Développement de méthodes asymptotiques pour l'étude des interactions entre atomes froids

Détermination de longueurs de diffusion du sodium et du césium

Benoît T'JAMPENS

Laboratoire Aimé Cotton

Plan de l'exposé

- 1. Introduction aux méthodes asymptotiques
 - Collision élastique binaire et longueur de diffusion
 - Zone interne et zone asymptotique
 - Nœuds de l'onde s à énergie nulle et longueur de diffusion
- 2. Méthode asymptotique à une voie et longueur de
 - diffusion triplet du césium
 - Photoassociation d'atomes froids de césium et minima d'intensité
 - Résultats et discussions
- 3. Méthode asymptotique à plusieurs voies couplées et longueurs de diffusion du sodium
- 4. Conclusion et perspectives

Sytème : deux atomes alcalins A identiques

- Sytème : deux atomes alcalins A identiques
- Potentiel central déphasages :

$$\frac{-\hbar^2}{2\mu} \frac{d^2 \psi_{k\ell}^{coll}(R)}{dR^2} + \left(\frac{\ell(\ell+1)\hbar^2}{2\mu R^2} + V(R) - E\right) \psi_{k\ell}^{coll}(R) = 0$$

Sytème : deux atomes alcalins A identiques

Potentiel central - déphasages :

 $\frac{-\hbar^2}{2\mu} \frac{d^2 \psi_{k\ell}^{coll}(R)}{dR^2} + \left(\frac{\ell(\ell+1)\hbar^2}{2\mu R^2} - E\right) \psi_{k\ell}^{coll}(R) = 0$

$$\psi_{k\ell}^{coll}(R) \underset{R \to \infty}{\sim} C \sin\left(kR - \ell \frac{\pi}{2}\right)$$

- Sytème : deux atomes alcalins A identiques
- Potentiel central déphasages :

 $\frac{-\hbar^2}{2\mu} \frac{d^2 \psi_{k\ell}^{coll}(R)}{dR^2} + \left(\frac{\ell(\ell+1)\hbar^2}{2\mu R^2} + V(R) - E\right) \psi_{k\ell}^{coll}(R) = 0$ $\psi_{k\ell}^{coll}(R) \underset{R \to \infty}{\sim} C \sin\left(kR - \ell\frac{\pi}{2} + \delta_{\ell}(k)\right)$

Limite des très basses énergies

• $\ell \neq 0$: barrière centrifuge \Rightarrow onde *s* ($\ell = 0$)

$$\psi_{k0}^{coll}(R) \underset{\substack{R \to \infty \\ \psi_{00}^{coll}(R) \\ \substack{R \to \infty \\ k \to 0}}{\sim} C \sin \left(kR + \delta_0(k) \right)$$

Limite des très basses énergies

• $\ell \neq 0$: barrière centrifuge \Rightarrow onde *s* ($\ell = 0$)

$$\psi_{k0}^{coll}(R) \underset{R \to \infty}{\sim} C \sin \left(kR + \delta_0(k) \right)$$
$$\psi_{00}^{coll}(R) \underset{R \to \infty}{\sim} C'(r-a)$$

Zone interne et zone asymptotique

- Zone interne : une molécule diatomique
- Zone asymptotique : deux atomes alcalins en interaction

distance internucléaire R

Zone interne et zone asymptotique

- Zone interne : une molécule diatomique
- Zone asymptotique : deux atomes alcalins en interaction

distance internucléaire R

Nœuds de l'onde s au seuil : $E = 0, \ \ell = 0$

• Intégration numérique dans la partie asymptotique du potentiel du fondamental à partir de $R = \infty$:

$$\left(-\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2} + V_{as}(R)\right)\psi_{00}^{coll}(R) = 0$$

Nœuds de l'onde s au seuil : $E = 0, \ \ell = 0$

• Intégration numérique dans la partie asymptotique du potentiel du fondamental à partir de $R = \infty$:

$$\begin{pmatrix} -\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2} + V_{as}(R) \end{pmatrix} \psi_{00}^{coll}(R) = 0 \\ R > R_0 : V_{as}(R) = -\frac{C_6}{R^6} - \frac{C_8}{R^8} - \frac{C_{10}}{R^{10}} \pm \underbrace{\mathcal{D}R^{\gamma}e^{-2\beta R}}_{\acute{e}change \ asymptotique} \end{cases}$$

• Condition initiale ($R = \infty$) : $\psi_{00}^{coll}(R) = (R - a)$

Nœuds de l'onde s au seuil : $E = 0, \ \ell = 0$

• Pour $\overline{E} = 0$, longueur de diffusion $a \leftrightarrow positions$ des nœuds R_n de l'onde $s \ \psi_{00}^{coll}(R)$

$$\alpha = \left(\frac{2\mu C_6}{\hbar^2}\right)^{1/4}$$
 (facteur d'échelle)

Plan de l'exposé

- 1. Introduction aux méthodes asymptotiques
 - Collision élastique binaire et longueur de diffusion
 - Zone interne et zone asymptotique
 - Nœuds de l'onde *s* à énergie nulle et longueur de diffusion
- 2. Méthode asymptotique à une voie et longueur de diffusion triplet du césium
 - Photoassociation d'atomes froids de césium et minima d'intensité
 - Résultats et discussions
- 3. Méthode asymptotique à plusieurs voies couplées et longueurs de diffusion du sodium
- 4. Conclusion et perspectives

Photoassociation d'atomes froids de césium

Spectre de photoassociation

• atomes polarisés, f = 4, $M_f = 4 \rightarrow$ une seule voie $(a^3 \Sigma_u^+)$

Spectre de photoassociation

- atomes polarisés, f = 4, $M_f = 4 \rightarrow$ une seule voie $(a^3 \Sigma_u^+)$
- Modulation des intensités des raies de photoassociation
 ⇒ minima d'intensité

Spectre de photoassociation

- atomes polarisés, f = 4, $M_f = 4 \rightarrow$ une seule voie $(a^3 \Sigma_u^+)$
- structure rotationnelle $(J = \ell, \ell \pm 2)$

Raisonnement qualitatif : approximation δ

Raisonnement qualitatif : approximation δ

Raisonnement qualitatif : approximation δ

Étude des minima d'intensité

• Fonction d'onde finale $\phi_f^{mol} \Rightarrow \text{ état lié du potentiel } 0_{\mathrm{g}}^-$

(programme Numérov)

Analyse des progressions rovibrationnelles d'un spectre de PA \rightarrow détermination expérimentale du puits externe de l'état 0_a^-

$$\mathcal{R} = \int_0^\infty \psi_i^{coll}(R) \mu(R) \phi_f^{mol}(R) \, dR$$

Étude des minima d'intensité

Fonction d'onde finale $\phi_f^{mol} \implies$ état lié du potentiel $0_{\rm g}^-$

- (programme Numérov)
- Fonction d'onde initiale $\psi_i^{coll} \Rightarrow$ onde s à énergie nulle (modèle asymptotique)

 \rightarrow principaux paramètres : C_6 (interaction de Van der Waals) et a

$$\mathcal{R} = \int_0^\infty \psi_i^{coll}(R) \mu(R) \phi_f^{mol}(R) \, dR$$

Étude des minima d'intensité

• Fonction d'onde finale $\phi_f^{mol} \implies$ état lié du potentiel $0_{\rm g}^-$

- Fonction d'onde initiale ψ_i^{coll}
- état lié du potentiel 0⁻_g
 (programme Numérov)
- $\Rightarrow \text{ onde } s \text{ à énergie nulle} \\ (\text{modèle asymptotique})$

-40 -20 • Pour chaque position Δ_n^{exp} d'un minimum, à C_6 fixé, recherche de la valeur de *a* annulant

le recouvrement \mathcal{R} (\Rightarrow intensité nulle)

$$\mathcal{R} = \int_0^\infty \psi_i^{coll}(R) \mu(R) \phi_f^{mol}(R) \, dR$$

 Compatibilité entre les différents minima : procédure de moindres carrés

$$\chi^{2}(C_{6}, a) = \sum_{n} \left(\frac{\Delta_{n}^{exp} - \Delta_{n}^{theor}(C_{6}, a)}{\sigma_{n}^{exp}} \right)^{2}$$

Résultats (minima 2 à 6) :

$$\begin{pmatrix} C_6 &= 6510 \pm 70 \text{ u.a.} \\ a &= -530 \pm \frac{160}{295} a_0 \end{pmatrix}$$

Résultats (minima 2 à 6) :

Résultats (minima 2 à 6) :

$$C_6 = 6510 \pm 70$$
 u.a.
 $a = -530 \pm \frac{160}{295} a_0$

• Expérience de Stanford - Analyse du NIST $C_6 = 6890 \pm 35$ u.a. $a = 2400 \pm 25 a_0$

- Plusieurs analyses ont montré que $C_6 > 6800$ u.a.
- Discussion sur la méthode :
 - Paramètres du potentiel asymptotique : C₈, C₁₀, échange

- Plusieurs analyses ont montré que $C_6 > 6800$ u.a.
- Discussion sur la méthode :
 - Paramètres du potentiel asymptotique : C₈, C₁₀, échange
 - Effets de champ fort

- Plusieurs analyses ont montré que $C_6 > 6800$ u.a.
- Discussion sur la méthode :
 - Paramètres du potentiel asymptotique : C₈, C₁₀, échange
 - Effets de champ fort
 - Potentiel $0_q^- \Rightarrow$ ajout de niveaux liés

- Plusieurs analyses ont montré que $C_6 > 6800$ u.a.
- Discussion sur la méthode :
 - Potentiel $0_g^- \Rightarrow$ ajout de deux niveaux liés (PA à deux couleurs $\rightarrow C_6 = 6830$ u.a. $a = 2476 a_0$)

Plan de l'exposé

- 1. Introduction aux méthodes asymptotiques
 - Collision élastique binaire et longueur de diffusion
 - Zone interne et zone asymptotique
 - Nœuds de l'onde s à énergie nulle et longueur de diffusion
- 2. Méthode asymptotique à une voie et longueur de diffusion triplet du césium
 - Photoassociation d'atomes froids de césium et minima d'intensité
 - Résultats et discussions
- 3. Méthode asymptotique à plusieurs voies couplées et longueurs de diffusion du sodium
- 4. Conclusion et perspectives

Généralisation du modèle asymptotique

Équations couplées : (exemple de 2 voies couplées)

fonction d'onde couplée :

$$\psi(R, \{\vec{r_i}\}) = \frac{1}{R} \sum_{\beta=1}^{2} F_{\beta}(R) \phi_{\beta}(R, \{\vec{r_i}\})$$

• les composantes radiales $F_{\beta}(R)$ des 2 voies couplées sont solutions des 2 équations couplées :

$$\left(-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial R^2} + \frac{\hbar^2\ell(\ell+1)}{2\mu R^2} + V_{\alpha}(R) - E\right)F_{\alpha}(R) = \\ = \sum_{\beta=1}^2 \left(\frac{\hbar^2}{\mu}\langle\phi_{\alpha}|\frac{\partial\phi_{\beta}}{\partial R}\rangle\frac{\partial}{\partial R} + \frac{\hbar^2}{2\mu}\langle\phi_{\alpha}|\frac{\partial^2\phi_{\beta}}{\partial R^2}\rangle\right)F_{\beta}(R)$$

Généralisation du modèle asymptotique

- Courbes de potentiel asymptotique du fondamental incluant la structure hyperfine : $H_{as}(R) = D_{hfs} - \frac{M_6}{R^6} - \frac{M_8}{R^8} - \frac{M_{10}}{R^{10}} + M_{echg}f_{echg}(R)$
- Éléments de matrice calculés dans la base : $|\gamma (ns^2 S_{1/2} I F_1) (ns^2 S_{1/2} I F_2) F_t m_{F_t} \rangle_{s,a}$
- Diagonalisation de $H_{as}(R)$
- \rightarrow potentiels adiabatiques du fondamental V_{α}(R)
- \rightarrow couplages obtenus à partir des vecteurs propres adiabatiques $\phi_{\alpha}(R,\{\vec{r_i}\})$

Courbes de potentiels adiabatiques

- Exemples de courbes de potentiels adiabatiques $V_{\alpha}(R)$ (pour Na₂) :

Couplages non-adiabatiques

Exemples de couplages radiaux (pour Na₂) :

• Couplages d'ordre 1 : $\langle \phi_{\alpha} | \frac{\partial \phi_{\beta}}{\partial R} \rangle$

(courbes (a))

Couplages d'ordre 2 : $\langle \phi_{\alpha} | \frac{\partial^2 \phi_{\beta}}{\partial R^2} \rangle$ (courbes (b) et (c))

~ Couplages très localisés

Méthode : lignes de nœuds

• Lignes de nœuds (pour chaque valeur de ℓ) : $R_T = R_T^0 + p_T \times E, \quad R_S = R_S^0 + p_S \times E$

Intégration numérique : états liés

Deux solutions linéairement indépendantes (I, II) :

 $(\{F_1^{\mathrm{I}}, F_2^{\mathrm{I}}\}, \{F_1^{\mathrm{II}}, F_2^{\mathrm{II}}\})$

• Solution « physique » : $F_{\alpha}(R) = \mathbf{a}F_{\alpha}^{\mathrm{I}}(R) + \mathbf{b}F_{\alpha}^{\mathrm{II}}(R) \ (\alpha = 1, 2)$

$$\begin{pmatrix} F_1(R_S) \\ F_2(R_T) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} F_1^{I}(R_S) & F_1^{II}(R_S) \\ F_2^{I}(R_T) & F_2^{II}(R_T) \end{pmatrix} \times \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\underbrace{\mathcal{M}at(E)}$$

• $\mathcal{D}et(\mathcal{M}at(E)) = 0 \longrightarrow \acute{e}tat$ lié

Données expérimentales : Na(3s)+Na(3s)

- 54 niveaux liés compris entre 0, 11150 cm⁻¹ et -4, 29238 cm⁻¹
- Erreurs expérimentales comprises entre 0,0005 cm⁻¹ et 0,0025 cm⁻¹
- $F_t = 0, 1, 2, 3, 4$ $\ell = 0, 1, 2, 3, 4, 5$
 - 1 seule voie : 11 niveaux
 - 2 voies couplées : 17 niveaux
 - 3 voies couplées : 26 niveaux

Détermination des lignes de nœuds

Procédure d'ajustement :

$$\chi^2(\varpi) = \sum_{n=1}^{54} \left(\frac{\left(E_{\{F_t,\ell\}}^{exp}\right)_n - \left(E_{\{F_t,\ell\}}\right)_n(\varpi)}{\left(\sigma_{\{F_t,\ell\}}^{exp}\right)_n} \right)^2$$

 Pour prendre en compte tous les niveaux, il faut modifier la relation définissant les lignes de nœuds :

$$R_{S/T} = \underbrace{\tilde{R}^{0}_{S/T} + \beta_{S/T} \times \ell(\ell+1)}_{R^{0}_{S/T}} + p_{S/T} \times E$$

Détermination des lignes de nœuds

Procédure d'ajustement :

$$\chi^2(\varpi) = \sum_{n=1}^{54} \left(\frac{\left(E_{\{F_t,\ell\}}^{exp}\right)_n - \left(E_{\{F_t,\ell\}}\right)_n(\varpi)}{\left(\sigma_{\{F_t,\ell\}}^{exp}\right)_n} \right)^2$$

 Pour prendre en compte tous les niveaux, il faut modifier la relation définissant les lignes de nœuds :

$$R_{S/T} = \underbrace{\tilde{R}^{0}_{S/T} + \beta_{S/T} \times \ell(\ell+1)}_{R^{0}_{S/T}} + p_{S/T} \times E$$

• $N_{niv} = 54$, $N_{param} = 12$

- Lignes de nœuds triplet : $\tilde{R}_T^0((F_1, F_2); (F_t)_{\varepsilon})$ (7 paramètres), β_T , p_T

- Ligne de nœuds singulet : $\tilde{R}^0_{{m S}}$, $\beta_{{m S}}$, $p_{{m S}}$

Détermination des lignes de nœuds

Procédure d'ajustement :

$$\chi^{2}(\varpi) = \sum_{n=1}^{54} \left(\frac{\left(E_{\{F_{t},\ell\}}^{exp}\right)_{n} - \left(E_{\{F_{t},\ell\}}\right)_{n}(\varpi)}{\left(\sigma_{\{F_{t},\ell\}}^{exp}\right)_{n}} \right)^{2}$$

•
$$N_{niv} = 54$$
, $N_{param} = 12$
• $\sigma(\hat{\varpi}) = \sqrt{\chi^2(\hat{\varpi})/(N_{niv} - N_{param})} = 0,388$
 $\hat{\varpi}$: jeu de paramètres minimisant le $\chi^2(\varpi)$

Lignes de nœuds (voie (2))

Lignes de nœuds (voie (2))

Longueurs de diffusion $\mathcal{L}_{F_t}(F_1, F_2)$

1. $\mathcal{L}_4(2, 2) = 64, 5 a_0$ 5. $\mathcal{L}_2(1, 2) = 41, 0 a_0$ 2. $\mathcal{L}_2(2, 2) = 46, 0 a_0$ 6. $\mathcal{L}_1(1, 2) = 64, 5 a_0$ 3. $\mathcal{L}_0(2, 2) = 35, 0 a_0$ 7. $\mathcal{L}_2(1, 1) = 54, 8 a_0$ 4. $\mathcal{L}_3(1, 2) = 64, 5 a_0$ 8. $\mathcal{L}_0(1, 1) = 49, 3 a_0$

Longueurs de diffusion $\mathcal{L}_{F_t}(F_1, F_2)$

 $a_T \rightarrow 1. \ \mathcal{L}_4(2, 2) = 64, 5 \ a_0 \quad 5. \ \mathcal{L}_2(1, 2) = 41, 0 \ a_0$ $2. \ \mathcal{L}_2(2, 2) = 46, 0 \ a_0 \quad 6. \ \mathcal{L}_1(1, 2) = 64, 5 \ a_0$ $3. \ \mathcal{L}_0(2, 2) = 35, 0 \ a_0 \quad 7. \ \mathcal{L}_2(1, 1) = 54, 8 \ a_0 \ \leftarrow a_{1,-1}$ $4. \ \mathcal{L}_3(1, 2) = 64, 5 \ a_0 \quad 8. \ \mathcal{L}_0(1, 1) = 49, 3 \ a_0$ $a_T = 65, 3 \pm 0, 9 \ a_0 \quad \text{et} \quad a_{1,-1} = 55, 4 \pm 1, 2 \ a_0$ (F.A. van Abeelen *et al.*, Phys. Rev. A **59**, 578 (1999)) $\mathcal{L}_0(1, 1) = 50, 0 \pm 1, 6 \ a_0 \quad \text{et} \quad a_{1,-1} = 55, 1 \pm 1, 6 \ a_0$

(A. Crubellier et al., Eur. Phys. J. D 6, 211 (1999))

•
$$a_T = 63, 9 a_0$$
 et $a_{1,-1} = 54, 6 a_0$

(F.H. Mies et al., Phys. Rev. A 61, 022721 (2000))

• $a_T = 62,51 \pm 0,5 a_0$ et $a_{1,-1} = 52,98 \pm 0,4 a_0$

(C. Samuelis et al., Phys. Rev. A 63, 012710 (2000))

Conclusion et perspectives

- Les modèles asymptotiques sont simples et intuitifs : structure nodale
- Ce sont des méthodes paramétriques où l'information liée à l'histoire de la collision dans la zone interne est remplacée par un faible nombre de paramètres
- Ces méthodes peuvent fournir des informations concernant à la fois les propriétés collisionnelles (longueurs de diffusion, ...) et les potentiels asymptotiques (C₆, echange, ...)

Conclusion et perspectives

Perspectives :

- D'autres études spectroscopiques (dimères alcalins hétéronucléaires, autres éléments, ...)
- Étude des résonances de Feshbach induites par champ magnétique
- Étude du contrôle par un champ magnétique de la valeur de la longueur de diffusion du césium pour des atomes dans l'état (6s) f = 3, $M_{\rm f} = 3$
- Contrôle de la formation de molécules froides

Développement de méthodes asymptotiques pour l'étude des interactions entre atomes froids

Détermination de longueurs de diffusion du sodium et du césium

Benoît T'JAMPENS

Laboratoire Aimé Cotton