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Introduction

1. Objet de la these

1.1. Motivations. Dans cette these, nous étudions I’estimation non-paramétrique

d’une fonction a partir de données bruitées spatialement inhomogenes. Le mot in-
homogene est utilisé ici pour souligner le fait que la quantité de données peut varier
plus ou moins fortement sur le domaine d’estimation. Le but est de mieux cerner ce
probleme dans le cadre de la théorie minimax.

Considérons les deux simulations suivantes. Les points correspondent aux ob-
servations dont on dispose pour reconstruire le signal (représenté par la courbe

continue).

Fia. 1. Observations homogenes, observations inhomogenes

Sur la simulation de gauche, la quantité de données varie peu : il y a a peu pres
autant d’information partout. On s’attend donc a ce qu’un estimateur basé sur ces
données ait une précision constante sur [0, 1]. Sur la simulation de droite, il y a peu
d’observations au milieu de 'intervalle, et il y en a beaucoup plus vers les extrémités.
Si un estimateur est basé sur ces données, on s’attend a ce qu’il estime mieux vers
les extrémités de [0, 1] qu’en son milieu. C’est cette remarque évidente qui motive le

sujet de cette these. Nous travaillons avec le modele suivant.

1.2. Le modeéle. On suppose que l'on observe des couples (X;,Y;) € [0,1] x R,

1 < i < n, issus du modele
Y = f(Xi) + &, (1.1)
9
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ou les couples (X;,Y;) sont indépendants. La fonction f : [0,1] — R est le parameétre
a estimer. On se place dans un cadre asymptotique, c’est-a-dire que ’on suppose
que n — +oo. Le bruit & est gaussien centré de variance o2 et indépendant des Xj.
Les variables X; sont distribuées selon une densité commune p a support dans [0, 1].
Dans la suite, on notera P?,u la loi jointe des (X;,Y;), 1 <i<net E?,u I’'espérance

par rapport a cette loi.

Ce modele, dit de régression avec plan d’expérience (ou design) aléatoire est un
modele classique trés étudié en statistique non-paramétrique. On pourra voir par
exemple Korostelev and Tsybakov (1993), Efromovich (1999), Nemirovski (2000),
parmi beaucoup d’autres. Cependant, ce modele a été le plus souvent étudié avec
X; = i/n ou X; uniformes sur [0,1]. Lorsque la densité p n’est pas uniforme, les
données ne sont pas réparties de facon homogene sur [0, 1], On peut faire 'analogie
entre le modele de régression (1.1) et le modele de bruit blanc hétéroscédastique

o

ny(t)

ou B est un mouvement Brownien, voir Brown and Low (1996a), Brown et al. (2002).

dY;" = f(t)dt + dB,, te[0,1], (1.2)

Ce modele est en quelque sorte une version "idéalisée” de (1.1). On peut lire sur le
terme stochastique que la quantité de données est "égale” & nu(t) au point ¢ : p
a une influence du méme ordre que n sur la quantité locale de données. Lorsque
1 n’est pas uniforme, on s’attend alors a ce que la précision d’un estimateur basé
sur des données issues de (1.1) varie sur le domaine d’estimation, et dépende du

comportement de pu.

2. Démarche

Il y a plusieurs facons de mesurer la qualité d’un estimateur fn Lorsque 'objet
a estimer n’est pas de dimension finie (ou non-paramétrique), une approche consiste
a fixer un ensemble F, et & supposer que f € F. Dans la plupart des cas, on choisit
un ensemble caractérisant la régularité et l'intégrabilité de f (F ne doit pas étre
“trop grand”). Puis, on choisit une perte d pour mesurer I’écart entre f et ﬁl Pour

prouver efficacité de f,, sur F, on montre que son risque maximal

supE} {d(fn, f)}

feF
tend vers 0 lorsque n — +o00. La qualité de fn sur F est alors mesurée par la rapi-
dité de cette convergence. On se demande alors quelle est la vitesse de convergence

Dans la figure 1, nous avons simulé des données issues de (1.1). Sur la gauche, le design est

uniforme de densité p(z) = 1p 1)(z) et sur la droite p(z) = 1/12(z — 1/2)*1 1)(z).



2. DEMARCHE 11

optimale sur F. On définit le risque minimaz

Ry, (F,d) = inf supE}L#{d(ﬁ“ f)}7 (2.1)
In fEF

ou l'infimum en f,, porte sur tous les estimateurs, et on calcule 'ordre de grandeur

de cette quantité : on cherche une suite 1,, > 0 telle que
Ry (F,d) < ¥, (2.2)

ou a, < b, signifie 0 < liminf, a,/b, < limsup,, a,/b, < +o0o. La suite v, est la
vitesse minimaz sur F pour la perte d. Elle mesure la difficulté du probleme d’esti-
mation associé a (F,d). Il s’agit donc en quelque sorte d’une notion de complexité.
La notion de risque minimax remonte & Wolfowitz (1950) et est toujours tres utilisée
aujourd’hui, puisqu’elle fournit une méthode simple de comparaison d’estimateurs.

Pour étudier les conséquences du caractere inhomogene des données sur le pro-
bleme d’estimation, nous calculons les vitesses minimax locales et globales dans le
modele (1.1).

2.1. Point de vue local. Du point de vue local, nous nous intéressons a l’esti-
mation de f en un point ou la quantité de données dégénére : on a peu, ou beaucoup
de données en ce point. On considere la perte d,.(f,g9) = |f(z) — g(x)| ou z € (0,1)
est un point fixé. Dans le modele (1.1) avec p strictement positive et bornée, Stone
(1980) montre pour F une boule de Holder de régularité s que le risque minimax
vérifie

Ry (F,dy) = n=%/ s+,
Ce résultat est I'un des premiers (avec les travaux de Ibragimov and Hasminski
(1981)) & montrer que la difficulté d’estimation est liée & la régularité de l'objet
a estimer, et qu’en particulier, ’estimation est d’autant plus aisée que l’objet est

régulier. Nous pouvons poser une premiere question :

(Q1) Que devient cette vitesse dans les cas extrémes ot u(x) =0 et
limy .o p(y) = +oo 7

En effet, lorsque p(x) = 0 (ou limy_., p(y) = +00), on se retrouve dans une situation
ou 'on a peu (ou beaucoup) de données au point x. Nous disons dans ce cas que
le design (ou p) dégénére. Si s = 2 et u(y) est équivalente & |y — z|%, B > 0 quand
y — x, Hall et al. (1997) montrent que la vitesse minimax est n~=2/ %) Dans Guerre
(2000), on peut retrouver l'exemple du design de Hall et al. (1997) avec cette fois-ci
G > —1 et la régularité s = 1. On obtient dans ce cas que la vitesse minimax est
n—1/3+8)

Avec ces résultats, on voit que la vitesse minimax peut dépendre également du

comportement du design, et que cela arrive des que le celui-ci dégénere. Dans le
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chapitre 1 de cette these, nous étudions ce probleme de maniere plus systématique,
avec l'objectif d’avoir une compréhension quantitative de l'influence de p sur la

vitesse minimax.

2.2. Point de vue global. Du point de vue global, nous nous intéressons a ’es-
timation de f avec la perte uniforme doo (f, 9) = || f —glloc 01 [|glloc = SUPeo17 [9(2)]-

Le risque minimax s’écrit alors

Ry(F,dso) = infsup B} {|| Fn — flloc}-
feF

n

L’avantage de cette norme est qu’elle “force” un estimateur a bien se comporter
partout. Naturellement d’autres choix de pertes sont possibles, on peut penser en
particulier aux pertes intégrées d,(f,g) = fol |f(x) — g(z)[Pdx avec p > 0.

Si u est strictement positive et bornée, pour F une boule de Holder de parameétre

s, Stone (1982) montre que
Ry (F,doo) < b,

ou Y, = (log n/n)s/(28+1). On sait ainsi que ’estimation globale de f avec la perte
uniforme est 1égerement plus difficile au sens minimax que I’estimation ponctuelle :
on doit en effet rajouter le terme (logn)*/(?*+1) dans la vitesse ponctuelle. Si y ne
dégénere pas, on observe donc que 1, n’est pas sensible au design (aux ordres de
grandeurs pres), et donc au caractere inhomogene des données. Pour remédier a cela,

nous considérons un risque de la forme

?EEE?’“{ s ro(2) 7 fule) = F(@)]},
ot 7, (+) > 0 est une suite de vitesses dépendantes de 'espace, qu’on appelle norma-
lisation. Si ce risque reste borné quand n — 400, on dira que 7,(-) est une borne
supérieure sur F. Puisqu’on a "rentré” la vitesse dans la perte uniforme, et que cette
vitesse peut maintenant dépendre de I'espace, on pourra illustrer la sensibilité d’un
estimateur a l'inhomogénéité des données.

Si on cherche de telles normalisations lorsque p ne dégénere pas, on se rend
compte immédiatement que si r,(z) < 1, pour tout x, alors r,(-) est une borne
supérieure : il suffit en effet d’appliquer le résultat de Stone. Pour trouver de "bonnes”
normalisations lorsque p ne dégénere pas, nous devons donc nous placer dans un
cadre d’étude plus fin. En effet, on peut raffiner le calcul de la vitesse minimax (2.2)

en cherchant la constante C'(F,d) > 0 vérifiant

Jim Ry(F.d)/Yn = O(F.d).
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On dit alors que C'(F,d) est la constante minimax exacte (asymptotique) associée

au probleme (F,d). Un estimateur fn vérifiant
limsup,, sup E?M{d(fn,f)} < C(F,d) (2.3)
fer

est dit asymptotiquement exact. Pour notre probleme, nous allons donc chercher
rn(+) telle que
limsup,, supE} ,{ sup (@) fo () — f(@)|} < C(F,dw). (2.4)
fer z€[0,1]
Naturellement, une telle normalisation n’est pas unique : il nous faudra donc égale-
ment définir et montrer son optimalité.

On doit le premier résultat donnant la constante minimax exacte a Pinsker
(1980). Ce résultat est écrit dans le modele de bruit blanc gaussien, pour F une boule
de Sobolev et la perte da(f,g) = || f — gl|3 ot || fll2 = ([ f(x)?dz)'/2. Pour la perte
doo, Korostelev (1993) calcule la constante exacte dans le modele de régression (1.1)
avec un design déterministe équidistant X; = i/n et F est une boule de Holder de
parametre s € (0, 1]. Il s’agit du premier résultat d’estimation exacte pour la perte
uniforme. Ce résultat a été généralisé a tout s > 0 dans le modele de bruit blanc
par Donoho (1994). Lorsque s > 1, on ne connait pas la valeur explicite (sauf pour
s = 2) de la constante minimax associée a une boule de Holder. Elle est alors définie
comme solution d’un certain probleme d’optimisation.

Depuis les résultats de Korostelev et de Donoho, d’autres travaux ont été effec-
tués sur le probleme d’estimation exacte ou de test asymptotiquement exact d’hypo-
theses en norme uniforme. On citera Lepski and Tsybakov (2000) sur les tests non-
paramétriques asymptotiquement exacts, Korostelev and Nussbaum (1999) pour
lestimation exacte dans le modele de densité (ou on cherche a estimer la densité
f commune a un n-échantillon) et Bertin (2004a) en bruit blanc dans le cas d'un
signal multidimensionnel anisotrope.

Un résultat plus directement lié a notre probleme est celui de Bertin (2004b), qui
étend le résultat de Korostelev (1993) aux X; aléatoires, avec une densité p continue
et strictement positive. On a en effet dans ce cas

nEI}_lOO R, (F,dx)/vn = C(F,dx),
ol

:< logn )8/(28+1)7 (2.5)

ninf, u(x)
avec la méme constante minimax C(F, dy) que dans Korostelev (1993). Ce résultat
implique que parmi toutes les normalisations constantes, la meilleure est v,,. Il est

alors naturel de se demander :
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(Q2) Peut-on remplacer inf p par p(x) dans cette vitesse ¢

Autrement dit, peut-on montrer que
logn ) s/(2s+1)

rn(x) = (—

nu(z)
est une borne supérieure au sens de (2.4). Si oui, s’agit-il de la meilleure normali-
sation ? dans quel sens? Si on se souvient que dans le modele (1.1), on a "nu(x)”
observations au point x, ces questions paraissent raisonnables. On obtiendrait ainsi
une normalisation adaptée au caractere inhomogene de I'information dans le modele.

Dans le chapitre 3, nous apportons de nouveaux éléments de réponse a ces questions.

Lorsque p dégénere, nous savons que l'ordre de la vitesse minimax ponctuelle

est différent de I'ordre classique. Une question naturelle est alors :
(Q3) Pour l’estimation globale, que se passe-t-il si u(x) = 0 pour certains x ¢

Il n’existe pas a notre connaissance de réponse a cette question. Nous allons chercher
dans ce cas des normalisations sans déterminer la valeur de la constante minimax
asymptotique. On imagine en effet que comme avec 'estimation locale, si r,,(-) est
une normalisation adaptée aux données inhomogenes, la vitesse r,,(y) pour y proche
d’un un point z tel que u(x) = 0 est plus lente que la vitesse 1, classique de Stone,
et que pour d’autres y, on doit retrouver le méme ordre que 1,. On cherche alors la
"forme” d’une telle normalisation. Nous répondons dans une certaine mesure a (Q3)

dans le chapitre 4.

2.3. Estimation adaptative. Nous évoquons maintenant le probleme de l’es-
timation adaptative. En effet, un estimateur ”simple” dépend typiquement de la
classe F considérée, par le biais du parametre de régularité s par exemple. Na-
turellement, un tel parametre n’est pas connu en pratique. Depuis les travaux de
Efromovich (1985) et de Lepski (1988, 1990, 1992), une littérature tres riche sur ce
sujet est apparue, notamment grace a l'essor des méthodes mon-linéaires en par-
tie liées aux bases d’ondelettes (le seuillage dans des bases d’ondelettes, initié par
Donoho and Johnstone (1994) et Donoho et al. (1995)).

11 faut donc fournir un effort supplémentaire pour construire un estimateur adap-
tatif, qui converge a la "bonne” vitesse simultanément sur une réunion de classes
indexées par un parametre de régularité. Les méthodes adaptatives se répartissent
essentiellement en trois parties : estimation non-linéaire (seuillage) par méthodes
d’ondelettes (ou autres méthodes de décomposition d’un signal), méthodes de sélec-
tion de modele, et estimation & noyaux avec sélection adaptative du parametre de
lissage (la méthode de Lepski). Sur 'estimation adaptative dans le modele de régres-

sion avec design irrégulier ou aléatoire, nous citons les travaux de Antoniadis et al.
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(1997), Antoniadis and Pham (1998), Brown and Cai (1998), Delouille et al. (2001,
2004), Kerkyacharian and Picard (2004) pour les méthodes d’ondelettes, Baraud
(2002), Birgé (2002) pour les méthodes de sélection de modele. La méthode adapta-
tive que nous proposons dans cette these est basée sur les travaux de Lepski (1988,
1990, 1992), Goldenshluger and Nemirovski (1997), Lepski et al. (1997), Lepski and
Spokoiny (1997) et Spokoiny (1998).

3. Résultats

3.1. Estimation ponctuelle. En fonction de la régularité locale de f et du
comportement local de p, nous obtenons dans le chapitre 1 toute une gamme de
vitesses minimax, comprenant des vitesses tres lentes et des vitesses tres rapides.
Nous calculons le risque minimax ponctuel en un point z fixé pour deux types de
comportements de p. Le premier type de comportement, dit a variation réguliére,
contient des comportements en |y — m]ﬁ pour y proche de x. Le deuxieéme type de
comportement, dit a ['-variation, décrit des comportements ou u tend vers 0 au
point z plus vite que |y — z|® pour n’importe quel 8. Dans le premier cas, si f a
localement une régularité de type Holder de parametre s, on obtient des vitesses

minimax de la forme

n_s/(1+28+5)€(1/n),

ou ¢ est un terme lent (typiquement £(1/n) = (logn)?) et 3 est l'indice de variation
réguliere de p, qui quantifie en quelque sorte la quantité d’information au point x.
En particulier, lorsque = —1 (on a beaucoup d’information), la vitesse minimax

devient
n~Y20(1/n),

ce qui est quasiment la vitesse d’estimation paramétrique (au terme lent pres). Sur
ces exemples, on peut retrouver en particulier les résultats de Hall et al. (1997) et de
Guerre (2000). Dans le deuxieme type de comportement, on peut donner un exemple
ou u(y) se comporte comme exp(—1/|y —x|*) avec @ > 0 (prolongé par 0 en x) pour

y proche de z. Si f a une régularité s, on obtient alors la vitesse minimax

—s/a
)

(logn)

qui est une vitesse tres lente. Ces résultats répondent ainsi a la question (Q1) énoncée
plus haut.

Dans le chapitre 2, nous proposons une procédure adaptative en la régularité
de f et qui ne dépend pas dans sa construction de u. Cette méthode est basée sur
les travaux de Lepski (1988, 1990, 1992), Goldenshluger and Nemirovski (1997),
Lepski et al. (1997), Lepski and Spokoiny (1997) et Spokoiny (1998). Lorsque i a
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de nouveau un comportement du type variation réguliere d’indice 3, et que f a une

régularité s, nous montrons que cette procédure converge avec la vitesse
(logn/n)*/+25+D ((log n/n),

qui est la vitesse minimax au terme log n pres. Nous montrons que dans un certain
sens, on ne peut pas se dispenser de la pénalisation log n pour ’estimation ponctuelle
avec un estimateur adaptatif. Ce phénomene, dit de ”prix pour l'adaptation”, est
spécifique au risque ponctuel. Il a été mis en évidence dans le modele de bruit blanc
par Lepski (1990), voir aussi Lepski and Spokoiny (1997), et expliqué a I’aide d’autres
techniques dans Brown and Low (1996b) dans le modele de régression avec design

équidistant.

3.2. Estimation globale. Dans les chapitres 3 et 4, nous étudions I’estimation
globale de f en norme uniforme. Dans le chapitre 3, si u est strictement positive et
continue, nous proposons un estimateur asymptotiquement exact sur une boule de

Holder F de parametre s > 0 arbitraire, qui converge avec la vitesse

logn ) 5/(2s+1)
nu(z)

rale) = (

Ce résultat s’écrit

limsup,, sup E'} { sup rn(x )‘”ﬁl(x) — f(m)\} < P(F), (3.1)
feF x€[0,1]

ou P(F) > 0 est une constante définie avec un certain probleme d’optimisation (op-

timal recovery), de la méme maniere que dans Donoho (1994). Dans le chapitre 4,

nous proposons une hypothese stipulant que g est continue et strictement positive

sur [0, 1], excepté en un nombre fini de points ou elle varie régulierement a gauche

et a droite. Sous cette hypothese, ou p peut s’annuler, nous montrons que la nor-

malisation

ou hy, () vérifie pour tout x € [0, 1]

hp(x)® =

1/2
logn ) / , (3.2)
t)dt

(s

hn(

est une borne supérieure sur F. Un exemple ou le calcul de cette normalisation est

explicite correspond au choix s = 1 et u(x) = |z — 1/2[1g () :
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1/3 : I 1/2
(%)/ SIZEE_O,%—(;?/%)/];
() = L{((2— Lyt 4 Hogm)1/2 (5 1y231/2
n - -
siz e % — (;g;gznn)l/{%Jr (21(13%)1/2};
L (n(lé’ifl))l/?’ six e _%Jr (21?/%7;)1/271}7

que nous représentons pour différentes valeurs de n dans la figure 2 ci-dessous. Ces
bornes supérieures répondent & moitié aux questions (Q2) et (Q3) ci-dessus : en effet,

nous devons prouver leur optimalité, dans un sens que nous allons devoir déterminer.

0.3 T Fl
; r,withn=100 ——
n=1000 -

0.25 |- s / e

0.05 | B P / i

Fia. 2. r,(:) pour n = 100, 1000, 10000

Pour montrer que 1, est optimale sur une classe F au sens minimax, on montre
liminf,, i]I?lf ?ug):E?M{w(qﬁ;len _ f“oo)} > 0.
n fe

Cette borne inférieure implique qu’aucun estimateur ne peut converger a une vitesse
plus rapide que v, sur la classe F pour la perte do,. Pour montrer 'optimalité d’une
normalisation, c’est-a-dire d’une vitesse "non constante”, cette définition n’est plus
satisfaisante. En effet, si on montre

liminf,, inf sup B}, {w( sup pa(2) | fulz) — f(2)])} >0, (3.3)

fn FEF z€[0,1]

on n’obtient qu’'une propriété d’optimalité faible pour p,(+) : elle n’exclut pas l'exis-
tence d’une autre borne supérieure ¥,(-) telle que pour certains z, ¥, (z) < pn(x).

Pour remédier a cela, nous montrons des résultats renforgant (3.3). L’idée est de
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remplacer le supremum en z € [0, 1] par un supremum en z € I, ou I,, est un inter-
valle quelconque dans [0, 1], éventuellement petit (de longueur qui tend vers 0 avec
n). Dans le chapitre 3, nous montrons que pour n’importe quel intervalle I,, C [0, 1]
"petit” (mais pas trop), on a
liminf,, i;%zf ?EEE?“{ jgg Tn(a;)_l\fn(a:) — f(x)\} > P(F),

ou 1y, (+) et P(F) sont les mémes que dans la borne supérieure (3.1). On obtient ainsi
un résultat d’optimalité satisfaisant pour la normalisation 7,(-). Nous montrons un
résultat similaire dans le cas du design dégénéré dans le chapitre 4.

Dans le chapitre 3, nous proposons également une bande de confiance inhomo-

gene Cy(+) pour f, qui vérifie a un niveau « fixé,

}Ielg__]??“{ f(z) € Co(x), pour tout € [0,1]} >1— o,

des que n est assez grand. La construction de cette bande de confiance ne dépend
pas de u, et sa longueur varie sur le domaine d’estimation en fonction de la quantité
locale de données.

Dans le chapitre 4, nous proposons un estimateur adaptatif qui estime f glo-
balement avec une perte uniforme discrete. Nous montrons que pour cette perte, il
converge simultanément sur plusieurs classes de fonctions avec une régularité spa-
tialement inhomogene. Sur une boule de Hdolder, il converge avec la normalisation

optimale 7, (-). Cet estimateur est similaire & celui du chapitre 2.

4. Perspectives

On peut généraliser le modele de régression (1.1) en considérant un niveau bruit

hétéroscédastique. Le modele s’écrit alors
Y; = f(Xi) + 0(X4)&,

ol les & sont des gaussiennes centrées réduites, et o : [0,1] — RT. On pourrait
calculer la vitesse minimax en un point avec un design qui dégénere et un niveau
de bruit qui dégénere. On imagine en effet qu’'un phénomene de compensation entre
un niveau de bruit élevé et le fait d’avoir beaucoup de données pourrait avoir lieu,
et qu’on doit pouvoir lire cet effet sur la vitesse minimax.

Il serait également intéressant de savoir si les résultats d’équivalence asympto-
tiques de Brown and Low (1996a) et Brown et al. (2002) restent vrais dans le cas
d’un design fortement inhomogene, voir dégénéré.

Si K est un opérateur sur une classe F et si f € F, on peut considérer le

probleme “inverse”

Y = K(f)(Xi) +&-
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Typiquement, K est un opérateur de convolution qui régularise f. On a alors un
effet de lissage sur f, auquel s’ajoute I'inhomogénéité des données. Que devient
la vitesse minimax dans ce cas? A-t-on un effet de compensation entre la perte
d’information liée & I’observation indirecte de f, et un possible gain d’information lié
a la concentration de données en certains points 7 Enfin, I’extension de nos résultats
a des dimensions supérieures (notamment la dimension 2, en vue d’une application

au traitement de I'image) est importante.
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Les chapitres 1, 2 et 3 font I'objet d’articles soumis a des revues. Tous les cha-
pitres peuvent étre lus indépendamment les uns des autres, d’ou la présence inévi-

table de quelques répétitions dans les définitions.



CHAPTER 1

Convergence rates for pointwise curve estimation with a

degenerate design

In this chapter, we want to recover the regression function at a point zg where
the design density is vanishing or exploding. Depending on assumptions on the
local regularity of the regression function and the local behaviour of the design, we
find several minimax rates. These rates lie in a wide range, from slow ¢(1/n) rates,
where £ is slowly varying (for instance (logn)~1), to fast n~'/2£(1/n) rates. If the
continuity modulus of the regression function at zg can be bounded from above by
an s-regularly varying function, and if the design density is S-regularly varying, we

prove that the minimax convergence rate at xq is n~%/(1+25+8)¢(1/n).

1. Introduction

1.1. The model. Suppose that we have n independent and identically dis-
tributed observations (X;,Y;) € [0,1] x R from the regression model

Y = f(Xi) + &, (1.1)

where f : [0,1] — R, where the variables (§;) are centered Gaussian of variance
0? and independent of X71,...,X, (the design) and the X; are distributed with
density u. We want to recover f at a chosen zy € (0,1). For instance, if we take the
variables (X;) distributed with density

plr) = ol
2T 4 (1 — o)A+

|z — 950\61[0,1} (),

for zp € [0,1] and S > —1, this density clearly models a lack of information at
xg when 3 > 0, and conversely a very large amount of information when —1 <
8 < 0. We want to understand the influence of the parameter 8 on the amount of

information at x in the minimax setup.

1.2. Motivation. The pointwise estimation of the regression function is a well-
known problem, which has been intensively studied by many authors. The first
authors who computed the minimax rate over a nonparametric class of Holderian
functions were Ibragimov and Hasminski (1981) and Stone (1980). Over the class
of Holder functions with smoothness s, the local polynomial estimator converges

23



24 1. POINTWISE CONVERGENCE RATES WITH A DEGENERATE DESIGN

with the rate n~*/(1%2%) (see Stone (1980)) and this rate is optimal in the minimax
sense. Many authors worked on related problems: see, for instance, Korostelev and
Tsybakov (1993), Nemirovski (2000), Tsybakov (2003).

Nevertheless, these results require the design density to be non-vanishing and
finite at the estimation point. This assumption roughly means that the information
is spatially homogeneous. The next logical step is to look for the minimax risk at a
point where the design density u is vanishing or exploding. To achieve such a result,
it seems natural to consider several types of behaviours at xg for the design density,
and to compute the corresponding minimax rates. Such results would improve the
statistical description of models (here in the minimax setup) with inhomogeneous
information.

When f has a Holder type smoothness of order 2 and if () ~ 2 near 0, where
B> 0, Hall et al. (1997) show that a local linear procedure converges with the rate
n~4(6+6) when estimating f at 0. This rate is also proved to be optimal. In a more
general setup for the design and if the regression function is Lipschitz, Guerre (1999)
extends the result of Hall et al. (1997). Here, we intend to develop the estimation

of the regression function for degenerate designs in a systematic way.

1.3. Organisation of the chapter. In section 2, we present two theorems
giving the pointwise minimax convergence rates in the model (1.1) for different
design behaviours (theorems 1 and 2). In section 3, we construct an estimator and
we give upper bounds for this estimator in section 4 (propositions 4 and 5). In
section 5 we discuss some technical points. The proofs are delayed until section 6

and well-known facts about regular and I'-variation are given in section 7.

2. Main results

All along this study we are in the minimax setup. We define the pointwise

minimax risk over a class ¥ by
1/p
L (s n _ p
Rn (3, p) = (%figgEf,u{!Tn(xo) f(@o)] }) , (2.1)

where inf7, is taken among all estimators 7,, based on the observations (1.1), with
zo the estimation point and p > 0. The expectation E} in (2.1) is taken with
respect to the joint probability distribution ]P’?’ " of the pairs (X;,Y;), 1 <i < n.

2.1. Regular variation. The definition of regular variation definition and its
main properties are due to Karamata (1930). On this topic, we refer to Bingham
et al. (1989), Geluk and de Haan (1987), Resnick (1987) and Senata (1976).
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DEFINITION 1 (Regular variation). A function v : Rt — R™ is regularly varying

at 0 if it is continuous and such that there exists § € R satisfying
Yy >0, hlin([)1+ v(yh)/v(h) = y°. (2.2)

We denote by RV((3) the set of all such functions. A function in RV(0) is slowly

varying.

REMARK. Roughly, a regularly varying function behaves as a power function
times a slower term. Typical examples are 27, 2%(log(1/x))" for v € R, and more
generally any power function times a log or a composition of log-functions to some

power. For other examples, see the references cited above.
2.2. The function class.

DEFINITION 2. If § > 0 and w € RV(s) with s > 0, we define the class Fs(zg,w)
of functions f : [0,1] — R such that

Vh <4, inf sup |f(x)— Pz —x9) <w(h),
PePy |z—mo|<h

where k = |s| (the largest integer smaller than s) and Py, is the set of all the real
polynomials with degree k. We define £, (h) £ w(h)h™%, the slow variation term
of w. If @ > 0 we define

U(a) 2 {f:]0,1] — R such that | f|leo < a}.
Finally, we define
35,.0(w0,w) £ Fs(xo,w) NU().

REMARK. If we take w(h) = rh* for some r > 0, we find back the classical Holder
regularity with radius . In this sense, the class Fs(xg,w) is a slight generalisation

of Holder regularity.

AssuMPTION M. In what follows, we assume that there exists a neighbourhood

W of z¢ and a continuous function v : Rt — R™ such that:
Ve e W, p(x)=v(lz — o). (2.3)

This assumption roughly means that close to zg, there are as many observations
on the left of xy as on the right. All the following results can be extended easily to

the non-symmetrical case, see section 5.1.



26 1. POINTWISE CONVERGENCE RATES WITH A DEGENERATE DESIGN

2.3. Regularly varying design density. Theorem 1 gives the minimax rate
over the class ¥ (see definition 2) for the estimation problem of f at xy when the
design is regularly varying at this point.

We denote by R(xg,3) the set of all the densities p such that (2.3) holds with
v € RV(p) for a fixed neighbourhood W.

THEOREM 1. If
o (s,0) € (0,400) x (—1,400) or (s,5) € (0,1] x {—1},
o X =3, an(®0,w) with w € RV(s), a, = O(nY) for some v > 0 and hy,
given by (2.5),
o 1€ R(xo, ),

then we have
R(Z, p) = o2/ (1H248) =/ A+2548) g (n=1) as n — +o0, (2.4)

where £, is slowly varying and where < stands for the equality in order, up to
constants depending on s, 3 and p (see (2.1)) but not on o. Moreover, the minimax

rate is equal to w(hy) where hy, is the smallest solution to

g

wh) = ——— (2.5)
\/2n foh v(t)dt
EXAMPLE. The simplest example is the non-degenerate design case (0 < p(xp) <
+o00) with ¥ a Hoélder ball (w(h) = rh®, see definition 2). This is the common case
found in the literature. In particular, in this case, the design is slowly varying (8 = 0
with slow term constant and equal to u(xg)). Solving (2.5) leads to the classical
minimax rate

CU rn—s/(l+25)’

where C,, = 528/ (1428) .1/ (142s)

EXAMPLE. Let 8 > —1. We consider v such that foh v(t)dt = hB*1(log(1/h))®
and w(h) = rh®(log(1/h))? where a,~ are any real numbers. In this case, we find

that the minimax rate (see section 6.5 for the details) is
C’or(n(log n)a—'y(l—l-ﬁ)/s)—s/(1+2s+5)’ (26)

where O, = g28/(1+25+0) p(6+1)/(1+25+0)

We note that this rate has the form given by theorem 1 with the slow term
o (h) = (log(1/h))VB+D)=s0)/(1+25+6)  When ~(1 4 3) — sa = 0, there is no slow
term in the minimax rate although there are slow terms in v and w. If 8 =0 and
v = sa, we find back the minimax rate of the first example, although the terms v

and w do not have classical forms.
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EXAMPLE. Let 3= —1, @ > 1 and v(h) = h=!(log(1/h))~“. Let w be the same

as in the previous example with 0 < s < 1. Then the minimax convergence rate is
on~2(logn)@=1/2,

This rate is almost the parametric estimation rate, up to the slow log factor. This
result is natural since the design is very “exploding”: we have a lot of information at
xo thus we can estimate f(x) very fast. Also, we note that the regularity parameters
of the regression function (r, s and ) have (asymptotically) disappeared from the

minimax rate.

2.4. I'-varying design density. The regular variation framework includes any
design density behaving close to the estimation point as a power function times a
slow term. For instance, it does not include a design with a behaviour similar to
exp(—1/|x — x¢|) and defined as 0 at xg, since this function goes to 0 at xo faster
than any power function.

Such a local behaviour can model the situation where we have very little infor-
mation. This example naturally leads us to the framework of I'-variation. In fact,

such a function belongs to the following class introduced by de Haan (1970).

DEFINITION 3 (T-variation). A function v : RT — RT is I-varying if it is
non-decreasing and continuous, and such that there exists a continuous function
p:RT — RT with

vy €R, lim v(h+yp(h))/v(h) = exp(y). (2.7)

We denote by I'V(p) the class of all such functions. The function p is the auziliary

function of v.

REMARK. A function behaving like exp(—1/|z — z¢|) close to xy satisfies as-
sumption M with v(h) = exp(—1/h), and we have v € I'V(p) with p(h) = h%.

THEOREM 2. If
o X =%}, a,(20,w) where w € RV(s) with 0 < s < 1, hy, is given by (2.5)
and o, = O(ry,”) for some v > 0 where 7, = w(hy),
o [ satisfies assumption M with v € T'V(p),
then
Rn(Z, 1) < Ly (n™1) as n — 400, (2.8)
where £, , is slowly varying. Moreover, as in theorem 1, the minimax rate is equal

to w(hy) where hy, is the smallest solution to (2.5).
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EXAMPLE. Let p satisfy assumption M with v(h) = exp(—1/h®) for a > 0 and
w(h) = rh® for 0 < s < 1. It is an easy computation to see that v belongs to the
class I'V(p) for the auxiliary function p(h) = a~th®*l. In this case, we find that

(see section 6.5 for the details) the minimax rate is

—s/a‘

r(logn)

As shown by theorem 2, we find a very slow minimax rate in this example. We note

that the parameters s and « are on the same scale.

3. Local polynomial estimation

3.1. Introduction. For the proof of the upper bound in theorem 1 we use
a local polynomial estimator. The local polynomial estimator is well-known and
has been intensively studied (see Stone (1980), Fan and Gijbels (1996), Spokoiny
(1998), Tsybakov (2003), among many others). When f is a smooth function at xg,
it is close to its Taylor polynomial. A function f € C*(xq) (the space of k times
differentiable functions at xy with a continuous k-th derivative) is such that for any

z close to xg

, ®) (&
f(a:)mf(a:o)—kf(mo)(x—xo)+~-+fT(!0)(a:—a:o)k. (3.1)

Let h > 0 (the bandwidth) and k € N. We define ¢; ,(z) = (x_hx‘))j and the space

Vi = Span{(¢;h)j=0,...k }-

For a fixed non-negative function K (the kernel) we define the weighted pseudo-inner

product

(. o 2 D0 F(Xg(xK (T, (3.2
1=1

and the corresponding pseudo-norm || - ||n.x = /{-, Y (K = 0). In view of (3.1)
it is natural to consider the estimator defined as the closest polynomial with degree
k to the observations (Y;) in the least square sense, that is:
fn = argmin [lg = Y% & (3:3)
9€ Vin
Then fh(xo) is the local polynomial estimator of f at xg. A necessary condition for

ﬁL to be the minimiser of (3.3) is to be solution of the linear problem
find f € Vi, such that Yo € Vi, (F, dhnk = (Y, d)nk- (3.4)

Then, ﬁL is given by

fn="r;, (3.5)
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where
Py = 0opon + 0110+ - + OpPp s (3.6)

with §h the solution, whenever it makes sense, of the linear system
XKg =YK, (3.7)
where XhK is the symmetrical matrix with entries
(X0 = (Djn> dundng, O0<4l<k, (3.8)
and Y}If is the vector defined by
Y5 = (Y, dinni;0<j<k).
We assume that the kernel K satisfies the following assumptions:

AssumpPTION K. Let K be the rectangular kernel K%(z) = %1|m|<1 or a non-
negative function such that:
e Supp K C [-1,1],
e K is symmetrical,
o Koo 2 sup, K(z) < 1,
e There is some p > 0 and 0 < k < 1 such that

|K(z) — K(y)| < plz —y|%; x,y>0.

The assumption K is satisfied by all the classical kernels used in nonparametric

curve smoothing. Let us define
Ny n = #{X; such that X; € [zg — h,zo + h]}, (3.9)
the number of observations in the interval [zg — h,z¢ + h], and the random matrix
X &N, X

Let us denote the o-algebra X,, 2 o(X1, ..., X,,) generated by the design. Note that
X}f is measurable with respect to X,,. The matrix X}f is a "renormalisation” of XhK .
We show in lemma 6 below that this matrix is asymptotically non-degenerate with
a large probability when the design is regular varying.

For technical reasons, we introduce a slightly different version of the local poly-

nomial estimator. Indeed, we introduce a "correction” term in the matrix X{f .

DEFINITION 4. For a given h > 0, we consider ﬁl defined by (3.5) with 0y, the

solution of the linear system

XK =Yk, (3.10)
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when it makes sense (otherwise, we take ﬁL =0 if Ny, ,, = 0) where

vK & vK 1/2
Xh —Xh +Nn’h1k+11)\(XhK)<N71L/E’

with A(M) being the smallest eigenvalue of a matrix M and Iy denoting the

identity matrix in RF+1,

REMARK. We can understand the definition of )NC{L{ as follows: in the "good”
case, that is when X;LK is non-degenerate in the sense that its smallest eigenvalue
is not too small, we solve the system (3.7), while in the "bad” case we still have a

control on the smallest eigenvalue of XX since we always have )\(XhK ) = erL/ ,? .

3.2. Bias-variance equilibrium. A main result on the local polynomial es-
timator is the bias-variance decomposition. This is a classical result, presented
many times in different forms: see Cleveland (1979), Goldenshluger and Nemirovski
(1997), Korostelev and Tsybakov (1993), Spokoiny (1998), Stone (1977), Tsybakov
(1986, 2003). The version in Spokoiny (1998) is close to the one presented here.
The differences are mostly related to the fact that the design is random and that
we consider a modified version of the local polynomial estimator (see definition 4).

We introduce the event
QF 2 (X,,...,X, are such that \(X}) > Ngim and N, > 0}. (3.11)
Note that the matrix X;LK is invertible on Q{f .

PROPOSITION 1 (Bias-variance decomposition). Under assumption K and if f €
Fn(xo,w), the following inequality holds on the event QI:

[ Fa(@o) = F(20)| < AHAOWVE F 1Ko (w(h) + o N, /% ), (3.12)
where conditionally on X, vy is centered Gaussian with E?H{Wﬂ%n} < 1.

REMARK. Inequality (3.12) holds conditionally on the design, on the event QhK .

We will see that this event has a large probability in the regular variation framework.

3.3. Choice of the bandwidth. Now, like with any linear estimation proce-
dure, the problem is: how to choose the bandwidth h? In view of inequality (3.12),

a natural bandwidth choice is

H, £ argmin { w(h) g . (3.13)
he[0,1] { Nn,h}

WV

Such a bandwidth choice is well known, see for instance Guerre (2000). This choice
is sensitive to the design, thus it stabilises the procedure. The estimator is then
defined by

Fal20) 2 fa, (x0),



4. UPPER BOUNDS FOR fy, (z0) 31

where ﬁL is given by definition 4 and H,, is defined by (3.13). The random bandwidth
H,, is close in probability to the theoretical deterministic bandwidth h,, defined by

(2.5) in view of the following proposition.

PROPOSITION 2. Under assumption M, and if w € RV(s) for any s > 0, we can

find 0 <n<e forany 0 < e < 1/2 such that

2

PZ{‘% — 1‘ > E} < 4exp ( — 3 ﬁn/?)nFu(hn/Q))’

where F,(h) £ foh v(t)dt.

When nF,(hy/2) — +00 as n — 400, this inequality entails
Hyp = (1+opp (1))ha,

where op(1) is a sequence going to 0 in probability under P.
Proposition 3 below motivates the choice of a regularly varying design. It makes
a link between the behaviour of the counting process N, (which appears in the
variance term of (3.12)) and the behaviour of u close to zp. Actually, the regular
variation property naturally appears under appropriate assumptions on the asymp-
totic behaviour of Ny, . Let us denote by Pj; the joint probability of the random
variables (X;).
ProrosiTION 3. If assumption M holds with monotone v, then the following
properties are equivalent:
(1) v is regularly varying of index 8 > —1;
(2) There exist sequences (A\,) > 0 and (v,) > 0 such that lim,~y, = 0,

liminf, nA,' > 0, Y41 ~ Y as n — +oo and a continuous function
¢ :RT — R such that for any C > 0:

EZ{NTMC%} ~ ¢(0)/\n as n — +00;

(3) There exist (A,), (7n) and ¢ as before such that for any C > 0 and € > 0:

Nn,Cﬁ/n _
P(C)An

The proof is delayed until section 6. Is is mainly a consequence of the sequence

lim i]P’Z{

n—-+4oo )\n

1(>s}:0.

characterisation of regular variation (see section 7).

4. Upper bounds for an (x0)

4.1. Conditionally on the design. When no assumption on the behaviour
of the design density is made, we can work conditionally on the design. For A > 0
we define the event
Ex 2 {\, > A,
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where A\, £ A\(X Ilfn) Note that E) € X,,. We define also the constant
m(p) = \/2/71/ (1 +t)P exp(—t?/2)dL.
R+

PROPOSITION 4. Under assumption K, if A is such that )\2Nn,Hn >1andn >
k+ 1, we have on Ey:
sup B, {|fulzo) = f(20)|Xn} < m(p)APEE (k + 1P RY,
fefH';L(wva)

where R, = w(H,,).

4.2. When the design is regularly varying. Proposition 5 below gives an
upper bound for the estimator an (zo) when the design density is regularly varying.
This proposition can be viewed as a deterministic counterpart to proposition 4.

Let A\g i be the smallest eigenvalue of the symmetrical and positive matrix with

entries

1
(Ai)ia = g (1 (174 [ R (ay, (1.1
0

for 0 < 7,1 < k. Note that we have A\g x > 0 in view of lemma 6 below.

PROPOSITION 5. Let o > 1 and h,, be defined by (2.5). Let (avw,) be a sequence
of positive numbers such that o, = O(n?Y) for some v > 0. If u € R(xo,3) with
B> —1 and w € RV(s), we have for any p > 0:

lmswp swp  BY{rf(e0) — F@)lP} <O (42)

n fezghn,an (Z‘o,w)

where r, = w(hy,) satisfies
Ty ~ O,2s/(1+2s+5)n—s/(1+2s+ﬁ)€w7u(1/n) as n — +0oo,
where £, ,, is slowly varying and where C = 45/(1+2548) (4 1)P/2m(p) K%,

REMARK. If f is s-Holder with radius r, we have

o 28/ OF25H0) (B4 (142548) =5/ (42540 (1 /) s m — +oc.

5. Discussion

5.1. About assumption M. As stated previously, assumption M means that
the design distribution is symmetrical around xg close to this point. When it is not
the case, and if there are two functions v~ € RV(87), vT € RV(8") for 8,61 > —1
and n~,n" > 0 such that for any x € [zg — ™, 20 + 7]

w(x) =v(z— 70) Ly <o<aotnt TV (T0 — 7)1y _p-<acaos
we can prove that the minimax convergence rate is the fastest among the two ones,

which is (2.4) for the choice 3 = 3~ A 8. To prove the upper bound, we can use
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the same estimator as in section 3 with a non-symmetrical choice of the bandwidth,
or more roughly, we can “throw away” the observations on the side of xg with the

largest index of regular variation (when p is known).

5.2. About theorem 1 and propositions 4, 5. Since we are interested in the
estimation of f at xy, we need only a regularity assumption in some neighbourhood
of this point. Note that the minimax risks are computed over a class where the
regularity assumption holds in a decreasing interval as n increases.

It appears that a natural choice of this interval size is the theoretical bandwidth
h,, since it is the minimum needed for the proof of the upper bounds. To prove an
upper bound with the ”design-adaptive” estimator an (xg) — in the sense that its
construction does not depend on the design density behaviour close to xy (via the
parameter ( for instance) — we need a smoothness control in a neighbourhood with
a size slightly larger than h,, (see the parameter p in proposition 5).

More precisely, to prove that r, is an upper bound in proposition 5, we use in
particular proposition 2 with ¢ = ¢p — 1 in order to control the random bandwidth
H,, by h,. Thus, the parameter p is unavoidable for the proof of proposition 5. Note
that we do not need such a parameter in theorem 1 since we use the estimator with
the deterministic bandwidth h,, to prove the upper bound part of the theorem. Of
course, this estimator in unfeasible from a practical point of view since h,, heavily
depends on u, which is hardly known in practice. This is reason why we state
proposition 5 which tells us that the estimator with the data-driven bandwidth H,

converges with the same rate.

5.3. About theorem 2. In the I'-variation framework, for the proof of the
upper bound part of theorem 2, we use an estimator depending on pu. Such an
estimator is again unfeasible from a practical point of view. Anyway, this framework
is considered only for theoretical purposes, since from a practical point of view
nothing can be done in this case: there is no observations at the point of estimation.
This is precisely what theorem 2 and the corresponding example show : the minimax

rate is very slow.

5.4. About the I'-varying design. For the proof of the upper bound part in
theorem 2, we can consider another estimator (see the proof of the theorem). If K

is a kernel satisfying assumption K, we define

~ s ZLYZ(K(M) +K(ML;IO))

(hn) plhn
fn(gjO) n ._p —x ; —x )
Zi:l K(le{i{;) 0) + K(XZ:(%L) O)

where h,, is defined by (2.5). The point is that since Supp K C [—1, 1], this estimator
makes a local average of the observations Y; such that X; € [xg —h — p(h),zo —h+
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p(h)] U [zo + h — p(h),zo + h + p(h)], which does not contain the estimation point
xq for n large enough, since limy, o+ p(h)/h = 0 (see section 7). In spite of this, we
can prove that ﬁl(xo) converges with the rate r,. We can understand this curious
fact as follows: since there is no information at xg, the procedure actually “catches”
the information ”far” from xy. This fact shows that again, the I'-varying design is

an extreme case.

5.5. More technical remarks. About assumption K, the first assumption is
used to make the kernel K localise the information around the point of estimation
xo (see (3.2)). The last one is technical and used in the proof of lemma 6. The two
other ones are used for the sake of simplicity, since we only really need the kernel
to be bounded from above.

When 8 = —1, theorem 1 holds only for small regularities 0 < s < 1. For
technical reasons, we were not able to prove the upper bound when s > 1 and
B = —1. More precisely, we have k = 0 in this case and in view of (3.4) the local
polynomial estimator is a Nadaraya-Watson estimator defined by

7 () — St ()
TS K (Se)

When s > 1 we have to use a local polynomial estimator. The problem is then in

the asymptotic control of the smallest eigenvalue of XhKn (see lemma 6) and to do
so, we use an average (Abelian) transform property of regularly varying functions,

which is (see section 7):

YK (y)l,(yh)— =

/ dy [y* 1K (y)dy when a > 0,
Yy +o00 when a = 0.

y
B0+ 0, (h)

Thus, the only way to have a limit in both cases is to assume that K(y) = O(|y|")
for some 1 > 0, but the obtained upper bound rate in this case would be slower

than the lower bound.

6. Proofs

6.1. Proof of the main results.

PROOF OF THEOREM 1. First, we prove the upper bound part of equation (2.4)
for 8 > —1. We consider the estimator f,(zo) = fu,(x0) where f; is given by
definition 4 with h,, given by equation (2.5), and we define r, = w(h,). Let 0 < e <
1/2. We introduce the event

2 Ky _ Noh ‘
Bue 2 {INX) A@K\gg}m{%mhn) 1 gg}.
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Since limy, nF,(h,) = +oo (see for instance lemma 4), we have B, . C QhKn for n
large enough (see (3.11)) and in particular the matrix XhKn is invertible on the event
By, .. Then, using proposition 1 and since f € Fy,, (zo,w), we get:
| fn(z0) — f(20)[18,,.
< (Mg — &) W+ 1Ko (w(hn) +

V)

V(2 —e)nF,(hy)
< ()\57[{ — 6)_1\/ k+ 1Koow(hn)(1 + |/7hn|)7

where we last used the definition of h,. Since conditionally on X,,, v, is centered
Gaussian such that E'} u{vﬁnlfn} < 1, we get for any p > 0:
sup B {7 fa(xo) = f(20)"L5,.. X} < (s — &) P (k + DPPEZm(p).
fEFh, (wow)
where m(p) is defined in section 4. Now we work on the complement By, .. We use
lemmas 2 and 6 to control the probability of B, . and we recall that «,, = O(n") for
some v > 0. When N, ,, = 0 we have ﬁl(azo) = 0 by definition and then

S )E?,u{rﬁp!fn(wo)—f(xo)!plzsg,s} < (anry PP ABE . = on(1).
S [a79)

When N, p,,, > 0 we use lemma 3 below to obtain:

sup E?’u{T;p\ﬁL(mo) — f(@o)|P1pg  }

feu(om)
<ry? JE {1Fa(xo)20} + af) /PR{BS .}
< OénT ‘/npcok2p+ 1 1/]P)Z{B7CL75} = On(l),
thus we have proved that r, is an upper bound of the minimax risk (2.4) when
6> —1.
When 6 = —1 and 0 < s < 1, we have £ = 0 and the matrix X,{i is1x1
sized and equal to K, 5, o (see equation (6.5)). The bias-variance equation (3.12)

becomes

| Fu(@o) = F(20)] € Knin0) Koo (w(hn) + 0N lyn, |).

We consider the event
N, K,
e ={[zring ~ 1 <<t {lmmg — KO <}
and we note that the probability of C,, . is controlled by lemma 2 and equation (6.8)
in lemma 5. Then, we can proceed as previously to prove that r, is an upper bound
for 3 = —1. We have proved that r, is an upper bound for the left-hand side of
(2.4). Using proposition 6, we have that r, is also a lower bound. The remaining of

the theorem follows from lemma 4. O
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PROOF OF THEOREM 2. The proof is similar to that of theorem 1. For the proof
of the upper bound part in (2.8), we use the regressogram estimator defined by
2 izt YiliX,—ao|<ha,
Falwo) £ Nohn
0 if Ny p,, = 0.

if thn > 0,

Let 0 < e < 1/2. On the event

Nnn
D, 2 { _~™hn 1‘ < },
<= UznE, (hy) ©

we clearly have N, p, > 0, and since f € Fj,, (20, w), we have

Fu(@0) = f(@0)| < w(hn) + 0N, 32 oa] < w(Bn) (1 — €)72(1+ [va]),

A2

1 n . . oy . .
where v, N Yoy &il| X, —wo|<h, 18, conditionally on X,,, standard Gaussian.

Then we get

sup  EF {|fulwo) = f(x0)"1p, .} < 7h(L— )" m(p).
fefhn(.’ﬂo,w)

Now we work on D, .. If Ny, = 0 we get using lemma 2 and since a,, = O(r,”):

sup E% {|fn(z0) — f(20)[P1ps } < oBPI{DE }
feU(an)

2 2

= O(r;’p)exp< T+e/3 52)

= o (rP).
If Ny, p, > 0, since |ﬁl(:170)| < an + olu,|, we get
[ )Efuﬂfn(xo) F(@o)lP1pg  } < 2Pl (1 + \/Coop)y[PRADS 3 = 0n(rh),
an
where Cy 0 is the same as in the proof of theorem 1. Thus, 7, is an upper bound.

The lower bound is given by proposition 6, and the conclusion follows from lemma 4.
O

We need to introduce some notations: (-, -) is the Euclidean inner product on
R e = (1,0,...,0) € RF1 || - ||lo is the sup norm in R**! and || - || is the

Euclidean norm in R¥+1,

PROOF OF PROPOSITION 1. On QhK, we have in view of definition 4 that ihK =
X{f and that XhK is invertible. Let 0 < ¢ < 1/2, and n > 1. We can find a
polynomial P}L’a of order k such that

sup |f(z) — P (2)| < inf  sup |f(2) — Pz —@0)| +
le—zo|<h PePy |z—z0|<h

BN
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In particular, with h = 0 we get |f(zo) — P}L’e(azo)] % Defining 6, € R**! such
that Pi"" = Py, (see (3.6)) we get

o) = F(a0)l < —= + (B — 00, e1)] = — + [{(XE) 1 XE B — 0n) , e1)].

\/7
Then we have for j € {0,...,k} by (3.4) and (1.1):

(XK (01, — 61)); =

R

(o= PP°. bimdni

= (Y - n’67 jh)h K

=(f =P/ i Y = [, djnhnk
=(f =P/, djnini + (€, djnlni
= Bhj + Vi,
thus XhK(gh —0y) = Bp, + Vj. In view of assumption K and since f € F,(zo,w) we
have:

1Bhj| = [(f = P{°, dnnil < |f = P nxlldjnlnx

< Ny pKoo(w(h) + %),

thus || Bpllec < Ny pKoo(w(h) + Moreover, since A™1(A},) < Ni/}? < n'/2 on

Oy, Kk, we have:
(X)) ™' B, en)| < 1(CX5) 1B
<X THIVE + 1] Bhlloo
<A HAEYVE F 1K ow(h) + VE 4+ 1K e,

where we last used the fact that ||[M~!|| = A~'(M) for any positive symmetrical

)

matrix M. The variance term V}, is clearly conditionally on X,, a centered Gaussian

. . . 2 .
vector, and its covariance matrix is equal to O'2XhK . Thus the random variable

<(XhK )"V, e1) h.K is, conditionally on X,,, centered Gaussian of variance:
_ 2 _ _ _
vi = o (er, (X5)TIXE(XE) Tler) < o fer, (XE)TIXE(XE) er)
= 0’2<€1 ) (Xh )~ €1>
X)) = o* N AT,
since K < 1. Then

A(Xf)—nlhlf (@, XF) < |Xferll < VE+T

since X;LK is symmetrical and its entries are smaller than 1 in absolute value. Thus:

vh <N AHAE) < 0PN (k 4+ DAL,
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and the proposition follows. O

PROOF OF PROPOSITION 2. The proposition is a direct consequence of lemmas 1
and 2 below. O

PROOF OF PROPOSITION 3. (2) = (1): In view of assumption M one has for n

large enough
Cyn
Ef{Nncvy, } = 2n/ v(z)dr = 2nF,(Cy,),
0

thus (2) entails 2n\,1F,(Cv,) ~ ¢(C) as n — +oo and then F, € RV(a) in view
of the characterisation (7.8) of regular variation. Since F,(0) = 0 we have more
precisely F,, € RV(«a) for a > 0 and since v is monotone we have v € RV(a —1) (see
section 7).

(3) = (2): Let € > 0. We define the event

A,(Ce) :{ ;?CLJ%H —1( ge}.

Then:

)‘ElEZ{NmC%} = )‘ElEZ{Nn,C%(lAn(C,a) + 1Ag((1,a))}
< (L+2)6(C) + nA; ' PL{AS(C )},

and then limsup,, A, 'E7{ Ny, ¢, } < (14 €)¢(C). On the other hand,
A BN} 2 A B { N0y, La, 00} 2 (1= €)o(O)Pi{Aa(C,e)},

and then liminf,, /\,ZlEﬁ{NmC%} > (1—-¢e)p(0).

(1) = (3): Let v € RV(B) and 0 < e < 1/2. If 3 > —1 we have F,, € RV(3+ 1) (see
in section 7) thus we can write F, (h) = h?t1¢p(h) where £ is slowly varying. We
define ~,, = n=Y/26+1) when > —1 and v, = n L if 5 = —1. When 8 = —1 we
have F,, € RV(0) (see section 7). We note that in both cases we have lim,, v, = 0

and Yp+1 ~ Yp a8 n — +00. In view of lemma 2 we get for n large enough

IPZ{

where we used the fact that £ is slowly varying and where we defined \,, £ 2n.F, ()

62

1+¢/3

Nn,Cﬁ/n _
P(C)An

()

1‘>6}<2exp(—

and ¢(C) £ CP*l. Then we clearly have lim, n\,;' = 400 and the proposition
follows. O
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6.2. Proof of the upper bounds for an (z0).

PROOF OF PROPOSITION 4. Since E) C an, (3.13) and proposition 1 entail
that uniformly in f € Fp, (zo,w), we have

| (o) — F(z0)| S AWk + LKoo R (1 + |y, ),

where vy, is conditionally on X,, centered Gaussian with E'} H{’y%{n]%n} < 1. The
result follows by an integration with respect to P (-[X;). O

PROOF OF THE PROPOSITION 5. Let us define € £ 9 — 1. We can assume with-
out loss of generality that ¢ < % A Ag i- We consider the event A, . from lemma 6.
In view of this lemma we have A, C Ey, .- N{(1 —¢)h, < H, < (1+¢)hy,} and
then F,p,, (x0,w) C Fa, (xo,w). Thus, using proposition 4 we get

sup B {|fulz0) — f(20) P14, X0}
fE.thn (:c(),w)

<m(p)(Asx — &) PKE (k+ 1)P/2RP,
<m(p) Ak — ) PRE (k+ 1DPP(1+ )P+,
where we used (6.1) in the same way as in the proof of lemma 1 to obtain that on

An.e, we have w(H,) < (1+¢)*Ttw(hy). On the complement A¢

(6.11) and lemma 3, and since o, = O(n?) for some v > 0, we get

sup. B} {r,?|fu(wo) — f(0)[PLag .}

feu(an)
< 2P (anry, )P (/1PCo g op + 1)/ PR{AS  } = on(1),

and (4.2) follows. The equivalent of 7, is given by lemma 4. O

n.e» using inequality

6.3. Lemmas for the proof of the upper bounds.
LEMMA 1. Ifw € RV(s) for any s > 0, we can find 0 <n < e for any 0 < e < %

such that

Nn, —&)hn n n
{‘QnF,,(((ll —s)g)hn) -1 <nfn H%F ((i:i)s)hn) 1| <n}c {‘%_1‘ <ef.

PROOF. In view of (3.13) we have

{Hn < 1+ €)ha} = {Nn(140n, = 02w (1 +€)hn)}.

Define e; = 1 — (1 —¢%)72(1+¢)~2%. For ¢ small enough, it is clear that e; > 0. We
recall that ¢, stands for the slowly varying term of w (see definition 2). Since (7.1)
holds uniformly on each compact set in (0,+00), we have for n large enough that

for any y € [3, 3]:

(1 — )l (hy) < o(yhy) < (1 +€2)l,(hy), (6.1)
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so using (6.1) with y = 1+¢ (¢ < 3), we obtain in view of (2.5):

2(1 — e1)nFy (1 +&)hn) = (1 — ) 2(1 + &) > 02w (hy,)
— (1 +e)hy) (1 — £2) 720, (hy)
> o?w((1 +¢e)h,) 72,

and then
{Nn,(14e)hy = 2(1 —e1)nFu (1 +e)hn)} C{H, < (1+€)hy}
Using again (6.1) with y = 1 — ¢, we get in the same way

{Nn(1—e)h, <2(L+e1)nFL((1 —e)hpn)} C{Hy > (1 —€)hy},

then:
n,(1—¢)hn ‘ ‘ N, J(1+e)hn ‘
-1 < -1 <
HgnF (1—e)hn) 51} { onF, (1 + £)hn) 51}
Hy
“n <
= {‘ I, 1‘ S 6}’
and the result follows for the choice n = ¢ A £;. g

LEMMA 2. Under assumption M, we have for any €, h > 0:
2

IP"{ —1( >s} <2exp<—1f€/3nFy(h)).

PRrROOF. It suffices to use Bernstein inequality to the sum of independent random
variables Z; = 1x, _aqj<n — PR{|X1 — 2ol < h} fori=1,. O

Nnh
2nF,(h)

LEMMA 3. For any p > 0 and h > 0, the estimator fh (see definition 4) satisfies

sup B {Ifu(z0)P1Xn} < Copplav/n)?,
fel(a)

where Cypopp = (k+ 1)P/2\/2/1 [51 (1 + ot)P exp(—t2/2)dt

Proor. When N, ;, = 0 we have by definition fh = 0 and the result is obvious,
so we assume N, > 0. Using the fact that A(A + B) > A(A) + A(B) when
A and B are symmetrical and non-negative matrices we get )\(f({f ) = Ni/ ,? > 0
thus )NChK is invertible. Equation (3.10) entails |f, ()| = ](()NChK)_l)NChKé\h, e1)] =
\((fihK)_th, e1)]. In view of (1.1) we can decompose for j € {0,...,k}:

(Yr); =Y, djnni =+ dindni + (&, ¢jn)ni = Buj+ Vi
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Since f € U(a) we have under assumption K that |Bj, j| < alNp p, thus || Bplle <
aNy, ;. As in the proof of proposition 1 we have that ((ihK)_IVh , e1) is, condition-
ally on X,,, centered Gaussian with variance
vp = o*er, (XF) X (XE) er) < oer, (XE)TIXF (X e)
<X THPIXE -
Assumption K entails that all the elements of the matrix XhK are smaller than IV, p,
thus | XZ|| < (k+1)N,, 5. Since ihK is symmetrical we get ||()~({f)_l|| = A‘l(}th) <
N;}/z, and then v? < 0%(k + 1). Finally, we have
[Fu(@o)l < [(XE) ™ Brs en)| + (XA ™ Vi, en)]
<N TIBN + ovVE + L] < VR + L(avn + oll),

where 7y, is, conditionally on X,,, centered Gaussian with variance smaller than 1.

The result follows by integrating with respect to P} “(|.'£n) O

LEMMA 4. If v € RV(0) for 8 > —1, w € RV(s) for s > 0, and the sequence
(hy) is defined by (2.5), then the rate rn, = w(hy,) satisfies

T~ 68760.28/(14'28"1‘5)n—S/(1+28+6)€w7y(1/n) as n — +o0, (6.2)

where £, is slowly varying and cy 5 = 43/0F25%0) When w(h) = rh® (Holder

reqularity) for r > 0, we have more precisely:

Py ~ 6875025/(14-28-‘1-5)T(ﬁ+1)/(1+28+5)n—s/(1+28+5)£s’y(1/n) as n — +oo, (6.3)
where s, 1s slowly varying. It is noteworthy that when 3 = —1, the result becomes:
o~ 20n Y20, ,(1/n) as n — +oo.

When v € T'V(p) we have
T'n ~ Ew,u(l/n)v (64)

where £, , is slowly varying.

ProoF. We denote F,(h) = foh v(t)dt and G(h) = w?(h)F,(h). When 3 > —1
we have F,, € RV(8 + 1) (see the section 7) and when § = —1, F, is slowly varying.
Thus G € RV(14+2s+/) for any 8 > —1. The function G is continuous and such that
limj,_,o+ G(h) = 0 in view of (7.2) since 14+2s+( > 0. Then, for n large enough h,, is
given by h,, = G~ (0%/(4n)), where G~ (h) £ inf{y > 0|G(y) > h} is the generalised
inverse of G. Then, we have G~ € RV(1/(1+42s+03)) and woG~ € RV(s/(14+2s+0))
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(see section 7). Thus we can write w o G (h) = h3/(0+25+0)¢, (h) where £, is a
slowly varying function. Thus:

" :w<G‘_ (g)) :cs’ﬁazs/(1+2s+ﬁ)n—s/(1+2s+ﬁ)€w’y(%)

25/(”25*5)n_s/(1+25+5)£w,,,(1/n) as n — +00,

~ Cg 30
since / is slowly varying. When w(h) = rh® we can write more precisely h, =
G (0?/(4r%n)) where G(h) = h**F,(h) so (6.2) and (6.3) follow.

Let y € R. Using (7.9) and the uniformity in (7.1) we get lim, o+ ,(h +
yp(h))/ly(h) = 1, thus limy_,o+ w(h + yp(h))/w(h) = 1. Moreover, since I'V(p) is
closed under integration (see section 7) we have F, € T'V(p), thus lim;,_ o+ G(h +
yp(y))/G(h) = exp(y) and then G € I'V(p). For n large enough, h,, is well defined
and given by h, = G~ (0?/(4n)). Since G— € TIV({) for £ = po v~ € RV(0)
(see section 7), G~ belongs in particular to RV(0) in view of (7.11) and then r, =
wo G~ (0?/(4n)) where w o G~ € RV(0). Thus r, ~ wo G (n~') as n — 400 and
(6.4) follows with £,,, =wo G~ O

Study of the terms )\(X,fi) and )\(XFII:). We recall that the matrix &}  is

defined as the symmetrical and non-negative matrix with entries (X}, k)1 = Kn h j41
for 0 < 7,1 < k where

for a € N. Define K, j, o = n,hfn,h,a and

1
Kog=(1+ (—1)“)/0 y* K (y)dy. (6.6)

We define for any £ > 0 the event

Ky
Dunc ([ 55 | <2}
7h7 7K7€ nFy(h) (ﬂ—’_ ) 75 €

LEMMA 5. Let a € N and ¢ > 0. Under assumption K and if p € R(xo, 3) with
B > —1, we have for any sequence (y,) > 0 going to 0 that for n large enough,

2

€
mn c < e ) .
P{DS atce} < 200~ gy nflm) (6.7)
When 8 = —1 we have
Kn 0 52
P I 9K <2 ————nF, () ). .
A nFy () 0)] > e} < 200 szt 0 ) (6:8)
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ProOOF. First, we prove (6.7). We define Q; p, o = (Xﬁ;xo)aK(Xﬁ;xO), Zina =

Qina — Ej{Qina}. Since u € R(xo, 3) we have fori =1,... n:

_ 1)« 1
#(W)En{@"a} N 71; ((;3) : ZE%})) /0 v PK () (ym)dy,

where we used assumption K and the fact that [zg — v, 20 + 7] C W for n large
enough. Then, equations (7.3) and (7.4) entail:

. 1 n _
hTILIl WE“{Qz,ma} = (5 + 1)Ka757

and for n large enough:

1 n
D¢ C { ‘7 Z Zi
7Y ,0, K e nEy () i=1 o

In view of assumption K we have EZ{ZMQ} =0, |Zinal <2and

> 5/2}. (6.9)

n

bgz £ Z EZ{ZZn,a} En{Ql M, a} 277,F ( )

i=1
Since the Z; ,, o are independent we can apply Bernstein inequality. If 7, = SnE, ()

equation (6.9) and Bernstein inequality entail:
2 2

-, €
D <2 — ) <2 — n
FidDhsnoicel eXp<2(b%+2Tn/3)> exp( g e )
thus (6.7). The proof of equation (6.8) is similar. When 8 = —1 we have v(t) =
~,(t). We define Z;,, = Qino — E?M{Qi no0}- In view of (7.5) we have:

En{an 0}

/Kt/h 1dt /t = 2K(0) > 0.

lim
n—+oo F), ( ) —>+oo F,(

Then, we have for n large enough

(ot -] > e} c ﬂmg%

The Z; , are independent and centered and |Z; | < 2. Moreover, in view of assump-

> 5/2}.

tion K we have as before by, = Y7 | E{Z? } < 2nF,(y,) and using again Bernstein
inequality we get (6.8). O

LEMMA 6. Let assumption K holds. Assume that w € RV(s) with s > 0, u €
R(xo,B) with B > —1 and Mg i is defined by equation (4.1). We have A\g g > 0 and

for any 0 < e < 5 we can find an event A, . such that for n large enough

Ane ©IAKE) = Nosel < ) nINEE) — haxl < {7 1| <<}, 6.00)

and
Pr{A; } <4(k+2)exp (— CBoeTn’)s (6.11)
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where cg 5 > 0.

PROOF. Since Ag g is the smallest eigenvalue of XBK we have Ag g > 0 otherwise
defining p(y) = (1,9, ...,%") and since XﬁK is symmetrical we should have
1
. 2
0= s = inf (o, Xfa) = (oo Afan) = [ (auop)) s K ()i
z||= -1
where zg # 0 is the normalised eigenvector associated to the eigenvalue A\g g and
where we used the fact that
AM) = ||iﬁf1<$’ Mzx), (6.12)
xll=
for any symmetrical matrix M. Then Vy € Supp K we have ‘zop(y) = 0 which
leads to a contradiction since y — ‘zop(y) is a polynomial. For any h,e > 0 we

introduce the events:

— B+1
Apne = {IMX) = Al <e}, Bonae= {‘Kn,h,a — TK‘W‘ < e}. (6.13)
Using the characterisation (6.12) we can prove easily that
2k
m Bn,h,oz,e/(k—i—l)2 - An,h,a- (614)
a=0
Since
I o - N, H, H, N\«
KTL,HTL,CM - Knvhnva = Kn7HTL7a (1 B #,hn <h/_:) >

e () (e () - (),

we have when K is the rectangular kernel K%

ha,

No, 1, <H>a 1 ;<£ V1)’ Nt _

Ko Hyo = Kol < | -
n

n,hn

and otherwise under assumption K

— — N, H, N, H, H, h
Rt T €[St () Moty gl
b b k) K hn hn Hn

n,hn h‘TL Nn7hn
Let us introduce for € > 0 the event
Np.o,
P 2 {0 - 1] <<},

Then, for a good choice of &1 < € we have |K, 1,0 — Knh, ol < m on the

event C, ., NFy, ¢, since K <1 we have K, g < % and noting that Dy, j o xr ., =

{‘% — 1| <e1} we have for any a € N

D r__=__ND = CB ST
n,h,0,K "3(k+1)2+e "’h’a’K’S(k+1)2+s n’h’a’2(’c+1)2
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Using (6.14) we get for n = m:
2k
Dn,hn,O,KR,n N m Dmhn,mK,n - An,hme- (6-15)
a=0
We take 0 < g9 < €1 such that % < 1+ ey (for 1 small enough). Since

h + N, is increasing we have
Cnyez C {Nn,(1-e2)hn < Nty < Niy(1462)h0
and in view of lemma 1 we can take 0 < €3 < €9 such that

Dy (1—e2)hn 0, R,e5 N Do (1420) 0,0, K Fe5 C Cren-

Using (7.1) with the slowly varying function £z(h) £ F,(h)h~#*1 we have for n

large enough that uniformly in y € [%, %]
(1 —e)lp(hy) <Lp(yhy) < (14 e1)lp(hy), (6.16)

and in particular for y = 1 —¢1 and y = 1 + &1 we get by the definition of 5 and

since €3 < €9 < €71:

Dy, (1—e2)hn,0,KR.e5 N Do (14e0)h,0, K Roes N Doy 0,k R ey © Frjey -

Ay 5
Then we define for ¢4 = g3 A Sy the event
2k
A
Ane = Dy (1—e)hn,0,K B0 N Di (1420)h0,0, K B,e0 N Dipy 0, 50R 4 N ﬂ Db, K e
a=0

which satisfies (6.10) in view of the previous embeddings. Using inequality (6.7) in

lemma 5 and since g4 < g9 < &1 < %,

2-(B+3)2,02
T )

8(2 + 64/3) " >

where we used (6.16) and (2.5). O

P{AS .} < 4(k +2) exp ( _

6.4. Proof of the lower bounds. We recall that the Kullback-Leibler distance
between two probabilities P and @ is defined by

K(P.Q) [ log (g—g)dP when P < Q,

400 otherwise,

where P < (Q means that P is absolutely continuous with respect to Q.

LEMMA 7. If there are 2 elements fy and f1 in a class ¥ such that

]C(]P’(),]P’l) < Q < 400,
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where Po =P%  and Py =P} and if for some ¢ > 0,

|fo(wo) — f1(wo)| = 2¢crp,

then the pointwise minimazx risk Ry, (X, p) (defined by (2.1)) over ¥ in the model (1.1)

satisfies

Rn(za N) 2 C(Ca Qa p)?‘n,

1
where C(c, Q,p) £ =& (e‘Q v 1_72@2/2) /p.

21/p

PRrROOF. This result is classical. We use arguments which can be found in Tsy-
bakov (2003). Using Markov inequality,

2 AT\ Tn — flxo) P} = PP {|T0 — f(@o)| = ernl,

and since fo, f1 € ¥ and | fo(zo) — f1(z0)| = 2¢r,, we have:

sup P} {|Tn — f(20)| = crn} = maxPi{|T,, — fin(w0)| = crn}
fex ’ 7=0,1

where

¢* = argmin {|T,, — f;(x0)|}.
7=0,1

Hence,

P
fsup B, (17T, — f(eo)l} > it (Bo{o # 0} + P1{6 # 1))

where ¢z, is the maximum likelihood test defined by ¢nr;, = 1,,<p, Where pg =
dPy/dx and p; = dPy/dx (dz is the Lebesgue measure on R™). Then,

cP cP
Ra(Z, 0 > G [ B0 Py = (1~ [P0~ Prlrv),
where || - |7y is the total variation distance between measures, defined by
1P = Qllrv = sup [P(4) — Q(A)].

Thus, using the following classical inequalities between measure distances (see for
instance in Tsybakov (2003)):

HPO — PIHTV <V ’C(Po,Pl)/2, /d]PO A dPy < exp ( — K(Po,Pl))/2,

the lemma follows. O
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PROPOSITION 6. Let hy, be defined by (2.5), a sequence (ay,) > 0 going to +00
and rp, = w(hy). If ¥ =Xy, o, (z0,w) is the class given by definition 2, we have

lim inf 7, 'R, (2, 1) = Cs . (6.17)

PROOF. We use lemma 7. All we have to do is to find two functions fy, and
f1,n such that:
(1) There is some 0 < @ < 400 such that C(Pg,P}) < Q;
(2) fO,m fl,n S Ehn,an (51707 w);
(3) |fon(xo) — fin(xo)| = 2¢ry, for some constant ¢ > 0.

We choose the two following hypotheses:

fon(z) = whn)lo—ag<hn fin(®) = w(|z — 20|)Lj0—z0|<hn-

(1) Since the ¢; are centered Gaussian with variance o and independent of X,, we

have

n 2
IC( P |x 2 QZ fOn z fln( z)) )
then in view of (2.5):

K(Fy,PT) = 22Hf0n Fralltaqy < nw?(hn)Ey(hn)/o® = 1/2.

(2) For h € [0, hy], taking P as the constant polynomial equal to w(h,,) we have that
the continuity modulus of fy , is 0, and taking P = 0 we obtain that the continuity
modulus of f; , is bounded by w(h). Moreover, for n large enough, we have clearly
foms fin € U(ay,) since oy, — +00.

(3) If we take ¢ = 1/2 we have | f1 »(x0) — fon(z0)| = w(hy) = 2¢ry,. O

6.5. Computations of the examples. For a given design density, we compute
the minimax rate r,, by giving an equivalent of r, = w(h,,), where h,, is the smallest

solution to
o

w(h) = ——.
) nky,(h)
6.5.1. Regularly varying design example. For the regularly varying design exam-

ple, we find the equivalent of h,, using the following proposition.

PROPOSITION 7. Let v > 0 and o € R. If G(h) = h7(log(1/h))* we have:
G (h) ~ 4R (log(1/h)) "7 as h — 0F.
PROOF. When « = 0 the result is obvious, hence we assume o € R — {0}. We

look for h such that h7(log(1/h))* = x, when z > 0 is small. If & > 0 we define

t = log(h/®), so this equation becomes

texp(t) = —yz/?/a, (6.18)
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where ¢t < 0. The equation (6.18) has two solutions for z small enough, but they
cannot be written in an explicit way. Let us consider the Lambert function W defined
as the function satisfying W(z)eW(z) = z for any z € C, see for instance Corless
et al. (1996). We are only interested here by its real branches. This function has
two branches Wy and W_; in R. We denote by Wy the one such that Wy(0) = 0 and
W_1 the one such that limj,_,- W_1(h) = —oo. The two solutions of (6.18) are then
to = W_1(—yz'/*/a) and t; = Wo(—y2/*/a), and hg £ exp(aW_1(—yz'/*/a)/7)
is the smallest one. By the definition of W we have for —1/e < x < 0 and a € R
that e®-1(®) = (—z)*(=W_,(x))~%, and since W_; satisfies W_;(—x) ~ log(z) as

x — 0T, we have
ho = (ya/® Jo) Y (=W _y (—yx"/* /) =7 ~ 421t (log (1 /2)) 7/,

as x — 07. When o < 0 we proceed similarly. We have ¢ > 0 and (6.18) has a single
solution t = Wy(—vyz/*/a), thus h £ exp(—aWy(—vyz'/*/a)/v). By the definition
of Wy we have for any x > 0 and a € R that e?"°(®) = 237W,;%(x), and since W} sat-
isfies Wo(z) ~ log(z) as © — +oo we find again h ~ v/ 721/ *(log(1/z))~*/" as = —
0. O

For the second example of regularly varying design, using proposition 7, we find

that an equivalent to the sequence h,, defined by (2.5) is

(1 + 25 + B)(@+20)/(A+2s+5) (g>2/(1+2s+g)

a+27)—1/(1+23+ﬁ)
)
’

(n(logn)

and since w(h) = rh®(log(1/h))?7, we find that an equivalent of r,, (up to a constant
depending on s, 3,7, @) is

25/ (142548) L (B1)/ (14254) (1 (g )=V B)/5) =5/ (142545)

The computation for the third example (8 = —1) is similar to the second example,
since F,(h) = (log(1/h))=2.

6.5.2. T-varying design example. For the example v(h) = exp(—1/h%), we first
use the fact that when v € T'V(p) we have F,(h) ~ p(h)v(h) as h — 0" (see
section 7). Recalling that p(h) = h*T!/a, we solve

RIT25F oxp(—1/h%) = yn, (6.19)

where y, = 02a/(r?n). Defining t & h~%, equation (6.19) becomes

t—(l+28+0¢)/05 exp(—t) =y,

that we rewrite zexp(z) = o/(1 + 2s + a)yga/(1+2s+a) for x £ a/(1 + 2s + a)t.

Then we have z = Wo(a/(1 + 2s + a)yﬁa/(HzHa)), where Wy is defined in the
proof of proposition 7. Using the fact that Wy(z) ~ log(z) as @ — +oo, we get
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-1/«

T ~ logn as n — 400, thus h, ~ (logn) and the result holds since

o
14+2s+a
A s

rn =1Thy.

7. Some facts on regular and I'-variation

Here, we recall some results about regularly and I'-varying functions. These
results can be found in Bingham et al. (1989), Geluk and de Haan (1987) and
Senata (1976).

7.1. Regular variation. Let £ be a slowly varying function throughout the

following. An important result is that the property
lim f(yh)/¢(h) =1 7.1
h%g(y)/() : (7.1)
holds uniformly for y in any compact set in (0,+00). If Ry € RV(«a;) and Ry €

RV (a2) one has

o Ri X Ry € RV(OQ + 012),
e RioRy € RV(OQ X 042).

If R € RV(y) for v € R — {0}, we have as h — 0*:

0 if v >0,
R(h) — (7.2)
+oo ify <.
The asymptotic behaviour of integrals of regularly varying functions, usually called

Abelian theorems, plays a key role in the proofs.

o If v > —1 we have
h
/ t0(t)dt ~ (1 +~) " hT74(h) as h — 0T, (7.3)
0

and in particular h — foh t74(t)dt € RV(y+1). This result is known as the
Karamata theorem.

e When v = —1 and if [ £(t)£ < +o0 for some 7 > 0 then h foh ()L e
RV (0) and we have

e If R is a positive and monotone function such that h — foh R(t)dt € RV (%)
for some v > 0, then R € RV(y —1).
e If K is a function such that fol t—0K (t)dt < +oo for some § > 0 then

1 1
/ K(t){(th)dt ~ E(h)/ K(t)dt as h — 07. (7.4)
0 0
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Moreover, when [/ €(t)dt/t < +oo for some n > 0, and K is such that
Vit >0, |[K(t) — K(0)] < p|t|® for some p > 0 and 0 < k < 1 one has

/O L K@/mE ~ K(0) /O ()t ft as h— O, (7.5)
If R is defined and bounded on [0, +00), we define the generalised inverse
R~ (y) = inf{h > 0 such that R(h) > y}. (7.6)
If R € RV(7) for some « > 0, then there exists R~ € RV(1/v) such that
R(R™(h)) ~ R~ (R(h)) ~has h— 0T, (7.7)

and R~ is unique up to an asymptotic equivalence. Moreover, one version of R~ is
R—.

If (0n)n>0 and (A,)n>0 are sequences of positive numbers such that 0,41 ~ 6y,
as n — +oo, lim, J, = 0, and if there is a positive and continuous function ¢ such
that for any y > 0:

lim A R(ydn) = ¢(y), (7.8)

then R varies regularly.

7.2. I'-variation. Now, we describe the properties of I'-varying functions and
[I-varying functions (see below). The results are due to de Haan. The references
are the same as for regular variation. All the following results can be found therein.

A first result states that if v is a function such that (2.7) holds for all y € R,
then (2.7) holds uniformly on each compact set in R. If p is such that (2.7) holds,
then:

hli)nol+ p(h)/h = 0. (7.9)
The auxiliary function p in definition 3 is unique up to within an asymptotic equiv-
alence and can be taken as h +— foh v(t)dt/v(h).

The class T'V(p) is closed under integration. If v € T'V(p) then F,(h) =
foh v(t)dt € T'V(p), and we have

F,(h) ~ p(h)v(h) as h — 0%,

We have seen that the class of regularly varying functions RV is closed under
the operation of functional inversion. In the case of I'-variation, the inversion maps

the class I'V in another class of functions, namely the de Haan class IIV.

DEFINITION 5 (II-Variation). A function v is in the de Haan class IIV if there

exists a slowly varying ¢ and ¢ > 0 such that

vy >0, lim (v(yh) —v(h))/Uy) = clog(y). (7.10)
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The class of all such functions is denoted by IIV({).

o If v € I'V(p) then ¢ = po v is slowly varying and v~ € IIV(¢).
o If v € TIV(¥) for some ¢ € RV(0) then v~ € T'V(p) with p=£lov*.

In both senses the inverses and their auxiliary functions are asymptotically
unique. The following inclusion shows that Il-variation can be viewed as a re-
finement of slow variation. Actually, any Il-varying function is slowly varying: for
any ¢ € RV(0) we have

TV (¢) € RV(0). (7.11)
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CHAPTER 2

On pointwise adaptive curve estimation with a

degenerate random design

In this chapter, we are interested in the adaptive estimation of the regression
function at a point xy where the design is degenerate. When the design density is
[B-regularly varying at x¢ and f has a smoothness s in the Holder sense, we know

from chapter 1 that the minimax rate is equal to
n_s/(1+28+5)€(1/n),

where /¢ is slowly varying. Here, we provide an estimator which is adaptive both
on the design and the smoothness of the regression function, and we show that it

converges with the rate
(log n/n)* 1+25+8) ¢(log n/n).

The procedure consists of a local polynomial estimator with a Lepski type data-
driven bandwidth selector similar to the one in Goldenshluger and Nemirovski (1997)
or Spokoiny (1998). Moreover, we prove that the payment of a log in this adaptive

rate compared to the minimax rate is unavoidable.

1. Introduction

1.1. The model. We observe n pairs of random variables (X;,Y;) € [0,1] x R
independent and identically distributed satisfying

Y = f(Xi) + &, (1.1)

where f :[0,1] — R is the unknown signal to be recovered, the variables (&;) are
centered Gaussian with variance o2 and independent of the design X7, ..., X,,. The
variables X; are distributed with respect to a density u. We want to recover f at a
fixed point xg.

The classical way to consider the nonparametric regression model is to take a
deterministic and equispaced design X; = i/n. In this case, the observations are
homogeneously distributed over the unit interval. If we take the X; random we can
modelize cases with inhomogeneous observations as the design distribution is "far”
from the uniform law. We allow here the density p to be degenerate (vanishing or
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exploding) and we are more precisely interested in the adaptive estimation of f at
a point where the design is degenerate, namely a point with very inhomogeneous
data.

1.2. Motivation. The adaptive estimation of the regression function is a well-
developed problem. Several adaptive procedures can be applied for the estimation of
a function with unknown smoothness: nonlinear wavelet estimation (thresholding),
model selection, kernel estimation with a variable bandwidth (the Lepski method),
and so on.

Recent results dealing with the adaptive estimation of the regression function
when the design is random or not equispaced include Antoniadis et al. (1997), Brown
and Cai (1998), Wong and Zheng (2002), Maxim (2003), Delouille et al. (2004),
Kerkyacharian and Picard (2004), among others. A natural question arises: what
happens if we want to estimate adaptatively the regression function at a point where
the design is degenerate? In chapter 1, when p varies regularly at xg, we have proved
that the minimax rate v, over a Holder type class with smoothness s (around z)
satisfies

U = n_s/(1+2s+ﬁ)f(1/n),

where (3 is the regular variation index of u at xg (see definition 2 below) and ¢ is
slowly varying (the notation a,, < b, means 0 < liminf, a, /b, < limsup,, a,/b, <
+00). For the proof of the upper bound, a (non adaptive) linear procedure was
used. The next logical step is then to find a procedure able to recover f with as
less prior knowledge as possible on its smoothness and on the design density. On
pointwise adaptive curve estimation (in the regression or the white noise model) see
Lepski (1990), Lepski and Spokoiny (1997), Lepski et al. (1997), Spokoiny (1998)
and Brown and Cai (1998) for wavelet methods.

1.3. Organisation of the chapter. We introduce the estimator in section 2.
In section 3, we give upper bounds for this estimator, first conditionally on the
design, see theorem 1, and then in the regular variation framework, see theorem 2.
In section 4 we prove that the obtained convergence rate is optimal, see theorem 3
and its corollary. We present numerical illustrations in section 5 for several datasets
and we discuss into details some points in section 6. Section 7 is devoted to the proofs

and we recall some well-known facts on regularly varying functions in section 8.
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2. The procedure

2.1. Local polynomial estimation. Let x € N and h > 0 (the bandwidth).
We define

Nyp £ #{X; such that X; € [zg — h, o + h]},

and we introduce the pseudo-inner product

1
" X —wo| <R
and | - ||, the corresponding pseudo-norm. Let ¢;(z) = (x — zo)’ for j = 0,..., k.

We introduce the matrix X, and the vector Y, with entries

(Xn)ji= (@5, ¢)n  and  (Yn); = (Y, dj)n, (2.1)

for 0 < 7,1 < k.

DEFINITION 1. Let

~ §h,o¢o + 5h,1¢1 +oF é\h,nqbn when N, > 0,

fh,n =
0 when N, =0,

where §h is the solution of the linear system
X0 =Y, (2.2)

where

G A -1/2
Xp=Xp+ N, I“+11A(X,L)<N;}/2’
with A(M) standing for the smallest eigenvalue of a matrix M and I, for the

identity matrix in R+,

This procedure is slightly different from the classical version of the local poly-
nomial estimator. We note that the correction term in ih entails )\(Xh) > Nn_’ }1/ 2
On local polynomial estimation, see Stone (1980), Fan and Gijbels (1995) Fan and
Gijbels (1996), Spokoiny (1998) and Tsybakov (2003) among many others.

2.2. Adaptive bandwidth selection. The procedure selects the bandwidth
h in a set H called the grid, which is a tuning parameter of the adaptive procedure.
We can choose either an arithmetical or a geometrical grid
_ [(n—2)/a]
ATt — U {hoyliaq} fora=>1, or
_ i=1
"= flog n]
HECO™ = U {Pai1} for a > 1,
i=1
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where h; £ |X(;) — 0| and where |X ;) — 20| < [X(j41) — @o| forany i = 1,...,n—1.
Note that [x] stands for the integer part of x. We define

Hp, 2 {h € H such that b’ < h}.

The bandwidth is selected as follows:

I;Tn = max{h € 'H such that Vi € Hp, V0 < j <k,

) 7 (2.3)
‘(fh,li - fh/,lf ) ¢]>h” < O-”(ijh/Tn,h’,h},
where ﬁl,,i is given by definition 1 and where the threshold T, ;s 5, is equal to
A Cn\/OpNn_Jll/ log Nn7h + \/(thh — a)—l IOgTL ifH= ngith,
= (2.4)

CR\/CpNn_}ll, log Ny, + \/(1 + a)Nn_}lL logn  if H=HE",
with C, £ 1+ vk + 1, C, = 8(1 + 2p) where p fits with the loss function in (3.1)
and a is the grid parameter. The estimator is then

Falwo) 2 T (w0). (2.5)

The selection rule (2.3) is similar to the method by Lepski (1990), Lepski et al.
(1997) and Lepski and Spokoiny (1997) and is additionally to the original Lepski
method sensitive to the design. This procedure is close to the one in Spokoiny

(1998). See section 6.2 for more details on existing procedures in the literature.

3. Upper bounds

We assess a procedure fn over a class ¥ (to be specified in the following) with

the maximal risk
n o 1
(5D {1 Falwo) = S(a0) ) ", (3.1)

where xg is the estimation point and p > 1. The expectation E? L in (3.1) is taken

with respect to the joint law P’  of the observations (1.1).

3.1. Regular variation. The definition of regular variation and its main prop-
erties are due to Karamata (1930). On this topic, we refer to Senata (1976), Geluk
and de Haan (1987), Resnick (1987) and Bingham et al. (1989).

DEFINITION 2 (Regular variation). A function v : Rt — R™ is regularly varying

at 0 if it is continuous and such that there exists 5 € R satisfying
Yy > 0, hlim+ v(yh)/v(h) = 4°. (3.2)
—0

We denote by RV(3) the set of all such functions. A function in RV(0) is slowly

varying.
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REMARK. Roughly speaking, a regularly varying function behaves as a power
function times a slower term. Typical examples of such functions are 27, 7 (log(1/z))Y
and more generally any power function times a log or compositions of log to some

power. For other examples, see in the references.

DEFINITION 3. If § > 0 and w € RV(s) with s > 0 we define the class Fs(zg,w)
of all the functions f : [0,1] — R such that
Vh <4, inf sup |[f(x)— Pz —x9) <w(h),
PePy lz—mo|<h
where k = |s| (the largest integer smaller than s) and Py, is the set of all the real
polynomials with degree k. We define £,(h) £ w(h)h~* the slow variation term of
w. If & > 0 we define

U(e) 2 {f:]0,1] — R such that || flle < a}.

Finally, we define
S5.0(z0,w) = Fs(wo,w) NU().

REMARK. If w(h) = rh® for r > 0, we find back the classical Holder regularity
with radius 7. In this sense, the class Fs(zo,w) is a slight generalisation of Holder

regularity.

3.2. Conditionally on the design. When nothing is known on the design
density behaviour we can work conditionally on the design. Let X,, be the sigma-
algebra generated by Xi,...,X,. We define

Hp, = min{h € [0, 1] such that w(h) > Uy/Nn_JlL log n}v (3.3)

which is well-defined for n large enough (when w(1) > oy/logn/n). The quantity
H, . makes the balance between the bias and the log-penalised variance of J?h,n
(see lemma 1) and therefore can be understood as the ideal adaptive bandwidth,
see Lepski and Spokoiny (1997) and Spokoiny (1998). The log term in (3.3) is the

payment for adaptation, see section 4.1. Let us define

H; , & max{h € H|h < Hy .},

Rpw = 0y /Nn_’}{; _logn. (3.4)

We define the diagonal matrix Aj, = diag(HqSOH}:l, e ||¢,£Hgl), the symmetrical
matrix G, 2 AR XA, and Aw 2 A(ngL,w)' We define the event

and

Qn = {X1,..., X, are such that \(X},) > Nn_,l/z and N, p, > 2}. (3.5)
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We note that €, € X,, and that X, is invertible on €2;,. The next result shows that,
conditionally on X, fn(xo) = ‘fAﬁn ..(wo) converges with the rate R, ,, simultaneously

over any X(zg,w) when w € RV(s) with 0 < s <k + 1.

THEOREM 1. Ifw € RV(s) for 0 < s < k+ 1 and o > 0, we have on Quy , for
anyn =2 K+ 1:

sup BT {RyD|fal(z0) — f(20)P1Xn} < c1AyD, + ea(a v 1)P(log n) P/2,

erH;’;M,a(x()vw)

where ¢1 = ¢1(p, k,a) and ca = co(p, k,a,0).

We will see that the probability of Q2 H;,, 18 large, and that A, is positive with
a large probability, when the design density is regularly varying (see lemma 9).
Note that the upper bound in theorem 1 is non-asymptotic since it holds for any
n > k + 1. The random normalisation R, is similar to the one in Guerre (1999),

see section 6.2 for more details.
3.3. Regularly varying design.
DEFINITION 4. For 8 > —1 and a neighbourhood W of 2y we define
R(z0,8) = { density such that Jv € RV(B)Vz € W, u(z) = v(jz — z0|)}.

In the following, we assume that p € R(xo, ) for § > —1. Let h,, be the

s logn
wih) = \/ 2n foh I/(t)dt’ (36)

Tnw = W(hp ). (3.7)

smallest solution to

and

Equation (3.6) can be viewed as the deterministic counterpart to the equilibrium

n (3.3). We define C, g = (1+ (—1)“)(12—511 and the matrix G with entries (G);; =

_ Civp ; A .
N for 0 < j,l <k and A\, g = A(G). It is easy to see that A\, 3 > 0. If (a,)

and (by,) are sequences of positive numbers, a,, ~ b, means lim,,_, o a,, /b, = 1.

THEOREM 2. If

exeN >—-1,a>0and po>1,
e weRV(s) for0<s<r+1,

~

then the estimator ﬁl(a:o) = f. g, (wo) with the grid H = HE satisfies

Vi € Riwo, B), limsup  sup Bl Falwo) = f(z0) P} < CALD, (3.8)

n fezghn,w,a (wo,w)

where C = C(p, k). Moreover, we have

T ~ 028/ F2548) (log y f1)s/ W+ 25500y | (log m /), (3.9)



4. OPTIMALITY 59
where £, , is slowly varying.

REMARK. When w(h) = rh® (Holder regularity) we have more precisely
Tnw ~ Cor(log n/n)s/(1+25+6)€8,y(log n/n),

where C,, = g23/(1+25+0)(145)/(14+25+6) ' Note that ¢1(h) = £, (hlog(1/h)) is also

slowly varying, thus ¢;(1/n) = ¢,,,(logn/n) is a slow term.

3.4. Convergence rates examples. Let 8 > —1, r, s be positive and o,y € R.
If v is such that foh v(t)dt = P (log(1/h))* and w(h) = rh*(log(1/h))?, we find
that (see section 7.3)

T ~ Ca,r (n(log n)oa—l——y(l—i—ﬁ)/s)—s/(l—l-2s—|—ﬁ)7 (3'10)

where C,, = ¢2%/(1+25+0)(3+1)/(1425+5)  This rate has to be compared with the

minimax rate from chapter 1 (see page 26):

Co,r (n(log n)a_'Y(l-i-ﬁ)/s) _5/(1+28+ﬁ)’

where the only difference is the « instead of a — 1 in the log exponent. This loss is
the payment for adaptation and is unavoidable in view of theorem 3 below and its
corollary, see section 4.

In the classical case, namely when the design is non-degenerate and f is Holder
(w(h) =rh® and a« = B = v = 0) we find the usual pointwise minimax adaptive rate
(see Lepski (1990), Brown and Low (1996)):

O,2S/(1+28)7,1/(1+28)( )s/(1+25)'

logn/n

When the design is again non-degenerate and the continuity modulus is equal to

w(h) =rh*(log(1/h))~*%, we find a convergence rate equal to

0_25/(1-1-25)7,1/(1—}—28)n—s/(l-}—Zs)7

which is the usual minimax rate, without the log term for payment for adaptation.
Actually, this is a "toy” example since we have asked for more regularity than in the
Holder regularity. Note that in the degenerate design case, when o and  are such

that & = 14 v(1 4 3)/s, there is again no extra log factor.

4. Optimality

4.1. Payment for adaptation. The convergence rate of a linear estimator
with an adaptive bandwidth choice can be well explained by a balance equation

between its bias and variance terms. In our context, this equation is
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(see lemma 1) and a deterministic counterpart of this equilibrium is

o

w(h) = — e, (4.1)
V2 [ v (t)dt
see lemma 5. We proved in chapter 1 that the minimax rate 1, ,, over X5 ,(x0,w)

is given by
Vnw = w(Vnw), (4.2)

where 7, ., is the smallest solution to (4.1). In a model with homogeneous informa-
tion (the white noise or the regression model with an equidistant design) we know
that such a balance equation cannot be realized: an adaptive estimator to the un-
known smoothness without loss of efficiency is not possible for pointwise estimation,
even if we know that the function belongs to one of two Holder classes, see Lepski
(1990), Brown and Low (1996) and Lepski and Spokoiny (1997). This means that
local adaptation cannot be achieved for free: we have to pay an extra log factor
in the convergence rate, at least of order (log n)zs/ (1425) when estimating a Holder
function with smoothness s. The authors call this phenomenon payment for adap-
tation. We intend here to generalise this result to the regression with a degenerate

random design model.

4.2. Superefficiency. Let s, v’ < r, be positive and § < 1, p > 1. We take
w(h) = rh®, w'(h) = r'h® and the minimax rate v, , defined by (4.2). In view of

lemma 6, we have
Y w ~ C’mrn_s/(l””ﬁ)ﬁs,y(1/n) as n — —+o00. (4.3)

We recall that in view of theorem 2, the “adaptive” rate r,, defined by (3.7)
is attained by the adaptive procedure fn(:zto) simultaneously over several classes
¥5.a(xo,w) with w € RV(s) for any regularity s € (0,x + 1] and that

Tnw ~ Cor(log n/n)s/(1+2s+6)€s7y(log n/n) as n — +oo. (4.4)

THEOREM 3. If an estimator fn based on (1.1) is asymptotically minimax over
Fs(xo,w), that is

lim sup sup (O E?uﬂfn(xo) — f(xo)[P} < +o0,
n f S fé(x(hw)

and if this estimator is superefficient at a function fo € Fs(xg,w’) in the sense that

there is v > 0 such that

lim sup ¢, %, 0 B}, {| fu(20) — fo(zo)P} < +00, (4.5)
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then we can find a function fi € Fs(xo,w) such that
liH}Linf r;ﬁ) E}Ll’uﬂfn(l‘o) — fi(zo)[P} > 0.

This theorem is a generalisation of a result by Brown and Low (1996) for the
degenerate random design case. Of course, when the design is non-degenerate
(0 < p(xg) < 4+o0) the theorem remains valid and the result is barely the same
as in Brown and Low (1996) with the same rates.

Theorem 3 is a lower bound for a superefficient estimator. Actually, the most

interesting result for our problem is the next corollary.

4.3. An adaptive lower bound. Let 0 < ry < 1] < 400 and 0 < s1 < 89 <
+00 be such that |s1] = [s2] = k. If w;(h) = 7;h% we denote F; = Fs(wo,w;).

Let 1y, be the minimax rate defined by (4.2) over F; for i = 1,2 and r,; be
defined by (3.7) with w = w (the "adaptive” rate when the class is F1). Note that
y i satisfies (4.3) with s = s; and 1, ; satisfies (4.4) with s = s;.

COROLLARY 1. If an estimator ﬁL is asymptotically minimaz over Fi and Fo,
that is fori=1,2:
limsup sup ¢, 7 B} {|fa(z0) — f(20)|P} < +o00, (4.6)
n o fer
then this estimator also satisfies

liminf sup r, % E}‘uﬂfn(:po) — f(zo)|P} > 0. (4.7)
nooferm ’

Note that (4.7) contradicts (4.6) for ¢ = 1 since limy, ¢y, 1/r,,1 = 0, thus there
s mo pointwise minimax adaptive estimator over two such classes F1 and Fo and
the best achievable rate is ry, ;. The corollary 1 is an immediate consequence of
theorem 3. We have clearly Fo C Fi, thus equation (4.6) entails that ﬁl is su-
perefficient at any function fy € Fy. More precisely, ﬁl satisfies (4.5) with v =

2(1+(2‘2211551))((15I218)2+5) > 0 since n=74(1/n) — 0 where £ £ (g, ,/{s,,, and £ € RV(0).

5. Simulations

5.1. Implementation of the procedure. For the estimation at a point z,
the procedure (2.3) selects the best symmetrical interval I = [z — h,z + h] among
several h in the grid H. We have implemented this procedure with non-symmetrical
intervals, which is a procedure similar to the one in Spokoiny (1998). First, we

define for any I C [0, 1] the inner product

X,el
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(it is convenient in this part to remove the normalisation term N, ;, from the def-
inition of the inner product) and similarly to (2.1) we define the matrix X; with
entries (X7);1 = (¢j, ¢1); for 0 < j,1 < k. We define in the same way Y, and é\[ is

defined as the solution to
X0=Yy.

Note that if J C [0, 1], the vector Fr ; with coordinates

(F1,0)5 = (Frw = Fans &3/ 11650.0,

for 0 < j < k, satisfies
Fr=H;0;—0,),

where H is defined as the matrix with entries

Iy 5
\/ineJ(Xi —x)%

for 0 < j,1 < k. The main steps for the estimation at a point x are then:

1

2

3
4

choose parameters a > 1, kK € Nand m > k + 1;
sort the (X;,Y;) in (X(;),Y(;)) such that Xy < X(i11);
find j such that x € [X(j),X(j+1)] and #{XZ‘XZ € [X(j),X(j+1)]} =m,

(
(
(
(4) build

)
)
)
)

llog, (j+1)] [log, (n—)]
é= | U [XG1-te XG+am);

p=0 q=0
(5) compute 6; and H; for all I € G;
(6) if Nn s = #{X;|X; € I}, find
I= argmax { Ny, ; such that V.J C I,J € G, ||HJ(§[ - (/9\‘])”OO < T}
Ieg
where || - ||oo stands for the sup norm in R**! and

Try =5(1+ Vit 1)y/Iog Ny g + V(1 + a)y/(Nos /N 1) log .

with & is an estimator of o, given for instance by (6.3);

(7) return the first coordinate of é}.

This procedure uses a geometrical grid, thus it is computationally feasible for
reasonable choices of a (a = 1.05 is used for the illustrations in the next section).
The main steps of the procedure with an arithmetical grid are the same with a
modification of the threshold, see (2.4). The procedure is implemented in C++ and
is quite fast: it takes few seconds to recover the whole function at 300 points on a

modern computer.
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5.2. Numerical illustrations. For our simulations, we use the target func-
tions from Donoho and Johnstone (1994). These functions are commonly used as
benchmarks for adaptive estimators. We show in figure 1 the target functions and
datasets with an uniform random design. The noise is Gaussian with o chosen to
have root signal-to-noise ratio 7. The sample size is n = 2000. We show the es-
timates in figure 2. For all estimates we take Kk = 2, ¢ = 1.05 and m = 25. We
estimate at each point z = 5/300 with j = 0,...,300.

Note that these estimates can be slightly improved with case by case tuned
parameters: for instance, for the first dataset (blocks), the choice kK = 0 gives a
slightly better looking estimate (the target function is constant by parts).

In figure 3 we show datasets with the same signal-to-noise ratio and sample size
as in figure 1, but the design is non-uniform (we plot the design density on each
of them). We show the estimates based on these datasets in figure 4. The same
parameters as for figure 2 are used.

In figures 5 and 6 we give a local illustration of the heavysine dataset. We keep
the same signal-to-noise ratio and sample size. We consider the design density
B B+1
a 2T (1 — 2g)PH!
for xg = 0.2,0.72 and g = —0.5, 1.

e | — x0| "1 13 (2), (5.1)
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FiGURE 1. Blocks, bumps, heavysine and doppler with Gaussian

noise and uniform design.

FIGURE 2. Estimates based on the datasets in figure 1.
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FiGURE 3. Blocks, bumps, heavysine and doppler with Gaussian

noise and non-uniform design.

FIGURE 4. Estimates based on the datasets in figure 3.

65
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Ficure 5. Heavysine datasets and estimates with design den-
sity (5.1) with zp = 0.2 and § = —0.5 at top, = 1 at bottom.

FIGURE 6. Heavysine datasets and estimates with design den-
sity (5.1) with 9 = 0.72 and § = —0.5 at top, 5 = 1 at bottom.
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6. Discussion

6.1. On the procedure. It is important to note that on the event £, the
estimator ﬁw is equal to the classical local polynomial estimator defined by
fow = arg min_ g —YI, (6.1)
gV
where V., = Span{(¢;);=0,..x}. A necessary condition for fh,,@ to minimise (6.1) is

to be solution of the linear problem
find f € V,, such that Vo € Vi, (f, ¢)p = (Y, ). (6.2)

The main idea of the procedure is the following: if h is a good bandwidth, then for
any h' < h and for all ¢ € V,; we should have in view of (6.2):

(o= Ty O = (fo =Y, O = (€, B,

which means that the difference f;— fy is mainly noise, in the sense that o1 ||¢H}:,1 (fh—

fr s &) is close in law to a standard Gaussian.

e The procedure (2.3) looks like the Lepski procedure: in a model where the es-
timators can be well sorted by their respective variances (this is the case with kernel
estimators in the white noise model, see Lepski and Spokoiny (1997)), the Lepski
procedure selects the largest bandwidth such that the corresponding estimator does
not differ significantly from estimators with a smaller bandwidth. Here, the idea is

the same, but the proposed procedure is additionally sensitive to the design.

e The estimator ]?n(xo) only depends on k and on the grid H (to be chosen by
the statistician). It does not depend on the regularity of f nor any assumption on

. In this sense, this estimator is adaptive in both regularity and design.

e Note that X; = 'F,F}, where F}, is the matrix of size n x (k + 1) with entries
(Frn)ij = (Xi —xo)’ for 0 <i<nand0<j<rk, and that ker X;, = ker Fj,. Thus,
X, is not invertible when n < k -+ 1 since its kernel is not zero, and €, = (). This is
the reason why theorem 1 is stated for n > x+ 1 and in the step 3 of the procedure
(see section 5.1) we must take m > k4 1 so that each interval in G contains at least

Kk + 1 observations Xj.

e The reason why we need to take the grid H = H3h in theorem 2 is linked
with the control of A, .. We can prove the theorem with a geometrical grid if we

additionally assume A, ., > A for A > 0, but we preferred to work only under the
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regularly varying design assumption with a restricted grid choice without extra as-

sumption on the model.

e The fact that the noise level o is known is of little importance. If it is unknown,
we can plug-in some estimator 2 in place of o2. Following Gasser et al. (1986) or

Buckley et al. (1988) we can consider

n—1

o 1 2
0, = 3 =1) ;(Y(i+1) - Yi)% (6.3)

where Y{;) is the observation at the point X(;) where X 1) < X(g) < -+ < X(p).

6.2. Comparison with previous results. In Guerre (1999), for the estima-
tion of the regression function at xy = 0 in a more general setup for the design, the
author works conditionally on X,, and gives an upper bound with a data-driven rate
similar to (3.4). The author considers then as an example the case of an i.i.d. design
with density p such that u(xz) ~ 2 close to 0 for 8 > —1, which is a particular
case of regularly varying density at 0 of index 3. Here, the approach is the same:
under the regular variation assumption we derive from theorem 1 an asymptotic

upper-bound with a deterministic rate (theorem 2).

Bandwidth selection procedures in local polynomial estimation can be found in
Fan and Gijbels (1995), Goldenshluger and Nemirovski (1997) or Spokoiny (1998).
In this last paper the author is interested in the regression function estimation
near a change point. The main idea and difference between the work by Spokoiny
(1998) and the previous work by Goldenshluger and Nemirovski (1997) is to solve
the linear problem (6.2) in a non symmetrical neighbourhood of zy not containing
the change point. Our adaptive procedure (2.3) is mainly inspired from the work
of Spokoiny and adapted for the degenerate random design problem. We have also
made improvements, for instance we do not need to bound the estimator and the

function at xy by some known constant.

7. Proofs

In the following, we denote by Py ;, the projection in the space Vj, (the set of
all polynomials with degree k) for the inner product (-, -)5. We denote respectively
by (-, ) and by || - || the Euclidean inner product and the Euclidean norm in R**!,
We denote by || - [loo the sup norm in R**!. We define e; £ (1,0,...,0), the first

canonical basis vector in R#H1,
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7.1. Preparatory results and proof of theorem 1. The next lemma is a
version of the local polynomial estimator bias-variance decomposition, which is clas-
sical: see Cleveland (1979), Tsybakov (1986), Korostelev and Tsybakov (1993), Fan
and Gijbels (1995, 1996), Goldenshluger and Nemirovski (1997), Spokoiny (1998)
and Tsybakov (2003), among others. The version given by lemma 1 is close to the
one in Spokoiny (1998). Let us introduce for any positive integer k the continuity

modulus

wrk(wo, h) = inf Mo o |f(z) = P(x = xo)].

Note that if k1 < ko we clearly have wy g, (20, h) < wy g, (zo, ).

LEMMA 1 (Bias variance decomposition). On the event Qy, the estimator ﬁm

from definition 1 satisfies for any k < k,
[ Fu(@0) = f(@o)| S ATHGVRF T (Wil h) + NP lul), (7.0

where vy, is, conditionally on Xy, centered Gaussian with B} “{yﬂ.’fn} <1.

Proor. On Qj, we have Xh = X}, and A(Xp) > N;;Lm > 0, then X, is invert-

ible. Since Ay, is clearly invertible on this event, Gy, is also invertible. Let 0 < & < %
By definition of wy . (xo, h) we can find a polynomial Ps ), € Py such that

€
sup |f(x) — Pfp(2)] < wyp(zo, h) + —.
z€|xo—h,z0+h] Hh f \/ﬁ

In particular we have |f(zo) — Pjj,(z0)| < % and if we denote by 6, the coefficients
vector of P, then

~ 10 € _ ~ €
| frn(@o) — f(xo)| < 1AL (B —On), en)] + N (G AR Xn (B — 61) s ex)]| + T
Then in view of (6.2) one has for j =0,...,k:

(X0 — 01))j = (o — Pins 50n
=Y = Pfp,, ¢j)n =(f — Pfp, ¢j)n + (&5 di)n

thus we can decompose Xh(gh —6,) 2 By, + Vj, and then:

| i (@0) — F0)] < (G AnBr s ex)| + (G AnVin s e1)] + %
N £
—A—l—B—i-\/ﬁ.

We have

A <16, A Bl < NIG; AR B < 116, HIVR + 1] An Balloo,
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and
_ €
[(AnBr);l = 105115 14 = Py d)nl <If = Pialln < wpwl(wo, h) + Nk
For any symmetrical and positive matrix M we have A\='(M) = ||[M || then since

||A;1H < 1 we have on the event Qp:

_ _ _ _ _ _ 1/2
1G, 1 = 1A, X5 A 1] < 1K M = A1 (X)) < NP < v

Thus A < |G, H[VE + 1wy (o, h) + eV + 1 < ||G; HIVE + 1wpk(20,h) + evi + 1
since k < k. Conditionally on X,,, the random vector V}, is centered Gaussian

with covariance matrix J2N; ;ILXh- Thus g,leth is again centered Gaussian, with

covariance matrix
2a7—1,—1 -1 2a7—1,—1
o thgh A XpAp G, =0 Nn,hgh ,

and B is then centered Gaussian with variance

02N_1<61, Q}jleﬁ < O'2NT:;1L||Q}:1H

n,

Since Gy is positive symmetrical and its entries are smaller than one in absolute
value we get |G| = A™1(Gy) and \(Gp,) = inf) =1 (z, Grr) < ||Grer|l < VE+ 1.
Thus ||G; || < V& + 1|G;, ||?, and the proposition follows. O

Let us introduce the events

Ap ng Z A Fnw = Frrws O)wl < ollésllnTonn}s

App £ ﬂ;”:O Ap o and A £ Nirer, Ann- The following lemma shows that
if some bandwidth h is good in the sense that h < H,, (h is smaller than the
ideal adaptive bandwidth) then h can be selected by the procedure with a large
probability.

LEMMA 2. Let f € Fs(zo,w) for w € RV(s) with 0 < s < k+ 1. If h is such
that h < Hy, o, A6 we have on €y, for any n > Kk + 1:

T AARX ) > 1= (ke 1)N;§f’.
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PRrROOF. Let j € {0,...,x} and b’ € Hj. On Q) we have in view of (6.1) that
ﬁw =P, ;,(Y) thus using (6.2) we can decompose:

e = Frs 0500 = (¥ = frs )
= (f = frn &30 + (€, Di)w
= {(f = Punlf), &) + Prutn(f) = Farr S0 + (€, Sm
=(f = Punlf), i) + Pun(f =Y), dj)n + (&, dj)n
= (f =Pun(f), di)n — (Punl&), &0 + (s dj)w

£ A+ B+C.

The term A is a bias term. By the definition of w¢ (o, h) we can find a polynomial
P}‘h € V} such that

sup  |f(z) — Piy(z)| S wrk(zo, h) + en,
z€[xog—h,zo+h]

where ¢, & %%/ C”Z’gQ (see (2.4)). Since ' < h <6, f € Fs(wg,w) and P}, €
Vi C V, we get
(AL <N = PenDlwliéilin <If = Py = Pen(f = PEa)lnllo;lw
<|f = Prpllnliollns
< djlln (W (o, h) +en) < N@lln (w(h) + en),

since P, p, is a projection with respect to (-, -),. If h < H, ., we have in view of
(3.3) that w(h) < o4/ N, ; logn. When h = H,,, two cases can occur. If the graphs

of h — o, /Nn_’}lL logn and h — w(h) cross each other we have w(h) = o4 /N;,ll logn.
When these graphs do not cross we introduce H, , = max{h € H|h < H, .} and
Hy, = min{h € H|h > Hp,}. If H = HZ'™ we have Npp,, < N, gi <

n,

Ny g, T while when H = HE™™ we get Ny g, < Nopgr, < (1+a)N, - .

n,

Then for any h < H,,

¢l (or/(Npp —a)Tlogn +e,)  if H = Harith,
H‘bﬂ‘”h’(‘f\/(l+a)Nn_,h10gn+an) if H = HEo™,

A < (7.2)

Conditionally on X,,, B and C are centered Gaussian. The conditional variance of
Cis

Nl
and conditionally on X, the vector P, () is centered Gaussian with covariance
matrix

2 t 2
o Pli,h Pli,h =0 Pn,ha
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since P, 5, is a projection. Thus B is centered Gaussian with variance

1APRA(©), 613X} <S5 IFET, {IPen(©)lI} %0}
= N, 1 ll6s 13 tr(Var (P (€)|X0))
= N 613 tr (Pre)
2N, 1l 65l13 dim(Vye) < 0N b [l 13 (s + 1),

where we last used that P, is the projection in V.. Then conditionally on X,,

B + C is centered Gaussian with variance
E} {(B+C)*%,}
1 AB*+2BC + C?|x,}

n ABY%,) + 2\/E?7M{B2|3€n}E?,M{C’2|3€n} +E? {C?%,)
o*(1+ Vi +1)2N, |65 Cx-

Using (7.2) and since 2 < N, ;, < n on ), we have

) B+C
B h,j C { _|1/2 | > \/Cp logNn,h/Q},

nh’ ”@Hfﬂ

and using a standard Gaussian large deviation inequality we get
B A %} < exp(—(1+20)log Nyy) = N, (2.
Since #(Hp) < Ny, we finally have
?,M{Az‘%n} < }lﬂu{ U U‘Ah’hj‘:{ } H—l—l)N O
h'eHy, 7=0

LEMMA 3. Let h € H and ' € Hy,. On the event Qp N Aps j, one has:

[Fi(@0) = f(@0)| < Cpmall Gy lloy /N, s log m,
where Cp 0 2 Vi + 1(V1T+ a+ Cu\/Cp).
PROOF. In view of definition 1 and since Gy, is invertible on €2, we have
| fu(z0) — f (o)l = [(AL (B — Ow) , e1)]

< 1AL B = Ow)]

= |G A X (B, — 0|

211G M D | < NGy IV + 1] A D oo
On Ay j, we have for any j € {0,...,k}:

|(Dre )il = |{fn = for s @3] < ol &l Ton b,
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thus ||[Ap Dy plloc < 0T pr p- Since B < h and Ny, , < n we have when H = HE™™

T < (Cun/Cp+ V14 a)y/Nyplogn, (7.3)
and when H = H2" we have by construction N, h = 14+athus (Npp —a)” RS
(1+ a)N_h and (7.3) holds again. O

LEMMA 4. For any p,a > 0 and 0 < h/ < h < 1 the estimator fhr given by
definition 1 satisfies:

sup  E7,{|Fuw(@0)P|Xn} < CoprlaV 1PN,
feU(a)

where Cyp o = (K + 1)7’/2\/ng+(1 + ot)P exp(—t2/2)dt

Proor. If Ny, jy = 0 we have .]/C;L/ = 0 and the result is obvious, thus we assume
Ny > 0. Since )\(f(h/) > NT;}ILP > 0, ih/ and Ay are invertible and also Gy.
Thus,

Fur(x0) = (A0, €1) = (G A X, €1) = (G A Y, e1).

For any j € {0,...,x} we have (A Yy ); = ”gbj”}:,l((f, S + (&, b)) 2 By j +
Vi j. Since f € U(a) we have

Bl < N5l 1(F 5 @idwl < I f I < @

thus ||Bp/||cc < a. Since Vj/ is, conditionally on X,,, a centered Gaussian vector
with variance 02N o }L,AthhrAhr we have that g,j,lAh, Vs is also centered Gaussian,

with variance
2N;}L,gf;1Ah/Xthh/gg,1 = O'2Nn h’A 1Xh’ Xh’Xh/ Ah,l.

The variable (g,;,l Vi, e1) is then conditionally on X,, centered Gaussian with vari-

ance
vy £ 0N (en A X XX AL en) < o N AP 11K,
and since clearly || X/|| < k+1, [|A;}]| < 1 and Hig,lH =2 1(Xp) < an/h% we have
v}, < o?(k+1) and |G| < ||Ah/1||Hth1H||Ah/1H Tll/h, Finally we ha\;e
| Fwr(20)| < (G B, e1)| + (G Vi, e1)]

<G IBw | + oV + Tl l)

< VRFIN (1B oo + o)
Vit 1(a V)NV + o),

where 7y, is, conditionally on X,,, centered Gaussian with variance vh, 1. The

N

lemma follows by integrating with respect to P} (+[Xy). O



74 2. POINTWISE ADAPTIVE CURVE ESTIMATION WITH RANDOM DESIGN

PROOF OF THEOREM 1. First, we work on the event {H,, < H, ,}. By defini-
tion of H, we have {];A[n < H; ,} C A% . Uniformly for f € U(a) we have using

lemmas 2 and 4:

Fud Bl Fa(@o) = F@o)P1g _y. %0}

@ VR (VG {15, o) Pl2a} + £ (@o)l) /By Ay, %0}
< (2P V1)oP(aV 1P (\/Coapr + DVE + 1(logn) P2 = 0,(1).

Now we work on the event {H}; , < H,}. By definition of H, we have
{Hyo < Hn} C Ay, 7
and using lemma 3 we get on Qg
|75, (o) = Fas,. (w0)| < CprallGiz: 1R (7.4)

Since s < K+ 1 we have k = [s| < & and wy (20, h) < wpp(ro,h). In view of

lemma 1 and since f € Fp _(zo,w) one has on Quy

n -1
[Frry. (w0) = Flao)| < 11G} VR T(W(H; L) + 0N 2 ).
where gy is, conditionally on X, centered Gaussian with E}‘ M{VH;J%?@} <1

When H;, , < H,, we have w(H,,

n,w

) < o, /N;}{:wlogn. When Hy, , = Hp o we

proceed as in the proof of lemmas 2 and 3 to prove that
w(Hp,,) < 0\/(1 + a)Nn_’}{;’w logn,
in both cases H = Hzrith or H = HE™. Then
|Frz (@0) = f(20)] € RuullGt IV +T(VI+a+ v ). (7.5)
Finally, (7.4) and (7.5) together entail:

RZ,Ufn(xo) - f(x0)|1H;,w<ﬁn,w
< ||g;171»;w ||(Cp,n,a +veE+1(V1+a+ |7H;;,w|))7
and the result follows by integrating with respect to P ( |%,). O

7.2. Preparatory results and proof of theorem 2. Let us denote by P}
the joint probability of the variables (X;)i=1,. ». We define F,(h) £ foh v(t)dt

LEMMA 5. If u € R(zg,3) one has for any e,h > 0:
Nn h 62
1‘ b <20 (- E,(h)).
F, () > e exp 1+€/3n v(h)
PRrOOF. It suffices to use Bernstein inequality to the sum of independent random
variables Z; = 1|x, o j<n — Pi{|X1 — 20l < h} fori=1,. O

Ve >0, IP’Z{
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LEMMA 6. If p € R(zo, ) for B > —1, w € RV(s) for s > 0 and (hny) is
defined by (3.6) then 1y, = w(hny) satisfies

P ~ 05,02 072 (log n )/ 42480, (log m/n) asm — +o0,  (7.6)

where £, is slowly varying and cy g = 2801250 When w(h) = rh® (Holder

reqularity) for r > 0 we have more precisely:
T ™~ cs,ﬁ025/(1+25+6)T(5+1)/(1+25+6) (log n/n)s/(1+25+6)€57y(10g n/n)7 (7.7)
where Ly, is again slowly varying.

PROOF. Let us define G(h) = w?(h)F,(h). Since 3 > —1 we have F,, € RV(3+1)
(see section 8) and G € RV(1+2s+ 3). The function G is continuous and such that
limy_,o+ G(h) = 0 in view of (8.2), since 1 4+ 2s + 3 > 0. Then for n large enough
h, is given by h, = G (0%logn/2n) where G~ (h) = inf{y > 0|G(y) > h} is the
generalised inverse of G. Since G~ € RV(1/(1 4 2s + 3)) (see section 8) we have
wo G~ € RV(s/(1+ 25+ 3)) and we can write w o G~ = h*/(F25408)( () where
{y, is slowly varying. Thus

_ logn
rm =wo(@ (02 o7 )

2s/(1425+8) <10g n) S/(1+2S+IB)€W (log n
sV n

n

~ Cs 30 ) as n — 400,

since £, , is slowly varying. When w(h) = rh® we can write more precisely h, =
G‘_(J2 log") where G(h) = h?*F,(h), so (7.6) and (7.7) follow. O

2r2n

Let us introduce the following notations: if « € N and A > 0 we define

X~—a;0 a
Nupa® ) (lh )
|Xi—xo|<h

Note that Ny, 0 = Ny 5. For € > 0, we define the event:

Nn,h,a
nky,(h)

Dn,h,a,a £ {‘ - Caﬁ‘ < 6},

where C, g is given in section 3.3.

LEMMA 7. For any o € N, ¢ > 0 and if p € R(xzo,3) we have for any positive
sequence (v,) going to 0 and when n is large enough:

2

PZ{D%,%,a,e} < 2exp < ~3 c

mnFu(%z))- (7.8)
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PROOF. Let us define Q; 5 o £ (X%xo) L)X, —o|<yms Zisna ana M{inn,a}’

Since u € R(xp,3), we have for n large enough that [zg — Yn, 20 + 7] C W and
ie{l,...,n}k

B+1 Tn ya+03
n 'Vn f t E d
——EFE imat = (1 -1 ’

where £, (h) = h=Pv(h) is slowly varying (see section 8) and in view of (8.3) we have

n£+ooF( it @inal = Cos

Then for n large enough,

n

{|%—oa,ﬁ| >e}c {(ﬁ(%);zm( >e/2}. (7.9)

We have Eﬁ{Zma} =0, | Zin,al < 2. Since
by o 2 ZEZ{ZZn,a} < nEZ{an a} 2nkF, ( )
i=1

and the Z; , o are independent we can apply Bernstein inequality. If 7, £ SnF, (),
(7.9) and Bernstein inequality entail:

2 2

e
{ T, Yn, O 8} exp<2(b7217a + 2Tn/3)> e€xp < 8(2 n E/3)” (fy )>

Let us introduce for € > 0 the event

Cn,a £ {(1 - E)hn,w < Hn,w < (1 + E)hn,w}a
where hy, ,, is given by (3.6).

LEMMA 8. If w € RV(s) for s > 0, then for any 0 < ey < 1/2 there exists
0 < e3 < g9 such that for n large enough

Dn,(l—az)hn,w,o,&‘g N Dn,(l+€2)hn,w70,a3 - Cn,&‘z-
PRrROOF. By the definition (3.3) of H,, ., we have
{Hnw < (1 +e2)hno} = {Nn,(1+€2)hn,w > 0—2‘*‘}_2((1 + €2)hnw) log n}.

It is clear that e3 £ 1 — (1 — €3)72(1 + e2) 2% A g2 > 0 for &2 small enough. We
recall that ¢, stands for the slow term of w (see definition 3). Since (8.1) holds
uniformly over each compact set in (0, +00) we have when n is large enough that

for any y € [2, 2]

(1 — 3l (hnw) < lo(hnw) < (14 3)0y (hnw), (7.10)
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so (7.10) with y = 14¢ (¢ < 1/2) entails in view of (3.6) and since F), is increasing:
2(1 — e3)nF, (1 + e2)hnw) = (1 — 3)72(1 + £2) 2°0%w 2 (hp,) logn
= 02((L+ e2)hnw) (1 — €3) 7205 (hnw) logn
> 02w (1 + e2) ) log n.
Thus
{Nn,(tea)hn = 2(1 —e3)nFu((1 +€2)hnw)} C{Hnw < (1+62)hnwt,
and similarly on the other side we have for n large enough
{Nn,(1-c2)hn < 2(1 +e3)nby((1 = e2)hnw)t C{(1 —e2)hnw < Hyw}
thus the lemma. O
Let us denote G, = GH, . and introduce the events
Ape 2 {INGn) — Aol < e},

fore >0 and for « € N
Buos 2 {lomry ¥ (P52~ s <)
n,0,e nF,,(hn) hn a0 X .
| X —zo|<Hnp

LEMMA 9. Ifw € RV(s) for s > 0 and p € R(xq,3) for 8 > —1 we can find for
any 0 < e < % an event A, . € X,, such that for n large enough

An,a C An,a N Bn,O,E N Cn,aa (7'11)

and
PZ{A%@} < 4(k + 2) exp ( — 6570757‘52). (7.12)

PrOOF. Using the fact that A(M) = inf| ;=i (z, Mz) for any symmetrical ma-

trix M and since G,, and G are symmetrical we get
2K

ﬂ {Kgn)j,l —(9);,] < ﬁ} C A,

a=0

Since [(G);,] < 1 we can find easily 0 < &1 < e such that for any 0 < j,I < &

9
Bn,j—l—l,el N Bn2je; NBroaie, C {‘(gn)j,l - (g)j,l‘ < 7)2}7

(1+x
and then
2K
ﬂ Bn,a,sl C An,e-
a=0
K B+2
We define g9 £ E)iwal and &3 such that % =1+ e9. Since h — N, 3, is

increasing we have

Cres C {Nn,(l—63)hn < Npm, < Nn,(1+63)hn}7
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and using lemma 8 we can find €4 < €3 such that

Dn,(l—Eg)hn,07E4 N Dn,(1+a3)hn,0,a4 C Cn,ag-
In view of (8.1) and since £, (h) £ F,(h)h~(3*+Y is slowly varying we have for n large
enough and any 0 < g3 < 1/2
0,((1+e3)hy) < (1+e3)ly(hy) and £,((1 —e3)hy) = (1 —e3)ly(hy), (7.13)

thus

N { Nn,Hn

Dn,(l—ag)hn,0,54 N Dn,(1+53)hn,0,a4 N Dn,hn,O,ag C En,EQ = N—h - 1‘ < 52}7
n,n

and on Dn,(1—53)hn,0,54 n Dn,(1+63)hn,0,54 N Dn h, 0,65 We have

1 2 (Xih_ x0>a_ Mofin,o

| X —wo|<Hn "

nky,(hy)

< (Hn V hn>a n,hn Nn,Hn
= R, nE,(hn) | Nyp,,

< (1+e3)%2+e3)e2 < €1/2,

_1‘

since e3 < 1/2. Then we have since g4 < 3 < g2 < 5

Dn,(l—eg)hn,0,54 N Dn,(1+53)hn,0,54 N Dn,hn,0,€4 N Dn,hma,&; C Bn7a7817

and finally
2K
A
An,a = Dn,(l—eg)hn,0,€4 N Dn,(1+53)hn,0,€4 N Dn,hn70,€4 N m Dn,hn,a,€4
a=0

C An,a N Bn,O,a N Cn,ay

thus (7.11). Using lemma 7 we obtain easily in view of (7.13) and (3.6) for n large

enough

2
nyf gc €4 —(B+2) .2, .2
< - @
PU{AL ) < 4(k +2)exp ( o 64/3)2 o°r, logn),

thus (7.12) and the lemma follows. O

PROOF OF THEOREM 2. Since H = H{"** we have Hy,,, = H;, and An, =
MG, ). We can assume without generality loss that ¢ £0-1% % A A g We
consider the event A, . from lemma 9. Clearly, we have for n large enough A, . C
Qpn,., and Fop, (0, w) C Fp, ,(To,w). In view of (7.11) and theorem 1 we have

uniformly for f € X:

Fulra?| Fa(eo) = f(20)P1a,.}
(1= &) PR {R.7| falwo) — f(z0) [P Lay, }
(1= &) er(Aeg — &) P(1+ 0n(1)):

NN
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Now we work on the complement Aj, . Using lemma 4 and equation (7.12) we get
since f € U(a) and N, < n

B Fulzo) — f(xo)lP1ag )

< @ VD (B, Fuleo) 27} + o) /Pr(45.)
< (2P V1)(a V 1)P(\/Coopr + P 2r Py [PR{AS } = 0,(1),

thus we have proved (3.8) and (3.9) follows from lemma 6. O

7.3. Computation of the example.
LEMMA 10. Let a € R and b > 0. If G(h) = h®(log(1/h))%, then we have
G~ (h) ~ bR % (log(1/h))~ " as h — 0.

The proof of this lemma can be found in chapter 1 (see page 47). Using this

lemma, we obtain that an equivalent of h,,,, (see (3.6)) is

(2n(log n)*+?171) )

Y

(1 + 25 + B)(@+20)/(A+2s+5) ( >2/(1+2s+5)
r
and since w(h) = rh*(log(1/h))” we find that an equivalent of 7, ,, (up to a constant

depending on s, 3,7, a) is (3.10).

7.4. Proof of the lower bound. The proof of theorem 3 is similar to that of
theorem 3 in Brown and Low (1996). It is based on the next theorem which can be
found in Cai et al. (2004). This result is a general constrained risk inequality and is
useful for several statistical problems, for instance superefficiency, adaptation and
SO on.

Let p > 1 and ¢ be such that % + % =1 and X be a real random variable with
distribution Py and density fy. The parameter 6 can take two values 6 or 65. We
want to estimate 6 based on X. For any estimator ¢ based on X we define its risk
by

Ry(6,0) £ Eof{[d(X) — 0|7}

We define s(x) = fo,(x)/fo, () and A = |0 — 6;]. Let
Iy = Iy(61,62) 2 (Ep, {s°(X)})"".

THEOREM 4 (Cai, Low and Zhao (2004)). If § is such that R,(0,61) < P and if
A > el,, we have

1,
)
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PROOF.
Ry(6,02) = Eg,|5(X) — 6af? > [Eg,6(X) — Ol
> (102 — 01] — [Eg,6(X) — 61])",
and
[Eg,6(X) — 61] < (B, 15(X) — 6:1]P) /7 (g, (X)) V7 < e,

thus R,(0,02) > (A—el,)? and the result follows, since (1—z)? > 1—pz,if 0 <z < 1
and p > 1. O

PROOF OF THEOREM 3. Since lim sup,, ¢;anpEfo,u{|ﬁz(!E0) — fo(zo)|P} =C <

oo we have for n > N

Efo7u{|ﬁ($o) — folm) [P} < 2C¢Pn =P,

Let g be k times differentiable with support in [-1,1], g(0) > 0 and such that for
any |z| < 8, [g%¥)(z) — g®)(0)| < K!|z[*~*. Such a function clearly exists. We define

file) £ fola) + (= rhpig (=),

where p,, is the smallest solution to

B blogn
"= 2nE, (h)

where b = 2g72(p — 1)y and g = sup, |g(x)|. We clearly have f; € Fs(xg,w). Let

0, P} be the joint laws of the observations (1.1) when resgectively f=foor f=fi.

d
A sufficient statistic for {P%,P7} is given by T, £ log —9 and

Py

v
— 7",1)”) under Py,

Un
N(—, vn) under P},
where N(m,o?) is the Gaussian law with mean m and variance o2, and

tn = T5llfo = Fillag = %5 [ (fole) ~ fi@) Pule)ds < 20~ 1) logn,

An easy computation gives I, = exp(%) < n” thus taking in theorem 4 6 =

Fa(@o), 02 = fi(zo), 61 = fo(zo) and € = 1, entails
Ry(8n,02) = ((r —1")p59(0) — 2C¢,n™ )P > (r — )P piPgP (0)(1 — 0n(1)),

since limy, ¥, /p5 — 0, and the theorem follows. O
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8. Some facts on regular variation

We recall here briefly some results about regularly varying functions. The results
stated in this section can be found in Senata (1976), Geluk and de Haan (1987) and
Bingham et al. (1989).

Let ¢ be in all the following a slowly varying function. An important result is

that the property
lim 4(yh)/l(h) =1 8.1
Jim £(yh)/¢(h) (8.1)
actually holds uniformly for y in any compact set of (0,4+00). If R € RV(«1) and
R € RV(az) we have

e R{ Xx Ry € RV(Oél + ag),
e RioRy € RV(OQ X 042).

If R € RV(y) with v € R — {0} then as h — 0T we have

0 ify>0,
R(h) — (8.2)
+oo ify <.
If v > —1, one has:
h
/ DU ~ (1+7) " BITTE(R) as b — 0T, (8.3)
0

and then h — foh t70(t)dt is regularly varying of index 1 4 . This result is known

as the Karamata theorem. If R is continuous we define the generalised inverse as
R~ (y) = inf{h > 0 such that R(h) > y}.
If R € RV(7) for some > 0 then there exists R~ € RV(1/7) such that
R(R™(h)) ~ R (R(h)) ~hash— 0", (8.4)

and R~ is unique up to an asymptotic equivalence. Moreover, one version of R~ is
R(—
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CHAPTER 3

Sharp estimation in sup norm with random design

The aim of this chapter is to recover the regression function with sup norm loss.
We construct an asymptotically sharp estimator which converges with the spatially
dependent rate

rau(w) = P(logn/(nu(x))) >,
where 1 is the design density, s the regression smoothness, n the sample size and P
is a constant expressed in terms of a solution to a problem of optimal recovery as
in Donoho (1994). We prove this result under the assumption that yu is positive and
continuous. This estimator combines kernel and local polynomial methods, where
the kernel is given by optimal recovery, which allows to prove the result up to the
constants for any s > 0. Moreover, the estimator does not depend on u. We prove
that r,, ,(x) is optimal in a sense which is stronger than the classical minimax lower
bound. Then, an inhomogeneous confidence band is proposed. This band has a non

constant length which depends on the local amount of data.

1. Introduction & main results
1.1. The model. Suppose we observe (X;,Y;),1 < i < n, from
Y = f(Xi) + &, (1.1)

where §; are ii.d. centered Gaussian with variance o2 and independent of Xj,
with X; i.i.d. with density p on [0, 1], which is bounded away from 0. We want to
recover f. In this model, when p is not the uniform law, we say that the information

is spatially inhomogeneous.

1.2. Methodology. There are several ways to assess the quality of an estima-
tion procedure. A first approach is local: we focus on recovering f at a fixed point
xo € [0,1]. Over a function class ¥, the minimax risk is given by

Ra(S, 20) = inf sup B}{| fu(wo) — f(z0)[},
fn fEX
where the infimum is taken among all estimators. We say that p,(z¢) > 0 is the
minimax convergence rate at xq if
R (2, o)

72n(2,x0) .
———— L limsup ————= < 400
pn(wO) n pn(xO)

85

0 < liminf
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In this chapter, we are interested in recovering f globally. We consider the loss with
sup norm defined by [|g[lcc = sup,cp 1] [g(x)|. In this case, the minimax risk is

R (%) = inf sup B {1~ fllo}. (1.2)

n

and we say that 1, is the minimax convergence rate if

Ra(®) _ o Rul®)

0 < lim inf < lim sup

An advantage of this norm is that it is exacting: it forces an estimator to behave

< +00

well at every point simultaneously. In the regression model (1.1) with ¥ a Holder
ball with smoothness s > 0, we have when p is positive and bounded that v, <
(logn/n)*/(?s+1) (see Stone (1982)), where a, = b, means 0 < liminf, a, /b, <
lim sup,, a,, /b, < +0o0.

However, when p is positive and bounded, 1, is not sensitive to the variations
in the amount of data. An improvement is to consider instead of (1.2) the spatially

dependent risk

sup EF{ sup ry(2) | ful(z) = f(@)]},
fex z€0,1]

where fn is some estimator and r,(-) > 0 a family of spatially dependent normal-
isation factors. If this quantity is bounded as n goes to infinity, we say that r,(-)
is an upper bound over Y. If we look for such upper bounds, we clearly find that
rn(z) < 1, for any z, thus we must sharp this upper bound up to constants. Here,
we consider indeed the latter approach in the asymptotic minimax context. In this

chapter, we develop the consequences of inhomogeneous data within this framework.

1.3. Upper and lower bounds. If s, L > 0, we define the Holder ball X(s, L),
which is the set of all the functions f : [0,1] — R such that for any z,y € [0, 1],

1f® (@) — fB(y)| < L]z -y,

where k = |s] is the largest integer k < s. If Q > 0, we denote by X% (s, L) the set
of functions f € X (s, L) such that |f|lec < @, and we denote simply ¥ = %%(s, L).
All along this study, we suppose:

AssUMPTION D. For some 0 < v < 1 and p,q > 0, we have
€ X(v,0) and p(x) > q, for all x € [0,1].

In the following, a loss function w(:) is any non negative and nondecreasing
function such that w(z) < A(1 + |z|?) for some A,b > 0 (an example is w(:) = | - |P
for p > 0). Let us consider

logn > s5/(2s+1)

o) = <nu(x)

(1.3)
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We denote by E}L u the integration with respect to the joint law ]P’?’ " of the observa-
tions (X;,Y;), 1 < ¢ < n. Our first result shows that r, ,(-) is, up to the constants,

an upper bound over .

THEOREM 1 (Upper bound). Under assumption D, ifﬁl is the estimator defined

in section 3, we have for any s, L > 0,

limsupsupE} , {w( sup rn#(x)_l]ﬁl(a:) — f()])} <w(P), (1.4)
n fex z€[0,1]
where
2 s/(2s+1)
— +2s/(2s+1) 1 1/(2s+1)

P-—o L 2052 — ) (1.5)

and @ is defined as the solution of the optimisation problem
ps = argmax ¢(0), (1.6)

p€EX(s,1;R),
llpll2<1

where X(s, L;R) is the extension of ¥.(s, L) to the whole real line.

In the same fashion as in Donoho (1994), the constant P is defined via the
solution of an optimisation problem which is connected to optimal recovery. For
further details, see in sections 2 and 6. The next theorem shows that 7, ,(-) is
indeed optimal in an appropriate sense. In what follows, the notation |I| stands for

the length of an interval I.

THEOREM 2 (Lower bound). Under assumption D, if I, C [0,1] is any interval
such that for some ¢ € (0,1),

L n¥/@H) & 400 as n— +oo, (1.7)
we have

limninf iIAlfsupE}‘M{w( sup rn,u(az)_l\ﬁl(az) — f@))} 2 w((1-¢)P),
fn fEX z€lp

where P is given by (1.5) and the infimum is taken among all estimators. A conse-

quence is that if I, is such that (1.7) holds for any € € (0,1), we have
liminf inf supE} | {w( sup rn#(x)_l]fn(x) — f(@)])} = w(P). (1.8)

n fn fEE ’ Z'EIn

This result is discussed in details in section 2.4. Now, we construct a confidence
band which is adapted to inhomogeneous data. Indeed, its length varies depending

on the local amount of data.
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1.4. An inhomogeneous confidence band. We define the empirical design

sample distribution
1
Hn = ; 2; 5Xm
1=

where § is the Dirac mass, and for h > 0, x € [0, 1], we consider the intervals

(1) [x,z+h] whenO0<x<1/2, (1.9)
x,h) = .
[ —h,z] when 1/2 <z < 1.

The choice of non symmetrical intervals allows to skip boundaries effects. Then, we
define the "bandwidth” at = by

) logn 1/2
H,(z) £ argmin {hs 2| ———— }, 1.10
(@) helo,1] <nun(1(ﬂ?,h))> (110

which makes the balance between the bias and the variance of a certain kernel

estimator (more in section 3 below). We consider the sequence of points
.Z'] — ]Ana An — (log n)—25/(25-i—1)n—l/(28+l)7 (111)

for j € J, = {0,...,[A-1]} where [a] is the integer part of a with xp;, = 1, M,, =

n

| 7| (the notation |A| stands also for the size of a finite set A). If z € [, 2j11), we
define

Ry (x) = Hy(z5)°,
and for any x € [0, 1], 8 > 0, we consider the band

Crp(x) = [fal@) = (1 + )P Ro(x), falz) + (14 B)P Ry ()], (1.12)

where P is defined by (1.5). The next proposition provides a control over the

coverage probability of this band, uniformly over [0, 1].

PROPOSITION 1. Given a confidence level o € (0,1), C,, g with

log(1/a) )1/2
25+1)

ﬁ = ﬁ(’I’L,Oé) = <Dc(log n)QS/(

(where D, is some positive constant), is under assumption D, a confidence band of

asympotic level 1 — a, namely:

}1€1£ ]P’?M{ f(x) € Cpp(x), forall z€[0,1]} >21—aq, (1.13)

for n large enough. Moreover, we have for any x € [0, 1],

supE} {|Cn ()|} /Tnpu(®) — 2P as n — +oo. (1.14)
fex
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In figures 1 and 2, we give a numerical illustration of this confidence band. We
consider the function f(z) = 0.3(1 — |z — 0.5//0.3)+, where a4 = max(a,0). The
first dataset is simulated with an uniform design and the second dataset with design
density pu(z) = 0.05 4 11.4|z — 0.5|2. In this example s = L = 1, the sample size is

n = 500 and the root-signal-to-noise ratio is 7.

Ficurke 1. Confidence band with homogeneous data.

F1cURrE 2. Confidence band with inhomogeneous data.

When the data is homogeneous (uniform design), the length of the confidence
band is almost constant, see figure 1. In the non-uniform case, the band is confined

at the boundaries of [0, 1] and more spaced at the middle, see figure 2.

1.5. Outline. The remainder of the chapter is organised as follows. In section 2
we discuss our results in details and compare them with former results. In section 3,
we construct the estimator used in theorem 1. The proofs are delayed until sections 4
and 5. In section 6, we recall some well known facts on optimal recovery, which are

useful for the construction of our estimator and for the proofs.
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2. Discussion

2.1. Motivation. In most cases, the models considered in curve estimation do
not allow situations where the data is inhomogeneous, in so far as the amount of data
is implicitly assumed constant over space (or time). However, an increasing literature
works in models where the data can be inhomogeneously distributed. Recent results
deal with the estimation of the regression function when the observation points are
not equispaced or random, see for instance Antoniadis et al. (1997), Brown and
Cai (1998), Wong and Zheng (2002), Maxim (2003), among others. The estimators
proposed in these papers present good minimax properties, but the results are always
stated in a way in which the following basic principle does not appear: an estimator
shall behave better at a point where there is much data than where there is little
data. For instance, upper bounds are usually stated with the minimax rate, which
is not sensitive to the variations in the local amount of data nor to the information
distribution in the considered model.

At this stage, it is also natural to look for confidence bands when the data is
inhomogeneous, and especially distributed with an unknown density. Following the
above principle, a striking question is that of the construction of a confidence band
with a length which depends on the local amount of data: such a band should be
more confined where there is much data than where there is little data. The aim of

this chapter is to develop this new approach.

2.2. Literature. When the design is equidistant, that is X; = i/n, we know
from Korostelev (1993) the exact asymptotic value of the minimax risk for sup norm

error loss. If

)

b = (loi n) s5/(2s+1)

we have for any 0 < s <1 and ¥ = X(s, L),

lim_inf sup B {w (¥, '[|fn = flloo) } = w(C),
n fEX

n—-400 f

where

1\ s/(2s+1)
O = O_2s/(2s+1)L1/(2s+1)<52_22 ) . (2.1)
This result was the first of its kind for sup norm error loss. The exact asymptotic

value of the minimax risk was only known for square integrated norm error loss,
see Pinsker (1980).

In the white noise model
dYy* = f(t)dt +n~"2dW,,  te(0,1], (2.2)

where W is a standard Brownian motion, Donoho (1994) extends the result by Ko-
rostelev (1993) to any s > 1. In this paper, the author makes a link between
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statistical sup norm estimation and the theory of optimal recovery (see section 6).
It is shown for any s > 0 and ¥ = ¥(s, L) that the minimax risk satisfies

lim _inf sup By {1, || fo — fllo} = w(Py), (2.3)
fn fEX

n—-+00

where Pj is given by (1.5) with ¢ = 1. When s € (0,1], we have P = C, see for
instance in Leonov (1997).

Since the results by Korostelev and Donoho, many other authors worked on
the problem of sharp estimation (or testing) in sup norm. On testing, see Lepski
and Tsybakov (2000), see Korostelev and Nussbaum (1999) for density estimation
and Bertin (2004a) for white noise in an anisotropic setting.

While most papers on sharp estimation work in models with homogeneous infor-
mation, the paper by Bertin (2004c) works in the model of regression with random
design (1.1). When g satisfies assumption D and ¥ = %®9(s, L) for 0 < s < 1, it is
shown that

lim infsupE?M{w(v;Lan — fllso)} = w(C), (2.4)

n—-+oo fn fez

where C'is given by (2.1) and

nw:( logn >S/(2S+1)' (2.5)

ninf, ()
Note that the rate vy, , differs from (and is larger than) v, when p is not uniform. A
disappointing fact is that v, , depends on y only via its infimum, which corresponds
to the point in [0, 1] where we have the least information. This rate does not take
into account the regions with more data. It seems natural to wonder if we can
improve this result, namely: can we replace inf i by p(x) 7 Note that in section 1,
we have answered positively to this question.

In this chapter, we extend the result by Donoho (1994) to the model of regression
with random design and we improve the result by Bertin (2004c) in several ways:
our result holds for any s > 0, we construct an estimator which does not depend
on p, and when the design is not uniform, our convergence rate r, ,(-) is better
(smaller) than v, , at the order of constants. More importantly, this rate is adapted

to the local amount of information of the model.

2.3. About theorem 1. We can understand the result of theorem 1 heuris-
tically. Following Brown and Low (1996) and Brown et al. (2002) we can find an
"idealised” statistical experiment which is equivalent (in the sense that the LeCam

deficiency goes to 0) to the model (1.1). The model (1.1) is clearly equivalent to

Y; = f(GMU:) + &, 1<i<n,
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with independent and uniform U; where G, (z) = [ u(t)dt. Under appropriate
conditions on f and p, we know from Brown et al. (2002) that this model is equivalent
to

dz; = f(GN())dt + %th, te[o,1],

where W is a Brownian motion. Informally, if x4 is known we obtain by the time

change t = G (u),
dZ" = f(u)p(u)du + o #dﬁu, u € [0,1],

where Z, = Zg,(u) and W is a Brownian motion. Finally, we obtain that (1.1) is
equivalent to the heteroscedastic white noise model
dY)" = f(u)du + ————dB,, ue[0,1], (2.6)
np(u)
where B is a Brownian motion. In view of the result by Donoho (1994) (see (2.3))
which is stated in the model (2.2) and comparing the noise levels in the models (2.2)
and (2.6) (with o = 1) we can explain informally that our rate 7, ,(-) comes from

the former rate 1, where we replace n by nu(z).
2.4. About theorem 2. From Bertin (2004c), we know when s € (0, 1] that

limninf inf supE?’u{w(v;Lan — fllso)} = w(P),
fn fex

where v, ,, is given by (2.5). An immediate consequence is

WV

lim inf infsupE?u{w( sup rn7u(x)_1|ﬁ(x) — f(@)])} = w(P), (2.7)

nofafex 7 z€0,1]
where it suffices to use 7, ,(z) < vy, for any « € [0,1]. This entails that r, ,(-) is
optimal in the classical minimax sense, but this notion of optimality is weaker than
ours. Indeed, to prove the optimality of 7, ,(-) we need a more "localised” version
of the lower bound, hence theorem 2.
In theorem 2, if we choose I, = [0,1] we find back (2.7) and if I,, = [z —
(logn)7, Z+(logn)?]N[0, 1] for any v > 0 and Z € [0, 1] such that u (%) # infy¢(o 17 p(z),

then obviously v, , does not satisfy (1.8).

2.5. About proposition 1. The confidence band C,, g(-) is "design adaptive”,
in the sense that it does not depend on u, but it depends on the smoothness of f
via the parameters s and L. The construction of adaptive confidence bands is more
involved. We know from Low (1997) that the construction of an adaptive confidence
band without extra assumption is not feasible. However, if extra assumptions on
the smoothness of f are supposed, it is possible to construct such confidence bands,
see Picard and Tribouley (2000), Hoffmann and Lepski (2002) and Cai and Low
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(2004a,b). Here, we only focus on the inhomogeneous aspect of the confidence
band. Adaptation with respect to the smoothness is beyond the scope of this study,

and we would encounter the same limitations.

2.6. About assumption D. In assumption D, p is supposed to be bounded
from below, and from above since it is continuous over [0, 1]. When p is vanishing or
exploding at a fixed point, we know from chapter 1 that a wide range of pointwise
minimax rates can be achieved, depending on the behaviour of 1 at this point. In this
case, we expect the optimal space dependent convergence rate (whenever it exists)
to be different from the classical minimax rate v, not only up to the constants but

in order, see chapter 4.

3. Construction of an estimator

3.1. Main idea. The estimator fn described below is using both kernel and
local polynomial methods. Its construction is divided in two parts: first, at the
discretisation points xz; defined by (1.11), we use a Nadaraya-Watson estimator
with a design data driven bandwidth. This part of the estimator is used to attain
the minimax constant. Between the discretisation points, the estimator is defined
by a Taylor expansion where the derivatives estimates are done by local polynomial

estimation.

3.2. The estimator at points z;. We consider the bandwidth H,,(z) defined
by (1.10) and we define
H,' = max Hy (),
where z; and J,, are defined in section 1.4. From Leonov (1997, 1999) we know that
the function @4 defined by (1.6) is even and compactly supported. We denote by
[Ty, Ts] its support and 7, = min(2c,TsHM, §,,) where 6, = (logn)~! and

. é(2)2/(2s+1)( 2 >1/(2s+1).

1
L 2541 (3.1)

As usual with the estimation of a function over an interval, there is a boundary
correction. We decompose the unit interval into three parts [0,1] = J, 1 U Jp2U Jp 3
where J,1 = [0,7,], Jn2 = [mm,1 — 7] and J,3 = [1 — 7, 1]. We also define
Tan = {Jjlz; € Jan} for a € {1,2,3}. If ¢, is defined by (1.6), we consider the
kernel

Ps

K, = .
fR‘ps

(3.2)
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The "sharp” part of the estimator is defined as follows: at the points x;, we define
fn by

1 " Xz — X
nH,(z;) ZZ:;YZKS<CSH¢L(:E;)> e
fn(:ﬂ ) £ 1 & X, —x; 2 (3.3)
’ ax |:5n, an(ﬂj‘]) ;KS<CSH7L($]]))]
f_n(xj) lfj Gjl,nt3,n'

This estimator is (up to the correction near the boundaries) a Nadaraya-Watson
estimator with the optimal kernel K and a bandwidth adjusted to the local amount

of data. The boundary estimator f,, is defined below.

3.3. Between the points x; — local polynomial estimation. We recall
that k = [s| where s is the smoothness of the unknown signal f. For any interval

I C [0,1], we define the inner product

1 _
<f79>I:Mn—(I)/IdeMm

where [, fdiin =Y x,e; f(Xi)/n. I T =1I(x,h) —see (1.9) — for some z € [0,1] and
h >0, we define ¢1,,(y) = (y — )™ and we introduce the matrix X; and vector Y;

with entries

(X1)pq = (P1p, b1,9)1 and (Y1), =Y, ¢1p)1,

for 0 < p,q < k. Let us define

X=X+

1
——=ly11q,
Vi (1) !
where Q1 = {AX;) < 1/\/nin(I)} and A(M) is the smallest eigenvalue of a
matrix M and Iy, is the identity matrix on RFt1 Note that the correction term
in X; entails A(X;) = 1/+/njin(I). When fin(I) > 0, the solution ; of the system

XIQ =Yy,

is well defined. If fi,,(I) = 0, we take 51 = 0. Then, for any 1 < m < k, a natural
estimate of f(™(z;) is

FEm (@) 2 mlOr(e, po))ms
where

h,, = (O,/L)2/(2s+1) (log n/n)l/(2s+1)7

and the estimator at the boundaries of [0, 1] is given by

Fal@i) 2 O1a; )0
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where t, = (¢/L)%®st)p=1/@5+1)  Note that the boundary estimator is a local

polynomial estimator with the pointwise bandwidth of estimation t,. If we define

1
= i > — .
Pn,l {lgrlLI%k|’¢I’m|’I = \/’5}7 (3 4)

N R k  Z(m) T
P & fuen+ (2 2w —aym)an,, (35)

m!

4. Proof of theorem 1 and proposition 1

The proof of theorem 1 needs several preliminary results. In section 4.1 we state
the most important lemmas while section 4.2 is devoted to useful results concerning
local polynomial estimation. We delay the proofs of these lemmas until section 4.4,
since they can be skipped in a first reading. The proofs of theorem 1 and proposi-

tion 1 are given in section 4.3. We define the risk

Eng = sup o) M fulz) - f(2)],
z€[0,1]
and the discretised risk Sﬁf = Supje, rn#(xj)_l]fn(xj) — f(z)].

In the following, the notation o(1) stands for a deterministic and positive quan-
tity going to 0 as n — +oo indepedent of f while O(1) stands for a quantity
bounded by a positive quantity independent of f. If A is non negative, we also
define O(A) = O(1) x A. We denote a V b = max(a,b) and a A b = min(a,b). We
consider the norms lgllao = sub,cioay l9(@). lglls = (J) 62(2)dx) "2, and [l =
maxo<msk [Tml, 12ll2 = (Cocmer Tm)'/* when o € RFL

Since fin(I(z, h))/h is close to p(z) in probability, we have that H,(z) is close

to

logn \1/(2s+1)
ny(x)
To avoid overloaded notations, it is convenient to write K instead of Ky and to

introduce for j € J,,

Hj = Hn(l'j), hj = hmu(l'j), ,uj = ,u(xj), 7’]' = Tn#(xj),

Xi—x; _ X, —x; K.
K' - :K(#), K . :K< ? -7>’ W J— Z7.77 ,
" csh; " csHj Y K

and q; = ncshjpg, §; = nesHjpy where ¢ is given by (3.1). We denote by X, the

sigma algebra generated by the observations X;, 1 < i < n.
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4.1. Preparatory results. We define

n,j = { ZKJ /T — LléSM}

where L4 is a positive constant, and

nJ = { ZKJ /45 = 1‘ 57@}’ Crj = {|Hj/hj 1< 5n}v
WEN Z )19 = IKI3] < Lo

where Lo is a fixed positive constant and
Bu= (] (AnjNBn;NEn )N () Cy- (4.1)
J€T2n J€Tn
A control over the probability of this event is given in lemma 7 below. Let us denote
Zy, = maxjey,, |Znj| where Z, ; = Tj_l Yo &Wi . Informally, the variable Z,
corresponds to the variance term of Sﬁf. We recall that M, is equal to the cardinal

of Jp,.
LEMMA 1 (variance term). For any e > 0,

sup P} {Zuls, > (1+e)Lci|| K|z} < 2(logn)?/ sty =e/(st1),
fexQ(s,L)

Proor. Conditionally on X,,, Z, ; is centered Gaussian with variance

n
2 _ 2 -2 2
vf =ty Wi
i=1
On B, we have for any j € J2,, and n large enough
2ici K |53 | K33

—7Z o =2 o O E———
ZW S R S < (1+0(1)) " L+ o) o

where we used the definition of h,(x), thus ’Uj2 < (1 +¢)o?||K||3/(cslogn). Using

the standard Gaussian deviation, we obtain

FullZnil1s, > (1 +e)Leg]| K12}

1 22541
202
- (I1+¢) >_ —(1+€)/(25+1)
—2exp< 2+11gn =2n ,

and bounding from above the probability of Uje7,,{|Zn |15, > (1 + ¢)Lc;||K|]2}
by the sum of the probabilities, and since |Jo,| < M,, < (logn)?s/(2s+Dpl/@s+1)

the lemma follows. O
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For any j € Jn2, we define
bnf = max |b, ri| and U, s = max |U, |
n?f ]6\72,” n7f7] n?f ]6\72,” n7f7] ’

where by, r; =% {Bn;18.}, Unfj = Bn,fj — by,s; and

Buyj *Z )W

The quantities b, y and U, ; correspond to bias terms of the risk EnAf.

LEMMA 2 (first bias term). We have
limsup sup by ¢ < LciB(s, 1),
n o fex(s,L)
where B(s, L) is defined by (6.2).

LEMMA 3 (second bias term). There is a constant Dy > 0 such that for any
e>0,

sup P}, {Unlp, > e} <exp(— Dye(lAe)n?/Z+D),
feX(s,L)

The proofs of these lemmas are delayed until section 4.4.

4.2. Local polynomial estimation. In this section we give results concerning
local polynomial estimation. This well known estimation procedure provides an
efficient method for recovering both a function and its derivatives. The lemma 4
below is one version of the bias variance decomposition of the local polynomial
estimator, which is classical: see Korostelev and Tsybakov (1993), Fan and Gijbels
(1995, 1996), Spokoiny (1998) and Tsybakov (2003), among many others. To a

vector € RFT! we associate the polynomial

Po(y) =0+ b1y + - + Oy,
If §; is the solution of the system X0 = Y (see section 3.3) for I = I(x,h), we
define f1(y) = P;, (y — ). 1 Vi), = Span{e1,m;0 < m < k}, we note that on Qy, 1,
f[ satisfies

(.Ea ¢>I = (Y ¢>I7 v¢ S V},k- (42)
By definition, we have ﬁ(lm)( j) = f I(w ) (x), where f}m) is the derivative of order
m of f[, and fn(z;) = j/’}(xj,tn)(:nj), see section 3.3. We introduce the diagonal

matrix Aj with entries
(Al)m,m = ||¢I,mH[_1,

for 0 < m < k, where || - ||2 £ (-, -)1, the symmetrical matrix

Gr & AX A,
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where X7 is introduced in section 3.3 and G the matrix with entries

(g) — Xp-i-q
Pa \ X2p X2q ’

for 0 < p,q < k, where x,,, = (14+(—=1)")/(2(m+1)). It is easy to see that A(G) > 0
(we recall that A(M) is the smallest eigenvalue of a matrix M). We define the event

Qn = ﬂ Qn,](xj,hn) N ﬂ Q"J(xjvtn)’

JE€EIn JEIn

where €2, 1 is defined in section 3.3 and

Ly, = ﬂ ‘Cn,l(xj,hn) a ﬂ ‘C%I(Ijvtn)’

JE€EIn JE€EIn

where if I = I(x, h) for some x € [0,1], h > 0,

Lo ={IAGr) = AG)| < bn}-

For 0 < m < 2k an interval I C [0,1] and 0 > 0, we define

= 1
D é S . d_ . ‘ < 5 ,
n,m,I,8 { ﬂn(I)|I|m/j¢]’m Hn — Xm }
and
2k
D= ( () Dum. ity 0 ) Dn,m,l(xmtn),én)‘
m=0 jeJn FETn
We define
Nn = m Nnvl(ijln) m m Nn7I(Z‘j,tn)7
JEIn JE€TIn
where

M—l‘ gén}'

Nn,I(x,h) = { /,L(.Z')h

Finally, we introduce
Cn=Q,NL,ND, NN, (4.3)

A control on the probability of this event is given in lemma 7 below. We recall that
M, is the cardinal of 7,.

LEMMA 4. There exists a centered Gaussian vector W € RETDMn pizp
PAWI =1, 0<p< (k+1)M,,
such that on C,, one has for any 0 < m < k and f € X(s, L):

max | f{™) (25) = £ ()| < (1+0(1))CLRT™ (1 + (log n)"2WH), - (4.4)
J1€In
where

WM A max W,
0<p<(k+1) M,
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and C = Cy gk where Cy gk = AHG) (K + 1)m!I2m + 1(1 vV q_l/z). For the

estimator near the boundaries, we have for a =1 and a = 3:

[max | (@) — fz)] < 1+ 0(1)CLES (1 + W), (4.5)
where
wl = max |Wp|
0<p<(k+1) |1,
W = max Wy,
(k+1)(|T1,n |+ T2,n]) +1<p<(k+1) My,
and C_' = C)\,O,q,k-

LEMMA 5. For any interval I C [0,1] and p > 0 we have
000 1Xn} = OmP/?).
Moreover, for any 1 < m < k, we have on I',, 1 (see section 3.3)
?,u{|(§l)m|p|%n} = 0(nP).

The proofs of these lemmas are delayed until section section 4.4. The following

two lemmas are needed for the proof of theorem 1.
LEMMA 6. If w(z) < A(1 + |z])° for some A,b > 0, we have

sup E?7u{w2(5n,f)} = O(n26(1+s/(2s+1))). (4.6)
feXQ(s,L)

We define I'y, = Nje 7, 'y 1(2;,n,) Where I', 1 is defined by (3.4). The probability
P, stands for the joint law of the Xi,..., Xy,

LEMMA 7. There exists an event A, € X, such that for n large enough, under

assumption D

Pi{AL} < exp(—Dan®*+Y), (4.7)

where Dy > 0 and

A, CB,NC, NIy, (4.8)
where By, is defined by (4.1) and C,, is defined by (4.3).
4.3. Proofs of the main results. The next proposition is a deviation inequal-

ity for the discretised risk SnA’ £ This proposition is of special importance in the proof

of theorem 1 and proposition 1.
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PROPOSITION 2. There is De > 0 such that for any € > 0, we have
sup IP’fu{E rla, > (L+¢)P}
FE€XQ(s,L)
<exp (— Dge(1 Ae)(log n)2s/(2s+1)), (4.9)

for n large enough. Moreover,

sup Eﬁu{w nflAn)} =0(1). (4.10)
FEXQ(s,L)

ProoOF. We decompose the risk into three parts

ER = EN +EXT +ENT (4.11)

n
where 87?7}” = SUPje, rj_l|fn(:17j) — f(z;)]. For a =1 and a = 3, the quantity 5@}“
is the risk at the boundaries of [0, 1]. Note that on B,,, we have > """ | K; ;/(nH;) >
cspi(1 — L163M) > esq(1 — L163M) > 6, for n large enough. Hence, since A,, C B,
(see lemma 7) we can decompose on A, the middle risk into bias and variance terms
as follows:

EXF <bnyg+ Ung+ Zn. (4.12)
In view of lemma 2 we have for n large enough b, s < (1 4 2¢)LciB(s, 1) and using
equation (6.3) we obtain
{&0714, > (1+20)P}
C{Zn1p, > (1+¢)Lci|| K2} U{Un f1B, > eLcl||K||2}-

Then, in view of the lemmas 1 and 3, it is easy to find Dy > 0 such that for any
fe ZQ(S, L) and n large enough,

M{gn 714, > (1+26)P} <exp (— Dae(1Ae)logn). (4.13)
Using lemma 4, we obtain

5A,11A < Lgés/(28+1)(1+w(l))7 (4.14)
n7f n n

)

where W) = MaxXo<p< (k+1)x| 71| [Wpl and Ly = C|lp ||s/ (2s+1) " Since W is a cen-

tered Gaussian vector such that E}‘H{Wg} =1for 0 <p < (k+1)M, it is well

known (see for instance in Ledoux and Talagrand (1991)) that

3, AW O} <\ 210g((k +1)|7.1]) = O(v/loglog ),

since |J1 5| = O(logn), and that for any A > 0,

1AWS —ET (W} > A} < 2exp(—A2/2).
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Then, when n is large enough,
1A, > 2:P} <Pp{WW —E} (W} > ePo, /@t Ly}
< 2exp (— €2P25;2s/(2s+1)/(2L§)).
The same result holds for Sﬁ }3. Hence, together with (4.13), for a good choice of

D¢ we obtain (4.9). It is easy to prove (4.10) from (4.9). For any f € %?9(s, L) and

p > 0, when n is large enough,

+oo
ED {(E2)P14,} = p / PP (R 14, > thde
“+oo

< (2P)P + pePe / "~ lexp (— Dgt/P)dt = O(1),
2P

thus (4.10), since w(z) < A(1 + |z[°). O

PROOF OF THEOREM 1. Let « € [z, zj11). Since p € X(v,0) with 0 < v <1
we have clearly p%/(?st1) € S(sv/(2s 4 1), 0%/?*1)) and using assumption D,

_ _ _ s/(2s+1) sv/(2s _
sup (@)™ =07t < (2) A — o1yt (4.15)
z€[z;,wj41] q

Since f € X9(s, L), writing the Taylor expansion of f at « € [x;,2;11) We obtain:
[fa@) = f@)] < [ falz) = £(2))]
S (& — )™
+ 2 (A () = F () = + LA,
m=1 ’
and in view of (4.15),
k AM
A —1 Flm) oy plm) (0 | 20 s
€y < (Lol (£ + e 3 I ay) = £ I ) + 0,

We consider the event A, from lemma 7. Since A, C C, we have that on A,, in

view of lemma 4 and for any 1 < m < k,

_ (m m AZ’»
maxr; HERICHES )(l’j)\m
< (14 o)y |l V(1 + (logn)~/2WM),
and then

Enpla, < (1+0(1)ER 1A, +O(1)d,(1 + 612 WM) + o(1).

We define W,, = {{WM — E?M{WM}] < 0,1} Since WM = maxgcp<ir1ym,, [Whl,
we know in the same way as in the proof of proposition 2 that E?M{WM } <
V21og((k + 1)M,,) = O(5, /?) and

n AW < 2exp(—0,%/2). (4.16)
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Thus
En Lo, < (14 0(1)ER 14, + o(1), (4.17)

and since w is non-decreasing, we have for any € > 0

E?,{w(&nr)}

<E} {w(&np)la,ow,} +EF {w(En ) lagumwe }
w((1+20)P) + (B}, {w ()} PF {45 UWEH 2
(B {w? (1 +20)E514,) } P2 {EX 14, > (1+e)P))?
w((1 + 2¢)P) + O (n*I+s/@sH) exp(—(log n)?/4))
+ O (exp(—Dg e(1 A e)(log n)*/ 1)) = w((1 + 22)P) + o(1),

N

N+

where we used proposition 2, lemmas 6, 7 and the fact that w is continuous. Thus,

limsup sup B} {w(& )} <w((1+2¢)P),
n fEXQ(s,L)

which concludes the proof of theorem 1 since € can be chosen arbitrarily small. [

PROOF OF PROPOSITION 1. We consider the event W, defined in the proof of
theorem 1. Since A,, C B, C C,,; for any j € J,, we have

(1 —o(1))rj < Rn(zj) < (1+0(1))r; (4.18)

on Ay,. In view of (4.15) and (4.17) we have for any j € J,, ¢ € [2j,2j41) on
A, 0 Wy,

Ru@) | Fua) = @) = B, 0) ! fole) - £0)

< (L+0(1))Enr < (1+0(1)ER, + o(1).

Thus, if 7, 5 = {superl () ) — fl2)] < (1 + B)P} lemma 7, proposi-
tion 2 and (4.16) entail for any f € X9(s, L),

P AR fﬁ} ol Fn g NV A N Wht + PR {AL UWLY
FadEmpla, > (14 8/2)PY + P} { A, U5}
< exp(— . B(2 A B)(log n)25/<2s+1)),
for a good choice of D.. When n is large enough, the choice § = (3(n,a) makes

the last part of the above inequality equal to «, hence (1.13). Using again (4.18),
lemma 7 and (4.15) it is easy to obtain (1.14). O
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4.4. Proof of lemmas 2, 3, 4, 5, 6 and 7. Since b,y and U,, y only depend

on f via its values in [0, 1], we have

sup b, = sup byg, sup Upyp= sup U,y. (4.19)
fex(s,L) feX(s,L;R) fex(s,L) feX(s,L;R)

Here, it is convenient to introduce P; £ Y7 (f(Xi)—f(z;))Kij and Q; £ Y0 | K; ;.

PROOF OF LEMMA 2. On A, ;N C,,; we have (1 —o(1))g; < @Q; < (14 0(1))g;
and since B,, C A, ;N C, ; for any j € J2,, we have

g4l =5 E G A(Pi/Qi) 15, } < (1+0(1)(rig;)  [E} . {Pi1s,}.
Recalling that K = ¢,/ [ ¢, with ¢, € (s, 1;R) we have for any z,y € R
|K(z) — K(y)| < &lz—y|™,

where s; = s Al and £ = ([ ps)~! when s € (0,1] and £ = ||K'||c when s > 1.
Since Supp K = [T, Ts], we have for n large enough on B,;:

= Xi—xj 5 Hj
|Kij — Kij| < H‘ﬁ] h7 11X —aj <o (V)
o ! (4.20)
S1 5” 51
< HTs (1 — 5n) 1\Xi—mj|<csTs(1+5n)hj = 0(1)1Mi,j7
where M; ; £ {|X; — x;] < ¢sTs5(1 + 8,)h;}. We introduce vy j(z) = Lra)>f(z;) —

Lia)<fa;)r Rij = (f(Xi) — f(xj))Kz,j7 Sig = vei(X)(f(Xi) — f(2)Im,;, Ry =
Yoy Rijand S; =", S;;. Then,

P15,
(|E" (R} + o(DIE],, {5}
< (| 0 vy = S K Gute; + e )|
+o(1)] (f(j +yeshy) = fz))vp(z) + esyhy)nz; + ycshj)dyD,

ly|<(1+6n)Ts

and since p € ¥,(v, o) we have

b < 2 [5G+ yeshy) — F)K )y
o) D,
O Mt veshy) = Sl
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Using (4.19) and the fact that (s, L; R) is invariant by translation,

sup  bpyf; <(1+0(1)) sup max — ‘/ (cshjy) — 0))K(y)dy|
fex(s,L;R) fex(s,L;R) J€ET2n Tj

wol) [ Ifteshs) ~ SO)dy). (421

Now we use an argument which is known as renormalisation, see Donoho and Low
(1992). We introduce the functional operator U, f(-) = af(b-). We have that
f € X(s,L;R) is equivalent to U, f € X(s, Lab®; R). Then, choosing a = (Lcshs)
and b = c;h; entails
up by < (1 o()LeB(s ) o) sw [ |f) = FO)lds

fES(s,LiR) fex(s,R) Jly|<2T
where B(s, 1) is given by (6.2) and where we recall that r; = h;. We define fx(y) =
FO)+ f(0)y+---+ fB(0)y*/k!. Since f € X(s, L; R), we have f — f € X(s, L;R)
and finally

sup  bpr < (1+0(1))Le;B(s, 1) + 0(1)/ ly|°dy. O
FE€X(s,LiR) ly|<2T

PROOF OF LEMMA 3. We recall that U, ;; = Tj_l(Bj —E% {Bjlp,}). We use
the same notations as in the proof of lemma 2. On B,, we have (1 —o(1))g; < Q; <
(1+0(1))g;, and since E?M{Pf} < 4Q?| K||* n? we obtain in view of lemma 7:

1 1

——|E% {Pi1p:}| < —/E7 {P2},/P?{Bc} = o(1).

B AP Y < B PP P = o)
Then, it is easy to see that on B,

1 n
Ungil < (000 |B = EJAPH + o(DIE, (P18, }] ) + (1)
r54;

and we know from the proof of lemma 2 that

1
—|E% {P;j1p, sup max E? {Pjlg, 14 0(1))LeiB(s, 1),
SERPIS S S max (e, < (14 o) LB, 1)

thus |Up 7] < (1 +0(1))(rjq) P — E% {Pj} + o(1) on B,. From the proof of
lemma 2, we know that (rjqj)_llE?’u{Sj}\ = O(1), and using (4.20) it is an easy

computation to obtain that on B,
1Py~ B3 AP < Ry~ EJ,{R;} + 0(1)IS; — B, {8} + o(V[E},, {5}

Then we have for n large enough

n n n ET;q;
]P)f7u{’Un7fvj’13n > E} < f,u{’R] - Ef,u{R]}’ > :]3 ]}

. N er:q;
Pﬁuﬂsﬂ' _Efvu{SjH > %}



4. PROOF OF THEOREM 1 AND PROPOSITION 1 105

We use Bernstein inequality to the sum of variables Ri,j = R;; — E;ﬁ M{Ri,j} and
Sij = Si,j—E?’u{Sm}, 1 <i < n. The variables (R; j)1<i<n are clearly independent,
centered and satisfy |R; ;| < 4QKs. In view of (4.19) and since u € ¥,(v, ), it is

easy to prove with the same arguments as in the end of the proof of lemma 2 that
{R ]} EfM{R j}

<t o(enhyny [[(Fas +eshsy) = £ (o) P )y

< (14 o0(1))eshjp;  sup /(f(x] + cshjy) — f(x5))* K (y)dy
fex(s,L;R)

<o)L ehy?* iy s [(7) - 10K w)dy
fex(s,L;R)

< (o) LAy My [ K 0)dy) ().
Then >0 E} M{sz} = O(rjz-qj) and the Bernstein inequality entails that for n
large enough, there is a constant Dy > 0 such that
1 AR —ET AR} > erjq;/3} < 2exp(—Dae(1 Ae)n™/ D),

The variables (S; j)1<i<n are independent, centered and such that |S; ;| < 4Q, and
in the same way as previously we can prove Y ;" | E 7 u{ ; j} = O(rj q;). Using again

Bernstein inequality, it is easy to find Dy such that
1 AIS; —E% S} > erjq;/3} < 2exp(—Dse(1 Ae)n®/5H1),
and since | Ja.,| < M, we have for any f € %9(s, L),

1 AlUnslls, >eb < Y0 PF{[Unypjlls, >}
jEJZ,n

< 4M, exp (— (Dy A Ds5)e(1 A s)ns/(zs"'l)).

Since 4M,, exp(— (D4 A Ds)e(1Ae)n® 2511 /2) goes to 0 as n goes to 400, the lemma
follows with Dy = (D4 A Ds5)/2. O

PROOF OF LEMMA 4. We take I = I(x, h) for some z € [0,1], h > 0 and define
the vector 7 with coordinates (61),, = f™(z)/m! for 0 < m < k. Since X; = X;
on €y, 7, we have Al_l(é} —0r) = QI_lAIXI(é\I —0r). If f1(y) = Py, (y — x), we have
in view of (4.2) for any 0 < m < k:

(X1 — 00)m = (fr — f1, drm)r = (Y — fr. d1m)r
=(f = fr, brm)1 + (&, drm)1,
thus X_[(é\[ —60;) £ By + V. Since f € X(s, L),

(ArBD)m < | GrmllT U = fry drmdrl < f — fillr < Lh*/R,
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then we can write

1,5 th -
A 0= 0r) = 67+ —— (I)g”2

where u € R*¥*1 is such that ||ul|o < 1 and y7 = (ov/nfin (1))~ 9_1/2AIDI§ 2 Ty,
where Dy is the matrix of size nf,(I) x (k + 1) with entries (Dy);m = (X; — )™
so that X; = (nfi,(I))"'D/Dy. Since T/T; = 0 'I;,1, we obtain that 7 is,

conditionally on X,,, centered Gaussian with covariance equal to I .

)

Consider I = I(xj,h) for some j € J,, h > 0. From the inequality || - |l <
|1 € VEFI| - [loo and since |G 2| < vVE+ TG (Gr is symmetrical with

entries smaller than 1 in absolute value) we get

\Lh?

IAT (0r — 61l < IIGF 1671l

et s

Hgllu<k+1>(uf i

ﬁ”’ﬂ”m)

“Gr)(k+1)(Lh® + \/ﬁ oax, [Wikt1)j4+ml)»

where W = (’Yl(mo, h)s - - - ,’y[(mMn’ ))/ IftT = (Tl(mo h)s - TI(mM h))/ we have W =
T¢, thus W is a centered Gaussian vector and for any (k +1)j<m<(k+1)j+k,
j € Jn we have

1AW = (Var{W D) = (Var{¥i(a, 1) Dm—(k+1)jm—(h+1)7 = 1
since Var{7y;(y, n)} = Ir4+1. Then, we have proved that on Nje 7, 1(2;.1);

maXHA !

max (A, 1 O1(a;,0) = O1a;,m) oo

o
nfin(I(x;,h))
where WM = MAX) < (k41| T |Wp,|. Since C,, C N,, N Q,, N L,,, we have on C,, for
h = hy or h = ty,,

W,

A NG, )k + 1) (LR® +

;relax ||A1(xj )(el(scj,h) - el(gcj,h))Hoo

< (1+o()AHG)(k + 1) (Lh* + W),

o
nhpj

Since C,, C D,,, we have for any j € J,, 0 < m < k,

Cn C Dn,2m,[(mj,hn),5n N Dn,2m,[(xj,tn),5n7

thus on C,,, when h = h,, or h = t,,, we clearly have

(Al(acj, ))mm - H(bl(:vj, m”[m h) (1+0(1))h_m\/ m+ 1.
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Since f}lm) () — fO)(x;) = m!((gl(%hn))m - (91(mj7hn))m), it follows that on C,:

S () = £ ()]

< (14 0(1)A"1(G)mIVZm T 1(k + 1)h;™ (LIS, + wi)

g
vV nhmuj

< (14 0(1))CLhE™™(1 + (logn)~Y2W M),
thus (4.4). Inequality (4.5) is obtained similarly. O

PROOF OF LEMMA 5. If [i,,(I) = 0 we have f; = 0 and the result is obvious,
thus we assume fi,(I) > 0. In this case, Ay, X7 and G; are invertible, and by
definition of 51,

07 = ArAT'0; = ArGT A X 0; = ArGT ALY = ArGT (B + V),

where (Br)m = |¢rmll; ' (f s ¢rm)1r and (Vi)m = 61,mll; (€, drm)1. Since || floo <

Q we have |(Br)m| = [|grmll; ' [(f  drm)1] <IIflr < @, thus Byl < Q.
Conditionally on X,,, V7 is centered Gaussian and it is an easy computation to

see that its covariance matrix is equal to o?(njfi, (1)) *A;X;A;. Then AIQI_IVI is

conditionally on X,, centered Gaussian with covariance matrix o2 (nfi,, (1)) X, X ;X .

If e, is the canonical vector with coordinates (e;,), = 1p=m, we have
00)m| = |01, em)| = (A1GT "By, em)| + oVE + 17,

where vy = (ovk + 1) (A1G; ' V1, em). By definition, we have | X! = A71(X;) <
nfin(I), and clearly |X;|| < k+1 and ||[A;'|| < 1. Then, conditional on X,,, 7 is
centered Gaussian with variance
(e X7 XX ) _ XTI _
(k+Dnan(I) = (k+Dnan(I) =

Since 167 < AT NIXT AT < v/miin(D) < v/ and (Ar)oo = 1, we have
Full@Dol %0} < (k+ P20 2(Q v DPES {(1+ aly|)P|20 } = O(m?72),
for any I C [0,1], and since ||A;|| < /n on Iy 1, it follows that
Fll@DmlP 120} < (k+ PP @QV 1)PEY {(1+ o1y %n} = O(n?),
for any 1 < m < k. O
PROOF OF LEMMA 6. We show that for any p > 0,

sup B} {EF } = O(npt+s/Gsth)), (4.22)
feXQ(s,L)
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which entails (4.6). By definition of H,(x), we have H,(z) > (logn/n)'/(?3) for any
x € [0,1]. Since || f|loc < @, we have for any j € Jop,
[Falay)] < 871 (n/ Tog )Y/ C(Q + &l / V) [ Koo
where &, = > | &;/+/n is standard Gaussian. Then,

FullFa(@)lP1%0} < 6,7 ((n/logn)” CNQV 1PE} A1+ &)1 %0} Ko [loo
= O(n?/ ) (log n)P1-1/29)),

When j € Jn,1 U T3, we have fu(2;) = Or(s, 1,y and in view of lemma 5,
Pl Fn(z)P1%0} = O(mP/?).

For any j € Jp, since %m) (xj) = m!(é\l(mj,hn))m, we have in view of lemma 5 that
on Fn,[(xj,hn)y
Ef, {0 ()71 %0} = O(n?),

for any 1 < m < k. Then, we obtain that for any || f||c < @,

Enp = O((n/logn)*/Z+D)( sup | fu()] + Q).

z€(0,1]

and since

k| Z(m)
sup 7)) < mae (17, o)l + (0 00 Y o),
m=1

z€[0,1] jed

thus (4.22) and (4.6). O
PROOF OF LEMMA 7. The proof is divided in several steps. We recall that
qj = ncshjp; and q; = nesHjp;j.
Step 1. We prove that for any j € J2, and n large enough,
Pr{BS ;} < 2exp(—Dy6an®/5tD), (4.23)

where D; is a positive constant. Consider the sequence of i.i.d variables (; ; =
Kij —Ep{Ki;}, 1 <i < n. Since p € %y(v,0) and [K = 1, we have for n
large enough [Ej{K1;}/q; — 1| < 6,/2, thus B} ; C {12211 Gijl/aj < 8n/2}. Since
Gi.j| < 2||K |l and for n large enough > 1E"{§22]} (1+6,)g; [ K?, the Bern-
stein inequality entails (4.23).

Step 2. We prove that for any j € J, 2,

Pr{AS ;N Cpyj} < 2exp(—Dod3,, n/25HD), (4.24)
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where D5 is a positive constant and 52n £ 651, 81 = s Al. In view of (4.20), we

have on C,, ;

_ 5TL s
| Kij — Kij| < wT <ﬁ> ., (4.25)

where we recall that M; j = {|X; — x| < ¢, Ts(1 + 6,)h;}. We define n; ; = 1y, —
Pi{M;;}. On C,; we have for n large enough 2¢sTsHM < 6y, and since z; €

[Tn, 1 — 0],
;< 1—7=1-2¢,T,HY <1—2¢,T,H;
<1 —2¢Ts(1 = 6p)hj < 1 —csTs(1+ 6,)hj
for n large enough. On the other hand we have similarly z; > ¢, T5(1+d,)h;. Thus,
since p € ¥4(v, 0) we have
PiAM;,;}

——— — 27T

1
< - /| <7 ’N(xj + csy(l + 6n)h]) — Nj‘dy — O(h;;) (4.26)
Yy

Since xj € [csTs(1 + dp)hj, 1 — (14 0n)csTshj] C [csTshj, 1 — csTshj], we have for n

large enough on C,, ;,

E% {K1 } h; h;
"I S Lj ‘ < 2 / . I ‘ J
< K)||p(x; + yesh wildy + 1
‘ e Hj 15 H 1 |K (y)||p(z; j) il H,

On
1—46,

(4.27)
<O(hY) +

Then, combining (4.25), (4.26) and (4.27) we obtain that on C,, ; and for n large

enough,

noK 1) — Ts1650 PRA{M, ;
Zz:} 2V 1‘ < 0(7 )|Z772,]| + K ns H{ LJ}
aj 4 = (1=0n)" caHjp;

On
1 -6,

1 n
+5\Z<i,j!+0<hz>+

1+o0(1
IZ gl + Z<u|+2 (2eT5 !+ 1)551,

and taking L, = 4(kT*1*! 4 1), we obtain

1 AAL ;N Cogt PRI Tmigl > 050a; } + PR D Gigl > 63tai/2)
=1 i=1

Then, applying Bernstein inequality to the sum of variables 7; ; and ¢; ;, 1 <14 < n,
we obtain (4.24). We can prove

Pr{ES ;N Chy} < 2exp(—D3d3 ,n/CsD), (4.28)
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where D3 is a positive constant in the same way as for the proof of (4.24) with a

good choice for Lo.

Step 3. We define the event

1
Dmses & [t | ] <5}
n,m,I(z,h),0 { u(a:)hm“ Iah) (bl(:c,h),m Hn — Xm
and we prove that if 01, =1 — (1 + 5n)_(2s+1),
Dy0,1(2;,(1-8:)h;),61.0 O D012, (146,)h;),61.0 C Cnij- (4.29)
From the definitions of H; and h; (see section 1.4) we obtain

{(1 = 6n)hy < Hj} = {(1 = 6,)*°h3° <logn/(njin(I(x;, (1= bn)hy)))}

_ {Mn(IlE]x(Ji(_l;n;sZ])h])) < (1 _ 5n)—(28+1)}7

and then

Din0,1(a;,(18,)h),61.0 C {1(1 —6n)hj < Hj}.
We can prove in the same way that on the other hand,

Dy 0,1(2;,(0460)h5),61.0 C {1+ 0n)hj > Hj},

hence (4.29).

Step 4. We prove (4.8). If 03, = 0,/(2 — 65,), we clearly have for any interval I,

Dinm, 1,65, NV Dn0,1,65,, C Dnm, 1,5,

Using the fact that A(M) = inf),=(z, Mx) for any symmetrical matrix M and

since Gy, G, X are symmetrical, it is easy to see that

On,
N {161l < G55} < L (4.30)
0<p,q<k
and that
2k ~ S
an Do, gony ngqgk {|(X1 — X)pg| < m}

CHIAX ) = AX)[ < 0n}-
Recalling that if I = I(x}, h),

1 _
(Prp: Prg)1 T hm T J1 ®1,p+q Afin

(gl)p,q = = )
”¢I,pHI”¢I,qHI \/Mh}nﬂ f] O1.2p dﬂn\/ﬁ fI O1,2¢ A,




4. PROOF OF THEOREM 1 AND PROPOSITION 1 111

it is easy to see that if ds, = 6,,/((2 — 6,)(2k + 1)(k + 1)?),

on
Dn,2p,1,54,n n Dn,2q,1,54,n N Dn,p+q,1,54,n - {‘(gl - g)p,q’ < }7

thus
2k

ﬂ Dn,m,],thm C ﬁn,b

m=0

and clearly for n large enough, if I = I(z;, hy) or I = I(xj,t,),

2k
0
M Dumotnn © IANKD) = AX) <80} 1 { ITTEU) —1| <} CQur (@31)
m=0 J

Moreover, if I = I(xj,hy,), we have on f)n,2m7175n for any 1 < m < k and n large

enough,
lormllr = (1 —o(1)hvV2m+1>1//n. (4.32)
We define
Dn,m £ ﬂ (Dn,m,l(xj,hn),(gs,n N Dn,m,l(m]‘,tn),%,n
JE€EIn
N D”voyl(mj7(1_5n)hj)755,n N Dn,O,I(:Bj,(1+5n)hj),55,n) ’
where 05 , = 04 A O35 A 01y, Dy, = ﬂ%f:o D, and we choose
A, 2D, NA,NB,NE,.

In view of (4.29), (4.30), (4.31), (4.32) we have A4, C C, N Q, N L, NT, and since
Dy,.0.1,5 = Ny, 1 we obtain (4.8).

Step 5. We prove (4.7). Using Bernstein inequality, it is easy to show that for n
large enough, if h = hy,, h =t,, h = (1 — 6,)h; or h = (1 + 6y)h;,
PuAD;, } < 2exp(—D4d3,nh) < 2exp(—Dsn®/ 1),

’I’L,m,[(fﬂj 7h) 755,”

with Dy, D5 positive constants, where we used the fact that 5§7nn8/ (2s+1) > 1 for n

large enough and nh > Dgn?s/2s+1) In view of (4.29) we have D,, C C,,, hence
PR{AL} <P% {Dn}+ P} {AL N Cr}t +Pf{B; NCy}
+ P?,M{Efl NCL}+ 3IP’?,M{C%}
<4P} ADLY + P {AL N Co} + P} {B;, NCy} + P} {E; NCy}
< 2(8k 4 T)M,, exp(—2D 4n®/ V) L exp(—D 4n®/ s+1),

for n large enough, where D4 = (D1 V DyV D3V Ds)/2, where we used (4.23), (4.24)
and (4.28). O
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5. Proof of theorem 2

The proof of the lower bound is heavily based on arguments found in Korostelev
(1993), Donoho (1994), Korostelev and Nussbaum (1999) and Bertin (2004c). It is
mainly a modification of the former proof in Bertin (2004c). It consists in a classical
reduction to the Bayesian risk over an hardest cubical subfamily of functions, see
for instance Donoho (1994). The main difference with the former proofs is that the
subfamily of functions depends on the design via the bandwidth h,, ,(x), which is

adapted to the local amount of data.

5.1. Preparatory results. We begin with some definitions. We recall that

¢s is defined by (1.6) and that it has a compact support [Ty, Ts]. Let hl =
maxyey, hn,(z) and
Ep = 2T4cs(2Y/67F) L 1Al
If I, = [an, by], My, = [|I.|Z;!], we define the points
Tj=an+JZn, JjETn={l,...,M,}. (5.1)

In order to unload the notations, we denote again ; = pu(x;), hj = hy ().

LEMMA 8. Let define the event
1 - X, —x;
o 2 o A (S ) 1] <)
n,J ncsh]’u]] ZZ:;SDS Cshj
and H,, £ Nje7,Hp j. We have

lim P{H,} =1.

n—-4o0o

PROOF. We use Bernstein inequality to the sum of variables ©2((X;—x;)/(cshj)),
for 1 < i < n, where we use the fact that ||¢s|l2 = 1 (see section 6) and we derive a
deviation inequality for the events H, ;- Then, bounding from above the probability

of Ujez, Hy, ; by the probabilities sum, the result follows easily. O

The subfamily of functions is defined as follows. We consider an hypercube
O C [~1,1]M= and for § € © we define the functions

F@:0) =) 6ifi(), filx)= LC§h§¢s<xCS_hjj)'

JE€EIn

Clearly, f; € ¥(s,L). Let us show that f(-;0) € X(s, L). We note that

Supp (%(-c—ha{j» = [ — cTuhy, 2 + csTohy] 2 1;.
sltj
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If x,y € I; then f(z;60) = 60,f;j(x), f(y;0) = 0;f;(y) and the result is obvious. To
complete the proof, it suffices to consider the case z € I; and y € I;1. In this case,

we have

|F® (@;0) — f*) (y; )]
k k
— 10, £ ") (@) — 0,41 £, ()]

k k k k
< @) = £ @5+ e Tby) | + 1 £ @1 = e Tohgan) = £ )]
< L(]a; . csTshj\S_k +|zjp1 — csTshjir — yls_k)
< L((2esTshy) ™% + (2¢5Tshj1)" %) < 2L(2¢,Tohl) *.

Moreover, since x € I; and y € I;11 we have

|z —y| > xj41 — x5 — csTs(hj + hjp1) > B, — 2¢,Tshl = 21/(8_k)(2csTSh£),

and finally
|78 (:0) = fP(y;0)] < Lz — g7, (5:2)
thus f(-;0) € (s, L). For any j € J,, we define the statistics
= S Yif06)
> [3(X0)
LEMMA 9. Conditionally on X, the y; are Gaussian and independent. More-

over, if v]2- = E}‘H{yﬂ%n}, we have on Hy,

2s+1 2s+1

< —0—F—. 5.3
2(1+¢e)logn = 7 "~ 2(1—¢)logn (5:3)

In the model (1.1) with f(-) = f(-;0), conditionally on X, the likelihood function

of (Y1,...,Yy) can be written on H,, in the form

dpn n (y; — 6,)
o Gv;\Yj j
Yi,...,} n) = o )2 - /N
dan |xn( 1, ) ) ilzll g ( ) jeljln 9o, (y])

where g, is the density of N'(0,v?), and \" is the Lebesgue measure over R™.

PRroor. By construction the f; have disjoint supports, thus it is easy to see
that conditionally on X,, the y; are Gaussian independent with conditional mean 6;.

Using the definition of H,, and since

2

o
E}{yi1%n} = <~
fv/*’/{ J| } St ff(Xz)
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it is an easy computation to see that on H,, we have (5.3). The last part of the

lemma follows from the following computation:

ﬁga(Yi) I 9o, (yj _,Hj)
i=1

jeJn gvj (yj)

- W [Texe (—Y2/(20%) T exp (26595 - 6;)/(20))
=1

JEIn

1 Y2+ e, (250, 1;(X0) — 03 £;(X,)?)
B o (2m)n/2 -4 [exp ( : 202 : )}
7 (¥; — /(X30)*y _ AP,
_Wgexp<— 552 )— T P, (Y1, Y0). O

5.2. Proof of theorem 2. We denote in the following & = X(s, L) and £Z ST =
supges rnu(z) YT (z) — f(z)|. Since w is nondecreasing and f(-;0) € ¥ for any
0 € O, we have for any distribution B on © by a minoration of the minimax risk by

the Bayesian risk,

mfjscugEfu{w nfT)}> (1-¢)P )mf?ugpfu{g ST 2 > (1—¢)P}

> w((1 - 2)P) i%f/QPg{a{,ﬁT > (1 - ©)PB(d0),

where Py = IP’"(. ) Since by construction f(x;;6) = r;0;P and z; € I,,, we obtain
1nf/ ]P’"{ (1—¢ P}B (de)
> inf Py 0, — 0;] > 1—e|x, }dP'B(d6),
%/@/H a0 — 03] > 1 - el X JAPB(d0)

> [ inf [ P? 0. — 0] >1— ¢|X,\B(do)dP",
/nlg/@) 51 max|6; — 6] e|x, } B(d0)dP),

where inf; is taken among any measurable vector (with respect to the observa-
tions (1.1)) in RM». Then, theorem 2 follows from lemma 8 if we prove that on
H,,

igf/ Py max [0, — 0;] > 1 — £[%,}B(d6) > 1 — o(1),
9 Jo J€In
or equivalently, that on H,,

sup/ P} { max ]é\] —0;] <1—¢|X,}B(df) = o(1). (5.4)
g Jo J€In

To prove (5.4), we choose

O=0M, O.={-(1-¢,1-¢}, B=Q) b, b=

]Ejn

0_(1-e) + 01-¢),

l\’)l»i
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where & stands for the Dirac mass. Note that using lemma 9, the left hand side

of ( is smaller than

/H 1o ( H SUP/@ 18,—-0;]<1— _9v; (Y — 0;)dbe (Gj))le...dYn,

JE€ETn I yJ jejné\jER

and an easy argument shows that
0;=(1—¢e)ly,>0 — (1 —e)ly;<0

are strategies attaining the maximum. Thus, it suffices to prove the lower bound
among estimators 0 with coordinates @ € O, and measurable with respect to y;
only. Since the y; are independent with distribution density g,,(- — 6;), the left
hand side of (5.4) is smaller than

max/ / \9 (uj)—0;]<1— egvg( ej)duj dbe(ej)

jeg, €O

= 1 — lnf / / ‘9 (u 9 |>1 891)]( Hj)dudbe(ej))u

JGJ OECE

and if ®(z) = [*__ g1(t)dt and D; is a positive constant,

inf / / 9v 9 dudb
@685 |9 (u)—0;]=>1—¢ J( J) e

> inf —/(1§J>O+1§J<O)gvj(u—(1—5))/\gvj(u+(1—a))du

9,c0. 2
1[0 y—(1—¢
== Y=g
’Uj —00 gl( ’Uj ) v
1—¢ D1 _(1—2r)2
— o — > (1—e)?(14¢€)/(25+1)
( vj > \/lognn '

where we used lemma 9 and the fact that for x > 0, ®(—z) = (1+O(1))$(237r(_ 2/2)
follows that the left hand side of (5.4) is smaller than

(1_ D, n—(l—a)2(1+a)/(2s+l)>Mn
Viogn

< exp (]I |2 110g (1 — Din~ (1—¢)? (1+a)/(2s+1)(10gn) 1/2))7
and if Do is a positive constant,

I,| E;ln—(l—a)2(1+a)/(2s+l)(log n)—1/2

— D2‘[n‘n€/(2s+1) « n52(1—5)/(2s+1)(10g n)—1/2—1/(2s+1) — 400

as n — 400, since |I,,|n*/?**1) — 400, thus the theorem. O
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6. Well known facts on optimal recovery

6.1. Explicit values. To our knowledge, the function ¢, is only known for
s € (0,1] U {2}. We recall that the optimal recovery kernel is defined by
s
B fR ©s’
where g is given by (1.6). The kernel K for s € (0,1] was found by Korostelev
(1993) and Fuller (1961) for s = 2. See also Leonov (1997, 1999), Lepski and
Tsybakov (2000) and Bertin (2004b). When s € (0, 1],

Ka(t) = 222600 0) (1 - o7 O)1F)

K

where 24 = max(0, z), and

a(0) = ((28 +1)(s+ 1))8/(2S+1)'

452
When s = 2, we have

s(t) = 07Pgy(07%/51),
where for ¢t > 0

92(t) = Z ((_1)jq] + 5(_1)J+1(t - t2j)2)1t€[t2j,1,t2j+1}7
Jj=0

q:1—16(3+\/3_—\/26+6\/§)2,

g 2(23¢% — 14q + 23)/T+ ¢
B 30(1 — ¢°/2) ’

and t_; =ty =0, t; = /1 + ¢ and for any j € N — {0}, to; = 2y/1 —i—ng;é /2
tojr1 = toj +¢/2,/T ¥ q. Note that (p9 18 piecewise quadratic and infinitely oscillating

around 0 at the boundaries of its support. For these values of s,

1N s/(2s+1)
<S2+2 > when s € (0, 1],
P=F= 92 82/5
<5> 9—2/> when s = 2.

In figure 3 we give an illustration of the kernel K for s =1/2, s =1 and s = 2.

6.2. Optimal recovery. The next results are well known and can be found
in Donoho (1994), Leonov (1997, 1999), Lepski and Tsybakov (2000) and Bertin

(2004b). The problem consists in recovering f from
y(t) = f(t) +ez(t), teR, (6.1)

where ¢ > 0, z is an unknown deterministic function such that [[z|]2 < 1 and
f € C(s,L;R) & %(s,L;R) N L2(R). This problem is well known, and the link
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FIGURE 3. Optimal recovery kernels K for s =1/2, s =1 and s = 2.

between this problem and the statistical estimation in sup norm in the white noise

model
dYy = f(t)dt + edWy, teR,

was made by Donoho (1994), see also Leonov (1999). The minimax error for the
problem of optimal recovery of f at 0 in the model (6.1) is defined by
Ey(e, L) =inf sup |T(y) - f(0)],
T rec(s,LiR)
lf=yll2<e
where infr is taken among all continuous and linear forms on L?(R). We know from
Micchelli and Rivlin (1977), Arestov (1990) that

Eie,L) = inf ‘ K(t ‘ K
cn= i (s | RGO - 50)] +<lKD)

— s f(0).
feX(s,L;R)
Ifll2<e

Note that ¢ satisfies ¢5(0) = F4(1,1). For any s > 0, we know from Leonov (1997)
that 4 is well defined and unique, that it is even and compactly supported and that

lpsll2 = 1. A renormalisation argument from Donoho (1994) shows that

ES(E, L) = Es(l, 1)L1/(28+1)€25/(25+1)7
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thus it suffices to know E(1,1). If we define
BsD) 2 sw | [K@(© - £0)] (62)
feC(s,L;R)

we have the decomposition
Es(1,1) = B(s, 1) + [ K2,
and in particular if P is given by (1.5) and ¢, by (3.1) we have
P = Le)(B(s, 1) + | K]l). (63
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CHAPTER 4

Global estimation in sup norm with a degenerate design

In this chapter, we want to recover the regression function with sup norm error
loss when the design is degenerate at several points. We determine an optimal
spatially dependent normalisation factor r,(-) of the minimax risk over a Holder
ball with smoothness s > 0 and radius L. We show that r,(z) = Lh,(x)®, where
hn(z) satisfies for any x

T+hn(x)

L2hn(:n)28/ u(t)dt = o®logn/n,
—hn(x)

where 1 is the design density, n the sample size and o the noise level. Indeed, we
show that r,(-) is an upper bound and that, in an appropriate sense, this rate cannot
be improved. Then, we propose a procedure which is adaptive both in design and
smoothness of the regression function, and we show that it converges over a class of

functions with inhomogeneous smoothness.

1. Introduction
1.1. The model. We observe data (X;,Y;),1 < i < n, from
Y = f(Xi) + &,

where &; are i.i.d. centered Gaussian with variance o2 and independent of X;, with
X; i.id. with density g on [0,1]. In this chapter, we want to recover the whole

signal f when p vanishes at several points. We measure the error of estimation in

sup norm [|gllec = sup,ejo1) [9(2)]-

1.2. Motivation. When g is not the uniform law (the data are “inhomoge-
neous”), it is clear that the performance of an estimator shall vary depending on the
local amount of data, which is drawn with respect to u. In chapter 3, this fact has
motivated the choice of spatially dependent normalisation factors for the assessment
of the accuracy of an estimator. Therein, when p is continuous and bounded away

from zero (the "non-degenerate” case), we have shown that

pu(x) = P(o,s, L) (log n/(npu(x)))* &+, (1.1)

where P(o,s,L) > 0, is an upper bound for the sup norm risk. We also have
proved the optimality of this normalisation in an appropriate sense. These results

121



122 4. GLOBAL ESTIMATION IN SUP NORM WITH A DEGENERATE DESIGN

have been stated up to the exact minimax constants, thus the factor u(-) and the
constant P(c, s, L) in this rate are optimal.

The main drawback of this result is that it does not hold when u is vanishing
since, roughly, p,(x) = +o0o when p(z) = 0. From chapter 1, when u(y) behaves as
ly — 2|” when y — x, we know that the pointwise minimax rate v, (z) at 2 over a

Holder ball with smoothness s satisfies
Un(z) < n8/(+2550) (1.2)

where a,, < b, means 0 < liminf, a,/b, < limsup,, a,/b, < +oco. Moreover, it is
well known since the pioneer results by Stone (1980) and Ibragimov and Hasminski
(1981) (resp. in the regression with non-degenerate design and white noise models)
that the pointwise minimax rate over this function class is of order n—s/(1+2s),
Hence, it appears that the pointwise minimax rate is different from the classical
one at points where the design is degenerate, and that its order depends on the local
behaviour of y. A natural extension of these results is then to find the optimal global
minimax normalisation r,(-) when the design is degenerate. This normalisation shall
be equivalent to p,(-) when the design is non-degenerate, and at a point 2 where p

is vanishing, we expect r,(x) to be close to v, (z).

1.3. Outline. In section 2, we prove that r,(-) is an upper bound over the
Holder class (see theorem 1), and we show that in some sense, this normalisation is
optimal (see theorem 2 and its corollary). In section 3, we construct an adaptive
procedure, and we give upper bounds for this procedure in section 4, see theorems 3
and 4. We discuss some technical points in section 5, and the proofs are delayed

until sections 6 and 7.

2. Upper and lower bounds over an Hélder ball

The aim of this section is to prove that in some sense, 7,(-) is an optimal nor-
malisation over a Holder ball. If s, L > 0, we define the Holder ball ¥(s, L), which
is the set consisting of all the functions f such that for any =,y € [0, 1],

|8 (@) — B (y)] < Llz —y|*F,

where k = |s] is the largest integer k < s. If Q > 0, we denote by %%(s, L) the set
of functions f € X(s, L) such that ||f|lcc < @. In this section only, we denote for
brevity ¥ = ¥%(s, L). We define

rn(x) = Lhy(z)°, (2.1)
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where hy,(-) is defined as the curve satisfying for any x € [0, 1]

Lhn(2)® =

logn 1/2
J(n,u([:n )T T hn(x)])) ) (2.2)

where we denote p(I) = [; p(x)dx. In this equation, the "bandwidth” h,(x) makes
the balance between the bias and variance terms of a certain linear estimator at z.
If v is continuous and vanishing only at a finite number of points, h +— h%u([z —
h,x + h]) is increasing for any x, thus hy(-) is well defined and unique for n large
enough. Moreover, when p is continuous, h,,(-) is clearly continuously differentiable.

When g is bounded away from 0 and continuous, we have

ra() = (14 0(1))pn(x) (2.3)

for any = € [0,1], where o(1) is going to 0 as n — +oo. When u(z) = 0, the
equivalence (2.3) does not hold anymore.
For a uniform design (u(z) = 1 1)(x)), the "classical” minimax rate over ¥ is
given by
¥n = P(0,s, L)(log n/n)" Y, (2.4)

(this is p,(-) where we replace p(x) by 1). While the orders of p,(-) and 1), are the
same when p does not vanish (they differs only up to the term u(z)), the order of
rn(x) differs to that of ¥, when p vanishes at x, in the sense that v, /r,(x) goes to

0 as n — 400 (see the example below).

2.1. Upper bound. To state the upper bound, we assume that p satisfies
assumption D below. First, we recall the definition of regular variation. The regular
variation definition and main properties are due to Karamata (1930). On this topic,
we refer to Senata (1976), Geluk and de Haan (1987), Resnick (1987) and Bingham
et al. (1989).

DEFINITION 1 (Regular variation). A function g : Rt — R is regularly varying

at 0 if it is continuous, and if there is a real number 3 € R such that
Yy >0, i h)/g(h) = y°.
y Jim g(yh)/g(h) =y

We denote by RV () the set of all such functions. We say that a function in RV(0)

is slowly varying.

ASsUMPTION D. The density p is continuous, and there is a finite set B, C
[0,1] such that p is positive on [0,1] — B,. Moreover, for any x € B, there exist
BF(z), B (x) = 0, and a(x) € [0,+00] such that

px+-) €RV(BT(2)),  p(zr—-) €RV(F™ (),
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and

Jim gz 4 h)/ (@ — h) = o).

In other words, assumption D means that p is continuous and positive on [0, 1],
excepted for a finite number of points where it varies regularly on the left and
right hand sides of these points. The function z — (37 (), 3" (z)) quantifies the
degenerated behaviour of p. Note that if z € [0,1] — B, we have (8~ (z), 7 (z)) =
(0,0) and a(x) = 1.

In what follows, a loss function w(-) is any function Rt — RT nondecreasing,

continuous, such that w(0) = 0 and satisfying w(x) < A(1 + z)? for some A,p > 0.

DEFINITION 2. If F is a function class, we say that a sequence v,(-) > 0 of
normalisations is an upper bound over F if there is an estimator ﬁl such that for
any loss function w,

lim sup SupE?#{w( sup vp ()" | fo(a) — f(@)])} < +oc.
n fer z€[0,1]

THEOREM 1. Under assumption D, the normalisation r,(-) defined by (2.1) is

an upper bound over 3 .

In the proof of this theorem, we use an estimator which depends on s, L and pu.
In section 3, we propose an estimator which does not depend on these parameters,

since they are hardly known in practice.

2.2. Lower bound. In the previous section, we have proved that r,(-) is an
upper bound over the Holder class . Here, we show that in some sense, it is optimal.
First, we give a criterion for comparing upper bounds. If (a,) and (b,) are positive
sequences, we write z, < y, when lim, o yn/z, = +oo. In what follows, |I|

stands for the length of an interval 1.

DEFINITION 3. Let p,(+) and v,(+) be upper bounds over some function class F,
and (ay,) be a sequence of positive numbers going to 0. We say that p,(-) is better

than v, () over F at the order ay, if there exists an interval I,, C [0, 1] with
In| > an,

such that

lim sup pp(z)/vn(x) = 0.

n—-+00 xzel,

Definition 3 means that in some interval I,,, with a size which is larger in order

than «a,, py(+) is uniformly better than vy, (-).
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THEOREM 2. If pi is continuous, and if there exist 3 > 0 and L, > 0 such that
for any x € [0,1] and h > 0,

p([z — hyx 4+ h]) > LRt (2.5)

then for any interval I, C [0,1] such that

1| = n—°

where 0 < a < 1/(1 4+ 2s + 3), we have
lim inf inf sup B, {w( sup (@) fr() — f(@))} >0,
o fa fex vely,

where T,(+) is given by (2.1).

In theorem 2, equation (2.5) means that p can be vanishing on [0, 1], but not
faster than a power function of order (. It is easy to see that assumption D from
the upper bound entails (2.5) with a good choice of 8 and L,. A consequence of

theorem 2 is the following.

COROLLARY 1. Under the same assumptions as that of theorem 2, no conver-

gence rate is better than r,(-) in the sense of definition 8 over the class ¥ at the
order n~1/(1+25+0)

REMARK. The reason why we were not able to prove that r,(-) is optimal at
smaller orders than n~Y/(+25+8) ig technical. Ideally, we shall prove that no rate
can improve 7,(-) at any single point, but we cannot say if this is true or false, or

technical.

We provide an explicit computation of the normalisation factor r,(-) for s =
L =0 =1 and the design density u(z) = [r —1/2[1[g ;)(z). Solving (2.2) leads to

ogn \1/3 . I ogn \1/2
(n(11§2m)) / if 2 € _O= % - (gll;gzn) / }5
ogn\1/2 1/2
R B (b e o R G
ifoe [§- (5" 4+ () ");
logn \1/3 if (1 logn \1/2 1
(n(2m—1)) nze |2 + (21/211) [ I

The order (logn/n)Y? of r,(-) near the boundaries coincides with that of the classi-
cal minimax rate v, (see (2.4)) for s = 1. At the middle of the interval, the design
is vanishing with polynomial order 8 = 1, and the order (logn/n)Y* of r,(-) corre-
sponds to that of the pointwise minimax rate (1.2) with 5 = 1, up to the logn term,

which is due to the sup norm loss. As expected, we obtain in this example that the
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value of r,,(+) is smaller in order at the middle of the interval (where y is vanishing)

than near the boundaries. We illustrate r,(-) for several n in figure 1 below.

0.3

n withn=100 ——
n=1000 ------—

0.25 -

0.1

0.05 7 7/

FIGURE 1. 7y (-) for n = 100, 1000, 10000

3. A design and smoothness spatially adaptive estimator

In the previous section, for the proof of theorem 1, we need to know the smooth-
ness of the signal f and the design density p to build an estimator converging with
the rate r,(+). In practical situations, we do not know p nor the smoothness of f,
thus we propose in this section an adaptive procedure which does not depend on

these parameters. We define the design sample measure

1 n
- S
Hn n; X

where 9§ is the Dirac mass. In what follows, we fix S > 0, which corresponds to the
maximal smoothness index of f, and we define k = |S|. The integer x is then used

as a degree of complexity in the method described below.

3.1. Local polynomial estimation. As in the previous chapters, we consider
a modified version of the local polynomial estimator. If I C [0, 1], we consider the

inner product
1
fogi=— [ fadn,
< ) fn(I) J1

where [, gdp, = nt >_x;er f(Xi). Suppose that we want to recover f at a point
x € [0,1]. We choose an interval I C [0, 1] such that = € I (the adaptive selection of
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I is described below). We consider the functions ¢, (y; z) = (y — z)™ where m € N.

We introduce the matrix X(x) and the vector Y (z) with entries

(X1(2)pg = (Dp(52) s dg(52)) 1, (Yi(2)p =Y, dp(52))1,

for 0 < p,q < k. Then, we define
Xi(r) =X (z) + mlmllﬂg(m),
where Q(z) = {\X(z)) > (nﬂn(I))_1/2} and A\(M) is the smallest eigenvalue of
a matrix M and I, is the identity matrix on R5*t!. When fin(I) > 0, the solution
51(:17) of the system
Xi(z)0 =Y/(z) (3.1)
is well defined. When [, (I) = 0, we take é\[(x) = 0. If I is well chosen, the first
coordinate (67(x))o of the vector 67(z) shall be close to f(x).
The interval I is a smoothing parameter which is, theoretically, given by a bal-
ance equation between the bias and the variance terms of the estimator (see equa-
tion (4.3) below).

3.2. Where to choose the interval? For the estimation at x, the method

starts to build a set Z,(x) of intervals containing x. If
Ty (z;I) = {J € Z,,(x), such that J C I},
we assume that Z,(-) satisfies the following property.

AssuMPTION I. For any x € [0,1] and I € Z,,(x) we have x € I, and there exists
a > 1 such that for any I* satisfying

I* = argmax { fin(J) such that fi,(J) < fin(I)},

JELn (x;1)
we have
fin(I") = fin(I)/a. (3.2)
Moreover, we assume that there is A > 0 such that for any x € [0,1] and I € Z,,(x),
#(Zn(: 1) < (nan(D)*, (33)

where #(F) denotes the cardinal of a finite set E.

EXAMPLE. One way of building Z,,(x) is the following. First, we sort the (X;,Y;)
into (X, Y{s)) such that X(; < X(;41), and we take j satisfying z € [X(;), X(j11)]
(if necessary, we take Xy =0 and X, 1) =1). Then, we consider

flog, (j+D)] llog, (n—)
Ii@)= U U Xt Xgan]: (34)

p=0 q=0
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where a > 1. This set satisfies assumption I: the condition (3.2) is clearly satisfied

and (3.3) is satisfied with a small A since for any = € [0,1] and I € Z,,(z) we have
_ 2
#(In(: 1)) = O((logy(nfin(1)))")-

EXAMPLE. Another example is the "maximal” set. This set would provide a
more efficient estimator, but it is computationally more expensive. If j is such that
r € [X(j), X(j4+1), it consists of all the intervals with boundaries at design points

containing x:
J
Zr(2) = | U Xy-n: Xg+al

This set satisfies assumption I since we have fi,,(I*) > fi,(I) — 1 and #(Z,,(z,I)) =
O((nfin(1))?).

1/2
I

3.3. Adaptive selection of the interval. If ||g||; = (g9, g); ", we define the

diagonal matrix Aj(x) with entries

(Ar(@))pp = llop(s2) 7,
for 0 < p < k and the matrix H;(z) = A;(z)X;(x), which has entries

<¢p('§ ), ¢q('§ z)) 1
lpCs )l

for 0 < p,q < k. Let ||z||0 = maxogp<y |7p| for € R*TL. For the estimation at z,

(H;(2))pq =

the interval I is selected in the following way:

~

I,(x) = argmax { fin(I) such that for all J € Z,,(x; I),
IeZ, (x)

L @) (01 (2) = 05 (@))lloe < Tull, )},

where the threshold term is

T(1,7) = o0 Dy (1) logn) " + D (1)~ og(niin(1))) /7],

with C,, = (14 (k + 1)'/?), Dz, = 23/2(A + 2p) (we recall that w(x) = O(1 + 2P))
and D7 > 0 is a tuning parameter depending on the choice of Z,,(-), to be specified
below. The estimator of f(z) is then given by the first coordinate of é\fn(m) (x),

namely
fn(z) = (efn(x) (z))o-
This adaptive selection of the smoothing parameter is barely the same as the

one from chapter 2. This method is mainly inspired from the methods by Lepski
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and Spokoiny : see Lepski (1990), Lepski and Spokoiny (1997), Lepski et al. (1997)
and Spokoiny (1998).

4. Upper bounds for the adaptive estimator

A common way of measuring the smoothness of a function is to consider its local
oscillation, defined for any interval I C [0, 1] by
oscy f(I) = inf Sup |f(z) = P(z)], (4.1)
where Vj, is the set of all real polynomials with degree at most k. Obviously, when
k < K, we have osc,, f(I) < oscy, f(I) for any I C [0,1] and f. We denote for brevity
osc f = osc, f. When f € (s, L) for s < S, we have clearly

osc f([x — h,x + h]) < Lh®/k! (4.2)

for any = € [0,1]. Note that the right hand side of this inequality only depends on
h, and not on the point x. In this section, we consider a larger class of functions,

consisting of signals f satisfying for any = € [0,1] and h > 0,
osc f([x — h,x + h]) < w(zx,h),

where w(-,-) is fixed and satisfies some assumptions, see below. This condition
includes signals with spatially inhomogeneous smoothness, which are signals with a

non-constant Holder index s over [0, 1].

4.1. A conditional on the design upper bound. When no assumption is
made on the behaviour of u, we can work conditional on the design. We denote by
X, the sigma-algebra generated by the random variables X;, 1 < i < n. Among all
the intervals in Z,(x), an ideal oracle interval is given by

I,(z; f) = argmax {ﬂn(l) such that osc f(I) < JDI(Qnﬂn(I))_1/2}, (4.3)
I€T,(x)
where g0, = n/logn, and Dz > 0 (this constant appears in the threshold term
T,(1,J)). This interval is not necessarily unique. This oracle interval is used in the
next theorem to define the normalisation factor assessing the adaptive procedure.

We need to introduce some notations. We define the matrix
Gr(z) = Ar(z) X (z)Af(z), (4.4)

and for a,Q > 0 we define C, = Dz + D14 + (2a)/2 4 2p'/2 4 1 and Co =
oP(2P + 1)(Q V 1)(k + 1)P%(k + 2)c(2p,0)"/? where c(p,0) = (2/m)"? [ (1 +
ot)P exp(—t2/2)dt.

THEOREM 3. If
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[ flloe < Q for some Q > 0;

e a>0,A,=n"%and x; = jA, for j € T =1{0,...,[A1]};

I; = I,(xj; f) where I,(z; f) is the oracle interval defined by (4.3);
Ro(x;) = o (logn/(nfin(1))) "

then on the event

L= () {(MXp, (7)) > (nin(L))"*Y 0 { ally) > 0},

JE€EIn

we have for any n > k + 1,
E oo miax Ro(ey) ™ Fales) = ()] )1 %0 }

< C, max )\(gj)_l + Co(log n)_p/z,
]ejn

where Gj = G, (xj).

REMARK. On £,,, we have A(G;) > 0 for any j € 7,. Note that in this theorem,
the constant o can be arbitrary large, thus the discretisation step A, can be of any

polynomial order.

4.2. Upper bound under assumption D. In this section, when pu satisfies
assumption D, we prove that the adaptive estimator converges simultaneously over
several classes F of functions with inhomogeneous smoothness. The rate of conver-
gence of the procedure is described below, and it is equal to (2.1) when f € (s, L).

We recall that S > 0 is a fixed maximal smoothness index and that x = |S]
is the degree of the local polynomials, see section 3.1. If § = [v, S] for some small
v > 0 fixed, we define the set R(S) of all the functions w(-,-) : [0,1] x RT — R*
such that for any = € [0,1], w(z,-) is nondecreasing and w(x,-) € RV(s(z)) where
s(z) € S.

Then, for any @ > 0 and w € R(S), we consider the set F(w,Q) of all the
functions f : [0, 1] — R such that ||f]|c < @ and for any = € [0,1] and h > 0,

osc, f([x —h,z + h]) < w(z, h),

where oscy, is defined by (4.1). Then, we define the bandwidth h,(-) = hy(-;w, 1)
satisfying for any z € [0, 1]
(@, ha(@)) = o (g [ = ha (@), + ha(@)]) ", (45)
where g, = n/logn, and the rate r,(-) = r,(-;w, u) defined by
o (z) = w(z, hn(z)). (4.6)

Note that in the Holder case (w(x,h) = Lh®) (4.5) is the same as (2.2).
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THEOREM 4. If

e (1 satisfies assumption D;
e the points x; for j € J, are chosen as in theorem 3,

e )\, >0 and
So= [ {AXp (7)) > A} 0 {niin(ly) = A2},
JE€EIn
° ﬁ@() is the estimator with I,,(-) = Z4(-) for a > 1 (see (3.4)) and Dz > V2
(see section 3.3);

then we have for any w € R(S) and Q >0

limsup sup Envu{w(maxrn(wj;w,u)_llfn(wj)—f(wj)l)lsn}<C*,
no feF(w,Q) J€Tn

where (- ;w, p) is given by (4.6) and C* > 0 depends on Ay, L, w, a, Q,S. Moreover,
we have for any x € [0, 1]
rn(@;w, 1) = (14 0,(1))0™ ") (log n/n)"® £, (log n/n),

where £, is slowly varying and

e o)

1 + 2s(x) + min(3~(z), 8+ (z))’

When f € 3(s, L) and pu is positive, we have s(z) = s and 8~ (z) = g+ (z) =0
for any x € [0, 1], and we find

rn($) — 0_25/(2s+1)L1/(2s+1)(10g n/n)s/(2s+l)’

which is the classical minimax rate for sup norm risk. We discuss the result of

theorem 4 in the next section.

5. Discussion

5.1. About theorem 2. In theorem 2, we show the optimality of r,(-) up
to the order oy, = n~1/(1+2548) (see definition 3 and corollary 1), and we cannot
improve this order. We are not able to say if for orders smaller than «,, the result
is false, or more technical. It is noteworthy that in theorem 2 from chapter 3 (see
page 87), the same phenomenon occurs: therein, we prove the lower bound up to
the order n~1/(2s+1) (8 = 0 since the design is positive), and if we want to achieve
the exact minimax constant, we must restrict to logarithmic orders.

Actually, the sequence (o) corresponds to the "worst” bandwidth over [0, 1],
or in other words, to the maximum of h,(-) (see (2.2)). The general method for
proving lower bounds is to exhibit a critical parametric subfamily of functions in

the parameter space (here X)), and to randomise them in an appropriate way. The
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problem for the proof of these lower bounds is then to make the support of the
critical functions fit in the interval I,,. Consequently, we cannot take I,, too small,

and more precisely not smaller that the worst bandwidth.

5.2. About theorems 3 and 4. When considering the adaptive estimator
with Z,,(z) = Z"**(x) (see section 3.2), using similar techniques as in chapter 2 (see
for instance the proof of lemma 9, page 77), we can prove under assumption D that
the probabilities of £, and £,, (for A, well chosen) are going to 1 exponentially.

When f belongs to some Hélder class X(s, L) for s € S, we can prove theorems 3
and 4 with risk norm || - || instead of the considered discretised maximal risk. In
this case, the convergence rate is equal to r,(-) (see (2.1)) and we know that it is
indeed optimal in the sense of definition 3, see theorem 2. However, over the class
F(w,Q), the optimality of r,(-;w, 1) is not proved. The proof of the upper bound
over (s, L) for the adaptive estimator with sup norm loss shall be close to that of
theorem 1, with an estimator defined as a Taylor expansion between discretisation
points x; with a sufficiently small step A,,. Note that the coefficients of the vector
é\f(w) (x) provide good estimates of both f(z) and its derivatives.

The reason why we can take A,, of any polynomial order is linked with the fact
2WM here WM s
the maximum of a centered Gaussian vector of size A-! = n®. But a well known

fact is that

that the variance of the estimator is bounded by (njin(I))

E{WM} = O(log A;Y) = O(alogn),

which fits with the logn term in the definition of h,(x), see (2.2). This is roughly

the reason why for sup norm risks, we pay a log term in the minimax rate.

5.3. About the class F(w, Q). In the class F(w, @), we assume that for any
x € [0,1], the local oscillation at z of f is bounded by a s(x)-regularly varying
function, which is a function behaving as a s(x) power function times a slower term.
If s(z) is not constant, then f has a spatially inhomogeneous smoothness. Note that
if w(z,h) = Lh*/k!, we have ¥¥(s, L) C F(w,Q), see the beginning of section 4.

Another example of functional space with inhomogeneous smoothness is the
Besov space B? ., which is characterised by the property

p,o0?

1
sup h_sl’/ w(x, h)Pdx < +oo,
0<h<1 0

when s > 1/p. Note that however, when p < 400, this space is well adapted for

integrated error risks (L%, ¢ < 400 risks) but not for sup norm risks.
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6. Proofs of the upper bounds
We recall that G7(z) = Aj(z)X(z)As(z), Q(z) = {A(X;(z)) > (nﬂn(I))_1/2}

(see section 3.1) and that g, = n/logn. We need the following lemmas.
LEMMA 1. Let I be an interval in [0,1]. If P; € V, is such that

If = Prllr <oscf(I) +e,

then we have on Qr(x),

IAT (2) (01 (x) = 01)]|s
< AGr (@)™ (k + 1)Y2 (osc £(1) + & + o (onfin(1) ™21 ]lo),

where 07 is the coefficients vector of Py and v; = T1&, where Ty is such that T}TI =

0_1IH+1 (this entails that conditional on X, v1 is centered Gaussian and such that

For any interval I C [0,1] and a point = € [0, 1], we define the event I', ;(z) =
{ minigmer |om (-3 2) |1 = n~ 12},
LEMMA 2. When ||f|leo < Q, for any J C I, x € [0,1] and p > 0, we have
Fu {105 @))olP1%n} < (5 + 1P/X(Q V 1)Pe(p, o) (nfin (1), (6.1)

where ¢(p, o) = (2/7)1/? Jp+ (L + ot)P exp(—t?/2)dt. Moreover, when 1 < m < k, we
have on Ty, (z),
E},{101(2)m[P|X0} = O(n?). (6.2)

LEMMA 3. If h,(-) is defined by (2.2), when p is continuous and satisfies (2.5),

we have

inf ha(2) > (0/ (L2l (log /) V7, (6.3)
z€|0,
[hnlloo < (o/(LE/2L))2 0F255) (log n )/ (42550), (6.4)
Moreover,
1Y lloo < Nltlloo 1 4 oo /(L L) (6.5)

6.1. Proof of theorem 1. In view of assumption D, we can write at any point
z €D, (x4 h) =" @et(h) and p(z — h) = b @~ (h) where £ and ¢~ are
slowly varying functions. Recalling that for any slowly varying £ and o > 0 we have
limy, g+ h*¢(h) = 0 and foh tl(t)dt ~ hoTH(h)/(a+1) as h — 0T (see for instance
section 7 from chapter 1), we can find 8 > 0 (for instance 8 = 1 +maxyep, () V
Bt (z)) and L, > 0 such that (2.5) holds. We consider

An:fhn A n'_ll_17
It b(@) A0
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and the points z; = jA,, j € Jn = {0,..., M, + 1}, where M, = [A,!] with
xp,+1 = 1. Since (2.5) holds, and

_ -1y _ : -1 =1y
My = 08 = O(( inf ()" V()Y l1o)-
we obtain easily from lemma 3 that
log M,, = O(logn). (6.6)

We define the intervals I; = [x; — hy (), z; + hyp(x;)] and é\] = é}j (x), where 0:(z)
is given by (3.1), with order x = k. Then, at € I; we define the estimator fn
(hn(-) is known) by

Folw) = ]0+<20]m - )1Fw,

where 'y, ; = Ty 1;(25). We need to introduce some notations: we define ¢; () =

(x —x)™, Tn = Njeg,Tnj, Qn = Njeg, 21, (x;), and the events

Dnvmvj:{‘hm /@jmdﬂn XH($J7 )‘<5}

where 0 < e < 1/2. If B(z) £ B~ (z) A BT (z), we define

R Bttt =) if a(a) < +oo;

7mﬁ%():)il if a(z) = +oo;

Xpu(;m)

(see assumption D) and D,, = Njez, No<ms<2k Dn,m,j- We need the following lemma.
LEMMA 4. There is an event A,, € X,, such that
An CT N QN Dy Njeg, ANMGr) > Aut, (6.7)
where X\, is some positive constant, and for some D > 0,

Pr{AS} < exp(—Dn?/0FT240)), (6.8)

The proof of this lemma is given below. Let us denote 8;,, = ™ (z;)/m! and
the vector #; with coordinates 6, ,,. We introduce also r; = ry(z;), hj = hn(z;).
From now on, we work on the event A,. Using f € 3(s, L), and since A,, C T, we

obtain from the Taylor expansion of f at x € I;

k
(@) = f@)] <D 105 — Ojmllw — a5 |™ + LA,
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When f € (s, L), it easy to check that for any interval I C [0, 1],
osc f(I) < LII|°/k!, (6.9)
thus, since A,, C 2,,, we know from lemma 1 that
1A B = 07) e < AGL) ™k + DY2(LE + 0(enfin ()2 511c).

where v; = T;{ is a centered Gaussian vector such that E:}u{fy?m]:{n} < 1, for
any 0 < m < k. Since A, C Dy 9 ; for any 0 < m < k, and A, C Dy, =
{ln(1;)/ (1) — 1| < €} we have

sl = ([ i /i) = ([ 05m diaf 1+ i) "

> ' (Ouley: 2m) —€)/(1+€)) ',
thus, by definition of A;(z) and since A, C {\(Gr,) = Au}, we obtain for any
0<m<k,
10j.m = B3| = O(LB™™)(1 + (log n) ™/ |[y;|o0),

and since A, < h; for any j € J,, we obtain for any x € I,

rn(@) ! fa(@) = f@)] = O(1+ (log n)~"/?|l7;|oc) -
The vector W £ (Vo> V1o +1)’ satisfies W = T¢, where

T = (T, Th, ..),s

> T, 41

(see lemma 1), thus conditional on X,, W is a centered Gaussian vector such that
E;}u{W,%} < 1 for any 0 < m < (k+ 1)M,. Let us define WM £ maxjc 7, [|[Villoo =
MaX)<m< (k+1)M, |Wml, and the event W, = {wM — E?’u{WM} < Dy (log n)l/Q},
where Dy > 0 is chosen below. We recall the following classical result about

Gaussian vector (see for instance in Ledoux and Talagrand (1991)):

1M < (210g ((k + 1)Mn)>l/ g (6.10)
and
WV} < exp(—D3, logn/2) = n~Pw/?, (6.11)
Together with (6.6), (6.10) entails E}‘M{WM} = O((log n)l/z). Thus, we obtain on
A, MW, uniformly for f € X(s, L) and x € [0, 1],
Fal) = f(@)]
= O0(1)(1+ (logn) V2(WM —E% (WM} +E} {WM})) =0(1),

T ()

and using w(z) < A(1 4 zP), we obtain

B, {u( sup ra(e) () — F@)) Laow } = O(1).
fex z€[0,1]
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Now we work on A% UW. Using lemma 2, lemma 4 and (6.11) for a choice of Dy,

large enough, we obtain

sup EF {w( sup (@)™ ful@) — f(2)]) Lagows }

fex z€(0,1]
n > 1/2 n c c\1/2
= o) (BB 1B 012 +@%) (B, 445 uWih) > = o(0),
and the statement of the theorem follows. O

6.2. Lemmas on the adaptive procedure. We define the event
Tr1(x) = {|H;(2)(01(x) — 05(2))lloc < Tn(I,J)},

and 71(z) = N ez, (o0 Zs1(x). We define

K

Frlyiz) =" (0r(x))m(y — 2)™,

m=0

and fr(z) = fi(z;2) = (7(x))o. It is useful to remark that for 0 < m < &,
(H () (Or(x) = 05(2)),,, = (Fi(2) = F3(:2) om(2)a/llom(50)ls. (6.12)

LEMMA 5. If I € Z,,(x) is such that

osc f(I) < oDz (oniin(I)) ™7,

we have on Q(x)

T (@)X} < (5 + 1) (nfin (1)) 72,

LEMMA 6. Let I € I,(x) and J € I,(x;I). On the event Tj(z) N Qy(z), we
have

1F1(@) = Fr(@)| < (5 + 1)2A7Y(G, (2))0(D1 + D1 wCy) (log n/ (njin(J)) ',
where we recall that Gr(x) is given by (4.4).

6.3. Proof of theorem 3. It is convenient to introduce fj = fn(azj), I; =
In(xj; f) and R; = Ry (x;). We denote G; = Gy, (x;), and T; = {fin(I;) < ﬂn(f])}

-~

Note that we for any j € J,, we have £,, C (). By definition of I,,(x;) we have

Tj C 7}, and since | flloo < Q we obtain using lemmas 2 and 5
bR Fuly) — £ ()P 1me |X )
- nom 1/2 n c 1/2
<@ VORP((EFale) ) + Q") (B, dT¢1%a})
<o PPV 1)(QV 1)P(k + 1)FP2(¢(2p,0)Y? v 1) (logn)7P/2.

By the definition of fn($j), we have
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thus using lemma 6 we obtain that on T},
Ry 7, (x5) = fr, ()l S X7HG)(Dz + DrwCi).
Using lemma 1, and in view of the definition (4.3) of I; = I,,(x}; f), we obtain
Fay () — )l < MG (5 4+ )V2 (ose £(I) + o(nfin(L3)) 215

S RyAG) ™ (m+ 1)Y2(1+ (logn) ™12 1),

where v; = T;€ is such that E;}u{’ﬁ].’{n} < 1. Then, we have on T}
R fu(g) = f(2))] S XHG) (5 + 1)V (D1 + DroCre + 1+ (logn)~/2|)).
We define WM = max;e 7, |7;] and the event
Wy = {WM —E} (WM} <2(plogn)'/?}.

It is well known that (see for instance in Ledoux and Talagrand (1991))

1/2

WM} < (210g([A11]) 77 < (2alogn)'/?,

and
¥ AWl Xn} < exp(—2plogn) = n=%,

Thus, on T; N W,, we have

Jnéaj};R]_”ﬁL(xj) — f(z))]

< I_Ié%x )\(Qj)_l(DI + DrwCr + 1+ (log n)_l/QWM)
J n

< n;%m(gj)—l(pz + DrWCh + 1+ (2a)12 4 2p'/?),
] n

and on W¢, we have using lemma 2 in the same fashion as above,
?,M{Rj_p’fn(xj) - f(x])’prVﬁ’:{n}
<oV I)(QV 1P (k + 1) 2(e(2p, 0) 2 v 1) (log n) P12,

thus the theorem. O

6.4. Proof of theorem 4. Let w € R(S). We define

H,(z) = argmin {w(z, h) > o (onfin(Tsn))"*}, (6.13)
helo,1]

where I, 5, = [x — h,z + h]. We define also

Ii(x; f) = argmax { fi,(I) such that osc f(I) < UDI(Qnﬁn(I))_1/2},
1€[0,1]



138 4. GLOBAL ESTIMATION IN SUP NORM WITH A DEGENERATE DESIGN

where the difference with (4.3) is that the infimum is taken among any interval
I C [0,1]. In particular, we have fi,, (I,(x; f)) < fin (L} (2; f)). We denote I (z) =
Iy i, (z)- Since f € F(w,Q), we have by definition of H,, () either

osc F(IH (@) < w(@, Ho(x)) = o (onfin(IF () 7/

) e
osc f(IH (2)) < w(z, Hy(z)) < 0<%> 1/2.

Then, since D7 > \/_ we obtain that in both cases,

osc f (I (z)) < oDz (onitn(I7 (z))) ™7,

thus fin (I7 (%)) < fin (I (z; f)). We take j(x) such that = € [X;(y), Xj(z)+1], where
X4 < Xgg) for any 1 < i < n (eventually Xy = 0 and X(,4q) = 1). We
consider the largest interval I, (z; f) in Z2%(x) such that I, (x; f) C I}(x; f). Since
osc f(I)%fin(I) increases as I increases, we have

osc (I (z: f)) < oDz (enfin(L; (2: 1)) 7,
thus iy, (I,; (x; f)) < ﬂn(In(x; f)) If p and ¢ are such that

L, (73 f) = [X(j@)+1-[ar) X (G(@)+[a)))>

(see (3.4)), and if u,v are such that [X(u),X(U)] C Ii(w; f) and fin([X ), X)) =
fin(I5;(x; f)), we have

Fin ([X (@) 41 a7 X (@) [aa))]) < B ([Xw)» X))
n (X (@) 1-[ar+1])s X (@) +fasr1)])
n( ) and finally

VAN
=

this o (1302 1)) < 0% (I (55 1) <
ﬂn(I;;I(J;)) < a2ﬂn(In(x§ f))

We need the following lemma.

Q

LEMMA 7. If w € R(S) and Hy(z) is given by (6.13), we can find for any
0 <e<1/2 some0<n<e such that if

Mn(fx (1=&)hn(z)) (L (14&)hn ()
Mn T é ’ n -1 g n N > n
(@) { Ly (1—)hn (z)) ‘ } { Ly (14)hn (z))
we have for n large enough

—1( Sn},

M e(x) € {[Hn()/hn(2) = 1] < €}

Moreover, if (2.5) holds, there is Dy > 0 such that if My, . = Njeg, Mp(z;), we
have
]Pm{M 6} exp ( D 772 2s/(1+2s+5))
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In view of lemma 7, we have on M, ¢ (x) that (1-n)u(Iy,(1—2)h, () < Fn(Lz,(1=)hn (@) <

fin(I} (x)), thus

1Ly (1= () < (1 =) a®in(In(; £)).
Under assumption D, for any 0 < ¢ < 1/2, we can find C, > 0 such that for any
r € [0,1] and h > 0 small enough, u(ln) < Cup(ly1—c)n). Then, uniformly for
J € Tn, since ||hy o goes to 0, we have p(ly, n,(z;)) = O(fin(;)), thus ro(z;) "t =
O(Ry(x;)7Y). Since £, C L, we can apply theorem 3, and we obtain

sup Ej wmaxrnm_lfnl" — flx)])1e,Am,, .
s B fu(masra@) ) - ) 1aom,

< Cpmax \(Gj) ™ + Co(log n)~P/2,
JEIn

where we recall that G; = G (v;) = Ay (25)Xp(7;)AL(7;) (on £,, we have
Xy (zj) = Xp,(x;)). Since G; is symmetrical and positive definite, we have on
£, that

MG~ = 1G5 = 1Az () M IIXr, ()~ AL ()~

<Xy () 7H = MKy ()7 < A

J

thus

limsup sup E} {w(maxr,(z;) " falz;) — f(25)]) Le,nm,. } < +00.
no feF(w,Q) J€Tn

Now we work on My, .. Since assumption D entails (2.5) for well chosen L, > 0 and
B >0, and since || f|lco < @, using together lemmas 2, 3 and 7, we obtain
[ E? . {w( g;gfrn(wﬁﬂﬁ(xj) — f@j)) Le,oms .} = o(1),

which concludes the proof of the upper bound.

Let x € [0,1] be fixed, and assume that «(z) = +oo, which entails that
BT (z) < B (z). In what follows, we use some properties concerning regularly vary-
ing functions, see section 7 from chapter 1. We define G(z, h) = w(x, h)*u(I, ). We
have G(z,h) = G_(z,h) + G4 (x,h), where G_(z,h) = w(z, h)? foh p(z — t)dt and
Gi(z,h) = w(z, h)? foh pu(z+t)dt. Since w(zx,-) € RV(s(x)) and assumption D holds,
we have G_(x,-) € RV(1 + 2s(z) + 57 (z)) and G4 (z,-) € RV(1 + 2s(z) + B7(2)).
Thus, if we define g, = G_(z, h,(2)) /G4 (x, hy(z)), we have lim,,_, 4 o g, = 0. Then
G(x, hn(2)) = G (2, hy(2)) (1 +gn) = 020, ", and by (2) = G (@, 0%/ (0n(1+ gn))),
where G7' is the inverse (eventually the pseudo-inverse) of G. Then, r,(z) =
w(z, hy (7)) = w(z, G (2,02 /(0n(1 + gn))), and since

w(z, G;l(az, ) € RV(s(z)/(1 + 2s(z) + BT (x)),
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we obtain
ra(z) = 0@ o 10 (1 4 g,) 7@ 0, (0% /(00 (1 + gn))),

where £, is slowly varying, and then
ra(z) = (1 + 0n(1)0?'® (log n/n)" e, (logn/n).
The cases a(x) =0 and 0 < a(x) < +0oo are similar. O
6.5. Proofs of lemmas.

PROOF OF LEMMA 1. The proof of this lemma is similar to that of lemma 4
from chapter 3, see page 105. ([l

PROOF OF LEMMA 2. The proof is similar to that of lemma 5 in chapter 3, see
page 107. For the proof of (6.1), the only difference is that we bound ||G; || <
(nfin(I))'/? instead of ||G; || < n'/2. The proof of (6.2) is the same, see page 107.

g

PROOF OF LEMMA 3. Let us define G(z,h) = h?® f;j: w(t)dt. Equation (6.3)

follows from

(0/L)*(logn/n) = G(z, hy(x)) < 2||ullcchn(2)* .
In view of (2.5) we obtain

(0/L)*(logn/n) = G(z, hu(2)) = Luhn(x) 277,

thus (6.4). Since

OG(z, hy(x))

0= ox

= 25L%hy, (x)? 7 R, () M (2, hp (2))

25 OM (, hn ()

L?h, ,
+ (x) pe
where M (x,h) = f:fj}? w(t)dt, and

OM (z, hy,(x))

oz = (@ + hy(2)) — p(a — hn(z))

+H@) 1z + hn @) + (= o @)))

we obtain

o) e — b () — ple + () |
" 25M (z, hy(2))/hn (@) + p(@ — () + pi(2 + hn (@)

Using (2.5), we obtain for any = € [0, 1]

[ ()] < llptllocFon (@) 7 /(s L),

and (6.5) follows from
[(r (@) 71| = shy, () ()" CHD /L. 0
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PROOF OF LEMMA 4. If I, j, = [x — h,z + h], we define the events

D, (@) = {(@ /Iz,h (%)mdﬁn - xu(w;m)( < 77},

where 0 < m < 2k and 1 > 0, and define

2k
An = ) Drimnyn())-

Note that if n < e, we have Dn7m7hj,n(:nj) C Dy m,j, thus A, C D, for n small

enough. We define the matrix G, («) with entries

(z5p+q)
(g (x))p,q = A s
' (u (3 20) X3 29))

for 0 < p,q < k, and we consider

Ap = min MGy, () A MGy (x0)),

zeDy,

for zo € [0,1] — D,. It is easy to verify that A\, > 0. Similarly to the proof of

lemma 7 (see step 4, page 110), we can prove that for 1 small enough we have
A, CQ, Njedn {)\(gI]) > )‘M}7

and since on A, we have [|¢;nll1; = (xu(75;2m) — 77)1/2h;-” > n~1/2 for any 0 <

m < k as n is large enough (see lemma 3), we obtain
An C Ty,

thus (6.7). Now we prove (6.8). First, we show that for any x € [0, 1],

. 1 Yy —T\m
lim ——— dy = Xu(w;m), 6.14
T /1h< - ) #(y)dy = Xp(w;m) (6.14)

as h — 0T. Since

1 y—az\m Jo v (4 yh) + (1) — yh))dy
1(Len) /IM ( h ) Wiy = [ (u(a 4 yh) + p(a — yh))dy

and since h — pu(x + h) is 81 (x)-regularly varying, and h — u(x — h) is 5~ (x)-
regularly varying, we have fol y"u(x + yh)dy ~ p(z + h)/(m + B7(z) + 1) and
fol y"u(x —yh)dy ~ p(z—h)/(m+ B~ (x)+1) as h — 07 (see for instance section 7
from chapter 1). Thus, when a(z) = 0, which means that u(z + h)/u(x — h) goes
to 0, we have 3~ (z) < 87 (x) and

. 1 y—x\m _(=)™(B (x) +1)
hlg{; p(Izp) /Ix,h < h ) nly)dy = m+p(x)+1 °
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When a(x) = +oo, we have that u(z+h)/u(z—h) goes to +oo, thus 81 (z) < 87 ()

and
: 1 y—a\m _ B +1
g uesryy /Ih ( h > uloldy = 0 Br(z)+1

When 0 < ax) < 400, we have u(z + h) ~ a(x)u(xz — h), thus 7 (z) = 1 (z) and

. 1 y—a\m _ (af@) + (=H)™)(B"(z) + 1)
hh%l+ p(Lyp) /Iach ( > wy)dy = m+ 0t(z) +1 '

Thus we have proved (6.14).
Now we prove that for any sequence 7, going to zero, if I,, = [x — v, T + Val,

we have for any z € [0,1], 0 < m < 2k,

A (@)} < exp (= Dinu(1y)), (6.15)

where Dy > 0. In view of (6.14), if Q;.m = (Xi — 2)/vn)™1x,e1,, We have

. . 1 y—x\m

thus, if Z; =S Qim — Eﬁ{@i,m}, we have

D% (@) € {1 Zinl > mmia(1) /2]

i=1
: n _ . n 2 n 2
Since Ej{Zim} = 0, |Zim| < 2 and Ej{Z;,,} < E}{Q;,,} < p(ln), (6.15) follows
from Bernstein inequality.
Since nu([xzj — hj, z; + hj]) = log nh]-_25, we obtain from (6.4) (see the beginning
of the proof of theorem 1) and (6.15) that

?’“{Dzvmvhm(‘fi)} < exp ((— Donn?s/(1+2548))

where Dy > 0, thus
PZ{A;} = O(Mn) exp ( _ D2772n28/(1+25+5)),
and (6.8) follows for the choice D4 = Ds/2. -

In this section, we omit de dependence on x in order to avoid overloaded no-
tations. We denote by P; the projection in V,, (the space of all polynomials with
degree at most k) with respect to the inner product (-, -);. Then, since on Q we

have X; = X, it is easy to see that on Q; the estimator ]?1 satisfies

(.Ea ¢>I = <Y7 ¢>Iy (b € Vm (616)

and that
fi=Py. (6.17)
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PROOF OF LEMMA 5. Let 0 < m < k and J € Z,(x;I). In view of (6.16)
and (6.17), we have on {2y
(Fr =1 bm)as =Y = FI, dm)s
= {f = f1. 0m)s + (€, dm)s
= {f =P1f, dm)s+ Prf = f1, bm)s+ (€. Sm)y
= (f=Prf, om)s +(P1(f =Y), dm)s + (£, Om)s
=(f=P1f, dm)s — (P1&, dm)s + (£, dm)y
£A+B+C.
The term A is a bias term. By the definition of osc f(I) we can find a polynomial
P, € V, such that

su[I) |f(x) — Pe(x)| <osc f(I)+ ep,
S

where ¢, = an_1/2D17wC,$(log2)/2. Thus, since J C I, P, € V., and Py is a
projection with respect to (-, -)r,
A< If = Prfllullomlls < If = Pe = Pr(f = Po)ll1lldmlls
< = Pellllgmlls < (ose f(I) + en)lldmlls,
and
Al < [l ¢mlls (0 Dz(onfin(1) ™ + €n).

Conditional on X,,, B and C' are centered Gaussian. Clearly, C' is centered Gaussian

with variance
2 2 -
o om |7/ (niin(1)).
Since Pr¢ has covariance matrix 2P IP/I = o’P; (P is a projection), the variance

of B is equal to
E} AP1E, ¢m)T1Xn} < llomlFET AP rEI31%0)
= w17 Tr (Var(Pré|X,)) / (niin(J))
= U2”¢m”?f Tr(PI)/(nﬂn(J))7

where Tr(M) stands for the trace of a matrix M. Since P is the projection on Vj,
it follows that Tr(P;) < k + 1, and the variance of B is smaller than

|| fm 15 (% + 1)/ (nfin ().
Then,

E} (B +C)*1Xn} < 0®(|6ml5C7/ (niin (1)),
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where C,, = ((k + 1)%/2 + 1). Now, in view of (6.12) we obtain

T5 = {18507 — 0|0 > Tu(I,J)}

= J {lomll7 (1 = Frs dm)al > Tu(I,J)},

m=0

and since the choice of ¢,, entails

{ImllF K Fr = F1. dm)al > TulI, )}

-1
(el > Paullostoia(1) 2.

using the standard Gaussian deviation and in view of (3.3) we obtain

FATAXY < Y Y exp(=D7, log(njin(1))/8)

JETy (1) m=0
< H#(Tn (21 1)) (s + 1) (i (1)) P20/
= (k + 1) (nfin(1)) "%,
since D74, = 21/2(A + 2p). O
PROOF OF LEMMA 6. Since on {27,
|Fr(@) = Fs(@)] = |0r(x) = 0.(x))o|
1A (@) (01 (x) — 0(2))lloc
1G5 (2)HLy () (01 () — 0.5(x)) oo
< (5 + DYV2ATYG (2)) |H () (01 (x) — 05())| oo

we obtain that on 7 (z), using J C I,
|Fi(x) = f1(2)] < (5 + 1)YV2AHGy () Tu(I, )
< (k+ 12X NG (2))o (D + DrwCr) (log n/(niin (1)) /2,

N

N

thus the lemma. O

PROOF OF LEMMA 7. We recall that for any = € [0,1], we have s(z) € § =
[v,S]. We choose 7 = min(e, 1 — (1 — 2)72(1 + ¢)~%). By definition of H,(z), we
have

_ -2

{Hy(z) < (14 e)hn(x)} = {fin(Ly (14+e)hn(z) = azgnlw(x, (1+e)hn(2)) "}
Since w € RV (s(x)), we have w(z,h) = h*@¢, ,(h), where £, , is slowly varying.
This entails that for A small enough,

(1 =)y n(h) < Loz((1+€)h).
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Then, we have

(L= )plle (11eyhn(x) = (1= 0)p(Ly p, ()
—n)o” 0, w (@, hn ()~
>(1-)(1+e) Do w(w, hn(x))
= 020, (14 )ha(@) (1 = 2o (ha(2))) ™
> 0207 w(z, (1+ &)hn(2)) 2.

A
3

Thus,

ﬂn([x (1+€)hn(m))
) -1 < C{H,(z) < (1 +e)hp(2)},
’u(va(l'i‘E)hn(x)) ‘ 77} { (z) < ( )hn( )}

{

and we have similarly

{

The remaining of the lemma easily follows from Bernstein inequality and (2.5). O

ﬂn([x (l—e)hn(m))
’ -1 < CiH,(x) = (1 —¢e)h,(z)}.
1Lz (1—)hn (2)) ‘ 77} {Hn(@) > (1 = hn(z)}

7. Proof of the lower bounds

PROOF OF COROLLARY 1. Assume that there exists 9, (-) better than r,(-) in
the sense of definition 3. With the choice of the loss function w(z) = |z|, since J,,(-)

is an upper bound, we can find an estimator fn such that

limsupsupE%} ,{ sup ¥, (z)~ 1\fn(m)—f(a:)]} < +400. (7.1)
no fex z€[0,1]

Since ¥,(-) is better than r,(-), we can find an interval I, C [0,1] with |I,| >
n~1/(+25+6) quch that

lim sup ¢, (z)/r,(xz) = 0. (7.2)

n—+00 ey,

Then, it follows from

?7“{ sup rn(m)_llﬁl(m) — f(m)\}

xEIn
Un () -1 F
< sup ——=E% { sup 9, (z n(z) — flx
sup SN { sup 0,(0) ! fu(a) — @)
that
supEf“{ sup rp(z)” 1]fn \}—0
fex z€ly

which contradicts the statement of theorem 2. O
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PROOF OF THEOREM 2. We choose a function ¢ € X(s, L;R) (where X(s, L; R)
is the extension of X(s, L) to the whole real line) such that Supp (¢) = [-1,1] and
¢(0) > 0. Such a function clearly exists. We define the constant

¢ = min [((ﬁ — a) ”‘M&?) 1/(25)7 1} 7

and

Zn = 2(1 4 2167 e 2y || o
If I,, = [an, by] we consider the points
Tj = an + jEn,

for j € J, ={0,...,[E,']} and we denote M,, = |7,| and hj = h,(x;) where h, ()
is given by (2.2) and I; = [z; — hj,x; + hj]. For j € J, and 0 < 6 < 1, we define
ﬂn([j) B

s = )

and H,, = Njez,Hy ;. Using Bernstein inequality, it is easy to obtain for any § > 0

the event

1| <a},

8 nu (1) )

n C . < - NIl
Ph{H; ) < 2exp ( 2(1+0/3)

Moreover, since (2.5) holds, using (6.4) we have for any j € 7,

ni(Iy) = (o/ L) lognh; ™ > (o/L) lognl|in |2
> Dy (log n)BHD/(1+2548) 25/ (142546)

where Dy > 0, and in view of (6.3), we have M,, = O(n'/(?*+1)), With a majoration
of the reunion Uje gz, Hy ; by the sum of the probabilities, we obtain Pi{HL} =
O(nl/(2s+1) eXp(—D3TL2S/(1+25+B))), thus

lim P'{H,}=1. (7.3)

n—-4o0o K

If 6 € [~1,1]™" we consider the family of functions

fl@:0) =Y 0;fi(@),  fix) = Lcsh§¢<$_xj>_

JETn Chj

Note that with the same argument to that of chapter 3 (see page 113), we can
prove that f(-;0) € X(s,L) for any § € [-1,1]M». We take C = c*¢(0). Since

by construction z; € I, and f(z;6) = r;0;C, we have for any distribution B on
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O, C [-1,1]M
infsupE”  {w(€ )}
Fo gex THUTd
> w(C)inf sup Pt {& >C
( )fn e fu{ ,ffn }
>w(C)inf [ P b —0;| > 1}8B(do)
w(C)int [ B max 0,1 > 1}

C inf [ P 0: — 0. > 11X, B(do)dP",
) [ it [ Ea{max(d, — 651> 11} Bl

where infj is taken among any measurable vector in RMn_ Thus, if we prove that
on H,,,
sup [ By{max (B - ] < 1[%,)B(d8) = 1), (7.4)
7 Jo, JE€EIn
then, in view of (7.3), it follows that

fsup B, (w(E, 1.7} > (1= o(1)w(CO)P},u{Ha} = (1= o(1)u(C) >0,

which entails the theorem. We consider the following bayesian measure and hyper-
cube
0, =0 o={-1,1}, B= )b, 51+5 D,
J€In
where § is the Dirac measure. To prove (7.4), we use the same arguments as in the
proof of theorem 2 in chapter 3 (see from page 114), and we obtain in the same
fashion that

sup | Bj{max (B - 6, < 1%,)8(d8) < T[ (1= 8(-1/0y).

6 /On " FETn

where ®(z) is the distribution function of a standard Gaussian and where v]2- =

02/(2 - f2( i)). Since ¢ < 1 and Supp (¢) = [—1,1], if [; = [xp, — hyj,z; + hyl,

S18 Xi— s18
fi(Xi) = Le hjqb(T-j) < Lethf ||l o1 x;e1;

thus on H,, ;, we obtain by definition of h,,(-),

2 2
o= o > o
PO (X)) T IR LA hEn g (1))
> o
T (1= 9)|lglIZ L2 h3 nu(l;)
1

(1= 0)|[4ll3.c* logn’
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Since ®(—z) > exp(—2/2)/(v/2m(x + 1)), we obtain for any j € 7,

(—1/vj) > exp(—(1 = 8)||¢||% ¢ log n) = Dan~ 1= 190 (log n) =172,

D,
Viogn
where Dy is a positive constant. Then, it follows that

H (1—@(-1/vj)) < (1— D4n_(1_6)028”¢”?>°(10g n)_1/2)M"
JE€EIn

= exp <\In\ =, log (1 — D4n_(1_5)025”¢”g°(10g n)_l/z)),
and replacing ¢ by its value, and in view of (6.4),
|1, Egln—(l—é)c%lwllio(log n)~Y2 > Dypl/(A+2s+8)—a=(1=08l% (15g 1) ~1/2
= Dynd(1/(+25+0)—a) (log n)—1/2 — 400
as n — 400, where D5 > 0. Hence (7.4), and the theorem. i
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Résumé : Nous étudions I'estimation non-paramétrique d’un signal a partir de données brui-
tées spatialement inhomogenes (données dont la quantité varie sur le domaine d’estimation).
Le prototype d’étude est le modele de régression avec design aléatoire. Notre objectif est
de comprendre les conséquences du caractere inhomogene des données sur le probleme
d’estimation dans le cadre d’étude minimax. Nous adoptons deux points de vue : local
et global. Du point de vue local, nous nous intéressons a l’estimation de la régression en
un point avec peu ou beaucoup de données. En traduisant cette propriété par différentes
hypotheses sur le comportement local de la densité du design, nous obtenons toute une
gamme de nouvelles vitesses minimax ponctuelles, comprenant des vitesses tres lentes et
des vitesses tres rapides. Puis, nous construisons une procédure adaptative en la régula-
rité de la régression, et nous montrons qu’elle converge avec la vitesse minimax a laquelle
s’ajoute un cotit minimal pour 'adaptation locale. Du point de vue global, nous nous inté-
ressons a l'estimation de la régression en perte uniforme. Nous proposons des estimateurs
qui convergent avec des vitesses dépendantes de 1’espace, lesquelles rendent compte du ca-
ractere inhomogene de I'information dans le modéle. Nous montrons l'optimalité spatiale de
ces vitesses, qui consiste en un renforcement de la borne inférieure minimax classique pour
la perte uniforme. Nous construisons notamment un estimateur asymptotiquement exact
sur une boule de Holder de régularité quelconque, ainsi qu'une bande de confiance dont la
largeur s’adapte a la quantité locale de données.

Mots-clés : Régression non-paramétrique, Design aléatoire, Design dégénéré, Risque mi-
nimax, Estimation adaptative, Estimation asymptotiquement exacte, Méthode de Lepski,
Estimation a noyaux, Polynémes locaux, Optimal recovery.

Discipline : Mathématiques

Abstract : We study the nonparametric estimation of a signal based on inhomogeneous
noisy data (the amount of data varies on the estimation domain). We consider the model of
nonparametric regression with random design. Our aim is to understand the consequences
of inhomogeneous data on the estimation problem in the minimax setup. Our approach
is twofold : local and global. In the local setup, we want to recover the regression at a
point with little, or much data. By translating this property into several assumptions on
the design density, we obtain a large range of new minimax rates, containing very slow and
very fast rates. Then, we construct a smoothness adaptive procedure, and we show that it
converges with a minimax rate penalised by a minimal cost. In the global setup, we want
to recover the regression with sup norm loss. We propose estimators converging with rates
which are sensitive to the inhomogeneous behaviour of the information in the model. We
prove the spatial optimality of these rates, which consists in an enforcement of the classical
minimax lower bound for sup norm loss. In particular, we construct an asymptotically sharp
estimator over Holder balls with any smoothness, and a confidence band with a width which
adapts to the local amount of data.

Key words : Nonparametric regression, Random design, Degenerate design, Minimax risk,
Adaptive estimation, Asymptotically sharp estimation, Lepski method, Kernel estimation,
Local polynomial estimation, Optimal recovery.
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