(h(A)]([Dh(A)|(3,))+0O(5,)

The last inequality sign should be interpreted as an upper bound. This is rendered
possible by the fact that in order for 4 to be differentiable it should first be
continuous. However continuity in Hilbert spaces is equivalent with boundedness
which implies that both [Dg(h(A))](O(S A)) and O(9,) are bounded from above by
some matrix in O(8,) times a constant. With these observations it is possible to

identify the derivative of f as
[DF(A)]3,) =[Dg(h(A)]([Dr(A]BL))  av.11)

The properties of the Frobenius norm, Hadamard product, Fréchet derivatives the
representation theorem together with the derivative chain rule are all the basic
ingredients needed in the matrix flow theory which will be detailed in the next

section.

2. Continuous matrix flows

2.1. Projected gradient flows

The term matrix flow stands for a continuous ordinary differential equation (ODE)
defined in the abstract matrix Hilbert space with respect to a virtual "time" parameter.
The different constituents of the ODE are devised so as to bring the "evolving" system

to a desired state which typically is the optimizer of some goal function.

Numerous matrix flows have been developed by Moody Chu as solutions to various
problems including least squares matrix approximations, structured inverse

eigenvalue problems, simultaneous matrix reduction and many other variants [109,
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110, 111]. Generally matrix flow techniques can be used whenever one wants to find
a matrix with a certain linear or affine structure that has simultaneously a certain
spectrum, i.e. eigenvalues. The method is extremely flexible and should rather be
perceived as a framework since it allows one to derive new flows following a certain

recipe.

At first two manifolds are being defined one for instance consisting of all matrices of
a certain affine structure and the other consisting of all matrices that have a given
spectrum. Then a distance function is defined between these two manifolds which
becomes the goal function to be minimized. In trying to optimize this function the
Riesz-Fréchet theorem (IV.10) provides the means to compute the gradient of this
function which is then used to define a "steepest" descent flow with respect to the
aforementioned virtual time parameter. Finally an ODE solver will integrate this flow
and the minimizer of the objective function will be obtained after sufficient virtual

time has passed.

An example would better illustrate how this framework can be applied in a practical

situation. Let s, (R) denote the set of all real symmetric nxn matrices

5,(R)={A € GL,(R)JA-A" =0}

From basic algebra it is known that the so called similarity transformations which
consist in pre- and post-multiplying a matrix A with another matrix B and its inverse

B~ doesn't change the former's spectrum, i.e. 0(A) = o(BAB™') where

o(A) ={\ € C|det(A\I- A) = 0}

The proof of this affirmation follows easily by pre- and post-multiplying the equation
det(\I —A) =0 by det(B) and det(B™') respectively and merging the determinant
products into a singular one, thus det(\I - BAB™') =0. If B is moreover orthogonal,
ie. BEO,(R) = {Q €GL,(R)|QQ" = I} the matrix BAB" is additionally symmetric

to being isospectral to A . This leads to a natural definition of the isospectral manifold
M(A) = {QTAQ Qe On(R)}

The second manifold required by the matrix flow framework can be defined with
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respect to a basis of a subspace V C GL (R) of dimension typically smaller than n*.
Let that basis be denoted by {Pk }k. )V can be more generally an affine subspace
defined as the coset of some matrix P° plus the linear subspace spanned by {Pk }k.
As a linear space is recovered when P’ is set to zero we will use the affine space in

the following derivations. The affine space is thus defined as

V= {PO D
k

ckeR]

The third step in the matrix flow framework consists in specifying a distance function
separating the two previously defined manifolds, namely the isospectral M(A) and
affine )V manifolds respectively. Such a distance function can for instance be the
functional F:O,(R) — R

FQ=3|Q"AQ-P@AQ[  av.iz)

where P plays the role of a projection operator that projects matrices found on the
isospectral manifold onto the affine subspace, i.e. P: M(A)—V, although its
domain can be extended to GL, (R) as well. We now try to identify the action of the
projection operator onto a matrix X. As P(X) &€V it has the form

PX)=P’+> P
k

for which linear combination coefficients {ck}k need to be determined. Naturally
these coefficients have to satisfy the "minimum distance" rule which states that in
order for P(X) to be the projection of X onto some space it is necessary for
||X — P(X)” to be minimal. In other words for each j

olx-Pex|

5o &V,

X-P(X)|=0

which yields after a few basic manipulations
k k j 0 j
c (P, P ) =(X—-P", P/
S (PP = (X Pp)

Labeling <Pk ,P’/ > with g, one can identify g as being the metric tensor or Gram
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matrix of the linear subspace. The previous equation can now be transformed in
matrix form eg = ... which upon right multiplication with g~' yields

ct = Z(X—PO,Pf>g_;,j

J

from where it results immediately

PX)=P+> (X—P"P/) g, 'P*

Jok

(IV.13)

With this definition it can be verified that P is indeed a projection operator as

P(P(X))=P(X)

)
<,
>
‘/L,
Ky
Q7 Y
40
V.F
F(Q)
VF 8)77
Na 2
P(QAQ)

Figure IV.1. The geometry of the isospectral flow algorithm
showing the isospectral and affine manifolds. The gradient and its
projection onto the tangent space are also shown.

Returning to the definition of /' one can observe that this goal function, which we try
to minimize, measures how far from the affine manifold is a matrix on the isospectral
manifold, in an element-wise manner. Ideally this function would have a single
minimum and this minimum should be zero, in which case there would exist a unique
matrix that has both a given spectrum and a given linear structure. The geometry of

this problem is summarized in Figure IV.1.

The next step required for the matrix flow is the computation of the functional
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gradient, which as mentioned earlier starts with the Fréchet derivative of F'. Let

a(Q)=Q"AQ—P(Q"AQ) then

[DF(Q)](8,) = %[D(a(QLa(Q)}](SQ) =

=(a(Q),[P(Q)](3,)) =
(0(Q),[PQ"AQ|(34) ~[DP(Q"AQ)|(3,)) =
(@) +0a(Q),Q"A3,) — (a(Q),[ DP(Q"AQ)|(3,))

(IV.14)

It can be demonstrated by using the projector's definition (IV.13) that the second term
of the last equality is zero. Intuitively this can be explained if we notice that
[DP(QTAQ)](SQ) lays in the tangent space to V' while a(Q) in the normal space to

V', being as such orthogonal to each other. Finally we obtain the result
[DF(Q)](3¢) = (AQ(a(Q) + a(Q)).8,) = (VF(Q), 3,

The last step of the framework is setting a matrix flow which typically is chosen to be

the "steepest" descent flow
dQ=-VFQ) (1v.15)

although many other flows not necessarily steepest but possessing other properties
can be defined. Various choices of other interesting flows are discussed by Moody

Chu extensively in [109].

One more thing remains to be discussed before generalizing these flows to definite
pencils which is achieved in the following subsection. By carefully inspecting (IV.15)
one can see that by integrating the flow at a certain point it might happen for this to
quit the isospectral surface as Q quits the orthogonal manifold O, (R). To prevent
this, the gradient is first projected onto the tangent space T,0,(R) before being
integrated. Fortunately this tangent space can be found explicitly as
I,0,(R) = Qs, (R)" where s, (R)" is the subspace of all real skew-symmetric
matrices. It then follows (see [109]) that the projected gradient is

V.F(Q)=Q[Q"AQ,P(Q"AQ)|
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which is defined using the Lie bracket [A,B]=AB—BA. The gradient and its
projection are also depicted in Figure IV.1. Replacing in Equation (IV.15) the
gradient VF(Q) with V_F(Q) will guarantee the flow to stay onto M(A). After a
sufficient time the flow would converge to a minimizer of F(Q) which is the sought

solution.

2.2. Generalized isospectral flows

Typically in quantum chemical calculations a non-orthogonal basis is used, in which
case one is forced to take into account also the metric tensor or Gram matrix or as
known by physicists the overlap matrix (see Table IV.1). In the "underlying" Hilbert
space (see Section 1.1 of this chapter) Schrodinger's equation no longer writes
Hy, =¢,y, but rather Hy,K =¢ Sy, . It will be thus necessary to extend the
framework defined in the previous subsection to matrix pairs. This extension has
already been developed by Moody Chu's least squares approximation of symmetric-

definite pairs subject to generalized spectral constraints [111].

In this subsection we will however extend it even further to use a weighted Frobenius
inner product. As it will be shown in the next chapter this change will further augment
the flexibility of the matrix flow framework. The framework is in essence, as
mentioned earlier, a constrained inverse eigenvalue problem in which the goal is to
find a matrix or more generally a matrix pair that has a given spectrum and satisfies a

given affine structure.

For the sake of clarity we will use a generic symmetric-definite pair denoted (A,B).
It can be revealed already that A and B correspond to a Hamiltonian and an overlap
matrix respectively defined in an "underlying" Hilbert space, and consequently A is
symmetric and B symmetric and positive definite, from where the term symmetric-
definite pair. The spectrum of this pair refers to its generalized eigenvalues contained
in the set o(A,B) = {)\ c R‘det[A —AB|= O} .

Again as for the projected gradient flow, there are two constraints relevant to our
discussion, one related to the spectrum and the other to the structure, each defining a

particular manifold this time in s, (R)x s (R). The former manifold is defined as

M(A,B) ={(T"AT,T'BT) € 5,(R) x5,(R)|T € GL,(R)}  (1v.16)
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The T matrix is a congruence transformation that applied to the pair (A,B) does not
change its eigenvalues. In the previous subsection we have avoided congruence
transformations and used orthogonal transformations because the former class of
transformations destroys the orthogonality of the "underlying" basis. Here we can
afford using them as our basis is already non-orthogonal. The advantage is the
increase in flexibility as GL, (R) includes O, (R).

It can be proved that the isospectral surface M(A,B) consists of all symmetric-
definite pairs of spectrum equal to O'(A,B) and moreover it is a disjoint union of
smooth manifolds in s, (R)xs, (R) with respect to T (see Theorems 2.1 and 2.2 in
[111]).

The second manifold of importance to our problem which is related to the structural
constraints is the product of two affine subspaces V =) x ) that can be obtained
from s, (R)xs, (R) via a projection operator P:s (R)xs (R)— )V, x)} defined as
P(X,Y) = (R(X),P(Y)) . In analogy to (IV.13) 7, are given by

731(2)(X) = Pﬁz) + Z <P1{2)9 X- P10(2)>g17(;);/kPlIZ2) (IV.17)
Tk

Minimizing the distance between these two manifolds would produce a matrix pair
(X,Y)=(T'AT,T'BT)  (1V.18)

that is isospectral with (A,B) and that approaches as much as possible, in a least
squares sense, the structure imposed by the projection operator P . Nevertheless the
problem can be looked at from a complementary perspective as it also produces a pair
with a strict structure that has the generalized eigenvalues o(F(X),P,(Y)) close to
o0(A,B). Although easy to observe using perturbation theory that the two sets of
eigenvalues are indeed close to each other it is however not clear if they are
minimally distanced. This is a different and considerably more delicate problem
solved by Moody Chu [110] via a lift and project method which is beyond the scope
of this thesis.

Returning to our problem, ideally the two manifolds would intersect in a single point
giving thus a unique solution. In practice however they might be separated by a

certain distance in which case we still get a least squares approximation of the
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solution and have the freedom to choose among the affine pair or the isospectral pair.
However it is also possible that the two surfaces intersect at a continuous path
yielding an infinite number of solutions in which case further linear constraints can be

applied to refine or reduce the cardinality of the solution set.

The goal function we use here is the distance between the isospectral and affine

manifolds
F(T)= %(HU o(T"AT -~ R(TTAT))HZ +[Vo(TBT- B(TTBT))HZ) =
=S (ve(x =R +|ve(v - )= ava)
= F(T)+ £,(T)

This goal function is identical with Chu's except for one important feature. We have
generalized the standard Frobenius norm ||A|| = <A,A>l/2 with the "weighted"
Frobenius norm ||WoA||. Obviously Chu's theory is a special case having (U, V)
equal to (I_,I) where I_ is the neutral element with respect to the Hadamard product
and is simply a matrix having all the entries equal to one. Later we will try to proof
the versatility of this framework via examples of choosing the weights (U,V)

together with the affine structure.

The Fréchet derivative of the F(T) function at T acting on a matrix & of
infinitesimal Frobenius norm is
[DE(D)](®) =3[ Pr (Vo (X = R(X)). Uo (X~ R(X))}|(3) =
= (UoUo(X~R(X)),[DX]()~[DRX)](DyX](3)))
= (0, (X),[DX](3) ~[D;RX)]([ P X](8))) =
(0,(X),[D,X](®)) (o, (X),[ D RX)]([D,X](3)))

(IV.20)

Both the chain rule of the Fréchet derivative and the adjoint Hadamard product
property (IV.5) were used in passing from the first to the second equality. The last

equality's first term is then easily derived
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<O‘1(X)’[DTX](5)> = <0z1(X), TTAS + BTAT> _

(AT (0y(X)+ 0/ (X)),8) = (24T, (X), 3) (IV.21)

where we have used the commutative and the adjoint property of the Frobenius inner
product (IV.4) this time with respect to the normal matrix product. Also the last
equality involves o, (X) =« (X) that is simple to observe from the symmetry of the

matrices involved.

Because of the "weights" (U, V), the second term of the last equality in Eq. (IV.20)
doesn't cancel anymore as in (IV.14), and is obtained using the definition of the
projection operators given by Eq. (IV.17)

(0, (X),[ DR X](3))) = <al<X) Z< [DiX](8)) g, P; >=
= Z<a (X), P ) g, (P [DX](8)) =

= <Z<a1(x)aP1k>g1 jkP/ [DTX](6)> =

(IV.22)

Jik

= (R(y(X) = R(0).[D;X](8)) = (2AT[B(c (X)) — R(0)]|3)

Merging the last two equations into Eq. (IV.20) we obtain
[DF(D]8) = (2AT[0,(X) = R(ey(X)+RO].8)  (1v.23)

For F,(T) the calculations are identical. With the help of the Riesz-Fréchet

representation theorem (IV.10) we can identify the gradient of the goal function

VE(T) = 2AT [0 (X) = R(,(X)) + R(0)]+ 2BT [, (Y) = B, (YD) + B(O)]  (1v.24)

In the special case (U,V)=(I_,I,) because of the projection operator's idempotence
P(X)=PR(R(X)) it can be shown that B(c,(X))—7F(0)=0 simplifying even
further the gradient formula in Eq. (IV.24).

With the found gradient, we proceed again in setting a steepest descent flow identical
with (IV.15). Since T is only a congruence transformation that is a matrix belonging

to GL,(R) we do not project the gradient onto the tangent space to M(A,B) and
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hope that the flow will stay away from the boundary of singular matrices. In practical
situations we have observed that indeed this seems to be the case. Nevertheless it is
possible to introduce a penalty function like log(det(T)) that will repel iterates from

this unfeasible boundary.

The application of the matrix flow is to our belief only limited by imagination. Many
things can be achieved via this framework, to name just a few orthogonalization,
renormalization, tight-binding model parameterization, matrix element elimination
(without worrying about condition factors), matrix tridiagonalization, diagonalization
and zero patterning in general. It might even be used in many-body physics as the

method is closely related to Wegner matrix-flow renormalization.
Perspectives and further developments

At this moment we believe that the matrix flow framework is largely unexplored in
the field of quantum transport and quantum physics in general, despite the important
potential it has. From a theoretical point of view probably trying to compare this
formalism with Wegner's Numerical Renormalization Group (NRG) [117, 118, 119,
120] would lead to new ideas of how to apply it to many-body problems.

An interesting feature of matrix flows is that since they involve congruence
transformations (at least so far) the hermiticity of the isospectral pair can be
conserved. In fact hermiticity can be recovered by properly specifying the affine
surface. For instance one could define the affine projection operator as
PX) = (X—FXT ) / 2 which clearly is a symmetric matrix and will attract the flow
towards a symmetric solution. The freedom in choosing the projection operator can be
exploited for imposing other symmetries or scaling behavior as well. One may impose
for instance equal matrix elements for equivalent atoms in a super-cell, or a certain
scaling of the interaction distance. This opens an unexplored path between the matrix

flow framework and Group Theory in physics.

There is also a major gain in having extended the goal functional to a weighted
Frobenius norm. This provides the handles to manipulate even further the solution by
noticing that zero entries in the weight matrices cancel the contribution of the
corresponding matrix elements in the X —7P(X) matrices to the overall value of the

goal function. On the other hand larger weights would make the solution sensitive to
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these matrix elements. Thus the weights specify how important it is to have individual
entries in X as close as possible to P(X). It remains to be seen how the weight

matrices could be correlated with the imposed affine structure.

All of the above objectives are rather long-term in scope. In the near term there are a
few refinements which we plan to apply. Chu discusses in Reference 111 many other
descent flows that are not necessarily steepest but have other interesting properties
and suggests what flow to choose for the problem at hand so as to avoid numerical
instability as the dynamical trajectory approaches the boundary of singular matrices.
Although we did not detect any numerical instability yet, we would like to investigate
these alternatives, because part of the symmetries of the problem can be embedded in

the flow equations directly.

Accelerating the flow convergence is also of certain interest. Computing the Hessian,
which we mentioned in this chapter's first section that can be obtained as a second
Fréchet derivative, might prove useful for this purpose. Also, the flow uses at this
point a steepest descent strategy but we wonder if the convergence would not be

accelerated in a conjugate gradient framework.

As will be seen in the next chapter we will mainly focus on shaping matrices and
conserve only part of their spectrum. Intuitively this would increase the number of
freedom degrees, but we do not know yet how to exploit this particularity directly into
the isospectral flow. Chu [110] has proposed another algorithm for solving a similar
problem based on a lift and project strategy which might be more suitable for our

particular problems.
Conclusions

The fundamentals of the matrix flow theory were laid down in this chapter. Apart
giving a modest introduction into the subject, our goal was show that the matrix flow
theory is actually a framework allowing for straightforward extensions. Although we
have detailed only two examples here, there is no impediment in defining other
surfaces and goal functionals within the matrix Hilbert space. Fréchet derivatives are
easy to compute for simple matrix functions and many of the classical derivative rules
from basic calculus are still valid in this Hilbert space. Gradients, building blocks of

optimization algorithms, are accessible via the Riesz-Fréchet representation theorem
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from Fréchet derivatives. We have used these concepts earlier in deriving a simple
framework for setting a matrix flow on a pair of matrices on which simultaneously a
specific affine structure and isospectrality were imposed. An extension to Chu's
generalized isospectral flow has also been provided by adding weight matrices within
the goal function, which increases the flexibility of the theory as demonstrated in the
next chapter.
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CHAPTER V.

A CNT-based conductance sensor for physisorbed amino
acid detection

Introduction

In this chapter we present theoretical calculations on a carbon nanotube-based
conductance sensor. A framework for fast quantum conductance calculations of
carbon nanotube-based sensing devices targeting aromatic amino acids within a tight-
binding-like approximation is developed. The isospectral matrix flows which were
described in the previous chapter will now be applied to obtain a reduced order
Hamiltonian optimized for transport calculations. With this Hamiltonian we employ a
linearly scaling algorithm to compute the quantum conductance in the coherent

transport regime.

The development of biotechnologies seems to increasingly depend on the availability
of selective biochemical sensors capable to determine for instance the amino acid
composition of a protein. That alone is often enough to identify a protein [121] or
even predict its secondary structure [122, 123]. However, the required sensitivity and
dynamic range rule out most of the potential sensing mechanisms. As carbon
nanotubes emerge as a very promising alternative to now standard conductance thin-
film sensors we have assumed the task of studying whether sensing amino acids is

possible via this paradigm.

Carbon nanotube-based chemical sensors have been experimentally demonstrated for
NO,, NHs [52], H, [124], O, [125], aromatic molecules [126] and even large
molecules like proteins [127] and represents the main R&D effort of start-ups like
Nanomix. In this chapter we will focus on similar devices that might respond to

amino acid adsorption with a change in their conductance. The study will be limited
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to zwitterion aromatic Histidine (HIS), Phenylalanine (PHE), Tryptophan (TRP) and
Tyrosine (TYR) amino acids, binding through = stacking onto single-wall carbon
nanotubes. Although an aromatic amino acid sensor in itself would have a
questionable use, our long goal is to study peptide wrapped carbon nanotubes for

which the present study is a prerequisite.

In Section 1 we briefly explain how a carbon nanotube field effect transistor can be
used as a chemical sensor. The challenges in computing the conductance of such a
device from first principles together with the solution we propose are laid down in
Section 2. The solution involves performing ab initio calculations on a considerably
smaller reference adsystem, namely each of the four amino acids on top of a flat
graphene sheet. These calculations are detailed in Section 3 where among other
results we find that adsorption induces states close to the Fermi level and also some
charge neutrality point shifting. Section 4 is dedicated to a novel method we have
developed for the purpose of obtaining optimized Hamiltonian models for transport
calculations. At the base of this method stand the powerful generalized matrix flows
introduced in the previous chapter which we now show how to apply in a concrete
situation. An efficient conductance calculation scheme is presented at the end of this
chapter in Section 5 where the first results on the transmission spectra modification

due to molecular adsorption are also presented.
1. Sensor structure and operating principle

When listing the experimental findings regarding the transport properties of carbon
nanotube-based devices in Chapter 1.3.2, we saw that semiconducting SWNT display
p-type conduction in normal conditions. This phenomenon was attributed to oxygen
adsorption on nanotube surface accompanied by charge transfer. As the influence of
oxygen on the transport properties was so important, the idea of using nanotubes as

chemical sensors followed almost naturally.

A carbon nanotube conductance sensor is basically a field effect transistor-like device.
The nanotube bridges two terminals and its Fermi level is controlled by a gate voltage
from beneath. The sensitive element is the nanotube itself which means that its
surface is externally exposed and not be covered by oxides or any other material. As

opposed to nanowires or other chemical FETs, all atoms of a carbon nanotube are
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surface atoms, which is the key in explaining the excellent sensitivity of this type of

devices.

Generally speaking a conductance sensor is a device which transforms the binding of
a certain chemical stimulus to one of its sensitive regions, into a conductance change.
In the context of carbon nanotubes a few mechanisms can explain the important
conductance changes observed experimentally upon exposure to certain chemical
stimuli. In metallic nanotubes, adsorbing molecules can act as scattering centers that
may induce localization and open a conductance gap at the Fermi level. With
semiconducting tubes things are slightly more complex. Apart increased scattering,
the adsorbed molecules can exchange charge with the nanotubes shifting the Fermi
level of the system and accordingly leading to conductance modifications. Adsorbed
molecules may also modify transport in CNT FETs by lowering the Schottky barriers

and thus facilitating electron tunneling from the leads to the conduction channel.

In the following sections we develop a model that would enable us to study the
adsorption-caused conductance modification of carbon nanotubes in the ballistic
regime. As a case study we have chosen four aromatic amino acids that can bind
through 7 stacking on a carbon nanotube's wall. For these particular molecules no
experimental measurement has been performed to our knowledge and thus our

calculations would have a predictive value.
2. Avoiding intractable calculations

As the goal of this chapter is to calculate the conductance shift in SWNT sensors upon
adsorption of aromatic amino acids, we review some of the challenges such a task
would involve. Although we assume ballistic transport in a non-interacting electrons
picture and ignore phonons altogether, computing the conductance of such a device is

very demanding because of the large number of atoms involved.

In Chapter III we showed that within the Landauer-Biittiker formalism highly
efficient methods can be devised for obtaining the transmission functions in carbon
nanotube crosses. Nevertheless, there, we employed a simple m band description
which is a minimal basis set, adequate to describe those systems. Here the same basis
is far from sufficient, as delicate charge transfer and orbital re-hybridization can occur

during molecular adsorption on carbon nanotubes.
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Even the most efficient conductance calculation algorithm would scale as the third
power in the mean number of atomic orbitals per atom M. Although linear-scaling in
the number of atoms N may be achieved, the size of the underlying basis set always
imposes a pre-factor that in our experience cannot scale better than M. As realistic
CNT sensors would have at least 10* atoms it becomes clear that reducing the basis
size is actually a necessity. We will prove later that this basis reduction can be
achieved as long as one desires to preserve only a part of the spectral properties of the

Hamiltonian.

A second time-saving solution is in close relationship with the portability of the
Hamiltonian model. In theory one always studies the influence of parameters like
nanotube radius and chirality either for gaining insight or for proving the versatility of
the concept. This is an extremely time-consuming process especially for self-
consistent, accurate calculations. It is also a redundant process, if the tube’s radius is
large enough, as in this case the Hamiltonian matrix elements can be approximated

with those of graphene.

In the light of the above discussions we propose a general workflow for studying
CNT-based conductance sensors (although not restricted to CNTs or chemical

sensors) which consists of the following steps:

1. Self-consistent ab initio electronic structure of the target molecule on graphene.
2. Hamiltonian model order reduction conserving the spectrum around the Fermi
level.

3. Hamiltonian parameter transfer to the CNT sensor and transport calculations.

These steps will be detailed in exactly this order in the following three sections. The
methods developed are applied to a case-study in which the targeted molecules are the
four aromatic amino-acids HIS, PHE, TRP and TYR.

3. Ab initio electronic structure of reference adsystems

3.1. Molecular mechanics relaxation of molecules on graphene

The first step and one of the most difficult parts in simulating from first-principles the
kind of systems considered here is relaxing the atomic coordinates under weak n-m

interactions. In fact this represents an active research area and even a benchmark for
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ab initio electronic structure methods. [128, 129, 130, 131] For instance, mean field
theories like Hartree-Fock (HF) and Density Functional Theory (DFT) were found to
have difficulties in predicting binding energies for systems where the binding
mechanism involves weak dispersion forces. In this situation improvements can be
obtained either through wave function correlation methods like Moller-Plesset or
Coupled Cluster [129, 131] or through DFT plus van der Waals corrections. [132]
Nevertheless they all involve a significant computational effort, to which adds
complications associated with the basis set superposition error (BSSE) [133] inherent

to finite basis set calculations.

In Reference 128 binding energies as obtained by simple Molecular Mechanics (MM)
calculations were compared to ab initio results for different m-stacking systems.
Among other conclusions was that properly fitted MM force-field parameters
reasonably reproduce molecular geometries and binding energies. In this light we
have opted for the classical force-field CHARMM as implemented in NAMD [99]
along with MacKerell's [100] set of amino acid parameters for the task of relaxing the
molecular structures. The van der Waals parameters for graphitic carbon were taken
from benzene. Another reason for choosing this oversimplified model was that we
plan to compute the transport properties of nanotubes wrapped by small peptides
containing aromatic amino acids for which an ab initio relaxation is at present
intractable. In fact ab initio relaxation is already difficult for small, asymmetric
molecules like amino acids because of the large number of degrees of freedom which

during relaxation increases considerably the configuration space.

Titration curves reveal that at normal pH the selected amino acids are zwitterions
having an oa-carboxyl (COO’) and o-amino (NH3") charged groups. Although
neutrally charged, zwitterions present an important dipole that could play an
important role in the molecular configuration when the adsystem will be subjected to
an external electric field like the one created by the leads of a nanotube conductance
sensor. In this thesis we have ignored these effects together with issues related to self-

assembly of amino acids at high surface densities.

Each amino acid was then individually placed on top of a large graphene layer and
relaxed in NAMD. The graphene atoms were hold fixed to their ideal honeycomb

positions during the conjugate gradient minimization with a carbon-carbon distance of
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Figure V.1. Tryptophan on graphene orthorhombic unit cell
(the same for all the other three adsystems) together with a few
periodic images in dim gray and the common lattice vectors a,

b and c.

1.43A. The obtained geometries can be seen in Figure V.5. Except for Tryptophan
which has two aromatic rings and who relaxed into a "stack" configuration all the
other three amino acids relaxed into "bridge" configurations. This together with a
mean ring-graphene distance of approximately 3.3A confirms the validity of the MM
relaxation method for obtaining molecular geometries, at least for weakly interacting

systems.

Following relaxation, a common orthorhombic unit cell for all four adsystems was
found, that simultaneously accommodates the largest of them all, namely Tryptophan
on graphene, and avoids undesirable self-interactions. This unit cell and the common
lattice vectors are illustrated in Figure V.1. The next subsection will focus on the

electronic properties of these four adsystems.

3.2. Ab initio electronic structure

For each adsystem consisting in one aromatic amino acid onto a graphene layer, ab
initio self-consistent calculations were performed with SIESTA [102] a highly
efficient DFT code involving pseudopotentials and localized pseudo atomic orbitals
(PAOs) for valence-only calculations. The maximal cutoff radius of the double-{ PAO
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Figure V.2. Band structures of the four adsystems plotted on top of the bands of
pristine graphene (light blue). The Fermi level was shifted to zero.

basis was set to 2.84A in order to capture third nearest-neighbor interactions within

the graphene layer.

As our systems are slabs we choose an 8x8x1 Monkhorst-Pack k-grid for sampling
the rectangular first Brillouin zone with 32 k-points. The real-space grid corresponded
to an equivalent 70Ry plane-wave cutoff. Pristine graphene and isolated amino acids
were simulated as well, within the same unit cell, in order to obtain reference data for

latter comparisons.
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Figure V.3. Total density of states for pristine
graphene and the four adsystems emphasizing the
amino acid-dependent spectral peaks close to the

Fermi level (here set to zero).

The band structures as obtained with SIESTA are presented in Figure V.2, in which
pristine graphene bands are plotted in light blue together with each one of the four
adsystem bands. In all spectra of this chapter, the Fermi level was shifted to zero. The
physisorption causes an approximately 150meV Fermi level up-shift. Dispersionless
bands close to Er are clearly visible in each case, while their spectral positions depend
on the type of amino acid. These individualized signatures could prove extremely
useful in the context of amino acid identification by nanotube conductance sensors,

which are known for their high sensitivity but relatively poor specificity.
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Figure V 4. Total density of states for the Phenylalanine
on graphene system (top) and projected density of states
(PDOS) onto amino acid orbitals (middle) and a-carboxyl
group orbitals (bottom). The peaks far from the Fermi level
(middle PDOS) populate mainly the aromatic ring's
orbitals.

Total density of states as displayed in Figure V.3 emphasizes the amino acid-
dependent states induced close to the Fermi level by physisorption. These states are
found to populate the a-carboxyl group orbitals of the amino acids as can be observed
from the projected density of states series in Figure V.4. Interestingly the aromatic
ring orbitals of each amino acid are populated significantly only by states found 3eV
away from the Fermi level and cannot, at least in theory, influence the intrinsic
conductance of a carbon nanotube. Unpublished benzene on graphene calculations
within the same setting confirmed this observation and was found to be in perfect
agreement with studies performed by other groups. [135, 136] Hence, it can be
concluded that although responsible for the binding mechanism, it is not the aromatic
rings of the amino acids that could change a nanotube's conductance but rather the

carboxyl or amino ions.

As expected the dispersionless bands correspond to states localized in real-space in

the proximity of the a-carboxyl group. Mulliken charges as computed by SIESTA
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Figure V.5. Mulliken charge transfer from/to 2p, orbitals of graphene. The
figure also shows the underlying graphene lattice as an indication of the
stacking configuration of the amino acids.

were used to study the possible charge transfer. Graphene charges from the adsystem
were subtracted for each amino acid from pristine graphene charges and then
convoluted by a real-space Gaussian kernel of 2.85A effective cutoff to obtain Figure
V.5. As known Mulliken charges are strongly dependent on the basis set. Moreover in
our calculations, since we avoided the relaxation at the ab initio level and dropped the
counterpoise correction the charge analysis might further suffer from BSSE.
Nevertheless the maps presented in Figure V.5 can be accepted qualitatively as they
correlate well with the expected amino acid charges. The magnitude of the transferred

charges situates our case in the physisorption regime.

As can be observed screening of the ionic charges inside graphene is strongly

localized. This enables us to transfer the Hamiltonian and overlap matrix elements
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from these small reference systems to a carbon nanotube conductance sensor that
would have a considerable number of atoms, and avoid intractable self-consistent

calculations.

The charge is mostly transferred from/to the 2p, orbitals with values of up to 2%.
With the other orbitals the charge transfer is typically 5 times lower. The Fermi level
shift together with the charge transfer from the 2p, orbitals and the localized states
close to Er are mechanisms that can result in important conductance changes. This
supports our suggestion that carbon nanotubes might be suitable for aromatic amino

acid detection.

4. Hamiltonian model order reduction

4.1. Why reduce the order of the Hamiltonian?

To be practical for electronic transport calculations, the Hamiltonian and overlap
matrices computed self-consistently with SIESTA [102] as detailed in Section 3,
should somehow be adapted to exploit as much as possible the particularities of the
transport theory. This section focuses on these issues and introduces a solution that
consists in projecting the problem in a reduced subspace followed by infinitesimal
congruence transformations or isospectral flows, as introduced in Chapter IV, in
order to correct the spectrum around the Fermi level. This algorithm is then applied to
the four adsystems consisting of aromatic amino acids onto graphene which will result

in a highly optimal Hamiltonian model for transport calculations.

Accurate results of ab initio self-consistent calculations require a large basis set. In
our case a relatively modest double-{ PAO basis in SIESTA for valence-only
calculations involved a mean of about 10 orbitals per atom. For example the
Tryptophan on graphene system had 139 atoms and 1040 PAO basis elements.
Computing the conductance of a realistic nanotube sensor containing at least 10*-10°
atoms by simply transferring the matrix elements from the reference adsystem would

therefore be extremely difficult.

Elastic transport in nanostructures is determined by the spectral properties close to the
Fermi level as it will be shown in the next subsection. This means that only a few

Hamiltonian eigenvectors with corresponding eigenvalues falling inside a certain
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Figure V.6. A typical Fermi-Dirac energy window at
2eV biasing and room temperature.

energy interval centered at Er contribute to the ensemble average of the current
operator. Fortunately in many situations of practical interest, this set of eigenvectors
project notably only onto a subset of the PAO basis, like it happens for instance with
carbon nanotube m bands. In this case the Hamiltonian and overlap matrices can
simply be projected onto a reduced Hilbert subspace where the computations are

sped-up by up to a few orders of magnitude with just a minor loss in accuracy.

The same considerations are at the basis of the m-band tight-binding (TB) model
widely employed in predicting the electronic structure, transport and optical
properties of carbon nanotubes [104, 137, 138, 139], which we have also employed in
Chapter I and Chapter III. This model has, after shifting Er to zero and assuming an
orthogonal basis, a single parameter 7, = —, that represents the hopping integral
between nearest neighbor atoms. Later, Latil et al. have extended this model to
adsorption on or atom substitution in carbon nanotubes by modifying the on site
energies and hopping integrals so as to reproduce correctly the band structure or

density of states around the Fermi level [108].

It should be noted however that tight-binding parameterization is a delicate problem
as it typically involves iterative matrix diagonalizations within some minimization
algorithm. It is our belief that this method would work poorly for low symmetry
systems that have a large number of parameters and might even freeze at a local
minimum yielding unphysical solutions. Moreover as eigenvalue derivatives with

respect to a matrix element cannot be analytically determined for the general case, the
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optimization must rely on function evaluations-only or genetic algorithms and is as

thus extremely slow or even uncontrollable.

Our approach has another philosophy. We start from the ab initio self-consistent
Hamiltonian and overlap matrix and produce via proper transformations a reduced-
order effective pair that has a correct spectrum around the Fermi level. Basically it
consists in an elimination of PAOs based on the projected density of states followed
by an appropriate isospectral matrix flow to recover the sparsity pattern and correct

the spectrum.

4.2. Spectral bandwidth of the current operator

The theory of Hamiltonian model order reduction starts from the particle current
expectation value in the Landauer-Biittiker formalism. We choose Todorov's
transmission formula (I1.19) instead of Fischer-Lee formula (I1.17.b) as it simplifies
some of the manipulations. As we are interested in the drain-source transmission and
the gate is accounted for only via the rigid shift it introduces in the Fermi level,
a,a’ = L, R, and the trace in (I1.19) writes

Tr [ﬁL (E)i:ue (E)ﬁR (E)ELR (E)T ]

where p,, represents the density of states projected onto the free lead states. The

trance runs over the lead's orbitals {|1/>} as pointed out in Chapter II.

Now, we transform the trace from the {| u>} basis to the {

wn>} basis formed by the
eigenvalues of the free Hamiltonian I—AI0 (see Equation (I1.7)) obtained by solving

¢n> =&,

is diagonal having the matrix elements

Schrodinger's equation I—AI0

wn> . In this basis the projected density of states

PL(R).m (E)= <¢n ﬁ(E)ﬁL(R) |1/}m> = (% |6(Ei - ﬁ0)6n1L(R)

/liz)m> = 6(E - 6n)(snm(smL(R)

Inserting the above in the current expectation value given by Equation (II.17.a)

results in (ignoring the pre-factor)

Lo [ AL E =)~ FE=1)] Y um BV (EVg (BN (EY (1)

nel,meR
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Examining this formula it is not too difficult to observe that contributions to the
current average coming from those eigenstates that correspond to eigenenergies ¢,
falling outside [, , 1] are canceled by the term f(E — u,)— f(E — p,) represented
in Figure V.6 for a biasing of £1eV at room temperature. This allows one to drop the

corresponding summation indices # and m in Eq. (IV.1).

The subset of eigenstates {

@/Jﬂ}} respecting the above condition is now projected back
onto the PAO basis, with the help of the expansion coefficients ¢’ :<1/|z/)n>.
Fortunately in many practical situations most of these coefficients are zero. This
means that the current expectation value can be computed directly into a Hilbert
subspace spanned by the PAO subset.

{1,

y>¢0, [:IO

U= v, e Elnmll (v

Computing expectation values in this Hilbert subspace is extremely efficient. In
particular this is exactly the goal of the method to be detailed in the remainder of this
section that offers a formal framework for finding a minimal Hilbert subspace in
which the current expectation value can be computed with controlled numerical

accuracy.

4.3. Subspace projection methods

The first step in the model reduction algorithm is deciding which PAOs will be
projected out in view of obtaining a reduced Hilbert subspace. We remind the reader
at this point that we apply the subspace projection for the reference adsystems and not
for a carbon nanotube two-terminal device. This is based on the assumption that the
set of orbitals in an adsystem not being populated by eigenvectors inside the energy
interval [,uL, ,uR] will also not be populated in a carbon nanotube, in the same energy

interval. If the tube curvature is not too high this assumption is indeed valid.

It is not difficult to see that the set defined in (V.2) is informationally contained in the
orbital projected density of states (PDOS) defined as

1 _ _
p(E) =~ [ Ak Re[(x, (0)|2)S,, (k) {7

k Bz T,

% O)(E—2,(k)  (v.3
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where the basis non-orthogonality and periodicity of the adsystems has been taken
into account. The integration in the k-space is done in the first Brillouin zone, and S
[c) are the dual PAOs satisfying <u| ,&>:(5

v 2

o

represents the overlap matrix,

and
| X,,(k)> are Bloch states of corresponding dispersion relations ¢, (k) .
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Figure V.7. Energy filtered projected density of states
for the Histidine on graphene system. The black
horizontal line at 1% represents the cutoff threshold.

We used the PDOS given by SIESTA in deciding which PAOs to eliminate from the
basis. Each p (E) is first multiplied by the Fermi-Dirac energy window function
f(E—py)— f(E—p,) and then integrated over all energies to obtain the numbers

pv=depv(E)[f(E—uR)—f(E—uL)] (V.4)

The basis set of the reduced Hilbert space is then taken to be {|V>‘ o, >€p}. In
simple words only those PAOs for which the energy filtered PDOS p, was greater
then a given threshold ¢, were retained. For instance, setting 1, ,, to £leV and ¢, to
P, ), reduced the number of orbitals for the Histidine on
graphene adsystem from 1002 to 141, which is very close to 134 that represents the
total number of atoms. Figure V.7 shows p, for the aforementioned adsystem.

1% of the maximum max(

The PDOS-based subspace projection method would be numerically exact, in the
sense of error-free estimation of the current's expectation value, if a zero ¢, =0
threshold would be used. A larger threshold value would result in a lower order
projected Hilbert space but it would also result in a higher numerical error. As such

the threshold is to be perceived as a tradeoff between accuracy and efficiency.
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Figure V.8. Band structure as obtained after PAO
elimination (subspace projection). Pairs of arrows
indicate the errors produced by basis truncation.

In some situations computing the PDOS can be avoided if the chemistry of the system
under study is known. For pristine graphene we found that the 2p, orbitals should be
retained, a result that could have been predicted from the large body of ab initio
studies on graphitic systems. Nevertheless for exotic or strongly perturbed adsystems
the projected density of states has to be calculated as hybridization can become
important promoting new bands close to the Fermi level. This is however not a
bottleneck as highly-efficient methods for computing the PDOS based on Haydock's

recursion method are readily available [140].

4.4. Spectrum correction

After eliminating PAOs with the PDOS elimination procedure described in the
previous subsection we have recalculated the band structure with the projected
Hamiltonian and overlap matrices. Graphitic bands, i.e. bands associated with
eigenvectors that populate mainly orbitals in graphene, are indeed properly conserved
around the Fermi level after the elimination. Nevertheless the flat dispersionless
bands, which we have attributed earlier to localized states, get shifted by a few tens of
meV in a non-predictable fashion. The bands of the initial Hamiltonian together with

those of the projected one are plotted in Figure V.8. The abovementioned band shifts
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are emphasized in this figure by arrows. Most probably at the origin of these errors
are large condition numbers of the generalized matrix pencil (H,S) that we have not

taken into account when eliminating basis orbitals.

Correcting the basis truncation errors can be achieved simply by diagonalizing the
projected pencil (H,,S ), at the I" point for instance, and replacing its eigenvalues
with the exact ones taken from the initial (H,S) pencil. Using the matrix notation one

can write the Schrédinger equation for the (H ,S ) pair
Hvy =S vye, (V.5)

and similarly for (H,S), where y, and €, are two matrices, the first containing the
eigenvectors as its columns and the second is a diagonal matrix containing the
eigenvalues. Mathematically y, is a congruence transformation that simultaneously
diagonalizes H and S, i.e. y H y, =2, and y'S y, =1I. Now, we replace the

shifted eigenvalues inside [, , 1, | with the correct ones

= 55‘%6[/%:,“12]
* |e,,otherwise

and with the help of y ' we can derive a new, renormalized Hamiltonian
H, =y "& y_'. The overlap matrix is unaffected by this process. The only problem
is that the newly found Hamiltonian H, loses its sparsity. In the following we show
that via an isospectral flow the sparsity can be recovered yielding thus a sparse pencil

that has a correct spectrum around the Fermi level.
4.5. Sparsity recovering via isospectral flows

As stated earlier, the goal of the model reduction method is to project out as many
PAOs as possible while minimizing the errors coming from basis truncation. In this
subsection we use the mathematical apparatus introduced in Chapter IV to recover
the sparsity pattern that was lost through the spectral correction applied in the

previous subsection.

Setting up a generalized isospectral flow involves in a first place identifying the
parameters of the two principal manifolds, namely M and V as labeled in the

previous chapter. In our case the isospectral set M is build around (H »S,). With
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Figure V.9. (top) Graphene Hamiltonian perturbation before (left) and after
(right) the isospectral renormalizing flow. (bottom) Band structures before
(left) and after (right) the isospectral renormalizing flow. In cyan are the bands
of the initial full-size Hamiltonian, and in black those of the projected and
renormalized one.

respect to notations used in Chapter IV, we identify (A,B)=(H,,S ). The affine
subspace we consider here has a trivial structure involving only the two constant
matrices Pﬁz) inside the projection operator defined by Equation (IV.17). For our
purpose we define these two matrices as (P’,Py)=(H,,S ). The last parameters
required are the two weights (U, V) appearing in the definition of the goal function
F(T) in (IV.19) which is discussed below.

The first choice for (U,V) would be (I_,I.) where I is the neutral element with

respect to the Hadamard product and is simply a matrix having all the entries equal to
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one. Nevertheless we exploit the flexibility of this framework and choose (U,V)
differently to achieve another subtle feature. For V we simply take I_, as we wish to
conserve the overlap matrix. Figure V.9 (top-left) shows the Hamiltonian's diagonal
difference between the HIS+GPH adsystem and the pristine GPH. As can be observed
the on-site energy perturbation extends almost throughout the unit cell and this might
pose a problem when exporting the Hamiltonian matrix elements to a carbon nanotube
sensor. Accordingly we can choose U so as to confine this perturbation closer to the
adsorbed molecule. Thus for U we take I. and cancel those matrix elements onto
which we wish to localize the perturbation. Simultaneously for the adsystem we have
modified the P/ matrix by replacing the Hamiltonian sub-matrix corresponding to

graphene orbitals with the projected Hamiltonian of pristine graphene H |, .

We now argue the choices made above. First, choosing M (H,,S,) as the
isospectral set guarantees that the spectrum, we have corrected in the previous
subsection, is conserved. Second, specifying the affine set via Pl(zz) in the way
described above, forces the isospectral flow towards matrices that are as close as
possible to (H,,S,) which we know to be sparse. Those entries set to 0 in U, which
correspond to sites very close to the adsorbed amino acid, do not contribute to the
overall goal function's value and thus are free to vary as much as necessary. Because
we overwrote a part of P with the pristine graphene's Hamiltonian H ey » the flow
will be attracted towards a final Hamiltonian that is close to H ,, except for the
zero sites in U where it may differ radically. Re-scaling of the perturbation can in this

way be achieved.

Having identified all the ingredients, we set the initial condition T =1 and integrate
with an ODE solver the steepest descent flow d, T = —VF(T), where the gradient is
computed with the help of (IV.24). Because of the trivial form of the projection

operators T, one obtains a simplified gradient formula

VFT)=2HT

UoUo(X—P/)|+28 T[Y—P{|

where we have used the shorthand notation (X,Y)=(T"H,T,T'S T) and the fact
that V=1 . The solution to our problem is considered to be obtained when the norm
of the gradient falls bellow a certain threshold. Denoting T as the limit of the flow,
the searched solution is simply (H,,S,)=(T_H T_, TS T ). The band structure
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Figure V.10. Generic two terminal device emphasizing boundary atoms
between the leads and the central region.

we have calculated with (H,,S,) is displayed at the right of the bands of the projected
pencil (H,,S ) in Figure V.9 (bottom). Remarkably apart the perfect reproduction of
the band structure of (H,S) within [p,,u,] one can also see the successful
perturbation scaling in Figure V.9 (top). The resulted pencil (H ,S,) is as expected
also very sparse and the interactions are practically limited to the third nearest
neighbor, which allows the implementation of a very efficient quantum conductance

calculation scheme which we describe in the next section.

5. Elastic transport calculations

5.1. Efficient real-space partitioning scheme

Even with the reduced Hamiltonian and overlap matrices obtained in the previous
section the calculation of the quantum conductance in the ballistic regime is still very
demanding due to the large number of atoms involved. A realistic conductance sensor
would have thousands to tens of thousands of atoms. Inverting a matrix having this
number of rows and columns (e.g. computing Green's functions) requires O(N°)
operations that could approach the billion flops limit. As this operation would have to
be repeated hundreds of times for each energy inside a certain interval, it is clear that

other methods have to be set in place to compute the conductance.

In Chapter III we have detailed a procedure for computing the multi-terminal
conductance of a carbon nanotube cross junction. The efficient method for computing
the conductance involved there partitioning the tubes up to the junction, propagating
self-energies and inverting only a small matrix to obtain the required Green's

functions. In this section we deal only with two terminal devices for which we have
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developed a very similar and efficient method for computing the necessary Green's

functions.

Referring to Figure V.10, where a generic two terminal device is illustrated, using a
PAO basis set {| 1/>}, like the one provided by SIESTA, one can partitioned the

Hamiltonian and overlap matrices in the form

H, H, S, Sic
H= H, H,|; S= S Sic (V.6)
T
H,. H, H. Slc Ske Sc

from which the Green's function of the central region can easily be obtained as

discussed in Chapter II,

G(2)=[z8c ~H.~L,(2) - £, (V.7.)
EL(R)(Z) = KL(R)C (Z)TG(Z(R)(Z)KL(R)C (2)

GE(R) 2)=K,, (z)! (V.7.b)

As usual K matrices correspond to K(z)=zS—H =G(z)"'. In the Fischer-Lee
formula (I1.17) derived in Chapter II the energy dependent conductance is given by
26 _2e . “
G(E)==—T(E)==—Tr[[(E)GL(E)T (E)GL(E)]  (V.8)
The employed retarded and advanced quantities follow the general convention
G'“2(E)=G(z=E=£i0"). The leads are included as boundary conditions into the

central region as usually via the level broadening functions ', =i|Z} , — X!, |-

Any efficient conductance calculation scheme exploits the sparsity pattern of the
matrices involved in (V.8) and we show next what we mean by this. As we said at the
end of the previous subsection the Hamiltonian matrix obtained via the isospectral
flow doesn't contain interactions going beyond the third nearest neighbor. Then from
Figure V.10 it is easy to observe that V, , . has non-zero matrix elements only when
linking orbitals found inside the boundary regions €2, ,, in the leads and €2, ,, in the

central region respectively, i.e.

KL(R)C;;W = 5uQL(R>6yQCL<R)KL(R)C;W (V.9)
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In our notation, K, 4., :<,u|I€L(R)C|y>. Replacing Equation (V.9) into (V.7.b)
yields then

EZ((Z));ML'(E )= E Ky (E )' Gf&f;’iy (E)K e, (E) =

w'!

_ § T 0;r(a)
o 6#QCL(R) 6M'QCL(R) KL(R)C#WgL(R);W'KL(R)CéV'll'
'€ (r)

(V.10)

which signifies that X , will be non-zero only when orbitals p,p" €€ 4 -

L(R)pup

Moreover only GB(R)_W, with v,v'€(), . need to be calculated which represent

exactly the surface Green's functions g(L)( Ry fOr which an efficient method will be

described in the next subsection. Consequently
PL(R):W'(E) - 6/19cuR>6u'chR>FL(R)W'(E)

and Equation (V.8) reduces to

2e , a
g(E):% Z FL;//,;J'(E)GC;/J,'V'(E)FR;V'V(E)GC;/W(E) (V.ll)

Jp'€Qeyp
w'€Qep

Summarizing, the conductance of a two terminal device is completely determined by

the knowledge of the lead surface Green's functions g7, .,.(E) with v,v' €€, ,, and

(E) with peQ,,vefl,.

the left-right Green's functions of the central region G|.

BT

Figure V.11. Hamiltonian of the carbon nanotube toy-sensor and its real-
space partitioning.

In this chapter we opted for a simplified toy sensor depicted in Figure V.11 that has a
central region, coupled to two semi-infinite leads made of nanotubes with the same-
chirality. This kind of configuration is suitable for computing the intrinsic
conductance change due to adsorption and is computationally less demanding than a
system including realistic metallic leads. We now concentrate on the calculation of

matrix elements involved in (V.11).
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The surface Green's functions, g;, ) Will be dealt with in the next subsection. For the
transfer Green's functions G, o (E) a promising recursion method was recently
developed [134]. The method involves a two-sided Lanczos process for non-hermitian
matrices and consequently its numerical stability must be considered carefully.

Moreover a terminator is not as easy to find as it is for the hermitian case.

In this light we opted for an elimination-based method that is exact and also order-N
at least for 1D systems like carbon nanotubes are [104]. This method exploits the
block tridiagonal structure of H¢ and S¢ when partitioned as in Figure V.11. This
structure reflects also in K. (E)=ES.—H,.—X,(E)—X,(£) which thereby
assumes also a block tridiagonal form. This is possible only because X, . (£) only
affects the boundary atoms. Henceforth we drop the C index to abbreviate notations
and remember that for the remainder of this subsection all matrices refer to the central

region and its partitioning, thus

Kll K12
K. =K-= K21 K22
Cc — - ",
Kn,nfl n,n

The goal is to compute G,, which is the sought left-right transfer Green's function.
Using the identity GK =1 we can identify the sub-block

61,; = Z Gl,jKjJ
J

which because of the tri-diagonal form of K simplifies to

I= G11K11 + G12K21

i—1,i + Gl,iKi,i + Gl,i+lKi+l,i

0= Gl,HK

0=G,, K

Ln—1""n—1,n

+ Gl,nKn,n

Finding G,, can be achieved at this point by elimination. From the first equation we
express G,, function of G,,, insert into the second equation and regroup terms. Then

we express G,, function of G,;, insert into the third equation, regroup terms and so
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on, down to the last equation. Labeling at step i the left hand side term with B, and
the post-factor of G, by A, one gets for step i+1
A=K 0K
B, = _BiA;'lK

-1
i+1,1'Ai Ki,i-H

ii+1

which can be seen to start from A, =K, and B, =1. At the last step, the transfer

Green's function simply results as being G,, =B, A . The steps described so far are

1,n

assembled in Algorithm V.1.

Algorithm V.1. Elimination method for calculation
of transfer Green's functions

1. LET K=ES.—H, —X,(E)—Z;(E),
A1:K11' B1:I

2. FOR i=2,n

3. Ai+1 = Kz‘+1;i+1 - Ki+1;iA;1Ki;i+l
4. B, = _BiA;IKi;iH

5. ENDFOR

6. G,=BA

We feel again the need to remind the reader that, since the calculations are performed
a non-orthogonal basis, the matrices involved in Algorithm V.1 respect the
representations (I1.28). Briefly the external indices are in this situation Gy, K,

A A.’TlT and B, ;. The same holds true for the next subsection.

i

5.2. Decimation method for computing surface Green's functions

We detail now a very efficient method for computing the "free" lead surface Green's
functions. "Free" means here that the lead(s) is decoupled from the two-terminal
device. Thus we deal with a semi-infinite periodic Hamiltonian like those encountered
in surface physics. An abstract representation of such a structure is represented in
Figure V.12. The system is indeed periodic but only along the positive abscissa. The
decimation method [141] described in this subsection, gives access to both the surface

and asymptotic "bulk" Green's functions.
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Figure V.12. A generic semi-infinite regular structure decomposed
in principal layers. Arrows indicate the way layers are being
eliminated by the decimation method.

The Hamiltonian of this system has again a tridiagonal form as suggested in Figure
V.12. Thus its K matrix, K, (E) = G, (E) = ES,,, —H, 4, , has the form

Ky Ky
K, K,
K

10 11

KOI
K (V.12)

For the sake of brevity we drop hereafter indices L(R). Although K, =K,, and
K,, = K{, we have chosen this notation for reasons that will become obvious later.
The decimation method is iterative and at some step these quantities will depart.
Expanding the identity GK =1 the following system of equations follows

621‘,0 = GZz oKoo + Gzi,lKlo
62;,1 = G2i,0K01 + GZi,lKll + GZ[,ZKIO

621‘,2,‘71 = G2i2j Ko + Gy, 2j- K, +Gy, ZjKIO (V.13)
82[,2; = G21 2j— Ko+ G21 21K11 + Gzz 2j+1 10
62i,2_i+] G21 2,K +G,, 2/+1 nt+6Gy, 2/+2K

10

with j>1. Next all equations in odd second index, i.e. of type 2+ 1, are substituted
into those of even index, the substitution variables being the Green's functions G,
Because o

i,2j+1°
2ia;p = 0 regardless of 7, j it follows that
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o —1 -1
GZi,l - _Gzi,oKmKu - GZi,ZKIOKll

o -1 —1
G2i,2j71 - _G2i,2j—2K01K11 - GZi,ZjKIOKll
_ —1 -1
G - _sz,zijKn - G2[,2j+2K10K11

2i2j+1

which upon insertion in (V.13) yields

82[,0 - Gzi,OKOO + GZ[,Zf(lO
621‘,2 = G2i,0K01 + GZi,ZKll + G2i,4K10

621‘,2,‘72 = G2i,2j74K01 + G2i,2j72K11 + GZ[,ZjKIO (V.14)
62:‘,2,’ = G2i,2j—2K01 + GZi,ZjKll + G2i,2j+2K10
62i,2_1’+2 = G2i,2_/K01 + G2i,2j+2K11 + G2i,2j+4K10

where we have used the notations

I~(00 = Koo - K01K;11K10 Km = _K01K;11K01

- - - 7 _ (V.15)
K= _KloKlllKIO K, =K, - KmKlllKlo N KlOKlllKO1

The system of equations (V.14) contains now only Green's functions with an even
second index. Naturally these equations can be re-indexed via 2j — j which brings
(V.14) into the same form as (V.13) with the sole difference that K matrices are
replaced by tilded matrices as defined in (V.15).

The substitution process corresponds physically to the elimination of odd layers like
suggested by arrows in Figure V.12. The eliminated layers are included in the
remaining ones via self-energies that in (V.15) are those terms having the form
K,K;/K,,. In other words the layer Hamiltonians embedded in K,,K,, and the
interlayer interactions embedded in K ,,K,, are being renormalized into tilded
quantities. These correspond to effective Hamiltonians and interactions inside and

between layers that "feel" the eliminated layers.

The substitution process is now iterated until a properly chosen norm of K, ,K,, , e.g.

the Frobenius norm, falls below some threshold. These steps are equivalent to
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Algorithm V.2. Decimation method for calculation of surface
and bulk Green's functions

1. LeT K., ,=ES,—H, FOR i,j=0,1
2. REPEAT
3. Ky, =K, — K01;n71K1711;n71K10;n71
4 Kll;n = Kll;n—l - KOl;nfl _11;7171K10;n71 - KlO;n—lKl_ll;nflKOhn—l
5. Ky, = _K01;7171K1711;n71 0lin—1
6 KlO;n = _K10;n71K1711;n71K10;n71
7. LT K., ,=K,, FOR i,j=0,1

8. UNTIL ”KOl;n” + ||K10;n S 2e
9. GOO = K;(;;n
10. G, = Kl_ll;n

iterating over (V.15) where K should be replaced by K, and K by K, , where n is
the iteration index. The Algorithm V.2 summarizes the decimation method.

After convergence is achieved over steps 3-7 the surface G,, and bulk G,, Green's
functions are easily obtained in steps 9-10. This can be observed if we set first i =0
and K, =0 in the first equation of (V.13) from which results G, and then set j =i
and K|, = K, =0 in the fourth equation of (V.13) to get G,.

The decimation method is exponentially convergent. In the first iteration step odd
layers are embedded into even layers via their self-energies. In the next iteration step
the remaining odd layers are embedded into the even ones. At this point each
renormalized layer contains the influence of two layers from the initial structure. If
the procedure is now repeated, at some step n, each renormalized layer would "feel"
the effective environment created by 2" initial layers. In practice we found this
method far more stable numerically and rapidly converging than the one described in
Chapter I11.3.3.

5.3. Transmission spectra

This final subsection has the role of gathering all the pieces developed throughout the
chapter together and use them for computing the transmission spectra of a carbon

nanotube sensor. At the end of Section 4 we have obtained an optimal pencil (H,,S))
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|Hr;HIS_Hr;GPH|
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Figure V.13. Absolute Hamiltonian matrix element difference
between the graphitic parts of GPH+HIS and pristine GPH that
were used in perturbing the Hamiltonian for conductance
calculations (see text for details).

for the reference adsystems represented by an aromatic amino acid onto a graphene
layer. This pencil is sparse, yields accurate bands around the Fermi level and has a

few other interesting properties as discussed in the abovementioned section.

The (H,,S,) matrix elements are then exported to the toy sensor represented in
Figure V.11 as follows. First for pristine graphene we have found that symmetry is
respected within the (H,,S,) matrix elements (i.e. all carbon atoms have the same
parameters) and thus we have extracted parameters for a single carbon atom. This
carbon atom model is very similar to a third nearest neighbor tight-binding scheme.
The Hamiltonian and overlap matrices for the pristine sensor were then instantiated
with values corresponding to the aforementioned model. The toy sensor, which has no
adsorbed amino acid yet on its surface, is then partitioned as in Figure V.11. Leads
are decoupled from the central region, and their surface Green's functions are

computed at all energies using Algorithm V.2. With the help of Equation (V.10) we

r

LRy from where level

obtain the required lead-self energy matrix elements >

broadening functions I follow immediately. The same self-energies

L(R);pp’
renormalize additively the Hamiltonian of the central region from which via
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Algorithm V.1 the transfer Green's function matrix elements G, are calculated.

Finally summing Equation (V.11) one gets the energy dependent conductance G(E).

121~ :
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Figure V.14. Transmission spectra for (11,0) CNT-based
sensor for pristine nanotube and the CNT+HIS amino acids.

We have applied this method to a semiconducting (11,0) nanotube measuring
approximately 15nm stacked in between leads simulated by ideal semi-infinite (11,0)
tubes. The result is presented in Figure V.14 with a thin black line, and is, as
expected, equal to the transmission function through an infinite (11,0) nanotube. The
sharp stairs in the transmission and their positions agree well with non-orthogonal
tight-binding calculations validating the workflow we have described in this chapter.

Amino acid molecules were added afterwards randomly along the tube assuring a
minimum spacing between two neighboring amino acids. The Hamiltonian and
overlap matrices of the toy sensor were then perturbed at the adsorption sites by
mapping the matrix perturbation in Figure V.13 which represents the absolute
Hamiltonian matrix element difference between the graphitic parts of the GPH+HIS
adsystem and pristine GPH. Transmission spectra computed for this case are plotted
in Figure V.14 with thick black and cyan lines. The lowering of the transmission as
increasingly many Histidine molecules adsorb at the surface of the tube is evident at
large energies away from the Fermi level. Unfortunately close to Er the charge
transfer seems too weak to modify the transmission. It is true though that we have not
included yet the molecular orbitals of the amino-acid in calculations, nor have we

considered any eventual charge neutrality point shifting due to adsorption.
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At this point we would tend to conclude that conductance of carbon nanotubes is not
sufficiently affected by aromatic amino acids, at least for practical applications.
Nevertheless we have yet to test this conclusion and explain why the sharp peaks
close to the Fermi level induced by the adsorption in the density of states do not seem
to influence the conductance. Also we have not computed yet the conductance of
metallic tubes in which the amino acid adsorption could increase back scattering
leading to conductance suppression at the Fermi level. Even if we do find after other
simulations that carbon nanotubes cannot be used in amino-acid detection the
methodology we have developed in this chapter would still survive as it allows in a

unified, reproducible manner to study other chemical stimuli.
Perspectives and further developments

Before the concluding remarks we wish to list a few thoughts concerning untouched
subjects or refinements possible within the methods developed in this chapter.
Considering the relaxation of the amino acids on graphene, which we have achieved
at a molecular mechanics level, there is at least one questionable neglection, namely
the electrostatic interaction between the a-amino(carboxyl) group(s) and their charge
images inside the semi-metallic graphene layer. Properly this would be avoided by
relaxing at DFT level; practically it is intractable as discussed earlier due to the huge
number of possible configurations. It remains to be seen if adding a Lennard-Jones
10-4 potential [142] in NAMD would change anything.

Self-assembly of molecules may lead to regular patterns at the surface of the tubes
and this is a straightforward study in which one disperses randomly amino acids at the
surface of a long nanotube and waits to see if order emerges. In this case symmetry
may amplify mixing between the delocalized nanotube orbitals and the patterned
molecular disposition leading to large conductance modifications. The field created

by leads may also twist amino acids due to the net dipole they have as zwitterions.

In what concerns the Hamiltonian model reduction method, there is still a long way to
go before becoming the powerful tool we believe it to be. First the PDOS based
elimination procedure should be extended with condition number analysis that would
produce more controllable results. For Histidine we managed to obtain truly excellent

results yet for Phenylalanine the same method works poorly. Instead of including all
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amino acid orbitals in calculations we chose to get further insight into what causes

these large band shifts.

Obviously more theoretical results are expected for the isospectral flow in the model
reduction context. For instance it is not clear yet why our procedure yields perfect
dispersion relations throughout the k space although the flow was set at the I' point
only. The matrix flow theory should also be extended to complex valued matrices and

goal functions over the k space.

Careful thought about what our method achieves is really intriguing. The old Bloch-
Feshbach formalism gives one the possibility to project out part of a Hilbert space and
obtain an effective Hamiltonian that describes the dynamics of the system inside the
projected Hilbert space. But the resulting Hamiltonian is energy dependent and often
even divergent. Our method obtains a projected and energy-independent Hamiltonian
that we feel describes the dynamics in the projected space in a minimal root mean

square fashion.

Being essentially a Hamiltonian renormalization flow we could have applied the
isospectral flow directly on the initial full-sized pair (H,S) to directly decouple the
eigenvectors of energies close to the Fermi level from the rest of eigenvectors. The
matrix flow which at the moment is a O(N°*) process is defined in the projected space

to reduce the computational burden.

Regarding the conductance calculation method we do consider it efficient enough for
our present requirements. There are however many calculations left to do with this
method, to name a few: amino acids on metallic tubes, peptide or DNA wrapped

nanotubes and many other chemical sensors.
Conclusions

We have presented a framework for studying carbon nanotube-based conductance
sensors. At first we have described how intractable calculations can be avoided by
running ab initio self-consistent calculations on reference subsystems of considerably
smaller size than a carbon nanotube sensor. These simulations have shown that the
four studied aromatic amino acids HIS, PHE, TRP and TYR induce states close to the

Fermi level when adsorbing onto a graphene layer. A Mulliken charge analysis
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identified the adsorption to be weak (physisorption) and moreover the charge
perturbation of the graphene unit cell to be localized around the a-carboxyl group.
Furthermore, after concluding that CNTs might detect these amino acids, we have
applied a novel method for reducing the order of the Hamiltonian so as to preserve
simultaneously its spectrum around the Fermi level, and its sparsity pattern. This
simplification was argued starting from Todorov's transmission formula to
demonstrate that the conductance is indeed determined by the spectral properties of
the Hamiltonian around the Fermi level-only. This method can be viewed as a top-
down tight-binding parameterization procedure for low-symmetry systems. A very
efficient conductance formula was derived at the end of this chapter and was applied
to a sensor toy model in view of computing transmission spectra of CNT sensors.
However it is not clear yet if the aromatic amino acids considered here do or do not
modify a carbon nanotube's conductance but as presented in the perspectives section

work is underway in this purpose.



Conclusions

This thesis was focused on two sensing devices with applications in biochemical
detection. The first presented device was an electromechanical carbon nanotube-based
strain transducer that was proved to be suitable to both measuring piconewton forces
and detecting kilodaltons masses. The second device is a simple two terminal
conductance nanotube sensor aimed at detecting aromatic amino acids. Generally the
scheme followed in this thesis was as stated in the introduction, the proposal of
sensing mechanisms followed by modeling and simulation of several characteristics
(like the mechanical behavior, electronic structure, etc.) in order to validate the

operation of the devices.

In Chapter III we have proposed a novel carbon nanotube-based electromechanical
sensor. As explained thoroughly in this chapter this sensor consists of only two
nanotubes in a cross configuration where a tube has one free end and is a cantilever
and the second has both ends clamped, being simultaneously a bearing supporting the
cantilever and a potentiometer for measuring the former's deflection. Although CNT
cantilevers have been already proposed as force microscopy probes [92] or resonating
nanobalances [57], we have added here the possibility to electrically measure its

deflection, avoiding laser interferometry optics or TEM imaging respectively.

In Chapter V we have proposed carbon nanotubes as possible detectors of aromatic
amino acids. The sensing mechanism proposed there is not new [52, 126, 132], yet to
our knowledge it has not been proved for these molecules so far. The four amino acids
were chosen because they include aromatic rings which bind on nanotube surfaces via
weak pi-stacking interactions. Detecting amino acids, although a target in itself, is an
intermediary step in sensing small peptides which would truly be important for

biotech research and not only.
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The main effort of this thesis was spent in choosing appropriate models or developing
new methods for the difficult task of simulating nanotube-based devices. On the
modeling and simulation side we have dealt with heterogeneous simulations aimed at
assessing the mechanical behavior, electronic properties or transport properties

spanning different time-scales and levels of theory.

The mechanical behavior of our systems was captured typically at a molecular
mechanics (MM) level. We have often preferred MM to more expensive ab initio or
semi-empirical tight binding molecular dynamics for assessing the dynamics of the
systems or sometimes for minimizing the total energy in view of obtaining relaxed
coordinates. Using these classical force fields has a huge speed advantage but also
adds a certain complexity overhead associated with parameterization. For this purpose

we have used ab initio simulation for reference systems with rather good results.

One of the main contribution of this thesis are a class of methods developed for
computing transport properties with a simulation time scaling linearly with the
system's number of atoms. By extrapolation we can assert that the proposed methods
allow conductance calculations of million atom systems, although in our cases we
typically dealt with only a few thousand atom systems. Here we have used intensively
real-space localized PAO basis sets which enabled us to split the studied systems in
several smaller parts. Generally we have employed decimation or elimination based
procedures that are typically exponentially convergent or linearly scaling respectively,
in which the central idea is to project out system component and include their

influence in the remaining components via self-energies.

Another major contribution of this thesis consists in the matrix flow-based
Hamiltonian model reduction framework we have proposed in Chapter IV and
applied in Chapter V. This method employs infinitesimal congruence transformations
and results in a reduced effective Hamiltonian that has an imposed linear structure and
a correct spectrum around the Fermi level being optimally appropriate for
conductance calculations. The case studies for this method were the four aromatic
amino acids on graphene, but the theory behind it is largely unexplored and applicable

to other systems of interest from field effect transistors to chemical sensors.
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MODELISATION DE DISPOSITIFS A BASE DE NANOTUBES DE CARBONE POUR LA DETECTION DE
BIOMOLECULES

RESUME: A seulement quinze ans aprés leur découverte par Sumio Iijima, les nanotubes de carbone
sont devenus un des piliers de la nanotechnologie. La géométrie parfaite et la nature unidimensionnelle
confére aux nanotubes des propriétés structurelles, mécaniques, électroniques et optiques
exceptionnelles. En conséquence, on s'attend a ce que les nanotubes envahissent des applications clef
telles que les écrans a émission de champ, le stockage d'énergie, les composites structuraux, la
nanoélectronique, les capteurs et les actuateurs, etc.

Cette thése porte sur l'application de nanotubes de carbone dans le captage biochimique. Son
but principal est d'utiliser et d'étendre les outils théoriques des nanotubes pour la conception des
dispositifs de captage. Dans cette thése nous proposons deux architectures différentes de captage. Le
premier implique un principe électromécanique et peut étre employé dans la mesure des forces faibles
(~piconewtons) ou la détection des supramolécules (~zeptogrammes). Le deuxiéme capteur est basé
sur le changement de conductance d'un nanotube de carbone exposé aux acides aminés aromatiques.
La validation de ces deux architectures différentes est réalisée a 1'aide de la modélisation et de la
simulation.

L'effort principal de cette thése a été concentré sur le développement de méthodes de
simulation trés efficaces par rapport au grand nombre d'atomes employés. Un probléme récurrent que
nous avons rencontré est le scaling cubique dans le nombre d'atomes, du calcul de la conductance
quantique. Nous sommes parvenus a rendre le calcul de la conductance linéaire par des techniques
d'espace réel.

MOTS CLES: nanotubes de carbone, biocapteurs, dynamique moléculaire, transport quantique, NEMS

MODELING OF CARBON NANOTUBE-BASED DEVICES FOR THE DETECTION OF BIOMOLECULES

ABSTRACT: At only fifteen years after their discovery by Sumio Iijima, carbon nanotubes can be
considered as one of the support pylons of nanotechnology. The seamless geometry and one-
dimensional nature confers to carbon nanotubes exceptional structural, mechanical, electronic and
optical properties. Accordingly, nanotubes are expected to pervade key applications such as field
emission displays, energy storage, structural composites, nanoelectronics, sensors and actuators, etc.

This thesis focuses on the possible application of carbon nanotubes in biochemical sensing. Its
main goal is to employ and extend the theoretical tools of nanotubes in designing sensing devices.
Two different sensor architectures are proposed in this thesis. The first involves an electromechanical
principle and can be used in measuring either piconewton forces or zeptogram masses. The second
sensor is based on conductance changes of a carbon nanotube when exposed to aromatic amino acids.
The validation of these two different architectures is achieved via modeling and simulation at various
levels of theory.

The main effort of this thesis went into developing highly efficient simulation approaches to
cope with the large number of atoms that a typical sensing device has. One of the recurrent problems
we have encountered is a certain square or cubic scaling in the number of atoms when computing the
quantum conductance. We have managed to render the conductance calculation linearly scaling by
real-space partitioning techniques.

KEYWORDS: carbon nanotubes, biosensors, molecular dynamics, quantum transport, NEMS
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