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Abstract

Ž .Because of its large N fertiliser requirements and long growth cycle, winter oilseed rape Brassica napus L. is
considered to expose its environment to substantial risks of N losses. Soil–crop models provide unique tools to analyse such
impacts, with an accuracy that primarily relies on the simulation of crop C and N budgets. Here, we describe a model
simulating the growth and development of oilseed rape that was adapted from CERES-N Maize and a previously existing
rape model. In addition to its soil components, the model, called CERES-Rape, has modules for crop phenology, net
photosynthesis, leaf area development and grain filling, as influenced by crop N status. A new feature compared to previous
rape models is the ability to predict the crop’s C and N budgets throughout its growth cycle, including losses from leaves by
senescence. It also contains a mechanistic description of N translocation from vegetative parts to pods and grains after the
onset of flowering. The model has been calibrated on a one-year experiment with three fertiliser N levels conducted in
France, and subsequently tested on a similar experiment from Denmark for which no parameters were adjusted. In the
vegetative phase, the time course of biomass and N accumulations in the various plant compartments was well simulated,
with predicted values falling within one or two standard deviations from the mean in the measurements, except for the low-N
treatments for which the high rates of leaf senescence could not be mimicked. After the onset of flowering, some bias
appeared in the simulation of crop N uptake which impaired the predictions of final grain N yields. Simulated grain dry
matter yields matched observations within "15% for the calibration data set, but were over-estimated by a factor of 2 for
the other data set. Despite the above shortcomings, the simulation of fertiliser effects on the dynamics of crop N uptake and
dry matter was judged sufficiently satisfactory to allow an investigation of N losses from rapeseed–cropped soils with the
CERES-Rape model. q 1998 Elsevier Science B.V.
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1. Introduction

In temperate regions where its cycle lasts nearly
Žone year, the growth of winter oilseed rape Bras-

.sica napus L. is subjected to climatic hazards that

0378-4290r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII S0378-4290 97 00120-2
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may exert an important influence on yield, notwith-
standing damage by pests. In addition, oilseed rape
has high fertiliser requirements, as compared to other

Žwinter crops such as winter wheat Triticum aes-
.tiÕum L. , which enhance the risk of N loss from the

soil–crop system to the environment, whether by
nitrate leaching, ammonia volatilisation or denitrifi-
cation. In the context of the reformed European
Common Agricultural Policy of 1992, which pro-
moted in Europe the cultivation of rape as a bio-fuel
crop, it seemed relevant to study the effects of soil
and climate variability on both the final yield and the
environmental impacts of this crop. As a conse-
quence of their dynamic nature, these effects may
only be studied by means of a model simulating the
relevant crop processes as related to soil and weather
conditions.

A few rapeseed models exist in the literature
ŽHabekotte, 1996; Backx et al., 1984; Petersen et al.,´

.1995 , but they are incomplete as regards the above
objectives. The first two models do not simulate the
autumn and winter phases, whereas the third one
Ž .DAISY accounts neither for the loss of leaves due
to senescence, nor for the partitioning of dry matter
between pods and vegetative parts after flowering.

On the other hand, the CERES models constitute
a coherent, widely used framework for developing
and testing soil–crop models embedded in a simula-
tion software shell made available through an inter-

Ž .national network IBSNAT, 1990 . Here we adapted
Ž .the CERES-N Maize model Jones and Kiniry, 1986

to rapeseed by modifying the routines for net canopy
photosynthesis, root growth and distribution within
the soil profile, N uptake and partitioning of C and N

Žassimilates between crop compartments roots,
.leaves, stems, pods, and grain . The resulting model,

called CERES-Rape, is described and tested against
experimental data in this paper. Its submodel for leaf
and pod area indices has, however, already been

Žcalibrated and tested in a companion paper Gabrielle
.et al., 1998 .

The modified routines are based on standard con-
Žcepts underlying other CERES models e.g., Villalo-

.bos et al., 1996 , with attempt to maintain a balance
between mechanistic and empirical approaches. A

Ž .constant radiation-use efficiency RUE is used for
net canopy photosynthesis in the vegetative phase
Ž .Gosse et al., 1986 , and is altered in the reproduc-

tive phase when pods photosynthesize. The partition-
Ž .ing of dry matter DM between stems and leaves

depends on development with thermal time, and
source–sink relationships are introduced for the
translocation of N from vegetative parts to the grow-
ing pods after flowering. Effects of N stresses due to
low soil availability are taken into account as regards
net photosynthesis and leaf or pod elongation.

All the routines mentioned have been calibrated
on a data set from a one-year experiment in North-
eastern France involving cv. Goeland and three fer-´
tiliser N treatments. Using the same parameter set,
the model was further evaluated on a 1-yr experi-
ment from Denmark featuring another cultivar
Ž .Ceres and similar N treatments.

2. Materials and methods

2.1. Experimental data

The basic features of the two data sets used in the
model tests are summarised in Table 1. The Chalonsˆ
set was used for the calibration of the model’s

Žequations for leaf and pod area Gabrielle et al.,
.1998 , root growth, N uptake, and assimilate parti-

tioning, whereas the Jyndevad data served for criti-
cally evaluating the model predictions of crop DM
and N content obtained with the parameter set de-
rived in Chalons. Experimental details are given inˆ

Ž .Leviel et al. 1998 for Chalons and in Petersen et al.ˆ
Ž . Ž .1995 and Andersen et al. 1996 for Jyndevad.

In all experiments, crops were fully irrigated and
weed- and pest-protected, so that associated stresses

Žwere negligible. Daily climatic data global radia-
tion, minimum and maximum air temperatures, pre-

.cipitation and potential evapotranspiration were
measured at a local weather station located within 1
km from the experimental fields.

In Chalons, three replicate 30 m=30 m blocksˆ
arranged in a split-plot design with N treatment as
main plot and sampling date as subplot were drilled
in 0.29-m rows in late summer. At that time, soil
inorganic nitrogen storage down to 120 cm was ca.

y1 Ž100 kg N ha . Every two weeks four weeks in
. 2winter , in each block, three subsamples of 0.45-m

were collected, yielding a surface of 1.3-m2 per
Žreplicate. In Jyndevad, three autumn-sown 0.12-m

. 2rows N treatments were established in 15.2-m plots
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Table 1
Selected characteristics of the two experiments used for the calibration and evaluation of the CERES-Rape model
Name and location Soil N treatments Cultivar Sowing and harvest dates

Name Fertiliser N doses
y1Ž .kg N ha

Chalons; 4.18N, 6.78E Grey rendzina on chalk N0 0 Goeland 8r9r1994ˆ ´
Ž .Typic Udorthent; depths40 cm

N1 135 11r7r1995
N2 272

Jyndevad; 54.38N, 12.38E Coarse sand N0 48 Ceres 20r8r1991
Ž .Orthic Haplohumod; depths60 cm

N1 155 15r7r1992
N2 261

arranged in a randomised block design, with four
replicates. Every 10 days in spring, 0.5-m2 samples
were taken in each plot.

In all experiments, the collected plants were sepa-
Ž .rated into leaves with senescent and green fractions ,

Žstems, roots although only the tap root was sam-
.pled , and pods. The subsamples were then weighed

after drying for 48 h at 808C, and analysed for
carbon and nitrogen content using the Dumas method.
To quantify the biomass and N losses from the crop,
dead leaves were collected weekly on plastic mesh
placed on the soil surface below the canopy.

For the in situ analysis of root growth, 4-m wide
and 2.5-m deep trenches were dug once a month
perpendicular to the rows, in which a vertical face
was prepared using knives, brushes and small bel-
lows to make the roots visible. The presence or
absence of roots was then mapped through a 20-mm
grid mesh fixed on the face. This yielded the crops’
maximum rooting depth for each treatment, but not

Ž y3directly the root length density RLD, cm roots cm
.soil which was also of interest in the N uptake part

of the model. However, we assumed the distribution
of this variable to parallel that of the frequency of
occupation we had measured over the profile, with
an occupation of 100% corresponding to a maximum
RLD value of 5 cm roots cmy3 soil, as measured by

Ž .Petersen et al. 1995 on winter rape.

2.2. Model description

ŽFrom daily weather data rain, air temperature,
.and solar radiation , the CERES-Rape model com-

putes the variables related to crop growth and devel-
opment and to the soil water and N balances. Its soil
components have been tested and adapted for the
prediction of soil water flow, nitrate leaching and N

Žmineralisation Gabrielle et al., 1995; Gabrielle and
.Kengni, 1996 from the original CERES-N Maize

routines, and will not be described here.
The following paragraphs detail the CERES-Rape

modules for crop phenology, photosynthesis and leaf
and root development, and their interactions with N
availability in soil. For these functions, a potential
rate linked to air temperature and solar radiation is
first calculated and then multiplied by stress factors
between zero and unity accounting for possible limi-
tations of N. Lastly, some of the equations and
coefficients presented were derived from the Chalonsˆ
data set.

2.2.1. Crop phenology
Crop emergence occurs after 120 growing

Ž .degree-days with a base temperature of 08C GDD0
from sowing, as modulated by soil moisture content
Ž .Leterme, 1988 . The phenology module of CERES-
Rape then considers one vegetative stage, from crop
emergence to the onset of flowering, and subse-
quently three reproductive stages:
Ž .i from the onset of flowering to mid-flowering
Ž .ii from mid-flowering to the end of flowering
Ž .iii from the end of flowering to crop maturation.
The four boundary dates associated with the above

stages depend on sowing date, on GDD from emer-
gence with a base temperature of 0, and on mean day

Ž .length until i starts. This part of CERES-Rape is
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Ž .discussed in detail by Husson and Leterme 1998 ,
who found prediction errors of 7 to 9 days for the
flowering dates in a cross-validation study involving
eight cultivars and over 10 locations in France. Since
we focused on the analysis of crop growth processes,
we did not deal with the validation of this phenology
module, given in addition the limited climatic range
of our experimental data. The boundary dates of the
reproductive stages were then set to their observed
values.

Ž .Leaf expansion stops after ii , when pods become
a sink for N and induce translocation of N from
leaves and stems. This does not stop photosynthesis
in the vegetative parts, but reduces its efficiency and

Žaccelerates senescence for lack of N Sinclair and de
.Wit, 1975 . In addition to the depressive effect of the

decreasing leaf N content, the radiation available to
the leaves is reduced because of shading by the

Žoverlying pods reflection by flowers is not consid-
. Ž .ered yet . After i , the N taken up by shoots is

Ž .partitioned to pods. Pods start elongating after ii ,
and progressively increase photosynthesis.

2.2.2. Leaf and pod area
The modelling of the crop leaf and pod area

Ž .indices LAI and PAI, respectively has been de-
Žscribed and tested in a companion paper Gabrielle et

.al., 1998 , and will not be discussed further. In short,
the daily increase in LAI or PAI is a function of
degree-days with a base temperature of 4.58C. The
potential LAI growth rate is modulated by leaf N
content if N is limiting for leaf expansion. Senes-
cence from N deficiencies or mutual shading within
the canopy is also included.

2.2.3. Root growth
In the Chalons experiment, the root tip extendedˆ

downwards with a constant rate in thermal time
Ž . y1base 08C of approximately 0.08 cm 8C , whatever

Ž .the N treatment Fig. 1 . However, this rate appeared
Žto be reduced by about 40% below the topsoil 0–40

.cm layer in zones of compact chalk that comprised
most of the subsoil. In these zones, the potential
value of 0.08 cm 8Cy1 still held for the few moni-
tored plants growing over veins where chalk pro-

Žvided mechanical constraint to root elongation Fig.
.1 . In the model, the potential rate was diminished

Fig. 1. Dynamics of rooting depth observed in Chalons for theˆ
three N treatments. The cross symbols associated with lines

Ž . Ž .represent the average "1 s.d. rooting depths for N0 PPP and
Ž .N2 , whereas the square symbols represent the maxi-

mum rooting depths observed in veins of altered chalk, where
mechanical stresses were negligible. The straight line illustrates

Ž 2the regression of those points against thermal time R s0.98,
.dfs15 , the slope of which is the root maximum penetration rate

Ž .see text .

by the empirical coefficient of 40% below the top-
soil. The maximum rooting depth observed was 120
cm, so root penetration was not allowed to exceed
that depth.

ŽThe daily increase in root length density RLD,
y3 .cm roots cm soil was considered proportional to

the rate of root vertical elongation. In each soil layer
ŽL that had been colonised, with L varying from 1 at

.the surface to N at the bottom the variation of RLD
was thus:
DRLD L sRLD y L DZ 1Ž . Ž . Ž .max RLD r

Ž .where Z is the rooting depth cm , RLD is ther max
Ž y3maximum RLD set at 5 cm roots cm soil, after
Ž ..Petersen et al. 1995 , and y is the relativeRLD

Ž y1 .lateral extension rate cm .
Such approximation allowed us to derive values

of y for each soil layer, based on the ChalonsˆRLD
data for all treatments. Due to the same mechanical
stresses as for the root vertical extension, y wasRLD

Ždiminished in the chalky layers varying from 1.33 in
.the topsoil layer to 0.25 underneath .

2.2.4. Photosynthesis
In the vegetative phase, the daily increase in crop

Ž y1 y1.dry matter DDM, t ha day resulting from net
canopy photosynthesis by the leaves is calculated
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from incoming solar photosynthetically active radia-
Ž y2 y1.tion PAR, MJ m day as:

w xDDMsRUE=PAR 1ya 1yexp ykLAIŽ . Ž .
2Ž .

where RUE is the efficiency of the conversion of
Ž . Žintercepted PAR PAR into dry matter g DMi

y1 y2 . Ž .MJ m . The last two terms in Eq. 2 represent
Ž .i the fraction of PAR that is not reflected by the

Ž .canopy, calculated as 1ya , where a is the canopy
Ž .reflectivity for PAR and ii the fraction intercepted

by the canopy, which is based on a Beer–Lambert
attenuation law, with a factor proportional to the leaf
area index involving an extinction coefficient k.
Canopy reflectivity was taken as 0.05, while k has
been shown to be in the range 0.7–1.0 for rape by

Ž .Andersen et al. 1996 , and was here set to 0.75
which is typical for crops with relatively flat leaves,

Ž .and as derived from Gosse et al. 1983 .
Ž .Eq. 2 has been successfully used for modeling

the dry matter growth of a series of crops, including
Žspring and winter rape Gosse et al., 1986; Morrison

.et al., 1995; Andersen et al., 1996 , from which
studies a median RUE value of 2.4 g DM MJy1 my2

intercepted PAR was selected.
After the start of elongation, pods are said to be

autotrophic for C, although translocations from leaves
Žhave been reported in their early growth Leterme,

. Ž .1985 . Pod growth lasts 1000 GDD Leterme, 19880
with a constant radiation-use efficiency of 2.0 g DM
MJy1 PAR during the first 500 GDD , linearly0
decreasing to 0.1 g DM MJy1 PAR because of oil

Žproduction in grains and pod senescence Leterme,
.1985 . The extinction coefficient for pods is set at

0.5 according to measurements by Andersen et al.,
1996. The PAI increases from mid-flowering on, and
is subject to N stress.

2.2.5. Dry matter partitioning
Throughout the growth cycle, leaf photosynthate

is distributed among the root, stem, and leaf com-
partments. Until stem growth becomes a significant
sink in late winter, leaves have priority for dry
matter. After a time interval of 1000 GDD from0
emergence, corresponding to the onset of stem elon-
gation, stems have priority over leaves. New leaves
are generated with a specific weight that depends on

Fig. 2. Fraction of daily dry matter increase that is partitioned to
Ž .the stems, for two treatments in Chalons symbols as a functionˆ

Žof thermal time. The solid line is an exponential regression see
.text; RMSEs0.0188, dfs7 .

Ž .leaf number Gabrielle et al., 1998 . The fraction of
Ž y2 y1.total net photosynthesis DDM, g DM m day

partitioned to the stems is then dependent on thermal
Ž .time base 08C , and calculated as:

DDM stems y3sexp 5.85=10 GDD y1500Ž .0
DDM

3Ž .

where DDM is the dry matter partitioned to thestems
Ž .stems. Eq. 3 was established by regression on the

data corresponding to the N0 and N2 treatments in
Chalons, and its coefficients did not seem to beˆ

Ž .affected by crop N status Fig. 2 . For GDD )1500,0
Ž .the right-hand side of Eq. 3 is set at 1. Throughout

the growth cycle, the photosynthate remaining after
partitions to leaves and stems is stored in the roots.

Ž .In reproductive stage ii , pod photosynthate is
partitioned to pod walls, after which priority is given
to the grain. The average size of both pods and
grains, as calculated by the phenology module, may
limit the intake of dry matter by these compartments

Žon the basis of allometric relationships Vardon,
.1994 .

2.2.6. N uptake
N uptake from the soil is based on a supply-and-

demand scheme, with the demand being driven only
Ž .by the vegetative parts leaves, stems and roots .

Crop demand is controlled by a critical N concentra-
tion in shoots that represent an optimum for crop
biomass production. This concentration decreases
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with increasing dry matter, following a relationship
Žrelatively similar for all C crops Greenwood et al.,3

.1990 . A particular form of this equation has recently
been established for rapeseed by Colnenne et al.
Ž .1998 , and validated for shoot biomass up to 650 g
DM my2 . This critical shoot N concentration is:

y0 .25N s4.48 DMr100 if DMG90,Ž .c

otherwise N s4.60 4Ž .c

Ž y2 .where DM is the shoot dry matter g m , and Nc
Ž .is the critical N concentration % . Shoots tend to

generate new tissue with the critical concentration
N , and to attain it in the rest of the dry matter wherec
the actual concentration is noted N . However, criti-a
cal N levels may be exceeded by more than 60% for

Ž .wheat Justes et al., 1994 and 43% for rapeseed
Ž .Colnenne et al., 1998 , which corresponds to the
maximum shoot N concentrations obtained in field
crops. We then allowed an arbitrary 40% margin
above N for the shoots, which was restricted to thec
leaves because it appeared that the measured N
concentrations in the stems never exceeded the criti-
cal shoot concentration. Lastly, the root N demand

Žwas taken from CERES-N Maize Jones and Kiniry,
.1986 based on the following N dilution equation:

y0 .3N s4.0 DMr100 if DMG100,Ž .ro

otherwise N s4.00 5Ž .ro

Ž y2 .where DM is the root dry matter g m and N isro
Ž .a N concentration % that represents an average

level of N in roots for a given level of root biomass
under nonstress conditions.

Ž .The daily demand N for each compartmentdemthus reads:
y2 w xN s 10 DM= 1.4 N yN qDDM= 1.4 N for leaves and rootsŽ .dem c a c
y2 w xN s 10 DM= N yN qDDM=N for stemsŽ .dem c a c
y2 w xN s 10 DM= 1.4 N yN qDDM= 1.4 N for rootsŽ .dem ro a ro

6Ž .

with DM referring the compartment of the corre-
Ž y2 .sponding dry matter g m , and N to the Na

Ž .concentration % . The unit of N is then g Ndem
my2 . Because of a systematic underestimation of
root N concentration by the model, a 40% margin
above the reference level N was also allowed forro
this compartment, as for the leaves.

N supply by the soil depends on the availability of
nutrients and on the absorption capacity of the roots
in each soil layer. In preliminary tests, when using
the original equation of CERES-N Maize for N
supply from soil, it appeared that this term was never
limiting. Even after calibrating this equation, the
simulated dynamics of N supply seemed unlikely,
because it was insensitive to low nitrate concentra-
tion. Actually, the supply equation was developed
for maize undergoing severe water stress, where
diffusion of nitrate was limited by dry soil condi-
tions, contrary to our mostly nitrate-limited condi-
tions for winter rape. We then proposed an equation
based on a steady-state diffusive transport of NOy to3

Ž .the roots, after Watts and Hanks 1978 . The daily
Ž y1 .supply of N N , kg N ha from each soil layerSup

in the root zone reads:

w xNO y0.5 ZŽ .31.5N sD=RLD 7Ž .Sup
u

Ž .where Z is the layer thickness cm , u the volumet-
w xric moisture content, and NO is the nitrate concen-3

y1 w xtration in mg N kg soil. If NO F0.5 mg N3
kgy1, there is no absorption, because this residual
nitrate is assumed unavailable to the roots. D is
analogous to a diffusion coefficient per unit area of

Ž y1 . y3root cm day , and was calibrated at 2=10 cm
dayy1 against absorption data for the N2 treatment.

Ž . Ž yEq. 7 implies roots are zero-sinks i.e., the NO3
.concentration is nil at the root surface , although

plants can regulate it by adjusting NOy concentra-3
Ž .tion in xylem de Willigen and van Nordwijk, 1987 .

Ž .For lack of definite evidence, Eq. 7 does not
include the possible effect of the low temperature
experienced by the shoots and roots in winter on the
absorption of N. Although a temporary depressing
effect was exhibited on potted rapeseed plants

Žabruptly subjected to a temperature of 78C Laine et
.al., 1996 , this temperature stress was alleviated

within a few days as the uptake tended to respond
essentially to the crop demand, which had accord-

Žingly diminished due to the low temperature Bigot
.and Boucaud, 1996 . In our model, the indirect effect

of low temperatures on crop absorption of N is thus
found in the decrease of net photosynthesis; hence, N
demand.
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2.2.7. N partitioning
In the vegetative parts, the partitioning of N be-

tween shoots and roots is in proportion to their
respective demands for N. For shoots, N concentra-
tion is not identical in leaves and stems, because N
demand obeys different equations for either organ.

In the reproductive phase, we modelled the N
translocations from roots, stems and leaves to pods

Ž .after the scheme of Sinclair and Muchow 1995 for
maize. Two pools of N available from these organs
are calculated at mid-flowering by assuming residual
N contents of 0.8 g N my2 for leaves, 0.8 g N gy1

DM for stems, and 0.6 g N gy1 DM for roots,
according to the mean values measured at harvest in
Chalons. The N translocation pools are notedˆ
TRNLF, TRNST and TRNRO for leaves stems and

Ž y2 .roots, respectively, and computed in g N m as:

TRNLFsLAI N yN for the leavesŽ .a r

TRNSTsDM N yN for the stemsŽ . 8Ž .stem a r

TRNROsDM N yN for the rootsŽ .root a r

where a and r denote the actual and residual con-
tents, respectively.

Ž . Ž .Afterwards, in stages ii and iii , the daily flow
Ž .of N to the pods from the leaves or stems corre-

Ž .sponds to the daily GDD base 08C divided by the
total duration of pod growth, set at 600 GDD , times0

Ž .the pool size. In stage iii , the N uptake by vegeta-
Ž .tive components stops. In stage ii , the translocated

N is stored in the pod walls, after which it is
partitioned to the growing seeds. In grains and pods,

Ž .a maximum N concentration of 5% wrw is im-
posed, resulting in either a lower N intake by the
pods or a temporary storage in the pod walls if seed
demand is limiting.

As a result of translocation, a fraction of leaf area
Ž .becomes senescent Gabrielle et al., 1998 . Stem

biomass is also reduced by assuming that 1 g of
translocated N corresponds to 6.25 g of DM.

2.2.8. Water and N stresses
As in CERES-N Maize, environmental stresses

are summarised as multiplicative 0–1 factors appear-
ing in the equations for net photosynthesis and leaf
and pod elongation.

The water factor is taken here as unity throughout
the growing season, since crops were irrigated to

prevent water stress. The N stress factors for organ
elongation are based on the Nitrogen Nutrition Index
Ž .NNI; see e.g., Lemaire et al., 1989 , expressed as
the ratio of actual to critical N content in a given

Ž .compartment leaves or pod walls . NNI is moreover
Ž .bounded between zero and unity. Eq. 4 was used

for calculating critical levels in leaves, whereas a
specific curve for N dilution in the pod walls had to

Ž .be introduced Gabrielle, 1996 .
In CERES-N Maize, a factor similar to the NNI is

used to account for N stress on leaf photosynthesis.
Here, however, we based this response function on

Ž .data by Gammelvind et al. 1996 , who measured the
net CO assimilation rates of winter rape leaves and2

Žpods in relation to their specific N content SLN, g N
y2 .m . A similar relationship was also derived by

Ž .Sinclair and Amir 1992 , both at the leaf and at the
canopy level. The 0–1 factor for leaf photosynthesis
thus reads:
N s y4.7SLN 2q28.2SLNy8.5 r33.8 9Ž . Ž .leaf

In addition, N was maintained above 0.2, cor-leaf
responding to the range of response investigated by

Ž .Gammelvind et al. 1996 . In a similar manner, the
N factor for pod photosynthesis reads:
N s y1.3SPN 2q8.6SPNy2.3 r10.63 10Ž . Ž .pods

where SPN is the specific nitrogen content of pod
Ž y2 .walls g N m .

2.2.9. Yield components
ŽThe yield components mean number of pods per
.plant, and of seeds per pod are calculated at the end

of flowering as a function of the amount of radiation
intercepted and of the extent of predicted water

Ž . Ž .stress during stage iii Vardon, 1994 . From that
day onwards, grains start to develop and accumulate
C from pod photosynthesis and N from translocation.

Ž .Oil concentration O , % wrw in seeds at harvest isc
Ž .calculated from N concentration N , % wrw , andg

Ž y1 .seed weight SW, g DM seed after Andersen et
Ž .al. 1996 :

O s63.3y7.37N q1.31SW 11Ž .c g

2.3. Model calibration

In Section 2.2, the equations described were
parametrised from the literature or from regressions
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on the Chalons data. Thus, as a general rule, theseˆ
parameter values were not obtained from an adjust-
ment of the CERES-Rape model to observed data.
However, systematic discrepancies had to be ad-
dressed by such direct curve-fitting in the phenology
and N uptake modules. For the former, an underesti-
mate of the grain to pod dry matter ratio led us to
increase the potential for DM intake by the grains, as
compared to that originally obtained by Leterme
Ž .1985 on cv. Jet Neuf.

In Jyndevad, none of the crop parameters ob-
tained in Chalons were calibrated, although the culti-ˆ

Ž .var employed Ceres was different. We hypothe-
sized that genotype parameters had little influence,
except for the phenological development that was
not fully simulated since the actual flowering date
was input to the model.

In both sites, the simulated soil water and N
dynamics were checked against measurements of soil
moisture and N content, and the corresponding pa-
rameters were adjusted to provide realistic predic-

Ž .tions Gabrielle, 1996 . However, the model was not
forced with the observed data of soil water and
inorganic N content. Lastly, a freezing event in early
January 1995 in Chalons induced losses of green leafˆ
area that were not taken into account by the model;
therefore, the simulated values of green LAI, leaf
DM and N contents were re-initialised after the
freeze.

3. Results and discussion

The major variables relevant to crop growth, as
output by CERES-Rape, are compared to field obser-

Ž . Ž .Fig. 3. Selected simulated lines and observed symbols, "s.d. variables related to the growth of rapeseed in Chalons, with theˆ
CERES-Rape model for the N2 treatment.
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Ž . Ž .Fig. 4. Selected simulated lines and observed symbols, "s.d. variables related to the growth of rapeseed in Chalons, with theˆ
CERES-Rape model for the N1 treatment.

vations on Figs. 3–5 for Chalons and on Figs. 6–8ˆ
for Jyndevad, for treatments N2, N1 and N0, respec-
tively.

3.1. VegetatiÕe growth

In both locations, the time course of plant total
dry matter was well simulated for the high-N treat-

Ž .ments N2 and N1 , but tended to be overestimated
Ž .for the other treatment N0 from spring onwards.

The prediction of potential net photosynthesis was
then correct, with the N stress factor being possibly
biased. Actually, DM overestimation seemed corre-
lated with an overprediction of green LAI, as was
notably the case for the N0 crop in Jyndevad. This
emphasizes the sensitivity of DM production to LAI,
especially in the low range, as encountered in the N0
treatments. However, since in those cases LAI is

limited mostly because of a high turnover of leaves,
senescence and green LAI are difficult to predict
accurately. As expressed in the model, leaf senes-
cence is driven by threshold parameters, which are
relatively sensitive, making it difficult to find the
right balance between leaf C–N contents and area at
the canopy level.

This difficulty explains why the observed plateau
of LAI for the N0 crop in Chalons could not beˆ
reproduced by the model from the end of winter
onwards, which resulted in an overestimation of crop
total DM. In Jyndevad, the model simulated a LAI
plateau until spring that must have been too high
when compared to actual LAI at its end, and this
induced a constant overestimation of crop DM.

Simulation of plant apparent N absorption proved
more problematic than dry matter, especially in the
spring–summer phases during which different pat-
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Ž . Ž .Fig. 5. Selected simulated lines and observed symbols, "s.d. variables related to the growth of rapeseed in Chalons, with theˆ
CERES-Rape model for the N0 treatment.

terns were observed. Until early spring, crop N was
reasonably well simulated, sometimes reflecting
small errors in crop DM, with the exception of the
N0 treatment in Jyndevad, for which N was markedly
underpredicted despite overpredicted DM. This indi-
cates that the N limitation on photosynthesis was not
strong enough in the low range of specific leaf N,
and also that soil supply may have been underesti-
mated. This is not apparent in the Chalons N0 simu-ˆ
lation, but the comparison cannot be made because it
involved twofold higher levels of DM.

After flowering, the accumulation of total crop N
was strikingly different between the N1–N2 and N0

Žtreatments: crop N stabilised, or even decreased N1,
.Chalons in the former case, whereas it increased byˆ

15–20% in the latter. Such a pattern has also been
Ž .reported by Schjoerring et al. 1995 , but could not

be fully explained by CERES-Rape. For the N0
treatments, the model simulated a slight decrease in
crop N after flowering because N uptake stopped,
and structural N was lost in falling leaves, instead of
the observed increase in crop N. This resulted in a
marked underestimation of pod N in Chalons. En-ˆ
abling uptake of N by stems and further translocation

Žto grains after flowering removed this bias data not
.shown , but appears to be in disagreement with the

hypothesis that stems senesce during that period, as
evidenced by their decreasing DM. In addition, this
uptake scheme induced an overestimation of crop N
for the N1–N2 treatments.

Another factor accounting for bias in Chalons isˆ
the strong increase in leaf N concentration observed
for all treatments upon regrowth in spring. It corre-
sponded to a storage by the crops of soil N made
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Ž . Ž .Fig. 6. Selected simulated lines and observed symbols, "s.d. variables related to the growth of rapeseed in Jyndevad, with the
CERES-Rape model for the N2 treatment.

available through mineralisation and fertiliser appli-
cation, but could not be explained by the concept of
critical N content, since it was also associated with
an increasing biomass. This discrepancy underlines a
structural weakness of the supply and demand scheme
for computing N uptake, relying on the assumption
that it is essentially regulated by crop biomass. In
cases of high soil N availability, this assumption is
indeed likely to be violated, and alternative concepts
for N uptake should be worth considering, such as
the use of a Michaelis–Menten absorption model
with respect to soil NOy concentration that circum-3
vents the use of a plant demand term.

The partitioning of DM between stems and leaves
seemed correct for all treatments in Chalons, whichˆ

Ž .would be expected because the regression of Eq. 3

was obtained at the same location. In Jyndevad,
except for the N0 treatment for which total DM was
biased, the DM of leaves and stems were also cor-
rect, which supports the use of a leaf DM demand
term to regulate DM allocation in the model. Leaf
demand is calculated from the increase in LAI by

Ž y2 .use of a specific leaf weight SLW, g DM m .
SLW was parametrised from measurements on indi-
vidual leaves in Chalons according to leaf number,ˆ
and although this parameterisation may vary accord-
ing to the rape cultivar, it seemed to apply in Jynde-
vad to some extent. To assume a fixed time course
for SLW, regardless of crop N status or cultivar,
could be regarded as a weak point in the model.
However, this method of driving leaf biomass de-
mand is probably as successful as the common alter-
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Ž . Ž .Fig. 7. Selected simulated lines and observed symbols, "s.d. variables related to the growth of rapeseed in Jyndevad, with the
CERES-Rape model for the N1 treatment.

native consisting in deriving fixed dry matter parti-
tioning factors, as exemplified here for the stem
compartment.

Lastly, in the model, DM partition to roots stopped
in late winter when stems were becoming a signifi-
cant sink for photosynthate, whereas in reality the
roots accumulated DM for all treatments until late
spring. This spring growth is surprising, since at that
time rapeseed roots have been found to support the
regrowth of shoots rather than to be storing addi-

Ž .tional reserves Mendham and Salisbury, 1995 .
Whatever the particular physiological cause for this,
stem DM was overestimated by the model as a
result, implying that the partitioning factor for the
stems should be reduced to allow more DM into the
roots during stem elongation. To maintain agreement

with the regression in Fig. 2, this factor could for
instance be bounded by 0.9, limiting the strength of
stems as a sink for photosynthate.

The results regarding the partitioning of N among
the crop compartments are generally similar to those
pertaining to DM, except for the previously men-
tioned underestimation of leaf N in spring in Chalons.ˆ
Unfortunately, no data were available for Jyndevad.

3.2. ReproductiÕe growth

The timing of the green LAI peak before the
decline associated with the onset of pod growth was
well simulated, due to the use of the measured date
of flowering in the model. However, contrary to the
model’s hypotheses, the rate of the LAI decline did



( )B. Gabrielle et al.rField Crops Research 57 1998 95–111 107

Ž . Ž .Fig. 8. Selected simulated lines and observed symbols, "s.d. variables related to the growth of rapeseed in Jyndevad, with the
CERES-Rape model for the N0 treatment.

not appear constant with respect to thermal time, and
the simulation was less realistic. The base tempera-
ture of 08C employed here may then be incorrect,
although it worked fairly well for the N translocation
rate itself in Chalons. The size of the pool of Nˆ
mobilisable by the pods from the vegetative parts
was well predicted only for the N2 crop, but for the
other treatments it was strongly affected by the
previously mentioned bias in total crop N. The fact
that measured N concentration in stems at harvest
was also variable caused additional errors in the
translocation pools, since the residual contents were
fixed in the model.

This resulted in significant discrepancies in the
prediction of pod N content at harvest, and to a
lesser extent in that of pod DM and pod area index.
It appears indeed that the biases in pod N essentially

affected the N content of grain, so that pod wall N
was realistic enough to reflect the actual N stresses.

In Jyndevad, there were no experimental data
available on pod N or grain DM, and the PAI data
could not be directly compared to the simulations
because these concerned total pod area, whereas the
observations pertained to green PAI only. However,
it seems that from the beginning of its growth, the
PAI tended to be overestimated, which resulted in
pod DM being also overestimated. Measured PAI
was systematically lower in Jyndevad than in
Chalons, implying that the maximum final PAI value,ˆ
set at 2.5 in Chalons, should be reduced for cv.ˆ
Ceres used in Jyndevad. Despite the closely con-
trolled irrigation, temporary water stresses cannot
also be ruled out on the well-drained sandy soil
under the high evaporative demands encountered
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Table 2
Ž .Measured "s.d. in brackets and simulated yield components for the rapeseed crops in Chalons and Jyndevadˆ

Location and Grain DM yield Grain N yield Oil content Straw yield Straw N
y1 y1 y1 y1 y1Ž . Ž . Ž . Ž . Ž .treatment t DM ha kg N ha t oil ha t DM ha kg N ha

Chalons N2ˆ
Ž . Ž . Ž . Ž .Measured 4.87 0.33 155.8 24.6 2.43 11.28 0.97 93.8 6.8

Simulated 4.69 162.1 1.78 12.16 57.2

Chalons N1ˆ
Ž . Ž . Ž . Ž .Measured 4.13 0.45 100.6 12.7 2.16 9.52 0.85 39.0 1.6

Simulated 3.99 125.9 1.60 11.01 52.0

Chalons N0ˆ
Ž . Ž . Ž . Ž .Measured 2.80 0.43 62.5 11.7 1.49 6.07 0.72 25.8 2.8

Simulated 2.46 25.0 1.37 8.46 18.1

JyndeÕad N2
Ž . Ž . Ž . Ž . Ž .Measured 2.40 0.34 80.6 10.8 1.06 0.17 5.36 0.33 30.4 2.8

Simulated 5.06 97.4 2.49 7.97 21.7

JyndeÕad N1
Ž . Ž . Ž . Ž . Ž .Measured 2.34 0.17 65.2 4.7 1.09 0.08 4.79 0.35 19.8 2.5

Simulated 4.24 83.4 2.07 7.04 18.2

JyndeÕad N0
Ž . Ž . Ž . Ž . Ž .Measured 1.25 0.16 33.3 4.4 0.60 0.08 2.09 0.29 7.8 1.6

Simulated 1.73 14.7 0.99 4.71 10.2

Ž .The straw refers to unharvested parts as a whole including chaff, roots and pod walls .
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during pod growth. Nevertheless, assuming a fixed
maximum PAI for an indeterminate plant such as
rapeseed remains a crude simplification, because, for
instance, the number of pods generated is regulated
by the availability of photosynthate from the rest of
the plant. A more biological approach to determine
the maximum PAI should be considered.

Lastly, for the Chalons data, it is difficult to judgeˆ
the partitioning of N and DM between pod walls and
grains because of the bias in pod N. The relative
proportions of N and DM partitioned to grains and
pod walls seemed to be reasonably well simulated by
the model, despite variations in the observed grain to
total pod DM and N ratios.

3.2.1. Yield components
Measured and simulated yield components are

presented in Table 2. In Chalons, simulated grainˆ
DM yield matched observations within 15%, but
grain N content was markedly too low or too high
for the N0 or N1 and N2 treatments, respectively.
This could be expected from the previously men-
tioned bias in pod N for N0 and N1, but for N2 it
should be ascribed to an incorrect partitioning of N
between grain and pod walls at harvest. The model
also predicted too much DM in straw, and more
specifically in stems, for which the simulated final
decrease in biomass was too small. The latter may be
ascribed to a mobilisation of photosynthate from
stems, along with some respiration in the structural
tissues that was not accounted for by the model.

At Jyndevad, DM yield was nearly two-fold over-
predicted, whereas N yields were within 30% of
observations with a positive bias. These errors are
much larger than those pertaining to pods DM and
crop total N content, visible as displayed in Figs.
6–8, underlining the model’s shortcomings in parti-
tioning pod assimilates between pod walls and grains.
The yield discrepancies should however be smaller

Ž .because i an estimated 20% of pods and seeds was
Ž .lost at harvest and ii a short drought period at the

beginning of the pod filling phase may have im-
Ž .paired grain yield Andersen et al., 1996 .

As a consequence of the errors on yields, oil
contents were overestimated in Jyndevad, although

Ž .Eq. 11 was partly derived from the Jyndevad data.
This relationship was also barely successful in

Chalons, where the simulated yields were closer toˆ
the observed ones, except for the N0 treatment. The
chemical composition of grains strongly depends on

Ž .their growing and nutrition conditions, thus Eq. 11
applied best to the Chalons N0 treatment because itsˆ
yields were in the range of those on which the
equation was calibrated.

4. Conclusion

This paper presents an attempt at simulating the
major processes determining the C and N assimila-
tion of a winter oilseed rape crop throughout its
growing season, based on commonly-used principles
regarding leaf area development and senescence, net
photosynthesis at the canopy level, and translocation
of N to reproductive organs, together with the effects
of limited soil N availability. Although the equations
employed have allowed successful predictions of

Žcanopy status for a number of crops Jones and
.Kiniry, 1986; Sinclair and Amir, 1992 , their appli-

cation to rape presented additional challenges such
as the simulation of a high turnover of leaves or of
the mechanisms of pod and grain growth as triggered
by an indeterminate flowering. Although few previ-
ous modelling exercises have covered the whole
growing season or taken N nutrition effects into
account, values for most parameters could be as-
sessed from literature or additional data.

In the vegetative phase, the time courses of most
Žof the variables of interest LAI, dry matter and N

.contents within the various plant compartments were
well simulated, with the restriction that the model
tended to underestimate crop N content, especially
for the low N treatments. For the latter, LAI was
conversely overestimated, pointing at a tendency to
overpredict leaf elongation under N stress, thus over-
estimating net photosynthesis and ultimately the DM
and N loss due to leaf senescence. However, this
bias could not be dealt with in the calibration phase,
implying that new equations for N stress should be
derived from data covering a wider range of condi-
tions than the present set.

In the reproductive phase, despite the use of the
observed dates for the onset of flowering, the dynam-
ics of pod and grain growth revealed some shortcom-



( )B. Gabrielle et al.rField Crops Research 57 1998 95–111110

ings of the current model. Notable errors occurred in
the simulation of pod growth, essentially deriving
from previous errors in crop N content, which made
it difficult to test the module that partitions pod
assimilate to grain. However, the fact that the fluxes
of N between vegetative parts and pods and between
pod walls and grains were driven by tissue N con-
centrations interfered with the N stress factors that
affect photosynthesis, also determined by N concen-
trations, making the corresponding parameters very
sensitive. An alternative approach, employed for

Žmaize and sunflower Jones and Kiniry, 1986; Vil-
.lalobos et al., 1996 would consist in calculating a N

demand for grains as a driving variable. However,
while this scheme is more stable, it cannot account
for the variability in grain N content when N is
highly available.

While some of its modules, particularly in the
reproductive phase, deserve further testing, CERES-
Rape provided a sound basis for the modelling of the
growth of winter rape, as related to soil N status.
Although it might well be outranked by a simple
statistical predictor as regards grain yields, it should
prove a relevant tool for analysing the time course of
C–N balances within the soil–crop system, as al-

Ž .ready used by Gabrielle 1996 in a study of N losses
to the atmosphere and to groundwater under rape.

Along with the identification of varietal parame-
ters, the effects of drought could be included in a
later version, as is the case with other models from
the CERES family. Further work on the model would
be facilitated by its scheduled integration into the

Ž .DSSAT framework IBSNAT, 1990 .
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Abstract. In many hydrological applications, the modelling of water infiltration in soil is based
either on Richards’ equation or on the empirical concept of field-capacity utilized by capacity-
type models. These two approaches feature different integration scales, and are often presented as
antagonistic, with the former being physically correct and the latter a practical surrogate, however
flawed by uncertain parameters. Here, we conducted a theoretical appraisal of a generic capacity
model by comparing its predictions of water content in a macroscopic layer subjected to a constant
surface infiltration flux with a length-averaged analytical solution of Richards’ equation. We show
that the choices of the time and spatial scales for the empirical model are not arbitrary, and discuss
the cases in which they lead to an agreement with the mechanistic description, for a range of initial
and boundary conditions, and for three soil types (sandy, loamy, and clayey). The concept of field-
capacity hardly applies for the sandy soil because of its high hydraulic conductivity, but yields
good results for finer textured soils. Provided that layer thickness exceeds 15 cm, capacity-type
predictions had a 50% probability of being within 20% of mechanistic solutions, without requiring
the hydrodynamic characterisation of the soil.

Key words: water infiltration, field-capacity, soil water balance, analytical solutions, Richards’
equation.

1. Introduction

The computation of vertical water infiltration and transfer in soil constitutes a long-
debated issue in soil physics as well as in less fundamental fields. As Ross (1990)
pointed out, there is an acute need in agronomy or hydrology for efficient methods
to estimate the water balance of a cultivated field or a watershed. Such demands
have been dealt with in a wide body of literature, from which two main classes of
infiltration models may be drawn (Addiscott and Wagenet, 1985). A first approach
is based on the physics of transport in porous media at a local scale, defined by that
of the average representative volume in which transport parameters are no longer
subject to irregular pore-scale variations. Since they derive from basic principles of
fluid mechanics, the corresponding equations are deemed as exact representations
of reality, provided that the medium is homogeneous at the considered spatial scale.
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A rather empirical approach to water flow has also developed on the concept of
field-capacity, a moisture content at which gravity and capillary forces are supposed
to be exactly balanced in a given macroscopic soil volume. Here, the soil profile
is divided into a set of macro-layers that accumulate water until the field-capacity
content is reached, and transfer extra incoming water to the next layer down. In the
following we denote as macroscopic the vertical scale of these models, which is
several orders of magnitude larger than that of the local approach (over 10 cm versus
a few millimetres).

Both approaches have been extensively used for the prediction of soil moisture at
the field scale, and sometimes compared with respect to their accuracy and operating
constraints. Vachaud et al. (1990) suggested that empirical models require less inputs
and are less sensitive to their spatial variability than local models, which contributes
to make them an attractive tool in agronomy and hydrology research. On the other
hand, cases where their simulations proved biased have been reported (e.g. Comerma
et al., 1985). Using the field-capacity model of Ritchie (1985), Gabrielle et al.
(1995) could remove a systematic discrepancy between observed and simulated soil
water storages by adjusting a rate parameter (drainage coefficient) for water transfer
between macro-layers. Such fitting appears rather empirical and may have deterred
efforts to establish a connection between the two classes of modelling. However, as
far as parameterisation is concerned, the macroscopic approach could greatly benefit
from a link with the reference local modelling, since the latter relies on measurable
soil properties.

From the local viewpoint, water flow is determined by the soil hydraulic conduc-
tivity and water retention curves, in addition to boundary and initial conditions. In
its empirical counterpart, it is controlled by the sole field-capacity content (noted
θfc, m3 m−3) and drainage coefficient. This solution is also an implicit function of
the a priori arbitrary choice of the macroscopic layers’ thickness L (cm) and the
integration time step T (days). There is, however, an obvious link between L and T ,
since the volume of water leaving a macro-layer is dependent on the elapsed time T

and the thickness L through the hydraulic gradient, as formulated in Darcy’s law. The
objective of this study was to draw theoretical relationships between the macroscopic
space and time scales of field-capacity based models, for which their predictions
converge with the averages of local solutions. The latter are considered as a correct
description of the actual infiltration. The determination of the other macroscopic
parameters is also discussed through this comparison. It brings some insight as to
whether empirical models are intrinsically biased, because of their lumping time and
space coordinates in their capacity parameter, or if they may only apply to certain
soil types or forcing conditions.

The present study was conducted for three particular soils (sandy, loamy and
clayey), and for a variety of initial and boundary conditions. Both analytical and
quasi-analytical solutions to the mechanistic equations were used.
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2. Methods

2.1. models’ comparison

Throughout the study, we consider one-dimensional infiltration of water into an ho-
mogeneous soil volume subjected to a constant incoming surface flux q0 (cm day−1).
The soil moisture profile is taken uniform when infiltration starts, with an initial value
of θ0 (m3 m−3). Discrepancies between the mechanistic and empirical simulations of
water flow may be analyzed in terms of predicted mean water content in the top macro-
layer and infiltration flux below that layer. Since both types of modelling respect the
mass balance, the solutions in moisture content θ or water flux q are equivalent, so
we will mostly focus on θ values. Because they are of prime importance in view of
environmental aspects, the discrepancies in water fluxes will also be considered.

The soil water content given by the reference local solution at time t and depth z

is noted θ(z, t), and the mean content in the macro-layer predicted by the empirical
model after one time step T is noted θL,T .

The two models converge if

θL(T ) = θL,T , (1)

where the left-hand side term is the length-average of the local solution at T , over the
macro-layer of thickness L (θL(T ) = 1/L

∫ L

0 θ(z, T ) dz). If we set the macroscopic
time step T to a typical value of one day, it amounts to finding an order of magnitude
for L, depending on the soil properties and the infiltration regime.

The discrepancy between the variables in Equation (1) was quantified with a first-
order moment mθ , that represents the mean difference between the length-averaged
local solution and the macroscopic one.

mθ =
L

q0T
[θL,T − θL(T )]. (2)

mθ is scaled with q0T/L, which corresponds to the maximum mean moisture variation
in the macro-layer (for the mass balance implies

∫ L

0 (θ(z, T ) − θ0) dz 6 q0T ). A
similar indicator for the water fluxes q could be defined as

mq =
1
q0

[qL,T − qL(T )]. (3)

As q = q0 − [θL,T − θL]L, it is easily shown that mq = mθ , and thus the relative
differences in terms of moisture content exactly match those in water flux.

Both solutions to our infiltration problem depend on the initial and boundary
conditions (set by the values of θ0 and q0), and on the hydrodynamic properties of
the medium. We used the forms proposed by van Genuchten (1980), with

h(2) =
1
α

[2−1/m − 1]1−m,

K(2) = Ks2
1/2[1 − (1 − 21/m)m]2 with 2 =

θ − θr

θs − θr
, (4)
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Table I. Assumptions made in the four studied cases, with respect
to models’ parameters and boundary and initial conditions. q0 is the
water flux applied at the soil surface, θ0 (m3 m−3) the initial soil
moisture content, and θfc (m3 m−3) the field-capacity content

Case Number Assumptions
T = 1 day θ0 = f (q0) θfc = f (soil type)

(Equation (6)) (Equation (5))

I Ya Y Y
II Y Y
III Y
IV Y
aYes

where K is the hydraulic conductivity (cm day−1), and h the suction head (cm of
water). The s subscripts denote saturated properties, θr is the residual water content,
and m and α are two constants characterising the unsaturated zone.

Given Equation (4), the local solution is determined by 7 parameters (5 for the
K−θ and h−θ relationships, in addition to θ0 and q0). Assuming the 5 hydrodynamic
parameters to be a function of soil type, there remains three degrees of freedom (soil
type, θ0 and q0). The degrees of freedom amount to five for the macroscopic solution:
the field-capacityθfc, the time and length scales (T and L), and the forcing conditions
θ0 and q0.

On this overall total of 6 parameters influencing our problem, we took four sets
of options (cases) summarised in Table I. As a first option, the integration timeT

was set to its typical value of 1 day in most of the study. Second, the field-capacity
was related to the retention curve, as follows:

θfc = θ(hfc), (5)

with hfc equalling −100, −333 or −1000 cm for the sandy, loamy and clayey soils,
respectively (Baize, 1988). Because Ratliff et al. (1983) reported significant differ-
ences between such retention-based estimates and field-estimates ofθfc, the latter
was also varied to a small extent in one of the cases. Finally, we considered a simple

Table II. Class and hydrodynamic parameters of the three simulated soils (sandy,
loamy, and clayey), from van Genuchten (1980)

Soil class Ks θs θfc θr α m

cm day−1 m3 m−3 cm−1

Hygiene sandstone 108.0 0.250 0.243 0.153 0.00790 0.904
Silt Touchet GE3 4.96 0.469 0.281 0.190 0.00423 0.505
Beit Netofa Clay 0.082 0.446 0.387 0.000 0.00152 0.145
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case where the empirical model predicts: θT ,L = θfc, which yielded a relationship
between q0 and θ0

q0T = (θfc − θ0)L, with θ0 < θfc. (6)

As for soil types, we chose the three contrasting soils (sandy, loamy and clayey)
presented by van Genuchten (1980), whose characteristics are listed in Table II.

2.2. analytical solutions to richards’ equation

One-dimensional water flow in soil is modelled at the local scale by combining
the generalized Darcy’s law with the mass balance equation, yielding the Richards
equation

∂θ

∂t
=

∂

∂z

[

D(θ)
∂θ

∂z
−

∂K(θ)

∂z

]

, with q = −K(θ)
∂H

∂z
, (7)

where z and t are the vertical and time coordinates, and H is the hydraulic head
resulting from capillary and gravity forces (H = h − z, with z positively oriented
downwards). D is the capillary diffusivity (cm2 day−1), with D(θ) = K(θ)∂h/∂θ ,
and q is the vertical water flux through a cross-section at z, given by Darcy’s law
in the right-hand side equation. We will study the case of a constant infiltration flux
q0 at the soil surface starting at t = 0, in a soil considered as an homogeneous
semi-infinite body with an uniform initial moisture profile. The boundary and initial
conditions are

q(0, t > 0) = q0, θ(z, 0) = θ0,

θ(∞, t) = θ0,
∂θ

∂z
(∞, t) = 0.

(8)

We thus have to solve a diffusion problem with a boundary condition of the second
kind. Since D is highly dependent on θ , there is no general analytical solution to
it, unless D and K are taken constant during the infiltration (which corresponds to
a ‘linear’ soil). To enable direct analytical comparisons with the empirical model,
we made this simplifying hypothesis in most of the study, and eventually checked it
against a more realistic solution based on a flux-concentration approximation.

2.2.1. Analytical Solution (Linear Soil)

With D and K constant, taking the derivative of (7) in θ yields an ordinary diffusion
equation for q

∂q

∂t
= D

∂2q

∂z2 , (9)

the integration of which leads to

q(z, t) = q0 − (q0 − K0) erf (u), (10)
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where erf is the Gaussian error function, and u = z/[2(Dt)1/2]. K0 = K(θ0) is the
initial water flux in the soil before infiltration begins. Integrating (10) between z and
∞, with q also given by (7), yields

θ(z, t) = θ0 + 2(q0 − K0)

(

t

D

)1/2
i erfc(u), (11)

where i erfc(u) = exp (−u2)/(π)1/2 − u[1 − erf(u)]. Since the study aims at com-
paring macro-layer based models with this local solution to water flow, the quantity
of interest is the length-averaged water content in the macro-layer of thickness L, at
time T , noted θL(T ). Appendix A yields

θL(T ) = θ0 +
4T (q0 − K0)

L
Iθ (uL,T ),

where uL,T = L/[2(DT )1/2] and with

Iθ (u) =
1
4

[

erf(u)(1 + 2u2) − 2u2 +
2

(π)1/2 u exp (−u2)

]

. (12)

In Equation (12), assuming D constant requires an average value which we take as
D = D[(θ0 + θL,T )/2], where θL,T is the final water content predicted by the capac-
ity model. This makes the local solution somewhat dependent on the macroscopic
one. However, preliminary tests against a solution where the local equations were
iteratively solved using the final moisture content given by the previous iteration, in
place of the macroscopic prediction θL,T , showed that this hypothesis had very little
influence.

2.2.2. Flux-Concentration Approximation (Real Soil)

White (1979) proposed a quasi-analytical solution to the above problem based on the
flux-concentration approximation. The latter states that, at any depth, the reduced
water flux F(θ∗) depends only on the reduced water content θ∗, with

F(θ∗) =
q − K0

q0 − K0
, θ∗ =

θ − θ0

θ(0, t) − θ0
, (13)

where K0 = q(z, t = 0), and θ(0, t) = θ(z = 0, t). It makes it possible to derive
implicit integral equations giving the time course of θ (see Appendix B). These can
be solved by imposing an empirical relationship between F and θ∗. White (1979) and
Boulier et al. (1984) found that simply taking F = θ∗ yielded satisfactory results for
sandy soils, and we will thus use this closure equation.

As in the analytical case, we are essentially interested in the average moisture
content in the macro-layer of thickness L at time T , noted θ

q.a.
L (T ), with the q.a.

superscript standing for quasi-analytical. The equivalent of Equation (12) for the
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present solution is given in Appendix B as

θ
q.a.
L (T ) = θ0 +

θ(0, T ) − θ0

q0 − K0
×

×

{∫ θ(0,T )

θ(L,T )

D(θ)

L

[

1 +
K(θ)

(q0 − K0)(θ∗ − κ(θ))

]

dθ − K0

}

, (14)

where κ(θ) = (K(θ) − K0)/(q0 − K0) is the reduced hydraulic conductivity.

2.2.3. Macroscopic Approach

In this approach the soil is divided into a set of macro-layers that successively accu-
mulate water and transfer it downwards during the infiltration, like reservoirs. In each
layer, drainage sets on if the water content exceeds field-capacity on the preceding
time step. We used the model of Ritchie (1985), in which the layer’s moisture content
at time T (θL,T ) is calculated from that at time 0 (θL,0) as

θL,T = θL,0 +
q0T

L
if

(

θL,0 +
q0T

L
6 θfc

)

,

θL,T = θL,0 +
q0T

L
−

(

θL,T +
q0T

L
− θfc

)

T × SWCON otherwise,
(15)

where T is the macroscopic time step, and SWCON (day−1) a drainage coefficient
ranging from 0 to 1 that incorporates the effect of hydraulic conductivity on limit-
ing flow rate. It misleadingly stands for Soil Water CONductivity (Ritchie, 1985).
SWCON was taken from Ritchie and Crum (1989) as 0.01, 0.10 and 1.00 for the
clayey, loamy and sandy soils, respectively. In the last section of the paper, the value
of SWCON is, however, discussed in relation to soil hydrodynamic properties.

The following comparisons will be limited to the top surface layer, since it is the
elementary volume of the description being tested.

To prevent ponding, which the empirical model cannot simulate, the following
constraint was imposed on the surface infiltration rateq0:

q0 6 min
[

Ks,
(θs − θ0)L

T

]

. (16)

3. Results and Discussion

In this section we first tested the accuracy of the empirical model against the local
analytical solution for the four cases of Table I. The validity of the analytical solution
is then discussed with reference to the quasi-analytical one, and lastly the value of
the empirical rate parameter SWCON in the macroscopic model is approached under
a steady-state regime of infiltration.
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Figure 1. Variations of the empirical model’s average errormθ (unitless) as a function of the
dimensionless variable uL,T = L/(4DT )1/2, in a simple preliminary case.

3.1. case i: infiltration to field-capacity

In this preliminary case, the combination of Equations (11) and (12), together with
the condition on q0 and θ0 expressed by Equation (6) yields

mθ = 1 − 4
(

1 −
K0

q0

)

Iθ (uL,T ). (17)

If K0/q0 � 1 (infiltration starting in a dry soil for instance),mθ ≈ 1 − 4Iθ (uL,T ),
and by fixing a threshold level formθ we obtain a simple relationship between L, T

and the diffusivity D. If, for example, we want mθ < 0.1 (i.e. the empirical model
yields a relative accuracy of 10%), it can be derived from Figure 1 representing mθ

versus uL,T that L should exceed 1.7 × (DT )1/2. With T = 1 day, a macroscopic
layer of 30 cm would give satisfactory results provided D 6 800 cm2 day−1. This
is easily satisfied for the clay and loamy soils if we takeD = D(θfc), with D(θfc)

equal to 8.13 and 406.3, respectively. For the sandy soil this is not the case as D(θfc)
equals 1.25 × 105. With such a diffusivity, the above criterion would be satisfied for
L greater than 600 cm, which is too large a spatial scale for our calculations to hold.

3.2. case ii: infiltration to above field-capacity

For this case, the initial water content θ0 was set halfway between θfc and θs. The
contour graphs in Figure 2(a) present the variations of mθ for L varying between 1
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Figure 2. Variations of the macroscopic model’s error mθ (unitless) with the surface infiltra-
tion flux q0 and the macro-layer’s thickness L, for the three soil types. Three combinations of
initial conditions and macroscopic parameters are used, corresponding to cases II to IV: θ0 is
fixed above the field-capacity contentθfc and q0 is varied (a); θfc is varied (b); the integration
time step T is varied (c). In case (c), θ0 is the same as in case (b).

and 30 cm, and for different infiltrations ratesq0. Those are indicated as reduced
values (q∗) relative to the upper boundary for q0 given by Equation (16) for each L.
It is possible to determine regions in the L versus q∗ plane in which the results of
the empirical model are correct within a 20% margin (i.e. |mθ | 6 0.2). This ‘pass’
region is nearly unrestricted for the clay soil, and limited to that where L > 25 cm
for the loam. For the sandy soil, the macroscopic approach simply does not seem to
apply. Although this is to be further discussed in cases III and IV, it is rather intuitive
that in a very well-drained medium it should be delicate to define a field-capacity
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content, for the macro-layer has transferred downwards most of the infiltrating water
long before the macroscopic time step T has elapsed.

Conversely for the clay soil, two factors contribute to the convergence of macro-
scopic and microscopic solutions. First, the permitted infiltration rates are very small
(0.01 to 0.08 cm day−1) because of the low saturated conductivity of the medium.
This induces only small variations in moisture content, although they are scaled by
the infiltration rate inmθ . Second, because the medium has a low diffusivity, water
hardly infiltrates below the macro-layer after one day, provided thatL exceeds 5 cm,
which prevents any discrepancies between the two models.

Overall, the macroscopic model consistently overestimated the actual water con-
tent in the macro-layer, which indicates a systematic bias even under drainage
conditions (θ0 > θfc). This positive bias could be expected, and was observed,
with θ0 6 θfc (Case I). In this case, the tipping-bucket scheme keeps accumulating
water in the macro-layer, whereas some water actually percolates downwards during
the time step T . However, in the reverse drainage mode represented by Case II, the
tipping-bucket was rather expected to underestimate the water content because the
macro-layer may actually drain to below field-capacity after one day. Instead, the
bias persisted and thus the errors of the tipping-bucket model, overall, did not cancel
out.

The observed bias should be mitigated because it also depends on the empirical
rate parameter SWCON. The end of the study confirmed that it was correctly esti-
mated for the clay and the sand, but underestimated for the loam (which is consistent
with a mostly positive mθ ).

Errors tended to decrease with increasing q∗, although they increased again with
q∗ > 0.3 for the sandy and loamy soils. For the sand, the scaled error mθ decreased
again for q∗ > 0.9. The occurrence of these minima and maxima was not associated
with particular changes in the infiltration regimes, since the tipping-bucket scheme
was in a discharge mode throughout (with θ0 > θfc). They simply reflect the strong
nonlinearity of the diffusion equation with respect to both the infiltration rate and the
diffusion coefficientD.

Lastly, mθ decreased with increasing L, since discrepancies tend to smooth out
when averaging over larger scales.

3.3. case iii: sensitivity to field-capacity

L was set to 20 cm, and q0 was varied within the limits of Equation (16) for a fixedθ0
(Figure 2b). For the clay and loam soils, optimal values for θfc could be deduced from
the 0 iso-contour lines. Since these lines were nearly horizontal, the optimal values
for θfc extended over the whole range of infiltration rates, and may be summarised as
θfc > 0.32 for the clay and θfc ≈ 0.23 for the loam. The latter value was much lower
than that of 0.281 derived from the retention curve (Equation 5). Although the optimal
θfc was also dependent on L (Figure 3), this trend persisted over the whole range of
L. The dependence between the true θfc and L depicted in Figure 3 emphasizes a
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Figure 3. Relationship between two optimal macroscopic parameters (the field-capacity
content θfc and integration time step T ) and the macroscopic layer’s thickness L, for the
loamy soil. They were deduced from the 0 iso-contour lines in mθ plots similar to those of
Figures 2(c) and 2(d). The optimal θfc corresponds to a T value of 1 day, and the optimal T

to the standard value of θfc given by the horizontal solid line.

conceptual error with the capacity model. According to that description, the larger
the reservoir (i.e. the thicker the macro-layer), the greater the amount of water Q

that can infiltrate into it before the layer starts draining, with a linear relationship
between Q and the layer thickness L. However, in order for this model to be correct
it is necessary that the threshold water content above which percolation starts (θfc)

should decrease when L increases, because of the nonlinearity in the actual process
of water diffusion in soil with respect to L (see Equation (11)). This dependence
should be considered when setting the field-capacity in a macro-layer.

For the sandy soil, the capacity model’s bias remained strongly positive (mθ >

0.6), and no optimal θfc was evidenced. As the same applied to the previous cases,
it is likely that the daily time step in the calculations was too large for allowing a
capacity description.

3.4. case iv: influence of the time step T

The macroscopic time step T was varied between 0.1 and 1.5 days, with the same
initial and boundary conditions as in case III (Figure 2(c)). Optimal values for T were
again exhibited for the clay and loam soils, equalling 1.0 and 0.8 day, respectively.
The optima in terms of time step were not equivalent to those in terms of θfc, since
the contour lines did not have the same shape. For the clay, the optimal region of
Figure 2(a) reduced to a narrow interval. As a general rule, the iso-contour lines also
appeared much flatter. Most likely, the sensitivity of mθ for θfc was less linear than
for T because θfc is a threshold parameter. The optimal T value also decreased with
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decreasing L for the loam (Figure 3), and reached a plateau of about 0.9 day for
L > 20 cm. This stresses the difficulty of predicting infiltration close to the surface
(L 6 10 cm) with the capacity scheme. For the sandy soil, an optimum value of
0.3 day could be derived for T at the bottom of the T versus q0 plane. It means
the empirical description would only apply to small time steps, with an order of
magnitude close to those employed in the local resolution of mechanistic equations
(Ross, 1990). This seems, however, hardly fit to the purposes of macroscopic models.

3.5. comparison with the quasi-analytical solution (real soil)

Using an analytical solution to the infiltration equations allows a direct comparison
between microscopic and macroscopic approaches: for instance, Equation (17) could
readily be used to evaluate the goodness of the empirical model, given the scales T

and L, and the mean soil diffusivity D. In cases II to IV, the calculation of mθ was
also straightforward. Nevertheless, the dependency ofD on θ is highly nonlinear, and
this is all the more acute in the saturated region which is of concern to us. Therefore it
seemed prudent to compare the analytical solution where D is constant with the more
realistic quasi-analytical (q.a.) solution in which D varies during the infiltration. The
average moisture contents in a macro-layer of lengthL, noted θL,q.a.(T ) and θL(T ) for
the quasi-analytical and analytical solutions, respectively, were compared in terms
of a moment similar to mθ , m

q.a.
θ , with

m
q.a.
θ =

L

q0T
[θL,q.a.(T ) − θL(T )]. (18)

This indicator was calculated for case I with L ranging from 10 to 30 cm.
As illustrated in Figure 4, the discrepancies between the two solutions were

negligible for the fine-textured soils (loamy and clayey), exceeding 5% in only 5% of
the plotting region. On the other hand, they were significant for the sandy soil, with
an average rising to more than 10%. This may be ascribed to the strong sensitivity
of D to θ in the saturated region, and did not smooth out for large values of L.

Figure 4. Variations of the mean scaled difference m
q.a.
θ between the analytical and

quasi-analytical solutions of Richards’ equation with the macro-layer’s thickness L and the
infiltration rateq0.
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However, because of the vertical shape of the iso-contour lines in Figure 4 com-
pared to the rather horizontal iso-contours in Figure 2, the errors that might have
arisen from using the analytical solution with the sand had little influence on the
trends observed with mθ (data not shown).

3.6. determination of swcon in quasi-steady conditions

In Equation (15), the values of the rate parameter SWCON were taken a priori from
the literature, although it was suggested in the discussion of case II that SWCON
should rigorously be estimated from experimental data. In addition this parame-
ter may be related to the soil’s saturated hydraulic conductivity Ks, as shown by
Emerman (1995).

We examined such a link in a steady-state infiltration regime, when an equilibrium
uniform moisture profile has developed within the macro-layer to a depthL, after
a sufficient amount of water has infiltrated. Provided thatq0 be smaller than Ks,
the quasi-analytical solution gives an expression of the asymptotic moisture content
θ

q.a.
as. in the macro-layer as being the inverse of the K(θ) function at q0, so that (see

Appendix B)

K(θq.a.
as. ) = q0. (19)

With a quasi steady-state moisture profile, the daily flux draining from the macro-
layer predicted by the quasi-analytical solution is q0, and may be compared to that
predicted by the empirical model, noted qL, and reads

qL = L
(

θq.a.
as. +

q0

LT
− θfc

)

SWCON. (20)

Both models converge if qL = q0, that is if

q0 = L
(

θq.a.
as. +

q0

LT
− θfc

)

SWCON

⇒ θq.a.
as. = θfc +

q0

L

(

1
SWCON

−
1
T

)

. (21)

Given that SWCON is fixed for anyL and q0, Equation (21) implies that there would
be a linear relationship between θ

q.a.
as. and q0. On the other hand, this relationship

is given by Equation (19), from which it is clear that Equation (21) is not verified
because of the exponential shape of the K(θ) curve. From Equation (21) we may
also draw a relationship between q0 and the empirical parameters SWCON, θfc, and
L, for a given soil, with

SWCON =
q0

L
(

K−1(q0) +
q0

LT
− θfc

) , (22)

where K−1 is the inverse function of K . The right-hand side term in Equation (22) is
depicted in Figure 5 for the three studied soils, with L = 10, 20 and 30 cm. This term
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Figure 5. Right-hand side term of Equation (22), which corresponds to the drainage coeffi-
cient SWCON, as given by the quasi-analytical solution to infiltration. Calculations are made
for the three soils, and for three values of the macroscopic thickness L (10, 20 and 30 cm).

should be constant were the empirical model correct, but this is obviously not the
case, as pointed out by Equation (21). For some infiltration rates (in the lower range
for the loam and the sand, and in the higher range for the clay), SWCON reaches
peak values that are outside its physically-plausible range. Except for these peaks,
however, the curves in Figure 5 decrease with increasing q0, and reach a plateau
on one of their ends. This stable value of SWCON first indicates that a fixed value
of SWCON (independent of q0) could give good results in about half of the tested
conditions. Second, it gives an order of magnitude for SWCON: around 2.5 × 10−3

for the clay, 0.65 for the loam, and 1.00 for the sand. In the latter case, SWCON
is mainly above 1.00, because the water content in the macro-layer drops far below
field-capacity after one day, as discussed in case IV. For the other two soils, an inverse
relationship appears between SWCON and L when averaging over q0, which was
also mentioned by Emerman (1995) for a tipping bucket model. Its magnitude is
influenced by the hydraulic conductivity, being negligible for the soils with high and
low hydraulic conductivities, and more marked for the loam.

As a conclusion, SWCON exhibited only weak correlations to the scale parame-
ters, which does not preclude its use in a capacity model with arbitrary time and length
steps, as was successfully done by Buttler and Riha (1992) who estimated SWCON
directly from soil porosity for an Oxisol. However, the difficulty in obtaining SWCON
a priori for less permeable soils prompted Gabrielle et al. (1995) to substitute it for
the hydraulic conductivity, yielding a Darcy-like equation for the calculation of the
daily flux below the macro-layer that reads

qL(T ) = K

(

θL,0 +
q0T

L

)

if
(

θL,0 +
q0T

L
> θfc

)

.

This equation is close to that predicted by the quasi-analytical solution, and is less
sensitive to q0 and L than Equation (21). However, it tends to overestimate qL, since
K(θL,t + q0T/L) is greater than K(θ

q.a.
as. ) in the quasi-steady infiltration.
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4. Conclusion

We analysed the accuracy of an empirical, field-capacity based model of one-
dimensional water infiltration in soil, as compared to an analytical solution of
Richards’ equation, for the prediction of moisture content in a macroscopic layer
of thickness L (cm) subjected to a constant infiltration flux q0 (cm day−1) at its
surface during a time step T (days).

Various boundary and initial conditions were simulated for three soils with con-
trasting hydrodynamic properties, and revealed some biases in a standard application
of the empirical model. The deviations were all the more acute as the soil’s average
capillary diffusivity during infiltration was high, and were maximum around field-
capacity. The effect of various empirical parameters was investigated to identify
the reasons for these biases. With T fixed at one day, they were dampened with
increasing L, and were acceptable (except for the very well-drained sandy medium)
for L > 15 cm. As a general rule, the tipping-bucket tended to over-estimate surface
water content, and thus to under-rate the infiltration fluxes. This should be kept in
mind when using this kind of model to estimate the leaching of solutes such as nitrate
or pesticide compounds in the field.

The errors cancelled out for an optimal value of the field-capacity content(θfc)

that varied with L. A relationship between an optimal integration time step T and L

was also exhibited. Correlations between T , L, and θfc could be expected to appear
when calibrating a capacity-type model because of its principle: it does not explicitly
take the time coordinate into account, given that only θfc, and to a lesser extent the
drainage coefficient SWCON, control the flow out of the reservoir.

The biases observed do not necessarily preclude the applicability of the model.
Provided that an order of magnitude of the soil’s capillary diffusivity be known,
Equation (17) could be used as a first indicator of the model error. For the clay soil
studied here, for instance, it showed that no major divergences were likely to be
observed, as it proved to be the case. For a soil with higher diffusivity such as the
loamy Silt Touchet, taking layers thicker than 15 cm markedly improved the model
performance, even if it was not fully unbiased. Reducing the time step could also be
a solution, although it proved to be a sensitive variable. As to a highly permeable
medium, represented here by the Hygiene Sandstone, it unfortunately seemed to
impose a local scale modelling, otherwise strong errors occurred.

If one then chooses to use a capacity model, determining the field-capacity and
rate parameters turns out to be the critical point. Because they depend to some
extent on the length and time scales chosen, these parameters are not unique. Based
on the results of our analysis, Figure 6 provides guidelines as to the estimation of
these parameters. The best way to determine θfc would probably consist in applying
its functional definition, as quoted by Baize (1988): it is the water content in a
given soil layer after it has drained for one day subsequently to a rainfall event.
However, it is often required by model users that it be possible to deduce it a priori
from other soil properties, such as the water retention curve, as we did here with
Equation (5). As pointed out by Ratliff et al. (1983) for a range of soil types, this
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Figure 6. Diagram for setting the time and spatial scales and the capacity and rate parameters
of a capacity-based water infiltration model, in a given soil.

does not yield the true θfc, but here the biases proved acceptable with sufficiently
high L (L > 15 cm).

SWCON is perhaps the most empirical macroscopic parameter since its relation
to the hydraulic conductivity is not straightforward and involves other parameters
(e.g. L and θfc). The use of more Darcian-based equations such as that of Gabrielle
et al. (1995), which do not require this parameter, might prove helpful, although
slightly more complex.

There is then no theoretical argument for claiming that capacity models are
second-rate tools dedicated to an approximate and biased simulation of water in-
filtration. They provide correct estimates for a range of conditions, provided that
they be properly parameterised. This parameterisation issue constitutes their major
disadvantage, for their accuracy seems to depend on the knowledge of the user
(Diekkrüger et al., 1995). In a comprehensive comparison of soil water balance
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models, the latter authors put forward that ‘expert knowledge’ was a key factor behind
the goodness of simulation results. On the opposite, we hope that our analysis of
functional infiltration models, with reference to the mechanistic Richards’ equation,
should help parameterising them without resorting to such subjective methods.

Appendix A: Averaging the Analytical Solution Over the Macro-Layer

Calculation of θL(T ) = 1/L
∫ L

0 θ(z, T ) dz, where L is the macro-layer’s thickness,
with θ(z, T ) given by Equation (11):

θL(T ) = θ0 + 2(q0 − K0)

(

T

D

)1/2 ∫ L

0
i erfc(z/[4DT ]1/2) dz.

With u = z/(4DT )1/2 and uL,T = L/(4DT )1/2, the integral can be computed as

(4DT )1/2
∫ uL,T

0
i erfc(u) du =

uL,T

L

[

∫ ∞

0
i erfc(u) du −

∫ ∞

uL,T

i erfc(u) du

]

.

With
∫ ∞

0
i erfc(u) du = i2erfc(u) = (1 + 2u2)erfc(u) −

−
2

(π)1/2 u exp −u2

(Luikov, 1968, p. 652) one obtains the following integral, from which Equation (11)
is derived:

∫ L

0
i erfc(u) dz =

uL,T

L
[i2 erfc(0) − i2 erfc(u)].

Appendix B: Averaging the Quasi-Analytical Solution Over the Macro-Layer

Calculation of θ
q.a.
L (T ) = 1/L

∫ L

0 θq.a.(z, T ) dz, where L is the macro-layer’s thick-
ness: integrating F(θ) in z in Equation (13) yields

(q0 − K0)z =

∫ z

0

q − K0

F(θ)
dz. (B.1)

Changing the integration variable fromz to θ(z) (allowed because θ(z) is monotonous)
then gives

(q0 − K0)z =

∫ θ(z=0,T )

θ(z,T )

[

q − K0

F(θ)

∂z

∂θ

]

dθ.
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An expression of ∂θ/∂z can be drawn from Equation (7) as ∂θ/∂z = [q − K(θ)]/
[−D(θ)], whose introduction in the integral transforms it into

∫ θ(z=0,T )

θ(z,T )

q − K0

F(θ)

D(θ)

K(θ) − q
dθ

=

∫ θ(z=0,T )

θ(z,T )

(q0 − K0)

[

D(θ)

K(θ) − K0 − F(θ)(q0 − K0)

]

dθ.

Introduction in Equation (B.1) gives

(q0 − K0)z =

∫ θ(z=0,T )

θ(z,T )

D(θ)

F (θ) − κ(θ)
dθ.

Furthermore, the mass balance implies

(q0 − K0)T =

∫ ∞

0
(θ − θ0) dz =

∫ θ(z=0,T )

θ0

z dθ.

Integrating the latter yields an implicit equation giving θ(z = 0, T )

(q0 − K0)
2T =

∫ θ(z=0,T )

θ0

(θ − θ0)D(θ)

F (θ) − κ(θ)
dθ, (B.2)

which can be solved with the approximation F = θ∗. The latter relationship also
allows to derive θ

q.a.
L (T ), since

∫ L

0
θq.a.(z, T ) dz = θ0 + (θ(z = 0, T ) − θ0)

∫ L

0
F dz

with
∫ L

0
Fdz =

1
q0 − K0

×

×

(∫ θ(z=0,T )(t)

θ(z=L,T )

D(θ)

L

[

1 +
K(θ)

(q0 − K0)(θ∗ − κ(θ))

]

dθ − K0

)

.

The combination of the last two equations gives Equation (14).
In quasi steady-state conditions, the left-hand term in Equation (B.2), which

is proportional to the infiltrated volume, tends to be infinite. It implies that the
denominator in the finite integral of the right-hand term tends to be nil. One obtains

K(θq.a.
as. ) − K0 = q(z) − K0, ∀z

and in particular for z = 0 q0 = K(θ
q.a.
as. ), with θ

q.a.
as. being the asymptotic moisture

content. It is uniform in the volume considered becauseq(z) = q0, ∀z (in steady-state
conditions the mass balance equation (7) yields ∂q/∂z = 0).
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Abstract – Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the pro-
ductivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate
the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex sys-
tems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement
implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a
tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers
have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain.
While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in
particular the issue of models a priori. We thus implemented and tested a standard procedure to parameterize the soil components of a
modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by
means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen
content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern
Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to expe-
rimental errors on the measurements, based on a test of model’s root mean squared error (RMSE). Significant deviations between obser-
vations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance,
these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be
achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result,
model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of pu-
blished values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probabili-
ty, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating
their models to a large sample of pedo-climatic conditions for which they have only limited information.
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Résumé – titre en français ? . Les modèles déterministes de simulation des systèmes sol-plante sont un outil puissant et parfois exclusif
pour étudier l’effet des pratiques culturales sur la productivité et les impacts environnementaux des cultures. Parce qu’ils simulent les
principaux phénomènes en jeu, ces modèles peuvent en principe être appliqués à tous types de situations agronomiques ou pédo-climati-
ques. Dans la pratique cependant, un calage local des paramètres de fonctionnement du système sol-culture s’avère nécessaire. Cette
étape constitue un frein à l’extrapolation des modèles qui est trop souvent négligé par les modélisateurs. Dans cet article nous abordons la
question sous-jacente à l’extrapolation de l’estimation a priori des paramètres des modèles en testant une procédure standardisée pour les
modèles CERES. La vraisemblance des jeux de paramètres ainsi inférés est évaluée en confrontant des résultats de simulation avec des
observations issus d’un réseau d’essais sur 5 sites Européens (sud de l’Italie, nord de l’Espagne, nord de la France, nord de l’Allemagne).
Sur trois sites, l’erreur commise par CERES s’est avérée comparable à celle sur les mesures. Des écarts significatifs ont toutefois été
notés pour différentes variables de sortie sur tous les sites. Ils ont pu être attribués à la simulation du bilan hydrique, de la matière
organique du sol ou de l’absorption d’azote par la culture, et corrigés en partie par un ajustement des paramètres en jeu. Nous concluons
que la méthode de paramétrisation proposée a une probabilité de seulement 50 % d’aboutir à des résultats réalistes, et que CERES n’a
pas pu s’adapter à toutes les situations testées dans sa forme actuelle. L’extrapolation d’un modèle sur un large domaine de conditions
pédo-climatiques nécessite donc beaucoup de précautions.

modèles sol-culture / paramétrisation / bilan hydrique / bilan azoté / cycle de l’azote / extrapolation

1. INTRODUCTION

Deterministic models of soil-crop systems have be-
come indispensable tools to generalise results obtained
locally under particular field conditions, whether agro-
nomic or studies. In many instances they even play an ex-
clusive role because direct experimental monitoring is
too costly to be carried out under a wide range of pedo-
climatic conditions. Examples of model applications on a
large scale (whether time or space) include: regional and
national inventories [12, 27, 36], the impact of climate
change [10, 30], integrative assessment of agricultural
practices [28, 41], land-use change scenarios [27, 33], or
precision agriculture [32].

Because they simulate the major processes occurring
within the bio-geochemical cycles of interest, such mod-
els may claim to be universally applicable. However, be-
cause they deal with complex systems and uncertain
phenomena, site-specific calibration is usually a prereq-
uisite to ensure realistic predictions [7, 15, 16]. This ob-
viously hampers a priori extrapolation of the model to
other sites, which is of prime importance in the above-
mentioned applications.

There are two major reasons for which model extrapo-
lation may fail: (i) the model’s structure (i.e. its set of
equations) does not apply to the particular soil type, cli-
matic conditions or agricultural practices tested, or (ii)
the model is supplied with incorrect values. When faced
with a failure of the model, users commonly try the sec-
ond route (parameter fitting) before taking the ‘struc-
tural’ route. For instance, Quemada and Cabrera [29]
modified the crop residues decomposition routine of
CERES after realising that, even when provided with lab-
oratory-obtained decay rates for the residues CERES

could not mimic them in the field. However, in many in-
stances it is difficult to decide between the effect of
wrong values and that of unfit model structure, because
both have a similar influence on the outcome of predic-
tion. Previous comparison studies in which several N
models were tested against independent data sets showed
that models achieved various degrees of success, and that
their errors could be attributed to both causes [6, 8, 20].
Thus, the issue of their errors remained to be investigated
per se. One problem with isolating the role of supplied
values is that different models will use sets of parameters
variable in nature and definition. To overcome this, Ga-
brielle et al. [15] proposed comparing models using the
same basic information on soil and crop characteristics.
They reached the conclusion that the effect of values was
predominant over that of structure for three models of
varying complexity, albeit for a single site in France.
This paper therefore focuses on the issue of estimating
correct values when extrapolating models to sites with
contrasting climate and soil characteristics.

Usually, model extrapolation follows a test phase in-
volving only a few sets of management / soil / climate
conditions compared to the number of combinations con-
sidered in the extrapolation. The sizes of the test and ex-
trapolation samples typically follow a ratio of 1 to 100 [4,
31, 38]. Higher ratios are usually associated with the pre-
diction of more limited sets of s. For instance, the size of
the inert organic matter pool in the RothC model was as-
sessed based on 28 different data sets worldwide [11],
prior to extrapolation to 275 representative soil profiles
occurring in Central Hungary [12].

This trade-off between the size of the test sample and
the number of parameters addressed originates from the
high number of parameters involved in soil-crop models
and the scarcity of data to estimate them. Even though
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parameters may be screened a priori through sensitivity
analyses [25, 39], the remaining set commonly comprises
parameters relevant to various routines within the model
(e.g., water balance, N turnover or crop phenology). Sev-
eral categories are thus seldom dealt with simulta-
neously. Within a given category of s, it is in addition a
general rule that the prediction of parameters is discon-
nected from model evaluation. This applies to the body
of literature on pedo-transfer [2], with the notable excep-
tion of the ’functional’ approach to water balance simula-
tion in The Netherlands [40].

In this paper, we address the above limitations to
model extrapolation by testing an a priori procedure un-
der a wide range of conditions in Europe. The network of
trials covers a broad climatic gradient, extending from
southern Italy to northern Germany, and a range of soil
types. As to the procedure, it converts routinely-avail-
able soil properties (particle-size distribution, gravel
content, bulk density, total soil carbon and nitrogen
content) into functional characteristics involved in the
simulation of water movement and soil biological trans-
formations (Gabrielle et al., unpublished data).

Our primary objective was thus to assess the reliabil-
ity of a soil-crop model in a case where no data are avail-
able to calibrate model s. In a second step, the model
prediction errors, as revealed by the comparison against
field-observations, were analysed and corrected by tun-
ing the parameters associated with the processes respon-
sible for the discrepancies. This adjustment aimed at

quantifying the distance between the a priori set and the
resulting quasi-optimal set.

2. MATERIALS AND METHODS

The steps involved in testing the procedure a priori in
the various sites are diagrammed in Figure 1, and de-
scribed in the paragraphs below.

2.1. Model description and parameterisation

CERES comprises sub-models for the major pro-
cesses governing the cycles of water, carbon and nitro-
gen in soil-crop systems. A physical module simulates
the transfer of heat, water and nitrate down the soil pro-
file, as well as soil evaporation, plant water uptake and
transpiration in relation to climatic demand. Water infil-
trates down the soil profile following a tipping-bucket
approach, and may be redistributed upwards after
evapotranspiration has dried some soil layers. In both of
these equations, the generalised Darcy’s law has subse-
quently been introduced in order to better simulate water
dynamics in fine-textured soils [16].

Next, a microbiological module simulates the turn-
over of organic matter in the plough layer, involving
both an immobilisation of inorganic N, along with the
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Figure 1. Diagram of the parameterisation and evaluation steps of the CERES model.



transformations of inorganic N (denitrification and nitri-
fication). In this version, the NCSOIL model [26] was
substituted for the original module. NCSOIL comprises
three OM pools, decomposing at a fixed rate and recy-
cling into the microbial biomass. Nitrification and
denitrification follow zero-order kinetics, which are
modulated by soil temperature and water content.

Lastly, crop net photosynthesis is a linear function of
intercepted radiation according to the Monteith ap-
proach, with interception depending on leaf are index
based on Beer’s law of diffusion in turbid media.
Photosynthates are partitioned on a daily basis to cur-
rently growing organs (roots, leaves, stems, fruit) ac-
cording to crop development stage. The latter is driven
by the accumulation of growing degree days, as well as
cold temperature and day-length for crops sensitive to
vernalisation and photoperiod. Lastly, crop N uptake is
computed through a supply/demand scheme, with soil
supply depending on soil nitrate and ammonium concen-
trations and root length density. Crop demand is a func-
tion of the distance between actual and critical nitrogen
content in the aerial and below-ground tissues. Critical
nitrogen is defined as the optimum concentration for bio-
mass production, as evidenced from field studies for var-
ious crops [5, 23]. It a decreasing power function of crop
dry matter.

CERES runs on a daily time step, and requires daily
rain, mean air temperature and Penman potential
evapotranspiration as forcing variables. The models are
available for a large number of crop species, which share
the same soil components. Readers may refer to [22] for a
more complete description of CERES.

The soil parameters of CERES which were deemed
site-specific pertained to either the water balance or

biological transformation routines. The former category
includes: wilting point, field-capacity and saturation wa-
ter contents, saturated hydraulic conductivity (layer-
wise), and two coefficients describing the water retention
and hydraulic conductivity curves. These parameters
were calculated from soil properties (namely particle-
size distribution, bulk density and organic matter con-
tent) by means of several pedo-transfer functions [9, 22,
37].

Soil biological transformation amounts to breaking
down the total soil organic matter (SOM) present in the
plough layer into several pools featuring distinct decom-
position rates and C: N ratios. Within NCSOIL, the SOM
sub-model in our version of CERES, the pools comprise:
crop residues, microbial biomass, actively decomposing
humus and ‘passive’ humus. Here, we used the breakdown
and pool settings proposed by [19], which is dependent on
carbon management. More information on the parameters
and their calculation may be found on the Internet at http:
//www-egc.grignon.inra.fr/ecobilan/cerca/intjavae.htm,
where the estimation procedure has been implemented
within an on-line front-end.

As regards the crop growth component of CERES,
cultivar-related parameters were either derived from the
DSSAT v3 database of varieties [18], calibrated against
field observations of phenological development, or
based on the dynamics of DM accumulation in the vari-
ous plant compartments.

2.2. Field data

The trials were conducted in four European countries
and included four crop species (Tab. I). Experiments
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Table I. Selected data for the field experiments used to test the parameterisation of CERES.

Location Soil type Crop management Year Reference
Châlons-en-Champagne, France Hypercalcareous rendosol Winter rapeseed 1994–95 [17]
Treatments: 3 fertiliser N rates: 0, +135 and +270 kg N.ha–1, and a bare control
Kiel, Germany Luvisol Winter rapeseed 1994–95 [24]
Treatments: 3 fertiliser N rates: 0, +120 and +240 kg N.ha–1

Villamblain, France Calcisol Winter wheat 1998–99 Unpublished
Treatments: 1 fertiliser N rate: +220 kg N.ha–1

Candasnos, Spain Calcisol Winter barley 1996–97 Unpublished
Treatments: 3 fertiliser N rates: 0, +50 and +100 kg N.ha–1

Barrafranca, Italy Regosol Sorghum (Fibre and sweet varieties) 1997 [13]
Treatments: 2 fertiliser N rates: +100 and +120 kg N.ha–1



were set up in replicate blocks in all sites except at the
Kiel site which had no replicates. Soil and crops were
sampled every one to three months, and standard weather
data as required by CERES were taken from meteorolog-
ical stations located within 1 km of the experiments. In
Candasnos, the solar radiation data were from a station
20 km from the site.

Soil was sampled to a depth of 60 to 120 cm by hand or
using automatic augers, in 3 to 8 replicates which were
pooled layer-wise in ten to thirty-cm increments. Soil
samples were analysed for moisture content and inor-
ganic N using colorimetric methods. In Candasnos, test
strips were used for nitrate determination after a compar-
ison with standard colorimetric techniques showed a
good agreement between both methods. In Barrafranca,
soil nitrate was monitored through its concentration in
soil water using suction cups.

Individual plants were sampled in each block over ar-
eas of 0.25 to 1.00 m2, and subsequently separated into
leaf, stem, ear (or panicle) and grain compartments.
When monitored, leaf area index was measured using an
optic area-meter, after which biomass samples were
oven-dried for two days for dry matter determination.
Lastly, biomass N content was analysed using combus-
tion or digestion techniques except in trials where this
variable was not monitored.

2.3. Model evaluation

The simulations of CERES were compared to field ob-
servations (means and standard deviations of the repli-
cates) using graphics to capture dynamic trends, and
statistical indicators gave an idea of the model’s mean
error. We used two standard criteria [34]: the mean devi-
ation (MD) and the root mean squared error (RMSE).
Here, they are defined as: MD=E (Si – Oi) and
RMSE=(E [(Si – Oi)2])1/2, where Si and Oi are the time
series of the simulated and observed data, and E denotes
the expectancy. MD indicates an overall bias with the
predicted variable, while RMSE quantifies the scatter be-
tween observed and predicted data, which is readily com-
parable with the error on the observed data. The
significance level of both statistics was also determined,
based on the standard deviations of the observed data
[34]. RMSE was thus compared with the average mea-
surement error, calculated as: RMSEERR=(E [σi

2])1/2,
where i denotes the standard deviation over replicates
for sampling date number i.

2.4. Model calibration

When discrepancies between model predictions and
field-observations occurred, their source was sought
stepwise according to heuristic knowledge on the work-
ings of the model. Errors were assumed to propagate
from physical to chemical and biological processes.
Therefore, we first checked the simulation of soil tem-
perature and water balance, and then soil nitrate move-
ment, crop dry matter accumulation and nitrogen uptake.
The parameters associated with the routine appearing to
cause the deviations were visually adjusted by trial-and-
error, by looking at comparison charts (see Fig. 2 for an
example).

Prior to fitting, a large sample of parameters were
screened on the basis of the sensitivity of model devia-
tions to their variations. The total set of parameters con-
sidered is presented in Appendix 1.

3. RESULTS

3.1. Model performance a priori

When parameterised a priori, CERES achieved an ac-
ceptable accuracy in a majority of sites and for most of
the variables tested (Tab. II, and Figs. 2 to 6). This may
be judged from the fact that in those cases the model’s
RMSE fell within the experimental error on the measure-
ments with a 95% to 98% probability. At Kiel, observed
standard deviations were not available, but the perfor-
mance indicators were still within the range of published
values for other models undergoing similar tests. Cited
ranges for model RMSEs include: 0.02–0.08 cm3.cm–3

for water content, 10–40 kg N.ha–1 for topsoil nitrate con-
tent [8], for several models in Germany); 0.8 tons of dry
matter.ha–1 for crop biomass, 0.60 m2.m–2 for LAI, and
14 kg N.ha–1 for crop N uptake [1], with the APSIM
model in Australia); 3.4–3.9 tons.ha–1 for crop biomass
and 1.26–1.7 for LAI [3], with CERES-Maize in Italy).
Thus, there was only one site (Candasnos) in which
CERES could be rejected with its default paramet-
erisation.

As regards individual variables, there were no consis-
tent patterns across sites for those that CERES failed to
predict correctly. Significant deviations occurred for all
the variables in at least one of the sites, and no particular
routine could be singled out as intrinsically at fault. Crop
nitrogen was the most difficult to simulate, with no
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Table II. Statistical indicators for the goodness of fit of CERES in the simulation of soil and crop variables in the various European sites.
MD and RMSE stand for the model’s mean deviation and root mean squared error, respectively, and were calculated for the baseline and
calibrated scenarios. The hypothesis that MD is zero was tested using a two-tailed t-Test (p = 0.95). RMSE values were compared with
the mean standard deviation of the measurements (RMSEERR, see text). The hypothesis that model and experimental errors were equiva-
lent was tested at two levels (p = 0.95 and p = 0.98).

Statistics Leaf area index
m2.m–2

Tops dry matter
tons.ha–1

Tops nitrogen
kg N.ha–1

Soil moisture
m3.m–3

Soil nitrate
kg N.ha–1

Châlons
Nb 45 45 45 192 192
RMSE, baseline 0.956 1.42* 30.284 0.036* 5.729**
MD, baseline 0.577 –0.876 7.417 –0.035 1.205
RMSE, calibrated 0.985 1.391* 40.977 0.042 6.968**
MD, calibrated 0.625 –0.779 –6.485 –0.007 1.53

Villamblain
N 6 6 6 18 18
RMSE, baseline 1.05** 2.415** 27.162** 0.051 10.304**
MD, baseline 1.416 –1.71 25.303 –0.024 –8.876
RMSE, calibrated 0.945** 2.409** 34.725** 0.025 10.82**
MD, calibrated 0.196 –1.702 40.503 0.03 –4.99

Kiel
N

NAa 12 11 18 18

RMSE, baseline NA 0.517 13.299 0.036 3.959
MD, baseline NA 0.498 –19.184 –0.035 –2.322
RMSE, calibrated NA 0.957 54.069 0.032 3.198
MD, calibrated NA 1.579 –4.998 –0.016 –3.905

Barrafranca
N 18 18 18 75 66
RMSE, baseline 1.269** 3.756** 21.904** 0.081** 12.68**c

MD, baseline –0.64 –2.973 –14.997 –0.006** 3.433
RMSE, calibrated 1.57** 2.045** 29.156** 0.082** 8.85**
MD, calibrated 0.11 1.15 36.64 –0.002 –2.26

Candasnos
N 24 24 NAa 63 45

RMSE, baseline 0.615 2.368 NA 0.059 10.754**
MD, baseline 0.413 –0.482 NA 0.024 –6.842
RMSE, calibrated 0.873 2.735 NA 0.058 12.971*
MD, calibrated 0.791 0.528 NA 0.022 1.429**

*,**: Significance levels for the tests that MD is zero and that RMSE are not different from mean experimental error (p=0.98 and p=0.95, respectively).
a: Not available.
b: Sample size.
c: In Barrafranca, nitrate is expressed in mg N-per litre of soil solution.



systematic trend of the model to overestimate or underes-
timate it. The only systematic error was the simulated
peak in spring which lead to an overestimation of topsoil
nitrate in Châlons, Candasnos and Villamblain (see Figs.
2, 4 and 6).

The extent to which the match against observed data
improved through the calibration procedure varied from
site to site, as may be seen by comparing the continuous
and dashed simulation lines in Figures 2 to 6. Overall,
most of the problems associated with the uncalibrated
simulations tended to persist. Sorghum biomass was un-
derestimated late in the season, due to a wrong timing of
leaf senescence by CERES. In Châlons, although LAI
dynamics were correctly simulated throughout the season,
CERES underestimated final crop biomass and N content.
During the second growing season in Candasnos, CERES
over-predicted crop nitrogen and biomass, and the reason
for it was unclear since similar discrepancies did not oc-
cur for soil water and nitrogen. Despite the change in the
nitrification kinetics, CERES could not simulate the ni-
trate concentration peaks measured after fertiliser appli-
cation (Fig. 2). It is likely that these discrepancies should
be ascribed to a failure in some of the routines rather than
to a wrong setting of their parameters. Thus, the statisti-
cal indicators of Table II may be considered as represent-
ing a structural limit of CERES in its current state, with
the exception of Barrafranca where the parameterisation
of leaf senescence should definitely be revised based on
more thorough experimental work.

3.2. Model calibration for the various sites

In all situations, significant deviations occurred be-
tween simulated and observed data for at least one of the
state variables monitored (Figs. 2 to 6).

The calibration procedure described in the Materials
and Methods section was therefore undertaken to correct
these biases. Its results are given in Table III, in terms of
processes involved and associated parameters. Soil and
crop water balance appeared to be the most critical rou-
tine, which is a logical consequence of the postulated er-
ror propagation scheme. Related parameters had to be
adjusted in most sites, to improve the simulation of either
downward water movement (through the field-capacity
water content) or root uptake of water and nitrogen. The
former process predominated under temperate climates
(in the northern sites), whereas the latter prevailed under
semi-arid conditions. This distinction illustrates the in-
fluence of climate type on model performance, through
its effect on model sensitivity to the parameters of its var-
ious routines.

Conversely, little could be done to improve the simu-
lation of soil N turnover. Related observed data (mea-
surements of topsoil inorganic N) were either too
infrequent over the season (in Kiel or Barrafranca), or the
model was not sensitive to the associated parameters
(Villamblain). In Châlons, a numerical optimisation of
these parameters led to a set of values close to the default
set used [14], prompting us to keep the latter. The Span-
ish site (Candasnos) turned out to be the exception to this
rule, with simulations of topsoil nitrate improving when
the size of the microbial biomass was increased from 0.9
to 2.3% of total soil carbon. With the default
parameterisation, the low C:N ratio of soil organic matter
resulted in high levels of simulated immobilisation of in-
organic nitrogen and a systematic underestimation of
topsoil nitrate.

Apart from those setting the duration of crop develop-
ment phases whose effect could be readily assessed, crop
parameters were deemed too numerous and their struc-
ture too complex to be calibrated against our limited sets
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Table III. Calibrated parameters for the various experiments simulated with CERES.

Location of
experiment

Parameter names Unit Fitting variable Associated routines

Kiel Field-capacity cm3.cm–3 Soil water profile Water balance
Châlons Field-capacity

Initial size of microbial biomass
cm3.cm–3

mg C.kg–1 soil
Soil water profile
Topsoil nitrate

Water balance
Turnover of SOM

Villamblain Field-capacity
Sensitivity to cold temperatures

cm3.cm–3

Unitless
Soil water profile
Crop dry matter

Water balance
Crop phenology

Barrafranca Sensitivity of root extraction of N to water stress Unitless Crop N content Crop N uptake
Candasnos Initial size of microbial biomass mg C.kg–1 soil Topsoil nitrate Turnover of SOM



of observations. In some instances this conservative op-
tion caused important biases. Most notably, simulated
leaf senescence began too early at Barrafranca and
Villamblain. There might have been some interference of
model errors in the simulation of crop growth with the
calibration procedure. Indeed, we focused on the sole soil
parameters in the calibration and we adjusted them to
variables which may have been influenced by crop pro-
cesses and associated parameters. However, the fact that
model errors on crop growth occurred late in the season
supports our underlying assumption that they did not im-
pact the calibration of soil parameters.

Lastly, in one site (Villamblain) we decided to alter
the nitrification equation by substituting the zero-order
kinetics with a first-order scheme. Only through this
modification could the dynamics of nitrate and ammo-
nium be simulated within the range of concentrations
observed (Fig.?). This choice was in accordance with

other similar models [21], but nevertheless goes somewhat
beyond the scope of this paper.

3.3. Performance of the calibrated model

It is noteworthy that in the calibrated scenarios the ac-
curacy of CERES did not improve greatly, overall. In
many instances, the improvement for one variable re-
sulted in a decreasing accuracy for the other variables.
For example, fitting the crop biomass data in Barrafranca
caused greater errors in the simulation of crop nitrogen.
In Châlons, the visual calibration of microbial biomass
against topsoil nitrate data was even associated with a
higher RMSE than with the baseline set. This illustrates
the limits of such a fitting procedure, although we fa-
voured it because it relates to processes more directly
than numerical adjustments do. Another rationale for that
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Figure 2. Simulated (lines) and observed (symbols) time course of leaf area index and aerial dry matter (left) and surface (0–30 cm)
moisture and nitrate content (right) for the winter wheat crop in Villamblain. The simulation lines are dashed for the baseline
parameterisation, and solid for the calibrated parameter set.



is the fact that CERES was poorly sensitive to some of its
parameters, probably because it involves too many of
them compared to the total number of model outputs.
This makes the fitting of one parameter against one vari-
able dependent on a number of other parameters.

4. DISCUSSION

In this extrapolation exercise, a first conclusion may
be that a priori parameterisation resulted in a reasonable
accuracy of CERES since its error proved acceptable in
more than half of the cases tested. Thus, the procedure
proposed should be considered as having a 50% proba-
bility of yielding acceptable values when employed in a
new situation.

For the remaining cases, two routes may be investi-
gated to explain the failure of CERES, as suggested in the
introduction. Either the principles and equations within
CERES were inadequate for the particular site consid-
ered, or the structure applied but model parameters were
poorly estimated by the standard procedure. Of the two
routes, we only investigated the parameterisation one
here, assuming it was responsible for most of the discrep-
ancies observed.

Calibration of the parameters which were detected as
causing the discrepancies yielded slightly more accept-
able simulations, with model error falling below experi-
mental error for about 70% of tested variables in all sites.
However, despite numerous attempts involving a dozen
parameters, model calibration could not correct some of
the deviations observed, such as the erroneous simulated
spring peak in Châlons. One could object that only a
thorough, multi-variable search of the minimum model
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Figure 3. Simulated (lines) and observed (symbols) time course of surface (0–30 cm) soil moisture and nitrate content (right) and crop
dry matter and nitrogen uptake (left) for the unfertilised control crop in Kiel. The simulation lines are dashed for the baseline
parameterisation, and solid for the calibrated parameter set.



error in its parameter space (through numerical optimisa-
tion techniques) would have enabled us to rule out
parameterisation in the failure of CERES. In this work,
however, we did not make use of such rigorous methods
since they have proved difficult to apply to soil-crop
models. These are indeed complex, highly non-linear and
involve too many parameters to allow the automatic
search of a global optimum [39]. If we trust that our ’ex-
pert-guess’ calibration yielded results close to the true
statistical optimum of the model, two conclusions arise:
(i) the a priori error of CERES is close to its structural
(calibrated) error, since the performance indicators of
Table II differ by at most 30%; however, (ii) in a minority
of cases the structural error is too large and adjustments
in model structure are warranted.

In future work on the role of structure vs. paramet-
erisation in determining model accuracy a priori, two

lines of work may be pursued. First, the influence of
structure may be further investigated by comparing the
performances of different models using the same basic
information for parameter estimation. Previous work on
model comparisons against the same data sets have
shown that predictions vary greatly between models, or
even between users for a given model, and that all models
featured their own domains of validity [8, 35]. However,
because they focused on the elusive issue of model vali-
dation rather than extrapolation they allowed some de-
gree of site-specific calibration which prevents the
identification of pure ‘structure’-related effects. Com-
parison exercises where modellers would be forced to
make use of a given set of soil and crop properties should
therefore be encouraged. This would also help delineate
the respective validity domains of models, which could
be made use of by adjusting model structure to soil and
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Figure 4. Simulated (lines) and observed (symbols) time course of total crop dry matter and nitrogen uptake (left) and surface (0–30 cm)
soil moisture and nitrate content (right) for the moderately-fertilised winter oilseed rape crop in Châlons. The simulation lines are dashed
for the baseline parameterisation, and solid for the calibrated parameter set.



climate types based on a functional classification of the
simulated systems.

Secondly, the outcome of various procedures (e.g.,
pedo-transfer functions) may be compared for a given
model. Although it is known that such procedures are all
the more relevant as they are applied to pedological con-
ditions similar to those on which they were established
[2], it would be interesting to check whether their predic-
tions (input to the model as parameters) may be applied
to new conditions.

Whatever the outcome of the above studies, there is a
need to extrapolate the test presented in this paper to im-
prove our confidence in large-scale model results. To fa-
cilitate the extension of such tests to a wide range of

models and soil/crop conditions, we urge the community
of model developers and users to organise itself so as to
share both models, and data sets to test them.
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Figure 5. Simulated (lines) and observed (symbols) time course of total crop dry matter and nitrogen uptake (left) and surface (0–30 cm)
soil moisture and nitrate content (right) for the moderately-fertilised sweet sorghum crop in Barrafranca. The simulation lines are dashed
for the baseline parameterisation, and solid for the calibrated parameter set.
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Table A. Soil and crop parameters involved in the site-specific calibration of CERES. Names follow the original CERES [22] and
NCSOIL nomenclatures. The water balance parameters are supplied for each soil horizon, whereas those of the C-N turnover module
pertain to the plough layer only.

Name Definition Unit

Water balance

LL
DUL

Wilting point
Field-capacity moisture content

cm3.cm–3

cm3.cm–3

Turnover of carbon and N

Pool I:
— C(I)
Pool II:
— C(II)
— C:N(II)
FOM
CFFOM

Microbial biomass
Initial size of pool I
Actively-decomposing native organic matter (’humads’)
Initial size of pool II
C:N ratio of pool II
Fresh organic matter pool
Decomposition rate of FOM

mg C.kg–1 sol
mg C.kg–1 sol
g C.g–1 N
day–1

Crop phenology

P1V Sensitivity to cold s (wheat) Unitless

Crop growth

AWR
SMDFR
SWDF1
—
—

Specific leaf weight (wheat)
Moisture stress coefficient for root N uptake
Moisture stress coefficient for net photosynthesis
Moisture stress coefficient for the vertical penetration of roots
Maximum root water extraction

g dry matter.m–2

Unitless
Unitless
Unitless
cm water.cm–1 soil cm–1 root
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Abstract

Composting has emerged as a valuable route for the disposal of urban waste, with the prospect of applying composts on

arable fields as organic amendments. Proper management of urban waste composts (UWC) requires a capacity to predict their

impacts on carbon and nitrogen dynamics in the field, an issue in which simulation models are expected to play a prominent role.

Here, we used a deterministic soil-crop model to simulate C–N dynamics in an arable field amended with three types of UWC

(green waste and sludge, biodegradable waste, and solid waste), and a reference amendment (farmyard manure). The model is a

version of CERES in which the soil C–N module was substituted with the NCSOIL model, whose microbiological parameters

were determined from either laboratory incubation data or biochemical fractionation in a previous paper. CERES was tested

against data from a field trial set up in 1998 in the Paris area, and managed as a maize (Zea mays L.)–wheat (Triticum aestivum

L.) rotation. Comparison of observed and simulated data over the first 4 years of the field trial showed that CERES predicted the

soil moisture and inorganic N dynamics reasonably well, as well as the variations in soil organic C. In particular, the

parameterization of UWC organic matter from biochemical fractions achieved a similar fit as the parameterization based on

incubation data. Wheat yields were also correctly predicted, but a systematic under-estimation of maize yields pointed at an

under-estimation of spring and summer mineralization of N by CERES.

Simulated N fluxes showed that the organic amendments induced an additional leaching ranging from 1 to 8 kg N ha�1 yr�1,

which can be related to the initial mineral N content of the amendments. After 4 years, the composts had mineralized 3–8% of

their initial organic N content, depending on their stability. Composts with slower N release had higher N availability for the

crops. CERES could thus be used to aid in selecting the timing of compost application, in relation to its stability, based on both

environmental and agronomical criteria.

# 2005 Elsevier B.V. All rights reserved.

Keywords: C–N dynamics; CERES; Urban waste compost; Modelling; Field experiment

1. Introduction

The management of urban waste has become a

major issue worldwide, with steadily growing volumes

to be disposed of and increased public awareness of
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the resulting pressure on the environment. Amidst the

range of waste treatments currently available, incin-

eration and landfilling are the most frequent, and are

commonly combined to meet the needs of local

communities. However, both treatment routes raise a

range of environmental problems, which have recently

lead the French government to schedule a ban on most

types of landfill disposal. Composting of urban waste

has emerged as a valuable alternative because of the

high proportion of organic matter in urban waste. The

bio-degradable fraction (including food scraps, grass

clippings and tree trimmings) is estimated at about

25% (fresh weight) in France, along with an additional

25% made up of paper and cardboard. Composts have

long been used in agriculture, and urban waste

composts (UWC) may be applied in arable fields as

organic amendment to maintain soil organic matter as

well as supply nutrients to crops (Stratton et al., 1995).

Proper management of UWC requires a capacity to

predict their impacts on C and N dynamics in the field.

Similar to other organic amendments, there exists a

body of work on the effect of UWC on agricultural

systems variables encompassing physical effects on

soil structure and water balance (Agassi et al., 1998;

Movahedi Naeini and Cook, 2000a), N availability to

crop (Hadas and Portnoy, 1997; Sánchez et al., 1997),

crop yield (Allievi et al., 1992; Movahedi Naeini and

Cook, 2000b), and nitrate losses (Gerke et al., 1999;

Mamo et al., 1999a). However, very few studies

addressed the above items simultaneously, which is

necessary to evaluate the environmental advantages

and drawbacks of waste composting, as compared to

other treatment routes (Mendes et al., 2003). Also, the

environmental impacts of UWC use in agriculture are

expected to vary widely according to crop manage-

ment, climate and soil characteristics, together with

the constituents and microbial load of the UWC

material itself (Stratton et al., 1995).

Deterministic models of C–N dynamics in soil-

crop systems provide a unique means of addressing

these issues, as they simulate the major processes

governing the impacts cited (Diekkrüger et al., 1995),

and make it possible to single out soil, climate, and

management factors through scenario analysis (Rama-

narayanan et al., 1998). They may therefore help in

issuing recommendations for UWC management in

agriculture, regarding for instance the timing of UWC

application in relation to the stability of their organic

matter. Models can also approach long-term effects,

which are particularly relevant to evaluate the effect of

repeated applications of UWC on soil organic matter

dynamics. For instance, a modelling study in Northern

Germany spanning 30 years showed that nitrate

leaching was much more sensitive to UWC applica-

tions in a sandy soil compared to a loamy one, and that

an acceptable agronomical and environmental com-

promise could be struck by using mature UWC at

moderate doses (Gerke et al., 1999).

However, there has been little work at the field level

in comparison with laboratory-scale modelling (Hadas

and Portnoy, 1997; Mamo et al., 1999b). Field-scale

modelling poses the challenge of extrapolating

microbiological parameters for UWC, generally

obtained through laboratory incubations of disturbed

soil samples, to actual field conditions where soil

structure and organic matter placement affects C–N

dynamics (Duxbury et al., 1989). Recent work showed

that these microbiological parameters could also be

approached by biochemical fractionation of UWC

organic matter, thereby alleviating the need for time-

consuming incubations in the laboratory (Gabrielle

et al., 2004). However, it is still uncertain whether

these proximate parameter values would give good

results in the field.

In the framework of a long-term field experiment

set up in the Paris area to evaluate the agronomic value

and the environmental impacts of various types of

UWC (Houot et al., 2002), we set out to predict the C

and N balances of the UWC-amended plots with a

deterministic simulation model. The model is based on

CERES (Jones and Kiniry, 1986), as modified to suit

French conditions (Gabrielle and Kengni, 1996). In

particular, its soil C–N module was substituted with

NCSOIL (Molina et al., 1983), a model that considers

soil organic matter (OM) as being made up of a series

of discrete pools with C and N flowing between the

pools as a result of processing by soil microflora. In a

previous paper (Gabrielle et al., 2004), NCSOIL was

parameterized and tested against laboratory incuba-

tion data, using two parameterization methods: one

based on laboratory incubation data, and the other

based on a biochemical index. The first objective of

this work was thus to evaluate the capacity of CERES

to simulate UWC in the field, based on the two

parameter sets obtained in the laboratory study. Such

field test has not yet been conducted, to the best of our
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knowledge. The second objective was to simulate the

C–N balance from the various UWC-amended plots

over the 4-year timeframe of the field experiment, with

particular focus on soil organic C variations and soil N

losses (leaching and gaseous).

2. Materials and methods

2.1. Experimental setup

The experiment was set up in 1998 at Feucherolles

(488900N and 18950E; 50 km West of Paris, France), on

a Typic Hapludalf, whose surface horizon had a silt

loam texture (19% clay and 6% sand), a pH of 6.9,

negligible CaCO3 content, and an organic carbon

content of 11.0 g C kg�1 dry soil. Three types of UWC

were applied: (1) a bio-waste compost (BIO) resulting

from the co-composting of green waste and the source

separated organic fraction of municipal waste; (2) a

co-compost obtained from a mix of 70% green waste

and 30% sewage sludge, on a dry matter basis (GWS);

and (3) a municipal solid waste compost (MSW).

Cattle farmyard manure (FYM) served as a reference

organic amendment. Readers may refer to Gabrielle

et al. (2004) for more details on amendments’

properties.

The four organic treatments were combined with

two mineral fertilizer treatments: with or without

additional mineral N, applied as a N solution

containing 50% ammonium-nitrate and 50% urea.

The total area of the field was 6 ha, and the lay-out

followed a split-plot design with four blocks separated

by a 25 m wide buffer strip to avoid contamination

during spreading of the organic or mineral fertilizer.

The blocks were divided into 10 plots (45 m � 10 m),

separated by a 6 m wide strip. Plots located in the

Eastern half of the field received additional mineral N,

whereas those in the Western half did not. Treatments

with additional mineral N will be noted +N.

The field was managed as a maize (Zea mays L.)–

wheat (Triticum aestivum L.) rotation. Composts were

spread once every 2 years on wheat stubble, and

ploughed into the soil within a few days upon stubble

clearing (see Table 1 for application rates). The

controls received no organic fertilization. Maize was

sown in May 1999 with a fertilization of 79 kg N ha�1

in the +N treatments, and harvested in November.

Wheat was sown 1 week after maize harvest, and the

+N section received two mineral fertilizations of

51 kg N ha�1 each, in February and April 2000,

respectively. Wheat was harvested in August 2000,

and the following maize was sown in May 2001 after a

68 kg N ha�1 fertilization on the +N treatments. The

daily weather data required to run the CERES model

were taken from a meteorological station located 5 km

away from the field experiment.

Soil was sampled several times a year: before

sowing, up to three times during the growing season,

and after harvest. Three soil cores were taken from

each replicate plot with an automatic auger (internal

diameter: 2 cm). Cores were cut in 30 cm increments

down to 90 cm, and pooled layer-wise. The composite

samples were analyzed for gravimetric moisture

content and mineral N using colorimetric methods.

In autumn 2000 through autumn 2001, a bare soil plot

was set up to monitor the mineralization of soil

organic N in the absence of organic amendments.
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Table 1

Characteristics of the organic amendments applied in 1998 and 2000

Amendment Application rate

(Mg DMa ha�1)

Organic

C (Mg C ha�1)

Total

N (kg N ha�1)

NO3
�-N

(kg N ha�1)

NH4
+-N

(kg N ha�1)

FYM, 1998 13.1 3.8 313.0 3.0 74.0

BIO, 1998 16.2 2.6 265.0 0.0 20.0

GWS, 1998 10.7 2.9 303.0 0.0 34.0

MSW, 1998 10.0 3.0 202.0 0.0 22.0

FYM, 2000 9.6 3.7 186.2 1.3 0.7

BIO, 2000 25.0 4.4 297.5 6.2 0.7

GWS, 2000 18.8 3.6 347.6 0.1 21.7

MSW, 2000 16.9 5.3 348.5 0.4 12.5

MSW: municipal solid waste compost; BIO: bio-waste compost; GWS: green waste and sludge compost; FYM: farmyard manure.
a Dry matter.



During the growing seasons, individual plants samples

were taken over replicate plots totaling 1 m2 in area for

the maize, and 0.5 m2 for the wheat. Plants were

brought to the laboratory for various analyses: plant

density, leaf area index (LAI; measured by planime-

try), dry matter and N contents of various plant

compartments (leaf, stem, grain, ear or panicle).

2.2. The CERES model

CERES is a mechanistic model simulating the

dynamics of water, carbon and nitrogen in soil-crop

systems. It runs on a daily time step and is available for

a large range of arable species (Jones and Kiniry,

1986). It runs from standard weather data including:

solar radiation, rainfall, air temperature and potential

evapo-transpiration. In the following, the term ‘model

simulation’ will refer to a run of CERES with the input

data detailed in Section 2.3, producing a set of outputs

directly comparable with the field measurements.

CERES comprises three main sub-models. First, a

physical module simulates the transfer of heat, water

and nitrate down the soil profile, as well as soil

evaporation, plant water uptake and transpiration in

relation to climatic demand. Water infiltrates down

the soil profile following a tipping-bucket approach,

and may be redistributed upwards after evapo-

transpiration has dried some soil layers. In both of

these equations, we introduced the generalized

Darcy’s law in order to better simulate water

dynamics in fine-textured soils (Gabrielle et al.,

1995). Next, a microbiological module simulates the

turnover of organic matter in the plough layer,

involving both mineralization and immobilization of

inorganic N. In our version, the NCSOIL model

(Molina et al., 1983) was substituted for the original

CERES module (Gabrielle and Kengni, 1996).

NCSOIL comprises three endogenous soil OM pools:

microbial biomass, active humus (‘humads’), and

passive humus. Active and passive humus differ in

their turnover rates, set at 1 and 100 years,

respectively (Gabrielle et al., 2004). The OM pools

decompose according to first-order kinetics, and

partly recycle into the microbial biomass. The third

module simulates crop growth and development.

Crop net photosynthesis is a linear function of

intercepted radiation according to the Monteith

approach, with interception depending on leaf area

index based on Beer’s law of diffusion in turbid

media. Photosynthates are partitioned on a daily basis

to currently growing organs (roots, leaves, stems,

fruits) according to crop development stage. The

latter is driven by the accumulation of growing degree

days, as well as cold temperature and day-length for

crops sensitive to vernalization and photoperiod.

Crop N uptake is computed through a supply/demand

scheme, with soil supply depending on soil nitrate and

ammonium concentrations and root length density.

2.3. Model parameterization

CERES was parameterized by combining different

methods according to available data. The soil physico-

chemical properties indicated at the beginning of

Section 2.1 were averaged across 43 samples taken in

a field variability analysis at the onset of the field trial.

Water retention parameters were measured in the

laboratory on small clods collected in winter (Bruand

and Tessier, 2000), while hydraulic conductivity was

inferred from other properties using a pedo-transfer

function (Gabrielle et al., 2002). The resulting values

are listed in Table 2 for each soil layer.

Two sets of parameters were used for the soil C–N

module of CERES, NCSOIL. The first set (referred to
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Table 2

Physical parameters of the simulated soil layers

Horizon (cm) Water content (cm3 cm�3) Saturated hydraulic

conductivity (cm d�1)
Wilting point Field capacity Saturation

0–30 0.100 0.310 0.420 5.0

30–60 0.131 0.306 0.398 5.0

60–90 0.131 0.300 0.403 5.0

90–120 0.131 0.315 0.417 5.0

The wilting point and saturation moisture contents were deducted from measurements under a suction of 16 and 0.01 MPa, respectively, while

field capacity was inferred by pedo-transfer (Gabrielle et al., 2002).



as OPT) was obtained by fitting against laboratory

incubation data, whereas the second set (BSI) was

exclusively inferred from the biological stability

index, a variable calculated from biochemical frac-

tions of UWC organic matter (Linères and Djakovitch,

1993). The parameterization procedures are fully

described in Gabrielle et al. (2004). Organic matter

inputs from crop residues were partitioned into three

fractions: carbohydrates, cellulose- and lignin-like,

with decomposition rates of 0.1, 0.02 and

5 � 10�5 d�1, respectively (Godwin and Jones, 1991).

3. Results and discussion

3.1. Extrapolation of laboratory-derived

parameter sets to field conditions

Compared to the independent laboratory determi-

nations, one parameter had to be adjusted to improve

model fit against field data: the wilting point (WP) in

the 60–120 cm soil layer. Using the laboratory-

determined WP value of 0.131 cm3 cm�3 for the

subsoil resulted in a strong under-estimation of maize

yields for both years (not shown). A better adjustment

was obtained by setting this parameter to a lower value

of 0.100 cm3 cm�3.

Regarding the transformations of exogenous

organic matter in soil, two types of parameter sets

were used: one based on laboratory incubation data

(OPT), and the other based on a biochemical index

(BSI). Fig. 1 shows that they resulted in a similar fit to

observed nitrate dynamics in the topsoil. The

simulation lines corresponding to the two parame-

terizations generally merged, or differed by

15 kg NO3
�-N ha�1 at most. The only notable

deviations occurred in the year following the first

compost application with the MSW and GWS

composts, and in the year following the second

application of MSW compost. A similar pattern

appeared in the simulations done at the laboratory

scale with NCSOIL (Gabrielle et al., 2004). The

differences between the BSI and OPT parameteriza-

tions were most significant with the MSW compost in

both years, and with the 2000 GWS compost.

Across the various treatments, the BSI simulation

predicted lower nitrate concentrations than the OPT

simulation after the first compost application, and

higher concentrations after the second application

(Fig. 1). The match of BSI with observed soil N data

was not significantly better or poorer than that of OPT,

and the same applied to other simulation variables (not

shown). For instance, simulated final crop yields

differed by 0.3 Mg grain dry matter ha�1 at most

between the two parameterizations, which falls within

the experimental error on the measurements. It can

therefore be concluded that the BSI and OPT

parameter sets achieved a similar performance. This

confirms at the field level the laboratory finding by

Gabrielle et al. (2004) that the biochemical index

BSI could be used to parameterize soil C–N models

such as CERES.
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Fig. 1. Simulated (lines) and observed (symbols, �1 S.D.) time

course of topsoil (0–30 cm) nitrate content in the four amended plots

that did not receive additional mineral N fertilizer. Simulations were

run with two parameter sets for exogenous organic matter: one

obtained from laboratory incubation data (OPT), and the other based

on a biochemical index (BSI). Legend: MSW, municipal solid waste

compost; BIO, bio-waste compost; GWS, green waste and sludge

compost; FYM, farmyard manure.



3.2. Performance of CERES

3.2.1. Soil water balance

Along with soil temperature, which can be

correctly predicted by CERES (Hoffmann et al.,

1993), soil moisture is a major control of soil

biological activity. Here, the CERES simulation of

the soil moisture profile generally matched the

observed data (Fig. 2a), with a slight tendency to

over-estimate the latter in winter. This should be

ascribed to the fact that the water table was shallow at

this time of year, during which piezometric monitor-

ing showed that it could rise to the topsoil layers. Since

this contribution cannot be simulated within the

CERES framework, it is likely to have participated in

the above-mentioned discrepancy. In summer, there

were unfortunately few moisture measurements,

especially during the maize growing seasons. With

its first parameter setting, as given in Table 2, CERES

predicted serious water stress episodes that did not

seem to have occurred in practice. This may also be

explained by a contribution from the water table. We

therefore adjusted the wilting point in the subsoil, as a

proximate control for this phenomenon.

3.2.2. Soil mineral nitrogen

The model simulated the time course of nitrate

content in the soil profile reasonably well, although it

tended to over-estimate topsoil nitrate in the winter

and spring periods following compost application

(Fig. 2b). Despite the frequent applications of fertilizer

N in the +N treatments, it was noticeable that the

measured nitrate contents remained low throughout

the profile, being less than 30 kg N ha�1 at all times.
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Fig. 2. Simulated (lines) and observed (symbols, �1 S.D.) time course of soil nitrate (a) and moisture content (b) in the treatment amended with

the green waste and sludge compost and fertilizer N (GWS + N), over the 4-year simulation period.



This was especially surprising in the bare soil period

between wheat harvest and maize planting, when

favourable temperatures and moisture conditions

could be expected to result in high mineralization

fluxes and accumulation of inorganic N in the topsoil.

During this period, soil nitrate was over-predicted by

CERES as a result.

3.2.3. Soil carbon

Fig. 3a compares the simulated and observed

variations in total carbon in the soil surface horizon

over the 4-year period from September 1998 to

September 2002. The predictions were especially

good for the treatments without fertilizer N, with

deviations ranging from 0 to 1.6 Mg C ha�1. However,

the model simulated an overwhelming effect of

fertilizer N in the +N treatments, which was less

pronounced in practice. This resulted in larger

discrepancies between predicted and observed data.

In principle, this effect of fertilizer N should result

from the balance between two opposite factors. On the

one hand, fertilizer N enhances microbial activity,

since inorganic N is often a limiting factor in bio-

degradation (Mary et al., 1996). On the other hand, N

increases crop productivity and thereby OM returns in

crop residues. It seems that CERES over-estimated the

influence of the latter against the former, probably

because it exaggerated the variations in crop yield

across the treatments (Fig. 4). The actual contribution

of crop residues to the variations in soil C appeared

negligible, as the differences in C return between the

amended and control treatments were estimated to

total less than 1 t C ha�1 over the 4 years.

Fig. 3b provides some insight into the causes of C

variations, according to the model, by depicting the

sizes and variations of the various soil OM pools

simulated. After 4 years, the amount of compost-

derived C was constant across treatments, being

around 6 Mg C ha�1. Thus, differences in stability

across amendments were accidentally compensated

for by variations in the amounts of C applied.

According to CERES, only 7–26% of applied organic
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Fig. 3. Bar plots of simulated versus observed variations in C stocks

in the top 30 cm of soil, from September 1998 to September 2002

(a). Simulated initial and final stocks of compost C, and variations in

active humus C (‘humads’) and crop residues over the same period

(b). Values are averaged across the two fertilizer N treatments in (b).

Fig. 4. Bar plot of simulated (black bars) versus observed (white

bars, �1 S.D.) grain dry matter yields in 1999–2001.



C (or 0.4–2.2 Mg C ha�1) had degraded by September

2002. This percentage falls within the range of values

reported for the potentially mineralizable C of UWC

from laboratory incubations (Hadas and Portnoy,

1997; Bernal et al., 1998). On the other hand, crop

residues C decomposed faster and only accounted for

a marginal part of the soil C budget (Fig. 3b). Lastly,

the organic amendments contributed only 0.4 t C ha�1

to the active humus pool (humads), which is a

consequence of their low degradation rates. Thus, the

amendments could not stop the decline in humads’ C

content, probably because this stable OM compart-

ment would take longer than 4 years to replenish from

exogenous organic matter.

3.2.4. Crop growth and yield

CERES provided relatively good predictions of final

wheat yields in 2000, with the exception of the

FYM + N treatment for which it produced a 25% over-

estimation (Fig. 4). On the other hand, its simulation of

maize yields raised significant errors in 1999, especially

in the treatments without fertilizer N. CERES predicted

a high N deficit, which resulted in simulated yields

ranging from 4.9 to 6.6 Mg grain ha�1, compared to the

observed range of 8.1 to 8.5 Mg grain ha�1. CERES

also under-estimated shoot N uptake by 60 kg N ha�1

on average across the various treatments, as exemplified

by Fig. 5. Since no soil mineral N measurements were

taken during the maize growing seasons, we cannot

conclude whether the model under-estimated soil N

supply from organic matter, or under-estimated the

capacity of maize plants to take up soil N via their

rooting systems. The second hypothesis is supported by

the fact that CERES was found to over-estimate the

effect of soil dryness on limiting N inflow to plant roots,

in Mediterranean environment (Gabrielle et al., 2002).

Also, the same pattern appeared in 2001, but to a lower

extent, with CERES under-estimating final maize

yields by 1–2 Mg grain ha�1 (Fig. 4). Since the summer

of 2001 was slightly wetter than that of 1999, this result

is consistent with the hypothesis that the model under-

estimates crop N uptake under dry conditions.

Regarding the first hypothesis, namely an under-

estimation of soil N supply during the maize growing

season, it implies that CERES failed to simulate the

seasonal breakdown of compost N mineralization

between the winter and summer seasons following

compost application. A similar conclusion was

reached with the DAISY soil-crop model, which

anticipated the soil nitrate peaks observed in autumn

after spring application of household and garden

organic waste composts (Gerke et al., 1999). In our

experiment, the bare control plot set up after compost

application in 2000 showed that CERES over-

estimated topsoil inorganic N in spring. It is thus

likely that the two hypotheses contributed to the

discrepancies noted on maize growth, so that

corrections regarding both crop N uptake and soil N

mineralization should be sought.

3.3. Nitrogen balances

Table 3 presents some N fluxes of agronomic and

environmental relevance, as simulated by CERES in

the various treatments. Bearing in mind some of the

shortcomings with the simulations, some caution

should obviously be exerted when discussing these

figures. However, it can be expected that model errors

will be considerably less when comparing treatments

in a differential mode rather than when dealing with

absolute values.

The first two items in Table 3 involve N losses

(nitrate leaching and denitrification), whereas the next

four approach the amendments’ fertilizing value

through the apparent crop recovery of applied organic

N. Regarding nitrate losses, CERES predicted that all

organic amendments induced increases in nitrate

leaching, ranging from 2 to 11 kg N ha�1 yr�1.

Farmyard manure had the highest impact, despite

its being moderately stable according to the biological

stability index (Gabrielle et al., 2004). This was
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Fig. 5. Simulated (lines) and observed (symbols, �1 S.D.) of crop

N content in the treatment amended with the green waste and sludge

compost (GWS). Crop components include grains (thick solid line

and diamonds) and total aerial parts (thin lines and squares).



probably due to its high initial ammonium content in

1998, corresponding to an application dose of

75 kg NH4
+-N ha�1. The ranking of the amendments

in terms of nitrate losses directly reflected their initial

mineral N content. Accordingly, the BIO compost lead

to the smallest leaching increase because it con-

tributed only 26 kg N ha�1 in mineral form over the

two applications. This initial effect predominated over

the differences in immobilization/mineralization

dynamics among the various amendments. Based on

organic matter stability, GWS could for instance be

expected to result in less leaching compared to the

other amendments since it immobilized N during the

winter season following compost application. In

practice, however, its high inorganic N content made

it the second contributor to nitrate leaching (Table 3).

As far as gaseous losses are concerned, simulated

denitrification was virtually nil in the controls

(totaling less than 1 kg N ha�1 yr�1), and was slightly

enhanced by all organic amendments. These low

denitrification rates are probably due to the fact that

simulated water-filled pore space seldom reached the

threshold level of 62% used to trigger denitrification in

CERES (Hénault and Germon, 2000). Unfortunately,

no measurements were carried out to verify these

predictions.

It was surprising that the +N treatments should

have had lower nitrate and denitrification losses than

those receiving no additional mineral N fertilizers.

The reason was that in the latter plots, plants

experienced N stress early in the season, which

hampered their capacity to take up the N made

available through compost mineralization later on.

Due to their reduced growth, these plants transpired

less throughout the growing season, resulting in higher

water drainage, nitrate leaching and denitrification,

compared to the +N treatments.

Table 3 indicates the potential supply of compost-

derived N to crops by comparing the amount of N

mineralized in the amended and control treatments.

Each compost application thus provided an additional

amount of 11–28 kg N ha�1 yr�1 to the crops, which

represented circa 3–8% of the organic N initially

contained in the amendments. Interestingly, composts

increased N uptake by slightly more than the amount

of N they mineralized, because they also contained

inorganic N. As a result, the apparent crop recovery of

total compost N was in the 9–28% range, which is

consistent with the 15–25% range reported from

laboratory studies for UWC (Hadas and Portnoy,

1997; Sánchez et al., 1997; Bernal et al., 1998).

Similar to N losses, there was no direct relationship

between amendment stability and fertilizing value.

The stable BIO compost and less stable FYM were in

the lower range, whereas the stable GWS compost and

the less stable MSW lied in the upper range of values.

The differences in crop recovery of compost-derived

N also evidenced the issue of application timing. It
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Table 3

CERES-simulated N fluxes in the compost field trial

Flux type Treatments

No additional N Additional N applied

Control MSW BIO GWS FYM Control MSW BIO GWS FYM

kg N ha�1 yr�1

Nitrate leaching 17.0 6.0 5.1 10.2 11.4 16.7 2.5 2.0 3.7 6.1

Denitrification 0.63 0.21 0.18 0.32 0.10 0.10 0.10 0.10 0.10 0.20

Net mineralization 82.1 17.9 15.2 24.3 27.6 80.3 12.6 10.8 18.4 22.1

Crop N uptake 86.4 20.3 16.5 27.2 34.5 171.1 18.5 12.2 27.9 34.7

Applied Na 8.5 137.7 140.5 162.7 124.7 79.2 137.7 140.5 162.7 124.7

% of applied N

Apparent crop N recovery 0 14.7 11.7 16.7 27.7 106.9 13.4 8.6 17.1 27.8

Fluxes are annual averages over the period running from October 1998 to June 2002. The fluxes for the organic treatments (MSW, BIO, GWS and

FYM) are expressed as a difference relative to the corresponding controls receiving no organic amendments. Crop apparent recovery of applied N

is calculated as (treatment N uptake � control N uptake)/(applied N). MSW: municipal solid waste compost; BIO: bio-waste compost; GWS:

green waste and sludge compost; FYM: farmyard manure.
a Organic and inorganic form.



could indeed be expected that a fresher compost like

MSW would mostly mineralize during the period

between its application in autumn and the planting of

maize in spring, therefore losing some of its N to

leaching. More mature amendments such as BIO and

GWS were on the other hand better suited to the

timing used in this experiment.

4. Conclusion

Here, we tested the ability of a deterministic soil-

crop model (CERES) to predict the impact of urban

waste compost amendments on C–N dynamics in an

arable field. A first issue involved the parameterization

of its soil microbiological module, NCSOIL, for

which two parameter sets were derived from previous

laboratory studies (Gabrielle et al., 2004). Comparison

with field data showed that both parameter sets yielded

an acceptable fit, confirming that a simple biochemical

index (BSI) could be used to predict the effect of UWC

at the field-scale. CERES gave correct predictions of

wheat yields, while it under-estimated the yields of

maize. CERES was also able to reproduce the

variations in soil organic carbon after 4 years, which

were mostly attributed to compost organic matter.

Regarding N balance, the modelled losses essentially

occurred through leaching, as opposed to gaseous

form, and were related to the initial mineral N content

of the composts. Crop recovery of compost N was also

dependent on composts’ mineral N content, along with

application timing.

We conclude that CERES could be used to further

investigate the relationship between composts’ bio-

logical properties, timing and rate of field application,

and agronomical and environmental impacts. How-

ever, modelling efforts should be pursued to improve

the simulation of N mineralization in the first few

months following compost application.
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