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Introduction et pricipaux résultats

La littérature des articles en mathématiques financières ou en sciences actuarielles de ces
dernières décennies permet de voir que parmi les sujets fondamentaux figurent l’impact
des queues de distributions et des événements extrêmes, ainsi que la dépendance entre
risques. Dans le cadre de l’analyse du portefeuille, Markowitz (1952) a ainsi montré que la
diversification optimale du risque d’un portefeuille devait dépendre des corrélations entre
les différents actifs. Plus récemment, un grand nombre de faits stylisés ont montré qu’il
était nécessaire, dans des problématiques de risque de crédit, de prendre en compte les li-
aisons ou interactions qui peuvent exister entre différents emprunteurs, pouvant engendrer
des contagions entre les défauts, ou faillites.

Dans un tout autre contexte, comme le notait Le Monde en septembre 2002, “ la de-
struction des tours de New York a provoqué une secousse sans précédent chez les as-
sureurs, mettant à mal tout leur système de fonctionnement. Aucun d’entre eux n’avait
prévu qu’une telle corrélation entre les branches « vie » et « non vie » de l’assurance
soit possible, mêlant les dommages aux biens, les pertes d’exploitation, les accidents du
travail et les décès. Ce cumul - et le coût qui en découle estimé entre 36 et 54 milliards de
dollars (entre 36, 7 milliards et 55, 1 milliards d’euros) - oblige la profession à reconsidérer
sa manière d’appréhender les catastrophes”. Alors que l’hypothèse d’indépendance était
sous-jacente, et fondamentale, dans la plupart des modèles actuariels, ce risque de cumul
a montré qu’il n’était plus possible de modéliser les risques indépendamment les uns des
autres.

C’est dans ce contexte que s’inscrit cette thèse, afin d’étudier les aspects nonlinéaires
des structures de dépendance, dans un cadre de gestion des risques multiples. Nous nous
intéresserons plus particulièrement aux changements quant à la structure de dépendance:
la dépendance qui peut exister entre événements extrêmes n’est pas nécessairement du
même type que celle qui lie l’ensemble des risques. Nous insisterons en particulier sur les
résultats limites, quand toutes les composantes (e.g. les coûts associés) sont relativement
grandes.

1 Modéliser les risques multiples

Cette partie est développée dans le Chapitre 1.

Le chapitre introductif de cette thèse propose une revue de la littérature sur la modéli-
sation des risques multiples, en introduisant les principales notions qui seront développées
dans cette thèse. La notion fondamentale dans toute cette thèse est celle de classe de
Fréchet : soit F1, ..., Fd des fonctions de répartition (univariée), que l’on supposera con-
tinues dans l’intégralité de la thèse, on note F(F1, ..., Fd) l’ensemble des fonctions de

11
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répartition Rd → R dont les lois marginales sont respectivement F1, ..., Fd. Un cas parti-
culier est celui de la classe des fonctions copules C, où les lois marginales sont uniformes,

Définition 1.1. Une copule C est une fonction de répartition sur [0, 1]d d-dimensionnelle,
dont les lois marginales sont uniformes sur [0, 1], où d est un entier strictement positif.

On parlera aussi de copule associée à une fonction de répartition ou, par abus de
langage, à un vecteur aléatoire:

Définition 1.2. Soit X = (X1, ..., Xd) un vecteur aléatoire de Rd dont les marges sont
continues (les fonctions de répartitions marginales Fi(x) = P(Xi ≤ x) sont continues).
La copule associée à X est la fonction de répartition du vecteur (F1(X1), ..., Fd(Xd)), i.e.

C(u1, ..., un) = P(F1(X1) ≤ u1, ...., Fd(Xd) ≤ ud), (u1, ..., ud) ∈ [0, 1]d. (1)

On notera que la définition 1.2 est bien dans le cadre de la définition 1.1 puisque pour
tout i, Fi(Xi) suit une loi uniforme sur [0, 1]. Les copules (selon la terminologie retenue
par Sklar (1959)) sont alors les “fonctions de dépendance” définie par Deheuvels (1979):
ces fonctions ne dépendent que de la structure de dépendance des composantes du vecteur
X, et elles sont en particulier invariantes par transformation croissante des marges. Ainsi,
le vecteur (X1, ..., Xd) a la même copule que (φ1(X1), ..., φd(Xd)) pour des fonctions φi

croissantes. De plus, ce sont des fonctions qui “couplent” les lois marginales, au sens où

FX(x) = P(X1 ≤ x1, ..., Xd ≤ xd) = C(F1(x1), ..., Fd(xd)). (2)

Remarque 1.3. Cette invariance par transformation croissante des marges est un point
essentiel qui légitime dans toute cette thèse l’utilisation des copules comme outils central
afin de modéliser la “dépendance”. Transformer les marges permet en effet de les ren-
dre comparables. Dans la théorie des extrêmes multivariés (Resnick (1987)), les marges
sont généralement ramenées à une même loi (e.g. Fréchet de paramètre 1), car sinon,
une composante dont la queue serait beaucoup plus épaisse que les autres écraserait toutes
les autres. En transformant les marges (par des transformations croissantes), les ex-
trêmes sont préservés. Notons que Spearman (1906) et Hoeffding (1940) notaient déjà
l’importance de la transformation des marges afin de rendre les composantes “compara-
bles”.

Une illustration de l’utilité des copules peut être le cas de l’indépendance. Les variables
aléatoires X1, ..., Xd sont indépendantes si et seulement si la copule du vecteur X =
(X1, ..., Xd) est la copule indépendante C⊥(u1, ..., ud) = u1 × ... × ud (parfois appelée
aussi copule produit). On parlera de comonotonie (ou de dépendance parfaite positive) si
toute variable Xi s’écrit comme une fonction croissante de n’importe quelle autre variable
Xj. Cette notion se caractérise en terme de copule par le fait que la copule associée est
nécessairement C+(u1, ..., ud) = min{u1, ..., ud}.

Un exemple important de copules, qui sera traité dans plusieurs chapitres de cette
thèse, est celui des copules Archimédiennes:

Définition 1.4. Une copule C est dite Archimédienne s’il existe une fonction φ : [0, 1] 7→
R+, telle que l’inverse φ←(·) = inf{u ∈ [0, 1], φ(u) ≤ ·} soit complètement monotone à
l’ordre d, i.e.

(−1)k dkφ←(t)

dtk
≥ 0, pour k = 0, 1, ..., d,
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avec φ(1) = 0, telle que C(u1, ..., ud) = φ←(φ(u1) + ... + φ(ud)). La fonction φ est appelée
générateur de la copule.

Ces copules Archimédiennes correspondent à un cas d’indépendance conditionnelle, la
loi du facteur d’exogénéité pouvant être reliée au générateur via sa transformée de Laplace
(on parlera d’approche dite par “frailty”): soit X = (X1, ..., Xd) un vecteur aléatoire, tel
que les composantes soient indépendantes, conditionnellement à un facteur d’exogénéité
aléatoire Θ. On suppose de plus que

P(Xi ≤ xi|Θ = θ) = Gi(xi)
θ, où Gi est une fonction de répartition. (3)

La copule de X est une copule Archimédienne, de générateur φ = ψ←, où ψ est la
transformée de Laplace de Θ. En fait les copules Archimédiennes sont un cas particulier
des H-copules, définies comme h←(C(h(u1), ..., h(un))) (où C est une copule, h ∈ H des
fonctions de distorsion, c’est à dire des bijections croissantes de [0, 1], et détaillées dans
la Section 1.3.2), en posant φ = − log h, et C = C⊥. Une propriété fondamentale de ces
copules Archimédiennes est étudiée dans le Chapitre 3: la stabilité de cette famille par
troncature, ou par déformation dynamique.

Si le générateur est un outil naturel pour caractériser les copules, d’autres fonctions
peuvent aussi être utilisées, en particulier la fonction de distribution de Kendall K, définie
comme la fonction de répartition de la variable C(X1, ..., Xd), où (X1, ..., Xd) est un vecteur
aléatoire de fonction de répartition C, i.e.

K(t) = P(C(X1, ..., Xd) ≤ t), t ∈ [0, 1].

Si C est une copule Archimédienne, de générateur φ, alors K(t) = t − λ(t) où λ(t) =
φ(t)/φ′(t) où φ′ désigne la dérivée à droite de φ sur [0, 1). Réciproquement, à partir de K
ou λ il est possible d’obtenir le générateur φ en notant que

φ(u) = φ(u0) exp

(∫ u

u0

1

λ(t)
dt

)

pour 0 < u0 < 1 et 0 ≤ u ≤ 1.

Définition 1.5. Soit (U1, ..., Ud) un vecteur aléatoire de fonction de répartition la copule
C, alors la fonction de répartition de (1−U1, ..., 1−Ud) est une copule appelée copule de
survie associée à C, et est notée C∗.

En particulier, si C est la copule de X, C∗ est la copule de −X (ou de n’importe quelle
transformation décroissante). Cette propriété sera utile dans le chapitre 6, par exemple.
Les extrêmes y sont caractérisés par l’appartenance à une région de l’espace où toutes les
composantes du vecteur X sont importantes, ce qui conduit à étudier la copule dans la
région proche du coin 1 = (1, ..., 1). Cette notion de copule de survie permettra d’alléger
les notations, en notant que l’étude de C est équivalente à l’étude de C∗ en 0 = (0, ..., 0).

Comme le notait Patton (2005) dans la revue Risk, “copula theory should be of in-
terest to anyone who has to deal with multiple sources of risk ”. C’est également ce que
recommande l’Association Actuarielle Internationale dans son rapport sur la solvabilité
(IAA (2004)). Mais si les copules sont utiles pour mieux comprendre la structure de la
dépendance, il convient de noter comme Mikosch (2005) qu’il existe “many flexible classes
of multivariate distributions in the literature, it is not forbidden to fit those to the data”,
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et qu’il est parfois difficile de savoir si l’approche par les copules est la plus simple, difficile
de distinguer entre “use or abuse of copulas”.

Parmi les interrogations, certains semblent douter de la représentation “uniforme” des
marges. Hoeffding (1940) justifiait cette approche de la façon suivante: “ in order to be able
to investigate the relationships between the variables X and Y independently of their scales
[...] first, we imagine ourselves given a well-determined univariate distribution . Although
from a purely theoretical point of view the form of the distribution does not matter ”. Seules
les considérations pratiques semblent légitimer le choix de la distribution. En finance
la référence étant le modèle Gaussien, il semble parfois plus légitime de s’intéresser à
une version des copules dont les marges seraient des lois N (0, 1) (comme cela avait été
proposé par Cook et Johnson (1981)). Et plus généralement, un certain nombre de lois
ont souvent été proposées pour étudier la dépendance en enlevant des effets marginaux,
en particulier la loi de Fréchet ou exponentielle pour les extrêmes multivariés (Renisck
(1987)). Hoeffding (1940) suggérait d’utiliser la loi uniforme, mais sur [−1/2, +1/2] “in
order to have something definite before our eyes from the outset”. La loi uniforme sur [0, 1]
présente, elle, l’avantage de correspondre à une probabilité, ou un rang. Ainsi, s’intéresser
au quadrant [0.95, 1] × [0.95, 1] a une interprétation directe et simple: on s’intéresse aux
événements extrêmes, où chacune des composantes dépasse son quantile au seuil de 95%.

Cette transformation des marges, proposée pour passer des lois jointes aux copules,
bien qu’intéressante en théorie, pose des problèmes de mise en oeuvre. A partir d’un
échantillon (X1, Y1), ..., (Xd, Yd), il est rare que les distributions marginales FX et FY

soient connues. Une idée “naturelle” (Rüschendorf (1976), Deheuvels (1979)) est de rem-
placer les lois marginales par leur version empirique F̂X et F̂Y (ce qui revient à remplacer
les observations par leurs rangs respectifs). Une autre approche consiste à utiliser une
approche paramétrique sur les lois marginales. Ghoudi et Rémillard (1998, 2004) quanti-
fient ainsi la perte d’information dû à l’utilisation de pseudo-observations. On retiendra
aussi les travaux de Deheuvels (1979, 1981), et plus généralement tous ceux basés sur les
rangs. En ce qui concerne l’approche paramétrique, on notera que cette approche peut
être particulièrement dangereuse puisqu’une mauvais adéquation entraîne des estimations
(fortement) biaisées.

L’estimation, discutée dans le Chapitre 7, et le choix de la copule reste des prob-
lèmes complexes. En pratique, certaines familles sont ajustées à cause de leur facil-
ité d’usage, et non pas parce qu’elles seraient adéquate pour la modélisation. Il con-
vient néanmoins de garder en mémoire certaines propriétés, qui permettent d’intuiter une
forme naturelle de modèle. En particulier, les copules Archimédiennes traduisent générale-
ment de l’indépendance conditionnelle entre les composantes (approche “frailty” présentée
dans la Section 1.3). Un autre souci est celui de la dimension. La plupart des copules
paramétriques sont symétriques, et ne permettent pas de prendre en compte la complexité
de la dépendance en dimension très grande (on pensera aux indices boursiers basés sur 40
ou 500 titres). La dimension d = 2 reste généralement privilégiée dans l’étude multivariée
(comme dans les Chapitres 2 et 7): la distribution est alors visuellement représentable
par une surface dans l’espace.

De façon générale, l’analyse et la modélisation de la dépendance reste un exercice
périeux, mais essentiel en gestion des risques. Les dépendances entre risques correspon-
dent dans cette thèse à celles qui existent au sein d’un vecteur aléatoire. Dans un cadre
financier, de valorisation de portefeuille ou d’options multisupport (sur plusieurs actions
sous-jacentes, par exemple), il peut s’agir des dépendances qui existent entre les prix (ou
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les rendements) de plusieurs titres à une date fixée. En assurance décès, il s’agit de la
dépendance entre les durées de vie de deux époux, dans un contrat d’assurance sur deux
têtes. En assurance non-vie, on peut s’intéresser à la dépendance entre l’indemnité versé
à un assuré par un assureur et les frais d’expertise qui reste à la charge de l’assureur,
pour valoriser un contrat de réassurance. Il s’agit toujours de dépendance entre com-
posantes d’un vecteur aléatoire. Un autre aspect essentiel est celui de la dépendance
sérielle. Mais bien qu’il y ait un lien entre les copules et les probabilités de transition d’un
processus Markovien (Olsen, Darsow et Nguyen (1996), Section 1.3), cette relation est
difficile d’utilisation. En effet, la plupart des processus usuels en temps discret (GARCH,
ARFIMA) comme en temps continu (processus de Levy, processus de diffusion) n’ont pas
de copule simple, voire connue explicitement. Pour ce type de dépendance, les copules ne
semble pas être l’outil privilégié.

Néanmoins, il convient de noter que si les copules sont un outil puissant et intéressant
pour décrire et comprendre la structure de la dépendance, dans un certain nombre de cas,
des modèles possédant une interprétation naturelle peuvent être utilisés, plutôt qu’une
modélisation par copules. Par exemple, dans les contrats d’assurance sur deux têtes,
offrant une rente au décès du père et/ou de la mère, Norberg (1989) avait proposé un
modèle à 4 états, où le décès d’un conjoint affectait le risque de mortalité du survivant, en
ajoutant une surmortalité. Cette approche est beaucoup plus simple à comprendre que
l’ajustement d’une copule sur les probabilités jointes de décès. Mais si la modélisation
est plus simple, l’étude de la copule associée apporte en revanche un très grand nombre
d’informations, afin de comprendre où se situe la dépendance la plus forte, par exemple.
La dépendance est-elle plus forte pour les âges très élevés, ou au contraire pour les âges
les plus faibles ? Est-on plus sensible au décès du conjoint à 40 ans, ou à 80 ?

2 Déformation des structures de dépendance et risque

de crédit

Cette partie est développée dans le Chapitre 2.

Le second chapitre présente les principaux résultats obtenus dans Charpentier et Juri
(2004), ainsi que quelques résultats de Charpentier (2003). En risque de crédit, comme
en fiabilité, on s’intéresse à des temps de faillite d’émetteurs de titres, ou de défaillance
de composants, c’est à dire un vecteur aléatoire X = (X1, ..., Xn), où Xi désigne le temps
résiduel avant la faillite du ième émetteur. Si C désigne la copule reflétant la structure
de dépendance entre les défauts des émetteurs à la date 0, notons que si à la date t aucun
émetteur n’a fait défaut, la structure de dépendance aura changé. Formellement, il n’y
a en effet aucune raison pour que la copule de X et celle de X|X > t coïncident. Ce
chapitre permet de formaliser ce que les praticiens de la finance appellent la dépendance
à court, moyen ou long terme, exprimant ainsi le fait que la dépendance change au cours
du temps.

Soit C∗ la copule de survie du vecteur X = (X1, ..., Xd) à la date 0, c’est à dire la
fonction de répartition du vecteur U = (U1, ..., Ud) = (1 − F1(X1), ..., 1 − Fd(Xd)). Si à
la date t > 0 aucun émetteur n’a fait défaut, la structure de dépendance est caractérisée
par la copule du vecteur (X1, ..., Xd) sachant {X1 > t, ..., Xd > t}. De façon équivalente,
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il s’agit d’étudier la copule associée au vecteur

(U1, ..., Ud) sachant {U1 ≤ 1 − F1(t), ..., Ud ≤ 1 − Fd(t)}, (4)

quand t varie. On notera que la fonction de répartition associée n’est pas une copule,
puisque les marges ne sont plus uniformes sur [0, 1].

Définition 2.1. Soit U = (U1, ..., Un) un vecteur aléatoire dont les marges sont unifor-
mément distribuées sur [0, 1], de fonction de répartition C. On note Φ(C, r), ou Cr, la
copule du vecteur conditionnel

(U1, ..., Un)|U1 ≤ r1, ..., Ud ≤ rd, (5)

où r1, ..., rd ∈ (0, 1]. En particulier, en notant Fi|r(·) la fonction de répartion marginale
de Ui sachant {U1 ≤ r1, ..., Ui ≤ ri, ..., Ud ≤ rd},

Fi|r(xi) =
C(r1, ..., ri−1, xi, ri+1, ..., rd)

C(r1, ..., ri−1, ri, ri+1, ..., rd)
,

et, en notant l’inverse généralisée par l’exposant ←, au sens où F←(u) = sup{x, F (x) ≤
u}, la copule conditionnelle s’écrit

Φ(C, r)(u) = Cr(u) =
C(F←

1|r(u1), ..., F
←
d|r(ud))

C(r1, ..., rd)
. (6)

Proposition 2.2. En particulier, si X = (X1, ..., Xd) un vecteur aléatoire de copule de
survie C∗, la copule du vecteur conditionnel (X1, ..., Xd) sachant {X1 > t, ..., Xd > t} est
Φ(C∗, 1 − F1(t), ..., 1 − Fd(t)).

Definition 2.1. Une copule C sera dite invariante par troncature si et seulement si U

sachant U ≤ r a la même copule que U , quel que soit r ∈ (0, 1]d, i.e. Φ(C, r) = Cr = C.

Théorème 2.3. Les seules copules absolument continues invariantes par troncatures, i.e.
Φ(C, r) = C pour tout r ∈ (0, 1]d sont les copules de Clayton

C(u1, ..., ud) = (u−α
1 + ... + u−α

d − (d − 1))−1/α, α > 0,

avec le cas limite de la copule indépendante (α → 0). Notons que la copule comonotone
(α → ∞) est également invariante (mais elle n’est pas absolument continue).

Il est en fait possible de conjecturer que la copule comonotone est la seule copule non
absolument continue à être invariante. Juri et Wüthrich (2003) avaient noté que la copule
de Clayton était invariante, mais elle est en réalité la seule à vérifier cette propriété.

En fait, Juri et Wüthrich (2003, 2004) s’était intéressé à ces copules conditionnelles,
dans des cas particuliers très restrictifs (copules Archimédiennes pour Juri et Wüthrich
(2003) et pour des copules symétriques pour Juri et Wüthrich (2004), avec dans les deux
cas des lois marginales identiques, c’est dire r = r1). Leur objectif était d’étudier des
comportements limites quand t → ∞. Comme l’avait noté Juri et Wüthrich (2004), les
copules obtenus présentaient la particularité d’être des copules invariants, sur la diagonale,
au sens où on a Φ(C, r1) = C pour tout r ∈ (0, 1]. En effet, dans le cas des modèles de
durées, la notion d’invariance nécessaire est beaucoup plus faible que la notion d’invariance
globale de la Définition 2.1,
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Définition 2.4. Soient r1, ..., rd des fonctions continues R+ → (0, 1], telles que ri(t) → 0
quand t → ∞ et ri(0) = 1. Soit D le graphe associé, D = {(r1(t), ..., rd(t)), t ≥ 0}. On
dira que C est une copule invariante (par troncature) suivant la direction D si

Φ(C, r1(t), ..., rd(t)) = Cr(t) = C pour tout t ≥ 0. (7)

Dans l’approche que j’essayais d’avoir, la caractérisation des copules invariantes
aboutissait alors à une impasse, puisque cette Equation (7) (même uniquement en di-
mension 2) aboutissait à une équation fonctionnelle peu usuelle. En revanche, la car-
actérisation des copules limites, c’est à dire des copules C0 non dégénérées telles que
Φ(C, r1) → C0 quand r → 0 s’obtenait dans Juri et Wüthrich (2004) en considérant
des résultats de variation régulière et d’équations fonctionnelles classiques (fonctions ho-
mogènes).

Le lien entre ces deux approches a été rendues possibles à l’aide d’un résultat de
continuité et surtout d’un théorème de point fixe,

Proposition 2.5. L’application qui à une copule C donnée associe à r ∈ (0, 1]d la copule
du vecteur conditionnel, r 7→ Φ(C, r) est continue (pour la norme infinie ‖ · ‖∞).

Le théorème de point fixe, et d’invariance des copules limites ne peut toutefois s’obtenir
que sur des conditions fortes: il faut que la direction D soit invariante par changement
d’échelle. Notons que cela est le cas pour les fonctions puissances. On a alors le résultat
suivant,

Proposition 2.6. Une copule C0 est une copule invariante sous la direction

D = {(t−α1 , ..., t−αd), t ≥ 0}, où αi > 0, i = 1, ..., d,

si et seulement si il existe une copule C telle que

lim
t→∞

‖Φ(C, t−α1 , ..., t−αd) − C0‖∞ = lim
t→∞

‖Ct−α − C0‖∞ = 0,

où ‖ · ‖∞ désigne la norme sup.

En fait, un résultat plus général peut être énoncé pour les directions proches. Pour
cela, on introduit la notion de variation régulière. Une fonction r sera à variation régulière
d’indice θ ∈ R en l’infini si r(tx)/r(t) → x−θ quand t → ∞, que l’on notera r(·) ∈ R−θ

(cette notion sera largement étudiée par la suite).

Théorème 2.7. Une copule C0 est une copule limite suivant la une direction D =
{(r1(t), ..., rd(t)), t ≥ 0}, où ri(·) est à variation régulière d’indice αi > 0, si et seule-
ment si C0 est une copule invariante sous la direction D = {(t−α1 , ..., t−αd), t ≥ 0}.

Ainsi, la recherche de copules invariantes est équivalente à celle des copules limites
(pour laquelle Juri et Wüthrich (2004) avait apporté une première piste). L’idée était
néanmoins d’avoir un résultat beaucoup plus général, s’affranchissant de l’hypothèse de
lois identiques pour chacune des composantes, mais aussi de symétrie de la copule, néces-
saire dans l’approche de Juri et Wüthrich (2004).

Pour caractériser ces comportements limites, une définition relativement générale de
la variation régulière en dimension 2 est nécessaire (plus forte que celle utilisée en théorie
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usuelle des extrêmes multivariées, développée dans le Chapitre 6). Rappelons que dans un
cadre univarié, une fonction f est dite à variation régulière s’il existe une fonction λ(·) telle
que f(tx)/f(t) → λ(x) quand t → ∞. En utilisant des résultats d’équations fonctionnelles
(sur les fonctions homogènes), on montre qu’il existe un réel θ tel que λ(x) = x−θ, appelé
indice de variation régulière. de Haan, Omey et Resnick (1984) avaient cherché, dans un
cadre bivarié, à caractériser les fonctions λ(·, ·) telles que

lim
t→∞

f(r(t)x, s(t)y)

f(r(t), s(t))
= λ(x, y). (8)

On parle alors de variation régulière suivant la direction (r, s).

Proposition 2.8. Soit f : R+ × R+ → R+ une fonction monotone en chacune des
composantes, au delà d’un certain seuil, et r et s deux fonctions à variation régulière en
+∞, respectivement de paramètres α et β strictement positifs. S’il existe une fonction
positive h et une fonction non nulle λ telles qu’aux points de continuité (x, y) de λ,

lim
t→∞

f (r (t) x, s (t) y)

h (t)
= λ (x, y) , (9)

alors λ vérifie l’équation fonctionnelle λ
(
tαx, tβy

)
= tθλ (x, y) pour tout x, y, t > 0, dont

la solution générale est

λ(x, y) =






xθ/ακ(yx−β/α) si x 6= 0
cyθ/β si x = 0 et y 6= 0
0 si x=0 et y = 0,

où c est une constante, et κ une fonction R+ → R+.

Les propriétés de cette notion de variation régulière sont présentées dans le Chapitre
6, en particulier le lien avec celle plus restreinte de Resnick (1987), ou celle a priori plus
générale de Meerschaert et Scheffler (2001). A partir de cette notion, il est possible de
caractériser la forme des copules limites par troncature.

Soient α, β, θ des constantes positives et P,Q des fonctions de répartitions sur [0, 1].
Soit H(α, β, θ) l’ensemble des fonctions de répartitions H définies sur [0, 1]2 de la forme

H(x, y) = xθ/αh(yx−β/α), où h(t) =

{
Q(t) si t ∈ [0, 1]
tθ/βP (t−α/β) si t ∈ (1,∞)

On notera Γ(P, Q, α, β, θ) la copule associée, définie par

Γ(P, Q, α, β, θ)(u, v) =

{
Q←(v)θ/βP (P←(u)Q←(v)−α/β), si P←(u)β ≤ Q←(v)α

P←(u)θ/αQ(P←(u)−β/αQ←(v)), si P←(u)β > Q←(v)α

Théorème 2.9. Dans le cas bivarié, si les fonctions de sruvie 1 − FX et 1 − FY sont
à variation régulière de paramètres α, β ≥ 0 respectivement, de telle sorte que C∗ soit
à variation régulière en (0, 0) suivant la direction (1 − FX(·), 1 − FY (·)) alors il existe
θ > 0, P et Q deux fonctions de répartitions sur [0, 1] telle que la copule limite soit
Γ(P, Q, α, β, θ).
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Cette caractérisation des copules limites nous donne également une caractérisation
des copules invariantes par troncatures quand la direction est fixée (c’est à dire quand
les lois marginales FX et FY des durées sont données), parmi lesquelles on retrouve la
copule de Clayton (Section 1.6), mais aussi la copule de Marshall-Olkin, par exemple
(Section 1.7). On notera en particulier que ces copules sont invariantes suivant la direction
D = {(P (tα), Q(tβ)), t ∈ (0, 1]}.

Notons que plusieurs pistes d’ouvertures sont envisageables. Tout d’abord la famille
des lois limites est présentée sous cette forme car les paramètres apparaissent naturelle-
ment, mais elle est non identifiable (en particulier seul le rapport α/β doit intervenir, donc
un paramètre est redondant). Aussi, la caractérisation des copules appartenant à cette
famille n’est pas triviale. Enfin, parmi les applications, seul le cas du risque de crédit est
présenté (validant théoriquement certains résultats intuités par Schönbücher et Schubert
(2001), par exemple), mais de nombreuses applications seraient possibles, en particulier
sur les structures par terme des annuités sur deux têtes par exemple, où la structure de
dépendance doit se modifier au fur et à mesure que le temps avance: l’impact de l’effet
“coeur brisé” (Denuit, Dhaene, le Bailly de Tilleghem et Teghem (2001)) serait alors peut
être moins important que prévu.

3 Dépendance de queue inférieure pour les copules

Archimédiennes

Cette partie est développée dans le Chapitre 3.

Le troisième chapitre présente les principaux résultats obtenus dans Charpentier et
Segers (2006a, 2006b). Dans la continuité du chapitre précédant, nous allons nous restrein-
dre ici à l’étude des copules conditionnelles dans le cas où C est une copule Archimédienne.
En effet, les copules Archimédiennes définissent une famille stable par troncature (résultat
publiée dans Juri et Wüthrich (2003) en dimenision 2, mais qui se généralise en dimension
d quelconque),

Proposition 3.1. Si X = (X1, ..., Xd) admet pour copule une copule Archimédienne C,
de générateur φ, (X1, ..., Xd) sachant {X1 < x1, ..., Xd < xd}, pour tout x1, ..., xd ∈ R,
admettra également pour copule une copule Archimédienne, mais de générateur différent,
noté φF (x) = φ(tc) − φ(c) où c = C(F1(x1), ..., Fd(xd)).

Le générateur de la copule conditionnelle est obtenu par une simple transformation
géométrique, en appliquant une homothétie à la restriction de φ à [0, c], de telle sorte que
φF (x) soit un générateur (en particulier φF (x)(1) = 0).

L’étude de la convergence des copules Archimédiennes nécessite au préalable des résul-
tats liant la convergence des générateurs, et celle des copules associées. Pour cela, il fallait
généraliser deux résultats de Genest et Rivest (1986), le premier donnant des conditions
pour que la limite des copules Archimédienne soit Archimédienne,

Proposition 3.2. Les cinq résultats suivants sont équivalents,

(i) limn→∞ Cn(u, v) = C(u, v) pour tout (u, v) ∈ [0, 1]2,

(ii) limn→∞ φn(x)/φ′
n(y) = φ(x)/φ′(y) pour tout x ∈ (0, 1] et y ∈ (0, 1) tel que φ′ soit

continue en y,
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(iii) limn→∞ λn(x) = λ(x) pour tout x ∈ (0, 1) tel que λ soit continue en x,

(iv) il existe des constantes positives κn telles que limn→∞ κnφn(x) = φ(x) pour tout
x ∈ [0, 1],

(v) limn→∞ Kn(x) = K(x) pour tout x ∈ (0, 1) tel que K soit continue en x.

Le second résultat donne des conditions pour que la limite des copules Archimédienne
soit comonotone,

Proposition 3.3. Les quatre résultats suivants sont équivalents,

(i) limn→∞ Cn(u, v) = C+(u, v) = min(u, v) pour tout (u, v) ∈ [0, 1]2,

(ii) limn→∞ λn(x) = 0 pour tout x ∈ (0, 1),

(iii) limn→∞ φn(y)/φn(x) = 0 pour tout 0 ≤ x < y ≤ 1,

(iv) limn→∞ Kn(x) = x pour tout x ∈ (0, 1).

Des deux propositions 3.2 et 3.3, on pourrait croire que la limite de n’importe quelle
suite de copules Archimédienne est nécessairement soit Archimédienne, soit comonotone.
Mais ce n’est pas le cas, comme le montre le contre exemple donné dans la section 3.3.5.

A partir de ces résultats, il a été possible de reprendre le résultat de Juri et Wüthrich
(2003), en le généralisant en dimension quelconque, mais aussi, en corrigeant le cas par-
ticulier d’indépendance asymptotique,

Proposition 3.4. Soit C une copule Archimédienne de générateur φ, et 0 ≤ α ≤ ∞.
Notons C(·, ·; α) la copule de Clayton de paramètre α. Considérons les quatre résultats
suivants:

(i) limu→0 Cu(x, y) = C(x, y; α) pour tout (x, y) ∈ [0, 1]2;

(ii) −φ′ ∈ R−α−1.

(iii) φ ∈ R−α.

(iv) limu→0 uφ′(u)/φ(u) = −α.

Si α = 0 (indépendance asymptotique),

(i) ⇐⇒ (ii) =⇒ (iii) ⇐⇒ (iv),

et si α ∈ (0,∞] (dépendance asymptotique),

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).

Plus précisémément, dans le cas général α ∈ [0,∞], les conditions (i) et (ii) impliquent
(iii) et (iv), la réciproque étant vrai seulement dans le cas α > 0. En particulier, un contre
exemple permettra de contredire le Théorème 3.5 de Juri et Wüthrich (2003),

Proposition 3.5. Il existe des copules Archimédiennes C de générateur φ dont la dérivée
est continue, à variation lente à l’origine, telles que la copule conditionnelle ne converge
pas vers la copule indépendante.
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Ce résultat est en fait très lié à la notion de variation régulière au second ordre, liée à la
classe de de Haan (Chapitre 3 de Bingham, Goldie et Teugels (1987)). En effet, le Lemme
3.4. de Juri et Wüthrich (2003) prétendait que si φ est un générateur différentiable et à
variation lente à l’origine, alors il existe une fonction positive g sur (0, 1) telle

lim
u→0

ψ(ux) − ψ(u)

g(u)
= − log(x) (10)

pour tout 0 < x < ∞. Cette condition est la définition d’appartenance à la classe de
de Haan Π, avec pour fonction auxiliaire g, notée φ ∈ Πg, qui s’interprète de manière
équivalente comme −φ′ ∈ R−1, et dans ce cas, g(s) ∼ −sφ′(s) quand s → 0. Si le
théorème de Karamata implique qu’alors φ ∈ R0, la réciproque n’est en général pas vraie.

Pour conclure ce chapitre certains résultats plus généraux sont donnés. Afin de mieux
comprendre leur intérêt, revenons à l’interprétation pour les modèles de durées, ou de
risque de crédit. En dimension d = 2, la seule information qui pouvait être disponible à la
date t est qu’il n’y avait eu aucun défaut. En dimension d ≥ 2, l’information peut être plus
complexe, car certains titres seulement peuvent être encore en vie. Le conditionnement
peut alors se faire sur une information partielle. Plus formellement, on a le résultat
suivant,

Proposition 3.6. Soit C une copule Archimédienne en dimension d, de générateur ψ.
Si ψ est à variation régulière d’indice −θ ∈ [−∞, 0], et J est un ensemble non-vide de
{1, . . . , d} et si 0 < yj < ∞ pour tout j ∈ J , alors, pour tout (x1, . . . , xd) ∈ (0,∞)d,

lim
s→0

P(∀i = 1, . . . , d : Ui ≤ sxi | ∀j ∈ J : Uj ≤ syj) (11)

=

(∑
j∈Jc x−θ

j +
∑

j∈J{min(xj, yj)}−θ

∑
j∈J y−θ

j

)−1/θ

.

La copule limite associée est alors la copule de Clayton.

Ces deux résultats ne traitent que du cas de dépendance asymptotique. Le cas
d’indépendance asymptotique, obtenu lorsque C(s, . . . , s) = o(s) en 0, est plus délicat.

Proposition 3.7. Soit C une copule Archimédienne en dimension d, de générateur ψ. Si
ψ est à variation lente en 0, alors C(s, . . . , s) = o(s), qui implique que log{ψ(s)}/ log(s) →
0 lorsque s → 0. Notons toutefois que pour chacune des implications, aucune réciproque
n’est vraie.

Une idée est alors d’utiliser l’idée qu’avait développée Ledford et Tawn (1996, 1997),
en dimension 2.

Proposition 3.8. Soit C une copule Archimédienne en dimension d, de générateur ψ.
Si

lim
t→∞

D(log ψ←)(dt)

D(log ψ←)(t)
=

1

dη
,

alors s 7→ C(s, . . . , s) est à variation régulière en 0 d’indice 1/η.

On a alors les deux résultats suivants,
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Proposition 3.9. Soit C une copule Archimédienne en dimension d, de générateur ψ.
Si la fonction φ = −1/D(log ψ←) est à variation régulière d’indice −∞ < τ ≤ 1 et si
φ(t) = o(t) lorsque t → ∞, alors pour tout ensemble J non-vide de {1, . . . , d} et pour tout
x ∈ (0,∞)d,

P(∀j ∈ J : Uj ≤ sxj;∀j ∈ J c : Uj ≤ ψ←{x−1
j φ(ψ(s))}) (12)

∼ ψ←{|J |ψ(s)}
∏

j∈J

x
|J |−τ

j

∏

j∈Jc

exp
(
−|J |−τx−1

j

)
lorsque s → 0.

Proposition 3.10. Soit C une copule Archimédienne en dimension d, de générateur ψ
dont le générateur vérifie les conditions précédantes, alors, pour tout x ∈ (0,∞)d et tout
(uj)j∈J ∈ (0, 1]|J |,

P(∀j ∈ J : Uj ≤ sujxj; ∀j ∈ J c : Uj ≤ ψ←{x−1
j φ(ψ(s))} | ∀j ∈ J : Uj ≤ sxj)

→
∏

j∈J

u
|J |−τ

j

∏

j∈Jc

exp
(
−|J |−τx−1

j

)
, lorsque s → 0.

4 Dépendence et relation d’ordre: comparaison de la

dépendance

Cette partie est développée dans le Chapitre 4.

Le quatrième chapitre présente les principaux résultats obtenus dans présentés dans
Charpentier (2003, 2004). L’étude des relations d’ordre entre vecteurs aléatoires a permis
de définir un grand nombre de relations de comparaisons (Shaked et Shantikumar (1994),
Müller et Stoyan (2001) ou Denuit, Dhaene, Goovaerts et Kaas (2005) pour des applica-
tions en sciences actuarielles). Dans un premier temps, nous verrons comment construire
des “relation d’ordre de dépendance” à partir de relations d’ordre définies sur le même
espace de Fréchet. Une approche axiomatique permet de définir des propriétés de relation
de dépendence.

Définition 4.1. Une relation binaire ¹ définie sur l’ensemble des copules C est ap-
pelée relation de dépendance si ¹ vérifie les propriétés de transitivité, de réflexivité et
d’antisymmétrie, la relation de concordance (si CX ¹ CY alors CX(·) ≤ CY (·)), de bornes
(C− ¹ C ¹ C+ pour toute copule C), de transposition, et de fermeture par convergence
faible.

On a alors une bijection entre ordonancement sur l’ensemble d’une classe de Fréchet
et sur l’ensemble des copules,

Proposition 4.2. Soit C la classe des copules, et F une classe de Fréchet (F =
F(F1, ..., Fd)) dont les marges sont absolument continues. Soit ¹ une relation de dépen-
dance sur C, et définissons ≤ par FX ≤ FY , pour FX, FY ∈ F(F1, ..., Fd), si et seulement
si CX ¹ CY où CX et CY sont les copules induites respectivement par FX et FY , alors
≤ est une relation d’ordre sur F . Réciproquement, si ≤ est une relation d’ordre sur F ,
définissons ¹ par CX ¹ CY si et seulement si FX ¹ FY où FX et FY sont les fonctions
de la classe de Fréchet F dont les copules induites sont CX et CY respectivement, alors
≤ est une relation de dépendance (sur C).



INTRODUCTION ET PRINCIPAUX RÉSULTATS 23

Définition 4.3. Soit ¹ une relation de dépendance, alors on dira que Y présente plus de
dépendance que X si FX(X) ¹ FY (Y ), que l’on notera X ¹d Y .

Cette notion permet de légitimer ce qui fera fait dans ce chapitre, à savoir comparer
des copules, sans se préoccuper des marges. En particulier, nous avons ici une notion qui
permet de comparer la dépendance entre X et X|X > t (étude de la dépendance au fur
et à mesure que le temps avance). En particulier, par la suite, nous nous restreindrons
au cas particulier des structures de dépendance Archimédiennes, et plus spécifiquement,
à la sous-classe des copules Archimédiennes obtenues par ”frailty”, correspondant à de
l’indépendance conditionnelle, et où la transformée de Laplace du facteur d’exogénéité
caractérise le générateur de la copule Archimédienne sous-jacente. Plus précisément, en
reprenant les notations de l’équation (3), on a le résultat suivant

Proposition 4.4. Si X = (X1, ..., Xn) admet pour copule une copule Archimédienne
avec une représentation factorielle, où Θ est le facteur d’hétérogénéité Θ, il en sera de
même pour (X1, ..., Xn) sachant {X1 > x1, ..., Xn > xn}, pour tout x1, ..., xn ∈ R, mais la
transformée de Laplace du facteur aura changée.

Et plus généralement, si la copule de X = (X1, ..., Xn) est une H-copule (de la forme
h←(C(h(u1), ..., h(un))) où C est une copule, et h une fonction de distorsion), avec des
conditions sur h et C, la copule conditionnelle sera également une H-copule.

Enfin, des résultats peuvent être induits en terme de relation de dépendance usuelle
(X ¹ Y si CX(u) ≤ CY (u) pour tout u):

Proposition 4.5. Soit C une copule Archimédienne en dimension 2, de générateur φ
deux dois dérivable, et notons ψ(·) = log−Dφ(·). Si ψ est concave alors

Ct2(u) ≤ Ct1(u) pour tout u,

pour tout t1 > t2, où Cti est la copule conditionnelle à la date ti: la copule présente de
moins en moins de dépendance au fur et à mesure que le temps s’écoule.

Le cas des copules Archimédiennes est à mettre en rapport avec les travaux Bassan et
Spizzichino (2001, 2004 et 2005) sur la déformation de la structure de dépendance dans
les modèles de vieillissement (notion de “aging”) pour des risques échangeables. Nous
présenterons ainsi des propriétés de dépendance positive sur les copules Archimédiennes
en fonction de propriétés vérifiées par le générateur (propriétés de vieillissement).

5 Dépendance de queue supérieure pour les copules

Archimédiennes

Cette partie est développée dans le Chapitre 5.

Le troisième chapitre présente les principaux résultats obtenus dans Charpentier et
Segers (2006c). Cette partie continue l’approche initiée à la fin du Chapitre 3, dans le
cas de la queue inférieure, mais cette fois-ci en s’intéressant à la queue supérieure, c’est à
dire aux orthants supérieurs du carré unité.

Un certain nombre d’articles traitant d’extrêmes mutivariés ont souligné la difficulté de
la modélisation dans le cas d’indépendance asymptotique (Ledford et Tawn (1996, 1997),
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ou Draisma, Drees, Ferreira et de Haan (2004)). Ceci va se confirmer dans ce chapitre, où
l’analyse va être plus compliquée que celui présentée dans le chapitre 3. En particulier,
le début du chapitre présente plusieurs de lemmes techniques permettant d’obtenir par la
suite des simplifications, et d’alléger les preuves, autant que faire se peut.

L’étude dans les orthants inférieurs faisaient intervenir des propriétés de variations
régulières du générateur en 0. Dans le cas des orthants supérieurs, il est alors légitime
d’étudier le comportement du générateur à l’autre borne du support, c’est à dire en 1, ou,
de manière équivalente, le comportement de ψ(1 − ·) en 0. Or, par définition ψ(1) = 0,
aussi, un développement de Taylor donne ψ(1 − s) = −sDψ(1) + o(s) quand s → 0. En
particulier, compte tenu de la convexité de ψ, si ψ(1− ·) est à variation régulière d’indice
θ, alors nécessairement θ ∈ [1,∞]. Et plus précisément, si (−D)ψ(1) > 0, alors θ = 1 (la
réciproque n’étant pas forcément vraie, ce qui va compliquer ici l’étude).

Proposition 5.1. Soit U un vecteur aléatoire en dimension d, de distribution C, une
copule Archimédienne de générateur ψ. Si s 7→ ψ(1 − s) est à variation régulière
d’indice θ ∈ (1,∞] en 0, alors, pour tout ensemble non-vide J de {1, . . . , d}, pour tout
(x1, . . . , xd) ∈ (0,∞)d et tout (yj)j∈J ∈ (0,∞)|J |,

P(∀j = 1, . . . , d : Uj ≥ 1 − sxj | ∀j ∈ J : Uj ≥ 1 − syj) (13)

→ rd(z1, . . . , zd)

r|J | ((yj)j∈J)
lorsque s → 0,

où zj = min(xj, yj) pour j ∈ J et zj = xj pour j ∈ J c, en posant

rk(u1, . . . , uk) =






∑

I⊂{1,...,k}:|I|≥1

(−1)|I|−1

(
∑

i∈I

uθ
i

)1/θ

si 1 < θ < ∞,

min(u1, . . . , ud) si θ = ∞,

pour tout entier k et tout (u1, . . . , uk) ∈ (0,∞)k.

Notons que l’on retrouve ici un cas particulier de copule max-stable: la copule de
Gumbel (ou logistique). Dans le cas où θ = 1, il convient de distinguer deux cas:
soit (−D)ψ(1) > 0 (correspondant au cas d’“indépendance dans l’indépendance”) ou
(−D)ψ(1) = 0 (“dépendance dans l’indépendance”).

Proposition 5.2. Soit ψ un générateur en dimension d tel que ψ← soit d fois continument
dérivable, et U un vecteur en dimension d dont la fonction de répartition est la copule
Archimédienne induite par ψ. Si (−D)dψ←(0) < ∞ alors (−D)ψ(1) > 0. Soit J un
sous-ensemble non-vide {1, . . . , d} tel que J c soit non-vide. Pour tout v ∈ (0, 1]d,

P(∀j ∈ J : Uj ≥ 1 − svjxj;∀j ∈ J c : Uj ≤ vj | ∀j ∈ J : Uj ≥ 1 − sxj) (14)

→
(−D)|J |ψ←

(∑
j∈Jc ψ(vj)

)

(−D)|J |ψ←(0)

∏

j∈J

vj lorsque s ↓ 0.

En particulier, on notera que la copule limite de la distribution conditionnelle de
(Uj)j∈Jc sachant Uj ≥ 1− sxj pour tout j ∈ J admet pour copule une copule Archimédi-
enne de générateur

ψ|J |(·) =

(
(−D)|J |ψ←( · )
(−D)|J |ψ←(0)

)←

. (15)
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Dans le cas de dépendance dans l’indépendance, des conditions variation régulière au
second ordre sont nécessaires,

Proposition 5.3. Soit ψ un générateur en dimension d tel que ψ← soit d fois continument
dérivable, et U un vecteur en dimension d dont la fonction de répartition est la copule
Archimédienne induite par ψ. Posons f(s) = ψ(1 − s). Si s−1f(s) → 0 lorsque s → 0 et
si s 7→ L(s) = s(d/ds){s−1f(s)} est positive et à variation lente en 0, alors la fonction
g(s) = sf ′(s)/f(s) − 1 est positive et également à variation lente, avec g(s) → 0 lorsque
s → 0. Si J est un sous-ensemble {1, . . . , d} contenant au moins deux éléments, alors,
pour tout x ∈ (0,∞)d et (yj)j∈J ∈ (0,∞)|J |,

P(∀i = 1, . . . , d : Ui ≥ 1 − sxi | ∀j ∈ J : Uj ≥ 1 − syj) =
r(z1, . . . , zd)

r((yj)j∈J)

lorsque s ↓ 0, où zj = min(xj, yj) pour j ∈ J et zj = xj pour j ∈ J c, et où

r(x1, . . . , xd) =
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|(
∑

I xi) log (
∑

I xi)

= (d − 2)!

∫ x1

0

· · ·
∫ xd

0

(
d∑

i=1

ti

)−(d−1)

dt1 · · · dtd.

En particulier, en dimension d = 2, si J = {1, 2}, notons que pour tout (x, y) ∈
(0,∞)2,

P(U ≥ 1 − sx, V ≥ 1 − sy)

∼ αs(− log s)−1{(x + y) log(x + y) − x log(x) − y log(y)}, lorsque s → 0.

La fin de ce chapitre pousuit cette étude dans le cas des autres coins du carré unité.

6 Théorème de Pickands, Balkema et de Haan multi-

varié, et dépendance entre évènements extrêmes

Cette partie est développée dans le Chapitre 6.

Le sixième chapitre s’intéresse à une nouvelle application des résultats des chapitres
précédents, et plus particulièrement ceux présentés dans le chapitre 2. On ne s’intéresse
plus à des modèles de durée, mais aux comportements limites dans les queues de distrib-
utions, et donc à l’interprétation en terme de valeurs extrêmes. Rappelons que dans un
cadre univarié, il y a trois approches équivalentes des extrêmes:

• étude de la loi limite normalisée du maximum Xn:n = max {X1, ..., Xn} d’une suite
de variables réelles i.i.d. (théorème dit de Fisher-Tippett),

• étude de la loi limite des excès, c’est à dire de X − u sachant que X > u quand
u → ∞ (théorème de Pickands-Balkema-de Haan),
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• étude du comportement de la fonction de survie F = 1 − F en terme de variation
régulière, en cherchant une fonction g telle que

lim
t→∞

F (tx)

F (t)
= g(x). (16)

L’approche par la loi des excès est d’autant plus intéressante qu’elle apparaît naturelle
dans un grand nombre d’applications. Si X correspond à une durée de vie, X − u|X > u
peut être interprétée comme une durée de vie résiduelle au delà de la date u. Si X est
une perte (potentielle) financière et si u correspond à un quantile (aussi appelé Value-
at-Risk, VaR), alors X − u|X > u est la perte conditionnelle au delà de ce seuil, et
son espérance s’appelle “expected shortfall ”. En réassurance, le seuil u est une franchise,
appelée aussi priori et X − u|X > u est alors l’indemnité versée par le réassureur. En
fait, un grand nombre de mesures de risques extrêmes sont fonction de la distribution
de X sachant X > u, pour un seuil u souvent grand. En pratique, le théorème de
Pickands-Balkema-de Haan permet d’approcher la loi conditionnelle par une loi simple
(la loi de Pareto généralisée), et permet d’obtenir des estimations robustes de ces mesures
de risques. C’est pour ces raisons qu’il semble naturel d’étendre ce résultat limite au cadre
multivarié.

Comme le notait Resnick (1987), dans un cadre multivarié, l’étude des extrêmes n’est
pas évidente puisqu’il n’existe pas de relation d’ordre naturelle dans Rd (et donc il n’y a
pas de manière naturelle et unique de définir les extrêmes). L’approche la plus étudiée
(e.g. Tiago de Olivera (1958), Geoffroy (1958), Sibuya (1961) ou Resnick (1987)) consiste
à étudier la loi limite du maximum par composante, c’est à dire, dans un cadre bivarié,
la loi limite du couple

(Xn:n, Yn:n) = (max {X1, ..., Xn} , max {Y1, ..., Yn}),

Cependant, comme le notait Tawn (1988) en évoquant l’interprétation, “a difficulty with
this approach is that in some applications it may be impossible for (Xn:n, Yn:n) to occur as
a vector observation”. Néanmoins, cette approche peut être interprétée en utilisant une
définition (relativement restrictive) de la variation régulière en dimension 2, généralisant
l’Equation (16) sous la forme

lim
t→∞

F (tx, ty)

F (t, t)
= g(x, y), (17)

où g est alors nécessairement une fonction homogène g(tx, ty) = tθg(x, y) pour tout
x, y, t > 0 et où θ est un paramètre réel (Resnick (2004)).

Le but de ce chapitre est de proposer une généralisation du théorème de Pickands-
Balkema-de Haan, en étudiant la copule limite de (X,Y ) sachant {X > x et Y > y},
quand x, y → ∞, sans supposer comme dans le chapitre précédant, ou dans Juri et
Wüthrich (2004) et Wüthrich (2004), que la copule (ou la copule de survie) soit Archimé-
dienne. La principale difficulté réside dans la définition de ce comportement limite
“x, y → ∞”. Notons qu’en pratique deux types de modélisations peuvent être retenues:
les convergences “en niveau” (X > t, Y > t pour un même niveau t, où t → ∞) ou “en
probabilité” (X > F←

X (1 − p), Y > F←
Y (1 − p) pour un même niveau p, où p → 0). Afin

de pouvoir avoir un cadre qui englobe ces deux cas particuliers, on retient l’approche
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directionnelle (présentée dans la section précédente, et l’équation (16) se généralise sous
la forme

lim
t→∞

F (r(t)x, s(t)y)

F (r(t), s(t))
= g(x, y), (18)

si l’on se place dans la direction (r, s). On obtient ainsi deux versions bidimensionnelles
du Théorème de Pickands, Balkema et de Haan. Dans un premier temps, on s’intéresse à
une approche par seuils en probabilités, ou en quantiles,

(X, Y ) sachant {X > F←
X (p) et Y > F←

Y (p)} quand p → 1,

et dans un second temps à une approche en niveau,

(X, Y ) sachant {X > z et Y > z} quand z → ∞.

Pour énoncer les versions bivariées du théorème de Pickands, Balkema et de Haan, on
se place sous les hypothèses suivantes. Soient X et Y , dans le max-domaine d’attraction
de la loi de Fréchet, de paramètres respectifs α et β, strictement positifs, c’est à dire qu’il
existe a(·) et b(·) telles que

lim
u→∞

1 − 1 − FX (u + xa (u))

1 − FX (u)
= lim

u→∞
P (X ≤ u + a (u) |X > u) = Gα (x) ,

et de manière analogue,

lim
v→∞

1 − 1 − FY (v + yb (v))

1 − FY (v)
= lim

v→∞
P (Y ≤ v + b (v) |Y > v) = Gβ (y) ,

où

Gξ,σ (x) =

{
1 − (1 + ξx/σ)−1/ξ ξ 6= 0
1 − exp (−x/σ) ξ = 0,

, avec Gξ = Gξ,1.

Le premier théorème est obtenu en considérant des seuils définis par quantiles,

Théorème 6.1. Supposons que C∗, copule de survie de (X, Y ), soit à variation régulière
sur la diagonale, c’est à dire qu’il existe une fonction continue h : R+ → R+ avec h(x) > 0
pour x > 0, et telle que

lim
u→0

C∗(xu, u)

C∗(u, u)
= h(x) pour tout x ≥ 0. (19)

Alors h(0) = 0, h(1) = 1, et il existe θ ∈ R tel que

h(x) = xθh

(
1

x

)
pour tout x > 0,

On a la version bivariée du Theorème de Pickands-Balkema-de Haan, à savoir

lim
p→0

P

(
X − F←

X (1 − p)

a (F←
X (1 − p))

> x,
Y − F←

Y (1 − p)

b (F←
Y (1 − p))

> y

∣∣∣∣ X > F←
X (1 − p) , Y > F←

Y (1 − p)

)

= (1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/β

)
,
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en posant γ = θ/β. La convergence étant uniforme, notons que l’on peut aussi écrire

lim
p→0

sup
x,y

|P (X − F←
X (1 − p) > x, Y − F←

Y (1 − p) > y|X > F←
X (1 − p) , Y > F←

Y (1 − p))

−(1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/β

)
| = 0.

Notons que la copule associée est alors la copule duale de Ch(x, y) = H(h←(x), h←(y)),
où H(x, y) = yθh(x/y). Cette version est relativement proche de celle obtenue par Juri
et Wüthrich (2004), en supprimant l’hypothèse de lois marginales identiques. La seconde
version repose sur la notion de variation régulière directionnelle.

Théorème 6.2. Supposons que C∗, copule de survie de (X, Y ), soit à variation régulière
dans la direction (1−FX(·), 1−FY (·)), de telle sorte qu’il existe une fonction λ telle que

lim
z→∞

C∗((1 − FX(z))x, (1 − FY (z))y)

C∗(1 − FX(z), 1 − FY (z))
= λ(x, y).

Les deux fonctions de survie marginales étant à variation régulière, d’après la Proposition
2.8, il existe un réel γ et une fonction h : R → R tels que λ(x, y) = xγ/αh(yx−β/α) si x 6= 0
et λ(0, y) = cyγ/β où c est une constante positive. On a la version bivariée du théorème
de Pickands-Balkema-de Haan, à savoir

lim
z→∞

P

(
X − z

a(z)
> x,

Y − z

b(z)
> y

∣∣∣∣ X > z, Y > z

)
= (1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/α

)
.

La convergence étant uniforme, notons que l’on peut aussi écrire

lim
z→∞

sup
x,y

|P (X − z > x, Y − z|X > z, Y > z) = (1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/α

)
| = 0.

Ce résultat peut aussi se généraliser pour n’importe quel type de conditionnement, à
condition que les seuils puissent s’écrire sous la forme (r(t), s(t)), où r et s sont des fonc-
tions à variation régulière. Les deux exemples simples traités ici généralisent le théorème
de Juri et Wüthrich (2004), en particulier X et Y ne sont pas nécessairement de même
loi, et le premier résultat peut d’ailleurs se généraliser en supposant que X ou Y (voire
les deux) sont à queue fine (Section 3.5). Dans le cas où X est à queue fine, par exemple,
il suffit de substituer exp(x) à (1 + x)−1/α.

Nous nous intéressserons alors à la généralisation des résultats des chapitres 3 et 6 en
otant l’hypothèse de copule Archimédienne, en reprenant les résultats initiaux de Charp-
tier et Segers (2006d), permettant de formaliser les résultats obtenus en terme de copules
conditionnelles, et les approches usuelles en théorie des valeurs extrêmes multivariés. Pour
cela, notons Y = 1/(1−FX(X)), et supposons que Y soit à variation régulière de mesure
exponent ν, i.e.

tP[t−1Y ∈ · ] v→ ν( · ), as t → ∞.

Rappelons que ν est nécessairement homogène à l’ordre θ = 1, ν(s · ) = s−1ν( · ) pour tout
s > 0. En particulier, notons que

P(Y ≤ ny)n → exp{−ν([0,y]c)}, lorsque n → ∞,
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On peut alors définir la fonction de dépendance de queue stable par

l(x) = ν([0,x−1]c) = ν({y ∈ E | max(x1y1, . . . , xdyd) ≥ 1})
pour tout x ∈ [0, ∞). De manière duale, on peut aussi définir

r(x) = ν([x−1, ∞]) = ν({y ∈ E | min(x1y1, . . . , xdyd) ≥ 1}),
pour tout x ∈ [0, ∞). Notons ainsi que

lim
s↓0

s−1P[U1 ≤ sx1, . . . , Ud ≤ sxd] = r(x)

On définie enfin la fonction H comme

lim
s↓0

P(U ≤ sxu | U ≤ sx] = H(u; x) =
r(ux)

r(x)
,

pour tout x ∈ (0, ∞) et u ∈ [0,1].

Proposition 6.3. Soit U un vecteur aléatoire de fonction de répartition C, une copule.
Soit Cu la copule conditionnelle de U sachant {U ≤ u}, alors

lim
s↓0

Csx(p) = C(p; x)

pour tout x ∈ (0, ∞) et p ∈ [0,1], où C(·,x) est la copule associée à H(·; x)

A partir de ces notions, il sera étudié plusieurs exemples de lois limites usuelles (logis-
tique négative de Coles et Tawn (1991), ou mélange asymétrique) afin d’étudier la copule
limite associée.

Enfin, la dernière section du chapitre présente une partie des travaux de Charpentier
(2003) sur les mesures de dépendances de queues conditionnelles. Rappelons que Patton
(2004) avait proposé d’étudier les “exceedences correlations”, définies par

r(u) =

{
corr(X, Y |X ≤ F←

X (u) et Y ≤ F←
Y (u)) si u ≤ 0.5,

corr(X,Y |X > F←
X (u) et Y > F←

Y (u)) si u > 0.5.

La séparation entre quantiles élevés et faibles est motivée ici par les applications financières
qui en découlent (Longin et Solnik (2001) ou Ang et Chen (2002)): les fortes baisses comme
les fortes hausses jouent un rôle en finance. Néanmoins, en assurance, on s’intéresse soit
aux hauts quantiles (si X et Y désignent des coûts de sinistres, par exemple), soit aux bas
quantiles (si X et Y désignent des résultats). Or cette corrélation dépend très fortement
des comportements maginaux, et ne correspondent pas à des mesures de concordance.
L’idée naturelle est alors d’utiliser des mesures de corrélation de rang (par exemple le rho
de Spearman, ρ(X,Y ) = corr(FX(X), FY (Y ))) ou des mesures basées sur les probabilités
de concordances (par exemple le tau de Kendall).

Définition 6.4. Soient X et Y deux variables aléatoires. On définie les corrélations de
rang de queue supérieure par

ρ(u) = ρ((X,Y )|X > F←
X (u) et Y > F←

Y (u)), u ∈ [0, 1),

et le taux de Kendall de queue supérieure par

τ(u) = τ((X, Y )|X > F←
X (u) et Y > F←

Y (u)), u ∈ [0, 1).

De façon analogue on peut définir une corrélation de rang de queue inférieure ou un taux
de Kendall de queue inférieure.
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Ces mesures peuvent ainsi être utilisées pour construire des tests d’indépendance de
queue, en testant si ρ(u) → 0 quand u → 1, comme le proposent Hájek et Sidák (1967),
ou Behnen et Neuhaus (1989). Notons toutefois que si l’étude de la loi théorique des
estimateurs “naturels” de ρ(u) ou de τ(u) n’a donné que peu de résultats analytiques dans
la littérature, dans le cas particulier de l’indépendance, des résultats sur les U statistiques
permettent d’obtenir une normalité asymptotique. Aussi, en utilisant une approximation
Gaussienne du nombre d’observations appartenant à la région [F←

X (u),∞)× [F←
Y (u),∞),

on peut obtenir que la loi asymptotique de ρ̂n(u), comme celle de τ̂n(u) est un mélange
de lois normales,

P(ρ̂n(u) ≤ r) =

∫ x

−∞

∫ +∞

−∞

φ
(√

z − 1y
)
φ

(
z − n(1 − u)2

√
nu(1 − u)2

)
dzdy,

et

P(τ̂n(u) ≤ r) =

∫ x

−∞

∫ +∞

−∞

φ
(√

z − 1y
)
φ

(
z − n(1 − u)2

√
nu(1 − u)2

)
dzdy,

où φ désigne la densité de la loi N (0, 1). Une utilisation une approximation supplémen-
taire, il est alors possible de considérer un test d’indépendance de queue de la forme
suivante. X et Y seront indépendants dans la queue supérieure si et seulement si

−u1−α/2

√
n(1 − u)2 ≤ ρ̂n(u) ≤ +u1−α/2

√
n(1 − u)2, pour u proche de 1,

et

−u1−α/2
3

2

√
n(1 − u)2 ≤ ρ̂n(u) ≤ +u1−α/2

3

2

√
n(1 − u)2, pour u proche de 1,

où u1−α/2 correspond au quantile d’ordre 1 − α/2 de la loi N (0, 1).
Ces mesures peuvent également servir de méthode graphique de validation

d’ajustement de lois. Si les lois théoriques de ρ̂n(u) et de τ̂n(u) ne sont pas connues,
des simulations permettent néanmoins de les construire. Aussi des intervalles de confi-
ance permettent de tester d’autres hypothèses que celle d’indépendance de queue. Ceci a
été présenté dans Charpentier (2003), sur des données assurantielles.

Notons que là aussi, un grand nombre d’ouvertures sont possibles. Tout d’abord sur
la caractérisation de l’indépendance de queue, liée à la recherche des caractéristiques des
copules dont la copule limite par troncature est la copule indépendante. L’étude de la
puissance du test d’indépendance proposé est également à étudier en détails, puisqu’il est
relativement délicat de conclure, y compris pour un vecteur Gaussien (mais le problème
se pose également pour les estimateurs classiques de λ qui ne permettent que difficilement
de tester l’indépendance de queue, comme le souligne Draisma, Drees, Ferreira et de
Haan (2004)). Enfin, là aussi des applications nombreuses sont envisageables. Dias et
Embrechts (2004) avaient montré que pour la modélisation de la dépendance dans les
quadrants inférieurs et supérieurs, la copule de Clayton (et sa version duale) étaient
celles qui s’ajustaient le mieux sur des séries financières. Mais comme le notait Joe,
Smith et Weissmann (1992) ou Smith (1994), dans de nombreuses applications de risques
environnementaux, les risques extrêmes peuvent être caractérisés par le dépassement de
deux seuils conjointement par deux variables (en particulier un fort niveau d’ozone est
caractérisé par une vitesse de vent très faible et une température élevée). Les applications
en hydrologie sont elles-aussi nombreuses, en particulier sur l’étude des “ low-flow ”.
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7 Estimation non-paramétrique de densités de copules

Cette partie est développée dans le Chapitre 7.

Ce chapitre présente les résultats de Charpentier, Fermanian et Scaillet (2005, 2006).
En dimension 2, les copules sont des fonctions de répartition définies sur le carré [0, 1] ×
[0, 1]. Sous l’hypothèse où cette fonction est deux fois continument dérivable, on peut
définir la densité associée.

L’estimation de la densité de copule a été introduite dans Behnen, Husková et Neuhaus
(1985), ou Gijbels et Mielniczuk (1990), avec des approches non-paramétriques. Or es-
timer une densité à support compact à l’aide de noyaux s’avère difficile, à cause des
problèmes de bord (comme le notait déjà ce papier). Si l’utilisation d’estimateurs à noy-
aux reste satisfaisante asymptotiquement (Fermanian, Radulović et Wegkanmp (2003)), le
biais à distance finie est d’autant plus gênant si l’on s’intéresse aux phénomènes extrêmes
(c’est à dire au comportement au voisinage de (0, 0) ou de (1, 1)). Ainsi, il est souvent
délicat d’estimer de façon précise P(X > F←

X (u), Y > F←
Y (v)) pour u et v proches de 1, où

X et Y sont deux variables aléatoires de fonction de répartition FX et FY respectivement.
Par exemple, il est naturel de considérer l’estimateur par noyau de la densité des

(Ûi, V̂i) où Ûi = F̂X(Xi) et V̂i = F̂Y (Yi), où F̂X(·) et F̂Y (·) désignent les fonctions de
répartition marginales empiriques (éventuellement en divisées par (n + 1) pour éviter la
valeur 1),

F̂X(·) =
1

n + 1

n∑

i=1

1(Xi ≤ ·) et F̂Y (·) =
1

n + 1

n∑

i=1

1(Yi ≤ ·).

Behnen, Husková et Neuhaus (1985), puis Gijbeks et Mielniczuk (1990) proposent alors
d’estimer la densité de la copule du vecteur (X,Y ) par

ĉh(u, v) =
1

nh2

n∑

i=1

K

(
u − F̂X(Xi)

h
,
v − F̂Y (Yi)

h

)
, (u, v) ∈ [0, 1]2

qui est l’estimateur par noyau de la densité (Rosenblatt (1956), Silverman (1986)). Mais
comme l’avait noté Behnen, Husková et Neuhaus (1985), cet estimateur n’est pas consis-
tent sur la bordure du carré unitaire. Plus particulièrement, cet estimateur a un biais
multiplicatif sur les bords:

Proposition 7.1. Soit (U1, V1), ..., (Un, Vn) un échantillon dont le support est [0, 1]2, de
densité c(u, v), supposée deux fois continûment dérivable sur (0, 1)2. Si K est un noyau
symétrique de support [−1, +1], alors dans le coin

E(ĉh(0, 0)) =
1

4
· c(0, 0) − 1

2
[c1(0, 0) + c2(0, 0)]

∫ 1

0

ωK(ω)dω · h + o(h).

sur la bordure

E(ĉh(u, 0) =
1

2
· c(u, 0) − [c1(u, 0)]

∫ 1

0

ωK(ω)dω · h + o(h),

pour tout u ∈ (0, 1), et à l’intérieur

E(ĉh(u, v)) = c(u, v) +
1

2
[c1,1(u, v) + c2,2(u, v)]

∫ 1

−1

ω2K(ω)dω · h2 + o(h2),

pour tout (u, v) ∈ (0, 1)2.
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Un biais multiplicatif de trois quarts quart apparaît dans les estimations dans les coins,
ce qui conduit à une sous-estimation considérable des probabilités des événements associés
(de très larges sinistres, dans les applications assurantielles).

Notons enfin que cet estimateurs, comme les estimateurs par noyaux usuels sont as-
ymptotiquement Gaussiens,

Proposition 7.2. Soit c une densité de copule deux fois dérivable sur [0, 1]× [0, 1]. Pour
tout (u, v) ∈ [0, 1] × [0, 1], ĉh(u, v) est asymptotiquement Gaussien, avec

√
nh2[ĉh(0, 0) − c(0, 0)]

L→ N (0, c(0, 0)), lorsque nh2 → ∞ et h → 0,

√
nh3[ĉh(u, 0) − c(u, 0)]

L→ N
(

0,
c(u, 0)√
πu(1 − u)

)
, lorsque nh3 → ∞ eth → 0,

√
nh4[ĉb(u, v) − c(u, v)]

L→ N
(

0,
c(u, v)√

πu(1 − u)v(1 − v)

)
, lorsque nh4 → ∞ et h → 0.

Deux estimateurs sont proposés dans ce dernier chapitre, pour corriger ce biais à
distance fini dû aux effets de bords. Le premier repose sur l’utilisation de produits de
noyaux Betas, qui présentent l’avantage d’être définis sur le même support que la densité
que l’on cherche à estimer:

Définition 7.3. L’estimateur par noyaux Betas de la densité c est donné par

ĉb(u, v) =
1

n

n∑

i=1

K

(
F̂X(Xi),

u

b
,
1 − u

b

)
K

(
F̂Y (Yi),

v

b
,
1 − v

b

)
,

où le réel b désigne une taille de fenêtre, et le noyau K(·, α, β) est la densité de la loi Beta
de paramètres α et β,

K (x, α, β) =
xα−1(1 − x)β−1

B(α, β)
1(x ∈ [0, 1]) =

Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

1(x ∈ [0, 1]).

Cet estimateur est alors nettement meilleur, puisqu’il permet d’éviter le biais multi-
plicatif au bord:

Proposition 7.4. Si c est deux fois dérivable sur [0, 1] × [0, 1], le biais de ĉ(u, v) est de
l’ordre de b, i.e.

E(ĉ(u, v)) = c(u, v) + Q(u, v) · b + o(b), pour tout u, v ∈ [0, 1],

où le biais Q(u, v) est

Q(u, v) = (1 − 2u)c1(u, v) + (1 − 2v)c2(u, v) +
1

2
[u(1 − u)c1,1(u, v) + v(1 − v)c2,2(u, v)] ,

où c1(u, v) = ∂c(u, v)/∂u, c1,1(u, v) = ∂2c(u, v)/∂u2 et c1,2(u, v) = ∂2c(u, v)/∂u∂v.

Le biais est en O(b) à l’intérieur du carré [0, 1]× [0, 1], alors qu’il est en O(h2) pour les
noyaux symétriques. On a aussi les propriétés suivantes pour la variance de cet estimateur:
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Proposition 7.5. Si c est deux fois dérivable sur [0, 1]× [0, 1]. Pour tout (u, v) ∈ [0, 1]×
[0, 1] , la variance de ĉb(u, v) dans le coin (0, 0), est

V ar(ĉb(0, 0)) =
1

nb2
[c(0, 0) + o(n−1)],

dans l’intérieur de la bordure,

V ar(ĉb(0, v)) =
1

2nb3/2
√

πv(1 − v)
[c(u, 0) + o(n−1)], pour tout v ∈ (0, 1),

et à l’intérieur,

V ar(ĉb(u, v)) =
1

4nbπ
√

v(1 − v)u(1 − u)
[c(u, v) + o(n−1)], pour tout u, v ∈ (0, 1).

Une seconde approche peut permettre de corriger des effets de bords. L’idée du second
estimateur de la densité repose sur une passage de [0, 1]2 à R2, afin de faire une estimation
“standard ”, en utilisant un noyau Gaussien bivarié par exemple, puis de revenir à [0, 1]2 en
faisant la transformation inverse. L’idée est ici de considérer “à l’envers” la transformation
proposée par Devroye et Györfi (1981), qui proposait au contraire de ramener le problème
de R à [0, 1], avant de revenir à R.

Définition 7.6. L’estimateur par Φ-transformation de la densité c est

ĉh(u, v) =
f̂(Φ←(u), Φ←(v))

φ(Φ←(u)) · φ(Φ←(v))
,

où f̂ est l’estimation par noyau de la densité du couple (Φ←(U), Φ←(V )), où Φ : R 7→ [0, 1]
est une fonction bijective, i.e.

f̂(x, y) =
1

nh

n∑

i=1

K

(
x − Xi

h

)
· K

(
y − Yi

h

)
.

Par exemple, Φ peut être la fonction de répartition d’une loi elliptique (Gaussienne
ou Student). Notons que cette procédure permet d’éviter le biais multiplicatif au bord.

Proposition 7.7. Si Φ est continûment dérivable, de dérivée φ,

E(ĉh(u, v)) = c(u, v) +
o(h)

φ(Φ←(u))φ(Φ←(v))
.

et de plus,

V ar(ĉh(u, v)) =
1

φ(Φ←(u))φ(Φ←(v))

[
c(u, v)

nh2

(∫
K(ω)2dω

)2
]

+
1

φ(Φ←(u))2φ(Φ←(v))2
o

(
1

nh2

)
.
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Ces deux estimateurs seront alors utilisés pour estimer des densités de copules, à
partir d’échantillons (X1, Y1), ..., (Xn, Yn) dont les lois marginales sont inconnues. Nous
présenterons en particulier les résultats de Charpentier, Fermanian et Scaillet (2005) dans
le cas où les Yi sont des données censurées. On s’intéresse ainsi plus particulièrement à
l’exemple traité par Frees et Valdez (1995), de tarification d’un contrat de réassurance, où
les coûts des sinistres et les frais associés sont traités différemment. En effet, un biais est
alors induit par la censure, puisque les données censurées sont généralement des données
extrêmes (les coûts individuels des sinistres admettent une limite supérieure contractuelle,
inconnue).

Efron et Tibshirani (1993) ont proposé d’utiliser des techniques de type bootstrap pour
estimer ce biais. On considère alors B échantillons bootstrapés tirés en tirant suivant les
estimateurs de Kaplan-Meier de la censure et de la variable non-censurée. Le biais de
l’estimateur de la densité au point (u, v) est alors estimé par

b̂iais (u, v) =
1

B

B∑

k=1

ĉh (u, v)∗,k − ĉh (u, v)

où ĉ (u)∗,b est la densité obtenue sur le kième échantillon bootstrapé. Comme nous le
verrons sur des données simulées, cette technique permet de corriger de manière très
efficace le biais de censure.

Là aussi, si les outils proposés ici permettent d’avoir une meilleure compréhension de
la structure de dépendance dans les queues, un grand nombre de questions sont désormais
posées. En particulier, la transformation proposée par Devroye et Györki (1981) donne de
très bons résultats sur les simulations. Mais le poids des queues est sensiblement influencé
par la queue de la distribution de la transformation considérée.

8 Bijgevoegde stelling, dépendance temporelle pour

évènements climatiques

Cette partie est développée dans le Chapitre 8.

Ce dernier chapitre présente les résultats de Bouëtte et al. (2006), Charpentier et
Sibaï (2006) et Charpentier (2006). Ce chapitre présente des résultats connexes à ceux
présentés dans les chapitres précédants, sur les risques liés aux évènements climatiques.

La première section se focalise sur la modélisation des tempêtes. En effet, suite aux
tempêtes de Décembre 1999 en France et en Belgique, il est apparu que le phénomène
de persistance pouvait avoir des impacts collossaux (la première tempête Lothar étant
survenue moins de 48 heures avant la seconde, Martin). Ce phénomène de persistance a
été étudié et modélisé par Haslett et Raftery (1989). Malheureusement, en travaillant sur
le même jeu de données, il est apparu que leurs motivations pour introduire des modèles à
mémoire longue n’étaient pas fondées: la lente décroissance des autocorrélations était dû à
un effet de saisonnalité, et non pas une racine unité fractionnaire. Néanmoins, en étudiant
la série attentivement, il est apparu qu’en otant la composante saisonnière, il restait
de la persistance dans les résidus. L’idée a alors été d’utiliser des processus GARMA
(Gegenbauer ARMA) au lieu des modèles ARFIMA proposés par Haslett et Raftery (1989)
(ARIMA Fractionnaire). A l’aide de simulations, nous verrons en particulier que si la
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vitesse du vent était modélisée à l’aide de phénomène à mémoire courte, les probabilités
de survenance de tempêtes consécutives seraient fortement sous estimées.

La seconde section étend l’approche sur le vent à la modélisation de la température.
L’idée est ici d’estimer correctement la période de retour de la canicule d’août 2003. De
même que la canicule qui avait touché Chicago en 1995 (et qui tua plusieurs centaines de
personnes), cette canicule n’était pas tant exceptionnelle par les températures atteintes
(élevées certes, mais comme d’autres étés très chauds) que par la durée pendant laquelle
les températures ont été élevées. En particulier, la température nocture (qui permet au
corps de se refroidir) à été très élevée pendant plusieurs jours consécutifs. Là aussi, le
risque principal est celui de persistance des températures à un niveau élevé. Toutefois,
contrairement au vent qui est stationnaire, la température admet une tendance croissante
facilement identificable sur une longue période (+3 degrés en un siècle). Après avoir oté
cette tendance (linéaire), il restait, comme pour le vent, une composante saisonnière,
et un bruit résiduel à mémoire longue. Mais comme le prétendait Dacunha-Castelle
(2004) au lieu de se focaliser sur des processus fractionnaires, il est possible d’obtenir
des résultats très proches en modélisant ce résidu par un processus à mémoire courte,
avec des queues plus épaisses (que des variables Gaussiennes) . Aussi, dans cette section,
nous comparerons deux modèles: un processus GARMA Gaussien (à mémoire longue et à
queues fines), et un processus ARMA avec erreurs suivant une loi de Student (à mémoire
courte et à queues épaisses). Comme nous le verrons sur des simulations, les périodes de
retour dépendent alors fortement de la définition retenue pour la canicule d’août 2003 (11
jours consécutifs avec une température minimal excédant 19◦ C, ou 3 jours consécutifs
avec une température minimal excédant 24◦ C). En particulier, dans le second cas, les
modèles à mémoire longue donne une période de retour inférieure aux modèles à queue
épaisse, et inversement pour le second cas.

Enfin, nous nous interesserons dans un troisième temps à l’étude des crues des fleuves,
qui ont été étudiées abondamment entre 1940 et 1955. Deux approaches ont ainsi été
proposées pour modéliser les maximas annuels. Gumbel (1941) notait que les maxi-
mas annuels suivaient une distribution particulière (appelée distribution de Gumbel ),
mais parrallèllement, sur des séries plus longues (700 ans, contre 100 dans les travaux de
Gumbel) Hurst (1951) a noté que les maximas annuels n’étaient pas indépendants, mais
au contraire très fortement dépendants: les processus fractionnaires étaient parfait pour
modéliser la dynamique de telles séries. Entre ces deux approches a priori contradictoires
(indépendance ou forte mémoire ?), il semble être délicat de trancher. Et les modèles
retenus donnent de fortes différences si l’on cherche à calculer des périodes de retour de
crues, par exemple. Afin de contourner cette difficulté, cette partie propose d’adapter des
modèles de données haute fréquence, utilisés en finance afin de modéliser les prix transac-
tion par transaction, à des niveaux de fleuves. Comme nous le verrons, cette modélisation
donne des résultats différentes de ceux obtenus par Gumbel lors du calcul de la période
de retour.

Par la suite, certaines notions peuvent avoir deux notations différentes entre les
chapitres. Mais elles seront rappelées en début de chaque chapitre.
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Chapter 1

Modeling dependent risks using copulae

1.1 Modeling multiple risks

In reinsurance, it could be interesting to split a claim cost into several components, e.g. the
loss amount (paid to the insured) and the allocated expenses (lawyers, expertise...), see e.g.
Frees and Valdez (1998) or Klugman and Parsa (1999). In that case, X i = (X1,i, X2,i)’s
are the amounts associated with i-th claim. In the context of reinsurance pricing, assuming
that allocated expenses are prorata capita, the reimbursement of the reinsurer, with an
excess-of-loss treaty (with infinite limit, and deductible d), when a claim expressed as
X = (X1, X2) occurred, is

g(X1, X2) =





0, if X1 ≤ d,

X1 − d +
X1 − d

X1

X2, if X1 > d.

The pure premium per claim is then E(g(X)) which is based on the joint distribution of
X since g is nonlinear.

Identically, for some financial derivatives, dependencies play an important rule. Let
X1,i and X2,i denote the price at time i of two financial assets. Let gk (X1, X2) denote the
payoff at maturity 1 of some European option, where gk is, a priori, nonlinear, and where
k is a strike.

• Quanto derivatives, with payoff gk (x1, x2) = x2 (x1 − k)+. It is a call, expressed
in domestic currency (X2 denotes the exchange rate), and based on some overseas
asset (with price X1),

• Spreads derivatives, with payoff gk (x1, x2) = (x1 − x2 − k)+. It is a call on the
spread between the prices of the two assets, X1 and X2,

• Basket derivatives, with payoff gk (x1, x2) = (αx1 + βx2 − k)+. It is a call on the
portfolio with two assets,

• Min-max derivatives, with respective payoffs gk (x1, x2) = (min {x1, x2} − k)+ and
gk (x1, x2) = (max {x1, x2} − k)+. Those are call options respectively on the mini-
mum and the maximum of two prices.

In life insurance, analogous of those financial derivatives can be considered. Consider a
husband and his wife, and denote by Tx and Ty the survival life lengths, assuming that the

37
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man has age x and his wife y when they buy a life-insurance contract. Several contracts
can be considered, where capital Ck is due each year k,

• as long as the spouses are both still alive, g(Tx, Ty) =
∞∑

k=1

vkCk1(Tx > k and Ty > k),

• as long as there is a survivor, g(Tx, Ty) =
∞∑

k=1

vkCk1(Tx > k or Ty > k).

Note that Ck can be stochastic if the capital is indexed on a financial asset, or if the
income is indexed by some stochastic interest rate. The associated pure premium, called
annuities when Ck = 1, can be written respectively (with standard actuarial notations)

axy =
∞∑

k=1

vkP(Tx > k, Ty > k) and axy =
∞∑

k=1

vkP(Tx > k or Ty > k).

Those contracts are usually built for an husband and his wife, i.e. contracts with more
risks can be considered if children are involved, or even higher when dealing with collective
insurance contracts.

Applications with a high number of risks can also be considered, in credit risk for
instance. Let X = (X1, ..., Xd) denote the vector of indicator variables, indicating if the
i-th contract defaulted during a given period of time. If a credit derivative is based on the
occurrence of k defaults among d companies, and thus, the pricing is related to the distri-
bution of the number of defaults, N , defined as N = X1 + ...+Xd. Under the assumption
of possible contagious risks, the distribution of N should integrate dependencies.

1.2 Distribution functions in Rd, and copulae

A copula provides a uniform representation of a multivariate distribution. Copulae are
important since they allow to separate the effect of the dependence from the effects of the
marginal distributions (due to Sklar’s Theorem, see Sklar (1959)).

Remark 1.2.1. We shall keep in this thesis the word “copula” used first by Sklar (1959),
which originates from the Latin noun for a “link or tie” that connects two different things.
But actually, such a function appeared earlier in the literature, e.g. in Eyraud (1934)
which considers a “fonction de corrélation” (which is the copula function), and latter on,
in Hoeffding (1940) who considered a “standardized version of a random pair” (but which
considered uniform distributions on [−1/2, +1/2] instead of [0, 1]).

Definition 1.2.2. A d-dimensional copula is a d-dimensional distribution function re-
stricted to [0, 1]d with standard uniform margins, for a non-negative integer d.

In order to characterize those functions, observe that a proper definition of increasing
function is needed. In dimension 1, recall that a distribution function F is increasing
since a probability measure is positive: for a < b, F (b)−F (a) = P(X ∈ (a, b]) ≥ 0, where
X is a random variable with distribution function F . The analogous in dimension d, is
that whatever rectangle [a, b], P(X ∈ (a, b]) ≥ 0. This yields intuitively the notion of
d-increasingness:
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Definition 1.2.3. A function F : Ω1 × ...×Ωd ⊂ Rd → R is said to be d-increasing if for
all rectangle (a, b] in Ω1 × ... × Ωn, VF ((a, b]) ≥ 0, where

VF ([a, b]) = ∆b

a
F (t) = ∆bn

an
∆bn−1

an−1
...∆b2

a2
∆b1

a1
F (t) (1.1)

for all t, where

∆bi
ai

F (t) = F (t1, ..., ti−1, bi, ti+1, ..., tn) − F (t1, ..., ti−1, ai, ti+1, ..., tn) . (1.2)

Note that in dimension 2, this can be written analogously

F (x1, y1) + F (x2, y2) ≥ F (x1, y2) + F (x2, y1),

for all x1 ≤ x2 and y1 ≤ y2, and such a function will also be said to be supermodular.
Hence, copulae can be equivalently defined as functions C : [0, 1]d → [0, 1] satisfying,

for u1, ..., ud, v1, ..., vd ∈ [0, 1] with xi ≤ yi for all i = 1, ..., d, the conditions

C(1, ..., 1, ui, 1, ..., 1) = ui, (1.3)

C(u1, ..., ui−1, 0, ui+1, ..., ud) = 0, (1.4)

C is d-increasing. (1.5)

In fact, it is easily seen that Equations (1.3) and (1.4) translates into the uniformity
of the margins. Moreover, Equations (1.3), (1.4), and (1.5) imply that C increases in each
variable as well that C is Lipschitz-continuous with Lipschitz constant one. Note that in
the case where C is differentiable, its density is

c(u1, ..., ud) =
∂dC(u1, ..., ud)

∂u1...∂ud

.

Example 1.2.4. Figure (1.1) shows the shape of a copula (the so-called Gumbel copula),
in dimension 2, defined as

C(u, v) = exp
(
−

(
[− log u]θ + [− log v]θ

)1/θ
)

, u, v ∈ [0, 1],

where θ ≥ 1 (here θ = 2), with on top the surface of C and the associated level curves.
Since this copula is twice differentiable, its density exists, and is plotted bellow. Note
that when θ → ∞, the limiting copula is C(u, v) = min{u, v}, also called upper Fréchet-
Hoeffding copula (see Section 1.5.8). And finally, when θ → 1, the limiting copula is
C(u, v) = uv, the independent copula.

1.3 Coupling marginal distributions, and Sklar theo-

rem

One of the most important and useful result about copulae is Sklar’s Theorem. A proof
of Theorem 1.3.1 can be found e.g. in Nelsen (1999) or in Sklar (1959).
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Figure 1.1: Copula on top (the distribution function), and the associated density below.

Theorem 1.3.1. 1. Let C be a d-dimensional copula and F1, ..., Fd be univariate dis-
tribution functions. Then, for x = (x1, ..., xd) ∈ Rd,

F (x1, ..., xn) = C(F1(x1), ..., Fd(xd)) (1.6)

defines a distribution function with marginal distribution functions F1, ..., Fd.

2. Conversely, for a d-dimensional distribution function F with marginal distributions
F1, ..., Fd there is a copula C satisfying Equation (1.6). This copula is not necessarily
unique, but it is if F1, ..., Fd are continuous, given by

C(u1, ..., ud) = F (F←
1 (u1), ..., F

←
n (xn)), (1.7)

for any u = (u1, , ..., ud) ∈ [0, 1]d, where F←
1 , ..., F←

d denote the generalized left
continuous inverses of the Fi’s, i.e. F←

i (t) = inf {x ∈ R, Fi (x) ≥ t} for all 0 ≤ t ≤
1.

Sklar’s Theorem constitutes the motivation for calling copulae dependence structures
that capture scale invariant dependence properties. In fact, we see from Equation (1.6)
that C couples the marginals F1, ..., Fn to the joint distribution function F separating
thus dependence and marginal behaviors.

Further, from the second part of the theorem, consider the following definition,

Definition 1.3.2. Consider a random vector X with joint distribution function F and
continuous marginal distributions F1, ..., Fd. The copula C of X is the copula associated
with F , i.e.

C(u1, ..., ud) = F (F←
1 (u1), ..., F

←
d (ud)), (1.8)
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for any u = (u1, , ..., ud) ∈ [0, 1]d.

Further, copulae satisfy an invariance property: the dependence structure between
random variables does not changes under increasing and continuous transformations of
the margins. More formally, let X = (X1, ..., Xd) be a random vector with copula C.
For any functions φi : R → R continuous and strictly increasing functions, i = 1, ..., d, C
is also the copula of (φ1(X1), ..., φd(Xd)) (see Joe (1997), or Embrechts, Hoeing and Juri
(2002)). Note that the continuity assumptions of the φi’s is not needed if the Xi’s are
continuous.

This invariance property means that copulae are the natural framework to study de-
pendence properties which are invariant under increasing transformations of the margins
(the “scale invariance property” in Hoeffding (1940)). For example, consider a portfolio
of dependent insurance policies, and assume that the losses derive from a multivariate
distribution. The joint distribution for the losses will have the same copula as the copula
of the logarithm of the losses, or any integral-transforms of the losses.

Another example of copula is the following. Throughout the rest of the thesis we will
encounter other examples of copulae.

Example 1.3.3. If d = 2, the Marshall and Olkin copula with parameters α, β ∈ [0, 1] is
defined for u, v ∈ [0, 1] as

Cα,β(u, v) = uv min{u−α, v−β} = min{u1−αv, uv1−β}. (1.9)

This copula can be extended in higher dimension as

Cα1,...,αn
(u1, ..., ud) = u1...ud min{u−α1

1 , ..., u−αd

d },

where α1, ..., αd ∈ [0, 1] For some interpretations of this copula, see Section 1.7.

Definition 1.3.4. Copula C⊥(u1, ..., ud) = x1 × ... × xd is called the independent copula.

Note that a random vector X has independent components if and only if C⊥ is a
copula of X.

Definition 1.3.5. Given F1, ..., Fd some univariate distribution functions, the class of
d-dimensional distribution functions F with marginal distributions F1, ..., Fd respectively,
is called a Fréchet class, denoted F(F1, ..., Fd).

Note that those classes are bounded, i.e.

max{0, F1(x1) + ... + Fd(xd)− (d− 1)} ≤ F (x1, ..., xd) ≤ min{Fi(xi), i = 1, ..., d}, (1.10)

for all x = (x1, ..., xd), and any F ∈ F(F1, ..., Fd). Those bounds are called Fréchet-
Hoeffding bounds, and they will be studied in more details in section 1.4.

1.3.1 Survival distributions in Rd

In the univariate case, the survival distribution function of random variable X is FX(x) =
P(X > x) = 1 − FX(x), x ∈ R. The extension in dimension 2 yields

FX,Y (x, y) = P(X > x, Y > y) = 1 − FX(x) − FY (y) + FX,Y (x, y) 6= 1 − FX,Y (x, y),
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where FX(x) = P(X ≤ x) and FY (y) = P(Y ≤ y). If C denotes a copula of (X, Y ), note
that expression can be written

FX,Y (x, y) = FX(x) + F Y (y) − 1 + C(1 − FX(x), 1 − F Y (y)),

which may also be written

FX,Y (x, y) = C∗(FX(x), F Y (y)),

where
C∗(u, v) = u + v − 1 + C(1 − u, 1 − v), u, v ∈ [0, 1] × [0, 1],

will be called survival copula (since it is a copula). Note that if C is the distribution
function of (FX(X), FY (Y ), C∗ is the distribution function of (FX(X), F Y (Y )).

Example 1.3.6. Figure 1.2 shows some random generations of copula C (here Gumbel
copula), with the density of the copula on the right, and random simulations of copula C∗,
and the associated density below. The survival copula is also called “rotated” copula since
the density is simply rotated around the center of the unit square.
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Scatterplot, Gumbel copula random generation
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Scatterplot, Survival Gumbel copula random generation

Figure 1.2: A copula on top, and the associated survival copula below.

This survival copula can be defined more generally in dimension d, using Poincarré’s
formula (see Feller (1971)).

Definition 1.3.7. Let C denote a n-dimensional copula, the function C∗ defined by

C∗(u1, ..., ud) =
d∑

k=0

(
(−1)k

∑

i1,...,id

C(1, ..., 1, 1 − ui1 , 1, ...1, 1 − uik , 1, ...., 1)

)
, (1.11)
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for all u = (u1, ..., ud) ∈ [0, 1] × ... × [0, 1], is a copula, called survival copula or dual
copula, associated to C. Further, if X = (X1, ..., Xd) has distribution function C, then
(1 − X1, ..., 1 − Xd) has distribution function C∗.

1.3.2 Topological properties of the set of copulae and extensions

One of the most important property is that the class of copulae is convex, i.e. mixtures of
copulae can be considered. More formally (see Nelsen (1999)), if {Cθ, θ ∈ R} is a collection
of copulae, and H a distribution function on R, the function

C (u1, ..., ud) =

∫

R

Cθ (u1, ..., ud) dH (θ)

is a copula.
Furthermore, copulae are interesting when working on probabilistic arithmetic (see e.g.

Williamson (1989)), which is the study of functions of risks ψ(X, Y ), e.g. X + Y . Recall
that given two (univariate) distribution functions FX and FY , the convolution FX ⊗ FY

is the function defined as

FX ⊗ FY (x) =

∫

R

FX (x − t) dFY (t) for all x ∈ R.

It is well known that FX ⊗ FY is the distribution function of X + Y when X and Y are
independent, with respective distribution functions FX and FY . Analogously, it might be
interesting to see if there exists a function ψ such that the mixture pFX + (1 − p) FY can
be the distribution function of ψ (X, Y ). This question has arisen in Alsina and Schweizer
(1988) and Alsina, Nelsen and Schweizer (1993).

Definition 1.3.8. A binary operation χ on a set of distribution function is said to be
derivable if there is a function ψ, Borel-measurable, such that, for all distribution func-
tions FX and FY , associated to random variables X and Y respectively, χ (FX , FY ) is the
distribution function of ψ (X, Y ).

Particular cases of binary operations are mixtures operations,

χ (FX , FY ) = pFX + (1 − p) FY where 0 < p < 1.

and geometric mixtures, χ (FX , FY ) =
√

FXFY . As shown in Alsina and Schweizer (1988),
mixture and geometric mixtures operations are not derivable. In order to characterize
operations on distribution functions that can be deduced from operations on random
variables, quasi-copulae have been introduced (see Alsina, Nelsen and Schweizer (1993)).

In dimension 2, copulae were defined as functions C : [0, 1] × [0, 1] → [0, 1] such that

C (0, v) = C (u, 0) = 0, 0 ≤ u, v ≤ 1 (1.12)

C (1, v) = v, C (u, 1) = u, 0 ≤ u, v ≤ 1 (1.13)

C (u, v) + C (u′, v′) ≥ C (u, v′) + C (u′, v) , 0 ≤ u ≤ u′ ≤ 1, 0 ≤ v ≤ v′ ≤ 1. (1.14)

Thus, a copula is the restriction to the unit square of a distribution function with
uniform margins on [0, 1]. Let S denote the set of functions C : [0, 1] × [0, 1] → [0, 1]
satisfying Equations (1.12) and (1.13) such that C is increasing in each variables. As in
Bassan and Spizzichino (2004), we shall call these functions extended semicopulae. Note
that some properties of those h-copulae will be studied in Chapter 4.
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Definition 1.3.9. A function C : [0, 1]× [0, 1] → [0, 1] increasing in each variables, such
that C(0, v) = C(0, u) = 0, C(1, v) = v and C(u, 1) = u, for all 0 ≤ u, v ≤ 1 will be called
a semicopula. The set of semicopulae will be denoted S.

Further, let H denote the set of continuous strictly increasing functions [0, 1] → [0, 1]
such that h (0) = 0 and h (1) = 1. Those functions would be called distortion functions.
Note that h ∈ H if and only if h← ∈ H, so that (H, ◦) defines a group, where ◦ denotes
the composition operation. The identity is the identical function on [0, 1]. For all h ∈ H
and C ∈ C, define

Ψh (C) (u, v) = h← (C (h (u) , h (v))) , 0 ≤ u, v ≤ 1.

Such a function will be called a h-copula. H-copulae will be functions Ψh (C) for some
distortion function h and some copula C. Further, notice that for h, h′ ∈ H,

Ψh◦h′ (C) (u, v) = (Ψh ◦ Ψh′) (C) (u, v) , 0 ≤ u, v ≤ 1.

A copula will be said to be symmetric or exchangeable if

C (u, v) = C (v, u) , 0 ≤ u, v ≤ 1.

Exchangeable H-copulae are called (simply) semicopulae.

Definition 1.3.10. If h ∈ H is a convex distortion function, and C is a copula, then

Ψh(C)(u, v) = h(C(h←(u), h←(v))) (1.15)

is a copula. It will be called distorted copula.

Example 1.3.11. A particular case is when h is a power function, and when the power
is the invert of an integer, h(x) = x1/n, i.e.

Ψh (C) (u, v) = Cn(u1/n, v1/n), 0 ≤ u, v ≤ 1 and n ∈ N.

Note that this copula is the survival copula of the componentwise maxima: if
(X1, Y1), ..., (Xn, Yn) is an i.i.d. sample, where the (Xi, Yi)’s have copula C, then the
survival copula of (Xn:n,Yn:n

) is Ψh(C) (see Chapter 6 of this thesis for more details on
this functional equation).

Example 1.3.12. Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0,
and define C(u, v) = φ←(φ(u) + φ(v)). This function is a copula, called Archimedean
copula, and function φ is a generator of that copula (see Section 1.5 for a detailed pre-
sentation). The class of Archimedean copulae is stable by distortion. Let C denote an
Archimedean copula with generator φ, and h ∈ H a convex distortion function, then Ψh(C)
is also an Archimedean copula, with generator φ ◦ h←.

Genest and Rivest (2001) called such a transformation the multivariate probability
integral transformation. Wang, Nelsen and Valdez (2005) called this copula a distorted
copula.



CHAPTER 1. MODELING DEPENDENT RISKS USING COPULAE 45

Definition 1.3.13. A semicopula C which satisfies the Lipschitz condition

|C(u1, v1) − C(u2, v2)| ≤ |u1 − u2| + |v1 − v2|,

for all 0 ≤ u1, u2, v1, v2 ∈ [0, 1] will be called a quasicopula. The set of quasicopulae will
be denoted Q.

Definition 1.3.14. An associative semicopula C, i.e. C (C (u, v) , w) = C (u,C (v, w)),
for all 0 ≤ u, v, w ≤ 1) will be called a t-norm.

Note (see Durante and Sempi (2004)) that S strictly includes the family of the so-
called quasicopulae. For example, Ψh

(
C⊥

)
is a quasicopula if and only if h is a distortion

function such that − log h is convex, in dimension 2. Furthermore S strictly includes
t-norms.

For the description of aging, consider the following family of semicopulae,

A =
{
Ψh

(
C⊥

)
, h ∈ H

}
.

Thus, the elements of A can be written

C (u, v) = h← (h (u) h (v)) = φ← (φ (u) + φ (v)) ,

where h ∈ H is called the multiplicative generator, and ψ = − log h the additive generator.
Those elements of A are Archimedean t-norm (see Schweizer and Sklar (1983)), and will
be called Archimedean semicopulae. As mentioned earlier, an Archimedean semicopula is
a copula if and only if − log h is convex.

Further, as shown in Bassan and Spizzichino (2004), family S is closed under operation
Ψh, in the sense that for all C ∈ S and all h ∈ H, Ψh (C) ∈ S. But this property does
not hold for the family of copulae C.

Definition 1.3.15. A capacity on a measurable space (Ω,A) is a set function C : A →
[0, 1] such that C (∅) = 0, C (Ω) = 1, and A ⊂ B implies C (A) ≤ C (B). Further, a
capacity is said to be convex if for all A,B, C (A) + C (B) ≤ C (A ∪ B) + C (A ∩ B).

Note that a capacity is a weaker notion than a probability, and therefore can then be
seen as a non-additive probability measure (see Denneberg (1994)). Recall further that if
f denotes a distortion function, strictly convex, then for any probability measure P, f ◦P
is a convex capacity. Such a result can be extended in higher dimension: if T denotes a
t-norm, then, for any probability measures P and Q, T (P (·) , Q (·)) is capacity.

Example 1.3.16. Interest of quasi-copulae - As shown in Alsina, Nelsen and
Schweizer (1993), if χ is a binary operation, derivable from a function ψ, and induced
pointwise (i.e. χ (FX , FY ) (t) = χ (FX (t) , FY (t)) for all t), then either

• ψ (X, Y ) = max {X, Y } and then χ is a quasi-copula,

• ψ (X, Y ) = min {X, Y } and then χ is the dual of a quasi-copula (i.e. u+v−χ (u, v)
is a quasi-copula),

• ψ (X, Y ) = X and χ (u, v) = u, or ψ (X, Y ) = Y and χ (u, v) = v.
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Note further (see Nelsen, Quesada Molina, Schweizer and Sempi (1996)) that all those
results also hold in higher dimension.

Example 1.3.17. Interest of semi-copulae - As mentioned in Bassan and Spizzichino
(2004), the bivariate aging is the result of the interplay between dependence (copulae) and
univariate aging. Hence, when describing dependence induced by joint survival function,
three functions can be considered, in the particular case of exchangeable positive random
variables. Set G = FX = FY for convenience, and let F denote the joint distribution
function.

1. The survival copula,

C∗ (u, v) = F
(
G

←
(u) , G

←
(v)

)
, 0 ≤ u, v ≤ 1.

2. The multivariate aging function (see Bassan and Spizzichino (2000)),

B (u, v) = exp
(
−G

← (
F (− log u,− log v)

))
, 0 ≤ u, v ≤ 1.

B is a semicopula. Such a function is related to function h (x, y) = G
← (

F (x, y)
)

introduced in Barlow and Spizzichino (1993).

3. The Archimedean semicopula with additive generator G
←

,

A (u, v) = G
(
G

←
(u) + G

←
(v)

)
= Γ← (Γ (u) Γ (v)) , 0 ≤ u, v ≤ 1,

where Γ (x) = exp
(
−G

←
(x)

)
is a function in H, and thus A = ΨΓ

(
C⊥

)
.

Based on those functions, several interpretations of aging dependencies can be considered
(see Bassan and Spizzichino (2004)). For instance, the independence case. If C∗ = C⊥,
lifetimes are independent. If A = C⊥, then the one-dimensional marginal distributions
G are exponential. And finally, if B = C⊥ then F (x, y) = G(x + y) and therefore,
F Schur-constant (see Marshall and Olkin (1979)). From Barlow and Mendel (1992),
this is equivalent to the requirement that for any h > 0, and all x, y ≥ 0, the following
inequality holds,

P(X > x + h|X > x, Y > y) = P(Y > y + h|X > x, Y > y).

Conditionally on the same history of survivals ({X > x, Y > y}), the marginals distri-
bution of residual lifetimes are identical. Hence, residual lifetimes are exchangeable (see
Spizzichino (2001)).

1.4 Fréchet-Hoeffding bounds

Hoeffding (1940, 1942) gave an explicit formulation of the statement “there is a functional
dependence between random variables X and Y ”: there exits a function g : R2 → R such
that g(X,Y ) = 0 almost surely. Equivalently, if G = {(x, y), g(x, y) = 0}, this statement
can be written as P((X, Y ) ∈ G) = 1. This formulation is a more general concept than
those studied in this section (and this thesis),
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• G is a strictly monotone increasing curve, and there exists a strictly increasing
function φ such that Y = φ(X),

• G is a strictly monotone decreasing curve, and there exists a strictly decreasing
function φ such that Y = φ(X).

Hoeffding (1942) proved that those two cases yield bounds on Fréchet classes. In higher
dimension, the following results holds, i.e. the family of copulae is bounded: for all copula
C,

C−(u1, ..., ud) = max{0, u1 + ... + ud − (d − 1)}
≤ C(u1, ..., ud)

≤ C+(u1, ..., ud) = min{u1, ..., ud},

for all u = (u1, ..., ud) ∈ [0, 1]d. C− and C+ the so-called Fréchet-Hoeffding lower and
upper bounds.

Further, note that C+ is (always) a copula, and C− is a copula only if d = 2. In such
a case, the supports of those copulae are the diagonal, the main one for the upper bound,
the other one for the lower. Graphs of those two copulae (when n = 2) can be visualized
on Figure 1.3.

For the lower Fréchet bound, the following assertions hold,

• If d = 2, C− is the distribution function of U = (U, 1 − U) where U is uniformly
distributed on [0, 1].

• (X, Y ) has copula C− if and only if there is a non-decreasing function φ and a non-

increasing function ψ such that (X,Y )
L
= (φ(Z), ψ(Z)) for some random variable

Z.

• (X, Y ) has copula C− if and only if there is a strictly decreasing function φ such
that Y = φ(X).

For the upper bound,

• C+ is the distribution function of U = (U, ..., U) where U is uniformly distributed
on [0, 1].

• X = (X1, ..., Xn) has copula C+ if and only if there are non-decreasing functions

φi’s such that (X1, ..., Xn)
L
= (φ1(Z), ..., φd(Z)) for some random variable Z.

• (X, Y ) has copula C+ if and only if there is a strictly increasing function φ such
that Y = φ(X)

The particular case of the upper Fréchet-Hoeffding bound, leading to comonotonic
random variables, will be developed in Section 4.1.6. The lower case in dimension 2 will
be called either anti-comonotonic or counter-comonotonic.

Example 1.4.1. Those bounds on copulae provide also bounds for several quantities. For
instance, when d = 2, if g : R2 → R is supermodular (or 2-increasing when d = 2), i.e.

g(x1, y1) + g(x2, y2) ≥ g(x1, y2) + g(x2, y1),
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Figure 1.3: Lower bound, independent copula and upper bound, n = 2, with the surface
of the distribution functions, and the associated level curves, including below scatterplot
of random generations.

for all x1 ≤ x2 and y1 ≤ y2, then for all random vector (X, Y ) with marginal distribution
functions FX and FY ,

E(g(F←
X (U), F←

Y (1 − U))) ≤ E(g(X, Y )) ≤ E(g(F←
X (U), F←

Y (U))),

where U is uniformly distributed on [0, 1] (see Tchen (1980)). Stop-loss premium for
the sum of two risks (e.g. E(X + Y − t)+) can be bounded by comonotonic and anti-
comonotonic versions of X and Y since (x, y) 7→ (x+ y− t)+ is supermodular. Moreover,
most of the multiple-life insurance premiums can be written as the expected value of some
supermodular function of time-until-death random variables for an husband and his wife.

Nelsen, Quesada Molina, Rodríguez Lallena and Úbeda Flores (2004) gave other
bounding results when restricting the set of copulae. Let S denote a nonempty set of
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bivariate functions with a common domain, then S and S denote, respectively, the point-
wise supremum and infimum of S i.e., for each (u, v)

S(u, v) = sup{S(u, v), S ∈ S} and S(u, v) = inf{S(u, v), S ∈ S}.

As proved in Nelsen, Quesada Molina, Rodríguez Lallena and Úbeda Flores (2004), if S
is a set of copulae, then S and S are both quasi-copulae. This can be extended in any
dimension d ≥ 2. Hence, if C− is usually not a copula, it is always a quasi-copula.

1.5 Archimedean copulae

An important class of copulae are the so-called Archimedean copulae (from Ling (1965)
and Genest and MacKay (1986a))

Definition 1.5.1. Let ψ denote a convex decreasing function (0, 1] → [0,∞] such that
ψ(1) = 0. Define the inverse (or quasi-inverse if ψ(0) < ∞) as

ψ←(t) =

{
ψ−1(t) for 0 ≤ t ≤ ψ(0)
0 for ψ(0) < t < ∞.

If d > 2, assume more generally that ψ← is d-completely monotonic (recall that φ is d-
completely monotonic if it continuous and has derivatives which alternate in sign, i.e. for
all k = 0, 1, ..., d, (−1)kdkφ(t)/dtk ≥ 0 for all t). Function

C(u1, ..., un) = ψ←(ψ(u1) + ... + ψ(ud)), u1, ..., un ∈ [0, 1],

is a copula, called an Archimedean copula, with generator ψ.

Let Ψd denote the set of Archimedean generators in dimension d (properties and
characterizations of Archimedean in dimension d will be studied in Chapter 5). Note
that ψ and c · ψ (where c a positive constant) yield the same copula, and conversely,
two Archimedean copulae are equal if their generators are equal up to a multiplicative
constant. If ψ(t) → ∞ when t → 0, the generator will be said to be strict.

Example 1.5.2. The independent copula C⊥ is an Archimedean copula, with genera-
tor ψ(t) = − log t. The upper Fréchet-Hoeffding copula is not Archimedean (but can be
obtained as the limit of some Archimedean copulae).

Example 1.5.3. From one Archimedean copula with generator ψ, it is easy to generate
several other Archimedean copula. For instance, if h : [0, 1] → [0, 1] a concave distortion
function, then ψ ◦h is also an Archimedean copula (see also Section 1.3.2). Furthermore,
Ψd is a stable family by linear combination: for all α, β ≥ 0, if ψ is an Archimedean
generator, so is αψ + βψ (but note that a linear combination of Archimedean copulae
is not Archimedean anymore). And finally, as mentioned in Genest, Ghoudi and Rivest
(1995), Ψd is a stable family by scaling: if 0 < κ < 1, then ψκ(·) = ψ(κ·) − ψ(κ) also
generates an Archimedean copula. Chapter 2 of this thesis will give an interpretation of
this generator, in terms of conditioning: if (U, V ) is a random vector with an Archimedean
copula C generated by φ, the copula of the truncated vector (U, V ) given U ≤ u and V ≤ v,
where (u, v) ∈ [0, 1]2 satisfies C(u, v) = κ, is the Archimedean copula generated by ψκ.
Table 1.1 gives some generators of Archimedean copulae.
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ψ C(u, v) Reference
log(1/t) uv Independence

(− log t)θ θ ≥ 1 exp
(
−[[− log(u)]θ + [− log(v)]θ]1/θ

)
Gumbel (1960), Section 1.3.8.

(
t−θ − 1

)
θ ≥ 0

(
u−θ + v−θ − 1

)−1/θ
Kimeldorf and Sampson (1975)
Clayton (1978), Section 1.3.6

− log
e−θt − 1

e−θ − 1
θ ∈ R

−1

θ
log

(
1 − (1 − e−θu)(1 − e−θv)

1 − e−θ

)
Frank (1979), Chapter 7

Table 1.1: Some parametric families of Archimedean copulae.

Remark 1.5.4. One of the earliest result on Archimedean copulae is Ling’s theorem, stating
that, in dimension 2, Archimedean copulae are the only copulae satisfying C(u, u) < u for all
u ∈ (0, 1), and the associativity functional equation

C(C(u, v), w) = C(u,C(v, w)) for all u, v, w ∈ [0, 1].

Note that this relationship allows to define some serial iterates (see Schweizer and Sklar (1983)),
in the sense that

C2(u1, u2) = ψ←(ψ(u1) + ψ(u2)) and Ck(u1, ..., uk−1, uk) = C2(Ck−1(u1, ..., uk−1), uk),

for all k ≥ 3.

Under some assumptions, the following proposition stated that the limit of Archimedean
copulae is still Archimedean. More precisely, Genest and MacKay (1986a) proved that if Cn is a
sequence of absolutely continuous Archimedean copulae, with twice differentiable generators ψn,
the limit of Cn when n → ∞ is Archimedean if and only if there exists ψ ∈ Ψ such that, for all
s, t ∈ [0, 1],

lim
n→∞

ψn(s)

ψ′
n(t)

=
ψ(s)

ψ′(t)
. (1.16)

In the case where the limit in Equation (1.16) is null, the limiting copula is the upper Fréchet-
Hoeffding copula. As we shall see in Chapter 3, weaker necessary and conditions on the ψn’s can
be obtained to characterize the limiting copula.

Further, it is also possible to compare Archimedean for the pointwise order. Let C1 and C2 be
two Archimedean copulae, with respective generator ψ1 and ψ2. Then C1 ¹ C2 for the pointwise
order if and only if φ1 ◦ φ←

2 is subadditive, i.e. ψ1 ◦ ψ←
2 (x + y) ≤ ψ1 ◦ ψ←

2 (x) + ψ1 ◦ ψ←
2 (y) for

all x, y ∈ [0, 1]. Note that the following conditions are sufficient,

• if ψ1 ◦ ψ←
2 is concave, C1 ¹ C2,

• if ψ1/ψ2 is increasing, C1 ¹ C2,

• if ψ1 and ψ2 both differentiable on (0, 1), and if ψ′
1/ψ′

2 is increasing, C1 ¹ C2.

Note further that if Ling’s theorem (see Ling (1965)) was historically the first way to introduce
Archimedean copulae, other characterizations can also be used:

• the frailty approach and the use of the Laplace transform of some latent factor. The
underlying idea is that random variables X1, ..., Xd are conditionally independent, given
a latent factor Θ, e.g. Xi|Θ ∼ E(λiΘ), i = 1, ..., d. The expression of the Archimedean
generator is then related with the Laplace transform of the latent factor (see e.g. Clayton
(1978), Oakes (1989), Zheng and Klein (1995), or Bandeen-Roche and Liang (1996)). We
will detail this approach in Section 1.6.
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• the survival function approach: assume that for a random vector X = (X1, ..., Xd)
there is there is a convex (univariate) survival function F such that F (0) = 1 and

P(X1 > x1, ..., Xn > xd) = F (x1 + ... + xd).

Then, the joint survival copula of X = (X1, ..., Xd) is given by

u = (u1, ..., ud) 7→ F (F
←

(u1) + ... + F
←

(ud)),

which defines an Archimedean copula with generator ψ = F
←

,

• Abel criterion, see Genest and MacKay (1986a), when d = 2: C is Archimedean if and
only if there exists a mapping f : (0, 1) → (0,∞) such that

∂C(u, v)/∂u

∂C(u, v)/∂v
=

f(u)

f(v)
,

for all u, v ∈ [0, 1]. In such a case, φ(t) =

∫ 1

t
f(s)ds.

Example 1.5.5. Archimedean copulae are interesting when modeling exchangeable binary vari-
ables, since for every infinite exchangeable sequence X1, ..., Xn, ... of Bernoulli variables, there is
a generator such that the associated n-dimensional Archimedean copula is a copula of (X1, ..., Xn)
(see Müller and Scarsini (2004)).

If ψ is a generator, set Fψ(x) = 1 − ψ←(x), for all x ≥ 0. As proved in Genest and Rivest
(1993), Fψ(·) is a cumulative distribution function, of a unimodal distribution on R+, with mode
0. E.g. for independence, ψ(t) = − log t, and therefore, Fψ(·) is the distribution function of the
standard exponential distribution.

Analogously, if ψ is a generator, set Qψ(x) = 1 − log[ψ(x)], for all x ∈ (0, 1). As proved in
Vandenhende and Lambert (2004), Qψ(·) is quantile function (the inverse of some cumulative
distribution function). With strict generators, it is the quantile function of an unbounded dis-
tribution. E.g. is the associated distribution is logistic (P(Z ≤ z) = [1 + exp(−z/θ)]−1), the
associated copula is Gumbel copula (see Section 1.3.8).

Exchangeability (also called interchangeability or indistinguishability) is a common way to
introduce dependence when modeling a large number of risks. It simply means that a permutation
of the components in a portfolio should not affect the risk of the portfolio. It can be the case
for motor insurance, where all policies are identical, or in credit risk for some first-to-default
contract. This notion is closely related to the notion of portfolio homogeneity.

A first notion of symmetry can be the following: X is said to be symmetric if

HX
L
= X for all H ∈ P (d) ,

where P (d) denotes the set of d × d permutation matrices.
Other notions of symmetry can be considered, for instance, if the distribution of X is invariant

by rotations, or by symmetry. Due to this property, in dimension 2, it can be seen that such
distribution have necessarily circular isodensity curves. More formally, X is said to have a
spherical distribution if

HX
L
= X for all H ∈ O (d) ,

where O (d) denotes the set of d × d orthogonal matrices (i.e. HtH = I). Note that the N (0, I)
distribution is spherical. For spherical distributions, the following statements are equivalent (see
Fang, Kotz and Ng (1990) for instance),
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1. HX
L
= X for all H ∈ O (d);

2. the characteristic function of X is of the form x 7→ φ
(
xtx

)
for some φ ∈ Φd, where

Φd =
{
φ : x 7−→ φ

(
xtx

)
is a d-dimensional characteristic function

}
;

3. X has the representation X
L
= RU for some positive random variable R, independent of

U uniformly distributed on the unit sphere in Rd, for the Euclidean norm (R denotes the
norm of X, while U is the angle);

4. for any a ∈ Rd, atX
L
= ‖a‖Xi for all i = 1, ..., d,

Following the construction of the N (µ,Σ) distribution from the standard normal distribution

N (0, I) some extensions can be considered. Consider X
L
= µ + AY where Y is spherically

distributed, where AtA = Σ. X will then be said to be spherically distributed with parameters
µ and Σ = AtA. As earlier, some characterizations of elliptical distributions can be used: X

has the representation X
L
= µ + RAtU for some positive random variable R, such that R2 has

a χ2 (n) distribution, independent of U uniformly distributed on the unit sphere in Rd, and A
satisfies AtA = Σ.

The t-distribution, with parameters m, µ and Σ, is obtained by considering µ + At√mZ/S,
where Z ∼ N (0, I) and S ∼ χ2 (m) are independent. The density of the t-distribution with
parameters m, µ and Σ, in Rd is

x 7→ Γ ((n + m) /2)

(πm)n/2 Γ (m/2)
|Σ|−1/2

(
1 +

1

m
(x − µ)t Σ−1 (x − µ)

)−(n+m)/2

.

When m = 1, the distribution is called the multivariate Cauchy distribution.
Elliptical symmetric distributions have been quite popular since they could define a flexible

class. Nevertheless, as pointed out clearly in Cook and Johnson (1981), they might fail in
modeling data.

Exchangeability is the mathematical notion for interchangeability: it emphasizes the homoge-
neous aspects of exchangeability. Bäuerle and Müller (1987) called this notion indistinguishable
risks. One of the most important application is decomposing heterogeneous populations into ho-
mogeneous subclasses. Further, heterogeneity in insurance portfolio is usually modeled through
mixture models. As seen in this section, de Finetti’s theorem allows to express exchangeable
risks using mixture models.

Definition 1.5.6. A finite sequence {X1, ..., Xd} of random variables is exchangeable, or d-
exchangeable, if

(X1, ..., Xd)
L
=

(
Xσ(1), ..., Xσ(d)

)
, (1.17)

for any permutation σ of {1, ..., d}. More generally, an infinite sequence {X1, X2...} of random
variables is infinitely exchangeable (or simply exchangeable) if

(X1, X2, ...)
L
=

(
Xσ(1), Xσ(2), ...

)
, (1.18)

for any finite permutation σ of N∗ (that is Card {i, σ (i) 6= i} < ∞).

Definition 1.5.7. A d-exchangeable sequence {X1, ..., Xd} is called m-extendible (for some m >

d), if (X1, ..., Xd)
L
= (Z1, ..., Zd), where {Z1, ..., Zm} is some m-exchangeable sequence.
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Example 1.5.8. Let X1, ..., Xd be random variables such that

V ar (Xi) = σ2 and cov (Xi, Xj) = ρσ2,

for i = 1, ...d, and j 6= i. Then, the following inequality holds

0 ≤ V ar

(
d∑

i=1

Xi

)
=

d∑

i=1

V ar (Xi) +
∑

i6=j

cov (Xi, Xj) = dσ2 + d (d − 1) ρσ2,

and therefore,

ρ ≥ − 1

d − 1
.

Thus, infinite exchangeability implies positive correlation (exchangeability is a strong notion of
positive dependence).

More formally, on some probabilistic space (Ω,A, P) (see e.g. Pollard (2002)), a probability
measure P on AN of the product space RN (the state of all sequences X1, ..., Xn, ... of real-valued
random variables) is said to be exchangeable if it is invariant under any finite permutation σ, or
equivalently, the random vector (X1, ..., Xn) has the same distribution as

(
Xσ(1), ..., Xσ(n)

)
for

every n-permutation σ, and any n. The distribution of all sets in AN whose indicator functions
are n-symmetric forms a sub-σ-field of AN, denoted Fn. Note that the (Fn, n ∈ N) is a decreasing
filtration on RN.

The so-called de Finetti’s theorem (see de Finetti (1937)) asserts that all exchangeable distrib-
ution can be built up from mixtures of product measures, e.g. based on conditional independence:
for any sets Ai in A,

P (X1 ∈ A1, ..., Xn ∈ An|F∞) = P (X1 ∈ A1|F∞) × ... × P (Xn ∈ An|F∞) .

Using the formulation of Aldous (1985), “an infinite exchangeable sequence is a mixture of
i.i.d. sequences”. In the context of Bernoulli variables, the conditioning σ-algebra F∞ can
be represented through a random variable. Hence, an infinite sequence X1, X2, ... of Bernoulli
random variables is exchangeable if and only there is a random variable Θ, taking values in [0, 1]
such that, given Θ = θ the Xi’s are independent, and Xi ∼ B(θ) (see Schervish (1995) or Chow
and Teicher (1997)).

Example 1.5.9. This result can be easily interpreted in credit risk, where variables of interest
are dichotomous (default or non-default). Let X1, X2, ... be an infinite exchangeable sequence of
Bernoulli variables, and let Sn = X1 + .... + Xn the number of defaults within n companies (for
a given period of time). Then, the distribution of Sn is a mixture of binomial distributions, i.e.
there is a distribution function H on [0, 1] such that

P (Sn = k) =

∫ 1

0

(
n

k

)
ωk (1 − ω)n−k dH (θ) .

In a more general context, the σ-algebra F∞ cannot be generated by a random variable,
and thus, an infinite sequence X1, X2, ... of random variables is exchangeable if and only if there
exists a random probability measure, such that, given the random probability measure, the Xi’s
are independent.

Nevertheless, if there exists a random variable Θ such that, given Θ variables Xi’s are in-
dependent, the infinite sequence {X1, X2, ..., Xn, ...} is exchangeable. But the converse is not
necessarily true (see Schervish (1995)).
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1.6 Clayton’s dependence structure

For the purpose of the presentation, we shall focus here on the bivariate case, extending after-
wards the approach in higher dimension.

1.6.1 Approach through the odds ratio

Following Clayton (1978) or Oakes (1989), define the following associated function, based on the
copula function

T (x, y) =
C (x, y)C12 (x, y)

C1 (x, y)C2 (x, y)
, for all x, y ∈ [0, 1], (1.19)

where C1(x, y) = ∂C(x, y)/∂x = ∂xC(x, y), C2(x, y) = ∂C(x, y)/∂y = ∂yC(x, y) and C12(x, y) =
∂2C(x, y)/∂x∂y = ∂xyC(x, y). Clayton (1978) defined the above measure while seeking an index
to express the influence of parental history of a given disease upon the incidence in the offspring.
Consider the pairs of related individuals, say sons and fathers: denote by X the age at death
of the father and Y the age at death of son. It is assumed that the association arises because
the two individuals share some common influence (common environmental or genetic influence).
Thus, the parameter T (x, y) measures the degree of association between X and Y , independence
being implied by T (x, y) = 1 (and the converse is also true), while positive independence by
T (x, y) > 1 (see Clayton (1978)). More precisely, T (x, y) > 1 if and only if (X, Y ) is left corner
set increasing (LCSI, i.e. the distribution function is TP2, see Section 1.5). Further, if the joint
distribution tends to the associated upper Fréchet-Hoeffding bound, T approaches infinity.

Remark 1.6.1. Drouet-Mari and Kotz (2001) pointed out that function T defined as in Equation
(1.19) can be seen as a ratio of conditional hazard functions: consider two survival times X and
Y , and define the hazard of (X,Y ),

h(x, y) = −∂xyP(X > x, Y > y)

P(X > x, Y > y)
,

the hazard of Y given X surviving beyond x,

hY (x, y) = −∂yP(X > x, Y > y)

P(X > x, Y > y)
,

and the hazard of Y given X failed at x,

hY |X(x, y) = −∂xyP(X > x, Y > y)

∂xP(X > x, Y > y)
,

then

T (x, y) =
hY |X(x, y)

hY (x, y)
=

hX|Y (x, y)

hX(x, y)
.

Equivalently, as in Clayton (1978) or Oakes (1989), this ratio might be written

T (x, y) =
h(x, y)

hX(x, y)hY (x, y)
.

This function was defined in Clayton (1978) as an odds-ratio, which is symmetric, marginal-free,
such that T , hX and hY determine completely the joint distribution.



CHAPTER 1. MODELING DEPENDENT RISKS USING COPULAE 55

1.6.2 The so-called Pareto copulae

Assume that X and Y are exponentially distributed, and independent, with parameter Θ so
that P(X > x|Θ = θ) = exp(−θy) and P(Y > y|Θ = θ) = exp(−θy). Assume that Θ is
gamma-distributed with parameters β and γ, then the non-conditional joint distribution is

P(X > x, Y > y) =

∫ ∞

0
exp(−θ[x + y])

θγ−1 exp(−θ/β)

βγΓ(γ)
dθ = (1 + βx + βy)−γ . (1.20)

Observe that both variables are Pareto distributed, i.e. P(X > x) = (1−βx)−γ and P(Y > y) =
(1 − βy)−γ . The survival copula of (X,Y ) is then

C∗(u, v) = (u−1/γ + v−1/γ − 1)−γ ,

with γ > 0, called Clayton copula.

1.6.3 The frailty approach

Frailty models have been introduced at the end on the 70’s, and have been popularized by
Oakes (1989). The idea is to introduce dependence between survival times using an unobserved
random variable Θ, called the “frailty”. Assume that X and Y are two lifetimes, independent,
conditionally to some exogenous factor Θ. Assume further that conditional marginal survival
distribution satisfy

FX|Θ(x|θ) = P(X > x|Θ = θ) = GX(x)θ,

for some distribution function GX , for all θ, and similarly for Y given Θ = θ. Equivalently, the
so-called frailty variable Θ acts multiplicatively on the marginal hazard functions. Thus

P(X > x, Y > y) = E(P(X > x, Y > y|Θ)) = E(P(X > x|Θ) · P(Y > y|Θ)),

i.e. using conditional expression of survival distributions,

P(X > x, Y > y) = E(exp[−Θ(− log P(X > x))] · exp[−Θ(− log P(Y > y))]),

and finally, if ψ denotes the Laplace transform of Θ, i.e. φ(t) = E(exp(−tΘ)),

P(X > x, Y > y) = φ(− log P(X > x) − log P(Y > y)).

Since marginal distributions can be written P(X > x) = φ(− log GX(x)) and similarly for Y , the
survival copula of (X, Y ) is then

C∗(u, v) = φ(φ←(u) + φ←(v)),

which is the Archimedean copula with generator ψ = φ←. This representation of frailty models
has been introduced in Marshall and Olkin (1988). In the particular case where Θ is Gamma
distributed (with Laplace transform ψ(t) = (1 + t)1/α), C∗ is Clayton copula.

1.6.4 Properties of Clayton copulae

Definition 1.6.2. Given θ ≥ 0, Clayton copula with parameter θ is defined on [0, 1] × [0, 1] as

Cθ(u, v) = (u−1/θ + v−1/θ − 1)−θ.

Notice that when θ → 0 and θ → ∞, C is respectively the independent copula, and the
upper-Fréchet-Hoeffding bound. Further, if 0 ≤ θ1 ≤ θ2, observe that Cθ1

(u, v) ≤ Cθ2
(u, v) for

all u, v ∈ [0, 1]. This copula can also be used for simulations since partial derivative can be
obtained easily,

C1(u, v) =
∂C(u, v)

∂u
= (1 + uθ(v−θ − 1))−1−1/θ,

which can be inverted easily (see Section 1.9).
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1.6.5 Clayton copulae in dimension d ≥ 2

Since Clayton copulae are Archimedean, they can easily be extended in higher dimension.

Definition 1.6.3. Given θ ≥ 0, Clayton copula with parameter θ is defined on [0, 1]d as

C(u1, ..., ud) = (u
−1/θ
1 + ... + u

−1/θ
d − (d − 1))−θ. (1.21)

This copula can be obtained as follows (the construction of this distribution gives a nice way
to simulate such a copula): let

Ui =

(
1 +

Yi

Z

)−θ

, i = 1, ..., d,

where the Yi’s are independent exponential E(1) variables, independent of Z having Gamma
distribution G(θ, 1). Then the joint distribution of (1 − U1, ..., 1 − Ud) is given by Equation
(1.21).

1.7 Marshall and Olkin’s dependence structure

1.7.1 The common shock model

The class of copulae called Marshall and Olkin copulae has been derived from Marshall and
Olkin’s distribution (see Marshall and Olkin (1967), or Muliere and Scarsini (1987)).

Let X and Y denote two lifetimes of two components (x and y). Assume that the shocks follow
three independent Poisson processes: consider the time of occurrence of the shocks, Zx (with pa-
rameter λx) which affects component x, Zy (with parameter λy) which affects component y, and
Zxy (with parameter λxy) which affects both components. The times of occurrence of these shocks
are assumed to be independent, and exponentially distributed. Hence, since a shock is fatal to
one or both components, the survival function of the pair (X, Y ) = (min{Zx, Zxy},min{Zy, Zxy})
is then

F (x, y) = P(X > x, Y > y) = P(Zx > x) · P(Zy > y) · P(Zxy > min{x, y}).

Since those distributions are exponential, rewrite

P(X > x, Y > y) = exp (−λxx − λyy − λxy max{x, y}) , x, y > 0.

Note that marginally, X and Y are exponentially distributed, respectively with parameters λx +
λxy and λy + λxy. Furthermore, note that F satisfies the weak lack of memory property, i.e.

F (x + t, y + t) = F (x, y)F (t, t), for all x, t, y ≥ 0.

Remark 1.7.1. The strong lack of memory property (see Marshall and Olkin (1967)) is

F (x + s, y + t) = F (x, y)F (s, t), for all x, y, s, t ≥ 0.

Marshall and Olkin (1967) (see also Aczél (1966)) proved that only vectors with independent
margins can satisfy such a property. Notice that other functions satisfying the weak lack of
property memory can be found in Ghurye and Marshall (1984). An extension of the univariate
property of lack of memory to dimension 2 is

F ((1 + α)x, (1 + α)y) = F (x, y)F (αx, αy), α > 0.
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This functional equation was considered by Pickands (see Pickands (1976)). As shown in Mar-
shall and Olkin (1991), those distributions are somehow related to functional equations obtained
when focusing on multivariate extremes (see Chapter 6 of this thesis). For instance, observe that
(X, Y ) has a distribution with exponential scaled minima if and only if

[
F

(
tx

k
,
ty

k

)]k

= F (tx, ty),

for all x, y, t > 0 and k ∈ N∗.

Set

α =
λxy

λx + λxy
and β =

λxy

λy + λxy
,

then, the survival copula of (X,Y ) is given by

C∗(u, v) = uv min{u−α, v−β} = min{u1−αv, uv1−β}.

1.7.2 Copulae induced by the model

Definition 1.7.2. Given α and β in (0, 1), the associated Marshall and Olkin copula is defined
as

C(u, v) = min{u1−αv, uv1−β}.

This copula is also sometimes called the Cuadras-Augé copula since the case α = β first
appeared in Cuadras and Augé (1981).

Remark 1.7.3. Observe that these copulae are obtained from mixture distributions, with an
absolutely continuous and a singular component, the mass of the singular component being con-
centrated on the curve C = {(x, y) ∈ [0, 1] × [0, 1], xα = yβ}. Hence, if (U, V ) has copula C

P(U = V ) = P(the first shock affect both components) =
λxy

λx + λy + λxy
> 0.

1.7.3 Application of Marshall and Olkin’s framework

This model is claimed to be widely used in reliability (see Harris (1978)), and in competing
risks context (see David and Moeschberger (1978)). In actuarial science, this model appeared
in Frees, Carriere and Valdez (1996) and Bowers et al. (1997). As pointed out, common shock
models have the primary advantages to be easy to interpret, and computationally convenient.
In multilife insurance contracts (e.g. an husband and his wife), Marshall and Olkin’s model
can be used to take into account a common shock that is common to both lives. Consider
Tx and Ty, the time-until-death random variables, of a man of age x and of his wife of age
y respectively. Denote, using standard actuarial notations kpx and kpy the marginal survival
probabilities kpx = 1 − P(Tx ≤ k) and kpy = 1 − P(Ty ≤ k). Analogously, let kpxy denote the
conditional probability that at least one life survives an additional k years, i.e.

kpxy = 1 − P(Tx ≤ k, Ty ≤ k).

In Marshall and Olkin’s model, if the shock variable is exponentially distributed, with parameter
λxy, then straightforward calculations (see Frees, Carriere and Valdez (1996)) show that

kpxy =k px +k py − exp(−λxyk)kpx ·k py.
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Recall that last-survivor annuities are defined as

axy =
∞∑

k=1

vkP(Tx > k or Ty > k) =
∞∑

k=1

vk
kpxy.

Defining kp
∗
x = exp(λxyk)kpx and kp

∗
y = exp(λxyk)kpy, the annuity can be derived as

axy =
∞∑

k=1

e−(δ+λxy)·k
(
kp

∗
x +k p∗y −k p∗x ·k p∗y

)
, with δ = log(v)

which is the annuity calculated assuming independence between kp
∗
x and kp

∗
y. The annuity is

calculated at force of interest δ+λxy. From this expression, notice that the last-survivor annuity
is a decreasing function of λxy: the greater the dependency, the smaller the annuity.

1.7.4 On the generalization of Marshall and Olkin’s approach

Recall that Marshall and Olkin’s distribution are characterized by the exponential marginal
distribution and the weak lack of memory property,

F (x + t, y + t) = F (x, y) · F (t, t), for all x, y, t > 0, (1.22)

Muliere and Scarsini (1987) considered the following extension,

F (x ⋆ t, y ⋆ t) = F (x, y) · F (t, t), for all x, y, t > 0, (1.23)

for some binary commutative and associative operation ⋆ (i.e. (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z)). As
shown in Aczél (1966) and Schweizer and Sklar (1983), the continuous operators satisfying the
association property, and the reducible condition {x ⋆ y = x ⋆ z or y ⋆ x = z ⋆ x implies y = z}
can be written

x ⋆ y = ψ←(ψ(x) + ψ(y)),

where ψ is a continuous strictly monotone function. Assume further that ⋆ admits an identity
element e (i.e. x ⋆ e = x). Then (see Muliere and Scarsini (1987)) the continuous solution of the
univariate version of the lack of memory property F (x ⋆ t) = F (x)F (t) is

F (x) = exp(−λψ(x)), λ > 0 and exp(1) = ψ←(0) < t.

1.8 Gumbel’s dependence structure

Consider here the so-called Gumbel dependence structure, as introduced in Gumbel (1960, 1961).
It might also be called the Gumbel-Hougaard family (see Hougaard (1968)) or the bivariate
logistic extreme value distribution.

Remark 1.8.1. The “logistic ” term was explained as follows: since this copula is Archimedean,
and its generator is the exponential of the quantile function of some logistic distribution. But
actually, there exists also in the literature a bivariate logistic Gumbel distribution defined on R2

by the following distribution function

F (x, y) =
1

1 + exp(−x) + exp(−y)
, for all x, y ∈ R.

The associated copula is C(u, v) =
uv

u + v − uv
.
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1.8.1 The bivariate logistic distribution

Consider the bivariate logistic distribution function given by

F (x, y) = exp
(
−(x−θ + y−θ)1/θ

)
, x, y > 0,

where θ ≥ 1. This function can be written in a more convenient form,

F (x, y) = exp

(
−

(
[− log(e−1/x)]θ + [− log(e−1/y)]θ

)1/θ
)

, x, y > 0,

The margins of a bivariate logistic distribution are standard Fréchet (with marginal distribution
F (x) = e−1/x

1(x > 0). The associated copula can be derived from this expression, leading to

C(u, v) = exp

(
−

(
[− log u]θ + [− log v]θ

)1/θ
)

, u, v ∈ [0, 1],

where θ ≥ 1.

1.8.2 Multivariate failure distributions

Again, as in Section 1.6.3, consider survival times X and Y independent conditionally to some
random factor Θ, having a positive stable distribution, with Laplace transform ψ(t) = exp(−tθ),
θ ≥ 1. Assume that X|Θ and Y |Θ are independent and exponentially distributed with parameter
Θ. The joint distribution is then the bivariate logistic distribution. Therefore, Gumbel copula
is Archimedean with generator ψ(t) = (− log t)θ, θ > 0. Hence, such a copula can be extended
in dimension higher than 2.

1.8.3 Properties of Gumbel copulae

Definition 1.8.2. Given θ ≥ 1, Gumbel copula with parameter θ is defined on [0, 1] × [0, 1] as

C(u, v) = exp

(
−

(
[− log u]θ + [− log v]θ

)1/θ
)

, u, v ∈ [0, 1].

Observe that Gumbel copulae satisfy the following homogeneous property:

Cz(u, v) = C(uz, vz), for all u, v ∈ [0, 1], and for all z > 0,

(see Chapter 6 for the implication in terms of extreme value of the property, and Joe (1997)).
In dimension d ≥ 2, note that those copulae are given by

C(u1, ..., ud) = exp

(
−

(
[− log u1]

θ + ... + [− log ud]
θ
)1/θ

)
, u1, ..., ud ∈ [0, 1].

1.9 On partial derivatives of copulae

As we shall see in this paragraph, there is a strong link between partial derivatives of the copula,
and conditional distributions related to the copula. Let (X, Y ) denote a random pair with
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Figure 1.4: Clayton and Gumbel copulae density, level curves (uniform margins).
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Figure 1.5: Clayton and Gumbel copulae density, level curves (N (0, 1) margins).
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Figure 1.6: Some simulations of the Clayton, and Gumbel copulae.

continuous marginal distributions FX and FY , joint distribution FXY and copula C. Assume
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that y 7→ P (X ≤ x|Y = y) is continuous from the right, then

P (X ≤ x|Y = y) = lim
h→0

P (X ≤ x|y ≤ Y < y + h)

= lim
h→0

FXY (x, y + h) − FXY (x, y)

FY (y + h) − FY (y)

= lim
h→0

C (FX (x) , FY (y + h)) − C (FX (x) , FY (y))

FY (y + h) − FY (y)

= lim
h→0

C (FX (x) , FY (y) + ϕ (y, h)) − C (FX (x) , FY (y))

ϕ (y, h)

where ϕ (y, h) = FY (y + h) − FY (y) → 0 for all y, as h → 0, since FY is continuous. Hence,

P (X ≤ x|Y = y) =
∂C

∂v
(FX (x) , FY (y)) . (1.24)

From this relationship, partial derivatives of copulae also appear when copulae are used for
temporal dependence. More precisely, consider some first order Markov process (Xt), in discrete
time (the approach can be extended in continuous time as we will see briefly at the end of this
paragraph), i.e. the conditional distribution of the response at any time t on the past history
only depends on the last state of the process, i.e.

P (Xt ≤ x|Xt−1 = x1, Xt−2 = x2, ..., Xt−k = xk) = P (Xt ≤ x|Xt−1 = x1) .

Let P (x, s; y, t) be a version of P (Xt ≤ y|Xs ≤ x) where s < t, satisfying P (x, s; ·, t) is a dis-
tribution function on R (for real value Markov processes), and P (·, s; y, t) is-measurable. As
a consequence of this property, the conditional probabilities satisfy the Chapman-Kolmogorov
equations, which relate the state of the process at time t with an earlier time s through an
intermediate time u,

P (x, s; y, t) =

∫

R

P (z, u; y, t)P (x, s; dz, u) , (1.25)

s < u < t, x, y ∈ R. Assume that (Xt) is a stationary process, and let C denote the copula of
(Xt, Xt−1), for all t ∈ Z. As shown by Darsow, Nguyen and Olsen (1992), the copula of (Xt, Xt−2)
does not depend on t, and furthermore, using Equation (1.24), and Chapman-Kolmogorov equa-
tion, the copula is

(u, v) 7→
∫ 1

0

∂C (u, t)

∂t

∂C (t, v)

∂t
dt.

More generally, Darsow, Nguyen and Olsen (1992) introduced to product of copulae as follows:
let C1 and C2 denote two copulae, then

C (u, v) = C1 ⋆ C2 (u, v) =

∫ 1

0

∂C1 (u, t)

∂t

∂C2 (t, v)

∂t
dt

is a copula. Note that this operation can be seen as the continuous analogous of the multiplication
operator for transition matrices. Hence, some algebraic properties are preserved, e.g. C⊥ ⋆ C =
C ⋆ C⊥ = C⊥, while C+ ⋆ C = C ⋆ C+ = C. Consequently, C⊥ is a null element, and C+ is
the identity. Moreover, ⋆ is associative, but not commutative. Using this operator, the following
important result holds. Let (Xt) is a continuous stochastic process, and Cs,t denotes the copula
of (Xs, Xt). The following are equivalent,

• the conditional distributions satisfy the Chapman-Kolmogorov Equation (1.25) for all s <
u < t, x, y ∈ R
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• for all s < u < t, Cs,t(x, y) = Cs,u ⋆ Cu,t(x, y), for all s < u < t, x, y ∈ [0, 1] .

Therefore, (Xt) is a Markov process if and only if for all n and all 0 ≤ t1 < t2 < ... < tn,

Ct1,t2,...,tn = Ct1,t2 ⋆ Ct2,t3 ⋆ ... ⋆ Ctn−1,tn

Example 1.9.1. An particular case is the one where copula C is idempotent i.e. C = C ⋆C. For
instance the upper Fréchet-Hoeffding copula C+ (u, v) = min (u, v) and the independent copula
C⊥ (u, v) = uv are both idempotent. Indempotent families can also be defined, i.e. the product of
copula within a family of copulae remains in the same family, e.g. Morgenstein family. Cθ is a
Morgenstein copula, with parameter θ ∈ [−1, 1], if Cθ (u, v) = uv + θuv (1 − u) (1 − v). Then

∂Cθ (u, v)

∂v
= u + θu (1 − u) (1 − 2v)

and the expression of copula Cθ ⋆ Cκ is given by

Cθ ⋆ Cκ(u, v) =

∫ 1

0
(u + θu [1 − u] [1 − 2t]) (v + κv [1 − v] [1 − 2t]) dt

= uv +
θκ

3
uv [1 − u] [1 − v] = Cθκ/3(u, v).

Example 1.9.2. Figure 1.7 shows the case of Markov processes with N (0, 1) margins, where C
is a Gaussian copula on the left, and a Clayton copula on the right. Note that clusters of lower
extremal values can be obtained much more frequently with Clayton copula.
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Figure 1.7: Some simulations of stationary Markov processes, with N (0, 1) margins, where
the copula of (Xt, Xt−1) is a Gaussian copula on the left, and a Clayton copula on the
right.

Note that partial derivative are also interesting for simulation purpose. U = (U1, .., Un) with
copula C could be simulated using the following algorithm,

• simulate U1 uniformly on [0, 1],
u1 ← Random1,
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• simulate U2 from the conditional distribution ∂2C(·|u1),

u2 ← [∂2C(·|u1)]
−1(Random2),

• simulate Uk from the conditional distribution ∂kC(·|u1, ..., uk−1),

uk ← [∂2C(·|u1, ..., uk−1)]
−1(Randomk),

...etc, where the Randomi’s are independent calls of a Random function.
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Chapter 2

Dynamical copulae models for credit

risk

2.1 Introduction

The reasons for studying and modelling dependencies in finance and insurance are of different
type. One motivation is that independence assumptions, which are typical of many stochastic
models, are often due more to convenience rather than to the nature of the problem at hand.
Furthermore, there are situations where neglecting dependence effects may incur into a (dramatic)
risk underestimation (see e.g. Bäuerle and Müller (1987) and Daul, De Giorgi, Lindskog and
McNeil (2003)). Besides this, widely used scalar dependence or risk measures such as linear
correlation, tail dependence coefficients and Value-at-Risk generally do not provide a satisfactory
description of the underlying dependence structure and have severe limitations when used for
measuring (portfolio) risk outside the Gaussian world (see e.g. Embrechts, Hoeing and Juri
(2002) and Juri and Wüthrich (2004) for counterexamples).

Taking care of dependencies becomes therefore important in order to extend standard models
towards a more efficient risk management. However, relaxing the independence assumption yields
much less tractable models. It is therefore not surprising that only recently, i.e. in the last ten
years, the mathematical literature on the risk management of dependent risks showed significant
developments. The main message sent by much of this research is the following (see e.g. Frees
and Valdez (1998), Joe (1997), or Nelsen (1999) among others). It is (intuitively) clear that
the probabilistic mechanism governing the interactions between random variables is completely
described by their joint distribution. On the other hand, in most applied situations, the joint
distribution may be unknown or difficult to estimate such that only the marginals are known
(estimated or fixed a priori). To tackle this problem a flexible and powerful approach consists
in trying to model the joint distribution by means of copulae. The latter, which are often called
“dependence structures”, can be viewed as marginal free versions of joint distribution functions
capturing scale invariant dependence properties of the several random variables.

The reverse side of the medal of the copula approach is that it is usually difficult to chose or
find the appropriate copula for the problem at hand. Often, the only possibility is to start with
some guess such as a parametric family of copulae and then try to fit the parameters (as made
e.g. in Daul, De Giorgi, Lindskog and McNeil (2003)). As a consequence, the models obtained
may suffer a certain degree of arbitrariness. As shown by Juri and Wüthrich (2002, 2003), some
remedy to this weakness of the copula approach is provided by dependence models for (bivariate)
conditional joint extremes, where limiting results along the lines of the Pickands-Balkema-De
Haan Theorem are obtained. Such copula-convergence theorems reflect a distributional approach
to the modelling of dependencies in the tails and provide natural descriptions of multivariate
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extremal events. Moreover, they differ from classical bivariate extreme value results since the
limits obtained are not bivariate extreme value distributions. A further advantage of this kind of
results is that they may also allow to better face the problem of the lack of data which is typical
for rare events. In fact, there are situations where the knowledge of the limiting dependence
structure reduces the issue of modelling tail events to the estimation of one parameter solely
(Juri and Wüthrich (2003)).

2.1.1 Outline of the chapter

This chapter is structured as follows. In Section 2.2.1 we briefly recall the copula concept and
all its properties that we will need throughout the rest of the chapter. The idea of dependence
structures for tail events is then formalized in Section 2.2.2, where the concept of tail dependence
copula (LTDC) is introduced; the latter provides a natural description of conditional bivariate
joint extremes. Sections 2.3 and 2.4 contain the main results, which extend part of the work of
Juri and Wüthrich (2002, 2003). In particular, Theorem 2.3.4 identifies, under suitable regularity
conditions, possible LTDC-limits, i.e. limit laws for bivariate joint extremes. Motivated by
classical results such as the Central Limit Theorem and the Fisher-Tippett Theorem, we show
in Section 2.4 that LTDC-limits are characterized by invariance properties (Theorems 2.4.6,
2.4.10 and Corollary 2.4.11). Section 2.5 will focus on the case of exchangeable portfolios. In
Section 2.5, we show how the results of the preceding sections can be applied to the credit
risk area, where, for intensity-based default models, dependence structures characterizing the
behavior under stress scenarios of widely traded credit derivatives such as Credit Default Swap
baskets or First-to-Default contract types are obtained.

2.2 Dependence structures for tail events

2.2.1 Preliminaries

As mentioned above, one of the main concepts used to describe scale invariant dependence
properties of multivariate distributions is the copula one. In this work, we focus on bivariate
continuous random vectors only and most of the following material can be found in Nelsen (1999)
or Joe (1997).

Recall that a two-dimensional copula is a two-dimensional distribution function restricted to
[0, 1]2 with standard uniform marginals. Hence, copulae can be equivalently defined as functions
C : [0, 1]2 → [0, 1] satisfying for 0 ≤ x ≤ 1 and (x1, y1), (x2, y2) ∈ [0, 1]2 with x1 ≤ x2, y1 ≤ y2

the conditions

C(x, 1) = C(1, x) = x, C(x, 0) = C(0, x) = 0, (2.1)

C(x2, y2) − C(x2, y1) − C(x1, y2) + C(x1, y1) ≥ 0, (2.2)

where (2.1) translates into the uniformity of the marginals and that inequality (2.2), which is
the 2-increasing property, can be interpreted as P(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) for (X,Y ) having
distribution function C.

One of the most important and useful results about copulae is Sklar’s Theorem stated below
in its bivariate form (see Theorem 1.3.1). Let C be a copula and F1, F2 be univariate distribution
functions. Then, for (t1, t2) ∈ R2,

F (t1, t2) = C(F1(t1), F2(t2)) (2.3)

defines a distribution function with marginals F1, F2. Conversely, for a two-dimensional distrib-
ution function F with marginals F1, F2 there is a copula C satisfying (2.3). This copula is not
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necessarily unique, but it is if F1 and F2 are continuous, in which case for any (x, y) ∈ [0, 1]2,

C(x, y) = F (F←
1 (x), F←

2 (y)), (2.4)

where F←
1 , F←

2 denote the generalized left continuous inverses of F1 and F2.

2.2.2 Tail dependence copulae

A natural way to construct dependence structures (copulae) for bivariate (lower) tail events, is to
consider first two-dimensional continuous conditional distribution functions, where the condition
is that both variables fall below small thresholds. The second step is to get then the relative
copula using the second part of Sklar’s Theorem (Equation (2.4)).

Remark 2.2.1. In the sequel, we will assume that the considered copula C is such that x 7→
C(x, y) and y 7→ C(x, y) are strictly increasing for all x, y ∈ (0, 1]. We denote by C the set of
such copulae.

Let (U, V ) be a random vector with distribution function C ∈ C. For any (u, v) ∈ (0, 1]2,
the conditional distribution of (U, V ) given U ≤ u, V ≤ v, denoted by F (C, u, v), is given, for
0 ≤ x ≤ u and 0 ≤ y ≤ v, by

F (C, u, v)(x, y) = P(U ≤ x, V ≤ y|U ≤ u, V ≤ v) =
C(x, y)

C(u, v)
. (2.5)

The marginal distribution functions of F (C, u, v) in (2.5) are given for 0 ≤ x ≤ u and 0 ≤ y ≤ v
respectively by

FU (C, u, v)(x) =
C(x, v)

C(u, v)
and FV (C, u, v)(y) =

C(u, y)

C(u, v)
. (2.6)

Since, FU (C, u, v), FV (C, u, v) are continuous, the unique copula relative to F (C, u, v) is obtained
from (2.4) and equals

F (C, u, v)(FU (C, u, v)←(x), FV (C, u, v)←(y)) =
C(FU (C, u, v)←(x), FV (C, u, v)←(y))

C(u, v)
. (2.7)

Definition 2.2.2. For C ∈ C, we call the copula defined by (2.7) the lower tail dependence copula
relative to C, LTDC for short, and we denote it by Φ(C, u, v).

Note that the assumption that C ∈ C implies that {(u, v) ∈ [0, 1]2 : C(u, v) > 0} = (0, 1]2,
i.e. it ensures that the LTDC Φ(C, u, v) is well defined for all u, v ∈ (0, 1]. Furthermore,
limu,v→0 Φ(C, u, v) describes naturally the dependence structure underlying conditional bivariate
random samples in the lower-tails.

Furthermore, starting with uniform marginals, i.e. with a copula C, is not a restriction since
the dependence structure that would be obtained with different marginals is again of the type
Φ(C, u, v). In fact, let X1, X2 have joint distribution function G, strictly increasing continuous
marginals G1, G2 and copula C. Analogously to the above, consider for appropriate (i.e. such
that the following expressions are well defined) z1, z2 ∈ R the conditional distribution function

Gz1,z2(x1, x2) = P(X1 ≤ x1, X2 ≤ x2|X1 ≤ z1, X2 ≤ z2). (2.8)

Further, let Gz1,z2

1 (x1) = Gz1,z2(x1, z2) and Gz1,z2

2 (x2) = Gz1,z2(z1, x2), respectively. Because of
Sklar’s Theorem, we have that the copula relative to Gz1,z2 is given by

Φ(G, z1, z2)(u1, u2) = Gz1,z2((Gz1,z2

1 )←(u1), (G
z1,z2

2 )←(u2)). (2.9)
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Proposition 2.2.3. In the above setting holds Φ(C,G1(z1), G2(z2)) = Φ(G, z1, z2).

Proof. For wi = Gi(zi), i = 1, 2, we have by definition that

Φ(C,G1(z1), G2(z2))(u1, u2) =
C(FU1

(C, w1, w2)
←(u1), FU2

(C, w1, w2)
←(u2))

C(G1(z1), G2(z2))
. (2.10)

Further,

FU1
(C, w1, w2)(v1) =

C(v1, w2)

C(w1, w2)
=

C(v1, G2(z2))

C(G1(z1), G2(z2))
=

G(G←
1 (v1), z2)

G(z1, z2)

= Gz1,z2

1 (G←
1 (v1)),

(2.11)

whence FU1
(C,w1, w2)

←(u1) = G1((G
z1,z2

1 )←(u1)). Similarly, we have that
FU2

(C, w1, w2)
←(u2) = G2((G

z1,z2

2 )←(u2)). Thus,

Φ(C, G1(z1), G2(z2))(u1, u2) =
C(G1((G

z1,z2

1 )←(u1)), G2((G
z1,z2

2 )←(u2)))

G(z1, z2)

=
G((Gz1,z2

1 )←(u1), (G
z1,z2

2 )←(u2))

G(z1, z2)
= Gz1,z2((Gz1,z2

1 )←(u1), (G
z1,z2

2 )←(u2))

= Φ(G, z1, z2)(u1, u2).

(2.12)

Remark 2.2.4. Sometimes it may be more natural to look at dependencies in the upper-tails
rather than in the lower-tails as e.g. in any situation where one is interested in the joint behavior
of random variables conditional on high thresholds. To such an extent, one could consider in (2.5)
the expression P(U > x, V > y|U > u, V > v) instead of P(U ≤ x, V ≤ y|U ≤ u, V ≤ v) yielding,
through the analogous to (2.7), a dependence structure for upper-tail events. Such dependence
structures can be also obtained replacing C in Definition 2.2.2 by the relative survival copula
C∗(x, y) = x + y− 1 + C(1−x, 1− y), x, y ∈ [0, 1]2. Indeed, it is easily seen that for (X, Y ) with
distribution function F , marginals F1, F2 and copula C, the copula of (−X,−Y ) is precisely C∗

and that for (x, y) ∈ R2

P(X > x, Y > y) = C∗(1 − F1(x), 1 − F2(y)). (2.13)

2.2.3 An excursion in higher dimension

Most of the results in this Chapter will be proved in dimension 2, since they avoid too heavy
notations, but also because limiting theorems can be obtained in that dimension. Nevertheless,
the lower tail dependence copula can be defined in dimension d ≥ 2.

Let U = (U1, ..., Ud) be a random vector with uniform margins, so that its distribution
function is a copula C. Assume that C is strictly increasing in all components. For any u =
(u1, ..., ud) ∈ (0, 1]d, consider the random vector (U1, ..., Ud) given {U1 ≤ u1, ..., Ud ≤ ud}, also
denoted U given U ≤ u. If Fi|u(·) denotes the marginal distribution function of Ui given
{U1 ≤ u1, ..., Ui ≤ ui, ..., Ud ≤ ud}, note that

Fi|u(xi) =
C(u1, ..., ui−1, xi, ui+1, ..., ud)

C(u1, ..., ui−1, ui, ui+1, ..., ud)
, (2.14)

and therefore the copula of the conditional vector U given U ≤ u is

Φ(C, u1, ..., ud)(x1, ..., xd) =
C(F←

1|u(x1), ..., F
←
d|u(xd))

C(u1, ..., ud)
. (2.15)



CHAPTER 2. DYNAMICAL COPULAE MODELS FOR CREDIT RISK 69

Definition 2.2.5. For C denote a copula with strictly increasing components, the copula defined
by Equation 2.15 is called lower tail dependence copula, LTDC for short, and denoted by Φ(C,u),
u ∈ (0, 1]d.

2.3 A limit theorem

The main result of this section is given by Theorem 2.3.4 below, where limits of the type
limt→0 Φ(C, r(t), s(t)) are considered. An explicit form for the limit is provided under the as-
sumption that the functions r(·), s(·) defining the direction under which the limit is taken satisfy
suitable regularity conditions. Further, an example of a non-symmetric LTDC-limit, i.e. a limit
obtained under a direction (r, s) with r 6= s, is given in Proposition 2.3.10 where we show that
a dependence model in the lower-tails may be given by the Marshall and Olkin copula of Exam-
ple 1.3.3. As we will see in Section 2.5, this copula turns out to be a natural model for some
credit derivatives.

For our purposes, the concept of regular variation appears to be the appropriate one. A
standard reference to the topic of regular variation is Bingham, Goldie and Teugels (1987) and
results for the multivariate case can also be found in de Haan, Omey and Resnick (1984). See
also Section 3.4.3. of this thesis.

Definition 2.3.1. A measurable function f : (0,∞) → (0,∞) is called regularly varying at 0
with index ρ ∈ R, if for any x > 0,

lim
t→0

f(tx)

f(t)
= xρ. (2.16)

We write f ∈ R0
ρ. In the case where ρ = 0, the function is said to be slow varying at 0.

Definition 2.3.2. A measurable function f : (0,∞)2 → (0,∞) is called regularly varying at 0
with auxiliary functions r, s : (0,∞) → (0,∞) if limt→0 r(t) = limt→0 s(t) = 0 and there is a
positive measurable function φ : (0,∞)2 → (0,∞) such that

lim
t→0

f(r(t)x, s(t)y)

f(r(t), s(t))
= φ(x, y) for all x, y > 0. (2.17)

We write f ∈ R(r, s) and we call φ the limiting function under the direction (r, s).

Remark 2.3.3. Definition 2.3.2 can be easily modified to include functions, such as copulae,
having a domain different from (0,∞)2. This ensures in particular that the left hand side of
(2.18) below is well-defined.

Theorem 2.3.4. Let C ∈ C ∩ R(r, s) with limiting function φ and assume that r, s are strictly
increasing continuous functions such that r ∈ R0

α and s ∈ R0
β for some α, β > 0. Then, for any

(x, y) ∈ [0, 1]2,
lim
t→0

Φ(C, r(t), s(t))(x, y) = φ(φ←
X (x), φ←

Y (y)), (2.18)

where φX(x) = φ(x, 1) and φY (y) = φ(1, y). Moreover, there is a constant θ > 0 such that
φ(x, y) = xθ/αh(yx−β/α) for x > 0, where

h(t) =

{
φY (t) for t ∈ [0, 1]

tθ/βφX(t−α/β) for t ∈ (1,∞)
. (2.19)

Proof. The proof of this theorem is based on the following lemma.
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Lemma 2.3.5. Suppose that (Xd, Yd) have continuous strictly increasing marginals and are such
that limn→∞(Xd, Yd) = (X, Y ) in distribution for some (X,Y ). Then,

lim
n→∞

‖Cd − C‖∞ = 0, (2.20)

where Cd and C denote the copulae of (Xd, Yd) and (X, Y ), respectively.

Proof. Denote by FXd
, FYd

, FX , FY , Fd and F the distribution functions of Xd, Yd, X, Y , (Xd, Yd)
and (X, Y ), respectively. Then, for u, v ∈ [0, 1],

|Cd(u, v) − C(u, v)| = |Fd(F
←
Xd

(u), F←
Yd

(v)) − F (F←
X (u), F←

Y (v))|
≤ |Fn(F←

Xd
(u), F←

Yd
(v)) − Fd(F

←
X (u), F←

Y (v))|
+ |Fn(F←

X (u), F←
Y (v)) − F (F←

X (u), F←
Y (v))|.

(2.21)

Because Fn is continuous and since FXn and FYn are strictly increasing, F←
Xd

(u) → F←
X (u) and

F←
Yd

(v) → F←
Y (v) as n → ∞ for any u, v ∈ [0, 1]. So, for any ε > 0 there is some positive integer

N1 such that for any n ≥ N1

|Fd(F
←
Xd

(u), F←
Yd

(v)) − Fd(F
←
X (u), F←

Y (v))| ≤ ε/2. (2.22)

Similarly, because limn→∞ Fd(x, y) = F (x, y), there is N2 such that for any n ≥ N2

|Fd(F
←
X (u), F←

Y (v)) − F (F←
X (u), F←

Y (v))| ≤ ε/2. (2.23)

Thus, for any u, v ∈ [0, 1] and any n ≥ N = max{N1, N2}, we have that |Cd(u, v)−C(u, v)| ≤ ε,
i.e. limn→∞ Cd = C pointwise. Because [0, 1]2 is compact and both Cd and C are continuous,
this convergence is also uniform. This finishes the proof of Lemma 2.3.5.

Let now (U, V ) have distribution function C. Note that

C(r(t)x, s(t))

C(r(t), s(t))
= P(U ≤ r(t)x|U ≤ r(t), V ≤ s(t)), (2.24)

C(r(t), s(t)y)

C(r(t), s(t))
= P(V ≤ s(t)y|U ≤ r(t), V ≤ s(t)), (2.25)

C(r(t)x, s(t)y)

C(r(t), s(t))
= P(U ≤ r(t)x, V ≤ s(t)y|U ≤ r(t), V ≤ s(t)), (2.26)

i.e. the distributions in (2.24)–(2.26) are respectively the conditional distributions of U/r(t),
V/s(t) and (U/r(t), V/s(t)) given U ≤ r(t), V ≤ s(t). Since copulae are invariant under strictly
increasing transformations of the underlying variables, it follows that we can take the conditional
distributions in (2.24)–(2.26) instead of FU (C, r(t), s(t)), FV (C, r(t), s(t)) and F (C, r(t), s(t)) in
order to construct Φ(C, r(t), s(t)). Further, since C ∈ C and because r, s are strictly increasing
and continuous, we have that the distributions in (2.24)–(2.26) are continuous too and strictly
increasing. By hypothesis C ∈ R(r, s), i.e.

lim
t→0

C(r(t)x, s(t)y)

C(r(t), s(t))
= φ(x, y) for all x, y ∈ [0, 1], (2.27)

so that the expressions in (2.26) converge to φX , φY and φ as t → 0 respectively. Thus, applying
Lemma 2.3.5, we get

lim
t→0

Φ(C, r(t), s(t))(x, y) = φ(φ←
X (x), φ←

Y (y)), (2.28)
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whence (2.18) has been proved. Since r ∈ R0
α, s ∈ R0

β , we have according to Theorem 2.1 in de
Haan (1984) that there is θ > 0 such that

φ(tαx, tβy) = tθφ(x, y), for all t, x, y > 0. (2.29)

Further, according to Aczél (1966) the most general solution to the functional equation (2.29) is
given by

φ(x, y) =






xθ/αh(yx−β/α) if x 6= 0

cyθ/β if x = 0 and y 6= 0
0 if x = y = 0

, (2.30)

where c is a constant and h is function of one variable. Because φ(0, y) = 0 and φY (y) = φ(1, y) =
h(y), it follows that c = 0 and that the restriction of h on [0, 1] equals φY , respectively. Further,
we have for x ∈ (0, 1] that

φX(xα/β) = φ(xα/β , 1) = xθ/βh(1/x), (2.31)

whence for t = 1/x > 1 we obtain h(t) = h(1/x) = x−θ/βφX(xα/β) = tθ/βφX(t−α/β), which
shows (2.19) and finishes therefore the proof of Theorem 2.3.4.

Remark 2.3.6. Note that the limiting function φ in (2.17) is obtained from a pointwise con-
vergence. Because the domain of a copula is the compact set [0, 1]2, it follows that the assump-
tion C ∈ C ∩ R(r, s) implies that the convergence in (2.18) is also uniform, i.e. we have that
limt→0 ‖Φ(C, r(t), s(t))(·, ·) − φ(φ←

X (·), φ←
Y (·))‖∞ = 0.

Remark 2.3.7. Observe that the hypothesis that r, s are continuous functions is necessary, oth-
erwise counterexamples such as “copulae with fractal support” as considered in Fredricks, Nelsen
and Rodriguez-Lallena (2005) can be constructed. Let T = (tij) be a square matrix with non-
negative entries whose sum equals to one determining the following subdivision of the unit square
[0, 1]2 into rectangles: let ci, i = 0, . . . , n the sum of the entries of the first i columns of T with
c0 = 0 and let rj, j = 0, . . . , n be the sum of the entries in the first j rows of T with r0 = 0.
Then, the vectors r = (r0, . . . , rd) and c = (c0, . . . , cd) define partitions of [0, 1], whence [0, 1]2

is partitioned into the rectangles Rij = [ci−1, ci] × [ri−1, ri]. Further, for a given copula C and
(x, y) ∈ Rij, consider the new copula T (C) defined by

T (C)(x, y) =
∑

u<i,v<j

tuv +
x − ci−1

ci − ci−1

∑

v<j

tiv +
y − rj−1

rj − rj−1

∑

u<i

tuj + C

(
x − ci

ci − ci−1
,

y − rj

rj − rj−1

)
tij ,

(2.32)
where empty sums are defined as zero. Fredricks, Nelsen and Rodriguez-Lallena (2005) show
that for any copula C and any T 6= 1 there is a unique copula CT that depends only on T such
that T (CT ) = CT . Moreover, they show that CT = limn→∞ TnC, where TnC = T (Tn−1C),
n ≥ 1, T 1C = T (C) and T 0C = C. Consider now the case where the starting copula C is the
independent copula, i.e. C(x, y) = C⊥(x, y) = xy and the transformation matrix T is given by

T =




0.1 0 0.1
0 0.6 0

0.1 0 0.1



 , (2.33)

whence c = r = (0, 0.2, 0.8, 1). Then, we have for tk = 0.2k, k ≥ 1 that

Φ(CT , tk, tk) = CT = lim
n→∞

TnC, any k ≥ 1. (2.34)
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The fact that Φ(CT , tk, tk) = CT can be explained with the help of Figure 2.1, where the support
of Tn(C) is plotted for n = 1, 2, 3, 4 and the colored regions are the ones where the measure
relative to Tn(C) concentrates its mass (indeed, we see from (2.32) that the support of TnC
is given by the rectangles corresponding to the non-zero elements of T ). Observe that since C
is the independent copula, the measure relative to TnC spreads its mass uniformly on the col-
ored squares. Taking for example the upper right picture in Figure 2.1, we see that restricting
ourselves to [0, t1]

2 = [0, 0.2]2 we have exactly the same picture as in the upper left of Fig-
ure 2.1. This means that if (U, V ) has copula TnC for some n ≥ 1, then (U, V )|U, V ≤ t1
has c.d.f. Tn−1C(xt1, yt1), x, y ∈ [0, 1]. It follows that the copula of (U, V )|U, V ≤ t1 is ex-
actly Tn−1C, i.e. Φ(TnC, t1, t1) = Tn−1C. Using the same arguments, we have in general that
Φ(TnC, tk, tk) = Tn−kC. Finally, because Φ(·, tk, tk) is continuous (see Lemma 2.4.13), it follows
that Φ(CT , tk, tk) = limn→∞ Φ(TnC, tk, tk) = limn→∞ Tn−kC = CT .
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Figure 2.1: Support of T n(C) for n = 1, 2, 3, 4

Remark 2.3.8. Letting α = β = 1, we have that Theorem 2.3.4 generalizes Theorem 2.4 in Juri
and Wüthrich (2004), the latter stating that

lim
u→0

Φ(C, u, u)(x, y) = G(g←(x), g←(y)), (2.35)

where g : [0,∞) → [0,∞) is the strictly increasing continuous function defined by g(x) =
limu→0 C(xu, u)/C(u, u), G(x, y) = yθg(x/y) for (x, y) ∈ (0, 1]2 and 0 elsewhere and θ is a pos-
itive constant. In particular, Theorem 2.4 in Juri and Wüthrich (2003) applies to archimedean
copulae having regularly varying generators in which case the LTDC-limit is the Clayton copula of
Example 2.4.9 of the next section with parameter equal to minus the regular variation parameter
(Theorem 3.4 in Juri and Wüthrich (2004), and Theorem 3.3 in Juri and Wüthrich (2003)).
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Following the previous remark, the analytical expression (2.35) for the limiting copula is due
to the fact that homogeneous functions of order θ (in our case G(x, y) = yθg(x/y)) have closed
form expressions. Analogously, the closed form (2.19) comes from the fact that “generalized
homogeneous functions” such as φ in Theorem 2.3.4 also have closed form representations (see
the proof of Theorem 2.3.4 and Aczél (1966) for more details). Unfortunately, this is not the
case in higher dimensions, so that, assuming that Theorem 2.3.4 could be extended case along
the same lines to the multivariate, the limiting copula would not have a closed form expression.

Remark 2.3.9. There are many papers in the literature concerning multivariate extremes. In
particular, Bivariate Extreme Value (BEV) distributions are obtained as limit laws of suitably
normalized componentwise maxima as it can be found e.g. in de Haan, Omey and Resnick (1984),
Resnick (1987), and Joe (1997). It can be shown that the copula C of any BEV distribution
satisfies the max-stability property

Ct(u, v) = C(ut, vt) for all (u, v) ∈ [0, 1]2 and any t > 0. (2.36)

As mentioned in Juri and Wüthrich (2004), BEV copulae differ from LTDC-limits, the difference
being similar to the one between the univariate Generalized Extreme Value (GEV) distributions
and the Generalized Pareto Distribution (GPD). In fact, the GPD lives on the log-scaled compared
to GEV distributions (Theorem 4.2 in Juri and Wüthrich (2004)). For instance, the Gumbel
copula satisfies (2.36), but is not an LTDC-limit. For a more detailed discussion about relations
with other results from the area of multivariate extremes we refer to Chapter 6 of this thesis

We finish this section with an example of an LTDC-limit which is not of the form (2.35). We
will see in Section 2.4 that Theorem 2.4.6 provides a whole family of other examples of this type.

Proposition 2.3.10. Let a, b : [0, 1] → [0, 1] be two increasing functions with a(0) = b(0) = 0,
a(1) = b(1) = 1 and such that t 7→ a(t)/t, t 7→ b(t)/t are decreasing on (0, 1]. Then,

C(x, y) = (a(x)y) ∧ (xb(y)) (2.37)

defines a copula. Additionally, if a ∈ R0
α, b ∈ R0

β, where (α, β) ∈ [0, 1]2 \ {(0, 0)} and for
directions r, s such that

lim
t→0

r(t)b(s(t))

a(r(t))s(t)
= 1, (2.38)

we have that
lim
t→0

Φ(C, r(t), s(t))(x, y) = (xαy) ∧ (xyβ), (2.39)

which is the Marshall and Olkin copula with parameters 1 − α and 1 − β.

Proof. In order to prove that (2.37) defines a copula, we have to show (2.1) and (2.2). For
x ∈ [0, 1], the conditions C(x, 0) = C(0, x) = 0 are satisfied because a(0) = b(0) = 0. Further,
since x 7→ a(x)/x is decreasing with a(1) = 1, we have that a(x) ≥ x for any x ∈ [0, 1]. Thus,
because b(1) = 1, we get C(x, 1) = a(x) ∧ x = x. Similarly, C(1, x) = x, x ∈ [0, 1], which shows
(2.1). Consider now 0 < x1 ≤ x2 ≤ 1 and 0 < y1 ≤ y2 ≤ 1. Then,

∆ = C(x2, y2) − C(x1, y2) − C(x2, y1) + C(x1, y1)

= x2y2

(
a(x2)

x2
∧ b(y2)

y2

)
− x1y2

(
a(x1)

x1
∧ b(y2)

y2

)
− x2y1

(
a(x2)

x2
∧ b(y1)

y1

)

+ x1y1

(
a(x1)

x1
∧ b(y1)

y1

)
.

(2.40)

Since x 7→ a(x)/x and x 7→ b(x)/x are decreasing, six different cases have to be considered:
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1. Assume that a(x2)/x2 ≤ a(x1)/x1 ≤ b(y2)/y2 ≤ b(y1)/y1. Then, ∆ = (y2 − y1)(a(x2) −
a(x1)) ≥ 0 since a is increasing.

2. If b(y2)/y2 ≤ b(y1)/y1 ≤ a(x2)/x2 ≤ a(x1)/x1, then ∆ = (x2 − x1)(b(y2)− b(y1)), which is
of course non-negative.

3. Suppose now that a(x2)/x2 ≤ b(y2)/y2 ≤ b(y1)/y1 ≤ a(x1)/x1. Then, ∆ = x1(b(y1) −
b(y2)) + a(x2)(y2 − y1) is non-negative if and only if

b(y2) − b(y1)

y2 − y1
≤ a(x2)

x1
. (2.41)

Since x 7→ b(x)/x is decreasing, the left hand side of (2.41) can be bounded as follows:

b(y2) − b(y1)

y2 − y1
=

b(y2)

y2

y2

y2 − y1
− b(y1)

y1

y1

y2 − y1
≤ b(y1)

y1
. (2.42)

By hypothesis and since a is increasing, we have b(y1)/y1 ≤ a(x1)/x1 ≤ a(x2)/x1, whence
(2.41).

4. The case b(y2)/y2 ≤ a(x2)/x2 ≤ a(x1)/x1 ≤ b(y1)/y1 yields ∆ = (a(x1)−a(x2))y1 +(x2 −
x1)b(y2), which can be shown to be non-negative using the same arguments as in (3).

5. If a(x2)/x2 ≤ b(y2)/y2 ≤ a(x1)/x1 ≤ b(y1)/y1, then ∆ = (y2−y1)a(x2)−x1b(y2)+y1a(x1).
By hypothesis,

x1b(y2) ≤ a(x1)y2 = a(x1)y1 + a(x1)(y2 − y1) ≤ a(x1)y1 + a(x2)(y2 − y1), (2.43)

where the last inequality follows because a is increasing. This shows that ∆ ≥ 0.

6. The last case is given by b(y2)/y2 ≤ a(x2)/x2 ≤ b(y1)/y1 ≤ a(x1)/x1 and ∆ = (x2 −
x1)b(y2) − y1a(x2) + x1b(y1). As in (5), it follows that ∆ ≥ 0.

In order to prove (2.39), consider

C(r(t)x, s(t)y)

C(r(t), s(t))
=

[a(r(t)x)s(t)y] ∧ [r(t)xb(s(t)y)]

[a(r(t))s(t)] ∧ [r(t)b(s(t))]
(2.44)

=

[
a(r(t)x)

a(r(t))
y

]
∧

[
x

b(s(t)y)

b(s(t))

r(t)

a(r(t))

b(s(t))

s(t)

]

1 ∧
[

r(t)

a(r(t))

b(s(t))

s(t)

] . (2.45)

Since by hypothesis, a ∈ R0
α, b ∈ R0

β and limt→0 r(t)b(s(t))/(a(r(t))s(t)) = 1, it follows that

lim
t→0

C(r(t)x, s(t)y)

C(r(t), s(t))
= (xαy) ∧ (xyβ) = φ(x, y), (2.46)

i.e. C ∈ C ∩ R(r, s) with limiting function φ. Since 0 < α, β ≤ 1, we have that
φX(x) = φ(x, 1) = x and φY (y) = φ(1, y) = y, whence, because of Theorem 2.3.4,
limt→0 Φ(C, r(t), s(t))(x, y) = φ(φ←

X (x), φ←
Y (y)) = (xαy) ∧ (xyβ).

Remark 2.3.11. Condition (2.38), is satisfied e.g. in the case where a(t) = tα, b(t) = tβ,
r(t) = tγ and s(t) = tδ with βδ + γ = αγ + δ.
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2.4 Invariant copulae

There are many examples of (functional) limit theorems where the limit obtained is invariant
under some kind of transformation. This is the case of the Central Limit Theorem, where stable
laws (which coincide with the class of possible limit laws for sums of iid random variables) are
invariant under the sum operator. A similar result holds for the GEV distribution, which is the
limit of maxima of iid random variables as stated in the Fisher-Tippett Theorem (Embrechts,
Klüppelberg and Mikosch (1997), Theorem 3.2.3).

In our context, we have that equation (2.7) can be seen as the result of a copula transformation
mapping a copula C ∈ C to its LTDC Φ(C, u, v). Motivated by the above classical results, it
seems therefore natural to look at copulae which are invariant under the LTDC-transformation
(2.7).

Definition 2.4.1. We say that C ∈ C is invariant on the unit square if Φ(C, u, v) = C for all
(u, v) ∈ (0, 1]2.

Lemma 2.4.2. Let (U, V ) have distribution function C ∈ C and (u, v) ∈ (0, 1]2. Then, Φ(C, u, v)
satisfies for (x, y) ∈ [0, u] × [0, v] the identity

C(x, y)

C(u, v)
= Φ(C, u, v)

(
C(x, v)

C(u, v)
,
C(u, y)

C(u, v)

)
. (2.47)

Proof. Because C ∈ C, we have that FU (C, u, v) and FV (C, u, v) are strictly increasing. Because
of Sklar’s Theorem and using (2.5), (2.6), we get

Φ(C, u, v)

(
C(x, v)

C(u, v)
,
C(u, y)

C(u, v)

)
= Φ(C, u, v)(FU (C, u, v)(x), FV (C, u, v)(y))

= F (C, u, v)(x, y) =
C(x, y)

C(u, v)
.

(2.48)

This finishes the proof of Lemma 2.4.2.

From Lemma 2.4.2, we have that C is invariant on the unit square if and only if for any
(u, v) ∈ (0, 1]2

C(x, y)

C(u, v)
= C

(
C(x, v)

C(u, v)
,
C(u, y)

C(u, v)

)
for all (x, y) ∈ [0, u] × [0, v]. (2.49)

A weaker type of invariance than the one of Definition 2.4.1, is given by copulae C such that
Φ(C, u, v) = C holds only for a particular set of parameters (u, v) ∈ (0, 1]2.

Definition 2.4.3. A copula C ∈ C is said to be invariant on the diagonal if Φ(C, u, u) = C for
all u ∈ (0, 1]. Similarly, C ∈ C is called “invariant under direction” D = {(r(t), s(t)), t ∈ T},
T ⊂ R where r, s : T → (0, 1], whenever

Φ(C, r(t), s(t)) = C for all t ∈ T. (2.50)

Invariant copulae on the diagonal have been considered by ? (?, ?) and examples of such a
copulae are given in Examples 2.4.4 and 2.4.9 below.

Example 2.4.4. For α ∈ [0, 1] consider the Cuadras-Augé copula

Cα(x, y) = (x1−αy) ∧ (xy1−α).
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The copula Cα can be seen as a particular case of a Marshall and Olkin copula of Example 1.3.3
with identical parameters and is a geometric mixture with weights α and 1−α of the upper Fréchet
bound C+(x, y) = x ∧ y and of the independent copula C⊥(x, y) = xy. In fact,

Cα(x, y) = C+(x, y)αC⊥(x, y)1−α.

For U, V with joint distribution function Cα, we have for 0 ≤ x, y ≤ u that

FU (Cα, u, u)(x) = FV (Cα, u, u)(x) =
Cα(x, u)

Cα(u, u)
=

x

u
,

F (Cα, u, u)(x, y) =
Cα(x, y)

Cα(u, u)
= Cα

(x

u
,
y

u

)
.

(2.51)

Thus, we immediately get from (2.7) that Cα is an invariant copula on the diagonal.

A particular family of curve-invariant copulae is the one of Definition 2.4.5 below. We will
see in Corollary 2.4.11 that this family of copulae coincides with the LTDC-limits obtained in
Theorem 2.3.4.

Definition 2.4.5. Let α, β, θ be positive constants and P, Q be increasing continuous univariate
distribution functions on [0, 1]. We denote by H(α, β, θ) the set of two-dimensional distribution
functions H on [0, 1]2 that can be expressed as

H(x, y) = xθ/αh(yx−β/α), where h(t) =

{
Q(t) if t ∈ [0, 1]

tθ/βP (t−α/β) if t ∈ (1,∞)
. (2.52)

Theorem 2.4.6. Let α, β, θ > 0 and H ∈ H(α, β, θ). Then,

Γ(P,Q, α, β, θ)(u, v) =

{
Q←(v)θ/βP (P←(u)Q←(v)−α/β), P←(u)β ≤ Q←(v)α

P←(u)θ/αQ(P←(u)−β/αQ←(v)), P←(u)β > Q←(v)α (2.53)

defines an invariant copula on D = {(P (tα), Q(tβ)), t ∈ (0, 1]}.
Proof. We will first prove that Γ(α, β, θ) defined by (2.53) is a copula and then show the invari-
ance property. The function H defined by (2.52) can be rewritten as

H(x, y) =

{
xθ/α[yx−β/α]θ/βP ([yx−β/α]−α/β) if xβ < yα

xθ/αQ(yx−β/α) if xβ ≥ yα

=

{
yθ/βP (y−α/βx) if xβ < yα

xθ/αQ(yx−β/α) if xβ ≥ yα .

(2.54)

By hypothesis, the marginals P,Q of H are strictly increasing continuous functions, whence it
follows from Sklar’s Theorem that the copula associated to H equals

H(P←(u), Q←(v)) =

{
Q←(v)θ/βP (P←(u)Q←(v)−α/β), if P←(u)β < Q←(v)α

P←(u)θ/αQ(P←(u)−β/αQ←(v)), if P←(u)β ≥ Q←(v)α , (2.55)

which is precisely Γ(P,Q, α, β, θ). We show now that Γ(P, Q, α, β, θ) is invariant on the curve
D = {(P (tα), Q(tβ)), t ∈ (0, 1]}. For notational convenience we denote Γ(P, Q, α, β, θ) by C. In
order to derive the LTDC associated to C, we first notice that from (2.55) it follows

C(P (tα), Q(tβ)) = tθ,

C(x,Q(tβ)) =

{
tθP (P←(x)t−α) if P←(x) < tα

P←(x)θ/αQ(P←(x)−β/αtβ) if P←(x) ≥ tα
,

C(P (tα), y) =

{
Q←(y)θ/βP (tαQ←(y)−α/β) if tβ < Q←(y)

tθQ(P←(tα)−β/αQ←(y)) if tβ ≥ Q←(y)
.

(2.56)
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Let now (x, y) ∈ [0, P (tα)] × [0, Q(tβ)]. Because of (2.6) and (2.56), we have that the marginals
of F (C,P (tα), Q(tβ)) are given respectively by

FU (C, P (tα), Q(tβ))(x) =
C(x,Q(tβ))

C(P (tα), Q(tβ))
=

tθP (P←(x)t−α)

tθ
= P (P←(x)t−α), (2.57)

FV (C, P (tα), Q(tβ))(y) =
C(P (tα), y)

C(P (tα), Q(tβ))
= Q(t−βQ←(y)). (2.58)

Their inverses equal

FU (C,P (tα), Q(tβ))←(x) = P (P←(x)tα),

FV (C, P (tα), Q(tβ))←(y) = Q(tβQ←(y)).
(2.59)

Assume now that x, y are such that P←(x)β < Q←(y)α. From (2.56) we obtain that

F (C,P (tα), Q(tβ))(x, y) =
C(x, y)

C(P (tα), Q(tβ))
=

Q←(y)θ/βP (P←(x)Q←(y)−α/β)

tθ
. (2.60)

Thus, for any (x, y) ∈ (0, 1]2 such that P←(F←
U (x))β ≤ Q←(F←

V (y))α, i.e. P←(x)β ≤ Q←(y)α,
we have that

Φ(C,P (tα), Q(tβ))(x, y)

= F (C, P (tα), Q(tβ))(FU (C,P (tα), Q(tβ))←(x), FV (C,P (tα), Q(tβ))←(y))

= t−θ(tβQ←(y))θ/βP (P←(x)tα(tβQ←(y))−α/β)

= Q←(y)θ/βP (P←(x)Q←(y)−α/β) = C(x, y).

(2.61)

Similarly, if (x, y) ∈ [0, P (tα)] × [0, Q(tβ)] are such that P←(x)β ≥ Q←(y)α, then

F (C, P (tα), Q(tβ))(x, y) =
P←(x)θ/αQ(P←(x)−β/αQ←(y))

tθ
. (2.62)

Thus,

Φ(C,P (tα), Q(tβ))(x, y)

= F (C, P (tα), Q(tβ))(FU (C,P (tα), Q(tβ))←(x), FV (C,P (tα), Q(tβ))←(y))

= t−θP←(x)θ/αQ(P←(y)−β/αQ←(x)) = C(x, y).

(2.63)

Hence, for all (x, y) ∈ [0, 1]2, Φ(C, P (tα), Q(tβ))(x, y) = C(x, y), i.e. C is invariant on
D = {(P (tα), Q(tβ)), t ∈ (0, 1]}. This finishes the proof of Theorem 2.4.6.

Remark 2.4.7. From Theorem 2.4.6, we immediately get
limt→0 Φ(Γ(P,Q, α, β, θ), P (tα), Q(tβ)) = Γ(P,Q, α, β, θ), i.e. Γ(P, Q, α, β, θ) is a LTDC-
limit. Further, note that Γ(g, g, 1, 1, θ) is precisely the copula in (2.35).

Example 2.4.8. The copula Γ(Id, Id, β(α + β − αβ)←, α(α + β − αβ)←, 1) is the Marshall and
Olkin copula which, because of Theorem 2.4.6, is invariant on

D = {(tβ/(α+β−αβ), tα/(α+β−αβ)), t ∈ (0, 1]} = {(tβ, tα), t ∈ (0, 1]}. (2.64)

Similarly, Γ(Id, Id, α, β, 1) is also the Marshall and Olkin copula with parameters (α + β − 1/α
and (α + β − 1)/β.
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Example 2.4.9. For P (x) = 21/θ(1 + x−θ)−1/θ with θ = α + β, the copula Γ(P, P, α, β, θ) is the
Clayton copula with parameter θ, i.e. for (x, y) ∈ [0, 1]2

Γ(P, P, α, β, θ)(x, y) = (x−θ + y−θ − 1)−1/θ. (2.65)

From Theorem 2.4.6, one has that this copula is invariant on D = {(tα, tβ), t ∈ (0, 1]} for all
α, β, i.e. Γ(P, P, α, β, α + β) is invariant on (0, 1]2.

Theorem 2.4.10 below characterizes the possible LTDC-limits stating that they coincide with
the set of invariant copulae on (0, 1]2. In particular, the family H(α, β, θ) characterizes LTDC-
limits on curves D = {(r(t), s(t)), t ∈ T} provided that the starting copula C belongs to C∩R(r, s)
and that r, s are strictly increasing continuous and regularly varying at 0 (Corollary 2.4.11).

Theorem 2.4.10. If C ∈ C and C0 are copulae such that limu,v→0 ‖Φ(C, u, v)−C0‖∞ = 0, then
C0 is invariant on the unit square.

Proof. Let (un) and (vn) be the two sequences defined recursively by the following relationship:
Let α and β be two constants in (0, 1] with (α, β) 6= (1, 1) so that, given un and vn strictly
positive, C(un+1, vn)/C(un, vn) = α and C(un, vn+1)/C(un, vn) = β for all n ≥ 1. Given un and
vn, un+1 and vn+1, we have from the continuity of C that are well defined (but not necessarily
unique). Those sequences can be defined starting in (1, 1) so that u1 = α and v1 = β.
Because α, β ∈ (0, 1], we have that 0 ≤ un+1 ≤ un and 0 ≤ vn+1 ≤ vn. Let u = limn→∞ ud and
v = limn→∞ vd. If u > 0 and v > 0, then C(u, v)/C(u, v) = α = β, i.e. α = β = 1 contradicting
the hypothesis (α, β) 6= (1, 1) meaning that either u = 0 or v = 0.
Consider the copula Cd = Φ(C, ud, vd). Because of Lemma 2.4.12, it follows that

Φ(C, un+1, vn+1) = Φ(Φ(C, ud, vd), u
∗
n+1, v

∗
n+1)

where u∗
n+1 and v∗n+1 are given by u∗

n+1 = C(un+1, vd)/C(ud, vd) and v∗n+1 =
C(ud, vn+1)/C(ud, vd) respectively. In other words, we have that u∗

n+1 = α and v∗n+1 = β,
whence

Φ(C, un+1, vn+1) = Φ(Cd, α, β) = Cn+1.

Because Cd = Φ(C, un, vn), then, as soon as either un → 0 or vn → 0 when n → ∞, Cn

converges towards C0 when n → ∞. And so, because, given α and β, Φ(., α, β) is a continuous
function, from Lemma 2.4.13, then necessarily, C0 satisfies Φ(C0, α, β) = C0. This finishes the
proof of Theorem 2.4.10.

Corollary 2.4.11. Assume that C satisfies the hypothesis of Theorem 2.3.4 and consider
the copula C0 = limt→0 Φ(C, r(t), s(t)). Then, there is a constant θ > 0 such that
C0 = Γ(φX , φY , α, β, θ) according to (2.53). As a consequence, C0 is invariant on D =
{(φX(tα), φY (tβ)), t ∈ (0, 1]}.

Proof. Since C0 = limt→0 Φ(C, r(t), s(t)), then it follows from Theorem 2.3.4 that C0(x, y) =
φ(φ←

X (x), φ←
Y (y)), where for x > 0

φ(x, y) = xθ/αh(yx−β/α), h(x) =

{
φY (x) if x ∈ [0, 1]

xθ/βφX(x−α/β) if x ∈ (1,∞)
. (2.66)

In other words,

C0(x, y) =φ(φ←
X (x), φ←

Y (y))

=

{
φ←

Y (y)θ/βφX(φ←
Y (y)−α/βφ←

X (x)) if φ←
X (x)β < φ←

Y (y)α

φ←
X (x)θ/αφY (φ←

Y (y)φ←
X (x)−β/α) if φ←

X (x)β ≥ φ←
Y (y)α ,

(2.67)
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i.e. C0 = Γ(φX , φY , α, β, θ) according to (2.53). This finishes the proof of Corollary 2.4.11.

The proof of Theorem 2.4.10 is based on the fact that Φ(C, u′, v′) can be seen as the LTDC
obtained from another LTDC Φ(C, u, v), where u ≥ u′ and v ≥ v (Lemma 2.4.12). The second
ingredient in the proof is the continuity of Φ(·, u, v) (Lemma 2.4.13). We state these preliminary
results below and not only in the proof since we believe they are interesting in their own.

Lemma 2.4.12. Let C ∈ C. For 0 ≤ u′ ≤ u ≤ 1 and 0 ≤ v′ ≤ v ≤ 1 we have that

1. Φ(C, u′, v′) = Φ(Φ(C, u, v), u∗, v∗), where u∗ and v∗ are given by and u∗ = C(u′, v)/C(u, v)
and v∗ = C(u, v′)/C(u, v) respectively,

2. Φ(Φ(C, u, v), u′, v′) = Φ(C, u∗, v∗) where u∗ and v∗ satisfy the relations C(u∗, v) =
u′C(u, v) and and C(u, v∗) = v′C(u, v) respectively.

Proof. (i) Let C∗ = Φ(Φ(C, u, v), u∗, v∗). Because of Lemma 2.4.2, we have for 0 ≤ x ≤ u∗ and
0 ≤ y ≤ v∗ that

Φ(C, u, v)(x, y)

Φ(C, u, v)(u∗, v∗)
= C∗

(
Φ(C, u, v)(x, v∗)

Φ(C, u, v)(u∗, v∗)
,

Φ(C, u, v)(u∗, y)

Φ(C, u, v)(u∗, v∗)

)
. (2.68)

On the other hand, we have, again using Lemma 2.4.2, that Φ(C, u, v)(u∗, v∗) equals

Φ(C, u, v)(u∗, v∗) = Φ(C, u, v)

(
C(u′, v)

C(u, v)
,
C(u, v′)

C(u, v)

)
=

C(u′, v′)

C(u, v)
. (2.69)

Further, FU (C, u, v)←(u∗) = u′ and FV (C, u, v)←(v∗) = v′ by definition of u∗ and v∗. Because,

Φ(C, u, v)(x, y) =
C(FU (C, u, v)←(x), FV (C, u, v)←(y))

C(u, v)
, (2.70)

it follows multiplying (2.69) with (2.70) that

Φ(C, u, v)(x, y)

Φ(C, u, v)(u∗, v∗)
=

C(FU (C, u, v)←(x), FV (C, u, v)←(y))

C(u′, v′)
. (2.71)

Let s = FU (C, u, v)←(x) and t = FV (C, u, v)←(y), then, substituting into (2.68), we have

C(s, t)

C(u′, v′)
= C∗

(
C(s, v′)

C(u′, v′)
,

C(u′, t)

C(u′, v′)

)
(2.72)

for all x, y in [0, u∗] × [0, v∗]. Because C is continuous, FU (C, u, v) and FV (C, u, v) are also
continuous on [0, u] and [0, v] respectively. Hence, (2.72) holds for all s, t in [0, u′] × [0, v′]
because FU (C, u, v)←(u∗) = u′ and FV (C, u, v)←(v∗) = v′.
Finally, if 0 < u′ ≤ u ≤ 1 and 0 < v′ ≤ v ≤ 0, then Φ(C, u′, v′) = Φ(Φ(C, u, v), u∗, v∗), where u∗

are v∗ satisfy respectively u∗ = C(u′, v)/C(u, v) and v∗ = C(u, v′)/C(u, v).
(ii) Conversely, C∗ = Φ(Φ(C, u, v), u′, v′) satisfies, for 0 ≤ x ≤ u′ and 0 ≤ y ≤ v′

Φ(C, u, v)(x, y)

Φ(C, u, v)(u′, v′)
= C∗

(
Φ(C, u, v)(x, v′)

Φ(C, u, v)(u′, v′)
,

Φ(C, u, v)(u′, y)

Φ(C, u, v)(u′, v′)

)
. (2.73)

Since
C(x, y)

C(u, v)
= Φ(C, u, v)

(
C(x, v)

C(u, v)
,
C(u, y)

C(u, v)

)
, (2.74)
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we get that for all x ≤ u′ and y ≤ v′ that

C(FU (C, u, v)←(x), FV (C, u, v)←(y))

C(FU (C, u, v)←(u′), FV (C, u, v)←(v′))

= C∗

(
C(FU (C, u, v)←(x), FV (C, u, v)←(v′))

C(FU (C, u, v)←(u′), FV (C, u, v)←(v′))
,

C(FU (C, u, v)←(u′), FV (C, u, v)←(y))

C(FU (C, u, v)←(u′), FV (C, u, v)←(v′))

) (2.75)

Let u∗ = FU (C, u, v)←(u′) and v∗ = FV (C, u, v)←(v′), i.e. u∗ and v∗ satisfy respectively
C(u∗, v) = u′C(u, v) and C(u, v∗) = v′C(u, v). Then, for all x ≤ u∗ and y ≤ v∗

C(x, y)

C(u∗, v∗)
= C∗

(
C(x, v∗)

C(u∗, v∗)
,

C(u∗, y)

C(u∗, v∗)

)
, (2.76)

i.e. C∗ = Φ(C, u∗, v∗) from Sklar’s Theorem since the functions x 7→ C(x, v∗)/C(u∗, v∗) and
y 7→ C(u∗, y)/C(u∗, v∗) are continuous.
Finally, if 0 < u′, u ≤ 1 and 0 < v′, v ≤ 0, then Φ(Φ(C, u, v), u′, v′) = Φ(C, u∗, v∗) where u∗ are
v∗ satisfy respectively C(u∗, v) = u′C(u, v). Moreover, because C(u∗, v) = u′C(u, v) ≤ C(u, v)
and because x 7→ C(x, v)/C(u, v) is an increasing function, it follows that u∗ ≤ u. Similarly,
v∗ ≤ v, which completes the proof of Lemma 2.4.12.

Lemma 2.4.13. For any u, v ∈ (0, 1], the map C → C, C 7→ Φ(C, u, v) is continuous with respect
to the ‖ · ‖∞-norm.

Proof. In order to show the continuity of Φ(·, u, v), we have to bound differences of the form

|Φ(C ′, u, v)(s, t) − Φ(C, u, v)(s, t)|, (2.77)

where C,C ′ ∈ C and s, t ∈ [0, 1]. Since the functions C(·, v)/C(u, v) and C(u, ·)/C(u, v) are
continuous and take the values 0 and 1 at u, respectively v, we may assume without loss of
generality that s = C(x, v)/C(u, v) and t = C(u, y)/C(u, v) for some (x, y) ∈ [0, u] × [0, v].
Applying Lemma 2.4.2, it follows then

Φ(C, u, v)(s, t) =
C(x, y)

C(u, v)
. (2.78)

Let now ∆ = C ′ − C and consider

αC(x, y) =
C(x, y)

C(u, v) + ∆(u, v)
and δ∆(x, y) =

∆(x, y)

C(u, v) + ∆(u, v)
. (2.79)

We obtain that

C ′(x, v)

C ′(u, v)
=

C(x, y) + ∆(x, y)

C(u, v) + ∆(u, v)
= αC(u, v)s + δ∆(x, v), (2.80)

C ′(u, y)

C ′(u, v)
= αC(u, v)t + δ∆(u, y). (2.81)

Thus, using again Lemma 2.4.2, we get

Φ(C ′, u, v)(αC(u, v)s + δ∆(x, v), αC(u, v)t + δ∆(u, y)) =
C ′(x, y)

C ′(u, v)
. (2.82)
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Now, the expression in (2.77) can be bounded as follows:

|Φ(C ′, u, v)(s, t) − Φ(C, u, v)(s, t)| (2.83)

≤ |Φ(C ′, u, v)(s, t) − Φ(C ′, u, v)(αC(u, v)s + δ∆(x, v), αC(u, v)t + δ∆(u, y))|
≤ +|Φ(C ′, u, v)(αC(u, v)s + δ∆(x, v), αC(u, v)t + δ∆(u, y)) − Φ(C, u, v)(s, t)|

≤ |αC(u, v)s + δ∆(x, v) − s| + |αC(u, v)t + δ∆(u, y) − t| +
∣∣∣∣
C ′(x, y)

C ′(u, v)
− C(x, y)

C(u, v)

∣∣∣∣ ,

where the last inequality follows because any copula is Lipschitz-continuous with Lipschitz
constant 1 and because of (2.79), (2.82). Further, from the definition of αC , δ∆ and because
x ≤ u, s ≤ 1, we have that

|αC(u, v)s + δ∆(x, v) − s| ≤
∣∣∣∣

−∆(u, v)s

C(u, v) + ∆(u, v)
+

∆(x, v)

C(u, v) + ∆(u, v)

∣∣∣∣ ≤
2|∆(u, v)|

C(u, v) + ∆(u, v)

≤ 2‖∆‖∞
C(u, v) − ‖∆‖∞

.

(2.84)

Similarly,

|αC(u, v)t + δ∆(u, y) − t| ≤ 2‖∆‖∞
C(u, v) − ‖∆‖∞

. (2.85)

Further, since x ≤ u, y ≤ v, we have that
∣∣∣∣
C ′(x, y)

C ′(u, v)
− C(x, y)

C(u, v)

∣∣∣∣ =
|∆(x, y)C(u, v) − C(x, y)∆(u, v)|

C ′(u, v)C(u, v)
≤ 2|C(u, v)∆(u, v)|

C ′(u, v)C(u, v)
≤ 2‖∆‖∞

C ′(u, v)
.

(2.86)
From (2.84), (2.84), (2.85) and (2.86), we get

|Φ(C ′, u, v)(s, t) − Φ(C, u, v)(s, t)| ≤ 4‖∆‖∞
C(u, v) − ‖∆‖∞

+
2‖∆‖∞
C ′(u, v)

, (2.87)

where the right hand side is independent from s, t and can be made arbitrarily small as ‖∆‖∞
becomes small. This finishes the proof of proof of Lemma 2.4.13

Remark 2.4.14. The parameters α, β of the LTDC-limit Γ(P, Q, α, β, θ) can be interpreted as pa-
rameters describing the direction under which the limit is taken since, as stated in Theorem 2.4.6,
Γ(P, Q, α, β, θ) is invariant on D = {(P (tα), Q(tβ)), t ∈ (0, 1]}. However, such a distribution is
not identifiable. In fact, α, β and θ are defined up to a positive multiplicative constant, thus
Γ(P, Q, α, β, θ) could be defined using two parameters solely. More precisely, for η = β/α,

Γ(P,Q, α, β, θ) = Γ(P,Q, 1, η, θ) = Γ(P, Q, η, θ). (2.88)

Moreover, for all k > 0, we have that

Γ(P, Q, η, θ) = Γ(Pk, Qk, kη, kθ), (2.89)

where Pk(x) = P (xk) and Qk(x) = Q(xk), x ∈ [0, 1].

We finish this section with a Proposition stating that the only copula which is absolutely
continuous and is also invariant on the unit square is the Clayton copula.

Proposition 2.4.15. The only copula which is absolutely continuous and invariant on [0, 1]2 is
the Clayton copula.
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Proof. Let C be an absolutely continuous and invariant copula on the unit square. Because of
Lemma 2.4.2, we have for all x, y, u, v ∈]0, 1] that

C(xu, yv)

C(u, v)
= C

(
C(xu, v)

C(u, v)
,
C(u, yv)

C(u, v)

)
. (2.90)

Since C is absolutely continuous, then derivating with respect to x and y yields

uvC12(xu, yv)

C(u, v)
=

vC2(u, yv)

C(u, v)

uC1(xu, v)

C(u, v)
C12

(
C(xu, v)

C(u, v)
,
C(u, yv)

C(u, v)

)
, (2.91)

where C1, C2 and C12 denote the partial derivatives of C with respect to the relative variables.
The latter equation can be written as

C(u, v)C12(xu, yv)

C2(u, yv)C1(xu, v)
= C12

(
C(xu, v)

C(u, v)
,
C(u, yv)

C(u, v)

)
. (2.92)

Inserting x = y = 1, we obtain that

C(u, v)C12(u, v)

C2(u, v)C1(u, v)
= C12(1, 1) = θ − 1. (2.93)

The latter equation can be rewritten as

C12(u, v)

C1(u, v)
= (θ − 1)

C2(u, v)

C(u, v)
. (2.94)

Integrating with respect to v leads to

log C1(u, v) = (θ − 1) log C(u, v) + κ(u) (2.95)

for some function κ of u. In order to determine the function κ, observe that

log C1(u, 1) = (θ − 1) log u + κ(u).

Substituting into equation (2.95) yields

log
C1(u, v)

C1(u, 1)
= (θ − 1) log

C(u, v)

u
, (2.96)

Taking the exponential on both sides produces the identity

C1(u, v)

C(u, v)θ−1
=

C1(u, 1)

uθ−1
. (2.97)

Integrating with respect to u, we obtain

C(u, v)−θ

−θ
=

C(u, 1)−θ

−θ
+ λ(v) =

u−θ

−θ
+ λ(v) (2.98)

for some function λ of v. Because of symmetry, it follows that λ does not depend on v, i.e. that

C(u, v)−θ

−θ
=

u−θ

−θ
+

v−θ

−θ
+ constant, (2.99)

which can also be written as

C(u, v)−θ = u−θ + v−θ + c, for all0 ≤ u, v ≤ 1, (2.100)
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where c is some constant. Finally, because C is a copula, it must be C(1, 1) = 1, whence the
constant in the equation above must be −1, i.e. C is the Clayton copula with parameter θ.
Conversely, since the Clayton copula is absolutely continuous and also invariant on [0, 1]2, it
follows that it is the only copula with this properties.

Note that this result can easily be extended in higher dimension. Hence, the relationship
that should fulfill an invariant copula is that for all x1, ..., xd, u1, ..., ud ∈ (0, 1],

C(x1u1, ..., xdud)

C(u1, ..., ud)
= C

(
C(x1u1, u2..., ud)

C(u1, ..., ud)
, ...,

C(u1, ..., ud−1, xdud)

C(u1, ..., ud)

)
.

Theorem 2.4.16. The only d-copula which is absolutely continuous and invariant on [0, 1]d is
Clayton copula.

Proof. Since C is absolutely continuous, derivating with respect to xi and xj yields

uiujCi,j(x1u1, ..., xdud)

C(u1, ..., ud)
=

uiCi(u1, .., uixi, ..., ud)

C(u1, ..., ud)

uijCj(u1, .., ujxj , ..., ud)

C(u1, ..., ud)

× Ci,j

(
C(x1u1, u2..., ud)

C(u1, ..., ud)
, ...,

C(u1, ..., ud−1, xdud)

C(u1, ..., ud)

)
.

Note that the latter can be written

C(u1, ..., ud)Ci,j(x1u1, ..., xdud)

Ci(u1, .., uixi, ..., ud)Cj(u1, .., ujxj , ..., ud)
= Ci,j

(
C(x1u1, u2..., ud)

C(u1, ..., ud)
, ...,

C(u1, ..., ud−1, xdud)

C(u1, ..., ud)

)
.

Inserting x1 = ... = xd = 1, we get

C(u1, ..., ud)Ci,j(u1, ..., ud)

Ci(u1, .., ui, ..., ud)Cj(u1, .., uj , ..., ud)
= Ci,j (1, 1, ..., 1) .

Set θi,j = Ci,j (1, 1, ..., 1) + 1, so that the equation above can be written

C(u1, ..., ud)Ci,j(u1, ..., ud)

Ci(u1, .., ui, ..., ud)Cj(u1, .., uj , ..., ud)
= θi,j − 1.

The latter equation can be rewritten as

Ci,j(u)

Ci(u)
= (θ − 1)

Cj(u)

C(u)
, for all u ∈ (0, 1]d. (2.101)

Integrating with respect to uj leads to

log Cj(u) = (θi,j − 1) log C(u) + κ(u) (2.102)

for some function κ of u. In order to determine the function κ, observe that

log Ci(1, ..., 1, ui, 1, ..., 1) = (θi,j − 1) log ui + κ(u).

Substituting into equation (2.102) yields

log
Ci(u1, ..., ui−1, ui, ui+1, ..., ud)

Ci(1, ..., 1, ui, 1, ..., 1)
= (θi,j − 1) log

C(u)

ui
, (2.103)

Taking the exponential on both sides produces the identity

Ci(u)

C(u)θi,j−1
=

Ci(1, ..., 1, ui, 1, ..., 1)

u
θi,j−1
i

. (2.104)
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Integrating with respect to ui, we obtain

C(u1, ..., ui, ...ud)
−θi,j

−θi,j
=

C(1, ..., 1, ui, 1, ..., 1)−θi,j

−θi,j
+ κ(u1, ..., ui−1, ui+1, ..., ud)

=
u
−θi,j

i

−θi,j
+ κ(u1, ..., ui−1, ui+1, ..., ud)

for some function κ of (u1, ..., ui−1, ui+1, ..., ud). Since those term do not depend on j, using
symmetry arguments, θi,j = θi. Using again some symmetry properties, it follows that necessarily
the θi’s have to be equal. Hence, θi = θ for all i = 1, 2, ..., n, and

C(u1, ..., ud)
−θ

−θ
=

u−θ
1

−θ
+ ... +

u−θ
d

−θ
+ constant, (2.105)

which can also be written as

C(u1, ..., ud)
−θ = u−θ

1 + ... + u−θ
d + c, for all u1, ..., ud ∈ (0, 1], (2.106)

where c is some constant. Finally, because C is a copula, it must satisfy C(1, 1, ..., 1) = 1,
whence the constant in the equation above must be −(d − 1), i.e. C is the Clayton copula with
parameter θ. Conversely, since the Clayton copula is absolutely continuous and also invariant
on [0, 1]d, it follows that it is the only copula with this properties.

Remark 2.4.17. Note that the upper Fréchet-Hoeffding bound is not a an absolutely continuous
copula, but it is an invariant copula.

2.5 An application to credit risk

The main risk drivers of almost all credit derivatives such as e.g. Credit Default Swap baskets
(CDS baskets) or first-to-default contract types are given by the relevant default times. Among
the most popular (univariate) default time models we find intensity-based ones. As shown
by Schönbucher and Schubert (2001) a copula approach allows to model naturally arbitrary
dependence structures in such an intensity-based framework.

In this section we first review the setup of Schönbucher and Schubert (2001) and we then
show how our LTDC-limits can be used as dependence structures for credit stress scenarios.

2.5.1 Intensity-based default models

For σ-algebras A,B with A ⊂ B and for a set B ∈ B, we will use in the sequel the notation
A ∧ B = {A ∩ B, A ∈ A}. Further, all filtrations are supposed to satisfy the usual conditions,
i.e. they are assumed to be right continuous and such that the smallest σ-filed of the filtration
is trivial. Finally, for a review of point process intensities we refer to ?.

Schönbucher and Schubert (2001) propose the following intensity-based default model which
we recall in the two-dimensional case. Let λi, i = 1, 2 be non-negative càdlàg processes adapted
to a filtration (Gt)t≥0 representing the general market information except explicit information on
the occurrence of defaults. For U1, U2 standard uniformly distributed random variables, which
are assumed to be independent from G∞ = ∪t≥0Gt, we define the default times as the random
variables

τi = inf{t > 0, γi(t) ≤ Ui}, i = 1, 2, (2.107)
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where γi(t) = exp(−Λi(t)) is called countdown processes and Λi(t) =
∫ t
0 λi(s) ds. Note that,

conditioned on G∞, we have that

P(τ1 ≤ t1, τ2 ≤ t2|G∞) = C∗(γ1(t1), γ2(t2)), (2.108)

where C is the distribution function of (U1, U2). Thus, we see that defining default times as
in (2.107) implies that, given general market information, the default dependence mechanism is
completely described by C.

Remark 2.5.1. The motivation behind (2.107) comes from the fact that, for a Cox process with
intensity λ, the time τ of the first jump can be written

τ = inf

{
t > 0

∣∣∣
∫ t

0
λ(s) ds ≥ Z

}
, (2.109)

where Z is exponentially distributed with parameter 1 (see Lando 1998).

In general, the intensity of a point process depends on the information which is conditioned
on. Denoting by Ni the default counting process of counterparty i = 1, 2 and by F i

t the augmented
filtration of σ(Ni(s); 0 ≤ s ≤ t), we have that λi is the F i

t -intensity of Ni. However it is in the
spirit of any multivariate model also consists in considering the information relative to the other
counterparties such as the one given by C and Ht = ∨i=1,2(F i

t ∨ Gt), t ≥ 0. Indeed, we find in
Schönbucher and Schubert (2001) that the Ht-intensity hi of Ni equals to

hi(t) = λi(t) · γi(t) · ∂i log(C(γ1(t), γ2(t))). (2.110)

Because of the term ∂i log(C(γ1(t), γ2(t))), the intensity of a single counterparty is also affected by
the dependence structure of the several counterparties. In the case where U1, U2 are independent,
i.e. whenever C = C⊥, we have that the right hand side of (2.110) reduces to λi(t), i.e. to the
F i

t -intensity of Ni. Further, under the additional information that the other obligor has already
defaulted, i.e. {τj = tj}, j 6= i, tj > 0, the default intensity of the survived counterparty takes
the form

h−j
i (t) = λi(t) · γi(t) ·

∂ijC(γ1(t), γ2(t))

∂jC(γ1(t), γ2(t))
. (2.111)

A special case of (2.110) and (2.111) is given by C equal to the Clayton copula with parameter
θ of Example 2.4.9. In that case,

hi(t) =

(
C(γ1(t), γ2(t))

γi(t)

)θ

λi(t) and h−j
i (t) = (1 + θ)hi(t). (2.112)

As stated in Schönbucher and Schubert (2001), such a dependence structure reflects one of the
main features of a model introduced by Davis and Lo ((2001), (1999b)), where knowledge of one
obligor’s default determines a jump in the spread of the other obligor by a factor (1 + θ).

2.5.2 Dependence structures for stress scenarios

Stress scenarios for default times arise in many different situations. For example, pension funds
have to invest only in investment grade bonds because of regulatory reasons. Thus, a default (or
downgrade) of a bond in the pension fund’s portfolio determines the replacement of that bond,
whence a possible (large) losses due to the bond’s value decrease. Another example is given by
first-to-default CDS baskets where in the case of an early default the protection seller receives
the premium only for a short time but has to deliver the underlying very soon.
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More generally, knowing or modelling the dependence structure of the several default times
and in particular the joint behavior under averse market conditions, avoids risk underestimation
allowing thus for a risk-adjusted pricing (for instance of credit derivatives). Such stress situations
can be described by conditional distributions of the type

P(τ1 ≤ t1, τ2 ≤ t2|G∞ ∧ {τ1 ≤ T, τ2 ≤ T}), (2.113)

as T tends to zero. Since the conditional distribution of τi given Hi
t equals γi(t), it follows from

Proposition 2.2.3 and Equation (2.108) that the copula relative to the conditional distribution
in (2.113) is given by

Φ(C∗, 1 − γ1(T ), 1 − γ2(T )), (2.114)

where C∗ is the survival copula of C.

Example 2.5.2 (First-to-default). The conditional distribution of the first-to-default time τ =
τ1 ∧ τ2 conditioned on G∞ ∧ {τ1 ≤ T, τ2 ≤ T} is given for t ≤ T by

P(τ ≤ t|G∞ ∧ {τ1 ≤ T, τ2 ≤ T}) = 1 − P(τ1 > t, τ2 > t|G∞ ∧ {τ1 ≤ T, τ2 ≤ T})
= 1 − C∗(1 − γ1(t), 1 − γ2(t)),

(2.115)

where C∗ is the survival copula of Φ(C∗, 1 − γ1(T ), 1 − γ2(T )).

Suppose now that λi is regularly varying at 0 with parameter δi ≥ 0 which, as it is easy to
check, implies that 1 − γi ∈ R0

1+δi
. Further, assume C∗ ∈ C ∩ R(1 − γ1, 1 − γ2) with limiting

function φ. Then, because of Corollary 2.4.11, there is a constant θ > 0 such that

lim
T→0

Φ(C∗, 1 − γ1(T ), 1 − γ2(T )) = Γ(φX , φY , 1 + δ1, 1 + δ2, θ). (2.116)

As a special case, we have for γ1 = γ2 = γ and δ1 = δ2 = 0 that

lim
T→0

Φ(C∗, 1 − γ(T ), 1 − γ(T )) = Γ(g, g, 1, 1, θ), g = φX , (2.117)

which corresponds to the limiting copula (2.35) of Remark 2.3.8.
As we already mentioned at the end of Section 2.3, a special case of Theorem 2.3.4 is given

by the situation where the starting copula is archimedean with a regularly varying generator. In
this case, the LTDC-limit on the diagonal is the Clayton copula. Thus, the Davis-Lo-model can
be seen as stress-scenario one.



Chapter 3

Lower tails for Archimedean copulae

3.1 Introduction and motivations

In risk management the choice of an appropriate dependence structure plays a crucial role (to
estimate capital needed for hedging risks, or to price standard multiline products). For an
overview of some of the recent developments and applications, in finance or actuarial science,
we refer to Bäuerle and Müller (1987), Frees and Valdez (1998), Klugman and Parsa (1999)
or the monograph of Denuit, Dhaene, Goovaerts and Kaaas (2005) and the references therein.
Within the large set of copulae, it might be more convenient to restrict the study to the family
of Archimedean copulae, introduced in Kimberling (1974) and intensively since; see for instance
Genest and MacKay (1986a), Genest and Rivest (1993) or Müller and Scarsini (2004) among
others. And because of the crucial importance of extremal events in insurance or finance, it
became primordial to have a better understanding of the behavior of copulae in tails.

In Juri and Wüthrich (2003), tail dependence for bivariate Archimedean copulae is described
using the concept of lower tail dependence copulae. The lower tail dependence copula of a copula
C at level 0 < u < 1 is defined as the copula of the conditional distribution of a random pair
(U, V ) with distribution function C when conditioned to be contained in the square [0, u]2. If C
is Archimedean, then the lower tail dependence copulae obtained from C must be Archimedean
as well, and their generators admit simple expressions in terms of the generator of C.

The central topic in Juri and Wüthrich (2003) is the asymptotic behavior of the lower tail
dependence copula of a strict Archimedean copula as the threshold u decreases to zero. The main
result is that, under regularity conditions, the only possible limit of the lower tail dependence
copula is the Clayton copula, the parameter of the latter being determined by the index of regular
variation of the generator of the Archimedean copula at zero. The key rule of the Clayton copula
was also mentioned in Charpentier (2004) or Bassan and Spizzichino (2004).

If section 3.2 will briefly recall some notations and results on Archimedean copulae, section 3.3
will extend some results of Genest and MacKay (1986b) on limiting behavior for a sequence of
Archimedean copulae. Since Archimedean copulae are stable by truncature, those results will
then be used to derive properties of lower tails for Archimedean copulae.

The topic of section 3.4 is the boundary case when the generator of the Archimedean copula
is regularly varying at 0. In Theorem 3.5 in Juri and Wüthrich (2003), it is claimed that if C
is a strict Archimedean copula whose generator is differentiable and regularly varying at 0, then
the lower tail dependence copula Cu converges pointwise to the Clayton copula, including the
two limiting case: tail independence if the generator is slowly varying, and tail comonotonicity
if the generator is rapidly varying.

In section 3.4.1, we will study some necessary and sufficient conditions for Archimedean
copulae to have some tail behavior. As we shall see, the case of tail independence is slightly
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different from the condition stated in Theorem 3.5 in Juri and Wüthrich (2003). In Section 3.4.2,
we give an example of a strict Archimedean copula whose generator is continuously differentiable
and slowly varying at the origin and such that the tail dependence copula Cu does not converge
to the independence copula as u decreases to zero. The problem in Theorem 3.5 in Juri and
Wüthrich (2003) seems to come from Lemma 3.4 in the same paper, which is shown by the
same counterexample to be incorrect as well. Fortunately, the result can be fixed by imposing a
stronger condition on the generator involving the de Haan’s class Π, or equivalently, by assuming
regular variation of the derivative of the generator, see Section 3.4.3.

And finally, in section 3.5, we will extend results obtained in section 3.4 to higher dimension.
Again, tail dependence (section 3.5.1) and tail independence (section 3.5.2) be be considered
separately.

3.2 Definitions and preliminaries

3.2.1 Bivariate Archimedean copulae

A function C : [0, 1]2 → [0, 1] is called a bivariate copula if it is the restriction to [0, 1]2 of a
bivariate distribution function whose marginals are given by the uniform distribution on the
interval [0, 1]. A function ψ : [0, 1] → [0,∞] is called a strict generator if it is decreasing, convex,
ψ(0) = ∞ and ψ(1) = 0. The inverse function of a strict generator ψ is denoted by ψ←. A
function C : [0, 1]2 → [0, 1] is called a strict Archimedean copula if there exists a strict generator
ψ such that

C(u, v) = ψ←{ψ(u) + ψ(v)}, (u, v) ∈ [0, 1]2.

Note that the generator is unique up to a multiplicative constant. A strict Archimedean copula
is a copula. See the survey monograph by Nelsen (1999) and the references therein for more
details.

3.2.2 Archimedean copulae in higher dimension

In higher dimension, as pointed out in section 1.5, some assumptions should added in order
to define a proper copula. As pointed out in Nelsen, Quesada Molina, Rodríguez-Lallena and
Úbeda-Flores (2002), in dimension d > 2, a generator which is simply decreasing and convex
generates a quasi-copula, not necessarily a copula.

Hence, a function ψ : [0, 1] → [0,∞] is called a generator of order d if the following conditions
hold:

• ψ is decreasing and ψ(1) = 0;

• the generalized inverse, ψ← : [0,∞] → [0, 1], of ψ, defined by

ψ←(t) = inf{u ∈ [0, 1] | ψ(u) ≤ t} for all t ∈ [0,∞],

is d − 2 times continuously differentiable on (0,∞);

• the function (−D)(d−2)ψ← is convex.

The generator ψ is called strict if ψ(0) = ∞.
Under those assumption, a d-variate copula, C, is called Archimedean if there exists a gener-

ator, ψ, of order d such that

C(u1, . . . , ud) = ψ←{ψ(u1) + · · · + ψ(ud)},
for all (u1, . . . , ud) ∈ [0, 1]d.

Characterization of generators in dimension d ≥ 2 will be considered in Section 5.2.
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3.2.3 Lower tail conditional copulae

Let C be a copula and let (U, V ) be a random pair with joint distribution function C. Let
0 < u < 1 be such that C(u, u) > 0. The lower tail dependence copula relative to C at level
u is defined as the copula, Cu, of the joint distribution of (U, V ) conditionally on the event
{U ≤ u, V ≤ u}. Formally,

Cu(x, y) =
C(x′, y′)

C(u, u)

where 0 ≤ x′ ≤ u and 0 ≤ y′ ≤ u are the solutions to the equations

C(x′, u)

C(u, u)
= x and

C(u, y′)

C(u, u)
= y;

see Definition 3.1 in Juri and Wüthrich (2003) or Definition 2.2 in Juri and Wüthrich (2004).
Upper tail dependence copulae are defined in a similar way (see Definition 2.1 in Juri and Wüthrich
(2004). Moreover, the definition can be extended by allowing the thresholds for the two margins
to be different, that is, by conditioning on the event {U ≤ u, V ≤ v}, where (u, v) ∈ (0, 1]2 are
such that C(u, v) > 0, see Definition 2.5 in Charpentier (2004). In this note, we will be interested
only in the diagonal.

If C is a strict bivariate Archimedean copula with generator ψ, then the lower tail dependence
copula relative to C at level u is given by the strict Archimedean copula with generator ψu defined
by

ψu(t) = ψ(tv) − ψ(v), 0 ≤ t ≤ 1, (3.1)

where v = v(u) = ψ←{2ψ(u)} (Proposition 3.2 in Juri and Wüthrich (2003)).

Remark 3.2.1. Note that ψu is obtained using some translations of the original generator. On
Figure 3.1, (1) is the original generator of the copula. Consider the restriction of the generator at
(0, C(u, u)], and an homothetic transformation so that its supports becomes [0, 1], as in (2). The
equation of this curve is t 7→ ψ(t · C(u, u)) where t ∈ (0, 1]. Consider then a simple translation
, so that this function becomes null in 1, i.e. t 7→ ψ(t · C(u, u)) − ψ(C(u, u)), as in (3). Hence,
the idea is to consider the restriction of ψ on the support (0, C(u, u)], and to use homothetic
transformations so that the support becomes (0, 1]], an a translation to be null in 1, and so that
ψu satisfies properties of an Archimedean generator.

Since v(u) → 0 as u → 0, the asymptotic behavior of the lower tail dependence copula Cu as
u → 0 depends on the asymptotic behavior of ψ near the origin.

3.2.4 Regular variation and de Haan theory

A useful concept now is that of regular variation: A positive, measurable function f defined in
a right-neighbourhood of zero is said to be regularly varying at zero of index τ ∈ R if

lim
u→0

f(ux)

f(u)
= xτ , 0 < x < ∞,

with notation f ∈ Rτ (or f ∈ R0
τ to specify that regular variation is considered at origin). If

τ = 0, then the limit is equal to one for all 0 < x < ∞; in this case, f is said to be slowly varying
at zero. A limiting case is obtained when τ = −∞: f is said to be rapidly varying at zero of
index −∞, notation f ∈ R−∞, if

lim
u→0

f(ux)

f(u)
=






0 if 1 < x < ∞,
1 if x = 1,
∞ if 0 < x < 1.
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Figure 3.1: Geometric interpretation of the generator of the conditional copula.

Classically, regular variation is considered at infinity rather than at zero. However, it is typically
straightforward to translate results from regular variation at infinity to regular variation at zero
by considering the function y 7→ f(1/y) (see for instance Bingham, Goldie and Teugels (1987)).

Regular and slow variation

The definition of regular variation involves in principle an infinite set of limit relations. However,
if a function is known to be convex, then regular variation of the function is equivalent to a single
limit relation. Results of this type are known under the name “Monotone Density Theorem,” see
for instance section 1.7.3 in Bingham, Goldie and Teugels (1987). We will need the following
two instances.

Lemma 3.2.2. Let f be a positive, convex function of a real variable defined in a right-
neighbourhood of zero. Let Df be a nondecreasing version of the Radon-Nikodym derivative
of f . The function f is regularly varying at zero of index τ ∈ [−∞,∞] if and only if

lim
s→0

sDf(s)

f(s)
= τ.

Proof. Let c be a positive number such that the domain of f includes the interval (0, c]. The
function log f is absolutely continuous with Radon-Nikodym derivative (Df)/f . Denote τ(s) =
sDf(s)/f(s). For 0 < s ≤ c, we have

f(s) = f(c) exp

(
−

∫ c

s
τ(t)

dt

t

)
.
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If additionally 0 < x < ∞ with x 6= 1 and if s is such that also sx ≤ c, then

f(sx)

f(s)
= exp

(∫ sx

s
τ(t)

dt

t

)

= exp

(∫ x

1
τ(st)

dt

t

)
.

The argument of the exponent converges to τ log(x) as s → 0. Hence indeed f(sx)/f(s) → xτ

as s → 0, as required.
Conversely, suppose that f is regularly varying at zero of index τ . By convexity, we have for

all 0 < x < ∞ and all sufficiently small s,

f(sx) − f(s) ≥ s(x − 1)Df(s).

If x is not equal to one, we can divide both sides of this inequality by (x− 1) and let s decrease
to zero to get

lim sup
s→0

sDf(s)

f(s)
≤ xτ − 1

x − 1
, for all 1 < x < ∞,

lim inf
s→0

sDf(s)

f(s)
≥ xτ − 1

x − 1
, for all 0 < x < 1.

Since (xτ − 1)/(x − 1) → τ as x → 1 for all τ ∈ [−∞,∞], we conclude that sDf(s)/f(s) → τ
as s → 0.

Lemma 3.2.3. Let f be a positive, convex function of a real variable defined in a neighbourhood
of infinity. Let Df be a nondecreasing version of the Radon-Nikodym derivative of f . The
function f is regularly varying at infinity of index τ ∈ [−∞,∞] if and only if

lim
t→∞

tDf(t)

f(t)
= τ.

Proof. The proof of Lemma 5.1.4 is identical to the proof of Lemma 5.1.3.

Lemma 3.2.4. Let f be a positive, k ≥ 0 times continuously differentiable function of a real
variable defined in a neighbourhood of infinity. Assume that (−D)kf is convex and that f(t) → 0
as t → ∞. If f is regularly varying at infinity of index −τ ∈ [−∞, 0], then for all integer
j = 1, . . . , k + 1,

lim
t→∞

tj(−D)jf(t)

f(t)
= τ(τ + 1) · · · (τ + j − 1). (3.2)

Proof. We proceed by induction on k. In case k = 0, the statement is trivially implied by
Lemma 5.1.4.

So assume k is a positive integer. Note that by Lemma 5.1.1, the function (−D)jf is convex
for every j = 0, 1, . . . , k and vanishes at infinity. Hence, by the induction hypothesis, (5.1) holds
already for all j = 1, . . . , k, so only the case j = k + 1 remains to be shown.

First consider the case 0 < τ < ∞. Then we know that

(−D)kf(t) ∼ τ(τ + 1) · · · (τ + k − 1)t−kf(t) as t → ∞.
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In particular, the function (−D)kf is regularly varying at infinity of order −τ − k. Apply
Lemma 5.1.4 to get

(−D)k+1f(t) ∼ (τ + k)t−1(−D)kf(t) as t → ∞.

Combine the two previous displays to see that (5.1) also holds for j = k + 1.
Next consider the case τ = 0. Then we know that

(−D)kf(t) = o{t−kf(t)} as t → ∞.

Since (−D)kf is convex and since (−D)k+1f is nonnegative,

(−D)kf(t/2) − (−D)kf(t) ≥ (t/2)(−D)k+1f(t) ≥ 0.

Combine the two previous displays with the fact that f(t/2) ∼ f(t) as t → ∞ to see that
tk+1(−D)k+1f(t)/f(t) → 0 as t → ∞.

Finally, consider the case τ = ∞. For large enough t, we have by induction on k,

f(t) =

∫ ∞

t

(v − t)k

k!
(−D)k+1f(v)dv.

Let 1 < x < ∞. For v ≥ tx2, we have v − t ≤ 2(v − tx) and thus

f(t) ≤
∫ tx2

t

(v − t)k

k!
(−D)k+1f(v)dv +

∫ ∞

tx2

2k(v − tx)k

k!
(−D)k+1f(v)dv

≤ tk+1(x2 − 1)k+1

(k + 1)!
(−D)k+1f(t) + 2kf(tx).

Since f(tx)/f(t) → 0 as t → ∞, we find

lim inf
t→∞

tk+1(−D)k+1f(t)

f(t)
≥ (k + 1)!

(x2 − 1)k+1
.

Let x → 1 to see that tk+1(−D)k+1f(t)/f(t) → ∞ as t → ∞.

De Haan theory, and second order properties

The property that a function is slowly varying or rapidly varying is sometimes not informative
enough. Versatile subclasses are the function classes Π and Γ due to L. de Haan and studied
extensively in Bingham, Goldie and Teugels (1987), chapter 3. These classes turn up for instance
in the study of the max-domain of attraction of the Gumbel distribution.

In the presence of convexity, the theory simplifies very much and can be reduced to ordinary
regular variation. The following two lemmas describe the core theory of the classes Π and
Γ restricted to convex functions. The proofs rely only on elementary properties of regularly
varying functions, in particular the Uniform Convergence Theorem, see for instance Bingham,
Goldie and Teugels (1987), Theorem 1.5.2.

Lemma 3.2.5. Let f be a convex, decreasing, and positive function defined in a right-
neighbourhood of zero. Let f ′ be a negative and nondecreasing version of the Radon-Nikodym
derivative of f . The following statements are equivalent:

(i) The function −f ′ is regularly varying at zero of index −1.
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(ii) If x(·) is a positive function defined in a right-neighbourhood of zero such that sx(s) → 0
and x(s) → x ∈ [0,∞] as s → 0, then

lim
s→0

f(sx(s)) − f(s)

sf ′(s)
= log(x).

(iii) There exists a positive function g defined in a neighbourhood of infinity such that

lim
s→0

f(sx) − f(s)

g(s)
= − log(x), for all 0 < x < ∞.

In this case, sf ′(s)/f(s) → 0 as s → 0 and f is slowly varying at zero.

Proof. (i) implies (ii). We have

f(sx(s)) − f(s) =

∫ sx(s)

s
f ′(u)du = s

∫ x(s)

1
f ′(su)du,

and thus
f(sx(s)) − f(s)

sf ′(s)
=

∫ x(s)

1

f ′(su)

f ′(s)
du.

If 0 < x < ∞, then by the Uniform Convergence Theorem, the right-hand side of the previous
equation converges to

∫ x
1 u−1du = log(x). If x = 0 or x = ∞, then by Fatou’s Lemma, the

right-hand side of the previous display converges to −∞ or +∞, respectively.
(ii) implies (iii). Trivial.
(iii) implies (i). Since g(s) ∼ f(se−1) − f(s) as s → 0, it is no loss of generality to assume

that g is measurable. The function g is necessarily slowly varying at zero. To see why, pick
1 6= x ∈ (0,∞) and let λ be a limit point in [0,∞] of g(sx)/g(s) as s → 0. Since

f(sx2) − f(s)

g(s)
=

f(sx2) − f(sx)

g(sx)
· g(sx)

g(s)
+

f(sx) − f(s)

g(s)

we must have
− log(x2) = − log(x)λ − log(x)

whence λ = 1, confirming that g is slowly varying at zero.
Since f is convex, we have for all 0 < x < ∞ and all sufficiently small, positive s,

f(sx) − f(s) ≥ s(x − 1)f ′(s).

For 1 < x < ∞, this yields

lim sup
s→0

sf ′(s)

g(s)
≤ − log(x)

x − 1
,

while for 0 < x < 1, we get

lim inf
s→0

sf ′(s)

g(s)
≥ − log(x)

x − 1
.

Since log(x) ∼ x − 1 as x → 1, we find −sf ′(s) ∼ g(s) as s → 0. Since g is slowly varying, it
now follows that −f ′ is regularly varying of index −1.

It remains to establish the final claim in the lemma. Let g be as in (iii); for instance
g(s) = −sf ′(s). Let M be a positive constant. Since

0 ≤ f(s exp(M))

g(s)
=

f(s)

g(s)
+

f(s exp(M)) − f(s)

g(s)

=
f(s)

g(s)
− M + o(1) as s → 0,
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we must have lim infs→0 f(s)/g(s) ≥ M . Hence g(s)/f(s) → 0 as s → 0. But then, for every
0 < x < ∞,

f(sx)

f(s)
− 1 =

g(s)

f(s)
· f(sx) − f(s)

g(s)
→ 0, as s → 0

Lemma 3.2.6. Let f be a convex, decreasing, and positive function defined in a right-
neighbourhood of zero. Assume f(0) = ∞ and let f← be the inverse function of f , defined
in a neighbourhood of infinity. Define φ(t) = −f←(t)f ′{f←(t)} with f ′ a negative and nonde-
creasing version of the Radon-Nikodym derivative of f . The conditions (i)–(iii) in Lemma 3.2.5
are equivalent to each of the following ones:

(iv) The function φ is self-neglecting, that is, φ(t) = o(t) as t → ∞ and

lim
t→∞

φ{t + xφ(t)}
φ(t)

= 1

locally uniformly in x ∈ R.

(v) We have φ(t) = o(t) as t → ∞, and if x(·) is a real function defined in the neighbourhood of
infinity such that x(t) → x ∈ [−∞,∞] and t + x(t)φ(t) → ∞ as t → ∞, then

lim
t→∞

f←{t + x(t)φ(t)}
f←(t)

= exp(−x).

(vi) There exists a positive function ϕ defined in a neighbourhood of infinity such that ϕ(t) = o(t)
as t → ∞ and

lim
t→∞

f←{t + xϕ(t)}
f←(t)

= exp(−x) for all x ∈ R.

Proof. Note that 1/φ in Lemma 3.2.6 is a version of the Radon-Nikodym derivative of − log f←.
Hence, there exists 0 < c < ∞ such that

f←(t) = f←(c) exp

(
−

∫ t

c

du

φ(u)

)
, for all c ≤ t < ∞.

(iv) implies (v). For sufficiently large t,

log

(
f←{t + x(t)φ(t)}

f←(t)

)
= −

∫ t+x(t)φ(t)

t

du

φ(u)
= −

∫ x(t)

0

φ(t)

φ{t + vφ(t)}dv

If −∞ < x < ∞, then the right-hand side of the previous display converges to −x. If x = −∞ or
x = +∞, then by Fatou’s lemma, the right-hand side of the previous display converges to +∞
or −∞, respectively.

(v) implies (vi). Trivial.
(vi) implies (iii). Define g(s) = ϕ(f(s)) for sufficiently small, positive s. Take 0 < y < ∞

and put

h(y, s) =
f(sy) − f(s)

g(s)
.

We have to show that lims→0 h(y, s) = − log(y). Fix 0 < ε < y. Since f(s) → ∞ as s → 0, we
have

lim
s→0

f←{f(s) − log(y ± ε)g(s)}
s

= y ± ε.
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Hence, there exists sε > 0 such that

f←{f(s) − log(y − ε)g(s)}
s

≤ y ≤ f←{f(s) − log(y + ε)g(s)}
s

,

for all 0 < s ≤ sε. However, we also have

y =
f←{f(s) + h(y, s)g(s)}

s
.

Since f← is decreasing and g is positive, we find that

− log(y − ε) ≥ h(y, s) ≥ − log(y + ε) for all 0 < s ≤ sε.

Since ε can be taken arbitrarily small and since the logarithm is a continuous function, we find
that h(y, s) → − log(y) as s → 0.

(i)–(ii) imply (iv). Observe that φ{f(s)} = −sf ′(s). Hence φ{f(s)} = o{f(s)} as s → 0,
whence φ(t) = o(t) as t → ∞.

Let x(·) be a function defined in a neighbourhood of infinity and such that x(t) → x ∈ R.
Define

y(t) =
f←{t + x(t)φ(t)}

f←(t)
.

Fix ε > 0. We have

lim
t→∞

f{f←(t) exp(−x ± ε)} − t

φ(t)
= x ∓ ε.

On the other hand,
f{f←(t)y(t)} − t}

φ(t)
= x(t) → x as t → ∞.

Hence, there must exist tε > 0 such that

f{f←(t) exp(−x + ε)} − t

φ(t)
≤ f{f←(t)y(t)} − t

φ(t)

≤ f{f←(t) exp(−x − ε)} − t

φ(t)

for all tε ≤ t < ∞. Since f is decreasing and φ is positive, this implies

exp(−x + ε) ≥ y(t) ≥ exp(−x − ε), for all tε ≤ t < ∞.

Since ε can be taken arbitrarily small and since the exponential function is continuous, we find
that y(t) → exp(−x) as t → ∞.

By (i), the function s 7→ φ ◦ f(s) = −sf ′(s) is slowly varying at zero. But from

t + x(t)φ(t) = f{f←(t)y(t)},

and the Uniform Convergence Theorem, it then follows that

φ{t + x(t)φ(t)} = φ ◦ f{f←(t)y(t)}
∼ φ ◦ f{f←(t)} = φ(t), as t → ∞.
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3.2.5 Clayton copula

The Clayton copula with parameter α ∈ [0,∞) is the Archimedean copula with strict generator
given by

ψ(x;α) =

∫ 1

x
t−α−1dt =






x−α − 1

α
if 0 < α < ∞,

− log(x) if α = 0

for 0 < x ≤ 1; the corresponding copula is

C(x, y;α) =

{
(x−α + y−α − 1)−1/α if 0 < α < ∞,
xy if α = 0

for (x, y) ∈ (0, 1]2. Note that limα→0 ψ(t; α) = ψ(t; 0) and limα→0 C(x, y; α) = C(x, y; 0). The
comonotone copula, which is itself not an Archimedean copula, arises as the of the Clayton
copula as α → ∞, that is,

C(x, y;∞) = lim
α→∞

C(x, y; α) = min(x, y)

for (x, y) ∈ [0, 1]2.
The Clayton copula has the special property that at every level 0 < u < 1, its lower tail

dependence copula is again a Clayton copula and with the same parameter; see also Proposi-
tion 4.15 in Charpentier (2004). Moreover, the Clayton copula is the only copula which can arise
as the limit of the lower tail dependence copula of an Archimedean copula whose generator is
regulary varying at the origin of positive index (see Theorem 3.3 in Juri and Wüthrich (2003)).

3.3 Limiting copulae and limiting generators

Let Cn be a sequence of bivariate Archimedean copulae with generators ψn. In this note, we
want to establish necessary and sufficient conditions for convergence of the sequence of copulae
Cn to a limiting copula C in terms of asymptotic properties of the sequence of generators ψn.
In particular, we seek to extend the results in Proposition 4.2 and 4.3 in Genest and MacKay
(1986b) and Theorems 4.4.7 and 4.4.8 in Nelsen (1999) to generators which are possibly not
everywhere differentiable, as well as give a number of alternative characterizations.

The characterizations are based in part upon an extension to general generators of Proposi-
tion 3.3 in Genest and MacKay (1986b), giving an expression for the joint distribution function of
the pair of random variables (X,C(X,Y )), where (X, Y ) is itself a random pair with distribution
function given by the Archimedean copula C (section 3.3.1). The main results involve characteri-
zations for the convergence of a sequence of Archimedean copulae to another Archimedean copula
or to the comonotone copula. These two cases require a separate treatment, see sections 3.3.2
and 3.3.3, respectively.

Note that although the results are written down in dimension two for convenience (and to
link them more easily with Genest and MacKay (1986b)), in section 3.3.4 we will see that in
higher dimensions the results remain virtually unchanged.

From our results, one may get the impression that every limit copula of a sequence of
Archimedean copulae is necessarily Archimedean or comonotone. This is not the case, how-
ever, as is shown by a counterexample in section 3.3.5.

If the generator is a natural way to identify the Archimedean copula, other functions can be
considered as well. The Kendall distribution function K of a copula C is defined as the distribu-
tion function of the random variable C(X,Y ), where (X,Y ) is a random pair with distribution
function C, so

K(t) = Pr[C(X,Y ) ≤ t], t ∈ [0, 1].
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If the copula C is Archimedean with generator ψ, then K(t) = t − λ(t) with λ(t) = ψ(t)/ψ′(t)
and ψ′ is the right-hand derivative of ψ on [0, 1) Proposition 1.1 in Genest and Rivest (1993).
Conversely, from K or λ it is possible to reconstruct ψ up to a multiplicative constant via

ψ(u) = ψ(u0) exp

(∫ u

u0

1

λ(t)
dt

)

for 0 < u0 < 1 and 0 ≤ u ≤ 1.

3.3.1 Auxiliary result

The following result is a useful device to deduce properties of the generator ψ of an Archimedean
copula C from the copula itself. For twice continuously differentiable generators, the result can
already be found in Proposition 3.3 in Genest and MacKay (1986b).

Proposition 3.3.1. Let (X,Y ) be a random pair with joint distribution function C, a bivariate
Archimedean copula with generator ψ. Let ψ′ be the right-hand derivative of ψ on [0, 1). Put
Z = C(X,Y ). For (z, x) ∈ [0, 1]2,

P(X ≤ x, Z ≤ z) =






x if x ≤ z ≤ 1,

z +
ψ(x)

ψ′(z)
− ψ(z)

ψ′(z)
if 0 < z < x ≤ 1,

ψ(x) − ψ(0)

ψ′(0)
if z = 0 < x and ψ′(0) > −∞,

0 if z = 0 < x and ψ′(0) = −∞.

Proof. Since Z = C(X,Y ) ≤ X, we have P(X ≤ x, Z ≤ z) = P(X ≤ x) = x for x ≤ z ≤ 1.
Hence we can restrict attention to z < x.

The case z = 0 < x follows from the case 0 < z < x by the fact that ψ′(0) = limz→0 ψ′(z) and
the fact that limz→0 ψ(z)/ψ′(z) = 0 if ψ′(z) = −∞, the latter property following from convexity.

Hence we can restrict attention to the case 0 < z < x. Since both ψ′ and the function
z 7→ P(X ≤ x, Z ≤ z) are right-continuous, it suffices to prove the stated equality for z such
that ψ′ is continuous in z.

We have

P(X ≤ x, Z ≤ z) = P(X ≤ z) + P(z < X ≤ x, Z ≤ z)

= z + P(z < X ≤ x, Z ≤ z)

We can focus on the last term on the right-hand side. Let n be a positive integer, and let

z = u0 < u1 < · · · < un = x

be such that

ψ(ui) =

(
1 − i

n

)
ψ(z) +

i

n
ψ(x), i = 0, 1, . . . , n.

We have

P(z < X ≤ x, Z ≤ z) =

n∑

i=1

P(ui−1 < X ≤ ui, Z ≤ z).

If ui−1 < X ≤ ui, then C(ui−1, Y ) ≤ Z ≤ C(ui, Y ). Hence
n∑

i=1

P(Ui−1 < X ≤ ui, C(ui, Y ) ≤ z)

≤ P(z < X ≤ x, Z ≤ z) ≤
n∑

i=1

P(ui−1 < X ≤ ui, C(ui−1, Y ) ≤ z).
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Further, for z ≤ u ≤ 1, since ψ and ψ← are decreasing, C(u, Y ) ≤ z is equivalent to Y ≤
ψ←{ψ(z) − ψ(u)}. We find that

P(z < X ≤ x, Z ≤ z)

≤
n∑

i=1

P(ui−1 < X ≤ ui, Y ≤ ψ←{ψ(z) − ψ(ui−1)})

=
n∑

i=1

(C(ui, ψ
←{ψ(z) − ψ(ui−1)}) − C(ui−1, ψ

←{ψ(z) − ψ(ui−1)}))

=
n∑

i=1

(ψ←{ψ(ui) + ψ(z) − ψ(ui−1)} − ψ←{ψ(z)}) .

Our choice of the grid {ui} is such that

ψ(ui) − ψ(ui−1) = −{ψ(z) − ψ(x)}/n, i = 1, . . . , n.

Hence
P(z < X ≤ x, Z ≤ z) ≤ n

(
ψ←[ψ(z) − {ψ(z) − ψ(x)}/n] − ψ←{ψ(z)}

)

Since ψ← is convex with nondecreasing derivative 1/(ψ′ ◦ ψ←),

ψ←(a) − ψ(b) ≤ (a − b)
1

ψ′{ψ←(a)} , 0 < a < b < ψ(0).

Combine the two previous displays to find

P(z < X ≤ x, Z ≤ z) ≤ − ψ(z) − ψ(x)

ψ′(ψ←[ψ(z) − {ψ(z) − ψ(x)}/n])

Let n tend to infinity and use the fact that z is a continuity point of ψ′ to find

P(z < X ≤ x, Z ≤ z) ≤ −ψ(z) − ψ(x)

ψ′(z)
.

The inequality in the other direction follows in a similar fashion. We give the steps here in full.
By the same arguments as above,

P(z < X ≤ x, Z ≤ z)

≥
n∑

i=1

P(ui−1 < X ≤ ui, Y ≤ ψ←{ψ(z) − ψ(ui)})

=
n∑

i=1

(C(ui, ψ
←{ψ(z) − ψ(ui)}) − C(ui−1, ψ

←{ψ(z) − ψ(ui)}))

=
n∑

i=1

(ψ←{ψ(z)} − ψ←{ψ(ui−1) + ψ(z) − ψ(ui)})

= n
(
ψ←{ψ(z)} − ψ←[ψ(z) + {ψ(z) − ψ(x)}/n]

)

≥ − ψ(z) − ψ(x)

ψ′(ψ←[ψ(z) + {ψ(z) − ψ(x)}/n])
.

Let n tend to infinity and use the fact that z is a continuity point of ψ′ to arrive at

P(z < X ≤ x, Z ≤ z) ≥ −ψ(z) − ψ(x)

ψ′(z)
,

as required.
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3.3.2 Convergence to Archimedean copula

In this section, we investigate necessary and sufficient properties of a sequence of Archimedean
copulae Cn with generators ψn to converge to an Archimedean copula C with generator ψ. For
twice continuously differentiable generators, the equivalence of (i) and (ii) in Proposition 3.3.2
below was already established in Proposition 4.2 in Genest and MacKay (1986b). The claim that
characterization (iii) is sufficient for copula convergence seems to be new.

Proposition 3.3.2. The following five conditions are equivalent:

(i) limn→∞ Cn(x, y) = C(x, y) for all (x, y) ∈ [0, 1]2

(ii) limn→∞ ψn(x)/ψ′
n(y) = ψ(x)/ψ′(y) for every x ∈ (0, 1] and y ∈ (0, 1) such that ψ′ is

continuous in y.

(iii) limn→∞ λn(x) = λ(x) for every x ∈ (0, 1) such that λ is continuous in x.

(iv) There exist positive constants κn such that limn→∞ κnψn(x) = ψ(x) for all x ∈ [0, 1].

(v) limn→∞ Kn(x) = K(x) for every x ∈ (0, 1) such that K is continuous in x.

Proof. (i) implies (ii). Let (X, Y ) and (Xn, Yn) be pairs of random variables with joint distri-
bution functions C and Cn, respectively. Also, put Z = C(X,Y ) and Zn = Cn(Xn, Yn). By
(i), (Xn, Yn) converges in distribution to (X, Y ) as n → ∞. Moreover, since C is a continuous
distribution function, the convergence of Cn to C is necessarily uniform in (x, y) ∈ [0, 1]2. Hence
(Xn, Zn) converges in distribution to (X, Z) as n → ∞. By Proposition 3.3.1, we have

lim
n→∞

ψn(x) − ψn(y)

ψ′
n(y)

=
ψ(x) − ψ(y)

ψ′(y)

for all 0 < y < x ≤ 1 such that ψ′ is continuous in y. Choose x = 1 to find

lim
n→∞

ψn(y)

ψ′
n(y)

=
ψ(y)

ψ′(y)
.

Combine the two previous displays to get

lim
n→∞

ψn(x)

ψ′
n(y)

=
ψ(x)

ψ′(y)

for every 0 < y ≤ x ≤ 1 such that y < 1 and ψ′ is continuous in y. Let 0 < xi < 1 for i = 1, 2
and apply the above display to (x1, y) and (x2, y) for some 0 < y < min(x1, x2) in which ψ′ is
continuous to arrive at

lim
n→∞

ψn(x1)

ψn(x2)
=

ψ(x1)

ψ(x2)
.

Combine the last two displays to arrive at (ii).
(ii) implies (iii). Trivial.
(iii) implies (iv). For 0 < x < y < 1, we have

log ψn(y) − log ψn(x) =

∫ y

x

ψ′
n(z)

ψn(z)
dz.

Suppose that we can show that the limit of the integral of the right-hand side of the previous
display is equal to the integral of the (almost everywhere) limit of the integrand. Then we have

lim
n→∞

{log ψn(y) − log ψn(x)} = log ψ(y) − log ψ(x).
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This, in turn, obviously implies (iv).
In order to justify interchanging limit and integral in the previous paragraph, we will show

that (iii) implies

lim sup
n→∞

sup
z∈[x,y]

∣∣∣∣
ψ′

n(z)

ψn(z)

∣∣∣∣ < ∞.

Let 0 < ε < x be such that
|ψ′(x − ε)| ≤ ψ(y)/(4ε).

By (iii), we have

lim
n→∞

1

( |ψ′
n(z)|

ψn(z)
> 2

|ψ′(z)|
ψ(z)

)
= 0

for almost every z ∈ [x − ε, y]. Since the above indicator variables are bounded and converge
pointwise to zero, there exists a positive integer nε such that

∫ y

x−ε
1

( |ψ′
n(z)|

ψn(z)
> 2

|ψ′(z)|
ψ(z)

)
dz < ε

for all integer n ≥ nε. Hence, for z ∈ [x, y] and integer n ≥ nε, there exist z − ε < u < z such
that

|ψ′
n(u)|

ψn(u)
≤ 2

|ψ′(u)|
ψ(u)

≤ 2
|ψ′(x − ε)|

ψ(y)
≤ 1

2ε

But then, since ψn and |ψ′
n| are both nonincreasing,

ψn(z)

|ψ′
n(z)| ≥

ψn(u) − (z − u)|ψ′
n(u)|

|ψ′
n(u)| ≥ 2ε − ε = ε,

as required.
(iv) implies (i). Let φn = κnψn. Then φn is a generator of Cn. Since each φn is monotone and

since ψ is monotone and continuous, we have limn→∞ φn(xn) = ψ(x) whenever limn→∞ xn = x
in [0, 1]. Hence also limn→∞ φ←

n (tn) = ψ←(t) whenever limn→∞ tn = t in [0,∞]. Hence, for every
(x, y) ∈ [0, 1]2,

Cn(x, y) = φ←
n {φn(x) + φn(y)} → ψ←{ψ(x) + ψ(y)} = C(x, y),

as n → ∞.
(v) implies (iii) and conversely. Trivial.

3.3.3 Convergence to comonotone copula

The comonotone copula is itself not an Archimedean copula, so that Proposition 3.3.2 is not
suitable for deciding whether a sequence of copulae converges to the comonotone copula. The
following resulting, extending Theorem 4.4.8 in Nelsen (1999) to arbitrary generators, gives such
a criterion.

Proposition 3.3.3. The following four conditions are equivalent:

(i) limn→∞ Cn(x, y) = min(x, y) for all (x, y) ∈ [0, 1]2

(ii) limn→∞ λn(x) = 0 for every x ∈ (0, 1).

(iii) limn→∞ ψn(y)/ψn(x) = 0 for every 0 ≤ x < y ≤ 1.
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(iv) limn→∞ Kn(x) = x for every x ∈ (0, 1).

Proof. (i) implies (ii). Let (Xn, Yn) be a pair of random variables with distribution function Cn.
Since the limit of Cn is the comonotone copula, (Xn, Yn) converges in distribution to (X, X),
where X is a uniform random variable on (0, 1). But since the convergence in (i) is necessarily
uniform, we find that Zn = Cn(Xn, Yn) converges in distribution to min(X, X) = X, whence
limn→∞ Pr[Zn ≤ z] = z for all z ∈ [0, 1]. But by Proposition 3.3.1,

Pr[Zn ≤ z] = z +
ψn(z)

ψ′
n(z)

, 0 < z < 1.

Hence we arrive at (ii).
(ii) implies (iii). Let 0 < x < y < 1 (the cases x = 0 or y = 1 follow by monotonicity of ψn).

We have
ψn(x)

ψn(y)
− 1 =

ψn(x) − ψn(y)

ψn(y)
≥ (y − x)|ψ′

n(y)|
ψn(y)

.

By (ii), the right-hand side diverges to infinity as n → ∞.
(iii) implies (i). Since each Cn is a symmetric copula, it suffices to consider 0 < x ≤ y < 1.

Take 0 < w < x. By (ii), we have ψn(w) ≥ 2ψn(x) ≥ ψn(x) + ψn(y) for all sufficiently large
integer n, whence

w ≤ ψ←
n {ψn(x) + ψn(y)} = Cn(x, y) ≤ x.

Let first n → ∞ and then w ↑ x to find that limn→∞ Cn(x, y) = x.

3.3.4 Extension to higher dimensions

Propositions 3.3.2 and 3.3.3 can be readily extended to the general multivariate case. Let d be
an integer at least two. A d-variate copula C is the distribution function of a d-variate random
vector (X1, . . . , Xd),

C(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd)

the components of which are uniformly distributed on the interval [0, 1], that is, P(Xj ≤ x) = x
for j = 1, . . . , d and x ∈ [0, 1]. A d-variate copula C is called Archimedean if there exists a
generator ψ such that

C(x1, . . . , xd) = ψ←{ψ(x1) + · · · + ψ(xd)}
for all (x1, . . . , xd) ∈ [0, 1]d. In general, extra conditions on the generator ψ are required to
ensure that the expression in the above display defines a genuine copula. A sufficient condition
is for instance that ψ← is d-times differentiable and (−D)jψ← ≥ 0 for every j = 1, . . . , d; see
for instance Theorems 1 and 2 in Kimberling (1974), Schweizer and Sklar (1983), Example 3 in
Barlow and Proschan (1996), and Section 4.6 in Nelsen (1999).

Obviously, if the distribution function of the random vector (X1, . . . , Xd) is given by the d-
variate Archimedean copula C with generator ψ, then the distribution function of every bivariate
subvector (Xi, Xj), with i 6= j, is given by the bivariate Archimedean copula with the same
generator. This property can be used to upgrade Propositions 3.3.2 and 3.3.3 to the general
multivariate case.

Let Cn be a sequence of d-variate Archimedean copulae with generators ψn. On the one
hand, if Cn converges to another d-variate Archimedean copula C with generator ψ or to the d-
variate comonotone copula, then the sequence of bivariate Archimedean copulae with generators
ψn must converge to the bivariate Archimedean copula with generator ψ or to the bivariate
comonotone copula, respectively. Hence, the stated conditions on the sequence of generators are
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certainly necessary for convergence of the sequence of copulae. On the other hand, they are also
sufficient, as the proofs of the implications “(iv) implies (i)” in Proposition 3.3.2 and “(iii) implies
(i)” in Proposition 3.3.3 carry over to the d-variate case with only notational changes.

3.3.5 Counterexample

From Propositions 3.3.2 and 3.3.3, one might get the impression that every limit copula of a
sequence of Archimedean copulae is necessarily Archimedean or comonotone. This is not true,
as is demonstrated by the following example.

For integer n ≥ 2, define a generator ψn by

ψn(x) =

{
n − 2(n − 1)x if 0 ≤ x ≤ 1/2,
2(1 − x) if 1/2 ≤ x ≤ 1.

That is, ψn is piecewise linear with knots ψn(0) = n, ψn(1/2) = 1, and ψn(1) = 0. Denoting the
right-hand derivative of ψn with ψ′

n, we have

λn(x) =
ψn(x)

ψ′
n(x)

=

{
x − n/{2(n − 1)} if 0 ≤ x < 1/2,
x − 1 if 1/2 ≤ x ≤ 1,

and therefore

Kn(x) = x − λn(x) =

{
n/{2(n − 1)} if 0 ≤ x < 1/2,
1 if 1/2 ≤ x ≤ 1.

Let Cn be the Archimedean copula with generator ψn. By direct computation, one arrives
at

lim
n→∞

Cn(x, y) = C(x, y) =






(x + y − 1/2)+ if (x, y) ∈ [0, 1/2]2,
x if 0 ≤ x < 1/2 < y ≤ 1,
y if 0 ≤ y < 1/2 < x ≤ 1,
1/2 + (x + y − 3/2)+ if (x, y) ∈ [1/2, 1]2.

The copula C corresponds to the uniform distribution, with respect to one-dimensional Lebesgue
measure, on the union of the two line segments {(x, y) ∈ [0, 1]2 | x + y = 1/2} and {(x, y) ∈
[0, 1]2 | x + y = 3/2}. The copula C is not Archimedean, because the function

lim
n→∞

|ψ′
n(x)|

ψn(x)
=

{
1/(1/2 − x) if 0 ≤ x < 1/2,
1/(1 − x) if 1/2 ≤ x < 1

is not integrable around x = 1/2. Note also that Kn converges towards K as n goes to infinity,
where

K(x) =

{
1/2 if 0 ≤ x < 1/2,
1 if 1/2 ≤ x ≤ 1.

Hence, limx↑1/2 K(x) = 1/2, and from Proposition 1.2 in Genest and Rivest (1993), the associated
copula cannot be Archimedean.

3.4 Lower tail dependence copulae in dimension d = 2

3.4.1 Main result

Our main result, Theorem 3.4.1, can be seen as an extension of Theorems 3.3, 3.5 and 3.6 of
Juri and Wüthrich (2003). The asymptotic behavior of lower tail dependence copulae for general
symmetric bivariate copulae is studied in Juri and Wüthrich (2004), and for nonsymmetric
bivariate copulae in Charpentier (2004).
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Theorem 3.4.1. Let C be a strict Archimedean copula with generator ψ. Let ψ′ be the left-hand
derivative of ψ at (0, 1]. Let 0 ≤ α ≤ ∞. Consider the following four statements:

(i) limu→0 Cu(x, y) = C(x, y; α) for all (x, y) ∈ [0, 1]2;

(ii) −ψ′ ∈ R−α−1.

(iii) ψ ∈ R−α.

(iv) limu→0 uψ′(u)/ψ(u) = −α.

If α = 0 (tail independence),

(i) ⇐⇒ (ii) =⇒ (iii) ⇐⇒ (iv),

and if α ∈ (0,∞] (tail dependence),

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).

As we will see in Theorem 3.4.2, if α = 0, then (iii) does not imply (i) or (ii), in contradiction
to Lemma 3.4 and Theorem 3.5 of Juri and Wüthrich (2003).

Proof. The lower tail dependence copula of C at 0 < u < 1 is the Archimedean copula with
generator

ψu(x) = ψ(xv) − ψ(v), 0 ≤ x ≤ 1,

where v = v(u) = ψ←{2ψ(u)}. Note that v(u) is continuous in u and decreases to 0 as u
decreases to zero. The (left-hand) derivative of ψu at x = 1 is equal to

ψ′
u(1) = vψ′(v) = −g(v).

• The case α ∈ (0,∞) (tail dependence)
(i) implies (ii). By Proposition 2 in Charpentier and Segers (2006a) (which extends Theo-

rem 4.4.7 in Nelsen (1999) and Proposition 4.2 in Genest and MacKay (1986b) to the case of
generators which are not twice continuously differentiable, see Proposition 3.3.2 in this Chapter),
for 0 < x ≤ 1,

lim
u→0

ψu(x)

ψ′
u(1)

=
ψ(x; α)

ψ′(1;α)
= −ψ(x; α).

Hence, for 0 < x ≤ 1,

lim
v→0

ψ(vx) − ψ(v)

g(v)
= −ψ(x; α).

For 0 < x < 1, we get

g(vx)

g(v)
=

(
ψ(vx2) − ψ(v)

g(v)
− ψ(vx) − ψ(v)

g(v)

) /
ψ(vx2) − ψ(vx)

g(vx)

→ {ψ(x2; α) − ψ(x; α)}/ψ(x;α) = x−α, as v → 0.

Hence, g ∈ R−α, and thus −ψ′ ∈ R−α−1.
(ii) implies (i). If −ψ′ ∈ R−α−1, then g ∈ R−α, whence

ψ(xv) − ψ(v)

g(v)
=

∫ v

xv

g(t)

g(v)

dt

t

=

∫ 1

x

g(vt)

g(v)

dt

t

→
∫ 1

x
t−α−1dt = ψ(x;α), as v → 0.
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Since ψ′
u(y) = vψ′(vy) = −y−1g(vy) for 0 < y ≤ 1, and since g ∈ R−α, we have

lim
u→0

ψ′
u(y)

g(v)
= −y−α−1 = ψ′(y;α), 0 < y ≤ 1,

and thus

lim
u→0

ψu(x)

ψ′
u(y)

=
ψ(x; α)

ψ′(y; α)
.

for all x, y ∈ (0, 1]. By Theorem 4.4.7 in Nelsen (1999), we find that (i) must hold.
(iii) implies (iv). This follows from the Monotone Density Theorem (Theorem 1.7.2 in

Bingham, Goldie and Teugels (1987) applied to the function x 7→ ψ(1/x).
(iv) implies (iii). This follows from the Representation Theorem for regularly varying func-

tions (see equation (1.5.2) in Bingham, Goldie and Teugels (1987)).
So far, we have established the equivalences (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv).
(ii) implies (iii). This follows from Karamata’s Theorem (see e.g. Proposition 1.5.8 in

Bingham, Goldie and Teugels (1987)) applied to the function x 7→ ψ(1/x).
(iii) and (iv) imply (ii). This is immediate, since −ψ′(x) ∼ αx−1ψ(x) as x → 0 and ψ ∈ R−α.
• The case α = 0 (tail independence)

The proofs of all the implications, except for the last one, also hold when α = 0.
• The case α = ∞ (tail comonotonicity)

According Proposition 3 in Charpentier and Segers (2006a) (which extends Theorem 4.4.8
in Nelsen (1999) and Proposition 4.3 in Genest and MacKay (1986b) to the case of generators
which are not twice continuously differentiable), (1) is equivalent to

lim
u→0

ψu(x)

ψ′
u(x)

= 0, 0 < x ≤ 1.

Combine the above three displays to find that (1) is equivalent to

lim
v→0

ψ(vx) − ψ(v)

vψ′(vx)
= 0, 0 < x ≤ 1. (3.3)

We show first the circle of implications (i)⇒(ii)⇒(iv)⇒(i) and then the equivalence (iii)⇔(iv).
(i) implies (ii). Since ψ is decreasing and convex,

0 ≤ (x − 1)vψ′(v) ≤ ψ(vx) − ψ(v), 0 < x ≤ 1; 0 < v ≤ 1.

Since (i) is equivalent to (3.3), the above inequality implies

lim
v→0

ψ′(v)

ψ′(vx)
= 0, 0 < x < 1.

Hence ψ′ ∈ R−∞.
(ii) implies (iv). Let 1 < x < ∞. There exists 0 < u0 ≤ 1/x such that

ψ′(ux)

ψ′(u)
≤ 1

2x
, 0 < u ≤ u0.

Let 0 < u ≤ u0 and let k = 0, 1, 2, . . . be such that uxk < u0 ≤ uxk+1. Since ψ is decreasing and
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convex,

ψ(u) =
k∑

j=0

{ψ(uxj) − ψ(uxj+1)} + ψ(uxk+1)

≤
k∑

j=0

uxj(1 − x)ψ′(uxj) + ψ(u0)

≤ uψ′(u)(1 − x)

k∑

j=0

xj 1

(2x)j
+ ψ(u0)

≤ 2(1 − x)uψ′(u) + ψ(u0).

Since ψ is strict, there exists 0 < u1 < u0 such that ψ(u) ≥ 2ψ(u0) for all 0 < u ≤ u1. Hence,
by the previous display,

ψ(u) ≤ 4(1 − x)uψ′(u), 0 < u ≤ u1.

Let u decrease to zero to find

lim sup
u→0

ψ(u)

−uψ′(u)
≤ 4(x − 1).

Since x was an arbitrary element in (1,∞), we arrive at (iv).
(iv) implies (i). Since (i) is equivalent to (3.3), it is sufficient to show that (iv) implies (3.3).

Let 0 < v ≤ 1 and 0 < x < 1. We have
∣∣∣∣
ψ(vx) − ψ(v)

vψ′(vx)

∣∣∣∣ ≤
ψ(vx)

v|ψ′(vx)| ≤
ψ(vx)

vx|ψ′(vx)| .

By (iv), the right-hand side of this equation tends to zero as v → 0, whence (3.3), as required.
(iii) implies (iv). Let 0 < u < 1 and 1 < x < 1/u. Since ψ is convex,

ψ(u) − ψ(ux) ≤ (1 − x)uψ′(u).

By (iii), limu→0 ψ(ux)/ψ(u) = 0 for every 1 < x < ∞. Divide both sides of the inequality in the
previous display by ψ(u) and let u decrease to zero to find

lim inf
u→0

−uψ′(u)

ψ(u)
≥ 1

x − 1
, 1 < x < ∞.

The right-hand side in the previous display becomes arbitrarily large as x → 1, whence (iv).
(iv) implies (iii). Let 0 < x < 1. Since ψ is convex, we have for 0 < u ≤ 1,

ψ(ux) − ψ(u) ≥ (x − 1)uψ′(u),

whence
ψ(ux)

ψ(u)
≥ (x − 1)

uψ′(u)

ψ(u)
+ 1.

By (iv), the right-hand side side of this inequality tends to infinity as u → 0, whence (iii), as
required.
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3.4.2 Counterexample

We claim in Theorem 3.4.1 that for general α ∈ [0,∞], statements (i) and (ii) imply statements
(iii) and (4). If α > 0, the converse is also true. However, if α = 0, then the converse does not
hold, as shown by the following counterexample, contradicting Theorem 3.5 in Juri and Wüthrich
(2003)).

Theorem 3.4.2. There exists a strict Archimedean copula C whose generator ψ is continuously
differentiable and slowly varying at the origin, but such that the lower tail dependence copula of
C at level u does not converge to the independence copula as u → 0.

Proof. Let f : (0, 1] → R be the piece-wise linear function with knots

f(2−k) = 2k, k = 0, 1, 2, . . . .

That is, f is the linear interpolation of the function (0, 1] ∋ x 7→ x−1 at the points {2−k | k =
0, 1, 2, . . .}. Define the function ψ : [0, 1] → [0,∞] by

ψ(s) =

∫ 1

s
f(x)dx, s ∈ [0, 1].

By construction, the function ψ is continuously differentiable with derivative ψ′ = −f . Since f
is decreasing, ψ′ is increasing, whence ψ is convex. Hence, ψ is a strict generator.

As s−1 ≤ f(s) ≤ 2s−1 for all s ∈ (0, 1], we have ψ(s) ≥ log(1/s) and thus

0 ≤ sf(s)

ψ(s)
≤ 2

log(1/s)
→ 0, as s → 0.

Hence, as ψ is convex, for every 1 < x < ∞,

0 ≤ 1 − ψ(sx)

ψ(s)
≤ s(1 − x)f(s)

ψ(s)
→ 0, as s → 0.

Therefore, ψ is slowly varying at the origin.
Let Cu be the tail dependence copula relative to C, the Archimedean copula with generator

ψ, at level 0 < u < 1. We will show that C2−k = C for every positive integer k. Hence, Cu

cannot converge to the independence copula as u → 0.
By the definition of the function f ,

ψ(2−k−1) − ψ(2−k) =

∫ 2−k

2−k−1

f(x)dx =
3

4

for all nonnegative integer k. Since also ψ(1) = 0, we get ψ(2−k) = 3
4k and thus ψ←{2ψ(2−k)} =

2−2k for all nonnegative integer k. By (5.11), the tail dependence copula of C at level u = 2−k

is therefore Archimedean with generator

ψ2−k(t) = ψ(2−2kt) − ψ(2−2k) =

∫ 2−2k

2−2kt
f(x)dx =

∫ 1

t
2−2kf(2−2kx)dx

for t ∈ [0, 1]. The function (0, 1] ∋ x 7→ fk(x) = 2−2kf(2−2kx) is piece-wise linear with knots
fk(2

−j) = 2j for all nonnegative integer j. Hence, fk must coincide with f . But then, ψ2−k

coincides with ψ, and thus C2−k coincides with C for all nonnegative integer k, as required

The copula C in the proof of the previous theorem has the fractal-like property that Cu = C
for all u = 2−k with nonnegative integer k. Still, since its generator ψ has a positive second
derivative, the support of C is the whole unit square [0, 1]2.
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3.4.3 Discussion: Asymptotic independence

The problem with Theorem 3.5 in Juri and Wüthrich (2003) comes from the auxiliary Lemma 3.4
in the same paper. In this Lemma, it is claimed that if ψ is a strict generator, differentiable and
slowly varying at the origin, then there exists a positive function g on (0, 1) such that

lim
u→0

ψ(ux) − ψ(u)

g(u)
= − log(x) (3.4)

for every 0 < x < ∞. However, the generator ψ appearing in the proof of Theorem 3.4.2 satisfies
ψ(ux) − ψ(u) = ψ(x) for every u = 2−k with k = 0, 1, 2, . . ., contradicting the claim.

The condition (3.4) states that the function ψ belongs to the de Haan class Π with auxiliary
function g, notation ψ ∈ Πg; see for instance Bingham, Goldie and Teugels (1987), chapter 3.
[Here, we conveniently shift from asymptotics at infinity to asymptotics at zero by considering
the function y 7→ ψ(1/y) for y ≥ 1.] By the Monotone Density Theorem (Theorem 3.6.8 in
Bingham, Goldie and Teugels (1987)), equation (3.4) is equivalent to

−ψ′ ∈ R−1 (3.5)

and in this case, g(s) ∼ −sψ′(s) as s → 0. Moreover, by Karamata’s theorem (Proposition 1.5.9a
in Bingham, Goldie and Teugels (1987), (3.5) implies ψ ∈ R0. The converse is not true however,
as demonstrated by our counterexample.

3.5 Lower tail dependence copulae in dimension d ≥ 2

The joint lower tail of a d-variate Archimedean copula C is determined by the asymptotic be-
havior of its generator ψ near the origin. If ψ is not strict, that is, if ψ(0) is finite, then there
exists 0 < s < 1 such that dψ(s) ≥ ψ(0) and thus C(s, . . . , s) = ψ←{dψ(s)} = 0. Hence, the
only interesting case occurs when ψ is strict, so ψ(0) = ∞, as we will assume henceforth in this
section.

In the bivariate case, the coefficient of lower tail dependence, λL, is given by

λL = lim
s→0

C(s, s)

s
= lim

s→0

ψ←{2ψ(s)}
s

= lim
t→∞

ψ←(2t)

ψ←(t)
,

provided one and hence all of the limits exist. Hence, if ψ is regularly varying at zero of index
−θ ∈ [−∞, 0], then ψ← is regularly varying at infinity of index −1/θ ∈ [−∞, 0], and

λL = 2−1/θ,

see also Theorem 3.9 in Juri and Wüthrich (2003). In particular, if θ > 0, then λL > 0, so the
joint lower tail of C exhibits asymptotic dependence. On the other hand, if θ = 0, then λL = 0,
so the joint lower tail of C exhibits asymptotic independence. These two cases persist in the
general multivariate case and are treated in subsections 3.5.1 and 3.5.2, respectively.

3.5.1 Asymptotic dependence

Theorem 3.5.1. Let C be a d-variate Archimedean copula with generator ψ. If ψ is regularly
varying at zero of index −θ ∈ [−∞, 0], then for all x ∈ (0,∞)d,

lim
s→0

s−1C(sx1, . . . , sxd) =






0 if θ = 0,

(x−θ
1 + · · · + x−θ

d )−1/θ if 0 < θ < ∞,

min(x1, . . . , xd) if θ = ∞.
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Proof. First consider the case θ = 0. Fix 0 < ε < 1. Since ψ is slowly varying, ψ(sε) ≤ 2ψ(s)
and thus sε ≥ ψ←{2ψ(s)} for all sufficiently small, positive s. Hence ψ←{2ψ(s)} = o(s) as
s → 0. Hence, denoting x = max{x1, . . . , xd}, we have C(sx1, . . . , sxd) ≤ ψ←{dψ(sx)} ≤
ψ←{2ψ(sx)} = o(s) as s → 0.

Secondly, consider the case 0 < θ < ∞. We have

s−1C(sx1, . . . , sxd)

=
1

ψ←{ψ(s)}ψ←

{
ψ(s)

(
ψ(sx1)

ψ(s)
+ · · · + ψ(sxd)

ψ(s)

)}
.

The function ψ is regularly varying at zero of index −θ, and therefore, the function ψ← is
regularly varying at infinity of index −1/θ. Moreover, ψ(s) → ∞ as s → 0. By the Uniform
Convergence Theorem for regularly varying functions, see for instance Bingham, Goldie and
Teugels (1987), Theorem 1.5.2, the right-hand side of the previous display therefore converges
as s → 0 to (x−θ

1 + · · · + x−θ
d )−1/θ.

Finally, consider the case θ = ∞. Denote m = min{x1, . . . , xd}. We have

s−1ψ←{dψ(sm)} ≤ s−1C(sx1, . . . , sxd) ≤ m.

Fix 0 < λ < 1. Since ψ is regularly varying at zero with index −∞, we have ψ(λsm) ≥ dψ(sm)
and thus λm ≤ s−1ψ←{dψ(sm)} for all sufficiently small, positive s. Let λ increase to one to
see that s−1C(sx1, . . . , sxd) → m as s → 0.

Corollary 3.5.2. Let C be a d-variate Archimedean copula with generator ψ. If ψ is regularly
varying at zero of index −θ ∈ [−∞, 0], then for all x ∈ (0,∞)d,

lim
s→0

s−1P(U1 ≤ sxi or . . . or Ud ≤ sxd) (3.6)

=






x1 + · · · + xd if θ = 0,

∑

I⊂{1,...,d}:|I|≥1

(−1)|I|−1

(
∑

i∈I

x−θ
i

)−1/θ

if 0 < θ < ∞,

max(x1, . . . , xd) if θ = ∞,

where (U1, . . . , Ud) is a random vector with distribution function C.

Proof. By the inclusion-exclusion formula,

P(∃i = 1, . . . , d : Ui ≤ sxi) =
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|−1P(∀i ∈ I : Ui ≤ sxi).

For every subset I of {1, . . . , d} of cardinality at least two, the distribution function of the
vector (Ui)i∈I is given by the |I|-variate Archimedean copula with generator ψ. Now apply
Theorem 3.5.1 to arrive at the stated limit relation. The expression for the limit in case θ = ∞
follows from a well-known relation between minima and maxima.

Remark 3.5.3. By Corollary 3.5.2, an Archimedean copula whose generator is regularly varying
at the origin is in the min-domain of attraction of the negative logistic dependence structure Joe
(1990). That is, if (Ui1, . . . , Uid) are independent random vectors with common joint distribution
function given by C as in Corollary 3.5.2, then for all x ∈ (0,∞)d,

lim
n→∞

P

(
min

i=1,...,n
Ui1 > x1/n, . . . , min

i=1,...,n
Uid > xd/n

)
= exp{−l(x1, . . . , xd)},
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with l(x1, . . . , xd) equal to the right-hand side of (3.6). The case θ = 0 corresponds to indepen-
dence and the case θ = ∞ to comonotonicity. In the bivariate case, this result was established
for the broader class of Archimax copulae in Capéraà, Fougères and Genest (2000).

Next, we study the limiting distribution of a random vector (U1, . . . , Ud) with distribution
function C as in Theorem 3.5.1 conditionally on the event that some of its coordinates are small.
More precisely, let J be a non-empty subset of {1, . . . , d} and let 0 < yj < ∞ for all j ∈ J . Then
we want to determine the limiting distribution of (U1, . . . , Ud) conditionally on Uj ≤ syj for all
j ∈ J as s → 0.

Of special interest is this limiting distribution’s copula. In the bivariate case, if J = {1, 2}
and (y1, y2) = (1, 1), then if the generator ψ is regularly varying of index −θ < 0, then the
limiting copula is necessarily the Clayton copula; see Juri and Wüthrich (2003), Theorem 3.3.
This property turns out to extend to arbitrary dimensions and to arbitrary, non-empty subsets
J of {1, . . . , d}. The proofs of the two following corollaries are straightforward applications of
Theorem 3.5.1.

Corollary 3.5.4. Let C be an Archimedean copula with generator ψ which is regularly varying
at the origin of index −∞ < −θ < 0, and let (U1, . . . , Ud) be a random vector with distribution
function C. Let J be a non-empty subset of {1, . . . , d} and let 0 < yj < ∞ for all j ∈ J . Then
for every (x1, . . . , xd) ∈ (0,∞)d,

lim
s→0

P(∀i = 1, . . . , d : Ui ≤ sxi | ∀j ∈ J : Uj ≤ syj) (3.7)

=

(∑
j∈Jc x−θ

j +
∑

j∈J{min(xj , yj)}−θ

∑
j∈J y−θ

j

)−1/θ

.

The copula of the distribution function on the right is the Clayton copula.

Corollary 3.5.5. If in Corollary 3.5.4 we have instead θ = ∞, then, denoting y = min{yj | j ∈
J},

lim
s→0

P(∀i = 1, . . . , d : Ui ≤ sxi | ∀j ∈ J : Uj ≤ syj) = min

(
x1

y
, . . . ,

xd

y
, 1

)
.

Inspired by Corollaries 3.5.4 and 3.5.5, one could conjecture that if ψ is a strict generator
which is slowly varying at the origin, then the limit of the copula of the distribution of (U1, . . . , Ud)
conditionally on Uj ≤ s for all j = 1, . . . , d is necessarily the independence copula. This is not
true however, not even in dimension d = 2; see Example 3.5.6. In particular, Theorem 3.5 in
Juri and Wüthrich (2003) is wrong.

Example 3.5.6. Consider the function

ψ(s) =

∫ 1

s
f(x)dx, for all s ∈ [0, 1],

where f : (0, 1] → R is the piece-wise linear function with knots

f(2−k) = 2k, for all k = 0, 1, 2, . . .,

that is, f is the linear interpolation of the function x 7→ x−1 at the points 2−k for k = 0, 1, 2, . . ..
The function ψ is a strict, continuously differentiable generator of order two. Moreover, ψ is
slowly varying at zero.

Let (U, V ) be a random pair with distribution function C, the bivariate Archimedean copula
with generator ψ. For 0 < s < 1, let Cs be the copula of the distribution of (U, V ) conditionally
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on U ≤ s and V ≤ s. Then Cs does not converge as s → 0 to the independence copula. For
instance, by some tedious calculations, for all k = 0, 1, 2, . . .,

C2−k(3/4, 3/4) = (3/2) −
√

7/8 ≈ 0.5645,

and this is different from (3/4)2 = 9/16 = 0.5625.

Example 3.5.7. Several parametric families of Archimedean copulae described in the literature
satisfy the assumptions of Theorem 3.5.1. The generator of Clayton’s copula is regularly varying
at zero of index −θ = α. Among the parametric families listed in Table 4.1 in Nelsen (1999),
generator number (19), defined as ψ(t) = eα/t − eα, with α ∈ (0,∞), is regularly varying at
zero of index −∞. In the same Table, the generators with numbers (14) and (16), defined by
ψ(t) = (t−1/α − 1)α for all α ∈ [1,∞) and ψ(t) = (α/t + 1)(1− t) for all α ∈ [0,∞) respectively,
are both regularly varying at zero of index −1.

Example 3.5.8. An application of Theorem 3.5.1 can be obtained in the case where ψ← is
completely monotone. Then, as mentioned in section 1.5 the generator can be seen as the inverse
of a Laplace transform of a random variable Θ called frailty. If the Laplace transform of Θ is
asymptotically equivalent to the Laplace transform of a Gamma distribution, i.e φ(t) = t−1/βL(t)
as t → ∞, with β > 0 where L is a slowly varying function, then the limiting copula is Clayton
copula with parameter β. Using the Tauberian theorem (see Feller (1971) or Bingham, Goldie
and Teugels (1987)), the tail of Laplace transform of Θ at infinity is related to the shape of the
distribution of Θ at origin. More precisely P(Θ ≤ θ) ∼ θ1/βΓ(1 + θ−1)−1 as θ → 0.

3.5.2 Asymptotic independence

If the generator, ψ, of an Archimedean copula, C, is slowly varying at the origin, then by the
case θ = 0 in Theorem 3.5.1, the lower tail of the copula exhibits asymptotic independence, that
is,

lim
s→0

s−1C(s, . . . , s) = 0. (3.8)

First, we explore in some depth the relation between asymptotic independence of the lower tail
of C and the growth rate of ψ at zero.

Theorem 3.5.9. Let C be a d-variate Archimedean copula with generator ψ. Consider the
following three statements:

(i) ψ is slowly varying at zero;

(ii) lims→0 s−1C(s, . . . , s) = 0;

(iii) lims→0 log{ψ(s)}/ log(s) = 0.

Then (i) implies (ii), and (ii) implies (iii). None of the converse implications is true.

Proof. (i) implies (ii). See Theorem 3.5.1, case θ = 0.
(ii) implies (iii). If ψ(0) < ∞, there is nothing to prove, so assume ψ(0) = ∞. Let 0 < ε < 1.

There exists 0 < sε < 1 such that s−1ψ{dψ(s)} ≤ ε and thus ψ(sε)/ψ(s) ≤ d for all 0 < s ≤ sε.
Let 0 < x ≤ sε and let k be the nonnegative integer for which εk+1sε < x ≤ εksε, that is,
k ≤ log(x/sε)/ log(ε) < k + 1. Then ψ(x) < ψ(εk+1sε) ≤ dk+1ψ(sε), whence

log ψ(x) < (k + 1) log(d) + log ψ(sε)

≤
(

log(x/sε)

log(ε)
+ 1

)
log(d) + log ψ(sε).
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This implies lim infx→0 log{ψ(x)}/ log(x) ≥ log(d)/ log(ε). Let ε decrease to zero to complete
the proof of the statement.

(iii) does not imply (ii). Define sk = 2−3k+1 for nonnegative integer k, so s0 = 1 and
sk+1 = s3

k/4 for nonnegative integer k. Let ψ be the linear interpolation of the function (0, 1] →
[0,∞) : s 7→ − log(s) in the points sk; also, put ψ(0) = ∞. Then ψ is a strict generator of order
d = 2. We claim that ψ satisfies (iii) but not (ii).

On the one hand, take 0 < x ≤ 1. There exists a nonnegative integer k such that sk+1 <
x ≤ sk. Since sk+1 = s3

k/4 ≥ x3/4, we get

ψ(x) < ψ(sk+1) = − log sk+1 ≤ − log(x3/4) = log(4) − 3 log(x).

Hence ψ satisfies (iii).
On the other hand, since sk+1 < sk/4 < sk and ψ is linear on each interval [sk+1, sk], we

have
ψ(sk/4) − ψ(sk)

sk − sk/4
=

ψ(sk+1) − ψ(sk)

sk − sk+1
.

Since ψ(sk+1)/ψ(sk) → 3 and sk+1/sk → 0 as k → ∞, we must have

lim
k→∞

ψ(sk/4)

ψ(sk)
=

5

2
. (3.9)

Hence, for all sufficiently large k, we have ψ(sk/4) > 2ψ(sk), whence sk/4 < ψ←{2ψ(sk)}.
Hence, ψ does not satisfy (ii).

(ii) does not imply (i). Choose 1 < a <
√

2 and define sk = 2−ak+1 for nonnegative integer
k, so s0 = 1 and sk+1 = 2−a+1sa

k for nonnegative integer k. Let ψ be the linear interpolation of
the function (0, 1] → [0,∞) : s 7→ − log(s) in the points sk; also, put ψ(0) = ∞. Then ψ is a
strict generator of order d = 2. We claim that ψ satisfies (ii) but not (i).

On the one hand, let 0 < ε < 1. Since sk+1/sk → 0 and ψ(sk+1)/ψ(sk) → a as k → ∞, there
exists integer kε such that sk+1/sk ≤ ε as well as ψ(sk+1)/ψ(sk) <

√
2 for all integer k ≥ kε. For

0 < x ≤ skε
, there exists an integer k ≥ kε such that sk+1 < x ≤ sk. Then ψ(sk+2)/ψ(x) < 2

and thus ψ←{2ψ(x)} ≤ sk+2 ≤ εx. Let ε decrease to zero to see that ψ satisfies (ii).
On the other hand, by an argument similar to the one leading to (3.9), one can show that

limk→∞ ψ(sk/2)/ψ(sk) = (a − 1)/2 + 1. Hence, ψ does not satisfy (i).

In case of asymptotic independence, the speed of convergence in (3.8) can be arbitrarily fast.
As an extreme case, if ψ is not strict, then C(s, . . . , s) = 0 for all sufficiently small, positive s.
In order to obtain more precise results, we need extra assumptions on the behavior of ψ in the
neighbourhood of zero, or, equivalently, of ψ← in the neighbourhood of infinity. First, we focus
on the diagonal, that is, on the function

C(s, . . . , s) = ψ←{dψ(s)},
more precisely on how fast this function converges to zero. A crude measure of this speed is the
index of regular variation, 1/η, of this function at zero. Note that ψ←{dψ(s)} ≤ s, so necessarily
1/η ≥ 1. In the bivariate case, this η ∈ [0, 1] corresponds to the “coefficient of tail dependence”
introduced by Ledford and Tawn (1996, 1997).

If ψ is regularly varying at zero with index −∞ ≤ −θ < 0, then by Theorem 3.5.1 we
have C(s, . . . , s) ∼ d−1/θs as s → 0, whence η = 1. On the other hand, if η < 1, then
C(s, . . . , s) = o(s) as s → 0, whence the lower tail of C exhibits asymptotic independence.

If the function C(s, . . . , s) is regularly varying with index 1/η, then the value of η can be
easily computed from

lim
s→0

log s

log C(s, . . . , s)
= η. (3.10)
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This formula from the fact that log ℓ(s) = o(log s) whenever ℓ is a slowly varying function at zero.
The converse is not true, however: equation (3.10) does not imply that C(s, . . . , s) is regularly
varying at zero with index 1/η. A simple sufficient condition for the latter property is given in
the following Theorem.

Theorem 3.5.10. Let C a d-variate Archimedean copula with strict generator ψ. If

lim
t→∞

D(log ψ←)(dt)

D(log ψ←)(t)
=

1

dη
,

then the function s 7→ C(s, . . . , s) is regularly varying at zero with index 1/η.

Proof. Put f(s) = C(s, . . . , s) = ψ←{dψ(s)}. We have

Df(s) =
dDψ(s)

Dψ{f(s)} ,

whence
sDf(s)

f(s)
= d

sDψ(s)

f(s)Dψ{f(s)} .

On the other hand,

D(log ψ←)(t) =
1

ψ←(t)Dψ{ψ←(t)} .

Hence
sDf(s)

f(s)
= d

D(log ψ←){dψ(s)}
D(log ψ←){ψ(s)} .

The assumptions now imply that

lim
s→0

sDf(s)

f(s)
=

1

η
.

This condition is sufficient for f to be regularly varying at zero with index 1/η.

Notice that the condition in Theorem 3.5.10 is fulfilled as soon as the function −1/D(log ψ←)
is regularly varying at infinity of index τ given by dτ = dη, that is, τ = 1 + log(η)/ log(d) ≤ 1.
However, in this case, a much stronger result is true.

Theorem 3.5.11. Let C be a d-variate Archimedean copula with strict generator ψ. If the
function φ = −1/D(log ψ←) is regularly varying of index −∞ < τ ≤ 1 and if φ(t) = o(t) as
t → ∞, then for every x ∈ (0,∞)d,

lim
s→0

C(sx1, . . . , sxd)

C(s, . . . , s)
=

d∏

i=1

xd−τ

i . (3.11)

Proof. Since φ(t) = o(t) as t → ∞ and since φ is regularly varying of finite index, we have

φ{t + xφ(t)}
φ(t)

=
φ[t{1 + xφ(t)/t)}]

φ(t)
→ 1, as t → ∞

locally uniformly in x ∈ R. By Lemmas 3.2.5–3.2.6, we infer that

lim
s→0

ψ(sx) − ψ(s)

φ{ψ(s)} = − log(x), (3.12)

lim
t→∞

ψ←{t + yφ(t)}
ψ←(t)

= exp(−y). (3.13)
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Moreover, the above limit relations hold locally uniformly in x ∈ (0,∞) and y ∈ R. In the
terminology of Bingham, Goldie and Teugels (1987), chapter 3, the function ψ belongs to the de
Haan class Π, while ψ← belongs to the class Γ.

Now we have gathered all the necessary information about the asymptotic properties of ψ
and ψ←. For x ∈ (0,∞)d and for s → 0,

C(sx1, . . . , sxd) = ψ←{ψ(sx1) + · · · + ψ(sxd)}

= ψ←

(
dψ(s) +

d∑

i=1

ψ(sxi) − ψ(s)

φ{ψ(s)}
φ{ψ(s)}
φ{dψ(s)}φ{dψ(s)}

)

In view of (3.12)–(3.13) and the fact that φ is regularly varying at infinity of index τ , the
right-hand side of the previous expression is for s → 0 asymptotically equivalent to

ψ←{dψ(s)} exp

(
−

d∑

i=1

(− log xi)d
−τ

)
= C(s, . . . , s)

d∏

i=1

xd−τ

i ,

as required.

Theorem 3.5.12. Under the conditions of Theorem 3.5.11, for non-empty subset J of {1, . . . , d}
and for every x ∈ (0,∞)d,

P(∀j ∈ J : Uj ≤ sxj ;∀j ∈ Jc : Uj ≤ ψ←{x−1
j φ(ψ(s))}) (3.14)

∼ ψ←{|J |ψ(s)}
∏

j∈J

x
|J |−τ

j

∏

j∈Jc

exp
(
−|J |−τx−1

j

)
as s → 0.

Proof. For J = {1, . . . , d}, the statement reduces to Theorem 3.5.11. So assume that Jc is not
empty. The probability on the left-hand side of (3.14) is equal to

ψ←




∑

j∈J

ψ(sxj) +
∑

j∈Jc

x−1
j φ(ψ(s))



 = ψ←{|J |ψ(s) + u(x; s)φ(|J |ψ(s))}

with

u(x; s) =




∑

j∈J

ψ(sxj) − ψ(s)

φ(ψ(s))
+

∑

j∈Jc

x−1
j .



 φ(ψ(s))

φ(|J |ψ(s))

We now proceed as in the proof of Theorem 3.5.11. By equation (3.12) and since ψ(0) = ∞ and
φ is regularly varying at infinity of index τ ,

u(x; s) →



−
∑

j∈J

log(xj) +
∑

j∈Jc

x−1
j



 |J |−τ as s → 0.

The stated asymptotic relation now follows from equation (3.13).

Corollary 3.5.13. Under the conditions of Theorem 3.5.11, for every x ∈ (0,∞)d and every
(uj)j∈J ∈ (0, 1]|J |,

P(∀j ∈ J : Uj ≤ sujxj ;∀j ∈ Jc : Uj ≤ ψ←{x−1
j φ(ψ(s))} | ∀j ∈ J : Uj ≤ sxj)

→
∏

j∈J

u
|J |−τ

j

∏

j∈Jc

exp
(
−|J |−τx−1

j

)
, as s → 0.
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Remark 3.5.14. In Theorem 3.5.11, if the index of regular variation, τ , of the function φ is
smaller than one, then automatically φ(t) = o(t) as t → ∞.

Remark 3.5.15. For fixed 0 < s < 1, the map x 7→ ψ←{x−1φ(ψ(s))} is an increasing home-
omorphism from [0,∞] to [0, 1]. For fixed 0 < x < ∞, the asymptotics of ψ←{x−1φ(ψ(s))}
as s → 0 depend on those of φ(t) as t → ∞; in particular, if the latter converges to zero or
infinity, then the former converges to one or zero, respectively. However, in all cases, since
φ(ψ(s)) = o(ψ(s)) as s → 0 and since the function ψ← is regularly varying at infinity of index
−∞,

lim sup
s→0

s

ψ←{x−1φ(ψ(s))} ≤ lim sup
s→0

ψ←{ψ(s)}
ψ←{ψ(s)/2} = 0.

Hence, in equation (3.14), the variables Uj for j ∈ Jc are always of larger order of magnitude
than the variables Uj for j ∈ J .

Remark 3.5.16. The limiting distribution function in Corollary 3.5.13 is equal to the product
of its marginal distribution functions. Hence, the corresponding limit copula is the independent
one.

Example 3.5.17. Let 0 < α ≤ 1. The generator ψ(s) = (− log s)1/α, corresponding to the
Gumbel copula,

C(u1, . . . , ud) = exp[−{(− log u1)
1/α + · · · + (− log ud)

1/α}α],

satisfies the assumptions of Theorem 3.5.11 with ψ←(t) = exp(−tα), φ(t) = α−1t1−α, and τ =
1 − α. For 0 < s < 1 and positive integer k, we have

ψ←{kψ(s)} = skα

,

whence, by (3.11), for all x ∈ (0,∞)d,

C(sx1, . . . , sxd) ∼ sdα
d∏

i=1

xdα−1

i , as s → 0.

Moreover, for 0 < s < 1 and 0 < x < ∞,

ψ←{x−1φ(ψ(s))} = exp{−(− log s)1−α(αx)−α},

whence, by (3.14), for all x ∈ (0,∞)d and every non-empty subset J of {1, . . . , d},

P(∀j ∈ J : Uj ≤ sxj ;∀j ∈ Jc : Uj ≤ exp{−(− log s)1−α(αx)−α})
∼ s|J |

α
∏

j∈J

x
|J |α−1

j

∏

j∈Jc

exp
(
−|J |α−1x−1

j

)
as s → 0.

These relations continue to hold for α > 1 provided we modify ψ outside a neighbourhood of zero
so that it becomes a proper generator.

Example 3.5.18. Let ψ be a generator of order d such that there exists 1 < p < ∞ such that
ψ(s) = exp{(− log s)1/p} for all s in a neighbourhood of zero. Then for sufficiently large t, we
have ψ←(t) = exp{−(log t)p} and φ(t) = p−1t(log t)1−p. Note that the function φ is regularly
varying at infinity of index τ = 1 and satisfies φ(t)/t → 0 as t → ∞. For positive integer k and
for positive s in a neighbourhood of zero,

ψ←{kψ(s)} = exp[−{(− log s)1/p + log k}p].
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This expression, for fixed integer k ≥ 2 and considered as a function of s, is at the same time o(s)
as s → 0 and regularly varying at zero of index one. By Theorem 3.5.11, denoting the d-variate
Archimedean copula with generator ψ by C, we have for all x ∈ (0,∞)d,

C(sx1, . . . , sxd) ∼ exp[−{(− log s)1/p + log d}p]
d∏

i=1

x
1/d
i , as s → 0.

Moreover, for 0 < x < ∞ and for positive s in a neighbourhood of zero,

ψ←{x−1φ(ψ(s))}
= exp

{
−

(
(− log s)1/p − (1 − 1/p) log(− log s) − log(px)

)p}
.

This expression, for fixed positive x and considered as a function of s, is at the same time regularly
varying zero of index one and is of larger order of magnitude than s as s → 0, conform with
Remark 3.5.15. By (3.14), it describes the order of magnitude of the variables Uj for j ∈ Jc

conditionally on Uj for j ∈ J being of order O(s).
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Chapter 4

Dynamic dependence ordering for

Archimedean copulae

In the context of insurance (and reinsurance) of large claims, Geluk and de Vries (2006) pointed
out that “in case of heavy tailed random variables, apart from the fact that the coefficient of
correlation may not be defined, its main disadvantage is that it does not capture very well possible
dependence in the tails”. In finance and yield curve modeling, Junker, Szimayer and Wagner
(2006) observed that “dependence in the center of the distribution may be treated separately
from the dependence in the distribution tails”, and that symmetric as well as asymmetric tail
dependence should be considered.

In this chapter, we will investigate how to compare the strength of the dependence globally
and in upper tails. Section 4.1 will recall some basics on stochastic orderings. In section 4.1.1
stochastic ordering of random variables will be considered, and extended to random vectors
in 4.1.2. But in order to compare the strength of the dependence, those concepts will be not
be sufficient, and the notion of dependence orderings will be considered in section 4.1.3. The
motivation in that section is to state that dependence orderings should be based on copulae, and
only on copulae. From this concept, section 4.2 will focus on the case of Archimedean copulae,
and to study properties of the Archimedean generator needed to assess whether random vector
X given X ≤ x1 is more or less dependent than X given X ≤ x2, when x1 ≤ x2. Sections 4.2.1
and 4.2.3 will study properties of X given X ≤ x, when the copula of X is Archimedean. And
then, a characterization of Archimedean copulae which are more and more dependent (in tails)
will be given in section 4.2.4.

4.1 Dependence ordering: comparing dependent risks

A natural way to introduce a partial order to compare random variables would be the relation
X ≤a.s. Y which holds if and only if X (ω) ≤ Y (ω) for P-almost all ω. However, this ordering
does not only depend on the distributions. In this section, we will discuss some orderings on
distribution functions, and abusively call them order relations on random variables, or random
vectors.

Historically, stochastic orderings have been introduced in Hardy, Littlewood and Pólya
(1934), since the majorization concept (used for comparing positive vectors in Rd) can be related
to ordering between probability measures (see also Marshall and Olkin (1979)). The dilatation
concept extended the majorization one to more general probability measures (see e.g. Strassen
(1965)).

Definition 4.1.1. Let a and b be two vectors in Rd. Let ai:d denote the i-smallest component of

117
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a, i = 1, ..., d, i.e. a1:d ≤ a2:d ≤ ... ≤ ad:d. Then a is said to be majorized by b, denoted a ≺ b,
if and only if

k∑

i=1

ai:d ≤
k∑

i=1

bi:d for all k = 1, ..., d − 1, and
d∑

i=1

ai:d =
d∑

i=1

bi:d.

The standard stochastic ordering (stochastic dominance) was only introduced in Lehmann
(1955), and most of the other have been studied intensively in the 90’s, motivated by different
areas of application (queuing theory, reliability, economics, actuarial sciences...).

4.1.1 Stochastic orderings for random variables

Stochastic orderings are partial order relations on the set of distribution functions (see Shaked
and Shantikumar (1994) or Müller and Stoyan (2001)). Recall that a partial order relation ¹ on
E is a binary relation E such that the following conditions hold,

1. (reflexivity) x ¹ x for all x ∈ E ,

2. (transitivity) x ¹ y and y ¹ z imply x ¹ z for all x, y, z ∈ E ,

3. (antisymmetry) x ¹ y and y ¹ x imply x = y for all x, y ∈ E .

Notice that we might abuse of notions, writing X ¹ Y for two random variables, instead of
PX ¹ PY (more specifically, PX = PY does not imply X = Y ). Let ∼ denote the equality in
distribution, i.e. X ∼ Y if and only if X ¹ Y and Y ¹ X.

Definition 4.1.2. Consider two random variables X and Y , defined on the same space,

• X is said to be smaller than Y for the usual stochastic order (X ≤ST Y ) if FX (t) ≥ FY (t),
for all t ∈ R, or equivalently FX (t) ≤ F Y (t), for all t ∈ R. Another characterization can
be the following: X ≤ST Y if and only if

E (φ (X)) ≤ E (φ (Y )) ,

for all real-valued increasing functions φ for which both expectations exist (see Müller and
Stoyan (2001)).

• X is said to be smaller than Y for the convex order (X ≤CX Y ) if

E (φ (X)) ≤ E (φ (Y )) ,

for all real-valued convex functions φ for which both expectations exists.

• X is said to be smaller than Y for the increasing convex order (X ≤ICX Y ) if

E (φ (X)) ≤ E (φ (Y )) ,

for all real-valued increasing convex functions φ for which both expectations exists.

• X is said to be smaller than Y for the Laplace transform order (X ≤LT Y ) if X and Y
are positive, and

E (exp (−uY )) ≤ E (exp (−uX)) , for all u ∈ R+.
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• X is said to be smaller than Y for the hazard rate order (X ≤HR Y ) if for all t ∈
R, (X|X > t) ≤ST (Y |Y > t). If X and Y are absolutely continuous, X ≤HR Y if
rX(t) ≥ rY (t), t ≥ 0, where rX denotes the hazard rate function of X, where rX(x) =
fX(x)/FX(x).

• X is said to be smaller than Y for the likelihood ratio order (X ≤LR Y ) if for all a < b,
(X|X ∈ [a, b]) ≤ST (Y |Y ∈ [a, b]). If X and Y are absolutely continuous, X ≤LR Y if
fX/fY is decreasing over the union of the supports of X and Y .

• X is said to be smaller than Y for the Lorenz order (X ≤L Y ) if LX(u) ≥ LY (u) for all
u ∈ [0, 1], where

LX(u) =

(∫ 1

0
F←

X (ω)dω

)←

·
∫ u

0
F←

X (ω)dω.

Mention here that some of the stochastic orders cannot be used to compare any random
variables X and Y , e.g. the Laplace transform or the hazard rate have to be well defined.

Remark 4.1.3. Some definitions here might differ from definition in the literature. E.g. for
the Laplace transform order, we follow here Alzaid, Kim and Proschan (1991) and Shaked and
Shantikumar (1994), but some authors say that X ≤LT Y if E (exp (−tX)) ≤ E (exp (−tY )) (i.e.
X ≤LT Y means that X is larger than Y ). Defined as in Definition 4.1.2, note that X ≤ST Y
implies that X ≤LT Y (definitions are consistent).

Example 4.1.4. If X ≤ST Y and E (X) = E (Y ) then X
L
= Y :

E (Y ) − E (X) =

∫

R

[1 − FY (t)] dt −
∫

R

[1 − FX (t)] dt =

∫

R

[FX (t) − FY (t)] dt = 0,

but since FX (t) ≥ FY (t) it does imply that, necessarily FX (t) = FY (t), i.e. X
L
= Y.

Example 4.1.5. The convex order is said to be a variability order, since X ≤CX Y implies
E (X) = E (Y ) and V ar (X) ≤ V ar (Y ), if variances exist. Orders ≤CX and ≤ICX have several
applications in insurance and economics (≤ST and ≤ICX are respectively called first and second
order stochastic dominance, and denoted ≤V aR and ≤TV aR in Denuit and Charpentier (2004),
and denoted ≤SL,= and ≤SL in Denuit, Dhaene, Goovaerts and Kaaas (2005)). Moreover, the
convex order is also called the stop-loss order in actuarial sciences, since X ¹CX Y if and only
if for all t, E (X − t)+ ≤ E (Y − t)+. Further, note that X ¹L Y if and only if X/E (X) ¹CX

Y/E (Y ). In the standard Cramér-Lundberg model (see Denuit and Charpentier (2004)), with
compound Poisson risk processes, with a given premium rate π, and a given frequency λ for the
Poisson process (Nt), recall that the time of ruin is the stopping time defined as

τX(u) = inf

{
t, u + πt −

Nt∑

i=1

Xi < 0

}
,

where the Xi’s are i.i.d. positive random variables, and the associated ruin probability is ψX(u) =
P(τX(u) < ∞). Then (see Kaas, van Heerwaarden and Goovaerts (1994)), if X ≤ICX Y then
ψX(u) ≤ ψY (u) for all u ≥ 0.

Example 4.1.6. The Laplace Transform order has been intensively used in actuarial science (see
Heilmann (1986), Cai and Garrido (1998) or Denuit (2001)). In actuarial models, exponential
mixtures ore often considered when modeling the cost of some claims, or the duration of some
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disability. Assume (see e.g. Hesselager, Wang and Willmot (1998)) that (X|Θ = θ) ∼ E (θ), so
that the distribution of X can be written

F (x) = P (X > x) =

∫ ∞

0
exp (−θt) dΠ(t) , x ≥ 0,

for some distribution function Π, then it appears as the Laplace transform of the mixing distrib-
ution Π. Therefore, it can be seen easily that if Θ1 ¹LT Θ2, then F 1 (x) ≤ F 2 (x) for all x ≥ 0.
In life insurance, assume that X and Y are two remaining lifetimes, then X ¹LT Y means that
the whole life premium related to X is always smaller than the whole life premium related to Y
(whatever the interest rate), since

1 − E (exp (−tX))

t
=

∫ ∞

0
exp (−tx) P (X > x) dx.

Example 4.1.7. Functions φ can be interpreted in terms of utility function in von Neuman and
Morgenstein model. An agent with (increasing) utility u is said to be more risk averse than agent
with utility function v if u is a concave transformation of v (the so-called Arrow-Pratt theorem).

4.1.2 Stochastic orderings for random vectors

Multivariate extensions of some of the orderings defined above can be considered. Note that based
on one univariate ordering, several multivariate ordering can be defined as “natural extensions”
(e.g. for the ≤ST order, the first three orders in Definition 4.1.8 can be considered, see Marshall
and Olkin (1979)). The “natural ” order of Rd is such that x ≤ y means xi ≤ yi for all i = 1, ..., d.
Hence, f is an increasing function Rd → Rk if x ≤ y implies f(x) ≤ g(y).

Definition 4.1.8. Consider two random vectors X and Y , defined on the same space,

• X is said to be smaller than Y for the usual stochastic order (X ≤ST Y ) if and only if

E (φ (X)) ≤ E (φ (Y )) ,

for all real-valued increasing functions φ : Rd → R for which both expectations exist.

• X is said to be smaller than Y for the upper orthant stochastic order (X ≤UO Y ) if and
only if

FX (x) ≤ FY (x) for all x ∈ Rd.

• X is said to be smaller than Y for the lower orthant stochastic order (X ≤LO Y ) if and
only if

FX (x) ≥ FY (x) for all x ∈ Rd.

• X is said to be smaller than Y for the convex order (X ≤CX Y ) if

E (φ (X)) ≤ E (φ (Y )) ,

for all real-valued convex functions φ : Rd → R for which both expectations exists.

• X is said to be smaller than Y for the increasing convex order (X ≤ICX Y ) if

E (φ (X)) ≤ E (φ (Y )) ,

for all real-valued increasing convex functions φ : Rd → R for which both expectations
exists.
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• X is said to be smaller than Y for the Laplace transform order (X ≤LT Y ) if X and Y

are positive, and

E
(
exp

(
−utX

))
≤ E

(
exp

(
−utY

))
, for all u ∈ Rd

+.

• X is said to be smaller than Y in the likelihood order denoted X ≤LR Y if X and Y have
densities, with

fX (y) fY (x) ≥ fX (x) fY (y) ,

for all x ≤ y (componentwise ordering in Rd).

• X is said to be smaller than Y in the TP2 order (totally positive of order 2, or strong
likelihood order) denoted X ≤TP2 Y if X and Y have densities, with

fX (x ∧ y) fY (x ∨ y) ≥ fX (x) fY (y) , for all x and y.

• X is said to be smaller than Y in the supermodular order denoted X ≤SM Y if

E (φ (X)) ≤ E (φ (Y )) ,

for all supermodular functions φ : Rd → R for which both expectations exists, i.e.

φ (x ∧ y)φ (x ∨ y) ≥ φ (x)φ (y) .

Note that for several multivariate orderings, it might be interesting to have some character-
izations based on univariate stochastic order. For instance, X ≤ST Y if and only if

Φ(X) ≤ST Φ(Y ),

for all increasing function Φ : Rnd → R.

Example 4.1.9. The supermodular order for random vectors is important in insurance, since
X ≤SM Y implies that X1 + ... + Xd ≤ICX Y1 + ... + Yd, i.e. the stop-loss premium for some
portfolios X and Y of size n should be ordered as X and Y for the supermodular order (see
Müller (1997)).

Example 4.1.10. Hu, Khaledi and Shaked (2003) introduced the following stochastic order: X

is said to be smaller than Y for the “weak multivariate hazard rate order”, denoted X ≤WHR Y

if and only if FY (x)/FX(x) is increasing in x. Note that the name of this ordering comes from
another characterization: X ≤WHR Y if and only if Xi ≤HR Yi for all i = 1, ..., n. Equivalently,
it can be written more explicitly

(X|X > h) ≤UO (Y |Y > h) for all h.

See also Example 4.1.13 for a similar relationship.

Note that some of those stochastic orders are stronger than others.

X ≤TP2 Y ⇒






X ≤LR Y

X ≤ST Y ⇒
{

X ≤UO Y

X ≤LO Y

and independently {
X ≤SM Y ⇒ X ≤UO Y

X ≤CX Y ⇒ X ≤ICX Y
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Note further that those stochastic orders imply some orderings on margins. For instance,
if X ≤ST Y , then Xi ≤ST Yi for all i ∈ {1, ..., n} (closure under marginalization). And this
property is also true for ≤CX , ≤ICX , or ≤SM .

Hence, those orders might not be interesting to compare the strength of the dependence since
the orderings are mainly influenced by marginal behaviors.

In dimension 2, the following conditions should hold to define a stochastic order, as in Kimel-
dorf and Sampson (1989),

Definition 4.1.11. Let F1 and F2 denote two distribution functions, and F (F1, F2) the associ-
ated Fréchet class. A binary function ¹ is said to be a stochastic order on F (F1, F2) if it fulfills
the following properties,

1. (identical margins) F ¹ G implies that F, G ∈ F (F1, F2),

2. (concordance) F ¹ G implies F (x, y) ≤ G (x, y) for all x, y,

3. (transitivity) F ¹ G and G ¹ H implies F ¹ H,

4. (reflexivity) F ¹ F ,

5. (antisymmetry) F ¹ G and G ¹ F implies that F = G,

6. (bounds) F− ¹ F ¹ F+ where F− and F+ are respectively the lower and the upper
Fréchet-Hoeffding bounds of F (F1, F2),

7. (closure, weak convergence) Fn ¹ Gn for all n ∈ N, Fn → F and Gn → G imply F ¹ G,

8. (index order) (X1, X2) ¹ (Y1, Y2) implies (X2, X1) ¹ (Y2, Y1),

9. (increasing transform) (X1, X2) ¹ (Y1, Y2) implies (φ (X1) , X2) ¹ (φ (Y1) , Y2) for all
strictly increasing functions φ : R → R,

10. (decreasing transform) (X1, X2) ¹ (Y1, Y2) implies (φ (X1) , X2) º (φ (Y1) , Y2) for all
strictly decreasing functions φ : R → R.

Such a definition can be extend in higher dimension (see e.g. Joe (1997) or Müller and
Stoyan (2001)), on some Fréchet-space: random vectors can be compared if and only if they have
identical margins.

Example 4.1.12. The so-called concordance order (see Tchen (1980) or Joe (1997)), defined as
(X1, X2) ≤C (Y1, Y2) if and only if

cov(φ(X1), ψ(X2)) ≤ cov(φ(Y1), ψ(Y2)),

for all increasing functions φ and ψ. Note that this order is an integral order (for supermodular
functions), and moreover, it is the only integral order satisfying all the properties of Definition
4.1.11 (see Müller and Stoyan (2001)).

Example 4.1.13. Let FX and FY denote two distributions in the same Fréchet class. Colangelo,
Scarsini and Shaked (2004) introduced some stochastic orders for tails. If X and Y are two
random vectors with distribution function FX and FY respectively, X is said to be smaller than Y

for the “upper orthant increasing ratio order”, denoted X ≤UOIR Y if and only if FY (x)/FX(x)
is increasing in x. Equivalently, it can be written more explicitly

(X − h|X > h) ≤UO (Y − h|Y > h) for all h such that FX(h), FY (h) > 0.

Note that this ordering satisfies most of the axioms of Definition 4.1.11, except the 6th one:
the upper upper Fréchet bound does not always dominate every distribution, hence, we do not
necessarily have

(X − h|X > h) ≤UO (X+ − h|X+ > h) for all h
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4.1.3 Dependence and copulae

As pointed out in Definition 4.1.11, stochastic orders for random vectors can be interpreted
only in the case where random vectors are in the same Fréchet space. But in some situations,
it could be interesting to say that, in some sense, X is more dependent, or more positively
dependent, than Y , without taking into account any marginal behavior. As we shall see in
the next section, as well as concordance measures should not dependent on marginal behavior,
dependence orderings should not dependent on marginal orderings.

Example 4.1.14. In Chapter 2 of this thesis, the interest is to compare the strength of depen-
dence between a random vector X of individual Xi’s time before default, at time 0, and the same
vector at time t given that no default occurred, i.e. X given {X|t · 1} = {X1 > t, ..., Xd > t},
for some t > 0. Since those vectors obviously do not have the same margins, in order to compare
the strength of dependence, some dependence order ¹ should be properly define, to see whether
X ¹ (X|X > t · 1).

Example 4.1.15. Analogously, in Chapter 3 of this thesis, the interest is to compare the strength
of dependence between a random vector X of risk variables, X given that X ∈ A where A is an
“extremal” subset of Rd. Again, margins can be sensibly different, and usual stochastic orderings
can be be used directly to assess whether X is more dependent in its tails.

Dependence order, or copula-based ordering

Definition 4.1.16. Let C denote the set of copulae. A binary function ¹ is said to be a positive
dependence order if it fulfills the following properties,

1. (concordance) CX ¹ CY implies CX (u, v) ≤ CY (u, v) for all u, v ∈ [0, 1],

2. (transitivity, reflexivity and antisymmetry) ¹ is an order relation,

3. (bounds) C− ¹ C ¹ C+ where C− and C+ are respectively the lower and the upper
Fréchet-Hoeffding bounds of C,

4. (transposition) CX ¹ CY implies C ′
X

¹ C ′
Y

where C ′
· (u, v) = C· (v, u) for all u, v ∈ [0, 1],

5. (closure, weak convergence) CX,n ¹ CY ,n for all n ∈ N, CX,n
w→ CX and CY ,n → CY

imply CX ¹ CY .

Based on this definition, let us prove now the the bijection between ordering on some Fréchet
spaces F (F1, F2), and ordering on the set of copulae.

Proposition 4.1.17. There is a correspondence between the ordering on the Fréchet space (for
continuous marginal distributions), and the induced ordering on copulae functions. More pre-
cisely, let ¹ denote a dependence relation on C, and ≤∗ denote the relation defined as follows:
F ≤∗ G if and only if F,G ∈ F (F1, F2) and CF ¹ CG (where CF and CG are the copulae of F
and G respectively). Then ≤∗ is a positive dependence order (in the sense of Definition 4.1.11).

Proof. Let us prove that all the items are satisfied

1. is satisfied by construction, F, G ∈ F (F1, F2).

2. (concordance) F ≤∗ G implies CF ¹ CG and so, CF (u, v) ≤ CG (u, v) for all u, v ∈ [0, 1] ,
and so.CF (F1 (x) , F2 (y)) ≤ CG (F1 (x) , F2 (y)) for all x, y, i.e. F (x, y) ≤ G (x, y).

3. (transitivity, reflexivity and antisymmetry) trivially obtained.
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6. (bounds) since C− (u, v) ≤ C (u, v) ≤ C+ (u, v), for all u, v ∈ [0, 1], it follows that
C− (F1 (x) , F2 (y)) ≤ C (F1 (x) , F2 (y)) ≤ C+ (F1 (x) , F2 (y)) for all x, y, i.e. F− ≤ F ≤
F+.

7. (closure, weak convergence) Consider Fn ≤∗ Gn for all n ∈ N, Fn → F and Gn
w→ G, and

copulae CF,n ¹ CG,n. Because Fn = CF,n (F1, F2) → F = CF (F1, F2) then CF,n → CF

and analogously, CG,n → CG. Since ¹ is a dependence relation on C, then CF ¹ CG, and
so F = CF (F1, F2) ≤∗ CG (F1, F2) = G.

8. (index order) Consider (X1, X2) and (Y1, Y2) with respective distribution functions F and
G, and respective copulae CF and CG. Assume that (X1, X2) ¹ (Y1, Y2), i.e. F ≤∗ G.
Denote by F ′ and G′ the distribution functions of (X2, X1) and (Y2, Y1) respectively. Then
F ′ = C ′

F (F2, F1) where C ′
F (u, v) = CF (v, u) and analogously, G′ = C ′

G (F2, F1). Since ¹
is a dependence relation on C, then C ′

F ¹ C ′
G, and so F ′ ≤∗ G′.

9. (increasing transform) because (X1, X2) and (φ (X1) , X2) have the same copula for all
strictly increasing functions φ : R → R, item 9 holds,

10. (decreasing transform) If φ is a strictly decreasing function R → R, the copula of
(φ (X1) , X2) is C”F (u, v) = v −CF (1 − u, v), where CF is the copula of (X1, X2). And if
CF ¹ CG, then C”F º C”G. So finally, item 10 holds.

Conversely, it is possible to define some “copula based stochastic orderings”, here in dimension
2 (but this can easily be extended in higher dimension),

Proposition 4.1.18. Let ≤∗ denote some stochastic ordering defined on some Fréchet space (see
Definition 4.1.11), and define ¹∗ on the Fréchet space of copulae, i.e. C1 ¹∗ C2 if and only if
for any (univariate) distribution functions FX , FY , C1(FX , FY ) ≤∗ C2(FX , FY ). Then ¹∗ is a
stochastic ordering (as in Definition 4.1.11).

Proof. Consider two distributions FX and FY .

1. (concordance)trivial, by construction,

2. (transitivity, reflexivity and antisymmetry) easy to check,

5. (bounds) Since ≤∗ defines a stochastic ordering on F(FX , FY ), then, due to Fréchet-
Hoeffding bounds on F(FX , FY ),

max{FX + FY − 1, 0} ≤∗ C(FX , FY ) ≤∗ min{FX , FY }

Therefore, C− ¹∗ C ¹∗ C+.

6. (transposition) the transposition property of ¹∗ is directly deduced from the index property
of ≤∗.

7. (closure, weak convergence) Consider some sequences C1,n and C2,n such that C1,n ¹ C2,n

for all n ∈ N, with C1,n → C1 and C2,n → C2. Given FX and FY , set Fi,n = Ci,n(FX , FY ),
i = 1, 2. Recall that C1,n ¹∗ C2,n if and only if F1,n ≤∗ F2,n for all n. And moreover,
due to the uniform continuity of copulae, Ci,n(FX , FY ) → Ci(FX , FY ) as n → ∞, i.e.
Fi,n → Fi. Finally, the closer property of ≤∗ allows to conclude.
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To avoid confusion, ¹∗ will also be denoted ¹d−∗, for dependence order

Definition 4.1.19. Let ≤∗ denote some stochastic ordering defined on some Fréchet space (see
Definition 4.1.11). Then X is said to be dominated by Y for the dependence order induced by ≤∗

(or copula-based stochastic order induced by ≤∗), denoted X ¹d−∗ Y if and only if FX(X) ≤∗

FY (Y ), i.e. in dimension n, (FX,1 (X1) , ..., FX,d (Xd)) ≤∗ (FY,1 (Y1) , ..., FY,d (Yd)).

Example 4.1.20. A dependence ordering can be deduced from the PQD order. Let X and Y be
two continuous random vectors in dimension d = 2, then X ¹d−PQD Y if and only if CX ≤ CY ,
or equivalently C∗

X
≤ C∗

Y
.

Example 4.1.21. A dependence ordering can be deduced from the CI order. Let X and Y be
two continuous random vectors, then X ¹d−PQD Y if and only if CX ≤ CY , for the pointwise
order.

From this definition, the following result can be immediately deduced,

Corollary 4.1.22. Given a stochastic order ≤∗, X = (X1, X2) ¹d−∗ Y = (Y1, Y2) if and only
if for any φ, ψ : R → R strictly increasing,

(φ(X1), ψ(X2)) ¹d−∗ (φ(Y1), ψ(Y2)).

Dependence order for Archimedean copulae

Recall that a copula C in dimension n is said to be Archimedean if it can be written

C(x1, ...., xd) = φ←(φ(x1) + ... + φ(xd)),

where φ : [0, 1] → [0, +∞) is a decreasing convex function, such that φ(1) = 0 and φ(x) → ∞ as
x → 0, and such that φ← is a d-completely monotone function (see sections 1.5 for a presentation,
and 3.2 or 5.1 for alternative characterizations). Let X and Y denote two continuous random
vectors, with respective copulae CX and CY respectively, assumed to be Archimedean, with
generator φX and φY . Then, from Genest and MacKay (1986b), if φX ◦ φ←

Y is concave, or if
φX/φY is increasing, then X ¹d−ST Y .

Example 4.1.23. From the upper orthant increasing ratio order introduced in Example 4.1.13,
the associated dependence order can be considered: X ≤d−UOIR Y if and only if C∗

Y
(u)/C∗

X
(u)

is increasing in u. Colangelo, Scarsini and Shaked (2004) gave a nice characterization of the
inequality X⊥ ≤d−UOIR X in the bivariate case. Define the RTI notion as follows: X is said
to be right tail increasing in Y (RTI(X|Y )) if y 7→ P(X > x|Y > y) is increasing, for all x
(this is a concept of positive dependence, define in higher dimension in Definition 4.1.24). Then
(X⊥, Y ⊥) ≤d−UOIR (X, Y ) if and only if RTI(FX(X)|FY (Y )) and RTI(FY (Y )|FX(X)). And
in the case of Archimedean copulae with generator φ, (X⊥, Y ⊥) ≤d−UOIR (X,Y ) if and only if
log φ← is concave. As we will see in section 4.2.4 of this chapter, the log-concavity of the first
derivative of the Archimedean copula has also an interpretation in terms of stochastic orderings,
in upper tails.
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4.1.4 Positive dependence

Several concepts of “positive” and “negative” dependence can be define, most of them being
derived from dependence orders, based on the comparison between X and X⊥ (see e.g. Lehmann

(1966)), where X⊥ denotes an independent version of X (i.e. Xi
L
= X⊥

i , i = 1, ..., n, and the
components of X⊥ are independent).

Definition 4.1.24. Let X denote some stochastic random vector, and X⊥ an independent ver-
sion,

• X is said to be positively upper orthant dependent (PUOD) if X⊥ ¹UO X, i.e.

F (x) = F (x1, ..., xd) ≥ F1 (x1) · ... · Fd (xd) = F⊥(x).

and X is said to be positively lower orthant dependent (PLOD) if X ¹LO X⊥

F ((x) = F (x1, ..., xn) ≥ F 1 (x1) · ... · F d (xd) = F
⊥
(x).

If n = 2 those two notions are equivalent, and X is then said to be PQD (positive quadrant
dependent).

• X is said to be supermodular dependent (SMD) if X⊥ ≤SM X.

• X is said to be (strongly) positively associated if

Cov (φ (X) , ψ (X)) ≥ 0,

for all increasing bounded functions φ and ψ : Rd → R.

• X is said to be weakly positively associated if

Cov
(
φ (X∗) , ψ

(
X ′

∗

))
≥ 0,

for all subset of components X∗ (X ′
∗ denoting the complementary) increasing bounded

functions φ : Rk → R and ψ : Rn−k → R.

• X is said to be MTP2 if X⊥ ¹LR X, or equivalently, if X has density f such that

f (x ∧ y) f (x ∨ y) ≥ f (x) f (y) ,

for all x and y, i.e. its density is supermodular.

• X is said to be positive dependent through stochastic ordering (PDS) if (Xi|Xj = x) ≤ST

(Xi|Xj = y) for all i 6= j, x < y.

• X is said to be conditional increasing in sequence (CIS) if

(Xi|X1 = x1, ..., Xi−1 = xi−1) ≤ST (Xi|X1 = y1, ..., Xi−1 = yi−1)

for all i = 2, ..., d, xk ≤ yk.

• X is said to be conditional increasing (CI) if

(
Xi|Xj1 = x1, ..., Xji−1

= xi−1

)
≤ST

(
Xi|Xj1 = y1, ..., Xji−1

= yi−1

)

for all (j1, ..., ji−1) ⊂ {1, ..., d}, i = 2, ..., d, xk ≤ yk.
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• X is said to be right tail increasing (RTI, or right corner set increasing, RCSI) if P(X >
x|X > x′) is increasing in x′ for all x.

• X is said to be left tail increasing (LTD) if P(X ≤ x|X ≤ x′) is decreasing in x′ for all
x.

As we shall see in Section 4.1.5 most of those ordering and induced positive dependence
concepts appear when modeling and comparing risks.

Some of the relations between various concepts of positive dependence can be summarized
as (see Müller and Stoyan (2001) or Christofides and Vaggelatou (2004)),

MTP2 =⇒






CI =⇒ CIS =⇒ Associated =⇒ SMD =⇒
{

PUOD
PLOD





RTI =⇒
{

PUOD
PLOD

LTD =⇒
{

PUOD
PLOD

Remark 4.1.25. Note that if F(F1, ..., Fd) defines the Fréchet class associated with marginal
distributions F1, .., Fd, one can also define the positive-Fréchet class F+

PLOD(F1, ..., Fd), of n-
dimensional distributions, with marginal distributions F1, .., Fd that are positively dependent in
the PLOD sense.

Observe that several dependence properties for random vectors X can be expressed as prop-
erties on the underlying copula C.

Example 4.1.26. X = (X1, X2) is PQD if and only if C⊥ ≤ C.

In fact, several concepts of positive dependence can be simply transposed on copula functions
since they do not depend on marginal behaviors.

4.1.5 Application to competing default risks

Standard competing risk models usually assume independent competing events and focus on the
distribution of the date of occurrence of the first (or more generally, the k-th) event. This leads
to the study of the distribution of the corresponding order statistics.

Consider a credit portfolio, with homogeneous credits (i.e. the same design: initial balance,
interest rate, maturity...). The borrowers may default and the defaults can be characterized by
the duration variables giving the time before default for each individual. The distribution of those
order statistics should be known to price derivatives, and assuming the independence between
the competing risks (e.g. individual defaults), we neglect the possibility of default correlation,
and as a consequence, the derivatives are likely mispriced.

Assume that X1, ..., Xn have identical distribution, characterized by c.d.f. FX , assumed to
be absolutely continuous. Let X1:n ≤ X2:n ≤ ... ≤ Xn:n denote the associate order statistics. Set
Ui = FX (Xi), i = 1, ..., n, then Xi:n = F←

X (Ui:n), so that dependence properties can be studied
through standardized durations Ui. Moreover, consider the following aging concepts,

Definition 4.1.27. Let X denote a random variable with distribution function FX(·). X is said
to be IFR (Increasing Failure Rate) if t 7→ FX(t + x)/FX(t) is decreasing for all x ≥ 0, or
equivalently − log FX is convex. Respectively, it is said to be DFR (Decreasing Failure Rate) if
t 7→ FX(t + x)/FX(t) is increasing for all x ≥ 0, or equivalently − log FX is concave. Further,
X is said to be NBU (New Better than Used) if FX(y + x) ≤ FX(x) · FX(y) for all x, y ≥ 0, or
equivalently − log FX is subadditive.
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If n = 2, one gets

P (U1:2 ≤ u) = 1 − P (U1 > u, U2 > u) = 2u − C (u, u)

P (U2:2 ≤ u) = P (U1 ≤ u, U2 ≤ u) = C (u, u)

Thus, both marginal distributions of order statistics depend on the value of the copula on the
diagonal.

Example 4.1.28. Let X1, ...Xn be a sequence of random variables. For all 0 < i < j < n, then
Xi:n ≤ST Xj:n. Further, if variables Xi’s are independent, then Xi:n ≤HR Xj:n (see Shaked and
Yao (1991)). And moreover, if variables Xi’s are independent and identically distributed, then
Xi:n ≤LR Xj:n.

If variables Xi’s are independent and identically distributed, with an absolutely continuous
distribution, then Xi:n and Xj:n are TP2 for all 0 ≤ i < j ≤ n. Further, Xj:n is RTI in Xi:n

(see Boland, Hollander, Joag-Dev and Kochar (1994)).

Example 4.1.29. Let X1, ...Xn and Y1, ..Yn be two sequences of independent random variables,
such that Xi ≤ST Yi for all i = 1, .., n. Then Xi:n ≤ST Yi:n for i = 1, .., n. Further, if the
variables are exponentially distributed, with parameters λX,i and λY,i respectively, so that

(λX,1, ...., λX,n) ≺ (λY,1, ...., λY,n),

(≺ being the majorization order), then

(X1:n, ..., Xn:n) ≤ST (Y1:n, ..., Yn:n),

and in particular Xi:n ≤ST Yi:n. Moreover (see Avérous (2002)), if the Xi’s have a common
distribution, as well as the Yi’s, then

(Xi:n, Xj:n) ≤ST (Yi:n, Yj:n) if and only if X ≤HR Y .

Example 4.1.30. Let N denote a counting variable, and define X1:N = min{X1, X2, ..., XN}
where X1, X2, ... is a sequence of independent and identically distributed random variables, with
common c.d.f. F . Analogously, define XN :N = max{X1, X2, ..., XN}, and let F1:N and FN :N

denote the c.d.f. of the maxima and the minima. If F is DFR then F1:N is also DFR, and if
F is IFR so is FN :N (see Shaked (1977)). Further, if F is NBU then FN :N is also NBU (see
Bartoszewicz (2001)).

4.1.6 The strongest dependence concept: comonotonicity

Recall from Section 1.4 that comonotonicity between two risks is obtained when their underlying
copula is the upper-Fréchet-Hoeffding bound. In the following Proposition, some equivalent
characterization are given for the comonotonicity of a random vector

Proposition 4.1.31. A random vector X = (X1, ..., Xd) is comonotonic if and only if one of
the following equivalent conditions holds,

1. X has a comonotonic copula, i.e. for all x1, ..., xd,

F (x1, ..., xd) = min {F1 (x1) , F2 (x2) , ..., Fd (xd)} , (4.1)

2. For U uniformly distributed on [0, 1],

X
L
= (F←

1 (U) , F←
2 (U) , ..., F←

d (U)) , (4.2)
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3. There is a random variable Z and some increasing functions f1, ..., fd such that

X
L
= (f1 (Z) , f2 (Z) , ..., fd (Z)) , (4.3)

4. All pairs (Xi, Xj) are comonotonic, i, j = 1, ..., d.

Proof. See Schmeidler (1986), ? or Müller and Stoyan (2001).

Remark 4.1.32. Note that comonotonicity is a fundamental concept in economics (see
Chateauneuf (1991, 1999), where the definition is usually written as follows: two real-valued
random variables X1 and X2 defined on the same probability space are comonotonic if

[X1(ω) − X1(ω
′)] · [X2(ω) − X2(ω

′)] ≥ 0, for all ω, ω′.

Example 4.1.33. The concept of comonotonicity is an important concept in actuarial science.
Consider for instance an insurance portfolio of individual risks X1, ...., Xn, which are not assume
to be independent. Financial hedging techniques might be used by the insurer to reduce the aggre-
gate risk. In Alternative Risk Transfer techniques, compensation will be obtained as the pay-off
of the financial will increase if the loss X1 + .... + Xn increases (portfolio based contract). But
in the case of hurricane or earthquakes, the insurer could also by some (call) options, labeled on
the CAT-index (index of catastrophe losses, of the Chicago Board of Trade). These options will
be exercised when the CAT-index reaches a sufficiently high level, and in such a case, investors
replace traditional reinsurer. Cat bounds can also be used, where the payment of the coupons and
the principal could be conditioned on the occurrence of a catastrophe. In such a case, the notion
of ’catastrophe’ can also be based on some exogenous index (e.g. Richter level, or maximum wind
speed). Those financial product may be interesting substitute to traditional reinsurance in the
case where the financial compensation and the loss X1 + .... + Xn are comonotonic, or at least
as comonotonic as possible (see (Dhaene et al. (2002)) for more details on such applications).

Example 4.1.34. More generally, recall that if X denotes the claim amount for the insured, and
I (X) denote the indemnity, which is the amount paid by the insurance company, I (·) is usually
assumed to be increasing (see Denuit and Charpentier (2004)). Therefore, X and I (X) are
comonotonic. In the context of risk sharing schemes (e.g. coinsurance), one insurer pays I (X)
while X − I (X) can be paid by an other insurer. It is also usually assumed that both variates are
comonotonic, i.e. I (x) and x− I (x) are both increasing (usually written 0 ≤ I ′ (·) ≤ 1). Several
examples can be considered

• stop-loss coverage, or deductible coverage, defined by I (x) = (x − d)+ for some n ≥ 0,

• quota-share coverage (e.g. coinsurance), defined by I (x) = αx where α ∈ (0, 1),

• coverage with a maximal limit, defined by I (x) = x ∧ d for some n ≥ 0,

Those three example lead to comonotonic schemes, as well as the combination of those
three, I (x) =

(
α (x − d)+

)
∧ u. But notice that the deductible, is not comonotonic , when

I (x) = x1 (x ≥ d).

Example 4.1.35. The Value-at-Risk of a sum of comonotonic random variables, with distribu-
tion functions F1, ..., Fd is given by

V aR
(
X+

1 + ... + X+
d , α

)
= V aR (X1, α) + .... + V aR (Xd, α) , 0 < α < 1, (4.4)
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(see Dhaene et al. (2001, 2002)). From this relationship, some stable properties can be derived:
the comonotonic sum of Pareto variables P (α, βi) is also Pareto distributed, with parameters α
and β = β1 + ... + βd; the comonotonic sum of exponential variables E (λi) is also exponentially
distributed, with parameter λ = λ1 + ... + λd (and for Gaussian, Gumbel or Gamma, among
others). Further, the associated stop-loss premium is

E
((

S+ − d
)
+

)
=

d∑

i=1

E
(
(Xi − V aR (Xi, FS+ (d)))+

)
,

where FS+ denotes the c.d.f. of S+ = X+
1 + ... + X+

d (see Dhaene et al. (2001) and Vyncke
(2003)).

For more results and applications of the concepts of comonotonicity in finance and actuarial
science, see Dhaene et al. (2001), Dhaene et al. (2002) or Vyncke (2003).

Remark 4.1.36. The elements of F (F1, ..., Fd) are bounded above by the upper Fréchet-Hoeffding
distribution, but also below, by the so-called Fréchet-Hoeffding lower bound, defined as

M (x1, .., xd) = max {F1 (x1) + ... + Fd (xd) − (d − 1) , 0} ,

and moreover, for all xi ∈ R, M (x1, .., xd) ≤ F (x1, .., xd) for all F ∈ F (F1, ..., Fd). Note that in
the bivariate case (and only in the bivariate case), M ∈ F (F1, F2). More specifically, M is the
distribution function of (F←

1 (U) , F←
2 (1 − U)) where U ∼ U ([0, 1]). And further, in the case of

positive variables in F+ (F1, ..., Fd), X has distribution function M if and only if X is mutually
exclusive, i.e. at most one of the component can be different from 0, P (Xi > 0, Xj > 0) =
0 for all i 6= j (see also (Dhaene and Denuit (1999)))

4.2 Ordering with Archimedean dependence structure

In this section, we will focus on orderings and conditioning. More precisely, we shall consider
conditioning by lower orthant, i.e. when X ≤ FX

∫
(u), as in Chapter 2 and 3. As pointed out

in the introduction, this many not be relevant for actuaries who should be interested in large
claim dependencies. But using the notion of survival copula (see section 1.3.1), upper and lower
orthant are closely related (see chapter 5 and 6 for a more detailed study of upper tails).

4.2.1 Conditioning with Archimedean copulae

As noticed in section 3.2.3, if C denotes a d-dimensional Archimedean copula, with genera-
tor φ, given u ∈ [0, 1]d, with at least one non-null component, the conditional copula Cu is
Archimedean, with generator

φu(t) = φ(t · C(u)) − φ(C(u)), for all t ∈ (0, 1].

Example 4.2.1. Gumbel copulae have generator φ (t) = [− ln t]θ where θ ≥ 1. For any u ∈
(0, 1]d, the corresponding conditional copula has generator

φu (t) =
[
M1/θ − ln t

]θ
− M where M = [− lnu1]

θ + ... + [− lnud]
θ . (4.5)

Example 4.2.2. Clayton copulae C have generator φ (t) = t−θ − 1 where θ > 0. Hence,

φu (t) = [t · C(u)]−θ − 1 − φ(Cu) = t−θ · C(u)−θ − 1 − [Cuθ − 1] = C(u)−θ · [t−θ − 1], (4.6)

hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is unique up to a
multiplicative constant, φu is also the generator of Clayton copula, with parameter θ (see also
Section 2.4.).
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Note that this invariance property can be obtained in the subclass of Archimedean copu-
lae with a factor representation, obtained using the frailty approach (see section 1.5). Assume
that variables Xi’s are independent, conditionally on Θ, a positive random variable, such that
P (Xi ≤ xi|Θ) = Gi (x)Θ where Gi denotes a distribution function. The joint distribution func-
tion of X is given by

FX (x1, ..., xd) = E (P (X1 ≤ x1, ..., Xd ≤ Xd|Θ))

= E

(
d∏

i=1

P (Xi ≤ xi|Θ)

)
= E

(
d∏

i=1

Gi (xi)
Θ

)

= E

(
d∏

i=1

exp [−Θ(− log Gi (xi))]

)
= ψ

(
−

d∑

i=1

log Gi (xi)

)
,

where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)) . Because
the marginal distributions are given respectively by

Fi(xi)P(Xi ≤ xi) = ψ (− log Gi (xi)) , (4.7)

the copula of X is

C (u) = FX (F←
1 (u1) , . . . , F←

d (ud)) = ψ (ψ← (u) + . . . + ψ← (ud))

This copula is an Archimedean copula with generator φ = ψ←.

Example 4.2.3. Gumbel copulae could be obtained when factor Θ has its Laplace transform
equal to ψ (t) = exp

[
−t1/θ

]
. Furthermore, Clayton copulae are obtained when the heterogeneity

factor Θ has a Laplace transform equal to ψ (t) = [1 − t]−1/θ. The heterogeneity distribution is
a Gamma distribution with degrees of freedom 1/θ (see Section 1.3 of this thesis).

Theorem 4.2.4. Consider X with Archimedean copula, with a factor representation, and let
ψ denote the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d, then X given
X ≤ F←

X
(u) (in the sense that {X1 ≤ F←

1 (u1), ...., Xd ≤ F←
d (ud)) is an Archimedean copula

with a factor representation, where the factor has Laplace transform

ψu (t) =
ψ (t + ψ← (C(u)))

C(u)
, (4.8)

given X ≤ F←
X

(u).

Proof. Note that X given X ≤ F←
X

(u) will be said to have an Archimedean copula with a factor
representation if all the components are independent, given a positive factor Θ′, and if marginal
distribution functions can be written G′

i(xi)
Θ′

.

Consider a random vector Y such that Y
L
= X|X ≤ F←

X
(u). The joint distribution function

of Y , denoted F ′, is

F ′(x) = P(Y ≤ x) = P(X ≤ x|X ≤ F←
X (u))

=
P(X ≤ x)

P(X ≤ F←
X

(u))
on (−∞, F←

X (u)],

=
ψ(ψ←(F1(x1)) + ...ψ←(Fd(xd)))

C(u)

=
ψ(− log G1(x1) − .... − log Gd(xd))

C(u)
,
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since Fi(xi) = ψ(− log Gi(xi)). Hence, from this relationship one gets that the marginal distrib-
ution of Y is

F ′
i (xi) = lim

xj→F←
j (uj),j 6=i

F (x)

=
ψ(− log(Gi(xi))) + ψ←(u1) + ... + ψ←(ui−1) + ψ←(ui+1) + ... + ψ←(ud)

C(u)

=
ψ ([− log(Gi(xi))) − ψ←(ui)] + ψ← (u1) + ... + ψ← (ud))

ψ (ψ← (u1) + ... + ψ← (ud))
.

Recall (see Feller (1966)) that if ψ is the Laplace transform of random variable Z, so that ψ (t) =
E (exp (−tZ)), where Z has distribution function FZ , then φ defined as φ (t) = ψ (t + c) /ψ (c) is
the Laplace transform of some random variable Z ′ with cumulative distribution function FZ′ (t) =
exp (−ct)FZ (t).

Hence, the marginal distribution function of Yi can be written

F ′
i (xi) = ψu([− log(Gi(xi)) − ψ←(ui)]),

where ψu is the Laplace transform defined as

ψu(t) =
ψ (t + ψ← (u1) + ... + ψ← (ud))

ψ (ψ← (u1) + ... + ψ← (ud))
=

ψ(t + ψ←(C(u)))

C(u)
.

Set further G′
i(xi) = exp (log(Gi(xi)) + ψ(ui)) on (−∞, F←

i (ui)]. One gets easily that G′
i is an

increasing function, with G′
i(xi) → 0 as xi → −∞ and G′

i(F
←
i (ui)) = exp(0) = 1. Hence, G′

i is
a cumulative distribution function. Similarly for all i ∈ {1, ..., d}.

As at now, we have that there exists a random variable Θ′ with Laplace transform ψu, such
that P(Yi ≤ xi|Θ′) = Gi(xi)

Θ′
for all i ∈ {1, ..., d}. Let us prove that given Θ′, the components

of Y are independent.
On the one hand, we have obtained that the joint distribution function of Y is

F ′(x) =
ψ(− log G1(x1) − .... − log Gd(xd))

C(u)
.

From the expression of ψ′, note that this expression becomes

F ′(x) = ψu(− log G1(x1) − .... − log Gd(xd) − ψ←(u1) − ... − ψ←(ud)).

On the other hand,

E
(
P

(
Y1 ≤ x1|Θ′

)
· ... · P

(
Yd ≤ xd|Θ′

))

= E
(
G′

1(x1)
Θ′ · ... · G′

d(xd)
Θ′

)

= E
(
exp[−Θ′(− log G′

1(x1))] · ... · exp[−Θ′(− log G′
d(xd))]

)

= E
(
exp[−Θ′(−[log G1(x1) + ψ←(u1)])] · ... · exp[−Θ′(−[log Gd(xd) + ψ←(ud)])]

)

= ψu (− log(G1(x1)) − ψ←(u1) − ... − log(Gd(xd)) − ψ←(ud)) ,

and therefore, one gets that

E
(
P

(
Y1 ≤ x1|Θ′

)
· ... · P

(
Yd ≤ xd|Θ′

))
= F ′(x)

= E
(
P

(
Y1 ≤ x1, ..., Yd ≤ xd|Θ′

))
,

i.e. given Θ′, the components of Y are independent.
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In order to conclude, let us just observe that Θ′ is a positive random variable, since

P(Θ′ < 0) = lim
t→∞

ψu(t) = lim
t→∞

ψ(t) = 0,

since Θ is a positive variable. Finally, the conditional vector X given X ≤ F←
X

(u) will be
said to have an Archimedean copula with a factor representation . This finishes the proof of
Theorem 4.2.4.

4.2.2 Invariance by truncation

We have obtained in the previous section that Clayton copulae were the only invariant copula,
in the sense that Φ(C,u) = C for all u ∈ (0, 1]d. As proved in earlier chapters, when the
truncation is under a specific direction a wide class of copulae can be obtained. More formally
if D = {(r1(z), ..., rd(z), z ≥ 0}, C is invariant under this direction if Φ(C, r1(z), ..., rd(z)) = C
for all z ≥ 0. Let CD denote the class of invariant copulae under direction D. Given a direction
D, one can wonder if some Archimedean copulae (apart from Clayton’s) belong to class CD. As
proved in the following theorem, only Clayton copula can be invariant, whatever the direction
considered.

Theorem 4.2.5. Consider a continuous direction D = {(r1(z), ..., rd(z)) ∈ [0, 1]d, z ≥ 0}, from
(1, ..., 1) to (0, ..., 0). The only invariant Archimedean copula under direction D is Clayton copula.

Proof. Let C be an Archimedean copula, with generator φ, invariant copula under direction D.
Let U denote a random vector with distribution function C, and t ≥ 0. Let φz denote the
generator of the Archimedean copula of U given {U1 ≤ r1(z), ..., Ud ≤ rd(z)}. From Theorem
4.2.7, note that

φz(t) = φ(t · C(r1(z), ..., rd(z))) − φ(C(r1(z), ..., rd(z))).

C is an invariant copula if and only if for all z ≥ 0, φz is proportional with φ (the Archimedean
generator being defined up to a multiplicative constant). Since C is absolutely continuous
C(r1(·), ..., rd(·)) covers the range [0, 1], and therefore, φ is the generator of an invariant
Archimedean copula if and only if

φ(t · c) − φ(c) ∝ φ(t) for all c, t ∈ [0, 1],

hence, if κ(c) denotes the proportionally coefficient,

φ(t · c) − φ(c) = κ(c) · φ(t) for all c, t ∈ [0, 1]. (4.9)

Set x = − log t and y = − log c, and f (t) = φ (exp (−t)) where t ≥ 0, and h (t) = K (exp (−t)).
Solving equation (4.9) is equivalent with solving

f (x + y) = h (y) f (x) + f (y) where x, y ≥ 0, (4.10)

for some positive functional h, where f (0) = 0. Interchanging the variables in (4.10), we write

f (x + y) = h (x) f (y) + f (x) (4.11)

which, together with (4.10), leads to

h (y) f (x) + f (y) = h (x) · f (y) + f (x) (4.12)

that is,
f (x) [h (y) − 1] = f (y) · [h (x) − 1] (4.13)
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• If h (t) = 1, then (4.10) reduces to Cauchy’s basic equation. Then f (t) = αt, and φ (t) =
−α log t = − log tα on ]0, 1]. This case yields the independent case,

C (x, y) = φ← (φ (x) + φ (y))

= exp (− [−α log x − α log y] /α) = exp (log (xy))

= xy = C⊥ (x, y) .

• If, however, there exists a t0 such that h (y0) 6= 1, then it follows from (4.13) that

f (x) =
f (y0)

h (y0) − 1
[h (x) − 1] = γ [h (x) − 1] , (4.14)

where γ is a constant. If γ = 0, then f is constant (null) and then, φ is null on [0, 1]. So
we assume that γ 6= 0, and substitute (4.14) into (4.10),

γ [h (x + y) − 1] = γ [h (x) − 1] + γ [h (y) − 1] (4.15)

so that we can obtain the following equation

h (x + y) = h (x)h (y) where x, y ≥ 0, (4.16)

The most general solutions of Cauchy-type functional equation (4.16) are, according to
Theorem (2.1.2.1) of Aczél (1966),

h (t) = 0 and h (t) = exp (αt) (4.17)

So finally, from (4.14) and because f (t) = φ (exp (−t)), functions φ have to satisfy

φ (t) = γ [exp (α log t) − 1] = γ [tα − 1] (4.18)

which is the general form of Clayton’s copula generator.

4.2.3 H-copulae and the factor model

In Section 1.3.2, we have introduced the class of H-copulae, defined as

Φh(C)(u, v) = h←(C(h(u), h(v))), 0 ≤ u, v ≤ 1,

where C is a copula, and h ∈ H is a convex distortion function. As noticed earlier, copulae
Φh(C⊥) are Archimedean copulae. An idea can be to focus on the factor interpretation of
Archimedean copulae, and to extend it in the non-independent case.

Assume that there exists a positive random variable Θ, such that, conditionally on Θ, random
vector X = (X1, ..., Xd) has copula C, which does not depend on Θ. Assume moreover that C
is in extreme value copula, (see Joe (1997)). The following results holds,

Lemma 4.2.6. Let Θ be a random variable with Laplace transform ψ, and consider a random
vector X = (X1, ..., Xd) such that X given Θ has copula C, an extreme value copula (in the
sense that C

(
xh

1 , ..., xh
d

)
= Ch (x1, ..., xd) for all h ≥ 0 ). Assume that, for all i = 1, ..., d,

P (Xi ≤ xi|Θ) = Gi (xi)
Θ where the Gi’s are distribution functions. Then X has copula

CX (x1, ..., xd) = ψ (− log (C (exp [−ψ← (x1)] , ..., exp [−ψ← (xd)]))) , (4.19)

which is copula Ψh(C) with h(·) = exp [−ψ← (·)].
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Proof. Let X be a random vector such that X given Θ has copula C and P (Xi ≤ xi|Θ) =
Gi (xi)

Θ, i = 1, ..., d. Then, the (unconditional) joint distribution function of X is given by

F (x) = E (P (X1 ≤ x1, ..., Xd ≤ xd|Θ)) = E (C (P (X1 ≤ xi|Θ) , ..., P (Xd ≤ xd|Θ)))

= E
(
C

(
G1 (x1)

Θ , ..., Gd (xd)
Θ
))

= E
(
CΘ (G1 (x1) , ..., Gd (xd))

)

= ψ (− log C (G1 (x1) , ..., Gd (xd))) ,

where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)). Because
C is an extreme value copula,

C
(
G1 (x1)

Θ , ..., Gd (xd)
Θ
)

= CΘ (G1 (x1) , ..., Gd (xd)) .

One gets finally that the unconditional marginal distribution functions are Fi (xi) =
ψ (− log Gi (xi)), and therefore

CX (x1, ..., xd) = ψ (− log (C (exp [−ψ← (x)] , exp [−ψ← (y)]))) (4.20)

This finishes the proof of Lemma 4.2.6.

We will see with the Theorem below that, in the case where the copula of X is an H-copula,
that the stability of exchangeable Archimedean copulae with a factor representation can be
extended to H-copula, with additional assumptions.

Theorem 4.2.7. Let X be a random vector with an H-copula, with a convex distortion generator,
with a factor representation, let ψ denote the Laplace transform of the heterogeneity factor Θ, C
denote the underlying copula, and Gi’s the marginal parameters.

(1) Let u ∈ (0, 1]d, then, the copula of X given X ≤ F←
X

(u) is

CX,u (x) = ψu (− log (Cu (exp [−ψ←
u (x1)] , ..., exp [−ψ←

u (xd)]))) = Φhu
(Cu)(x), (4.21)

where hu(·) = exp [−ψ←
u (·)], and where

• ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where α = − log (C (u∗)),
u∗

i = exp [−ψ← (ui)] for all i = 1, ..., d. Hence, ψu is the Laplace transform of Θ given
X ≤ F←

X
(u),

• P (Xi ≤ xi|X ≤ F←
X

(u) ,Θ) = G′
i (xi)

Θ for all i = 1, ..., d, where

G′
i (xi) =

C (u∗
1, u

∗
2, ..., Gi (xi) , ..., u∗

d)

C
(
u∗

1, u
∗
2, ..., u

∗
i , ..., u

∗
d

) , (4.22)

• and Cu is the following copula

Cu (x) =
C (G1 (G′

1
← (x1)) , ..., Gd (G′

d
← (xd)))

C
(
G1 (F←

1 (u1)) , ..., Gd

(
F←

d (ud)
)) . (4.23)

(2) Furthermore, the copula of X given X ≤ F←
X

(u) is an H-copula with a factor represen-
tation if and only if Cu is an extreme value copula.
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Proof. (1) Let CX be the copula of X, that is

CX (u1, ..., ud) = ψ (− log (C (exp [−ψ← (u1)] , ..., exp [−ψ← (ud)]))) .

(i) The marginal distribution of Xi given X ≤ F←
X

(u), and given Θ = θ is

P (Xi ≤ xi|X ≤ F←
X (u) , Θ = θ)

=
P (X1 ≤ F←

1 (u1), ..., Xi−1 ≤ F←
1 (ui−1), Xi ≤ xi, Xi+1 ≤ F←

1 (ui+1), ..., Xd ≤ F←
d (ud)|Θ = θ)

P
(
X1 ≤ F←

1 (u1), ..., Xi−1 ≤ F←
1 (ui−1), Xi ≤ F←

i (ui), Xi+1 ≤ F←
1 (ui+1), ..., Xd ≤ F←

d (ud)|Θ = θ
)

=
C (P (X1 ≤ F←

1 (u1)|Θ = θ) , ..., P (Xi ≤ xi|Θ = θ) , ..., P (Xd ≤ F←
d (ud)|Θ = θ))

C
(
P (X1 ≤ F←

1 (u1)|Θ = θ) , ..., P (Xi ≤ F←
i (ui)|Θ = θ) , ..., P

(
Xd ≤ F←

d (ud)|Θ = θ
))

since C is the copula of X given Θ, i.e.

P (X1 ≤ x1, ..., Xd ≤ xd|Θ = θ) = C (P (X1 ≤ x1|Θ = θ) , ..., P (Xd ≤ xd) |Θ = θ) .

Hence,

P (Xi ≤ xi|X ≤ F←
X (u) , Θ = θ) =

C(G1(F
←
1 (u1))

θ, ..., Gi(xi)
θ, ..., Gd(F

←
d (ud))

θ)

C(G1(F←
1 (u1))θ, ..., Gi(F←

i (ui))θ, ..., Gd(F
←
d (ud))θ)

because C is an extreme value copula. Since Fj (xj) = ψ (− log Gj (xj)), set u∗
j =

Gj

(
F←

j (uj)
)

= exp [−ψ← (uj)] for all j = 1, ..., d. The marginal distribution satisfies,

P (Xi ≤ xi|X ≤ F←
X (u) ,Θ = θ) =

(
C(u∗

1, ..., u
∗
i−1, Gi(xi), u

∗
i+1, ..., u

∗
d)

C(u∗
1, ..., u

∗
i−1, u

∗
i , u

∗
i+1, ..., u

∗
d)

)θ

(4.24)

One can get easily that

G∗
i (xi) =

C(u∗
1, ..., u

∗
i−1, Gi(xi), u

∗
i+1, ..., u

∗
d)

C(u∗
1, ..., u

∗
i−1, u

∗
i , u

∗
i+1, ..., u

∗
d)

is (univariate) distribution function, since C and Gi are both increasing, and moreover
G∗

i (F←
i (ui)) = u∗

i .
(ii) The joint distribution function of X given X ≤ F←

X
(u) is

P (X ≤ x|X ≤ F←
X (u)) =

P (X ≤ x)

P
(
X ≤ F←

X
(u)

) =
E (P (X ≤ x|Θ))

C(u)

=
E

(
C

(
G1(x1)

Θ, ..., Gd(xd)
Θ
))

C(u)

=
E (C (G1(x1), ..., Gd(xd)))

Θ

C(u)

From the expression of copula CX,

CX (u) = ψ (− log (C (exp [−ψ← (u1)] , ..., exp [−ψ← (ud)]))) = ψ (− log (C (u∗
1, ..., u

∗
d))) ,

one gets,

P (X ≤ x|X ≤ F←
X (u)) =

ψ(− log C(G1(x1), ..., Gd(xd)))

ψ(− log C(u∗
1, ..., u

∗
d))

=
ψ[− log C(u∗

1, ..., u
∗
d) − α] + α

ψ(α)
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where α = − log (C (u∗
1, ..., u

∗
d)). Set ψu (t) = ψ (t + α) /ψ (α). From this expression, ψu is also

a Laplace transform. Furthermore, the expression above could be written

P (X ≤ x|X ≤ F←
X (u)) = ψu

(
− log

C (G1 (x1) , ..., Gd (xd))

C
(
u∗

1, ..., u
∗
d

)
)

.

We can then write the conditional marginal distribution function as

P (Xi ≤ xi|X ≤ F←
X (u)) = ψu

(
− log

C (u∗
1, ..., Gi(xi), ..., u

∗
d)

C
(
u∗

1, ..., u
∗
d

)
)

= ψu(− log G∗
i (xi)),

i.e.,
P (Xi ≤ xi|X ≤ F←

X (u)) = E
(
G∗

i (xi)
Θ
)
, (4.25)

where Θ has Laplace transform ψu.
(iii) Let Cu be the functional defined on [0, 1]d by

Cu (x1, ..., xd) =
C (G1 (G∗

1
← (x1)) , ..., Gd (G∗

d
← (xd)))

C
(
G1 (F←

1 (u1)) , ..., Gd

(
F←

d (ud)
)) . (4.26)

Because C is d-increasing (C is a copula) and the Gi’s are increasing, Cu is d-increasing. Fur-
thermore,

Cu (x1, ..., xi−1, 0, xi+1, ..., xd) =
C (G1 (G∗

1
← (x0)) , ..., Gi (G

∗
i
← (0))) , ..., Gd (G∗

d
← (xd))

C
(
G1 (F←

1 (u1)) , ..., Gd

(
F←

d (ud)
)) = 0,

and

Cu (1, ..., 1, xi, 1, ..., 1) =
C (G1 (G∗

1
← (1)) , ..., Gi (G

∗
i
← (xi)) , ..., Gd (G∗

d
← (1)))

C
(
G1 (F←

1 (u1)) , ..., Gd

(
F←

d (ud)
))

=
C

(
u∗

1, ..., u
∗
i−1, Gi (G

∗
i
← (xi)) , u∗

i+1, ..., u
∗
d

)

C
(
G1 (F←

1 (u1)) , ..., Gd

(
F←

d (ud)
))

so, finally, Cu (1, ..., 1, G∗
i (xi) , 1, ..., 1) = G∗

i (xi), that is, since G∗
i is bijective on [0, 1], for all zi

in [0, 1], Cu (1, ..., 1, zi, 1, ..., 1) = zi. So, finally, Cu is a copula.
(iv) Using the results obtained above, one gets that the copula of X given X ≤ F←

X
(u) is

CX,u defined as

CX,u(x1, ..., xd) = ψu

(
− log

(
Cu

(
exp

[
−ψ−1

u (x1)
]
, exp [−ψ←

u (xd)]
)))

= Ψhu
(Cu)(x1, ..., xd).

which is the analogous of the result of Proposition (4.2.6).
(2) Assume that X = (X1, ..., Xd) has an H-copula. Using the notions of the beginning of

the prof, let Cu denote the copula of X given X ≤ F←
X

(u)) and given Θ. Then, for all θ ≥ 0

Cu (x)θ =
C (G1 (G∗

1
← (x1)) , ..., Gd (G∗

d
← (xd)))

θ

C
(
G1 (F←

1 (u1)) , ..., Gd

(
F←

d (ud)
))θ

=
C

(
G1 (G∗

1
← (x1))

θ , ..., Gd (G∗
d
← (xd))

θ
)

C
(
G1 (F←

1 (u1))
θ , ..., Gd

(
F←

d (ud)
)θ

)

=
C (P (X1 ≤ G∗

1
← (x1) |Θ = θ) , ..., P (Xd ≤ G∗

d
← (xd) |Θ = θ))

C
(
P (X1 ≤ F←

1 (u1) |Θ = θ) , ..., P
(
Xd ≤ F←

d (ud) |Θ = θ
))

=
P (X1 ≤ G∗

1
← (x1) , ..., Xd ≤ G∗

d
← (xd) |Θ = θ)

C
(
u∗

1, ..., u
∗
d

) . (4.27)
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Note that the numerator could be written

P (X ≤ G∗← (x) |Θ = θ)

= P (X ≤ G∗← (x) |X ≤ F← (u) , Θ = θ) · P (X ≤ F← (u) |Θ = θ)

= P (X ≤ G∗← (x) |X ≤ F← (u) , Θ = θ) · C(u∗),

and therefore
Cu (x)θ = P (X ≤ G∗← (x) |X ≤ F← (u) ,Θ = θ) . (4.28)

From this expression, using the fact that Cu is the copula of X ≤ G∗−1 (x) and X ≤ F← (u)
and Θ = θ, we get

P (X ≤ G∗← (x) |X ≤ F← (u) ,Θ = θ)

= Cu (P (X1 ≤ G∗
1
← (x1) |X ≤ F← (u) , Θ = θ) , ..., P (Xd ≤ G∗

d
← (xd) |X ≤ F← (u) , Θ = θ))

= Cu

(
P

(
X1 ≤ G∗−1

1 (x1) |X ≤ F← (u)
)θ

, ..., P (Xd ≤ G∗
d
← (xd) |X ≤ F← (u))θ

)

= Cu(xθ
1, ..., x

θ
d).

Hence, for all θ ≥ 0, Cu(x)θ = Cu(xθ) and therefore, Cu is an extreme value copula.
Conversely, assume that Cu is an extreme value copula. The conditional joint distribution

of X given X ≤ F← (u), and Θ = θ is

P (X ≤ x|X ≤ F← (u) , Θ = θ) (4.29)

=
P (X ≤ x|Θθ)

P (X ≤ F← (u) , Θ = θ)

=
C (P (X1 ≤ x1|Θ = θ) , ..., P (Xd ≤ xd|Θ = θ))

C
(
P (X1 ≤ F←

1 (u1) |Θ = θ) , ..., P
(
Xd ≤ F←

d (ud) |Θ = θ
))

=
C

(
G1 (x1)

θ , ..., Gd (xd)
θ
)

C
(
G1 (F←

1 (u1))
θ , ..., Gd

(
F←

d (ud)
)θ

)

=

[
C (G1 (x1) , ..., Gd (xd))

C
(
G1 (F←

1 (u1)) , ..., Gd

(
F←

d (ud)
))

]θ

= Cu (G∗
1 (x1) , ..., G∗

d (xd))
θ = C∗

(
G∗

1 (x1)
θ , ..., G∗

d (xd)
θ
)

(4.30)

= Cu (P(X1 ≤ x1|X ≤ F←(u),Θ = θ), ..., P(Xd ≤ xd|X ≤ F←(u), Θ = θ)) , (4.31)

because Cu is an extreme value copula. So finally, Cu is the copula of X given X ≤ F←
X

(u))
and given Θ. This finishes the proof of Theorem 4.2.7.

As well as Archimedean copulae are stable (in the sense that conditional copulae are still
Archimedean copula), those copulae define a stable family of copulae, by conditioning.

4.2.4 Comparing tails for Archimedean copulae

From Theorem 4.2.7, one can notice that the generator of the conditional copula is the same on a
given level curve of the copula C : if C (u1, v1) = C (u2, v2), that is φ (u1)+φ (v1) = φ (u2)+φ (v2),
then Φ (C, u1, v1) = Φ (C, u2, v2). Moreover, ordering Φ(C, t1, t1) and Φ(C, t2, t2) where t1 ≤ t2
is equivalent with ordering Φ (C, u1, v1) and Φ(C, u2, v2) where

φ (t1) + φ (t1) = φ (u1) + φ (v1) ≤ φ (u2) + φ (v2) = φ (t2) + φ (t2) .
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For expository purpose (and the convenient interpretation), we will focus only on results on the
diagonal.

When studying the evolution of the conditional copula on the diagonal, one can expect a
dependence structure which is all the more positively dependent as t decreases, or similarly, all
the less dependent. In the first case, if 0 < t2 ≤ t1 ≤ 1, Φ(C, t1) ¹ Φ(C, t2), in the sense
that Φ(C, t1) (x, y) ≤ Φ(C, t2) (x, y) for all x, y in [0, 1] × [0, 1], which could be seen as the
PQD-ordering, as induced by the PQD property (see Lehmann (1966)).

Theorem 4.2.8. Let t1 and t2 such that 0 < t2 ≤ t1 ≤ 1, and let C be an Archimedean copula
with generator φ. Let

f12 (x) = φ

(
C1

C2
φ← (x + φ (C2))

)
− φ (C1) and f21 (x) = φ

(
C2

C1
φ← (x + φ (C1))

)
− φ (C2) ,

(4.32)
where C1 = C (t1, t1) and C2 = C (t2, t2). Then

• Φ(C, t2, t2) (x, y) ≤ Φ(C, t1, t1) (x, y) for all x, y in [0, 1] × [0, 1] if and only if f21 (x)is
sudadditive,

• Φ(C, t2, t2) (x, y) ≥ Φ(C, t1, t1) (x, y) for all x, y in [0, 1] × [0, 1] if and only if f12 (x)is
sudadditive.

Proof. As shown in Nelsen (1999), if C1 and C2 are two Archimedean copulae with generator φ1

and φ2, then C2 ¹ C1, in the sense that C2 (x, y) ≤ C1 (x, y) for all x, y in [0, 1] × [0, 1], if and
only if φ2 ◦ φ←

1 is subadditive, that is

φ2 ◦ φ←
1 (x + y) ≤ φ2 ◦ φ←

1 (x) + φ2 ◦ φ←
1 (y) for all x, y ≥ 0 (4.33)

In the case of conditional copulae, φ2 (x) = φ (C2x)− φ (C2) and φ1 (x) = φ (C1x)− φ (C1), and
so, Φ(C, t2) = C2 ¹ C1 = Φ (C, t1) if and only if f21 (x)is sudadditive, where

f21 (x) = φ

(
C2

C1
φ← (x + φ (C1))

)
− φ (C2) . (4.34)

One gets analogous results for f12.
This finishes the proof of Theorem 4.2.8.

Example 4.2.9. The case of Clayton copulae could be seen as a limiting case, in the sense that
φ (t) = t−θ − 1 and so, f12 is linear, i.e.

f12 (x) = ax + b where a = Cθ
1/Cθ

2 . (4.35)

We obtain here the particular case mentioned in Lemma 5.5.8. in Schweizer and Sklar (1983).

In the case were φ is twice differentiable, a sufficient condition for uniform ordering of con-
ditional copula is the following.

Lemma 4.2.10. If φ is twice differentiable, let ψ (x) = log−Dφ (t),
(i) If ψ is concave on ]0, 1], then Φ(C, t2, t2) (x, y) ≤ Φ(C, t1, t1) (x, y) for all x, y in [0, 1]×

[0, 1], for all 0 < t2 ≤ t1 ≤ 1.
(ii) Similarly, if ψ (x) is convex on ]0, 1], then Φ(C, t2, t2) (x, y) ≥ Φ(C, t1, t1) (x, y) for all

x, y in [0, 1] × [0, 1], for all 0 < t2 ≤ t1 ≤ 1.
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Proof. (i) Let 0 ≤ t2 ≤ t1 ≤ 1, and β = C (t2, t2), γ = C (t1, t1) and α = γ/β, α ≤ 1. Let
f (x) = φ (αφ← (x + φ (β))) − φ (γ), then

d

dx
f (x) =

α

φ′ (φ← (x + φ (β)))
φ′ (αφ← (x + φ (β)))

d2

dx2
f (x) = α

αφ′′ (αφ← (x + φ (β))) .φ′ (φ← (x + φ (β))) − φ′ (αφ← (x + φ (β))) .φ′′ (φ← (x + φ (β)))

φ′ (φ← (x + φ (β)))3

Because φ is a generator of an Archimedean copula, φ is positive, and φ
′
is negative. So, finally,

d2f12 (x) /dx2 is negative if and only if

αφ′′ (αφ← (x + φ (β))) .φ′ (φ← (x + φ (β))) − φ′ (αφ← (x + φ (β))) .φ′′ (φ← (x + φ (β))) ≥ 0
(4.36)

for all x, that is αφ′′ (αy) .φ′ (y) − φ′ (αy) .φ′′ (y) ≥ 0 for all y,or, dividing by φ′ (y) .φ′ (αy) ,

αφ′′ (αy)

φ′ (αy)
− φ′′ (y)

φ′ (y)
≥ 0 or

−αφ′′ (αy)

−φ′ (αy)
≥ −φ′′ (y)

−φ′ (y)
for all y, α ≤ 1 (4.37)

Because αφ′′ (αy) = (φ′ (αy))′ and φ′′ (y) = (φ′ (y))′, let g (t) = D log−Dφ (t) = Dψ (t), then
D2f12 (x) is negative if and only if g (αy) ≥ g (y) for all y and α ≤ 1, that is g is decreasing, or ψ
is concave. In this case, f is concave, and, furthermore, f (0) = 0. From Lemma 4.4.3 in Nelsen
(1999) one gets that f is subadditive.

(ii) Same proof holds : D2f21 (x) is negative if and only if g (αy) ≥ g (y) for all y and α ≥ 1,
that is g is increasing, or ψ is convex.

This finishes the proof of Lemma 4.2.10.

Example 4.2.11. Let C be a Ali-Mikhail-Haq copula (Ali, Mikhail and Haq (1978)), with gen-
erator φ (x) = log (1 − θ (1 − x)) − log x. Then

φ′ (x) =
θ

1 − θ (1 − x)
− 1

x
and ψ (x) = log

(
1

x
− θ

1 − θ (1 − x)

)
(4.38)

One gets that

ψ′′ (x) =
−2 (1 − θ)

φ′ (x)2

[
3θ2x2 + 3θ (1 − θ)x + (1 − θ)2

x3 (1 − θ (1 − x))3

]
(4.39)

which is positive. So finally, ψ is a concave function on [0, 1], and so Φ(C, t2) (x, y) ≤
Φ(C, t1) (x, y) for all x, y in [0, 1]× [0, 1], for all 0 < t2 ≤ t1 ≤ 1 : (X, Y ) given X ≤ FX (t) and
Y ≤ FY (t) is less and less positively dependent, as t decreases towards 0.

Example 4.2.12. Let C be the copula given by (4.2.19) in Nelsen (1999), that is with generator
φ (x) = exp (θ/x) − exp (θ). Then, for all t1 and t2 such that 0 < t2 ≤ t1 ≤ 1, and let Ci =
θ/ log [2 exp (θ/ti) − exp (θ)] where i = 1, 2. One gets

f12 (x) = exp

(
log [2 exp (θ/t1) − exp (θ)]

log [2 exp (θ/t2) − exp (θ)]
log (x + 2 exp (θ/t2) − exp (θ))

)
−2 exp (θ/t1)+exp (θ)

(4.40)
After derivating two times with respect to x, one gets D2f12 (x) ≥ 0 and f12 (x) is concave.
Hence, because f12 (0) = 0 and f12 (x) is convex, then f12 (x) is subadditive. For all t1 and t2
such that 0 < t2 ≤ t1 ≤ 1, f12 (x) is subadditive : (X, Y ) given X ≤ FX (t) and Y ≤ FY (t) is
more and more positively dependent, as t decreases towards 0.
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One can notice that this case is an application of Lemma 4.2.10 :

ψ (x) = log−φ′ (t) =
θ

x
+ log θ − 2 log x (4.41)

is a convex function on [0, 1], and so Φ(C, t2) (x, y) ≥ Φ(C, t1) (x, y) for all x, y in [0, 1]× [0, 1],
for all 0 < t2 ≤ t1 ≤ 1.

Example 4.2.13. Let C be a copula in the Gumbel-Barnett family (Gumbel (1960a)), that is
φ (x) = log (1 − θ log x). Then

φ′ (x) =
−θ

x (1 − θ log x)
and ψ (x) = log θ − log x − log (1 − θ log x) , (4.42)

which is a convex function on [0, 1], and so Φ(C, t2) (x, y) ≥ Φ(C, t1) (x, y) for all x, y in [0, 1]×
[0, 1], for all 0 < t2 ≤ t1 ≤ 1. In that case (X,Y ) given X ≤ FX (t) and Y ≤ FY (t) is more
and more positively dependent as t decreases towards 0 should be understood as (X,Y ) given
X ≤ FX (t) and Y ≤ FY (t) is less and less negatively dependent as t decreases towards 0. This
is a direct implication of the fact that the conditional copula of a Gumbel-Barnett copula remains
in this family, with a smaller parameter.

Example 4.2.14. Let C be a Frank copula, with generator

φ (x) = − log [(exp (−θx) − 1) / (exp (−θ) − 1)] ,

then

φ′ (t) =
θ exp (−θx)

exp (−θx) − 1
and ψ (t) = log θ − θx − log (1 − exp (−θx)) , (4.43)

which satisfies ψ′′ (x) = −θ2 exp (−θx) / [exp (−θx) − 1]2 ≤ 0 : ψ is concave, and so
Φ(C, t2) (x, y) ≤ Φ(C, t1) (x, y) for all x, y in [0, 1] × [0, 1], for all 0 ≤ t2 ≤ t1 ≤ 1.

Example 4.2.15. Let C be a Gumbel copula, with generator φ (x) = (− log x)θ, θ ≥ 1, then

φ′ (x) = −θ (− log x)θ−1 /x, and ψ (x) = log θ − log x + (θ − 1) log (log [−x]) (4.44)

This function being twice differentiable, one gets

ψ′′ (x) =
(log x)2 − [θ − 1] log x − [θ − 1]

x2 [log x]2
=

h (log x)

x2 [log x]2
, (4.45)

where h (y) = y2 − [θ − 1] y − [θ − 1] : this polynomial has two (real) roots, and one is negative.
So finally, ψ′′ (x) ≤ 0 on ]0, x0] and ψ′′ (x) ≥ 0 on [x0, 1] for some x0 : ψ is neither concave nor
convex.

4.2.5 Aging and dependence concepts for Archimedean copulae

As mentioned in Section 1.3 of this thesis, if φ is a generator, set Fφ(x) = 1 − φ←(x), for all
x ≥ 0. Further, Fφ is cumulative distribution function, of a unimodal distribution on R+, with
mode 0. Note that for independence, φ(t) = − log x, and therefore, Fφ(·) is the distribution
function of the standard exponential distribution.

Proposition 4.2.16. Let C denote an bivariate Archimedean copula with generator φ. Then C
is PQD (i.e. C⊥ ¹ C for the pointwise order) if and only if Fφ is NBU (new better than used).
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Proof. Recall that given C1 and C2 two Archimedean copulae, with respective generator
φ1 and φ2, C1 ¹ C2 for the pointwise order if and only if φ1 ◦ φ←

2 is subadditive, i.e.
φ1 ◦ φ←

2 (x + y) ≤ φ1 ◦ φ←
2 (x) + φ1 ◦ φ←

2 (y) for all x, y ∈ [0, 1] (see e.g. Nelsen (1999)).
Hence, if φ1(·) = − log(·) and φ2(·) = φ(·), this yields − log(φ←) is subadditive. Hence, since
Fφ(x) = 1−φ←(x), it means that x 7→ − log(1−Fφ(x) is subadditive, which is a characterization
of NBU distributions (see Barlow and Proschan (1975)).

Note that those positive dependence concept and aging properties can be transposed in terms
of orderings:

Corollary 4.2.17. Let C1 and C2 denote two bivariate Archimedean copula with respective gen-
erators φ1 and φ2. Then C1 ¹PQD C2 if and only if Fφ1

¹NBU Fφ2
.

Proposition 4.2.18. Let C denote an bivariate Archimedean copula with generator φ. Then C
is LTD if and only if Fφ is IFR (increasing failure rate).

Proof. From Definition 4.1.24, recall that given X is said to be left tail increasing (LTD) if
P(X ≤ x|X ≤ x′) is decreasing in x′ for all x. In terms of copulae, it means that

C(x, y)

x
≤ C(x′, y)

x′
for all y ∈ [0, 1], 0 < x ≤ x′ ≤ 1,

or equivalently

φ←(φ(x) + φ(y))

x
≤ φ←(φ(x′) + φ(y))

x′
for all y ∈ [0, 1], 0 < x ≤ x′ ≤ 1. (4.46)

Since φ is strictly decreasing and continuous, it is bijective, and therefore, Equation (4.46) can
be written equivalently, setting u = φ(x), u′ = φ(x′) and v = φ(y),

φ←(u + v)

φ←(u)
≥ φ←(u′ + v)

φ←(u′)
for all v ∈ [0,∞), 0 < u ≤ u′ < ∞, (4.47)

because φ← is a decreasing function. Hence, from Fφ(x) = 1−φ←(x), note that Equation (4.47)
becomes

1 − Fφ(u + v)

1 − Fφ(u)
≥ 1 − Fφ(u′ + v)

1 − Fφ(u′)
for all v ∈ [0,∞), 0 < u ≤ u′ < ∞,

or, taking the logarithm,

log[1 − Fφ(u + v)] − log[1 − Fφ(u)] ≥ log[1 − Fφ(u′ + v)] − log[1 − Fφ(u′)],

for all v ∈ [0,∞) and 0 < u ≤ u′ < ∞, which can be written also

− log[1 − Fφ(u + v)] + log[1 − Fφ(u)]

v
≥ − log[1 − Fφ(u′ + v)] + log[1 − Fφ(u′)]

v
,

i.e. the increasing rate of function − log[1 − Fφ(·) is an increasing function, hence, −log[1 − Fφ]
is convex which is a characterization of IFR distributions (see Barlow and Proschan (1975)).

Again those positive dependence concept and aging properties can be transposed in terms of
orderings:

Corollary 4.2.19. Let C1 and C2 denote two bivariate Archimedean copula with respective gen-
erators φ1 and φ2. Then C1 ¹LTD C2 if and only if Fφ1

¹IFR Fφ2
.



Chapter 5

Upper tails for Archimedean copulae

In chapter 3, we characterized the lower tail behavior of Archimedean copulae. We focused on
lower tails for convenience, but studying upper tails should also be interesting (e.g. in terms of
extreme values, as we will see in the next chapter, without the Archimedean assumption).

In this chapter, the aim is to obtain analogous results to the third chapter, about tails of
Archimedean copulae, but in the upper corner 1, instead of 0. In order to derive properties
for upper tails, we need alternative characterizations of generators of Archimedean copulae in
dimension d ≥ 2. Section 5.2.

If the study of lower tails was possible using only regular variation (of first and second
order) to characterize tail dependence or tail independence, the study of upper tails will be more
complicated. More precisely, in Section 5.3, if tail dependence we be considered as in chapter 3
(section 5.3.1), in order to characterize tail independence (section 5.3.2), we will have to separate
dependence in independence, and independence in independence (as called in Draisma, Drees,
Ferreira and de Haan (2004)). This chapter we will concluded by a short section on possible
extensions of tail study, in off-diagonal corners (section 5.4).

5.1 Some additional results on regular variation for

Archimedean generators

5.1.1 Multiply monotone functions

Lemma 5.1.1. Let f be k ≥ 0 times continuously differentiable function of a real variable defined
in a neighbourhood of infinity and such that f(t) → 0 as t → ∞. If (−D)kf is convex, then for
all j = 0, 1, . . . , k, the function (−D)jf is nonnegative, nonincreasing, convex, and vanishes at
infinity. Moreover, there exists a version Dk+1f of the Radon-Nikodym derivative of Dkf such
that (−D)k+1f is nonnegative, nonincreasing, and vanishes at infinity.

Proof. We proceed by induction on k. First assume k = 0. The assumption is then simply that
f is convex and vanishes at infinity. Hence it must be nonnegative and nonincreasing. Moreover,
f(t) =

∫ ∞
t (−D)f(s)ds for all large enough t, where Df is the right-hand derivative of f . Clearly,

(−D)f must be nonnegative and nonincreasing and must vanish at infinity.
Next assume that k is an integer larger than one. Since (−D)kf is convex, it must converge

at infinity to a limit in [−∞,∞]. This limit must be zero, because otherwise |f(t)| → ∞
as t → ∞. Hence, the function (−D)kf satisfies the assumptions of the lemma, so that by
the induction hypothesis, (−D)k+1f is nonnegative, nonincreasing, and vanishes at infinity.
Moreover, since the derivative of (−D)k−1f is equal to −(−D)kf , which is a nondecreasing
function, the function (−D)k−1f must be convex. Apply the induction hypothesis once more to

143
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complete the proof.

Remark 5.1.2. Up to minor changes in terminology, a function f which satisfies the conditions
of Lemma 5.1.1 is called multiply monotone or k-times monotone Gneiting (1997) or Williamson
(1956). Lemma 5.1.1 is a simplified version of Proposition 4.4 in Gneiting (1997).

5.1.2 Regular variation and second order properties

The definition of regular variation involves in principle an infinite set of limit relations. However,
if a function is known to be convex, then regular variation of the function is equivalent to a single
limit relation. Results of this type are known under the name “Monotone Density Theorem,” see
for instance section 1.7.3 in Bingham, Goldie and Teugels (1987). We will need the following
two instances.

Lemma 5.1.3. Let f be a positive, convex function of a real variable defined in a right-
neighbourhood of zero. Let Df be a nondecreasing version of the Radon-Nikodym derivative
of f . The function f is regularly varying at zero of index τ ∈ [−∞,∞] if and only if

lim
s→0

sDf(s)

f(s)
= τ.

Proof. Let c be a positive number such that the domain of f includes the interval (0, c]. The
function log f is absolutely continuous with Radon-Nikodym derivative (Df)/f . Denote τ(s) =
sDf(s)/f(s). For 0 < s ≤ c, we have

f(s) = f(c) exp

(
−

∫ c

s
τ(t)

dt

t

)
.

If additionally 0 < x < ∞ with x 6= 1 and if s is such that also sx ≤ c, then

f(sx)

f(s)
= exp

(∫ sx

s
τ(t)

dt

t

)

= exp

(∫ x

1
τ(st)

dt

t

)
.

The argument of the exponent converges to τ log(x) as s → 0. Hence indeed f(sx)/f(s) → xτ

as s → 0, as required.
Conversely, suppose that f is regularly varying at zero of index τ . By convexity, we have for

all 0 < x < ∞ and all sufficiently small s,

f(sx) − f(s) ≥ s(x − 1)Df(s).

If x is not equal to one, we can divide both sides of this inequality by (x− 1) and let s decrease
to zero to get

lim sup
s→0

sDf(s)

f(s)
≤ xτ − 1

x − 1
, for all 1 < x < ∞,

lim inf
s→0

sDf(s)

f(s)
≥ xτ − 1

x − 1
, for all 0 < x < 1.

Since (xτ − 1)/(x − 1) → τ as x → 1 for all τ ∈ [−∞,∞], we conclude that sDf(s)/f(s) → τ
as s → 0.
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Lemma 5.1.4. Let f be a positive, convex function of a real variable defined in a neighbourhood
of infinity. Let Df be a nondecreasing version of the Radon-Nikodym derivative of f . The
function f is regularly varying at infinity of index τ ∈ [−∞,∞] if and only if

lim
t→∞

tDf(t)

f(t)
= τ.

Proof. The proof Lemma 5.1.4 is identical to the proof of Lemma 5.1.3.

Lemma 5.1.5. Let f be a positive, k ≥ 0 times continuously differentiable function of a real
variable defined in a neighbourhood of infinity. Assume that (−D)kf is convex and that f(t) → 0
as t → ∞. If f is regularly varying at infinity of index −τ ∈ [−∞, 0], then for all integer
j = 1, . . . , k + 1,

lim
t→∞

tj(−D)jf(t)

f(t)
= τ(τ + 1) · · · (τ + j − 1). (5.1)

Proof. We proceed by induction on k. In case k = 0, the statement is trivially implied by
Lemma 5.1.4.

So assume k is a positive integer. Note that by Lemma 5.1.1, the function (−D)jf is convex
for every j = 0, 1, . . . , k and vanishes at infinity. Hence, by the induction hypothesis, (5.1) holds
already for all j = 1, . . . , k, so only the case j = k + 1 remains to be shown.

First consider the case 0 < τ < ∞. Then we know that

(−D)kf(t) ∼ τ(τ + 1) · · · (τ + k − 1)t−kf(t) as t → ∞.

In particular, the function (−D)kf is regularly varying at infinity of order −τ − k. Apply
Lemma 5.1.4 to get

(−D)k+1f(t) ∼ (τ + k)t−1(−D)kf(t) as t → ∞.

Combine the two previous displays to see that (5.1) also holds for j = k + 1.
Next consider the case τ = 0. Then we know that

(−D)kf(t) = o{t−kf(t)} as t → ∞.

Since (−D)kf is convex and since (−D)k+1f is nonnegative,

(−D)kf(t/2) − (−D)kf(t) ≥ (t/2)(−D)k+1f(t) ≥ 0.

Combine the two previous displays with the fact that f(t/2) ∼ f(t) as t → ∞ to see that
tk+1(−D)k+1f(t)/f(t) → 0 as t → ∞.

Finally, consider the case τ = ∞. For large enough t, we have by induction on k,

f(t) =

∫ ∞

t

(v − t)k

k!
(−D)k+1f(v)dv.

Let 1 < x < ∞. For v ≥ tx2, we have v − t ≤ 2(v − tx) and thus

f(t) ≤
∫ tx2

t

(v − t)k

k!
(−D)k+1f(v)dv +

∫ ∞

tx2

2k(v − tx)k

k!
(−D)k+1f(v)dv

≤ tk+1(x2 − 1)k+1

(k + 1)!
(−D)k+1f(t) + 2kf(tx).

Since f(tx)/f(t) → 0 as t → ∞, we find

lim inf
t→∞

tk+1(−D)k+1f(t)

f(t)
≥ (k + 1)!

(x2 − 1)k+1
.

Let x → 1 to see that tk+1(−D)k+1f(t)/f(t) → ∞ as t → ∞.
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5.1.3 Miscellaneous results

Lemma 5.1.6. Let k be positive integer, I be an open real interval, and f : I 7→ R be a
(k−1) times continuously differentiable function. If Dk−1f is absolutely continuous with Radon-
Nikodym derivative Dkf , then for every x ∈ I and (x1, . . . , xk) ∈ [0,∞)k for which x+x1+· · ·+xk

is in I,

∑

K⊂{1,...,k}

(−1)|K|f

(
x +

∑

i∈K

xi

)

=

∫ x1

0
· · ·

∫ xk

0
(−D)kf(x + t1 + · · · + tk)dt1 · · · dtk.

Proof. We prove the stated formula by induction on k.
Let k be equal to one. The assumption is simply that f is absolutely continuous with Radon-

Nikodym derivative f ′, and the formula reduces to

f(x) − f(x + x1) = −
∫ x1

0
f ′(x + t1)dt1,

which is just the definition of absolute continuity.
Let k be larger than one. We have

∑

K⊂{1,...,k}

(−1)|K|f

(
x +

∑

i∈K

xi

)

=




∑

K⊂{1,...,k}

k 6∈K

+
∑

K⊂{1,...,k}

k∈K


 (−1)|K|f

(
x +

∑

i∈K

xi

)

=
∑

K⊂{1,...,k−1}

(−1)|K|f

(
x +

∑

i∈K

xi

)

+
∑

K⊂{1,...,k−1}

(−1)|K|+1f

(
x +

∑

i∈K

xi + xk

)

=
∑

K⊂{1,...,k−1}

(−1)|K|

{
f

(
x +

∑

i∈K

xi

)
− f

(
x +

∑

i∈K

xi + xk

)}
.

Fix xk and apply the induction hypothesis to the function y 7→ g(y) = f(y)− f(y +xk) to arrive
at

∑

K⊂{1,...,k}

(−1)|K|f

(
x +

∑

i∈K

xi

)

=

∫ x1

0
· · ·

∫ xk−1

0
(−D)k−1g(x + t1 + · · · + tk−1)dt1 · · · dtk−1.

Since Dk−1f is absolutely continuous with Radon-Nikodym derivative Dkf , the integrand in the
previous display is equal to

(−D)k−1g(x + t1 + · · · + tk−1)

= (−D)k−1f(x + t1 + · · · + tk−1) − (−D)k−1f(x + t1 + · · · + tk−1 + xk)

=

∫ xk

0
(−D)kf(x + t1 + · · · + tk)dtk.
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Substitute this expression for the integrand into the (k − 1)-tuple integral above to arrive at the
desired formula.

Lemma 5.1.7. For every positive integer d and for every (x1, . . . , xd) ∈ Rd,

∑

J⊂{1,...,d}:|J |≥1

(−1)|J |−1 max{xj | j ∈ J} = min(x1, . . . , xd),

∑

J⊂{1,...,d}:|J |≥1

(−1)|J |−1 min{xj | j ∈ J} = max(x1, . . . , xd),

Proof. Note that the second formula follows from applying the first one to the vector
(−x1, . . . ,−xd). So it suffices to show the first formula. We proceed by induction on d.

If d = 1, then both sides of the stated equation are equal to x1.
Let d ≥ 2 and assume the hypothesis holds for dimension d − 1. Without loss of generality,

assume that max(x1, . . . , xd) = xd. Then

∑

J⊂{1,...,d}:|J |≥1

(−1)|J |−1 max{xj | j ∈ J}

=
∑

J⊂{1,...,d−1}:|J |≥1

(−1)|J |−1 max{xj | j ∈ J} +
∑

J⊂{1,...,d}:d∈J

(−1)|J |−1xd.

By the induction hypothesis, the first term on the right-hand side of the previous display is equal
to min(x1, . . . , xd−1) = min(x1, . . . , xd). The second term on the right-hand side of the previous
display is equal to xd times

∑

J⊂{1,...,d−1}

(−1)|J | =
d−1∑

k=0

(−1)k

(
d − 1

k

)
= 0.

5.2 Characterizations of Archimedean copulae in di-

mension d ≥ 2

Archimedean copulae have been introduced in the first chapter, in section 1.5. But as we will
see in this section, alternative characterizations can be considered.

Definition 5.2.1. Let d be an integer, at least two. A function ψ : [0, 1] → [0,∞] is called a
generator of order d if the following conditions hold:

(i) ψ is decreasing and ψ(1) = 0;

(ii) the generalized inverse, ψ← : [0,∞] → [0, 1], of ψ, defined by

ψ←(t) = inf{u ∈ [0, 1] | ψ(u) ≤ t} for all t ∈ [0,∞],

is d − 2 times continuously differentiable on (0,∞);

(iii) the function (−D)(d−2)ψ← is convex. The generator ψ is called strict if ψ(0) = ∞.
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The definition is stronger than it looks at first sight.

Lemma 5.2.2. If ψ is a generator of order d, then for each k = 2, . . . , d:

(i) ψ is a generator of order k;

(ii) the function (−D)k−2ψ← is convex, nonnegative, nonincreasing and converges at infinity to
zero.

Proof. Note that if 0 ≤ s ≤ t ≤ ∞, then {u ∈ [0, 1] | ψ(u) ≤ s} is a subset of {u ∈ [0, 1] |
ψ(u) ≤ t}, whence ψ←(t) ≤ ψ←(s); so ψ← is nonincreasing. Moreover, for arbitrary δ ∈ (0, 1], if
t ∈ [ψ(δ),∞), then ψ←(t) ≤ δ; hence ψ←(t) → 0 as t → ∞.

Assume first d = 2. By assumption, ψ← is convex, so there is nothing to prove.
Second, assume d ≥ 3. By Taylor’s formula, for all 0 < s < t < ∞ there exists u ∈ [s, t] such

that

ψ←(t) =
d−3∑

j=0

(t − s)j

j!
Djψ←(s) +

(t − s)d−2

(d − 2)!
Dd−2ψ←(u).

Since (−D)d−2ψ← is convex, it converges at infinity to some element a of [−∞,∞]. If a is
different from zero, then the function Dd−2ψ← is ultimately of constant sign and there exist
0 < s < ∞ and 0 < ε < ∞ such that |Dd−2ψ←(u)| ≥ ε for all u ∈ [s,∞). In that case, the
expression on the right-hand side of the previous display must diverge to infinity as t → ∞,
which is a contradiction to ψ←(t) → 0 as t → ∞.

Hence (−D)d−2ψ←(t) → 0 as t → ∞. Since (−D)d−2ψ← is also convex, this forces
(−D)d−2ψ← to be nonnegative and nonincreasing.

Finally, since the function (−D)d−3ψ← is continuously differentiable and since its derivative,
−(−D)d−2ψ←, is nondecreasing, (−D)d−3ψ← must be convex. Hence ψ← is also a generator of
order d − 1. By induction, ψ← must be a generator of order k = 2, . . . , d.

Remark 5.2.3. An easy sufficient condition for a decreasing function ψ : [0, 1] → [0,∞] with
ψ(1) = 0 to be a generator of order d is that its generalized inverse ψ← is d times differentiable
and (−D)dψ← is nonnegative.

Remark 5.2.4. If ψ is a generator of order d, then Dd−2ψ← is convex and nonincreasing if d is
even and Dd−2ψ← is concave and nondecreasing if d is odd. In all cases, Dd−2ψ← is absolutely
continuous, and there exists a version of its Radon-Nikodym derivative, Dd−1ψ←, such that the
function (−D)d−1ψ← = (−1)d−1Dd−1ψ← is nonincreasing and nonnegative.

Remark 5.2.5. If ψ is a generator, then ψ←(t) → 1 as t → 0. For, if 0 < δ < 1 and
0 < t < ψ(1 − δ), then {u ∈ [0, 1] | ψ(u) ≤ t} ⊂ (1 − δ, 1], whence ψ←(t) ≥ 1 − δ.

Remark 5.2.6. If a generator ψ is strict, then ψ← is just the ordinary inverse function of ψ.
If ψ is not strict, that is, if ψ(0) is finite, then ψ←(t) = 0 for all t ≥ ψ(0).

Definition 5.2.7. A d-variate copula, C, is called Archimedean if there exists a generator, ψ,
of order d such that

C(u1, . . . , ud) = ψ←{ψ(u1) + · · · + ψ(ud)}, (5.2)

for all (u1, . . . , ud) ∈ [0, 1]d. An Archimedean copula is called strict if its generator is strict.

If ψ is a generator of order d, then the right-hand side of (5.2) defines a genuine copula. The
C-volume of hyperrectangles can be expressed directly in terms of the derivatives of ψ←.
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Theorem 5.2.8. If ψ is a generator of order d, then the right-hand side of equation (5.2) defines
a genuine copula. For u and v in [0, 1]d such that ui < vi for all i = 1, . . . , d and such that the set
J = {j = 1, . . . , d | uj > 0} is not empty, the C-volume of the hyperrectangle (u, v] =

∏d
1(ui, vi]

is given by the following formulas: if J 6= {1, . . . , d}, then C((u,v]) is equal to

∫
∏

j∈J [ψ(vj),ψ(uj)]
(−D)|J |ψ←




∑

j∈J

yj +
∑

j∈Jc

ψ(vj)



 d(yj)j∈J , (5.3)

and if J = {1, . . . , d}, then C((u, v]) is equal to

∫ ψ(u1)

ψ(v1)
· · ·

∫ ψ(ud−1)

ψ(vd−1)
h(y1 + · · · + yd−1)dy1 · · · dyd−1 (5.4)

with
h(y) = (−D)d−1ψ←{y + ψ(vd)} − (−D)d−1ψ←{y + ψ(ud)}.

If ψ← is d times continuously differentiable, then (5.3) also holds for J = {1, . . . , d}.

Proof. Let C be given by (5.2). It is immediately clear that C is grounded, that is,
C(u1, . . . , ud) = 0 as soon as min(u1, . . . , ud) = 0, and that the marginals of C are uniform,
that is, if there exist i = 1, . . . , d such that uj = 1 if i 6= j, then C(u1, . . . , ud) = ui.

It remains to show that the C-volume of any hyperrectangle in [0, 1]d is non-negative. Let
u and v be points in [0, 1]d such that ui < vi for every i = 1, . . . , d. The C-volume of the
hyperrectangle (u, v] =

∏d
1(ui, vi] is defined by

C((u, v]) =
∑

I⊂{1,...,d}

(−1)|I|C(wI)

where the vector wI is defined by (wI)i = ui if i ∈ I and (wI)i = vi if i ∈ {1, . . . , d} \ I.
Let J = {j ∈ {1, . . . , d} | uj > 0}. Since C is grounded, C(wI) is equal to zero if I is not a

subset of J . Hence the formula in the previous display reduces to

C((u, v]) =
∑

I⊂J

(−1)|I|C(wI).

If J is empty, then u is equal to the origin, and C((u,v]) = C(v) ≥ 0, as required.
Assume J is not empty. Then

C((u, v]) =
∑

I⊂J

(−1)|I|ψ←

(
∑

i∈I

ψ(ui) +
∑

i∈Ic

ψ(vi)

)
.

Denote ∆j = ψ(uj) − ψ(vj) for j ∈ J ; note that 0 < ∆j < ∞. We have

C((u, v]) =
∑

I⊂J

(−1)|I|ψ←

(
d∑

i=1

ψ(vi) +
∑

i∈I

∆i

)
.

First, if J 6= {1, . . . , d}, then we can apply Lemma 5.1.6 to the right-hand side of the previous
display, finding that C((u, v]) is equal to

∫
∏

j∈J [0,∆j ]
(−D)|J |ψ←




d∑

i=1

ψ(vi) +
∑

j∈J

tj



 d(tj)j∈J .



150 5.3. JOINT UPPER TAIL

By Lemma 5.2.2 and Remark 5.2.4, this expression is nonnegative, as required. Substitute
yj = tj + ψ(vj) to arrive at equation (5.3).

Second, suppose that J = {1, . . . , d}. Then C((u,v]) is equal to




∑

I⊂{1,...,d}

d6∈I

+
∑

I⊂{1,...,d}

d∈I


 (−1)|I|ψ←

(
d∑

i=1

ψ(vi) +
∑

i∈I

∆i

)

=
∑

I⊂{1,...,d−1}

(−1)|I|ψ←

(
d∑

i=1

ψ(vi) +
∑

i∈I

∆i

)

+
∑

I⊂{1,...,d−1}

(−1)|I|+1ψ←

(
d∑

i=1

ψ(vi) +
∑

i∈I

∆i + ∆d

)

=
∑

I⊂{1,...,d−1}

(−1)|I|g

(
d∑

i=1

ψ(vi) +
∑

i∈I

∆i

)
,

where, for fixed ∆d,

g(y) = ψ←(y) − ψ←(y + ∆d).

Apply Lemma 5.1.6 to the function g and substitute yj = tj + ψ(vj) to arrive at equation (5.4).
By Remark 5.2.4, this expression is nonnegative.

5.3 Joint upper tail

In this section, we study the upper tail of a general multivariate Archimedean copula. In par-
ticular, we are interested in the asymptotic behavior of the joint survival function of such a
copula in the neighbourhood of the upper vertex of the d-dimensional hypercube, and also in the
conditional distribution of the corresponding random vector given that some but not necessarily
all of its components are close to one.

It turns out that the crucial ingredient here is the behavior of the generator ψ in the neigh-
bourhood of one, or equivalently of the function s 7→ ψ(1−s) in the neighbourhood of zero. Since
ψ(1) = 0 and since ψ is convex, we have always ψ(1 − s) = −sDψ(1) + o(s) as s → 0. Hence, if
the function ψ(1 − ·) is regularly varying at zero of some index θ, then necessarily 1 ≤ θ ≤ ∞.
Moreover, if (−D)ψ(1) > 0, then necessarily θ = 1, although the converse is not true, that is, it
may happen that θ = 1 and (−D)ψ(1) = 0.

There are two major cases. On the one hand, if θ > 1, then the copula is in the max-domain
of attraction of the Gumbel or logistic max-stable dependence structure (subsection 5.3.1). On
the other hand, if θ = 1, then all bivariate coefficients of upper tail dependence are equal to
zero (subsection 5.3.2). The theory then branches further into two cases according to whether
(−D)ψ(1) is positive or zero.

5.3.1 Asymptotic dependence

Theorem 5.3.1. Let U be a d-variate random vector with distribution function C, an
Archimedean copula with generator ψ. If the function s 7→ ψ(1 − s) is regularly varying at
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zero with index θ ∈ [1,∞], then for all x ∈ (0,∞)d,

lim
s→0

s−1P(∃i = 1, . . . , d : Ui ≥ 1 − sxi) = L(x), (5.5)

lim
s→0

s−1P(∀i = 1, . . . , d : Ui ≥ 1 − sxi) = r(x). (5.6)

with

L(x) =

{
(xθ

1 + · · · + xθ
d)

1/θ if 1 ≤ θ < ∞,

max(x1, . . . , xd) if θ = ∞,

and

r(x) =






0 if θ = 1,

∑

I⊂{1,...,d}:|I|≥1

(−1)|I|−1

(
∑

i∈I

xθ
i

)1/θ

if 1 ≤ θ < ∞,

min(x1, . . . , xd) if θ = ∞.

Proof. Equation (5.6) follows straightforwardly from equation (5.5) by the inverse inclusion-
exclusion formula,

P(∀i = 1, . . . , d : Ui ≥ 1 − sxi)

=
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|−1P(∃i ∈ I : Ui ≥ 1 − sxi),

and by the fact that for every subset I of {1, . . . , d} of cardinality at least two, the distribution
function of the vector (Ui)i∈I is given by the |I|-variate Archimedean copula with generator ψ.
For the case θ = ∞, see also Lemma 5.1.7. So it remains to show (5.5).

First, consider the case 1 ≤ θ < ∞. We have

s−1P(∃i = 1, . . . , d : 1 − Ui ≤ sxi)

= s−1[1 − ψ←{ψ(1 − sx1) + · · · + ψ(1 − sxd)}]
=

1

1 − ψ←(ψ(1 − s))

×
[
1 − ψ←

{
ψ(1 − s)

(
ψ(1 − sx1)

ψ(1 − s)
+ · · · + ψ(1 − sxd)

ψ(1 − s)

)}]
.

The function x 7→ 1/ψ(1 − 1/x) is regularly varying at infinity with index θ. Therefore, its
inverse function, the function t 7→ 1/{1 − ψ←(1/t)} is regularly varying at infinity with index
1/θ (Bingham, Goldie and Teugels (1987), Theorem 1.5.12), and thus the function 1 − ψ← is
regularly varying at zero with index 1/θ. By the Uniform Convergence Theorem (Bingham,
Goldie and Teugels (1987), Theorem 1.5.2), the right-hand side of the previous display converges
to the stated expression for L(x).

Second, consider the case θ = ∞. Pick 1 < λ < ∞. Since ψ(1 − ·) is regularly varying at
zero of index ∞, we have ψ(1 − λt)/ψ(1 − t) → ∞ as t → 0 and thus

ψ{1 − smax(x1, . . . , xd)} ≤ ψ(1 − sx1) + · · · + ψ(1 − sxd)

≤ dψ{1 − smax(x1, . . . , xd)}
≤ ψ{1 − λsmax(x1, . . . , xd)}



152 5.3. JOINT UPPER TAIL

for all s in a right-neighbourhood of zero. Apply the function 1−ψ← to the various parts of this
inequality, multiply by s−1 and let s decrease to zero to find

max(x1, . . . , xd) ≤ lim inf
s→0

s−1P(∃i = 1, . . . , d : Ui ≥ 1 − sxi)

≤ lim sup
s→0

s−1P(∃i = 1, . . . , d : Ui ≥ 1 − sxi)

≤ λ max(x1, . . . , xd).

Let λ decrease to one to obtain the stated result.

Corollary 5.3.2. Under the conditions of Theorem 5.3.1, if 1 < θ ≤ ∞, then for every non-
empty subset J of {1, . . . , d}, every (x1, . . . , xd) ∈ (0,∞)d and every (yj)j∈J ∈ (0,∞)|J |,

P(∀j = 1, . . . , d : Uj ≥ 1 − sxj | ∀j ∈ J : Uj ≥ 1 − syj) (5.7)

→ rd(z1, . . . , zd)

r|J | ((yj)j∈J)
as s → 0,

where zj = min(xj , yj) for j ∈ J and zj = xj for j ∈ Jc, and

rk(u1, . . . , uk) =






∑

I⊂{1,...,k}:|I|≥1

(−1)|I|−1

(
∑

i∈I

uθ
i

)1/θ

if 1 < θ < ∞,

min(u1, . . . , ud) if θ = ∞,

for all positive integer k and all (u1, . . . , uk) ∈ (0,∞)k.

Proof. The corollary follows from Theorem 5.3.1 in the same way as Corollary 3.5.2 follows
from Theorem 3.5.1.

Remark 5.3.3. The max-stable dependence structure corresponding to the limit in Theorem 5.3.1
is a special case of the so-called Gumbel or logistic dependence structure Joe (1990). The case
θ = 1 corresponds to independence and the case θ = ∞ to comonotonicity.

Note that the case d = 2 and 1 ≤ θ < ∞ of Theorem 5.3.1 was already established in
Capéraà, Fougères and Genest (2000), Proposition 4.1, but then for the more general class of
Archimax copulae.

Example 5.3.4. Again, several Archimedean copulae satisfy assumptions of Theorem 5.3.1.
Gumbel’s copula, with generator ψ(t) = (− log t)α, with α ∈ [1,∞) is such that ψ(1− t) regularly
varying at origin with index θ = α. Among Archimedean copulae described in Nelsen (1999),
generator denoted (18) defined as ψ(t) = eα/(t−1), with α ∈ (2,∞), is regularly varying with
infinite tail index, and therefore θ = ∞. Note that generators of Joe copula (6) and Genest
and Ghoudi copula (15), defined respectively by ψ(t) = − log(1 − (1 − t)α) for all α ∈ [1,∞)
and ψ(t(1 − t1/α)α for all a ∈ [1,∞) both satisfy assumptions of Theorem 5.3.1, with tail index
θ = α. Most of the other Archimedean copulae have less weight in upper tails, and θ = 0, e.g.
Frank copula (5), with generator φ(t) = − log((e−αt − 1)/(e−α − 1)) with α ∈ R/{0}, or Clayton
copula.

Note that assumptions in Theorem 5.3.1 can be related to standard results on upper tails
for Archimedean copulae (see Joe (1997)): λU = 2 − D(ψ← ◦ 2ψ)(1) and therefore upper tail
dependence implies Dψ(1) = 0, while −Dψ(1) > 0 implies upper tail independence.
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Example 5.3.5. As in Example 3.5.8, an application of Theorem 5.3.1 can be obtained in a
frailty model. If Θ denotes the frailty, and if E(Θ) = −Dψ(0) is infinite, then the associated
Archimedean copula has upper tail dependence. For instance, if Θ is Pareto distributed, P(Θ >
θ) = θ−βL(θ) with β ∈ [0, 1] and where L is a slowly varying function, then, using the Tauberian
theorem (see Feller (1971) or Bingham, Goldie and Teugels (1987)), the Laplace transform of
Θ at origin satisfies φ(t) ∼ 1 − tβL(1/t) as t → 0, and therefore, this copula has upper tail
dependence. Note that more precisely, λU = 2 − 2β.

5.3.2 Asymptotic independence

If θ = 1 in Theorem 5.3.1, then the only information in (5.6) is that for all x ∈ (0,∞)d,

P(∀i = 1, . . . , d : Ui ≥ 1 − sxi) = o(s) as s → 0. (5.8)

The convergence to zero of the probability on the left-hand side of this display can be arbitrarily
fast. For instance, if d = 2 and ψ(s) = 1 − s, the corresponding Archimedean copula being the
countermonotonic one, then this probability even vanishes for all s in a right-neighbourhood of
zero.

Hence, if θ = 1, then Theorem 5.3.1 is not very informative. The present subsection attempts
to give more precise results. It turns out there are two qualitatively different subcases, depending
on whether lims→0 ψ(1 − s)/s = (−D)ψ(1) is positive (first paragraph below) or zero (second
paragraph below).

Independence in independence

Theorem 5.3.6. Let ψ be a generator of order d such that ψ← is d times continuously dif-
ferentiable and let U be a d-variate random vector with joint distribution function given by the
Archimedean copula with generator ψ. If (−D)dψ←(0) < ∞ then (−D)ψ(1) > 0 and for all
x ∈ (0,∞)d

P(∀j = 1, . . . , d : Uj ≥ 1 − sxj) (5.9)

= sd(−D)dψ←(0){(−D)ψ(1)}d
d∏

j=1

xj + o(sd) as s → 0.

Proof. By Theorem 5.2.8, the probability on the left-hand side of (5.9) is equal to

∫
∏d

1
[0,ψ(1−sxj)]

(−D)dψ




d∑

j=1

yj



 d(yj)
d
j=1.

Since ψ(1 − sxj) = −sxjDψ(1) + o(s) as s → 0 and since the integrand converges uniformly
to (−D)dψ←(0), we find (5.9). By induction on d, if (−D)dψ←(0) is finite then necessarily
(−D)kψ←(0) is finite for all k = 0, . . . , d. Since Dψ←(0) = 1/Dψ(1), Dψ(1) must be negative.

Remark 5.3.7. In Theorem 5.3.6, it can happen that (−D)dψ←(0) = 0, in which case the
right-hand side of (5.9) simplifies to o(sd).

Theorem 5.3.8. Let ψ be a generator of order d and let U be a d-variate random vector with
joint distribution function given by the Archimedean copula with generator ψ. Let J be a subset of
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{1, . . . , d} such that both J and Jc are non-empty. If 0 < (−D)|J |ψ←(0) < ∞, then (−D)ψ(1) >
0, and for all (xj)j∈J ∈ (0,∞)|J | and v ∈ (0, 1]d,

P(∀j ∈ J : Uj ≥ 1 − svjxj ;∀j ∈ Jc : Uj ≤ vj | ∀j ∈ J : Uj ≥ 1 − sxj) (5.10)

→
(−D)|J |ψ←

(∑
j∈Jc ψ(vj)

)

(−D)|J |ψ←(0)

∏

j∈J

vj as s → 0.

Proof. For (yj)j∈J ∈ (0,∞)|J | and (vj)j∈Jc ∈ (0, 1]|J |
c
, we have by Theorem 5.2.8, for all suffi-

ciently small, positive s,

P(∀j ∈ J : Uj ≥ 1 − syj ;∀j ∈ Jc : Uj ≤ vj)

=

∫
∏

J [0,ψ(1−syj)]
(−D)|J |ψ←




∑

j∈Jc

ψ(vj) +
∑

j∈J

tj



 d(tj)j∈J .

From the assumption that (−D)|J |ψ←(0) is finite, it follows by induction that (−D)ψ←(0) is finite
and hence that (−D)ψ(1) is non-zero, whence positive. In particular, ψ(1 − t) ∼ t(−D)ψ(1) as
t → 0. If |J | ≤ d − 2, then (−D)|J |ψ← is convex and thus continuous; if |J | = d − 1, then
(−D)|J |ψ← is by definition equal to minus the right-hand derivative of (−D)d−2ψ←. In all cases,
(−D)|J |ψ← is continuous from the right, and thus, as s → 0,

P(∀j ∈ J : Uj ≥ 1 − syj ;∀j ∈ Jc : Uj ≤ vj)

= s|J |{(−D)ψ(1)}d(−D)|J |ψ←




∑

j∈Jc

ψ(vj)




∏

j∈J

yj + o
(
s|J |

)
.

Now write the conditional probability on the left-hand side of (5.10) as a ratio of two probabili-
ties and on each of those apply the asymptotic equivalence in the previous display to arrive at
the stated formulas.

In Theorem 5.3.8, the asymptotic distribution function of the vector (Uj)j∈Jc conditionally
on Uj ≥ 1 − sxj for all j ∈ J is given by

F ((vj)j∈Jc) =
(−D)|J |ψ←

(∑
j∈Jc ψ(vj)

)

(−D)|J |ψ←(0)
.

with 0 < vj ≤ 1 for all j ∈ Jc. If |J | = d − 1, then Jc is a singleton, and F is the left-
continuous version of a univariate distribution function with support included in (0, 1]; remember
(−D)d−1ψ← is continuous from the right. On the other hand, if |J | ≤ d−2, then |Jc| ≥ 2, and F
is a |Jc|-variate distribution function with support included in (0, 1]|J

c|. Its marginal distribution
functions are continuous and identical, while its copula is Archimedean with generator given by
the function

ψ|J | =

(
(−D)|J |ψ←( · )
(−D)|J |ψ←(0)

)←

. (5.11)

Dependence in independence

If the function s 7→ ψ(1 − s) is regularly varying at zero of index one but at the same time
Dψ(1) = 0, that is, ψ(1 − s) = o(s) as s → 0, then Theorem 5.3.1 only implies (5.8) while
Theorems 5.3.6 and 5.3.8 are not applicable.
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Theorem 5.3.9. Let U be a d-variate random vector with distribution function C, an
Archimedean copula with generator ψ. If the function s 7→ f(s) = ψ(1−s) is regularly varying at
zero of index one and if f(s) = o(s) as s → 0, then the function s 7→ ℓ(s) = s−1f(s) is increasing
and slowly varying at zero, and for all x ∈ (0, 1]d,

P(U1 > 1 − sx1;∀j = 2, . . . , d : Uj ≤ 1 − ℓ←(x−1
j ℓ(s)) | U1 > 1 − s) (5.12)

→ x1 min(x2, . . . , xd), as s → 0.

Proof. Because the function f is positive, convex, and vanishes at zero, the function ℓ is positive
and nondecreasing. Moreover, if there would exist 0 < s < t such that ℓ(s) = ℓ(t), then f would
be linear on the interval [0, t], contradicting the assumption that f(s) = o(s) as s → 0; hence ℓ
is increasing. Since f is regularly varying at zero of index one, ℓ must be slowly varying at zero.

Write z(s, x) = ℓ←(x−1ℓ(s)). Since ℓ(s)/ℓ(z(s, x)) → x as s → 0 for fixed 0 < x < ∞, we
have

lim
s→0

z(s, x) = 0 for all 0 < x < ∞, (5.13)

lim
s→0

s

z(s, x)
= 0 for all 0 < x < 1. (5.14)

It is sufficient to prove (5.12) in case all xj are smaller than one. The probability on the
left-hand side of (5.12) can be rewritten as

P(U1 > 1 − sx1;∀j = 2, . . . , d : Uj ≤ 1 − z(s, x) | U1 > 1 − s)

= s−1
(
P(∀j = 2, . . . , d : Uj ≤ 1 − z(s, xj))

− P(U1 ≤ 1 − sx1;∀j = 2, . . . , d : Uj ≤ 1 − z(s, xj))
)

= s−1
{

ψ
(∑d

2ψ(1 − z(s, xj))
)
− ψ

(
ψ(1 − sx1) +

∑d
2ψ(1 − z(s, xj))

)}

= s−1
{

f←
(
f(sx1) +

∑d
2f(z(s, xj))

)
− f←

(∑d
2f(z(s, xj))

)}

= s−1

∫ f(sx1)+
∑d

2
f(z(s,xj))

∑d
2

f(z(s,xj))

1

f ′(f←(t))
dt.

By (5.13), the upper integration limit tends to zero, and by (5.14), the lower integration limit is
asymptotically equivalent to the upper one. Moreover, because the function f is convex, vanishes
at zero and is regularly varying at zero of index one,

f(s) = f(s) − f(0) ≤ sf ′(s) ≤ f(2s) − f(s) ∼ f(s) as s → 0,

whence f ′(s) ∼ s−1f(s) as s → 0 and thus 1/f ′(f←(t)) ∼ t−1f←(t) as t → 0. By the uniform
convergence theorem for regularly varying functions,

P[(U1 > 1 − sx1;∀j = 2, . . . , d : Uj ≤ 1 − z(s, x) | U1 > 1 − s)

∼ s−1f(sx1)
f←

(∑d
2f(z(s, xj))

)

∑d
2f(z(s, xj))

∼ x1
ℓ(s)

ℓ ◦ f←
(∑d

2f(z(s, xj))
) , as s → 0.

Denote m = min(x2, . . . , xd). Since

f(z(s, m)) ≤ ∑d
2f(z(s, xj)) ≤ (d − 1)f(z(s,m))
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and since the function ℓ ◦ f← is slowly varying at zero, we find

ℓ ◦ f←
(∑d

2f(z(s, xj))
)
∼ ℓ ◦ f←(f(z(s,m)))) = m−1ℓ(s) as s → 0.

Combine the two previously displayed asymptotic equivalencies to arrive at (5.12).

Remark 5.3.10. As shown in the proof of Theorem 5.3.9, for fixed 0 < x < 1, the function
s 7→ ℓ←(x−1ℓ(s)) converges to zero but at a slower rate than s, that is, s/ℓ←(x−1ℓ(s)) → 0 as
s → 0. Thus, conditionally on U1 > 1 − s, every Uj with j ≥ 2 converges in law to one but at a
slower rate than s, that is, for every 0 < ε < 1, 1 < λ < ∞, and j = 2, . . . , d, we have

P(1 − ε < Uj < 1 − sλ | U1 > 1 − s) → 1 as s → 0.

Remark 5.3.11. In Theorem 5.3.9, conditionally on the event U1 > 1−s, the remaining variables
U2, . . . , Ud are asymptotically independent from U1 but completely dependent on each other.

Remark 5.3.12. Since the law of the random vector U is exchangeable, Theorem 5.3.9 obviously
generalizes to the case where the conditioning event is Uj > 1 − s for some j = 1, . . . , d.

Next, we study the joint survival function of the vector U in Theorem 5.3.9. A precise
asymptotic result on the probability that all Uj are close to the upper end-point is possible
under a certain refinement of the condition that the function ψ(1−·) is regularly varying at zero
of index one.

Theorem 5.3.13. Let U be a d-variate random vector with distribution function given by an
Archimedean copula with generator ψ. Define f(s) = ψ(1 − s). If s−1f(s) → 0 as s → 0 and
if the function s 7→ L(s) = s(d/ds){s−1f(s)} is positive and slowly varying at zero, then the
function g(s) = sf ′(s)/f(s)−1 is positive and slowly varying at zero as well, g(s) → 0 as s → 0,
and for all x ∈ (0,∞)d,

P(∀i = 1, . . . , d : Ui ≥ 1 − sxi) ∼ sg(s)r(x1, . . . , xd), as s → 0,

with

r(x1, . . . , xd) =
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|(
∑

I xi) log (
∑

I xi)

= (d − 2)!

∫ x1

0
· · ·

∫ xd

0

(
d∑

i=1

ti

)−(d−1)

dt1 · · · dtd.

Proof. Denote L(s) = s(d/ds){s−1f(s)}. Since s−1f(s) → 0 as s → 0, we have

f(s) = s

∫ s

0
L(t)

dt

t
, for all 0 ≤ s < 1.

Note that the function g can be written as

g(s) =
sf ′(s)

f(s)
− 1 =

sL(s)

f(s)
.

Hence, the function g is positive and slowly varying at zero. Moreover, by Fatou’s lemma,

g(s) =
sℓ(s)

f(s)
= 1

/∫ 1

0

L(st)

L(s)

dt

t
→ 0 as s → 0. (5.15)
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Also, for every 0 < x < ∞ and every sufficiently small, positive s,

f(sx) = sx

∫ sx

0
L(t)

dt

t

= xf(s) + sx

∫ sx

s
L(t)

dt

t

= xf(s) + xsL(s)

∫ x

1

L(st)

L(s)

dt

t
. (5.16)

For sufficiently small, positive s, define y(x, s) by

f(sx1) + · · · + f(sxd) = f{s(x1 + · · · + xd) + sg(s)y(x, s)}.
Since f(0) = 0 and f is increasing and convex, y(x, s) is well defined and nonpositive. Now by
(5.16), we have on the one hand

f(sx1) + · · · + f(sxd) = f(s)

d∑

i=1

xi + sℓ(s)

d∑

i=1

xi

∫ xi

1

L(st)

L(s)

dt

t
,

and on the other hand

f{s(x1 + · · · + xd) + sg(s)y(x, s)}

= f{sa(x, s)} = f(s)a(x, s) + sL(s)a(x, s)

∫ a(x,s)

1

L(st)

L(s)

dt

t

where

a(x, s) =
d∑

i=1

xi + g(s)y(x, s).

From these equations it follows that

d∑

i=1

xi

∫ xi

1

L(st)

L(s)

dt

t
= y(x, s) + a(x, s)

∫ a(x,s)

1

L(st)

L(s)

dt

t
.

The left-hand side of this equation converges to
∑d

1 xi log(xi) by the Uniform Convergence The-
orem (Theorem 1.2.1 in Bingham, Goldie and Teugels (1987)). Since 0 < a(x, s) ≤ ∑d

1 xi, the
second term on the right-hand side of the previous equation remains bounded from above as
s → 0. Therefore, y(x, s) must remaind bounded from below as s → 0. Since we already knew
that y(x, s) is nonpositive, we get y(x, s) = O(1) as s → 0. But since g(s) → 0 as s → 0, , it
then follows that

a(x, s) →
d∑

i=1

xi as s → 0.

Combine the two previous displays to conclude that, denoting k(x) = x log(x),

y(x, s) → y(x) =
d∑

i=1

k(xi) − k

(
d∑

i=1

xi

)
, as s → 0.

Next, observe that

P(∃i = 1, . . . , d : Ui ≥ 1 − sxi)

= 1 − ψ←{ψ(1 − sx1) + · · · + ψ(1 − sxd)}
= f←{f(sx1) + · · · + f(sxd)}
= s(x1 + · · · + xd) + sg(s)y(x, s)

= s(x1 + · · · + xd) + sg(s)y(x) + o{sg(s)} as s → 0.



158 5.3. JOINT UPPER TAIL

By the inverse inclusion-exclusion formula,

P(∀i = 1, . . . , d : Ui ≥ 1 − sxi)

=
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|−1P(∃i ∈ I : Ui ≥ 1 − sxi)

=
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|−1 {s∑
I xi + sg(s)

∑
I k(xi) − sg(s)k(

∑
I xi)}

+ o{sg(s)}, as s → 0.

Now for every vector (y1, . . . , yd) ∈ (0,∞)d,

∑

I⊂{1,...,d}:|I|≥1

(−1)|I|−1∑
I yi = 0,

by an elementary combinatorial argument. Combine these two displays to arrive at

P(∀i = 1, . . . , d : Ui ≥ 1 − sxi)

= sg(s)
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|k(
∑

I xi) + o{sg(s)} as s → 0.

This yields the first expression for r(x). The second expression for r(x) follows from Lemma 5.1.6
applied to the function k; note that (−D)k(x) = − log(x) − 1 and (−D)dk(x) = (d − 2)!x−(d−1)

for all integer d ≥ 2.

Remark 5.3.14. Under the conditions of Theorem 5.3.13, it follows from (5.16) that for all
0 < x < ∞,

f(sx)/f(s) = x + g(s)x log(x) + o{g(s)} as s → 0.

Since also g(s) → 0 as s → 0, we see that f is second-order regularly varying at zero of index
one and auxiliary function g.

Remark 5.3.15. A simple sufficient condition for the function L in Theorem 5.3.13 to be positive
and slowly varying is that the function f is twice continuously differentiable and that f ′′ is positive
and regularly varying at zero of index −1.

To see that this condition is sufficient, argue as follows. Note that (d/ds){sL(s)} = sf ′′(s).
Since 0 ≤ sL(s) ≤ sf ′(s) → 0 as s → 0, we get sL(s) =

∫ s
0 tf ′′(t)dt. In particular, L is positive.

From the fact that the function t 7→ tf ′′(t) is slowly varying at zero, it then follows that the
function s 7→ sL(s) must be regularly varying at zero of index one. Hence L is indeed slowly
varying at zero.

Remark 5.3.16. Under the assumptions of Theorem 5.3.13, if J is a subset of {1, . . . , d} of
cardinality at least two, then for all x ∈ (0,∞)d and (yj)j∈J ∈ (0,∞)|J |,

P(∀i = 1, . . . , d : Ui ≥ 1 − sxi | ∀j ∈ J : Uj ≥ 1 − syj) =
r(z1, . . . , zd)

r((yj)j∈J)

as s → 0, where zj = min(xj , yj) for j ∈ J and zj = xj for j ∈ Jc, and with the function r as in
Theorem 5.3.13.

Recall from Theorem 5.3.9 that if J is a singleton, then the asymptotic conditional distribution
of U is qualitatively different from the one obtained here.
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An interesting special case is when d = 2 and J = {1, 2}, in which case the conclusion of
Theorem 5.3.13 specializes to

P(U ≥ 1 − sx, V ≥ 1 − sy)

∼ csg(s){(x + y) log(x + y) − x log(x) − y log(y)} as s → 0

for all (x, y) ∈ (0,∞)2. In particular, if additionally (u, v) ∈ (0, 1]2, then

lim
s→0

P(U ≥ 1 − sux, V ≥ 1 − svy | U ≥ 1 − sx, V ≥ 1 − sy)

=
(ux + vy) log(ux + vy) − ux log(ux) − vy log(vy)

(x + y) log(x + y) − x log(x) − y log(y)
.

For fixed (x, y), the expression on the right-hand side of this display is a bivariate distribution
function in (u, v) with support included in (0, 1]2.

Remark 5.3.17. The case d = 2 of Theorem 5.3.13 provides examples of distributions for which
the coefficient of upper tail dependence is equal to zero and at the same time Ledford and Tawn’s
index of tail dependence, η, is equal to one, see Ledford and Tawn (1997).

The case of general d in Theorem 5.3.13 provides examples of distributions exhibiting hidden
regular variation with a non-trivial hidden angular measure, see Resnick (2002b), or Maulik and
Resnick (2003).

Example 5.3.18. If ψ is a generator such that there exists 0 < α < ∞ such that f(s) =
ψ(1 − s) = s(− log s)−α for all positive s in a neighbourhood of zero, then the conditions of
Theorem 5.3.9 are satisfied with ℓ(s) = {log(1/s)}−α, ℓ←(t) = exp(−t−1/α) and thus

ℓ←(x−1ℓ(s)) = sxα

for all 0 < x < ∞ and all sufficiently small, positive s. In accordance to Remark 5.3.10, we have
ℓ←(x−1ℓ(s)) → 0 and s/ℓ←(x−1ℓ(s)) → 0 as s → 0 for every 0 < x < 1.

Moreover, the conditions of Theorem 5.3.13 are satisfied with L(s) = α(− log s)−α−1 and
g(s) = α(− log s)−1. In particular, if (U, V ) is a random pair with distribution function given by
the bivariate Archimedean copula with generator ψ, then for all (x, y) ∈ (0,∞)2,

P(U ≥ 1 − sx, V ≥ 1 − sy)

∼ αs(− log s)−1{(x + y) log(x + y) − x log(x) − y log(y)}, as s → 0.

5.4 Tail behavior at off-diagonal corners

5.4.1 Asymptotic dependence

For a generator ψ of order two or higher, we denote its left derivative on (0, 1] by ψ′. Since ψ is
convex and decreasing, the function ψ′ is negative on (0, 1), nondecreasing, and continuous from
the left; we denote its limit at zero, which exists in [−∞, 0), by ψ′(0).

Theorem 5.4.1. Let ψ be a generator of order two, and let (U, V ) be a random pair with
joint distribution function given by the bivariate Archimedean copula with generator ψ. For all
(x, y) ∈ (0,∞)2,

P(U ≤ sx, V ≥ 1 − sy) = min

(
x,

ψ′(1)

ψ′(0)
y

)
s + o(s), as s → 0.
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Proof. We have

P(U ≤ sx, V ≥ 1 − sy) = P(U ≤ sx] − P[U ≤ sx, V < 1 − sy)

= sx − ψ←{ψ(sx) + ψ(1 − sy)}
= sx − ψ←{ψ(sx) − syψ′(1) + o(s)} as s → 0

First, assume that ψ′(1)/ψ′(0) = 0, that is, ψ′(0) = −∞ or ψ′(1) = 0. Fix 0 < λ < 1. Since
ψ is convex, ψ(sxλ) ≥ ψ(sx) + sx(λ − 1)ψ′(sx), and thus

P(U ≤ sx, V ≥ 1 − sy) ≤ sx − ψ←{ψ(sxλ) + sx(1 − λ)ψ′(sx) − syψ′(1) + o(s)}

as s → 0. The argument in curly brackets in the above display is for all s in a neighbourhood of
zero bounded from above by ψ(sxλ), and thus

lim inf
s→0

s−1P(U ≤ sx, V ≥ 1 − sy) ≤ x(1 − λ).

Let λ increase to zero to find that if ψ′(1)/ψ′(0) = 0 then

P(U ≤ sx, V ≥ 1 − sy) = o(s) as s → 0.

Second, assume that ψ′(1)/ψ′(0) > 0, that is, −∞ < ψ′(0) ≤ ψ′(1) < 0. Then
ψ(0) = −

∫ 1
0 ψ′ < ∞ and ψ(u) = ψ(0) + uψ′(0) + o(u) as u → 0 as well as ψ←{ψ(0) − t} =

−max(t, 0)/ψ′(0) + o(t) as t → 0. We find

P(U ≤ sx, V ≥ 1 − sy) = sx − ψ←{ψ(0) + sxψ′(0) − syψ′(1) + o(s)}
= sx + max{−sxψ′(0) + syψ′(1), 0}/ψ′(0) + o(s)

= min[x, {ψ′(1)/ψ′(0)}y]s + o(s) as s → 0,

as required.

Corollary 5.4.2. Let ψ be a generator of order d ≥ 3 and let U be a d-variate random vector
with joint distribution given by the d-variate Archimedean copula with generator ψ. For all
x ∈ (0,∞)d and all i, j ∈ {1, . . . , d},

P(Ui ≤ sxi, Uj ≥ 1 − sxj) = o(s), as s → 0.

Proof. If i is equal to j then there is nothing to prove, so assume i and j are different. The joint
distribution function of the random pair (Ui, Uj) is given by the bivariate Archimedean copula
with generator ψ, whence, by Theorem 5.4.1,

P(Ui ≤ sxi, Uj ≥ 1 − sxj) = min

(
xi,

ψ′(1)

ψ′(0)
xj

)
s + o(s), as s → 0.

The function ψ← is continuously differentiable, and its derivative, given by Dψ← = 1/(ψ′ ◦ψ←),
converges at infinity to zero. Hence ψ′(0) = ∞, making the first term on the right-hand side of
the previous display vanish, as required.
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5.4.2 Asymptotic independence

For positive x and nonnegative integer k, denote the rising factorial by the Pochhammer symbol

(x)k =
Γ(x + k)

Γ(x)
=

{
1 if k = 0,
x(x + 1) · · · (x + k − 1) if k ≥ 1.

Further, for two positive functions a and b defined in some neighbourhood of c ∈ [−∞,∞], we
say that a(t) ∼ b(t) as t → c if a(t)/b(t) → 1 as t → c.

Lemma 5.4.3. If ψ is a generator of order d and if the function x 7→ ψ(1/x) is regularly varying
at infinity of positive index θ, then for all k = 0, . . . , d − 1, the function (−D)kψ← is regularly
varying of index −θ−1 − k and

(−D)kψ←(t) ∼ (θ−1)kt
−kψ←(t), as t → ∞. (5.17)

Proof. The function x 7→ ψ(1/x), defined for x ∈ [1,∞), is increasing with inverse function
y 7→ 1/ψ←(y). Since the former function is regularly varying of positive index θ, the latter must
be regularly varying of positive index θ−1. Hence, the function ψ← itself is regularly varying of
index −θ−1.

We now proceed by induction on d. Note that (5.17) is trivially fulfilled for k = 0.
First let d = 2. Since ψ← is absolutely continuous with Radon-Nikodym derivative Dψ←

and since ψ←(t) → 0 as t → ∞, we have ψ←(t) = −
∫ ∞
t Dψ← for all positive t. Further,

since x 7→ ψ(1/x) is regularly varying with some positive index, necessarily ψ(u) → ∞ as
u → 0, that is, ψ is strict. Hence, ψ←(t) > 0 for all t ∈ [0,∞). As, moreover, the function
−Dψ← is nonnegative and nonincreasing, it must actually be positive. By a version of the
monotone density theorem, the function −Dψ← must be regularly varying of index −θ−1 − 1
and −Dψ←(t) ∼ θ−1t−1ψ←(t) as t → ∞.

Second, let d ≥ 3. By Lemma 5.2.2, the function ψ is also a generator of order d − 1, and
thus, by the induction hypothesis, for every k = 0, . . . , d− 2, the function (−D)kψ← is regularly
varying at infinity with index −θ−1 − k and the asymptotic relation (5.17) holds true. Further,
recall from Remark 5.2.4 that the function Dd−2ψ← is absolutely continuous and that there exists
a version of its Radon-Nikodym derivative, Dd−1ψ←, such that (−D)d−1ψ← is nonnegative and
nonincreasing. Since (−D)d−2ψ← is positive and converges at infinity to zero, we must have
(−D)d−2ψ←(t) =

∫ ∞
t (−D)d−1ψ← for all positive t and (−D)d−1ψ← must be positive. Moreover,

by the induction hypothesis, the function (−D)d−2ψ← is regularly varying of index −θ−1−(d−2)
and satisfies (5.17) with k = d−2. Apply Lemma 5.1.1 to find that (−D)d−1ψ← must be regularly
varying of index −θ−1 − (d − 1) and

(−D)d−1ψ←(t) ∼ {θ−1 + (d − 2)}t−1(−D)d−2ψ←(t)

∼ (θ−1)d−1t
−(d−1)ψ←(t) as t → ∞,

as required.

Theorem 5.4.4. Let ψ be a generator of order d and let U be a d-variate random vector whose
distribution function is the d-variate Archimedean copula C with generator ψ. For every x ∈
(0,∞)d and every subset J of {1, . . . , d} such that both J and its complement Jc are non-empty,

P(∀j ∈ Jc : Uj ≤ sxj ;∀j ∈ J : Uj ≥ 1 − sxj) (5.18)

∼ (θ−1)|J |




∑

j∈Jc

x−θ
j




−θ−1−|J |

sψ(s)−|J |
∏

j∈J

ψ(1 − sxj)

as s → 0.
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Proof. Let s > 0 be small enough such that sxj < 1 for all j = 1, . . . , d. The probability on the
right-hand side of (5.18) is equal to the C-volume of the hypercube

∏d
1 Ij , where Ij = [0, sxj ] if

j ∈ Jc and Ij = [1 − sxj , 1] if j ∈ J . By (5.3), this volume is equal to

∫
∏

j∈J [0,ψ(1−sxj)]
(−D)|J |ψ←




∑

j∈J

yj +
∑

j∈Jc

ψ(sxj)



 d(yj)j∈J .

Since (−D)|J |ψ← is nonincreasing, the integral in the previous display is bounded from above by

(−D)|J |ψ←




∑

j∈Jc

ψ(sxj)




∏

j∈J

ψ(1 − sxj)

and is bounded from below by

(−D)|J |ψ←




∑

j∈J

ψ(1 − sxj) +
∑

j∈Jc

ψ(sxj)




∏

j∈J

ψ(1 − sxj).

Since ψ(u) → 0 as u → 1 and since x 7→ ψ(1/x) is regularly varying at infinity of index θ, we
have

∑

j∈Jc

ψ(sxj) ∼
∑

j∈J

ψ(1 − sxj) +
∑

j∈Jc

ψ(sxj)

∼ ψ(s)
∑

j∈Jc

x−θ
j as s → 0.

As the function (−D)|J |ψ← is regularly varying of index −θ−1 −|J |, we find that the probability
on the right-hand side of (5.18) is asymptotically equivalent to




∑

j∈Jc

x−θ
j




−θ−1−|J |

(−D)|J |ψ←{ψ(s)}
∏

j∈J

ψ(1 − sxj)

as s → 0. Finally, apply equation (5.17) to arrive at equation (5.18).

Remark 5.4.5. If in Theorem 5.4.4, it is additionally assumed that the function x 7→ ψ(1−1/x)
is regularly varying at infinity of index −α, then the expression on the right-hand side of (5.18)
can be further simplified by using ψ(1 − sxj) ∼ xα

j ψ(1 − s) as s → 0, leading to

P(∀j ∈ Jc : Uj ≤ sxj ;∀j ∈ J : Uj ≥ 1 − sxj) (5.19)

∼ (θ−1)|J |




∑

j∈Jc

x−θ
j




−θ−1−|J | 


∏

j∈J

xα
j




(

ψ(1 − s)

ψ(s)

)|J |

s

as s → 0. Note that since xψ(1 − 1/x) → ψ′(1) ∈ [0,∞) as x → ∞, necessarily α ≥ 1.



Chapter 6

Extreme and copulae

6.1 Introduction and motivation

Heavy-tailed phenomena have received a lot of attention over the last few years, because of crashes
of financial market and some major claims for insurance industry, but also strong deviations of
weather from “usual ” phenomena. But as noticed already in Resnick (1987), “when d = 1
[univariate case], concepts such as extreme values, order statistics and record values have natural
definitions, but when d > 1 [multivariate case], this is no longer the case as several different
concepts of ordering are possible”. Hence, the definition of extreme in high dimension is closely
related to the “failure region” in structural design, defined in Coles and Tawn (1994), or the
“extreme market scenarios” in Embrechts and Balkema (2004): X is extreme when it belongs
to some failure region Au ⊂ Rd, with P(X ∈ Au) small. Several examples can be considered,
e.g. Au can be either {(x1 . . . , xn)|max{x1 . . . , xn} > u}, {(x1 . . . , xn)|min{x1 . . . , xn} > u} or
{x|α′x > u}. Tawn (1994) observed, in a survey on applications of multivariate extremes, that
many problems that involve extremes are “inherently multivariate by nature”. As pointed out in
Embrechts (2003), hydrology and environmental sciences have initiated the research on extreme
value theory (see also de Haan (1985, 1990), Smith (1989)), when seeking how high a sea dyke
had to be guard against a 1, 000 year storm. Extreme value theory has now implications in any
area in risk management, e.g. determining loss claims for major natural disasters, flood levels
of rivers, large downward movements in financial markets, wave heights during storms, minimal
performances of financial assets, modeling loss distribution in the context of reinsurance pricing...
etc.

In a multivariate context, Gumbel and Goldstein (1964) studied river flows of the Ocmulgee
river, and the oldest ages of deaths of men and women in Sweden. Gumbel and Mustafi (1967)
also considered multivariate extremes in an hydrological context, on the river flows of the Fox
river. In environmental science, Buishand (1984) studied some applications to rainfall, and
Walshaw (1991), or Anderson and Turkman (1992), considered some applications to wind data
in England. In those contexts, Gumbel structure of dependence (see Chapter 1) appeared as a
natural framework.

Similarly, Coles and Tawn (1990) used the logistic model, i.e. Gumbel’s model (see Chapter
1) on several environmental series at coastal sites. But as noticed one year after in Coles and
Tawn (1991) a rather different model can be obtained based on exceedances, i.e. distribution over
high thresholds. Among applications where two components have to exceed given thresholds,
Smith (1994) mention the study of daily maximum ozone levels, in Chicago, where high levels
of ozone (difficult to model studying only ozone levels) can be characterized by high levels of
temperature, and low windspeed. Actually, as pointed out in Dias and Embrechts (2004), when
studying dependence in the context of joint exceedances of financial returns, survival Clayton
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performs better than Gumbel’s.
Let X denote a random variable. For univariate extremes, two approaches can be considered

to study extremal events. The first one is based on the limiting distribution of an affine trans-
formation of the maxima Xn:n = max{X1, ..., Xn}, where X1, ..., Xn are i.i.d. random variables.
Fisher-Tippett Theorem (Theorem 3.2.3 in Embrechts, Klüppelberg and Mikosch (1997)) states
that the Generalized Extreme Value (GEV) distribution, defined as

Hξ (x) =

{
exp

(
− (1 + ξx)−1/ξ

)
ξ 6= 0

exp (− exp (−x)) ξ = 0,
(6.1)

where 1+ξx > 0, appears as the limiting distribution of the normalized maxima, for some appro-
priate normalizing constants. This is also the so-called Von Mises parameterization. Since the
limiting distribution does not depend on the affine transformation, it is possible to introduce the
notion of max domain of attraction: FX is in the max-domain of attraction of the GEV distrib-
ution with parameter ξ if the limiting distribution of maximum of any sample from distribution
FX converges towards the GEV distribution with parameter ξ.

The second approach is based on the study of possible limits for the exceedance distribution,
i.e. X − u given X > u when u tends to infinity. Pickands-Balkhema-de Haan Theorem (The-
orem 3.4.5 in Embrechts, Klüppelberg and Mikosch (1997)) states that the Generalized Pareto
Distribution (GPD), defined as

Gξ,β (x) =

{
1 − (1 + ξx/β)−1/ξ ξ 6= 0
1 − exp (−x/β) ξ = 0,

(6.2)

where β > 0 and x ≥ 0 for ξ ≥ 0, or 0 ≤ x ≤ −β/ξ for ξ < 0, appears as the limiting distribution
of conditional excess over high thresholds. More precisely, for a large class of random variables
X, there exists a function β (·) such that

lim
u→∞

{
sup
0≤x

∣∣P (X − u ≤ x|X > u) − Gξ,β(u) (x)
∣∣
}

= 0. (6.3)

If the two possible limiting distributions for tail events are different, there are related through
the same tail index ξ. More precisely, for all ξ ∈ R, the following assertions are equivalent,

1. FX ∈ MDA (Hξ), i.e. there are (an) and (bn) such that

lim
n→∞

P (Xn:n ≤ anx + bn) = Hξ (x) , x ∈ R.

2. There exists a positive, measurable function a (·) such that for 1 + ξx > 0,

lim
u→∞

FX (u + xa (u))

FX (u)
= lim

u→∞
P

(
X − u

a (u)
> x |X > u

)
=

{
(1 + ξx)−1/ξ if ξ 6= 0,
exp (−x) if ξ = 0.

In the bivariate case, we will see that the two analogous approaches (maximum compononen-
twise and the threshold approach) are not equivalent.

6.2 Upper Tail Dependence Copulae, hidden regular

variation and Ledford and Tawn’s approach

6.2.1 Notations

Let X = (X1, . . . , Xd) be a d-variate random vector with distribution function F and marginal
distribution functions Fj for j = 1, . . . , d. Define the random vector U = (U1, . . . , Ud) by
Uj = 1 − Fj(Xj) for j = 1, . . . , d. Let C be the distribution function of U .
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Throughout, we make the assumption that marginal distribution functions F1, . . . , Fd are
continuous and (as in Chapter 2), that C(u) is positive for every u > 0. Under this assumption
each of the random variables Uj is uniformly distributed on the unit interval. As a consequence,
C is a copula (although it is not the copula of F ), called the survival copula of F . Moreover, it
means that if x is such that P(Xj > xj) > 0 for every j = 1, . . . , d, then also P(X > x) > 0.

Set Y = (Y1, . . . , Yd) with Yj = 1/Uj for j = 1, . . . , d. The marginal distributions of the
vector Y are standard Pareto, that is, P(Yj ≤ y) = 1 − 1/y for all y ≥ 1 and all j = 1, . . . , d.
Notice that (relatively) large values of Xj correspond to small values of Uj and to large values
of Yj .

Definition 6.2.1. The lower tail dependence copula of C at u > 0 is the copula of the conditional
distribution of the vector U given {U ≤ u}. Such a copula will be noted Cu.

Our interest lies in the asymptotic behavior of Cu as u tends to 0 along some curve in the
positive orthant. The class of limit copulae are natural candidates for modelling the dependence
structure of a random vector given that all of its components are extreme.

The general theory for the bivariate case has been written down in Charpentier (2004),
building upon earlier work for Archimedean random pairs in Juri and Wüthrich (2003) or general
symmetric random pairs in Juri and Wüthrich (2004). In these papers, the link between lower
tail dependence copulae and extreme value theory is recognized but not fully worked out.

Our aim, then, is to explore this link in depth. Expected benefits are, firstly, a coherent
theory of lower tail dependence copulae in arbitrary dimensions and, secondly, an avenue towards
non-trivial examples and ensuing statistical methodology.

6.2.2 Multivariate extreme value theory

Let E = [0,∞]d\{0} be the compactified d-dimensional positive orthant punctured at the origin.
Complements of sets are to be interpreted with respect to E; for instance [0, x]c = {y ∈ [0,∞]d |
y 6≤ x} for x ≥ 0.

A Radon measure ν on E is a non-negative Borel measure such that ν(K) is finite for every
compact K ⊂ E. Note that a subset K of E is compact if and only if it is closed in [0,∞]d and
does not contain the origin. A function f : E → R is said to have compact support if and only if
the closure of the set {x ∈ E | f(x) 6= 0} is compact, or equivalently, if there exists y > 0 such
that f(x) = 0 for all x ∈ E such that x ≤ y.

A sequence of Radon measures νn on E is said to converge vaguely to a Radon measure ν on
E if and only if

∫
E

f(x)νn(dx) →
∫

E
f(x)νn(dx) for every continuous function f : E → R with

compact support; notation νn
v→ ν. An equivalent condition is that νn(B) → ν(B) for every

Borel subset B of E for which ν(∂B) = 0, with ∂B denoting the topological boundary of B.
A full treatment of the theory of vague convergence of measures can be found Resnick (1987),

chapter 3.

Exponent measure

Recall that Y is a d-variate random vector defined by Yj = 1/Uj and Uj = 1 − Fj(Xj) for j =
1, . . . , d, where X is a d-variate random vector with continuous marginal distribution functions
Fj for j = 1, . . . , d. Throughout this section, we make the following assumption.

Assumption 6.2.2. The distribution of Y is multivariate regularly varying with exponent mea-
sure ν, that is, there exists a Radon measure ν on E such that

tP(t−1Y ∈ · ) v→ ν( · ), as t → ∞,

in E.
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The measure ν in Assumption 6.2.2 is necessarily homogeneous of order 1, that is,

ν(s · ) = s−1ν( · ), for all 0 < s < ∞. (6.4)

In particular, the measure ν does not put any mass on the rays through infinity,

ν([0, ∞)c) = 0. (6.5)

Moreover, the marginal measures must be continuous: ν({x ∈ E | xj = y}) = 0, for all y ∈ (0,∞)
and j = 1, . . . , d. Since the margins of Y are standard Pareto,

ν({x ∈ E | xj > y}) = lim
t→∞

tP(Yj > ty) = y−1 (6.6)

for all 0 < y < ∞ and all j = 1, . . . , d.
According to Resnick (1987), chapter 5, the distribution function F of X is in the domain

of attraction of a d-variate extreme value distribution function G if and only if (i) the marginal
distribution functions of F are in the respective domains of attractions of the marginal distrib-
ution functions of G, and (ii) Assumption 6.2.2 holds. In that sense, Assumption 6.2.2 is fairly
natural. The limiting measure ν in Assumption 6.2.2 is called the exponent measure because for
y ∈ (0, ∞],

tP(t−1Y ∈ [0,y]c) → ν([0, y]c), as t → ∞, (6.7)

and thus
P(Y ≤ ny)n → exp{−ν([0,y]c)}, as n → ∞,

that is, the rescaled component-wise maximum of n independent copies of Y converges in dis-
tribution to the d-variate extreme value distribution function defined by the right-hand side of
the previous display.

Stable tail dependence function

A convenient way of representing an exponent measure ν is by the following function. For a
vector x, denote x−1 = (x−1

1 , . . . , x−1
d ).

Definition 6.2.3. The stable tail dependence function of the exponent measure ν is defined by

l(x) = ν([0,x−1]c) = ν({y ∈ E | max(x1y1, . . . , xdyd) ≥ 1})

for x ∈ [0, ∞).

The stable tail dependence function admits a convenient interpretation in terms of the random
vector U with components Uj = 1/Yj = 1 − Fj(Xj) for j = 1, . . . , d. Under Assumption 6.2.2,

lim
s↓0

s−1P(∃j = 1, . . . , d : Uj ≤ sxj) = l(x), (6.8)

for all x ∈ [0, ∞). The stable tail dependence function satisfies the following properties:

max(x1, . . . , xd) ≤ l(x) ≤ x1 + · · · + xd, for all x ∈ [0,∞); (6.9)

l(cx) = cl(x) for all 0 < c < ∞, x ∈ [0, ∞); (6.10)

l is convex. (6.11)

The first two properties follow directly from (6.8); convexity of l is an immediate consequence
of equation (6.23) below. In the bivariate case, the above three properties are also sufficient for
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a function l : [0,∞)2 → R to be the stable tail dependence function of an exponent measure; in
the higher-dimensional case, this is not the case. Note that property (6.9) implies that

l(xej) = x for all 0 ≤ x < ∞, j = 1, . . . , d, (6.12)

where ej denotes the d-dimensional jth unit vector.
A function that is related to the stable tail dependence function is the function

r(x) = ν([x−1,∞]) = ν({y ∈ E | min(x1y1, . . . , xdyd) ≥ 1}), (6.13)

for all x ∈ [0, ∞). It is related to the random vector U by the formula

lim
s↓0

s−1P[(U1 ≤ sx1, . . . , Ud ≤ sxd) = r(x) (6.14)

for all x ∈ [0, ∞). Note that r(x) is equal to zero as soon as one of the xj is equal zero. The
function r and the stable tail dependence function l are related through the inclusion-exclusion
formula. In particular, in two and three dimensions, we have

r(x, y) = x + y − l(x, y), (6.15)

r(x, y, z) = x + y + z − l(x, y, 0) − l(0, y, z) − l(x, 0, z) + l(x, y, z), (6.16)

for (x, y, z) ∈ [0,∞)3. In general dimension d, using the formula

min(A) =
∑

B⊂A:|B|≥1

(−1)|B|−1 max(B),

valid for finite subsets, A, of the real line, we have from equations (6.23) and (6.24) below,

r(x) =
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|−1l(xI), (6.17)

where xI is the d-dimensional vector such that (xI)i = xi1(i ∈ I) for all i = 1, . . . , d.

Pickands dependence function

Because of the homogeneity property, the stable tail dependence function l is completely deter-
mined by its values on the unit simplex {x ∈ [0, ∞) | x1 + · · · + xd = 1}. In the bivariate case,
the unit simplex can be identified with the unit interval. This leads to the following definition.

Definition 6.2.4. The Pickands dependence function of a bivariate exponent measure ν with
stable tail dependence function l is defined as

A(w) = l(1 − w, w), for all 0 ≤ w ≤ 1.

The corresponding stable tail dependence function can be recovered from

l(x, y) = (x + y)A

(
y

x + y

)
, for all (x, y) ∈ (0,∞)2. (6.18)

Necessary and sufficient conditions for a function A : [0, 1] → R to be a genuine Pickands
dependence function are the following:

max(1 − w,w) ≤ A(w) ≤ 1, for all 0 ≤ w ≤ 1; (6.19)

A is convex. (6.20)
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This yields a convenient way to generate parametric bivariate extreme value models.
Sometimes, the function w 7→ A(1 − w) is called the Pickands dependence function as well.
In general dimension d, the Pickands dependence function A corresponding to the stable tail

dependence function l is defined by

A(w2, . . . , wd) = l(w1, . . . , wd), with w1 = 1 − (w2 + · · · + wd)

for (w2, . . . , wd) ∈ [0,∞)d−1 such that w2 + · · · + wd ≤ 1. Properties of A can be derived from
properties of l: in particular, A is convex and

max(w1, . . . , wd) ≤ A(w2, . . . , wd) ≤ 1.

However, except for the case d = 2, these conditions are not sufficient to guarantee that A is a
proper Pickands dependence function.

Spectral or angular measure

Let ‖ · ‖ denote an arbitrary norm on Rd. Denote

ℵ = {x ∈ E | ‖x‖ = 1}, (6.21)

the intersection of the ‖·‖-unit sphere with E. Define the mapping T : [0, ∞)\{0} 7→ (0,∞)×ℵ by
T (x) = (‖x‖, x/‖x‖). Think of T as a transformation to polar coordinates, with ‖x‖ the radial
component and x/‖x‖ the angular component of a vector x. Note that T is a homeomorphism
of the spaces [0, ∞) \ {0} and (0,∞) × ℵ.

Definition 6.2.5. The spectral or angular measure of the exponent measure ν with respect to
the norm ‖ · ‖ is defined as the measure S on ℵ given by

S(B) = ν ({x ∈ [0,∞) | ‖x‖ ≥ 1, x/‖x‖ ∈ B}) ,

for all Borel subsets B of ℵ.

Since {x ∈ E | ‖x‖ ≥ 1} is compact, the total mass S(ℵ) is finite. By the homogeneity
property (6.4),

ν ({x ∈ [0, ∞) | ‖x‖ ≥ r, x/‖x‖ ∈ B}) = r−1S(B)

for every 0 < r < ∞ and every Borel subset B of ℵ. Hence, the measure ν is completely
determined by its angular measure S and the homogeneity property (6.4): for every ν-integrable
function f : E → R, ∫

E

f(x)ν(dx) =

∫

ℵ

∫ ∞

0
f(rw)r−2 dr S(dw) (6.22)

Apply (6.22) to the indicator functions of the sets [0, x−1]c and [x−1,∞] for x ∈ [0, ∞) to get,
by (6.2.3) and (6.13),

l(x) =

∫

ℵ
max(w1x1, . . . , wdxd)S(dw), (6.23)

r(x) =

∫

ℵ
min(w1x1, . . . , wdxd)S(dw). (6.24)

Not every finite Borel measure S on ℵ can arise as the angular measure of a limiting measure
ν in Assumption 6.2.2. By equations (6.12) and (6.23),

∫

ℵ
wj S(dw) = 1, for all j = 1, . . . , d. (6.25)
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Conversely, every finite Borel measure S on ℵ satisfying (6.25) is the angular measure of some
exponent measure ν.

A popular choice for the norm in the definition of the angular measure is the L1 norm,
‖x‖ = |x1| + · · · + |xd|. In that case, the set ℵ coincides with the unit simplex {x ∈ [0,∞) |
x1 + · · · + xd = 1}. In the bivariate case, we can identify ℵ with the unit interval by the
correspondance of (w, 1 − w) ∈ ℵ with w ∈ [0, 1]. Equations (6.23) and (6.24) then simplify to

l(x, y) =

∫

[0,1]
max{wx, (1 − w)y}S(dw),

r(x, y) =

∫

[0,1]
min{wx, (1 − w)y}S(dw),

for all (x, y) ∈ [0,∞)2.

Example 6.2.6. The random vector X is said to be asymptotically independent if

P(Fi(Xi) > 1 − p, Fj(Xj) > 1 − p) = o(p), as p → 0

for every integer pair 1 ≤ i < j ≤ d. This is equivalent to

tP(t−1Y ∈ [0, x]c) = tP(∃j = 1, . . . , d : Yj > txj)

→ x−1
1 + · · · + x−1

d = ν([0, x]c), as t → ∞

for every x > 0. The spectral measure S of the corresponding exponent measure ν with respect
to the L1-norm is the measure consisting of point masses of size unity at the d vertices of the
d-dimensional unit simplex ℵ = {x ∈ [0, ∞) | x1 + · · · + xd = 1}. In particular, the exponent
measure ν does not put any mass on the interior of the positive orthant, that is, ν((0, ∞]) = 0.
In the bivariate case, the corresponding Pickands dependence function is equal to A = 1.

6.2.3 Limits of lower tail dependence copulae

Note that under the assumption that C(u) > 0 if all components are strictly positive,

lim
p↓0

p−1P(U1 ≤ p, . . . , Ud ≤ p) = ν([1, ∞]) = r(1), (6.26)

with r as in (6.13). Note that in the bivariate case, the quantity in (6.26) is equal to the coefficient
of tail dependence. We now make the following additional assumption.

Assumption 6.2.7. The quantity in equation (6.26) is positive.

Notice that Assumption 6.2.7 is equivalent to each of the following conditions:

• r(x) > 0 for all x ∈ (0,∞);

• S(ℵ0) > 0 where ℵ0 = {w ∈ ℵ | wj > 0 for all j = 1, . . . , d}.

We arrive at the following lemma. For vectors x en y, let xy be the vector with components
xjyj .

Lemma 6.2.8. Under Assumptions 6.2.2 and 6.2.7,

lim
s↓0

P(U ≤ sxu | U ≤ sx) =
r(ux)

r(x)
= H(u;x)

for every x ∈ (0, ∞) and every u ∈ [0,1].
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In Lemma 6.2.8, we approach the origin along the direction x. We condition on the vector
U being contained in the hyperrectangle [0, sx], rescale the distribution to the d-dimensional
hypercube, [0,1], and find that as s decreases to zero the resulting distribution function converges
to the distribution function u 7→ H(u; x). Notice that

H( · ; cx) = H( · ; x), for all 0 < c < ∞, x ∈ (0, ∞), (6.27)

so it is really only the direction of x which determines the limit. The marginal distribution
functions of H( · ;x) are given by

Hj(u; x) = H(u;x) with uj =

{
u if i = j,
1 if i ∈ {1, . . . , d} \ {j},

for u ∈ [0, 1] and j = 1, . . . , d; in particular, they are continuous.
Now, let C( · ; x) be the copula of the distribution function H( · ;x). Recall that Cu is the

copula of the conditional distribution of U given {U ≤ u} for u > 0. Since the margins of
H( · ;x) are continuous, the following result is a corrollary to Lemma 6.2.8.

Lemma 6.2.9. Under Assumptions 6.2.2 and 6.2.7,

lim
s↓0

Csx(p) = C(p; x)

for every x ∈ (0, ∞) and every p ∈ [0,1].

In words, if we approach the origin along the direction determined by x, then the corre-
sponding family of lower tail dependence copulae Csx converges to the copula C( · ; x) of the
distribution function H( · ; x) in Lemma 6.2.8.

Invariance

Definition 6.2.10. A copula C is invariant if for every u > 0, the lower tail dependence copula
Cu is the same. Hence Cu = C for every u > 0.

Example 6.2.11. Let C (u1, ..., ud, θ) denote Clayton copula,

C (u1, ..., ud, θ) =
[
u−θ

1 + ... + u−θ
d − (d − 1)

]−1/θ
, θ ≥ 0, (6.28)

If U has distribution function C, then

P [U ≤ sxu|U ≤ sx] =
P [U ≤ sxu]

P [U ≤ sx]

=

[
(sx1u1)

−θ + ... + (sxdud)
−θ − (d − 1)

]−1/θ

[
(sx1)

−θ + ... + (sxd)
−θ − (d − 1)

]−1/θ

=

[
(x1u1)

−θ + ... + (xdud)
−θ − (d − 1) sθ

]−1/θ

[
(x1)

−θ + ... + (xd)
−θ − (d − 1) sθ

]−1/θ

→

[
(x1u1)

−θ + ... + (xdud)
−θ

]−1/θ

[
(x1)

−θ + ... + (xd)
−θ

]−1/θ
as s → 0,

= H (u; x) .
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Marginal distributions are then

Hi (ui;x) =

[
(x1)

−θ + ... + (xiui)
−θ + ... + (xd)

−θ
]−1/θ

[
(x1)

−θ + ... + (xd)
−θ + ... + (xd)

−θ
]−1/θ

which can be inverted in

H−1
i (pi; x) =





[
(x1)

−θ + ... + (xi)
−θ + ... + (xd)

−θ
]
p−θ

i −
(
(x1)

−θ + ... + (xd)
−θ

)

xd=i




−1/θ

The associated copula denoted C (u; x) is then

C (u;x) =

[[
(x1)

−θ + ... + (xd)
−θ

] (
u−θ

1 + ... + u−θ
d − (d − 1)

)]−1/θ

[
(x1)

−θ + ... + (xd)
−θ

]−1/θ

= C (u1, ..., ud, θ) = C (u) .

Some more examples

Example 6.2.12. If the random vector X is comonotone, then by (6.14)

r(x) = min(x1, . . . , xd), for all x ∈ [0, ∞),

whence

H(u; x) =
min(u1x1, . . . , udxd)

min(x1, . . . , xc)
, for all u ∈ [0,1], x ∈ (0,∞).

The copula of this distribution function is easily seen to be the comonotone copula

C(p) = min(p1, . . . , pd), for all p ∈ [0,1].

The Clayton copula is known to arise naturally in the theory of lower tail dependence copulae.
According to Example 6.2.13, it corresponds to the negative logistic model.

Example 6.2.13. The negative logistic dependence structure (Coles and Tawn (1991), or Joe
(1990)) has stable tail dependence function

l(x) =

d∑

i=1

xi −
∑

I⊂{1,...,d}:|I|≥2

(−1)|I|

(
∑

i∈I

(ψI,ixi)
−θI

)−1/θI

(6.29)

for x ∈ [0, ∞), with the convention that 0−1 = ∞ and ∞−1 = 0. The parameter vector
(θI , ψI,i|I ⊂ {1, . . . , d}, i ∈ I) should be such that

(i) θI > 0 for all I ⊂ {1, . . . , d},
(ii) ψI,i ≥ 0 for all I ⊂ {1, . . . , d} and i ∈ I,

(iii)
∑

I(−1)|I|ψI,i ≤ 1 for all i = 1, . . . , d, the sum ranging over all I ⊂ {1, . . . , d} such that
i ∈ I. Let us prove that

r(x) =

(
d∑

i=1

(ψixi)
−θ

)−1/θ

, (6.30)
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where we used the abbreviations ψi = ψ{1,...,d},i and θ = θ{1,...,d}.
Let x ∈ [0, ∞). For J ⊂ {1, . . . , d}, let xJ be the d-dimensional vector such that (xJ)j = xj

if j ∈ J and (xJ)j = 0 otherwise. Then for J ⊂ {1, . . . , d},

l(xJ) =
∑

j∈J

xj −
∑

I⊂J :|I|≥2

(−1)|I|

(
∑

i∈I

(ψI,ixi)
−θI

)−1/θI

.

By (6.17) and (6.29),

r(x) =
∑

J⊂{1,...,d}:|J |≥1

(−1)|J |−1l(xJ)

=
d∑

j=1




∑

J⊂{1,...,d}:j∈J

(−1)|J |−1



xj

+
∑

I⊂{1,...,d}:|I|≥2




∑

J⊂{1,...,d}:I⊂J

(−1)|J |−|I|




(

∑

i∈I

(ψI,ixi)
−θI

)−1/θI

.

Now it is not hard to see that
∑

J⊂{1,...,d}:j∈J

(−1)|J |−1 = 0, for all j = 1, . . . , d,

as well as ∑

J⊂{1,...,d}:I⊂J

(−1)|J |−|I| =

{
0 if I 6= {1, . . . , d},
1 if I = {1, . . . , d}.

Combine the three previous displays to arrive at equation (6.30).
If ψi is positive for all i = 1, . . . , d, then Assumption 6.2.7 is satisfied, and

H(u; x) =

(∑d
i=1 (ψiuixi)

−θ

∑d
i=1 (ψixi)

−θ

)−1/θ

for all u ∈ [0, 1]d and x ∈ (0, ∞). The copula of this distribution is easily seen to be the Clayton
copula (6.28).

In the bivariate case, we can write H( ·, · ;w) = H( ·, · ; 1 − w, w) for 0 < w < 1 and write
everything in terms of the Pickands dependence function A in Definition 6.2.4, yielding

H(u, v;w) =
{u(1 − w) + vw}

{
1 − A

(
vw

u(1−w)+vw

)}

1 − A(w)
. (6.31)

for 0 < w < 1 and (u, v) ∈ [0, 1]2. Note that Assumption 6.2.7 is equivalent to A(w) < 1 for
0 < w < 1. As every convex function A : [0, 1] → R such that max(w, 1 − w) ≤ A(w) ≤ 1 for all
w ∈ [0, 1] is a Pickands dependence function, equation (6.31) constitutes a convenient mechanism
to generate valid models for limits of lower tail dependence copulae.

Example 6.2.14. For 0 < ψ ≤ 1/2, the function

A(w) = 1 − ψw + ψw3, for all 0 ≤ w ≤ 1,
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a special case of the so-called asymmetric mixed model, is the Pickands dependence function
corresponding to a bivariate exponent measure satisfying Assumption 6.2.7. By (6.15) and (6.18),

r(x, y) = (x + y)

{
1 − A

(
y

x + y

)}
= ψ

2x−1 + y−1

(x−1 + y−1)2

for all (x, y) ∈ (0,∞)2. The corresponding asymptotic distribution function appearing in
Lemma 6.2.8 is given by

H(u, v;x, y) =
(x−1 + y−1)2

2x−1 + y−1
· 2(ux)−1 + (vy)−1

{(ux)−1 + (vy)−1}2

for (u, v) ∈ (0, 1]2 and (x, y) ∈ (0,∞)2. In terms of w = y/(x + y) ∈ (0, 1), we can simplify the
expression in the previous display to

H(u, v;w) = H(u, v; 1 − w, w) =
1

1 + w
· 2u−1w + v−1(1 − w)

{u−1w + v−1(1 − w)}2

for (u, v) ∈ (0, 1]2 and 0 < w < 1. For 0 < p < 1 and 0 < q < 1, the solutions u = u(p; w) and
v = v(q;w) in the interval (0, 1) to the equations H(u, 1;w) = p and H(1, v; w) = q are given by

u(p; w) =
w

1 − w
[{1 − (1 − w2)p}−1/2 − 1],

v(q; w) =
2(1 − w2)q

{4w(1 + w)q + 1}1/2 + 2w(1 + w)q − 1

Hence, for 0 < w < 1, the copula of the distribution function H( ·, · ; w) is given by

C(p, q; w) = H(u(p; w), v(q; w);w), for all 0 < p < 1, 0 < q < 1.

Note that the copula is different for different directions w.

Example 6.2.15. The bivariate Gumbel or logistic dependence structure has stable tail depen-
dence function

l(x1, x2) = (xθ
1 + xθ

2)
1/θ, for all (x1, x2) ∈ [0,∞)2.

The parameter θ can range in the interval [1,∞], with θ = 1 corresponding to independence and
θ = ∞ corresponding to comonotonicity. In case θ > 1, Assumption 6.2.7 is satisfied with

r(x1, x2) = x1 + x2 − (xθ
1 + xθ

2)
1/θ,

H(u1, u2;x1, x2) =
u1x1 + u2x2 − {(u1x1)

θ + (u2x2)
θ}1/θ

x1 + x2 − (xθ
1 + xθ

2)
1/θ

.

The inverses of the marginal distribution functions of H( · ;x) do not admit explicit expressions,
so neither does its copula.

Example 6.2.16. The asymmetric logistic dependence structure in dimension d has stable tail
dependence function (Tawn (1990))

l(x1, ..., xd) =
∑

c∈C

(
∑

i∈c

(ψc,ixi)
rc

)1/rc

for (x1, ..., xd) ∈ (0,∞)d, where C is the ensemble of nonempty subsets of {1, ..., d}, with para-
meters rc ≥ 1 for all c ∈ C. For i = 1, ..., d, ψc,i = 0 if i /∈ c, ψc,i ≥ 0 if i ∈ c, and

∑
c∈C ψc,i = 1.

...
and 0 < ψj ≤ 1 for j = 1, ..., d.
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6.2.4 Asymptotic independence

Example 6.2.17. Consider Cuadras-Augé copula (as called in Nelsen (1999), or Marshall &
Olkin copula with identical parameter),

C (u1, ..., ud, θ) = min
{

u−θ
1 , ..., u−θ

d

}
· u1...ud, θ ∈ [0, 1] ,

If U has distribution function C, then, if u = u1,

P [U ≤ sxu|U ≤ sx] =
P [U ≤ sxu]

P [U ≤ sx]

=
min

{
(sx1u1)

−θ , ..., (sxdud)
−θ

}
· sx1u...sxdu

min
{

(sx1)
−θ , ..., (sxd)

−θ
}
· sx1...sxd

= min
{

u−θ, ..., u−θ
}

u...u = H (u1; x) .

Note in that case, it is already a copula, hence H (u1; x) = C (u1; x) = C (u) . Hence Cuadras-
Augé copula is invariant if u = u1: this was called “invariance on the diagonal” in Charpentier
(2004).

6.3 Pickands-Balkema-de Haan in dimension 2

In this following section, we will extend Pickands-Balkema-de Hann Theorem, which gives the
expression of the exceeding distributions. Section 6.3.2 will focus on quantile based thresholds,
i.e. we will be interested in the limiting distribution of

(X,Y ) given {X > F←
X (p) and Y > F←

X (p)} as p → 1,

while Section 6.3.3 will focus on level based thresholds, i.e. we will be interested in the limiting
distribution of

(X, Y ) given {X > z and Y > z} as z → ∞.

6.3.1 A short word on regular variation for R × R → R functions

The regular variation notion considered so far in this chapter is orthant based. More specifically,
given x ∈ E = [0,∞)2\ {0}, the limit is obtained under the ray (0, x) in R2, considering the
evolution of F (t · x) when t → ∞.

Meerschaert (1998) and Meerschaert and Scheffler (2001), following Balkema (1973), defined
a general concept of regular variation on Lie groups, given general results for a general theory
of regular variation in Rd. As we will see, there are several ways to define regularly varying
functions R2 → R: f is said to be regularly varying at infinity is there are h : R → R and
λ : R2 → R such that one of the following relationship holds,

1. ray convergence
lim
t→∞

f(tx, ty) · h(t)−1 = λ(x, y),

2. directional convergence, given r, s : R → R such that r(t), s(t) → ∞ as t → ∞, both
regularly varying at infinity (with index α and β respectively), then

lim
t→∞

f(r(t)x, s(t)y) · h(t)−1 = λ(x, y),
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3. there is a sequence (At) of GL(R2) operators, regularly varying with index E (see Definition
6.3.1 below) such that

lim
t→∞

f

(
A←

t

(
x
y

))
· h(t)−1 = λ(x, y).

For those three cases, different limiting behavior can be observed,

1. there is θ ∈ R such that
λ(tx, ty) = tθλ(x, y),

for all x, y, t > 0, i.e. λ is an homogeneous function,

2. there is θ ∈ R such that
λ(tαx, tβy) = tθλ(x, y),

for all x, y, t > 0, i.e. λ is a generalized homogeneous function,

3. there is θ ∈ R such that

λ(f

(
t−E

(
x
y

))
) = tθλ(x, y),

for all x, y, t > 0, i.e. λ is a generalized homogeneous function.

Consider a linear operator A ∈ L
(
R2

)
, the associated exponential operator and the family

of power operators as

exp (A) =
∞∑

k=0

Ak

k!
and tA = exp (A log t) ,

for all t > 0. Suppose f : R+ → GL
(
R2

)
is Borel measurable, where GL

(
R2

)
denotes the

group of invertible linear operators on R2. Following Balkema (1973), define regular variation as
follows,

Definition 6.3.1. f : R+ → GL
(
R2

)
is said to be regularly varying at infinity with index E if

lim
t→∞

f (λt) f (t)← = λE, (6.32)

for all λ > 0. If E = 0, f is said to be slowly varying.

Suppose f : R+ → GL
(
R2

)
is Borel measurable and

lim
t→∞

f (λt) f (t)← = φ (λ) ∈ GL
(
Rd

)
,

for all λ > 0. Then, there are some linear operator E such that φ (λ) = λE for all λ > 0.
Based on the previous notions, it is possible to introduce a general definition for multivariate

regular variation.

Definition 6.3.2. A Borel measurable function g : Γ ⊂ R2 → R+ is said to be regularly varying
if there exists f : R+ → GL

(
R2

)
regularly varying with index −E and h : R+ → R+ regularly

varying with index β 6= 0 such that

lim
t→∞

g (f (t)← xt)

h (t)
= φ (x) > 0 (6.33)

where xt → x in Γ. If all eigenvalues of E have positive real part, g is said to vary regularly at
infinity.
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As shown in Meerschaert and Scheffler (2001), limiting functions (again) satisfy some func-
tional equation: if g : Γ ⊂ R2 → R+ is regularly varying and if Equation (6.33) holds for some
f : R+ → GL

(
R2

)
regularly varying with index −E and h : R+ → R+ regularly varying with

index β 6= 0 then

λβ · φ (x) = φ
(
λEx

)
,

for all λ > 0 and all x ∈ Γ. The idea is to observe that

g (f (λt)← x)

h (λt)
=

f (λ)← xt

h(t)
· h(t)

h (λt)
,

where xt = f (λt) · f (λ)← · x. Since f is regularly varying, with f() · f()← → λE , and therefore,
xt → λE · x. Taking the limit of both sides of, as t → ∞, we get φ (x) = φ

(
λEx

)
· λ−β.

The approach considered in de Haan, Omey and Resnick (1984) is a particular case of the
previous one (the directional convergence): given r, s : R → R such that r(t), s(t) → ∞ as
t → ∞, both regularly varying at infinity (with index α and β respectively), then

lim
t→∞

f(r(t)x, s(t)y) · h(t)← = λ(x, y).

The particularity is that de Haan, Omey and Resnick (1984) defined a kind of regular variation
optimized for nonnegative joint distributions. For signed joint distributions, the approach of
the previous section is more general. Actually, for nonnegative joint distributions, the general
definition does not add very much, since one would presumably assume that f fixes the set
{x > 0, y > 0}, or at least maps this set into itself. Note that in that case, E is diagonal with
respect to the standard basis vector.

6.3.2 A first bivariate extension of Pickands-Balkema-de Haan

Theorem: thresholds as quantiles

Assume that X has a distribution FX in the max-domain of attraction of the Fréchet distribution,
with parameter α > 0. From Pickands-Balkema-de Haan Theorem, there is a function a(·) such
that, for 1 + αx > 0,

lim
u→∞

1 − 1 − FX (u + xa (u))

1 − FX (u)
= lim

u→∞
P (X ≤ u + a (u) |X > u) = Gα (x) ,

where Gα(·) denotes the Generalized Pareto distribution with parameter α, i.e. Gα (x) = 1 −
(1 + αx)−1/α (see Equation (6.2)). And analogously, assume that Y has tail index β, such that

lim
v→∞

1 − 1 − FY (v + yb (v))

1 − FY (v)
= lim

v→∞
P (Y ≤ v + b (v) |Y > v) = Gβ (y) ,

for some function b(·).
Hence, from those relationships, some equivalent for marginal tail distributions can be ob-

tained, e.g. {
FX (u + xa (u)) ∼ 1 − [1 − FX (u)] · [1 − Gα (x)]
FY (v + yb (v)) ∼ 1 − [1 − FY (v)] · [1 − Gβ (y)]

Using the expression of joint survival probabilities, expressed through the survival copula and
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marginal survival probabilities, P (X > x, Y > y) = C∗ (1 − FX (x) , 1 − FY (y)), we get

lim
p→0

P

(
X − F←

X (1 − p)

a
(
F←

X (1 − p)
) > x,

Y − F←
X (1 − p)

b
(
F←

Y (1 − p)
) > y

∣∣∣∣∣ X > F←
X (1 − p) , Y > F←

Y (1 − p)

)

= lim
p→0

C∗ (1 − FX (F←
X (1 − p) + xa (F←

X (1 − p))) , 1 − FY (F←
Y (1 − p) + yb (F←

Y (1 − p))))

C∗ (p, p)

= lim
p→0

C∗ ([1 − FX (F←
X (1 − p))] · [1 − Gα (x)] , [1 − FY (F←

Y (1 − p))] · [1 − Gβ (y)])

C∗ (p, p)

= lim
p→0

C∗ (p · [1 − Gα (x)] , p · [1 − Gβ (y)])

C∗ (p, p)
.

In that case, note that results on extended regular variation (de Haan, Omey and Resnick
(1984)) are not necessary, since we are focusing here on the asymptotic behavior of C∗(p · x∗, p ·
y∗)/C∗(p, p) as p → 0, where x∗ = 1 − Gα (x) and y∗ = 1 − Gβ (y).

In the case where C∗ is assumed to be symmetric, the approach of Juri and Wüthrich (2004)
and Wüthrich (2004) can be extended easily, without the assumption that X and Y should have
identical distributions.

Proposition 6.3.3. Let C∗ denote a symmetric copula, such that there exists a continuous
function h : R+ → R+ with h(x) > 0 for x > 0, and such that

lim
u→0

C∗(xu, u)

C∗(u, u)
= h(x) for all x ≥ 0. (6.34)

Then h(0) = 0, h(1) = 1, and there exists θ ∈ R such that

h(x) = xθh

(
1

x

)
for all x > 0,

Further, if H(x, y) = yθh(x/y) for all x, y > 0, with H(x, y) = 0 if either x = 0 or y = 0, then

lim
p→0

∥∥∥C∗
(p,p) − C0

∥∥∥
∞

= 0, where C0(x, y) = H(h←(x), h←(y)).

Proof. The convergence for the infinite norm is a particular case of Charpentier and Juri (2004),
but the limiting behavior was initially obtained in Juri and Wüthrich (2004).

From this relationship, a first bivariate extension of Pickands-Balkema-de Haan Theorem can
be obtained, under the assumption that C∗ is a symmetric copula.

Theorem 6.3.4. Let X and Y be two random variables in the Fréchet domain of attraction,
with tail indices α > 0 and β > 0 respectively. From Pickands-Balkema-de Haan Theorem, there
are functions a(·) and b(·) such that

lim
u→∞

1 − 1 − FX (u + xa (u))

1 − FX (u)
= lim

u→∞
P (X ≤ u + a (u) |X > u) = Gα (x) ,

lim
v→∞

1 − 1 − FY (v + yb (v))

1 − FY (v)
= lim

v→∞
P (Y ≤ v + b (v) |Y > v) = Gβ (y) ,

where Gα(·) denotes the Generalized Pareto distribution with parameter α. If the survival copula
of (X, Y )t is a symmetric copula, satisfying assumptions of Proposition 6.3.3 (i.e. Equation
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(6.34)) for some function h, and some parameter θ. Set γ = θ/β, then

lim
p→0

P

(
X − F←

X (1 − p)

a
(
F←

X (1 − p)
) > x,

Y − F←
X (1 − p)

b
(
F←

Y (1 − p)
) > y

∣∣∣∣∣ X > F←
X (1 − p) , Y > F←

Y (1 − p)

)

= (1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/β

)
.

Proof. From calculations of the previous paragraph, note that

κ(x, y) = lim
p→0

P

(
X − F←

X (1 − p)

a
(
F←

X (1 − p)
) > x,

Y − F←
X (1 − p)

b
(
F←

Y (1 − p)
) > y

∣∣∣∣∣ X > F←
X (1 − p) , Y > F←

Y (1 − p)

)

= lim
p→0

C∗ (p · [1 − Gα (x)] , p · [1 − Gβ (y)])

C∗ (p, p)
.

Since C∗ satisfies assumptions of Proposition 6.3.3 (i.e. Equation (6.34)), for all x, y ∈ [0, 1],

lim
p→0

C∗ − (p, p)(x, y) = H(h←(x), h←(y)) = Ch(x, y),

were Ch(x, y) = H(h←(x), h←(y)) where H(x, y) = yθh(x/y). Further,

κ(x, y) = H([1 − Gα(x)], [1 − Gβ(y)]) = [1 − Gβ(y)]θh

(
[1 − Gα(x)]

[1 − Gβ(y)]

)

= (1 + y)−θ/βh

(
(1 + x)−1/α

(1 + y)−1/β

)
.

This finishes the proof of Theorem 6.3.4.

Corollary 6.3.5. Under the hypothesis of Theorem 6.3.4, the limiting copula is C∗
h where

Ch(x, y) = H(h←(x), h←(y)) where H(x, y) = yθh(x/y).

Note further that the limiting behavior can be written in terms of uniform convergence, with
notions of Equation (6.2), i.e.

Gα,a(·) (x) = 1 − (1 + αx/a(·))−1/α .

Proposition 6.3.6. Under the assumptions of Theorem 6.3.4, the convergence is uniform, i.e.,

lim
p→0

sup
x,y

|P (X − F←
X (1 − p) > x, Y − F←

Y (1 − p) > y|X > F←
X (1 − p) , Y > F←

Y (1 − p))

−(1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/β

)
| = 0.

Proof. Since the limit is a continuous function, the convergence is uniform (see e.g. Embrechts,
Klüppelberg and Mikosh (1997)).

Example 6.3.7. In the case where the copula of (X, Y )t is the survival Clayton copula, with
parameter θ > 0,

C∗(x, y) =
(
x−θ + y−θ − 1

)−1/θ
,
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In that case, since this copula is invariant by truncature, and symmetric, note that Ch = C∗,
with g(x) = ([x−θ + 1]/2)−1/θ, and therefore

κ(x, y) = lim
p→0

P

(
X − F←

X (1 − p)

a
(
F←

X (1 − p)
) > x,

Y − F←
X (1 − p)

b
(
F←

Y (1 − p)
) > y

∣∣∣∣∣ X > F←
X (1 − p) , Y > F←

Y (1 − p)

)

=

((
(1 + x)θ/α + 1

2

)
+

(
(1 + y)θ/β + 1

2

)
− 1

)−1/θ

=
(
(1 + x)θ/α + (1 + y)θ/β

)−1/θ
.

Extension when margins are in the Gumbel domain of attraction

Recall that in the case where X is in the Gumbel domain of attraction, there exists function a(·)
such that

lim
u→∞

1 − FX(u + xa(u))

1 − F (u)
= exp(x), for all x ∈ R.

In that case,

FX(u + xa(u)) ∼ 1 − [1 − FX(u)] · exp(x),

and substituting in relationships obtained above, one gets, similarly that

lim
p→0

P

(
X − F←

X (1 − p)

a
(
F←

X (1 − p)
) > x,

Y − F←
X (1 − p)

b
(
F←

Y (1 − p)
) > y

∣∣∣∣∣ X > F←
X (1 − p) , Y > F←

Y (1 − p)

)

= lim
p→0

C∗ (p · [exp (x)] , p · [1 − Gβ (y)])

C∗ (p, p)
.

From the regular variation property, one gets that this probability (denoted κ(x, y)) can be
written

κ(x, y) = H(exp(x), [1 − Gβ(y)]) = (1 + y)−θ/βh

(
exp(x)

(1 + y)−1/β

)
.

In the case where both have light tails, this probability becomes

κ(x, y) = exp(θy)h (exp(x − y)) .

Hence, there is no need to assume that X and Y have identical distributions to obtain limiting
results (as in Juri and Wüthrich (2004)).

6.3.3 A second bivariate extension of Pickands-Balkema-de Haan

Theorem: thresholds as level

As pointed out in Section 6.3.1, the notion of regular variation considered here can be extended
in a more general context. Consider here the case where threshold are levels. Assume again that
X and Y have tail indices α, β > 0, so that

{
FX (z + xa (z)) ∼ 1 − [1 − FX (u)] · [1 − Gα (z)]
FY (z + yb (z)) ∼ 1 − [1 − FY (z)] · [1 − Gβ (y)]
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Using the expression of joint survival probabilities, expressed through the survival copula and
marginal survival probabilities, P (X > x, Y > y) = C∗ (1 − FX (x) , 1 − FY (y)), we get

lim
z→∞

P

(
X − z

a (z)
> x,

Y − z

b (z)
> y

∣∣∣∣X > z, Y > z

)

= lim
z→∞

C∗ (1 − FX (z + xa (z)) , 1 − FY (z + yb (z)))

C∗ (1 − FX(z), 1 − FY (z))

= lim
z→∞

C∗ ([1 − FX (z)] · [1 − Hα (x)] , [1 − FY (z)] · [1 − Hβ (y)])

C∗ (1 − FX(z), 1 − FY (z))

= lim
z→∞

C∗ ([1 − FX(z)] · [1 − Gα (x)] , [1 − FY (z)] · [1 − Gβ (y)])

C∗ (1 − FX(z), 1 − FY (z))
.

In that case, setting x∗ = 1−Gα (x), y∗ = 1−Gβ (y), r(z) = 1−FX(z) and s(z) = 1−FY (z),
one is interested in the limit

lim
z→∞

C∗(r(z) · x∗, s(z) · y∗)
C∗(r(z), s(z))

,

where both r and s are regularly varying at infinity (since X and Y have tail indices α, β > 0).
In that case, assuming some regular variation properties for C∗, some limiting properties can be
obtained.

Theorem 6.3.8. Let X and Y be two random variables in the Fréchet domain of attraction,
with tail indices α > 0 and β > 0 respectively. From Pickands-Balkema-de Haan Theorem, there
are functions a(·) and b(·) such that

lim
u→∞

1 − 1 − FX (u + xa (u))

1 − FX (u)
= lim

u→∞
P (X ≤ u + a (u) |X > u) = Gα (x) ,

lim
v→∞

1 − 1 − FY (v + yb (v))

1 − FY (v)
= lim

v→∞
P (Y ≤ v + b (v) |Y > v) = Gβ (y) ,

where Gα(·) denotes the Generalized Pareto distribution with parameter α. If the survival copula
of (X, Y )t, c∗ is regularly varying under direction (1− FX , 1 − FY ), i.e. there exists λ such that

lim
z→∞

C∗([1 − FX(z)] · x, [1 − FY (z)] · y)

C∗([1 − FX(z)], [1 − FY (z)]
= λ(x, y),

then there exists a function h and a parameter γ ∈ R such that λ(x, y) = yγh(xy−β/α), and
therefore

lim
p→0

P

(
X − F←

X (1 − p)

a
(
F←

X (1 − p)
) > x,

Y − F←
X (1 − p)

b
(
F←

Y (1 − p)
) > y

∣∣∣∣∣ X > z, Y > z

)

= (1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/α

)
.

Proof. From calculations of the previous paragraph, note that

κ(x, y) = lim
p→0

P

(
X − F←

X (1 − p)

a
(
F←

X (1 − p)
) > x,

Y − F←
X (1 − p)

b
(
F←

Y (1 − p)
) > y

∣∣∣∣∣ X > F←
X (1 − p) , Y > F←

Y (1 − p)

)

= lim
z→∞

C∗ ([1 − FX(z)] · [1 − Gα (x)] , [1 − FY (z)] · [1 − Gβ (y)])

C∗ (1 − FX(z), 1 − FY (z))
.
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Since C∗ satisfies assumptions directional regular variation (Theorem ?? and Proposition ??),
for all x, y ∈ [0, 1],

κ(x, y) = λ([1 − Gα(x)], [1 − Gβ(y)]) = [1 − Gβ(y)]γβh
(
[1 − Gα(x)][1 − Gβ(y)]−β/α

)

= (1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/α

)
.

This finishes the proof of Theorem 6.3.8.

Remark 6.3.9. In the case where X and Y have identical distributions (hence α = β), then the
two approaches are equivalent, and the limiting distribution is the same.

6.4 UTDC and tail dependence measures

In this section, we focus on dependence measures, “one of the most widely studied subjects in
probability and statistics”, as mentioned in Jogdeo (1982). More specifically, we will introduce
some “scale-invariant” dependence measures, following the ideas of Hoeffding (1940, 1941), and
the axiomatic proposed by Scarsini (1984). Dependence measures are here considered in the
context of dependence between random variables(2-dimensional dependence).

6.4.1 Dependence and concordance: an axiomatic approach

Dependence measures

Following Rényi (1959), define dependence measures δ as follows

Definition 6.4.1. δ is measure of dependence if and only if δ satisfies

1. 0 ≤ δ (X, Y ) ≤ +1, δ (X,±X) = +1,

2. δ (X, Y ) = δ (Y, X),

3. if X and Y are independent, then δ (X, Y ) = 0,

4. δ(aX + b, cY + d) = δ(X, Y ) for all a, c > 0 and any b, d.

Note that δ is supposed to be a measure, and hence, it should be positive. As a consequence,
such a functional cannot be used to distinguish positive and negative dependence. In his initial
paper, Rényi also added an additional assumption related to the normal distribution, i.e. if
(X, Y ) is a Gaussian vector with correlation r, then δ(X, Y ) = |r|. But as mention in Schweizer
and Wolff (1976), those assumptions are much too constraining. Therefore several of the axioms
were modified to obtain monotone dependence (see Schweizer and Wolff (1976, 1981)).

Concordance measures

Hoeffding (1942) considered three fundamental conditions that should satisfy a “measure of the
degree of relationship between two random variables”,

1. δ should lie between two fixed finite bounds (“say 0 and 1”),
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2. δ should be equal to the lower bound if and only if X and Y are independent,

3. δ should be equal to the upper bound if and only if X and Y are functionally dependent
(in the sense mentioned at the beginning of Section 1.3.).

Scarsini (1984) suggested the following fundamental properties that a measure κ of concor-
dance should satisfy. The idea is to define a total order on the set of bivariate distributions,
which should be consistent with the partial order ¹PQD (also called the concordance ordering),
defined as (X1, Y1) ¹PQD (X2, Y2) if and only if

P(FX1
(X1) ≤ u, FY1

(Y1) ≤ v) ≤ P(FX2
(X2) ≤ u, FY2

(Y2) ≤ v),

for all 0 ≤ u, v ≤ 1.

Definition 6.4.2. κ is measure of concordance if and only if κ satisfies

1. κ is defined for every pair (X,Y ) of continuous random variables,

2. −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X,−X) = −1,

3. κ (X, Y ) = κ (Y, X),

4. if X and Y are independent, then κ (X, Y ) = 0,

5. κ (−X,Y ) = κ (X,−Y ) = −κ (X,Y ),

6. if (X1, Y1) ¹PQD (X2, Y2), then κ (X1, Y1) ≤ κ (X2, Y2),

7. if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors that converge to a pair
(X, Y ) then κ (Xn, Yn) → κ (X,Y ) as n → ∞.

As pointed out in Scarsini (1984), most of the axioms are “self-evident”. Note simply that the
first one is necessary in order to build some total order (which is not the case for the covariance for
instance, since vectors have to be in L2). Note that the second one is related to the normalizing
property of the correlation. Added with the fifth one, it helps to define some concepts of negative
dependence.

Nevertheless, note that a stronger concept can be considered when the fourth item is replaced
by

4′ X and Y are independent if and only if κ (X, Y ) = 0.

If κ is measure of concordance, then, if f and g are both strictly increasing, then
κ(f(X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f(X) with f almost surely strictly
increasing, and analogously κ(X,Y ) = −1 if Y = f(X) with f almost surely strictly decreasing
(see Scarsini (1984) or ). From this result, it comes that those measures of dependence are then
copula-based, in the sense that if (X1, Y1) and (X2, Y2) have the same copula (denoted C), then
κ(X1, Y1) = κ(X2, Y2) = κ(C).

Example 6.4.3. Several copula-based measures of dependence can be considered (see Schweizer
and Wolff (1981)), for example

σ(X, Y ) = 12

∫ 1

0

∫ 1

0
|C(u, v) − C⊥(u, v)|dudv,

which represents the volume between the surfaces C and C⊥. Observe that σ(X, Y ) = 0 if and
only if X and Y are independent.
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6.4.2 Kendall’s tau and Spearman’s rho

We discuss in this section two measures of concordance, Kendall’s tau and Spearman’s rho. They
shall provide interesting alternatives to Pearson’s (linear) when this measure may be inappropri-
ate (see Embrechts McNeil and Straumann (2002)).

Spearman’s rho can be defined as Pearson’s (linear) correlation between U = FX(X) and
V = FY (Y ) (also called “ranks”). Since U and V are uniform, E(U) = E(V ) = 1/2, and
V ar(U) = V ar(V ) = 1/12, and therefore,

ρ(X,Y ) = corr(U, V ) =
E(UV ) − 1/4

1/12
= 12E(UV ) − 3,

Definition 6.4.4. Let (X, Y ) denote a random pair of continuous random variables, with copula
C, then Spearman’s rho is defined as ρ(X, Y ) = 12E(FX(X)FY (Y )) − 3, or equivalently

ρ(X,Y ) = 12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3 = 12

∫

R

∫

R

[FXY (x, y) − FX(x)FY (y)]dxdy.

As mentioned in Drouet-Mari and Kotz (2001), the expression on the right corresponds to
the quantification of the strength of the PQD dependence at point (x, y). Spearman’s rho can
be seen as an average measure of PQD dependence.

This measure was initially introduced through its empirical version in Spearman (1904). It
could be defined as

ρ(X,Y ) = 3[P((X1 − X2)(Y1 − Y3) > 0) − P((X1 − X2)(Y1 − Y3) < 0)],

where (X1, Y1), (X2, Y2) and (X3, Y3) denote three independent versions of (X, Y ) (see Nelsen
(1999)).

Definition 6.4.5. Let (X, Y ) denote a random pair of continuous random variables, with copula
C, then Kendall’s tau is defined as

τ(X,Y ) = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1 = 4E(C(FX(X), FY (Y ))) − 1.

Again, initially, Kendall’s tau was not defined using copulae, but as the probability of con-
cordance, minus the probability of discordance, i.e.

τ(X, Y ) = 3[P((X1 − X2)(Y1 − Y2) > 0) − P((X1 − X2)(Y1 − Y2) < 0)],

where (X1, Y1) and (X2, Y2) denote two independent versions of (X,Y ) (see Nelsen (1999)).
If X and Y are continuous, then Kendall’s tau and Spearman’s rho are measures of concor-

dance (satisfying all the axioms of Definition 6.4.2) (see Scarsini (1984)).
Concordance measures might be interesting since they satisfy property 2 of Definition

6.4.2, i.e. if X and Y are comonotonic ρ(X, Y ) = 1 and τ(X, Y ) = 1 and if X and Y are
counter-comonotonic ρ(X, Y ) = −1 and τ(X, Y ) = −1. But further, note that the converse also
holds here (see Embrechts, Hoeing and Juri (2002)).

Example 6.4.6. Let X and Y be two random variable with an Archimedean copula C, with
generator φ. Kendall’s tau is given by

τ(X, Y ) = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt.
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Example 6.4.7. As in Joe (1997), consider for θ ∈ [0, 1] the mixture of the independent copula,
and the upper Fréchet-Hoeffding bound,

C(u, v) = (1 − θ)C⊥(u, v) + θC+(u, v), (u, v) ∈ [0, 1] × [0, 1].

Then if (X, Y ) has copula C, ρ(X,Y ) = θ. More generally, consider as in Fréchet (1958) the
mixture of the independent copula, and the Fréchet-Hoeffding bounds, with α, β > 0 and α+β ≤ 1,

C(u, v) = αC−(u, v) + (1 − α − β)C⊥(u, v) + βC+(u, v), (u, v) ∈ [0, 1] × [0, 1].

Then ρ(X,Y ) = β − α.

To conclude this section, note that if those dependence measures do not characterize inde-
pendence (in the sense that ρ(X, Y ) or τ(X,Y ) do not imply that X and Y are equivalent),
those notions have been intensively used to perform some nonparametric tests of independence.

6.5 Measures of tail dependence

6.5.1 Quantifying tail dependence

Joe, Smith and Weismann (1992) and conditional Kendall’s tau

In order to assess whether their is independence or dependence in the extremes, Joe, Smith and
Weissman (1992) introduce the following idea (keeping their notations): let u1 and u2 denote
upper π-quantiles of the marginal distributions, i.e.

u1 = F←
X (1 − π) and u2 = F←

Y (1 − π),

Set IX = I(X > u1) and IY = I(Y > u2), the indicator that thresholds are exceeded. Then, if
τ(π) denotes Kendall’s tau (so called tau-b) for the associated 2× 2 table for indicator variables,

τ(π) =
p(π) − π2

π − π2
,

where p(π) is the probability of exceeding both thresholds. This results simply derives from the
definition of Kendall’s tau, based on the concordance definition.

Joe, Smith and Weissman (1992) mention then that “by a condition in Sibuya (1960)”, if the
joint distribution of (X,Y ) is in the max-domain of attraction of some generalized extreme value
distribution, then “the limiting distribution has independent margins if τ(π) → 0 as π → 0, and
the limiting distribution has dependence if τ(π) → τ > 0 as π → 0 ”. This is obtained from
Sibuya (1960), since asymptotic independence (in the usual sense) is equivalent to

P(F (X) > 1 − s, F (Y ) > 1 − s) = o(s).

From this property, p(π) = o(p) and therefore τ(π) → 0 as π → 0. As we shall see, this condition
is closely related to λ introduced in Joe (1993).

Example 6.5.1. Figure 6.1 shows the evolution of τ(π) for those 2 × 2 tables, obtained using
indicator variate of exceeding quantile thresholds, for Frank copula, Gumbel and survival Clayton.



CHAPTER 6. EXTREME AND COPULAE 185

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Conditional Kendall tau (Frank, n=1000)

Threshold

J
o

e
, 
S

m
it
h

 &
 W

e
is

m
a

n
n

 (
1

9
9

2
)

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Conditional Kendall tau (Gumbel, n=1000)

Threshold

J
o

e
, 
S

m
it
h

 &
 W

e
is

m
a

n
n

 (
1

9
9

2
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Conditional Kendall tau (Clayton, n=1000)

Threshold

J
o

e
, 
S

m
it
h

 &
 W

e
is

m
a

n
n

 (
1

9
9

2
)

Figure 6.1: Joe, Smith and Weissmann (1992) conditional Kendall’s tau, for upper tail
dependence (2× 2 tables for indicator variate of exceeding quantile thresholds), for Frank
copula, Gumbel and survival Clayton, respectively when the overall Kendall’s tau is 0.2
(dotted), 0.5 (plain) and 0.8 (dashed).

Ledford and Tawn (1996)’s η, weak tail dependence

Ledford and Tawn (1996), Ledford and Tawn (1997) or Ledford and Tawn (1998)) focused on
bivariate survival probabilities to obtain asymptotic results. X and Y are assumed to have
unit Fréchet margins. An heuristic approach is the following: if X and Y are asymptotically
independent, the following equality should hold

P (X > z, Y > z) ∼ P (X > z) · P (Y > z) = P (X > z)2 , z → ∞, (6.35)

since X and Y have identical distributions. Thus, if

P (X > z, Y > z) ∼ P (X > z)1/η , z → ∞, (6.36)

η = 1/2 should mean that X and Y are asymptotically independent, if η > 1/2, there is more
weight that in the independent case i.e. X and Y are asymptotically dependent (in the PQD
sense). More formally,

P (X > z, Y > z) ∼ L (z) P (X > z)1/η , z → ∞, (6.37)

where L is a slowly varying function at infinity, L ∈ R∞
0 . In this approach, L is a slowly varying

function as z → ∞, and η is the coefficient of tail dependence (and lies in (0, 1]). η → 0 and
η = 1, with L = 1, correspond respectively to the anti-comonotonic and comonotonic cases (i.e.
lower and upper Fréchet-Hoeffding bounds),. Independence is obtained when η = 1/2 and L = 1.
Four types of tail behavior can then be obtained, depending on the value of η (provided that
L (t) → c > 0 when t → ∞).

An estimation of this parameter has been proposed in Draisma, Drees, Ferreira and de Haan
(2004), based on some Pareto transformation of margins, using then some Hill estimator.
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Joe (1993)’s λ, strong tail dependence

Joe (1993) defined, in the bivariate case a tail dependence measure: let (X, Y ) denote a random
pair, the upper and lower tail dependence parameters are defined, if the limit exist, as

λL = lim
u→0

P (X ≤ F←
X (u) |Y ≤ F←

Y (u)) ,

and

λU = lim
u→1

P (X > F←
X (u) |Y > F←

Y (u)) .

Note that this coefficient can be obtained differently, as in Buishand (1994): consider a
pair (X,Y ) from an extreme value distribution, and assume that X and Y have unit Fréchet
distribution, so that, using Pickands representation, the joint distribution function is

P(X ≤ x, Y ≤ y) = exp

[
−

(
1

x
+

1

y

)
A

(
y

x + y

)]
.

Notice that the distribution of the maximum of X and Y is

P(max{X, Y } ≤ x) = P(X ≤ x, Y ≤ x) = exp

[
−2

x
A

(
1

2

)]
= [exp(−1/x)]θ,

where θ = 2A(1/2). More generally, if (X, Y ) is a pair from an extreme value distribution, with
identical marginal distribution function F , the distribution of the maximum is

P(max{X, Y } ≤ x) = [F (x)]θ,

Thus, θ = 2A(1/2) can be seen as a dependence measure, and can be used for testing in-
dependence (see Tawn (1988)). Buishand (1994) considered random pairs (X, Y ) identically
distributed, and defined

θ(x) =
log P(max{X, Y } ≤ x)

log P(X ≤ x)
.

In the case where (X, Y ) has a bivariate extreme value distribution, θ(x) is constant.
Note that θ belongs to [1, 2], that independence is obtained when θ = 2 and comonotonicity

when θ = 1: Joe suggested to consider 2 − θ, defined on [0, 1]. θ and λU are related Fby

λU = 2 − lim
x→∞

θ(x),

since when x → ∞

2 − log P(max{X, Y } ≤ x)

log P(X ≤ x)
∼ P(X > x, Y > x)

1 − P(X > x)
= P(Y > x|X > x).

Joe (1993) noticed also, as mentioned earlier, that such a measure does not depend on the
marginal distribution and thus, can be expressed using the copula of (X,Y ): let (X, Y ) denote a
random pair with copula C, the upper and lower tail dependence parameters are defined, if the
limit exist, as

λL = lim
u→0

C(u, u)

u
and λU = lim

u→1

1 − 2u + C(u, u)

1 − u
= lim

u→0

C∗(u, u)

u
.
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6.5.2 Tail rank correlation function

As mentioned in the introduction of this thesis, several tail correlation coefficient have been intro-
duced recently in the literature, e.g. Patton (2004), who considered some so-called “exceedences
correlations”, defined as

ρ(u) =

{
corr(X, Y |X ≤ F←

X (p) and Y ≤ F←
Y (p)) if p ≤ 0.5,

corr(X, Y |X > F←
X (p) and Y > F←

Y (p)) if p > 0.5.

The split between low and high quantile is motivate in financial applications (see .e.g. Longin
and Solnik (2001) or Ang and Chen (2002)): both high and low return are important. But in
insurance or in environmental science, the main interest is either on high or low quantile (e.g. in
insurance if the variable of interest is a loss or a gain amount).

Similarly, Boyer, Gibson and Loretan (1997) introduced the following conditional correlation,
defined only to focus on upper tails,

rp =
cov (X, Y |X ≥ F←

X (p) , Y ≥ F←
Y (p))√

V ar
(
X|X ≥ F←

X (p) , Y ≥ F←
Y (p)

)√
V ar

(
Y |X ≥ F←

X (p) , Y ≥ F←
Y (p)

) .

Boyer, Gibson and Loretan (1997) used this coefficient to quantify changes in correlations of
exchange rates, as well as Hauksson et al. (2001). As pointed out, for most exchange rates,
rp is increasing in p. As mentioned in Chapter 1, Pearson’s linear correlation might not be
an appropriate tool to quantify the strength of the dependence since it depends (strongly) on
marginal behavior. Hence, since (X, Y ) and (X,Y |X ≥ FX (p) , Y ≥ FY (p)) do not have the
same marginal distributions, it becomes difficult to compare r and rp. Does rp′ > rp when p′ > p
means that there is “more dependence” in upper tails ? Does positive dependence rise in up (and
down) markets ? In which sense ? As shown on Figure 6.2 the monotonicity of rp as a function
of p does not depend only on the copula, but also marginal distribution. Note that in the case
where (X, Y ) has survival Clayton’s copula (which remains unchanged by truncature, i.e. the
copula of X, Y |X ≥ F←

X (p) , Y ≥ F←
Y (p) is always the same, whatever p ∈ [0, 1)), rp can be

either decreasing or increasing.
Note that Malevergne and Sornette (2002) introduced a so-called “conditional rank correla-

tion” (focusing on (U, V )|V > v, where U = FX(X) and V = FY (Y )), defined as,

ρ(v) =
cov(U, V |V > v)√

V ar(U |V > v)V ar(V |V > v)
.

But as pointed out earlier when defining tail conditional copulae, this should not be the way to
define properly this coefficient: since margins of (U, V )|V > v are not uniformly distributed, it
cannot be a “rank ” correlation.

6.5.3 Local measures of dependence and functional measures

As in Drouet-Mari and Kotz (2001), a function will be said to be locally PQD in the neighborhood
V(x0, y0) of (x0, y0) if

P(X > x, Y > y) ≥ P(X > x) · P(Y > y), for all (x, y) ∈ V(x0, y0).

Hence, define restriction of Spearman’s rho and Kendall’s tau to an open neighborhood of (x0, y0)
as

ρ(x0, y0) =
12

∫
V(x0,y0)[C(u, v) − C⊥(u, v)]dudv

∫
V(x0,y0) dudv
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Figure 6.2: Upper tail correlation (corr(X, Y |X > F←
X (u), F←

Y (u)) with Gaussian copula
(on the right) and dual Clayton (on the left), and different margins (Gaussian, Student,
Lognormal, Pareto) .

and

τ(x0, y0) =
4

∫
V(x0,y0) C(u, v)dC(u, v) − 1

∫
V(x0,y0) dC(u, v)

.

Recall that for concordance measures, Proposition ?? implies an invariance by increasing
transformation of the margins, i.e. concordance measures are copula based. Analogously, it
might be interesting to define some copula based local measures of dependence, i.e. V should be
defined using ranks. Instead of studying the conditional distribution on some neighborhood, it
is possible to extend those notions on positive cones, V(x0, y0) = (x0,∞) × (y0,∞).

Based on this setting, one can define a “ local ” measure of concordance, similarly to Definition
6.4.2.

Definition 6.5.2. Consider a subset V of R2 with non-null interior, then κV is a local measure
of concordance if and only if κ satisfies

1. κV is defined for every pair (X,Y ) of continuous random variables, such that P((X, Y ) ∈
V) 6= 0,

2. −1 ≤ κV (X,Y ) ≤ +1, κV (X,X) = +1,

3. κV (X, Y ) = κV (Y, X),

4. if X and Y are independent on V (i.e. (X,Y ) given (X,Y ) ∈ V is independent), then
κV (X, Y ) = 0,

5. if ((X1, Y1)|(X1, Y1) ∈ V) ¹PQD ((X2, Y2)|(X2, Y2) ∈ V), then κV (X1, Y1) ≤ κV (X2, Y2),

6. if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors that converge to a pair
(X, Y ) then κV (Xn, Yn) → κV (X, Y ) as n → ∞.

This notion is based on similar axioms as the ones of Definition 6.4.2. Note only that
conditions based on (X,−Y ) properties do not hold here since V is not necessarily symmetric.
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Natural tail measures of concordance can then be defined, when κ is a measure of concor-
dance (e.g. Spearman’s rho or Kendall’tau) and when V is an upper-quadrant, [FX−1(u),∞)×
[FY −1(v),∞), or lower-quadrant, (−∞, FX−1(u)) × (−∞, FY −1(v)). As mentioned in Chap-
ter 1, since κ can be expressed through the copula C of (X, Y ), in the case of lower-quadrant
measures of concordance κV = κ(−∞,FX−1(u))×(−∞,FY −1(v)) is then a function of the conditional
copula C(u,v).

6.5.4 The upper conditional rank correlation

As well as the standard rank correlation is a function of C (or C∗), the upper conditional rank
correlation should be defined as a function of the associated conditional copula C(·,·) or C∗

(·,·):

Definition 6.5.3. The upper tail conditional rank correlation of (X,Y ) given {X > F←
X (u), X >

F←
Y (v)} is defined as

ρ(u, v) = 12

∫ ∫
C∗

(1−u,1−v)(x, y)dC∗
(1−u,1−v) ∗ (x, y) − 3.

Example 6.5.4. Figure 6.3 shows the evolution of the upper tail conditional rank correlation
for Gaussian and Gumbel copulae, for different parameters. Note that they do not cross, i.e. if
C1 ¹ C2 then ρ1(u, v) ≤ ρ2(u, v) for all u, v ∈ [0, 1). Further, note that if the conditional rank
correlation if always decreasing for the Gaussian copulae (in some sense, there is less and less
dependence in upper tails), it is not the case for Gumbel copulae: if θ is not too high, there is
u∗ ∈ (0, 1) such that u∗ = argmin{ρ(u, u), u ∈ [0, 1)}.
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Figure 6.3: Evolution of the upper tail conditional rank correlation (associated to
(X,Y )|X > F←

X (u), Y > F←
Y (u)) , for Gaussian and Gumbel copulae, for different para-

meters.

Proposition 6.5.5. Given u in [0, 1), ρ (u, u) is a local concordance measure in the sense of
Definition 6.5.2, where V is defined as V = [F←

X (u),∞) × [F←
Y (u),∞).

Proof. Consider (X, Y ) a random pair with survival copula C, and set U = 1 − FX (X) and
V = 1 − FY (Y ). Then (U, V ) has distribution function C.
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1. If there is no mass in [u, 1)× [u, 1), the conditional copula is not defined, and so ρ (·, u, u)
cannot be defined. But under the assumption that

C (1 − u, 1 − u) = P ((U, V ) ∈ [u, 1) × [u, 1)) > 0

the conditional copula of (U, V ) given U > u, V > u is defined, and so, ρ (·, u, u) is defined.

2. ρ (·, u, u) belongs to [−1, +1], as Spearman rank correlation. Further, the upper bound
can be reached, e.g. if X and Y are comonotonic.

3. The rank correlation of (X,Y ) given {X > F←
X (u) and Y > F←

Y (u)} is also the rank
correlation of (Y, X) given {Y > F←

Y (u)} and {X > F←
X (u)} (the probability rank being

the same for both components).

4. If X and Y are independent, Ψ(C∗, u, u) = C⊥ for all u.

5. If (X1, Y1) ≤PQD (X2, Y2) then C1 ≤ C2 (for the usual pointwise order) then C1,∗
(u,u) ≤

C2∗
(u,u) for all u, and thus

ρ
(
C1,∗

(u,u)

)
≤ ρ

(
C2,∗

(u,u)

)
for all u ∈ [0, 1).

6. If (Xi, Yi) is a sequence of continuous vectors that converges towards a pair (X, Y ), then
for all V, ((Xi, Yi) |(Xi, Yi) ∈ V) is a sequence of continuous vectors that converges towards
a pair ((X, Y ) |(X, Y ) ∈ V).

This finishes the proof of Proposition 6.5.5.

From Point 3 in the proof, note that ρ (·, u, v) is not a concordance measure if u 6= v.

6.5.5 Conditional Kendall’s tau

Analogously, based on conditional copulae, it is possible to define an upper tail conditional
Kendall’s tau. But as well as the conditional rank correlation is not the one introduced in Boyer,
Gibson and Loretan (1997) or Malevergne and Sornette (2002), the conditional Kendall’s tau
defined in this section is not the one defined in Oakes (1989) and Drouet-Mari and Kotz (2001).

Definition 6.5.6. The upper tail conditional Kendall’s tau of (X,Y ) given {X > F←
X (u), X >

F←
Y (v)} is defined as

τ(u, v) = 4

∫ ∫
C∗

(1−u,1−v)(x, y)dxdy − 1.

Proposition 6.5.7. Given u in [0, 1), τ (u, u) is a local concordance measure in the sense of
Definition 6.5.2, where given X and Y , V is defined as V = [F←

X (u),∞) × [F←
Y (u),∞).

Proof. A proof analogous to the proof of Proposition 6.5.5 holds.

Example 6.5.8. In the case of Archimedean copulae, recall that Kendall’s tau can be derived
directly from the generator (see Example 6.4.6) as

τ = 1 + 4

∫ 1

0

φ (t)

φ′ (t)
dt.
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Figure 6.4: Evolution of the upper tail conditional Kendall’s tau (associated to
(X,Y )|X > F←

X (u), Y > F←
Y (u)) , for Gaussian and Gumbel copulae, for different para-

meters.

Thus, since generators of conditional copula can easily be obtained as

φu,v = φ (tC (u, v)) − φ (C (u, v)) = φ (t · φ← (φ (x) + φ (y))) − [φ (u) + φ (v)]

conditional Kendall’s tau can be expressed as

τ (u, v) = 1 + 4

∫ 1

0

φ (tC (u, v)) − φ (C (u, v))

C (u, v) · φ′ (tC (u, v))
dt

= 1 + 4

∫ 1

0

φ (tC (u, v))

C (u, v) · φ′ (tC (u, v))
dt −

∫ 1

0

φ (C (u, v))

C (u, v) · φ′ (tC (u, v))
dt

= 1 +
4

C (u, v)2

∫ 1

0

φ (s)

φ′ (s)
ds −

∫ 1

0

φ (C (u, v))

C (u, v) · φ′ (tC (u, v))
dt

= 1 +
τ − 1

C (u, v)2
− φ (C (u, v))

C (u, v)

∫ 1

0

dt

φ′ (tC (u, v))
.

6.5.6 Testing for tail independence

Using conditional Kendall’s tau, or conditional Spearman’s rho, one can define some testing
procedures for tail independence (since distribution of those dependence measure can be obtained
only under the assumption of independence).

Testing for independence

Hájek and Sidák (1967), Capéraà and Van Cutsen (1988), and Behnen and Neuhaus (1989)
introduced several testing procedures for independence, based on ranks. Given a n sample
(X1, Y1), ..., (Xn, Yn) from FX,Y , and copula C, let (R1, S1), ..., (Rn, Sn) denote the associated
pairs of ranks. Those pairs are an appropriate statistics to base a test of H0 : C = C⊥. A
standard procedure is based on the empirical version of Kendall’s tau,

τ̂n =
2

n(n − 1)

∑

i<j

sign(Ri − Rj) · sign(Si − Sj).

Note that it is an unbiased U statistic (Hoeffding (1948)), and therefore, τ̂n is asymptotically
Gaussian under the null hypothesis (and hence asymptotically unbiased). Since its asymptotic
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variance is V ar(τ̂n) = 2(2n + 5)/9n(n − 1), the null hypothesis should be rejected if, for large
enough sample size n, 3

√
n|τ̂n|/2 > 1.96. Similarly, another procedure is based on the empirical

version of Spearman’s rho,

ρ̂n =
12

n3 − n

n∑

i=1

(
Ri −

n + 1

2

)(
Si −

n + 1

2

)
= −3

n + 1

n − 1
+

12

n(n2 − 1)

∑

i

Ri · Si,

which can also be related to some U statistics. Here, variance, under the null hypothesis is
simply V ar(ρ̂n) = 1/(n − 1), and therefore, the null hypothesis should be rejected if, for large
enough sample size n,

√
n|ρ̂n| > 1.96. The closely related U statistic is here ûn defined by

ûn =
3

n (n − 1) (n − 2)

∑

i,j,k

sign (Xi − Xj) · sign (Yi − Yk) (6.38)

where the summation extends not over the n3 possible triples, but only over the n (n − 1) (n − 2)
triples of distinct subscripts. Further (see Hoeffding (1948)), ûn is an unbiased estimate of

u (X, Y ) = 3

∫ ∫
FX (x)FY (y) dFXY (x, y) = ρ (X, Y )

Hence, the natural estimate of Spearman’s ρ, ρ̂n, can then be written

ρ̂n =
n − 2

n + 1
ûn +

6

n + 1
τ̂n. (6.39)

Note that this estimator is biased :

E [ρ̂n (X,Y )] =
n − 2

n + 1
ρ (X, Y ) +

3

n + 1
τ (X, Y )

But the estimator as asymptotically unbiased, and asymptotically normally distributed.
More generally, several testing procedures have been considered, of the form

t̂n =
1

n

∑

i

J
(

Ri

n + 1
,

Si

n + 1

)
,

with specific score functions J (e.g. Bhuchongkul (1964) suggested J (u, v) = Φ←(u) · Φ←(v),
also called van der Waerden test).

Example 6.5.9. Consider a class of copulae Cθ, with Cθ0
= C⊥, such that θ < θ′ implies

Cθ ¹ Cθ′ , with continuous density cθ so that ∂cθ = ∂cθ/∂θ is square integrable, and exists at
θ0. Shirahata (1975) and Genest and Verret (2004) show that the locally most powerful test, for
random pairs with copula Cθ, is

T ∗
n =

1

n

∑

i

T (Ri, Si) , where T (x, y) = E

(
∂cθ0

cθ0

(Ux:n, Vy:n)

)
,

for all x, y ∈ {1, ..., n}, and U1, ..., Un, V1, ..., Vn are uniformly distributed over [0, 1]. Hence, this
test is asymptotically equivalent to

T ∗
n =

1

n

∑

i

∂cθ0

(
Ri

n + 1
,

Si

n + 1

)
.

As noticed by Genest and Verret (2004), for several families of copulae, the independence test
based on Spearman’s rho is locally most powerful. In the case of Clayton or Gumbel copulae, the
locally most powerful test is based on

T ∗
n(Clayton) =

1

n

∑

i

log
Ri

n + 1
· log

Si

n + 1
.
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Estimating conditional dependence measures

Those conditional dependence measures can be estimated using natural estimators introduced
in the previous paragraph, with notations of Section 6.5.3.

Definition 6.5.10. Let V denote a subset of R2, and I the subset of indexes i ∈ {1, ..., n}
such that (Xi, Yi) ∈ V. Let R∗

i and S∗
i denote the ranks of the Xi and Yi respectively, among

{Xi, i ∈ I} and {Yi, i ∈ I}. Let n∗ denote the cardinal of I. Then

τ̂n(V) =
2

n∗(n∗ − 1)

∑

i<j∈I

sign(R∗
i − R∗

j ) · sign(S∗
i − S∗

j ),

and

ρ̂n(V) = −3
n∗ + 1

n∗ − 1
+

12

n∗(n∗2 − 1)

∑

i∈I

R∗
i · S∗

i ,

are natural estimators of τ(V) = τ((X, Y )|(X, Y ) ∈ V) and ρ(V) = ρ((X, Y )|(X, Y ) ∈ V).

Using standard properties of those estimators for non-conditional samples, note that several
properties can be derived.

Proposition 6.5.11. τ̂n (V) is an unbiased estimate of τ (V), and ρ̂n (V) is a biased estimate of
ρ (V).

Proof. n∗ denotes the number of points in V (e.g. the upper quadrant). Note that the ex-
pected value of τ̂n(V) is E (τ̂n (V)) = E (E (τ̂n (V) |n∗)). Here τ̂n (V) |n∗ is the natural estimate of
Kendall’s tau for some n∗-sample. Hence, it is unbiased, and so E (τ̂n (V) |n∗) = τ (V), and thus,
E (τ̂nV)) = τ(V).

For Spearman’s rho E (ρ̂n (V)) = E (E (ρ̂n (V) |n∗)). But here, ρ̂n(V)|m is a biased estimate
of ρ(V), and more precisely,

E (ρ̂n (V) |n∗) =
n∗ − 2

n∗ + 1
ρ (V) +

3

n∗ + 1
τ (V) .

Hence,

E (ρ̂n (V)) = ρ (V)
n∑

k=0

k − 2

k + 1
P(n∗ = k) + τ (V)

n∑

k=0

3

k + 1
P(n∗ = k). (6.40)

This finishes the proof of Proposition 6.5.11.

In order to get a better understanding of the behavior of this estimator (and therefore as-
ymptotic approximations), we should get the (exact) distribution of n∗.

On the (exact) distribution of n∗ when V = [F←
X (u), +∞) × [F←

Y (u), +∞)

Let (X1, Y1), ..., (Xn, Yn) denote a n-i.i.d. sample with copula C, and joint distribution function
FX,Y . Set Ui = Ri/(n + 1) and Vi = Si/(n + 1) where Ri and Si denote respectively the
ranks of Xi and Yi. Note that the number n∗ of observations (Xi, Yi) which belong to region
V = [F←

X (u),+∞) × [F←
Y (u), +∞) is a random variable with joint distribution

n∗ ∼ B(n, π)

where

π = P(X > F←
X (u), Y > F←

Y (u)) = FX,Y (F←
X (u), F←

Y (u)) = C∗(1 − u, 1 − u).
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But, since the (Ui, Vi)’s are rank based, note that the distribution of n∗ (number of observations
within the upper quadrant) is slightly more difficult to get, because of the constraints

Card{i ∈ {1, ..., n}, Ui > u} = Card{j ∈ {1, ..., n}, Vj > u} = [(n + 1)(1 − u)] ,

where [·] stands for the integer part. An idea can be to use Bayes formula, i.e. P(U > u, V >
u) = P(U > u|V > u) · P(V > u). Hence, the following result holds,

Proposition 6.5.12. The cardinal n∗ of {i ∈ {1, ..., n}, Ui > u and Vi > u} is a random variable
with distribution

n∗ ∼ B(m,π) where m = [(n + 1)(1 − u)] and π =
C∗(1 − u, 1 − u)

1 − u
.

Proof. Since the Ri’s and the Si’s are the ranks, there are necessarily exactly m = [(n + 1)(1 − u)]
observations (Ui, Vi) in the regions [1 − u, 1] × [0, 1]. Consider the subset of m observations,
{(Ui, Vi), Ui > u} (see Figure 6.5). In that case, there are no other constraint, and therefore,
within those m observations, the number of observations such that both component exceed u
is (using the result mentioned at the beginning of this section) a Binomial distribution, with
parameters m and

π = P(V > u|U > u) =
P(V > u, U > u)

P(U > u)
=

C∗(1 − u, 1 − u)

1 − u
.

This finishes the proof of Proposition 6.5.12.
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Upper Conditional Dependence

1−u
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Figure 6.5: Scatterplot of some sample {(Ui, Vi), i = 1, ..., n} with regions {(Ui, Vi), Ui >
u}, {(Ui, Vi), Ui > u} and {(Ui, Vi), Ui > u, Vi > u}. Note that any hatched area should
include m = [(n + 1)(1 − u)] observations.

Proposition 6.5.13. ρ̂n (u, u) is asymptotically an unbiased estimator of ρ (u, u).
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Proof. n∗ denotes the number of observations in the upper quadrant, for n observations
(X1, Y1), ..., (Xn, Yn). Hence, n∗ is a Binomial distribution, B(m,π) where m = [(n + 1)(1 − u)]
and

π = P(V > u|U > u) =
P(V > u, U > u)

P(U > u)
=

C∗(1 − u, 1 − u)

1 − u
.

From Equation (6.40), recall that

E (ρ̂n (V)) = Anρ (V) + Bn.

Therefore, on the one hand, we set

An =
n∑

k=0

P(n∗ = k)

k + 1
=

m∑

k=0

1

k + 1

(
m

k

)
πk(1 − π)m−k,

and therefore

An =
m∑

k=0

m!

(k + 1)!(m − k)!
πk(1 − π)m−k =

1

mp

m∑

k=0

(m + 1)!

(k + 1)!(m − k)!
πk+1(1 − π)m−k

=
1

mp

m∑

k=0

(
m + 1

k + 1

)
πk+1(1 − π)(m+1)−(k+1) =

1

mp

m+1∑

k=1

(
m + 1

k

)
πk(1 − π)(m+1)−(k)

=
1 − (1 − π)m+1

mp
∼ 1 − (1 − π)(n+1)(1−u)+1

(n + 1)(1 − u)p
→ 0,

as n → ∞. On the other hand, one gets that, similarly

Bn =
n∑

k=0

k − 2

k + 1
P(n∗ = k) =

n∑

k=2

k + 1

k + 1
P(n∗ = k) +

n∑

k=0

−3

k + 1
P(n∗ = k)

= 1 +

n∑

k=0

−3

k + 1
P(n∗ = k) → 1 as n → ∞.

So, finally, E(ρ̂n (u, v)) → ρ(u, v) as n → ∞. This finishes the proof of Proposition 6.5.13.

Remark 6.5.14. Note that an elegant proof can also be written, using the relationship P(n∗ =
k) = P(n∗ > k) − P(n∗ > (k − 1)), and calling upon results on Abel series.

Example 6.5.15. Figure 6.6 shows the distribution of ρ̂n(u, u) and τ̂n(u, u), for u = 0.5 and
n = 1, 000 for the survival Clayton copula (τ = 0.5 and ρ = 0.68), obtain using 1, 000, 000
Monte Carlo simulations (and smoothing the distributions). From the Gaussian shape of the
distribution, it is intuitive to look for approximations, that might be useful to perform easily some
tail independence tests.

Approximations for the distribution of n∗, and

Using standard properties of the limiting behavior of the Binomial distribution, note that, given
u ∈ [0, 1) as n → ∞,

n∗ ∼ N
(
m(n, u, C∗),

√
V (n, u, C∗)

)
,

where 




m(n, u, C∗) = nC∗(1 − u, 1 − u)

V (n, u, C∗) = nC∗(1 − u, 1 − u)

(
1 − C∗(1 − u, 1 − u)

1 − u

)
.

In the case where C = C⊥ (H0), this asymptotic distribution can be simplified:
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Figure 6.6: Distribution of ρ̂n(u, u) and τ̂n(u, u), for u = 0.5 and n = 1000 for the survival
Clayton copula.

Proposition 6.5.16. Under the hypothesis of independence (H0 : C = C∗ = C⊥), the distribu-
tion of n∗, as n → ∞ can be approximated by

n∗ ⊥∼ N
(
n(1 − u)2,

√
nu(1 − u)

)
.

Example 6.5.17. This approximation (for the distribution of n∗) can be observe on Figure 6.5.6
where for 50, 000 simulated n-samples, the real-distribution is plotted (a Binomial distribution)
versus the asymptotic approximation (the Gaussian distribution).

Survival Clayton copula, u=0.5, n=100
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Figure 6.7: Distribution of the number of observations in [0.5, 1]2, for samples of size 100
(on the left) and 1, 000 (on the right). The histogram is the “real ” distribution obtained
from 50, 000 simulated n-sample, while the line is the Gaussian approximation.

Remark 6.5.18. Recall that the Gaussian approximation for a binomial distribution B(n, p)
is a “good” approximation when np ≥ 30 and n(1 − p) ≥ 30 (see e.g. Hollander and Wolfe
(1999)). Under the independence hypothesis, one can use the Gaussian approximation when
n(1− u)2 ≥ 30. Table 6.5.6 gives some ideas on the meaning of this inequality. Note that to use
a Gaussian approximation when u = 90%, on needs, at least, 3, 000 observations.
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u n ≥ 30/(1 − u)2 n u ≥
√

30/n
50% 120 100 45%
80% 750 1,000 83%
90% 3,000 5,000 92%
95% 12,000 10,000 95%
99% 300,000 100,000 98%

Table 6.1: Link between the total size of the sample and the maximal value of u so that
the Gaussian approximation (of the distribution of the number of exceeding observations)
is valid.

On the distribution of τ̂n(u, u) and ρ̂n(u, u)

Given an n-sample, Kendall’s tau and Spearman’s rho can be estimated using procedure men-
tioned at the beginning of this section, but no non-null exact distribution can be obtained (some
tables can be consulted, see e.g. Hollander and Wolfe (1999)).

On asymptotic distributions of the estimators under independence

Under independence, given an n-sample, E(ρ̂n) → 0 and E(τ̂n) = 0, with an asymptotic Gaussian
distribution. Hence, if n is large enough

ρ̂n
⊥∼ N

(
0,

1√
n

)
and τ̂n

⊥∼ N
(

0,
2

3
√

n

)
.

Since n∗ is itself asymptotically normally distribution, the asymptotic behavior of ρ̂n(u, u)
and τ̂n(u, u) can be obtained, as a mixture of Gaussian distributions.

Proposition 6.5.19. Given u ∈ (0, 1), as n → ∞,

P(ρ̂n(u, u) ≤ r) =

∫ x

−∞

∫ +∞

−∞
φ

(√
z − 1y

)
φ

(
z − n(1 − u)2

2
√

nu(1 − u)2

)
dzdy,

and

P(τ̂n(u, u) ≤ r) =

∫ x

−∞

∫ +∞

−∞
φ

(√
z − 1y

)
φ

(
(z − n(1 − u)2)

3
√

nu(1 − u)2

)
dzdy,

where φ denotes the density of the N (0, 1) distribution.

Proof. This result is obtained through substitution.

Example 6.5.20. This asymptotic distribution (for ρ̂n(u, u) and τ̂n(u, u)) can be observe on
Figure 6.5.6 where for 50, 000 simulated n-samples of independent variables X and Y , when
u = 0.5.

Note that a more convenient approximation can be obtained, assuming that that the lim-
iting distribution is simply a Gaussian distribution, assuming that uncertainty arises from the
estimation of dependence measures, not the number of observations n∗.
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Figure 6.8: Distribution of ρ̂n(u) and τ̂n(u), for u = 0.5 and n = 1000 in the independent
case.

Proposition 6.5.21. Given u ∈ (0, 1), as n → ∞,

P(ρ̂n(u, u) ≤ r)
⊥
=

∫ x

−∞
φ

(√
[n(1 − u)2] − 1 · y

)
dy

and

P(τ̂n(u, u) ≤ r)
⊥
=

∫ x

−∞
φ

(
3

2

√
[n(1 − u)2] − 1 · y

)
dy

where φ denotes the density of the N (0, 1) distribution.

Proof. This results is obtained substituting a Dirac at point E(n∗) = n(1 − u)2 to the Gaussian
distribution, with mean n(1 − u)2.

Example 6.5.22. Distribution of estimation those estimators can be seen on Figure 6.5.6, for
ρ̂n(u) and τ̂n(u), when u = 0.5 or u = 0.9 and a sample size n = 250. The plain line is the
“exact” distribution, obtained using 1, 000, 000 Monte Carlo simulations, and the dotted line the
asymptotic Gaussian approximation (and the mixture of Gaussian, which is the ”exact asymp-
totic” distribution). Not that this if this approximation is good for small u, the closer to 1 is u,
the worst is the approximation. When u is close to 1, n∗ is more and more volatile (compared
with its average).

Note on those graphs that tails are underestimated, and thus, confidence intervals are too
tight. an alternative is to use the two first moments of ρ̂n(u, u) and τ̂n(u, u). Respectively,

E(ρ̂n(u, u)) = E(E(ρ̂n(u, u)|n∗)) → 0 as n → ∞

E(τ̂n(u, u)) = E(E(τ̂n(u, u)|n∗)) → 0 as n → ∞.

For the variance,

V ar(ρ̂n(u, u)) = V ar(E(ρ̂n(u, u)|n∗)) + E(V ar(ρ̂n(u, u)|n∗))

→ V ar(0) + E

(
1√
n∗

)
,
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Figure 6.9: Distribution of estimation of ρ̂n(u), on the right, and τ̂n(u), on the left,
when u = 0.5 on top and u = 0.8 below, when n = 250. The plain line is the “exact”
distribution, and the dotted line the asymptotic Gaussian approximation.
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V ar(τ̂n(u, u)) = V ar(E(τ̂n(u, u)|n∗)) + E(V ar(τ̂n(u, u)|n∗))

→ V ar(0) + E

(
2

3
√

(n∗)

)
.

Further, from Proposition ??, this expected value can be approximated as follows,

E
(√

n∗
−1

)
=

∑

k∈N

k−1/2P(n∗ = k) =
m∑

k=0

k−1/2

(
m

k

)
(1 − u)kum−k,

(6.42)

for any u ∈ [0, 1) and m = [(n + 1)(1 − u)].

Testing for tail independence

An idea to test tail independence is to test whether , given an n sample (X1, Y1), ..., (Xn, Yn),
ρ̂n(u) or τ̂n(u) are “closed ” to 0. From the Gaussian approximation, this closeness notion can be
explicitly written in terms of confidence interval.

A natural test of tail independence is derived as follows. X and Y are tail independent if
and only if

−u1−α/2

√
n(1 − u)2 ≤ ρ̂n(u) ≤ +u1−α/2

√
n(1 − u)2, for u close to 1,

or
−u1−α/2

3

2

√
n(1 − u)2 ≤ τ̂n(u) ≤ +u1−α/2

3

2

√
n(1 − u)2, for u close to 1,

where u1−α/2 denotes the quantile of order 1 − α/2 of the N (0, 1) distribution.

Example 6.5.23. Figure 6.5.6 shows graphically the results of this testing procedure, for sim-
ulated samples of size n = 10, 000, based on Spearman’s rho and Kendall’s tau (respectively on
the left, and on the right), with an independent sample, with survival Clayton, and two Gaussian
samples, r = 0.2 and r = 0.7 (from top to bottom).
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Figure 6.10: Evolution of ρ̂n(u), on the right, and τ̂n(u) as functions of u, for simulated
samples of size n = 10, 000, with confidence intervals for τ̂n(u) and τ̂n(u) under the
assumption of independence. From top to bottom are simulated an independent sample,
survival Clayton, and two Gaussian samples, r = 0.2 and r = 0.7
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Chapter 7

Nonparametric estimation of copulae

density

7.1 Introduction

copulae are a way of formalizing dependence structures of random vectors. Although they are
known for a long time (Sklar (1959)), they have been rediscovered relatively recently in applied
sciences (biostatistics, reliability, biology etc). In finance, they have become a standard tool with
broad applications: multi-asset pricing (especially complex credit derivatives), credit portfolio
modeling, risk management, etc. For instance, see Li (1999), Patton (2001), or Longin and Solnik
(2001), among others.

Although the concept of copulae is well understood, it is now recognized that their empirical
estimation is a harder and trickier task. Lots of traps and technical difficulties are present, and
these are most of the time ignored or underestimated by practitioners. The problem is that the
estimation of copulae implies usually that every marginal distribution of the underlying random
vectors must be evaluated and plugged into an estimated multivariate distribution. Such a
procedure produces unexpected and unusual effects w.r.t. the usual statistical procedures: non-
standard limiting behaviors, noisy estimations, etc (see the discussion in Fermanian and Scaillet
(2005), e.g.).

In this chapter, we focus on the practical issues practitioners are faced with, especially con-
cerning estimation and visualization. In the first section, we expose a general setting for the
estimation of copulae. Such a framework nests most of the available techniques. In the sec-
ond section, we deal with the estimation of the copula density itself, with a particular focus on
estimation near the boundaries of the unit square.

7.2 A general approach for the estimation of copula

functions

copulae involve several underlying functions: the marginal cumulative distribution functions and
a joint cdf. To estimate copula functions, the first issue consists in specifying how to estimate
separately the margins and the joint law. Moreover, some of these functions can be fully known.
Depending on the assumptions some quantities have to be estimated parametrically, semi- or
even non-parametrically. In the latter case, the practitioner has to choose between the usual
methodology of using “empirical counterparts” and invoking smoothing methods well-known in
statistics: kernels, wavelets, orthogonal polynomials, nearest neighbors, etc.

203
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Figure 7.1: Function χ when (X,Y ) is a Student random vector, and when either margins
or the dependence structure are misspecified. The associated ratios of exceeding proba-
bility correspond to the χ function obtained for the misspecified model vs. the true χ (for
the true Student model).

Obviously, the estimation precision and the graphical results are functions of all these choices.
A true known marginal can improve a lot the results under well-specification, but the reverse is
true under misspecification (even under a light one). Without any valuable prior information,
non-parametric estimation should be favored, especially for margin estimation.

To illustrate this point Figure 7.1 shows the graphical behaviour of the exceeding probability
function

χ : p 7→ P (X > F←
X (p), Y > F←

Y (p))

. If the true underlying model is a multivariate Student vector (X, Y ), the associated probability
is the upper line. If either marginal distributions are misspecified (e.g. Gaussian marginal
distributions), or the dependence structure is misspecified (e.g. joint Gaussian distribution),
these probabilities are always underestimated, especially in the tails.

Now, let us introduce our framework formally. Consider the estimation of a d-dimensional
copula C, that can be written

C(u) = F (F←
1 (u1), . . . , F

←
d (ud)) .

Obviously, all the marginal cdfs have been denoted by Fk, k = 1, . . . , d, when the joint cdf is
F . Along this chapter, the inverse operator ← should be understood as a generalized inverse,
namely that for every function G,

G←(x) = inf{y|G(y) ≥ x}.

Assume we have observed a T -sample (Xt)t=1,...,T . They are some realizations of the d-
random vector X = (X1, . . . , Xd). Note that we do not assume that Xt = (X1t, . . . , Xdt) are
mutually independent (at least for the moment).
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Every marginal cdf, say the k-th can be estimated empirically by

F
(1)
k (x) =

1

T

T∑

t=1

1(Xkt ≤ x),

and [F
(1)
k ]←(uk) is simply the empirical quantile corresponding to uk ∈ [0, 1]. Another way is

to smooth such cdfs, and the simplest way is to invoke the kernel method (see, e.g., Härdle
and Linton (1994) or Pagan and Ullah (1999) for an introduction): consider a univariate kernel
function K : R −→ R,

∫
K = 1, and a bandwidth sequence hT (or simpler h hereafter), hT > 0

and hT −→ 0 when T → ∞. Then, Fk(x) can be estimated by

F
(2)
k (x) =

1

T

T∑

t=1

K

(
x − Xkt

h

)
,

for every real number x, by denoting K the primitive function of K: K(x) =
∫ x
−∞ K.

There exists another common case: assume that an underlying parametric model has been
fitted previously for the k-th margin. Then, the natural estimator for Fk(x) is some cdf F

(3)
k (x, θ̂k)

that depends on the relevant estimated parameter θ̂k. When such a model is well-specified, θ̂k

is tending almost surely to a value θk such that Fk(·) = F
(3)
k (·, θk). The last limiting case is the

knowledge of the true cdf Fk. Formally, we will set F
(0)
k = Fk.

Similarly, the joint cdf F can be estimated empirically by

F (1)(x) =
1

T

T∑

t=1

1(Xt ≤ x),

or by the kernel method

F (2)(x) =
1

T

T∑

t=1

K

(
x − Xt

h

)
,

with a d-dimensional kernel K, so that

K(x) =

∫ x1

−∞
. . .

∫ xd

−∞
K,

for every x = (x1, . . . , xd) ∈ Rd. Besides, there may exist an underlying parametric model for
X: F is assumed to belong to a set of multivariate cdfs indexed by a parameter τ . A consistent
estimation τ̂ for the “true” value τ allows setting F (3)(·) = F (·, τ̂). Finally, we can denote
F (0) = F .

Therefore, generally speaking, a d-dimensional copula C can be estimated by

Ĉ(u) = F (j)
(
[F

(j1)
1 ]←(u1), . . . , [F

(jd)
d ]←(ud)

)
, (7.1)

for every indices j, j1, j2, . . . , jd that belong to {0, 1, 2, 3}. Thus, it is not so obvious to discrimi-
nate between all these competitors, especially without any parametric assumption.

Every estimation method has its own advantages and drawbacks. The full empirical method
(j = j1 = . . . = jd = 1 with the notations of Equation (7.1)) has been introduced in Deheuvels
(1979, 1981a, 1981b) and studied more recently by Fermanian et al. (2004), in the independent
case, and by Doukhan et al. (2004) in a dependent framework. It provides a robust and universal
way for estimation purposes. Nonetheless, its discontinuous feature induces some difficulties: the
graphical representations of the copula can be unpleasant and not intuitive. Moreover, there is
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no unique choice for building the inverse function of F
(1)
k . In particular, if Xk1 ≤ . . . ≤ XkT is the

ordered sample on the k-axis, then the inverse function of F
(1)
k at some point t/T may be chosen

arbitrarily between Xkt and Xk(t+1). Finally, since the copula estimator is not differentiable
when only one empirical cdf is involved in Definition (7.1), it cannot be used straightforwardly
to get an estimate of the associated copula density (by differentiation of Ĉ(u) with respects to
all its arguments) or for optimization purposes, for instance.

Smooth estimators are nicer for graphical purposes, and can provide more easily the intu-
ition for getting the “true” underlying parametric distribution. However, they depend on an
auxiliary smoothing parameter (h in the case of the kernel method, e.g.), and suffer from the
well-known “curse of dimensionality”: the higher the dimension (d with our notations), the worse
the performance in terms of convergence rates. In other words, as the dimension increases, the
complexity of the problem increases exponentially 1. Such methods can be invoked safely in
practice when d ≤ 3 and for samples sizes larger than a couple of hundreds of observations
(which is usual in finance). The theory of fully smoothed copulae (j = j1 = . . . = jd = 2 with
the notations of Definition (7.1)) can be found in Fermanian and Scaillet (2003) in a strongly
dependent framework.

A more comfortable situation exists when “good” parametric assumptions are put into (7.1),
for the marginal cdfs and/or the joint cdf F . The former case is relatively usual because there
exist a lot of univariate models for financial variables (see Alexander (2002), for instance). Nev-
ertheless, for a lot of dynamic models (stochastic volatility models, e.g.), their (unconditional)
marginal cdfs cannot be written explicitly. And, obviously, we are under the threat of a mis-
specification, that can have disastrous effects (see Fermanian and Scaillet, 2005). Concerning a
parametric assumption for F itself, our opinion is balanced. At first glance, we are absolutely free
for choosing an “interesting” parametric family F of d-dimensional cdfs and that would contain
the true law F . But, by setting for every real number x and every k = 1, . . . , d

F
(3)
k (x) = F (+∞, . . . ,+∞, x,+∞, . . . |τ̂),

where x is the k-th argument of F , we should have found the “right” marginal distributions
too, to be coherent with ourselves. Indeed, the joint law contains the marginal ones. Then, the
estimated copula should be

Ĉ(u) = F (3)
(
[F

(3)
1 ]←(u1), [F

(3)
2 ]←(u2), . . . , [F

(3)
d ]←(ud)

)
.

Actually, the problem is really to find a sufficiently rich family F ex ante, that might generate
all empirical features. What people do is more clever. They choose a parametric family F∗ and
other marginal parametric families F∗

k , k = 1, . . . , d, and set

C(u) = F̂ ∗
(
[F̂ ∗

1 ]←(u1), . . . , [F̂
∗
d ]←(ud)

)

for some F̂ ∗ ∈ F , and F̂ ∗
k ∈ Fk for every k = 1, . . . , d. Note that the choice of all the parametric

families is absolutely free of constraints, and these families are not related to each others (they can
be arbitrary and independently chosen). It is the usual way of generating new copula families.
The price to be paid is that the true joint law F does not belong to F∗ generally speaking.
Similarly, the true marginal laws Fk do not belong to the sets F∗

k in general.

1For instance, the number of histogram grid cells increases exponentially. This effect cannot be
avoided, even by other estimation methods. Under smoothness assumptions on the density, the amount
of training data required for nonparametric estimators increases exponentially with the dimension (see
e.g. Stone (1980)).
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When a parametric assumption is done in such a case, the standard estimation procedure is
semi-parametric: the copula is a function of some parameter θ = (τ, θ1, . . . , θd). Recall that the
copula density c is the derivative of C w.r.t. each of its arguments:

cθ(u) =
∂d

∂1 . . . ∂d
C(u).

Here, the copula density cθ itself can be calculated under a full parametric assumption. Thus,
we get an estimator of θ by maximizing the log-likelihood

T∑

t=1

log cθ

(
F̂1(X1t), . . . , F̂d(Xdt)

)
,

for some
√

T -convergent estimates F̂k(Xkt) of the marginal cdfs. Obviously, we may choose
F̂k = F

(1)
k or F

(2)
k .

Note that such an estimator is called an “omnibus estimator”, and it can be seen as a max-
imum likelihood estimator of θ after replacing the unobservable ranks Fk(Xkt) by the pseudo
observations. The asymptotic distribution of the estimator was studied in Genest et al. (1995)
and Shi and Louis (1995). The main interest of semi-parametric estimation is to avoid possible
misspecification of marginal distributions, which may over-estimate the degree of dependence in
the data (see e.g. Silvapulle, Kim and Silvapulle (2004)). Note finally that Chen and Fan (2004a,
2004b) have developed the theory of this semi-parametric estimator in a time-series context.

Thus, depending on the degree of assumptions about the joint and marginal models, there
exists a wide range of possibilities for estimating copula functions as provided by Equation (7.1).
The only trap is to be sure that the assumptions done for margins are consistent with those done
for the joint law. The statistical properties of all these estimators are the usual ones, namely
consistency and asymptotic normality.

7.3 The estimation of copula densities

After the estimation of C by Ĉ as in Equation (7.1), it is tempting to define an estimate of the
copula density c at every u ∈ [0, 1]d by

ĉ(u) =
∂d

∂1 . . . ∂d
Ĉ(u).

Unfortunately, this works only when Ĉ is differentiable. Most of the time, this is the case when
the marginal and joint cdfs are parametric or nonparametrically smoothed (by the kernel method,
for instance). In the latter case and when d is “large” (more than 3), the estimation of c can be
relatively poor because of the curse of dimensionality.

Nonparametric estimation procedures for the density of a copula function have already been
proposed by Behnen, Huskova, and Neuhaus (1985) or Gijbels and Mielniczuk (1990). These
procedures rely on symmetric kernels, and have been detailed in the context of uncensored data.
Unfortunately, such techniques are not consistent on the boundaries of [0, 1]d. They suffer from
the so-called “boundary bias”. Such bias can be significant in the neighborhood of the boundaries
too, depending on the size of the bandwidth. Hereafter, we will propose some solutions to cope
with such an issue. To ease notations and without a lack of generality, we will restrict ourselves
to the bivariate case (d = 2). Thus, our random vector will be denoted by (X, Y ) instead of
(X1, X2).
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In the following sections, we will study some properties of some kernel-based estimators, and
illustrate some of these by simulations. The benchmark will be a simulated sample, whose size
is T = 1, 000 and that will be generated by a Frank copula with copula density

cFr(u, v, θ) =
θ[1 − e−θ]e−θ(u+v)

([1 − e−θ] − (1 − e−θu)(1 − e−θv))2
,

and Kendall’s tau equal to 0.5. Hence, the copula parameter is θ = 5.74. This density can be
seen on Figure 7.2 together with its contour plot on the right.
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Figure 7.2: Density of the Frank copula with a Kendall tau equal to 0.5.

7.3.1 Nonparametric density estimation for distributions with fi-

nite support

A first approach relies on a kernel based estimation of the density based on the pseudo-
observations (FX,T (Xi), FY,T (Yi)), where FX,T and FY,T are the empirical distribution functions,

FX,T (x) =
1

T + 1

T∑

i=1

11(Xi ≤ x) and FY,T (y) =
1

T + 1

T∑

i=1

1(Yi ≤ y),

where the factor T +1 (instead of standard T , as in Deheuvels (1979) for instance) allows avoiding
boundary problems: the quantities FX,T (Xi) and FY,T (Yi) are the ranks of the Xi’s and the Yi’s
divided by T + 1, and therefore take values

{
1

T + 1
,

2

T + 1
, ...,

T

T + 1

}
.

Standard kernel-based estimators of the density of pseudo-observations yield, using diagonal
bandwidth (see Wand and Jones (1995))

ĉh(u, v) =
1

Th2

T∑

i=1

K

(
u − FX,T (Xi)

h
,
v − FY,T (Yi)

h

)
,

for a bivariate kernel K : R2 −→ R,
∫

K = 1.
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The variance of the estimator can be derived, and is O((Th2)←). Moreover, it is asymptoti-
cally normal at every point (u, v) ∈ (0, 1):

ĉh(u, v) − E(ĉh(u, v))√
V ar(ĉh(u, v))

L→ N (0, 1).

As a benchmark, Figure 7.2 shows the theoretical density of a Frank copula. We plot on Figure
7.3 the standard Gaussian kernel estimator based on the sample of pseudo-observations (Ûi, V̂i) ≡
(FX,T (Xi), FY,T (Yi)).
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Figure 7.3: Estimation of the copula density using a Gaussian kernel based with 1, 000
observations drawn from a Frank copula.

Recall that even if kernel estimates are consistent for distributions with unbounded support,
the boundary bias when support is bounded can yield some ill underestimation (even if the
distribution is twice differentiable in the interior of its support).

We can explain this phenomenon easily in the univariate case. Consider a T sample X1, ..., XT

of a positive random variable with density f . The support of their density is then R+. Let K
denote a symmetric kernel, whose support is [−1, +1]. Then, for all x ≥ 0, using a Taylor
expansion, we get

E(f̂h(x)) =

∫ x/h

−1
Kh(y)f(x − hy)dy

= f(x) ·
∫ x/h

−1
Kh(y)dy

−h · f ′(x) ·
∫ x/h

−1
zKh(y)dy + O(h2).

Hence, since the kernel is symmetric,
∫ x/h
−1 Kh(y)dy

h→0−→ 1/2 when x = 0, and therefore,

E(f̂h(0)) =
1

2
f(0) + O(h).

Note that, if x > 0, the expression
∫ x/h
−1 Kh(y)dy is 1 when h is sufficiently small (when x > h to

be specific). Thus, this integral cannot be one uniformly w.r.t. every x ∈ (0, 1]. And for more
general kernels, it has no reason to be equal to 1. In the latter case, since this expression can
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be calculated, normalizing f̂h(x) by dividing by
∫ x/h
−1 K(z)dz (at each x) achieves consistency.

Nonetheless, it remains a bias that is of order O(h). Using some boundary kernels (see Gasser
and Müller (1979)), it is possible to achieve O(h2) everywhere in the interior of the support.

Consider the case of variables uniformly distributed on [0, 1], U1, ..., Un. Figure 7.4 shows
kernel-based estimators of the uniform density, with Gaussian kernel and different bandwidth s,
with n = 100 simulated variables on the left, n = 1, 000 simulated variables on the right. In that
case, for any h > 0,

E(f̂h(0)) =

∫ 1

0
Kh(y)dy =

1

h
√

2π

∫ 1

0
exp

(
− y2

2h2

)
dy

h→0−→ 1

2
=

f(0)

2
,

and in the interior, i.e. x ∈ (0, 1)

E(f̂h(x)) =

∫ 1

0
Kh(y − x)dy

=
1

h
√

2π

∫ 1

0
exp

(
−(y − x)2

2h2

)
dy

h→0−→ 1 = f(x).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Kernel based estimation of the uniform density on [0,1]
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Figure 7.4: Estimation of the uniform density using a Gaussian kernel and different
bandwidth with n = 100 and 1, 000 observations.

Dealing with bivariate copula densities, we observe the same phenomenon. On boundaries, we
obtain some “multiplicative bias”, 1/4 in corners and 1/2 in the interior of borders. The additional
bias is of order O(h) on the frontier, and standard O(h2) in the interior. More precisely, in any
corners (e.g. (0, 0))

E(ĉh(0, 0)) =
1

4
c(u, v) + O(h).

on the interior of the borders (e.g. u = 0 and v ∈ (0, 1)),

E(ĉh(0, v)) =
1

2
c(u, v) + O(h).

and in the interior ((u, v) ∈ (0, 1) × (0, 1)),

E(ĉh(u, v)) = c(u, v) + O(h2).

The bias can be observed on Figure 7.5 which represents the diagonal of the estimated density
for several samples.

Several techniques have been introduced to get a better estimation on the borders, for uni-
variate densities:
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Figure 7.5: Estimation of the copula density on the diagonal using a (standard) Gaussian
kernel with 100 and 10, 000 observations drawn from a Frank copula.

• mirror image modification (Deheuvels and Hominal (1989), Schuster (1985)), where artifi-
cial data are obtained, using symmetric (mirror) transformations on the borders;

• transformed kernels (Devroye and Györfi (1985), Wand, Marron and Ruppert (1991)),
where the idea is to transform the data Xi using a bijective mapping φ so that φ(Xi)’s
have support R. Efficient kernel based estimation of the density of the φ(Xi)’s can be
derived, and, by the inverse transformation, we get back the density estimation of the Xi’s
themselves;

• boundary kernels (Gasser and Müller (1979), Rice (1984), Müller (1991)), where a smooth
distortion is considered near the border, so that the bandwidth and the kernel shape can
be modified (the closer to the border, the smaller).

Finally, the last section will briefly mention the impact of pseudo-observations, i.e. working
on samples

{(FX,T (X1), FY,T (Y1)), ..., (FX,T (XT ), FY,T (YT ))},
instead of

{(FX(X1), FY (Y1)), ..., (FX(XT ), FY (YT ))},
as if we know the true marginal distributions.

7.3.2 Mirror image

The idea of this method, developed by Deheuvels and Hominal (1979) and Schuster (1985), is to
add some “missing mass” by reflecting the sample w.r.t. the boundaries. They focus on the case
where variables are positive, i.e. whose support is [0,∞). Formally and in its simplest form, it
means replacing Kh(Xi − x) by Kh(x + Xi) + Kh(Xi − x). The estimator of the density is then

f̂h(x) =
1

Th

T∑

i=1

{
K

(
x − Xi

h

)
+ K

(
x + Xi

h

)}
.

In the case of densities whose support is [0, 1]× [0, 1], the non-consistency can be corrected on
the boundaries, but the convergence rate of the bias will remain O(h) on the boundaries which
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is larger than the usual rate O(h2) obtained in the interior if h → 0. The only case where the
usual rate of convergence is obtained on boundaries is when the derivative of the density is zero
on such subsets. Note that the variance is 4 times higher in corners and 2 times higher in the
interior of borders.

For copulae, instead of using only the “pseudo-observations” (Ûi, V̂i) ≡ (FX,T (Xi), FY,T (Yi)),
the mirror image consists in reflecting each data point with respect to all edges and corners of the
unit square [0, 1]× [0, 1]. Hence, additional observations can be considered, i.e. the (±Ûi,±V̂i)’s,
the (±Ûi, 2 − V̂i)’s, the (2 − Ûi,±V̂i)’s and the (2 − Ûi, 2 − V̂i)’s. Hence, consider

ĉh(u, v)

=
1

Th2

T∑

i=1

{
K

(
u − Ûi

h

)
K

(
v − V̂i

h

)
+ K

(
u + Ûi

h

)
K

(
v − V̂i

h

)
+

K

(
u − Ûi

h

)
K

(
v + V̂i

h

)
+ K

(
u + Ûi

h

)
K

(
v + V̂i

h

)
+

K

(
u − Ûi

h

)
K

(
v − 2 + V̂i

h

)
+ K

(
u + Ûi

h

)
K

(
v − 2 + V̂i

h

)
+

K

(
u − 2 + Ûi

h

)
K

(
v − V̂i

h

)
+ K

(
u − 2 + Ûi

h

)
K

(
v + V̂i

h

)
+

K

(
u − 2 + Ûi

h

)
K

(
v − 2 + V̂i

h

)}
.

Figure 7.6 has been obtained using the reflection principle. We can check that the fit is far
better than in Figure 7.3.
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Figure 7.6: Estimation of the copula density using a Gaussian kernel and the mirror
reflection principle with 1, 000 observations from the Frank copula.

7.3.3 Transformed kernels

Recall that c is the density of (U, V ), U = FX(X) and V = FY (Y ). The two latter rvs follow
uniform distributions (marginally). Consider a distribution function G of a continuous distrib-
ution on R, with differentiable strictly positive density g. We build new rvs X̃ = G←(U) and
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Ỹ = G←(V ). Then, the density of (X̃, Ỹ ) is

f(x, y) = g(x)g(y)c[G(x), G(y)]. (7.2)

This density is twice continuously differentiable on R2, and the standard kernel approach applies.
Since we do not observe a sample of (U, V ) but instead pseudo-observations (Ûi, V̂i), we

build an “approximated sample” of the transformed variables (X̃1, Ỹ1), ..., (X̃T , ỸT ), by setting
X̃i = G←(Ûi) and Ỹi = G←(V̂i). Thus, the kernel estimator of f is

f̂(x, y) =
1

Th2

T∑

i=1

K

(
x − X̃i

h
,
y − Ỹi

h

)
. (7.3)

The associated estimator of c is then deduced by inverting (7.2),

c(u, v) =
f(G←(u), G←(v))

g(G←(u))g(G←(v))
, (u, v) ∈ [0, 1] × [0, 1],

and therefore we get

ĉh(u, v) =
1

Th2g(G←(u)) · g(G←(v))
T∑

i=1

K

(
G←(u) − G←(Ûi)

h
,
G←(v) − G←(V̂i)

h

)
,

Note that this approach can be extended by considering different transformations GX and GY ,
different kernels KX and KY , or different bandwidths hX and hY , for the two marginal random
variables.

Figure 7.7 has been obtained using the transformed kernel, where K was a Gaussian kernel
and G was respectively the cdf of the N (0, 1) distribution.
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Figure 7.7: Estimation of the copula density using a Gaussian kernel and Gaussian trans-
formations with 1, 000 observations drawn from the Frank copula.

The absence of a multiplicative bias on the borders can be observed in Figure 7.8, where the
diagonal of the copula density is plotted, based on several samples. The copula density estimator
obtained with transformed samples has no bias, is asymptotically normal, etc. Actually, we get
all the usual properties of the multivariate kernel density estimators.
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Figure 7.8: Estimation of the copula density on the diagonal using a Gaussian kernel and
Gaussian transformations with 100 and 10, 000 observations drawn from a Frank copula.

7.3.4 Beta kernels

In this section we examine the use of the beta kernel introduced by Brown and Chen (1999),
and Chen (1999, 2000) for nonparametric estimation of regression curves and univariate densities
with compact support, respectively.

Following an idea by Harrell and Davis (1982), Chen (1999, 2000) introduced the Beta kernel
estimator as an estimator of a density function with known compact support [0, 1], to remove
the boundary bias of the standard kernel estimator:

f̂h(x) =
1

T

T∑

i=1

K

(
Xi,

x

h
+ 1,

1 − x

h
+ 1

)
,

where K(·, α, β) denotes the density of the Beta distribution with parameters α and β,

K(x, α, β) =
xα(1 − x)β

B(α, β)
, x ∈ [0, 1], where B(α, β) =

Γ(α + β)

Γ(α)Γ(β)
.

The main difficulty when working with this estimator is the lack of a simple “rule of thumb” for
choosing the smoothing parameter h.

The beta kernel has two leading advantages. First it can match the compact support of
the object to be estimated. Secondly it has a flexible form, and changes the smoothness in a
natural way as we move away from the boundaries. As a consequence beta kernel estimators
are naturally free of boundary bias, and can produce estimates with a smaller variance. Indeed
we can benefit from a larger effective sample size since we can pool more data. Monte Carlo
results available in these papers show that they have better performance compared to other
estimators which are free of boundary bias, such as local linear (Jones (1993)) or boundary
kernel (Müller (1991)) estimators. Renault and Scaillet (2004) also report better performance
compared to transformation kernel estimators (Silverman (1986)). Besides Bouezmarni and Rolin
(2001, 2003) show that the beta kernel density estimator is consistent even if the true density is
unbounded at the boundaries. This feature may arise in our situation as well. For example the
density of a bivariate Gaussian copula is unbounded at the corners (0, 0) and (1, 1). Therefore
beta kernels are appropriate candidates to build well-behaved nonparametric estimators of the
density of a copula function.
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Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0

Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2

Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5

Figure 7.9: Shape of bivariate Beta kernels for different values of u and v.
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Figure 7.10: Estimation of the copula density using Beta kernels with 1, 000 observations
drawn from a Frank copula.

The Beta-kernel based estimator of the copula density at point (u, v), is obtained using
product beta kernels, which yield

ĉh(u, v) =
1

Th2

T∑

i=1

K

(
Xi,

u

h
+ 1,

1 − u

h
+ 1

)
· K

(
Yi,

v

h
+ 1,

1 − v

h
+ 1

)
.

Figure 7.9 shows that the shape of the product beta kernels for different values of u and v is
clearly adaptive.

For convenience, the bandwidths are here assumed to be equal, but more generally, one can
consider one bandwidth per component. See Figure 7.10 for an example of an estimation based
on Beta kernels and a bandwidth h = 0.05.

Let (u, v) ∈ [0, 1] × [0, 1]. The bias of ĉ(u, v) is of order h, ĉh(u, v) = c(u, v) + O(h). The
absence of a multiplicative bias on the boundaries can be observed on Figure 7.11, where the
diagonal of the copula density is plotted, based on several samples.
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Figure 7.11: Estimation of the copula density on the diagonal using Beta kernels with
100 and 1, 000 observations drawn from a Frank copula.
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On the other hand, note that the variance depends on the location. More precisely,
V ar(ĉh(u, v)) is O((Thκ)←), where κ = 2 in corners, κ = 3/2 in borders, and κ = 1 in the
interior of [0, 1]2. Moreover, as well as “standard ” kernel estimates, ĉh(u, v) is asymptotically
normally distributed,

√
Thκ′[ĉh(u, v) − c(u, v)]

L→ N
(
0, σ(u, v)2

)
, as nbκ′ → ∞ and h → 0,

where κ′ depends on the location, and where σ(u, v)2 is proportional with c(u, v).

7.3.5 Working with pseudo-observations

As we know, most of the time, the marginal distributions of random vectors are unknown, as
recalled in the first section. Hence, the associated copula density should be estimated, not on
samples (FX(Xi), FY (Yi)), but on pseudo samples (FX,T (Xi), FY,T (Yi)).

Figure 7.12 shows some scatterplots when the margins are known (i.e. we know
(FX(Xi), FY (Yi))), and when margins are estimated (i.e. (FX,T (Xi), FY,T (Yi)). Note that the
pseudo sample is more “uniform”, in the sense of a lower discrepancy (as in Quasi Monte Carlo
techniques, see e.g. Niederreiter (1992)). Here, by mapping every point of the sample on the
marginal axis, we get uniform grids, which is a type of “Latin hypercube” property (see Jaeckel
(2002), for instance).

Because samples are more “uniform” using ranks and pseudo-observations, the variance of
the estimator of the density, at some given point (u, v) ∈ (0, 1) × (0, 1) is usually smaller. For
instance, Figure 7.13 shows the impact of considering pseudo observations, i.e. substituting FX,T

and FY,T to unknown marginal distributions FX and FY . The dotted line shows the density of
ĉ(u, v) from 100 observations (Ui, Vi) (drawn from the same Frank copula), and the straight
line shows the density of ĉ(u, v) from the sample of pseudo-observations (i.e. the ranks of the
observations).

A heuristic interpretation can be obtained from Figure 7.12. Consider the standard kernel
based estimator of the density, with a rectangular kernel. Consider a point (u, v) in the interior,
a bandwidth h such that the square [u − h, u + h] × [v − h, v + h] lies in the interior of the unit
square. Given a T sample, an estimation of the density at point (u, v) involves the number of
points located in the small square around (u, v). Such a number will be denoted by N , and it is
a random variable. Larger N provide more precise estimations.

Assume that the margins are known, or equivalently, let (U1, V1),...,(UT , VT ) denote a sample
with distribution function C. The number of points in the small square, say N1, is random and
follows a binomial law with size T and some parameter p1. Thus, we have N1 ∼ B (T, p1) with

p1 = P ((U, V ) ∈ [u − h, u + h] × [v − h, v + h])

= C (u + h, v + h) + C (u − h, v − h)

−C (u − h, v + h) − C (u + h, v − h)

and therefore
V ar (N1) = Tp1 (1 − p1) .

On the other hand, assume that margins are unknown, or equivalently that we are deal-
ing with a sample of pseudo-observations

(
Û1, V̂1

)
, . . . ,

(
ÛT , V̂T

)
. By construction of pseudo-

observations, we have is
#

{
Ûi ∈ [u − h, u + h]

}
= ⌊2hT ⌋

where ⌊·⌋ denotes the integer part. As previously, the number of points in the small square N2

satisfies N2 ∼ B (⌊2hT ⌋ , p2) where

p2 = P
((

Û , V̂
)
∈ [u − h, u + h] × [v − h, v + h]

∣∣∣ Û ∈ [u − h, u + h]
)
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Figure 7.12: Observations and pseudo-observation: 100 observations (Xi, Yi) drawn from
a Frank copula, associated pseudo-sample (Ui, Vi) = (F̂X(Xi), F̂Y (Yi)), and histograms of
margins.

=
P

((
Û , V̂

)
∈ [u − h, u + h] × [v − h, v + h]

)

P
(
Û ∈ [u − h, u + h]

)

≈ C (u + h, v + h) + C (u − h, v − h) − C (u − h, v + h) − C (u + h, v − h)

2h

=
p1

2h

And therefore the expected number of observations is the same for both methods (E[N1] ≃
E[N2] ≃ Tp1), but

V ar (N2) ≈ 2hTp2 (1 − p2) = 2hT
p1

2h

(
1 − p1

2h

)
=

T

2h
p1 (2h − p1) .
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Figure 7.13: The impact of estimating from pseudo-observations. The dotted line the
the distribution of ĉ(u, v) from sample (FX(Xi), FY (Yi)), and the plain line from pseudo
sample (FX,T (Xi), FY,T (Yi)).

Thus,
V ar (N2)

V ar (N1)
=

Tp1 (2h − p1)

2hTp1 (1 − p1)
=

2h − p1

2h − 2hp1
≤ 1

since h ≤ 1/2 and thus 2hp1 ≤ p1.

So finally, the variance of the number of observations in the small square around (u, v) is
larger than the variance of the number of pseudo-observations in the same square. Therefore, this
larger uncertainty concerning the relevant sub-sample used in the neighborhood of (u, v) in the
former case implies a loss of efficiency. The consequence of this result is largely counterintuitive.
By working with pseudo-observations instead of “true” ones, we would expect an additional noise,
what should induce more noisy estimated copula densities. This is not the case, actually, as we
have just shown.

7.4 Estimation of copula density for censored data

Consider the case of right-censoring, i.e. the value observed is Y = min
{
Y 0, C

}
, where C is a

censoring value (e.g. a policy limit) and Y0 is known only when Y0 ≤ C. The data are pairs (Y, δ)
where δ is the censoring indicator (equal to one if Y0 is observed, and zero if not). Assume that
Y 0 and C have respectively distribution function FY and G, and that C is independent of Y 0.
Note that P (Y > y) =

(
1 − F 0 (y)

)
(1 − G (y)).

Consider some i.i.d. sample (Y1, δ1) , .... (Yn, δn). Under censoring, the analog of the empirical
distribution function is the product-limit estimator proposed by Kaplan and Meier (1958)

1 − F̂ 0 (x) =
∏

i,Yi≤x

(
n − i

n − i + 1

)δi

.

Note that since 1 − δ is the indicator of censoring, an analogous expression can be obtained to
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estimate the distribution of the censoring value,

1 − Ĝ (x) =
∏

i,Yi≤x

(
n − i

n − i + 1

)1−δi

.

7.4.1 Stock sampling and bias due to censoring

Example 7.4.1. Figure 7.14 shows some density estimation on the diagonal, with no censoring
on the left, 5% censored data in the middle and 25% censored data on the left, with 8 sets of
n = 1, 0000 simulated data from Frank copula. Stock sampling can be observe as the bias increases
as u goes to 1, and as the proportion of censored data increases. Figure on bottom-left shows the
estimated density ĉ (12/13, 12/13) with no censoring, and 25% censored observations.
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Figure 7.14: Impact of censoring on the estimation of the density: estimation of the copula
density on the diagonal, with non censored data (top-left), 5% censored data (top-right)
and 25% censored (bottom-left); distribution of ĉ (12/13, 12/13) with no censoring (plain)
and 25% censoring (dotted) (bottom-right), from 1, 000 simulated samples.

7.4.2 Bootstrap bias correction

Recall that if θ̂ = θ̂ (X1, ..., Xn) is an estimator of θ = θ (FX), the bias is simply bFX
=

EFX

(
θ̂ (X1, ..., Xn)

)
− θ (FX). As pointed out in Efron and Tibshirani (1993), bootstrap tech-
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niques can be used to estimate the bias. The bootstrap estimate of the bias is the estimated
bias obtained by substituting F̂X for FX , where θ

(
F̂X

)
is the plug-in estimate of θ, which may

differ from θ̂ (X1, ..., Xn). In practice, generate B bootstrap samples from {X1, ..., Xn}, denoted{
X∗b

1 , ..., X∗b
n

}
, b = 1, ..., B. Evaluate θ̂∗b = θ̂

(
X∗b

1 , ..., X∗b
n

)
and approximate the bootstrap

approximation of E
F̂X

(
θ̂ (X1, ..., Xn)

)
by the average of the bootstrap statistics, and therefore

b̂
F̂X

=
1

B

B∑

b=1

θ̂
(
X∗b

1 , ..., X∗b
n

)
− θ

(
F̂X

)

From this estimator, the idea is to correct θ̂ to obtain a less biased estimate. Here the bootstrap
sample is obtained classically.

Following the idea developed in Efron (1981), consider the following resampling scheme, when
data are censored, adjusted for bivariate pairs,

1. Generate U⋆
1 , U⋆

2 , ..., U⋆
n, V ⋆

1 , V ⋆
2 , ..., V ⋆

n independently, uniformly on [0, 1],

2. Generate Y 0∗
i independently from F̂ 0

Y (x), Y 0⋆
i = F̂ 0−1

Y (U∗
i ),

3. Generate C∗
i independently from Ĝ (x), C⋆

i = F̂ 0−1
Y (V ∗

i ),

4. Let j ∈ {1, ..., n} such that Y 0∗
i = Yj , set X∗

i = Xj

5. Set Y ∗
i = min

{
Y 0∗

i , C∗
i

}
and δ∗i = I

{
Y 0∗

i ≤ C∗
i

}

6. Estimate the marginal Kaplan-Meier distribution functions F̂ 0∗
Y (·) and Ĝ∗ (·), as

1 − F̂ 0∗ (x) =
∏

i,Y ∗
i ≤x

(
n − i

n − i + 1

)δ∗i

and 1 − Ĝ∗ (x) =
∏

i,Y ∗
i ≤x

(
n − i

n − i + 1

)1−δ∗i

.

7. Set (U⋆
i , V ⋆

i ) =
(
F̂ ∗ (X∗

i ) , F̂ 0∗ (Y ∗
i )

)
and estimate the density of the sample

(U⋆
1 , V ⋆

1 ) , ..., (U⋆
n, V ⋆

n )

Example 7.4.2. Figure 7.15 shows some Beta kernel density estimation on the diagonal, with
5% censored data in the middle and 25% censored data on the left, without correction (plain) and
with a bootstrap correction (dotted).

This technique can be applied also on the Loss-ALAE dataset, where Loss amonts are cen-
sored data (upper limit for policies). Figure 7.16 compares the density of the copula on the
diagonal and the theoretical density of Gumbel copula.

7.5 Concluding remarks

We have discussed how various estimation procedures impact the estimation of tail probabilities
in a copula framework. Parametric estimation may lead to severe underestimation when the
parametric model of the margins and/or the copula is misspecified. Nonparametric estimation
may also lead to severe underestimation when the smoothing method does not take into account
potential boundary biases in the corner of the density support. Since the primary focus of most
risk management procedures is to gauge these tail probabilities, we think that the methods
analyzed in the previous lines might help to better understand the occurrence of extreme risks in
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Figure 7.15: Bootstrap correction of the censoring bias on the estimation of the density
(using Beta kernel estimation), with 5% censored data on the left, 25% censored data on
the right.
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Figure 7.16: Beta kernel estimator for Loss-ALAE, compare with Gumbel copula.

stand alone positions (single asset) or inside a portfolio (multiple assets). In particular we have
shown that nonparametric methods are simple powerful visualization tools to spot dependencies
among various risks. A clear assessment of these dependencies should help to design better risk
measurement tools within a VaR or expected shortfall framework.



Chapter 8

Temporal dependencies for natural

events

8.1 Introduction and motivations

In February 2005, opening the conference on Climate change: a global, national and regional
challenge, chairman Dennis Tirpak pointed out that “there is no longer any doubt that the Earth’s
climate is changing [...] globally, nine of the past 10 years have been the warmest since records
began in 1861”. He singled out the heatwave that gripped western Europe in 2003 as an example:
Europe’s worst natural disaster in 50 years killed as many as 30, 000 people and inflicted an
estimated 30 billion dollars in damage.

One of the major issue is to get an accurate estimate of those risks, e.g. August 2003’ heat
wave, but also storms as in December 1999, or floods in July 2002 or August 2005, in (Central)
Europe. Costs of natural events may be huge for insurers.

8.1.1 The return period as a risk measure

From this observation, it becomes crucial to rethink the concept of return period, which is a key
notion in risk management. The return period is a key notion in hydrology (see e.g. Gumbel
(1941) for an introduction of the concept, Martins and Clarke (1993) for maximum likelihood
estimation, or Davis , Duckstein and Fogel (1976) for a Bayesian approach). As in Gumbel
(1941), “we suppose that the events are independent of one another: the occurrence of a high or
low value for x has no influence on the value of any succeeding observation”: the Xi’s have to be
independent. Further, as pointed out in the conclusions “we have to suppose that the data are
homogeneous, i.e. that no systematical change of climate and no important change in the basin
have occurred within the observation period and that no such changes will take place in the period
for which extrapolations are made”: Xi’s have to be identically distributed.

Annualized maxima (called flood events in Gumbel (1941)). Formally, if FX is the distribution
function of the yearly maxima of a random variable X, and if X1, ..., Xn are i.i.d. annualized
maxima, the number of required Bernoulli experiments for the event {X > u} to occur for the
first time is a geometric random variable with mean P(X > u): if N(u) = inf{i ≥ 1, Xi > u},
P(N(u) = k + 1) = p(1 − p)k where p = P(X > u). Thus, the period of return is the associated
expected value,

E(N(u)) =
1

p
=

1

P(X > u)
.

The following definition is also used: the centennial event is u∗ such that E(N) = 100 years,

223
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Insured Loss Victims Date Event - Country
45,000 1,326 24.08.2005 Katrina, Hurricane - USA
22,274 43 23.08.1992 Andrew, Hurricane - USA, Bahamas
18,450 60 17.01.1994 Earthquake, Northridge - USA
10,000 34 20.09.2005 Rita, Hurricane - USA, Cuba
10,000 35 16.10.2005 Wilma, Hurricane - Mexico, USA, Cuba

8,272 24 11.08.2004 Charley, Hurricane - USA, Cuba
8,097 51 27.09.1991 Typhoon Mireille - Japan
6,864 95 25.01.1990 Winterstorm Daria - France, Europe
6,802 110 25.12.1999 Winterstorm Lothar - France, Europe
6,610 71 15.09.1989 Hugo, Hurricane - Puerto Rico, USA
5,170 38 26.08.2004 Frances, Hurricane - USA, Bahamas
5,157 22 15.10.1987 Storms and floods - France, Europe
4,770 64 25.02.1990 Winterstorm Vivian - Central Europe
4,737 26 22.09.1999 Typhoon Bart - Japan
4,230 600 20.09.2004 Georges, Hurricane - USA, Caribbean
4,136 3,034 13.09.1998 Jeanne, Hurricane - USA, Caribbean
3,707 45 06.09.2004 Typhoon Songda - Japan
3,475 41 05.06.2001 Tropical storm Allison - USA
3,403 45 02.05.2003 Tornadoes, hail, thunderstorms - USA
3,169 6,425 17.01.1995 Earthquake Kobe - Japan

Table 8.1: Major natural catastrophes, over 3 billion US Dollars (index to 2005), since
1950 (source: Swiss Re, with estimations as at December 2005 for hurricanes occurred in
2005 ).

i.e.

FX(u∗) =
1

100
or equivalently u∗ = F←

X

(
1 − 1

100

)
= V aR(X, 0.99)

A dual approach is to determine the level U(n) such that one may expect a single event larger
than U(n) occurring in n years. Equivalently, solve

E

(
n∑

i=1

1(Xi > U(n))

)
= 1,

given n ∈ N, i.e.

P(X > U(n)) =
1

n
.

Remark 8.1.1. Note that this geometric distribution for the time between occurrence is closely
related to the lack of memory property (see Chukova, Dimitrov & Khalil (1992), or Chukova
& Dimitrov (1993)). The underlying idea is that the geometric distribution is the only discrete
distribution satisfying the recurrence property P(X = n + k) = P(X = n) · P(X = k), for all
k, n ∈ N, while, similarly the exponential distribution is the only continuous distribution satisfying
the analogous of the recurrence property, f(x + y) = f(x) · f(y), where f denotes the density.

If most of the results are known in the i.i.d. context, note that (?) was probably the first
one to highlight that this notion is more difficult to interpret when temporal dependence can be
exhibited.
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8.1.2 Outline of the een bijgevoegde stelling

In the first section of this een bijgevoegde stelling, we should start with the study of windstorms.
After windstorms of December 1999 in France and Belgium, it appeared that consecutive oc-
currence of major windstorms (the first storm Lothar occured 48 hours before the second one,
Martin). This persistence phenomena of storms was first analyzed by Haslett and Raftery (1989).
Unfortunate, when working on the same dataset, it appeared that all their motivations for mod-
eling windspeed using long range dependence models were not relevant: the slow deacrease of
the autocorrelation function was simply a seasonal effect. Nevertheless, when studying series
carefully, a seasonal trend cannot be used to model the series, and their is still persistence in
residuals. Hence, an idea was then to use GARMA processes (Gegenbauer ARMA) instead of
ARFIMA processus (Fractional ARIMA). As we will see using simulations, skipping the long
range effect will underestimate risk estimations of two consecutive big storms.

Section 2 will extend this approach to temperature time series, in order to estimate properly
the return period of August 2003’ heat wave. As for the heat wave in Chicago in 1995 (which
also killed hundreds of people), the reason why those events were dramatic is not that very high
temperature have been reached, but because the temperature has been high during several days.
More specifically, the minimal temperature (nighttime temperature) remained very high during
several nights, and this had an important health impact. Here again, modeling persistence is
the main issue when estimating the period of return of such an event. But if the seasonal
cycle was very small for windspeed, it will be easily identifiable for temperature in Paris. The
main problem for temperature is the increasing trend due to global warming (+3 degree in one
century). After modeling and removing the trend, GARMA processes will also be used. But
as mentioned in Dacunha-Castelle (2004) instead of focusing on fractional processes to model
persistence, it is possible to obtain almost similar results with heavy tailed noise. Hence, the
end of this section will focus on the comparison of two models: a Gaussian GARMA process,
with long range dependence, and a Student ARMA process, with short range dependence, but
heavier tails. As we will see using simulations, those two concepts yield different estimations of
the period of return of this event, depending on the definition of the heat wave (11 consecutive
days exceeding 19◦ C, or 3 consecutive days exceeding 24◦ C).

And finally, in section, we will focus on the study of flood events. Floods and river flows have
been intensively studied between 1940 and 1955. Two approaches have been considered, both on
annualized maxima of river levels. Gumbel (1941) noticed that annualized maxima were i.i.d.
and that the so called Gumbel distribution could be used to model this series of maxima. On
the other hand, Hurst (1951) observed, on longer series (700 years, versus 100 in Gumbel’s work)
that annualized maxima were not independently distributed, but strongly dependent: fractional
processes were perfect to model the dynamics of those series. Hence, from independence to
strong dependence, the good approach is maybe in between. And furthermore, getting a better
understanding of the dynamics is crucial in order to get a proper estimate of the period of return.
Since there is no chance to obtain long range dependence from only 100 years of data, the idea
will be, here, to used financial models, used to get a more adequate model for transactions, when
high frequency data are available.

Remark 8.1.2. This een bijgevoegde stelling focuses on statistical applications, while the thesis
was more theoretical. Hence, there will be no theorem in the following sections, but rather a
presentation of statistical methods, applied to environmental series. Dataset with daily windspeed
is the same as the one used in Haslett and Raftery (1989)1. Dataset with daily temperature in
Paris Montsouris have been provided by the European Climate Assessment & Dataset project 2.

1http://lib.stat.cmu.edu/datasets/
2http://eca.knmi.nl/dailydata/index.php
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And finally, the dataset with daily river level of the Saugeen river was kindly provided by Anne
Catherine Favre (INRS Québec).

Acknowledgment I would like to thank David Sibaï, co-author for some results, Dider
Dacunha-Castelle for a stimulating discussion on long range with light tails, versus short range
with heavy tails, and Anne Catherine Favre for discussions we had on modeling hydrological
series.

8.2 Modeling windspeed and windstorms

In December 1999, France and most of western Europe countries have been hit by two major
windstorms, Lothar and Martin, the second one starting 48 hours after the first one. This
occurrence of several windstorms within a few days is not the first one. And it appears that
modeling windstorms occurrence as an homogeneous Poisson process was not relevant.

Haslett and Raftery (1989) suggested to use long-memory processes to model daily windspeed.
The motivation was that autocorrelations were slowly decreasing (Figure 8.1 on the left, with
100 lags, i.e. 3 months). But considering more lags (10 years), it appears that the slow decrease
was simply the beginning of a seasonal effect (Figure 8.1 on the right).

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 8.1: Autocorrelations, daily windspeed in Ireland.

This seasonal behavior, that can be observed on the autocorrelogramm can also be visualized
on Figure 8.2, where daily windspeed is plotted, from January till December. Hence, windspeed
in higher in winter than in summer. But note also that the cycle is very small, with a noise
having a large variance.

8.2.1 Modeling stationary time series

Let (Yt)t∈Z denote a stochastic process, i.e. a sequence of random variables. (Yt)t∈Z is said to be
strongly stationary if, for any n ∈ N, t1 < ... < tn and h ∈ Z, the following joint distributions are



CHAPTER 8. TEMPORAL DEPENDENCIES FOR NATURAL EVENTS 227

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

annee

wi
nd

sp
ee

d.M
AL

Figure 8.2: Daily windspeed, small cycle, large noise.

equal (Yt1 , ..., Ytn)
L
= (Yt1+h, ..., Ytn+h). If variables Yt are squared integrable, a weaker condition

can be considered: (Yt)t∈Z is weakly stationary, or stationary in the L2 sense if E (Yt) = m for
any t ∈ Z, and cov (Xt, Xs) = γ (|t − s|)), for any s, t. In that case, define the autocovariance
function, for all h ∈ Z, as

h 7→ γX (h) = cov (Xt, Xt−h) = E (XtXt−h) − E (Xt) · E (Xt−h) .

Another point of view when studying weakly stationary processes is to study, instead of the
autocovariance function, its Fourier transform, i.e.

fX (ω) =
1

2π

∑

h∈Z

γX (h) exp (iωh)

for all ω ∈ [0, 2π]. Those two notions are equivalent, since

fX (ω) =
1

2π

+∞∑

h=−∞

γX (h) cos (ωh)

and

γX (h) =

∫ π

0
cos (ωh) fX (ω) dω, où γX (h) = cov (Xt, Xt−h) ,

(the spectral representation theorem, see Theorem 4.3.1. in Brockwell and Davis (1991), or
Theorem 8.31 in Gouriéroux and Monfort (1997)).

Set finally ρX(h) the autocorrelation of order h, defined as ρX(h) = γX(h)/γX(0).

8.2.2 ARIMA processes

Amongst the most widely used models of stationary processes are the ARMA processes, autore-
gressive moving average (see e.g. Chapter 3 in Brockwell and Davis (1991) or section 8.1 in
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Gouriéroux and Monfort (1997)). An autoregressive (AR) model is a linear difference equation,
with constant coefficient. A moving average (MA) model is one which expresses a process as a
linear combination of a white noise, and a finite number of lagged value.

From Wold theorem (Section 2.6 in Brockwell and Davis (1991)), it is possible to represent
every stationary process with a moving average representation (perhaps of infinite order). But
in practice, the interest is limited. Similarly, adequate approximation of stochastic processes can
be be obtain with high-order AR models, but it is limited for low-order AR models. Hence, a
large number of data is needed to find robust estimators.

When combining AR and MA components in a mixed models, the approximation with a
limited number of parameters is greatly increased. Thus, ARMA processes are interesting to
model stationary series.

A qth-order moving average process, MA(q), (Xt)t∈Z satisfies

Xt = εt + θ1εt−1 + . . . + θqεt−q = Θ(L)εt,

where (εt)t∈Z is a white noise process (E(εt) = 0, V ar(εt) = σ2 and γε(h) = 0 for any h 6= 0), and
where Θ(L) is a polynomial of lag operator L (LXt = Xt−1). Note that is can also be expressed
as as an AR(∞) process, Θ−1(L)Xt = εt if all the roots of the polynomial Θ lie outside the unit
circle (see section 8.1 in Gouriéroux and Monfort (1997)). Note that a moving average process
is always stationary, when q < ∞.

A pth-order autoregressive process, AR(p), (Xt)t∈Z satisfies

Xt − φ1Xt−1 − . . . − φpXt−p = εt = Φ(L)Xt,

where (εt)t∈Z is a white noise process and where Φ(L) is a polynomial of lag operator L. Note
that is can always be expressed as as an MA(∞) process (Wold theorem), written Xt = Φ−1(L)εt.
Further, (Xt)t∈Z is stationary if all the roots of the polynomial Φ lie outside the unit circle (see
section 8.1 in Gouriéroux and Monfort (1997)).

A ARMA(p, q) process, (Xt)t∈Z satisfies

Φ(L)Xt = Θ(L)εt

where (εt)t∈Z is a white noise process, where all the roots of the polynomial Φ lie outside the
unit circle. If 1 is a root of Φ, then (Xt)t∈Z is no longer stationary, and it is called integrated
ARMA process, satisfying

(1 − L)dΦ′(L)Xt = Θ(L)εt.

For instance, if (1 − L)Xt = εt, (Xt)t∈Z is a random walk.

8.2.3 Long range dependence, or long memory processes

A stationary process (Yt)t∈Z is said to have long range dependence if

∞∑

h=1

|ρX(h)| = ∞,

and short range dependence if not (from McLeod and Hippel (1978)).

Remark 8.2.1. As we will see more deeply in section 8.4, long range dependence has been intro-
duced in Hurst (1951), in hydrology (on the Nile series), and more deeply studied by Mandelbrot
(1965, 1972). Note that those processes have been introduced in Finance in the 90’s (see e.g.
Cheung and Lai (1993), Cheung (1993) or Baillie and Bollerslev (1994) for some applications
on exchange rate dynamics). A wide survey can be found in Baillie (1996) or Jasiak (1999).
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Recall that stationary ARMA processes have autocorrelations that are quickly decreasing,
i.e.

|ρ(h)| ≤ C · rh, for all h = 1, 2, ...

where r ∈]0, 1[ (see Section 3.6 in Brockwell and Davis (1991)). This is the main reason why
those processes are said to have short range dependence: for small values of h, corr(Xt, Xt−h)
can be relatively small (and non-significant). A wide class of long memory processes is obtained
when autocorrelations are slowly decreasing, at a power rate,

ρ(h) ∼ C · h2d−1 as h → ∞, (8.1)

where d ∈]0, 1/2[. Such a relationship can be obtained when considering stochastic processes
defined as

(1 − L)dXt = εt,

where (εt) is a (weak) white noise (E(εt) = 0 and ρ(h) = 0 when h 6= 0), and where (1 − L)d is
defined as

(1 − L)d = 1 − dL − d(1 − d)

2!
L2 − d(1 − d)(2 − d)

3!
L3 + ... =

∞∑

j=0

φjL
j ,

where

φj =
Γ(j − d)

Γ(j + 1)Γ(−d)
=

∏

0<k≤j

(
k − 1 − d

k

)
for all j = 0, 1, 2, ...

if L denotes the lag operator (see Section 13.2 in Brockwell and Davis (1991)).
When −1/2 < d < 1/2, this process is stationary, and it has the following moving-average

representation,

Xt =

∞∑

i=0

θiεt−i were θi =
Γ(i + d)

Γ(j + 1)Γ(d)
.

Note further that it is invertible, and if further V ar(εt) = 1, the autocovariance function is

γX(h) =
Γ(1 − 2d)Γ(h + d)

Γ(d)Γ(1 − d)Γ(h + 1 − d)
∼ Γ(1 − 2d)

Γ(d)Γ(1 − d)
· h2d−1,

as h → ∞. Finally, its spectral density satisfies

fX(ω) =
(
2 sin

ω

2

)−2d
∼ ω−2d,

as ω → 0.

Remark 8.2.2. Those processes have been defined also in continuous time (e.g. Mandelbrot and
Van Ness (1968)), under the name of fractionary brownian process.

Let (Xt)t∈N denote a long memory process, and set, Xn = [X1 + ... + Xn]/n the empirical
average over the first n observations, then, since ρ(h) → 0 as h → ∞,

E(Xn − E(X))2 → 0 as n → ∞,

and for any −1/2 < d < 1/2,

n1−2dE(Xn − E(X))2 → C as n → ∞,

i.e. the empirical average is not asymptotically distributed anymore (see Taqqu (1975) and Fox
and Taqqu (1986)). Furthermore, when 0 < d < 1/2, Bartlett’s formula on asymptotic normality
of empirical autocorrelations (see Propositions 7.3.1-7.3.4 in Brockwell and Davis (1991)) does
not hold anymore.

In order to detect long range dependence, from a theoritical point of view, a naive approach
would be to substitute empirical autocorrelation and empirical spectral density, and check that
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Figure 8.3: Simulation of an ARFIMA process, d = 0.45.

• the autocorrelations tend to 0 with a power decrease,

• the spectral density tends to infinity in 0,

where

ρ̂n(h) =
γ̂n(h)

γ̂n(0)
→ ρ(h) where γ̂n(h) =

1

n

n−h∑

t=1

(Xt − Xn)(Xt+h − Xn),

as n → ∞ (under ergodic additional assumptions on (Xt)t∈Z, see Hannen (1973) for exact
assumptions in order to obtain asymptotic properties), and

In(ω) =
1

n

∥∥∥∥∥

n∑

t=1

exp(−iωt)Xt

∥∥∥∥∥

2

, ω ∈ [0, π],

is not a consistent estimator of f(ω), but satisfies E(In(ω)) → fX(ω) as n → ∞ (under very
general assumptions, see ...).

Note that if Equation (8.1) holds, then

log ρ̂n(h) ∼ log C − d log h.

Thus, a natural estimator of d can be obtained from the slope of points (log h, log ρ̂n(h))h∈N (see
Figure 8.4 with a white noise, d = 0, and Figure 8.5 with an ARFIMA process, d = 0.3).

Example 8.2.3. Figure 8.6 is based on the dataset studied in Hurst (1951), on the Nile yearly
maxima. The slow decrease of the autocorrelation can be observed on those 900 years. But in
the case of a shorter series (extracting 150 years, Figure 8.7) note that it becomes much more
difficult to assess whether the series exhibits long range dependence or not.
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Figure 8.4: Simulated white noise process.

Simulation ARFIMA d=0.30
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Figure 8.5: Simulated ARFIMA process, d = 0.30.
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Figure 8.6: Nile series, studied in Hurst (1951).
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Figure 8.7: Nile series, studied in Hurst (1951) - 150 observations.
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8.2.4 A more general model for long range dependence

Long range dependence has been obtained here with a pole in 0 of the spectral density. But a
more generally, Gray, Zhang and Zoodward (1989) extended the notion of long memory by noting
that the spectral density of a long memory process is unbounded for some frequency between 0
and π:

Definition 8.2.4. A stationary stochastic process (Xt)t∈Z is said to have long range dependence
if its spectral density has a pole, i.e. there exists ω0 ∈ [0, π] such that fX(ω) → ∞ when ω → ω0.

Note that this pole is closely related to seasonal effect. Further, the pole may not be unique
(this will yield multiple factors models).

Example 8.2.5. Hosking (1981, 1984) proposed two kinds of models to obtain poles in ω0 > 0:

• considering operators (1 − φL + L2)d,

• considering operators (1 − Ls)d.

The first class of models were studied in Gray, Zhang and Woodward (1989), which introduced
this operator to model seasonal series with long range dependence. Hence, GARMA(p, d, q)
processes were actually introduced in Hosking (1981) as

Φ(L)(1 − 2uL + L2)λXt = Θ(L)εt,

but they were not studied in that paper due to the difficulty to invert operator (1− 2uL + L2)λ.
It has been done in Gray, Zhang and Woodward (1989), using Gegenbauer polynomial: given
λ 6= 0, |Z| < 1 and |u| ≤ 1,

(1 − 2uL + L2)−λ =
∞∑

i=0

Pi,λ(u)Ln,

where

Pi,λ(u) =

[i/2]∑

k=0

(−1)k Γ(λ + n − k)

Γ(λ)

(2u)n−2k

[k!(n − 2k)!]

If |u| < 1, the limit of (ω − ω0)
2λf(ω) exists when ω → ω0, where ω0 is Gegenbauer’s

frequency, defined as ω = cos−1(u).
Note further that if |u| < 1 and 0 < λ < 1/2, then

ρ(h) ∼ C · h2λ−1 · cos(ω0 · h) when h → ∞.

The estimation is usually done in two steps (see Ferrara (2000)),

• estimation of u (which should be related to the seasonality of the series),

• estimation of the long range index λ, or equivalenty d.
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Figure 8.8: Daily windspeed in Ireland.

8.2.5 Estimation of parameters

A natural estimator is based on the R/S statistics (Hurst (1951), and Mandelbrot and Wallis
(1969)). Set

Xn =
1

n

n∑

i=1

Xi and S2
n =

1

n

n∑

i=1

[Xi − Xn]2

and then define

Qn =
Rn

Sn
where Rn = max

k=1,...,n

k∑

i=1

(Xi − Xn) − min
k=1,...,n

k∑

i=1

(Xi − Xn).

For a wide class of processes, n−d−1/2 ·Qn has a nondegenerated limit when n → ∞ (Mandelbrot
(1975) or Taqqu (1975)). More specifically,

n−d−1/2 · E(Qn) ∼ c where log E(Qn) ∼ γ + H log n,

where H = d + 1/2 is Hurst long memory index.
Parameter u is related to the seasonality of the series, or formally

û = cos(ω̂0) where ω̂0 ∈ argmaxω∈[0,2π]{In(ω)}.

If In is the periodogram of series (Xt)t=1,...,n, and if

ω̂0 = argmax{In(ω), ω ∈ [0, π]},

then for any α ∈ [0, 1],
nα(ω̂0 − ω0) → 0, where ω0 = cos−1(u),
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as proved in Yajima (1996) (under normality assumptions for stochastic process (Xt)t∈Z). In the
case of daily windspeed in Ireland, ω̂0 = 2π/365.

In a general context, when estimating the additional parameters of the GARMA process,

(α, σ, d) = ((φ1, ..., φp, θ1, ..., θq), σ, d),

where σ2 is the variance of the white noise (εt)t∈Z. Whittle’s approach can be considered (see
Hosoya (1997) or Taqqu and Teverovsky (1997)) using asymptotic approximations for the log-
likelihood. In that case, estimators α̂, σ̂2 and d̂ are asymptotically independent, and normally
distributed (see Hosoya (1997) or Palma and Chan (2005)). In the case of daily windspeed,
λ̂ = 0.126 and σ̂2 = 4.472.

Remark 8.2.6. On hourly series, GARMA with k factors can also be used (see e.g.Bouette et
al. (2005) and Figure 8.9).
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Figure 8.9: Spectral density of hourly series of windspeed in the Netherlands.

8.2.6 Estimation of return periods

It is possible to use a recursive algorithm to generate a GARMA process (see Gray, Zhang and
Woodward (1989), using ideas from Rainville (1960)),

Xt = µ +

M∑

j=0

Cj(d, u) · εt−j ,

where M is large (e.g. 290, 000) and where Cj(d, u) satisfies a recursive relationship

Cj(d, u) = 2ν

(
d − 1

j
+ 1

)
· Cj−1(d, u) −

(
2
d − 1

j
+ 1

)
· Cj−2(d, u).

In order to understand the impact of long range dependence, an idea is to compare proba-
bilities to have a strong wind during n consecutive days,

Those probabilities can also be visualized on Figure 8.10.
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15 knots 20 knots 25 knots
2 days GARMA 47.7% 8.5% 0.3%

seasonal ARMA 36.9% 3.6% 0.0%
ratio 0.775 0.421 0.117

3 days GARMA 46.3% 8.0% 0.3%
seasonal ARMA 27.7% 1.4% 0.0%
ratio 0.597 0.176 0.010

4 days GARMA 45.3% 7.6% 0.3%
seasonal ARMA 20.6% 0.5% 0.0%
ratio 0.454 0.062 0.001

Table 8.2: Probabilities to have strong wind during consecutive days.
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Figure 8.10: Probabilities to have strong wind during n consecutive days.
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8.3 2003’s heat wave and its return period

The summer of 2003 will be remembered for the extreme heat, and the approximately 40,000
heat-related deaths over western Europe. More specifically, the period 1-15 August 2003 was
the most intense heat of the summer. The report of Pirard et al. (2005) states that “Europe
experienced an unprecedented heat wave in the Summer 2003. In France, it was the warmest
summer recorded for 53 years in terms of minimal, maximal and average temperature and in
terms of duration”. Luerbacher et al. (2004) even claim that the “summer of 2003 was by far
the hottest summer since 1500”. But because of global warming, their estimate of the return
period of that event is 250 years. Hence, nobody was expecting such an event, and nothing had
been planned in France to face it.

Actually, the underestimation of the probability of occurrence of such an event was already
mentioned in the Third IPCC Assessment (Intergovernmental Panel on Climate Change (2001)).
More specifically, it is pointed out that treatment of extremes (e.g. trends in extreme high
temperature) is “clearly inadequate”. Karl and Trenberth (2003) noticed that “the likely outcome
is more frequent heat waves”, “more intense and longer lasting” added Meehl and Tebaldi (2004).
In this section, the goal is to get an accurate estimate of the return period of that event.

8.3.1 Characteristics of 2003’s heat wave

One of the characteristics of 2003’s heat wave has not been the intensity, but the length during
10 to 20 days in several major cities in France. For instance, in Nîmes, there were more than
30 days with temperatures higher than 35◦ C (versus 4 in hot summers, and 12 in the previous
heat wave, in 1947). Similarly, the average maximum (minimum) temperature in Paris peaked
over 35◦ C (approached 20◦ C) for 10 consecutive days, 4-13 August. Previous records were 4
days in 1998 (8 to 11 of August), and 5 days in 1911 (8 to 12 of August). Similar conditions
were found in London, where maximum temperatures peaked above 30◦C during the period 4-13
August (see Burt (2004) and Burt and Eden (2004)).

The use of minimal temperature was initiated by Karl and Knight (1997) when modeling
1995 heatwave in Chicago: they concentrated on the severity of an annual “worst heat event”,
and suggested that several nights with no relief from very warm nighttime minimum temperature
should be most important for health impact (see also Kovats and Koppe (2005)).

8.3.2 Modeling temperature

Smith (1993) or Dempster and Liu (1995) suggested that, on a long period, the average annual
temperature should be decomposed as follows:

• an increasing linear trend,

• a random component, with long range dependence.

Hence, modeling daily windspeed, a natural idea would be to consider three components,

• an increasing linear trend,

• an annual seasonal effect,

• a random component, with long range dependence.
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Figure 8.11: Daily temperature in Paris, years 1997 to 2002 in dotted lines, and 2003 and
plain line. The plain area is the hottest 10 day period of 2003.

Modeling the increasing trend

The global warming can easily be observed using some nonparametric regression (see e.g. Figure
8.12, based on local regression with lowess functions). At first sight, some linear trend can be
assumed.

Estimating the linear trend of a statistical sample is usually a trivial problem, but here,
several difficulties may arise, due to the effect of (possible) long range dependence.

Hence, if γX(·) denotes the autocovariance function of a stationary process (Xt)t∈Z ,

V ar(Xn) =
γX(0)

n
+

2

n

n−1∑

k=1

(
1 − k

n

)
γ(k),

where Xn is the standard empirical mean of a sample {X1, ..., Xn} (see Brockwell and Davis
(1991), or Smith (1993)). Furthermore, if autocovariance function satisfies γ(h) ∼ a · h2d−1 as
h → ∞, then

V ar(Xn) ∼ a

d(2d − 1)
· n2d−2,

as derived in Samarov and Taqqu (1988). And further, the ordinary least squares estimator of
the slope β (in the case where the Xi’s are regressed on some covariate Y ) is still

β̂ =

∑
Xi(Yi − Y n)∑
(Yi − Y n)2

.

As shown in Yajima (1988), and more generally in Yajima (1991) in the case of general regressors,

V ar(β̂) ∼ 36a(1 − d)

d(1 + d)(2d + 1)
· n2d−4.
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Figure 8.12: Trend of the series, and analysis of the series of residuals.

Remark 8.3.1. More generally, Deo (1997) considered some nonparametric regression, and
Beran et al. (2002) robust local polynomial regression, with long-range dependence errors, that is

Xi = g(ti) + Yi where ti =
i

n
, for all i = 1, 2, ..., n,

where g is an unknown function (sufficiently smooth), and (Yt)t∈Z is a stationary process with
long-range dependence (see also Remark 8.3.2).

In the case of the minimal temperature in Paris, the model is

Xt = 6.33843
(0.05878)

+ 0.000068371
(0.0000012)

t + Yt,

where t = 1, 2, ..., 38330 (from January 1900 till September 2004). From this point, the residual
series (Yt)t∈Z will become our series of interest, that we should model.

Modeling the seasonal effect with and long range noise

Here, parameter u is related to the seasonality of the series, or formally

û = cos(ω̂0) where ω̂0 = argmaxω∈[0,2π]{In(ω)}.

Hence, because of the annual cycle of temperature above the tropic, û = cos(2π/365).
And, from section 8.2.5, recall that Whittle’s approach can be considered (see Hosoya (1997)

or Taqqu and Teverovsky (1997)) in order to estimate paramaters of the GARMA process

(α, σ, d) = ((φ1, ..., φp, θ1, ..., θq), σ, d),

where σ2 is the variance of the white noise. In the case of daily temperature in Paris, d̂ = 0.185,
φ̂1 = 0.56, σ̂2 = 2.222.
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Figure 8.13: Seasonal cycle of the series.

Remark 8.3.2. An alternative could be to consider SEMIFAR models, introduced by Beran
(1999) - semiparametric fractional autoregressive. Recall that an ARIMA(p, δ,0) model - δ ∈ N
- satisfies

Φ(L)((1 − L)δXt − µ) = εt.

ARFIMA(p, d,0) processes - d ∈ (−1/2, 1/2) - have been defined as

Φ(L)(1 − L)d(Xt − µ) = εt.

By extension, (Xt)t∈Z will be called SEMIFAR if there are δ ∈ (0, 1) and d ∈ (−1/2, 1/2) such
that

Φ(L)(1 − L)d((1 − L)δXt − g(t)) = εt,

for some with noise process (εt)t∈Z, and some smoothed function g.

8.3.3 Long range or fat tailed distribution ?

As pointed out in Smith (1993), “we do not believe that the autoregressive model provides an
acceptable method for assessing theses uncertainties”. Based on the optimistic scenario (end of
the linear trend), three models will be compared,

• a Gaussian model, with a seasonal effect, and long-range dependence (the previous model),

• an heavy tails model, with a seasonal effect, and short-range dependence,

• an as a benchmark, a Gaussian model, with a seasonal effect, and short-range dependence.
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Consider generally the case of a linear process, (Yt)t∈Z, such that

Yt =
∑

k∈Z

ψkεt−k, t ∈ Z,

where (εt)t∈Z is a white noise, centered. Note that (Yt)t∈Z is stationary, and it is stationary in
the L2 sense if

V ar(Yt) = V ar(εt)
∑

k∈Z

ψ2
k < ∞.

Example 8.3.3. If (Yt)t∈Z is a stationary AR(1) process, Yt = αYt−1 + εt, with |α| < 1, can be
inverted as follows,

Yt = αYt−1 + εt = α[αYt−2 + εt−1] + εt = . . . =
∞∑

k=0

αkεt−k.

Following examples of section 8.2.3, consider the following fractionary integrated process,
AFIMA(0, d, 0),

Xt =

∞∑

k=0

ψkεt−k were ψk =
Γ(k + d)

Γ(k + 1)Γ(d)
,

where −1/2 < d < 1/2.

As pointed out in the thesis, the study of extremal events is related to the fatness of tails.

Definition 8.3.4. A random variable Z is said to have heavy tails if its distribution is in the
max-domain of attraction of the Fréchet distribution. Hence, there exists α > 0 such that P(Z >
z) = z−αL(z) where L is slowly varying.

Hence, Gaussian distributions do not have fat tails (they belong to the max-domain of at-
traction of the Gumbel), but among the class of elliptical distributions (see section 1.5 of the
thesis), the t distribution has heavy tails. Recall that its density is

fν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(
1 +

x2

2

)−(ν+1)/2

.

Remark 8.3.5. Note that the t-distribution can be written as a scale mixture of Gaussians where
the mixture factor has an inverse gamma distribution (Kelker (1970))

Definition 8.3.6. A random variable Z is said to have a stable distribution if for every n ∈ N,
there exist constant an > 0 and bn such that the sum Z1 + ... + Zn has the same distribution as
anZ + bn for all i.i.d. random variables Z1, ..., Zn, with the same distribution as Z.

Heavy tailed time series, case of infinite variance

In previous sections, we have considered the case of of stationary series, with Gaussian noise.
More generally, assume that (εt)t∈Z is a white noise with a symmetric α-stable distribution, with
generating function

φ(t) = E(eitε) = exp(−c|t|α), t ∈ R,

where α ∈ (0, 2] and c > 0. Note that V ar(εt) is finite if and only if α = 2. Further, note that

Yt
L
= εt

(
∑

k∈Z

|ψj |α
)1/α

,
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(from the definition of stable distributions, see Feller (1971)). It comes that Yt is then also
α-stable. Further, from Theorem 22.8 in Billingsley (1999), it can be obtained that (Yt)t∈Z is
well defined if and only if ∑

k∈Z

|ψj |α is finite.

Assuming that time series had finite variance was historically crucial to legitimate regression
models (since L2 is an Hilbert space, and projection techniques can be used). In the case variance
is infinite, alternative ideas should be used (see Section 13.3 in Brockwell and Davis (1991), or
Bhansali (1996) for a detailed survey).

Further, autocorrelation functions cannot be defined, since variance is not finite. Neverthe-
less, one can define quantities

ρ(h) =

∑
k∈Z

ψkψk+|h|∑
k∈Z

ψ2
k

for all h ∈ Z.

In the case of finite variance processes, those quantities can be interpreted as autocorrelations,
but not anymore in the general case. In the Gaussian case, recall that for each m,

√
n(ρ̂n(h) − ρ(h))h=1,...,m,

has a non-degenerated limiting Gaussian distribution (Proposition 7.3.4. in Brockwell and Davis
(1991)). In the case of α-stable processes,

(n log n)1/α(ρ̂n(h) − ρ(h))h=1,...,m,

has a non-degenerated limiting distribution, related to some α-stable distributions (Theorem
7.3.2 in Embrechts, Klüppelberg and Mikosh (1997)).

Similarly, the spectral density, which was related to the Fourier series of autocorrelation
cannot be defined anymore. Nevertheless, the periodogram

În(ω) =
1

n

∥∥∥∥∥

n∑

t=1

Yte
−iωt

∥∥∥∥∥

2

=
∑

|h|<n

γ̂n(h)e−iωh, ω ∈ [−π, π] (8.2)

is still defined. The periodogram is not a consistant estimator of the spectral density, but under
mild condition, it is not far away from consistency (see Sections 10.1 and 10.3 in Brockwell and
Davis (1991)). Hence, if V ar(εt) < ∞, for all frequencies 0 < ω1 < . . . < ωm < π, for any m ∈ N

(În(ωk))k=1,...,m
L→ V ar(εt)

2

(
‖ψ(ωk)‖2 (U2

k + V 2
k )

)

k=1,...,m
,

where Ui, Vj ’s are i.i.d. N (0, 1) random variables, where

‖ψ(ω)‖2 =

∥∥∥∥∥
∑

t∈Z

ψte
−iωt

∥∥∥∥∥

2

.

Similarly, as ρ̂n(h) and ρ(h) were still defined if V ar(εt) = ∞, one can defined În(ω) from
equation 8.2. And thus, from Theorem 7.4.3. in Embrechts, Klüppelberg and Mikosh (1997),
one gets that for all frequencies 0 < ω1 < . . . < ωm < π, for any m ∈ N

(În(ωk))k=1,...,m
L→ V ar(εt)

2

(
‖ψ(ωk)‖2 (U2

k + V 2
k )

)

k=1,...,m
,
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where (U1, . . . , Um, V1, . . . , Vm) is an α-stable random vector (with maybe non independent com-
ponents).

If (Yt)t∈Z is an ARMA process with an α-stable white noise, Whittle estimator (based on the
spectral density) can be used. Set α = (φ1, ..., φp, θ1, ..., θq), where

Xt −
p∑

i=1

φiXt−i = εt +

q∑

j=1

θjεt−j , t ∈ Z.

That process can be inverted under some assumptions (see ), and (Yt)t∈Z is then a linear process,
with parameters ψj(α), j ∈ N. If

‖ψ(ω, α)‖2 =

∣∣∣∣∣
∑

t∈Z

ψt(α)e−iωt

∣∣∣∣∣

2

,

Whittle estimator is

α̂n = argmaxα





2π

n

∑

|t|<n

În(2πt/n)

‖ψ(2πt/n,α)‖2




 .

Then
√

n(α̂n − α) has a non-degenerated limiting distribution, if (εt)t∈Z is a Gaussian white
noise. If (εt)t∈Z is a stable white noise, (n/ log n)1/α(α̂n − α) has a non-degenerated limiting
distribution (see theorem 7.5.3. in Embrechts, Klüppelberg and Mikosh (1997)). Hence, note
that the rate of convergence is then O((n/ log n)−1/α), which is faster than O(n−1/2) is the
Gaussian case.

Heavy tailed time series, case of finite variance

An alternative is to consider the case of a linear process where the noise (εt)t∈Z is supposed to
be heavy tailed, i.e. in the maximum domain of attraction of the Fréchet distribution. Hence,
assume that P(εt > x) = x−αL(x), for some slowly varying function L, with α > 2.

If variance is finite, least-squares methods can be motivated (see Brockwell and Davis (1991)).
An alternative is to consider maximum likelihood methods (see Section 5.2. in Brockwell and
Davis (1991)). In a general context (with finite variance noise), a maximum likelihood procedure
for estimating an ARMA process without the Gaussian assumption has been developed by Lii
and Rosenblatt (1996). The derivation of the likelihood is given in Appendix.

Remark 8.3.7. Polasek and Pai (1998) proposed to use Gibbs sampler for Bayesian estimation,
with a white noise t-distributed. The idea is to use the fact that the t-distribution can be written
as a mixture of Gaussians (see Remark 8.3.5)

From a quick look at autocorrelations of the series, we have modeled (Yt)t∈Z with a Gaussian
ARMA(2,2) model,

Yt = 1.428
(0.0414)

Yt−1 − 0.479
(0.0319)

Yt−2 + εt − 0.666
(0.0414)

εt−1 − 0.103
(0.0072)

εt−2

where (εt)t∈Z is stationary with variance σ̂2 = 5.023. Figure 8.14 is the analysis of series (εt)t∈Z

: the white noise assumption is relevant, but it is far from being Gaussian, as shown on Figures
8.15 and 8.16. Hence, three estimations are performed and outputs are presented in Table 8.3.

Remark 8.3.8. From Table 8.3, it appears that maximum likelihood estimates with the Gaussian
and the t distribution are almost equal. Hence, in Lii and Rosenblatt (1996), simulations are per-
formed when residuals are t-distributed (with 4 degrees of freedom). They observed that “estimates
of parameters are quite accurate” [...] especially “when the roots are moved farther away from
the unit circle”.
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Figure 8.14: Residuals (εt)t∈Z.

φ̂1 φ̂2 θ̂1 θ̂2 σ̂2

Gaussian ML 1.4196 -0.4733 -0.6581 -0.1032 5.023
(0.0419) (0.0322) (0.0419) (0.0072)

t (ν = 20) ML 1.4191 -0.4738 -0.6571 -0.1032 5.023
(0.0418) (0.0323) (0.0418) (0.0073)

t ( ν = 5 ) ML 1.4134 -0.4725 -0.6551 -0.1035 5.023
(0.0418) (0.0324) (0.0418) (0.0072)

LS 1.4020 -0.4600 -0.6406 -0.1038 5.023
(0.0418) (0.0319) (0.0417) (0.0071)

Table 8.3: Parameter estimation for the ARMA process.

8.3.4 Return period for two scenarios

Two scenarios on the future evolution of the linear trend will be considered in this section:

• an optimistic scenario, where we assume that there will be no more increasing trend in the
future,

• a pessimistic scenario, where we assume that the trend will remain, with the same slope.

Definition of the heat wave

In order to compare the two models, two alternative definitions of the heat wave will be considered
(both may characterize the phenomena of the beginning of August in Paris),

• during 11 consecutive days, the temperature was higher than 19◦ C (type (A)),
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Figure 8.15: Residuals (εt)t∈Z, versus Gaussian and t-distribution.
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Figure 8.16: Residuals (εt)t∈Z, Gaussian (plain line) or t distributed (dotted line).

• during 3 consecutive days, the temperature was higher than 24◦ C (type (B)).

The outputs of simulations can be visualized on Figures ?? and ??. Here 10, 000 simulations
over 300 years have been used. The large plain line is the result of GARMA processes simulations,
i.e. long range dependence, and Gaussian noise. The dotted line is the result of ARMA processes
simulations, with a Student noise (heavier tails than the Gaussian, plotted with a light gray line).
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Figure 8.17: Survival distributions and densities of time before the next heat wave event,
when heat wave is 11 consecutive days with temperature higher than 19◦ C, on the left,
and 3 consecutive days with temperature higher than 24◦ C, on the right. We assume no
more linear trend in the future (optimistic scenario).

Note that for the two scenarios and the two alternative models, different periods of returns
are obtained,
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Figure 8.18: Survival distributions and densities of time before the next heat wave event,
when heat wave is 11 consecutive days with temperature higher than 19◦ C, on the left,
and 3 consecutive days with temperature higher than 24◦ C, on the right. We keep the
linear trend in the future (pessimistic scenario).

Remark 8.3.9. In this section, the aim was to estimate the return period using only time series
techniques (i.e. endogeneous estimation). In order to build up warnings, many factors should be
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short memory short memory long memory
short tail noise heavy tail noise short tail noise

optimistic 88 years 69 years 53 years
pessimistic 79 years 54 years 37 years

Table 8.4: Periods of return (expected value, in years) before the next heat wave similar
with August 2003 (type (A)).

short memory short memory long memory
short tail noise heavy tail noise short tail noise

optimistic 115 years 59 years 76 years
pessimistic 102 years 51 years 64 years

Table 8.5: Periods of return (expected value, in years) before the next heat wave similar
with August 2003 (type (B)).

included (see e.g. Black et al. (2004)). Hence, the probability to have a very hot summer was
quite large even in May, based on anomalies study.

8.4 Floods, how to chose between Hurst and Gumbel ?

As recalled in Mandelbrot and Wallis (1968), models in hydrology initally assumed that “pre-
cipitation were random and Gaussian [....] with successive year’precipitation either mutually
independent or with a short memory”. Those two assumptions have been treated separately,
when dealing with annualized maxima, Gumbel assuming that observations were independent
but with a non-Gaussian distribution (the so-called Gumbel distribution), while Hurst assumed
that yearly maxima were Gaussian but with long memory. We shall recall briefly in the two next
paragraphs the main ideas of those two approach, from independence (Gumbel) of annualized
maxima to range memory dependence (Hurst). As we will see those two approaches yield com-
pletely different results in terms of risk measurement (e.g. return periods). The last paragraph
of this section will briefly highlight that this problem of two approaches also holds in finance,
and that some alternative have arisen.

8.4.1 Gumbel’s independence and extreme value models: a static

model

Consider (Xi)i∈N
an i.i.d. sequence of random variables. Define, for all n ∈ N∗ the associated

i-th statistic order Xi:n. One gets easily that Xn:n
a.s.→ xF = sup {x ∈ R, FX (x) < 1} (xF is

then infinite for non-bounded random variables). This limiting results does not provide much
information in terms of limiting distribution. Following the construction of “stable” distribution,
in the context of extremes, the idea will be to consider normalizing sequences (an) and (bn) so that
there exists a limiting distribution for the maxima Xn:n. Fisher-Tippett Theorem (see Theorem
3.2.3 in Embrechts, Klüppelberg and Mikosch (1997)) states that the Generalized Extreme Value
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(GEV) distribution, defined as

Hξ (x) =

{
exp

(
− (1 + ξx)−1/ξ

)
ξ 6= 0

exp (− exp (−x)) ξ = 0,
(8.3)

where 1 + ξx > 0, appears as the limiting distribution of the normalized maxima, for some
appropriate normalizing constants. This is also the so-called Von Mises parameterization.

Let Y1, ...., Ym denote independent and identically distributed variables, say daily discharge,
or daily maximum river height. Let Xi denote the annualized maxima for year i. Then, the Xi’s
are then i.i.d., and moreover, their distribution should be close to some GEV distribution. Notice
that the special case ξ = 0 (Gumbel law) was obtained by Gumbel when studying hydrological
data.

Example 8.4.1. The data considered here are average daily streamflows of the Saugeen River,
measured between 1914 and 2003. The autocorrelation function of the annual maxima series (Fig-
ure 8.19, on the left hand side) seems at first to validate the independent sampling hypotheses
since no autocorrelation is significant. When fitting a GEV distribution on these annual maxima
(see Figure 8.19, on the right hand side), one finds that the Gumbel distribution, with a tail para-
meter ξ̂ = −0.02, and a standard deviation 0.07 (and µ̂ = 238 and σ̂ = 90.6) is adequate. Testing
the nullity of the ξ coefficient with a modified likelihood ratio test (see Hosking (1984)) confirms
this conclusion. (The hypothesis that the annual maxima do not follow a Gumbel distribution is
rejected with a threshold of 1%).

But as pointed out in Gumbel (1958,page 238), “it must be admitted that the good fit cannot
be foreseen from the theory, which is based on three assumptions (1) the distribution of the daily
discharges is of the exponential type (2) n = 365 is sufficiently large (3) the daily observations
are independent [...] The thirst assumption does not hold.”

Note that the GEV approach, induced by Gumbel’s work, has be in use for practical work
for more than 30 years, since it was recommended for hydrological applications in NERC (1975).
But again, as mentioned in Gumbel (1958, page 164), “the exact distribution of extreme values
holds only for independent observations”.

8.4.2 Hurst’s strong dynamics and fractional processes: a dy-

namic model

The problem studied by Edwin Hurst, who spent a lifetime studying the Nile and the problems
related to water storage, was to determine the design of an ideal reservoir based upon the given
record of observed discharges from the lake. He investigated many natural phenomena, such
as river discharges, mud sediments and tree rings, and introduced the so-called R/S statistics,
where R denotes the “range” (the difference between the maximum and the minimum influx
through a given period of time τ), and S the “standard deviation” on the same period of time.
He noticed that the observed rescaled range R/S for many records in time was well described
by the empirical relation R/S = (τ/2)H , where H is called Hurst component (but called K by
Hurst) . When observations are independent, R/S should be proportional to

√
τ (i.e. H = 1/2),

but as pointed out by Hurst, in many natural phenomena, we have H > 1/2. The explanation
given by Hurst of this characteristic was (see e.g. that “the discharge of a river depends not only
on the recent precipitation, but also on earlier rainfalls. The flow in a large river system such as
the Nile must depend on the water content in a large drainage area. The amount of water stored
in the drainage area will increase in prolonged periods of higher than average precipitation. The
excess amount of water stored will then contribute to the discharge in drier years [...] for river
discharges, the fractal nature (i.e. the memory effect) of the drainage area may also contribute
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Figure 8.19: Autocorrelation function of the annual streamflow maxima. GEV fit.
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to the fractal behavior of river discharges.” This phenomena is called “ long-range dependence”
or “ long-term dependence” (see e.g. Probst and Tardy (1987), Pelletier and Turcotte (1997), or
Koscielny-Bunde et al. (2006)), “fractal behavior ” or (see e.g. Puente (1996), Pandey, Lovejoy
and Schertzer (1998), “scale-invariant” (see e.g. Foufoula-Georgiou (1999))

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

au
to

co
rr

el
at

io
n

600 observations

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

lag

au
to

co
rr

el
at

io
n

87 observations

Figure 8.20: Autocorrelation function of the Nile annual maxima series with 600 and 87
observations.

The two approaches presented so far (supposing that annual maxima are independent, as
assumed by Gumbel or exhibit long memory as assumed by Hurst) seem to be incompatible.
The differences seem to stem from the length of the studied series. Indeed, Hurst had noticed
that the "Joseph effect" was noticeable only if a very long series was considered. On shorter
series, and at different times, the long memory effect vanishes. This would mean, in our case, that
we would ignore a dependency that is here, as can be seen on figure 8.20, where 87 is precisely
the number of years of data available for the Saugeen river. Hence, it seems reasonable to ask
whether the independent annual maxima assumption is relevant : assuming that the data are
independent and identically distributed is only possible because hydrologists usually have short
series, while the data are actually dependent.

Gumbel’s approach lets one model extremal events (i.e. floods), while Hurst’s approach
does not. How can we model extremal events, while at the same time retaining the underlying
dynamic? This leads us to a parallel between high-frequency data finance and hydrology.

8.4.3 The analogy with financial data

The historical approach in hydrological series, mentioned in Mandelbrot and Wallis (1968) also
holds in finance: in 1900, Bachelier assume that daily returns of stock prices were independent,
and Gaussian random variables. Later one, dynamics was introduced, e.g. based on long range
dependence models on stock returns (see e.g. Greene and Fielitz (1977), Aydoyan and Booth
(1988) or Lo (1991)), in exchange rates (see e.g. Booth, Kaen and Koros (1987)) or in interest
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rates (see e.g. Shea (1991)). Moreover, early evidence on periodicities and duration clustering
entailed temporal dependence, as discussed in Engle and Russell (1998).

A natural idea to get better models, is to model no only the price at the end of each day, but
for all transactions. But all transactions data are inherently irregularly spaced in time. And since
most econometric models are specified for fixed intervals this poses an immediate complication.
Analogously, flood evens are also irregularly spaced in time.

Although empirical evidence has been observed very early in finance - often called the week-
end effect, or January effect-, it did not receive much interest until Engle and Russell (1998)
introduced the ACD model (Autoregressive Conditional Duration) for modeling the financial
duration process. The idea was to consider Ti the time at which the i-th trade occurs, and to
define the following set of observations,

{(Di, (Pi, Vi))}i∈N where Di = Ti − Ti−1,

and where Pi and Vi denote respectively the price of the asset when traded, and the volume.
A natural parallel can be obtain for hydrological series, were flood events can be characterized

through variables of interest Ti’s (time of the flood, or at least the event {the river level exceeded
some given threshold}, Pi’s (the peak associated to the ith flood event) and Vi’s (the volume of
surplus water associated to the ith flood event).

Hence, the goal of this paper is to show that instead of focusing on annualized observations
for hydrological series, or daily observations for financial series, high frequency data can be
considered. As will se in Section 8.4.4 a model, which is slightly different from the one shown
previously, can be used to model high frequency data in hydrology. In finance, time is usually
treated as one variable, i.e. the time of the transaction. The transaction is a discrete event.
However, in hydrology, a flood event cannot be considered as a discrete event, since a flood can
last many days. Hence, two time processes will be considered: the beginning of flood process,
and the flood duration process.

8.4.4 Dynamic flood modelling

The first dynamic flood models were developed by Todorovic and Zelenhasic (1970), and Todor-
ovic and Rousselle (1970). The idea is to study the duration between floods, as well as for each
flood a mark (the river maximum level for example). The dynamic aspect of the phenomenon is
therefore not lost. However, these first models still assume that flood events are independent.

Basics on point processes

These first models use results from point process theory, which we recall here briefly.

Definition 8.4.2. Let (Ω,F , P) a probability space. Let (τn) be an increasing sequence of random
variables such that τ0 = 0 and ∀i ≥ 1, τi > τi−1. A counting process (or point process) is :

Nt =

∞∑

n=1

I(τn≤t)

Nt is the number of events that occurred before date t, and the sequence τn is the sequence
of occurring times of the said events. The model used usually in hydrology assumes that the
occurring process is a Poisson process, defined as follows :

Definition 8.4.3. Let’s consider the process (Nt) defined previously. If for all k ≥ 1 et for all
increasing sequence 0 = t0 < t1 < ... < tk, the random variables Nt1 , Nt2 − Nt1 , ..., Ntk − Ntk−1



CHAPTER 8. TEMPORAL DEPENDENCIES FOR NATURAL EVENTS 253

are independent and follow a Poisson distribution with parameter λ(ti− ti−1) for i ∈ [1, .., k] then
the point process is called homogeneous Poisson process.

The occurring times sequence has then the following property :

∀n ≥ 1, τn − τn−1 ∼ E(λ)

The duration between two events follows an exponential law. The parameter λ is called the
intensity of the Poisson process.

Non-homogeneous Poisson processes extend the class of homogeneous Poisson process. The
λ parameter is not constant anymore and is a deterministic function of time. In both cases, λ
has the following property:

λ(t) = lim
∆t→0

P (N(t + ∆t) > N(t))

∆t

The λ(t) parameter can be interpreted as the instantaneous occurrence probability of an
event at date t. If a characteric is associated to a point process, (for example a river level for
the flood occurrence process), the point process is then called a marked point process and the
characteristic is called a mark.

This model may seem limited in so far as it only has one mark : it could be interesting to
integrate both durations (the duration of the flood and the duration between two floods) into
the point process driving the occurrence time, and, if a flood occurs, associate two marks (peak
and volume) to the same point process.

Two durations model

The basic idea is to consider two point processes, with the first one driving the second one. The
driving process here would be the flood occurrence process, and the second one would define the
duration between the end of the last flood and the beginning of the next one.

The main advantage of such a model is that each beginning of flood event introduces a waiting
time for the next end of flood event, without making any assumption on the type of dependency
that may exist between the two duration variables.

From a mathematical standpoint, let ti be the occurring time of the i-th flood, and t′i the
ending time of the i-th flood. Let’s consider the following durations : Xi = ti+1− ti, the duration
between two flood beginnings, and Yi = ti+1 − t′i, the duration between the end of a flood and
the beginning of the next one. We can then deduce the duration of the flood, Di = Xi − Yi. A
graph showing the relationship between those durations is shown figure 8.21.

Model specification

Without loss of generality, the joint density of the bivariate duration process {(Xi, Yi)} can be
written as the product of a conditional density and of the density of one the marginals:

p(xi, yi|Hi−1, θ) = g(yi|Xi = xi,Hi−1, θ2)f(xi|Hi−1, θ1)

where g can be seen as the conditional density of flood endings , f the flood beginning density,
(Hi) the filtration generated by (Xk)k≤i and θ = (θ1, θ2) is the model parameter.

A class of models for f et g, which does not make the assumption that observations are
independent has been developed by Engle adn Russell (1998), to study the durations between
financial transactions. Having noticed that there were many more financial transactions in the
morning than at lunch time, they wanted to study the influence of the number of transactions on
the stock volatility. They therefore chose to model the duration between transactions as well as
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Figure 8.21: Two durations model

the stock price, turning calendar time into economic time to only keep the necessary information.
Here, we would like to study floods instead of transactions, but the approach remains the same.
These models are called ACD models (Autoregressive Conditional Duration).

The ACD(p, q) model

Let zi = (X1, ..., Xi−1) the sequence of past duration realizations. Let Ψi > 0 be a function of zi

and of θ1 (θ1 ∈ Rs). The following model is called an ACD(p, q) model:





Xi = Ψiǫiwhere (ǫi) are i.i.d and independent from zi

E[Xi|zi] = Ψi

Ψi = θ1 +
∑p

k=1 αkXi−k +
∑q

k=1 βkΨi−k

This model can be rewritten as

Xi = θ1 +

max(p,q)∑

k=1

(αk + βk)Xi−k +

q∑

k=1

βkηi−k + ηi

where ηi = Xi−Ψi. This is equivalent to saying that the conditional expectation of the duration
between transactions follows an ARMA process with highly non-gaussian innovations.

We can link the Poisson process to the ACD model. Indeed, if fǫ,θ1
denotes the density of

ǫ, (θ1 ∈ Θ1), the density of Xi can be written as :

f(x|zi, θ1) =
1

Ψi
fǫ,θ1

(
x

Ψi
, θ1

)

In the case of the Poisson process, the process intensity is deterministic whereas in the case
of of an ACD(p, q) model, if fǫ,θ1

is the density of an exponentially distributed random variable
with parameter 1, f(x|zi, θ1) follows a exponential law whose parameter is randomly distributed.
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For practical reasons (especially to avoid the need of constraining the parameters), one
can introduce exponential functions in the previous model and build a model called the ex-
ponential ACD (following roughly the building of the EGARCH model, see Nelson (1991)). If
Ψi(Hi−1, θ1) = E(Xi|Hi−1, θ1). The conditional duration of floods is then:

f(xi|Hi−1, θ1) =
1

Ψi(Hi−1, θ1)
exp

( −xi

Ψi(Hi−1, θ1)

)
,

and

Ψi(Hi−1, θ1) = exp

(
α + δ log(Ψi−1) + γ

xi−1

Ψi−1
+ β1pi−1 + β2vi−1

)
.

pi (peak) and vi (volume) act here as explanatory variables : we assume that the intensity of the
flood process is linked with past floods’ peaks and volumes.

g is defined in a similar way, taking into account the fact that the density used here is
conditional to xi. Ψi becomes Φi, and xi becomes yi :

Φi(xi,Hi−1, θ1) = exp

(
µ + ρ log(Φi−1) + γ

yi−1

Φi−1
+ τ

xi

Ψi
+ η1pi−1 + η2vi−1

)

we can then apply this model to floods (or more precisely to threshold exceedances, see Figure
8.22).

Figure 8.22: Determination of the flood events, on a two year period.

Estimating the model

The log-likelihood of the model for an n-sized sample is:

L(X,Y, θ1, θ2) =
n∑

i=1

(log g(yi|xi,Hi−1, θ2)) +
n∑

i=1

(log f(xi|Hi−1, θ1)
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One can start by maximizing the second term to get and θ̂1 then maximize

N∑

i=1

(log g(yi|x̂i,Hi−1, θ2)) .

This approach is not equivalent to directly maximizing the log-likelihood when the depen-
dence between X and Y is ill-specified and can result in lesser quality estimators. However, this
method, used in Engle and Lunde (2003), is simple.

If the model is truly exponential and if the duration between two floods is well-specified, the
residuals associated to the said duration should be independent and be exponentially distributed
with parameter 1. In the ACD framework, residuals are defined as:

ǫi =
xi

Ψi(Hi−1, θ1)

Mixed distribution for the residuals

The exponential distribution is simple, and often used to model durations, but quite inefficient as
we shall see in Section 8.4.5. We will therefore use more general families of distribution, namely
a mix of two distributions. Indeed, snow meltdown creates a seasonal effect, which means for
the residuals that two effects should be taken into account : one for regular excedances (1), and
one for the snow meltdown effect (2).

distribution of ε
ր
ց

L (ε, λ, δ) with probability α (1)

L (ε, µ, γ) with probability 1 − α (2)

We will try modelling the residuals with a mixed exponential distribution and with a mixed
Weibull distribution (such a law allows more flexibility than the exponential law when modelling
durations, see Barlow and Proschan (1996)).

The mixed exponential model can be written as

S(x) = αe−λ1x + (1 − α)e−λ2x, w1, w2 > 0, w1 + w2 = 1

where S denotes the survival function. Hence, the log-likelihood is:

L(X1, ..., Xn) =
n∑

k=1

log

(
α

λ1
e−λ1x +

1 − α

λ2
e−λ2x

)

which is then maximized according to λ1, λ2, w1, w2.
The mixed Weibull distribution has the following density:

f(x) = α
(
λδ−λxλ−1e−(x/δ)λ

)
+ (1 − α)

(
µγ−µxµ−1e−((x−d)/γ)µ

)

Such a model can seem complex since it has 4 parameters. The parcimonia principle would
suggest to focus on a simpler mixture, but, as we shall see in Section 8.4.5 (see e.g. Figure 8.26)
the proper distribution can be, in practice, difficult to model with simple laws.

The estimation procedure proposed here is a maximum likelihood estimation procedure for
both exponential and Weibull distributions, but recall that a Bayesian approach can also be
considered, e.g. using Gibbs’ sampler (see Kelly and Krzysztofowicz (2000, 2001) for the use of
bayesian models for estimation in rainfall series).
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Parametric estimation for a mixture

In reliability theory, when modelling failure-time data, different types of failure are usually
considered, e.g. 2. The traditional approach is to assume that there exists latent failure times
T1 and T2, corresponding to the two causes of failure, and then proceed with the modelling of
T = min {T1, T2} on the basis that the two causes are independent (see David and Moeschberger
(1968)). An alternative approach (see Prentice et al. (1978)) is to consider a two-component
mixture model, where

F (t) = αF 1 (t) + (1 − α) F 2 (t)

where Fi denotes the conditional survival survival function, given that failure is due to the ith
cause, and α is the probability that the failure is due to the ith cause. In terms of density, we
notice that

f (t) = αf1 (t) + (1 − α) f2 (t) .

The underlying model can then be written

Xi = ΘiY1,i + (1 − Θi)Y2,i

where Θi ∼ B (α), and Xi|Θi has density f1 if Θi = 1 and f2 if Θi = 0.

Maximum likelihood Data are obtained from a mixture, and they are said to be incomplete
since we do not know if one observation Xi is of type (1) or (2). Hence, the Xi’s are observed, but
not the Θi’s (also called component labels). Assume that the fi’s belong to the same parametric
family, and that fi (·) = g (·|βi), where βi can be a vector of parameters. The log-likelihood for
a sample X = (X1, ..., Xn) is then

L (α, β1, β2|X) =
n∑

i=1

log [αg (Xi|β1) + (1 − α) g (Xi|β2)] .

The maximum likelihood estimates are obtained considering solutions of

∂L (α, β1, β2)

∂α
=

∂L (α, β1, β2)

∂β1
=

∂L (α, β1, β2)

∂β2
= 0.

But recall that α should satisfy the constraint α ∈ [0, 1]. As pointed out in Titterington, Smith
and Makov (1985) explicit calculation of maximum likelihood estimates is usually not possible.
However, iterative techniques can be considered, such as the EM algorithm.

The EM algorithm The EM algorithm is based on the idea that the Xi’s are actually
realizations of some unobserved Yi’s,.which should define the complete sample, i.e. when deal-
ing with mixture distributions, Yi = (Xi, Θi). The complete log-likelihood for the Yi’s is
logLc (α, β1, β2|Y ), but it cannot be observed since it is based on the Θi’s. It is then replaced
by its conditional expected value,

Q (ξ|ξ0,X) = Eξ′ (logLc (α, β1, β2|X,Θ) |ξ0, X) ,

where Θ is integrated according to the conditional distribution f (θ|ξ0, X).
The iterative algorithm to estimate parameter ξ is the following: set ξ0 and at step k + 1:

1. Step E (estimation): calculate Q
(
ξ|ξ(k), X

)
, based on the expected value with respect to

f
(
θ|ξ(k), X

)
,
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2. Step M (maximisation): maximize Q
(
ξ|ξ(k), X

)
and set

ξ(k+1) = arg max
ξ

Q
(
ξ|ξ(i), X

)
.

Example 8.4.4. In the case of exponential components, F j (t) = exp (−λjt) for t ≥ 0, observe
that

Q
(
ξ|ξ(k),X

)
=

n∑

i=1

[log λ1 − λ1Xi] I (Θi = 1) + [log λ2 − λ2Xi] I (Θi = 0) ,

and

λ
(k+1)
j =

1

X1 + ... + Xn

n∑

i=1

φ
(k)
i,j ,

where

φ
(k)
i,j =

λ
(k)
j

∑
u∈Sj

λ
(k)
u

and

{
S1 = {i,Θi = 0}
S2 = {i,Θi = 1}

(see Albert and Baxter (1995)).

Example 8.4.5. In the case of Weibull components, F j (t) = exp (− [t/λj ]
γj ) for t ≥ 0, the

approach is rather similar but the EM algorithm is not easy to implement.
Albert and Baxter (1995) considered a pseudo-alternating EM algorithm (see Liu and Rubin

(1994)). The equations to solve at the k + 1th iteration are

λj =

(
X

γj

1 + ... + X
γj
n

φ
(k)
1,j + ...φ

(k)
n,j

)1/γj

and
n∑

i=1

[
φ

(k)
i,j

(
1

γj
+ log

(
Xi

λj

))
−

(
Xi

λj

)γj

log

(
Xi

λj

)]
= 0,

where

φ
(k)
i,j =

f
(
Xi, λ

(k)
j , α

(k)
j

)

∑
u∈Sj

f
(
Xi, λ

(k)
u , α

(k)
u

) where f (x, λ, α) =
αxα−1

λα
.

Example 8.4.6. Based on the Saugeen data, the previous algorithm have been implemented in
order to fit the residuals, see Table 8.6.

Mixture Weibull 1 Weibull 2
α̂ λ̂ δ̂ µ̂ γ̂

ML 0.70 0.36 0.89 1.01 1.60
(PA)EM 0.68 0.34 0.92 0.98 1.57

Table 8.6: Estimation of the mixed Weibull distribution.

Since the model is now specified, the key issue now is to model the marks properly.
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Two durations marked model

We will here take 4 variables into account instead of two : two duration variables (the duration
between two flood beginnings as well as the duration between the end of a flood and the beginning
of the next one) and two marks (peak streamflows and volumes). In this paragraph and the ones
that follow, Hi will denote the filtration generated by the (Xk, Yk, Pk, Vk)k<i.

By following a similar approach to the previous one, we can write, with f denoting again the
conditional density of (Pi, Vi, Xi, Yi) :

f(pi, vi, xi, yi|Hi−1) = g(pi, vi|Hi−1, xi, yi)︸ ︷︷ ︸
marks

q(xi, yi|Hi−1)︸ ︷︷ ︸
durations

By writing the density in such a way, we can separate the roles played by the marks and by
the durations, while at the same time retaining the possibility to reuse the previous results. As
done previously, we can then separate q in two different parts, which will each follow an E-ACD
models.

This model can be simplified by imposing a simple relationship between P and V , and have
a single mark two durations model. The idea (albeit simplistic) is to consider that the flood
volume can be written as

V = P
X − Y

2
A more accurate model could integrate some error terms in the approach. A first idea could

be to assume that V = P X−Y
2 + ε where ε is some Gaussian error term. But as observed on

Figure ??, homoscedasticity of the error cannot be assumed, since the higher the volume, the
stronger the variance of the error term. Another idea might be to use a Generalized Linear Models
(see McCullagh and Nelder (1988)). For instance, assume that V is Poisson distributed, with
expected value V = P X−Y

2 . Since the Poisson distribution has for variance function identity,
the variance term will also be V = P X−Y

2 , which is more consistent with Figure ?? (more than
the linear Gaussian model mentioned previously).

Example 8.4.7. The (Vi, Pi(Xi − Yi)/2) cloud can be seen Figure 8.23, where the linear model
is the dotted line and we can validate this hypotheses.

One of these two marks being necessary, we chose to keep the peak variable. Using a Pareto
law seems right, since it is used to model (Balkema-de Haan theorem, see Embrechts, Klüppelberg
and Mikosch (1997)) laws over a threshold). The (conditional) density can then be written as:

h(pi|Hi−1, xi, yi, α, σ) = α

(
pi + b(xi − yi) + d

σ

)−(1+α)

The density of yi conditionally to xi being the one given in the previous section, the likelihood
of the model is then:

L(P,X, Y, θ1, θ2, α, σ) =
N∑

i=1

(h(pi|Hi−1, xi, yi, α, σ))+
N∑

i=1

(log g(yi|xi,Hi−1, θ2))+
N∑

i=1

(log f(xi|Hi−1, θ1)

8.4.5 Modelling exceedances for the Saugeen river

When modeling extremal events (see Embrechts, Klüppelberg and Mikosh (1997) or Beirlant,
Goegebeur, Segers and Teugels (2004)) defined as events for which the variable of interest exceeds
a certain level, one usually does the following : define a lower threshold, model events exceeding
this threshold, then focus on tails. When modeling floods, the idea remains be the same. We
define floods as exceedances over some very high thresholds. In order to study them from a
statistical point of view, we shall study exceedances for lower thresholds.
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Figure 8.23: Relationship between peak, volume and duration of a flood.

How to define a flood (or exceedance of some threshold) events

In order to define the point processes (beginning and ending of the flood, or exceedance), the
threshold is chosen so that if the variable exceeds the threshold, it is much higher than the
threshold. Such a method allows to keep only "interesting" floods, and to limit the number of
events considered. The idea is to maximize

P(Xi > f(threshold)|Xi > threshold) =
#{Xi > f(threshold)}

#{Xi > threshold}

where f is some given function. Assume that f is affine. The constant terms helps to exclude
noise due to the very low level of the river, which may artificially bring the threshold down.
The multiplicative coefficient has to be chosen higher than 1. Based on the Saugeen’s level, we
have assumed that the level was 1.5. Higher values would have made the number of exceedances
decrease drastically, while lower values would not be associated to flood events. Figure 8.24
represents the probability as a function of the threshold. Note that Figure 8.22 shows exceedances
and flood events over a two year period of time.

Estimating the model

Estimating the two-duration model yields the results shown in table 8.7. One can notice the
similarities between parameters which play the same role in the two functions. We can notice
that past observations do not play a major role, probably because of a scale factor. Simulating
such a process yields for X the QQ-plot shown Figure 8.25, which rejects the EACD model :
this model overestimates very long durations between floods. Besides, studying the residuals
invalidates the estimated model, since the residuals are not exponentially distributed, and have
two very apparent modes (see figure 8.26). The second mode in particular has a major influence
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Figure 8.24: Determination of the threshold, which define exceedances.

over the distribution of extremes values. This density may imply that there are two different
flood regimes, one being associated with snow meltdown and the other one with regular floods.

α̂ β̂1 β̂2 δ̂ γ̂
4.32 −1.03.10−3 2.89.10−6 0.15 −9.55.10−4

µ̂ η̂1 η̂2 ρ̂ γ̂ τ̂
4.43 −1.03.10−3 −5.34.10−7 0.12 −2.94.10−3 0.67

Table 8.7: Results of the estimation procedure for the two durations model (Xi) et (Yi)

As mentioned in the previous section, the exponential assumption does not hold(see Figure
8.25). The Weibull approach being more flexible, we tried to fit such a model on the data.
Numerically speaking, the estimates are, for (α, d, λ, δ, µ, γ) give in Table 8.8.

α̂ d̂ λ̂ δ̂ µ̂ γ̂
0.70 1.5 0.36 0.89 1.01 1.60

Table 8.8: Estimation of Exponential model parameters (α, d, λ, δ, µ, γ)

Based on this Weibull model, simulated values (using estimated values from the observation)
for the fitted model can be compared to the empirical data (see Figure 8.27). The improvement
of the results is very noticeable. It seems legitimate to think these results can be improved even
more since the estimation procedure was very unprecise.

We have specified a model for the duration, and can now extend it to take marks into account,
by following a similar approach to Engle and Rusell (1998) (for a single duration and a single
mark).

Figure 8.28 shows the distribution function of mark simulations against empirical data, as
well as a qq-plot. We can notice that the qq-plot is misshapen. This stems from the fact that we
simulated 17000 floods, and extreme values ( 99.9% quantile) appeared which are not present in
the data.
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Figure 8.25: Comparison between the empirical distribution function of the data and that
of X.
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CHAPTER 8. TEMPORAL DEPENDENCIES FOR NATURAL EVENTS 263

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

simulation

do
nn

ee
s

Figure 8.27: Comparison between the empirical distribution function of the data and that
of simulations of X for a Weibull mixed law
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Figure 8.28: QQ-plot and Probability plot.
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8.4.6 Back to annual maxima

Since in hydrology the benchmark is the annual maxima, we should now compare this model with
the traditional approach, studying the aggregated process derived from this detailed approach.

We simulated marks from the estimated model and extracted annual maxima. We then fitted
a GEV distribution on these data and found ξ̂ = 0.03, µ̂ = 96 and σ̂ = 216. These results are
very close to the static model. Estimating the 90% yields results in accordance with the ones
obtained before: The 90% quantile of our dynamic model is 433, against 440 for the static model.
The dynamic model we proposed seems therefore "compatible" with the usual static one.

Since the models seem compatible, it is interesting to study why using a dynamic model could
be better. In particular, we can study the duration between two decades floods, i.e. floods which
are over the 90% quantile estimated on annual maxima.

Example 8.4.8. The duration distribution between decennial floods is shown Figure 8.29. It
resembles that of a geometric distribution, typical of the return period hypothesis, with more
events within a very short period. However, it seems that the return period associated to such a
distribution is smaller than the expected ten years : 9 years. This probably comes from the fact
that the dynamic model takes into account multiple extreme events in a single year, something
which the static model does not allow.
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Figure 8.29: Flood duration distribution.

8.4.7 A brief conclusion

The goal of that section, drawing from the field of high-frequency finance, was to work on
irregularly spaced observations in order to avoid some inconsistencies observed in several usual
models. Indeed, flood events are not necessarily annual : even if there is a strong seasonal
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component due to snow meltdown (but not regular enough to be integrated in the model, as done
in Chavez-Demoulin and Davison (2005)), there is no reason to focus on annual observations.

Empirical evidence suggests that although Gumbel was almost right stating that annual
maxima are i.i.d., we cannot assume that flood events are independent. More precisely, the
real return period of flood events (or at least threshold exceedances) is shorter than the one
obtained under the i.i.d. assumption. However, although we were able to model time-dependent
observations, we still could not reproduce the strong dependence known as the Hurst effect. One
of the reason might be the lack of data, for 100 years might not be enough. Since ACD models
in finance allow to observe persistence phenomena, it should also be true for hydrological series..

One of the main difficulties was the choice of the threshold defining an exceedance, in short
a floodevent. A low level (annual exceedance) allows to keep a lot of observations but might
be useless from a practical standpoint. On the contrary, a high level has practical consequences
(in terms of risk management, e.g. assessing the level of a Dam) but there are not enough
observations left to model correctly temporal dependence.

Many things remain to be studied, starting with the many numerical problems which arose
and need to be solved. Furthermore, it would be interesting to use the same category of models
on rainfall series, and try to model jointly rainfall and streamflow.
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Appendix: ARMA with t residuals

Assume that Y1, . . . , Yn has the following ARMA(p, q) representation,

Φ(L)Yt = Θ(L)εt,

where Φ(L) = I − φ1L − . . . − φpL
p, and Φ(L) = I + θ1L + . . . + θqL

q.
Consider the following matrix notations, y = (Y1, ..., Yn) the vector of observations, and

e = (ε1, ..., εn). Define y∗ = (Yp−1, ..., Y−1, Y0) containing presample elements of (Yt)t∈Z, and
e∗ = (εq−1, ..., ε−1, ε0) containing presample elements of (εt)t∈Z. A the sample n elements from
(Yt)t∈Z can be represented in the corresponding vector equation

A∗y∗ + Ay = Me + M∗e∗,

where the banded lower-triangular matrix A is of order n×n, while A∗ is a n×p matrix, defined
as

A =




1

φ1
. . . (0)
. . . . . .

φp φ1 1
. . . φ1

. . .

(0)
. . . . . . . . .

φp φ1 1




and A∗ =




φp φ1

. . .
φp

(0)




for the autoregressive representation, and for the moving average component,

M =




1

θ1
. . . (0)
. . . . . .

θq θ1 1
. . . θ1

. . .

(0)
. . . . . . . . .

θq θ1 1




and M∗ =




θq θ1

. . .
θq

(0)




Hence, an alternative matrix representation is the following,

Ay = Me + V u,

where V and u are respectively a n × (p + q) matrix and a (p + q) vector,

V = (−A∗ M∗) and u = (y∗ e∗)
′.

So finally, combining those equations, we get
(

u

y

)
=

(
I 0

A−1V A−1M

)(
u

e

)
(8.4)

or, considering the inverted version,

(
u

e

)
=

(
I 0

A−1V A−1M

)−1 (
u

y

)
=

(
I 0

−M−1V M−1A

)(
u

y

)
(8.5)
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Since (εt)t∈Z is a white noise, V ar(e) = σ2I. Hence, assume that e ∼ T (0, σ2I, ν). Also,
y ∼ T (σ2Ω), for some matrix Ω. So finally, it comes that

V ar(u) = σ2

(
Ω 0
0 I

)

From Equation (8.4), the variance of (u y) is

V ar

(
u

y

)
= σ2

(
Ω ΩV ′A′−1

A′−1V Ω A−1(V ΩV ′ + MM ′)A′−1

)

and thus, the variance of y is

V ar(y) = σ2A−1(V ΩV ′ + MM ′)A′−1,

and using properties of triangular matrix,

V ar(y)−1 =
1

σ2
A′M ′′−1(I − M−1V (Ω−1 + V ′(MM ′)−1V )−1V ′M ′−1)M−1A.

Assume now that elements of e and u are independent, so that the density of (e, u)′ is the
product of the densities of e and u,

f(u,e) =
Γ((ν + (p + q))/2)

Γ(ν/2)
√

(πνσ2)(p + q)|Ω|

(
1 +

u′Ω−1u

σ2ν

)−(ν+(p+q))/2

× Γ((ν + n)/2)

Γ(ν/2)
√

(πνσ2)n

(
1 +

e′e

σ2ν

)−(ν+n)/2

We assume here that the number of degrees of freedom, ν, is known.
Therefore, joint distribution of (u, y) is then obtained from Equations (8.4) and (8.5), since

the distribution of y given u is a t distribution, and thus, using f(u, y) = f(y|u) · f(u), we get

f(u, y) =
Γ((ν + n)/2)

Γ(ν/2)
√

(πνσ2)n

(
1 +

(Ay∗ − V u)′(MM ′)−1(Ay∗ − V u∗)

σ2ν

)−(ν+n)/2

× Γ((ν + (p + q))/2)

Γ(ν/2)
√

(πνσ2)(p + q)|Ω|

(
1 +

u′Ω−1u

σ2ν

)−(ν+(p+q))/2

From this expression, the marginal distribution of y can be expressed as

f(y) =
Γ((ν + n)/2)

Γ(ν/2)
√

(πνσ2)n|Σ|

(
1 +

y′Σ−1y

σ2ν

)−(ν+n)/2

,

where Σ = A−1(V ΩV ′ + MM ′)A′−1.
Therefore, maximum likelihood estimators of the ARMA components can be obtained by

minimizing

|Σ|−1/2

(
1 +

u′Ω−1u

σ2ν

)−(ν+(p+q))/2

as a function of Σ, or the logarithm of that function. Note that the determinant of Σ is

|Σ| = |A−1(V ΩV ′ + MM ′)A′−1| = |V ΩV ′ + MM ′|,

since |A| = 1.
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Hájek, J., Zbynĕk, S̆. and Sen, P.K.(1999). Theory of rank tests. Academic Press.

Hannan, E.J. (1973). The asymptotic theory of linear time series models. Journal of
Applied Probability, 10, 130Ű145.

Hall, P. and Park, B.U. (2002). New methods for bias correction at endpoints and
boundaries. Annals of Statistics 30, 1460-1479

Hardy, G.H., Littlewood, J.E. and Polya, G. (1934). Inequalities. Cambridge uni-
versity press.

Harrell, F.E. and Davis, C.E. (1982). A new distribution-free quantile estimator.
Biometrika 69, 635-640.

Harris, R.A. (1970). Reliability applications of a bivariate exponential distribution, Op-
erations Research 16, 16-27.

Harris, R.A. (1970). A multivariate definition for increasing hazard rate distribution
function, Annals of Mathematical Statistics 41, 713-717.

Haslett, J. & Raftery. (1989). Space-time modelling with long-memory dependence:
assessing Ireland’s wind power resources. Journal of the Royal Statistical Society. 38.
1-50.

Hauksson, H.A., Dacorogna, M., Domenig, T., Müller, U. & Samorodnisky, G.
(2001). Multivariate extremes, aggregation and risk estimation. Quantitative Finance,
1, 79-95.

Heilmann, W.R. (1986). On the impact of independence of risks on stop-loss premiums.
Insurance: Mathematics and Economics 5, 197-199.

Heffernan, J.E. (2000). A directory of Coefficients of Tail dependence. Annals of Math-
ematical Statistics. 41, 713-717.

Heffernan, J. E. and Tawn, J. A. (2004). A Conditional Approach for Multivariate
Extreme Values. Journal of the Royal Statistical Society. Series B (Methodological). 66.
497-546 .



282 BIBLIOGRAPHY

Heffernan, J. E. and Resnick S. (2004). Hidden Regular Variation and the Rank
Transform. Cornell Reports. 1409.

Hesselager, O., Wang, S. and Willmot, G.E. (1998). Exponential and scale mixtures
and equilibrium distributions. Scandinavian Actuarial Journal, 98, 125-142.

Hillali, Y. (1998). Analyse et modélisation des données probabilistes: capacités et lois
multidimensionnelles. Thèse de doctorat, Université Paris Dauphine.

Hoeffding, W. (1940). Masstabinvariante Korrelationstheorie. Schriften des Matematis-
chen Instituts für Angewandte Matematik der Universitat Berlin. 5, 181-233, reprinted
as Scale- Invariant correlation theory in The collected works of Wassily Hoeffding,
Fisher and Sen eds., Springer Verlag, (1994), 57-107.

Hoeffding, W. (1941). Masstabinvariante Korrelationsmasse für Diskontinuierliche
Verteilungen. Archiv für Mathematische Wirtscafts. 7, 49-70, reprinted as Scale- In-
variant correlations for discontinuous distributions in The collected works of Wassily
Hoeffding, Fisher and Sen eds., Springer Verlag, (1994), 109-132.

Hoeffding, W. (1942). Stochastische Abhängigkeit und Funktionaler Zusammenhang.
Skandinavisk Aktuarietidskrift. 25, 200-227, reprinted as Stochastic dependence and
functional relationships in The collected works of Wassily Hoeffding, Fisher and Sen
eds., Springer Verlag, (1994), 109-132.

Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution.
Annals of Mathematical Statistics. 19, 293-325.

Hollander, M., and Wolfe, D.A. (1999). Nonparametric statistical methods. Wiley
Interscience.

Hosking, J. R. M. (1981). Fractional Differencing. Biometrika, 68, 165-76.

Hosking, J.R.M. (1984). Testing whether the shape parameter is zero in the generalized
Extreme-Value Distribution. Biometrika, 71, 367-374.

Hosking, J.R.M.(1984). Testing whether the shape parameter is zero in the generalized
Extreme-Value Distribution. Biometrika, 71, 367-374.

Hosoya, Y. (1997). A limit theory for long-range dependence and statistical inference on
related models. The Annals of Statistics, 25, 105-137.

Hossjer, O. and Ruppert, D. (1995). Asymptotics for the Transformation Kernel Den-
sity Estimator (in Curve Estimation). The Annals of Statistics. 23, 1198-1222.

Hougaard, P. (1986). A Class of Multivariate Failure Time Distributions. Biometrika.
73, 671-678.

Hu, T. and Hu, J. (1998). Comparison of order statistics between dependent and inde-
pendent random variables. Statistical and Probability Letters. 37. 1-6.

Hu, T., Khaledi, B.-E. and Shaked, M. (2003). Multivariate hazard rate orders.
Journal of Multivariate Analysis, 84, 173-189.

Hult, H. and Lindskog, F. (2002). Multivariate extremes, aggregation and dependence
in elliptical distributions. Advances in Applied Probability. 34. 587-608.

Hurst, H.E. (1951). Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil
Engineers, 116, 770–799.

I.A.A. (2004). A global framework for Insurer Solvency Assessment.
http://www.actuaries.org/LIBRARY/Papers/

Ingersoll, J. (1987). Theory of financial decision making. Rowman and Littlefield.



BIBLIOGRAPHY 283

Jasiak, J. (1999). Long Memory in Economics. Journal de la Societe Francaise de Statis-
tique, 140, 61-67.

Jensen, D.R. and Mayer, L.S. (1977). Some variational results and their applications
in multiple inference. Annals of Statistics. 5, 922-931.

Jirina, M. (1976). On the asymptotic normality of Kendall’s rank correlation statistic.
Annals of Statistics. 4. 214-215.

Joag-Dev, K. (1984). Measures of dependence. in Handbook of Statitics, P.R. Krishnaiah
& P.K. Sen Eds.

Jodgeo, K. (1978). On the probability bound of Marshall and Olkin. The Annals of
Statistics. 6. 232-234.

Joe, H. (1990). Families of min-stable multivariate exponential and multivariate extreme
value distributions. Statistical and Probability Letters, 9, 75-81.

Joe, H., Smith, R.L. and Weissman, I. (1992). Bivariate Threshold Methods for Ex-
tremes. Journal of the Royal Statistical Society. Series B (Methodological). 54. 171-183.

Joe, H. (1993). Parametric family of of multivariate distributions with given margins.
Journal of the Multivariate Analysis. 46. 262-282.

Joe, H. (1997). Multivariate models and dependence concepts. Chapman-Hall.

Jones, M.C. (1993). Simple boundary correction for kernel density estimation. Statistics
and Computing, 3, 135-146.

Jones, M.C. (1996). The local dependence function. Biometrika. 83. 899-904.

Jones, M.C. (1998). Constant local dependence. Journal of Multivariate Analysis. 64.
148-155.

Jouini, M. and Clemen, R.T. (1996). Copula Models for Aggregating Expert Opinions.
Operations Research, 44, 444-457.

Junker, M., Szimayer, A. and Wagner, N. (2006). Nonlinear term structure de-
pendence: Copula functions, empirics, and risk implications. Journal of Banking &
Finance, 30, 1171-1199.

Juri, A. and Wüthrich, M.V. (2003). Copula convergence theorems for tail events.
Insurance: Mathematics and Economics 30, 411-427.

Juri, A. and Wüthrich, M.V. (2004). Tail dependence from a distributional point of
view. Extremes 6, 213-246.

Kaas, R., van Heerwaarden, A.E., and Goovaerts, M.J. (1994). Ordering of
actuarial risks. CAIRE, Brussels.

Kaledhi, B.E. and Kochar, S.C. (2001). Dependence properties of multivariate mix-
ture distributions and their applications. Annals of the Institute of Statistical Mathe-
matics. 53. 620-630.

Karl, T.R. & Trenberth, K.E. (2003). Modern Global Climate Change. Science, 302,
1719.

Karl, T.R., & Knight, R.W. (1997=. The 1995 Chicago heat wave: How likely is a
recurrence? Bulletin of the American Meteorological Society, 78, 1107-1119.

Karunamuni, R.J. and Albert, T. (2005a). A Locally Adaptive Method of Boundary
Correction in Kernel Density Estimation. Journal of Statistical Planning and Inference,
to appear.



284 BIBLIOGRAPHY

Karunamuni, R.J. and Albert, T. (2005b). A Generalized Reflection Method of
Boundary Correction in Kernel Density Estimation. Canadian Journal of Statistics,
to appear.

Kelker, D. (1970). Distribution theory of spherical distributions and a locationŰscale
parameter generalization. Sankhia, 32, 419Ű430.

Kelly, K.S. & Krzysztofowicz, R. (2000). Precipitation uncertainty processor for
probabilistic river stage forecasting. Water resources Research, 36, 2643-2653.

Kelly, K.S. & Krzysztofowicz, R. (2001). Hydrologic uncertainty processor for prob-
abilistic river stage forecasting : precipitation dependent model. Journal of hydrology,
249, 46-68.

Kim, J.S., Proschan, F. and Sethuraman, J. (1988). Stochastic comparisons of order
statistics, with applications in reliability. Communications in Statistics - Theory Meth..
17. 2151-2172.

Kimberling, C.H. (1974). A probabilistic interpretation of complete monotonicity. Ae-
quationes Math., 10, 152Ű164.

Kimeldorf, G., and Sampson, A.R. (1989). A framework for positive dependence.
Annals of the Institute of Statistical Mathematics.. 41. 31-45.

Klugman, S.A. and Parsa, R. (1999). Fitting bivariate loss distributions with copulas.
Insurance : Mathematics and Economics. 24 139-148.

Klüppelberg, C. & Mikosh, T. (1996). Self-normalised and randomly centred spectral
estimated. Procedings of the Athens International Conference on Applied Probability
and Time Series, Vol 2, 259-271, Springer.

KMV-Corporation (1997). Modelling default risk. Technical document.

Kochar, S.and Korwar, R. (1996). Stochastic orders for spacings of heterogeneous
exponential random variables. Journal of Multivariate Analysis 57 69-83.

Kochar, S.C. and Rojo, J. (1996). Some New Results on Stochastic Comparisons of
Spacings from Heterogeneous Exponential Distributions. Journal of Multivariate Analy-
sis, 59 (2) 272-281.

Koscielny-Bunde, E., Kantelhardt, J.W., Braun, P., Bunde, A., Havlin, S.
(2006). Long-term persistence and multifractality of river runoff records. Journal of
Hydrology, 322, 120-137.

Kovats, R.S. & Koppe, C. (2005). Heatwaves past and future impacts on health. in
Ebi, K., J. Smith and I. Burton (eds). Integration of Public Health with Adaptation to
Climate Change: Lessons learned and New Directions. Taylor & Francis Group, Lisse,
The Netherlands.

Kruskal, W.H. (1958). Ordinal Measures of Association. Journal of the American Sta-
tistical Association. 53. 814-861.

Kulpa, T. (1999). On approximation of copulas. International Journal of Mathematics
and Mathematical Science. 22. 259-269.

Lancaster, H.O (1958). The structure of bivariate distributions. Annals of Mathematical
Statistics, 29, 719-736.

Lando, D. (1998). On Cox processes and credit risky securities. Review of Derivatives
Research 2, 99-120.



BIBLIOGRAPHY 285

Lanzinger, H. and Stadtmüller, U. (2002). Tauberian Theorems and Limit Dis-
tributions for Upper Order Statistics. Publications de l’Institut de Mathématiques de
Belgrade. 71, 41-53.

Ledford, A.W. and Tawn, J.A. (1996). Statistics for Near Independence in Multivariate
Extreme Values. Biometrika. 83 169-187.

Ledford, A.W. and Tawn, J.A. (1997). Modelling Dependence Within Joint Tail Re-
gions. Journal of the Royal Statistical Society. Series B (Methodological). 59 475-499.

Ledford, A.W. and Tawn, J.A. (1998). Concomitant tail behaviour for extremes. Ad-
vances in Applied Probability. 30 197-215.

Lefèvre, Cl. and Utev, S. (1997). Mixed Poisson approximation in the collective epi-
demic model. Stochastic Processes and their Applications 69, 217-246.

Lehmann, E.L. (1955). Ordered Families of Distributions. Annals of Mathematical Sta-
tistics. 26. 399-419.

Lehmann, E.L. (1966). Some concepts of dependence. Annals of Mathematical Statistics.
37. 1137-1153.

Lehmann, E.L. (1975). Nonparametrics. Statistical Methods Based on Ranks. Holden-
Day Series in Probability and Statistics.

Lehmann, E.L. (1986). Testing statistical hypotheses. Wiley Interscience.

Lehmann, E.L. (1998). Nonparametrics: statistical methods based on ranks. Prentice
Hall.

Lehr, M. & Lii, K.S. (1998). Maximum Likelihood Estimates of Non-Gaussian ARMA
Models. Working paper.

Li, H. , Scarsini, M. and Shaked, M. (1996). Linkages: a tool for the construction of
multivariate distributions with given nonoverlapping multivariate marginals, Journal
of Multivariate Analysis, 56, 20-41.

Li, X., Mikusinski, P., Sherwood, H. and Taylor, M.D. (1996). On Approximation
of Copulas. in istributions with Given Marginals and Moment Problems. Benes and
Stepan Eds. 107-1-16.

Li, X., Mikusinski, P. and Taylor, M.D. (1998). Strong approximation of copulas.
Journal of Mathematical Analysis and Applications. 225. 608-623.

Li, D.X. (1999). On default correlation: a copula function approach. RiskMetrics Group,
Working Paper.

Lii, K.S. & Rosenblatt, M. (1996). Maximum Likelihood Estimates of Non-Gaussian
nonminimum phase ARMA sequences. Statistica Sinica, 6, 1-22.

Lillo, R.E., Nada, A.K. and Shaked, M. (2001). Preservation of some likelihood ratio
stochastic orders by order statistics. Statistics & Probability Letters. 51 111-119.

Lin, D. and Ying, Z. (1993). A Simple Nonparametric Estimator of the Bivariate Survival
Function under Univariate Censoring. Biometrika, 80, 573-581.

Liu, C. & Rubin, D.B. (1994). The ECME Algorithm: A Simple Extension of EM and
ECM with Faster Monotone Convergence. Biometrika, 81, 633-648.

Lloyd, E.H. (1970). Occurrence interval in the presence of persistence. Journal of Hy-
drology, 10, 291Ű298.

Lo, A.W. (1991). Long term memory in stock market prices. Econometrica, 59, 1276-1313.



286 BIBLIOGRAPHY

Longin, F. and Solnik, B. (1995). Is the correlation in international equity returns
constant: 1960-1990 ?. Journal of International Money and Finance. 14. 3-26.

Longin, F. and Solnik, B. (2001). Extreme correlation of international equity markets,
Journal of Finance. 56. 651-678.

Loretan, M. and English, W.B. (2000). Evaluating correlation breakdowns dug peri-
ods of market volatiliy. Internation Finance Discussion Paper. 658.

Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. (2004).
European sea-sonal and annual temperature variability, trends, and extremes since
1500. Science, 303, 1499Ű1503.

Ma, C. (1997). A note on stochastic ordering of order statistics. Journal of Applied Prob-
ability. 34. 785-789.

Madsen, R.W. (1993). Generalized binomial distribution. Communications in statistics.
Theory and methods. 22. 3065-3086.

Malevergne, Y. and Sornette, D. (2002). Investigating Extreme Dependences: Con-
cepts and Tools. Working Paper.

Makarov, G.D. (1981). Estimates for the distribution function of the sum of two random
variables with given marginal distributions, Teor. Veroyatnost. i Primenen. 26, 815-817
(in Russian), translated in Theory Probab. Appl. 26 803-806.

Mandelbrot, B.B. (1965). Une classe de processus stochastiques homothétiques à soi:
application à la loi climatique de H.E. Hurst. Comptes Rendus de l’Académie des Sci-
ences. 260, 3274-3277

Mandelbrot, B.B. & Van Ness, J.W. (1968). Fractional Brownian motions, fractional
noises and applications. SIAM Rev, 10, 422-437.

Mandelbrot, B., & Wallis, J.R. (1968). Noah, Joseph and operational hydrology.
Water Ressources Research, 4, 909-918.

Mardia, K.V.(1962). Multivariate Pareto Distributions. The Annals of Mathematical Sta-
tistics. 33. 1008-1015.

Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7, 77-91.

Markowitz, H. (1976). Portfolio selection. Yale University Press.

Marron, J.S. and Ruppert, D. (1994). Transformations to Reduce Boundary Bias in
Kernel Density Estimation. Journal of the Royal Statistical Society. Series B (Method-
ological). 56, 653-671.

Marshall, A.W. and Olkin, I. (1967). A generalized bivariate exponential distribution.
Journal of Applied Probability. 4. 291-302.

Marshall, A.W. and Olkin, I. (1979). Inequalities: theory of majorization and its
applications. Academic Press.

Marshall, A.W. and Olkin, I. (1983). Domains of Attraction of Multivariate Extreme
Value Distributions. The Annals of Probability. 11. 168-177.

Marshall, A.W. and Olkin, I. (1988). Families of Multivariate Distributions. Journal
of the American Statistical Association. 84. 834-841.

Marshall, A.W. and Olkin, I. (1991). Functional equations for multivariate exponen-
tial distributions. Journal of Multivariate Analysis. 39. 209-215.

Marshall, A.W. and Shaked, M. (1979). Multivariate Shock Models for Distributions
with Increasing Hazard Rate Average. The Annals of Probability. 7. 343-358.



BIBLIOGRAPHY 287

Martins, E.S.P.R., & Clarke, R.T. (1993). Likelihood-based confidence intervals for
estimating floods with given return periods. Journal of Hydrology, 147, 61-81.

Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality.
The Annals of Probability. 18. 1269-1283.

Maurer, W. and Margolin, B.H. (1976). The multivariate inclusion-exclusion formula
and order statistics from dependent variates. Annals of Statistics. 4. 1190-1199.

Maulik, K. and Resnick, S. (2003). Characterizations and examples of hidden regular
variation. Technical Reports, Cornell University.

McCullagh, P., & Nelder J.A. (1988). Generalized Linear Models. Chapman and
Hall.

Meehl, G.A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting
heat waves in the 21st century. Science, 305, 994-997.

Meerschaert, M. (1988). Regular variation in Rk. Procedings of the Americian Mathe-
matical Society. 102. 341-348.

Meerschaert, M.M. and Scheffler, H.P. (2001). Limit distributions for sums of
independent random vectors. Wiley-Interscience.

Merton, M. (1974). On the Pricing of Corporate Debt: the risk structure of interest
rates. Journal of Finance, 28, 449-470.

Mikhailov, V.G. (1974). Asymptotic independence of vector components of multivariate
extreme value statistics Theory Prob. Appl. 19. 817-821.

Mikosch, T. (2001). Modelling dependence and tails of financial time series. in Extreme
Values in Finance, Telecommunications, and the Environment, Finkenstaedt, B. and
Rootzen, H. Eds. Chapman and Hall.

Mikosch, T. (2005). Copulas: tales and facts. Preprint.

Montanari, A. (2003). Long-range dependence in hydrology. in Theory and applications
of long-range dependence, Doukhan, Oppenheim & Taqqu, eds. Birkhäuser. 461-472.

Moran, P.A.P. (1950). Recent developments in ranking theory. Journal of the Royal
Statistical Society. Series B (Methodological). 12. 153-162.

Morton, I.D. and Bowers, J. (1996). Extreme value analysis in a multivariate offshore
environment. Applied Ocean Research, 18 303-317.

Muliere, P. and Scarsini, M. (1987). Characterization of Marshall-Olkin type class of
distributions. Annals of the Institute of Statistical Mathematics, 39 429-441.

Müller, A. (1996). Ordering of risks: a comparative study via Stop-Loss transforms.
Insurance Mathematics and Economics. 17. 215-222.

Müller, A. (1997). Stop-loss order for portfolios of dependent risks. Insurance Mathe-
matics and Economics. 21. 219-223.

Müller, A. and Stoyan, D. (2001). Comparison methodes for stochastic models and
risks. Wiley.

Müller, A. and Scarsini, M. (2001). Stochastic Comparison of Random Vectors with
a Common Copula. Mathematics of Operations Research. 26, 723-740.

Müller, A. and Scarsini, M. (2004). Archimedean copulae and positive dependence.
Journal of Multivariate Analysis, 93, 434Ű445.

Müller, H. (1991). Smooth optimum kernel estimators near endpoints. Biometrika, 78,
521-520.



288 BIBLIOGRAPHY

Nagaraja, H.N. and Baggs, G.E. (1996). Order statistics of bivariate exponentiel ran-
dom variables. in Statistical Theory and Applications, eds. Nagaraja, Sen and Morrison
(1996), Springer Verlag. 129-141.

Nelsen, R.B., Quesada Molina, J.J., Schweizer, B. and Sempi, C. (1996). Deriv-
ability of some operations on distribution functions. in Distributions with Fixed Mar-
ginals and Related Topics, L. Rüschendorf, B. Schweizer and M.D. Taylor ed. IMS,
233-243.

Nelsen, R.B. (1999). An introduction to copulas. Springer Verlag.

Nelsen, R.B., Quesada Molina, J.J., Rodríguez-Lallena, J.A. and Úbeda-
Flores, M.. (2002). Multivariate archimedean quasi-copulas. in Distributions with
Given Marginals and Statistical Modelling, C.M. Cuadras et al. ed. Kluwer, 179-185.

NERC. (1975). Flood Studies Report Vol 1 - Hydrological Studies. Natural Environment
Research Council, London.

Norberg, R. (1989). Actuarial analysis of dependent lives. Bulletin de l’Association Suisse
des Actuaires. 89. 243-254.

Oakes, D. (1982). A model for association in bivariate survival data. Journal of the Royal
Statistical Society. Series B (Methodological). 44. 414-422.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American
Statistical Association . 84. 487-493.

Oakes, D. (2001). Biometrika centenary: survival analysis. Biometrika. 88. 99-142.

Olsen, R. (1982). Distributional tests for selectivity bias and a more robust likelihood
estimator. International Economic Review. 23. 223-240.

Olsen, E.T., Darsow, W.F. and Nguyen, B. (1996). Copulas and Markov operators.
in Proceedings of the conference on distributions with fixed marginals and related topics.
L. Rüschendorf, B. Schweizer and D. Taylor ed. IMS Lecture Notes, 244-259.

Ould Haye, M. & Viano, M.C. (2003). Limit theorems under seasonal long-memory.
in Theory and applications of long-range dependence, Doukhan, Oppenheim & Taqqu,
eds. Birkhäuser. 101-110.

Owen, J. and Rabinovitch, R. (1983). On the Class of Elliptical Distributions and
their Applications to the Theory of Portfolio Choice. Journal of Finance. 38. 745-752.

Palma, W. & Chan, N.H. (2005). Efficient estimation of seasonaly long-range dependent
process. Journal of Time Series Analysis, 26, 863-892.

Pandey, G., Lovejoy, S., & Schertzer, D. (1998). Multifractal analysis of daily river
flows including extremes for basins of five to two million square kilometres, one day to
75 years. Journal of Hydrology, 208, 62-81.

Papadatos, N. & Rychlik, T. (2003). Bounds on expectations of L-statistics from
without replacement samples. Journal of Statistical Planning and Inference. In Press.

Parkes, C.M., Benjamin, B. and Fitzgeralds, R.G. (1969). Broken heart: a statis-
tical study of increased mortality among widowers. British Medical Journal. 740-743.

Patton, A. (2006). Modelling Asymmetric Exchange Rate Dependence. International
Economic Review, 47, 527-556. Previously circulated as Modelling Time-Varying Ex-
change Rate Dependence Using the Conditional Copula. University of California, San
Diego, Discussion Paper 01-09.

Pellerey, F. and Shaked, M. (1997). Characterizations of the IFR and DFR aging
notions by means of the dispersive order. Statistics & Probability Letters, 33 389-393.



BIBLIOGRAPHY 289

Pelletier, J.D. & Turcotte, D.L. (1997). Long-range persistence in climatological
and hydrological time series: analysis, modeling and application to drought hazard
assessment. Journal of Hydrology, 203, 198-208.

Pickands, J. (1976). A class of multivariate negative exponential distributions. Preprint,
University of Pennsylvania.

Pickands, J. (1981). Multivariate extreme value distributions. Bull. Int. Statist. Associ-
ation 62, 859-878.

Pirard, P., Vandentorren, S., Pascal, M., Laaidi, K., Le Tertre, A., Cas-
sadou, S. & Ledrans, M. (2005). Summary of the mortality impact assessment of
the 2003 heat wave in France. EuroSurveillance, 10, 153-156.

Plackett, R.L. (1947). Limits of the ratio of mean range to standard deviation. Bio-
metrika. 34. 120-122.

Polasek, W. & Pai, J. (1998). Autoregressive moving average models with t and hyper-
bolic innovations. Universitat Basel, Institut fur Statistik und Okonometrie Working
Paper, 0023.

Pollard, D. (2002). A user’s guide to measure theoretic probability. Cambridge Univer-
sity Press.

Pollock, D.S.G. (1998). Time-Series Analysis Signal Processing and Dynamics. Acad-
emic Press.

Puente C.E. (1996). A new approach to hydrologic modeling: derived distributions re-
visited. Journal of Hydrology, 187, 65-80.

Pratt, J.W. (1964) Risk Aversion in the Small and in the Large. Econometrica, 32,
122-136.

Preston, M. and Baratta, P. (1948). An experimental study of auction-value of un-
certain outcome. American Journal of Psychology, 61, 183-193.

Reiss, D. and Thomas, M. (2001). Statistical Analysis of extreme values: from insur-
ance, finance, hydrology and other fields. Birkhaüser Verlag.

Renault, O. and Scaillet, O. (2004). On the way to recovery: a nonparametric bias
free estimation of recovery rate densities. Journal of Banking and Finance, 28, 2915-
2931.

Rényi,A. (1959). On measures of dependence. Acta Mathematica Academiae Scientiarum
Hungaricae 10, 441-451.

Resnick, S.I. (1986). Point processes, regular variation and weak convergence. Advances
in Applied Probabilities, 18, 66-138.

Resnick, S. I. (1987). Extreme values, Regular variation, and point processes. Springer.

Resnick S. and Feigin, P. (1996). Pitfalls of Fitting Autoregressive Models for Heavy-
tailed Time Series. Cornell Reports 1163.

Resnick S. (2002a). The Extremal Dependence Measure and Asymptotic Independence.
Cornell Reports. 1346.

Resnick S. (2002b). Hidden regular variation, second order regular variation and asymp-
totic independence. Extremes. 5. 3003-336.

Resnick S. (2004). On the Foundations of Multivariate Heavy Tail Analysis. Journal of
Applied Probability. 41. 191-Ű212.



290 BIBLIOGRAPHY

Romano, J.P. and Siegel, A.F. (1986). Counterexamples in Probability and Statistics.
Wadsworht and Brooks.

Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Func-
tion. The Annals of Mathematical Statistics. 27 832-837.

Rosenblatt, M. (1985). Stationary Sequences and Random Fields. Birkhäuser.

Ruppert, R. and Cline, D.B.H. (1994). Bias Reduction in Kernel Density Estimation by
Smoothed Empirical Transformations (in Curve Estimation). The Annals of Statistics.
22, 185-210.

Rüschendorf, L. (1976). Asymptotic Distributions of Multivariate Rank Order Statis-
tics. The Annals of Statistics. 4, 912-923.

Rüschendorf, L. (1982). Random variables with maximum sums, Advances in Applied
Probabability, 14, 623-Ű632.

Rvačeva, E.L. (1962). On the domains of attraction of multidimensional distributions. in
Selected Translations Math. Stat. Prob. vol 2, 183-207.

Ryan, M.J., and Vaithianathan, R. (2003). Adverse selection and insurance contract-
ing: a rank dependent utility analysis. Contributions to Theoretical Economics. 3.

Rychlik, T. (1993). Bounds for expectation of L-estimates for dependent samples. Sta-
tistics. 24. 1-7.

Rychlik, T. (1995). Bounds for order statistics based on dependent variables with given
nonidentical distributions. Journal of Multivariate Analysis. 23. 351-358.

Rychlik, T. (1998). Bounds for expectations of L-estimates. in Handbooks of Statistics,
Vol 16, Balakrishnan and Rao Eds 105-145.

Rychlik, T. (2001). Mean-variance bounds for order statistics from dependent DFR, IFR,
DFRA and IFRA samples. Journal of Statistical Planning and Inference. 92 21-38.

Rychlik, T. (2002). Best upper quantile evaluations for NWU distributions. Statistics
and Probability Letters. 58. 175-184.

Samarov, A. & Taqqu, M. (1988). On the efficiency of the sample mean in long-memory
noise. Journal of Time Series Analysis, 9, 191-200.

Sancetta, A. and Satchell, S.E. (2001). Bernstein approximations to the copula
function and portfolio optimization. DAE Working Paper. 0105.

Sancetta, A. and Satchell, S.E. (2003). Nonparametric Estimation of Multivariate
Distributions with Given Marginals: L2 theory. DAE Working Paper. 0320.

Scaillet, O. (2004). Density estimation using inverse and reciprocal Gaussian kernels.
Journal of Nonparametric Statistics. 18, 434-458.

Scarsini, M. (1984). On measures of concordance. Stochastica, 8, 201-208.

Scarsini, M. (1988) Multivariate stochastic dominance with fixed dependence structure,
Operations Research Letters, 7, 237-240.

Scarsini, M. and Spizzichino, F. (1999). Simpson-type paradoxes, dependence and
ageing. Journal of Applied Probability, 36, 119-131.

Scarsini, M. (1999). Incorporating support constraints into nonparametric estimators of
densities. Communications Statistics Ű Theory and Methods, 14, 1123Ű1136.

Schervish, M.J. (1995). Theory of statistics. Springer Verlag.



BIBLIOGRAPHY 291

Schlather, M. and Tawn, J. (2003). A dependence measure for multivariate and spatial
extreme values: Properties and inference. Biometrika, 90, 139-156.

Schlesinger, H. (1999). Decomposing catastrophic risk. Insurance: Mathematics and
Economics, 24, 95-101.

Schmeidler, D. (1986). Integral representation without additivity. Proceedings of the
American Mathematical Society. 97. 255-261.

Schmeidler, D. (1989). Subjective Probability and Expected Utility without Additivity.
Econometrica. 57. 571-587..

Schönbucher, P. and Schubert, D. (2001). Copula-dependent default risk in intensity
models. Preprint.

Schuster, E. (1985). Incorporating support constraints into nonparametric estimators of
densities. Communications in Statistics: Theory and Methods, 14, 1123-1136.

Schweizer, B. and Wolff, E.F. (1976). Sur une mesure de dépendance pour les vari-
ables aléatoires. Comptes Rendus de l’Académie des Sciences de Paris. 283, 659-661.

Schweizer, B. and Wolff, E.F. (1981). On nonparametric measures of dependence for
random variables. Annals of Statistics. 9, 879-885.

Schweizer, B. and Sklar, A. (1983). Probabilistic metric spaces. North-Holland, New
York.

Scott, D.W. (1992). Multivariate Density Estimation - theory, practice and visualization.
Wiley, New York.

Sen, P.K. (1970). A note on order statistics for heterogeneous. Annals of Applied Proba-
bility. 41. 2137-2139.

Seneta, E. (2002). Karamata’s Characterization Theorem, Feller, and Regular Variation
in Probability Theory. Publications de l’Institut de Mathématiques de Belgrade. 71,
79-89.

Shaked, M. (1977). A Concept of Positive Dependence for Exchangeable Random Vari-
ables. The Annals of Statistics, 5 505-515.

Shaked, M. and Shantikumar, J.G. (1987). Multivariate hazard rates and stochastic
ordering. Advances in Applied Probability. 19. 123-137.

Shaked, M. and Shantikumar, J.G. (1990). Multivariate stochastic orderings and
positive dependence in reliability. Mathematics of Operational Research. 15. 545-552.

Shaked, M. and Shantikumar, J.G. (1991). Dynamic multivariate aging notions in
reliability theory. Stochastic Processes and their Applications. 38. 85-97.

Shanthikumar, G. and Yao, D.D. (1991) Bivariate characterization of some stochastic
order relations, Advances in Applied Probability, 23, 642-659.

Shaked, M. and Shanthikumar, G. (1994). Stochastic Orders and Their Applications.
San Diego, Academic Press.

Shaked, M. and Shanthikumar, G. (1995). Hazard rate ordering of k-out-of-n systems,
Statistics & Probability Letters, 23, 1-8.

Shaked, M. and Spizzichino, F. (1998). Positive dependence properties of conditionally
independent random lifetimes. Mathematics of Operations Research, 23, 944-956.

Shea G.S. (1991). Uncertainty and implied variance bounds in long memory models of
interest rate term structure. Empirical economics, 16, 257-312.



292 BIBLIOGRAPHY

Shih, J.H . and Louis, T.A. (1995). Inferences on the Association Parameter in Copula
Models for Bivariate Survival Data. Biometrics, 55, 1384-1399.

Sibuya, M. (1960). Bivariate extreme statistics. Annals of the Institute of Statistical Math-
ematics, 11, 195-210.

Silverman, B.. (1986). Density estimation for statistics and data analysis. Chapman &
Hall.

Sklar, A. (1959). Fonctions de ré partition à n dimensions et leurs marges. Publications
de l’Institut de Statistique de l’Université de Paris, 8, 229-231.

Sklar, A. (1959). Random variables, joint distributions and copulas. Kybernetica, 9, 449-
460.

Silvapulle, P., Kim, G. and Silvapulle, M.J. (2004). Robustness of a semiparametric
estimator of a copula. Working Paper.

Smirnov, N.V. (1952). Limit distributions for the terms of a variational series. American
Mathematical Society Translations. 67, 1-64.

Smith, R.L. (1986). Extreme value theory based on the r largest annual events. Journal
of Hydrology. 86, 27-43.

Smith, R.L. (1993). Long-range dependence and global warming. in Statistics for the
Environment, Barnett & Turkman eds., Wiley, 141-161.

Smith, R.L., and Huang, L.S. (1993). Modeling High Threshold Exceedances of Urban
Ozone. Technical Report, National Institute of Statistical Sciences. 6.

Smith, R.L. (1994). Multivariate Threshold Methods. Technical Report, National Institute
of Statistical Sciences. 7.

Smith, R.L., Tawn, J.A. and Coles, S.G. (1997). Markov chain models for threshold
exceedances. Biometrika. 84, 249-268.

Song, J.X., Wassell, J.T. and Kapadia, A. (2004). Relative mortality for correlated
lifetime data. Computational Statistics & Data Analysis. 45, 849-864.

Spizzichino, F. (2001). Sujective probability models for lifetimes. Chapman & Hall.

Stadtmüller, U. and Trautner, R. (1981). Tauberian theorems for Laplace trans-
forms in dimension d>1. Journal für die reine und angewandte Mathematik, 323, 127-
138.

Stărică, C. (1999). Multivariate extremes for models with constant correlations. Journal
of Empirical Finance, 6, 515-553.

Stone, C.J. (1980). Optimal rates of convergence for nonparametric estimators. Annals
of Probability 12, 361-379.

Strassen, V. (1965). The existence of probability measures with given marginals Annals
of Mathematical Statistics 36 423-439.

Stute, W. (1982). The Oscillation Behavior of Empirical Processes. Annals of Probability
10, 86-107..

Stute, W. (1984). The Oscillation Behavior of Empirical Processes: The Multivariate
Case. Annals of Statistics 8, 1348-1360.

Sungur, E.A. (1999). Truncation invariant dependence structures. - 1999 Communica-
tions in statistics. Theory and methods. 28, 2553-2568.

Taqqu, M. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt
process. Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 287–302.



BIBLIOGRAPHY 293

Taqqu, M. (1986). A bibliographical guide to self-similar processes and long-range depen-
dence. in Dependence in Probability and Statistics, E. Eberlein and M.S. Taqqu, eds.,
137–162. Birkhäuser.

Taqqu, M., and Teverovsky, L. (1997) Testing for long-range dependence in the
presence of shifting means or a slowly declining trend, using a variance-type estimator.
Journal of Time Series Analysis, 18, 279-304.

Tawn, J.A. (1988). Bivariate extreme value theory: models and estimation. Biometrika.
75. 397-415.

Tawn, J.A. (1990). Modelling Multivariate Extreme Value Distributions. Biometrika. 77.
245-253.

Tchen, A.H. (1980). Inequalities for distributions with given marginals. Annals of the
Probabilities. 8. 814-827.

Tenbusch, A. (1994). Two-dimensional Bernstein polynomial density estimators. Metrika.
41, 233-253.

Terrell, G.R. and Scott, D.W.(1980). On improving convergence rates for nonnega-
tive kernel density estimators. Annals of Statistics, 8, 1160-1163.

Tiago de Oliveira, J.(1958). Extremal distributions. Revista da Faculdade de Ciências
de Lisboa (2) A, 7, 219-228.

Tiago de Oliveira, J. (1963). Structure theory of bivariate extremes, extensions. Estu-
dos de Matemática, Estatística e Econometria„ 7, 165-195.

Tiago de Oliveira, J. (1965). Statistical Decision For Bivariate Extremes. Portugaliae
Mathematica, 24, 145-154.

Tiago de Oliveira, J. (1970). Biextremal Distributions; Statistical Decision. Trab. Es-
tadística Inv. Oper, 241, 107-117.

Tiago de Oliveira, J. (1979). Bivariate Extremes: Foundations and Statistics. in Mul-
tivariate Analysis V, Krishnaiah, ed., 349-366.

Titterington, D., Smith, A. & Makov, U. (1985). Statistical Analysis of Finite
Mixture Distributions. Wiley.

Todorovic, P. & Zelenhasic, E. (1970). A stochastic model for flood analysis. Water
Resource,6, 1641-1648.

Todorovic, P. & Rousselle J. (1970). Some problems of flood analysis. Water Re-
source, 7, 1144-115.

Tsukahara, H. (1992). A rank estimator in the two-sample transformation model with
randomly censored data. Annals of the Institute of Statistical Mathematics, 44, 313-333.

Tucker, A. (1992). A reexamination of finite- and infinite-variance distributions as models
of daily stock returns. Journal of Business and Economic Statistics, 10, 73-81.

van der Laan, M.J. (1996). Efficient estimation of the bivariate censoring model and
repairing NPMLE. The Annals of Statistics, 24, 596-627.

van der Vaart, A.W. and Wellner, J.A. (1996). Weak convergence and empirical
processes, with application to statistics. Springer Verlag.

van der Vaart, A.W.(1998). Asymptotic statistics. Cambridge University Press.

Vaupel, J.W., Manton, K.G. and Stallard, E. (1979). The Impact of Heterogeneity
in Individual Frailty on the Dynamics of Mortality. Demography. 16, 439-454.



294 BIBLIOGRAPHY

Vitale, R.A. (1975). A Bernstein polynomial approach to density estimation. in Statistical
inference and related topics, Puri, M.L. ed. Academic Press. 87-100.

Vyncke, D. (2003). Comonotonicity: the perfect dependence. PhD Thesis, Katholieke
Universiteit Leuven.

Wand, M.P., Marron, J.S. and Ruppert, D. (1991). Transformations in Density
Estimation: Rejoinder (in Theory and Methods). Journal of the American Statistical
Association. 86, 360-361.

Wand, M.P. and Jones, M.C. (1995). Kernel smoothing. Chapman & Hall.

Wang, S.S. (1995). Insurance pricing and increased limits ratemaking by proportional
hazards transforms. Insurance: Mathematics and Economics, 17, 43-54.

Wang, S.S. (1996). Premium calculation by transforming the layer premium density.
ASTIN Bulletin,26, 71-92.

Wang, S.S., Young, V.R. and Panjer, H.H. (1997). Axiomatic characterization of
insurance prices. Actuarial Research Clearing House. 1, 15-31.

Wang, S. and Wells, M.T. (2000). Model Selection and Semiparametric Inference for
Bivariate Failure-Time Data. Journal of the American Statistical Association, 95, 62-
72.

Wang, S., Nelsen, R. and Valdez, E.A. (2005). Distortion of multivariate distribu-
tions: adjustment for uncertainty in aggregating risks. Mimeo.

Wang, S.S. (2000). A class of distortion operators for pricing financial and insurance risks.
Journal of Risk and Insurance, 67, 15-36.

Wei, G. and Hu, T. (1950). Supermodular dependence ordering on a class of multivariate
copulas. Statistics & Probability Letters, 57, 375-385 .

Weissman, I. (1975). On Location and Scale Functions of a Class of Limiting Processes
with Application to Extreme Value Theory. The Annals of Probability, 3, 178-181.

Wilde, T. (1998). CreditRisk+, A Credit Risk Management Framework. Credit Suisse
First Boston.

Wilks, S.S. (1947). Order statistics. in Collected Papers, Anderson Eds.John Wiley &
Sons.

Williamson, R. E. (1956). Multiply monotone functions and their Laplace transform.
Duke Mathematical Journal, 23, 189-207.

Williamson, R.C. (1989). Probabilistic arithmetic. PhD thesis, Department of Electrical
Engineering, University of Queensland.

Wüthrich, M. (2004). Bivariate extension of the Pickands-Balkema-de Haan theorem.
Annales de l’Institut Henri Poincare (B) Probability and Statistics, 40, 33-41.

Yaari, M.E. (2004). The dual theory of choice under risk. Econometrica, 55, 95-115.

Yajima, Y. (1988). On estimation of a regression model with long-memory stationary
errors. Annals of Statistics, 16, 791-807.

Yajima, Y. (1991). Asymptotic properties of the LSE in a regression model with long-
memory stationary errors. Annals of Statistics, 19, 158-177.

Zhang, S. and Karunamuni, R.J. (1998). On kernel density estimation near endpoints.
Journal of Statistical Planning and Inference, 70, 301-316.



BIBLIOGRAPHY 295

Zhang, S., Karunamuni, R.J. and Jones, M.C. (1999). An improved estimator of the
density function at the boundary. Journal of the American Statistical Association, 94,
1231-1241.

Zheng, M. and Klein, J.P. (1995). Estimates of Marginal Survival for Dependent Com-
peting Risks Based on an Assumed Copula. Biometrika, 82, 127-138.



296 BIBLIOGRAPHY

c© 2006 Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11, 3001 Heverlee (Leu-
ven)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of open-
baar gemaakt worden door middel van druk, fotokopie, microfilm, elektronisch of op welke andere
wijze ook zonder voorafgaandelijke schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, pho-
toprint, microfilm, electronic or any other means without written permission from the publisher.

ISBN [90-8649-039-5 ]

D/ [D/2006/10.705/36]


