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Introduction

The general process of identifying, observing and obtaining information about an area without
coming into direct physically contact with it, is commonly referred as Remote Sensing. In terms
of geoscience it is also mentioned as Earth Monitoring. The state-of-the-art of Radar Remote
Sensing technique is the Synthetic Aperture Radar (SAR). Here the high spatial resolution is
created using a small antenna in a synthetic way, which is analogous to a real antenna of a much
larger size. The method consists of a physically small antenna that moves along a track and
sends successive coherent Radar signals, and this simulates a virtual physically large antenna.
After a data processing procedure (range and azimuth compression) from the backscattered
signals of the illuminated area, a high spatial resolution is obtained, independent from the range
and wavelength. The resolution in azimuth for a side looking Radar is given here by half the size
of the real physical antenna. Using a well defined polarized Radar signal typically one speaks
of SAR polarimetry which has become an important contributor to the advancement of Radar
in the last decades. One advantage of using Radar detection compared to the optical detection
in earth monitoring is its robustness to weather conditions. For example in the case where rain
clouds or hazy weather conditions are present the use of optical sensors is very difficult. In the
case of infrared sensors e.g. the night and daytime alternation of the earth limits its application
innately. Additionally, Radar signals in general can measure energy at wavelengths which are
beyond the response of optical sensors and so improve the detection range. Considering the
development and set-up of full SAR polarimetric systems either airborne or spaceborne in the
past, SAR polarimetry will certainly gain in importance in the near future. SAR polarimetry
has diverse applications in the field of geoscience and global economy. Apart from the pure
scientific point of view, the observation and prediction of crop failures, pollution control and
climate change will be become more important. Subsequently, the main application areas in

earth monitoring could be classified as followed:

e Agriculture (crop type and extent, health of plants)

Cartography (urban mapping, land use, land waste)

Forestry (biomass, areas of different vegetation types, deforestation)

Geology (structure mapping, exploration, mineral exploration)

Hydrology (drainage patterns, soil moisture, flood mapping)

Meteorology (weather forecasting, climate investigations)



e Oceanography (monitoring ocean currents, monitoring ocean waves — wind speed)
e Target detection (man made objects e.g. nuclear facilities)

The physical principle of Remote Sensing consists in transmitting a well defined electromagnetic
wave from an antenna in an area of interest. In the illuminated area the electromagnetic field
interacts with the given objects from where the field is again scattered back into the space.
The purpose of Radar polarimetry is to investigate these interactions and so to get information
about the objects where the objects may be e.g. man-made targets or vegetation. The inter-
actions depend on the geometrical and electromagnetic properties of the objects and from the
transmitted field. The experimental setup of a Radar measurement is divided in the way from
the transmitter antenna to the lighted spot and in the way to the receiver antenna. The spatial
alignment of the transmitting and receiving antenna can be either monostatic or bistatic. In the
first case the two antennas coincide, where in the second case both are positioned at different
locations. In this work the monostatic alignment is considered.

In the classical Radar detection the temporal information (Range) and the power (Reflectivity)
of the scattered field are measured. Additionally to it, Radar polarimetry takes the vectorial
properties of the scattered field into account. Thus, the dynamic of the field is investigated.
This polarimetric behavior is directly related to the interaction mechanisms that occurs at the
scattering process. Due to the excess of information, one can extract more information about
the targets. Depending of the objects which are present at the illuminated area the interactions
are superposed in a coherent or incoherent way. For example the superposition of the waves
reflected from an urban area is coherent, where in contrast the backscattered field of a forested
area is incoherent. Here, complex interactions are given e.g. between the single branches and
leaves. Further, a reflected field of a time invariant target like plants in the wind or a undulating
plane is also incoherent.

The scattering process at an illuminated area is mathematically described through a linear map-
ping. It relates the incident and back scattered field from the considered area via a matrix. Due
to the possible coherent or incoherent superposition of the interactions, two different quantities
are measured. In the case that a coherent scattering process is given, the received voltage of the
field is measured over time. Here, the incident and scattered fields are related through the com-
plex (2 x 2) scattering matrix [S]. The Sinclair matrix [S] contains all the information about the
scattering process. In contrast, if a incoherent scattering process is given the measured voltage
would be equal to zero due to the statistical averaging. In this case the received power must be
considered at the antenna. A power measurement averages the incoming energy over time. In
consequence the relative phase between the elements of [S] is lost compared to the exact voltage
measurement. Therefore, the voltage measurement represents a scattering process of statistical
first order, where a power measurement is a statistical second order description of the process.
The relation between the incident and reflected power are in general described by the Miiller
matrix [M], Kennaugh matrix [K], Graves matrix [G], Covariance [C] or Coherency matrix [T].
In Earth Monitoring one wants to correlate the data from an illuminated region to the corre-
sponding scatterer types. This leads at the end to the so-called inversion problem or classification
problem. Hence, the interpretation and analysis of the scattering matrix either in the voltage or

power domain is a focal point in Radar polarimetry. The classification problem may be divided



into the two areas:

e The Inversion Problem
Determination of the shape and the physical properties of the scatterers from measure-

ments.

e The Forward Modeling
From the knowledge of the incident field and the scattering obstacle the radiated field is

computed and compared with measurements.

The interpretation of polarimetric data is either based on the Geometrical Optic (GO) ray trac-
ing approach or statistical models. Ray tracing is a resourceful method of analyzing wave fields

to get more physical insight into the entire scattering process.

Scope and Objective

Synthetic generated data sets represent an important tool in Radar polarimetry since by forward
calculations of single mechanisms the entire scattering process can be better understood. Hence,
a better classification of the measured data can be carried out. The diffraction of a plane wave
by an object situated close to an interface of a two-layer media has been investigated by many
authors and an extensive literature exists on this subject e.g. Butler [14], Chen[13], Geng [24]
or Michalski [49]. However, only a few publications have been devoted to the analysis of the
polarimetric behavior of the diffracted field. Generally very simple ray models based on the GO
are used involving single and double bounce effects for explaining some experimental results.
The objective of this thesis is to investigate again this problem by using more refined ray models
following the Geometrical Theory of Diffraction (GTD) or étalon method. The étalon method!
is based on the principle that similar ray geometry leads to similar asymptotic formulas for wave
fields. For a smooth convex target in front of an air-soil interface, the simplest étalon problem is
here a sphere or cylinder. The polarimetric behavior of the solution of the étalon problem gives
the main features of the polarimetric behavior of an arbitrary convex target. The scattered field
is investigated for an incident field varying from perpendicular to grazing incidence. In order
to check the accuracy of the implemented ray model, a full wave solution based on the result
of the scattering problem by the integral equation method is developed for the case where the
object is situated in the air. The effect of the soil is introduced by the modified Green dyad for a
two-layer media. Michalski’s method [49] for transforming the electric field integral equation in
the less singular Mixed Potential Integral Equation (MPIE) is used together with the Discrete
Complex Image Method (DCIM) for calculating the related Sommerfeld integrals. Here an ex-
isting program code solving the Electrical Field Integral Equation (EFIE) for the free space has
been adapted according to the MPIE.

Depending from the geometrical properties of the model, lit and shadow regions are given in the
GTD field. The dividing line of such a lit and shadow region is the so-called Surface Shadow

!The étalon problem is the simplest problem in which the field of rays has the same singularities as in the
original problem (caustics, shadow boundaries). It is based on the principle that similar ray geometry leads to
similar asymptotic formulas for wave fields e.g. that geometric principles characterize the asymptotic behavior as
k — oo



Boundary (SSB). A special emphasis is attributed to the transition regions, near the shadow
boundaries, where the reflected spatial waves disappear and transform into creeping waves at
the target which are strongly attenuated on the shadowed side. The implemented GTD ray
system takes into account not only all types of multiple reflections between the target and the
ground but also the effects of creeping waves near the shadow boundaries. Here the transition
of the related spatial waves implies similar ray path close to these geometrical boundaries which
modify the polarimetric behavior of the target significantly. In order to have a continuous field
at the transition from the lit into the shadow region, the Uniform Theory of Diffraction (UTD)
is applied.

The polarimetric behavior is represented on the Poincaré sphere in a first step for the tar-
get situated once in the air and once embedded in a lossy soil. Furthermore, the ray system
and the polarimetric behavior near the transition zones are validated with measurements per-
formed at the European Microwave Signature Laboratory (EMSL) at the Joint Research Centre
(JRC) of the European Commission in Ispra - Italy. Where the backscattered field of a sphere
above a perfect conducting plate was measured in the anechoic chamber for different heights.
The resulting scattering matrix [S] was investigated with the common coherent and incoherent
decomposition theorems used in Radar polarimetry (Huynen, Krogager, Cameron and Cloude-
Pottier).

The thesis is divided into seven chapters and an appendix. In view of the legibility and to make

the thesis self-contained the derivations and common formulas are enclosed in the appendix.



CHAPTER 1

Theoretical Fundamentals

This chapter gives a brief introduction of the theoretical fundamentals on which this work is
based. The purpose is to appoint the notation of the canonical equations used along the thesis.
In general, the electromagnetic problems in remote sensing may be divided into two fields of
activity, namely the radiation and scattering scope. The radiation problem belongs more to the
engineering sector and involves materials such as conductors and dielectrics near a radiating
source as given in the antenna design and development (near field). In contrast, the scatter-
ing problem is of particular interest in Geosciences respectively Earth Monitoring. Here, the
scattered field from an illuminated region or object is investigated and local plane waves are
considered (far field). The total measured field Ey at the antenna is shown in fig. 1.1 given by
the sum of the scattered Eg and incident field £} at the receiver. Where the Maxwell equations
form the basis of electromagnetism and frame therefore the solutions of the scattering problem.

The scattering problem can be grouped as follows:

e The Helmholtz Equation
This elliptic partial differential equation describes the propagation of the electromagnetic

wave to the target and back to the receiver.

e The Boundary Conditions

The boundary conditions at the surface of the target must be satisfied.

e Coherent or Incoherent Superposition
The superposition of diffracted waves due to different scattering mechanisms can be co-
herent or incoherent. For deterministic scattering mechanisms the backscattered waves
interfere in a coherent way. Here, statistics of first order describe the whole scattering
process. Nevertheless, if a large number of deterministic diffraction points is given, a sta-
tistical description of second order has to be applied e.g. different phase centers (Speckle).
The same holds for time invariant scattering mechanisms, where the superposition of the

scattered waves is incoherent.
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e The Roughness-Smoothness
For the general case where the surface is not perfectly smooth, the incident field is reflected
in different directions. Depending from the ratio of the wave number £ and the surface
parameter ¢, a smooth ko < 1 or a rough surface ko > 2 is defined. Where o is the height

standard deviation relative to the average curvature plane.

e The Sommerfeld’s Radiation Condition
According to Sommerfeld, the electromagnetic field must vanish in the unbounded space

at infinity (r — o0). E.g. for a line source stated with the Landau symbol as:

(% _ zk) B = o(%) r — 00 (1.1)

Far Field Approximation
[r]>>[r’| and [r] >> A

Elncident
/ E Total

Scattered

Figure 1.1: The total field at the receiver [Er = E;r + Eg]

1.1 Maxwell Equations

The behavior of electromagnetic fields given by a set, consisting of four canonical equations
which were written down in their final form by J. C. Maxwell (1831-1879). Here, Maxwell added
the displacement current term to the steady-state form known as the law of A. M. Ampere
(1775-1836). The spatial-and-temporal dependence of a monochromatic wave is described in the
following by its phase term exp(ikr — iwt).! Considering a driving oscillating source of the form

j(')(w), the four Maxwell equations are given by:

!The angular frequency w describes the phase change within one second and wave-number k the phase change
within one meter. With that sign convention the wave is regressing toward the origin. If signs in the exponential
term are swapped to exp(—ikr + iwt), then the matter of studied phenomena does not change (all the laws stay
valid). For latter convention the wave is traveling forward, away from the origin.
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V x Hifw) = —iknE(Fw) + Joiw) (1) Ampere-Maxwell
V X E(Fw) = ik(H@Fw) (2) Faraday-Maxwell
(1.2)
V- E(fw v ',JO(T’W) (3) Electric Gauss law
1kn
V- -H@w = 0 (4) Magnetic Gauss law

According to the set (1.2) it follows that for Radar measurements it is not possible to distin-
guish between a radiated field due to a induced conductive or permittivity current distribution.
Therefore, it is of advantage if homogeneous soil properties are introduced. Such a substitutive
homogeneous quantity is denoted e.g. for a dielectric soil as an effective permittivity. Also, in
the sense of structure analysis which may consist of several dielectric layers, an approximate
homogenous description of of the media is easier to handle for numerical purposes.

The case may be where either a displacement current D or an electric conductance o dominates
in the media. Thus, both material parameters can be combined into the effective quantities o, s

or €.7f. The admittance 7 from the set (1.2) is now in terms of the effective quantities by:

kn weye + o
= WepEefy (1.3)

= 10¢ff
Where the effective permittivity e.; is defined by:

eeff(w) = elw) +1 M
WEep

in the case that an effective conductance o.s is considered, it turns out:

Oeff(w) = o(,w) — @ wepe(w)

Here, the impedance ¢ in the Maxwell equations is related with the magnetic susceptibility by:

k¢ = wpop
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Attenuation and Dispersion

The dispersion describes the attenuation of a wave on its propagation through a lossy medium.
Also, it relates the angular frequency w and the wave number £ which defines the phase velocity
vpp, of the wave. Taking the curl of the second equation of the set (1.2) and assuming that no

other electrical sources are present V - E(F,w) = 0, it turns out:

k= uw? (e + z%) (1.6)

The propagation takes only place in the +2-direction, yielding;:
k=|kl=\/k2+kI+k: ky=k,=0
— k=k,
The complex wave number component k, is introduced as follows:

ky =B+ ia (1.7)

Then, squaring (1.7) and comparing it with (1.6) and using the definition of the effective per-

mittivity €.7s, the real and imaginary part of the k£, component are given by:

!/ "
Hofi€o €q g p(w) cepp(w)
B=xw +ff 1+ fff( ) +1 (1.8)
€orplw
/ n 2 2
a=+uw M 1+ eeff(w) -1 (1.9)
2 €erpw)

Referring to a ray fixed system, the propagation direction is set equal to the z, the attenuation
factor «v in a lossy soil is finally determined as:

—

E(iw) = Eyg e % A7) (1.10)

The latter expression points out that e.g. a clayey soil or a general soil with a high loss €/ >
lead to a strong attenuation of the field. In consequence, no deep penetration into the soil is
possible and the penetration depth § = é describes the damping of the amplitude to the loss
value % For a high conductive material this represents a penetration depth around pm. With

Co = 0,3m/ns, as the speed in vacuum, it yields for the phase velocity vpy, .:

Vph = = = “ . (1.11)
S @)1 ?
e (o [
eff

Hence, for a high lossy medium the phase velocity converge to zero and no propagation is on
hand.
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1.2 Sommerfeld Identity

The problem of a dipole radiation in the presence of a dissipative half-space dates back to the
work of Sommerfeld [60] who uses the Hertzian vector or polarization potentials to describe the
field of a vertical electric dipole located at the interface separating the two half-spaces. Som-
merfeld formulated this problem by expanding the polarization potentials in terms of cylindric
waves. In this work the radiation from an illuminated object close to the interface air-soil is
considered. Here, the incident field at the target induces surface currents having horizontal and
vertical components. According to the Maxwell equations (1.2), these induced currents scat-
ter again an electromagnetic field back into the space. The current distribution represents an
assembly of Hertz dipoles. Therefore, the formulation for an elementary Hertz dipole for the
radiation in a bounded space is first derived. In this case the boundary condition at the inter-
face must be fulfilled. First of all, a suitable integral representation in Cartesian coordinates
for the free Green function is presented for an elementary dipole. When, a transformation to
cylindric coordinates in the configuration space as well as in the fourier space will lead to the
final Sommerfeld integral representation or Sommerfeld identity. The final expressions will form
the basis of the so called Sommerfeld integrals discussed in chapter 2. The Green function for
an electric dipole in the free space is known to be of the form:
oIk R

GO:R

(1.12)

Where the R describes the distance from the dipole to the point of observation and the Green
function G represents a spherically-symmetric wave function. Next, a suitable spectral represen-
tation of G is introduced. In accordance to Banos [3], the free Green function Gy is decomposed

in the Fourier domain as follows:

1 kzaz+kyy+kz)
- 2/ // o dhy dky d (1.13)

-0 —o0 —O0

Where the wave number K is given by the three components &, k, and k,:

P =k + kK + K (1.14)

Referring to the work of Bafios the derivation of expression (1.13) is only valid if the variable
kg is reel. In (1.13) the Z direction corresponds to the axis of symmetry. Rewriting next the

variable £, in the following way:

ke o= HiJB2 + B - K2 = k= iy (1.15)

and substituting k, by -y, the denominator of (1.13) is rewritten as follows:

(o ol o]

eikR 1 7 (ko + kyd + k22)
G(R) = dky dk, dk 1.16
U v | || mrem om0

-0 -0 —0
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The integration of (1.13) or (1.16) is performed using either the residuals given in the complex
k-plane or in the y-plane. This implies that the medium has a finite conductivity. Setting the
wave number k of the medium equal to k£ = 8 + iq, it yields for the integration path a so-called
strip of analyticity, defined by:

—a<S(K) <o (1.17)

The corresponding strips and residuals in the K and v plane are outlined in fig 1.2 and 1.3.
Here, the two residuals + iy were applied in referring to the denominator of (1.16). Introducing

the attenuation as follows:

Y=ty
the two residuals £y are now given by:
+ . o . " L7
yho= +ry = Yo+ oy
- _ _27 _ +7// . 'L’Y’

Due to the uniqueness both residuals must lead to the same result. Substituting the above

mentioned definition of y™ and v~ in (1.16), yielding:

]_ ]_ ’ on A -
’Y+ = G(R) = — / / e VE-W z+z(kza:+kyy) dk, dky (1.18)
2T ¥
o0 o0
- 1 1 'z — iy 2+ iRt + Fyg)
7T = GR) = S e TE— 2+ k0) d, dk, (1.19)
s

As outlined in fig. 1.2 and 1.3 the integration path C; or Cs and their related residual can be
applied. Here, the upper half-space (i > 0) is chosen which implies the following restriction for

e

R(y) > 0 (1.20)
mk T ,my“
P B T C1 ’__,A ------------------------ - C1
K+ ik Y
b he
| > | >
.‘ : Rek fy ey
K - ik Y-y
Cp s | > Co s |

Figure 1.2: Residuals in the complex k-plane  Figure 1.3: Residuals in the complex y-plane

Furthermore, the Sommerfeld radiation condition (1.1) must be fulfilled for the far field. There-

fore, the absolute value of the variable z must be taken in the equivalent expression (1.18) and
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(1.19). This leads to the Sommerfeld identity of the form:

oo oo

eikR 1 1 O .
T / / = eV It ikeE kD) g dk, (1.21)
™ gl

-0 —0

The integral (1.21) describes the superposition of elementary harmonic plane waves propagating
in the Z- ¢ plane with an exponential attenuation away from the surface z = 0. The dipole is
located at the origin and so combined through the attenuation factor 1/v and with the double
integral over all real values of k; and k,. This yields to the elementary spherical wave description
as given on the left hand of (1.21).

Cylindric Coordinates (p, 3, z)
Due to the symmetry around the 2 axis, cylindric co-ordinates are introduced in configuration

space and Fourier space. Per definition:

x = rcos¢ <= k, = pcosf3
y = rsing <= ky, = psinf

r= V1t + y? = § = \[ki+ ki

Next, substituting the Cartesian coordinates by its corresponding cylindric coordinates and
using the identity Jz) = 3 [H(z) — H{(—=)], the Sommerfeld identity is defined [3]:

5 Hg [pg] e ¢ ag (1.22)

In (1.22) the term H} signifies the Hankel function of first kind of order zero. Considering in
the following a radiation in air, the wave number is referred as ky. In consequence, for a given
propagation in free space the attenuation factor « in 2 is therefore:

v = ki — k2 — k2 (1.23)

1.3 Wave Polarimetry

Radar polarimetry investigates the vectorial nature of the backscattered EM-field from an area
illuminated by a well defined incident field. Here, the polarization of the backscattered field
describes the tip of the electric field vector in space over time. Depending on its position and
orientation, a linear, circular or a general elliptical polarization may be present. The wave is
called linear polarized if the vector E is oriented in the same direction during the whole time
period. If an arrow represents the instantaneous intensity vector, then its length changes from
zero to maximum and back during the half-period. During the second half-period, the described
phenomenon is repeated with opposite sign. So, a linear polarization characterizes the move-
ment of the arrowhead along a straight line. For the more general case, where an elliptical

polarized wave is given, the vector apex moves along an ellipse during one period (fig. 1.4). A
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special case is on hand where the trajectory of the apex runs onto a circle, referred as circular
polarization. The elliptical or circular rotation can here be clock-or anticlockwise according to
the IEEE (Std. 211-1997) definition for right? and circular® polarization state. An elliptical
polarized wave can be understood as a superposition of two coherent linearly polarized waves,
which vectors E oscillate in different directions and a have non-zero mutual shift [32].

The propagation of a monochromatic wave may be described by a ray fixed coordinate system
given by the axes &, ¥ and 2. One is free by setting the Z-axis equal to the wave propagation
direction k. In consequence the z- and g-axes lie in a plane perpendicular to the direction of
propagation. Here, for diffraction problems, the two orthogonal polarization planes are defined
by the plane of incidence. Where the parallel and perpendicular plane corresponds to the hori-
zontal (h) and vertical (v) polarization basis. (Appendix (A.1)).

In Earth Monitoring, two alignments for the transmitting and receiving antenna are in general
considered, the monostatic and the bistatic alignment. For last mentioned, the source and re-
ceiver antenna are situated at different locations, whereas in the monostatic case both coincide.
The monostatic case is solely treated in the following. Due to the opposite propagation direc-
tion for the way back of the wave on its round trip, the Z-axis must be clearly defined. Two
conventions are regarded in polarimetry: the Forward Scatter Alignment (FSA) and the Back
Scatter Alignment (BSA). The z-axis points in the FSA convention in the propagation direction
for the way to as well as for the way back to the antenna. In contrast, the 2z-axis in the BSA

convention points towards the target for both ways.

1.3.1 Jones Vector

The Jones vector is an alternative descriptor for the wave polarimetry apart of e.g. the classical
polarization ellipse. The propagation of a monochromatic plane wave away from the source is
shown in fig. 1.4. The apex of the field vector E describes a helix in space over the time. Rename

the ray fixed orthogonal basis Z and ¢ with L and || the wave propagation is given on the form:

E@y =

|EL| ei(ii’fwt-%—@_L)
‘E”‘ ei(_’-E—wt—I—@H)

Ey(7t)
Ey (7t)

One note that the absolute phase of the two components £, and E) are defined through their
initial phase @, and @) at the source. All points in space have the same harmonic temporal
dependence of the form exp(—iwt). Hence, the temporal term can be dropped and the phasor

notation is introduced. One gets:

—

Er = (1.24)

|EL| '+ ikz
By| '

right-hand polarized wave: A circularly or an elliptically polarized EM-wave for which the electric field
vector, when viewed with the wave approaching the observer, rotates counter-clockwise in space. Notes: 1. This
definition is consistent with observing a clockwise rotation when the electric field vector is viewed in the direction
of propagation. 2. A right-handed helical antenna radiates a right-hand polarized wave.

3left-hand polarized wave: A circularly or an elliptically polarized EM-wave for which the electric field vector,
when viewed with the wave approaching the observer, rotates clockwise in space. Notes: 1. This definition is
consistent with observing a counterclockwise rotation when the electric field vector is viewed in the direction of
propagation. 2. A left-handed helical antenna radiates a left-hand polarized wave.



1.3 WAVE POLARIMETRY 13

Figure 1.4: The propagation helix [ty < to < -+ < t,,]

Observing the wave over time at a constant location e.g. z = 0, the Jones vector is introduced
as follows: ,

5 1| et

E@) = | (1.25)

Subtracting the phase @ of the perpendicular component from the parallel component, it yields:

—

Ew) = B

By| e®

] = |EL| é, + ‘EH‘ éH et ® (1.26)

Where the phase difference @ is defined as:

o =& — D, (1.27)

In order to investigate (1.26) in the complex plane the Jones vector is rewritten in the following

manner:

Eo) = [|EL] éL + |E)| écos@) ] + i |E)| e sinc) (1.28)

The different possible polarization states can now be discussed by taking the lateral view in
propagation direction (fig. 1.5). The sense of rotation is defined through the sign of (1.28) as the
temporal dependance is of the form +i (wt + ®). Considering next the simplest case where no

phase difference occurs @ = 0. Between the two field components the maximum, minimum and



14 THEORETICAL FUNDAMENTALS

the zero crossing is at the same time. Hence, this corresponds to a linear polarization where the
arrowhead runs along a line. Here, the tilt angle ¢ relative to the horizontal plane is determined

through the amplitude of the two components |E,| | é; + ‘E”‘ é-
Next, in the case that both components have the same amplitude and the phase difference
is £7 it follows from (1.28):

Eo = |ELléer + i |E)e¢ (1.29)

The plus sign corresponds to a Left Handed Circulation (LHC) and the minus sign to a Right
Handed Circulation (RHC). As both amplitudes are equal, the field vector apex will describe a
circle over time. In general, the field vector will move along an ellipse. The rotation direction is

given here by:

sin(®)

v
o

0<e<n = RHC
<27 = LHC

A
o
3

sin(e)

E.l«

Figure 1.5: Snapshot at the location z = coust.

1.3.2 Voltage Scattering Matrix

The scattered field ES from an object is related to the incident field E! via a linear mapping.
The mapping is done by means of the complex 2 x 2 Sinclair matrix [S] as follows:

—

ES = [S] EF (1.30)

Where the four elements of the scattering matrix are complex quantities and (1.30) is strictly
spoken only valid for a single frequency. As a short Radar pulse in the time domain corre-
sponds to a large frequency range it is assumed that the dielectric property of the scatterer
constant within the frequency range. The backscattering properties of the object are completely

constrained by the four elements of the scattering matrix [S], written out as:

ES E!
(=) (=)

S11 Sz
So1 S
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Further, due to the reciprocity theorem, where the same intensity is measured if the emitter and

receiver antenna are interchanged, it follows that the scattering matrix is symmetric, yielding:

S12 = S91 (1.32)

As the phase difference between the elements of [S] is of interest, the phase of Si; is taken as

reference phase, one gets:

|1S11] |S1g|e (@ ¢12)

[S]=e |5'12|e—i(¢—¢12) |522|e—i(¢—¢22)

(1.33)

Thus, the voltage reflection matrix [S] yields finally five independent parameters, where three
parameters describe the amplitudes and two parameters the relative phase of the matrix .

Referring to (1.30), the columns of [S] represents the new basis in the measured system ES. The
components of the new basis are given by the coefficients of the transmitting system ET. Hence,
by changing the basis, the values of the scattering matrix [S] will also change. The scattering

matrix [S] is therefore not base invariant.

In Radar polarimetry the relative phase between the single terms is investigated and not the
absolute phase. The absolute phase is at the end of the day determined through the installed
electronic components in the receive and transmit path of the whole Radar system. Additionally,
due to the volumetric expansion of the antenna the positioning of the phase origin in the middle

of the antenna is finally an approximation.

1.3.3 Stokes Vector

Based on power measurements, Stokes introduced a power vector in order to describe partially
polarized waves. The four components of the Stokes vector g are determined by the quadratic
of the field strength as follows:

g0 = |EL]* + |E)|?

g1 = |ELP? — |E))

(1.34)

Q
I

g2 = 2Re (EL Eﬁ)

g3 = —2Im (EL Eﬁ)

The Stokes component gg expresses the total field intensity, g; points out the linear polar-
ization and the quantities go and g3 mutually describe the phase difference of the two scattered
polarization. The go and g3 components describe therefore either a left or right handed circula-

tion. For the general case, where a total or a partially polarized wave is received at the antenna,
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the returned power is equal or less than gg, yielding to the relation:

% =9+ %+ (1.35)

The scattered power §° of the target is related with the incident power g by 4 x 4 Miiller matrix

[M] as follows:
§° = [M]g' (1.36)



CHAPTER 2

Integral Field Equation

At that time an existing program at the company MOTHESIM! was developed in order to
calculate the scattered field from an illuminated object in free space by using the Electric Field
Integral Equation (EFIE) and the equivalence principle. Here, the program with the name
DIFFRA uses a vector and scalar potential twosome for solving the EFIE. In the present case,
where the radiation of a sphere situated above the interface of two dielectric half-spaces is
investigated, the existing DIFFRA program according to the Green dyad for the free space
had to be adapted. In order to keep the structure of a vector and scalar potentials twosome,
the Mixed Potential Integral Equation (MPIE) is applied for the case of a bounded space.
The corresponding Green dyad was modified by using the Michalski method [49]. The method
comprises of adding a correction term to the general Lorenz gauge, relating the vector and scalar
potential. Additionally, the Sommerfeld integrals occurring in the modified Green dyad were
calculated by the more rapid and robust Discrete Complex Image Method (DCIM). The modified
Green dyad was implemented in the original DIFFRA code and the exact numerical method
was used to validate the ray system according to the Geometrical Theory of Diffraction (GTD).
Furthermore, the implemented ray system is checked via measurements made in an anechoic
chamber. The following chapter outlines the derivation of the MPIE for a two layer media. In
a first step, the radiation of an elementary dipole situated near an interface is described by the
Hertz vector potential based on the work of Banos [3]. The Hertz vector will be defined through

a set of essential Sommerfeld integrals and discussed in section 2.2.3.

2.1 Hertz Vector Potential

The Hertz vector potential comprises the advantage that the field can be described by a single
potential term. It is therefore sometimes considered to act as a ”super-potential”. First, the

Hertz vector of an elementary dipole is presented for free space. Afterwards the expressions for a

1Société MOTHESIM: Modelisation-Optimisation-Theorie-Simulation Mathematique
Centre d’Affaires La Boursidire, Rn 186 - BP 182, 92357 Le Plessis-Robinson Cedex, France



18 INTEGRAL FIELD EQUATION

location near an interface of a two-layer media is pointed out, fulfilling the boundary conditions

at the interface.

2.1.1 Free Space

A homogeneous and isotropic media of infinite extent is considered in the following. According
to the magnetic Gauss law of the set (1.2), where the divergence of the magnetic field H is equal

zero, one may represent H as the curl of some other vector, yielding:

Hg = —iknV x1I (2.1)

Inserting (2.1) in the Faraday-Maxwell relation of (1.2) it follows with n{ = 1:

V x [ES(F) - kzﬁ(F)] =0 (2.2)

Further, any curl-free vector is the gradient of some scalar. Hence, it follows the definition:

Esm — K = V@ (2.3)

The scalar function ® can be restricted through the divergence of the vector field 11 as follows:

o = V-1 (2.4)

Providing finally the equation describing the radiation of an elementary dipole in a homogenous

media as follows:

(2.5)

Inserting (2.1 and (2.5) in the Ampere-Maxwell relation of (1.2), using the identity Vx (V xII) =
V (V-1) — V2II the inhomogeneous Helmholtz equation is given by:

A particular solution of the inhomogeneous Helmholtz equation is given as:

Y L
_ B ) 2.
i kAR =1 i Go(R) (2.7)

Where the scalar function Gy(Rr) is the so-called Green function of the free space. Here, the
distance from the dipole to the point of observation is given by R. The bottom line of this

derivation is that the radiated field is expressed exclusively with the single term 1.
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2.1.2 Two-Layer Media

Considering next a two layer-media, the Green function Gy and the corresponding Hertz vector
potential for free space are not valid any more. Therefore, the Green dyad and Hertz vector
potential for the radiation of a dipole near the interface is derived in the following. Depending
in which half-space the dipole and the point of observation are located, the homogeneous or
inhomogeneous Helmholtz equation has to be satisfied. Further, the boundary conditions at the
interface must be fulfilled (see appendix A). In the following notation the first suffix signifies
the layer in which the dipole is located. Whereas, the second suffix refers to the layer in which
the observation point lies. In the case of imparity this corresponds to the geometrical mirrored
image of the dipole at the interface as shown in fig. 2.13. Note, that the notation of the two
half-spaces after Banos [3] is opposite to that commonly used in literature. If the dipole and the
point of observation lie in the same half-space the scalar functions G;; and Gy are solutions of

the related inhomogeneous Helmholtz equation.

A
VA

h e Source

Image

-h A

Figure 2.1: Source and Image

According to this, the functions G2 and Go; have to fulfill the corresponding homogeneous
Helmbholtz equation. For the special case where the dipole is situated on the ground z = 0 the
source and its image coincide (e.g. G113 + G2 = 0). For the dipole embedded in the lower

half-space (1) the following relations must be accomplished:

(V2 + k)G = —6@
(V2 + k)G = 0

Hence, if the dipole is placed in the upper medium (2), it turns out:

(VZ + k2) G22 = —(5(77)
(V2 + k)Gy = 0

The source and the image function must fit the boundary condition at the interface z = 0. This
signifies that the tangential electric components of the field (Z x E) must be continuous at the
interface. According to the continuity for the dipole situated in the lower half-space it yields

the commensurate and sufficient condition in the following form:
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oG oG
G = G2 8211 = — 8212

(2.8)

In the case where the dipole is situated in the upper half-space, the corresponding boundary

condition is given by:

0G99 0G o
Gy =G = — 2.9
22 2t 0z 0z (29)
The magnetic field H is defined as:
i = —ikn(VXﬁ) (2.10)

Regarding the vertical and horizontal component of an arbitrary aligned Hertz vector, it follows

from the boundary conditions the following relations.

Vertical Hertz Vector

The 2-component for a vertical aligned dipole is given by:

Hl = leéz
H2 = H2zéz

Hence, with the tangential components 2 x E and 2 x H the following commensurate conditions

are valid:
aﬁZz 81:['1z
€ = €
2 0 ' o
8ﬁ2z aﬁlz
= 2.11
@t = o (2.11)
8ﬁ2z aﬁlz
€ = €
2 0z ' 0z

As a sufficient condition, it turns out for the Hertz vector:

eolly. = el (2.12)

Horizontal Hertz Vector
Next, a horizontal aligned dipole in the Zg-plane is discussed. For a given distance from the

interface, the Hertz vector is defined as:

Hl = leéw + leéz
H2 = H2wéw + H2zéz
I, = ILey + Ilj.e,

I, = Hgyéy + Ily,e,
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Similar to the vertical aligned dipole it follows from the boundary condition the commensurate

conditions:

2 9z

2 aﬁlx

M 0z

k

aﬁlx + a]-:’-[12 o 8ﬁ2az + 81:[’2z
ox 0z ox 0z

The sufficient condition for the Hertz vector are given by:

elliy, = elly

e2lli, = e lly,

2.1.3 Definition of the Hertz Vector Potential

(2.13)

(2.14)

Next, two different Hertz vectors are presented in accordance to the case where the dipole is

situated either in the upper or lower half-space. The two Hertz vectors II are defined by a set

of essential integrals [3]. Considering a dipole in the upper half-space (2), it follows after some

manipulation:

ﬁ(F,F/) = () [( Gos — Go1 + U@ + 8?;222} I,

+ [( Gao — Go1 + Ux)y + 6%22} I,

2
+ (G = Gt + (U2 + 22 )]zfz}

In contrast for the case where the dipole is situated in the soil (1), it follows:

ﬁ(F,FI) = Co { |:U12§3 + 6?;122] I,

+ [Ulzéﬁ + 8?;122] I,

+ [Ulg + mévzlz]ﬁfz

Where the constant Cy is defined by:

(2.17)

(2.18)
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The set of essential Sommerfeld integrals is defined as follows:

Gy = = / / Ll 2l ilea—a) + -] g gy (2.19)
27 Y2
o
L Ll +2) gilga—a)+
Ga = = —e P T e y=y) d{dn (2.20)
27 Y2
—00
+oo
Gy = 1 / 1 el 2l gilé(e—a) +nly=yI] ge gy (2.21)
27 Y1
1 .
G = o //_6 N =) gille—a) +nly=y")] ge gy (2.22)
™

The attenuation in the considered layer is given by the factors y; and 72 in the following way:

o= & + 1 — k¥ Rey1 >0

Yo = & + 12 — k3 Reyp>0

Here, the first subscript refers to the layer in which the source is located , and the second
subscript refers to the distance from the point of observation to the point source or to its image
as outlined in fig. 2.13. The set of U;; is defined by:

1

Up = 2—/ o € P e g ay (2.23)
s
1

Uy = 2_/ _6712*723 ilé(z—2") +nly—y')] d¢ dn (2.24)
s

U, = i //3671(2’Z) cHé@—a") +ny—y') dfdn (2.25)
21 M

Up = — / 2 e =z Gilga—a) +n(y—y) dfdn (2.26)
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Finally, the set of W;; is given by:

Wy = % //g e~ 2 +2) gilt(e—a) +nly=v")] ge gy (2.27)
Wy = % //g enz e giléa—a) +nly=y] g¢ gy (2.28)
Wiy = % //g e~ —2) giltle—a) +nly=v")] ge gy (2.29)
Wi = % //g e~ M# =27 ilEle=a) 0=y ge gy (2.30)

The quantities M, N, and ¢ are the Sommerfeld denominators determined as follows:

2(11 — 72)

¥ (2.31)

M=v 4+, N=ky+ kv, g=

2.2 Discrete Complex Image Method

The radiation of a single elementary dipole near the interface of two dielectric half-spaces was
discussed in the previous section. Where the Hertz vector potential I was described by the
Sommerfeld integrals G, U and W having highly oscillating kernels. In section 2.5, the radiation
from a given surface current distribution of an object is approximated by an assembly of such
elementary dipoles. Therefore, the calculation of the corresponding functions G, U and W by
classical integration techniques would be much time consuming and not robust due to the integral
kernels. It exists some approximations more or less accurate for calculating these integrals. In
this work, the more efficient and robust DCIM technique is considered and was implemented in
the existing DIFFRA code. The complex image method is reported in the article of Michalski
and Mosig [50] and has gained importance in the past. The method was developed right from the
start to compute the Sommerfeld integrals. Recently, a direct numerical method was published
by Fang [22] and written down in its final form by Chow and al. [15]. Here, the innovation
consists in the approximation of the Sommerfeld integral by a series of exponential functions

each weighted by a complex coefficient.

2.2.1 Sommerfeld Identity

The DCIM is based on the Sommerfeld identity (IS) introduced in section 1.2. According to
(1.22) the Sommerfeld identity is rewritten in the form:

L mlpg eVR-EH g (2.32)
0
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Where the definitions used in the report of MOTHESIM [51] are considered for the variables (,
and &:

¢ = 7= Vk — & (2.33)

¢ = \/m (2.34)
JETE

R = p?* + 22 (2.35)

In the above mentioned expressions the variables ¢ and ¢ correspond to the wave numbers k,
and k, in the # — § plane. The co-domain of the Hankel function H} in (2.32) is not defined
for negative real arguments. Therefore, the negative reel axis represents a branch cut and the
integration path of (2.32) is chosen along Cj as shown in fig. 2.2 .

A

Figure 2.2: Brunch cut for the Hankel function

Regarding (2.33) it follows that the variable ( may have two possible determinations satisfying
the relation. Hence, the Sommerfeld identity (2.32) is not clearly defined and cannot be inte-
grated. This problem is solved if the co-domain of the variable £ is precised in such a manner,
so that ( is clearly defined. The radiation condition (1.1) implies that the field must vanish at
infinity. Substituting (2.33) in (2.32) it follows that for the limit | z |— oo the imaginary part
of ¢ is fixed through:

Im¢ > 0 (2.36)

The restriction (2.36) defines the top of a Riemann sheet. Hence, it follows for the bottom

Riemann sheet and for the cut between both sheets:

Im({ < 0 Bottom Riemann sheet

Im({ = 0 Brunchcut (2.37)
Next, the co-domain of the variable ¢ is defined in accordance to the radiation condition (2.36),
leading to the substitutions:

ko = kb + ikl

¢ = ¢ +ic
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in (2.33), yielding:

¢ = K — g — (67— + 2 [kpky — Een] (2.38)

The brunch cut I'm ¢ = 0 is given by (2.38) as follows:

g = Koy (2.39)
Ky — kI > ¢ =" (2.40)
According to (2.39) the brunch cut corresponds to a hyperbola in the first and third quadrant

in the complex ¢ plane. Further, the condition Re( = 0 leads to:

72

ky —ky = & —¢" (2.41)
ge’ = kjky (2.42)

and corresponds to an extension of the two hyperbolas. In accordance with the two possible
values of the wave number £y the co-domain of the variable ¢ is finally pointed out in fig. 2.3

as the grey area.

Figure 2.3: Co-domain £ for the condition I'm{ > 0

In order to derive the DCIM procedure the Sommerfeld integrals G, U and W are rewritten in

the general form:

M VR =€ 2l ¢ ge (2.43)

The kernel Fy(¢) in (2.43) is decomposed in a series of complex coefficient a,, and b, as follows
N
2
Fig =Y apenVkh-¢ tn, by € € (2.44)
n=1

Note, that by setting the kernel F}(¢) equal to one, the classical Sommerfeld identity is again

obtained, expressed by:
9 eikoR

1 R

Fie) = 1=15 = (2.45)
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The basic idea of the DCIM consists in replacing the integration of the single terms of the series
(2.45) by its corresponding Sommerfeld identity (2.32). In the following this will be done in the
complex ( plane because here a more suitable linear integration path is given.

First of all, the problems occurring at the numerical calculation of the Sommerfeld integrals
are discussed. The soil may be considered as an assembly of dielectric layers, as pointed out
in fig. 2.4. According to Felsen and Marcuvitz [23], the kernel F}(¢) in (2.43) has branch point
singularities in the case where the source is embedded in the soil or on the interface. In this

case surface waves are generated.

Figure 2.4: Dielectric layers

The related singularities and the integration path Cy are shown in fig 2.5. In view of the
numerical stability one should not pass too close at the singularities. Therefore, the path Cj is
spread into the path C; as shown in fig. 2.7. In accordance with Chow [15] the distance between
the two points A and B is set equal to 5ky.

To = 5ko (2.46)

Another more smarter solution for calculating the Sommerfeld integrals would consists in folding

the integration path C] in such a manner, that it circles around the residual point k.

]ma A Imé 'y
c,
Co ko Surface Waves AT \\ kO Surface Waves R E.s
-------------- B ouaa o Re § B ~, > ® e
> o
~~~~~~ B
Figure 2.5: Path Cj in the ¢ plane Figure 2.6: Modified path C in the ¢ plane

The folding of the integration path around the point ky can be realized applying a transformation

into the complex ( plane. In the next section this transformation is discussed.

2.2.2 Transformation to the ( plane

The integration of the Sommerfeld integrals is performed after the variable ¢ which corresponds
to the wave number £,. In contrast { describes the wave number k, in the horizontal £ — §

plane. According to (2.33) both components ¢ and ¢ are related by:
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¢ = VE2 — (2 (2.47)

g = — S (2.48)

k2_<2

Substituting (2.47) and (2.48) in (2.32), the Sommerfeld identity attributed to the { plane is

given as follows :

/ Hy [p /i =2 el (2.49)

C1(¢)

The important step consists herein that the integration path Cy(¢) respectively the path C(e¢) is
transformed in the ¢ plane into the paths Cy(¢) and C1(¢) as shown in the fig. 2.7 and fig. 2.8.
The transformation into the C(¢) path can be performed as no other singularities are given in

the first quadrant.

ImC A
ImC A
A .
° 'koTot t=T,
Surface Waves °
) ko Surface Waves
P o [ ] t=0
| : 0, -~
Re G ko Re ¢
Figure 2.7: Path Cy in the { plane Figure 2.8: Path C in the { plane

According to fig. 2.8, the integration path C'(¢) starts from ooe%, circles around ko and goes
back again to coe’2. The two gradients along the way to and back from kg are of opposite sign.
One may think that due to this circumstance the integral is equal to zero. Indeed, this is not
the case as the Hankel function has different values for negative and positive arguments. Hence,
the two integration sections don’t annul each other. After the relation (9.1.39) in [1], it holds:

H} (2] = —e ™""H?[2]

v

In the same manner as (2.43) the general Sommerfeld integral representation according to the

¢ plane is given by:

/ Fio) Hy [p /B = 3| 94l dc (2.50)

()
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Substituting (2.47) in (2.44) it yields for the kernel Fi(¢):

N
Fio =Y ane ™ anbeC (2.51)
n=1
Now, the integration of the Sommerfeld integrals given in (2.49) can be easily performed using the
straight integration path C}(¢) enclosing the residual kg. Considering fig. 2.8, the parametrization
() = m -t + bis introduced for the line C(¢), where ¢ is a reel variable. The quantities m

and b of the straight integration path are determined by the two points:

t = 0=0b=%k

1
0 m (1 To )

At the end of the day the parametrization of C1[¢(¢)] is given in the form:

. t
Cty = k [zt -+ <1 - ﬁ)] teR (2.52)

It exists numerical algorithms like the Method of Prony [63] or the Pencil of Function Method

which decompose a complex function F(1) into a series of complex exponentials, where t is a reel

variable, given as follows:

foy = AyePrt teN A,NB,eC (2.53)

Substituting the parametrization form (2.52) in (2.51) and comparing with (2.53), the complex
coefficient a,, and b,, of the series (2.44) are fixed by:

an = A, ¥ (2.54)
BnTO

bp = ————— 2.55

" k(1 — iTp) (2:55)

Thus, by substituting the coefficient a,, and b, in the series (2.51) it follows the decomposition

of the general Sommerfeld integral (2.49) in the form:

. N
G 1 2 _ 2| ot Gzl +ibn)
o= 5> a [ HE[pV/E=C] a (2.56)
n=1
C1(6)

Applying the Sommerfeld identity (2.49) for every single term in the series, the CPU time

consuming integral calculation is replaced now by a series of discrete complex images:

(2.57)
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In (2.56) the variable z has been modified, thus the distance R,, between source and observation
point in (2.57) is defined as:
R2 = p® + (2 + iby)? (2.58)

Up to now the problem accorded to the surface waves has been solved. Another problem is
given for the case where the kernel F'(¢) has a finite value Fg at the limit { — oo. The integral
cannot be computed without using appropriate and time consuming integration techniques.
Moreover, the direct application of the DCIM procedure does not converge with an upper limit
of integration Ty defined by (2.46). Here, in the configuration space the limit ¢ — oo corresponds
to a location at the source |7 — 7'| = 0. Therefore, Fgg is called ”Quasi Static” (QS). Thus,
in order to compute the integral, Fys must first be subtracted from the kernel F'({). After the
calculation the value of the integral Ips(¢) is again added. Where the integral value must be

finite. Hence, one decompose the integral in two parts as follows:
Ticw) = 1) + Igs(c) (2.59)

Iicw) = / [F — Fos] Ht O 12l q + 154 (2.60)
Cl(t)

The value of the Sommerfeld integral for the quasi static kernel Fys is defined by:

Is(o) = / Fos Hy ¢ <Vl ag (2.61)
C1(¢)

One important property of the complex image method is that the complex coefficients a, and
b, are independent of the location source-observation point. Hence, they have to be calculated
only once in the Method of Moments (MoM) program, which will be introduced in the next
section. Thus, the numerical CPU time consuming calculation of the integrals is significantly

slashed. Additionally, the computing accuracy is increased using the robust DCIM technique.
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2.2.3 Essential Sommerfeld Integrals

According to section 2.1.3, the Hertz vector for an elementary dipole located near the interface
of a two-layer media was described by a set of essential Sommerfeld integrals in the complex ¢
plane. Due to the transformation into the { plane, the set and the corresponding integral kernels

are rewritten in terms of ( as follows:

Gii(Q) = % / H& p k% — (2 et CL(lhl=2) d¢ 2<0
2 L |
G]_Z(C) = % / H(])‘ p k% _ CQ ei Culh| + i (22 dc 2 Z 0
/ L |
(2.62)
Gaa(¢) = % / H& p k% — 2 et C2(|h]+2) d¢ 2>0
2 L |
Gor(¢) = % / H& p k% — (2 et Clhl —i Gz ¢ 2<0
C
‘ [ 1 -z
Ui = B /FU(C) H(} p\/ ks — (2| € Cu(jhl )dC z<0
pa L |
Uia(¢) = 5 /FU(C) H& p k(2) —c2| ¢ Cilh| + i C2z d¢ Z2>0
“ (2.63)
Un(©) = 3 /FU(c) H{ |poJkE = ¢2| e @Ur+2) g¢ Z2>0
pa L |
Usi(¢) = % /FU(C) H& ) k% — (2 et Clhl =i Gz ¢ 2<0
pa L |
Where the kernels of the Sommerfeld integrals U are given by:
Fy) = —1 ¢ (2.64)
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Wi =

Wiz ) =

Waa(¢) =

Wor(¢) =

The kernel of W is defined by:

Fy@) =

VERTE -«

k2 — (2
k2 — (2
k2 — (2
k2 — (2

—_

R+ RVE -+

| ciatni-2 g
| il +ics g
- et C2(lhl+2) d¢

ei CGa|h| — 1 Gz dC

¢

. <1 — €Epflhy
Er by

)

[C+ VA =K+ C+ o VR — kg +

(2.65)

(2.66)

Where ﬁ—é was substituted by ,/€,z,. The derivation of W (¢) after the 2z co-ordinate yields:

oW11(¢)
0z -

oW12(¢)
0z

W22 (¢)
0z

OW21(¢)
0z

[ Fw. Hp

C

[ Fw. H}
C

[ Fw. H}

C

[ Fw. H}

C

Where Fyy_(¢) is set to:

Fw, () =

According to section 2.2.2, the quasi-static approximation of the kernels Fy;, Fyy and

given by:

o

1 — e pir

p
P

p

p

e

kg

73

kg —¢

k2 — (2

[\
I

et Ci(lh]=2) ¢

et Clh| + 1 ¢22) d¢

et Glhl+2) ge

et G2l — i iz) d¢

<2

€r lr

>[<+¢W]

[+ /R4 ]

(2.67)

(2.68)

—dF(Vi‘;(O are
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1
F = lim Fy = 5 2.
UQs(¢) Cig)lo U(¢) 5 (2.69)
Fyos(©) = lim Fy) = 0 (2.70)
{—o00
dFwqs(Q) — lim dFw (¢ _ _z 1 —erpir 1 (2.71)
dz oo dz 2\ e 1+ L '

2.2.4 Numerical Results of the DCIM

The results obtained after the DCIM and the direct calculation of the Sommerfeld integrals
for the complex Green functions U and W are confronted next. Whereas, 10 discrete complex
images were calculated according to U and 9 discrete images according to W. A precision of
10~° is achieved in the numerical results. This efficient analogy is pointed out in fig. 2.9 to
fig. 2.12 for the reel and imaginary parts. The discrete complex image method is on one hand
a precise method but more import represents a robust and fast numerical algorithm. In view of
the Method of Moments based calculation the decomposition into a series of complex exponen-
tials is independent of the location of the source and the observation point. Hence, it has to be
computed only once in the program which decreases the CPU time significantly. The remaining

CPU time is similar to the quasi-static calculation.

15~

T T
o Complex Images Series
— Integral Calculation

=
o

Re(U) [1/m]
a1

0 0.5 1 1.5 2 2.5 3
Dist/A []

Figure 2.9: R(U): DCIM versus the integral
calculation [¢; = 9.6, f = 1GHZ]
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Figure 2.10: ¥(U): DCIM versus the integral
calculation [e; = 9.6, f = 1GHz]
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Figure 2.11: R(W): DCIM versus the integral
calculation [e; = 9.6, f = 1GH?z]
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T T
o Complex Images Series
— Integral Calculation

Im(W) [1/m]

_12 L L L
0.5 1 15 2 25 3

Dist/A []

Figure 2.12: ¥(W): DCIM versus the integral
calculation [¢; = 9.6, f = 1GHZz]

2.3 Scalar and Vector Potential

The two first Maxwell equations of the set (1.2) are rewritten first in terms of the effective
dielectric properties as follows:

V x Hiw) = —iwegees @) E(rw) + o) (2.72)

V x E(fw) = iwpopH w) (2.73)

2.3.1 Green Dyad for Free Space

The radiation of an elementary dipole in free space can also be expressed in terms of a vector
and scalar potential. In comparison to the equivalent Hertz vector potential, both potential
terms are related via the Lorentz gauge presented in section 2.4. In the same manner as the
Hertz vector potential, the magnetic field, as its divergence is equal to zero, may be expressed
as the curl of another vector. Hence, for a homogenous media the magnetic field H is defined
according to the magnetic vector potential A in the following way:

1 o
Hip = — VX A@ (2.74)
Lotk

Comparing with definition (2.1) one gets the relation:

S k2 S
AF) = — 17 (2.75)

LW

Substituting next (2.74) in (2.73), it yields:

V x (ES(F) - z‘wg(r*)) =0 (2.76)
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Any curl-free vector is the gradient of some scalar. Hence, for the radiated field E, of a dipole,

one may set:

— —

E i) — iwA@r) = =V (2.77)

Going on by substituting (2.77) and (2.74) in (2.72), considering further a non magnetic media

p = 1, it turns out:

-

V X VX AR — KA® = Jo + iweomoces ;@) VO (2.78)

-,

Using the identity V x (V x A) = V(V-A) — V2 A one gets in a first step:

v (V-ff(?)) — V24w — K*Am = Jo) + iweopto €opf V@) (2.79)

No restriction has been made yet on the magnetic potential A'(F). Ounly V x A was specified
in (2.74). Thus, one is free in the choice of the scalar quantity V - A as the curl freeness still
remains by adding a scalar field to the vector field A. Defining the scalar potential with the

divergence of the vector potential as follows:

D) = —— V- A (2.80)

Expression (2.79) is simplified to the Helmholtz equation:

-

(V2 + K Am) = —Jot) (2.81)

Generally, the above mentioned vector potential Ais given by the Green dyad in the form:

Awy = Gawr) - Jol) (2.82)

o@ = —15 V- |Gamr) o) (2.83)

Where the vector 7 describes the point of observation and 7/ the location of the elementary

dipole.

2.3.2 Modified dyadic Green function

In this section, the modified dyadic Green function 5,4 for the magnetic vector potential A'(F)
is derived for the case where the object and the antenna are located in the upper half-space.

Starting from the general dyad formulation introduced in (2.82), the vector potential A'(F) is
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rewritten in the following form:

GoJod + G Joil + G Ju2
Ar = +GLJ 8 +GAJY +GAJy2 (2.84)
+ G .k +GLJ. g +GLJz

>

Substituting the Hertz vector definition related to the upper half-space (2.17) in the relation
(2.75) and applying the three elementary dipole components simply given by:

Jo = 1,J,=0,J,=0
Jo = 0, J,=1,J,=0 (2.85)
Jo = 0,J,=0,J,=1

1t follows for the dyadic Green function 5,4:
Ga = GL(3% + §9) + GAs + GAzg + GAzz (2.86)
Where the elements Gf} are given by:

G, = Gy, = Z—; (Gaa — Ga21 + Uz)

A & 8W22

Ger = 4 Ox
(2.87)

A & 8W22

Goy = 4 Oy

U2 k2 BWQQ
G?z = E Goo — Goy + é (Uzz + g

The general dyad will form the basis of Mixed Potential Integral Equation (MPIE) introduced

in section 2.5. Further, due to the anisotropy in the Zg-plane it follows from (2.88):
G4, = G2, (2.88)

The scalar potential ® is formally defined by (2.83) for the potential twosome structure.

2.3.3 Electric Field Integral Equation

A monochromatic local plane wave is considered as incident field Ei(F’) and defined in the
absence of the scatterer. The field induces surface currents that in turn radiate again a field into
the space. According to the equivalence principle after Harrington [29], the current distribution

represents an assembly of elementary dipoles, leading finally to an integration over the entire
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surface. The surface of the object is considered to be perfect conducting and closed. The

boundary conditions impose for the tangential component of the total field: Et(F’):

—

EiFyxn =0

Furthermore, as the total field Et(F’) is the sum of the incident Ei(F’) and scattered field ES(F’),
it yields on the surface:
[EZ-(F') + ES(F’)] xfh =0 (2.89)

Considering an induced current distribution at the point 7’ at the target and observing the
scattered field at the location 7 and by substituting (2.77) in (2.89) the following relation is
derived:

 x (—z’w Ay + V@(F,F’)) = 7 x E(F") (2.90)

The next step consists in performing the summation of the entire elementary dipoles assembly.

W

Induced currents

Figure 2.13: The equivalence principle

Leading finally to the Electric Field Integral Equation (EFIE):

w = 7 o B
—73 X (VV- +k?) // Gari'y - JF) dS' = nx Ei(#") (2.91)
Sl

Some remarks concerning the integration of the EFIE and the MPIE presented in the next
section. The free space scalar Green function GGy mentioned in section 2.3 and the functions
G, U and W of the essential Sommerfeld integrals in the MPIE (see appendix 2.2.3) have an
singularity of the form:

1
G,Uand W I (2.92)
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Where R is the distance between the source and observation points. The second derivatives
of the functions have % singularities, which are not generally integrable. The integrals have
therefor hypersingular kernels for the limit R — 0. The integration is done by the Hadamard
finite part integral [27] [28].

2.4 Lorenz Gauge

In the original DIFFRA program the mixed structure of a scalar potential ¢ and vector potential
A is considered according to the EIFE. In order to keep this mixed potential structure for a
two-layer media considered, the Green dyad is modified after the MPIE. In earth monitoring
the case is considered where the point of observation and the object are located in the upper
layer (2) air. First of all, the general Lorenz gauge is introduced linking the scalar ® and vector
A potentials. According to the definition of the scalar potential in (2.83) it follows for a current

distribution on a closed surface:

w = -
o) = 2 //V [GA(F,F’) ~JoEy| dS’
2
Sl
= _%; //[Vr Garin Jiy + Gain Vo - J n]ds’
k2 N——
S/ 0
= —Z—L;/ V, - G Ji dS' (2.93)
2
Sl

For a given charge density ¢(#’) the potential ®(7) is defined as:

/ Gy(7,7") q(7") dS' (2.94)

Further, the current continuity on the surface holds:

-

q = —V’ J(7") (2.95)
w

Substituting the charge den31ty in (2.94) by (2 95), it yields:

i) = // )) -V, Gy -f(m]dS’
= —i/ V. Gy - J() dS' (2.96)
- iw r T () .

Finally, comparing (2.93) and (2.96) the general Lorenz gauge for the vector and scalar potential

is given as follows:

(2.97)
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2.5 Mixed Potential Integral Equation

In general, such a scalar function G¢ satisfying the Lorenz gauge for a two-layer media does not
exists. This is due to the fact that the horizontal and vertical components of the vector potential
A are not of the same form. But as both sides in the Lorenz gauge represents vector quantities,
a correction vector P() may be introduced in accordance to the Michalski [49] as follows:

w

— 1 .
5 V-Gaii) = — V'Kg (7i') + iwP(7) (2.98)
k 1w

Hence, the correction vector ]3(7?) and the scalar function K¢ have to be determined. Afterwards,
by adding the correction vector 13(F) to the vector potential V, -ﬁA(F,F/), the mixed structure of
a vector and scalar potential is kept as implemented in DIFFRA program. The equation system
(2.98) is solved in the wave number domain. By definition the Fourier transformation is given

as follows:

~ 1 " . ’ ’
f(f,ﬂ,z,zl) — % //F(Iwlyyy/,z’z/)e—l[§($—$ )+n(y—y )} dxdy

Substituting the corresponding Fourier transformation in (2.98) it yields:

w [~ 0 - - .
—k—% (zﬁGm + %Gm) = §K¢ — w Py, (2.99)
w [~ 0 ~ n - .=
g (G + 5;6n) = [EKe —iwh (2.100)
w 0 = 1 0 - -
v = —— Y Ky —iwP 2.101
k3 0z 7 w oy T ( )

Referring to (2.99), (2.100) and (2.101) the four unknowns P,, P,, P, and Kg have to be calcu-
lated. In order to reduce the unknowns one set P, = 0. According to (2.88) and n = £ due to

the homogenous anisotropic half-space, it holds:

— G = &Gy, (2.102)

9
0z
From (2.99) and (2.100) also follows P, = 0. In this case both equations are identical and P, and

K¢ remain as unknowns. The Sommerfeld integrals introduced in section 2.1.3 are immediately

given in the frequency domain as:

A e i 7’)/2‘,3,7,3‘ A e i 772‘z,+z‘
G22 v e G21 2 €

(2.103)
Uy = 2 2l +4] Wiy = g el +2l

According to (2.88), (2.99) - (2.101) and (2.103), the function K and the component P, are
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given in the form as follows:

2
o H2 w 1 —y2lz—z| —72(z+2") 2 —72(z+z")
Ko = 225 | — (e — e — = " 2.104
@ ir 12 [72 (e e ) + Mo k9 )¢© (2.104)
Bo= 2 Loy (1 B (g 2) e mern (2.105)
¢ 4rk3 k3 M '

The modified scalar potential ®(7)
Inserting the Sommerfeld denominators in (2.104) and comparing with the definition of the

Sommerfeld integrals presented in the section 2.2.3, the scalar quantity Kg is finally given by:

1 ow.
Ko = Goy — Go1 + Uy + 22 (2.106)
4rrey 0z
For the whole surface it yields:
o) = —//K<1> q(7") dS' (2.107)
Sl

The modified vector potential ff(F)
In order to keep a purely decomposition into a vector and scalar potential, the correction vector

.ﬁ(f") is added to the vector potential ?A(F,F’) in the following manner:

Ky = Gain + VB (2.108)
The modified Green dyad ?A for a two-layer media is finally given by:

Kamry = (22 + 99) Kgy + $2 Ky, + 92 Ky,
+ 22K, + 29K,y + 22K, (2.109)

Where the single elements of ?A(F, 71) are determined by:

Kpo(riny = G = &[Gzz — Go1 + U]

4
Ketory = 2% Kyt = %’; :
Ky = G = Z—;ag;”
Ky = Guy = 2 82;22
Koo = Gap + % = Z—; Ga2 — Go1 + %(Uﬂ + 82222>] + BBZZ
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The vector potential ff(r*) for the entire current distribution on the surface S’ is given by:

A = / Ka - JF)dS'

Substituting (2.108) in (2.110), it yields:

Aw // (J-2) + A(f-g)} K ds'
/ v K2 4 (T )Kf,”]ds'

(2.110)

(2.111)

Kie) = Z—;[Gm — Go1 + Uy
2a, . 2
KA (7)) = E W22
k k2 OW-
Kflb(f'j”) = Z—; |:G22 — Go91 + k2U22 + <k_§ + 1> 8,222]
2
kz OWoo
Kimm = 121 9q 1 U
AlnT) 47rk§[ 2t k2+ 2+

The tangential component of the scattered and incident field are related through the boundary
condition 7 x {E; + Es] = 0 for a perfect conducting surface. At the end of the day the

integral equation after MPIE is given in its final form:
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2.6 Method of Moments

Two numerical methods were compared in this work, namely the Method of Moments (MoM) for
solving the presented MPIE and the asymptotic method represented by the Geometrical Theory
of Diffraction (GTD), respectively the Uniform Theory of Diffraction (UTD) introduced next.
A special emphasis was given to the backscattered field at look angles near transition zones due
to geometrical Surface Shadow Boundaries (SSB). In such transition region the GTD was re-
placed by the UTD which removes the shortcomings of the GTD at transition zones. The exact
integral equation method after the MoM was used here in order to validate the GTD-UTD ray
system. Details concerning the implementation of the MoM for computing the MPIE are given
in appendix B. In order to class the MoM in the area of the computational electromagnetic, a

short overview over the different ways for solving the radiation problem is presented below.

In a nutshell, besides the analytical methods to solve electromagunetic problems, the compu-
tational numerical methods has gain in importance in the recent decades, staying abreast of
hardware improvements. The application of numerical methods to electromagnetic problems
is named the area of Computational Electro-Mmagnetic CEM. Where four main categories of

numerical methods are used in general in electromagnetic, classified in the following way:

e Differential Equation Methods
Finite Difference frequency domain method (FD)
Finite Difference Time Domain method (FDTD)

e Integral Equation Methods
MoM technique

e Mode Matching
In general this method relies on piecing together solutions of differential equations in

different regions

e Numerical Methods Based on Asymptotic Approximations
Ray tracing like the GTD or its further development the UTD.



CHAPTER 3

Target situated in the Air

A ray system after the Geometrical and Uniform Theory of Diffraction for calculating the
backscattered field of an illuminated object placed above the soil in the half-space air is in-
troduced in this chapter. The geometrical diffraction theories are asymptotic expansions solving
the Helmholtz equation describing waves propagation. The asymptotic method [2] is based on
the principle that similar ray geometry leads to similar asymptotic formulas for wave fields.
Hence, the asymptotic behavior £ — oo characterizes the propagation of waves by rays obeying
a set of geometrical rules. In this connection one deals with a high frequency field HF and the
asymptotic method implies that the dimensions of the illuminated objects are much greater than
the incoming wavelength. The solution of such an asymptotic method has the form of a series
of inverse powers of the wave number k. Where, the first term of the series is usually retained
according to Bouche and Molinet [8]. Therefore, a brief historical overview of the asymptotic
approximations used in the area of computational electromagnetic CEM and their shortcuts

mentioned in the literature is given first.

Geometrical Optics (GO)
The GO is the simplest ray tracing techniques that have been used for centuries at optical fre-

quencies. The basic postulates of the GO are:

Wavefronts are locally plane and em-waves are of transversal electromagnetical nature
TEM

The wave’s propagation direction is specified by the normal to the equiphase planes
(Eikonal — Rays)

Rays travel in straight lines in a homogeneous medium

Polarization is constant along a ray in an isotropic medium

e Power in a flux tube is conserved
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e Reflection and transmission obey Snell’s law
e The reflected field is linearly related to the incident field via the Fresnel coefficients

One disadvantage of the GO is that it does not predict the field in occurring geometrical shad-
ows. Another important handicap is that it cannot handle the radiation from flat or singly

curved surfaces.

Geometrical Theory of Diffraction (GTD)

The GTD eliminates many of the problems associated with the GO technique. In real world,
the field distribution is continuous in the section of shade and the intensity of an em-field is
non-zero in shadowed regions. Keller [41] proposed a specific correction of the GO in order to
eliminate field discontinuities in the surrounding of objects. That way, the basics of the GTD
was developed. The total field at an observation point is decomposed into GO and diffracted

components. In comparison with the GO the GTD postulates:

e As the GO the incident wavefronts have to be locally plane
e Diffracted rays are determined by a generalisation of the Fermat principle

e The diffracted field strength is inversely proportional to the cross sectional area of the flux

tube (spatial spreading)

e The diffracted field is linearly related to the incident field at the diffraction point by a

diffraction coefficient

e The diffraction coefficients are determined by an appropriate canonical problem whose

solution is known

However, the GTD has singularities at the shadow and reflection boundaries (transition zones)

and the field is not continuous crossing such a surface shadow boundary (SSB)

Uniform Theory of Diffraction (UTD)

As mentioned before, the GTD has some shortcomings near the transition zones surrounding
an obstacle. The discontinuity of the field at such a SSB is removed by introducing a transition
function. The introduced transition function approaches zero at the same rate as the diffraction
coefficients become singular at the SSB angle. Thus, UTD expressions describe the behavior of
the wave field in the lit, transition and shadow region and is therefore called the uniform theory.
Far away from such a SSB, the GTD and the UTD fall in turn together. Hence, the UTD closes
the gap of the GTD at the SSB [48] [8]. Details concerning the transition function, reflection
and diffraction coefficients as used along this work can be looked up in the appendices C.1 and
C.4.

3.1 Energy Spread

The incident wave vector k& and the local normal vector 7 of the object define the plane of
incident at the point of reflection. Here the orthogonal ray fixed coordinate system is deter-

mined by the parallel basis 7|, lying in the plane of incidence, where the other basis is aligned
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perpendicular 71, to the plane. The incoming wave front at the reflection point is described by
the Differential Geometry introduced by Gauss'. The two principal radii of curvature are given

as follows:

1 1 2 0;
N cos(6;)

L= = = (3.1)
P1 41 a
1 1 2
— = =+ — 3.2
b T BT G 32

Figure 3.1: Tube of rays

Which describe a tube of rays where the conservation of energy holds for the spatial propagation

along the tube. According to fig. 3.1 it yields for the simultaneous triangles:

P1 - 5&
pL+05 @
P2 _ 52
p2+05 @

The differential surface elements at the points ¢ and s are defined by:

5A(U) = 581 582
JA(s) = =z @9

As a result of the conservation of energy inside a ray tube it yields:
/ / F(0)dA(0)h = / / E2(s)dA(s)h
A A

The location of the origin ¢ = 0 is arbitrary. Hence, after a propagation distance s the spatial

!Disquisitiones generales circa superficies curvas (1823)
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energy divergence within a tube is finally given by:

_ P1 P2
B =10 | o 5 s (3.3

A couple of interactions are introduced in the following. In view of the legibility the remaining
divergence of a wave on its way back to the antenna is described by a single spreading factor term
(SF). Nevertheless, where of particular interest, the implemented spreading factor is explicit
discussed as the GTD presents a corner-stone in this work. In accordance to the introduced
cylinder model (fig. 3.2) the perpendicular radius of curvature at the cylinder has the limit

p1 — oo. Hence, expression (3.3) simplifies to:

Bls) =|BO) | ([ (3.4)

3.2 Ray System

For the half-space air the étalon problem consists in a general elliptical cylinder with its prin-
ciple axis ¢ and b located at the height h above the soil. Here a is parallel to the interface.
The surface of the cylinder is considered to be perfect conducting (PC). The polarization of
the incoming em-field at the incident angle ¢; (look angle) is shown in fig. 3.2. One notes
that in the considered setup the component E|| lies in the plane of incidence respectively the
component E| perpendicular to it. Whereas, the notation EII and E | corresponds to the Eh
and E, polarization by looking along the line of sight. The range of the look angle @y, is set to
0°—90°. A monostatic alignment is regarded and a monochromatic unitary plane wave |Eo| =1
is assumed as incident em-field at the object in the following. The phase origin is placed in the
center of the ellipsis. The numerical calculation is done by extracting the phase propagation
term exp(—2ik; OM) and the divergence term 1 /+v/OM for every single wave in the ray system.
Hence, the resulting phase differences of the single waves are due to their various interactions
respectively different paths between the cylinder and the ground. At the beginning the various

rays of the system are introduced.

Also, the corresponding numerical implemented UTD/GTD expressions are presented. Where
a UTD/GTD wave is calculated after the ”brick building method” for the wave propagation.

That means a simple multiplication of the following building blocks:
1. Amplitude term
2. Spreading factor
3. Phase term

One note that a propagation term of the form exp(—ikir + iwt)? were implemented in the
GTD/UTD algorithm. In the electromagnetic literature e.g. [8] and [48], the parallel h polar-
ization and the perpendicular polarization v are also mentioned as the hard respectively the

soft polarization. Where the synonyms hard and soft arise from acoustics and correspond to

2If a time dependence of the form exp(—iwt) is present, the complex conjugate of the field has to be considered.
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e’

Figure 3.2: The étalon problem

the Neuman boundary condition (hard object) and to the Dirichlet boundary condition (soft
object). On a perfect conducting surface, in electromagnetism, the soft L field component is
stronger attenuated compared to the hard || one. Some remarks concerning the notation in
the following. The quantities f, D and R signify the Fresnel coefficients, the UTD diffraction
and UTD reflection dyads. For the way back to the observation point M, the same Fresnel
coefficients as for the way to the cylinder are calculated. That represents an approximation due
to the fact that the Fresnel coefficients are in the strict sense only valid for plane waves. The

Fresnel coefficients for the normal incidence are abbreviated with io notation.

3.2.1 List of the Waves

According to the étalon problem method, analog ray types have similar asymptotic formulas.
A ray system composed of 13 different waves was implemented in this thesis. The different
ray geometries respectively their interactions for the object situated above the soil are given
below in the fig. 3.3 to fig. 3.15. Concerning the implementation of the ray system every single
wave is related to a subprogram where the geometrical points are calculated in dependence of
the incidence angle ¢r. From fig. 3.3 and fig. 3.9 one finds that the specular wave 1 and the
creeping wave 7 have no interaction with the soil. Note that the phase origin 0 is set in the
middle of the object. Wave 2 and 10 have a transition region for the vertical incidence ¢y = 0.
In our analysis, the shadow boundary transition region of waves 2 and 10 at ¢;, = 0 will not be
treated since, in the case of a three-dimensional object, this direction is also a caustic direction
for these waves and needs therefore a different approach. The waves 3 and 8 have a common
shadow boundary where both disappear and are replaced by wave 4 which creeps on a part of the
surface. A special UTD procedure has been developed for treating the continuity of these waves

at the surface shadow boundary (SSB1). A similar situation arises at the shadow boundary of
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wave b and 9 (SSB2) where the continuity of the field in the shadow is taken over by wave 6. The
same situation at the shadow boundary of wave 11 and 12 which are associated with wave 13.
Outside the shadow boundary transition region, the GTD applies again. Hence, in the following
section we present the GTD formulas for the waves 1, 2, 7 and 10. All other types of waves
(3,4,8,5,6,9, 11, 12 and 13) will be treated by an extended UTD procedure and presented
exemplarily for the two transition zones corresponding to the waves 3, 4 and 8 and the waves 5,
6 and 9. Since wave 11, 12 and 13 have three interactions with the soil, their contributions is
normally for a dielectric soil small. In view of the measurements in the anechoic chamber where
a perfect conducting interface is given, their contributions cannot be neglected. Therefore, they
were also considered and calculated after the UTD formalism near their corresponding transition

zone.

Figure 3.3: Wave 1 and phase origin Figure 3.4: Wave 2 (Double Bounce)

Shadow region

Lit region ".‘ Shadow region

Lit region

Figure 3.5: Wave 3 Figure 3.6: Wave 4
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™, Shadow region
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Figure 3.7: Wave 5

E 0,
Q,
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Figure 3.9: Wave 7 (Creeping wave)

Lit region

&

Figure 3.11: Wave 9

Shadow region

Figure 3.8: Wave 6

Shadow region

Lit region

Figure 3.10: Wave 8

Figure 3.12: Wave 10
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Shadow region

Lit region

Figure 3.15: Wave 13

3.2.2 Numerical Implementation of the Ray System

The introduced ray system of the previous section 3.2.1 was numerically implemented as a
Fortran code. The main computing time is used for calculating the corresponding geometrical
points for a varying incident angle ;. The location of the antenna for the monostatic case as
considered here is mentioned by M. Further, the phase origin is set in the: middle of the cylinder
along this thesis. The divergence term 1 /+v/0M and the phase term e=2#1"9M are extracted for

numerical purpose for every single wave.

3.3 GO-GTD Field

3.3.1 Wave 1l

The first interaction between the field and the object is the one reflected from the object at
normal incident at point L. The way to the cylinder and back are identical and represents the
shortest path in the ray system. Further, as no reflection occurs with the interface the single
wave 1 is the first receipted signal and besides the double bounced wave 2 one of the strongest.
It will therefore be called the specular wave along this thesis. The field at the observation point
M is expressed using the dyadic notation. According to fig. 3.3 the GO field of the specular
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reflection is given by:

By = By- Row) SFyy e %Fi0 (3.5)

Where EO, Ry(L), SFyi and —24 l% E)_i signify the incident field amplitude, the reflection dyad
at the point L, the spreading factor and the phase term of the wave. Here, the general reflection
dyad R describe the reflection coefficients of the parallel and perpendicular field component

relative to the plane of incidence, given in the form:

R = Ry é|-é + Rgé' -é] (3.6)

The reflection dyad Rg(L) reduces for a perfect conducting surface according to the hard || and
soft L polarization to Ry =1 Rg = —1. In (3.5), the wave vector l;i describes the the phase
of the incident field at the reflection point L. As a local plane wave (pj2 — 00) is given at L,
it follows from (3.2) the radius of curvature po(L) of the reflected wave as follows:

az(L)
2

pa(L) = (3.7)

Where as(r) describes the local radius of curvature at L. In consequence, as a symmetric cylinder
is considered, ao(L) is constant over the look angle range. The spatial divergence loss of wave 1

is finally given in accordance to (3.4) by:

SFw1 = V/p2(L) (3.8)

In (3.8) the term 1/+/ps + LM is set equal to the extracted term 1/+/0M as mentioned in

section 3.2.2.

3.3.2 Wave 2 (Double Bounce)

The second considered ray in the system is the so-called double bounced wave (fig. 3.4). Here,
the round trip of the wave can be performed on two paths respectively the way to the cylinder
and back are interchangeable. Hence, two double bounced waves exists. Due to the fact that an
identical geometry is on hand for the two double bounced waves, the two waves superpose in a
constructive way. Thus, only one double bounce wave has to be computed and its double field
value has to be taken. This is also a result of the reciprocity theorem verified by the GO and

GTD fields. The wave 2 is computed a priori in the following way:

S T —
—i {k;-(OB +0 )+lec}

Eym1) = 2Ey- Ry(B) - f(0) SFws e (3.9)

Similar to wave 1, By, Ry(B), SFiys and —i [/21- 0B + 00) + Kk BC} signify the incident
field amplitude, the reflection dyad at the point B, the spreading factor and the phase term of
the double bounced wave. According to appendix A.1 the Fresnel dyad f(c) for computing the
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reflection at the interface at point C' is given by:

fo=fué-& + fseé' el (3.10)

Analog to wave 1, the reflection dyad R;(B) is reduced for a perfect conducting surface to
Ry =1 Rg = —1. Referring to (3.2), the radius of curvature after the reflection at B is

calculated with the local incident angle 6; as follows:

ay(B) cos(6;)

5 (3.11)

p2(B) =

According to the plane interface (ag(C) — 00), the reflection at C' doesn’t modify the radius of

curvature. Hence, the spreading factor of wave 2 is immediately given by:

SFyo = P2(B) (312)

In the same manner as wave 1, the approximation 1/+/ps + BM =~ 1/+0M is considered
in (3.30) for the numerical calculation. Next, the phase term mentioned in (3.9) is exemplarily
discussed in details. The entire phase term e® from the antenna to the cylinder and back is

given as follows:

¢ = ki- MB+ ki BC + k- CM (3.13)

Where E{ signifies the wave vector for the way back, thus E{ = —E’l Rewriting the phase term
(3.13) in the form:

¢ = Ei-(M0+OB) + ki BC + KT (Co+0M) (3.14)

Yielding immediately the final phase expression to be computed:

¢ = 2K . OM + ki (o_é + 0_’0) + ki BC (3.15)

Again the term —2/% - 0M is neglected for the numerical calculation.

3.3.3 Wave 7 (Creeping Wave)

As outlined in fig 3.9, the incoming wave 7 propagates around the cylinder as a creeping wave.
Here, wave 7 has no interaction with the interface. As a long arc length is given on the cylin-
der for the wave, the asymptotic approximation of the attachment and detachment coefficients
D*(@,q") are considered according to Bouche and Molinet [8]. Their definition is discussed in
appendix C'.4.2. Hence, the creeping wave 7 is given by:

—

Eron) = 2EyQ) - D*(@,@) ¢ +(QQ) ik Qdf (3.16)
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Where EO(Q) and —i k1 QQ’ signify the incident field amplitude at point @ and the phase along
the arc QQ'. The term e~11:(QQ") describes the attenuation between the attachment and de-
tachment point ) and @)’. Here, the asterisk (x) signifies that the complex conjugate has to be
considered as a harmonic temporal dependency e ™! is chosen in [8]. Further, as the direction
around the object is also interchangeable, the double value of the wave 7 has to be considered.

The spatial spreading from @' is given by 1 /+/Q'M and approximated by 1 /+v0M.

3.3.4 Wave 10

Next, wave 10 is introduced which is reflected from the cylinder in such a way that it falls
perpendicular on the interface at the point V. Afterwards the wave propagates on the same
path, back to the antenna. Unfortunately this wave is mostly neglected in literature. According

to fig. 3.12 the diffracted wave 10 is given at the antenna as follows:

L. =
. 722'[191-0\/1—%]91\/1\/2

Eg(M) = Ey- Ryvi)- f(va) - Ryvi) SFivno e (3.17)

Where, By, Ry(4), f(v2), SFiy1o and —2i [Ei SOVt Ky V1V2] signify the incident field ampli-
tude, the reflection dyad at the point Vi, the Fresnel dyad at the point V5, the spreading factor
and the phase term. Refer to (3.2) the radius of curvature after the first interaction at V) is
given by:

ag cos(6;)

p2i) = = (3.18)

The curvature is not modified at V5 due to the plane interface. Hence, the radius ps(v1) for the

propagation from Vj to V5 and back is defined by the distance V1V, as follows:

Po(Vi) = pa(Vi) +2AVs (3.19)

On the way back, the radius given in (3.19) is the incident radius of curvature for calculating
the spreading factor at Vi of the diffracted wave. The reflection at Vi modifies the wave front

curvature as follows: .
py(Vi) = — F— (3.20)
5 (V1) a2 cos(0;)

Setting 1 /\/ph(v1) + ViM = 1/+0M, the final spreading factor takes the final form:

SFwio = /p5(V1) (3.21)
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3.4 UTD Field

A serious shortcoming arises in GTD where the diffracted field doesn’t remain continuous across
a Surface Shadow Boundary (SSB). Away from such a SSB, the GTD and UTD field coincide. In
the ray system, three transition regions are present for the backscattered field(fig. 3.16 - 3.18).
The three transition zones are indicated as SSB 1, SSB 2 and SSB 3. The first shadow boundary
(SSB 1) refers to the waves 3, 8 and 4. As outlined in fig. 3.16, with decreasing look angle ¢, the
waves 3 and 8 will approach the shadow boundary (SSB1) on their way back to the receiver and
finally are replaced by the wave 4 at the transition. Here the corresponding look angle is given
by ¢ssp1- The wave 4 propagates on a small arc length along the cylinder and compared to the
spatial waves 3 and 8 the creeping wave 4 is powerless. Hence, a special emphasis is attributed
in the following to the transition zones as near shadow boundaries a significant polarimetric
behavior is expected. The same comments hold for the second considered transition zone at the
boundary SSB 2 (fig. 3.17). Where by crossing the boundary, the creeping wave 13 replaces the
spatial waves 11 and 12. In comparison to the first shadow boundary the two waves have here
one additional interaction with the cylinder and the interface. Finally, according to fig. 3.18 a
third shadow boundary SSB3 is investigated in the ray system. In this case, wave 6 replaces
the waves 5 and 9 in the shadow region. The arc length of the creeping wave 6 along the
cylinder is compared to the one of wave 4 much longer. Thus, the backscattered field is not of
great power compared to those related to the first and second shadow boundaries. The UTD
formulas in the work of McNamara [48] are valid for incident fields of GO type where the wave
is locally plane. Thus, according to the introduced list of rays the single field values up to the
points Ewg(Ql), EWB(Q2), EWll(Vl), EWIQ(Q), EW5(Q) and EWQ(TQ) can be calculated according
to the classical UTD. In order to investigate the polarimetric behavior at such transition zones
the continuity of the total field at the shadow boundary must be estimated. Note that the
continuity is given by the wave twosomes 348, 11412 and 5+9 where according to [48] the
waves 3, 11 and 5 correspoud to the incident field and the waves 8, 12 and 9 to the reflected
field. The problem consists here that after the reflection on the cylinder the single spatial waves
W3+WS8, W11+W12 and W5+W9 have different radii of curvature.

Hence, the superposition of the incident and reflected wave represents no local plane wave front
any more. Thus, for the way back the field cannot be calculated in the transition zones accurately
by the UTD. The exact method to solve this problem would consists in a spectral decomposition
of the wave front in elementary plane waves. Where for each single component the UTD would
again be applicable. On the other hand, the field has to be continuous through the boundary
as in nature no jumps occur at the transition from the lit into the shadow region. With that
on mind, an Approximate Method is introduced for the field near the shadow boundary. Thus,
the field over the entire range 0 < ¢ < 90° is split up in three segments: in the deep lit region
away from the shadow boundaries the classical UTD formalism for the single waves 3, 5, 8, 9,
11 and 12 is accurate, in the vicinity of the boundaries the UTD field is calculated after the
Approximate Method and finally in the shadow region the waves 4, 6 and 13 are computed

without restriction.
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Wave 13

Wave 4

Shadow Region
Shadow Region

Lit Region

Figure 3.16: Transition Zone 1 (SSB1) Figure 3.17: Transition Zone 2 (SSB2)

The exact and Approximate Method are summarized as follows:

e Fourier Decomposition
The exact method consists in a Fourier spectral decomposition of the non plane wave front
into elementary plane waves. In consequence every single plane wave can be calculated

using the Fresnel coefficients, Pekeris and Fresnel function in the transition region.

e Approximate Method
The total field is continues on the boundary approaching from lit and shadow region.

Hence, on the boundary which correspond to the grazing case, it holds:

EL(M)+ E5(M) = EP(M) (3.22)
(M) + Ejy(M) = ER(M) (3.23)
EL{(M)+ ENM) = EP(M) (3.24)

As the incidence field E'Z(M ) is plane for the grazing incidence, the above mentioned relations
(3.22), (3.23) and (3.24) are only valid if the other two spatial waves are plane at the same
time. This means that for the grazing incidence the Fourier components have a preferential
contribution in this direction. Considering the boundary SSB 1 this means that the incident
waves 3 + 8 at their reflection points Q1 and @2 on the cylinder can be approximated by a local
plane wave. Thus, both waves have the same radius of curvature after the reflection and the
UTD is again valid. The same reasoning for the shadow boundaries SSB 2 and SSB 3. Note that
this assumption is only valid close to the shadow boundaries. Here the Approximate Method
is applied for the look angle range pssp < @1 < @ssp + 5°. Therefore, the three segments
are determined by 0° < ¢ < ¢ssB, wssB < ¢r < pssp +5° and pssp +5° < @ < 90°
corresponding to the shadow region, a small stripe at the boundary and finally to the lit re-

gion. The combination of the three segments is done by a polynomial fit, presented in section 3.5.
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Figure 3.18: Transition Zone 3 (SSB3)

3.4.1 Surface Shadow Boundary 1

The introduced Approximate Method represents an innovation in the general UTD field cal-
culation, so that the field transition at the shadow boundary SSB1 is discussed exemplary in
detail next. The calculation at the second and third shadow boundary is performed in the same

manner.

Lit Region

In a first step the waves 3 and 8 in the lit region are calculated up to the their reflection points
@1 and ()5 as outlined in fig. 3.5 and 3.10 in accordance to the classical UTD formalism. Ap-
proaching the boundary and finally at grazing incidence, the two points (); and )2 coincide.
This point is referred as @ (fig. 3.6). According to McNamara [48] the single fields of the waves
3 and 8 are given at ()1 and Q)2 by:

ES,S(QI,Q2) = Ep- f(m) o i [F1- 0Ty + k1 Th Q1 |

E3(Q1)

b By B - [ SPwsan) ¢ [F00P 00T+ 100

- -/

(3.25)

Es(Q2)

Where the first term on the right side in (3.25) corresponds to wave 3 and the second term is
related to wave 8. Here the waves 3 and 8 correspond to the incident and reflected field [48].
The reflection dyad R%(P) at the point P is described in appendix C.3.The scripting R’(P) will
describe the reflection at P for the way back to the antenna. The numerical computation of the

two waves mentioned in (3.25) is outlined in the following.
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o E3q)
According to fig.3.5, it follows that no spatial divergence is given for wave 3 on its way to
point (1. At T the flat interface doesn’t modify the wave front. Up to @; field is simply

computed by the Fresnel coefficients f(11) and the phase term given in the exponent.

o Eg(qq)
From fig.3.10 it follows that with decreasing look angle ¢, a grazing incidence (0; = 0)
is given at point P. The related look angle is indicated as ¢y, and marks the boundary.
Approaching the boundary, the radius of curvature at P tends to the limit 1/p9(P) — oc.
Hence, the corresponding spreading factor gets equal to zero. Thus, in order to get a
continuous field at the transition, the uniform reflection coefficients R® are considered
in (3.25). For the sake of legibility the general reflection dyad R expressions are put in

appendix C.3. The related parameters of R* are estimated as follows:

k1 az(P) 5
2

m(p) = [

§p = —2m(p)cos(v)
(3.26)
L, = PT) + Ty(Q):

X, = 2k1Lp0052(0i)

The quantity f(7») describe the reflection at the interface and SFyg(Q2) the spatial diver-
gence. Here the radius of curvature po(P) of the incident field Eo is changed at P due to
the reflection on the cylinder. According to (3.2) it follows for a plane incident wave at P,

the curvature by:
ag(P) cos(6;)

p2(P) = 5 (3.27)
The spatial divergence of the wave 8 up to @9 is given after (3.3) by:
p2(P)
SF = 3.28
we(2) \/,02(P) + P13 + T2Qq (3.28)

After the reflection at ()1 and ()2, the superposition of wave 3 and 8 doesn’t yield a local plane
front as both waves have different radii of curvature. Hence, the calculation of the waves W3+W8
for the way back according to the UTD formalism fails. In accordance to the Approximate
Method, the incident waves 3 and 8 at their reflection points (); and ()2 are considered now
as plane waves. Thus, both waves have approximately the same radius of curvature after their
interactions with the target. Away from the boundary, in the lit region, the field is given
accurately according to the classical UTD formulas. In general, the diffracted field is calculated

for the way back as follows:

B g = By(@i) - fm) SFws(@u) e [FI0Tu+ ki @uTi]

) o (3.29)
+ By [ BUP) SFyg(p) e [FOP+ k(@ +12)]
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Wave 3
At @)1 a plane incident field is always on hand, so that the divergence factor SFy3(Q:) of wave
3 for the way back is given by:

SFw3(@Q1) = Vp2(Qu) (3.30)
Where:
1
p2(Q1) = 02(262) (3.31)

Straightforward the term 1/+/p2(Q1) + Q171 + T1 M is set equal to 1 /v0M in (3.30) and ne-

glected in the computation.

Wave 8

The Approximate Method is applied near the surface boundary in the look angle range pssp1 <
o, < pssp1 + 5°. This region is noted as Segment 1. Away from the surface shadow bound-
ary, in the range pgsp1 + 5° < 90°, the classical UTD is applied for calculating the field. The
field in the lit region is marked here as Segment 2. Hence, according to the two segments, the

superposition (3.29) is computed in two different manners and discussed next.

e Segment 1
Here the incident wave 8 at the point ()5 is considered to be local plane. Hence, the radius

of curvature of wave 8 is determined after the reflection at QQ2 by:

a2(Q2)
2

p2(Q2) = (3.32)

The propagation from @2 back to P increases the radius in (3.32) in the following way:

p2(P) = pa(Q2) + Q21p + TP (3.33)

After the reflection at P the curvature takes the form:

(3.34)

py(P) = —
p2(P)

In the same manner, substituting 1 / \/ph(P) + PM by 1 /+/0M, it follows the divergence

term of wave 8 as:

SFywg(P) = £/ ph(P) (3.35)

For the way back the parameter L, will be modified due to the adapted curvature expressed
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in (3.33). The reflection dyad R’ at P for the way back is here defined through:

m(p) =

kaz(P) 5
2

& = —2m(p)cos(t)
L, = p2Q) + QT2 + ThP

X, = 2kL, cos® (0"

e Segment 2
In the lit region, the field of wave 8 is calculated after the classical UTD. Hence, no incident
plane wave is considered at Q2. Therefore, the radius of curvature of former interactions
along its propagation must be considered. In consequence considering the first reflection

at P, the incident plane wave 8 is modified by:

(3.36)

The radius of curvature of the incident wave at ()2 is therefore due to its propagation up
to Qo defined as:

P2(Q2) = p2(P) + PTy + To(Q) (3.37)

Then, after the perpendicular reflection at Q2 the radius becomes:

1
Py(Q2) = —3 - (3.38)
p2(Q2) + a2(Q2)
In turn, the propagation back to the reflection point P yields:
P3(@Q2) = ph(@2) + Q2Tp + ToP (3.39)

Finally, after the way to the point of return ()2 and back, the curvature of the wave front

is given after the reflection at P in the way:

1
pHP) = —5 5 (3.40)

Q) T az(P) cos(6;)

For numerical purpose the approximation 1 //ph(r) + PM =1/+0M is set. At the end
of the day the spreading factor SFyyg(P) of wave 8 is given by:

SFws(P) = 1\/ph(P) (3.41)
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Shadow Region

The spatial waves 3 and 8 are replaced by the creeping wave 4 in the shadow region. The latter
propagates on a small arc length along the cylinder as shown in fig 3.6 and leaves the surface
tangentially at the detachment point B again as a spatial wave towards the point 1. In the
shadow region the points B, T" and F' are fixed points and therefore must be computed only once.
Here only the attachment point (), varies on the cylinder. Referring to the UTD diffraction
dyad T introduced in appendix C.4 the field of wave 4 is given up to the point Q) in a first step by:

By@) = By T%QuB) SFyy(@) ¢ [F 0@ + (BT +1Q) (3.42)

The detachment of all the points B along the cylinder describes the radiation of a line source.
Hence, the radius of curvature p»(Q) and the divergence SF{,,(Q) in (3.42) is immediately given
by:

(@) = BT + TQ (3.43)
1

SFE%,(Q) = 3.44

wa(@Q) 520) ( )

The general diffraction coefficients 7% is defined for the propagation up to the point of return
Q as follows [48]:

m(Qat) = m(B) = [7

2
B
§g = / m() dr
02(7')
T(Qat)
3.45)
Ly = BT + TQ (3.46)
kLg 53

Xy = ——¢
d 2m(Qat) M(B)

In order to calculate the way back of wave 4, the values E4(Q) at @ and the radius of curvature
mentioned in (3.46) are taken as input quantities. The received field at M is therefore computed

as:

Ean) = Bu(@) - T8, Gue) SFlyym) et K00+ k1 QT+ TB)] (3.47)

In this case, the numerical computation of the divergence term SF{/’V4 and the diffraction dyad
TP(B,Qu¢) is of particular interest. Considering the curvature of the incoming wave 4 at Q given

by (3.43), it follows after its reflection at ) the radius of curvature ph(Q) as:
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Refer to (3.3) the propagation back from @) to B, yields:

!/
alt) ¢p’2(cz) + BT + TQ

The spatial radiation at Q)4; back to M corresponds again to a line source. Therefore one set
the divergence term 1/+/QuM equal to 1/vO0M. In (3.47) the creeping wave described by
TP(B,Qu) is determined by:

Ly = pyQ + BT + TQ

T(Qat)
§a = / i) g
7(B)

_ kL&
S n@um) (3.48)

The shadow boundary of the wave 3 and 8 is determined through the geometrical setup. In the
case that the general ellipsis with its major and minor axis ¢ and b is degenerated into a circle,
the shadow boundary (SSB1) considered here, is determined through the radius of the sphere
R = a = b and its height A above the ground. The boundary angle ¢y, is here given by:

R sin2pum)
b+ h cos(@rim)

(3.49)

Wave 3, 4 and 8 on the boundary

The UTD implies the continuity of the field at the transition at a boundary. According to
McNamara [48], the total field on the boundary (SSB1) is given here by the sum of the incident
wave 3 and the reflected field wave 8. Hence, the total field Egss Bl at the reflection point Q; on

the boundary takes at first the form:

E558Y Q1=q) = By [ [y e (BT by %im) o {(FLOT2 4 k1 T202)
*(0) 3.50
2 =z —i(Ri0Ty + k1 T2Q») g (3.50)
— f@m)ymp) ([ e SFyg(Qy) e \FITI2 T R
= k1 q*(0)

Where the first term on the right side of (3.50) corresponds to the direct wave 3 and the last
two terms are related to the indirect wave 8. In 3.50 the quantities p* and ¢* are the complex

Fock scattering functions. The asterisk signifies that the complex conjugate has to be taken in
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the case of a time-dependance exp(—iwt). Further, the quantity m(p) is given in appendix C.4.

The divergence from the point P to () is calculated as follows:

1
VPTy + T5Q)»

SFys(Q2) = (3.51)

Again using Eg:g Bl,=@,) as start value for the way back the total field at the antenna is cal-

culated by:

E§$80n) = By g(@=00)- | fin)- Ro@:) SFya(@) ¢ "(HOT —h@T)

B % f(T2) - Ro(Q2) SFws(Q2) e (FOT> — ki QeTe) m(P) /{z Ry(@2)
! (3.52)
e PO
f@) ¢ SFyg(p) e (0T — ki @2T2)
- q*(0)

Where the spreading factor SFy3(Q1) and SFyyg(Q») in (3.52) are given by the reflection of a

plane incident wave at the cylinder. The divergence related to (), is therefore given by:

a2(Q1)

p2Q) = p2AQ) = — (3.53)
SFw3@Q1) = SFws(Q2) = vp2(Q1) (3.54)
Where 1//p2(Q1) + Q111 + T1 M is set equal to 1/ VOM.
In addition, the spreading factor of wave 8 yields:
P2(Q2)
SFws(P) = 3.55
W) \/PQ(Q2) + Q15 + TLP ( )

For the way back the spatial divergence terms 1 /v PM is approximately equal to 1 /+v0M.

3.4.2 Surface Shadow Boundary 2

Lit Region

According to fig. 3.17, the waves 11 and 12 related to the lit region are replaced by the wave
13 in the shadow region. In accordance to [48], the sum of the direct incident wave 11 and the
reflected wave 12 assures the continuity of the field at the second shadow boundary (SSB2). In
comparison to the first investigated transition zone, one additional interaction between the ob-
ject and the interface is given. The structure of the field expressions is kept in the same manner
as for the first transition zone. An additional reflection coefficient must be added respecting the
interaction with the soil at the points Vo and S and the corresponding radii of curvature are
arranged. Similar to the first transition zone, the superposition of the wave 11 and 12 is cal-

culated in a first step up to the points of return V5 and S. The field at the points Vo and S yields:
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Ei112(v2,8) = Eo - f0) - By(vi) SFwi1(v2) e~ [F0U + k1 (UVi+V1V2) ]
BV
o i [ ki.0F (3.56)
+ Ey-R%p ) f(r ) SFwi2(9) o~ [FLOP + ki(PT +7TQ + QS)]
E12(S)

Where the first term on the right side in (3.56) describes the direct field (wave 11) and the
second one the reflected field (wave 12). The UTD reflection dyad R® describes the reflection
at P for the way to the point of return S. The reflection dyad R, for the perfect conducting
cylinder reduces, according to the hard || and soft L polarization, to Ry =1 Rg = —1.

Next, the spatial divergence of the two waves is discussed. Considering first the reflection of the

incident wave 11 at V). Straightforward its curvature is modified after the reflection as follows:

az(vi) cos(6;)

The spreading factor SFyy11(v») of wave 11 up to the reflection point V5 is given by:
p2(V1)
SF Vo) = 4| ———————— 3.58
wi11(Vz) \/pQ(Vl) FVv2 (3.58)

Referring next to wave 12, the spreading factor SFyy12(S) at the point S is deduced. The plane

incident wave 12 gets after its first interaction with the cylinder at P the following curvature:

as(P) cos(;)

p2(pP) = 5

The propagation up to () yields the radius py(P):

pP2(Q) = p2P) + PT + TQ

The incident radius of curvature at @) is given by p2(Q). Hence, after the reflection at @), the

radius changes:

PH(Q) = —
p2(Q)

Finally, up to S the divergence is calculated as:

Ph(Q)
SF S) = ) —F 3.59
w12(S) p'Q(Q) + QS ( )

Identically to the first discussed transition zone, the way back to the antenna is calculated for
two different segments according to the Approximate Method and the classical UTD formalism.

Generally, the field received at the antenna is given with the start values EIl(Vz) and Elg(S) by:

B 1o(M) = Eyy(va) - for) - Ry - f(U 5FW11(V1) et [F10U + ki (VaVit1iv)]

B - (3.60)
+ Ens)- f(5) By(@) - fr ) SFyia(p) e t[FIOP +ki(SQ+ QT +1P)]



64 TARGET SITUATED IN THE AIR

Where f(W2), f(U), f(5) and f(T) signify the corresponding Fresnel coefficients. The quantities
Ry(w), Ry(Q) and Rb(p) refer to the UTD reflection coefficients. The two exponents define the
phase of the waves 11 and 12. The numerical calculation and the related spreading factors
SFw11(vi) and SFy12(P) in accordance to the two segments is discussed now. Referring to
the Approximate Method, a plane incident field is considered at the reflection points V; and
Q@ for the way back and marked as segment 1. The Approximate Method is applied in the
range: wgsp2 < ¢ < wssp2 + 5°. The segment 2 is related to look angles away from the
boundary and given in the range ¢sspa +5° < 90°. In this field segment the single waves 11 and
12 are calculated after the classical UTD. Here, the modified radii of curvature due to former

interactions on the way to the points of return V5 and S are taken into account.

e Segment 1
In this field segment, a plane incident wave is considered at V; for the way back, so that
after the reflection it holds for wave 11:

az(V) cos(b;)

ph(Vi) = 5

Setting 1/+/ph(vi) + ViU + UM equal to 1/+0M, the spreading factor SFy11(v1) in
(3.60) is given by:
SFw11(vi) = 1/ ph(n1)

Next, the spreading factor of wave 12 is derived. In accordance with the Approximate
Method it follows for the reflection at Q:

2
/
Q) = 3.61
2@ as(Q) cos(6;) (3:61)
The propagation back from @ to P yields:
po(P) = pal@ + QT + TP (3.62)
The curvature ph(P) is given after the reflection at P by:
/! ]‘
pQ(P) = 1 + 2 (363)
Py (P) az(P) cos(6;)

Substituting the term 1 /\/ph(P) + PM by 1 /+/OM. The final divergence term is defined

as:

SFyi2(P) = y/p5(P)
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e Segment 2
In this range no plane wave front is considered at V; for the way back of the round trip.
The above mentioned expression according to (3.4.2) are valid except that for the way

back the radius ph(vi) at Vi of wave 11 is modified here as follows:

1
po(Vi) = ; 5 (3.64)

pi(Vi) + 2V V3 + as(V1) cos(6;)

Thus, the radius of curvature ph(Q) at @ for the way back of wave 12 must be regarded.

The curvature at ) is given therefore by:

1
Ph(Q) = © 5 (3.65)

Q) + 208 + a2(Q) cos(6;)

Shadow Region

The third segment corresponds to the shadow region in the range @5 < pssp2. In the shadowed
region the wave 11 and 12 are replaced by the wave 13 which creeps on a small arc length on
the surface. Similarly to the wave 4 at the first investigated transition zone, wave 13 is first

computed up to its point of return V; as follows:

Ei3(vs) = Ep-T%vi W) ) - f(va) - By(va) SFw13(vs) et [RLOVL + oy (VoVs + VaVa + Vals) | (3.66)

Straightforward the reflection at Vy is given by Ry =1 Rg = —1 for the perfect conducting
cylinder. In the field expression (3.66) the divergence of wave 13 is given at V; by:

1
p2(Va) = 1 2 (367)

VaVa + V3V, + a2 (Va) cos(6;)

The propagation up to point V5 yields the spreading factor SFyy13(vs):

.
SFwiss) = () —2200 (3.68)

p2(va) + VaVs

Considering Elg(v5) as start value for the way back, the received wave 13 is of the following

form:

Ey3(m) = Ei3(v; ) - f(Vs) - Ry(Va) - f(Vs)'Zb(Vz,Vl) SFw13(Va)

(3.69)
- [k{-ovl + k1 (VsVa + VaVa + Va13a) |

The spreading factor SFy13(v) of the diffracted wave 13 is derived next. The radius of curva-
ture after the reflection at V4 on the way to the point of return V; is defined by (3.67). The
propagation to V5 and back to Vj yields:

Py(Ve) = pa(Va)+2VaVs (3.70)
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For the reflection at Vj it yields:

1
py(Va) = —5 - 5 (3.71)
py(Va) T ay(va) cos(6;)

Refer to latter, the divergence is given up to the attachment point V5 by:

SFy13(va) = p3(%s) (3.72)
s i) + VaVs + Valh ‘

Similarly to the previous waves, the divergence from the cylinder to the antenna 1/+/ViM is
again approximately given by 1 /+v0M.

Wave 11, 12 and 13 on the boundary

The field 511,12 on the shadow boundary is given in a first step at the point Vo = S by [48]:

7 —i[EL.0U + k(UVL + W1 Vi
Ery12(ve=5) = f)-r,( 1) SFwi1(Vs) e i[ k10U + k(UV1 + Vi V2) |

l\?ln—\ tijl

for Q) SF&15(5) efi[l_c'i 0T + k1 (TQ + QS)]

pr(0)
— [@ - By(@) m(Q) \/kz e SEYo(s) e tLFOT k1 (TQ +QS)]
N 1

(3.73)

The first term on the right hand of (3.73) describes the direct incident wave 11 and the second and
third terms correspond to the reflected wave 12. Where f(v) and f(T) describe the corresponding
Fresnel coeflicients. The reflection on the cylinder is given by Ry(v1) and Ry(Q). The quantity
m(Q) is given in appendix C.4. Further, the exponents define the phase of the two waves. Due
to fact that the points V5 and S coincide the divergence for the first and second term is given
as follows:

az2(V1i=Q) COS(Gi)

p2Vi=Q) = 5 (3.74)

Hence, due that V1V5 is equal to QS the divergence up to the points of return yields:

p2(V1)

w11 (Va) w12(S) PAESAL

(3.75)

The spreading factor mentioned in the third term takes the spatial divergence of the propagation
from P to () into account. Where the radius is immediately given by po = PT + TQ. In
consequence the radius of curvature after the reflection at () is given by:
, 1
P9(Q) = T m 5 (3.76)
PTH+TQ * 4y(Q)cos(6;)
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In this way the spreading factor SF{/’VIQ(S) at the point of return S, is defined as:

/
SFl,5) = (|29 3.77
Considering the value of (3.73) as start quantity for the way back, it follows:
ESSB ) = Biia0a=s) - | f0i) - Roovi) - f0) SFywiy(va) e IF00 — k1 (V2Vi + VD))
- % £(8)- By(Q) - f(1) SFiyra(@) e IFOP ~ F(5Q + QT +TP)]
*0
2 CilkT0P — k(SQ + QT + TP)] 7o
— f(8) - By(@) - f(1r)-m(p) ([ e "4 SEyizp) e 1 .
- - k1 q*(0)
(3.78)

Analog to the firstly discussed transition zone, a plane wave is considered here as incident field
at the reflection points V7 and @ for the way back. Thus, the spreading factors SFy11(V1),
SFw12(Q) and SFy12(P) in (3.78) are given by:

a2(V1=Q) COS(Gi)

p2(Vi=Q) = 9 (3.79)
SFwi1(i=Q) = SFw1201=0Q) = Vp2("1=Q) (3.80)
The divergence back to the point P is described by:
P2(Q)

SFwi2(P) = \/ (3.81)

p2Q) + QT + TP

For numerical purpose the expression 1 //p2(Q) + ViU + UM and 1 /v PM were substituted
by 1/V0M.

3.4.3 Surface Shadow Boundary 3
Waves 5, 6 and 9 near the transition zone

The third and last shadow boundary SSB 3 which occur in the ray field is pointed out in fig. 3.18.
Here the wave 5 and 9 are replaced by the wave 6. Due to the fact that all related waves propa-
gate on a long arc length around the target as creeping waves, the backscattered field is powerless
compared to the previous discussed shadow boundaries. Nevertheless this boundary also con-

tains information about the target.

Lit region
Straightforward the field E{,yg at the attachment point ) and 7% is given through the sum of

the direct and reflected field here corresponding to the waves 5 and 9. The sum of both waves
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assures the continuity at the transition into the shadow region. On the boundary the points @
and T coincide, yielding:

E5,9(Q,T2) = Eo . f(P) eii[lgzi'o_j) + kpo]

. . (3.82)
+ By R f(5) SFyo(n) ot [F1-0Ty + ki (11 S+STy) |

-~ 7

Where f(P) and f(s) refer to the Fresnel coeflicients at the interaction points at the interface.
The quantity R(71) mentions the UTD reflection dyad R(11) given in appendix C.3. Similar to
the previous discussed wave the above mentioned exponents define the phase of the waves. The
energy loss SFyyo(1») due to the reflection on the cylinder is presented next. First the wave front

of the incidence plane wave 9 at 15 is giving after the reflection as:

as (T
pa(1y) = 2(2 J (3.83)
The propagation up to the attachment point 75 on the cylinder takes then the form:
p2(11)
SFyo(1z) = 3.84
wolt) \/pz(Tl) + 115 + ST (3.84)

After its propagation around the cylinder, the creeping wave 9 is radiated tangentially away
from the target into the space. The propagation of the creeping wave is calculated using the
dyadic diffraction coefficient 7" relating the incident space wave at point 75 with the diffracted
wave at point Q. At the point of observation the field E_:g,yg(M) is given by:

Bson) = EsQ) - T@ @) e 9 By, - im0y e [F09] (3.85)

In the same manner as the previous transition zones, the UTD field over the entire look angle

range is divided into three segments.

Segment 1

Close to the shadow boundary ¢ssp3 < ¢r < @ssps + 5°, the field is calculated according to
the Approximate Method. In this case a plane incident wave is considered at the attachment
point @ = T,. Where the distance parameter Ly of (C.10) and the argument of the transition

function X, are infinite. Hence, the transition function reduces to F'(co) = 1 as seen in fig. C.1.

Segment 2

Refer to the lit region wgsps + 5° < 90°, the sum of wave 5 and 9 is computed in accordance
to (3.92). The diffraction dyad T'(1»,Q’) of the arc T to Q' is performed in agreement to the
formulas given in appendix C.4. According to (3.83) the distance parameter Ly in (C.11) is
defined at the attachment point 7 as follows:

Ld(T2) = pQ(T]_)—I—T]_S—I—STQ (386)
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Shadow region
In the third segment @5 < wgsps, the diffracted creeping wave 6 is outlined in fig. 3.8. Here

wave 6 propagates additionally as a creeping wave along the arc QF . The wave 6 is expressed as:

Egn) = Eo-T@Q.E)- f@) T(FQ) SFyer) e bt ESHSH) (3.87)

Its radiation as a space wave from the detachment point E to the attachment point F' leads to

the divergence:
1

Sl = JET T TE

(3.88)

The two diffraction dyads 7'(Q, E) T'(F,Q’) have the same distance parameter Ly as the antenna

is positioned in the far-field. Where the distance parameter is determined through:
Ly = ET +TF (3.89)

Here the propagation to the cylinder and back to the antenna is interchangeable. Therefore, the

double value of E{,yg and Eg must be computed.

Waves 5, 6 and 9 on the boundary

At the look angle corresponding to third shadow boundary (SSB3) the geometrical points of the
waves b and 9 coincide. Their geometrical attachment and detachment points as spatial and
creeping waves are shown in fig. 3.7 and 3.11. In a first step, the superposition of the waves 5
and 9 is calculated up to their common attachment point () = T5,. The field is given at ) = T»
as follows [48]:

E5,9(Q=T2) = Eo . [i(P) e_i(Ei'(ﬁD*‘kl PQ) _ % i(s) e—i(Ei-OTS‘+k1 STy)
NC 3.90
2 -in —i(K$-08 + k1 STb) v (3.90)
— f(&)y m(m) \/— e "% SFyo(1) e "\"1 1 STy )
N h ¢ (0)

Here the first term on the right side (3.90) describes the direct incident wave 5, where the second

and last term refer to the reflected wave 9. The divergence of the last term yields:

1

SFwo(Ty) = \/ﬁ

(3.91)

On the boundary itself a local plane wave is considered. Hence, the propagation as a creeping

wave around the object and the diffraction as a spatial waves at ()’ is calculated as follows:

Baon) = Bra@—1)- T@—1n @ ¢ (19 (3.92)

The energy spread due to the propagation way back to the receiver 1/1/Q'M is set equal to
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1 /+v0M1 and neglected in the computation. The geometrical parameters for the shadow bound-
ary (SSB3) is determined in the case of a circle of radius R at the height h above the ground by:

sin(@rim) = b-i——h (3.93)

3.5 Transition at a Surface Shadow Boundary

In this work a special emphasis is attributed to the transition regions near the shadow bound-
aries. Due to the strong attenuation of waves creeping along the surface of an object, the
polarization behavior undergo a significant variation near such a transition zone. As mentioned
in the introduction of section 3.4, the field in the lit region is calculated after the UTD-GTD for
look angles away from the shadow boundary. The approached method is solely applied in the
vicinity of the shadow boundary and finally on the shadow boundary itself. In accordance with
section 3.4 the field is calculated after the Approximate Method and constrained in the segment
wssB < ¢ < pssp + 5°. In the lit region away from the boundary and in the shadow region
the field is given by the classical UTD formalism. Thus, three segments have to be combined in
order to have a continuous field over the entire look angle range. Therefore, a polynomial fitting
near transition zones was carried out. In the following the fit of the UTD field across the first
investigated boundary is exemplarily shown here in details. Concerning the second transition
zone, one additional reflection at the interface is given here. Otherwise it has the same formal
structure as the first one. Due to the strong attenuation of the creeping waves related to the
third transition zone, the main focus is on the first two boundaries. In this section the single
wave contributions of the implemented ray system are presented once for a perfect conducting
interface e = PC and once for a dielectric soil e = 9.6 . Exemplarily, the field is calculated

over the entire look angle range as follows:

e GTD-UTD
Away from the boundary in the lit region, the general reflection coefficients R(UT D) and
diffraction coefficients T'(UT' D) are used according to appendix C.3 and C.4. The waves
348 and 4 are calculated up to the shadow boundary after the classical GTD-UTD. In spite
of, that after the reflection on the cylinder the superposition of wave 3 and 8 represents
no plane wave anymore, the UTD formulas are again applied for the way back. Hence,
approaching the boundary from the lit side, the numerical results are not accurate and

discontinuity of the field across the shadow boundary is given in consequence.

e The Approximate Method
After the Approximate Method the field is calculated near the boundary in such a way,
that the incident wave 3 and 8 at the points of return ;1 and ()9 are considered as plane

waves for the way back.

e GO
In the deep lit region the GO and UTD fields must again coincide. In order to check this,
the reflection at the cylinder is calculated by R = £1 for the wave 8 in the lit region.
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According to above mentioned notation, the three segments over the whole look angle range are
shown for the real and imaginary part of the parallel field component in fig. 3.19 to fig. 3.20. A
larger scale is chosen where near the shadow boundary. Correspondingly, the real and imaginary
part of the perpendicular component is pointed out in fig. 3.21 and fig. 3.22. The presented
results were calculated for a linear field E'(f =1 and Ej)_ = 1. From the figures one recognizes
that in the deep lit region the GTD-UTD and the GO fall together as expected. In order to

make the field over the three segments continuous, a polynomial fit was chosen for the points in

the range pgsp1 — 10° < @1, < wssp1 + 10°. Such a polynomial fit is nowadays readily given
in technical computing language like the software package Matlab. Here, degrees of 6 < n < 10
were chosen for the polynomial fit depending on the best match, specially in view of the exact
value on the boundary. The corresponding fits of the real and imaginary part are presented once
for a perfect conducting interface and a lossless dielectric half-space €2 = 9.6 in the fig. 3.24 to
fig. 3.32.
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Here the numerical results of the different waves contributions are shown according to the

implemented GTD/UTD ray system. The perpendicular field component is illustrated over

the look angle range 0° < ¢; < 90° once for a perfect conducting (PC) interface and once
for dielectric soil (e = 9.6). Where a linear polarized incident field E?_ = 1,Eﬁ =1,f =
500M Hz, h = 0.5m was calculated (fig. 3.33 and 3.34).
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Figure 3.33: PC

E,|

2.5

‘
—_—W1

—_—W2

—W3 + W8 - W4
2f |—=w7

—W5 + W9 — W6
—W10

sea W11+ W12 — W13

1.5

0.5r

Figure 3.34: ex = 9.6

The single waves in the system were normalized with the specular reflection wave 1 for the relat-

ing look angle . The three transition zone angle are plotted as dashed lines. One recognize the

strong attenuation of the field by the transit into the shadow region. Further, the contribution

of the creeping wave 5 and 9 and in the shadow region by the wave 6 is very low compared

to the other waves in the implemented ray system, except for the creeping wave 7. Thus, the

polarimetric behavior of the total ray system is in view of the investigation near transition zones
mainly determined by the wave 3, 8 and 4 relating to the SSB1 and wave 11, 12 and 13 for the

second transition zone SSB2.
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3.6 Ray System Validation

The Mixed Potential Integral Equation (MPIE) of section 2.5 is solved by an extended Method
of Moments (MoM) technique as presented in appendix B. In order to validate the ray system,
the results achieved by the exact numerical MoM are confronted with those obtained by the
GTD. The solution of the MPIE via the MoM is done by finding the elements of the impedance
matrix [Z),,]. Due to the fact that its elements must be of finite size, and so the basis and test
functions, an object with a closed surface has to be considered. Therefore, the scattered field
from a perfect conducting sphere situated above and close to the soil is evaluated.

Hence, according to a sphere the waves 1, 2, 3, 10 and 11 from the GTD ray system are taken into
account. Whereas the corresponding spreading factors of the waves are modified for the sphere
as the perpendicular radius of curvature relative to the plane of incidence is not infinite (p; # oc0)
in comparison to the cylinder. The wave 3 and 11 are computed for the lit region, respectively
up to their shadow boundaries. The Radar Cross Section of both numerical techniques for the
parallel and perpendicular field component at the observation point M are presented in fig. 3.35
and fig. 3.36. Neglecting the numerical boundary effects, it is can be seen that a good agreement
between the two methods is obtained and so the geometrical étalon solution represents a good

approximation for the given problem.

[dB]

0 10 20 30 40 50 60 70 80 90

Figure 3.35: RCS of a sphere for E | component after the MoM and GTD
[k =10,7r =2,h = 0.5,€e3 = 9.6]

3.7 Radar Cross Section and Representation on the Poincaré

Sphere

The UTD ray system with of a cylinder above the interface is considered in the following in
order to investigate the behavior of the scattered em-field close to the transition zones. The
corresponding spreading factor for p, = oo is modified in the numerical code. Further, the
polarimetric behavior of the scattered UTD field is investigated in a first step on the Poincaré

sphere. The benefit of introducing a UTD ray system consists in the fact that the scattering



76 TARGET SITUATED IN THE AIR

40

[dB]

-~ GTD

0 10 20 30 40 50 60 70 80 90

Figure 3.36: RCS of a sphere for EII component after the MoM and GTD
[k =10,7 =2,h = 0.5,€e3 = 9.6

process can be related to single rays. As a result, a decomposition of the general scattering
matrix [S] into different mechanism can be made and so leading to a better understanding of
the polarimetric behavior.

According to the definition of the Stokes vector in section 1.3.3, the upper hemisphere describes
a left handed polarized field. Where the upper pole g3 = 1 signifies a left handed circular
polarization LHC. The antipole corresponds to a right handed polarization state, respectively
the lower pole g3 = —1 to a right handed circular polarization RHC. As a consequence, the

equator line characterizes a linear polarization.

The composition of the Sinclair matrix
Respective to the line of sight LOS the introduced UTD cylinder model is symmetrical and no
cross polarization occurs in consequence. Hence, the scattered field E® is solely given by the

diagonal elements of the scattering matrix [S] and the incident field E? as follows:

ES E°
() ()

11
The scattered UTD field from the cylinder is the sum of the single waves B = > ow It The
k) J:]_ b

Si1 0
0 S

main elements are directly computed with the unitary incident field Ei = 1 as follows:
ES By
S = = Sop = —& 3.95
11 B 22 Eﬁ ( )

A linear polarized incident field is given at the cylinder of the form Eﬁ =1, EE = 1. The ray
system allows now to get a more detailed physical insight the scattering process as the exact
MoM program. According to the ray system the decomposition of the scattering matrix [S] is

discussed next.
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Decomposition of [S]

10
w1l —

1+ DB
+ W2 — - 0
0 1—-DB
1+ DB
LW — + + W3 0
0 1-DB+W3
1+DB+ W3 0
+ W8 — + +
0 1-DB+ W3+ W8
1+ DB+ W3+ W8+ W10 0
+ W10 —
0 1-DB+W3+ W8+ W10
1+ DB+W3+ W8+ W10+ W1l 0
+ Wil —
0 1-DB+W3+W8+ W10+ W1l

Where only the parallel component of double bounced wave 2 changes its sign.

3.7.1 H -V Polarization

First, the ray field is investigated for a perfect conducting interface, where a purely horizontal
or vertical polarized incident field is considered. The h or v polarization states correspond to
the perpendicular and parallel polarization of the UTD cylinder model. As a result, no cross
polarization occurs during the scattering process. This property is pointed out on the Poincaré
sphere (fig 3.37).
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Figure 3.37: GTD-field polarization for E} = 1 or Ej = 1.

Here the backscattered field is again a horizontal polarized field gy = 1,92 = 0,93 = 0 for a
purely horizontal transmission (k). The same comment for a purely v polarized field. The

corresponding point on the sphere is given here by g; = —1,g2 = 0,93 = 0.

3.7.2 Linear Polarization

The next step counsists in regarding a linear polarized field having a tilt orientation angle of
® = T which implies that two field components are equal (F =1 and Ej; = 1). The polariza-
tion states of the backscattered single waves 1, 2, 3, 4, 8, 10 and 11 are checked. According to
the law of reflection the tilt orientation angle ® of an emitted linear polarized wave remains the

same after odd reflections, written as:

VH(®) — VH(®) odd (e.g. sphere) (3.96)

In contrast the orientation angle ® changes its sign after even reflections. The wave plane is

rotated anticlockwise by ©m — @

VH(®) — VH(—®) even (e.g. dihedral) (3.97)

The reflection coefficients at the perfect conducting interface are constant ( fi=1fL= —1)
over the entire look angle range . In consequence the amplitudes of both field components are
equal after the interaction with the ground. Hence, the tilt angle ® remains constant over the
whole horizon. The individual backscattered polarization states are pointed out on the Poincaré
sphere in fig 3.38 to 3.41. Here, for even reflections, like the double bounced wave 2, the cor-
responding point on the Poincaré sphere lies on the opposite side of the equator (fig 3.38). The
field vectors of wave 10 and 11 keep their orientation due to the odd numbered reflections. Both

waves are located at g1 = 0,92 = 1,93 = 0 on the sphere (fig 3.39).

In the same manner the field vectors of wave 3 and 8 keep their orientation as a result of the
odd interactions and their location lies also on the equator line g1 = 0,92 = 1, g3 = 0. Recapit-

ulating, no cross polarization occurs if the single waves of the ray system are considered. An



3.7 RADAR CROSS SECTION AND REPRESENTATION ON THE POINCARE SPHERE 79

a3
g1
Wave 10
Wave 11
g2
Figure 3.38: Wave 1 and Wave 2 Figure 3.39: Wave 10 and Wave 11

exception here, represents the creeping wave 4, where a small smearing occurs on the Poincaré

sphere.
g3 g3
g1
Wave 3
Wave 8
gz
Figure 3.40: Wave 3 and Wave 8 Figure 3.41: Wave 4

E_:HZIE_:J_ZI[EQ:PC] E_:||:1E_=L:1[62:PC]

The E; (soft) component of wave 4 related to the shadow region is stronger attenuated than
its B (soft) component. Finally, for long arc lengths on the surface only the significant £,
component remains. Hence, wave 4 is found near the vertical (hard) polarization state given
by g1 = —1,92 = 0,93 = 0. Here, with decreasing look angle, the arc length along surface is
increasing. From this, it follows that the E| component is stronger attenuated than the Ej
component. This different attenuation of the two components leads finally to a smearing on the
Poincaré sphere.

Considering now the complex summation of the single waves, the linear polarization is lost.



80 TARGET SITUATED IN THE AIR

This is e.g. shown for the superposition of the wave 3 and 8 in fig 3.42 for the look angle
range SSB1 < ¢ < 90°. Where wave 3 and 8 are replaced by wave 4 in the shadow region
0° < ¢ < §SB1. The ray paths of the single wave 3 and 8 between the cylinder and interface
depends from the incident angle. Hence, the summation of their fields takes place out of phase.
The same holds for the superposition off all the considered waves in the system. The summation
of all waves is shown in fig 3.43. Hence, for a varying look angle the total field migrates on
the Poincaré sphere even though in the scattering matrix [S] no cross elements occurs. The
look angles for the two dominant transition zone SSB1 and SSB2 are situated near the equator
line. At the transition zones the ray path of the corresponding waves 3 + 8 and 11 4+ 12 are
almost equal. Here, the summation of the wave twosomes takes place in phase. Away from
the boundaries the waves are out of phase and their superposition leads to a depolarization
of the backscattered field. Hence, both transition zones, due to the geometrical setup, have
characteristic locations on the Poincaré sphere. This behavior was additionally checked for the
height h=0.3m. Thus, by exploiting these two characteristic locations on the Poincaré sphere,
the height and the radius of a general circular cylinder or a sphere can be clearly determined. In
the case of an elliptical object, where three unknowns are present, local minimums may be found
in the fit if information is given a priori or for global maximum the third shadow boundary must
be determined. According to fig. 3.16 and 3.17, the corresponding geometrical parameters has

to fulfilled the two shadow boundary conditions.

o |
35.0°
g3 40.0°
55,0°
g2
SSB 1
3 |
SSB 2 o1
0.0°
45.0°
Figure 3.42: SSB1: Wave 3, 4 and 8 Figure 3.43: Wave 1-13 EH —1E, =1

E||:1EL:1[€2=PC] [k=10%,7“=2m,h=05m,62:PC]
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3.7.3 Circular Polarized Incident Field

Here an incident LHC polarized field, given by the phase shift E| =i and E} = 1, is discussed.
In the same manner the polarization of the single backscattered waves is checked at first. In
general, following the IEEE convention, an emitted RHC polarized wave keeps its polarization

after odd reflections. This circumstance is written in the form:

RHC — RHC odd (e.g. sphere) (3.98)

In contrast, a RHC wave changes its rotation sense after even reflections, described by:

RHC — LHC even (e.g. dihedral) (3.99)

On the Poincaé sphere the odd and even reflected waves must therefore lie on opposite hemi-
spheres. This antipode is represented in the the fig 3.44 for the both principle waves 1 and
2. Also the odd reflections of the waves 3, 8, 10 and 11 are pointed out in the figure. The

smearing of wave 4 on the Poincaré sphere is shown in fig. 3.45. Similar to the first considered

S S

AN
S

Wave 1, 3, 8, 10 and 11

Figure 3.44: Wave 1, 2, 3, 4, 8, 10 and 11 Figure 3.45: Wave 4 [e; = PC]
[ea = PC]

case, the backscattered field is near the shadow boundaries barely depolarized. From fig. 3.46
it is seen, that once the backscattered field is circular and once linear polarized at the shadow
boundary. Away from the transition zone the field is strongly depolarized and circles on the
Poincaé sphere. In contrast, near the shadow boundaries the corresponding waves are in phase,
so that the backscattered field at the transition zones has significant locations on the Poincaé

sphere. The same behavior is given for the height h=0.3m.

3.7.4 Elliptical Polarized Incident Field

The diffraction for a general elliptical polarized incident field is considered given by the phase
shift EH =1E L = 0.5¢. Similar to the circular case, the odd and even reflected waves lie on

opposite hemispheres on the Poincaé sphere. The opposite locations on the sphere are outlined
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SSB 2

g3 30.0°

55.0°

356.0°
60.0°
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a1l

Figure 3.46: Wave 1-13 By = 1 E| =i [k = 10,r = 2,h = 0.5, 6, = PC]

in fig. 3.47. The creeping wave 4 is shown in fig. 3.48. The summation of the wave 1 - 13 and the
resulting depolarization is pointed out in fig 3.49. According to the linear and circular polarized

field, the transition zones have again significant locations on the Poincaé sphere.

Wave 1, 3, 8, 10 and 11

Figure 3.47: Wave 1, 2, 3, 4, 8, 10 and 11 Figure 3.48: Wave 4 Ej| =1 E| = 0.5i
EH:]_EJ_:OE)l [EQZPC] [61:PC]
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30.0°

SSB 2 4
g3

55.0°
60.0°

D SSB 1

g1

Figure 3.49: Wave 1-13 B = 1 E| = 0.5i [k = 10,r = 2,h = 0.5,6; = PC]

3.7.5 Dielectric Soil

In the previous sections, a perfect conducting soil was considered in order to get a first insight at
the polarimetric behavior. In the following the more general case of a dielectric soil is calculated.

Here, the lower dielectric half-space is characterize by the relative permittivity eo = 9.6. For

a3

e

AR S

Figure 3.50: Specular Wave 1 Figure 3.51: Double bounced wave 2
Ey=1E =1 = 9.6 | Ey=1E, =1[e = 9.6]

the reason of comparability the geometrical setup and the wave number stay the same as in the
previous case of a perfect conducting interface (k = 10,7 = 2,h = 0.5). A linear polarization
given by £, =1 and Ej = 1 with the tilt angle ® = 7 is regarded as incoming field. In contrast
to the perfect conducting interface, the Fresnel coefficients describing the reflections on the in-

terface, depend now from the local incidence angle. Hence, the reflection coefficients vary over
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the look angle range and in consequence also the amplitudes. The resulting alteration on the
Poincaré sphere according to the single waves of the GTD system is shown in fig. 3.50 to 3.55.
An exception is here the specular wave 1 and and wave 10, where normal incidence is always
given at the object respectively on the ground. Similarly, the characteristic angles related to the
boundaries SSB1 and SSB 2 are located in the vicinity of the equator (fig. 3.56).

g3 g3

OISR
4’0..'55“‘

Figure 3.52: Wave 3 EII =1E, =1 Figure 3.53: Wave 4 EH =1E, =1
[62 == 96] [62 == 96]

a3

g1 N

g2

Figure 3.54: Wave 10 Ej| =1 E| =1 Figure 3.55: Wave 11 Ejj =15 =1
[e2 = 9.6] [e2 = 9.6]
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Figure 3.56: Wave 1-13 £ = 1 E| =1 [k = 10,7 = 2,h = 0.5,¢; = 9.]



CHAPTER 4

Anechoic Chamber Measurements

In order to validate the implemented UTD ray system full polarimetric monostatic measurements
(hh, hv and vv) were performed at the European Microwave Signature Laboratory (EMSL) at
the Joint Research Centre (JRC) of the European Commission in Ispra-Italy. The EMSL pro-
vides a 20m diameter microwave anechoic chamber, where objects can be scanned over a full
hemisphere in a monostatic or bistatic alignment as shown in fig 4.1. Thus, the EMSL pro-
vides controlled investigations of microwave scattering under stable conditions. The results of
the EMSL measurements and the interpretation according to the implemented ray system are

discussed in the following.

Figure 4.1: Anechoic chamber
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4.1 Experimental Setup

In the anechoic chamber the backscattered field of a metallic sphere of 30.5cm in diameter situ-
ated above a perfect conducting plate with the dimension 2m x2m was measured at five different
heights: h=3.75cm, 5cm, 7.5cm, 10cm and 15cm. Where a monostatic alignment of the trans-
mitting and receiving antenna was chosen and a linear polarized field (E, = E,) was emitted.
The sphere was placed above the center of the plate. The look angle range was fixed from 5°
to 75° with breakpoints every half degree Ay = 0.5°. At each of the single 140 breakpoints a
frequency sweep over the range 1.0 GHz—9.5 GH z with a step of Af = 10 M Hz was performed
in order to get a corresponding pulse in the time domain (TD). Hence, 800 different frequencies
were measured for each incident angle. The setup of the measurements is shown in fig. 4.1. The
different heights were realized by supports made of polystyrene. As polystyrene consists mainly
of air, the influence of the supports on the measurements are not significant. Exemplarily, the
setup for the measurement corresponding to the height h=10cm is shown in fig. 4.2. The ge-
ometrical shadow boundaries SSB 1 and SSB 1 of the transition zones are pointed out for the
different heights in table D.1. The report of the measurements are listed in the table D in
appendix D.

BYNS
E ~

Figure 4.2: Support of the sphere in the EMSL for h = 10.0cm

Some restriction in analyzing the data are given due to the geometry of the ground plate.
Considering the reflection point C' of the double bounced wave 2 outlined in fig. 3.4, C will lie as
from a certain angle ¢y outside the ground plate. This look angle ¢y where the reflection point
C lies beyond the plate is listed for the different heights in table D.1. As a result of it, look
angles over 75° were not measured. Furthermore, despite the fact that the edges of the ground
plate were covered with absorbers, diffractions from the plate edges occur. The geometry of the
route from the near edge L relative to the antenna is outlined in fig. 4.4. From this, one see
that for small incident angles the distance edge - antenna is greater than the distance phase

origin - antenna ry. Hence, the diffracted waves from the edge L; wave have positive arrival
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Center EMSL r, r,

L,

Figure 4.3: Positioning of the measured sphere  Figure 4.4: Diffraction Geometry from the
in the Chamber Origin = Phase Origin Plate Edges

times t, > 0. In consequence, for steep incident angles the diffraction from L; will superposed
with the other waves of the GTD ray system. In contrast, by increasing the incident angle the
distance edge-antenna will get smaller as the distance phase origin - antenna ry. In this case
the arrival times are negative ¢, < 0. The incident angle where the arrivals from the edge L,
are zero are listed in the table 4.1 for the different measured heights. As a result, look angles

under 15° must be interpreted carefully due to the significant diffraction from the edge L.

¢lim < ¢L
h 3.75¢m | bem | 7.5e¢m | 10em | 15¢m
Drim 14° 14.5° 16° 17.5° 20°

Table 4.1: Limiting values for the look angle ¢y,

Calibration of the Raw Data

A correction of the raw data is required as systematic errors like the coupling between the h
and v channel, hardware effects (cables, switches, synthesizer etc.) and residual reflections in
the anechoic chamber are given during the measurements. In order to neglect this amplitude
and phase noise, a three target calibration and error correction for the monostatic alignment,
according to Wiesbeck [66], was carried out. Therefore, an isolation calibration (empty room)
and measurements of three different canonical targets were performed, where the scattering
matrices are exactly known. Here, the backscattered field of a circular metallic disk and of
a dihedral corner with the two rotation angles ¥ = 0° and ¢ = 45° around the line of sight
were considered. After the correction of the raw data every response is normalized with the
direct reflected wave from the sphere. The corresponding files of the calibration measurements
are given in the table D.2. Additionally, as the center of the sphere did not coincide with
the center of the chamber, a geometrical respectively a time correction of the calibrated data

had to be carried out. The additional propagation time ¢,(¢y) is pointed out in fig. 4.3. The
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corresponding off time ¢, (¢ ) for the single heights h and look angle ¢; was performed in the

frequency domain as follows [9]:

h(t +tn) o——e H(f)exp(ywitn(pr)) (4.1)

4.2 UTD Ray System Validation

4.2.1 Kinematic and dynamic aspects

The objective of this section is the validation of the implemented GTD ray system via measure-
ments performed in the EMSL at the JRC. Therefore, in order to recover the single waves of the
ray set, the kinematic behavior of the backscattered field is investigated in the time domain over
the entire look angle range 5° —75°. Here the reel part of the Ejj, component is considered. The
investigation of the transition zones introduced in section 3.4 is realized in the power domain,
where the Reflectivity over the look angle range is discussed. The Reflectivity is regarded at
the frequency 6.7GHz. Hence, the same term ka=21 is present as in the numerical calcula-
tion discussed in chapter 3. Without the present of the ground plate the Radar Cross Section
(RCS) of the sphere with the geometrical parameters g = 15.25¢m is given by o = —11.36dB
(0 = 10log wr3) and drawn as a green dashed line in the figures. (In the case that the incident
field is normalized the RCS is called Reflectivity)

h1=3.75cm

At the beginning, the sphere was placed 3.75cm above the ground plate. Thus, for the first mea-
surement the same ratio ro/h = 4 is on hand according to the numerical calculation after the
MoM. In fig. 4.5 the Reflectivity of the channels E;,, En, and Epj, is shown over the look angle
range. According to fig. 4.5 the contribution of the cross polarization is negligible compared to
the hh and vv-polarization. In fig. 4.5 the single pulse arrivals for the ray system are plotted
versus the look angle. Referring to fig. 4.5 the different waves of the ray system are identified
in fig. 4.8, 4.9, 4.9 and 4.10. Additionally, the diffraction from the plate edges L; and L, get
closer at steeper incidence angles in the time domain. In contrast, for flat incidence angles the
diffractions of the two edges diverge. As the phase origin is placed in the middle of the sphere the
arrival time of the direct reflected wave 1 in free space is given here by t= -1ns. This corresponds
two times the radius ry of the sphere. The phase terms for the de- and attachment points of
the creeping wave 7 neglect each other and therefore the arrival time of the creeping wave 7 is
equal to zero. Due to its strong attenuation by traveling around the sphere, wave 7 is negligible.
In comparison the spatial waves 3, 8, 10 and 11 related to the shadow boundaries SSB1 and
SSB2 and the double bounced wave 2 are clearly identified. The measured arrival times agree
here with the numerical results in accordance to the implemented ray system. Additionally, by
using the Reflectivity of the Ejj and E,, channels the single waves of the ray system are found
(fig. 4.11, 4.12, 4.13 and 4.14).
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h2=5.0cm

The arrival times of the wave 1 and 7, where no interactions with the plate is present, remain
the same. The strong contribution of the waves 1, 2, 348 and 10+11 are well distinguished in
the fig. 4.16 and 4.17. At steep look angle the diffraction from L; and the double bounced wave
2 coincide. According to table 4.1 the edge diffraction L; diverge with increasing look angle and

can be separated from the single waves.

h3=7.5cm

The backscattered field is investigated here at the height h3=7.5cm. Considering the wiggle
representation in fig. 4.21 of the reel part of Ejp; the double bounced wave 2 from the edge
diffraction L; is hardly separated. Nevertheless, this is possible according to the power domain

as outlined in fig. 4.22.

h4=10.0cm and h5=15.0cm

Finally, the distance h4=10.0cmm and h5=15.0cm are discussed. In the same manner as the
previous heights the kinematic and dynamic behavior of the ray system is pointed out in the
fig 4.23 to 4.30. Referring to fig 4.24 and 4.28 the spread of wave 2 and 10 is getting wider
with an increasing distance to the ground plate. The same behavior is given for the waves 348
and the waves 5+9.

h=3.75¢cm and 6.7 GHz h=3.756cm @=30.5cm
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4.2.2 Time Windowed Data

In the previous section the implemented GTD ray system was validated by the measurements
performed in a anechoic chamber. The objective here, is to validate the shadow boundaries
predicted by the ray model. One outcome of the previous section is that the diffraction from the
edges are significant and cannot be neglected. Therefore, as the horizontal aligned edges have a
stronger contribution to the hh-component than the vv-component the latter is considered next.
In fact, the edges act like horizontal oriented dipoles. Hence, the vv-component is investigated
in order to find the transition lit-shadow region. At the shadow boundaries the spatial waves
disappear and transform into creeping waves which are strongly attenuated on the shadowed
side, leading at the end to a rapid power depression. As one field component is treated a basic
representation on the Poincaré sphere is not carried out. According to section 3.7 the direct
reflected wave 1 from the sphere is not restricted by a shadow boundary. Hence, the wave 1 gives
no information about the geometrical setup like the height and the geometrical properties of
the sphere and therefore neglected. This is easily realized in the time domain by a box function
as the arrival time of wave 1 is constantly given by t= -1ns. Here, the width of the window is
determined by wave 13 at normal incidence which corresponds to the maximal arrival time in
the ray system. The Reflectivity of the backscattered vertical component is shown in fig. 4.31
to 4.35 for five different heights at the frequency f=6.7GHz. Further, look angles smaller than
the critical angles according to table 4.1 for the different heights are not considered due to the
strong contribution of edge L; here. As a result of the contributions of the creeping waves 5
and 9, the SSB3 can not be clearly identified. Instead, a good agreement between the transition
zones according to the SSB1 and SSB2 and the significant attenuations of the backscattered
fields are seen. Hence, the two characteristic angles related to a drop of energy determine the
geometrical parameters of the conditions mentioned in fig. 3.16 and 3.17. Additionally to the
polarimetric behavior, the two energy minimums can be exploited to get information about the
geometrical properties of the target and its height above the ground.
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CHAPTER 5

Target Situated in the Soil

The cylinder is placed next in the upper dielectric half-space: soil. As the antenna is located in
air at point M the field has to transit two times the interface on its round trip, once on its way
to the target and once for its way back on. The transitions at the interface air-soil represents a
lossy process. Specially, the transition on the way back to the antenna, where the most energy
is reflected back into the soil. Further, due to the law of Suellius the transition from the soil
into the air modifies the tube of rays as pointed out in fig. 5.1. At the transition into the air
the tube of ray is spread. Therefore, at the beginning of this chapter the modification of the ray
tube is derived. In accordance to the first investigated case where the cylinder was located in

the air a time-dependence exp(iwt) is considered in the following.

5.1 Divergence at the Transition: Soil — Air

Due to the different permittivities of the two half-spaces the radii of curvature of the wave
front change at the transition soil — air. Here, the tube of rays is spread at the transition.
Considering a 2D problem, the corresponding radii of curvature p(1y) at T} is modified to pl (1)
(fig. 5.1). The new radius of curvature ph(71) is given by the incidence angle ¢; and the refractive
index n of the soil as shown in the following. The modification coefficient D(n,y) is derived next.
Considering the two ray tubes with their origin points C; and C, one looks for the new radius

ph(11) at Ty. Refer to fig. 5.1 the following segments are given:

OlTl - ClMI == TIM' sin(tp,n) (5].)
C2T]_ - CZMI = TlM' sin(goi) (52)

Where in (5.1) and (5.2) the approximation cos(Ayp;) = cos(Ap,) =~ 1 was set due to a small
variation of Ayp; and Ay,. According to the law of sines it yields for the triangles 77Cy M’ and
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Figure 5.1: Transmission of a tube of rays

TlchIZ
M G M 5.3
sinAg,  cos g, ’
M CM 5.4
sinAg;  cos; '
Substituting (5.3) in (5.1) and (5.4) in (5.2) it leads:
OT, - TIr sin(p;) s1n'(A(pr) + cos(pyr) (5.5)
sin(Aep,)
o _ g [l sin(de) + cos(e) 56
sin(Ay;)
Dividing (5.6) by (5.5) one gets:
CoTy P5(Th) _ [sin(goi) sin(Ayp;) + cos(goi)] [sin(A(pr)] (5.7)
OT ;) Lsin(e) sin(Be,) + cos(ipr) | [sin(Ap))

The variation of the angles ¢, and ¢; is related via the law of reflection. Here, the transition

between the soil and the free air is given by:

sin(g;) = nsingp, (5.8)
sin(p; + Ap;) = nsin(er + Apy) (5.9)
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The latter expression (5.9) is rewritten as:

sin(¢;) cos(Ag;) + sin(g;) cos(Ag;) = n[sin(p,)cos(Ap,) + cos(p,)sin(Ap,)]  (5.10)

From (5.10) it follows:

sin(Apr) _ 1 cos(Ag;)
sin(Ap;)  n cos(Ap,) (5.11)

Considering small variation Agp; ~ Ap, ~ 0 and considering (5.11), one gets from (5.7) the

modified curvature ph(11) as follows:

po(11) = Din,p) pa(11) (5.12)

Where the modification coefficient D(n,y) is defined by:

1 2 p;
D(n,¢) = ” [22:2 :Zl] (5.13)
T

5.2 Ray System

In the first considered case where the object was situated in the air surface shadow boundaries
occurred for the backscattered field. The interface acts here as a mirror. Here in contrast,
where the target is located under the interface most energy is spread in the upper half-space
and is not mirrored back to the antenna. In consequence no shadow boundaries are given in the
ray field. The ray field consists of five different waves and their ray paths are presented at the
beginning. Afterwards their corresponding asymptotic formulas for the numerical calculation

are presented.

5.2.1 List of the Waves

The backscattered GTD-UTD field from a cylinder embedded in the lower half-space soil was
built up by five different waves. Their path geometries and interactions with the object and
interface are pointed out in fig. 5.2 to 5.6. Where the location of the antenna is given at point
M. Similar to the first case, the wave 1 here is reflected perpendicular from the cylinder as

shown in fig. 5.2. The first interaction between the cylinder and the interface is pointed out in
fig. 5.3.
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Figure 5.2: Wave 1 Figure 5.3: Wave 2

The third considered wave in the system is the creeping wave presented in fig. 5.4.

Furthermore, due to the transition from the soil into the free air refracted waves occur along
the interface. This type of wave is outlined in fig. 5.3. Here, the wave 4 propagates around the
cylinder as a creeping wave and detaches tangentially at Us from the cylinder. From there the
wave 4 propagates towards the interface. Where for incident angles greater than ... wave 4 is
refracted as a lateral wave propagating along the interface. Its velocity of propagation is given by
¢o according to the upper layer air. On its way from Uy to Us wave 4 radiates elementary waves
into the lower half-space with the angle ¢ and is exponentially attenuated in the Z-direction

according to Bouche and Molinet [8].

M

Figure 5.4: Wave 3 Figure 5.5: Wave 4

Note that the lateral wave 4 is one special wave of a bundle of lateral waves propagating along
the interface. Wave 4 is reflected on the cylinder at point Us and after its transition at Ug

propagates back to the antenna. The critical angle ¢.,;;., where lateral waves are generated at
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the transition soil — air, is defined by the refraction angle ¢; = /2. According to the law of
reflection (5.8) it follows:

1
Yerit. = arcsin(—) = arcsin <c_2> (5.14)
n C1

Where ¢; correspond to the free space velocity ¢p. According to the homogeneous soil properties

€efs introduced in (1.4) one rewrites (5.14) as follows:

1
€

Perit. = arcsin egff (515)
eff

Where for the upper half-space air it turns out ei = 1. Finally, wave 5 detaches from the
cylinder (Z3) and interacts withe the interface and cylinder at (Z4) and (Z5) (fig. 5.6).

Figure 5.6: Wave 5

5.2.2 Numerical Implementation of the Ray System

Wave 1

In general the different interactions between the cylinder and interface represents a loss of en-
ergy. Additionally the creeping waves considered here are very strong attenuated. Hence, the
wave 1 having only one single reflection at the cylinder is the main contributor of the ray system.
Like the case where the cylinder was situated in the air, the phase origin is placed in the center

of the target. Also, the spreading factor \/Ol—M and the propagation term exp(—2ik; 0M) are

neglected for the numerical calculation. The wave 1 is given as follows:

N N i " —21 Ei-ai+k2T1T2,
E) = Ey-T'11) - Ry(1») - T (11) SFwi(11) e (5.16)

Where the dyads T' and T" describe the two transition of wave 1 across at the interface.
The dyad R, signifies the reflection at 75 for the perfect conducting surface. Straightforward,

according to (5.12) the spatial divergence of wave 1 is given after its transition at the interface
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by:
SFy1(1) = \/py(11) (5.17)

In agreement with (5.12) the radius of curvature is modified here as follows:

aO(T2)

ot = Do) ( + T1T2> (5.18)

For numerical purpose one set the term 1/ +/ph(11) + T1.M for the way back equal to 1 /vOM.

Wave 2
Wave 2 describes the first interaction between the target and the interface. The backscattered

field received at the antenna is given by:

. L —9i| K10y + ks (J1Js + Jod
Ewmy = EO-IZ(Jl)-E%(h)-i(]y,)-zr(h) SFya(J1) € HON AR (et Tads) (5.19)

Where the Fresnel dyad f takes the reflection at the interface into account. In (5.19) the modi-
fied radii of curvature at the reflection points J;, Jo and J3 are calculated similar as in chapter
3. The resulting radius of curvature at the transition point J; after this procedure is when
modified with the factor D for the way back according to (5.12). As for five and more reflections

the received energy at the antenna is negligible, other multiple waves are useless.

Wave 3 (Creeping wave)
According to fig. 5.4 the wave 3 is conducted around the cylinder as a creeping wave and when
radiated back to the antenna. Its field is given here by:

o T . T
iatts —i| k1-0Q1 + KL-0Qq + k2 Q2Q3}
&

Ewr) = 2By -T(Q) - D(@s) - D(@s) - T(Qu) (5.20)

As a long arc length is on hand for wave 3 the asymptotic approximation of the attachment and
detachment coefficients according to the work of Bouche and Molinet [8] are considered. The
formulas after [8] are presented in appendix (C.4.2). Where in (5.20) the attenuation coefficients

for the hard (h) and soft(s) component corresponding to the || and L component are given by:
¢l = s (5.21)

One notes that the way to the cylinder and back is interchangeable. Thus, the double value
has to be computed. In the same manner as the previous two waves the divergence term
1/vQ3Q4-D + Q4 M for the way back is substituted by 1 /+v0M.

Wave 4 (Lateral wave)
According to fig. 5.5 one recognizes that all the detachment points Us along the cylinder repre-
sent a line source. The problem in calculating the wave 4 consists here in finding a solution of

a line source radiating near the interface of two dielectric half-spaces, where lateral waves are
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generated at the interface. A solution for a source in the presence of a semi-infinite dielectric
medium is given in the work of Felsen [23]. According to the notation used in fig. 5.5 and con-
sidering equation (57¢) in section 5.5 and fig. 5.5.2(b) in [23], the field of a wave radiating from

the point Us and propagating as lateral wave to the point Uy is given after some manipulation

as follows:
1 7 [k‘2 (Ll +L3) + k‘]_LQ} L —1 T
I, = ¢ e (5.22)
v 27 (1 - 6) (kZLZ)E
In the work of Felsen a normalized source rate (|Ey| = 1) is considered at Us. In contrast the

source rate after Bouche and Molinet [8] in appendix 1 on page 467 is defined as:

Eo(Us) ¢F b (5.23)
0s) = —F/— .
8k T
Y8rk_ VT
Dy

Hence, in order to compute the field up to the point Uy after the formulas specified in [23], the
field value at Us has to be divided by Ds. This yields:

= - ; I —i Ei-(ﬁ+ﬁr-6§+k- UrUs + UsUs + UgU
Em) = Ey-T'() - D(v») <D_b> T"(7) SFys e FEOU RO e (AT o U2 Us + Uslr)
S

(5.24)

In the expression (5.24) the spatial divergence up to U is considered. After the reflection at Ug

the radius of curvature is modified as:

az(Us) cos(6;)

p2(Us) = 5 (5.25)
The propagation to the transition point U7 yields:
p2(Ur) = p2(Us) + UsU7 (5.26)
At U7 the radius is spread after the transition as follows:
pa(Uz) = D(n,) pa(Ur) (5.27)
Finally, the divergence for the way back is given by:
SFyy = p’2(U7) (528)

Where 1/4/ph(Uz) + Uz M was substituted by 1 /v0M.

Wave 5

The last considered wave of the ray system has, after being radiated as a space wave from the
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cylinder, an interaction at the interface and cylinder before propagating back to the antenna.
According to the UTD, the wave 5 takes the form:

B(M) = By-T/(2) D(Z2) - D(Zs) - [(Zs) - Ro(Zs) - T"(Zo) SEws e 1077 ] (5 99)

Where the term Z; Zg corresponds to the entire ray path 212, + ZyZ35 + Z3Zy + ZyZs + Z5Zs.
The spreading factor is computed similarly as the previous discussed waves. Here, the radius of

curvature pl(Zs) after the reflection at Zs is given by:

1
py(Zs) = : n 5 (5.30)
232y + ZaZs a2(Z4) COS(@Z')
This gives the modified curvature ph(zs) after the transition:
phzs) = Dn.o)p) (ph(2s) + Z5Z6) (5.31)
Hence, it follows the spreading factor:
SFys = pIQ(Za) (532)
In latter expression the term 1/4/p4(Zs) + ZsM was set equal to 1 /v0M.
5.3 Numerical Results
5.3.1 Single Wave Contributions
The ray system is computed first for a linear polarized incident field where ES_ =1, Eﬁ =1

f=500MHz, e =9.6, d = 0.5. The numerical results of the absolute amplitude values for a
lossless soil are presented in fig. 5.7. Due to the strong attenuation of the creeping waves in the
considered ray system the backscattered field is finally given by the spatial waves 1 and wave
2. Then, a incident field with the complex permittivity es = 9.6 — 0.2¢ is considered. Refer to
[34] and [47] this corresponds to a slight lossy soil. The numerical results are shown in fig. 5.8.
Subsequently the lost of the soil is increased by setting e; = 9.6 — 4. This correspond e.g. to
a sandy soil with a poor moisture. The corresponding curves are shown in fig. 5.9. The field
components for a permittivity es = 9.6 — 5¢ is presented in fig. 5.10. It is apparent that if the
attenuation is strong only the main reflection from wave 1 remains as a significant signal. An
effective permittivity with an imaginary part between egf = 5 — 8 corresponds here to e.g.

clayey soils or soils with a high salinity.
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Figure 5.7: Ray contributions
[EY = 1,E|0| =1,f =500MHz, e =9.6d = 0.5]
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Figure 5.8: Ray contributions

E) =1, B} =1, f = 500MHz, €2 = 9.6 — 0.2i, d = 0.5m
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(a) | EL | (b) | By |

Figure 5.9: Ray contributions

E) =1, Ef =1, f = 500MHz, e = 9.6 —i, d = 0.5m

(a) | EL | (b) | By |

Figure 5.10: Ray countributions

E) =1, B} =1, f = 500MHz, e, = 9.6 — 5i, d = 0.5m
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5.3.2 Representation on the Poincaré sphere

According to the results of the previous section the polarization of the two principal wave 1 and
2 and of the ray system is presented on the Poincaré sphere for different lossy soils described
by €2 = €, — ie). The single polarization states of the wave 1 and 2 are shown for a linear
polarized incident field in fig. 5.11 and fig. 5.12 where E =1, Eﬁ =1, f =500MHz, d =05
are constant. When a circular polarized field is considered and the corresponding results of

wave 1 and 2 are outlined in fig. 5.13 and fig. 5.14. In order to investigate the effect of the

Figure 5.11: Wave 1 Figure 5.12: Wave 2
[E? = 1,Eﬁ =1,f =500MHz, ey = 9.6] (B = zEﬁ =1,f =500MHz, ez = 9.6]

distance target - interface the cylinder was positioned at the two different distances h=0.3m
and h=0.5m. The polarization of the backscattered ray system for the different losses is shown
in fig. 5.17 and fig. 5.18. With increasing loss the locations on the Poincaré sphere move away
from the equator line leading to a polarization ladder. Of particular interest is the fact that the
superposition of the two main contributors wave 1 and 2 gives virtually a linear polarization for
both computed heights in a loss-free soil. Further, comparing both figures one see immediately

that the distance from the interface has no influence on the location on the Poincaré sphere.

60.0

0

450 30.0 o

Figure 5.13: Wave 1 Figure 5.14: Wave 2

[E9 =1, Eﬁ =1,f =500MHz, ey = 9.6] [EY = z’,Eﬁ =1,f =500MHz, ey = 9.6]



5.3 NUMERICAL RESULTS 109

—Phase T —Phase T
Fl-- PhaseT‘ | []-- PhaseT‘ |

Figure 5.15: e = 9.6 — ¢ Figure 5.16: g = 9.6 — 8¢

The distance from the equator line is solely due to the soil’s loss. This result is surprising as one
may think that due to different ray paths the superposition of the two principles waves takes
place out of phase. This is not the case as due to the geometrical setup and refraction index of
the lossy soil the path length JyJo + J2J3 of wave 2 is over the entire look angle range nearly
twice as long as the distance sphere — interface (T77%) according to wave 1. Hence, the single
steps of the polarization ladder can be directly related to the loss of the soil. The small phase
shift is given here at the transition soil — air. According to the transition coefficient introduced
in appendix A.l a phase shift occurs at the transition lossy soil — free space. The phase of
the perpendicular and parallel transmission coefficient are shown in fig. 5.15 and fig. 5.16 for a
complex permittivity e = 9.6 — ¢ and e2 = 9.6 — 8. With increasing loss the phase different

also increase which leads finally to the polarization ladder on the Poincaré sphere.

Lossy Sail
g3 . 8,96
< B = 96-i
© B 9.6-3i
&g~ 96 - 5
\ ¢ Eg=9.6-8i

1
g 0.0°

A

g2

b _— 90.0°

Figure 5.17: d = 0.3m
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Figure 5.18: d = 0.5m



RADAR Polarimetry Decomposition

During the scattering process, the superposition of the different occurring interactions can be
done either in a coherent or incoherent way. One can directly measure the voltage compo-
nents of the backscattered field over time as long as the assembly emitter, target and receiver
is deterministic and time invariant. If incoherent scattering processes are on hand, one cannot
measure the voltage over time as due to the statistical averaging the voltage would vanish e.g.
monochromatic waves. In this case, a power measurement is considered. A power measurement
is based on averaging the incoming energy over a certain time interval. Therefore, the informa-
tion about the relative phase between the elements of the scattering matrix [S] is lost. Hence, a
voltage measurement is related to scattering processes of statistical first order, where the power
measurements describes scattering mechanisms of second order. The different common decom-
position theorems are based on these two types of measurement.

Huynen [35] was the first to extract information about the scattering mechanism directly from
a power measurement. In his classical work of 1970, the decomposition of the Miiller/Kennaugh
Matrix [M] is done in a more intuitive way as it was ”Phenomenological”. From that time on, a
number of decomposition theorems were introduced in Radar polarimetry. Therefore, a general
historical overview of the existing decomposition theorems in radar polarimetry are presented
in the block diagram according to Pottier [54].

In chapter 6, the decomposition of the Sinclair matrix [S] after the theorems of Krogager [43]
and Cameron [11] is presented. Both theorems are based on a voltage measurement, useful for
coherent scattering processes.

The classical target decomposition after Huynen [35], based on a power measurement is presented
at he beginning of the following chapter 7. According to incoherent scattering mechanisms, an
analysis of the eigenvalues based decomposition after Cloude and Pottier [18] [19] is treated.
The four different decomposition theorems discussed in this thesis, were applied on the EMSL
measurements which were investigated in chapter 4. The results are presented in the chapter 6

and chapter 7.
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The following overview over the different ways of extracting information nowadays from the

backscattered field is respectfully quoted from a lecture course held by Professor E. Pottier [56]:

Decomposition Theorems

[S] [T] [C]
Coherent ‘
© erer'l ) Symmetry Azimuthal
Decomposition
e E. Krogager Eigenvector Based
(1990) Decomposition
e W.L. Cameron e S.R. Cloude Model Based
(1990) (1985) Decomposition
e W.A. Holm e A.J. Freeman
(1988) (1992)

Model Based Decomposition

Eigenvector and Eigenvalues
[K]
e J.J. Zyl (1992)
Target
Dichotomy
e J.R. Huynen Eigenvector and Eigenvalues Analysis
(1970) Entropy and Anisotropy
e R.M. Barnes e S.R. Cloude - E. Pottier
(1988) (1996-1997)




CHAPTER 6

Coherent Decomposition Theorems

In this chapter two different decomposition theorems according to a coherent scattering process
are presented and applied on the data measured in the EMSL. The first presented decomposition
theorem here was introduced by Krogager [43]. Then the decomposition reported by Cameron

[11] is considered and its results obtained from the measured data are discussed .

6.1 Krogager Decomposition and Code Implementation

Based on observation, Krogager [43] presumed that the backscattered fields from an illuminated
area, could be mostly split up into three different scatterer types. The first type describes odd
reflections at the scattering process, where the second type is related to even interactions at
the target. The corresponding canonical targets are a sphere and a dihedral. Both canonical
targets describe a single and a double interaction with the target. The last and third type de-
scribes the circular polarization that may occur at the scattering process. Hence, the Krogager
formula consists in a coherent decomposition of the general scatter matrix [S] into a series of
three canonical scatterer, namely a sphere, a diplane and a circular dipole (helix) either with
a left or right-handed circulation. In order to split the scattering matrix [S] into these three

scatterer types the Sinclair matrix [S] is rewritten as follows:

a+b ¢
[S] = (6.1)

c a—b
According to the three Pauli Spin matrices, (6.1) is decomposed as:

0
1

. 1 0
S] = ol [ .

o |1
+ [b] e [
0

101
+ |c| e [ Lo ] (6.2)

The first term describes odd-bounced reflections and may be interpreted as the reflection from
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a surface, sphere or corner reflector. The second term describes even-bounce reflections e.g.
dihedral. Depending from its orientation around the LOS the dihedral gives contribution to the
cross elements of [S]. For example, the last term may also be related to a reflection of a 7/4
tilted dihedral. Thus, this ambiguity due to the dependence of the two last terms in (6.2) must
be clarified. Their coupling is described in [43] by:

. 10 , 1 0 01
[S] = €% { al + |b] €iPr—%a) + (6.3)
0 1 0 -1 10
Where per definition it holds:
d I ePe=®) — o 4, (6.4)

[l

In order to recover the expressions of a diplane and helix, Krogager decomposed (6.3) in the

following way:

6 10
5] = ¢ { al [0 )

' '
+ |b| U Pp—da) 1 - |czm| Cre
Ge  —(1+]cl)

/ 1 sgn(c,,)
[l [ sgn(c,,) i -1 ] ) }

The rotational direction of the helix term is given by the sign of (c’). Finally, the general

(6.5)

scattering matrix [S] is decomposed into a coherent addition of three scatterer types which cor-
respond to a sphere (s), a diplane (d) and a helix (h). Whereas, the single terms are weighted

with their related complex coefficients kg, k; and kj,. Hence:
[S] = ' {ks[s]sphere + eor [kd[s]diplane + kh[S]heliw ]} (66)

The absolute reel values of the complex coeflicients ks, k4 and kj;, are given by:

ks = |a| (67)
b = (1= 1?2+l (6.8)
b = |bllch| (6.9)

The rotation of the helix is fixed by:

Cim > 0 left — handed
tn < 0 right — handed (6.10)

Cim
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The skip angle © between the normal of the polarization plane and the normal of the diplane is

determined by:

© = arcta < Cre ) (6.11)
d — = I 1 R E—— .
2 1 - |C;m|

In general, the ”absolute” phase is not given and therefor the sphere is taken as reference. Sub-

stituting the phase terms in (6.5) with the relative phase 6,., given by :

0, =0 , a =0
9, = O =0.—0, , b=0 (6.12)
0, =6, — 0, , else
Finally, it follows:
[S] = ks[s]sphere + eid)r [kd[s]diplane + kh[S]heliw] (613)

The scattering mechanisms of the three terms are summarized as :

e Sphere

The odd interactions at the scattering process.

e Diplane

The even interactions at the scattering process..

e Helix

This term demounstrate the capability of the target to transform a incident linear polarized

wave into a circular polarized wave.

A priori, the coefficients kg, kg and kj, are given with the Huynen parameters as:

ke = /24, (6.14)

ka = /2(Bo—|F) (6.15)

2F
ky, = — 6.16
"= URTD (6.16)

For sphere-cylinder model considered here no cross elements are given in [S]. Hence, the helix

coefficient kj, is equal to zero.
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Results after the Krogager Theorem

The Krogager decomposition of the scattering matrix [S], measured in the anechoic chamber, is

presented and discussed next. The coefficients ks and kg over the look angles is shown in the

fig. 6.1 to 6.4 according to the heights 5.0cm, 7.5cm, 10.0cm and 15.0cm. From the Krogager

decomposition, it follows that the scattering matrix correspond at the transition zones more to

a sphere. The waves related to the shadow boundary are strongly attenuated at the transition

zones, so that the reflection contribution of the sphere becomes more significant. According to

the strong edge diffraction, look angles below 14° should not be counsidered in the data set, see

table (4.1).
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Figure 6.1: EMSL: h = 5.0¢m, f = 6.7GHz
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Figure 6.4: EMSL: h = 15.0¢m, f = 6.7TGHz
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6.2 Cameron Decomposition

6.2.1 Reciprocity Angle

Generally, every quadratic scattering matrix e.g. [S] can be decomposed in a coherent sum of a

symmetric and asymmetric matrix. It holds [67]:

Where the symmetric component [S] obeys the principle of reciprocity. The appearance of an

Sym.
asymmetric term violating the reciprocity rule is due to non-linear interactions of the field with

the target, propagation effects or incoherent superposition of waves. Both matrices are given by:

[S]Sym. =

(11 + 1s17) (6.18)
(151 - 1517) (6.19)

In the work of Cameron [11] a vector representation is introduce as follows:

[5] =

Asym.

N =D =

gSym. - [PSym]g (620)
Sasym. = (] — [Psym]) S (6.21)

Where the operator Pgy,,. is defined as:

[Psym.] = (6.22)

o o o =
O N N= O
O N N= O
_ o O O

The two matrices [S]sym. and [S]asym describe two subspaces in the C* space. Their basis are

perpendicular to each other as the inner product is equal to zero. Hence:
< SSyma SAsym > =0 (6.23)

The ”degree of reciprocity” of a measured scattering matrix [S] is related through the rotation
angle ©,.. between the matrix [S] and its symmetric part [Sg,.m,]. For an absolute symmetric
scattering matrix it follows ©,. = 0 as no rotation is present. The reciprocity angle ©,.. is
defined by:

< §, gSym. > § . S"Eym.
IS 1Ssym. Il ISI 1S sym. |

08(Oprec) = (6.24)

The magnitude of the measured scattering matrix [S] is normalized S and according to (6.20),
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the angle ©,, is calculated by:

co8(Orec) = ||| sym] symH (6.25)

Where the range of the reciprocity angle ©,.. is given by

0 < cos(Oyec) < (6.26)

I

varying from an absolute reciprocal scatterer to a non reciprocal scatterer.

6.2.2 Target Symmetry

For the given case where a measured scattering matrix [S] is subject to reciprocity, the notation
[S]rec is used. According to Cameron a scattering matrix [S],.. can be decomposed into com-
ponents which correspond to the symmetric and asymmetric properties of the target. Here, the
angle 7 describes the deviation of the matrix from an absolute symmetric matrix [S]sym,. The

angle 7 is given through the operator [D] as follows:

cos(T) = é,gsymj sym) (6.27)

| Ssym || 11 D] Soyum |

6.2.3 Match Angle

In order to classify the target in different scatterer types, the measured matrix [S],. is tested

with canonical scattering matrices [S;]. The deviation angle Oy is given here by:

(grea gt)
COS(@t) == W (628)

Cameron took different canonical scatterer for the test procedure. The corresponding test ma-

trices are listed below:
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Sphere=%:(1) (1) Dyjplane=%[(l) _01

Dipole = (1) g Cylinder = % [ (2) (1)

Narrow Diplane = % [ (2) _01 ] 1 Wave Device = % [ (1) 3 ]
Heliz(yp) = % [ ; —jl ] Heliz gry = % [ —1j :i ]

6.2.4 Results after the Cameron Theorem

According to the theorem of Cameron, the measured scattering matrices were tested with a
diplane, dipole and cylinder. It can be assumed that the polarimetric behavior of the cylinder
class after Cameron is similarly to the one corresponding to a sphere. The two matrices are
in the same equivalence class if for the match scatter angle it holds §;, = 0°. A mismatch
is present if both are orthogonal ; = 90°. The match angle 6; is presented in the fig. 6.5
to fig. 6.8 for the different measured heights from the plate. After the Cameron theorem, the

scattering matrix at the transition zones corresponds a dipole and cylinder.

€4SS|

---Di;)lane i ---I'D'iplane
—Dipole : —Dipole H
—Cylinder —Cylinder
%20 25 30 35 A 40 45 50 5 0 20 25 3o¢ 35 0 45
Figure 6.5: EMSL Figure 6.6: EMSL
h = 5.0cm, f =67GHz h = T75cm, f =67GHz

The match angle in contrast for a diplane has its maximum values at such shadow boundaries.
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According to the UTD ray system this polarimetric behavior is explained as follows: The super-
position of the odd bounced wave 3, 8 and 11, 12 is done in a incoherent way as the look angle
varies. This is due to the fact that the single ray paths don’t change linearly with the look angle

variation.

80

7004

60

30

20

10

\

I -rDiplane - -:--IIDipIa{ne

| ¥ —Dipole || ¥ —Dipole
—Cylinder ! —Cylinder

5 20 25 30 3 40 45 0 15 20 2 30 3

0 0
Figure 6.7: EMSL Figure 6.8: EMSL
h = 10.0cm, f = 6.7GHz h = 15.0cm, f = 67GHz

Hence, the reflected field represents a sum of many scattering centers leading to a incoherent
superposition. In such transition zones the odd bounced wave 3, 8 and 11, are strong attenuated
and replaced by creeping waves in the shadow region. So, due the strong attenuation of the
odd bounced wave, the contribution of the direct reflected wave 1 becomes more important.
Nevertheless, the results show that the projection onto subspaces is very sensitive for a varying

look angle leading to a fast up and down of the match angles.



CHAPTER 7

Incoherent Decomposition Theorems

After discussing the decomposition of the voltage matrix [S] for deterministic targets, two de-
composition methods based on power measurements for incoherent scattering mechanisms will
be described in the following. In RADAR polarimetry, the first scattering matrices considered in
the power domain were the Miiller matrix [M] used in the the forward scatter alignment (FSA)
convention and the Kennaugh matrix [K] for the back scatter alignment (BSA) convention. The
trace or span of the Kennaugh matrix expresses the total power, whereas the span of the Miller
matrix does not. Alternative matrices in the power domain that have been introduced in the
last two decades are the covariance matrix [C] and the coherency matrix [T']. Both matrices are
generated by a inner product of the so-called target vector. Here, the target vector is a general
vectorization of the scattering matrix [S]. In the case of the coherency matrix [T'], the Pauli
spin elements are used for the vectorization. The covariance matrix [C] is convenient in the
RADAR engineering sector due to the fact that its diagonal elements express the total power of
the corresponding channel.

The first attempt in RADAR polarimetry to extract physical insight of the scattering process us-
ing measurements in the power domain was reported in the innovative work of Huynen [35]. His
empirical decomposition of the Miiller matrix [M] is based on the interpretation of polarimetric
data sets acquired from several canonical targets. Hence, Huynen’s decomposition was made up
in an empirical approach. Starting from his measurements, Huynen postulated to decompose
the entire scattering process, described by the operator [M], into a sum of simpler canonical
scattering mechanism. By decomposing the Miiller matrix [M] in this way, it is possible to get
information about the properties of the target itself.

Finally, a eigenvalue based decomposition of [M] introduced by Cloude and Pottier [18] is briefly
presented. The polarimetric entropy H and the target scattering parameter «, calculated by

this method are discussed.
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7.1 Graves Matrix [G]

An alternative to the 4 x 4 Miller matrix [M] for describing the backscattered power from a
target is represented by the 2 x 2 Graves power matrix [G] [25]. It will be useful to deal with
the Huynen parameters. A detailed investigation of it is done in the work of Pottier [53] and

Krogager [43]. Using the the Graves matrix the backscattered power is given by [45]:

1 - _,

P, = ——— E7|G|E; 7.1
S 87TZ0R2 7 [ ] 1 ( )
Where the quantity R indicates the distance between the target and the antenna. Expression

(7.1) is valid in the far field approximation. The Graves matrix [G] is defined as:

[G] = [ST" [S] (7.2)

The elements of the main diagonal of [G] are reel and the cross elements are complex quantities,

according to:

G Gu 151112 + |S12]? S71S12 + S7ySa2

G] =
G211 Ga

(7.3)

S118%, + S1283,  |S12]* + |S22)?

The Graves matrix [G] fulfills the condition [G] = [G]T", thus [G] is hermitian and the three

following properties are valid:

e The eigenvalues of [G] are real numbers
e The eigenvectors of [G] define an orthogonal vector space

e The normalized eigenvectors of [G] can be used to define a unitary transformation matrix
[U]

The last point implies that the rows of the unitary transformation matrix [U] may be gener-

ated by means of the normalized eigenvectors of [G]. The eigenvector analysis of [G] implies that:

Gle; = A (7.4)

[[G]l-AilI]]e = 0 (7.5)

The solution of the eigenvalue problem is immediately given by the condition Det( [G]—A;[I] ) =

0, where [I] is the unit matrix. It follows the eigenvalues in the form:

Aua = Tr[G]j:\/Tr([C;])Q — 4Det([G)) 9

The corresponding eigenvectors €; = (x;,y;) are obtained by substituting the solutions of (7.6)
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in (7.5). Setting the component z; of the eigenvector €; equal to 1, it turns out:

Ai —Gn
x; = 1, = — 7.7
i Yi G (7.7)
Hence, the normalized eigenvectors €} » are defined by:
1
L |G12]
€l2 = 5
VIGi2| + [Arz — G ALo—Giy
G2
1
; 1 (7.9
€l2 = —F——— .
V1 o+ |pref?
P1,2
Where p1 o = Aléif“ has been set. The special case where the determinant of [G] is equal to
zero is presented next.
Non Deterministic Case Det[G] = 0
From (7.3) it follows that:
ST11S12 + Si2S22 = 0 (7.9)

and the eigenvalues and the eigenvectors cannot be uniquely determined anymore. Two relevant

cases have to be considered, discussed next.
1. S12#0
The characteristic polynomial of the eigenvalue problem reduces to:

The first trivial solution A; = 0 leads to the zero vector as eigenvector. Considering the second,
non trivial solution Ay = T'r[G], one rewrites the condition in (7.9) for the non deterministic

case in the following manner:

|S12] [|511|€i(¢12_¢“) + |S22|6i(¢22_¢12)] =0 (7.11)

Since S12 # 0 is assumed here, it follows from (7.11) that the sum of the two terms in the bracket

must equal to zero. Hence, it results for the magnitude and phase difference of the complex sum:

[Sul = |52 (7.12)
¢ — 11 = (2n—1)7 (7.13)
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Considering (7.10) this means that the trace of [G] can be expressed either by S1; or Saa. Both
complex quantities have the same magnitude but differ in the phase by m. Therefore, the second

eigenvalue Ay related to the non-trivial solution can now be expressed in two ways fitting (7.10):

AZa
Aoy

2(1S11[” + [S12/?) (7.14)
2(|522|2 + |512|2) (715)

Expression (7.10) may be rewritten as follows [53]:
[so . \/TT(G)] [so + \/TT(G)} — 0, (7.16)

Where S is set equal to v/As. According to the solution Ay only the eigenvector

is clearly determined. In addition the eigenvalue must verify the condition [S]ey = Spéy'.

It turns out:
esr = €C (717)

Soe; — 8
gy = 011 o 11 €11 (7.18)

Choosing e = 1 it follows from (7.8) for the second component:

\/Aoeie — SH

_ 7.19
p S, (7.19)

Where the range of O is given by [0,27]. The second eigenvector €) is performed through the

unitary condition el * - & = 0.

2. S12=0

Here the cross elements of the Graves matrix [G] are equal to zero G2 = G2; = 0 and reduces to:

G 0 [Sul 0
G ="M = (7.20)
0 Ga 5
0 |S22]
This degenerated case provides immediately the eigenvalues A; = |S11|? and Ay = [S92/?%. In

view of getting the diagonal scattering matrix [S]p ordered by [S11| > |S22| the unitary matrix
are defined as follow [53]:
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_ Lo -

|SH| > |522 — [U] = 01 (7.21)
_ 01 -

|SH| < |522 — [U] = 1o (7.22)

Diagonalization of the Graves matrix [G]

The hermitian matrix [G] is diagonalized via the 2 x 2 unitary transformation matrix [U] by:

(Gp] = U7 [G]IU] (7.23)

Where the normalized eigenvectors of [G] represent the two rows of [U] and [U]*T[U] = [I].

Further, the diagonal form of [G] is also given by the the scattering matrix [S] as follows:

[Gp] = [Sp]" [SD] (7.24)

and the diagonal of [Gp] are the eigenvalues of [G]:

A O

7.25
0 A, (7.25)

Gp] = [

Next the diagonalization of [S] by the unitary matrix [U] is discussed. The general diagonaliza-

tion procedure of [S] is given by:

[Sp] = [A]7'[S]14] (7.26)

Comparing (7.23) and (7.24) it follows for the substitution [A] = [U] in 7.26 the relation:

A7 = [y (7.27)

Hence, [Sp] is expressed in terms of the unitary matrix [U] as follows:

[Sp] = [UT"[S][V] (7.28)

The unitary matrix [U] defined by the eigenvectors of [G] will be used in the following section
for calculating [Sp]|. For the sake of completeness the unitary matrix [U] is defined by the

eigenvectors (7.8) in the following manner:

1

V19 + |pl? )1

U] = (7.29)
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In the latter p is substituted by p = |p|e’® € €. The eigenvectors of [G] do not change their
direction in space with a change of basis. Ounly their length will be multiplied with the cor-
responding eigenvalues. The maximum possible backscattered power will be received, if the
eigenvectors are taken as polarization state for the antenna in the BSA convention. Therefore,
this polarization is called the ”co-polarization maximum”. For its orthogonal polarization, the
minimal power will be received. It is therefore called the ”xpoll zero polarization” (cp. optical

polarization filters).

7.2 Huynen’s Target Decomposition
Next, the Miiller matrix [M] is expressed in terms of the elements S;; of the scattering matrix

[S], by introducing the coherency vector J = E® E*. Where ® indicates the Kronecker product

and (---) the time averaging of the power measurement. It holds [6]:

M) = ([4] (8] @ 8] [4] ) (7.30)

1 0 O 1 1 0 0
1 0 0 -1 110 O 1 -
[A] = [A] L = = ' (7.31)
01 1 0 1 -1 0 0
0 2 — O 0 =2 —7 0

Hence, the Miiller matrix [M] can be expressed in terms of the scattering matrix [S] elements

as follows:
[ <\511\2+2\5212\2+|522\2> <w> <§R (S11 + S22) Sf2> <% (S22 — S11) Sf2>
(i) () (n,ssm) (-0 +50%)

(R(Sn+52)81,)  (R(Su—S0)Sk) (ISP +R(SuSh)  (—S(Susk))

I (S22 — S11) STy — S (S11 + S22) STy — 3 (S511522) |S1a|” — R(S115%,)
{ ) K K )

(7.32)

Huynen’s Dichotomy

In his work of 1970 Huynen renamed the elements of the Miiller matrix as follows:




7.2 HUYNEN’S TARGET DECOMPOSITION 127

Ay + By C H F
C A+B E q
[M] = ot (7.33)
H E  Ay-B D
F G D —Ay+ By

As [M] is subject to the associative law, it can be decomposed into a series of single matrices.
The reason for decomposing the operator [M] here, is to find simpler scattering mechanisms in
form of submatrices which give more physical insight on the single mechanisms of the entire
scattering process. The Huynen decomposition of the Miiller matrix is based on the assumption
that a partially polarized wave can be split in two well separated parts, namely in a totally
polarized wave and in one which is totally unpolarized. This is known as ”Dichotomy” and led
Huynen to the search of a particular matrix IV representing target fluctuation to be extracted
from the Miiller matrix [M]. The remaining matrix Mg represents a fixed target and is directly
associated to the geometrical symmetry of the scatterer. The unpolarized part results from the
asymmetric shape of the object and is rotational independent. The different reflection points on
the asymmetric shape lead to an incoherent superposition of the different reflected waves. The

Huynen’s dichotomy is pointed out in fig. 7.1.

Figure 7.1: Scattering of an object

According to the dichotomy, the matrix [M] is separated into the submatrix [Mg] and [IN], where
the term [Mg] is related to the symmetrical properties of the target and [N] can be interpreted
as a disturbance term of the symmetry. Thus, the Huynen decomposition of the Miiller matrix
[M] yields:

[M] =[Ms] + [N] (7.34)

Not all of the 9 Huynen parameters contribute to the asymmetric perturbation term [N]. In-
deed, after [53] it holds:
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Ay + Bj C H FS BY 0 0o FY
C Ay+B°5 B G o BN EN 0
(M) = " . + o (7.35)
H E Ay — B D o EN -B
S G D —Ao + Bf FN o0 0 BY

7.2.1 Huynen-Euler Parameters

According to Huynen the physical meaning of the Euler parameters is given by:

em (m>0)
The parameter m denotes the maximal receivable power from the target for the optimum

polarization and related to the largest eigenvalue of the scattering matrix [S].

o v (0°<45°)
The parameter 7 corresponds to canonical scattering mechanism and was denoted by
Huynen as characteristic angle. Objects with an angle v = 45° have no influence on the
polarization of the incident field. In contrast, for a given angle v = 0°, the polarization

of the scattered wave is completely defined by the object [33].

o v (—45° <45°)
Rewriting eqn.(10.15) in the Ph.D. of Huynen [35] with the notation A for the eigenvalues

in the following way:

Ao =1

Ao = tany e 'V,
The quantity 4v describes the phase difference between the two eigenvalues A\; and Ag.
Considering odd bounced reflections a small amplitude Ag may be given where v = 0°.
Superposing a single double bounced wave with an amplitude App which is much greater
than Ay, it follows a phase difference of v = +45°. Thus, v must be interpreted very
carefully and cannot be related directly to major or minor odd (e.g. sphere) and even

bounced (e.g. dihedral) mechanisms.

o T (—45° < 45°)
The parameter 7, is related to the ellipticity for getting the optimal polarization state in

order to get the maximum backscattered power from the target.

7.2.2 Numerical Implementation

The elements of the measured [S] matrix were used for defining the corresponding Graves matrix
[G]. The eigenvalues and eigenvectors analysis of [G] determines the Euler parameter discussed

in the previous section. For the sake of readability, the row vectors of [U] are renamed as follows:

U] = (7.36)

My Mg, ]

My My,
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The scattering matrix [S] can be diagonalized into the matrix [S]p according to (7.28). Where

the eigenvalues of [S]p are the elements A; and Ay, given by:

A1 O Sllmi + ZSlzmxmy + 522m2 0
[S]D = =

Yy
0 Xy 0 Sllmi + ZSlzme_myJ_ + Szzmi_

(7.37)

In the work of [35], the two eigenvalues of [S]p are related to the Euler parameter v and «y as

follows:

A o= @ (7.38)
Ay = tanyZe (9 (7.39)

The determinant of a matrix is given by the multiplication of its eigenvalues [10]:
Det([S]) = [[ ™ (7.40)

As a result, a simple relation between the eigenvalues of [G] and [S] is confirmed in the following

manner:

Det([G]) = Det([S]) Det([S]") (7.41)

A Ay = M3 (7.42)
Considering the ratio of (7.38) and (7.39) and according to (7.42), it turns out for the Euler

parameter v and :
R LS R
Xy VA

By rearranging the eigenvalues according to their size (A; > A3), the Euler parameter m is given
by:

! ‘ e (7.43)
tan?

m = A, (7.44)

The Euler parameter 7,, can be appointed by means of the field component ratio p [43]:

2 Im(p)

P 7.45
EpE (7.45)

sin 27, =
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7.2.3 Results after the Huynen Theorem

According to the Huynen’s target decomposition the scattering matrix [S] for the heights 5.0cm,
7.5cm, 10.0cm and 15.0cm is investigated in the following. The Euler-Huynen target size pa-
rameter m and the even reflection parameter v are shown in the fig. 7.2 to 7.9. The eigenvalue
analysis of the Graves matrix [G] shows that for all measured heights the two principals shadow
boundaries SSB1 and SSB2 lies on a local maximum of the target size parameter m. Due to
the strong attenuation of the spatial waves at the transition, the contribution of the specular
wave 1 is reinforced, signifying a bigger object. This polarimetric behavior is emphasized by
the parameter v at the shadow boundaries. Here, the transition regions fall together with local

minimum values denoting that the scattering mechanism includes a odd number of reflections,

here the direct wave 1.

Figure 7.2: Target size parameter m: Figure 7.3: Euler parameter ~:
h = 5.0cm, f =67GHz h = 5.0cm, f =67GHz
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7.3 Eigenvalue Decomposition

The coherence matrix ([T']) and covariance matrix ([C]) based on power measurements are in-
troduced. Both matrices ([T]) and ([C]) contain the same polarimetric information about the
scattering process but have a different notation. The elements of ([7'] and )[C] represents power
quantities and therefore describe the scattering process by a second order statistic. The em-
phasis is attributed in this section to the coherence matrix ([7]). Here, the eigenvalue analysis
of ([T']) is carried out. According to the deterministic cylinder model without averaging, the
entropy-anisotropy decomposition theorem is presented for this special case by one eigenvalue.

In general, the eigenvalue based decomposition theorem has the important features:

e The eigenvalue analysis is invariant for a unitary basis transformation. It is not based on

models and in consequence a quantitative data inversion is possible.

e Statistical effects (Speckle) can be better investigated. An important property for improv-
ing the Signal to Noise Ratio (SNR).

e Besides single targets, the backscattering from volumetric areas like forests or human

agriculture can be better distinguished.

e The derived quantity entropy H gives a prediction about the limits of radar measurements

in view of the decomposition in significant scatterer mechanisms.

7.3.1 Vectorization

The complex scattering matrix [S] encloses at leat all the different scattering mechanisms. In-
stead of using the 2 x 2 matrix notation, the whole information of [S] can be put in a 4 x 1

so-called target vector k. This vectorization, is given by:

Eo= V() (7.46)
= ST (5]9) (7.47
= (ko k1 ko k)" (7.48)

Where the operator ¥ is a set of 2 x 2 complex matrices with orthogonal basis. Generally two

orthogonal standard sets are used for the vectorization of [S]:

e U; Lexicographic

Gt P | | 1 B
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e U, Pauli

Hence, two target vectors are given as follows:

- 1 Sz — Syy
k, = — 7.51 - S,
v (7.51) R I
. yx

In the case of a monostatic BSA setup the scattering matrix [S] is symmetric. In consequence

the target vectors reduce to 3 x 1 vectors.

) Sz + Syy s,
k, = % Syx — Syy (7.53) Fo= | Vs, (7.54)
25,
v Syy

7.3.2 Coherency Matrix

The coherency matrix ([T7]) is given by the Kronecker product ® as follows:

(1)) = (kp ® k") (7.55)

In a similar manner the covariance matrix ([C]) is calculated with the target vector &z by:

([C]) = (kL ®k;T) (7.56)

According to (7.53) and (7.54) it yields for the matrices [T'] and [C]:

Saal?  V2852S%,  SwaS,
{en = < V28:,St,  20Suyl? V284S, > (7.57)
SiaSy)  V255,8y  |Syl?
1 |Sxx + Syy|2 (Sa:a: + Syy)(slili - Syy)* 2S;y(SII + SZ/Z!)
(1) = §< (Sza + Syy)"(Sez — Syy) |Szz = Syy|* 255y(Szz — Syy) >
ZSxy(Sm + Syy)* ZSxy(Sm - Syy)* 4|Sxy|2
(7.58)

In the diagonal of ([C]) appears exclusively the square of the horizontal zz and vertical yy
components representing the power of the channels. Whereas in [T'] mixed terms are given. Due

to latter ([C]) is preferred in radar engineering, where ([1]) is generally considered in the Radar
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polarimetry community. The coherency matrix ([7']) is given in terms of the Huynen parameters
[53] [55]:

240 C—iD H+iG
(T)) = | C+iD By+B E+iF (7.59)
H—iG E—iF By-B

Refereing to (7.58) or (7.59) it follows that ([7]) is hermitian. This property involves the fol-

lowing important features:

e Diagonalisable

The coherence matrix ([T']) can by means of its eigenvalues always be diagonalized by:

A0 0
[Tp] = | 0 X 0 | = [Us]" ([T])[Us] (7.60)
0 0 X3

The unitary transformation matrix U is given by [18]:

cos(ay) cos(ay) cos(as)
[Us] = | sin(ay)cos(B1)e’  sin(an) cos(B2)e?®?  sin(as) cos(f3)e'® (7.61)

sin(ay) cos(B1)e  sin(ag) cos(B2)e!??  sin(az) cos(F3)el?

e Decomposition
A regular hermitian matrix has the property [Us]*![Us] = [I]. In view of decomposing

the coherency matrix ([T]), expression (7.60) is rewritten in the following way:

A0 0
([T = [Us] | 0 X 0 | [Us]T (7.62)
0 0 As

Hence, ([T]) can be decomposed into a series of three orthogonal sub-matrices, each
weighted with its corresponding eigenvalue. Here, the row vectors of the unitary ma-
trix [Us] represents the three complex basis. ([T]) is rewritten in terms of three linearly

independent matrices [11], [12] and [13] as:

(1) = M [eefT] + A2 [e2esl] + Xs [esesT]

(IT]) = M[T1] + X[T2] + Xs3[T5]

With the properties:
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e Eigenvalues

The eigenvalues of ([T']) are reel and nonnegative.

e Basis Invariant

The eigenvalues are independent of the chosen basis.

The average values of the parameter «, 3,7 and § for the entire scattering process are given by

the eigenvalues. Their values change with an altering of basis contrary to the eigenvalues.

Q1AL + 2o + 33

AL+ A2+ A3

3 = Br1A1 + Bads + B33
AL+ A+ A3

5 = YA+ Y2A2 + 133
AL+ A2+ A3

5o— 01 A1 + 022 + d3A3

AL+ A2+ A3
The physical interpretation of the different angles is given by [18]:

e « [0°90°]
The parameter «; of the eigenvector is roll invariant and describes the internal degree of
freedom of the scatterer. Hence, it can be related to a type of scattering mechanism or if &
is considered, to an average mechanism. The range of « corresponds to: surface scattering
a = 0°, encompassing a dipole scattering & = 45° and moves into a double bounced

scattering a = 90°.

o (3 [—180° 180°]

Represents the physical orientation of the scatterer relative to the LOS.

e yand 0

Referred as scatterer phase angles.

7.3.3 Entropy and a-Parameter

As discussed in the previous section, the parameter ¢; is related to a type of scattering, weighted
by its eigenvalue A;. Cloude and Pottier demonstrated that the information about scattering
mechanisms is limited by the three eigenvalues. For example, if the three eigenvalues are equal,
the corresponding three eigenvectors have the same importance. Hence, three deterministic
scattering contributors are present and no information about a scattering type can be outlined.
The scattered field includes no useful polarimetric information. This mixed up is described with

the polarimetric entropy H as follows [19]:

n
H = - Plog, P, (7.63)
i=1
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Where the relative intensity quantity F; is given by:

)\,
P = - (7.64)
> Ai
i=1
According to the above mentioned, maximal three possible eigenvalues can be given n = 3.
Finally, the entropy H is given as:
1 ) () ()]
H = —A1ln — Az2ln — Az3ln 7.65
Aot In 3 [ ' (Atot ? Atot ’ Atot ( )
Here, logs A = % and Ayt = A1 + A2 + A3 was set. The average parameter « is de-
fined by:
a = o P + aoPy + a3Ps (766)

7.3.4 Eigenvalue Analysis

First, the formalism for calculating the eigenvalues and the corresponding eigenvectors of [T]
is presented for the general case where Sy, Sy # 0. According to the property that [T is a

hermetic matrix, one rewrites [T]:
ty ty ts

< i te ts > (7.67)
ot s

The eigenvalue problem det (([T']) — A[I]) = 0 leads to a polynomial term of order three:

No— a\? — g\ —ap =0 (7.68)

Where the coefficients a; are defined by:

ag = titats + 2tatste — tolts|? — tilts]” — t3]tal?
a1 = —titg — tity — oty + |t4|2 + |t5|2 + |t6|2
ay = tl + tz + t3

According to (7.67), the reel quantities ¢, to and t3 and the complex quantities ¢4, t5 and tg are
given. Hence, a complex equation of the form 2z* + as2? + a1z + a9 = 0 z € € must be solved.
According to (3.8.2) in Abramowitz and Stegun [1], the following substitution is performed:

1 1,

9= 30 = 3% (7.69)
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Additionally one sets:

1 1 1 5
r = —a1a2 + —ag +

In order to get three possible reel eigenvalues, the irreducible case must be considered:

¢ +r<o0 (7.71)

As a result, the complex variables s; and s are resumed as follows:

q = I +ivV=F =
o = - VP - 7

W= Wl

The parameters S7 and So are rewritten in the form:

s1 = \/—qe’%i
P&
o = Yoges

The argument of the complex quantities S; and Sy is given by the following tangent:

|—q¢* — 2

tang = (7.72)

r

The reel eigenvalues are given by [1]:

(s1 + s2) = 2\/—_qcos§
(s1 — s9) = 2i\/—_qsin§

Finally, the three possible eigenvalues are determined by:

A= (s1 + s2) + %
1 a2 V3

Ay = —5(81 + 82) + ? — 7(81 — 82)
1 3

)\3 = —5(81 + 82) + % - %(81 — 82)

The corresponding three eigenvectors are given through:

({1 - n[)é& =0 (7.73)
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written out as follows:

th—A  ta t5 €1
tZ to — >\i tﬁ €9; =0 (774)
tg té t3 - >\z €34
Written out, it yields:
t1 — Nierg +  taez;  + tzes; =0
tj;eli +ty — Njeg; + tgez; =0
tze1;  +  tgea;  +tz3— Aez; =0
Where the solution is given by its minors:
i _ e _ i 1 _ const (7.75)
Deli Dezi De3i D
According to the last row it holds for the three components:
€11 €21 €31
- = 7.76
t4t6 — a2t5 —[a1t6 — tztg,] a1ag — |t4|2 ( )

Whereas the substitutions a; = t; — A; and as = t9 — A; have been performed. Hence, the

two components may be expressed in terms of the component e;; as:

e31 = fien
e21 = foen
|ta]? — arag
3 = ——= 7.7
f a2t5 — t4t6 ( )
t*t5 - a1t6
2 = 42 =2 7.78
f t4t6 - t5a2 ( )

1
= —t—[th + t5f3]
4

By setting the component e;; equal to 1, one gets:

€14 1 1

€9 = fo (7.79)
' V112 +1f3]?

esi IE

Further, every single row in (7.61) corresponds to one of the three normalized eigenvectors.
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Comparing the eigenvectors with the row of (7.61) the appropriate parameters «, 3,9 and -y are

calculated as follows:

le1i COoS «;
|ea;| e = | sinq;cos B;e (7.80)
|e3i] e sin oy; cos Bl

Deterministic Targets

In the case that a deterministic and symmetrical object is measured the terms 4, t5 and s are

> (7.81)

((1]) = [Us] [21 )(\)2] (U] (7.82)

vanishing and the coherency matrix ([T']) is reduced to the 2 x 2 matrix:

5 <[ |S$13 + Syy|2 (Sa:a: + Syy)(saza: - Syy)*
2

T = =
<[ ]> (Sm + Syy)*(sm - Syy) |Sm - Syy|2

Yielding to a decomposition into two eigenvalues:

In (7.81) averaging processes are present at the scatterer. If no statistical processes are given,

only one single eigenvalue remains, yielding:

At 0

1) =l |

U] (7.83)

In consequence one single eigenvector remains, giving in the form:

levi] COS oy
) = ) 7.84
( |egi|eti sin o€ ( )

7.3.5 Results after the Eigenvalue Analysis

According to the eigenvalue based decomposition only a non-zero eigenvalue occur due to the
symmetry and absolute deterministic setup in the anechoic chamber (H = 0). The single target
angle « is outlined for the different heights in fig. 7.10 to 7.13. At the transition zones SSB1
and SSB2 « lies between 15° < « < 35°, whereas « is related to a local minimum. This
signifies that near the transition regions the scattering type corresponds more to an odd bounce
mechanism (sphere) than to an even bounce mechanism (diplane). What is the reason for such
a polarimetric behavior?

As a perfect conducting interface was taken for the measurements, the contribution of the double
bounced wave 2 is the strongest one in the backscattered field. It is not affected by any shadow
boundary so that its significant contribution is given over the whole look angle range ¢y for
. According to section 3.7, the superposition of the odd bounced wave 3, 8 and 11, 12 takes

place in a incoherent way due to the variation of the look angle. Additionally, at the transition
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region the odd bounced wave 3, 8 and 11, 12 are strong attenuated and replaced by creeping
waves. Hence, at the transition zones the contribution of the odd bounced wave 1 is fortified.

This behavior is reflected in a local minimum of «.

80
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40
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Figure 7.10: Mechanism Parameter «: Figure 7.11: Mechanism Parameter «:
h = 5.0cm, f =67GHz h = T7.5cm, f =67GHz

35 40

Figure 7.12: Mechanism Parameter «: Figure 7.13: Mechanism Parameter «:
h = 10.0cm, f = 6.7TGHz h = 15.0cm, f = 6.7TGHz



Summary and Outlook

In the preceding chapters, the polarimetric behavior of the field diffracted by a target in front of
the air-soil interface was investigated for an incident field varying from perpendicular to grazing
incidence. The backscattered field for the monostatic alignment considered here was analyzed
by the Geometrical Theory of Diffraction (GTD) or étalon method. In this work, a refined ray
model was implemented where, besides the multiple reflections between the target and the inter-
face, also creeping waves were considered giving a better understanding of the physical scattering
mechanisms. For the first investigated case, where the target was situated in the air, 13 different
waves were considered according to the Fermat principle. The accuracy of the implemented ray
model was checked by an exact integral equation method. Here, the exact numerical method
is founded on an extended Method of Moments technique. An existing algorithm calculating
the scattering of an illuminated object in free space was modified for the given case where the
air and the soil form a two layer media. Here, the corresponding Green dyad was modified
after the Michalski method for transforming the Electric Field Integral Equation (EIFE) into
the less singular Mixed Potential Integral Equation (MPIE). The related Sommerfeld integrals
in the Green dyad were replaced by a more rapid and robust series according to the Discrete
Complex Image method. A good agreement between the GTD ray system and the exact Method

of Moments has been obtained.

In the treatment where the target was situated above the ground, a special emphasis was at-
tributed to the transition regions. Near the shadow boundaries, the reflected spatial waves
disappear and transform into creeping waves on the target which are strongly attenuated on the
shadowed side. The investigations proved that the elements of the Sinclair matrix [S] and the
corresponding polarization state undergo a rapid variation which was visualized on the Poincaré
sphere. At the shadow boundaries, the path length of the related waves are similar. Thus, the
concerned waves are in phase. In consequence, the superposition of the waves in the transition
regions leads to a slight depolarization of the field. Depending on the incident polarization, ei-
ther linear or circular the backscattered field is situated near the equator line on Poincaré sphere
representing a linear polarization, or at one pole corresponding to a circular polarization. Hence,
as the shadow boundaries depend here on the geometrical properties, the angular location of the
transition regions can be exploited in order to get information on the geometrical parameters.
For the case where the target was embedded in the soil, no surface shadow boundaries are given.

Here, on the way back from the target lateral waves are generated at the interface. As a result of
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Figure 7.14: ”Pseudo Spot-light modus”

the lossy soil and the strong attenuation of the creeping waves the direct and first reflected wave
between the target and the interface remain as utilizable signals compared to the other waves of
the ray system. It was pointed out that over the entire look angle range the ray path between
the sphere and the interface of the second contributor is nearly twice as long as the single one
of the direct wave. Consequently the superposition of the principal waves doesn’t not lead to a
depolarization. In contrast, at the transition from a lossy soil into the air, a phase shift occurs
for the perpendicular field component. The resulting location on the Poincaré sphere gives a

one to one relation to the soil loss.

Measurements were performed at the European Microwave Signature Laboratory (EMSL) at
the Joint Research Centre (JRC) of the European Commission, for a sphere above a perfect
conducting interface. Despite the fact that the interface was given by a 2m x 2m plate and
diffraction from the edge was present, the implemented GTD ray model was validated and the

predicted transition zones according to the different heights were found.

The anechoic chamber data were applied to different decomposition theorems commonly used in
Radar polarimetry. The coherent decomposition theorem after Krogager into a sphere, dihedral
and helix showed that at the SSB the object appears as a sphere corresponding to local maxima
values of kg. A comparable behavior is predicted by the Cameron theorem. Here, a good match
with a cylinder and dipole near shadow boundaries are given, where the match scatterer angle ©,
corresponds to local minima. In contrast ©y, related to a diplane, corresponds to local maxima.
For incoherent decomposition theorems, the target decomposition after Huynen showd that at
the boundaries the target size m corresponds to local maxima. This agrees with the strong
attenuation of the space waves in the shadow region. In contrast the even reflection parameter
v is related to local maxima near such boundaries. As the interactions between the target and
interface are strongly attenuated, this denotes that the target itself defines the polarization of
the backscattered field. Finally, according to the eigenvalue decomposition after Cloude and

Pottier for the deterministic situation here, an entropy H = 0 and a non zero eigenvalue
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follows. The parameter « lies for the different measured heights in the range of 30° < « < 40°
at the boundaries. This corresponds rather to a dipole than to a odd bounced reflected wave.
Although the transition zone occurs together with local maxima or minima, it was demonstrated
here that the different decomposition theorems are not suitable for getting information about
the geometrical parameters for a target near the interface. Due to the strong diffraction of the

horizontal aligned edge a representation on the Poincaré sphere was not investigated.

Since the time frame of a thesis is limited not all ideas could be realized within the frame
of this work. Therefore this treatment is only one small step on a long way. In this work, due to
the introduced GTD ray system where spatial and creeping are considered, it was demonstrated
that the angular location of the transition zones on the Poincaré sphere are significant according
to the geometrical properties of the target and its distance from the interface. Further mea-
surements for e.g. more complex targets should be realized additionally for a varying azimuth
angle 0° — 360° besides the look angle variation 0° —90° and the significant diffraction points of
investigated. In the near future the variation of the incidence angle at a target may be realized
by illuminating an area in the spot-light modus as outlined in fig. 7.14. Hence, the additional

information according to the transition zones could be exploited.
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APPENDIX A

At the Boundary

Along this work, the reflection of an electromagnetic wave and at the interface of two dielectrics is
given. Furthermore, the polarization of the waves in the considered GTD ray system is related
to the plane of incidence at the reflection points. Therefore, the Fresnel coefficients for the
reflection and transition at an interface are introduced in the following. Additionally, the image
theory is briefly outlined. The image theory was used to determine the geometrical parameters
of the waves related to the shadow boundaries, needed for the numerical implementation of the
GTD model considered in this work.

A.1 Fresnel Coeflicients

The reflection coefficient is given by the ratio of the reflected and incident wave amplitude. In
the same manner, the transmission coefficient is described by the ratio of the transmitted and
incident wave amplitude. In the following an object is considered, which is large enough in the
direction transversal to the direction of the wave propagation so that no diffraction occurs. The
obstacle is of a different electrical material than the surrounding space.

From the boundary conditions, it follows that the normal component of the field must be contin-
uous at the interface. Thus, the boundary conditions for the normal component of the magnetic
induction and electrical displacement at the interface are defined as:

—

[e [Ei(7w) + Ey(7w)] — GEt(F,w)] o= 0 (A1)

|:E1 X Ei(F,w) + El X ET(F,w) - EQ X Et(F,w)] o= 0 (AQ)

On the surface the free charges can displace. Hence, the parallel tangential component of the
total field is equal to zero, given in the form:

— —

€ [Bi(Fw) + Ep(Fw)] — eEt(r,w)} xn = 0 (A.3)

]- I = = — ]. — —
,u_(kl X Bi(Fw) + k1 % ET(F,w)) — ,M_(k2 X Et(F,w)):| xn = 0 (A4)
1 2



2 AT THE BOUNDARY

Figure A.2: Perpendicular E-field component

EYt = E, (A.6)

Every arbitrary polarization state can be described by a perpendicular and parallel component,
here related to the plane of incidence. Depending from the given polarization, the transversal
electrical (TE) or transversal magnetic (TM) is considered. Additionally, the normal component
of the impedance Z is also continuous across the interface. Finally, the reflection and transmis-
sion coeflicients are defined by:

nq cos 0 — Z—;ng cos 6t
Rre = — ’ (A.7)
11 cos 6 + 115112 CO8 0




A.2 IMAGE THEORY

A.2 Image Theory

Image theory

T 2n1 cos 0°
TE = -
ny cos B + Z—;nz cos 0t
R Z—;n% cos 0 — nyngy cos O
™M = -
Z—;ng cos 0 + nyng cos O
2n1m4 cos 6"

Trm = M1

u—2n% cos 0¥ — nyny cos O

(A.8)

(A.9)

(A.10)

To figure out how the geometrical problem was solved for finding the different ray paths with
variation of the incidence angle it should be mentioned that the wave 3,11 and 5 are the incident
field and the wave 8,12 and 9 the ones reflected from the object. The total field is given by
the sum of the incident and reflected field in the lit region. That’s more comprehensible if one
recalls the image theory for a perfect conducting soil and look at the reflection point on the
image object as presented in fig. A.3 and fig. A.4.

E,

Figure A.3: Image for transition region 1

Figure A.4: Image for transition region 3



APPENDIX B

Method of Moments

Here, the numerical implementation of the extended Method of Moment technique for solving
the Mixed Potential Integral Equation according to chapter 2 is discussed in greater details.

B.1 Current Basis Functions

The given surface integral of the MPIE is performed in such a way that the surface of the object
is approximated by plane triangular patches. The first step in the numerical calculation consists
in fixing the apexes and edges of these triangular patches. Every edge [, on the patched surface
is related here to its triangles twosome T ZH"(F') and T ¢ (@) as shown in fig. B.1. Thus, every
point on the patch T o+ () may be given by the vector ' or through the local vector g, defined
by the apex of the triangle T g+. In the same manner, a point on the triangle T g s fixed.
Where the vector g, is pointed toward the apex of the triangle CZ:Z*. According to Rao [58],
the basis functions are given by:

lg =t I —
22; pg Ty
— l - — - —
0 , else

Where the length of the edge is given by I, and the area of the triangle by Aqi. 1t follows
for the divergence at an edge:

i Tin Ty
Ve foi) = a0 > Tindy (B.2)
0o , else

The current distribution on the surface is described by the basis functions. For a given number
N of apexes the currents are given by:
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Figure B.1: Base function for the triangular patches T3 at the edge I,

N
Jey =Y I fre (B.3)
qg=1

According to (B.1) and (B.2) it follows:

e The basis functions have only a normal component through the common edge [, of the
triangle twosome Tqi. In consequence only a current flow through the common edge
remains.

e The divergence of the currents over a closed surface is equal to zero.

e The normal component of ﬁ;t at the edge [, corresponds to the height of a triangle. The

+
height is given by 2 fll—q. Hence, according to (B.1) it follows that the flux through an
edge [, is unitary. This assures the continuity of the normal current component through
an edge. Thus, every single edge is directly related to a current coefficient I,.

B.2 Numerical Implementation of the MoM for solving the MPIE

As a perfect conducting surface is considered, the incident field Ei(F) is related to the scattered
field by the boundary condition at the surface: n x [E; —+ ES] = 0. According to chapter 2

the incident field is given in terms of the scalar and vector potential ® and A by:

Ej(") = iwAr — V,0m (B.4)

Where for the current distribution on the entire surface S’ the potential ® and A are given by:

A = //?A J) dS' (B.5)
SI
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F) = / Ko q(@) dS’ (B.6)

Considering first a single edge [, of a triangle 7' twosome its area is denoted by Ay. According
to (2.107) and substituting (2.111) in (B.4) the incident field is given by:

E;m = zw//{ 56 (J- @) + g(J- g)} Ky + 2 [(V’ J)KY (f.z)K,%lb]

+V 83((1”-2)19"’;1 } dAl, + V //(V’-f)Kq>dAlq

Aq

The current distribution in B.2 is substituted by the basis functions and the corresponding cur-
rent coefficient. According to (B.3) it follows for all triangle patches:

(B.7)

Up to now, expression (B.7) cannot be solved as for one equation n unknowns exist. According
to the Gauss elimination an equation system of dimension n X n has to be set. This is done
by a inner product of (B.7) with a set of test functions A, also called testing procedure. For
computation reasons the basis functions A, considered here are also used as test functions A, in
the MoM algorithm DIFFRA!. Extracting the derivations operators outside of the integration
sign the inner product of (B.7) is given by a set of test functions as follows:

//E 7) dl, Zl{zw/ Fp () dl, // [2(7ma) + 9 9)] K} diy
/f,, dlz// +(fn A)K2b} dl,
/fp v 2 //f»g )

F1
+ //f;(m dl, V //(v'-f’g)chdlq}
AP Aq

Iy

!Program for computing the scattered field from a perfect conducting obstacle. The surface of the obstacle
can be close or either open with joined wires. The electric field integral equation is solved by using the MoM.
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The numerical calculation of B.2 is simplified by applying the derivations operators directly on
the basis functions. According to B.2 and using the following relation:

J[v- 7] = [[[v-Fur + 7y vE] a, (B.8)
Ap

it yields:

305

ﬁl
||
Q I MZ
=
*1 f_/H
S S
S
Q §
-
hS]
ﬁi
»03 &
Q
/—\ H>
-ns
&
e
<
& i
< a3
S
o
&
2

5 (B.9)
- // (Vo) dip //(f’z)Ki’x b,
AP Aq
- // (V- fp)) diy //(V'-f’p& dlg }
P Aq
Finally, the implementation of the MPIE in the DIFFRA program is given by:
//E(F)-f}(?) dy = [z‘w //{f;m(A’;q + A5 + (v-f*g)Ag‘J} dl,,
AP AP
N (B.10)
B //(v-fg)qudzp] 3,
A, 9=1
The single terms of the vector potential are given as follows:
AP = // [2(F3-0) + §(Fg0) [ K dly
q
A = [ [ FpKS + 7oKy ] d (B.11)
q
AR = 5 [[GeaKG diy
Aq
and the scalar potential is calculated in the form:
A%q = //(V’ : fZ)Krb dlg (B.12)
Aq
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B.3 Code Implementation

One may rewrite (B.10) in matrix form, where the left side corresponds to the voltage vector.
The summation on the right side is replaced by a column vector of coefficients corresponding to
the surface currents. The relation of the scattered field and the induced currents on the surface
are given through the quadratic p x ¢ impedance matrix [Z,,] as follows:

VZD = [qu] I (B.13)

Figure B.2: Basis function 7} and test function 7},

B.3.1 Voltage Vector

The voltage vector VZD in (B.13) is given for the triangles +A, and —A,, as:

v, = //Ei(F)'fz;(F) d, = //E’i(m-ﬁﬂr) dl, + //Ei(F)-ﬁ(F) dlp
Ap +Ap A

P
L1 L1
= B—2_ 5, dl, + //Evi_ﬁdl
[5izn s [[5abn o
+A, —A,

The numerical calculation can be simplified by the following approximation. For long distances
between the triangles Tqi and the observation point 7, the value of a test triangle twosome Tpi
is considered to be constant. Hence:

Counsidering the value at the centroid of every single test triangle twosome, one CPU time con-
suming surface integration is dropped. Where the voltage vector V(7) of a common edge I, is
simplified as follows:
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B.3.2 Impedance Matrix

According to (B.10) the impedance matrix [Z] given in the form:

2]y = // [ Fy) (AR 4 AR 4 (V- Fy Ak — (VA a, (B.14)
AP

Once more, the integration over the test triangles can be approximated by their centroid values.
The impedance matrix [Z] is rewritten as follows:

g e Py
(2], =y { iw [ Al(r*ff)% + Al(r*;;)%
B, 7R

2 (B.15)

Surface Co-Ordinates

The apexes of a single triangle T(?i are described by 7, 7 and 3. The edges opposite of the
corresponding apexes are indicated with [1, l5 and [3 as shown in fig. B.3. In a single triangle
three possible bases may be defined by using the same index as their corresponding apex. The
basis vector can here point in or out of the triangle. Its direction is related to the sign of the
current coefficient I, at the edge [,. Hence, the basis vectors are given by:

G = £(7 + 7) i =1,2,3 (B.16)

Where the vector 7 points to the triangle T;,. The three possible vectors g; split the area of T}

Figure B.3: Surface co-ordinates

into three subareas Ay, As and Asz. It holds:

Aq = A1 + A2 + A3 (B]_7)
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The relative three area parts are given by:

_AE ¢
a4 "Tap v A
Where it holds in turn
E+n+(¢ =1 (B.18)

According to (B.17) and (B.18) the surface co-ordinates at triangle Ty is given in terms of:

= (M + nr2 + (T3 (B.19)

Considering the surface co-ordinates according to (B.19), the implementation of the single po-
tential terms in the DIFFRA program mentioned in chapter 2 is given by:

I

o Ay(F5F) = ATL(FEE) -

lix

&

+ A]_zy(_';i) ° g

Kl Kl K1
AI{;]:C = xI; [Tlng A+ 7”2wIn 4+ T3wI< 4 — TixIK}‘]
K1 Kl Kl

AR = b [y T

~
hS
_F

T'QyInA + ’r'3yIC - TinKi]

1—
/’Ki ro ) € dE dny
0

/ Kl\(rey ) ndé dn
0

1-n

/ K (e 7t) dE dn
0

1
jKi;:/
0

Ki _ K} K} K}
TR R
o Ay(7St) = AP (Pet) - 2
2b 2b 2b
Aggz = (21 IKA + 1 [le gKA +7”2zI75(A +7”3ZI§KA — 11 ib])

n
K2 (e, 1) d¢ dn

S~

1
-
1 1-n
1 = [ ] Kiesencdsdy
0 0
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1—n

1 _
Jr. //K” ) dé dn
0 0

11—
2b
. / / K2, ) de dn
0 0
Kflb - bi Kf‘sb Kflb
4= I8P - -

K3 K3 K3 3
° Ags = 1I; rlng 4+ 7'2zI7)A + 7'3ch 4 — rizIKA

e

K (rey i) EdE dn

K (7g) n d€ dn

1 1—
IKG = //K 7o) dE dn
0 0

3 3
= "4 A -

o AR = +2U; Ik,



APPENDIX C

Uniform Reflection and Diffraction
Theory

In this section, a short overview of the reflection and diffraction coefficients according to McNa-
mara [48] and Bouche and Molinet [8] is given.

C.1 Transition Function

A special function introduced in the UTD formalism is the transition function F(x). Its large
and small argument behavior is briefly shown in fig. C.1 according to McNamara [48]. The
complex transition function F(z) is given for a e'“! time-dependence as:

o0

F(z) = 2ize® / e~y (C.1)
N

_ Phasede F(x)

«

(a) Modul (b) Phase

Figure C.1: The transition function F(x)
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13
C.2 Pekeris Function

The Pekeris caret functions Ps,h(x) are given by the Fock scattering functions p(x) and ¢(z) for
a €'“! time-dependence in the form:

Pa) = pla) T = S (€2)
Pu() = qla) % — WE (C.3)
! — Re(p)

p(X)*e_ITC"U.ACJ

2

Figure C.2: Fock scattering function p
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X

Figure C.3: Fock scattering function q
C.3 Uniform Reflection Coeflicients

The general reflection coefficients for the perpendicular (soft) and parallel (hard) component,
relative to the plane of incidence, is given as [48]:
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5 X "(€p)
Ho_ T4 i (X)) g
Rg = & e e 2/ + ¢ (&) (C.4)

Where p* and ¢* are the Fock scattering functions and have to be considered for the correspond-
ing soft and hard component. The asterisk in C.4 implies here that the complex conjugate has
to be taken in the case of a exp(—iwt) time-dependance. The argument X, for the transition
function F'(X,) is given in the form:

ENE]

X, = 2k L,cos*(0")

The quantity &, is the Fock parameter and given by:

& = —2m(Qy) cosb’

The quantity m(Q,) is calculated via:

1
ka 3
Where parameter Lp is defined as:
s"s!
Lp = ST +Si

The length s° is the distance from the source to the reflection point and s” describes the way to
the point of observation. For the monostatic case s* = s” considered along the thesis it yields:

L, = s""

C.4 Uniform Diffraction Coefficients

C.4.1 General Formulation

The uniform surface diffraction coefficient is given by [48]:

(C.5)

p*(&a)
TE = —/m(Q) m(B) \/% e e _i(jf/dE) e

Where properties of the surface are included in the Fock parameter ¢;. For a given arc length
&4 is calculated as:

7(Q)
a- [ 2D (C.6)

aop(7)
7(Q")

Further, the curvature parameter m(7) is defined by:

m(r) = [’“ “;(7)] : .7)
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The arc length ¢ along the surface is given as follows:
m(Q)
t = dr (C.8)
m(Q')
The argument of the transition function F'(X,) and distance parameter Ly are given by:
x, = Nl (C.9)
7 2m@)ym@ '
(C.10)

sts
st 4+ !

Ly =
Hence, according to the monostatic case s’ = s¢ and a plane field s%' — oo, (C.10) reduces to:
(C.11)

Ld = Sd”

C.4.2 Asymptotic Solution for the Cylinder
The diffracted field from a perfect conducting cylinder is given after the n-th rotation according
(C.12)

Vi

to Bouche and Molinet [8] by (A1.12) for a time dependence exp (iwt) as follows:
gikl [ 2 it Ba ikl
2k

BM) = 7=

The quantity [; and [o are the path lengths to and back from the cylinder. Where R, is defined as:
(C.13)

n=1

QH? [kal
R, = — T
EQHVn [ka]

+ i

Written out €2 is given by:
Q= —
or

Expression C.13 is simplified by replacing the Hankel function by its asymptotic approximation

For the cylinder (2D) the following approximation is made:
1

2'L 1 -
ka)s e %3

- 7

R, =
w23

where
1 s 1
Yn = 23 e '3 (ka) 3 (v, — ka)

and v, are the zeros of order n. Hence, one gets:
OH! (ka
AL iCH,, (ka) = 0

or
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The formula (C.12) is rewritten with the relation:

D, = et
8k
and
R
D?D?, = —z§£

in the following form:

(C.14)

Diffraction Coefficients
Three diffraction coefficients are given in (C.14). Where the coefficient D; describes the tran-
sition of the 2-D line source into a wave propagating in the 3-D space. In the same way the
tangential radiation of the creeping wave from the surface of the cylinder represents a 2-D line
source. For a small line source element the asymptotic expression of the Green function for the
free space is given by:

: i ikR ikR

THYRR) ~ —— = = D, ——

4 8tk VR VR

The term D, can be interpreted as the de-and attachment coefficient at the cylinder. It de-
scribes the transition from a space wave in a creeping wave at the attachment point @) and vice
versa at the detachment point '. The quantity D,s depends strongly from the surface geometry
at the points Q and @’ and of the wave polarization. For a cylinder it remains:

D?s - DTS(Q) DTS(QI)

The parameter v, belongs to the phase term of the creeping wave. Thus, v, describes the phase
change and the attenuation of the creeping wave on its way along the arc Q@Q'. According to
Keller and Levy [40] the diffraction coefficient D, is of the form:

D, = Ds Dy
Numerical Implementation
According to (C.14) it follows for a plane wave:
D .
E(Q) = ——= = E

NA

The backdasattered field at the observation point M is given by:

ikl > X le 9 e’i k2
E(M) = Eye*t |3 evd D
0 n
. | = Vs (C.15)
Way there _ — e
Cylinder Way back




C.4 UNIFORM DIFFRACTION COEFFICIENTS 17
1 [(ka\? ¢
9 a e'12
= — E C.16
t= (%) e SR (C.16)
1 ka3 eliz
Dy = (7> - — (&) (C.17)
2k dn [Az(_Qn)]
g = gkl e (C.18)
N~~~ —~—
Phase Attenuation
Where the attenuation factor v is given by:
2 1 2 _4
al\s s dn a 3
_ (M il 1
HOR eI ON =

q1 = 2,33811 g2 = 4,08795
q1 = 1,01879 g2 = 3, 24820

Al(—q1) = 0.70121082
Ai(—q1) = 0.53565666

If a time dependence exp (—iwt) is given, the complex conjugate of (C.16) and (C.17) has to be

considered.



APPENDIX D

EMSL Measurement Reports

Height | Ratio SSB1 | SSB2 | SSB3 | 0Cx <2m | 0Cx <1m

hilem] | &/h [J]¢1 [°] |2 [°] |3 [°]] o0 [°] ¢ [ °]
3.75 8 23.60 30.33 53.10 84.20 77.50
5.00 6 22.10 27.63 48.50 83.80 76.70
7.50 4 19.50 23.63 41.90 83.00 75.10
10.00 3 17.50 20.79 36.90 82.30 73.60
15.0 2 14.50 16.65 30.00 80.70 70.50
30.0 1 9.70 10.43 19.50 76.30 62.10
60.0 0.5 5.80 6.03 11.60 67.90 48.50

Table D.1: Shadow boundaries and geometrical limits of the setup

Calibration
f Af Polarization

[l.56GHz —9.5GHz| | 10MH=z H-V

‘ Target ‘ ® ‘ Tilt ‘ Scenario file ‘ Local file Date
Empty-chamber 35.0° — gtd-h0575 L1241433 | 04.05.2005
Only target support | 35.0° — gtd-h0575 L1301449 | 10.05.2005
Disk 35.0° 0° gtd-h0575 L1301442 | 10.05.2005
Dihedral 35.0° 0° gtd-h0575 L1301500 | 10.05.2005
Dihedral 35.0° | —45° gtd-h0575 L1301507 | 10.05.2005

Table D.2: Calibration of the raw datas
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h=3.75 cm
SSB1 SSB2 f Af Polarization Ah
23.6° 53.1° | [1.bGHz — 9.5GHz] | 10MHz H-V 41.5cm
‘ Range ‘ Ay ‘ Scenario file ‘ Local name ‘ Date ‘
[5.0°—75.0° | 0.5° | gtd-h0375 | L1191537 | 29.04.2005 |
h=5.0 cm
SSB1 SSB2 f Af Polarization Ah
22.1° 48.5° | [L.5GHz —9.5GHz] | 10MHz H-V 40cm
‘ Range ‘ Ay ‘ Scenario file ‘ Local file ‘ Date ‘
| 5.0°—75.0° | 0.5° | gtd-h0575 | L1221054 | 02.05.2005 |
h=7.5 cm
SSB1 SSB2 f Af Polarization Ah
19.5° 41.9° | [1L.5GHz —9.5GHz] | 10MHz H-V 38cm
‘ Range ‘ Ap ‘ Scenario file ‘ Local file ‘ Date ‘
[5.0°—75.0° | 0.5° | gtd-h0575 | L1221600 | 02.05.2005 |
Table D.3: EMSL-measurements I
h=10.0 cm
SSB1 SSB2 f Af Polarization Ah
17.5° 36.9° | [L.56GHz —9.5GHz] | 10MHz H-V 35.5cm
‘ Range ‘ Ay ‘ Scenario file ‘ Local file ‘ Date ‘
[5.0°=75.0° | 0.5° | gtd-h0575 | L1230920 | 03.05.2005 |
h=15.0 cm
SSB1 SSB2 f Af Polarization Ah
14.5° 30.0° | [1.bGHz —9.5GHz| | 10MHz H-V 30cm
‘ Range ‘ Ay ‘ Scenario file ‘ Local file ‘ Date ‘
[ 5.0°—75.0° | 0.5° | gtd-h0575 | L1231453 | 03.05.2005 |
h=30.0 cm
SSB1 SSB2 f Af Polarization Ah
9.7° 19.5° | [L.5GHz — 9.5GHz] | 10MHz H-V 15cm
‘ Range ‘ Ap ‘ Scenario file ‘ Local file ‘ Date ‘
[ 5.0°=75.0° | 0.5° | gtd-h0575 | L1240829 | 04.05.2005 |

Table D.4: EMSL-Measurements 11



SI Derived Units and Abbreviations

SI Derived Units

Quantity e SI
Electrical charge s C=A-3s
Current density ~— ceeeeeeeeieiii A /m2
Electric conductance 0 e C /m2
Magnetic flux =~ e Wb=V-s
Electrical Geld veCtor = ceerernrraeeneineaaeann V/m
Magnetic field vector e A/m
Displacement current vector —  cocciiieiiieien C/m?
Magnetic flux density vector —  ----ooiiiiin T = Wb/m?
Electrical polarisation vector —  «-«cvvevviiiii C/m?
Magnetisation vector — ceeeeeeeiiiiiiii V-s /m2
Electric charge density =~ coceeeeieiiiiiiiii, C /m3
Electric resistance 000000 e V/A
Relative permittivity coefficient --««--cvvvivviii []
Permittivity of vacuum — ceieeieiii C /(V . m)
Relative magnetic permeability —-----vovvieiiin []
Permeability of vacuum — ceeeeeeeeeeeiiiiins V-s/(A-m)
Electrical susceptibility =~ <o reeeeeene []

Magnetic Susceptlblllty ........................ [ ]
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Abbreviations

CEM e Computational Electromagnetic

CPU e Central Processing Unit

DCIM e Discrete Complex Image Method

EFIE e Electric Field Integral Equation

EMSL e European Microwave Signature Laboratory
FD e Finite Difference frequency domain method
FDTD e Finite Difference Time Domain method
GO Geometrical Optic

GTD e Geometrical Theory of Diffraction

HE e High Frequency

LHC e Left Handed Circular

MOM e Method of Moments

MPIE e Mixed Potential Integral Equation

QS e Quasi Static

ROS Radar Cross Section

RHC e e Right Handed Circular

SSB e Surface Shadow Boundary

UTD .............................. Uniform Theory Of Diffraction
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