Algorithmes d'ordonnancement pour les nouveaux supports d'exécution

Pierre-François DUTOT

Laboratoire ID-IMAG

18 October 2004

- ▲□ → ▲目 → ▲目 → のへで

Scheduling algorithms for new execution platforms

Pierre-François DUTOT

Laboratoire ID-IMAG

18 October 2004

▲圖▶ ▲ 몰▶ ▲ 물▶ 로 비 의 의 의 의

Introduction

Moldable Tasks Master-Slave Tasking Conclusion

Fact

Computing power will never outgrow users imagination.

Bigger computers allow :

- better weather forecast
- medical research (protein modeling)
- astro-physics simulation
- ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Moldable Tasks

Moldable Tasks Master-Slave Tasking Conclusion

Fact

Computing power will never outgrow users imagination.

Bigger computers allow :

- better weather forecast
- medical research (protein modeling)
- astro-physics simulation
- ...

Introduction

Moldable Tasks Master-Slave Tasking Conclusion

There are two options to increase the available computer power :

• Either buy a bigger computer,

Or use several computers.

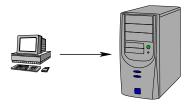
Question

We need to decide where and when to compute.

・ロト ・回ト ・ヨト ・ヨト

= 200

There are two options to increase the available computer power :



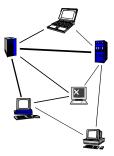
- Either buy a bigger computer,
- Or use several computers.

Question

We need to decide where and when to compute.

イロト イヨト イヨト イヨト

There are two options to increase the available computer power :



- Either buy a bigger computer,
- Or use several computers.

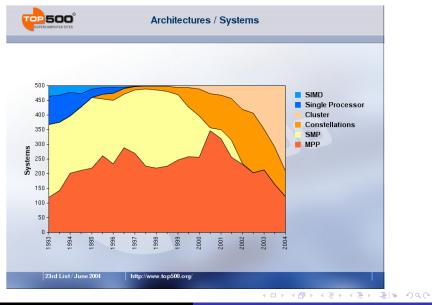
Question

We need to decide where and when to compute.

イロト イヨト イヨト イヨト

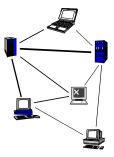
Introduction Moldable Tasks

Master-Slave Tasking Conclusion



Pierre-François Dutot Scheduling algorithms for new platforms

There are two options to increase the available computer power :



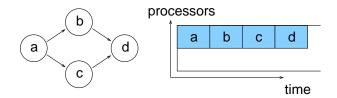
- Either buy a bigger computer,
- Or use several computers.

Question

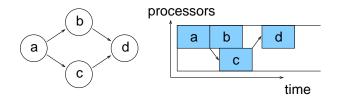
We need to decide where and when to compute.

- - 4 回 ト - 4 回 ト

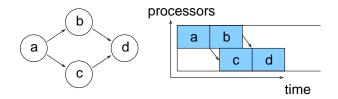
Usually "where and when" is depicted in a Gantt diagram :



Usually "where and when" is depicted in a Gantt diagram :



Usually "where and when" is depicted in a Gantt diagram :



Task characteristics

- predictable or unpredictable
- identical or different
- independent or precedence constrained
- sequential or multiprocessor multiprocessor tasks are :
 - rigid or moldable

Machine characteristics

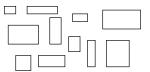
- off-line or on-line
- homogeneous or heterogeneous processors
- homogeneous or heterogeneous links
- simple topology or any graph

Task characteristics

- predictable or unpredictable
- identical or different
- independent or precedence constrained
- sequential or multiprocessor multiprocessor tasks are :
 - rigid or moldable

Machine characteristics

- off-line or on-line
- homogeneous or heterogeneous processors
- homogeneous or heterogeneous links
- simple topology or any graph



イロト イヨト イヨト イヨト

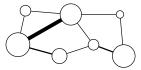
크네

Task characteristics

- predictable or unpredictable
- identical or different
- independent or precedence constrained
- sequential or multiprocessor multiprocessor tasks are :
 - rigid or moldable

Machine characteristics

- off-line or on-line
- homogeneous or heterogeneous processors
- homogeneous or heterogeneous links
- simple topology or any graph



イロン イヨン イヨン イヨン

Introduction Moldable Tasks

Master-Slave Tasking Conclusion

Outline

2 Moldable Tasks

- Presentation of the Model
- Hierarchical Scheduling
- Bicriteria Scheduling

3 Master-Slave Tasking

- Presentation of the Model
- Polynomial Algorithms
- NP-Hardness

Conclusion

A ₽

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Outline

Introduction

2 Moldable Tasks

• Presentation of the Model

- Hierarchical Scheduling
- Bicriteria Scheduling

Master-Slave Tasking Presentation of the Model Polynomial Algorithms

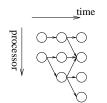
NP-Hardness

Conclusion

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors



Monotony hypothesis

When p increases :

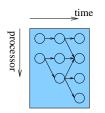
t is nonincreasing

W is nondecreasing

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors



#proc	2		4
t	5	4	3
W	10		12

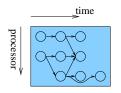
Monotony hypothesis

- When p increases :
 - t is nonincreasing
 - W is nondecreasing

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors



#proc	2	3	4
t	5	4	3
W	10	12	12

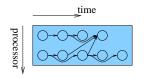
Monotony hypothesis

- When p increases :
 - t is nonincreasing
 - W is nondecreasing

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors



#proc	2	3	4
t	5	4	3
W	10	12	12

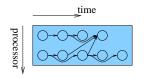
Monotony hypothesis

- When p increases :
 - t is nonincreasing
 - W is nondecreasing

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors



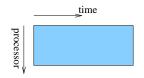
#proc	2	3	4
t	5	4	3
W	10	12	12

Monotony hypothesis When p increases : • t is nonincreasing • W is nondecreasing

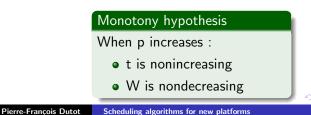
Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Moldable tasks concept

- fine grain execution graphs are replaced by boxes
- execution time depends on the number of processors

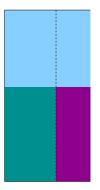


#proc	2	3	4
t	5	4	3
W	10	12	12



Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Previous results



[Mounié et al. 01] gave a $\frac{3}{2}$ approximation algorithm for independent tasks.

Algorithm

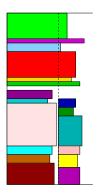
- partition tasks
- make a few transformations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• build a shelf schedule

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Previous results



[Mounié et al. 01] gave a $\frac{3}{2}$ approximation algorithm for independent tasks.

Algorithm

- partition tasks
- make a few transformations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• build a shelf schedule

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Outline

2 Moldable Tasks

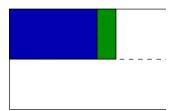
- Presentation of the Model
- Hierarchical Scheduling
- Bicriteria Scheduling
- Master-Slave Tasking
 Presentation of the Model
 Polynomial Algorithms
 NP-Hardness

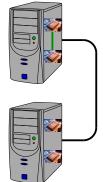
Conclusion

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Hierarchical scheduling

With two levels of communication, t is not a function of p anymore :

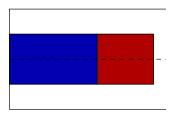


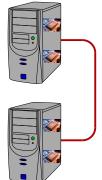


Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Hierarchical scheduling

With two levels of communication, t is not a function of p anymore :





Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

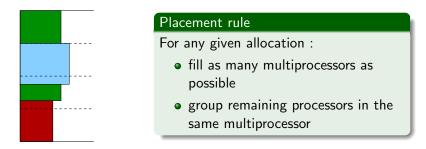
To keep writing t as a function of p, we introduce a placement rule :

This placement minimizes the number of clusters used by a task. We can prove that it is the best placement for biprocessors.

イロト イヨト イヨト イヨト

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

To keep writing t as a function of p, we introduce a placement rule :



This placement minimizes the number of clusters used by a task. We can prove that it is the best placement for biprocessors.

イロト イヨト イヨト イヨト

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Contiguity

Tasks may not always be represented with rectangles.

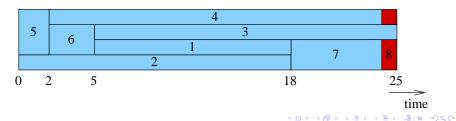
Tasks	1	2	3	4	5	6	7	8
1 proc.	13	18	20	22	6	6	12	3
2 proc.	13	18	20	22	3	3	6	1.5
3 proc.	13	18	20	22	2	3	6	1
4 proc.	13	18	20	22	2	3	6	1

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Contiguity

Tasks may not always be represented with rectangles.

Tasks	1	2	3	4	5	6	7	8
1 proc.	13	18	20	22	6	6	12	3
2 proc.	13	18	20	22	3	3	6	1.5
3 proc.	13	18	20	22	2	3	6	1
4 proc.	13	18	20	22	2	3	6	1



Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Summary

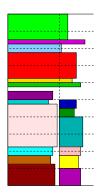
Problem

We consider :

- independent moldable tasks
- hierarchical platform
 - identical processors
 - fully connected clusters of size 2^q
- objective function : makespan

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Algorithm [SPAA01]



Using the placement rule, we get :

 same guaranty as the homogeneous case for biprocessors and quadriprocessors

•
$$(2-\frac{2}{2^q})$$
 for other values of q

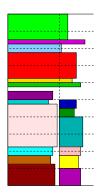
Keypoint of the proof

Remainders are reduced to powers of 2 and sorted.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Algorithm [SPAA01]



Using the placement rule, we get :

 same guaranty as the homogeneous case for biprocessors and quadriprocessors

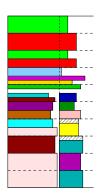
•
$$\left(2-\frac{2}{2^q}\right)$$
 for other values of q

Keypoint of the proof

Remainders are reduced to powers of 2 and sorted.

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Algorithm [SPAA01]



Using the placement rule, we get :

 same guaranty as the homogeneous case for biprocessors and quadriprocessors

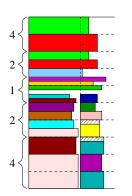
•
$$(2-\frac{2}{2^q})$$
 for other values of q

Keypoint of the proof

Remainders are reduced to powers of 2 and sorted.

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Algorithm [SPAA01]



Using the placement rule, we get :

- same guaranty as the homogeneous case for biprocessors and quadriprocessors
- $(2-\frac{2}{2^q})$ for other values of q

Keypoint of the proof

Remainders are reduced to powers of 2 and sorted.

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Outline

Introduction

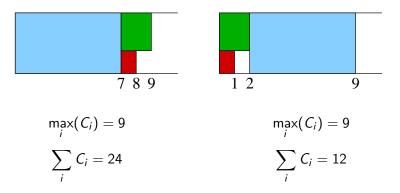
2 Moldable Tasks

- Presentation of the Model
- Hierarchical Scheduling
- Bicriteria Scheduling
- Master-Slave Tasking
 Presentation of the Model
 Polynomial Algorithms
 NP-Hardness

Conclusion

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Until now we only used the makespan criterion. However there are other possible objective functions such as the minsum criterion.



Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Summary

Problem

We consider :

- independent moldable tasks
- identical processors
- fully connected
- objective function : makespan and minsum

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Preliminary definition

ρ -MSWP algorithm

A ρ approximation algorithm solving the Maximum Scheduled Weight Problem (*MSWP*) takes as input :

- a set of weighted jobs
- a deadline D

Selects some jobs, and produces :

- a schedule of length ρD
- with as much weight as the optimal schedule does in D units of time.

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Preliminary definition

ρ -MSWP algorithm

A ρ approximation algorithm solving the Maximum Scheduled Weight Problem (*MSWP*) takes as input :

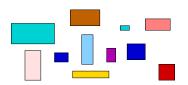
- a set of weighted jobs
- a deadline D

Selects some jobs, and produces :

- a schedule of length ρD
- with as much weight as the optimal schedule does in *D* units of time.

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

We improved an execution scheme presented by [Hall et al. 96] :

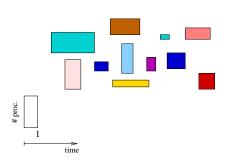


Algorithm

- find the smallest possible execution time *t_{min}*
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

We improved an execution scheme presented by [Hall et al. 96] :

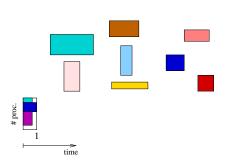


Algorithm

- find the smallest possible execution time *t_{min}*
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

We improved an execution scheme presented by [Hall et al. 96] :

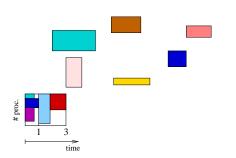


Algorithm

- find the smallest possible execution time *t_{min}*
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

We improved an execution scheme presented by [Hall et al. 96] :

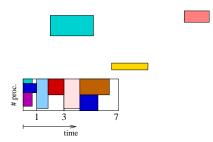


Algorithm

- find the smallest possible execution time *t_{min}*
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

We improved an execution scheme presented by [Hall et al. 96] :



Algorithm

- find the smallest possible execution time *t_{min}*
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

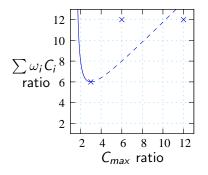
We improved an execution scheme presented by [Hall et al. 96] :



Algorithm

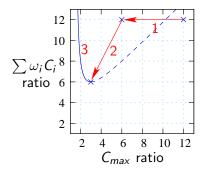
- find the smallest possible execution time *t_{min}*
- make a box of size $2\rho t_{min}$
- fill the box with as much weight as possible (with a ρ-MSWP algorithm)
- double the size of the box and continue

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling



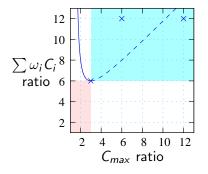
Improvements		
1	off-line	
2	better ρ -MSWP algorithm	
3	parameter α	
(makespan ;minsum) guaranty		
$\left(rac{lpha}{lpha-1} ho;rac{lpha^2}{lpha-1} ho ight)$		

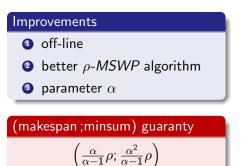
Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling



Improvements		
1	off-line	
2	better ρ -MSWP algorithm	
3	parameter α	
(makespan ;minsum) guaranty		
$\left(rac{lpha}{lpha-1} ho;rac{lpha^2}{lpha-1} ho ight)$		

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

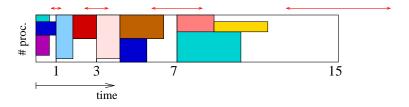




Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

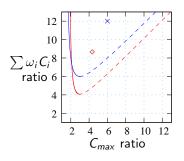
Randomization scheme

The worst cases are when a task is close to the time limits. We move randomly these limits.



Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Randomization scheme [Algorithmica(submitted)]



Multiplying the time scale by a random $\beta \in]\frac{1}{\alpha}$; 1] we get :

$$E\left[\sum_{i=1}^{n} w_{i} \bar{C}_{i}\right] \leq \frac{\alpha \rho}{\ln(\alpha)} \sum_{i=1}^{n} w_{i} C_{i}^{*}$$

Mean guaranties

$$\left(\left(1+rac{1}{\ln(\alpha)}
ight)
ho;rac{lpha}{\ln(lpha)}
ho
ight)$$

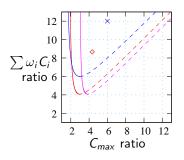
A ■

★ E ► < E ► E</p>

-

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

Randomization scheme [Algorithmica(submitted)]



Multiplying the time scale by a random $\beta \in]\frac{1}{\alpha}$; 1] we get :

$$E\left[\sum_{i=1}^{n} w_{i} \bar{C}_{i}\right] \leq \frac{\alpha \rho}{\ln(\alpha)} \sum_{i=1}^{n} w_{i} C_{i}^{*}$$

Mean guaranties

$$\left(\left(1+rac{1}{\ln(\alpha)}
ight)
ho;rac{lpha}{\ln(lpha)}
ho
ight)$$

A ₽

▲ E ► E E = 990

Presentation of the Model Hierarchical Scheduling Bicriteria Scheduling

This scheme can be used in several cases, depending on the underlying $\rho\text{-}MSWP$ algorithm :

- rigid parallel tasks
- moldable tasks
- hierarchical moldable tasks

We may also use it in an on-line setting

Presentation of the Model Polynomial Algorithms NP-Hardness

Outline

- 2 Moldable Tasks
 - Presentation of the Model
 - Hierarchical Scheduling
 - Bicriteria Scheduling
- 3 Master-Slave Tasking
 - Presentation of the Model
 - Polynomial AlgorithmsNP-Hardness

Conclusion

Presentation of the Model Polynomial Algorithms NP-Hardness

Applications

Features

We are considering applications with the following nice properties :

- small instruction set
- large data set
- computation times are constant

We use independent identical tasks.

Presentation of the Model Polynomial Algorithms NP-Hardness

Applications

Features

We are considering applications with the following nice properties :

- small instruction set
- large data set
- computation times are constant

We use independent identical tasks.

Presentation of the Model Polynomial Algorithms NP-Hardness

Applications

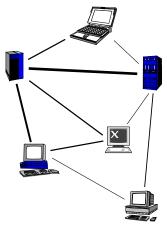
Some close matches are :

- parameterized computation (CiGri)
- SETI@home
- Mersenne prime search
- Décrypthon

This problem is related to divisible load tasks [Cheng & Robertazzi 88]

Presentation of the Model Polynomial Algorithms NP-Hardness

Platforms



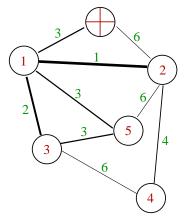
Definition

We consider heterogeneous platforms :

- heterogeneous links
- heterogeneous processors
- centralized data

Presentation of the Model Polynomial Algorithms NP-Hardness

Platforms



Definition

We consider heterogeneous platforms :

- heterogeneous links
- heterogeneous processors
- centralized data

Presentation of the Model Polynomial Algorithms NP-Hardness

Why heterogeneous?

As hardware evolves, one site often has very different kinds of computers available.

Some homogeneous processors graphs may also be seen as heterogeneous chains. [Li 02]

A heterogeneous cluster ranked 7th in the last Top500 ranking.

Heterogeneity allows for bigger computing grids

Presentation of the Model Polynomial Algorithms NP-Hardness

Why heterogeneous?

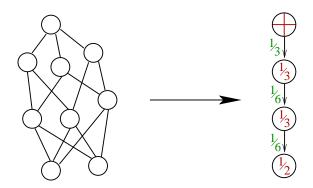
As hardware evolves, one site often has very different kinds of computers available.

Some homogeneous processors graphs may also be seen as heterogeneous chains. [Li 02]

A heterogeneous cluster ranked 7th in the last Top500 ranking.

Heterogeneity allows for bigger computing grids

Presentation of the Model Polynomial Algorithms NP-Hardness



Presentation of the Model Polynomial Algorithms NP-Hardness

Why heterogeneous?

As hardware evolves, one site often has very different kinds of computers available.

Some homogeneous processors graphs may also be seen as heterogeneous chains. [Li 02]

A heterogeneous cluster ranked 7th in the last Top500 ranking.

Heterogeneity allows for bigger computing grids

Presentation of the Model Polynomial Algorithms NP-Hardness

Why heterogeneous?

As hardware evolves, one site often has very different kinds of computers available.

Some homogeneous processors graphs may also be seen as heterogeneous chains. [Li 02]

A heterogeneous cluster ranked 7th in the last Top500 ranking.

Heterogeneity allows for bigger computing grids

Presentation of the Model Polynomial Algorithms NP-Hardness

Communications

1-port ⇒ One send at a time ⇒ One receive at a time We can still send, receive and compute at the same time.

No overhead, Communication times are linear in link speed no gap and datasize.

No routing A node can only speak to its neighbours, which can forward the task further.

Presentation of the Model Polynomial Algorithms NP-Hardness

Communications

1-port ⇒ One send at a time ⇒ One receive at a time We can still send, receive and compute at the same time.

No overhead, Communication times are linear in link speed no gap and datasize.

No routing A node can only speak to its neighbours, which can forward the task further.

Presentation of the Model Polynomial Algorithms NP-Hardness

Communications

- 1-port ⇒ One send at a time ⇒ One receive at a time We can still send, receive and compute at the same time.
- No overhead, Communication times are linear in link speed no gap and datasize.
 - No routing A node can only speak to its neighbours, which can forward the task further.

Presentation of the Model Polynomial Algorithms NP-Hardness

Our goal

Let n be the number of tasks and t the makespan.

Three similar goals :

- given n, minimize t
 - 2 given t, maximize n
- given *n* and *t* provide a schedule if it is possible

Presentation of the Model Polynomial Algorithms NP-Hardness

Our goal

Let n be the number of tasks and t the makespan.

Three similar goals :

- given n, minimize t
- given t, maximize n
 - given *n* and *t* provide a schedule if it is possible

Presentation of the Model Polynomial Algorithms NP-Hardness

Our goal

Let n be the number of tasks and t the makespan.

Three similar goals :

- given n, minimize t
- given t, maximize n
- **(3)** given n and t provide a schedule if it is possible

Presentation of the Model Polynomial Algorithms NP-Hardness

Summary

Definition

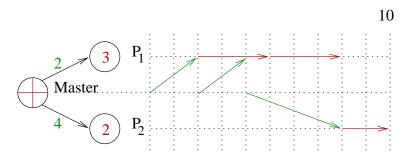
We consider :

- independent identical tasks
- heterogeneous processors
- heterogeneous links
- communications are one-port
- objective function : makespan

Presentation of the Model Polynomial Algorithms NP-Hardness

A schedule

Here is the Gantt chart of a schedule :



The numbers are (respectively) the time needed to send/compute

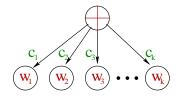
(4回) (4回) (4回)

문 님

Presentation of the Model Polynomial Algorithms NP-Hardness

Previous results

[Beaumont et al. 02] provided an optimal algorithm for fork-graphs which is polynomial in both n and t.

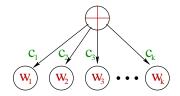


Only one shared resource : the outbound link from the master \implies bandwith-centric allocation.

Presentation of the Model Polynomial Algorithms NP-Hardness

Previous results

[Beaumont et al. 02] provided an optimal algorithm for fork-graphs which is polynomial in both n and t.



Only one shared resource : the outbound link from the master \implies bandwith-centric allocation.

Presentation of the Model Polynomial Algorithms NP-Hardness

Outline

2 Moldable Tasks

- Presentation of the Model
- Hierarchical Scheduling
- Bicriteria Scheduling

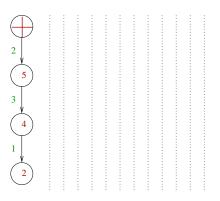
3 Master-Slave Tasking

- Presentation of the Model
- Polynomial Algorithms
- NP-Hardness

Conclusion

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Chains



We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task :

- Try every processor
- Choose the "cheapest" option (wrt communications)

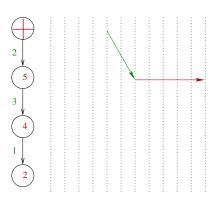
< 注 → < 注 →

Complexity is $O(np^2)$.

< 177 ▶

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Chains



We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task :

- Try every processor
- Choose the "cheapest" option (wrt communications)

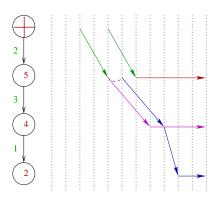
★ 글 ▶ ★ 글 ▶

Complexity is $O(np^2)$.

< 177 ▶

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Chains



We kept this idea of not spending too much time communicating.

Algorithm

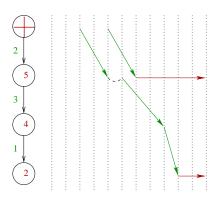
Starting from the end, for each task :

- Try every processor
- Choose the "cheapest" option (wrt communications)

(4回) (4回) (4回)

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Chains



We kept this idea of not spending too much time communicating.

Algorithm

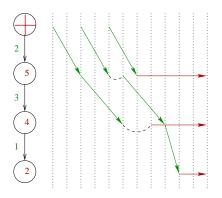
Starting from the end, for each task :

- Try every processor
- Choose the "cheapest" option (wrt communications)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Chains



We kept this idea of not spending too much time communicating.

Algorithm

Starting from the end, for each task :

- Try every processor
- Choose the "cheapest" option (wrt communications)

(4回) (4回) (4回)

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Chains

Keypoint of the proof

Induction on the sub-chains.

We kept this idea of not spending too much time communicating.

Algorithm

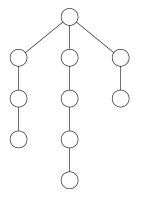
Starting from the end, for each task :

- Try every processor
- Choose the "cheapest" option (wrt communications)

(4回) (日) (日)

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Spiders [IPDPS03]



Definition

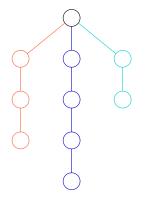
A spider is a collection of chains with a single master.

Algorithm

- Compute the optimal schedule for each chain
- Replace each chain by a fork
- Compute the optimal schedule for the fork
- Revert to a spider schedule

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Spiders [IPDPS03]



Definition

A spider is a collection of chains with a single master.

Algorithm

- Compute the optimal schedule for each chain
- 2 Replace each chain by a fork
- Compute the optimal schedule for the fork

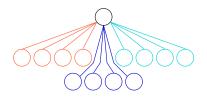
Revert to a spider schedule

(日) (部) (臣) (臣) []

= 200

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Spiders [IPDPS03]



Definition

A spider is a collection of chains with a single master.

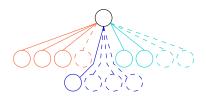
Algorithm

- Compute the optimal schedule for each chain
- 2 Replace each chain by a fork
- Compute the optimal schedule for the fork

Revert to a spider schedule

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Spiders [IPDPS03]



Definition

A spider is a collection of chains with a single master.

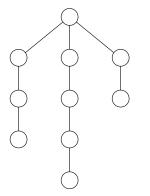
Algorithm

- Compute the optimal schedule for each chain
- Replace each chain by a fork
- Compute the optimal schedule for the fork

Revert to a spider schedule

Presentation of the Model Polynomial Algorithms NP-Hardness

Heterogeneous Spiders [IPDPS03]



Definition

A spider is a collection of chains with a single master.

Algorithm

- Compute the optimal schedule for each chain
- Replace each chain by a fork
- Compute the optimal schedule for the fork
- Revert to a spider schedule

(日) (部) (臣) (臣) []

= 200

Presentation of the Model Polynomial Algorithms NP-Hardness

Outline

2 Moldable Tasks

- Presentation of the Model
- Hierarchical Scheduling
- Bicriteria Scheduling

3 Master-Slave Tasking

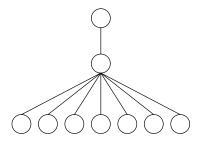
- Presentation of the Model
- Polynomial Algorithms
- NP-Hardness

Conclusion

Presentation of the Model Polynomial Algorithms NP-Hardness

Trees [EJOR04]

For general trees the problem is NP-hard



- The reduction is made from 3-partition.
- The tree used in the reduction is a fork graph connected to the master node by a single link.

<ロ> (四) (四) (三) (三) (三)

Results

Moldable tasks

- optimal polynomial algorithm for a constrained case with precedence constraints
- efficient algorithm for hierarchical moldable tasks
- improved general scheme for bicriteria scheduling

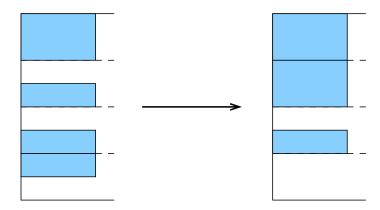
Master-slave tasking

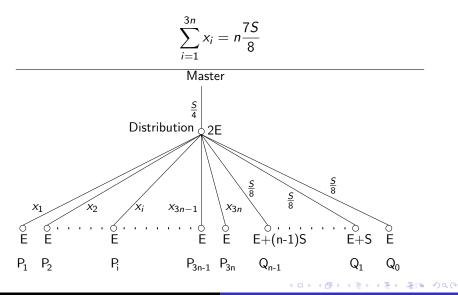
- optimal polynomial algorithm for chains and spider graphs
- NP-hardness of trees

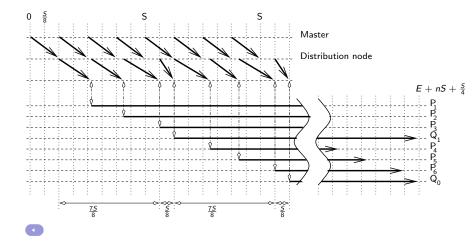
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Future works

- Implementation of the algorithms within CiGri and OAR
- Promote the use of moldable tasks
- Consider other criteria for master-slave tasking
- Multicriteria algorithms for multi-users settings







(日) (日) (日) (日) (日) (日) (日) (日) (日)