

Effets de la métallicité, des conditions de formation et de l'évolution sur les populations d'étoiles B et Be des Nuages de Magellan.

Christophe Martayan

► To cite this version:

Christophe Martayan. Effets de la métallicité, des conditions de formation et de l'évolution sur les populations d'étoiles B et Be des Nuages de Magellan.. Astrophysique [astro-ph]. Université Paris Sud - Paris XI, 2005. Français. NNT: . tel-00012203

HAL Id: tel-00012203 https://theses.hal.science/tel-00012203

Submitted on 4 May 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **N° D'ORDRE :**

UNIVERSITE PARIS XI

UFR SCIENTIFIQUE D'ORSAY

THÈSE

Présentée pour obtenir

Le GRADE de DOCTEUR EN SCIENCES

DE L'UNIVERSITE PARIS XI ORSAY

Spécialité : Physique

PAR

Christophe MARTAYAN

Sujet : Effets de la métallicité, des conditions de formation et de l'évolution sur les populations d'étoiles B et Be des Nuages de Magellan.

Soutenue le 2 décembre 2005 devant la commission d'examen :

Monsieur Claude Catala, Rapporteur Monsieur Juan Fabregat, Examinateur Madame Michèle Floquet, Invitée Madame Anne-Marie Hubert, Directrice de thèse Monsieur Georges Meynet, Rapporteur Monsieur Guillaume Pineau des Forêts, Président de jury Monsieur Philippe Stee, Examinateur Monsieur Jean Zorec, Invité

"Si vous savez que vous ne savez rien, alors vous savez déjà tout." Socrate, Philosophe grec (-470, -399) A mon épouse Estelle, A mes parents, mes frères, A mes amis,

A Jeanne et Paul.

Remerciements

Je tiens à remercier chaleureusement Madame Anne-Marie Hubert et Madame Michèle Floquet pour l'orientation qu'elles ont imprimée à cette thèse. Je les remercie pour la patience dont elles ont fait preuve, pour les connaissances qu'elles m'ont apportées et pour les conseils qu'elles m'ont donnés tout au long des 5 années passées dans leur équipe depuis mon stage de maîtrise. Je les remercie également pour leur amitié et pour les discussions que nous avons pu avoir sur des sujets aussi divers que variés tels que les chats, la botanique, etc...

Je remercie également Monsieur Yves Frémat pour sa gentillesse, pour sa disponibilité et pour son amitié constamment manisfestée à travers notre collaboration. Je remercie également Mademoiselle Coralie Neiner pour les trucs et astuces qu'elle m'a donnés, pour les diverses conversations que nous avons eues ensemble et pour son amitié. De même, je remercie Monsieur Jean Zorec pour l'ensemble des discussions que nous avons eues, pour les explications de physique et pour les conseils qu'il m'a donnés ainsi que pour son amitié.

Je remercie Madame Michèle Floquet, Madame Anne-Marie Hubert, Monsieur Claude Catala, Monsieur Juan Fabregat, Monsieur Georges Meynet, Monsieur Guillaume Pineau des Forêts, Monsieur Philippe Stee et Monsieur Jean Zorec, pour avoir accepté de participer au jury de cette thèse, et pour avoir consacré de leur temps à examiner ce travail.

Je remercie Messieurs Juan Fabregat, Philippe Stee et Dietrich Baade pour l'ensemble des conseils, outils et indications qu'ils m'ont procurés durant toutes ces années de travail à l'Observatoire de Meudon. Je remercie aussi Monsieur Malek Mekkas d'avoir effectué un ensemble de travaux qui nous ont permis d'avancer un peu plus vite sur certains sujets. Je remercie Monsieur Bertrand de Batz pour les indications qu'il m'a apportées.

Je remercie l'ensemble des voisins du bâtiment Copernic ainsi que les membres (chercheurs, administratifs) du laboratoire GEPI et de l'ESO pour leur accueil ainsi que ce qu'ils ont pu faire pour la bonne marche de cette thèse. Je remercie également les professeurs et responsables de stage qui m'ont encadré et formé tout au long de ma scolarité.

J'espère que les collaborations débutées avec Juan Gutierréz-Soto et Anthony Meilland pourront se poursuivre et déboucheront sur des résultats. Je souhaite par ailleurs conserver les collaborations en cours avec Mesdames Anne-Marie Hubert, Michèle Floquet, Coralie Neiner et avec Messieurs Jean Zorec, Yves Frémat, Juan Fabregat, D. Baade et Philippe Stee.

Je remercie surtout mon épouse Estelle pour son soutien sans faille et pour l'amour dont elle m'entoure au quotidien. Je remercie également mes parents et mes frères pour leur compréhension et leur soutien durant ces années de thèse. De même, je remercie tous mes amis et voisins pour les bons moments que nous avons passés ensemble. Enfin, j'exprime ici ma profonde amitié à Monsieur Stéphane Mathis qui plus qu'un collègue est devenu un excellent ami.

Dans un autre domaine, merci à Mambo d'avoir égayé nos journées et je présente mes excuses à tous ceux et celles que j'aurais oubliés ici.

Table des matières

Ι	Rés	sultats sur les étoiles B et Be des Nuages de Magellan observées au VLT	9					
1	Con	ntexte	11					
	1.1	Les étoiles B et Be	11					
		1.1.1 Les étoiles B	11					
		1.1.2 Les étoiles Be et le contexte astrophysique	11					
	1.2	Le Very Large Telescope (VLT) et instrumentations associées	14					
		1.2.1 Généralités sur le VLT	14					
		1.2.2 L'instrumentation FLAMES-GIRAFFE-UVES	14					
2	Observations de populations d'étoiles B et Be des Nuages de Magellan avec le VLT-FLAMES							
	2.1	Photométrie et astrométrie	22					
		2.1.1 Méthode	22					
		2.1.2 Spécificités pour le GNM, le PNM et les cibles galactiques	23					
	2.2	Sélection des étoiles B et Be	24					
		2.2.1 Critères de sélection des étoiles B et Be	24					
		2.2.2 Configuration de l'instrumentation et localisation des étoiles	25					
		2.2.3 Biais introduits	34					
	2.3	Observations / réduction	35					
		2.3.1 Domaines spectraux	35					
		2.3.2 Observations	35					
		2.3.3 Réduction des données	37					
3	Rés	ultats observationnels directs : proportions d'étoiles Be	41					
-	3.1	Comparaison dans les amas	41					
	3.2	Comparaison dans les champs	43					
	3.3	Conclusions sur les taux d'étoiles Be	44					
4	Par	amètres fondamentaux des étoiles B et Be observées des Nuages de Magellan	49					
•	4 1	Méthode de détermination des paramètres fondamentaux et associés	49					
	1.1	4 1 1 Ouelques définitions et formules utiles	49					
		4.1.2 Domaines de détermination	50					
		4.1.2 Grilles de modèles d'atmosphères	50					
		4.1.5 Offices de modeles d'aunospheres	52					
		4.1.5 Classification spectrale des étoiles	52 60					
		4.1.5 Classification spectrale des clones	61					
	12	Fiffets de la rotation rapide sur les átoiles Be	63					
	4.2	4.2.1 Effets : circulation méridianne, assombrissement gravitationnel aplatissement	63					
		4.2.2 Détermination des paramètres corrigés	66					
	12	4.2.2 Determination des parametres connges	66					
	4.3	A 2.1 Los átoilos O. P. A du CNM	66					
		4.3.1 Les ciolles O, D, A un Olivin \dots	67					
		4.3.2 Les ciolles De un GINM 1.2 Diagrammas Hartzmung Dussel nour la CNM	0/ 60					
		4.5.5 Diagrammes Hertzprung Kussel pour le GNM	08					

	4.4	Résultats pour les étoiles B et Be du Petit Nuage de Magellan 6				
		4.4.1 Les étoiles O, B, A du PNM	68			
		4.4.2 Les étoiles Be du PNM	69			
		4.4.3 Diagramme Hertzprung Russel pour le PNM	70			
	4.5	Caractérisation des échantillons d'étoiles B et Be des Nuages de Magellan	70			
		4.5.1 Comparaison des distributions en classification spectrale des étoiles B et Be	70			
		4.5.2 Comparaison des distributions en masse	71			
	4.6	Conclusions préliminaires	71			
5	Effe	ts de la métallicité et de l'évolution temporelle sur les étoiles B et Be	119			
	5.1	Vitesses de rotation : résultats et discussions	119			
		5.1.1 Métallicité et vitesses de rotation : selection par type spectral et classe de luminosité .	120			
		5.1.2 Métallicité et vitesses de rotation des étoiles B et Be : selection par masses	125			
		5.1.3 Vitesses moyennes de rotation à la ZAMS des étoiles Be	132			
		5.1.4 Comment obtenir des vitesses élevées à la ZAMS pour une étoile Be?	139			
	5.2	Vitesses angulaires de rotation : résultats et discussions	139			
		5.2.1 Résultats observationnels	139			
		5.2.2 Conclusions sur les vitesses angulaires de rotation	142			
	5.3	Statut évolutif des étoiles Be	144			
		5.3.1 Statut évolutif des étoiles Be dans la Voie Lactée	144			
		5.3.2 Statut évolutif des étoiles Be dans les Nuages de Magellan	145			
		5.3.3 Conclusions sur le statut évolutif des étoiles Be	147			
	5.4	Abondances en carbone des étoiles B et Be : résultats et discussions	149			
		5.4.1 Résultats préliminaires et discussions des abondances de surface en carbone	149			
		5.4.2 Conclusions sur les effets de métallicité, d'évolution et de diffusion sur les abondances				
		en surface de carbone	152			
	5.5	Phénomènes additionnels à la création des étoiles Be	152			
		5.5.1 Champ magnétique	152			
		5.5.2 Pulsations non radiales	152			
		5.5.3 Ondes internes	152			
	5.6	Conclusions	152			
		5.6.1 Métallicité et rotation	153			
		5.6.2 Proportions des étoiles Be	153			
		5.6.3 Effet de l'âge et de l'évolution	154			
		5.6.4 Limites de cette étude	154			
II	Etı	ides complémentaires	157			
		•				
6	Cart	tographie des objets à émission des Nuages de Magellan	159			
	6.1		159			
6.2 Diagnostics des problemes instrumentaux						
	0.3		162			
	0.4	Premiers catalogues a objets a emissions	164			
	0.5	Premiers resultats sur les amas et champs du Petit Nuage de Magellan	100			
		0.5.1 Elude de Meyssonmer & Azzopardi (1995)	100			
	6.0	0.5.2 Annas etudies dans le PINM	100			
	0.0	remieres conclusions sur le w Fi-spectro	10/			

7	Vari	iabilité des étoiles Be, binaires, raies nébulaires, amas de la VL et champs COROT 1	171
	7.1	Etude de la variabilité photométrique des étoiles Be dans les Nuages de Magellan 1	71
	7.2	Binaires spectroscopiques et à éclipses découvertes dans les Nuages de Magellan 1	75
		7.2.1 Binaires dans le Grand Nuage de Magellan	75
		7.2.2 Binaires dans le Petit Nuage de Magellan	78
	7.3	Raies nébulaires dans le Grand Nuage de Magellan	83
	7.4	Amas NGC6611 et Westerlund1	84
		7.4.1 Etude avec le ESO WFI-spectro	85
		7.4.2 Etude avec le VLT-FLAMES	87

	7.5	Etoiles B et Be dans les champs exoplanètes de la mission spatiale COROT	190
8	Con	clusions et perspectives	195
	8.1	Conclusions	195
	8.2	Conclusion finale	197

III Annexes

9

201

	Ann	exes		203
	9.1	Outils	statistiques	203
	9.2	Liste d	es abréviations utilisées dans ce manuscrit	204
	Liste	e des tal	bles	208
	Liste	e des fig	ures	211
	9.3	Liste d	es observations menées ou préparées durant la thèse	212
9.4 Liste des présentations et publications				212
9.5 Articles sous presse ou soumis en premier auteur				214
		9.5.1	Article sous presse à A&A : A study of the B and Be star population in the field of the	
			LMC open cluster NGC2004 with VLT-FLAMES	214
		9.5.2	Article soumis à A&A : Effects of metallicity, star formation conditions and evolution	
			in B and Be stars. I : Large Magellanic Cloud, field of NGC 2004	215
		9.5.3	Proceeding Active O, B stars meeting, Sapporo, Japan : Effects of metallicity, star for-	
			mation conditions and evolution in B and Be stars.	216
		9.5.4	Proceeding Active O, B stars meeting, Sapporo, Japan : Short-term variability in Be	
			stars and binaries in the Magellanic Clouds.	217

Première partie

Résultats sur les étoiles B et Be des Nuages de Magellan observées au VLT

Chapitre 1

Contexte

Sommaire

1.1	Les étoiles B et Be					
	1.1.1	Les étoiles B				
	1.1.2	Les étoiles Be et le contexte astrophysique 11				
1.2	Le Ve	ry Large Telescope (VLT) et instrumentations associées				
	1.2.1	Généralités sur le VLT				
	1.2.2	L'instrumentation FLAMES-GIRAFFE-UVES				

1.1 Les étoiles B et Be

1.1.1 Les étoiles B

Les étoiles B sont des étoiles massives (entre environ 3 et 25 M_{\odot}) de température de surface comprise entre 10000 et 30000K. Les principales raies spectrales les caractérisant dans le domaine visuel sont les raies de Balmer de l'hydrogène et les raies de l'hélium neutre. Certaines de ces étoiles varient et pulsent suivant des périodes de quelques heures à plusieurs jours. Par ailleurs, les étoiles massives dont les étoiles de type B sont parmi les principaux contributeurs aux fonctions de luminosité des galaxies. Ces étoiles sont aussi parmi les principaux responsables de l'enrichissement en éléments lourds (C, N, O, etc) du milieu interstellaire.

1.1.2 Les étoiles Be et le contexte astrophysique

Une étoile Be est une étoile non supergéante qui a présenté au moins une fois dans sa vie de l'émission dans les raies de l'hydrogène, principalement dans la raie de Balmer H α . Les étoiles Be sont des étoiles de type B avec en général des vitesses de rotation élevées. Les raies d'émission qui viennent se superposer aux raies d'absorption photosphériques proviennent d'une enveloppe circumstellaire équatoriale. La Figure 1.1 montre des exemples d'émission dans la raie H α . Comme l'étoile centrale est une étoile chaude, le rayonnement ultraviolet (continu de Lyman) ionise alors l'enveloppe. Ensuite, par recombinaisons, l'enveloppe réémet dans des domaines de longueurs d'onde plus grandes. Les processus collisionnels jouent aussi un rôle dans l'émission de l'enveloppe mais avec une moindre importance. Si aux raies d'émission s'ajoutent des raies fines en absorption d'hydrogène, d'hélium et d'ions métalliques qui se forment dans un milieu optiquement épais, l'étoile est alors dénommée "shell". Au cours de sa vie, l'étoile pourra passer dans les phases Be, Be-shell, B et B-shell. La phase Be est donc transitoire.

Quels sont les processus à l'origine de cette enveloppe ? Comme la vitesse de rotation critique n'est pas atteinte, il faut donc qu'un mécanisme supplémentaire apporte du moment angulaire et/ou de la quantité de mouvement à la surface de l'étoile pour permettre l'éjection de matière. Plusieurs possibilités sont envisagées : dans le diagramme HR les étoiles Be occupent la même place que les étoiles B pulsantes (SPB et β Cep). Des

FIG. 1.1 – Spectres d'étoiles Be du Grand Nuage de Magellan obtenus avec le spectrographe GIRAFFE du VLT. Ces spectres montrent divers aspects de la raie d'hydrogène $H\alpha$ en émission.

pulsations du même type ont été observées dans les étoiles Be. Ainsi combinés à la rotation stellaire, des battements de modes de pulsations pourraient apporter la quantité de mouvement nécessaire à l'éjection de matière (Rivinius et al. 1998). D'autres pistes sont aussi explorées comme celle du champ magnétique. Celui-ci permettrait l'apport de quantité de mouvement vers la surface. La découverte d'un champ magnétique dans une étoile Be est récente (Neiner et al. 2003). Combiné à la rotation il favoriserait la perte de masse. Enfin les transferts de masses dans les systèmes de binaires sont invoqués pour expliquer la formation d'une étoile Be. Selon Porter & Rivinius (2003) au maximum 1/3 des étoiles Be serait des binaires. Ce mécanisme ne peut donc être valable que pour certaines Be. Les courbes de lumière dans la Figure 1.2 illustrent les épisodes associés d'éjection de masse par des étoiles Be.

Quelle est l'origine du phénomène Be ? Est-il lié à l'évolution ou aux conditions de formation de l'étoile ? D'après l'étude de Fabregat & Torrejón (2000), les étoiles Be apparaitraient dans la seconde partie de leur vie sur la Séquence Principale, essentiellement entre 13 et 20 Mans. Leur apparition coinciderait avec l'augmentation de la vitesse angulaire de rotation au cours de l'évolution d'une étoile B de masse moyenne (Meynet & Maeder 2000). D'autres études supposent que l'apparition d'une étoile Be est liée aux conditions initiales du milieu de formation (Stepién 2002, Zorec et al. 2005).

Maeder et al. (1999), en étudiant les taux d'étoiles Be par rapport aux étoiles B dans des amas d'âges similaires de notre Galaxie et des Nuages de Magellan ont mis en évidence une tendance à l'augmentation du nombre d'étoiles Be avec la baisse de la métallicité. Maeder & Meynet (2001), ont montré théoriquement que lorsque la métallicité décroit les vitesses angulaires de rotation augmentent pour une étoile d'une masse donnée. Ainsi, à plus faible métallicité que la métallicité solaire, les étoiles pourraient atteindre l'état critique et donc par ce mécanisme devenir Be. En fait à plus faible métallicité, les pertes de masse sont plus faibles et la perte résultante de moment angulaire serait diminuée d'autant. Donc, cela favoriserait l'augmentation des vitesses de rotation angulaire. De plus, si la métallicité joue réellement un rôle dans l'évolution des étoiles, alors ces effets seraient importants pour les étoiles de première génération (attendues à un redshift proche de 6), qui sont sous-abondantes en tout métal.

FIG. 1.2 – Courbes de lumière pour des étoiles Be provenant de la base de données MACHO. Les unités en ordonnées correspondent à des magnitudes instrumentales, plus cette magnitude est négative moins l'objet est lumineux. Les unités en abcisses correspondent au MJD (unité de temps).

Afin de confirmer ou d'infirmer ces travaux, de vérifier si les lois physiques à l'oeuvre dans les milieux sous-métalliques sont les mêmes que dans notre propre Galaxie, il est nécessaire d'apporter une réponse observationnelle. Les Petit et Grand Nuages de Magellan sont des galaxies connues pour posséder des métallicités inférieures à celle de la Voie Lactée. Cependant, les populations d'étoiles B et Be dans ces galaxies sont méconnues et peu répertoriées et il n'existe en conséquence pas ou peu de classification spectrale pour ce genre d'objets dans ces galaxies. Par quelles observations, pourrons-nous répondre à toutes ces questions ? Il faudra d'abord identifier les objets, leur donner des coordonnées, des magnitudes. Puis, nous pourrons les observer. L'instrumentation FLAMES au VLT est idéale pour ce projet (voir la section suivante 1.2). Grâce aux observations obtenues, nous pourrons déterminer les paramètres fondamentaux des étoiles et étudier précisément les comportements des vitesses de rotation linéaire et angulaire ainsi que l'état évolutif des étoiles Be dans ces galaxies. Les résultats seront présentés dans la première partie de cette thèse.

Dans la seconde partie de ce manuscrit sont exposées diverses études complémentaires telles que la cartographie d'objets à émission dans les Nuages de Magellan avec la caméra grand champ de l'ESO en mode spectroscopique ou encore l'étude d'étoiles chaudes de jeunes amas ouverts (NGC6611) de la Voie Lactée ou de champs de la mission spatiale COROT. La découverte de variabilité photométrique à court-terme dans les étoiles Be et de binaires dans les Nuages de Magellan ainsi qu'une étude des raies nébulaires seront aussi présentées dans cette partie.

1.2 Le Very Large Telescope (VLT) et instrumentations associées

1.2.1 Généralités sur le VLT

Propriété de l'ESO, l'Observatoire du VLT est situé au Chili sur la montagne du Cerro Paranal en plein désert de l'Atacama. Ce site fut choisi pour les conditions météorologiques exceptionnelles y régnant (absence de nuages 350 jours et nuits par an) et pour le seeing de 0.6" qui en font l'un des meilleurs sites au monde. De plus, il est situé loin de toutes pollutions chimiques et lumineuses.

Le VLT ou Very Large Telescope est constitué d'un ensemble de 4 grands télescopes (Figure 1.3) possédant chacun un miroir de 8.2m de diamètre et de "petits" télescopes auxiliaires de 2 m de diamètre. Chaque télescope principal possède une ou plusieurs instrumentations. Par exemple, le télescope numéro 2 appelé Kueyen (la Lune en Mapuche) (voir la Figure 1.4) reçoit trois instrumentations : des spectrographes multi-objets GIRAFFE et UVES et un détecteur infrarouge. En service depuis l'an 2000, on ne compte plus les découvertes majeures qui ont été réalisées au VLT : record de la galaxie la plus lointaine jamais vue, première photographie d'une planète extrasolaire, étude d'objets exotiques tels les trous noirs, etc.

On peut aussi combiner les télescopes (principaux et les auxiliaires) du VLT pour former un interféromètre optique et infrarouge. Celui-ci n'est pas encore à pleine puissance, à terme le VLTI aura une résolution suffisante pour voir un astronaute sur la Lune. Cependant, la combinaison de 2 des télescopes principaux a déjà permis par exemple de mesurer des diamètres d'étoiles proches.

Ce lieu de haute technologie par les techniques mises en oeuvre, les réussites et découvertes réalisées s'est peu à peu imposé comme le site incontournable de l'astrophysique moderne.

1.2.2 L'instrumentation FLAMES-GIRAFFE-UVES

FLAMES est un ensemble de 2 spectrographes multi-objets : GIRAFFE et UVES. Avec GIRAFFE, il est possible d'observer suivant plusieurs modes. Le mode que nous avons utilisé est le mode MEDUSA qui permet l'obtention simultanée de 130 spectres (d'étoiles ou de fond de ciel). Plusieurs domaines de longueurs d'onde sont disponibles et permettent l'obtention de spectres à moyenne et haute résolution (de 6000 à 25000). Cet

VLT at Paranal

ESO PR Photo 43a/99 (8 December 1999)

© European Southern Observatory

ES O

FIG. 1.3 – Ensemble des télescopes du VLT.

Fig. 1.4 – Télescope UT2 du VLT. Le diamètre du miroir principal mesure 8.2m. Le télescope pèse 230 tonnes et l'ensemble avec la coupole pèse 450 tonnes. Les spectrographes multi-objets GIRAFFE et UVES se trouvent de part et d'autre du télescope.

Fig. 1.5 – A gauche : Télescope UT2 du VLT. En haut à droite : Plaque des fibres. En bas à droite : positionneur OZPOZ des fibres et le spectrographe GIRAFFE.

instrument se révèle bien adapté à l'étude de champs d'étoiles. Toutefois, sa conception instrumentale impose de fortes contraintes aux observations, par exemple :

- le pointage des étoiles se fait en "aveugle". Il est impossible de connaître avant observations si le centrage des fibres sur les étoiles est correct. Ceci nécessite donc une astrométrie très précise (< 0.3 ").
- Les fibres ont des mouvements limités dans l'espace, ainsi il est impossible de les incliner de plus de 30° par rapport à la direction radiale.
- Les boutons de ces fibres ont des tailles de l'ordre de 12" rendant impossible l'observation de 2 étoiles trop proches.

Le spectrographe multi-objets UVES permet d'observer 4 à 8 étoiles à très haute résolution (de l'ordre de 50000). Il se révèle adapté pour l'étude des abondances chimiques des étoiles. Enfin, l'instrumentation FLAMES permet de coupler les 2 spectrographes GIRAFFE et UVES pour réaliser simultanément des observations dans le même champ. Dans la Figure 1.5, vous pouvez voir un schéma du télescope et des spectrographes GIRAFFE et UVES et le positionneur de fibres OZPOZ de FLAMES.

Bibliographie

- [1] Fabregat, J.; Torrejón, J. M.; "On the evolutionary status of Be stars", 2000, A&A, 357, 451
- [2] Maeder, A.; Grebel, E. K.; Mermilliod, J.-C.; "Differences in the fractions of Be stars in galaxies", 1999, A&A, 346, 459
- [3] Maeder, A.; Meynet, G.; "Stellar evolution with rotation VII. Low metallicity models and the blue to red supergiant ratio in the SMC", 2001, A&A, 373, 555
- [4] Meynet, G.; Maeder, A.; "Stellar evolution with rotation V. Changes in all the outputs of massive star models", 2000, A&A, 361, 101
- [5] Neiner, C., Hubert, A.-M., Frémat, Y., et al., "Rotation and magnetic field in the Be star omega Orionis", 2003, A&A, 409, 275
- [6] Porter, J. M.; Rivinius, T.; "Review : Classical Be stars", 2003, PASP, 115, 1153
- [7] Rivinius, Th.; Baade, D.; Stefl, S.; et al.; "Stellar and circumstellar activity of the Be star MU Centauri.", 1998, A&A, 336, 177
- [8] Stepień, K.; "Spin-up of Be stars in the pre-main sequence phase", 2002, A&A, 383, 218
- [9] Zorec, J.; Frémat, Y.; Cidale, L.; "On the evolutionary status of Be stars. I. Field Be stars near the Sun", 2005, A&A, in press, astroph0509119

Chapitre 2

Observations de populations d'étoiles B et Be des Nuages de Magellan avec le VLT-FLAMES

Sommaire

2.1	Photo	métrie et astrométrie	22
	2.1.1	Méthode	22
	2.1.2	Spécificités pour le GNM, le PNM et les cibles galactiques	23
2.2	Sélecti	ion des étoiles B et Be	24
	2.2.1	Critères de sélection des étoiles B et Be	24
	2.2.2	Configuration de l'instrumentation et localisation des étoiles	25
	2.2.3	Biais introduits	34
2.3	Obser	vations / réduction	35
	2.3.1	Domaines spectraux	35
	2.3.2	Observations	35
	2.3.3	Réduction des données	37

Une des caractéristiques de l'instrumentation VLT-GIRAFFE est le pointé en "aveugle". L'observateur n'a aucun moyen, au moment du pointage, de vérifier si les fibres sont bien centrées sur les étoiles à observer. Il faut donc disposer d'une astrométrie très précise (<0.3 "). Pour pallier cette difficulté, l'équipe EIS de l'ESO a entrepris, en amont de la mise en service de GIRAFFE, un relevé en bandes B, V, I des champs qui allaient être concernés : c'est le "pre-FLAMES survey". Ce relevé est réalisé à l'aide de la caméra grand champ WFI (Wide Field Imager) sur le télescope de 2.2m de l'ESO à la Silla (Chili). Cette caméra possède 8 CCDs de 2046 × 4098 pixels, soit au total environ 67 millions de pixels, pour un champ couvert sur le ciel de $34' \times 33'$, champ plus grand que celui de GIRAFFE (diamètre de 25'). La taille des pixels de 0.24" est appropriée pour la précision requise avec GIRAFFE. Les images obtenues devaient être réduites par l'ESO pour donner des catalogues d'astrométrie et de photométries en B et V précises. Malheureusement, seuls les catalogues pour le champ SMC5 du Petit Nuage de Magellan (Momany et al. 2001) ont été créés par l'ESO.

La majorité des étoiles des Nuages de Magellan n'ayant aucune classification spectrale, la sélection des objets à étudier (ici les étoiles de type B) se fait à partir des indices de couleur. En ce qui concerne notre programme, excepté pour le champ SMC5, nous avons donc dû créer les catalogues d'astrométrie et de photométrie précises pour les champs du Grand Nuage de Magellan et de la Voie Lactée nous intéressant. La procédure que nous avons utilisée pour créer ces catalogues est décrite dans les paragraphes suivants.

2.1 Photométrie et astrométrie

2.1.1 Méthode

Afin de pouvoir extraire les sources des images du pre FLAMES survey, et d'en dresser le catalogue d'astrophotométrie, nous avons utilisé le logiciel SExtractor créé par Bertin & Arnouts (1996). Pour effectuer une détection et une photométrie propre des objets le logiciel va segmenter l'image. Il effectue des multi-seuillages en flux et recherche un maximum local. Puis par comparaison avec un masque de convolution (convolution entre la source et le masque), il rejette ou extrait la source détectée. Le masque de convolution va permettre de reconnaître différents types d'objets : dans le cas d'objets ponctuels, typiquement des étoiles, un masque de type PSF (réponse de l'instrumentation), gaussien ou pyramidal peut suffire ; dans le cas d'objets plus étendus, typiquement des galaxies, un masque de type ellipsoïdal pourrait être approprié. Dans l'absolu, nous pourrions effectuer la reconnaissance de n'importe quel type d'objets. Toutefois, il faut adapter le masque de convolution à l'encombrement du champ étudié. Ainsi dans les zones à forte densité stellaire des Nuages de Magellan, ou au coeur d'amas ouverts stellaires, nous avons intérêt à utiliser des masques de type "sombrero" (en forme de chapeau ou de vague). Afin d'adapter au mieux le masque, il est nécessaire de mesurer la PSF des sources de l'image et d'utiliser la taille la mieux adaptée du modèle de masque choisi. Les sources détectées plusieurs fois, provenant d'un même objet suivant les seuillages, sont alors fusionnées.

Le fond de ciel ne ressemble pas à une source ; son profil est plus lisse et plus diffus que celui des objets (étoiles, galaxies, rayons cosmiques, pixels défectueux, etc). Il peut être déterminé localement par segment d'image ou globalement, ce qui permet de prendre en compte les imperfections de corrections du traitement d'images (flats, bias) ou les nébulosités ambiantes. Le fond de ciel peut alors être filtré de l'image.

Pour effectuer l'astrométrie d'un champ, il faut posséder quelques étoiles de références (au minimum 3, 10 est un bon compromis) bien réparties dans le champ. Les coordonnées de ces étoiles doivent être connues avec une très bonne précision. Puis par différents systèmes de projections et d'interpolations, nous créons une image de coordonnées (WCS de l'image) que nous superposons à l'image physique des sources.

Il reste à définir les limites des sources, à donner leurs coordonnées et leur photométrie. Supposons une source isolée de type gaussienne, une fois détectée, ses limites géographiques seront données par la position à laquelle le flux des ailes de la source est égal au flux du fond de ciel. Nous obtiendrons ses coordonnées par la meilleure combinaison de convolution du masque de convolution avec la source. Dans l'exemple d'une source gaussienne, le masque de convolution est une gaussienne, la position sera donnée par le centre de cette courbe. Les formules permettant le passage par SExtractor des coordonnées (X,Y) aux (α (2000), δ (2000)) sont celles de Greisen & Calabretta (1995). L'erreur sur les coordonnées est donnée par la FWHM de la source.

La photométrie de la source peut être obtenue de différentes façons avec SExtractor :

- par flux isophotal : le flux récupéré est celui se trouvant dans des zones de même flux jusqu'au seuil minimal correspondant au fond de ciel,
- par flux isophotal corrigé : le flux isophotal est corrigé en considérant la source gaussienne et suivant l'article de Maddox et al. (1990)
- ou par flux d'ouverture : le flux récupéré se trouve dans un ellipsoïde centré sur le centre de la source et d'axes plus ou moins grands définis par l'utilisateur ou s'ajustant automatiquement à la source détectée. Concrètement, il suffit de définir un rayon correspondant au seeing pour obtenir la majeure partie du flux de l'étoile. En prenant un rayon plus grand, on ne récupère que de faibles quantités de flux qui ne modifieront pas beaucoup le flux final, et au risque de contaminer la source avec d'autres objets, ce qui est donc inutile.

Bertin & Arnouts (SExtractor : User Guide), ont comparé dans le cas de sources synthétiques de type étoile de différente magnitude, les flux obtenus suivant les méthodes exposées plus haut. Il s'avère que la méthode de flux par ouverture est la meilleure, donnant une déviation constante de 0.1 magnitude pour les magnitudes de 16 à 22. Dans le cas de fort encombrement des champs, la méthode la moins affectée par les sources voisines est

un flux isophotal corrigé, la photométrie par ouverture donnant tout de même de bons résultats. La magnitude dans le filtre considéré est alors obtenue en première approximation par :

$Mag_{filtre} = gain \times flux + Zeropoint_{filtre}$ (2.1)

Dans le cas des champs encombrés, malgré un masque de convolution adapté, l'extraction peut donner une source contenant un ou plusieurs objets. Il est alors nécessaire de séparer ces différents objets avant d'en effectuer l'astrométrie et la photométrie. Par la technique de multi-seuillages, on tente de faire apparaître une zone de vallée de flux entre les sources, ce qui permettra de séparer les 2 composantes de la source mélangée. Puis, chaque pixel, suivant l'intensité et le profil de la source, est alors attribué au plus probable progéniteur en flux. Cependant cette technique a des limites : si les sources sont trop proches et de flux trop comparables, si la résolution des pixels n'est pas assez grande, il n'est pas possible de séparer les composantes et le flux est attribué de façon sommaire à chaque source séparée. Suivant les mesures effectuées par Bertin (SExtractor : User Guide) pour 2 sources synthétiques mélangées de différentes magnitudes, dans le pire des cas, une erreur de 0.2 magnitude et un décalage du centroïde de 0.4 pixels est obtenu pour la composante la plus faible. Une fois la séparation effectuée, l'astro-photométrie est effectuée pour chaque composante comme dans le cas d'une source isolée.

Pour le Grand Nuage de Magellan, nous avons utilisé des masques de type gaussien, puis sombrero pour l'extraction et l'astrométrie, et pour la photométrie, nous avons utilisé une photométrie par ouvertures. Dans l'absolu, il est possible d'effectuer une astrométrie différentielle en utilisant les magnitudes d'étoiles de références, ce qui nous permettrait de nous affranchir du point zéro et de ses imprécisions. Cependant, il n'existe pas de telles étoiles possédant les magnitudes adéquates pour le champ du Grand Nuage de Magellan que nous avons observé. Nous avons donc procédé de la façon énoncée plus hautet représentée par la formule 2.1. Pour les champs de la Voie Lactée, nous avons employé en plus un autre logiciel (donné gracieusement par E. Bertin) permettant d'effectuer des ajustements de PSF (fonction d'étalement de point) sur les images et de calculer plus précisément la photométrie des champs. Ensuite, il est possible d'utiliser des critères (comme l'élongation de la source correspondant au rapport des grand et petit axes des sources) pour la reconnaissance du type d'objet : étoiles ou galaxies. Ce qui nous permet de rejeter les objets ne nous intéressant pas. Nous avons alors enfin dressé le catalogue astro-photométrique dans les filtres (V, B) des sources présentes dans le champ étudié.

Recombinaison entre catalogues

Une fois les catalogues créés dans chaque filtre, il faut pouvoir les croiser afin d'obtenir pour chaque source, les coordonnées et les magnitudes, B et V dans le cas présent. Là encore plusieurs techniques sont possibles, nous avons choisi la plus simple et la plus efficace : les 2 objets les plus proches en coordonnées ($\alpha(2000)$, $\delta(2000)$), dans un rayon inférieur à 0.5", d'après les catalogues de couleurs (B et V) correspondent à un même objet. Enfin, nous vérifions les coordonnées des objets à l'aide du catalogue UCAC2 qui est le catalogue possédant les coordonnées les plus précises à l'heure actuelle. De plus, il donne différentes magnitudes (mais malheureusement ni V, ni B) et les mouvements apparents des étoiles en ($\alpha(2000)$, $\delta(2000)$).

2.1.2 Spécificités pour le GNM, le PNM et les cibles galactiques

Dans le Grand Nuage de Magellan, nous avons traité les champs LMC31, LMC32 et LMC33 dans lequel se trouve l'amas NGC2004. Comme indiqué précédemment, les difficultés résident aussi dans la taille des images à traiter et dans le grand nombre d'objets par champ (de l'ordre de 125000 étoiles dans le champ LMC33). C'est la première fois que les étoiles du champ LMC33 sont répertoriées, aussi la nomenclature que nous avons proposée et qui est acceptée par A&A est la suivante :

champ EIS -MHFXXXXXX où XXXXXX représente le numéro de l'objet dans le champ. Soit par exemple : LMC33-MHF111340. La précision des coordonnées est de l'ordre de 0.1" et l'écart moyen entre nos coordonnées et celles du catalogue UCAC2 est inférieur à 0.2". Donc, l'astrométrie que nous avons obtenue est convenable pour pouvoir observer avec GIRAFFE (<0.3" requises). La précision sur les magnitudes est de l'ordre de 0.1-0.2 mag. Cependant, nous ne disposions pas de points zéro convenables en magnitudes ni d'étoiles standards en flux pour le champ LMC33. Aussi, la photométrie dont nous disposons est une photométrie instrumentale décalée en V et en B mais relativement précise.

Contrairement au Grand Nuage de Magellan, dans le Petit Nuage de Magellan (PNM) nous avons utilisé le seul catalogue traité par l'équipe EIS pour le champ SMC5 qui comprend l'amas ouvert NGC330 (Momany et al. 2001). Nous avons vérifié l'astrométrie EIS des cibles choisies avec le catalogue UCAC2 qui indique un écart moyen de 0.2" et un écart-type sur cet écart moyen de 0.2". Donc, l'astrométrie convient pour observer avec GIRAFFE.

Nous avons préparé d'autres cibles dans la Voie Lactée, notamment les amas Trumpler 14, Trumpler 16 et leur champ associé (voir la Figure 2.23). Nous avons également observé des étoiles de l'amas NGC6611 et du champ associé dans la nébuleuse de l'Aigle en utilisant l'astrométrie donnée par le catalogue UCAC2 et la photométrie donnée dans SIMBAD. Nous avons aussi préparé des observations pour des champs situés dans les champs exoplanètes de la mission spatiale COROT en utilisant les coordonnées et la photométrie fournies par l'équipe COROT de Marseille, voir la deuxième partie de cette thèse.

2.2 Sélection des étoiles B et Be

2.2.1 Critères de sélection des étoiles B et Be

Notre but est d'observer des étoiles de type B des Nuages de Magellan, aussi, nous avons sélectionné les étoiles B probables dans les catalogues sur des critères de magnitudes et de couleurs $(V, B-V) : 14 \le V \le 18$ ou 19 et B-V ≤ 0.35 en prenant en compte l'excès de couleur E[B-V] $\simeq 0.1$ pour le GNM et 0.08 pour le PNM (Keller 1999). En plus de ces sources, nous avons ajouté à notre liste de cibles, des étoiles connues comme étoiles Be par diverses études :

- une étude photométrique d'amas de Keller et al. (1999) pour le PNM et le GNM,
- une étude photométrique d'amas de Grebel et al. (1992) pour le PNM,
- et des sources à émission potentielle en H α provenant de notre étude WFI-spectro. Cette dernière étude sera détaillée dans la seconde partie de ce manuscrit.

La Table 2.1 donne le nombre d'étoiles par champ EIS, le nombre d'étoiles sélectionnées de type B suivant nos critères photométriques, le nombre d'étoiles B sélectionnées qui se trouvent dans les champs GIRAFFE que nous avons utilisés. Cette table donne également le nombre d'étoiles observées dans ces champs et la proportion d'étoiles B observées par rapport aux étoiles B observables de ces champs. Pour le détail des types d'étoiles de chacun des champs, nous renvoyons le lecteur à la Table 2.4. Finalement, nous avons observé 14.3% des étoiles B observables dans les champs GIRAFFE du GNM et 6.3% dans ceux du PNM. Ces taux sont assez élevés et nous pouvons donc considérer que nos échantillons sont statistiquement représentatifs des populations d'étoiles B des Nuages de Magellan.

TAB. 2.1 – Nombre d'étoiles présentes dans les catalogues des champs EIS observés (colonne 2), sélectionnées photométriquement (colonne 3), observables dans le champ d'observation (colonne 4) et observées avec le VLT-GIRAFFE (colonne 5). La dernière colonne donne la proportion d'étoiles B observées par rapport aux étoiles B observables dans les champs VLT-GIRAFFE.

galaxie total		B photo	B photo GIRAFFE	B observées	Bobservées/observables
			observables		
GNM	124812	1806	1235	177	14.3%
PNM	192437	11544	5470	346	6.3%

Le graphique 2.1 (V_{instrumentale}, B-V_{instrumentale}) issu de nos catalogues photométriques présente les étoiles B et Be sélectionnées et observées dans le champ LMC33 du Grand Nuage de Magellan.

FIG. 2.1 – Diagramme couleur instrumentale (B-V), magnitude instrumentale V issu de notre photométrie du champ EIS LMC33. Les symboles '.' correspondent aux étoiles dans le champ LMC33. Les symboles '*' représentent les étoiles Be, les symboles '+' les étoiles O-B-A et les symboles 'x' les binaires dans notre échantillon.

Le graphique 2.2 (V, B-V) présente les étoiles sélectionnées et observées dans le champ SMC5 du Petit Nuage de Magellan.

2.2.2 Configuration de l'instrumentation et localisation des étoiles

a) Configuration.

A l'aide du logiciel de l'ESO FPOSS, nous configurons l'instrumentation FLAMES en allouant les fibres des spectrographes multi-objets GIRAFFE et UVES (si nécessaire) suivant les modes choisis (ici MEDUSA). A partir d'une liste de cibles, nous devons définir une étoile guide qui servira à guider le télescope du VLT durant les observations et à l'optique active. Nous devons aussi définir des étoiles (FACB) qui serviront à la transformation des coordonnées de plaque (X, Y) de chaque fibre pour les coordonnées (α (2000), δ (2000)) sur le ciel. Une fois les fibres placées sur ces objets, obligatoires pour le bon déroulement des observations, nous pouvons sélectionner les autres étoiles qui seront observées avec l'instrumentation multi-fibres FLAMES. Le spectrographe multi-objets GIRAFFE en mode MEDUSA possède 131 fibres disponibles. L'allocation de ces fibres aux étoiles se fera grâce à des algorithmes consistant à faciliter la tâche à l'observateur, suivant ses critères de choix et diverses contraintes mécaniques :

- angle d'inclinaison des fibres,
- taille des boutons des fibres de 12" empêchant d'observer 2 étoiles trop proches,
- collisions entre fibres,
- positions des FACBs,
- zone du champ inobservable à cause de la sonde pour l'étoile guide du VLT,
- zone inobservable au centre du champ à cause de fibres pour un mode particulier de GIRAFFE.
- Suivant les domaines de longueur d'ondes certaines fibres tombent hors du CCD, donc ne pas allouer d'étoiles pour celles-ci.

FIG. 2.2 – Diagramme couleur (B-V), magnitude V issu de la photométrie de l'équipe EIS du champ SMC5. Les symboles '.' correspondent aux étoiles dans le champ SMC5. Les symboles '*' représentent les étoiles Be, les symboles '+' les étoiles O-B-A et les symboles 'x' représentent 3 objets classés comme étoiles Be par Keller et al. (1999) et qui sont en fait d'autres types d'objets à émission.

Passé toutes ces contraintes, nous pouvons définir des priorités d'allocations pour certaines cibles par rapport à d'autres afin que le logiciel alloue, s'il le peut, une fibre à l'objet désiré. Ensuite, pour les objets de priorité équivalente, l'allocation se fera plus ou moins aléatoirement afin de pouvoir allouer le plus possible de fibres. Concrètement, l'observateur doit souvent reprendre l'opération manuellement afin de modifier légèrement les allocations (augmentation du nombre de fibres allouées, suppression de collisions, etc).

Ensuite, nous devons vérifier suivant les dates, les heures d'observations et la position dans le ciel, par rapport au passage au méridien du centre du champ visé, si la correction de la réfraction différentielle dans le champ ne va pas entraîner des collisions. Si c'est le cas, il faut reprendre la configuration des fibres. Sinon, l'étape délicate de l'allocation des fibres est franchie ; voir comme exemple d'allocations pour la cible NGC2004 la Figure 2.3. L'allocation des fibres peut prendre, suivant les choix et l'expérience de la personne, 2 jours à plus d'une semaine...

Puis à l'aide du logiciel P2PP de l'ESO, nous calibrons le ou les spectrographe(s) suivant les domaines de longueur d'ondes choisis. Puis, nous incluons le fichier résultant de la configuration des fibres et nous définissons ensuite le nombre de poses scientifiques, leur temps de pose et les domaines de longeur d'ondes utilisés.

b) Localisation

Dans ce paragraphe, nous présentons globalement dans les Figures 2.4 et 2.14 les localisations des étoiles B et Be que nous avons observées dans les champs du Grand et du Petit Nuage de Magellan respectivement. Puis dans les Figures 2.5 à 2.13, nous montrons la localisation des étoiles dans les amas du Grand Nuage de Magellan. Dans les Figures 2.15 à 2.22, nous montrons la localisation des étoiles dans les amas du Petit Nuage de Magellan. Enfin dans la Figure 2.23, nous montrons les localisations des cibles dans le champ des amas

FIG. 2.3 – Exemple d'allocations de fibres MEDUSA pour l'un des champs de NGC2004 que nous avons observés. Graphique à droite : les fibres avec les boutons rouges au bout sont les fibres MEDUSA. Les fibres vertes sont les fibres FACBs. Les fibres bleues sont les fibres pour UVES. La sonde guide pour le VLT correspond à la zone avec un pivot rouge et est alloués sur une étoile guide (cercle bleu). Le disque noir au centre du champ correspond à la zone inobservable liée aux fibres ARGUS. Les cercles concentriques correspondent à différents rayons : le premier noir correspond à 12.5' qui est la limite du champ observable. Le tableau à gauche indique par type de fibres le nombre de fibres allouées et non allouées ainsi que le type d'objet auquel elles sont allouées. Par exemple, pour les fibres MEDUSA, il y a 132 fibres-1 cassée d'allouables. Parmi celles-ci 41 sont allouées à des positions de fond de ciel, 87 à des étoiles et 4(-1 cassée) ne sont pas allouées.

Trumpler 14 et 16. Cette dernière image illustre les difficultés de connaître précisément l'extinction et l'excès de couleur des différentes zones de ce champ.

FIG. 2.4 – Le champ LMC33 du Grand Nuage de Magellan du relevé pre-FLAMES de EIS. Les cercles représentent les étoiles Be dans notre échantillon, les carrés les étoiles de type O-B-A et les croix les positions des fibres sur le fond de ciel. Les triangles et losanges indiquent respectivement les étoiles Be et les étoiles B fortement rougies. Au sud-ouest, se trouve la région HII LHA 120-N51A.

FIG. 2.5 – Amas ouvert NGC2004 du GNM.

FIG. 2.6 – Amas ouvert KMHK930 du GNM.

FIG. 2.7 – Amas ouvert KMHK943 du GNM.

FIG. 2.8 – Amas ouvert KMHK971 du GNM.

FIG. 2.9 – Amas ouvert KMHK988 du GNM.

FIG. 2.10 – Groupe d'étoiles 'Unknown1' du GNM.

Fig. 2.11 – Groupe d'étoiles 'Unknown2' du GNM.

FIG. 2.12 – Groupe d'étoiles 'Unknown3' du GNM.

FIG. 2.13 – Amas galactique HS66325 du GNM.

FIG. 2.14 – Le champ SMC5 du Petit Nuage de Magellan du relevé pre-FLAMES de EIS. Les triangles verts représentent les étoiles B et Be observées et les croix blanches correspondent aux positions de fibres sur le fond de ciel. Nous pouvons noter la présence dans ce champ de plusieurs amas ouverts : principalement NGC300 en haut à gauche dans les nébulosités ; NGC330 en bas au milieu.

FIG. 2.15 – Amas ouvert NGC330 du PNM.

FIG. 2.16 – Amas ouvert NGC306 du PNM.

FIG. 2.17 – Amas ouvert NGC299 du PNM.

FIG. 2.18 – Amas ouvert OGLE SMC109 du PNM.

FIG. 2.19 – Amas ouvert OGLE SMC99 du PNM.

FIG. 2.20 – Amas ouvert H86 170 du PNM.

FIG. 2.21 – Amas ouvert H86 145 du PNM.

FIG. 2.22 – 7 8 du PNM]Association d'étoiles [BS95]78 du PNM.

FIG. 2.23 – Champ EIS OC17+18 comprenant les amas ouverts Trumpler 14 et Trumpler 16 de la région de la Carène dans la Voie Lactée. Les différents symboles (carrés, cercles) correspondent aux étoiles observées avec le VLT-GIRAFFE dans les différents champs.

2.2.3 Biais introduits

Dans les Nuages de Magellan, nous avons forcé l'observation d'étoiles Be, ou à émission supposée, donc la proportion d'étoiles Be dans nos échantillons ne pourra pas être obtenue directement. Il faudra donc retirer des comptages les étoiles Be connues au préalable afin limiter le plus possible les biais et ne considérer que celles découvertes par "hasard" parmi les étoiles B observées.

Notre sélection s'est effectuée sur des critères de magnitudes et d'indices de couleur, or nous ne maitrisons pas parfaitement les différences d'extinction et d'excès de couleur dans les champs observés. Ceci a pu nous conduire à écarter des étoiles B rougies.

Nos critères de sélection nous ont aussi amené à observer les étoiles B les plus brillantes donc à priori, nous devrions avoir affaire à des étoiles de types précoces essentiellement. Ce qui fait que nous aurons peu d'étoiles de faibles masses dans nos échantillons.

2.3 Observations / réduction

2.3.1 Domaines spectraux

Les instrumentations GIRAFFE et UVES du VLT offrent plusieurs domaines de longueurs d'onde et plusieurs résolutions. Les domaines utilisés dans cette étude et leurs caractéristiques sont détaillés dans la Table 2.2.

TAB. 2.2 – Domaines utilisés pour les observations avec le VLT-GIRAFFE en mode MEDUSA et avec UVES. La colonne 2 donne le nom et le type de domaine, LR est pour la basse résolution et HR pour la haute résolution. Les colonnes suivantes (3, 4, 5) donnent les longueurs d'onde minimales, centrales et maximales de chaque domaine en Å. La colonne 6 donne la bande passante du domaine et la dernière colonne donne la résolution moyenne du domaine.

Instrument	Domaine	$\lambda \min{(\text{\AA})}$	λ centrale (Å)	$\lambda \max{(\text{\AA})}$	bande passante (Å)	résolution
GIRAFFE	LR02	3964	4272	4567	603	6400
GIRAFFE	LR03	4501	4797	5078	578	7500
GIRAFFE	LR06	6438	6822	7184	746	8600
GIRAFFE	HR4	4188	4297	4392	205	20350
GIRAFFE	HR5	4376	4471	4552	176	26000
GIRAFFE	HR6	4538	4656	4759	222	20350
GIRAFFE	HR15N	6470	6650	6790	320	17000
UVES	520	4140	5200	6210	2070	62000

2.3.2 Observations

Dans le cadre du temps garanti de l'Observatoire de Paris sur le VLT-GIRAFFE (P.I. F. Hammer), nous avons observé les champs suivants :

Pour chacun des Nuages de Magellan, nous avons observé 2 ou 3 champs dans différents modes. Nous avons choisi un mode "bleu" correspondant au domaine LR02 de moyenne résolution R= 6400 (voir la Table 2.2). Ce domaine de longueurs d'onde comprend plusieurs raies de Balmer de l'hydrogène : $H\delta$, $H\gamma$; plusieurs raies de l'hélium neutre : HeI 4026, HeI 4388, HeI 4471 Å pour ne citer que les plus importantes ; une raie de l'hélium 1 fois ionisé : HeII 4200Å et diverses raies de métaux dont la raie MgII 4481Å. Ce mode "bleu" a été choisi pour déterminer les paramètres fondamentaux de l'étoile par ajustement des raies citées du spectre observé par des spectres théoriques.

Nous avons également utilisé un mode "rouge" correspondant au mode LR06 de moyenne résolution R= 8600 (voir la Table 2.2). Ce domaine de longueurs d'onde comprend plusieurs raies de différents éléments : hydrogène : H α ; hélium neutre : HeI 6678 Å; des raies interdites du soufre 1 fois ionisé : [SII] 6717, 6731Å et de l'azote 1 fois ionisé : [NII] 6548, 6583Å. Ce mode "rouge" nous permet de caractériser l'éventuelle émission observée en H α : émission d'origine circumstellaire ou nébulaire et donc de caractériser les étoiles Be et d'étudier les nébulosités sur la ligne de visée avec les raies interdites.

Pour les objets de la Voie Lactée, compte tenu de la plus grande luminosité des étoiles visées, nous avons utilisé différents modes à haute résolution (R entre 17000 et 26000) comprenant la plupart des raies citées ci-dessus ainsi que différentes autres comme H β . Excepté pour les observations des champs de COROT, pour lesquels nous avons utilisé les modes LR02 et LR06. Nous nous focaliserons par la suite essentiellement sur les observations des Nuages de Magellan qui constituent le sujet principal de cette thèse.

La Table 2.3 fait le point sur le déroulement des observations et donne divers détails sur les conditions d'obtention des spectres comme le nombre de champs, les domaines utilisés, etc.

Le rapport S/N (signal à bruit) varie de 20 pour une étoile de V=18 à 150 pour une étoile de V=13 dans le mode LR02. Notons que deux étoiles de même magnitude pourront avoir des rapports S/N différents. Celui-ci
TAB. 2.3 – Observations au VLT-FLAMES. Colonne 1 : cible ; colonne 2 : coordonnées centrales des cibles (2000) ; colonne 3 : domaine utilisé et résolution associée ; colonne 4 : date de l'observation ; colonne 5 : champ, 2 champs ayant même coordonnées ne comportent pas les mêmes étoiles ; colonne 6 : temps de pose ; colonne 7 : nombre d'étoiles observées avec UVES ; dernière colonne : indication du seeing moyen.

Galaxie	Coord. centrales (2000)	domaine/résolution	date	champ	temps de pose	Etoiles UVES	seeing moyen
GNM	05h 29mn 00s -67° 14′ 00"	LR02/6400	24/11/2003	champ1	2h	2	0.4-0.8"
GNM	05h 29mn 00s -67° 14' 00"	LR06/8600	28/11/2003	champ1	1h30	2	0.4-0.8"
GNM	05h 29mn 00s -67° 14′ 00"	LR02/6400	12/04/2004	champ2	2h	2	0.4-0.8"
GNM	05h 29mn 00s -67° 14' 00"	LR06/8600	14/04/2004	champ2	1h30	2	0.4-0.8"
PNM	00h 55mn 15s -72° 20′ 00"	LR02/6400	21/10/2003	champ1	1h15mn	4	1-2"
PNM	00h 55mn 15s -72° 20′ 00"	LR02/6400	22/10/2003	champ2	2h	3	1-2"
PNM	00h 55mn 15s -72° 20' 00"	LR06/8600	22/10/2003	champ1	1h	4	1-2"
PNM	00h 55mn 15s -72° 20' 00"	LR06/8600	23/10/2003	champ2	1h	3	1"
PNM	00h 55mn 25s -72° 23′ 30"	LR02/6400	09/09/2004	champ3	2h	4	0.4-0.6"
PNM	00h 55mn 25s -72° 23′ 30"	LR06/8600	10/09/2004	champ3	1h30mn	4	0.4-0.8"
NGC6611	18h 18mn 50s -13° 49′ 30"	LR02/6400	15/04/2004	champ1	2 x 900s	3	0.8"
NGC6611	18h 18mn 50s -13° 49′ 30"	LR03/7500	15/04/2004	champ1	2 x 1000s	3	0.8"
NGC6611	18h 18mn 50s -13° 49′ 30"	HR15N/17000	15/04/2004	champ1	2 x 1780s	3	0.8"
NGC6611	18h 18mn 50s -13° 49′ 30"	HR5/26000	15/04/2004	champ1	1 x 770s	3	Nuages
Trumpler 14, 16	10h 44mn 31.30s -59° 34′ 48"	HR4/20350	13/04/2004	champ1	2 x 1800s	4	0.8"
Trumpler 14, 16	10h 44mn 31.30s -59° 34′ 48"	HR5/26000	14/04/2004	champ1	1h	4	0.8"
Trumpler 14, 16	10h 44mn 31.30s -59° 34′ 48"	HR15N/17000	14/04/2004	champ1	2 x 1780s	4	0.8"
Trumpler 14, 16	10h 44mn 31.30s -59° 34′ 48"	HR6/20350	15/04/2004	champ1	2 x 1780s	4	0.8"
Trumpler 14, 16	10h 44mn 31.30s -59° 34′ 48"	HR4/20350	15/04/2004	champ2	2 x 1800s	5	0.8"
Trumpler 14, 16	10h 44mn 31.30s -59° 34′ 48"	HR5/26000	15/04/2004	champ2	1h	5	0.8"
Trumpler 14, 16	10h 44mn 31.30s -59° 34′ 48"	HR15N/17000	15/04/2004	champ2	2 x 1780s	5	0.8"
COROT1	06h 43' 27.77"-00° 47' 06.51"	LR02/6400	31/01/2005	champ1	2 x 1800s	0	0.6"
COROT1	06h 43' 27.77"-00° 47' 06.51"	LR06/8600	31/01/2005	champ1	2400s	0	0.6"
COROT1	06h 43' 04.46"-01° 13' 01.56"	LR02/6400	31/01/2005	champ2	2 x 1800s	0	0.6"
COROT1	06h 43' 04.46"-01° 13' 01.56"	LR06/8600	31/01/2005	champ2	2400s	0	0.6"

dépend du centrage de l'étoile dans la fibre, du taux de transmission de la fibre, des conditions météorologiques locales (des nuages peuvent ne couvrir qu'une partie du champ de GIRAFFE), etc.

Pour les différentes dates d'observations, la vitesse héliocentrique pour l'amas NGC2004 est comprise entre 0.5 et 1.5 km s⁻¹, et pour l'amas NGC330 entre 7 et 12 km s⁻¹. Compte tenu de la résolution du mode bleu et de la taille du CCD, 1 pixel correspond à une vitesse de 10 km s⁻¹. Donc, il est inutile de corriger la vitesse radiale des spectres des étoiles observées du GNM, par contre, nous avons corrigé celles des étoiles du PNM.

Finalement, les nombres d'étoiles observées dans les Nuages de Magellan et leurs types sont donnés dans le tableau 2.4. Les abréviations utilisées sont : "SB" pour binaire spectroscopique à 1 ou 2 spectres, "EB" pour binaire à éclipses.

TAB. 2.4 – Nombres et types d'étoiles dans nos échantillons des Nuages de Magellan. SB signifie binaire spectroscopique à 1 ou 2 spectres, EB signifie binaire à éclipses.

galaxie	total	Be	Be	dont Be	B (non Be)	0	Α	dont O, B	Autres
		nouvelles	connues	binaires (SB+EB)				binaires (SB+EB)	
GNM	177	25	22	0	121	6	2	23	1
PNM	346	90	41	2	202	4	6	33	3

Ces étoiles sont localisées dans les champs et dans différents petits amas ouverts et associations montrés en 2.2.2b. Les étoiles B et Be observées sont très majoritairement des étoiles de types précoces (B1-B3) et de classes V, IV, III (voir Martayan et al. 2005b). La classification des étoiles observées sera détaillée dans les chapitres suivants traitant des paramètres fondamentaux.

Les proportions des binaires dans nos échantillons sont dans le GNM de : $B_{bin}/B \approx 19$ %, $Be_{bin}/Be= 0$ %. Aucune étoile Be binaire n'a pu être mise en évidence dans cet échantillon mais ce dernier taux n'est sans doute pas représentatif. Nous n'avons pas pu trouver toutes les courbes de lumière pour toutes les étoiles Be, ce qui a limité la recherche de binaires photométriques dans cet échantillon. Dans le PNM, les taux de binaires sont : $B_{bin}/B \approx 16\%$ et $Be_{bin}/Be \approx 2\%$, comme pour le GNM, ce dernier taux n'est sans doute pas représentatif. Dans ce cas, si nous avons une bonne couverture par les courbes de lumière ce qui nous a permis de trouver 2 binaires photométrique, il n'a pas été possible d'étudier la Suivant Porter & Rivinius (2003) le taux de binaires n'excède pas 30 % parmi les populations d'étoiles B et Be.

2.3.3 Réduction des données

Au début des observations, le logiciel de réduction des observations GIRAFFE (GIRBLDRS pour GI-RAFFE Base Line Data Reduction Software) était encore au stade du développement. Aussi, j'ai entrepris de créer un logiciel sommaire de traitement de données de type images : correction des flats, bias et extraction des spectres. Il permettait au moins de visualiser une partie des spectres. Puis, le logiciel GIRBLDRS a été corrigé et rendu disponible. Au fur et à mesure de l'utilisation, nous avons trouvé différents bogues et suggéré diverses améliorations que l'équipe genevoise conceptrice du pipeline GIRBLDRS a pris en compte. La dernière version date de septembre 2004 mais doit être encore améliorée notamment pour le traitement des raies telluriques.

Nous avons effectué le traitement des données (corrections de flat, bias, calibrage en longueur d'ondes, recherche des positions des spectres et extraction des spectres) avec le pipeline. Puis, à l'aide de plusieurs tâches de la suite de logiciels IRAF, nous avons éclaté le fichier de spectres réduits par le pipeline afin d'obtenir des spectres individuels. Nous avons également supprimé les rayons cosmiques (manuellement car ils ne sont pas très nombreux et ne gênent pas trop compte tenu des raies larges que nous avons dans les spectres). Et nous avons supprimé les raies telluriques des spectres stellaires à l'aide de spectres pris sur le fond de ciel.

Bibliographie

- [1] Bertin, E.; Arnouts, S.; "SExtractor : software for source extraction", 1996, A&AS, 117, 393B
- [2] Bertin, E.; "SExtractor: User's manual"
- [3] Grebel, E. K.; Richtler, T.; de Boer, K. S.; "Be star surveys with CCD photometry. I. NGC 330 and its high Be star content.", 1992, A&A, 254, L5
- [4] Greisen, E. W.; Calabretta, M., "Representations of Celestial Coordinates in FITS", 1995, ASPC, 77, 233G
- [5] Keller, S. C.; Wood, P. R.; Bessell, M. S.; "Be stars in and around young clusters in the Magellanic Clouds", 1999, A&ASS, 134, 489
- [6] Maddox, S. J.; Efstathiou, G.; Sutherland, W. J. "The APM Galaxy Survey Part Two Photometric Corrections", 1990, MNRAS, 246, 433M
- [7] Martayan, C.; Frémat, Y., Hubert, A.-M. et al.; "Effects of metallicity, star formation conditions and evolution in B and Be stars. I : Large Magellanic Cloud, field of NGC 2004." 2005b, A&A, submitted
- [8] Momany, Y.; Vandame, B.; Zaggia, S. et al.; "ESO imaging survey. Pre-FLAMES survey : Observations of selected stellar fields", 2001, A&A, 379, 436
- [9] Porter, J. M.; Rivinius, T.; "Review : Classical Be stars", 2003, PASP, 115, 1153
- [10] EIS pre-FLAMES survey : http://www.eso.org/science/eis/surveys/release_50000022_Pre-Flames.html
- [11] GIRBLDRS : http ://girbldrs.sourceforge.net/
- [12] IRAF : http://iraf.noao.edu/
- [13] SIMBAD database : http ://simbad.u-strasbg.fr/sim-fid.pl
- [14] VIZIER (pour le catalogue UCAC2) : http://vizier.u-strasbg.fr/viz-bin/VizieR

Chapitre 3

Résultats observationnels directs : proportions d'étoiles Be

Sommaire

3.1	Comparaison dans les amas	41
3.2	Comparaison dans les champs	43
3.3	Conclusions sur les taux d'étoiles Be	44

3.1 Comparaison dans les amas

Maeder et al. (1999) ont étudié la proportion d'étoiles Be dans les amas d'âges comparables : log(age)= 7.10 à 7.40, afin d'éviter les effets d'évolution des étoiles, dans des régions et galaxies de différentes métallicités. Par ordre de métallicité décroissante nous trouvons : Voie Lactée en direction du centre et en direction du bord, Grand Nuage de Magellan et Petit Nuage de Magellan. Il semble, suivant la Figure 3.1 gauche, issue de leur article, que les étoiles Be soient plus nombreuses dans les galaxies de plus faible métallicité. Or, les proportions portées sur leur graphique sont des moyennes issues des proportions individuelles de chaque amas. Quand on reporte sur ce graphique, les proportions individuelles, on s'aperçoit que la dispersion est très forte entre chaque amas et que dans le Petit Nuage de Magellan, il n'y a des données que pour un seul amas, voir la Figure 3.1 droite. Il devient alors plus difficile de conclure sur un lien éventuel entre métallicité faible et fort taux d'étoiles Be. De plus, dans les amas galactiques, les étoiles dénombrées sont de tous les types et dans les amas des Nuages de Magellan, seuls ont été pris en compte les types précoces. En conséquence, cela revient à diminuer la proportion d'étoiles Be dans la Voie Lactée car le maximum d'étoiles Be est atteint dans les types précoces.

Cependant, plus récemment Wisniewski et al. (2005) ont effectué un travail similaire à celui de Maeder et al. (1999) mais en sélectionnant par gammes de type spectral, voir la Figure 3.1 bas. Cependant, là encore il existe une dispersion individuelle relativement forte mais afin de la limiter, ils ont supprimé de leurs statistiques les amas ayant de très faibles ou de très fortes proportions d'étoiles Be. Et ils ont sélectionné des amas d'âges relativement comparables : entre 10 et 25 millions d'années (log(t) entre 7 et 7.4). Ils trouvent une diminution de la proportion d'étoiles Be avec l'augmentation de la métallicité.

A titre de comparaison, nous donnons les taux d'étoiles Be dans le Tableau 3.1 pour les petits amas ouverts (associations exclues) que nous avons observés dans les Nuages de Magellan, en fonction du nombre d'étoiles observées. Nous n'avons pas utilisé les amas NGC330 et NGC2004 car ils étaient biaisés par le choix de cibles prioritaires (Be).

Nos résultats bien que portant sur un petit nombre d'objets tendent également à montrer qu'il y a une tendance à l'augmentation de la proportion des étoiles Be avec la diminution de la métallicité entre les Nuages

FIG. 3.1 – Haut-gauche : Proportion d'étoiles Be dans les amas ouverts suivant la métallicité du milieu et les intervalles de magnitudes (symboles différents). Ce diagramme est issu de Maeder et al. (1999). Haut-droite : Proportions individuelles d'étoiles Be dans les amas ouverts de Maeder et al. (1999) suivant la métallicité du milieu. Bas : Proportion d'étoiles Be dans les amas ouverts suivant la métallicité du milieu selon Wisniewski et al. (2005). Les valeurs données correspondent à une sélection en types spectraux de B0 à B3 pour des amas considérés jeunes d'âges entre 10 et 25 Mans. De gauche à droite les points correspondant aux milieux suivants : le PNM (SMC), le GNM (LMC), la Voie Lactée extérieure (MW ext) et la Voie Lactée intérieure (MW int).

de Magellan (20-60%) et la Voie Lactée (15-20%); encore faut-il rester prudent compte tenu de la dispersion importante des points de mesures.

TAB. 3.1 – Comparaisons des proportions d'étoiles Be dans les petits amas ouverts des Nuages de Magellan observés avec GIRAFFE. Les âges ont été déterminés à partir des paramètres fondamentaux des étoiles présentes dans les amas. La première colonne des lignes 1, 4 et 7 indiquent le nombre d'étoiles dans les amas. La deuxième colonne donne la dispersion des proportions d'étoiles Be dans les amas. La troisième colonne donne le nombre d'amas. La quatrième colonne donne la dispersion en âge des amas. La cinquième colonne donne la proportion moyenne d'étoiles Be dans les amas.

$N^* \ge 3$	N(Be)/N(B+Be)	N(amas)	Age	<n(be) n(b+be)=""></n(be)>
GNM	33 - 60 %	5	7.4 - 7.7	41.8 ± 11.2 %
PNM	20 - 40 %	5	7.8 - 8.0	29.5 ± 7.8 %
$N^* \ge 5$	N(Be)/N(B+Be)	N(amas)	Age	<n(be) n(b+be)=""></n(be)>
GNM	60 %	1	7.6	$60 \pm 25 \%$
PNM	20 - 40 %	3	7.8 - 8.0	$32.5 \pm 8.9 \%$
$N^* \ge 8$	N(Be)/N(B+Be)	N(amas)	Age	<n(be) n(b+be)=""></n(be)>
GNM		0		
PNM	37.5 - 40 %	2	7.8 - 8.0	38.8 ± 1.3 %

3.2 Comparaison dans les champs

Une autre possibilité pour comparer les proportions d'étoiles Be dans des milieux de différentes métallicités, est d'étudier cette proportion dans les champs de galaxies. Nous supposons que les effets d'évolution des étoiles sont moyennés dans les champs donc qu'à priori seuls les effets de métallicité devraient être vus. Dans la Table 3.2, nous donnons les proportions des étoiles Be dans les champs du GNM et du PNM. Afin de limiter les biais observationnels, la statistique a été effectuée en enlevant d'une part les étoiles se trouvant dans la zone de Keller et al. (1999) ainsi que toutes les étoiles Be visées intentionnellement. D'autre part, la statistique a d'abord été effectuée en enlevant les étoiles faisant partie des amas uniquement ainsi que toutes les étoiles Be visées intentionnellement. Une moyenne entre ces 2 résultats est alors calculée pour chaque champ. Enfin, une dernière possibilité pour déterminer les proportions d'étoiles Be est de considérer les étoiles Be et les étoiles non Be de Keller (1999) et le nombre de fibres que nous avons utilisées dans les zones observées par Keller (1999). Ainsi, nous pouvons estimer les probabilités de retrouver aléatoirement un certain nombre d'étoiles Be parmi les étoiles de la zone de Keller en fonction du nombre de fibres dont on dispose. L'ensemble de ces valeurs montreraient un plus fort taux d'étoiles Be dans le champ du PNM que dans celui du GNM. Nous devons maintenant comparer ces valeurs à celles de la littérature dans la Voie Lactée et dans les Nuages de Magellan afin de mettre en évidence un éventuel enrichissement en étoiles Be avec la sous-métallicité du milieu.

TAB. 3.2 – Taux d'étoiles Be dans les champs des Nuages de Magellan dans nos échantillons. Deux statistiques sont données, la première donne la proportion d'étoiles Be en enlevant toute étoile située dans la zone de Keller et al. (1999) et toute étoile Be visée intentionnellement. La seconde donne la proportion d'étoiles Be hors amas dans tout le champ étudié en enlevant toute étoile Be visée intentionnellement. La dernière colonne donne : la moyenne des déterminations, et entre parenthèses donne le résultat des estimations via les probabilités.

Galaxie		hors zone de Keller et al. (1999)		1	hors amas		Moyenne
	Be	В	N(Be)/N(B+Be) %	Be	В	N(Be)/N(B+Be) %	<n(be) n(b+be)="">%</n(be)>
GNM	17	95	15	28	112	20	17.5 ± 2.5 (17.1)%
PNM	51	178	22	78	180	30	$26 \pm 4.0 (30.4)\%$

Dans le champ de la Voie Lactée, les premières études donnent des proportions d'étoiles Be pour les types précoces entre 7 et 25% avec une moyenne de l'ordre de 15%. Par contre, dans le champ de la Voie Lactée, Zo-rec & Briot (1997) en prenant en compte diverses corrections, ont trouvé une proportion d'étoiles Be qui varie entre 20 et 30 % suivant les premiers types précoces d'étoiles B (B1 à B3) et pour les classes de luminosité (V, IV, III). Or, les étoiles Be que nous avons observées sont majoritairement des étoiles de types précoces (B1 à B3) et de toutes classes V, IV, III, bien que les classes IV et III soient un peu plus représentées que la V. Donc, nous pouvons comparer les proportions que nous avons trouvées à celle de Zorec & Briot (1997). Nous nous

basons également sur l'étude photométrique de Keller et al. (1999) pour comparer les taux qu'ils trouvent dans les Nuages de Magellan aux nôtres. Tous ces résultats sont portés dans le Tableau 3.3.

0			
Galaxie	N(Be)/N(B+Be) %	Commentaires	Etude
Voie Lactée	20 - 30 %		Zorec & Briot (1997)
GNM	15 - 20 %		Martayan et al. (2005a)
GNM	11 %	Champ de NGC2004	Keller et al. (1999)
GNM	10 - 27 %	Champs de plusieurs amas	Keller et al. (1999)
PNM	22 - 30 %		Martayan et al. (2005c) en préparation
PNM	21 %	Champ de NGC330	Keller et al. (1999)
PNM	18 - 21 %	Champs de plusieurs amas	Keller et al. (1999)

TAB. 3.3 – Comparaisons des proportions d'étoiles Be du champ dans la Voie Lactée et dans les Nuages de Magellan.

Nous effectuons plusieurs constatations :

- les proportions d'étoiles Be que nous trouvons sont tout à fait comparables à celles de Keller et al. (1999) dans les champs des Nuages de Magellan.
- Les proportions que nous trouvons dans le Petit et le Grand Nuage de Magellan semblent similaires quoique légèrement plus grandes dans le PNM par rapport au GNM.
- Les proportions dans les Nuages de Magellan et la Voie Lactée semblent similaires.

En conséquence, il ne semble pas y avoir d'effet très marqué de la métallicité sur la proportion d'étoiles Be dans les champs des galaxies. Cependant, les proportions sont là aussi assez dispersées et nous ne pouvons pas exclure que localement, il puisse y avoir des différences importantes de métallicité ou encore pour des raisons diverses (âge, proximité d'amas, etc) que certaines régions soient plus ou moins dépourvues d'étoiles de type Be. De plus comme la phase Be d'une étoile est temporaire, il se peut que certaines d'entre elles aient échappé aux différentes statistiques. Par ailleurs, il faudra être prudent quant à l'utilisation des statiqtiques publiés dans Zorec & Briot (1997) car dans certains cas le nombre d'étoiles par échantillon est très faible (3) et les étoiles provenant de zones de métallicité différente ont été mélangées.

Compte tenu de ces résultats, si la métallicité joue un rôle sur la proportion des Be, il doit être relativement faible. L'effet de la métallicité pourrait être en compétition avec des processus comme par exemple l'évolution d'une étoile de type B. Selon Fabregat & Torrejón (2000), la phase Be apparaitrait dans la seconde partie de la vie sur la séquence principale d'une étoile de type B.

3.3 Conclusions sur les taux d'étoiles Be

La comparaison effectuée dans les amas des différentes galaxies de métallicités différentes ne semblent pas être concluantes à cause de la forte dispersion des proportions d'étoiles Be, entre amas de même métallicité et d'âges comparables, même si une tendance semble exister. Une question est alors à examiner : pourquoi les amas, de même métallicité et d'âges comparables, présentent-ils une si forte dispersion du nombre d'étoiles Be ?

Suivant la comparaison effectuée dans les champs des galaxies par ordre de métallicité décroissante : Voie Lactée, Grand et Petit Nuages de Magellan, il ne semble pas y avoir d'effet clairement visible de la métallicité sur la proportion d'étoiles Be. Cet effet doit être en compétition avec d'autres processus comme peut être l'évolution de l'étoile B. Rappelons que dans les champs, les effets d'évolution sont normalement moyennés car on y trouve des étoiles de tous âges.

Les résultats des proportions des étoiles Be entre les amas et les champs sont contradictoires. Dans les amas, la métallicité semblerait jouer un rôle et non pas dans les champs. Pourrait-il y avoir des différences locales de métallicité entre les amas et les champs ? Dans le cas du PNM et de l'amas NGC330, Grebel et al. (1992) donnent pour cet amas une métallicité 3 fois inférieure à celle du champ. Cependant, des études plus récentes (Jasniewicz & Thévenin 1994) ne montrent aucune différence de métallicité entre l'amas et le champ l'environnant. Ou bien, les différences constatées proviendraient elles de conditions particulières de formation des étoiles dans les amas ?

Dans l'absolu pour résoudre les questions de proportions d'étoiles Be suivant la métallicité, il faudrait pouvoir effectuer des comparaisons des taux détoiles Be par gammes de métallicité restreintes dans chacune des galaxies afin de limiter la dispersion en métallicité des étoiles des échantillons. Cette étude ne peut malheureusement pas être réalisée avec les spectres VLT-GIRAFFE dont nous disposons. La résolution de ces derniers et les domaines utilisés ne permettent pas la détermination précise d'abondances en surface des métaux. Nous renvoyons le lecteur au paragraphe 5.4 qui traite des abondances en surface de carbone pour de plus amples explications.

Une partie de ces résultats a été publié dans Martayan et al. (2005a), le reste fait partie d'un article en préparation.

Bibliographie

- [1] Fabregat, J.; Torrejón, J. M.; "On the evolutionary status of Be stars", 2000, A&A, 357, 451
- [2] Grebel, E. K.; Richtler, T.; de Boer, K. S.; "Be star surveys with CCD photometry. I. NGC 330 and its high Be star content.", 1992, A&A, 254, L5
- [3] Jasniewicz, G.; Thévenin, F.; "Metal abundancies of Magellanic Cloud clusters", 1994, A&A, 282, 717
- [4] Keller, S. C.; Wood, P. R.; Bessell, M. S.; "Be stars in and around young clusters in the Magellanic Clouds", 1999, A&ASS, 134, 489
- [5] Martayan, C.; Hubert, A.-M.; Floquet, M. et al.; "A study of the B and Be star population in the field of the LMC open cluster NGC2004 with VLT-FLAMES", 2005a, A&A, sous presse, astroph0509339
- [6] Maeder, A.; Grebel, E. K.; Mermilliod, J.-C.; "Differences in the fractions of Be stars in galaxies", 1999, A&A, 346, 459
- [7] Zorec, J.; Briot, D.; "Critical study of the frequency of Be stars taking into account their outstanding characteristics.", 1997, A&A, 318, 443
- [8] Wisniewski, J. P., Bjorkman, K. S., Magalhães, A. M., et al.; "The effects of age and metallicity on Be circumstellar disk formation", 2005, poster au colloque Active O, B stars, Sapporo, Japon

Chapitre 4

Paramètres fondamentaux des étoiles B et Be observées des Nuages de Magellan

Sommaire

4.1	Métho	de de détermination des paramètres fondamentaux et associés
	4.1.1	Quelques définitions et formules utiles
	4.1.2	Domaines de détermination
	4.1.3	Grilles de modèles d'atmosphères 50
	4.1.4	Procédure de détermination des paramètres fondamentaux
	4.1.5	Classification spectrale des étoiles
	4.1.6	Détermination des paramètres associés : luminosité, masse, rayon et âge 61
4.2	Effets	de la rotation rapide sur les étoiles Be
	4.2.1	Effets : circulation méridienne, assombrissement gravitationnel, aplatissement 63
	4.2.2	Détermination des paramètres corrigés
4.3	Résult	ats pour les étoiles B et Be du Grand Nuage de Magellan
	4.3.1	Les étoiles O, B, A du GNM
	4.3.2	Les étoiles Be du GNM
	4.3.3	Diagrammes Hertzprung Russel pour le GNM
4.4	Résult	ats pour les étoiles B et Be du Petit Nuage de Magellan
	4.4.1	Les étoiles O, B, A du PNM 68
	4.4.2	Les étoiles Be du PNM
	4.4.3	Diagramme Hertzprung Russel pour le PNM
4.5	Carac	térisation des échantillons d'étoiles B et Be des Nuages de Magellan 70
	4.5.1	Comparaison des distributions en classification spectrale des étoiles B et Be 70
	4.5.2	Comparaison des distributions en masse
4.6	Conclu	usions préliminaires

4.1 Méthode de détermination des paramètres fondamentaux et associés

4.1.1 Quelques définitions et formules utiles

Métallicité : Elle s'obtient à partir des abondances en nombres N_n , N_p par rapport aux abondances solaires de chaque élément n, p suivant la relation :

$$[n/p] = \log(\frac{N_n}{N_p})_{MC} - \log(\frac{N_n}{N_p})_{\odot}$$

$$(4.1)$$

Généralement l'élément p qui sert de référence est l'hydrogène.

Calculs de vitesses de rotation :

En supposant que l'angle d'inclinaison dans un échantillon d'étoiles suit un comportement aléatoire, alors le $\sin(i)=\pi/4\simeq0.78$ d'où l'angle le plus probable $i\simeq52^{\circ}$. La vitesse équatoriale moyenne de rotation sera obtenue par :

$$V_e = \frac{4}{\pi} < V \sin i > \tag{4.2}$$

où le $\langle V \sin i \rangle$ est le $V \sin i$ moyen.

La vitesse de rotation critique s'obtient en première approximation par la formule :

$$V_c \simeq 436.7 \left(\frac{\langle M \rangle}{\langle R \rangle}\right)^{1/2},$$
 (4.3)

où $\langle M \rangle$ et $\langle R \rangle$ sont la masse moyenne M en M_o et le rayon moyen R en R_o. Cela nous permet d'obtenir le rapport de vitesse linéaire V_e/V_c et nous obtenons le rapport de vitesse de rotation angulaire à la vitesse critique par la formule suivante calculée depuis Chauville et al. (2001) :

$$\frac{\Omega}{\Omega_c} = \frac{1}{0.724} V_e / V_c [1 - 0.276 (V_e / V_c)^2].$$
(4.4)

4.1.2 Domaines de détermination

Les raies de Balmer de l'hydrogène, de l'hélium et le MgII sont géneralement considérées comme étant de bons indicateurs de température et de gravité pour l'étude des étoiles de type B (voir par exemple Frémat et al. 2005a). Dans cet article, les auteurs présentent également les relations entre largeurs équivalentes de raies et température effective et gravité de surface. Les différents mécanismes d'élargissement de ces raies présentent l'avantage d'être étudiés depuis longtemps et aujourd'hui bien connus. Aussi, pour pouvoir déterminer les paramètres fondamentaux des étoiles telles la température effective, la gravité de surface et la vitesse de rotation projetée, nous avons sélectionné le domaine 4000 - 4500 Å qui comprend un grand nombre de ces raies (voir la Table 4.4). Notons, la présence possible d'une bande d'absorption interstellaire entre 4440 et 4450 Å rendant cette zone difficilement utilisable. Pour déterminer les paramètres fondamentaux des étoiles à basse résolution (R=6400 à 4272Å) LR02 du VLT-GIRAFFE. Celui-ci est bien adapté à notre étude puisqu'il couvre les longueurs d'onde de 3964 à 4567Å.

Pour déterminer le caractère émissif d'une étoile B et pour pouvoir étudier les caractéristiques de l'enveloppe associée à cette émission, nous avons aussi choisi le domaine LR06 (R=8600 à 6822Å) qui comprend la raie H α .

4.1.3 Grilles de modèles d'atmosphères

Pour déterminer les paramètres fondamentaux, nous comparons les spectres observés à des spectres théoriques dans le domaine de longueurs d'onde considéré. Aussi, faut-il apporter un soin tout particulier à l'élaboration des grilles de modèles d'atmosphères et aux spectres synthétiques en résultant. Tous ces procédés sont décrits dans Frémat et al. (2005a, 2005b) ; Martayan et al. (2005b).

a) Modèles d'atmosphères

Les modèles d'atmosphères, de type plan-parallèle, utilisés pour déterminer les paramètres fondamentaux des étoiles ont été élaborés en plusieurs étapes :

(i) La première consiste à obtenir la structure en température et pression des atmosphères et prendre en compte le "line blanketing" comme décrit dans Castelli et al. (1997) avec le code ATLAS9 (Kurucz 1993).

(ii) Nous calculons ensuite les populations des niveaux atomiques et ioniques principalement hors Equilibre Thermodynamique Local (NETL) pour les différents éléments indiqués dans la Table 4.1 avec des abondances moyennes adaptées au milieu (Voie Lactée ou Nuages de Magellan). Les calculs pour les éléments non mentionnés dans cette table se font en ETL. Ces calculs s'effectuent à l'aide du programme TLUSTY (Hubeny & Lanz 1995) en gardant fixes les distributions en températures et densités obtenues précédemment. Pour cela, nous utilisons les modèles atomiques disponibles sur le site internet de TLUSTY (http://tlusty.gsfc.nasa.gov), site maintenu par I. Hubeny et T. Lanz. Excepté pour le CII qui a été traité avec le programme IDL MO-DION développé par Varosi et al. (1995) et en adoptant les données atomiques (forces d'oscillateurs, niveaux d'énergies, sections efficaces de photo-ionisations) issues de la base de données TOPBASE (Cunto et al. 1993). Les résultats obtenus pour le CII sont alors similaires à ceux de Sigut (1996). Les modèles d'atmosphères sont calculés avec TLUSTY en NETL entre 15000 et 27000K. Les modèles sont en ETL pour des températures effectives < 15000K et ont été calculés avec SYNSPEC (Hubeny & Lanz 1995). Pour des températures >27000K, nous utilisons le code NETL-OSTAR2002 (Lanz & Hubeny 2003) plus approprié aux étoiles les plus chaudes (jusqu'à plus de 55000K).

(iii) Enfin, grâce au code SYNSPEC (Hubeny & Lanz 1995) et en prenant en compte les abondances détaillées pour chaque milieu nous élaborons la grille de flux : pour des températures effectives, T_{eff} , variant de 8000 à 50000K et pour des log(gravités de surface), log g, variant entre 2.5 et 4.5 dex (cgs). Notons que compte tenu des milieux considérés : Voie Lactée, Grand et Petit Nuages de Magellan, ce sont 3 grilles différentes qui ont été calculées (par Y. Frémat) pour 3 abondances différentes.

TAB. 4.1 – Atomes et ions utilisés dans les calculs hors ETL. Le nombre de niveaux pris en compte est donné pour chaque espèce.

Atome	Ion	Nombre de niveaux
Hydrogène	Ηι	8 niveaux + 1 superniveau
	Нп	1 niveau
Hélium	Не 1	24 niveaux
	Неп	20 niveaux
	Не ш	1 niveau
Carbone	Сп	53 niveaux tous les niveaux individuels
	Сш	12 niveaux
	C iv	9 niveaux + 4 superniveaux
	C v	1 niveau
Azote	Νı	13 niveaux
	Νп	35 niveaux + 14 superniveaux
	Νш	11 niveaux
	N iv	1 niveau
Oxygène	Ог	14 niveaux + 8 superniveaux
	Оп	36 niveaux + 12 superniveaux
	Ош	9 niveaux
	O IV	1 niveau
Magnésium	Mgп	21 niveaux + 4 superniveaux
	Mg ш	1 niveau

b) Abondances chimiques utilisées

Les Nuages de Magellan sont connus pour être très déficients en métaux par rapport au Soleil. Aussi, nous devons créer des modèles d'atmosphères avec des abondances adaptées pour le Grand et le Petit Nuage de Magellan.

Pour le Grand Nuage de Magellan, nous utilisons les abondances obtenues par Korn et al. (2002) avec le spectrographe haute résolution UVES au VLT pour 4 étoiles de l'amas NGC2004, ces abondances sont données dans la Table 4.2.

TAB. 4.2 – Abondances moy	yennes des étoiles du GNM NGC2004 selon les travaux de Korn et al.	(2002)
---------------------------	--	--------

Eléments n	He	С	Ν	0	Mg	Si	Fe
Abondances	-1.04 ± 0.03	-3.94 ± 0.09	-4.99 ± 0.05	-3.63 ± 0.06	-4.63 ± 0.06	-4.90 ± 0.07	-4.67 ± 0.03

Pour les autres éléments, nous avons supposé une métallicité égale à -0.50 pour calculer les modèles d'atmosphères. Il sera ensuite nécessaire d'utiliser des chemins évolutifs de métallicité adaptée à celle du milieu étudié. Nous utiliserons les chemins évolutifs élaborés à l'Observatoire de Genève. Dans le cas de la Voie Lactée, nous utiliserons ceux de métallicité solaire Z=0.020. Dans le cas du Grand Nuage de Magellan, suivant Maeder et al. (1999) et les références incluses, la valeur moyenne de métallicité est de Z=0.007. Cependant, les valeurs fluctuent entre Z=0.009 et Z=0.004 suivant les auteurs. Les plus récentes études montrent que la valeur la plus probable de métallicité est Z=0.004. C'est cette valeur de métallicité que nous adoptons pour le Grand Nuage de Magellan.

Dans le cas du Petit Nuage de Magellan, et plus particulièrement de l'amas NGC330, les abondances sont sujettes à discussions. Du fait de la plus faible luminosité des étoiles et des performances limitées de l'instrumentation, il est difficile d'avoir des abondances précises. Rappelons que Grebel et al. 1992, donnent des abondances très différentes entre les étoiles de l'amas NGC330 et le champ environnant, contrairement à Jasniewicz & Thévenin (1994). Les différences trouvées par les autres auteurs ont pu être attribuées aux différences d'évolution des étoiles et aux processus associés de transport et de mélange des éléments chimiques. Les métallicités issues de Jasniewicz & Thévenin (1994) ont été utilisées dans cette étude pour l'élaboration des grilles de modèles d'atmosphères pour les étoiles du PNM ; elles sont données dans la Table 4.3.

TAB. 4.3 – Métallicités moyennes des étoiles du PNM NGC330 selon les travaux de Jasniewicz & Thévenin (1994).

Eléments n	С	Mg	Ca	Ti	Cr	Mn	Fe
Métallicités [n/H]	-0.60 ± 0.09	-0.48 ± 0.06	-0.54 ± 0.04	-0.50 ± 0.07	-0.46 ± 0.07	-0.54 ± 0.06	-0.55 ± 0.04

Pour les autres éléments, nous avons supposé une métallicité égale à -0.6 pour calculer les modèles d'atmosphères. De la même façon que pour le GNM, nous utiliserons par la suite les chemins évolutifs élaborés par l'Observatoire de Genève. Suivant l'article de Maeder et al. (1999) et les références incluses, la métallicité moyenne pour le PNM est de Z=0.002. Suivant les auteurs, les valeurs de métallicité pour cette galaxie fluctuent entre Z=0.001 et Z=0.004 . Toutefois, les plus récentes estimations attribuent au PNM une métallicité Z=0.002. Par manque de chemins évolutifs calculés pour Z=0.002, nous utiliserons ceux à Z=0.001.

D'une manière générale, les métallicités obtenues par les différents auteurs ont été déterminées à partir d'échantillons très restreints d'étoiles. Or d'une étoile à l'autre, les abondances des éléments en surface peuvent varier relativement fortement suivant l'état évolutif de l'étoile et suivant les processus de transports et mélanges associés (cf Meynet & Maeder 2000, Maeder & Meynet 2001). De plus, nous ne pouvons pas exclure des différences locales de métallicités dans les galaxies des Nuages de Magellan. Il conviendra donc d'être prudent quant à la métallicité des objets que nous étudions.

4.1.4 Procédure de détermination des paramètres fondamentaux

a) Code GIRFIT

Afin d'obtenir les paramètres fondamentaux à l'aide des grilles de flux calculés, nous utilisons le code GIRFIT décrit dans Frémat et al (2005a). Ce code est basé sur une méthode de minimisation des moindres carrés issus de la comparaison entre le spectre observé et les spectres synthétiques. Pour prendre en compte l'élargissement instrumental lié à la résolution de l'instrument, les spectres théoriques sont convolués avec une fonction gaussienne. Pour prendre en compte l'élargissement Doppler lié à la rotation, les spectres théoriques

sont convolués avec une fonction de rotation utilisant les procédures écrites dans le code ROTINS fourni avec SYNSPEC (Hubeny & Lanz 1995). Le code possède 5 paramètres libres qui sont déterminés lors des ajustements consécutifs : T_{eff} , log g, Vsin i, la vitesse radiale RV et le niveau moyen du continu du spectre observé afin d'être le moins sensible possible au bruit. La χ^2 entre spectres observé et ajusté est calculée sur les zones d'ajustements définies par l'utilisateur. Afin d'obtenir le meilleur ajustement possible ce code itératif, écrit en FORTRAN, utilise la procédure du CERN MINUIT de minimisation de χ^2 . Si entre 2 ajustements, la χ^2 est supérieure à un niveau défini, les ajustements continuent en incrémentant les paramètres obtenus pour la meilleure χ^2 lors des précédentes itérations. Afin de couvrir au mieux tout l'espace des solutions, nous définissons plusieurs points de départ pour les valeurs initiales de T_{eff} , log g, Vsin i et RV. Pour les étoiles sans émission, nous définissons comme zones d'ajustements la quasi totalité du domaine 4000 - 4500 Å en excluant la zone 4440 - 4450 Å affectée par une bande d'absorption interstellaire. Par contre, les étoiles Be présentent souvent des composantes d'émission dans les raies H δ , H γ ainsi que dans les raies de l'hélium et dans les raies du FeII. Nous excluons alors ces zones à émission lors du choix de zones à ajuster.

Concrètement, nous définissons différents jeux de :

- zones d'ajustements, par exemple [4000 4440; 4450 4500];
- valeurs initiales de paramètres, par exemple [T_{eff} =20000K, log g=3.0dex, Vsin *i*=100km s⁻¹, RV=100km s⁻¹];
- pas d'incrémentations, par exemple [ΔT_{eff} =500K ; $\Delta \log g$ =0.1dex ; $\Delta V \sin i$ =10km s⁻¹ ; ΔRV =10km s⁻¹].

Nous obtenons en moyenne un ensemble de 8 jeux de paramètres fondamentaux correspondant à autant de bons ajustements. Pour déterminer quel est le meilleur de ces ajustements, nous avons ajouté au code GIRFIT, une procédure qui calcule une χ^2 sur des zones en commun pour les 8 ajustements. De cette comparaison, nous trouvons alors les paramètres fondamentaux de l'étoile. Toute la procédure est résumée dans le schéma de la Figure 4.1.

Afin de déterminer convenablement les paramètres fondamentaux T_{eff} , log g, $V\sin i$, nous ajustons simultanément le plus grand nombre possible de raies. Dans le domaine 4000-4500 Å, les principales raies sont indiquées dans la Table 4.4. Concernant l'estimation de la température effective, les raies de HI et de HeI et leurs rapports sont de bons indicateurs pour des températures inférieures à 20000K. Au delà le rapport sature et rend plus difficile l'obtention de la T_{eff} avec ces seules raies. Les ajustements permettent toutefois de s'affranchir en partie de ces effets de saturation. Nous ajustons aussi les raies de CII, de SiIV et SiII, et MgII, ce qui permet d'améliorer la détermination de la température sur l'intervalle 20000-29000K. Nous notons que dans les milieux de plus faibles métallicités comme les Nuages de Magellan, ces raies sont plus faibles que dans les milieux à plus forte métallicité tels que la Voie Lactée. Au delà de 29000K, la raie de HeII (4200 Å), apparaît et constitue un bon indicateur de température.

Dans la Figure 1 de leur article, Frémat et al. (2005b) montrent les imprécisions de la détermination des paramètres fondamentaux en ajustant les raies de HI, HeI et MgII sur le domaine 4300-4500 Å à partir de spectres théoriques. Les erreurs maximales en T_{eff} sont obtenues pour des températures proches de 24000K et sont de l'ordre de 600K. De la même manière l'erreur sur le log g est estimée à 0.1 dex, et celle sur le $V \sin i$ est de l'ordre de 10km s⁻¹. Nous verrons plus loin (4.1.4c) que la source principale d'erreur est le rapport signal à bruit du spectre.

b) Le "veiling"

Une difficulté supplémentaire pour les étoiles Be est introduite par le "veiling" causé par leur enveloppe circumstellaire. Cette enveloppe génère une émission dans le continu et a donc pour effet d'augmenter le niveau de ce dernier. Ces effets ont été étudiés par Ballereau et al. (1995) pour les raies les plus "rouges" du domaine 4000-4500Å (LR02). En mesurant l'émission dans la raie H γ et dans la raie de HeI 4471 Å ces auteurs ont trouvé une tendance reliant le veiling à la quantité d'émission présente. Ils proposent ensuite une approche semi-empirique pour corriger les spectres de ces effets. Cependant, la dispersion des points dans leur graphique est relativement grande et il est donc difficile d'estimer la bonne valeur du veiling. De plus, cette correction

FIG. 4.1 – Schéma de principe de fonctionnement du code GIRFIT et de la détermination des paramètres fondamentaux des étoiles à partir de leur spectre GIRAFFE. On débute le processus par un choix L de zones à ajuster. Puis, on effectue un choix k de paramètres initiaux. Ensuite, les ajustements s'effectuent automatiquement. De l'ensemble des résultats FitResult, on obtient le meilleur ajustement possible.

Elément	longueurs d'onde (Å)	commentaires
HeI	4009	
HeI	4026	
$H\delta$	4101	
SiIV	4116	calculé en ETL
HeI	4121	
SiII	4128/30	calculé en ETL
HeI	4144	
HeI	4169	
HeII	4200	apparaît pour des $T_{\text{eff}} \ge 29000 \text{K}$
CII	4267	
$H\gamma$	4340	
HeI	4388	
HeI	4471	
MgII	4481	

Тав. 4.4 – Principales raies du domaine 4000-4500Å.

n'est pas applicable pour l'ensemble du domaine LR02.

Grâce au code SIMECA (Stee 1995), nous avons calculé les distributions de flux de l'étoile et de l'enveloppe pour une étoile Be standard de la Voie Lactée de T_{eff} = 25000K (voir le graphique 4.2). La contribution de l'enveloppe sur le domaine LR02 est différente et elle est moins importante sur la partie bleue du spectre (4000-4250Å) que sur la partie rouge (4250-4500Å). Nous pouvons donc penser que le veiling aura un peu moins d'impact sur la partie bleue du spectre. Aussi, afin de limiter l'impact du veiling sur les déterminations des paramètres fondamentaux, nous avons utilisé la zone 4000-4250Å lors de la comparaison de tous les ajustements pour les étoiles Be à émission moyenne ou forte. Dans le cas des fortes émissions, il est difficile d'ajuster convenablement l'ensemble du spectre. Les 2 meilleurs ajustements des 8 obtenus montrent que : soit les raies de la partie bleue du spectre sont bien ajustées mais pas les rouges, soit toutes les raies du spectre sont ajustées mais sans que cela soit bon partout. Compte tenu de notre comparaison des flux, nous avons par la suite privilégié les ajustements qui étaient bons sur les raies les plus bleues donc sur la zone 4000-4250Å. Pour les étoiles sans émission, le problème n'existe pas et l'ajustement est bon quel que soit le domaine considéré.

Pour corriger du veiling, les spectres des étoiles Be, il faudra modéliser leur enveloppe. Puis il faudra ajouter au flux stellaire le flux calculé pour l'enveloppe suivant la méthode décrite par Bohm & Catala (1993). La modélisation d'enveloppes d'étoiles Be des Nuages de Magellan n'a encore jamais été réalisée ; toutefois ce travail fera l'objet d'une collaboration avec A. Meilland et P. Stee de l'Observatoire de la Côte d'Azur. L'une des difficultés principale pour effectuer la correction proposée tient au nombre d'objets, ici près de 180 étoiles Be différentes.

FIG. 4.2 – Flux comparés de l'étoile (en rouge), de l'enveloppe (en vert), de l'ensemble (en bleu). Ces distributions de flux ont été obtenues à l'aide du code SIMECA (Stee 1995). Les traits verticaux indiquent les limites du domaine LR02 de GIRAFFE. Nous pouvons constater que l'enveloppe contribue un peu moins dans la partie la plus bleue du domaine LR02 que dans la partie la plus rouge.

c) Erreurs sur les paramètres fondamentaux

A partir de spectres théoriques dégradés par un bruit de type poissonien, et à partir de spectres observés de différents rapports signal à bruit, nous avons effectué plusieurs ajustements et considéré que l'erreur sur les paramètres correspond à 2 fois l'écart-type des valeurs moyennes de ces derniers. Les valeurs des erreurs sont données dans le Tableau 4.5 (cf Martayan et al. 2005b). Notons, que les erreurs obtenues par cette méthode sont supérieures à celles que donnent les saturations des largeurs équivalentes des raies (voir 4.1.4a). Il est possible que ces erreurs soient surévaluées dans un certain nombre de cas.

TAB. 4.5 – Pourcentages des erreurs absolues sur les paramètres fondamentaux en fonction du rapport signal à bruit des spectres. Pour les Vsin $i \le 50$ km s⁻¹, l'erreur est estimée à ±20 km s⁻¹ (due à la résolution moyenne des spectres). Dans tous les cas l'erreur minimale en Vsin i est estimé à ±10 km s⁻¹.

S/N	$\Delta(T_{\rm eff})$	$\Delta(\log g)$	$\Delta(V \sin i)$	
	(%)	(%)	(%)	
30	20	10	30	
40	15	10	20	
50	12	10	16	
60	10	9	16	
70	8	8	10	
80	6	6	10	
90	6	6	7	
100	5	5	5	
120	5	5	5	
>140	<5	<5	<5	

Nous avons comparé les erreurs ainsi obtenues avec celles données par Bouret et al. (2003) et par Korn et al. (2002) et nous obtenons des résultats très similaires. Par exemple, pour l'étoile NGC2004/D15 issue de Korn et al. (2002) : S/N=120, $T_{\rm eff}$ =22500K ±1000K (1125K), log g=3.80 ±0.20 (0.2) dex, Vsin *i*=45 ±10 (20) km s⁻¹. Les erreurs suivant notre méthode sont données entre parenthèses.

d) Comparaison avec d'autres codes

Dans le but de vérifier si les déterminations que nous effectuons n'ont pas de dérives liées aux codes utilisés lors des différentes étapes de calculs, nous avons cherché dans la littérature une étude comparative. Bouret et al. (2003), en utilisant les mêmes données atomiques de départ, n'obtinrent aucune différence significative entre les paramètres fondamentaux obtenus à partir des codes : d'une part TLUSTY-SYNSPEC (Hubeny & Lanz 1995) et d'autre part CMFGEN (Hillier & Miller 1998) pour des étoiles de type B et O. Ce dernier code prend en charge, en plus de la détermination des paramètres fondamentaux, la détermination des paramètres de vents stellaires. Ces derniers sont plus importants pour les étoiles de type O que pour les B. En conclusion, la méthode que nous avons employée et les paramètres que nous avons obtenus peuvent être considérés comme fiables.

e) Exemples d'ajustements

A titre d'exemples, nous montrons les ajustements pour différents types d'étoiles des Nuages de Magellan et pour différents rapports S/N. Dans le GNM, nous présentons dans la Figure 4.3 les spectres et les ajustements pour 3 étoiles Be et dans la Figure 4.4 les spectres d'une étoile B et d'une étoile O. Dans le PNM, nous présentons dans la Figure 4.5 les spectres et les ajustements pour 3 étoiles Be dont une shell et dans la Figure 4.6 les spectres de 2 étoiles B et d'une étoile B9/A0.

FIG. 4.3 – Exemples d'ajustements pour des étoiles Be du GNM, de haut en bas : KWBBe152, MHFBe73013, MHFBe132079. Les paramètres pour ces étoiles sont respectivement : $T_{\rm eff}=23000/24500/25000$ K, log g=3.4/4.3/4.4 dex, Vsin i=379/402/318 km s⁻¹, RV=300/302/305 km s⁻¹, S/N=100/100/80. Noter les différentes composantes en émission d'hydrogène et de FeII. Le spectre observé est en rouge et le spectre théorique correspondant est en bleu.

FIG. 4.4 – Exemples d'ajustements pour des étoiles O et B du GNM, de haut en bas : MHF70976, MHF103207. Les paramètres pour ces étoiles sont respectivement : $T_{\text{eff}}=32000/23500$ K, log g=4.3/3.8 dex, V sin i=30/122 km s⁻¹, RV=326/221 km s⁻¹, S/N=110/140. Noter dans le cas de l'étoile O la présence de la raie de HeII à 4200Å. L'étoile MHF103207 est en réalité une binaire spectroscopique à 1 spectre. Le spectre observé est en rouge et le spectre théorique correspondant est en bleu.

FIG. 4.5 – Exemples d'ajustements pour des étoiles Be du PNM, de haut en bas : SMC5_25816, SMC5_37137, SMC5_85503. Les paramètres pour ces étoiles sont respectivement : $T_{\rm eff}$ =18000/20500/15000 K, log g=3.2/3.5/3.0 dex, V sin i=222/286/275 km s⁻¹, RV=143/160/141 km s⁻¹, S/N=60/95/80. Noter les différentes composantes en émission d'hydrogène et de FeII, ainsi que les fines absorptions correspondant à la shell pour l'étoile SMC5_85503. Le spectre observé est en rouge et le spectre théorique correspondant est en bleu.

FIG. 4.6 – Exemples d'ajustements pour des étoiles B et A du PNM, de haut en bas : SMC5_3739, SMC5_15183, SMC5_20135. Les paramètres pour ces étoiles sont respectivement : $T_{\text{eff}}=13500/10500/20500$ K, log g=2.5 :/3.0/3.6 dex, V sin i=129/61/158 km s⁻¹, RV=160/139/196 km s⁻¹, S/N=120/54/50. Le spectre observé est en rouge et le spectre théorique correspondant est en bleu.

4.1.5 Classification spectrale des étoiles

Très peu d'étoiles des Nuages de Magellan sont répertoriées dans les bases de données et possèdent une classification spectrale. Grâce à l'instrumentation VLT-GIRAFFE, nous avons pu établir une classification spectrale pour les étoiles de nos échantillons. Nous avons utilisé deux méthodes, la première la plus simple mais aussi limitée consiste à mesurer les largeurs équivalentes de différentes raies sensibles à la température et à la gravité de l'étoile. La seconde consiste à transposer les paramètres fondamentaux que nous avons déterminés en type spectral et classe de luminosité. Nous allons exposer ces 2 méthodes dans les paragraphes suivants.

a) Méthode basée sur les largeurs équivalentes de raies

Comme indiqué précédemment, les raies sensibles à la température et à la gravité de l'étoile sont dans le domaine considéré la raie H γ et la raie HeI 4471Å qui présentent l'avantage d'être bien connues. La détermination s'effectue de la manière suivante : dans un premier temps, nous mesurons la largeur équivalente de la raie H γ . Puis par interpolation dans les diagrammes de Azzopardi (1987) et Jaschek & Jaschek (1995), en supposant que toutes les étoiles sont des naines, nous obtenons une première estimation du type spectral. Dans un second temps, à l'aide de la largeur équivalente de HeI 4471Å nous interpolons dans le diagramme de Didelon (1982) en utilisant le type spectral prédéterminé. Cela nous donne la classe de luminosité. Puis, dans un troisième temps, à partir de cette classe de luminosité, nous redérivons le type spectral. Cette procédure itérative est répétée jusqu'à ce que le type spectral et la classe de luminosité correspondent tous deux aux largeurs équivalentes mesurées. Cette procédure a l'avantage d'être rapide à mettre en oeuvre mais elle est limitée par la nature même des raies utilisées qui ne sont plus adaptées pour les étoiles les plus chaudes (typiquement les O) et les plus froides (type plus tardif que B5). De plus, pour les étoiles Be, la classification par cette méthode est impossible à cause de l'émission présente dans certaines raies notamment dans H γ .

b) Méthode basée sur les paramètres fondamentaux

Cette méthode consiste à transcrire les paramètres (T_{eff} , log g) que nous avons déterminés en (type spectral, classe de luminosité). Les calibrages utilisés dans notre étude sont issus de Gray & Corbally (1994), Bouret et al. (2003) et de Zorec (1986). La Table 4.6 présente succintement ces calibrages.

TAB. 4.6 – Calibrages en type spectral et classe de luminosité suivant les paramètres T_{eff} et log g. Pour les types spectraux, les données proviennent de Gray et Corbally (1994) et de Bouret et al. (2003) et pour les classes de luminosité de Zorec (1986).

		-):			
Type spectral	$T_{\rm eff}$ en K	Type spectral	$T_{\rm eff}$ en K	Type spectral	$T_{\rm eff}$ en K
O2V	52500 - 51250	B0V	31830 - 27390	A0V	10400 - 9760
O3V	51250 - 48250	B1V	27390 - 22060	A1V	9760 - 9235
O4V	48250 - 44500	B2V	22060 - 17750	A2V	9235 - 8775
O5V	44500 - 41250	B3V	17750 - 15000	A3V	8775 - 8360
O6V	41250 - 38750	B4,5,6V	15000 - 13300	A4,5,6V	8360 - 8000
O7V	38750 - 36250	B7V	13300 - 12000	A7V	8000 - 7690
O8V	36250 - 34250	B8V	12000 - 11100	A9V	7540
Classe de luminosité	$\log g en dex$	Classe de luminosité	$\log g en dex$	Classe de luminosité	$\log g$ en dex
V	4.5 - 3.96	IV	3.96 - 3.42	III	3.61 - 2.78

Les écarts entre les résultats fournis par les 2 méthodes pour nos échantillons sont en moyenne :

- Pour le GNM : 0.5 sous-type, 0.5 classe de luminosité. Cela est comparable aux barres d'erreurs sur les paramètres fondamentaux et sur les mesures des largeurs équivalentes.
- Pour le PNM : 1 sous-type, 1 classe de luminosité. Compte tenu du plus faible rapport signal à bruit des spectres utilisés, ces différences entre les méthodes ne sont pas très significatives. De plus, les écarts entre les 2 méthodes ont tendance à augmenter pour les étoiles les plus chaudes et les plus froides.

En conclusion, notre étude a permis pour plus de 500 étoiles des Nuages de Magellan d'être répertoriées pour la première fois et avec précision du point de vue de leur astrométrie, de leur photométrie et de la classification spectrale.

4.1.6 Détermination des paramètres associés : luminosité, masse, rayon et âge

Grâce aux paramètres T_{eff} , log g obtenus, nous pouvons par interpolation dans les diagrammes HR théoriques déterminer les paramètres associés aux étoiles tels que la luminosité, la masse, le rayon et l'âge. La procédure est la suivante :

- − Pour une valeur de $T_{\rm eff}$, nous obtenons un triplet de valeurs [log(L/L_☉), M/M_☉, âge] pour chaque chemin évolutif théorique correspondant à différentes masses.
- Ensuite, à l'aide de lois physiques classiques, nous calculons les rayons et log g correspondant à chaque triplet : $L=\sigma ST_{eff}^4$ où S est la surface : $4\pi R^2$ et σ la constante de Stefan. Nous obtenons alors le log g interpolé par g= GM/R². Attention aux unités, dans les diagrammes théoriques, les valeurs sont en cgs et référencées au Soleil.

- Nous traçons alors plusieurs diagrammes : log(L/L_☉)=f(log g théorique); M/M_☉=f(log g théorique); R/R_☉=f(log g théorique), âge=f(log g théorique). La valeur observationnelle du log g permettra d'interpoler dans ces diagrammes et d'obtenir les valeurs de [log(L/L_☉), M/M_☉, R/R_☉, âge] pour chaque étoile.
- Nous avons également estimé les erreurs sur chaque paramètre, erreurs répercutant celles obtenues sur les paramètres fondamentaux observationnels.

Il est nécessaire d'utiliser des diagrammes théoriques adaptés aux métallicités des milieux que nous étudions car les séquences principales sont décalées en luminosité et en âge pour un même couple $[T_{\text{eff}}, \log g]$, selon Meynet & Maeder (2000, 2002) et Maeder & Meynet (2001). Pour le GNM nous avons retenu les courbes de Charbonnel et al. (1993) pour une métallicité Z=0.004 et pour le PNM celles de Schaller et al. (1992) pour une métallicité Z=0.001. La Figure 4.7 illustre les décalages mentionnés pour différentes métallicités.

FIG. 4.7 – Comparaisons des chemins évolutifs pour une masse donnée dans des milieux de métallicités différentes : en rouge, la Voie Lactée (MW) Z=0.020; en bleu le GNM (LMC), Z=0.004 et en vert le PNM (SMC), Z=0.001.

Cependant il subsiste une approximation : ces diagrammes sont pour des étoiles ne tournant pas. Or quand la rotation est introduite, si les paramètres luminosité, masse et rayon ne sont pas très fortement modifiés pour des étoiles B, l'âge l'est fortement. La durée de la séquence principale s'allonge, cela aura un impact important sur le statut évolutif des étoiles. Meynet & Maeder (2000), Maeder & Meynet (2001) montrent ces différents effets pour des vitesses de rotation initiale de 300 km s⁻¹. Par exemple, pour une étoile de 9 masses solaires dans la Voie Lactée, la TAMS (fin de la phase de fusion de l'hydrogène) est atteinte en 22.054 Mans pour une vitesse initiale nulle alors que pour une vitesse initiale V₀=300 km s⁻¹ la TAMS est atteinte en 26.737 Mans. La durée de vie sur la séquence principale est alors allongée de 21%.

4.2 Effets de la rotation rapide sur les étoiles Be

4.2.1 Effets : circulation méridienne, assombrissement gravitationnel, aplatissement

a) Théorème de Von Zeipel et conséquences

Nous présentons brièvement dans ce paragraphe le "paradoxe de Von Zeipel". Von Zeipel en 1924 a écrit l'équation de l'équilibre thermique pour une étoile homogène en rotation solide. Soit **F** le flux de chaleur

$$\mathbf{F} = \frac{-16\sigma}{3\kappa\rho}T^{3}\nabla T = \frac{-16\sigma}{3\kappa\rho}T^{3}\frac{dT}{d\Psi}\frac{d\Psi}{dr}\mathbf{e}_{\Psi}$$
(4.5)

où σ est la constante de Stefan-Boltzmann, κ l'opacité et \mathbf{e}_{Ψ} un vecteur unitaire perpendiculaire aux surfaces équipotentielles de l'étoile barotrope. Dans ce cas on a T=T(Ψ), $\rho = \rho(\Psi)$, $\kappa = \kappa(\Psi)$. Le flux se réduit à $\mathbf{F} = \mathbf{k}(\Psi)\mathbf{g}_{eff}$.

On peut ensuite écrire l'équation de la conservation de l'énergie dans le cas de l'équilibre thermique :

$$\nabla \mathbf{F} = \frac{dk(\Psi)}{d\Psi} |\mathbf{g}_{\text{eff}}|^2 + k(\Psi) \Delta \Psi = \frac{dk(\Psi)}{d\Psi} |\mathbf{g}_{\text{eff}}|^2 + k(\Psi)(4\pi G\rho - 2(\Omega)^2) = \epsilon\rho$$
(4.6)

Sur les surfaces équipotentielles, tout est constant sauf \mathbf{g}_{eff} donc cela entraîne que $\frac{dk(\Psi)}{d\Psi}=0$. Ce qui est possible si $k(\Psi)=$ constante. Donc, pour qu'une étoile homogène en rotation solide soit à l'équilibre thermique, il faudrait que sa production d'énergie nucléaire (ϵ) suive une loi particulière que rien ne justifie physiquement. En conséquence, il ne peut pas exister d'équilibre thermique dans les étoiles en rotation solide. C'est le théorème de Von Zeipel. Une année plus tard, Vogt et Eddington proposèrent pour résoudre ce problème de prendre en compte l'entropie (S) dans l'équation de l'énergie :

$$T\frac{dS}{dt} + T\mathbf{u}.\nabla S = \frac{-1}{\rho}\nabla \mathbf{.F} + \epsilon$$
(4.7)

L'examen des différents termes nous indique que des mouvements à grande échelle vont se mettre en place suivant les méridiens de l'étoile à cause du déséquilibre thermique existant. Ces mouvements sont connus sous le nom de *circulation méridienne*. Notons aussi que par ce mécanisme, les températures et flux ne seront pas identiques aux pôles et à l'équateur de l'étoile. C'est ce que l'on appelle l'assombrissement gravitationnel. De plus des effets d'aplatissement au niveau du pôle apparaîtront. Ces effets de déformations deviennent importants pour des étoiles tournant angulairement (Ω) à des vitesses supérieures à 50-60 % de la vitesse angulaire de rupture (Ω_c) (voir Zorec et al. 2005 et Frémat et al. 2005b). Ceci est typiquement le cas des étoiles Be tournant en moyenne dans la Voie Lactée à Ω/Ω_c = 88 % (Frémat et al. 2005b). En conséquence les paramètres des étoiles Be doivent être corrigés de ces effets de la rotation rapide.

b) Assombrissement gravitationnel

Compte tenu du fait que les régions polaires sont plus chaudes que les régions équatoriales, certaines raies se forment préférentiellement aux pôles plutôt qu'à l'équateur et vice-versa. Aussi, dans les spectres selon l'angle d'inclinaison, suivant que l'on voit les régions chaudes ou froides, le profil de la raie n'est pas le même (outre l'effet Doppler). On aura tendance à sous-estimer les abondances en carbone (par exemple à 4267 Å) si l'étoile est vue par l'équateur.

c) Exemples d'aplatissement polaire.

En première approximation, en utilisant les formules issues de Frémat et al. (2005b) et les références incluses :

$$\frac{R_e(\omega)}{R_p(\omega)} = 1 + \frac{1}{2}\nu\tag{4.8}$$

$$\nu = \omega^2 \left(\frac{R_e(\omega)}{R_c}\right)^3 \tag{4.9}$$

avec $\omega = \Omega/\Omega_c$, $R_p = R_0$ rayon au repos (V=0 km s⁻¹) de l'étoile, on obtient le taux d'aplatissement de l'étoile en fonction de sa vitesse de rotation. R_c , le rayon critique est supposé égal à 1.5 R_0 . Les Figures 4.8, 4.9 présentent pour une étoile de type B2V vue par l'équateur, les effets de la rotation rapide en fonction du Ω/Ω_c . Pour les forts Ω/Ω_c nous constatons que les étoiles ne présentent plus du tout une géométrie sphérique.

Récemment, grâce à l'interféromètre du VLT, Dominiciano de Souza et al. (2003) ont obtenu une confirmation observationnelle d'un tel aplatissement. Ces auteurs ont observé l'étoile Be Achernar alors que son spectre était quasiment dépourvu d'émission. Le taux d'aplatissement qu'ils ont trouvé pour cette étoile est de 1.5. Achernar pourrait donc être un rotateur critique.

FIG. 4.8 – Effets de la rotation rapide sur une étoile de type B2V vue par l'équateur pour différents taux de rotation Ω/Ω_c . En haut : $\Omega/\Omega_c=37$ %, en bas : $\Omega/\Omega_c=58$ %. Ces taux correspondent à ceux que nous avons rencontrés respectivement dans les étoiles B du GNM et du PNM. Pour ces taux de rotation il n'y a pratiquement pas d'effets de la rotation rapide.

FIG. 4.9 – Effets de la rotation rapide sur une étoile de type B2V vue par l'équateur pour différents taux de rotation Ω/Ω_c . En haut : $\Omega/\Omega_c=85$ %, en bas : $\Omega/\Omega_c=95$ %. Ces taux correspondent à ceux que nous avons rencontrés respectivement dans les étoiles Be du GNM et du PNM. A noter que l'équateur est moins lumineux que les pôles.

4.2.2 Détermination des paramètres corrigés

Le code FASTROT décrit dans Frémat et al. (2005b) prend en compte les différents phénomènes présentés dans le paragraphe 4.2.1. Dans leur article, la détermination des paramètres corrigés des étoiles Be de la Voie Lactée a été fait par ajustement de spectres obtenus à haute résolution. Compte tenu du grand nombre de spectres dont nous disposons et de leur moyenne résolution, les paramètres corrigés ont été obtenus de la manière suivante :

une grille de spectres théoriques de paramètres fondamentaux apparents (T_{eff} , log g, $V\sin i$) a été calculée. Une grille de spectres théoriques prenant en compte les effets de la rotation rapide pour différents Ω/Ω_c a été calculée. Ensuite, la correspondance entre les 2 grilles donne les paramètres corrigés des effets de la rotation rapide. Ce sont les "parent non rotating counterpart (pnrc)" T_{eff}^{o} , log g_o , la vitesse de rotation projetée vraie $V\sin i$ true et l'angle d'inclinaison i ainsi définis dans Frémat et al. (2005b).

4.3 Résultats pour les étoiles B et Be du Grand Nuage de Magellan

Dans cette section, nous présentons les résultats des déterminations des paramètres fondamentaux pour toutes les étoiles que nous avons observées dans le GNM.

Les paramètres fondamentaux étant connus, nous dérivons les paramètres associés (luminosité, masse, rayon) pour ces objets. Nous donnons aussi les taux de rotation angulaire des étoiles B et Be observées du GNM. Certaines de ces étoiles B présentent un fort *V*sin*i*. Nous avons supposé que ces étoiles sont de vrais rotateurs rapides et que leurs paramètres doivent être corrigés. L'ensemble de tous ces résultats est inclus dans Martayan et al. (2005b).

4.3.1 Les étoiles O, B, A du GNM

a) Paramètres fondamentaux

Ces paramètres ont été obtenus par ajustement de spectres synthétiques avec le code GIRFIT décrit dans Frémat et al (2005a) et dans la section 4.1.4 et sont présentés dans la Table 4.7. Les erreurs sur les paramètres ont été estimées suivant la méthode indiquée en 4.1.4c dans la Table 4.5.

b) Les binaires SB1 du GNM

Nous donnons également dans la Table 4.8 les paramètres fondamentaux pour quelques binaires spectroscopiques à 1 spectre découvertes dans notre échantillon. Les valeurs sont à utiliser avec précaution car nous ignorons l'influence de la secondaire dans le comportement du spectre (élargissement des raies). Ces binaires seront plus largement discutées dans le chapitre consacré aux études complémentaires.

c) Paramètres complémentaires pour les étoiles B du GNM : luminosité, masse, rayon

Comme indiqué dans le paragraphe 4.1.6, nous avons déterminé les luminosité, masse et rayon pour les étoiles B observées dans le GNM. Les interpolations qui ont conduit à ces valeurs ont été effectuées dans les diagrammes HR théoriques pour des étoiles sans rotation et pour une métallicité Z=0.004 (Korn et al. 2002, Rolleston et al. 1996). Les erreurs données sont des erreurs moyennes issues de la propagation des erreurs sur les paramètres fondamentaux (T_{eff} et log g). Ces résultats sont reportés dans la Table 4.9.

d) Correction des effets de la rotation rapide pour les étoiles B du GNM

Par catégories de masses (par exemple $5 < M < 7 M_{\odot}$, $7 < M < 9 M_{\odot}$, etc), nous regroupons les étoiles B. Nous calculons alors les masses moyennes, rayons moyens, $V \sin i$ moyens. Ce dernier est proche de 110

km s⁻¹. Puis, à l'aide des formules 4.2, 4.3 et 4.4 du paragraphe 4.1.1, nous calculons le rapport moyen de vitesse linéaire V_e/V_c et le rapport moyen Ω/Ω_c pondérés du nombre d'étoiles dans chaque catégorie de masses. Ces rapports sont respectivement de $V_e/V_c \simeq 27\%$ et de $\Omega/\Omega_c \simeq 37\%$. Or, comme les effets de la rotation rapide n'apparaissent que pour $\Omega/\Omega_c > 50-60\%$ (Zorec et al. 2005, Frémat et al. 2005b), nous n'avons donc pas besoin de corriger les paramètres fondamentaux de ces étoiles des effets de la rotation rapide. Ce qui justifie à posteriori le choix d'utiliser des diagrammes HR pour des étoiles sans rotation pour obtenir les paramètres complémentaires des étoiles B.

Cependant 9 de ces étoiles B présentent des valeurs élevées de Vsin*i*. Nous avons donc corrigé les paramètres fondamentaux de ces étoiles des effets de la rotation rapide à l'aide du code FASTROT (Frémat et al 2005b) en utilisant une valeur de $\Omega/\Omega_c=85\%$. Cette valeur correspond au taux de rotation angulaire calculé pour les étoiles B du GNM, voir le paragraphe 4.3.2. Les résultats pour ces 9 étoiles B des paramètres corrigés sont donnés dans la Table 4.10.

4.3.2 Les étoiles Be du GNM

a) Paramètres fondamentaux apparents pour les étoiles Be du GNM

De la même façon que pour les étoiles O, B, A, nous avons déterminé les paramètres fondamentaux ici "apparents" des étoiles Be de notre échantillon, voir la Table 4.11. Les erreurs sur les paramètres ont été obtenues suivant la méthode indiquée en 4.1.4c dans la Table 4.5. Concernant la classification spectrale, seule celle déduite des paramètres fondamentaux a pu être obtenue puisque l'émission présente dans les raies de HI et HeI empêche l'utilisation de ces dernières à des fins de classifications.

b) Paramètres complémentaires apparents pour les étoiles Be du GNM : luminosité, masse, rayon

De la même façon que pour les étoiles O, B, A, nous avons déterminé les paramètres complémentaires apparents pour les étoiles Be du GNM. Les valeurs de ces paramètres sont reportées dans la Table 4.12. Il est à noter que les paramètres donnés sont des paramètres complémentaires apparents, la rotation changeant légèrement les valeurs de masse, luminosité et rayon. Les changements les plus importants sont liés à l'âge des étoiles. Une fois corrigées les étoiles se retrouvent plus proches de la ZAMS et donc moins âgées que ce que leurs paramètres apparents indiquaient.

c) Corrections dues à la rotation rapide pour les étoiles Be du GNM

En suivant la méthode utilisée dans le paragraphe 4.3.1d pour les étoiles B, nous obtenons le taux de rotation angulaire moyen des étoiles Be du GNM égal à $\langle \Omega/\Omega_c \rangle = 85$ %. Nous utiliserons cette valeur par la suite pour les corrections à apporter aux étoiles Be observées dans le GNM. Notez que nous avons aussi utilisé cette valeur pour corriger les étoiles B rapides en supposant qu'elles ne tournaient pas plus vite que les étoiles Be.

Dans un premier temps, nous présentons dans la Table 4.13 les paramètres fondamentaux corrigés, dits pnrc, à l'aide du code FASTROT (Frémat et al 2005b) pour différents Ω/Ω_c . Puis, dans un second temps, nous présentons dans la Table 4.14 les paramètres complémentaires (luminosité, masse, rayon et âge) pour ces étoiles Be du GNM corrigés pour un $\Omega/\Omega_c=85\%$.

d) Détermination de l'âge d'amas ouverts d'étoiles dans le champ du GNM

Une conséquence intéressante qui a valeur de test pour la correction appliquée aux paramètres fondamentaux est la détermination de l'âge d'amas ouverts d'étoiles. Dans le GNM, le seul amas qui comporte un nombre suffisant d'étoiles pour que les calculs ne soient pas biaisés par un sous-échantillonage est l'amas NGC2004 (cl0 dans les tables). Nous déterminons l'âge de cet amas en moyennant les âges des étoiles B et des Be. Les âges des étoiles Be ont été corrigés des effets de la rotation rapide à $\Omega/\Omega_c=85\%$. Dans cet amas, spectroscopiquement, nous trouvons un $log(\hat{a}ge)=7.4 \pm 0.2$. Cette valeur est en très bon accord avec les précédentes études photométriques : $log(\hat{a}ge)=7.30$ selon Keller (1999) et 7.40 selon Maeder et al. (1999). Cette comparaison valide donc notre méthode de détermination des âges et la correction moyenne à apporter aux paramètres fondamentaux des étoiles Be du GNM.

4.3.3 Diagrammes Hertzprung Russel pour le GNM

Grâce à tous les calculs effectués dans les précédentes sections, nous pouvons placer les étoiles de notre échantillon du GNM dans les diagrammes HR. Nous les présentons en 2 temps, premièrement dans la Figure 4.10, panneau du haut, sont reportées les étoiles tournant rapidement (Be et B rapides) avant et après corrections pour $\Omega/\Omega_c=85\%$. Deuxièmement, dans cette même Figure 4.10, panneau du bas, sont reportées les étoiles B n'ayant pas nécessité de corrections. Les chemins évolutifs théoriques sont ceux de Charbonnel et al. (1993) pour Z=0.004.

4.4 Résultats pour les étoiles B et Be du Petit Nuage de Magellan

Dans cette section, comme dans celle pour le GNM, nous présentons les résultats des déterminations des paramètres fondamentaux et des paramètres associés pour toutes les étoiles chaudes que nous avons observées dans le PNM. L'ensemble de tous ces résultats fait l'objet d'un article en préparation et a été présenté oralement au colloque sur les étoiles OB actives à Sapporo au Japon (Martayan et al. 2005d).

4.4.1 Les étoiles O, B, A du PNM

a) Paramètres fondamentaux

Dans ce paragraphe et dans la table 4.15, nous donnons les résultats des paramètres fondamentaux pour les étoiles de type O, B et A de notre échantillon dans le PNM. Les procédures utilisées pour l'obtention de ces paramètres et de leurs erreurs sont identiques à celles du GNM. Ici aussi, un certain nombre d'étoiles présentent des valeurs de $V\sin i$ élevées, dues à une forte vitesse de rotation. Les paramètres de ces étoiles devront être corrigés dans une étude ultérieure pour prendre en compte les effets de la rotation rapide.

b) Paramètres complémentaires pour les étoiles B du PNM : luminosité, masse, rayon, âge

Les luminosité, masse et rayon qui ont été obtenus pour les étoiles B observées dans le PNM sont présentés dans la Table 4.17. Les interpolations qui ont conduit à ces valeurs ont été effectuées dans les diagrammes HR théoriques (Schaller et al. 1992) pour des étoiles sans rotation et une métallicité Z=0.001.

Comme pour les B du GNM, nous avons obtenu le $\langle V\sin i \rangle$ qui est proche de 160 km s⁻¹. Le rapport moyen de vitesse linéaire est $V_e/V_c \simeq 43\%$ et le rapport de vitesse angulaire moyen est $\Omega/\Omega_c \simeq 58\%$. Comme les effets de la rotation rapide à $\Omega/\Omega_c = 60\%$ sont relativement faibles (voir la section 4.2.2), nous n'avons pas besoin de corriger les paramètres de ces étoiles B du PNM.

c) Les binaires, non Be, découvertes dans notre échantillon du PNM

Dans la Table 4.16, nous présentons les paramètres fondamentaux pour les 33 binaires découvertes dans notre échantillon d'étoiles du PNM. Les paramètres concernant ces binaires sont à prendre avec beaucoup de précaution, le faible rapport signal à bruit et la résolution limitée ne nous a pas toujours permis de voir les 2 composantes de la binaire et même d'être certain de la binarité de l'étoile (indiquée "SB ?" dans la Table 4.16). Parmi ces binaires, un certain nombre se sont révélées être des binaires à éclipses notées EB. Certaines de ces

binaires seront plus largement discutées dans le chapitre réservé aux travaux complémentaires.

4.4.2 Les étoiles Be du PNM

a) Paramètres fondamentaux apparents pour les étoiles Be du PNM

De la même façon que dans le GNM, nous présentons dans un premier temps les paramètres fondamentaux "apparents" pour les étoiles Be du PNM dans la Table 4.18.

b) Paramètres complémentaires apparents pour les étoiles Be du PNM : luminosité, masse, rayon, âge

Nous avons déterminé les luminosité, masse, rayon et âge apparents pour les étoiles Be observées dans le PNM. Les interpolations qui ont conduit à ces valeurs ont été effectuées dans les diagrammes HR théoriques (Schaller et al. 1992) pour des étoiles sans rotation pour une métallicité Z=0.001. Ces résultats sont reportés dans la Table 4.19.

c) Corrections de la rotation rapide pour les étoiles Be du PNM

De la même façon que dans les précédents paragraphes, nous avons obtenu le taux de rotation angulaire moyen pour les étoiles Be du PNM qui est $\langle \Omega/\Omega_c \rangle = 95$ %. Nous utiliserons cette valeur par la suite pour les corrections à apporter à ces étoiles du PNM.

Dans un premier temps, nous présentons dans la Table 4.20 les paramètres fondamentaux corrigés, dits "pnrc", à l'aide du code FASTROT (Frémat et al 2005b) pour différents Ω/Ω_c . Puis, dans un second temps, nous présentons pour ces étoiles Be du PNM dans la Table 4.21 les paramètres complémentaires corrigés pour un $\Omega/\Omega_c=95\%$ luminosité, masse, rayon et âge interpolés dans les diagrammes HR de Schaller et al. (1992), pour une métallicité Z=0.001. Il semble que certaines corrections apportées aux étoiles Be ne soient pas optimales et nécessiteraient peut-être une nouvelle étude (prise en compte de la métallicité du PNM dans la table d'interpolations par exemple).

d) Détermination de l'âge d'amas ouverts d'étoiles observées dans le champ du PNM

Afin de tester les déterminations de paramètres fondamentaux pour les étoiles B et Be du PNM et les corrections de la rotation rapide apportées aux étoiles Be, nous pouvons, comme dans le cas de l'amas ouvert NGC2004 dans le GNM, obtenir l'âge d'amas ouverts dans le PNM et le comparer à celui obtenu par de précédentes études photométriques. Dans le champ du PNM que nous avons observé, 3 amas ouverts ont été étudiés photométriquement et ont des âges publiés : NGC330 (cl0 dans les tables), OGLE SMC99 (cl8) et OGLE SMC109 (cl4).

Pour l'amas NGC330, nous avions visé intentionnellement beaucoup d'étoiles Be (sur 23 étoiles de type B dans cet amas, 19 sont Be), aussi la valeur de la correction de la rotation rapide est importante pour l'âge des étoiles de cet amas. En moyennant les âges corrigés des étoiles Be avec ceux des étoiles B de cet amas, nous trouvons finalement un $log(\hat{a}ge)=7.5 \pm 0.2$. OGLE (Pietrzyński & Udalski 1999) donnent pour cet amas un log(âge)=7.5 ± 0.1 , valeur en excellent accord avec notre détermination. Keller et al (2000) donnent également pour cet amas un log(âge)=7.5.

Pour l'amas OGLE SMC99, nous avons observé 10 étoiles dont 4 Be; Pietrzyński & Udalski (1999) donnent un $log(\hat{a}ge)=7.6 \pm 0.2$ et nous trouvons $log(\hat{a}ge)=7.8 \pm 0.2$. Cette fois l'accord n'est pas parfait mais compte tenu des barres d'erreurs l'estimation réalisée de l'âge de cet amas est satisfaisante.

Enfin, pour l'amas OGLE SMC109, nous avons observé 4 étoiles dont 1 Be; Pietrzyński & Udalski (1999) donnent un log($\hat{a}ge$)=7.7 ±0.1 et nous trouvons $log(\hat{a}ge)$ =7.9 ±0.2. L'accord n'est pas parfait mais compte tenu

du faible nombre d'étoiles observé, l'estimation de l'âge de cet amas est assez satisfaisante.

Peut être faudrait il aussi corriger faiblement les âges des étoiles B qui tournent à $\Omega/\Omega_c=60\%$. Ce qui aurait pour conséquence de les rajeunir un peu et nous permettrait éventuellement d'obtenir un meilleur accord avec les âges OGLE. Les âges relativement proches les uns des autres des étoiles supposées appartenir à ces amas font penser qu'elles appartiennent bien aux amas étudiés.

4.4.3 Diagramme Hertzprung Russel pour le PNM

Grâce à tous les calculs effectués dans les précédents paragraphes, nous pouvons placer les étoiles de notre échantillon du PNM dans les diagrammes HR. Nous les présentons en 2 temps, premièrement dans la Figure 4.11, panneau du haut, sont reportées les étoiles tournant rapidement (Be) avant et après corrections pour $\Omega/\Omega_c=95\%$. Deuxièmement, dans cette même Figure 4.11, panneau du bas, sont reportées les étoiles Be corrigées et les étoiles B. Les chemins évolutifs théoriques sont ceux de Schaller et al. (1992) pour Z=0.001.

4.5 Caractérisation des échantillons d'étoiles B et Be des Nuages de Magellan

Le but de cette section est de caractériser et de comparer les échantillons d'étoiles B et Be des Nuages de Magellan à l'aide des résultats exposés dans les précédentes sections. Nous comparerons dans un premier temps les distributions en classification spectrale et dans un second temps nous examinerons les distributions en masse de nos échantillons.

4.5.1 Comparaison des distributions en classification spectrale des étoiles B et Be

A l'aide de la méthode basée sur les paramètres fondamentaux, nous avons pu classer toutes les étoiles de nos échantillons des Nuages de Magellan. Premièrement, nous comparons les distributions entre le GNM et le PNM. Puis, nous présentons les distributions en types spectraux et classes de luminosité avant et après correction de la rotation rapide pour les étoiles Be du GNM et du PNM.

a) Comparaison des distributions en classification spectrale des étoiles B et Be

Pour les étoiles B du Grand et du Petit Nuage de Magellan, nous comparons les distributions en types spectraux dans la Figure 4.12 et en classes de luminosité dans la Figure 4.13. Pour les étoiles Be du Grand et du Petit Nuage de Magellan, ces distributions en types spectraux et en classes de luminosité sont montrées respectivement dans les Figures 4.14 et 4.15.

Nous notons principalement dans nos échantillons des étoiles de type précoces (de B1 à B3). Cette distribution s'explique par la sélection des cibles que nous avons effectuée. En visant les étoiles supposées B les plus brillantes, nous devions donc avoir affaire à des types précoces.

Concernant les classes de luminosité, nous remarquons que les étoiles B du GNM sont majoritairement des naines (classe V) et que celles du PNM sont de classes V et IV. Il semble que les étoiles B du PNM soient légèrement plus évoluées que celles du GNM. Cependant, cela peut refléter l'histoire de formation stellaire locale des zones visées dans les Nuages de Magellan ou bien refléter celle des Nuages dans leur globalité.

Notons également que majoritairement les étoiles Be sont de façon apparente de classe III dans le GNM et de classes IV et III dans le PNM. Nous pourrions être tenté de conclure que les étoiles Be sont principalement des étoiles évoluées. Cependant, n'oublions pas que les étoiles Be tournent très vite et que les effets de la rotation rapide doivent être pris en compte. Ces effets ont pour résultats de redistribuer les classes de luminosités des géantes vers les naines et les types spectraux des tardifs vers les précoces. Nous présentons dans le paragraphe 4.5.1b suivant les effets de la rotation rapide sur la classification spectrale des étoiles Be de nos échantillons.

b) Effets de la rotation rapide sur les distributions en classification spectrale

A titre d'exemple et afin d'illustrer les effets de la rotation rapide sur les paramètres fondamentaux et donc sur la classification spectrale des étoiles Be, nous montrons les distributions en types spectraux après corrections pour les Be du GNM et du PNM dans la Figure 4.16. De même, nous montrons les résultats de ces effets sur la classe de luminosité dans la Figure 4.17. Pour mémoire la correction appliquée est de $\Omega/\Omega_c=85\%$ pour les étoiles Be du GNM et de $\Omega/\Omega_c=95\%$ pour les étoiles Be du PNM.

Nous remarquons, après correction des effets de la rotation rapide, que la distribution en types spectraux est modifiée des types "tardifs" vers les types plus "précoces". Il y a plus d'étoiles de type B1 après correction qu'avant. En ce qui concerne les classes de luminosité, la distribution apparente montre que les Be sont des étoiles de classe III et IV donc évoluées. Or après correction des effets de la rotation rapide, nous observons une redistribution des étoiles des classes III et IV vers les classes IV et V. De cette comparaison, nous pouvons conclure que les étoiles Be sont moins évoluées que leur classification spectrale apparente ne le montre. De plus Fabregat & Gutierréz-Soto (2004) ont montré empiriquement qu'il n'y avait pas de relation claire entre la classe de luminosité et le statut évolutif d'une étoile Be.

4.5.2 Comparaison des distributions en masse

Grâce aux interpolations dans les diagrammes HR théoriques de Charbonnel et al. (1993) pour le GNM à Z=0.004 et de Schaller et al. (1992) pour le PNM à Z=0.001, nous avons pu obtenir les distributions en masse. La comparaison pour les étoiles B des Nuages de Magellan est montrée dans la Figure 4.18 et pour les Be dans la Figure 4.19. Il était important de caractériser ces distributions en masses car de la masse de l'étoile dépend son évolution. Nous notons principalement des masses entre 5 et 15 M_{\odot} dans nos échantillons. L'absence d'étoiles de faibles masses s'explique par la sélection effectuée qui a conduit à observer des étoiles B des premiers types donc relativement massives.

4.6 Conclusions préliminaires

Grâce aux nouvelles instrumentations telles que le spectrographe multi-objets GIRAFFE et grâce aux grands télescopes de 8m de diamètre et plus, il nous est maintenant possible d'explorer les galaxies proches et d'étudier précisément leurs étoiles et la physique à l'oeuvre dans ces astres. Cependant, cela entraîne de nouvelles contraintes comme le grand nombre d'objets observés et cela nécessite d'adapter ou de créer des outils adaptés à l'étude de grands échantillons. A l'aide du code GIRFIT (Frémat et al. 2005a), nous avons pu déterminer les paramètres fondamentaux T_{eff} , log g, $V \sin i$ de plus de 500 étoiles dans les galaxies de Nuages de Magellan et leur donner une classification spectrale précise. Ainsi nous avons pu répertorier chacune de ces étoiles en leur attribuant des coordonnées précises (<0.3"), des magnitudes V et B, et une classification spectrale. Parmi les étoiles observées, beaucoup sont des étoiles Be, rotateurs rapides, qui nécessitent que les effets de cette rotation rapide soient pris en compte dans la détermination de leurs paramètres fondamentaux. Ceci a été rendu possible grâce au code FASTROT (Frémat et al. 2005b). Puis, à l'aide des travaux théoriques et numériques de l'équipe genevoise (Charbonnel et al. 1993, Schaller et al. 1992), nous avons pu obtenir des paramètres complémentaires (luminosité, masse, rayon, et âge) pour toutes les étoiles étudiées en prenant en compte les métallicités et comportements spécifiques de ces galaxies. Ces déterminations longues à obtenir étaient indispensables pour que nous puissions comparer les étoiles observées entre elles et entre galaxies (Grand et Petit Nuage de Magellan, Voie Lactée). Nous nous proposons dans le chapitre suivant d'examiner en détails les comportements en vitesses, évolution et abondances des étoiles de ces 3 galaxies.
Tables pour les étoiles non Be du Grand Nuage de Magellan

TAB. 4.7 – Paramètres fondamentaux pour les étoiles O, B, A du GNM qui ne nécessitent pas de correction de
la rotation rapide. Le nom des étoiles est donné en colonne 1. Les noms MHF proviennent de notre catalogue.
Pour alléger l'écriture, le préfixe LMC33 a été supprimé. 3 objets notés KWBBe proviennent de Keller et al.
(1999). Les coordonnées (α (2000), δ (2000)) issues de notre astrométrie sont données en colonnes 2 et 3. La
magnitude instrumentale V et l'indice de couleur instrumental (B-V) (issus de notre photométrie) sont donnés
dans les colonnes 4 et 5. Le rapport signal à bruit est donné en colonne 6. Dans les colonnes 7, 8, 9 et 10 sont
donnés respectivement la T_{eff} en K, le log g en dex, le Vsin i en km s ⁻¹ et la vitesse radiale RV en km s ⁻¹ .
L'abréviation "CFP" correspond à la classification spectrale issue des paramètres fondamentaux (méthode 2),
tandis que "CEW" correspond à la classification issue de la mesure des largeurs équivalentes (méthode 1).
Dans la dernière colonne, des informations complémentaires sont données : "HeII" quand la raie à 4200 Å est
observée, "bin" dans le cas de binaire suspectée, "not Be" pour une étoile suspectée Be par Keller et al. (1999)
mais non vue comme une Be dans notre étude. Enfin, cette colonne donne aussi la localisation des étoiles dans
les amas : cl0 pour NGC 2004 (05h 30m 42s -67° 17′ 11"), cl1 pour KMHK 988 (05h 30m 36.5s -67° 11′ 09"),
cl2 pour KMHK 971 (05h 29m 55s -67° 18′ 37'), cl3 pour KMHK 930 (05h 28m 13s -67° 07′ 21''), cl4 pour
KMHK 943 (05h 28m 35s -67° 13′ 29"), cl5 pour l'amas 'unknown' cluster or association 1 (05h 30m 25s -67°
13' 20"), cl6 pour l'amas 'unknown' cluster or association 2 (05h 29m 54s -67° 07' 37"), cl7 pour l'amas
'unknown' cluster or association 3 (05h 27m 21s -67° 12′ 52"), cl8 pour l'association BSDL 1930 (05h 29m
26s -67° 08′ 54"), et cl9 pour l'amas ouvert galactique HS 66325 (05h 29m 36s -67° 07′ 41").

Etoile	α	δ	V	B-V	S/N	$T_{\rm eff}$	$\log g$	Vsin <i>i</i> RV	CFP	CEW	comm.
MHF52224	5 29 10.474	-67 24 33.16	15.22	0.18	95	22000 ±1300	3.5 ±0.2	11 ±20 311 ±10	B2III-IV	B1.5III	
MHF54275	5 27 43.510	-67 23 57.52	16.46	0.19	90	23500 ± 1400	4.1 ± 0.2	37 ±20 309 ±10	B1V	B2IV	
MHF54565	5 27 59.431	-67 24 08.32	14.76	0.19	120	24000 ± 1200	3.6 ± 0.2	$172 \pm 10 \ 318 \pm 10$	B1IV	B0V	
MHF54686	5 27 50.434	-67 23 57.74	16.21	0.27	80	20000 ± 1200	4.0 ± 0.2	$210 \pm 20\ 300 \pm 10$	B2V	B3V	
MHF57079	5 28 08.580	-67 23 28.10	16.39	0.25	50	24000 ± 2900	4.2 ± 0.4	$320 \pm 50\ 295\ \pm 10$	B1V	B2.5V	
MHF57428	5 28 10.900	-67 23 21.10	16.28	0.20	70	25000 ± 2000	4.3 ± 0.3	53 ±10 307 ±10	B1V	B1V	
MHF57975	5 30 13.775	-67 23 21.25	16.42	0.18	70	20000 ± 1600	3.8 ± 0.3	345 ±35 301 ±10	B2IV	B1.5V	
MHF59059	5 27 40.443	-67 23 00.64	15.65	0.18	90	24500 ± 1500	4.3 ± 0.3	71 ±10 317 ±10	B1V	B2V	
MHF60436	5 28 04.640	-67 22 49.20	16.44	0.18	75	23000 ± 1800	4.1 ± 0.3	165 ±17 305 ±10	B1.5V	B1.5V	
MHF62150	5 28 42.846	-67 22 22.93	16.47	0.18	70	18500 ± 1500	4.0 ± 0.3	$40 \pm 20 304 \pm 10$	B2V	B2V	
MHF62555	5 27 35.078	-67 22 17.96	16.08	0.18	85	20500 ± 1600	4.0 ± 0.3	84 ±10 304 ±10	B2V	B2V	
MHF63084	5 30 37.190	-67 22 14.70	15.97	0.19	50	10500 ± 1200	2.9 ± 0.3	26 ± 20 292 ± 10	B9.5III	B6.5IV	
MHF63948	5 28 19.782	-67 21 59.99	15.96	0.17	60	20500 ± 2100	4.0 ± 0.4	149 ±24 313 ±10	B2V	B2V	
MHF65925	5 27 40.477	-67 21 32.86	16.10	0.18	100	23000 ± 1200	4.0 ± 0.2	$109 \pm 10\ 322 \pm 10$	B1.5V	B1V	
MHF66708	5 28 58.020	-67 21 30.57	16.31	0.17	110	26500 ± 1300	4.3 ± 0.2	$123 \pm 10\ 325 \pm 10$	B1V	B1.5IV	
MHF67663	5 29 01.263	-67 21 19.99	15.63	0.20	120	30000 ± 1500	4.3 ± 0.2	9 ±20 306 ±10	B0V	B1IV	HeII
MHF67792	5 28 26.590	-67 21 12.50	16.44	0.17	80	22500 ± 1400	4.0 ± 0.2	$57 \pm 10 300 \pm 10$	B1.5V	B1.5V	
MHF68153	5 30 33.960	-67 21 17.30	16.13	0.18	60	22000 ± 2200	4.0 ± 0.4	$186 \pm 30\ 300 \pm 10$	B1.5V	B1.5IV	
MHF68195	5 27 39.477	-67 21 05.57	16.13	0.17	114	23000 ± 1200	4.0 ± 0.2	95 ±10 308 ±10	B1.5V	B1.5III	
MHF68257	5 29 30.810	-67 21 22.00	16.17	0.19	70	23000 ± 1800	4.0 ± 0.3	50 ± 10 312 ± 10	B1.5V	B1III	
MHF69681	5 28 33.460	-67 20 57.00	14.91	0.20	130	27000 ± 1300	3.8 ± 0.2	$19 \pm 20 \ 308 \pm 10$	B1IV	B0V	
MHF70976	5 29 01.686	-67 20 39.36	15.64	0.19	110	32500 ± 1600	4.3 ± 0.2	30 ± 20 326 ± 10	B0V	B0V	HeII
MHF72268	5 29 46.090	-67 20 22.60	16.06	0.16	100	20000 ± 1000	3.8 ± 0.2	$168 \pm 10\ 266 \pm 10$	B2IV	B1.5III	
MHF74015	5 30 03.900	-67 20 01.50	16.39	0.16	70	22500 ± 1800	4.1 ± 0.3	$118 \pm 12\ 300 \pm 10$	B1.5V	B1.5V	
MHF75373	5 30 14.180	-67 19 43.90	16.49	0.16	65	20000 ± 2000	4.0 ± 0.4	$104 \pm 14\ 299 \pm 10$	B2V	B2III	
MHF75553	5 29 15.980	-67 19 45.65	15.16	0.17	140	19600 ± 1000	3.6 ± 0.2	$33 \pm 20 315 \pm 10$	B2IV	B1III	
MHF77981	5 29 28.020	-67 19 16.80	16.02	0.19	90	23000 ± 1400	4.0 ± 0.2	$42 \pm 20 296 \pm 10$	B1.5V	B1III	
MHF78706	5 30 06.370	-67 19 06.00	16.11	0.19	80	23000 ± 1400	4.0 ± 0.2	$152 \pm 15\ 300 \pm 10$	B1V	B1V	
MHF81136	5 30 29.230	-67 18 35.20	15.97	0.17	90	21000 ± 1300	4.0 ± 0.2	74 ± 10 300 ± 10	B2V	B2V	
MHF81174	5 28 55.258	-67 18 32.63	16.30	0.16	80	22000 ± 1300	4.3 ± 0.3	97 ± 10 317 ± 10	B1.5V	B2IV	
MHF81322	5 28 00.860	-67 18 32.84	15.24	0.19	85	29000 ± 1700	4.5 ± 0.3	$183 \pm 15\ 319 \pm 10$	B0V	B0.5V	HeII
MHF81490	5 29 56.010	-67 18 35.70	16.43	0.60	70	18000 ± 1500	4.1 ± 0.3	153 ±15 313 ±10	B2.5V	B2.5V	cl2
MHF81521	5 29 14.560	-67 18 33.70	15.15	0.18	90	17000 ± 1000	3.5 ± 0.2	$69 \pm 10 293 \pm 10$	B3III-IV	B2.5III	
MHF81807	5 29 45.660	-67 18 32.90	16.16	0.17	80	20000 ± 1200	3.8 ± 0.2	80 ± 10 290 ± 10	B2IV	B1.5V	
MHF82482	5 29 55.425	-67 18 27.88	16.27	0.45	80	22000 ± 1300	4.0 ± 0.2	50 ± 10 318 ± 10	B1.5V	B2V	cl2
MHF84042	5 29 31.731	-67 18 02.40	16.38	0.18	100	20500 ± 1000	4.1 ± 0.2	$194 \pm 10\ 282 \pm 10$	B2V	B2V	
MHF84176	5 28 01.745	-67 17 54.83	16.46	0.20	75	27000 ± 2200	4.3 ± 0.3	$102 \pm 10\ 321 \pm 10$	B1V	B1IV	
MHF85562	5 30 33.800	-67 17 44.90	16.13	0.17	65	20000 ± 2000	4.0 ± 0.4	$71 \pm 12 305 \pm 10$	B2V	B2V	cl0
MHF86995	5 29 26.755	-67 17 33.49	15.92	0.34	105	18500 ± 900	3.7 ± 0.2	$11 \pm 20 \ 297 \pm 10$	B2.5IV	B2IV	
MHF87634	5 30 27.780	-67 17 22.50	15.27	0.18	148	26000 ± 1300	3.9 ± 0.2	$234 \pm 12\ 310 \pm 10$	B1V	B1III	cl0
MHF88527	5 28 21.190	-67 17 06.20	16.47	0.19	100	25000 ± 1300	4.3 ± 0.2	$16 \pm 20 312 \pm 10$	B1V	B1.5III	
MHF93347	5 29 46.957	-67 16 14.79	16.39	0.18	102	24000 ± 1200	4.2 ± 0.2	$191 \pm 10\ 313 \pm 10$	B1V	B1.5IV	

Paramètres fondamentaux des étoiles B et Be observées des Nuages de Magellan

Etoile	α	δ	V	B-V	S/N	$T_{\rm eff}$	log g	Vsin i RV	CFP	CEW	comm.
MHF94228	5 29 51.414	-67 16 03.90	16.38	0.18	90	19500 ±1200	3.9 ±0.2	127 ±10 337 ±10	B2V	B2III	
MHF95555	5 30 14.008	-67 15 52.75	16.28	0.19	85	19500 ± 1200	3.7 ± 0.2	320 ±30 299 ±10	B2IV	B1.5III	
MHF96072	5 27 09.328	-67 15 31.37	16.37	0.16	70	23000 ± 1800	4.5 ± 0.4	191 ±20 302 ±10	B1.5V	B2.5V	
MHF97219	5 27 47.076	-67 15 29.13	15.10	0.21	170	36000 ± 1800	$4.4:\pm 0.2$	31 ± 20 293 ±10	O8V	O5V	HeII+bin?
MHF97965	5 28 24.323	-67 15 20.11	16.33	0.15	95	21000 ± 1300	4.3 ± 0.3	$131 \pm 10\ 300 \pm 10$	B1.5V	B2.5V	
MHF98622	5 27 24.867	-67 15 05.31	15.99	0.17	120	19000 ±900	3.8 ± 0.2	21 ± 20 298 ± 10	B3IV	B2IV	
MHF98629	5 30 01.360	-67 15 10.60	16.50	0.17	70	21000 ± 1700	3.8 ± 0.3	340 ±35 315 ±10	B2IV	B1III	
MHF100069	5 27 29.545	-67 14 52.44	16.18	0.27	95	19000 ± 1100	4.1 ±0.2	204 ±15 301 ±10	B2V	B2.5V	
MHF101934	5 29 17.200	-67 14 40.60	15.99	0.17	90	15000 ±900	3.4 ± 0.2	72 ±10 285 ±10	B5III-IV	B2.5III	
MHF105436	5 29 20.133	-67 13 55.71	15.64	0.17	116	19500 ± 1000	3.6 ± 0.2	134 ±10 292 ±10	B2III-IV	B2.5V	
MHF106600	5 30 47.920	-67 13 42.60	16.18	0.15	80	20500 ± 1200	4.1 ±0.2	227 ±22 291 ±10	B2V	B2IV	
MHF106613	5 28 35.209	-67 13 45.45	16.31	0.33	91	17500 ± 1100	3.6 ± 0.2	$324 \pm 25\ 300 \pm 10$	B3III-IV	B2.5V	cl4
MHF106692	5 29 58.573	-67 13 47.01	14.89	0.18	145	15000 ± 700	3.1 ± 0.1	33 ±20 295 ±10	B5III	B5	
MHF107300	5 29 19.200	-67 13 34.20	16.07	0.17	70	25000 ± 2000	4.0 ± 0.3	24 ±20 292 ±10	B1IV-V	B1V	
MHF107458	5 30 36.450	-67 13 33.70	16.27	0.17	70	19500 ± 1600	3.7 ± 0.3	343 ±35 312 ±10	B2III-IV	B1III	
MHF109280	5 29 26.489	-67 13 12.50	16.43	0.17	125	19300 ± 1000	3.8 ± 0.2	57 ± 10 270 ± 10	B2IV-V	B2V	
MHF110170	5 29 18.147	-67 13 00.25	16.32	0.26	110	20500 ± 1000	4.0 ± 0.2	$137 \pm 10298 \pm 10$	B2IV-V	B2IV	
MHF112935	5 27 31.570	-67 12 30.60	15.29	0.19	130	29000 ± 1500	4.2 ± 0.2	$178 \pm 10\ 306 \pm 10$	B0.5V	B0.5V	HeII
MHF113982	5 28 25.150	-67 12 17.33	16.00	0.17	108	21500 ± 1100	3.8 ± 0.2	51 ± 10 301 ± 10	B2IV	B1.5IV	
MHF115761	5 30 32.530	-67 12 00.40	16.12	0.16	74	23000 ± 1900	4.0 ± 0.3	$23 \pm 20 \ 307 \pm 10$	B1.5V	B1V	
MHF115844	5 28 24.445	-67 12 00.22	16.34	0.17	100	18500 ± 1000	3.9 ± 0.2	103 ±10 294 ±10	B2.5IV	B2.5V	
MHF116094	5 27 10.510	-67 11 47.70	16.28	0.17	67	21000 ± 2100	3.8 ± 0.3	$374 \pm 60\ 300 \pm 10$	B2IV	B2V	
MHF117096	5 28 38.272	-67 11 41.86	16.26	0.18	70	20000 ± 1600	3.9 ± 0.3	$19 \pm 20 \ 305 \pm 10$	B2V	B1V	
MHF117930	5 27 29.079	-67 11 29.27	16.29	0.16	80	26000 ± 1600	4.4 ± 0.3	191 ±20 373 ±10	B1V	B1.5V	
MHF117946	5 27 34.980	-67 11 28.60	16.32	0.16	85	20000 ± 1200	4.1 ± 0.2	129 ±13 299 ±10	B2V	B2V	
MHF119603	5 29 31.746	-67 11 17.65	15.61	0.16	118	21500 ± 1100	3.9 ± 0.2	49 ±15 300 ±10	B2V	B1.5V	
MHF119707	5 30 32.940	-67 11 22.20	15.15	0.18	120	21500 ± 1100	3.6 ± 0.2	$134 \pm 10\ 308 \pm 10$	B2III-IV	B1IV	cl1
MHF120461	5 30 36.730	-67 11 02.90	16.16	0.15	60	21000 ± 2100	4.0 ± 0.4	131 ±21 297 ±10	B2V	B1.5III	cl1
MHF121339	5 27 28.317	-67 10 53.78	14.95	0.18	120	25000 ± 1200	3.9 ± 0.2	$19 \pm 20 \ 300 \pm 10$	B1V	B1V	
MHF122794	5 30 49.220	-67 10 43.70	16.30	0.20	50	22000 ± 2600	4.0 ± 0.4	53 ±20 298 ±10	B2V	B1V	
MHF124760	5 30 12.170	-67 10 19.50	15.28	0.17	110	24500 ± 1200	3.8 ± 0.2	$172 \pm 10\ 329 \pm 10$	B1V	B0V	
MHF124844	5 27 04.836	-67 10 05.99	16.23	0.20	85	16000 ± 1000	3.5 ± 0.2	$166 \pm 15\ 300 \pm 10$	B3III-IV	B2.5III	
MHF125614	5 30 17.430	-67 10 07.90	16.38	0.20	60	20500 ± 2100	3.9 ± 0.4	157 ±25 287 ±10	B2V	B1.5IV	
MHF126078	5 29 43.232	-67 10 00.82	16.02	0.18	86	21000 ± 1300	3.8 ± 0.2	38 ± 20 312 ± 10	B2IV	B1.5V	
MHF128212	5 29 53.238	-67 9 42.49	14.93	0.19	160	21000 ± 1000	3.8 ± 0.2	64 ± 10 322 ± 10	B2IV	B1.5V	
MHF131188	5 29 37.665	-67 9 05.80	15.24	0.18	140	30000 ± 1500	4.3 ± 0.2	$325 \pm 16299 \pm 10$	B0V	B0.5V	HeII
MHF131563	5 30 31.970	-67 8 58.80	16.46	0.26	55	17500 ± 1900	4.2 ± 0.4	$140 \pm 22\ 318 \pm 10$	B3V	B3V	
MHF131570	5 29 51.860	-67 8 57.40	16.41	0.16	70	19500 ± 1600	4.0 ± 0.3	$122 \pm 12298 \pm 10$	B2V	B2.5V	
MHF132507	5 28 18.853	-67 8 43.75	16.41	0.18	80	19500 ± 1200	4.0 ± 0.2	$13 \pm 20 \ 286 \pm 10$	B2V	B2V	
MHF133049	5 29 52.694	-67 8 42.79	16.10	0.21	70	21000 ± 1700	4.0 ± 0.3	35 ± 20 287 ± 10	B2V	B1.5V	
MHF134545	5 30 14.008	-67 8 23.97	16.31	0.18	80	20000 ± 1200	3.9 ± 0.2	78 ± 10 319 ± 10	B2V	B2V	
MHF134864	5 29 18.600	-67 8 22.35	16.37	0.17	85	18000 ± 1100	3.7 ± 0.2	3 ± 20 313 ± 10	B2.5IV	B2.5IV	
MHF135232	5 28 38.670	-67 8 14.50	16.01	0.16	95	24500 ± 1500	4.1 ± 0.2	$222 \pm 16\ 352 \pm 10$	B1V	B1V	
MHF136076	5 28 47.904	-67 8 02.56	16.44	0.27	70	22000 ± 1800	4.1 ± 0.3	$23 \pm 20 307 \pm 10$	B2V	B2V	
MHF136846	5 30 03.662	-67 7 58.97	16.19	0.17	80	19500 ± 1200	3.6 ± 0.2	$248 \pm 25\ 300 \pm 10$	B2III-IV	B1V	
MHF136943	5 30 37.390	-67 7 56.00	16.24	0.23	60	19500 ± 2000	4.1 ± 0.4	$205 \pm 33\ 299 \pm 10$	B2V	B2III	
MHF137534	5 30 25.610	-67 7 50.70	16.17	0.19	63	21000 ± 2100	3.9 ± 0.4	$107 \pm 17\ 313 \pm 10$	B2V	B1V	
MHF137890	5 29 58.370	-67 7 44.37	16.32	0.17	85	21000 ± 1300	4.1 ± 0.2	$123 \pm 11\ 295 \pm 10$	B2V	B1V	cl6
MHF138223	5 29 36.708	-67 7 40.89	16.24	0.69	65	14500 ± 1500	4.1 ± 0.4	$83 \pm 14 \ 281 \pm 10$	B5V	B6V	cl9
MHF139231	5 30 19.580	-67 7 34.20	14.92	0.18	75	21000 ± 1700	3.6 ± 0.3	$168 \pm 17\ 297 \pm 10$	B2III	B0.5IV	
MHF140653	5 30 21.138	-67 7 17.83	15.21	0.19	75	20500 ± 1600	3.9 ± 0.3	52 ± 20 272 ± 10	B2IV	B2IV	
MHF141004	5 29 57.130	-67 7 35.50	15.14	0.33	115	32500 ± 1600	4.4 ± 0.2	21 ± 20 296 ±10	09V	09V	Hell, cl6
MHF141834	5 28 17.049	-67 6 54.57	16.38	0.16	90	22500 ± 1300	4.0 ± 0.2	$129 \pm 10\ 311 \pm 10$	B2V	B2IV	cl3
MHF142249	5 28 13.500	-67 6 54.80	16.46	0.21	80	18500 ± 1100	3.9 ± 0.2	$87 \pm 10 312 \pm 10$	B2.5V	B2.5IV	cl3
MHF142489	5 29 35.870	-67 6 51.20	16.35	0.16	50	9600 ± 1200	3.2 ± 0.3	1 ± 20 288 ±10	A0.5111	B9III	
MHF142798	5 29 41.935	-67 6 47.67	16.47	0.17	70	19500 ± 1600	4.1 ± 0.3	$149 \pm 15\ 303 \pm 10$	B2V	B2.5V	
MHF144083	5 30 07.760	-67 6 34.71	16.27	0.19	80	22000 ± 1300	4.0 ± 0.2	$241 \pm 25\ 300 \pm 10$	B2V	BIV	
MHF144186	5 30 19.070	-67 6 36.00	16.05	0.19	63	19000 ± 1900	3.7 ± 0.3	$169 \pm 30\ 290 \pm 10$	B2III-IV	BIIII	
MHF144562	5 28 19.926	-67 6 24.61	16.40	0.16	90	13500 ± 800	3.6 ± 0.2	$167 \pm 12299 \pm 10$	B2III	B3III	
MHF144608	5 30 37.355	-67 6 29.83	15.64	0.19	100	21000 ± 1100	3.7 ± 0.2	$18 \pm 20 \ 309 \pm 10$	B2IV	BIV	
MHF144637	5 30 32.420	-6/632.40	14.96	0.18	85	21000 ± 1300	3.5 ± 0.2	$202 \pm 20 248 \pm 10$	B2III-IV	BIIV	
KWBBe0554	5 30 19.794	-67 17 05.02	16.74	0.30	56	18500 ± 2200	4.2 ± 0.4	$4/\pm 20$ 310 ±10	B2.5V	B2.5V	not Be
KWBBe0993	5 30 18.581	-6/18 51.61	17.38	0.16	60	19500 ± 2000	4.2 ± 0.4	$53 \pm 20 \ 307 \pm 10$	B2V D4V	B2.5V	not Be
к w в ве 1169	5 50 45.160	-6/1/18.30	10.62	1.55	40	15500 ± 2300	4.1 ±0.4	285 ±5/ 300 ±10	B4 V	ROIII	not Be, cl0

TAB. 4.8 – Légende identique à celle de la Table 4.7 pour les binaires spectroscopiques du GNM présentant 1 spectre. La binaire SB2 MHF111340 est donnée pour informations car elle appartient à un amas.

spectre. Eu													
Etoile	<i>α</i> (2000)	δ (2000)	V	B-V	S/N	$T_{\rm eff}$	log g	Vsin i	RV	CFP	CEW	comm.	
MHF64847	5 27 32.040	-67 21 53.20	15.13	0.21	110	26000 ± 1300	4.1 ± 0.2	137 ± 10	347 ± 10	B1V	B1V		
MHF65587	5 28 23.460	-67 21 41.30	16.01	0.23	120	21500 ± 1100	3.8 ± 0.2	173 ± 10	336 ± 10	B1.5IV	B1V		
MHF71137	5 28 46.650	-67 20 40.90	15.62	0.24	107	21500 ± 1100	4.0 ± 0.2	117 ± 10	321 ± 10	B1.5V	B1.5IV		
MHF79301	5 29 11.050	-67 18 58.90	15.61	0.23	85	18000 ± 1100	3.5 ± 0.2	39 ± 20	319 ± 10	B2III-IV	B2III		
MHF91603	5 28 03.400	-67 16 33.20	15.19	0.24	140	19000 ± 1000	3.5 ± 0.2	54 ± 10	322 ± 10	B2III-IV	B1IV		
MHF98013	5 30 32.650	-67 15 25.70	14.82	0.25	120	19500 ± 1000	3.5 ± 0.2	89 ± 10	277 ± 10	B2III-IV	B0.5III		
MHF102053	5 29 56.242	-67 14 32.95	16.26	0.31	85	17000 ± 1000	3.7 ± 0.2	188 ± 19	340 ± 10	B3IV	B3V		
MHF103207	5 30 13.560	-67 14 27.10	14.94	0.23	140	23500 ± 1200	3.8 ± 0.2	122 ± 10	221 ± 10	B1IV	B1III		
MHF109251	5 28 31.950	-67 13 11.90	15.95	0.25	108	20500 ± 1000	3.9 ± 0.2	5 ± 20	284 ± 10	B2IV-V	B2IV	cl4	
MHF110467	5 27 25.310	-67 12 52.50	15.70	0.17	123	26500 ± 1300	4.1 ± 0.2	31 ± 20	264 ± 10	B1V	B1V	cl7	
MHF111340	05 27 14.43	-67 12 40.90	16.16	0.21	90	-	-	-	-	SB2	SB2	cl7	
MHF113048	5 26 57.527	-67 12 18.95	16.38	0.21	90	17000 ± 1000	3.7 ± 0.2	75 ± 10	283 ± 10	B3IV	B2IV		
MHF128963	5 30 38.290	-67 9 32.70	15.95	0.25	75	20000 ± 1600	4.0 ± 0.3	97 ± 10	314 ± 10	B2V	B2.5V		
MHF133975	5 29 50.610	-67 8 30.00	16.27	0.25	80	21000 ± 1300	4.0 ± 0.2	79 ± 10	233 ± 10	B2V	B2IV		
MHF141891	5 28 00.770	-67 6 55.50	16.29	0.28	90	20500 ± 1200	4.0 ± 0.2	165 ± 12	266 ± 10	B2V	B2III		
MHF149652	5 28 58.672	-67 5 29.28	16.50	0.24	90	20000 ± 1200	3.9 ± 0.2	122 ± 12	341 ± 10	B2IV	B2IV		

in the point prinse	eurs ser a	apres les	anagramme		n oonnier er	un (1990)	
Etoile	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}
MHF52224	4.2 ± 0.3	10.0 ± 1.0	9.2±1.0	MHF107300	4.0±0.3	9.7±0.5	5.3±1.0
MHF54275	3.7 ± 0.3	8.4±0.5	4.5±0.5	MHF10/458	3.8±0.3	7.4±0.5	6.8±1.0
MHF54565	4.4±0.3	11.3 ± 1.0	9.1±1.0	SBMHF109251	3.5 ± 0.3	6.9±0.5	4.7±0.5
MHF54686	3.3±0.3	6.1±0.5	3.9 ± 0.5	MHF109280	3.5 ± 0.3	6.5 ± 0.5	5.4 ± 1.0
MHF57079	3.6±0.3	8.1±0.5	3.6±0.5	MHF110170	3.5 ± 0.3	6.7±0.5	4.3 ± 0.5
MHF57428	3.6±0.3	8.4±0.5	3.2±0.5	SBMHF110467	3.9±0.3	10.1 ± 1.0	4.5 ± 0.5
MHF57975	3.7 ± 0.3	7.0±0.5	5.9±1.0	MHF112935	4.1±0.3	12.0 ± 1.0	4.6±0.5
MHF59059	3.5 ± 0.3	8.2 ± 0.5	3.2 ± 0.5	SBMHF113048	3.4 ± 0.3	5.8 ± 0.5	5.5 ± 1.0
MHF60436	3.7 ± 0.3	8.0±0.5	4.6±0.5	MHF113982	3.8±0.3	8.2±0.5	5.8 ± 1.0
MHF62150	3.2 ± 0.3	5.8±0.5	4.1±0.5	MHF115761	3.8±0.3	8.5±0.5	5.1 ± 1.0
MHF62555	3.5 ± 0.3	6.7 ± 0.5	4.2 ± 0.5	MHF115844	3.4 ± 0.3	6.1 ± 0.5	4.9 ± 0.5
MHF63084	3.3±0.3	5.2 ± 0.5	14.3 ± 1.5	MHF116094	3.8±0.3	8.0±0.5	5.8 ± 1.0
MHF63948	3.4 ± 0.3	6.6±0.5	4.1±0.5	MHF117096	3.5 ± 0.3	6.8±0.5	4.8 ± 0.5
MHF65925	3.8 ± 0.3	8.5 ± 0.5	4.9 ± 0.5	MHF117930	3.6 ± 0.3	8.2 ± 0.5	3.0 ± 0.5
MHF66708	3.8 ± 0.3	9.6 ± 0.5	3.7 ± 0.5	MHF117946	3.4 ± 0.3	6.4 ± 0.5	3.9 ± 0.5
MHF67663	4.1 ± 0.3	12.5 ± 1.0	4.3 ± 0.5	MHF119603	3.6 ± 0.3	7.6 ± 0.5	4.9 ± 0.5
MHF67792	3.7 ± 0.3	8.0 ± 0.5	4.7 ± 0.5	MHF119707	4.1 ± 0.3	9.0 ± 0.5	8.2 ± 1.0
MHF68153	3.7 ± 0.3	7.8 ± 0.5	4.6 ± 0.5	MHF120461	3.5 ± 0.3	6.9 ± 0.5	4.2 ± 0.5
MHF68195	3.8 ± 0.3	8.4 ± 0.5	4.7 ± 0.5	MHF121339	4.1 ± 0.3	10.4 ± 1.0	6.0 ± 1.0
MHF68257	3.7 ± 0.3	8.1 ± 0.5	4.6 ± 0.5	MHF122794	3.6 ± 0.3	7.6 ± 0.5	4.7 ± 0.5
MHF69681	4.4 ± 0.3	12.9 ± 1.0	7.3 ± 1.0	MHF124760	4.1 ± 0.3	10.7 ± 1.0	6.7 ± 1.0
MHF70976	4.3 ± 0.3	15.0 ± 1.0	4.8 ± 0.5	MHF124844	3.5 ± 0.3	6.1 ± 0.5	7.4 ± 1.0
MHF72268	3.6 ± 0.3	7.2 ± 0.5	5.6 ± 1.0	MHF125614	3.6 ± 0.3	7.0 ± 0.5	4.8 ± 0.5
MHF74015	3.6 ± 0.3	7.9 ± 0.5	4.4 ± 0.5	MHF126078	3.8 ± 0.3	8.3±0.5	6.1 ± 1.0
MHF75373	3.4 ± 0.3	6.6 ± 0.5	4.2 ± 0.5	MHF128212	3.7 ± 0.3	7.8 ± 0.5	5.7 ± 1.0
MHF75553	3.9 ± 0.3	8.1 ± 0.5	8.1±1.0	SBMHF128963	3.4 ± 0.3	6.6 ± 0.5	4.2 ± 0.5
MHF77981	3.7 ± 0.3	8.2 ± 0.5	4.7 ± 0.5	MHF131188	4.1±0.3	12.4 ± 1.0	4.0 ± 0.5
MHF78706	3.7 ± 0.3	8.3±0.5	4.6 ± 0.5	MHF131563	2.8 ± 0.2	4.5 ± 0.5	2.8 ± 0.5
MHF81807	3.6 ± 0.3	7.2 ± 0.5	5.6 ± 0.5	MHF131570	3.3 ± 0.3	6.1±0.5	4.0 ± 0.5
MHF81136	3.5 ± 0.3	6.9 ± 0.5	4.4 ± 0.5	MHF132507	3.4 ± 0.3	6.4 ± 0.5	4.4 ± 0.5
MHF81174	3.3 ± 0.3	6.7 ± 0.5	3.1 ± 0.5	MHF133049	3.5 ± 0.3	7.0 ± 0.5	4.4 ± 0.5
MHF81322	3.7 ± 0.3	7.0 ± 0.5	2.7 ± 0.5	MHF134545	3.5 ± 0.3	6.7 ± 0.5	4.6 ± 0.5
MHF81490	3.1 ± 0.3	5.2 ± 0.5	3.4 ± 0.5	MHF134864	3.5 ± 0.3	6.3 ± 0.5	5.9 ± 1.0
MHF81521	3.6 ± 0.3	6.6 ± 0.5	7.8 ± 1.0	MHF135232	3.8 ± 0.3	9.1 ± 0.5	4.6 ± 0.5
MHF82482	3.6 ± 0.3	7.4 ± 0.5	4.4 ± 0.5	MHF136076	3.6 ± 0.3	7.4 ± 0.5	4.1 ± 0.5
MHF84042	3.3 ± 0.3	6.4 ± 0.5	3.6 ± 0.5	MHF136846	3.8 ± 0.3	7.3 ± 0.5	7.0 ± 1.0
MHF84176	3.8 ± 0.3	10.1 ± 1.0	3.7 ± 0.5	MHF136943	3.3 ± 0.3	6.2 ± 0.5	3.9 ± 0.5
MHF85562	3.4 ± 0.3	6.5 ± 0.5	4.2 ± 0.5	MHF137534	3.6 ± 0.3	7.4 ± 0.5	5.0 ± 0.5
MHF86995	3.5 ± 0.3	6.5 ± 0.5	6.0 ± 1.0	MHF137890	3.5 ± 0.3	6.9 ± 0.5	4.1 ± 0.5
MHF87634	4.1 ± 0.3	11.1 ± 1.0	5.9 ± 1.0	MHF138223	2.5 ± 0.2	3.6 ± 0.5	2.7 ± 0.5
MHF88527	3.7 ± 0.3	8.5 ± 0.5	3.3 ± 0.5	MHF139231	4.0 ± 0.3	8.8 ± 0.5	8.3 ± 1.0
MHF93347	3.6 ± 0.3	8.1±0.5	3.8 ± 0.5	MHF140653	3.6 ± 0.3	7.1 ± 0.5	5.0 ± 0.5
MHF94228	3.4 ± 0.3	6.6 ± 0.5	4.6 ± 0.5	MHF141004	4.1±0.3	8.9 ± 0.5	3.2 ± 0.5
MHF95555	3.7 ± 0.3	7.1 ± 0.5	6.4 ± 1.0	MHF141834	3.7 ± 0.3	7.8 ± 0.5	4.5 ± 0.5
MHF96072	3.1 ± 0.3	4.8 ± 0.5	2.2 ± 0.5	SBMHF141891	3.5 ± 0.3	6.8 ± 0.5	4.5 ± 0.5
MHF97219	4.4 ± 0.3	11.9 ± 1.0	3.8 ± 0.5	MHF142249	3.3 ± 0.3	6.0 ± 0.5	4.5 ± 0.5
MHF97965	3.2 ± 0.3	6.2 ± 0.5	2.9 ± 0.5	MHF142489	2.6 ± 0.2	3.4 ± 0.5	7.6 ± 1.0
MHF98622	3.5 ± 0.3	6.5 ± 0.5	5.6 ± 1.0	MHF142798	3.2 ± 0.3	5.9 ± 0.5	$3.4{\pm}0.5$
MHF98629	3.8 ± 0.3	8.0 ± 0.5	6.0 ± 1.0	MHF144083	3.6±0.3	7.6 ± 0.5	4.3±0.5
MHF100069	3.1±0.3	5.6 ± 0.5	3.6 ± 0.5	MHF144186	3.7 ± 0.3	7.1±0.5	6.7±1.0
MHF101934	3.3 ± 0.3	5.4 ± 0.5	7.4 ± 1.0	MHF144562	3.0 ± 0.3	4.3 ± 0.5	5.7 ± 1.0
SBMHF102053	3.3 ± 0.3	5.5 ± 0.5	5.6 ± 1.0	MHF144608	3.9 ± 0.3	8.2 ± 0.5	6.5 ± 1.0
SBMHF103207	4.0 ± 0.3	9.8 ± 0.5	6.4 ± 1.0	MHF144637	4.2 ± 0.3	10.0 ± 0.5	10.2 ± 1.0
MHF105436	3.9 ± 0.3	8.0 ± 0.5	8.1 ± 1.0	KWBBe0554	3.0 ± 0.3	5.2 ± 0.5	3.2 ± 0.5
MHF106600	3.4 ± 0.3	6.6 ± 0.5	4.0 ± 0.5	KWBBe0993	3.0 ± 0.3	5.5 ± 0.5	2.9 ± 0.5
MHF106613	3.6 ± 0.3	6.6 ± 0.5	7.2 ± 1.0	KWBBe1169	2.7 ± 0.2	4.0 ± 0.5	2.9 ± 0.5
MHF106692	3.8±0.3	7.5 ± 0.5	13.3±1.5				

TAB. 4.9 – Parametres $\log(L/L_{\odot})$, M/M_{\odot} et R/R_{\odot} interpolés ou calculés pour notre échantillon d'étoiles O-B du GNM et pour plusieurs SB1 d'après les diagrammes HR issus de Charbonnel et al. (1993).

Etoile	$\Omega/\Omega_{\rm c}$	= 85%	
	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	Vsin i ^{true}
MHF57079	25000±2900	4.4 ± 0.4	327 ± 50
MHF57975	21500 ± 1600	4.1±0.3	357±35
MHF95555	21000 ± 1200	4.0 ± 0.2	331±30
MHF98629	22500 ± 1700	4.1±0.3	348±35
MHF106613	19500 ± 1100	4.0 ± 0.2	338±25
MHF107458	22000 ± 1600	4.0 ± 0.3	350 ± 35
MHF116094	23000 ± 2100	4.1±0.3	384±60
MHF131188	31000 ± 1500	4.4 ± 0.2	333±16
KWBBe1169	16500 ± 2400	4.4 ± 0.4	294±57

TAB. 4.10 – Paramètres fondamentaux corrigés des effets de la rotation rapide pour $\Omega/\Omega_c = 85\%$ pour les étoiles B en rotation rapide de notre échantillon. Les unités sont le K pour T_{eff}° , dex pour le $\log g_o$ et km s⁻¹ pour le Vsin i^{true}.

Tables pour les étoiles Be du Grand Nuage de Magellan

TAB. 4.11 – Paramètres fondamentaux pour les 47 étoiles Be observées dans notre échantillon du GNM. La légende est identique à celle de la Table 4.7.

E il	(2000)			D U	0.01	mapp.	1	** • •	DU	GED	
Etoile	α (2000)	δ (2000)	V	B-V	S/N		$\log g_{\rm app.}$	$V \sin i_{app.}$	RV	CFP	comm.
KWBBe0044	5 30 45.049	-67 14 26.14	13.70	0.24	140	23000 ± 1100	3.2 ± 0.2	111 ± 10	319 ± 10	B2III	10
KWBBe00/5	5 30 37.690	-67 17 39.50	14.41	0.43	90	23500 ± 1400	3.5 ± 0.2	185 ± 13	312 ± 10	BIIII	cl0
KWBBe0091	5 30 44.284	-67 17 22.72	14.44	0.33	140	20000 ± 1000	3.2 ± 0.2	201 ± 10	301 ± 10	B2III	cl0
KWBBe0152	5 30 24.391	-67 14 55.50	15.58	0.18	103	23000 ± 1200	3.4 ± 0.2	379 ±19	300 ± 10	B2III	
KWBBe0171	5 30 36.340	-67 16 51.00	15.55	0.30	110	23000 ± 1100	3.6 ± 0.2	270 ± 14	290 ± 10	B2III	cl0
KWBBe0177	5 30 39.582	-67 16 49.63	15.27	0.39	83	30000 ± 1800	3.5 ± 0.2	$491:\pm 50$	301 ± 10	BOIII	cl0
KWBBe0203	5 30 48.700	-67 16 49.30	15.35	0.42	80	24500 ± 1500	3.3 ± 0.2	256 ± 25	301 ± 10	B1III	cl0
KWBBe0276	5 29 59.358	-67 14 46.49	15.79	0.22	119	22000 ± 1100	3.3 ± 0.2	246 ± 12	273 ± 10	B2III	
KWBBe0287	5 30 08.070	-67 14 36.20	15.83	0.17	90	20000 ± 1200	3.2 ± 0.2	221 ± 15	275 ± 10	B2III	
KWBBe0323	5 30 31.976	-67 16 40.26	16.21	0.17	90	23500 ± 1400	3.7 ± 0.2	274 ± 19	302 ± 10	B1.5III	cl0
KWBBe0342	5 30 38.630	-67 16 23.00	16.04	0.19	80	23000 ± 1400	4.1 ± 0.2	309 ± 31	323 ± 10	B1.5V	cl0
KWBBe0344	5 30 38.859	-67 14 21.13	15.89	0.18	100	22500 ± 1100	3.8 ± 0.2	216 ± 11	301 ± 10	B2IV	
KWBBe0347	5 30 39.900	-67 12 21.01	16.04	0.17	95	22500 ± 1400	3.5 ± 0.2	334 ± 23	302 ± 10	B2III	
KWBBe0374	5 30 47.799	-67 11 36.43	16.37	0.30	60	22000 ± 2200	4.1 ± 0.4	337 ± 54	339 ± 10	B2V	
KWBBe0579	5 30 27.610	-67 13 00.21	16.53	0.15	55	19000 ± 2300	3.5 ± 0.4	310 ± 50	301 ± 10	B2III	cl5
KWBBe0622	5 30 36.223	-67 13 27.71	16.89	0.25	60	16000 ± 1600	3.5 ± 0.3	299 ± 48	302 ± 10	B3III	
KWBBe0624	5 30 37.040	-67 21 02.62	16.73	0.19	54	19670 ± 2400	3.4 ± 0.3	343 ± 55	275 ± 10	B2III	
KWBBe0874	5 29 55.846	-67 19 14.27	17.56	0.16	45	19000 ± 2900	4.1 ± 0.4	262 ± 52	300 ± 10	B2V	
KWBBe1055	5 30 29.265	-67 17 01.65	17.41	0.17	50	22000 ± 2600	3.9 ± 0.4	419 ±67	300 ± 10	B2IV	cl0
KWBBe1108	5 30 37.238	-67 11 29.31	17.64	0.20	50	19500 ± 2300	4.0 ± 0.4	316 ±51	300 ± 10	B2V	cl1
KWBBe1175	5 30 46.960	-67 17 39.30	17.75	0.12	25	21500 ± 4300	4.2 ± 0.4	345 ± 100	297 ±10	B2V	cl0
KWBBe1196	5 30 50.893	-67 18 08.51	17.56	0.16	45	17000 ± 2200	3.8 ± 0.4	359 ± 65	299 ± 10	B3IV	cl0
MHFBe55075	5 30 15.660	-67 23 54.60	16.01	0.26	50	21500 ± 2600	3.8 ± 0.4	266 ± 43	301 ± 10	B2IV	
MHFBe55920	5 27 42 256	-67 23 36 58	16.08	0.16	80	23500 ± 1400	4.0 ± 0.2	120 + 12	304 + 10	BIV	
MHFBe59721	5 29 25.670	-67 23 02.40	16.46	0.18	85	18000 ± 1090	4.0 ± 0.2	196 ± 18	299 ± 10	B2V	
MHFBe66252	5 29 18.200	-67 21 37.10	16.26	0.17	80	25000 ± 1500	4.0 ± 0.2	446 ± 45	274 ± 10	B1V	
MHFBe72704	5 28 29.430	-67 20 20.10	14.86	0.19	150	23000 ± 1100	3.5 ± 0.2	108 ± 10	304 ± 10	B1.5III-IV	
MHFBe73013	5 28 55 994	-67 20 14 55	16.16	0.19	100	25000 ± 120	4.3 ± 0.2	402 + 20	302 + 10	BIV	
MHFBe77796	5 29 13.609	-67 19 18.70	14.91	0.18	90	25500 ± 1500	3.7 ± 0.2	120 + 10	311 + 10	B1III-IV	
MHFBe85028	5 29 45 000	-67 17 50 50	16.07	0.17	100	23000 ± 1200	38+02	269 +13	316 + 10	B1 5IV	
MHFBe101350	5 30 34 640	-67 14 45 30	15 30	0.19	120	24500 ± 1200	38+02	207 = 10 224 + 11	285 ± 10	BIIV	
MHFBe103914	5 27 15 216	-67 14 10 15	15.03	0.17	130	26500 ± 1200	3.0 ± 0.2 3.4 ± 0.2	368 + 18	300 ± 10	BIII	
MHFBe107771	5 28 34 651	-67 13 23 97	16.39	0.37	84	18000 ± 1100	3.6 ± 0.2	310 ± 20	300 ± 10 300 + 10	B2 5III-IV	c14
MHFBe107877	5 28 34 260	-67 13 25 90	15.23	0.21	90	20500 ± 1200	3.0 ± 0.2 3.4 ± 0.2	208 ± 15	319 ± 10	B2III	cl4
MHFBe108272	5 28 32 127	-67 13 23 68	16.40	0.21	100	20500 ± 1200 21500 ± 1100	3.4 ± 0.2 3.9 ± 0.2	200 ± 10 226 +11	320 ± 10	B2IN B2IV	cl4
MHFBe1108272	5 27 28 582	-67 12 56 81	14.93	0.20	130	26500 ± 1300	42 ± 0.2	195 ± 14	305 ± 10	B1V	
MHFBe116297	5 28 06 021	-67 11 47 44	16 14	0.25	110	20500 ± 1300 23500 ± 1200	4.2 ± 0.2	105 ± 14 226 +11	319 ± 10	B1V B1V	017
MHFBe118313	5 26 55 945	-67 11 27 10	15.04	0.10	85	25000 ± 1200 25000 ± 1500	3.4 ± 0.2	107 ± 20	301 ± 10	B1U	
MHFBe118784	5 28 27 565	-67 11 27.10	14 70	0.18	185	25000 ± 1500 27000 ± 1400	3.4 ± 0.2 3.4 ± 0.2	107 ± 20 388 ± 10	301 ± 10 206 ± 10	B1III	
MHEB ₀ 110521	5 20 27.505	67 11 20.50	16.30	0.10	04	27000 ± 1400 24000 ± 1400	3.4 ± 0.2	300 ± 17 321 ± 22	270 ± 10 341 ± 10	BIII	c11
MHEB ₀ 132070	5 30 05 406	-07 11 19.10 67 8 53 45	16.30	0.17	24 80	24000 ± 1400 25000 ± 1500	3.7 ± 0.2	321 ± 22 318 ± 32	341 ± 10 305 ± 10	BIIII BIV	CII
MHED 122075	5 30 05.490	-07 8 53.45	10.24	0.20	124	25000 ± 1300	4.4 ± 0.3	120 ± 10	303 ± 10 201 + 10		-19
MIJED 126944	5 29 25.872	-07 8 33.93	14.72	0.18	154	20000 ± 1300	3.4 ± 0.2	129 ± 10 249 ± 17	501 ± 10 215 ± 10		C18
MUED 127225	<i>3 21 3</i> 3.241	-01 / 34.44	15.15	0.19	110	23000 ± 1200	3.3 ± 0.2	340 ± 17	313 ± 10 220 ± 10	D1111-1V D5111	
MIED 129(10	5 29 07.009	-01 / 49.28	14.92	0.10	110	13000 ± 800	3.1 ± 0.2	232 ± 13	320 ± 10 214 ± 10		-16
MHED-140012	5 30 00.332	-0//44.02	14.82	0.17	129	25000 ± 1200	3.1 ± 0.2	$1/1 \pm 10$	314 ± 10		-12
MHFBe140012	5 28 13.281	-6//20.//	14.94	0.18	130	23000 ± 1200	5.5 ± 0.2	246 ± 12	297 ± 10	B1.5III	c13
MHFBe155603	5 28 47.760	-6/425.70	14.72	0.20	100	25000 ± 1300	3.4 ± 0.2	249 ± 12	308 ± 10	RIIII	

Etoile	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}
KWBBe0044	4.9±0.3	16.8±1.0	18.0 ± 2.0	MHFBe59721	3.2±0.3	5.6±0.5	4.0 ± 0.5
KWBBe0075	4.5 ± 0.3	12.3±1.0	11.0 ± 1.5	MHFBe66252	4.0 ± 0.3	10.1 ± 1.0	5.4 ± 1.0
KWBBe0091	4.4 ± 0.3	11.7 ± 1.0	14.1±1.5	MHFBe72704	4.4 ± 0.3	11.3±1.0	10.1 ± 1.0
KWBBe0152	4.5 ± 0.3	12.9 ± 1.0	12.2±1.5	MHFBe73013	3.5 ± 0.3	8.3±0.5	3.3 ± 0.5
KWBBe0171	4.2 ± 0.3	10.3 ± 1.0	8.1±1.0	MHFBe77796	4.4 ± 0.3	$12.4{\pm}1.0$	8.5 ± 1.0
KWBBe0177	5.2 ± 0.3	24.4 ± 2.0	14.5±1.5	MHFBe85028	4.0 ± 0.3	9.6±0.5	6.5±1.0
KWBBe0203	4.6±0.3	13.6±1.0	10.3±1.5	MHFBe101350	4.2 ± 0.3	11.0 ± 1.0	7.1±1.0
KWBBe0276	4.5 ± 0.3	12.8 ± 1.0	13.5±1.5	MHFBe103914	4.9 ± 0.3	16.8±1.0	$13.0{\pm}1.5$
KWBBe0287	4.3±0.3	10.6 ± 1.0	10.8 ± 1.5	MHFBe107771	3.6 ± 0.3	6.7 ± 0.5	6.9±1.0
KWBBe0323	4.2 ± 0.3	10.5 ± 1.0	7.4 ± 1.0	MHFBe107877	4.2 ± 0.3	10.1 ± 1.0	10.5 ± 1.5
KWBBe0342	3.6±0.3	7.9 ± 0.5	4.2 ± 0.5	MHFBe108272	3.7 ± 0.3	7.7 ± 0.5	5.0 ± 0.5
KWBBe0344	3.9 ± 0.3	8.8 ± 0.5	$6.0{\pm}1.0$	MHFBe110827	3.8 ± 0.3	9.7 ± 0.5	3.9 ± 0.5
KWBBe0347	4.4 ± 0.3	11.4 ± 1.0	10.8 ± 1.5	MHFBe116297	3.8 ± 0.3	8.8 ± 0.5	5.1 ± 0.5
KWBBe0374	3.6±0.3	7.5 ± 0.5	4.1±0.5	MHFBe118313	4.8 ± 0.3	15.6±1.0	13.6±1.5
KWBBe0579	3.9 ± 0.3	8.1±0.5	8.7±1.0	MHFBe118784	5.0 ± 0.3	18.6±1.0	14.4 ± 1.5
KWBBe0622	3.4 ± 0.3	5.9 ± 0.5	7.1±1.0	MHFBe119521	4.2 ± 0.3	10.7 ± 1.0	7.8±1.0
KWBBe0624	4.2 ± 0.3	9.9 ± 0.5	11.3±1.5	MHFBe132079	3.5 ± 0.3	8.2 ± 0.5	3.1 ± 0.5
KWBBe0874	3.2 ± 0.3	5.8 ± 0.5	3.7±0.5	MHFBe132205	4.8 ± 0.3	16.3 ± 1.0	$13.0{\pm}1.5$
KWBBe1055	3.8 ± 0.3	8.2 ± 0.5	5.3±1.0	MHFBe136844	4.4 ± 0.3	11.7 ± 1.0	10.5 ± 1.5
KWBBe1108	3.3 ± 0.3	6.0 ± 0.5	4.0 ± 0.5	MHFBe137325	3.8 ± 0.3	7.4 ± 0.5	12.6 ± 1.5
KWBBe1175	3.3±0.3	6.5 ± 0.5	3.3±0.5	MHFBe138610	4.3±0.3	11.6±1.0	7.9 ± 1.0
KWBBe1196	3.3±0.3	5.6 ± 0.5	5.2 ± 1.0	MHFBe140012	4.4 ± 0.3	11.5 ± 1.0	$10.0{\pm}1.0$
MHFBe55075	3.9 ± 0.3	8.2 ± 0.5	6.3±1.0	MHFBe155603	4.9±0.3	16.7±1.0	14.3 ± 1.5
MHFBe55920	3.8±0.3	8.7 ± 0.5	4.9±0.5				

TAB. 4.12 – Paramètres apparents $\log(L/L_{\odot})$, M/M_{\odot} , et R/R_{\odot} interpolés ou calculés pour les étoiles Be du GNM d'après les diagrammes HR issus de Charbonnel et al. (1993).

0	1
0	I
~	

	CII	0.00	-		0.000				
Etoile	2	$2/\Omega_c = 85\%$		<u> </u>	$2/\Omega_c = 90\%$		<u>(</u>	$2/\Omega_{c} = 95\%$	• •
	$T_{\rm eff}^0$	$\log g_{\rm o}$	$V \sin i^{\text{true}}$	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	$V \sin i^{uue}$	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	$V \sin i^{\text{true}}$
KWBBe0044	23000 ± 1100	3.2 ± 0.2	119 ± 10	23390 ± 1100	3.3 ± 0.2	121 ± 10	23300 ± 1100	3.3 ± 0.2	121 ± 10
KWBBe0075	24000 ± 1400	3.6 ± 0.2	193±13	24450 ± 1400	3.6 ± 0.2	195±13	23950 ± 1400	3.6 ± 0.2	198±13
KWBBe0091	21000 ± 1000	3.4 ± 0.2	211±10	21175±1000	3.4 ± 0.2	211±10	21310 ± 1000	3.5 ± 0.2	217 ± 10
KWBBe0152	25500 ± 1200	3.8 ± 0.2	394±19	25900±1200	3.8 ± 0.2	388±19	25490 ± 1200	3.8 ± 0.2	400 ± 19
KWBBe0171	24500 ± 1200	3.8 ± 0.2	275 ± 14	24180 ± 1200	3.9 ± 0.2	277±14	24155 ± 1200	3.8 ± 0.2	284 ± 14
KWBBe0177	33500 ± 1800	3.9 ± 0.2	$508 :\pm 50$	33400±1800	3.9 ± 0.2	516 :±50	33740 ± 1800	4.0 ± 0.2	$527 : \pm 50$
KWBBe0203	25500 ± 1500	3.6 ± 0.2	268±25	26350±1500	3.5 ± 0.2	268±25	25970 ± 1500	3.5 ± 0.2	269 ± 25
KWBBe0276	23500±1100	3.5 ± 0.2	253±12	23360±1100	3.5 ± 0.2	257±12	23120±1100	3.5 ± 0.2	261±12
KWBBe0287	21000 ± 1200	3.4 ± 0.2	230±15	21190±1200	3.5 ± 0.2	234±15	21250 ± 1200	3.5 ± 0.2	237±15
KWBBe0323	25000 ± 1400	3.9 ± 0.2	282±19	24535 ± 1400	3.9 ± 0.2	281±19	24610 ± 1400	3.9 ± 0.2	283±19
KWBBe0342	24000 ± 1400	4.3±0.2	316±31	23450 ± 1400	4.3±0.2	322±31	24545 ± 1400	4.3±0.2	321±31
KWBBe0344	23500±1100	4.0 ± 0.2	225±11	23450±1100	4.0 ± 0.2	225±11	23370±1100	4.0 ± 0.2	228±11
KWBBe0347	25000 ± 1300	3.8±0.2	344±23	25240±1300	3.8 ± 0.2	343±23	25470±1300	3.9 ± 0.2	349 ± 23
KWBBe0374	24000 ± 2200	4.3±0.4	345 ± 54	23880 ± 2200	4.3±0.4	347 ± 54	24080 ± 2200	4.4 ± 0.4	352 ± 54
KWBBe0579	20500 ± 2300	3.8 ± 0.4	320 ± 50	21000±2300	3.9 ± 0.4	323 ± 50	21060±2300	3.9 ± 0.4	332 ± 50
KWBBe0622	18000 ± 1600	4.0±0.3	315 ± 48	17240±1600	3.9±0.3	314 ± 48	17700 ± 1600	3.9±0.3	335 ± 48
KWBBe0624	22000 ± 2400	3.8±0.3	356±55	22690±2400	3.8±0.3	353±55	22880 ± 2400	3.8±0.3	359 ± 55
KWBBe0874	20000 ± 2900	4.3±0.4	270 ± 52	20380 ± 2900	4.3±0.4	275 ± 52	20610 ± 2900	4.4 ± 0.4	280 ± 52
KWBBe1055	25000 ± 2600	4.2 ± 0.4	433±67	24600±2600	4.3±0.4	441±67	24710 ± 2600	4.3±0.4	441±67
KWBBe1108	20500 ± 2300	4.3 ± 0.4	326 ± 51	20860 ± 2300	4.3 ± 0.4	332 ± 51	20970 ± 2300	4.4 ± 0.4	338±51
KWBBe1175	23000 ± 4300	4.5 ± 0.4	354 ± 100	23030 ± 4300	4.5 ± 0.4	359 ± 100	23260 ± 4300	4.5 ± 0.4	364 ± 100
KWBBe1196	19000 ± 2200	4.2 ± 0.4	378±65	18980 ± 2200	4.2 ± 0.4	386 ± 65	19120 ± 2200	4.2 ± 0.4	394 ± 65
MHFBe55075	23000 + 2600	3.9 ± 0.4	274+43	23100 + 2600	4.0+0.4	276+43	23165+2600	4.0+0.4	282+43
MHFBe55920	24000 ± 1400	41+02	129+12	23980 ± 1400	41+02	128 + 12	23930 ± 1400	41+02	129 ± 12
MHFBe59721	19000 ± 1100	42+02	208 ± 12	19190 ± 1100	42+02	212+18	19240 ± 1100	42+02	214 + 18
MHFBe66252	28000 ± 1500	43+02	459+45	27880 ± 1500	43+02	465+45	28100 ± 1500	44+02	473+45
MHFBe72704	23500 ± 1000	36+02	114+10	23380 ± 1100	3.6 ± 0.2	117+10	23370 ± 1100	3.6 ± 0.2	117+10
MHFBe73013	27000 ± 1200	46 + 02	411+20	27100 ± 1200	46 + 02	422+20	27250 ± 1200	46 + 02	422+20
MHFBe77796	26500 ± 1200	37+02	126 ± 10	26050 ± 1500	37+02	122 ± 20 130 ± 10	26060 ± 1500	3.7+0.2	122 ± 20 129 ± 10
MHFBe85028	20500 ± 1300 24500 ± 1200	40+02	277 ± 13	20030 ± 1300 24240 ± 1200	4.0 ± 0.2	279 ± 13	20000 ± 1000 24350 ± 1200	4.0 ± 0.2	282 ± 10
MHFBe101350	24500 ± 1200 25500 ± 1200	39+02	277 ± 13 230+11	24240 ± 1200 25270+1200	3.9 ± 0.2	279 ± 13 232+11	24330 ± 1200 25475 ± 1200	3.9 ± 0.2	202 ± 13 234+11
MHFBe103914	29000 ± 1200	3.9 ± 0.2 3.8+0.2	382 ± 18	25270 ± 1200 27270 ± 1300	3.5 ± 0.2	385 ± 18	28930 ± 1300	3.9 ± 0.2 3.8+0.2	204±11 304±18
MHFBe107771	20000 ± 1100	3.0 ± 0.2	302 ± 10 331 ± 20	19680 ± 1100	3.0 ± 0.2	333 ± 70	10800 ± 1100	3.0 ± 0.2	$3/1 \pm 20$
MHFBe107877	20000 ± 1100	3.6 ± 0.2	216 ± 15	22040 ± 1200	3.7 ± 0.2	210 ± 15	12020 ± 1100 22130 ± 1200	3.7 ± 0.2	$3+1\pm 2^{-5}$
MHFB_108272	22000 ± 1200	3.0 ± 0.2	210 ± 13 235 ± 11	22040 ± 1200 22420 ± 1100	3.7 ± 0.2	219 ± 13 236 ±11	22130 ± 1200 22550 ± 1100	3.7 ± 0.2	222 ± 13 237 ± 11
MHFBe1108272	22300 ± 1100	4.1 ± 0.2	255 ± 11 201 ± 14	22420 ± 1100 26620 ± 1300	4.1 ± 0.2	205 ± 14	22330 ± 1100 27400 ± 1300	4.1 ± 0.2	207 ± 11 205 ± 14
MUED_116207	27000±1300	4.3 ± 0.2	201 ± 14 222 ± 11	20020 ± 1300 24210 ± 1200	4.3 ± 0.2	203 ± 14 224 ± 11	$2/400\pm1300$ $2/210\pm1200$	4.3 ± 0.2	203 ± 14
MHFDe110297	25000 ± 1200	4.1 ± 0.2	233 ± 11 207+20	24310 ± 1200 26380 ± 1500	4.1 ± 0.2	234 ± 11	24310 ± 1200 27060 ± 1500	4.1 ± 0.2	237 ± 11 200±20
MHED_110313	20000 ± 1300	3.3 ± 0.2	207 ± 20	20380 ± 1300 28400 ± 1400	3.0 ± 0.2	200 ± 20	27000 ± 1300 20470 ± 1400	3.0 ± 0.2	209 ± 20
MIJED 110/04	-30000 ± 1400	3.0 ± 0.2	404±19	26400 ± 1400 24270 ± 1400	3.7 ± 0.2	400±19	30470 ± 1400	3.8 ± 0.2	410 ± 19
MILED - 122070	25500 ± 1400	4.0 ± 0.2	330 ± 22	24370 ± 1400	3.9 ± 0.2	334 ± 22	25630 ± 1400	4.0 ± 0.2	337 ± 22
MHFBe132079	23500 ± 1300	4.5 ± 0.3	320 ± 32	26985 ± 1500	$4.6:\pm 0.3$	335 ± 32	20495 ± 1500	$4.0:\pm0.3$	332 ± 32
MUED - 126944	27000±1300	3.0 ± 0.2	$13/\pm10$ 260 ± 17	20930 ± 1300	3.0 ± 0.2	130 ± 10	28145 ± 1300	3.1 ± 0.2	139 ± 10
MHFBel 36844	25500±1200	3.8 ± 0.2	300 ± 17	26240 ± 1200	3.9 ± 0.2	302 ± 17	25320 ± 1200	5.8 ± 0.2	303 ± 17
мнгве13/325	1/000±800	3.4 ± 0.2	203±13	10550±800	3.5 ± 0.2	$2/1\pm13$	16330±800	5.4 ± 0.2	2/0±13
MHFBe138610	25500±1200	3.8 ± 0.2	$1/8 \pm 10$	25210±1200	3.8 ± 0.2	181 ± 10	25560±1200	3.8 ± 0.2	183 ± 10
MHFBe140012	24500±1200	3.7 ± 0.2	252 ± 12	24400±1200	3.1 ± 0.2	254 ± 12	24470±1200	3.1 ± 0.2	257 ± 12
MHFBe155603	26600 ± 1300	3.5 ± 0.2	261±12	27220±1300	3.6 ± 0.2	261±12	27525±1300	3.6 ± 0.2	263±12

TAB. 4.13 – Paramètres stellaires des étoiles Be du GNM corrigés des effets de la rotation rapide pour différents taux de rotation (Ω/Ω_c). La correction la plus appropriée est certainement obtenue pour $\Omega/\Omega_c=85$ %. Les unités sont le K pour T_{eff}^0 , dex pour le $\log g_0$ et km s⁻¹ pour le Vsin i^{true}.

 M/M_{\odot} R/R_{\odot} âge Mans Etoile $\log(L/L_{\odot})$ 16.3 ± 2.0 KWBBe044 4.8 ± 0.3 16.1 ± 1.0 $12.3 \pm 3-6$ KWBBe075 4.4 ± 0.3 12.0 ± 1.0 9.3 ± 1.0 $18.1 \pm 3-6$ KWBBe091 4.3 ± 0.3 10.8 ± 1.0 11.1 ± 1.5 $22.2 \pm 3-6$ KWBBe152 4.3 ± 0.3 12.1 ± 1.0 7.6 ± 1.0 $15.9 \pm 3-6$ KWBBe171 4.1 ± 0.3 10.6 ± 1.0 6.6 ± 1.0 $20.2 \pm 3-6$ KWBBe177 4.9 ± 0.3 19.9 ± 1.5 8.1 ± 1.0 $6.7 \pm 3-6$ 4.7 ± 0.3 14.9 ± 1.0 10.9 ± 1.5 $13.2 \pm 3-6$ KWBBe203 10.1 ± 1.5 KWBBe276 4.4 ± 0.3 11.5 ± 1.0 $19.6 \pm 3-6$ 4.2 ± 0.3 10.4 ± 1.0 10.4 ± 1.5 $23.8 \pm 3-6$ KWBBe287 4.1 ± 0.3 10.2 ± 1.0 5.9 ± 1.0 $19.8 \pm 3-6$ KWBBe323 3.5 ± 0.3 3.4 ± 0.5 KWBBe342 8.1 ± 0.5 $13.1 \pm 3-6$ KWBBe344 3.8 ± 0.3 8.7 ± 0.5 $5.1 \pm 0.5 \ 1.0$ $24.4 \pm 3-6$ KWBBe347 4.2 ± 0.3 11.4 ± 1.0 7.2 ± 1.0 $18.1 \pm 3-6$ KWBBe0374 3.5 ± 0.3 7.9 ± 0.5 3.2 ± 0.5 $10.3 \pm 3-6$ 3.7 ± 0.3 7.5 ± 0.5 5.5 ± 1.0 KWBBe579 $36.7 \pm 3-6$ KWBBe0622 3.2 ± 0.3 5.6 ± 0.5 4.2 ± 0.5 $65.0 \pm 3-6$ 5.8 ± 1.0 $29.9 \pm 3-6$ KWBBe624 3.8 ± 0.3 8.4 ± 0.5 KWBBe874 3.0 ± 0.3 5.6 ± 0.5 2.8 ± 0.5 $28.3 \pm 3-6$ $14.4 \pm 3-6$ 3.7 ± 0.3 8.6 ± 0.5 3.8 ± 0.5 KWBBe1055 KWBBe1108 3.1 ± 0.3 5.8 ± 0.5 2.7 ± 0.5 $21.4 \pm 3-6$ KWBBe1175 3.1 ± 0.3 4.9 ± 0.5 2.1 ± 0.5 $33.7 \pm 3-6$ KWBBe1196 3.1 ± 0.3 5.4 ± 0.5 3.2 ± 0.5 $52.4 \pm 3-6$ MHFBe55075 3.8 ± 0.3 8.6 ± 0.5 5.2 ± 1.0 $25.7 \pm 3-6$ MHFBe55920 3.8 ± 0.3 8.8 ± 0.5 4.6 ± 0.5 $21.2 \pm 3-6$ MHFBe59721 3.1 ± 0.3 $5.5 \pm$ $3.2 \pm$ $49.6 \pm 3-6$ MHFBe66252 3.9 ± 0.3 10.6 ± 1.0 3.7 ± 0.5 $3.4 \pm 3-6$ 9.4 ± 1.0 MHFBe72704 4.3 ± 0.3 11.1 ± 1.0 $21.1 \pm 3-6$ MHFBe73013 $x \pm x$ $x \pm x$ $x \pm x$ $x \pm x$ MHFBe77796 4.4 ± 0.3 13.2 ± 1.0 8.1 ± 1.0 $14.4 \pm 3-6$ 5.4 ± 1.0 **MHFBe85028** 4.0 ± 0.3 9.6 ± 0.5 $20.8 \pm 3-6$ MHFBe101350 4.2 ± 0.3 11.0 ± 1.0 6.2 ± 1.0 $17.6 \pm 3-6$ 8.4 ± 1.0 MHFBe103914 4.7 ± 0.3 15.9 ± 1.0 $10.5 \pm 3-6$ MHFBe107771 3.4 ± 0.3 6.4 ± 0.5 4.3 ± 0.5 $47.4 \pm 3-6$ 9.7 ± 0.5 MHFBe107877 4.1 ± 0.3 7.9 ± 1.0 $25.7 \pm 3-6$ MHFBe108272 3.6 ± 0.3 7.6 ± 0.5 4.1 ± 0.5 $27.5 \pm 3-6$ 10.1 ± 1.0 3.7 ± 0.5 MHFBe110827 3.8 ± 0.3 $5.1 \pm 3-6$ MHFBe116297 3.8 ± 0.3 8.9 ± 0.5 4.4 ± 0.5 $18.8 \pm 3-6$ 14.9 ± 1.0 10.9 ± 1.5 MHFBe118313 4.7 ± 0.3 $13.2 \pm 3-6$ MHFBe118784 4.7 ± 0.3 17.3 ± 1.0 9.1 ± 1.0 $9.7 \pm 3-6$ 4.1 ± 0.3 10.7 ± 1.0 5.7 ± 1.0 $17.5 \pm 3-6$ MHFBe119521 MHFBe132079 4.0 ± 0.3 10.0 ± 1.0 5.6 ± 1.0 $19.9 \pm 3-6$ MHFBe132205 4.8 ± 0.3 16.8 ± 1.0 11.0 ± 1.5 $11.1 \pm 3-6$ MHFBe136844 4.3 ± 0.3 11.6 ± 1.0 6.9 ± 1.0 $16.7 \pm 3-6$ 3.7 ± 0.3 6.9 ± 0.5 8.5 ± 1.0 $48.5 \pm 3-6$ MHFBe137325 MHFBe138610 4.3 ± 0.3 11.5 ± 1.0 7.0 ± 1.0 $17.1 \pm 3-6$ 7.8 ± 1.0 MHFBe140012 4.3 ± 0.3 11.0 ± 1.0 $21.0 \pm 3-6$ MHFBe155603 4.7 ± 0.3 16.0 ± 1.0 11.2 ± 1.5 $12.0 \pm 3-6$

TAB. 4.14 – Paramètres complémentaires corrigés pour $\Omega/\Omega_c = 85\%$: $\log(L/L_{\odot})$, M/M_{\odot} , R/R_{\odot} , et l'âge de l'étoile en Mans, interpolés ou calculés pour les étoiles Be du GNM d'après les diagrammes HR issus de Charbonnel et al. (1993).

Tables pour les étoiles non Be du Petit Nuage de Magellan

TAB. 4.15 – Paramètres fondamentaux pour les 179 étoiles O, B, A non binaires de notre échantillon d'étoiles du PNM. En colonne 1 est donné le nom de l'étoile suivant la nomenclature de l'équipe EIS. En colonnes 2 et 3 sont données les coordonnées AD et DEC (2000) issues de l'astrométrie de EIS. En colonnes 4 et 5 sont donnés la magnitude V et l'indice de couleur (B-V) issus du catalogue d'EIS. En colonne 6 se trouve le rapport signal à bruit. Dans les colonnes 7, 8, 9 et 10 sont donnés respectivement les paramètres T_{eff} en K, le log g en dex, le Vsin i en km s⁻¹ et la RV en km s⁻¹. L'abréviation "CFP" (col. 11) correspond à la classification spectrale issue des paramètres fondamentaux (méthode 2) et "CEW" à celle issue des largeurs équivalentes (méthode 1). Dans la dernière colonne, des informations complémentaires sont données sur la localisation des étoiles dans des petits amas ouverts : cl0 pour NGC 330 (0h 56m 19s -72° 27' 52"), cl1 pour H86 170 (0h 56m 21s -72° 18' 00"), cl2 pour [BS95]78 (0h 56m 04s -72° 20' 12"), cl3 pour l'association SMC ASS 39 (0h 56m 6s -72° 18' 00"), cl4 pour OGLE SMC109 (0h 57m 29.8s -72° 15' 51.9"), cl5 pour NGC299 (0h 53m 24.5s -72° 11' 49") coordonnées corrigées, cl6 pour NGC306 (0h 54m 15s -72° 14' 30"), cl7 pour H86 145 (0h 53m 37s -72° 21' 00"), cl8 pour OGLE SMC99 (0h 54m 48.24s -72° 27' 57.8").

Etoile	<i>α</i> (2000)	δ (2000)	V	B-V	S/N	$T_{\rm eff}$	log g	Vsin i RV	CFP	CEW	comm.
SMC5_000398	00 54 02.700	-72 25 40.60	14.27	-0.122	90	13500 ± 800	2.7 ± 0.2	$104 \pm 10\ 131\ \pm 10$	B5II-III	B0.5III	
SMC5_000432	00 53 19.101	-72 24 48.76	16.87	-0.144	60	15500 ± 1600	3.7 ± 0.3	197 ± 32 144 ±10	B3IV	B2III	
SMC5_000453	00 53 08.090	-72 24 10.60	17.15	-0.086	30	12000 ± 2400	3.3 ± 0.3	$127 \pm 38\ 115\ \pm 10$	B7III	B3III	
SMC5_000621	00 56 10.335	-72 21 08.18	16.97	-0.204	60	20000 ± 2000	4.2 ± 0.4	$126 \pm 20\ 130\ \pm 10$	B2V	B2IV	
SMC5_000660	00 56 29.353	-72 20 23.36	17.18	-0.239	60	16500 ± 1700	4.2 ± 0.4	$201 \pm 32\ 137\ \pm 10$	B3V	B2.5III	
SMC5_000670	00 55 41.681	-72 20 14.84	17.10	-0.166	65	19000 ± 1900	3.9 ± 0.4	52 ± 10 137 ±10	B2IV	B2IV	
SMC5_000810	00 56 17.320	-72 17 28.40	15.41	-0.206	65	33000 ± 3300	4.0 ± 0.4	$163 \pm 26\ 127\ \pm 10$	O9V	09.5III	
SMC5_000889	00 55 10.000	-72 16 24.20	17.46	-0.003	30	11500 ± 2300	3.7 ± 0.4	$140 \pm 42\ 155\ \pm 10$	B8IV	B6.5III	
SMC5_000924	00 55 51.635	-72 15 46.25	17.59	-0.019	50	20500 ± 2500	4.4 ± 0.4	291 ± 47 156 ±10	B2V	B2IV	
SMC5_000959	00 56 00.520	-72 15 00.80	17.23	-0.212	35	18500 ± 3600	4.0 ± 0.4	$170 \pm 51\ 144\ \pm 10$	B2V	B2III	
SMC5_002782	00 54 41.610	-72 28 15.70	16.09	-0.241	40	25000 ± 3700	4.1 ± 0.4	81 ± 16 163 ±10	B1V	B0V	cl8
SMC5_003118	00 56 05.580	-72 26 21.40	15.54	-0.146	50	20000 ± 2400	3.8 ± 0.4	159 ± 25 178 ±10	B2IV	B1III	
SMC5_003175	00 53 42.450	-72 25 53.60	15.96	-0.184	45	22000 ± 3300	4.0 ± 0.4	84 ± 16 174 ±10	B2V	B1IV	
SMC5_003195	00 53 57.050	-72 25 45.67	17.66	-0.184	45	17500 ± 2600	4.5 ± 0.4	69 ± 14 105 ±10	B3V	B3IV	
SMC5_003292	00 53 41.453	-72 25 13.75	16.89	-0.168	65	19000 ± 1900	4.0 ± 0.4	114 ± 18 123 ±10	B2V	B2IV	
SMC5_003310	00 53 20.210	-72 25 02.49	17.15	-0.233	40	23500 ± 3500	4.3 ± 0.4	168 ± 33 139 ±10	B1V	B1V	
SMC5_003335	00 54 00.010	-72 24 56.00	17.94	-0.166	20	17000 ± 3400	4.5 ± 0.4	$156 \pm 47\ 91\ \pm 10$	B3V	B3III	
SMC5_003739	00 57 13.850	-72 22 29.90	14.19	-0.111	120	13500 ± 700	2.5 ± 0.1	$129 \pm 10\ 153\ \pm 10$	B5II-III	O9III	
SMC5_003809	00 53 20.870	-72 22 00.50	17.90	-0.114	25	15500 ± 3100	4.5 ± 0.4	$202 \pm 61\ 91 \pm 10$	B3V	B3III	
SMC5_003855	00 57 37.340	-72 21 53.90	14.45	-0.249	120	29000 ± 1500	3.7 ± 0.2	$213 \pm 11\ 169\ \pm 10$	B0IV	07V	
SMC5_003910	00 56 18.270	-72 21 33.30	14.86	-0.157	55	20000 ± 2400	3.2 ± 0.3	$101 \pm 16\ 175\ \pm 10$	B2III	08V	cl1
SMC5_003942	00 55 46.996	-72 21 21.58	17.27	-0.216	50	18500 ± 2200	4.0 ± 0.4	187 ± 30 145 ±10	B2V	B1.5IV	
SMC5_003998	00 56 03.277	-72 21 01.78	17.70	-0.211	40	13500 ± 2000	3.9 ± 0.4	190 ± 38 110 ±10	B5IV	B3III	
SMC5_003999	00 56 29.530	-72 21 01.90	16.52	-0.201	40	17000 ± 2600	3.5 ± 0.3	87 ± 17 144 ±10	B3IV	B1.5III	
SMC5_004025	00 55 48.274	-72 20 52.50	17.83	-0.155	40	16000 ± 2400	4.3 ± 0.4	153 ± 31 101 ±10	B3V	B3III	
SMC5_004034	00 56 34.570	-72 20 50.80	15.43	-0.228	45	19500 ± 2900	3.5 ± 0.3	48 ± 20 143 ±10	B2IV	B0.5III	
SMC5_004044	00 56 27.491	-72 20 46.29	17.26	-0.225	60	18000 ± 1800	4.0 ± 0.4	229 ± 37 131 ±10	B2IV-V	B2III	
SMC5_004102	00 55 09.790	-72 20 24.60	15.12	-0.019	45	9500 ± 1400	2.9 ± 0.3	36 ± 20 149 ± 10	A1III	B7III	
SMC5_004107	00 56 07.382	-72 20 24.81	17.39	-0.135	55	16500 ± 2000	3.8 ± 0.4	73 ± 12 131 ±10	B3IV	B1.5III	
SMC5_004133	00 56 00.510	-72 20 15.90	15.88	-0.103	40	11000 ± 1600	3.2 ± 0.3	165 ± 33 136 ±10	B8III	B3III	cl2
SMC5_004135	00 56 49.710	-72 20 16.10	16.93	-0.192	40	17000 ± 2500	3.8 ± 0.4	166 ± 33 131 ±10	B3IV	B2III	
SMC5_004149	00 55 58.183	-72 20 11.74	17.03	-0.179	70	13500 ± 1100	3.9 ± 0.3	196 ± 20 119 ±10	B5IV	B3III	
SMC5_004153	00 55 08.418	-72 20 08.58	17.13	-0.284	70	19000 ± 1500	4.0 ± 0.3	31 ± 20 141 ±10	B2V	B2III	
SMC5_004171	00 56 51.430	-72 20 04.40	17.29	-0.197	30	17500 ± 3500	4.2 ± 0.4	158 ± 47 158 ±10	B3V	B2III	
SMC5_004198	00 55 59.600	-72 19 53.80	14.97	-0.187	60	33500 ± 3300	3.8 ± 0.4	78 ± 12 142 ±10	O9IV	O4.5V	
SMC5_004203	00 56 37.340	-72 19 52.90	17.54	-0.282	20	21000 ± 4200	4.3 ± 0.4	194 ± 58 113 ±10	B2V	B2III	
SMC5_004263	00 56 52.701	-72 19 32.85	17.43	-0.151	45	16500 ± 2500	3.9 ± 0.4	$315 \pm 63\ 135\ \pm 10$	B3IV	B2III	
SMC5_004326	00 55 51.738	-72 19 10.54	17.05	-0.154	55	24500 ± 2900	4.1 ± 0.4	$373 \pm 60\ 155\ \pm 10$	B1V	09V	
SMC5_004381	00 55 18.570	-72 18 55.00	17.99	-0.246	20	20500 ± 4100	4.4 ± 0.4	29 ± 20 164 ±10	B2V	B2IV	
SMC5_004413	00 55 52.400	-72 18 45.00	16.10	-0.165	35	12500 ± 2500	3.2 ± 0.3	163 ± 49 114 ±10	B7III	B2.5III	
SMC5_004465	00 55 13.949	-72 18 26.93	17.71	-0.231	50	17500 ± 2100	4.3 ± 0.4	$105 \pm 17\ 141\ \pm 10$	B3V	B3V	
SMC5_004502	00 55 41.840	-72 18 15.00	16.28	-0.263	35	21500 ± 4300	3.6 ± 0.4	146 ± 44 143 ±10	B2IV	09.5III	
SMC5_004506	00 56 15.450	-72 18 11.70	16.04	-0.246	45	20000 ± 3000	3.9 ± 0.4	94 ± 19 144 ±10	B2IV	B1.5III	
SMC5_004591	00 53 29.420	-72 17 31.20	17.89	-0.143	20	19000 ± 3900	4.4 ± 0.4	$329 \pm 99\ 99\ \pm 10$	B2V	B2III	
SMC5_004695	00 55 35.650	-72 17 07.30	15.37	-0.209	70	30500 ± 2400	4.2 ± 0.3	420 ± 42 142 ±10	B0V	O9IV	
SMC5_004700	00 55 09.910	-72 17 06.00	16.13	-0.206	50	20000 ± 2400	3.6 ± 0.3	93 ± 15 144 ±10	B2III-IV	B1III	
SMC5_004718	00 55 38.700	-72 16 59.80	17.83	-0.195	20	19000 ± 3800	4.5 ± 0.4	129 ± 39 146 ±10	B2V	B2IV	
SMC5_004872	00 55 13.800	-72 16 07.40	17.81	-0.152	25	17500 ± 3500	4.4 ± 0.4	$167 \pm 50\ 125\ \pm 10$	B3V	B3III	

Etoile	a (2000)	δ (2000)	V	B-V	S/N	T _{eff}	log g	Vsin i RV	CFP	CEW	comm.
SMC5_004885	00 57 30.930	-72 16 02.20	17.91	-0.217	30	18000 ± 3600	4.2 ± 0.4	221 ± 66 160 ±10	B2V	B2III	cl4
SMC5_004947	00 56 01.390	-72 15 42.80	17.90	-0.176	25	16500 ± 3300	4.3 ± 0.4	195 ± 59 129 ±10	B3V	B3III	
SMC5_004988	00 56 49.690	-72 15 29.60	15.72	-0.171	55	20000 ± 2400	3.7 ± 0.4	$134 \pm 21\ 157\ \pm 10$	B2IV	B1III	
SMC5 005014	00 55 29,400	-72 15 21.20	17.79	-0.176	30	15500 ± 3100	4.2 ± 0.4	$231 \pm 69\ 148 \pm 10$	B3V	B2.5III	
SMC5 005090	00 57 24 750	-72 14 54 20	17.00	-0.190	40	21500 ± 3200	4.3 ± 0.4	$105 + 21 \ 178 + 10$	B2V	B2III	
SMC5 005095	00 56 14 160	-72 14 53 30	17.27	-0.219	35	20000 ± 4000	42 + 04	261 + 78 175 + 10	B2V	B1 5IV	
SMC5 005215	00 54 25 910	-72 14 12 10	17.87	-0.225	20	19500 ± 3900	43 ± 0.1	$164 \pm 49\ 161 \pm 10$	B2V	B2IV	
SMC5 005229	00 54 19 400	-72 14 07 10	17.81	-0.128	20	17500 ± 3500 17500 + 3500	45 ± 0.1	141 + 42.91 + 10	B3V	B3III	
SMC5 013954	00 54 44 766	-72 27 54 67	16.63	-0.120	20 70	15000 ± 3300	33 ± 0.1	$317 \pm 32 126 \pm 10$	B3III	B2III	c18
SMC5 014509	00 54 55 840	-72 27 25 50	17.90	-0.052	20	15500 ± 1200 15500 ± 3100	45 ± 0.3	$174 + 52 120 \pm 10$ 174 + 52 188 +10	B3V	B2 5111	010
SMC5 014989	00 53 42 820	-72 26 51 40	17.23	-0.176	25	15500 ± 3100 17000 ± 3400	39 ± 0.4	80 + 24 140 +10	B3IV	B21011	
SMC5 015117	00 53 40 450	-72 26 44 70	18.00	-0.143	15	15000 ± 3000	42 ± 0.4	88 ± 26 140 ±10	B3V	B3III	
SMC5 015183	00 56 28 620	-72 26 45 70	15.61	0.021	55	10000 ± 3000 10000 ± 1200	4.2 ± 0.4	61 ± 10 132 ± 10		B6III	c10
SMC5 015618	00 53 58 460	-72 26 14 40	17.85	-0.198	20	22000 ± 4400	3.0 ± 0.3	40 ± 20 118 ± 10	R2V	B2III	cio
SMC5_015010	00 53 46 212	-72 25 10 21	17.05	-0.193	20 55	17500 ± 2100	4.3 ± 0.4	40 ± 20 110 ± 10 39 ± 20 130 ± 10	B3V	B3IV	
SMC5_016052	00 53 40.212	72 24 50 24	17.70	0.361	35 45	17500 ± 2100 18500 ± 2800	4.4 ± 0.4	39 ± 20 130 ± 10 123 ± 25 153 ± 10	B3V B3V	B3V	
SMC5 017228	00 53 10 100	72 24 33 20	17.50	0.238		18000 ± 2600 18000 ± 3600	4.3 ± 0.4	$125 \pm 25 155 \pm 10$ 53 ± 16 121 ±10	B2V	B2 5111	
SMC5_017228	00 53 19.190	-72 24 33.20	16.10	0.2230	23 50	18000 ± 3000	4.4 ± 0.4	35 ± 10 121 ± 10 158 ± 25 180 ± 10		D2.5111	
SMC5_020133	00 53 27.430	-72 21 34.70	16.10	-0.264	50 45	20300 ± 2300 17500 ± 2600	3.0 ± 0.4	$130 \pm 23 \ 109 \pm 10$ 74 + 15 148 + 10	D2IV D2IV	D0.5111	
SMC5_020505	00 55 48.080	-72 21 19.00	17.01	-0.210	45	17500 ± 2000 18500 ± 2700	3.3 ± 0.3	74 ± 13 140 ±10 242 + 72 111 + 10	BOIN	D1.JIII D1III	ol1
SMC5_020431	00 50 20.110	-72 21 19.30	17.91	-0.235	20	10000 ± 3700	4.2 ± 0.4	$243 \pm 73111 \pm 10$			CII
SMC5_020072	00 55 57.050	-72 21 00.70	13.00	-0.164	30	19000 ± 2500	3.3 ± 0.3	48 ± 20 100 ±10	D2IV D2V	DU.JIII	
SMC5_020755	00 53 50.748	-72 20 59.91	17.95	-0.200	45	17000 ± 2300 11000 ± 1100	4.4 ± 0.4	$04 \pm 15 155 \pm 10$		D 21 U	
SMC5_020815	00 55 48.502	-72 20 51.78	10.93	-0.128	00	11000 ± 1100 17000 + 2400	3.1 ± 0.3	$101 \pm 10 112 \pm 10$ 71 + 21 - 142 + 10	BAIN	BUII	
SMC5_021070	00 55 11.750	-72 20 40.10	17.00	-0.217	50	17000 ± 3400	3.9 ± 0.4	71 ± 21 145 ±10	BSIV	B2III D1 5III	
SMC5_021763	00 56 14.502	-72 19 55.42	17.02	-0.236	60	$1/500 \pm 1800$	3.8 ± 0.4	$324 \pm 52\ 109 \pm 10$	B2-31V	B1.5III	
SMC5_023315	00 56 30.648	-72 18 12.43	17.81	-0.265	40	18000 ± 2700	4.3 ± 0.4	91 ± 18 111 ± 10 27 ± 20 $1(1 \pm 10)$	B2V D2UI	B2III	
SMC5_023482	00 55 21.470	-72 17 46.30	15.22	-0.078	60	18500 ± 1800	3.3 ± 0.3	$3/\pm 20$ 161 ±10	B2III D1V	D 117	
SMC5_023575	00 56 11.8/0	-72 17 40.70	16.47	-0.189	40	25000 ± 3700	4.0 ± 0.4	65 ± 13 $1//\pm 10$	BIV	BIV	
SMC5_023656	00 53 50.860	-72 17 31.30	17.98	-0.124	20	16500 ± 3300	4.5 ± 0.4	$203 \pm 61\ 151 \pm 10$	B3V DOM	B3III	
SMC5_024390	00 57 34.860	-72 16 43.40	17.75	-0.168	20	18500 ± 3700	4.2 ± 0.4	$134 \pm 40\ 152 \pm 10$	B2V	B2IV D2IV	
SMC5_024464	00 57 28.590	-72 16 42.90	17.86	-0.125	20	12500 ± 2500	3.9 ± 0.4	$202 \pm 61.91 \pm 10$	B/IV DOIN	B3III	
SMC5_024949	00 55 44.580	-72 16 10.30	15.61	-0.266	60	20000 ± 2000	3.5 ± 0.3	$205 \pm 33\ 130 \pm 10$	B2IV	BOIN	
SMC5_025288	00 55 54.450	-72 15 48.70	17.39	-0.128	35	$1/500 \pm 3500$	4.0 ± 0.4	$1/9 \pm 54 \ 151 \pm 10$	B3IV	B2III OOIV	
SMC5_025394	00 56 04.350	-72 15 40.90	10.29	-0.295	33 20	24500 ± 4900	3.9 ± 0.4	$102 \pm 31\ 144 \pm 10$ $102 \pm 21\ 161 \pm 10$	BIIV	0910	
SMC5_025999	00 56 06.510	-72 14 57.70	17.79	-0.1/3	30	20000 ± 4000	4.4 ± 0.4	$102 \pm 51 \ 101 \pm 10$	B2V D2V	B2IV D2III	
SMC5_026250	00 55 48.220	-72 14 40.40	10.75	-0.190	40	18500 ± 2800	4.0 ± 0.4	$77 \pm 15 105 \pm 10$	B2V D2IV	B2III D2III	-16
SMC5_026331	00 54 11.975	-72 14 30.45	17.10	-0.171	15	18500 ± 1500	4.0 ± 0.3	05 ± 10 105 ±10	B2IV D2V	B2III D2W	C10
SMC5_020548	00 55 10.520	-72 14 32.80	17.51	-0.171	30 45	19000 ± 3800	4.4 ± 0.4	$15/\pm 4/102\pm 10$ $102\pm 20.166\pm 10$	B2V D2III IV	B2V D1III	-15
SMC5_028427	00 53 28.470	-72 12 01.60	15.99	-0.130	45	20000 ± 3000	3.7 ± 0.4	$195 \pm 39\ 100 \pm 10$	B2III-IV D2III	BIIII	C15
SMC5_037283	00 53 29.140	-72 26 45.10	15.00	-0.130	40	18000 ± 2700	3.5 ± 0.3	70 ± 15 158 ±10	B2III D2M	BIIII D1 CIV	
SMC5_037332	00 53 20.600	-72 26 21.90	17.95	-0.144	20	19000 ± 3800	4.5 ± 0.4	$2/3 \pm 82$ 158 ±10	B2V D2IV	BI.5IV	
SMC5_03/341	00 56 20.672	-72 26 25.49	16.57	-0.192	80	20500 ± 1200	3.7 ± 0.2	$104 \pm 10\ 158 \pm 10$	B2IV D2IV	BIIII	
SMC5_03/981	00 56 14.190	-72 20 17.10	10.17	-0.244	33	20500 ± 4100	3.9 ± 0.4	$12/\pm 38138\pm 10$	B2IV D2IV	B0.51V	
SMC5_038033	00 53 06.090	-72 19 38.50	15.61	-0.182	65	20000 ± 1800	3.7 ± 0.4	76 ± 12 185 ±10	B2IV D2V	BIIII	
SMC5_038144	00 56 34.389	-72 18 42.31	17.73	-0.252	35	16500 ± 3300	4.2 ± 0.4	62 ± 19 145 ±10	B3V	B2III D0 5111	
SMC5_038423	00 56 11.908	-72 15 49.49	17.14	-0.030	70	10000 ± 800	3.8 ± 0.3	$111 \pm 11 124 \pm 10$ 70 + 22 155 + 10	AUIV	B8.5III	
SMC5_038530	00 56 32.920	-72 14 48.30	17.31	-0.219	35	18000 ± 3600	4.1 ± 0.4	78 ± 23 155 ±10	B2V	B2III	
SMC5_038564	00 54 17.050	-72 14 20.50	10.07	-0.262	60	32000 ± 2900	4.1 ± 0.4	$3/1 \pm 59\ 158 \pm 10$	090	DAIL	
SMC5_038031	00 54 16.770	-72 13 35.40	17.75	-0.076	20	12500 ± 2500	3.8 ± 0.4	$510 \pm 95144 \pm 10$	B/IV DOM	BUII	
SMC5_045030	00 54 43.040	-72 27 30.80	17.53	-0.189	20	21500 ± 4300	4.5 ± 0.4	93 ± 28 158 ±10	B2V	BIIII	
SMC5_045148	00 54 42.744	-72 27 25.64	17.26	-0.136	65	14000 ± 1300	4.0 ± 0.4	$181 \pm 29\ 109 \pm 10$	BSIV	B3III	
SMC5_045795	00 54 01.565	-72 26 34.58	17.28	-0.274	60	$1/500 \pm 1600$	4.0 ± 0.4	49 ± 20 140 ±10	B3IV-V	B2.51V	
SMC5_046182	00 53 27.373	-72 26 00.86	17.14	-0.075	55 50	15500 ± 1400	3.9 ± 0.4	$/1 \pm 11$ 128 ±10	B3IV	B2.5III	
SMC5_046323	00 53 21.219	-72 25 49.73	17.59	-0.179	50	20000 ± 2400	4.3 ± 0.4	$197 \pm 32135 \pm 10$	B2V	B2IV D2IV	
SMC5_048080	00 53 05.720	-72 23 23.00	17.45	-0.095	30	16000 ± 3200	4.2 ± 0.4	82 ± 25 144 ±10	B3V DOM	B2III D2III	
SMC5_049673	00 55 30.151	-72 21 12.79	17.37	-0.249	55	18500 ± 1700	4.1 ± 0.4	$109 \pm 17\ 128 \pm 10$	B2V	B2III D2III	
SMC5_049695	00 55 22.620	-72 21 13.90	17.90	-0.201	25	20000 ± 4000	4.4 ± 0.4	$2/5 \pm 83$ 128 ±10	B2V	B2III	
SMC5_049858	00 53 59.190	-72 20 56.70	16.34	-0.254	40	20000 ± 3000	3.9 ± 0.4	107 ± 21 148 ±10	B2IV	B1.5III	17
SMC5_049859	00 53 39.290	-72 20 53.40	16.21	-0.208	40	17500 ± 2600	3.6 ± 0.3	$13/\pm 2/112\pm 10$	B3IV D2V	B1.5III	ci/
SMC5_050021	00 55 44.471	-72 20 47.77	17.23	-0.141	60 50	$1/500 \pm 1600$	4.2 ± 0.4	$127 \pm 20.138 \pm 10$	B3V D5V	B3IV D3IV	
SMC5_050309	00 55 49.114	-72 20 19.76	17.43	-0.181	50	14500 ± 1700	4.2 ± 0.4	$208 \pm 33\ 103 \pm 10$	B2A B2A	B 3111	
SMC5_050662	00 56 29.640	-72 19 52.30	16.37	-0.243	30	20000 ± 4000	3.9 ± 0.4	$161 \pm 48\ 158\ \pm 10$	B2IV	B1.5III	
SMC5_050882	00 56 32.022	-72 19 32.24	17.67	-0.168	45	12000 ± 1800	3.7 ± 0.4	$185 \pm 37\ 135 \pm 10$	B8III-IV	BellI	
SMC5_050904	00 56 46.740	-72 19 29.20	17.97	-0.249	20	19000 ± 3800	4.4 ± 0.4	63 ± 19 144 ±10	B2V	B2III	
SMC5_051112	00 55 36.805	-72 19 11.64	17.10	-0.247	35	$1/500 \pm 3500$	3.9 ± 0.4	$138 \pm 41114 \pm 10$	B3IV	BIV	
SMC5_051147	00 55 29.950	-72 19 09.90	15.90	-0.250	45	20500 ± 3100	3.8 ± 0.4	$246 \pm 49\ 133\ \pm 10$	B2IV	BIII	

Paramètres fondamentaux des étoiles B et Be observées des Nuages de Magellan

SMC_LEPU21 D13 S 8110 271 P 2410 P/31 D173 S D2700 + 300 + 30 + 43 - 40 + 30 + 43 - 40 + 10	Etoile	α (2000)	δ (2000)	V	B-V	S/N	T_{off}	log g	Vsin i	RV	CFP	CEW	comm.
SMC2.02242 00.55 3.046 7.12 (7.04.6) 1772 0.18 00 19000 = 3800 4.4 0.4 2.90 = 0 190 1 10 EV E2IT SMC5.025264 00.55 3.046 7.15 6.50 7.15 6.50 7.15 6.50 7.16 7.000 1.000 = 2.000 3.00 4 .00 1.01 4 .16 6.20 1.01 10 B2V B2V 1.01 SMC5.025364 00.54 7.000 7.11 4 .0.10 0.01 7.000 = 1.900 3.0 4.0 4 6.2 1.1 10 1.10 B3V B2V 2.01 6.6 1.1 10 1.10 B3V B2V 1.01 B3V B2V 1.01 B3V B2V 1.01 1.00 1.00 1.10 1.01 1.01 1.00 1.10 B3V R2V R2	SMC5 051923	00 55 58 105	-72 17 42 05	17.51	-0.157	45	20000 + 3000	$\frac{43+04}{43+04}$	384 + 77	160 + 10	B2V	B2IV	
SMCL 202541 0.0.5 30:360 0.77 38:255 7.15 93:33 7.27 423 9.0 0.000 ± 2200 3.2 ± ± 7.1 ± 1.5 ± ±1 102V 121V etal SMCS 305360 0.0 54 15.500 7.1 ± 50 333 1.7 ± -0.170 1.500 2.000 4.0 ± 0.4 1.6 ± 1.0 ± 1.2 ±1 1.6 ± 1.0 ±1.2 ±1 1.6 ± 1.0 ±1.2 ±1 1.6 ± 1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1 1.5 ±1.0 ±1.2 ±1.1 ±1.1 ±1.1 ±1.1 ±1.1 ±1.1 ±1.1	SMC5_052342	00 55 51 340	-72 17 04 40	17.72	-0.178	30	19000 ± 3800	44 ± 0.1	230 ± 69	140 ± 10 140 ± 10	B2V	B2III	
SMC 30000 00 57 8235 72 15 99.31 72 9 42.00 800 8000 800	SMC5_052564	00 55 30 486	-72 16 45 74	17.72	-0.157	50	20500 ± 2500	43 ± 0.1	71 + 11	157 ± 10	B2V	B2IV	
SIXC_30333 00.54 (7500) 72 (15 05.2) 71.5 -0.17 00.00 2000 4.1 0.1 0.1 0.0 0.000 1.000	SMC5_053069	00 57 28 255	-72 15 59 33	17.70	-0.230	50	18000 ± 2200	39 ± 0.1	50 ± 10	157 ± 10 152 + 10	B2IV	B2IV	c14
SMC2.039746 O 24 15 200 -72 14 45 00 77.14 -0.140 OD 17000 = 1500 3.9 ± 0.4 66 ± 11 140 ± 10 BIV	SMC5 053563	00 54 07 900	-72 15 05 20	17.15	-0.179	40	20000 ± 3000	41 ± 04	136 + 27	91 + 10	B2V	B1 5III	••••
SMC3_50907 00 55 2:500 -72 14 2:500 -70 0:44 30 17300 4:0 4:0 4 75 2:3 16:41 BU BU BU SMC3_50408 00 56 14:250 -72 21 5:55 17.93 -0.013 30 16000 3200 4:4:4:4 4:3:8:71 19:4:10 BU BU <td>SMC5_053746</td> <td>00 54 15 800</td> <td>-72 14 46 90</td> <td>17.13</td> <td>-0.140</td> <td>60</td> <td>17000 ± 1500</td> <td>39 ± 0.4</td> <td>150 ± 27</td> <td>140 + 10</td> <td>B3IV</td> <td>B2IV</td> <td>c16</td>	SMC5_053746	00 54 15 800	-72 14 46 90	17.13	-0.140	60	17000 ± 1500	39 ± 0.4	150 ± 27	140 + 10	B3IV	B2IV	c16
SMC5.96028 00 56 14.29 -72 14 25.0 1700 -4.2 4.04 -17 = 51 1701 B3V 22.011 SMC5.961688 00 56 50.90 -72 20 4.56 17.8 -0.013 30 20000 4.200 4.4 ± 0.4 37.2 ± 112 17.1 B3V B3V </td <td>SMC5_053967</td> <td>00 55 25 640</td> <td>-72 14 29 40</td> <td>17.12</td> <td>-0.143</td> <td>30</td> <td>17500 ± 3500</td> <td>40 ± 0.1</td> <td>75 ± 23</td> <td>164 ± 10</td> <td>B3IV</td> <td>B2III</td> <td>010</td>	SMC5_053967	00 55 25 640	-72 14 29 40	17.12	-0.143	30	17500 ± 3500	40 ± 0.1	75 ± 23	164 ± 10	B3IV	B2III	010
SMCS_D16181 00 55 50.1691 -22 20 45.57 17.93 -0.01 300 16000 + 2200 4.4 ± 0.4 23.8 ± 71 17.91 B3V B3UT SMCS_D16482 00 55 50.160 -72 27 37.80 17.0 -0.15 55 20000 ± 4000 4.3 ± 0.4 25.77 16.610 B2V B211 SMCS_D64781 00 55 23.160 -72 27 54.840 17.84 -0.161 B2 0000 ± 4000 4.3 ± 0.4 25.77 16.610 B2V B211 SMCS_D66380 00 53 23.162 -72 26 4.840 17.84 -0.161 80 20000 ± 1200 3.9 ± 0.2 18.9 ± 19 14.5 ± 10 B2V B211 SMCS_D66300 00 53 31.531 -72 12.8 ± 64 17.21 -0.122 0.171 50 16000 ± 1000 3.9 ± 0.4 18.2 ± 1 16.610 B1V B1II SMCS_D6630 00 55 13.153 -72 18.9 ± 0.41 17.1 ± 0.225 17.1 ± 0.20 17.1 ± 0.410 17.1 ± 0.20 17.1 ± 0.410 18.010 B1V B21II B1M.81.10 B21V B21II <t< td=""><td>SMC5_054028</td><td>00 56 14 250</td><td>-72 14 26 70</td><td>17.70</td><td>-0.214</td><td>30</td><td>17000 ± 3000 17000 ± 3400</td><td>41 ± 0.1</td><td>171 + 51</td><td>170 ± 10</td><td>B3V</td><td>B2 5111</td><td></td></t<>	SMC5_054028	00 56 14 250	-72 14 26 70	17.70	-0.214	30	17000 ± 3000 17000 ± 3400	41 ± 0.1	171 + 51	170 ± 10	B3V	B2 5111	
SMC5.01688 00 55 51:00 -72 20 4.64 17.82 -0.07 180 2000 4.20 4.2 6.44 72 ± 112 12 ± 10 D2V BI.III cill SMC5.06489 00 54 45.90 -72 27 32.80 17.1 -0.165 25 20000 4.200 4.2 6.44 25 ± 77 1 16.10 R2V B2V	SMC5_061681	00 56 50 991	-72 20 55 57	17.93	-0.013	30	16000 ± 3200	44 ± 0.1	238 ± 71	139 ± 10	B3V	B2.5III B2.5III	
SMC5_06478 00 56 28:10 7 22 75 940 16.29 -0.195 35 21000 + 4200 4.1 + 0.4 185 ± 56 227 + 77 166 ± 10 227 81.57 163 163 153 163 163 153 153 153 153 153 153 153 153 153 153 154 163 153 164 163 153 164 163 153 164 163 153 164 163 153 164 163 153 164 163 153 164 163 153 164 164 163 165 160 170 100 22 + 15 166 160 170 100 22 + 15 166 160 170 100 22 + 15 166 100 170 100 100 22 + 15 166 100 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110	SMC5 061688	00 56 50 160	-72 20 44 60	17.82	-0.071	30	20000 ± 4000	45 ± 0.1	372 ± 112	127 ± 10	B2V	B1III	
SMCS.06478 00 56 21:10 7.2 72 32.80 17.71 -0.165 25 20000 - 4000 4.3 ± 0.4 27 ± 7.7 0.164 20 82.1V SMCS.06490 00 53 20.30 7.2 63.53 17.34 -0.149 30 16500 ± 3300 4.4 ± 0.4 105 ± 32 ± 10 B3V B3V SMCS.06505 00 53 24.163 7.2 26 48.41 16.89 -0.100 80 17000 ± 1000 1.3 ± 11 H4 ± 10 B3V B3UV SMCS.06505 00 53 34.103 7.2 19 2.44 1.71 -0.122 5.5 24000 ± 2200 3.4 ± 0.4 1.8 ± 14 H4 ± 10 B3V B2UV SMCS.06707 00 56 12.30 7.2 14 4.21 1.71 -0.125 1.6000 ± 1000 3.7 ± 0.4 1.2 ± 12 1.8 ± 10 B3V B3UI SMCS.06707 00 56 12.30 7.2 14 4.550 1.71 -0.138 0.16000 ± 2200 3.4 ± 0.4 1.5 ± 32 1.8 ± 10 B3V B2UI SMCS.070716 00 56 4.3.37 7.2 14 5.20 1.7 ± 0.007 1.5500 ± 1200 3.9 ± 0.1	SMC5_064582	00 54 45 950	-72 27 59 40	16.29	-0.195	35	21000 ± 4200	41 ± 0.1	185 + 56	147 ± 10	B2V	B1 5III	c18
SMC5_06903 00 53 22 300 7.2 65 350 17.91 -0.199 200 1900 - 2800 4.4 ± 0.4 105 ± 32 22 5 ± 10 32W BXV SMC5_060504 00 53 22 592 7.2 64 844 1.6 50 -1.100 00 16500 ± 3200 4.4 ± 0.4 145 ± 10 B21V B21W B3W B3W SMC5_060504 00 53 21 1.40 7.2 25 4.44 1.6 54 -0.100 65 19000 ± 1000 4.2 ± 0.2 1.8 ± 10 B3W B3W SMC5_06630 00 53 1.513 -7.2 19 2.244 1.712 -0.225 2.400 ± 2.00 3.2 ± 1.3 16 ± 10 B3W B3IU SMC5_06630 00 56 0.130 -7.2 14 4.33 1.71 -0.138 1.8000 ± 2000 3.4 ± 4.1 105 ± 3.2 10 ± 10 B3W B3UU B3UV B3UV </td <td>SMC5_064781</td> <td>00 56 28 110</td> <td>-72 27 32 80</td> <td>17.71</td> <td>-0.165</td> <td>25</td> <td>20000 ± 4000</td> <td>4.1 ± 0.4</td> <td>257 ± 77</td> <td>147 ± 10 166 ± 10</td> <td>B2V B2V</td> <td>B2IV</td> <td>010</td>	SMC5_064781	00 56 28 110	-72 27 32 80	17.71	-0.165	25	20000 ± 4000	4.1 ± 0.4	257 ± 77	147 ± 10 166 ± 10	B2V B2V	B2IV	010
SMC5_06902 00535_2902 -72.64.84.0 17.84 -0.140 50 16500_2300 4.4±0.4 105_25_210 105_210_210 NUT B3V SMC5_06506 00532_1462 -72.64.84.0 16.85 -0.170 0000 1000 4.2±0.2 135_8±14 H4 =10 B3V B3V SMC5_06507 00533_11.0 -72.24.84.0 17.12 -0.225 52 20000 ± 200 3.2±0.4 184_12 181V B1V B1U1 SMC5_06750 00552_11.83 -72.14.84.00 17.71 -0.113 016000 ± 1900 3.2±0.4 125_82 181V B3V B3V <t< td=""><td>SMC5 064993</td><td>00 53 20 360</td><td>-72 26 53 50</td><td>17.03</td><td>-0.149</td><td>20</td><td>19000 ± 3800</td><td>4.5 ± 0.4</td><td>183 ± 55</td><td>100 ± 10 00 ± 10</td><td>B2V B2V</td><td>B2III</td><td></td></t<>	SMC5 064993	00 53 20 360	-72 26 53 50	17.03	-0.149	20	19000 ± 3800	4.5 ± 0.4	183 ± 55	100 ± 10 00 ± 10	B2V B2V	B2III	
SMC5_06964 00 56 4936 -72 26 4843 1.6 56 -0.170 80 20000 = 1200 3.9 + 0.2 185 ± 11 195 ± 10 B31V B31V SMC5_065350 00 53 31.46 -72 23 56.4 1.6 84 -0.100 4.2 1.5 ± 11 1.9 ± 10 B31V B31V SMC5_067460 00 55 31.33 -72 19 22.41 1.712 -0.225 52 2000 ± 1000 3.7 ± 0.4 80.4 1.9 ± 125 106 B1V B21U B31V B21U B31U B31V B21U B31V B21U B31U B31U B31U B31	SMC5_065022	00 53 20.500	-72 26 33.30	17.95	-0.140	30	16500 ± 3300	4.5 ± 0.4	105 ± 35 105 ± 32	125 ± 10	B3V	B3V	
SMC5_06205 00 53 14:40 -72 25 64.1 16.89 -0.100 80 17000 ± 1000 4.2 ± 0.2 153 ± 10.0 B21V B21	SMC5_065064	00 56 24 936	-72 26 48 43	16.56	-0.170	80	20000 ± 1200	4.4 ± 0.4	105 ± 52 189 ± 19	125 ± 10 145 ± 10	B2IV	B1 5III	c10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_065505	00 53 21 462	-72 25 26 14	16.50	-0.170	80	17000 ± 1200	3.7 ± 0.2	$135 \pm 1/$	143 ± 10 $1/0 \pm 10$	B3V	BIIV	010
SMC5.067346 00 55 11:33 -72 19 22.41 17.12 -0.225 55 24000 ± 2200 42 ± 0.4 92 ± 15 166 ± 10 B3TV B3TU SMC5.06756 00 55 11:85 -72 18 49.64 1577 -0.184 50 18500 ± 2200 3.6 ± 0.4 23.4 ± 10.6 ± 10 B3TV B3TU B3	SMC5 066230	00 53 21.402	-72 23 20.14	16.84	-0.100	65	19000 ± 1000	4.2 ± 0.2 3.9 ± 0.4	100 ± 14 80 ± 13	149 ± 10 132 ± 10	B2IV	B2III	
$ \begin{array}{c} \mathrm{MCS} \mathrm{D}(5) \\ \mathrm{MCS} \mathrm{D}(5) \\ \mathrm{D}(5) \\ \mathrm{MCS} \mathrm{D}(5) \\ \mathrm{D}(5)$	SMC5_067446	00 55 31 531	-72 23 00.30	17.12	-0.120	55	24000 ± 2200	3.7 ± 0.4	92 ± 15	152 ± 10 166 ± 10	B1V	B1III	
SMC5_068933 005 005 7-21 44 130 1577 0.184 50 18800 2200 3.6 0.4 23.4 23 1.6 10 B3III SMC5_06878 00.56 18.240 -72 14.25 17.83 0.211 30 16000 3200 4.4 0.4 125 23 14.4 10 B3IV B3IVI SMC5_071616 00.36 4.3 0.36 0.4 1.2 0.228 50 17500 210 4.3 1.4 10.4 10 B3V B22.511 SMC5_071640 00.36 0.55 4.33 1.722 1.0 1.8 0.007 12500 3.9 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 </td <td>SMC5_067596</td> <td>00 55 21 583</td> <td>-72 19 22.41</td> <td>17.12</td> <td>-0.171</td> <td>50</td> <td>16000 ± 1900</td> <td>4.2 ± 0.4 3.7 ± 0.4</td> <td>72 ± 13 74 ± 12</td> <td>135 ± 10</td> <td>BIV</td> <td>B2III</td> <td></td>	SMC5_067596	00 55 21 583	-72 19 22.41	17.12	-0.171	50	16000 ± 1900	4.2 ± 0.4 3.7 ± 0.4	72 ± 13 74 ± 12	135 ± 10	BIV	B2III	
$ \begin{array}{c} SMC5.068673 \\ SMC5.06877 \\ SMC5.07616 \\ SMC5.07616 \\ SMC5.07616 \\ SMC5.07616 \\ SMC5.07616 \\ SMC5.07617 \\ SMC5.07617 \\ SMC5.07617 \\ SMC5.07617 \\ SMC5.07617 \\ SMC5.07618 \\ SMC5.07184 \\ SMC5.0718$	SMC5_068593	00 55 21.505	-72 14 41 30	15.77	-0.184	50	18500 ± 2200	3.7 ± 0.4 3.6 ± 0.4	74 ± 12 234 ± 37	155 ± 10 166 ± 10	B2IV	B1III	
$ \begin{array}{c} 3\text{MCS} 30766 \\ 0 & 0 & 4 & 4 & 7.0 \\ \text{MCS} 30761 \\ 0 & 0 & 5 & 4.8 & 7.0 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 4.8 & 7.0 \\ 0 & 7.2 & 6 & 5.8 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 4.3 \\ 0 & 7.2 & 6 & 5.8 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 6.1 \\ 0 & 7.2 & 6 & 5.8 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 6.1 \\ 0 & 5 & 5.8 & 7.2 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 5.4 \\ 0 & 5 & 5.4 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 5.4 \\ 0 & 5 & 5.4 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 5.4 \\ 0 & 5 & 5.4 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 5.4 \\ 0 & 5 & 5.4 \\ \text{MCS} 3071876 \\ 0 & 0 & 5 & 5.4 \\ 0 & 5 & 5.4 \\ \text{MCS} 3072486 \\ 0 & 0 & 5 & 4.4 \\ 0 & 5 & 7.2 & 17 & 7.1 \\ 0 & 1.5 \\ \text{MCS} 3077486 \\ 0 & 0 & 5 & 4.4 \\ 0 & 5 & 7.2 & 17 & 7.1 \\ 0 & 7.2 & 14 & 5.2 \\ \text{MCS} 307769 \\ 0 & 0 & 5 & 5.4 \\ \text{MCS} 307769 \\ 0 & 0 & 5 & 7.2 & 17 & 4.5.2 \\ \text{MCS} 307760 \\ 0 & 0 & 5 & 4.4 \\ 0 & 1 & 7.4 \\ 0 & 7.2 & 17 & 5.2 \\ \text{MCS} 307760 \\ 0 & 0 & 5 & 4.4 \\ 0 & 7.2 & 17 & 5.2 \\ 1 & 7.2 & 1 & 7.5 \\ 0 & 1 & 7.4 \\ 0 & 7.2 & 1 & 7.2 \\ \text{MCS} 307760 \\ 0 & 0 & 5 & 4.4 \\ 0 & 7.2 & 1 & 7.2 \\ 0 & 5 & 7.1 & 4.7 \\ 1 & 4.5 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 20 & 1 \\ 0 & 5 & 1 & 1 & 0 \\ 0 & 1 & 20 & 1 \\ 0 & 5 & 1 & 1 & 0 \\ 0 & 1 & 30 & 1 & 10 \\ 1 & 1 & 1 & 0 & 100 \\ 1 & 20 & 1 & 100 \\ 1 & 20 & 1 & 100 \\ 1 & 20 & 1 & 100 \\ 1 & 20 & 1 & 100 \\ 1 & 100 & 1 & 100 \\ 1 & 20 & 1 & 100 \\ 1 & 100 & 100 \\ 1 & 100 & 100 \\ 1 & 100 & 100 \\ 1 & 100 & 100 \\ 1 & 100$	SMC5_068678	00 56 18 240	-72 14 41.30	17.83	0.104	30	16000 ± 2200 16000 ± 3200	3.0 ± 0.4	234 ± 37 105 ± 32	100 ± 10 01 ± 10	B2IV B2V	B3III	
$ \begin{array}{c} 3mc \pm 01100 & 0.0 \pm 0.100 & -7.2 \pm 0.280 & 17.10 & -0.188 & 50 & 17.00 \pm 2.00 & 1.3 \pm 0.4 & 135 \pm 2.2 & 154 \pm 10 & B3V & B2.5V \\ 3mc \pm 0.05 & 0.50 & 0.50 & -7.2 \pm 0.51 & 17.27 & -0.28 & 50 & 17.00 \pm 2.100 & 4.3 \pm 0.4 & 135 \pm 2.2 & 154 \pm 10 & B3V & B2.5V \\ 3mc \pm 0.50 & 0.50 & 0.50 & 0.72 \pm 0.51 & 17.18 & -0.07 & 70 & 15.500 \pm 12.000 & 3.9 \pm 0.3 & 79 \pm 10 & 17.3 \pm 0.5 & 19.18 & V & B2.5V \\ 3mc \pm 0.50 & 0.54 & 0.480 & -7.2 \pm 0.51 & 0.16 & 10 & -7.2 & 10 & 1800 & 27.00 & 3.7 \pm 0.4 & 190 \pm 38 & 17.3 \pm 10 & B3V & B2.5V \\ 3mc \pm 0.57 & 0.54 & 0.55 & 0.55 & -7.21 \pm 45.28 & 17.44 & -0.266 & 30 & 19500 \pm 3.00 & 4.2 \pm 0.4 & 190 \pm 38 & 17.3 \pm 10 & B3V & B2.V \\ 3mc \pm 0.57 & 28.570 & -7.21 \pm 45.28 & 17.44 & -0.266 & 30 & 19500 \pm 3.00 & 4.2 \pm 0.4 & 190 \pm 38 & 154 \pm 10 & B3V & B2.V \\ 3mc \pm 0.57 & 7.26 & 0.75 & 2.570 & -7.21 \pm 5.26 & 17.50 & -0.126 & 40 & 16000 \pm 2.400 & 4.1 \pm 0.4 & 99 \pm 0.3 & 144 \pm 14 & 412 & 10 & EV & B2.V \\ 3mc \pm 0.57 & 7.26 & 0.55 & 3.56 & -7.21 \pm 4.7.10 & 14.18 & -0.081 & 10 & 15500 \pm 3.100 & 4.3 \pm 0.4 & 300 \pm 50 & 149 \pm 10 & B3V & B2.V \\ 3mc \pm 0.57 & 7.26 & 0.75 & 4.1 & 16.6 & -0.067 & 7.5 & 19900 \pm 2.300 & 4.2 \pm 0.4 & 144 \pm 10 & B2.V & B2.V \\ 3mc \pm 0.57 & 7.21 & 27.56 & 17.66 & -0.067 & 15 & 19000 \pm 2.400 & 1.44 \pm 1.4 & 4.10 & B2.V & B2.V \\ 3mc \pm 0.57 & 7.21 & 27.36 & 15.38 & -0.067 & 0 & 17500 & 2.46 & 0.1 & 392 \pm 7.8 & 144 \pm 10 & B2.V & B2.V \\ 3mc \pm 0.57 & 7.21 & 2.350 & 15.38 & -0.07 & 60 & 17500 \pm 2.00 & 4.4 \pm 0.4 & 14.6 \pm 31 & 128 \pm 10 & B2.V & B2.S \\ 3mc \pm 0.50 & 7.21 & 2.36 & 17.48 & -0.153 & 4.00 & 0.50 & 1300 & 3.8 \pm 0.4 & 67 \pm 13 & 158 \pm 10 & B2.V & B2.S \\ 3mc \pm 0.50 & 9.53 & 5.611 & -7.22 & 2.61 & 17.23 & -0.138 & 60 & 15500 \pm 1400 & 4.2 \pm 0.3 & 59 \pm 10 & 1311 & B111 \\ 3mc \pm 0.50 & 803 & 17.60 & -7.21 & 5.30 & 17.88 & -0.163 & 20 & 1500 \pm 3100 & 3.8 \pm 0.4 & 67 \pm 13 & 158 \pm 10 & B2.V & B2.5111 \\ 3mc \pm 0.50 & 803 & 0.55 & 5.00 & 17.24 & 2.00 & 17.84 & -0.255 & 15000 \pm 3100 & 4.4 \pm 0.4 & 116 \pm 32 & 139 \pm 10 & B2V & B2.5111 \\ 3mc \pm 0.50 & 803 & 0.55 & 1.06 & -7.21 & 5.30 & 17.88 & -0.163 & $	SMC5_008078	00 54 04 760	-72 14 25.50	17.05	-0.211	30	10000 ± 3200 14500 ± 2000	4.4 ± 0.4	103 ± 32 125 ± 28	91 ± 10 1.48 ± 10		D2 5111	
$ \begin{array}{c} 3mc _ 2011610 \\ 3mc _ $	SMC5_071010	00 56 24 207	-72 20 33.60	17.10	-0.138	50	14300 ± 2900 17500 ± 2100	3.9 ± 0.4	123 ± 30 125 ± 22	140 ± 10 154 ± 10	DJIV D2V	D2.5111 D2.5V	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_071042	00 56 05 100	-72 16 45.00	17.27	-0.226	30 45	17500 ± 2100 16500 + 2500	4.3 ± 0.4	133 ± 22 163 ± 23	134 ± 10 120 ± 10		D2.5V	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_071945	00 56 05.100	-72 10 51.74	17.42	-0.100	43	10300 ± 2300	3.9 ± 0.4	105 ± 55	139 ± 10 146 ± 10	DOIN	D2.3111	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_073584	00 56 10.006	-72 20 23.79	1/.18	-0.070	70	15500 ± 12000	3.9 ± 0.3	79 ± 10	140 ± 10 200 + 10	BOIN	B2.5III	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_074305	00 55 54.555	-72 21 30.12	10.88	-0.101	/0	22500 ± 1800	4.0 ± 0.3	$3/0 \pm 38$	209 ± 10 172 ± 10	BIIV	BIIV D1 5W	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_074856	00 54 01.880	-72 17 59.00	10.19	-0.227	40	18000 ± 2700	5.7 ± 0.4	190 ± 38	$1/3 \pm 10$	B2IV D2V	BI.SIV	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_075241	00 57 28.570	-72 14 52.80	17.41	-0.206	30	19500 ± 3900	4.2 ± 0.4	180 ± 54	151 ± 10 142 + 10	B2V D2V	B2IV D2 SIU	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_077659	00 55 52.585	-/2 1/ 45.21	17.00	-0.125	40	16000 ± 2400	4.1 ± 0.4	99 ± 20	143 ± 10	B3V D2V	B2.5III	
SMC5.07640 005 347.604 -721728.37 16.63 -0.067 75 19000 ± 1300 35 0.3 144 ± 14 144 ± 10 B21V B21II SMC5.078412 00 53 17.600 -72 24 28.60 16.38 -0.181 40 19500 ± 200 3.4 ± 0.4 392 ± 78 154 ± 10 B21V B21U B21V	SMC5_07/666	00 53 04.170	-72 17 26.60	17.90	-0.041	20	15500 ± 3100	4.3 ± 0.4	300 ± 90	149 ± 10	B3V DOUL	B3III D2III	
SMC.5.07916 00 53 05.950 -7.2 18 47.10 14.18 -10.081 110 11500 ± 600 2.0 ± 0.1 85 ± 10 12.2 ± 10 B81111 B211V B0.5V SMCS.070916 00 55 51.084 -7.2 12 88.60 16.38 -0.18 40 19500 ± 2000 3.6 ± 0.4 392 ± 78 154 ± 10 B21V B0.5V SMCS.070926 00 55 51.084 -7.2 12 85.60 17.61 -0.244 50 18000 ± 2200 3.6 ± 0.4 67 ± 13 158 ± 10 B21V B0.11I B61II SMCS.070926 00 53 15.660 -72 11 27.30 16.47 -0.185 40 20500 ± 3100 3.8 ± 0.4 67 ± 13 158 ± 10 B21V B1III B1IV SULSIII SMCS.080028 00 53 25.611 -72 12 22.61 17.33 -0.171 70 18000 ± 1400 3.8 ± 0.4 146 ± 33 139 ± 10 B2V S2.51II SMCS.080124 00 55 08.59 -72 19 8.80 17.86 -0.255 50 20000 ± 4.00 4.3 ± 0.4 186 ± 30 109 ± 10 B2V B2VIII S4 S4 53 ± 10 17.65 50.166 51.5000 ± 3000	SMC5_07/6/0	00 55 47.604	-72 17 28.37	16.63	-0.067	75	19000 ± 1300	3.9 ± 0.3	144 ± 14	144 ± 10 122 + 10	B2IV	B2III D2III	
SMC5.079021 00 53 17.000 -72 24 28.00 16.38 -0.18 40 19500 ± 2900 3.0 ± 0.4 392 ± 78 154 ± 10 B2IV B0.5V SMC5.079164 00 55 50.050 -72 19 23.30 15.38 -0.024 50 18000 ± 2000 4.1 ± 0.4 68 ± 11 128 ± 10 B2IV B2.1V B1III SMC5.079508 00 55 15.660 -72 11 27.30 16.47 -0.185 40 20500 ± 3100 3.8 ± 0.4 67 ± 13 158 ± 10 B2IV B1III SMC5.079508 00 53 15.660 -72 11 27.30 16.47 -0.185 40 20500 ± 3100 3.8 ± 0.4 67 ± 13 158 ± 10 B2IV B1III SMC5.080142 00 55 13.451 -72 15 33.18 17.05 -0.171 70 18000 ± 1400 4.2 ± 0.3 59 ± 10 139 ± 10 B2V B2III SMC5.082184 00 55 08.970 -72 19 58.88 17.20 -0.101 50 16500 ± 2000 4.3 ± 0.4 16 ± 2 134 ± 10 B3V B2III C44 154 ± 10 B3V B2III	SMC5_078415	00 53 05.950	-/2 18 4/.10	14.18	-0.081	110	11500 ± 600	2.6 ± 0.1	85 ± 10	122 ± 10	B8II-III	B2III	
SMC5.079264 00 55 51.084 -7.2 12 28.30 17.61 -0.244 50 18000 ± 2200 3.4 ± 0.4 0.8 ± 11 12.8 ± 10 B2/V B2.31V SMC5.079264 00 55 50.05 -72 14 25.70 15.12 -0.029 60 17000 ± 1600 3.4 ± 0.4 67 ± 13 15.8 ± 10 B21V B1III SMC5.079508 00 53 32.661 -72 21 22.22.61 17.23 -0.138 60 15500 ± 1400 3.8 ± 0.4 14.6 ± 23 132 ± 10 B31V B2.5III SMC5.080028 00 53 32.611 -72 22 22.61 17.23 -0.138 60 15500 ± 1400 3.8 ± 0.4 14.6 ± 23 109 ± 10 B2V B2.5III SMC5.080031 00 56 09.859 -72 19 58.80 17.86 -0.255 50 20000 ± 2400 4.3 ± 0.4 18.6 ± 30 109 ± 10 B2V B2.III SMC5.082144 00 55 09.870 -72 19 28.00 17.84 -0.255 50 20000 ± 2400 4.3 ± 0.4 18.6 ± 30 109 ± 10 B2V B2.III B2V B2.III SMC5.08248 00 50 32.780 -72 18.93.10 17.65 -0.168 25 15000 ±	SMC5_079021	00 53 17.600	-72 24 28.60	16.38	-0.181	40	19500 ± 2900	3.6 ± 0.4	392 ± 78	154 ± 10	B2IV	B0.5V	
SMC5.079264 00 55 30.050 -72 19 23.30 15.38 -0.097 60 17500 ± 1000 3.4 ± 0.3 3.4 ± 0.3 3.0 ± 20 199 ± 10 B3111 B1111 SMC5.079405 00 53 15.660 -72 11 27.30 16.47 -0.185 40 20500 ± 3100 3.8 ± 0.4 67 ± 13 158 ± 10 B21V B1111 SMC5.079008 00 53 25.61 -72 22 22.61 17.23 -0.185 40 20500 ± 3100 3.8 ± 0.4 164 ± 23 132 ± 10 B31V B2.5111 SMC5.080042 00 55 13.451 -72 15 33.18 17.05 -0.171 70 18000 ± 1400 4.2 ± 0.3 59 ± 10 139 ± 10 B2V B2111 CI4 SMC5.080142 00 55 08.970 -72 19 58.80 17.86 -0.255 50 20000 ± 2400 4.2 ± 0.3 59 ± 10 139 ± 10 B3V B2111 cl4 SMC5.082144 00 55 08.970 -72 17 18 30.0 17.45 -0.166 25 15000 ± 3000 4.1 ± 0.4 115 ± 54 162 ± 10 B2V B2111 cl4 SMC5.082441 00 53 57.68 -72 17 83.0.0 17.65 -	SMC5_079166	00 55 51.084	-72 21 28.56	17.61	-0.244	50	18000 ± 2200	4.1 ± 0.4	68 ± 11	128 ± 10	B2V	B2.51V	
SMCS.079405 00 50 53 7.390 -72 14 55./0 15.12 -00.029 600 10000 ± 900 2.9 ± 0.3 4/ ± 20 194 ± 10 A011-III B0111 SMCS.079508 00 53 25.611 -72 22 22.61 17.23 -0.138 60 15500 ± 1400 3.8 ± 0.4 146 ± 23 132 ± 10 B3IV B2.5III SMCS.070508 00 53 15.61 -72 15 33.18 17.05 -0.171 70 18000 ± 1400 4.4 ± 0.4 116 ± 35 109 ± 10 B2V B2.5III SMCS.080142 00 55 03.5451 -72 15 53.18 17.05 -0.171 70 18000 ± 1400 4.2 ± 0.3 59 ± 10 139 ± 10 B2V B2.5III SMCS.080144 00 56 09.859 -72 19 58.80 17.86 -0.255 50 20000 ± 2400 4.0 ± 0.4 161 ± 26 134 ± 10 B3V B2UII cl4 SMCS.082156 00 53 32.240 -72 19 28.00 17.84 -0.254 25 17500 ± 3400 4.5 ± 0.4 211 ± 63 163 ± 10 B2V B2UII cl4 SMCS.082157 00 53 22.400 72 19 28.00 17.84 -0.187 160 ± 1000	SMC5_079264	00 55 50.050	-72 19 23.30	15.38	-0.097	60	$1/500 \pm 1600$	3.4 ± 0.3	50 ± 20	159 ± 10	B3III	BIIII	
SMC5.00280 00 35 15.660 -72 11 27.30 10.87 40.185 40 20500 ± 3100 3.8 ± 0.4 67 ± 13 158 ± 10 B21V B1III SMC5.00203 00 53 16.190 -72 22 02.61 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 22.26.1 7.22 15 33.81 7.05 -0.171 70 18000 ± 1400 4.4 ± 0.4 116 ± 23 169 ± 10 B2V B2III SMC5.08142 00 55 08.970 -72 15 58.83 17.20 -0.101 50 16500 ± 2000 4.0 ± 0.4 161 ± 26 134 ± 10 B2V B2III cl4 SMC5.082144 00 50 8.970 -72 18 39.10 17.65 -0.166 25 15000 ± 3000 4.1 ± 0.4 260 ± 78 122 ± 10 BSV B2.5III SMC5.082353 00 53 10.066 -72 11 78.90 17.24 -0.179 60 17000 ± 1500 3.4 ± 0.4 15 ± 10 B3IV B2.5III	SMC5_079405	00 56 37.590	-72 14 55.70	15.12	-0.029	60	10000 ± 900	2.9 ± 0.3	47 ± 20	194 ± 10	A0II-III	BOIII	
SMCS.080028 00 53 25.611 -72 22 22.61 17.25 -0.138 60 15500 ± 1400 3.8 ± 0.4 146 ± 23 152 ± 10 B31V B2.51II SMCS.080030 00 55 13.451 -72 15 33.18 17.05 -0.171 70 18000 ± 1400 4.2 ± 0.3 59 ± 10 139 ± 10 B2V B2.VI SMCS.080814 00 56 09.859 -72 19 58.80 17.86 -0.255 50 20000 ± 2400 4.3 ± 0.4 186 ± 30 109 ± 10 B3V B2UII SMCS.080122 00 57 31.196 -72 19 28.00 17.84 -0.254 25 17500 ± 3400 4.5 ± 0.4 11 ± 63 163 ± 10 B2V B2UII cl4 SMCS.082196 00 53 32.760 -72 19 28.00 17.85 -0.166 25 15000 ± 3700 4.4 ± 0.4 11 ± 63 163 ± 10 B2V BSV B2.5III SMCS.082373 053 20.760 -72 24 26.02 16.81 -0.198 65 11500 ± 1000 3.4 ± 0.4 316 ± 51 11 ± 10 BSIII B0III cl5 SMCS.082923 00 53 22.760 -72 24 3.40 17.42 -0.198 60 1500 ± 10	SMC5_079508	00 53 15.660	-72 11 27.30	16.47	-0.185	40	20500 ± 3100	3.8 ± 0.4	$6/\pm 13$	158 ± 10	B2IV	BIIII	
SMC5.080033 00 53 16.190 -72 22 28.80 17.88 -0.163 20 15500 +4 +0.4 116 45 109 ±10 B3V B2.SIIV SMC5.080814 00 56 09.55 9 100 +2 ±0.3 59 10 9±10 B2V B2.SIV SMC5.080814 00.56 09.879 -72 19 58.80 17.86 -0.255 50 20000 +2.00 4.0 161 ±2 134 ±10 B3V B2UII cl4 SMC5.082162 00 53 32.240 -72 17 7.01 7.01 15500 ±3000 4.1 ±0.4 115 ±34 162 ±10 B2V B2UII cl4 SMC5.082196 00 53 32.0780 -72 17 39.10 17.65 -0.166 25 15000 ±100 3.4 ±0.3 16 ±11 ±10 B3III BGIII SMC5.08253 053 26.110 -72 14.30 -0.209 16000	SMC5_080028	00 53 25.611	-72 22 22.61	17.23	-0.138	60	15500 ± 1400	3.8 ± 0.4	146 ± 23	132 ± 10	B3IV	B2.5III	
SMC5_080142 00 55 13.451 -72 15 33.18 17.05 -0.171 70 18000 ± 1400 4.2 ± 0.3 59 ± 10 139 ± 10 B2V B2LIII SMC5_080142 00 56 09.859 -72 15 58.83 17.20 -0.101 50 16500 ± 2000 4.3 ± 0.4 186 ± 30 109 ± 10 B2V B2LIII cl4 SMC5_082184 00 55 08.970 -72 19 28.80 17.84 -0.254 25 17500 ± 3400 4.5 ± 0.4 211 ± 63 163 ± 10 B2V SMC5_082379 00 53 20.780 -72 17 3.90 17.85 -0.187 20 18500 ± 3700 4.4 ± 0.4 115 ± 34 162 ± 10 B2V SMC5_082379 00 53 20.780 -72 17 49.41 17.45 -0.166 25 15000 ± 3000 4.4 ± 0.4 260 ± 78 122 ± 10 BSV B2.51II SMC5_082383 00 53 20.780 -72 17 49.41 17.24 -0.179 60 17000 ± 1500 3.8 ± 0.4 316 ± 51 125 ± 10 B3IU B3V B3III B0III SMC5_082637 00 53 22.300 17.42 -0.108 30 19500 ± 3900 4.5 ± 0.4 324 ± 12 151 ± 10 B3V B3III	SMC5_080033	00 53 16.190	-72 22 08.80	17.88	-0.163	20	15500 ± 3100	4.4 ± 0.4	116 ± 35	109 ± 10	B3V	B2.5III	
SMC5_080814 00 56 09.859 -72 19 58.80 17.86 -0.255 50 20000 4.3 ± 0.4 186 ± 30 109 ± 10 B3V B2III SMC5_081252 00 57 31.196 -72 15 58.83 17.20 -0.101 50 16500 ± 2000 4.0 ± 0.4 161 ± 26 134 ± 10 B3V B2III cl4 SMC5_082184 00 55 08.970 -72 17 13.90 17.85 -0.187 20 18500 ± 3700 4.4 ± 0.4 115 ± 34 162 ± 10 B2V SMC5_082379 00 53 20.780 -72 17 83.01 17.65 -0.166 25 15000 ± 3000 4.1 ± 0.4 206 ± 78 122 ± 10 BSV B2.5III SMC5_082441 00 53 26.190 -72 17 49.41 17.24 -0.199 60 17000 ± 1500 3.8 ± 0.4 316 ± 51 125 ± 10 B3IV B3V SMC5_083593 00 53 24.320 -72 21 34.390 14.36 -0.019 75 15500 ± 1100 2.9 ± 0.2 67 ± 10 148 ± 10 B3IU B3III B3III </td <td>SMC5_080142</td> <td>00 55 13.451</td> <td>-72 15 33.18</td> <td>17.05</td> <td>-0.171</td> <td>70</td> <td>18000 ± 1400</td> <td>4.2 ± 0.3</td> <td>59 ± 10</td> <td>139 ± 10</td> <td>B2V</td> <td>B2.5IV</td> <td></td>	SMC5_080142	00 55 13.451	-72 15 33.18	17.05	-0.171	70	18000 ± 1400	4.2 ± 0.3	59 ± 10	139 ± 10	B2V	B2.5IV	
SMC5_081252 00 57 31.196 -72 15 58.83 17.20 -0.101 50 16500 ± 2000 4.0 ± 0.4 161 ± 26 134 ±10 B3V B2UI cl4 SMC5_082184 00 55 08.970 -72 17 13.90 17.84 -0.254 25 17500 ± 3400 4.4 ± 0.4 115 ± 34 162 ±10 B2V SMC5_082196 00 53 32.240 -72 17 13.90 17.84 -0.166 25 15000 ± 3000 4.4 ± 0.4 115 ± 34 162 ±10 B2V SMC5_082383 00 55 01.106 -72 17 49.41 17.84 -0.179 60 17000 ± 1500 3.8 ± 0.4 316 ±51 125 ±10 B3IU B3U B3U SMC5_082593 00 53 22.370 -72 22 32.00 17.42 -0.108 30 19500± 3300 4.5 ± 0.4 321 ± 65 149 ±10 B2V B2III Cl5 SMC5_083647 00 53 25.390 -72 21 34.390 17.93 -0.209 20 16000 ± 3200 4.5 ± 0.4 321 ± 65 149 ±10 B2V B2III cl5 SMC5_083647 00 53 25.290 -72 24 14.04 17.44 -0.103 70 12000 ± 2400 3.6 ± 0.3 <td>SMC5_080814</td> <td>00 56 09.859</td> <td>-72 19 58.80</td> <td>17.86</td> <td>-0.255</td> <td>50</td> <td>20000 ± 2400</td> <td>4.3 ± 0.4</td> <td>186 ± 30</td> <td>109 ± 10</td> <td>B2V</td> <td>B2III</td> <td></td>	SMC5_080814	00 56 09.859	-72 19 58.80	17.86	-0.255	50	20000 ± 2400	4.3 ± 0.4	186 ± 30	109 ± 10	B2V	B2III	
SMC5_082184 00 55 08 970 -72 19 28.00 17.84 -0.254 25 1750 ± 3400 4.5 ± 0.4 211 ± 63 163 ± 10 B2V SMC5_082179 00 53 32.240 -72 17 13.90 17.85 -0.187 20 18500 ± 3700 4.4 ± 0.4 115 ± 34 162 ± 10 B2V SMC5_082379 00 53 20.780 -72 12 39.10 17.65 -0.166 25 15000 ± 3000 4.1 ± 0.4 260 ± 78 122 ± 10 B5V B2.5III SMC5_082383 00 56 11.066 -72 17 49.41 17.24 -0.179 60 17000 ± 1500 3.8 ± 0.4 316 ± 51 125 ± 10 B3IV B3IV B3V SMC5_083593 00 53 26.3760 -72 23 43.90 17.42 -0.108 30 19500 ± 3200 4.5 ± 0.4 374 ± 112 151 ± 10 B3V B2III SMC5_083647 00 53 26.359 -72 24 34.90 17.93 -0.202 20 16000 ± 3200 4.5 ± 0.4 374 ± 112 151 ± 10 B3V B2III Cls SMC5_083647 00 53 26.559 -72 24 34.90 17.93 -0.202 50 10000 ± 200 3.6 ± 0.3 241 ± 72 1	SMC5_081252	00 57 31.196	-72 15 58.83	17.20	-0.101	50	16500 ± 2000	4.0 ± 0.4	161 ± 26	134 ± 10	B3V	B2III	cl4
SMC5_082196 00 53 32.240 -72 17 13.90 17.85 -0.187 20 18500 ± 3700 4.4 ± 0.4 115 ± 34 162 ± 10 B2V SMC5_082379 00 53 32.240 -72 18 39.10 17.65 -0.166 25 15000 ± 3000 4.1 ± 0.4 260 ± 78 122 ± 10 BSV B2.5III SMC5_082441 00 53 59.768 -72 24 26.02 16.81 -0.198 65 11500 ± 1000 3.4 ± 0.3 95 ± 15 11 ± 10 B8III B6III SMC5_082923 00 53 20.760 -72 21 39.90 14.36 -0.019 75 15500 ± 1100 2.9 ± 0.2 67 ± 10 148 ± 10 B3III B0III cl5 SMC5_083647 00 53 22.3760 -72 23 34.390 17.93 -0.229 20 16000 ± 3200 4.5 ± 0.4 374 ± 112 151 ± 10 B3V B3III SMC5_083647 00 53 25.390 -72 24 34.90 17.93 -0.025 50 16000 ± 3200 4.5 ± 0.4 134 ± 12 151 ± 10 B3V-V B2III cl5 SMC5_083647 00 53 25.059 -72 24 38.51 16.60 -0.117 60 17500 ± 1600	SMC5_082184	00 55 08.970	-72 19 28.00	17.84	-0.254	25	17500 ± 3400	4.5 ± 0.4	211 ± 63	163 ± 10	B2V		
SMC5_082379 00 53 20.780 -72 18 39.10 17.65 -0.166 25 15000 ± 3000 4.1 ± 0.4 260 ± 78 122 ± 10 B5V B2.5III SMC5_082441 00 53 59.768 -72 24 26.02 16.81 -0.198 65 11500 ± 1000 3.4 ± 0.3 95 ± 15 111 ± 10 B8III B6III SMC5_082923 00 53 26.190 -72 11 39.90 14.36 -0.019 75 15500 ± 1100 2.9 ± 0.2 67 ± 10 148 ± 10 B3IV B2V B2III SMC5_083593 00 53 22.3760 -72 23 34.390 17.93 -0.209 20 16000 ± 3200 4.5 ± 0.4 374 ± 112 151 ± 10 B3V B3III B0III cls SMC5_083647 00 53 25.390 -72 14 4.04 17.94 -0.103 70 12000 ± 2400 3.6 ± 0.3 241 ± 72 101 ± 10 B7III B3IIV B3III SMC5_083676 00 53 25.620 -72 24 30.30 15.20 -0.025 50 10000 ± 2400 3.6 ± 0.3 241 ± 72 101 ± 10 B7III B3IIV B3IV S2.5IV SMC5_086367 00 55 40.570 -72 12 54.20	SMC5_082196	00 53 32.240	-72 17 13.90	17.85	-0.187	20	18500 ± 3700	4.4 ± 0.4	115 ± 34	162 ± 10	B2V		
SMC5_082441 00 53 59.768 -72 24 26.02 16.81 -0.198 65 11500 ± 1000 3.4 ± 0.3 95 ± 15 111 ± 10 B8III B6III SMC5_082583 00 56 11.066 -72 17 49.41 17.24 -0.179 60 17000 ± 1500 3.8 ± 0.4 316 ± 51 125 ± 10 B3IV B3V SMC5_082593 00 53 26.190 -72 12 32.00 17.42 -0.108 30 19500 ± 3900 4.5 ± 0.4 221 ± 66 149 ± 10 B2V B2III SMC5_083615 00 53 24.320 -72 23 43.90 17.93 -0.209 20 16000 ± 3200 4.5 ± 0.4 374 ± 112 151 ± 10 B3V B3III SMC5_083647 00 53 26.522 -72 24 14.04 17.44 -0.103 70 12000 ± 2400 3.6 ± 0.3 241 ± 72 101 ± 10 B7III B3IV-V B2III cls SMC5_084582 00 54 05.59 -72 22 30.30 15.20 -0.025 50 10000 ± 1200 3.1 ± 0.3 30 ± 20 128 ± 10 B1IV B2IV B2.SIV SMC5_086667 00 54 0.5.90 -72 21 554.20 17.34 -0.266 35 <	SMC5_082379	00 53 20.780	-72 18 39.10	17.65	-0.166	25	15000 ± 3000	4.1 ± 0.4	260 ± 78	122 ± 10	B5V	B2.5III	
SMC5_082583 00 56 11.066 -72 17 49.41 17.24 -0.179 60 17000 ± 1500 3.8 ± 0.4 316 ± 51 125 ± 10 B3IV B3V SMC5_082923 00 53 26.190 -72 12 13 9.90 14.36 -0.019 75 15500 ± 1100 2.9 ± 0.2 67 ± 10 148 ± 10 B3III B0III cl5 SMC5_083615 00 53 24.320 -72 22 34.390 17.93 -0.209 20 16000 ± 3200 4.5 ± 0.4 374 ± 112 151 ± 10 B3V B3III SMC5 SMC5_083647 00 53 25.390 -72 14 4.04 17.93 -0.322 35 16500 ± 3300 4.0 ± 0.4 159 ± 32 163 ± 10 B3IV-V B2III cl5 SMC5_083676 00 53 26.252 -72 24 14.04 17.44 -0.103 70 12000 ± 2400 3.6 ± 0.3 241 ± 72 10 ± 10 B7III B3IV-V B2.III SMC5_084582 00 54 05.590 -72 23 0.30 15.20 -0.025 50 10000 ± 1200 3.1 ± 0.3 30 ± 20 128 ± 10 A0III B7III SMC5_086367 00 55 42.770 -72 15 54.20 17.34 -0.266	SMC5_082441	00 53 59.768	-72 24 26.02	16.81	-0.198	65	11500 ± 1000	3.4 ± 0.3	95 ± 15	111 ± 10	B8III	B6III	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_082583	00 56 11.066	-72 17 49.41	17.24	-0.179	60	17000 ± 1500	3.8 ± 0.4	316 ± 51	125 ± 10	B3IV	B3V	
SMC5_083593 00 53 23.760 -72 22 32.00 17.42 -0.108 30 19500 ± 3900 4.5 ± 0.4 221 ± 66 149 ± 10 B2V B2III SMC5_083615 00 53 24.320 -72 23 43.90 17.93 -0.209 20 16000 ± 3200 4.5 ± 0.4 374 ± 112 151 ± 10 B3V B3III SMC5_083647 00 53 25.390 -72 11 40.40 17.93 -0.322 35 16500 ± 3300 4.0 ± 0.4 159 ± 32 163 ± 10 B3IV-V B2III cl5 SMC5_084676 00 53 26.252 -72 24 14.04 17.44 -0.103 70 12000 ± 2400 3.6 ± 0.3 241 ± 72 101 ± 10 B7III B3III SMC5_084582 00 54 05.590 -72 22 30.30 15.20 -0.025 50 10000 ± 1200 3.1 ± 0.3 30 ± 20 128 ± 10 A0III B7III SMC5_086367 05 54 2.770 -72 15 54.20 17.34 -0.266 35 24000 ± 4800 4.3 ± 0.4 241 ± 72 180 ± 10 B1V B1V B1V B1V SMC5_08663 05 60 1.613 -72 21 21.99 17.61 -0.114 45 1500 ± 2300 4.3 ± 0.4	SMC5_082923	00 53 26.190	-72 11 39.90	14.36	-0.019	75	15500 ± 1100	2.9 ± 0.2	67 ± 10	148 ± 10	B3III	BOIII	cl5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_083593	00 53 23.760	-72 22 32.00	17.42	-0.108	30	19500 ± 3900	4.5 ± 0.4	221 ± 66	149 ± 10	B2V	B2III	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SMC5_083615	00 53 24.320	-72 23 43.90	17.93	-0.209	20	16000 ± 3200	4.5 ± 0.4	374 ± 112	151 ± 10	B3V	B3III	
SMC5_083676 00 53 26.252 -72 24 14.04 17.44 -0.103 70 12000 ± 2400 3.6 ± 0.3 241 ± 72 101 ± 10 B7III B3III SMC5_084284 00 53 51.651 -72 26 38.51 16.60 -0.117 60 17500 ± 1600 3.9 ± 0.4 133 ± 21 154 ± 10 B3IV-V B2.5IV SMC5_084582 00 54 05.590 -72 22 30.30 15.20 -0.025 50 10000 ± 1200 3.1 ± 0.3 30 ± 20 128 ± 10 A0III B7III SMC5_086155 00 55 29.620 -72 17 06.10 17.93 -0.046 20 13500 ± 2700 3.8 ± 0.4 150 ± 45 132 ± 10 B5IV B2.5III SMC5_086367 00 55 42.770 -72 15 54.20 17.34 -0.266 35 24000 ± 4800 4.3 ± 0.4 284 ± 57 161 ± 10 B3V B6V SMC5_086807 00 56 12.340 -72 16 18.30 18.00 -0.013 20 12000 ± 2400 3.7 ± 0.4 112 ± 33 133 ± 10 B8IV B6III SMC5_087066 00 56 24.971 -72 16 05.50 17.27 -0.276 60 21500 ± 1900 4.3 ± 0.4<	SMC5_083647	00 53 25.390	-72 11 40.40	17.93	-0.322	35	16500 ± 3300	4.0 ± 0.4	159 ± 32	163 ± 10	B3IV-V	B2III	cl5
SMC5_084284 00 53 51.651 -72 26 38.51 16.60 -0.117 60 17500 ± 1600 3.9 ± 0.4 133 ± 21 154 ± 10 B3IV-V B2.5IV SMC5_084582 00 54 05.590 -72 22 30.30 15.20 -0.025 50 10000 ± 1200 3.1 ± 0.3 30 ± 20 128 ± 10 A0III B7III SMC5_086155 00 55 29.620 -72 17 06.10 17.93 -0.046 20 13500 ± 2700 3.8 ± 0.4 150 ± 45 132 ± 10 B5IV B2.5III SMC5_086367 00 55 42.770 -72 15 54.20 17.34 -0.266 35 24000 ± 4800 4.3 ± 0.4 241 ± 72 180 ± 10 B1V B1V SMC5_08663 00 56 01.613 -72 21 618.30 18.00 -0.013 20 12000 ± 2400 3.7 ± 0.4 112 ± 33 133 ± 10 B8IV B6III SMC5_087066 00 56 22.300 -72 16 05.80 17.91 -0.262 25 19500 ± 3900 4.3 ± 0.4 145 ± 44 144 ± 10 B2V B2VIII SMC5_092257 00 56 45.154 -72 19 04.56 17.84 -0.430 40 185	SMC5_083676	00 53 26.252	-72 24 14.04	17.44	-0.103	70	12000 ± 2400	3.6 ± 0.3	241 ± 72	101 ± 10	B7III	B3III	
SMC5_084582 00 54 05.590 -72 22 30.30 15.20 -0.025 50 10000 ± 1200 3.1 ± 0.3 30 ± 20 128 ± 10 A0III B7III SMC5_086155 00 55 29.620 -72 17 06.10 17.93 -0.046 20 13500 ± 2700 3.8 ± 0.4 150 ± 45 132 ± 10 B5IV B2.5III SMC5_086367 00 55 42.770 -72 15 54.20 17.34 -0.266 35 24000 ± 4800 4.3 ± 0.4 241 ± 72 180 ± 10 B1V B1IV SMC5_086663 00 56 01.613 -72 21 21.99 17.61 -0.114 45 15000 ± 2300 4.3 ± 0.4 284 ± 57 161 ± 10 B3V B6V SMC5_086807 00 56 12.340 -72 16 18.30 18.00 -0.013 20 12000 ± 2400 3.7 ± 0.4 112 ± 33 133 ± 10 B8IV B6III SMC5_087066 00 56 22.300 -72 16 05.80 17.91 -0.262 25 19500 ± 3900 4.3 ± 0.4 145 ± 44 144 ± 10 B2V B2VI SMC5_092257 00 56 45.154 -72 19 04.56 17.84 -0.430 40 18500 ± 2800 4.2 ± 0.4	SMC5_084284	00 53 51.651	-72 26 38.51	16.60	-0.117	60	17500 ± 1600	3.9 ± 0.4	133 ± 21	154 ± 10	B3IV-V	B2.5IV	
SMC5_086155 00 55 29.620 -72 17 06.10 17.93 -0.046 20 13500 ± 2700 3.8 ± 0.4 150 ± 45 132 ± 10 B5IV B2.5III SMC5_086367 00 55 42.770 -72 15 54.20 17.34 -0.266 35 24000 ± 4800 4.3 ± 0.4 241 ± 72 180 ± 10 B1V B1V SMC5_08663 00 56 01.613 -72 21 21.99 17.61 -0.114 45 15000 ± 2300 4.3 ± 0.4 284 ± 57 161 ± 10 B3V B6V SMC5_086607 00 56 12.340 -72 16 18.30 18.00 -0.013 20 12000 ± 2400 3.7 ± 0.4 112 ± 33 133 ± 10 B8IV B6III SMC5_087066 00 56 22.300 -72 16 50.80 17.91 -0.262 25 19500 ± 3900 4.3 ± 0.4 145 ± 44 144 ± 10 B2V B2VI SUII SMC5_092257 05 65 17.27 -0.430 40 18500 ± 2800 4.2 ± 0.4 <td>SMC5_084582</td> <td>00 54 05.590</td> <td>-72 22 30.30</td> <td>15.20</td> <td>-0.025</td> <td>50</td> <td>10000 ± 1200</td> <td>3.1 ± 0.3</td> <td>30 ± 20</td> <td>128 ± 10</td> <td>A0III</td> <td>B7III</td> <td></td>	SMC5_084582	00 54 05.590	-72 22 30.30	15.20	-0.025	50	10000 ± 1200	3.1 ± 0.3	30 ± 20	128 ± 10	A0III	B7III	
SMC5_086367 00 55 42.770 -72 15 54.20 17.34 -0.266 35 24000 ± 4800 4.3 ± 0.4 241 ± 72 180 ± 10 B1V B1V SMC5_086663 00 56 01.613 -72 21 21.99 17.61 -0.114 45 15000 ± 2300 4.3 ± 0.4 284 ± 57 161 ± 10 B3V B6V SMC5_086807 00 56 12.340 -72 16 18.30 18.00 -0.013 20 12000 ± 2400 3.7 ± 0.4 112 ± 33 133 ± 10 B8IV B6III SMC5_08702 00 56 22.300 -72 16 05.80 17.91 -0.262 25 19500 ± 3900 4.3 ± 0.4 145 ± 44 144 ± 10 B2V B2.5III SMC5_087026 00 56 24.971 -72 20 06.55 17.27 -0.276 60 21500 ± 1900 4.3 ± 0.4 145 ± 44 144 ± 10 B2V B2III SMC5_092257 05 64 5.154 -72 19 04.56 17.84 -0.430 40 18500 ± 2800 4.2 ± 0.4 136 ± 27 160 ± 10 B2V B2IV SMC5_092393 00 55 26.900 -72 17 56.20 16.30 -0.358 45 18000 ± 2700 3.8 ± 0.4 <t< td=""><td>SMC5_086155</td><td>00 55 29.620</td><td>-72 17 06.10</td><td>17.93</td><td>-0.046</td><td>20</td><td>13500 ± 2700</td><td>3.8 ± 0.4</td><td>150 ± 45</td><td>132 ± 10</td><td>B5IV</td><td>B2.5III</td><td></td></t<>	SMC5_086155	00 55 29.620	-72 17 06.10	17.93	-0.046	20	13500 ± 2700	3.8 ± 0.4	150 ± 45	132 ± 10	B5IV	B2.5III	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_086367	00 55 42.770	-72 15 54.20	17.34	-0.266	35	24000 ± 4800	4.3 ± 0.4	241 ± 72	180 ± 10	B1V	B1IV	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SMC5_086663	00 56 01.613	-72 21 21.99	17.61	-0.114	45	15000 ± 2300	4.3 ± 0.4	284 ± 57	161 ± 10	B3V	B6V	
SMC5_087022 00 56 22.300 -72 16 05.80 17.91 -0.262 25 19500 ± 3900 4.3 ± 0.4 145 ± 44 144 ±10 B2V B2.5III SMC5_087066 00 56 24.971 -72 20 06.55 17.27 -0.276 60 21500 ± 1900 4.3 ± 0.4 256 ± 41 152 ±10 B2V B2III SMC5_092257 00 56 45.154 -72 19 04.56 17.84 -0.430 40 18500 ± 2800 4.2 ± 0.4 136 ± 27 160 ±10 B2V B2IV SMC5_092393 00 55 26.900 -72 17 56.20 16.30 -0.358 45 18000 ± 2700 3.8 ± 0.4 89 ± 18 151 ±10 B2IV B2III SMC5_102979 00 54 50.967 -72 27 38.06 17.32 0.182 25 8000 ± 1600 2.5 ± 0.2 16 ± 20 151 ±10 A5II-III cl8 SMC5_115576 00 56 17.477 -72 18 01.19 17.29 -0.365 50 20000 ± 2400 3.9 ± 0.4 333 ± 53 150 ±10 B2IV B1.5III SMC5_1188968 00 54 50.080 -72 27 57.50 17.25 -0.320 40 18500 ± 2800 4.1 ± 0.4	SMC5_086807	00 56 12.340	-72 16 18.30	18.00	-0.013	20	12000 ± 2400	3.7 ± 0.4	112 ± 33	133 ± 10	B8IV	B6III	
SMC5_087066 00 56 24.971 -72 20 06.55 17.27 -0.276 60 21500 ± 1900 4.3 ± 0.4 256 ± 41 152 ± 10 B2V B2III SMC5_092257 00 56 45.154 -72 19 04.56 17.84 -0.430 40 18500 ± 2800 4.2 ± 0.4 136 ± 27 160 ± 10 B2V B2IV SMC5_092393 00 55 26.900 -72 17 56.20 16.30 -0.358 45 18000 ± 2700 3.8 ± 0.4 89 ± 18 151 ± 10 B2IV B2III SMC5_102979 00 54 50.967 -72 27 38.06 17.32 0.182 25 8000 ± 1600 2.5 ± 0.2 16 ± 20 151 ± 10 A5II-III cl8 SMC5_115576 00 56 17.477 -72 18 01.19 17.29 -0.365 50 20000 ± 2400 3.9 ± 0.4 333 ± 53 150 ± 10 B2IV B1.5III SMC5_1188968 00 54 50.080 -72 27 57.50 17.25 -0.320 40 18500 ± 2800 4.1 ± 0.4 177 ± 35 140 ± 10 B2V B2III cl8	SMC5_087022	00 56 22.300	-72 16 05.80	17.91	-0.262	25	19500 ± 3900	4.3 ± 0.4	145 ± 44	144 ± 10	B2V	B2.5III	
SMC5_092257 00 56 45.154 -72 19 04.56 17.84 -0.430 40 18500 ± 2800 4.2 ± 0.4 136 ± 27 160 ±10 B2V B2IV SMC5_092393 00 55 26.900 -72 17 56.20 16.30 -0.358 45 18000 ± 2700 3.8 ± 0.4 89 ± 18 151 ±10 B2IV B2III SMC5_102979 00 54 50.967 -72 27 38.06 17.32 0.182 25 8000 ± 1600 2.5 ± 0.2 16 ± 20 151 ±10 A5II-III cl8 SMC5_115576 00 56 17.477 -72 18 01.19 17.29 -0.365 50 20000 ± 2400 3.9 ± 0.4 333 ± 53 150 ±10 B2IV B1.5III SMC5_1188968 00 54 50.080 -72 27 57.50 17.25 -0.320 40 18500 ± 2800 4.1 ± 0.4 177 ± 35 140 ±10 B2V B2III cl8	SMC5_087066	00 56 24.971	-72 20 06.55	17.27	-0.276	60	21500 ± 1900	4.3 ± 0.4	256 ± 41	152 ± 10	B2V	B2III	
SMC5_092393 00 55 26.900 -72 17 56.20 16.30 -0.358 45 18000 ± 2700 3.8 ± 0.4 89 ± 18 151 ± 10 B2IV B2III SMC5_102979 00 54 50.967 -72 27 38.06 17.32 0.182 25 8000 ± 1600 2.5 ± 0.2 16 ± 20 151 ± 10 A5II-III cl8 SMC5_115576 00 56 17.477 -72 18 01.19 17.29 -0.365 50 20000 ± 2400 3.9 ± 0.4 333 ± 53 150 ± 10 B2IV B1.5III SMC5_1188968 00 54 50.080 -72 27 57.50 17.25 -0.320 40 18500 ± 2800 4.1 ± 0.4 177 ± 35 140 ± 10 B2V B2III cl8	SMC5_092257	00 56 45.154	-72 19 04.56	17.84	-0.430	40	18500 ± 2800	4.2 ± 0.4	136 ± 27	160 ± 10	B2V	B2IV	
SMC5_102979 00 54 50.967 -72 27 38.06 17.32 0.182 25 8000 ± 1600 2.5 ± 0.2 16 ± 20 151 ± 10 A5II-III cl8 SMC5_115576 00 56 17.477 -72 18 01.19 17.29 -0.365 50 20000 ± 2400 3.9 ± 0.4 333 ± 53 150 ± 10 B2IV B1.5III SMC5_1188968 00 54 50.080 -72 27 57.50 17.25 -0.320 40 18500 ± 2800 4.1 ± 0.4 177 ± 35 140 ± 10 B2V B2III cl8	SMC5_092393	00 55 26.900	-72 17 56.20	16.30	-0.358	45	18000 ± 2700	3.8 ± 0.4	89 ± 18	151 ± 10	B2IV	B2III	
SMC5_115576 00 56 17.477 -72 18 01.19 17.29 -0.365 50 20000 ± 2400 3.9 ± 0.4 333 ± 53 150 ± 10 B2IV B1.5III SMC5_188968 00 54 50.080 -72 27 57.50 17.25 -0.320 40 18500 ± 2800 4.1 ± 0.4 177 ± 35 140 ± 10 B2V B2III cl8	SMC5_102979	00 54 50.967	-72 27 38.06	17.32	0.182	25	8000 ± 1600	2.5 ± 0.2	16 ± 20	151 ± 10	A5II-III		cl8
$SMC5_188968 00 \ 54 \ 50.080 -72 \ 27 \ 57.50 17.25 -0.320 40 18500 \ \pm \ 2800 4.1 \ \pm \ 0.4 177 \ \pm \ 35 140 \ \pm 10 B2V \qquad B2III cl8$	SMC5_115576	00 56 17.477	-72 18 01.19	17.29	-0.365	50	20000 ± 2400	3.9 ± 0.4	333 ± 53	150 ± 10	B2IV	B1.5III	
	SMC5_188968	00 54 50.080	-72 27 57.50	17.25	-0.320	40	18500 ± 2800	4.1 ± 0.4	177 ± 35	140 ± 10	B2V	B2III	cl8

"EB" signif	ie que l'éto	ile est une	binaire	e à écl	ipses,	la localisatio	on des été	oiles dans	des pet	tits an	nas ouv	verts.
Star	<i>α</i> (2000)	δ (2000)	V	B-V	S/N	$T_{\rm eff}$	log g	Vsin i	RV	CFP	CEW	comm.
SMC5_000351	00 53 32.810	-72 26 43.70	17.75	-0.147	20	16500 ± 3300	4.4 ± 0.4	312 ± 94	151 ± 10	B3V	B2.5IV	SB?
SMC5_000977	00 54 06.550	-72 14 47.31	16.69	-0.159	85	18500 ± 1100	4.1 ± 0.2	280 ± 22	90 ± 10	B2V	B2III	SB/EB
SMC5_004477	00 56 11.620	-72 18 23.70	14.74	-0.327	60	33000 ± 3300	3.9 ± 0.4	393 ± 63	28 ± 10	O9IV	O8III	SB/EB
SMC5_004534	00 55 40.340	-72 17 50.90	16.38	-0.089	40	15000 ± 2200	3.4 ± 0.3	229 ± 46	160 ± 10	B3III	B2III	EB
SMC5_013723	00 54 53.330	-72 28 12.20	17.48	-0.114	25	15500 ± 4600	4.5 ± 0.4	282 ± 85	144 ± 10	B3V	B3III	EB
SMC5_020391	00 56 23.580	-72 21 23.60	14.99	-0.258	70	-	-	-	-	-	-	SB2/EB
SMC5_022612	00 53 31.320	-72 18 50.10	16.05	-0.219	45	20000 ± 3000	3.8 ± 0.4	238 ± 48	143 ± 10	B2IV	B1III	SB?
SMC5_023571	00 56 51.090	-72 17 37.70	15.87	-0.119	45	20000 ± 3000	3.8 ± 0.4	369 ± 74	172 ± 10	B2IV	B1III	SB/EB
SMC5_023641	00 56 34.250	-72 17 37.30	15.92	-0.208	55	19500 ± 2100	3.8 ± 0.4	426 ± 68	66 ± 10	B2IV	B1III	SB/EB
SMC5_024122	00 53 41.660	-72 17 03.00	17.09	-0.214	35	19500 ± 3300	3.9 ± 0.4	356 ± 89	168 ± 10	B2IV	B1III	SB/EB
SMC5_025596	00 55 22.520	-72 15 25.70	16.72	-0.157	45	17500 ± 2600	3.9 ± 0.4	130 ± 26	140 ± 10	B3IV	B2IV	SB?
SMC5_037384	00 53 20.230	-72 25 56.20	17.95	-0.132	20	15000 ± 3000	4.3 ± 0.4	219 ± 66	150 ± 10	B3V	B2.5III	SB?
SMC5_038311	00 56 34.420	-72 16 58.30	16.40	-0.097	35	17500 ± 3000	3.9 ± 0.4	196 ± 59	147 ± 10	B2IV	B2III	SB?
SMC5_049816	00 56 19.270	-72 21 03.50	16.58	-0.333	45	-	_	_	-	_	-	SB2/EB, cl1
SMC5_051377	00 53 10.630	-72 18 42.80	17.70	-0.269	25	20000 ± 4000	4.3 ± 0.4	495 ± 149	151 ± 10	B2V	B1V	SB?
SMC5_052147	00 53 31.580	-72 17 15.30	16.48	-0.178	40	22000 ± 3300	4.1 ± 0.4	126 ± 25	167 ± 10	B2V	B1.5III	SB?
SMC5_052516	00 56 50.579	-72 16 50.85	16.70	-0.090	65	20000 ± 2000	3.8 ± 0.4	374 ± 60	131 ± 10	B2IV	B1.5III	SB2
SMC5_052663	00 55 57.859	-72 16 36.95	17.10	-0.100	45	20500 ± 2700	4.1 ± 0.4	256 ± 46	90 ± 10	B2V	B1.5III	SB?
SMC5_053323	00 56 11.180	-72 15 36.80	17.38	-0.174	30	20000 ± 4000	4.3 ± 0.4	223 ± 67	204 ± 10	B2V	B2III	SB?
SMC5_053755	00 54 12.830	-72 14 48.40	16.38	-0.136	45	20000 ± 2600	4.0 ± 0.4	182 ± 33	140 ± 10	B2IV	B1III	SB ?, cl6
SMC5_067093	00 56 28.960	-72 20 31.20	17.98	-0.192	20	16000 ± 3200	4.5 ± 0.4	200 ± 60	145 ± 10	B3V	B3III	SB?
SMC5_067779	00 56 02.830	-72 17 53.40	16.80	-0.146	40	20000 ± 3000	4.1 ± 0.4	235 ± 47	157 ± 10	B2V	B2III	SB ?, cl3
SMC5_068752	00 54 10.880	-72 14 03.10	17.81	-0.219	30	18000 ± 3600	4.4 ± 0.4	218 ± 44	99 ±10	B2V	B2.5III	SB?
SMC5_074928	00 55 09.195	-72 17 13.65	17.32	-0.051	50	13000 ± 1600	3.5 ± 0.3	141 ± 28	191 ± 10	B7III	B3III	EB
SMC5_075287	00 54 17.350	-72 14 24.50	17.87	-0.195	30	16500 ± 3300	4.2 ± 0.4	264 ± 79	151 ± 10	B3V	B2III	SB ?, cl6
SMC5_077517	00 56 33.190	-72 20 49.90	17.79	-0.228	25	20000 ± 4000	4.4 ± 0.4	402 ± 120	92 ± 10	B2V	B2III	SB?
SMC5_077609	00 55 08.400	-72 19 01.30	16.29	-0.266	45	20500 ± 2700	3.7 ± 0.4	136 ± 24	114 ± 10	B2IV	B1III	SB?
SMC5_077712	00 55 30.034	-72 16 22.86	16.63	-0.185	75	20500 ± 1400	3.9 ± 0.2	62 ± 10	135 ± 10	B2IV	B1.5IV	SB?
SMC5_081871	00 55 10.890	-72 15 27.90	17.33	-0.224	30	18500 ± 3700	4.3 ± 0.4	183 ± 55	155 ± 10	B2V	B2III	SB?
SMC5_082987	00 53 28.650	-72 22 09.70	16.49	-0.225	40	18500 ± 2800	3.9 ± 0.4	149 ± 30	147 ± 10	B2IV	B2.5III	SB?
SMC5_084353	00 53 54.750	-72 18 29.50	16.20	-0.228	40	18500 ± 2800	3.6 ± 0.4	204 ± 41	136 ± 10	B2III	B1.5III	EB
SMC5_092642	00 56 43.680	-72 15 33.40	17.78	-0.200	30	19000 ± 3800	4.5 ± 0.4	244 ± 73	179 ± 10	B2V	B2III	SB?
SMC5_191509	00 54 10.138	-72 13 44.69	17.17	-0.206	70	14000 ± 1100	3.8 ± 0.3	257 ± 26	53 ± 10	B5IV	B3III	SB?

TAB. 4.16 – Paramètres fondamentaux pour les binaires de notre échantillon d'étoiles du PNM. La légende est identique à celle de la Table 4.15. Dans la dernière colonne, des informations complémentaires sont données : "EB" signifie que l'étoile est une binaire à éclipses la localisation des étoiles dans des petits amas ouverts

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
binSMC5 000351	2.4 ± 0.4	3.4 ± 0.5	1.9 ± 0.3	125.1 + 3-6
SMC5 000398	4.2 ± 0.4	9.7 ± 0.5	24.8 + 2.5	26.16 + 3-6
SMC5 000432	31 ± 04	45 ± 0.5	50 + 10	0+3-6
SMC5 000453	3.1 ± 0.1 3.1 ± 0.4	43 ± 0.5	8.0 ± 1.0 8.0 ± 1.0	$0 \pm 3 - 6$
SMC5 000621	3.1 ± 0.1 3.1 ± 0.4	52 ± 0.5	3.0 ± 1.0 3.1 ± 0.5	$0 \pm 3 - 6$
SMC5 000660	2.1 ± 0.4	3.2 ± 0.5 3.8 ± 0.5	2.1 ± 0.5 2.5 ± 0.5	$0 \pm 3 - 6$
SMC5_000670	2.0 ± 0.4 3 3 ± 0.4	5.0 ± 0.5	2.5 ± 0.5	$0 \pm 3 - 6$
SMC5 000810	5.5 ± 0.4	5.0 ± 0.5	4.4 ± 0.5	0 ±3-0
SMC5 000889	$\frac{1}{2}4 + 04$	$\frac{1}{28+05}$	$\frac{1}{4}0 \pm 0.5$	-24.66 + 3-6
SMC5 000924	2.4 ± 0.4 29 + 04	2.0 ± 0.5	24 ± 0.5	54.31 ± 3.6
SMC5 000924	2.7 ± 0.4 3.2 ± 0.4	5.0 ± 0.5	2.4 ± 0.5	0 + 3 - 6
binSMC5_000939	3.2 ± 0.4 3.1 ± 0.4	5.4 ± 0.5	4.0 ± 0.5	$0 \pm 3 = 0$
SMC5 002782	3.1 ± 0.4	4.9 ± 0.5	3.3 ± 0.3	$0 \pm 3 = 0$ 71 35 ± 3.6
SMC5_002782	3.9 ± 0.4	6.6 ± 0.5	4.5 ± 0.5	$71.35 \pm 3-0$ 21.07 ± 3.6
SMC5_003118	3.0 ± 0.4	0.0 ± 0.5	3.4 ± 1.0	$21.97 \pm 3-0$
SMC5_003175	3.3 ± 0.4	0.9 ± 0.3	4.1 ± 0.3	$41.3 \pm 3-0$
SMC5_002202	2.4 ± 0.4	5.7 ± 0.5	1.0 ± 0.5	13.46 ± 3.6
SMC5_003292	5.2 ± 0.4	5.5 ± 0.5	3.8 ± 0.3	$01.30 \pm 3-0$
SMC5_005510	5.4 ± 0.4	0.8 ± 0.3	2.9 ± 0.3	$130.3 \pm 3-0$
SMC5_003335	2.4 ± 0.4	3.0 ± 0.5	1.8 ± 0.3	103.7 ± 3.6
SMC5_003739	4.5 ± 0.4	11.0 ± 1.0	30.0 ± 2.5	$102.9 \pm 3-6$
SMC5_003809	2.1 ± 0.4	3.0 ± 0.5	1.0 ± 0.3	13.21 ± 3.0
SMC5_003855	4.7 ± 0.4	14.8 ± 1.0	15.2 ± 1.5	43.27 ± 3.6
SMC5_003910	4.4 ± 0.4	11.0 ± 1.0	15.1 ± 1.5	43.37 ± 3.6
SMC5_003942	3.2 ± 0.4	5.4 ± 0.5	3.9 ± 0.5	107.6 ± 3.6
SMC5_003998	2.5 ± 0.4	3.0 ± 0.5	3.3 ± 0.5	16.84 ± 3.6
SMC5_003999	3.6 ± 0.4	6.2 ± 0.5	7.5 ± 1.0	$32.29 \pm 3-6$
SMC5_004025	2.4 ± 0.4	3.3 ± 0.5	2.1 ± 0.5	63.56 ± 3.6
SMC5_004034	3.9 ± 0.4	8.1 ± 0.5	8.4 ± 1.0	$//.1/\pm 3-6$
SMC5_004044	3.1 ± 0.4	5.0 ± 0.5	3.8 ± 0.5	70.81 ± 3.6
SMC5_004102	3.0 ± 0.4	4.2 ± 0.5	12.3 ± 1.5	21.6 ± 3.6
SMC5_004107	3.2 ± 0.4	4.8 ± 0.5	4.8 ± 0.5	38.35 ± 3.6
SMC5_004133	3.0 ± 0.4	4.1 ± 0.5	8.4 ± 1.0	37.33 ±3-6
SMC5_004135	3.1 ± 0.4	4.7 ± 0.5	4.4 ± 0.5	81.62 ± 3.6
SMC5_004149	2.5 ± 0.4	3.2 ± 0.5	3.5 ± 0.5	93.59 ± 3.6
SMC5_004153	3.3 ± 0.4	5.6 ± 0.5	4.0 ± 0.5	$129.2 \pm 3-6$
SMC5_004171	2.8 ± 0.4	4.2 ± 0.5	2.6 ± 0.5	41.46 ± 3.6
SMC5_004198	4.8 ± 0.4	15.0 ± 1.0	13.7 ± 1.5	$177.2 \pm 3-6$
SMC5_004203	3.1 ± 0.4	5.5 ± 0.5	2.6 ± 0.5	40.59 ± 3.6
SMC5_004263	2.9 ± 0.4	4.3 ± 0.5	3.7 ± 0.5	59 ±3-6
SMC5_004326	3.7 ± 0.4	8.1 ± 0.5	4.0 ± 0.5	$62.11 \pm 3-6$
SMC5_004381	2.9 ± 0.4	5.0 ± 0.5	2.4 ± 0.5	75.75 ±3-6
SMC5_004413	3.2 ± 0.4	4.7 ± 0.5	8.8 ± 1.0	$115.4 \pm 3-6$
SMC5_004465	2.6 ± 0.4	3.9 ± 0.5	2.3 ± 0.5	$112.3 \pm 3-6$
binSMC5_004477	4.6 ± 0.4	12.8 ± 1.0	15.7 ± 1.5	$111.9 \pm 3-6$
SMC5_004502	4.0 ± 0.4	8.6 ± 0.5	7.6 ± 1.0	197.2 ±3-6
SMC5_004506	3.5 ± 0.4	6.1 ± 0.5	4.6 ± 0.5	$135.4 \pm 3-6$
binSMC5_004534	3.4 ± 0.4	5.5 ± 0.5	7.9 ± 1.0	85.28 ±3-6
SMC5_004591	2.8 ± 0.4	4.4 ± 0.5	2.3 ± 0.5	$34.5 \pm 3-6$
SMC5_004695	4.4 ± 0.4	11.0 ± 1.0	14.2 ± 1.5	$61.16 \pm 3-6$
SMC5_004700	3.9 ± 0.4	7.8 ± 0.5	7.3 ± 1.0	90.84 ±3-6
SMC5_004718	2.6 ± 0.4	4.2 ± 0.5	1.9 ± 0.5	$39.52 \pm 3-6$
SMC5_004872	2.5 ± 0.4	3.8 ± 0.5	2.0 ± 0.5	$112.3 \pm 3-6$
SMC5_004885	2.9 ± 0.4	4.4 ± 0.5	2.8 ± 0.5	$54.06 \pm 3-6$
SMC5_004947	2.5 ± 0.4	3.6 ± 0.5	2.1 ± 0.5	$30.3 \pm 3-6$

TAB. 4.17 – Paramètres $\log(L/L_{\odot})$, M/M_{\odot} et R/R_{\odot} interpolés ou calculés pour notre échantillon d'étoiles O-B du PNM et pour les binaires non Be depuis les diagrammes HR issus de Schaller et al. (1992).

О	n
0	9

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
SMC5_004988	3.8 ± 0.4	7.4 ± 0.5	6.6 ± 1.0	$52.13 \pm 3-6$
SMC5_005014	2.5 ± 0.4	3.5 ± 0.5	2.5 ± 0.5	$23.76 \pm 3-6$
SMC5_005090	3.2 ± 0.4	5.9 ± 0.5	2.8 ± 0.5	57.16 ±3-6
SMC5_005095	3.1 ± 0.4	5.3 ± 0.5	3.0 ± 0.5	79.63 ±3-6
SMC5_005215	2.9 ± 0.4	4.7 ± 0.5	2.5 ± 0.5	$63.5 \pm 3-6$
SMC5_005229	2.5 ± 0.4	3.8 ± 0.5	1.9 ± 0.3	88.16 ±3-6
binSMC5_013723	2.1 ± 0.4	3.0 ± 0.5	1.6 ± 0.3	354.9 ±3-6
SMC5_013954	3.6 ± 0.4	6.0 ± 0.5	9.2 ± 1.0	$28.37 \pm 3-6$
SMC5 014509	2.1 ± 0.4	3.0 ± 0.5	1.6 ± 0.3	$108.4 \pm 3-6$
SMC5 014989	3.0 ± 0.4	4.5 ± 0.5	3.8 ± 0.5	23.82 +3-6
SMC5 015117	2.5 ± 0.4	34 ± 0.5	2.6 ± 0.5	28 45 +3-6
SMC5 015183	2.5 ± 0.4 3.0 ± 0.4	42 ± 0.5	10.6 ± 1.0	20.49 ± 3.6 29.38 + 3-6
SMC5 015618	3.0 ± 0.4	4.2 ± 0.5	10.0 ± 1.0 2 2 ± 0.5	$25.50 \pm 3-6$
SMC5_015018	3.0 ± 0.4	3.0 ± 0.3	2.2 ± 0.3	$15.5 \pm 3-0$
SMC5_016052	2.5 ± 0.4	3.7 ± 0.5	2.0 ± 0.5	$100.1 \pm 3 - 6$
SMC5_016950	2.6 ± 0.4	4.0 ± 0.5	1.9 ± 0.3	$30.69 \pm 3-6$
SMC5_017228	2.6 ± 0.4	4.0 ± 0.5	2.2 ± 0.5	$52.37 \pm 3-6$
SMC5_020135	4.0 ± 0.4	8.3 ± 0.5	7.8 ± 1.0	$76.83 \pm 3-6$
SMC5_020303	3.6 ± 0.4	6.3 ± 0.5	7.1 ± 1.0	$51.85 \pm 3-6$
binSMC5_020391	-	-	-	-
SMC5_020451	2.9 ± 0.4	4.5 ± 0.5	2.7 ± 0.5	$42.53 \pm 3-6$
SMC5_020672	3.9 ± 0.4	7.7 ± 0.5	8.2 ± 1.0	$48.93 \pm 3-6$
SMC5_020733	2.5 ± 0.4	3.6 ± 0.5	2.0 ± 0.5	$45.3 \pm 3-6$
SMC5_020815	3.1 ± 0.4	4.3 ± 0.5	9.6 ± 1.0	$202.5 \pm 3-6$
SMC5_021070	3.0 ± 0.4	4.5 ± 0.5	4.0 ± 0.5	57.61 ±3-0
SMC5_021763	3.3 ± 0.4	5.3 ± 0.5	5.0 ± 1.0	$46.54 \pm 3-6$
binSMC5_022612	3.6 ± 0.4	6.6 ± 0.5	5.5 ± 1.0	82.56 ±3-0
SMC5 023315	27 ± 0.4	41 ± 05	24 ± 05	87 75 +3-6
SMC5 023482	4.1 ± 0.4	$\frac{11}{2} = 0.5$	111 + 15	92.94 ± 3.0
binSMC5 023571	4.1 ± 0.4	6.0 ± 0.5	56 ± 10	86.8 +3-6
SMC5 023575	3.0 ± 0.4	0.7 ± 0.5 0.5 ± 0.5	5.0 ± 1.0 5.4 ± 1.0	25.6 ± 3.6
binSMC5_023575	4.0 ± 0.4	5.5 ± 0.5	5.4 ± 1.0	$25.0 \pm 5-0$
SMC5 022656	3.0 ± 0.4	0.4 ± 0.5	3.3 ± 1.0	14.24 ± 2.4
SMC5_025050	2.5 ± 0.4	3.3 ± 0.3	1.7 ± 0.5	$14.24 \pm 3-6$
DINSIVIC5_024122	3.5 ± 0.4	0.1 ± 0.5	4.8 ± 0.5	$39.0 \pm 3-0$
SMC5_024390	2.9 ± 0.4	4.4 ± 0.5	2.6 ± 0.5	$25.54 \pm 3-0$
SMC5_024464	2.4 ± 0.4	2.8 ± 0.5	3.3 ± 0.5	$57.43 \pm 3-0$
SMC5_024949	4.1 ± 0.4	9.1 ± 0.5	9.3 ± 1.0	$68.7 \pm 3-6$
SMC5_025288	3.1 ± 0.4	4.6 ± 0.5	3.7 ± 0.5	$63.52 \pm 3 - 6$
SMC5_025394	4.1 ± 0.4	9.0 ± 0.5	5.9 ± 1.0	$50.53 \pm 3 - 6$
binSMC5_025596	3.1 ± 0.4	4.8 ± 0.5	4.0 ± 0.5	42.08 ±3-0
SMC5_025999	2.9 ± 0.4	4.9 ± 0.5	2.5 ± 0.5	58.24 ±3-0
SMC5_026256	3.2 ± 0.4	5.2 ± 0.5	3.8 ± 0.5	60.23 ±3-0
SMC5_026331	3.2 ± 0.4	5.0 ± 0.5	3.9 ± 0.5	109.8 ±3-0
SMC5_026348	2.9 ± 0.4	4.8 ± 0.5	2.4 ± 0.5	$35.2 \pm 3-6$
SMC5_028427	3.8 ± 0.4	7.3 ± 0.5	6.6 ± 1.0	$56.63 \pm 3-6$
SMC5 037283	37 + 04	68 ± 05	76 + 10	54 85 +3-
SMC5 037332	2.7 ± 0.1	44 ± 0.5	21 ± 0.5	$43.67 \pm 3-6$
SMC5 037341	2.7 ± 0.4 3.9 ± 0.4	7.4 ± 0.5	2.1 ± 0.5 7.1 ± 0.5	1255 ± 3
binSMC5_037384	3.7 ± 0.4	7.0 ± 0.5 3.1 ± 0.5	7.1 ± 0.5 2.1 ± 0.5	$125.5 \pm 3 - 61$
SMC5 027091	2.3 ± 0.4	3.1 ± 0.5	2.1 ± 0.5	01.22 ± 3
SMC5_03/981	3.0 ± 0.4	0.4 ± 0.3	3.0 ± 1.0	$44.30 \pm 3-1$
SMC5_038033	3.7 ± 0.4	6.9 ± 0.5	6.0 ± 1.0	$154.7 \pm 3-$
SMC5_038144	2.6 ± 0.4	3.8 ± 0.5	2.5 ± 0.5	87.07 ±3-
binSMC5_038311	3.2 ± 0.4	5.0 ± 0.5	4.3 ± 0.5	65.18 ±3-
SMC5_038423	1.9 ± 0.4	2.1 ± 0.5	3.1 ± 0.5	$128 \pm 3-6$
SMC5_038530	3.1 ± 0.4	4.8 ± 0.5	3.4 ± 0.5	48.83 ±3-
SMC5_038564	4.1 ± 0.4	9.7 ± 0.5	6.6 ± 1.0	41.03 ±3-
SMC5 020(21	2.4 ± 0.4	2.9 ± 0.5	3.6 ± 0.5	177.4 ±3-
SMC5_038031				
SMC5_038631 SMC5_045030	3.0 ± 0.4	5.5 ± 0.5	2.2 ± 0.5	43.38 ±3-0

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
SMC5 045795	$\frac{10g(L/L_{\odot})}{3.0 \pm 0.4}$	$\frac{47+05}{47+05}$	$\frac{1}{36+0.5}$	$\frac{1}{5954+3-6}$
SMC5 046182	3.0 ± 0.4 2 9 + 0.4	39 ± 0.5	3.0 ± 0.5 3.9 ± 0.5	38.02 ± 3.6
SMC5_046323	2.9 ± 0.4 3.0 ± 0.4	5.9 ± 0.5	3.5 ± 0.5	$30.02 \pm 3-0$ $41.77 \pm 3-6$
SMC5_040323	3.0 ± 0.4	3.0 ± 0.5	2.0 ± 0.5	$+1.77 \pm 3-0$ 168 5 ± 3.6
SMC5_040000	2.3 ± 0.4	3.3 ± 0.3	2.3 ± 0.3	106.3 ± 3.6
SMC5_049075	3.1 ± 0.4	4.9 ± 0.3	3.3 ± 0.3	$100.8 \pm 3-0$
SINC5_049095	2.8 ± 0.4	4.7 ± 0.5	2.2 ± 0.5	$45.05 \pm 3-6$
DINSINC5_049816	-	-	-	-
SMC5_049858	3.6 ± 0.4	6.4 ± 0.5	4.9 ± 1.0	/9./8 ±3-6
SMC5_049859	3.5 ± 0.4	5.9 ± 0.5	6.3 ± 1.0	$57.34 \pm 3-6$
SMC5_050021	2.8 ± 0.4	4.0 ± 0.5	2.8 ± 0.5	$70.63 \pm 3-6$
SMC5_050309	2.3 ± 0.4	3.1 ± 0.5	2.3 ± 0.5	$66.8 \pm 3-6$
SMC5_050662	3.5 ± 0.4	6.1 ± 0.5	4.6 ± 0.5	$200 \pm 3-6$
SMC5_050882	2.5 ± 0.4	2.9 ± 0.5	4.2 ± 0.5	$26.62 \pm 3-6$
SMC5_050904	2.7 ± 0.4	4.2 ± 0.5	2.0 ± 0.5	$74.2 \pm 3-6$
SMC5_051112	3.2 ± 0.4	5.0 ± 0.5	4.3 ± 0.5	$111.5 \pm 3-6$
SMC5_051147	3.6 ± 0.4	6.8 ± 0.5	5.4 ± 1.0	$142.9 \pm 3-6$
binSMC5_051377	3.0 ± 0.4	5.0 ± 0.5	2.5 ± 0.5	$144.8 \pm 3-6$
SMC5_051923	3.0 ± 0.4	4.9 ± 0.5	2.6 ± 0.5	$49.67 \pm 3-6$
binSMC5_052147	3.5 ± 0.4	6.8 ± 0.5	4.0 ± 0.5	$203.8 \pm 3-6$
SMC5_052342	2.7 ± 0.4	4.3 ± 0.5	2.1 ± 0.5	$248.3 \pm 3-6$
binSMC5_052516	3.6 ± 0.4	6.6 ± 0.5	5.5 ± 1.0	$24.4 \pm 3-6$
SMC5_052564	3.0 ± 0.4	5.2 ± 0.5	2.6 ± 0.5	$324.4 \pm 3-6$
binSMC5_052663	3.3 ± 0.4	5.9 ± 0.5	3.5 ± 0.5	$58.5 \pm 3-6$
SMC5_053069	3.1 ± 0.4	4.8 ± 0.5	3.9 ± 0.5	74.35 ±3-6
binSMC5_053323	3.1 ± 0.4	5.1 ± 0.5	2.8 ± 0.5	36.64 ±3-6
SMC5_053563	3.2 ± 0.4	5.7 ± 0.5	3.4 ± 0.5	$86.21 \pm 3-6$
SMC5_053746	3.1 ± 0.4	4.6 ± 0.5	4.1 ± 0.5	$119.2 \pm 3-6$
binSMC5 053755	3.4 ± 0.4	6.1 ± 0.5	4.3 ± 0.5	64.82 + 3-6
SMC5 053967	30 ± 04	46 ± 0.5	37 ± 0.5	137 3 +3-6
SMC5 054028	2.8 ± 0.1	42 ± 0.5	2.9 ± 0.5	67 41 +3-6
SMC5 061681	2.0 ± 0.1 2.4 ± 0.4	34 ± 0.5	2.9 ± 0.5 2.0 + 0.5	42 26 +3-6
SMC5 061688	2.1 ± 0.1 2 8 + 0.4	47 ± 0.5	2.0 ± 0.5 2.1 + 0.5	81 26 ±3-6
SMC5_064582	2.0 ± 0.4 3 3 + 0.4	59 ± 0.5	2.1 ± 0.5 3.5 ± 0.5	64.67 ± 3.6
SMC5_064781	3.0 ± 0.4	5.9 ± 0.5	3.5 ± 0.5 2.6 ± 0.5	68.94 ± 3.6
SMC5_064993	3.0 ± 0.4	3.0 ± 0.5	2.0 ± 0.5	25.35 ± 3.6
SMC5_065022	2.7 ± 0.4	4.4 ± 0.5	2.0 ± 0.3	$23.33 \pm 3-0$ 73 41 ± 3 6
SMC5_005022	2.4 ± 0.4	5.4 ± 0.5	1.9 ± 0.3	$73.41 \pm 3-0$
SMC5_005004	3.3 ± 0.4	0.3 ± 0.3	3.0 ± 1.0	$294.1 \pm 3-0$
SMC5_000000	2.8 ± 0.4	4.1 ± 0.3	2.8 ± 0.3	102.0 ± 3.0
SMC5_000250	3.5 ± 0.4	3.7 ± 0.3	4.3 ± 0.3	63.17 ± 3.0
DINSING 067446	2.2 ± 0.4	3.1 ± 0.5	1.7 ± 0.5	98.82 ± 3.6
SINC5_067596	3.0 ± 0.4	7.5 ± 0.5	5.4 ± 0.5	209.1 ± 3.0
SMC5_06/596	3.2 ± 0.4	4.8 ± 0.5	5.2 ± 1.0	$70.11 \pm 3-6$
DINSMC5_06///9	3.2 ± 0.4	5.7 ± 0.5	3.5 ± 0.5	123.5 ± 3.6
SMC5_068593	3.8 ± 0.4	7.1 ± 0.5	7.3 ± 1.0	$27.42 \pm 3-6$
SMC5_068678	2.3 ± 0.4	3.3 ± 0.5	2.0 ± 0.5	$101.1 \pm 3-6$
binSMC5_068/52	2.6 ± 0.4	4.0 ± 0.5	2.2 ± 0.5	66.11 ±3-6
SMC5_071616	2.7 ± 0.4	3.4 ± 0.5	3.5 ± 0.5	$85.95 \pm 3-6$
SMC5_0/18/6	2.7 ± 0.4	4.1 ± 0.5	2.5 ± 0.5	$48.96 \pm 3-6$
SMC5_071943	3.1 ± 0.4	4.5 ± 0.5	4.2 ± 0.5	116 ±3-6
SMC5_073584	2.9 ± 0.4	4.0 ± 0.5	4.0 ± 0.5	$130.7 \pm 3-6$
SMC5_074305	3.8 ± 0.4	7.9 ± 0.5	4.9 ± 1.0	$81.46 \pm 3-6$
SMC5_074856	3.5 ± 0.4	6.1 ± 0.5	5.9 ± 1.0	91.11 ±3-6
binSMC5_074928	2.9 ± 0.4	3.9 ± 0.5	6.0 ± 1.0	$73.75 \pm 3-6$
SMC5_075241	3.1 ± 0.4	5.2 ± 0.5	3.1 ± 0.5	$86.6 \pm 3-6$
binSMC5_075287	2.7 ± 0.4	3.9 ± 0.5	2.7 ± 0.5	$91.57 \pm 3-6$
binSMC5_077517	2.9 ± 0.4	4.9 ± 0.5	2.4 ± 0.5	$38.29 \pm 3-6$
binSMC5_077609	3.8 ± 0.4	7.5 ± 0.5	6.5 ± 1.0	$136.7 \pm 3-6$
SMC5_077659	2.7 ± 0.4	3.8 ± 0.5	3.0 ± 0.5	$782.6 \pm 3-6$

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
SMC5_077666	2.4 ± 0.4	3.3 ± 0.5	2.2 ± 0.5	245 ±3-6
SMC5_077670	3.3 ± 0.4	5.6 ± 0.5	4.5 ± 0.5	98 ±3-6
binSMC5_077712	3.6 ± 0.4	6.5 ± 0.5	5.0 ± 1.0	157.9 ±3-6
SMC5_078415	3.8 ± 0.4	7.0 ± 0.5	22.1 ± 2.0	$80.98 \pm 3-6$
SMC5_079021	3.9 ± 0.4	7.9 ± 0.5	7.8 ± 1.0	$230.6 \pm 3-6$
SMC5_079166	3.0 ± 0.4	4.6 ± 0.5	3.2 ± 0.5	313.6 ±3-6
SMC5_079264	3.8 ± 0.4	7.4 ± 0.5	9.5 ± 1.0	$85.58 \pm 3-6$
SMC5_079405	3.2 ± 0.4	4.7 ± 0.5	13.2 ± 1.5	$85.86 \pm 3-6$
SMC5_079508	3.7 ± 0.4	7.0 ± 0.5	5.9 ± 1.0	$100.2 \pm 3-6$
SMC5_080028	3.0 ± 0.4	4.1 ± 0.5	4.2 ± 0.5	$59.72 \pm 3-6$
SMC5_080033	2.2 ± 0.4	3.0 ± 0.5	1.8 ± 0.3	53.79 ±3-6
SMC5_080142	2.8 ± 0.4	4.2 ± 0.5	2.6 ± 0.5	$48.31 \pm 3-6$
SMC5_080814	3.0 ± 0.4	5.0 ± 0.5	2.7 ± 0.5	$57.2 \pm 3-6$
SMC5_081252	2.9 ± 0.4	4.2 ± 0.5	3.3 ± 0.5	99.96 ±3-6
binSMC5_081871	2.8 ± 0.4	4.4 ± 0.5	2.5 ± 0.5	112 ±3-6
SMC5_082184	2.5 ± 0.4	3.8 ± 0.5	1.9 ± 0.3	$119.2 \pm 3-6$
SMC5_082196	2.7 ± 0.4	4.2 ± 0.5	2.1 ± 0.5	$59.58 \pm 3-6$
SMC5_082379	2.6 ± 0.4	3.5 ± 0.5	2.9 ± 0.5	111 ±3-6
SMC5_082441	2.8 ± 0.4	3.6 ± 0.5	6.4 ± 0.5	$72.21 \pm 3-6$
SMC5_082583	3.2 ± 0.4	4.9 ± 0.5	4.7 ± 0.5	$26.29 \pm 3-6$
SMC5_082923	4.2 ± 0.4	9.6 ± 0.5	18.5 ± 1.5	$101.3 \pm 3-6$
binSMC5_082987	3.3 ± 0.4	5.6 ± 0.5	4.5 ± 0.5	$100.3 \pm 3-6$
SMC5_083593	2.7 ± 0.4	4.4 ± 0.5	2.0 ± 0.5	117.9 ±3-6
SMC5_083615	2.3 ± 0.4	3.2 ± 0.5	1.8 ± 0.5	$147.2 \pm 3-6$
SMC5_083647	2.9 ± 0.4	4.0 ± 0.5	3.4 ± 0.5	$154.9 \pm 3-6$
SMC5_083676	2.7 ± 0.4	3.3 ± 0.5	5.0 ± 1.0	$72.37 \pm 3-6$
SMC5_084284	3.1 ± 0.4	4.8 ± 0.5	4.2 ± 0.5	$57.04 \pm 3-6$
binSMC5_084353	3.7 ± 0.4	6.8 ± 0.5	6.9 ± 1.0	$95.59 \pm 3-6$
SMC5_084582	2.8 ± 0.4	3.6 ± 0.5	8.7 ± 1.0	$138.3 \pm 3-6$
SMC5_086155	2.6 ± 0.4	3.3 ± 0.5	3.7 ± 0.5	$99.47 \pm 3-6$
SMC5_086367	3.5 ± 0.4	7.3 ± 0.5	3.2 ± 0.5	$58.99 \pm 3-6$
SMC5_086663	2.3 ± 0.4	3.1 ± 0.5	2.1 ± 0.5	$124.1 \pm 3-6$
SMC5_086807	2.5 ± 0.4	2.9 ± 0.5	4.1 ± 0.5	$208.6 \pm 3-6$
SMC5_087022	2.9 ± 0.4	4.8 ± 0.5	2.4 ± 0.5	93.79 ±3-6
SMC5_087066	3.3 ± 0.4	6.0 ± 0.5	3.0 ± 0.5	$247.1 \pm 3-6$
SMC5_092257	2.9 ± 0.4	4.6 ± 0.5	2.8 ± 0.5	$100 \pm 3-6$
SMC5_092393	3.4 ± 0.4	5.7 ± 0.5	5.2 ± 1.0	$196.5 \pm 3-6$
binSMC5_092642	2.7 ± 0.4	4.4 ± 0.5	2.0 ± 0.5	$44.51 \pm 3-6$
SMC5_102979	3.1 ± 0.4	4.0 ± 0.5	18.7 ± 1.5	$129.7 \pm 3-6$
SMC5_115576	3.5 ± 0.4	6.4 ± 0.5	4.6 ± 0.5	187 ±3-6
SMC5_188968	3.0 ± 0.4	4.8 ± 0.5	3.2 ± 0.5	$54.19 \pm 3-6$
binSMC5_191509	2.7 ± 0.4	3.6 ± 0.5	4.1 ± 0.5	$206.4 \pm 3-6$

Tables pour les étoiles Be du Petit Nuage de Magellan

TAB. 4.18 – Paramètres fondamentaux apparents pour les 131 étoiles Be observées dans notre échantillon du PNM. En colonne 1 est donné le nom de l'étoile suivant la nomenclature de l'équipe EIS (SMC5_XXXX) ou suivant nos catalogues d'objets à émission (MHF[S9]XXXXX). En colonnes 2 et 3 sont données les coordonnées AD et DEC (2000) issues de l'astrométrie de EIS ou de nos catalogues astrométriques. En colonnes 4 et 5 sont donnés les magnitudes V et indice de couleur (B-V) issus du catalogue d'EIS. En colonne 6 se trouve le rapport signal à bruit. Dans les colonnes 7, 8, 9 et 10 sont donnés respectivement les paramètres apparents $T_{\rm eff}$ en K, le log g en dex, le Vsin i en km s⁻¹ et la RV en km s⁻¹. L'abréviation "CFP" (col. 11) correspond à la classification spectrale issue des paramètres fondamentaux (méthode 2). Dans la dernière colonne, des informations complémentaires sont données : la classification des étoiles par de précédentes études, les binaires à éclipse par le symbole "EB" et la localisation des étoiles pour les petits amas ouverts : cl0 pour NGC 330 (0h 56m 19s -72° 27' 52"), cl1 pour H86 170 (0h 56m 21s -72° 21' 12"), cl2 pour [BS95]78 (0h 56m 04s -72° 20′ 12"), cl3 pour l'association SMC ASS 39 (0h 56m 6s -72° 18′ 00"), cl4 pour OGLE SMC109 (0h 57m 29.8s -72° 15′ 51.9"), cl5 pour NGC299 (0h 53m 24.5s -72° 11′ 49") coordonnées corrigées, cl6 pour NGC306 (0h 54m 15s -72° 14' 30"), cl7 pour H86 145 (0h 53m 37s -72° 21' 00"), cl8 pour OGLE SMC99 (0h 54m 48.24s -72° 27′ 57.8"). Dans cette dernière colonne la lettre 'k' suivie d'un numéro correspond au numéro de l'étoile suivant l'étude de Keller et al. (1999).Les 3 dernières lignes correspondent à des objets présentant de l'émission en H α mais n'étant pas des Be.

Star	<i>α</i> (2000)	δ (2000)	V	B-V	S/N	$T_{\rm eff}^{\rm app.}$	$\log g_{\rm app.}$	Vsin i app. RV	CFP	comm.
MHF[S61]30356	0 56 04.638	-72 33 41.61	16.262	0.078	65	21500 ± 2100	3.2 ± 0.3	325 ± 52 161 ± 10	B2III	
MHF[S61]31046	0 54 33.353	-72 32 11.79	16.368	-0.032	70	22000 ± 1800	3.4 ± 0.3	496 ± 40 130 ± 10	B1III	
MHF[S61]34129	0 57 08.105	-72 32 40.18	16.510	-0.010	20	16500 ± 3300	3.4 ± 0.3	$349 \pm 100\ 131 \pm 10$	B3III	
MHF[S61]35238	0 56 05.560	-72 31 25.68	15.601	-0.086	90	20500 ± 1200	3.1 ± 0.2	246 ± 17 140 ± 10	B2III	
MHF[S61]37243	0 55 25.244	-72 29 56.50	16.275	-0.095	60	20000 ± 2000	3.6 ± 0.3	192 ± 31 138 ± 10	B2IV	
MHF[S61]37842	0 55 13.616	-72 29 13.87	15.503	-0.024	110	19500 ± 1000	3.1 ± 0.2	135 ± 10 143 ± 10	B2III	
MHF[S61]39669	0 54 18.116	-72 27 37.21	15.561	-0.029	90	30000 ± 1800	3.3 ± 0.2	$499 \pm 35 126 \pm 10$	BOIII	
MHF[S61]39981	0 54 32.960	-72 27 41.94	15.424	-0.082	110	19500 ± 1000	3.3 ± 0.2	213 ± 11 138 ± 10	B2III	
MHF[S61]40041	0 54 28.887	-72 27 38.20	15.691	-0.073	55	30000 ± 3300	3.4 ± 0.3	447 ± 72 161 ± 10	B0IV	
MHF[S61]41051	0 54 22.312	-72 27 07.72	15.528	-0.111	120	19000 ± 1000	3.2 ± 0.2	319 ± 16 158 ± 10	B2III	
MHF[S61]41805	0 54 45.158	-72 27 13.68	15.275	-0.082	135	18000 ± 900	3.0 ± 0.2	239 ± 12 137 ± 10	B2III	
MHF[S61]42028	0 54 59.326	-72 27 02.12	15.712	-0.008	120	21000 ± 1000	3.4 ± 0.2	404 ± 20 101 ± 10	B2III	
MHF[S61]45171	0 54 46.371	-72 25 22.73	15.584	-0.035	135	25000 ± 1300	3.3 ± 0.2	$496 \pm 25 140 \pm 10$	B1III	
MHF[S61]46824	0 55 49.619	-72 25 27.43	14.90	0.098	90	17500 ± 1100	2.6 ± 0.2	350 ± 25 120 ± 10	B3II/III	EB, k137
SMC5_016461	0 55 49.630	-72 25 27.30	14.90	0.098	70	17000 ± 1400	2.5 ± 0.2	308 ± 31 132 ± 10	B3II/III	EB, k137
MHF[S61]47308	0 55 08.999	-72 24 37.24	16.240	-0.120	75	18500 ± 1500	3.2 ± 0.3	306 ± 31 154 ± 10	B2III	
MHF[S61]47315	0 54 49.559	-72 24 22.35	-	_	120	30000 ± 1500	3.4 ± 0.2	$370 \pm 19 160 \pm 10$	B0IV	
MHF[S61]51066	0 54 50.936	-72 22 34.63	-	-	130	22500 ± 1100	3.3 ± 0.2	415 ± 21 130 ± 10	B1III	
MHF[S61]51986	0 56 50.484	-72 23 40.08	16.266	0.028	50	20500 ± 2500	3.5 ± 0.4	197 ± 32 185 ± 10	B2IV	
MHF[S61]53489	0 57 30.565	-72 23 32.73	15.899	-0.120	80	19500 ± 1200	3.4 ± 0.2	224 ± 22 117 ± 10	B2IV	
MHF[S61]56797	0 57 06.510	-72 21 29.55	16.945	-0.147	35	23500 ± 3800	4.2 ± 0.4	$314 \pm 62 150 \pm 10$	B1V	
SMC5_000476	0 53 23.700	-72 23 43.80	16.36	-0.154	40	18500 ± 2800	4.0 ± 0.4	309 ± 61 110 ± 10	B2V	
SMC5_000643	0 55 44.490	-72 20 38.00	16.30	-0.117	75	17500 ± 1400	3.4 ± 0.3	280 ± 28 127 ± 10	B3IV	
SMC5_002483	0 55 32.170	-72 29 56.70	16.80	-0.081	35	19500 ± 3100	3.8 ± 0.4	354 ± 70 151 ± 10	B2IV	k1064
SMC5_002751	0 56 14.260	-72 28 30.10	15.99	-0.040	45	17000 ± 2200	3.2 ± 0.3	$315 \pm 54 143 \pm 10$	B3III	cl0
SMC5_002825	0 54 41.373	-72 28 02.42	17.43	-0.108	50	24500 ± 2900	4.5 ± 0.4	$277 \pm 44 138 \pm 10$	B1V	cl8
SMC5_002984	0 55 48.780	-72 27 12.70	17.40	-0.090	30	14500 ± 2900	3.5 ± 0.3	317 ± 95 155 ± 10	B5IV	
SMC5_003119	0 55 59.900	-72 26 21.30	15.62	-0.078	65	17000 ± 1600	3.1 ± 0.2	262 ± 42 154 ± 10	B3III	k258
SMC5_003296	0 56 15.964	-72 25 15.98	16.83	-0.121	70	20000 ± 1600	3.9 ± 0.3	181 ± 18 139 ± 10	B2IV	k916
SMC5_003315	0 53 58.250	-72 25 02.60	16.06	-0.198	45	19000 ± 2900	3.3 ± 0.3	302 ± 48 171 ± 10	B2III	
SMC5_003789	0 53 26.690	-72 22 07.40	17.62	-0.108	25	24000 ± 4800	4.4 ± 0.4	$492 \pm 150\ 133 \pm 10$	B1V	EB
SMC5_004026	0 56 38.660	-72 20 52.80	17.53	-0.179	20	21500 ± 4300	4.0 ± 0.4	$498 \pm 150\ 174 \pm 10$	B2V	
SMC5_004201	0 56 12.270	-72 19 52.90	16.33	-0.082	30	14000 ± 2800	2.5 ± 0.2	$483 \pm 145\ 114 \pm 10$	B5II-III	
SMC5_004509	0 56 38.767	-72 18 12.67	16.52	-0.201	60	19500 ± 1900	3.7 ± 0.3	$101 \pm 16 160 \pm 10$	B2IV	
SMC5_004685	0 55 59.850	-72 17 11.40	16.36	-0.065	40	17500 ± 2600	3.6 ± 0.3	245 ± 49 154 ± 10	B3IV	
SMC5_004982	0 55 24.880	-72 15 30.60	16.29	-0.087	40	20000 ± 3000	3.7 ± 0.4	$270 \pm 54 138 \pm 10$	B2IV	
SMC5_005045	0 54 15.010	-72 15 08.80	15.80	-0.147	65	20000 ± 1800	3.9 ± 0.3	226 ± 27 125 ± 10	B2IV	
SMC5_011371	0 56 28.170	-72 30 36.80	16.94	-0.011	30	24000 ± 4800	4.0 ± 0.4	$475 \pm 140\ 158 \pm 10$	B1V	
SMC5_012717	0 57 05.450	-72 29 16.20	16.48	-0.017	20	18000 ± 3600	3.6 ± 0.4	$360 \pm 108\ 142 \pm 10$	B2IV	
SMC5_012767	0 55 34.670	-72 29 13.10	16.66	-0.176	35	29500 ± 5600	3.7 ± 0.4	$346 \pm 100\ 151 \pm 10$	B0IV	k1054
SMC5_013233	0 56 33.898	-72 28 43.92	18.15	-0.070	30	14000 ± 2800	3.9 ± 0.4	268 ± 80 107 ± 10	B5IV	c10
SMC5_013978	0 56 31.140	-72 27 57.80	15.60	-0.041	45	17500 ± 2100	3.2 ± 0.3	284 ± 37 144 ± 10	B3III	B2IIIe,cl0, k206
SMC5_014052	0 56 23.010	-72 27 53.90	15.35	-0.051	75	19500 ± 1600	3.4 ± 0.3	96 ± 10 159 ± 10	B2III	cl0, k215

0.	(2000)	5 (2000)	X 7	DI	0.01	mapp.	1	17 1 1 1017	CED	
Star	α (2000)	δ (2000)	V	B-V	S/N	$I_{\rm eff}^{\rm II}$	$\log g_{app.}$	$V \sin i_{app.}$ RV	CFP	comm.
SMC5_014114	0 56 32.261	-72 27 50.17	15.52	0.014	90	22500 ± 1400	3.2 ± 0.2	115 ± 10 153 ± 10	B1III	B2IIIe,cl0, k203
SMC5_014637	0 56 12.130	-72 27 16.90	15.42	-0.078	60	18500 ± 1900	3.4 ± 0.3	$161 \pm 16 162 \pm 10$	B2III	cl0, k242
SMC5 014727	0 56 18 130	-72 27 13 50	15.65	-0.054	50	20000 + 2400	36 ± 03	315 + 32 + 137 + 10	B2IV	c10 k228
SMC5_014964	0 56 22 110	72 27 13.30	16.10	0.052	00	16500 ± 1000	3.0 ± 0.3	105 ± 10 120 ± 10	D2III	al0, 1:410
SINC5_014804	0 30 33.110	-72 27 04.99	10.12	-0.032	90	10300 ± 1000	5.4 ± 0.2	103 ± 10 120 ± 10	DOILI	CIU, K419
SMC5_015429	0 55 33.650	-72 26 29.90	17.63	-0.135	25	25000 ± 5000	4.5 ± 0.4	$467 \pm 140\ 144 \pm 10$	BIV	k2299
SMC5_015509	0 56 24.620	-72 26 24.70	16.98	-0.035	30	21500 ± 4300	3.9 ± 0.4	$476 \pm 143\ 155 \pm 10$	B2IV	k857
SMC5_015867	0 55 52.279	-72 26 03.77	17.23	-0.054	70	20000 ± 1600	3.9 ± 0.3	207 ± 21 135 ± 10	B2IV	k991
SMC5 016177	0 55 44 521	-72 25 43 91	16 99	-0.087	60	24500 ± 2500	42 + 04	286 ± 29 123 ± 10	B1V	k1017
SMC5_010177	0 55 44.521	72 25 45.71	10.77	0.007	20	24300 ± 2300	$+.2 \pm 0.4$	200 ± 20 123 ± 10	DOUL	K1017
SMC5_0104//	0 30 01.310	-12 23 23.18	18.70	-0.101	20	11000 ± 2200	5.4 ± 0.5	309 ± 93 113 ± 10	D9III	1.050
SMC5_016523	0 55 30.790	-72 25 20.30	15.70	-0.056	60	20000 ± 2000	3.2 ± 0.3	430 ± 43 130 ± 10	B2III	k2/8
SMC5_016544	0 56 29.100	-72 25 21.50	16.84	-0.010	55	21000 ± 2100	3.6 ± 0.4	$344 \pm 34 107 \pm 10$	B2IV	k837
SMC5_016824	0 53 44.010	-72 24 56.30	15.06	-0.122	70	18500 ± 1500	3.4 ± 0.3	188 ± 19 161 ± 10	B2IV	
SMC5 017596	0 56 33 330	-72 24 19 80	17.16	-0.011	35	19000 + 3800	38 ± 04	202 + 40 143 + 10	B2IV	k818
SMC5_017570	0 56 14 450	72 24 17.00	15 20	0.070	55	12000 ± 3000	3.0 ± 0.4	202 ± 40 143 ± 10	DIN	1-120
SINCS_018501	0 36 14.430	-72 25 25.00	15.20	-0.079	33	25300 ± 2400	5.7 ± 0.4	337 ± 30 183 ± 10	DIIV	K120
SMC5_020211	0 56 06.798	-72 21 35.34	16.86	-0.168	50	21500 ± 2200	3.5 ± 0.3	337 ± 35 154 ± 10	B2IV	
SMC5_021152	0 53 12.660	-72 20 29.50	15.30	-0.184	60	18000 ± 1800	3.0 ± 0.3	$199 \pm 20 144 \pm 10$	B2III	
SMC5_021886	0 55 48.566	-72 19 46.88	17.50	-0.103	50	22000 ± 2200	3.7 ± 0.4	$409 \pm 42 93 \pm 10$	B2IV	
SMC5 022295	0 55 14 500	-72 19 18 60	15.92	-0.100	40	18500 ± 2000	32 ± 03	346 ± 45 121 ± 10	B2III	
SMC5_0222293	0 52 27 080	72 19 10.00	15.92	0.000	50	10500 ± 2000	3.2 ± 0.3	$457 \pm 47 = 112 \pm 10$	D1III IV	
SIVIC5_022028	0 33 37.080	-72 18 30.00	13.80	-0.090	50	22300 ± 2200	5.5 ± 0.5	437 ± 47 113 ± 10	DIIII-IV	
SMC5_022842	0 55 49.880	-72 18 42.10	17.77	-0.184	25	21500 ± 4200	3.9 ± 0.4	$493 \pm 148\ 95 \pm 10$	B2IV	
SMC5_023931	0 56 24.635	-72 17 20.79	17.36	-0.116	75	20000 ± 1600	3.6 ± 0.3	$349 \pm 35 133 \pm 10$	B2IV	
SMC5_025052	0 55 39.810	-72 16 04.20	17.72	-0.120	25	14000 ± 2800	3.7 ± 0.4	$340 \pm 100\ 134 \pm 10$	B5IV	
SMC5 025589	0 56 08 450	-72 15 28 00	17 97	-0.086	25	16500 + 2300	40 + 04	$357 \pm 107 152 \pm 10$	B3V	
SMC5_025507	0 50 00.430	72 15 20.00	16.07	0.000	40	10500 ± 2000	$+.0 \pm 0.4$	$357 \pm 107 152 \pm 10$	DOUL	
SINC5_025/18	0 54 27.140	-72 15 15.90	10.87	-0.157	40	19500 ± 2000	3.3 ± 0.3	264 ± 34 150 ± 10	B2III	
SMC5_025816	0 55 16.580	-72 15 04.70	15.62	-0.089	60	18000 ± 1800	3.2 ± 0.3	222 ± 22 136 ± 10	B2III	
SMC5_025829	0 56 17.880	-72 15 05.90	16.23	-0.111	45	19000 ± 2200	3.4 ± 0.3	266 ± 35 151 ± 10	B2III-IV	
SMC5_026182	0 54 08.940	-72 14 42.50	17.98	-0.128	24	15000 ± 3000	4.0 ± 0.4	$360 \pm 108\ 153 \pm 10$	B3IV	cl6
SMC5 026689	0 54 07 970	-72 14 03 90	17 52	-0.092	25	19500 ± 3800	42 ± 0.4	$397 \pm 119 144 \pm 10$	B2V	
SMC5_020007	0 57 01.070	72 14 05.70	16.61	-0.052	25	19500 ± 3000	4.2 ± 0.4	$397 \pm 119144 \pm 10$	D2W	
SINC5_028368	0 55 11.950	-72 12 04.60	10.01	-0.052	35	18500 ± 3700	3.3 ± 0.3	$499 \pm 150 \ 136 \pm 10$	B2III	
SMC5_036967	0 55 40.100	-72 29 44.70	16.36	-0.138	40	18500 ± 2800	3.2 ± 0.3	316 ± 41 150 ± 10	B2III	k528
SMC5_037137	0 56 26.602	-72 28 09.40	15.84	-0.092	95	20000 ± 1200	3.5 ± 0.2	286 ± 20 148 ± 10	B2III	cl0, k211
SMC5_037158	0 55 38,260	-72 27 54.60	17.23	-0.082	30	23000 ± 4600	3.7 ± 0.4	$425 \pm 128\ 151 \pm 10$	B1IV	k1041
SMC5 037162	0 54 40 790	-72 27 52 50	16.02	-0.081	35	20500 ± 4000	35 ± 0.4	$368 \pm 110 1/3 \pm 10$	B2III	c18
SINC5_037102	0 52 54 170	-72 27 52.50	17.02	-0.081	55	20300 ± 4000	3.3 ± 0.4	$308 \pm 110143 \pm 10$	D2III D2W	010
SMC5_038007	0 53 54.170	-72 19 55.42	17.27	-0.179	60	16500 ± 1700	4.0 ± 0.4	262 ± 26 152 ± 10	B3V	
SMC5_038312	0 55 18.950	-72 16 56.60	17.72	-0.128	30	12500 ± 2500	3.5 ± 0.4	267 ± 80 131 ± 10	B7IV	
SMC5_038363	0 55 33.327	-72 16 22.70	16.54	-0.095	80	23000 ± 1400	3.7 ± 0.2	$356 \pm 36 133 \pm 10$	B1IV	
SMC5 043413	0 55 30 950	-72 29 36 70	15.84	-0.044	35	19500 + 3900	3.7 ± 0.4	276 + 83 + 158 + 10	B2IV	k27
SMC5 044117	0 56 11 660	-72 28 41 80	16.34	-0.086	35	20000 ± 4000	38 ± 0.4	$333 \pm 100 144 \pm 10$	B2IV	c10 k471
SMC5_044602	0 56 10 851	72 28 41.00	15.04	-0.000	05	10500 ± 1200	3.0 ± 0.4	$355 \pm 100144 \pm 10$	D2IV	210, K471
SMC5_044693	0 56 19.851	-72 28 01.57	15.90	-0.065	95	19500 ± 1200	3.3 ± 0.2	261 ± 18 140 ± 10	B2III	CIO, K222
SMC5_044898	0 56 07.514	-72 27 43.74	16.85	-0.030	70	20000 ± 1600	3.5 ± 0.3	390 ± 39 145 ± 10	B2III-IV	cl0, k480
SMC5_045747	0 55 40.150	-72 26 41.70	16.58	-0.035	45	18500 ± 2800	3.4 ± 0.3	$279 \pm 36 118 \pm 10$	B2III-IV	k529
SMC5_046388	0 53 26.980	-72 25 41.40	16.47	-0.052	30	20500 ± 4000	3.6 ± 0.4	$330 \pm 99 95 \pm 10$	B2IV	
SMC5 046462	0 56 22 590	-72 25 47 20	16.76	-0.025	40	21000 + 3100	37 ± 04	348 + 45 + 120 + 10	B2IV	k874
SMC5_040402	0 55 42 (20	72 23 47.20	16.70	0.023	40	12500 ± 1000	3.7 ± 0.4	90 ± 12 150 ± 10		1-500
SINC5_047765	0 55 42.620	-72 25 38.20	10.04	-0.082	40	12300 ± 1900	2.3 ± 0.3	89 ± 12 139 ± 10	D/II-III	K322
SMC5_048045	0 55 56.320	-72 23 33.30	16.59	-0.108	45	18500 ± 2800	3.3 ± 0.3	331 ± 43 145 ± 10	B2III	k509
SMC5_048289	0 53 50.650	-72 23 09.20	15.87	-0.173	50	19500 ± 2300	3.8 ± 0.4	253 ± 27 133 ± 10	B2IV	
SMC5_049651	0 56 19.491	-72 21 17.05	17.86	-0.209	42	14500 ± 2200	4.1 ± 0.4	$291 \pm 38 86 \pm 10$	B5V	cl1
SMC5 049746	0 54 04 690	-72 21 06 30	1649	-0.162	35	19500 + 3900	35 + 04	$438 + 131\ 118 + 10$	B2III-IV	
SMC5_040790	0 55 12 402	72 21 06.36	16.19	0.071	60	22500 ± 2400	3.5 ± 0.1	$130 \pm 151 110 \pm 10$	DIN	
SINC5_049780	0 55 15.492	-72 21 00.75	10./1	-0.071	00	25300 ± 2400	5.0 ± 0.5	440 ± 43 108 ± 10	DIIV	
SMC5_049996	0 53 10.350	-72 20 42.30	15.88	-0.117	45	19500 ± 2900	3.2 ± 0.3	461 ± 60 155 ± 10	B2III	
SMC5_051315	0 54 04.820	-72 18 50.70	17.96	-0.159	20	13500 ± 2700	4.0 ± 0.4	139 ± 42 113 ± 10	B5V	
SMC5_052688	0 55 47.140	-72 16 34.00	15.49	-0.144	70	18500 ± 1500	3.3 ± 0.3	279 ± 28 129 ± 10	B2III	
SMC5 053267	0 55 50 490	-72 15 39 90	17.04	-0.059	35	19000 + 3800	38 ± 04	449 + 134 140 + 10	B2IV	
SMC5_053267	0 54 12 272	72 13 39.90	16.52	0.084	75	10500 ± 1600	3.0 ± 0.1	$146 \pm 15 + 170 \pm 10$	DOIN	a16
SMC5_055750	0 54 12.372	-72 14 46.00	10.55	-0.084	15	19300 ± 1000	3.7 ± 0.3	140 ± 13 139 ± 10	B2IV D2IV	15
SMC5_055592	0 53 22.720	-72 11 55.70	16.68	-0.114	40	17000 ± 2500	3.6 ± 0.4	118 ± 15 162 ± 10	B3IV	cl5
SMC5_061950	0 56 29.960	-72 14 41.70	17.67	-0.138	30	13500 ± 2700	3.5 ± 0.4	302 ± 91 154 ± 10	B5III	
SMC5_064327	0 56 14.900	-72 28 47.50	15.41	-0.025	80	17000 ± 1000	2.8 ± 0.2	283 ± 28 147 ± 10	B3II-III	cl0, k238
SMC5 064576	0 54 46 290	-72 28 05 00	17.38	-0.101	30	20500 + 2100	42 + 04	308 + 92 156 + 10	B2V	c18
SMC5 064920	0 54 54 577	72 20 03.00	16 70	0.072	60	15500 + 1600	$3/1 \pm 0.7$	300 ± 30 125 ± 10	B3III	
SIVIC5_004852	0 54 54.577	-12 21 23.04	10.79	0.075	00	15500 ± 1000	3.4 ± 0.3	$500 \pm 50 + 125 \pm 10$	DJIII	
SMC5_065055	0 53 55.340	-72 26 45.30	14.72	-0.033	70	24000 ± 1900	3.2 ± 0.3	420 ± 42 140 ± 10	BIIII	
SMC5_065746	0 54 01.887	-72 24 45.57	17.42	-0.065	50	24000 ± 2900	4.3 ± 0.4	$362 \pm 38 105 \pm 10$	B1V	
SMC5_066754	0 55 21.820	-72 21 33.70	16.09	-0.163	40	19500 ± 2900	3.6 ± 0.4	165 ± 21 152 ± 10	B2IV	
SMC5 067333	0 56 51 700	-72 19 45 20	16.21	-0.030	35	19500 + 3800	38 + 04	271 + 46 + 140 + 10	B2IV	
SMC5 072591	0 56 26 600	72 26 22 00	16.22	0.122	40	17000 - 2500	3.0 ± 0.7	2.1 ± 10 1.40 ± 10 2.27 ± 20 1.25 ± 10	B3III	
SINCS_075361	0.50.20.000	-12 20 23.00	10.22	-0.122	40	17000 ± 2300	3.4 ± 0.3	$227 \pm 30 + 153 \pm 10$		
SMC5_073594	0 53 21.410	-72 26 08.90	16.13	-0.052	40	$1/500 \pm 2600$	3.5 ± 0.3	$192 \pm 25 166 \pm 10$	B2-3111-IV	
SMC5_074402	0 53 04.530	-72 20 49.30	15.83	-0.075	50	18000 ± 2200	3.1 ± 0.3	393 ± 41 147 ± 10	B2III	

0	5
2	J

Star	α (2000)	δ (2000)	V	B-V	S/N	$T_{\rm eff}^{\rm app.}$	$\log g_{\rm app.}$	Vsin i app. RV	CFP	comm.
SMC5_074471	0 53 26.610	-72 20 18.60	14.97	-0.184	70	19000 ± 1500	3.2 ± 0.3	185 ± 19 158	± 10 B2III	
SMC5_075061	0 56 30.580	-72 16 16.20	17.58	-0.098	30	16000 ± 3200	3.8 ± 0.4	122 ± 37 136	± 10 B3IV	
SMC5_075360	0 54 05.990	-72 13 51.60	15.78	-0.124	65	19000 ± 1900	3.6 ± 0.3	234 ± 21 181	± 10 B2IV	
SMC5_078338	0 56 25.450	-72 27 07.00	15.49	-0.051	45	19000 ± 2900	3.4 ± 0.3	73 ± 10 155	± 10 B2III	B2IIIe, cl0, k213
SMC5_078440	0 56 50.560	-72 15 07.30	15.63	-0.038	60	18000 ± 1800	2.8 ± 0.3	348 ± 35 160	± 10 B2II-III	
SMC5_078928	0 57 09.690	-72 26 57.50	17.48	-0.225	25	19000 ± 3800	3.7 ± 0.4	139 ± 42 165	± 10 B2IV	
SMC5_080910	0 54 24.272	-72 13 49.41	16.74	-0.162	65	19500 ± 2000	3.7 ± 0.3	316 ± 30 146	± 10 B2IV	
SMC5_081260	0 54 13.120	-72 14 35.60	17.77	-0.109	40	15500 ± 2300	4.2 ± 0.4	227 ± 30 139	± 10 B3V	cl6
SMC5_082042	0 56 18.260	-72 17 46.80	16.39	-0.144	40	17500 ± 2600	2.8 ± 0.3	405 ± 53 151	± 10 B3III	
SMC5_082202	0 57 30.310	-72 15 58.40	15.76	-0.235	75	15000 ± 1200	3.4 ± 0.3	265 ± 27 139	± 10 B5III	cl4
SMC5_082543	0 56 54.005	-72 28 50.18	17.05	0.011	55	22500 ± 2300	3.9 ± 0.4	360 ± 36 143	± 10 B1IV	k754
SMC5_082819	0 56 07.190	-72 28 13.70	13.46	0.038	130	20000 ± 1000	2.8 ± 0.1	318 ± 16 133	± 10 B2III	cl0
SMC5_082941	0 53 53.660	-72 22 01.40	15.75	-0.117	50	17500 ± 1800	3.1 ± 0.3	323 ± 32 151	± 10 B3III	
SMC5_083491	0 53 19.930	-72 22 29.20	15.95	-0.067	45	17500 ± 1800	2.9 ± 0.3	433 ± 56 133	± 10 B3III	
SMC5_085503	0 54 47.457	-72 27 58.77	16.88	-0.030	80	15000 ± 900	3.0 ± 0.2	275 ± 28 129	± 10 B5III	c18
SMC5_086200	0 55 32.480	-72 27 52.00	17.29	-0.133	30	19000 ± 3800	3.7 ± 0.4	$370 \pm 111\ 125$	± 10 B2IV	k1062
SMC5_086251	0 55 35.310	-72 15 11.70	16.86	-0.149	40	19500 ± 2900	3.8 ± 0.4	298 ± 39 145	± 10 B2IV	
SMC5_086581	0 55 55.498	-72 26 58.34	17.53	-0.063	55	15000 ± 1800	4.0 ± 0.4	310 ± 31 114	± 10 B3IV-V	k2118
SMC5_086890	0 56 16.439	-72 27 56.38	16.88	0.035	70	24000 ± 1900	3.9 ± 0.3	383 ± 38 130	± 10 B1IV	cl0, k462
SMC5_086983	0 56 20.410	-72 28 06.40	16.24	-0.063	40	21500 ± 3200	3.7 ± 0.4	389 ± 51 140	± 10 B2IV	cl0, k441
SMC5_087004	0 56 21.394	-72 27 27.89	17.18	-0.082	60	23500 ± 2400	4.1 ± 0.4	384 ± 38 134	± 10 B1V	cl0, k882
SMC5_090914	0 56 20.250	-72 27 28.70	16.03	-0.063	45	16500 ± 2400	3.3 ± 0.3	310 ± 40 144	± 10 B3III	cl0, k442
SMC5_190576	0 56 44.310	-72 29 06.30	14.56	-0.117	95	30000 ± 1800	3.2 ± 0.2	$393 \pm 28 148$	± 10 BOIII	
SMC5_002807	0 56 09.420	-72 28 09.30	14.62	1.081	15				cool Sg/EB	Sg K, cl0, k44
SMC5_037102	0 56 06.450	-72 28 27.70	17.32	0.461	20				HB[e]	HBe, AGB, cl0, k
SMC5_081994	0 56 30.750	-72 27 02.00	17.32	-0.184	10				PN	PN, cl0, k4154

-				
Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
MHF[S9]30356	4.6 ± 0.4	12.9 ± 1.0	15.1 ± 1.5	$16.6 \pm 3-6$
MHF[S9]31046	4.5 ± 0.4	12.0 ± 1.0	13.2 ± 1.5	$18.1 \pm 3-6$
MHF[S9]34129	3.7 ± 0.4	6.7 ± 0.5	9.2 ± 1.0	$51.7 \pm 3-6$
MHF[S9]35238	4.7 ± 0.4	14.0 ± 1.0	18.0 ± 1.5	$14.8 \pm 3-6$
MHF[S9]37243	3.8 ± 0.4	7.6 ± 0.5	7.2 ± 1.0	$40.6 \pm 3-6$
MHF[S9]37842	4.5 ± 0.4	12.2 ± 1.0	16.4 ± 1.5	$17.8 \pm 3-6$
MHF[S9]39669	5.4 ± 0.4	26.6 ± 2.0	18.2 ± 1.5	$6.9 \pm 3-6$
MHF[S9]39981	4.3 ± 0.4	10.2 ± 1.0	13.0 ± 1.5	$24.6 \pm 3-6$
MHF[S9]40041	5.2 ± 0.4	22.8 ± 1.5	15.2 ± 1.5	$8.1 \pm 3-6$
MHF[S9]41051	4.3 ± 0.4	10.8 ± 1.0	14.7 ± 1.5	$22.4 \pm 3-6$
MHF[S9]41805	4.5 ± 0.4	12.0 ± 1.0	18.6 ± 1.5	$18.1 \pm 3-6$
MHF[S9]42028	4.4 ± 0.4	11.0 ± 1.0	12.3 ± 1.5	$21.7 \pm 3-6$
MHF[S9]45171	5.0 ± 0.4	18.0 ± 1.0	16.7 ± 1.5	$10.8 \pm 3-6$
MHF[S9]46824	5.0 ± 0.4	16.8 ± 1.0	36.8 ± 2.0	$12.2 \pm 3-6$
SMC5_016461	5.0 ± 0.4	16.8 ± 1.0	36.8 ± 2.0	$12.2\pm3\text{-}6$
MHF[S9]47308	4.2 ± 0.4	9.7 ± 1.0	13.2 ± 1.5	$26.1 \pm 3-6$
MHF[S9]47315	5.3 ± 0.4	23.9 ± 1.5	16.0 ± 1.5	$7.6 \pm 3-6$
MHF[S9]51066	4.6 ± 0.4	13.1 ± 1.0	14.1 ± 1.5	$16.2 \pm 3-6$
MHF[S9]51986	4.1 ± 0.4	8.8 ± 0.5	8.6 ± 1.0	$30.2 \pm 3-6$
MHF[S9]53489	4.1 ± 0.4	8.8 ± 0.5	9.6 ± 1.0	$30.6 \pm 3-6$
MHF[S9]56797	3.6 ± 0.4	7.4 ± 0.5	3.7 ± 0.5	$30.4 \pm 3-6$
SMC5_000476	3.2 ± 0.4	5.2 ± 0.5	3.8 ± 0.5	$77.2 \pm 3-6$
SMC5_000643	3.8 ± 0.4	7.2 ± 0.5	8.7 ± 1.0	$43.9 \pm 3-6$
SMC5_002483	3.5 ± 0.4	6.3 ± 0.5	5.2 ± 1.0	$60.9 \pm 3-6$
SMC5_002751	4.1 ± 0.4	8.8 ± 0.5	13.2 ± 1.5	$30.4 \pm 3-6$
SMC5_002825	3.3 ± 0.4	7.0 ± 0.5	2.5 ± 0.5	$7.1 \pm 3-6$
SMC5_002984	3.3 ± 0.4	4.9 ± 0.5	6.8 ± 1.0	$96.2 \pm 3-6$
SMC5_003119	4.2 ± 0.4	9.6 ± 0.5	15.0 ± 1.5	$26.8 \pm 3-6$
SMC5_003296	3.5 ± 0.4	6.1 ± 0.5	4.7 ± 0.5	$62.8 \pm 3-6$
SMC5_003315	4.1 ± 0.4	8.7 ± 0.5	11.3 ± 1.5	$31.3 \pm 3-6$
SMC5_003789	3.4 ± 0.4	7.0 ± 0.5	2.8 ± 0.5	$18.3 \pm 3-6$
SMC5_004026	3.6 ± 0.4	7.0 ± 0.5	4.4 ± 0.5	$40.4 \pm 3-6$
SMC5_004201	4.5 ± 0.4	12.0 ± 1.0	35.8 ± 2.5	18.2 ± 3.6
SMC5_004509	3.7 ± 0.4	6.9 ± 0.5	6.3 ± 1.0	$48.3 \pm 3-6$
SMC5_004685	3.5 ± 0.4	6.1 ± 0.5	6.6 ± 1.0	$64.1 \pm 3-6$
SMC5_004982	3.7 ± 0.4	6.8 ± 0.5	5.9 ± 1.0	48.5 ± 3.6
SMC5_005045	3.5 ± 0.4	6.0 ± 0.5	4.6 ± 0.5	64.1 ± 3.6
SMC5_011371	3.8 ± 0.4	8.2 ± 0.5	4.5 ± 0.5	29.4 ± 3.6
SMC5_012717	3.7 ± 0.4	6.6 ± 0.5	6.9 ± 1.0	54.5 ± 3.6
SMC5_012767	4.8 ± 0.4	16.8 ± 1.0	9.9 ± 1.0	11.6 ± 3.6
SMC5_013233	2.6 ± 0.4	3.3 ± 0.5	3.3 ± 0.5	234.8 ± 3.6
SMC5_013978	4.2 ± 0.4	9.4 ± 0.5	13.9 ± 1.5	27.3 ± 3.6
SMC5_014052	4.2 ± 0.4	9.4 ± 0.5	11.2 ± 1.5	27.2 ± 3.6
SMC5 014114	4.7 ± 0.4	14.7 + 1.0	15.9 ± 1.5	13.7 + 3.6
SMC5_014637	4.0 ± 0.4	8.5 ± 0.5	10.5 ± 1.5	33.1 ± 3.6
SMC5_014727	3.8 ± 0.4	7.4 ± 0.5	6.9 ± 1.0	42.1 ± 3.6
SMC5 014864	3.6 ± 0.4	6.4 ± 0.5	8.2 ± 1.0	59.2 + 3-6
SMC5 015429	3.3 ± 0.4	7.1 ± 0.5	2.5 ± 0.5	4.2 ± 3.6
SMC5 015509	3.6 ± 0.4	7.0 ± 0.5	4.8 ± 0.5	41.6 ± 3.6
SMC5 015867	3.5 ± 0.4	6.2 ± 0.5	4.7 ± 0.5	60.9 + 3.6
SMC5 016177	3.5 ± 0.4	77 ± 0.5	36 ± 0.5	27.0 + 3-6
SMC5 016477	2.7 ± 0.4	34 ± 0.5	64 ± 10	27.0 ± 5^{-0} 231 5 + 3-6
SMC5 016523	2.7 ± 0.4 4.5 ± 0.4	123 ± 10	16.0 ± 1.0	17.6 + 3.6
SMC5 016544	40 + 04	12.5 ± 1.0 86 + 05	78 + 10	32.1 + 3.6
51103-010344	$no \pm 0.7$	0.0 ± 0.0	,.0 ± 1.0	54.1 ± 5-0

TAB. 4.19 – Paramètres apparents $\log(L/L_{\odot})$, M/M_{\odot} , et R/R_{\odot} pour les étoiles Be du PNM interpolés ou calculés à partir des diagrammes HR issus de Schaller et al. (1992) pour Z=0.001.

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
SMC5_016824	3.9 ± 0.4	7.6 ± 0.5	8.8 ± 1.0	$40.4 \pm 3-6$
SMC5_017596	3.5 ± 0.4	6.0 ± 0.5	5.1 ± 1.0	$66.1 \pm 3-6$
SMC5_018501	4.2 ± 0.4	10.0 ± 1.0	7.7 ± 1.0	$25.2 \pm 3-6$
SMC5_020211	4.2 ± 0.4	9.7 ± 1.0	9.2 ± 1.0	$26.3 \pm 3-6$
SMC5_021152	4.5 ± 0.4	11.6 ± 1.0	18.1 ± 1.5	$19.5 \pm 3-6$
SMC5_021886	4.0 ± 0.4	8.7 ± 0.5	7.2 ± 1.0	$31.5 \pm 3-6$
SMC5_022295	4.3 ± 0.4	10.8 ± 1.0	15.0 ± 1.5	$22.4 \pm 3-6$
SMC5_022628	4.3 ± 0.4	10.8 ± 1.0	10.4 ± 1.5	$22.5 \pm 3-6$
SMC5_022842	3.7 ± 0.4	7.0 ± 0.5	4.9 ± 0.5	$43.0 \pm 3-6$
SMC5_023931	3.9 ± 0.4	8.0 ± 0.5	7.7 ± 1.0	$36.7 \pm 3-6$
SMC5_025052	2.9 ± 0.4	3.8 ± 0.5	4.7 ± 0.5	$178.1 \pm 3-6$
SMC5_025589	2.8 ± 0.4	4.0 ± 0.5	3.2 ± 0.5	$129.4 \pm 3-6$
SMC5_025718	4.3 ± 0.4	10.5 ± 1.0	13.0 ± 1.5	$23.5 \pm 3-6$
SMC5_025816	4.2 ± 0.4	9.3 ± 0.5	13.2 ± 1.5	$27.8\pm3\text{-}6$
SMC5_025829	3.9 ± 0.4	8.0 ± 0.5	9.0 ± 1.0	$36.7 \pm 3-6$
SMC5_026182	2.7 ± 0.4	3.6 ± 0.5	3.4 ± 0.5	$194.5 \pm 3-6$
SMC5_026689	3.1 ± 0.4	5.2 ± 0.5	3.1 ± 0.5	$65.0\pm3\text{-}6$
SMC5_028368	4.2 ± 0.4	9.4 ± 0.5	12.6 ± 1.5	$27.5\pm3-6$
SMC5_036967	4.3 ± 0.4	10.7 ± 1.0	14.9 ± 1.5	$22.7\pm3-6$
SMC5_037137	4.1 ± 0.4	9.1 ± 0.5	9.4 ± 1.0	$28.5\pm3\text{-}6$
SMC5_037158	4.1 ± 0.4	9.2 ± 0.5	6.9 ± 1.0	$28.2\pm3\text{-}6$
SMC5_037162	4.1 ± 0.4	9.2 ± 0.5	9.2 ± 1.0	$27.9 \pm 3-6$
SMC5_038007	2.9 ± 0.4	4.3 ± 0.5	3.4 ± 0.5	$115.5 \pm 3-6$
SMC5_038312	2.8 ± 0.4	3.5 ± 0.5	5.4 ± 1.0	$212.1 \pm 3-6$
SMC5_038363	4.1 ± 0.4	9.3 ± 0.5	7.2 ± 1.0	$27.8 \pm 3-6$
SMC5_043413	3.8 ± 0.4	7.1 ± 0.5	6.7 ± 1.0	$44.5 \pm 3-6$
SMC5_044117	3.6 ± 0.4	6.5 ± 0.5	5.4 ± 1.0	$55.8 \pm 3-6$
SMC5_044693	4.2 ± 0.4	9.7 ± 1.0	11.6 ± 1.5	$26.2 \pm 3-6$
SMC5_044898	4.0 ± 0.4	8.6 ± 0.5	9.0 ± 1.0	$31.7 \pm 3-6$
SMC5_045747	3.9 ± 0.4	7.8 ± 0.5	8.9 ± 1.0	$38.6 \pm 3-6$
SMC5_046388	3.9 ± 0.4	8.0 ± 0.5	7.6 ± 1.0	$36.7 \pm 3-6$
SMC5_046462	3.9 ± 0.4	7.9 ± 0.5	6.8 ± 1.0	$37.9 \pm 3-6$
SMC5_047763	4.2 ± 0.4	9.0 ± 0.5	27.0 ± 2.0	$29.7 \pm 3-6$
SMC5_048045	4.2 ± 0.4	9.4 ± 0.5	12.5 ± 1.5	$27.5 \pm 3-6$
SMC5_048289	3.5 ± 0.4	6.3 ± 0.5	5.2 ± 1.0	$61.3 \pm 3-6$
SMC5_049651	2.4 ± 0.4	3.1 ± 0.5	2.6 ± 0.5	$240.3 \pm 3-6$
SMC5_049746	4.0 ± 0.4	8.3 ± 0.5	8.8 ± 1.0	$34.8 \pm 3-6$
SMC5_049780	4.3 ± 0.4	10.5 ± 1.0	8.9 ± 1.0	$23.5 \pm 3-6$
SMC5_049996	4.4 ± 0.4	11.1 ± 1.0	14.4 ± 1.5	$21.1 \pm 3-6$
SMC5_051315	2.4 ± 0.4	3.1 ± 0.5	2.8 ± 0.5	$261.8 \pm 3-6$
SMC5_052688	4.2 ± 0.4	9.6 ± 0.5	12.8 ± 1.5	$26.8 \pm 3-6$
SMC5_053267	3.5 ± 0.4	6.0 ± 0.5	5.0 ± 1.0	$67.5 \pm 3-6$
SMC5_053756	3.7 ± 0.4	6.8 ± 0.5	6.0 ± 1.0	49.7 ± 3.6
SMC5_055592	3.5 ± 0.4	5.8 ± 0.5	6.5 ± 1.0	$71.3 \pm 3-6$
SMC5_061950	3.1 ± 0.4	4.3 ± 0.5	6.2 ± 1.0	$126.8 \pm 3-6$
SMC5_064327	4.6 ± 0.4	12.9 ± 1.0	24.9 ± 2.0	$16.6 \pm 3-6$
SMC5_064576	3.2 ± 0.4	5.6 ± 0.5	3.1 ± 0.5	56.1 ± 3.6
SMC5_064832	3.5 ± 0.4	6.0 ± 0.5	8.4 ± 1.0	67.9 ± 3.6
SMC5_065055	5.0 ± 0.4	18.0 ± 1.0	18.3 ± 1.5	$10.8 \pm 3-6$
SMC5_065746	3.5 ± 0.4	7.2 ± 0.5	3.3 ± 0.5	26.4 ± 3.6
SMC5_066754	3.7 ± 0.4	7.0 ± 0.5	$6./\pm 1.0$	45.4 ± 3.6
SMC5_06/333	3.5 ± 0.4	6.1 ± 0.5	5.0 ± 1.0	65.3 ± 3.6
SMC5_073581	3.9 ± 0.4	1.5 ± 0.5	9.9 ± 1.0	41.4 ± 3.6
SMC5_073594	3.7 ± 0.4	6.6 ± 0.5	1.4 ± 1.0	52.8 ± 3.6
SMC5_07/4402	4.4 ± 0.4	11.2 ± 1.0	16.9 ± 1.5	21.1 ± 3.6
SMC5_074471	4.5 ± 0.4	10.7 ± 1.0	14.8 ± 1.5	22.8 ± 3.6
SMC5_075061	3.0 ± 0.4	4.2 ± 0.5	4.2 ± 0.5	$134.4 \pm 3-6$
SMC5_075360	3.8 ± 0.4	1.5 ± 0.5	$/./ \pm 1.0$	$41.2 \pm 3-6$

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
SMC5_078338	4.0 ± 0.4	8.5 ± 0.5	9.5 ± 1.0	$33.2 \pm 3-6$
SMC5_078440	4.8 ± 0.4	14.6 ± 1.0	24.9 ± 2.0	$13.8 \pm 3-6$
SMC5_078928	3.7 ± 0.4	6.7 ± 0.5	6.5 ± 1.0	$51.6 \pm 3-6$
SMC5_080910	3.7 ± 0.4	6.7 ± 0.5	5.9 ± 1.0	$51.1 \pm 3-6$
SMC5_081260	2.4 ± 0.4	3.3 ± 0.5	2.4 ± 1.0	199.7 ± 10
SMC5_082042	4.7 ± 0.4	13.9 ± 1.0	25.1 ± 2.0	$15.0 \pm 3-6$
SMC5_082202	3.5 ± 0.4	5.6 ± 0.5	8.2 ± 1.0	$74.8 \pm 3-6$
SMC5_082543	3.8 ± 0.4	8.0 ± 0.5	5.3 ± 1.0	$34.0 \pm 3-6$
SMC5_082819	5.1 ± 0.4	18.6 ± 1.0	28.4 ± 2.5	$10.4 \pm 3-6$
SMC5_082941	4.2 ± 0.4	9.8 ± 1.0	14.8 ± 1.5	$26.0\pm3\text{-}6$
SMC5_083491	4.6 ± 0.4	12.6 ± 1.0	21.7 ± 2.0	$17.1 \pm 3-6$
SMC5_085503	4.0 ± 0.4	7.9 ± 0.5	14.6 ± 1.5	$37.6 \pm 3-6$
SMC5_086200	3.6 ± 0.4	6.3 ± 0.5	5.7 ± 1.0	$60.5 \pm 3-6$
SMC5_086251	3.6 ± 0.4	6.5 ± 0.5	5.6 ± 1.0	$55.4 \pm 3-6$
SMC5_086581	2.7 ± 0.4	3.6 ± 0.5	3.3 ± 1.0	$196.1 \pm 3-6$
SMC5_086890	3.9 ± 0.4	8.7 ± 0.5	5.3 ± 1.0	$28.5 \pm 3-6$
SMC5_086983	4.0 ± 0.4	8.3 ± 0.5	7.0 ± 1.0	$34.4 \pm 3-6$
SMC5_087004	3.7 ± 0.4	7.7 ± 0.5	4.1 ± 0.5	$31.9 \pm 3-6$
SMC5_090914	3.9 ± 0.4	7.5 ± 0.5	10.9 ± 1.5	$41.0\pm3\text{-}6$
SMC5_190576	5.7 ± 0.4	38.1 ± 2.5	26.6 ± 2.0	$5.1 \pm 3-6$

star		$\Omega/\Omega_{c}=85\%$			$\Omega/\Omega_{c}=90\%$			$\Omega/\Omega_{c}=95\%$	
PNM	$T_{\rm off}^{\rm o}$	$\log g_0$	Vsin i ^{true}	$T_{\rm off}^{\rm o}$	$\log g_0$	Vsin i ^{true}	$T_{\rm off}^{\rm o}$	$\log g_0$	Vsin i ^{true}
MHF[S9]30356	23000 ± 2100	3.5 ± 0.3	333 ± 52	23000 ± 2100	3.5 ± 0.3	335 ± 52	23000 ± 2100	3.5 ± 0.3	338 ± 52
MHF[S9]31046	25000 ± 1800	3.5 ± 0.3	513 ± 40	25500 ± 1800	3.6 ± 0.3	522 ± 40	25500 ± 1800	3.5 ± 0.3	533 ± 40
MHF[S9]34129	18000 ± 3300	3.7 ± 0.3	362 ± 100	18500 ± 3300	3.8 ± 0.3	370 ± 100	18500 ± 3300	3.8 ± 0.3	382 ± 100
MHF[S9]35238	21500 ± 1200	3.3 ± 0.2	252 ± 17	22000 ± 1200	3.4 ± 0.2	256 ± 17	22000 ± 1200	3.4 ± 0.2	261 ± 17
MHF[S9]37243	20500 + 2000	3.8 ± 0.3	201 + 31	20500 + 2000	38 ± 0.3	202 + 31	21000 ± 2000	3.8 ± 0.3	207 + 31
MHF[\$9]37842	20000 ± 1000	33 ± 02	144 + 10	20000 ± 1000	33 ± 02	145 ± 10	20000 ± 1000	33 ± 02	148 + 10
MHF[S9]39669	35500 ± 1800	3.5 ± 0.2 3.7 ± 0.2	512 + 35	38000 ± 1800	3.5 ± 0.2 3.8 ± 0.2	525 ± 35	35000 ± 1800	40 ± 0.2	559 ± 35
MHF[\$9]39981	20000 ± 1000	3.7 ± 0.2 3.5 ± 0.2	212 ± 33 222 ± 11	20500 ± 1000 20500 ± 1000	3.0 ± 0.2 3.5 ± 0.2	225 ± 55 225 + 11	20500 ± 1000 20500 ± 1000	3.6 ± 0.2	229 ± 11
MHF[\$9]40041	34500 ± 3300	3.5 ± 0.2 3.8 ± 0.3	460 ± 72	36000 ± 3300	3.8 ± 0.2 3.8 ± 0.3	471 ± 72	34500 ± 3300	3.0 ± 0.2 3.9 ± 0.3	495 ± 72
MHF[\$9]/1051	21500 ± 1000	3.0 ± 0.3 3.5 ± 0.2	400 ± 72 332 + 16	21500 ± 1000	3.0 ± 0.3 3.5 ± 0.2	$\frac{1}{335} \pm 16$	21500 ± 1000	3.5 ± 0.3	$3/3 \pm 16$
MHF[\$9]/1805	19000 ± 900	3.3 ± 0.2 3.3 ± 0.2	352 ± 10 250 ± 12	19500 ± 900	3.3 ± 0.2 3.3 ± 0.2	353 ± 10 254 ± 12	19500 ± 900	3.0 ± 0.2 3.7 ± 0.2	349 ± 10 259 ± 12
MHE[\$9]/2028	25500 ± 1000	3.5 ± 0.2 3.7 ± 0.2	419 ± 20	27500 ± 1000	3.5 ± 0.2 3.7 ± 0.2	398 ± 20	25000 ± 1000	3.7 ± 0.2 3.7 ± 0.2	442 ± 20
MHF[\$9]45171	30500 ± 1300	3.7 ± 0.2 4.1 ± 0.2	509 ± 25	32500 ± 1000	3.7 ± 0.2 4.1 ± 0.2	570 ± 20 522 ± 25	30000 ± 1300	3.7 ± 0.2 4.0 ± 0.2	555 ± 25
MHE[\$0]46824	18500 ± 1100	$\frac{4.1 \pm 0.2}{2.0 \pm 0.2}$	340 ± 25	$\frac{32500 \pm 1300}{18500 \pm 1100}$	$\frac{11 \pm 0.2}{20 \pm 0.2}$	322 ± 25 341 ± 25	18500 ± 1100	$\frac{4.0 \pm 0.2}{2.0 \pm 0.2}$	350 ± 25
SMC5 016461	18500 ± 1400	2.9 ± 0.2	340 ± 23 325 ± 31	18500 ± 1100 18500 ± 1400	2.9 ± 0.2 28 ± 0.2	341 ± 23 327 ± 31	18500 ± 1100 18500 ± 1400	2.9 ± 0.2	330 ± 23 335 ± 31
MHEIS0147208	18500 ± 1400	2.9 ± 0.2	323 ± 31	13300 ± 1400 21000 ± 1500	2.8 ± 0.2	327 ± 31	18500 ± 1400 21500 ± 1500	2.9 ± 0.2	333 ± 31
MHF[39]47308	20300 ± 1500	3.3 ± 0.3	310 ± 31	21000 ± 1500 24000 ± 1500	3.4 ± 0.3	329 ± 31	21500 ± 1500 22500 ± 1500	3.4 ± 0.3	330 ± 31
MITE[59]4/515	35000 ± 1300	5.7 ± 0.2	365 ± 19	34000 ± 1300 27500 + 1100	5.7 ± 0.2	390 ± 19	32300 ± 1300	5.6 ± 0.2	390 ± 19
MITE[59]51000	20300 ± 1100 21500 ± 2500	5.7 ± 0.2	426 ± 21	$2/500 \pm 1100$ 21500 ± 2500	5.8 ± 0.2	437 ± 21	20000 ± 1100	5.6 ± 0.2	430 ± 21
MITE[59]51980	21300 ± 2300 20500 ± 1200	5.7 ± 0.4	204 ± 32	21300 ± 2300 20500 + 1200	5.7 ± 0.4	200 ± 52	22000 ± 2300	5.7 ± 0.4	211 ± 32
MHF[59]55489	20500 ± 1200	3.0 ± 0.2	233 ± 22	20500 ± 1200	3.7 ± 0.2	237 ± 22	21000 ± 1200	3.7 ± 0.2	238 ± 22
MHF[59]56/9/	25000 ± 3800	4.3 ± 0.4	321 ± 62	26000 ± 3800	4.2 ± 0.4	324 ± 62	25500 ± 3800	4.4 ± 0.4	326 ± 62
SMC5_000476	20000 ± 2800	4.3 ± 0.4	321 ± 61	20000 ± 2800	4.3 ± 0.4	328 ± 61	20000 ± 2800	4.3 ± 0.4	330 ± 61
SMC5_000643	19000 ± 1400	3.7 ± 0.3	292 ± 28	19000 ± 1400	3.7 ± 0.3	297 ± 28	19500 ± 1400	3.8 ± 0.3	301 ± 28
SMC5_002483	21500 ± 3100	4.1 ± 0.4	363 ± 70	21500 ± 3100	4.2 ± 0.4	368 ± 70	21500 ± 3100	4.2 ± 0.4	$3/4 \pm 70$
SMC5_002751	18500 ± 2200	3.5 ± 0.3	328 ± 54	18500 ± 2200	3.5 ± 0.3	334 ± 54	19000 ± 2200	3.5 ± 0.3	342 ± 54
SMC5_002825	25500 ± 2900	4.6 ± 0.4	283 ± 44	25500 ± 2900	4.7 ± 0.4	288 ± 44	26000 ± 2900	4.7 ± 0.4	288 ± 44
SMC5_002984	15500 ± 2900	3.8 ± 0.3	326 ± 95	16000 ± 2900	3.8 ± 0.3	341 ± 95	16000 ± 2900	3.8 ± 0.3	354 ± 95
SMC5_003119	18500 ± 1600	3.3 ± 0.2	277 ± 42	18500 ± 1600	3.3 ± 0.2	281 ± 42	19000 ± 1600	3.5 ± 0.2	286 ± 42
SMC5_003296	20500 ± 1600	4.0 ± 0.3	192 ± 18	20500 ± 1600	4.1 ± 0.3	192 ± 18	21000 ± 1600	4.1 ± 0.3	196 ± 18
SMC5_003315	19000 ± 2900	3.6 ± 0.3	311 ± 48	19500 ± 2900	3.6 ± 0.3	317 ± 48	20000 ± 2900	3.6 ± 0.3	323 ± 48
SMC5_003789	$2/500 \pm 4800$	4.5 ± 0.4	509 ± 150	$2/500 \pm 4800$	4.5 ± 0.4	517 ± 150	$2/500 \pm 4800$	4.6 ± 0.4	528 ± 150
SMC5_004026	28500 ± 4300	4.2 ± 0.4	510 ± 150	28000 ± 4300	4.2 ± 0.4	515 ± 150	28000 ± 4300	4.2 ± 0.4	536 ± 150
SMC5_004201	16500 ± 2800	3.6 ± 0.2	500 ± 145	$1/500 \pm 2800$	3.6 ± 0.2	518 ± 145	18500 ± 2800	3.6 ± 0.2	550 ± 145
SMC5_004509	19500 ± 1900	3.8 ± 0.3	109 ± 16	20000 ± 1900	3.8 ± 0.3	110 ± 16	20000 ± 1900	3.8 ± 0.3	113 ± 16
SMC5_004685	18500 ± 2600	3.8 ± 0.3	259 ± 49	18500 ± 2600	3.9 ± 0.3	264 ± 49	19000 ± 2600	3.9 ± 0.3	$2/1 \pm 49$
SMC5_004982	21000 ± 3000	4.0 ± 0.4	280 ± 54	21500 ± 3000	4.0 ± 0.4	281 ± 54	21500 ± 3000	4.1 ± 0.4	288 ± 54
SMC5_005045	20500 ± 1800	4.1 ± 0.3	236 ± 27	21000 ± 1800	4.1 ± 0.3	243 ± 27	21000 ± 1800	4.2 ± 0.3	241 ± 27
SMC5_0113/1	27000 ± 4800	4.1 ± 0.4	490 ± 140	$2/000 \pm 4800$	4.1 ± 0.4	498 ± 140	$2/500 \pm 4800$	4.5 ± 0.4	$50/\pm 140$
SMC5_012/17	20000 ± 3600	4.1 ± 0.4	$3/4 \pm 108$	20000 ± 3600	4.0 ± 0.4	$3/6 \pm 108$	20000 ± 3600	4.0 ± 0.4	382 ± 108
SMC5_012/6/	31500 ± 5600	3.9 ± 0.4	356 ± 100	30000 ± 5600	3.8 ± 0.4	361 ± 100	31500 ± 5600	3.9 ± 0.4	363 ± 100
SMC5_013233	15000 ± 2800	4.1 ± 0.4	280 ± 80	15000 ± 2800	4.1 ± 0.4	288 ± 80	14500 ± 2800	4.1 ± 0.4	293 ± 80
SMC5_013978	19000 ± 2100	3.5 ± 0.3	297 ± 37	18500 ± 2100	3.5 ± 0.3	296 ± 37	20000 ± 2100	3.6 ± 0.3	311 ± 37
SMC5_014052	19500 ± 1600	3.4 ± 0.3	104 ± 10	19500 ± 1600	3.4 ± 0.3	104 ± 10	20000 ± 1600	3.5 ± 0.3	107 ± 10
SMC5_014114	23000 ± 1400	3.3 ± 0.2	123 ± 10	23000 ± 1400	3.3 ± 0.2	124 ± 10	23000 ± 1400	3.3 ± 0.2	125 ± 10
SMC5_014637	19000 ± 1900	3.5 ± 0.3	172 ± 16	19500 ± 1900	3.5 ± 0.3	175 ± 16	19000 ± 1900	3.6 ± 0.3	176 ± 16
SMC5_014727	22500 ± 2400	3.8 ± 0.3	324 ± 32	22500 ± 2400	3.8 ± 0.3	331 ± 32	21500 ± 2400	4.0 ± 0.3	333 ± 32
SMC5_014864	17000 ± 1000	3.5 ± 0.2	114 ± 10	17000 ± 1000	3.5 ± 0.2	116 ± 10	17000 ± 1000	3.6 ± 0.2	121 ± 10
SMC5_015429	30000 ± 5000	4.9 ± 0.4	480 ± 140	29000 ± 5000	4.9 ± 0.4	489 ± 140	28000 ± 5000	4.9 ± 0.4	497 ± 140
SMC5_015509	26500 ± 4300	4.3 ± 0.4	490 ± 143	25500 ± 4300	4.3 ± 0.4	495 ± 143	24500 ± 4300	4.3 ± 0.4	509 ± 143
SMC5_015867	21000 ± 1600	4.0 ± 0.3	217 ± 21	21000 ± 1600	4.1 ± 0.3	218 ± 21	21000 ± 1600	4.1 ± 0.3	218 ± 21
SMC5_016177	25500 ± 2500	4.3 ± 0.4	292 ± 29	26500 ± 2500	4.2 ± 0.4	296 ± 29	25500 ± 2500	4.2 ± 0.4	297 ± 29
SMC5_016477	11500 ± 2200	3.5 ± 0.3	318 ± 93	11500 ± 2200	3.5 ± 0.3	317 ± 93	11000 ± 2200	3.6 ± 0.3	326 ± 93
SMC5_016523	23000 ± 2000	3.5 ± 0.3	445 ± 43	23000 ± 2000	3.6 ± 0.3	451 ± 43	23000 ± 2000	3.7 ± 0.3	454 ± 43
SMC5_016544	23000 ± 2100	3.9 ± 0.4	352 ± 34	23000 ± 2100	3.9 ± 0.4	355 ± 34	23500 ± 2100	4.0 ± 0.4	357 ± 34
SMC5_016824	19500 ± 1500	3.7 ± 0.3	200 ± 19	19500 ± 1500	3.7 ± 0.3	203 ± 19	19500 ± 1500	3.7 ± 0.3	205 ± 19
SMC5_017596	20000 ± 3800	4.0 ± 0.4	213 ± 40	19500 ± 3800	4.0 ± 0.4	210 ± 40	20500 ± 3800	4.0 ± 0.4	218 ± 40
SMC5_018501	26000 ± 2400	4.0 ± 0.4	367 ± 36	24000 ± 2400	4.0 ± 0.4	373 ± 36	25500 ± 2400	4.0 ± 0.4	373 ± 36
SMC5_020211	23500 ± 2200	3.8 ± 0.3	345 ± 35	23000 ± 2200	3.8 ± 0.3	347 ± 35	23500 ± 2200	3.8 ± 0.3	355 ± 35
SMC5_021152	19500 ± 1800	3.3 ± 0.3	211 ± 20	19500 ± 1800	3.3 ± 0.3	214 ± 20	19500 ± 1800	3.3 ± 0.3	218 ± 20
SMC5_021886	24500 ± 2200	3.8 ± 0.4	421 ± 42	24500 ± 2200	4.1 ± 0.4	422 ± 42	26000 ± 2200	4.2 ± 0.4	432 ± 42
SMC5_022295	22500 ± 2000	3.3 ± 0.3	369 ± 45	21500 ± 2000	3.3 ± 0.3	363 ± 45	22500 ± 2000	3.3 ± 0.3	392 ± 45

TAB. 4.20 – Paramètres fondamentaux corrigés pour les étoiles Be du PNM à l'aide du code FASTROT (Frémat et al (2005a). La valeur la plus appropriée est $\Omega/\Omega_c=95\%$.

Paramètres fondamentaux des étoiles B et Be observées des Nuages de Magellan

star		$\Omega/\Omega_c = 85\%$			$\Omega/\Omega_c=90\%$			$\Omega/\Omega_c=95\%$	
PNM	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	Vsin i ^{true}	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	Vsin i ^{true}	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	Vsin i ^{true}
SMC5_022628	27000 ± 2200	3.9 ± 0.3	470 ± 47	29000 ± 2200	3.9 ± 0.3	481 ± 47	27000 ± 2200	4.2 ± 0.3	515 ± 47
SMC5_022842	30000 ± 4200	4.2 ± 0.4	510 ± 148	30500 ± 4200	4.2 ± 0.4	515 ± 148	26500 ± 4200	4.2 ± 0.4	551 ± 148
SMC5_023931	22000 ± 1600	3.9 ± 0.3	357 ± 35	22000 ± 1600	3.9 ± 0.3	360 ± 35	22000 ± 1600	4.0 ± 0.3	368 ± 35
SMC5_025052	17000 ± 2800	3.8 ± 0.4	369 ± 100	17500 ± 2800	3.8 ± 0.4	371 ± 100	17500 ± 2800	3.9 ± 0.4	375 ± 100
SMC5_025589	20500 ± 2300	4.2 ± 0.4	370 ± 107	20000 ± 2300	4.2 ± 0.4	376 ± 107	18000 ± 2300	4.5 ± 0.4	398 ± 107
SMC5_025718	23000 ± 2000	3.4 ± 0.3	275 ± 34	21500 ± 2000	3.4 ± 0.3	274 ± 34	21500 ± 2000	3.6 ± 0.3	280 ± 34
SMC5_025816	19000 ± 1800	3.5 ± 0.3	233 ± 22	19000 ± 1800	3.5 ± 0.3	235 ± 22	19500 ± 1800	3.5 ± 0.3	244 ± 22
SMC5_025829	21000 ± 2200	3.5 ± 0.3	277 ± 35	20000 ± 2200	3.8 ± 0.3	278 ± 35	20500 ± 2200	3.8 ± 0.3	286 ± 35
SMC5_026182	18500 ± 3000	4.2 ± 0.4	384 ± 108	17500 ± 3000	4.3 ± 0.4	382 ± 108	17000 ± 3000	4.4 ± 0.4	402 ± 108
SMC5_026689	24000 ± 3800	4.5 ± 0.4	407 ± 119	22000 ± 3800	4.6 ± 0.4	416 ± 119	22500 ± 3800	4.6 ± 0.4	425 ± 119
SMC5_028368	23500 ± 3700	3.7 ± 0.3	529 ± 150	22500 ± 3700	3.8 ± 0.3	532 ± 150	22500 ± 3700	4.0 ± 0.3	541 ± 150
SMC5_036967	22000 ± 2800	3.5 ± 0.3	326 ± 41	20000 ± 2800	3.5 ± 0.3	329 ± 41	20000 ± 2800	3.5 ± 0.3	334 ± 41
SMC5_03/13/	21500 ± 1200	3.7 ± 0.2	292 ± 20	22000 ± 1200	3.8 ± 0.2	296 ± 20	22000 ± 1200	3.8 ± 0.2	301 ± 20
SMC5_037158	$2/500 \pm 4000$	3.9 ± 0.4	435 ± 128 278 + 110	26000 ± 4600	3.9 ± 0.4	441 ± 128	26000 ± 4600	4.1 ± 0.4	448 ± 128
SMC5_037102	24000 ± 4000 18000 ± 1700	5.7 ± 0.4	378 ± 110 270 ± 26	22300 ± 4000 17500 ± 1700	5.8 ± 0.4	381 ± 110	23000 ± 4000 18000 ± 1700	5.9 ± 0.4	360 ± 110 202 + 26
SMC5_038007	18000 ± 1700 14000 ± 2500	4.2 ± 0.4	279 ± 20 255 + 80	$1/300 \pm 1/00$ 12500 ± 2500	4.5 ± 0.4	265 ± 20	18000 ± 1700 12500 ± 2500	4.2 ± 0.4	295 ± 20
SMC5_038312	14000 ± 2300 25000 + 1400	3.0 ± 0.4	253 ± 60	13300 ± 2300 24000 ± 1400	3.8 ± 0.4	274 ± 60 260 ± 26	13300 ± 2300 25000 ± 1400	3.7 ± 0.4	263 ± 60
SMC5_038303	23000 ± 1400 21000 ± 3000	4.0 ± 0.2 3.0 ± 0.4	304 ± 30 285 ± 83	24000 ± 1400 21000 ± 3000	4.0 ± 0.2 3.0 ± 0.4	309 ± 30 287 ± 83	23000 ± 1400 21000 ± 3000	4.0 ± 0.2	372 ± 30 204 ± 83
SMC5 044117	21000 ± 3900 22000 ± 4000	3.9 ± 0.4	285 ± 85 344 ± 100	21000 ± 3900 21500 ± 4000	3.9 ± 0.4	207 ± 0.03 346 ± 100	21000 ± 3900 22000 ± 4000	4.0 ± 0.4	254 ± 85 351 ± 100
SMC5 044693	22000 ± 4000 20500 ± 1200	4.1 ± 0.4 3.6 ± 0.2	344 ± 100 269 + 18	21500 ± 4000 21500 ± 1200	4.1 ± 0.4 3.6 ± 0.2	340 ± 100 274 ± 18	22000 ± 4000 21500 ± 1200	4.1 ± 0.4 3.6 ± 0.2	351 ± 100 278 ± 18
SMC5 044898	2000 ± 1200 22000 ± 1600	3.0 ± 0.2 3.6 ± 0.3	402 ± 39	21300 ± 1200 24000 ± 1600	3.0 ± 0.2 3.6 ± 0.3	411 + 39	21500 ± 1200 23500 ± 1600	3.0 ± 0.2 3.6 ± 0.3	418 + 39
SMC5_045747	22000 ± 1000 20000 ± 2800	3.0 ± 0.3 3.7 ± 0.3	402 ± 37 290 + 36	24000 ± 1000 20000 + 2800	3.0 ± 0.3 3.7 ± 0.3	293 ± 36	20500 ± 1000 20500 + 2800	3.0 ± 0.3 3.8 ± 0.3	$\frac{410 \pm 37}{300 \pm 36}$
SMC5 046388	20000 ± 2000 22500 ± 4000	3.7 ± 0.3 3.9 ± 0.4	336 ± 99	20000 ± 2000 22000 ± 4000	3.7 ± 0.3 3.9 ± 0.4	343 ± 99	20500 ± 2000 22500 ± 4000	40 ± 0.3	347 ± 99
SMC5_046462	23000 ± 3100	4.0 ± 0.1	359 ± 45	22500 ± 1000 22500 ± 3100	4.0 ± 0.1	359 ± 45	22000 ± 1000 23000 + 3100	4.0 ± 0.1	363 ± 45
SMC5_047763	13000 ± 1900	2.6 ± 0.3	97 + 12	13000 ± 1900	2.6 ± 0.3	100 ± 12	13000 ± 1900	2.6 ± 0.3	101 + 12
SMC5_048045	22500 ± 2800	3.5 ± 0.3	352 ± 43	21000 ± 2800	3.6 ± 0.3	341 ± 43	20500 ± 2800	3.6 ± 0.3	354 ± 43
SMC5_048289	20500 ± 2300	4.0 ± 0.4	263 ± 27	20500 ± 2300	4.1 ± 0.4	265 ± 27	21000 ± 2300	4.1 ± 0.4	270 ± 27
SMC5_049651	15000 ± 2200	4.3 ± 0.4	300 ± 38	15000 ± 2200	4.3 ± 0.4	311 ± 38	15000 ± 2200	4.3 ± 0.4	317 ± 38
SMC5_049746	23000 ± 3900	4.0 ± 0.4	453 ± 131	23500 ± 3900	4.1 ± 0.4	452 ± 131	22500 ± 3900	4.0 ± 0.4	466 ± 131
SMC5_049780	26000 ± 2400	3.8 ± 0.3	459 ± 45	26000 ± 2400	4.0 ± 0.3	465 ± 45	26500 ± 2400	4.0 ± 0.3	473 ± 45
SMC5_049996	24000 ± 2900	4.0 ± 0.3	477 ± 60	24000 ± 2900	4.1 ± 0.3	477 ± 60	23000 ± 2900	4.0 ± 0.3	490 ± 60
SMC5_051315	14000 ± 2700	4.1 ± 0.4	150 ± 42	14000 ± 2700	4.1 ± 0.4	150 ± 42	14000 ± 2700	4.1 ± 0.4	156 ± 42
SMC5_052688	19500 ± 1500	3.5 ± 0.3	290 ± 28	20000 ± 1500	3.5 ± 0.3	290 ± 28	20500 ± 1500	3.7 ± 0.3	300 ± 28
SMC5_053267	23000 ± 3800	4.1 ± 0.4	466 ± 134	22500 ± 3800	4.1 ± 0.4	480 ± 134	25000 ± 3800	4.2 ± 0.4	493 ± 134
SMC5_053756	20000 ± 1600	3.9 ± 0.3	155 ± 15	20500 ± 1600	3.9 ± 0.3	157 ± 15	20500 ± 1600	3.9 ± 0.3	160 ± 15
SMC5_055592	17000 ± 2500	3.7 ± 0.4	127 ± 15	17500 ± 2500	3.7 ± 0.4	129 ± 15	17500 ± 2500	3.7 ± 0.4	135 ± 15
SMC5_061950	15500 ± 2700	3.7 ± 0.4	297 ± 91	15500 ± 2700	3.7 ± 0.4	318 ± 91	15000 ± 2700	3.8 ± 0.4	332 ± 91
SMC5_064327	18500 ± 1000	3.2 ± 0.2	297 ± 28	19000 ± 1000	3.2 ± 0.2	299 ± 28	20000 ± 1000	3.4 ± 0.2	312 ± 28
SMC5_064576	22000 ± 2100	4.5 ± 0.4	315 ± 92	22000 ± 2100	4.5 ± 0.4	321 ± 92	22000 ± 2100	4.5 ± 0.4	325 ± 92
SMC5_064832	17500 ± 1600	3.8 ± 0.3	316 ± 30	17500 ± 1600	3.8 ± 0.3	316 ± 30	17500 ± 1600	3.7 ± 0.3	336 ± 30
SMC5_065055	26500 ± 1900	3.5 ± 0.3	431 ± 42	26500 ± 1900	3.5 ± 0.3	435 ± 42	26500 ± 1900	3.5 ± 0.3	443 ± 42
SMC5_065746	26000 ± 2900	4.5 ± 0.4	370 ± 38	27000 ± 2900	4.4 ± 0.4	375 ± 38	26000 ± 2900	4.5 ± 0.4	378 ± 38
SMC5_066/54	19500 ± 2900	3.8 ± 0.4	174 ± 21	20000 ± 2900	3.8 ± 0.4	$1/6 \pm 21$	20000 ± 2900	3.8 ± 0.4	178 ± 21
SMC5_067333	20500 ± 3800	4.1 ± 0.4	281 ± 46	20500 ± 3800	4.1 ± 0.4	285 ± 46	21000 ± 3800	4.1 ± 0.4	289 ± 46
SMC5_073581	19000 ± 2500 18500 ± 2600	3.0 ± 0.3	240 ± 30 202 + 25	19000 ± 2500 10000 ± 2600	3.7 ± 0.3	245 ± 30	19000 ± 2500 10000 ± 2600	3.0 ± 0.3	251 ± 50
SMC5_073394	18300 ± 2000	3.7 ± 0.3	203 ± 23	19000 ± 2000	3.7 ± 0.3	207 ± 23	19000 ± 2000	3.8 ± 0.3	215 ± 25 427 ± 41
SMC5_074402	20000 ± 2200 19500 ± 1500	3.7 ± 0.3 3.4 ± 0.3	403 ± 41 106 ± 10	21000 ± 2200 19500 ± 1500	3.7 ± 0.3 3.4 ± 0.3	417 ± 41 107 ± 10	22000 ± 2200	3.0 ± 0.3 3.5 ± 0.3	437 ± 41 201 ± 10
SMC5_075061	19300 ± 1300 16000 ± 3200	3.4 ± 0.3 3.9 ± 0.4	190 ± 19 133 ± 37	19300 ± 1300 16000 ± 3200	3.4 ± 0.3 3.9 ± 0.4	137 ± 13 133 ± 37	20000 ± 1300 16000 ± 3200	3.3 ± 0.3	201 ± 19 141 ± 37
SMC5_075360	20000 ± 3200	3.9 ± 0.4 38 ± 0.3	133 ± 37 241 + 21	20000 ± 3200	3.9 ± 0.4 3.8 ± 0.3	245 ± 21	20500 ± 1900	3.9 ± 0.4 3.9 ± 0.3	141 ± 37 251 + 21
SMC5 078338	19500 ± 1900	3.0 ± 0.3 3.5 ± 0.3	79 ± 10	19500 ± 1900	3.0 ± 0.3 3.5 ± 0.3	80 ± 10	19500 ± 1900	3.9 ± 0.3 3.6 ± 0.3	83 ± 10
SMC5 078440	22500 ± 1800	3.5 ± 0.3 3.5 ± 0.3	358 + 35	21000 ± 1800	3.5 ± 0.3 3.5 ± 0.3	369 ± 35	21000 ± 1800	3.6 ± 0.3	378 + 35
SMC5 078928	19500 ± 3800	3.5 ± 0.5 3.8 ± 0.4	148 ± 42	19500 ± 3800	3.5 ± 0.5 3.8 ± 0.4	150 ± 42	20000 ± 3800	3.0 ± 0.3 3.8 ± 0.4	153 ± 42
SMC5_080910	21000 ± 2000	4.0 ± 0.3	324 ± 30	21000 ± 2000	4.1 ± 0.3	329 ± 30	21500 ± 2000	4.1 ± 0.3	334 ± 30
SMC5_081260	16000 ± 2300	4.4 ± 0.4	238 ± 30	16000 ± 2300	4.4 ± 0.4	249 ± 30	16000 ± 2300	4.4 ± 0.4	252 ± 30
SMC5_082042	19500 ± 2600	3.7 ± 0.3	420 ± 53	21000 ± 2600	3.7 ± 0.3	426 ± 53	21000 ± 2600	3.7 ± 0.3	433 ± 53
SMC5_082202	16000 ± 1200	3.6 ± 0.3	277 ± 27	16000 ± 1200	3.6 ± 0.3	287 ± 27	16500 ± 1200	3.7 ± 0.3	298 ± 27
SMC5_082543	24500 ± 2300	4.2 ± 0.4	368 ± 36	27000 ± 2300	4.1 ± 0.4	378 ± 36	24500 ± 2300	4.2 ± 0.4	377 ± 36
SMC5_082819	21000 ± 1000	3.1 ± 0.1	326 ± 16	21500 ± 1000	3.1 ± 0.1	330 ± 16	23000 ± 1000	3.1 ± 0.1	340 ± 16
SMC5_082941	18500 ± 1800	3.5 ± 0.3	333 ± 32	19000 ± 1800	3.5 ± 0.3	339 ± 32	21000 ± 1800	3.7 ± 0.3	359 ± 32
SMC5_083491	20500 ± 1800	3.5 ± 0.3	449 ± 56	20000 ± 1800	3.5 ± 0.3	457 ± 56	21500 ± 1800	3.6 ± 0.3	470 ± 56
SMC5_085503	15500 ± 900	3.3 ± 0.2	286 ± 28	16000 ± 900	3.2 ± 0.2	298 ± 28	16500 ± 900	3.4 ± 0.2	297 ± 28
SMC5_086200	20500 ± 3800	4.1 ± 0.4	382 ± 111	21000 ± 3800	4.1 ± 0.4	387 ± 111	20000 ± 3800	4.1 ± 0.4	410 ± 111
SMC5_086251	20500 ± 2900	4.0 ± 0.4	304 ± 39	21000 ± 2900	4.1 ± 0.4	310 ± 39	21000 ± 2900	4.1 ± 0.4	314 ± 39
SMC5_086581	16000 ± 1800	4.3 ± 0.4	319 ± 31	16500 ± 1800	4.2 ± 0.4	334 ± 31	16000 ± 1800	4.2 ± 0.4	336 ± 31

star		$\Omega/\Omega_c = 85\%$			$\Omega/\Omega_c = 90\%$			$\Omega/\Omega_{c}=95\%$	
PNM	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	Vsin i ^{true}	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	Vsin i ^{true}	$T_{\rm eff}^{\rm o}$	$\log g_{\rm o}$	Vsin i ^{true}
SMC5_086890	26000 ± 1900	4.2 ± 0.3	392 ± 38	25500 ± 1900	4.3 ± 0.3	395 ± 38	26000 ± 1900	4.2 ± 0.3	400 ± 38
SMC5_086983	23500 ± 3200	4.0 ± 0.4	400 ± 51	24000 ± 3200	4.0 ± 0.4	405 ± 51	24000 ± 3200	4.0 ± 0.4	406 ± 51
SMC5_087004	25500 ± 2400	4.4 ± 0.4	393 ± 38	25500 ± 2400	4.5 ± 0.4	396 ± 38	26000 ± 2400	4.4 ± 0.4	401 ± 38
SMC5_090914	18000 ± 2400	3.6 ± 0.3	327 ± 40	18500 ± 2400	3.6 ± 0.3	329 ± 40	18500 ± 2400	3.5 ± 0.3	337 ± 40
SMC5_190576	32500 ± 1800	3.5 ± 0.2	402 ± 28	32000 ± 1800	3.4 ± 0.2	405 ± 28	32500 ± 1800	3.4 ± 0.2	411 ± 28

TAB. 4.21 – Paramètres complémentaires ($\log(L/L_{\odot})$, M/M_{\odot} , R/R_{\odot} et âge) pour les étoiles Be du PNM, corrigés de la rotation rapide pour $\Omega/\Omega_{c}=95\%$ et interpolés ou calculés à partir des diagrammes HR issus de Schaller et al. (1992) pour Z=0.001.

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
MHF[S9]30356	4.4 ± 0.4	11.1 ± 1.0	10.2 ± 1.5	$21.3 \pm 3-6$
MHF[S9]31046	4.6 ± 0.4	13.7 ± 1.0	10.9 ± 1.5	15.33 ±3-6
MHF[S9]34129	3.4 ± 0.4	5.9 ± 0.5	5.2 ± 1.0	$69.8 \pm 3-6$
MHF[S9]35238	4.5 ± 0.4	11.9 ± 1.0	12.8 ± 1.5	18.44 ±3-6
MHF[S9]37243	3.7 ± 0.4	7.0 ± 0.5	5.3 ± 1.0	44.47 ±3-6
MHF[S9]37842	4.4 ± 0.4	11.0 ± 1.0	13.5 ± 1.5	$21.54 \pm 3-6$
MHF[S9]39669	4.9 ± 0.4	19.8 ± 2.0	7.5 ± 1.5	7.217 ±3-6
MHF[S9]39981	4.0 ± 0.4	8.4 ± 1.0	8.1 ± 1.5	$33.4 \pm 3-6$
MHF[S9]40041	5.0 ± 0.4	21.8 ± 1.5	9.1 ± 1.5	$7.212 \pm 3-6$
MHF[S9]41051	4.0 ± 0.4	8.7 ± 1.0	7.7 ± 1.5	$30.9 \pm 3-6$
MHF[S9]41805	3.7 ± 0.4	6.7 ± 1.0	6.2 ± 1.5	51.21 ±3-6
MHF[S9]42028	4.3 ± 0.4	11.0 ± 1.0	8.1 ± 1.5	$21.6 \pm 3-6$
MHF[S9]45171	4.4 ± 0.4	13.4 ± 1.0	6.1 ± 1.5	12.67 ±3-6
MHF[S9]46824	4.8 ± 0.4	14.7 ± 1.0	23.2 ± 2.0	13.67 ±3-6
SMC5_016461	4.8 ± 0.4	14.9 ± 1.0	23.9 ± 2.0	13.36 ±3-6
MHF[S9]47308	4.4 ± 0.4	11.1 ± 1.0	12.0 ± 1.5	$21.32 \pm 3-6$
MHF[S9]47315	5.0 ± 0.4	21.3 ± 1.5	10.2 ± 1.5	$7.9 \pm 3-6$
MHF[S9]51066	4.4 ± 0.4	12.0 ± 1.0	7.6 ± 1.5	$17.49 \pm 3-6$
MHF[S9]51986	3.9 ± 0.4	8.2 ± 0.5	6.5 ± 1.0	$35.14 \pm 3-6$
MHF[S9]53489	3.9 ± 0.4	8.0 ± 0.5	6.9 ± 1.0	$36.85 \pm 3-6$
MHF[S9]56797	3.5 ± 0.4	7.8 ± 0.5	2.9 ± 0.5	$12.98 \pm 3-6$
SMC5_000476	3.0 ± 0.4	5.0 ± 0.5	2.5 ± 0.5	$51.42 \pm 3-6$
SMC5_000643	3.6 ± 0.4	6.6 ± 0.5	5.7 ± 1.0	54.71 ±3-6
SMC5_002483	3.3 ± 0.4	6.2 ± 0.5	3.4 ± 1.0	$46.87 \pm 3-6$
SMC5_002751	3.9 ± 0.4	7.5 ± 0.5	7.9 ± 1.5	$40.91 \pm 3-6$
SMC5_002825	_	_	_	_
SMC5_002984	3.1 ± 0.4	4.6 ± 0.5	4.9 ± 1.0	$110.8 \pm 3-6$
SMC5_003119	3.9 ± 0.4	7.8 ± 0.5	8.4 ± 1.5	$38.49 \pm 3-6$
SMC5_003296	3.3 ± 0.4	6.1 ± 0.5	3.6 ± 0.5	$53.19 \pm 3-6$
SMC5_003315	3.8 ± 0.4	7.5 ± 0.5	7.2 ± 1.5	$40.67 \pm 3-6$
SMC5_003789	3.5 ± 0.4	7.3 ± 0.5	2.4 ± 0.5	$27 \pm 3-6$
SMC5_004026	4.0 ± 0.4	10.6 ± 0.5	4.3 ± 0.5	$14.7 \pm 3-6$
SMC5_004201	3.6 ± 0.4	6.6 ± 1.0	6.7 ± 2.5	$54.74 \pm 3-6$
SMC5_004509	3.6 ± 0.4	6.5 ± 0.5	5.2 ± 1.0	$55.49 \pm 3-6$
SMC5_004685	3.4 ± 0.4	5.8 ± 0.5	4.7 ± 1.0	$70.61 \pm 3-6$
SMC5_004982	3.5 ± 0.4	6.6 ± 0.5	4.0 ± 1.0	$46.05 \pm 3-6$
SMC5_005045	3.3 ± 0.4	6.1 ± 0.5	3.4 ± 0.5	$50.91 \pm 3-6$
SMC5_011371	3.6 ± 0.4	8.7 ± 0.5	2.8 ± 0.5	$3.034 \pm 3-6$
SMC5_012717	3.4 ± 0.4	6.0 ± 0.5	4.0 ± 1.0	$59.52 \pm 3-6$
SMC5_012767	4.7 ± 0.4	16.4 ± 1.0	7.4 ± 1.0	$10.23 \pm 3-6$
SMC5_013233	2.5 ± 0.4	3.3 ± 0.5	2.7 ± 0.5	$217.7 \pm 3-6$
SMC5_013978	3.9 ± 0.4	7.7 ± 0.5	7.1 ± 1.5	$39.08 \pm 3-6$
SMC5_014052	4.1 ± 0.4	8.9 ± 0.5	9.2 ± 1.5	$29.23 \pm 3-6$
SMC5_014114	4.7 ± 0.4	14.0 ± 1.0	14.3 ± 1.5	14.76 ±3-6
SMC5_014637	3.8 ± 0.4	7.1 ± 0.5	7.2 ± 1.5	$44.37 \pm 3-6$
SMC5_014727	3.6 ± 0.4	7.0 ± 0.5	4.5 ± 1.0	$40.79 \pm 3-6$
SMC5_014864	3.5 ± 0.4	6.1 ± 0.5	6.9 ± 1.0	$65.01 \pm 3-6$
SMC5_015509	3.5 ± 0.4	7.5 ± 0.5	3.1 ± 0.5	$21.24 \pm 3-6$
SMC5_015867	3.4 ± 0.4	6.2 ± 0.5	3.6 ± 0.5	$50.41 \pm 3-6$
SMC5_016177	3.8 ± 0.4	8.6 ± 0.5	3.9 ± 0.5	$21.44 \pm 3-6$
SMC5_016477	2.5 ± 0.4	3.0 ± 0.5	4.9 ± 0.5	$300.8 \pm 3-6$
SMC5_016523	4.1 ± 0.4	9.5 ± 0.5	7.6 ± 1.0	$27.09 \pm 3-6$
SMC5_016544	3.8 ± 0.4	8.4 ± 1.0	5.1 ± 1.5	$30.33 \pm 3-6$

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
SMC5_016824	3.7 ± 0.4	7.0 ± 0.5	6.5 ± 1.0	$45.68 \pm 3-6$
SMC5_017596	3.4 ± 0.4	6.0 ± 0.5	3.9 ± 1.0	$58.02 \pm 3-6$
SMC5_018501	4.1 ± 0.4	10.0 ± 0.5	5.4 ± 1.0	$21.75 \pm 3-6$
SMC5_020211	4.0 ± 0.4	9.0 ± 1.0	6.0 ± 1.0	$27.63 \pm 3-6$
SMC5_021152	4.2 ± 0.4	10.0 ± 1.0	12.5 ± 1.0	$25.12 \pm 3-6$
SMC5_021886	3.7 ± 0.4	8.5 ± 1.0	3.7 ± 1.5	$20.51 \pm 3-6$
SMC5_022295	4.6 ± 0.4	13.2 ± 0.5	14.3 ± 1.0	$16.08 \pm 3-6$
SMC5_022628	3.9 ± 0.4	9.6 ± 1.0	4.2 ± 1.5	$18.35 \pm 3-6$
SMC5_022842	3.8 ± 0.4	9.2 ± 1.0	4.0 ± 1.5	$18.48 \pm 3-6$
SMC5_023931	3.7 ± 0.4	7.5 ± 0.5	4.7 ± 0.5	$36.9 \pm 3-6$
SMC5_025052	3.2 ± 0.4	4.9 ± 0.5	4.5 ± 1.0	91.41 ±3-6
SMC5_025589	2.6 ± 0.4	4.0 ± 0.5	2.0 ± 0.5	$56.58 \pm 3-6$
SMC5_025718	4.1 ± 0.4	8.9 ± 0.5	8.0 ± 0.5	$29.4 \pm 3-6$
SMC5_025816	3.9 ± 0.4	7.9 ± 1.0	8.1 ± 1.5	$37.59 \pm 3-6$
SMC5_025829	3.7 ± 0.4	7.1 ± 0.5	5.9 ± 1.5	$44.38 \pm 3-6$
SMC5_026182	2.5 ± 0.4	3.7 ± 0.5	2.1 ± 1.0	118.5 ±3-6
SMC5_026689	_	_	_	_
SMC5_028368	3.6 ± 0.4	7.0 ± 0.5	4.2 ± 0.5	37.99 ±3-6
SMC5_036967	4.1 ± 0.4	8.8 ± 0.5	8.8 ± 1.5	$30.68 \pm 3-6$
SMC5_037137	3.9 ± 0.4	7.9 ± 1.0	6.1 ± 1.5	37.97 ±3-6
SMC5_037158	3.9 ± 0.4	9.5 ± 0.5	4.6 ± 1.0	21.24 ±3-6
SMC5_037162	3.9 ± 0.4	8.1 ± 0.5	5.6 ± 1.0	$35.01 \pm 3-6$
SMC5_038007	2.8 ± 0.4	4.2 ± 0.5	2.6 ± 1.0	$97.4 \pm 3-6$
SMC5_038312	2.7 ± 0.4	3.5 ± 0.5	4.5 ± 0.5	$217.1 \pm 3-6$
SMC5_038363	4.0 ± 0.4	9.3 ± 0.5	5.1 ± 1.0	23.67 ± 3.6
SMC5 043413	3.5 ± 0.4	6.7 ± 0.5	4.4 ± 1.0	46.71 + 3-6
SMC5 044117	3.4 ± 0.4	6.4 ± 0.5	3.6 ± 1.0	44.97 +3-6
SMC5 044693	4.0 ± 0.4	8.5 ± 0.5	7.4 ± 1.0	33.1 +3-6
SMC5 044898	4.2 ± 0.4	10.3 + 1.0	8.4 ± 1.5	24.3 +3-6
SMC5 045747	3.7 ± 0.4	7.0 ± 0.5	5.8 ± 1.0	45.68 + 3-6
SMC5 046388	3.7 ± 0.4	7.6 ± 0.5	4.8 ± 1.0	$36.59 \pm 3-6$
SMC5 046462	3.7 ± 0.4	7.6 ± 0.5	4.5 ± 1.0	34.18 + 3-6
SMC5_047763	4.2 ± 0.4	9.0 ± 0.5	26.4 ± 1.0	$29.7 \pm 3-6$
SMC5 048045	4.0 ± 0.4	8.5 ± 0.5	8.2 + 2.0	32.53 + 3-6
SMC5_048080	2.4 ± 0.4	3.5 ± 0.5	2.1 ± 1.5	150.3 + 3-6
SMC5 048289	3.4 ± 0.4	6.2 ± 0.5	3.7 ± 1.0	52.52 + 3-6
SMC5 049651	2.3 ± 0.4	3.1 ± 0.5	2.1 ± 0.5	209.7 ± 3.6
SMC5 049746	3.6 ± 0.4	74 ± 0.5	44 + 10	36.63 ± 3.6
SMC5 049780	41 ± 0.1	10.3 ± 1.0	54 ± 1.0	20.31 ± 3.6
SMC5 049996	37 ± 0.1	77 + 10	45 ± 1.0	34.1 + 3-6
SMC5 051315	2.4 ± 0.4	3.1 ± 0.5	2.7 ± 0.5	253.6 + 3-6
SMC5 052688	38 ± 0.4	74 ± 0.5	66 ± 15	4152 + 3-6
SMC5 053267	3.0 ± 0.4 3.8 ± 0.4	85 ± 0.5	4.1 ± 1.0	24 13 + 3 - 6
SMC5 053756	3.6 ± 0.4	6.7 ± 0.5	4.7 ± 1.0	48.22 + 3-6
SMC5 055592	3.4 ± 0.4	5.7 ± 0.5	5.5 ± 1.0	74.32 +3-6
SMC5 061950	2.9 ± 0.4	40 ± 0.5	3.3 ± 1.0 4.4 ± 1.0	141.8 ± 3.6
SMC5 064327	42 ± 0.4	97 ± 10	113 ± 20	262 + 3-6
SMC5 064576	3.0 ± 0.4	5.6 ± 0.5	2.2 ± 0.5	9.055 + 3.6
SMC5 064832	3.0 ± 0.4 3.4 ± 0.4	5.0 ± 0.5 55 + 05	5.2 ± 0.5 5.6 ± 1.0	78 45 +3-6
SMC5 065055	48 ± 0.4	153 ± 0.5	11.6 ± 1.0	12.95 +3-6
SMC5 065746	34 ± 0.4	79 ± 0.5	26 ± 0.5	2814 + 3.6
SMC5 066754	3.4 ± 0.4	65 ± 0.5	5.0 ± 0.0	56 73 +3-6
SMC5 067333	3.0 ± 0.4 3.3 ± 0.4	60 ± 0.5	3.1 ± 1.0 3.5 ± 1.0	53 87 +3-6
SMC5 073581	3.5 ± 0.4 3.7 ± 0.4	68 ± 0.5	67 ± 1.0	50.28 ± 3.6
SMC5 073504	3.7 ± 0.4 3.6 ± 0.4	63 ± 0.5	5.7 ± 1.0 5.6 ± 1.0	59 83 +3-6
SMC5 074402	3.0 ± 0.4 3.9 ± 0.4	8.2 ± 0.3	5.0 ± 1.0 6.4 ± 1.5	34.92 +3-6
SMC5 074471	3.7 ± 0.4 4.1 ± 0.4	91 ± 10	9.4 ± 1.5 9.5 ± 1.5	28 45 +3-6
SMC5 075061	7.1 ± 0.4 29 + 01	43 ± 0.5	38 ± 0.5	$1265 \pm 3-6$
51405_075001	2.7 エ 0.4	+.3 ± 0.3	3.0 ± 0.3	120.3 ±3-0

Star	$\log(L/L_{\odot})$	M/M_{\odot}	R/R_{\odot}	âge Mans
SMC5_075360	3.6 ± 0.4	6.5 ± 0.5	5.0 ± 1.0	$55.9 \pm 3-6$
SMC5_078338	3.8 ± 0.4	7.3 ± 0.5	7.2 ± 1.0	$42.65 \pm 3-6$
SMC5_078440	4.0 ± 0.4	8.7 ± 1.0	7.9 ± 2.0	$31.41 \pm 3-6$
SMC5_078928	3.5 ± 0.4	6.3 ± 0.5	5.0 ± 1.0	$60.08 \pm 3-6$
SMC5_080910	3.4 ± 0.4	6.4 ± 0.5	3.8 ± 1.0	$48.35 \pm 3-6$
SMC5_081260	2.3 ± 0.4	3.3 ± 0.5	2.0 ± 1.0	159.1 ±3-6
SMC5_082042	3.9 ± 0.4	7.8 ± 1.0	6.7 ± 2.0	$38.34 \pm 3-6$
SMC5_082202	3.3 ± 0.4	5.0 ± 0.5	5.4 ± 1.0	$88.06 \pm 3-6$
SMC5_082543	3.7 ± 0.4	7.9 ± 0.5	3.7 ± 1.0	$26.11 \pm 3-6$
SMC5_082819	5.0 ± 0.4	18.4 ± 1.0	20.3 ± 2.5	$10.57 \pm 3-6$
SMC5_082941	3.9 ± 0.4	7.9 ± 1.0	6.8 ± 1.5	$37.78 \pm 3-6$
SMC5_083491	4.1 ± 0.4	8.9 ± 1.0	8.1 ± 2.0	$29.9 \pm 3-6$
SMC5_085503	3.7 ± 0.4	6.5 ± 0.5	8.5 ± 1.5	$55.77 \pm 3-6$
SMC5_086200	3.3 ± 0.4	5.7 ± 0.5	3.5 ± 1.0	$61.44 \pm 3-6$
SMC5_086251	3.4 ± 0.4	6.3 ± 0.5	3.7 ± 1.0	$50.33 \pm 3-6$
SMC5_086581	2.5 ± 0.4	3.6 ± 0.5	2.5 ± 1.0	$167.3 \pm 3-6$
SMC5_086890	3.8 ± 0.4	8.9 ± 0.5	4.0 ± 1.0	$20.66 \pm 3-6$
SMC5_086983	3.8 ± 0.4	8.1 ± 0.5	4.5 ± 1.0	$29.88 \pm 3-6$
SMC5_087004	3.5 ± 0.4	8.0 ± 0.5	2.9 ± 0.5	$11.25 \pm 3-6$
SMC5_090914	3.7 ± 0.4	6.9 ± 0.5	7.4 ± 1.5	$47.36 \pm 3-6$
SMC5_190576	5.5 ± 0.4	30.6 ± 2.5	17.4 ± 2.0	$6.288 \pm 3-6$

Figures

FIG. 4.10 – Diagrammes HR pour les étoiles B étudiées du GNM, incluant les étoiles B rotateurs rapides et les Be. Graphe du haut : Les effets de la rotation rapide sont pris en compte avec $\Omega/\Omega_c=85\%$ pour les étoiles Be et les B rotateurs rapides. Graphe du bas : B et rotateurs rapides (Be et B) corrigés de leur rotation rapide. En commun dans ces graphes : La métallicité adoptée pour le GNM est Z=0.004 (Korn et al. (2002), Rolleston et al. 1996). Les 'x' verts représentent les étoiles B, les '+' rouges représentent les étoiles Be avec leurs paramètres apparents et les '*' bleus les étoiles Be corrigées avec FASTROT (Frémat et al. 2005b) pour $\Omega/\Omega_c=85\%$. Les carrés roses vides représentent les B rotateurs rapides avec leurs paramètres fondamentaux apparents et les carrés bleus pleins les étoiles B rotateurs rapides avec leurs paramètres corrigés par FASTROT pour $\Omega/\Omega_c=85\%$. Les barres d'erreurs typiques sont données dans le coin haut-droit de la figure.

FIG. 4.11 – Diagrammes HR pour les étoiles B étudiées du PNM, incluant les étoiles Be. Graphe du haut : Les effets de la rotation rapide sont pris en compte avec $\Omega/\Omega_c=95\%$ pour les étoiles Be. Il semblerait que certaines corrections apportées aux étoiles Be ne soient pas optimales et nécessiteraient peut être une nouvelle étude. Graphe du bas : B et rotateurs rapides (Be) corrigés de leur rotation rapide. En commun dans ces graphes : La métallicité adoptée pour le PNM est Z=0.001 (Jasniewicz & Thévenin 1994). Les 'x' verts représentent les étoiles B, les '+' rouges représentent les étoiles Be avec leurs paramètres apparents et les '*' bleus les étoiles Be corrigées avec FASTROT (Frémat et al. 2005b) pour $\Omega/\Omega_c=95\%$. Les barres d'erreurs typiques sont du même ordre que dans la figure 4.10.

FIG. 4.12 – Comparaisons des distributions en types spectraux du GNM (panneau du haut) et du PNM (panneau du bas) pour les étoiles B. En commun dans les 2 graphiques : les barres bleues de gauche sont pour les étoiles dans les amas et les barres rouges de droite sont pour les étoiles dans les champs.

FIG. 4.13 – Comparaisons des distributions en classes de luminosité du GNM (panneau du haut) et du PNM (panneau du bas) pour les étoiles B. En commun dans les 2 graphiques : les barres bleues de gauche sont pour les étoiles dans les amas et les barres rouges de droite sont pour les étoiles dans les champs.

FIG. 4.14 – Comparaisons des distributions en types spectraux du GNM (panneau du haut) et du PNM (panneau du bas) pour les étoiles Be. En commun dans les 2 graphiques : les barres bleues de gauche sont pour les étoiles dans les amas et les barres rouges de droite sont pour les étoiles dans les champs.

FIG. 4.15 – Comparaisons des distributions en classes de luminosité du GNM (panneau du haut) et du PNM (panneau du bas) pour les étoiles Be. En commun dans les 2 graphiques : les barres bleues de gauche sont pour les étoiles dans les amas et les barres rouges de droite sont pour les étoiles dans les champs.

FIG. 4.16 – Comparaisons des distributions en types spectraux après correction des effets de la rotation rapide pour les étoiles Be du GNM (panneau du haut) et du PNM (panneau du bas). Dans le graphique du haut : les barres bleues de gauche sont pour les étoiles dans les amas et les barres rouges de droite sont pour les étoiles dans les champs.

FIG. 4.17 – Comparaisons des distributions en classes de luminosité après correction des effets de la rotation rapide pour les étoiles Be du GNM (panneau du haut) et du PNM (panneau du bas). Dans le graphique du haut : les barres bleues de gauche sont pour les étoiles dans les amas et les barres rouges de droite sont pour les étoiles dans les amas et les barres rouges de droite sont pour les étoiles dans les champs.

Fig. 4.18 – Comparaisons des distributions en masses pour les étoiles B du GNM (panneau du haut) et du PNM (panneau du bas).

FIG. 4.19 – Comparaisons des distributions en masses pour les étoiles Be du GNM (panneau du haut) et du PNM (panneau du bas). Les effets de la rotation rapide ne modifient pratiquement pas les masses des étoiles, aussi nous pouvons considérer ces distributions comme donnant de bons indices des masses des Be observées.

Bibliographie

- [1] Azzopardi, M. 1987, A&AS, 69, 421
- [2] Ballereau, D.; Chauville, J.; Zorec, J.; "High-resolution spectroscopy of southern and equatorial Be stars : Flux excess at λ 4471 Å.", 1995, A&ASS, 111, 423
- [3] Böhm, T.; Catala, C.; "A spectral atlas of the Herbig Ae star AB Aurigae", 1993, A&AS, 101, 629
- [4] Bouret, J.-C.; Lanz, T.; Hillier, D.J.; et al.; "Quantitative spectroscopy of O stars at low metallicity : O dwarfs in NGC 346", 2003, ApJ, 595, 1182
- [5] Castelli, F., Gratton, R. G., & Kurucz, R. L. "Notes on the convection in the ATLAS9 model atmospheres."1997, A&A, 318, 841
- [6] Cunto, W., Mendoza, C., Ochsenbein, F., & Zeippen, C. J.,"Topbase at the CDS" 1993, A&A, 275, L5
- [7] Charbonnel, C., Meynet, G., Maeder, A., et al. 1993, A&AS, 101, 415
- [8] Chauville, J.; Zorec, J.; Ballereau, D.; et al.; "High and intermediate resolution spectroscopy of Be stars. An atlas of Hγ, HeI 4471 and MgII 4481", 2001, A&A, 378, 861
- [9] Didelon, P.; "Largeurs équivalentes de raies spectrales dans les étoiles B", 1982, A&ASS, 50, 199
- [10] Domiciano de Souza, A.; Kervella, P.; Jankov, S. et al.; "The spinning-top Be star Achernar from VLTI-VINCI", 2003, A&A, 407, L47
- [11] Fabregat, J.; Gutierréz-Soto, J.; "The evolutionary status of Be stars in clusters and in the galactic field", 2004, The Be star Newsletter, 37
- [12] Frémat, Y.; Neiner, C.; Hubert, A.-M.; et al.; "Fundamental parameters of Be stars located in the field of COROT.", 2005a, submitted, astroph0509336
- [13] Frémat, Y.; Zorec, J.; Hubert, A.-M.; et al.; "Effects of gravitational darkening on the determination of fundamental parameters in fast rotating B-type stars", 2005b, A&A, 440, 305, astroph050381
- [14] Gray, R. O.; Corbally, C. J.; "The calibration of MK spectral classes using spectral synthesis. I. The effective temperature calibration of dwarf stars", 1994, AJ, 107
- [15] Grebel, E. K.; Richtler, T.; de Boer, K. S.; "Be star surveys with CCD photometry. I. NGC 330 and its high Be star content.", 1992, A&A, 254, L5
- [16] Hillier, D.J. & Miller, D.L. "The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows" 1998, ApJ, 496, 407
- [17] Hubeny, I. & Lanz, T. 1995, "TLUSTY" ApJ, 439, 875
- [18] Jasniewicz, G.; Thévenin, F.; "Metal abundancies of Magellanic Cloud clusters", 1994, A&A, 282, 717
- [19] Jaschek, C. & Jaschek, M., "The behavior of chemical elements in stars", 1995, Cambridge University Press
- [20] Keller, S. C.; "Infrared photometry of red supergiants in young clusters in the Magellanic Clouds", 1999, AJ, 118, 889
- [21] Keller, S. C.; Wood, P. R.; Bessell, M. S.; "Be stars in and around young clusters in the Magellanic Clouds", 1999, A&ASS, 134, 489
- [22] Keller, S. C.; Bessell, M. S.; Da Costa, G. S.; "Wide field planetary camera 2 imaging of young clusters in the Magellanic Clouds", 2000, AJ, 119, 1748

- [23] Korn, A. J.; Keller, S. C.; Kaufer, A.; et al.; "Pristine CNO abundances from Magellanic Cloud B stars. I. The LMC cluster NGC 2004 with UVES", 2002, A&A, 385, 143
- [24] Kurucz, R. L. 1993, Kurucz CE-ROM No.13. Cambridge, Mass. : Smithsonian Astrophysical Observatory.
- [25] Lanz, T. & Hubeny, I., "OSTAR2002" 2003, ApJS, 146, 417
- [26] Maeder, A.; Grebel, E. K.; Mermilliod, J.-C.; "Differences in the fractions of Be stars in galaxies", 1999, A&A, 346, 459
- [27] Maeder, A.; Meynet, G.; "Stellar evolution with rotation VII. Low metallicity models and the blue to red supergiant ratio in the SMC", 2001, A&A, 373, 555
- [28] Martayan, C.; Frémat, Y., Hubert, A.-M. et al.; "Effects of metallicity, star formation conditions and evolution in B and Be stars. I : Large Magellanic Cloud, field of NGC 2004." 2005b, A&A, submitted
- [29] Martayan, C. "Effects of metallicity, star formation conditions and evolution in B and Be stars.", 2005d, talk and proceedings, Active O, B stars meeting, Sapporo, Japan
- [30] Meynet, G.; Maeder, A.; "Stellar evolution with rotation V. Changes in all the outputs of massive star models", 2000, A&A, 361, 101
- [31] Pietrzyński, G.; Udalski, A.; "The Optical Gravitational Lensing Experiment. Age of Star Clusters from the SMC.", 1999, Acta Astr., 49, 157
- [32] Rolleston, W. R. J., Brown, P. J. F., Dufton, P. F., Howarth, I. D.,"The chemical compositions of three main-sequence B-type stars in the Large MAgellanic Cloud", 1996, A&A, 315, 95
- [33] Schaller, G., Schaerer, D., Meynet, G., Maeder, A., 1992, A&AS, 96, 269S
- [34] Sigut, T. A. A., "Non-LTE Calculations for the C II Doublet System", 1996, ApJ, 473, 452
- [35] Stee, P., 1995, PhD Université Paris VII, "Physique du milieu circumstellaire des étoiles B actives : modélisation et observations à haute résolution angulaire."
- [36] Varosi, F., Lanz, T., deKoter, A., et al. 1995, ftp ://idlastro.gsfc.nasa.gov/pub/contrib/varosi/modion
- [37] Zorec, J.; "Structure et rotation différentielle dans les étoiles B avec et sans émission", 1986, PhD Thesis, Université Paris VII
- [38] Zorec, J.; Frémat, Y.; Cidale, L.; "On the evolutionary status of Be stars. I. Field Be stars near the Sun", 2005, A&A, in press, astroph0509119

Chapitre 5

Effets de la métallicité et de l'évolution temporelle sur les étoiles B et Be

Sommaire

5.1	Vitess	es de rotation : résultats et discussions
	5.1.1	Métallicité et vitesses de rotation : selection par type spectral et classe de luminosité . 120
	5.1.2	Métallicité et vitesses de rotation des étoiles B et Be : selection par masses 125
	5.1.3	Vitesses moyennes de rotation à la ZAMS des étoiles Be
	5.1.4	Comment obtenir des vitesses élevées à la ZAMS pour une étoile Be?
5.2	Vitess	es angulaires de rotation : résultats et discussions
	5.2.1	Résultats observationnels
	5.2.2	Conclusions sur les vitesses angulaires de rotation
5.3	Statut	évolutif des étoiles Be
	5.3.1	Statut évolutif des étoiles Be dans la Voie Lactée
	5.3.2	Statut évolutif des étoiles Be dans les Nuages de Magellan
	5.3.3	Conclusions sur le statut évolutif des étoiles Be
5.4	Abond	lances en carbone des étoiles B et Be : résultats et discussions
	5.4.1	Résultats préliminaires et discussions des abondances de surface en carbone 149
	5.4.2	Conclusions sur les effets de métallicité, d'évolution et de diffusion sur les abondances
		en surface de carbone
5.5	Phéno	mènes additionnels à la création des étoiles Be
	5.5.1	Champ magnétique
	5.5.2	Pulsations non radiales
	5.5.3	Ondes internes
5.6	Conclu	usions
	5.6.1	Métallicité et rotation
	5.6.2	Proportions des étoiles Be
	5.6.3	Effet de l'âge et de l'évolution
	5.6.4	Limites de cette étude

5.1 Vitesses de rotation : résultats et discussions

Gies & Huang (2004) (par la suite GH04) ont recherché le lien éventuel entre la vitesse de rotation et l'âge des étoiles chaudes des amas ouverts de la Voie Lactée (cf paragraphe 5.1.1c). Ils ont noté un bon accord entre les vitesses de rotation mesurées et les prédictions de Meynet & Maeder (2000) pour une étoile de 12 M_{\odot} , de vitesse de rotation initiale à la ZAMS $V_0=300$ km s⁻¹, pour les amas d'âge log(t) \leq 7. Toutefois, les étoiles des amas d'âge log(t) > 7 semblent tourner plus vite que prévu. Selon ces auteurs, plusieurs explications sont possibles : binarité, vitesse de rotation initiale à la ZAMS plus grande et influence de la masse sur la vitesse

	Etoiles B du champ	Etoiles Be du champ	Etoiles B d'amas	Etoiles Be d'amas
PNM cette étude	$161 \pm 20 (145)$	320 ± 40 (88)	$158 \pm 20 (18)$	264 ± 40 (25)
GNM cette étude	121 ± 10 (81)	268 ± 30 (26)	$144 \pm 20 (10)$	266± 30 (19)
GNM Keller (2004)	$112 \pm 50 (51)$		$146 \pm 50 (49)$	
VL Glebocki et al. (2000)	124 ± 10 (449)	204 ± 20 (48)		
VL Levato et al. (2004)	$108 \pm 10 (150)$			
VL Yudin (2001)		207 ± 30 (254)		
VL Chauville et al. (2001)		231 ± 20 (56)		
VL WEBDA $\log(t) < 7$			127 ± 20 (44)	199 ± 20 (8)
VL WEBDA $log(t) > 7$			$149 \pm 20 (59)$	208 ± 20 (45)

TAB. 5.1 – Comparaison des vitesses moyennes de rotation pour les étoiles B et Be des Nuages de Magellan et de la Voie Lactée ayant des types spectraux compris entre B1 et B3 et des classes de luminosités comprises entre V et III. Les valeurs entre parenthèses représentent le nombre d'étoiles dans les échantillons.

de rotation. Pour tester la validité des différentes explications proposées, j'ai calculé le taux moyen de binaires dans les amas plus jeunes et plus vieux que log(t)=7. Pour les amas plus jeunes que log(t)=7 on obtient $\frac{binaires}{B}$ = 15% et pour les amas plus vieux que log(t)=7, $\frac{binaires}{B}$ = 19%. Comme ces deux taux sont très voisins, les binaires ne semblent pas être à l'origine des différences de vitesses de rotation constatées.

Par ailleurs GH04 n'ont pas séparé les étoiles B et Be dans leurs études de vitesses. Or d'après Fabregat & Torrejón (2000) la proportion maximale d'étoiles Be dans les amas se situe entre 13 et 25 Mans soit pour log(t) entre 7.1 et 7.4. Une explication possible aux différences de vitesse de rotation trouvées par GH04 pourrait donc être liée à la proportion d'étoiles Be dans les amas de log(t)<7 et de log(t)>7. J'ai recherché dans la base WEBDA le nombre de Be dans les amas observés par GH04. Pour les amas de log(t)≤7 le taux de Be est de : $\frac{Be}{B+Be} = 4.8\%$ et pour les amas de log(t)>7 il est de $\frac{Be}{B+Be} = 22\%$. Cette différence est significative et le fort taux de Be dans les amas de log(t)>7 pourrait expliquer les différences trouvées par GH04.

Une autre possibilité évoquée par GH04 est que les fonctions de masses dans les amas ne soient pas les mêmes d'un amas à l'autre et que les étoiles arrivent à la ZAMS avec des vitesses initiales plus grandes que $V_0=300$ km s⁻¹.

5.1.1 Métallicité et vitesses de rotation : selection par type spectral et classe de luminosité

Afin de pouvoir comparer directement les moyennes de $V\sin i$ dans des milieux de métallicités différentes nous avons constitué des échantillons homogènes en types spectraux et classes de luminosité dans la VL et dans les NM tant pour les étoiles du champ que pour les étoiles d'amas. Pour ces échantillons on peut admettre que la distribution de l'angle d'inclinaison est aléatoire ; sous réserve d'un nombre suffisant d'objets par échantillon les études statistiques ne devraient pas subir l'influence de l'angle d'inclinaison. La sélection des objets s'est effectuée sur les types B1 à B3 qui sont les plus représentés dans nos échantillons d'étoiles des Nuages de Magellan et sur les classes V à III ; les binaires spectroscopiques et à éclipses ont été retirées des échantillons. Notons que ces échantillons ne sont pas forcément homogènes en masse, âge et/ou évolution. Cependant cela va nous permettre d'apporter des résultats nouveaux sur l'influence de la métallicité sur les populations des étoiles B et Be. Les résultats sont reportés dans la Table 5.1.

a) Etoiles B et Be dans les champs

Nos échantillons ont été constitués d'après Glebocki & Stawikowski (2000), Levato & Grosso (2004), Yudin (2001) et Chauville et al. (2001) pour la Voie Lactée, d'après notre étude et celle de Keller (2004) pour le GNM et d'après notre étude pour le PNM. Le nombre d'étoiles retenu est : PNM cette étude (88Be, 145B); GNM cette étude (26Be, 81B); GNM Keller (51B); VL Glebocki & Stawikowski (48Be, 449B); Levato & Grosso (150B); Yudin (254Be); Chauville et al. (56Be). Les valeurs sont reportées dans la Table 5.1. Les valeurs des $V\sin i$ sont les valeurs apparentes pour les Be car aucune de ces études (hormis les nôtres) ne fournissaient de paramètres corrigés des effets de la rotation rapide. Cependant, la correction de ces effets ne ferait qu'augmenter les valeurs de $V\sin i$ et donc ne ferait qu'accroître les tendances que nous mettons en évidence dans le graphique 5.1 panneau du haut. Quand l'âge des objets est connu, nous adoptons comme barre d'erreur la dispersion en âge de l'échantillon. Dans le cas contraire, ce qui est le cas pour la plupart des études, nous avons par défaut imposé une incertitude sur l'âge correspondant à la durée de la Séquence Principale pour une étoile de 7 M_{\odot} en rotation.

Afin de comparer les résultats de nos échantillons entre eux, nous les avons placés sur les chemins évolutifs des vitesses. Pour cela nous avons utilisé les courbes calculées par J. Zorec pour une étoile de 7 M_{\odot} , pour différentes vitesses initiales. Les calculs menant à ces chemins seront détaillés dans le paragraphe 5.1.3a. Dans la Table 5.2, nous donnons les résultats des comparaisons des vitesses de rotation suivant les tests statistiques décrits en annexe, pour les étoiles B et Be des 3 galaxies étudiées ici.

TAB. 5.2 – Résultats des comparaisons des valeurs de vitesse de rotation pour les étoiles B et Be des champs du PNM, GNM et de la VL suivant les tests statistiques décrits en 9.1. La seconde colonne donne le résultat du test de Student, la troisième donne le coefficient α égal à 1-Probabilité, la quatrième donne la probabilité de différence et la dernière colonne donne un commentaire sur le résultat suivant la convention.

$T_{n1,n2}$	α	probabilité	commentaire
	Pour les Be des champs		
6.08	0.1	80-90%	légère différence
15.4	0.02	95-98%	différence significative
10.81	0.05	90-95 %	différence significative
9.84	0.05	90-95%	différence significative
6.52	0.05	90-95%	différence significative
	Pour les B des champs		
16.78	0.02	95-98%	différence significative
29.38	0.02	95-98%	différence significative
1.56	0.3	50-70%	pas de différence
2.48	0.2	70-80%	pas de différence
9.4	0.05	90-95%	différence significative
	$\begin{array}{c} T_{n1,n2} \\ \hline \\ 6.08 \\ 15.4 \\ 10.81 \\ 9.84 \\ 6.52 \\ \hline \\ 16.78 \\ 29.38 \\ 1.56 \\ 2.48 \\ 9.4 \end{array}$	$T_{n1,n2}$ α Pour les Be des champs 6.08 0.1 15.4 0.02 10.81 0.05 9.84 0.05 6.52 0.05 Pour les B des champs 16.78 0.02 29.38 0.02 1.56 0.3 2.48 0.2 9.4 0.05	$\begin{tabular}{ c c c c c } \hline α & $probabilité$ \\ \hline Pour les Be des champs \\ \hline 6.08 & 0.1 & 80-90\% \\ \hline 15.4 & 0.02 & 95-98\% \\ \hline 10.81 & 0.05 & 90-95\% \\ \hline 9.84 & 0.05 & 90-95\% \\ \hline 6.52 & 0.05 & 90-95\% \\ \hline $Pour les B des champs \\ \hline 16.78 & 0.02 & 95-98\% \\ \hline 29.38 & 0.02 & 95-98\% \\ \hline 1.56 & 0.3 & 50-70\% \\ \hline 2.48 & 0.2 & 70-80\% \\ \hline 9.4 & 0.05 & 90-95\% \\ \hline \end{tabular}$

Le graphique 5.1 panneau du haut et les Tables 5.1 et 5.2 nous amènent aux commentaires suivants :

- De même que dans la Voie Lactée les étoiles Be tournent plus vite que les étoiles B dans le PNM et dans le GNM.
- Les étoiles Be du champ du PNM tournent légèrement plus vite que celles du GNM, qui elles-même tournent plus vite que celles de la VL.
- Nos résultats sur les vitesses de rotation des étoiles B du GNM sont identiques à ceux de Keller (2004).
- Pour les étoiles B, il existe une différence significative entre le PNM et le GNM, par contre elle est plus difficile à mettre en évidence entre le GNM et de la VL.
- Les étoiles Be semblent démarrer leur vie sur la SP avec une vitesse initiale à la ZAMS (typiquement > 250 km s⁻¹) plus grande que celle des B quelle que soit la métallicité du milieu.
- Les étoiles Be ne semblent pas être des rotateurs critiques.

b) Etoiles B et Be dans les amas

Dans les amas, nos échantillons ont été constitués à partir de notre étude et de celle de Keller (2004), pour le GNM, à partir de notre étude pour le PNM. Pour la Voie Lactée, nous avons d'abord sélectionné les amas dans la base de données d'amas ouverts WEBDA¹, en fonction de leur âge. La plupart des amas sélectionnés sont ceux étudiés par Gies & Huang (2004), voir le début de cette section. Les amas de log(t) \leq 7 sont, par ordre croissant d'âge : IC 1805, Trumpler 14, IC 2944, NGC 6193, NGC 2362, NGC 2244, NGC 6611, NGC 2384, NGC 3293, et NGC 1502. Les amas de log(t)>7 sont, par ordre croissant d'âge : NGC 869, NGC 884, NGC 4755, IC 2395, NGC 7160, et NGC 2422. Le nombre d'étoiles retenu est : PNM (25Be, 18B); GNM (19Be, 10B); GNM Keller (49B); VL WEBDA avec log(t) \leq 7 (8Be, 44B); VL WEBDA log(t)>7 (45Be, 59B). Il ne faut cependant pas oublier que nous ne sommes pas totalement certains de l'appartenance des étoiles aux amas. Les valeurs des *V*sin *i* sont reportées dans la Table 5.1.

Pour les étoiles des amas nous avons effectué le même graphique que pour les étoiles du champ (graphique 5.1 panneau du bas). Les différences en âge entre les amas donnent les incertitudes en âge pour chaque point du graphique.

Dans la Table 5.3, nous donnons les résultats des comparaisons des vitesses de rotation suivant les tests statistiques décrits en annexe, pour les étoiles B et Be des 3 galaxies étudiées ici.

TAB. 5.3 – Résultats des comparaisons des valeurs de vitesse de rotation pour les étoiles B et Be des amas ouverts du PNM, du GNM et de la VL suivant les tests statistiques décrits en 9.1. La seconde colonne donne le résultat du test de Student, la troisième donne le coefficient α , la quatrième donne la probabilité de différence et la dernière colonne donne un commentaire sur le résultat suivant la convention. Le mot 'limite' signifie que le nombre d'élements de l'échantillon est faible et que les différences ne sont pas réellement significatives.

Comparaison		α	probabilitée	commentaire
		Pour les Be des amas		
Be PNM / Be GNM	0.17	0.5	10-50%	pas de différence
Be PNM / Be VL WEBDA $log(t) < 7$	4.29	0.1	80-90%	limite, légère différence
Be PNM / Be VL WEBDA $log(t) > 7$	7.69	0.05	90-95%	différence significative
Be GNM / Be VL WEBDA $\log(t) < 7$	5.58	0.1	80-90%	limite, légère différence
Be GNM / Be VL WEBDA $log(t) > 7$	8.91	0.05	90-95%	différence significative
Be VL WEBDA $log(t) < 7 / Be VL WEBDA log(t) > 7$	1.15	0.3	50-70%	pas de différence
		Pour les B des amas		
B PNM / B GNM	1.71	0.30	50-70%	limite, pas de différence
B PNM /B VL WEBDA $log(t) < 7$	5.45	0.1	80-90%	légère différence
B PNM /B VL WEBDA $log(t) > 7$	1.65	0.3	50-70%	pas de différence
B GNM / B GNM Keller (2004)	0.12	0.9	<10%	pas de différence
B GNM / B VL WEBDA $\log(t) < 7$	2.38	0.2	70-80%	limite, pas de différence
B GNM / B VL WEBDA $log(t) > 7$	0.72	0.5	10-50%	limite, pas de différence
B VL WEBDA $log(t) < 7 / B$ VL WEBDA $log(t) > 7$	5.47	0.1	80-90%	légère différence

Le graphique 5.1 panneau du bas et les Tables 5.1 et 5.3 nous amènent aux commentaires suivants :

- Pour les étoiles Be, nous ne mettons pas clairement en évidence de différences entre le PNM et le GNM.
 Cela est peut être dû au petit nombre d'étoiles dans les échantillons.
- Les étoiles Be dans les amas du GNM et du PNM ont des vitesses de rotation légèrement plus élevées que celles des amas de log(t)<7 de la Voie Lactée. Toutefois, le faible nombre d'étoiles dans les amas de log(t)<7 peut affecter la statistique et donner un résultat moins marqué que ce qu'il aurait été avec un nombre plus grand détoiles.
- Les étoiles Be dans les amas du GNM et du PNM ont des vitesses de rotation plus élevées que celles des

¹The WEBDA database is maintained by J.C. Mermilliod. See http://obswww.unige.ch/webda/navigation.html

amas de log(t)>7 de la Voie Lactée.

- Pour les étoiles B, nos resultats sont en très bon accord avec ceux de Keller (2004).
- Il n'a pas été possible de mettre en évidence des différences significatives entre les étoiles B du PNM, du GNM et de la VL.

c) Comparaisons entre amas et champs

Nous présentons les résultats de nos comparaisons entre amas et champs pour les étoiles de type B1 à B3 (types précoces) dans la Table 5.4. D'après nos tests statistiques et pour des échantillons comparables, les vitesses moyennes des etoiles B et Be du champ et de celles des amas ne montrent pas de différence notable entre elles.

TAB. 5.4 – Résultats des comparaisons des valeurs de vitesse de rotation pour les étoiles B et Be entre amas ouverts et champs du PNM, du GNM et de la VL suivant les tests statistiques. Les caractéristiques de cette table sont analogues à celle de la Table 5.3.

Comparaison	$T_{n1,n2}$	α	probabilité	commentaire
		Pour les Be		
Be PNM champ / Be PNM amas	6.12	0.1	80-90%	légère différence
Be GNM champ / Be GNM amas	0.22	0.5	10-50%	pas de différence
Be VL champ Yudin (2001) / Be VL WEBDA $log(t) < 7$	0.7	0.5	10-50%	pas de différence
Be VL champ Yudin (2001) / Be VL WEBDA $log(t) > 7$	0.21	0.5	10-50%	pas de différence
		Pour les B		
B PNM champ / B PNM amas	0.596	0.5	50%	pas de différence
B GNM champ / B GNM amas	5.88	0.1	80-90%	limite, légère différence
B VL champ Glebocki et al. $(2000) / B$ VL WEBDA $log(t) < 7$	1.68	0.3	50-70%	pas de différence
B VL champ Glebocki et al. (2000) / B VL WEBDA $log(t) > 7$	15.5	0.02	98%	différence hautement significative

d) Discussion des résultats

L'examen des Tables 5.1 à 5.4 nous permet de conclure que :

- Un effet de métallicité semble bien être présent dans les étoiles Be car elles tournent plus vite dans les Nuages de Magellan que dans la Voie Lactée aussi bien dans les amas que dans les champs. D'après Meynet & Maeder (2000), si les taux de perte de masse sont plus faibles quand la métallicité est plus faible, alors les étoiles perdent moins de moment angulaire dans les régions de faible métallicité. Cela pourrait aider les étoiles à conserver une vitesse de rotation élevée à la ZAMS.
- Les sélections en type spectral et classe de luminosité ne nous ont pas permis de détecter un effet de la métallicité sur les vitesses de rotation des étoiles B du Grand Nuage de Magellan et de la Voie Lactée alors que Keller (2004) semblait en trouver un. Cependant l'échantillonnage qu'il a effectué dans la Voie Lactée n'utilisait pas les plus récentes déterminations des vitesses de rotation. A contrario Penny et al. (2004) ne mettaient en évidence aucun effet de métallicité sur les vitesses de rotation entre les étoiles O des Nuages de Magellan et de la Voie Lactée. Cependant, leur échantillonnage dans les Nuages de Magellan était très faible et non homogène.
- Pour une métallicité donnée les étoiles Be tournent plus vite que les etoiles B dans les champs comme dans les amas. Les étoiles Be doivent débuter leur vie sur la Séquence Principale avec une vitesse initiale de rotation à la ZAMS plus grande que celle des etoiles B. Plus la métallicité de l'environnement est faible, plus les vitesses initiales de rotation à la ZAMS seraient grandes. Nous notons que pour les étoiles

FIG. 5.1 – Comparaisons des vitesses de rotation projetée (Vsin i) pour les étoiles B et Be des Nuages de Magellan (SMC et LMC) et de la Voie Lactée (MW). Le nombre d'étoiles ainsi que les références servant à cette étude sont donnés sur le côté droit des graphiques. Les étoiles ont été sélectionnées par type spectral entre B1 et B3 et par classes de luminosité entre V et III. Les courbes de rotation théoriques sont celles calculées par J. Zorec pour une étoile de 7 M_{\odot} et sont données à titre indicatif. Panneau du haut : comparaisons pour les étoiles dans les champs des galaxies. Panneau du bas : comparaisons pour les étoiles dans les amas ouverts.

Be, la vitesse initiale de rotation à la ZAMS devrait être au moins de l'ordre de 250km s⁻¹.

- Aucune différence significative n'a pu être trouvée entre les vitesses de rotation des étoiles Be des champs et celles des amas pour la VL et le GNM mais une légère différence a été mise en évidence pour le PNM.
- Aucune différence significative n'a été trouvée entre les vitesses de rotation des étoiles B des champs et des amas dans les Nuages de Magellan.
- Aucune différence significative n'a été trouvée entre les vitesses de rotation des étoiles B du champ et des amas d'âge log(t)<7 de la VL.
- Par contre, il existe une différence hautement significative entre les vitesses de rotation des étoiles B du champ et des amas d'âge log(t)>7 de la VL. Ce fait peut s'expliquer en terme d'évolution des vitesses de rotation ou de fonction de masses dans les amas.

En conclusion, il y a **un effet de la métallicité sur les vitesses de rotation des étoiles Be**. Il est moins évident pour les étoiles B au stade présent de cette étude. L'âge peut aussi jouer un rôle important sur ces vitesses. Les étoiles Be démarrent leur vie sur la SP avec une vitesse à la ZAMS plus grande que celle des étoiles B quelle que soit la métallicité du milieu. En conséquence, seules les étoiles B avec une vitesse de rotation à la ZAMS suffisamment grande pourront devenir des étoiles Be.

5.1.2 Métallicité et vitesses de rotation des étoiles B et Be : selection par masses

La recherche de liens entre la métallicité et la rotation des étoiles B et Be a aussi été effectuée à partir d'une sélection par masses, ce qui permet une comparaison directe avec les chemins évolutifs théoriques existants. Afin de constituer des sous-échantillons les plus homogènes possibles nous avons sélectionné les étoiles par gamme de masses $5 \le M < 10 M_{\odot}$, $10 \le M < 12 M_{\odot}$, etc. Comme dans les paragraphes précédents, nous supposons que l'angle d'inclinaison suit une distribution aléatoire et nous avons retiré les binaires de nos échantillons.

Le nombre d'étoiles observées pour une gamme donnée de masses étant faible, nous n'avons pas effectué de séparations entre étoiles d'amas et de champs ce qui se justifie par le fait que les tests statistiques n'ont pas permis de mettre en evidence une différence significative entre les vitesses de rotation des étoiles du champ et des amas tout du moins pour les étoiles Be. Nous présentons d'abord un résultat général entre les étoiles B et Be des Nuages de Magellan, puis nous étudierons en détail les effets de métallicité et de l'évolution sur les vitesses de rotation pour les étoiles B et Be dans la VL et les NM.

a) Comparaison entre les étoiles B et Be

Les résultats observationnels des vitesses de rotation pour les différents échantillons constitués par gamme de masses pour les étoiles B et Be des Nuages de Magellan sont reportés dans la Figure 5.2. Nous utilisons à des fins illustratives les chemins évolutifs des vitesses de rotation calculés par J. Zorec pour des étoiles de 15 et 7 M_{\odot} pour différentes vitesses de rotation initiales à la ZAMS.

Ce graphique montre, comme le montrait l'étude par sélection en types spectraux, que les étoiles Be arrivent sur la Séquence Principale avec des vitesses de rotation à la ZAMS élevées contrairement aux étoiles B. Ainsi, seules les étoiles B ayant une vitesse de rotation suffisamment grande à la ZAMS pourront devenir des étoiles Be.

FIG. 5.2 – Comparaisons des vitesses de rotation entre les échantillons constitués par gamme de masses pour les étoiles B et Be dans les Nuages de Magellan. Les chemins évolutifs des vitesses de rotation ont été calculés par J. Zorec et sont donnés à des fins illustratives.

TAB. 5.5 – Comparaisons des vitesses moyennes de rotation pour les échantillons d'étoiles B du Petit et du Grand Nuage de Magellan. La sélection des étoiles a été effectuée par gamme de masses. Pour chaque échantillon l'âge moyen, la masse moyenne, la vitesse moyenne de rotation sont donnés ; le nombre d'étoiles est mis entre parenthèses.

	$2-5 \ \mathrm{M}_{\odot}$				$5-10 \text{ M}_{\odot}$			10-15 M _☉				
	<âge>	$< M/M_{\odot} >$	<vsin i=""></vsin>	N*	<âge>	$< M/M_{\odot} >$	<vsin i=""></vsin>	N*	<âge>	$< M/M_{\odot} >$	<vsin i=""></vsin>	N*
Etoiles B PNM, cette étude	8.1	4.0	166 ± 20	116	7.7	6.6	156 ± 20	77				
Etoiles B GNM, cette étude					7.6	7.2	119 ± 20	87	7.2	11.6	116 ± 20	13

b) Effet de la métallicité sur les étoiles B

Les valeurs des vitesses moyennes de rotation pour les échantillons d'étoiles B du Petit et du Grand Nuages de Magellan sont données dans la Table 5.5 et sont reportées dans la Figure 5.3. Comme dans la Figure 5.2 nous avons porté les chemins évolutifs des vitesses de rotation calculés par J. Zorec pour des étoiles de 15 et 7 M_{\odot} pour différentes vitesses de rotation à la ZAMS.

Les seuls échantillons comparables entre eux sont ceux de la catégorie 5-10 M_{\odot} . Ils ont une masse moyenne proche et un âge quasiment identique. Il semble y avoir une différence entre leurs vitesses de rotation. Nos tests statistiques, reportés dans la Table 5.6, ont validé cette différence.

TAB. 5.6 – Résultats des comparaisons des valeurs de vitesse de rotation pour les étoiles B du PNM et du GNM ayant un âge et une masse similaires. La seconde colonne donne le résultat du test de Student, la troisième colonne donne le coefficient α , la quatrième colonne donne la probabilité de différence et la dernière colonne donne un commentaire sur le résultat suivant la convention.

Comparaison	$T_{n1,n2}$	α	probabilité	commentaire
B PNM /B GNM	11.75	0.05	95%	différence significative

FIG. 5.3 – Comparaisons des vitesses de rotation entre les étoiles B du Petit et du Grand Nuages de Magellan. Les couleurs correspondent aux différentes gammes de masses : marron pour les masses entre 2 et 5 M_{\odot} , rouge pour les masses entre 5 et 10 M_{\odot} , et bleu pour les masses entre 10 et 15 M_{\odot} . Les carrés sont les étoiles du GNM et les losanges pour celles du PNM. Les nombres indiqués à côté de chaque croix correspondent au nombre d'étoiles '*' dans chaque échantillon et à leur masse moyenne. Les chemins évolutifs des vitesses de rotation ont été calculés par J. Zorec et sont donnés à des fins illustratives.

En conclusion, il existe bien un effet de métallicité sur les vitesses de rotation des étoiles B de même masses et d'âges similaires entre le Petit et le Grand Nuage de Magellan. A métallicité plus faible, la vitesse de rotation est plus grande. Ce résultat qui n'avait pas pu être mis en évidence avec une sélection en types spectraux et classes de luminosité car ces échantillons n'étaient probablement pas assez homogènes en masses, confirme les prédictions de Meynet & Maeder (2000) et Maeder & Meynet (2001).

c) Effet de la métallicité et de l'évolution sur les étoiles Be

Pour les étoiles Be des Nuages de Magellan la sélection en masses a été faite à partir de notre étude et pour les étoiles de la Voie Lactée nous avons utilisé les travaux de Chauville et al. (2001) et de Zorec et al. (2005). Les valeurs des vitesses de rotation sont reportées dans la Table 5.7. La Figure 5.4 montre l'ensemble des échantillons des étoiles Be dans les 3 galaxies citées plus haut.

Comme pour les étoiles B, nous avons recherché les différences éventuelles entre les étoiles Be de mêmes masses, d'âges similaires mais de métallicités différentes. Nous montrons ces comparaisons dans la Figure 5.5 pour 2 catégories de masses : en rouge pour les masses entre 5 et 10 M_{\odot} et en vert pour les étoiles de masses entre 10 et 12 M_{\odot} . Le panneau du haut de cette Figure 5.5 montre les différences entre les étoiles Be du Petit et Grand Nuages de Magellan et de la Voie Lactée pour des masses de l'ordre de 7 M_{\odot} et dans le panneau du bas pour des masses de l'ordre de 11 M_{\odot} . Les résultats des tests statistiques sont donnés dans la Table 5.8.

Ces résultats montrent :

		2-5 N	l _o	$5-10 \ \mathrm{M}_{\odot}$						
	<âge>	$< M/M_{\odot} >$	< <i>V</i> sin <i>i</i> >	N*	<âge>	$< M/M_{\odot} >$	< <i>V</i> sin <i>i</i> >	N*		
Etoiles Be PNM	8.3	3.8	277 ± 40	14	7.6	7.7	295 ± 40	82		
Etoiles Be GNM					7.5	7.7	285 ± 30	21		
Etoiles Be VL	8.1	4.4	241 ± 10	18	7.4	7.3	234 ± 10	52		
	10-12 M _o					$12-18 \ \mathrm{M}_{\odot}$				
	<âge>	$< M/M_{\odot} >$	< <i>V</i> sin <i>i</i> >	N*	<âge>	$< M/M_{\odot} >$	< <i>V</i> sin <i>i</i> >	N*		
Etoiles Be PNM	7.3	10.9	345 ± 40	13	7.2	13.5	324 ± 40	13		
Etoiles Be GNM	7.3	11	259 ± 30	13	7.1	14.6	224 ± 30	10		
Etoiles Be VL	7.1	10.6	231 ± 10	9	6.6	14.9	278 ± 10	16		

TAB. 5.7 – Comparaisons des vitesses moyennes de rotation pour les échantillons d'étoiles Be du Petit, du Grand Nuage de Magellan et de la Voie Lactée. Pour chaque échantillon, l'âge moyen, la masse moyenne, la vitesse moyenne de rotation et le nombre d'étoiles sont donnés.

TAB. 5.8 – Comparaisons des vitesses de rotation pour les étoiles Be du PNM, du GNM et de la VL, ayant un âge et une masse similaires. La seconde colonne donne le résultat du test de Student, la troisième colonne donne le coefficient α , la quatrième colonne donne la probabilité de différence et la dernière colonne donne un commentaire sur le résultat suivant la convention. Le mot 'limite' signifie que l'échantillon contient un nombre limite d'étoiles pour la fiabilité des tests statistiques.

		-		
Comparaison	$T_{n1,n2}$	α	probabilité	commentaire
		$2 \leq M < 5~M_{\odot}$		
Be PNM / Be VL	4.61	0.1	90%	légère différence
		$5 \leq M < 10 \ M_{\odot}$		
Be PNM / Be GNM	1.43	0.3	70%	pas de différence
Be PNM / Be VL	14.06	0.02	98%	différence hautement significative
Be GNM / Be VL	14.25	0.02	98%	différence hautement significative
		$10 \le M < 12 \; M_\odot$		
Be PNM / Be GNM	5.96	0.1	90%	limite, légère différence
Be PNM / Be VL	7.98	0.05	95%	différence significative
Be GNM / Be VL	3.70	0.1	90%	limite, légère différence

- Il y a manifestement un effet de métallicité sur les vitesses de rotation des étoiles Be lorsque l'on compare des échantillons de masse et d'âge similaires appartenant aux Nuages de Magellan et à la Voie Lactee. A plus faible métallicité les étoiles tournent plus vite.
- − Toutefois, les tests statistiques sur les échantillons de masse moyenne \approx 7 M_☉ ne mettent pas en évidence un tel effet entre le PNM et le GNM.
- − Concernant les étoiles Be de faibles masses (entre $2 \le M < 5 M_{\odot}$), il existe une légère différence entre le PNM et la VL mais mais elle est peut être due au fait que nous avons comparé des échantillons qui ne sont pas tout à fait similaires en masses et en âge.

Quant aux échantillons d'étoiles Be de plus grandes masses (entre $12 \le M < 18 M_{\odot}$) (Figure 5.6) il n'est pas possible de les comparer directement car si les masses sont quasiment les mêmes, l'âge des étoiles est très différent entre les Nuages de Magellan et la Voie Lactée. Nous observons alors 2 phénomènes :

- Nous retrouvons l'effet de la métallicité sur les vitesses de rotation des étoiles Be du Grand et du Petit Nuage de Magellan car les échantillons sont de masses et d'âges comparables.
- Nous notons l'absence d'étoiles Be massives dans la Voie Lactée aux âges auxquels nous en trouvons

FIG. 5.4 – Comparaisons des vitesses de rotation entre les étoiles Be du Petit, du Grand Nuage de Magellan et de la Voie Lactée. Les couleurs correspondent aux différentes gammes de masses : marron pour les masses entre 2 et 5 M_{\odot} , rouge pour les masses entre 5 et 10 M_{\odot} , vert pour les masses entre 10 et 12 M_{\odot} et bleu pour les masses entre 12 et 18 M_{\odot} . Les carrés sont les étoiles du GNM, les losanges pour celles du PNM et les triangles pour celles de la VL. Les nombres indiqués à côté de chaque croix correspondent au nombre d'étoiles '*' dans chaque échantillon et à leur masse moyenne. Les chemins évolutifs des vitesses de rotation ont été calculés par J. Zorec.

dans les Nuages de Magellan. Il semble que la phase Be puisse exister plus longtemps dans les milieux de plus faible métallicité comme les Nuages de Magellan pour les étoiles les plus massives.

FIG. 5.5 – Comparaisons des vitesses de rotation entre les Be du Petit, du Grand Nuage de Magellan et de la Voie Lactée. Les couleurs correspondent aux différentes gammes de masses : marron pour les masses entre 2 et 5 M_{\odot} , rouge pour les masses entre 5 et 10 M_{\odot} , vert pour les masses entre 10 et 12 M_{\odot} et bleu pour les masses entre 12 et 18 M_{\odot} . Les carrés sont les étoiles du GNM, les losanges pour celles du PNM et les triangles pour celles de la VL. Les nombres indiqués à côté de chaque croix correspondent au nombre d'étoiles '*' dans chaque échantillon et à leur masse moyenne. Les chemins évolutifs des vitesses de rotation ont été calculés par J. Zorec. Panneau du haut : Comparaisons pour les étoiles Be de masses entre 5 et 10 M_{\odot} .

FIG. 5.6 – Comparaisons des vitesses de rotation et de l'évolution entre les Be massives du Petit, du Grand Nuage de Magellan et de la Voie Lactée. Les carrés correspondent aux étoiles du GNM, les losanges à celles du PNM et les triangles à celles de la VL. Les nombres indiqués à côté de chaque croix correspondent au nombre d'étoiles '*' dans chaque échantillon et à leur masse moyenne. Les chemins évolutifs des vitesses de rotation ont été calculés par J. Zorec.

5.1.3 Vitesses moyennes de rotation à la ZAMS des étoiles Be

L'interprétation de nos résultats nécessite de disposer d'un ensemble de courbes d'évolution des vitesses de rotation pour des masses allant de 2 a 20 masses solaires, pour des métallicités adaptées aux Petit et Grand Nuages de Magellan ainsi qu'à la Voie Lactée et pour différentes valeurs de vitesse initiale à la ZAMS. Il existe des courbes de rotation pour les étoiles les plus massives, il n'en existe pas ou peu pour les étoiles de masses intermédiaires dans la Voie Lactée et dans les Nuages de Magellan.

Nous avons donc créé les courbes d'évolution des vitesses de rotation pour obtenir les valeurs de vitesse initiale à la ZAMS des étoiles Be par interpolation dans les chemins théoriques. Ces chemins sont issus de 2 ensembles de courbes : celui de J. Zorec et le mien interpolé dans les courbes des modèles de Genève.

a) Evolution théorique des vitesses de rotation

Les modèles d'évolution des courbes de rotation de Meynet & Maeder (2000) sont établis pour des objets de masses supérieures à 9 masses solaires et pour une vitesse initiale de rotation V_0 = 300 km s⁻¹. Dans leurs modèles les étoiles débutent leur évolution sur la Séquence Principale en tant que rotateur solide et deviennent rotateur différentiel en quelques dizaines de milliers d'années (Deniseenkov et al. 1999, Meynet & Maeder 2000). Pour conserver le moment angulaire total, le coeur stellaire tourne alors quelques pourcents plus vite que la surface. Le graphique 5.7 issu de Meynet & Maeder (2000) montre ce phénomène.

FIG. 5.7 – Evolution initiale de la vitesse angulaire interne de rotation en fonction de la distance au centre, pour une étoile de 20 M_{\odot} pour une vitesse initiale V_0 = 300 km s⁻¹ dans la Voie Lactée. Chaque courbe est espacée de 19200 ans. Partant d'un profil plat (rotation solide), on observe la création d'une rotation différentielle entre le coeur et la surface de l'étoile en très peu de temps. Ce graphique provient de Maeder & Meynet (2000).

Par ailleurs Jean Zorec a calculé l'évolution des courbes de rotation pour des étoiles de 15 et de 7 M_{\odot} pour différentes vitesses initiales de rotation à la métallicité de la Voie Lactée.

Calculs de J. Zorec :

Zorec et al. (2005) supposent que l'évolution sur la Séquence Principale des vitesses de rotation équatoriale prend en compte :

- les changements de rayon stellaire dérivés des modèles à 2 dimensions d'intérieurs stellaires pseudo barotropiques pour différentes étapes d'évolution sur la Séquence Principale. Ces changements sont calculés en résolvant l'équation de Poisson (Clement 1974, Zorec et al. 1988).
- les changements du moment d'inertie induits par la rotation et l'évolution de l'étoile.

FIG. 5.8 – Résultats des calculs des vitesses de rotation pour différentes vitesses initiales de rotation pour des étoiles de 7 et 15 M_{\odot} par J. Zorec. A noter que ce sont les Vsini qui sont présentés pour un angle le plus probable de 52°.

- la paramétrisation des variations du second ordre des phénomènes de transport de moment angulaire.

− les changements induits par la perte de masse pour des étoiles de masses $\ge 12M_{\odot}$.

Dans cette estimation, la dépendance temporelle du rapport de rotation V_{eq}/V_c des modèles de masses $M \le 9M_{\odot}$ est principalement une fonction de la vitesse (après la redistribution initiale de moment angulaire) et des variations du moment stellaire d'inertie.

Ces calculs seront publiés dans un article traitant des vitesses de rotation initiales des étoiles Be proches du Soleil (Zorec et al., en préparation). Les résultats pour les étoiles de 7 et 15 M_{\odot} et pour des vitesses initiales de rotation s'échelonnant entre $V_0=100$ à 500km s⁻¹ par pas de 100km s⁻¹ sont montrés dans la Figure 5.8. Précisons que la courbe de rotation à $V_0=300$ km s⁻¹ pour l'étoile de 15 M_{\odot} est en très bon accord avec celle calculée par Meynet & Maeder (2000).

Lors de la redistribution initiale de moment angulaire illustrée par la Figure 5.7, les vitesses de rotation à la ZAMS décroissent rapidement et sont égales à environ 0.8 fois leur valeur initiale. Ce comportement semble valide quelle que soit la métallicité du milieu comme l'illustre la Figure 5.9. Les valeurs de Vdépart, vitesse après la redistribution initiale de moment angulaire, sont pour $Z_{\odot}=0.020$: Vdepart_{\odot} $\simeq 235$ km s⁻¹, pour $Z_{GNM}=0.004$: Vdépart_{GNM} $\simeq 240$ km s⁻¹, et $Z_{min}=10^{-5}$: Vdépart_{Zmin} $\simeq 245$ km s⁻¹. Observationnellement, nous ne pourrons pas mettre en évidence de si faibles changements. Donc, nous considérerons que la métallicité n'influence pas la redistribution du moment angulaire.

Puis, pour obtenir des vitesses de rotation projetées en supposant que nous ayons affaire à l'angle le plus probable soit environ 52°, nous devons multiplier les courbes de vitesses équatoriales théoriques par $\pi/4$. Soit par exemple, pour une courbe de vitesse V₀= 300 km s⁻¹, Vdépart \approx 0.8 × V₀= 240 km s⁻¹. Puis, pour obtenir

FIG. 5.9 – Evolution de la vitesse équatoriale de rotation pour une étoile de 60 M_{\odot} pour 3 métallicités différentes : Z_{\odot} =0.020, Z=0.004 (GNM) et Z=10⁻⁵ pour V_0 = 300 km s⁻¹. Ce graphique provient de Meynet & Maeder (2002).

le $V \sin i$ à 52° : $V \sin i_{depart} \approx 190 \text{ km s}^{-1}$.

Mon ensemble de courbes :

Ne disposant pas, dans la littérature, de courbes de vitesse pour les intervalles de masses de nos échantillons dans les Nuages de Magellan, ni pour différentes vitesses initiales à la ZAMS, j'ai élaboré par interpolation un ensemble de courbes de rotation à partir des articles Meynet & Maeder (2000), Maeder & Meynet (2001) et Meynet & Maeder (2002).

Comme base de depart, j'ai utilisé les graphiques 5.10 à 5.13 repris des travaux précédemment cités qui montrent l'évolution des courbes de vitesses équatoriales de rotation pour différentes masses et pour les métallicités Z=0.020 (métallicité solaire), Z=0.004 (métallicité du GNM) et Z=10⁻⁵ (métallicité comparable à celle des premières générations d'étoiles) pour une vitesse initiale à la ZAMS V₀=300km s⁻¹. J'ai construit une grille de courbes d'évolution de la vitesse de rotation pour des étoiles de masses comprises entre 2 et 20 masses solaires, de métallicités correspondantes à la VL, le GNM et le PNM et pour des vitesses initiales à la ZAMS allant de 100 à 500km s⁻¹. J'ai tenu compte de l'allongement de la durée de vie des étoiles sur la Séquence Principale dû à la rotation et à la métallicité du milieu. Afin de valider mes courbes j'ai élaboré un jeu de grilles pour la VL qui sont tout à fait comparables aux courbes calculées par J. Zorec pour une étoile de 15 masses solaires mais qui diffèrent pour une étoile de 7 masses solaires. Un exemple de courbes pour une étoile de 7 M_☉ est montré dans la Figure 5.15.

FIG. 5.10 – Evolution des vitesses équatoriales de rotation pour des étoiles de masses comprises entre 12 et 60 masses solaires dans la Voie Lactée (Z=0.020). Du fait de la forte perte de masse pour ces étoiles massives, l'évolution de la vitesse équatoriale subira une diminution d'autant plus forte et rapide que l'étoile est massive. En pointillés noirs : l'évolution de la vitesse de rotation (quasi constante) pour une étoile de 20 M_{\odot} à la métallicité Z=0.004; en pointillés mauves est montrée l'évolution de la vitesse de rotation (augmentation) pour une étoile de 20 M_{\odot} sans perte de masse, ce qui correspondrait à une métallicité très basse. La vitesse initiale est de V₀=300km s⁻¹. Ce graphique provient de Meynet & Maeder (2000).

FIG. 5.11 – Evolution des vitesses équatoriales de rotation pour des étoiles de masses comprises entre 9 et 60 masses solaires dans un milieu de métallicité Z=0.004 correspondant au Grand Nuage de Magellan. La vitesse initiale est de V_0 =300km s⁻¹. Ce graphique provient de Maeder & Meynet (2001).

FIG. 5.12 – Evolution des vitesses équatoriales de rotation pour des étoiles de masses comprises entre 7 et 60 masses solaires dans un milieu de métallicité $Z=10^{-5}$. La perte de masse dans un tel milieu pauvre en métaux est très faible, en conséquence, les vitesses de rotation montrent une augmentation pour les étoiles les plus massives (>40 M_☉)et restent quasiment constantes pour les intermédiaires (7-40 M_☉). La vitesse initiale est de $V_0=300$ km s⁻¹. Ce graphique provient de Maeder & Meynet (2002).

FIG. 5.13 – Evolution des vitesses équatoriales de rotation pour des étoiles de masses comprises entre 2 et 5 masses solaires dans un milieu de métallicité $Z=10^{-5}$. La perte de masse dans un tel milieu pauvre en métaux est très faible et pour les moins massives des étoiles, la vitesse de rotation subira un accroissement au cours de la Séquence Principale mais restera quasiment constante pour les masses intermédiaires. La vitesse initiale est de $V_0=300$ km s⁻¹. Ce graphique provient de Maeder & Meynet (2002).

FIG. 5.14 – Graphique de gauche : évolution de la vitesse équatoriale de rotation pour une étoile de 20 M_{\odot} pour différentes vitesses initiales de rotation à la métallicité solaire. Ce graphique provient de Meynet & Maeder (2000). Graphique de droite : évolution de la vitesse équatoriale de rotation pour une étoile de 20 M_{\odot} pour différentes vitesses initiales de rotation à la métallicité Z=0.004 (GNM). Ce graphique provient de Maeder & Meynet (2001).

FIG. 5.15 – Résultats des interpolations alternatives des vitesses de rotation pour différentes vitesses initiales de rotation pour une étoile de 7 M_{\odot} dans les Nuages de Magellan. A noter que ce sont les Vsini qui sont présentés pour un angle le plus probable de 52°.

b) Vitesses de rotation à la ZAMS

Comme le montre notre étude les étoiles Be démarrent leur vie sur la Séquence Principale avec une vitesse plus grande que les étoiles B. Pour chaque échantillon la vitesse de rotation à la ZAMS a été obtenue par interpolation entre les courbes d'évolution des vitesses.

Le résultat des interpolations pour les différents échantillons en masses et âges des étoiles Be du PNM, du GNM et de la VL est montré dans la Figure 5.16.

FIG. 5.16 – Résultats des interpolations des vitesses moyennes de rotation à la ZAMS des étoiles Be dans le Petit Nuage de Magellan (losanges bleus), dans le Grand Nuage de Magellan (carrés roses) et dans la Voie Lactée (triangles verts). Les droites correspondent aux régressions linéaires dont les équations et les coefficients de corrélations sont donnés en haut à gauche.

Les vitesses moyennes de rotation à la ZAMS ont pu être quantifiées par des régressions linéaires dont les résultats sont les suivants :

- Dans le PNM, V_O = 10.54 M/M_☉ + 361 et le coefficient de corrélation est de R²=0.956.
 Dans la VL, V_O = 10.91 M/M_☉ + 277 et le coefficient de corrélation est de R²=0.986.
- Nous supposons par similitude avec les précédentes équations que pour le GNM, $V_0 = 10.7 \frac{M}{M_0} + 310$.

b) Conséquences

- Il existe une relation entre la masse des étoiles Be et leur vitesse de rotation à la ZAMS, quelle que soit la métallicité du milieu.
- L'allure de la courbe semble indépendante de la métallicité du milieu.
- Il y a un effet de métallicité sur les vitesses initiales de rotation à la ZAMS : à plus faible métallicité, les vitesses initiales de rotation sont plus élevées.
- Il semble y avoir une vitesse minimale moyenne en deçà de laquelle les étoiles B ne pourront pas devenir Be. Cette vitesse minimale à la ZAMS est dépendante de la métallicité.

Les conditions initiales (champ magnétique, matière à accréter, etc) régnant dans un amas font qu'un nombre plus ou moins grand d'étoiles auront une vitesse suffisante pour devenir une étoile Be. En conséquence, le taux d'étoiles Be par amas pourra fluctuer fortement d'un amas à l'autre. Nous devrions alors nous attendre à trouver plus d'étoiles Be dans les amas des Nuages de Magellan que dans ceux de la Voie Lactée car les vitesses de rotation à la ZAMS sont plus élevées dans les milieux de plus faible métallicité. Cette tendance a été observée par Maeder et al. (1999) et Wisniewski et al. (2005). Cependant, les résultats de Keller (1999) et les notres du chapitre 3 montrent que cette tendance ne semble pas exister dans les champs ou alors est faible. Nous renverrons le lecteur à la discussion qui a été menée en 3.3 sur les possibles explications des différences entre champs et amas : différences de métallicités, conditions particulières de formation des étoiles dans les amas ? Nos résultats observationnels donnent donc des contraintes nouvelles sur l'évolution pré-Séquence Principale des progéniteurs des étoiles B et Be.

5.1.4 Comment obtenir des vitesses élevées à la ZAMS pour une étoile Be?

Pour aider à la compréhension de la formation des étoiles Be, nous avons recherché comment obtenir des vitesses de rotation élevées à la ZAMS et former une étoile Be.

Selon Stépien (2002), les conditions suffisantes pour qu'une étoile ait une forte vitesse de rotation à la ZAMS sont la présence d'un champ magnétique faible ou modéré et l'existence d'un disque d'accrétion durant au moins 10% de la phase pré-Séquence principale (PSP) de cette étoile. Le champ magnétique et ses intéractions, avec le disque ou le vent et avec les autres phénomènes tels que l'accrétion, ont un impact sur les vitesses de rotation durant la phase PSP et affectent les vitesses initiales de rotation (ralentissement pour les fortes valeurs de champ magnétique). Pour les étoiles de la Voie Lactée, les progéniteurs des étoiles Be devraient posséder un champ magnétique fossile avec une intensité de surface entre 40 et 400G, et parceque la phase PSP est courte pour les étoiles des types précoces, ces etoiles devraient conserver leur forte vitesse de rotation durant leur vie sur la Séquence Principale. A l'opposé, les étoiles ayant un champ magnétique plus grand que 400G devraient devenir des rotateurs lents magnétiques à la ZAMS. Les étoiles sans champ magnétique mais dont la durée de vie du disque d'accrétion n'a pas atteint 10% de la phase PSP deviendront aussi des rotateurs lents à la ZAMS.

Dans les Nuages de Magellan et les milieux de faible métallicité, le champ magnétique a un impact moins grand dans le freinage magnétique des étoiles comme l'expliquent Penny et al. (2004) car les abondances en poussières et ions métalliques sont moindres que dans la Voie Lactée. Cela pourrait expliquer pourquoi les étoiles du PNM tournent plus vite à la ZAMS que celles du GNM elles-même tournant plus vite à la ZAMS que celles de la VL.

5.2 Vitesses angulaires de rotation : résultats et discussions

L'une des questions récurrentes concernant les étoiles Be est : sont-elles des rotateurs critiques ? Si c'était le cas, cela permettrait d'expliquer la perte de masse de façon évidente. Or dans la Voie Lactée, cela ne semble pas être le cas. Mais qu'en est-il dans les milieux de plus faibles métallicités comme le GNM et surtout le PNM ? Quelle est l'évolution temporelle des vitesses angulaires de rotation suivant la métallicité ?

5.2.1 Résultats observationnels

a) Vitesses angulaires moyennes

Avant d'entrer dans les détails des Ω/Ω_c rappelons les valeurs moyennes :

– Pour les étoiles B, selon Stepién (2002) et les références incluses, le rapport moyen Ω/Ω_c moyen est de l'ordre de 34% dans la Voie Lactée. Rappelons que selon nos résultats, les rapports sont $\Omega/\Omega_c=37\%$ pour les étoiles B du GNM et 58% pour celles du PNM.

- Pour les étoiles Be, Porter (1996) trouve un $\Omega/\Omega_c=84\%$ dans la Voie Lactée, de même Chauville et al. (2001) trouve $\Omega/\Omega_c=83\%$. Plus récemment Frémat et al. (2005b) montre en prenant en compte les effets de saturation des raies que $\Omega/\Omega_c=88\%$ pour les étoiles Be de la Voie Lactée. Suivant nos résultats, les étoiles Be du GNM tournent à $\Omega/\Omega_c=85\%$ alors que celles du PNM tournent à 95%.

Il semble que les étoiles B du GNM et celles de la VL tournent à des vitesses similaires, il en est de même pour les étoiles Be. Par contre, il semble que les étoiles du PNM, qu'elles soient B ou Be, tournent systématiquement plus vite que celles du GNM et de la VL.

b) Résultats dans la Voie Lactée

Cranmer (2005) a calculé les taux de vitesses linéaires $(\frac{V_e}{V_c})$ pour les étoiles Be étudiées par Chauville et al. (2001) ainsi que pour d'autres Be issues du travail de Yudin (2001). Les relations entre vitesses linéaires et vitesses angulaires sont données par l'équation 4.4 du chapitre 4. Ces résultats sont reportés dans la Table 5.9.

TAB. 5.9 – Résultats des taux de vitesses linéaires et angulaires pour les étoiles Be de la Voie Lactée suivant Cranmer (2005).

			d'après Yudin (2001)		
Types spectraux	O7-B1.5	B1.5-B2.5	B2.5-B3.5	B3.5-B6	B6-A0
$\frac{V_e}{V_c}$	0.54	0.58	0.66	0.74	0.91
$\Omega/\Omega_{\rm c}$	0.69	0.72	0.80	0.86	0.97
			d'après Chauville et al. (2001)		
Types spectraux	O7-B1.5	B1.5-B2.5	B2.5-B3.5	B3.5-B6	B6-A0
$\frac{V_e}{V_c}$	0.64	0.74	0.89	≥ 0.95	≥ 0.95
$\Omega/\Omega_{\rm c}$	0.78	0.87	0.96	crit.	crit.

Selon Cranmer (2005), les étoiles Be les plus massives (premiers types) tournent à des taux Ω/Ω_c assez faibles ($\leq 80\%$) alors que les étoiles moins massives (types tardifs) tournent plus vite.

Suivant les travaux de Meynet & Maeder (2000) se basant sur les théories de vent stellaire, dans la Voie Lactée, la perte de masse est d'autant plus forte que l'étoile est massive, ce qui a pour conséquence d'emporter beaucoup de moment angulaire. Le taux de vitesse de rotation angulaire (Ω/Ω_c) va donc décroître avec le temps. Cela est particulièrement frappant pour les étoiles de masses plus grandes que 12 M_o. Pour les étoiles de masses intermédiaires, les Ω/Ω_c vont rester quasiment constants tout au long de la Séquence Principale (SP) puis augmenteront vers la fin de cette séquence. Ces évolutions sont montrées dans la Figure 5.17, graphique de gauche. Ces résultats théoriques sont en accord avec les résultats de Cranmer (2005) dans la Voie Lactée.

c) Résultats dans les Nuages de Magellan

Nous avons calculé les vitesses équatoriales moyennes, les taux de vitesses linéaires moyens ainsi que les taux de vitesses angulaires moyens Ω/Ω_c pour nos échantillons sélectionnés par masses. Il est important de noter que, à masse comparable, le rayon d'une étoile sera plus petit dans les milieux de faible métallicité, ce qui favorise encore plus les Ω/Ω_c grands.

L'ensemble de nos résultats est reporté dans la Table 5.10. Les erreurs sur les Ω/Ω_c ont été estimées à partir des erreurs sur les paramètres fondamentaux.

Un certain nombre de faits sont remarquables :

− En moyenne, les étoiles Be, aussi bien dans la VL que dans les NM, ont des $\Omega/\Omega_c \ge 70\%$. Notons que suivant Stépién (2002) et les références incluses, les toiles Be tourneraient au moins à des $\Omega/\Omega_c = 65\%$.

		Be du GNM		Z=0.004
$< M/M_{\odot} >$	$< R/R_{\odot} >$	< <i>V</i> sin <i>i</i> >	$\frac{V_e}{V_c}$	$\Omega/\Omega_{ m c}$
7.7	5.8	285	0.72	0.85 ± 0.13
11.0	9.3	259	0.69	0.83 ± 0.08
14.6	12.7	224	0.61	0.75 ± 0.10
		Be du PNM		Z=0.001
$< M/M_{\odot} >$	$< R/R_{\odot} >$	< <i>V</i> sin <i>i</i> >	$\frac{V_e}{V_c}$	$\Omega/\Omega_{ m c}$
3.8	4.1	277	0.85	0.94 ± 0.11
7.6	7.9	295	0.87	0.95 ± 0.11
10.9	15.5	345	0.99	$\operatorname{crit} \pm 0.12$
13.3	18.0	324	0.96	0.99 ± 0.14

TAB. 5.10 – Résultats des taux de vitesses linéaires et angulaires pour les étoiles Be des Nuages de Magellan suivant notre étude.

- Les étoiles Be les moins massives sont très proches de la rotation critique dans le PNM.
- Les étoiles Be les plus massives de notre échantillon du PNM, qui sont des étoiles évoluées comme nous l'avons montré dans la section 5.1.2, sont des rotateurs quasi critiques.
- Contrairement au PNM, la tendance dans le GNM semble être la même que dans la VL : les étoiles moins massives tournent plus vite.

De façon contraire à ce qui est observé dans la Voie Lactée, les étoiles les plus massives peuvent atteindre la vitesse critique dans un milieu de très faible métallicité comme le Petit Nuage de Magellan.

Suivant Maeder & Meynet (2001) dans les milieux sous métalliques, suivant les théories de vent stellaire, la perte de masse est d'autant plus forte que l'étoile est massive mais elle sera beaucoup moins importante que dans un milieu riche en métaux comme la Voie Lactée. En conséquence, comme la perte de masse est plus faible, la quantité de moment angulaire emportée est plus faible et l'étoile va conserver une grande vitesse de rotation. Or, comme durant son évolution sur la SP le rayon de l'étoile va augmenter et sa masse diminuer faiblement, la vitesse critique va devenir de plus en plus petite. Donc, le rapport Ω/Ω_c va croître alors que dans la Voie Lactée il décroissait (voir Figure 5.17, gauche).

Il est également important de noter que la vitesse angulaire de rotation critique est atteinte en fin de SP pour les étoiles les plus massives. Pour les étoiles de masses intermédiaires, le taux de perte de masse n'est pratiquement pas modifié que l'étoile soit dans la Voie Lactée ou dans les Nuages de Magellan. En conséquence, l'évolution du taux Ω/Ω_c n'en sera que peu modifié. Pour les plus faibles masses, l'évolution de ce taux suivra la tendance des étoiles de 9 M_o, à savoir une évolution relativement constante avec une hausse progressive en fin de SP du taux Ω/Ω_c .

L'ensemble de ces calculs théoriques a été effectué avec une vitesse de rotation à la ZAMS de 300km s⁻¹. Or nous avons montré observationnellement que pour les étoiles Be ces vitesses sont plus grandes que 300km s⁻¹ dans les Nuages de Magellan et plus particulièrement dans le PNM. Ainsi pour une étoile Be de 20 M_{\odot}, la vitesse de rotation à la ZAMS serait d'environ 495km s⁻¹ dans la Voie Lactée et de 570km s⁻¹ dans le PNM (Rappelons que dans le PNM la vitesse critique sera elle aussi augmentée compte tenu du plus faible rayon aux plus faibles metallicités). Ces valeurs vont en fait correspondre à des taux de rotation angulaire initiaux un peu plus grands que celui de 70% utilisé dans Meynet & Maeder (2000) et Maeder & Meynet (2001). En conséquence, il sera plus facile, pour les étoiles les plus massives des Nuages de Magellan, d'atteindre la vitesse critique. Par contre, cela ne change pas l'évolution pour les étoiles massives de la Voie Lactée. Il est à noter qu'une étoile peut être critique en surface mais que son coeur peut ne pas l'être. Donc, l'étoile pourrait malgré tout continuer d'exister et ne pas se disloquer.

FIG. 5.17 – Graphique de gauche : évolution du taux de vitesse angulaire de rotation à la vitesse angulaire critique Ω/Ω_c pour des étoiles de masses comprises entre 12 et 60 M_{\odot} pour $V_0=300$ km s⁻¹ à la métallicité solaire. Ce graphique provient de Meynet & Maeder (2000). Graphique de droite : évolution du taux Ω/Ω_c pour une étoile de 20 M_{\odot} pour des étoiles de masses comprises entre 9 et 60 M_{\odot} pour $V_0=300$ km s⁻¹ à la métallicité Z=0.004 (GNM). Ce graphique provient de Maeder & Meynet (2001).

d) Saturation des raies spectrales

D'après Frémat et al. (2005b, Figures 5 et 6) il existe un effet de saturation de certaines raies spectrales pour les forts taux de rotations Ω/Ω_c . En conséquence, les vitesses de rotation mesurées ont tendance à sous-estimer les vitesses réelles. La raie de HeI 4471 Å semble être particulièrement sensible à cette saturation. Cependant, cet effet de saturation ne semble pas persister si on ajuste un très grand nombre de raies pour des taux de rotation de $\Omega/\Omega_c=90\%$ et il est relativement peu visible pour des taux $\Omega/\Omega_c=99\%$, pour des températures comprises entre 15000 et 24000K et pour un log g=4.0 dex. En ce qui concerne nos ajustements, nous avons utilisé le plus grand nombre de raies possible pour déterminer les $V\sin i$ et, pour les Be, le choix final des paramètres fondamentaux s'est effectué sur une zone excluant généralement la raie de HeI 4471 Å. Donc, les valeurs de vitesses obtenues ne devraient pas être trop affectées par les effets de saturation liés à la rotation rapide. En conséquence, les taux de rotation Ω/Ω_c que nous avons déterminés ne devraient pas non plus être trop affectés par cet effet.

5.2.2 Conclusions sur les vitesses angulaires de rotation

- En accord avec les calculs de Meynet & Maeder (2000) concernant l'évolution des taux de vitesses angulaires (Ω/Ω_c) dans la Voie Lactée, les étoiles massives ont un Ω/Ω_c qui diminue avec le temps.
- Dans les milieux pauvres en métaux, comme dans le Petit Nuage de Magellan, les étoiles Be massives peuvent devenir des rotateurs critiques au cours de leur évolution. Nos résultats observationnels sont en accord avec Maeder & Meynet (2001). De plus, l'évolution vers la vitesse critique est facilitée par des vitesses initiales à la ZAMS plus grandes que celles utilisées dans ces articles théoriques.
- Dans la Voie Lactée, les étoiles Be les moins massives semblent être des rotateurs proches de la vitesse critique en accord avec l'évolution des taux de Ω/Ω_c dans le temps.
- Dans les Nuages de Magellan les étoiles Be les moins massives devraient suivre la même tendance que dans la Voie Lactée (devenir critiques en fin de SP); cependant, dans nos échantillons, nous ne disposons pas d'étoiles de faibles masses suffisamment évoluées pour qu'elles aient atteint la vitesse critique. Néanmoins les étoiles Be les moins massives dans le PNM, qui sont évoluées, sont très proches de la

vitesse critique.

 Il semble toutefois que la plupart des étoiles Be ne soient pas des rotateurs critiques. Sans être négligeable, la rotation à elle seule ne peut donc pas expliquer la perte de matière qui crée les disques circumstellaires des étoiles Be.
5.3 Statut évolutif des étoiles Be

La rotation, qui jusqu'à maintenant était considérée seulement comme un facteur perturbateur, engendre en fait des changements non négligeables dans les chemins évolutifs des étoiles comme l'ont montré Meynet & Maeder (2000) dans la Voie Lactée et Maeder & Meynet (2001) dans les milieux sous-métalliques. La conséquence de la prise en compte de la rotation dans l'évolution des étoiles est que les temps de vie sur la Séquence Principale sont rallongés. Cependant le statut évolutif, correspondant à l'âge de l'étoile divisé par son temps de vie sur la SP ($\frac{\tau}{\tau_{MS}}$), reste pratiquement inchangé. Les comparaisons de ces chemins évolutifs avec et sans rotation dans la Voie Lactée et dans les Nuages de Magellan sont montrées dans la Figure 5.18.

FIG. 5.18 – Graphique de gauche : Comparaisons des chemins évolutifs sans (en pointillés) et avec rotation initiale ($V_0=300$ km s⁻¹) pour les étoiles de la Voie Lactée. Ce graphique provient de Meynet & Maeder (2000). Graphique de droite : comparaisons des chemins évolutifs sans (en pointillés) et avec (traits pleins) rotation initiale ($V_0=300$ km s⁻¹) pour les étoiles du Grand Nuage de Magellan. Ce graphique provient de Maeder & Meynet (2001).

5.3.1 Statut évolutif des étoiles Be dans la Voie Lactée

D'après nos résultats sur les vitesses de rotation à la ZAMS (Figure 5.16) et l'évolution du taux Ω/Ω_c montré dans la Figure 5.17, panneau de gauche, nous pouvons dire que :

- les étoiles Be les plus massives vont démarrer leur vie sur la SP avec un taux Ω/Ω_c grand (voir Figure 5.16) puis, par perte de moment angulaire, vont ralentir et ne pourront plus éjecter de matière ce qui leur fera perdre le "caractère Be". C'est ce qui est rapporté par Zorec et al. (2005). Cependant, à la fin de la SP, avec la contraction secondaire, ces étoiles pourraient de nouveau obtenir un Ω/Ω_c suffisamment grand pour redevenir Be.
- Les étoiles Be de masses intermédiaires vont démarrer leur vie sur la SP avec un Ω/Ω_c suffisamment grand pour être Be. Puis, l'évolution de leur Ω/Ω_c fera qu'elles pourront rester Be tout au long de la SP.
- Les étoiles Be les moins massives vont démarrer leur vie sur la SP avec un Ω/Ω_c suffisant pour qu'elles soient Be puis après ralentissement, elles perdront le "caractère de Be". Par contre, au cours de leur évolution ($\frac{\tau}{\tau_{MS}}$ >0.5), le Ω/Ω_c va augmenter et permettra à ces étoiles de redevenir Be.

L'ensemble de ces propositions est en excellent accord avec Zorec et al. (2005) ainsi qu'avec Fabregat & Torrejón (2000) pour les étoiles de masse inférieure à 12 masses solaires.

FIG. 5.19 – Panneau du haut : évolution dans le temps des vitesses angulaires pour 3 types d'étoiles dans la Voie Lactée : 20 M_{\odot} (en bleu), 12 M_{\odot} (en rose) et 5 M_{\odot} (en vert). Panneau du bas : statut évolutif des étoiles correspondant aux cercles du panneau du haut. Si une étoile est Be alors elle est entourée d'une gerbe rouge. Les étoiles deviennent Be en atteignant un $\Omega/\Omega_c \simeq 70\%$.

FIG. 5.20 – Graphique de gauche : statut évolutif des étoiles Be dans la Voie Lactée sans correction des effets de la rotation rapide. Graphique de doite : statut évolutif des étoiles Be dans la Voie Lactée avec correction des effets de la rotation rapide pour $\Omega/\Omega_c=88\%$. Les diagonales montrent les zones de masses et d'évolution où nous pouvons trouver des étoiles Be dans la Voie Lactée. Ce graphique provient de Zorec et al. (2005).

5.3.2 Statut évolutif des étoiles Be dans les Nuages de Magellan

De la même façon que pour les étoiles Be de la VL, nous avons utilisé la Figure 5.16 et l'évolution du taux Ω/Ω_c pour les étoiles des Nuages de Magellan (Figure 5.17, panneau de droite).

- Les étoiles Be les plus massives démarrent leur vie sur la SP avec un taux Ω/Ω_c grand puis par perte de moment angulaire, vont ralentir et perdre leur "statut Be" puis accélérer (augmentation du rayon, faible perte de masse et de moment angulaire) et redevenir Be dans la deuxième partie de leur vie sur la SP, contrairement à ce qu'il se passe dans la VL. Ces étoiles vont alors atteindre des taux de rotation angu-

laire Ω/Ω_c élevés.

- Les étoiles de masses intermédiaires dans les Nuages de Magellan, comme dans la Voie Lactée, vont démarrer leur vie sur la SP avec un Ω/Ω_c suffisamment grand pour être Be. Puis, l'évolution de ce taux leur permettra de rester Be tout au long de la SP.
- Les étoiles les moins massives des Nuages de Magellan, comme dans la Voie Lactée, vont démarrer la SP avec un Ω/Ω_c suffisant pour qu'elles soient Be, puis au cours de la première contraction, l'étoile perdra son "caractère de Be". Par contre, au cours de leur évolution ($\frac{\tau}{\tau_{MS}} > 0.5$), le Ω/Ω_c va augmenter et permettra à ces étoiles de redevenir Be. Bien entendu si une étoile démarre avec un Ω/Ω_c bien plus grand que la moyenne, alors elle pourra être Be dès le début de sa vie sur la SP et son évolution fera qu'elle le restera. Cela peut expliquer les étoiles Be de faible masse et de faible évolution.

L'ensemble de ces évolutions prend en compte nos résultats sur les vitesses initiales de rotation à la ZAMS, et est représenté schématiquement dans la Figure 5.21.

Afin de prendre en compte les effets de la rotation sur les chemins évolutifs ainsi que sur les paramètres tels que l'âge nous avons calculé le $\frac{\tau}{\tau_{MS}}$ des étoiles Be de nos échantillons du GNM et du PNM. Cependant, les chemins évolutifs utilisés sont ceux de la Voie Lactée et non pas ceux à plus faible métallicité. Cela aura pour conséquence de sous-estimer un peu ($\approx 10\%$) l'état évolutif réel des Be dans les Nuages de Magellan mais constitue une première approximation satisfaisante de cet état évolutif. Notons que l'état évolutif que nous présentons pour les Be du GNM dans la Figure 5.22, graphique du haut, et pour les Be du PNM dans la Figure 5.22, graphique du bas, peut ne refléter que l'histoire de la formation stellaire des zones observées. Les étoiles les plus massives de nos échantillons sont plus jeunes que les étoiles les moins massives mais ont malgré tout un état évolutif comparable.

FIG. 5.21 – Panneau du haut : évolution dans le temps des vitesses angulaires pour 3 types d'étoiles dans le Grand Nuage de Magellan : 20 M_{\odot} (en bleu), 12 M_{\odot} (en rose) et 5 M_{\odot} (en vert). L'évolution de ces vitesses est encore amplifiée pour une métallicité plus faible telle que pour celle du Petit Nuage de Magellan. Panneau du bas : statut évolutif des étoiles correspondant aux cercles du panneau du haut. Si une étoile est Be alors elle est entourée d'une gerbe rouge. Les étoiles deviennent Be en atteignant un $\Omega/\Omega_c \approx 70\%$.

Il faut noter un bon accord entre nos propositions sur l'état évolutif des étoiles Be dans les Nuages de Magellan obtenues à partir des études statistiques sur les vitesses de rotation et les valeurs individuelles portées

FIG. 5.22 – Graphique du haut : statut évolutif des Be dans le Grand Nuage de Magellan avec correction des effets de la rotation rapide pour $\Omega/\Omega_c=85\%$. Graphique du bas : statut évolutif des Be dans le Petit Nuage de Magellan avec correction des effets de la rotation rapide pour $\Omega/\Omega_c=95\%$. En commun : Les erreurs typiques sont montrées dans le coin bas gauche. Les diagonales proviennent de Zorec et al. (2005) afin de pouvoir comparer les status évolutifs des Be dans la Voie Lactée et dans les Nuages de Magellan. Les losanges bleus sont pour les Be dans les amas et les triangles pour les Be dans les champs.

dans la Figure 5.22. Les étoiles massives sont bien Be dans la seconde partie de la SP. Les étoiles de masses intermédiaires peuvent être Be tout au long de la SP et les moins massives peuvent être Be tout au début de leur vie, puis perdre ce caractère rapidement avant de redevenir Be au cours de leur évolution en seconde partie de la SP. Il faut également noter qu'aucune différence sur le statut évolutif d'une Be qu'elle soit dans un amas ou dans le champ ne peut être mise en évidence.

5.3.3 Conclusions sur le statut évolutif des étoiles Be

Nous avons pu mettre en évidence de façon significative des différences de comportement entre les étoiles Be suivant leur masse initiale à la ZAMS et suivant la métallicité du milieu dans lequel elles se trouvent. Ainsi, les comparaisons par gamme de masses montrent que :

- − Les étoiles les plus massives (M ≥ 15 M_☉), dans la Voie Lactée compte tenu de la perte de moment angulaire liée à la forte perte de masse, ne pourront être Be qu'au tout début de la Séquence Principale. Puis lors de la contraction secondaire à la fin de la Séquence Principale, elles pourront redevenir à émission. Pour ces mêmes étoiles massives dans les milieux pauvres en métaux comme les Nuages de Magellan, l'évolution est différente. Elles peuvent naître Be puis lors de la première contraction, ne plus l'être. Ensuite, l'évolution de leur vitesse angulaire de rotation permettra à ces étoiles de redevenir Be au cours de leur vie sur la Séquence Principale, typiquement en seconde partie.
- − Les étoiles de masses intermédiaires (9 M_☉ ≤ M ≤ 15 M_☉) vont suivre la même évolution quelle que soit la métallicité du milieu. Elles vont démarrer leur vie sur la Séquence Principale avec un taux Ω/Ω_c suffisamment grand pour être Be. Puis compte tenu de l'évolution de leur vitesse angulaire, ces étoiles pourront rester Be ou perdre très temporairement ce caractère au début de la SP.
- − Les étoiles de faibles masses (2 M_☉ ≤ M ≤ 9 M_☉) démarrent leur vie sur la SP avec un Ω/Ω_c suffisamment grand pour qu'elles soient Be quelle que soit la métallicité du milieu. Cependant, elles vont vite perdre le caractère Be lors de la première contraction. Ensuite, compte tenu de l'évolution de leur vitesse angulaire, elles pourront à nouveau atteindre un taux Ω/Ω_c suffisamment grand pour redevenir Be, ce qui se produira durant la seconde partie de la Séquence Principale. Cette évolution confirme le résultat de Fabregat & Torrejón (2000).

En conclusion, pour qu'une étoile devienne Be, il faut que l'étoile progénitrice ait une vitesse élevée à la ZAMS. Suivant la métallicité du milieu et la masse de l'étoile, l'évolution temporelle influencera l'apparition du phénomène Be au cours de la SP.

5.4 Abondances en carbone des étoiles B et Be : résultats et discussions

Selon les travaux de Maeder & Meynet (2001), la rotation entrainerait par des mécanismes de diffusion des modifications des abondances en surface des différents éléments chimiques (He, C, N, etc). Ces mécanismes seraient d'autant plus favorisés que la métallicité du milieu est faible. Comme nos échantillons d'étoiles comportent des rotateurs rapides (les étoiles Be) dans des milieux de différentes métallicités, nous avons entrepris de d'estimer les abondances en surface du carbone. Nous avons choisi cet élément car dans le domaine 4000-4500Å il est le seul (mis à part l'hélium) à posséder des raies suffisamment intenses pour rendre possible les mesures de largeurs équivalentes.

5.4.1 Résultats préliminaires et discussions des abondances de surface en carbone.

Afin d'avoir une estimation de l'abondance en carbone des étoiles de nos échantillons, nous avons mesuré les largeurs équivalentes de la raie de CII 4267Å qui est la plus intense de cet élément dans le domaine LR02 du VLT-GIRAFFE.

a) Mesures de la largeur équivalente de la raie de CII 4267Å

Pour chaque spectre possédant un rapport signal à bruit supérieur à 50, nous avons mesuré la largeur équivalente de la raie de CII 4267Å. L'erreur estimée sur la mesure est de 0.001 à 0.002 nm. Nous avons ensuite regroupé les étoiles par gammes de températures et moyenné leurs résultats. Nous avons également séparé les étoiles B des étoiles Be, ces dernières devant avoir des abondances en carbone affectées par les effets de la rotation. Pour comparer avec la Voie Lactée, nous avons ajouté les valeurs de Didelon (1982). L'ensemble de ces moyennes est reporté dans la Figure 5.23. Nous y observons un premier résultat attendu concernant les étoiles B : plus la métallicité est faible, plus la largeur équivalente de CII 4267Å est faible. Nous observons ensuite que pour une métallicité donnée, les largeurs équivalentes de carbone sont plus faibles dans les étoiles Be, donc pour les rotateurs rapides, que dans les étoiles B.

FIG. 5.23 – Comparaisons des largeurs équivalentes de la raie de CII 4267Å pour les étoiles B et Be dans des milieux de différentes métallicités. Les croix vertes sont issues des données de Didelon (1982) pour les étoiles B de la Voie Lactée. Les carrés bleus correspondent aux étoiles B du Grand Nuage de Magellan et les triangles bleus correspondent aux étoiles Be du Grand Nuage de Magellan. Les carrés ouverts rouges correspondent aux étoiles B du Petit Nuage de Magellan et les triangles ouverts roses aux étoiles Be du Petit Nuage de Magellan.

b) Effets de la métallicité, de l'évolution et de la diffusion par rotation sur les abondances de surface

Suivant les travaux de Maeder & Meynet (2001), la diffusion des éléments influencée par la rotation engendre une modification des abondances chimiques en surface. Ainsi il y aurait un enrichissement en hélium et en azote durant la Séquence Principale alors que les abondances d'éléments comme le carbone s'appauvriraient. Ces phénomènes s'amplifieraient avec l'augmentation de la vitesse de rotation et pour des métallicités plus faibles, ils devraient être encore plus marqués. La Figure 5.24 issue de Maeder & Meynet (2001) montre l'évolution du rapport N/C durant la vie d'une étoile de 20 M_{\odot} pour différentes vitesses initiales de rotation. Dans ce même graphique, l'évolution du rapport N/C est comparée pour deux milieux de métallicité différente : Z=0.020 (Voie Lactée) et Z=0.004 (Grand Nuage de Magellan).

FIG. 5.24 – Evolution en fonction du $log(T_{eff})$ du rapport d'abondances N/C pour une étoile de 20 M_{\odot} pour différentes vitesses initiales de rotation. L'effet de la métallicité est visible en comparant la courbe en pointillés pour la métallicité solaire et de V_0 =300km s⁻¹ avec celle en traits pleins pour la métallicité Z=0.004 et V_0 =300km s⁻¹. Ce graphique provient de Maeder & Meynet (2001).

c) Effets comparés de l'assombrissement gravitationnel et de la diffusion

A une métallicité donnée, ce qui pourrait être une sous-abondance en carbone dans les étoiles Be comparativement aux étoiles B peut aussi s'expliquer par l'assombrissement gravitationnel et/ou par la diffusion par rotation. L'effet de l'assombrissement gravitationnel est illustré dans la Figure 5.25 issue de Frémat et al. (2005b). Cette figure montre que cet effet diminue la largeur équivalente de la raie. Nous retiendrons le cas le plus défavorable des 2 présentés dans ce graphique. Celui-ci correspond à une correction des effets de la rotation rapide pour un $\Omega/\Omega_c=99\%$ pour une étoile vue par l'équateur de $T_{eff}^0=20000$ K et de log $g_0=4.0$. Le rapport des largeurs équivalentes entre la raie corrigée des effets de la rotation rapide et la raie apparente est de l'ordre de 80%. Nous utiliserons ce taux pour donner une estimation maximale de la correction à apporter liée à l'assombrissement gravitationnel. Dans le graphique 5.26, nous montrons par une flèche vers le bas la correction à apporter aux étoiles Be par rapport aux étoiles B.

Dans le cas du Grand Nuage de Magellan, il semble que l'effet d'assombrissement gravitationnel puisse expliquer à lui seul les différences observées entre les B et les Be. Toutefois, rappelons que cette correction est une correction maximale, supérieure à celle qu'il faudrait appliquer aux étoiles Be du GNM pour lesquelles $\Omega/\Omega_c=85\%$. Dans ce cas cette correction pourrait cacher un éventuel effet de la diffusion.

Dans le cas du Petit Nuage de Magellan, même en appliquant cette correction maximale, l'assombrissement gravitationnel ne semble pas pouvoir expliquer complètement la différence entre les étoiles B et les étoiles Be. Peut-être y a-t'il là un effet d'appauvrissement en carbone lié au phénomène de diffusion par la rotation rapide comme prévu par Maeder & Meynet (2001).

FIG. 5.25 – Comparaisons des largeurs équivalentes de la raie de CII 4267Å pour une étoile non corrigée (croix) et corrigée à $\Omega/\Omega_c=99\%$ des effets de la rotation rapide.

FIG. 5.26 – Comparaisons des largeurs équivalentes de la raie de CII 4267Å pour les étoiles B et Be dans des milieux de différentes métallicités. Les croix vertes sont issues des données de Didelon (1982) pour les étoiles B de la Voie Lactée. Les carrés bleus correspondent aux étoiles B du Grand Nuage de Magellan et les triangles bleus correspondent aux étoiles B du Petit Nuage de Magellan et les triangles ouverts roses aux étoiles Be du Petit Nuage de Magellan. Les flèches vers le bas correspondent à une correction maximale par l'effet d'assombrissement gravitationnel de la largeur équivalente.

5.4.2 Conclusions sur les effets de métallicité, d'évolution et de diffusion sur les abondances en surface de carbone

La largeur équivalente de la raie de CII 4267Å pour les rotateurs rapides (Be) a tendance à être plus petite que pour les rotateurs plus lents (B). Outre l'effet évident lié à l'élargissement par la rotation qui a été minimisé le plus possible, deux phénomènes peuvent expliquer cette tendance : l'assombrissement gravitationnel et l'appauvrissement en carbone par les effets de la diffusion liée à la rotation. Nous avons appliqué une correction maximale et surestimée de l'assombrissement gravitationnel. Cela a montré que pour les étoiles du Grand Nuage de Magellan, cette correction suffit à expliquer les différences observées entre B et Be mais ce n'est plus le cas pour les étoiles du Petit Nuage de Magellan. Pour ces étoiles, nous devons en plus faire appel aux effets de la diffusion par la rotation pour expliquer cette différence entre B et Be. Cette étude ne peut que nous fournir un indice intéressant. L'abondance en CNO sera étudiée, dans les mois prochains, dans les Nuages de Magellan à l'aide de spectres à haute résolution que nous avons obtenus avec UVES pour des étoiles B et Be.

5.5 Phénomènes additionnels à la création des étoiles Be

Toutes les Be (au moins dans la Voie Lactée) ne semblent pas être des rotateurs critiques. En conséquence la rotation ne peut pas à elle seule engender les éjections de matière (excepté peut-être dans le PNM). Pour apporter le surplus de quantité de mouvement nécessaire à ces éjections, nous devons faire appel à des processus complémentaires comme le champ magnétique, les pulsations non radiales et les ondes internes.

5.5.1 Champ magnétique

Le champ magnétique pourrait transporter vers la surface de l'étoile le surplus de quantité de mouvement nécessaire à l'éjection de matière. Neiner et al. (2003) ont découvert un champ magnétique dans une étoile Be. Dans les années à venir, grâce aux instruments à très haute résolution tels ESPADONS au CFHT et NARVAL au TBL, il sera plus facile de mettre en évidence un champ magnétique dans les étoiles B et Be et de tester les modèles de Stépien (2002) qui prennent en compte un eventuel champ magnétique.

5.5.2 Pulsations non radiales

Des interférences constructives de modes de pulsations non radiales pourraient fournir le supplément de quantité de mouvement permettant ainsi à la matière de s'échapper. Rivinius et al. (1998) ont pu calculer les éphémérides des éjections discrètes de matière de l'étoile μ Centaure en considérant qu'elles résultaient des interférences constructives des pulsations non radiales qu'ils avaient découvertes (voir la Figure 5.27 illustrant leur travail). La mission spatiale COROT permettra d'étudier finement et en continu la variabilité des étoiles pendant environ 150 jours. Cela permettra de détecter les pulsations à l'oeuvre dans les étoiles, notamment les Be.

5.5.3 Ondes internes

Enfin, un dernier phénomène, les ondes internes, pourrait transporter du moment angulaire et le déposer juste à la surface de l'étoile, ce qui faciliterait l'éjection de matière (Mathis, PhD, 2005).

5.6 Conclusions

Nous résumons les principaux resultats de ce chapitre.

FIG. 5.27 – Comparaisons entre les périodes d'éjection de matière de l'étoile Be μ Centaure et les périodes d'interférences constructives des pulsations non-radiales découvertes dans cette étoile. Ces résultats proviennent de Rivinius et al. (1998).

5.6.1 Métallicité et rotation

- Nous avons clairement mis en évidence un effet de métallicité sur les vitesses de rotation des étoiles B et Be. Ainsi plus la métallicité est faible, plus les vitesses de rotation sont élevées.
- De plus, la métallicité agit également sur les distributions de vitesses initiales à la ZAMS. Une étoile Be démarre sa vie sur la Séquence Principale avec une vitesse d'autant plus grande que la métallicité est faible.
- La vitesse initiale de rotation dépend de la masse de l'étoile et suit une tendance identique quelle que soit la métallicité du milieu concerné.
- Seule une étoile B avec une vitesse suffisante à la ZAMS pourra devenir Be quelle que soit la métallicité.
- La métallicité affecte également les vitesses angulaires de rotation, les étoiles les plus massives des milieux sous-métalliques ne perdront pas autant de moment angulaire que dans la Voie Lactée. Donc au cours de leur évolution, leur vitesse angulaire se rapprochera de la vitesse critique. D'ailleurs les Be évoluées les plus massives du Petit Nuage de Magellan semblent être des rotateurs critiques.
- Il y aurait peut être un effet de la diffusion par rotation entrainant la disparition du carbone à la surface stellaire.

5.6.2 Proportions des étoiles Be

Les études de Maeder et al. (1999) et plus récemment de Wisniewski et al. (2005) mettent en évidence une tendance à l'augmentation du nombre d'étoiles Be avec la sous métallicité. Il est cependant difficile compte tenu de la forte dispersion des données d'être sûr de cette tendance. Cependant, nous avons noté dans nos données une tendance similaire à la hausse du nombre de Be avec la plus faible métallicité. Les vitesses de rotation plus importantes dans les milieux sous-métalliques faciliteraient la création d'étoiles Be et donc pourraient expliquer les tendances observées.

5.6.3 Effet de l'âge et de l'évolution

Dans les milieux sous-métalliques comme les Nuages de Magellan, la perte de moment angulaire est plus faible que dans la Voie Lactée du fait de la plus faible perte de masse. Donc, contrairement à ce qui se passe dans la VL, les étoiles les plus massives pourront devenir Be au cours de leur évolution sur la Séquence Principale. Elles pourraient même atteindre la vitesse critique. Pour les étoiles de masses intermédiaires et de faibles masses, l'évolution n'est quasiment pas changée quelle que soit la métallicité du milieu. Les étoiles de masses intermédiaires seront Be durant quasiment toute la Séquence Principale. Les étoiles de faibles masses deviendront Be en seconde partie de la Séquence Principale (en accord avec les résultats de Fabregat & Torrejón 2000).

La quasi totalité des résultats présentés dans ce chapitre ont fait l'objet d'une présentation orale (Martayan et al. 2005d) au colloque international sur les étoiles OB actives à Sapporo au Japon.

5.6.4 Limites de cette étude

Cette étude était un travail de pionnier car il n'existait pas ou peu de catalogues (astrométrie, photométrie, classification spectrale) des étoiles des Nuages de Magellan. Nous avons observé deux champs dans ces deux galaxies. Ces champs peuvent ne pas refléter l'ensemble de ces galaxies mais présenter localement des particularités en termes d'abondances, de formation stellaire, etc. Nous avons donc besoin de plus d'observations dans les Nuages de Magellan pour appréhender ces objets dans leurs globalités. Nous avons aussi besoin d'observations complémentaires car notre étude s'est limitée principalement aux étoiles B de type précoces. De plus, la nature de certains objets doit être précisée (Herbig Be par exemple, étoiles pré-Séquence Principale). Notre étude est une étude statistique donnant des résultats en moyenne, mais il n'est pas exclu que certains des objets étudiés échappent au comportement moyen. Enfin, il n'est pas possible avec les spectres GIRAFFE de déterminer précisément les abondances de surface des étoiles que nous avons observées.

Bibliographie

- Chauville, J.; Zorec, J.; Ballereau, D.; et al.; "High and intermediate resolution spectroscopy of Be stars. An atlas of Hγ, HeI 4471 and MgII 4481", 2001, A&A, 378, 861
- [2] Clement, M.; "On the solution of Poisson's equation for rapidly rotating stars", 1974, ApJ, 194, 709
- [3] Cranmer, S. R.; "A statistical study of threshold rotation rates for the formation of disks around Be stars", 2005, AJ, 634, astroph0507718
- [4] Deniseenkov, P.A., Ivanova, N.S., & Weiss, A.,"Main-sequence stars of 10 and 30 Msun : approaching the steady-state rotation", 1999, A&A, 341, 181
- [5] Didelon, P.; "Largeurs équivalentes de raies spectrales dans les étoiles B", 1982, A&ASS, 50, 199
- [6] Fabregat, J.; Torrejón, J. M.; "On the evolutionary status of Be stars", 2000, A&A, 357, 451
- [7] Frémat, Y.; Zorec, J.; Hubert, A.-M.; et al.; "Effects of gravitational darkening on the determination of fundamental parameters in fast rotating B-type stars", 2005b, A&A, 440, 305, astroph050381
- [8] Gies, D. G.; Huang, W.; "Stellar rotation in galactic clusters", 2004, IAUS 215, 57
- [9] Glebocki R., Stawikowski A.,"Catalog of Projected Rotational Velocities", 2000, Acta Astr., 50, 509
- [10] Keller, S. C.; "Rotation of early B-type stars in the Large Magellanic Cloud. The role of evolution and metallicity.", 2004, PASA, 21, 310K
- [11] Levato, H.; Grosso, M.; "New projected rotational velocities of all southern B-type stars of the bright star catalogue", 2004, IAUS 215, 51
- [12] Maeder, A.; Grebel, E. K.; Mermilliod, J.-C.; "Differences in the fractions of Be stars in galaxies", 1999, A&A, 346, 459
- [13] Maeder, A.; Meynet, G.; "Stellar evolution with rotation VII. Low metallicity models and the blue to red supergiant ratio in the SMC", 2001, A&A, 373, 555
- [14] Martayan, C.; Frémat, Y., Hubert, A.-M. et al.; "Effects of metallicity, star formation conditions and evolution in B and Be stars. I : Large Magellanic Cloud, field of NGC 2004." 2005b, A&A, submitted
- [15] Martayan, C. "Effects of metallicity, star formation conditions and evolution in B and Be stars.", 2005d, talk and proceedings, Active O, B stars meeting, Sapporo, Japan
- [16] Mathis, S., PhD, "Effet du mélange interne sur l'évolution des étoiles : processus de transport dans les zones radiatives", 2005, Université Paris XI Orsay France
- [17] Meynet, G.; Maeder, A.; "Stellar evolution with rotation V. Changes in all the outputs of massive star models", 2000, A&A, 361, 101
- [18] Meynet, G.; Maeder, A.; "Stellar evolution with rotation VIII. Models et Z=10⁻⁵ and CNO yields for early galactic evolution", 2002, A&A, 390, 561
- [19] Negueruela, I., "The role of multiplicity", 2005, review au colloque Active O, B stars, Sapporo, Japon
- [20] Neiner, C., Hubert, A.-M., Frémat, Y., et al., "Rotation and magnetic field in the Be star omega Orionis", 2003, A&A, 409, 275
- [21] Penny, L. R.; Sprague, A. J.; Seago G. et al.; "Effects of metallicity on the rotational velocities of massive stars", 2004, ApJ, 617, 1316
- [22] Porter, J. M.; Rivinius, T.; "Review : Classical Be stars", 2003, PASP, 115, 1153

- [23] Porter, J. M., 1997, "On the rotational velocities of Be and Be-shell stars", A&A, 324, 597
- [24] Rivinius, Th.; Baade, D.; Stefl, S.; et al.; "Stellar and circumstellar activity of the Be star MU Centauri.", 1998, A&A, 336, 177
- [25] Stepień, K.; "Spin-up of Be stars in the pre-main sequence phase", 2002, A&A, 383, 218
- [26] Yudin, R. V.; "Statistical analysis of intrinsic polarization, IR excess and projected rotational velocity distributions of classical Be stars", 2001, A&A, 368, 912
- [27] Wisniewski, J. P., Bjorkman, K. S., Magalhães, A. M., et al.; "The effects of age and metallicity on Be circumstellar disk formation", 2005, poster au colloque Active O, B stars, Sapporo, Japon
- [28] Zorec, J., Mochkovitch, Divan,"On the rotation of B and Be stars", L. C.R. Acad. Sci. Paris, 1988, 306, 1265
- [29] Zorec, J.; Frémat, Y.; Cidale, L.; "On the evolutionary status of Be stars. I. Field Be stars near the Sun", 2005, A&A, in press, astroph0509119

Deuxième partie

Etudes complémentaires

Chapitre 6

Cartographie des objets à émission des Nuages de Magellan

Sommaire

6.1	Instrumentation et observations					
6.2	Diagnostics des problèmes instrumentaux					
6.3	Méthode d'exploitation proposée					
6.4	Premiers catalogues d'objets à émissions					
6.5	Premiers résultats sur les amas et champs du Petit Nuage de Magellan					
	6.5.1 Etude de Meyssonnier & Azzopardi (1993)					
	6.5.2 Amas étudiés dans le PNM					
6.6	Premières conclusions sur le WFI-spectro					

Le taux d'étoiles Be par rapport aux étoiles B est bien connu dans la Voie Lactée (Zorect & Briot 1997). Par contre, dans les Nuages de Magellan, les études étaient parcellaires compte tenu des difficultés d'observations. Jusqu'à très récemment, la recherche d'étoiles à émission se faisait par des techniques photométriques (filtres classiques + filtre H α à bande étroite, cf Keller et al. 1999).

En collaboration avec D. Baade (ESO) et J. Fabregat (Espagne), notre équipe (A.-M. Hubert, M. Floquet et moi-même) a entrepris une étude des Nuages de Magellan en utilisant la caméra grand champ WFI, installée au télescope de 2.2m de l'ESO (Chili) et équipée en mode spectrographique. Des amas galactiques (NGC6611 et Westerlund1) ont aussi été observés. Dans les Nuages de Magellan, 60 champs observés ont couvert les zones d'observations OGLE, ce qui nous a permis de rechercher les étoiles Be non seulement dans le champ mais aussi dans les amas étudiés par OGLE pour lesquels nous connaissons l'âge. Ces observations nous ont aussi permis de mieux déterminer les cibles à observer avec le VLT/FLAMES.

6.1 Instrumentation et observations

La caméra grand champ WFI de l'ESO est installée sur le télescope de 2.2m de la Silla. Elle est constituée d'une mosaïque de 8 CCDs de 2046 \times 4098 pixels chacun, soit au total près de 67 millions de pixels couvrant 34 \times 33 ' sur le ciel. La taille du pixel correspond à environ 0.24". Comme les CCDs ne sont pas jointifs, il y a un espace inter-CCD qui ne pourra pas être observé à moins d'effectuer des poses consécutives en changeant le centrage du champ à chaque pose. Chaque CCD a une réponse et un gain légèrement différents de l'un à l'autre. Aussi, les données de calibrage (flats dôme et ciels crépusculaires) sont cruciales pour corriger les écarts de sensibilités entre CCD. Cela est surtout vrai si on veut effectuer de la photométrie sur l'ensemble du champ. Cette caméra a permis l'obtention des images qui servent à la préparation des observations avec FLAMES (voir le site du EIS-pre FLAMES survey). L'ESO avait aussi ajouté un mode spectroscopique sans fente par l'utilisation d'un grism (prisme). Combiné à un filtre, cela permet d'obtenir les spectres dans un domaine limité pour tous les objets situés dans le champ de 34 \times 33 '. Donc, en quelques secondes d'exposition, pour chaque image,

nous obtenons plusieurs dizaines de milliers voire plusieurs centaines de milliers de spectres. Ce qui fait de cette instrumentation l'une des plus puissantes jamais réalisée. Les observations ont eu lieu fin septembre 2002 et étaient les premières (hors commissioning) obtenues avec cette instrumentation.

C'est donc dans ce cadre et avec cette instrumentation en mode spectroscopique que des observations des parties centrales des Nuages de Magellan ont été effectuées. Pour notre programme le filtre à bande passante étroite H $\alpha/7$ (210Å) a été utilisé. Les champs des Nuages de Magellan étant fortement encombrés, il fallait dans la mesure du possible éviter que les spectres ne se superposent les uns aux autres et ne se contaminent mutuellement, d'où le choix du filtre étroit. De plus, ce filtre est centré sur la longueur d'onde 6585Å. Le profil de ce filtre ressemble à une gaussienne, la raie H α si elle présente de l'émission modifie le profil observé et rajoute un pic quelques pixels avant le maximum instrumental à 6585Å. Ce décalage sera fonction de la vitesse radiale de l'objet observé. La résolution des spectres à 6563Å est de l'ordre de 940, ce qui est suffisant pour détecter les objets à émission. La Figure 6.1 montre en haut à gauche, une image mosaïque de WFI en mode spectro, pour le champ du Petit Nuage de Magellan S9 comprenant l'amas NGC330. Ce champ a été évoqué dans les précédents chapitres et contient ici environ 80000 spectres. En haut à droite de la Figure 6.1 un zoom est effectué sur cet amas. Il faut noter que la dispersion par le grism est horizontale et est principalement à l'origine de l'allongement des sources que nous voyons. L'élargissement vertical est dû à la réponse instrumentale (PSF). En bas à droite, nous pouvons voir les spectres de deux objets sans émission en H α , le profil suit le profil instrumental. En bas à gauche, nous pouvons voir le spectre d'une source à émission en H α . Nous observons que le profil suit globalement le profil instrumental et présente un second pic plus à gauche correspondant à la raie H α en émission. Afin, de pouvoir séparer les sources mélangées, il est nécessaire de tourner le champ afin que la dispersion (toujours horizontale) n'entraîne plus de superposition comme dans le premier cas. (Notons que cela pourrait en entraîner d'autres.) C'est ce qui a été réalisé lors de la seconde nuit, mais la météo a été défavorable et les images obtenues ne sont pas toutes exploitables. Au total, la première nuit, 15 champs ont été visés dans le PNM, 20 dans le GNM. La seconde nuit 15 l'ont été dans le PNM et 12 dans le GNM. Chaque champ comptant en moyenne environ 80000 spectres (de 45000 à 130000 spectres), nous avons donc plus de 5 millions de spectres à traiter.

Nous avons aussi utilisé cette instrumentation pour étudier les amas galactiques NGC6611 et Westerlund1 qui sont très jeunes. Diverses études ont montré des résultats contradictoires sur le nombre d'objets à émission dans ces amas (par exemple De Winter et al. 1997, Herbig & Dahm 2001). Ces amas ont été observés avec l'instrument WFI en mode spectro (4 champs) mais avec le filtre Rc/162 à bande passante plus large (2480Å) car les champs sont moins encombrés que ceux des Nuages de Magellan. Ce filtre est centré sur 6820Å environ. La résolution est d'environ 1000. L'élargissement vertical reste lié à l'instrumentation et aux conditions d'observations.

Pour information, le signal reçu s'écrit ainsi :

$$s = gain \times ((spectre * grism * filtre) \times flat + bias)$$
(6.1)

où * représente le produit de convolution, *grism* représente la réponse du grism (profil plat sur les domaines utilisés), *filtre* représente la réponse instrumentale optique du filtre et du télescope (cela présente un profil de type gaussien avec le filtre H α et très différent avec le filtre Rc). Chaque CCD possède un gain et une réponse à l'éclairement qui lui sont propres.

6.2 Diagnostics des problèmes instrumentaux

Bien que très puissante, cette instrumentation présente quelques difficultés dans l'exploitation des observations :

 Nous avons plusieurs ordres des spectres qui se trouvent répartis dans le sens de la dispersion sur l'image : l'ordre 0 correspondant à une tâche simple (PSF). L'ordre correspondant au spectre et un ordre supérieur

FIG. 6.1 – Haut à gauche : Image mosaïque de WFI en mode spectroscopique pour le champ S9 du Petit Nuage de Magellan, ce champ contient environ 80000 spectres. Haut à droite : zoom sur l'amas NGC330, la dispersion par le grism est horizontale d'où l'élongation des sources dans ce sens. Bas à droite : spectres de 2 sources sans émission, les profils observés correspondent aux profils instrumentaux. Bas à gauche : spectre d'une source présentant de l'émission en H α .

inexploitable. Nous observons donc systématiquement les "fantômes" des objets sur les CCDs voisins. Par exemple, nous observons 2 fois l'amas NGC330, une fois avec les spectres normaux et une fois avec son fantôme sur le CCD voisin de gauche.

- L'ordre 0 mal placé (cet ordre est surtout visible dans les observations avec le filtre Rc) peut faire croire à une émission alors qu'en réalité il n'y en a pas.
- Existence de réflexions parasites : certaines étoiles très brillantes ne figurant pas sur les images provoquent des réflexions parasites sur chacun des CCDs. Ces images correspondent aux différents ordres spectraux mais sont saturés.
- Les rayons cosmiques provoquent des pics d'émission très intenses mais de largeur à mi-hauteur plus faible.
- Les pixels défectueux peuvent engendrer une mauvaise interprétation des spectres.
- Les objets tombant dans les espaces inter-CCDs sont perdus. Mais compte tenu du grand champ de WFI et de notre but qui est une étude statistique cela n'est pas très important.
- Dans la quasi-totalité des champs, nous avons observé, en bordure de champ, une défocalisation de l'image des sources qui ne permet plus de retrouver la signature typique d'une émission en Hα. Cette défocalisation altère l'image de la source qui n'est plus ellipsoïdale mais en forme d'anneau ou de croissant. Cette défocalisation serait liée à un défaut de conception de la mise au point du foyer.
- Il n'est pas possible compte tenu de l'instrumentation sans fente, d'obtenir des spectres "de laboratoire" de comparaisons. Cependant, la dispersion moyenne est d'environ 7 Å par pixel et sachant que le pic en H α se trouvera quelques pixels (3 à 7) avant le pic instrumental, nous pourrons nous passer de spectres de laboratoire.
- Il n'existe pas dans la littérature de méthode d'exploitation du WFI-spectro à part le "commissioning" qui est très succint. Pour réduire les données WFI (mode image) j'ai utilisé les guides de réduction d'images mosaïques de G. Bergond et de F. Valdès. Ce travail a été très long compte tenu de la taille des images.

6.3 Méthode d'exploitation proposée

Avant de pouvoir exploiter à grande échelle les données WFI-spectro, quelques questions préliminaires sont à examiner :

- Comment extraire les spectres de l'image et pouvoir les exploiter automatiquement ? Je rappelle que la quantité moyenne de spectres par image est de 80000 et que nous avons 66 champs à exploiter ce qui représente environ 5.3 millions de spectres.
- Comment calibrer les spectres en longueur d'ondes ?
- Comment obtenir de bonnes coordonnées astrométriques pour pouvoir observer ces objets, par exemple avec le VLT-GIRAFFE ?

Quelles solutions appliquer à ces problèmes ?

 Tout d'abord, pour la réduction des données, comme indiqué plus haut, il existe des guides de réduction que j'ai utilisés. De plus, pour ce traitement, j'ai utilisé le "package" IRAF (mscred) développé par F. Valdès pour traiter les images mosaïques. Toutefois, il existe un bogue dans le passage des coordonnées de plaque (X, Y) aux coordonnées astrométriques (α , δ).

- Une fois les images calibrées, il fallait pouvoir extraire les spectres. J'ai fait appel à SExtractor (Bertin & Arnouts 1996). J'ai été amené à rencontrer E. Bertin plusieurs fois afin de mettre au point une stratégie d'extraction des sources. Nous avons créé des masques de convolution particuliers pour que le programme puisse reconnaître les sources allongées par la dispersion du grism. Ce masque se base sur l'architecture du masque de type sombrero (en vagues) afin de pouvoir séparer le plus possible les spectres proches les uns des autres. Nous créons ainsi des catalogues de spectres (pixels, flux) avec diverses informations complémentaires comme le flux de l'objet, les coordonnées (X, Y), l'élongation, l'angle d'inclinaison de la source extraite, etc. Cela génère alors une grande quantité de données.
- Enfin, une fois que nous disposons de cibles potentielles, il nous faut des coordonnées pour pouvoir les répertorier. Grâce au logiciel ASTROM que nous a fourni J. Fabregat, nous avons pu attribuer des coordonnées relativement précises à chacune des sources détectées. L'imprécision est liée à l'allongement de la source en X, ce qui introduit une incertitude sur sa position réelle. Nous avons pris son centroïde supposé pour coordonnées centrales. Pour obtenir des coordonnées précises sur l'ensemble du champ, il faut avoir un jeu d'étoiles de référence pour lesquelles nous avons des coordonnées (X, Y) et leurs coordonnées (α, δ) de manière précise. Dans le cas du champ S9 du PNM, nous avons utilisé le champ SMC5 de EIS ; ces champs se correspondent en partie ; dans les autres cas, nous utilisons les coordonnées UCAC2, ou celles de SIMBAD. Ceci ne peut s'effectuer qu'après reconnaissance des étoiles dans les champs WFI-spectro et les champs de référence (DSS2 via ALADIN du CDS par exemple).

Nous avons ensuite conçu une méthode d'exploitation de ces données. Dans les cas les plus simples, nous avons récupéré le spectre de l'objet. Pour ne conserver que les spectres qui proviennent réllement d'une étoile et non pas d'une autre source (pixels défectueux, rayons cosmiques, amalgames de sources, galaxies, etc), nous effectuons plusieurs tests préliminaires :

- Test de l'angle d'inclinaison de la source : si celui-ci est plus grand que 10° ou plus petit que -10° alors la source extraite ne correspond pas au spectre d'une étoile qui doit se trouver à l'horizontale (0°) sur l'image.
- Test sur le niveau de flux : si celui-ci est trop faible (<60 ADUs), les sources sont inexploitables, pics et creux sont liés au bruit. Donc pour ces valeurs nous ne pouvons pas distinguer ce qui est un pic dû à de l'émission ou à un pic de bruit, alors nous rejetons ces spectres.
- Test sur le profil du spectre : comme le montre l'image 6.1, le spectre doit suivre la forme du filtre, ce qui ressemble beaucoup à une gaussienne. Tout autre type de spectre est rejeté. Cela a pour effet de rejeter les fantômes, et diverses autres artefacts.
- Test de la longueur : le spectre est rejeté s'il est trop petit (FWHM<5pixels). Le spectre est conservé s'il est un peu trop grand (11 pixels<FWHM<19 pixels) car il peut s'agir d'un mélange de 2 spectres.
- pour le calibrage en longueur d'ondes, nous connaissons la dispersion par pixel (environ 6.91 Å). Nous connaissons la longueur d'onde du maximum instrumental. Nous nous recalons sur ce pic, lui attribuons la longueur d'onde du maximum instrumental, puis de part et d'autre, nous attribuons linéairement les longueurs d'ondes à chaque pixel. Par exemple, les pixels immédiatement voisins auront pour longueur d'ondes : 6585-6.91≈6578Å et 6585+6.91≈6592Å. Cela est peu précis mais convient pour l'étude que nous avons à mener.
- Pour conserver les spectres issus d'un mélange de 2 sources, nous recherchons la source la plus intense du système. Puis, nous nous recalons sur son profil instrumental. Nous enlevons ensuite le profil intrumental théorique de cette source et nous conservons ce qui reste. Nous obtenons alors 2 sources séparées là où initialement il y avait un mélange. Bien entendu, cela n'est possible à réaliser que si les 2 sources

ne sont pas trop mélangées. Il faut qu'elles soient écartées l'une de l'autre d'au moins 3 pixels. En deça, les corrections ne sont plus correctes. De plus, dans le cas de mélanges de 3 sources ou plus, le spectre n'est plus exploitable avec ce type de méthode.

Une fois tous ces tests et premières corrections effectués, nous conservons environ 45000 à 60000 spectres exploitables sur les 80000 spectres de départ. Ce qui fait quand même encore environ 3.3 millions de spectres à examiner...

6.4 Premiers catalogues d'objets à émissions

Afin de trouver les objets à émission de façon automatique, j'ai écrit plusieurs programmes. Dans ceux-ci la première étape consiste à se caler sur le maximum du profil instrumental. Puis, j'ai appliqué 3 méthodes différentes pour tester la présence d'émission en H α .

- La première méthode consiste à déconvoluer directement les profils obervés par le profil théorique via les transformées de Fourier. Cette méthode, bien que rapide, est fortement sensible au bruit.
- La seconde méthode consiste à utiliser la déconvolution et restauration du signal de façon itérative par la méthode de Lucy (1974). Le critère d'arrêt est un critère de distance. Cette méthode doit une fois le spectre traité faire ressortir le pic d'émission éventuel en H α par rapport au reste (bruit, résidus de correction instrumentale). Puis, nous comparons la valeur de ce pic en H α à 1, 2 et 3 fois l'écart-type du signal.
- Enfin, la méthode la plus simple consiste après recalage sur le maximum instrumental à diviser le profil observé par le profil théorique. Si le rapport en H α est supérieur à 1 alors, il y a une émission sinon, il n'y en a pas. C'est ce que ferait l'oeil humain.

Ces méthodes sont appliquées à chaque source individuelle restant après les tests préliminaires. Ces méthodes sont aussi appliquées à chaque composante individuelle d'un mélange de 2 sources. Chaque méthode nous fournit alors un nombre plus ou moins important de sources potentielles à émission. Nous conservons uniquement celles qui sont détectées par au moins deux de ces trois techniques. Les taux de recouvrement sont alors de 90% entre la méthode par la division et la méthode par Lucy; de 35% entre la déconvolution directe et Lucy et de 30% entre la déconvolution directe et la division. La méthode par la déconvolution directe ne semble pas être très adaptée et a finalement été mise de côté. La Figure 6.2 montre le profil d'une source à émission en H α trouvée dans WFI et le spectre VLT-GIRAFFE en H α correspondant.

Dans le cas des très fortes émissions, une quatrième méthode de recherche a été mise au point. Elle consiste à rechercher les sources présentant un profil à 2 pics dont le pic en H α est plus grand que le pic instrumental. Les graphiques 6.3 illustrent ce cas de figure.

L'examen du champ WFI S9 correspondant à l'amas SMC NGC330 et sa région environnante nous a permis de détecter un certain nombre d'objets à émission non détectés par les travaux antérieurs (Keller et al. 1999, Meyssonnier & Azzopardi 1993). Lors de la deuxième série d'observations avec le VLT-FLAMES dans le PNM, nous avons proposé 29 cibles à émission potentielle issues de ce nouveau catalogue. Ces cibles ont été observées avec le VLT-GIRAFFE. Sur les 29 cibles, 28 se sont révélées être des étoiles Be. De ce fait il a été possible de les étudier avec précision (voir les chapitres précédents). Pour la 29^{eme} source nous avons eu un problème de coordonnées (à cause de la dispersion liée au grism dans WFI) et elle n'a pas pu être observée. Un exemple du profil WFI-spectro et du spectre H α du VLT-GIRAFFE correspondant est donné dans la Figure 6.3. Ces premiers résultats ont fait l'objet d'une présentation dans le cadre de la SF2A en 2004 (Martayan et al. 2004b).

FIG. 6.2 – Graphique de gauche : Spectre d'une source considérée à émission en H α d'après le WFI-spectro. Graphique de droite : Spectre H α obtenu avec le VLT-GIRAFFE pour cette même source.

FIG. 6.3 – Graphique de gauche : Spectre d'une source considérée à émission forte en H α d'après le WFIspectro. Graphique de droite : Spectre H α obtenu avec le VLT-GIRAFFE pour cette même source.

Il est donc évident que les observations WFI en mode spectro permettent :

- le recensement des objets à émission sur une large portion des Nuages de Magellan. La photométrie disponible permettra de séparer les étoiles Be des autres objets à émission. Néanmoins les émissions faibles sont difficilement détectables, surtout pour les étoiles les plus faibles.
- L'élaboration d'un catalogue des étoiles Be. Ce qui permettra une sélection plus facile des futures cibles pour le VLT.
- L'étude de la proportion d'étoiles Be par rapport aux B dans les amas observés par OGLE pour lesquels on possède des données photométriques et des âges.

Notons également que, parmi les objets à émission potentielle dans nos catalogues WFI-spectro et qui ont été observés avec le VLT-GIRAFFE, l'un d'eux est une nébuleuse planétaire et l'autre un objet étrange de type HB[e]. Cette dernière étoile a fait l'objet d'une présentation sous forme de poster au colloque sur les B[e] (Martayan et al. 2005f) à Vlieland en Hollande.

6.5 Premiers résultats sur les amas et champs du Petit Nuage de Magellan

6.5.1 Etude de Meyssonnier & Azzopardi (1993)

Meyssonnier & Azzopardi (1993) ont dressé un premier catalogue d'objets à émission dans le PNM. Nous avons pu croiser alors le catalogue S9 du PNM de WFI-spectro avec leur catalogue dans la zone correspondante. Notre catalogue contient la plupart de leurs objets et un certain nombre de nouvelles étoiles à émission que nous avons découvertes. De plus, il n'existe pas de catalogue de ce type dans le Grand Nuage de Magellan. Aussi les catalogues que nous avons dressés dans le GNM sont les premiers.

6.5.2 Amas étudiés dans le PNM

Afin de poursuivre l'exploitation de ces données, nous avons entrepris de comparer les résultats d'études répertoriant les étoiles Be dans les amas ouverts des Nuages de Magellan avec les nôtres. Cette fois-ci l'inspection est visuelle et consiste à repérer les étoiles présentant de l'émission en H α suivant les profils montrés dans les Figures 6.2 et 6.3. Nous comptons ensuite les objets à émission et les objets sans émission. Ce qui nous permettra d'obtenir un rapport $\frac{NEm}{Ntotal}$.

Nous avons validé notre méthode en comparant nos résultats avec ceux de Keller (1999) dans l'amas NGC330. Sur les 27 étoiles Be détectées par Keller, 26 ont clairement montré la signature caractéristique d'une émission dans WFI. Les étoiles Be étant connues pour leur variabilité dans la force de la composante d'émission, on peut penser que l'étoile observée Be par Keller et non Be par WFI était, à l'époque des observations WFI, dans un stade d'étoile B ou bien avec une émission trop faible pour être détectée avec cette instrumentation. Donc, cela conforte l'idée que le WFI-spectro est un bon outil pour détecter les objets à émission. Nous avons compté également le nombre d'étoiles dans cet amas en fonction du niveau de flux limite que nous nous fixons. Pour un niveau de flux supérieur à 100 ADUs, nous comptons 23 étoiles à émission et 70 étoiles au total pour cet amas. Ce qui représente un taux d'objets à émission dans cet amas de $\frac{NEm}{Ntotal}$ =23/70=32.9%. Pour un niveau de flux supérieur à 60 ADUs, nous trouvons 26 objets à émission et 102 étoiles au total. Le taux d'objets à émission est alors $\frac{NEm}{Ntotal}$ =26/102=25.5%. Nous estimons les erreurs sur ces taux à ±5%. Le taux moyen que nous trouvons est de 29.2 ±3%. Keller et al. (1999) trouvaient un taux de 34 ±8% pour les étoiles de magnitudes V<17 et un taux de 48 ±15% pour les étoiles de magnitude V<16. Les taux que nous trouvons sont alors en assez bon accord avec ceux de Keller et al. (1999). Cette comparaison montre toutefois qu'il est difficile d'estimer le taux d'étoiles à émission dans un amas, celui-ci pouvant être relié à la limite instrumentale en magnitude et à l'encombrement des champs.

Deuxièmement, nous nous sommes intéressés aux petits amas ouverts OGLE SMC99 et OGLE SMC109 du PNM. Nous avons obtenu des spectres pour quelques unes des étoiles de ces amas avec le VLT-GIRAFFE. Cet instrument, compte tenu de ses contraintes, n'est pas très adapté pour observer dans les amas. Néanmoins, avec WFI-spectro comme pour l'amas NGC330, nous avons obtenu un taux d'étoiles Be par rapport aux étoiles B de ces amas comparable à celui dérivé des observations avec le VLT-GIRAFFE. Les rapports que nous obtenons sont présentés dans la Table 6.1.

Тав. 6.1 -	 Comparaisons 	des proportions	d'étoiles à émission	entre les études WFI-spectro	et GIRAFFE.
------------	----------------------------------	-----------------	----------------------	------------------------------	-------------

Amas	WFI N Em*	WFI Ntotal*	N(Em*)/N(total*)	GIRAFFE Be	GIRAFFE B	N(Be)/N(B+Be)
OGLE SMC99	10	21	$47.6 \pm 5 \%$	4	6	40 ± 10 %
OGLE SMC109	5	22	$22.7\pm5~\%$	1	3	$25 \pm 25 \%$

Ces quelques exemples montrent la potentialité de WFI-spectro. pour déterminer les proportions d'étoiles à émission par amas. Il restera à étudier ces proportions pour des amas d'âges différents dans le GNM et le PNM. Pour cela, nous pourrons utiliser les travaux de OGLE qui a répertorié les amas et qui en donne des âges. Nous devrons également étudier l'appartenance des objets aux amas et trouver des indices de couleurs pour savoir si les objets vus à émission sont des étoiles Be, des supergéantes, des nébuleuses planétaires, etc. Ce travail a débuté (Floquet et al. en préparation). Les premiers résultats obtenus avec les observations WFI-spectro sont très encourageants et vont permettre une étude statistique fiable sur les populations d'étoiles Be dans les Nuages de Magellan. Compte tenu des problèmes instrumentaux complexes, il est impératif de reprendre la réduction de ces observations à l'aide de procédures plus adaptées et optimisées afin de permettre une meilleure extraction (2 extractions successives avec 2 masques de convolution différents) et sélection des sources.

A plus longue échéance, nous pourrons croiser les catalogues d'objets à émission que nous obtiendrons avec WFI-spectro avec les catalogues de courbes de lumière MACHO et OGLE. Nous pourrons ensuite effectuer une recherche de variabilité à court-terme dans ces courbes de lumière pour les étoiles Be des Nuages de Magellan. Un aperçu des techniques et des résultats possibles d'une telle recherche dans les bases de données MACHO et OGLE est donné dans le chapitre suivant.

6.6 Premières conclusions sur le WFI-spectro

En premières conclusions, l'instrumentation WFI en mode spectroscopique a un très grand potentiel et peut apporter énormément de résultats à la communauté scientifique. Cependant, les études que nous pouvons faire à l'aide des observations obtenues ont diverses limites telle la difficulté d'identification du type d'objet auquel nous avons affaire. Mais les principaux problèmes ne sont pas dans cette exploitation scientifique. Ils sont en amont lors de la réduction de données et l'obtention des spectres. Il nous a fallu mettre au point une méthode d'exploitation pour trier "le bon grain de l'ivraie". Tous les problèmes instrumentaux évoqués plus haut, mais qui sont surmontables, ont visiblement découragé la communauté. Ce qui a amené l'ESO à arrêter l'utilisation de cette instrumentation début 2004. Cependant, j'espère que nos résultats à venir plaideront pour une remise en route de ce type d'instrumentation qui aurait, je pense, toute sa place dans l'instrumentation moderne.

Bibliographie

- [1] Bergond, G., "Guide de réduction de données d'images mosaïques WFI"
- [2] Bertin, E.; Arnouts, S.; "SExtractor : software for source extraction", 1996, A&A,
- [3] De Winter, D., Koulis, C., The, P.S., et al. "Pre Main Sequence candidates in the very young open cluster NGC6611", 1997, A&AS, 121, 223
- [4] Herbig, G.H., Dahm Scott, E., "On the Be and Ae stars in NGC6611", 2001, PASP, 113, 195
- [5] Keller, S. C.; Wood, P. R.; Bessell, M. S.; "Be stars in and around young clusters in the Magellanic Clouds", 1999, A&ASS, 134, 489
- [6] Martayan, C.; Floquet, M.; Hubert; Zorec, J.; "The spectrum of the B[e] BAL224", 2005f, poster and proceedings, workshop on B[e], Vlieland, The Netherlands, astroph0510690
- [7] Martayan, C.; Hubert, A.-M.; Floquet; Baade, D.; Fabregat, J.; "Emission line stars in young open clusters with ESO-WFI spectrograph.", 2004b, poster and proceedings, SF2A 2004, 2004sf2a.conf..303M
- [8] Meyssonnier, N.; Azzopardi, M.; "A new catalogue of H α emission-line stars and small nebulae in the Small Magellanic Cloud.", 1993, A&ASS, 102, 451
- [9] Valdès, F., "Guide de réduction de données d'images mosaïques"
- [10] Zorec, J.; Briot, D.; "Critical study of the frequency of Be stars taking into account their outstanding characteristics.", 1997, A&A, 318, 443

Chapitre 7

Variabilité des étoiles Be, binaires, raies nébulaires, amas de la VL et champs COROT

Sommaire

7.1	Etude de la variabilité photométrique des étoiles Be dans les Nuages de Magellan 171					
7.2	Binaires spectroscopiques et à éclipses découvertes dans les Nuages de Magellan 175					
	7.2.1	Binaires dans le Grand Nuage de Magellan				
	7.2.2	Binaires dans le Petit Nuage de Magellan				
7.3	Raies	nébulaires dans le Grand Nuage de Magellan				
7.4	Amas	NGC6611 et Westerlund1				
	7.4.1	Etude avec le ESO WFI-spectro				
	7.4.2	Etude avec le VLT-FLAMES				
7.5	Etoile	s B et Be dans les champs exoplanètes de la mission spatiale COROT 190				

Dans ce chapitre, nous présentons brièvement et succintement les résultats d'études complémentaires qui sont aussi des sous-produits de la thèse.

7.1 Etude de la variabilité photométrique des étoiles Be dans les Nuages de Magellan

Les étoiles Be de la Voie Lactée présentent des variations photométriques suivant différentes échelles de temps : décennies, années, mois, jours, heures. Parmi les étoiles Be observées avec HIPPARCOS, Hubert & Floquet (1998) ont trouvé que 86% des étoiles des types précoces (B0 à B3) présentaient des variabilités à court-terme avec une amplitude inférieure ou égale à 0.1 magnitude. Ces variations photométriques peuvent être reliées à l'activité stellaire ou circumstellaire classique : tâche stellaire que l'on verrait suivant la période de rotation, nuages de matière en corotation, ou encore à des pulsations stellaires. Nous rappelons que Rivinius et al. (1998) ont trouvé pour l'étoile μ Centaure que les battements de modes de pulsations non radiales pouvaient être à l'origine des éjections de matière de cette étoile Be.

Il est donc intéressant d'étudier photométriquement les étoiles Be des Nuages de Magellan afin de savoir si elles se comportent de la même manière que dans la Voie Lactée. Mennickent et al. (2002) ont étudié les courbes de lumière observées par OGLE pour 2 millions d'étoiles du Petit Nuage de Magellan et ils ont trouvé près de 1000 candidates Be. Parmi celles-ci, beaucoup (environ 70%) présentent des variations similaires aux étoiles Be de la Voie Lactée. Quant aux autres, leurs types de variations n'ont jamais été observés dans une étoile Be galactique. Faudrait-il y voir un effet de la métallicité ?

Plus modestement, nous avons recherché, en croisant les coordonnées GIRAFFE avec la base de données MACHO, les courbes de lumière des étoiles Be des Nuages de Magellan que nous avions observées. Toutefois, OGLE n'a pas observé dans le champ de l'amas NGC2004 et nous ne disposons de courbes de lumière

Fig. 7.1 – Gauche : Etoile SMC5_3296, P=0.499j MACHO207.16373.5496. Droite : Etoile SMC5_13978, P=1.685j MACHO207.16373.58

OGLE que pour quelques étoiles Be du Petit Nuage de Magellan. Cependant, nous avons trouvé 134 courbes de lumière dans MACHO sur les 178 étoiles Be observées avec GIRAFFE. Les données MACHO ont été obtenues sur une durées de 8 à 10 ans avec une mesure tous les 1.5 à 2 jours en moyenne. La plupart des étoiles Be trouvées présentent des variations à moyen ou long-terme. Nous avons cependant entrepris, dans les cas où il était facile de corriger du long-terme, une recherche de variabilité à court-terme. Il faut rappeler que les étoiles que nous avons observées sont des étoiles de types précoces, précisément des types pour lesquels Hubert & Floquet (1998) montrent qu'elles sont souvent variables. Nous avons effectué cette recherche de variabilité à l'aide des algorithmes CLEAN et PDM. Nous avons trouvé une variation à court-terme pour 13 étoiles Be du Petit Nuage de Magellan. Les résultats de cette recherche sont regroupés dans la Table 7.1 et ont fait l'objet d'un poster au colloque "Active O, B stars" à Sapporo, Japon (Martayan et al. 2005d).

Les courbes de variabilités tracées en phase pour chacune des treize étoiles se trouvent dans les Figures 7.1 à 7.7. Elles montrent suivant les cas : soit les variations dans l'un ou dans les deux filtres (V, R) de MACHO ou bien les 2 périodes trouvées pour un filtre.

TAB. 7.1 – Périodes de variations photométriques à court-terme de 13 étoiles Be du Petit Nuage de Magellan. La recherche de variabilité a été effectuée à partir des courbes de lumière de MACHO. La première colonne donne le nom de l'étoile suivant l'appellation EIS ou la nôtre. La seconde colonne donne la période de variations. La précision sur cette détermination est de l'ordre de 0.001 jour. La troisième colonne donne l'amplitude de la variation en magnitude et la dernière colonne des indications complémentaires sur l'étoile : le numéro OGLE quand l'étoile a été observée et la période trouvée. P_{Balona} est la période trouvée par Balona (1992) pour l'étoile considérée.

erone constact	001			
Nom de l'étoile	Période (j) $\pm 0.001j$	Amplitude	Numéro MACHO	Indications
SMC5_3296	0.499	0.04	MACHO207.16373.5496	
SMC5_13978	1.685	0.04	MACHO207.16373.58	
SMC5_14727	0.891	0.10	MACHO207.16373.63	
SMC5_16523	1.547	0.09	MACHO207.16316.30	
SMC5_16544	0.586	0.07	MACHO207.16373.129	
SMC5_21152	1.015	0.10	MACHO207.16147.14	
SMC5_37162	1.130 ou 2.259?	0.08	MACHO207.16259.57	OGLE005440.73-722752.4 (P=2.259j)
SMC5_43413	1.000	0.06	MACHO207.16315.41	
SMC5_82042	0.402	0.05	MACHO207.16375.41	
SMC5_82941	1.600	0.1	MACHO207.16203.47	P _{Balona} =0.735j
MHF[S9]35238	0.754	0.07	MACHO207.16372.22	
MHF[S9]37842	0.846	0.05	MACHO207.16315.26	
MHF[S9]39981	0.783 ou 1.566?	0.04	MACHO207.16259.29	

FIG. 7.2 – Gauche : Etoile SMC5_14727, P=0.891j MACHO207.16373.63. Droite : Etoile SMC5_16523, P=1.547j MACHO207.16316.30, pour cette étoile les variations dans les filtres V et R sont montrées.

Fig. 7.3 – Gauche : Etoile SMC5_16544, P=0.586j MACHO207.16373.129. Droite : Etoile SMC5_21152, P=1.015j MACHO207.16147.14.

Fig. 7.4 – Gauche : Etoile SMC5_37162, P=1.130 ou 2.259j MACHO207.16259.57 OGLE005440.73-722752.4, pour cette étoile les 2 périodes de variations dans le filtre V sont montrées. Droite : Etoile SMC5_43413, P=1.000j MACHO207.16315.41, pour cette étoile les variations dans les filtres V et R sont montrées.

FIG. 7.5 – Gauche : Etoile SMC5_82042, P=0.402j MACHO207.16375.41, pour cette étoile les variations dans les filtres V et R sont montrées. Droite : Etoile SMC5_82941, P=1.600j MACHO207.16203.47.

Fig. 7.6 – *Gauche : Etoile MHF[S9]35238, P=0.754j MACHO207.16372.22. Droite : Etoile MHF[S9]37842, P=0.846j MACHO207.16315.26.*

FIG. 7.7 – Etoile MHF[S9]39981, P=0.783 ou 1.566j ? MACHO207.16259.29, pour cette étoile les 2 périodes de variations dans le filtre V sont montrées.

Dans OGLE, l'étoile SMC5_37162 a été classée comme binaire. En fait, il s'agit de variations à court-terme typiques d'une étoile Be. L'étoile SMC5_82941 a été observée auparavant par Balona (1992), il a trouvé une période sensiblement différente de la notre. Cependant, les données MACHO couvrent un plus grand temps d'observations que celles de Balona. La période que nous avons trouvée est plus précise, à moins que cette étoile ne soit une étoile multipériodique.

Les variations photométriques à court-terme que nous avons trouvées dans ces étoiles Be du PNM peuvent comme dans la Voie Lactée être liée à des activités stellaires de surface comme des tâches ou bien encore à des pulsations de l'étoile. A partir des paramètres fondamentaux calculés aux chapitres précédents, nous avons estimé la période de rotation des étoiles. Nous trouvons que pour seulement 2 d'entre elles, la période de variation vue peut être liée à la période de rotation. Pour les autres cas, la variation photométrique trouvée peut donc être reliée à des pulsations de l'étoile.

Comme nous pouvons le constater par exemple pour le cas de l'étoile MHF[S9]35238, il y a parfois une imperfection dans la distribution des points suivant la phase, pour la période trouvée, laissant supposer qu'il y a une autre période de variation. La recherche de multipériodicité pour ces 13 étoiles fait l'objet d'une étude en collaboration avec Juan Gutierréz-Soto de l'Université de Valencía, Espagne.

7.2 Binaires spectroscopiques et à éclipses découvertes dans les Nuages de Magellan

Nous rapportons ici la découverte de binaires spectroscopiques dans les Nuages de Magellan grâce aux observations GIRAFFE et nous rapportons aussi la découverte de binaires photométriques présentant des éclipses parmi les étoiles de nos échantillons des Nuages de Magellan grâce aux bases MACHO et OGLE. Ces binaires sont parmi les plus lointaines jamais découvertes. La binarité est l'une des voies explorées pour comprendre le phénomène Be, toutefois, dans nos échantillons très peu d'étoiles Be ont été vues binaires. Par ailleurs, l'étude des binaires peut nous renseigner de manière précise et exacte sur les paramètres des composantes du système binaire : masses, rayons, inclinaison, etc, et donc nous permettre d'examiner plus précisément la nature même des étoiles dans d'autres galaxies.

7.2.1 Binaires dans le Grand Nuage de Magellan

Dans le Grand Nuage de Magellan, les spectres GIRAFFE ont été obtenus dans les domaines bleu et rouge à 4 jours d'intervalle lors de la première phase d'observation, puis à 2 jours d'intervalle dans la seconde. Entre ces 2 phases, il s'est pratiquement écoulé 6 mois. Cet écart en temps, nous a permis de mettre en évidence des variations de vitesses radiales pour les 2 composantes des binaires à 2 spectres (SB2) ou de la primaire (SB1) lorsque seul un spectre était visible. Les résultats de ces mesures sont reportés dans la Table 7.2. Par ailleurs, comme pour les Be, nous avons croisé nos données astrométriques avec celles de la base de données MACHO, ce qui nous a permis de trouver des courbes de lumière pour la plupart de nos étoiles. A l'aide des algorithmes tels que CLEAN, PDM, nous avons trouvé pour 5 de ces binaires spectroscopiques des périodes de variations correspondant à des éclipses. Ces valeurs sont également reportées dans la Table 7.2. Tous les résultats de cette section sont publiées dans Martayan et al. (2005a), voir le chapitre des annexes.

Nous donnons dans la Figure 7.8, l'un des exemples les plus marquants que nous ayons pu observer. Le système binaire MHF87970 présente dans les spectres des inversions de profils entre les composantes en l'espace de quelques jours. Dans cette figure, nous montrons les courbes de lumière MACHO tracées en phase suivant la période P=7.117j et nous montrons les profils spectraux des 2 composantes aux dates d'observations correspondantes. Pour les autres binaires, nous renvoyons le lecteur au chapitre des annexes.

Malgré le peu de spectres obtenus pour chaque objet, il fut néanmoins possible d'estimer la vitesse du système et le rapport de masse m1/m2 pour les SB2. La méthode utilisée (Wilson 1941) est une méthode graphique basée sur la relation linéaire entre les vitesses de chaque composante du système binaire. Les résultats sont donnés dans la Table 7.3.

TAB. 7.2 – Etoiles binaires spectroscopiques dans le champ de NGC2004. La colonne 1 donne le nom de l'étoile, le préfixe LMC33 a été supprimé afin d'alléger l'écriture. LEs colonnes 2 et 3 donnent les coordonnées $\alpha(2000)$, $\delta(2000)$ issues de notre astrométrie. La colonne 4 donne la magnitude V issue de notre photométrie. Les colonnes 5 à 8 donnent les valeurs des vitesses radiales aux différentes dates d'observations pour les composantes des systèmes binaires. Les vitesses radiales RV sont en km s⁻¹ et ont une précision de ±10 km s⁻¹. En colonne 9, diverses indications concernant la variabilité sont indiquées pour les données MACHO : 'no var' si l'étoile ne montre pas de variabilité photométrique de plus de 0.05 mag., 'no data' si l'étoile n'est pas trouvée dans la base MACHO; La valeur de la période orbitale que nous avons déterminée en jours et de précision 0.001 j; enfin, en dernière colonne sont données quelques remarques : 'SB2' pour les binaires spectroscopiques à 2 spectres et 'SB ?' pour une binaire spectroscopique potentielle. Les autres binaires spectroscopiques sont des binaires à 1 spectre (SB1).

Binaire	α	δ	V	RV2003	RV2003	RV2004	RV2004	MACHO	Remarques
	(2000)	(2000)		11/24	11/28	04/12	04/14		-
MHF64847	05 27 32.04	-67 21 53.20	15.13	+396	+264	+364	+221	no var	
MHF65587	05 28 23.46	-67 21 41.30	16.01	+322	+276	+297	+273	no var	
MHF71137	05 28 46.65	-67 20 40.90	15.62	+308	+265	+263	+279	no var	
MHF79301	05 29 11.05	-67 18 58.90	15.61	+316	+296	+313	+301	no var	SB?
MHF81906a	05 30 04.67	-67 18 39.60	14.90			+415	+323	no var	SB2
MHF81906b						+186	+384		
MHF83937a	05 29 33.98	-67 18 06.80	14.87	+305	+265	+305	+296	no var	SB2
MHF83937b				+305	+350	+305	+296		
MHF87970a	05 29 08.34	-67 17 18.30	15.10	+263	+403	+340	+257	7.117	SB2
MHF87970b				+496	+121	+280	+512?		
MHF91603	05 28 03.40	-67 16 33.20	15.19	+318	+291	+321	+300	no var	SB?
MHF94292a	05 28 24.68	-67 16 04.10	15.26	+428	+367	+199	+412	no var	SB2
MHF94292b				+164	+220	+390	+172		
MHF98013	05 30 32.65	-67 15 25.70	14.82	+267	+330	+265	+322	no data	
MHF102053	05 29 56.24	-67 14 32.95	16.26	+349	+295			no data	
MHF103207	05 30 13.56	-67 14 27.10	14.94			+205	+444	no data	
MHF109251	05 28 31.95	-67 13 11.90	15.95			+283	+249	no var	SB?
MHF110467	05 27 25.31	-67 12 52.50	15.70			+266	+323	no var	
MHF111340a	05 27 14.43	-67 12 40.90	16.16	+453	+167	+492	+263	1.074	SB2
MHF111340b				+142	+453	+70	+361		
MHF112849a	05 29 54.86	-67 12 41.00	14.81	+358	+299	+227	+262	no data	SB2
MHF112849b				+115	+270	+461	+315		
MHF113048	05 26 57.53	-67 12 18.95	16.38	+283	+251			no var	SB?
MHF127573a	05 27 19.79	-67 09 34.60	16.46	+378	+260	+371	+217	2.932	SB2
MHF127573b				+100	+260	+163	$\sim +300$		
MHF128963	05 30 38.29	-67 09 32.70	15.95			+315	+274	no var	SB?
MHF133975	05 29 50.61	-67 08 30.00	16.27	+241	+352	+233	+344	no data	
MHF136274a	05 28 13.38	-67 07 58.50	16.28	+365	+276	+292	+287	no var	SB2
MHF136274b				+163	+276	+292	+287		
MHF141891	05 28 00.77	-67 06 55.50	16.29	+230	+288	+264	+231	2.975	
MHF149652	05 28 58.67	-67 05 29.20	16.50	+338	+276	+261	+295	1.458	

FIG. 7.8 – Système binaire MHF87970, P=7.117j, MACHO 60.7950.16. Le panneau central montre les courbes de lumière MACHO tracées en phase. Les 4 petits panneaux montrent les spectres GIRAFFE et leur correspondance avec les phases.

TAB. 7.3 – Vitesse radiale systémique et rapport de masses des systèmes binaires SB2 découverts dans le champ de l'amas NGC2004. La précision est de l'ordre de ± 20 km s⁻¹ sur les vitesses et de ± 0.4 sur les rapports de masses.

Binaire	RVsyst	m1/m2
	km s ⁻¹	
MHF81906	+311	1.3
MHF83937	+307	~ 1
MHF87970	+338	2.8
MHF94292	+294	1.0
MHF111340	+304	1.2
MHF112849	+289	2.3
MHF127573	+260	~ 1
MHF136274	+290	~ 1.7

Fig. 7.9 – Gauche : Etoile SMC5_977, P=3.128j. Droite : Etoile SMC5_4477, P=2.987j.

7.2.2 Binaires dans le Petit Nuage de Magellan

Dans le Petit Nuage de Magellan, l'écart en temps entre les spectres d'une même phase d'observations était trop court pour mettre en évidence des variations nettes de vitesses radiales. Les binaires spectroscopiques SB2 trouvées dans le PNM ont été répertoriées dans les tables du chapitre 4. De la même manière que pour le Grand Nuage de Magellan, nous avons croisé nos catalogues astrométriques des étoiles observées au VLT, avec les bases de données MACHO et OGLE. Le résultat de cette intercomparaison fut l'obtention d'environ 280 courbes de lumière dans le PNM, merci à Malek Mekkas d'avoir effectué l'interrogation de la base MACHO.

Puis, à l'aide des algorithmes CLEAN et PDM, j'ai recherché d'éventuelles binaires lorsque la dispersion en magnitude était plus grande que 0.05 mag. Le résultat est l'obtention de 14 binaires photométriques dont 9 sont nouvelles. Parmi celles-ci, 1 est aussi une binaire SB2, 1 binaire a une composante supergéante froide et 2 binaires ont une composante Be. Les résultats les concernant sont reportés dans la Table 7.4 et les courbes de lumière correspondantes tracées en phase dans les filtres R et V ou dans l'un des 2 filtres sont montrées dans les Figures 7.9 à 7.15.

Pour toutes les binaires à éclipses des Nuages de Magellan, la modélisation des courbes de lumière reportées en phase, nous permettra d'obtenir leurs paramètres tels les masses, rayons, inclinaison du système, etc. Ce travail a été amorcé à l'aide du logiciel libre NIGHTFALL de R. Wichmann. Un premier résultat donne respectivement 7 et 2.5 M_{\odot} pour les masses des composantes du système LMC33-MHF87970. Ce qui semble

TAB. 7.4 – Périodes de variations photométriques des binaires du Petit Nuage de Magellan. La recherche de variabilité a été effectuée à partir des courbes de lumière de MACHO et/ou OGLE. La première colonne donne le nom de l'étoile suivant l'appellation EIS ou la nôtre. La seconde colonne donne la période du système. La précision sur cette détermination est de l'ordre de 0.001 jour. La dernière colonne donne des indications complémentaires sur l'étoile comme les périodes qui ont pu être trouvées dans de précédentes études : "MOA" pour Bayne et al. (2002) et Samus pour Samus et al. (2004).

/ 1		
Nom de l'étoile	Période $(j) \pm 0.001j$	Indications
SMC5_977	3.128	SB2
SMC5_4477	2.987	MOA P=4.482j
SMC5_4534	4.051	
SMC5_13723	2.059	OGLE même P
SMC5_20391	2.320	MOA même P
SMC5_23571	3.534	binaire ellipsoïdale
SMC5_23641	2.010	
SMC5_24122	4.246	binaire excentrique
SMC5_49816	0.332	WUMa Samus Pdouble
SMC5_74928	2.137	binaire ellipsoïdale
SMC5_84353	1.557	
SMC5_2807	454.959	Sg froide, OGLE même P
SMC5_3789	2.087	Be
SMC5_16461	54.317	Be, binaire ellipsoïdale ?

FIG. 7.10 – Gauche : Etoile SMC5_4534, P=4.051j. Droite : Etoile SMC5_13723, P=2.059j.

Fig. 7.11 – Gauche : Etoile SMC5_20391, P=2.320j. Droite : Etoile SMC5_23571, P=3.534j.

Fig. 7.12 – Gauche : Etoile SMC5_23641, P=2.010j. Droite : Etoile SMC5_24122, P=4.246j.

Fig. 7.13 – Gauche : Etoile SMC5_49816, P=0.332j. Droite : Etoile SMC5_74928, P=2.137j.

Fig. 7.14 – Gauche : Etoile SMC5_84353, P=1.557j. Droite : Etoile SMC5_2807, P=454.959j.

Fig. 7.15 – Gauche : Etoile Be SMC5_3789, P=2.087j. Droite : Etoile Be SMC5_16461, P=54.317j.

être en accord avec les types de raies observées (étoiles de type B et A respectivement).

7.3 Raies nébulaires dans le Grand Nuage de Magellan

Après suppression des raies telluriques dans les spectres du domaine LR06 du VLT-GIRAFFE, nous avons mis en évidence des raies d'origine nébulaire. La largeur à mi-hauteur de ces raies est de l'ordre de 55km s⁻¹, largeur plus grande que celle instrumentale (35km s⁻¹). Ces raies viennent polluer les raies d'origine circumstellaire des étoiles Be. Il était donc nécessaire d'étudier le comportement de ces raies afin de pouvoir les supprimer de celles d'origine circumstellaire. De plus, l'étude de ces raies nous permet d'appréhender la nature du milieu interstellaire dans lequel se sont formées les étoiles du GNM.

La vitesse radiale et l'intensité des raies nébulaires (H α , [NII] 6548 et 6731 Å, et [SII] 6717 et 6731 Å) ont été déterminées ainsi que la vitesse radiale des raies photosphériques intenses (H α , H γ , H δ , HeI et MgII). La précision sur la vitesse radiale est de ±10km s⁻¹. Les distributions statistiques des vitesses radiales des étoiles et des raies nébulaires sont montrées dans la Figure 7.16. La distribution est gaussienne pour les vitesses radiales stellaires avec un maximum autour de +300km s⁻¹ tandis que la distribution est bi-modale pour les vitesses radiales des raies nébulaires avec des pics à +305km s⁻¹ et +335km s⁻¹. Après comparaison des vitesses radiales stellaire et nébulaire pour chaque étoile, aucun lien évident n'a été trouvé entre l'étoile et l'émission nébulaire présente dans son spectre. Il n'y a donc apparemment pas de lien physique entre les étoiles et les structures donnant naissance aux raies nébulaires. Des raies nébulaires ont d'ailleurs également été observées dans les spectres issus des fibres sur le fond de ciel.

Dans la Figure 7.17, nous montrons les positions des étoiles, avec ou sans raies nébulaires, et les positions des fibres sur le fond de ciel dans le champ. Des symboles différents sont utilisés pour distinguer les étoiles pour lesquelles l'émission nébulaire a une faible ou une grande vitesse radiale, ainsi que les étoiles avec des raies nébulaires intenses. Dans cette Figure 7.17, il peut être vu que les vitesses radiales petites ou grandes des raies nébulaires ne sont pas réparties aléatoirement dans le champ mais semblent organisées en structures filamentaires. Les plus grandes vitesses, centrées autour de +335km s⁻¹, sont observées dans les parties est et nord-ouest du champ, tandis que les faibles vitesses, centrées autour de +305km s⁻¹, sont observées dans la partie sud-ouest. Les fortes intensités sont généralement trouvées dans les nébulosités ayant les plus faibles vitesses radiales en H α . De plus, les étoiles sans raie nébulaire en H α , qui sont aussi indiquées dans la Fig. 7.17, sont trouvées dans des régions isolées du champ observé, reflétant ainsi la structure non homogène des nébulosités dans cette partie du GNM.

La valeur moyenne du rapport [SII] 6717/6731, indicateur de la densité de la nébulosité, est de 1.4, ce qui est typique des bulles du GNM (Skelton et al. 1999). Le rapport [NII]/H α est inférieur à 0.1; le rapport [SII] (6717 ou 6731)/H α varie entre 0.1 et 0.3. Ces valeurs sont proches de celles trouvées dans les régions HII du Grand Nuage de Magellan.

La distribution non homogène et de densité variable, vue dans l'analyse des raies nébulaires H α , [NII] et [SII] est en bon accord avec les résultats du relevé des distributions des régions HI par Staveley-Smith et al. (2003). En effet, la distribution des régions HI a révélé que le corps du GNM est ponctué de "grands trous" et a généralement une apparence "tachetée". L'un des trous principaux en HI dans le GNM s'appelle LMC4. La limite intérieure sud de la bulle supergéante LMC4, montrée dans Kim et al. (1999), traverse la champ que nous avons observé avec le VLT-GIRAFFE (voir la Fig. 7.17). La bulle supergéante de HI LMC4 est centrée à $\alpha(2000)=05h$ 31mn 33s et $\delta(2000)=-66^{\circ}$ 40' 28", ses dimensions sont r(sh)=38.7'×37.7' et sa vitesse héliocentrique systémique est de +306km s⁻¹ (Kim et al. 1999); notons que les rayons précédemment déterminés par Meaburn (1980) étaient plus grands de 12'.

Notre étude des raies nébulaires montre que :

- les nébulosités à "grande-vitesse" (RV(nebH α)=+335km s⁻¹ en moyenne) coincident avec la limite interne sud de la bulle HI LMC4.
- Les nébulosités à "faible-vitesse" (RV(nebH α)=+305km s⁻¹ en moyenne) sont détectées préférentiellement

FIG. 7.16 – Distributions des vitesses radiales pour les raies nébulaires (panneau du haut) et distribution des vitesses radiales des étoiles observées (panneau du bas).

à l'intérieur de la bulle LMC4 et ont la même vitesse radiale que la vitesse systémique de cette bulle.

- La séparation entre les faibles et les grandes vitesses correspond à la limite interne de la bulle supergéante HI LMC4.
- Les fortes intensités des raies nébulaires observées dans la partie sud-ouest du champ sont facilement expliquées par la proximité de la région HII LHA 120-N 51A.

7.4 Amas NGC6611 et Westerlund1

Les amas NGC6611 et Westerlund1 sont 2 amas très jeunes $(\log(t) < 7)$ situés dans des nébuleuses comme l'atteste la Figure 7.18 pour l'amas NGC6611. De précédentes études de De Winter et al. (1997) ont montré qu'il y avait beaucoup d'étoiles Be (plus de 20) dans l'amas NGC6611 ; une étude suivante de Herbig & Dahm (2001) a montré un résultat tout à fait contraire, il n'y aurait pas plus de 5 étoiles Be dans cet amas. Les spectres des autres objets à émission vus précédemment ne seraient dus qu'à des raies nébulaires d'une exceptionnelle intensité. La technique utilisée dans ces 2 articles est différente ; dans le premier cas, la spectroscopie était

FIG. 7.17 – Champ observé de l'amas NGC2004 et de sa région environnante montrant les étoiles : sans raies nébulaires (petit cercle vide); avec une raie nébulaire de faible vitesse radiale (petit cercle plein), de vitesse radiale intermédiaire (triangle plein) ou de grande vitesse radiale (grand triangle plein). Les croix représentent les fibres sur le fond de ciel dont les raies nébulaires ont des faibles vitesses radiales (petite croix) ou de fortes vitesses radiales (grande croix). Les grands carrés vides indiquent que l'intensité de la raie nébulaire en H α est forte. Les lignes "___" et "__. " représentent respectivement la limite sud de la bulle supergéante LMC4 selon Kim et al. (1999) et Meaburn (1980).

réalisée avec fente et dans le second sans fente avec un grism.

Selon Fabregat & Torrejón (2000), les étoiles Be apparaîtraient en seconde partie de la séquence principale, les étoiles à émission dans les très jeunes amas devraient être alors des objets de Herbig. C'est dans ce contexte, que nous avons débuté une étude de ces amas. Dans le cas de l'amas NGC6611, nous avons utilisé 2 types d'instrumentation : la spectroscopie sans fente (WFI-spectro.) dont nous avons exposé le contenu précédemment et la spectroscopie avec fente (VLT-GIRAFFE).

7.4.1 Etude avec le ESO WFI-spectro

Nous avons visualisé individuellement chacun des 15000 spectres répertoriés dans chacun de ces 2 amas, (merci à Anne-Marie Hubert et Michèle Floquet). Nous ne trouvons finalement qu'un objet à émission (une étoile Wolff-Rayet) dans l'amas Westerlund 1 * et seulement 9 objets supposés à émission dans l'amas NGC6611. Ces résultats ont tendance à confirmer le résultat de Herbig & Dahm (2001).

« Les piliers de la création », nébuleuse de l'Aigle M16, amas NGC6611

FIG. 7.18 – Image obtenue au CFHT avec VIRCAM de la région de l'amas NGC6611 dans la nébuleuse de l'Aigle.

7.4.2 Etude avec le VLT-FLAMES

Encouragés par les résultats obtenus avec WFI-spectro, nous avons sélectionné les étoiles à observer dans l'amas NGC6611 avec le VLT-GIRAFFE parmi les cibles potentielles à émission issues de notre étude WFI-spectro (9 objets). Nous confirmons la nature Be de certaines d'entre elles (4) mais pas de toutes (4), la neuvième étoile n'a pas été observée suite à une erreur de coordonnées. Les objets vus à émission avec WFI et non vus Be avec GIRAFFE se sont révélés être des superpositions d'ordre 0 avec les spectres dans les images WFI. De la même manière que dans les Nuages de Magellan, nous avons déterminé les paramètres fondamentaux de ces étoiles en supposant des abondances solaires. Nous donnons aussi la classification spectrale de ces objets à partir de leurs paramètres fondamentaux. De plus, nous indiquons la classification spectrale et les indications complémentaires données par Evans et al. (2005) pour certains objets en commun. L'ensemble de ces résultats est reporté dans la Table 7.5.

TAB. 7.5 – Paramètres fondamentaux pour les étoiles observées dans l'amas NGC6611 et dans le champ l'environnant. Les coordonnées ($\alpha(2000)$, $\delta(2000)$) issues du catalogue UCAC2 sont données en colonnes 2 et 3. La magnitude V et l'indice de couleur B-V sont donnés dans les colonnes 4 et 5. Le rapport signal à bruit est donné en col.6. En colonnes 7, 8 et 9 sont donnés la T_{eff} en K, le log g en dex et le Vsin i en km s⁻¹. L'abréviation "CFP" correspond à la classification spectrale issue des paramètres fondamentaux (méthode 2). Dans les colonnes suivantes des indications sont données sur la classification des objets suivant la littérature "litt" et si l'objet a été vu à émission avec l'étude WFI-spectro "Be WFI?". La colonne suivante "obs" donne le verdict observationnel avec GIRAFFE; si "no L2" est inscrit cela signifie que nous n'avons pas pu obtenir de spectre dans le domaine LR02 pour ces étoiles trop brillantes. Enfin la dernière colonne "Ev.(2005)" donne des indications issues du travail d'Evans et al. (2005).

Etoile	α	δ	V	B-V	S/N	$T_{\rm eff}$	log g	Vsin	i CFP	litt	obs	Ev.(2005)
Star012	18 18 49.363	-13 39 08.33	14.38	0.36	11	8000	3.3	38	A6IV	Be WFI ?	pas Be	
Star014a	18 19 06.043	-14 0 33.40	14.55	0.08	10	12000 :	2.6 :	348 :	B8III-II :	Be WFI ?	bad $\alpha \delta$	
Star017	18 19 17.083	-13 54 50.64	14.29	0.22	55	10500	4.5	229	B9V	Be WFI ?	NEW Be	
Star019	18 19 27.561	-13 57 40.56	14.56	0.10	15	11000	2.6	253	B9III-II			
Star113	18 18 08.181	-13 51 35.81	14.16	0.42	28	8500	4.5	114	A3V			
Star114	18 18 08.647	-13 43 58.59	14.22	0.35	15	10000	3.2	86	A0III			
Star125	18 18 31.213	-14 0 48.48	13.94	0.25	14	<8000			<a8< td=""><td></td><td></td><td></td></a8<>			
Star152	18 19 29.014	-13 48 27.81	13.71	0.47	27	8500	3.8	87	A3IV			
W002	18 18 02.929	-13 44 34.77	10.56	-0.09							no L2	
W025	18 18 09.283	-13 46 54.55	12.93	-0.13	80	25000	4.3	108	B1V	B0.5V		
W026	18 18 09.110	-13 44 20.48	13.46	0.29	37	9000	3.7	34	A2IV			
W031	18 18 10.121	-13 50 41.15	14.40	0.49	52	11000	4.4	230	B9V		NEW Be	
W035	18 18 11.348	-13 52 35.21	14.11	0.40	60	10000	4.5	275	A0V			
W036	18 18 11.116	-13 45 36.35	13.40	0.34	25	8000	4.5	95	A6V			
W041	18 18 11.921	-13 46 56.05	14.15	0.27	21	<8000			<a7< td=""><td></td><td></td><td></td></a7<>			
W064	18 18 16.031	-13 53 41.58	13.74	0.42	30	15000	4.5	278	B4V			
W080	18 18 18.201	-13 41 59.25	13.82	-0.26	36	24000	4.5	183	B1V	B2V		
W090	18 18 20.207	-13 46 09.70	11.73	-0.22	175	15000	4.1	262	B4V	B3-5V		B5V
W125	18 18 26.196	-13 50 05.49	10.01	-0.50						B1.5V	no L2	B1V+?
W161	18 18 30.956	-13 43 08.23	11.29	-0.25	130	33500	4.0	154	O9V			08.5V
W166	18 18 32.222	-13 48 48.06	10.37	-0.54						O8.5	no L2	
W175	18 18 32.730	-13 45 11.88	10.09	-0.37						08.5	no L2	
W188	18 18 33.719	-13 40 58.83	13.13	-0.03	59	31500	4.3	278	B0V	B0V, BeWFI?	pas Be	
W194	18 18 36.380	-13 51 34.70	13.90	0.12	9				?		NP?	
W201	18 18 36.973	-13 55 46.42	13.55	0.34	16	10000	2.7	48	A0III-II			
W202	18 18 36.013	-13 45 13.12	14.40	0.40	54	12000	4.1	347	B8V	A0		
W203	18 18 36.640	-13 50 48.02	14.19	0.63	33	8500	3.7	100	A6V	Be WDA	pas Be	
W221i	18 18 37.865	-13 46 35.15	14.55	0.62	218	27000	4.4	105	B1V	B8Ve WDA	pas Be	
W228	18 18 38.136	-13 44 25.47	13.51	-0.10	69	22000	4.5	77	B2V	B2V		
W231	18 18 38.464	-13 45 56.22	12.71	-0.26	133	25000	4.4	203	B1V	B1V		
W235	18 18 38.817	-13 46 44.28	10.98	-0.39	171	24000	3.5	482	B1IV	Be WDA	Be ?, EW>60Å	HBe
W238	18 18 39.598	-13 50 54.00	13.37	0.42	50	9000	3.8	17	A2IV			
W239	18 18 39.993	-13 54 33.51	11.48	-0.42	240	21500	4.3	93	B2V	B1V		B1.5V
W243	18 18 39.810	-13 46 56.50	13.80	-0.10	55	15500	4.4	31	B4V		forte neb	
W251	18 18 40.357	-13 46 18.08	13.34	-0.16	110	19500	4.4	84	B2V	Be WDA	pas Be	
W259	18 18 40.965	-13 45 29.65	11.61	-0.33	207	30000	4.4	148	B0V		-	B0.5V
W267	18 18 41.692	-13 46 43.86	13.13	-0.22	125	15000	3.8	244	B4IV			
W269	18 18 41.586	-13 42 48.02	13.98	-0.04	55	22000	4.5	198	B2V			
W273	18 18 42.251	-13 47 30.42	14.21	0.27	83	10000	4.0	260	A0V			
W275	18 18 42.250	-13 46 52.10	12.12	-0.39	97	22000	4.5	75	B1V			
W276	18 18 42.480	-13 48 47.02	13.74	-0.04	102	13500	4.2	210	B6V			
W281	18 18 42.950	-13 46 42.80	13.80	0.19	32	8500	2.6	83	A3III-II	Be WDA	pas Be	
W289	18 18 44.087	-13 48 56.49	12.60	-0.21	170	19000	4.3	162	B2V			B3V
W292	18 18 43.683	-13 42 21.40	14.09	0.41	28	10500	4.1	86	B9V			
W299	18 18 45.071	-13 49 19.42	14.46	0.53	30	8000	4.5	110	A6V	Be WDA	pas Be	
W300	18 18 45.039	-13 47 47.17	12.69	-0.24	145	19000	4.3	267	B2V	Be WDA	pas Be	
W301	18 18 44.980	-13 46 24.90	12.22	-0.29	213	20500	4.2	118	B2V		NEW Be, EW=2Å	B2V
W305	18 18 44.970	-13 45 25.08	13.51	-0.03	81	26500	4.4	203	B1V			
W306	18 18 45.030	-13 45 41.02	12.77	-0.22	98	22500	4.4	245	B1V	Be WDA	pas Be	
W307	18 18 45.320	-13 47 20.60	14.18	-0.03	25	18000	4.3	135	B2V	Be WDA	pas Be	
W313	18 18 46.132	-13 49 23.43	12.92	-0.07	140	13000	3.8	337	B6V	Be WDA	pas Be	B5III
W323	18 18 46.743	-13 47 48.68	13.48	-0.02	100	14000	4.1	264	B4V	Be WDA	pas Be	

	Etoile	α	δ	V	B-V	S/N	$T_{\rm eff}$	log g	Vsin	i CFP	litt	obs	Ev.(2005
W343 IS IS 49 373 · : : : : : : : : : : : : : : : : : : :	W336	18 18 49 168	-13 48 04 23	13.29	-0.20	112	14000	3.6	176	B5IV			
W344 18 18 0.30 - W351 18 </td <td>W343</td> <td>18 18 49 373</td> <td>-13 46 50 05</td> <td>11.72</td> <td>-0.17</td> <td>154</td> <td>11000</td> <td>0.0</td> <td>170</td> <td>2011</td> <td></td> <td>Binaire SB2</td> <td></td>	W343	18 18 49 373	-13 46 50 05	11.72	-0.17	154	11000	0.0	170	2011		Binaire SB2	
N351 18 18 50.683 13 12 12 0 339 26200 4.3 232 17 Be WDA pas Be B1V W364 18 1853.372 -1356.02.23 13.62 0.31 33 8000 2.5 144 ATILHI W371 18 1855.012 -134.64.07 13.44 0.07 121 16500 4.3 123 B4V Be WDA pas Be W388 18 1855.030 -134.64.05 1.237 0.24 100 11500 3.9 68 B1V W2MA pas Be B1TI W440 18 185.53.82 -13.46.10.02 1.7 9.2000 4.3 122 B1V W2MA pas Be D1TI D15V B17T D2100 4.3 122 B1V W2MA B190.028 -13.47 D10.7 D10.01 B12 B100 2.2 A1V D10.4 D11.6 D10.01 D11.0 D10.01 D10.01	W344	18 18 50.309	-13 54 24.32	13.63	0.27	8	<8000	-	_	<a8< td=""><td></td><td></td><td></td></a8<>			
N364 18 18 52.08 13 40 0.0 100	W351	18 18 50.683	-13 48 12.72	11.26	-0.50	339	26200	4.3	232	B1V	Be WDA	pas Be	B1V
N368 13 14 10 17 100 13 12 13 13 100 15 12 13 12 13 13 110 14 13 12 13 110 14 13 110 <td>W364</td> <td>18 18 52.098</td> <td>-13 49 29.20</td> <td>13.44</td> <td>0.01</td> <td>100</td> <td>12000</td> <td>4.0</td> <td>105</td> <td>B7V</td> <td></td> <td>F = 1</td> <td></td>	W364	18 18 52.098	-13 49 29.20	13.44	0.01	100	12000	4.0	105	B7V		F = 1	
W371 18 BS 53 012 -13 44 -0.07 12.1 FGS00 -13 213 FHV Be WDA pas Be W388 18 55 500 -13 44 46.10 13.00 -0.02 35 13000 -10 140 BVV Be WDA pas Be W480 18 18 55.590 -13 54 44.25 14.34 0.51 58 8500 3.8 213 ASIV Be WDA pas Be W440 18 18 55.590 -13 64 24.10.2 12.74 -0.17 97 2000 4.3 123 BIV BIV B1.5V W444 18 19.04.712 -13 48 0.40 13 800 3.5 110 AGII BE WDA, Be WFI? Pas Be B3V+ W472 18 19 04.712 -13 44 120 10.03 3.0 1000 2.0 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 <	W368	18 18 53.372	-13 56 03.23	13.62	0.31	33	8000	2.5	144	A7III-II			
W388 18 18 15 10.0 13.4 43.0 13.0 0.02 15 13.00 4.0 140 B7V Be WDA pas Be W400 18 18 55.500 -13 444 12 15.00 3.9 68 B8IV Pas Be B2JV W400 18 18 57.360 -13 52 12.4 -0.17 970 4.3 122 B1V B2.5V B2.5V W444 18 10.0428 -14 41.00 4.0 77 9500 4.3 172 A1V B2.5V B1.5V W445 18 19.04.877 -13 44.00 0.0 7.8 1300 3.2 12 B7V Be WDA pas Be A511 no L2 N01 A011 W472 18 19.05.706 -13 33.3 10.2 0.15 10.0 3.8 300 B10'11 M43 18 19.05.90 1.3 10.0	W371	18 18 53.012	-13 46 45.07	13.44	-0.07	121	16500	4.3	213	B4V	Be WDA	pas Be	
N380 18 85 5.532 1.3 4.44 5.5 8 8.500 3.8 2.13 ASTV Be WDA pas Be W400 18 18 57.360 -13 21 2.241 -0.24 100 11500 4.3 123 B1V BUSV B1.5V W444 18 190.0428 -13<42	W388	18 18 55.010	-13 48 46.10	13.70	-0.02	35	13000	4.0	140	B7V	Be WDA	pas Be	
W400 18 18 55 82 -13 46 54.05 12.87 0.24 100 11500 3.9 6.8 BRIV Barl Barl <td>W389</td> <td>18 18 55.590</td> <td>-13 54 44.25</td> <td>14.34</td> <td>0.51</td> <td>58</td> <td>8500</td> <td>3.8</td> <td>213</td> <td>A5IV</td> <td>Be WDA</td> <td>pas Be</td> <td></td>	W389	18 18 55.590	-13 54 44.25	14.34	0.51	58	8500	3.8	213	A5IV	Be WDA	pas Be	
W440 I8 18 73 30 -13 52 12 21 12.8 -0.24 140 1700 4.3 192 B3V ST B3	W400	18 18 55.832	-13 46 54.05	12.87	0.24	100	11500	3.9	68	B8IV		L	B9III
W445 18 19 0.14 2.14 0.17 9.7 2300 4.3 123 BI Description BI.5V W445 18 19 1.347 1.70 1.211 0.40 77 9500 4.3 172 AIV mol mol mol mol Mol W445 18 19 0.437 -13 48.00 4.3 172 AIV Mol	W409	18 18 57.369	-13 52 12.21	12.84	-0.24	140	17500	4.3	192	B3V			B2.5V
W445 18 19 01.97 -13 53 28.29 14.16 0.46 77 9500 4.3 102 AIV W455 18 19 02.889 -13 47 17.67 12.11 0.40 13 8000 3.5 110 AGII Be WDA pas Be A5II W4469 18 19 04.877 -13 48 20.44 10.69 -0.57 -0.18 B3000 3.2 121 BTV Be WDA, Be WFI? pas Be B3V -7 W473 18 19 06.5706 -13 45 30.45 12.97 -0.02 195 15000 3.7 186 B3IV Be WFI? NEW Be, EW=12Å B3V W480 18 19 06.590 -13 45 0.450 12.40 0.07 8.1 12000 4.2 100 B7V pas Be B8III W490 18 19 09.653 -13 45 0.53 81.22 0.58 30 850 4.5 110 A3V Pas Be Pas Be B8III W405 18 19 0.503 -13 49 0.385 12.78 0.02 12.8	W444	18 19 00.428	-13 42 41.02	12.74	-0.17	97	23000	4.3	123	B1V			B1.5V
W469 18 19 02.89 -1.3 47 1.767 1.211 0.40 1.3 8000 3.5 110 A6III Be WDA pas Be no 1.2 A5II W472 18 19 04.772 -1.3 44 34.54 12.97 -0.33 7.8 13000 3.2 121 B7V Be WDA, Be WF1? pas Be no 1.2 pas Be B3V+? W473 18 19 05.706 -1.3 43 30.47 0.109 -0.20 105 15000 3.7 186 B3IV Be WDA, Be WF1? NEW BE, EW=12Å B3V W484 18 19 06.506 -1.3 43 30.47 0.007 81 12500 4.2 100 B3IV Be WDA Be WDA pas Be A0II W490 18 19 06.503 -1.3 45 1.450 12.46 0.07 81 1200 3.5 100 A3V Be WDA pas Be Pas Be BSIII BV00.9 pas Be BSIII BV00.9 13.45 1.58 12.8 0.14 188 100.30 3.6 110 A3V Be WDA Be WDA Be WDA Be EW=15Å Bs Be BSIII BV01.43 13.49 0.219 13.71 0	W445	18 19 01.977	-13 53 28.29	14.16	0.46	77	9500	4.3	172	A1V			
	W455	18 19 02.889	-13 47 17.67	12.11	0.40	13	8000	3.5	110	A6III	Be WDA	pas Be	A5II
W472 18 19 04.712 -1.3 44 44.54 12.97 -0.33 7.8 13000 3.2 121 BVV Be WDA, Be WFI? pas Be B3V+? W473 18 19 05.706 -1.3 53 33.58 12.57 -0.18 108 10000 2.9 266 AOIII-II Be WFI? Pas Be AOII MAIH W484 18 19 06.500 -1.3 43 30.47 12.46 0.07 81 12.000 3.8 300 BTV Be WFI? NEW Be, EW=12Å B3V W490 18 19 09.693 -1.3 51 27.43 14.06 0.39 26 8500 4.5 110 A3V Be WDA pas Be Be, EW=15Å Bsc Be, EW=15Å Bsc Bsc Be, EW=15Å Bsc Bsc Be, EW=15Å Bsc Bsc Bsc BsiII Bi 13.04 1.34 40.35 12.8 0.02 145 12000 3.0 266 BiIII Be WDA Be, EW=15Å Bsc Bsc BsiII BsiII Bi 13.14 1.34 0.20 12.8 0.02 145 12.000 3.0 2.6 BSIV Be WDA <td< td=""><td>W469</td><td>18 19 04.877</td><td>-13 48 20.44</td><td>10.69</td><td>-0.57</td><td></td><td></td><td></td><td></td><td></td><td></td><td>no L2</td><td></td></td<>	W469	18 19 04.877	-13 48 20.44	10.69	-0.57							no L2	
W473 18 19 05.706 -13 53 33.58 12.57 -0.18 108 10000 2.9 266 AOIII-II AOII W483 18 19 06.506 -13 43 30.47 10.99 -0.20 195 15000 3.7 186 B3IV Be WFI? NEW Be, EW=12Å B3V W448 18 19 06.503 -13 45 35.58 12.46 0.07 81 12500 4.2 100 B7V Be WFI? NEW Be, EW=12Å B3V W495 18 19 09.503 -13 51 27.43 14.06 0.39 26 8500 3.7 102 A3IV Be WDA, pas Be BC, EW=15Å B5c B5c <td>W472</td> <td>18 19 04.712</td> <td>-13 44 44.54</td> <td>12.97</td> <td>-0.33</td> <td>78</td> <td>13000</td> <td>3.2</td> <td>121</td> <td>B7V</td> <td>Be WDA, Be WFI?</td> <td>pas Be</td> <td>B3V+?</td>	W472	18 19 04.712	-13 44 44.54	12.97	-0.33	78	13000	3.2	121	B7V	Be WDA, Be WFI?	pas Be	B3V+?
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W473	18 19 05.706	-13 53 33.58	12.57	-0.18	108	10000	2.9	266	A0III-II	,	I	A0II
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W483	18 19 06.506	-13 43 30.47	10.99	-0.20	195	15000	3.7	186	B3IV	Be WFI?	NEW Be, EW=12Å	B3V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W484	18 19 06.903	-13 45 04.50	12.46	0.07	81	12500	4.2	100	B7V			B8III
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W490	18 19 07.991	-13 46 00.71	13.07	0.15	130	11000	3.8	300	B9IV			
W496I8 19 09.653-13 51 27.43I4.060.392685003.7102A3IVBe WDApas BeW500I8 19 09.019-13 43 14.95I1.28-0.14I88140003.6311BSIVBe WDA, Be WFI?Be, EW=15ÅB5W503I8 19 10.000-13 49 0.38512.780.02145120003.949B8VBe WDApas BeB2, W=12ÅB1 :eW515I8 19 13.040-13 46 51.3713.400.261280004.510A7Vpas BePas BeB1IIIW515I8 19 13.944-13 52 21.7111.64-0.08186135003.6332B5IVBtVDAshell?B5IIInW520I8 19 13.944-13 52.3713.31-0.2276185004.471B2VBe WDAshell?B1.5V +W55018 19 25.759-13 46 39.1313.660.452180004.5129A6VA6VW56718 18 16.044-13 57 25.9413.570.2710<8000	W495	18 19 08.953	-13 45 35.58	14.32	0.58	30	8500	4.5	110	A3V			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W496	18 19 09.653	-13 51 27.43	14.06	0.39	26	8500	3.7	102	A3IV	Be WDA	pas Be	
W50318 19 11.063-13 56 43.089.75-0.5487235003.0236B1IIIBe WDA, Be WF1?Be, EW=12ÅB1 :eW50418 19 10.300-13 46 03.8512.780.02145120003.949B8VBe WDA, Be WF1?Be, EW=12ÅB1 :eW51518 19 13.040-13 46 51.3713.400.383785004.510A7VPas BePas BeB9IIIW51918 19 13.043-13 52 21.7111.64-0.08186135003.6332B5IVBe WDAshell ?Bstell ?B5IIInW52018 19 19.127-13 45 21.7111.64-0.08186135004.471B2VBe WDAshell ?B1.5V +W54118 19 19.127-13 45 25.1313.160.4221180004.226B2VBe WDAshell ?B1.5V +W55018 19 25.759-13 46 39.1313.660.452180004.5129A6VA6VW56718 18 12.047-13 56 03.8412.740.2414<8000	W500	18 19 09 019	-13 43 14 95	11.28	-0.14	188	14000	3.6	311	B5IV	Be WDA, Be WFI?	Be. EW=15Å	B5e
	W503	18 19 11 068	-13 56 43 08	9.75	-0.54	87	23500	3.0	236	B1III	Be WDA Be WFI?	Be EW-12Å	B1 'e
	W504	18 19 10 300	-13 49 03 85	12 78	0.02	145	12000	3.0	230 49	B8V	Be WDA, Be WIT.	pas Be	B1 .C
	W515	18 19 13 040	-13 46 51 37	13.40	0.02	17	8000	15	10	Δ7V	De WDIT	pus De	D)III
	W519	18 19 13 643	-13 49 20 19	13.40	0.20	37	8500	2.8	153				
	W520	18 19 13 984	-13 52 21 71	11.64	-0.08	186	13500	3.6	332	R5IV			R5III n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W536	18 19 18 481	-13 55 40 09	11.04	-0.36	196	21000	4.2	26	B2V	Be WDA	shell ?	$B15V \pm 1$
Wiston18 19 25:75-13 46 39.1313.660.452180004.512.9A6VWiston18 18 16.804-13 58 46.4511.99-0.318218000 4.2 345B2VBe WFI ?pas BeWiston18 18 15.094-13 56 03.8412.740.2414<8000	W541	18 19 19 127	-13 43 52 35	13 31	-0.22	76	18500	4.2	71	B2V	De WDR	shen .	D1.5 V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W550	18 19 25 759	-13 46 39 13	13.66	0.45	21	8000	4.5	129	A6V			
W56818181813570.2710 < 8000 $< A8$ W57018181820.234 -13 5603.8412.740.2414 < 8000 $< A8$ W582181820.234 -13 5608.1412.330.3340 8000 4.5140A8VBinaire ?W587181856.667 -13 5948.7911.97 -0.27 179173004.2115B2VW588181903.960 -14 00.0212.180.302185003.8213A3IVW590181850.389 -13 5704.3612.29 -0.01 50115004.139B8VW591181903.213 -13 5607.3911.74 -0.11 146138003.999B5VW596181925.295 -13 5814.9713.030.1215 <8000 $< A8$ W597181913.16 -13 5738.2812.00 -0.30 124180004.3237B2VW601181920.031 -13 5550.6712.48 -0.23 65160004.369B3VW602181819.3550.66712.48 -0.23 6516000 4.3 69B3VW625181818.91.35	W567	18 18 16 804	-13 58 46 45	11.99	-0.31	82	18000	4.2	345	B2V	Be WFL?	nas Be	
	W568	18 18 20 474	-13 57 25 94	13 57	0.27	10	< 8000	1.2	515	< 48	De WIT.	pus De	
W580 16 16 15 56 0.14 12.14 0.14 14 0 8000 4.5 140 A8V Binaire ? W582 18 18 20.234 -13 56 08.14 12.33 0.33 40 8000 4.2 115 B2V Binaire ? W587 18 18 56.667 -13 59 48.79 11.97 -0.27 179 17300 4.2 115 B2V W588 18 19 03.960 -14 0 0.20 12.18 0.30 21 8500 3.8 213 A3IV W590 18 18 50.389 -13 57 04.36 12.29 -0.01 50 11500 4.1 39 B8V W591 18 19 0.213 -13 56 07.39 11.74 -0.11 146 13800 3.9 99 B5V W596 18 19 2.105 -13 57 38.28 12.30 -0.30 124 18000 4.3 </td <td>W570</td> <td>18 18 15 094</td> <td>-13 56 03 84</td> <td>12.74</td> <td>0.24</td> <td>14</td> <td><8000</td> <td></td> <td></td> <td>< 4.8</td> <td></td> <td></td> <td></td>	W570	18 18 15 094	-13 56 03 84	12.74	0.24	14	<8000			< 4.8			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W582	18 18 20 234	-13 56 08 14	12.74	0.24	40	8000	45	140	A8V		Binaire?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W587	18 18 56 667	-13 59 48 79	11.97	-0.27	179	17300	4.2	115	B2V		Binane .	
	W588	18 19 03 960	-14 0 00 20	12.18	0.30	21	8500	3.8	213	ASIV			
W590 18 19 50 13 56 11 14 13 11 14 13 11 14 13 11 14 13 11 14 13 11 14 13 11 14 13 11 14 13 11 14 13 13 11 14 13 13 14 13 14 14 13 14 14 13 14 14 13 14 14 13 14 14 13 14 <	W590	18 18 50 389	-13 57 04 36	12.10	-0.01	50	11500	4.1	39	B8V			
	W591	18 19 03 213	-13 56 07 39	11 74	-0.11	146	13800	3.9	99	B5V			
W597 18 19 13.106 -13 57 38.28 12.30 -0.30 124 18000 4.3 237 B2V W601 18 19 20.031 -13 54 21.67 10.68 -0.51 no L2 W607 18 19 32.824 -13 55 50.67 12.48 -0.23 65 16000 4.3 69 B3V W602 18 18 08.154 -13 55 40.36 13.92 0.22 9 <8000	W596	18 19 25 295	-13 58 14 97	13.03	0.12	15	<8000	5.7	//	< 48			
W601 18 19 20.031 -13 54 21.67 10.68 -0.51 no L2 W607 18 19 20.031 -13 55 50.67 12.48 -0.23 65 16000 4.3 69 B3V W607 18 19 32.824 -13 55 50.67 12.48 -0.23 65 16000 4.3 69 B3V W625 18 18 08.154 -13 53 16.63 14.07 0.43 37 10000 3.8 245 A0V W626 18 18 09.471 -13 55 40.36 13.92 0.22 9 <8000	W597	18 19 13 106	-13 57 38 28	12.30	-0.30	124	18000	43	237	B2V			
	W601	18 19 20 031	-13 54 21 67	10.68	-0.51	121	10000	1.5	201	521		no L2	
W625 18 18 08.154 -13 53 16.63 14.07 0.43 37 10000 3.8 245 A0V W626 18 18 09.471 -13 55 40.36 13.92 0.22 9 <8000	W607	18 19 32.824	-13 55 50.67	12.48	-0.23	65	16000	4.3	69	B3V		10 22	
W626 18 18 09.471 -13 55 40.36 13.92 0.22 9 <8000	W625	18 18 08 154	-13 53 16 63	14.07	0.43	37	10000	3.8	245	AOV			
W627 18 18 14.285 -13 57 57.03 13.97 0.26 22 10000 4.5 181 A0V W632 18 19 13.569 -13 57 13.85 14.36 0.38 39 9000 4.0 83 A2V W633 18 19 16.670 -13 57 31.50 13.76 0.08 8 <8000	W626	18 18 09.471	-13 55 40.36	13.92	0.22	9	<8000	2.5	- 10	<a8< td=""><td></td><td></td><td></td></a8<>			
W632 18 19 13.569 -13 57 13.85 14.36 0.38 39 9000 4.0 83 A2V W633 18 19 16.670 -13 57 31.50 13.76 0.08 8 <8000	W627	18 18 14.285	-13 57 57.03	13.97	0.26	22	10000	4.5	181	A0V			
W633 18 19 16.670 -13 57 31.50 13.76 0.08 8 <8000 <a8 W639 18 19 26.230 -13 47 25.50 13.08 0.41 13 8000 3.5 30 A6IV</a8 	W632	18 19 13 569	-13 57 13 85	14.36	0.38	39	9000	4.0	83	A2V			
W639 18 19 26 230 - 13 47 25 50 13 08 0.41 13 8000 3.5 30 A6IV	W633	18 19 16 670	-13 57 31 50	13.76	0.08	8	<8000		05	<a8< td=""><td></td><td></td><td></td></a8<>			
	W639	18 19 26 230	-13 47 25 50	13.08	0.41	13	8000	3.5	30	A6IV			

Ces résultats montrent qu'il existe en général un bon accord entre notre détermination de classification spectrale et celles des autres études. Nous trouvons peu de Be conformément aux travaux de Herbig & Dahm (2001) et à notre étude WFI-spectro. Parmi les objets à émission observés, nous trouvons 5 étoiles Be (Star017, W301, W483, W500, W503) dont la largeur équivalente de la raie H α est relativement faible (<20Å). Un sixième objet à émission (W235) est problématique, la raie H α dans notre étude a été saturée donc sa largeur équivalente est sous-évaluée bien qu'atteignant déjà 60Å. Or, quand cette valeur atteint 80 ou plus, il s'agit souvent d'un objet de Herbig. Evans et al. (2005) ont trouvé que cet objet (W235) est une étoile de Herbig HBe. Le profil des composantes émissives des raies H β et H γ de l'étoile Star017 pourraient faire penser que cette étoile est aussi un objet de Herbig (pic V d'intensité plus grande que celle du pic R). Cependant dans ce cas comme dans celui de l'étoile W503, les raies d'hélium font penser que ces étoiles sont des étoiles chaudes de types précoces et non de types tardifs comme nous devrions le trouver pour des objets de Herbig. La nature de ce ces 2 étoiles devra donc faire l'objet d'études complémentaires. Les étoiles Be observées pourraient ne pas faire partie de l'amas NGC6611 et n'être que dans le champ l'environnant. Dans une prochaine étape, nous déterminerons les âges de ces objets pour savoir si ce sont des étoiles Be relativement massives au tout début de leur vie sur la séquence principale ou si elles sont évoluées. Ces résultats feront l'objet d'une publication dans les mois à venir.

7.5 Etoiles B et Be dans les champs exoplanètes de la mission spatiale COROT

G. Alecian (PI), M. Deleuil, et A.-M. Hubert ont élaboré un programme d'observations avec le VLT-GIRAFFE des cibles potentielles des champs exoplanètes de la mission spatiale COROT. Nous avons observé des étoiles de tous types avec différents objectifs. Le nôtre était de trouver des étoiles B et Be. Sur les 56 étoiles chaudes (types A à O), de la première série d'observations vers l'anticentre galactique, nous avons trouvé 2 nouvelles étoiles Be. Dans la série d'observations en direction du centre, aucune étoile Be n'a été trouvée. Ces résultats assez étonnant s'expliquent par des biais de sélection : une contrainte sur la non-contamination par des étoiles proches ou le milieu interstellaire nous a conduit à rejeter certaines étoiles connues Be dans les champs visés. De plus, il s'avère que la classification spectrale que nous avons utilisée recèle plusieurs erreurs liées sans doute aux variations de l'extinction interstellaire. Ces erreurs nous ont alors fait observer des étoiles de type différent de celui escompté : non B. Toutefois, si nous regroupons les étoiles par catégories spectrales, nous trouvons :

- Types B0 à B3 : 7 étoiles B dont 1 Be, ce qui donne une proportion de 14.3%.
- Types B4 à B6 : 6 étoiles B dont 1 Be, ce qui donne une proportion de 16.6%.
- Types B7 à B6 : 10 étoiles B.

Les proportions d'étoiles Be, suivant les types spectraux, que nous trouvons sont assez semblables à celles données dans la littérature avec un maximum pour les types les plus précoces et une forte baisse pour les types les plus tardifs. Toutefois, les échantillons dont nous disposons sont très faiblement peuplés et ne peuvent pas constituer une référence pour une étude statistique.

Les résultats préliminaires des déterminations des paramètres fondamentaux suivant les mêmes procédés que pour l'amas NGC6611, concernant les étoiles dans l'anticentre sont donnés dans la Table 7.6.

TAB. 7.6 – Paramètres fondamentaux d'étoiles chaudes appartenant à des champs exoplanètes de COROT dans la direction de l'anticentre. Les première et sixième colonnes donnent la dénomination de l'étoile suivant les catalogues astro-photométriques de l'équipe de M. Deleuil (ID COROT). Les colonnes 6 et 11 donnent quelques indications complémentaires comme "HeII" quand la raie de HeII 4200Å est visible. Elles indiquent aussi les nouvelles Be et la binaire découvertes, ainsi que la classification spectrale suivant les paramètres fondamentaux. Les symboles 'x' signifient que les paramètres fondamentaux nécessitent une nouvelle étude.

Etoile	$T_{\rm eff}$	log g	Vsin i	RV	ind.	Etoile	$T_{\rm eff}$ log g	Vsin i	RV	ind.
105868469	10500	3.9	166	52	B9IV	105896464	8000 4.2	45	55	A6V
105869336	12500	4.0	241	89	B7V	105900084	11000 3.1	68	72	B9III
105874975	24000	4.1	25	87	B1V	105900871	24000 3.9	30	89	B1V
105875478	21500	4.4	157	65	B2V	105901867	9500 4.2	107	105	A1V
105875686	8500	3.8	84	34	A3IV	105901982	9500 4.1	31	56	A1V
105876961	10000	3.4	64	47	A0IVp	105903005	X X	х	х	Х
105878509	13500	3.8	65	79	B6V	105903419	X X	х	х	Х
105878693	14000	4.1	195	51	B5V	105903489	8500 3.6	92	38	A3IV
105880008	8500	4.1	271	22	A3V	105903933	15000 3.4	297	59	B6III, NEW Be
105881102	13500	3.9	65	49	B6V	105904218	14000 3.9	224	75	B5V
105881206	14000	4.2	195	51	B5V	105904835	8500 3.9	157	34	A3V
105881318	9000 :	3.9 :	122 :	46 :	A2V :	105906339	8000 4.2	83	28	A6V
105881815	30000	4.5	39	82	B0V, HeII	105908228	10000 4.1	230	32	A0V
105883001	21000	3.9	259	55	B2V, NEW Be	105909460	9000 3.9	216	42	A2V
105883044	8500	3.9	84	52	A3V	105909852	11300 3.5	46	51	B8IVp
105885106	8000	3.9	<20	65	A6V	105912117	12300 4.3	78	85	B7V
105886229	9500 :	3.6 :	118 :	45	A1IV	105912656	16500 4.0	167	62	B3V
105887599	11500	4.1	235	29	B8V	105912936	10500 3.8	285	153	B9IV, Binaire?
105887930	9500	3.3	43	47	A1IIIp	105913167	8000 4.0	123	39	A6V
105889753	19000	4.1	37	72	B2V	105913853	9500 4.3	176	43	A1V
105890368	16000	4.3	144	75	B3V	105917151	9500 4.3	110	39	A1V
105892069	8000	3.2	174	45	A6III	105919813	8000 3.6	<20	28	A6IV
105892477	8500	3.8	92	45	A3V	105920745	8000 3.8	57	96	A6IV

Etoile	$T_{\rm eff}$	log g	Vsin i	RV	ind.	Etoile	$T_{\rm eff}$	$\log g V \sin i$	RV	ind.	
105893430	8000	3.8	129	49	A3V		105922973	8000 4.5	184	42	A6V
105894126	11500	4.0	244	56	B8V		105926030	12500 4.2	109	54	B7V
105895035	<8000				<a8< td=""><td></td><td>105929950</td><td>8000 3.8</td><td><20</td><td>73</td><td>A6IV</td></a8<>		105929950	8000 3.8	<20	73	A6IV
105895264	8500	3.7	59	24	A3V		105930599	8000 3.8	195	51	A6IV
105896194	8500	4.0	103	85	A3V		105932904	11000 3.8	38	96	A6IV

Bibliographie

- Balona, L. A.; "Short Period variables in the Small Magellanic Cloud cluster NGC330", 1992, MNRAS, 256, 425
- [2] Bayne, G.; Tobin, W.; Pritchard, J. D., et al.,"The MOA catalogue of eclipsing binary stars in the Small Magellanic Cloud", 2002, MNRAS, 331, 609B
- [3] De Winter, D., Koulis, C., The, P.S., et al. "Pre Main Sequence candidates in the very young open cluster NGC6611", 1997, A&AS, 121, 223
- [4] Evans, C.J., Smartt, S.J., Lee, J.-K., et al.; "The VLT-FLAMES survey of Massive stars : Observations in the Galactic Clusters NGC3293, NGC4755 and NGC6611", 2005, A&A, 437, 467
- [5] Fabregat, J.; Torrejón, J. M.; "On the evolutionary status of Be stars", 2000, A&A, 357, 451
- [6] Herbig, G.H., Dahm Scott, E., "On the Be and Ae stars in NGC6611", 2001, PASP, 113, 195
- [7] Hubert, A.-M.; Floquet, M.; "Investigation of the variability of bright Be stars using HIPPARCOS photometry", 1998, A&A, 335, 565
- [8] Kim, S., Dopita, M.A., Staveley-Smith, L., Bessel, M.S., "H I Shells in the Large Magellanic Cloud", 1999, AJ 118, 2797
- [9] Meaburn, J.; "The giant and supergiant shells of the Magellanic Clouds", 1980, MNRAS, 192, 365M
- [10] Mennickent, R. E.; Pietrzyński, G.; Gieren, W.; et al.; "On Be star candidates and possible blue pre-main sequence objects in the Small Magellanic Cloud", 2002, A&A, 393, 887
- [11] Martayan, C.; Hubert, A.-M.; Floquet, M. et al.; "A study of the B and Be star population in the field of the LMC open cluster NGC2004 with VLT-FLAMES", 2005a, A&A, in press, astroph0509339
- [12] Martayan, C.; Floquet, M.; Hubert, A.-M.; Mekkas, M., "Short-term variability in Be stars and binaries in the Magellanic Clouds.", 2005d, poster au colloque Active O, B stars, Sapporo, Japon
- [13] Samus, N. N.; Durlevich, O. V.; et al.,"Combined General Catalogue of Variable Stars (Samus+ 2004)",2004yCat, 2250, 0S
- [14] kelton, Brooke P.; Waller, William H.; et al; "Emission-Line Properties of the Large Magellanic Cloud Bubble N70", 1999, A&AS, 194, 4705
- [15] Staveley-Smith, L.; Kim, S.; Calabretta, et al., "A new look at the large-scale HI structure of the Large Magellanic Cloud", 2003, MNRAS, 339, 87S
- [16] Rainer Wichmann, "Nightfall", http://www.lsw.uni-heidelberg.de/users/rwichman/Nightfall.html
- [17] Wilson, O.C.,"On the Determination of Mass Ratios of Spectroscopic Binaries." 1941, ApJ 93, 29

Chapitre 8

Conclusions et perspectives

8.1 Conclusions

La littérature montre un accroissement de la proportion d'étoiles Be avec la décroissance de la métallicité (Maeder et al. 1999). Il semble aussi que les étoiles Be apparaissent préférentiellement dans la seconde partie de leur vie sur la Séquence Principale (Fabregat & Torrejón 2000). Aussi, afin d'étudier les effets de la métallicité, des conditions de formations et de l'évolution sur les populations d'étoiles B et Be, nous avons entrepris d'observer ce type d'étoiles dans les Nuages de Magellan. Ces galaxies sont connues pour être déficientes en métaux par rapport à la Voie Lactée. Nous avons donc dû dans un premier temps élaborer des catalogues photométriques et astrométriques précis pour observer avec le spectrographe multi-objets GIRAFFE du VLT requiérant une astrométrie à moins de 0.3". La sélection des objets a été effectuée sur des critères de magnitudes et d'indices de couleurs. Grâce à cette sélection, nous avons finalement obtenu entre octobre 2003 et janvier 2005, 177 spectres dans le GNM et 346 spectres dans le PNM d'étoiles B et Be. Parmi celles-ci, 115 sont de nouvelles étoiles Be et près de 320 sont de nouvelles étoiles B. Nous trouvons des proportions d'étoiles Be par rapport aux étoiles B, dans les amas des Nuages de Magellan, supérieures à celles de la Voie Lactée ; toutefois, les proportions sont identiques dans les champs quelle que soit la métallicité du milieu.

Nous avons ensuite déterminé les paramètres fondamentaux (T_{eff} , log g, Vsin i) et ceux qui leur sont associés $(\log(L/L=_{\odot}), M/M_{\odot}, R/R_{\odot}, \hat{age})$ à l'aide du code GIRFIT (Frémat et al. 2005a) et des chemins évolutifs théoriques élaborés par l'Observatoire de Genève pour chacune des étoiles de nos échantillons. Nous avons alors mené des études statistiques sur des échantillons d'étoiles B et Be constitués à partir de notre étude et à partir de catalogues et articles. Nous avons examiné les vitesses de rotation de ces étoiles. Une première sélection en types spectraux et classes de luminosité a mis en évidence un effet de métallicité sur les vitesses de rotation des étoiles Be. A plus faible métallicité les étoiles tournent plus vite. Nous avons aussi mis en évidence que les étoiles Be démarrent leur vie sur la Séquence Principale avec une vitesse de rotation plus élevée que celle des étoiles B. Donc, pour qu'une étoile puisse devenir Be au cours de sa vie, il faut qu'elle possède dès la ZAMS une vitesse de rotation élevée. Puis une sélection par gammes de masses nous a permis de confirmer l'effet de métallicité sur les vitesses de rotation des étoiles Be ayant un âge et une masse similaire et de mettre en évidence cet effet de métallicité sur les étoiles B. A l'aide de chemins évolutifs de la vitesse de rotation, nous avons obtenu la première estimation de la vitesse de rotation à la ZAMS d'une étoile Be. Nous montrons que la métallicité a aussi un impact sur ces vitesses : à plus faible métallicité les vitesses initiales sont plus grandes. Nous avons aussi mis en évidence une tendance pour les vitesses de rotation à dépendre de la masse initiale des étoiles.

Les vitesses angulaires de rotation montrent que si dans la Voie Lactée et dans le Grand Nuage de Magellan, les comportements des étoiles Be semblent être proches, ils diffèrent fortement dans le Petit Nuage de Magellan (milieu très pauvre en métaux). Ainsi, les étoiles peu massives tournent plus vite que les massives dans la VL et dans le GNM mais c'est le contraire dans le PNM. Il semble d'ailleurs que les étoiles massives du PNM soient des rotateurs quasi-critiques. L'étude du statut évolutif des étoiles Be dans la VL par Zorec et al. (2005) montre que la phase Be pour les étoiles massives ne peut exister qu'au début de leur vie sur la Séquence Principale. Pour les étoiles de masses intermédiaires et de faibles masses, la phase Be apparaîtrait au cours de l'évolution temporelle de l'étoile sur la SP en accord avec Fabregat & Torrejón (2000). Nous avons obtenu les premières estimations des statuts évolutifs des étoiles Be dans les Nuages de Magellan. Elles montrent que les étoiles de masses intermédiaires ou peu massives suivent la même évolution que celles de la VL. Par contre, le comportement des étoiles Be massives est très différent et contraire à celui de la VL. Non seulement, la phase Be apparaît au cours de l'évolution de l'étoile sur la SP mais elle peut aussi durer plus longtemps que dans la VL.

Enfin, nous avons examiné les abondances en surface de carbone et nous trouvons un possible appauvrissement de cet élément pour les étoiles rotateurs rapides telles ques les étoiles B par rapport aux étoiles B des Nuages de Magellan.

L'ensemble de ces résultats permet d'apporter de nouvelles contraintes sur les modèles de formation d'étoiles et notamment sur les évolutions pré-Séquence Principale des progéniteurs d'étoiles B et Be. Ces nouveaux résultats permettent aussi de mieux appréhender et comprendre l'origine du phénomène Be.

Nous avons aussi obtenu des résultats sur des sujets connexes à celui de la thèse :

- Nous avons débuté une cartographie des objets à émission en Hα des Nuages de Magellan avec le WFIspectro. Les premiers résultats de cette étude sont encourageants et à terme nous serons en mesure de proposer des catalogues d'étoiles Be probables dans le GNM (premier catalogue de ce genre) et dans le PNM. Ainsi nous pourrons obtenir une étude exhaustive des proportions d'étoiles Be en fonction de la métallicité et de l'âge d'amas ouverts dans ces galaxies.
- Par croisement de nos catalogues astrométriques et de la base de données MACHO, nous avons découvert des périodes de variabilité à court-terme dans des étoiles Be du PNM. Cette variabilité, comme dans la Voie Lactée pour les étoiles Be de types précoces (Hubert & Floquet 1998), peut être reliée à une activité stellaire de surface (tâches) ou à des pulsations non radiales.
- Nous avons également découvert un certain nombre de nouvelles étoiles binaires spectroscopiques (avec les spectres obtenus au VLT-GIRAFFE) et photométriques. Ces étoiles binaires sont parmi les plus lointaines découvertes à ce jour.
- Grâce à l'instrumentation GIRAFFE au VLT, nous avons mis en évidence une distribution bimodale en vitesse radiale des raies nébulaires correspondant à la bulle HI supergéante LMC4 dans le champ du GNM que nous avons observé.
- Nous nous sommes également intéressés à divers amas galactiques tel que NGC6611 pour lequel la nature des objets à émission est sujette à discussion. Nous avons déterminé pour 93 étoiles de cet amas les paramètres fondamentaux et nous reportons la découverte de quelques nouvelles mais rares étoiles Be.
- Enfin, dans le cadre de la préparation de la mission spatiale COROT, nous reportons la découverte de 2 nouvelles étoiles Be dans les champs exoplanètes vers l'anticentre galactique et nous avons déterminé les paramètres fondamentaux pour 56 étoiles chaudes de ce champ.

Les perspectives de ce travail sont :

- de déterminer précisément les abondances chimiques en surface des étoiles des Nuages de Magellan.
- De compléter les échantillons d'étoiles des Nuages de Magellan, notamment du Grand Nuage par les archives ou/et de nouvelles observations.
- De modéliser des émissions des raies H α afin d'appréhender la nature des disques circumstellaires des Be dans les Nuages de Magellan en collaboration avec P. Stee et A. Meilland.
- Par ailleurs, nous avons débuté une étude de la variabilité photométrique à court-terme des étoiles Be des Nuages de Magellan. Il sera nécessaire de la compléter et d'effectuer une éventuelle recherche de multipériodicités. La mission spatiale COROT donnera beaucoup d'informations sur les pulsations présentes dans les Be de la Voie Lactée. De plus la mission spatiale GAIA pourra fournir des renseignements complémentaires sur les étoiles des Nuages de Magellan comme les parallaxes, mouvements propres, etc...

- A plus long terme, les perspectives sont :
- D'observer et caractériser pour la première fois les étoiles de type B dans d'autres galaxies accessibles par les grands télescopes comme la Galaxie Naine du Sagittaire découverte en 1994.
- De croiser les catalogues d'objets à émission qui seront élaborés grâce au WFI-spectro avec les bases de données OGLE et MACHO afin d'effectuer des recherches de multi-périodicité pour les étoiles Be que nous aurons trouvées.
- De préparer la mission spatiale GAIA, classifications, paramètres fondamentaux des étoiles chaudes et à émission qui seront observées.
- De participer à l'étude des résultats de la mission spatiale COROT.
- etc...

L'ensemble de tous ces résultats ont fait et feront l'objet de présentations orale (Active O, B stars meeting, Sapporo, Japon en 2005) et écrites (divers posters et articles sous presse, soumis ou en cours de préparation).

8.2 Conclusion finale

A travers ces trois années de thèse, j'ai eu accès aux Observatoires et aux instruments à la pointe de la technologie tel que le spectrographe multi-objets FLAMES du VLT de l'Observatoire de l'ESO à Paranal au Chili. Ceux-ci nous ont permis d'effectuer des découvertes, pour certaines fondamentales, dans la compréhension de phénomènes conditionnant l'évolution des étoiles de type B. Bien entendu, ces résultats n'auraient pu être obtenus sans l'ensemble d'outils numériques et théoriques mis au point ces dernières années par des chercheurs de toute nationalité. Cependant, il reste encore beaucoup de travail à effectuer et je suis persuadé qu'il en découlera d'autres résultats et découvertes intéressantes. J'espère poursuivre ce travail de pionnier en observant des étoiles situées dans d'autres galaxies et apporter ainsi ma petite pierre à l'édifice de la connaissance de l'Univers.

Bibliographie

- [1] Fabregat, J.; Torrejón, J. M.; "On the evolutionary status of Be stars", 2000, A&A, 357, 451
- [2] Frémat, Y.; Neiner, C.; Hubert, A.-M.; et al.; "Fundamental parameters of Be stars located in the field of COROT.", 2005a, in press, astroph0509336
- [3] Hubert, A.-M.; Floquet, M.; "Investigation of the variability of bright Be stars using HIPPARCOS photometry", 1998, A&A, 335, 565
- [4] Maeder, A.; Grebel, E. K.; Mermilliod, J.-C.; "Differences in the fractions of Be stars in galaxies", 1999, A&A, 346, 459
- [5] Zorec, J.; Frémat, Y.; Cidale, L.; "On the evolutionary status of Be stars. I. Field Be stars near the Sun", 2005, A&A, in press, astroph0509119

Troisième partie

Annexes

Chapitre 9

Annexes

Sommaire

9.1	Outils statistiques	;
9.2	Liste des abréviations utilisées dans ce manuscrit	ŀ

9.1 Outils statistiques

Dans ce paragraphe, nous vous présentons les outils statistiques qui nous ont servi pour comparer nos résultats et confirmer ou infirmer la validité des échantillons et des différences entre valeurs.

Le premier des tests sert à déterminer si un échantillon est significatif ou non. Autrement dit, dans le cas des vitesses de rotation projetée, ce test servira à savoir si les valeurs obtenues correspondent à un effet d'angle d'inclinaison ou non. Il se base sur un algorithme de type Monte-Carlo utilisant l'heure du processeur pour l'obtention de nombres aléatoires entre 0 et 1. Ici le nombre est un angle compris entre 0 et 90° obtenu par l'arcsinus du nombre aléatoire. Ce test consiste à tirer X fois un angle et d'en calculer la moyenne. Puis de recommencer Y fois l'opération de façon à obtenir Y moyennes. Ensuite, on calcule la moyenne de ces moyennes Y et la dispersion σ des valeurs. Alors, pour que la mesure soit fiable, il faut que l'erreur sur cette mesure soit supérieure à l'erreur statistique pour le nombre d'objets considéré. Les valeurs de ce test sont reportées dans la Table 9.1.

Nombre de tirages	σ	erreur statistique (%)
3	7.2	26
5	6.7	21
7	7.2	26
10	2.3	9
15	2.2	8
20	1.1	3.3
30	1.2	4
50	0.3	1
100	0.2	0.6

TAB. 9.1 – Table des erreurs statistiques en fonction du nombre d'éléments présents dans les échantillons (nombre de tirages).

Outre le fait évident que plus on a d'éléments dans les échantillons moins on sera sensible aux effets d'inclinaisons, nous pouvons constater que le minimum nécessaire est de 10 éléments ce qui donne une erreur statistique de l'ordre de 10%. Il faut donc pour qu'un échantillon soit statistiquement fiable que le nombre d'éléments qu'il comporte soit suffisamment grand pour que l'erreur statistique soit inférieure aux erreurs de mesures.

Le second test que nous avons utilisé est le test de Student qui permet de vérifier le degré de validité des différences entre mesures en fonction du nombre d'objets et des erreurs sur les mesures. Le résultat du test de Student s'obtient ainsi :

$$T_{n1,n2} = \frac{|M1 - M2| \sqrt{(n1 + n2 - 2)}}{\sqrt{(n1 \times s1^2 + n2 \times s2^2)(\frac{1}{n1} + \frac{1}{n2})}}$$
(9.1)

où M1 et M2 sont les valeurs des mesures, n1 et n2 le nombre d'éléments dans chaque échantillon, s1 et s2 les erreurs des mesures. Puis, à l'aide d'une table de Student, nous obtenons le degré de validité du résultat. Ces chiffres sont reportés dans la Table 9.2.

TAB. 9.2 – Table de Student. Les première et quatrième colonnes donnent le résultat du test, les seconde et cinquième colonnes donnent le coefficient α égal à 1-Probabilité, les troisième et sixième colonne donnent la probabilité de différence ou % de validité.

$T_{n1,n2}$	α	% validité	T _{<i>n</i>1,<i>n</i>2}	α	% validité
0.158	0.90	10 %	1.000	0.50	50 %
1.963	0.30	70 %	3.078	0.20	80 %
6.314	0.10	90 %	12.706	0.05	95 %
31.821	0.02	98 %	63.657	0.01	99 %
636.619	0.001	99.999 %			

Par convention, entre 80 et 95 %, les différences seront légèrement significatives et en deça de 80 % ne seront pas significatives. Une différence sera dite significative si le taux de validité est de 95 %. Elle sera dite hautement significative pour un taux de 99% et extrêmement significative pour un taux de 99.9%.

9.2 Liste des abréviations utilisées dans ce manuscrit

CEW : Classification spectrale par les largeurs équivalentes de raies (méthode 1) CFP : Classification spectrale par les paramètres fondamentaux (méthode 2) EB : Eclipsing binary (binaire photométrique à éclipses) ESO: European Southern Observatory (Observatoire Européen Austral) ETL : Equilibre Thermodynamique Local GNM : Grand Nuage de Magellan HR : Hertzprung Russel Mans : Millions d'années (Mega) NM : Nuages de Magellan NETL : Hors Equilibre Thermodynamique Local PMS : Pre Main Sequence PNM : Petit Nuage de Magellan PSP : Pré Séquence Principale SB 1 ou 2 : Spectroscopic binary (binaire spectroscopique à 1 ou 2 spectres) SP : Séquence principale SPB : Slow Pulsating B star TAMS : Terminal Age Main Sequence V₀=V_{ZAMS} : Vitesse initiale de rotation à la ZAMS V_{depart} : Vitesse de rotation au bout de quelques 10⁴ ans après la ZAMS VL : Voie Lactée VLT : Very Large Telescope

WFI-spectro : Wide Field Imager (imageur grand champ) en mode spectroscopique ZAMS : Zero Age Main sequence

Liste des tableaux

2.1	Proportion d'étoiles B observées par rapport aux étoiles B observables dans les champs VLT-	24
2.2		24
2.2	Observations on WITELAMES	26
2.3	Nombres et types d'étailes dans nes échantillens des Nueges de Magellan	30
2.4	Nombres et types d'étones dans nos échantmons des Nuages de Magenan	30
3.1	Comparaisons des proportions d'étoiles Be dans les amas des Nuages de Magellan	43
3.2	taux d'étoiles Be dans les champs des Nuages de Magellan	43
3.3	Comparaisons des proportions d'étoiles Be du champ dans la Voie Lactée et dans les Nuages	
	de Magellan	44
4.1	Atomes et ions utilisés dans les calculs hors ETL	51
4.2	Abondances moyennes des étoiles du GNM	52
4.3	Métallicités moyennes des étoiles du PNM	52
4.4	Principales raies du domaine 4000-4500Å	54
4.5	Erreurs absolues sur les paramètres fondamentaux	56
4.6	Calibrages en type spectral et classe de luminosité suivant les paramètres T_{eff} et log g	61
4.7	Paramètres fondamentaux pour les étoiles O, B, A du GNM	73
4.8	Paramètres fondamentaux pour les binaires SB1 du GNM	75
4.9	Parametres $\log(L/L_{\odot})$, M/M_{\odot} et R/R_{\odot} pour les étoiles O-B du GNM	76
4.10	Paramètres fondamentaux corrigés pour les étoiles B du GNM en rotation rapide	77
4.11	Paramètres fondamentaux pour les 47 étoiles Be du GNM	79
4.12	Paramètres $\log(L/L_{\odot})$, M/M_{\odot} , et R/R_{\odot} pour les Be du GNM	80
4.13	Paramètres stellaires des Be du GNM corrigés des effets de la rotation rapide	81
4.14	Paramètres $\log(L/L_{\odot})$, M/M_{\odot} , R/R_{\odot} pour les étoiles Be du GNM	82
4.15	Paramètres fondamentaux pour les 179 étoiles O, B, A du PNM	84
4.16	Paramètres fondamentaux pour les binaires du PNM	87
4.17	Paramètres $\log(L/L_{\odot})$, M/M_{\odot} and R/R_{\odot} pour les étoiles O-B du PNM	88
4.18	Paramètres fondamentaux apparents pour les 131 étoiles Be du PNM	93
4.19	Paramètres apparents $\log(L/L_{\odot})$, M/M_{\odot} , et R/R_{\odot} pour les étoiles Be du PNM	96
4.20	Paramètres fondamentaux corrigés pour les étoiles Be du PNM	99
4.21	Paramètres corrigés $(\log(L/L_{\odot}), M/M_{\odot}, R/R_{\odot} \text{ et âge})$ pour les étoiles Be du PNM	102
5.1	Comparaison des vitesses moyennes de rotation pour les étoiles B et Be des Nuages de Magel-	
	lan et de la Voie Lactée	120
5.2	Tests statistiques : comparaisons des valeurs de vitesse de rotation pour les étoiles B et Be des	
	champs du PNM, GNM et de la VL	121
5.3	Tests statistiques : comparaisons des valeurs de vitesse de rotation pour les étoiles B et Be des	
	amas ouverts du PNM, du GNM et de la VL	122
5.4	Tests statistiques : Résultats des comparaisons des valeurs de vitesse de rotation pour les étoiles	
	B et Be entre amas ouverts et champs du PNM, du GNM et de la VL	123

5.5	Comparaisons par gamme de masses des vitesses moyennes de rotation pour les échantillons	
	d'étoiles B du Petit et du Grand Nuages de Magellan	126
5.6	Comparaisons des valeurs de vitesse de rotation pour les étoiles B du PNM et du GNM ayant	
	un âge et une masse similaires	126
5.7	Comparaisons des vitesses moyennes de rotation pour les échantillons d'étoiles Be du Petit, du	
	Grand Nuage de Magellan et de la Voie Lactée.	128
5.8	Tests statistiques : comparaisons des vitesses de rotation pour les étoiles Be du PNM, du GNM	100
5.0	et de la VL, ayant un âge et une masse similaires.	128
5.9	Resultats des taux de vitesses lineaires et angulaires pour les étoiles Be de la voie Lactée suivant	140
5 10	Cranmer (2005)	140
5.10	Résultais des laux de vilesses infeatres et angulaires pour les étoiles de la Nuages de Magenair	1/1
		141
6.1	Proportions d'étoiles à émission pour des amas en commun entre WFI-spectro et GIRAFFE .	167
7.1	Périodes de variations photométriques de 13 étoiles Be du PNM	172
7.2	Binaires spectroscopiques dans le champ de NGC2004	176
7.3	Vitesse radiale systémique et rapport de masses des systèmes binaires SB2 du GNM	178
7.4	Périodes de variations photométriques des binaires du PNM	179
7.5	Paramètres fondamentaux pour les étoiles de NGC6611	188
7.6	Paramètres fondamentaux d'étoiles chaudes appartenant à des champs exoplanètes de COROT	190
9.1	Table des erreurs statistiques en fonction du nombre d'éléments	203
9.2	Table de Student	204

)

Table des figures

1.1	Spectres d'étoiles Be	12
1.2	Courbes de lumière d'étoiles Be	13
1.3	Ensemble des télescopes du VLT	15
1.4	Télescope UT2 du VLT	16
1.5	Schéma du VLT-UT2 et de ses instruments	17
2.1	Diagramme (B-V V) du champ LMC33	25
2.2	Diagramme (B-V V) du champ SMC5	26
2.3	Exemple d'allocations de fibres de FLAMES	27
2.4	Cibles dans le champ LMC33	28
2.5	Amas ouvert NGC2004 du GNM	29
2.6	Amas ouvert KMHK930 du GNM	30
2.0	Amas ouvert KMHK943 du GNM	30
2.8	Amas ouvert KMHK971 du GNM	30
2.0 2.9	Amas ouvert KMHK988 du GNM	30
2.9	Groupe d'étoiles 'Unknown1' du GNM	30
2.10	Groupe d'étoiles 'Unknown?' du GNM	30
2.11	Groupe d'étoiles 'Unknown?' du GNM	30
2.12	Amas galactique HS66325 du GNM	30
2.13 2 14	Cibles dans le champ SMC5	31
2.14	A mas ouvert NGC 330 du PNM	32
2.15	A mas ouvert NGC306 du PNM	32
2.10	Amas ouvert NGC299 du PNM	33
2.17	Amas ouvert OGLE SMC100 du PNM	33
2.10	Amas ouvert OGLE SMC107 du TNM	33
2.19	Amas ouvert H86 170 du DNM	23
2.20	Amas ouvert H86 1/5 du PNM	33
2.21	Amas ouvert 1100 145 du l'INVI	33
2.22	Association d clones [D595]	24
2.23		54
3.1	Proportions des étoiles Be dans les amas ouverts	42
4.1	Principe de fonctionnement du code GIRFIT	54
4.2	Flux comparés de l'étoile Be et de son enveloppe	55
4.3	Exemples d'ajustements pour des étoiles Be du GNM	57
4.4	Exemples d'ajustements pour des étoiles O et B du GNM	58
4.5	Exemples d'ajustements pour des étoiles Be du PNM	59
4.6	Exemples d'ajustements pour des étoiles B et A du PNM	60
4.7	Chemins évolutifs pour une masse donnée dans des milieux de métallicités différentes	62
4.8	Effets de la rotation pour les B des NM	65
4.9	Effets de la rotation rapide pour les Be des NM	65
4.10	Diagrammes HR pour les étoiles du GNM	106

4.11	Diagrammes HR pour les étoiles du PNM	107
4.12	Distributions en types spectraux pour les étoiles B	108
4.13	Distributions en classes de luminosité pour les étoiles B	109
4.14	Distributions en types spectraux pour les étoiles Be	110
4.15	Distributions en classes de luminosité pour les étoiles Be	111
4.16	Distributions en types spectraux après correction des effets de la rotation rapide	112
4.17	Distributions en classes de luminosité après correction des effets de la rotation rapide	113
4.18	Distributions en masses pour les étoiles B	114
4.19	Distributions en masses pour les étoiles Be	115
5.1	Comparaisons des vitesses de rotation pour les étoiles B et Be par sélection en type spectral et	
5.2	classe de luminosité	124
	pour les étoiles B et Be dans les Nuages de Magellan.	126
5.3	Comparaisons des vitesses de rotation entre les étoiles B du Petit et du Grand Nuages de Magellan	127
54	Comparaisons des vitesses de rotation entre les étoiles B du Petit, du Grand Nuage de Magellan	
5.4	et de la Voie Lactée	120
55	Comparaisons des vitesses de rotation pour les átoiles Re de masses entre 5 et 10 M et entre	12)
5.5	Comparations des vitesses de foration pour les étones de de masses entre 5 et 10 M_{\odot} et entre 10 et 12 M	120
5 ($10 \text{ et } 12 \text{ M}_{\odot}$	150
5.6	Comparaisons des vitesses de rotation et de l'evolution entre les Be massives du Petit, du Grand	101
		131
5.7	Evolution initiale de la vitesse angulaire interne de rotation	132
5.8	Résultats des calculs des vitesses de rotation par J. Zorec	133
5.9	Evolution de la vitesse équatoriale de rotation pour une étoile de 60 M_{\odot} pour 3 métallicités	
	différente	134
5.10	Evolution des vitesses équatoriales de rotation pour des étoiles de masses comprises entre 12 et	
	60 masses solaires dans la Voie Lactée (Z=0.020)	135
5.11	Evolution des vitesses équatoriales de rotation pour des étoiles de masses comprises entre 9 et	
	60 masses solaires dans un milieu de métallicité Z=0.004	135
5.12	Evolution des vitesses équatoriales de rotation pour des étoiles de masses comprises entre 7 et	
	60 masses solaires dans un milieu de métallicité $Z=10^{-5}$	136
5.13	Evolution des vitesses équatoriales de rotation pour des étoiles de masses comprises entre 2 et	
	5 masses solaires dans un milieu de métallicité $Z=10^{-5}$	136
5.14	Evolution de la vitesse équatoriale de rotation pour une étoile de 20 M_{\odot} pour différentes vitesses	
	initiales de rotation	137
5 1 5	Alternative pour une étoile de 7 M_{\odot}	137
5.15	Vitesses de rotation à la ZAMS des átailes Be	137
5.10	evolution du toux Ω/Ω pour des étoiles à la métallicité solaire et à $7-0.004$	142
5.17	Evolution du taux $\frac{52}{52_c}$ pour des clones à la metamètie solaire et à \mathbb{Z} -0.004	142
5.10	Fixed point des etonies en fotation	144
5.19	Evolution temporelle de la phase Be pour les étoiles de la VL	145
5.20	Statut évolutif des étoiles Be dans la Voie Lactée	145
5.21	Evolution temporelle de la phase Be pour les étoiles des NM	146
5.22	Statuts évolutifs des Be dans le GNM et le PNM	147
5.23	Comparaisons des largeurs équivalentes de la raie de CII 4267A pour les étoiles B et Be dans	
	des milieux de différentes métallicités	149
5.24	rapport d'abondances N/C pour une étoile de 20 M _o pour différentes vitesses initiales de rotation	150
5.25	Effet de l'assombrissement gravitationnel sur les largeurs équivalentes de la raie de CII 4267Å	151
5.26	Comparaisons des largeurs équivalentes de la raie de CII 4267Å pour les étoiles B et Be dans	
	des milieux de différentes métallicités et effet de l'assombrissement gravitationnel	151
5.27	Comparaisons entre les périodes d'éjection de matière de l'étoile Be μ Centaure et les périodes	
	d'interférences constructives des pulsations non-radiales découvertes dans cette étoile	153
6.1	Image mosaïque de WFI-spectro	161

6.2	Spectres WFI et GIRAFFE d'une étoile Be	165
6.3	Spectres WFI et GIRAFFE d'une autre étoile Be	165
7.1	Courbes de lumière en phase des étoiles Be SMC5_3296 et SMC5_13978	172
7.2	Courbes de lumière en phase des étoiles Be SMC5_14727 et SMC5_16523	173
7.3	Courbes de lumière en phase des étoiles Be SMC5_16544 et SMC5_21152	173
7.4	Courbes de lumière en phase des étoiles Be SMC5_37162 et SMC5_43413	173
7.5	Courbes de lumière en phase des étoiles Be SMC5_82042 et SMC5_82941	174
7.6	Courbes de lumière en phase des étoiles Be MHF(S9)35238 et MHF(S9)37842	174
7.7	Courbes de lumière en phase de l'étoiles Be MHF(S9)39981	174
7.8	Système binaire MHF87970	177
7.9	Courbes de lumière en phase des binaires SMC5_977 et SMC5_4477	178
7.10	Courbes de lumière en phase des binaires SMC5_4534 et SMC5_13723	179
7.11	Courbes de lumière en phase des binaires SMC5_20391 et SMC5_23571	180
7.12	Courbes de lumière en phase des binaires SMC5_23641 et SMC5_24122	180
7.13	Courbes de lumière en phase des binaires SMC5_49816 et SMC5_74928	180
7.14	Courbes de lumière en phase des binaires SMC5_84353 et SMC5_2807	181
7.15	Courbes de lumière en phase des binaires Be SMC5_3789 et SMC5_16461	181
7.16	Distributions des vitesses radiales pour les raies nébulaires et des étoiles du GNM	184
7.17	Champ de l'amas NGC2004 et nébulosités de sa région	185
7.18	Nébuleuse de l'Aigle	186

9.3 Liste des observations menées ou préparées durant la thèse

- Octobre 2003 : VLT FLAMES, observations préparées et réalisées.
- Novembre 2003 : VLT FLAMES, observations préparées.
- Avril 2004 : VLT FLAMES, observations préparées et réalisées.
- Août 2004 : OHP ELODIE, quelques observations.
- Septembre 2004 : VLT FLAMES, observations préparées.
- Janvier 2005 : OHP AURELIE, préparation d'observations, mode service.
- Janvier 2005 : VLT GIRAFFE, co-préparation d'observations, et observations.
- Mai 2005 : VLT GIRAFFE, formation aux outils de configurations de GIRAFFE donnée à Dr G. Alecian.

9.4 Liste des présentations et publications

Articles sous presse ou soumis :

- Martayan, C.; Hubert, A.-M.; Floquet, M. et al.; "A study of the B and Be star population in the field of the LMC open cluster NGC2004 with the VLT-FLAMES", 2005a, A&A, in press, astroph0509339
- Martayan, C.; Frémat, Y., Hubert, A.-M. et al.; "Effects of metallicity, star formation conditions and evolution in B and Be stars. I : Large Magellanic Cloud, field of NGC 2004." 2005b, A&A, accepté
- Neiner, C.; Floquet, M.; Hubert, A.-M.; et al.; "Rotation, pulsations and outbursts in the Be star υ Cygni (HD 202904)", 2005, A&A, in press (participation aux observations)

Article à soumettre :

- Martayan, C.; Frémat, Y., Hubert, A.-M. et al.; "Effects of metallicity, star formation conditions and evolution in B and Be stars. II : Small Magellanic Cloud, field of NGC 330." 2005c, en préparation
- Martayan, C.; Floquet, M.; Hubert, A.-M., et al.; "A study of the B and Be star population in the field of the SMC open cluster NGC330 with the VLT-FLAMES", en préparation

Autres articles en préparation :

- Meilland, C.; Stee, Ph.; Vannier, M.; Millour, F.; Domiciano de Souza, A.; Malbet, F.; Martayan, C.; Paresce, F.; Petrov, R.; Richichi, A.; Spang, A.; "First direct detection of a Keplerian disk around the Be star α Arae using the VLTI/AMBER instrument.", 2006, en préparation
- Martayan, C.; Fabregat, J.; Floquet, M.; Frémat, Y.; Hubert, A.-M.; Baade, D.; "On the nature of Be stars in the open cluster NGC6611", 2006, en préparation

Présentations orales ou sous forme de posters et proceedings associés :

- Martayan, C. "Effects of metallicity, star formation conditions and evolution in B and Be stars.", 2005d, talk and proceedings, Active O, B stars meeting, Sapporo, Japan

- Martayan, C.; Floquet, M.; Hubert, A.-M.; Mekkas, A.-M., "Short-term variability in Be stars and binaries in the Magellanic Clouds", 2005e, poster and proceedings, Active O, B stars meeting, Sapporo, Japan
- Martayan, C.; Floquet, M.; Hubert; Zorec, J.; "The spectrum of the B[e] BAL224", 2005f, poster and proceedings, workshop on B[e], Vlieland, The Netherlands, astroph0510690
- Martayan, C.; Frémat, Y.; Floquet, M.; Hubert, A.-M.; Zorec, J.; Mekkas, M.; "B and Be stars in the Magellanic Clouds : rotation, evolution, variability and binaries", 2005g, poster and proceedings, sf2A 2005, astroph0510689
- Martayan, C.; Zorec, J.; Frémat, Y.; Hubert, A.-M.; Floquet, M.; "ZAMS rotational velocities of Be stars", 2005h, poster and proceedings, sf2A 2005, astroph0509175
- Zorec, J.; Martayan, C.; Frémat, Y.; Hubert, A.-M.; Floquet, M.; "ZAMS rotational velocities of Be stars", 2005, poster and proceedings, Active O, B stars meeting, Sapporo, Japan
- Martayan, C.; Hubert, A.-M.; Floquet, M.; Frémat, Y.; Fabregat, J.; Neiner, C.; Stee, P.; Zorec, J.; "B stars population in the field of the Large Magellanic Cloud NGC2004 : first results with VLT-FLAMES.", 2004a, poster and proceedings, sf2A 2004, 2004sf2a.conf..301M
- Martayan, C.; Hubert, A.-M.; Floquet; Baade, D.; Fabregat, J.; "Emission line stars in young open clusters with ESO-WFI spectrograph.", 2004b, poster and proceedings, sf2A 2004, 2004sf2a.conf..303M
- Frmat, Y.; Levenhagen, R.; Zorec, J.; et al.; "Chemical Composition of Early Be Type Stars", 2003, 2003IAUS..210P.E17F
- Frmat, Y.; Levenhagen, R.; Zorec, J.; et al.; "Determination of Chemical Abundances in Fast Rotating Stars", 2002, 2002sf2a.conf..525F

Séminaires :

- Martayan, C. "Effects of metallicity, star formation conditions and evolution in B and Be stars.", 15/12/2005, Universidad de Valenciá, España
- Martayan, C. "Effets de la métallicité, des conditions de formation et de l'évolution sur les populations d'étoiles B et Be." 22/11/2005, Institut d'Astrophysique de Paris, Club des Stellaires, France

Conférences grand public :

- "L'instrumentation en Astrophysique." Conférence en tant qu'invité lors des rencontres inter-départementales d'astronomie amateur de Creil-Oise, France 2005
- "L'aventure du VLT", Conférence en tant qu'invité lors de la fête de la science 2004 à l'Université Picardie Jules Verne, Amiens-Somme, France
- "Le système solaire", Conférence en tant qu'invité lors de la fête de la science 2004 au Centre Régional de Documentation, Amiens-Somme, France

POSTERS GRANDS PUBLIC :

- 5 posters pour la fête de la Science 2004 à l'Université de Picardie Jules Verne sur les étoiles, les planètes gazeuses, les planètes telluriques, l'instrumentation, le système solaire.
- Poster pour la fête de la Science 2004 à l'Observatoire de Meudon sur les étoiles B et Be des Nuages de

Magellan.

9.5 Articles sous presse ou soumis en premier auteur

9.5.1 Article sous presse à A&A : A study of the B and Be star population in the field of the LMC open cluster NGC2004 with VLT-FLAMES

9.5.2 Article soumis à A&A : Effects of metallicity, star formation conditions and evolution in B and Be stars. I : Large Magellanic Cloud, field of NGC 2004
9.5.3 Proceeding Active O, B stars meeting, Sapporo, Japan : Effects of metallicity, star formation conditions and evolution in B and Be stars. 9.5.4 Proceeding Active O, B stars meeting, Sapporo, Japan : Short-term variability in Be stars and binaries in the Magellanic Clouds.