
HAL Id: tel-00011424
https://theses.hal.science/tel-00011424

Submitted on 19 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Scale Content Delivery applied to Files and Videos
Christoph Neumann

To cite this version:
Christoph Neumann. Large Scale Content Delivery applied to Files and Videos. Networking and
Internet Architecture [cs.NI]. Université Joseph-Fourier - Grenoble I, 2005. English. �NNT : �. �tel-
00011424�

https://theses.hal.science/tel-00011424
https://hal.archives-ouvertes.fr

No assigned by the library

THESIS

for obtaining the degree of

Doctor of the Université Joseph Fourier

Speciality: ¿ Computer Science À
prepared at INRIA Rhône Alpes, Planète Research Team

presented and publicly discussed

by

Christoph NEUMANN

Defended on December 14th, 2005

Title:

Large Scale Content Distribution

applied to Files and Videos

Supervisor: Vincent ROCA

Committee in charge

Prof. Sacha KRAKOWIAK President

Prof. Ernst BIERSACK Reporter

Prof. Patrick SÉNAC Reporter

Prof. Andrzej DUDA Director of thesis

Dr. Vincent ROCA Supervisor

Prof. Jean-Jacques PANSIOT Examiner

2

2

Noattribué par la bibliothèque

THÈSE

pour obtenir le grade de

Docteur de l’Université Joseph Fourier

Spécialité: ¿InformatiqueÀ
préparée à l’INRIA Rhône Alpes, projèt Planète

présentée et soutenue publiquement

par

Christoph NEUMANN

le 14.Décembre 2005

Titre:

Diffusion de Contenu à Grande Échelle
appliquée aux Fichiers et aux Vidéos

Encadrament scientifique: Vincent ROCA

Jury

Prof. Sacha KRAKOWIAK Président

Prof. Ernst BIERSACK Rapporteur

Prof. Patrick SÉNAC Rapporteur

Prof. Andrzej DUDA Directeur de thèse

Dr. Vincent ROCA Encadrament scientifique

Prof. Jean-Jacques PANSIOT Examinateur

4

4

Abstract

Reliable multicast is certainly one of the most effective solutions to distribute content, like files and
videos, to a very large number (i.e. possibly millions) of clients. To that respect the ALC and FLUTE
protocols, both coming from the IETF Reliable Multicast Transport (RMT) working group, have
recently been adopted in the context of 3G cellular networks in 3GPP/MBMS and for DVB-H IP
Datacast services.
This work focuses on reliable multicast with massive scalability as a core requirement, and it builds
upon the RMT IETF solutions. These reliable multicast protocols rely on several building blocks that
we investigate in detail:

• Forward Error Correction (FEC) Building Block: We examine the broad class of “Low Density
Parity Check” (LDPC) large block FEC codes. We design derivates, namely LDGM-Staircase
and LDGM-Triangle, and benchmark these codes in detail with respect to their error correcting
capacities, memory requirements and decoding/encoding speeds, and compare them to the Reed
Solomon small block code. We find that LDPC codes and their implementation have very
promising performance, especially when used with large files.

The FEC building block must be adapted to the channel, and we experimentally evaluate how
to best schedule packets, and derive some recommendations.

Finally, we analyze the codes with respect to their ability to offer a partial reliability service,
i.e. their ability to decode parts of the content even if the whole decoding process cannot finish
because too many packet are missing. This study leads to quite surprising results.

• Congestion Control Building Block: We look at the startup behavior of the three congestion
control protocols RLC, FLID-SL and WEBRC. We show that the startup phase of these protocols
significantly impacts the performance of a file download application.

This thesis has also several contributions at application level:

• FLUTE extensions: The larger the content, the more efficient FEC protection is. We therefore
propose a mechanism to aggregate several files in the file delivery protocol FLUTE, and also
explain how to logically group files.

• Video Streaming: Designing a video streaming solution for an environment having no or a
constrained back channel, due for instance to scalability requirements, leads to many challenges.
We introduce the SVSoA version 1 and version 2 approaches, based on ALC. The first one
requires hierarchically encoded videos, while the latter is more adapted to a wireless broadcast
use case and does not need hierarchical encoded videos anymore. These approaches benefits
from all the ALC reliable multicast protocols assets in terms of unlimited scalability, congestion
control and error recovery.

Keywords: Reliable Multicast, FLUTE, ALC, Forward Error Correction (FEC), Low Density Parity
Check (LDPC) Codes, Content Delivery

6

6

Résumé

Le multicast fiable est certainement la solution la plus efficace pour la distribution de contenu à un
très grand nombre (potentiellement des millions) de récepteurs. Dans cette perspective les protocoles
ALC et FLUTE, standardisés à l’IETF (RMT WG), ont été adoptés dans 3GPP/MBMS et dans le
DVB-H IP-Datacast dans les contextes des réseaux cellulaires 3G.
Ce travail se concentre sur le multicast fiable et a comme requis principal le passage l’échelle massif
en terme de nombre de clients. Cette thèse se base sur les solutions proposées à l’IETF RMT WG.
Ces protocoles de multicast fiable sont construit autour de plusieurs briques de base que nous avons
étudié en détail:

• La brique Forward Error Correction (FEC) :

Nous examinons la classe de codes grands blocs Low Density Parity Check (LDPC). Nous con-
cevons des dérivées de ces codes, et les analysons en détail. Nous en concluons que les codes
LDPC et leur implémentation ont des performances très prometteuses, surtout si ils sont utilisées
avec des fichiers de taille importante.

• La brique contrôle de congestion :

Nous examinons le comportement dans la phase de démarrage de trois protocoles de contrôle de
congestion RLC, FLID-SL, WEBRC. Nous démontrons que la phase de démarrage a un grand
impact sur les performances de téléchargement.

Cette thèse a aussi plusieurs contributions au niveau applicatif:

• Extensions de FLUTE :

Nous proposons un mécanisme permettant d’agréger plusieurs fichiers dans le protocole FLUTE.
Ceci améliore les performance de transmission.

• Streaming vidéo :

Nous proposons SVSoA, une solution de streaming basé sur ALC. Cette approche bénéficie de
tout les avantages de ALC en terme de passage à l’échelle, contrôle de congestion et corrections
d’erreurs.

Mots clés : Multicast fiable, FLUTE, ALC, codes correcteur d’erreurs, Forward Error Correction
(FEC), Low Density Parity Check (LDPC) Codes, diffusion de contenu

8

8

Our Achievements: Published
Papers, Internet-Drafts,
Implementations and Tutorials

Journal Papers

1. Christoph Neumann, Vincent Roca, Rod Walsh, Large Scale Content Distribution Protocols,
ACM Computer Communication Review (CCR), Vol. 35 No. 5, Invited Paper, October 2005.

Conference Papers

1. Christoph Neumann, Vincent Roca, Aurélien Francillon, David Furodet, Impacts of Packet
Scheduling and Packet Loss Distribution on FEC Performances: Observations and Recommen-
dations, ACM CoNEXT’05 Conference, Toulouse, France, October 2005.
An extended version is available as INRIA Research Report number RR-5578, INRIA Rhone-
Alpes, France, May 2005.

2. Christoph Neumann and Vincent Roca, Impacts of the Startup Behavior of Multilayered Mul-
ticast Congestion Control Protocols on the Performance of Content Delivery Protocols, IEEE
10th International Workshop on Web Content Caching and Distribution (WCW 2005), Sophia
Antipolis, French Riviera, France, September 2005.

3. Christoph Neumann and Vincent Roca, Analysis of FEC Codes for Partially Reliable Media
Broadcasting Schemes, 2nd International Workshop on Multimedia Interactive Protocols and
Systems (MIPS’04), Best Student Paper Award, Grenoble, France, November 2004.

4. Claude Castelluccia, Gabriel Montenegro, Julien Laganier, and Christoph Neumann, ”Hindering
Eavesdropping via IPv6 Opportunistic Encryption”, In Proc. of 9th European Symposium on
Research in Computer Security (ESORICS 2004). Lecture Notes in Computer Science (LNCS),
Springer-Verlag, September 2004.

5. Christoph Neumann and Vincent Roca, Scalable Video Streaming over ALC (SVSoA): a Solution
for the large Scale Multicast Distribution of Videos, 1st International Workshop on ’Streaming
media distribution over the Internet’ (SMDI04), Athens, Greece, May 2004.
An extended version is available as INRIA Research Report number RR-4769, INRIA Rhone-
Alpes, France, March 2003.

6. Christoph Neumann and Vincent Roca, Multicast Streaming of Hierarchical MPEG4 Presenta-
tions, ACM Multimedia 2002 (Short Paper), Juan Les Pins, France, December 2002.

Reseach Reports

1. Vincent Roca and Christoph Neumann, Design, Evaluation and Comparison of Four Large Block
FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM Triangle, plus a Reed-Solomon Small
Block FEC Codec, INRIA Research Report number RR-5225, June 2004.

9

10

Standardization and Internet Drafts

1. Vincent Roca, Christoph Neumann, David Furodet, Low Density Parity Check (LDPC) For-
ward Error Correction, IETF RMT Working Group, draft-roca-rmt-fec-bb-ldpc-00.txt (Work in
Progress), June 2005.

2. Christoph Neumann, Vincent Roca, Rod Walsh, File Aggregation Scheme for FLUTE, IETF
RMT Working Group, draft-neumann-rmt-flute-file-aggregation-01.txt (Work in Progress), June
2005.
Previous versions (obsoleted): version 00, December 2004

3. Pascal Moniot, Vincent Roca, Christoph Neumann, David Furodet, LDPC Staircase FEC codes,
DVB-H proposal, September 2005.

Tutorials

1. Christoph Neumann and Vincent Roca, A Survey of Large Scale Multimedia Streaming Tech-
niques for the Internet, International Workshop on Multimedia Interactive Protocols and Sys-
tems (MIPS’03), Napoli, Italy, November 18-21, 2003. http://mips2003.idms-proms.org/

Implementations

1. Vincent Roca and al., MCLv3: an Open Source GNU/GPL Implementation of the ALC/FLUTE
and NORM Reliable Multicast Protocols,
Involvement: 40% of FLUTE/ALC code,
URL: http://www.inrialpes.fr/planete/people/roca/mcl/.

2. Christoph Neumann, Vincent Roca and Julien Laboure, An Open-Source Implementation of a
LDPC/LDGM Large Block FEC Codec,
Involvement: 33% of LDPC code,
URL: http://www.inrialpes.fr/planete/people/roca/mcl/.

3. Christoph Neumann, Design of an Streaming Application over ALC (SVSoA),
Involvement: 100% of code.

4. Christoph Neumann, Julien Laganier, Claude Castelluccia and Gabriel Montenegro, An Open-
Source Implementation of Opportunistic Encryption,
Involvement: 50% of Opportunistic Encryption code,
URL: http://www.inrialpes.fr/planete/people/chneuman/OE.html.

5. Contributions to an RTP/UDP/IPv4/6 RoHC (Robust Header Compression) profile.

Awards

1. MIPS’04 Best Student Paper Award, International Workshop on Multimedia Interactive Proto-
cols and Systems, Grenoble, France, November 2004.

10

Acknowledgements

While I was enjoying my time preparing my Ph.D., many people encouraged me, with their support
and suggestions.

To all of those, thank you.

12

12

Contents

1 Introduction 1

1.1 Large Scale Content Distribution: Introduction . 1

1.1.1 Challenges . 2

1.1.2 Delivery Service Models . 2

1.2 RMT IETF Solutions . 3

1.3 Scope of this Thesis and Summary of its Main Contributions 4

1.3.1 Contributions to Large Scale Content Distribution Building Blocks 4

1.3.2 Contributions to Large Scale Content Distribution Applications 5

1.3.3 Standardization Activities . 5

1.3.4 Other Contributions . 5

1.4 Road Map of this Document . 5

I An Overview of Large Scale Content Distribution Techniques 7

2 Forward Error Correction Codes 9

2.1 Introduction . 9

2.1.1 Principles . 9

2.1.2 FEC Fields of Application . 11

2.2 Simple FEC Codes . 11

2.3 Small Block FEC Codes . 12

2.4 Large Block FEC Codes . 12

2.5 Expandable/Rateless FEC Codes . 13

2.6 Conclusion . 14

3 Asynchronous Layered Coding (ALC) 17

3.1 Introduction and Principles . 17

3.2 ALC Building Blocks . 18

3.2.1 Layered Coding Transport (LCT) Building Block 18

3.2.2 FEC Building Block . 19

3.2.3 Congestion Control Building Block . 21

3.2.4 Authentication Building Block . 22

3.2.5 Session Description Building Block . 22

3.3 Fields of Application . 22

4 NACK Oriented Reliable Multicast (NORM) 25

4.1 Introduction and Principles . 25

4.2 NORM Building Blocks . 25

4.3 Principal NORM Packet Types . 26

4.4 NORM versus ALC . 27

13

14 CONTENTS

5 FLUTE for File Delivery 29
5.1 Introduction and Principles . 29
5.2 File Delivery Table (FDT) . 29
5.3 FLUTE in Practice . 30

5.3.1 Delivery Models . 30
5.3.2 Session Description . 32
5.3.3 Service Announcement . 32

6 Large Scale Content Delivery for Mobile Devices 33
6.1 An Example: Olympic Games . 33
6.2 MBMS and IP Datacast Services . 33

II Contributions to Large Scale Content Distribution Building Blocks 37

7 Introduction to, Design and Standardization of LDPC Codes 39
7.1 Introduction and Motivations . 39

7.1.1 Motivations . 39
7.1.2 Goal of this Work and Choices Made, in Particular Concerning IPR 40
7.1.3 Standardization Activities . 40

7.2 The LDPC/LDGM FEC Codes . 40
7.2.1 LDGM Codes . 41
7.2.2 LDGM-Staircase Codes . 42
7.2.3 LDPC Code . 43

7.3 LDGM-Triangle Codes . 44
7.4 Conclusions . 44

8 Implementation and Evaluation of a LDPC FEC Codec 47
8.1 Introduction . 47

8.1.1 On the Use of Other Large Block FEC Codes 48
8.1.2 Software Implementation versus Hardware Implementation 48
8.1.3 Packets and Symbols . 48

8.2 Implementation Details . 48
8.2.1 The H Matrix . 49
8.2.2 The Iterative Decoding Algorithm . 49
8.2.3 Enabling an external Memory Management . 52

8.3 Performance Evaluation . 53
8.3.1 Testing Application . 53
8.3.2 Memory consumption . 54
8.3.3 Encoding/Decoding speeds . 55

8.4 A Quick Glance at the Codec API . 56
8.5 Conclusions . 58

9 Impacts of Packet Scheduling and Packet Loss Distribution on FEC Performances:
Observations and Recommendations 59
9.1 Introduction . 59
9.2 Modeling of the Whole System . 60

9.2.1 The Three Models . 60
9.2.2 The Channel Model . 60

9.3 Simulation Results With Six Transmission Models . 62
9.3.1 Methodology . 62
9.3.2 Why is FEC Needed? . 64
9.3.3 Tx model 1: Send Source Packets Sequentially, Then Parity Packets 64
9.3.4 Tx model 2: Send Source Packets Sequentially, Then Parity Packets Randomly 66
9.3.5 Tx model 3: Send Parity Packets Sequentially, Then Source Packets Randomly 67
9.3.6 Tx model 4: Send Everything Randomly . 67

14

CONTENTS 15

9.3.7 Tx model 5: Interleaving (RSE only) . 67
9.3.8 Tx model 6: Send Randomly a Few Source Packets Plus Parity Packets 67

9.4 Simulation Results With a Reception Model . 68
9.4.1 Rx model 1: Receive a Few Source Packets, Then Parity Packets Randomly . . 68

9.5 Discussions and Recommendations . 69
9.5.1 Summary of the Results . 69
9.5.2 In Practice . 69

9.6 Conclusions . 71

10 Performance Evaluation and Comparision of Four Large Block FEC Codes plus a
Reed-Solomon Small Block FEC Codec 73
10.1 Introduction . 73
10.2 Performance Evaluation of the Four LDPC/LDGM FEC Codecs plus an RSE codec . 74

10.2.1 Parameters and Performance Metrics Considered 74
10.2.2 Experimental Setup . 75
10.2.3 Decoding Inefficiency Experiments . 76
10.2.4 Encoding/Decoding Time Experiments . 80
10.2.5 Memory Requirements . 82

10.3 Discussion and Related Works . 85
10.3.1 Which Code to Use, and When? . 85
10.3.2 Comparison With Other Fixed-Rate Codes . 86
10.3.3 Comparison with Rate-Less Codes . 86

10.4 Conclusions . 87

11 FEC for Partially Reliable Media Broadcasting Schemes 89
11.1 Introduction . 89
11.2 Partial Reliability: the Solution Space . 90

11.2.1 Self Sufficiency versus Interdependency . 90
11.2.2 Object Definition . 90
11.2.3 Frame to Object Mapping . 90
11.2.4 Benefits of an Iterative Decoding System: An intuition 91

11.3 One-to-One Frame to Object Mapping . 91
11.3.1 Experimental Conditions . 91
11.3.2 Performance With a Single Small Object . 91
11.3.3 Performance With a Large Number of Small Objects 93

11.4 Frame Aggregation in a Single Meta Object . 93
11.4.1 Performance Without Inter-Frame Dependencies 93
11.4.2 Performance With Inter-Frame Dependencies 94

11.5 Conclusions . 94

12 Startup Behavior of Multilayered Multicast Congestion Control Protocols 97
12.1 Introduction and Related Works . 97

12.1.1 Motivations . 97
12.1.2 Layered Congestion Control Protocols . 98

12.2 Analysis of the Startup Phase . 99
12.2.1 Startup Behavior with RLC . 99
12.2.2 Startup Behavior with FLID-SL . 100
12.2.3 Startup Behavior with WEBRC . 101

12.3 Experimental Results . 102
12.3.1 RLC . 102
12.3.2 FLID-SL . 102

12.4 How to Use these Results in Practice? Lessons Learned 103
12.4.1 Comparison When Ignoring the Target Rate Limitation 103
12.4.2 Comparison When Considering the Target Rate Limitation 103
12.4.3 Transmission Rate Granularity Considerations 105
12.4.4 Reception Inefficiency Factors . 105

15

16 CONTENTS

12.5 Conclusions . 105

III Contibutions to Large Scale Content Distribution Applications 107

13 FLUTE Extensions and Implementation 109
13.1 Introduction . 109
13.2 A File Aggregation Scheme for FLUTE . 109

13.2.1 Standardization Activities . 110
13.2.2 Logical aggregation . 110
13.2.3 Physical aggregation . 111

13.3 MCLv3/FLUTE implementation . 113
13.3.1 General Architecture and Main Components 114
13.3.2 The FLUTE Component . 115

13.4 Conclusions . 117

14 Scalable Video Streaming over ALC (SVSoA) 119
14.1 Introduction . 119

14.1.1 Video Scalability . 120
14.1.2 Layered and Single Layer Streaming Approaches 120

14.2 SVSoA version 1 . 121
14.2.1 Principles . 121
14.2.2 Benefits of the SVSoA version 1 Approach . 123
14.2.3 . . . And the Price to Pay . 125
14.2.4 RTP/UDP versus RTP/ALC/UDP . 125

14.3 Analysis of the SVSoA version 1 Parameters . 126
14.3.1 Storage Requirements . 126
14.3.2 Impacts of the IGMP Leave Latency . 127
14.3.3 Impacts of the Congestion Control Protocol during Startup Phase 128
14.3.4 Packet Loss Recovery Capabilities . 128
14.3.5 Transmission Rate of the ALC Session . 132
14.3.6 Initializing SVSoA version 1 in Practice: a Summary 132

14.4 Experimental Results . 133
14.4.1 Experimental Conditions . 133
14.4.2 Experimental Results . 134
14.4.3 Discussions . 136

14.5 SVSoA version 2 . 137
14.5.1 Scenarios . 137
14.5.2 Principles . 137
14.5.3 Robustness Evaluation . 139
14.5.4 Experimental results . 141

14.6 Conclusions . 143

15 Conclusions 145
15.1 Contributions . 145
15.2 Future work . 146

15.2.1 Application Level FEC Schemes . 146
15.2.2 Application Level Reliability . 148
15.2.3 Security . 148

16

Chapter 1

Introduction

Contents

1.1 Large Scale Content Distribution: Introduction 1

1.1.1 Challenges . 2

1.1.2 Delivery Service Models . 2

1.2 RMT IETF Solutions . 3

1.3 Scope of this Thesis and Summary of its Main Contributions 4

1.3.1 Contributions to Large Scale Content Distribution Building Blocks 4

1.3.2 Contributions to Large Scale Content Distribution Applications 5

1.3.3 Standardization Activities . 5

1.3.4 Other Contributions . 5

1.4 Road Map of this Document . 5

1.1 Large Scale Content Distribution: Introduction

Large scale content distribution, where the same content is sent reliably to a large number of users, is
a challenging and complex task. A point-to-point approach, i.e. an approach where the content is sent
over one dedicated unicast connection for each receiver, increases signaling and media-load overhead
linearly with group size and is not efficient and generally infeasible for this purpose. The only proven
scalable solution is reliable multicast. This subject has been intensively studied, in particular at IETF
(section 1.2).

However, for various reasons, listed in [23], multicast routing deployment is far behind expectations
(e.g. no ubiquitous multicast routing is available and commercial IPv6 multicast router support is
minimal). Wide scale deployment of reliable multicast technologies in the public Internet has not yet
taken off.

There are a few exceptions though, in particular in national/international research networks like the
MBONE [24] and M6BONE [2] (the reliable multicast file delivery application FLUTE [82] is already
used within the M6BONE network), and within sites where multicast routing is easily deployed, and
in very specific environments (e.g. in clusters).

Yet until recently a killer-application appealing to the commercial mass market was still missing. It
may change with the advent of wireless radio networks that are by nature broadcast networks, and
a renewed commercial interest in mobile TV. In particular, new generations of mobile devices (such
as cellular phones) will undoubtedly dominate the future Internet [34], while taking advantage of
technologies primarily designed for the Internet. More specifically, the IP-Datacast (IPDC) service
for DVB-H and the Multimedia Broadcast Multicast Service (MBMS) for the 3G cellular systems are
two such enabling systems, and both of them rely on the outcomes of the IETF working groups.

1

2 CHAPTER 1. INTRODUCTION

1.1.1 Challenges

Reliable data transfer to a multicast group is difficult since it faces the following challenges:

• Scalability: Support for a high number of simultaneous receivers is essential (up to thousands
or millions of receivers in some use cases). Ideally the number of receivers should not reduce
system performance.

• Channel and Client Heterogeneity: The set of receivers and channels will be very heterogeneous,
i.e. with very different bandwidths, processing capacities and loss patterns.

• Content Heterogeneity: Mass media content is diverse and variable - especially over time to
fashion and commercial trends and so the transport solution needs to support any kind of
content. Nevertheless this paper only focuses on files and other static contents.

• Reliability: The content delivery approach must be robust to each kind of packet losses and cope
with intermittent connectivity, in order to provide a reliable distribution service.

• Congestion Control: Fair competition with other streams, on shared links, is essential to avoid
network congestion that would damage co-existing (e.g. unicast/email) services. This is not an
issue for such fully-provisioned-multicast wireless networks as 3G MBMS or DVB-H systems,
but is critical with content distribution over the public Internet.

Depending on the target use case, the above challenges may be met. Security is another challenging
requirement in some situations, either to provide source authentication, message integrity, confiden-
tiality and content access control, but it will not be detailed in the present thesis.

1.1.2 Delivery Service Models

We can distinguish three delivery models [45]:

• The streaming service model is typically used for audio and video content produced in real-time,
but other kinds of content (e.g. the data provided in real-time by a probe or the subtitle of
a movie) can be streamed too. Here timeliness is often more important than full transmission
reliability.

• The on-demand service model, shown in figure 1.1, is typically used for the distribution of
popular content. The content, which is not necessarily static but may change over time, is
continuously broadcast or multicast, and interested clients join the session, download the content
and leave the session whenever they want. Transmissions can be performed cyclically using a file
carousel, and are not necessarily sequential. Indeed packets may be sent in a random manner to
provide loss-pattern and session-joining-time independent performance to receiver. The service
is reliable, scalable, but is generally not real-time constrained.

receiver ready ...

receiver ready ...

Transmission time

ok, receiver leaves ...

ok, receiver leaves ...

Figure 1.1: On-demand service delivery model.

• Finally, the push service model, depicted in figure 1.2, is a synchronous model, where all receivers
are supposed to be ready before the transmission starts. It is a sender initiated model where the
content is delivered from time t0 for a finite duration. This model is typically used to deliver
content to a selected set of receivers, and mechanisms using session announcements and receiver
reception reports can be used to ensure a minimal synchronization between sender and receivers.

2

1.2. RMT IETF SOLUTIONS 3

t0, tx starts ...

receiver ready ...

receiver ready ...

Transmission time

ok, receiver leaves ...

ok, receiver leaves ...

Figure 1.2: Push service delivery model.

1.2 RMT IETF Solutions

A ”one-size-fits-all” protocol cannot comply with all the challenges and delivery models presented
before. Therefore the Reliable Multicast Transport (RMT) IETF Working Group has adopted a
modular approach [105]:

• Building Blocks (BB) are the basic components, (re)usable in different contexts and designed
with flexibility in mind. They can be ”plugged” or ”unplugged” in order to enable or disable
features according to the needs of a Protocol Instantiation (see below). The Forward Error
Correction Building Block (FEC BB) is a particularly useful BB.

• A Protocol Instantiation (PI) is a set of BBs plus some PI-specific functions and headers (that
are defined in a dedicated BB, for instance the Layered Coding Transport (LCT) BB for the
Asynchronous Layered Coding (ALC) PI). Each PI aims to answer a very specific (or small set
of) use case(s).

Thanks to this logical view, two PIs have been designed1:

• Asynchronous Layered Coding (ALC) [45]

• NACK Oriented Reliable Multicast (NORM) [6]

IP is a natural convergence layer on top of any physical layer, and so these RMT protocols rely on
UDP/IP and are used either in a multipoint (their initial goal) or point-to-point scenario (which is
sometimes useful). A general overview of these solutions is given in figure 1.3.

ALC PI NORM PI

......

FEC BB CC BBLCT BB NORM − specifc
BBs

FEC BB CC BB

IP

... ...
Assitance BB

Router−

UDP

FLUTE NORM−Application

Mandatory

BB
PI−specific

Optional
BB

(can be PI−specifc)

AUTH BB

Figure 1.3: The RMT IETF solutions.

1A third PI, router assisted protocol Tree-based Acknowledgment/Generic Router Assist (TRACK/GRA), has been
considered for some time, but removed from the scope of IETF RMT due to lack of progress.

3

4 CHAPTER 1. INTRODUCTION

1.3 Scope of this Thesis and Summary of its Main Contribu-
tions

The scope of this thesis is reliable multicast with massive scalability as a core requirement. The work
clearly starts from the RMT IETF solutions, with a focus on Asynchronous Layered Coding with its
building blocks and applications. Since NACK Oriented Reliable Multicast is not massively scalable,
it is only considered to a lesser extend.

1.3.1 Contributions to Large Scale Content Distribution Building Blocks

Major contributions come from the investigation of the building blocks required in this context. Specif-
ically the Forward Error Correction (FEC) building block is of particular interest in this thesis.

We identified the broader and well-known class of “Low Density Parity Check” (LDPC) large block
FEC codes to have a very high potential. Therefore all our work turned around this class of codes,
and we designed and analyzed derivates, in particular LDGM-Triangle, which yields very promising
performances.

We designed a software implementation that implements these highly efficient codes. During the codec
design, we put a lot of efforts on optimizing both the encoding/decoding speeds and the maximum
memory requirements. Our results show that encoding and decoding are extremely efficient, even
on small devices, and memory requirements acceptable. These results open its use to a wide field
of applications and scenarios, including high speed networks and/or constrained devices (e.g. DVB-
H compatible devices). We therefore believe that our codec offers an interesting and competitive
alternative for many applications requiring an open-source, large block FEC codec.

The performance of the FEC codes largely vary, depending in particular on the code used and on the
object size, and these parameters have already been studied in detail by the community. However the
FEC performances are also largely dependent on the packet scheduling used during transmission and
on the loss pattern introduced by the channel. Little attention has been devoted to these aspects so
far. Therefore we analyzed their impacts on the three FEC codes: LDGM Staircase, LDGM Triangle,
two large block FEC codes, and Reed-Solomon, a small block code. Thanks to this analysis, we
defined several recommendations on how to best use these codes, depending on the test case and on
the channel, which turns out to be of utmost importance.

Starting from this analysis a detailed performance study of four large block FEC codes, namely
LDPC, LDGM, LDGM Staircase and LDGM Triangle, compared with a small block Reed-Solomon
codec which serves as a reference has been made. The comparison focuses on three major aspects:
the global decoding inefficiency (caused either by the FEC code or by the need to split the object into
several blocks), the encoding and decoding speeds, and the memory requirements at the encoder and
decoder. From these performance results, we identify the situations where they best operate.

Special attention has been put on multimedia delivery: The fully reliable delivery of multimedia
content is not always guaranteed. A client does not necessarily receive a given media content entirely.
Mechanisms like error concealment and error resilient video coding allow the receiver to deal with
partially received data and to play the content, with decreased quality though. Packet-level Forward
Error Correction is used as a complementary technique to counter the effects of losses and reconstruct
the missing packets. However if the number of packets received is too low for the FEC decoding
process to finish, the received parity packets may turn out to be useless, and finally more source
packets may be unavailable to the application than if FEC had not been used at all. We analyzed the
adequacy of the LDGM Staircase, LDGM Triangle and RSE FEC codes to offer a partial reliability
service for media content distribution over any kind of packet erasure channel, that is to say a service
that enables a receiver to reconstruct parts of the content even if the FEC decoding process has not
finished.

Finally at building block level, we contributed with the analysis of the impacts of the startup behav-
ior of several Multilayered Multicast Congestion Control Protocols on the performance of multicast
content delivery protocols through mathematical models. Our results show (1) that these conges-
tion control protocols have a major impact on the download time, and (2) that the three protocols
considered in this study yield significant differences.

4

1.4. ROAD MAP OF THIS DOCUMENT 5

1.3.2 Contributions to Large Scale Content Distribution Applications

Our contributions detailed in the previous part helped us to investigate several applications:
We proposed a logical and physical file aggregation scheme for the file delivery protocol/application
FLUTE. The logical file aggregation mechanism is a generalized grouping mechanism, allowing to
logically group files. The physical file aggregation scheme allows, additionally to a logical grouping,
to more efficiently use FEC in the context of FLUTE, in particular when dealing with a large number
of ”small” files. Unlike a solution based on the creation of an archive, the object aggregation scheme
(1) avoids the need to perform preliminary transformations on the content and (2) preserves the
possibility to extract a subset of the content, which may be a critical aspect with some partially
reliable broadcasting test cases.
We also looked at large scale video delivery: Designing a video streaming solution for an environment
having no or a constrained back channel due for instance to scalability issues leads to many challenges.
We introduce SVSoA version 1 and version 2, two approaches that use a transmission technique close to
the file broadcast methods we tackle in this thesis. We make no assumption on the target environment
either, which can be either the Internet (if/when multicast routing is available), a site (e.g. a campus
or an hotel), or a dedicated broadcasting network (e.g. a cable or DVB network). SVSoA is based on
ALC, and can be used in all these situations. This approach emphasizes the reliability of transmissions
in front of severe packet loss conditions and the stability of the video quality reconstructed.
Finally, we contributed to large parts of MCLv3/FLUTE library where we especially implemented the
FLUTE file delivery protocol.

1.3.3 Standardization Activities

We conducted some standardization activities at IETF, in particular to standardize the LDPC Stair-
case and LDPC Triangle codes. There is a strong incentive at the RMT working group to have several
FEC codes standardized. Our LDPC codes have therefore a strong probability to become one of these
standardized codes. In parallel we proposed the LDGM-Staircase code at DVB-H, with the help of
STMicroelectronics.
The logical and physical file aggregation scheme for FLUTE has also been presented at IETF. Dis-
cussions on this proposal is still in progress.

1.3.4 Other Contributions

During my visit at the INRIA I also contributed to other works, that are however out of scope of this
document:

• Contributions to the implementation of Robust Header Compression (RoHC) [11] in the context
of an industrial contract with STMicroelectronics.

• Implementation of and contributions to the Opportunistic Encryption scheme [16]: This lead to
a publication [16] and an implementation [68] of the scheme.

1.4 Road Map of this Document

Our work is divided into three parts:

• Part I, Overview of Large Scale Content Distribution Techniques: Chapter 2 introduces Forward
Error Correction Codes, a particular important building block in the context of our work. Next,
Chapter 3 describes the Asynchronous Layered Coding protocol, the basic protocol on which
almost all our contributions rely. The alternative, but less useful approach NACK Oriented
Reliable Multicast is described in Chapter 4. FLUTE, a file delivery protocol/application build
on top of Asynchronous Layered Coding, and a concrete usecase, namely MBMS in 3G cellular
systems, are described in Chapter 5 and Chapter 6 respectively.

• Part II, Contributions to Large Scale Content Distribution Building Blocks: This part begins with
the description of our contribution in the area of Forward Error Correction Codes in Chapter 7

5

6 CHAPTER 1. INTRODUCTION

to Chapter 11. More precisely Chapter 7 introduces the LDPC Forward Error Correction codes
used and designed in this thesis. Chapter 8 describes the implementation details of these codes.
The impact of packet scheduling and packet losses on Forward Error Correction performance
is detailed in Chapter 9. Based on these first results, a more precise performance analysis and
comparision is done in Chapter 10. The adequacy of Forward Error Correction Schemes for the
usage with partially reliable media broadcasting schemes is analyzed in Chapter 11.

The startup behavior of multilayered multicast congestion control protocols is analyzed in Chap-
ter 12.

• Part III, Contributions to Large Scale Content Distribution Applications: Chapter 13 describes
our proposal for a file aggregation scheme for the FLUTE file delivery application. The MCLv3/-
FLUTE library is also described in Chapter 13. The scalable video streaming approach based
on Asynchronous Layered Coding is presented and analyzed in Chapter 14.

Last, Chapter 15 concludes this thesis. We should note that some parts of the thesis were published
and are known to the community, while others are still being developed and opened the way for many
future research topics.

6

Part I

An Overview of Large Scale
Content Distribution Techniques

7

Chapter 2

Forward Error Correction Codes

Contents

2.1 Introduction . 9

2.1.1 Principles . 9

2.1.2 FEC Fields of Application . 11

2.2 Simple FEC Codes . 11

2.3 Small Block FEC Codes . 12

2.4 Large Block FEC Codes . 12

2.5 Expandable/Rateless FEC Codes . 13

2.6 Conclusion . 14

2.1 Introduction

2.1.1 Principles

In a best-effort network, such as the Internet, the successful delivery of a packet to its receivers is not
guaranteed. Only an acknowledgment-based protocol like TCP, that request retransmission of a lost
packet until successful reception of it, can guarantee the fully reliable delivery of a content. However
TCP is not appropriate for large scale content distribution and UDP is used instead. UDP does
not offer any reliability and to compensate for packet losses two approaches exist: (1) An Automatic
Repeat Request (ARQ) mechanism above UDP, where lost packets are retransmitted, and (2) Forward
Error Correction (FEC), which transmits redundant data (called parity data) along with the original
data, and allows to recover up to a certain number of possible losses at the receiver. A combination
of these two approaches is also possible.

Binary versus Packet, Symmetric versus Erasure Channels

FEC is therefore a key component of content distribution techniques [79]. Conversely to the FEC
codes generally described in information theory, the FEC codes are used at transport/application
level, i.e. the codes operate on packets and not on bit sequences. Packets either arrive perfectly or
are lost, and there is no need to deal with altered bit sequences or corrupted packets, since we assume
that the packet checksum (CRC) corrected altered packets or, if this operation was not successful,
completely dropped the packet.

In more general terms, FEC codes can operate both over Binary Symmetric Channels (BSC) and
Binary Erasure Channels (BEC). With a BSC channel a bit arrives at the destination either perfectly
or erroneously. It typically happens over noisy channels. On the opposite, in a BEC channel a bit
either arrives perfectly or is lost in the channel.

9

10 CHAPTER 2. FORWARD ERROR CORRECTION CODES

A typical example of erasure channel, which does not operate on bit streams but on packet streams,
as the Internet, and since a packer either arrives perfectly or is lost we talk about a ”Packet Erasure
Channel” (PEC).
Most FEC codes can operate on both types of channels (symmetric and erasure), but it is much
simpler with a Packet (resp. Bit) Erasure Channels (PEC) (resp. BEC). This is normal since a PEC
carries more information than a BSC (i.e. the packets received are error free).
In this work we only consider codes for the PEC, that complements any FEC code that may be used
in parallel to protect bit streams over the physical link.

A small example

The basic idea of a FEC code can be explained with a small example (see figure 2.1): Assume that
we want to transmit k = 4 packets over the network. The FEC code produces n − k = 3 additional
parity packets, and transmit all packets (original source packets and the created parity packets) over
the network. The receiver can now reconstruct the content if he receives any k = 4 packets out of the
n = 7.

lost

lost

lost
n−k

parity packets

FEC decode

Network transmission

FEC encode reconstructed k
source packets

original k
source packets

Figure 2.1: Example of a (7,4) systematic Forward Error Correction code.

General FEC Terminology

More generally, with a (n; k) FEC block code, the k source symbols of a block are encoded into n
symbols (i.e. encoded symbols).
A symbol is the basic and smallest entity of FEC codes which the basic operators (e.g. XOR) ma-
nipulate. With binary channels one symbol is a single bit, with packet channels a symbol is in most
use cases an entire packet (as in the previous example), but it is also possible to operate on symbols
smaller than one packet size.
With “systematic codes”, the n encoding symbols are composed of the k source symbols plus n − k
additional parity symbols (A.K.A. repair symbols). We will use the terms repair symbol and parity
symbol indifferently in this work. For non-systematic codes the n encoded symbols are all different
from the source symbols. However we do not consider non-systematic codes in this work.
A receiver can then reconstruct the k source symbols on condition it receives any k symbols out of the
total n (or a few percents more than k symbols with expandable and large block codes). The great
advantage of using FEC is that the same parity symbols can be used to recover different lost symbols
at different receivers.

Block Codes versus Convolutional Codes

Block codes work on fixed-size blocks of bits or symbols of predetermined block size k (k being the
number of symbols per block), while convolutional codes work on bit or symbol streams of arbitrary
length. Convolutional codes operate on serial data, one or a few symbols at a time. Block codes
operate on relatively large (the size largely depends on the class of codes used) blocks.
Typical convolutional codes are based on the Viterbi algorithm where the encoded symbols depend
not only on the current input symbols, but also on all past inputs. This concept has been refined,
extended and highly optimized which lead to Turbo codes.

10

2.2. SIMPLE FEC CODES 11

In this work we only consider block codes and we won’t further detail convolutional codes. Interested
readers can refer to [103, 28, 13]

2.1.2 FEC Fields of Application

Use of FEC for Reliable Content Distribution

If large block FEC codes have a natural field of application with the reliable multicast-based distribu-
tion of content to a large set of receivers over the Internet (e.g. using the FLUTE/ALC application),
this is not their only field of applications: media broadcasting to vehicles [25], IP datacasting over
DVB-T/H [26, 81] or MBMS in 3GPP [4] are applications that require the broadcasting of large
contents to either a single client, or at the other extreme, to a huge number of clients that enjoy
a unidirectional connectivity with perhaps large variations of quality (e.g. when a vehicle enters a
tunnel or is behind obstacles). The use of large block FEC codes is therefore a natural solution to
counter these long-term losses.

Use of FEC in Environments with Intermittent Connectivity

Several environments are characterized by an intermittent connectivity. [25] provides an example
which nicely fits in this category: the Land Mobile Satellite (LMS) channel. The goal of the application
is to distribute multimedia contents to the car passengers from a satellite connection. In this system,
the mobile (car) experiences both fast fading and white Gaussian noise, which is addressed by the
DVB-S error correction schemes, and slow fading (e.g. when entering a tunnel), which is addressed
by a packet level FEC encoding. This two level FEC encoding is fully complementary, each level of
protection addressing different problems. As mentioned in [25], the large block FEC codes that we
present in this work are well suited to this kind of environment.

Use of FEC for Distributed Storage

FEC also proves to be of great help in distributed storage systems, where the object is replicated
across a set of servers. Here clients download the object by accessing multiple servers in parallel.
Such replicated systems improve both fault-tolerance and performance over non replicated storage
systems. Using an FEC erasure code to dilute the information over the storage servers allows a
greater and more flexible choice to the clients, and can enhance the overall downloading throughput.
Basically, for each of the B blocks of a file, FEC encoding produces n =fec ratio∗k symbols, where the
FEC expansion ratio is an integer ≥ 1. The system can now replicate any of the B∗fec ratio “encoding
blocks” on the servers, and downloading any B different “encoding blocks” out of B ∗ fec ratio
possibilities is sufficient to reconstruct the original file.
Several such systems, relying on various kinds of FEC codes have been proposed, like [37, 21, 64, 88]
to cite only a few.

2.2 Simple FEC Codes

There are some very simple codes that are effective for repairing packet loss under very low loss
conditions.

Simple XOR code

The certainly simplest FEC code is the XOR FEC code [58, 84], that provides protection from only
a single loss. Only a single parity symbol is created, which is equal to the XOR sum of all source
symbols. The XOR FEC code is therefore always a (k + 1; k) code, where k is the number of source
symbols.
For example if the source block consists of four source symbols s0, s1, s2 and s3 the value of the parity
symbol p4 is p4 = s1 ⊕ s2 ⊕ s3 ⊕ s4.
In this example, any single source symbol of the source block can be recovered as the XOR sum of all
the other symbols. For example, if symbols s0, s1, s3 and p4 have been received, the missing source
symbol s3 can be recovered by calculating s2 = s0 ⊕ s1 ⊕ s3 ⊕ p4.

11

12 CHAPTER 2. FORWARD ERROR CORRECTION CODES

A slightly more sophisticated way of using the simple XOR codes is to segment the content into several
blocks, and to apply the simple XOR code on each block. The number of parity symbols created is a
bit higher but error protection of one parity symbol is limited to its block.

2.3 Small Block FEC Codes

Small block FEC codes are characterized by the fact that they are only efficient on small source block
sizes, i.e. when k and n are relatively small. With higher k and n encoding or decoding times becomes
prohibitive.

Reed-Solomon

The most used small block FEC codes are certainly the Reed-Solomon erasure codes (RSE). Two
versions of RSE exist: one based on Vandermonde matrices [91] and the second less used based on
Cauchy matrices [39].
RSE is intrinsically limited by the Galois Field (GF) it uses [91], so optimal k and n are relatively
small. A typical example is GF(28) where k ≤ n ≤ 256. With one kilobyte symbols, a FEC codec
producing as many parity symbols as data symbols (n = 2k) operates at most on 128 kilobyte blocks.
All files exceeding this threshold must be segmented into several blocks, which reduces the erasure
protection.
Using GF(16) solves this problem since here n ≤ 65536. But a major drawback then is a huge
encoding/decoding time. [91] reports encoding times in O(k(n − k)), and decoding times in O(kl),
where l is the amount of missing symbols, plus an additional cost of matrix inversion in O(kl2) (the
inversion is done once for each block). This is the reason why for Reed-Solomon GF(28) is often
preferred to GF(216) in spite of block size limitations.

The coupon collector problem and MDS codes

More generally with small block erasure codes objects exceeding the maximum block size k, have
to be segmented into several blocks. If B blocks are needed, a symbol chosen randomly out of all
blocks has a probability 1/B to recover a given erasure. B = 1 is clearly the optimal solution, and
therefore segmenting an object into several block clearly decreases erasure protection performance.
This phenomenon is known as the “Coupon Collector Problem” [15].
Yet if considering only a single block, small block codes are optimal because a receiver can perform
FEC decoding as soon as it has received exactly k symbols out of the n. Such codes are called
”Minimum Distance Separation” (MDS).

2.4 Large Block FEC Codes

Conversely large block codes support large k values (several hundreds of thousands symbols and more)
while keeping high performance in encoding and decoding.
The “Coupon Collector Problem” is completely suppressed when a single block is used (which is
often feasible), and it is largely reduced if several blocks must nonetheless be defined (e.g. because of
practical block size limitations with a given codec).
They are however not MDS, i.e. (1+ ε)k symbols are required at a decoder for the decoding of a block
of size k to complete. ε is generally quite small, and can be experimentally evaluated (see chapter 10).
Even though large block FEC codes are not MDS, the overall reception overhead is usually smaller
than that of RSE with large objects, while being an order of magnitude faster.

LDPC

Most codes derive from the well known Low Density Parity Check (LDPC) codes introduced in the
1960s [31]. LDPC codes rely on a parity check matrix, H, which forms a system of linear equations
between source symbols, si, i ∈ {0..k − 1} and parity symbols: pi, i ∈ {k..n − 1}. The basic operator
is XOR. A simple example is shown in figure 2.2.

12

2.5. EXPANDABLE/RATELESS FEC CODES 13

s0

s3 s4 s5 p6s1 + + + = 0+

s1 s2 s5 p6s0 p7

5 6... p ...

0 0 0 1 1

0 1 1 0 0

0 0 1 1 0

1 1 0 0 0

1
0

1
0 1

0

1
1
0

0

1

1
1

1
0

1
1

0

1
0

1
1
0

11 0 1 10 01 0 0 0

] =SC1[H | 5

p10s

. . .

+ ++ + + = 0

0

Figure 2.2: Parity Check Matrix H of an (6;11) LDPC-Staircase code.

If the system is built appropriately, encoding is extremely fast and can be done in O(n − k). One
cannot know in advance how many symbols must be received before decoding is successful (LDPC
codes are not MDS), so decoding is performed progressively after each packet arrival. Due to the
simplicity of LDPC, the decoding process (A.K.A. iterative decoding) is extremely fast too.
The LDPC-Staircase and LDPC-Triangle are two variants detailed in [97] and for which a publicly
available GNU/LGPL code implementations exist [77].
More details on LDPC codes and especially its variants LDPC-Staircase and LDPC-Triangle, as well
as precise performance evaluations and details on its implementation are given in Chapter 7 and
following chapters.

Tornado

Tornado codes [56, 55, 54, 53] are also a variant of LDPC codes, however they are heavily patented
and only commercial implementations exist.
The idea is to construct several levels of parity symbols. A first level that is created exclusively from
source symbols, a second level of parity symbols that is generated using only the parity symbols of
the first level and so on. This can be represented with several cascaded matrices as it is depicted in
figure 2.3. The number of parity symbol levels used and the degree distribution (i.e. the number of
ones per column and line) follows an appropriate (and patented) rule described in [52].

s0 6p ... p10

0 1
1 0

01 0

0

0

p13

5... s

1
1

1
0

1
1

0

1
0

1

1 0 1 10

p0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

1
0

1
0 1

0

1
1
0

0

1

1
1

1
0

1
1

0

1
0

1
1
0

11 0 1 10 01 0 0 0

0

0

0

0

0
11..

First level

Second level
of parity symbols

of parity symbols

...
Third level of parity symbols ...

Figure 2.3: Principle of Tornado codes.

2.5 Expandable/Rateless FEC Codes

With large block codes, the n value must be defined before encoding is performed, and cannot be
changed afterward (since it defines the H matrix size). Moreover when a high number of encoding
symbols are produced, the codes efficiency is reduced. Expandable codes do not have these limitations.
They can operate on very large blocks (k) and an unlimited number of parity symbols (n− k) can be
produced without affecting the erasure recovery capabilities. As the “code rate” (k/n ratio) can be
very small, they are also called “rateless codes”.

13

14 CHAPTER 2. FORWARD ERROR CORRECTION CODES

auxiliary
symbols

composite
symbols

source
symbols

inner
encoding

inner
decoding

outer
decoding

outer
encoding

Network transmission

lost

lost

lost

lost

Figure 2.4: Overall design of online codes.

Expandable codes are well suited to content broadcasting since the sender often wants to produce new
parity symbols on the fly, without limitations (e.g. in on-demand mode). With these codes, a receiver
is guaranteed not to have duplicated parity symbols.
LT [44] and Raptor [100] codes fall in this category. They are heavily patented and only commercial
implementations exist. Online codes [62, 63] are also expandable codes, and conversely to LT and
Raptor its creator have not claimed any patent on this code. However it is not clear if the code is
really totally free of any intellectual property right, since it has become very difficult today to design
an expandable FEC code that is not covered by the high number of existing patents in this domain.
In spite of these uncertainties we quickly present Online codes in the following.

Online codes

Online codes do not rely on any parity check matrix in order perform decoding nor encoding. They
are based on two levels of FEC encoding (see figure 2.4):

• A first outer encoding step where a small amount r (generally r = 0.01 ∗ k) of ”auxiliary”
symbols are created. Auxiliary symbols are computed as the XOR sum of a number of source
symbols: using a PRNG, for each source we chose q (generally q = 3) auxiliary symbols, to
which the source symbol is summed. The k source symbols plus the r auxiliary symbols forms
the ”composite” symbols.

• A second inner encoding step, which is able to generate repair symbols on-demand based on the
k + r composite symbols. There is no predefined limit of generated repair symbols.

Each repair symbol has an unique identifier (the authors suggest a 160 bit value for the identifier).
The identifier is used to seed a PRNG, which will return a sequence of composite symbol indices.
These symbols are XORed in order to generate the new parity symbol. The degree, i.e. the
number of composite symbols used to generate each parity symbol, depends on a distribution
function, i.e. when choosing a degree of an equation, this has to follow this distribution function
(the exact function used is detailed in [62, 63]).

More generally, it has been shown that using an irregular distribution of the degrees of an
equation system, the forward error correcting capacities are much more interesting than when
using a regular distribution (i.e. all equations have the same degree) [52].

An overall of the design of online codes is given in figure 2.4.

2.6 Conclusion

The purpose of this chapter is to only make a basic introduction to the several FEC classes and FEC
codes that exists. The codes presented here yield very different behaviors regarding error correcting
capabilities, encoding and decoding speeds and memory requirements, and not all codes are adapted

14

2.6. CONCLUSION 15

to specific use cases. It would have been too complex to implement and precisely evaluate each of the
codes presented. Moreover many patents in this area largely restrict the usage of some of the FEC
codes.
Therefore in this thesis we focus on LDPC large block FEC codes, and precise evaluations as well as
implementation details are given in Part II of this thesis. We also give several points of comparision
to other FEC codes, but the level of detail for other codes will be less important than for LDPC and
its variants.

15

16 CHAPTER 2. FORWARD ERROR CORRECTION CODES

16

Chapter 3

Asynchronous Layered Coding
(ALC)

Contents

3.1 Introduction and Principles . 17

3.2 ALC Building Blocks . 18

3.2.1 Layered Coding Transport (LCT) Building Block 18

3.2.2 FEC Building Block . 19

3.2.3 Congestion Control Building Block . 21

3.2.4 Authentication Building Block . 22

3.2.5 Session Description Building Block . 22

3.3 Fields of Application . 22

3.1 Introduction and Principles

The Big Picture

Asynchronous Layered Coding (ALC) is a content delivery protocol that does not require any feedback
from the receivers to the sender. This makes it massively scalable, i.e. millions of receivers are easily
supported. This feature also enables ALC to be used over unidirectional links where there is no (or a
limited) return channel, as for instance in the context of satellite broadcast.
ALC has been designed to support the three delivery service models introduced before: push, on-
demand, and to a lesser extent streaming. We will show in chapter 14 an alternative way of using
ALC with a streaming delivery service model, e.g. for audio/video delivery.
As there is no feedback, no repeat request mechanism can be in-band with ALC that would enable
the source to adapt its transmission according to the feedback information sent by the receiver(s). In
order to provide a fully (or partially) reliable service, ALC largely relies on the use of FEC. After
a FEC encoding of the content source blocks, redundant data is transmitted along with the original
data in the systematic FEC case. Thanks to this redundancy, a certain number of lost packets can be
recovered at the receiver. Another major asset of FEC is that the same parity symbol can potentially
recover different losses at different receivers, which largely increases transmission efficiency.
ALC also meets the channel and client heterogeneity challenges. Concerning the channel heterogeneity,
a theoretically infinitely long (e.g. in on-demand mode) ALC session that repeats symbol transmissions
guarantees that clients can decode the content successfully, independently of all other receivers and
no matter the number of losses and the loss patterns experienced. Therefore, ALC provides high
robustness. ALC also supports receiver heterogeneity in terms of sustainable reception rate, by using
(optional) multi-layered transmission (section 3.2.3). Each receiver independently chooses how many

17

18 CHAPTER 3. ASYNCHRONOUS LAYERED CODING (ALC)

layers to receive, according to its bandwidth and processing capacities. Therefore all receivers behave
in a completely asynchronous manner.

Terminology

The following terminology will be used: ALC transports objects (e.g. files). Each object is logically
divided into (one or more) blocks of appropriate size upon which FEC codes calculate source and
parity symbols.

3.2 ALC Building Blocks

ALC is designed to be highly flexible. To do so ALC is composed of building blocks, that can be
plugged or unplugged to enable or disable features according to the application needs.

3.2.1 Layered Coding Transport (LCT) Building Block

The LCT Building Block [47] defines the basic features and the LCT header that provides a number
of fields to convey in-band session information to receivers.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| V | C | r |S| O |H|T|R|A|B| HDR_LEN | Codepoint (CP)|

+-+

| Congestion Control Information (CCI, length = 32*(C+1) bits) |

| ... |

+-+

| Transport Session Identifier (TSI, length = 32*S+16*H bits) |

| ... |

+-+

| Transport Object Identifier (TOI, length = 32*O+16*H bits) |

| ... |

+-+

| Sender Current Time (SCT, if T = 1) |

+-+

| Expected Residual Time (ERT, if R = 1) |

+-+

| Header Extensions (if applicable) |

| ... |

+-+

Figure 3.1: Default LCT header format

An ALC/LCT session is fully identified by the {source address;TSI} tuple, where TSI is the Trans-
port Session Identifier. The destination IP address and the destination UDP port do not identify an
ALC session, but rather, they are only used in transmission for distinguishing between ALC channels
(layers) of a certain ALC session.
Each object is uniquely identified by its Transport Object ID (TOI). Nothing is specified on how to
generate the TOI: it may be incremented for each new object, or be the hash of the object. For that
reason, the size of the TOI field is not predefined ([47] defines a [16; 112] bit range).
LCT defines a Congestion Control Information (CCI) field to associate a congestion control (CC)
building block. Yet LCT does not specify the CCI field format which must be specified by the
congestion control building block itself. The field is set to null if no congestion control is used (e.g.
in 3G and DVB-H environments - which are not instances of the public Internet)
Finally LCT defines Header-Extensions to carry additional information. Optional header fields that
are not always used or have a variable size can be added this way. For instance the FEC building
block and the authentication building block heavily rely on these extension headers.

18

3.2. ALC BUILDING BLOCKS 19

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| UDP header |

| |

+=+

| Default LCT header |

| |

+-+

| FEC Payload ID |

| |

+-+

| Encoding Symbol(s) |

| ... |

+-+

Figure 3.2: Overall ALC packet format

The LCT header is placed just after the UDP header as it is depicted in figure 3.2. The LCT header
is followed by the FEC Payload ID (presented in the following) to identify the symbols transported.

3.2.2 FEC Building Block

The FEC building block [46][104] is a particularly important building block in achieving scalability
and reliability with ALC (and NORM), even though it is not mandatory. However a FEC code alone
is not usable, since the sender and receivers must: (1) identify the codec, (2) identify each symbol,
and (3) specify the various parameters used by the codec for a given object. To that purpose the FEC
building block defines:

1. FEC Encoding ID and FEC Instance ID: These two values fully identify the codec. The FEC
Encoding ID is the primary identifier, and identifies either specific FEC codes with fully-specified
schemes, or a class of codes with under-specified schemes. In the latter case, the FEC Instance
ID must be used in order to completely identify the codec.

Fully specified schemes are typically associated to very simple FEC codes (like the NULL code,
i.e. no FEC, essentially used to test implementations) or for commonly used codes (such as
Reed-Solomon, which should be part of the fully specified codes). The FEC Encoding ID range
[0,127] has been reserved for fully specified codes.

Under-specified schemes generally regroup a class of codes, as for instance the small block sys-
tematic codes that use the FEC Encoding ID 129 or the broad class of Low Density Parity
Check (LDPC) codes that use the FEC Encoding ID 132 [98]. The FEC Instance ID is needed
to further identify the code used. For instance FEC Encoding ID 132 and FEC Instance ID 0
identifies the LDPC-Staircase code.

2. FEC Payload ID (FPI): Each FEC Encoding ID is associated with a FEC Payload ID, which
uniquely identifies each symbol of an object after FEC encoding. For instance with the under-
specified FEC Encoding ID 128 [46], each encoding symbol of a given object is identified by its
Source Block Number and Encoding Symbol ID as it is shown in figure 3.3.

Other informations may be carried within the FPI depending on the FEC code used. For instance
with an FEC Encoding ID 129 [46], especially used for Reed-Solomon, an additional parameter
Source Block Length appears and allows to dynamically change the source block length for each
block (as it is done in NORM (chapter 4)).

3. FEC Object Transmission Information (FEC OTI): To each FEC Encoding ID, a FEC OTI
must be specified to synchronize the codecs at both ends with respect to the various parameters
of an object (e.g. maximum source block length, object size, etc.).

19

20 CHAPTER 3. ASYNCHRONOUS LAYERED CODING (ALC)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Block Number |

+-+

| Encoding Symbol ID |

+-+

Figure 3.3: FEC Payload ID for an FEC Encoding ID 128

An FEC OTI example with an FEC Encoding ID 132

In the particular case of LDGM-Staircase codes, that are part of the broader class of Parity Check
Matrix-based codes, we have identified in [98, 84]:

• the total length of the object in bytes called Transfer Length;

• the maximum number of source packets that can compose any block, Max. Source Block Length,
or in short max k. This field allows receivers to compute the source block structure of the object
(section 3.2.2);

• the maximum number of encoding packets that can be generated for any source block, Max.
Number of Encoding Symbols, or in short max n. This field allows receivers to compute the
number of parity packets of each block (section 3.2.2);

• the packet size, called Encoding Symbol Length;

• and the seed of the PRNG used by the FEC code for this object.

This information is sent within the ALC session, either within a dedicated header extension, EXT_FTI,
shown in figure 3.4 that is appended to the ALC header, or if used within the file delivery application
FLUTE build on top of ALC (detailed in chapter 5), as part of the File Delivery Table that describes
each file properties, using an XML based format.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| HET = 64 | HEL | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

| Transfer Length |

+-+

| FEC Instance ID | Encoding Symbol Length |

+-+

| Maximum Source Block Length |

+-+

| Maximum Number of Encoding Symbols |

+-+

. Seed (of variable size) .

. .

+-+

Figure 3.4: FEC OTI for an FEC Encoding ID 132

The HET and HEL fields are respectively the Header Extension Type and Length, and FEC Instance ID

is an identifier that (along with the FEC Encoding ID, not shown here) uniquely identifies the codec
used.

20

3.2. ALC BUILDING BLOCKS 21

Several Blocks are Sometimes Needed. . .

In practice, a single “huge” object may have to be segmented into several blocks, even if we are dealing
with so-called large block FEC codes. Indeed, encoding and decoding often require that the whole
object be kept in memory, which leads to practical limitations. The number of blocks is nevertheless
several orders of magnitude smaller than with Reed-Solomon codes, where a block size is limited to a
hundred KB, or a little bit more.
The direct consequence is that the sending and receiving applications must agree on an appropriate
blocking structure for each object exchanged. Two algorithms are defined to this purpose:

1. The Blocking Algorithm

Defining this blocking structure, i.e. the number blocks and their size, is the goal of a dedicated
algorithm, specified in FLUTE [82]. Given max k, the transfer length, and the packet size (taken
from the FEC OTI), this algorithm defines the optimal blocking structure, with all blocks being
the same length, except maybe a few ones (at the end) whose size will be one packet smaller
than the others.

The goal of making all blocks almost the same size is to avoid sub-optimal situations made
possible by more trivial algorithms. For instance if all blocks (except the last one) are of
maximum size, max k, the last one may be significantly smaller. At an extreme case, it could be
one packet long. The protection of the last block would then be rather low, thereby compromising
the whole transfer efficiency. Indeed, in the extreme case, with a FEC expansion ratio of 2, a
receiver would have to receive one of the two encoding packets of the last block, “lost” in a total
of 2 ∗ (object size in packets − 1) source plus parity packets.

Note that in some cases the Blocking Algorithm is not necessary: with an FEC Encoding ID
129, especially used with NORM, each block can define its own block size, independently of the
other blocks. The idea is to progressively cut the object into several blocks, with a block size
that may change from one block to another. The block size is included in the FPI.

2. The “n-Algorithm”

Another constraint when dealing with several blocks is to agree on the n value used by the
encoder for each block. Indeed, the FEC OTI only carries the max n value for a block of
maximum size, not the n value used effectively for each block. This is the goal of the “n-
algorithm” defined in [98, 84].

At the sender, the max n value is first computed, taking into account the desired FEC expansion
ratio specified by the user, for a block of maximum size, max k. The n value for any other block
is then determined by a simple rule of 3, and rounded down to the nearest integer to avoid
problems. At the receiver, the same calculation is made, taking into account the max k and
max n values found in the FEC OTI, plus the output of the blocking algorithm. The receiver
therefore knows the actual k, n, seed values for all blocks, and can initialize the FEC codec
appropriately for each of them. The whole process is summarized in Figure 3.5.

3.2.3 Congestion Control Building Block

When used over the public Internet, ALC must include a congestion control building block. In order to
preserve the massive scalability, only feedback free schemes are defined. Therefore congestion control
is multi-layered and completely receiver-driven: the content is multicast on several layers, each layer
being associated to a distinct multicast group. Then each receiver chooses dynamically how many
layers to receive, depending on the sustainable transmission rate along the path to this receiver.
Several (more or less) TCP-friendly protocols have been defined: RLC [101], FLID-SL/DL [14], [59],
and WEBRC [49] [48]. The choice of the congestion building block may be dictated by the desire to
have a standardized solution (WEBRC is an IETF RFC), or to minimize implementation complexity
(RLC and FLID-SL are relatively simple, easy to implement building blocks, although they both have
known limitations).
The client behavior will differ according to the protocol: transmissions will take place either at some
fixed predefined rates on each layer (RLC, FLID-SL), or using a cyclic, dynamically changing bit-rate

21

22 CHAPTER 3. ASYNCHRONOUS LAYERED CODING (ALC)

FEC encoding initialization (k,n,seed)

FEC OTI

in−band
transm.

blocking algorithm

n−algorithm

FEC decoding initialization (k,n,seed)

blocking algorithm

desired FEC expansion ratio
object size
packet size

blocking struct. of the object

object size, max_k, max_n, seed

k and n for this block

For each block:

SENDER
input

RECEIVER

blocking struct. of the object
(number and size of each block)

max_k and max_n
randomly choosen seed (if needed)

For each block:
n−algorithm

k and n for this block

Figure 3.5: Steps required for synchronizing sender and receiver(s) for a given object.

(FLID-DL, WEBRC); the protocol can either be equation based (WEBRC) or event based (RLC,
FLID). Naturally, these fundamental differences impact upon their performance and TCP-friendliness.
When used over provisioned, pre-allocated, channels (e.g. within 3G MBMS and DVB-H environ-
ments), no transport layer congestion control is needed.
A detailed discussion on the behavior and the impacts of the congestion control protocols RLC,
FLID-SL and WEBRC is given in Chapter 12.

3.2.4 Authentication Building Block

The goal of this building block is to perform both a packet source authentication and packet integrity
check. The TESLA authentication approach [87, 86] is a good solution that is well suited to the case
of high rate transmissions over lossy channels. [27] gives more details on how to use it in an ALC (or
NORM) context.

3.2.5 Session Description Building Block

Finally, the various ALC session parameters (e.g. congestion control protocol, sender’s IP address,
TSI, etc.) must be communicated to the receivers. If ALC does not explain how to do that, several
solutions exist: Session Description Protocol (SDP) [33], XML metadata [66], or other out-band
mechanisms.

3.3 Fields of Application

ALC has a very large field of application, much larger than the protocol NORM for instance (presented
in the following chapter). ALC keeps the same effectiveness regardingless the number of receivers,
using unicast or multicast, thanks to the suppression of any feedback from the receivers to the source,
and all receivers can act completely asynchronously.
ALC can be used on any type of medium, an unidirectional one, or, more classically, a bi-directional
one, and its robustness support merely all types of packet losses, even the extrem case when a channel
is temporarily not available (e.g. when a car crosses a tunnel). Therefore ALC can be used for instance
on unidirectional satellite links or for the distribution of content to cell phones or vehicles. It may
also be used in networks like a LAN or the Internet since congestion control is a supported feature.
The application build on top of ALC can either be used for file transmissions with an application such
as FLUTE (presented in chapter 5) in on-demand or push mode. FLUTE may also be used for service
announcements purposes, as it is done in the context of MBMS [4]. ALC may also be used for the
streaming of video for instance (in streaming mode) with an application such as SVSoA (presented in
Chapter 14). In the case of streaming the differentiation between slow and fast receivers is done on

22

3.3. FIELDS OF APPLICATION 23

the amount of information received (and decoded, if FEC is used), resulting in a differentiated video
quality. For content distribution in on-demand or push mode when used with FLUTE for instance,
the differentiation between receivers is only done one the time of reception required by each client.

23

24 CHAPTER 3. ASYNCHRONOUS LAYERED CODING (ALC)

24

Chapter 4

NACK Oriented Reliable Multicast
(NORM)

Contents

4.1 Introduction and Principles . 25

4.2 NORM Building Blocks . 25

4.3 Principal NORM Packet Types . 26

4.4 NORM versus ALC . 27

4.1 Introduction and Principles

The NORM approach essentially relies on retransmission requests (Negative Acknowledgments or
NACKs), and optionally on positive acknowledgments (ACKs) after an explicit request from the
source. Due to this feedback mechanism, NORM scalability is limited to small or medium sized
groups [7]. Large groups are a problem because the timer-based feedback suppression mechanism
(used to increase NORM scalability) is still not sufficient to prevent feedback implosion in this case.

Receivers should be relatively homogeneous and have comparable and sustainable reception rates. In-
deed the associated congestion control protocol adapts the transmission rate to the slowest receiver.
Consequently, a small number of receivers can easily slow down an entire NORM session. This is not
scalable even under the best assumptions, since the throughput goes down with 1/

√
number of receivers

[17].

NORM is a more complex protocol than ALC. For instance there are 13 different packet types! We will
not detail NORM as we did for ALC because this protocol is less interesting in our context. Interested
readers can refer to [6]. We only give some general ideas.

4.2 NORM Building Blocks

[5] defines several building blocks, in particular:

• NORM Sender Transmission strategies

• NORM Repair Process with timer-based feedback suppression

• NORM Receiver Join Policies

Additional building blocks can also be plugged into NORM:

25

26 CHAPTER 4. NACK ORIENTED RELIABLE MULTICAST (NORM)

• The FEC building block [46]: With FEC Encoding ID 129, which is often the preferred scheme,
the block size can be adapted dynamically according to the feedback received. With a high loss
rate, the sender may choose to reduce the block size in order to be able to generate a higher
number of parity packets and vice-versa.

• The Round-Trip Timing Collection building block and the Group Size Determination/Estimation
building block: The RTT and group size estimates are then used by other building blocks (e.g.
the congestion control building block).

• The congestion control building block: One of two building blocks may be used: PGMCC [92]
and TFMCC [106]. Both of them rely on the round-trip timing collection building block.

• The authentication building block: Here also the TESLA authentication scheme can be used, as
explained in [27].

• The Router/Intermediate System Assistance building block: This building block turns NORM
into a router assisted protocol (similarly to TRACK/GRA), for instance by supporting feedback
suppression and/or aggregation mechanisms, in order to increase NORM scalability.

Other building blocks are specified in [5], but we will not detail them. Nevertheless the number
building blocks defined once again emphasizes the complexity of the protocol.

4.3 Principal NORM Packet Types

NORM uses a high number of packet types and we will detail the most important here:

• NORM DATA: NORM DATA packets carry the actual data. The data may be source or parity
symbols.

• NORM NACK: NORM NACK packets are sent by the receivers to request retransmission of
lost packets. NACK packets are only sent if explicitly requested by the source with an FLUSH
command, which is normally sent when the source transmits the last source symbol of a block.

NACKs are send using a probabilistic feedback supression mechanism. Each receivers randomly
choose a backoff timer. The NACK is only transmitted if at the end of the backoff timer no
identical NACK has been observed (possibly sent another receiver) and if the loss hasn’t been
corrected. The maximum value of the backoff timer is dependent on the estimated group size
and the maximum RTT value between the source and each receiver.

The format of NORM NACK packets is very flexible: the receiver can explicitly list each missing
symbol, give a range of symbol identfiers or specifie the number of requested parity symbols. It
is also possible to specify missing blocks or a range of missing blocks. A single NACK packet is
therefore able to signal several losses, and this limits the number of messaged that needs to be
sent. On the other side processing at the source is more complex.

• NORM CMD: command packets are sent from the source and may be used for different purposes:

– NORM CMD(FLUSH): the FLUSH command is an explicit request to the sender to send
retransmission requests (NACK) if needed.

– NORM CMD(ACK REQ): the ACK REQ explicilty requests a specified set of receivers to
acknowledge the reception of packets within a given range, or to request retransmission of
lost packets (the range and the set of receivers are specified in the ACK REQ message).

– NORM CMD(SQUELCH): the SQUELCH command informs the receivers on the current
valid retransmission window. This command is typically used if a retransmission request
outside the current retransmission window is received by the source. It allows to resyn-
chronize the receivers.

– NORM CMD(EOT): the end of transmission command (EOT) indicates the end of the
NORM session to the receivers.

– NORM CMD(CC): the CC command is specific to the congestion control building block
used.

26

4.4. NORM VERSUS ALC 27

4.4 NORM versus ALC

We now compare NORM and ALC with respect to the challenges introduced in section 1.1:

• Scalability: Only ALC supports massive scalability;

• Channel and Client Heterogeneity: Only ALC supports client heterogeneity.

• Content Heterogeneity: Both protocols support file transmission, but NORM is not suited when
data has real time constraints.

• Reliability: For long reception blackouts, ALC offers more robustness than NORM;

• Congestion Control: Both protocols can use congestion control.

Therefore, in the following we focus on ALC since it better addresses the challenges introduced earlier,
offers a higher flexibility, can be adapted to very different contexts, and is less complex.

27

28 CHAPTER 4. NACK ORIENTED RELIABLE MULTICAST (NORM)

28

Chapter 5

FLUTE for File Delivery

Contents

5.1 Introduction and Principles . 29

5.2 File Delivery Table (FDT) . 29

5.3 FLUTE in Practice . 30

5.3.1 Delivery Models . 30

5.3.2 Session Description . 32

5.3.3 Service Announcement . 32

5.1 Introduction and Principles

So far, we described the basic protocols and building blocks that are available for reliable distribution
of bulk data. However, the ALC protocol itself is underspecified (as well as NORM) and so not
sufficient for file delivery, since the file properties must be delivered too.
File Delivery over Unidirectional Transport (FLUTE) [82] is a fully-specified file delivery protocol/-
application built on top of ALC. It inherits all the major assets of ALC: an unlimited scalability,
the ability to use almost any IP transmission channel (unidirectional or not), and a high robust-
ness. FLUTE transmits meta information for each file delivered in a file delivery session.The meta-
information contains such information as the file identifier (as a URI which may include the file name),
file size, content type (MIME type) and content encoding (such as compression). It is capable of de-
livering, for instance, the required video codec and textual description along with the video media
file itself. A receiver can then choose to decode all or a subset of files based on this information. For
example, a receiver without a certain video codec may chose to drop all ALC packets associated with
files using that video codec (to avoid processing data which could finally be unusable).

5.2 File Delivery Table (FDT)

The meta-information of all files of a FLUTE session is contained in the session’s abstract File Delivery
Table (FDT). To each file is associated at least a TOI (used by ALC to identify the object) and a
file URI (Uniform Resource Identifier) (Content-Location attribute). Additional information may be
specified, including: the file size (Content-Length), the MIME-type (Content-Type), and a MD5 hash
(Content-MD5). The FDT information is not generally static, in particular an attribute may change
(e.g. a file is renamed), and files may be added or dropped dynamically.
The FDT is delivered via FDT-Instances, which are discrete XML representations of a subset of the
abstract FDT. To represent its dynamic nature, each FDT-Instance includes an expiry timestamp
(Expires), which applies to all data contained in that FDT Instance. Additionally an FDT-Instance
may contain the Complete attribute to indicate that the meta-information transmitted so far will not

29

30 CHAPTER 5. FLUTE FOR FILE DELIVERY

change anymore. Once used, there can be no file addition or attribute change and no additional files
will be added to the session - making it simpler for a receiver to determine when it has received all
interesting files for a particular session.
FDT-Instances can also be used to transmit FEC OTI informations, i.e. all the parameters used by the
FEC code, instead of using the header extension EXT_FTI (see section 3.2.2). To this purpose attributes
such as FEC-OTI-FEC-Encoding-ID, FEC-OTI-FEC-Instance-ID, FEC-OTI-FEC-Maximum-Source-
Block-Length, to cite only a few, can be specified within a FDT-Instance.
It is the sender’s role to decide when and how to transmit FDT-Instances (i.e. which subset of the
known valid FDT information to include in FDT-Instance). It is, however, recommended to transmit
a file description before the file itself, so that the receivers know how to handle incoming ALC packets,
e.g. by dropping them, or directly writing on disk, or keeping them in memory. There are several ways
to schedule the FDT-Instances. In on-demand mode, they must be periodically transmitted to support
mid-session receiver-joins - enabling receiver selection and download of content they are interested in,
at any time. More information on how to use FLUTE regarding object and FDT-Instance scheduling
is given in section 5.3.1.
FDT-Instances are transmitted with the dedicated TOI value 0. By searching the TOI of a received
packet in its cached FDT database, a receiver easily finds the associated file and can decide to process
it or drop it.

<?xml version="1.0" encoding="UTF-8"?>

<FDT-Instance

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:fl="http://www.example.com/flute"

xsi:schemaLocation="http://www.example.com/flute-fdt.xsd"

Expires="2890842807">

<File Content-Location="http://www.example.com/menu/tracklist.html"

TOI="1"

Content-Length="6100"

Content-Type="text/html"

Content-Encoding="gzip"

Content-MD5="+VP5IrWploFkZWc11iLDdA=="/>

<File Content-Location= "http://www.example.com/tracks/track1.mp3"

TOI="2"

Content-Length="392103"

Content-Type="audio/mp3"

Some-Private-Extension-Tag="abc"/>

</FDT-Instance>

Figure 5.1: FDT-Instance example.

Figure 5.1 shows an example FDT-Instance [82]. Two files are described, of type html and mp3
(Content-Type), and mapped onto TOIs 1 and 2 respectively. The html file has been content encoded
before transmission, i.e. the FLUTE sender has compressed it using ”gzip” (Content-Encoding). The
size of the uncompressed file is ”6100” bytes (Content-Length), but the actual transport size is smaller.
The MD5 checksum (Content-MD5) of the uncompressed content allows receivers to check the integrity
of the received file. Additional attributes can be defined for application specific purposes, as pointed
out with the Some-Private-Extension-Tag attribute. The FDT-Instance has a limited validity period
(Expires), which represents the time in seconds relative to January 1st 1900, 0h (i.e. the 32 most
significant bits of a 64 bit NTP time) when it will time out.

5.3 FLUTE in Practice

5.3.1 Delivery Models

FLUTE can be used differently according to packet and file scheduling. In the basic use case, the
content is only sent once, each file one after another, as depicted in figure 5.2. The content is static

30

5.3. FLUTE IN PRACTICE 31

(i.e. does not change during transmission) and the FDT-Instance is delivered before the first file.
Each receiver can then choose and download the content it is interested in. This corresponds to a
push delivery model (section 1.1.2) where all receivers need to be ready before transmission starts.
With this model, loss recovery capabilities are limited, since the session may not last long enough for
some receivers to entirely recover from losses. Therefore an additional loss recovery mechanism may
be required, (e.g. one such file repair mechanism is provided for 3G MBMS, section 6.2).

FDT

FDT

Content Server

�������������������������
�������������������������
���������������
���������������
����������

��
��
��
��
��
��
�

��
��
��
��
��
��
�

	�	
�
����

Figure 5.2: One shot delivery (push model).

In on-demand delivery the files are typically transmitted in a carousel, cyclically over a longer time
period, as depicted in figure 5.3. If the content does not change in this use case, receivers can join and
download the content at any time, and all losses will finally be recovered just by listening - providing
the session is sufficiently long. In order to make the download performance independent of the loss
model, the packets of all files may be transmitted in a random order.

FDT

FDT

�
���������

Figure 5.3: Static carousel (on-demand model).

However, if a file changes dynamically, it must be described in a new FDT-Instance and the file must
be changed in the carousel. The current cycle can then be stopped in order to make the new file
available rapidly, or the sender may choose to wait for the next carousel cycle. This is depicted in
figure 5.4.

FDT

FDT

FDT

change

������������

Figure 5.4: Dynamic carousel.

31

32 CHAPTER 5. FLUTE FOR FILE DELIVERY

5.3.2 Session Description

To inform potential receivers of an ongoing FLUTE sessions and in order to communicate all FLUTE
and ALC session parameters to the receivers, [65] explains how to use the Session Description Protocol
(SDP) syntax to describe the parameters required to begin, join, receive data from, and end FLUTE
sessions.

5.3.3 Service Announcement

Service announcement is the server initiated delivery of service descriptions (or metadata). In the
context of massive user group sizes, often interested in the same mass media content at the same time,
the natural solution is to use a multicast solution. The basic need for the delivery of metadata is
control of time of reception in relation to the media or service it describes. This is not only limited to
the timing of transmission, but also to the reliability of the transmission. Thus, service announcement
lends itself very well to the concepts of massive multicast transport of discrete objects with variable
error tolerant redundancy needs , and FLUTE addresses exactly these problems. Hence, more recent
work relating to ”Internet Media Guides” (IMGs) [80] has proposed the use of FLUTE as the primary
means to announce metadata over multicast networks.

32

Chapter 6

Large Scale Content Delivery for
Mobile Devices

Contents

6.1 An Example: Olympic Games . 33

6.2 MBMS and IP Datacast Services . 33

6.1 An Example: Olympic Games

During a big event like the Olympic Games, a lot of digital content is produced and made available to
the public. The content is extremely heterogeneous: live video and audio streams, sport event results
(archived and in real-time), recorded interviews and sport events, timetables of upcoming events,
programs/contents guides, etc. Due to the popularity of the Olympic Games, there are potentially
thousands or millions of clients accessing the same content at the same time. Bringing all this content
to the clients is a challenging task, and in this example, we assume that clients are equipped with
UMTS/MBMS and/or DVB-H mobile terminals.
UMTS features a bidirectional channel which makes it possible to explicitly request and receive a
content over a point-to-point connection. However this is not necessarily the most effective solution.
In particular, it raises scalability issues: with a high number of clients, (1) the server must support
a large number of simultaneous downloads, handle potentially a lot of retransmissions requests (the
wireless channel can be a very lossy one), and (2) the current WCDMA wireless channels, where finite
bandwidth is shared among all clients, do not yet handle a very high numbers of simultaneous high
speed downloads. This is depicted in figure 6.1.
Using a point-to-point approach also raises power consumption issues: for a mobile device, using the
uplink channel consumes significant power as the device acts as the radio transmitter (other reverse
applies for reception), even if only a very small number of feedback messages are sent. Since mobile
devices continue to have limited battery life as new mobile applications eat additional power at a
comparable rate to the gains battery storage capacity, this issue has to be taken very seriously.
Due to these considerations, a popular content (e.g. the results of the 100m finals), requested simulta-
neously by a high number of clients, should be broadcast rather unicast to each client independently
to counter the problems raised above. Moreover this perfectly matches the broadcast nature of the
radio channel.

6.2 MBMS and IP Datacast Services

The Multimedia Broadcast Multicast Service (MBMS) is an enhancement to the current 3G/UMTS
cellular systems providing mass media services over IP Multicast and multipoint radio to distributed

33

34 CHAPTER 6. LARGE SCALE CONTENT DELIVERY FOR MOBILE DEVICES

Content Server

������������������������������

�������������������������
���������������������
���������������������
��������������������������������

���
���
���
���
��

���
���
���
���
��

���
���
���
���
��

(a) Point to point

Content Server

 ! ! ! ! ! ! ! ! ! !
"!"!""!"!""!"!""!"!""!"!"
#!#!#!##!#!#!##!#!#!#
$!$!$!$$!$!$!$$!$!$!$
%!%!%!%%!%!%!%&!&!&!&&!&!&!&

'''
'''
'''
'''
''

(((
(((
(((
(((
((

(b) Point to multi-point

Figure 6.1: Point to point versus point to multi-point.

mobile user groups. It specifies two primary delivery services, download and streaming, upon which
user services can be built. [4] standardized the use of FLUTE for both discrete object (or file) download
and the announcement of metadata fragments, and likewise, RTP (Real-time Transport Protocol) for
multicast delivery of continuous audio/visual streams (figure 6.2). Additionally MBMS defines out-
of-band repair mechanisms, that allow recovery of partially received files of a FLUTE session. This is
done via explicit requests to the source and by defining a reception report mechanism.

DVB-H is an unidirectional, high bitrate technology, designed for any kind of content broadcasting. It
is an excellent solution to broadcast live video or audio streams, such as in the Olympic games example.
Additionally, DVB-H can also be used to broadcast popular content, for instance to make sporting
results rapidly available to all DVB-H mobile devices. When a bidirectional channel is needed, for
instance to access pay-per-view content or to add further reliability services, then UMTS can be used
in parallel to DVB-H. The IP Datacast (IPDC) specifications [26] define the download and streaming
services for DVB-H, and are based on FLUTE and RTP respectively, just like MBMS.

The potential of multicast to add a low cost delivery channel to an existing massive base of mobile
users, specifically for mass media, is very exciting. Mobile mass media, including MBMS and IP
Datacast using DVB-H is likely to offer the ultimate showcase to demonstrate the benefit of large
scale immediate content distribution protocols in both technical and commercial arenas.

Practical network implementations of MBMS are expected by the end of 2007, and the first functional
mobile terminals supporting MBMS are estimated to be available by the end of 2008. For IPDC/DVB-

34

6.2. MBMS AND IP DATACAST SERVICES 35

SRTP

DRM

FEC

M
B

M
S

se
cu

ri
ty

RTP/RTCP

RTP Payload
Formats

etc.)
Video, Speech,
Codecs (Audio,

Streaming

images, Text, etc.
Binary Data, Still
3GPP file format,

Download
point−to−

multipoint
File

Repair

Announcement
Service

& Metadata
(USD, etc.)

FLUTE

Application(s)

UDP

IP

MBMS Bearer(s)

Figure 6.2: The MBMS protocol stack in the downlink.

H trials and pilots already started in many countries from numerous companies. Therefore the first
generation of DVB-H services will reach the market much sooner than MBMS.

35

36 CHAPTER 6. LARGE SCALE CONTENT DELIVERY FOR MOBILE DEVICES

36

Part II

Contributions to Large Scale
Content Distribution Building

Blocks

37

Chapter 7

Introduction to, Design and
Standardization of LDPC Codes

Contents

7.1 Introduction and Motivations . 39

7.1.1 Motivations . 39

7.1.2 Goal of this Work and Choices Made, in Particular Concerning IPR 40

7.1.3 Standardization Activities . 40

7.2 The LDPC/LDGM FEC Codes . 40

7.2.1 LDGM Codes . 41

7.2.2 LDGM-Staircase Codes . 42

7.2.3 LDPC Code . 43

7.3 LDGM-Triangle Codes . 44

7.4 Conclusions . 44

7.1 Introduction and Motivations

This chapter introduces the large block LDPC/LDGM Codes and its variants used in our work. After
a state of the art on LDPC codes we detail LDGM-Triangle, a variant created during this thesis, and
present our standardization activities.

7.1.1 Motivations

Why are Reed-Solomon codes not Always Appropriate?

Previous work [15, 58] and our own practical experience have highlighted the importance of FEC
and the two limitations of the Reed-Solomon erasure FEC code (or RSE) commonly used and more
generally the two limitations of small block FEC codes: (1) the small block size, k, and (2) the
high encoding/decoding times. The two parameters (n and k), play an important role in the global
efficiency:

• a large n (in fact n − k) is favorable because it reduces the probability of symbol duplication
at a receiver. For instance sending a new fresh parity symbol to correct different erasures at
different receivers is easier if there is a large number of possibilities, i.e. if n − k is large. The
extreme case is achieved with the so-called rate-less or expandable codes that can produce an
infinite number of parity symbols (i.e. n → +∞).

39

40 CHAPTER 7. INTRODUCTION TO, DESIGN AND STANDARDIZATION OF LDPC CODES

• a large k increases the correction capacity of the FEC code. Since a parity symbol can only
recover an erasure in the block it belongs to, its erasure capability is therefore inversely propor-
tional to the number of blocks (each of size ≤ k) a file must be segmented into. Ideally a file
may be encoded in a single block, in which case each parity symbol would be useful.

As we have seen in Chapter 2 that RSE is intrinsically limited by the Galois Field size it uses, and
therefore the k and n parameters must be limited to small values if high transmission rates are desired.

Because of these limitations small block FEC codes are not a recommended solution in most cases,
and large block FEC codes or expandable codes should be used instead. Unfortunately, it is not clear
at all whether IPR-free expandable codes are feasible or not, since many patents already exist, and
we therefore focus on large block FEC codes, which are less impacted by IPRs.

7.1.2 Goal of this Work and Choices Made, in Particular Concerning IPR

In this work we focus on several large block FEC codes derived from LDPC. These codes have two main
advantages: (1) they use XOR operations for high speed encoding/decoding, and (2) they operate on
large source blocks (k À 1).

A major issue when working on large block FEC codes are IPR claims, since many patents (in
particular US-Patents) have been issued on various aspects. This is for instance the case of the use of
irregular graphs [51] in LDPC derived FEC codes, which is covered in particular by [53, 55]. In the
present work we deliberately do not consider techniques which are known to be patented, no matter
how efficient they may be. This choice stems from our desire to design patent-free, open source FEC
codecs. We want to show that the performance level of these codes are already good enough for
them to be used in several environments (and we remain rather confident on the possibility to further
improve them).

Unlike many other works in the coding theory area, our work deliberately skips theoretical aspects
to focus on practical results (presented in the following chapters). This standpoint is only rarely
considered and [25, 88], our preliminary work [94], and to some extent [15], are the only similar works
we are aware of.

7.1.3 Standardization Activities

Digital Fountain has put a lot of effort in standardization activities, in order to let their Raptor code
be established as a standard. They are very active in 3GPP MBMS where the their Raptor code has
become mandatory [4], and are also pushing their code at DVB-H and the IETF [57].

We pushed for the FEC codes presented in this chapter, with special focus on LDGM-Triangle (sec-
tion 7.3) and LDGM-Staircase (section 7.2.2). We have published an Internet-Draft on this issue,
describing a FEC Building Block instantiation for an Under-Specified FEC Scheme for the broad class
of LDPC codes [98] and presented the work at the IETF. There is a strong incentive at the RMT
working group to have several FEC codes standardized (i.e. offer alternatives to the Raptor code).
Our LDPC codes have therefore a strong probability to become one of these standardized codes.

[98] introduces the Under-Specified FEC Encoding ID 132, and defines the FEC OTI and its associated
operations for LDPC codes. Encoding, decoding algorithms as well as the parity check creation
algorithm for LDGM Staircase and LDGM Triangle are described in [98].

In parallel we proposed the LDGM-Staircase codes at DVB-H. Discussions are in progress.

This chapter is structured as follows: section 7.2 gives an introduction and a state of the art of
LDPC codes and the derivates used in our work, section 7.3 described LDGM-Triangle, a variant of
LDGM/LDPC discovered during the thesis, and finally section 7.4 concludes this chapter.

7.2 The LDPC/LDGM FEC Codes

Low Density Generator Matrix (LDGM) codes are variants of the well known LDPC codes introduced
by Gallager in the 1960s [31].

40

7.2. THE LDPC/LDGM FEC CODES 41

7.2.1 LDGM Codes

The Low Density Generator Matrix (LDGM) code [94] is a linear (n; k) block code. It creates linear
equations between the k source symbols: si, i ∈ {0..k − 1} and the n − k parity symbols: pi, i ∈
{k..n − 1}. More precisely each parity symbol is equal to the sum of a subset of the source symbols,
as defined in the linear equations. The relationships specified by these equations can be represented
using one of two equivalent representations: a bipartite graph (A.K.A Tanner Graph) and a parity
check matrix (figure 7.1).

source
nodes

k

s_0

s_4
s_3
s_2
s_1

s_5

n − k
parity
nodes

 (n) Message Nodes (n − k) Check Nodes

p_6

p_8
p_7

p_9
p_9

c0: s_1 + s_3 + s_4 + s_5 + p_6 = 0

c1: s_0 + s_1 + s_2 + s_5 + p_7 = 0

c2: s_0 + s_2 + s_3 + s_4 + p_8 = 0

c3: s_0 + s_1 + s_4 + p_9 = 0

c4: s_2 + s_3 + s_5 + p_10 = 0

(a) Bipartite graph

s0 5 6... p ...

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

1
0

1
0 1

0

1
1
0

0

1

1
1

1
0

1
1

0

1
0

1
1
0

11 0 1 10 01 0 0 0

] =1[H | 5

p10s

0

Id

(b) H matrix

Figure 7.1: A regular bipartite graph and its associated parity check matrix for LDGM.

Bipartite Graph

The bipartite graph defines relationships between left nodes, called message nodes, and right nodes,
called check nodes. The k source symbols constitute the first k message nodes, while the parity symbols
constitute the remaining n − k message nodes. The check nodes represent relationships between the
various symbols (but are not themselves symbols) and form a set of linear equations. For each edge in
this graph between a source message node and a check node, the corresponding source node is sum’ed
(XOR’ed) in the associated constraint. In the LDGM approach, all the parity message nodes are
linked to exactly one check node (it is not the case with other codes). Since we only consider regular
codes, the degree of each source message node, also called left degree, is the same, and the degree of
check nodes is on average equal to:

right degLDGM = 1 +
k × left deg

n − k

When using a high FEC expansion ratio (i.e. a large n − k denominator in the above equation),
there may be check nodes (i.e. equations) connecting less than two source symbols. In such a case, we
automatically add one or two extra edges in the bipartite graph with randomly selected source symbols.
Therefore the average right degree is at least 2 in the above equation (right degLDGM = max(2; ...)).
The upper part of this bipartite graph is built randomly, following an appropriate left and right degree
distribution (in our case a left degree of 3 and a right degree of at least 2, not considering parity nodes).
The lower part of this graph follows other rules, depending on the LDGM variant. With LDGM,
figure 7.1(a), each parity node is linked to one check node with LDGM-Staircase, section 7.2.2, each
parity node is linked with two successive check nodes .

Parity Check Matrix

A dual representation consists in building a parity check matrix, H (figure 7.1(b)). With LDGM, this
matrix is the concatenation of matrix H1 and an identity matrix Idn−k. There is a 1 in the {i; j} entry
of matrix H each time there is an edge between message node j and check node i in the associated
bipartite graph.

41

42 CHAPTER 7. INTRODUCTION TO, DESIGN AND STANDARDIZATION OF LDPC CODES

H forms a system of linear equations between source symbols, si, i ∈ {0..k − 1} and parity symbols:
pi, i ∈ {k..n − 1}. The basic operator is XOR.

Parity Check Matrix Creation

The H1 sub-matrix is filled using a two step algorithm. First we randomly choose left degree ”1s”
per column (left degree defaults to 3). Then, we check, for each line (i.e. each check node, or
equation), that there are at least two ”1s”, and if needed we add one or two ”1s” randomly on this
line. Indeed, when using a high FEC expansion ratio, some check nodes may connect less than two
source packets since the first step of the filling algorithm always adds exactly left degree ∗ k ”1s” in
H1, independently of the number of lines (n − k) of H1.
We do not try to remove degree four cycles in the parity check creation process, even if this is known to
be sub-optimal. The main motivations for this choice are (1) we do not want to compromise encoding
and decoding performances (removing degree four cycles is a CPU intensive task), and (2) we observed
little influence over the overall performances, which is confirmed by [25].
These parity check creation rules also apply to the other LDGM or LDPC codes introduced in the
coming sections.

Encoding Algorithm

Thanks to the XOR properties and the simple structure of the LDGM matrix, parity symbol creation
is straightforward and extremely fast : each parity symbol is equal to the sum of all source symbols in
the associated equation. For instance symbol p7 is equal to the sum s0 ⊕ s1 ⊕ s2 ⊕ s5.
The fact that this matrix can be used for encoding, or in other words the fact this matrix is a
“Generator Matrix”, accounts for the “GM” acronym in the LDGM name. Besides, the H matrix is
sparse1. This is due to the fixed number of 1s per column, no matter the matrix size, or said differently,
no matter the block size (k) and number of parity symbols created (n−k). This “low density” property
accounts for the “LD” acronym in the LDGM name. Because of these two properties, encoding is
extremely fast with LDGM and its derivatives.

Decoding with the Iterative Decoding Algorithm

Decoding follows a trivial algorithm. Given a set of linear equations, if one of them has only one
remaining unknown variable, then the value of this variable is that of the constant term. We then
replace this variable by its value in all remaining equations and reiterate, recursively. The value of
several variables can therefore be found if lucky.
In our case, the set of constraints (check nodes) form a set of k linear equations of n variables (source
and parity symbols). As such this system cannot be solved and we need to receive symbols from
the network. Each incoming symbol contains the value of the associated variable, so we replace this
variable in all linear equations in which it appears. We then apply the above algorithm and see if
decoding can progress by one or more steps. As we approach the end of decoding, incoming symbols
tend to trigger the decoding of several symbols, until all of the k source symbols have been recovered
(but not necessarily all of the n − k parity symbols).
The detailed algorithm and its implementation is described in detail in chapter 8.

7.2.2 LDGM-Staircase Codes

LDGM-Staircase codes (suggested in [61]), is a trivial variant of LDGM 2. LDGM Staircase only differs
from LDGM by the fact that the Idn−k matrix has been replaced by a “staircase matrix” SCn−k of
the same size (figure 7.2). An example of an (400; 600) matrix is given in figure 7.3.
This small variation does not affect encoding, which remains a simple and highly efficient process: each
parity symbol is equal to the sum of all source symbols in the associated equation, plus the previous
parity symbol. The only constraint is that encoding must follow the natural parity symbol order. For

1Note that this sparse property is not visible in figure 7.1 which has a limited size for practical reasons.
2The author of [61] refers this code as LDPC Staircase, we prefer the LDGM Staircase name because of its closeness

to LDGM and the fact that the parity check matrix H is also a generator matrix

42

7.2. THE LDPC/LDGM FEC CODES 43

s0

s3 s4 s5 p6s1 + + + = 0+

s1 s2 s5 p6s0 p7

5 6... p ...

0 0 0 1 1

0 1 1 0 0

0 0 1 1 0

1 1 0 0 0

1
0

1
0 1

0

1
1
0

0

1

1
1

1
0

1
1

0

1
0

1
1
0

11 0 1 10 01 0 0 0

] =SC1[H | 5

p10s

. . .

+ ++ + + = 0

0

Figure 7.2: Parity Check Matrix H of an (6;11) LDPC-Staircase code.

 1 1 1 1 1 1 1
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 11 1 11
 1 1 1 1 1 1 11
1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 11 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 11 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 11 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 11 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 11 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 11 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 11 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 11 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 11 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
1 1 1 1 1 1 11
 11 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 11 11
 1 1 11 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 11 11
 1 1 1 1 1 1 11
 11 11 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 11 1 1 1 11
 11 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11
 1 1 1 1 1 1 11

Figure 7.3: Parity check matrix (H) for LDGM-Staircase (k=400, n=600).

instance encoding starts with symbol p6, and then symbol p7 equal to the sum s0 ⊕ s1 ⊕ s2 ⊕ s5 ⊕ p6,
etc. Yet this simple variation largely improves the decoding efficiency as shown in chapter 10.
Intuitively, parity symbols are now protected and an erased parity symbol, for instance symbol p7,
can be recovered thanks to symbol p8 since they are both linked by a common constraint. On the
opposite, with LDGM, an erased parity symbol cannot be recovered, unless all the associated source
nodes in the associated constraint are known, but in that case this is useless! Decoding follows the
same algorithm as LDGM.
Given the right degree, the left degree of check nodes is on average equal to:

right degLDGM Staircase = 2 +
k × left deg

n − k

7.2.3 LDPC Code

LDPC differ from the previous codes by the fact the H1 matrix encompasses all message nodes, source
and parity symbols (so H and H1 are the same). A parity symbol now takes part in several constraints
randomly selected.
This is an asset from a decoding point of view since an erased parity symbol may be recovered by
several different ways (as with LDGM Staircase). But it has a cost since there is no trivial encoding
scheme and the parity check matrix cannot be used directly for producing parity symbols. Encoding
requires that the set of n − k linear equations be solved, where the n − k parity symbols take the
role of variables. Several schemes exist to that purpose [61] that all produce a generator matrix, G,
solution of the system, but even with optimized schemes, it remains a time consuming task. Encoding
now consists in multiplying this G matrix with the vector composed of source symbols. Since G
has no reason to be sparse (unlike H), this multiplication is yet another time consuming task. Non
surprisingly, encoding is rather slow with LDPC compared to LDGM codes.

43

44 CHAPTER 7. INTRODUCTION TO, DESIGN AND STANDARDIZATION OF LDPC CODES

Decoding follows the same algorithm as LDGM and operates on the H matrix.
Because of our choice of not using patented irregular graphs, we only consider in this work regular (3,
right deg LDPC) LDPC codes, where the left nodes of the bipartite graph are of degree 3 and right
nodes of degree:

right deg LDPC =
n × left deg

n − k

7.3 LDGM-Triangle Codes

One contribution of this thesis is the invention and design of LDGM-Triangle Codes, a variant of
LDGM-Staircase. The empty triangle of LDGM-Staircase beneath the staircase diagonal is now filled,
following an appropriate rule:

// Let’s consider row i.

// Create the staircase first...

add a 1 in row i and column k+i;

if (i > 0)

add a 1 in row i in column k+i-1;

// Then the triangle... Add at most i-2 "1"s.

tmp_idx = i - 2;

for (n = i - 2; n > 0; n--) {

tmp_idx = rand() modulo tmp_idx;

if (tmp_idx > 0)

add a 1 in row i and column (k+tmp_idx);

else

break;

}

This rule leads parity nodes with a low index number to have a higher degree than parity nodes
with a higher index number, as shown in figure 7.4. This variation increases performances compared
to LDGM Staircase for small FEC expansion ratios as will be shown in chapter 10. Intuitively, our
algorithm adds a ”progressive” dependency between parity symbols, i.e. that only some parity symbols
protect a large number of symbols3.
Here also encoding must follow the natural parity symbol order (this is the reason why only the lower
triangle is filled). Otherwise it remains highly efficient, even if a bit slower than with LDGM Staircase
since there are more ”1”s per row.
Decoding follows the same algorithm as all LDGM codes and is therefore very fast.

7.4 Conclusions

In this chapter we presented the basic principles of LDGM and LDPC codes. It is a class of codes
which has very fast decoding and encoding speeds and very respective error correcting capabilities,
what will be confirmed in the following chapters.

3It is interesting to note that experiments (not included in this work) have shown that filling the triangle in a
completely random manner, without progression in the density, leads to lower performances than LDGM Staircase.

44

7.4. CONCLUSIONS 45

 1 1 1 1 1 1 1
 1 1 1 1 1 1 11
 1 1 1 1 1 1 111
 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 111
 1 1 1 1 1 1 1111
 11 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 111
 11 1 1 1 1 1 1 1 11
 1 1 11 1 1 1 11 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 11 1 1 11
 1 1 1 1 1 1 1 1 11
 1 11 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 111 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 11 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 11 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 11 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 11 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 11 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 11 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 1 111
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 11 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 1 11
 1 1 1 11 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 1 1 1 1 11
 1 1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 111
 1 1 1 1 1 1 111 1 1 1 11
 1 1 11 1 1 1 1 1 1 1 1 1 1 11
 1 11 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 111 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 1 11
1 1 1 1 1 1 1 1 1 11
 1 1 1 1 11 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 11 1 111
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 11 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 11 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
1 1 1 1 1 1 11 1 11
 1 1 1 1 1 1 11 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 11 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 1 11 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 1 1 1 11
 11 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 11 11
 1 11 1 1 1 1 1 1 1 1 11
 1 1 1 1 1 1 1 1 1 1 11

Figure 7.4: Parity check matrix (H) for LDGM-Triangle (k=400, n=600).

45

46 CHAPTER 7. INTRODUCTION TO, DESIGN AND STANDARDIZATION OF LDPC CODES

46

Chapter 8

Implementation and Evaluation of a
LDPC FEC Codec

Contents

8.1 Introduction . 47

8.1.1 On the Use of Other Large Block FEC Codes 48

8.1.2 Software Implementation versus Hardware Implementation 48

8.1.3 Packets and Symbols . 48

8.2 Implementation Details . 48

8.2.1 The H Matrix . 49

8.2.2 The Iterative Decoding Algorithm . 49

8.2.3 Enabling an external Memory Management 52

8.3 Performance Evaluation . 53

8.3.1 Testing Application . 53

8.3.2 Memory consumption . 54

8.3.3 Encoding/Decoding speeds . 55

8.4 A Quick Glance at the Codec API . 56

8.5 Conclusions . 58

8.1 Introduction

This chapter presents and evaluates a software implementation of a large block FEC codec for the
erasure channel. All codes presented in Chapter 7 have been implemented, we however focus on the
two codes LDGM-Staircase and LDGM-Triangle.
Many previous work done on large block FEC codes have led to several proprietary, patent protected,
codes. So we did our best to identify an IPR-free class of solutions, even if it sometimes required to
ignore schemes known to improve the codec efficiency. To the best of our knowledge, our codec does
not infringe any IPR and we invite anybody who disagrees to contact us immediately.
During the codec design, we put a lot of efforts on optimizing both the encoding/decoding speeds
and the maximum memory requirements. Our results show that encoding and decoding are extremely
efficient, even on small devices, and memory requirements are acceptable. These results open its use
to a wide field of applications and scenarios, including high speed networks and/or constrained devices
(e.g. PDA). We therefore believe that our codec offers an interesting and competitive alternative for
many applications requiring an open-source, IPR-free, large block FEC codec.
The first motivation for our LDPC codec implementation is our MultiCast Library (MCLv3) [93] (see
Chapter 13) which implements the ALC protocol family and the FLUTE protocol/application, and
provides an integrated solution for the reliable and highly scalable delivery of content (e.g. files) over

47

48 CHAPTER 8. IMPLEMENTATION AND EVALUATION OF A LDPC FEC CODEC

any kind of unidirectional or bidirectional network. Our FEC codec may however be used with any
other type of application requiring a fast large block FEC code.

8.1.1 On the Use of Other Large Block FEC Codes

If the present work only considers LDGM-Staircase and LDGM-Triangle codes, this is not restrictive.
Other more efficient codes are progressively added to our implementation, as soon as they are identi-
fied, implemented, and tested. The present codec must therefore be viewed as a general purpose but
efficient framework for the implementation of various large block FEC codes. The stress is essentially
put on finding good data structures and algorithms for the high performance of these codes (essentially
from a maximum memory requirements and encoding/decoding speed points of view), as well as on
their practical use, rather than on the intrinsic performances of each code.

8.1.2 Software Implementation versus Hardware Implementation

LDPC codes have been adopted for the DVB-S2 standard, and they are considered in IEEE 802.16
broadband wireless transmission schemes [20]. Conversely to our implementation these codes operate
on a binary symmetric channel (BSC) rather than on an packet erasure channel, i.e. that forward
error correction is made at bit-level rather than at packet level. Codes operating on a BSC are more
likely to be implemented in hardware rather than in software. This is possible since the standards
like DVB-S2 and IEEE 802.16 only define a very small number of predefined H matrices, code rates
and block sizes, to which the hardware implementation has to comply. In order to support other code
rates or block sizes, the codec has to use several H matrices in parallel or to concatenate several codes.
The codec efficiency is less interesting in this case.
Implementing LDPC at software level as we did, implies many challenges that mostly come from the
fact that the codec needs to be highly flexible. This flexibility can not be supported in a hardware
implementation because of its constrained and inflexible resources (i.e. memory). Conversely, software
implementation has a larger amount of memory available, which also means that it can operate on
large blocks. Therefore, for software implementations the code rate and the block size is an adaptable
parameter. Moreover the H matrix is not a predefined one, but is generated for each use case using a
seed or by defining new matrix generation algorithms.
Since the H matrix, the code rate and the block size are not predefined, adequate data structures are
needed that support this high flexibility. These data structures are described in detail in the next
sections.
One major drawback of a software level implementation is that encoding and decoding speed will
be below the speeds of the hardware implementation, since no dedicated hardware acceleration is
available and massive parallelism, as often used in hardware implementations, is not possible.

8.1.3 Packets and Symbols

As we have already pointed out in chapter 2 a FEC code operates on symbols, which are in most
use cases an entire packet, but it is also possible to operate on symbols smaller than one packet size.
For simplicity in this chapter we will refer to symbol and packets indifferently, i.e. we assume one
symbol is equal to one packet. The codec was originally designed to only support this feature, and
the internal variables still uses this terminology. It is however possible to use the present codec in the
case when a symbol is smaller than one packet.
This chapter is structured as follows: section 8.2 describes the implementation details, i.e. the data
structures and algorithm used; section 8.3 experimentally evaluates the performance of our implemen-
tation. Section 8.4 gives a quick glance at the API of the codec and finally section 8.5 concludes this
chapter.

8.2 Implementation Details

Our C++ LDGM-Staircase and LDGM-Triangle codec [77] is implemented as a general purpose
library. This library, which offers a simple API that will be introduced later on, can then be linked

48

8.2. IMPLEMENTATION DETAILS 49

by an application, like our FLUTE/ALC implementation [93].

Our main focus when designing the codec, was to optimize memory consumption and decoding/encoding
times. Therefore the matrix creation and storage scheme, and the decoding algorithm implementation
details, are two critical aspects for achieving high performances.

8.2.1 The H Matrix

H Matrix Creation

The codec creates a regular parity check matrix H given the k, n, left degree and a seed. The seed
initializes a Pseudo-Random Number Generator (PRNG) used to fill the parity check matrix.

The H1 sub-matrix is filled using the two step algorithm described in section 7.2.1.

The second sub-matrix, on the right part of H, is then created, using the LDGM variant specific
features.

H Matrix Storage

The parity check matrix has to be stored in an efficient way. We used for that the library included
in R. Neal’s software [67]. The H parity check matrix is stored in a sparse array: to each ”1” of
the matrix is associated an entry which contains its row and column indexes, plus a pointer to the
following ”1” on the left, on the right, upward (except with LDGM-Staircase codes where the upward
pointer is never used) and downward. This sparse structure has several advantages:

• it enables major memory savings compared to a dense structure. For instance a (n = 30000; k =
20000) code leads to a H matrix of size 10000 × 30000 which requires at least 37.5 MBytes
of storage with a dense representation and only ≈ 2.5 MBytes using a sparse structure with
LDGM-Staircase.

• it enables a very fast encoding, since it is sufficient to follow the right pointer of a line to find
all the source/parity packets that must be XOR’ed to produce a given parity packet.

• similarly, it enables a very fast decoding, since it is sufficient to follow the “down” pointer of a
given column (i.e. packet) to find all the equations where it takes part.

Note that with LDPC, the sparse structure is not appropriate for storing the G generator matrix
(which has no reason to be sparse), and in that case a dense structure is used. This has a cost which
is in parts responsible of the limitations observed during experiments in chapter 10.

8.2.2 The Iterative Decoding Algorithm

Decoding follows the algorithm pointed out in section 7.2.1: Given a set of linear equations, if one of
them has only one remaining unknown variable, then the value of this variable is that of the constant
term (A.K.A. partial sum). We then replace this variable by its value in all remaining equations and
reiterate, recursively. The value of several variables can therefore be found if lucky.

In our case, the set of check nodes form a set of n − k linear equations of n variables, the k source
and n − k parity packets. As such this system cannot be solved and we need to receive packets from
the network. Each incoming packet contains the value of the associated variable, so we replace this
variable in the linear equations in which it appears. Replacing a variable means adding (XORing) the
value of the new packet to the partial sum of the equation. For optimal performances, this addition
is performed 32 bit at a time (or 64 bits at a time on 64-bit architectures), for all words of the
packet (we require that the packet size be multiple of 32 bits). We then apply the above decoding
algorithm and see if decoding can progress by one or more steps. As we approach the end of decoding,
incoming packets tend to trigger the decoding of several packets, until all of the k source packets
have been recovered. Note that decoding will probably stop before all of the n − k parity packets
be received/decoded, since parity packets are only temporary variables, and their decoding not an
objective.

49

50 CHAPTER 8. IMPLEMENTATION AND EVALUATION OF A LDPC FEC CODEC

1left

down

up

right

partial sum buf.

partial sum buf.

partial sum buf.

3
3
2
3
4
2
4
3

3
3
2
3
4
2
4
3

0 0 0 0 0 0 0 0 0 0 0 0

so
ur

ce
 p

kt
 2

 b
uf

.

so
ur

ce
 p

kt
 5

 b
uf

.
so

ur
ce

 p
kt

 6
 b

uf
.

pa
ri

ty
 p

kt
 4

 (s
eq

=1
4)

pa
ri

ty
 p

kt
 2

 (s
eq

=1
2)

pa
ri

ty
 p

kt
 6

 (s
eq

=1
6)

0
0

0

0

0

2 2 2 2 2 2 2 1

nbEqu_for_parity[n−k]

(o
nl

y
in

 c
as

e
of

 s
tr

at
eg

y
2)

(only in case of stategy 2)

nb
Pk

ts
_i

n_
eq

u[
n−

k]

un
kn

ow
n_

pk
ts

[n
−k

]

pkt_canvas[k]
(only in case of stategy 2)
parity_pkt_canvas[n−k]

checkValues[n−k]

Figure 8.1: Data structures used by the decoding algorithm.

Data structures Used by the Decoding Algorithm

To implement the above algorithm several data structures and tables are needed. In this evaluation
the codec assumes that all information (including packets) is stored in physical memory (RAM), which
creates a practical limitation for huge objects. This issue is very critical when using LDPC since the
memory consumption is even higher. Some experiments in chapter 10 with LDPC could not be carried
out because of this (section 10.2.3). Recent work addresses this aspect and the implementation now
supports the dedicated virtual memory framework included in MCLv3 [93] (see section 8.2.3). This
implementation was however not available at the time of the experiments and therefore this evaluation
does not consider this framework.
There is anyway a limitation because the random nature of the H/G matrices requires at any time a
fast access to any source packet (and for LDPC and LDGM-Triangle codes also to any parity packet)
during the encoding and decoding processes, which is only possible if most of the packets are kept in
memory.
The decoder has to store several types of data (Figure 8.1):

• source packets: All source packets will be delivered to the application, and therefore all re-
ceived or decoded source packets are systematically kept in memory. An array of pointers,
pkt canvas[], is introduced to point to the received or decoded source packets. The index in
this array is the packet sequence number.

• parity packets: On the opposite, parity packets are not delivered to the application, they are
only temporary elements in the decoding process. So, at first sight, there is no need to store the
received (or decoded) parity packets at the decoder, and their value can be simply summed to
the corresponding partial sums.

However we will see later that an optimization exists that stores parity packets rather than
injecting them in the corresponding partial sums. To that purpose, an array of pointers,
parity pkt canvas[], is introduced to point to the parity packets that must be stored. The
index in this array is the parity packet sequence number minus k (said differently, packet k is
the first parity packet, and is stored in parity pkt canvas[0]).

• partial sums: Finally partial sums for a given equation (or check node), must be handled by the
decoder. Therefore an array of pointers, checkValues[], is introduced to point to the partial

50

8.2. IMPLEMENTATION DETAILS 51

sums in use. Yet the partial sum buffers are allocated only when needed, while decoding (the
exact criteria depends on the decoding algorithm). In the following this array is referenced as
checkValues[], the index corresponding to the packet sequence number.

These different data structures can be manipulated in different ways, according to the implementation
of the decoding algorithm. We present two variants and highlight the high practical importance of
optimizing the iterative decoding algorithm.

Strategy 1: Adding Systematically Parity Packets to Partial Sums

In this implementation of the decoding algorithm, parity packets are always immediately added to
all the concerned partial sums. Therefore there is no need to store parity packets (i.e. the array
parity pkt canvas[] does not exist). Partial sums are allocated only when needed (rather than in
advance, at initialization time), as soon as a packet for the associated equation is available. This is
the way we implemented the decoding algorithm first, which seemed to us the most natural approach.
In the remaining, we will sometimes denote this strategy by “classical approach”.
The decoder is composed of only one function, DecodeFecStep(), that is called every time a new
packet is received or decoded (called recursively in the latter case):

ldpc_error_status

LDPCFecSession::DecodeFecStep

(void* pkt_canvas[], // source pkt canvas

void* new_pkt, // the new packet

int new_pkt_seqno,// assoc. sequence nb

bool store_packet, // true if needs to

// alloc memory, copy

// the packet in it,

// & call any callback

void* context_4_callback) // opaque context

// passed to callback

This function performs the following tasks:

1. If new pkt is an already decoded or received packet, the function returns immediately and does
nothing.

2. If new pkt is a data packet, it is permanently stored in pkt canvas[].

3. For each equation i having a degree greater than one (i.e. more than one unknown variable),
with an entry in column new pkt seqno (i.e. having new pkt as a variable), do the following:

– If checkValues[i] is null, allocate a buffer for this partial sum;

– add new pkt to the partial sum checkValues[i];

– remove the entry (i;new pkt seqno) of the H matrix.

– If the new degree of equation i is one, we have decoded a new packet and have to remember
the index of the equation in a list of indexes for newly decoded packets for step 4.

4. For all newly generated packets in step 3, move (i.e. copy and free) checkValues[i] into a
static buffer1, remove the last entry in equation i, and call DecodeFecStep recursively with the
static buffer and the newly generated packet index as parameters.

This algorithm needs to know the degree of each equation (i.e. the number of 1s). For higher perfor-
mances, we added a nbPkts in equ[] array, indicating for each equation i the number of remaining
variables not XOR’ed in the partial sum checkValues[i] (or in other words the remaining number
of ”1s” for row i of matrix H). This array is filled at initialization time, and each entry is decremented
each time a packet is added to the corresponding partial sum.

1Using a static buffer is viable here, even if it there is a recursive call, because it will be used before being possibly
overwritten in the inner calls.

51

52 CHAPTER 8. IMPLEMENTATION AND EVALUATION OF A LDPC FEC CODEC

Strategy 2 (Optimized): Keeping Parity Packets in Memory

The idea of the second implementation variant of the decoding algorithm is to store parity packets,
using the parity pkt canvas[] array, rather than automatically allocating the associated partial
sums and adding the parity packet to them. Now, a partial sum is only allocated when needed, when
enough packets are available to decode the associated equation. As will be shown in the evaluation,
this slight change sometimes largely improves performances. No change is made concerning source
packets, here also they are always stored in the pkt canvas[] array.
As with strategy 1, the decoder consists of only one function, DecodeFecStep, called every time a new
packet is received or decoded (called recursively in the latter case). The operations performed are a
little bit different, though:

1. If new pkt is an already decoded or received packet, the function returns immediately and does
nothing.

2. If new pkt is a data packet, it is permanently stored in pkt canvas[]. If new pkt is a parity
packet, it is stored in the parity pkt canvas[] array if this packet is involved at least in one
equation and if this equation cannot be solved immediately.

3. For each equation i having a degree of two and an entry in column new pkt seqno (i.e. if enough
packets, including new pkt, are available to decode equation i), do the following:

– If checkValues[i] is null, allocate a buffer for this partial sum;

– for all packets j concerned by equation i, add packet j to the partial sum checkValues[i]

and remove this entry in matrix H; If packet j is a parity packet and if it is no longer
needed by any other equation, free packet j.

– Remember the index of this equation in a list of indexes for newly decoded packets for step
4.

4. For all newly generated packets in step 3, move (i.e. copy and free) checkValues[i] into a
static buffer2, remove the last entry in equation i, and call DecodeFecStep recursively with the
static buffer and the newly generated packet index as parameters.

As before we use the array nbPkts in equ[] in this algorithm. However we need additional data
structures that contain: (1) the number of unknown packets per equation, and (2) the degree of
each parity packet (i.e. the number of entries in the column of matrix H for this parity packet). As
before, in order to avoid having to go through the H matrix and counting the entries each time the
information is needed, we therefore use the arrays unknown pkts[n-k] and nbEqu for parity[], that
are initialized at the beginning of the session and updated during decoding.

The Case of LDGM-Triangle With FEC Expansion Ratios ≤ 2.0

During our experiments we noticed that the optimized algorithm performed quite good in all cases
except with LDGM-Triangle with FEC expansion ratios ≤ 2.0. Therefore we added a small modifica-
tion in our algorithm. If we use LDGM-Triangle with FEC expansion ratios ≤ 2.0, we never store the
parity check packets in the permanent array (in step 2 of the algorithm). However in step 3 we allocate
(if not already allocated) systematically each partial sum concerned by the parity check packet and
inject its value in it.

8.2.3 Enabling an external Memory Management

As mentioned before, in this evaluation the codec assumes that all information is stored in physical
memory (RAM), which creates a practical limitation for huge objects. However, recent work addresses
this aspect and the implementation now supports external memory management, i.e. that all symbols
memory allocation/deallocation can be managed outside of the codec. This highly increases the
flexibility of the codec, since each application can define by itself where and how symbols are stored.

2Using a static buffer is viable here, even if it there is a recursive call, because it will be used before being possibly
overwritten in the inner calls.

52

8.3. PERFORMANCE EVALUATION 53

For instance, the application may define a memory management scheme that stores data on disk,
enhanced with a cache system to enable quicker access to data.
The external memory management is enabled by callbacks, which the application of the codec has to
instantiate appropriately. More precisely:

• The AllocTmpBuffer callback is called each time a temporary buffer is required by the system,
e.g. to store a partial sum. This function returns a symbol pointer, and accessing the data
buffer requires a call to the GetData callback.

• The GetData callback is called each time the data associated to a symbol must be read.

• The StoreData callback is called each time a symbol’s buffer has been updated and must be
stored reliably by the memory management system.

• The FreeSymbol callback is called each time a symbol (or temporary buffer) is no longer required
and can be free’d by the memory management system.

8.3 Performance Evaluation

In this section we evaluate the performance of our codec. We also compare the performances of the
two decoding algorithms presented before. The following parameters are considered during tests:

• the FEC expansion ratio, fec ratio, or n/k ratio: the higher the ratio, the more parity packets
are created. This ratio is the inverse of the “code rate”, defined as k/n and which is widely used
in the coding community.

• the object size, expressed in 1024 byte packets (a common size in the Internet), rather than in
bytes. Since the object is usually encoded as a single block, this size in packets is equivalent to
the k parameter of the code.

We measure the following performance metrics:

• encoding/decoding speeds: measuring the total encoding (resp. decoding) time gives an idea of
the maximum transmission (resp. reception) rate from the FEC codec viewpoint.

• maximum memory requirements: we measure the maximum memory requirements during en-
coding and decoding, caused by the need to store source (and often parity) packets, but also all
the codec’s internal buffers or tables, and in particular the H matrix.

Another measure the global decoding inefficiency ratio, inef ratio is of importance. Since LDGM codes
are not MDS, inef ratio ∗ k packets must be received for the decoding a block of size k to complete.
This ratio, experimentally evaluated, is a key performance metric. Yet, as already explained in
section 8.1.1, the stress in this chapter is more on finding good data structures and algorithms rather
than on the intrinsic performances of each code itself. So the evaluation of the decoding inefficiency
ratios of LDGM-* codes is skipped here and studied in detail in chapter 10.
Note that chapter 10 also includes a comparison study of LDGM-* codes with LDPC and RSE on
memory requirements and encoding/decoding speeds.

8.3.1 Testing Application

We designed a basic application on top of these two codecs, derived from the perf_tool of our FEC
codec distribution [77]. Given an object and afec ratio, the application first performs FEC encoding:
to k source packets of a block, the codec produces n − k = (fec ratio − 1) ∗ k parity packets. Both
source and parity packets are 1024 byte long. Once encoding has been performed, the source and
parity packets are transmitted in a fully random order. The receiving application receives them one
at a time, giving them to the FEC decoder, and stops when the block is fully decoded.
No transmissions on the network are performed, and the same application performs both encoding
and decoding. This feature enables us to better control the way packets are “sent”, simplifies tests,
reduces the overall test durations and enables accurate encoding/decoding time measurements. Note

53

54 CHAPTER 8. IMPLEMENTATION AND EVALUATION OF A LDPC FEC CODEC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

block size

LDGM staircase
LDGM triangle

(a) As a function of the object size, fixed FEC
expansion ratio = 3.0

 0

 5

 10

 15

 20

 25

 30

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

fec ratio

LDGM staircase
LDGM triangle

(b) As a function of the FEC expansion ratio, fixed
object size = 20000 packets

Figure 8.2: Memory consumption for the H matrix, for LDGM-Staircase and Triangle.

in particular that sending source and parity packets in a random order saves the need for defining a
channel loss model (more details on the impact of packet scheduling and the loss model is given in
chapter 9). Our results are therefore independent of any particular model, in particular the loss ratio
and loss pattern. This is a great asset since the codec may be used in a large number of applications and
environments, each of them having specific transmission assumptions. Our results therefore provide
average results, rather than specific results.

8.3.2 Memory consumption

We now analyze the maximum memory requirements for the different codecs, from the decoder appli-
cations points of view. We further distinguish:

• the memory storage of the H matrix;

• all the remaining memory requirements, essentially for the source and parity packets, the partial
sums used by a decoder, and also the various buffers or tables required by the codec.

Memory storage of H

The memory consumption for the H matrices is shown in Figure 8.2. With an object size of 20, 000
packets and a FEC expansion ratio of 1.5, LDGM-Staircase (resp. Triangle) requires 2.5 MB (resp.
4.6 MB). The requirements are higher when the FEC expansion ratio increases, especially with LDGM-
Triangle which requires 28.5 MB with a FEC expansion ratio of 5.0, whereas an LDGM-Staircase
“only” requires 9.9 MB in that case. We consider that the memory requirements for storing the H
matrix, which largely reflects the density of the matrix, is not a major issue with LDGM codes for
small to medium FEC expansion ratios, and remains low in front of the memory needed to store
packets during decoding. With higher FEC expansion ratios (especially with LDGM-Triangle), this
is less true.

Other Memory Requirements

The memory consumption of the decoder (without matrix H) as a function of the FEC expansion ratio
and a fixed object size of 20000 packets is shown in Figure 8.3(b). In this figure, we distinguish the
two decoding strategies introduced before. We see that the (optimized) strategy 2 provides significant
memory savings. With a FEC expansion of 5.0 LDGM-Staircase needs ≈ 65 MB with strategy 1 and
only ≈ 37 MB with strategy 2. With LDGM-Triangle the gains are less important: ≈ 85 MB with
strategy 1 and ≈ 72 MB with strategy 2 in the same conditions.

54

8.3. PERFORMANCE EVALUATION 55

 0

 20

 40

 60

 80

 100

 120

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

block size

LDGM Staircase classical algorithm
LDGM Staircase optimized algorithm

LDGM triangle classical algorithm
LDGM triangle optimized algorithm

(a) As a function of the object size, fixed FEC
expansion ratio = 3.0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

fec ratio

LDGM staircase classical algorithm
LDGM staircase optimized algorithm

LDGM triangle classical algorithm
LDGM triangle optimized algorithm

(b) As a function of the FEC expansion ratio, fixed
object size = 20000 packets

Figure 8.3: Maximum memory consumption at the decoder (without H), for LDGM-Staircase and
Triangle.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

ga
in

 m
em

or
y

co
ns

um
pt

io
n

(r
at

io
 c

la
ss

ic
al

/o
pt

im
iz

ed
)

block size

LDGM staircase
LDGM triangle

(a) As a function of the object size, fixed FEC
expansion ratio = 3.0

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 1 1.5 2 2.5 3 3.5 4 4.5 5

ga
in

 m
em

or
y

co
ns

um
pt

io
n

(r
at

io
 c

la
ss

ic
al

/o
pt

im
iz

ed
)

fec ratio

LDGM staircase
LDGM triangle

(b) As a function of the FEC expansion ratio, fixed
object size = 20000 packets

Figure 8.4: Memory gain ratio at the decoder, by using strategy 2 rather than strategy 1.

In order to better highlight the gains made possible by strategy 2, Figure 8.4 shows the gain as the
ratio memory used by strategy 1

memory used by optimized strategy 2 . The gain increases with the FEC expansion ratio achieving a

ratio of 1.82 (resp. 1.18) at a FEC expansion ratio of 5.0 with LDGM-Staircase (resp. Triangle).
The memory consumption of the decoder as a function of the object size and a fixed FEC expansion
ratio of 3.0 is shown in figure 8.3(a). We notice again that memory savings for LDGM-Staircase are
more important. However we also notice in Figure 8.4(a) that the gain is independent of the object
size, i.e. the gain ratio is almost constant for a given FEC expansion ratio.

8.3.3 Encoding/Decoding speeds

Impacts of the Decoding Algorithm Strategy

If the main goal of the decoding algorithm strategy 2 was to reduce memory requirements, we found
it also provided some benefits with respect to the decoding speed. This is visible in Figure 8.5 which
shows the decoding times as a function of the FEC expansion ratio, on a powerful Pentium IV 3.06
GHz, 2GB/Linux host. The reason is that packets are only XOR’ed to the partial sum when needed
(i.e. when an equation can be solved) rather than in advance (i.e. when a new packet is available).

55

56 CHAPTER 8. IMPLEMENTATION AND EVALUATION OF A LDPC FEC CODEC

 0

 0.5

 1

 1.5

 2

 2.5

 1 1.5 2 2.5 3 3.5 4 4.5 5

de
co

di
ng

 ti
m

e
(s

ec
)

fec_ratio

LDGM staircase classical algorithm
LDGM staircase optimized algorithm

LDGM triangle classical algortihm
LDGM triangle optimized algorithm

Figure 8.5: Decoding time as a function of FEC expansion ratio, object size = 20000 packets, P-
IV/3.06 GHz.

The overall number of sums is therefore reduced to the minimum required. Therefore, in the remaining
of this work, we only consider the optimized decoding algorithm.

Encoding/Decoding Speeds on various Architectures

Measuring the FEC codec initialization time and the total encoding (resp. decoding) time enables
to measure the maximum sustainable bandwidth. More precisely, two encoding bandwidths can be
considered: a global encoding bandwidth, that takes into account both the produced parity packets
and the source packets, and measured as:

n ∗ pkt size (in bits)

time

and a partial encoding bandwidth that only takes into account the produced parity packets:

(n − k) ∗ pkt size (in bits)

time

The first measure indicates whether the codec can support a given transmission rate when using a
systematic FEC code (both source and parity packets are sent), whereas the second one refers to what
is actually produced by the FEC codec. No such distinction exists at the receiver, and the bandwidth
is always measured as:

number of pkts requiredfor decoding ∗ pkt size (in bits)

time

Since this value depends on the global decoding inefficiency ratio which varies slightly at each test,
we only consider average values.
The encoding and decoding speeds are shown in tables 8.1 and 8.2 respectively. We can notice that
encoding/decoding speeds are very high and remains very acceptable even on quite slow machines.

8.4 A Quick Glance at the Codec API

The API is defined by the LDPCFecSession class, which offers several methods as shown in figure 8.6.
The InitSession method is used to specify the main parameters of the codec, in particular the k, n,
seed, packet size, left degree for source packets, kind of code, and if it is a coding or decoding session.
The BuildFecPacket method is used to build a (single) new parity packet. With the codes considered
in this work, parity packets must be produced sequentially, starting at packet k, and up at maximum

56

8.4. A QUICK GLANCE AT THE CODEC API 57

Machine Code Encoding Encoding
(parity only) (source + parity)

Pentium IV 3.06 GHz 2GB, Linux Staircase 734.998 Mbps 2,204.990 Mbps
Triangle 443.813 Mbps 1,331.440 Mbps

Pentium III 1GHz 512 MB, Linux Staircase 177.954 Mbps 533.864 Mbps
Triangle 104.823 Mbps 314.470 Mbps

Sun Ultra10, UltraSPARC 480MHz 256MB, Solaris 2.8 Staircase 50.948 Mbps 152.845 Mbps
Triangle 26.311 Mbps 78.933 Mbps

Compaq IPAQ H3970 PXA250 400Mhz 64MB, Linux Staircase 22.755 Mbps 68.265 Mbps
Triangle 12.907 Mbps 38.723 Mbps

Table 8.1: Encoding speeds, FEC expansion ratio = 1.5, object size = 20000 packets.

Machine Code Decoding

Pentium IV 3.06 GHz 2GB, Linux Staircase 816.505 Mbps
Triangle 434.866 Mbps

Pentium III 1GHz 512 MB, Linux Staircase 246.425 Mbps
Triangle 124.909 Mbps

Sun Ultra10, UltraSPARC 480MHz 256MB, Solaris 2.8 Staircase 56.979 Mbps
Triangle 34.590 Mbps

Compaq IPAQ H3970 PXA250 400Mhz 64MB, Linux Staircase 34.256 Mbps
Triangle 18.952 Mbps

Table 8.2: Decoding speeds, FEC expansion ratio = 1.5, object size = 20000 packets.

// creation/initialization/destruction

LDPCFecSession ();

~LDPCFecSession ();

ldpc_error_status InitSession ();

void EndSession ();

// useful methods

void SetVerbosity ();

void MoreAbout ();

// encoding method

ldpc_error_status BuildFecPacket ();

// decoding-related methods

ldpc_error_status DecodeFecStep ();

ldpc_error_status SetCallbackFunctions ();

bool PacketAlreadyKnown ();

bool IsDecodingComplete ();

Figure 8.6: The LDPC codec API

57

58 CHAPTER 8. IMPLEMENTATION AND EVALUATION OF A LDPC FEC CODEC

packet n. Besides, since the n parameter is specified once and for all in the InitSession, there
is no way to increase the number of parity packets that may be produced once the codec has been
initialized. This is a fundamental limitation of the LDGM codes considered in this work.
The DecodeFecStep method, as explained in sections 8.2.2 and 8.2.2, is called each time a new packet
is received. In case of a parity packet, upon return of this function, the buffer containing the packet
should be free’ed by the caller, no matter what decoding algorithm variant is used (e.g. in case the
optimized, strategy 2 is used, a copy of the parity packet may be kept internally in the codec, but
this will not be visible by the caller).
Unlike Reed-Solomon codes, there is no way, just by looking at the number of packets received, to
decide in advance if decoding is over or not, and this requires counting the number of source packets
received and decoded which is a little bit more complex. This is the goal of the IsDecodingComplete

method.
The SetCallbackFunctions is used to register call back functions. Currently, a single callback is
defined, DecodedPkt. This one is called each time a source packet is decoded after calling the
DecodeFecStep method. The motivation for this callback is to enable the caller to be informed
of new source packets being decoded, and registering them in the caller’s specific environment (e.g.
in our FLUTE/ALC implementation, we allocate and initialize a dedicate “data unit” (du_t) struc-
ture for each of them). This callback is given the context pointer that is specified upon calling the
DecodeFecStep method.
As can be seen, the API has been deliberately kept simple, in order to facilitate its use by applications.

8.5 Conclusions

In this chapter we described the design and implementation of a large block FEC codec, that currently
implements the LDGM-Staircase and LDGM-Triangle codes. This codec is easily extensible and new
FEC codes are regularly added, once identified and evaluated.
We explained in details the internal design of the codec, and how the implementation of some key
functions, like the iterative decoding algorithm, can largely impact the performance achieved.
The codec evaluation focused essentially on the maximum memory requirements, a major concern
when working with large blocks, and the coding/decoding speed on various architectures, ranging
from PDAs to powerful workstations. We saw that the codec achieved excellent performance from
these two points of views with the two LDGM variants currently in use.
Yet this chapter did not include an extensive FEC code evaluation, in particular the decoding ineffi-
ciency ratios experienced, since we wanted to focus on the framework more than on the FEC codes
themselves. A detailed FEC code error correcting performance evaluation is done in chapter 10.
The C++ codec is distributed under an open-source GNU/LGPL license [77]. It also relies on R.
Neal’s software [67], which is distributed under an open-source license that grants a free use of the
software. Throughout this work, we deliberately avoided techniques known to be patented, no matter
how efficient they may be. To the best of our knowledge, our codec does not infringe any IPR and we
invite anybody who disagrees to contact us immediately. We believe that it offers an interesting and
competitive alternative for many applications requiring an open-source, IPR-free, large block FEC
codec.
Even if this codec is already quite useful, and used in several operational environments, we are con-
tinuously improving it. The advent of rate-less codes (e.g. Online code [62]) is one possible future
direction, since these codes are well suited to many of the target applications of our codec. Yet it is
not clear at all whether IPR-free rate-less codes are feasible or not since many patents already exist
in that domain.

58

Chapter 9

Impacts of Packet Scheduling and
Packet Loss Distribution on FEC
Performances: Observations and
Recommendations

Contents

9.1 Introduction . 59

9.2 Modeling of the Whole System . 60

9.2.1 The Three Models . 60

9.2.2 The Channel Model . 60

9.3 Simulation Results With Six Transmission Models 62

9.3.1 Methodology . 62

9.3.2 Why is FEC Needed? . 64

9.3.3 Tx model 1: Send Source Packets Sequentially, Then Parity Packets 64

9.3.4 Tx model 2: Send Source Packets Sequentially, Then Parity Packets Randomly 66

9.3.5 Tx model 3: Send Parity Packets Sequentially, Then Source Packets Randomly 67

9.3.6 Tx model 4: Send Everything Randomly 67

9.3.7 Tx model 5: Interleaving (RSE only) . 67

9.3.8 Tx model 6: Send Randomly a Few Source Packets Plus Parity Packets . . 67

9.4 Simulation Results With a Reception Model 68

9.4.1 Rx model 1: Receive a Few Source Packets, Then Parity Packets Randomly 68

9.5 Discussions and Recommendations . 69

9.5.1 Summary of the Results . 69

9.5.2 In Practice . 69

9.6 Conclusions . 71

9.1 Introduction

The performance of FEC codes largely vary, depending in particular on the code used and on the
object size, and these parameters have already been studied in detail by the community. However the
FEC performances are also largely dependent on the packet scheduling used during transmission and
on the loss pattern introduced by the channel. Little attention has been devoted to these aspects so
far.

59

60
CHAPTER 9. IMPACTS OF PACKET SCHEDULING AND PACKET LOSS DISTRIBUTION ON FEC

PERFORMANCES: OBSERVATIONS AND RECOMMENDATIONS

For instance, sending all source packets first and then parity packets does not necessarily yield the same
efficiency as sending the packets in random order. The packet loss distribution observed by a receiver
also largely impacts the decoding performances and a given transmission scheme may yield good
results for a specific loss distribution and yield catastrophic results in other circumstances. This work
analyzes the impact of packet scheduling and loss behaviors on the performances of three FEC codes:
Reed-Solomon, LDGM Staircase and LDGM Triangle (the two latter ones based on the implementation
presented in the previous chapter). Thanks to this analysis, we define several recommendations on
how to best use these codes, which turns out to be of utmost practical importance. For instance it
enables to optimize the FLUTE session to a specific download environment, or on the opposite, to find
transmission schemes that will behave correctly (but may be not optimally) in a wide set of different
environments.
We only consider file delivery applications here, and the transmission latency has therefore little
importance. This would not be true with streaming applications. We will not consider the potential
impacts of FEC codes and transmission scheme on the decoding latency at a receiver in this chapter.
The work of the present chapter is also presented in [75, 76].
The remainder of the chapter is organized as follows: we first introduce the three FEC codes; sec-
tion 9.2 explains and motivates the modeling method we used; section 9.3 presents and analyzes the
performance of several transmission schemes while section 9.4 does the same with a reception model;
finally section 9.5 explains how to use these results in practice, then we conclude this chapter.

9.2 Modeling of the Whole System

9.2.1 The Three Models

Let’s imagine that a server wants to broadcast a big file using a large scale content delivery system
using FLUTE. The content is first FEC encoded which produces additional parity packets. The sender
must now decide in which order source and parity packets will be sent, and this choice will largely
impact the whole system performances as we will see later. This packet scheduling constitutes the
transmission model.
The channel is characterized by a packet loss distribution. It may be a lossy channel with long bursts
of packet erasures, or it may be a channel where losses are completely independent from one another.
This packet loss distribution constitutes the loss model.

channel

transmission
scheduling

Reality

Model model

reception

reception
model

transmission
loss model

FEC code
+

Figure 9.1: Modeling methods.

These two transmission and loss models together characterize a reception behavior at a receiver (Fig-
ure 9.1). In case of broadcast applications, there is no reason that different receivers experience the
same loss model, so the reception behavior is receiver dependent. This is the approach that will be
used for most experimental evaluations (section 9.3).
The reception behavior may also be modeled the other way round, by providing a reception model.
This model defines which packets are received (and when) by a receiver. This approach can be
complementary to the use of the transmission and loss models, for instance to study the FEC code
performances in controlled situations. This is the approach that will be used in section 9.4.

9.2.2 The Channel Model

Finding an appropriate error model for a given channel is a complex task, especially with wireless
networks where it is difficult to take into account all parameters (e.g. channel fading, reflections,
refractions, diffractions, Doppler effects). Yet in this work we are only interested in a packet loss

60

9.2. MODELING OF THE WHOLE SYSTEM 61

model (rather than a bit error model) that provides a high level abstraction of the channel parameters.
The well known two state Markov model (A.K.A. Gilbert model) is such a simplified loss model, and
it is widely used in the literature [8, 107].

q

lossno loss

p

1 − p 1 − q

Figure 9.2: Two state Markov loss model.

The model is composed of two states: the no-loss state where no packet loss occurs, and the loss
state where packets are lost (figure 9.2). p indicates the probability to go from no-loss state to loss
state, and q from loss state to no-loss state. Having p and q we can calculate the global packet error
probability [8]:

pglobal =
p

p + q

This probability is represented as a 3D-graph in figure 9.3.1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

global packet loss probabilty

p
q

global packet loss probabilty

Figure 9.3: Global loss probability.

Depending on the channel modeled, the p and q values will differ. For a given channel it may be
possible to determine p and q using packet loss traces. For instance, this has been done in [35] for
traces coming from an GSM channel, and in [107] for traces coming from end-to-end connections in
the Internet.

The Gilbert model also covers some specific loss behaviors that we want to emphasize:

• No loss: This perfect channel corresponds to p = 0.

• Independent and Identically Distributed (IID) losses (A.K.A. the Bernoulli model): This mem-
oryless channel corresponds to q = 1 − p.

1This graph is helpful in order to have an idea on the pglobal for the graphs in section 9.3. Note that for better
visibility this figure is rotated compared to the figures in section 9.3.

61

62
CHAPTER 9. IMPACTS OF PACKET SCHEDULING AND PACKET LOSS DISTRIBUTION ON FEC

PERFORMANCES: OBSERVATIONS AND RECOMMENDATIONS

We are aware that the Gilbert model has some shortcomings in error modeling accuracy [35, 107].
We believe that it is however sufficient for our work since it already covers a very large set of loss
behaviors. Moreover we took care to perform experiments with a very large set of p and q values
(14 × 14 grid) in order to cover as many channel behaviors as possible. Other more complex models
(e.g. the n-state Markov models), that may be required for specific channels, will be considered in
future works.

When is Decoding Impossible?

In our work we want to know, given a certain FEC code, how many losses a receiver can support.
With the Gilbert model we can calculate the maximum number of packet losses supported by any
FEC code. Let’s consider a FEC code producing n−k parity packets from k source packets. We then
transmit nsent ≤ n packets over the network (sending all packets is not mandatory, see section 9.4).
The number of packets actually received is equal to:

nreceived = nsent ∗ (1 − pglobal) (9.1)

nreceived must be at least equal to inef ratio ∗ k (remember that LDGM codes are not MDS) for
decoding to be successful. When nreceived = inef ratio ∗ k we have:

q =
−p ∗ inef ratio

inef ratio − nsent

k

These limits are shown in figure 9.4 for FEC expansion ratios 1.5 and 2.5, and assuming inef ratio = 1
(which is a lower bound for inef ratio). This figure shows that several areas of the (p, q) parameter
space cannot enable a receiver to decode the object. This is not a flaw of the FEC code, it’s merely
a fundamental limitation.

)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)
)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)

+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+

Decoding impossible (number
of packets received < k):

,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,
,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,
,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,
,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,
,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,
,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,
,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,
,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,
,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,

-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

.*.*.
.*.*.
/*/*/
/*/*/
0*0*0
0*0*0
0*0*0

1*1*1
1*1*1
1*1*1

Totally uncorrelated losses

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
p

FEC expansion ratio = 2.5

FEC expansion ratio = 1.5

q

N
o/

ve
ry

 fe
w

 lo
ss

High loss rate, no bursts

High loss rate, in bursts

Figure 9.4: Loss limits.

9.3 Simulation Results With Six Transmission Models

9.3.1 Methodology

The methodology used to conduct performance tests is the following. We considered the RSE, LDGM
Staircase and LDGM Triangle codes, and two typical FEC expansion ratios: 1.5 and 2.5 (they corre-
spond to code rates 2/3 and 2/5 respectively). The object is composed of 20000 packets (i.e. k = 20000
with LDGM-* codes).

For RSE we use a Galois Field GF(28), i.e. n ≤ 256. We use the maximum value for n (= 256) and
derive the maximum block size supported. The object is then segmented into several blocks using the
blocking algorithm described in [104] (see chapter 3).

The performance metric used is the average inefficiency ratio: inef ratio =
nnecessary for decoding

k ,
which is the total number of packets received when decoding completes, divided by the number of

62

9.3. SIMULATION RESULTS WITH SIX TRANSMISSION MODELS 63

 0
 20

 40
 60

 80
 100 0

 20
 40

 60
 80

 100

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

aver. inefficiency ratio

RSE inefficiency ratio
nreceived/k

p [%]

q [%]

aver. inefficiency ratio

(a) RSE and a FEC expansion ratio of 2.5.

 0
 20

 40
 60

 80
 100 0

 20
 40

 60
 80

 100

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

aver. inefficiency ratio

LDGM Triangle inefficiency ratio
nreceived/k

p [%]

q [%]

aver. inefficiency ratio

(b) LDGM Triangle and a FEC expansion ratio of
2.5.

 0
 20

 40
 60

 80
 100 0

 20
 40

 60
 80

 100

 1

 1.1

 1.2

 1.3

 1.4

 1.5

aver. inefficiency ratio

RSE inefficiency ratio
nreceived/k

p [%]

q [%]

aver. inefficiency ratio

(c) RSE and a FEC expansion ratio of 1.5.

 0
 20

 40
 60

 80
 100 0

 20
 40

 60
 80

 100

 1

 1.1

 1.2

 1.3

 1.4

 1.5

aver. inefficiency ratio

LDGM Triangle inefficiency ratio
nreceived/k

p [%]

q [%]

aver. inefficiency ratio

(d) LDGM Triangle and a FEC expansion ratio of
1.5.

Figure 9.5: Tx model 1

source packets. Of course the optimal value is 1.0, and the higher this inef ratio, the more packets
are needed in excess to k for decoding, which is not good2.

We considered six different transmission models. Although this is not an exhaustive study, we believe
that these transmission schemes already cover a large set of possibilities and give good insights on the
overall performances.

For each transmission model and FEC code, we study the impacts of the channel by varying the p
and q probabilities in [0; 1] (14 × 14 values are considered for (p; q)). Each point in the resulting 3-D
graphs is the average inef ratio value over 100 simulations. Yet if decoding fails for any of the 100
tests, we do not plot any point. This strict strategy enables us to better highlight the areas where
the decoding probability is not acceptable. The numerical results of our simulation for the most
interesting transmission schemes and codes are reported in [76].

For comparison purposes, we sometimes plot an additional curve, nreceived

k , which corresponds to
the total number of packets received (even after decoding stopped) divided by the number of source
packets. This is the maximum value that the inefficiency ratio can achieve. It also gives an idea on the
number of packets that a receiver may still receive after decoding (nreceived − nnecessary for decoding).
When nreceived

k = 1 the curve corresponds to the limits described in section 9.2.2 and figure 9.4. Any
additional packet loss will necessarily lead decoding to fail.

2With large block LDGM codes, an inefficiency ratio greater than 1.0 is caused by the non MDS nature of these
codes, whereas with RSE, which is an MDS code, this is caused by the coupon collector problem. More information can
be found in [97] and in chapter 10.

63

64
CHAPTER 9. IMPACTS OF PACKET SCHEDULING AND PACKET LOSS DISTRIBUTION ON FEC

PERFORMANCES: OBSERVATIONS AND RECOMMENDATIONS

RSE
LDGM Staircase

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1

 1.1

 1.2

 1.3

 1.4

 1.5

aver. inefficiency ratio

(a) RSE versus LDGM Staircase and a FEC ex-
pansion ratio of 2.5.

LDGM Staircase
LDGM Triangle

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1

 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18
 1.2

aver. inefficiency ratio

(b) LDGM Triangle vs. Staircase and a FEC ex-
pansion ratio of 2.5.

RSE
LDGM Staircase

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1

 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16
 1.18

 1.2

aver. inefficiency ratio

(c) RSE versus LDGM Staircase and a FEC ex-
pansion ratio of 1.5.

LDGM Staircase
LDGM Triangle

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1

 1.02

 1.04

 1.06

 1.08

 1.1

aver. inefficiency ratio

(d) LDGM Triangle vs. Staircase and a FEC ex-
pansion ratio of 1.5.

Figure 9.6: Tx model 2.

9.3.2 Why is FEC Needed?

To motivate the use of FEC, we did a small test. Rather than using FEC to recover losses, a sender
may decide to transmit each packet x times (remember that no back channel is available and therefore
repeat request mechanisms are not an option in the context of this work). In figure 9.9 x = 2 and
packets are sent in a random order. It shows that decoding is only possible with p = 0, and the
average inefficiency ratio is then near 2.0 which means that the receiver waits almost systematically
the end of the transmission to reconstruct the object. For all p > 0 at least one experiment failed,
and therefore no inefficiency ratio is shown, as explained in section 9.3.1. This test highlights the poor
performances when using repetition only instead of FEC for content broadcasting.

9.3.3 Tx model 1: Send Source Packets Sequentially, Then Parity Packets

This scheme consists in sending all source packets sequentially, and then all parity packets, also
sequentially. The results are shown in figure 9.5 (the LDGM Staircase curves are not shown since
results are similar to LDGM Triangle).
We notice a first obvious result: without loss (p = 0) the inefficiency ratio is 1.0 with all codes. Indeed,
all source packets are received and the receiver does not need any of the following parity packets. We’ll
see that other transmission schemes do not necessarily have this good property.
With losses (in burst or not) all codes show a similar behavior. The inefficiency ratio curve is very
close to the nreceived

k curve for nearly all values of p and q. It means that the receiver always needs to

64

9.3. SIMULATION RESULTS WITH SIX TRANSMISSION MODELS 65

RSE
LDGM Staircase

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

aver. inefficiency ratio

(a) RSE versus LDGM Staircase and a FEC ex-
pansion ratio of 2.5.

LDGM Staircase
LDGM Triangle

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1.1

 1.11

 1.12

 1.13

 1.14

 1.15

 1.16

aver. inefficiency ratio

(b) LDGM Triangle vs. Staircase and a FEC ex-
pansion ratio of 2.5.

RSE
LDGM Staircase

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

aver. inefficiency ratio

(c) RSE versus LDGM Staircase and a FEC ex-
pansion ratio of 1.5.

LDGM Staircase
LDGM Triangle

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1

 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08

aver. inefficiency ratio

(d) LDGM Triangle vs. Staircase and a FEC ex-
pansion ratio of 1.5.

Figure 9.7: Tx model 4

 0 20 40 60 80 100

p [%]
 0

 20
 40

 60
 80

 100

q [%]

 1

 1.05

 1.1

 1.15

 1.2

 1.25

aver. inefficiency ratio

(a) RSE and a FEC expansion ratio of 2.5 (NB:
the figure is rotated for better visibility).

 0 20 40 60 80 100

p [%]
 0

 20
 40

 60
 80

 100

q [%]

 1

 1.05

 1.1

 1.15

 1.2

 1.25

aver. inefficiency ratio

(b) RSE and a FEC expansion ratio of 1.5 (NB:
the figure is rotated for better visibility).

Figure 9.8: Tx model 5

wait almost the end of transmission to reconstruct the object. With RSE this is not surprising since

65

66
CHAPTER 9. IMPACTS OF PACKET SCHEDULING AND PACKET LOSS DISTRIBUTION ON FEC

PERFORMANCES: OBSERVATIONS AND RECOMMENDATIONS

 0
 1

 2
 3

 4
 5 0

 20
 40

 60
 80

 100

 1

 1.2

 1.4

 1.6

 1.8

 2

aver. inefficiency ratio

No FEC inefficiency ratio

p [%]

q [%]

aver. inefficiency ratio

Figure 9.9: Performances without FEC but 2 repetitions.

the object is segmented in blocks: if a source packet of the last block is lost, the receiver needs to wait
the end of the transmission, when the associated parity packets will be sent.

With LDGM codes this behavior is more surprising. These large block FEC codes encode the whole
object directly, and parity packets are created using source packets coming from different parts of
the content. However each parity packet depends on the previous one (because of the staircase in
the parity check matrix, also present in LDGM Triangle codes). This dependency negatively impacts
decoding performance when several sequential parity packets get lost.

Finally, RSE covers a smaller area (when z − axis > 0) than LDGM-* codes, which indicates that its
erasure recovery capabilities are more limited. This is especially true for long packet loss bursts (small
q). This is easy to understand: since packets are sent sequentially, and a single long burst results
in the loss of a large number of packets of the same block. Decoding this block becomes difficult,
especially with a small FEC expansion ratio (e.g. 1.5).

For all these reasons this transmission model is definitively bad, which was relatively foreseeable.

9.3.4 Tx model 2: Send Source Packets Sequentially, Then Parity Packets
Randomly

One idea to counteract the bad results of Tx model 1 is to transmit the parity packets in a random
order rather than sequentially. For RSE the advantage is clear: parity packets of the last few blocks
can be transmitted earlier, so the receiver has on average less to wait before receiving parity packets
for any block. This is confirmed in figures 9.6(a) and 9.6(c). The inefficiency ratio is much better
than with Tx model 1 and moreover this ratio is relatively constant.

LDGM Triangle codes exhibit relatively good performances and largely outperform RSE codes (fig-
ures 9.6(b) and 9.6(d)). Yet the LDGM Staircase 3D-curve has a hole around p = 50 and q = 70 (Fig-
ure 9.6(b)), where exactly one test failed. This is not acceptable in practice, and therefore Tx model 2
is not recommended with LDGM Staircase and higher loss ratios. Conversely LDGM Staircase may
be used with small loss ratios where the code yields very good results.

This transmission model confirms that with LDGM-* codes, parity packets should not be sent sequen-
tially but randomly, to prevent the loss of sequences of parity packets. All the following tests will
confirm this observation.

66

9.3. SIMULATION RESULTS WITH SIX TRANSMISSION MODELS 67

9.3.5 Tx model 3: Send Parity Packets Sequentially, Then Source Packets
Randomly

We now consider the case dual to Tx model 2. We first transmit all parity packets sequentially. We
can then transmit the source packets either sequentially or randomly. We only consider the latter
case in this chapter since tests (not included in this work) have shown that sending the source packets
sequentially yields uninteresting results (it makes no difference with LDGM-* codes, and we experience
a worse behavior with RSE).
So called non-systematic codes, are codes that can decode using only parity packets (no source packet).
RSE can be used as a non-systematic code if the number parity packets is high enough (i.e. n−k ≥ k).
This is not the case with LDGM Triangle and Staircase who need at least a small number of data
packets to start decoding. Our tests have shown that with p = 0 the LDGM-* codes need exactly one
source packet to decode the content, and therefore the inefficiency ratio is ≈ 1.5 for a FEC expansion
ratio of 2.5.
With RSE, the receiver needs 29903 packets, that is to say decoding is possible when k packets of the
last block have been received. Therefore the inefficiency ratio is ≈ 1.5 for FEC expansion ratios of
2.5.
Otherwise performances are not that interesting, and that transmission scheme may only be interesting
for some specific loss patterns. Because of that the figures are not included in this chapter. The reader
can look at [76].

9.3.6 Tx model 4: Send Everything Randomly

In this transmission model, source and parity packets are sent in a fully random order.
Results are shown in figure 9.7. RSE offers the worst performances with an inefficiency ratio around
1.25. LDGM Staircase performs better and offers a ratio of 1.15. Finally LDGM Triangle yields the
best results with ratios going from 1.12 to 1.14.
For the RSE and LDGM Staircase codes, the performances are relatively stable, independently of
the packet loss behavior. This is not true with LDGM Triangle codes, that show better results with
smaller pglobal. This observation can generally be made when LDGM Triangle sends it parity packets
randomly: it achieves better inefficiency ratios with smaller pglobal. On the opposite, LDGM Staircase
codes are not sensitive to pglobal in this case.

9.3.7 Tx model 5: Interleaving (RSE only)

Packet interleaving is a commonly used solution with small block FEC codes like RSE to increase
their robustness against packet erasure bursts. The idea is to spread the transmission of one block
over an interval that is longer than the loss burst duration. The maximum distance between two
packet transmissions of the same block is achieved by sending successively one packet of each block,
until reaching the last block, and then continuing with the following packet of each block, and so on.
With LDGM codes this interleaving scheme is not feasible since there is only one block.
Results are shown in figure 9.8. As suspected, results are excellent with RSE, actually the best ones
compared to all other transmission schemes. The packets are optimally aligned using interleaving,
and for all loss patterns this solution give optimal results. This is not a surprise since interleaving has
been intensively used along with RSE codes.

9.3.8 Tx model 6: Send Randomly a Few Source Packets Plus Parity
Packets

In this transmission model we transmit only a few source packets in addition to all parity packets.
More precisely, we first pick randomly 20% source packets and schedule them randomly with all parity
packets. This transmission model requires that the FEC expansion ratio be high enough (otherwise
less than k packets will be received), and we chose 2.5.
The results are shown in figure 9.10. If all codes have constant performances, LDGM Staircase largely
outperform other codes. Note that the fact that LDGM Staircase performs better than Triangle is
rather unusual.

67

68
CHAPTER 9. IMPACTS OF PACKET SCHEDULING AND PACKET LOSS DISTRIBUTION ON FEC

PERFORMANCES: OBSERVATIONS AND RECOMMENDATIONS

RSE
LDGM Triangle

LDGM Staircase

 0
 20

 40
 60

 80
 100

p [%] 0
 20

 40
 60

 80
 100

q [%]
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

aver. inefficiency ratio

Figure 9.10: Tx model 6 with LDGM Triangle, LDGM Staircase and RSE and a FEC expansion ratio
of 2.5.

9.4 Simulation Results With a Reception Model

In this section we directly specify a reception model, without any consideration for the transmission
and loss models that may generate it, i.e. there is no explicit transmission and loss model (no p and
q) in that case. The goal is to better analyze an FEC code performances in a completely controlled
environment.

9.4.1 Rx model 1: Receive a Few Source Packets, Then Parity Packets
Randomly

Section 9.3.8 has shown that sending only a few source packets along with the parity packets may
be interesting. In this reception model, we further study this phenomenon. The difference with
Tx model 6 is that we now guarantee that these source packets arrive and are used for decoding. To
do so the receiver first gets the source packets, and then, randomly, all parity packets.

 1.07

 1.08

 1.09

 1.1

 1.11

 1.12

 1.13

 1.14

 1.15

10^0 10^1 10^2 10^3 10^4

av
er

. i
ne

ffi
ci

en
cy

 ra
tio

nb of received source packets

LDGM Staircase

Figure 9.11: Rx model 1 with LDGM Staircase.

68

9.5. DISCUSSIONS AND RECOMMENDATIONS 69

We only consider LDGM Staircase and FEC expansion ratio of 2.5, since section 9.3.8 has shown that
it yields the best results. We analyze the performance of the FEC codes as a function of the number
of source packets received. Figure 9.11 shows that excellent performances are achieved when around
400 to 1000 source packets received. This is a very small number of packets compared to the object
size (k = 20000 packets). Receiving more (or fewer) packets will degrade performances! To the best
of our knowledge, we never saw such results mentioned in the literature, and we think this promising
(and surprising) result deserves some complementary studies in future work.

9.5 Discussions and Recommendations

9.5.1 Summary of the Results

We now discuss the previous results and draw some recommendations. Regarding FEC codes perfor-
mances:

• RSE: RSE should always be used along with Interleaving (which is not a new result). Yet, even
in that case, RSE shows lower performances than the best LDGM codes, for instance LDGM
Triangle with Tx model 2 or Tx model 4.

• LDGM Triangle and LDGM Staircase: In most cases (with some exceptions though, like with
Tx model 6), LDGM Triangle yields better results. For both codes it makes no difference whether
source packets are sent randomly or sequentially. However sending parity packets sequentially
must to be avoided, since loss bursts will severely degrade performances. It can also be ob-
served that LDGM Triangle is often more sensitive to packet losses, probably because of higher
dependencies between parity packets.

Regarding the transmission models:

• Tx model 1 and Tx model 3 are of little or no interest in all cases.

• Packet interleaving (Tx model 5) is unavoidable with RSE, no matter the loss model.

• The following models using totally or partially random transmissions have good results: send-
ing sequentially source packets then randomly parity packets (Tx model 2), sending every-
thing randomly (Tx model 4), and sending randomly a few source packets plus parity packets
(Tx model 6). More precisely:

– Tx model 2 is the preferred scheme for LDGM Triangle and LDGM Staircase if we want
good results when there are few packet losses. With LDGM Staircase great care has to be
taken of possible decoding failures with higher loss ratios.

– Tx model 4 (along with LDGM Triangle) and Tx model 6 (along with LDGM Staircase)
are the schemes that are the less dependent on the loss distribution. Therefore they are
the preferred solutions when the loss model is unknown, but Tx model 4 will perform better
with very high loss rates.

9.5.2 In Practice

The previous results allow us to select an appropriate transmission scheme for a given use case. If
the channel characteristics are unknown, LDGM Triangle and Tx model 4 are excellent choices. If
on the opposite the channel features (and its loss model) are known, we can compare all the FEC
performances for all transmission schemes around the (p; q) point, and make a choice.
The transmission can further be optimized by adapting nsent, the number of packets actually sent.
Remember that nreceived − nnecessary for decoding is the number of packets the receiver receives after
decoding has finished. Our goal is now to have:

nreceived = nnecessary for decoding + ε (9.2)

69

70
CHAPTER 9. IMPACTS OF PACKET SCHEDULING AND PACKET LOSS DISTRIBUTION ON FEC

PERFORMANCES: OBSERVATIONS AND RECOMMENDATIONS

 1

 1.1

 1.2

 1.3

 1.4

 1.5

tx_mod_5tx_mod_4tx_mod_3tx_mod_2tx_mod_1

in
ef

fi
ci

en
cy

 ra
tio

RSE

LDGM Triangle

LDGM Staircase

(a) FEC expansion ratio = 1.5

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

tx_mod_6tx_mod_5tx_mod_4tx_mod_3tx_mod_2tx_mod_1

in
ef

fi
ci

en
cy

 ra
tio

RSE

LDGM Staircase

LDGM Triangle

(b) FEC expansion ratio = 2.5

Figure 9.12: Example: Inefficiency ratios on the link Amher Massachusetts to Los Angeles.

(nreceived should be a little bit greater since some tolerance is required 3). By doing so, the number
of packets received will be very close to the number of packets that are actually needed by a given
receiver to successfully decode the object. This is achieved by reducing nsent (Equation 9.1), that
is to say by stopping transmissions after nsent packets, without changing the scheduling. The last
n − nsent packets will never been sent.
Note that selecting a smaller FEC expansion ratio to reduce the number of packets sent in front of a
certain loss model, is not always feasible, especially when there are only a small number of predefined
ratios possible (e.g. because the FEC codec has been optimized for some FEC expansion ratios). For
instance, if only 1.5 and 2.5 ratios are possible, with RSE and Tx model 5, a FEC expansion ratio of
2.5 is needed when p = 40%. With 1.5, decoding would fail.
Besides we omit an essential performance metric: encoding and decoding speed. From this point of
view, LDGM codes are an order of magnitude faster than RSE codes, as shown in the next chapter 10.
This can be an essential criteria of choice when broadcasting big objects, for which the encoding and
decoding times may be non negligible.
We now detail how to proceed in two specific use cases.

Homogeneous Receiver(s) and Known Channel

If there is only one receiver, or a set of receivers behind the same channel, the loss model may be
identified and the p and q values determined (e.g. this can be the case when a content is broadcast in
a cooperate network, or in some specific environments). Thanks to the p and q values, we can identify
the best FEC code and transmission model for this environment.
Once they have been chosen, we can adapt nsent. The inefficiency ratio is given by the associated
curve. Then, according to formulas 9.1 and 9.2, the optimal nsent is achieved when:

nsent =
nnecessary for decoding

1 − pglobal
(9.3)

Let’s consider the following example: a 50 MByte object is sent to a single receiver from Amhers
Massachusetts to Los Angeles. [107] traced the loss behavior on this link and obtained p = 0.0109
and q = 0.7915 (pglobal = 0.0135). Figure 9.12 shows the performances of the various FEC code and
transmission models, for the FEC expansion ratios 1.5 and 2.5. We clearly see that Tx model 2 with
LDGM Staircase and a FEC expansion ratio of 1.5 give the best results (inef ratio ≈ 1.011).
We now calculate the optimal nsent (formula 9.3):

nsent =
1.011 ∗ 50MBytes

1 − 0.0135
≈ 51.24MBytes

With 1024 byte packet payloads, it means that the sender may stop transmitting after ≈ 50041 packets.
In order to add some tolerance to this result we can decide to set nsent to 55000 packets. This is
significantly less than the n = 73243 packets that would have been sent otherwise, while preserving
transmission reliability.

3To have an idea on the confidence interval around the average inefficiency ratios for the FEC codes used in this
work please read [97] and chapter 10.

70

9.6. CONCLUSIONS 71

Heterogeneous Receivers and/or Unknown Channel

Imagine now that an object is broadcast over a wireless channel. All receivers observe different packet
loss distributions, depending on many external parameters (e.g. movement, obstacles, distance to the
source).
If the loss pattern of each receiver is known we may proceed as in the previous section, by choosing
the (FEC code; transmission scheme; FEC expansion ratio) tuple that yields the best results for all
receivers.
If the loss pattern of one or several receivers is unknown, which will probably be the general case, we
need a universal scheme that shows the best possible performances in all situations.
Sending everything randomly (Tx model 4) and sending only a few parity packets (Tx model 6) are
the schemes that are the less dependent of the loss pattern, and are therefore the preferred solutions
in this context for LDGM codes. With RSE interleaving should be used, but performances will be
lower.
As before nsent can be adapted. We proceed as before with the main difference that we now have to
look at the borders of the inefficiency ratio curve. The aim is to get nreceived

k as near as possible to
the inefficiency ratio curve. This can be done by choosing some values of p and q that are located in
the border region of the inefficiency ratio curve, evaluate the inefficiency ratio, and then proceed like
in section 9.5.2.

9.6 Conclusions

This chapter investigated the impacts of packet scheduling and packet loss distributions on FEC
performances, for content broadcasting applications. This work should be of great help for FLUTE-
based file broadcasting systems, when there is no backward channel and where transmission reliability
is achieved through the massive use of FEC and complementary techniques (e.g. cyclic transmissions
within a carousel). Since we only consider file delivery systems, the transmission latency has little
importance and large block FEC codes, like LDPC/LDGM codes, are good candidates.
The experiments carried out provide good insights on which (FEC code; FEC expansion ratio; packet
transmission scheduling) tuples yield the best results for a given channel. Non surprisingly, exper-
iments have shown that interleaving should always be used with RSE, no matter the loss pattern
(which is not a new result). Yet LDGM Staircase and Triangle codes usually perform significantly
better than RSE. For environments where the channel (and its packet loss distribution) is unknown,
which is probably the general case, LDGM codes require a random transmission scheme: usually
either (LDGM Triangle; Tx model 4) or (LDGM Staircase; Tx model 6). For environments where
the loss distribution is known, our work helps to identify the best (FEC code; transmission scheme;
FEC expansion ratio) tuple. Our results are therefore of utmost practical importance for optimizing
broadcasting systems.
In the remainder of this thesis we will assume that the loss model is unknown and therefore almost all
our experiments and simulation use a randomized transmission scheme. This chapter has shown that
such transmission schemes yields the most constant results, independently of the loss pattern. This
is important, since we are sure that our experiments and simulations produce valid results, applicable
to a large set of use cases.
Future works will naturally consist in studying new transmission schemes and new FEC codes. More
elaborated channel models may also prove to be useful for specific target environments. Other per-
formance metrics will also be added, like the maximum memory requirements needed in each case.

71

72
CHAPTER 9. IMPACTS OF PACKET SCHEDULING AND PACKET LOSS DISTRIBUTION ON FEC

PERFORMANCES: OBSERVATIONS AND RECOMMENDATIONS

72

Chapter 10

Performance Evaluation and
Comparision of Four Large Block
FEC Codes plus a Reed-Solomon
Small Block FEC Codec

Contents

10.1 Introduction . 73

10.2 Performance Evaluation of the Four LDPC/LDGM FEC Codecs plus
an RSE codec . 74

10.2.1 Parameters and Performance Metrics Considered 74

10.2.2 Experimental Setup . 75

10.2.3 Decoding Inefficiency Experiments . 76

10.2.4 Encoding/Decoding Time Experiments . 80

10.2.5 Memory Requirements . 82

10.3 Discussion and Related Works . 85

10.3.1 Which Code to Use, and When? . 85

10.3.2 Comparison With Other Fixed-Rate Codes 86

10.3.3 Comparison with Rate-Less Codes . 86

10.4 Conclusions . 87

10.1 Introduction

The previous chapters presented the LDPC codes, its implementation and recommendation on its
best usage. A detailed performance comparision and analysis of four Large Block FEC Codes LDGM,
LDPC, LDGM Staircase and LDGM Triangle plus a Reed-Solomon Small Block FEC, based on the
results of the previous chapters is presented now. We assume the usage of a randomized transmission,
that, as we have seen in the previous chapter, yields the most stable results independently of the use
case.
In this chapter we focus on:

• the global decoding inefficiency, caused either by the LDPC/LDGM FEC code or by the need
to split the object into several blocks with RSE;

• the encoding and decoding speeds, LDGM, LDPC and RSE compared, which also determines
the CPU load required by each of these codes, and hence their ability to be used either on high
performance links or on lightweight hosts;

73

74
CHAPTER 10. PERFORMANCE EVALUATION AND COMPARISION OF FOUR LARGE BLOCK FEC CODES PLUS A

REED-SOLOMON SMALL BLOCK FEC CODEC

• and the memory requirements at both the encoder and decoder.

From these performance results, we identify the situations where each code operates the best, if any,
and discuss some of their fundamental requirements and limits.

Note that memory requirements and encoding and decoding speeds have already been presented for
LDGM Triangle and LDPC Staircase in chapter 8. In this chapter we focus on a comparision study
with other FEC codes and therefore reuse the results of LDGM Triangle and LDGM Staircase.

A direct effect of patents on FEC codes is that, to the best of our knowledge, no public implementation
of any Digital Fountain’s codes exist, that could have been used for our performance evaluations. We
therefore only consider the raw figures provided in [15, 88] without any possibility to explore some
of the performance metrics or operational conditions that we believe are important but lack in these
works.

The remainder of this chapter is structured as follows: we present the performance evaluation in
section 10.2, starting with the decoding inefficiency, then the encoding and decoding times, and
finally the memory requirements. Section 10.3 discusses the results obtained and compares them with
related work. Finally section 10.4 concludes this chapter.

10.2 Performance Evaluation of the Four LDPC/LDGM FEC
Codecs plus an RSE codec

10.2.1 Parameters and Performance Metrics Considered

The following parameters are considered during tests:

• FEC expansion ratio, fec ratio, and code rate: the fec ratio is the n/k ratio. The higher the
ratio, the more parity packets are created. This FEC expansion ratio is also called “stretch
factor” in [15]. This ratio is the inverse of the “code rate”, defined as k/n and which is widely
used in the coding community. FEC codes capable of producing an infinite number of parity
packets have a rate equal to zero and are therefore called “rate-less”. In the present work we
will use the fec ratio terminology.

• object size: in this work packets are always 1024 bytes long. We therefore express the object
size in packets rather than in bytes. With LDPC/LDGM codes, the object being encoded as a
single block, the object size in packets is equivalent to the k parameter of the FEC code. With
RSE, the object is split into several blocks, each of size k packets.

We measured the following performance metrics:

• global decoding inefficiency ratio, inef ratio: decoding inefficiency can be caused by:

– the fact the FEC code is non MDS (e.g. LDPC/LDGM codes), so more than k packets
must be received for the decoding a block of size k to complete (this is also known as the
“overhead factor” in [88]), or

– the need to split big objects into smaller blocks (e.g. RSE).

In both cases inef ratio ∗ number of source packets packets, with inef ratio ≥ 1, must be
received in order to decode (all) the block(s). Said differently:

inef ratio =
number of pkts requiredfor decoding

number of source pkts

This inef ratio, experimentally evaluated, is one of the key performance metrics we consider.

• decoding inefficiency ratio confidence intervals: considering the average inef ratio only is not
sufficient since large values are sometimes observed. We therefore measure various confidence
intervals for values larger than the average, and the same for values smaller than the average.

74

10.2. PERFORMANCE EVALUATION OF THE FOUR LDPC/LDGM FEC CODECS PLUS AN RSE CODEC 75

• encoding/decoding times and bandwidths: As in chapter 8, we measure two types encoding of
bandwidths: a global encoding bandwidth measured as:

global encoding bw =
n ∗ pkt size (in bits)

time

and a partial encoding bandwidth which only takes into account the number of parity packets
produced:

partial encoding bw =
(n − k) ∗ pkt size (in bits)

time

The first measure indicates whether the codec can support a given transmission rate when using
a systematic FEC code (the default, both source and parity packets are sent), whereas the second
one refers to what is actually produced by the FEC codec.

No such distinction exists at the receiver, and the bandwidth is always measured as:

number of pkts requiredfor decoding ∗ pkt size (in bits)

time

Since this value depends on the global decoding inefficiency ratio which varies slightly at each
test, we only consider average values.

• maximum memory requirements: we measure the maximum memory requirements, both during
encoding and decoding, caused by the need to store source packets (and often parity packets),
but also all the codec’s internal buffers or tables, and in particular the parity check matrix with
LDGM/LDPC codes.

10.2.2 Experimental Setup

Testing Application

The following tests use both our LDPC/LDGM codec and a widely used RSE codec [91]. We use
the same testing application as in chapter 8. Given an object and a fec ratio, the application first
performs FEC encoding: to k source packets of a block, the codec produces n−k = (fec ratio−1)∗k
parity packets. Both source and parity packets are 1024 byte long. Once encoding has been performed,
the source and parity packets (of all blocks with RSE) are transmitted in a fully random order. The
receiving application waits until it has received enough packets to decode the block (or all blocks with
RSE). He then stops reception and reports the number of packets received and the global inef ratio
measured.

Several remarks can be made regarding this methodology:

• There is no explicit loss simulation model (e.g. random or per burst) because random transmis-
sions are not affected by the loss model. Performance results could be slightly different if other
transmission models were used, for instance by sending all k packets in sequence except a few of
them (assumed erased) and then parity packets. As we have shown in the previous chapter this
methodology has a major drawback: it introduces additional parameters like the loss model and
the loss ratio(s). On the contrary our approach avoids these problems, is more universal, and is
in line with the way these codes can be used for instance in ALC sessions [32, 95, 96].

• The same application and environment is used for testing all codes, including RSE. It makes
comparisons trustworthy.

• No transmissions on the network are performed, and the same application performs both en-
coding and decoding. This feature enables us to better control the way packets are “sent”,
simplifies tests, reduces the overall test durations and enables accurate encoding/decoding time
measurements.

75

76
CHAPTER 10. PERFORMANCE EVALUATION AND COMPARISION OF FOUR LARGE BLOCK FEC CODES PLUS A

REED-SOLOMON SMALL BLOCK FEC CODEC

Determining Each Block Size with RSE

Because of the intrinsic limitations of a RSE codec working on GF (8), a large object has to be frag-
mented into several blocks compatible with the codec limitations: k ≤ n ≤ max n = 256. Determining
the block structure of an object requires two things. The first key parameter is the maximum source
block size possible, max k. Two strategies exist for that:

• for a given FEC expansion ratio, we compute: max k = max n/fec ratio = 256/fec ratio.
Doing so leads to an optimal use of the RSE codec, since we are sure to always operate with
blocks of maximum size.

• or we set max k to a fixed value and produce the required n−max k parity packets, as long as
n ≤ max n (e.g. we can have a FEC ratio of at most 5 if max k = 51). This scheme does not
enable an optimal use of the RSE codec, since larger blocks could often be possible, but a fixed,
smaller max k is sometimes chosen because of performance issues (see table 10.1).

The second key feature is the blocking algorithm (see section 3.2.2). We chose the one specified in
the FLUTE standard [82] which is known to be optimal since this scheme avoids situations where the
final block is much smaller than all previous maximum size blocks, a situation largely sub-optimal
(an extreme case is a last block of size one packet only). Here all blocks are of the same size,
A large ≤ max k, or one packet less than A large.
Taking care of these two aspects is of high importance for reliably comparing the performances of the
RSE and LDPC/LDGM codes, and we consider both ways of determining max k in our tests.

Tests Carried Out

We conducted two kinds of tests:

• Fixed FEC expansion ratio and different object sizes: thefec ratio is set to 1.5, while the object
size varies from 100 packets (100 KBytes) up to 50000 packets (≈50 MBytes) 1.

• Fixed object size and different FEC expansion ratios: the object size is set to 20000 packets
(≈20 MBytes), while the fec ratio varies from 1.25 up to 5.0 (or, equivalently, the code rate
varies from 0.8 down to 0.2).

During these experiments we measure the minimum number of packets required for decoding, and
the encoding/decoding times. Experiments are repeated 1000 times with LDGM, LDGM Staircase,
LDGM Triangle and RSE. We limit the number of LDPC experiments to 100 only due to performance
issues (see section 10.2.4). The average value, and the 99% confidence interval for the values lower or
higher than this average, are reported. We also discuss the absolute minimum/maximum values and
higher confidence intervals (99.9% and 99.99%) in section 10.2.3.
Note that our transmission scheme leads to a maximum decoding inefficiency equal to n/k =fec ratio
since the number of packets required for decoding is at most equal to the number of packets trans-
mitted, n =fec ratio ∗ k.

10.2.3 Decoding Inefficiency Experiments

Fixed FEC ratio and different object sizes

We first compare the results using a fixed FEC ratio. Results are given in figure 10.1. We see that
LDGM Triangle obtains the best results, with an inefficiency ratio that quickly stabilizes around 1.055.
The 99% confidence interval is quite small, [1.051; 1.059], with an object of size 50, 000 packets.
Like LDGM Triangle, the inefficiency ratios of LDGM Staircase and LDPC decrease and quickly
stabilize when the object size increases. At the same time the confidence interval gets smaller. LDGM
Staircase is a bit less efficient than its triangle variant, with an inefficiency ratio around 1.068 and a
99% confidence interval of [1.064; 1.071] with an object of size 50, 000 packets. LDPC’s inefficiency
ratio is a bit higher, around 1.076, with a 99% confidence interval of [1.073; 1.079].

1Note that unlike [88] we do not consider small objects, since small block FEC codes like RSE are in that case
preferable to large block codes.

76

10.2. PERFORMANCE EVALUATION OF THE FOUR LDPC/LDGM FEC CODECS PLUS AN RSE CODEC 77

LDGM behaves differently than the other three codes: its inefficiency ratio is much worse and increases
slowly with the object size (a result already observed in our previous work [94]), the confidence intervals
are larger, and the overall performances depend on the left degree parameter. 7 is the optimal degree
in this case [94], and the LDGM inefficiency ratio is around 1.155 with an object of size 50, 000 packets.
But changing the FEC expansion ratio also changes this optimal left degree. No such dependency
exists with the other large block FEC codes where a left degree of 3 always yields the best results,
which is in line with the results mentioned in the literature for LDPC.
Finally figure 10.1 (e) and (f) shows that RSE performances depend on the object size: the larger the
object, the lower the efficiency, which is not a surprise (section 2.1.2). This has to be compared with
the constant decoding inefficiency observed with LDGM Staircase/Triangle codecs2. With an object
of size 50, 000 packets, RSE has a decoding inefficiency around 1.122 with fixed n, and 1.220 with
fixed k, which is far behind LDGM Triangle. Besides the confidence intervals are much higher with
RSE. On the opposite, with very small objects, RSE remains the best choice, essentially because it’s
an MDS code.

Fixed object size and different FEC ratios

The behavior of the four large block FEC codes is much more differentiated if we vary the FEC
expansion ratio. This is visible in figure 10.2. First we notice that the LDPC curve stops at a FEC
ratio of 3.0. This is due to a pure practical reason and shows a major limitation of the LDPC codec
used: LDPC has a very high memory consumption, and above a FEC ratio of 3.0 the required memory
exceeds the 2GB RAM of our machine. Moreover we see that even for FEC ratios smaller than 3.0,
LDPC performances are not quite interesting, even if the confidence interval is small.
LDGM with a left degree equal to 10 has also poor performances, with an inefficiency ratio of 3.045
when the FEC expansion ratio is 5.0.
The LDGM Staircase and Triangle codes yield the most interesting results. LDGM Triangle is the
code that performs the best for FEC ratios smaller than 2.5. At 2.5, LDGM Triangle has an average
inefficiency ratio of 1.115 and a confidence interval going from 1.103 to 1.127. LDGM Staircase has
an inefficiency ratio of 1.148 and a 99% confidence interval of [1.138; 1.159] for the same FEC ratio.
For FEC ratios greater than 2.5, the performance of LDGM Triangle decreases suddenly. On the
opposite LDGM Staircase performs well for FEC ratios larger than 2.5. LDGM Staircase reaches a
local minimum at a FEC ratio of 2.75 (inefficiency ratio of 1.138) and behaves very well up to a
FEC ratio of 5.0 (inefficiency ratio of 1.325, compared to 1.849 with LDGM Triangle), with a small
confidence interval, [1.314; 1.338].
Finally this kind of tests is more favorable to RSE than the previous ones with a fixed FEC expansion
ratio, essentially because RSE is an MDS code (indeed, if there is a single block, producing more
parity packets does not lead to performance degradation with an MDS code).
Yet, with the fixed n strategy (figure 10.2 (e)), the block size decreases if the FEC ratio increases
(let’s recall that max k = 256/fec ratio), there are more and more blocks and the global inefficiency
ratio also increases. The inefficiency ratio is 1.241 with a FEC ratio of 2.5, and 1.512 with a FEC
ratio of 5.0, which is worse than LDGM Staircase in both cases, and higher than LDGM Triangle in
the first case. With a fixed k (figure 10.2 (f)) we observe that the global inefficiency ratio is worse
with small FEC ratios, but about the same than with the fixed n strategy for higher FEC ratios (this
is normal since the max k value is about the same iffec ratio = 5.0). We also see that the confidence
interval is rather large with RSE and increases with the FEC ratio, whereas no such behavior exists
with other codes (except LDGM).
To conclude, RSE is not the best choice which remains LDGM Staircase for high FEC ratio values,
and LDGM Triangle for small FEC ratio values.

Variations in the Results

A result not highlighted on figures 10.1 and 10.2, is that the absolute maximum values (worst global
inefficiency ratio) can largely exceed the average, even if this is extremely rare (less than 1%, since
we generated these graphs with a confidence interval of 99%). These peaks appear with all three

2At least as long as the maximum block size of such codes is not achieved, which essentially depends on the available
memory size. Above this threshold, several blocks must be used, each of them being independently encoded.

77

78
CHAPTER 10. PERFORMANCE EVALUATION AND COMPARISION OF FOUR LARGE BLOCK FEC CODES PLUS A

REED-SOLOMON SMALL BLOCK FEC CODEC

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
in

 9
9%

 c
on

f./
av

er
/m

ax
 9

9%
 c

on
f.

in
ef

fic
ie

nc
y

ra
tio

k (in packets)

left_degree=3
left_degree=7

(a) Inefficiency ratio of LDGM

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
in

 9
9%

 c
on

f./
av

er
/m

ax
 9

9%
 c

on
f.

in
ef

fic
ie

nc
y

ra
tio

k (in packets)

(b) Inefficiency ratio of LDGM Staircase

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
in

 9
9%

 c
on

f./
av

er
/m

ax
 9

9%
 c

on
f.

in
ef

fic
ie

nc
y

ra
tio

k (in packets)

(c) Inefficiency ratio of LDGM Triangle

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
in

 9
9%

 c
on

f./
av

er
/m

ax
 9

9%
 c

on
f.

in
ef

fic
ie

nc
y

ra
tio

k (in packets)

(d) Inefficiency ratio of LDPC

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
in

 9
9%

 c
on

f./
av

er
/m

ax
 9

9%
 c

on
f.

in
ef

fic
ie

nc
y

ra
tio

k (in packets)

(e) Inefficiency ratio of RSE with fixed n(=256).

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
in

 9
9%

 c
on

f./
av

er
/m

ax
 9

9%
 c

on
f.

in
ef

fic
ie

nc
y

ra
tio

k (in packets)

(f) Inefficiency ratio of RSE with fixed k(=51).

Figure 10.1: Global inefficiency ratio of LDPC/LDGM/RSE codes as a function of the object size,
with FEC ratio = 1.5.

LDGM codecs, but their number and importance decreases with the block size. We did not notice
this behavior with LDPC though, but this can be due to the fact we only did 100 tests, not 1000.
No such behavior happen for the absolute minimum values (best inefficiency ratio), unfortunately.
In order to quantify this behavior more precisely, we carried out other experiments with the LDGM
Staircase and Triangle codes, with a fixed object size of 20, 000 packets and a FEC expansion ratio of

78

10.2. PERFORMANCE EVALUATION OF THE FOUR LDPC/LDGM FEC CODECS PLUS AN RSE CODEC 79

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 1.5 2 2.5 3 3.5 4 4.5 5

m
in

 9
9%

co
nf

./a
ve

r/m
ax

 9
9%

 c
on

f.
in

ef
fic

ie
nc

y
ra

tio

fec_ratio

block_size=20000 leftdeg=3
block_size=20000 leftdeg=7

block_size=20000 leftdeg=10

(a) Inefficiency ratio of LDGM

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1 1.5 2 2.5 3 3.5 4 4.5 5

m
in

 9
9%

co
nf

./a
ve

r/m
ax

 9
9%

 c
on

f.
in

ef
fic

ie
nc

y
ra

tio

fec_ratio

(b) Inefficiency ratio of LDGM Staircase

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 1 1.5 2 2.5 3 3.5 4 4.5 5

m
in

 9
9%

co
nf

./a
ve

r/m
ax

 9
9%

 c
on

f.
in

ef
fic

ie
nc

y
ra

tio

fec_ratio

(c) Inefficiency ratio of LDGM Triangle

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1 1.5 2 2.5 3 3.5 4 4.5 5

m
in

 9
9%

co
nf

./a
ve

r/m
ax

 9
9%

 c
on

f.
in

ef
fic

ie
nc

y
ra

tio

fec_ratio

(d) Inefficiency ratio of LDPC

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

m
in

 9
9%

co
nf

./a
ve

r/m
ax

 9
9%

 c
on

f.
in

ef
fic

ie
nc

y
ra

tio

fec_ratio

(e) Inefficiency ratio of RSE with fixed n(=256).

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

m
in

 9
9%

co
nf

./a
ve

r/m
ax

 9
9%

 c
on

f.
in

ef
fic

ie
nc

y
ra

tio

fec_ratio

(f) Inefficiency ratio of RSE with fixed k(=51).

Figure 10.2: Global inefficiency ratio of LDPC/LDGM/RSE codes as a function of the FEC ratio,
with object size = 20000 packets.

1.5, repeating the tests 100, 000 times. Results are shown in figure 10.4.

We can see that even with a confidence interval of 99.9% we are quite close to the mean. Yet, by
increasing the confidence to 99.99%, the upper confidence interval bound starts to become important
(1.187 for LDGM Triangle). The absolute maximum is 1.405 for LDGM Triangle and 1.348 for LDGM
Staircase. In spite of small differences, LDGM Staircase and LDGM Triangle show the same global

79

80
CHAPTER 10. PERFORMANCE EVALUATION AND COMPARISION OF FOUR LARGE BLOCK FEC CODES PLUS A

REED-SOLOMON SMALL BLOCK FEC CODEC

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1 1.5 2 2.5 3

m
in

 9
9%

co
nf

./a
ve

r/m
ax

 9
9%

 c
on

f.
in

ef
fic

ie
nc

y
ra

tio

fec_ratio

LDGM Staircase
LDGM Triangle

Figure 10.3: Global inefficiency ratio of LDGM Staircase and LDGM Triangle codes as a function of
the FEC ratio (closeup).

behavior.
We cannot give an explanation for these peaks yet. This will be considered in future works.

10.2.4 Encoding/Decoding Time Experiments

We now evaluate the encoding/decoding times and the associated bandwidths of all codes. Note that
the experiments carried out here use the optimized algorithms presented in chapter 8.

Encoding/Decoding Times with a Fixed Object Size and Fixed FEC Ratio

As already pointed out, the encoding times for LDPC are very high. For instance the encoding of a
20, 000 packet object with a FEC ratio of 1.5 requires 281 seconds on a Pentium IV 3.06 GHz machine
(figure 10.5). Note that our implementation is absolutely not optimized for LDPC encoding, and
major improvements will probably be observed by using one of the optimizations suggested in the
literature. But in all cases, the performances will remain behind that of the various LDGM codes,
since these latter enable an immediate encoding, which will never be possible with LDPC.
The decoding time is also very high (175 seconds) because our LDPC codec requires that the G
generator matrix be produced at the receiver too for some internal technical reason3. This limitation
could be removed in the future, and decoding would then be similar to that observed with all LDGM
codes, since the same algorithm is used in all cases. Producing graph 10.1 (d) took more than a week
on a Pentium IV 3.06 GHz with 2GB RAM, whereas tests were repeated only 100 times (compared
to 1000 times with LDGM codes). The resulting encoding bandwidth (Table 10.1) is low, less than
1Mbps.
In comparison all LDGM codes are very fast (e.g. producing graphs 10.1 (a), (b) and (c) took only
one night). There are differences shown in figure 10.5, essentially caused by the density of the H parity
check matrix, which determines the number of XOR sums required to produce each parity packet. For
instance, with LDGM Staircase, a parity packet is the sum of only right degreeLDGM Staircase − 1 =
1 + (3 ∗ k)/(n − k) packets with LDGM Staircase, whereas it is the sum of right degreeLDGM − 1 =
(7 ∗ k)/(n − k) packets with LDGM. In all cases, the resulting encoding speeds are suitable for
transmissions over high speed networks.
Decoding is a bit longer (cf. figure 10.6) since more manipulations are required (like searching all
constraint equations where a given packet takes part and updating the value of the partial sum).

3Matrix columns are permuted by the encoder in order to produce the G matrix, and this permutation must be
reproduced at the decoder, which is only possible if G is produced.

80

10.2. PERFORMANCE EVALUATION OF THE FOUR LDPC/LDGM FEC CODECS PLUS AN RSE CODEC 81

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

Staircase Triangle

in
ef

fic
ie

nc
y

ra
tio

absolute max and 99.99% confidence interval
mean

99.9% confidence interval

(a) average/max values and 99.99%/99.9% confi-
dence intervals

 1.045

 1.05

 1.055

 1.06

 1.065

 1.07

 1.075

 1.08

Staircase Triangle

in
ef

fic
ie

nc
y

ra
tio

min
mean

median
99.9% confidence interval

99% confidence interval

(b) average/median/min values and 99.9%/99%
confidence intervals (close-up of previous figure)

Figure 10.4: Variations of inefficiency ratios with LDGM Staircase/Triangle, with object size = 20000
packets and FEC ratio = 1.5.

However the resulting speeds are also sufficient for high speed network transmissions as show in
table 10.1.
Figure 10.5 and 10.6 show that the decoding and especially encoding times for the two RSE variants
are significantly slower: LDGM Staircase is about 29.81 times faster during encoding and 13.72 times
faster during decoding than RSE/fixed n = 256, and respectively 7.44 and 2.96 times faster than
RSE/fixed k = 51 (table 10.1). This may become a major issue when working with constrained
devices (e.g. PDA), where battery and CPU power is limited.

 0

 0.5

 1

 1.5

 2

 2.5

LDGM Staircase Triangle

en
co

di
ng

 ti
m

e
(s

ec
)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

LDPC

en
co

di
ng

 ti
m

e
(s

ec
)

 0

 10

 20

 30

 40

 50

 60

RSE n=256 RSE k=51

en
co

di
ng

 ti
m

e
(s

ec
)

Sun UltraSPARC−IIi 480MHz 256MB RAM
Pentium 4 Xeon 3.06GHz 2GB RAM
Pentium 4 Mobile 1.8GHz 256MB RAM

Pentium III 1GHz 512MB RAM

Figure 10.5: Average initialization plus encoding times for all codes, with object size = 20000 packets
and FEC ratio = 1.5.

Encoding/Decoding Times with Higher FEC Ratios

We now analyze the decoding and encoding times as a function of the FEC expansion ratio, for a
fixed object size of 20, 000 packets (figure 10.7).
The encoding times (figure 10.7 (a) and (c)) yield no surprising results. LDGM Staircase remains the
fastest codec even with high FEC ratios. The curves remain linear with LDGM Staircase and LDGM
Triangle, and the encoding speeds remain acceptable.
Compared to LDGM Staircase, RSE remains quite slow. It is worth noting that RSE/fixed k has

81

82
CHAPTER 10. PERFORMANCE EVALUATION AND COMPARISION OF FOUR LARGE BLOCK FEC CODES PLUS A

REED-SOLOMON SMALL BLOCK FEC CODEC

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

LDGM Staircase Triangle

de
co

di
ng

 ti
m

e
(s

ec
)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

LDPC

de
co

di
ng

 ti
m

e
(s

ec
)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

RSE n=256 RSE k=51

de
co

di
ng

 ti
m

e
(s

ec
)

Sun UltraSPARC−IIi 480MHz 256MB RAM
Pentium 4 Xeon 3.06GHz 2GB RAM
Pentium 4 Mobile 1.8GHz 256MB RAM

Pentium III 1GHz 512MB RAM

Figure 10.6: Average initialization plus decoding times for all codes, with object size = 20000 packets
and FEC ratio = 1.5.

Code Encoding, produced FEC Encoding, produced data + FEC Decoding
LDGM (left deg. 7) 264.024 Mbps 792.080 Mbps 432.320 Mbps
LDGM Staircase 734.998 Mbps 2,204.990 Mbps 816.505 Mbps
LDGM Triangle 443.813 Mbps 1,331.440 Mbps 434.866 Mbps
LDPC 0.288 Mbps 0.856 Mbps 0.982 Mbps
RSE (n=256) 21.471 Mbps 64.412 Mbps 52.255 Mbps
RSE (k=51) 86.00 Mbps 257.99 Mbps 241.97 Mbps

Table 10.1: Average encoding/decoding speeds on a Pentium 4 Xeon 3.06GHz 2GB RAM, with object
size = 20000 packets and FEC ratio = 1.5.

a linear encoding time curve as the object size increases, unlike common belief. Some results like
[15] that show a quadratic encoding time increase, assume that the whole object is encoded as a
single block, which requires operating on GF(16) for instance, which is known to yield prohibitive
performances, and in no case correspond to the way an RSE codec is used in most applications.
Finally, the LDPC performances (figure 10.7 (c)) turn out to be catastrophic with higher FEC ratios.
At the decoder (figure 10.7 (b), (d)), the results are as expected for LDGM Staircase, Triangle and
LDPC. LDGM Staircase and Triangle show comparable performances: they are very fast, with a
slight advantage for LDGM staircase, and decoding time increases linearly. LDPC show about the
same behavior at the decoder than at the encoder because of the limitation already mentioned in our
implementation.
The surprise comes from RSE with a fixed n: decoding time remains reasonable, and even decreases
after a maximum at a FEC ratio of 2.0. RSE even becomes faster than LDGM triangle for FEC ratios
above ≈ 4.5. The explanation comes from the fact that the block size k of the RSE code is calculated
from the maximum value of n divided by the FEC ratio. This means that n decreases with increasing
FEC ratio. The number of block increases in the same time, but the time gained having small blocks
is more important than the time lost having a higher number of blocks. We also see that with a fixed
k decoding times increases less rapidly than with LDGM triangle. At a FEC ratio of ≈ 3.3 they have
the same decoding time.

10.2.5 Memory Requirements

We now analyze the maximum memory requirements for the different codecs, both from the encoder
and decoder applications points of view. We further distinguish:

• the memory storage of the H matrix (for all LDPC/LDGM codes), plus G in case of LDPC.

82

10.2. PERFORMANCE EVALUATION OF THE FOUR LDPC/LDGM FEC CODECS PLUS AN RSE CODEC 83

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 1.5 2 2.5 3 3.5 4 4.5 5

en
co

di
ng

 ti
m

e
(s

ec
)

fec_ratio

LDGM staircase
LDGM triangle

RSE with fixed n=256
RSE with fixed k=51

(a) LDGM Staircase/Triangle and RSE encoding
times

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4 4.5 5

de
co

di
ng

 ti
m

e
(s

ec
)

fec_ratio

LDGM staircase
LDGM triangle

RSE with fixed n=256
RSE with fixed k=51

(b) LDGM Staircase/Triangle and RSE decoding
times

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 1.5 2 2.5 3 3.5 4 4.5 5

en
co

di
ng

 ti
m

e
(s

ec
)

fec_ratio

LDPC

(c) LDPC encoding times

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 1.5 2 2.5 3 3.5 4 4.5 5

de
co

di
ng

 ti
m

e
(s

ec
)

fec_ratio

LDPC

(d) LDPC decoding times

Figure 10.7: Average encoding/decoding times as a function of the FEC expansion ratio on a Pentium
4 Xeon 3.06GHz 2GB RAM, with a fixed object size = 20000 packets.

• all the remaining memory requirements, essentially for the source and parity packets (except in
optimized versions, see below), the n − k constraint nodes for a decoder (with LDPC/LDGM
codes), and also the various buffers or tables required by the codec.

We also consider optimized versions, from a memory requirement point of view, of the encoding or
decoding applications:

• an optimized encoding application produces a parity packet on the fly, uses it immediately (e.g.
by sending it), and then frees the associated packet buffer. This is possible with RSE and
LDGM/LDGM Staircase codes, but not with LDGM Triangle where dependencies exist with
previously created parity packets.

• in an optimized RSE decoding application, each time a block has been decoded and consumed by
the application, the buffers containing the associated packets are deallocated. This optimization
assumes that the application can manage each block independently of others, for instance by
storing their content on a disk in case of a file transfer [95, 96].

Figures 10.8 (a) and (b) show the memory requirements at the encoder, not considering the H/G
matrices. We see that all non optimized applications (and codecs) have the same requirements,
essentially dominated by the amount of data required to store the source and parity packets. The
two RSE variants, with fixed n and with fixed k, also have the same memory requirements and are
therefore represented with only one curve.

83

84
CHAPTER 10. PERFORMANCE EVALUATION AND COMPARISION OF FOUR LARGE BLOCK FEC CODES PLUS A

REED-SOLOMON SMALL BLOCK FEC CODEC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

block size

all LDGM/LDPC codes
optimized LDGM staircase

RSE
optimized RSE

(a) All codes, with a fixed FEC ratio = 1.5.

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

fec ratio

all LDGM/LDPC codes
optimized LDGM staircase

RSE
optimized RSE

(b) All codes, with a fixed object size = 20000
packets.

Figure 10.8: Memory consumption (without H/G matrices) during encoding.

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

block size

LDGM staircase
LDGM triangle

LDPC
RSE

optimized RSE

(a) All codes, with a fixed FEC ratio = 1.5.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

fec ratio

LDGM staircase
LDGM triangle

LDPC
RSE

optimized RSE

(b) All codes, with a fixed object size = 20000
packets.

Figure 10.9: Memory consumption (without H/G matrices) during decoding.

The situation is quite different when considering decoding (figures 10.9 (a) and (b)). Here RSE (both
with fixed n and fixed k) offers significant memory savings, especially with large FEC ratios, even
with non optimized applications. The reason is the following: increasing the FEC ratio with RSE
does not lead the decoder to store more packets, since a maximum of k = A large (or A large − 1)
packets are required for each block. The two LDGM-* codes uses the optimized decoding algorithm
of chapter 8, where we already explained how when and how source and parity packets are stored in
memory at the decoder.

The memory consumption for the H (plus G with LDPC) matrices is shown in figures 10.10 (a) to (d).
We see that LDPC needs a prohibitive amount of memory for matrix G: 171.12 MB with a block size
of 20, 000 packets and a FEC expansion ratio of 1.5. This must be compared to the 2.5 MB required
for LDGM Staircase and 4.6 MB for LDGM Triangle for the same parameters. The requirements
are higher when the FEC expansion ratio increases, especially with LDGM Triangle which requires
28.5 MB with a FEC ratio of 5.0, whereas an LDGM Staircase “only” requires 9.9 MB in that case.
Therefore the memory requirements for storing the H matrix, which largely reflect the density of
the matrix, is not a major issue with LDGM codes for small to medium FEC expansion ratios, and
remains low in front of the memory needed to store packets during encoding.

84

10.3. DISCUSSION AND RELATED WORKS 85

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

block size

LDGM staircase
LDGM triangle

(a) LDGM Staircase/Triangle codes, with a fixed
FEC ratio = 1.5.

 0

 5

 10

 15

 20

 25

 30

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

fec ratio

LDGM staircase
LDGM triangle

(b) LDGM Staircase/Triangle codes, with a fixed
object size = 20000 packets.

 0

 200

 400

 600

 800

 1000

 1200

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

block size

LDPC

(c) LDPC with a fixed FEC ratio = 1.5.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

fec ratio

LDPC

(d) LDPC with a fixed object size = 20000 packets

Figure 10.10: Memory consumption for the H matrix (plus G for LDPC).

10.3 Discussion and Related Works

10.3.1 Which Code to Use, and When?

The previous performance results clearly define the main field of applications of each code, which,
except for LDPC and LDGM, are rather complementary:

• Regular LDPC showed prohibitive memory requirements and encoding speed, even if the situation
is much better at the decoder4. High FEC ratios (> 3.0) could not be supported even on very
powerful machines. The measured inefficiency ratio is comparable (but worse) to those obtained
with LDGM Staircase/Triangle. We therefore do not recommend the use LDPC which offers no
advantage at all.

• LDGM is rather limited. It is a fast code but the inefficiency ratios obtained are not satisfying,
especially with higher FEC ratios. We therefore do not recommend its use.

• LDGM Staircase is the best code for FEC expansion ratios > 2.5 where it outperforms all others
codes. In all cases it offers a high encoding/decoding speed (it’s the fastest code we tested),
along with a low and stable (an important feature) global inefficiency inefficiency ratio.

4We ignore the limitation mentioned in section 10.2.4 since this can probably be solved –even if we did not try– in
an optimized implementation.

85

86
CHAPTER 10. PERFORMANCE EVALUATION AND COMPARISION OF FOUR LARGE BLOCK FEC CODES PLUS A

REED-SOLOMON SMALL BLOCK FEC CODEC

• LDGM Triangle is the best code for FEC expansion ratios ≤ 2.5. In this case it outperforms
LDGM Staircase in terms of inefficiency ratio (here also fairly stable) while keeping a good (but
lower) encoding/decoding speed. But performances quickly decrease with a FEC ratio > 2.5, in
which case the Staircase variant is preferable.

• RSE remains an excellent choice for small objects, or when the maximum memory requirements
at the decoding side must be kept low, especially with large FEC expansion ratios. But its
major limitations are (1) its high encoding (and often decoding) time (and CPU load) compared
to LDGM Staircase/Triangle codes, an issue with lightweight hosts, and (2) a global inefficiency
ratio much lower than those achieved with LDGM Staircase/Triangle codes.

With all four large block FEC codes, decoding is always fast, but less than encoding, because of more
complex operations involved that require to cross the H matrix and store intermediate sum values in
check nodes. The performance level is nevertheless compatible with high transmission rates, in the
order of several hundreds of Mbps.

10.3.2 Comparison With Other Fixed-Rate Codes

We now give some elements of comparison with several fixed rate codes. [88] gives recent performance
evaluations of various codes derived from LDPC: Tornado-like codes, LDPC codes and IRA codes.
In each case the authors only consider patented irregular graphs. Because many different degree
distributions are possible, the authors systematically test all distributions mentioned in the literature
(80 such distributions are considered), and only report the best results. A comparison with our results
highlights that:

• using irregular distributions is for sure effective, on condition the right distribution is used.
For instance, with a 20, 000 object and an FEC expansion ratio of 1.5, the authors achieve an
approximate 1.02 decoding inefficiency with all codes, whereas our best code only achieves 1.055.

• the results obtained with irregular distributions still improve when the object size increases,
falling below 1.01 with IRA codes and objects of size 100, 000 packets, while in our case an
equilibrium is achieved around 1.055.

In [15], using the Tornado Z codec, the authors mention a decoding inefficiency on the average of
1.054 with a FEC expansion ratio of 2, which is better (but not so far) than our 1.087 value. Yet this
is achieved with a more complex code, that uses several cascaded bipartite graphs and a final Cauchy
codec that protects the last level. Our LDGM codes are in comparison rather simple.
Since no public implementation of either the codes used in [88] or Tornado Z is available, only a limited
comparison is possible. Therefore we can not compare such critical aspects as the encoding/decoding
speeds, the maximum memory requirements, and the operational complexity (e.g. from [88] it is not
sure that the same degree distribution always achieves the best results when varying the object size
and FEC expansion ratio, which could create practical problems). If our results are lower than those
achieved with the above patented codes, (1) they are not ridiculous though, and (2) the overall codec
complexity is significantly lower.

10.3.3 Comparison with Rate-Less Codes

Fixed rate large block codes are known to have limitations, in particular when compared to rate-less
codes[62]. This is essentially caused by the necessity to create and store on both ends (coder and
decoder) the same parity check matrix. More specifically:

• n is predefined: The source must define beforehand the maximum number of parity packets that
can be generated. There is no way to increase this number afterward, except by generating a
new parity check matrix H2 and starting all over again. But the global efficiency in that case
remains limited since H and H2 are totally unrelated. On the opposite a rate-less code avoids
this problem and produces dynamically new parity packets as the need arises.

This is in our opinion the main limitation of the LDGM Staircase/Triangle codes for some
applications, but not all of them (e.g. this is probably not an issue for some distributed storage
schemes where the number of replica is decided beforehand).

86

10.4. CONCLUSIONS 87

• Parity check matrix storage requirements: the LDGM Staircase/Triangle codes require that both
ends store the same H matrix of size (n − k) × n. On the opposite rate-less codes make no use
of a parity check matrix. For instance, with the Online code, the packet index itself is a seed
that defines the set of source packets it is the sum (see chapter 2).

Yet our experiments have shown that the amount of memory required to store the H matrix
with the LDGM Staircase code (and to a lesser extent the LDGM Triangle code) is relatively low
compared the amount of memory required to store source packets, even if it regularly increases
with the FEC ratio. This small size is made possible by the sparse property of H which enables
the use of efficient data structures (Chapter 8). We therefore do not consider this point to be a
practical issue with small to medium FEC expansion ratios, that is to say the situations where
LDGM Staircase/Triangle codes perform the best.

• parity packet storage at the encoder: LDPC and LDGM Triangle codes require that the encoder
stores all the parity packets produced since they may be used for producing further parity pack-
ets. Yet no such requirement exists with LDGM Staircase (except for the previously produced
parity packet), which is an advantage when producing parity packets on-the-fly is sufficient. This
situation is in that case similar to that of rate-less codes where parity packets are exclusively
the sum of source packets.

• n, or equivalently the FEC expansion ratio, are limited by practical considerations: the parity
packet storage requirements (and to a lesser extent the H matrix storage requirements) limit
the the FEC expansion ratio. Besides, the inefficiency ratio also increases when the FEC ratio
increases. There is therefore a incentive to use non over-estimated FEC expansion ratios.

In spite of these limitations, LDGM Staircase/Triangle codes are good codes with many potential
applications. These codes are highly recommended when there is no need to produce high numbers of
parity packets, while working on large objects (as in distributed storage applications, section 2.1.2).
LDPC codes (in a broad sense, which includes LDGM codes) have also recently been adopted in
the DVB-S2 standard, as a replacement of RSE, which is a sign of their potential. Otherwise, in
environments where the FEC expansion ratio needs to be high, rate-less codes are clearly preferable.
Such codes will be considered in future works.

10.4 Conclusions

In this chapter we provide an extensive performance analysis of four large block FEC codes, derived
from LDPC, under various situations, and compare them to a widely used Reed-Solomon small block
FEC codec.
We try to provide an exhaustive survey of the performances of these codes to fully understand their
benefits and limitations, in order to use them in the most appropriate way.
An interesting result is the fact that a regular LDPC code has no interest at all, since it provides no
erasure protection benefit compared to the LDGM Staircase/Triangle codes while having prohibitive
encoding times (even if our codec could be improved from this point of view) and memory requirements.
Our results, in terms of decoding inefficiency, are not ridiculous when compared to previously published
large block FEC performances, using patented codes, even if they remain lower.
Our conclusions is that the LDGM Staircase/Triangle codes have a high potential and can be advan-
tageously used in many situations. Future works will extend the comparison with rate-less codes (e.g.
the patent-free Online code [62]) and on new MDS codes like [40] that are capable to work on block
sizes significantly higher than with traditional MDS codes.

87

88
CHAPTER 10. PERFORMANCE EVALUATION AND COMPARISION OF FOUR LARGE BLOCK FEC CODES PLUS A

REED-SOLOMON SMALL BLOCK FEC CODEC

88

Chapter 11

Analysis of FEC Codes for Partially
Reliable Media Broadcasting
Schemes

Contents

11.1 Introduction . 89

11.2 Partial Reliability: the Solution Space . 90

11.2.1 Self Sufficiency versus Interdependency . 90

11.2.2 Object Definition . 90

11.2.3 Frame to Object Mapping . 90

11.2.4 Benefits of an Iterative Decoding System: An intuition 91

11.3 One-to-One Frame to Object Mapping 91

11.3.1 Experimental Conditions . 91

11.3.2 Performance With a Single Small Object 91

11.3.3 Performance With a Large Number of Small Objects 93

11.4 Frame Aggregation in a Single Meta Object 93

11.4.1 Performance Without Inter-Frame Dependencies 93

11.4.2 Performance With Inter-Frame Dependencies 94

11.5 Conclusions . 94

11.1 Introduction

This chapter analyzes a FEC-based partial reliability service in the context of a media (i.e. audio and
video) delivery system like DVB or DAB (Digital Video/Audio Broadcasting) or based on the reliable
multicast approaches seen in the context of this work (i.e. especially FLUTE/ALC).
As we have seen before, in order to be efficient, large scale content delivery protocols largely rely on
the use of a Forward Error Correction scheme. However, the FEC decoding process may not end
successfully if not enough packets have been received by the receiver (i.e. less than k or a little bit
more). This is the case when reception is interrupted (e.g. a carousel-based transmission may be
active only for a limited duration as it is the case in push mode) or is affected by a too important
amount of losses (e.g. if a vehicle enters an environment with many obstacles that only enables an
erratic connectivity). A partial reliability service should maximize the amount of original content
reconstructed at a receiver, even if FEC decoding did not finish. The target of this work is therefore
to analyze the inherent capabilities of each FEC code to maximize this partial decoding, and to find
the best operational conditions to achieve this goal.
The work of the present chapter is also presented in [72].

89

90 CHAPTER 11. FEC FOR PARTIALLY RELIABLE MEDIA BROADCASTING SCHEMES

The chapter is structured as follows: Section 11.2 presents the issues with a partial reliability service
for RSE, LDGM Staircase and LDGM Triangle. Sections 11.3 and 11.4 introduce experimental results
in specific scenarios. Finally we conclude this chapter.

11.2 Partial Reliability: the Solution Space

We now explain the various possibilities when designing a partial reliability service for a media delivery
system.

11.2.1 Self Sufficiency versus Interdependency

A video content is composed of I, P and B video frames, and an audio content is composed of
samples also called frames. All audio frames and the I video frames are self-sufficient entities, and the
transmission scheme must absolutely preserve this self sufficiency property1.
But P video frames depend on the previous I and P frames, and B video frames depend on the
previous/next I and P frames. So in a partially reliable transmission scheme, there is an incentive
to reconstruct the self sufficient frames first, before reconstructing the entire content. It leads to the
idea of Unequal Error Protection (UEP) that will be considered in future works.

11.2.2 Object Definition

We call object an entity defined by the application and submitted to the transport layer as a whole.
This exactly corresponds to the terminology used within ALC [45]. This definition is rather generic
and therefore objects may largely differ, depending on the application: it can be an entire file, an audio
track, or just a frame. If a large block LDGM-* FEC codec is used in the transport layer, the entire
object, even if large, will probably be encoded as a whole (single block). But with an RSE codec, a
large object has to be segmented into several blocks. As we’ll see later on, this major difference will
largely influence the efficiency of the partial reliability service.

11.2.3 Frame to Object Mapping

Several solutions exist to apply the notion of object to a media content, and control how FEC encoding
is performed:

1. Map each frame to a separate object and encode them independently: the application
can exploit a frame as soon as the corresponding object has been decoded (and all the other
frames it may depend on with P and B video frames). Even if the frame size varies, depending
on the bit rate and frame type, this size remains small, from several hundreds to a few thousands
of bytes. Therefore there is no object segmentation, even with RSE. But LDGM-* codes have
poor performance when operating on small block sizes, unlike RSE which benefits from its MDS
feature [97]. So we can expect bad results with LDGM codes here. Additionally, since there is
a high number of objects, all codes will suffer from the Coupon Collector Problem. So we can
expect all codes to have bad performance.

2. Map the entire content to a single “meta object” and encode it: encoding is now
performed over the whole meta-object for LDGM-*, and over blocks of maximum size for RSE.
So the Coupon Collector Problem is totally eliminated with LDGM-* codes, and largely reduced
with RSE (there are fewer blocks). Besides we know that LDGM-* codes perform very well with
large objects [97], so their use seems rather promising.

Since a receiver must be able to reconstruct individual frames of a partially received meta-object,
the underlying structure of the meta-object must be communicated. This can be achieved within
the transport protocol by means of a dedicated signaling header extension (e.g. we added a
private ALC header extension that contains a description of the meta-object and that is sent
periodically).

1This is the same requirement as when defining an RTP framing scheme with some multimedia content.

90

11.3. ONE-TO-ONE FRAME TO OBJECT MAPPING 91

...

fec_1 fec_2 fec_l

obj_1 obj_lobj_2
Per object/frame FEC encoding Per meta−object FEC encoding

FEC encoding

...

meta−object
FEC encoding

fr_1 fr_2 fr_l

FEC of meta obj

fr_1 fr_2 fr_l

Figure 11.1: Per object versus per meta-object FEC encoding.

Finally, operating on meta-objects means that FEC encoding is done over several seconds or
minutes of the media content, or even over the entire media file. A significant latency is thus
introduced in the transmission model, which is an issue in case of real-time streaming, but is
not a problem with the test cases considered in this chapter, or in our SVSoA proposal (see
chapter 14).

11.2.4 Benefits of an Iterative Decoding System: An intuition

Intuitively, an iterative decoding algorithm should have a major advantage over MDS codes in partially
reliable sessions. The reason is that decoding is done progressively and can be stopped at any time.
A receiver can therefore exploit the subset of source packets received plus the subset of source packets
already decoded. On the opposite, decoding with RSE is only possible once exactly k distinct packets
have been received. If the session stops before this threshold, then no decoding is possible, and only
the subset of source packets in the packets received can be exploited.
This fundamental difference is intrinsic to the FEC codec. However the intuitive conclusion that
LDGM codes are more suited to a partial reliability service is not always true, as we will show later
on.

11.3 One-to-One Frame to Object Mapping

11.3.1 Experimental Conditions

All the experiments use our LDPC/LDGM codec [77] (chapter 8) and a popular RSE codec [91]. We
designed a basic application on top of these two codecs, derived from the perf_tool of our FEC
codec. Given one or more objects, the application first performs FEC encoding: to k source packets
of a block, the codec produces k parity packets, all packets being 512 bytes long. Then all the source
and parity packets (of all blocks) are transmitted in a fully random manner, indefinitely, by choosing
one packet out of all the possibilities (to mimic a random carousel transmission)2. The receiving
application waits until it has received enough packets to decode the block (or all blocks with RSE)
and stops.
As can be noticed, there is no explicit loss model or loss rate, because random transmissions are
not affected by them (similar to the transmission schemes introduced in chapter 9). This approach
simulates lossy transmissions with a random carousel like scheme, and is in line with transmissions
like data broadcasting to cars [25], DVB IP Datacast [81], or a video streaming approach like [73].

11.3.2 Performance With a Single Small Object

This first experiment illustrates the decoding behavior of each code. We consider a small object that
fits into one RSE block (i.e. 128 source packets and 128 parity packets), and test all three codes using
exactly the same packet reception sequence. Results are shown in figure 11.2 (a).

2Note that this is different from the transmission model used in chapter 9, since here we simulate a continuous (i.e.
indefinitely long) carousel transmission.

91

92 CHAPTER 11. FEC FOR PARTIALLY RELIABLE MEDIA BROADCASTING SCHEMES

Since RSE is an MDS code, it decodes the object first, after receiving 166 packets (this value is ≥ 128
because of duplicated packet reception made possible by the continuous random carousel transmission
scheme). But RSE does not offer any partial reliability service in this scenario, and the source
packets available earlier are those that have been received. The LDGM-* codes need more packets
to decode the entire object. Yet source packets start to be decoded sooner, after 63 receptions for
LDGM Staircase and 116 for LDGM Triangle. We also see that the Triangle version finishes the entire
decoding sooner, but starts partial decoding after the Staircase version (because of extra relationships
in the H matrix between all packets).

We did the same with a smaller object of size 10 packets, closer to an actual audio or video frame
size. Figure 11.2 (b) shows the same general behavior as previously, at a smaller scale.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

nb
 o

f r
ec

ei
ve

d/
de

co
de

d
da

ta
 p

ac
ke

ts

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

(a) Object composed of 128 packets

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14

nb
 o

f r
ec

ei
ve

d/
de

co
de

d
da

ta
 p

ac
ke

ts

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

(b) Object composed of 10 packets

Figure 11.2: Number of decoded packets with a single small object.

92

11.4. FRAME AGGREGATION IN A SINGLE META OBJECT 93

11.3.3 Performance With a Large Number of Small Objects

Here we transmit 600 objects of size 10 packets each, for a total content of about 3 MBytes, or 6000
packets of size 512 bytes. Results are shown in figure 11.3.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000

nb
 o

f r
ec

ei
ve

d/
de

co
de

d
da

ta
 p

ac
ke

ts

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

Figure 11.3: Number of decoded packets with a per object encoding and a large number of small
objects.

As expected, the general performance behavior is rather bad with all codes, especially with LDGM
codes: RSE needs 17651 packets, LDGM Staircase 41677, and LDGM Triangle 50971. These poor
results, caused by the coupon collector problem and a sub optimal use of LDGM codes, are not
acceptable.

11.4 Frame Aggregation in a Single Meta Object

11.4.1 Performance Without Inter-Frame Dependencies

Single Packet Frames:

We first analyze each code in case of a meta object of size 6000 packets, assuming each frame forms
a single packet. Results are reported in figure 11.4. We see LDGM Triangle finishes decoding the
first (after 9403 packets received), followed by LDGM Staircase (after 9792 packets received) and then
RSE (after 10282 packets received).
But partial reliability requires that decoding starts as soon as possible. LDGM Staircase starts
decoding some data packets the first, after 798 received packets, but it is clearly visible only after
≈ 3000 packets. At this point LDGM Staircase offers the best partial reliability service. RSE begins
to decode the first block after 6634 received packets, and then quickly crosses LDGM Staircase after
≈ 7800 packets. At this point RSE offers the best partial reliability service. LDGM Triangle performs
quite poorly since decoding is essentially done at the end. No partial reliability service is offered by
this code, even if it exhibits the best decoding performance of all three codes!

Frames That Span Several Packets:

We now consider a more realistic situation where frames span several packets. We analyzed the
number of decoded frames as a function of the number of received packets. To simplify, we assumed
that all the frames have the same size. If the object size is 1 packet, then the previous results of
figure 11.4 can be used. In figure 11.5 we reported the results for object sizes of 2,3,4 and 10 packets
respectively. We clearly see that RSE offers in all cases the best partial reliability service. The RSE
performance even becomes better compared to the LDGM codes as the frame size increases.

93

94 CHAPTER 11. FEC FOR PARTIALLY RELIABLE MEDIA BROADCASTING SCHEMES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000 12000

nb
 o

f r
ec

ei
ve

d/
de

co
de

d
da

ta
 p

ac
ke

ts

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

Figure 11.4: Number of decoded packets of a meta-object.

To better understand it, we also analyzed the time at which a given packet is decoded. Results are
shown in figures 11.6. We clearly see that with RSE, packets are decoded per block, making a group
of adjacent packets available to the application at the time of the decoding. On the opposite, both
LDGM codes make the packets available in a completely flat and random manner. This is an issue if
a frame spans several packets, since one of them may not be available. Therefore RSE offers a better
partial reliability service than LDGM codes when frames span several packets.

11.4.2 Performance With Inter-Frame Dependencies

Finally we did similar tests but with an IPPPPI sequence of video frames, where I and P frames are
respectively 10 and 5 packets long. Remind that a P frame depends on the availability of the previous
I (and P if any) frame(s) of the current group of frames. The whole sequence is composed of 1000
frames, among which 200 are I frames. This test is therefore extremely close to an actual video media.
Results, shown in figure 11.7, are rather close to that of figure 11.5. Here also RSE is clearly the best
solution to offer a partial reliability service.

11.5 Conclusions

In this chapter we have analyzed the ability of three FEC codes – LDGM Triangle, LDGM Staircase
and RSE – to offer a partial reliability service in case of media broadcasting schemes, that largely differ
from more classical streaming approaches. We also introduced a meta-object encoding that largely
improves the global efficiency of the broadcasting system. This analysis is quite innovative and we
are not aware of any similar work. Traditionally only the global inefficiency ratio, which indicates
how many packets must be received for decoding to complete, was considered. Our most important
result is that LDGM-* codes, in spite of their iterative decoding approach and high efficiency, are not
appropriate when partial reliability is desired. In contrast, RSE codes can more efficiently cope with
this requirement. This is rather counter-intuitive and only detailed experimentations and analyzes led
us to come to this conclusion.
Future work can further improve the scheme proposed. For instance it is a strong incentive to align
frames with blocks, in order to avoid frames that straddle two blocks. A more detailed discussion and
analysis on the impacts of the block size used is also a future research item.
The proposed partial reliability scheme will be directly used in our Scalable Video Streaming over ALC
(SVSoA) proposal [73] presented in chapter 14 and also conducted us to propose the file aggregation
mechanism presented in chapter 13.

94

11.5. CONCLUSIONS 95

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000 12000

nb
 o

f r
ec

ei
ve

d/
de

co
de

d
ob

je
ct

s

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

(a) Frame composed of 2 packets

 0

 500

 1000

 1500

 2000

 0 2000 4000 6000 8000 10000 12000
nb

 o
f r

ec
ei

ve
d/

de
co

de
d

ob
je

ct
s

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

(b) Frame composed of 3 packets

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2000 4000 6000 8000 10000 12000

nb
 o

f r
ec

ei
ve

d/
de

co
de

d
ob

je
ct

s

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

(c) Frame composed of 4 packets

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000

nb
 o

f r
ec

ei
ve

d/
de

co
de

d
ob

je
ct

s

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

(d) Frame composed of 10 packets

Figure 11.5: Number of decoded frames of a meta-object.

95

96 CHAPTER 11. FEC FOR PARTIALLY RELIABLE MEDIA BROADCASTING SCHEMES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

re
ce

iv
ed

/d
ec

od
ed

 d
at

a
pa

ck
et

packets received

(a) RSE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

re
ce

iv
ed

/d
ec

od
ed

 d
at

a
pa

ck
et

packets received

(b) LDGM Staircase

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

re
ce

iv
ed

/d
ec

od
ed

 d
at

a
pa

ck
et

packets received

(c) LDGM Triangle

Figure 11.6: Repartition of the received/decoded source packets of a meta-object as a function of
time.

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000 12000

nb
 o

f d
is

pl
ay

ab
le

 v
id

eo
 fr

am
es

nb of received packets

LDGM Staircase
LDGM Triangle

RSE

Figure 11.7: Number of displayable video frames of a meta-object with an IPPPPI sequence.

96

Chapter 12

Analysis of the Startup Behavior of
Multilayered Multicast Congestion
Control Protocols

Contents

12.1 Introduction and Related Works . 97

12.1.1 Motivations . 97

12.1.2 Layered Congestion Control Protocols . 98

12.2 Analysis of the Startup Phase . 99

12.2.1 Startup Behavior with RLC . 99

12.2.2 Startup Behavior with FLID-SL . 100

12.2.3 Startup Behavior with WEBRC . 101

12.3 Experimental Results . 102

12.3.1 RLC . 102

12.3.2 FLID-SL . 102

12.4 How to Use these Results in Practice? Lessons Learned 103

12.4.1 Comparison When Ignoring the Target Rate Limitation 103

12.4.2 Comparison When Considering the Target Rate Limitation 103

12.4.3 Transmission Rate Granularity Considerations 105

12.4.4 Reception Inefficiency Factors . 105

12.5 Conclusions . 105

12.1 Introduction and Related Works

12.1.1 Motivations

Using a reliable multicast content delivery system for the distribution of popular content to a large
set of clients has shown to be very effective. The FLUTE file delivery application (RFC 3926[82]) and
the underlying massively scalable reliable multicast protocol ALC (RFC 3450 [45]) are increasingly
used to this purpose, and they are included in the technical specifications of the 3GPP MBMS service
[4] and of the DVB-H IP Datacast service [26]. Thanks to them, a content can easily be delivered
to several millions of clients, through a carousel: the content is continuously broadcast or multicast,
and interested clients can join the session, download the content and leave the session whenever they
want.

97

98 CHAPTER 12. STARTUP BEHAVIOR OF MULTILAYERED MULTICAST CONGESTION CONTROL PROTOCOLS

So far in this thesis, we focused on the FEC building block used by such approaches. As we have seen
the performances are largely impacted by the FEC code used, and we evaluated the performances of
several codes in this context.

A major question remains: how long does it take for a client to successfully download the content?
Several parameters have to be taken into account: the content size, the available network bandwidth,
the Forward Error Correction code features, and the packet loss model. When used in a routed
network (like the Internet), a layered congestion control protocol is mandatory. In that case, another
parameter is of importance: the congestion control protocol behavior during the startup phase, from
the moment a client joins an ALC session and the moment an equilibrium is reached. Indeed, because
of this congestion control protocol, on session startup, the client’s reception rate progressively increases
until it reaches a “fair share” of the available bandwidth between the source and the client (the exact
fairness definition depends on the protocol used and is out of the scope of the present work). The
time required to reach the steady rate is not so small as one would expect and has a major impact on
reception performance. This is especially true when a client only downloads a small to medium size
content, since the time required to reach the target rate will dominate the global download time.

The same considerations can be made for the SVSoA video streaming technique on top of ALC (see
chapter 14), where we show the importance of the congestion control protocol used.

In this work we investigate the impacts of the startup behavior of three layered multicast congestion
control protocols on reception performance. We first introduce a mathematical model and then analyze
the amount of data actually received. Several experiments then confirm the models that we have
elaborated. We assume in particular that receivers do not experience any loss, i.e. have not yet
reached their target rate.

12.1.2 Layered Congestion Control Protocols

With ALC in a routed network, each receiver adapts dynamically how many layers to receive, de-
pending on its access network and on competing traffic. This receiver-driven decision is taken by an
associated TCP-friendly layered congestion control protocol (e.g. RLC [101], FLID-SL/DL [14] [59],
or WEBRC [49] [48]). Choosing one of them can be dictated by the desire to have a standardized solu-
tion (use WEBRC then, since it is an RFC), or a simple, easy to implement protocol (use either RLC
or FLID-SL then, even if they both have known limitations). However the client behavior will also
largely differ according to this choice. For instance transmissions will take place either at some fixed
predefined bit-rate on each layer (RLC, FLID-SL), or using a cyclic, dynamically changing bit-rate
(FLID-DL, WEBRC).

The IGMP leave latency (delay between when the last receiver of a LAN leaves a multicast group and
its effect) is of importance. This latency is usually 3 seconds (there are up to three instances of the
IGMP polling message, with a typical 1 second polling delay each), but can be higher depending on
the IGMP implementation. In addition to this delay, the multicast routing protocol itself can add its
own pruning delay. The IGMP leave latency is known to affect the behavior of a statically layered
protocols like RLC or FLID-SL. The only exceptions are the FLID-DL and WEBRC protocols that
counteract this latency thanks to a dynamic layering approach. Note that some router constructors
offer the possibility to completely remove the IGMP latency with IGMPv3, by enforcing the multicast
router to remember who are the group members, and in such a case using RLC or FLID-SL raises no
problem. Yet this remains an optional optimization, limited to IGMPv3 networks.

We now give a short overview of some multilayered congestion control protocols.

Receiver-Driven Layered Congestion Control (RLC)

In Receiver-Driven Layered Congestion Control (RLC) [101] transmissions take place at constant bit-
rate on each layer. A receiver experiencing no loss can join higher layers at so called ”increase signals”
(indicated in the packet header). This mechanism helps to coordinate the behavior of receivers behind
bottleneck links. The distribution of these signals and the transmission rate of each layer are specified
in section 12.2.1. If the receiver experiences losses he drops the highest layer. Then a ”deaf period”
(of duration at least equal to the IGMP latency) is observed, during which a receiver ignores losses
and increase signals. Its goal is to let the network prune the congested branch and then settle. After

98

12.2. ANALYSIS OF THE STARTUP PHASE 99

that the receiver can again drop layers if there are further losses or on the opposite add layers at the
next increase signals if there is no loss anymore.

Fair Layered Increase/Decrease with Static Layering (FLID-SL)

Fair Layered Increase/Decrease with Static Layering (FLID-SL) [14], like RLC, relies on constant rate
transmissions on each layer. The server also places signals into packets that indicate receivers when to
join layers. However in FLID-SL these signal are based on a probabilistic function that tells whether
to place or not an increase signal into a packet. The details of this function and the transmission rate
of each layer are specified in section 12.2.2. Another difference is that the probing mechanism of RLC
(used to test if joining a new layer is likely to be feasible or not) is no longer used in FLID-SL.

Fair Layered Increase/Decrease with Dynamic Layering (FLID-DL)

Fair Layered Increase/Decrease with Dynamic Layering (FLID-DL) is a dynamic layered version of
FLID-SL where the bit rate of each session layer is changing dynamically This is done in order to
avoid the problems of the IGMP leave latency that static layered protocols like RLC or FLID-SL have.
The idea is to continuously decrease transmission rate of each layer until reaching a point where no
data is transmitted on this layer. After some time the layer restarts transmitting at maximum rate
and again continuously decrease transmission rate. The receiver has to continuously join new layers in
order to keep his reception rate constant. A receiver does not has to leave a layer in order to decrease
reception rate, but just does nothing. Therefore the effect of the IGMP leave latency is bypassed.

However FLID-DL needs a prohibitive amount of overhead traffic, in particular because of the high
number of IGMP messages. Therefore we focus on WEBRC, a protocol that also uses a dynamic
layered approach (like FLID-DL) without its drawbacks.

Wave and Equation Based Rate Control (WEBRC)

Like FLID-DL, Wave and Equation Based Rate Control (WEBRC) [49] [48] uses the idea of dynami-
cally changing transmission rates of each layer. In WEBRC the transmission rate of each layer evolves
in waves. It is periodic, with an exponentially decreasing rate during the active period followed by a
quiescent period. This feature reduces the number of layers needed (compared to FLID-DL), which
also reduces the IGMP overhead, while solving the IGMP leave latency problem.

Unlike the congestion control protocols we have seen so far, that all rely on the losses observed by the
receiver, WEBRC is equation-based. The available bandwidth is calculated by each receiver using an
equation that imitates TCP behavior, and each receiver then adapts its reception rate accordingly.

The work of the present chapter is also presented in [74].

The remainder of this chapter is organized as follows: In section 12.2 we give the mathematical
model of the startup phase of each congestion control protocol. Section 12.3 gives an account of some
experimental results. In section 12.4 we explain the impacts and how to use our results in practice.
Finally section 12.5 concludes this chapter.

12.2 Analysis of the Startup Phase

12.2.1 Startup Behavior with RLC

In RLC [101] a receiver experiencing no loss can add a new layer upon the reception of a dedicated
“increase signal”. These signals are exponentially distributed over the layers, using a factor of two,
making the opportunities of adding higher layers less frequent than with lower layers. The minimum
delay, tl, after which layer l can be added, if no loss occurs, is: tl = (2l − 1)t0, where t0 is a fixed
period (we use t0 = 0.25 seconds in our experiments). Then each “increase signal” of layer l is
repeated with a period: Tl = 2lt0. With RLC, the transmission rate of each layer is twice the rate of
the previous layer. Therefore, when dropping a layer after a packet loss, this scheme performs a TCP-
like multiplicative decrease. But adding a layer also doubles the reception rate. Since the increase
signals are exponentially distributed over the layers, this is not compliant with the TCP slow-start

99

100CHAPTER 12. STARTUP BEHAVIOR OF MULTILAYERED MULTICAST CONGESTION CONTROL PROTOCOLS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40 45

R
ec

ei
ve

d
da

ta
 (k

B
yt

es
)

time (seconds)

received data

Figure 12.1: Amount of data received in the startup phase of RLC.

algorithm which follows an initial exponential behavior (TCP doubles the transmission rate each RTT
in the initial startup phase).
The transmission rate of layer l ∈ {0; alay nb − 1}, where alay nb is the total number of layers in an
ALC session, follows a doubling scheme:

bl =

{

b0 if l = 0

2l−1b0 if l ≥ 1

Therefore, the amount of data received through a single ALC session in the startup phase, at time
t = i ∗ t0, multiple of the RLC’s time slot period, is:

Rx(t = i ∗ t0) =

data received on base layer

+
∑

l∈{active upper layers}

data received on layer l

= b0

i−1
∑

k=0

t0 +
∑

l: l>0 and 2l<i+1

2l−1
b0

i−1
∑

k=2l−1

t0

= b0t0



i +
∑

0<l<log2(i+1)

2l−1(i + 1 − 2l)





If we only consider the moments when a new layer is added, i.e. if ∃ L : i+1 = 2L, then this equation
can be simplified:

Rx(t = i ∗ t0) =
i(i + 2)b0t0

3
(12.1)

Figure 12.1 shows the Rx(i) curve as a function of time, when b0 = 11.9 kbps and t0 = 0.25 sec.

12.2.2 Startup Behavior with FLID-SL

We now consider the FLID-SL (Static Layer) congestion control protocol [14] which shares many
similarities with RLC. The bl can follow a multiplicative scheme:

bl =

{

b0 if l = 0

(Cl
− Cl−1)b0 if l ≥ 1

where C > 1 is the multiplicative factor. [14] and [59] recommend to use C = 1.3.

100

12.2. ANALYSIS OF THE STARTUP PHASE 101

The main difference between FLID-SL and RLC concerns the period Tl between two “increase signals”
on layer l. Tl depends on a probabilistic function pl which indicates the probability to increase the
subscription layer in each time slot. On average Tl is given by:

Tl =
TSD

pl

where TSD is the Time Slot Duration. [14] proposes a heuristic for pl to mimic TCP. [59] suggests a
simpler scheme that we consider here:

pl = min

(

1.0,
20 ∗ pkt sz ∗ TSD

Cl ∗ b0

)

We have to consider the two parts of this equation: for small l where 20∗pkt sz∗TSD
Clb0

> 1.0, and for l

where 20∗pkt sz∗TSD
Clb0

≤ 1.0.

Let lmin be such that: 20∗pkt sz∗TSD
Clmin b0

= 1.0.

Tl =

{

TSD for all l ≤ lmin
TSD

pl
= Cl b0

20∗pkt sz
for all l > lmin

We can now divide the formula for the amount of received data into two parts.
For all layers l where l ≤ lmin:

Rx1(t) = t ∗ b0 +

lmin
∑

l=0

((t − l ∗ TSD) ∗ (Cl
− C

l−1) ∗ b0)

For all layers l = x + 1 where l > lmin:

Rx2(t) =

lmax
∑

x=lmin

((t − lmin ∗ TSD −

x
∑

y=lmin

(Ty)) ∗ (Cx+1
− C

x) ∗ b0)

with lmax such that: t − lmin ∗ TSD −∑lmax

x=lmin
(Tx) = 0.

The overall amount of received data is then:

Rx(t) = Rx1(t) + Rx2(t) (12.2)

Figure 12.2 shows the Rx(t) curve as a function of time, when C = 1.3, b0 = 11.90 kbps, and
pkt sz = 576 bytes. We use rounded values in our calculations for lmin and lmax.
We see that FLID-SL and RLC give similar results, even if FLID-SL, with the default parameters
suggested in the literature, leads to a slower reception rate progression. We do not consider the
FLID-DL (Dynamic Layering) scheme [14] here, since WEBRC replaces FLID-DL favorably.

12.2.3 Startup Behavior with WEBRC

WEBRC behaves differently than RLC or FLID-SL and is capable of adding layers much faster during
the startup phase. Indeed the reception speed is multiplied by a factor of C = 4

3 each epoch (by
default 0.5 second), creating an exponential increase (TCP does the same since the transmission rate
is doubled each RTT during the first stage of the slow-start algorithm), and then stabilizes around a
“reasonably ” fair share of the available bandwidth, determined through a TCP throughput equation.
More precisely, every epoch, the reception rate is increased by a factor C. The amount of data received
through a single ALC session in the startup phase, at time t = i ∗ epoch, multiple of the epoch time
slot period, is:

Rx(t = i ∗ epoch) =

i−1
∑

l=0

C
l
∗ b0 ∗ epoch

101

102CHAPTER 12. STARTUP BEHAVIOR OF MULTILAYERED MULTICAST CONGESTION CONTROL PROTOCOLS

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45

R
ec

ei
ve

d
da

ta
 (k

B
yt

es
)

time (seconds)

received data

Figure 12.2: Amount of data received in the startup phase of FLID-SL.

By resolving the sum we obtain:

Rx(t = i ∗ epoch) =
(Ci

− 1)b0 ∗ epoch

C − 1
(12.3)

This equation highlights the exponential increase of the reception rate (in (4
3)i instead of i2 with

RLC).

12.3 Experimental Results

We have implemented RLC and FLID-SL within our MCLv3 library (see chapter 13) that implements
the FLUTE/ALC family of protocols [93]. Since WEBRC is not implemented yet, experiments are
restricted to RLC and FLID-SL.

12.3.1 RLC

The first experiments concern RLC. We use the same parameters as in section 12.2.1: b0 = 11.9 kbps,
and t0 = 0.25 sec. Figure 12.3(a) shows the global reception rate at the receiver. We can clearly see
the moments when new layers are added (e.g. ≈ 9sec, ≈ 17sec, ≈ 33sec). This is slightly shifted to
the right compared to the theory, where the values are t5 = 7.75sec, t6 = 15.75sec and t7 = 31.75sec
(tl = (2l − 1)t0). This is mainly due to a small inefficiency in the timer’s implementation, but it does
not really impact the results.
If we compare figure 12.3(b) with the figure 12.1 we see that the amount of received data in practice
is very close to the theory (e.g. at 45sec: ≈ 4500 kBytes in theory and ≈ 4300 kBytes in practice).
This small difference is here also caused by the slight shift to the right in the addition of layers that
we mentioned before. Therefore, we can conclude that experiments have shown that the theoretical
model matches the real implementation pretty well.

12.3.2 FLID-SL

Concerning FLID-SL, we use the same parameters as in section 12.2.2: C = 1.3, b0 = 11.9 kbps, and
TSD = 1 sec. Figure 12.4(a) shows the global reception rate at the receiver. We see that a significantly
higher number of layers are added than with RLC and offer a finer granularity of reception rates.
If we compare figure 12.4(b) with figure 12.2 we see here also that the amount of received data in
practice is very close to the theory (e.g. at 45 sec: ≈ 2300 kBytes in theory and ≈ 2500 kBytes in prac-
tice). The difference can be explained by some inefficiencies in the implementation, in particular the
fact that the sending rates on each layer are rounded and because of timer inferences. However we can
here also conclude that experiments have shown that the theoretical matches the real implementation
pretty well.

102

12.4. HOW TO USE THESE RESULTS IN PRACTICE? LESSONS LEARNED 103

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40 45

R
ec

ep
tio

n
ra

te
 (k

B
yt

es
/s

ec
)

time (seconds)

Reception rate with RLC

Reception rate

(a) Reception rate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40 45

R
ec

ei
ve

d
da

ta
 (k

B
yt

es
)

time (seconds)

Received data with RLC

Received data

(b) Amount of received data

Figure 12.3: RLC measurements.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45

R
ec

ep
tio

n
ra

te
 (k

B
yt

es
/s

ec
)

time (seconds)

Reception rate

Reception rate with FLID−SL

(a) Reception rate

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45
time (seconds)

R
ec

ei
ve

d
da

ta
 (k

B
yt

es
)

Received data with FLID−SL

Received data

(b) Amount of received data

Figure 12.4: FLID-SL measurements.

12.4 How to Use these Results in Practice? Lessons Learned

12.4.1 Comparison When Ignoring the Target Rate Limitation

Our models allow us to calculate the total amount of data received at a given time when taking only
into account the startup phase, before the target rate (assumed to be close to the TCP equivalent
share of the bandwidth) is reached. Figure 12.5 compares this amount of received data using formulas
12.1 (RLC), 12.2 (FLID-SL) and 12.3 (WEBRC). It shows that WEBRC is the less impacted by the
startup phase. A receiver benefits from the exponential behavior of the reception rate (and quickly
reaches the TCP equivalent throughput). On the opposite, FLID-SL and RLC both experience a very
slow reception rate increase. Therefore, during small sessions, for instance when a client downloads
a small file, RLC and FLID-SL download performance will essentially be dominated by the protocol
startup behavior, unlike WEBRC.

12.4.2 Comparison When Considering the Target Rate Limitation

Let’s now assume that the target rate limits the reception rate to 10 Mbps, which is a reasonable value
within a site network, or in new ADSL2 access networks, which are being more and more deployed.
In that case, a receiver’s download session behavior will be first controlled by the startup phase,
and once the aggregate 10 Mbps threshold is reached (if ever this is the case!), download will then
take place at this total rate 1. It is important to consider this global reception bandwidth limitation

1We ignore here any target rate fluctuation or congestion control protocol limitation that may prevent a receiver to

103

104CHAPTER 12. STARTUP BEHAVIOR OF MULTILAYERED MULTICAST CONGESTION CONTROL PROTOCOLS

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35 40 45

R
ec

ei
ve

d
da

ta
 (k

B
yt

es
)

time (seconds)

RLC
FLID_SL
WEBRC

Figure 12.5: Amount of data received in the startup phase of WEBRC, RLC and FLID SL. No
bandwidth limitation.

since WEBRC in practice quickly reaches this threshold, which is not considered in section 12.4.1.
The times when this target rate is achieved and the corresponding number of layers can easily be
calculated using the bl transmission rate formulas of section 12.2 first, and then the tl formulas at
which the layer is added.

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35 40 45

R
ec

ei
ve

d
da

ta
 (k

B
yt

es
)

time (seconds)

RLC
FLID_SL
WEBRC

fixed rate (using full link capacity)

Figure 12.6: Amount of data received in the startup phase of WEBRC, RLC, and FLID SL. Fixed 10
Mbps maximum bandwidth limitation.

This is shown in figure 12.6, where we use the same parameters as in section 12.2. The amount of
received data with WEBRC, RLC and FLID-SL is also compared to a fixed rate 10 Mbps reception
scheme, in order to better appreciate the global impact of the respective congestion control startup
phases. WEBRC needs only ≈ 11.5 seconds to reach the target rate bandwidth, then the global
reception rate remains constant. RLC requires ≈ 63.7 seconds, and FLID-SL ≈ 495.0 seconds (not
shown in the figure). The number of layers needed to reach this bandwidth is respectively 9 layers
with RLC and 25 layers with FLID-SL.

A Small Example:

Assume a client is downloading a 500 kByte file. The minimum reception time amounts to ≈ 15.75 sec-
onds with RLC, ≈ 22.51 seconds for FLID-SL and ≈ 9.44 seconds for WEBRC. On the opposite, if no

keep this rate since the present chapter only focuses on the startup behavior.

104

12.5. CONCLUSIONS 105

congestion control is used (which is never recommended!), receiving at 10 Mbps, 500kBytes
10Mbps ≈ 0.41 sec-

onds are sufficient to download the content! Figure 12.6 and this small example clearly show the large
performance gap between the different congestion control protocols and a fixed rate transmission, and
confirms the major performance differences between the various protocols.

Comparison with TCP:

[38] introduces formulas to model TCP with its slow start behavior. The download time can be
calculated using the formulas on pages 279-283. With an RTT=200ms we obtain a download time
of ≈ 2.29 seconds for the same 500kByte content. Therefore TCP is faster than all multilayered
multicast congestion control protocols, which is not surprising since sender and receiver are closely
synchronized.

12.4.3 Transmission Rate Granularity Considerations

From the above tests, one must not too quickly conclude that FLID-SL should definitely be banned.
The RLC protocol reaches the target rate faster than FLID-SL because it uses a smaller number of
layers, each of them having a higher transmission rate. This is efficient, but it also compromises the
granularity with which a receiver can adapt to congestion situations. This is clearly visible when
comparing figures 12.3(a) and 12.4(a). RLC reception rate granularity (factor 2) is far too coarse to
enable an appropriate behavior compared to FLID-SL (factor 1.3 only), and adding a single layer with
RLC can lead to a severe network congestion. This is why FLID-SL is preferred over RLC in practice.

12.4.4 Reception Inefficiency Factors

In practice ALC introduces several inefficiencies, because of:

• the packet scheduling scheme over the several transmission layers, since the same packet may be
received on several layers. This issue may be eliminated if an expandable FEC code is used [58]
(chapter 2) since an infinite number of fresh parity packets may be generated. Since in practice
public implementations of those FEC codes not available (they are protected by many IPRs),
the duplication problem remains and is all the more acute as the number of layers within the
session is large;

• FEC inefficiencies, for instance caused by the coupon-collector problem, if a small block FEC
codec is used, or by the intrinsic FEC inefficiency, if one of the various LDPC codes is used.

These factors must be considered if one desires to estimate the actual download time, since a few
percents of packets in addition to the object size will be required. How large this additional time is,
depends on the inefficiencies mentioned above. It is impossible to predict it in general since it depends
on many configuration-specific parameters. An experimental evaluation is necessary for each use case,
and one of them has been benchmarked in [95, 96]

12.5 Conclusions

We have compared the startup phase of three layered congestion control protocols, RLC, FLID-SL,
and WEBRC, and we have introduced formulas that enable to calculate the amount of data received
by a client at any time, before reaching the target reception rate. We used these formulas to determine
the robustness offered by our SVSoA scalable video streaming scheme based on ALC (see chapter 14),
and it was our first motivation for this work. In addition to that, the present chapter has shown that:

• the congestion control startup phase has major performance impacts with RLC and FLID-
SL, where this phenomenon dominates the reception rate during several tens of seconds. This
behavior is the result of the reactive approach used by these protocols (a client adds layers until
it experiences packet losses that are interpreted as the sign of network congestion), and the rate
at which layers can be added is deliberately limited in order to limit the possible congestion it
may create when a client download rate approaches its fair share.

105

106CHAPTER 12. STARTUP BEHAVIOR OF MULTILAYERED MULTICAST CONGESTION CONTROL PROTOCOLS

• reaching the target rate faster by using a smaller number of layers, each of them having a higher
transmission rate, is efficient. This is the reason why RLC (that uses a 2.0 scaling factor) yields
higher performances than FLID-SL (that uses a 1.3 scaling factor). But this solution also largely
compromises the granularity with which a receiver can adapt to the equivalent TCP throughput,
and in practice FLID-SL is preferred over RLC.

• WEBRC is less impacted, essentially because of its initial exponential rate increase. This is
made possible by the equation-based approach of this protocol and a dedicated “slow start”
mechanism (which is not so slow when compared to RLC/FLID-SL). Since a receiver cannot
calculate a meaningful target rate from its measurements, it uses default values (which warrants
the fast reception rate increase we noticed) and leaves this mode on some events (e.g. a packet
loss, a sharp increase in the multicast RTT, or some inconsistency in the experienced reception
rate).

Yet this work does not take position on the respective merits of the three congestion control protocols,
and in particular on their ability to compete fairly with TCP and similar congestion-controlled sessions.
In particular the fact that RLC and FLID-SL do not take any account the source/receiver RTTs is
an intrinsic limitation.

106

Part III

Contibutions to Large Scale
Content Distribution Applications

107

Chapter 13

FLUTE Extensions and
Implementation

Contents

13.1 Introduction . 109

13.2 A File Aggregation Scheme for FLUTE 109

13.2.1 Standardization Activities . 110

13.2.2 Logical aggregation . 110

13.2.3 Physical aggregation . 111

13.3 MCLv3/FLUTE implementation . 113

13.3.1 General Architecture and Main Components 114

13.3.2 The FLUTE Component . 115

13.4 Conclusions . 117

13.1 Introduction

Our application level contributions regarding FLUTE is described in this chapter. Our contributions
are mainly standardization (by proposing the FLUTE file aggregation scheme) and implementation
activities. No real experimentation nor benchmarking has been carried out, and this is left for future
work. Our solutions are based on the research results obtained in the previous parts of this thesis, are
used in the real world and have shown to work efficiently.
This chapter is structured as follows: Section 13.2 introduces a file aggregation mechanism for FLUTE.
Section 13.3 describes our FLUTE implementation, which is part of our broader reliable multicast
MCLv3 project. Finally section 13.4 concludes this chapter.

13.2 A File Aggregation Scheme for FLUTE

We introduce a logical and physical file aggregation scheme for FLUTE.
The logical file aggregation mechanism is a generalized grouping mechanism, allowing to logically
group files.
The physical file aggregation scheme allows, additionally to a logical grouping, to more efficiently use
FEC in the context of FLUTE, in particular when dealing with a large number of ”small” files. Indeed,
our previous results have shown that large collections of small files cannot be efficiently handled: (1)
large block codes have bad performance on small objects; (2) a large number of objects leads to the
coupon collector problem (see chapter 10).
Unlike a solution based on the creation of an archive, the object aggregation scheme (1) avoids the
need to perform preliminary transformations on the content and (2) preserves the possibility to extract

109

110 CHAPTER 13. FLUTE EXTENSIONS AND IMPLEMENTATION

a subset of the content (based on the considerations made in chapter 11), which may be critical aspect
with some partially reliable broadcasting test cases.

13.2.1 Standardization Activities

The mechanisms presented in this chapter have been subject of standardization activities at the
IETF. More precisely an Internet-Draft has been published [78], and the work has been presented at
IETF meetings. The idea of physical and logical file aggregation has found good acceptance in the
RMT IETF working group, and the mechanisms described here will hopefully be included in future
standards.

13.2.2 Logical aggregation

The logical aggregation mechanism offers a means to logically group files without physically binding
them to the same transport object. This functionality is desirable when transmitting a set of closely
related files that will be used by the receiver in the conjunction with each other. The effect is to simplify
the FLUTE-to-application messaging and processing overhead and to enable selective caching of files
when it is not feasible to either promiscuously receive all files or explicitly indicate all wanted files in
advance of joining the FLUTE session.
One example is an html page (file) with several embedded images. By labeling the web page file and
all related image files as being part of the same group, the FLUTE receiver knows in advance the files
he needs to download based on only the URI of the web page file. Without this grouping mechanism
he would have to analyze the web page file and then deduce which other files are related and need to
be downloaded.

The Generalized Grouping Mechanism

The generalized grouping mechanism is the basic mechanism that allows to to logically aggregate files.
It allows each file of a FLUTE session to be labeled as being part of none, one or several logical groups.
The grouping mechanism is achieved by adding the ”Group” element to the FDT.
The ”Group” element can be added to a ”File” element, an ”aggregatedFile” element (introduced in
section 13.2.3) or to the ”FDT- Instance” element. In the first two cases it specifies that the file (or
aggregated file) is part of a group that is identified by the value of the element entry ”Group”. A
”Group” entry at ”FDT- Instance” level specifies that all files (and aggregated files) listed in the FDT
Instance are part of that group.

Example

With this simple extension any type of relationship between files can be expressed. As an example we
want to express the hierarchical relationship depicted in figure 13.1. A web site is composed of two
html pages (file1.html and file2.html). file1.html contains the image file3.jpg, and file2.html contains
the image file4.jpg.

WebSite

HtmlPage1 HtmlPage2

(file1.html,
file3.jpg)

(file2.html,
file4.jpg)

Figure 13.1: Example of a hierarchical relationship for a web site.

110

13.2. A FILE AGGREGATION SCHEME FOR FLUTE 111

The hierarchical relationship can be expressed as follow: All files are part of the group ”WebSite”;
file1.html and file3.jpg are part of the group ”HtmlPage1”; file2.html and file4.jpg are part of the
group ”HtmlPage2”. This example is represented in the FDT Instance of figure 13.2.2. The FDT
Instance describes the 4 files, plus a fifth one that is not part of the group ”WebSite”.

<?xml version="1.0" encoding="UTF-8"?>

<FDT-Instance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:fl="http://www.example.com/flute"

xsi:schemaLocation="http://www.example.com/flute-fdt.xsd"

Expires="2890842807">

<File

Content-Location="file1.html"

TOI="1"

Content-Length="90"

Content-Type="text/html">

<Group>WebSite</Group>

<Group>HtmlPage1</Group>

</File>

<File

Content-Location="file2.html"

TOI="2"

Content-Length="100"

Content-Type="text/html">

<Group>WebSite</Group>

<Group>HtmlPage2</Group>

</File>

<File

Content-Location="file3.jpg"

TOI="3"

Content-Length="200">

<Group>WebSite</Group>

<Group>HtmlPage1</Group>

</File>

<File

Content-Location="file4.jpg"

TOI="4"

Content-Length="210">

<Group>WebSite</Group>

<Group>HtmlPage2</Group>

</File>

<File

Content-Location="file5.mp3"

TOI="5"

Content-Length="600"

Content-Type="audio/mp3">

</File>

</FDT-Instance>

Figure 13.2: FDT-Instance example.

Other file relationships can easily be expressed with the generalized grouping mechanism.

13.2.3 Physical aggregation

Motivations

The main idea of the physical file aggregation scheme is to aggregate a (possibly large) set of (possibly
small) files into one large aggregated object, that is treated as a single transport object by ALC.
The benefits of logical aggregation, described above, also apply to physical aggregation. However, a
shared-fate model is introduced as the successful reception of one of the aggregated files is to some
extent statistically correlated to the successful reception of one or more others. Thus, there is a
strong incentive to only physically aggregate files that are logically related into the same aggregated
transport object.
The physical file aggregation scheme is made possible by simple extension to FLUTE FDTs which
provides a dedicated signaling mechanism, enabling extended FLUTE receivers to extract the files

111

112 CHAPTER 13. FLUTE EXTENSIONS AND IMPLEMENTATION

within the large aggregated object.
With physical aggregation, FEC encoding is performed on a large object rather than on each individual
file, which can be highly beneficial for transmission performance. Therefore this technique offers two
specific transmission performance improvements:

1. the coupon collector problem [12], that is caused by the separate FEC encoding of each individual
file when file aggregation is not used, is now significantly reduced or even totally eliminated.
Now FEC encoding is done over a single object, whose size is perhaps inferior to the maximum
block size permitted by the FEC instance used (this is especially true with Large Block FEC
codes).

2. large block FEC codes perform better on large blocks than on small blocks, and using file
aggregation offers more opportunities to use such codes whose performance is significantly higher
than Reed Solomon codes [11].

The performance gain of these two aspects depends on several parameters such as the FEC instance
used, the aggregated object size and the number of files. Detailed quantitative analysis and explanation
of the impact of all these parameters are left for future work.
The specified physical object aggregation solution is significantly different from a solution that would
create a single archive from the list of files (e.g. a gzip compressed tarball archive). With an archive
the result is either the full reconstruction of all individual files (if enough packets have been received
for decoding to complete at a receiver) or an hazardous result (since the archive will be corrupted,
possibly damaging the archive headers which then prevents file extraction). Indeed, although FEC
can counter the effects of packet erasures, if the number of packets received is too low for the FEC
decoding process to finish, the received parity packets may turn out to be inconsequential. On the
opposite, the specified physical object aggregation solution can offer a partial reliability service, i.e.
it enables a receiver to reconstruct parts of the content even if the FEC decoding process has not
finished. To that purpose, the physical file aggregation scheme can optionally preserve the possibility
to decode and exploit a subset of the content, by informing the receivers of the size and position of
individual files within the aggregated object.
Another motivation for having an object aggregation scheme compared to a basic archive based solu-
tion (e.g. tarball), is that no extra transformation (i.e. archive creation or extraction) is required at
either the FLUTE sender or receiver. Everything is managed automatically by the transport mecha-
nism according to transport- specific optimizations and can be transparent to upper applications (i.e.
built on top of FLUTE), or enhanced by application hints on file relationships, without breaking the
basic semantics of FLUTE sessions.

Multipart/mixed and Multipart/related MIME type object

An aggregated object is either a multipart/mixed MIME type object as defined in MIME Part two
[30] or a mutlipart/related MIME type [41] if precise relationships between files have to be expressed
(e.g. a dependency between a video file and its subtitle file). The aggregated object includes several
files, each one delimited by the boundary delimiter defined in the MIME header. One body part (in
MIME terminology) corresponds to one aggregated file.

Extending the FDT with Aggregated Object Information

The Aggregated Object Information (AOI) describes the aggregated object and its structure. The
AOI is a logical view of all information needed to process an aggregated object. Its implementation
within the FDT Instances as a ”File” element for the aggregated object and a set of ”aggregatedFile”
elements, is presented later in this section.
The AOI must enable a receiver to:

• identify that an ALC object is an aggregated object,

• identify and have a description of the files being transmitted in an aggregated object,

• know the position (i.e. offset) and length of each file within the aggregated object.

112

13.3. MCLV3/FLUTE IMPLEMENTATION 113

Therefore the AOI must contain the following attributes:

• The Aggregated Object’s TOI value

• The Aggregated Object’s content type value, that must be set to ”multipart/mixed” or ”multi-
part/related”.

• The URI of each file being aggregated

• The offset of each file within the aggregated object (not considering the boundary delimiter and
the MIME header)

• The transfer length of each file within the aggregated object, or the content length if the file is
not content encoded

• The number of files aggregated.

Therefore the new FDT-Instances are extended as follows: An aggregated object has a ”File” element
entry in the FDT, like normal files. A file being aggregated has a ”aggregatedFile” element entry in
the FDT. For this element the attribute ”AOTOI”, identifies the TOI of the corresponding aggregated
object. The attributes ”Content-Length” (or ”Transfer-Length” if the file is content encoded) and
”Content-Offset” are required ”Content-Offset” specifies the offset of the file within the aggregated
object.

Example

Figure 13.2.3 shows a simple FDT Instance using the physical file aggregation scheme. The files
”http://www.example.com/menu/description.html” and ”http://www.example.com/menu/details.html”
are carried within the aggregated object, which has an TOI=’1’.

<?xml version="1.0" encoding="UTF-8"?>

<FDT-Instance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:fl="http://www.example.com/flute"

xsi:schemaLocation="http://www.example.com/flute-fdt.xsd"

Expires="2890842807">

<File

Content-Location="/AO1"

TOI="1"

Content-Length="830"

Content-Type="multipart/mixed"

Number-of-Files="2"/>

<aggregatedFile

Content-Location="http://www.example.com/menu/description.html"

AOTOI="1"

Content-Length="210"

Content-Offset="100"

Content-Type="text/html"/>

<aggregatedFile

Content-Location="http://www.example.com/menu/details.html"

AOTOI="1"

Transfer-Length="500"

Content-Offset="320"

Content-Encoding="gzip"

Content-Type="text/html"/>

</FDT-Instance>

Figure 13.3: FDT-Instance example.

13.3 MCLv3/FLUTE implementation

We now present the FLUTE implementation elaborated during my thesis.

113

114 CHAPTER 13. FLUTE EXTENSIONS AND IMPLEMENTATION

The MCLv3 project is an Open-Source GNU/GPL implementation of the two major reliable multicast
protocols being standardized by the RMT IETF working group: ALC and NORM. The library also
implements the file delivery protocol FLUTE. The project is composed of several C/C++ libraries
and several applications built on top of it and provides an easy-to-use and integrated solution for
reliable and highly scalable multicast delivery of data.
The project started in 1999 and continuously implemented the work done at the RMT IETF. The
focus was made on the ALC approach, NORM being implemented only much later, and NORM is
still in experimental state.
During my thesis, I contributed to parts of the ALC implementation, and fully implemented the
FLUTE library and the FLUTE application.

13.3.1 General Architecture and Main Components

The MCLv3 library is implemented at user-level and is multi-platform. Systems currently supported
are: Linux, Linux for PDAs, Solaris, FreeBSD and Windows.
An overview of the architecture of MCLv3 and its main components is given in figure 13.4. MCLv3
is logically composed of two parts: the NORM and the ALC part. Since NORM is not in the scope
of this thesis we skip its description in the following.
MCLv3 includes the following libraries:

• ALC library: Accessed via the MCLv3 API, it almost fully implements the ALC protocol.

• NORM library: Accessed via the MCLv3 API, it partially implements the NORM protocol.

• FLUTE library: Accessed via the FLUTE API, it almost fully implements the FLUTE protocol.

• TESLA library: Based on A. Perrig’s TESLA implementation [85], this library adds authenti-
cation to ALC as described in [27].

• SinisterSDP library [22]: Internally used by the FLUTE library to support the Session Descrip-
tion Protocol (SDP).

and uses the following external libraries:

• XERCES-C library: The FLUTE library strongly relies on xerces-c [29], the XML library of the
Apache Software Foundation.

• LDPC library: MCLv3 uses the LDPC implementation [77] presented in chapter 8.

MCLv3 contains the following applications:

• FCAST: Built on top of the ALC and the NORM library, it implements a basic shell-based file
transfer application.

• FLUTE: Built on top of the FLUTE library, it implements a basic shell-based FLUTE appli-
cation. This is only an example and simplified FLUTE application, since it is expected that
advanced uses of FLUTE will rely on the FLUTE API that enables external applications to
exploit all the possibilities of the library.

FCAST

On top of NORM and ALC several applications and new libraries can be built. The MCLv3 dis-
tribution includes a simple file transfer application fcast and fcastn, based on ALC and NORM
respectively. This file transfer application is different from FLUTE: The major difference between the
two application come from the way file meta-data is carried within the ALC session: With FLUTE
meta-data is carried as a separate ALC object. With fcast/fcastn meta-data is carried within the
file object.
fcast/fcastn is not standardized anywhere (it derives from an old version of the ALC document
[50]). However fcast/fcastn’s implementation is simpler (e.g. no need for XML parsing), and is
only suited to situations where ALL clients are interested by ALL the objects sent within a given
ALC session. It is therefore only kept in the distribution to demonstrate the basic capabilities of the
NORM and ALC libraries.

114

13.3. MCLV3/FLUTE IMPLEMENTATION 115

FEC FLID−SL RLC

sinisterSDP (SDP)

xerces−c (XML)

LDPC library

TESLA library

application
fcast

application
fcastn

FLUTE library

FLUTE API

NORM library
...

ALC library

FLUTE application

MCLv3 API

Figure 13.4: MCLv3 general architecture.

ALC

ALC can be accessed via the MCLv3 API, which is shared with the NORM library (i.e. it uses the
same function calls).
The ALC implementation features:

• Conformance to RFC3450 and RFC3451 [45, 47]

• A congestion control building block, that supports RLC [101] and FLID-SL [59, 14].

• A FEC building block. This building block uses the LDPC implementation presented in chap-
ter 8. It also includes a Reed-Solomon FEC implementation.

• IPv4 and IPv6 support.

• Source Specific Multicast.

• Object aggregation for improved transmission performance. This a concept close to the physical
file aggregation mechanism [78] presented in section 13.2. The idea is also to aggregate several
files into one transport object. The mechanism however does not use multipart/mixed MIME
types and signaling is done within dedicated transport objects and not within the FDT (we
aren’t at FLUTE level anyway).

13.3.2 The FLUTE Component

FLUTE library

FLUTE has been implemented as a C++ library, built on top of the ALC library, with a dedicated
easy to use FLUTE API. Writing an application on top of this FLUTE API enables a full and dynamic
control of the FLUTE session, e.g. to dynamically add transmission cycles to the carousel, add/remove
files to the carousel.
For XML parsing and DOM representations, the FLUTE library strongly relies on xerces-c [29], the
XML library of the Apache Software Foundation.
The FLUTE implementation features:

• Conformance to RFC3926 [82].

• Fine carousel control: The transmission carousel at a FLUTE sender can be controlled in a
detailed manner. Files can be added and removed during transmissions and new transmission
cycles can dynamically be added or removed.

• FLUTE SDP Descriptors [65]: SDP can be used to describe the parameters required to begin,
join, receive data from and end FLUTE sessions. Therefore the FLUTE library uses the Sinis-
terSDP library [22]. The FLUTE SDP Descriptors draft [65] has been partially implemented.

115

116 CHAPTER 13. FLUTE EXTENSIONS AND IMPLEMENTATION

A Quick Glance at the FLUTE API

The API is in C++ and is composed of the classes Flute, FluteReceiver, FluteSender,
FluteFileDeliveryCarousel and FluteFileInfo.
For one FLUTE session an instance of the Flute class needs to be created. More precisely, FluteReceiver
and FluteSender inherits from the class Flute and can been instantiated if a FLUTE receiver or
FLUTE sender is needed. The API of the three classes are shown in figures 13.5, 13.6 and 13.7.

// destructor/constructor

Flute ();

~Flute ();

void abort ();

//get and set methods

... getXXX();

void setXXX (...);

// SDP methods

void createSdp (char* fileparam);

void parseSdp (char* fileparam);

// Are we are flute sender or receiver

bool isSender();

bool isReceiver();

// File Informations

class FluteFileInfo* getFileInfoList ();

class FluteFileInfo* getFileInfo (TOI_t toi);

Figure 13.5: API of class Flute

// destructor/constructor

FluteReceiver ();

~FluteReceiver ();

//get and set methods (receiver specific)

... getXXX();

void setXXX (...);

// file selection

void setSelectAll (bool on_off);

void selectTOI (TOI_t toi) ;

void unselectTOI (TOI_t toi) ;

// set callbacks

void setCallbackReceivedNewFileDescription (void*

(*ReceivedNewFileDescription_callback) (class FluteFileInfo * fileInfo));

void setCallbackReceivedNewFile (void*

(*ReceivedNewFile_callback) (class FluteFileInfo * fileInfo));

void setCallbackEndOfRx (void*

(*EndOfRx_callback)(UINT64 BytesRecvd));

/ receiving method

UINT64 recv (bool blocking);

Figure 13.6: API of class FluteReceiver

The classes Flute, FluteReceiver and FluteSender defines several methods setXXX and getXXX

that allows to set and get the sessions parameters, as for instance getPort and setPort for the port
and getTxRate and setTxRate for the transmission rate. The functions createSDP and parseSDP

can respectively generate and parse an SDP file that describes the FLUTE session.
At a receiver the recv function can be called in blocking or non-blocking mode. Callbacks notifies
the application of new received files or file descriptors or the end of reception. The callbacks are set

116

13.4. CONCLUSIONS 117

// destructor/constructor

FluteSender ();

~FluteSender ();

//get and set methods (sender specific)

... getXXX();

void setXXX (...);

// the sender carousel

class FluteFileDeliveryCarousel *carousel;

Figure 13.7: API of class FluteSender

with the methods setCallbackXXX. A receiver selects and unselect the files he wants to receive using
the methods selSelectAll, selectTOi, and unselectTOI.
At sender side we deal with carousels: one sender exactly knows one class FluteFileDeliveryCarousel.
The API of class FluteFileDeliveryCarousel is shown in figure 13.8:

// destructor/constructor

FluteFileDeliveryCarousel (class FluteSender *flute);

~FluteFileDeliveryCarousel ();

void reset();

TOI_t addFile(const char* filename);

void removeFile(TOI_t toi);

UINT64 startTxCycles (INT32 nb_cycles, bool blocking);

void addTxCycles(INT32 nb_cycles);

UINT64 stopTx();

void setCallbackEndOfTxCycles(void* (*EndOfTxCycles_callback)(UINT64 BytesSent));

Figure 13.8: API of class FluteFileDeliveryCarousel

Files can be added to (via addFile) or removed from (via removeFile) the yet to be launched or
ongoing transmission.
A carousel can be launched in blocking or non-blocking mode (method startTxCycles). In non-
blocking mode the application can be notified by a callback (set with the setCallbackEndOfTxCycles
method) at the end of transmission of a carousel. The carousel can be controlled in a quite fine grained
manner: when starting a new transmission cycles we specify the number of transmission cycles (method
startTxCycles); new transmission cycles can be added on the fly (method addTxCycles), or the
ongoing carousel may be stopped (method stopTx).
The class FluteFileInfo contains all informations relative to a transmitted file. It contains methods
getXXX to get file relative informations (e.g. getContentLength for the content length of the file).
The file descriptors are delivered to the application, either using the callbacks (when a new file or file
description was received), or by calling the methods getFileInfo and getFileInfoList of the class
Flute.

FLUTE application

The Flute application is a small shell-based application built on top of the FLUTE API. Extending
this simplified FLUTE application to add new functionalities is both feasible and straightforward.
Interoperability tests of MCLv3-FLUTE versus MAD-FLUTE [83] and Nokia’s FLUTE have success-
fully been carried out in early 2004.

13.4 Conclusions

This chapter presented our contributions related to FLUTE.

117

118 CHAPTER 13. FLUTE EXTENSIONS AND IMPLEMENTATION

We first introduced standardization activities regarding file aggregation mechanism in the context of
FLUTE. The present work does not include any quantitative experiments or simulation with regards
to the gain of the approach proposed, and this is left for future work.
Finally we presented the FLUTE implementation and the more broader reliable multicast MCLv3
library, which offers a complete suite of libraries and applications for reliable multicast content delivery.
The library is continuously maintained and enhanced. It has become quite popular and is already
being used in commercial and non-commercial products.

118

Chapter 14

Scalable Video Streaming over ALC
(SVSoA)

Contents

14.1 Introduction . 119

14.1.1 Video Scalability . 120

14.1.2 Layered and Single Layer Streaming Approaches 120

14.2 SVSoA version 1 . 121

14.2.1 Principles . 121

14.2.2 Benefits of the SVSoA version 1 Approach 123

14.2.3 . . . And the Price to Pay . 125

14.2.4 RTP/UDP versus RTP/ALC/UDP . 125

14.3 Analysis of the SVSoA version 1 Parameters 126

14.3.1 Storage Requirements . 126

14.3.2 Impacts of the IGMP Leave Latency . 127

14.3.3 Impacts of the Congestion Control Protocol during Startup Phase 128

14.3.4 Packet Loss Recovery Capabilities . 128

14.3.5 Transmission Rate of the ALC Session . 132

14.3.6 Initializing SVSoA version 1 in Practice: a Summary 132

14.4 Experimental Results . 133

14.4.1 Experimental Conditions . 133

14.4.2 Experimental Results . 134

14.4.3 Discussions . 136

14.5 SVSoA version 2 . 137

14.5.1 Scenarios . 137

14.5.2 Principles . 137

14.5.3 Robustness Evaluation . 139

14.5.4 Experimental results . 141

14.6 Conclusions . 143

14.1 Introduction

This chapter deals with the streaming of videos, that are either real-time or pre-encoded, to clients
who receive and play information on-the-fly.
Designing a video streaming solution for an environment having no or a constrained back channel due
for instance to scalability issues leads to many challenges.

119

120 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

We introduce SVSoA version 1 and version 2, two approaches that use a transmission technique close
to the file broadcast methods presented so far in this thesis. We make no assumption on the target
environment either, which can be either the Internet (if/when multicast routing is available), a site
(e.g. a campus or an hotel), or a dedicated broadcasting network (e.g. a cable or DVB network).
SVSoA can be used in all these situations.
Because of these assumptions, the client set is generally highly heterogeneous. This heterogeneity
must therefore be considered to enable each client to receive the video stream that best fits with its
networking and processing capabilities. [99] identifies three key aspects for the acceptance of video
broadcasting: scalability, reliability, and quality of the reconstructed video. We fully agree with [99]
and this paper emphasizes the reliability of transmissions in front of severe packet loss conditions and
the stability of the video quality reconstructed.

14.1.1 Video Scalability

The advent of recent video codecs like MPEG-2, H.263+, MPEG-4, or H26L has largely improved
the streaming possibilities, making it possible to optimize the video quality over a given bit rate
range instead of at a given bit rate. The video scalability feature, also known as hierarchical video
coding (both names will be used indifferently), refers to the possibility to see a video at several spatio-
temporal resolutions by parsing appropriate portions of the bit-stream. In MPEG-2 and 4, three
scalability techniques exist: Temporal scalability, Spatial scalability and Qualitative (or SNR, Signal-
to-Noise Ratio) scalability, all three dividing the video in one base and one (rarely more) enhancement
video layer. In all cases a partial reception of the enhancement layer will provide very little benefit [43].
On the contrary, with the Fine Granularity Scalability (FGS) [43] a partial reception of the (single)
enhancement FGS layer provides an enhancement proportional to the number of bits decoded for each
frame. The enhancement layer can therefore accommodate a wide range of bit-rates and offers the
possibility to continuously adapt to the available networking bandwidth. But there is a cost and for
the same transmission bandwidth, the quality is higher with non-scalable video coding. [42] discusses
the Multiple Description (MD) video coding scheme that produces multiple independent layers of the
video stream, each of the same importance. This property highly improves robustness, especially if
the two layers follow different paths.
This discussion highlights several points: (1) video scalability is a complex feature that often produces
a single enhancement layer; (2) splitting artificially this enhancement layer, or receiving only a subset
of the associated data, does not always produce the expected result; (3) an exception is the MPEG-4
FGS scalability since the enhancement layer can be split into an arbitrary number of sub layers or can
be partially received, at the cost of higher complexity. We will see that our proposal is compatible with
any scalability approach and does not assume the presence of a fine grained hierarchical encoding.

14.1.2 Layered and Single Layer Streaming Approaches

Many approaches exist for video streaming [42]:

Layered Streaming Approaches

The streaming of scalable videos fits well with a transmission in cumulative quality layers [71]. A
traditional solution consists in mapping these video layers onto several multicast groups. In order to
perform congestion control, each receiver dynamically adapts the number of layers received according
to the experienced losses [60]. To behave correctly, this solution requires a fine video layer granularity,
and a temporal scalability scheme is almost always assumed. Another requirement is that packets sent
on the base layer experience no losses, because such losses usually trigger an important distortion in the
reconstructed video (inter-layer dependencies). One solution to provide this transmission discrepancy
is to protect data sent on the base layer with FEC techniques [58]. Another solution is to rely on
a QoS differentiation mechanism within the network (Int-Serv or Diff-Serv), and to affect packets of
the base layer to a prioritized service [9] [102]. This is a major limitation since a QoS service must be
deployed between the source and each potential client.
In [102] the authors introduce two Source-Adaptive Multi-layered Multicast (SAMM) algorithms that
adjust the number of layers and their bit-rate depending on feedback information sent either by

120

14.2. SVSOA VERSION 1 121

network elements and/or by receivers. This approach has major practical limitations since both
variants require special features for the routers (priority drop preference, flow isolation, and congestion
notification with network-based SAMM).

Single-Layer Streaming Approaches

Another solution consists in having a single video stream, mapped onto a single multicast group
[10, 71]. In that case the source adapts the transmission rate (e.g. by changing the video coding)
according to RTCP feedback messages that give an indication on the experienced packet loss rate at
receivers. Even if RTCP packets are rate-controlled (e.g. not to exceed 5% of the total session bit
rate), this solution is not massively scalable. Besides, this solution is single-rate and consequently
does not take into account the client heterogeneity.
A variant, called Simulcast in [43] and Destination Set Grouping (DSG) in [18], consists in generating
multiple bitstreams of different bit-rates. Each client chooses the most adequate video bitstream
according to its networking and processing capabilities. Switching to another bitstream dynamically
is also possible. This solution addresses client heterogeneity but requires to decide, at coding time, for
a fixed total bit rate, how many bitstreams should be generated and their bit-rate (DSG uses feedback
messages for that).

Digital Fountain’s Approach

Since this company proposes a streaming product that at first glance looks close to our proposal, we
shortly discuss it here. Since no research report or paper has been published, this presentation is
based on their web site [1]. The video stream is partitioned into blocks. The length of the blocks may
vary depending on the application or the network features, yet it remains short, around 100 ms. Each
block is protected with their proprietary FEC code, and the protection amount chosen depends on the
network properties. Using an FEC code allows receivers to reconstruct a block if it received an amount
of data equal in length to the original block. This approach is not designed for massive scalability,
video scalability, nor receivers heterogeneity (and nothing is said about congestion control).
Our proposal completely departs from the layered or single layer approaches. It vaguely resembles to
that of Digital Fountain, but neither the application area nor the techniques are the same as ours. In
fact SVSoA largely relies on ALC.
ALC was originally designed for the massively scalable and reliable content delivery, and media stream-
ing was never mentioned to be a possible application. Streaming is not the original intent of ALC.
We however show in this paper that when used properly, ALC is suitable for media streaming.
The work of the present chapter is also presented in [70, 73, 69].
The remainder of this chapter is organized as follows: Section 14.2 introduces the general ideas of
SVSoA version A. Section 14.3 explains how to initialize the various parameters and what are the
associated trade-offs of this version. Section 12.3 introduces some experimental results obtained on
a local testbed with a full implementation of our proposal and of the ALC/RLC protocols. We
then introduce SVSoA version 2 in section 14.5, with its principles a robustness evaluation and some
experimental results. Finally Section 14.6 concludes the paper.

14.2 SVSoA version 1

14.2.1 Principles

The SVSoA approach relies on ALC (and associated protocols)/UDP/IP as the transport/network
layers, and is placed beneath RTP and the server or player application. The general architecture is
illustrated in figure 14.1. Note that no RTCP back channel (e.g. to carry feedback information to the
source) is used in SVSoA.

Sender behavior

Let’s consider a server who needs to stream a video that has been hierarchically encoded using one
of the scalability schemes of section 14.1.1. The video consists of a base layer plus one or more

121

122 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

MPEG−4 codec

RTP

SVSoA streamer

RLC/FLID/WEBRC
ALC

FEC codec

UDP

existing components

existing components

our proposal

IP / Multicast−IP

Server or Player

Figure 14.1: General architecture of the SVSoA approach.

FEC encode

carousel

FEC encode

carousel

FEC encode

carousel

FEC encode

carousel

video segment period

...

Layer
FEC encode

carousel

FEC encode

carousel

Enhancement Video

Base Video Layer

time

...ALC session 0

ALC session 1

Figure 14.2: SVSoA version 1 sender behavior.

enhancement layers. Unlike many previous works, we do not assume the presence of fine granularity,
so having a single enhancement layer is sufficient.
The sender first partitions the video stream into segments of approximately the same duration, V SD
(Video Segment Duration). By default V SD = 60 seconds, but other values are possible (section 14.3).
Each video layer produces a block, of duration V SD. Each block is then sent independently on a
distinct ALC session and thus on a different set of multicast groups as shown in figure 14.2 (note that
video layers and ALC layers are two different notions). After V SD seconds, the server automatically
switches to the next segment (at t0+V SD on figure 14.2), and for each ALC session, the transmission
of block n is stopped and replaced by block n + 1.
During each period, the packets of a block are not sent sequentially but in a random order and
cyclically, in order to offer an “on-demand” delivery mode. FEC packets included by ALC in the
data stream enable receivers to efficiently reconstruct some missing packets (either lost or not-yet
received). This on-demand mode is required since receivers do not necessarily join at the beginning
of a block transmission, especially on ALC sessions 1 and above. This is one of the reasons why ALC
is absolutely required.

Receiver behavior

At the beginning of a period or when a new receiver joins the SVSoA session, a receiver first subscribes
to the ALC session where the base video layer of the current segment, n, is sent (from t0 to t1 in

122

14.2. SVSOA VERSION 1 123

232
232
232
232
232

434
434
434
434
434

n n + 1

nn − 1

t0

stopped!

ALC session 0

ALC session 1

t3 = t0+VSDt1 t2 t4 t5 = t0+2VSD

recv segment

play segment

iddle

n + 1

n + 2

time

Figure 14.3: Receiver behavior.

figure 14.3). When this block is successfully received, the receiver subscribes to the ALC session of
the next enhancement video layer (from t1 to t2). This process stops (1) when all blocks have been
successfully received, if ever (e.g. at time t2), or (2) when the transmission of the next segment, n+1,
begins. When transmissions for segment n + 1 start, the receiver plays the video of segment n and
switches to the first ALC session, and so on. Therefore a receiver always plays the previous video
segment while receiving the current one, which of course introduces a playing latency of V SD seconds
(section 14.2.3).

In order to keep receivers synchronized a descriptor is sent by the source for each video block with the
following information: the number of frames in the current block, the last RTP timestamp, and the
duration, V SD, of the current segment. With this information a receiver knows when he completely
received a block, and can detect the end of the current segment in order to switch to the next one.
These descriptors are sent out-of-band on a dedicated control session.

Definition of ALC Objects According to the Video Scalability Scheme

The Application Level Framing (ALF) paradigm [19] tells us that each object should be autonomous
and contain enough information to be processed by a receiver independently of other objects. We
applied this principle and identified several framing possibilities: figure 14.4 (a) shows a possible
framing in case of non-FGS spatial scalability. Since a receiver cannot take any benefit from receiving
a subset of an enhancement frame, each frame is carried as a distinct ALC object. Figure 14.4 (b)
shows the ALC object definition in case of a temporal scalability video. In this example each I and
P frames of the base layer are independently carried in a different object, as well as each B frame of
the enhancement layer (note that many other I/P/B mappings are possible).

14.2.2 Benefits of the SVSoA version 1 Approach

The benefits of this approach are numerous, many of them being derived from the use of ALC as the
underlying transport protocol.

Massively Scalable

Because no feedback of any kind is used at either ALC, the layered congestion control protocol, or
SVSoA, it makes no difference to the video server whether there are very few or several millions of
simultaneous clients. Note that RTCP, the control protocol associated to RTP, is not used at all by
SVSoA.

Exploits the Intra-ALC Congestion Control

Our approach takes advantage of the TCP-friendly layered congestion control protocol used within
each ALC session. SVSoA automatically benefits from the latests developments in TCP-friendly
congestion control protocols. This is a major asset since a recent protocol like WEBRC proved to
be highly effective: receivers quickly reach the equilibrium point, achieve a good TCP-friendliness
and are not affected by the IGMP leave latency issue [49]. The available bandwidth is always used
optimally.

123

124 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

video segment
frame_0 frame_1 frame_2 frame_s−1...

ALC
session_0
base layer

enhanced
layer

session_1
ALC

object_0 object_1 object_2 object_s−1

...

...

object_0 object_1 object_2 object_s−1 time

(a) Framing with Spatial Scalability

video segment

ALC
session_0
base layer

enhanced
layer

session_1
ALC

obj_1

P

timeobj_2obj_0

I I

B B B

obj_3obj_2obj_1obj_0

frame_0 fr_2fr_1 fr_3

...

...

...

obj_t

I

fr_4 fr_5 fr_6 fr_s−1

B

(b) Framing with Temporal Scalability (with an IBBPBBP sequence)

Figure 14.4: Object framing according to the video scalability scheme.

Immediately Deployable Anywhere

The SVSoA approach does not rely on any privileged transmission service nor on any specific feature
within the backbone and can therefore be immediately deployed anywhere. This is made possible
by the fact that a client receives only one video layer at a time, starting by the most important one
(base layer). This solution therefore maximizes the probability of receiving the most important data
correctly. On the opposite, traditional layered streaming approaches often rely on the presence of a
QoS mechanism within the core backbone. This is in practice a major limitation which adds much
complexity to the solution and restricts its use.

Addresses the Heterogeneity of Clients

Because ALC addresses the heterogeneity of clients, each SVSoA client receives the amount of video
data made possible by its access network, independently of other clients. Besides, all clients are
guaranteed to receive a minimum video quality before trying to receive any enhancement information.

Robust in Front of Packet Loss Bursts

Because ALC is a reliable protocol, packet loss bursts are easily recovered, even in case of long lasting
bursts (e.g. several tens of seconds), without any brutal impact on the video quality perception. The
only requirement is that enough time is left to enable a receiver to receive at least the base video layer
during the segment duration. This is in line with [99] that shows that long bursts of packet losses
(several seconds) occur quite often in large local area networks.

124

14.2. SVSOA VERSION 1 125

Independent from the Video Scalability Scheme

Another benefit of SVSoA is that the congestion control efficiency does not depend on the number of
the enhancement layers provided by the scalable video codec, and the nature of scalability used by this
codec. On the opposite, traditional approaches that rely on a direct mapping between video layers and
transmission layers (multicast groups) assume the presence of a fine granularity video encoding. In
practice this granularity is usually very low (e.g. the MPEG-4 ISO reference codec we used produces
a single enhancement layer).

A Simple End-to-End Solution

Our proposal follows an end-to-end approach. It is a great asset compared to solutions like Content
Delivery Networks (CDN) that can also be used for streaming. In that case, a complex distributed
infrastructure must be designed, deployed and managed. Besides, video contents are replicated at
several locations within the network. No such things are required with an end-to-end solution.

14.2.3 . . . And the Price to Pay

A High Playout Latency

When a new client joins an ongoing SVSoA session, this client experiences an initial join latency :
BLRT ≤ initial join latency < V SD + BLRT < 2 ∗ V SD, where BLRT (Base Layer Receive
Time) is the minimum time required to get the whole base video layer. The minimum join latency is
experienced when the client joins the session BLRT + ε seconds (ε ¿ 1) before the end of the current
segment since he has enough time to get the whole base video layer and can display it immediately
after switching to the following VSD period. There is no enhancement layer during this first VSD
period but the most important information is displayed. The worst join latency is experienced when
the client joins the session BLRT − ε seconds before the end of the current segment, since he needs
to wait an additional V SD period.

The second source of latency is the playing delay : the video playout is always delayed by the segment
duration parameter, V SD (typically 60 seconds, section 14.3.6). This feature prevents using SVSoA
when interactivity (e.g. with tele-teaching) or immediate delivery (e.g. for a sport event coverage)
are required.

Additional Traffic

Another drawback is a high cumulative transmission rate at the source, since all layers for all ALC
sessions are active. Yet multicast routing limits the traffic carried on the backbone by avoiding
transmissions on branches that do not lead to a receiver. In practice, if there is no receiver, the first
hop multicast router prunes the traffic totally. Traffic is then restricted to the source’s which is rarely
an issue.

Let’s now consider a client. ALC introduces several inefficiencies: (1) data and FEC packets are of
finite number and duplications occur (e.g. the same packet can be received on two different layers at
different times, or a packet for an already decoded block can be received later on); (2) “non-systematic”
large block FEC codes like LDPC have intrinsic decoding inefficiencies, expressed by their inefficiency
ratio. Some additional traffic will therefore be received, which is unavoidable with a reliable multicast
protocol. In section 14.4.2 we show that even in a rate limited environment, SVSoA behaves efficiently
and the extra traffic, in fact, enables clients to recover losses.

14.2.4 RTP/UDP versus RTP/ALC/UDP

The SVSoA approach relies on ALC/UDP/IP as the transport/network layers, and is placed beneath
RTP and the server or player application. Classical streaming approaches like proposed in [4] only
rely on RTP/UDP.

ALC offers a very flexible framework. As mentioned in Chapter 3, different types of building blocks can
be plugged into ALC. It is therefore much simpler to add new features when new requirements comes

125

126 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

up (e.g. security), or if the used environment changes (e.g. adapt the congestion control protocol).
RTP has no such framework and is therefore less flexible.
The flexibility issue also comes up when looking at the FEC mechanism used with RTP/UDP solutions.
At this time there is no generic FEC building block for RTP. Some solutions like [4] were proposed
and are discussed in the IETF AVT working group. But the proposed mechanism are less flexible
(e.g. restricted to systematic FEC), and quite complicated.
ALC is designed to achieve good results where massively scalability is of importance. This is not
the case of RTP, and some features have to be disabled to adapt it to this environment. Indeed
by suppressing the RTCP feedback channel RTP can become massively scalable, but rate adaption
(which is in fact the congestion control of RTP) is then no longer possible.
One drawback of ALC is, that it introduces very large packet headers. This overhead can be considered
as non negligible compared to a streaming solution only based on RTP. This drawback can however
be bypassed by introducing header compression protocols as RoHC [11] (RFC 3095). Even if RoHC
does not support ALC at the moment, we believe that it can be easily extended to that purpose.

14.3 Analysis of the SVSoA version 1 Parameters

When deploying our solution some parameters must be adapted to the target environment (e.g. is
it deployed in a closed environment like an hotel, or in the Internet), and to the video features (e.g.
the bitrates of the base and enhancement video layers). In this section we explain how to optimally
initialize two key parameters:

• the video segment duration (V SD), and

• the base transmission rate of each ALC session (b0).

Several contradictory aspects must be considered when choosing a value for V SD. The first idea is
to have a very short V SD in order to reduce:

• the storage capacity required at the source and at receivers, and

• the initial join latency and the playing delay.

But several considerations are against short video segment durations:

• the impacts of the IGMP leave latency when switching between two ALC sessions,

• the impacts of the congestion control protocol during the startup phase,

• and the maximum loss burst length that can be transparently recovered.

We now provide a theoretical analysis of each of these aspects.

14.3.1 Storage Requirements

The first limitation is the required storage capacity at a server. Since efficiency requires that packets
are sent in a random order in each ALC session [95], the whole data set is usually stored in physical
memory rather than on disk in order to avoid inefficient random I/Os. A direct consequence is that
the available storage capacity (i.e. RAM) is quickly limited, and this is all the more true as the same
server can stream several video contents simultaneously. The storage requirements amount to:

source storage req = V SD ∗ cumul enc rate ∗ FEC ratio (14.1)

where cumul enc rate is the cumulative video encoding bit rate over all layers.
Figure 14.5 illustrates the memory requirements at a source as a function of V SD for various encoding
rates and
FEC ratio = 2 (as many FEC packets as original packets). It shows that a high quality video encoded
at 2 Mbps requires only 29.3 MB of storage capacity in the ALC component with V SD = 60 seconds,
which is fairly reasonable. Having higher V SD values (e.g. 120 seconds) is not a problem either since

126

14.3. ANALYSIS OF THE SVSOA VERSION 1 PARAMETERS 127

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120

M
em

or
y

re
qu

ire
m

en
ts

 (K
B

yt
es

)

VSD (seconds)

256 kbit/s video
512 kbit/s video

1 Mbit/s video
2 Mbit/s video

Figure 14.5: Storage requirements at a source.

the required memory only amounts to 58.6 MB. We therefore consider that the storage capacity at a
server is not a problem.
The memory requirements at a receiver are lower since the FEC ratio has no influence here (FEC
decoding takes place immediately, as soon as enough packets have been received). But two segments
can be buffered, the one being displayed and the one being received (in practice data displayed is
immediately freed, so equation 14.2 is a pessimistic upper bound). Therefore:

receiver storage req = 2 ∗ (V SD ∗ cumul enc rate) (14.2)

Besides, unlike a video server, a receiver is typically involved in a single video stream at a time.
Buffering can yet be a problem for low end receivers (e.g. mobile devices). But in that case, because
of the limited bandwidth of the access network and/or the limited display capabilities, the video
encoding rate will also be low, thereby limiting the storage requirements (e.g. 1.9 MB with a 128 kbps
video, and V SD = 60 seconds). We therefore consider that the storage capacity at a receiver is not a
problem.

14.3.2 Impacts of the IGMP Leave Latency

The second limitation are the impacts of the IGMP leave latency, i.e. the delay between when the
last receiver of a LAN leaves a multicast group and its effect. This latency is usually 3 seconds (there
are up to three instances of the IGMP polling message, with a typical 1 second polling delay each),
but can be higher depending on the IGMP implementation. In addition to this delay, the multicast
routing protocol itself can add its own pruning delay. Let igmp leave lat be the sum of these latencies
(assumed constant).
It is well known that the IGMP leave latency will affect the behavior of a layered congestion control
protocol like RLM, RLC or FLID-SL. The only exceptions are the FLID-DL and WEBRC protocols
which counteract this latency thanks to a dynamic layering approach [14] [49]. Let’s now assume that
a dynamic approach is used.
Even with such a protocol, our approach is still affected by the IGMP leave latency whenever a receiver
changes of ALC session, for instance to receive the enhancement layer, or when switching to a new
video segment. During igmp leave lat seconds, packets of the previous ALC session still flow up to
the receiver LAN, thereby preventing a normal behavior of the new ALC session. Two cases must be
considered:

• the host is the only client in the LAN: in that case during igmp leave lat seconds, packets of
the previous ALC session still flow up to the receiver LAN where no receiver exist any more,
thereby preventing a normal behavior of the new ALC session.

127

128 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

• other clients in the LAN are still joined to the previous ALC session. In that case two (or
more) ALC sessions will coexist for some time. This second case highlights a limitation of the
host heterogeneity handling with layered multicast approaches: heterogeneity is managed with
a LAN granularity, not a host granularity.

The impacts of this latency are given by equation 14.3:

igmp ineff ratio =
{

(vlay nb ∗ igmp leave lat)/V SD if vlay nb > 1
0 if vlay nb = 1

(14.3)

where vlay nb is the total number of video layers (base plus enhancement(s)) used by a receiver. The
higher this inefficiency ratio, the higher the percentage of time wasted because of the IGMP and
multicast routing protocol latencies. Figure 14.6 shows the evolution of this ratio as a function of the
V SD and number of video layers produced by the video codec. In our case we are limited to two video
layers (vlay nb = 2) and assume that igmp leave lat = 3 seconds. In this case the igmp ineff ratio
amounts to 10% with V SD = 60 seconds, and 5% with V SD = 120 seconds. With five video layers,
this ratio amounts respectively to 25.0% (prohibitive) and 12.5% respectively.
The IGMP leave latency largely impacts the solution efficiency and using a video segment duration of
60 seconds is only possible with two video layers (the common case). Having a higher number of video
layers requires to significantly increase the V SD parameter.

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200

ig
m

p_
in

ef
fi

ci
en

cy
_r

at
io

 (%
)

VSD (seconds)

2 video layers
5 video layers

10 video layers

Figure 14.6: Impacts of the IGMP leave latency (igmp ineff ratio).

14.3.3 Impacts of the Congestion Control Protocol during Startup Phase

The third aspect to consider is the congestion control protocol behavior during the startup phase for a
given ALC session. Because of this protocol, the reception rate at a client progressively increases until
it reaches a “fair share” (the exact fairness depends on the protocol in use) of the available bandwidth
between the source and the client. Depending on the protocol, the time required to reach the steady
rate is not so small compared to the V SD parameter and must be considered. We already analyzed
and modeled this behavior in chapter 12 and in [74]. This problem affects a client each time he joins
a new ALC session, for instance to receive the enhancement video block or when switching to the
following video segment. Starting from scratch after joining the following ALC session is the default
behavior.

14.3.4 Packet Loss Recovery Capabilities

The V SD parameter has a direct impact on the packet loss recovery capabilities of SVSoA. Losses
in the Internet usually occur in bursts, because of router congestion problems or routing instability.

128

14.3. ANALYSIS OF THE SVSOA VERSION 1 PARAMETERS 129

Thanks to ALC’s reliability mechanisms (in particular the use of FEC within ALC), these losses can
usually be recovered, at least for the base layer which contains the most valuable video information.
Intuitively, the longer the video segment duration (V SD), the greater the immunity to losses, and the
longer the loss burst that can be recovered. In this section we analyze the SVSoA version 1 robustness
assuming that a single burst, of duration loss dur, occurs during a video segment.
The goal of this analysis is to have an idea on how to initialize the V SD parameter to obtain a certain
target robustness, and what are the other parameters that affect this robustness. The simplification
made (single loss burst) does not catch the SVSoA behavior in front of other loss models (e.g. with
random isolated losses, or in case of several small loss bursts rather than a single long burst). Yet
our scheme also brings some robustness in front of other loss models. The exhaustive analysis of the
SVSoA’s behavior is left to future works. By default, we only consider the base video layer in this
analysis. No guaranty is given for the enhancement layer(s).

Loss recovery capabilities with RLC

This analysis is based on the equations obtained in chapter 12 giving the amount of data transferred
after a certain time, when no loss occurs, and taking into account the inefficiency ratio of ALC,
rx ineff . In equations 12.1 we can ignore the i factor in front of i2 (remind that i ∗ t0 is the elapsed
time). We can also ignore the non-continuous behavior of the congestion control protocol and use a
continuous time instead. We can then write:

Rx(t)

rx ineff
≈ c ∗ t2

where c is a constant. By comparing with equation 12.1:

i2b0t0
3 ∗ rx ineff

= c(i ∗ t0)
2

and the value of the constant c is given by:

c =
b0

3 ∗ t0 ∗ rx ineff
(14.4)

Figure 14.7 illustrates the robustness problem when V SD = 60 seconds and with a video encoding
rate enc rate = 2 Mbps. Let tmin be the time required to receive the amount of video data sent
during V SD seconds:

Rx(tmin)

rx ineff
= V SD ∗ enc rate

In that case the maximum loss duration is the extra time available at the end of the video segment:
V SD − tmin, and we find (graphically) a value of ≈ 32 seconds.
This is in fact an upper bound and the robustness is largely impacted by the position of the loss burst
in the video segment. The maximum recoverable loss period is indeed reduced when the loss period
starts in the middle of the video segment, because of the congestion control algorithm which slows
down the reception rate after a loss. Depending on the length of the burst, the congestion control
algorithm restarts reception at a subscription level j smaller than the subscription level i before the
start of the burst: 0 ≤ j ≤ i − 1. The worst case where all layers are dropped (j = 0), is illustrated
in figure 14.8. The maximum recoverable burst length is then only 17 seconds which is now a lower,
pessimistic, bound.
Let’s now continue with a formal discussion of the problem. Let’s t1 and t2 be respectively the time
before and after the loss burst, of duration tloss. We pessimistically assume that the burst leads the
client to drop all layers. We have:

V SD = t1 + tloss + t2

Transmission is successful if:

Rx(t1) + Rx(t2)

rx ineff
≥ enc rate ∗ V SD

129

130 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

Constant 2 Mbps single layer video
Usefull data received

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70

R
ec

ei
ve

d
da

ta
 (K

B
)

time (s)

max. loss burst duration

14648

min time to recv all video data

Figure 14.7: Maximum recoverable loss burst length; here the loss burst occurs at the end of the video
segment period (60 s).

Constant 2 Mbps single layer video
Usefull data received

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70

R
ec

ei
ve

d
da

ta
 (K

B
)

time (s)

packet loss burst

restart with layer 0

progressive speed−up

Figure 14.8: Impacts of a loss burst in the middle of the video segment period (60 s).

or:

c ∗ t21 + c ∗ t22 ≥ enc rate ∗ V SD

After replacing t2 and extracting tloss:

tloss ≤ V SD − t1 −
√

enc rate ∗ V SD

c
− t21 = f(V SD, t1) (14.5)

with the following definition interval:

t1 ∈ [0; t1 max =
√

enc rate∗V SD
c]. The recovery capability is maximum for t1 = 0, then a minimum

recovery capability is reached at t1 =
√

enc rate∗V SD
2c :

tloss min(V SD) = V SD −
√

2 ∗ enc rate ∗ V SD

c
(14.6)

and then the recovery capability increases up to the same maximum obtained for t1 max. Figure 14.9
illustrates the maximum recoverable burst length as a function of V SD and t1. It uses (eq. 14.4):
c = 160000

3∗0.25∗1.66 = 128, 000 bits/sec2. We find: tloss min(60s) = 16.70 sec. These curves confirm the
high importance of the position of the loss burst in the video segment, and that of the V SD parameter.

130

14.3. ANALYSIS OF THE SVSOA VERSION 1 PARAMETERS 131

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

t_
lo

ss
, m

ax
. r

ec
ov

er
ab

le
 p

ac
ke

t l
os

s
bu

rs
t (

s)

t1, duration after which the loss burst occurs (s)

VSD = 60s
VSD = 90s

VSD = 120s

Figure 14.9: Maximum recoverable packet loss burst length when using RLC.

Loss recovery capabilities with WEBRC

With WEBRC, layers are added much faster and SVSoA performs better and tolerates longer loss
bursts. Similar to RLC and FLID-SL, We can approximate the behavior of WEBRC (simplify the
formula 12.3) by considering the exponential startup behavior of WEBRC and write:

Rx(t)

rx ineff
≈ c ∗ Ct

where c is a constant. By comparing with equation 12.3:

Ci ∗ b0 ∗ epoch

(C − 1) ∗ rx ineff
= c ∗ Ci

and the value of constant c is given by:

c =
epoch ∗ b0

(C − 1) ∗ rx ineff

We now continue our considerations with C = 4/3 and epoch = 0.5 seconds as proposed in [49]. c is
now:

c =
3 ∗ b0

2 ∗ rx ineff
(14.7)

Let’s now continue with a formal discussion of the problem. Let’s t1 and t2 be respectively the time
before and after the loss burst, of duration tloss. We pessimistically assume that the burst leads the
client to drop all layers. We have:

V SD = t1 + tloss + t2

Transmission is successful if:

Rx(t1) + Rx(t2)

rx ineff
≥ enc rate ∗ V SD

or:
c ∗ (4/3)t1 + c ∗ (4/3)t2 ≥ enc rate ∗ V SD

After replacing t2 and extracting tloss:

tloss ≤ ln(enc rate∗3t1V SD−c∗22t1

c) − 2 ∗ t1 ∗ ln(3/2) + V SD ∗ ln(3/4)

ln(3/4)
(14.8)

131

132 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

with the following definition interval:

t1 ∈ [0; t1 max =
ln(c

enc rate∗V SD)

ln(3/4)]. The recovery capability is maximum for t1 = 0, then a minimum

recovery capability is reached at t1 =
ln(2∗c

enc rate∗V SD)

ln(3/4) :

tloss min(V SD) =
ln((c

enc rate∗V SD)
2∗ln(2)
ln(3/4))

ln(3/4)

−2 ∗ ln(c
enc rate∗V SD) ∗ ln(3/2) − (V SD ∗ (ln(3/4)) − 2 ∗ ln(2)) ∗ (ln(3/4))

ln(3/4)2
(14.9)

and then the recovery capability increases up to the same maximum obtained for t1 max. Figure 14.10
illustrates the maximum recoverable burst length as a function of V SD and t1. It uses (eq. 14.7):
c = 3∗160000

2∗1.66 = 144578 bits/sec. With the same parameters as with RLC, we find: tloss min(60s) =
18.09 sec which can be compared with the 16.70 sec of RLC. The benefits of WEBRC compared to
RLC increase when VSD increase.

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

t_
lo

ss
, m

ax
. r

ec
ov

er
ab

le
 p

ac
ke

t l
os

s
bu

rs
t (

se
co

nd
s)

t1, duration after which the loss burst occurs (seconds)

VSD = 60sec
VSD = 90sec

VSD = 120sec

Figure 14.10: Maximum recoverable packet loss burst length when using WEBRC.

14.3.5 Transmission Rate of the ALC Session

Another important parameter is b0, the transmission rate of the base ALC layer. A higher b0 leads
to a faster reception in the startup phase, linearly with RLC, in b2

0 with FLID-SL. But a high b0 also
limits the possibilities to serve low end receivers. Therefore the following aspects must be considered:

• Required reception time in front of the video encoding rate: The higher the video encoding rate,
the larger b0 should be.

• The target environment (closed network, Internet,...):
This target environment defines the possible heterogeneity of the users and their access networks.
When serving Internet clients, b0 should be compliant with the slowest possible client.

14.3.6 Initializing SVSoA version 1 in Practice: a Summary

In practice SVSoA can be correctly initialized according to the following steps:

step–1: Retrieve the average encoding rate enc rate and number of layers of the video, vlay nb
(usually 2).

132

14.4. EXPERIMENTAL RESULTS 133

step–2: if vlay nb ≥ 2, then use V SD = 30 ∗ vlay nb to keep the igmp ineff ratio constant and
equal to 10%, assuming an IGMP latency of 3 seconds (equation 14.3). if vlay nb = 1, then
IGMP has no effect, and using V SD = 60 seconds for instance is appropriate.

step–3: With RLC, retrieve the t0 parameter, and with WEBRC the epoch parameter. Estimate
the reception inefficiency of ALC and its FEC code (e.g. we use 1.66).

step–4: Define the transmission rate on the base ALC layer, b0. This choice depends on the target
environment since this is the minimum reception rate.

step–5: Calculate the minimum loss burst immunity for the base video layer. With RLC use equa-
tion 14.6:

tloss min = V SD −
√

6∗enc rate∗V SD∗t0∗rx ineff
b0

. With WEBRC, use equation 14.9. If this value

is judged too low, it means that the video bit-rate is too high compared to the transmission
rate. So increase the b0 value and reiterate at step 4. Alternatively we can set a higher V SD
and reiterate step 5.

Many parameters are only approximations. For instance the video encoding rate is only an average
(see figure 14.11), and the rx ineff is not known in advance. This is not a major issue yet since several
equations of previous sections (e.g. tloss min(V SD)) are for the worst case and rely on pessimistic
assumptions (e.g. the client drops all the layers after the loss burst).

14.4 Experimental Results

14.4.1 Experimental Conditions

The Streaming Approaches Compared

We implemented our proposal using our MCLv3 library that implements the ALC protocol [93], and
the MPEG4IP [3] MPEG-4/RTP application.

We compare the SVSoA performances with that of a “classical” FEC based streaming scheme inspired
from [99]. It uses a single ALC session, each video layer is mapped onto a distinct ALC layer, and it
uses RLC for congestion control, like SVSoA. The sender sends each frame sequentially. Reed-Solomon
FEC protection is used for the base video layer, using the same parameters as in [99] (30 FEC packets
are added to each block of 225 source packets). The enhancement video layer is sent without FEC
protection, since it has less importance. Adding proactive FEC undoubtedly consumes additional
bandwidth, but it enables a fair comparison with SVSoA which heavily relies on FEC. Interested
readers can refer to [70] for additional comparisons with a classical streaming scheme which does not
include any FEC protection. Results are globally similar to that obtained with the “classical” FEC
based scheme.

Video Encoding and SVSoA Parameters

Our tests use a 120 second video, encoded with a constant 25 fps frame-rate, and using a spatial
scalability encoding which provides two video layers, a base layer and a single enhancement layer. The
bit-rate of both layers is on average 667 kbps respectively, but the instantaneous bit-rate fluctuates
around this average, as shown in figure 14.11 (this figure represents the sum of the two video layers
bit-rate).

In practice a dedicated MPEG-4 decoding hardware would be used by clients for real-time decoding.
Since this facility is not available in our testbed, the video is encoded off-line, and the decoding/playing
features at a client are turned off. We thus focus on transmission aspects and avoid any interference
with CPU intensive tasks.

SVSoA is initialized with b0 = 131 kbps and V SD = 60 seconds. The theoretical minimum loss
recovery capability is tloss min = 21.0 seconds.

133

134 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

In
st

an
ta

ne
ou

s
co

de
d

vi
de

o
bi

tr
at

e
(K

bp
s)

time (seconds)

Coded video bitrate

Figure 14.11: Instantaneous video bitrate of the two layers.

receives UDP flow from Host B
In experiment "Limited bandwidth":

sends a constant 8.2Mbps UDP flow to Host D
In experiment "Limited bandwidth":
Host B

100Mbps Hub 10Mbps Hub

Host A

Host C Host D
Bottleneck

Video streaming server

Multicast router Video client

Figure 14.12: Our testbed.

Testbed and Scenarios

Our testbed (figure 14.12) is composed of four PC P-III/Linux attached to two different Ethernet
subnets. The right subnet has a limited bandwidth of 10 Mbps. Host C in the middle is the multicast
router and uses the mrouted multicast routing daemon. Host A is the streaming server and host D
the client. Two scenarios are considered:

1. Limited bandwidth to evaluate both streaming approaches in presence of a concurrent network
flow, in a limited bandwidth environment. During this test, host B sends a constant bit-rate
8.2 Mbps UDP flow to host D. Host D receives both the UDP flow from B and the video from
A.

2. Long burst of packet losses to evaluate the error recovery capabilities of both approaches. 10 sec-
onds after the start of the video transmission, we unplugged the network cable during 15 seconds,
and reconnect it up to the end of the test. No background traffic is used in this test.

14.4.2 Experimental Results

Behavior in a Limited Bandwidth Environment

With the classical approach, the transmission rate for each video layer is highly dependent on the
instantaneous video bit-rate. A 255/225 Reed-Solomon FEC encoding operates on 1-2 seconds chunks
of frames within the video. Therefore the transmission rate is constant for these short periods.
When the cumulative rate on both layers exceeds the available bandwidth (e.g. after 3 seconds in
figure 14.13 (a)), packets get lost. According to RLC, the client then drops a layer, which reduces the
video quality, in order to adapt to the available network bandwidth. Some time after 12 seconds, the

134

14.4. EXPERIMENTAL RESULTS 135

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

K
bp

s)

time (s)

Reception rate
Highest layer
Lost packets

(a) Reception rate

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Fr
am

er
at

e
(f

ps
)

time (s)

frames per second on video layer 0
frames per second on video layer 1

(b) Frame rate

Figure 14.13: Tests with limited bandwidth and the classical FEC based approach.

enhancement layer is once again added, which triggers losses, and the client drops the higher layer one
more time. We see that the rough granularity provided by the spatial scalability encoding does not
enable an efficient behavior. We also see that losses may affect both video layers (e.g after 30 seconds
or after 43 seconds (figure 14.13 (b))). FEC protection on the base video is obviously not enough at
these moments. Each loss on the base layer prevents the client to decode the associated frame on the
higher layer if received which amplifies the phenomenon.
This is not the case with SVSoA where the reception rate is only determined by the congestion control
protocol, independently of the video bit-rate (compare figures 14.13 (a) and 14.14 (a)). Transmissions
are smoothed over the time which is an advantage from a networking point of view. Figure 14.14 (b)
shows that the frame rate of the base layer is constant during the whole test, and a minimum video
quality is provided to the client. However the frame rate of the enhancement layer is relatively low
since the spare bandwidth is not sufficient to receive more frames.

enhanced video layerbase video layer

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

K
bp

s)

time (s)

Reception rate
Highest layer
Lost packets

(a) Reception rate

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Fr
am

e
ra

te
 (f

ps
)

time (s)

frames per second on video layer 0
frames per second on video layer 1

(b) Frame rate

Figure 14.14: Tests with limited bandwidth and SVSoA.

Behavior With a Long Burst of Packet Losses

The reception for both approaches is totally interrupted while the cable is unplugged (between t ≈ 10s
and t ≈ 25s in figures 14.15 (a) and 14.16 (a)). With the classical approach, the reception restarts
with the base video layer only, the enhancement layer being only added after some time. With SVSoA
the reception of the base layer continues after the burst, until completely received.
The frame rate of the resulting video at the client shows a big hole on both video layers with the
classical approach (figure 14.15 (b)). No frame can be displayed while the cable stays unplugged. For

135

136 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t (

K
bp

s)

time (s)

Reception rate
Highest layer
Lost packets

cable
unplugged

(a) Reception rate

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Fr
am

er
at

e
(f

ps
)

time (s)

frames per second on video layer 0
frames per second on video layer 1

(b) Frame rate

Figure 14.15: Tests with a 15 second loss burst and the classical FEC based approach.

enhanced
video layer enhanced video layer

first segment second segment

cable
unplugged

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

K
bp

s)

time (s)

Reception rate
Highest layer
Lost packets

(a) Reception rate

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Fr
am

e
ra

te
 (f

ps
)

time (s)

frames per second on video layer 0
frames per second on video layer 1

(b) Frame rate

Figure 14.16: Tests with a 15 second loss burst and SVSoA.

the enhancement layer, this time is longer since the ALC layer is only added after an additional delay
(RLC behavior). FEC protection cannot do much in front of such a long burst of losses.
With SVSoA the client receives the whole base video layer, thereby assuring a minimum video quality.
The frame rate of the enhancement video layer is not optimal though because the client needs more
time to reconstruct the base layer, which leaves less time for the enhancement layer. But the lost
frames of the enhancement layer are spread equally over the whole segment, which provides a globally
constant video quality.

14.4.3 Discussions

In the two selected scenarios, SVSoA largely outperforms the classical FEC based streaming approach.
This classical approach, which serves as a reference, is obviously not optimal, and could benefit from
several improvements, like: (1) the use of a QoS service to protect the base layer, (2) the use of a finer
video scalability granularity, and (3) a really constant bit-rate video encoding. Yet SVSoA assumes
none of these features, which are three major, very restrictive assumptions.
The proactive FEC protection used is not sufficient to reconstruct all losses of the base video layer.
Adding more FEC is not the solution since it increases the consumed bandwidth, leading to more
losses. All solutions requiring some feedback information from the receivers to adjust the amount of
proactive FEC create scalability problems. Besides the ideal amount is not the same for all clients,
all the time, and defining several parallel streams is then unavoidable. This is why we chose to use
the FEC scheme proposed by [99].
The experiments show that SVSoA behaves well in a congested environment, no matter how many

136

14.5. SVSOA VERSION 2 137

layers the video codec produces. Congestion control enables to adapt to the available bandwidth.
Because of the natural buffering capability of SVSoA, packet losses, even in case of long bursts, do
not automatically lead to frame losses and sudden video quality changes. They only increase the
time spent receiving a given layer, and thus reduces the probability of receiving the enhancement
information entirely. And because of the high randomness of transmissions introduced in an ALC
session, the video quality is almost constant during each V SD period.
Even if the experiments carried out involve a single client, the SVSoA scalability is guaranteed by the
total absence of feedback packets. Scalability is only limited by multicast routing protocols.
The SVSoA performances experienced are limited by some sub-optimal solutions in the ALC imple-
mentation used [70]. More recent congestion control protocols (WEBRC), more efficient large block
FEC codes, and the meta-object FEC encoding we introduced in Chapter 11 would largely improve
the performances. The idea of meta-object encoding lead us to design SVSoA version 2.

14.5 SVSoA version 2

SVSoA version 1 introduces a large playout latency, around 60 seconds long (see [70, 73] for a detailed
justification). Therefore, if it is well suited to the large scale distribution of videos or TV programs
over the Internet, it cannot be used for interactive applications like video-conferencing, because of its
significant playing delay. Besides SVSoA version 1 relies on multicast routing to make sure clients
receive the block associated to the base video layer first before trying to get the enhancement layer.
This is meaningless in a wireless network where all packets will be anyway broadcast to all clients, no
matter whether they belong to the base or enhanced video layer.
In this section we introduce version 2 of SVSoA which solves these two limitations, making it a robust
streaming solution, in particular, and we focus on this use case, in wireless environments.
SVSoA version 2 is therefore well suited to wireless video broadcast, but it also performs well over
traditional wired networks and in particular the Internet.

14.5.1 Scenarios

As SVSoA version 1, SVSoA version 2 is suited to traditional routed environments. Indeed, in a
routed wired network like the Internet, congestion control is of utmost importance to avoid congestion
within the network and to support client heterogeneity, and the congestion control building block of
ALC perfectly addresses these issues.
However, in a wireless environment congestion control is not an issue since (1) the maximum capacity
of the channel is known (even if the actual capacity largely fluctuates) and (2) no routing is performed.
Losses on a wireless channel are due to interferences and not to router congestion. The ALC congestion
control building block should therefore be switched off in that case, and constant rate transmissions,
using a single layer (i.e. multicast group) be used instead (this is the default working mode of ALC
in 3GPP and DVB-H environments). Since SVSoA version 1 largely relies on the congestion control
building block of ALC and since it uses several ALC sessions to broadcast the content, it is less
adapted to the wireless case.
SVSoA version 2 is also adapted to the case where the streaming server streams the video through
the Internet to both wired clients and to wireless clients (figure 14.17). To that purpose, a dedicated
SVSoA relay has to be placed at the border of the wireless network. The SVSoA relay forwards the
streamed video from the wired network to the wireless network, by sending the content without any
congestion control. The SVSoA relay knows the bandwidth supported by the wireless channel and
will send the video at a compatible bitrate. On the wired network side the SVSoA relay receives the
content using the congestion control protocol. It may receive on a higher rate than the one supported
by the wireless network in order to be immune to packet losses on the wired network side.

14.5.2 Principles

SVSoA version 2 differs from version 1 mainly by the fact that only one ALC session is used to transmit
the video content. SVSoA version 2 does not exploit the possible hierarchical video encoding, but it
can however offer an adapted video quality to each receiver. This is a major improvement since it

137

138 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

WANSVSoA
streaming server

wired clients

congestion control

no congestion control

SVSoA relay

wireless clients

53535535355353553535
636636
636636

7373773737838838
93939:3:3:

;;
;;
;;
;;
; <3<=

>3>?3?

@3@AB3BB3BC3C

Figure 14.17: SVSoA version 2 scenario.

removes constraints (hierarchically encoded videos) and many transmission inefficiencies specific to
version 1 (e.g. the switching time between the two ALC sessions at a receiver is largely responsible
of the high playing delay). The playing latency of the version 2 approach is now significantly reduced
(typically divided by three), and is now essentially related to the desired robustness. At the same
time, SVSoA version 2 keeps the main assets of version 1, namely: (1) massive scalability, (2) TCP
friendliness over routed networks, (3) client heterogeneity support, (4) and immunity to long bursts
of packet losses.

Sender and receiver behavior

As in SVSoA version 1 the sender partitions the video into segments of equal length. The video
segment period is a parameter that has to be adapted to the video features, the given environment
and the robustness to losses that is required. The video segment duration is significantly smaller in
SVSoA version 2 than in version 1. We were able to use values of about 20 seconds with very satisfying
results (see section 14.5.4), compared to 60 seconds with version 1.

Each video segment is then FEC encoded and transmitted in a carousel transmission mode over the
entire video segment period (figure 14.18).

FEC encode

transmit

carousel

FEC encode

transmit

carousel

FEC encode

transmit

carousel ...

Originial video
video segment period

time

Figure 14.18: SVSoA version 2 sender behavior.

When a new receiver joins the SVSoA session, he joins the associated ALC session where the current
segment, n, is sent. He cannot display anything at this moment. When the transmission of segment
n+1 starts1, the receiver begins to play the video of segment n. Therefore a receiver always plays the

1Receivers must be synchronized on segment boundaries. This is made possible by dedicated control packets sent
regularly by the source as in SVSoA version 1.

138

14.5. SVSOA VERSION 2 139

previous video segment while receiving the current one, which of course introduces a playing latency
of one video segment period (figure 14.19).

segment being
received

segment being
displayed

n

n−1 n

n+1 n+2

n+1

time

video segment period

Figure 14.19: SVSoA version 2 receiver behavior.

Using a FEC partial reliability service

The FEC decoding process of one segment may not end successfully if not enough packets have been
received by the receiver (i.e. less than k or a little bit more). This is the case when reception is
interrupted, like at the end of each video segment period, or if the reception is affected by too many
losses (e.g. if a vehicle enters an environment with many obstacles that only enables an erratic con-
nectivity). A partial reliability service should maximize the amount of original content reconstructed
at a receiver, even if FEC decoding did not finish. In chapter 11 we analyzed the inherent capabilities
of each FEC code to maximize this partial decoding, and identified how to efficiently use the FEC
codes in this context. These results are directly used in SVSoA version 2, by using a partial reliability
service for each FEC encoded video segment.

This service allows, even if the current segment has not been entirely received, to: (1) Stop FEC
decoding at the end of a segment, (2) benefit from already decoded or received packets of the segment,
and therefore (3) display the segment in an acceptable and stable (since losses are spread over the
whole period) video quality.

As shown in chapter 11, the best results are obtained using a Reed-Solomon FEC code. The structure
of the video segments (i.e. the position and length of each video frame within the video segment)
is transmitted with an in-band signaling mechanism in dedicated signaling objects. The detailed
description of the signaling mechanism is out of scope of this work.

14.5.3 Robustness Evaluation

In this section we analyze the robustness that SVSoA version 2 provides, i.e. the amount and the
type (i.e. in burst or single losses) of supported losses.

Impacts of the transmission scheduling

Why use a randomized carousel transmission? SVSoA version 2 is aimed to be adapted to
very heterogeneous environments as we have seen in section 14.5.1. The loss patterns vary strongly
from one environment to another (e.g. wireless channel compared to the Internet). Even if we only
consider the wireless channel the loss behavior may be quite different from one receiver to another (e.g.
a car that regularly crosses tunnels compared to a person that stays at home). In order to achieve
good performances with all these loss patterns we chose to use a randomized carousel transmission,
i.e. a carousel transmission where the packets of one segment are sent in a completely random order
rather than sequentially (e.g. all source packets first and then all parity packets) for instance. For
some specific loss pattern another very specific packet scheduling may perform much better, but
this same scheduling will have catastrophic performances when another loss pattern occurs. With a
totally random transmission scheme we provide a service that achieves always the same performance,
independently of the loss model, as we have shown in chapter 9

139

140 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

Why use FEC? The advantage of using FEC in that context is not that obvious. Rather than using
FEC we may simply retransmit the content twice (or more), and a receiver could then receive missing
packets before the end of one segment period. Does FEC really increase performances compared to
several retransmissions? To answer this question we made a simple simulation: Given a content of size
k = 6000 we first transmit the content twice, all 2∗k = 12000 packets being sent completely randomly,
and look at which moment (i.e. the number of received packets) the content has been entirely received.
We compare this with an approach using FEC: the content is encoded using Reed-Solomon and FEC
expansion ration of 2.0, and all packets (source and parity) are sent completely randomly. Results are
shown in figure 14.20. We see that with RSE the number of packets needed to entirely reconstruct
the content is much smaller than when using no FEC at all. With no FEC the receiver nearly needs
to wait until the end of transmission to entirely get the content. Losses have not been taken into
consideration in this simulation. However since packets have a higher correction power when FEC is
used than without FEC, it is clear that results would have been similar with losses. Therefore this
simple simulation shows us that FEC clearly should be used in SVSoA version 2.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000 12000

nb
 o

f r
ec

ei
ve

d/
de

co
de

d
da

ta
 p

ac
ke

ts

nb of received packets

No FEC
RSE

Figure 14.20: Reed Solomon versus no FEC using a randomized transmission.

Amount of tolerated losses

We now discuss the robustness to transmission errors of our approach, i.e. the amount of tolerated
packet losses depending on some parameters. We limit our evaluation to the case where we broadcast
without any congestion control (i.e. the wireless case). We can completely abstract from the actual
loss pattern (in burst or single packet losses) since transmission are made in a completely random
manner as explained before.
Lets assume that we want to stream a video that has been encoded with a bitrate of video bitrate kbps.
Depending on the maximum supported bandwidth max bandwidth of the wireless channel, we can
produce parity packets using a FEC ratio fec ratio, with max bandwidth ≥ fec ratio∗video bitrate.
Here we only consider the case where the transmission rate of the ALC session is

tx rate = fec ratio ∗ video bitrate

, i.e. that during one segment duration V SD all source and parity packets are only send once (and
all packets are sent randomly during the whole segment duration).
The usage of FEC introduces an inefficiency ratio inef ratio that needs to be evaluated experimentally,
as we have done it in chapter 10. The receiver needs to receive at least video bitrate ∗ V SD ∗
inef ratio kbit per segment in order to display the video with full quality for that segment. That
means that the amount of supported losses is:

supported losses

= tx rate ∗ V SD − video bitrate ∗ V SD ∗ inef ratio

= video bitrate ∗ V SD ∗ (fec ratio − inef ratio).

140

14.5. SVSOA VERSION 2 141

The supported loss rate for one segment is then:

supported loss rate = supported losses

tx rate∗V SD

= 1 −
inef ratio

fec ratio
.

Lets have an example: Suppose that we want to transmit a video over a 802.11 wireless channel. The
video is encoded at video bitrate = 1.2 Mbps using a FEC expansion ratio of fec ratio = 2.0 (therefore
tx rate = 2.4 Mbps). This leads to inef ratio ≈ 1.12 (evaluated experimentally in chapter 10). The
supported loss ratio is then supported loss rate = 1 − 1.12

2.0 = 44%. Having a segment duration of
V SD = 20 seconds, this means that we support supported losses = 8.8 seconds of losses (either as
burst or as single packet losses).

Impacts of Partial Reliability

The usage of a partial reliability service allows to support even longer periods of packet losses. All
losses above the threshold supported loss rate presented before will now affect the video quality.
We evaluated the period of losses that affects video quality in a simple simulation. Lets take the above
example again: Assume that the video has a frame rate of 30 frames per second, that means that each
segment has 600 video frames. With a packet size of 512 bytes there are 12000 packets to transmit
(since 1.2 Mbps ∗ 20 sec/512 bytes = 12000).
Figure 14.21 shows that video quality adaptation is made between ≈ 5100 received packets (this
corresponds to ≈ 8.5 seconds of reception time) and ≈ 6700 received packets (this corresponds to
≈ 11.2 seconds reception time).
That means that additionally to the supported losses = 8.8 seconds of supported losses we have a
period of 3.7 seconds where the video quality is adapted. This period would not exist if no partial
reliability service had been used.
Lets assume that we have a loss rate of 50%. In this case we can display 274 frames out of 600 for
that segment. Supporting such a high loss rate may be very interesting especially in the wireless case.

Tolerated amount of losses
without

impacts on video quality
Minimum required amount

of received packets

Video quality adaption

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000

nb
 o

f d
is

pl
ay

ab
le

 v
id

eo
 fr

am
es

nb of received packets

Figure 14.21: Displayable video frames.

14.5.4 Experimental results

We implemented SVSoA version 2 using the open-source implementation MCLv3 [93] of ALC. We
tested the case of intermittent connectivity and therefore totally interrupted the reception by unplug-
ging the network cable over several seconds. We sent a single layered variable bit rate (aver. bit rate
is 654 kbps) video, with a frame rate of 25 fps, using SVSoA version 2 without any congestion control
over a Local Area Network. We used a FEC ratio of 3.0. The video lasts ≈ 132 seconds and the

141

142 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

segment period duration V SD is 20 seconds. That means that 500 frames are transmitted within
each segment (except for the last one with only 295 frames). To simulate intermittent connectivity
we unplugged the network cable several times for different durations as follows (and as shown in
figure 14.22(a)):

1. Loss period 1: At t = 2 seconds we unplugged the cable for 5 seconds.

2. Loss period 2: At t = 38 seconds we unplugged the cable for 6 seconds.

3. Loss period 3: At t = 65 seconds we unplugged the cable for 10 seconds.

4. Loss period 4: At t = 90 seconds we unplugged the cable for 5 seconds.

The results, i.e. the number of received and displayed frames, are shown in figure 14.22(b).

 0 20 40 60 80 100 120 140
reception time

unplugged cable period

video segment period

(a) Simulated loss bursts.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140

nb
 o

f v
id

eo
 fr

am
es

/s
eg

m
en

t

display time

recvd video frames
displayable video frames

(b) Received and displayed video frames.

Figure 14.22: Experimental setup and results.

We see that unplugging the cable for 5 or 6 seconds (loss periods 1, 2 and 4) had no impact on video
quality, since the number of displayed and received frames is 500 in the corresponding segments, i.e.
all frames have been received. Also loss bursts that straddle two video segments (loss period 2) is
handled correctly.
In segment starting at t = 60 seconds the number of received frames is less (415) than the maximum.
The loss burst (loss period 3) was too long, and the receiver was not able to recover the content
of that segment entirely. However thanks to partial reliability most of the frames of that segment
have been reconstructed. Because of frame inter-dependence not all of the 415 received frames can
be displayed: only 368 frames out of them can be displayed properly. Error concealment techniques
are not considered here, i.e. a frame that cannot be displayed because of inter-frame dependence is
considered as completely lost. When playing the video we notice that some frames are missing in the
corresponding segment, but overall quality is very satisfying.

142

14.6. CONCLUSIONS 143

With the same video SVSoA version 1 there is no video quality adaptation (since the video is not
hierarchically encoded). Since no congestion control is required, and since there is only one base video
layer SVSoA version 1 uses the same parameter as version 2 in this context. The only difference
between version 1 and 2 in this case is the usage of partial reliability. Therefore the segment starting
at t = 60 seconds would have been entirely lost. The video would have stopped playing for 20 seconds.
More classical approaches like in [4] or the one used in our experiments in section 14.4 would also
had problems scoping with the ”short” (5 or 6 seconds) loss bursts, since the buffering time is much
shorter and more important the FEC capabilities are less important. No video at all would have been
displayed during these periods as we have already shown in section 14.4.

14.6 Conclusions

This chapter introduces a novel multicast streaming solution, SVSoA, for hierarchically encoded
videos. Our solution is in fact mid-way between reliable multicast file transfer and streaming. It
directly benefits from the ALC reliable multicast protocol assets in terms of unlimited scalability,
congestion control (TCP-friendly behavior), and error recovery (packet bursts are easily recovered).
Thanks to ALC, our approach addresses the client heterogeneity issue and lets each of them experience
the best possible display made possible by their access network. Our approach limits video quality
instability by smoothing the effects of packet losses over periods of 20 seconds to one minute. Finally,
the solution is immediately deployable since it does not assume the presence of any specific service
(like QoS support) within the network.
We explain how to initialize the various parameters of SVSoA version 1, what are the associated
trade-offs, and provides answers to several issues like the IGMP leave latency or the impacts of the
slow startup phase of the congestion control protocol. We implemented our approach and carried out
a set of experiments on a local testbed. Results shows that SVSoA version 1 behaves appropriately,
in line with the theory.
Finally, this work introduces Scalable Video Streaming over ALC (SVSoA) version 2 for the video
broadcast over wired or wireless channels. As SVSoA version 1 it benefits from all the ALC reliable
multicast protocols assets in terms of unlimited scalability, congestion control, error recovery etc. It
is no longer restricted to hierarchical encoded videos and can offer an adapted video quality to each
receiver thanks to an FEC partially reliability service.

143

144 CHAPTER 14. SCALABLE VIDEO STREAMING OVER ALC (SVSOA)

144

Chapter 15

Conclusions

This thesis deals with multicast content delivery protocols and applications. It focuses on the FLUTE
application and the underlying ALC transport protocol because of their increasing importance, es-
pecially in the mobile world, after their adoption in the 3GPP MBMS and DVB-H IP DataCasting
(IPDC) standards.
New generations of mobile devices will undoubtedly dominate the future Internet, bringing millions
of new customers, and above all bringing broadcast and multicast technologies to the cellulars. These
technologies have therefore the opportunity to be widely deployed, not only on dedicated cellular
networks, but also more generally in the Internet, where inter-domain multicast routing is far behind
expectations. Reliable multicast content delivery protocols will therefore quite likely gain a lot of
importance.
Another opportunity for reliable multicast is the broad availability of high bandwidth Internet access
technologies (e.g. ADSL/ADSL2) offered to the public. Download of very popular contents on these
networks is done mainly using peer-to-peer solutions today, but these solutions are clearly suboptimal
for many use cases, and reliable multicast solutions can, once the multicast routing structure has been
deployed, favorably replace peer-to-peer techniques (at least for some specific use cases).

15.1 Contributions

Reliable multicast relies on several building blocks such as congestion control, Forward Error Correc-
tion and security, and can be adapted to each use case (e.g. cellular network or high bandwidth access
network). Of particular interest in this thesis is the FEC building block, which is a key component
for any scalable content delivery solution. The work can be divided into two parts:

1. - Reliable multicast building blocks:

In particular I looked at:

• Forward Error Correction Building Block: I especially examined the broad class of “Low Density
Parity Check” (LDPC) large block FEC codes, and came to the conclusion that these codes have
a very high potential. Therefore all our work turns around this class of codes.

I especially looked at its two derivates LDGM-Staircase and LDGM-Triangle, the latter had
been designed during this thesis. I benchmarked these codes in detail with respect to their
inefficiency ratio (i.e. error correcting capacities), memory requirements and decoding/encoding
speeds, and compared them to the RSE small block code.

The implementation of the LDPC codes is also one of my main contributions, and I largely
optimized it during this thesis. I found that LDPC codes and their implementation, have very
promising performance especially when used with large files.

145

146 CHAPTER 15. CONCLUSIONS

The FEC building block has to be adapted to the losses it counters, and I experimentally
evaluated how to best schedule packets, in a reliable file delivery application. Based on these
results I established recommendations on how to best use the FEC building block with respect
to the encountered losses.

Finally, I analyzed the codes with respect to their ability to offer a partial reliability service,
i.e. their ability to decode parts of the content even if the whole process cannot finish because
too many packets are missing. I found quite counter-intuitive results: in spite of the iterative
decoding algorithm the class of LDPC codes is less adapted for a partial reliability service, and
a small block code as RSE should be used instead.

• Congestion Control Building Block: I looked at the startup behavior of the three congestion
control protocols RLC, FLID-SL and WEBRC. I show that the startup phase of these protocols
significantly impacts the performance of a file download application. I mathematically modeled
the behaviors which allows to predict the required download time.

2. - Reliable multicast applications:

I contributed to:

• FLUTE implementation and extensions: Based on our previous results I proposed a file aggre-
gation mechanism for FLUTE at the IETF.

Its purpose is (1) to provide a signaling mechanism that logically groups a set of interdependent
objects and (2) to improve transmission performance, by FEC encoding the aggregated object
rather than individual ones. This is efficient because LDPC codes are better adapted to large
objects than RSE small block codes, and it helps eliminating the ”coupon collector problem”.
Moreover this scheme uses the assets of the partial reliability service that I presented before.

I implemented the FLUTE file delivery application/protocol in our MCLv3 library, which also
includes the ALC protocol. The implementation is quite powerful and allows fine control of
FLUTE (implemented as a general purpose library), ALC and the associated FEC codes. The
library has become quite popular and commercial products use it.

• Video Streaming: I also looked at large scale video delivery: Designing a video streaming solu-
tion for an environment having no or a constrained back channel, due for instance to scalability
requirements, leads to many challenges. I introduce the SVSoA version 1 and version 2 ap-
proaches, based on ALC and using a streaming technique close to the broadcast of files as used
in FLUTE. The first one requires hierarchically encoded videos, while the latter is more adapted
to a wireless broadcast use case and does not need hierarchical encoded videos anymore. These
approaches benefits from all the ALC reliable multicast protocols assets in terms of unlimited
scalability, congestion control and error recovery.

15.2 Future work

The issues I explored in this thesis can be further enhanced and extended. Among these enhancements
I envision:

15.2.1 Application Level FEC Schemes

Application level FEC will become more and more important, and its use won’t be restricted to the
reliable multicast use case described in this thesis. To cite only a few examples that strongly rely on
FEC: peer-to-peer approaches (e.g. [39, 21]), network storage with approaches like OceanStore [90]
and the quite new area of network.

146

15.2. FUTURE WORK 147

Further Comparision Studies

To achieve the best results in these new fields of applications, it is very important to have a very good
knowledge of all the existing application level FEC codes and their respective performances. Therefore
the comparision study of the large block LDPC codes carried out in this thesis should be extended,
by benchmarking the actual performances of rateless codes such as Raptor and Online-codes. Other
codes, that have not been not mentioned in this work, like algebraic-geometric codes [12] and SPC
product codes [36] should also be included in this extended comparision study.

FEC for Embedded Systems

Moreover, FEC codes will increasingly be used by constrained devices like cell phones. There is
therefore a strong incentive to adapt the existing codes and codecs to the specificities of embedded
systems, i.e. small working memory and small CPU consumption. New codes, well suited to these
environments, may arise, as well as new techniques to design embedded FEC codecs.

New Rateless Codes

An interesting challenge is to find new alternative rateless/expandable codes. These codes have
very interesting properties, and the fact that the code can create an infinity of parity symbols is an
important asset in many use cases. Having an IPR free rateless code would be of great help to the
community. Because of the existence of many IPRs in this area it is quite difficult to design new
expandable codes that are not covered by these patents. I however still believe that such a scheme
exists.

Other Improvements

More generally in the area of FEC, even if a lot of work has already been carried out, there remain
many things to explore. I envision the following directions:

1. addressing the performance issue with large block FEC codes when used with small files. Using
smaller symbols as it is often proposed, is one possibility but not the only one. Plank et al. [89]
did first evaluations and observations in this domain by experimentally exploring a large set of
LDPC codes, that have been applied to small blocks. Further studies are needed to find and
understand optimal codes for small blocks;

2. investigating the concatenation of several FEC codes that may possibly improve performance.
For instance, RSE is used in a first step to encode the content, and LDPC is then used in a
second step to encode the symbols produced by RSE. Note that rateless codes such as Raptor
and Online codes also rely on a two step encoding mechanism. This incites us to investigate
other combinations of concatenations;

3. finding good unequal error protection (UEP) schemes. This can be an interesting solution when
applied to multimedia streams (remember that I-frames are more important than P-frames).
UEP was not satisfyingly solved in the past;

4. looking at cross-layer FEC protection with a single code.

This (non-exhaustive) list will certainly have to be refined and revised over time.
The latter aspect deserves some more explanations: Simulations carried out at DVB-H showed that
in a well known environment, application layer FEC can favorably replace any FEC used at lower
levels. More precisely, because the entire protocol stack is known, application layer FEC can be
adapted to the behavior of each layer. This is a great advantage, since for instance, symbols could
be aligned with layer-2 frames. This allows layer-2 erasure correction, while doing FEC encoding
over the entire file, which is necessarily more efficient from an erasure recovery perspective. Other
cross-layer optimizations that take into account for instance the channel loss pattern at layer-2 need
to be invested.

147

148 CHAPTER 15. CONCLUSIONS

15.2.2 Application Level Reliability

FLUTE/ALC does not offer a fully reliable distribution service when transmissions have finite duration
(e.g. in push mode). The application level FEC mechanisms presented in this thesis largely improve
the situation compared to a use case without any FEC, but this protection is not always sufficient.

File Repair Mechanisms

Therefore a complementary reliability mechanism, built on top of, or used in conjunction with FLUTE
or ALC, is required in some cases. This has been done in MBMS with a dedicated file repair mech-
anism, whose scalability in case of widespread packet losses remains to be proven. Other repair
mechanisms, e.g. peer-to-peer approaches that may reuse the FEC encoding of ALC or NORM, also
need to be invested.

Using Peer-to-Peer in conjunction with FLUTE?

The peer-to-peer approach is especially of interest since, as we have mentioned before, these approaches
increasingly rely on FEC. Besides peer-to-peer can be built on top of FLUTE (using FLUTE in
unicast mode), as well as used in parallel using other transport protocols. It seems therefore quite
straightforward to look how these approaches can be mapped to the reliable multicast use case.
Future work will address the problem of finding an optimal combination of these ”application level”
reliability techniques across a wide range of use cases. It could substantially improve large scale
content distribution services. Ideally, any such scheme or optimization will improve scalability and
independence from the underlying transport layer (i.e. ALC/FLUTE or NORM).

15.2.3 Security

Security is a subject that was out of scope of this thesis. However there is a strong need to gain
experience in this area.
IPDC and MBMS provide security through a hybrid of DRM (Digital Rights Management) and
specialized transport security protocols. The full advantage of IETF security mechanisms (such as
IPsec and the building blocks defined by the MSEC (Multicast Security) working group) is yet to be
explored and exploited. This is especially true in open networks (e.g. Wifi hot spots) and the public
Internet.

TESLA

The Planète research team has started some activities in this area, in particular with an instantiation
of the TESLA authentication building block to the specificities of ALC and NORM protocols, in order
to provide a source authentication and message integrity service. This is only a first step towards a
secure reliable multicast environment.

Fundamental Group Communication Security Schemes

More generally, group communications lack fundamental security schemes allowing to efficiently man-
age and implement authentication, encryption and group and content access rights in a scalable
manner. Further research on this area is definitely needed.

148

Bibliography

[1] Digital Fountain Inc. URL: http://www.digitalfountain.com/.

[2] M6Bone - IPv6 multicast network. URL: http://www.m6bone.net/.

[3] MPEG4IP project home page. http://sourceforge.net/projects/mpeg4ip/.

[4] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects; Multimedia Broadcast/Multicast Setvice; Protocols and Codecs (Release 6.1.0), June
2005. 3GPP TS 26.346 v1.5.0.

[5] B. Adamson, C. Bormann, M. Handley, and J. Macker. NACK-Oriented Reliable Multicast
(NORM) Building Blocks, Nov. 2004. Request for Comments 3941.

[6] B. Adamson, C. Bormann, M. Handley, and J. Macker. Negative-acknowledgment (NACK)-
Oriented Reliable Multicast (NORM) Protocol, Nov. 2004. Request for Comments 3940.

[7] R. B. Adamson and J. Macker. Quantitative prediction of nack oriented reliable multicast
(norm) feedback. In Proc. IEEE MILCOM 2002, Oct. 2002.

[8] H. Bai and M. Atiquzzaman. Error modeling schemes for fading channels in wireless communi-
cations: A survey. IEEE Communications Surveys and Tutorials, 5(2), 2003.

[9] S. Bajaj, L. Breslau, and S. Shenker. Uniform versus priority dropping for layered video. In
ACM SIGCOMM’98, Sept. 1998.

[10] J. Bolot, T. Turletti, and I. Wakeman. Scalable feedback control for multicast video distribution
in the internet. In ACM SIGCOMM’94, Oct. 1994.

[11] C. Borman, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L.-E. Jonsson, R. Hak-
enberg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki, K. Svanbro, T. Wiebke,
T. Yoshimura, and H. Zheng. RObust Header Compression (ROHC): Framework and four
profiles: RTP, UDP, ESP, and uncompressed, July 2001. Request for Comments 3095.

[12] A. Brown. Applications of algebraic-geometric codes over the erasure channel. In IT-Lab Con-
ference on Coding and Communications at ENST, Paris, France, Nov. 2004.

[13] A. Burr. Turbo-codes: the ultimate error control codes? Electronics and Communication
Engineering Journal, 2003.

[14] J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher, A. Roetter, and W. Shaver. Flid-dl:
Congestion control for layered multicast. In 2nd Workshop on Networked Group Communication
(NGC2000), Nov. 2000.

[15] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable
distribution of bulk data. In ACM SIGCOMM’98, Aug. 1998.

[16] C. Castelluccia, G. Montenegro, J. Laganier, and C. Neumann. Hindering Eavesdropping via
IPv6 Opportunistic Encryption. In Proc. of 9th European Symposium on Research in Computer
Security (ESORICS 2004), volume 3193, pages 309–321. Lecture Notes in Computer Science
(LNCS), Springer-Verlag, September 2004.

149

150 BIBLIOGRAPHY

[17] A. Chaintreau, F. Baccelli, and C. Diot. Impact of network delay variation on multicast sessions
performance with tcp-like congestion control. IEEE Trans. on Networking (TON), pages 500–
512, 2002.

[18] S. Cheung, M. Ammar, and X. Li. On the use of destination set grouping to improve fariness
in multicast video distribution. In IEEE INFOCOM’96, Mar. 1996.

[19] D. Clark and D. Tennenhouse. Architectural considerations for a new generation of protocols.
In IEEE SIGCOMM’90, Sept. 1990.

[20] B. Classon and Y. Blankenship. Low-Complesity LDPC coding for OFDMA PHY, May 2004.
Contribution to the IEEE 802.16 Broadband Wireless Access Working Group.

[21] L. Dairaine, L. Lancrica, and J. Lacan. Enhancing peer to peer parallel data access with
peerfect. In Fifth International Workshop on Networked Group Communication (NGC’03),
Munich, Germany, Sept. 2003.

[22] W. G. Davis. SinisterSdp - An open source Session Description Protocol library. URL:
https://sourceforge.net/projects/sinistersdp/.

[23] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balenseifen. Deployment issues for the ip
multicast service and architecture. IEEE Networking magazine special issue on Multicasting,
2000.

[24] H. Eriksson. Mbone: The multicast backbone. Communications of the ACM, 1994.

[25] H. Ernst, L. Sartorello, and S. Scalise. Transport layer coding for the land mobile satellite
channel. In 59th IEEE Vehicular Technology Conference (VTC’04), Milan, Italy, May 2004.

[26] ETSI. IP Datacast Baseline Specification: Specification of Interface I MT (a080), Apr. 2004.
DVB Interim Specification.

[27] S. Faurite, A. Francillon, and V. Roca. TESLA source authentication in the ALC and NORM
protocols, July 2005. Work in Progress: <draft-faurite-rmt-tesla-for-alc-norm-00.txt>.

[28] G. D. Forney. The viterbi algorithm: A personal history. In Viterbi Conference, University of
Southern California, Los Angeles, Mar. 2005.

[29] T. A. S. Foundation. Xerces-C++ Parser. URL: http://xml.apache.org/xerces-c/.

[30] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types, Nov. 1999. Request for Comments 2046.

[31] R. G. Gallager. Low density parity check codes. IEEE Transactions on Information Theory,
8(1), Jan. 1962.

[32] J. Gemmell, E. Schooler, and J. Gray. Fcast multicast file distribution. IEEE Network, 14(1),
Jan. 2000.

[33] M. Handley and V. Jacobson. SDP: Session Description Protocol, Apr. 1998. Request for
Comments 2327.

[34] S. Kesha. Why cell phones will dominate the future internet. ACM Computer Communication
Review (CCR), 2005.

[35] A. Konrad, B. Zhao, A. Joseph, and R. Ludwig. A markov-based channel model algorithm for
wireless networks. In Proceedings of Fourth ACM International Workshop on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, 2001.

[36] M. A. Kousa. A novel approach for evaluating the performance of spc product codes under
erasure decoding. IEEE Trans. Inform. Theory, 50(1), Jan. 2002.

150

BIBLIOGRAPHY 151

[37] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persis-
tent storage. In Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems Services, Nov. 2000.

[38] J. E. Kurose and K. W. Ross. Computer Networking - A Top-down Approach Featuring the
Internet. Addison-Wesley, Reading, Massachusetts, third edition, 2005.

[39] J. Lacan, L. Dairaine, L. Lancerica, and J. Fimes. Peerfect : Efficient peer to peer data access
scheme using a fast integer-based cauchy erasure code. Research report, ENSICA, 2003.

[40] J. Lacan and J. Fimes. A construction of matrices with no singular square submatrices. In 7th
International Conference on Finite Fields and Applications, May 2003.

[41] E. Levinson. The MIME Multipart/Related Content-type, Aug. 1998. Request for Comments
2387.

[42] B. Li and J. Liu. Multirate video multicast over the internet: an overview. 17(1), Jan. 2003.
IEEE Network, “Multicasting: an enabling technology”.

[43] W. Li. Overview of fine granularity scalability in mpeg-4 video standard. 11(3), Mar. 2001.
IEEE Transaction on Circuits and Systems for Video Technology.

[44] M. Luby. Lt codes. In 43rd IEEE Symposium on Foundations in Computer Science, Nov. 2002.

[45] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, and J. Crowcroft. Asynchronous Layered Coding
(ALC) protocol instantiation, Dec. 2002. Request for Comment 3450.

[46] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, M. Handley, and J. Crowcroft. Forward Error
Correction Building Block, Dec. 2002. Request for Comments 3452.

[47] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, M. Handley, and J. Crowcroft. Layered Coding
Transport (LCT) building block, Dec. 2002. Request for Comments 3451.

[48] M. Luby and V. Goyal. Wave and Equation Based Rate Control Building Block, Apr. 2004.
Request for Comments 3738.

[49] M. Luby, V. Goyal, S. Skaria, and G. Horn. Wave and equation based rate control using multicast
round trip time. In ACM SIGCOMM’02, Aug. 2002.

[50] M. Luby, J.Gemmell, L.Vicisano, L.Rizzo, J. Crowcroft, and B. Lueckenhoff. synchronous Lay-
ered Coding: A massively scalable reliable multicast protocol, Jan. 2000. Work in Progress:
<draft-ietf-rmt-pi-alc-01.txt>.

[51] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Improved low-density codes using
irregular graphs. IEEE Transactions on Information Theory, 47(2), Feb. 2001.

[52] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-
resilient codes. In Proc. 29th Symp. on Theory of Computing, pages 150–159, May 1997.

[53] M. Luby, A. Shokrollahi, V. Stemann, M. Mitzenmacher, and D. Spielman. Irregularly graphed
encoding technique, June 2000. U.S. Patent No. 6,081,909.

[54] M. Luby, A. Shokrollahi, V. Stemann, M. Mitzenmacher, and D. Spielman. Loss resilient
decoding technique, June 2000. U.S. Patent No. 6,073,250.

[55] M. Luby, A. Shokrollahi, V. Stemann, M. Mitzenmacher, and D. Spielman. Message encoding
with irregular graphing, Dec. 2000. U.S. Patent No. 6,163,870.

[56] M. Luby, A. Shokrollahi, V. Stemann, M. Mitzenmacher, and D. Spielman. Loss resilient code
with double heavy tailed series of redundant layers, Feb. 2001. U.S. Patent No. 6,195,777.

151

152 BIBLIOGRAPHY

[57] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer. Raptor Forward Error Correction
Scheme, Sept. 2005. Work in Progress: <draft-ietf-rmt-bb-fec-raptor-object-02.txt>.

[58] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft. The use of Forward
Error Correction (FEC) in reliable multicast, Dec. 2002. Request for Comments 3453.

[59] M. Luby, L. Vicisano, and A. Haken. Reliable multicast transport building block: Layered Con-
gestion Control, Nov. 2000. Work in Progress: <draft-ietf-rmt-bb-lcc-00.txt>.

[60] J. O. M. Nilsson, D. Dalby. Layered audiovisual coding for multicast distribution on ip networks.
In 6th IEEE, European Workshop on Distributed Imaging, Nov. 1999.

[61] D. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University
Press, ISBN: 0521642981, 2003.

[62] P. Maymounkov. Online codes. Research Report TR2002-833, New York University, Nov. 2002.

[63] P. Maymounkov and D. Mazieres. Rateless codes and big downloads. In Proc. of the 2nd
International Workshop on Peer-to-Peer Systems, 2003.

[64] P. Maymounkov and D. Mazires. A construction of matrices with no singular square submatrices.
In Proc. of IPTPS’03, Feb. 2003.

[65] H. Mehta, R. Walsh, I. Curcio, J. Peltotalo, and S. Peltotalo. SDP Descriptors for FLUTE,
May 2005. Work in Progress: <draft-ietf-rmt-flute-sdp-02.txt>.

[66] M. Murata, S. S. Laurent, and D. Kohn. XML Media Types, Jan. 2001. Request for Comments
3023.

[67] R. Neal. Software for Low Density Parity Check (LDPC) codes.
http://www.cs.toronto.edu/∼radford/ldpc.software.html.

[68] C. Neumann, J. Laganier, C. Castelluccia, and G. Montenegro. An
Open Source Implementation of Opportunistic Encryption. URL:
http://www.inrialpes.fr/planete/people/chneuman/OE.html.

[69] C. Neumann and V. Roca. Multicast streaming of hierarchical mpeg4 presentations. In ACM
Multimedia 2002 (Short Paper), Juan les Pins, France, Dec. 2002.

[70] C. Neumann and V. Roca. Scalable video streaming over alc (svsoa): a solution for the large
scale multicast distribution of videos. Research Report 4769, INRIA, Mar. 2003.

[71] C. Neumann and V. Roca. A Survey of Large Scale Multimedia Streaming Techniques for
the Internet, Nov. 2003. Tutorial presented during the International Workshop on Multimedia
Interactive Protocols and Systems (MIPS’03), Napoli, Italy.

[72] C. Neumann and V. Roca. Analysis of fec codes for partially reliable media broadcasting
schemes. In 2nd ACM International Workshop on Multimedia Interactive Protocols and Systems
(MIPS’04), Grenoble, France, Nov. 2004.

[73] C. Neumann and V. Roca. Scalable video streaming over alc (svsoa): a solution for the large scale
multicast distribution of videos. In Streaming media distribution over the Internet (SMDI04),
Athens, Greece, May 2004.

[74] C. Neumann and V. Roca. Impacts of the startup behavior of multilayered multicast congestion
control protocols on the performance of content delivery protocols. In IEEE 10th International
Workshop on Web Content Caching and Distribution (WCW 2005), Sophia Antipolis, French
Riveria, France, Sept. 2005.

[75] C. Neumann, V. Roca, A. Francillon, and D. Furodet. Impacts of packet scheduling and packet
loss distribution on fec performances: Observations and recommendations. In ACM CoNEXT’05
Conference, Toulouse, France, Oct. 2005.

152

BIBLIOGRAPHY 153

[76] C. Neumann, V. Roca, A. Francillon, and D. Furodet. Impacts of packet scheduling and packet
loss distribution on fec performances: Observations and recommendations. Research Report
5578, INRIA, May 2005.

[77] C. Neumann, V. Roca, J. Labouré, and Z. Khallouf. An Open-Source Imple-
mentation of a Low Density Parity Check (LDPC) Large Block FEC Code. URL:
http://www.inrialpes.fr/planete/people/roca/mcl/.

[78] C. Neumann, V. Roca, and R. Walsh. A File Aggregation Scheme for FLUTE, June 2005. Work
in Progress: <draft-neumann-rmt-flute-file-aggregation-01.txt>.

[79] C. Neumann, V. Roca, and R. Walsh. Large scale content disrtibution protocols. ACM Computer
Communication Review (CCR), 35(5), Oct. 2005.

[80] Y. Nomura, R. Walsh, J.-P. Luoma, H. Aseada, and H. Schulzrinne. A Framework for the Usage
of Internet Media Guides, July 2005. Work in Progress: <draft-ietf-mmusic-img-framework-
08.txt>.

[81] T. Paila. Mobile internet over ip data broadcast. In 10th IEEE Int. Conference on Telecommu-
nications (ICT’03), Papeete, French Polynesia, Jan. 2003.

[82] T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh. FLUTE - File Delivery over Unidi-
rectional Transport, Oct. 2004. Request for Comments 3926.

[83] J. Peltotalo and S. Peltotalo. MAD/TUT Project: an Open Source Implementation of FLUTE.
URL: http://www.atm.tut.fi/mad/.

[84] S. Peltotalo, J. Peltotalo, and V. Roca. Simple XOR, Reed-Solomon, and Parity Check Matrix-
based FEC Schemes, June 2004. Work in Progress: <draft-peltotalo-rmt-bb-fec-supp-xor-pcm-
rs-00.txt>.

[85] A. Perrig. TESLA Implementation. URL: http://www.ece.cmu.edu/ adrian/tesla.

[86] A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient and secure source authentication
for multicast. In Network and Distributed System Security Symposium, NDSS ’01, pages 35–46,
Feb. 2001.

[87] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The tesla broadcast authentication protocol.
RSA CryptoBytes, 5(Summer), 2002.

[88] J. Plank and M. Thomason. On the practical use of ldpc erasure codes for distributed storage
applications. Research Report UT-CS-03-510, University of Tennessee, Sept. 2003.

[89] J. S. Plank, A. L. Buchsbaum, R. L. Collins, and M. G. Thomason. Small parity-check erasure
codes - exploration and observations. In DSN-05: International Conference on Dependable
Systems and Networks, June 2005.

[90] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: the
oceanstore prototype. In 2nd USENIX Conference on File and Storage Technologies (FAST
2003), Mar. 2003.

[91] L. Rizzo. Effective erasure codes for reliable computer communication protocols. ACM Computer
Communication Review, 27(2), Apr. 1997.

[92] L. Rizzo. pgmcc: a tcp-friendly single-rate multicast congestion control scheme. In SIGCOMM
’00: Proceedings of the conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, pages 17–28, New York, NY, USA, 2000. ACM Press.

[93] V. Roca and al. MCLv3: an Open Source GNU/GPL Implementation of the ALC and NORM
Reliable Multicast Protocols. URL: http://www.inrialpes.fr/planete/people/roca/mcl/.

153

154 BIBLIOGRAPHY

[94] V. Roca, Z. Khallouf, and J. Laboure. Design and evaluation of a low density generator matrix
(ldgm) large block fec codec. In Fifth International Workshop on Networked Group Communi-
cation (NGC’03), Munich, Germany, Sept. 2003.

[95] V. Roca and B. Mordelet. Improving the efficiency of a multicast file transfer tool based on alc.
In IEEE International Symposium on Computer Communications (ISCC’02), July 2002.

[96] V. Roca and B. Mordelet. Improving the efficiency of a multicast file transfer tool based on alc.
Research Report 4411, INRIA, Mar. 2002.

[97] V. Roca and C. Neumann. Design, evaluation and comparision of four large block fec codes, ldpc,
ldgm, ldgm staircase and ldgm triangle, plus a reed-solomon small block fec codec. Research
Report 5225, INRIA, June 2004.

[98] V. Roca and C. Neumann. Low Density Parity Check (LDPC) Forward Error Correction, June
2005. Work in Progress: <draft-roca-rmt-ldpc-00.txt>.

[99] S. Servetto, R. Puri, J.-P. Wagner, P. Scholtes, and M. Vetterli. Video multicast in (large) local
area networks. In IEEE INFOCOM’02, June 2002.

[100] A. Shokrollahi. Raptor codes. Research Report DR2003-06-001, Digital Fountain, 2003.

[101] L. Vicisano, L. Rizzo, and J. Crowcroft. Tcp-like congestion control for layered multicast data
transfer. In IEEE INFOCOM’98, Feb. 1998.

[102] B. Vickers, C. Albuquerque, and T. Suda. Source adaptive multi-layered multicast algorithms
for real-time video distribution. 8(6), Dec. 2000. IEEE Transaction on Networking.

[103] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum algorithm.
IEEE Trans. Inform. Theory, IT-13, Apr. 1967.

[104] B. Watson, M. Luby, and L. Vicisano. Forward Error Correction (FEC) Building Block, Sept.
2005. Work in Progress: <draft-ietf-rmt-fec-bb-revised-01.txt>.

[105] T. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Floyd, and M. Luby. Reliable Multi-
cast Transport Building Blocks for One-to-Many Bulk-Data Transfer, Jan. 2001. Request for
Comments 3048.

[106] J. Widmer and M. Handley. Extending equation-based congestion control to multicast appli-
cations. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 275–285, New York, NY, USA,
2001. ACM Press.

[107] M. Yajnik, S. B. Moon, J. F. Kurose, and D. F. Towsley. Measurement and modeling of the
temporal dependence in packet loss. In IEEE INFOCOM’99, pages 345–352, 1999.

154

