
HAL Id: tel-00012101
https://theses.hal.science/tel-00012101

Submitted on 9 Apr 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Résolutions coniques des variétés discriminants e
applications à la géométrie algébrique complexe et réelle

Alexey Gorinov

To cite this version:
Alexey Gorinov. Résolutions coniques des variétés discriminants e applications à la géométrie al-
gébrique complexe et réelle. Mathématiques [math]. Université Paris-Diderot - Paris VII, 2004.
Français. �NNT : �. �tel-00012101�

https://theses.hal.science/tel-00012101
https://hal.archives-ouvertes.fr
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Thèse
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Some conventions and

notation

We shall denote by Πd,n the vector space of complex homogeneous polynomials
of degree d in n + 1 variables, and by Σd,n the subset of Πd,n consisting of
polynomials, whose differential vanishes somewhere in Cn+1 \ {0}. Set Πd,n(R)
to be the subset of Πd,n that consists of polynomials with real coefficients.

Unless stated otherwise, we consider only homology and cohomology groups
with real coefficients, and the fibers of all local systems are assumed to be real
vector spaces of finite dimension.

We shall say that a topological space X is good if the one-point compactifi-
cation of X can be provided with the structure of a finite CW -complex. Some
statements below that are formulated for good spaces are true in a more general
setting, but we shall not need this.

If X is a good topological space, and L is a local system on X , then we shall
denote by H̄∗(X,L) the Borel-Moore homology groups of X with coefficients in
L; we set P (X,L) to be the Poincaré polynomial of X “with coefficients in L”,
i.e. the polynomial

∑

i ait
i, where ai = dim(Hi(X,L)). In a similar way, we

denote by P̄ (X,L) the polynomial
∑

i ait
i, where ai = dim(H̄i(X,L)).

The symbol “⊂” denotes an inclusion; a strict inclusion is denoted by “(”.
As usual, if X is a topological space, and A ⊂ X , we denote by Ā the closure

of A in X .
If f : X → Y is a continuous map of topological spaces, and A and B are

sheaves on X and Y respectively, then we denote by f∗(A), respectively, by
f−1(B) the direct image of A, respectively the inverse image of B, under f .

The symbol “#” denotes the cardinality of a finite set.
The symbol “\” denotes the difference of two sets and never the left quotient;

we write X/G for the quotient of a manifold X by an action of a group G,
regardless whether the action is right or left.

The symmetric group on k elements is denoted by Sk everywhere except the
appendix, where it is denoted by Sk, and Sk means something else.

We systematically use the “topological” notation instead of the “algebraic”
one, e.g., we write CPn and Z2, and not Pn(C) and Z/2Z etc.

“Random” symbols like X,A, x, a, f etc. may have different meanings in dif-
ferent chapters (and sometimes even within the same chapter); we hope however
that this never leads to a confusion.
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Chapter 1

Introduction

Considérons la situation suivante : soit V un espace affine dont les éléments
paramétrisent des fonctions définies sur une certaine variété. Souvent ces fonc-
tions se partagent en génériques et singulières (la définition de ce que l’on appelle
“singulier” varie selon le cas). Le sous-espace (topologique) Σ de V constitué
des fonctions singulières est appelé un discriminant (généralisé).

Beaucoup d’espaces topologiques “célèbres” sont des complémentaires de
discriminants (ou sont homotopiquement équivalents à des complémentaires
de discriminants). On peut mentionner comme exemples les groupes de Lie
classiques matriciels, les espaces de nœuds, les espaces d’applications lisses
sans singularités compliquées, les espaces classifiants des groupes de tresses,
les complémentaires d’arrangements de sous-espaces affines de dimensions quel-
conques, les espaces d’applications lisses entre des sphères, etc. Les questions
concernant la géométrie et la topologie des complémentaires de discriminants se
posent donc dans des situations très diverses.

Une stratégie générale pour calculer la cohomologie du complémentaire d’un
discriminant a été introduite par V. A. Vassiliev il y a plus de 15 ans. Cette
stratégie s’est avérée très efficace ; en plus de donner beaucoup de nouveaux
résultats (comme les invariants de Vassiliev des nœuds), elle fournit une expli-
cation unifiée pour certains faits qui n’ont pas de liens apparents (comme la
formule de Goresky-MacPherson qui calcule la cohomologie d’un arrangement
de k-plans, la suite spectrale d’Adams pour la cohomologie des espaces de lacets,
le théorème de Snaith sur le scindage de la cohomologie des groupes de Lie, etc.).

Expliquons brièvement comment cette stratégie marche dans le cas élémen-
taire suivant : soit V l’espace des polynômes xd + ad−1x

d−1 + · · ·+ a0, où d est
un entier fixé supérieur ou égal à 2, et les ai sont des réels. Notons Σ le sous-
ensemble de V formé des polynômes ayant une racine multiple. Par la dualité
d’Alexander, le calcul des groupes do cohomologie H∗(V \ Σ) est ramené au
calcul des groupes d’homologie de Borel-Moore de Σ. La question qui se pose
alors est le calcul de ces groupes d’homologie. Il existe une résolution lisse
évidente Σ′ de Σ : on pose

Σ′ = {(f, x)|f ∈ Σ, x ∈ R, f(x) = f ′(x) = 0}.

Malheureusement, la projection Σ′ → Σ n’induit presque jamais un iso-
morphisme au niveau de l’homologie de Borel-Moore, puisque, par exemple, si
d > 3, il existe des polynômes ayant deux racines doubles, et on les compte

3



4 CHAPTER 1. INTRODUCTION

alors deux fois en haut. Peu importe, se dit-on, et pour tout f ayant plus d’une
racine multiple, et pour tous x1 6= x2 deux racines multiples de f , on recolle
formellement un segment reliant (f, x1) et (f, x2). L’espace Σ′′ obtenu ainsi
se projette lui aussi sur Σ, mais cette fois-ci ce sont les polynômes ayant au
moins 3 racines multiples distinctes qui posent problème : si, par exemple, un
polynôme a exactement trois racines multiples distinctes, sa préimage est un cer-
cle (topologique). Pour tout f ayant au moins trois racines multiples distinctes,
et tous x1, x2, x3 racines multiples distinctes de f , on recolle donc comme tout
à l’heure un 2-simplexe dont les sommets sont (f, x1), (f, x2), (f, x3). On repro-
duit cette procédure si nécessaire avec des simplexes de dimension supérieure à
2 jusqu’à ce que tous les générateurs indésirables de l’homologie en haut soient
tués.

L’espace σ obtenu ainsi est appelé la résolution simpliciale de Σ. L’intérêt
d’utiliser σ plutôt que Σ provient du fait que σ admet une filtration naturelle que
l’on a en fait construite au cours de la bataille avec les générateurs d’homologie
redondants :

∅ ⊂ Σ′ ⊂ Σ′′ ⊂ · · · ⊂ σ.

La différence de deux termes consecutifs dans cette filtration est un fibré vec-
toriel au-dessus de l’espace des configurations non ordonnées de k points de R.
Cela permet d’écrire immédiatement le terme E1 de la suite spectrale corre-
spondant à cette filtration. Cette suite spectrale dégénère au premier terme et
donne les groupes d’homologie de Borel-Moore de Σ.

Une source naturelle d’exemples de complémentaires de discriminants est
fournie par la géométrie algébrique où les espaces d’hypersurfaces projectives
lisses sont des objets d’étude classiques. Les espaces de modules de courbes de
petit genre se décomposent canoniquement en morceaux dont chacun est le quo-
tient du complémentaire d’un discriminant par l’action d’un groupe algébrique.
Dans l’article [14], V. A. Vassiliev a expliqué comment sa stratégie s’applique
au cas des hypersurfaces projectives lisses.

La majeure partie de la thèse est consacrée à une généralisation de cette
méthode. En gros, nous présentons une méthode inspirée de [14] (plus
précisément, des calculs faits dans [14]) qui nous permet dans certains cas d’aller
un peu plus loin, par exemple, en augmentant le degré ou la dimension de
l’espace ambiant, ou le genre etc. On présente également quelques applications.
La liste des applications que l’on présente n’est pas exhaustive1 ; elle ne con-
tient pas non plus tous les cas intéressants (l’application la plus intéressante de
la méthode présentée ici est probablement le calcul du polynôme de Poincaré de
M4 par O. Tommasi dans [13]; l’auteur a fait le même calcul indépendamment,
mais plus tard). Ces applications sont données dans le seul but de montrer les
problèmes que l’on peut résoudre en utilisant notre méthode.

Par ailleurs, il faut remarquer que cette méthode n’a donné (au moins pour
l’instant) aucun résultat sur la cohomologie des espaces d’hypersurfaces de degré

1Par exemple, l’auteur a récemment calculé les polynômes de Poincaré des quotients des
espaces des quartiques nodales et GIT-stables par l’action évidente du groupe PGL3(C). Les
réponses sont respectivement 1+t2+t4+t6 et 1+t2+2t4+2t6+t7+t8 ; malheureusement, ces
calculs ont été terminés trop tard pour être inclus dans la thèse. Le premier de ces résultats
permet de montrer que le polynôme de Poincaré de l’espace M̄3 des courbes Deligne-Mumford-
stables de genre 3 est égal à 1+3t2+7t4+10t6+7t8+3t10 +t12. Ce résultat n’est pas nouveau
(cf. [4, page 19] ; je remercie J. Steenbrink et O. Tommasi pour cette référence), mais notre
démonstration est indépendante. Le seul fait non trivial que l’on utilise est H5(M̄3) = 0, ce
qui a été démontré par E. Arbarello et M. Cornalba [1] ; les détails seront présentés ailleurs.
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quelconque, ou des espaces de modules de courbes de genre quelconque; elle ne
donne pas non plus beaucoup d’information sur les groupes fondamentaux des
complémentaires de discriminants (puisque notre premier pas consistera à rem-
placer le calcul des groupes de cohomologie du complémentaire à un discriminant
par le calcul des groupes d’homologie de Borel-Moore du discriminant même).

La thèse est organisée de la manière suivante : dans le chapitre 3 on rap-
pelle la construction de V. A. Vassiliev [14], on explique quel est l’intérêt de
la généraliser, et on présente notre construction. Dans le chapitre 4 on donne
quelques résultats homologiques dont on aura besoin dans la suite. Les chapitres
suivants sont consacrés aux applications: dans le chapitre 5 on considère le cas
des quintiques de CP 2 (le discriminant est une hypersurface irréductible), dans
le chapitre 6 on calcule les nombres de Betti de l’espace des cubiques lisses
qui intersectent transversalement une conique lisse fixée (le discriminant est
réductible, mais la méthode marche aussi bien), dans le chapitre 7 on considère
l’espace des cubiques lisses réelles (cet espace peut sûrement être consideré en
utilisant une technique plus standard, toutefois on présente nos calculs comme
un exemple test dans le cas réel).

Certains résultats de la thèse ont été annoncés dans [5]; un texte contenant
la construction de la résolution conique et l’une des applications mentionnées
dessus (le cas des quintiques projectives planes) a été accepté [6].

La thèse contient un appendice reproduisant l’article [7]. On y démontre le
théorème suivant : supposons que le cercle est muni d’un atlas où toutes les
fonctions de changement de cartes sont des homographies ; alors ce cercle borde
une surface orientable munie d’un atlas où toutes les fonctions de changement de
cartes sont des homographies (à coefficients complexes cette fois-ci) compatibles
dans le sens évident avec les applications de changement de cartes sur le bord.
On y établit également une classification correcte des cercles projectifs (il s’avère
que la classification trouvée il y a longtemps par N. Kuiper est incomplète).



Chapter 2

Introduction

Consider the following situation: suppose we are given an affine space V , whose
elements parametrise functions defined on some manifold. Usually, these func-
tions can be divided into generic and singular (the definition of “singular” varies
from case to case). The subspace Σ of V that consists of the singular functions
is called a (generalised) discrimimant.

Many “famous” topological spaces (such as classical matrix Lie groups,
spaces of knots, spaces of smooth maps between spheres, classifying spaces of
braid groups, complements of arrangements of planes of different dimensions,
spaces of smooth maps without complicated singularities, just to mention a
few examples) are discriminant complements (or are homotopy equivalent to
discriminant complements), so questions concerning geometry and topology of
discriminant complements arise in many different situations.

A general strategy of calculating cohomology groups of discriminant com-
plements was introduced by V. A. Vassiliev over 15 years ago. This strategy
turned out to be very effective; apart from giving many new results (such as
Vassiliev knot invariants), it also provides a unified explanation for some seem-
ingly unrelated facts (such as Goresky-MacPherson formula for the cohomology
of the complement of a plane arrangement, Adams spectral sequence for the
cohomology of loop spaces, the Snaith splitting theorem for the cohomology of
classical Lie groups and some others).

Let us briefly explain how this strategy works in the following elementary
example: let V be the space of polynomials of the form xd +ad−1x

d−1 + · · ·+a0,
where d is some fixed integer > 1 , and the ai’s are real numbers; set Σ to be
the subset of V that consists of the polynomials with multiple roots. Via the
Alexander duality we can replace the calculation of the groups H∗(V \ Σ) by
the calculation of the Borel-Moore homology groups of Σ. But how can that be
done? There is an obvious smooth resolution Σ′ of Σ: we set

Σ′ = {(f, x)|f ∈ Σ, x ∈ R, f(x) = f ′(x) = 0}.

Unfortunately, the projection Σ′ → Σ almost never induces an isomorphism
of the Borel-Moore homology groups, since, e.g., if d > 3, there are polynomials
that have two multiple roots, and they are counted twice upstairs. “Never
mind” – we say, and formally glue the segment that joins (f, x1) and (f, x2)
for any f that has more than one multiple root, and any two multiple roots
x1 6= x2 of f . The resulting space Σ′′ also projects onto Σ, but this time it is

6
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the polynomials with ≥ 3 distinct multiple roots that cause troubles: e.g., the
preimage of a polynomial that has exactly three multiple roots is (topologically)
a circle. So we proceed as above and glue in the triangle spanned by the points
(f, x1), (f, x2), (f, x3) for any f that has three or more multiple roots, and any
(unordered) triple x1, x2, x3 of distinct multiple roots of f , and so on until all
unwished homology generators upstairs are killed.

The resulting space σ is called the simplicial resolution of Σ. The point of us-
ing σ rather than Σ consists in the fact that σ admits a natural filtration, which
we have already constructed while fighting the redundant homology classes:

∅ ⊂ Σ′ ⊂ Σ′′ ⊂ · · · ⊂ σ.

The difference of any two consecutive terms of this filtration is a vector bundle
over the space of unordered k-ples of points in R, which enables us immediately
to write down the term E1 of the spectral sequence that corresponds to the
filtration. This spectral sequence degenerates at the first term, and gives us
immediately the Borel-Moore homology groups of Σ.

A natural source of examples of discriminant complements is provided by
algebraic geometry, where spaces of smooth projective hypersurfaces are classi-
cal objects of study. Moduli spaces of curves of small genus can be canonically
decomposed into several pieces, so that each piece is the quotient of a discrimi-
nant complement by the action of some algebraic group. In the article [14] V. A.
Vassiliev explained how to apply his strategy to the case of smooth projective
hypersurfaces.

The main part of the thesis is devoted to a generalisation of that method.
Roughly speaking, we present a method inspired by [14] (more precisely, by the
calculations performed in [14]), which enables one in some cases to go one step
further, i.e., to increase by one the degree or the dimension of the ambient space
or the genus etc. We also present some applications. The list of applications is
not exhaustive 1 nor does it contain r all interesting cases (the most interesting
application so far of the method presented here is probably the calculation of
the Poincaré polynomial of M4 performed by O. Tommasi in [13]; the author
has done the same calculation independently but later). The only point in
presenting these applications is to show what problems can be handled using
our method.

It should be noted by the way that (at least at present) this method does not
give any results about the cohomology of spaces of hypersurfaces of arbitrary
degree, or moduli spaces of curves of arbitrary genus; nor does it give much
information on the fundamental groups of discriminant complements (since our
first step will as above consist in replacing the calculation of the cohomology
groups of a discriminant complement by the calculation of the Borel-Moore
homology groups of the discriminant itself).

1For instance, the author has recently calculated the Poincaré polynomials of the quotients
of the spaces of nodal and GIT-stable plane quartics by the obvious action of the group
PGL3(C). The answers are respectively 1 + t2 + t4 + t6 and 1 + t2 + 2t4 + 2t6 + t7 + t8;
unfortunately these calculations were completed too late to be included in the thesis. The
first one of these results enables one to show that the Poincaré polynomial of the space M̄3 of
Deligne-Mumford-stable genus 3 curves is 1+3t2 +7t4 +10t6 +7t8 +3t10 + t12. This result is
not new (see [4, page 19]; I am grateful to J. Steenbrink and O. Tommasi for this reference),
but our proof is independent. The only nontrivial fact we use is H5(M̄3) = 0, as shown by E.
Arbarello and M. Cornalba [1]; the details will be presented elsewhere.



8 CHAPTER 2. INTRODUCTION

The thesis is organised as follows: in chapter 3 we recall V. A. Vassiliev’s
construction from [14], give some argument why it should be generalised and
then present our construction. In chapter 4 we give some homological results
that we shall need in the sequel. The remaining chapters are devoted to ap-
plications: in chapter 5 we consider the case of smooth quintics in CP 2 (the
discriminant is an irreducible hypersurface), in chapter 6 we calculate the Betti
numbers of the space of smooth plane cubics that intersect transversally a fixed
smooth conic (the discriminant is reducible, but the method works just as well),
in chapter 7 we consider the space of smooth real plane cubics (this space can
surely be considered using some more standard technique, but we present our
calculations as a test example in the real case).

Some of the results of the thesis were announced in [5]; a text containing
the construction of the conical resolution and the first of the above-mentioned
applications (the spase of smooth plane projective quintics) has been accepted
[6].

The thesis contains an appendix, which reproduces the article [7]. Roughly
speaking, we prove the following theorem: suppose the circle is equipped with
an atlas, where all transition maps are fractional linear; then this circle bounds
an orientable surface with an atlas where all transition maps are also fractional
linear (only this time with complex coefficients) and are compatible in the ob-
viuous way with the transition maps on the boundary. We also show that the
classification of projective circles given long ago by N. Kuiper is not quite correct
and give a correct one.



Chapter 3

The method of conical

resolutions

3.1 Why generalise?

In this chapter we describe a general method of computing (at least additively)
the cohomology groups of spaces like Πd,n\Σd,n. Our method is a generalisation
of the one given in [14]. Everyone who proposes to generalise something has to
face the question that is the title of this section. In order to answer this question,
let us recall briefly V. A. Vassiliev’s construction from [14, Section 2].

Suppose that we are interested in calculating the cohomology groups of Πd,n\
Σd,n. The first remark is the following: via the Alexander duality we have

Hi(Πd,n \ Σd,n) ∼= H̄2D−i−1(Σd,n),

whereD = dimC(Πd,n). This reduction was first used by V. I. Arnold in [2]. The
variety Σd,n is usually very singular, and there seems to be no immediate way
to compute its Borel-Moore homology groups. In order to do this, we construct
a space σ̃d,n called the conical resolution of Σd,n. We shall see that, on the one
hand, there is a natural proper map π : σ̃d,n → Σd,n such that the preimage of
any point of Σd,n is a cone (hence the term “conical”), and on the other hand,
σ̃d,n admits a very nice filtration, which enables one to calculate the groups
H̄∗(σ̃d,n) for some values of d and n. The space σ̃d,n is constructed as follows.

For any K ⊂ CPn denote by L(K) the vector subspace of Πd,n consist-
ing of all polynomials that have singular points everywhere in K (and maybe
elsewhere). For any i = 1, . . . , D denote by Gi(Πd,n) the Grassmann manifold
whose points are complex subspaces of Πd,n of codimension i. Denote by Ωi the
subspace of Πd,n consisting of all vector subspaces that have the form L(K),
where K is the set of singular points of some polynomial from Σd,n.

A simplex of the join

G1(Πd,n) ∗G2(Πd,n) ∗ · · ·GD(Πd,n)

is called coherent, if its vertices form a flag. The main vertex of a coherent
simplex △ is the vertex corresponding to the smallest subspace among the sub-
spaces that correspond to the vertices of △. The union of all coherent simplices

9



10 CHAPTER 3. THE METHOD OF CONICAL RESOLUTIONS

with vertices in Ω̄i is denoted by Λ̃d,n (here Ω̄i stands for the closure of Ωi in

Gi(Πd,n)). For any L ∈ Ω̄i denote by Λ̃d,n(L) the union of all coherent simplices

whose main vertex is L. Every space Λ̃d,n(L) is a cone with vertex L; denote

the base of this cone by ∂Λ̃(L).
Set σ̃d,n to be the subspace of Σd,n × Λ̃d,n that consists of all couples (f, x)

such that f ∈ L and x ∈ Λ̃d,n(L), where L ∈ Ω̄i for some i = 1, . . . , D. Set

Φ̃i to be the union of all coherent simplices whose main vertices belong to
⋃

j≤i Gj(Πd,n), and set

Fi = {(f, x) ∈ σ̃d,n|x ∈ Φ̃i}.

We have the filtrations

∅ ⊂ Φ̃1 ⊂ · · · Φ̃D = Λ̃d,n (3.1)

and
∅ ⊂ F1 ⊂ · · ·FD = Σd,n. (3.2)

Theorem 3.1 1. The obvious projection π : σ̃d,n → Σd,n is a proper map
and induces an isomorphism of Borel-Moore homology groups.

2. The space Fi \ Fi−1 is a (D − i)-dimensional complex vector bundle over
Φ̃i \ Φ̃i−1.

So via the Thom isomorphism the task of writing down the term E1 of the
spectral sequence corresponding to the above filtration on σ̃d,n is reduced to

calculating the Borel-Moore homology groups of the spaces Φ̃i \ Φ̃i−1. There
exists for any i = 1, . . . , D the obvious map Φ̃i \ Φ̃i−1 → Ω̄i such that for any
L ∈ Ω̄i the preimage of L is the open cone Λ̃d,n(L) \ ∂Λ̃d,n(L). Usually one has
to stratify Ω̄i so that the above map becomes the projection of a locally trivial
bundle over each stratum.

It turns out that for any L ∈ Ω̄i \Ωi the space ∂Λ̃d,n(L) is contractible, and
for L ∈ Ωi we have

H̄∗(Λ̃d,n(L) \ ∂Λ̃d,n(L)) ∼= H̄∗(Λd,n(L) \ ∂Λd,n(L)),

where Λ(L) and ∂Λ(L) are obtained by taking the union of all coherent simplices
(respectively from Λ̃(L) and ∂Λ̃(L)), all of whose vertices belong to Ωj , j ≤ i.
So, in order to write down the term E1 of the spectral sequence corresponding
to (3.2), we have to know the Borel-Moore homology groups of certain fibre
bundles over certain subvarieties of the Ωi’s.

However, sometimes the fibres or the bases of these bundles turn out to be
quite complicated. Consider, e.g., the case of Π5,2. We have then D = 21. The
space Ω20 is stratified as follows: Ω20 = Ω1

20 ⊔Ω2
20 ⊔Ω3

20Ω
4
20, where Ω1

20, . . . ,Ω
4
20

correspond respectively to the following singular curves: five lines in general
position, three lines and a smooth conic in general position, two smooth conics
and a line in general position, and two lines and an irreducible singular cubic
in general position (in the last case “in general position” means that the cubic
intersects each line at three distinct points, none of which is the intersection
point of the lines).

Let us describe the space ∂Λ5,2(L) for L ∈ Ω1
20. The vector space L is

spanned by a polynomial whose zero locus in CP 2 consists of five lines in general
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position; denote by K the set of ten intersection points of those lines. Denote by
△ the 9-dimensional simplex, whose vertices formally correspond to the elements
of K. Define a mapping ∂Λ5,2(L) → △ as follows: take every L(K ′),K ′ ⊂ K
to the barycentre of the face of △ spanned by the elements of K ′, and extend
linearly to all coherent simplices ⊂ ∂Λ5,2(L). This mapping is a homeomorphism
on its image.

It can be proven using lemma 5.1 below that minimal vector spaces that
contain L and have the form L(K), where K is the singular locus of some
quintic, are

1. L(four points on l + three points in general position outside l), and

2. L(three points on l1 \ l2 plus three points on l2 \ l1 plus l1 ∩ l2),

where l, l1, l2 are lines, l1 6= l2. One can show that the image of the above
mapping can be contracted onto the union U of the images of Λ5,2(L

′), where
L′ is of the first type. U is the union of all 6-faces of △ that are opposite to the
2-faces spanned by triples of points on a line.

There exists a natural action of the symmetric group S5 on H∗(U), and most
irreducible representations of S5 occur in the corresponding decomposition of
H∗(U). Hence, in order to find the contribution of Ω1

20, it is necessary to calcu-
late the Borel-Moore homology of Ω1

20 with coeficients in many local systems.
The same holds for the spaces Ω2

20 etc.; calculating the contribution in these
cases appears to be an even more difficult task, since the conditions that define
these spaces are nonlinear.

Luckily, there is a way to overcome some of these difficulties. Below we
present another version of the conical resolution. The main difference can be
informally summarised as follows: we define coherent simplices using inclusions
between singular loci themselves, rather then between the corresponding vector
spaces. This gives us more flexibility in comparison with the above method, but
forces us to introduce lots of “fake” singular loci, which we count once with a
plus, and once with a minus.

3.2 The construction of the conical resolution

Let V be a vector space of k-valued functions on a manifold M and Σ ⊂ V is a
closed subspace formed by the functions that are singular in some sence. (The
space Σ is often called a discriminant; in all examples that we shall consider
Σ will be an algebraic variety.) Suppose that D = dimk V < ∞. We want
to calculate the Borel-Moore homology of Σ. In order to do this, we preceed
as above, i.e., we construct a resolution σ and a proper map π : σ → Σ such
that the preimage of every point is contractible. We are going to describe a
construction of σ via configuration spaces.

Remark. The method described below can be extended with obvious mod-
ifications to the case when V is an affine space. We assume V to be a vector
space, since, on the one hand, the vector case is somewhat simpler, and on the
other hand it is sufficient for all applications that we have in mind.

Suppose that with every function f ∈ Σ a compact nonempty subset Kf

of some compact CW -complex M is associated. For instance, if M = Cn+1 \
{0}, V = Πd,n,Σ = Σd,n, it is natural to set M equal to CPn and Kf equal to
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the image of the set of singular points of f under the natural map M → CPn.
We suppose that the following conditions are satisfied:

• If f, g ∈ Σ, and Kf ∩Kg 6= ∅, then f + g ∈ Σ and Kf ∩Kg ⊂ Kf+g,

• If f ∈ Σ, then for any λ 6= 0 we have Kλf = Kf ,

• The zero function 0 ∈ Σ, and K0 = M .

• For anyK ⊂ M set L(K) ⊂ V to be the subset consisting of all f such that
K ⊂ Kf . The previous three conditions imply that L(K) is a k-vector
space. We suppose that there exists a positive integer d such that for any
x ∈ M one can find a neighbourhood U ∋ x in M and continuous functions
l1, . . . , ld from U to the Grassmannian GD−1(V ) of (D − 1)-dimensional
k-vector subspaces of V such that we have

L({x′}) =

d
⋂

i=1

li(x
′)

for any x′ ∈ U .

Remark. One may ask a natural question: if we are dealing with functions
on some manifold M, why should we introduce some additional space M? The
problem is that for our construction it will be convenient to associate with a
singular function a compact subset of a compact CW -complex. In the case when
the manifold M itself is compact, we can assume, of course, that M = M, and
Kf is the singular locus of f (the definition of the singular locus depends on the
particular example we are considering).

By a configuration in a compact CW -complex M we shall mean a compact
nonempty subset of M. Denote by 2M the space of all configurations in M.
Suppose that ρ is the metric on M. We introduce the Hausdorff metric on 2M

by the usual rule:

ρ̃(K,L) = maxx∈Kρ(x, L) + maxx∈Lρ(x,K).

The resulting topology on 2M does not depend on the choice of the particular
metric that induces the topology on M.

It is easy to check that if M is compact, then the space 2M equipped with
the metric ρ̃ is also compact.

Notation. We denote by B(M, k) the subspace of 2M that consists of all
configurations that contain exactly k elements.

Note that we have B(M, k) =
⋃

j≤k B(M, j).

Proposition 3.1 Let (Kj) be a Cauchy sequence in 2M, and let K be the set
consisting of the limits of all sequences (aj) such that aj ∈ Kj for every j. Then
K is nonempty and compact, and limj→∞ ρ̃(Kj ,K) = 0.

♦

Proposition 3.2 Let (Ki), (Li) be two sequences in 2M. Suppose that there
exist limi→∞Ki, limi→∞ Li, and denote these limits by K and L respectively.
Suppose also that Ki ⊂ Li for every i. Then K ⊂ L.
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♦
Suppose that X1, . . . , XN is a finite collection of subspaces of 2M satisfying

the following conditions:

1. For every f ∈ Σ the set Kf belongs to some Xi.

2. Suppose that K ∈ Xi, L ∈ Xj ,K ( L. Then i < j.

3. Recall that L(K) is the space of all functions f such that K ⊂ Kf . Let us
fix i; we assume that dimk L(K) is the same for all configurationsK ∈ Xi.
(We denote this dimension by di.)

4. Xi ∩Xj = ∅ if i 6= j.

5. For any i the space X̄i \Xi is included in
⋃

j<i Xj.

6. For every i we denote by Ti the subspace of M × 2M consisting of pairs
(x,K) such that K ∈ Xi and x ∈ K. We assume that Ti is the total
space of a locally trivial bundle over Xi (the projection pri : Ti → Xi is
obvious). This bundle will be called the tautological bundle1 over Xi.

7. Note that any local trivialisation of Ti has the following form:

(x,K ′) 7→ (t(x,K ′),K ′).

Here x is a point in some K ∈ Xi, K
′ belongs to some neighbourhood

U ∋ K in Xi, and t : K × U → M is a continuous map such that if we
fix K ′ ∈ U , then we obtain a homeomorphism tK′ : K → K ′. We require
that for every K ∈ Xi there exist a neighbourhood U ∋ K and a local
trivialisation of Ti over U such that every map tK′ : K → K ′ establishes
a bijective correspondence between the subsets of K and K ′ that belong
to

⋃

j≤i Xj .

Under these assumptions we are going to construct a resolution σ of Σ and
a filtration on it such that the i-th term of the filtration is the total space of a
fibre bundle over Xi.

Note that due to condition 3 for any i = 1 . . . , N there exists an natural map
K 7→ L(K) from Xi to the Grassmann manifold Gdi

(V ), which is continuous
due to the last condition from the list on page 12.

Remark. The rather strange-looking condition 7 follows immediately from
condition 6 in the following situation: suppose Xi consists of finite configura-
tions, and for all K,L, such that K ∈ Xi, L ⊂ K there is an index j < i such
that L ∈ Xj . In this case any trivialisation of Ti fits.

Let us now recall the notion of the k-th self-join of a topological space. This
notion was introduced by V.A. Vassiliev in [14] and will come out very useful
on several occasions in the sequel.

Definition. Let X be a topological space that can be embedded into a finite
dimensional Euclidean space, and let k be a positive integer. We shall say that
a proper embedding ı : X → RΩ,Ω <∞, is k-generic, if the intersection of any

1For instance, if M = CPn and Xi consists of projective subspaces of M of the same
dimension, then this is just the projectivisation of the usual tautological bundle over the
corresponding subvariety of some Grassmann manifold of Cn+1.
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two (k− 1)-simplices with vertices on ı(X) is their common face (in particular,
the intersection is empty, if the sets of the vertices are disjoint). We set the k-th
self-join X∗k of X to be the union of all (k − 1)-simplices with vertices on the
image ı(X) of any k-generic embedding ı. For good spaces this definition does
not depend on the choice of ı.

Consider the space Y =
⋃N

i=1 X̄i =
⋃N

i=1Xi. Denote by X the N -th self-join
Y ∗N of Y Note that the spaces Y, Y ∗N are compact. Call a simplex △ ⊂ X
coherent if the configurations corresponding to its vertices form an ascending
sequence. Note that then its vertices belong to different Xi (condition 2). Let
△ be a coherent simplex. Among the vertices of △ there is a vertex such that
the corresponding configuration contains the configurations that correspond to
all other vertices of △. Such vertex will be called the main vertex of △. Denote
by Λ the union of all coherent simplices. For any K ∈ Xi denote by Λ(K) the
union of all coherent simplices, whose main vertices coincide with K. Note that
the space Λ(K) is contractible.

Denote by Φi the union
⋃

j≤i

⋃

K∈Xj
Λ(K). There is a filtration on Λ: ∅ ⊂

Φ1 ⊂ · · · ⊂ ΦN = Λ.

For any simplex △ ⊂ X denote by
◦
△ its interior, i.e. the union of its points

that do not belong to the faces of lower dimension. Note that for every x ∈ X

there exists a unique simplex △ such that x ∈
◦
△.

Proposition 3.3 Let (xi) be a sequence in X such that limi→∞ xi = x. Suppose

xi ∈ △i, x ∈
◦
△, where △i are coherent simplices, and suppose K is a vertex

of △. Then there exists a sequence (Ki) such that Ki is a vertex of △i and
limi→∞Ki = K.

♦

Proposition 3.4 All spaces Λ,Λ(K),Φi are compact.

Proof. This follows immediately from propositions 3.3 and 3.2. ♦
For any K ∈ Xi denote by ∂Λ(K) the union

⋃

κ Λ(κ) over all maximal
subconfigurations κ ∈ ∪j<iXj , κ ( K. The space Λ(K) is the union of all
segments that join points of ∂Λ(K) with K, and hence it is homeomorphic to
the cone over ∂Λ(K).

Define the conical resolution σ as the subspace of Σ × Λ consisting of pairs
(f, x) such that f ∈ Σ, x ∈ Λ(Kf ).

Proposition 3.5 The space σ is closed in Σ × Λ.

Proof. Let (fi, xi) be a sequence such that all fi ∈ Σ, every xi ∈ Λ(Kfi
), and

we have limi→∞ fi = f ∈ Σ, limi→∞ xi = x ∈ Λ. Let us prove that x ∈ Λ(Kf ).

Let △ be the coherent simplex such that x ∈
◦
△. Due to proposition 3.3, there

exists a sequence (Ki) such that all Ki ∈ Y and Ki ⊂ Kfi
. Take an element

a ∈ K. By proposition 3.1, there exists a sequence (ai) of elements of M such
that limi→∞ ai = a. For any i, we have Fi ∈ L(Ki) ⊂ L({ai}). Due to the
last condition from the list on page 12, f ∈ L({a}). So, for any a ∈ K we have
a ∈ Kf , which means that K ⊂ Kf . The proposition is proven.♦

There exist obvious projections π : σ → Σ and p : σ → Λ. We introduce
a filtration on σ putting Fi = p−1(Φi). The map π is proper; indeed, by
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proposition 3.5, the preimage of each compact set C ⊂ Σ is a closed subspace
of C × Λ, which is compact.

Theorem 3.2 Suppose X1, . . . , XN are subspaces of 2M that satisfy Conditions
1–7 of page 13. Then

1. π induces an isomorphism of Borel-Moore homology groups of the spaces
σ and Σ.

2. Every space Fi \Fi−1 is a k-vector bundle over Φi \Φi−1 of dimension di.

3. The space Φi\Φi−1 is a fibre bundle over Xi, the fibre being homeomorphic
to Λ(K) \ ∂Λ(K).

Proof. The first assertion of the theorem follows from the fact that π is
proper and π−1(f) = Λ(Kf), the latter space being contractible. To prove the
second assertion, let us study the preimage of a point x ∈ Φi \ Φi−1 under the
map p : Fi \Fi−1 → Φi \Φi−1. We claim that p−1(x) = L(K) for some K ∈ Xi.

Recall that each point x ∈ Φi \Φi−1 belongs to the interior of some coherent
simplex △, whose main vertex lies in Xi. Denote this vertex by K and denote
the map Φi \ Φi−1 ∋ x 7→ K ∈ Xi by fi.

Now suppose f ∈ L(K), or, which is the same, Kf ⊃ K. This implies
Λ(K) ⊂ Λ(Kf ). So we have x ∈ Λ(K) ⊂ Λ(Kf ) and (f, x) ∈ σ, p(f, x) = x,
hence f ∈ p−1(x).

Suppose now that f ∈ p−1(x). We have (f, x) ∈ σ, hence x ∈ Λ(Kf ). This
means that x belongs to some coherent simplex △′, whose main vertex is Kf .
But x belongs to the interior of △, hence △ is a face of △′ and K is a vertex of
△′. But Kf is the main vertex of △′, hence K ⊂ Kf and f ∈ L(K).

So, we see that p−1(x) = L(K),K ∈ Xi, and the second assertion of theorem
3.2 follows immediately from the fact that the dimension of L(K) is the same
for all K ∈ Xi (condition 3). In fact the bundle p : Fi \Fi−1 → Φi \Φi−1 is the
inverse image of the tautological bundle over Gdi

(V ) under the composite map

x
Fi7→ K 7→ L(K).
We shall show now that the map Fi is a locally-trivial fibration with fibre

Λ(K) \ ∂Λ(K). This will prove the third assertion of theorem 3.2.
Denote by Xi the space consisting of all pairs (L,K) such that L ⊂ K,L ∈

⋃

j≤i Xj . Let P : Xi → Xi be the natural projection. We shall construct a
trivialisation of Fi : Φi \ Φi−1 → Xi from a particular trivialisation of Ti that
exists due to condition 7.

For anyK ∈ Xi let U and t be the neighbourhood ofK and the trivialisation
of Ti over U that exist due to condition 7. For any K,K ′ ∈ U, x ∈ K, put
tK′(x) = t(x,K ′). Define a map T : P−1(K) × U → 2M by the following
rule: take any L ⊂ K,L ∈

⋃

j≤i Xj and put T (L,K ′) equal to the image of
L under tK′ . Due to condition 7, T (•,K ′) is a bijection between the set of
L ∈ 2M such that L ⊂ K, L ∈

⋃

j≤i Xj , and the set of L′ ∈ 2M such that
L′ ⊂ K ′, L′ ∈

⋃

j≤i Xj .

Proposition 3.6 1. The map T1 : P−1(K) × U → 2M × U defined by the
formula T1(L,K

′) = (T (L,K ′),K ′) maps P−1(K)×U homeomorphically
onto P−1(U).
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2. For any K ′ ∈ U we have L ⊂ M ⊂ K if and only if T (L,K ′) ⊂
T (M,K ′) ⊂ T (K,K ′) = K ′.

This implies that Xi is a locally trivial bundle over Xi.
Proof. The second assertion is obvious. We have already seen that the

map T1 is a bijection. The verification of the fact that T1 and its inverse are
continuous is straightforward but quite boring. ♦

Now we can construct a trivialisation of the fibre bundle Fi : Φi \Φi−1 → Xi

over the same neighbourhood U ∋ K as above: take any x ∈ F−1
i (K)

and any K ′ ∈ U . x can be written in the form x =
∑

j αjLj , where all
αj > 0,

∑

αj = 1, Lj ∈
⋃

k≤i Xk, and exactly one Lj belongs to Xi. Put
F (x,K ′) =

∑

k αkT (Lk,K
′). Again a straightforward argument shows that F

is a homeomorphism F−1
i (K) × U → F−1

i (U). Theorem 3.2 is proven. ♦

Since every Λ(K) is compact in the topology of Λ, we have

H̄∗(Λ(K) \ ∂Λ(K)) = H∗(Λ(K), ∂Λ(K)) = H∗−1(∂Λ(K), point).

The abstract axiomatic approach we have taken pays off when it comes to
performing actual calculations. Indeed, we have the freedom to choose the Xi-s
as we like, provided they satisfy Conditions 1-7 on page 13. For instance, in
all examples we shall consider most singular loci are discrete (i.e., they consist
of finitely many points). To make the fibres of the bundle Φi \ Φi−1 → Xi as
simple as possible, we introduce one more condition:

8. if K is a finite configuration fromXi, then every subset L ⊂ K is contained
in some Xj with j < i.

Note that if we are given spaces X1, . . . , XN that satisfy Conditions 1-7, we
can construct another collection of spaces X ′

1, . . . , X
′
N ′ that satisfy Conditions

1-7 and Condition 8. Indeed, take the union
⋃N

i=1Xi ⊂ 2M and add all subsets

of all finite configurations K ∈
⋃N

i=1Xi; then take an appropriate stratification
of the resulting subspace of 2M.

We have the following two lemmas.

Lemma 3.1 If Condition 8 is satisfied, then for any i such that Xi consists of
finite configurations the fibre of the bundle Fi : (Φi \ Φi−1) → Xi over a point
K ∈ Xi is an open simplex, whose vertices correspond to the points of K.

The proof is by induction on the number of points in K ∈ Xi. ♦
Note that in this situation the simplicial complex Λ(K) is (piecewise linearly)

isomorphic to the first barycentric subdivision of the simplex △ spanned by
the vertices of K. The complex ∂Λ(K) is isomorphic to the first barycentric
subdivision of the boundary of △.

Moreover, denote by Λfin the union of the spaces Λ(K) over all finite K ∈
⋃N

i=1Xi.

Lemma 3.2 If Condition 8 is satisfied, then there exists a map C : Λfin →
M∗N that maps every K ∈ Λfin to some element of the interior of the sim-
plex △(K) spanned by the points of K. This map is a homeomorphism on its
image, and it maps Λ(K) (respectively, ∂Λ(K)) homeomorphically on △(K)
(respectively, ∂△(K)).
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♦
It follows from lemmas 3.1, 3.2 that for any i such that Xi consists of finite

configurations, the fibre bundle Φi \ Φi−1 is isomorphic to the restriction to Xi

of the obvious bundle M∗k \ M∗(k−1) → B(M, k), where k is the number of
points in a configuration from Xi. So we have

H̄∗(Φi \ Φi−1) = H̄∗−(k−1)(Xi,±R),

where ±R is a coefficient system (which will be described explicitly a little later).
Suppose now that k = C; since all complex vector bundles are orientable we
obtain (using the second assertion of theorem 3.2) that

H̄∗(Fi \ Fi−1) = H̄∗−2di
(Φi \ Φi−1) = H̄∗−2di−(k−1)(Xi,±R),

where di = dimC L(K),K ∈ Xi.
In other words, we have reduced the calculation of most columns of the first

term of the spectral sequence corresponding to the filtration ∅ ⊂ F1 ⊂ · · · ⊂ FN

to the calculation of the Borel-Moore homology groups of the spaces Xi with
coefficients in some one-dimensional local systems. In the following chapter we
shall explain how the latter groups can be calculated.



Chapter 4

Some further preliminaries

In this chapter we state and/or prove some homological results that will be used
in the calculations that we have in mind.

Definition. For any topological space X , denote by F (X, k) the space of
all ordered k-ples from X , i.e. the space

X × · · · ×X \ {(x1, . . . , xk)|xi = xj for some i 6= j}.

The space B(X, k) defined on page 12 is the quotient of F (X, k) by the natural
action of the symmetric group Sk. We shall denote by B̃(CP 2, k) the subspace
of B(CP 2, k) consisting of generic k-configurations (i.e. the configurations that
contain no three points that belong to a line, no 6 points that belong to a conic
etc.). The spaces F̃ (CP 2, k) B̃(RP 2, k) and F̃ (RP 2, k) are defined in a similar
way.

Definition. For any space X and integer k > 0 we denote by ±R the local
system on B(X, k) with fibre R that changes the sign under the action of any
loop defining an odd permutation in a configuration from B(X, k). When this
does not lead to a confusion, the restriction of ±R to a subspace Y ⊂ B(X, k)
will be denoted by the same symbol ±R.

4.1 Some general theorems

The following version of the Leray theorem will be frequently used in the sequel:

Theorem 4.1 Let p : E → B be a locally trivial fibre bundle with fibre F ,
and let L be a local system of groups or vector spaces on E. Then there exists
a spectral sequence converging to the Borel-Moore homology groups of E with
coefficients in L; the term E2 is given by the formula E2

p,q
∼= H̄p(B, H̄q), where

H̄q is the local system with fibre H̄q(F,L|F ) that corresponds to the natural
action of π1(B) on H̄q(F,L|F ).

♦

This is a version of the Leray theorem on the spectral sequence of a locally
trivial fibration. Let us describe the action of π1(B, x0) on the fibre H̄q|x0

,
where x0 is a distinguished point in B. Identify H̄q |x0

with H̄q(F,L|F ), and

put Fx0
= p−1(x0). A loop γ in B defines a map f̃ : L|Fx0

→ L|Fx0
covering

18
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some map f : Fx0
→ Fx0

. Recall the construction of f . Consider a family of
curves γx(t), x ∈ F that cover γ. Then we can put f(x) = γx(1), x ∈ Fx0

. The
map f̃ : L|Fx0

→ L|Fx0
consists simply of the maps Lx → Lf(x) induced by γx.

The map f̃ induces for every q a map F∗ : H̄q(Fx0
,L|Fx0

) → H̄q(Fx0
,L|Fx0

),
which is exactly the map H̄q|x0

→ H̄q |x0
induced by γ.

Theorem 4.2 Let E1 → B1, E2 → B2 be two bundles and L1,L2 be local
coefficient systems of groups or vector spaces on E1, E2 respectively. Let f :
E1 → E2 be a proper map that covers some map g : B1 → B2 (i.e., f is a proper
bundle map). Suppose f̃ : L1 → L2 is a morphism of coefficient systems that
covers f . Then the map f̃ induces a homomorphism of the spectral sequences of
theorem 4.1.

♦
The map of the terms E2 of these spectral sequences can be described ex-

plicitly in the following way. Let F
(i)
x be the fibre of Ei over x ∈ Bi, H̄

(i)
q be

the coefficient system on Bi from theorem 4.1, i = 1, 2. Since f is a bundle

map, it maps F
(1)
x into F

(2)
g(x), and f̃ maps L|F

(1)
x into L|F

(2)
g(x). The latter map

induces for any x ∈ B1 a map H̄q(F
(1)
x ,L|F

(1)
x ) → H̄q(F

(2)
g(x),L|F

(2)
g(x)), which

can be considered as restriction to H̄
(1)
q |x of a map f ′

q : H̄
(1)
q → H̄

(2)
q that cov-

ers g. The desired map of the terms E2 of spectral sequences is just the map

H̄∗(B1, H̄
(1)
q ) → H̄∗(B2, H̄

(2)
q ) induced by f ′.

Theorem 4.1 has the following corollary:

Corollary 4.1 Let N, Ñ be manifolds, let p : Ñ → N be a finite-sheeted cover-
ing, and let L be a local system of groups on Ñ . Then H∗(Ñ ,L) = H∗(N, p(L)),
where p(L) denotes the direct image of the system L.

♦
If L is the constant local system with fibre R, then the representation of

π1(N, x), x ∈ N in the fibre of p(L) is isomorphic to the natural action of
π1(N, x) on the vector space spanned by the elements of p−1(x). In particular,
if Ñ is simply connected and p is the quotient by a free action of a group G, we
get the regular representation of G (G acts on its group algebra by left shifts).

Recall that any irreducible real or complex representation of a finite group
G is included into the regular representation. If the representation is com-
plex, it is obvious. In the real case it follows from Schur’s lemma and
from the well-known fact that if R : G → GL(V ) and S : G → GL(W )
are real representations of G, and RC, SC are their complexifications, then
dimR(Hom(R,S)) = dimC(Hom(RC, SC)), where Hom(R,S) is the space of rep-
resentation homomorphisms between R and S (i.e. operators f : V → W such
that f(R(g)x) = S(g)f(x) for any g ∈ G, x ∈ V ).

The homological analogues of theorems 4.1 and 4.2 can be obtained by omit-
ting all bars over H-es and H-es. The cohomological versions of these theorems
can be obtained as follows: in theorem 4.1 the action of a loop γ is the inverse
of the cohomology map induced by f̃ : Lx → Lf(x), and in theorem 4.2 we have

to suppose that L1 is the inverse image of L2, i.e. that the restriction of f̃ over
each point is bijective.

Neither in the homological, nor in the cohomological analogue of theorem
4.2 we have to require for f to be proper.
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We shall also need the following version of Poincaré duality theorem:

Theorem 4.3 Let M be a orbifold of dimension n, and let L be a local system
on M , whose fibre is a real or complex vector space. Then we have

H∗(M,L ⊗Or(M)) ∼= H̄n−∗(M,L),

where Or(M) is the orienting sheaf of M .

♦
The following lemma allows us to calculate real cohomology groups of the

quotient of a semisimple connected Lie group by a finite subgroup with coeffi-
cients in arbitrary local systems. We shall use this lemma several times.

If X is a topological space, we shall denote by Rk(X) the constant sheaf on
X with fibre Rk. When this does not lead to a confusion, we shall write Rk

instead of Rk(X).

Lemma 4.1 Let G be a connected Lie group, let G1 be a finite subgroup of G,
and let p : G → G/G1 be the natural projection. Let L be a local system on
G/G1, and suppose that p−1(L) = Rk and that the action of π1(G/G1) on the
fibre of L is irreducible. Then the cohomology groups H∗(G/G1,L) are equal to
the groups H∗(G,R), if L = R, and are zero otherwise.

Proof. The case L = R is settled easily: the group G1 acts identically on
H∗(G), hence H∗(G,R) = H∗(G/G1,R).

Suppose now that L 6= R. If we apply Corollary 4.1 to the covering
G → G/G1, we obtain H∗(G,Rk(G)) = H∗(G/G1, p∗(Rk(G))). The action of
π1(G/G1) on a fibre of p∗(Rk(G)) is completely reducible, since this action fac-
torises through the homomorphism π1(G/G1) → G1. The representation of G1

in the fibre of p∗(Rk(G)) is the tensor product of the regular representation and
the trivial representation of dimension k, which implies that p∗(Rk(G)) contains
Rk(G/G1). On the other hand, p∗(Rk(G)) = p∗(p−1(L)) contains an isomor-
phic copy of L (indeed, since p is surjective, the canonical map L → p∗(p−1(L))
is injective, and the action of π1(G/G1) on a fibre of p∗(Rk(G)) is completely
reducible).

Since L 6= R, and the action of π1(G/G1) on a fibre of L is irreducible, we
conclude that

H∗(G,Rk) ∼= H∗(G/G1,R
k) ⊕H∗(G/G1,L) ⊕ something.

But H∗(G,Rk) ∼= H∗(G/G1,R
k), since G1 acts identically on H∗(G). There-

fore, the groups H∗(G/G1,L) are zero. ♦
After theorem 4.1 on page 18 we gave an explicit construction of local systems

that appear in the Leray spectral sequence of a locally-trivial fibration. However,
in many interesting cases we have a map that is “almost” a fibration, say the
quotient of a smooth manifold by an almost free action of a compact group
etc., and we would like to know, what the Leray sequence (which is defined for
any continuous map) looks like in this case. It turns out that in the case of
a quotient map the sheaves that occur in the Leray sequence can be explicitly
described (at least for some actions of some groups on some spaces).

Let us fix a smooth left action of a Lie group G on a manifold M . A
submanifold S ⊂ M is called a slice at x ∈ S for the action of G iff GS is
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open in M , and there is a G-equivariant map GS → G/Stab(x) such that the
preimage of Stab(x) under this map is S. Here GS is the union of the orbits of
all points of S, and Stab(x) is the stabiliser of x.

If G is compact, a slice exists for any action at every point x ∈M : provide
M with a G-invariant Riemannian metric and put S equal to the exponential
of an ε-neighbourhood of zero in the orthogonal complement of Tx(Gx) for any
sufficiently small ε. (Here Gx is the orbit of x.)

Theorem 4.4 Suppose that G is connected, and for any x ∈ M the group
Stab(x) is finite. Let L be a local system on M . Suppose that for any x ∈ M
there exist a connected Lie group G̃ and a finite covering α : G̃ → G such that
the inverse image of L|Gx under the map G̃ ∋ g 7→ α(g)x is constant. If there
exists a slice for the action of G at every point x ∈ M , then for any i the
sheaf Hi

L
on M/G generated by the presheaf U 7→ Hi(p−1(U),L) is isomorphic

to p(L) ⊗ Hi(G,R), where p : M → M/G is the natural projection, p(L) is
the direct image of L, and Hi(G,R) is the constant sheaf with fibre H i(G,R).
Moreover, if L = R, then p(L) = R.

Note that the sheaf H0
L

is canonically isomorphic to p(L) for any L.
Proof. Let us first consider the case L = R. We have to show that for

any i the sheaf Hi
R

is constant with fibre isomorphic to Hi(G,R). Let S be
a slice for the action of G at x ∈ M . It is easy to show that S is invariant
with respect to Stab(x) and GS is homeomorphic to G×Stab(x) S, which is the
quotient of G × S by the following action of Stab(x) : g(g1, x1) = (g1g

−1, gx1)
for any g ∈ Stab(x), g1 ∈ G, x1 ∈ S. This implies easily that for any x′ ∈M/G
a local basis at x′ is formed by open sets U ∋ x′ such that p−1(U) contracts to
p−1(x′). Hence the canonical map ρx′ : Hi

R
(x′) → Hi(p−1(x′),R), where Hi

R
(x)

is the fibre of Hi
R

over x, is an isomorphism.
Note that for any x ∈M the action map τx : G→ Gx, τx(g) = gx induces an

isomorphism of real cohomology groups (the existence of a slice at x implies that
Gx is homeomorphic to G/Stab(x), and, since G is connected, and Stab(x) is
finite, the real cohomology map induced by G→ G/Stab(x) is an isomorphism).
Let σ : M/G → M be any map, such that p ◦ σ = IdM/G. Now for any i, y ∈

Hi(G,R) define the section sy of Hi
R

as follows: sy(x′) = ρ−1
x′ ◦ (τ∗σ(x′))

−1(y).

Let U be a neighbourhood of x′ such that p−1(U) contracts to p−1(x′). It is
easy to check that for any y ∈ H i(G,R) there is a y′ ∈ Hi(p−1(U)) such that sy

coincides on U with the canonical section of Hi
R

over U defined by y′, so all maps
x′ 7→ sy(x′) are indeed sections. It follows immediately from the definition that
the section sy is nowhere zero if y 6= 0. Putting y equal to elements of some basis
in Hi(G,R), we obtain dim(Hi(G,R)) everywhere linearly independent sections
of Hi

R
, whose values span Hi

R
(x′) for any x′. Hence the map (x′, y) 7→ Fx′(y)

establishes an isomorphism between Hi
R

and Hi(G,R). The theorem is proven
in the case, when L = R.

Now suppose that the system L is arbitrary. Note that for any open subset
U of M/G there is a natural map (the ⌣-product)

H0(p−1(U),L) ⊗Hi(p−1(U),R) → Hi(p−1(U),L ⊗ R) ∼= Hi(p−1(U),L)

This gives us a map

H
0
L ⊗ H

i
R → H

i
L. (4.1)
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Due to the existence of a slice at each point of M the
groups H0

L
(x′),Hi

R
(x′),Hi

L
(x′) are canonically isomorphic to

H0(p−1(x′),L), Hi(p−1(x′),R), Hi(p−1(x′),L) respectively (for any x′ ∈M/G).
Under this identification the restriction of the map (4.1) to the fibre over a
point x′ ∈M/G is the cup product map

H0(p−1(x′),L) ⊗Hi(p−1(x′),R) → Hi(p−1(x′),L). (4.2)

Now take some x ∈ p−1(x′). There exist a connected Lie group G̃, a finite
subgroup G1 ⊂ G and a diffeomorphism β : (G̃/G1) → p−1(x′) such that
(β◦p1)

−1(L|p−1(x′)) is constant (here p1 : G̃→ G̃/G1 is the natural projection).
Hence, the action of π1(p

−1(x′)) in the fibre of L|p−1(x′) splits into a sum
of irreducible representations, i.e., L|p−1(x′) can be decomposed into a sum
L = ⊕Lj such that the action of π1(p

−1(x′)) on a fibre of each Lj is irreducible.
The proof of theorem 4.4 is completed by applying lemma 4.1 to each Lj . ♦

Note that there exists a natural action of the group GLn+1(C) on the space
Πd,n\Σd,n. It is quite easy to show that the stabiliser of any point of Πd,n \Σd,n

is finite (cf. [9, Proposition 4.2]). The existence of a slice at each point follows
either from the results of [8] or [10]. The following general result of C.A.M.
Peters and J.H.M. Steenbrink (see [11]) gives a complete description of the
Leray spectral sequence of the quotient map in this situation:

Theorem 4.5 If d > 2, then the rational cohomological Leray sequence of the
map Πd,n \ Σd,n → (Πd,n \ Σd,n)/GLn+1(C) degenerates in the term E2.

♦
We shall not use this theorem in the sequel, but we would like to point out

that it has the following interesting corollary in the real case:

Corollary 4.2 For any even n and for any d > 2, the cohomological Poincaré
polynomial (see page 1) of every connected component of the space Πd,n(R)\Σd,n

is divisible by (1 + t3)(1 + t7) · · · (1 + t2n−1).

Proof of corollary 4.2. For any odd k, the cohomological Poincaré polyno-
mial of Uk is the product of the Poincaré polynomials of SOk(R) and Uk/SOk(R)
(see, e.g. [3, Chapter 4]). Hence, the restriction H∗(Uk,R) → H∗(SOk(R),R)
is surjective for odd k, and the corollary follows.♦

4.2 Some technical lemmas

The following lemmas will be frequently used in our calculations:

Lemma 4.2 The group H̄∗(B(Cn, k),±R) is zero for any k ≥ 2, n ≥ 1.

Lemma 4.2 is a classical result on the cohomology of configuration spaces (see,
e.g., [15] for a proof; an alternative proof can be given using lemma 4.5 below).
♦
Remark. This lemma, which is modestly hidden somewhere in the middle of
the text, is the key to most calculations in the complex case. The absence of
the real analogue of this lemma is one of the reasons why in the real case the
number of examples that have been considered using the method of chapter 3
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is so limited; another reason may consist in the fact that all complex vector
bundles, as opposed to real vector bundles, are orientable (and even canonically
oriented).

Lemma 4.3 The group H̄∗(B(CP n, k),±R) for n ≥ 1 is isomorphic to
H∗−k(k−1)(Gk(Cn+1),R), where Gk(Cn+1) is the Grassmann manifold of k-
dimensional subspaces in Cn+1.

In particular, the group H̄∗(B(CP n, k),±R) is zero if k > n + 1. This lemma
follows easily from lemma 4.2 (see [14]). ♦

Lemma 4.4 If k ≥ 2, then the group H∗((S2)∗k,R) is zero in all positive di-
mensions, where (S2)∗k is the k-th self-join of S2.

Lemma 4.4 is proven in [14]. Alternatively, one can note that for any good
topological space X , the “stable” autojoin X∗∞, which is defined to be the
inductive limit

X ⊂ X∗2 ⊂ X∗3 ⊂ · · · ,

is contractible, hence the terms of positive dimension of the spectral sequence
that corresponds to this filtration kill each other. One can easily see that X∗n \
X∗(n−1), n ≥ 2, is fibered over B(X,n), the fibre being the open (n−1)-simplex,
and we have P̄ (X∗n \X∗(n−1)) = tn−1P̄ (B(X,n),±R). So, by lemma 4.3, for
X = S2 the only two nonzero columns of the corresponding spectral sequence
will be the 0-th and the 1-st ones; the differential d1 : E1

1,2 → E1
0,2 is nonzero,

and lemma 4.4 follows. ♦

Lemma 4.5 Let X be a good topological space such that the symmetric group
Sk, k > 0 acts identically on H̄∗(X×k,R). Then we have H̄∗(B(X, k),±R) = 0.

Proof. Let us prove that H̄∗(F (X, k),R) does not contain nonzero to-
tally antisymmetric elements. We have F (X, k) = X×k \Diag, where Diag =
{(x1, . . . , xk)|xi = xj for some i 6= j}. Since Sk acts identically on H̄∗(X×k,R),
an antisymmetric element in H̄∗(F (X, k),R) can come only from H̄∗(Diag,R).

For any i = 1, . . . , k − 1 set

Diagi = {(x1, . . . , xk)|#{x1, . . . , xk} = i},

where # denotes the cardinalty of a finite set. The absence of totally antisym-
metric elements in H̄∗(Diag,R) results from the following observations:

1. We have Diag = Diag1 ⊔ . . . ⊔ Diagk−1, and the closure in X×k of any
Diagi is

⋃

j≤i Diagj.

2. Every Diagi is the disjoint union of many copies of F (X, i), hence
H̄∗(Diagi) ∼=

⊕

many times H̄∗(F (X, i)).

3. For every copy of F (X, i) in Diagi there is a transposition from Sk that
acts identically on that copy.

The lemma is proven.♦
Consider the space C\{1,−1} and the coefficient system L on it that changes

its sign under any loop based at 0 that passes once around 1 or −1. Let f be
the map z 7→ −z and let f̃ : L → L be the map that covers f and is identical
over 0.
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Figure 4.1:

Proposition 4.1 The map f̃ acts on the groups H1(C \ {1,−1},L), H1(C \
{1,−1},L), and H̄1(C \ {1,−1},L) as the multiplication by −1.

♦
Consider B(C∗, 2), i.e. the space of pairs of points in C \ {0}. It is a fibre

bundle over C∗, the projection p : B(C∗, 2) → C∗ being just the multiplication.
The fibre is homeomorphic to C \ {1,−1}, and the action of the generator of
π1(C

∗) is z 7→ −z. The fibre p−1(1) contracts to the character “8”. Denote by
b, c the loops in p−1(1) based at {±i} and represented schematically on Figure
4.1; note that they correspond to the circles of the “8”. Denote by a the loop
t 7→ {ieπit,−ieπit}.

Consider the following three local systems on B(C∗, 2) (the fibre of each of
them is R):

1. A1 changes its sign under a and does not change its sign under b and c.

2. A2 changes its sign under b and c and does not change its sign under a.

3. A3 changes its sign under all loops a, b, c.

Note that we have A3 = ±R.
Let f be the map B(C∗, 2) → B(C∗, 2) induced by the map z 7→ 1/z and let

f i : Ai → Ai, i = 1, 2, 3 be the map that covers f and is identical over the fibre
p−1(1).

Proposition 4.2 1. P̄ (B(C∗, 2),A1) = P̄ (B(C∗, 2),A3) = t2(1 + t),
P̄ (B(C∗, 2),A2) = 0 (recall that we denote by P̄ the “Borel-Moore-
Poincaré” polynomial, see page 1).

2. The map f i
∗ acts as the identity on H̄3(B(C∗, 2),Ai) and as minus identity

on H̄2(B(C∗, 2),Ai) (i=1,3).
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Note that the lifting of the generator of π1(C
∗) is as follows: γ{a,b}(t) =

{aeπit, beπit}, where {a, b} ∈ p−1(1).
This assertion follows immediately from theorems 4.1 and 4.2. ♦



Chapter 5

Smooth plane quintics

In this chapter we use the method described in chapter 3 to calculate the real
cohomology groups of the space of polynomials that define smooth complex
plane projective quintics. Recall that on page 1 we defined the spaces Πd,n and
Σd,n for any integers d, n ≥ 1.

Theorem 5.1 The Poincaré polynomial of the space Π5,2 \ Σ5,2 is equal to

(1 + t)(1 + t3)(1 + t5).

By the Alexander duality, the cohomology group of Π5,2 \Σ5,2 is isomorphic
to the Borel-Moore homology of Σ5,2:

Hi(Π5,2 \ Σ5,2,R) = H̄2D−1−i(Σ5,2,R),

where D = dimC(Π5) = 21 and 0 < i < 2D−1. This reduction was used first by
V. I. Arnold in [2]. To calculate the latter group H̄∗(Σ,R) we use the method
constructed in chapter 3. It is described by the following theorem.

Theorem 5.2 There exists a spectral sequence that converges to the real Borel-
Moore homology of the space Σ5,2 and is defined by the following conditions:

1. Any its nontrivial term E1
p,q belongs to the quadrilateral in the (p, q)-

plane, defined by the conditions [1 ≤ p ≤ 3, 29 ≤ q ≤ 39].
2. In this quadrilateral all the nontrivial terms E1

p,q look as is shown in
(5.1).

3. The spectral sequence stabilises in this term, i.e. E1 ≡ E∞.

39 R

38
37 R

36
35 R R

34
33 R

32
31 R

30
29 R

1 2 3

(5.1)

26
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The rest of this chapter is devoted to the proof of theorem 5.2. Put V =
Π5,2,Σ = Σ5,2. In the sequel, by a conic we shall mean any curve of degree
2 in CP 2. We shall say that points x1, . . . , xk ∈ CP 2 are in general position,
if among these points there are no 3 points that are on the same line, no 6
points on a conic, no 10 points on a cubic, etc. A line l ⊂ CP 2 is said to
be nontangential to an algebraic curve C, if l ∩Q consists of degC points. By
definition, lines l1, . . . , lk ⊂ CP 2 are in general position, if the elements of CP 2∨

corresponding to l1, . . . , lk are in general position.

5.1 Configuration spaces

Proposition 5.1 The configuration spaces X1, . . . , X42 that consist of the fol-
lowing configurations satisfy Conditions 1–7 and Condition 8 (see pages 13 and
16). The number indicated in brackets equals the dimension of L(K) for K lying
in the corresponding Xi.

1. One point in CP 2 (18).

2. 2 points in CP 2 (15).

3. 3 points in CP 2 (12).

4. 4 points on a line (11).

5. 5 points on a line (10).

6. 6 points on a line (10).

7. 7 points on a line (10).

8. 8 points on a line (10).

9. 9 points on a line (10).

10. 10 points on a line (10).

11. A line in CP 2 (10).

12. 4 points in CP 2 not on a line (9). (Any three of them may belong to a
line though.)

13. 4 points on a line + a point not belonging to the line (8).

14. 5 points on a line + one point not belonging to the line (7).

15. 6 points on a line + one point not belonging to the line (7).

16. 7 points on a line + one point not belonging to the line (7).

17. A line in CP 2+ a point not belonging to the line (7).

18. 5 points in CP 2 such that there is no line containing 4 of them (6).

19. 4 points on a line + 2 points not belonging to the line (5).

20. 5 points on a line + 2 points not belonging to the line (4).
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21. 6 points on a line + 2 points not belonging to the line (4).

22. A line in CP 2+ 2 points not belonging to it (4).

23. 3 points on each of two intersecting lines such that none of the points
coincides with the point of intersection (4).

24. 6 points on a nondegenerate conic (4).

25. A configuration of type 23 + the point of intersection of the lines (4).

26. 6 points not belonging to a (possibly degenerate) conic such that there is
no line containing 4 of those points (3).

27. 4 points on a line + 3 points on another line such that none of the 7 points
coincides with the point of intersection of the lines (3).

28. 5 points on a line l1 + 3 points on l2 \ l1, where l2 is a line 6= l1 (3).

29. A line + 3 points of some other line, none of which coincides with the
point of intersection of the lines (3).

30. 4 points on a line + 4 points on some other line such that none of the 8
points coincides with the point of intersection of the lines (3).

31. A union of two lines in CP 2 (3).

32. 7 points on a nondegenerate conic (3).

33. A nondegenerate conic (3).

34. 4 points on a line + 3 points in general position not belonging to the line
(2).

35. A configuration of type 23 + a point not belonging to the union of the lines
(1).

36. 6 points on a nondegenerate conic + a point not belonging to the conic
(1).

37. A configuration of type 35 + the point of intersection of the lines (1).

38. 4 points A,B,C,D ∈ CP 2 in general position + 4 points of intersection
of a line l not passing through A,B,C,D and two (possibly degenerate)
conics passing through A,B,C,D and not tangential to l (1).

39. 3 points A,B,C ∈ CP 2 in general position + 6 points of intersection of
3 lines AB,BC,AC and a (possibly degenerate) conic not passing through
A,B,C, and not tangential to the lines AB,BC,AC (1).

40. 10 points of intersection of 5 lines in CP 2 in general position (1).

41. A line in CP 2+ 3 points in general position not belonging to the line (1).

42. The whole CP 2 (0).
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♦

Proof. Condition 1 follows from the following observations: 1. the singular
set of a curve defined by a product of two polynomials is the union of the singular
sets of the curves defined by those polynomials and the intersection points of
the curves; 2. the singular set of an irreducible curve of degree 5 consists of 1
to 6 points in general position; 3. all possible singular sets of curves of degree
≤ 4 are described in [14]. Note that some spaces Xi contain (or consist of)
configurations that are not sets of singular points of any curve of degree 5. We
introduce them to make sure that Conditions 5 and 8 are satisfied.

The verification of Conditions 2, 4 and 8 is straightforward.
Condition 3 will be deduced below from the following lemma.

Lemma 5.1 1. Let x1, . . . , xk, k ≤ 6, be several points in general position
in CP 2. Then the complex dimension of the space L({x1, . . . , xk}) (which
consists of polynomials of degree 5 that have singularities at all points
x1, . . . , xk and, maybe, elsewhere) is equal to 21 − 3k.

2. Let l1, l2 be two distinct lines in CP 2. Suppose that
a) x1, x2, x3 ∈ l1 \ l2,
b) y1, y2, y3 ∈ l2 \ l1,
c) A 6∈ l1 ∪ l2.
Then there exists exactly one cubic passing through all the points
xi, yj , i, j = 1, 2, 3 and having a singularity at A.

3. Let Q be a nondegenerate conic in CP 2, and suppose that x1, . . . , x6 ∈
Q,A 6∈ Q. Then there exists exactly one cubic passing through x1, . . . , x6

and having a singularity at A.

4. If a curve of degree 5 has three singular points on a line, then it contains
the line. If a curve of degree 5 has six singular points on a nondegenerate
conic, then it contains the conic.

5. Consider a point A ∈ CP 2. For any d define Lx
d(A) (respectively,

Ly
d(A), Lz

d(A),Md(A)) as the linear space of homogeneous polynomials f

of degree d such that ∂f
∂x = 0 (respectively, ∂f

∂y = 0, ∂f
∂z = 0, f = 0) at

every point of the preimage of A under the natural map C3 \ {0} → CP 2.
Suppose that l is a line in CP 2, x1, x2, x3, x4 ∈ l, y1, y2, y3 6∈ l, and suppose
that y1, y2, y3 are not on a line. Then

dimC((∩4
i=1M4(xi)) ∩ (∩3

i=1L
x
4(yi)) ∩ (∩3

i=1L
y
4(yi)) ∩ (∩3

i=1L
z
4(yi))) = 2.

Remark. Assertion 5 of lemma 5.1 implies that the thirteen hyperplanes
M4(xi), i = 1, . . . , 4, Lx

4(yi), L
y
4(yi), L

z
4(yi), i = 1, 2, 3 intersect transversally.

Let us prove the first assertion of the lemma. Suppose that x1, . . . , x6 are
points of CP 2 in general position. It suffices to prove that 18 linear conditions on
the space Π5,2 that define the space L({x1, . . . , x6}) are independent. Suppose
they are not, then dimC L({x1, . . . , x6}) ≥ 4. Choose a point x′ such that
x1, . . . , x6, x

′ are in general position. The space L({x1, . . . , x6, x
′}) would be

then of dimension ≥ 1, which is impossible, because no curve of degree 5 can
have 7 singular points in general position (if the curve is irreducible, this follows
from [12, exercise 3, §2 of Chapter III], otherwise this is trivial).



30 CHAPTER 5. SMOOTH PLANE QUINTICS

The assertions 2, 3, 5 can be proved in an analogous way. The assertions 4
follows from Bézout’s theorem. ♦

Let us prove now that the spaces Xi introduced in proposition 5.1 satisfy
Condition 3. The case of X1 and X2 is obvious. If we have a configuration
K that consists of three points in CP 2 that do not belong to any line, then
using the first assertion of lemma 5.1, we get dimC L(K) = 21 − 9 = 12. If
K ⊂ CP 2 consists of three points on a line l ⊂ CP 2, then due to assertion 4
of lemma 5.1, any function f ∈ L(K) has the form f = gh, where g is a fixed
linear homogeneous function, and h is a polynomial that defines a curve that
intersects l in every point of K and, maybe, elsewhere. Using assertion 5 of
lemma 5.1, we obtain dimC L(K) = 15 − 3 = 12. We have thus proven that
dimC L(K) = 12 for any K ∈ X3.

The case of X4 can be considered in an analogous way.
If a curve of degree 5 contains five singular points on a line, then this curve

is defined by a polynomial of the form f2g, where f is a polynomial that defines
the line, and g is a polynomial of degree 3. This gives the dimensions of all
spaces L(K),K ∈ X5, . . . , X11, X14, . . . , X17, X20, . . . , X22.

Consider a configuration K ∈ X12. If no three of the points of K are on a
line, we have dimC(L(K)) = 21 − 12 = 9 by the assertion 1 of lemma 5.1. If
K contains 3 points on a line l, then, due to assertion 4 of lemma 5.1, every
f ∈ L(K) has the form f = gh, where g is a fixed polynomial of degree 1, and
h is an arbitrary polynomial of degree 4 that defines a curve that has 3 fixed
intersection points with l and a fixed singular point outside l. Using assertion 5
of the same lemma (the transversality of intersection), we see that the dimension
of L(K) is equal to 15− 3− 3 = 9. The same argument gives the dimensions of
L(K),K ∈ X13, X19, X34, X18, X26.

Note that if l1, l2 are two distinct lines in CP 2, x1, x2, x3 ∈ l1 \ l2, y1, y2, y3 ∈
l2 \ l1, A 6∈ l1 ∪ l2, then assertion 2 of lemma 5.1 implies that

dimC(

3
⋂

i=1

M3(xi)) ∩ (

3
⋂

i=1

M3(yi)) ∩ L
x
3(A) ∩ Ly

3(A) ∩ Lz
3(A) = 1,

which means that nine hyperplanes M3(xi),M3(yi), i = 1, 2, 3, Lx
3(A), Ly

3(A),
and Lz

3(A) intersect transversally. This gives the dimensions of L(K),K ∈
X23, X25, X35, X37. The same argument works for X24, X36, except that we
apply assertion 3 of lemma 5.1 (instead of assertion 2).

It is easy to see that for anyK ∈ X27, . . . , X31 the vector space L(K) consists
of polynomials of the form f2g2h, where f, g are some fixed polynomials of degree
1 that define two distinct lines, and h is an arbitrary polynomial of degree 1.
Analogously, for anyK ∈ X32, X33 the space L(K) consists of polynomials of the
form f2g, where f is a fixed polynomial of degree 2 that defines a nondegenerate
conic, and h is an arbitrary polynomial of degree 1.

Consider a configuration K ∈ X38 and f ∈ L(K). It follows from assertion
4 of lemma 5.1 that f = gh, where g is a polynomial of degree 1, and h is
a polynomial of degree 4 that has singularities at four points A,B,C,D in
general position outside the line l defined by g. This implies that h = h1h2,
where h1, h2 are polynomials of degree 2 that define two conics Q1, Q2 passing
through A,B,C,D. f must also have singularities at four points on l, hence
each of these four points belongs to exactly one of the conics Q1, Q2. It follows
that f is defined by K up to multiplication by a nonzero constant.
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Analogously it can be proved that for any K ∈ X39, X40 and any f ∈ L(K),
f is defined by K up to nonzero constant. The cases X41, X42 are trivial. Thus,
we have proved that the spaces Xi satisfy Condition 3.

Let us prove now that these spaces satisfy Conditions 6 and 7. Recall that
the spaces Xi satisfy Condition 8. This implies (see p. 13) that for the spaces
Xi consisting of finite configurations Condition 7 follows from Condition 6.
Consider some Xi that consists of finite configurations. It is immediate to check
that the number of elements in all configurations from Xi is the same. Denote
this number by k. Put Mk = {(x,K)|x ∈ CP 2,K ⊂ CP 2,#(K) = k, x ∈ K}
(here and below, for a finite set K we denote by #(K) the cardinality of K). It
is easy to see that Mk is the total space of a fibre bundle over B(CP 2, k) (with
the projection (x,K) 7→ K). The triple (Ti, Xi, pri) is the restriction of this
fibre bundle to Xi.

Thus, all spaces Xi that consist of finite configurations satisfy Conditions 6
and 7.

Now consider, for instance, the space X31. Note that if G is a Lie group that
acts smoothly on a smooth manifold M and a ∈ M , there exist submanifolds
S ⊂M,S′ ⊂ G such that

1. a ∈ S, e ∈ S′ (e is the unit element of G),

2. S′ is transversal to Stab(a) at e,

3. S′a ⊂M is a submanifold that intersects S transversally at a (here S′x =
{gx|g ∈ S′}),

4. the map S × S′ → M , defined by (a′, g) 7→ ga′, g ∈ S′, a′ ∈ S is a
diffeomorphism onto an open neighbourhood of a in M .

Put M = X31, G = PGL(CP 2). The action of G on M is transitive, so for
any K ∈ X31 the above remark gives us a neighbourhood U ∋ K and a dif-
feomorphism r : U → S′, S′ ⊂ PGL(CP 2) such that for any K ′ ∈ U we have
r(K ′)K = K ′. Now for any x ∈ K and K ′ ∈ U , put t(x,K ′) = r(K ′)x. It is
clear that the map (x,K ′) 7→ (t(x,K ′),K ′) is a local trivialisation of T31 over U .
This trivialisation satisfies Condition 7, since all spaces Xi are invariant under
PGL(CP 2).

Local trivialisations of tautological bundles over the spaces
X11, X17, X22, X41, and X33 can be constructed in the same way.

However, this method does not work for X29, because the action of
PGL(CP 2) on this space is no longer transitive. But we can proceed as follows.
Consider K ∈ X29. We haveK = K1⊔K2, whereK1 is a line, andK2 consists of
three points of another line. Denote by B′ the space of all configurations of CP 2

consisting of three points on a line. Let U1 (respectively, U2) be neighbourhoods
of K1 in X11 (respectively, of K2 in B′) such that the bundle (T11, X11, pr11) is
trivial over U1, (T3, X3, pr3) is trivial over U2, and for every K ′

1 ∈ U ′
1,K

′
2 ∈ U ′

2

we have K ′
1 ∩K

′
2 = ∅. For j = 1, 2 let tj : Kj ×Uj → CP 2 be a map such that

the map (x,K ′
j) 7→ (tj(x,K

′
j),K

′
j), x ∈ Kj,K

′
j ∈ Uj is a trivialisation of the cor-

responding tautological bundle over Uj. Put U = {K ′
1⊔K

′
2|K

′
1 ∈ U ′

1,K
′
2 ∈ U ′

2},
and for anyK ′ = K ′

1⊔K
′
2 ∈ U put t(x,K ′) equal to tj(x,K

′
j), if x ∈ Kj, j = 1, 2.

It is clear that U is an open neighbourhood of K in X29 and that the map
(x,K ′) 7→ (t(x,K ′),K ′) is a trivialisation of (T29, X29, pr29) over U . It follows
from the construction of t that for any fixed K ′ ∈ U , the map x 7→ t(x,K ′)
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establishes a bijective correspondence between the subsets of K and K ′ that
belong to

⋃

j≤29Xj. (Due to Condition 8, this needs to be checked only for
maximal finite subconfigurations of K (which belong to X28, X21, X16, X10) and
for nondiscrete subconfigurations (which belong to X11, X17, X22).)

We have shown that the spaces Xi satisfy Conditions 6 and 7. It remains to
verify Condition 5.

Let us begin with the following three lemmas.

Lemma 5.2 Denote by Πd the vector space of all homogeneous polynomials
C3 → C of degree d. The map Πd \ {0} → 2CP 2

that sends a polynomial into
the projectivisation of the set of its zeroes is continuous.

♦

Corollary 5.1 The subspace of 2CP 2

consisting of all zero sets of homogeneous
polynomials of some fixed degree is closed.

Remark. In the case of real polynomials, the analogous map to the real
projective plane is neither everywhere defined nor continuous on its domain of
definition.

For any f ∈ Πd \ {0} denote by [f ] the image of f under the natural map
Πd \ {0} → (Πd \ {0})/C∗.

Lemma 5.3 Suppose we have a sequence (Ki),Ki ∈ 2CP 2

, and a sequence
(Fi), Fi ∈ Πd \ {0}, and suppose that Fi has a singularity at every point of

Ki. If K ∈ 2CP 2

, f ∈ Πd \ {0} are such that limi→∞Ki = K, limi→∞[f ]i = [f ],
then f has a singularity at every point of K.

♦

Lemma 5.4 Suppose we have sequences (Li) and (Mi) in 2CP 2

and suppose

that K ∈ 2CP2

,K = limi→∞(Li ∪Mi). Then there exists a sequence of indices
(ij) such that K = (limj→∞ Lij

) ∪ (limj→∞Mij
).

Proof of lemma 5.4. Choose a sequence (ij) such that there exist
limi→∞ Li, limi→∞Mi, and denote these limits by L,M respectively. Let ρ be
a metric that induces the usual topology on CP 2, and let ρ̃ be the correspond-
ing Hausdorff metric on 2CP2

. If A,B,C,D ∈ 2CP 2

, then ρ̃(A ∪ B,C ∪ D) ≤
ρ̃(A,C)+ρ̃(B,D). This implies that ρ̃(Mij

∪Lij
,M∪L) ≤ ρ̃(Mij

,M)+ρ̃(Lij
, L).

Hence M ∪ L = limj→∞(Mij
∪ Lij

) = limi→∞(Mi ∪ Li) = K.♦
Now the verification of Condition 5 becomes straightforward in all cases ex-

cept X38, X39, X40. Consider, for instance, K ∈ X̄30. We have K = limi→∞Ki,
since all Ki ∈ X30, they can be represented as Ki = (Ki ∩ l

i
1)∪ (Ki ∩ l

i
2), where

li1, l
i
2 are lines. Due to lemma 5.4 we can suppose that K = (limi→∞(Ki ∩ l

i
1))∪

(limi→∞(Ki ∩ li2)). Using Corollary 5.1, we can suppose that the sequences
(li1), (l

i
2) converge. Applying proposition 3.2, we see that K is a configuration

of the form (≤ 4 points on a line l1)∪(≤ 4 points on a line l2). All such config-

urations belong to
⋃30

i=1Xi.
However, this argument does not work for X38, X39, X40. Let us see, what

happens in these cases. Consider, for instance, K ∈ X38. Using lemma 5.3, we
see that K is included into the singular set of some polynomial f of degree 5. If
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this singular set is discrete, there is nothing to prove: due to Conditions 1 and
8, if a subset of a discrete singular set consists of ≤ 8 elements, then this subset
belongs to

⋃38
i=1Xi. Otherwise we can do the following.

We have K = limi→∞Ki, where all Ki are of the form (Qi
1∩Q

i
2)∪(Qi

1∩ l
i)∪

(Qi
2 ∩ l

i), Qi
1 and Qi

2 are conics, li are lines. Applying lemma 5.4 and Corollary
5.1, we can assume that

K = ( lim
i→∞

(Qi
1 ∩Q

i
2)) ∪ ( lim

i→∞
(Qi

1 ∩ l
i)) ∪ ( lim

i→∞
(Qi

2 ∩ l
i))

and that the sequences (Qi
1), (Q

i
2) and (li) converge. Denote the limits of these

sequences by Q1, Q2 and l respectively.
f can have the following nondiscrete singular sets: a line of multiplicity ≥ 2,

two double lines, a double line + a triple line, a double nondegenerate conic.
Let us consider all these cases.

A double line. In this case we have the following possibilities:
1. Q1 = m1 ∪m2, Q2 = m1 ∪m3, where m1,m2,m3, l are 4 pairwise distinct

lines. limi→∞(Qi
1 ∩ Qi

2) is included into a configuration of the form (3 points
on m1){the point m2 ∪m3}. Thus, K is included into a configuration of the
form (the points l ∩m1, l ∩m2, l ∩m3 and m2 ∩m3)∪(3 points on m1). Such a
configuration is a subset of a configuration from X34 or X20.

2. Q1 = l∪m, wherem 6= l, and Q2 contains neither l norm. limi→∞(Qi
1∩l

i)
consists of one or two points on l. Hence K is included into a configuration of
the form (Q2 ∩ l) ∪ (Q2 ∩m)∪(2 points on l), which contains ≤ 6 points.

3. Q1 = m 6= l, Q2 contains neither l norm. K = (m∩l)∪(Q2∩l)∪(Q2∩m),
hence K contains ≤ 5 points.

A triple line. In this case K is included into a configuration of the form (a
line)+(a point). Hence K is a subset of a configuration from X8 or X16.

A line of multiplicity ≥ 4. K is a subset of a configuration from X8.
Two double lines or a double line + a triple line. K is a subset of the union

of 2 lines and #(K) ≤ 8. All such configurations belong to
⋃30

i=1Xi.
A double nondegenerate conic. We have that Q1 = Q2 is nondegenerate.

limi→∞(Qi
1 ∩ Qi

2) is included into a subconfiguration of the form (4 points on
Q1), limi→∞(Qi

1 ∩ l
i) = limi→∞(Qi

2 ∩ l
i) contains 1 or 2 points on Q1. Thus, K

is included into a configuration from X24.
We have checked Condition 5 forX38. The spacesX39, X40 can be considered

in a similar way.
Proposition 5.1 is proven. ♦

Now we apply theorem 3.2 and lemmas 3.1,3.2 to construct a conical reso-
lution σ and a filtration ∅ ⊂ F1 ⊂ · · · ⊂ F42 = σ. The spectral sequence (5.1)
is exactly the sequence corresponding to this filtration.

Most of the columns of the sequence (5.1) can be investigated in essentially
the same way as in the case of nonsingular quartics considered in [14]. We shall
only discuss the columns that need a somewhat different argument. We shall
use the notations from the article [14] if not indicated otherwise.

5.2 Column 38

Let X38 be the space of all configurations of type 38 (see proposition 5.1). From
lemma 3.1 we get
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E1
38,i = H̄38+i−2−7(X38,±R), (5.2)

X38 is naturally fibered over the space B̃(CP 2, 4) of generic quadruples
{A,B,C,D} ⊂ CP 2. Let us denote by Y the fibre of this bundle, i.e. the
space of all configurations from X38 such that the points of intersection of the
conics are fixed.

Lemma 5.5 The term E2 of the spectral sequence of the bundle X38 →
B̃(CP 2, 4) is trivial.

The proof will take the rest of the section.
Denote by L the space of all lines not passing through four points A,B,C,D

in general position in CP 2. For any such line l denote by Z the space of conics
passing through A,B,C,D and not tangential to l. The space Z is homeomor-
phic to (S2 minus 2 points)= C∗.

Y is fibered over L with fibre B(Z, 2) = B(C∗, 2).

Lemma 5.6 The Borel-Moore homology group of the fibre Y of the bundle
X38 → B̃(CP 2, 4) can be obtained from the spectral sequence of the bundle
Y → L, whose term E2 is as follows:

3 R3 R3 R

2 R

2 3 4
(5.3)

Proof. Recall that B(C∗, 2) is a fibre bundle with base C∗ and fibre C \
{1,−1}. Let us study the restriction of the coefficient system ±R to the fibre
B(C∗, 2) of the bundle Y → L. This system changes its sign, when one of
the points passes around zero (and the other stands still). This corresponds
to the fact that if we fix all points in the configuration except the points of
intersection of the line and one of the conics, we can transpose those points.
On the contrary, a loop that transposes two conics, transposes two pairs of
points and does not change the sign of the coefficient system. We see that
the loops of the fibre do not change the sign of the coefficient system, and
some loop that projects onto the generator of π1(C

∗) (and hence any other
such loop) does. So ±R|B(C∗, 2) is the system A1 of proposition 4.2. We have
H̄2(B(C∗, 2),A1) = H̄3(B(C∗, 2),A1) = R.

The space L is homeomorphic to C2 minus the union of three complex lines
in general position. We have H̄i(L) = R3 if i = 2, 3, H̄i(L) = R if i = 4 and
H̄i(L) = 0 otherwise. We shall complete the proof of lemma 5.6 in the following
two lemmas.

Lemma 5.7 Let l(t) be a loop in L that moves a line l = l(0) around one of
the points A,B,C,D. Let Z be the space of conics passing through A,B,C,D
and not tangential to l. We can identify Z with C∗ (choosing an appropriate
coordinate map z : Z → C∗) in such a way that the map Z → Z induced by
l(t) can be written as z 7→ 1/z. If moreover A = (1, 0), B = (−1, 0), C =
(0, 1), D = (0,−1), l(t) = {x = α(t)}, α(t) = 1 + εe2πit, where ε = 2√

3
− 1, then

the conics q1 = {xy = 0} and q2 = {x2 + y2 = 1} are preserved, and the points
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of intersection of q1 and l are preserved, while the points of intersection of q2
and l are transposed.

Proof. Denote by Q the space of conics passing through A,B,C,D. These
conics can be written as follows:

ax2 + ay2 + bxy − a = 0.

Such a conic is tangential to l(t) if and only if

(bα(t))2 − 4a2α(t)2 + 4a2 = 0. (5.4)

Note that if t = 0, then α(0) = 2√
3
, and the condition (5.4) becomes simply

a2 = b2. The map Ft : Q → Q that carries the conics tangential to l to the
conics tangential to l(t) can be written as

(a, b) 7→ (
1

2
· a

√

α2/(α2 − 1), b).

If α(t) is as above,
√

α2/(α2 − 1) changes its sign, so the map F1(a, b) = (−a, b).
The desired coordinate z ∈ C∗ is z = (b+a)/(b−a). Note that z(q1) = 1, z(q2) =
−1, z(−a, b) = 1/z(a, b). The conics q1 and q2 are preserved under any map
Ft. The points of intersection of q1 and l are clearly preserved. The assertion
concerning the points of intersection of q2 and l can be verified immediately.
Lemma 5.7 is proven. ♦

Now we can describe the action of π1(L) on the Borel-Moore homology of
the fibre B(Z, 2) = B(C∗, 2) of the bundle Y → L.

Lemma 5.7 tells us that the points of intersection of exactly one conic of q1, q2
are transposed. Hence the covering map of coefficient systems ±R|B(C∗, 2) →
±R|B(C∗, 2) is minus identity over the configuration {1,−1} ∈ B(C∗, 2). This
implies that the fibre of the coefficient system over the pair, say {i,−i}, is
mapped identically.

Applying proposition 4.2, we obtain immediately that
H̄2(B(Z, 2),±R|B(Z, 2)) is multiplied by −1 and H̄3(B(Z, 2),±R|B(Z, 2)) is
preserved.

Thus, the 3-d line of the sequence (5.3) contains the Borel-Moore homology
of L with constant coefficients. In order to obtain the 2-nd line we must calculate
the Borel-Moore homology of L with coefficients in the system L that changes
its sign under the action of any loop in CP 2∨ that embraces exactly one of the
lines corresponding to the points A,B,C,D.

Lemma 5.8 Let L be the complement in CP 2 of four complex lines in general
position. Let f : L→ L be the restriction to L of the projective linear map that
transposes two of these lines and preserves the other two, and let f̃ : L → L be
the map that covers f and is identical over some point of L that is preserved
under f . Then

a) the Poincaré polynomial of L with coefficients in L equals t2, and
b) the map f̃ multiplies by −1 the groups H2(L,L) and H̄2(L,L).

Note that if f̃ is the identity over some fixed point of f , then it is the identity
over any other fixed point; this follows from the fact that the set of fixed points
of f is connected.
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Proof of lemma 5.8. Identify L with the space C2 \ ({z1 = 0} ∪ {z2 =
0} ∪ {z1 + z2 = 1}). Consider the map p : L→ C \ {1}, p(z1, z2) = z1 + z2. Put
A1 = p−1(U1(0)), A2 = p−1(C \ {0, 1}), where U1(0) is the open unit disc.

The space A1 is homotopically equivalent to the torus {(z1, z2)||z1| =
1
3 , |z2| = 1

3}. The loops in A1 defined by the formulas t 7→ 1
3 (e2πi, 1) and

t 7→ 1
3 (1, e2πi) act non-trivially on the fibre of L, which implies that the coho-

mology groups H∗(A1,L) are zero.
The restriction p|A2 is a fibration. The restriction of L to the fibre p−1(1

2 )
in nontrivial, hence we have that Hi(p−1(1

2 ),L) is isomorphic to R if i = 1 and
is zero otherwise. Define the loops α and β in the space C \ {0, 1} as follows:
α : t 7→ 1 − 1

2e
2πit, β : t 7→ 1

2e
2πit. It is easy to check that both of them induce

the identical mapping of p−1(1
2 ) (hence the space A2 is in fact homeomorphic

to the direct product C \ {0, 1} × p−1(1
2 )). Note, moreover, that a lifting of α

into A2 changes the sign of L, while a lifting of β does not. Now it is clear
that the Poincaré polynomial P (A2,L) is equal to t2 and that the inclusion
A1 ∩ A2 = p−1(U1(0) \ {0}) ⊂ A2 induces an isomorphism of 2-dimensional
cohomology groups with coefficients in L.

Now consider the cohomological Mayer-Vietoris sequence corresponding to
L = A1 ∪A2. Its only nontrivial terms will be

H1(A1 ∩A2,L) → H2(L,L) → H2(A1,L) ⊕H2(A2,L) → H2(A1 ∩A2,L)

The map on the right is an isomorphism, hence so is the map on the left. So
we have P (L,L) = t2.

The map f preserves each fibre of p. Moreover, using the Künneth formula
and proposition 4.1, we obtain that f̃ acts on the groups H∗(A1 ∩ A2,L) as
multiplication by −1. Since the boundary operator commutes with f̃ , we obtain
the assertion of the lemma concerning the group H2(L,L). The assertion about
the Borel-Moore homology group follows from the Poincaré duality and the fact
that f preserves the orientation. ♦

Lemma 5.6 follows immediately from lemma 5.8. ♦
To complete the proof of lemma 5.5 we must calculate the action of

π1(B̃(CP 2, 4)) on the Borel-Moore homology groups of Y obtained from the
spectral sequence (5.3). This will be done in the following three lemmas.

Lemma 5.9 A loop γ(t) in B̃(CP 2, 4) that belongs to the image of
π1(F̃ (CP 2, 4)) under the natural map F̃ (CP 2, 4) → B̃(CP 2, 4) induces the iden-
tical map of the fibre Y and preserves the coefficient system ±R|Y over it.

Note that π1(F̃ (CP 2, 4)) ∼= Z3 (because F̃ (CP 2, 4) is diffeomorphic to
PGL(CP 2), which is the quotient of SL3(C) by its center).

Proof of lemma 5.9. We can represent every γ ∈ π1(B̃(CP 2, 4)) as follows:
γ(t) = {A(t), B(t), C(t), D(t)}, whereA(t), . . . , D(t) are some paths in CP 2 such
that for any t the points A(t), B(t), C(t), and D(t) are in general position. If
we have a γ that comes from π1(F̃ (CP 2, 4)), we have A(0) = A(1), . . . , D(0) =
D(1). Denote by Yt the fibre of the bundle X38 → B̃(CP 2, 4) over γ(t). Note
that for any t there exists a unique projective linear map M(t) that carries A(0)
into A(t), B(0) into B(t), C(0) into C(t) and D(0) into D(t). This map induces
the map Ft : Y0 → Yt. The map F1 is clearly identical. Moreover, if we have
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a configuration K ∈ Y0, then the curve in X starting at K and covering γ is
t 7→M(t)K. Since M(1) = IdCP 2 , γ does not transpose any pair of points from
K. The lemma is proven. ♦

Lemma 5.10 1. A loop γ ∈ π1(B̃(CP 2, 4)) transposing the points A and
B induces a bundle map F1 : Y → Y . This map is covered by a map
F1 : ±R|Y → ±R|Y .

2. The corresponding map of L into itself is obtained from the projective
linear map of CP 2 that transposes the points A and B and preserves C
and D.

3. Let l be a line that is preserved under the transposition of A and B. The
restriction of F1 to the fibre over l is the map B(C∗, 2) → B(C∗, 2) induced
by z 7→ 1/z. The restriction of F1 to this fibre is minus identity over the
pair {i,−i}.

4. The map F1|B(Z, 2) acts on the group H̄3(B(Z, 2),±R|B(Z, 2)) as mul-
tiplication by −1 and acts on the group H̄2(B(Z, 2),±R|B(Z, 2)) as the
identical operathor; here B(Z, 2) is the fibre of the bundle Y → L over
some line from L that is preserved under the transposition of A and B.

Proof. Proceeding as in the proof of lemma 5.9 we obtain bundle maps
Ft : Y0 → Yt. The map F1 : Y0 → Y1 = Y0 is induced by the projective
linear map preserving C and D and transposing A and B. Note that the map
F1 : ±R|x → ±R|x, where x ∈ Y, F1(x) = x is just the map induced by the
loop t 7→ Ft(x). Now let A,B,C,D be the following points of the affine plane
C2 ⊂ CP 2: A = (1, 0), B = (−1, 0), C = (0, 1), D = (0,−1). Put l = ∞. Then
the map F1 is induced by the linear map with the matrix

(

−1 0
0 1

)

This map preserves the line l = ∞ and transposes the conics tangential to l.
Identify Z with C∗, and choose a coordinate z ∈ C∗ such that the induced map
can be written as z → 1/z. Note that the conics in the pair that correspond
to {i,−i} are transposed, and the pair itself is preserved. Thus, the loop γ
transposes 3 pairs of points over this pair, and hence the coefficient system
±R|B(Z, 2) becomes multiplied by −1.

We have proved the first three assertions of lemma 5.10. The fourth assertion
follows immediately from proposition 4.2. ♦

Now we can easily obtain the map of the sequence (5.3) induced by F1. The
third line of the sequence (5.3) contains the groups H̄i(L, H̄3), where H̄3 is the
constant local system on L with fibre H̄3(B(Z, 2),±R|B(Z, 2)). Since the map
F1 multiplies the fibre of H̄3 by −1, it multiplies H̄4(L, H̄3) = E1

4,3 by −1. The

second line of the sequence (5.3) contains the groups H̄i(L, H̄2), where H̄2 is
the local nonconstant system on L considered in lemma 5.8. Due to lemma 5.10
F1 preserves the system H̄2 over some point of L. We obtain from lemma 5.8
that γ multiplies H̄2(L, H̄2) = E1

2,2 by −1.

It is easy to see that the action of π1(B̃(CP 2, 4)) on E1
2,3 and on E1

3,3 of the
sequence (5.3) is nontrivial and irreducible.
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Hence the action of π1(B̃(CP 2, 4)) on H̄∗(Y,±R|Y ) is nontrivial and ir-
reducible. Recall that the universal covering space of B̃(CP 2, 4) is SL3(C),
and the group π1(B̃(CP 2, 4)) contains a normal subgroup isomorphic to Z3 =
π1(F̃ (CP 2, 4)), the quotient being isomorphic to S4. Lemma 5.5 follows imme-
diately from lemma 4.1. In fact, putting G = SL3(C), G1 =(the subgroup of

SL3(C) generated by e
2

3
πiI (I is the identity matrix) and the (complexification

of the) motions of a regular tetrahedron) in lemma 4.1 we obtain that the group
H∗(B̃(CP 2, 4),L) = 0 if the action of π1(B̃(CP 2, 4)) on the fibre of L is non-
trivial and irreducible. By Poincaré duality H̄∗(B̃(CP 2, 4),L) is also zero for
any such L.

5.3 Column 39

Recall that we denote by X39 the space of configurations of type 39. We have

E1
39,i = H̄39+i−2−8(X39,±R).

X39 is fibered over the space B̃(CP 2, 3) of all generic triples of points
{A,B,C}, A,B,C ∈ CP 2.

Lemma 5.11 The term E2 of the spectral sequence of the bundle X39 →
B̃(CP 2, 3) looks as follows:

7 R

6 R R

5 R

6 7 8 9 10 11 12

(5.5)

and the differentials E2
8,6 → E2

6,7 and E2
12,5 → E2

10,6 are nontrivial. Hence, we
have E3 = · · · = E∞ = 0.

The proof will take the rest of the section.
If we fix three lines AB,BC,AC, then the intersection points of AB and BC

with the conic can be chosen arbitrarily. The space of conics passing through
these 4 points and not tangential to AC is homeomorphic to (S2 minus three
points): we have to exclude 2 tangential conics and the conic consisting of the
lines AB and BC.

Thus, the fibre Y of the bundle X39 → B̃(CP 2, 3) is itself a fibre bundle over
B(C∗, 2) × B(C∗, 2) with fibre (S2 minus 3 points). Denote the latter fibre by
Z. The space Z can be identified with C∗ \ {1}.

Lemma 5.12 The term E2 of the spectral sequence for the Borel-Moore homol-
ogy of the bundle Y → B(C∗, 2) ×B(C∗, 2) looks as follows:

1 R R2 R

4 5 6
(5.6)

Proof. If we fix all points in a configuration from X39 except the points
of intersection of the conic and the line AC, then we can transpose these two
points, hence the restriction of ±R to (S2 minus 3 points) is nontrivial. We
have H̄i(Z,±R) = R if i = 1, and 0 otherwise.
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That is why the only nontrivial line in the spectral sequence of the bundle
Y → B(C∗, 2) ×B(C∗, 2) is the first one; it contains the groups H̄∗(B(C∗, 2) ×
B(C∗, 2), H̄1), where H̄1 is the system with fibre H̄1(Z,±R|Z) corresponding
to the action of π1(B(C∗, 2)×B(C∗, 2)). The fibre of H̄1 is R, and, as we shall
see, every element of π1(B(C∗, 2) ×B(C∗, 2)) multiplies the fibre of H̄1 by ±1.
So we can apply the Künneth formula, and we get

H̄∗(B(C∗, 2) ×B(C∗, 2), H̄1) = H̄∗(B(C∗, 2),B1) ⊗ H̄∗(B(C∗, 2),B2), (5.7)

where B1,B2 are the restrictions of H̄1 on the first and the second factors of
B(C∗, 2) × B(C∗, 2). To calculate B1 we fix an element in the second factor of
the product B(C∗, 2) × B(C∗, 2) and study the action of the loops in the first
factor on the group H̄1(Z,±R|Z).

We put A = (0 : 1 : 0), B = (0 : 0 : 1), C = (1 : 0 : 0). Put AC = ∞, so that
the points of the type (z : w : 1) belong to the affine plane C2 ⊂ CP 2, and the
spaces B(C∗, 2) consist of pairs of nonzero points on the coordinate axes. Now
fix the points {(0, i), (0,−i)} on the y-axis. Denote by Q the space of conics
passing through (i, 0), (−i, 0), (0, i), and (0,−i). Note that the fibre Z over this
quadruple is the subspace of Q that consists of the conics that are not tangential
to AC = ∞ and are not equal to the union AB ∪AC. Note also that the conics
from Q have the form

ax2 + bxy + ay2 + a.

Put z = (2a− b)/2a+ b). This identifies the space Z ⊂ Q with C \ {0,−1}.
In the following two lemmas we identify the space B(C∗, 2)×B(C∗, 2) with

the space of configurations in C2 that consist of two nonzero points on the x-axis
and two nonzero points on the y-axis.

Lemma 5.13 Consider the following loop in the space B(C∗, 2) × B(C∗, 2)
γ(t) = {(α(t), 0), (1/α(t), 0), (0, i), (0,−i)}, where α(t) is a curve in C \ {0}
such that α(0) = i, α(1) = −i. Then γ induces the identical map of Z and
preserves the points of intersection of the conics from Z with ∞.

Lemma 5.14 Consider the following loop in the space B(C∗, 2) × B(C∗, 2)
γ(t) = {(ieπit, 0), (−ieπit, 0), (0, i), (0,−i)}. The map Z → Z induced by γ
can be written as z 7→ 1/z. This map preserves the conics q1 = xy and
q2 = x2 + y2 + 1. The points q1 ∩ ∞ are preserved, and the points q2 ∩ ∞
are transposed.

The proof of these lemmas is an exercise in analytic geometry. ♦

Now we shall use lemmas 5.13 and 5.14 to calculate the action of π1(B(C∗, 2))
on the Borel-Moore homology of the fibre of the bundle Y → B(C∗, 2).

Let us note that the loop γ considered in lemma 5.13 is the loop in the fibre of
the bundle B(C∗, 2) over 1 (recall that on page 24 we defined a structure of a fibre
bundle over C∗ on the space B(C∗, 2), the projection being the multiplication
of complex numbers). We obtain from lemma 5.13 that such γ induces the
identical map of the space of Z, and the points of intersection of the conics are
preserved. So γ transposes two points in a configuration from Y . Thus, the
system ±R|Z is multiplied by −1, and γ acts on the group H̄1(Z,±R|Z) as
multiplication by −1.

Now let γ be the loop t 7→ {ieπit,−ieπit} in B(C∗, 2). Note that this is
exactly the loop a from proposition 4.2. Applying lemma 5.14, we obtain that
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this loop transposes the tangential conics. Identify the space Z of nontangential
conics with C∗ taking the coordinate z as in lemma 5.14. The map g : Z →
Z induced by γ is z 7→ 1/z. Due to lemma 5.14 γ transposes the points of
intersection of q2 and AC. This implies that the map g̃ : ±R|Z → ±R|Z
induced by γ is identity over 1 = z(q2) (it transposes two pairs of points).

Now introduce another coordinate w on Z, w = (z−1)/(z+1). This identifies
Z with C \ {1,−1}. Since we have w(1/z) = −w(z), the map g : Z → Z can be
written as w 7→ −w. The map g̃ is identity over 0 = w(1). Applying proposition
4.1, we obtain immediately that the map g̃∗ : H̄1(Z,±R|Z) → H̄1(Z,±R|Z) is
minus identity.

So we see that the restriction of the local system H̄1 to B(C∗, 2) is in fact
the system A3 of proposition 4.2 (it changes its sign both under the action of
the loops of the fibre of B(C∗, 2) → C∗ and under the ”middle line”). Due to
proposition 4.1 we have P̄ (B(C∗, 2),A3) = t2(t + 1). Lemma 5.12 follows now
from formula (5.7). ♦

Now we shall study the action of π1(B̃(CP 2, 3) on the group H̄∗(Y,±R|Y ).
The fundamental group of B̃(CP 2, 3) equals S3 (since F̃ (CP 2, 3) is simply-
connected). We shall describe the map of the sequence (5.6) induced by the
transposition of the points A and C.

Lemma 5.15 1. Let γ be a loop in B̃(CP 2, 3) that transposes the points A
and C. Above we represented Y as a fibre bundle over B(C∗, 2)×B(C∗, 2),
the projection being defined as follows: Q 7→ (Q ∩AB,Q ∩BC), where Q
is the conic that correspond to an element of Y 1. The map F1 : Y → Y
induced by γ preserves this structure of a fibre bundle on Y1.

2. The corresponding map h : B(C∗, 2) × B(C∗, 2) → B(C∗, 2) ×B(C∗, 2) is
the transposition of factors. (Recall that the first (respectively, the second)
factor in this product is identified with the space of pairs of nonzero points
on the x- (respectively, the y-)axis.)

3. Identify the space B(C∗, 2) × B(C∗, 2) with the space of configurations in
C2 that consist of two nonzero points on the x-axis and two nonzero points
on the y-axis. Let Z be the fibre of Y → B(C∗, 2)×B(C∗, 2) over the point
{(i, 0), (−i, 0), (0, i), (0,−i)} (this point is clearly preserved under h). The
map F1 : Z → Z is identical, and the points of intersection of each conic
q ∈ Z with the line AC are transposed by γ. Hence a loop corresponding to
the movement of any q ∈ Z from this fibre transposes four pairs of points
and preserves the coefficient system ±R over this fibre.

Proof. Since π1(B̃(CP 2, 3)) = S3, any two loops that transpose A and
C define the same map Y → Y and the same map ±R|Y → ±R|Y . Recall
that A = (1 : 0 : 0), B = (0 : 0 : 1), C = (0 : 1 : 0) ∈ CP 2. Put A(t) =
(1
2 (1 + eiπt) : 1

2 (1 − eiπt) : 0), C(t) = (1
2 (1 − eiπt) : 1

2 (1 + eiπt) : 0). Put

γ(t) = {A(t), B(t), C(t)}. Denote by Yt the fibre of the bundleX39 → B̃(CP 2, 4)
over γ(t). There exists a projective linear map that carries A into A(t), C into

1Note that there are three ways to represent Y as a fibre bundle over B(C∗, 2)×B(C∗, 2);
instead of the lines AB and BC we could have taken any other two of the lines AB, BC and
AC.
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C(t) and preserves B. In the affine plane C2 = CP 2 \AC it looks like
(

1
2 (1 + eiπt) 1

2 (1 − eiπt)
1
2 (1 − eiπt) 1

2 (1 + eiπt)

)

This map induces a map Ft : Y0 → Yt. In particular, the map F1 is induced
by the transposition of the axes in C2. The first and the second assertions
of the lemma follow immediately. To prove the third assertion note that the
fibre Z over the point {(i, 0), (−i, 0), (0, i), (0,−i)} consists of conics of the type
ax2 + bxy+ ay2 + a. Such conics are preserved, if we change x and y, and their
points of intersection with AC = ∞ are clearly transposed. ♦

The map F1 preserves the system H̄1 corresponding to the action of
π1(B(C∗, 2) × B(C∗, 2)) on H̄1(Z,±R|Z), since F1 induces the identical map
of the fibre Z over some preserved point of B(C∗, 2) × B(C∗, 2) and preserves
the restriction of the coefficient system ±R to that fibre.

In general, suppose we have a space A and a local system L on A×A, whose
fibre is R, and suppose that every element of π1(A × A) multiplies the fibre of
L by 1 or −1. Let L1,L2 be the restrictions of L to the first and the second
factor, and let f : A×A→ A×A be the transposition of factors. Suppose that
f̃ : L → L is a map that covers f and is identical over some point of the type
(x, x), x ∈ A. Then, the map of H̄∗(A × A,L) = H̄∗(A,L1) ⊗ H̄∗(A,L2) into
itself can be written as a⊗ b 7→ (−1)deg(a)deg(b)b⊗ a.

Applying this to our situation, we obtain that the group H̄4(B(C∗, 2) ×
B(C∗, 2), H̄1) = E2

4,1 is preserved by γ, and H̄6(B(C∗, 2)×B(C∗, 2), H̄1) = E2
6,1

is multiplied by −1.
We have clearly P̄ (B̃(CP 2, 3),R) = t12, P̄ (B̃(CP 2, 3),±R) = t6. This gives

us the 5-th and the 7-th lines of (5.5).
Let us calculate P̄ (B̃(CP 2, 3),V2,1), where V2,1 is the local system corre-

sponding to the irreducible 2-dimensional representation V2,1 of S3. It is easy

to show that P (F̃ (CP 2, 3)) = (1 + t + t2)(1 + t). Applying Corollary 4.1 (see
page 19) to the covering F̃ (CP 2, 3) → B̃(CP 2, 3), we obtain

P (F̃ (CP 2, 3)) = P (B̃(CP 2, 3),R) + P (B̃(CP 2, 3),±R) + 2P (B̃(CP 2, 3),V2,1),

since the regular representation of S3 contains one trivial, one alternating
representation and two copies of the 2-dimensional irreducible representation.
Thus, P (B̃(CP 2, 3),V2,1) = t2(1 + t2), and by the Poincaré duality we obtain

P̄ (B̃(CP 2, 3), S) = t8(1 + t2).
It remains to prove that the 6-th line of the Leray sequence correspond-

ing to the fibration X39 → B̃(CP 2, 3) is as in (5.5) (i.e., the action of S3 in
H̄5(B(C∗, 2) × B(C∗, 2), H̄1) = R2 is irreducible), and that the differentials
E2

8,6 → E2
6,7 and E2

12,5 → E2
10,6 are nontrivial.

To this end note that the group SU3 acts almost freely on X39 (via SU3 →

SU3/〈e
2

3
πiI〉 →֒ PGL(CP 2), where I is the identity matrix). Apply theorem

4.4 putting M = X39, G = SU3,L = ±R|X39. From the Leray sequence of the
map M → M/G (and from the fact that the cohomological dimension of M/G
is clearly finite) we obtain that either H∗(M,L) = 0 or dmax − dmin ≥ 8 (here
dmax, (respectively, dmin) is the greatest (respectively the smallest) i such that
Hi(M,L) 6= 0).

By Poincaré duality, we have either H̄∗(M,L) = 0 or d′max − d′min ≥ 8 (here
d′max (respectively, d′min) is the greatest (respectively, the smallest) i such that
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H̄i(M,L) 6= 0. Obviously if the action of S3 in H̄5(B(C∗, 2)×B(C∗, 2), H̄1) = R2

is reducible or any of the differentials E2
8,6 → E2

6,7, E
2
12,5 → E2

10,6 is trivial,
neither assertion holds. Lemma 5.11 is proven. ♦

5.4 Nondiscrete singular sets

We are going to show that the columns of the spectral sequence 5.1 corre-
sponding to all nondiscrete singular sets are zero. The columns 11 and 33 are
considered in exactly the same way as in [14].

Proposition 5.2 Let l be a line in CP 2, A1, . . . , Ak, k ≥ 0 be points not on l,
m be an integer > 1. Denote the union of all simplices in (CP 2)∗(m+k) with
the vertices in A1, . . . , Ak and m vertices on l by Λ(l,m,A1, . . . , Ak). The space
Λ(l,m,A1, . . . , Ak) has zero real homology groups modulo a point.

Proof of proposition 5.2. If k = 0, the assertion of the proposition follows
from lemma 4.4. If k > 0, the space Λ(l,m,A1, . . . , Ak) is contractible, since
this space is a union of simplices that all contain the vertex A1.♦

Using this proposition, we can easily prove that ∂Λ(K) has zero real homol-
ogy groups modulo a point if K ∈ Xi, i =17, 22, 29, 41. Let us consider, for
instance, the case i =41. Consider a configuration K consisting of a line l and 3
points A,B,C outside l such that the points A,B,C do not belong to any line.

Note that ∂Λ(K) = L1 ∪ L2 ∪ L3 ∪ L4, where L1 = Λ(l + A + B), L2 =
Λ(l+B+C), L3 = Λ(l+A+C), L4 =

⋃

κ Λ(κ), where κ runs through the set of
all configurations of type ”A,B,C+ 4 points on l”. Using lemma 3.2 (see page
16), we conclude that L4 is homeomorphic to the space Λ(l, 4, A,B,C), which
is contractible due to proposition 5.2.

The intersections L1 ∩ L2, L2 ∩ L3, L1 ∩ L3 are all spaces of the type Λ(l +
a point not on l). The intersection L1∩L2∩L3 is just Λ(l). All these spaces are

contractible. Now, the intersections Li∩L4, i = 1, 2, 3 are the unions of all Λ(κ),
κ running through the set of all configurations of type ”the points (A,B) (resp.,
(B,C), (A,C)) outside l + 4 points on l”. These spaces are homeomorphic
to the space Λ(l, 4, 2 points outside l) and are contractible due to proposition
5.2. Analogously, the intersections L1 ∩ L2 ∩ L4, L2 ∩ L3 ∩ L4, L1 ∩ L3 ∩ L4

are all homeomorphic to spaces of type Λ(l, 4, a point outside l) and are also
contractible. Finally, the quadruple intersection L1 ∩ L2 ∩ L3 ∩ L4 is the union
of all Λ(κ), for all κ =”4 points in l”, which is homeomorphic to l∗4 = Λ(l, 4,∅).

So we see that the spaces Li, i = 1, . . . , 4 have zero real homology groups
modulo a point, and so do all their intersections. This implies that real homology
groups of their union ∂Λ(K) modulo a point are also zero.

Let us now consider the case K = l1 ∪ l2, where l1, l2 are two lines (column
31). Here ∂Λ(K) is the union L1 ∪ L2 ∪ L3, where Li for i = 1, 2 is the union
of the spaces Λ(κ), where κ runs through the set of configurations of the type
”li+3 points on the other line”, and L3 is the union of Λ(K ′), for K ′ running
through the set {K ′ ⊂ l1 ∪ l2|#(K ′) = 8,#(K ′ ∩ li) ≥ 4, i = 1, 2}.

First note that the intersection L1 ∩ L2 is the union of the spaces Λ(κ),
where κ runs through the space of configurations of the type ”3 points on l1 \ l2,
3 points on l2 \ l1, the point of intersection”. It follows from lemma 3.2 that
L1 ∩ L2 is contractible.
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The space L1 admits the following filtration ∅ ⊂ Λ(l) ⊂ M1 ⊂ M2 ⊂ M3 ⊂
M4 ⊂ M5 ⊂ M6 = L1. Here Mi, i = 1, . . . , 5, is the union of all Λ(κ), where
κ ⊂ K is a configuration of type 16, 17, 21, 22, 28 respectively.

The space M1 \ Λ(l1) is fibered over l2 \ l1, the fibre over a point A being
homeomorphic to Λ(l1, 7, A) \ l∗71 . This fibre has trivial real Borel-Moore ho-
mology. The space M2 \M1 is fibered over l2 \ l1, the fibre over a point A being
homeomorphic to Λ(l1 +A) \ ∂Λ(l1 +A), whose Borel-Moore homology is also
trivial.

The space M3 \M2 is fibered over the space B(C, 2), the fibre over a pair
{A,B} being homeomorphic to Λ(l1, 6, A,B) \ (Λ(l1, 6, A) ∪ Λ(l1, 6, B)). This
space also has trivial Borel-Moore homology.

The spaces M4 \M3 and M6 \M5 are considered in the same way as M2 \
M1. The space M5 \M4 is fibered over B(C, 3). The fibre over {A,B,C} is
homeomorphic to the space Λ(l1, 5, A,B,C) \ (Λ(l1, 5, A,B) ∪ Λ(l1, 5, B, C) ∪
Λ(l1, 5, A, C)), whose Borel-Moore homology groups are zero. This implies that
L1 (and also L2) have zero real homology groups modulo a point.

Now consider the space L3. Let L′
3 (respectively, L′′

3) be the union of all
Λ(K ′) for K ′ running through the set {K ′ ⊂ l1 ∪ l2|#(K ′) = 8,#(K ′ ∩ l2) =
5,#(K ′∩l1) = 3} (respectively, {K ′ ⊂ l1∪l2|#(K ′) = 8,#(K ′∩l1) = 5,#(K ′∩
l2) = 3}). It is easy to see that all spaces L′

3, L
′′
3 , L

′
3∩L

′′
3 , L

′
3∪L

′′
3 are contractible.

The space L3\(L
′
3∪L

′′
3) is the union of Λ(K ′)\∂Λ(K ′) forK ′ running through the

set of configurations that consist of 4 points on l2\l1 and 4 points on l1\l2. Using
lemma 3.2, we get H̄∗(L3 \ (L′

3 ∪ L′′
3),R) = H̄∗−7(B(C, 4) × B(C, 4),±R) = 0.

Hence the real homology groups of L3 modulo a point are zero.
We have also L1 ∩ L3 = L′′

3 , L2 ∩ L3 = L′
3, L1 ∩ L2 ∩ L3 = L′

3 ∩ L
′′
3 . These

spaces are all contractible. This completes the proof that real homology groups
of ∂Λ(K) modulo a point are zero, when K is the union of two lines.

The fact that the last column is zero is proven exactly in the same way as
in the case of plane cubics in CP 2, see [14, Section 4].

5.5 End of the proof of theorem 5.2

We have now proved the first two assertions of theorem 5.2. In order to complete
the proof of theorem 5.2, it remains to prove that the differential E1

2,35 → E1
1,35

of the spectral sequence (5.1) is zero. This can be done as follows (cf. [14,
lemma 6]).

Let S be the image of Σ5,2 under the natural map Π5,2 \ {0} → CP 20, and
let c1 ∈ H2(CP 20,R) be the first Chern class of the tautological bundle over
CP 20. Since the fundamental class of any algebraic hypersurface is dual to a
nonzero multiple of c1, the restriction of c1 to CP 20 \ S is zero, which implies
that H∗(Π5,2 \ Σ5,2,R) = H∗(C∗,R) ⊗ H∗(CP 20 \ S,R). Thus, the Poincaré
polynomial of the space Π5,2 \Σ5,2 is divisible by 1+ t, which implies easily that
the differential E1

2,35 → E1
1,35 is zero. Theorem 5.2 is proven.♦



Chapter 6

Smooth bielliptic genus 4

curves on a nondegenerate

quadric in CP 3

Denote by Q the quadric in CP 3 defined by the equation

x2
0 + · · · + x2

3 = 0.

Let V ′ be the vector space of homogeneous complex cubic polynomials C4 → C

that are invariant under the map

(x0, x1, x2, x3) 7→ (−x0, x1, x2, x3). (6.1)

Denote by τ the involution of CP 3 obtained from (6.1). The set of fixed points
of τ is P ∩ {A}, where P is the plane x0 = 0, and A = (1 : 0 : 0 : 0); set
D = P ∩ Q.

In this chapter we use the method described in chapter 3 to calculate the real
cohomology groups of two isomorphic spaces: the space of complete intersections
with Q of surfaces defined by elements of V ′ and the space of smooth plane cubics
that intersect transversally a fixed smooth conic.

Recall that a smooth algebraic curve is called bielliptic, if it is a double
cover of an elliptic curve. Any smooth curve on Q defined by an element of V ′

is bielliptic and is of bidegree (3, 3), and hence, has genus 4. One can prove that
conversely, each bielliptic smooth genus 4 curve on Q is ambient isomorphic to
a curve defined by an element of Q (“ambient isomorphic” means here that the
isomorphism between two curves is the restriction of an automorphism of Q).
This chapter is a part of a joint project A. V. Inshakov and the author; this
project consists in calculating the rational cohomology groups of the moduli
space of smooth bielliptic genus 4 curves.

Let V be the quotient of V ′ by the subspace consisting of polynomials of
the form lq, where l is any linear function form V ′. Denote by Σ′ the subspace
of V ′ that consists of all f such that the intersection of Q and the hypersurface
defined by f is not complete; let Σ be the image of Σ′ in V .

Theorem 6.1 We have P (V \ Σ) = (1 + t)(1 + t3)(1 + t+ t5 + 3t6).

44
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We shall apply theorem 3.2 to calculate the groups H̄∗(Σ,R).
For any f ∈ Σ define Kf ⊂ Q as follows: let f ′ ∈ Σ′ be any preimage of f ,

and set Kf to be the set of all points of Q, where the tangent space of Q and
the tangent space of the hypersurface defined by f ′ intersect non-transversally;
this definition does not depend on the choice of f ′ that projects into f .

Now we shall describe another interpretation of the space V \ Σ. Denote
by V (1) the space of homogeneous cubic polynomials in variables x1, x2, x3, and
set Σ(1) to be the subset of V (1) that consists of polynomials such that the
corresponding cubic curve is either singular or intersects nontransversally the
conic Q′ defined by

x2
1 + x2

2 + x2
3 = 0. (6.2)

If C is the cubic defined by an element f ∈ Σ(1), we set Kf to be the union
of the singular locus of C and the set of points where C and the conic (6.2)
intersect nontransversally. Denote by p : Q → P the projection from A and let
P : V → V (1) be the map that takes an element of V to its representative in V ′

that does not contain x0.

Lemma 6.1 (A. V. Inshakov) 1. The map P is a homeomorphism of cou-
ples (V,Σ) and (V (1),Σ(1)).

2. The map p induces a homeomorphism

{Kf ∈ 2Q|f ∈ Σ} ↔ {Kg ∈ 2P|g ∈ Σ(1)}

♦
For some purposes (such as the classification of all possible singular sets and

the construction of a system of configuration spaces that verify all required con-
ditions) this interpretation will be more convenient. However, the calculations
of the some colums of the spectral sequence are easier, if we consider spaces of
configurations on Q.

For any K ⊂ Q (respectively, K ⊂ CP 2) let L(K) be the vector subspace of
V (respectively, of V (1)) that consists of all f such that Kf ⊃ K.

Lemma 6.2 For the vector space V (1) and the discriminant Σ(1), the configu-
ration spaces Y1, . . . , Y29 described below satisfy Conditions 1–8 from chapter 3.
The number indicated in square brackets equals the complex dimension of L(K)
for K lying in the corresponding Yi.

1. A point on Q′ [8].

2. A point in CP 2 \ Q
′ [7].

3. A pair of points on Q′ [6].

4. A point on Q′ and a point in CP 2 \ Q′ [5].

5. Two points in CP 2 \ Q′ [4].

6. A point x ∈ Q′ and two points in CP 2 \ Q′ that lie on the tangent line to
Q′ passing through x [4].

7. Three points on Q′ [4].

8. A pair of points on Q′ and a point in CP 2 \ Q′ [3].
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9. Four points on Q
′ [3].

10. The whole Q′ [3].

11. Three points in CP 2 \ Q′ that lie on a line tangent to Q′ [3].

12. Three points in CP 2 \ Q
′ that lie on a line l tangent to Q

′ plus the inter-
section point l ∩ Q′ [3].

13. A line tangent to Q′ [3].

14. A configuration K of type 5 on a nontangent line l ⊂ CP 2 plus one of the
two points of l ∩ Q′ [3].

15. Three points in CP 2 \ Q′ that lie on a line nontangent to Q′ [3].

16. A configuration K of type 5 on a line l nontangent to Q′ plus both points
of l ∩ Q

′ [3].

17. A line nontangent to Q′ [3].

18. A configuration K of type 5 plus a point x ∈ Q′ that does not belong to the
line that passes through the points of K [2].

19. A configuration K of type 6 plus a point in Q′ \K [2].

20. Three points in Q′ and a point in CP 2 \ Q′ [1].

21. A line l tangent to Q′ plus a point in Q′ \ l [1].

22. A line l nontangent to Q′ plus a point in Q′ \ l [1].

23. Three points in CP 2 \ Q′ that are not on a line [1].

24. A point x ∈ Q′ plus two points on l \ {x}, where l is the line that passes
through x and is tangent to Q′, plus a point in CP 2 \ (l ∪ Q′) [1].

25. A pair of points {x1, x2} ⊂ Q
′ plus a pair of points {y1, y2} ⊂ CP 2 \ Q

′

such that 1. y1, y2 lie on a conic that intersects Q′ at exactly two points
x1, x2, and 2. neither three of the points x1, x2, y1, y2 are on a line [1].

26. A point x ∈ CP 2 \Q′ plus the points l1∩Q′, l2∩Q′ (where l1 and l2 are the
lines passing through x and tangent to Q′) plus two points y, z such that
y ∈ l1 \ (Q′ ∪ {x}) and z ∈ l2 \ (Q′ ∪ {x}) [1].

27. A point x ∈ Q′ plus two points y, z ∈ Q′ \ {x} plus two intersection points
l ∩ C, where l is the line tangent to Q′ that passes through x, and C is a
conic such that C ∩ Q′ = {y, z} and C 6= a double line [1].

28. Three points x1, x2, x3 ∈ Q′ plus three intersection points l1∩ l2, l2∩ l3, l1∩
l3, where for any i = 1, 2, 3, li is the line that passes through xi and is
tangent to Q

′ [1].

29. The whole CP 2 [0].

The proof is straightforward and pretty much analogous to the proof of
lemma 5.1.♦
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Lemma 6.3 For the vector space V and the discriminant Σ, the configuration
spaces X1, . . . , X29 described below satisfy Conditions 1–7 from chapter 3. The
number indicated in square brackets equals the complex dimension of L(K) for
K lying in the corresponding Xi.

1. A point in D [8].

2. A τ-invariant pair of points in Q \D [7].

3. A pair of points in D [6].

4. A point in D and a τ-invariant pair of points in Q \D [5].

5. Two τ-invariant pairs of points in Q \D [4].

6. A point x ∈ D and two τ-invariant pairs of points in Q \D that lie on the
union of the two lines ⊂ Q that pass through x [4].

7. Three points on D [4].

8. A pair of points in D and a τ-invariant pair of points in Q \D [3].

9. Four points on D [3].

10. The diagonal D [3].

11. Three τ-invariant pairs of points in Q \D that lie on a τ-invariant pair of
lines in Q [3].

12. Three τ-invariant pairs of points in Q \D that lie on a τ-invariant pair of
lines (l1 ∪ l2) ⊂ Q plus the point l1 ∩ Q [3].

13. A τ-invariant pair of lines in Q [3].

14. A configuration K of type 5 on a nondegenerate τ-invariant conic C ⊂ Q

plus one of the two points of C ∩D [3].

15. Three τ-invariant pairs of points in Q \ D that lie on a nondegenerate
τ-invariant conic C ⊂ Q [3].

16. A configuration K of type 5 on a nondegenerate τ-invariant conic C ⊂ Q

plus both points of C ∩D [3].

17. A nondegenerate τ-invariant conic in Q [3].

18. A configuration K of type 5 plus a point x ∈ D that does not belong to the
conic ⊂ Q that passes through the four points of K [2].

19. A configuration K of type 6 plus a point in D \K [2].

20. Three points in D and a τ-invariant pair of points in Q \D [1].

21. A τ-invariant pair of lines (l1 ∪ l2) ⊂ Q plus a point in D \ (l1 ∪ l2) [1].

22. A nondegenerate τ-invariant conic C ⊂ Q plus a point in D \ C [1].
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23. Six intersection points (l1 ∪ l2 ∪ l3) ∩ Q, where l1, l2, l3 are three noncom-
planar lines in CP 3 such that l1 ∩ l2 ∩ l3 = A, τ(li) = li, i = 1, 2, 3, and
none of the lines is tangent to Q [1].

24. Six intersection points (P1∩P2∩Q)∪(P2∩P3∩Q)∪(P1∩P3∩Q) plus the point
P1∩D, where P1, P2 and P3 are planes in CP 3 such that P1∩P2∩P3 = A,
τ(Pi) = Pi, i = 1, 2, 3, neither one of the lines P1P2, P1P3, P2P3 is tangent
to Q, but the plane P1 is [1].

25. Six intersection points (l1 ∪ l2 ∪ l3) ∩ Q, where l1, l2, l3 are three non-
complanar lines in CP 3 such that l1 ∩ l2 ∩ l3 is a point outside Q,
τ(l1) = l2, τ(l3) = l3, and none of the lines is tangent to Q [1].

26. A pair of points {x, y} ∈ D plus six intersection points (Px ∩ Py ∩ Q) ∪
(Px ∩P∩Q)∪ (Py ∩ P∩ Q), where Px and Py are the hyperplanes tangent
to Q at x, respectively, y, and P is a τ-invariant hyperplane that passes
neither through x, nor through y [1].

27. Six intersection points (P1 ∩ P2 ∩ Q) ∪ (P2 ∩ P3 ∩ Q) ∪ (P1 ∩ P3 ∩ Q)
plus the point P1 ∩D, where P1, P2 and P3 are planes in CP 3 such that
P1 ∩ P2 ∩ P3 is a point outside Q, τ(P1) = P1, τ(P2) = P3, neither one of
the lines P1P2, P1P3, P2P3 is tangent to Q, but the plane P1 is [1].

28. Nine intersection points
⋃

i,j=1,2,3(li ∩ τ(lj)), where l1, l2, l3 are pairwise
nonintersecting lines on Q [1].

29. The whole Q [0].

This lemma follows immediately from lemmas 6.2 and 6.1. ♦
Now we define for any K ∈ Xi, i = 1, . . . , 29 the spaces Λ(K) and ∂Λ(K)

according to the prescriptions of chapter 3. As shown in chapter 3, we can
introduce the filtered spaces

∅ = Φ0 ⊂ Φ1 ⊂ . . . ⊂ Φ29 = Λ (6.3)

and
∅ = F0 ⊂ F1 ⊂ . . . ⊂ F29 = σ (6.4)

such that H̄∗(σ) ∼= H̄∗(Σ), and for any i = 1, . . . , 29 the space Fi \ Fi−1 is a
complex vector bundle over Φi \ Φi−1, which in turn is a fibre bundle over Xi,
the fibre over K ∈ Xi being the space Λ(K) \ ∂Λ(K). In the rest of the section,
we denote by Er

∗,∗ = (Er
p,q) the r-th term of the spectral sequence corresponding

to the filtration (6.4).

6.1 First columns

Let us first make the following observations (we shall use some of them right
now, and the rest a little later):

Lemma 6.4 1. The spaces Q \ D and CP 2 \ Q′ are homeomorphic to
B(S2, 2).

2. We have P (B(S2, 2)) = t4.
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3. Represent CP 1 as C ∪ {∞}, and denote by f : B(CP 1, 2) → B(CP 1, 2)
the map defined as {a, b} 7→ {1/a, 1/b}; let f̃ be the map of the local
systems ±R that covers f and is the identity in the fiber of ±R over
{0,∞}. Then the map f̃∗ : H̄2(B(CP 1, 2),±R) → H̄2(B(CP 1, 2),±R) is
the also identity.

♦
This implies that for any k > 1 we have P̄ (B((Q \ D)/τ, k),±R) = 0 by

lemma 4.5. Using this, and lemmas 4.2,4.3, we can recover E1
p,q for p ≤ 10.

Lemma 6.5 Nonzero E1
p,q for p ≤ 10 look as follows.

17 R

16 R

15 R

14
13 R

12 R

11 R

10
6 R

1 2 3 4 8

♦

Lemma 6.6 We have H̄∗(F15 \ F13) = 0.

Proof. Let us note that though elements of X14 and X15 contain different
amounts of points, the space F15 \ F13 is nevertheless a fibre bundle over
X14 ⊔ X15. The fibre of this bundle over K ∈ X14 ⊔ X15 is the product of
the vector space L(K) and the open 2-simplex such that the vertices of the
simplex correspond to points in D or to τ -invariant pairs of points in Q \D.

So, we have H̄∗(F15 \ F13) ∼= H̄∗−6−2(X,±R), where X ⊂ B(Q/τ, 3) is the
quotient (X14 ⊔ X15)/τ . We have X = Y \ Z, where Y is the space of all
K ∈ B(Q/τ, 3) such that the preimage of K in Q is situated on a nondegenerate
conic, and Z consists of all K ∈ Y such that the preimage of K in Q is a
configuration of type 8.

The space Y is a fibre bundle over something with generic fibre B(S2, 3).
We have H̄∗(B(S2, 3),±R) = 0, and hence, H̄∗(Y,±R) = 0. So, in order to
prove the lemma it suffices to show that H̄∗(Z,±R) = 0. The space Z is a
fibre bundle over B(D, 2), the fibre being homeomorphic to C∗. The restriction
of ±R to any fibre of the bundle Z → B(D, 2) is constant; the monodromy
of the fibre induced by the nontrivial element of π1(B(D, 2)) can be written as
C∗ ∋ z 7→ 1/z. Moreover, the nontrivial element of π1(B(D, 2)) acts nontrivially
on the local system ±R over any fixed point of the monodromy, and hence, the
first term of Leray sequence for the Borel-Moore homology groups of the bundle
Z → B(D, 2) looks as follows (see lemma 6.4):

2 R

1 R

2 3 4
(6.5)
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Let us show that the differential d2
4,1 of this sequence in nonzero. The coho-

mology of Z with coefficients in ±R can also be obtained using another spectral
sequence — the Leray sequence of the quotient map

Z → Z/G′, (6.6)

where G′ is any subgroup of the centraliser of τ in Aut(Q). Moreover, under
some mild assumptions (which are always satisfied, when G′ is connected and
compact), the i-th line of the sequence of the map (6.6) is equal to (the 0-
th line)⊗Hi(G′,R), see theorem 4.4. Now take G′ to be a maximal connected
compact subgroup of the centraliser of τ in Aut(Q); it is easy to see that the only
way the (cohomological) spectral sequence of the map (6.6) and the sequence
(6.5) can fit together is for the differential d2

4,1 of the sequence (6.5) to be
nonzero.

So, we have H̄∗(Z,±R) = 0, and the lemma is proven.♦

Lemma 6.7 We have H̄∗(F17 \ F15) = 0.

Proof. It is easy to see that the space F17 \ F15 is a complex vector bundle
over

⊔

C















Λ(C) \
⋃

i≤15

⋃

K∈Xi,

K⊂C

Λ(K)















, (6.7)

where C runs through the set of τ -invariant nondegenerate conics on Q. For
every such C, the space

⋃

i≤15

⋃

K∈Xi
Λ(K) is homeomorphic to the third au-

tojoin of C/τ ∼= S2, and hence, the Poincaré polynomial of this space is trivial
(see lemma 4.4). The space Λ(C) is contractible, and hence the Borel-Moore
homology groups of the space (6.7) are zero.♦

Lemma 6.8 We have P̄ (F18 \ F17) = t11(1 + t3).

Proof. The space F18\F17 is a fibre bundle overX18, the fibre overK ∈ X18

being the product of the vector space L(K) and an open 2-simplex, so we have

H̄∗(F18 \ F17) ∼= H̄∗−4−2(X18,L), (6.8)

where L is some local system on X18. It is easy to see that if we view X18 as a
subspace of D ×B((Q \D)/τ, 2), then L becomes the restriction of R ×±R.

Any configuration on type 5 lies on a unique τ -invariant conic C ⊂ Q. The
space X18 can be naturally filtered: X18 = X ′ ⊔ X ′′, where X ′ (respectively,
X ′′) is the set of all K ∈ X18 such that the τ -invariant conic corresponding
to K \ D is degenerate (reprectively, nondegenerate). It is easy to see that
H̄∗(X ′,L) = 0, so it remains to calculate H̄∗(X ′′,L).

Set
Y = {(x, y) ∈ D ×B(D, 2)|x 6∈ y}.

The space X ′′ is a fibre bundle over Y , the projection of this bundle being

K 7→ (K ∩D,D ∩ (the τ -invariant conic containing K \D)).
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Take z = (x, y) ∈ Y (here x ∈ D, and y is a pair of points in D \ {x}). Let us
identify fibre of the bundle X ′′ → Y over z with B(C∗, 2); the restriction of L to
that fibre becomes then ±R. We have P̄ (B(C∗, 2),±R) = t2(1 + t) (see propo-
sition 4.2). The elements of π1(Y, z) that act nontrivially on H̄∗(B(C∗, 2),L)
are precisely the ones that transpose the elements of y. Such elements act on
B(C∗, 2) as {a, b} → {1/a, 1/b}; moreover, they act as minus identity on the
fibre of L = ±R over each pair {a, 1/a}. Using proposition 4.2 we conclude that
the action of π1(Y, z) on H̄i(B(C∗, 2),L) is the identity for i = 2 and minus
identity for i = 3.

Finally, it is easy to see that Y is homeomorphic to PSL2(C)/Z2, so
H̄∗(Y, any nontrivial local system) = 0, and H̄∗(Y,R) = H̄∗(SL2(C),R) (e.g.,
by lemma 4.1). Hence, P̄ (X18,L) = t5(1 + t3), and lemma 6.8 follows from
(6.8).♦

6.2 Column 23

Lemma 6.9 We have H̄∗(F23 \ F22) = t10(1 + t3).

Proof. The space F23 \F22 is the fibre bundle over X23, the fibre being the
product of a complex vector line and a 2-simplex. It is easy to show that the
space X23 is homeomorphic to

{{x, y, z} ∈ B(P \D, 3)|x, y, z are not on a line};

the local system on X23 corresponding to the bundle (F23 \ F22) → X23 is ±R.
By lemma 4.5, we have P̄ (B(P\D, 3),±R) = 0, so, in order to prove the lemma,
it is sufficient to calculate the Borel-Moore homology groups of the space

{{x, y, z} ∈ B(P \D, 3)|x, y, z are on a line}, (6.9)

which can be done as follows. The space

A = {{x, y, z} ∈ B(P, 3)|x, y, z are on a line nontangent to D}

can be filtered according to the number of intersection points with D: for i =
1, 2, 3 set

A(i) = {{x, y, z} ∈ A|#({x, y, z} ∩D) ≥ 3 − i}.

We have P̄ (A,±R) = 0; the groups H̄∗(A(1),±R) are also zero, cf. the proof of
lemma 6.6. The space A(3) \A(2) coincides with (6.9), so it remains to calculate
the Borel-Moore homology groups of A(2) \ A(1). This space if a fibre bundle
over F (D, 2), the fibre being homeomorphic to B(C∗, 2). So we obtain a spectral
sequence converging to the Borel-Moore homology groups of A(2) \A(1) with the
term E2 equal to

3 R R

2 R R

2 3 4

A group action agrument already used in the proof of lemma 6.6 shows that the
differential d2

4,2 : E2
4,2 → E2

2,3 is nonzero, which implies that P̄ (A(2)\A(1),±R) =

t4(1 + t3). Hence, we have P̄ (A(3) \ A(2),±R) = t5(1 + t3), and the lemma
follows.♦
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6.3 Column 24

Lemma 6.10 We have H̄∗(F24 \ F23) = 0.

Proof of lemma 24. Again, in order to prove the lemma it suffices to show
that the Borel-Moore homology of X24 with coefficients in some system L is
zero. Let us identify the space X24 with the space of configurations ({x, y}, z),
where x, y and z are noncollinear points of P \ D such that the line spanned
by x and y is tangent to D (the points x, y and z are the intersecition points
P1 ∩ P2 ∩ P, P1 ∩ P3 ∩ P, P2 ∩ P3 ∩ P, where P1, P2, P3 are planes that satisfy
the conditions of the correspondind item of lemma 6.3). The system L is the
inverse image of the system ±R under the natural map X24 → B(P \D, 3). If
we fix the point z ∈ P \D and a line l ⊂ P tangent to D and not passing by z,
then the space of {x, y} ∈ B(l, 2) such that ({x, y}, z) ∈ X24 is homeomorphic
to B(C, 2). We have P̄ (B(C, 2),±R) = 0, and lemma 6.10 follows.♦

6.4 Column 25

Lemma 6.11 We have H̄∗(F25 \ F24) = t10(1 + t3).

A proof of this lemma will take the rest of the section.
The space F25 \F24 is a fibre bundle over X25. Take K ∈ X25,K = (l1∪ l2 ∪

l3)∩Q, where l1, l2, l3 are lines that satisfy the conditions from the corresponding
item of lemma 6.3. The fibre of the bundle F25\F24 → X25 overK is the product
of the vector space L(K) and an open 3-simplex such that two vertices of the
simplex correspond to the points of K ∩D = l3 ∩ Q, and the other two vertices
correspond to the τ -invariant pairs that make up K \D = (l1 ∩ Q) ∪ (l2 ∩ Q).

Let L be the local system on X25 with fibre R that corresponds to the fibre
bundle F25 \ F24 → X25. We have H̄∗(F25 \ F24) ∼= H̄∗−2−3(X25,L).

It is easy to see that l3 ⊂ P (recall that P is the plane that is pointwise fixed
under τ), so the intersection point l1∩ l2∩ l3 belongs to P\D. Hence, the space
X25 is a fibre bundle over P \D. Denote by F the typical fibre of that bundle.
Once we have fixed x ∈ P\D, all possible choices of the line l3 are parametrised
by the elements of C∗ (we can take any line in P that passes through x except
the lines tangent to D). Hence, F is a fibre bundle over C∗; denote by F ′ the
typical fibre of the bundle F → C∗.

Denote let x′, l′, l′′ and C be respectively the point (1 : 0 : 0) ∈ CP 2, the
lines {(0 : x1 : x2)} and {(x0 : 0 : x2)} and the nondegenerate conic in CP 2

defined by the equation x2
0 + x2

1 + x2
2 = 0 (see Figure 6.1). Denote by τ ′,

respectively, τ ′′, the involution (x0 : x1 : x2) 7→ (−x0 : x1 : x2), respectively,
(x0 : x1 : x2) 7→ (x0 : x1 : −x2). Set Y = l′ ∪ l′′ ∪ C. Identify the space F ′

with (CP 2 \ Y )/τ ′. The involution τ ′′ induces an involution of F ′, which will
also be denoted by τ ′′. The system L|F ′ changes the sign under any loop that
transposes the τ -invariant pairs of points that make up (l2 ∪ l1)∩Q. Denote by
M the inverse image of L on CP 2 \ Y . It is easy to see that M can be extended
to a local system on CP 2 \ C; this extension will be denoted by the M′. Note
that M is the nontrivial one-dimensional local system on CP 2 \ C.

Lemma 6.12 1. We have P̄ (F ′,L) = t2.
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x′

l
′

C

l′′

Figure 6.1:

2. The map f : L → L that covers τ ′′|F ′ and is minus identity over all pairs
{(±x0 : x1 : 0)} induces the identity map of H̄2(F

′,L) into itself.

Proof. Note that the actions of τ ′ and τ ′′ on CP 2 \ Y can be lifted into
M in a natural way: indeed, τ ′ acts on M since M is the inverse image of L

under CP 2 \ Y → (CP 2 \ Y )/τ ′ = F ′, and the action of τ ′′ is included into the
following commutative diagram:

M //

$$JJ
JJ

JJJ
JJ

J

��

M

��

zzttt
tt

ttt
tt

CP 2 \ Y

��

τ ′′

// CP 2 \ Y

��
F ′ τ ′′

// F ′

L|F ′ f //

::tttttttttt

L|F ′

ddJJJJJJJJJJ

Both these actions can be extended to M′. Note that the extension of the
action of τ ′ is the identity over x′, and τ ′′ acts as minus identity over every
point (x0 : x1 : 0) 6∈ C. Denote the extension of the action of τ ′′ to M′ by f ′.

We have P̄ (CP 2 \ C,M′) = t2. This implies easily that P̄ (CP 2 \ Y,M) =
2t2. Since H̄∗(F ′,L) is isomorphic to the vector subspace of H̄∗(CP 2 \ Y,M)
that consists of τ ′-invariant elements, we obtain (using a Euler characteristic
argument) that P̄ (F ′,L) = t2.

Let us now prove the second assertion. As we noted above, f ′ : M′ → M′

is minus identity over the points of the line {(x0 : x1 : 0)} that do not belong
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to C. It is easy to see that f ′ is then the identity over (0 : 0 : 1), and hence,
by lemma 6.4, the map f ′

∗ : H̄2(CP
2 \C,M) → H̄2(CP

2 \C,M) is the identity.
We conclude from proposition 4.1 that the map of f ′

∗ : H̄1(l
′ \ (l′′ ∪ C),M) →

H̄1(l
′\(l′′∪C),M) is also the identity, which implies that f ′ induces the identical

map of H̄2(CP
2\Y,M) into itself, which implies that f∗ : H̄2(F

′,L) → H̄2(F
′,L)

is also the identity.♦
Now let F be the fibre of the bundle X25 → P \D over x = (0 : 0 : 0 : 1).

Lemma 6.13 We have P̄ (F,L) = t3(1 + t).

Proof. Let l3 be the line defined by the equations x0 = x1 = 0. Let A(t), t ∈
[0, 1] be the linear map CP 3 → CP 3 written in homogeneous coordinates as

(x0 : x1 : x2 : x3) 7→ (x0 : x1 cosπt+ x2 sinπt : −x1 sinπt+ x2 cosπt : x3).

For any t ∈ [0, 1] the map A(t) commutes with τ . It is easy to check that the loop
γ : t 7→ A(t)l3 generates the π1 of the space of all lines in P that pass through
x and are not tangent to D. The corresponding monodromy map F ′ → F ′ is
induced by A(1); but A(1) = τ on the space of lines that pass through x, hence
γ acts identically on F ′.

The map A(1) transposes the intersection points l3∩Q. Now let l1 and l2 be
the lines defined by the conditions x0 − x1 = 0, x2 = 0 and x0 + x1 = 0, x2 = 0
respectively. The set (l1 ∪ l2)∩Q splits into two τ -invariant pairs, and the map
A(1) transposes these pairs. Hence, the loop γ acts identically on L|F ′ , and the
lemma follows now from lemma 6.12.♦

Let us now prove lemma 6.11. We shall use the notation from the proof of
the previous lemma. In the same way as above, we conclude that the action of
the nontrivial element a′ ∈ π1(P \D,x) on F is induced by the linear map that
can be written as

(x0 : x1 : x2 : x3) 7→ (x0 : x1 : −x2 : −x3). (6.10)

This map transposes the lines passing through x and tangent to D ∩ Q, hence
if we identify with C∗ the space of lines in D that pass through x and are not
tangent to Q, then the action of a′ may be written as z 7→ 1/z.

The map (6.10) preserves the lines l1, l2, l3; denote by F ′ the fibre of the
bundle F → C∗ over l3. By associating with a line l passing through x the
intersection point of l and the plane defined by the condition x3 = 0, we can
identify F ′ with

{(y0 : y1 : y2) ∈ CP 2|y0 6= 0, y1 6= 0, y2
0 + y2

1 + y2
2 6= 0}/τ ′,

where τ ′(y0 : y1 : y2) = (−y0 : y1 : y2). Under this identification, the map
F ′ → F ′ induced by (6.10) is obtained from the involution τ ′′ of CP 2, τ ′′(y0 :
y1 : y2) = (y0 : y1 : −y2), and the τ -invariant pair of lines {l1, l2} corresponds
to the τ ′-invariant pair {(1 : 1 : 0), (1 : −1 : 0)}. Note that both points
(1 : 1 : 0), (1 : −1 : 0) lie on the line of CP 2 that is pointwise fixed under τ ′′;
note also that the map (6.10) preserves the intersection points of l3 and the
conic D, while the intersection points of each one of the lines l1, l2 with Q are
transposed under (6.10). Using the second assertion of lemma 6.12 we can write
down the Leray spectral sequence of the bundle X25 → P \D, and lemma 6.11
follows.♦
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6.5 Column 26

Lemma 6.14 We have P̄ (F26 \ F25) = t10(1 + t)(1 + t3).

Proof of lemma 26. As usual, we have H̄∗(F26 \F25) = H̄∗(X26,L), where L

is a local system with fibre R; we shall see below that L is constant.
The space X26 is a fibre bundle over B(D, 2) with fibre F , which is homeo-

morphic to the complex torus (C∗)2. Indeed, let us fix the intersection points x
and y of K ∈ X26 and D; let lix, l

i
y, i = 1, 2 be the lines on Q that pass through

x and y. We have σ(l1x) = σ(l2x), σ(l1y) = σ(l2y), so, if K ∪ D is fixed, K is
completely determined by the points K ∪ (l1x ∩ l1y); one of these points belongs
to l1x \ (l2x ∩ l2y) and the other one to l1y \ (l2x ∩ l2y).

A loop γ ∈ π1(X26) induces transpositions of the points of K ∩ D and of
the τ -invariant pairs of points of K \D; the action of γ on the fibre of L is the
product of the signs of these transpositions. It is easy to see that any loop in
the fibre of the bundle X26 → B(D, 2) does not transpose any points of K at
all, and a loop that projects on the nontrivial loop in B(D, 2) transposes both
the points K∩D and two τ -invariant pairs of points of K \D. Hence, the action
of π1(X26) on L is trivial.

Let us now calculate the action of π1(B(D, 2)) on the Borel-Moore homology
groups of F ∼= (C∗)2. We can introduce coordiantes z, w on F so that the map
F → F induced by the nontrivial element of π1(B(D, 2)) will be (z, w) 7→
(w−1, z−1). The eigenvalues of the corresponding map of H̄i(F ) → H̄i(F ) are 1
for i = 4, 1 and −1 for i = 3, and −1 for i = 2. Hence, the second term of the
Leray spectral sequence of the bundle X26 → B(D, 2) looks as follows:

4 R

3 R R

2 R

2 3 4

(6.11)

Lemma 6.14 is proven.♦

6.6 Column 27

Lemma 6.15 We have H̄∗(F27 \ F26) = 0.

Proof of lemma 6.15. As in the case of the previous columns, we see that
H̄∗(F27 \ F26) is isomorphic (with a dimension shift) to H̄∗(X27,L), where L is
some 1-dimensional local system. The space X27 is a fibre bundle over P \D.
The fibre of this bundle is homeomorphic to the product of the space lines in P

that pass through x and are not tangent to D and the space of τ -invariant pairs
of lines in one of the two τ -invariant planes that contain x and are tangent to
Q. The first factor in this product is homeomorphic to C∗, and the restriction
of L to it in nonconstant. This implies that the Borel-Moore homology of the
fibre of this bundle X27 → P \D is zero, and lemma 6.15 follows.♦

6.7 Column 28

Lemma 6.16 We have P̄ (F28 \ F27) = t10(1 + t3).
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Proof. The space F28 \ F27 is a fibre bundle overB(D, 3), the fibre over
K ∈ X28 being the product of the vector space L(K) and the open 5-simplex
whose vertices correspond to the points of K ∩D and to the τ -invariant pairs
that make up K \ D. The bundle F28 \ F27 → B(D, 3) is orientable, and the
lemma follows.♦

6.8 Nondiscrete singular sets

The case of X17 has already been taken care of (see lemma 6.7).

Lemma 6.17 We have P̄ (F13 \ F12) = 0.

Proof. Let K = l1 ∪ l2 be an element of X13 (here l1 and l2 are lines on Q

such that l1 ∩ l2 = x ∈ D). We have

∂Λ(K) =
⋃

K′∈X12

K′⊂K

Λ(K ′),

which is a contractible space.♦

Lemma 6.18 We have P̄ (F22 \ F21) = t10(1 + t3).

Proof. Let us first calculate the polynomial P̄ (Λ(K)\∂Λ(K)) for K ∈ X22.
Let K = C ∪ {x} be an element of X22 (here C is a τ -invariant conic, and
x ∈ D \ C). Let us show that P (∂Λ(K)) = 1. We have

∂Λ(K) = Λ(C) ∪
⋃

K′∈X18∪X20,

K′⊂K

Λ(K ′).

The second term in this union can be contracted to Λ({x}), and the space

Λ(C) ∩
⋃

K′∈X18∪X20,

K′⊂K

Λ(K ′) =
⋃

K′∈X8∪X5,

K′⊂C

Λ(K ′)

is homeomorphic to

(S2)∗2
⋃ the union of all 2-simplices of (S2)∗3

that have vertices at two fixed points.
(6.12)

The difference of (6.12) and (S2)∗2 is an orientable fibre bundle over C∗, the
fibre being the open 2-simplex. Hence, the group H̄i of (6.12) is R if i = 0, 3, 4
and zero otherwise, which implies that P̄ (Λ(K) \ ∂Λ(K)) = t5(1 + t).

Now, the space X22 is homeomorphic to the “mixed” configuration space

{({x, y}, z) ∈ B(D, 2) ×D|z 6∈ {x, y}}.

Any loop in this space has the form

(({x, y}, z), t) 7→ A(t)({x, y}, z),
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where t 7→ A(t) is a loop in the automorphism group of D (based at the iden-
tity). Hence, the only nontrivial monodromy map of the fibre of the bundle
F22 \ F21 → X22 over ({x, y}, z) is induced by the automorphism of D that
transposes x and y, and preserves z. This monodromy map acts identically (re-
spectively, as multiplication by −1) on the 3-d (respectively, 4-th) Borel-Moore
homology group of (6.12). Hence, the 5-th (respectively, the 6-th) line of the
term E2 of the Leray sequence of the bundle F22 \ F21 → X22 contains the
Borel-Moore homology groups of (6.12) with coefficients in the trivial (respec-
tively, a nontrivial) local system. Since the space (6.12) is homeomorphic to
PGL2(C)/Z2, lemma 6.18 follows from lemma 4.1. ♦

Lemma 6.19 We have P̄ (F21 \ F20) = 0.

Proof. We proceed as in the proof of the previous lemma and pick a K =
l1 ∪ l2 ∪{x}, where l1 and l2 are lines on Q, τ(l1) = l2, and x ∈ D \ (l1 ∩ l2). We
have

∂Λ(K) = Λ(l1 ∪ l2) ∪
⋃

K′∈X19

K′⊂K

Λ(K ′).

Both terms of this union are contractible, and their intersection is homeomorphic
to the union of all simplices of (S2)∗3 that have some fixed common vertice. The
latter space is also contractible, which implies the lemma.♦

6.9 The last column

The last column contains the Borel-Moore homology groups of the open cone
over space ∂Λ =

⋃

i<29

⋃

K∈Xi
Λ(K).

Lemma 6.20 We have P (∂Λ) = 1 + (1 + t3)(t7 + 5t8 + t9)− (1 + t)(t7 + t11 +
at10 + bt8), where a and b a=re integers such that 0 ≤ a, b ≤ 1.

Proof of lemma 6.20. The homology groups of ∂Λ can be calculated using
the spectral sequence corresponding to the filtration ∅ ⊂ Φ1 ⊂ · · · ⊂ Φ28. We
shall denote the terms of this spectral sequence by er

p,q. We already know all the

groups e1p,q (indeed, we have t2diP̄ (Φi\Φi−1) = P̄ (Fi\Fi−1) for any i = 1, . . . , 28,
where di is the number indicated in square brackets in the corresponding item
of the list of lemma 6.3.

The generators of dimension ≤ 7 that come from the first four columns of the
spectral sequence (er

p,q) do not survive in the term e∞, since V \Σ is isomorphic
to a smooth affine hypersurface, and hence, has the homotopy type of a ≤ 10-
dimensional CW -complex. The same argument proves that the 7-dimensional
class that comes from column 18 of the sequence (er

p,q) does not survive.

So, in order to prove lemma 6.20, it remains to show that H̄12(∂Λ) = 0.

Lemma 6.21 We have H̄12(∂Λ) = 0.

Proof. For any K ∈ X26 define K̂ ∈ X25 as follows. Let x and y be the
points such that {x, y} = K ∩ D, and let lix, l

i
y, i = 1, 2 be the lines on Q

such that that l1x ∩ l2x = x, l1y ∩ l2y = y, and lix ∩ liy = ∅ for i = 1, 2; we set
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K̂ = K \ ((l1x ∩ l2y) ∪ (l1y ∩ l2x)). Denote by N the union of all configurations of

the form K̂,K ∈ X26.

The space ∂Λ can be filtered as follows:

Φ24 ⊔
⊔

K∈X26















Λ(K) \
⋃

K′⊂K

K′ 6∈X25

Λ(K ′)















⊔
⊔

K∈X25

K 6∈N

(Λ(K) \ Λ(K))⊔ (∂Λ \Φ26).

(6.13)

The the Borel-Moore homology of the second term in this filtration is zero,
since the second term is a fibre bundle (over X26) with fibre homeomorphic to
the 4-simplex minus four faces of maximal dimension. We have seen before that
no 12-dimensional homology class can come from the first and the fourth terms
of (6.13). So the only place a 12-class can come from is the third term, which is
fibered over X25 \N with fiber homeomorphic to an open 3-simplex, so in order
to prove the lemma, it is sufficient to show that H̄9(X25 \N,L) = 0, where we
denote by L the local system overX25 that was introduced in the proof of lemma
6.11. Note that the restriction of L to N is constant. Since H̄9(X25,L) = 0, it
remains to show that the map H̄8(N) → H̄8(X25,L) is injective.

The manifoldsX25 andN are both fibre bundles over P\D, and the inclusion
N ⊂ X25 is a bundle map. If F is the fibre of the bundle X25 → P \ D over
some point of P \ D, then both F and F ∩ N are fibre bundles over C∗, and
the inclusion F ∩ N ⊂ F is again a bundle map. Let F ′ be the fibre of the
bundle F → C∗ some point of C∗, and let us show that the homomorphism
H̄2(F

′ ∩N) → H̄2(F
′,L) is injective.

Let x′, l′, l′′, C and τ ′ be respectively the point, the lines, the conic and the
involution of CP 2 that were introduced in the proof of lemma 6.11. In addition,
let m1 and m2 be the lines represented schematically on Figure 6.2. If we set
Y = l′ ∪ l′′ ∪ C and identify the space F ′ with (CP 2 \ Y )/τ ′, then F ′ ∩ N
will be identified with ((m1 ∪m2) \ Y )/τ ′. Let M and M′ be the local system
respectively on CP 2 \ Y and CP 2 \ C that were defined in the proof of lemma
6.11. The image of H̄2(mi \ C,M

′), i = 1, 2 in H̄2(CP
2 \ C,M′) is nonzero and

coincides with the image of H̄2(m \C,M′) for any line m tangent to C. Choose
m as shown on Figure 6.2.

As we have seen in the proof of lemma 6.12, the natural action of τ ′ on
M′ is identical over x′, which implies that τ ′∗ is the identity on the image of
H̄2((m1 ∪m2) \ C,M

′) in H̄2(CP
2 \ C,M′). The commutative diagram

H̄2((m1 ∪m1) \ C,M
′) −−−−→ H̄2((m1 ∪m2) \ Y,M)





y





y

H̄2(CP
2 \ C,M′) −−−−→ H̄2(CP

2 \ Y,M)
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x′

l′′

l′

m′m′′

m

C

Figure 6.2:

shows that τ ′∗ is the identity on the image of H̄2((m1∪m2)\Y,M
′) in H̄2(CP

2 \
Y,M′), and the diagram

H̄2((m1 ∪m1) \ Y,M) −−−−→ H̄2(CP
2 \ Y,M)





y





y

H̄2(F
′ ∩N,L) −−−−→ H̄2(F

′,L)

implies that the image of H̄2(F
′ ∩N,L) in H̄2(CP

2 \ Y,M) is nonzero. Lemma
6.21 is proven.♦

6.10 Proof of theorem 6.1

Lemma 6.22 The nonzero element of E1
26,14−26 does not survive in the term

E∞.

Proof. Note that the union of the second and the third terms of (6.13) is
Φ26 \ Φ24. We have proven that H̄12(Φ26 \ Φ24) = 0. We have dimC L(K) = 1
for K ∈ X25 ∪ X26; one can check that F26 \ F24 is a 1-dimensional complex
vector bundle over Φ26 \ Φ24. We have H̄14(F26 \ F24) = 0, and hence, the
differential d1 is nonzero on the nonzero element of E1

26,14−26. Lemma 6.22 is
proven.♦

Lemma 6.23 The Poincaré polynomial of the space V \ Σ is divisible by (1 +
t)(1 + t3).



60 CHAPTER 6. SMOOTH BIELLIPTIC GENUS 4 CURVES

Proof. Recall that the space V \Σ is homeomorphic to the space V (1) \Σ(1)

of polynomials that define smooth cubics in CP 2 that intersect transversally a
fixed nondegenerate conic. The group GL3(C) acts almost freely on the space
of Π3,2 \ Σ3,2, and the Leray sequence of the corresponding quotient map de-
generates at the second term. This is a consequence of a general result of J.
Steenbrink and C. Peters ([11]); alternatively, this follows from the fact that the
Poincaré polynomial of the space Π3,2 \Σ3,2 is equal to Poincaré polynomial of
GL3(C) (see [14]). Hence, the restriction map from H∗(Π3,2 \ Σ3,2,R) to the
real cohomology of any orbit of the action of GL3(C) is surjerctive.

Let G1 be the subgroup ofGL3(C) generated by scalar matrices and elements
of SO3(C). The Poincaré polynomial of G1 is (1 + t)(1 + t3). The group G1

acts on V (1) \ Σ(1), and the restriction map H∗(GL3(C),R) → H∗(G1,R) is
surjective. The lemma follows now from the Leray-Hirsch principle.♦.

Now the proof of theorem 6.1 becomes pretty straightforward. We have
calculated the dimensions of all E1

p,q for 1 ≤ p ≤ 28, and we have partial
information on the last column due to lemma 6.20. An easy check shows that
the Poincaré polynomial of the space V \ Σ is equal to

(1+ t)2(1+ t3)+ (1+ t3)(2t5 +6t6 +5t7 + t8)− (1+ t)(t6 + at7 + ct8 + bt9 + t10),

where a ∈ {0, 1, 2, 3}, and b, c ∈ {0, 1}. The proof of theorem 6.1 is completed
by checking all possibilites for a, b and c.♦



Chapter 7

Real smooth plane cubics

In this chapter we apply the method developed in chapter 3 to calculate the
real cohomology groups of the space Π3,2(R) \ Σ3,2. We set V = Π3,2(R),Σ =
Σ3,2 ∩ Π3,2, and we would like to apply theorem 3.2 to construct a conical
resolution of V \ Σ. In this chapter a line means a conjugation-invariant line
in CP 2; we shall denote by RP 2∨ the space of all conjugation-invariant lines in
CP 2.

Lemma 7.1 The configuration spaces X1–X8 that consist of the following con-
figurations satisfy conditions 1–8 from chapter 3.

1. A point in RP 2 [7].

2. Two complex conjugate points in CP 2 \ RP 2 [4].

3. A pair of points in RP 2 [4].

4. Three points in RP 2 on a line [3].

5. A configuration {x} of type 1 plus a configuration {y, ȳ} of type 2 such
that x, y and ȳ belong to some line ∈ RP 2∨ [3].

6. A line ∈ RP 2∨ [3].

7. Three points in RP 2 not on a line [1].

8. A point in RP 2 plus a pair of complex conjugate points in CP 2 \RP 2 such
that the three points are not on a line in CP 2 [1].

9. The whole CP 2 [0].

♦
Applying theorem 3.2, we construct a filtered space σ such that H̄∗(σ) ∼=

H̄∗(Σ3,2∩Π3,2(R)). As described in chapter 3, we construct the spaces Φi, Fi, i =
1, . . . , 8 and Λ, and for any i = 1, . . . , 8 and K ∈ Xi, we introduce the spaces
Λ(K) and ∂Λ(K). We denote the natural projections σ → Σ3,2 and σ → Λ
respectively by π and p. Denote by Geom the union of all coherent simplices
from Λ that do not have vertices on X4 and X5.

For our purposes it will be more convenient to omit the terms F4 and F5 in
the filtration ∅ ⊂ F1 ⊂ . . . ⊂ F8 = σ: we set F̃i = Fi for i ≤ 3 and F̃i = Fi+2

otherwise.

61
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Theorem 7.1 1. There exists a filtration ∅ ⊂ F̃1 ⊂ · · · F̃7 = σ on the space
σ such that the term E1 of corresponding spectral sequence is given by the
following table.

6 R

5
4 R

3
2 R R

1
0
−1 R

1 2 3 4 5 6 7

(7.1)

2. The differential d5
6,2 : E5

6,2 → E5
1,6 of this sequence is nonzero.

A proof of theorem 7.1 will take the rest of the chapter.
The space F̃1 is homeomorphic to

{(f, x) ∈ Π3,2(R) × RP 2|the curve defined by f has a singularity at x}.

Set x = (1 : 0 : 0) ∈ RP 2. The vector space L({x}) is spanned by the monomials
x3

1, x
3
2, x

2
1x2, x

2
2x1, x0x

2
1, x0x

2
2, x0x1x2. The action of the nontrivial element of

π1(RP
2, {x}) on L({x}) is induced by the map x0 7→ −x0, x1 7→ −x1, x2 7→ x2,

hence, the vector bundle F̃1 → RP 2 is orientable. We have E1
1,q = H̄1+q(F̃1) =

Hq−6(RP
2).

Let A be the space of pairs {{x, y} ∈ B(CP 2 \ RP 2, 2)|x = ȳ}. The
space F̃2 \ F̃1 is a vector fibre bundle over A. Note that any pair {x, x̄} ∈ A
is situated on a unique real (i.e., invariant under the complex conjugation)
line. Hence, the space A is a fibre bundle over the space RP 2∨ of all com-
plex conjugation-invariant lines in CP 2, the fibre being homeomorphic to
(CP 1 \ RP 1)/(the complex conjugation), i.e., to the open disk. The bundle
A → RP 2∨ is nonorientable (i.e., the monodromy map induced by a nontrivial
loop in RP 2∨ is orientation-reversing).

Set K = {(1 : i : 0), (1 : −i : 0)}. The space L(K) is spanned by
x2

2x0, x
2
2x1, x2(x

2
0 + x2

1), x
3
2. The action of the nontrivial element of π1(A,K) is

induced by x0 7→ x0, x1 7→ −x1, x2 7→ −x2, hence, the vector bundle F̃2\F̃1 → A
is nonorientable. Hence, F̃2\F̃1 is a homologically trivial fibre bundle over RP 2∨,
and we have have E1

2,q = H̄2+q(F̃2 \ F̃1) = Hq−4(RP
2).

The space F̃3 \ F̃2 is a vector bundle over the space Φ3 \ Φ2. The latter
space is a fibre bundle over B(RP 2, 2), the fibre over a pair K = {x, y} be-
ing Λ(K) \ Φ2, which is homeomorphic to an open interval, whose endpoints
correspond to x and y. Set K = {(1 : 0 : 0), (0 : 1 : 0)}. The group
π1(B(RP 2, 2),K) is generated by the loops γ1 : t 7→ {(cosπt : 0 : sinπt), (0 :
1 : 0)}, γ2 : t 7→ {((1 : 0 : 0), (0 : cosπt : sinπt)} and γ3 : t 7→ {(cosπt :
sinπt : 0), (− sinπt : cosπt : 0)}, t ∈ [0, 1]. Neither one of these loops changes
the orientation of L(K), but γ3 transposes (1 : 0 : 0) and (0 : 1 : 0). Hence, we
have E1

3,q = H̄3+q(F̃2 \ F̃3) = H̄q−3(B(RP 2, 2),±R). Since the Borel-Moore ho-

mology groups of the open Möbius leaf are zero, we have H̄∗(F (RP 2, 2),R) = 0,
and hence, H̄∗(B(RP 2, 2),R) = H̄∗(B(RP 2, 2),±R) = 0, i.e., the third column
of the spectral sequence (7.1) is zero.
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The space F̃4\F̃3 is a vector bundle over Φ6\Φ3 (recall that we have omitted
the terms F4 and F5 in the original filtration on the space σ). The space Φ6 \Φ3

is a fibre bundle over RP 2∨.
For any l ∈ RP 2∨ set lR = l ∩RP 2; the fibre of the bundle Φ6 \Φ3 → RP 2∨

over l is the cone over the space

∂Λ(l) =
⋃

K = three
of points in lR

Λ(K) ∪
⋃

K is a pair of complex
conjugate points in l \ lR

plus a point in lR

Λ(K) (7.2)

minus the space

∂Λ(l) =
⋃

K is a pair
of points in lR

Λ(K) ∪
⋃

K is a pair of complex
conjugate points in l \ lR

Λ(K). (7.3)

Lemma 7.2 The Borel-Moore homology groups of F̃4 \ F̃3 are equal to those of
the restriction of the vector bundle F̃4 \ F̃3 → Φ6 \ Φ3 to (Φ5 \ Φ3) ∩Geom.

(The space Geom was defined on page 61.)
Proof. For any l ∈ RP 2∨ the vector bundle F̃4 \ F̃3 → Φ6 \ Φ3 is constant

over Λ(l) \Φ3. The space (Φ6 \Φ3)∩Geom, as well as Φ6 \Φ3, is a fibre bundle
over RP 2∨, only this time the fibre over l ∈ RP 2∨ is the open cone over the
space (7.3). The space quotient space

(cone over (7.2))/(cone over (7.3))

is contractible, hence for any l ∈ RP 2∨ the inclusion

((Φ6 \ Φ3) ∩Geom ∩ Λ(l)) → (Φ6 \ Φ3) ∪ Λ(l)

induces an isomorphism of the Borel-Moore homology groups. The lemma is
proven.♦

Remark. This lemma is an analogue of V. A. Vassiliev’s “geometrisation”
construction [14, Section 2]. It can be immediately extended to the case of
general conical resolutions constructed in chapter 3, which allows one to reduce
somewhat long lists of configuration spaces (like the list of proposition 5.1). We
did not need this in chapters 5 and 6, since most spaces of “fake” singular loci we
were forced to introduce did not contribute anything to the spectral sequence;
in the real case however (as well as, e.g., in the case of complex cubic threefolds)
it is essential to keep the list of configuration spaces as short as posssible. We
postpone the details to future work.

In (7.3), the first component is just the space l∗2
R

(the second self-join of lR).
Due to the Caratheodory theorem (see, e.g., [15, Chapter 7, §2]), S1(∗2) is home-
omorphic to S3. The second component is (l \ lR)/(the complex conjugation),
which is homeomorphic to the open 2-disc. So the space ∂Λ(l)∩Geom is home-
omorphic to S3 with a 2-dimensional disc attached along some knot.

Let m : ∂Λ(l) ∩ Geom → ∂Λ(l) ∩ Geom be the monodromy induced by
the generator of π1(RP

2). The restriction m|l∗2
R

is orientation-preserving, but
m|(l \ lR)/(the complex conjugation) is orientation-reversing. So the term E2
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of the Borel-Moore homology Leray spectral sequence of the bundle (Φ6 \Φ3)∩
Geom→ RP 2∨ looks as follows:

4 R

3 R

0 1 2
(7.4)

Lemma 7.3 We have H̄∗((Φ6 \ Φ3) ∩Geom) = 0.

Proof of lemma 7.3. Recall that the group SO3(R) acts on the space
(Φ6 \Φ3)∩Geom in a natural way. If G ⊂ SO3(R) is the 1-parametric subgroup
that preserves some line l, then there exist exactly two complex conjugate points
X(l), X̄(l) ∈ l that preserved by any element of G; the group G acts freely on
l \ {X(l), X̄(l)}. Hence, the stabiliser of a point x ∈ (Φ6 \ Φ3) ∩ Geom is
nondiscrete, iff x belongs to the semi-segment with vertices l and {X(l), X̄(l)}
for some l ∈ RP 2∨. Since the Borel-Moore homology groups of a semi-segment
are zero, we have H̄∗((Φ6 \Φ3)∩Geom) ∼= H̄∗(B), where B stands for the union
of the points of (Φ6 \ Φ3) ∩Geom whose stabilisers are discrete.

Using the Leray sequence for the cohomology groups with compact supports
of the quotient map B → B/SO3(R), we see that either the Borel-Moore ho-
mology groups of the space B are zero or there exist 0i, j such that i − j ≥ 3,
and H̄i(B) 6= 0 6= H̄j(B). The second possibility is excluded by the spectral
sequence (7.4). The lemma is proven.♦

Hence, we have H̄∗((Φ6 \ Φ3) ∩ Geom,R) = 0. It is easily checked that the
action of π1((Φ6 \ Φ3) ∩Geom) ∼= π1(RP

2∨) on L(l) (where l is a line ∈ RP 2∨)
is trivial, hence E1

4,p = H̄p+4(F̃4 \ F̃3) = H̄p+1((Φ6 \ Φ3) ∩Geom),R) = 0.
Let us now consider the fifth column of the spectral sequence. We have

H̄∗(F̃5 \ F̃4) = H̄∗−1−2(B̃(RP 2, 3),±R⊗L), where B̃(RP 2, 3) denotes the space
of configurations of type “three points in RP 2 not on a line”, and L is the local
system corresponding to the action of π1(B̃(RP 2, 3)) on the vector space L(K)
for K ∈ B̃(RP 2, 3). Let us calculate that action.

Denote by F̃ (RP 2, 3) the space of ordered triples of points of RP 2 in general
position. Set K = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)}. The space F̃ (RP 2, 3)
can be contracted onto F (RP 2, 2); it is easy to see that any element of the
image of π1(F̃ (RP 2, 3)) under the natural projection F̃ (RP 2, 3) → B̃(RP 2, 3)
acts trivially on H̄∗(L(K)). Consider the loop

γ : t 7→ {(cos
πt

2
: sin

πt

2
: 0), (− sin

πt

2
: cos

πt

2
: 0), (0 : 0 : 1)}, t ∈ [0, 1]. (7.5)

This loop transposes two elements of K and acts non-trivially on H̄∗(L(K)), so
we have L = ±R.

Let us calculate the groups H̄∗(B̃(RP 2, 3),R) and H̄∗(B̃(RP 2, 3),±R).

Lemma 7.4 The group H̄i(B̃(RP 2, 3),±R) = R, if i = 3 or 6, and is zero
otherwise. For any i, the group H̄i(B̃(RP 2, 3),R) is zero.

Proof of lemma 7.4. The manifold F̃ (RP 2, 3) can be contracted onto the
space of ordered collections of triples of paiwise orthogonal lines in R3 that pass
through zero; hence, P (F̃ (RP 2, 3)) = P (SO3(R)) = 1 + t3. On the other hand,
F̃ (RP 2, 3) is orientable (see Figure 7.1), and hence, P̄ (F̃ (RP 2, 3)) = t3(1 + t3).
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A1

A2

v3,2

v2,2

v1,2

v1,1

v3,1

v2,1

A3

Figure 7.1: Here is how F̃ (RP 2, 3) can be oriented: take some
K = (A1, A2, A3) ∈ F̃ (RP 2, 3). Choose an orientation on each line
A1A2, A2A3, A3A1. For any i = 1, 2, 3 and j = 1, 2 let vi,j ∈ TAi

AiAi+j mod 3

be a positive vector. Let wi,j be the element of TK(F̃ (RP 2, 3)) that cor-

responds to vi,j . The orientation on TK F̃ (RP 2, 3) defined by the frame
(w1,1, w1,2, . . . , w3,1, w3,2) does not depend on the choice of the orientations on
the lines A1A2, A2A3, A3A1.

The Leray spectral sequence of the covering F̃ (RP 2, 3) → B̃(RP 2, 3) imples
that

P̄ (F̃ (RP 2, 3)) = P (B̃(RP 2, 3)) + P (B̃(RP 2, 3),±R) + 2P (B̃(RP 2, 3),V2,1),
(7.6)

where V2,1 is the 2-dimensional local system corresponding to the 2-dimensional

representation V2,1 of the group S3. The manifold B̃(RP 2, 3) on the other hand
is nonorientable (the frame (w1,1, w1,2, . . . , w3,1, w3,2) constructed on Figure 7.1

gives us a frame in the tangent space to B̃(RP 2, 2) at {A1, A2, A3}; the action

of a loop like (7.5) on that frame consists of two blocks

(

0 1
−1 0

)

and one

block

(

0 1
1 0

)

), hence H̄6(B̃(RP 2, 3)) = 0. This, together with (7.6), easily

implies the resting assertions of lemma 7.4.♦

Applying lemma 7.4 we get E1
p,5 = H̄p+5(F̃5 \ F̃4,R) = 0 for all p.

Now let us calculate the sixth column of the spectral sequence 7.1. We have
E1

6,p = H̄p+6(F̃6 \ F̃5,R). The space F̃6 \ F̃5 ia a fibre bundle over Φ8 \ Φ7;
the latter space is fibered over X8, which itself is a fibre bundle over the space
RP 2∨. The fibre of the bundle Φ8 \ Φ7 → X8 is an open interval, and the
fibre of the bundle X8 → RP 2∨ over a conjugation-invariant complex line l is
the product of two open 2-discs (RP 2 \ lR)× ((l \ lR)/the complex conjugation).
The action of π1(RP

2∨, l) is orientation-reversing on both (RP 2 \ lR) and ((l \
lR)/the complex conjugation), so we have H̄i(Φ8 \ Φ7,R) = H̄i−1−4(RP

2,R) =
R, if i = 5 and 0 otherwise.
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Set K = {(0 : 0 : 1), (1 : i : 0), (1 : −i : 0)}. The vector space L(K) is
spanned by x2(x

2
0 +x2

1), and the action of π1(Φ8 \Φ7) on this space is nontrivial.
So we get

H̄i(F̃6\F̃5,R) = H̄i−1(Φ8\Φ7, the nontrivial one-dimensional local system) =

H̄i−1−4−1(RP
2, the nontrivial one-dimensional local system) = R,

if i = 8 and 0 otherwise. Hence, E1
p,6 = R, if p = 2 and 0 for all other p.

The last column of the spectral sequence (7.1) contains the Borel-Moore
homology groups of the space Λ \Φ8, which is the open cone over Φ8. We have
E8,q = H̄8+q((the cone over Φ8) \ Φ8,R) = H7+q(Φ8, point). We already know
the Borel-Moore homology groups of the difference of any two consecutive terms
of the filtration ∅ ⊂ Φ1 ⊂ Φ2 ⊂ Φ3 ⊂ Φ6 ⊂ Φ7 ⊂ Φ8, so we can write a spectral
sequence that converges to H∗(Φ8,R):

3 R

2 R

1
0 R

−1 R R

1 2 3 4 5 6

(7.7)

Lemma 7.5 We have Hi(Φ8,R) = R, if i = 0, 5, 8, and Hi(Φ8,R) = 0 for all
other i.

Proof of lemma 7.5. Note that we have H i(Π3,2 \ Σ3,2,R) = 0 for i > 4
no matter what the differentials of the spectral sequences (7.1) and (7.7) are.

The group SO3(R) acts on the space Π3,2 \ Σ3,2 in such a way that all
stalilisers are finite. It follows from theorem 4.4 or corollary 4.2 that the term
E2 of the cohomological Leray spectral sequence of the projection Π3,2 \Σ3,2 →
((Π3,2 \ Σ3,2)/SO3(R)) can be written as Ep,q

2 = H((Π3,2 \ Σ3,2)/SO3(R),R) ⊗
Hq(SO3(R)). Since the cohomology groups of Π3,2 \Σ3,2 are zero in dimensions
> 4, the Poincaré polynomial of Π3,2 \ Σ3,2 is equal to (1 + t3)P (t), where P is
a polynomial of degree 1.

It follows from the spectral sequence (7.7) that the Poincaré polynomial of
Φ8 is 1 + at4 + (a + 1)t5 + t8, where a ∈ {0, 1}. It is easy to check using the
sequence (7.1) that if a = 1, then the Poincaré polynomial of Π3,2 \ Σ3,2 is not
divisible by 1 + t3, and lemma 7.5 follows.♦

So far we have proven the first assertion of theorem 7.1. The second assertion
follows from the divisibility argument already used in the proof of lemma 7.5.♦
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Appendix A

The Cobordism Group of

Möbius Manifolds of

Dimension 1 is trivial 1

After recalling some general facts about Möbius structures, we define for any
n > 0 the cobordism group of Möbius manifolds of dimension n. We use the
classification of Möbius structures on the oriented S1 to prove that the cobor-
dism group of 1-dimensional Möbius manifolds is trivial. We also correct an
inaccuracy in N. Kuiper’s classification of projective circles.

A.1 Some definitions

Unless stated otherwise, all manifolds, diffeomorphisms and group actions under
consideration are assumed to be of class C∞.

Let M be a manifold, and let G be a Lie group acting on M . We shall
suppose that if g ∈ G acts identically on a nonempty open subset of M , then
g is the unit element of G. Let N be a manifold of dimension dimM . An
(M,G)-structure on N is defined to be an atlas (Ui, φi), where Ui ⊂ N are open
sets, and φi : Ui →M are coordinate maps such that

• Every φi is a diffeomorphism onto its image.

• If Ui ∩ Uj 6= ∅, then φi ◦ φ
−1
j coincides on its domain of definition with

the restriction of some element of G.

• The atlas (Ui, φi) is maximal with respect to the previous two conditions.

Such an atlas (Ui, φi) will be called (M,G)-coordinates on N .
If N1 and N2 are (M,G)-manifolds, then a local diffeomorphism N1 → N2

is called a local (M,G)-diffeomorphism, if, when written in (M,G)-coordinates,
it becomes a restriction of an element of G. If p : N1 → N2 is a local diffeo-
morphism and N2 is an (M,G)-manifold, then there exists a unique (M,G)-
structure on N1 such that p is a local (M,G)-diffeomorphism. We shall say that

1A. G. Gorinov, The cobordism group of Möbius manifolds in dimension 1 is zero, Topology
and its Applications, 2004, 143, 75-85.
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this structure is the inverse image of the (M,G)-structure on N2 with respect to
p. We shall say that two (M,G)-structures on N are equivalent, if one of them
is the inverse image of the other with respect to some diffeomorphism N → N
that is isotopic to the identity.

Let us fix a point x0 ∈ N . Denote by Ñx0
the universal covering space of N

based at x0, i.e., the space of homotopy classes of paths that start at x0. Every
(M,G)-structure on N gives rise to a local diffeomorphism F : Ñx0

→ M (the
developing map, see, e.g., [3, Chapter 3]) and a homomorphism f : π1(N, x0) →
G such that for any a ∈ π1(N, x0), x ∈ Ñx0

we have

F (a · x) = f(a)F (x). (A.1)

The set of equivalence classes of (M,G)-structures on N is in a one-to-one
correspondence with the set of couples (F, f) (where F : Ñx0

→ M is a local
diffeomorphism, f : π1(N, x0) → G is a homomorphism) that satisfy (A.1)
modulo the following equivalence relation: (F, f) ∼ (gFh, g(f ◦ αh)g−1) for all
g, h such that g ∈ G, h is obtained by lifting some diffeomorphism of N that is
isotopic to the identity 2, and αh is the automorphism of π1(N) defined by the
formula αh(a) = hah−1.

If the manifold M is oriented, and the transformations from G are
orientation-preserving, then we can define (M,G)-structures for oriented mani-
folds in an obvious way.

Let us now recall the definition of the Möbius groups Möbn,Möb∗
n and some

of their properties.
Suppose that Sn ⊂ Rn+1 is the unit sphere {(x1, . . . , xn+1) ∈ Rn+1|x2

1 +
· · · + x2

n+1 = 1}, and suppose that SOn+1,1 acts on Rn+2 via transformations
that preserve the quadratic form x2

1 + · · · + x2
n+1 − x2

n+2. Set

Q = {(x1, . . . , xn+2)|x
2
1 + · · · + x2

n+1 − x2
n+2 = 0, xn+2 6= 0}.

The map Q→ Sn defined by the formula (x1, . . . , xn+2) 7→ (x1, . . . , xn+1)/xn+2

gives us an action of SOn+1,1 on Sn. The resulting group of transformations of
Sn will be denoted Möb∗

n; we set Möbn to be the connected component of the
unit element of Möb∗

n.
A theorem of Liouville’s (see, e.g., [1, §15]) states that if n > 2, then every

diffeomorphism V → W (V and W being open subsets of Sn) that preserves
the angles in the standard Riemannian metric is the restriction of an element
of Möb∗

n.
Notation. An (Sn,Möbn)-structure is called a Möbius structure. For any

oriented manifold N , denote by M(N) the set of equivalence classes of Möbius
structures on N .

Note that in dimension 1 a Möbius structure can be equivalently defined
as an (M,G)-structure, where M is any circle C in CP 1, and G is the group
of linear-fractional transformations that preserve both disks bounded by C.
Analogously, a Möbius structure on a 2-dimensional manifold is the same as a
(CP 1,PSL2(C))-structure.

Notation. If N is a Möbius manifold, then denote by −N the Möbius
manifold “inverse to N”, i.e., −N = N as a smooth manifold, and the coor-
dinate maps that define the Möbius structure on −N are compositions of the
corresponding maps for N and an element of Möb∗

n \ Möbn.

2Note that any such h is a composition of an element of π1(N, x0) and an element of the
centraliser of π1(N, x0) in Diff(Ñx0

).
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The definition of a Möbius structure can be naturally extended to manifolds
with boundary. For any n, represent Sn as the unit sphere in Rn+1. We shall
say that X ⊂ Sn is a standard (n−1)-sphere, if X is the intersection of Sn with
a nontangent hyperplane. If N is a manifold of dimension n with boundary,
then a Möbius structure on N is defined by an open covering (Ui) of N and
coordinate maps φi : Ui → Sn that satisfy the conditions on page 69 and the
additional condition that for any i, φi(∂(N)∩Ui) should be a part of a standard
(n−1)-sphere (or, equivalently: any developing map should send any component
of ∂Ñ to a part of a standard (n− 1)-sphere). In this case ∂N carries a Möbius
structure, which can be defined as follows.

If Ui ∩ ∂N 6= ∅, and φ : Ui → Sn is the coordinate map, then we define
φ′i : Ui ∩ ∂N → Sn−1 by φ′i = ψi ◦φi, where ψi is a map that sends φi(Ui ∩ ∂N)
to the equator Sn∩{(x1, . . . , xn, 0) ∈ Rn+1} and transforms the internal normal
to ∂N at any x ∈ Ui ∩ ∂N to a vector that looks into the northern hemisphere
{(x1, . . . , xn+1) ∈ Sn|xn+1 ≥ 0}.

From now on, we suppose that the unit sphere Sn ⊂ Rn+1 (and hence any
Möbius manifold) is oriented in the standard way. We shall say that a diffeomor-
phism between two Möbius manifolds is anti-Möbius, if in Möbius coordinates
it is a restriction of an element of Möb∗

n \ Möbn.

Lemma A.1 Let N be a Möbius manifold, and suppose that N1 and N2 are
disjoint components of ∂N . If p : N1 → N2 is an anti-Möbius diffeomorphism,
then the manifold N ′ obtained from N by identifying x and p(x) for all x ∈ N1

can be equipped with a canonical Möbius structure.

Proof of Lemma A.1. Note that if X is a standard (n − 1)-sphere in
Sn, Y ⊂ Sn is a ball bounded by X , and g1 and g2 are elements of Möbn that
preserve Y and coincide on an open subset of X , then g1 = g2. This remark
allows us to glue coordinate maps on N ′ from coordinate maps on N .♦

Möbius structures are interesting, because, on the one hand, the class of
Möbius structures is quite large (e.g, it includes all hyperbolic, elliptic or affine
structures), and on the other hand, it has some remarkable properties (for ex-
ample, by Lemma A.1, the connected sum of two Möbius manifolds can always
be equipped with a Möbius structure; the analogous assertions for hyperbolic,
affine or elliptic structures are not true).

Remark 1. We can define for any n the cobordism category MCn of n-
dimensional Möbius manifolds. The definition is as follows. Let the objects of
MCn be compact Möbius manifolds of dimension n. If N1, N2 are objects of
MCn, then morphisms from N1 to N2 are n + 1-dimensional compact Möbius
manifolds N such that ∂N = N1 ⊔−N2 (modulo Möbius diffeomorphisms that
are identical on ∂N). Due to Lemma A.1, the composition of morphisms is
well-defined.

A.2 Möbius Structures on the Oriented Circle

Suppose that R is canonically oriented. From now on, we shall denote by S1

the (canonically oriented) R/Z. Recall the classification of Möbius structures
on S1. In this section we shall mainly use the projective model, i.e., any Möbius
structure S constructed below will be defined by a local orientation-preserving
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diffeomorphism FS : R → RP 1 and a homomorphism FS : Z → PSL2(R) that
satisfy the condition

FS(x+ 1) = FS(1)FS(x). (A.2)

Let AS be a matrix that represents FS(1) (this matrix is defined up to a
sign). We shall distinguish the following cases:

1. |tr(AS)| ≤ 2, and AS is diagonalisable.

2. |tr(AS)| = 2, AS is nondiagonalisable.

3. |tr(AS)| > 2.

The structures that verify (1), (2), (3), will be called respectively elliptic,
parabolic and hyperbolic.

For any α > 0 and n > 0 let ψn,α be a continuous map [0, 1] → RP 1 such
that 1. ψn,α = eαx − 1, when x is close to 0, ψn,α = eα(eαx − 1), when x is close
to 1, 2. ψ−1

n,α(0) consists of n+ 1 elements, and 3. ψn,α|(0, 1) is an orientation-
preserving local diffeomorphism. Analogously, for any couple (n, ε) (where n > 0
is an integer, and ε = ±1) let ξn,ε be a continuous map [0, 1] → RP 1 such that
1. ξn,ε = −1/x, when x is close to 0, ξn,ε = ε+1/(1−x), when x is close to 1, 2.
ξ−1
n,ε(∞) consists of n+1 elements, and 3. ξn,ε|(0, 1) is an orientation-preserving

local diffeomorphism. The following theorem gives an explicit representative for
each element of M(S1) (cf. [2]).

Theorem A.1 1. If two Möbius structures on S1 belong to different types,
they are not equivalent.

2. Equivalence classes of hyperbolic Möbius structures are parametrised by
couples (n, α), where α is a positive real number, and n is a nonnegative
integer.

The corresponding maps FS : R → RP 1, FS : Z → PSL2(R) can be chosen
as follows. Let FS(1) be the map z 7→ eαz. If n = 0, set FS(x) =
eαx, otherwise set FS(x) = ψn,α(x) for x ∈ [0, 1] and extend FS to R

using (A.2). Denote the equivalence class of hyperbolic Möbius structures
corresponding to the couple (n, α) by Hn,α.

3. Equivalence classes of parabolic Möbius structures are parametrised by el-
ements of the set ({nonnegative integers} × {±1}) \ {(0,−1)}.

The equivalence class that corresponds to the couple (0, 1) is represented
by the Möbius structure defined by the following maps FS : R → RP 1, FS :
Z → PSL2(R): set FS(x) = x, FS(1)(z) = z + 1.

The equivalence class corresponding to the couple (n, ε) (where n is a pos-
itive integer, and ε is 1 or −1) is represented by the Möbius structure
defined by the maps FS : R → RP 1, FS : Z → PSL2(R) that can be con-
structed as follows: set FS(1)(z) = z+ε, set FS(x) = ξn,ε(x) for x ∈ [0, 1]
and extend FS to R using (A.2). Denote the equivalence class of parabolic
Möbius structures corresponding to the couple (n, ε) by Pn,ε.

4. Equivalence classes of elliptic Möbius structures are parametrised by
positive real numbers. The equivalence class corresponding to α >



A.2. MÖBIUS STRUCTURES ON THE ORIENTED CIRCLE 73

0 can be represented by the Möbius structure defined by the fol-
lowing maps FS : R → RP 1, FS : Z → PSL2(R): set
FS(1)(z) = ((cosα+ 1)z − sinα) / (z sinα+ cosα+ 1), and set FS(x) =
sin(αx)/ (1 − cos(αx)). Denote this equivalence class by Eα.

If S is a Möbius structure on S1, then denote by [S] the equivalence class
of S. The theorem follows from an argument analogous to the one used in [2]
to classify projective circles modulo projective diffeomorphisms. However, that
classification theorem is not quite correct, see Remark 2 below, so we shall give
an outline of a proof of Theorem A.1.

Proof of Theorem A.1. First, let us show that any Möbius structure S on
S1 is equivalent to some structure described in Theorem A.1. Suppose, e.g., that
S is hyperbolic. Choose a base point in S1, and denote by FS the corresponding
developing map R → RP 1; let FS : Z → PSL2(R) be the homomorphism such
that FS and FS satisfy (A.2). Then, replacing S by an equivalent structure, we
can assume that FS is given by the formula FS(n)(z) = eαnz for some α > 0.
The image of FS is either the whole RP 1 or not; we can assume (changing the
base point, if necessary) that FS(0) is 1 in the first case and 0 in the second.
Now it is easy to see that S is equivalent to some structure from the second
assertion of Theorem A.1. The parabolic and elliptic cases are considered in an
analogous way.

Now, let us prove that the structures introduced in Theorem A.1 are pairwise
nonequivalent. Let S be a Möbius structure on S1. Suppose that S is defined
by an orientation-preserving local diffeomorphism FS : R → RP 1 and a homo-
morphism FS : Z → PSL2(R) that satisfy (A.2). We can associate the following
invariants to S: the conjugacy class of FS(1) in PSL2(R) and the number

max
x∈R,y∈RP 1

#(F−1
S (y) ∩ [x, x + 1]).

It can be easily checked that these invariants are sufficient to distinguish any
two different structures defined in Theorem A.1.♦

A projective structure on the circle is an (RP 1,PGL2(R))-structure. Every
Möbius circle is a projective circle, and vise versa.

Lemma A.2 Any two different Möbius structures on S1 defined in Theorem
A.1 are not equivalent as projective structures.

Proof of Lemma A.2. We proceed as in the proof of Theorem A.1. Suppose
that the projective structure S on S1 is defined by a couple (FS , FS), where FS

is a local diffeomorphism R → RP 1 and FS : Z 7→ PSL2(R) is a homomorphism
that satisfy (A.2). It can be easily checked that the conjugacy class of FS(1) in
PGL2(R) and the number

max
x∈R,y∈RP 1

#(F−1
S (y) ∩ [x, x+ 2])

depend only on the equivalence class of S. These invariants of projective struc-
tures distinguish any two nonequivalent Möbius structures on S1.♦

Remark 2. Due to Lemma A.2 there exists a bijection M(S1) ↔ (projective
circles modulo projective diffeomorphisms). Hence, a classification of projective
circles can be obtained from Theorem A.1; the classification given in [2] in not
quite correct: if n > 0, then S1 provided with a Möbius structure of class Pn,1
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Eα

H0,α

P0,1

H2,α

P2,−1 P2,1

H1,α

P1,−1 P1,1

Eα Eα

Figure A.1: M′(S1)

and S1 provided with a Möbius structure of class Pn,−1 are not isomorphic as
projective circles.

Remark 3. The interpretation in terms of developing maps allows us to
introduce a topology on M(S1). However, the resulting topological space is
quite nasty. The space M

′(S1) = M(S1) \ {E2πk|k is an integer > 0} is the
non-Hausdorff topological 1-manifold obtained by identifying the thin lines
on Figure A.1; M′(S1) is open in M(S1), and for any k > 0 we can take
the system of sets of the form {E2πk} ∪ (a neighbourhood of Pk,1 in M′(S1)) ∪
(a neighbourhood of Pk,−1 in M′(S1)) as a local neighbourhood basis at E2πk.

A.3 Main theorem

Let ΩMöb
n be the group defined as follows. The elements of ΩMöb

n are n-
dimensional compact Möbius manifolds without boundary considered modulo
the following equivalence relation: we set N1 ∼ N2, iff there exists an n + 1-
dimensional compact Möbius manifold N such that ∂N is Möbius diffeomorphic
to N1⊔−N2. The group operation is induced by taking the disjoint union. The
group ΩMöb

n will be called the cobordism group of Möbius manifolds of dimension
n.

Theorem A.2 ΩMöb
1 = 0.

Proof of Theorem A.2. Note that an equivalence class of Möbius struc-
tures on any oriented circle can be canonically identified with an element of
the space M(S1). So, in order to prove the theorem, it is enough to show that
any element of M(S1) is equal to [S], where S is the Möbius structure on the
boundary of some 2-dimensional Möbius surface (recall that the boundary of
any Möbius surface is canonically oriented). As in Section A.2, we shall use the
projective model, i.e., we identify the unit sphere S2 ⊂ R3 with CP 1 = C∪{∞}
via some orientation-preserving stereographic projection so that the northern
hemisphere is identified with the upper half-plane. Note that under this identi-
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Figure A.2:

B

A

Figure A.3:

fication RP 1 = (the boundary of the upper half-plane) is oriented from left to
right.

Let N be the sphere minus three disjoint open disks (“the pants”). The
manifold Ñ is represented on Figure A.2.

Denote by F(A,B) the free group on the generators A,B. Suppose that
F(A,B) acts on Ñ as shown on Figure A.3 (the octagon in the middle is the
fundamental domain; the right and the left octagons are the images of the
fundamental domain under A and B respectively).

In order to construct maps F : Ñ → CP 1, f : F(A,B) → PSL2(C) that
satisfy (A.1), it is sufficient to choose two maps a, b ∈ PSL2(C) and an embedded
rectangular octagon in C with vertices X1, X2, . . . , X8 (see Figure A.4; arrows
indicate the orientations of the boundary) such that the following conditions
are satisfied:

(C1) All segmentsX1X2, . . . , X8X1 are arcs of circles; denote the corresponding
circles by CX1X2

, . . . , CX8X1
.

(C2) a(X1) = X4, a(X2) = X3, b(X5) = X8, b(X6) = X7.
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X1 X2

X3

X4

X5X6

X7

X8

Figure A.4:

(C3) a(CX2X3
) = CX2X3

, a(CX8X1
) = CX4X5

, b(CX6X7
) = CX6X7

, b(CX4X5
) =

CX8X1
.

If we manage to find such an octagon and such maps a, b, then we shall equip
N and ∂N with Möbius structures.

Let x be a positive real number. Define the maps ax, b ∈ PSL2(C) respec-
tively by z 7→ z + x, z 7→ z/(1 − z). The transformation b ◦ ax is represented
by a matrix with trace 2− x. Choose the octagon as shown in Figure A.5. The
horizontal line at the bottom is the real axis, the circles C1 and C2 on Figure
A.5 are defined respectively by the equations (Re z)2 − 2 Re z+ (Im z)2 = 0 and
(Re z)2 + 2 Re z + (Im z)2 = 0. The circles C′

1 and C′
2 are chosen in such a way

that 1. b(C′
1) = C′

2, ax(C′
2) = C′

1, 2. C′
1 is orthogonal to C1 and depends con-

tinuously on x, 3. C′
1 ⊂ {z|Re z ≥ 0}, and the imaginary part of the center of

C′
1 is > 0. Note that there are many ways to choose the circles C′

1 and C′′
2 that

satisfy these conditions. The arc X6X7 is an arc of a sufficiently small circle in
the upper half-plane that is tangent to the real axis at 0.

Note that we have b(z) = −z̄ for z = 1 + eit, i.e., the restriction of b to C1 is
the symmetry with respect to the imaginary axis. This implies easily that for
any x > 0, the octagon on Figure A.5 and the maps a = ax and b satisfy the
conditions (C1)-(C3).

For any x > 0 we obtain Möbius structures on N and all components of
∂N . The components of ∂N that correspond to X2X3 and X6X7 will always
have parabolic structures that belong to P0,1, and the equivalence class of the
structure on the third component changes as we change x. Denote this structure
by Sx; Sx is elliptic for x < 4, parabolic for x = 4 and hyperbolic for x > 4.
Denote by N1(x) the Möbius surface obtained by gluing together two parabolic
components of ∂N (note that due to Lemma A.2, for any Möbius circle C there
exists an anti-Möbius diffeomorphism C → C).
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Figure A.5:

Let us determine the equivalence class of Sx. Let FSx
be a developing map

R → RP 1 that corresponds to Sx.
Note that [S4] = P0,1, which implies that the image of FS4

is not the whole
RP 1. Hence, if D > 0, then we have FSx

([0, D]) 6= RP 1 for any x sufficiently
close to 4. This implies the following lemma:

Lemma A.3 For any sufficiently small α > 0 there exist x1, x2 such that the
Möbius structure on ∂N1(x1) (respectively, ∂N1(x2)) belongs to H0,α (respec-
tively, to Eα).

Let us define the action of N on M(S1) as follows: for any k ∈ N, α > 0, n ≥ 0
and ε ∈ {±1} set kHn,α = Hkn,kα, kPn,ε = Pkn,ε, kEα = Ekα.

Lemma A.4 Let C′ and C′′ be oriented circles. Suppose that C′′ is equipped
with a Möbius structure, and denote this structure by S′′. Let p : C′ → C′′ be
an orientation-preserving k-sheeted covering. Denote by S′ the inverse image of
S′′ with respect to p. We have [S′] = k[S′′].

♦

Lemma A.5 Let N be a compact Möbius surface with one boundary component
and nontrivial fundamental group, and let k > 0 be an integer. Denote by S the
Möbius structure on ∂N . There exists a compact Möbius surface N ′ such that
∂N ′ is a circle, and the Möbius structure on ∂N ′ belongs to k[S].

Proof of Lemma A.5. Let Sk be the symmetric group on k elements. If
k is odd, then there exists a homomorphism π1(N) → Sk that takes a gen-
erator of π1(∂N) to some cycle of length k. Indeed, we can choose a system
v1, w1, . . . , vg, wg of free generators of π1(N) so that π1(∂N) will be spanned
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Figure A.6:

by [v1, w1] · · · [vg, wg]. A required homomorphism can be constructed using the
fact that in Sk a cycle of length k is a commutator (e.g., we have

(1 . . . k) = (1
k + 3

2
. . . k)(12 . . .

k + 1

2
) = σ(12 . . .

k + 1

2
)−1σ−1(12 . . .

k + 1

2
)

for some σ ∈ Sk).

Hence, for k odd, there exists a surface N ′ with one boundary component
and a k-sheeted covering N ′ → N . This, together with Lemmas A.3 and A.4,
allows us to construct for any α > 0 a Möbius surface, whose boundary carries
a Möbius structure that belongs to Eα.

Now cut out a small Möbius disk from N . The resulting Möbius surface has
two boundary components; one of these components has the structure S, and the
structure on the other one belongs to E2π. Note that if M is a compact surface
with two boundary components, then a generator of one of these components
can be taken as a free generator of π1(M); hence, for any k > 0 there exists a
k-sheeted covering M ′ → M that is cyclic over one of the components of ∂M .
We have already constructed for any integer l > 0 a Möbius surface, whose
boundary carries a structure from E2πl, and the lemma follows. ♦

Lemmas A.3, A.4, A.5 imply that any of the classes P0,1, H0,α or Eα, α > 0 is
the equivalence class of the Möbius structure of the boundary of some Möbius
surface. In order to complete the proof of Theorem A.2, we can proceed as
follows. Suppose that x is a real number > 2 and consider the rectangular
octagon represented on Figure A.6.

Here the circles C1 and C2 are the same as in the proof of Lemma A.3.
Suppose that the centers of C′

1 and C′
2 are the points ±x/2+ i, and the radii of

these circles are x/2−1. As above, the octagon and the maps ax and b give us for
any x > 2 a Möbius structure on N (the pants). The induced Möbius structure
on the component of ∂N that corresponds to the arc X2X3 (respectively, the arc
X6X7) belongs to the class P0,1 (respectively, P1,−1). Denote by S′

x the Möbius
structure on the third component of ∂N . The structure S′

x is elliptic for x < 4;
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by attaching Möbius surfaces to the elliptic component of ∂N and to the P0,1-
component, we obtain a Möbius surface, whose boundary has a Möbius structure
of class P1,−1, which means that we can eliminate the P1,−1-component as well,
i.e., for any x > 2 there exists a Möbius surface, whose boundary carries the
Möbius structure S′

x.
Let us determine the equivalence class of S′

x, x ≥ 4. Note that we can choose
a developing map FS′

x
: R → C′

1 for the structure S′
x so that FS′

x
sends the

segment [0, 1/2] to the arc X5X4 and the segment [1/2, 1] to the arc ax(X1X8).
It is easy to check that for x ≥ 4, the fixed points of ax ◦ b are exactly the
intersection points of C′

1 and the real axis.
Hence, for any x > 4 the set F−1

S′

x
(the fixed points of ax ◦ b) ∩ [0, 1) consists

of two elements, which implies that for any x > 4 we have S′
x ∈ H1,α with

α = 2 arccosh(x/2 − 1).
An analogous argument shows that S′

4 ∈ P1,1 (note that a4 ◦ b acts on C′
1

“clockwise”). The proof of Theorem A.2 is easily completed using Lemmas A.4
and A.5. ♦
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