

Fluctuations du travail et de la chaleur dans des systèmes mécaniques hors d'équilibre

Frédéric Douarche

Laboratoire de Physique de l'ENS Lyon – CNRS UMR 5672

30 Novembre 2005

- Introduction
 - Contexte scientifique Motivations
 - Fluctuations thermiques à l'équilibre
 - Système expérimental
 - Mesure de réponse & calibration du système
- 2 Relations de Jarzynski & Crooks
 - Relations de Jarzynski & Crooks
 - Test expérimental des relations de Jarzynski & Crooks
 - Dynamique de Langevin dans le cas gaussien
- 3 Relations de Gallavotti-Cohen & Cohen-van Zon
 - Théorèmes de fluctuation
 - Test expérimental du théorème de fluctuation transitoire
 - Test expérimental du théorème de fluctuation stationnaire
 - Dynamique de Langevin dans le cas gaussien
- 4 Conclusion & perspectives

- 1 Introduction
 - Contexte scientifique Motivations
 - Fluctuations thermiques à l'équilibre
 - Système expérimental
 - Mesure de réponse & calibration du système

Mécanique statistique hors d'équilibre

Très peu de résultats exacts!

Variation d'énergie libre $\triangle F$

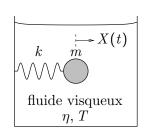
- Egalité de Jarzynski [C. Jarzynski (1997)]
- Relation de Crooks [G. Crooks (1999)]
- Controverse de Cohen [E. Cohen, D. Mauzerall (2004)]

Production d'entropie / chaleur dissipée / puissance injectée

- Théorème de fluctuation stationnaire
 - D. Evans, E. Cohen, G. Morris (1993)
 - G. Gallavotti, E. Cohen (1995)
 - R. van Zon, E. Cohen (2003)
- Théorème de fluctuation transitoire
 - D. Evans, D. Searles (2002)
 - R. van Zon, E. Cohen (2003)

- Introduction
 - Contexte scientifique Motivations
 - Fluctuations thermiques à l'équilibre
 - Système expérimental
 - Mesure de réponse & calibration du système

Modèle : oscillateur harmonique amorti



Position de l'oscillateur : équation de Newton

$$m \frac{\mathrm{d}V(t)}{\mathrm{d}t} = -k X(t) - \eta V(t)$$

- Constante de temps $au_{
 m relax} = 2m/\eta = \gamma^{-1}$
- Résonance $\omega_0 = \sqrt{k/m}$ $\omega_0' = \sqrt{\omega_0^2 \gamma^2}$
- 3 régimes ($\gamma \geq \omega_0$) : oscillant amorti, apériodique, critique

Fluctuations thermiques à l'équilibre

Equation de Langevin (processus d'Ornstein-Uhlenbeck)

$$m \frac{\mathrm{d}V(t)}{\mathrm{d}t} = -k X(t) - \eta V(t) + \zeta(t)$$
$$\langle \zeta(t) \rangle = 0, \qquad \langle \zeta(t) \zeta(t') \rangle = \beta^2 \delta(t - t')$$

Variance du bruit (force aléatoire) : théorème d'équipartition

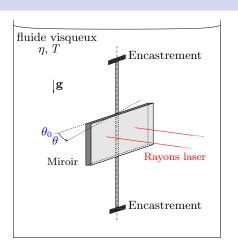
$$\frac{k}{2} \operatorname{Var} X(t) \xrightarrow{t \gg \tau_{\text{relax}}} \frac{1}{2} k_B T \quad \Rightarrow \quad \beta^2 = 2\eta k_B T$$

Théorème fluctuation-dissipation : filtrage linéaire de fonctions aléatoires

$$S_X(\omega) = |\hat{\chi}(\omega)|^2 \times S_{\zeta}(\omega) = \frac{4\eta k_B T}{(-m\omega^2 + k)^2 + (\eta\omega)^2}$$

- Introduction
 - Contexte scientifique Motivations
 - Fluctuations thermiques à l'équilibre
 - Système expérimental
 - Mesure de réponse & calibration du système

Système expérimental : oscillateur de torsion



Dimensions

- Fil de torsion $1 \text{ cm} \times 0.5 \text{ mm} \times 50 \mu\text{m}$
- Miroir $8 \text{ mm} \times 2 \text{ mm} \times 1 \text{ mm}$

Fluctuations thermiques à l'équilibre

Système expérimental:

oscillateur harmonique amorti viscoélastique

$$I\ddot{\theta} + K \star \dot{\theta} + C'\theta = \zeta \quad \stackrel{\mathscr{F}}{\longmapsto} \quad \left(-I\omega^2 + C' - i(C'' + \eta\omega)\right)\hat{\theta}(\omega) = \hat{\zeta}(\omega)$$

Caractéristiques : I moment d'inertie

C' constante de torsion élastique

C" constante de torsion dissipative coefficient de viscosité du fluide

Théorème fluctuation-dissipation : spectre des fluctuations à l'équilibre

$$S_{\theta}(\omega) = \frac{4k_B T}{\omega} \frac{C'' + \eta \omega}{(-I\omega^2 + C')^2 + (C'' + \eta \omega)^2}$$

En réalité, pas que la thermique $\zeta(t)$!

Bruit environnemental $\zeta_{\text{env}}(t)$ filtré par l'oscillateur

$$\theta_{\text{mes}}(t) = \theta(t) + \theta_{\text{env}}(t)$$

Rapport signal-sur-bruit : donne la contribution relative de $\theta_{\text{env}}(t)$

$$\lambda = \frac{S_{\theta}(\omega)}{S_{\theta_{\text{env}}}(\omega)} \sim \frac{4k_B T}{\omega} \frac{C'' + \eta \omega}{I^2} \quad \text{pour} \quad \omega \ll \omega_0$$

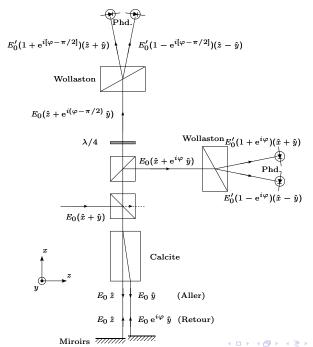
- $\lambda \sim I^{-2}$: minimiser I
- \bullet λ proportionnel à la "viscosité" du système : système dissipatif

Ordres de grandeur

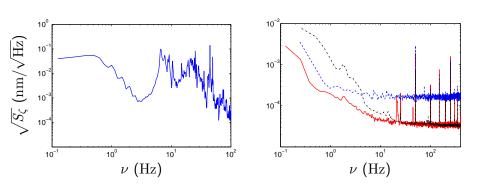
- Résonance $\nu_0 = \frac{1}{2\pi} \sqrt{C'/I} \sim 300 \text{ Hz dans l'air}$
 - Constante de torsion du fil & déplacement typique
 - $A = \sqrt{k_- T/C'} = 1 \text{ prod} (10^{-2} \text{ pm})$

 $C' \sim 5 \times 10^{-4} \text{ N m rad}^{-1}$

 $\theta_{\rm rms} = \sqrt{k_B T/C'} \sim 1 \text{ nrad} \quad (10^{-2} \text{ nm})$

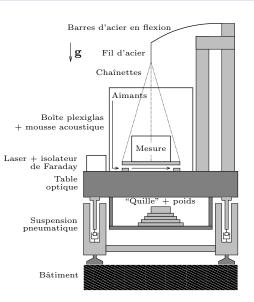


Système de détection : performances (bruit de fond)



Ligne de bruit voisine de $5 \times 10^{-5} \text{ nm}/\sqrt{\text{Hz}}$

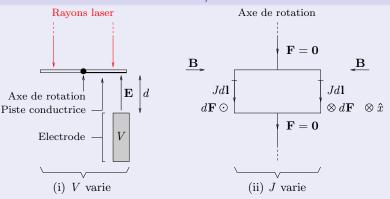
Système de détection : isolation du montage



- Introduction
 - Contexte scientifique Motivations
 - Fluctuations thermiques à l'équilibre
 - Système expérimental
 - Mesure de réponse & calibration du système

Mesurer la réponse
$$\hat{\theta}(\omega) = \hat{\chi}(\omega) \times \hat{M}(\omega)$$

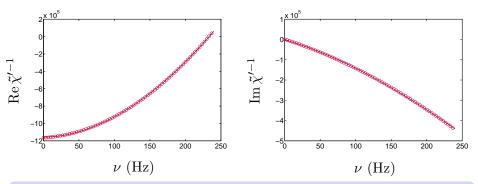
Force électrostatique
$$F \propto V^2$$
 / Force magnétique $F \propto BJ$



(i)
$$Air: V \sim 10 - 100 \text{ Volts} \implies \theta \sim 10^2 - 10^4 \text{ nrad}$$

(ii) Air/eau/huile: $J \sim 10 - 100 \mu A \Rightarrow \theta \sim 10^2 - 10^3 \text{ nrad}$

Calibration de la force

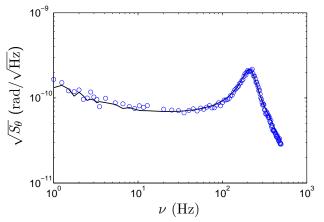


On ne connaît que le paramètre de contrôle de la force : déterminer le coefficient a

$$\left(-I\omega^2+C'-i(C''+\eta\omega)\right)\hat{\theta}(\omega)=\hat{M}(\omega)=a\hat{M}'(\omega)$$

$$\left[\tilde{\chi}'(\nu)\right]^{-1} = \mathbf{a}^{-1} \left(\boxed{-I(2\pi)^2 \nu^2 + C'} - i \boxed{\left(C'' + 2\pi \eta \nu\right)} \right) = \left[\mathbf{a}\tilde{\chi}(\nu)\right]^{-1}$$

Vérification du théorème fluctuation-dissipation

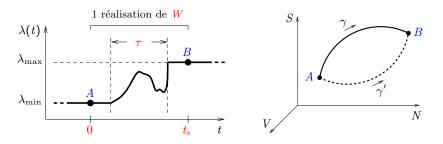


2 mesures indépendantes qui doivent coïncider

- Spectre des fluctuations thermiques $S_{\theta}(\omega)$
- Spectre tiré de la réponse $S_{\theta}(\omega) = \frac{4k_B T}{a\omega} \operatorname{Im} \hat{\chi}'(\omega)$

- 2 Relations de Jarzynski & Crooks
 - Relations de Jarzynski & Crooks
 - Test expérimental des relations de Jarzynski & Crooks
 - Dynamique de Langevin dans le cas gaussien

Comment évaluer $\triangle F$?

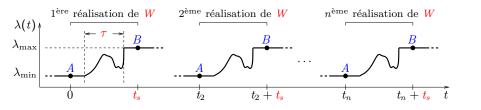


Système (τ_{relax}) en contact avec thermostat (T)

- Etat d'équilibre $A_{t=0} \stackrel{\tau}{\longmapsto}$ état d'équilibre $B_{t=t_s \gg \tau_{\rm relax}}$
- Evaluer la variation d'énergie libre $\triangle F$ fournie à un système lors d'une transformation quelconque : pour $\tau \geq \tau_{\rm relax}$
- Loi de l'accroissement de l'entropie

$$\delta Q < T \delta S \iff W > \triangle F = \triangle E - T \triangle S$$

Egalité de Jarzynski



Travail fourni au système pendant la transformation $A \mapsto B$

$$\mathbf{W} = \int_0^{t_s} \frac{\partial H_t(x_t, \lambda)}{\partial t} dt = \int_0^{t_s} \frac{\partial H_t(x_t, \lambda)}{\partial \lambda} \dot{\lambda}(t) dt, \qquad x_t = (q_t, p_t)$$

Egalité de Jarzynski : ensemble de transformations $\{A \mapsto B : W\}$

$$\triangle F = F_B - F_A = -\beta^{-1} \ln \left\langle e^{-\beta W} \right\rangle$$

Quelques commentaires...

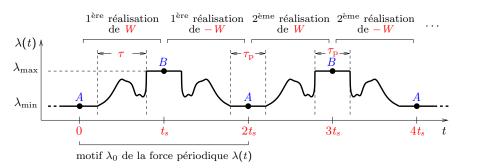
• Egalité de Jarzynski "contient" le second principe

$$W = \triangle F + W_{
m irr} \quad \Rightarrow \quad \left\langle {
m e}^{-\beta W_{
m irr}} \right\rangle = 1 \ge {
m e}^{-\beta \left\langle W_{
m irr} \right\rangle}$$

- Si \exists une réalisation du travail W telle que $W_{\rm irr} > 0$ Alors \exists (au moins) une réalisation du travail W telle que $W_{\rm irr} < 0$
- $\langle W_{\rm irr} \rangle \ge 0 \quad \iff \quad \langle W \rangle \ge \triangle F$
- Distribution du travail gaussienne

$$\triangle F = -\beta^{-1} \ln \left\langle e^{-\beta W} \right\rangle = \mu - \frac{\beta \sigma^2}{2}, \qquad \langle W_{\rm irr} \rangle = \frac{\beta \sigma^2}{2} > 0$$

Relation de Crooks



Relation de Crooks : renversement du temps

$$P(W) = P'(-W) e^{\beta(W-\Delta F)}$$

- Point de croisement des distributions P(W) et P'(-W) donne $\triangle F$
- "Contient" l'égalité de Jarzynski $\int (...) \times e^{-\beta W} dW$

- 2 Relations de Jarzynski & Crooks
 - Relations de Jarzynski & Crooks
 - Test expérimental des relations de Jarzynski & Crooks
 - Dynamique de Langevin dans le cas gaussien

Evaluer $\triangle F$ autrement et simplement

Evaluer $\triangle E$

- Energie potentielle $V_t(\theta, M) = \frac{1}{2}C\theta^2 M\theta$
- Variation d'énergie cinétique $\langle \triangle K \rangle = \langle K_B K_A \rangle = 0$
- Variation d'énergie du corps $\triangle E = \langle \triangle V_t \rangle$

$$\triangle E = -\frac{M_B^2}{2C} = -\frac{1}{2}C \langle \theta_B \rangle^2$$

Energie libre $\triangle F = \triangle E - T \triangle S - S \triangle T$

- Transformation telle que $T_A = T_B = T_{\text{thermostat}} \Rightarrow \Delta T = 0$
- Terme $T \triangle S \stackrel{?}{=} 0$ Oui pour un système purement mécanique

Travail classique et variation d'énergie libre intrinsèque

Travail classique

$$W = -\int_0^{t_s} \dot{M} \, \theta \, \mathrm{d}t = - \left[M \theta \right]_0^{t_s} - W_{\mathrm{cl}}, \qquad W_{\mathrm{cl}} = -\int_0^{t_s} M \dot{\theta} \, \mathrm{d}t$$

• $-[M\theta]_0^{t_s}$ = variation d'énergie potentielle du corps induite par la force pendant la transformation

Variation d'énergie libre intrinsèque

$$\triangle F_0 = \triangle F - \phi, \qquad \phi = - [M\theta]_0^{t_s}$$

- Eq. du mvt linéaire $\triangle F_0 = -\triangle F = \frac{1}{2}C \langle \theta_B \rangle^2 = \frac{M_B^2}{2C}$
- Eq. du mvt N.-L. $\triangle F_0 = \frac{1}{3} \sqrt{\frac{2}{C}} M_B^{3/2} = -\frac{1}{2} \triangle F$

Point de croisement des distributions du travail

Distributions $P(W) \sim N(\mu, \sigma^2)$ et $P'(-W) \sim N(\mu', \sigma'^2)$

• Calcul simple $+ [\sigma^2 \simeq \sigma'^2]$

$$P(W) = P'(-W) e^{\frac{\mu+\mu'}{\sigma^2} \left(W - \frac{\mu-\mu'}{2}\right)}$$

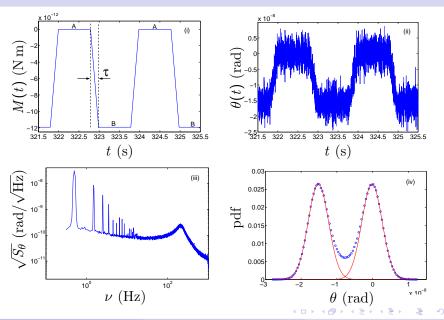
- Point de croisement $W_0 = \frac{\mu \mu'}{2} \stackrel{?}{=} \triangle F_0$
- Décomposition $W = \triangle F_0 + W_{\text{irr}}$

$$\triangle F_0 = \frac{\mu - \mu'}{2}$$

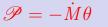
Point de croisement = $\triangle F_0$

- Travail classique $\mu_{\rm cl} + \mu'_{\rm cl} = 2 \langle W_{\rm irr} \rangle \leftrightarrow \sigma_{\rm cl}^2$
- Travail thermodynamique $\mu + \mu' = 2 \langle W_{irr} \rangle = \beta \sigma^2$

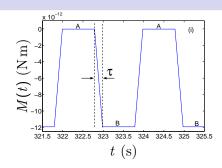
Résultats expérimentaux

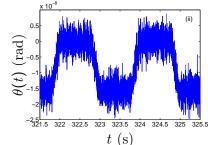


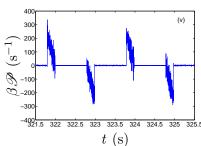
Résultats expérimentaux $\mathscr{P} = -\dot{M}\theta$ $\mathscr{P}_{cl} = -M\dot{\theta}$

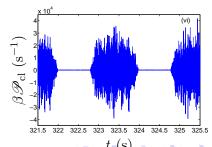


$$\mathscr{P}_{\rm cl} = -M\dot{\theta}$$

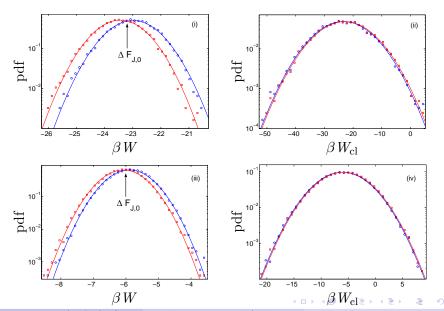




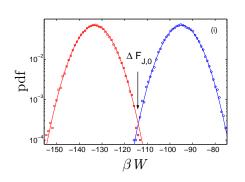


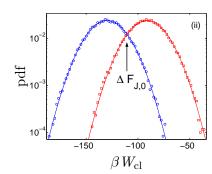


Transformations réversibles $\tau/\tau_{\rm relax} = 8.5 - 3.5$

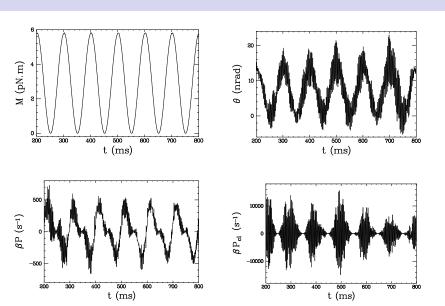


Transformations irréversibles $\tau/\tau_{\rm relax} = 0.1$





Transformations "exotiques" $\tau/\tau_{\rm relax} = 0.08$



Résultats expérimentaux : résumé

$\tau/\tau_{ m relax}$	$M_{ m max}$	$-(\triangle F + \phi)$	$\triangle F' + \phi$	$-(W_0 + \phi)$	$-W_{\rm cl,0}$	$\triangle V$
8.5	8.3	23.5	23.1	23.5	23.4	23.8
4.2	0.8	0.21	0.20	0.22	0.21	0.22
3.5	4.3	6.1	5.9	6.5	6.1	6.1
2.8	3.0	2.8	2.6	3.2	2.9	2.7
0.85	4.2	6.6	6.1	6.0	6.6	6.1
0.11	11.8	33	30.8	32.54	31.15	31.4
0.11	22.1	117.6	110.5	114	110.1	111
0.08	5.8	10.3	10.0	10.1	10.1	10.3
0.08	14.9	67.4	65.5	66.8	66.4	67.5

Conclusion & perspectives

- Etude expérimentale en faveur des résultats de Jarzynski / Crooks Extension des hypothèses?
- Oui, mais régime très proche de l'équilibre + statistique gaussienne Etude pour un système non linéaire?

- 2 Relations de Jarzynski & Crooks
 - Relations de Jarzynski & Crooks
 - Test expérimental des relations de Jarzynski & Crooks
 - Dynamique de Langevin dans le cas gaussien

Dynamique de Langevin dans le cas gaussien (1)

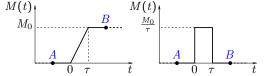
But

Calculer
$$\langle W_t \rangle$$
 et $\langle (\delta W_t)^2 \rangle \longrightarrow \triangle F_t = \langle W_t \rangle - \langle (\delta W_t)^2 \rangle / 2k_B T$

Dynamique de Langevin 1^{er} et 2^{ème} ordre

$$I \, \dot{\theta}(t) + \eta \, \dot{\theta}(t) + C \, \theta(t) = M(t) + \zeta(t)$$

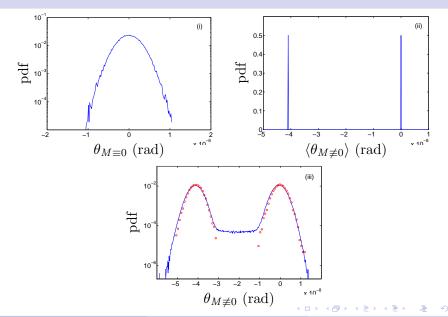
$$\langle \zeta(t) \rangle = 0, \qquad \langle \zeta(t) \, \zeta(t') \rangle = 2\eta \, k_B \, T \, \delta(t - t')$$



Résultat

$$\triangle F_t = -\frac{M_0^2}{2C} \longrightarrow \text{indépendant de } \tau \text{ et } \tau_{\text{relax}}!$$

Indépendance statistique $\theta(t) = \overline{\theta}(t) + \delta\theta(t)$



Dynamique de Langevin dans le cas gaussien (2)

Travail
$$W_t = -\int_0^t \dot{M}(t') \, \theta(t') \, dt'$$

$$W_t = -\frac{M_0}{\tau} \int_0^t \left(\overline{\theta}(t') + \delta \theta(t') \right) dt' = \overline{W}_t + \delta W_t$$

- W_t et δW_t statistiquement indépendants
- $\delta\theta(t)$ gaussien \Rightarrow δW_t gaussien

Variance du travail
$$\langle (\delta W_t)^2 \rangle \propto \langle y_t^2 \rangle$$

$$y_t = \int_0^t \delta heta(t') \, \mathrm{d}t', \qquad \left\langle y_t^2 \right\rangle = \int_0^t \int_0^t R_{\delta heta}(t_1 - t_2) \, \mathrm{d}t_1 \, \mathrm{d}t_2$$

Résultat
$$\triangle F_t = -\frac{M_0^2}{2C}$$

Jarzynski / Crooks : limites d'applicabilité

Conditions nécessaires

- Système essentiellement sensible au bruit thermique $\zeta(t)$
- Energie de perturbation $\sim k_B T$

Peut-on tester Jarzynski à forte amplitude de forçage?

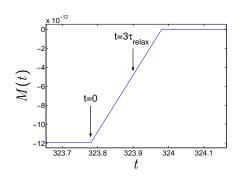
- Attention au bruit
- \bullet Augmenter drastiquement la statistique au fur et à mesure que M_0 croît!
 - Distance séparant les maxima des distributions P(W) et $P'(-W) \sim M_0^2$
 - Largeur relative $|\sigma_W/\langle W\rangle|$ de la distribution $P(W) \sim M_0^{-1}$

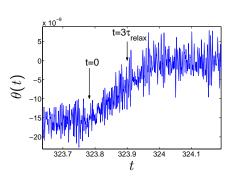
Système N.-L.: le débat reste ouvert

• Réaliser une N.-L. est possible mais difficile!

- Relations de Gallavotti-Cohen & Cohen-van Zon
 - Théorèmes de fluctuation
 - Test expérimental du théorème de fluctuation transitoire
 - Test expérimental du théorème de fluctuation stationnaire
 - Dynamique de Langevin dans le cas gaussien

Théorèmes de fluctuation (1)





2 régimes

- Hors d'équilibre transitoire
- Hors d'équilibre stationnaire

$$p_{\tau} = -\frac{1}{\tau} \int_0^{\tau < 3\tau_{\text{relax}}} M\dot{\theta} \, \mathrm{d}t$$

$$p_{\tau} = -\frac{1}{\tau} \int_{t>3\tau_{\text{relev}}}^{t+\tau} M\dot{\theta} \, \mathrm{d}t$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q ()

Théorèmes de fluctuation (2)

Théorème de fluctuation stationnaire

$$\frac{\pi_{\tau}(p)}{\pi_{\tau}(-p)} \sim e^{\tau[\beta p + O(1/\tau)]} \quad \text{pour} \quad \tau \to \infty$$

- $\pi_{\tau}(\pm p)$: probabilités d'observer un taux de production d'entropie $\pm p$, pour une trajectoire x_t de durée τ
- Approche systèmes dynamiques dissipatifs à grand nombre de degrés de liberté (taux de contraction de l'espace des phases)

Théorème de fluctuation transitoire

$$\frac{\pi_{\tau}(p)}{\pi_{\tau}(-p)} = e^{\beta \tau p}$$
 quel que soit τ

• Langevin 1^{er} ordre (taux de production de la chaleur)

- Relations de Gallavotti-Cohen & Cohen-van Zon
 - Théorèmes de fluctuation
 - Test expérimental du théorème de fluctuation transitoire
 - Test expérimental du théorème de fluctuation stationnaire
 - Dynamique de Langevin dans le cas gaussien

Test des théorèmes de fluctuation : stratégie

Puissance injectée

$$p_{ au} = rac{1}{ au} W_{ au} = rac{1}{ au} \int_{1}^{t+ au} \mathscr{P}_{
m cl}(t') \, {
m d}t', \quad \mathscr{P}_{
m cl} = -M \dot{ heta}$$

Puissance dissipée

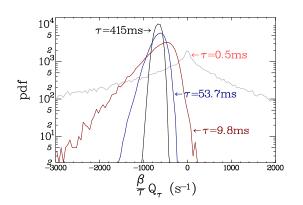
$$p_{\tau} = \frac{1}{\tau} Q_{\tau} = \frac{\eta}{\tau} \int_{t}^{t+\tau} \dot{\theta}^{2}(t') dt' = -\frac{1}{\tau} \Big(W_{\text{cl},\tau} + [T+V]_{t}^{t+\tau} \Big)$$

Stratégie

- Déterminer les distributions $P(p_{\tau})$
 - Calculer les "fonctions de symétrie" $S_{\tau} = \frac{1}{\tau} \ln \frac{P(+p_{\tau})}{P(-p_{\tau})}$
 - Transitoire $S_{\tau} \stackrel{?}{=} p_{\tau}$

Stationnaire $S_{\tau} \stackrel{?}{\sim} p_{\tau} + O(1/\tau)$

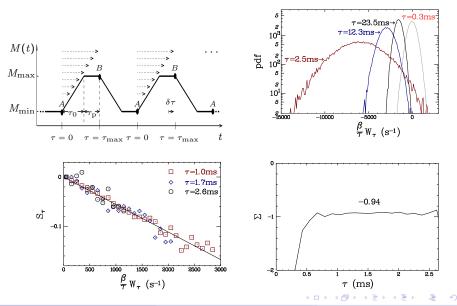
Test du théorème de fluctuation transitoire (1)



Chaleur

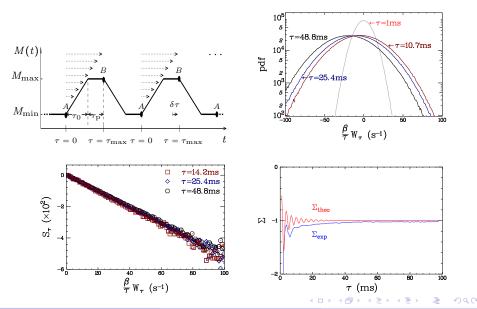
Comportement assez compliqué Etude en cours

Test du théorème de fluctuation transitoire (2)

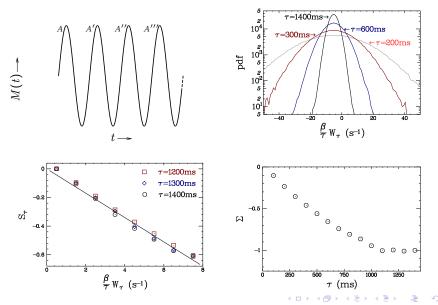


- Relations de Gallavotti-Cohen & Cohen-van Zon
 - Théorèmes de fluctuation
 - Test expérimental du théorème de fluctuation transitoire
 - Test expérimental du théorème de fluctuation stationnaire
 - Dynamique de Langevin dans le cas gaussien

Test du théorème de fluctuation stationnaire (1)



Test du théorème de fluctuation stationnaire (2)



- Relations de Gallavotti-Cohen & Cohen-van Zon
 - Théorèmes de fluctuation
 - Test expérimental du théorème de fluctuation transitoire
 - Test expérimental du théorème de fluctuation stationnaire
 - Dynamique de Langevin dans le cas gaussien

Conclusion

- Étude d'un système expérimental contrôlé Oscillateur amorti viscoélastique
- Etude des relations de Jarzynski / Crooks
 - Limitée à système linéaire + fluctuations gaussiennes
 - Théorie: extension des hypothèses?
- Etude des relations de Gallavotti-Cohen / Cohen-van Zon
 - ► Etude en cours (chaleur, ...)
 - ► Théorie : extension des hypothèses?

Perspectives

- Systèmes N.-L.
 - Couplage électrostatique (effet des pointes)
 - ► Effet Casimir (sous vide)
- Systèmes vieillissants
 - Améliorer l'isolation du montage
 - (+ technique de réduction du bruit)
 - Appliquer ces théorèmes de fluctuation (+ extension TFD)