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dans l’Internet

par

Tigist Alemu
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Académie de Montpellier
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présentée à l’Université des Sciences et Techniques du Languedoc

pour obtenir le diplôme de DOCTORAT
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Résumé de la Thèse en Français

Introduction

Cette thèse est consacrée à la qualité de service (QoS) dans l’Internet. Plus précisément
cette thèse s’intéresse à améliorer la qualité de service offerte par des mécanismes de gestion
de file d’attente au niveau des nœuds intermédiaires d’un réseau: les routeurs.

La diversité des nouvelles applications de l’Internet crée le besoin de faire évoluer le
réseau vers un réseau multiservice intégrant la voix, la vidéo et les données. Or le service
actuel dit “au mieux” (best effort) rendu par l’Internet est inadéquat pour les nouveaux
types d’applications. Les services demandés par les nouvelles applications peuvent être:

• L’acheminement garanti des paquets.

• L’allocation suffisante de bande passante.

• La garantie de délai faible d’acheminement des paquets.

• La réduction des variations des délais d’acheminement des paquets (la gigue).

• La réduction du taux de perte des paquets.

La qualité de service d’un élément d’un réseau est sa capacité à offrir un certain niveau
de garantie concernant la satisfaction des besoins des applications pour les services rendus.

Ainsi, pour répondre aux nouveaux besoins, IETF (Internet Engineering Task Force),
le groupe de travail de l’Internet, a comme rôle de faire des propositions d’amélioration
des protocoles actuels de l’Internet. La solution actuellement envisagée consiste à ajouter
de nouvelles architectures de qualité de service (QoS) ou à modifier les mécanismes déjà
existants. En plus de l’architecture dite service au mieux (best effort), les nouvelles archi-
tectures proposées pour satisfaire les besoins variés des applications sont IntServ (Integrated
Service) et DiffServ (Differentiated Service). Néanmoins, ces architectures très complexes
nécessitent l’apport des mécanismes moins complexes à granularité plus fine à savoir les
protocoles de bout en bout comme TCP ou UDP, et aussi les mécanismes de QoS situés
au niveau des nœuds intermédiaires du réseau. Les protocoles de bout en bout sont util-
isés pour le transport des données alors que les routeurs qui servent à router contiennent
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des files d’attente qui sont utilisées à absorber les rafales de données pour offrir un cer-
tain niveau de QoS. Tous ces mécanismes, allant des architectures de QoS aux nœuds
du réseau, s’enchevêtrent et sont connectés les uns des autres. Ainsi, le contrôle de con-
gestion est effectué par TCP au niveau des sources et des destinations en collaboration
avec des mécanismes de gestion de file d’attente situées au niveau des routeurs. Il s’avère
donc nécessaire d’améliorer les schémas de gestion des files d’attente pour que l’algorithme
adaptatif courant de contrôle de congestion (TCP/IP) devienne plus efficace afin que les
architectures de QoS garantissent les services qu’elles proposent face à la diversité des ap-
plications. Ainsi, le centre d’intérêt de cette thèse se situe au niveau de granularité le plus
fin, c’est-à-dire au niveau des nœuds du réseau. Plus précisément, la contribution de cette
thèse vise à améliorer la qualité de service fournie par les mécanismes de gestion de files
d’attentes situés au niveau des routeurs.

La technique de gestion de file d’attente la plus utilisée dans l’Internet est Drop Tail.
Cependant, Drop Tail a plusieurs inconvénients comme le problème du lock-out et le
phénomène de la file (trop) souvent pleine. Le lock-out est le problème où peu de connexions
monopolisent l’occupation de la file d’attente, et empêchent ainsi les paquets appartenant à
d’autres flux de trouver de la place. Cela crée une inéquité d’utilisation des ressources entre
les différents flux. L’influence de Drop Tail sur des trafics de nature en rafale illustre ce
problème [75]. En effet, pendant les périodes où la file est pleine, les flux en rafale subissent
des pertes consécutives entrâınant ainsi une forte réduction de leur fenêtre de congestion,
et diminuant alors considérablement le débit. Le deuxième problème de Drop Tail est que
la file d’attente reste souvent pleine sur de trop longues périodes de temps. Cela engendre
des temps d’attente très importants et mène également au phénomène de synchronisation
globale, où chaque source subit des pertes de paquet et diminue par conséquent son débit
d’émission sur une période supérieure à un temps de boucle (Round Trip Time ou RTT).
Ainsi, cela produit une longue période de sous-utilisation du lien.

À l’origine de certains de ces problèmes, le trafic du réseau est de plus en plus de nature
en rafale, provoquant la congestion du réseau et générant de plus grands délais et de plus
grandes pertes de paquet. De grands buffers peuvent être utilisés pour absorber les rafales
et maintenir un taux élevé d’utilisation du lien. Néanmoins, comme mentionné plus haut,
Drop Tail génère des temps d’attente importants pour des buffers de grande taille. Cela
peut induire de grands délais de gigue, ce qui n’est pas adéquat non seulement pour TCP
mais aussi pour des applications audio interactives. D’autre part, des buffers de petite
taille permettent de réduire les temps d’attente mais en contrepartie le lien est sous-utilisé
et les pertes de paquet sont plus importantes, ce qui pénalise encore plus les flux de nature
en rafale. Drop Tail fait donc apparâıtre un problème de compromis entre l’utilisation
satisfaisante du lien et la réduction des délais d’acheminement des paquets.

Afin d’éviter l’écroulement du système de contrôle de congestion dans l’Internet, l’IETF
a recommandé l’utilisation de RED (Random Early Detection) [43, 16]. RED est un mé-
canisme de gestion active des files d’attente qui permet d’obtenir un haut débit et de
faibles délais (en moyenne) pour du trafic TCP, en rejetant de manière aléatoire des pa-
quets appartenant à différents flux. Le principe de RED est basé sur une estimation, à
chaque arrivée de paquet, d’une moyenne glissante de la taille de la file d’attente à l’aide de

xx
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l’algorithme EWMA (Exponential Weighted Moving Average) qui utilise un coefficient de
pondération. Le rejet aléatoire a lieu avec une probabilité qui est fonction de la valeur de
cette moyenne pondérée. Lorsque la moyenne pondérée dépasse son seuil minimal Minth
(“th” pour threshold ou seuil), la probabilité de rejet préventif augmente avec la moyenne
pondérée jusqu’à un certain seuil de rejet maximal Maxp où la moyenne pondérée atteint
son seuil maximal Maxth. RED rejette tous les nouveaux paquets arrivant lorsque la
moyenne pondérée dépasse Maxth (voir Figure 1.1(a) page 29).

Le mécanisme RED a beaucoup été étudié dans la littérature. Certaines études ont
proposé des modifications ou des alternatives à l’algorithme de RED afin de résoudre ses
problèmes (et donc améliorer ses performances) et assurer son large déploiement dans
l’Internet.

Le principal inconvénient de RED est le problème de la configuration de ses paramètres.
Par exemple, [75] a montré que le choix des paramètres de RED était une science inexacte
car la détermination de la meilleure combinaison des valeurs de ces paramètres est difficile.
De la même manière, [34] a montré qu’il n’y a pas d’unique ensemble de valeurs des
paramètres convenant pour différents types de trafic, et affirme que la bonne configuration
des paramètres implique une paramétrisation globale, ce qui est difficile voire impossible à
effectuer. C’est pourquoi [75, 24] se sont interrogés sur le déploiement réel de RED dans
l’Internet. Par ailleurs, plusieurs études ont montré la dépendance entre les performances
de RED et la bonne configuration de ses paramètres.

Il existe deux approches visant à réduire la sensibilité de RED vis à vis de ses paramètres.
La première approche est basée sur des modèles quantitatifs comme dans [105, 37, 51, 52,
66, 8] permettant la prédiction de certains paramètres de RED. Pour cela, ces modèles né-
cessitent en entrée la distribution du RTT, le nombre de flux actifs et la valeur de la bande
passante du lien faisant goulot d’étranglement. Cependant, il est très difficile d’extraire
ou de déduire précisément ces informations de nature variable à partir des observations lo-
cales. En pratique, les caractéristiques du réseau ne sont pas connues à partir des routeurs
RED.

La deuxième approche est une approche adaptative. Des travaux comme [32, 34, 41]
ont utilisé cette approche appelée ARED (Adaptive RED), qui effectue une re-configuration
permanente des paramètres de RED selon la charge du trafic.

Nous décrivons brièvement dans la section suivante l’approche adaptative de RED.

État de l’art sur le mécanisme RED adaptatif

Dans ce paragraphe, nous faisons un bref rappel du mécanisme de ARED décrit dans [34]
et [41]. L’idée directrice de ce mécanisme est d’améliorer les performances de RED en
adaptant le paramètre Maxp (le seuil maximal de la probabilité de rejet) en fonction de la
charge du trafic. L’idée d’adapterMaxp est basée sur des observations concernant l’impact
de la charge du trafic sur la détection précoce de la congestion (early detection). En effet,
pour un grand nombre de connexions TCP, si les notifications de congestion ne sont pas
envoyées à un nombre suffisant de connexions TCP, alors on observe une augmentation du
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taux de perte de paquet car RED se comporte alors comme Drop Tail (phénomène de buffer
overflow). Dans ce cas, quelle que soit la valeur de Maxp, le lien est grandement utilisé.
Cependant, la détection précoce devrait s’effectuer de façon plus agressive. Pour cela, il
faudrait augmenter la valeur deMaxp. De cette façon, les connexions TCP réduiraient leur
débit de transmission, ce qui diminuerait la charge offerte et le taux de perte de paquets.
Pour un petit nombre de connexions TCP, si les notifications de congestion sont envoyées
à un trop grand nombre de connexions TCP, alors la charge offerte est excessivement
réduite, causant une sous-utilisation du lien qui est le goulot d’étranglement. Dans ce cas,
afin d’obtenir un plus grand taux d’utilisation du lien, la détection précoce doit être plus
conservatrice. Pour cela, il faudrait diminuer la valeur de Maxp.

L’algorithme de ARED prend en compte ces observations en utilisant la taille moyenne
de la file d’attente pour déterminer si le comportement de la détection précoce de la con-
gestion doit être agressif ou conservateur. Une taille moyenne proche de Minth indique
un mécanisme de détection précoce trop agressif. Dans cette situation, les auteurs de [34]
proposent de faire décrôıtre la valeur de Maxp d’un facteur constant α. D’autre part, si la
taille moyenne est proche deMaxth, cela signifie que la détection précoce est trop conserva-
trice. Dans ce cas, la valeur de Maxp est augmentée d’un facteur constant β. Cependant,
si la taille moyenne oscille bien entreMinth etMaxth, les auteurs n’adaptent pasMaxp car
ils considèrent que le mécanisme de détection précoce se comporte comme ils le souhaitent
(cela permet d’éviter une trop grande augmentation du taux de perte de paquet et une
sous-utilisation du lien). Cette configuration de Maxp fait en sorte que la taille de la file
d’attente oscille entre Minth et Maxth. Floyd et al. dans [41] ont modifié cet algorithme
de façon à ce que la taille moyenne oscille à proximité de la taille moyenne cible dans un
intervalle bien spécifié afin d’obtenir un délai moyen prévisible. Contrairement à [34] où
Maxp est adapté à chaque arrivée de paquet, [41] adapte Maxp à chaque intervalle de
temps, en utilisant une augmentation additive et une diminution multiplicative (Additive
Increase, Multiplicative Decrease - AIMD) au lieu d’une augmentation et d’une diminu-
tion multiplicatives (Multiplicative Increase, Multiplicative Decrease - MIMD) utilisé dans
l’algorithme ARED original de [34]. Si la taille moyenne dépasse la borne supérieure de
l’intervalle cible, alors Maxp est adapté par une augmentation additive une seule fois par
intervalle de temps. D’autre part, si la taille moyenne est inférieure à la borne inférieure
de l’intervalle cible, alors Maxp est diminué d’un facteur multiplicatif. Enfin, si la taille
moyenne est dans l’intervalle cible, alors Maxp n’est pas adapté.

Tout comme dans [34], Floyd et al. dans [41] ont utilisé un taux de changement constant
pourMaxp. En adaptantMaxp d’un facteur constant comme dans [34, 41] ARED améliore
les performances du mécanisme RED original. Cependant l’idée que nous avons souhaité
tester est que si nous adaptons Maxp en utilisant un taux de changement dynamique qui
sera fonction des variations de la taille moyenne de la file d’attente (indiquant ainsi la
charge du trafic), il devrait être possible d’améliorer non seulement les performances de
RED mais également celles de ARED.
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Contributions

L’algorithme PSAND

Notre travail s’est basé sur l’approche adaptative de RED décrite ci-dessus car cette ap-
proche ne nécessite aucune hypothèse sur le type de trafic et par conséquent réduit la
dépendance de RED vis-à-vis des paramètres concernant le scénario de trafic (i.e. la bande
passante, le RTT et le nombre de connexions actives). Notre travail diffère d’Adaptive
RED original sur la façon dont les paramètres sont ajustés. Notre but est d’améliorer les
performances de RED adaptatif du point de vue du temps d’attente et de la gigue sans
pour autant sacrifier le taux de perte. Pour cela, nous proposons un nouvel algorithme
nommé PSAND qui configure les paramètres de RED. Cet algorithme consiste à adapter
le paramètre Maxp selon un taux de changement variable. Contrairement à [34, 41] où un
facteur constant est utilisé, notre mécanisme adapte Maxp selon un taux de changement
dynamique qui est fonction des changements de la taille moyenne de la file d’attente et de
sa valeur par rapport à la taille moyenne cible spécifiée.

Nous avons testé notre mécanisme d’ajustement des paramètres de RED à l’aide de
simulations sous ns [94] qui ont montré une amélioration des performances par rapport à
RED et par rapport aux deux précédentes versions de RED adaptatif. En effet, les résultats
ont montré une réduction de la taille moyenne et de la variance de la taille instantanée,
stabilisant ainsi le taux d’occupation de la file indépendamment du nombre de flux TCP,
sans augmenter et parfois dans certains cas (pour un grand nombre de flux par exemple) en
diminuant le taux de perte des paquets. De plus, notre mécanisme maintient l’occupation
de la file éloignée des phénomènes de buffer overflow et de buffer underflow.

Par ailleurs, nous avons observé que comme la fonction de rejet suit étroitement la
dynamique du trafic, les pertes aléatoires doivent commencer le plus précocement possible.
En effet, nous avons remarqué que la valeur de Minth doit être la plus faible possible, et
que la valeur de Maxth doit être grande.

Enfin, nous avons comparé avec d’autres mécanismes récemment proposés comme le
PI controller de Hollot et al. [51] et montrons que notre proposition montre des résultats
compétitifs et parfois meilleurs.

Interaction de FEC avec RED

Le chapitre 5 présente une étude de l’interaction de RED avec FEC (Forward Error Cor-
rection). FEC est un mécanisme consistant en l’envoi par la source de paquets portant de
l’information redondante. Cette information redondante permettra, dans certains cas, de
réparer les paquets perdus sans nécessiter la retransmission de ces paquets perdus.

Nous avons comparé à l’aide simulations les résultats obtenus par RED en combinaison
avec FEC (RED/FEC), avec ceux obtenus par Drop Tail (DT) et FEC (DT/FEC). À
notre connaissance, une telle étude n’a jamais été effectuée jusqu’à présent. En effet, FEC
a seulement été étudié avec le mécanisme Drop Tail.

Nous pensons que RED pourrait améliorer les performances obtenues par des sources
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UDP implémentant FEC puisque RED disperse de manière plus uniforme les paquets per-
dus, réduisant ainsi les pertes consécutives de paquets pour un flux donné, et rendant par
conséquent les pertes plus indépendantes. Cette propriété rend a priori RED plus compat-
ible avec l’utilisation de FEC. Il pourrait être par conséquent plus intéressant d’ajouter une
faible quantité de redondance dans les flux FEC en présence d’une file d’attente RED afin
de réduire le taux de perte de paquets pour les sources UDP. Bien évidemment, cela devra
être fait sans pénaliser les sources TCP. En effet, l’ajout de redondance augmente la charge
globale du réseau, ce qui a un effet néfaste sur les sources TCP puisqu’elles répondent
à l’augmentation de congestion en diminuant leur debit sans pour autant que les sources
UDP fassent de même.

Afin de mener à bien cette étude, nous avons considéré plusieurs mesures de performance
concernant le traffic agrégé (taille moyenne de la file représentant le délai moyen passé par
un paquet dans la file, variance de la taille instantanée représentant la gigue, débit agrégé)
et pour un flux spécifié (taux de perte de paquet avant et après correction par FEC,
longueur des rafales de perte de paquets).

Nous avons ainsi pu montrer que, bien que RED expérimente plus de pertes que Drop
Tail avant correction par FEC, RED peut être plus avantageux que Drop Tail du point de
vue du taux de perte de paquet après correction par FEC. Cependant nos résultats ont
également montré que la combinaison RED/FEC n’améliore pas toujours la combinaison
DT/FEC. Cela dépend en effet d’un certain nombre de paramètres comme le nombre de
flux TCP constituant le trafic transverse, la taille des blocs FEC et le taux de redondance
dans un bloc FEC.

À l’aide de la métrique du taux de perte de paquet après correction par FEC, nous avons
montré que RED/FEC était plus efficace que DT/FEC pour un faible nombre de flux TCP.
En effet, un grand nombre de flux TCP augmente la “rafalité” des flots et également la
charge du réseau, ce qui induit une augmentation du taux de perte de paquet pour les
sources UDP utilisant FEC. Nous avons également observé que si le taux de perte avant
correction est trop grand, RED/FEC obtient de moins bonnes performances que DT/FEC
car FEC n’est capable de réparer suffisamment de paquets perdus quelles que soient la
taille des blocs FEC et la quantité de paquets de redondance. Les résultats ont également
montré que le nombre de flux FEC pour lequel RED est avantageux augmente avec la
quantité d’information redondante ajoutée dans un bloc FEC. Dans la situation où RED
est avantageux, nous avons également vérifié que les gains en performance pour RED tels
que le délai dans la file et la gigue sont conservés.

Par ailleurs, nos resultats ont montré que pour une quantité fixe d’information re-
dondante dans un bloc FEC, l’avantage (respectivement l’inconvénient) de RED/FEC sur
DT/FEC est plus important (respectivement moins important) pour de faibles tailles de
bloc que pour de grandes tailles de bloc.

Dans le cas où RED/FEC obtient de moins bonnes performances que Drop Tail, la dif-
férence de performance entre RED/FEC et DT/FEC crôıt avec la taille des blocs FEC. Les
performances de RED/FEC se dégradent avec la quantité relative de redondance contenue
dans un bloc FEC.

Tous ces résultats suggèrent que si un flux UDP implémentant FEC a la connaissance
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de son taux de perte avant correction, et si le traffic généré par ce flux traverse une file
d’attente RED, alors il est préférable de suivre les recommandations suivantes afin d’obtenir
pour RED/FEC de bonnes performance. Pour cela, nous devons être dans le cas où le taux
de perte de paquets avant correction n’est pas trop grand, c’est-à-dire dans le cas où le
nombre de flux TCP est faible. Nous pouvons alors augmenter raisonnablement la quantité
relative de redondance contenue dans le bloc FEC sans augmenter la charge du réseau et
pénaliser les sources TCP. De plus, augmenter raisonnablement la taille des blocs FEC sans
augmenter le délai de réception du bloc et le temps nécessaire pour le codage et le décodage
améliore les performances de RED/FEC. Nous remarquons que le taux de redondance et
la taille des blocs FEC au dessus duquel RED perd son avantage est grand. Puisqu’il n’est
pas pratique de choisir d’aussi grandes valeurs, il est par conséquent préférable de choisir
RED/FEC que DT/FEC quand le taux de perte de paquets avant correction par FEC est
faible.

Les conclusions énumérées ci-dessus ont été obtenues à l’aide de simulations sous ns.
Elles ont également été confirmées la plupart du temps à l’aide d’un modèle mathématique.

Conclusion

Les propositions d’amélioration des schémas de gestion des files d’attente sont fondamen-
tales pour que l’algorithme TCP/IP actuel puisse supporter la croissance spectaculaire du
nombre d’utilisateurs et pour qu’il puisse se comporter efficacement en présence de nou-
veaux services nécessités par différentes applications. C’est pourquoi l’IETF a recommandé
l’utilisation de mécanismes de gestion active des files d’attente, ce qui constitue toujours
un domaine actif de la recherche dans l’Internet. Le plus connu et le plus étudié des ges-
tionnaires de file d’attente recommandé par l’IETF pour le déploiement dans l’Internet est
RED. Pour toutes ces raisons, le schéma de gestion active de file d’attente RED est le sujet
de cette thèse.

D’une part, puisque le principal inconvénient de RED est la dépendance de ses perfor-
mances au travers de ses paramètres, cette thèse a proposé des améliorations de l’algorithme
de RED en ayant pour but d’éviter ce problème et d’améliorer la qualité de service des
connexions TCP. Le choix d’un trafic TCP est motivé de la façon suivante. Une grande
part du trafic dans l’Internet est encore basé sur TCP. De plus, il y a une tendance à clas-
sifier les trafics pour supporter la différentiation de service dans la prochaine génération de
l’Internet et l’utilisation du protocole approprié pour la classe de service. C’est pourquoi
l’étude d’un flux basé sur TCP est utile. Mais la raison principale, c’est que RED est prévu
pour fonctionner avec TCP, grâce à son interaction avec le mécanisme d’adaptation de la
fenêtre.

D’autre part, cette thèse a étudié le schéma RED en présence du mécanisme FEC (For-
ward Error Correction) en ayant pour perspective que si RED est déployé dans l’Internet,
alors il serait nécessaire d’étudier son comportement lorsque l’on utilise une technique
succeptible d’être utilisée pour le transport, comme FEC au dessus du protocol UDP.

De manière plus spécifique, l’amélioration de RED que nous avons proposée dans cette
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thèse et que nous avons aussi présenté dans [3, 1, 2] est basée sur une approche adaptative
de RED (ARED) puisque nous pensons que l’idée de base pour une solution résolvant les
problèmes de RED repose sur le RED adaptatif original proposé dans Feng et al. [34] et
Floyd et al. [41]. En effet, cette approche est un proposition sérieuse pour le déploiement
dans l’Internet actuel car elle adapte dynamiquement les paramètres de RED sans se baser
sur des hypothèses concernant le type de trafic, alors que les autres approches se basent
sur les valeurs des variables du réseau données a priori, telles que le temps de boucle, le
nombre de connexions et la bande passante du lien. Cependant, comme ces variables ne
sont pas connues en pratique par les nœuds RED, il est encore difficile d’extraire ou de
déduire des informations exactes de ces variables à partir d’observations locales.

Cette thèse s’est penchée sur la probabilité de rejet maximum Maxp puisque le choix
de ce paramètre affecte significativement les performances de RED. Les références [34, 41]
ont adapté la valeur de ce paramètre en utilisant des facteurs d’ajustement fixés qui ne
reflètent pas le taux de changement de la charge du trafic. Cette thèse a montré que, en
utilisant des ajustements dynamiques plus élaborés et orientés vers une valeur cible qui sont
fonction de la distance vers un objectif de performance et en autorisant des modifications
des autres paramètres de RED, cela offre une amélioration des performances de ARED
original. Les analyses statistiques et qualitatives de cette nouvelle proposition nommée
PSAND ont montré que, comparé au RED original adaptatif :

• PSAND améliore la stabilité de la taille de la file en réduisant la variance de la
taille instantanée. PSAND répond plus rapidement à un changement soudain de la
congestion et montre une meilleure adaptation au changement en ramenant la taille
de la file vers sa taille cible.

• PSAND réalise une taille moyenne de la file plus prévisible et plus faible.

PSAND réalise l’objectif de cette thèse qui est de minimiser la variance de la taille
instantanée de la file avec comme contraintes de fournir une taille moyenne cible spécifiée,
sans augmenter substantiellement le taux de perte de paquet. PSAND n’augmente pas
le taux de perte et même dans certains cas (lorsqu’il y a un grand nombre de flux), il le
diminue. De plus, PSAND améliore le taux d’utilisation du lien : il réduit la probabilité
que la file soit vide et laisse la taille instantanée de la file loin de l’état où la file est vide
ou pleine.

Toutes ces améliorations de performance sont obtenues quel que soit le nombre de flux,
montrant ainsi une performance plus robuste que le RED adaptatif original.

Cette thèse étudie également le choix des valeurs des paramètres seuil de la file (Minth
et Maxth) pour PSAND. D’une part, les études effectuées avec des valeurs fixes de Minth
et Maxth ont montré que :

• De faibles valeurs de Minth donnent une amélioration globale des performances con-
cernant la variance de la taille instantanée, le délai dans la file, le taux de perte de
paquet et le taux d’utilisation du lien.
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• Des valeurs suffisamment grandes de Maxth autour de 2K̂T (K̂T étant la taille cible
de la file) donnent également de bonnes performances globales. Maxth ne doit pas
être choisi trop grand pour éviter de grands délais dans la file d’attente.

Ces résultats ont suggéré l’utilisation d’une configuration avec Minth positionné à 0 et
Maxth égal à 2K̂T .

D’autre part, cette thèse a décrit plusieurs méthodes d’adaptation de Minth et de
Maxth, et a étudié si ces méthodes d’adaptation pouvaient améliorer encore plus les per-
formances de PSAND. Les résultats ont montré que la configuration précédemment décrite
(Minth = 0 et Maxth = 2K̂T ) donnait les meilleures performances et qu’il n’était par
conséquent pas nécessaire d’adapter les paramètres Minth et Maxth.

Cette thèse a proposé une amélioration du schéma ARED. Nous avons également com-
paré notre schéma avec d’autres schémas bien connus ou récemment proposés comme PI,
LRED, AVQ, REM et BLUE. Cette comparaison a montré que :

• Avec une complexité moindre, PSAND donne un compromis général désiré et de
bonnes performances telles qu’un faible délai dans la file, une faible gigue et une
plus grande stabilité en présence d’un fort trafic. En effet, les autres mécanismes
peuvent obtenir de meilleures performances que PSAND pour une certaine métrique
mais perdent leur performance pour d’autres métriques. Pour une configuration du
réseau avec un RTT variable, PSAND a montré de meilleures performances globales à
l’exception de la métrique mesurant l’équité en terme de débit entre les flux. De plus,
contrairement à tous les autres schémas, PSAND a montré de bonnes performances
non seulement pour un grand nombre de flux mais également pour un faible nombre
de flux.

Cette thèse ne prétend pas que PSAND est la proposition la meilleure ou optimale pour
résoudre les problèmes de RED mais montre plutôt qu’il est possible d’obtenir des perfor-
mances compétitives et même meilleures en gardant l’esprit de base de RED et son schéma
d’origine, permettant ainsi peu de changement à son algorithme. Des schémas comme PI,
REM, AVQ, BLUE et LRED ont abandonné le schéma d’origine de RED sans pour autant
améliorer substantiellement (ou même parfois ne pas améliorer) les performances obtenues
par PSAND. De plus, remarquons que PSAND n’a pas besoin de connâıtre les valeurs des
paramètres du réseau.

Les résultats de cette thèse ont également montré que PSAND pouvait encore être
amélioré. Nous travaillons actuellement sur la façon de choisir dynamiquement certains
de ses paramètres, en particulier le choix des valeurs pour coef et γ qui donneraient les
meilleures performances. Cependant, nous avons observé que ces améliorations dépendaient
du nombre de flux actifs dans le réseau. Ces résultats montrent que nous avons essayé d’aller
le plus loin possible dans l’amélioration de l’efficacité de RED mais aller plus loin nécessite
la connaissance des variables du réseau. Par conséquent, un prochain travail qui utiliserait
un modèle nécessitant la valeur de ces variables en entrée améliorera PSAND.
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Une autre contribution de cette thèse est l’étude de l’interaction de FEC avec RED.
Pour cette étude, un flux UDP implémentant FEC est multiplexé avec de nombreuses
connexions TCP au niveau d’un lien faisant office de goulot d’étranglement, et où Drop
Tail ou RED seraient utilisés comme schéma de gestion de la file. Notre intuition était
que FEC combiné avec RED pourrait donner de meilleurs résultats que Drop Tail avec
FEC car le processus de perte de paquet de RED expérimente un nombre plus faible
de pertes consécutives. Les résultats ont montré que notre intuition n’était pas toujours
confirmée mais que cela dépendait plutôt de différents paramètres comme le nombre de
flux TCP actifs, le taux de redondance et de la taille des blocs FEC. Selon la valeur de
ces paramètres, parfois RED ou parfois Drop Tail donne de meilleures performances. Un
modèle analytique ayant confirmé les résultats obtenus par simulations a également été
présenté.

Il existe une myriade de propositions concernant les schémas de gestion des files d’attente.
Nous ne prétendons pas que RED est meilleur que Drop Tail même si il n’y a aucun doute
que RED présente dans certaines situations une amélioration évidente des performances
comparé à Drop Tail. Nous ne prétendons pas non plus qu’une variante de RED est
meilleure que les autres mais nous pensons plutôt que le choix d’un schéma de gestion de
file d’attente doit être basé sur le besoin de service d’une application et sur le protocole
de bout en bout utilisé. En effet, il n’y a pas de schéma de file d’attente qui offre de
bonnes performances globales pour différentes conditions de réseaux. Chaque schéma a
ses propres avantages et inconvénients. Dans la prochaine génération de l’Internet où la
différenciation de service est attendue et où le trafic doit être classifié selon les nécessités de
service, différents schémas de gestion de file d’attente pourraient être associés à différentes
classes de service. Chaque classe de service sera assigné à une gestion de file d’attente qui
conviendra le mieux à ses besoins.
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This thesis is dedicated to the QoS (Quality of Service) in the Internet. More specif-
ically, it focuses on the improvement of the QoS offered by queue management schemes
that operate inside routers in conjunction with end-to-end protocols. We will give a gen-
eral description related to this issue and propose methods and guidelines to address this
problem.

Since its first step in 1969 with the ARPANET network that connected 4 distant ma-
chines located at the university of Utah, the university of California at San Barbara and
Los Angeles and the Stanford Research Institute, and since its spreading to Europe, Japan
and Oceania in 1980, Internet has experienced a tremendous growth. the Internet Protocol
(IP ). In 1978, when they split TCP into two protocols TCP (Transmission Control Proto-
col) and IP, Cerf and Postel predicted in [23] that the simplicity of IP would allow to build
fast and inexpensive gateways. IP is based on a simple concept that allows datagrams
to traverse routers from the source to destination without the help of the sender and the
receiver, and that only puts intelligence at end points of the network (at the sender and
receiver).

Because of this success, network traffic has experienced not only a tremendous increase
as the number of users and applications has increased but also has changed in nature
with the emergence of new applications that impose new service requirements. Different
applications have different requirements in delay, bandwidth and jitter. Some of these
applications are :

• Delay-sensitive applications: real-time and interactive applications like telephony
and conferencing, on-line games, multimedia. These applications have low-latency
requirements but are loss-tolerant. However, even if data applications can recover
from loss via retransmission, losses above 5% lead generally to very poor effective
throughput.

• Loss-sensitive applications: file transfer (FTP : File Transfer Protocol), email (SMTP
: Simple Mail Transfer Protocol) and web-browsing (HTTP: Hyper Text Transfer
Protocol) applications, delivery of mission-critical information. These applications
are delay-tolerant to some extent but do not tolerate unpredictable losses.

• Continuous media applications (streaming audio and video) require a fixed, usually
large, bandwidth.

However, there is a price to pay for this simplicity. The reason IP is simple is because
it does not provide many services. As a result, even if IP technology has shown success for
traditional applications such as web, email and file transfer, it faces some limitations since
it can not fulfill all the service requirements of these new emerging applications.

Indeed, even if IP relies on the upper layer transport protocol (TCP) in order to assure
a reliable delivery of a packet, it can not rely on TCP to assure a timely delivery or provide
any guarantees about data throughput. The basic service offered by IP has been named
the “best effort” service.
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To address this issue, the IETF is working on proposals to upgrade the current Internet
in order to make it converge towards another network that integrates data, voice and image
and provides a certain level of quality of service (QoS ). However, the implementation of
these mechanisms of QoS is complex which is paradoxical as compared to the concept of
simplicity of IP.

A quality of service is the ability of a network element (an application, a host or a
router) to offer some level of guarantee that the service requirements can be satisfied.
Service requirements of applications can be :

• Reliable delivery of packets.

• Sufficient allocation of bandwidth.

• Small delay of packet delivery.

• Small delay jitter.

• Small packet loss rate.

Nevertheless, transmitting data, voice and images on the same network implies different
and contradictory characteristics. For instance, as noted above, voice transmission can
tolerate some transmissions errors. But the variation of the amount of data transmitted
can lead to a poor audio quality and consequently to an incomprehensible audio message.
On the other hand, applications such as FTP tolerate the variation of the amount of data
transmitted on the network but are sensitive to transmissions errors. A network should
then propose different characteristics according to the application’s requirements.

In addition to the current best effort service, the different type of QoS architecture
proposed to accommodate new applications demands are : the integrated services (IntServ)
[54, 65] and the differentiated services (DiffServ) [30, 62].

An implementation of a QoS architecture can be composed by one of the three archi-
tectures or by a combination of the three. However, these architectures do not work by
themselves. They need the cooperation of mechanisms with finer granularity. In order to
deliver their services, these complex QoS architecture need to cooperate with others less
complex mechanisms, such as the end-to-end protocols and intermediate routers.

End-to-end protocols such as TCP, UDP and FEC are used for data transportation.
Core routers are used to improve the performance of end-to-end protocols by absorbing
bursts of data and delivering QoS. All these mechanisms, from the three QoS architectures
to routers, are connected to each other and depend on each other. Among all these interest-
ing mechanisms, the focus of this thesis is located at the finest granulation, that is at core
routers level. More precisely, the contribution of this thesis deals with the improvement
of the QoS provided by routers. Consequently, the contribution can improve end-to-end
protocols performances as well as the QoS delivered by the best effort service and others
QoS architectures such as IntServ and DiffServ.
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In order to locate our contribution precisely in its context, we shall begin with a general
presentation of QoS architecture such as Best Effort, IntServ and DiffServ. We shall then
present end-to-end protocols like TCP, UDP and FEC, since it is the interaction of these
protocols with router mechanisms which has to be taken into account for a good QoS.
Finally, we describe different functionalities of a router, related to the delivery of QoS.

For this introduction, we use reference materials such as [49, 59, 80, 95, 96, 100].

The best effort service

The best effort service does not propose any QoS characteristics. Indeed, it does not
guarantee when nor how much data can be delivered. The traditional IP network uses this
service model which is convenient for applications that do not have time constraints (and
for low priority applications) like FTP and SMTP.

The integrated services (IntServ)

It is a service model [54, 65] based on resource reservation for each flow between the sender
and the receiver, according to an application’s QoS request. This reservation is performed
by using the Resource reSerVation Protocol (RSVP ) [17] that works in parallel with TCP
or UDP.

The IntServ architecture offers two different levels of service:

• A guaranteed service (GS or IntServ guaranteed) which proposes the delivery of data
with a guarantee to bound the end-to-end delays and packet loss rate, and also to
ensure the availability of bandwidth.

• A controlled load (CL or IntServ controlled) which proposes a service which is better
than the best effort service. Under network conditions with small load, it is equivalent
to the best effort service. It does not provide guarantees on end-to-end delay and
bandwidth.

For both guaranteed and controlled load service, a non conforming (out-of-specifications)
traffic is treated like non-QoS best effort traffic.

The IntServ service model is used for high priority applications with strong time con-
straints and applications that are highly sensitive to end-to-end delay and delay jitter such
as real-time applications, video conference, voice, etc.

For example, the IntServ service can be compared to the postal service that gives a
guarantee to deliver a mail within a certain amount of time (e.g. DHL, Chronopost, Fedex).
IntServ can be used by service providers networks that interconnect private companies
networks.

Even though IntServ provides QoS guarantees for individual application sessions and
ensures a high resource utilization, its implementation is complex since it relies on resource
reservation that needs routers to maintain state information of allocated resources for each
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individual application session. It also necessitates the exchange of signalling information
between routers. Router manufacturers are reluctant to implement this type of evolution.
Moreover, the router should identify the flow corresponding to every packet passing through
the router. Maintaining states about the network resources seems infeasible for a large
network interconnecting a very large number of nodes. This scalability problem of IntServ
has lead the IETF to propose another QoS architecture called DiffServ.

The differentiated services (DiffServ)

This service model [30, 62] can be used for applications having standard time constraints
(e.g. transactional or interactive applications) and less priority than those that need the
IntServ service model. This service model can be convenient to private companies networks.
The differentiated service can be compared to a postal service where a an express mail is
delivered before a normal mail which is less costly. However, both mailing systems do not
provide a guarantee for a correct delivery and for the time needed for delivery.

In the case of congested networks, where some packets have to be eliminated, this service
model tends to make a decision on which packet should be dropped by providing a way to
specify packets priority. The priority can be established according to the importance of the
data or according to the offered price for the service. Those who pay more can get better
services. This allows to vary the billing of a service according to the service offered. For this
purpose, DiffServ classifies the network traffic. Every class of traffic is identified by a value
of the field TOS (Type Of Service) of the IP packet header or a combination of this value
and that of other fields of the header (adresses, protocol..). This classification that assigns
a level of priority is a complex operation and is performed at boundary (or edge) nodes.
The task of the central routers is only to deliver packets according to the priority tags
contained in the TOS field of the IP header. The field TOS of the IP packet header also
called DS (Differentiated Service) is composed by two fields. The DSCP (Differentiated
Service Code Point) coded with 6 bits and the CU (Currently Unused) field of 2 bits
currently unused. The DSCP field determines the PHB (Per-Hop Behavior) that a packet
will receive. The PHB corresponds to the description of the routing behavior of a router.
A simple example of PHB consists in guaranteeing that a certain class of traffic gets more
than x% of outgoing link bandwidth or packets belonging to a certain class are first served
before others.

These edge router’s task is to perform per-flow traffic conditioning (policing, marking,
dropping) and to tag packets as in-profile and out-profile according to the Service Level
Agreement (SLA ) between the ISP (Internet Service Provider) and the application. The
traffic is measured and it is checked if it is conforming to the service level agreement
(meter). The traffic is then marked, that is, a DSCP is assigned to it. The next step is
to shape it, that is to control if the throughput exceeds the one specified in the SLA. The
excess is dropped by the dropper. The interior routers (core routers) perform per-class
traffic management. They buffer and schedule incoming packets based on the tag of the
packets. In-profile packets get preference (priority).

There are currently two standard PHB’s representing the service levels (traffic classes):
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• The Expedited Forwarding (EF, premium) offers a premium service that accelerates
the treatment of packets and guarantees to minimize delay, jitter and packet loss
rate. It provides the highest level of aggregate quality of service. In order to ensure
this service,

The aggregate traffic should be conditionned (via policing and shaping) so that its
arrival rate at any node is always less than that node’s configured minimum departure
rate. Router should have limited buffer size and perform priority queueing. The
output traffic should also be shaped so that it meets the SLA. Moreover, this kind of
traffic should only represent a small portion of the total traffic.

• The Assured Forwarding (AF): this service delivers packets with a high probability.
But excess traffic is not delivered with a high probability as compared to in-profile
traffic which is in compliance with the SLA. The AF traffic has four services classes.
Within each class, there are three levels of drop precedences for packets. For example,
the “Olympic Games” service is composed of three classes: the AF1 class (bronze),
the AF2 class (silver) and the AF3 class (gold). For each class priority, levels 1, 2
and 3 can be assigned.

A router should allocate a minimum of forwarding resources, buffer space and band-
width for each class. A packet of a lower level of drop precedence has a higher
probability of being delivered. In case of congestion, the router discards in priority
packets with a higher level of drop precedence and keeps those with a lower level
of drop precedence. In order to reduce the congestion for each class of traffic, an
appropriate queue management mechanism is used by the router. There exists sev-
eral queue management (QM) schemes. We will discuss about them briefly below
and describe in detail well-known QM schemes. We will further study them in the
following chapters since it is the main subject of this thesis.

The DiffServ architecture is less complex than the IntServ architecture since it does not
need to store per flow requirement informations, and since the complex operation of traffic
classification is performed at edge routers. The task of interior routers is only to forward
packets according to their priority tag.

Even though there is a need to introduce differentiated services in the Internet, the best
effort service still continues to be dominant in the current Internet and might be useful in
the next generation Internet. Hence, enhancement proposals to the current Internet, such
as the efforts to improve queue management schemes are necessary so that the current
TCP/IP algorithm behaves efficiently in presence not only of best effort services but also
of new emerging services needed by the Internet community. Indeed, queue management
mechanisms operating inside routers, play an important role in controlling network con-
gestion, in conjunction with the adaptive algorithm of the TCP protocol used at network
end-points.

In the following we will describe briefly the end-to-end protocols such as TCP and UDP.
We also describe another mechanism called FEC (Forward Error Correction) that can be
used to increase reliability of a protocol.
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End-to-end protocols

The transmission control protocol (TCP)

The Transmission Control Protocol/Internet Protocol (TCP/IP) was first referenced in
1973 in the notes of Cerf [22] and was specified in detail in subsequent works. The TCP
protocol was split into two protocols, the TCP and IP protocols in 1978 by Cerf and
Postel [23]. TCP and IP were adopted by the U.S. Department of Defense (DOD) in 1980.
In 1983, a number of different networks connected to the Advanced Research Projects
Agency (ARPA) net switched to TCP/IP. The network of networks so connected split
to MILNET which interconnects various military-related networks and to the Internet
for other sites. Internet became an international wide area network that uses TCP/IP
to connect government and educational institutions across the world. After 1995, when
the National Science Foundation (NSF) who was in charge of Internet started to give
authority to private companies, TCP/IP began to be used widespreadly on commercial
and private networks. Initially offering few basic services such as file transfer, electronic
mail and remote log-on, TCP is currently the most predominantly used transport protocol
in the IP-based communication networks. IETF RFC 793 [88] defines TCP. It is used for
application like SMTP, Telnet, HTTP and FTP.

TCP/IP is composed of the following layers:

• The IP layer: its function is to route each data packet from node to node, based on the
IP number, a four bytes destination address. Ranges of IP numbers are assigned to
different organizations by the Internet authorities. The organizations assign groups
of their numbers to departments. IP operates on gateway machines that forward
data from department to organization to region and then around the world.

• The TCP layer: its function is to guarantee the correct delivery of data to the
destination by detecting, retransmitting lost packets and performing flow control.

Certain applications like FTP need to transmit a large amount of data. Since packets
can be lost or duplicated, transferring an important volume of data using a non connection-
oriented service can become a tedious task. Indeed, implementing error detection and
correction mechanisms for every application can be a very complex operation. At a lower
level, the IP layer offers a non connection-oriented service as it only forward IP packets
to the destination through multiple routers. In conjunction with this service, the use of
a reliable packet delivery service is therefore a necessity. TCP is designed to offer such
services.

TCP is a connection-oriented protocol that offers a reliable, byte streaming and full-
duplex services :

• Before any exchange of data between two end hosts, a connection must be established.
Once the connection is established, data can be transfered between the client and
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the server in full duplex allowing a simultaneous flow of data in both directions.
The sender writes a stream of bytes into the send buffer and sends it through the
connection. The receiver reads this stream of bytes from its receive buffer. At
the TCP layer this stream of bytes is assembled to constitute a packet called TCP
segment.

• TCP gives a guarantee for the delivery of the sent data by using sequenced acknowl-
edgments and retransmitting unacknowledged data after the expiration of some time-
out interval or after the reception of a triple duplicate ACK (see below). TCP also
guarantees that packets will be delivered in the same order in which they were sent.
For this purpose, it uses the sequence number of each byte transmitted and stored in
its receive buffer, to reorder the data (segments) that are out of order and eliminate
duplicate segments.

Acknowledgment and retransmission mechanisms

In order to guarantee the communication, TCP uses acknowledgment and retransmission
mechanisms. The TCP source waits for an acknowledgment (ACK ) from the destination
confirming the correct delivery (without loss or corruption) of the sent segment. It is only
after then that the source sends the next TCP segment or gives room for the other data
in its buffer. If it receives a duplicate ACK confirming that the destination has received
a corrupted TCP segment, it retransmits the copy of the segment. In a case where the
sent segment or the ACK or the duplicate ACK are lost, the TCP source might wait for
an answer indefinitely. To avoid this situation, TCP maintains a retransmission timer for
each segment sent. It detects the loss of the sent segment if the destination did not send an
ACK to the source before the expiration of the timer. The timer expires if it exceeds the
retransmission timeout (RTO). In this case, TCP retransmits a copy of the lost segment
with a new timer. Hence, TCP continues to retransmit this way the lost or corrupted
segment until the reception of a corresponding ACK. The value of the RTO is based on the
estimation of the round trip time (RTT ). It should be set greater than an RTT in order to
accommodate delays due to the link propagation delays, the transmission delay, the ACK
generation time, the header processing time and therefore avoid premature retransmissions.
On the other hand, the RTO should not be set too large as this would lead to large delays
in particular when the loss rate is high. Hence, the computation of the RTO should be
accurate and responsive to variable delays in networks. It is initially described in [88] and
refined in [61] and [55].

Its computation is based on the estimation of the RTT by the sender for each connec-
tion:

RTTestimated ← (1− α)× RTTestimated + α× RTTsampled .

RTO = RTTestimated + 4× deviation ,
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where:

deviation ← (1− α)× deviation + α× |RTTsampled − RTTestimated| ,

and where a typical value of α is 0.125 .

Flow control and sliding window

Under the simple acknowlegment technique, the sending host will only send one segment
of data after each acknowledgment, even if the receiver’s buffer size is far larger. In order
to increase the data throughput, TCP uses the sliding window mechanism that allows the
sending of multiple segments before waiting for an acknowledgment and without the need
for each segment to be individually acknowledged. Upon the reception of one ACK, the
sender can send a number of additional segments depending on the size of receiving host’s
buffer size.

Another role of the sliding window mechanism is to perform a flow control that avoids
a slow receiving host being swamped by a faster sending host by regulating the amount
of data being sent to the destination. The size of the window is dynamically adjusted
depending on the buffer space of the receiver. TCP maintains a limited amount of buffer
space for each connection: the send buffer that stores data waiting to be sent and the
receive buffer that stores the data delivered to the destination but not yet read by the
application.

Congestion control

The flow control mechanism addresses the problem of buffer overflow at the receiver level
but not at intermediate routers. Indeed, due to an increase of traffic (congestion), interme-
diate routers experience high queueing delay. In this case, mechanisms of retransmissions
by timeout can react by retransmitting the highly delayed or lost packets. This will make
worse the situation. Thus, to overcome the problem of buffer overflow at intermediate
nodes as well as at the receiver level, TCP performs a congestion control by adjusting the
transmission window (cwnd for congestion window) of the sender whenever a congestion is
detected i.e. when the retransmission timer expires.

The window size W is defined as follows:

W = min(cwnd, advertizedWindow) ,

where advertizedWindow is the window size advertised by the destination using the ACKs.

To adjust this congestion window, the TCP algorithm is composed of three phases:

• The slow start phase: after a loss detected by timeout.

• The fast recovery phase: after a loss detected by fast retransmit (triplicate ACK).
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• The congestion avoidance phase: in all other cases.

RFC 2581 [4] describes different congestion control algorithms proposed.
The original algorithm is described as follows :

• When a TCP connection begins, the slow start algorithm initializes the congestion
window (cwnd) to 1 and the slow start threshold (ssthresh) is initialized to 64 kbytes
by default.

While there is no loss event or cwnd does not exceed ssthresh, cwnd increases by
one segment for each reception of an ACK:

cwnd = cwnd+ segment size .

This actually results in an exponential increase for cwnd.

After the return of the first ACK, the window can sent 2 segments. The reception
of an ACK for these 2 segments increases the window size to 4 and so on until it
reaches the advertised window size of the receiver. In the absence of congestion and in
case of lower queueing delay, the congestion window increases very quickly. Figure 1
illustrates this increase. After each RTT the window size can double its size. This
exponential growth can lead to congestion.

For the first TCP implementation (TCP Tahoe), losses are detected by timeout only.
For the TCP Reno losses are detected by three duplicated ACK. When a loss is
detected or cwnd exceeds ssthresh then the slowstart phase ends and the congestion
avoidance phase starts.

• In the congestion avoidance phase, if cwnd is greater or equal to ssthresh then cwnd
increases linearly in an additive manner after every ACK received. Note that in the
congestion avoidance phase ssthresh and cwnd remain equal.

Additive increase of ssthresh: for every useful acknowledgment received, compute:

ssthresh = ssthresh+ (segment size)2/ssthresh ,

ssthresh = min(ssthresh,maximum window size) .

However, once a timeout is detected, ssthresh is divided by two and cwnd is set to
1:

ssthresh = cwnd/2 ,

ssthresh = max(ssthresh, 2× segment size) .

As a combination of these two rules, the slowstart phase is re-entered in order to
avoid burst of retransmissions.

TCP uses an AIMD (Additive Increase for the congestion window and Multiplicative
Decrease for ssthresh) algorithm to control congestion.
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Figure 1: TCP slow start phase

The full specification for TCP involves fast recovery. The fast retransmit algorithm
has first appeared for the Tahoe release whereas the fast recovery has appeared for Reno.
Therefore, a different mechanism is added for every loss detected by fast retransmit:

• When a loss is detected by fast retransmit (triplicate ACK), then apply the multi-
plicative decrease for ssthresh i.e:

ssthresh ← cwnd/2 ,

ssthresh ← max(ssthresh, 2× segment size) .

• Then enter in fast recovery phase until the loss is repaired. When entering this phase,
temporarily keep the congestion window high in order to keep sending. Indeed, since
an ACK is missing, the sender is likely to be blocked, which is not the desired effect:

cwnd ← ssthresh + 3 ∗ segment size ,

cwnd ← min(cwnd, 64KB) .

• For every received ACK, at least until the lost is repaired, the exponential increase
mechanism is run i.e:

ssthresh = ssthresh+ (segment size)2/ssthresh ,

ssthresh = min(ssthresh,maximum window size) .

Several subsequent proposals of TCP variants like TCP Vegas [18, 71], TCP SACK
[72], TCP NewReno [4] modified the slow start, the congestion avoidance algorithms or the
ACK format required in order to improve the congestion control mechanism of the original
TCP Tahoe.
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Mathematical models of TCP

The reactive nature of TCP makes it difficult to predict the throughput of a TCP con-
nection. Several authors [21, 52, 71, 72, 73, 79, 83] have proposed models resulting in a
formula for computing the throughput as a function of network parameters: the “square
root formula” described in [73].

Consider a TCP connection with constant round trip time RTT and constant packet
size MSS. Assume that the network is stationary, that the transmission time is negligible
compared to the RTT , that losses are rare (less than 2%) and that the time spent in slow
start or fast recovery is negligible. Then the average throughput BW computed by the
following relation:

BW = min

(
MSS × c
RTT ×√p, link capacity

)
, (1)

where:

• BW is the bandwidth/throughput of the connection.

• MSS is the maximum segment size.

• RTT is its round trip time.

• p is the packet loss probability.

• c is a constant that depends on the acknowledgment strategy used (delayed or every
packet) as well as on whether packets are assumed to be lost periodically or at random
[73]. It is often taken as

√
3/2.

Further reference materials on TCP modeling can be found in [28, 46, 49, 84, 98, 99].

UDP protocol

The User Datagram Protocol (UDP), defined by RFC 768 [87], provides a simple, but un-
reliable message service for transaction-oriented services. UDP gives a datagram-oriented
service i.e. it does not transmit a stream of data but rather already segmented data into
datagrams. Another difference with TCP, is that it does not use acknowledgments, re-
transmission and flow control mechanisms. As a result, datagrams can be lost without the
sender knowing it, and the receiver can experience buffer overflow.

The motivations factors for the use of UDP in networks are:

• It is the simplest transport protocol since there is no need to keep states about the
source and destination.
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• It is not a connection-oriented protocol, therefore it does not have delays for connec-
tion establishment and termination like TCP. The gain can be substantial when the
amount of data is small, or the RTT is large. In particular, this is the case for long
distance communications such as satellite TCP/IP networks.

• Since UDP does not perform the retransmission of lost packets and avoids as a result
long delays, it is convenient for real-time multimedia applications with strong time
constraints.

• It contains a small header containing the source port number that identifies the
application on the sending machine, the destination port number that identifies which
application is to receive data, the length field indicating the amount of the data and
the checksum field that allowed to identify corrupted packets. A TCP segment has
20 bytes of header overhead per segment, whereas UDP only has only 8 bytes of
overhead.

• It can transmit data as fast as it desires since there is no feedback due to congestion
control. UDP segments can be lost and can be delivered to the destination while
being out of order.

• UDP does not have the scalability problem since it is connectionless. An application
that uses UDP can send data to a large number of receivers. For this reason, UDP
can be more suitable for multicasting.

For applications that can tolerate a small fraction of packet loss and that reliable data
transfer is not absolutely necessary, UDP can be chosen instead of TCP. Hence UDP is
commonly used for interactive real-time applications, such as video conferencing, for appli-
cations such as NFS (remote file server), Internet telephony, SNMP (network management
protocol), DNS (domain name translation) and RIP (routing protocol).

Forward error correction (FEC)

As an alternative to TCP, FEC (Forward Error Correction) has been proposed. FEC is an
open-loop technique which consists in adding to packets a redundancy which is exploited by
the destination to recover from losses without requiring packet retransmission. This extra
information is computed using error correcting codes. FEC is well suited for real-time
applications which can tolerate few losses. However, FEC has two antagonistic effects:
on the one hand the redundancy generated by the source increases the overall load of
the network resulting in an increase of the loss rate; on the other hand the redundant
information generated by FEC helps to recover from a part of the losses. Therefore, the
use of FEC is interesting only if the loss rate increase can be compensated by a greater
correction of losses.

In conjunction with these end-to-end mechanisms, intermediate routers should partici-
pate in improving the offered QoS.
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QoS inside intermediate routers

One goal of Internet QoS is to control packet loss. Packet loss occurs mainly for two
reasons. The first reason is the damage of packets in transit. However packet loss due to
this phenomenon is rare( 1%). The second cause for packet loss, network congestion,
occurs more frequently.

In order to control network congestion, the adaptive algorithm of the TCP protocol is
used in conjunction with queue management mechanisms operating inside routers. Our
work focuses on improving the quality of service offered by intermediate routers. Routers
that support QoS have the following four functions:

Classification

The classification of packets can be done based only on the TOS field of the IP packet
header or on additional fields such as the IP address and port number of the sender and
receiver or the type of document. The use of classification is to determine the incoming
packets output interface as well as the particular buffer needed for storage, and to allocate
an output bandwidth.

Policing and marking of traffics

These policies are used to check if the input traffic is in compliance with the expected
profile. The expected profile is determined by the SLA. If it is a non-conform traffic, then
packets issued from this traffic are discarded or marked. The marking function allows to
transmit non conform packets in absence of congestion. In case of heavy traffic load, these
packets are discarded. Another method is to discard among these packets those that have
less priority. The traffic shaping policy delays the excess traffic as compared to the expected
traffic so as to forward it later. This method shapes the traffic but introduces additional
delay. There exit two methods, namely the leaky bucket and token bucket mechanisms, to
measure a traffic and to determine its compliance with a SLA. More precisely, these two
algorithms shape or mark the traffic.

Once the classification, policing and shaping of a traffic are performed, the traffic is
directed to the buffer where queueing disciplines take a decision on the selection of the
next packet to be dropped. We describe in the next section some queueing disciplines.

Queue management

The TCP flow control and congestion avoidance algorithms adjusts the source sending
rate according to the destination reception capacity. This end-to-end congestion control
is not sufficient since congestion can also occur when the traffic bandwidth requirements
exceeds the transmission capacity of the gateway. Buffers are used to absorb this excess
of traffic. But due to the buffer space limitation, routers drop or mark the excess of
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traffic and suppose that the upper layer end-to-end protocols like TCP will detect the
congestion and will respond by limiting their transmission rate. Routers can not leave all
the congestion control task to TCP. Because without queue management schemes, packet
drops and consequently lost packets retransmissions increase, leading to a higher level of
congestion.

By dropping packets when it is necessary or appropriate and thus controlling the queue
length to absorb bursts, queue management schemes are forced to play an important role
in the congestion avoidance and control along with end-to-end TCP congestion control
mechanism. Queue management schemes differ on their methods of selection of the next
packet to be dropped or marked. Two categories of queue management mechanisms can
be distinguished:

• The passive queue management (PQM) schemes decide to drop packets only when
the queue reaches its capacity or a certain specific value.

• The active queue management (AQM) schemes decide to drop packets preventively
without waiting for a buffer overflow.

We describe in the following some schemes classified in these two categories.

Passive queue management (PQM) schemes

Drop Tail, Drop-from-Front and Push-Out are well known passive queue management
schemes:

• The Drop Tail mechanism accepts all incoming packets until the buffer reaches a
certain threshold (eg: the buffer capacity). Once the threshold is reached, Drop Tail
drops from the tail of the queue all incoming packets. Buffered packets wait for their
service time without a risk of being dropped.

• The Drop-from-Front mechanism [69] differs from the Drop Tail scheme by drop-
ping the packet queued in the front of the queue when the queue reaches a certain
threshold. By dropping the packet buffered earlier, Drop-from-Front allows the TCP
congestion avoidance mechanism to detect the packet drop earlier than can does Drop
Tail.

• The Push-Out mechanism [93] differs from the Drop-Tail and Drop-from-Front schemes
by deciding to drop the latest packet buffered and replacing it by the newly incoming
packet. Since the latest packet buffered is pushed out from the queue, this scheme
wastes the router resources. This scheme is also more complicated than the other
two schemes.
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All these schemes present some limitations in presence of heavy congestion since they
do not sent early congestion notification to the TCP-based applications at the source so
that these sources reduce their sending rate. It is only when the buffer overflows that TCP
senders are notified of congestion. Moreover, since all incoming packets are dropped, all
TCP senders are constraint to back-off their transmission rate which leads to a global syn-
chronization of the sources. Another drawback of these schemes is the unfairness problem
between connections. Certain applications with high bandwidth requirements can monop-
olize the buffer space. For instance, when UDP and TCP flows compete for the same
bandwidth and buffer space, the UDP flows monopolize the buffer space since they do
not respond to packet drops whereas TCP sources respond by reducing their sending rate.
Another example is the unfairness observed between highly bursty and less bursty traffics.

The full queue problem is another drawback of PQM schemes. As packets are not
dropped in a preventive manner, the queue tends to be usually full. This leads to an
important queueing delay and therefore to an important end-to-end delay, and also di-
minishes the routers burst absorption capacity. These performances are unacceptable to
certain types of applications, in particular to delay-sensitive applications.

In order to solve the problems of the PQM schemes and improve the QoS of connections,
the links must play an active role in the congestion control. Active queue management
schemes are designed under this perspective [16].

Active queue management (AQM) schemes

Unlike PQM, active queue management (AQM) schemes drop an incoming packet in a
preventive manner with a probability that depends on the congestion level. Instead of
detecting the congestion by buffer overflow, AQM schemes detect congestion based on the
queue length, the packet arrival rate or packet loss rate, and increase the drop probability
with the congestion measure. These preventive packet drops induce implicit congestion
notification to senders that react by reducing their TCP congestion window. This way
AQM control and reduce the queue length providing a low queueing delay. AQM reduce
also the number of consecutive packets and achieve fairness among sources with different
burstiness by avoiding the problem of lock-out observed for PQM schemes. We will describe
in Chapter 1 different active queue management schemes.

In order to enhance AQM schemes, explicit congestion notification has been proposed
in [89, 90].

Explicit congestion notification

Explicit congestion notification (ECN) [89, 39] is a technique that marks packets instead
of dropping them as some AQM schemes like RED (Random Early Detection). Indeed,
packet dropping generates more retransmissions that increase the queueing delay. The
basic idea of ECN is to avoid this situation.

Packet that should be dropped are marked. The router can mark the two bits CU in
the IP type of service (TOS, renamed to DS in DiffServ) header of the packet [89]. This
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marked packet will notify the sender about the detection of an incipient congestion. The
source acts as if the packet is dropped and reduces its sending rate. By applying an ECN-
type policy, the router manages to save the packet, thereby enhancing the goodput while
still conveying congestion notification to the sources.

Active queue management (AQM) can choose algorithms to mark (ECN type) or drop
(like RED) packets. However, in case of implicit congestion notification induced by packet
drops and sent by the receiver could not arrive to the sender in an appropriate time. Indeed,
acknowledgment packets can be lost on their way. On the other hand, explicit congestion
notification induced by ECN-type policies are sent faster and in a more reliable manner by
the router to the sender. The sender could then react in time to a congestion increase.

In combination with active queue management and end-to-end congestion control, ECN
is able to provide a network with practically no packet drop. This considerably increases
the performance of every source.

Queue management schemes are primordial in improving the TCP end-to-end perfor-
mance. They have gained more and more importance with the growth of Internet as they
are necessary to improve QoS such as throughput, delay, jitter and loss. Active queue
management is still an active area of networking research. For all these reasons, our thesis
focuses on this topic.

Queue scheduling

Queueing disciplines and queueing scheduling work side by side to manage network traffic
at the router level. We have seen that queueing disciplines struggle to avoid congestion
by dropping the selected packets. However if packets are waiting a long time for transmis-
sion, and packets arrive faster than they can be served, then the queueing delay increases
introducing congestion. To avoid this situation, the queue scheduling scheme of the router
executes its part of the task by selecting the next packet to be served.

Since our focus is located at the router level, in order to have a wider and complete
view about router mechanisms, we will bring this introduction to an end by a review of the
existing main queue scheduling mechanisms even though we do not study these mechanisms
in this thesis.

This section describes how some queue scheduling mechanisms select the next packet
to be dropped.

FIFO

FIFO (First In First Out) queueing, is the default and most widely used queue scheduling
scheme. It consists in forwarding the first packet arrived at the queue i.e. packets are
served in the same order that they have being received in the buffer. The advantage of
the FIFO scheduling scheme is its implementation simplicity and its ability of giving a
predictable maximum queueing delay equal to the queue capacity. Queueing delay would
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be small if the queue capacity is small. FIFO does not make any service differentiation
between different class of traffics. All flows experience the same treatment.

But facing this egaliterian service, since TCP controls its transmission rate itself by
reducing in case of congestion, its sending rate and thus its share in bandwidth, non-
responsive flows such as UDP flows, consume the entire buffer space.

Priority queueing (PQ)

The traffic is classified into different classes of traffic. Each class is associated to a particular
queue according to its priority. Every queue implements FIFO. A packet is served only if
there is no other packets with highest priority. A variant of this scheduling discipline, rate-
controlled priority queueing, serves in priority packets of the class of traffic with highest
priority if the amount of traffic in the high-priority queue stays below a certain threshold.

The PQ scheme is useful for a high priority traffic such as real-time applications, VoIP
traffic. Like FIFO this scheme has the advantage of simplicity. However, if the proportion
of high priority traffic is very important, lower priority traffics may experiment a very
large queueing delay as well as a higher packet loss rate and may suffer from bandwidth
starvation.

Even among high priority traffics sharing the same priority queue, a misbehaving high
priority flows can deteriorate the QoS offered by the priority queue since the queue can
observe large queueing delay and jitter.

Like FIFO, the PQ discipline does not solve the unfairness problem concerning the
share of bandwidth between the TCP and UDP flows. Even if TCP flows are placed in the
priority queue for protection against UDP flows, they will take in their turn, the highest
proportion of the bandwidth and starve the UDP flows.

Fair queueing (FQ)

Fair queueing [29] is a flow-based queueing discipline that is designed to obtain a fair
share of network resources among flows and to prevent bursty flows from grabbing all the
available bandwidth. Every incoming packet is classified according to the flow it belongs
to and is assigned to a specific queue dedicated to the particular flow. Every packet at the
head of each flow-based queue are served by round robin scheduler. When the scheduler
meets an empty queue, it jumps it and passes to the next queue. Each of the n non-empty
queues receives 1/n of the total output bandwidth. This allocation changes dynamically
with the number of active queues. The advantage of putting each flow in a separate queue
is the possibility to protect well-behaving flows from misbehaving flows. Only queues of
the misbehaving or highly bursty flows will be influenced. One of the drawbacks of FQ is
its incapacity to fulfill the different bandwidth requirements of different flows. Indeed, FQ
is supposed to allocate fairly the same amount of bandwidth to different flows. However,
the amount of bandwidth received by each flow depends on the size of packets. Flows
with predominately larger packet sizes receive a higher amount of bandwidth. Another
drawback is its incapacity to support real-time applications like VoIP.
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Class-based fair queueing (CBFQ)

The traffic is classified according to the service requirement of the flows. For each service
class, a desired amount of bandwidth is allocated. Within a given class of service, packets
are again classified according to the flow to which they belong. Each flow of a given service
is associated to a particular queue. To each of the n queues of a particular class of service
is assigned fairly 1/n of the total bandwidth, and served like FQ, according to a round
robin algorithm.

For instance, assume 3 VoIP flows are assigned 20% of the total output bandwidth.
Each of these flows receive 1/3 of the 20% of the allocated bandwidth if the other 80% of
the bandwidth are allocated to 8 other IP flows, each of these flows will receive 1/8 of 80%
output bandwidth.

Weighted Fair queueing (WFQ)

WFQ [85] is designed in order to improve FQ performances in particular offering a service
differentiation in terms of bandwidth and satisfying different bandwidth demands of appli-
cations. To achieves this goal, WFQ shares the network resource between flows based on
their bandwidth requirements.

The weighted fair queueing gives preference to less bursty traffics with less bandwidth
requirements. In order to reduce the queueing delay, WFQ first serves these kind of traffics
and shares fairly the rest of the bandwidth to the most bursty traffics that are big consumers
of bandwidth. Each queue is assigned with a configuration share of bandwidth.

Unlike FQ, WFQ tries also to allocate bandwidth fairly to packets with variable sizes, so
that larger packets do not monopolize a large amount of bandwidth. To achieve this goal,
WFQ takes into account the packets length during packets service by transmitting one bit
at a time from the head of the packets and from different queues according to the weighted
bit-by-bit round-robin (WRR discipline. The packet reassembling is determined by the
packet’s finish time, that is the order in which the last bit of each packet is transmitted.

To illustrate this theory, lets consider the example given by [59]. Suppose flow 1 is
assigned to queue 1 with 50% of the output bandwidth. Flow 2 is assigned to queue 2 with
25% of the output bandwidth and flow 3 to queue 3 with the rest 25% of bandwidth. The
WRR scheduler serves two bits of the 600 bytes packet from queue 1, one bit of the 350
bytes packet from queue 2 and one bit of the 450 bytes packet from queue 3, and returns
to queue 1 for the same operation. This causes the 600 bytes packet to finish first the
transmission and reassembly before the others, and the 350 bytes packet before the 450
bytes packet.

This WRR scheduling discipline is approximated by directly assigning a finish time
to each packet. Packets will be served according to the finish time. A packet with the
earliest finish time will be served first. The computation of the finish time of a packet is
based on the total output bandwidth, the number of active queues, the weight assigned
to each queue and the size of the packet. The WFQ can be deployed at the edges of the
network to provide a fair bandwidth allocation with a bounded delay for different classes
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of service. However, WFQ’s bandwidth allocation for variable length packets introduces a
computational complexity that leads to a scalability problem, that is to the incapacity to
support large number of service classes. Other variants of WFQ such as class-based WFQ,
self-clocking fair queueing (SCFQ) [48] and worst-case WFQ have been proposed.

Class-based queueing (CBQ)

The class-based queueing (CBQ) scheduling discipline [44] is designed to improve the per-
formance of FQ and PQ disciplines. Unlike FQ and similar to PQ and WFQ, CBQ classifies
flows into different queues and assigns different amount of bandwidth to different queues
according to the flow bandwidth requirements. Unlike PQ, CBQ does not allow bandwidth
starvation of low priority queues since at least one packet from each queue should be served.

CBQ classifies packets according to the service requirements (eg: real-time or file trans-
fer services). Each created class of service is assigned to a queue. CBQ allocates a weighted
bandwidth for each queue. Higher bandwidth queues can be served several times in a sin-
gle service round if only one packet is served in a round. Otherwise, they can send more
packets in a single service round as compared to lower bandwidth queues. Packets are
served using the round robin scheduler.

In order to control congestion, the CBQ mechanism prefers to avoid bandwidth star-
vation that is resource denial instead of resource reduction. One of the drawback of this
mechanism is that to determine the amount of bandwidth associated to each service class,
the knowledge of the mean packet size is required. When the size of the packets are variable,
CBQ can not support the configured amount of bandwidth.

In the rest of this thesis, we studied the buffer management schemes we have just
described, in particular the RED active queue management scheme.

Thesis organization

This thesis is organized in three parts.

Part I: An overview on queue management schemes

This part describes well-known active queue management schemes. We focused on the
RED scheme and its variants.

Part II: Configuration of RED parameters

This part is composed by three chapters.
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Chapter 2: Adaptation of the parameter Maxp

This chapter proposes a new active queue management scheme named PSAND and shows
its performance.

Chapter 3: Configuration of the parameters Minth and Maxth

This chapter investigates different methods for setting other parameters of our proposed
scheme. We investigated fixed and adaptive methods for this setting.

Chapter 4: Comparison of PSAND with actives queue management schemes.

This chapter is dedicated to the comparison of PSAND with others well known AQM
schemes.

Part III: FEC under RED queue management scheme

This last part deals with the study of the RED queue management scheme in presence of
the FEC end-to-end error control technique.
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1.1 Introduction

The most widely used queue management scheme in the current Internet is Drop Tail.
However Drop Tail has two important drawbacks namely the lock-out phenomenon and
the problem of maintaining full queues for long periods of time [16].

By keeping a maximum queue occupancy for long periods of time, Drop Tail causes not
only a high queueing delay but creates also the problem of global synchronization where all
sources experience packets drops that reduce their sending rate for a period of more than
a round-trip-time. The phenomenon of global synchronization further causes alternating
periods of over and under-utilization of the link.

The lock-out is a problem where a few connections monopolize the queue space and
prevent other flows from getting room in the queue thus causing unfairness of resources
usage among flows. The bias of Drop Tail against bursty flows [75] illustrates this problem.
During periods of full queues, bursty flows suffer from several consecutive drops that cause
dramatic reduction of their congestion windows and that lead to a very low throughput.

Large buffers can be used to absorb bursts and maintain a high link utilization. But
the Drop Tail mechanism used with a large buffer causes large queueing delays. This in
turn can induce large delay jitter which is not convenient to TCP, nor to audio interactive
applications. On the other hand, small buffers reduce the queueing delay but lead to a low
link utilization and a higher loss rate of packets and penalizes even more bursty flows. Drop
Tail gives then rise to a trade-off problem between high link utilization and low queueing
delay. Since network traffic tends to become more bursty, this is a serious flaw.

In order to prevent the Internet congestion collapse, the Internet Engineering Task
Force (IETF) recommended for the routers of the next generation Internet the use of
RED [16, 43], an active queue management scheme which was proposed by Floyd and
Jacobson in 1993. The aim of RED is to achieve high throughput and low average delay
(for TCP traffic) by spreading randomly packet’s drops between flows. The RED random
drop function is described in the following section by equation (1.2). A detailed description
of the RED mechanism will be presented in section 1.2.1.1. Even though the RED active
queue management (AQM) scheme provides performance improvement as compared to
Drop Tail under certain parameter settings and network conditions, it still exhibits several
problems such as high delay jitter and bandwidth unfairness. A number of researchers
have proposed modifications or alternatives to RED with the aim of solving its deficiencies
(and then improving its performance) and ensure its wide-spread deployment. The variants
bear on the modification of the control variable and/or drop function computation. Most
of the proposals concentrate on adapting the marking probability (marking = marking
or dropping) but use different congestion measures. The existing AQM schemes measure

26



1.2. RED with aggregate control

congestion differently by using the input rate, events of buffer overflow and emptiness, or a
combination of these factor. The queue length (or the average queue length) is widely used
in RED and most of its variants (Ared Feng, Ared Floyd, GRED), use the queue length as
a congestion measure. Other schemes like SRED and BLUE use the buffer overflow event
or the occurrence of empty queue event.

The traffic input rate is also used in some AQM schemes such as AVQ to make them
more adaptable to instantaneous traffic variance and to achieve the desired link utility. PI,
REM and SFC [47] jointly use queue length and traffic input rate.

Based on the calculation of these control variables, the variants of RED can be classified
into the following main categories:

• RED with aggregate control (SRED, DSRED, REM, BLUE, . . . ).

• RED with per-flow control (FRED, FB-RED, SFB, XRED).

• RED with class-based threshold (CBT-RED, BRED).

For the first category, the computation of the drop probability does not differ from a
flow to another or from a packet to another. The drop probability is only a function of
the control variable (the queue size, the input rate... depending on the variant). Although
there is no active discrimination on the drop probability, there happens to be a passive
discrimination, as shown for instance by [49]. More precisely, there is a bias in the drop
probability between highly bursty and less bursty flows. Highly bursty flows experience a
higher drop probability. In addition, because UDP flows do not back up their sending rate
by using congestion notification, they experience a higher rejection rate. This effective but
not intentional discrimination, can also be observed for flows with different RTT. Indeed,
flows with a larger RTT have their throughput reduced.

In the second category, the variants focus on the computation of a drop probability
depending on a traffic type (for example TCP and UDP traffics). This is an active dis-
crimination on the drop probability. In this category, for certain RED variants like FRED,
packets are classified according to the flow to which they belong. Each flow experiences its
own drop probability as a function of the control variable.

Different RED variants compute the drop function differently. There exists variants of
RED that use a linear function, others that use a step function. We now describe briefly
the functioning of some of RED variants.

1.2 RED with aggregate control

1.2.1 Proposals without network scenario parameters

1.2.1.1 RED (Random Early Detection/Drop)

The basic idea behind RED is that a router detects congestion early by using the average
queue size K̂cur as a control variable and setting two thresholds Minth and Maxth for
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packet drop. The average queue size works as a low pass filter. Its estimation is done with
an Exponential Weighted Moving Average (EWMA) computed at each packet arrival at
the queue as follows :

K̂cur ← (1− ω)K̂cur + ωKcur , (1.1)

where Kcur is the instantaneous queue size and ω is a fixed weight parameter much smaller
than 1. Because ω  1, K̂cur changes much slowly than Kcur does. The advantage of using
this low pass filter is the ability to accumulate short term congestion and to make K̂cur

follow the long term changes of Kcur that reflects persistent congestion in networks.

Once the average queue size is computed, the second computational part of the RED
algorithm is the drop probability. The idea is that by computing the packet drop proba-
bility as a function of the level of congestion, RED should manage to obtain a low packet
drop probability during low congestion and an increased packet drop probability as the
congestion level increases.

The RED drop function d(K̂cur) uses the three parameters Minth, Maxth and Maxp
(where Maxp is the maximum random drop probability before the 100% rejection rate
occurs). An average queue size in the interval [Minth,Maxth[ indicates a low level of con-
gestion and induces a small packet drop probability. In this case, packets arriving from
different sources are chosen randomly and dropped. This random drop allows the queue not
to be full and to have room to certain incoming packets. By avoiding frequent occurences
of full queue, packets coming from different sources are not dropped simultaneously. This
avoids the global synchronization of the TCP sources. An average queue size in the inter-
val [Maxth, B], where B is the buffer capacity, indicates a persistent and higher level of
congestion and induces a larger packet drop probability.

The drop function d is defined as:

d(K̂cur) =


0 if K̂cur < Minth ,

K̂cur−Minth

Maxth−Minth
Maxp if Minth ≤ K̂cur < Maxth ,

1 if K̂cur ≥Maxth .
(1.2)

The above definition of RED represents RED in strict mode (see Figure 1.1(a)). Algo-
rithm 1 gives the pseudo-code of RED in strict mode.

A gentle mode for RED (GRED) has been proposed. It differs from the strict mode in
the following points:

• The 100% drop is triggered only when K̂cur is twice Maxth. RED in strict mode
triggers a 100% drop much earlier.

• The random drop is triggered if Minth ≤ K̂cur < 2Maxth increasing the proportion
of the random drop as compared to RED’s proportion in strict mode.
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Maxp

Minth Maxth

1

d(K̂cur)

K̂cur

(a) Strict RED
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K̂cur2Maxth

(b) Gentle RED

Figure 1.1: RED’s drop function

RED in gentle mode is then defined as follows:

d(K̂cur) =


0 if K̂cur < Minth ,

K̂cur−Minth

Maxth−Minth
Maxp if Minth ≤ K̂cur < Maxth ,

(1−Maxp)(K̂cur−Maxth)
Maxth

+Maxp if Maxth ≤ K̂cur < 2Maxth ,

1 if K̂cur ≥ 2Maxth .

(1.3)

Figure 1.1(b) illustrates RED in gentle mode.
RED has a drawback: its performance is significantly sensitive to the setting of its

parameters Maxp, Minth, Maxth and ω. Different variants have been proposed with the
aim to find a solution.

Algorithm 1 RED (strict mode)

/* Notations: */

/* – K̂cur: average queue size. */
/* – Minth: minimum threshold. */
/* – Maxth: maximum threshold. */

/* – d(K̂cur): packet drop probability. */

⇒ Upon packet arrival:

Calculate K̂cur.
if Minth ≤ K̂cur < Maxth then
Calculate drop probability d(K̂cur) using (1.2).

Mark or drop packet with probability d(K̂cur).

else if Maxth ≤ K̂cur then
Mark or drop packet.

end if
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1.2.1.2 BLUE

BLUE is an active queue management scheme proposed by Feng et al. in [33] with the aim
to improve RED performance in terms of packet loss rates and buffer size requirements
in the network. For this purpose, the authors use directly the packet loss rate and link
utilization to measure congestion. Indeed, the authors argue that even though the queue
length indicates congestion, it gives very little information as to the degree of severity of
this congestion. BLUE uses only a few configuration parameters:

• p, the packet marking/dropping probability.

• d1, the increase step for p.

• d2, the decrease step for p.

• freeze time, the minimum time interval between two successive updates of p.

The authors take d1 significantly larger than d2 because link underutilization can occur
when congestion management is either too conservative or too aggressive, but packet loss
occurs only when congestion management is too conservative.

Algorithm 2 BLUE

/* Notations: */
/* – p : probability which is used to mark or drop packets. */
/* – freeze time : minimum time interval between two successive updates of p. */
/* – d1 : amount by which p is incremented when the queue overflows. */
/* – d2 : amount by which p is decremented when the link is idle. */
/* – now : current date of the system. */
/* – last udpdate : date of the last update of p. */

⇒ Upon packet loss event:
if (now − last update) > freeze time then
p = p+ d1.
last update = now.

end if

⇒ Upon link idle event:
if (now − last update) > freeze time then
p = p− d2.
last update = now.

end if

⇒ Upon packet arrival:
Mark or drop packet with probability p.
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BLUE decouples the packet loss event (due to buffer overflow) from the link idle event.
Therefore, if BLUE detects packet loss caused by buffer overflow or if the queue length
exceeds a certain threshold value L, then the packet loss probability p is considered con-
servative. It is therefore increased by a step d1 if the update interval is greater than
freeze time. The aim of threshold L is to allow room to be left in the queue for transient
bursts and allows the queue to control queueing delay.

If BLUE detects a link idle event (i.e. the queue becomes empty), the packet loss
probability p is considered too aggressive. It is therefore decreased by a step d2 if the
update interval is greater than freeze time.

The authors claim that BLUE reduces the packet loss rate and keeps the queue stable
as compared to RED.

Algorithm 2 describes the BLUE algorithm.

1.2.1.3 Stabilized RED (SRED)

SRED (Stabilized RED) is a mechanism proposed by Ott et al. in [82] with the aim of
stabilizing the queue size. For this purpose, it uses a statistical technique to estimate the
number of active flows to pre-emptively drop packets with a load dependent probability.
More precisely, SRED estimates the number of active connections by using a small“zombie”
list to keep information about flows that have recently sent packets.

At initialization, the list is filled with the packet flow identifier for each incoming packet.
For each packet of the list, the Count variable is set to zero.

Once the list is full, when a packet arrives at the buffer, it is compared with a randomly
chosen zombie in the zombie list. If the incoming packet has the same flow identifier as the
zombie, then a hit is declared and the Count of the zombie is incremented by one. With
probability p, the zombie flow identifier is replaced by the flow identifier of the incoming
packet served for the comparison and the Count of the zombie is set to 0. With probability
1− p, there is no change of the zombie list.

The authors claim that the hit mechanism can be used to identify misbehaving flows
without keeping per-flow state. These kind of flows are more likely to cause hits than well
behaved flows and the count of a zombie coming from these flows is high. Moreover, the
authors estimated the number of active flows from the average hit rate as described below.
They first estimate the hit frequency P (t) at the arrival time of the t− th packet according
to the following formula:

P (t) = (1− α)P (t− 1) + αHit(t) , (1.4)

where α is a constant, and where:

Hit(t) =

{
0 if no hit ,
1 if hit .

(1.5)

The authors claim that 1/P (t) is a good estimate for the number N of active flows
until the arrival of the t − th packet. Instead of using the average queue size like RED,
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SRED computes the packet drop probability d(Kcur, N) (noted pzap in the original paper)
from the estimated number of active flows and the instantaneous queue size Kcur (noted q
in the original paper). First the function pSRED is defined as:

pSRED(Kcur) =


0 if 0 ≤ Kcur < B/6 ,
1
4
× pmax if B/6 ≤ Kcur < B/3 ,

pmax if B/3 ≤ Kcur < B ,
(1.6)

where B is the buffer capacity of the queue and pmax is the maximum early-drop probability.
Note that pSRED has only three possible levels of dropping (0, pmax/4 and pmax), and
that pSRED does not depend of the past behavior of the instantaneous queue length Kcur.
Figure 1.2 illustrates these levels of dropping.

Kcur

pSRED(Kcur)

pmax

4

pmax

B
6

B
3

B

Figure 1.2: SRED drop function

The authors proposed two versions of SRED : the “simple SRED” where the drop
probability d(Kcur, N) only depends on the instantaneous buffer size and on the estimate
P (t):

d(Kcur, N) = pSRED(Kcur)×min

(
1,
N2

2562

)
. (1.7)

For the second version named “full SRED”, the drop probability d(Kcur, N) depends
also on whether a packet caused a hit or not, and is computed as follows:

d(Kcur, N) = pSRED(Kcur)×min

(
1,
N2

2562

)
× (1 +Hit(t)×N) . (1.8)

Note therefore that d(Kcur, N) is an increasing function of the estimated number of
active flows. Algorithm 3 shows the principle of the SRED mechanism.

The simulation results have shown that SRED can stabilize, over a wide range of load
levels, the buffer occupancy at a level which is independent of the number of active connec-
tions (this level is equal to a specified target value equal to B/3). However, SRED suffers
from low throughput as shown in their simulation results.
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Algorithm 3 Stabilized RED

/* Notations : */
/* – P (t): represents the inverse of the estimated number of active flows.. */
/* – d(Kcur): packet drop probability. */

⇒ Upon packet arrival:
Compute P (t) according to (1.4).
Compute pSRED(Kcur) according to (1.6).
Compute d(Kcur) according to (1.7) for the simple SRED or (1.8) for the full SRED.
Mark or drop packet with probability d(Kcur).

1.2.1.4 Random exponential marking (REM)

The Random Exponential Marking (REM) active queue management scheme has been
proposed by Athuraliya et al. in [7, 8] with the aim to achieve high utilization and negligible
loss and delay. The authors attempt to match user input rates to link capacity and to
stabilize the queue size around a small target queue size regardless of the number of users
sharing the link. For this purpose, unlike RED which uses the mean queue length that must
steadily increase as the number of users increases to determine the marking probability,
REM uses a variable called price as a congestion measure in order to determine the marking
probability. The price steadily increases while the mean queue length is stabilized around
the target K̂T (denoted b�l in [7, 8]), as the number of users increases. To compute the
price variable denoted pl(t) (where t is the time period), REM uses the following elements:

• γ is a constant which controls the responsiveness of REM to changes in network
conditions.

• αl is a constant set by each queue individually,which trades off utilization and queue-
ing delay during transient changes in network conditions(αl is a weight).

• Kprev (noted bl(t) in the original paper) is the aggregate queue length at queue l in
period t. The queue length Kcur at period t+1 (noted bl(t+1) in the original paper)
is computed as :

Kcur = max (Kprev + xl(t)− cl(t), 0) .
• K̂T is the target queue length.

• xl(t) is the aggregate input rate to queue l in period t.

• cl(t) is the available bandwidth to queue l in period t.

The price variable is updated periodically or asynchronously based on:
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• the difference between input rate and link capacity which corresponds to the rate
mismatch and is measured by xl(t)− cl(t).

• the difference between queue length and target which corresponds to queue mismatch
and is measured by Kprev − K̂T .

REM explicitly controls the update of its price. For queue l, the price pl(t) in period t
is updated according to:

pl(t+ 1) = max

pl(t) + γ ×
weighted sum︷ ︸︸ ︷

( αl︸︷︷︸
weight

× (Kprev − K̂T︸ ︷︷ ︸
queue mismatch

) + xl(t)− cl(t)︸ ︷︷ ︸
rate mismatch

), 0

 , (1.9)

In order to use only local and aggregate information and avoid the need of per-flow
information, the rate xl(t)−cl(t) is approximated by the change in queue lengthKcur−Kprev

since xl(t)− cl(t) is the rate at which the queue length grows and since it is usually easier
to sample queue length than rate in practice. The price is therefore updated based only
on the current and previous queue length. Equation (1.9) then becomes:

pl(t+ 1) = max
(
pl(t) + γ × (Kcur − (1− αl)Kprev − αlK̂T ), 0

)
. (1.10)

When the number of users increases, the input rate exceeds the link capacity or there
is excess backlog to be cleared from the queue. The mismatches in rate and in queue grow,
price is then incremented since the weighted sum of these mismatches is positive increasing
as a result the marking probability. This sends a stronger congestion signal to the sources
which then reduce their rates.

When the sources rates are too small, the input rate does not exceed the link capacity
and there is no excess backlog to be cleared and the mismatches will be negative. The price
is then decremented making the marking probability decrease and raising source rates.

The mismatches can drive to zero, yielding high utilization and negligible loss and delay
in equilibrium. In equilibrium, the price stabilizes and this weighted sum must be zero.
This can hold only if the input rate equals capacity (xl = cl) and the backlog equals its

target (K̂cur = K̂T ). The buffer will be cleared in equilibrium if the target queue is set to
zero.

Then the marking/dropping probability d(t) of a packet at queue l in period t is deter-
mined by an exponentially marking probability function as :

d(t) = 1− φ−pl(t) , (1.11)

where φ > 1 is a constant. Algorithm 4 gives the pseudo-code of the REM scheme.
The authors claim that REM is stable for a more narrow variety of network environ-

ments than PI and LRED, although it has a quicker response than PI. However, the problem
with REM is to determine the values of the three constants α, γ and φ. Athuraliya et al.
[9, 8, 6] explain each of these constants and recommend how to set up these constants:
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Algorithm 4 REM

⇒ At each interval of time:
Compute the price pl(t+ 1) using (1.10).
Compute the packet drop probability d(t+ 1) using (1.11).

⇒ Upon packet arrival:
Mark or drop packet with probability d(t+ 1).

• α determines the prominence given to the queue length when determining the level of
congestion. It trades off utilization and queue length in transient change of network
condition with a smaller α producing a higher utilization. A value of α = 0.1 is
chosen in [8].

• Concerning the parameter γ, it determines the speed of convergence of the algorithm.
A larger value of γ gives a faster convergence but it also incurs a higher risk of
oscillatory queue. When choosing γ, consideration should be given to the dynamics
at the router. If the congestion level at the router is changing constantly, a larger
value of γ should be used for the algorithm to track the changes. A value of γ = 0.001
is chosen in [8].

• The parameter φ determines the range of loss or marking probability, which also
depends on the range of the price pl(t). Ideally, φ should be chosen so that the end-
to-end probability observed at hosts fluctuates around 0.5. A value of φ equals to
1.001 is recommended in [8] and a value of φ equals to 1.05 or 1.1 is recommended
in [9].

REM was designed to increase the link utilization at a router while maintaining a small
queue length. However, REM does not provide adequate fairness which is sacrificed at
the cost of higher utilization. Moreover, under heavy congestion or with large stable drop
probability, REM suffers from a long response time. In addition, when the buffer size is
small, the responsiveness of REM will becomes worse as well.

1.2.1.5 Double slope RED (DSRED)

Double Slope RED (DSRED) has been proposed by Zheng and Atiquzzaman in [102, 103]
with the aim to improve the throughput and delay characteristics of RED. DSRED uses a
two-segment drop function which provides much more flexible drop operation than RED
as shown in Figure 1.3.

DSRED introduces the following additional variables:

• Kl: threshold for the average queue length to start packet dropping at the buffer.
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Figure 1.3: DSRED’s drop function

• Kh: threshold for average queue length to change the drop function drop.

• Km: threshold for average queue length to change the drop function drop.

• α: drop function slope for the first linear segment between Kl and Km.

• β: drop function slope for the second linear segment between Km and Kh.

• γ: mode selector for adjusting drop function slopes.

Like RED, DSRED uses the average queue size K̂cur (noted avg in the original paper)
as a congestion measure. According to the value of the average queue size, DSRED uses
one of the drop functions expressed as:

d(K̂cur) =


0 if K̂cur < Kl ,

α(K̂cur −Kl) if Kl ≤ K̂cur < Km ,

1− γ + β(K̂cur −Km) if Km ≤ K̂cur < Kh ,

1 if Kh ≤ K̂cur ≤ N ,

(1.12)

where α and β are the slopes of the two segments and are given by:

α =
2(1− γ)
Kh −Kl

, (1.13)

β =
2γ

Kh −Kl
. (1.14)
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Parameter α is the slope of the drop function corresponding to an average queue size
between Kl andKm whereas β is the slope of the drop function corresponding to an average
queue size between Km and Kh. The weighted average queue size K̂cur is computed as for
the RED scheme:

K̂cur = (1− ω)K̂cur + ωKcur , (1.15)

where Kcur is the instantaneous queue size.
The parameter γ adjust the operating mode of DSRED. The drop rate can be increased

and decreased by adjusting γ. This allows DSRED to handle different congestion situations,
that is to increase the drop rate with higher rate instead of a constant rate when congestion
increases and to reduce the drop probability in case of a low congestion level.

The pseudo-code describing the implementation of the DSRED scheme is given by
Algorithm 5.

Algorithm 5 DSRED

/* Notations : */

/* – K̂cur: (weighted) average queue length. */

/* – d(K̂cur): packet drop probability. */

⇒ Upon packet arrival:
Compute the average queue length K̂cur using (1.15).

Compute the packet drop probability d(K̂cur) using (1.12).

Mark or drop packet with probability d(K̂cur).

Even though DSRED shows an improved packet drop performance resulting in a higher
throughput than RED, it adds several additional parameters.

1.2.1.6 Adaptive RED version Feng et al.

In order to increase the link utilization rate and reduce packet loss rate Feng et al. proposed
in [34] an adaptive version of RED denoted AREDFeng. The authors investigated in [34]
the impact of traffic load on early detection mechanisms. In periods of heavy congestion, in
order to avoid packet loss due to buffer overflow, RED must send congestion notifications
to a sufficient number of sources so that the offered load is reduced. In order to prevent the
link from being underutilized, RED must not also send congestion notifications to too many
sources. In case of N sources sharing a bottleneck link, sending one congestion notification
to one source correspond to a reduction of the offered load by a factor of (1− 1/2N) since
TCP reduces the size of its congestion window by 1/2. For large N , the impact of one
congestion notification decreases but for small N the impact increases. Hence, in case of
large N , if RED is not more aggressive then the queue remains close to fully occupied and
thus behaves like Drop Tail. In case of small N , if RED is not less aggressive, then too
many sources receive congestion notifications and reduce their transmission rate provoking
underutilization of the link. To optimize performance, the authors made the following
recommendations: for small number of connections, early detection should be conservative
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in order to achieve high link utilization rate. But in case of large number of connexions, a
high link utilization is achieved whatever the value of Maxp. However, the early detection
should be aggressive in order to reduce packet loss rate.

Consequently, the authors conclude that adapting the parameterMaxp according to the
traffic load improves the performance of RED and propose an algorithm for this purpose.
The algorithm uses the average queue length to infer the aggressive or conservative behavior
of the early detection. If the average queue size is around theMinth than the early detection
mechanism is too aggressive. As a result, the value of Maxp is decreased by a constant
factor α. Otherwise, if the average queue size is aroundMaxth then it means that the early
detection is too conservative. In this case the value of Maxp is increased by a fixed factor
β. However, if the average queue size oscillates between Minth and Maxth the authors
do not adapt Maxp because they consider that the early detection mechanism behaves as
desired and can avoid packet loss rate and link underutilization.

Algorithm 6 describes this scheme.

Algorithm 6 Feng’s and al. adaptive RED algorithm

/* – K̂cur : current weighted average queue size. */

/* Initialization of fixed parameters */
Initialize Minth and Maxth.
α← 3.
β ← 2.

/* Adaptation of Maxp. */

for each K̂cur Update do
if (Minth < K̂cur < Maxth) then
status = Between.

else
if (K̂cur < Minth and status �= Below) then
status = Below.
Maxp ← Maxp

α
.

else
if (K̂cur > Maxth and status �= Above) then
status = Above.
Maxp ← Maxp × β.

end if
end if

end if
end for

1.2.1.7 Adaptive RED version Floyd et al.

Floyd et al. proposed in [41] another version of adaptive RED with minimal changes
to the original adaptive RED (AREDFeng) described in the previous paragraph. The
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aim of this proposal is to achieve a predictable average queuing delay, and to alleviate
the problem of variable delay and parameters sensitivity. The proposal of Floyd et al.
(denoted AREDF loyd) retains the basic insight of AREDFeng which consists in adapting
automatically RED parameters. In particular, the ARED design consists in setting the
parameter wq automatically based on the link speed, and in adapting the parameter Maxp
in response to the queue length so as to increase the throughput and achieve a reasonable
average queue length.

However, AREDF loyd differs from AREDFeng in the following points :

• AREDF loyd uses a target range which is half away between Maxth and Minth inside
which the average queue size should oscillate. AREDFeng brings the average queue
size between Minth and Maxth.

• It uses a time interval at which Maxp is adapted instead of adapting like AREDFeng

at every packet arrival. Hence, this way Maxp is adapted slowly and infrequently.
The authors claim that this gives AREDF loyd a more robust performance.

• For robustness, AREDF loyd also chooses to use an AIMD (Additive Increase Mul-
tiplicative Decrease) approach to adapt Maxp instead of an MIMD (Multiplicative
Increase Multiplicative Decrease) like AREDFeng.

• Moreover, AREDF loyd boundsMaxp in order to ensure an acceptable performance of
ARED during a transition period where, due to the slow adaptation ofMaxp, ARED
is not able to adapt Maxp to its next value after a sharp change in the congestion
level.

Algorithm 7 illustrates this approach. INTERVAL is the only additional parameter.
The authors set it to 0.5 seconds. At each time interval, if the average queue size exceeds
its target range thenMaxp is increased additively by the parameter α. If the average queue
size is below the target range, then Maxp is decreased multiplicatively by the parameter
β (see the Algorithm 7 for the setting of α and β). The setting of these two parameters
is performed so as to avoid the oscillations of the average queue size from above to below
the target range just after a single modification of the the value of the parameter Maxp.
But if the average queue size remains within its target range, then no modification of the
value of Maxp is performed.

The authors claim that AREDF loyd achieves a predictable average delay. However, ex-
periments reported in [41] showed that the queue size still exhibits pronounced oscillations.

1.2.2 Proposals requiring network scenario parameters

1.2.2.1 GREEN

The GREEN algorithm has been proposed by Feng et al. in [36, 60]. This scheme is based
on the estimation of the packet loss rate by using a mathematical model of the steady-state
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Algorithm 7 Floyd’s and al. adaptive RED algorithm

/* K̂cur : weighted average queue size at the beginning of the current interval. */

/* Initialization of fixed parameters */

Set K̂T as a function of the delay target.
Minth ← max(5, delaytarget×C

2
) where C is the link capacity.

Maxth ← 3×Minth.
INTERV AL← 0.5 seconds.
target range← [Minth + 0.4× (Maxth −Minth),Minth + 0.6× (Maxth −Minth)].
α← min(0.01, Maxp

4
).

β ← 0.9.

/* Adaptation of Maxp. */
for each INTERVAL do
if (K̂cur > target range and Maxp ≤ 0.5) then
Maxp ← Maxp + α.

else
if (K̂cur < target range and Maxp ≥ 0.01) then
Maxp ←Maxp × β.

end if
end if

end for

behavior of TCP [73]. This model is derived from the formula described on page 13 by
Equation (1) of a connection’s throughput presented by Mathis et al. in [73].

If L is the link capacity and N is the number of active TCP flows that share fairly the
link bandwidth, then the bandwidth share of a flow is equal to L/N and the packet loss
probability p, is deduced by the following steady-state TCP formula derived from equation
(1) the TCP square root formula :

p =

(
N ×MSS × c
L×RTT

)2
. (1.16)

Note however that (1.16) provides good estimates only when p is of the order of a few
percent [73]. Congestion notification is more aggressive for large N and small RTT . More-
over, since this formula needs the RTT, the MSS and the number of TCP connections as an
input, GREEN should estimate their values without requiring per-flow state information.
The MSS parameter is estimated by the router by looking at the size of each packet.

In order to estimate RTT for flows, GREEN does not use any per-flow state. The
authors have actually proposed two methods. The first approach requires TCP senders
to embed their current RTT estimates within the TCP header. This estimated RTT
is the difference between the sending time of a packet by the source and the reception
time of its corresponding ACK by the same source. The second approach is to use the
IDMaps service [45], a scalable Internet-wide service that aims to provide Internet distance

40



1.2. RED with aggregate control

estimates. However, IDMaps is currently a theoretical service which is not yet deployed
in the Internet. Note that there exists other methods as the Global Network Positioning
(GNP) proposed by Ng and Zhang in [81] to estimate the round trip time.

The number of active flows is estimated by counting the number of flows passing through
the router in a given time interval. However, a long time interval may cause GREEN to
overestimate the number of flows and reduce the overall link utilization. A short time inter-
val may cause GREEN to underestimate the number of flows, resulting in over-provisioning
of the link bandwidth. Each flow is identified by the source and destination identification
numbers contained in the IP packet header. The estimated packet loss rate p, is used as
the drop probability.

GREEN regulates TCP flows over the same link to a fair sending rate by preventing
shorter RTT flows from consuming more than their fair share of the bandwidth, and hence
prevents them from inducing congestion.

Algorithm 8 gives the pseudo-code of the GREEN scheme described in [60] which rep-
resents an improvement of the original version of GREEN described in [36]. This improve-
ment relies on the fact that it is designed to achieved high link utilization in the presence
of short-lived or low-bandwidth flows, unlike the initial version.

For the new version of GREEN proposed in [60], the authors introduce an additional
parameter γ(t) in (1.16) in order to adapt the packet drop function according to the link
utilization rate and to the number of packets lost during the last time interval. Then the
drop probability becomes:

p =

(
N ×MSS × c
γ(t)× L× RTT

)2
.

The parameter γ(t) is adapted as follows:

• If packets are lost during the last time interval then:

γ(t+ 1) = 0.95 γ(t) .

This means that γ decreases by a factor of 0.95. The packet loss probability in-
creases as a result. The constant 0.95 allows the reduction of wide oscillations in link
utilization. This configuration of γ allows the detection of a congestion increase.

• Otherwise, if the link utilization rate is less than 98%, then γ should be configured
so that the link utilization is decreased:

γ(t+ 1) =
1 + currentUtil

2× currentUtil γ(t) .

This means that γ increased by a factor depending on the current link utilization rate
currentUtil. The increase of γ leads to a decrease of the packet loss probability. The
authors choose this factor in such a way that a link utilization rate of 50% is increased
to a new link utilization of 75%. This configuration of γ allows the detection of a
congestion decrease.

41



Chapter 1. RED and some of its variants

Algorithm 8 GREEN

/* Notations : */
/* – RTT : estimated round-trip time for a given flow. */
/* – p: packet loss probability for a given flow. */
/* – MSS: maximum segment size. */
/* – c: constant value depending on the acknowledgment strategy used. */
/* – N : estimated number of flows. */
/* – L: capacity of the outgoing link. */
/* – γ(t): constant at time t. */
/* – window: window of time used to estimate the number of flows and to estimate the
current link utilization by counting the number of departures for this given window of
time. */
/* – currentUtil: current link utilization. */
/* – queueDrops: number of queue drops due to overflow. */

⇒ Upon packet arrival:
RTT ← obtainRTT (pkt).

p←
(

N×MSS×c
γ(t)×L×RTT

)2
.

Mark or drop packet with probability p.
if currentT ime()− lastUpdate ≥ window then
Update variables currenUtil, N and queueDrops.
lastUpdate← currentT ime().
if queueDrops > 0 then
γ ← 0.95γ.

else if currentUtil < 0.98 then
γ ← 1+currentUtil

2×currentUtilγ.
end if

end if

This way the authors claim to overcome the problems detected with the first version of
GREEN. Nevertheless, the authors indicate the limitations of their current model due to
the behavior of γ. The parameter γ oscillates between very high and low values. A large
number of flows is needed to maintain a sustained high link utilization. For small number
of flows, to achieve high link utilization GREEN tries to increase γ without success since
there is not enough contention. The authors are considering a “smarter” GREEN that
attempts to increase γ in such cases.

1.2.2.2 Adaptive Virtual Queue (AVQ)

Adaptive Virtual Queue (AVQ) has been proposed by Kunniyur and Srikant in [67, 66, 68]
with the motivation to design an AQM scheme that results in low-loss, low-delay and high
link utilization rate at the link. AVQ is a virtual queue-based AQM scheme that detects
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congestion based on the arrival rate of the packets at the link.
AVQ uses a virtual queue with a virtual service capacity that is less than the actual

capacity of the link. The virtual capacity at each link is modified such that the total flow
entering each link achieves a desired utilization of the link.

It also uses as an input to the model, system parameters like the maximum round trip
time (RTT), the minimum number of active connections N in order to find the fastest rate
at which the marking probability is adapted and therefore to achieve the system stability.
The adaptation rate that is meant to maintain the system stability, denoted by α, is
computed so as to achieve a desirable link utilization rate.

The variables used by the AVQ scheme are :

• γ: desired utilization of the link (γ ≤ 1).

• α: damping factor used to determine how fast the marking probability is adapted at
the link to the changing network conditions.

• C: capacity of the link.

• C̃: virtual capacity of the link.

• B: buffer size.

• B̃: virtual buffer size.

• λ: arrival rate at the link.

The AVQ algorithm described in Algorithm 9 (page 45) works as follows:

• The router maintains a virtual queue whose link capacity is C̃ ≤ C and whose buffer
size is equal to the buffer size of the real queue. The virtual and the real queue differ
by their link capacity and the size of their queue.

• At each packet arrival:

– The virtual queue length is computed as the difference between the previous
virtual size and the number of bytes served since the arrival of the previous
packet. The service of packets is performed according to the capacity of the
virtual capacity of the link.

– A fictitious packet is enqueued in the virtual queue if there is sufficient space in
the buffer. No actual enqueueing or dequeueing of packets is necessary in the
virtual queue. The algorithm just keeps track of the virtual queue length.
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– If the new packet overflows the virtual buffer, then the packet is discarded from
the virtual buffer and the real packet is marked by setting its ECN bit to 1 or
dropped, depending upon the congestion notification mechanism used by the
router.

– If the packet does not overflow the virtual buffer size then the virtual queue size
is updated by adding the number of bytes of the arrived packets to the virtual
queue.

– the virtual queue capacity is updated according to the following differential
equation:

˙̃
C = α(γC − λ) . (1.17)

The principle of this equation is that marking has to be more aggressive when

the link utilization exceeds the desired utilization and should be less aggressive
when the link utilization is below the desired utilization. This situation can
be viewed as a token bucket where tokens are generated at rate αγC up to a
maximum of C and by each arrival of a packet, α times the size of packet tokens
are removed from the bucket.

This algorithm is evaluated through the experiments conducted in [67, 66, 68]. The
experiments show that AVQ maintains a very small queue length and the system stabilizes
after a load change. Indeed, the average and the standard deviation of the queue length
before and after the introduction of a load change are almost similar. AVQ manages also
to achieve a link utilization rate close to the target link utilization rate. In addition, the
packet loss rate experienced by AVQ is lower than other schemes like PI, REM and RED.

There are two parameters that have to be chosen to implement AVQ:

• The desired utilization γ (it determines the robustness to the presence of uncontrol-
lable short flows).

• The damping factor α (it determines how fast one adapts the marking probability at
the link to the changing network conditions).

Both parameters α and γ determine the stability of the AVQ algorithm and the authors
provide a design rule to choose these parameters.

Theorem 1 Suppose that the feedback delay R+, the number of users N− and the utiliza-
tion γ̂ are given. Find α� satisfying:

ωR+ + arctan

(
ω

K11

)
=
π

2
, (1.18)
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Algorithm 9 Adaptive virtual queue (AVQ)

/* Notations : */
/* – B: buffer size. */
/* – V Q: number of bytes currently in the virtual queue. */
/* – s: arrival time of previous packet. */

/* – C̃: virtual capacity of the link. */

⇒ Upon packet arrival:
t← current time.
b← number of bytes.
/* Update virtual queue size */

V Q← max(V Q− C̃(t− s), 0).
if V Q+ b > B then
Mark or drop packet in the real queue.

else
/* Update virtual queue size */
V Q← V Q+ b

end if
/* Update virtual capacity */

C̃ = max(min(C̃ + α× γ × C(t− s), C), 0).
/* Update virtual capacity */
s← t.

where ω is defined as:

ω(α�, R+, N−, γ̂) =
1√
2

√
(K2

12 −K2
11) +

√
(K2

12 −K2
11)

2 + 4K2
2(α

�)2 , (1.19)

and where:

K11 =
N−

γ̂C(R+)2
, K12 = K2 =

3

2

γ̂C

N− .

Then, for all α < α�, the system is stable. Moreover, for every α < α�, the system
remains stable for all N > N−, γ < γ̂ and R < R+.

1.2.2.3 Proportional controller (P controller)

Hollot et al. proposed the P controller in [52, 50] by performing a simple transformation of
the RED scheme. The authors argue that even if the low pass filter (Equation 1.1) allows
transient burst pass through, from a control standpoint averaging can lead to instability
and low frequency oscillations of the queue size. In addition, this design of RED can lead
to the sluggishness of the response time of the control system.

In order to make the system more responsive, the authors remove the low-pass filter by
setting the averaging weight to one. This is equivalent to compute the loss probability by
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using the instantaneous queue size Kcur (denoted by q in the original paper) instead of the

average queue size K̂cur as:

p = Maxp
Kcur −Minth
Maxth −Minth . (1.20)

Algorithm 10 describes the P controller.

Algorithm 10 P controller

/* Notations : */
/* – p: probability to mark or drop a packet. */

⇒ Upon packet arrival:
Compute packet drop probability p using (1.20).
Mark or drop packet packet with probability p.

Given the capacity C of the bottleneck link in packets/s, the minimal number of TCP
connections N− and the maximum round trip time R+, the authors compute the slope L
of the drop function and deduce Maxth −Minth for which the system is stable as follows:

L =

∣∣∣∣∣∣
(
1 + iωg

ptcp

)(
1 + iωg

pqueue

)
(R+C)3

(2N−)2

∣∣∣∣∣∣ ,
and:

Maxth −Minth =
Maxp
L

,

where the variables ωg, ptcp and pqueue are defined as follows:

ωg =

(
2N−

(R+)3C

) 1
2

, ptcp =
−2N−

(R+)2C
, pqueue =

−1
R+

.

Using simulations, the authors showed that the P controller responds much more quickly
to load variations whereas RED is quite sluggish to load changes. That authors also showed
that, Unlike RED, the increase of RTT do not change significantly the performance of the P
controller. However, the P controller suffers from a limitation which makes it impractical
to implement under certain situations [52, 50]. For stability of the system, a relatively
shallow slope of the drop function is required and an increased slope of leads to instability.
Buffer size limitations results in a large value of Maxp that leads to oscillations. If the
buffer size is increased it could lead to large queueing delay. Hence, the authors proposed
an integral controller PI to regulate the queue level to a target queue size and also decouple
the average queue size from the marking probability. So that the regulated output (queue
size) could become independent from the level of load or the RTT.
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1.2.2.4 Proportional integral controller (PI controller)

Proposed also by Hollot et al. in [52, 50], the PI controller is designed to increase the link
utilization while maintaining a small queue size. For this purpose, the PI scheme jointly
uses queue length and input rate as a congestion measure to achieve better stability of the
instantaneous queue size by trying to regulate the queue length to the expected value K̂T

(denoted by qref in the original paper) using queue length mismatch and its integral. The
integral of queue length mismatch is related in practice to the input rate mismatch.

At each packet arrival, the packet is dropped with a probability p equal to:

p = a× (Kcur − K̂T )− b× (Kprev − K̂T ) + pold , (1.21)

where Kcur and Kprev are respectively the actual instantaneous queue size and the previous
instantaneous queue size (it corresponds respectively to q and qold in the original paper), and
pold is the previous dropping/marking probability. The dropping probability p is updated
at each interval of time INTERVAL (the variable INTERVAL is equal to 1/fs where fs is
the sampling frequency in the original paper). Algorithm 11 gives the pseudo-code of the
PI controller scheme.

Algorithm 11 PI controller

/* Notations : */
/* – p: probability to mark or drop a packet. */

⇒ At each interval of time INTERVAL:
Compute packet drop probability p using (1.21).

⇒ Upon packet arrival:
Mark or drop packet packet with probability p.

The authors provides a design rule in [52, 50] through control-theory analysis to deter-
mine the constants a and b. Given the capacity C of the bottleneck link in packets/s, the
minimal number of TCP connections N− and the maximum round trip time R+ for the
considered system, the parameters a and b under which the system is stable for N ≥ N−

and R ≤ R+ are computed as follows:

a = KPI

(
1

2fs
+

1

ωg

)
, (1.22)

b = KPI

(
− 1

2fs
+

1

ωg

)
, (1.23)

with the constants ωg and KPI equals to:

ωg =
2N−

R+2C
,
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and:

KPI = ωg

∣∣∣∣∣∣
1 + iωg

− 1
R+

(R+C)3

(2N−)2

∣∣∣∣∣∣ .
Note that the following relation should be satisfied: ωg  1/R+.

Nevertheless, the PI controller has some drawbacks. For example, under heavy con-
gestion or with a large stable drop probability, PI suffers from a long response time. In
addition, when the buffer size of the queue is small, the responsiveness of PI will become
worse as well. Moreover, since the marking probability is directly modified and this update
has to be slow enough for system stability, the scheme exhibits sluggishness when short
flows are introduced.

1.2.2.5 LRED

LRED (Loss Ratio based RED) is an active queue management scheme recently proposed
by Wang et al. in [97]. The authors argue that since RED and most of its variants
use the queue length as a congestion indicator, these approaches suffer from unstable
behaviors. The PI controller use both queue length and traffic input rate as congestion
indicators. Proportional controller mechanisms such as PI calculate the suitable packet
drop probability p according to the instantaneous queue length Kcur using the following
control equation formulated as:

δp = Hc δKcur .

where, δKcur = Kcur−K̂T and K̂T is the expected queue length under the steady state (Kcur

and K̂T corresponds to q and q0 respectively in the original paper). Even if such mechanisms
enhance the stability of the system, as in the case of RED and most of its variants, the
average queue size increases with the traffic load and causes overflow and underflow of
the buffer. In order to make the queue management schemes more responsive even if
the number of TCP flows varies significantly, the authors of LRED employ a closed-form
relationship between packet loss ratio and the number of TCP flows as a complement to the
queue length to adjust dynamically the packet drop probability. The authors argue that
the packet loss ratio is an important index in designing a buffer management mechanism
since:

• An increasing packet loss ratio is a clear indication that severe congestion occurs,
and that aggressive packet dropping is needed. LRED dynamically increases and
decreases the packet drop probability.

• A decrease of packet loss ratio can serve as a signal that congestion is receding and
consequently that packet drop action can made less aggressive (moderate).

To estimate the degree of link congestion, two indications are employed by LRED:
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• Packet loss ratio: it is used in large time-scale to dynamically adjust the packet drop
probability according to the measured packet loss ratio and to make the scheme more
adaptive and robust.

• Queue length: it is used in small time-scale, upon the arrival of each new packet, to
make the scheme more responsive in regulating the length to an expected value K̂T .

LRED measures packet loss ratio in the large time-scale, and updates the packet drop
probability in the small time-scale at each packet arrival. The packet drop probability p is
computed every mp seconds (a duration which must be less than the RTT) as:

p = l(k) + β

√
l(k)(Kcur − K̂T ) . (1.24)

where l(k) is an estimate of the packet loss ratio. Based on equation (1.24), the authors
give a design rule for small time scale :

1. When the queue length is equal to K̂T , the packet drop probability will be equal to
the packet loss ratio.

2. When the queue length is larger or smaller than K̂T , the packet drop probability will
be also larger or smaller than the packet loss ratio.

The packet loss ratio l(k) is computed as the ratio of the number of dropped packets
to the number of total arrivals of packets during the latest M measurements periods. The
estimate l(k) is then obtained as an EWMA of l(k) by summing:

l(k) = l(k − 1)×mw + (1−mw)× l(k) .
where:

l(k) =

∑M−1
i=0 Nd(k − i)∑M−1
i=0 Na(k − i)

. (1.25)

The relationship between the different timescales is illustrated in Figure 1.4. The
authors tookM = 4 in order that the average packet drop probability is as close as possible
to the packet loss ratio. Algorithm 12 shows the pseudo-code describing the implementation
of the LRED scheme.

As for REM, PI, SFC or AVQ, design rules are proposed for LRED in order to set
the parameter β. Given the capacity C of the bottleneck link in packets/s, the minimal
number of TCP connections N− and the maximum round trip time R+ for the considered
system, the parameter should satisfy the following inequality:

β < β̂ = min

(
β̄,

√
2η(2N−)4

(R+C)3

)
, (1.26)
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M = 4

M = 4
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Time (s)mp
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Figure 1.4: Large scale (M) and small scale (mp) time adaptation

where η is a fixed value is equal to 3/2 and where β̄ is the solution of the equation:

R+ω + arctan

(
ω

K11

)
=
π

2
.

The parameter ω is computed as follows:

ω =

√√
K4
11 + 4K2

cH
2
c −K2

11

2
,

where:

K11 =
2N−

CR+2
, Kc =

C2

ηN− , Hc = β̄

√
ηN−2

C2R+2
.

Algorithm 12 LRED

/* Notations : */
/* – Na(k): number of packets arrived in the k − th period. */
/* – Nd(k): number of packets dropped in the k − th period. */
/* – l(k): packet loss ratio during the latest M measurements periods. */
/* – l(k): packet loss ratio. */
/* – mp: time interval between two consecutive updates of l(k). */
/* – p: probability to mark or drop a packet. */

⇒ Update of l(k) every mp seconds:

Compute l(k) =
∑M−1

i=0 Nd(k−i)∑M−1
i=0 Na(k−i) .

Compute l(k) = l(k − 1)×mw + (1−mw)× l(k).
⇒ Upon packet arrival:
Compute packet drop probability p using (1.24).
Mark or drop packet with probability p.
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The authors of LRED claim that compared to existing AQM schemes such as SRED,
BLUE, ARED and AVQ, LRED offers more stable control of queue length around the
expected value, and also achieves high link utilization, faster response time and better
robustness.

1.3 RED with per flow accounting

1.3.1 Flow random early drop (FRED)

In order to address the problem of non-responsive flows, Lin and Morris have proposed
in [70] a mechanism named Flow RED (FRED) for protecting routers against these non-
responsive flows and thus for reducing the unfairness effect found in RED, notably the
fairness problem between TCP and UDP flows. Instead of indicating congestion to ran-
domly chosen connections by dropping packets proportionally, FRED generates selective
feedback to a filtered set of connections which have a large number of packets queued. In-
deed, FRED uses per-active flow accounting to compute a loss rate for each flow depending
on the flow’s buffer size. If a flow continually occupies a large amount of the queue’s buffer
space, it is detected and limited to a smaller amount of the buffer space. The cost of this
per-active flow accounting (i.e. flows that have packets buffered) is proportional to the
buffer size and independent of the total number of flows, except to the extent that buffer
use depends on the number of active flows.

The authors classify the type of traffic into 3 categories:

• Non adaptive traffic: for connections that consume the bandwidth they require what-
ever the level of congestion (examples: audio, video applications, UDP flows).

• Robust traffic: for connections that consume bandwidth until a congestion is detected
(example: bulk data transfer).

• Fragile traffic: for connections that are slow to adapt to more available bandwidth
or that are sensitive to packet losses (example: telnet).

The algorithm of FRED isolates ill-behaved flows and contain attacks from these non
adaptive flows by raising their loss rate, protects bursty and low speed (fragile) flows and
handle robust flows as fairly as RED does.

FRED introduces the following parameters:

• Minq: minimum number of packets each flow should be allowed to buffer.

• Maxq: maximum number of packets each flow should be allowed to buffer.

• avgcq: an estimate of the average per-flow buffer count. Flows with fewer than avgcq
packets queued are favored over flows with more.
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• qlen: count of buffered packets for each flow that currently has any packets buffered.

• strike: counts for each flow the number of times the flow has failed to respond to
congestion notification. FRED penalizes flow with high strike values.

The algorithm of FRED works as follows:

• An arriving packet belonging to flow i is definitely dropped if:

– qleni ≥Maxq.
– The weighted average queue size avg exceeds Maxth and qleni > 2avgcq.

– qleni ≥ avgcq and strikei > 1. The strike variable is incremented whenever
one of these three conditions above are satisfied. These 3 conditions are used to
identify and manage non-adaptive flows.

– avg ≥ Maxth (like RED original).

• An arriving packet belonging to flow i is dropped randomly using the RED drop
function if Minth ≤ avg < Maxth and qleni > Minq.

The computed packet loss probability increases with the good run length that is the
number of packets not lost since last drop. This random drop is used for robust flows.

To protect fragile flows, an incoming packet is always accepted if the connection has
fewer than Minq packets buffered and if the average buffer size is less than Maxth. Other-
wise arriving packets are subject to RED’s random drop. This way, FRED decides whether
to deterministically accept a packet from a low bandwidth connection. Unlike RED which
estimates the average queue length at each packet arrival and misses the dequeue move-
ments when no packets arrived, FRED averages at both arrival and departure of a packet.
The authors gives the following example: if one packet arrives at time 0 when both the
instantaneous and the average queue length have the same value equal to 500 packets and
if the next packets arrives 250 packet times (service time of a packet) later, then the in-
stantaneous queue size will be equal to 250 whereas the average queue size will remain
to 500 packets. FRED avoids such miscalculation that could result in low link utilization
(unnecessary packet drops). In addition, FRED does not modify the average queue size if
the incoming packet is dropped unless the queue is empty. FRED computes the average
per-connection queue length avgcq by dividing the aggregate average queue length avg by
the current number of active flows.

While FRED provides rough fairness, since it needs to track per-flow state information,
it could face scalability problems [102] and also requires a sufficient buffer space in order
to detect non responsive flows [35].
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1.3.2 Stochastic Fair Blue (SFB)

Stochastic Fair Blue (SFB) is an active queue management scheme proposed by Feng et al.
in [33, 35] with the aim to protect TCP flows against non-responsive flows (for example
UDP flows) and therefore achieving fairness between these two kind of flows. SFB detects
and rate-limits non-responsive flows to a fixed amount of bandwidth across the bottleneck
link by combining two independent algorithms:

• The BLUE algorithm which uses a single marking probability to mark or drop packets
when congestion occurs. BLUE is presented in Section 1.2.1.2.

• A Bloom filter [14] that allows a classification of objects through the use of multiple
independent hash functions. This allows SFB to avoid the use of per-flow state
information.

The algorithm of SFB is summarized as follows:

• SFB maintains N × L accounting bins which are organized in L levels with N bins
at each levels.

• SFB maintains L independent hash functions. At level i, the hash function h[i]
(0 ≤ i ≤ L− 1) maps the flow into the j-th bin (0 ≤ j ≤ N − 1) of that level.

• The accounting bins track the queue occupancy statistics of traffic packets belonging
to a particular bin. Therefore, the bins behave like virtual subqueues.

• Each subqueue or bin has a mark/drop probability pm updated according to the bin
occupancy.

• As a packet arrives at the queue, it is hashed into one of the N bins of the L levels.
If the subqueue fill level is larger than a certain threshold, the pm for the bin is
increased by a fixed step of δ. If it is equal to zero, then pm is decreased by the same
fixed step of δ.

The traffic rate of non responsive flows is not reduced in case of packets drops due to
the absence of the congestion avoidance algorithm for this kind of traffic. Therefore their
corresponding pm quickly reaches 1 in all the L bins into which it is hashed. Whereas
for the TCP flows, the corresponding pm remains less than 1 due to the presence of the
congestion avoidance algorithm. At a given bin, if pm = 1, the packet belonging to this
bins is classified as originating from a non-responsive flow. Otherwise, it is classified as
originating from a TCP flow.
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A non-responsive traffic flow is driven into the path of bins with pm = 1 at each level.
Therefore, the total marking probability for non-responsive flows is 1 and their rates is
limited (there is a fixed amount of bandwidth for this particular flows). For TCP traffic,
the total marking probability pmin is less than 1. TCP traffic is, thus, protected from
non-responsive flows. Packets are dropped or marked with probability pmin.

Algorithm 13 Stochastic Fair Blue (SFB) algorithm

/* Notations : */
/* – L: number of levels, N : number of bins per level. */
/* – B[l][n]: bin number n ∈ {0, . . . , N − 1} belonging to level l ∈ {0, . . . , L− 1}. */
/* – hi with i ∈ {1, . . . , L}: hash function i. */
/* – qlen: instantaneous queue size of a specified bin. */
/* – pm: probability which is used to mark or drop packets (marking probability). */
/* – pmin: minimum pm value of all bins to which the flow is mapped into. */
/* – δ: amount by which pm is incremented or decremented. */
/* – bin size: capacity of the bins. */

⇒ Upon packet arrival:
Calculate hashes h0, h1, . . . , hL−1.
Update bins at each level: the arriving packet is put into bins B[0][h0], . . . , B[L−1][hL−1].
for i = 0 to L− 1 do
if B[i][hi].qlen > bin size then
B[i][hi].pm+ = δ.
Drop packet.

else
if B[i][hi].qlen = 0 then
B[i][hi].pm− = δ.

end if
end if

end for
pmin = min(B[0][h0].pm, . . . , B[L− 1][hL−1].pm).
if pmin = 1 then
ratelimit().

else
Mark or drop packet with probability pmin.

end if

SFB can protect TCP-friendly flows from non-responsive flows without maintaining
per-flow state. However, the authors indicate the limit of SFB in its ability to protect well
behaved TCP flows in case of a very large number of non-responsive flows as compared to
the number of bins present. In this case, the number of bins with pm value to 1 increases,
increasing the probability that a responsive flow get misclassified by being hashed into bins
with pm value to 1. Another drawback of SFB is its sensitivity to the variation of the RTTs
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between flows. It gives poor fairness for flows that have widely varying RTTs [60].

Algorithm 13 describes the pseudo-code of the SFB scheme.

1.3.3 XRED

XRED is proposed by Hutschenreuther and Schill in [53] with the aim to reduce bandwidth
waste for MPEG video transmission over routers using AQM. Indeed, RED drops packets
without a distinction between packets. Some packets may be more crucial than the others.
For example, the loss of few packets generated by a MPEG video application can make
useless the entire application frame at destination. This results in a waste of the router
bandwidth.

The idea of XRED is to describe a packet by three parameters: F lowID for traffic flow,
ADUID for specified application data unit, and Content Priority for packet content with
different priority. A list that records these three parameters is maintained at the router.

When MPEG frames are fragmented into IP packets, XRED assigns each packet with
F lowID, ADUID and Content Priority. When a packet is dropped, its F lowID, ADUID
and Content Priority are written into the list, and each arriving packet is checked by com-
paring its parameters with the stored parameters. The packet is discarded if its variable
Content Priority is lower than the one in the list.

Although simulation results show that XRED reduces bandwidth waste, XRED has
the following disadvantages XRED needs extra fields in the IP header. Moreover, it needs
to record three parameters for each application flow, giving rise to scalability problems.
Finally, it needs extra actions to write and read list and compare the three parameters,
which might consume a significant amount of computer power at the router.

Among others per-flow accounting schemes that is not described in this chapter, is the
Fair buffering RED (FB-RED) scheme which is proposed by Kim and Lee in [63] with the
aim to address the problem of fair bandwidth sharing between flows.

1.4 RED with class-based threshold

1.4.1 Class Based Threshold RED (CBT-RED)

To solve the UDP-TCP fairness problem of RED, Class Based Threshold RED (CBT-
RED) has been proposed by Parris et al. in [86]. CBT-RED sets the queue thresholds
according to the traffic type and its priority. The UDP traffic is tagged and has its own
drop threshold, which is different from that of the TCP traffic. The TCP traffic is, thus,
protected from the UDP traffic. CBT-RED configures the RED parameter according to
the traffic type.
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1.4.2 Balanced RED (BRED)

As an extension to FRED [70], Balanced RED (BRED) has been proposed by Anjum
and Tassiulas [5] with the aim to achieve fair bandwidth among TCP and UDP traffic.
The principle of BRED is to regulate the bandwidth of a flow by keeping per-active flow
accounting. This is done by dropping packets preventively so that the non-adaptive traffic
that steal more bandwidth from the adaptive flows are penalized.

For this purpose, BRED introduces five global control variables that are used to control
the bandwidth attained:

• Wm: the maximum number of packets that every flow is allowed to have in the buffer.

• li: minimum number of packets that flow i can have in the buffer before its packets
start being dropped with probability pi, for i = 1, 2.

• pi: probability to drop a packet from a flow i when li is reached for this flow.

These parameters are set as follows:

l1 = βl2 , l2 =
B

2�N̂� , p2 =

√
N̂√

N̂ + 10
and p1 =

p2
10

,

where β is a constant (0 < β ≤ 1) and N̂ is an estimate of the number of flows active at
the gateway. It is calculated as:

N̂ ← (1− ω)N̂ + ωNactive , (1.27)

and Nactive is the measure of the number of flows having at least one packet in the buffer.
The parameter ω is set to 0.02.

The decision to drop or accept an incoming packet is mainly based on qleni and gapi
which gives a step drop function. The variable gapi prevents successive multiple drops that
are harmful to adaptive flows. The three thresholds l1, l2 andWm, on per-flow queue length
qleni divide the space of qleni into four regions: (0, l1), (l1, l2), (l2,Wm) and (Wm,∞):

• If qleni ∈ (Wm,∞) then the packet is definitely dropped.

• If qleni ∈ (l2,Wm) and gapi > l2, then the packet is dropped with probability p2.

• If qleni ∈ (l1, l2) and gapi > l1, then the packet is dropped with probability p1.

• If qleni ∈ (0, l1), then the packet is accepted.
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qleni and gapi are increased if the packet is accepted. qleni is decreased for each
departure of a packet belonging to flow i.

Although BRED can minimize the differences in the bandwidth obtained by each flow,
it needs to maintain the flow states, which means that its implementation complexity is
proportional to the router buffer size.

1.4.3 RED In-Out (RIO)

Another variant of RED proposed for DiffServ (Differentiated Service) is RIO (RED In Out
queue) [26, 27] where “in” stands for packets that are in compliance with the connection
agreement and“out”stands for packets that are not. RIO has different dropping thresholds
for each predefined traffic class. The lowest minimum and maximum thresholds are given
to best effort packets. AF (Assured Forwarding) and EF (Expedited Forwarding) marked
packets have lowest drop probability. However, in case of a non compliance with the SLA
(Service Level Agreement), an AF packet is reclassified as best-effort class packet whereas
an EF packet is dropped. EF packets have the advantage of using a separate priority FIFO
queue. Whereas the AF packets share a RIO queue with best effort packets.

MinIn MaxIn

PMaxIn

P (drop Out)

MinOut MaxOut Avgtotal

PMaxOut

1

Figure 1.5: RIO drop functions

RIO uses the same mechanism as in RED and retains all the attractive attributes of
RED (reduces the queue length, increases the throughput, avoids global synchronization).
However, it has two different configuration thresholds for “in” and “out”packets in order to
discriminates against Out packets in time of congestion that is to drop more aggressively
“out” packets as compared to “in” packets. Hence, RIO uses twin RED algorithms for
dropping packet, one for Ins and one for Outs. By choosing the parameters for respective
algorithms differently, RIO is able to preferentially drop Out packets. There are three
parameters for each of the twin algorithms. With the three parameters MinIn, MaxIn
and PMaxIn

, [0,MinIn] defines the normal phase, [MinIn,MaxIn] defines the congestion
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Algorithm 14 BRED

/* Notations : */
/* – B: buffer size. */
/* – Nactive: measure of the number of flows having packets in the buffer. */
/* – l1: minimum number of packets that a flow can have in the buffer before its packets
start being dropped with probability p1. */
/* – l2: number of packets that a flow can have in the buffer before its packets start
being dropped more aggressively with probability p2 > p1. */
/* – Wm: maximum number of packets that the flow is allowed to have in the buffer.
*/
/* – qleni: number of packets from flow i in the buffer. */
/* – gapi: number of packets accepted from flow i since last packet dropping from flow
i. */

⇒ At each arrival of packet from flow i:
if it is the first packet of flow i (flow i is a new flow) then
qleni = 0.
gapi = 0.
Nactive = Nactive + 1

end if
if qleni ≥Wn or buffer overflow then
Drop packets.

else if Wm > qleni > l2 and gapi > l2 then
Drop packets with probability p2.

else if l2 > qleni > l1 and gapi > l1 then
Drop packet with probability p1.

else if qleni ≤ l1 then
Accept packet.
qleni = qleni + 1.
gapi = gapi + 1.

end if

⇒ At each departure of packet from flow i:
qleni = qleni − 1.
if qleni = 0 then
Nactive = Nactive − 1.
gapi = 0.

end if

⇒ At each packet drop from flow i:
gapi = 0.
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avoidance phase, and (MaxIn,∞) defines the congestion control phase. Similarly, MinOut,
MaxOut and PMaxOut

define the corresponding phases for Out packets (see Figure 1.5). The
discrimination against Out packets in RIO is created by carefully choosing the parameters
(MinIn,MaxIn, PMaxIn

) and (MinOut,MaxOut, PMaxOut
). RIO performs this discrimina-

tion as follows :

• It drops Out packets much earlier than it drops In packets. This is done by choosing
MinOut smaller than MinIn.

• In the congestion avoidance phase, it drops Out packets with a higher probability by
setting PMaxOut

higher than PMaxIn
.

• It goes into congestion control phase for the Out packets much earlier than than for
the In packets by choosing MaxOut much smaller than MaxIn.

Upon each packet arrival at the router, the router checks whether the packet is tagged
as In or Out. If it is an In packet, the router calculates AvgIn, the average queue for the
In packets. If it is an Out packet, the router calculates Avgtotal, the average total queue
size for all (both In and Out) arriving packets. The probability of dropping an In packet
depends on AvgIn, and the probability of dropping an Out packet depends on Avgtotal.
The authors explain the choice of using Avgtotal to determine the probability of dropping
an Out packet as follows : If the average queue size of Out packets is used to control the
dropping of Out packets, this would not cover the case where the total queue is growing
due to arriving In packets. They claim that by using Avgtotal, RIO can maintain short
queue length and high throughput.

Algorithm 15 gives the pseudo-code of the RIO scheme.

1.5 Conclusion

We summarized in Table 1.1 and 1.2 the different active queue schemes presented in this
chapter. In these tables, we used the following notations:

• CBC: class-based control.

• FBC: flow-based control

• IQS: instantaneous queue size.

• AQS: average queue size.

• PLR: packet loss rate.

• LU: link utilization

59



Chapter 1. RED and some of its variants

Algorithm 15 RIO

/* Notations : */
/* – MinIn and MaxIn: minimum and maximum thresholds for In packet. */
/* – MinOut and MaxOut: minimum and maximum thresholds for Out packet. */
/* – AvgIn: average queue size for the In packets. */
/* – AvgOut: average queue size for the Out packets. */
/* – PIn: probability to mark or drop In packet. */
/* – POut: probability to mark or drop Out packet. */

⇒ Upon packet arrival:
if packet arrival is an In packet then
Calculate the average In queue size AvgIn.

else
Calculate the average queue size Avgtotal.

end if
if packet arrival is an In packet then
if MinIn < AvgIn < MaxIn then
Calculate probability PIn.
Mark or drop packet with probability PIn.

else if MaxIn < AvgIn then
Drop packet.

end if
end if
if packet arrival is an Out packet then
if MinOut < Avgtotal < MaxOut then
Calculate probability POut.
Mark or drop packet with probability POut.

else if MaxOut < Avgtotal then
Drop packet.

end if
end if
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• IR: input rate.

All these described RED variants have improved the performance of the original RED.
However, each variant has its own shortcomings and advantages. The choice of a RED
variant should then be made according to the application requirements and the network
situations. Hence, one can use the following guideline:

• For applications requiring fairness among flows, RED variants with per-flow control
should be chosen. For example, for applications that needs fairness TCP and UDP
traffics, the CBT-RED scheme would be a good choice. For a larger network, due to
scalability issues, this category is not convenient.

• For applications focusing on throughput and delay performances, RED variants with
aggregate control can be convenient. Among these variants, one can choose the
scheme that gives the best performance according to the metric in focus (delay for
REM, stability for LRED or SRED, loss rate for AVQ, . . . ).

In Chapter 2, we will present a new variant of RED named PSAND with aggregate
control. We will compare the performances of PSAND and some of the variants presented
above in Chapter 4.
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BLUE PLR, LU step function no time interval step increase/decrease

function, LU, PLR
SRED IQS, estimated num- 3 segment step yes at packet arrival step drop function, number

ber of active flows of active flows, IQS
DSRED AQS 2 linear no at packet arrival 2 linear with different slopes
P IQS single linear no at packet arrival IQS instead of AQS
PI IQS, IR p = p+ ax− by yes time interval queue and rate mismatch
REM IQS, IR p = 1− φ−c yes time interval queue and rate mismatch
AVQ IR virtual queue capacity no at packet arrival completely different
SFC IQS, IR p = k1a+ k2y yes at packet arrival queue and rate mismatch
LRED IQS, PLR p = p+ β

√
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Scheme Policies used to detect congestion and to drop packets

RED
Uses (weighted) average queue size to calculate the packet drop probability. When the average queue
size is higher than a preconfigured threshold, RED begins to drop new arrival packets with a probability
proportional to average queue size and with a slope of Maxp.

BLUE
Increases p if the instantaneous queue size exceeds L and has not been updated for over freeze time.
Decreases p if the link is idle for over freeze time.

SRED
Keeps a zombie list to keep track of recently seen flows, to detect misbehaving flows, and to estimate the
number N of active flows. N is used in the computation of packet dropping probability.

DSRED Uses 2 linear drop functions. Consequently defines 3 thresholds and divides the state of AQS into 4 regions.

P
Calculates the dropping probability as for RED but uses the instantaneous queue size instead of the
(weighted) average queue size in the computation.

PI Calculates the dropping probability as in Equation (1.21).

REM
Defines the price p(k) as in Equation (1.9) and calculates the dropping probability according to Equa-
tion (1.11).

AVQ
Maintains a virtual queue. At each packet arrival, enqueue a fictitious packet and update the virtual queue
capacity using Equation (1.17). Drops a real packet only if the virtual queue overflows.

LRED
Measures the latest packet loss ratio, and uses it as a complement to queue length in order to adjust packet
drop probability according to Equation (1.24).

AREDFeng

Keeps all the state variables of RED and adapts dynamically Maxp by using a MIMD (multiplicative
increase, multiplicative decrease) scheme.

AREDFloyd

Keeps all the state variables of RED and adapts dynamically Maxp by using a AIMD (additive increase,
multiplicative decrease) scheme.

PSAND
Keeps all the state variables of RED and adapts dynamically Maxp according to the variation of the
instantaneous queue size and the closeness of the instantaneous queue size from its target queue size.

FRED Monitors the per-flow queue length and fine-tunes the dropping decision w.r.t. the per-flow queue length.

BRED
Defines 3 thresholds and divides the state of per-flow queue length into 4 regions. Fine-tunes the dropping
decision w.r.t. the per-flow state.

SFB
Applies a Bloom filter to hash flows into bins. Each bin maintains queue occupancy statistics for flows
that map into that bin and a corresponding drop probability. For a given flow, the dropping probability
is calculated based on queue occupancy statistics of the various bins.

RIO
Uses twin RED algorithms for dropping packets: one for in packets and one for out packets. Preferentially
drops out packets during periods of congestion.
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Configuration of RED Parameters
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Chapter 2

Adaptation of the parameter Maxp
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2.1 Introduction

Achieving high link utilization and low queueing delay are two antagonistic objectives of
a buffer management scheme. Small buffers can guarantee low queueing delays but often
suffer from packet loss and low link utilization. In case of a highly bursty traffic, a small
buffer overflows very quickly causing packet loss. As a result, TCP flows back off their
transmission rate leading to low throughput. To achieve these two goals, AQM (Active
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Queue Management) schemes like RED trigger packet dropping (or marking, if explicit
congestion notification is enabled) before buffer overflows with a drop probability which is
proportional to the degree of congestion. This way, the RED queue management scheme
manages to reduce the queuing delay and increase the link utilization rate. Nevertheless,
RED exhibits two main weaknesses. The first weakness is that the queuing delay varies
with the network load and with the parameters settings ([41, 74, 75, 78, 82, 105]). Indeed,
the average queue size oscillates aroundMinth if the traffic load is light or the value of the
parameter Maxp is very large. Otherwise, it oscillates around Maxth if the traffic load is
heavy or Maxp has a very small value. Another drawback of RED is that the throughput
is also sensitive to the traffic load and to the parameters setting([41]). In case of a highly
congested network if the average queue size oscillates around Maxth, the resulting packets
drops increases leading to a decrease in the throughput.

The RED mechanism has been widely studied in literature with the aim to alleviate
these drawbacks. The different RED variants differ in the way they measure the congestion.
Indeed, while most of the proposals detect congestion based on the queue lengths at the
link (e.g. RED, AREDFeng, AREDF loyd, GRED: Gentle RED), other proposals detect
congestion based on the arrival rate of the packets at the link (e.g. virtual queue-based
schemes) and some use a combination of both (e.g. PI). Others use the traffic input rate,
the events of buffer overflow or emptiness or a combination of different factors. Among all
these works, two different approaches can be clearly distinguished.

The first approach is to build quantitative models allowing the prediction of RED
parameters based on network variables like the round trip time, the number of flows and
link bandwidth. For instance, works like [10, 11, 12, 47, 51, 66, 97, 104, 105] use a control
theoretic analysis to model the parameter setting of RED. This modeling approach provides
a better understanding of the dependency of RED on traffic conditions. However, it is
still difficult to retrieve or infer accurate informations about network variables from local
observations. In practice, network load characteristics are not known from RED nodes.

Therefore, several authors have advocated an adaptive approach which can be deployed
in the current Internet. Indeed, this second approach does not rely on hypotheses on the
type of traffic as it infers the traffic load from an average queue size. The works of Feng
et al., and Floyd et al. [32, 34, 41] used this adaptive approach of RED, named ARED
(Adaptive RED), that performs a constant tuning of RED parameters according to the
traffic load.

The mechanisms adopting this second approach, should carefully choose how fast the
adaptation should be performed while maintaining the system stability. Since the system
jointly uses the end-to-end TCP congestion control as well as the congestion control operat-
ing inside routers through active queue management schemes, the system could be sensitive
to the adaptation frequency and may show an undesirable behavior. On one hand, if the
adaptation process is too fast then the system responds too quickly to the changes of the
network conditions leading to large oscillatory behavior and even to instability. On the
other hand, if the adaptation process is too slow then the system shows a sluggish behavior
leading to more packet losses and thus to a decrease of the throughput. Indeed, because
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of this slow response, the average queue size could exceed Maxth resulting in an increased
dropping rate which induces the TCP sources to slow down their transmission rate and
then consequently reduce the throughput. In order to give a desirable performance, an
adaptive scheme should therefore avoid these two situations.

In this chapter, we adopt the adaptive approach. Like Floyd et al. in [41], we believe
that the basic insight for a solution to RED problems lies in this approach since it can be
proposed for deployment in the Internet and does not need to know the network scenario
parameters. Our point of view differs however from these works, in the way parameters
are adjusted. Our goal is to achieve a performance improvement over adaptive RED for
the queueing delay and the delay jitter without sacrificing the loss rate. To this end,
we propose a scheme which adapts all three parameters of RED using target-oriented
adjustments which are a function of the distance to the performance objective. Simulation
results show that our scheme can stabilize the queue size and achieves a more predictable
average queue size without substantially increasing the loss rate. Finally, it keeps also the
queue size away from buffer overflow and buffer underflow independently of the number of
connections.

We briefly describe in Section 2.2 the adaptive approach of RED. In Section 2.3, we
propose a new algorithm that sets the RED parameters and evaluate it in Section 2.4 by
extensive simulations under ns [94]. We conclude the chapter and propose future direction
of investigations in Section 2.5.

2.2 Background on ARED and motivation

We make a brief recall of the mechanism of ARED described in [34, 41]. The idea behind
this mechanism is to improve RED performance by adapting the maximum dropping prob-
ability Maxp according to the traffic load. The authors derived this conclusion based on
their observations concerning the impact of traffic load on early detection. The number of
congestion notifications that should be sent to the sources and that achieves a low packet
loss rate and a high link utilization depends on the number of active connections [34].

Hence, an active queue management should be able to send an appropriate number of
congestion notification to the TCP sources. Because of its early random drop, RED satisfies
more this requirement as compared to Drop Tail. However, in case of a large number of
TCP connections, if congestion notifications are not sent to enough TCP connections,
then an increased packet loss due to a continual buffer overflow is observed making RED
behaving like Drop Tail. In this case, whatever is the fixed value of the parameterMaxp, a
high link utilization is achieved. However, early detection should be made more aggressive
so that TCP connections back off their transmission rate and thus reduce the offered load
and the packet loss rate. In case of a small number of TCP connections, if congestion
notifications are sent to too many TCP connections, then the offered load is excessively
reduced causing an underutilization of the bottleneck link. In this case, in order to achieve
high link utilization, the early detection should be made more conservative.

The algorithm of ARED takes into account these observations by using the average
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queue length to infer load modifications and tune the behavior of RED towards more or
less aggressiveness. This way, ARED is intended to perform better than RED. According
to the adaptive algorithm of Feng et al. [34] illustrated by Algorithm 6 (page 38), an
average queue size close to Minth indicates a too aggressive early detection mechanism.
In this situation, the value of Maxp is decreased by a constant multiplicative factor α.
On the other hand, if the average queue size is close to Maxth then it means that the
early detection is too conservative. In this case the value of Maxp is increased by a fixed
multiplicative factor β. However, if the average queue size is between Minth and Maxth,
the authors do not adapt Maxp because they consider that the early detection mechanism
behaves as desired and can avoid packet loss rate and link underutilization. This setting
of Maxp makes normally the queue size oscillate between Minth and Maxth.

Floyd et al. in [41] modified this algorithm so that the average queue size oscillates
closely to a target queue size within a target range half way between Minth and Maxth
thus achieving a predictable average delay. Unlike in [34], where Maxp is adapted at every
packet arrival, [41] adapted Maxp at a slower time scale, typically every 500 ms, by using
an additive increase and a multiplicative decrease instead of the multiplicative increase and
a multiplicative decrease of the original ARED algorithm of [34]. If the average queue size
exceeds the specified target range, thenMaxp is adapted by an additive increase once every
time interval. Otherwise if the average queue size is below the target range then Maxp
is adapted by a multiplicative decrease. Otherwise if the average queue size is within the
target range then Maxp is not adapted. Algorithm 7 illustrates this approach.

By adaptingMaxp with a fixed adjustment factors (additive or multiplicative) as in [34,
41] and as our simulation results will confirm afterward, ARED improves the performance
of the original RED while still exhibiting a certain amount of queue oscillations. Note
that if the traffic load shows a slight change there is no need of applying a sharp change
on Maxp. These sharp changes of the value of Maxp as compared to the traffic load
changes can in themselves be the cause of oscillations of the queue size. By using a fixed
adjustment factor on Maxp, both schemes do not adapt Maxp at a rate that reflects the
effective change rate of the traffic load. Hence, our basic idea is to test whether there
is a possibility of performance improvement not only on the original RED but also on
ARED, if we adapt Maxp by using a more elaborate dynamic adjustments reflecting the
effective change rate of the traffic load, and if we allow more modifications to all of the
three parameters (Minth,Maxth,Maxp).

On the other hand, an improper control may as well lead to performance deteriorations.
We describe in the next section an algorithm that adapts the parameter Maxp by using
a dynamic change rate which is a function of the changes in the average queue length
that infer the traffic load changes. In Section 2.4, we show that this algorithm can indeed
improve the performance of ARED. In Chapter 4, we will compare its performance with
that of other well known or recently proposed active queue management schemes found in
the literature.
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2.3 RED parameters tuning

We present an alternative adaptive algorithm (named PSAND) that aims at improving the
performance of ARED. Our principal objective is to minimize the variance of the instan-
taneous queue size and improve the stability of ARED under the following constraints:

• achieve a specified target average queue size.

• avoid an excessive increase of the packet loss rate as compared to the original RED
and ARED.

The decrease of the variance of the instantaneous queue size leads to a decrease of a delay
jitter and therefore more predictable queueing delay.

Following the approach of [41], we leave the network operator to choose the average
target queue size as a trade-off between link utilization and delay. Hence, as it has been
stated in [41], QoS should give a certain level of guarantee to offer a sufficiently low delay
for a certain type of applications and traffics, such as interactive voice communications. To
sign a Service Level Agreement (SLA) by stating that no packets will experience a delay of
more than a specified target delay, network operators would like to have a rough estimation
of the average delays in their congested routers.

This section explains how to adaptMaxp with a multiplicative factor which is computed
dynamically as a function of the changes in the average queue length in order to achieve
our goal. For this purpose, we follow the main idea of the algorithms of ARED [34, 41]
which is to infer whether Maxp should be made more or less aggressive by observing the
variations in average queue length. As we have seen, both methods leave Maxp constant
when the average queue size stays in some interval, and change it by a constant factor
otherwise. The difference between our approach and the schemes presented in [34, 41]
is that in our approach, for a given time interval, the decision that should be taken on
the level of aggressiveness or conservativeness of Maxp depends directly on the queue size
change and the position of the queue size as compared to its target value.

Hence, our approach differs from this algorithm in the following points:

• Instead of using a threshold mechanism as in [34, 41], we infer a load increase from the
increase in the average queue size: an increase (respectively a decrease) in the average
queue size by a certain factor is directly translated into an increase (respectively a
decrease) of Maxp by the same multiplicative factor. The multiplicative factor used
to reflect the traffic load variation is the ratio of the value of the average queue size at
the beginning of the current interval (denoted by K̂cur) over the value of the average
queue size at the beginning of the previous interval (denoted by K̂prev). We denote
by change rate this ratio that measures the queue length change:

change rate =
K̂cur

K̂prev

.
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• In addition, instead of keeping the average queue size between Minth and Maxth as
in [34], we follow the approach of Floyd et al. in [41] that tends to bring the average
queue size to a specified target value that reflects the desired average queueing delay.
Our aim is to bring the average queue size closer to its target value more quickly.
For this purpose, we measure the gap between the current average queue size and its
target value and increase or decrease Maxp proportionally so as to reduce this gap.
Hence Maxp is adapted by a multiplicative factor which is a ratio of the average

queue size at the beginning of the current interval (K̂cur) over the target average
queue size (denoted by K̂T ). We denote by prox rate this ratio that measures the
proximity of K̂cur as compared to K̂T :

prox rate =
K̂cur

K̂T

.

An average queue size lower (respectively larger) than its target value triggers a
decrease (respectively an increase) of Maxp.

• We adapt Maxp with a factor which is a function of these two ratios representing
a trade-off between the two increasing/decreasing trends. We denote this rate by r
and compute it as follows:

r = prox rate× change rate
=

K̂2
cur

K̂T × K̂prev

. (2.1)

The variation of r and its influence on the parameter Maxp is summarized as follows:

• If K̂cur is close to K̂T and K̂cur close to K̂prev then Maxp will be almost constant.

• If change rate > 1 and prox rate > 1, then Maxp will be highly increased.

• If change rate < 1 and prox rate < 1 then Maxp will be highly decreased.

• if change rate < 1 and prox rate > 1 (i.e. the traffic tends to decrease but the
average queue size remains above its target value.) and if the traffic decrease rate
is higher (change rate very low) than the change rate of the average queue size as
compared to its target value, than Maxp will decrease.

• if change rate > 1 and prox rate < 1 (i.e. the traffic tends to increase but the
average queue size remains below its target value.) and if the traffic increase rate is
higher than the change rate of the average queue size as compared to its target value,
than Maxp will increase otherwise it will have a decrease tendency.
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2.3. RED parameters tuning

For these two last cases, if change rate and prox rate are compensated i.e the value
of one of these two ratios is the inverse of the other one, then Maxp will remain constant.
Hence, for these last two cases, the behavior of Maxp will depend on the compensation of
prox rate and change rate. Maxp will be more or less increased or decreased depending
on the respective value of these two ratios.

The factors change rate and prox rate are illustrated in Figure 2.1. Figure 2.1 presents
the evolution of the weighted average queue size obtained from a 10 seconds simulation
under NS. These two ratios are measured once every time interval corresponding to the
time interval at which Maxp is adapted (0.5 seconds in this example). The target average

queue size (K̂T ) is 10 packets. change ratemeasures the queue length change by comparing
the average queue size at the beginning of the current interval (K̂cur) to its previous value
at the beginning of the previous interval (K̂prev). The value of K̂cur evolves during the

interval whereas K̂prev remains constant. prox rate measures the gap between the current

average queue size K̂cur and its specified target value K̂T . Figure 2.1 shows a decrease of
both ratios at time 9 seconds and an increase at time 9.5 seconds.
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Figure 2.1: Measuring the traffic change

According to the results of our experiments, if we used directly r as a multiplicative
factor of Maxp, our mechanism would not be aggressive enough in case of a severe conges-
tion. In order to make the change rate more or less aggressive and perfect our model, we
modified the influence of r by using a simple functional form. We set:

β = coef × rγ ,
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and let the adaptive scheme be:

Maxp = Maxp × β . (2.2)

Indeed, the queue length does not allow alone to determine the severity of congestion
that is the number of flows [33]. For instance a single highly active source can cause a
persistent queue as well as large number of flows can. Hence, since the mechanism that
uses directly r, measures the queue length change, it can not be able to detect efficiently
the degree of severity of the congestion and can not therefore respond aggressively enough.
Moreover, as stated in [34], congestion notification does not directly depend on the number
of connections multiplexed across the link. Nevertheless, congestion notification should be
given at a rate which is high enough to avoid packet loss due to buffer overflow and low
enough to avoid underutilization of the link. The functional form (2.2) should be able to
adapt Maxp with the aim of sending congestion notifications at a rate that reflects better
the change of the congestion level.

Algorithm 16 Algorithm PSAND

K̂T = C ×Delaytarget.
INTERV AL = 0.5 seconds.

/* Adaptation of Maxp. */

for each INTERVAL do
prox rate = K̂cur/K̂T .
change rate = K̂cur/K̂prev.
β ← coef × (prox rate× change rate)γ .
Maxp ← max(Maxp,min(Maxp × β,Maxp)).
K̂prev ← K̂cur.

end for

/* Fixed parameters configured by the network operator */
/* based on his objectives of quality of service. */
C : The link bandwidth.
Delaytarget : Target queueing delay.

/* Fixed parameters of PSAND algorithm. */
INTERVAL : time interval between two consecutive adaptations of Maxp.

K̂T : target queue size.
Maxp : upper bound of Maxp (∈ [0.5, 1]).
Maxp : lower bound of Maxp (fixed to 0.01).

/* variable parameters */
K̂cur : Weighted average queue size at the beginning of the current interval.
K̂prev :Weighted average queue size at the beginning of the previous interval.
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2.4. Stability and performance measures

Algorithm 16 summarizes this scheme. Increasing (respectively decreasing) coef means
making Maxp respond more aggressively (respectively less aggressively). The use of γ
allows to make r less aggressive if the queue size is low and more aggressive if the queue
size is high.We illustrate the influence of the parameters coef and γ on our adaptive RED
performance in Section 2.4.

As in [41],our algorithm uses a lower bound of Maxp which is equal to 0.01 and an
upper bound of Maxp chosen from the interval [0.5, 1] as we will describe in section 2.4.5.
Floyd et al. [41] used 0.5 as an upper bound of Maxp since the authors claimed that they
do not try to optimize RED for a rejection rate exceeding 50%. By taking RED in gentle
mode, i.e. when the drop rate increases from 0 to Maxp, the average queue size increases
fromMinth toMaxth. And when the drop rate increases fromMaxp to 1, than the average
queue size increases fromMaxth to 2×Maxth. Hence, a loss rate of 25% implies an average
queue size equal to K̂T . Therefore, if the drop rate reaches 100%, then the average queue
size exceeds its target value by a factor of 4. This allows to bound the increase rate of the
average queue size. The lower bound of Maxp fixed to 0.01 is motivated by the desire to
bound the lowest values that can Maxp take.

The configuration of the parameters Minth, Maxth used by our algorithm is discussed
in Chapter 3. Section 2.4.3 and 2.4.4 deal with the seeting of the parameters coef and γ.

2.4 Stability and performance measures

2.4.1 Simulation settings and metrics

We evaluate our algorithm (PSAND) through simulations that use the same network config-
uration as in [34, 41] for a better comparison with these two versions, respectively denoted
AREDF loyd and AREDFeng (see Figure 2.2).

Every 0.1 seconds, long-lived TCPSack connections that generate FTP traffic originate
from the leftmost node S1 and end at the rightmost node S3. Another forward FTP traffic
is generated by node S2 and addressed to node S3. Finally a reverse FTP traffic is started
from node S3 and send to the node S1. The bottleneck link located between nodes R1 and
R2 has a capacity of about 1.5Mbps. The capacity of the other links is about 10Mbps.
The bottleneck link for forward traffics is provided with a RED queue of limited capacity
of 35 packets. In the same manner, a RED queue with the same capacity is assigned to
the reverse FTP traffic at the bottleneck link. The other links are provided with a queue
of infinite capacity. We collect the statistics from the RED queue every 0.01 seconds.

For all simulations, we follow the approach of [56, 105, 41] to set the average queue size
weight (ωq) as a function of the link bandwidth. The average queue size weight (ωq) should
be configured so that the RED mechanism is able to detect the initial stages of congestion.
For this purpose, ωq should not be set too low in order to avoid that the average queue
size responds too slowly to changes in the actual queue size. Indeed, even though the
low pass filter characteristics of the average queue size is able to accumulate short term
congestion and allows the weighted average queue size K̂cur follows the long term changes
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Figure 2.2: Network topology

of the instantaneous queue size Kcur that reflects persistent congestion in networks, it can
lead to slow responses to the changes in the long-term congestion. For example, after a
long-term congestion, K̂cur can still remain high even if the instantaneous queue size Kcur

has decreased to zero. RED continues to drop packets even after the end of congestion.
This slow response to the congestion decrease leads to a low throughput. Larger value of
ω can improve the response time but traces short-time congestion that is ωq should not be
set too high in order to avoid the average queue size responds too quickly to the changes
of the actual queue size and follow very closely the evolution of the instantaneous queue
size.

Assuming that :

• The average queue size is initially equal to 0 and that the instantaneous queue size
jumps from 0 to 1 and remains constant to 1,

• Packets arrive and depart at the same rate,

then −1/ ln(1−ωq) packets arrivals are necessary so that the value of the average queue
size jumps from 0 to 0.63 = 1− 1/e [43]. For example, for ωq = 0.002, 500 packet arrivals
are necessary. Hence, the value −1/ ln(1 − ωq) is the time constant (expressed in packets
arrivals per second) necessary for the average queue size to reach 63% of its new value.

Assuming that the link bandwidth is equal to C packets per second, and knowing that
the service time is equal to the packets arrival rate , then −1/(C ln(1 − ωq)) seconds are
necessary to serve the −1/ ln(1− ωq) packets. We would like this time to be constant and
equal to t�. The parameter ωq is then computed as :
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2.4. Stability and performance measures

ωq = 1− exp

(
− 1

C × t�
)
.

As in [41], we configured ωq in automatic mode such that the time constant for the
average queue size estimator is equal to 1 second (which is equivalent to 10 RTT for a
value of an RTT equal to 100ms). Therefore, ωq is finally configured as follows:

ωq = 1− exp

(
− 1

C

)
.

For PSAND, the parameters Minth and Maxth are configured as described in Algo-
rithm 16 (Minth = 0, Maxth = 20) and the parameter Maxp is adapted every 0.5 seconds
like in [41]. Whereas for AREDFeng,Maxp is adapted frequently at a shorter time scale, ev-
ery time the weighted average queue size is updated. We also set coef = 1.75 and γ = 1.5
for PSAND in order to obtain a desirable performance independently of the number of
flows. For the setting of the other simulation’s parameters, for AREDFeng and AREDF loyd,
we took the values they recommended in [34, 41] (refer to Table 2.1).

Table 2.1: Setting of the simulations parameters
Minth Maxth InitialMaxp K̂T α β coef γ

AREDFeng 5 15 0.02 – 3 2 – –
AREDF loyd 5 15 0.1 10 0.01 0.9 – –

PSAND 0 20 0.1 10 – – 1.75 1.5

For all the simulations, one connection starts at time 0 second from node S1, another
starts at time 1.0 second from node S3, and another one starts at time 3 seconds. For these
three connections, we set the TCP congestion window size to 15 packets and the size of the
packets is 1600 bytes. In addition to these connections, we added a number of connections
according to the simulation. For the additional connections, we set the TCP window size
to 20 and the size of the packets to 1000 bytes.

For Figures 2.3 to 2.6, additional flows started each every 0.1 seconds from node S1
at time 50 seconds. The number of additional flows for Figures 2.3, 2.4, 2.5 and 2.6 are
respectively 20, 50, 70 and 100.

Figures 2.3 to 2.6 present the evolution of the instantaneous queue size and the weighted
average queue size obtained from one simulation during 100 seconds. Whereas for Fig-
ures 2.9 and 2.10, one point on the curve is the average of 100 independent simulations,
and one point on the curves of Figure 2.11 corresponds to an average of 200 independent
simulations. For these figures, in addition to the basic three connections, a number of
connections depending on the total number of flows desired is started at time 3.5 seconds
each every 0.1 seconds from node S1 and stopped at time 100 seconds.

We have measured the following metrics:

• the delay jitter represented by the variance of the instantaneous queue size (Fig-
ure 2.9(a)).
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• the average queueing delay inferred by the true average queue size, i.e. the average
of the instantaneous queue size (Figure 2.9(b)).

• the packet loss rate that is computed as the ratio of the number of lost packets over
the number of packets arriving at the queue (Figure 2.9(c)).

• the distribution of the instantaneous queue size. We specially focus on the probability
that the queue is empty or full and the probability that the queue is very close to
the target queue size (Figures 2.10 and 2.11).

We will present subsequently the results of these measurements.

2.4.2 Performance results

2.4.2.1 Qualitative observations

We compare our approach by using the metrics presented in the previous section with other
queue management mechanisms: the original RED, AREDFeng and AREDF loyd [34, 41].
We first make a visual and qualitative comparison of the evolution of the instantaneous
and weighted average queue size through Figures 2.3 to 2.6. These figures allow us to
observe not only the behavior of each mechanism in presence of a high and a low traffic
load but also how each mechanism reacts in response to a change of the congestion level.
Figures 2.3 to 2.6 show the response to a congestion increase whereas Figures 2.7 to 2.8
show the response to a congestion decrease.

2.4.2.1.1 Traffic increase

Let us first consider the congestion increase. We can observe in Figure 2.3(d) that our
mechanism responds more quickly to a rapid change in the congestion level and shows a
better adaptation to the traffic increase as compared to RED (Figure 2.3(a)) and the other
versions of ARED (Figures 2.3(b) and 2.3(c)). After a sharp change in the average queue
size at time 50 seconds, it takes less than 5 seconds for our scheme to bring the average
queue size back down to its target value (10 packets) whereas AREDFeng in Figure 2.3(b)
takes roughly 15 seconds and AREDF loyd in Figure 2.3(c) takes 10 seconds. We can see
that after this short transition period, all three ARED schemes (Figures 2.3(b) to 2.3(d))
bring back the average queue size back to its target value. This is not the case for RED
(Figure 2.3(a)). However, we can observe in Figure 2.3(d) that PSAND differs from the
other ARED schemes (Figures 2.3(b) and 2.3(c)) in the fact that the oscillations of the
average queue size after 50 seconds are very close to the one observed before the congestion
increase. This shows that our scheme has responded more successfully to the congestion
increase induced by 20 additional flows.

For a higher traffic load increase (50 additional flows), AREDFeng in Figure 2.4(b) is un-
able like RED (Figure 2.4(a)) to bring back the average queue size back to its target range.
AREDF loyd in Figure 2.4(c) attempts unsuccessfully to bring it back but shows a succession
of higher and lower oscillations every 15 seconds, whereas PSAND in Figure 2.4(d) brings
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(b) ARED version Feng et al.
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(c) ARED version Floyd et al.
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(d) PSAND (upper Maxp = 0.5)
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(e) PSAND (upper Maxp = 0.75)

Figure 2.3: Evolution of the instantaneous (IQS) and the weighted average queue size
(WAQS) for 20 additional flows)
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(b) ARED version Feng et al.
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(c) ARED version Floyd et al.
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(d) PSAND (upper Maxp = 0.5)
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(e) PSAND (upper Maxp = 0.75)

Figure 2.4: Evolution of the instantaneous (IQS) and the weighted average queue size
(WAQS) for 50 additional flows
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(b) ARED version Feng et al.
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(c) ARED version Floyd et al.
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(d) PSAND (upper Maxp = 0.5)
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(e) PSAND (upper Maxp = 0.75)

Figure 2.5: Evolution of the instantaneous (IQS) and the weighted average queue size
(WAQS) for 70 additional flows
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(b) ARED version Feng et al.
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(c) ARED version Floyd et al.
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(d) PSAND (upper Maxp = 0.5)
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(e) PSAND (upper Maxp = 0.75)

Figure 2.6: Evolution of the instantaneous (IQS) and the weighted average queue size
(WAQS) for 100 additional flows
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back the queue size to a range which is very close to the target queue size after less than
10 seconds.

Moreover, the oscillations of the instantaneous queue size for PSAND for Figure 2.4(d)
are roughly contained in a range between 5 and 15 packets, which is not the case for the
other mechanisms in Figure 2.4(a) to 2.4(c).

If the amount of the traffic increase is very high, then AREDFeng and AREDF loyd
are unable to bring the average queue size back to its target value. This is observed in
Figures 2.4 to 2.6 for a number of additional flows above 20. In this case, PSAND attempts
to bring the average queue size to a value that is closer to the target average queue size even
if this value increases with the number of flows. For example, after a congestion increase,
the weighted average queue size oscillates around 10.7 packets for 50 additional flows in
Figure 2.4(d), around 12 packets for 70 additional flows in Figure 2.5(d) and around 18
packets for 100 additional flows in Figure 2.6(d).

For the three ARED approaches, the more the traffic load is increased the less the
instantaneous queue size goes down to 0 packets. However, whatever the number of addi-
tional flows, the instantaneous queue size for PSAND goes down less frequently to 0 packets
as compared to the other ARED mechanisms. In addition, whatever the number of flows,
PSAND exhibits a less frequent oscillations of the instantaneous queue size between 20 and
35 packets. After a quick adaptation to the congestion increase, PSAND never reaches the
buffer capacity (35 packets) whereas for AREDFeng and AREDF loyd the queue size reaches
frequently the maximum buffer capacity when the number of additional flows exceeds 20.
As for RED, after an increase of the load, we observe a more frequent oscillations of the
queue size around 35 packets whatever the number of flows.

In summary, the observations of Figures 3.6 to 2.6 show that our mechanism exhibits
a robust performance by responding quickly to a rapid change in the congestion increase
and shows a better adaptation to this change by bringing back the average queue size close
to its target value. Moreover, it offers a more reduced amplitude of oscillations of the
instantaneous queue size as compared to RED, AREDFeng and AREDF loyd. It also shows
a less frequent occurrences of an empty queue, and also less frequent visits between 25 and
35 packets (queue size close to the maximum buffer capacity).

2.4.2.1.2 Traffic decrease

Let us now consider the case of a traffic decrease where 20 FTP connections in Figures 2.7
and 50 FTP connections in Figures 2.8 started at time 0 and stopped at time 50 seconds.
From 50 to 100 seconds only 3 FTP connections are active.

In Figure 2.7, we observe a decrease of the queue size for RED, AREDFeng and
AREDF loyd when the congestion level decreases at time 50 seconds. However, RED ex-
hibits a sharper decrease of the queue size as compared to AREDFeng and AREDF loyd.
In addition, during this period of a light load, RED shows a more frequently empty queue
than the others queue management schemes. Even if AREDFeng and AREDF loyd show
a better performance as compared to RED, they still exhibit more oscillations around 0
packets than PSAND do. Indeed, PSAND reduces highly the phenomenon of buffer un-
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(d) PSAND

Figure 2.7: Evolution of the instantaneous (IQS) and the weighted average queue size
WAQS) for 20 additional flows before the traffic decrease

84



2.4. Stability and performance measures

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r 

of
 p

aq
ue

ts

Temps, Secondes

IQS WAQS

(a) RED

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r 

of
 p

aq
ue

ts

Temps, Secondes

IQS WAQS

(b) ARED Feng

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r 

of
 p

aq
ue

ts

Temps, Secondes

IQS WAQS

(c) ARED Floyd

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r 

of
 p

aq
ue

ts

Temps, Secondes

IQS WAQS
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Figure 2.8: Evolution of the instantaneous (IQS) and the weighted average queue size
WAQS) for 20 additional flows before the traffic decrease
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derflow. Unlike these schemes, the rapid change in the congestion level is less visible on
the queue size evolution for PSAND. For the first 50 seconds where a higher traffic load
is generated, PSAND shows an average queue size close to the target queue size. When a
rapid congestion decrease occurs, PSAND responds quickly to this change of the congestion
level by bringing back the average queue size to its target value. PSAND needs less than 3
seconds to stabilize the average queue size around its new value whereas the other mech-
anisms need about 5 seconds. The new value after the congestion decrease around which
PSAND stabilizes its queue size is not too low as compared to the value around which the
average queue size oscillated during the first 50 seconds of a high traffic load. Whereas for
the other mechanisms we observe that the average queue size oscillates around a new value
which is much lower than the one observed before the congestion decrease. Moreover, the
amplitude of the queue size oscillations for PSAND is lower than the one observed for the
other schemes.

When beginning the simulation from a higher traffic load, a traffic generated by 50
FTP connections for instance as showed by Figure 2.8, RED, AREDFeng and AREDF loyd

show more difficulty to reduce the amplitude of the queue size oscillations and to bring the
average queue size close to its target value for the first 50 seconds where the load is high. In
the same manner, after the sharp load decrease all these mechanisms show also a difficulty
to avoid the queue from being frequently empty. PSAND rather shows a better adaptation
of the queue size during the period of a high traffic load in the first 50 seconds as well as
during the period of a low traffic load. During the two period, it bring the average queue
size back to its target value and show no significant difference of the queue size oscillation
when passing from a higher load to a very low traffic load..

In summary, the observations of Figures 2.7 to 2.8 show that our mechanism exhibits
a robust performance since it shows a better adaptation to the traffic decrease by bringing
back the average queue size close to its target value and reducing the phenomenon of buffer
underflow comparing to RED, AREDFeng and AREDF loyd. Moreover, unlike these schemes,
the traffic decrease does not seem to affect significantly the evolution of the queue size of
PSAND. Note that the observations of Figures 2.3 to 2.6 also showed that PSAND is less
sensitive to the traffic increase concerning the queue size evolution as compared to the
other mechanisms.

2.4.2.2 Statistical observations

To consolidate all these observations, we have compared in Figures 2.9 to 2.11 our scheme
with the other mechanisms using the more rigorous statistics. As shown by Figure 2.9(a),
PSAND reduces the queue size variance and thus increases the stability of the queue size
independently of the number of flows as compared to RED and the other versions of ARED.
Furthermore, Figure 2.9(b) illustrates also that PSAND reduces the queueing delay.

In addition to these performance gains, as the number of flows increases, we observe in
Figure 2.9(c) a slight reduction of the packet loss rate. We observe for 25 flows a reduction
of about 1.2% as compared to both ARED and about 0.6% as compared to RED. PSAND
did not sacrifice the loss rate for the performance gain obtained in the average queue size
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Figure 2.9: Comparison of performances for different traffic load

and in the variance of the queue size. Note that the performance gain obtained by both
versions of ARED as compared to RED has been acquired with a slight increase of the
packet loss rate.

Moreover, as illustrated by Figure 2.10(a), for all number of flows, the probability that
the queue might be empty (P (X = 0)) is also reduced by at least 2% as compared to the
other mechanisms. This result suggests that since the link utilization can be computed
as 1 − P (X = 0), our scheme increases the link utilization rate as compared to RED,
AREDFeng and AREDF loyd. Figure 2.10(b) shows also that the probability that the queue
might be full (P (25 < X ≤ 35)) is also reduced whatever the number of flows.

In Figures 2.10(c) and 2.10(d), we also observe for PSAND a higher probability of
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Figure 2.10: Distribution of the instantaneous queue size

maintaining the queue size close to its target value (10 packets). Figure 2.10(d) presents a
more restricted and closer range to the target value as Figure 2.10(c). Both figures show
the same behavior even if the probability P (5 < X ≤ 15) is higher than P (8 < X ≤ 11).
We observe for PSAND a lower probability than AREDFeng and AREDF loyd for a number
of flows below 28 and a higher probability above 28 flows. This does not mean that
concerning the predictability of the average queue size, PSAND gives a good performance
for a number of flows above 28 flows and poorer performance for a number of flows below 28
as compared to AREDFeng and AREDF loyd. Indeed in the case of a number of flows below
28, PSAND gives a lower probability because even if the average queue size is not close
enough to its target value, it is located below this target value. Figure 2.9(b) illustrates
this. Figures 2.11(a) to 2.11(c) consolidate this observation by showing that for 3, 13 and
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Figure 2.11: Queue size distribution for different mechanisms.

28 flows, the highest probabilities are concentrated around the values of the queue size
ranging from 5 to 10 packets. This means that for a number of flows below 28, PSAND
offers an average queueing delay less than the target delay, which is more interesting than
having a delay close to the target one as in the case of AREDFeng and AREDF loyd as long
as this is not payed in return by an increase of the packet loss rate. But as PSAND showed
us in Figure 2.9(c) a slight decrease of the packets loss rate for PSAND for all number of
flows, this observed lower and less closer average queue size as compared to its target value
for a number of flows below 28, appears to be more advantageous than the one observed
forAREDFeng and AREDF loyd.

As Figures 2.10(c) and 2.10(d) showed, for a number of flows above 28, PSAND offers
an average queue size closer to its target value as compared to AREDFeng and AREDF loyd.
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Figure 2.11(d) confirms this result by showing that for PSAND the highest probabilities
are concentrated around values ranging from 5 to 15 packets whereas for AREDFeng and
AREDF loyd they are concentrated around values ranging from 10 to 20 packets. For a
higher number of flows, AREDFeng and AREDF loyd give an average queue size that goes
far above its target value whereas for PSAND it remains in a reasonable range which is
closer to the target value (see Figure 2.9(b)).

Finally, the qualitative and statistical analysis of all the results show that our approach
offers a desirable overall improvement of ARED performances and achieves our objective
to reduce the queue size variance while keeping the average queue size close to its target
value without sacrificing the packet loss rate.

2.4.3 Parameters coef and γ for different number of flows

In this section, we investigate the influence of the parameters coef and γ on the performance
of our adaptive RED algorithm. We showed that our scheme improves overall performances
such as the variance and the average of the instantaneous queue size and also the packet
loss rate. Figures 2.12 and 2.13 depict the measurement of these metrics for different values
of coef and γ.

One point on the curves presented in this figure corresponds to an average of 100
independent simulations. Every simulation is run for 100 seconds. We considered different
traffic loads generated by 3, 53, 73 and 103 FTP flows. The bound on Maxp is set to 0.75.

The results presented in Figures 2.12 and 2.13 showed that for any number of flows, the
average queue size and the queue size variance decrease when the value of coef increases.
On the other hand, the increase of the value of γ increases the average queue size as well
as the queue size variance.

However, Figure 2.14 shows that the packet loss rate increases as coef increases but
decreases as γ increases. For coef > 1, whatever the value of γ and whatever the number
of flow, we observe an improvement of the average queue size and the queue size variance as
compared to the observed performance of AREDFeng and AREDF loyd in Figure 2.9 (page
87). More performance improvements are observed when γ decreases. That is, as coef
increases, the average queue size as well as the queue size variance decrease and converge
to a certain value. The convergence is reached more quickly for smaller values of γ.

Even though the decrease of γ can improve the average queue size and the queue size
variance, it increases the packet loss rate. This increase is more important for a small
number of flows. In addition, for small number of flows, large values of coef increase the
packet loss rate as compared to the performance of the original ARED (e.g. 1.8% instead
of 0.9% for 53 flows). This increase in the loss rate is translated into an excessive decrease
of the average queue size (Figure 2.12).

As this rate is less than 2%, it can be affordable since it can be recovered by TCP
retransmissions. Moreover, for small values of coef , the packet loss rate is reduced but the
average queue size increases. For a large number of flows (53 for instance) and for coef > 1
we observe an improvement of the average queue size as well as the loss rate.
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Figure 2.12: Average queue size for different values of coef and γ

In conclusion, for few flows (3 flows), a value of coef close to 1 and γ > 1 gives overall
good performances by improving the variance and the average of the instantaneous queue
size without a substantial increase of the loss rate. For large number of flows, whatever
coef > 1, we observe overall good performances and the loss rate converges to a value less
than the one observed for AREDFeng and AREDF loyd (Figure 2.9).

2.4.4 Setting of coef and γ

The results of the experiments of the previous section suggest to choose a range of values
of coef and γ which is appropriate to small and large number of flows. Hence, based on
extensive simulations for different number of flows and different upper bound of Maxp (we
also conducted the same experiments as in the previous section with an upper bound of
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Figure 2.13: Queue size variance for different values of coef and γ

Maxp equal to 0.5), we set coef = 1.75 and γ = 1.5 as this setting brings about reasonable
overall improvement on ARED for small and large number of flows. Tables 2.2 and 2.3
show this improvement if we compare the performance of PSAND2 (coef = 1.75, γ = 1.5)
with PSAND1 (coef = 1, γ = 1), AREDFeng and AREDF loyd.

PSAND1 reduces slightly the loss rate by 0.2% for 3 flows and by almost 2% for 28
flows as compared to RED and the other ARED mechanisms. It also achieves an average
queue size close to its target(K̂T = 10 packets) and reduces the probability that the queue
might be empty : in the case of 3 flows, 2.5% instead of 8.8% for AREDFend, and 9.1%
for AREDF loyd; in the case of 28 flows, 1.8% instead of 3.7% for AREDFeng and 2.9%
for AREDF loyd. Moreover, the queue is never almost fully occupied for 3 flows. However,
for 28 flows, the probability that the queue might be almost fully occupied is greater than
the one observed for the two versions of ARED (4% instead of 2.1% for AREDFeng and
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Figure 2.14: Packet loss rate for different values of coef and γ

3.2% for AREDF loyd). In addition, even if Table 2.2 shows for PSAND1 a decrease of the
variance for 3 flows, an increase of variance is observed for 28 flows as compared to the
others versions of adaptive RED (60.00 as compared to 38.85 for AREDFeng and 43.38
for AREDF loyd). The choice of coef = 1.75 and γ = 1.5 for PSAND2 improves overall
performances as compared to PSAND1, AREDFeng and AREDF loyd by reducing both
the variance and the probability that the queue is full for higher number of flows. This
observation leads us to conclude that the adaptation of Maxp with r using (2.1) is not
aggressive enough for large number of flows and shows the use to enrich the behavior of r
by adapting Maxp using (2.2). The resulting performance improvement obtained can be
more or less significant depending on the selected values of coef and γ in relation to the
traffic load. This is illustrated by the comparison of PSAND2 with PSAND3. By using a
configuration of coef and γ appropriate to the traffic load (coef = 1, γ = 0.25 for 3 flows,
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Table 2.2: Comparison of Average Queue Size (AQS), Variance of Queue Size (VQS) and
Packet Loss Rate (PLR) for different values of coef , γ and N (number of flows)

AQS VQS PLR
N = 3 N = 28 N = 3 N = 28 N = 3 N = 28

AREDFeng 10.94 11.01 30.21 38.85 0.87 14.90
AREDF loyd 10.88 12.24 30.33 43.38 0.92 14.79

PSAND1 10.34 10.89 22.31 60.00 0.69 13.57
(coef = 1, γ = 1)

PSAND2 7.43 7.87 18.65 33.54 1.01 13.90
(coef = 1.75, γ = 1.5)

PSAND3
coef = 1, γ = 0.25 (3 flows) 10.6 6.20 21.92 13.74 0.66 13.82
coef = 2, γ = 0.25 (25 flows)

Table 2.3: Comparison of the queue size distribution for different coef ,γ and N (number
of flows)

P (X = 0) P (5 < X ≤ 15) P (25 < X ≤ 35)
(×10−2) N = 3 N = 25 N = 3 N = 25 N = 3 N = 25

PSAND1 (coef = 1, γ = 1) 2.55 1.88 68.86 41.41 0 4.00
PSAND2 (coef = 1.75, γ = 1.5) 5.93 1.47 60.05 57.60 0 0.77

PSAND3
coef = 1, γ = 0.25 (3 flows) 2.74 1.91 71.06 62.96 0 0.24
coef = 2, γ = 0.25 (25 flows)

and coef = 2, γ = 0.25 for 28 flows), PSAND3 shows a further performance improvement
as compared to PSAND2. It decreases the loss rate for small number of flows (3 flows for
instance). Indeed, as showed by Table 2.2, when reducing the variance and the average
queue size for 28 flows, PSAND2 had increased the packet loss rate for 3 flows as compared
to PSAND1.

This shows that by using an automatic configuration of coef and γ according to the
traffic load, the performance of our adaptive scheme can be further improved.

2.4.5 Upper bound of the parameter Maxp

The original proposition of RED has suggested to set the parameter Maxp to 0.1. But
afterwards several works have shown the significance of the parameter Maxp because of
its important influence on RED performance. As stated in [49], an “optimal”Maxp should
depend on network parameters like the RTT, the bandwidth and the number of active
connections and is bounded as:

Maxp ≤ N × SS × c
C ×RTT ,

94



2.4. Stability and performance measures

where N is the number of connections, C is the total bandwidth, SS is the segment size,
RTT is the round trip time and c is a constant. This shows that the optimal value ofMaxp
and its upper-bound depend on network characteristics. The adaptive approach of [34], an
approach that we have followed, is to address this problem by avoiding the use of network
parameters. However, the range of values in which Maxp should evolve, more specifically,
the upper bound of this parameter can also have an impact on the performance of adaptive
RED.

In this section, we conducted several experiments illustrated in Figures 2.15 and 2.16,
in order to investigate the influence of the upper bound of Maxp on the performance of
PSAND.

For these series of experiments, we varied the value of the upper bound of Maxp and
considered different number of flows so as to investigate the impact of the upper bound of
Maxp on different traffic load: low traffic load with 3 flows and high traffic load with 103
flows. For the experiments in Figure 2.15 we set coef = 1.75 and γ = 1.5.

The results observed in Figure 2.15(b) showed that the average queue size decreases
with the upper bound of Maxp. This decrease is more spectacular for higher traffic loads.
For instance, for 103 flows, the average queue size decreases from 25 to 8 packets when the
upper bound of Maxp increases from 0.1 to 1. This shows that bounding the evolution of
Maxp to a small value does not allow the PSAND scheme to increase aggressively its drop
function as required in order to respond more efficiently to the congestion level. Hence,
small upper bounds of Maxp increase excessively the queueing delay specially for large
traffic load. Whereas larger upper bounds give small queueing delays for high traffic load.

On the other hand, small traffic loads do not seem to be significantly influenced by the
upper bound of Maxp. Small loads give small queueing delay, small queue size variance
as well as small packet loss rate whatever the value of the upper bound of Maxp. This is
because since the traffic is not sustained, the average queue size is always small giving a
small drop probability that does not change much when the upper bound of Maxp (i.e.
drop function) increases.

Figure 2.15(a) shows the effect of the upper bound ofMaxp on the queue size variance.
We observe the same results as above, that is for small traffic load, no significant influence
is observed. But for a higher traffic load, the queue size variance decreases when the upper
bound of Maxp increases. But after a certain value of the upper bound of Maxp (0.7 for
instance), the queue size variance increases slowly. Since small upper bounds of Maxp are
not aggressive enough to avoid a quick build up of the queue, the average queue size can
often exceed the maximum threshold Maxth.

By increasing the upper bound of Maxp, the proportion of random drops of packets
increases as compared to 100% drops. Consequently, since there is no rapid build up and
a rapid draining of the queue, the queue size shows less oscillations. However, if the upper
bound ofMaxp is increased to larger value, more than 0.8 for instance (see Figure 2.15(a)),
the proportion of randomly drop increases reducing the queue size. These changes in the
queue size are at the origin of these light increase in the queue size variance. Concerning
the packet loss rate, we can observe a very slight increase for high traffic loads when the
upper bound of Maxp increases.
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Figure 2.15: Comparison of performances for different upper bound of Maxp for coef =
1.75 and γ = 1.5

For the experiments presented in Figure 2.16, we set coef = 1 and γ = 1. Note that
in previous sections, we have showed the use of coef and γ in order to make the PSAND
scheme more aggressive in presence of high traffic load and thus improve its performances.
For this purpose, we have set coef = 1.75 and γ = 1.5. The reason why we set coef = 1
and γ = 1 in these experiments is to see if without the use of coef and γ, the aggressiveness
introduced by a higher upper bound ofMaxp suffices to improve the PSAND scheme. The
results of Figures 2.16(a) and 2.16(b) show that the upper bound ofMaxp does not decrease
significantly the queueing delay and increases the queue size variance as compared to the
results of Figure 2.15. In addition, even decreased, the queue size remains large.

All these results show that without a proper choice of coef and γ, the upper bound of
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Figure 2.16: Comparison of performances for different upper bound of Maxp for coef = 1
and γ = 1

Maxp can not give a sufficiently aggressive behavior of the drop function. By using the
appropriate configuration of coef and γ, larger values for the upper bound of Maxp can
give good overall performances.

2.5 Conclusion

This chapter has described a new mechanism for RED parameters setting in order to
enhance the effectiveness of RED. We have also described this enhancement in [3, 1]. Our
work is based on the adaptive approach of RED described in [34, 41] since this approach
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does not require any hypothesis on the type of traffic and therefore reduces the dependency
of RED on traffic scenario input parameters. We do not claim to present an optimal setting
of RED parameters since as it has been shown by several works like [31, 34, 74, 76], that
the optimal value of the parameter Maxp depends on the network and traffic conditions.
We rather show among other possible alternatives, a way to improve the performances of
Adaptive RED.

We described in Section 2.3 a new mechanism that, unlike in [34, 41] where a constant
factor is used, adapts Maxp with a dynamic change rate which is a function of the change
in the average queue size and the distance of the average queue size to the specified target
queue size.

In addition we conclude that since the dropping rate follows closely the traffic dynamics
then the random drop should start as early as possible. Indeed, we conclude from simula-
tions that Minth should be set as small as possible, whereas Maxth should be set as large
as feasible. This will be explained in detail in Chapter 3.

In Section 2.4, we tested our parameters adjustment mechanism by extensive simula-
tions and statistics which showed performance improvements as compared to RED and
Adaptive RED. Indeed, the results showed a reduction of the variance of the instantaneous
queue size as well as the average queue size independently of the number of flows, without
increasing and even in some cases (for large number of flows for instance) while decreasing
the loss rate. Moreover, our mechanism keeps the queue size away from buffer overflow
and buffer underflow.

Our results also showed that PSAND can further be improved by selecting appropriate
values for the parameters coef and γ. In particular, selecting dynamically a value for coef
and γ that gives best performances for different traffic load is an important issue. It is
also interesting to analyze the performance of our scheme in presence of an UDP traffic, a
mixed UDP and also web-like traffic.
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3.1 Introduction

In this chapter, we study the influence of the parametersMinth andMaxth on our adaptive
scheme. The aim of this study is to investigate the necessity of adapting the two parameters
in order to obtain performance improvements and to make thereby a proposal for their
configuration. For this purpose, we use two types of experiments. For the first type of
experiments, we fixMinth and vary the value ofMaxth. In the same manner, we fixMaxth
and vary the value ofMinth. This is done for different traffic loads. For the second type of
experiments, we propose among others possible methods, different adaptive mechanisms of
Minth andMaxth and compare the results with the one obtained from a configuration using
a fixed value of Minth and Maxth that showed the best performances for the first group
of experiments. Finally, we examine the influence of Minth and Maxth on AREDFeng
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and AREDF loyd schemes and compare the performance of our configuration with the best
performance offered by the configuration proposed by AREDFeng and AREDF loyd.

The AREDF loyd adaptive scheme configured Maxth to three times Minth in automatic
mode as recommended in [40]. AREDF loyd set alsoMinth in automatic mode as a function
of the link bandwidth. They took five packets as a lower bound which they claim works
well for low-speed links. For high-speed links, they chose the value of :

delaytarget × C
2

,

as a trade-off between throughput and delay. Hence they set Minth as :

Minth = max

(
5,
delaytarget × C

2

)
.

As for AREDFeng, no proposals are made for the configuration of Minth and Maxth.

3.2 Fixed values of Minth and Maxth

In this section, we investigate the necessity of adapting the parameters Maxth and Minth
according to the network load in order to improve the PSAND mechanism. For this pur-
pose, we varied the values of Minth and Maxth by considering different number of flows.
We considered different traffic loads generated by 3, 23, 53, 73 and 103 TCP flows. The
principle we wish to apply is: if the value ofMaxth that gives best performances differs ac-
cording to the number of flows thenMaxth should be tuned according to the network load.
In the same manner, if the best performance obtained for different number of flows are ob-
served for different values ofMinth, Minth should be tuned according to the network load.
We wish also to test the following ideas: is it best to keep the interval (Minth,Maxth)
symmetrical with respect to K̂T ? Is it better to select Minth different from 0, as in
AREDF loyd?

In order to test these conditions, we conduct the following experiments reported in
Figures 3.1 to 3.4. We took the same experimental environment as in the previous chapter.
We fixed coef to 1.75 and γ to 1.5. The upper bound of Maxp is also set to 0.75. For
Figures 3.1 and 3.2, we fixed the value of Minth and varied the value of Maxth. For
Figures 3.3 and 3.4, we fixed the value of Maxth and varied the value of Minth. Since the
results of Figures 3.1 to 3.4 show that the performance concerning the packet loss rate is
similar for different values of Maxth, we only discuss afterwards about performances such
as the queue size variance, the average queue size and the loss run length.

3.2.1 The variance and the average of the queue size

We first focus on the variation of the parameter Maxth (i.e. Figures 3.1 and 3.2). The
results show on the first hand that for small number of flows (3 and 23 for instance), the
influence of Maxth on the variance and the average of the queue size is not visible. This is
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(e) Average queue size (Minth = 5)
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(f) queue size variance (Minth = 5)

Figure 3.1: Influence of Maxth for different values of Minth ∈ {0, 2, 5}
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 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 10  15  20  25  30  35

V
ar

ia
nc

e 
of

 th
e 

av
er

ag
e 

qu
eu

e 
si

ze

Maxth

N = 3 flows
N = 23 flows

N = 53 flows
N = 73 flows

N = 103 flows

(b) Queue size variance (Minth = 7)
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(c) Average queue size (Minth = 9.5)
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(d) Queue size variance (Minth = 9.5)

Figure 3.2: Influence of Maxth for different values of Minth ∈ {7, 9.5}

due to the fact that in presence of light traffic load the average queue size exceeds rarely
Maxth. We rather observe an average queue size less than the target value. Nevertheless,
if the value of Minth is increased, Maxth shows an influence: when Maxth increases, the
average queue size grows up to a point where it exceeds the target value. And the minimum
values of the average queue size are observed for small values of Maxth.

On the second hand, we observe that the larger the traffic load is, the more significant
is the performance difference obtained for different values of Maxth. In case of a heavy
traffic load, for small and large values of Maxth, the queue size exceeds its target value.
Nevertheless, given a number of flows, the minimum average queue size is obtained for a
value of Maxth that does not exceed 2K̂T . This “optimal” value of Maxth increases with
the traffic load. For instance, in Figure 3.1(a), Maxth = 10.5 gives the lowest average
queue size for 3 flows, and Maxth = 18 is optimal for 53, 73 and 103 flows. The increase
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of this value with the number of flows is more visible when Minth is larger. For instance,
in Figure 3.2(c), for Minth = 9.5, the optimal value of Maxth for 103 flows is 20, for 73
flows it is 18, for 53 flows it is 15 and for 23 flows it is 13.

Hence, the value of Maxth that gives the lowest average queue size depends on the
number of flows and does not always match the symmetric value of Minth as compared
to K̂T . However, the average queue size obtained for Maxth = 2K̂T is never far from the
lowest average queue size observed. That is whatever the number of flows, the average
queue size obtained for Maxth = 2K̂T is tolerable. But note that given a number of flows,
the values of the lowest average queue size observed increases with Minth. This is because
when Minth is too large, the random drop is not started early enough allowing the queue
size to build up. For instance, for Minth = 0, the lowest value of the average queue size
observed is around 9 for 103 flows. ForMinth = 2, we obtain an average queue size around
11, for Minth = 5 around 12, for Minth = 7 around 15.5 and for Minth = 9.5 around 14.

Given these observations, we search for the values of Maxth for which the queue size
variance is minimized. Like the average queue size, for small number of flows (3 flows
for instance), no significant changes in the variance is observed as the value of Maxth
differs. Moreover, if Minth is increased, then the variance is increased with Maxth. This
is observed for instance for 23 flows and for values of Minth above 5 (Figure 3.1(f), 3.2(b)
and 3.2(d)). On the other hand, for a large number of flows and fixed values of Minth, the
variance is large for small values of Maxth and decreases to its smallest value for values of
Maxth around 2K̂T . It then increases for values of Maxth above 2K̂T . This last increase
is more pronounced as Minth is increased. However, the increase observed for large values
of Maxth is less important as the one observed for small values of Maxth. As we shall
discuss in Section 3.2.2, the important variance for small values of Maxth is caused by the
successions of quick build up of the queue since the number of flows is large, followed by
quick decreases of the queue size. The variance observed for largeMaxth is generated by a
larger queue size due to a continual build up of the queue. Note that like the average queue
size, the lowest variance observed when varying Maxth, increases when Minth is increased.
This observation suggests again to use small values of Minth, in particular Minth = 0.
In this case, for small values of Minth, the results presented in Figures 3.1 and 3.2 also
encourage to use the value of Maxth around 2K̂T so as to obtain the lowest variance. This
result holds whatever the number of flows. Nevertheless, if a large value of Minth is used
then we observe that the values of Maxth that give the lowest queue size variance differs
according to the traffic load. Figure 3.1 shows that this value of Maxth increases with the
traffic load. For instance, for 3 flows, the lowest variance is obtained for Maxth equal to
10.5, and for 103 flows it is equal to 20. However, as in the case of the average queue size,
a value of Maxth equal to 2K̂T is a good trade-off between the performances obtained by
different numbers of flows since it offers a variance not much different from the lowest one.

Let us now consider the influence of the parameter Minth on the variance and the
average queue size by examining the results reported in Figures 3.3 and 3.4.

The best overall performances observed in these figures (i.e. the lowest average and
variance of the queue size) are for small values of Minth. This observation holds whatever
the number of flows. This shows that for our scheme the “optimal”value ofMinth does not
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(b) Queue size variance (Maxth = 10.5)
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(c) Average queue size (Maxth = 15)
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(d) Queue size variance (Maxth = 15)
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(e) Average queue size (Maxth = 18)
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(f) Queue size variance (Maxth = 18)

Figure 3.3: Influence of Minth for different values of Maxth ∈ {10.5, 15, 18}
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(a) Average queue size (Maxth = 20)
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(b) Queue size variance (Maxth = 20)
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(c) Average queue size (Maxth = 30)
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(d) Queue size variance (Maxth = 30)
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(e) Average queue size (Maxth = 35)
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(f) Queue size variance (Maxth = 35)

Figure 3.4: Influence of Minth for different values of Maxth ∈ {20, 30, 35}
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depend on the traffic load. Indeed, Figures 3.3 and 3.4 clearly illustrated that whatever the
number of flows, the value of Minth that gives the lowest average queue size are obtained
for values of Minth equal to 0. And for a given number of flow, the average queue size
increases with the value ofMinth. In the same manner, for large and fixed values ofMaxth,
a value ofMinth equal to 0 gives the lowest queue size variance whereas for small values of
Maxth we do not observe significant difference of the variance as Minth varies. In general,
the queue size variance increases with Minth.

Finally, a value of Minth equal to 0 gives a lower average queue size as well as a lower
queue size variance. Based on the results stated above, in order to keep an average queue
size less or equal to the desired target value, we need to choose a value of Minth equal
to 0 and a value of Maxth close to 2K̂T . Even if Maxth = 2K̂T does not always give the
lowest average queue size, it gives a tolerable performance whatever the number of flows.
Moreover, these same values of the parameters Minth and Maxth allows us to minimize
the queue size variance. Since all the above results are obtained for a certain fixed value
of coef , γ and the upper bound of Maxp, we changed these parameters and tested if all
these observations we made hold for other configuration of the parameters. We therefore
conduct the experiments reported in Table 3.1 by setting coef = 1, γ = 1 and the upper
bound of Maxp to 0.5. We considered N = 23 flows. These results allow us to derive the
same observations as above.

Table 3.1: Influence of Minth and Maxth on our adaptive scheme for 23 flows, coef = 1
and γ = 1 (AQS = Average Queue Size, VQS = Variance of Queue Size and
PLR = Packet Loss Rate, P5−15 = P (5 < X ≤ 15))

Maxth Minth Row AQS VQS PLR Empty queue Full queue P5−15
0 1 10.55 41.99 12.04% 1.52% 0.09% 49%

10.5 5 2 11.35 43.63 13.51% 4.43% 0.049% 54.05%
9.75 3 12.13 47.02 13.26% 3.97% 0.071% 53.34%

0 4 10.87 54.30 12.26% 2.01% 0.12% 40.9%
15 5 5 11.49 47.64 13.58% 4.68% 0.093% 52.68%

9.75 6 13.39 55.88 13.10% 3.78% 0.148% 45.614%

0 7 10.83 52.84 12.06% 1.68% 0.22% 43.4%
20 5 8 12.56 47.23 13.39% 3.17% 0.1945% 53.94%

9.75 9 14.53 52.20 13.14% 2.25% 0.233% 46.25%

0 10 12.93 37.78 11.68% 0.38% 0.28% 56.9%
35 5 11 16.87 47.55 12.77% 1.16% 0.31% 38.07%

9.75 12 19.24 51.04 12.52% 0.928% 0.582% 26.65%

3.2.2 Analysis

In order to give more precise explanations to the observed results, we summarize the effect
of the choice of the values of Minth and Maxth into four different extreme and important

106



3.2. Fixed values of Minth and Maxth

cases. Figures 3.5(a) to 3.5(d) illustrate these cases by representing the RED drop function
by a triangle.

K̂TMinth Maxth

Maxp

(a) Large Minth, small Maxth

K̂TMinth Maxth

Maxp

(b) Large Minth, large Maxth

K̂TMinth Maxth

Maxp

(c) Small Minth, small
Maxth

K̂TMinth Maxth

Maxp

(d) Small Minth, large Maxth

Figure 3.5: Variations of Minth and Maxth

For the simplicity of analysis, we do not consider PSAND in gentle mode but rather in
the strict mode. This means that the 100% rejection of packets starts when the weighted
average queue size exceeds Maxth.

Figure 3.5(a) corresponds to the case presented in the third row of Table 3.1 where
the succession of a quick increase (due to large Minth) and a quick decrease of the queue
size (due to small Maxth) gives rise to a large oscillation of the queue size. Moreover, an
early drop due to Maxth gives a large loss rate as compared to the other cases. Even if
this triangle produces the worst performances as compared to the others, it offers a more
precise average queue size close to the target size.

Figure 3.5(b) corresponds to the case of the sixth and the last rows of Table 3.1. For
this case, the queue experiences a quick increase (due to large Minth) and continues to
build up (due to largeMaxth) leading to an average queue size that exceeds the target queue
size. However, due to a large Maxth, we obtain a lower loss rate as compared to the case
of Figure 3.5(a).

Figure 3.5(c) corresponds to the case presented in the first row of Table 3.1. For this
case, due to an early drop triggered by Maxth in conjunction to an early random drop
triggered by Minth, we observe a very small average queue size. In addition, because of a
slow built up of the queue (Minth small), this case obtains the lowest variance of the queue
size. However, this case experiments one of the highest loss rates due a small Maxth.
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(a) PSAND with Maxth = 10.5 in gentle mode
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(b) PSAND with Maxth = 10.5
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(c) PSAND with Maxth = 30 in gentle mode
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(d) PSAND with Maxth = 30
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(e) PSAND with Maxth = 20 in gentle mode
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(f) PSAND with Maxth = 20

Figure 3.6: Evolution of the instantaneous and the weighted average queue size for 100
flows
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Figure 3.5(d) corresponds to the case presented in the fourth or seventh row of Table 3.1.
This is an interesting case where the best overall performance is observed. Our method
of configuration of Minth and Maxth is based on this case. By starting the random drop
earlier (very smallMinth) at a rate which reflects closely the evolution of the queue length,
our scheme scatters the packets drops over time and avoids sharp changes of the queue size.
This way, it maintains a slower and gradual build up of the queue and therefore reduces
the oscillations of the queue length as well as the average queue size as compared to the
use of a threshold mechanism as in [34, 41]. In addition as the 100% packets drop due to
Maxth is not triggered early (Maxth quite large) and as our scheme drops packets at a
proportion which is a function of the queue size changes, we do not observe an increase of
the loss rate as compared to [34, 41]. We rather observe a slight decrease.

In summary, large values of Minth cause pronouced oscillations of the queue size since
there are periods where the early drop starts late allowing a queue build up and reduces
quickly the queue size. In addition, ifMaxth is large then it leads to a queueing delay larger
than the specified target queueing delay. This is illustrated by Table 3.1. For instance, we
obtain in row 10 of Table 3.1, an average queue size equal to 12.93 packets exceeding the
target value of 10 packets. Moreover, small values of Maxth cause an important packet
loss rate.

All these analysis are given for PSAND in the strict mode. Let us now examine where
this analysis differs when we choose PSAND in gentle mode.

3.2.3 The gentle versus the strict mode

We plot in Figure 3.6 the evolution of the queue size for a simulation run from 50 to
100 seconds with the aim of visualizing the evolution of the queueing delay observed for
different values of Maxth and explaining the increased queueing delay observed for small
and very large values of Maxth. These figures allows us also to visualize the difference
between the gentle and strict mode of PSAND. In gentle mode, the 100% rejection rate
starts only when the weighted average queue size reaches 2Maxth.

Figure 3.6(a) shows that, even if Maxth is small, since we are in gentle mode and
the 100% rejection rate starts only when the average queue size reaches 2Maxth, the
queue builds up quickly, in particular when the traffic is more bursty as in this case where
100 TCP flows compete for the bottleneck link. This explains the large queueing delay
observed in Figure 3.1 for small values of Maxth. The weighted average queue size never
reaches 2Maxth. It oscillates between Maxth and 2Maxth. Hence, packet losses occur only
randomly. But, as the slope obtained for small Maxth is important, packets are dropped
with a higher probability between the upper bound of Maxp and 1, and consequently
decreasing the queue after a quick build up. This leads to more oscillations of the queue
size as confirmed by the large variance observed for small Maxth in Figure 3.1.

Figure 3.6(b) considers a non gentle mode where an earlier 100% drop occurs when the
weighted average queue size reaches Maxth. In this case, we observe a lower average queue
size and a larger dropping rate due to an important slope and an earlier 100% rejection
rate.

109



Chapter 3. Configuration of the parameters Minth and Maxth

If Maxth is set too large as seen in Figure 3.6(c) and 3.6(d), the average queue size
oscillates around a value which is larger than the target queue size. However, no significant
difference is obtained between the gentle and the non gentle mode since 2Maxth is above
the queue capacity and is therefore never reached. Since Minth = 0 and Maxth is large,
slope of the drop function is small Even for large Maxth, if the value of Minth is increased
then the slope of the drop function increases introducing hence more oscillations as see n
in Figure 3.1.

Note that for all these figures,Maxp takes always the value of 0.75 because of a sustained
traffic load generated by 100 TCP flows. Figure 3.6(e) shows better performance for a slope
obtained from Minth = 0 and Maxth = 2K̂T . This result can be explained as follows.
A more precise control leads to a system that reacts too quickly and introduces more
instability (for example a large Maxth increases the slope and creates more fluctuations
since there is a larger dropping rate: the TCP sources reduce their congestion window and
leads to more oscillations of the queue size). On the other hand, for a less precise control
the system does not sufficiently react (for example a largeMaxth). There exists a trade-off
between these two controls that gives good performances.

Based on these results, we can observe that the difference between the gentle and
the strict mode is only visible when Maxth takes small values. Since we have used the
configuration of Maxth that gives the best performance i.e. for values ofMaxth near 2K̂T ,
we do not observe a performance difference between the strict and the gentle mode.

3.2.4 Recommendations

In addition to all the above experiments, we have also tested the performance of AREDFeng

and AREDF loyd schemes for different values ofMinth andMaxth and present the results in
Figure 3.7. If we compare the performance obtained by these figures with the performance
obtained by PSAND for different values of Minth and Maxth illustrated by Figures 3.1 to
3.4, we can observe better performance for PSAND.

We have shown in Section 3.2.1 that a value of Maxth close to 20 which corresponds
to (2× K̂T ) gives an overall good performance for different number of flows. Indeed, large
values ofMaxth close to the buffer capacity increase the average queue size and hence give
a large queuing delay. The queuing delay increases with Maxth whereas the queue size
variance decreases with Maxth. After a quick build up of the queue, small values ofMaxth
decrease sharply the queue size creating pronounced oscillations of the queue size. Moreover
Maxth does not seem to affect significantly the packet loss rate since a negligible decrease
of the loss rate is detected when Maxth increases. In addition, the results of Figures 3.3
and 3.4 also show that a value of Minth equal to 0 gives an overall good performances.

Based on these results, we follow the guideline that suggests to

configure Minth and Maxth so as they remain symmetrical about the target queue size
K̂T (i.e. K̂T = (Minth +Maxth)/2) while being as far apart as feasible depending on the
value of K̂T as compared to the buffer capacity B. The value of these two parameters are
then chosen as follows:
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(a) Average queue size (AREDFeng)

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0  2  5  7  9.5

A
ve

ra
ge

 q
ue

ue
 s

iz
e

Minth

Maxth = 10.5
Maxth = 13
Maxth = 15

Maxth = 20
Maxth = 25
Maxth = 30

Maxth = 35

(b) Average queue size (AREDFloyd)
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(c) queue size variance (AREDFeng)
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(d) queue size variance (AREDFloyd)
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(e) Packet loss rate (AREDFeng)
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(f) Packet loss rate (AREDFloyd)

Figure 3.7: Varying Minth and Maxth for AREDFeng and AREDF loyd
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If K̂T >
B
2
:

{
Minth = 2K̂T − B ,
Maxth = B .

If K̂T ≤ B
2
:

{
Minth = 0 ,

Maxth = 2K̂T .

3.3 Adapting Minth and Maxth

In this section, we exhibit few methods among other alternatives for the adaptation of
Minth and Maxth. The parameter Maxp is adapted according to the PSAND scheme
described in the previous chapter. The aim of this section is to show the drawbacks of the
few enumerated methods of adaptation of Minth and Maxth, as compared to the configu-
ration proposed in the previous section. We do not intend neither to study nor explain the
behavior of each of these mechanisms in detail but rather illustrate their performance. We
consider a heavier traffic load generated by 100 TCP flows so as to test how these methods
react in presence of rough traffic conditions.

Table 3.2: Different methods to adapt the parameters Minth and Maxth
Row Minth Maxth Symmetrical evolution Maxp change rate

1 Fixed Maxth − δK̂ No β
2 Fixed Maxth + δK̂ No β
3 Minth + δK̂ Maxth − δK̂ Yes β
4 Minth − δK̂ Maxth + δK̂ Yes β
5 Minth + δK̂ Maxth + δK̂ No β
6 Minth − δK̂ Maxth − δK̂ No β

7 Minth = K̂T Maxth = K̂T Yes –

8 Minth + δK̂ Maxth − δK̂ Yes
Maxthi+1−Minthi+1

Maxthi−Minthi

There exist different ways to adapt the parameters Minth and Maxth. We enumerate
a few of them and we examine briefly their performance.

Minth and Maxth can be updated by using a fixed constant multiplicative or additive
factor like the adaptation of Maxp in [34] and [41]. The other alternative is to update
these parameters with a variable factor that depends on the queue size change. There are
several methods for this alternative idea. Table 3.2 describes a few of these methods.

Several questions should be answered for the adaptation of Minth and Maxth. The
first problem to be solved is to find the appropriate rate of adaptation. In all the following
examples, we adapted Minth and Maxth as a function of the changes in the average queue
size in an interval as in the case of the adaptation ofMaxp. Hence the change rate denoted
δK̂ is computed as:

δK̂ = K̂cur − K̂prev ,
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3.3. Adapting Minth and Maxth

Table 3.3: Performance of different adaptive methods of Minth and Maxth (Maxp = 0.75)
AQS VQS PLR (%)

1 19.5 134.6 21.7
2 16.0 51.9 23.1
3 9.3 28.2 12.4
4 12.42 35.3 18.2
5 12.6 35.2 17.9
6 12.8 35.3 18.1
7 8.4 57.4 15.5
8 14 108 12.3

with the same interpretation for these values as in Chapter 2 Section 2.3.
Note that by deciding either to fix Minth and Maxth at a constant value, either to

adapt them using δK̂ , we only explore a part of the universe of adaptation mechanisms. For
instance, alternative solutions could be adapting Minth and Maxth using an intermediate
value that can be more or less aggressive. The moving weighted average that belongs to
the category of adaptive mechanisms could be used in order to compute these intermediate
values. For instance, the new value of Minth could be adapted as follows:

Minth(i+ 1) = Minth(i)× α+ (Minth(i)± δK̂)× (1− α) .
The two extreme cases are obtained for α = 0 and α = 1. If α = 0, then Minth

is adapted directly with δK̂ . If α = 1, then Minth is fixed. For 0 < α < 1, we obtain
alternative values of adaptation.

The optimal performances obtained could be from these intermediate alternatives and
not from the two extreme cases. Nevertheless this method would increase once more the
number of RED parameters and we transform the problem by a new problem of finding
the optimal value of α.

The second question is how to make Minth and Maxth evolve. Should we choose nec-
essarily a symmetric evolution with respect to K̂T ? ShouldMinth and Maxth be increased
or decreased as the traffic load increases, that is, the average queue size increases?

The methods we will enumerate below and describe in Table 3.2 differ in the way they
answer these questions. The performance of these methods is described in Table 3.3. Each
performance of a row of Table 3.3 corresponds to the method of the same row of Table 3.2.

In the first and second rows of Table 3.2, we present two methods that adapt Maxth
and fixed Minth to 0 since the above simulations results showed that this value of Minth
shows good performances whatever the number of flows. For the method of row 1, Maxth
is decreased when the weighted average queue size is increased whereas for the row 2,
Maxth is increased when the weighted average is increased. Both methods do not keep the
symmetry that exists between Minth and Maxth as compared to K̂T .

From row 3 to 8, both parametersMinth andMaxth are adapted. All of these methods
keep the symmetry between Minth and Maxth except the methods presented in rows 5
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Figure 3.8: Evolution of Minth and Maxth corresponding to rows 3 to 6 in Table 3.2

and 6.

In the following, we present the simulation results of some of the methods presented
in Table 3.2. Figure 3.9 to 3.14 display these results. Each figure is the result of one
simulation run for 100 seconds with the same network configuration as in the previous
sections.

For the mechanisms of rows 1 and 2, Minth is fixed to 0 allowing the start up of the
random drop earlier. However, in row 1, since Maxth is increased when K̂cur increases,
Maxth oscillates around small values close to K̂T . Whereas for row 2, since Maxth is
decreased when K̂cur increases, Maxth oscillates around large values between 2K̂T and the
buffer capacity. The values around whichMaxth evolves has an influence on the oscillations
of the queue size as illustrated by Figures 3.9 and 3.10. For small Maxth in Figure 3.9, we
observe pronounced oscillations of the queue size and an important queueing delay. Because
of a sustained traffic (100 flows for instance) the average queue size exceeds Maxth but the
dropping of packets continues at a higher probability between the upper bound of Maxp
and 1 until the reduction of the average queue size below Maxth. This reduces the queue
size oscillations observed from 50 to 80 seconds of the simulations of Figure 3.9. Since
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Figure 3.9: Minth = 0, when K̂cur increases Maxth decreases between K̂T and buffer ca-
pacity (mode gentle, Maxp = 0.75)
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Figure 3.10: Minth = 0, when K̂cur increases Maxth increases between K̂T and buffer
capacity (mode gentle, Maxp = 0.75)

the traffic load is important the average queue size increases above Maxth and the cycle
continues. However for lower traffic load we observe less pronounced oscillations where the
average queue size is below Maxth.

As for the mechanism presented in Figure 3.10, because of largeMaxth, we observe less
pronounced oscillations of the queue size as compared to the case of Figure 3.9. However,
as observed also in the previous section, large values of Maxth cause an important average
queue size. These two figures confirm the results observed in the previous section. That
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(b) Queue size evolution

Figure 3.11: Symmetric evolution, when K̂cur and Minth decrease, with 20 sources

is, large and very small values of Maxth causes important queueing delay, and large values
of Maxth gives less oscillations of the queue size than very small values of Maxth.
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(b) Queue size evolution

Figure 3.12: Non symmetric evolution, when K̂cur and Minth decrease, with 20 sources

The evolution of Minth and Maxth from rows 3 to 6 are illustrated in Figure 3.8. The
methods presented from rows 3 to 6 give more or less similar behavior. We only consider
the case of row 4 and 6 to illustrate these methods. Both cases decrease Minth when the
average queue size increases. Their difference is that case 4 considers a symmetric evolution
of Minth and Maxth as compared to K̂T (Figure 3.11). This figure shows that in case of a
symmetric evolution (row 4), the weighted average queue size oscillates betweenMinth and
Maxth whereas for the non symmetric case (Figure 3.12) the average queue size oscillates
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around the value of Maxth, giving a large queueing delay. Indeed, since the difference of
both methods is on the evolution of Maxth, for the non-symmetric case, when the average
queue size increases, Maxth decreases. Because of a gentle mode and a heavy traffic load,
the queue size oscillates frequently above Maxth giving then poor performances.

The row 7 corresponding to the Figure 3.13 presents a method where both Minth and
Maxth are set to the target queue size. This means that all arriving packets are rejected
when the weighted average queue size reaches its target value. In this case, there is no
random drops (the parameter Minth is eliminated). This method called Pseudo Drop
Tail (PDT) is much more strict than the Drop Tail mechanism. It therefore increases
the dropping rate and thus underutilize the link. Even if the weighted average queue
size oscillates closely to the target queue size, the instantaneous queue size shows more
oscillations between 0 and 20 packets. This mechanism depends on the responsiveness of
the parameter ωq. If ωq is set to 1, then the mechanism reacts too quickly by rejected all
packets when the instantaneous queue size reaches the target queue size. This becomes a
Drop Tail with a buffer capacity set to the value of the target queue size. If ωq is set to
0, then the weighted average size does not follow the evolution of the instantaneous queue
size. In this case, the instantaneous queue size builds up and shows more oscillations since
the weighted average is too slow to reach the target queue size. Figure 3.10 illustrates the
evolution of the queue size for this mechanism.

The row 8 corresponding to Figure 3.14 presents also another mechanism (called Sand-
wich) where unlike all the other mechanisms that uses the PSAND adaptation scheme of
Maxp, Maxp is adapted differently. The multiplicative factor of Maxp is computed so as
to maintain the same slope of the drop function when Minth and Maxth evolves. The
evolution of Minth and Maxth is a symmetric evolution as compared to the target queue.
If the weighted average queue size increases, then Minth increases and Maxth decreases.
If the average queue size decreases, then Minth decreases whereas Maxth increases. The
change rate of Maxp is therefore calculated as:

Minth(i+ 1) = Minth(i) + δK̂ ,

Maxth(i+ 1) = Maxth(i)− δK̂ ,

β =
Maxth(i+ 1)−Minth(i+ 1)

Maxth(i)−Minth(i) ,

Maxp(i+ 1) = β ×Maxp(i) ,

where i is the interval of adaptation of Maxp.

The drawback of this method is that the change rate computed so as to keep a constant
angle does not follow the principle of adaptive RED. This principle consists in increasing
Maxp when the average queue size increases, and decreasing when the average queue
size decreases. In this case, Maxp is decreased when the average queue size increases.

Indeed, since Minth increases and Maxth decreases when K̂cur increases, the new interval
Maxth −Minth decreases leading to a β < 1. Since Maxp is decreased when the traffic
load increases, we initialize Maxp to 1. Otherwise Maxp would be too low and packets are
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Figure 3.13: Maxth =Minth = K̂T (Pseudo Drop Tail) with 20 sources
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(b) Queue size evolution

Figure 3.14: Constant angle of the drop function (Sandwich) with 20 sources

not rejected at a rate that reduce the congestion. This behavior of this mechanism creates
a large queue size where the average queue size oscillates around Maxth.

Minth and Maxth can be adapted in several ways. However, we can resume all these
ways as follows. If the adaptation of Maxth is around a very large or small values then
the queue size oscillations and the average queue size are increased. However, if Maxth
evolve in between i.e. around 2K̂T , then we avoid large variance and important amplitude
of the oscillations of the queue size. These results confirm the observations we made in the
previous section for fixed Minth and Maxth.
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3.4 Conclusion

The results of all these experiments suggests that a sufficiently larger interval [Minth,Maxth
that maintains the symmetry improves further the performances. Hence, by using small
values of Minth and large values of Maxth, our adaptive scheme of Maxp described in
Algorithm 16 improves overall performances as compared to the threshold mechanisms as
in [34, 41]. The described results show that for some fixed Maxth, the smaller Minth is,
the better is the overall performance. A small value of Minth close to zero decreases the
variance of the queue size, the average queue size, the loss rate and the probability that
the queue is fully occupied and that it is empty. In the same way, for a fixed Minth, small
values of Maxth do not give the best performances. Moreover, the value of Maxth should
not be chosen too large (in particular for a large number of flows) in order to avoid a large
queuing delay as the average queue size could excessively exceed its target value.

Hence these results obtained in Section 3.2 for fixed Minth and Maxth suggested to
consider a configuration with Minth set to 0 and Maxth set to 2K̂T . If we compare the
results of this configuration with the results obtained by several adaptive methods (refer to
Table 3.3), we can notice that the configuration of a fixed Minth and Maxth gives better
performances. This reinforces our choice of fixing these two parameters without the need
of adapting them.
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4.1 Introduction

We have proposed in Chapter 2 (page 67) an active queue management scheme called
PSAND that follows the basic spirit of the adaptive RED presented in [34, 41] but differs
in the method used to adjust the parameters Maxp, Minth and Maxth. In particular, the
parameter Maxp is adjusted as a function of the distance to the performance objective,
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whereas in [34, 41],Maxp is adjusted with the same fixed value. We have compared our new
method of RED parameters adjustement with the original RED and Adaptive RED. The
results of these comparisons showed that PSAND gives a lower average queue size, achieving
as a result the target queueing delay. It also reduces the queue size variance whatever the
traffic load. These performance gains have been obtained without the sacrifice of the
packet loss rate. Even though PSAND shows such performance improvement as compared
to ARED, it is interesting to situate its performance among other mechanisms that are
well-known or that have recently been proposed. We have described these mechanims in
Chapter 1. The comparison is restricted to five of these mechanisms : BLUE [33], PI
[52, 50], AVQ [67, 66, 68], LRED [97], REM [7, 8]. The reasons why we have chosen these
five mechanisms are:

• BLUE : it is an adaptive mechanism like ARED and PSAND, it but does not use
the queue length as a congestion measure. It uses instead the link utilization and the
packet loss rate. Several works have compared their proposals with BLUE.

• PI, AVQ, LRED and REM since these mechanisms rely on a solid theoretical anal-
ysis and/or need scenario parameters as input to their model. In addition, these
mechanisms are widely referenced.

• LRED since it is a robust mechanism that stabilizes the queue size whatever the
traffic load: recall that our primary objective for PSAND was to reduce queue size
variance. So, it could be interesting to see how far PSAND can stabilize the queue
length as compared to LRED. Moreover, LRED is a very recent proposal (2004).

We present in the next section the two different topologies and in Section 4.4 the metrics
used for the comparison of these mechanisms. The selected metrics allow to illustrate the
strength or the weakness of a mechanism. Finally, we present like in Chapter 2 the results
of the simulations we conducted under ns simulator [94] by making a qualitative analysis
in Section 4.5 and a quantitative analysis through statistics in Section 4.6.

4.2 Topologies

Since we have compared PSAND with AREDFeng and AREDF loyd by using the topology
presented in Section 2.4.1, we use first this same network topology in order to compare
PSAND with the other mechanisms enumerated just above. This topology is composed
by four different propagation delays: 2ms for the link between node S1 and R1, 3ms for
the link between node S2 and R1, 20ms for the link between node R1 and R2 and 4ms for
the link between node R2 and S3. In addition to the three basic flows as illustrated by
Figure 2.2 (page 76), all others additionnal flows start from node S1. This means that most
of the connections use a propagation delay of 2ms on the link S1 and R1. This topology can

122



4.3. Network parameters

therefore be simplified into a topology where all flows experience almost the same round
trip time. We designated this topology by Toposame.

Several works have studied the case where different flows experience almost different
round trip times. Likewise, for the comparison of PSAND with the others active queue
management schemes, we also use a network topology where different flows experience
different round trip times. For this purpose, instead of attaching the additional N flows
to node S1, we create N different nodes from node S4 to SN and N links with different
propagation delays. Each of these nodes is attached to node R1 through a different link.
The propagation delays for the N additional flows vary linearly from 1ms to 200ms. The
propagation delay of the ith link is then computed as follows :

propagation delay(i) = 1 +
199(i− 4)

N − 4
ms .

We designate this topology by Topodiff. Figure 4.1 illustrates this topology.

10M
bps, 

200ms
1.5Mbps, 20ms 10Mbps, 4ms

10M
bps, 2m

s

.

RED (buffer size = 35 packets)

10Mbps, 3ms

.

10Mbps, 1ms

.

R1

R2

S1
S2

SN

R1 R2

Figure 4.1: Network topology with different Round Trip Times (RTT).

4.3 Network parameters

Among the active queue management schemes selected for comparison in this chapter,
AVQ, PI and LRED require as an input to their model:

• The maximum round trip time (RTT) for the considered network topology denoted
by R+.

• The minimum number of the TCP connections denoted by N−.
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In all of these three works, N− is a given data which is considered known by the network
operator. Note that other works like [82, 36, 60] have advocated some methods to estimate
the number of active connections. On the other hand, R+ is estimated as follows:

R+ =
B

C
+ Tp , (4.1)

where B is the buffer capacity of the bottleneck link in packets, C is the bottleneck link
capacity in packets/s and Tp is the maximum propagation delay (in seconds). Tp is the sum
of the propagation delays of the links located between two nodes. To obtain Tp, we make
the sum of the propagation delays of the links located between two nodes and multiply
it by two for the forward and backward paths. Tp takes the value of the maximum sum
obtained.

For instance, for the topology Toposame, Tp = 2(3+20+4) = 54ms and for the topology
Topodiff, Tp = 2(200 + 20 + 4) = 448ms.

Table 4.1: Maximum round trip time R+ according to the considered topology
Topology TCP packet size Link capacity (C) Propagation delay (Tp) R+

Toposame 1000 bytes 1.5Mbps 54ms 241ms
Topodiff 1000 bytes 1.5Mbps 448ms 634ms

Once Tp is calculated, given the bottleneck link capacity C = 1.5Mbps = 1.5×106/(8×
103) = 187.5packets/s where 103 is a packet size in bytes, and given the RED buffer
capacity B = 35packets, the value of R+ is computed using equation (4.1). The result of
this computation is presented in Table 4.1.

Once the values of N− and R+ are determined, the AVQ, PI and LRED schemes use
these values in order to derive the system stability condition. Each of these mechanism
determines the values of a certain variable for which the system becomes stable.

For AVQ, Equation (1.18) page 44 gives the values of the parameter α for which the
system is stable. In the same manner, for PI, Equations (1.22) and (1.23) page 47 give
the values of the parameters a and b. For LRED Equation (1.26) page 49 gives the value
of the parameter β. Hence, for these values of the considered parameter, for a round trip
time less than R+ and for a number of TCP connections greater than N−, the system is
said to be stable. For the simulations conducted in this chapter, we use the values of R+

presented in Table 4.1.
For the values of N−, we have considered two alternatives for AVQ and LRED. For

the first one, we set N− to 3 flows since it is the smallest number of flows we consider.
For the second one, we use the actual and considered number of flows as N−. We have
denoted these versions as AVQ� and LRED�. This way we can observe the performance
improvement obtained if the exact number of flows is known. This case is very difficult to
obtain in practice since the exact number of active flows is not known from the RED node.
It is rather practical for the network operator to assume that there is a minimum number
of TCP connections in the network and use this number as N−.
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Hence, we use the following values of the parameters used for each active queue man-
agement scheme:

• For BLUE: we use the values recommended by Feng et al. in [33] for the parameters
d1 and d2, i.e. d1 = 0.0025 and d2 = 0.00025. The parameter freeze time is set to
0.241, so that it corresponds to a typical RTT of the considered topology. For the
topology Toposame this corresponds to 241ms according to Table 4.1.

• For PI: the values of the parameters a and b are set as a = 0.000344519 and b =
0.000343499. The interval of adaptation of PI parameters INTERV AL (or 1/fs) is
set to 170 seconds.

• For REM: we use the values recommended by Athuraliya et al. in [7, 8] for the
parameters γ and φ, i.e. γ = 0.001 and φ = 1.1.

• For AVQ: the size of the virtual queue B̃ is set equal to the size of the real queue
(i.e. 35 packets) and the desired link utilization rate is set to 1. Based on (1.18)
and (1.19), we set the “optimal” value of α for every number of flows for AVQ�, and
α = 0.251 for AV Q.

• For LRED: based on (1.26), we set the “optimal”value of β for every number of flows
for LRED�, and β = 0.021 for LRED.

Note that for all the results of PSAND presented subsequently unlike AVQ�, LRED�

and PI, we do not give a favorable configuration for PSAND. Indeed, we do not give
an “optimal” setting of the parameters coef and γ according to the number of flows. We
rather set their values to coef = 1.75 and γ = 1.5, a configuration that gives an appropriate
performance whatever the number of flows as we have shown in Chapter 2.

4.4 Metrics

In this chapter we use the three major metrics presented in Chapter 2 such as the queue
size variance, the average queue size and the packet loss rate. We have seen that PSAND
has an advantage over ARED concerning these metrics. In order to investigate if PSAND
maintains its advantages concerning these three metrics without showing weakness for other
metrics, and also for a better comparison of PSAND with other active queue management
schemes, we measure the following additional metrics:

• The loss run length.

• The link utilization rate.

• The fairness between the TCP flows.
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The loss run length as defined in [92] is the number of lost consecutive packets between
two not lost packets. We consider a per-flow loss run length. For the per-flow loss run
length, we count the number of lost consecutive packets belonging to the same flow.

The link utilization rate is computed as the total number of bytes delivered by the link
during the running time of the simulation over the total possible bytes that could have left
the link in the same running time.

Fairness is a metric widely used to evaluate TCP congestion control algorithms when
two or more TCP connections compete for scarce resources in a congested router.

There is fairness when there is a fair allocation of resources among several TCP connec-
tions that share a gateway which has a lower capacity than the total demand of the TCP
connections in terms of resources. The fairness issue can be raised for bandwidth sharing
among TCP flows or between TCP and non TCP flows (e.g. UDP traffic). In this chapter
we only consider the fairness metric between TCP flows.

The fairness problem for RED gateways has been studied in litterature. The authors of
[49] stated that the fairness performance under RED gateways depends on the parameter
Maxp. Hence according to the authors,Maxp should be associated to the delay-bandwidth
product of a connection. The FB-RED algorithm described in [63] and the FRED algo-
rithm described in [70] are per-flow management schemes that intended to improve fairness
between TCP flows for RED gateways. The class-based algorithms such as Balanced RED
(BRED) [5, 86], stochastic fair Blue (SFB) [35] and [86] are intended to solve the unfairness
problem between TCP and non TCP flows.

There exist several definitions of fairness [42, 64, 101]. These studies showed the differ-
ence that may exist between long-term fairness and short-term fairness in some systems. A
congestion control algorithm can show a fair allocation of resources in a larger time-scale
while showing unfairness in a smaller time-scale.

The most known definition is Jain’s fairness index [57] that is used to determine the
fairness among all TCP flows. This fairness index takes a value ranging from 0 to 1. A
value close to 0 indicates poor fairness whereas a value close to 1 indicates a higher fairness
between flows. Look at references [58, 38] for further details.

Given xi the network resource (e.g. throughput, buffer space, etc.) allocation for flow i,
and N the total number of TCP flows, the Jain’s fairness index F is computed as follows:

F (x1, x2, . . . , xN) =

(∑N
i=1 xi

)2
N
∑N

i=1 x
2
i

.

In this chapter, we use Jain’s fairness index to measure the degree of similarity between
all flows bandwidth given xi the throughput of flow i. We only consider the fairness problem
between TCP flows.

4.5 Qualitative analysis

In this section, we make a visual and qualitative comparison of the evolution of the instan-
taneous queue size of schemes like BLUE, REM, AVQ, PI, LRED AND PSAND through
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(f) LRED�

Figure 4.2: Comparison of different active queue management schemes for a constant traffic
for 103 sources (same RTT)
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Figures 4.2, 4.3 and 4.4. This curves presented in these figures are each the result of one
simulation run for 100 seconds. In Figures 4.2 to 4.3 we only observe the behavior of every
mechanism in presence of a heavy traffic load generated by 103 TCP flows. We do not
consider a change in the congestion level like in Chapter 2 , Section 2.4.2.1. All the TCP
flows start at the beginning of the simulation every 0.1 seconds.

Figure 4.2(a) shows that in presence of a heavy traffic load, BLUE exhibits a full queue
for a long period of time and takes 60 seconds to reduce the queue length. The PI scheme
(Figure 4.2(d)) shows the same behavior but takes more than 60 seconds to reduce the queue
length. After the transient period has ended, both schemes exhibit a higher amplitude of
oscillations of the queue length as compared to the other schemes. The other schemes
(REM, AVQ�, LRED and PSAND) reduce the queue length almost at the beginning of
the simulation (10 seconds after). However these schemes show more frequent occurences
of an empty queue than PI and BLUE. Among these schemes, AVQ� shows the smallest
amplitude of oscillations of the queue length with a small queue size. Nevertheless, AVQ�

experiences more frequent occurences of an empty queue. If we observe Figure 4.2(b),
REM also shows a more frequent occurences of an empty queue while experiencing a larger
queue size with higher amplitude of oscillations as compared to AVQ�. LRED and LRED�

avoid this frequent occurences of empty queue while maintaining the oscillations of the
queue length around the target queue size (10 packets). LRED� improves the performance
of LRED by reducing these occurrences and giving more concentrated oscillations of the
queue length around the target queue size. Recall that LRED� is better tuned than LRED
since for the computation of the parameter β that gives the system stability condition by
using (1.26), LRED� uses N− = 103 flows whereas LRED uses N− = 3 flows.

If we compare PSAND with all these schemes (see Figure 4.3), we can classify it with
the second group (containing REM, AVQ�, LRED and LRED�) where a reduced queue
length is observed.
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Figure 4.3: PSAND for a constant traffic for 103 sources (same RTT)
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Concerning the comparison of PSAND with the first group schemes, the behavior of
the queue size oscillations of PSAND outperforms the one for PI and BLUE, except that
BLUE and PI utilize more the link resources since PSAND experiences more frequent
occurences of an empty queue. Among the schemes of the second group, PSAND shows
an advantageous or competitive performance. For instance, as compared to REM, PSAND
shows a smaller amplitude of the queue size oscillations, smaller queue length and less
frequent occurences of an empty queue. Moreover, the PSAND’s queue length oscillates
more frequently around the target queue size (10 packets).

If we compare PSAND with AVQ�, AVQ� presents an advantage over PSAND as it
experiences a very small queue length much lower than the target queue size and a very
small amplitude of the queue size oscillations. Nevertheless, AVQ� exhibits more frequent
occurences of an empty queue as compared to PSAND.

The schemes that shows a competitive performance as compared to PSAND is LRED
and LRED�. As compared to PSAND, LRED� shows in Figure 4.2(f) a more desirable
behavior of the queue size oscillations by reducing the amplitude of the oscillations and
making the queue size oscillates very closely to the target queue size. However, it gives
more frequent occurrences of an empty queue (see Figure 4.2(e) and Figure 4.3 on pages
127 and 128). Another weakness of LRED as compared to PSAND is that LRED behaves
efficiently only in presence of a high traffic load. Figure 4.4 shows that in presence of a
light traffic load, LRED gives poor performances as compared to PSAND. Whatever the
optimal value of β chosen, LRED does not perform better for small traffic load. We have
used β = 0.151 for the simulation of Figure 4.4.
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Figure 4.4: LRED queue size evolution for 3 flows (same RTT)

As for PSAND, it works efficiently whatever the traffic load even without an “optimal”
configuration of its parameters coef and γ.

Since LRED does not perform efficiently in presence of low traffic load, LRED could
not behave better than PSAND ( see Figure 2.6(d) page 82), in case of a change of the
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congestion level. The ability to adapt quickly to a congestion level is an important charac-
teristic since realistic network traffics are dynamic and do not always present a large traffic
load.

From the observation of all these figures (Figures 4.2 to 4.3), we can conclude that
PSAND shows a desirable behavior of the queue size oscillations as compared to the other
schemes. Even competitive schemes like LRED can show a weakness as compared to
PSAND. We will support this qualitative analysis with the statistical analysis that will be
presented in the next section.

4.6 Quantitative analysis

In this section, we perform a statistical analysis reported in Figures 4.5 to 4.9. Every point
of the curves in these figures is an average of 100 independent simulations, each one run for
100 seconds. We first consider in Section 4.6.1 statistical measures by using the topology
Toposame. In Section 4.6.2, we use the topology Topodiff.

4.6.1 Similar round trip times

Figures 4.5 to 4.6 present the results of the measurements in a case where all TCP flows
experience similar roud trip times.

These results confirm the observations of the qualitative analysis. These figures illus-
trate that PSAND outperforms BLUE and PI for all the metrics we have considered. As
compared to the other schemes, PSAND does not always show the best performance for
all the metrics considered. Even if PSAND exhibits a less advantageous or competitive
performance for a certain metric, it appears more interesting for other metrics. To clarify
these observations, let us compare PSAND with each of these schemes, i.e. REM, AVQ,
AVQ�, LRED and LRED�.

4.6.1.1 PSAND versus REM

REM is close to PSAND in its design spirit. Like PSAND, REM uses the queue length
mismatch, which is similar to prox rate for PSAND but replaces the current average queue
size by the previous average queue size. However, their minimal differences leads to sig-
nificant performance differences. In particular, REM underutilizes the network resources.
Indeed, Figure 4.2(b) shows that the queue size is often empty as compared to PSAND
and (Figure 4.6(b)) confirms this result. Another performance difference between REM
and PSAND is that REM outperforms PSAND if we consider the average queue size. That
means that REM gives a fixed average queueing delay much lower than the specified target
queueing delay, whatever the traffic load, whereas PSAND increases slowly the queueing
delay as the traffic load increases. Our objective being to obtain a target delay, we con-
sider that this advantage alone has little weight. Nevertheless, REM loses its advantages
as compared to PSAND when considering the queue size variance and the packet loss rate
(see Figure 4.5(b) and 4.5(c)).
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Figure 4.5: Evolution of the average queue size, the variance of the average queue size
and the packet loss rate for different active queue management schemes (same
RTT)
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In addition, for other metrics such as the link utilization rate (Figure 4.6(b)), the fairness
(Figure 4.6(a)) among TCP flows, PSAND shows better performances. The number of lost
consecutive packets is larger for REM than for PSAND.

4.6.1.2 PSAND versus AVQ

Let us now compare PSAND with the AVQ and AVQ� schemes. Unlike PSAND and
REM, AVQ requires as an input the network scenario parameters such as the number
of active flows. This difference in design leads to a significant performance difference
between PSAND and AVQ. Indeed, AVQ� gives the lowest queueing delay (Figure 4.5(a))
as compared to all the presented schemes. This is achieved while maintaining the lowest
delay jitter (Figure 4.5(b)) and the lowest packet loss rate (Figure 4.5(c)). AVQ� improves
the performance of AVQ for higher traffic load concerning the queueing delay and the
delay jitter with the sacrifice of the packet loss rate. Except for the performance of AVQ
concerning the delay jitter in presence of a high traffic load, AVQ and AVQ� outperform
PSAND for these three main metrics. If we recall all the objectives that we have first fixed
for PSAND, our goal was to minimize the queue size variance while maintaining a low
queueing delay close to its target value without the sacrifice of the packet loss rate. In that
respect, AVQ and AVQ� are amazing since they are able in addition to reduce the packet
loss rate. However, AVQ pays the price of this significant performance improvement as
compared to PSAND and the other schemes if we consider other metrics. Indeed, AVQ
and AVQ� experience the poorest fairness performance (Figure 4.6(a)), one of the lowest
link utilization rate (Figure 4.6(b)) and the highest probability of having an empty queue
(Figure 4.6(c)). Note that if we choose a configuration for coef and γ that maintains
the queue often empty, PSAND is also able to maintain a very low queueing delay and
minimize the queue size variance with a very small additionnal packet loss rate. But in
order to avoid the link underutilization and increase the link utilization rate and make
PSAND works whatever the number of flows, we have used a configuration that sets the
parameters coef and γ to 1.75 and 1.5 respectively and that shows a slight increase of
the queueing delay and the queue size variance as compared to AVQ. We can observe in
Figure 4.5(b) that AVQ and AVQ� experience a larger queue size variance than PSAND
and AVQ shows more queue size variations for larger traffic loads.

4.6.1.3 PSAND versus LRED

Let us now compare PSAND with LRED which presents similarity to AVQ in the sense
that it requires input network parameters. LRED and LRED� are the mechanisms that
show more or less similar and competitive performances as PSAND. They give a constant
average queue size very close to its target value whatever the traffic load. The average
queue size increases slowly with the traffic load for PSAND. Nevertheless, PSAND offers
a smaller queueing delay as LRED and LRED�. LRED gives similar results as PSAND
concerning the queue size variance but PSAND gives lower variance for small number of
flows. LRED� improves the queue size variance as compared to LRED and PSAND with
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Figure 4.6: Fairness, link utilization and empty queue probability for different active queue
management schemes (same RTT)
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Figure 4.7: Per-flow consecutive loss for different active queue management schemes (same
RTT)

a negligeable decrease of the packet loss rate. Even though LRED shows similar results as
PSAND in Figure 4.6(a), PSAND shows a slightly better fairness than LRED for the TCP
flows. PSAND shows also an increase of the link utilization rate in particular for small
number of flows. Mechanisms like AVQ and LRED need to reduce the TCP window size
in order to optimize their performance and thus underutilize the link resources. One of the
weaknesses of LRED as compared to PSAND is its poor performance for small traffic load.
Another weakness of LRED and LRED� is that they have a larger number of consecutive
packet losses. Figures 4.7 shows that all other mechanisms reject packets in the same way
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whereas PSAND has a different packet loss behavior since it offers a more isolated loss
process. Indeed, and Figures 4.7(a) shows a higher probability for PSAND of having a
loss run length (LRL) of size one. There is less probability of lossing consecutive packets
with PSAND than with the other schemes. The probability to have a loss run length of
size greater than 2 is lower for PSAND. This result is observed for per-flow loss run length
metrics.

4.6.1.4 Synthesis

All these quantitative analysis illustrate the performance of PSAND where the TCP flows
experience similar round trip times. This situation is favorable for schemes like AVQ, LRED
and PI that estimate and use the network parameters such as the RTT as an input to their
models. Even in this situation, PSAND showed overall desirable performances. It offers a
good trade-off between the performance of all the metrics we presented. Unlike the other
schemes, it does not improve significantly one metric and loses a lot its performance for
other metrics. It rather tries to perform better for all metrics without searching for the best
performance for every metric considered. In addition, this performance comparison has also
showed that because of its good trade-off, PSAND did not loose too much in performance.
It often presents a performance not far from the best performances obtained for every
metric. Table 4.2 confirms these observations. The table gives a subjective evaluation of
the results presented in Figures 4.5(a), 4.5(b), 4.5(c), 4.6(a) and 4.6(b). The symbol “+”
represents good performance whereas the symbol “-” represents poor performance.

Table 4.2: Table of comparison of different AQM (same RTT): AQS = Average Queue Size,
VQS = Variance of Queue Size, PL = Packet Loss Rate, LU = Link Utilization
rate, F = Fairness

AQS VQS PLR LU F
BLUE - - - - - - + ++ +++
PI - - - - - - ++ ++ +++
REM +++ - - - - ++
AVQ ++ + ++++ + - - -
AVQ* ++++ ++++ +++ - - - - - -
LRED + ++ + +++ ++
LRED* + +++ ++ +++ ++
PSAND ++ ++ ++ ++++ ++

4.6.2 Different round trip times

Figures 4.8 to 4.9 illustrate the results obtained by using the topology Topodiff where the
propagation delays of different links are varied. As expected, the results observed for
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Figure 4.8: Evolution of the average queue size, the variance of the average queue size and
the packet loss rate for different active queue management schemes (different
RTT)

136



4.6. Quantitative analysis

schemes like BLUE, REM and PSAND do not change significantly but on the other hand
the performance of network parameter-dependent schemes like PI, AVQ and LRED shows
a significant deterioration as compared to the case of Toposame described in Section 4.6.1.
Hence, since the analysis of the comparison of PSAND with BLUE and REM that we have
made in the previous section still holds for this case, we will only compare PSAND with
PI, AVQ and LRED. In the previous section, we have seen overall good performances for
PSAND as compared to BLUE and REM, which is still the case in this section. On the
other hand, as shown by Figures 4.8 and 4.9, PI, AVQ and LRED experience performance
deterioration as compared to PSAND in this case where the round trip times are different.

We first compare PSAND with the PI scheme for which the highest queueing delay
is observed like in the previous section (Figure 4.8(a)). PI shows a competitive perfor-
mance towards PSAND for the queue size variance except for small number of flows (Fig-
ure 4.8(b)). PI shows small variance for higher traffic load because it often maintains full
queues. The PI scheme also experiences the lowest packet loss rate for small number of
flows but losses its “podium” for PSAND for large number of flows. Concerning the link
utilization rate, PI defeats PSAND by giving the highest rate (Figure 4.9(b)) and the lowest
probability of having an empty queue (Figure 4.9(c)). However, PI cannot be considered
globally better than PSAND because of its excessive queueing delay and as it does not
show better performance as compared to PSAND for the other metrics we considered.

Let us now compare PSAND with AVQ and AVQ�. For the topology Toposame, AVQ
gives the best performance in terms of queueing delay, queue size variance and packet loss
rate (Figure 4.5). AVQ looses its best performance when we use the topology Topodiff as it
increases excessively the queueing delay and the queue size variance. Even AVQ� increases
the queueing delay and the queue size variance. Hence PSAND outperforms AVQ and
AVQ� for these two metrics (Figures 4.8(a) and 4.8(b)). It is only for larger traffic load
that AVQ� decreases the values of these two metrics and gives best results. Nevertheless,
this improvement is obtained at the expense of the packet loss rate (Figure 4.8) and the
link utilization rate (Figure 4.9(b)) for large traffic load. Note that, in the case of the
topology Toposame, AVQ and AVQ� showed the lowest packet loss rate, which is not the
case for this topology. In this case, PSAND gives a lower packet loss rate as AVQ and
AVQ�.

In the previous section, AVQ and AVQ� showed the worst performance concerning
the fairness metric. In the case of different round trip times, AVQ is as fair as the other
schemes. There is no significant performance difference between all the schemes concerning
the fairness metric. For all the metrics, PSAND shows better performances than AVQ and
AVQ�.

If we consider the comparison of PSAND with LRED, the competitive performance of
LRED observed in the previous section only holds for the queuing delay metric in the case
of different round trip times. Indeed, LRED shows in Figure 4.8(b) the third largest queue
size variance after BLUE and AVQ. Even LRED� exhibits a high variance for small number
of flows. It only reduces slightly its variance for a very high traffic load as compared to
PSAND. In addition, both LRED and LRED� increase slightly the packet loss rate and
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Figure 4.9: Fairness, link utilization and empty queue probability for different active queue
management schemes (different RTT)

decrease the link utilization rate as compared to PSAND.

Moreover, like in the previous section, Figure 4.10 also shows that PSAND outperforms
all the presented schemes by giving the highest probability to have isolated packet losses
and the lowest probability to have more than 2 consecutive packets lost. AVQ and PI show
in the contrary a higher probability to have a loss run length of size greater than 2.

Finally, in the case of TCP flows with different round trip times, as showed by all these
above comparisons and Table 4.3, PSAND shows best performances for all the considered
metrics.
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Figure 4.10: Per-flow consecutive loss for different active queue management schemes (dif-
ferent RTT)

4.7 Conclusion

We have compared the performance of our PSAND scheme with the performance of BLUE,
REM, PI, AVQ and LRED schemes by using eight metrics presented in Section 4.4. The
simulation results are based on two topologies:

• The topology Toposame where all TCP flows experience the same round trip time.

• The topology Topodiff where all TCP flows experience different round trip times.
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Table 4.3: Table of comparison of different AQM (�= RTTs): AQS = Average Queue Size,
VQS = Variance of Queue Size, PL = Packet Loss Rate, LU = Link Utilization
rate, F = Fairness

AQS VQS PLR LU F
BLUE - - - - - - ++ ++ +++
PI - - - - +++ +++ ++++ +++
REM ++++ + - - - - - +
AVQ - - - + ++ +++
AVQ* + ++ - + +
LRED ++ - + - - ++
LRED* ++ +++ ++ ++ ++
PSAND +++ ++++ +++ +++ ++

These results showed that for the Toposame, PSAND offers a desirable overall perfor-
mances with a good tradeoff between the performance of all the metrics we considered.
The other schemes can outperform PSAND for a certain metric but loose their advan-
tage for other metrics whereas PSAND gives a robust performance not far from the best
performances obtained for every metric. Note that it is in a network configuration with
similar RTT, that is in a configuration which is favorable for network parameter-dependent
schemes (like PI, AVQ and LRED), that PSAND offers overall good performances than
PI, AVQ and LRED. For a network configuration with different RTT (Topodiff), PSAND
shows best performances for each metric considered.

For both configurations, we observed that as compared to the other schemes, the packet
loss behavior of PSAND showed a smaller number of consecutive packet drops, that is
a more isolated packet loss process. This behavior could be interesting in presence of
error correction mechanisms such as FEC (Forward Error Correction). In Chapter 5, we
will study the effect of the packet loss behavior of the original RED scheme on the FEC
mechanism.

Finally, even though PSAND offers excellent performances, we do not claim that it
is the best or the optimal solution for solving RED’s parameters configuration problem.
This chapter only showed that PSAND is one of the methods that can be used to obtain
competitive and even better performances by retaining the RED basic spirit and design, and
allowing minimal changes to the RED algorithm without the requirement of the knowledge
of network parameters.
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Chapter 5. The interaction of forward error correction and active queue management

5.1 Introduction

The Internet traffic suffers from heavy losses due to network congestion caused by the
limited capacity of queue in the routers. There exist two end-to-end error control tech-
niques to repair these losses. The first technique called ARQ (Automatic Repeat reQuest)
consists in retransmitting dropped packets upon the destination’s request. The second
technique, called FEC (Forward Error Correction) consists in sending redundant packets
to the destination, allowing it to repair losses without requiring packet retransmission.
Because of retransmissions, ARQ is not appropriate for audio and/or video applications
requiring strong time constraints. This is why FEC is increasingly used in such applica-
tions, typically on top of the UDP transport protocol. Several drawbacks are attached to
the use of FEC. First, FEC cannot recover all lost packets. In addition, the transmission of
redundant packets increases the overall network load. Finally, the effectiveness of FEC is
known to depend on the way packet drops are distributed in the data stream. FEC is more
efficient when packets losses are independent, and much less when they occur in groups
[25].

In conjunction to end-to-end error control techniques, there exist queue management
schemes operating inside routers that control network congestion. We have described in
the Introduction, the Drop Tail (DT) scheme traditionally used in the current Internet,
which consists in discarding arriving packets when the buffer of the router overflows. We
have also seen RED an active queue management scheme that has been proposed recently
as an alternative [16], aimed at eliminating deficiencies of Drop Tail. The RED scheme
basically discard packets earlier so that incipient stages of congestion can be detected.

The aim of this chapter is to study the interaction of FEC with RED (RED/FEC) and
to compare the obtained results with those obtained from the combination of FEC with
Drop Tail (DT/FEC). This study has never been conducted to our knowledge. Indeed,
FEC has always been studied in presence of the Drop Tail queue management. We believe
that as compared to Drop Tail, RED may give performance improvement for the UDP
sources implementing FEC since it spreads randomly packet drops reducing consecutive
losses for a given flow, thereby making losses “more independent”. This property makes
RED compatible a priori with the use of FEC at the packet level.It may therefore be
interesting to add a “moderate” amount of redundancy for the FEC flow in presence of
RED queue management in order to decrease the packet loss rate for the UDP source as
compared to Drop Tail. Of course, this must be done without penalizing the TCP flows.
Indeed, in case of an increase of redundancy, i.e. an increase of the network load, the TCP
sources respond by decreasing their throughput whereas the UDP flow does not.

In Section 5.2, we briefly present the principles of the FEC coding scheme and of queue
management algorithms. In Section 5.3, we describe the topology of the system and the
performance metrics considered in this chapter. The performance measures obtained by
simulation are detailed and analyzed in Section 5.4. Section 5.5 presents a simple model
with which we explain the tradeoff responsible for the fact that sometimes RED/FEC is
more efficient, sometimes DT/FEC. Section 5.6 presents conclusions of this chapter.
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5.2 Forward error correction and queue management

We first recall some properties of codes used for Forward Error Correction. Given k
data packets bearing the relevant information, the encoder (based for instance on a Reed-
Solomon Erasure code [77, 91]) generates h redundant packets useful for the recovery of the
lost data packets. The concatenation of the k data packets and the h redundancy packets
is called a FEC block of size n = k + h. If these k data packets are transmitted without
loss to the destination, it is not useful to recover the possibly lost redundant packets as
they do not contain relevant data. It is only in case of loss of data packets that packet
recovery is required. If the total number of lost (data and redundant) packets is at most h,
the decoder at the destination can retrieve successfully all lost packets. As a result all the
relevant information is saved. Otherwise, if the total loss exceeds h packets, it is impossible
to recover the lost packets (refer to Figure 5.1).

00

0 1

0 1 1 Unrecoverable FEC block

Recoverable FEC block

h

0

0 0

1

10 0

k

Figure 5.1: FEC block of size n = k + h (1 stands for a lost packet, 0 otherwise)

The queue management schemes studied in this chapter are Drop Tail, the principle of
which is straightforward, and RED. With RED, the router maintains an estimate of the
average queue length, using an exponential moving average. Based on this value, it accepts
or rejects incoming packets with a certain probability. The rejection probability function
is a parameter of the mechanism. We have used in the following experiments the default
values for RED parameters (see [43, 40] for details).

5.3 Experimental setup

We describe in this section the experimental setup we have used for this performance
study. We have made extensive simulations using the ns-2 simulator [94]. We begin
with the network elements used in the simulation, and proceed with the definition of the
performance metrics we have collected.
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5.3.1 Network topology

The network setup is depicted in Figure 5.2. The traffic generated by nodes S0 to SN is
multiplexed on a 10 Mbps bottleneck link between nodes R1 and R2 with a propagation
delay of 30ms. The bottleneck link is provided with a Drop Tail or a RED queue of limited
capacity of 35 packets. The other links located between nodes S0, . . . , SN and node R1 have
a capacity of 100Mbps. These links have different propagation delays uniformly distributed
from 20ms to 100ms.

S0

SN

R1

100 M
bps, 1

00 m
s

S1
R2

10 Mbps, 30 ms

UDP

TCP

100 Mbps, 50 ms

100 Mbps, 20 ms

Drop Tail / RED (buffer size = 35packets)

Figure 5.2: Topology of the system

A Poisson distribution is used for the generation of the foreground UDP traffic at node
S0. Node S1 to SN generate background long-lived FTP traffics using TCP/Sack1 agents.
The offered load of the UDP traffic in the absence of redundancy is set to ρ1 = 500kb/s.
Without redundancy the load generated by the UDP traffic represents 5% of the bandwidth
of the bottleneck link. For the generation of redundant packets, we increase the throughput
ρ1 of the UDP/FEC flow by a factor of 1 + h/k, in order to take into account the addition
of redundancy while keeping constant the rate of information generated by the source. The
resulting new load ρFEC is equal to:

ρFEC = ρ1

(
1 +

h

k

)
. (5.1)

Under ns this increase of the load is obtained by decreasing the average idle time between
packets. This parameter is computed as follows :

average idle time =
UDP packet size

500× (1 + h/k)
,

where the packet size for the UDP traffic is set to 573 bytes following the recommendation
of [19]. TCP packet sizes are set to 1200 bytes and the maximum TCP window size is set
to 20 packets.
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Every simulation is run for 100 seconds and statistics are collected every 10ms from
the queue located between node R1 and R2. The results presented below are averages over
50 independent simulations.

5.3.2 Performance metrics

We considered the aggregate traffic performance as well as the individual flow performance.
The metrics used for the aggregate traffic are :

• The average queueing delay inferred by the average of the instantaneous queue size.
It is interesting to minimize queueing delay for applications with strong real-time
constraints.

• The delay jitter corresponding to the variance of the instantaneous queue size. Min-
imizing delay jitter is useful for applications such as audio and video.

• The aggregate throughput, that is the amount of bytes of information correctly trans-
mitted to the destination per unit time, regardless of the flow identity.

The metrics used for a specific flow (that is for the FEC flow) are :

• The packet loss rate before correction (PLRBC) that is the ratio of the average
number of lost packets in a FEC block before correction to the size of the FEC block.

• The packet loss rate after correction (PLR) that is the ratio of the average number
of lost packets in a FEC block after correction to the size of the FEC block.

• The loss run length [92] that is the number of packets of a particular flow that are
lost consecutively. This is a random variable which gives an insight into the packet
loss process. Studying this metric allows to investigate which queue management is
more efficient when used with FEC.

5.4 Performance measures

This section presents the results of our experiments. We first look at the influence of the
cross traffic, represented by the number of TCP flows, on the efficiency of RED/FEC and
DT/FEC (Section 5.4.1). We check in Section 5.4.1.3 that the theoretical performance
advantages provided by RED are preserved in our experiments. Measurements on the loss
run length are presented in Section 5.4.1.4. Next, we study in Section 5.4.2 the influence
of the amount of redundancy on the performance.
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Figure 5.3: Throughput as a function of the cross traffic for k = 16 and h = 1

5.4.1 Influence of the number of TCP flows

5.4.1.1 Throughput

As shown by Figure 5.3(a), Drop Tail offers a higher throughput than RED (a difference of
about 20kbytes/s for 100 TCP sources) whatever the number of TCP flows. The increase
of the offered load due to the addition of redundancy (h ≤ 4) for the UDP flow does not
affect significantly the overall throughput.

Figure 5.3(b) also shows that whatever the type of buffer management used, the UDP
flow remains almost insensitive to the increase of the number of TCP flows since we observe
a negligible decrease of the throughput. On the other hand, the TCP flows are constrained
to reduce their throughput (from 140kbytes/s each for 10 TCP flows to 20kbytes/s each
for 100 TCP flows).

5.4.1.2 Packet loss rate for the UDP source

Figure 5.4 shows the evolution of the packet loss rate before correction (PLRBC) and after
correction (PLR) for the UDP source as a function of the number of TCP flows and the
number of redundancy h. Tables 5.1 and 5.2 present a 99% confidence interval for the
simulation results presented by Figure 5.4.

As observed in [13, 20] and as shown also in Figure 5.4, when the amount of redundancy
is increased, the PLR of DT/FEC decreases for this network configuration, i.e. for a
configuration where the number of sources implementing FEC is smaller than the number
of sources not implementing FEC. This observation is maintained for RED for this network
configuration.

As expected and as shown by [15], we observe that the PLRBC for RED is greater than
the PLRBC for Drop Tail since RED starts dropping packets earlier without reaching the
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Figure 5.4: Packet loss rate before (PLRBC) and after (PLR) correction by FEC

buffer capacity of the queue. Nevertheless, after the correction of lost packets, RED/FEC
out-performs DT/FEC and gives a lower PLR for a small number of TCP flows. For a
larger number of flows, the situation is reversed: RED yields a worst performance.

Indeed, for one packet of redundancy (h = 1) and k = 16 data packets, i.e. for an
addition of 6% of load, Drop Tail can divide the PLRBC by about 1.9 for 10 TCP flows.
RED does better by dividing the loss rate by about 3.4. In the case of a 25% load increase,
for h = 4 and k = 16, Drop Tail can divide the PLRBC by about 33.4 for 10 TCP flows.
In this case, the correction rate of RED is more significant. RED is able to divide the
PLRBC by 66.5 for 10 TCP flows and by 79.6 for 30 TCP flows.

Moreover, we observe that the curve of the PLR of RED stands under the curve of Drop
Tail for a number of flows less than a certain threshold: 45 flows for h = 1 (Figure 5.4(a)),
65 flows for h = 2 (Figure 5.4(b)), and 80 flows for h = 4 (Figure 5.4(c)). In Figure 5.4(d),
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k h Flows PLRBCDT PLRBCRED PLRDT PLRRED

10 .00587± 5.0 10−4 .00613± 4.0 10−4 .00303± 4.9 10−4 .00179± 3.1 10−4

20 .01748± 7.3 10−4 .01786± 6.7 10−4 .01026± 7.5 10−4 .00523± 5.1 10−4

30 .02761± 8.6 10−4 .03020± 1.0 10−3 .01776± 9.5 10−4 .01195± 9.4 10−4

40 .03720± 1.0 10−3 .04204± 1.3 10−3 .02471± 1.0 10−3 .02101± 1.3 10−3

16 1 50 .04593± 1.2 10−3 .05291± 1.3 10−3 .03167± 1.4 10−3 .03074± 1.5 10−3

60 .05365± 1.2 10−3 .06373± 1.4 10−3 .03788± 1.4 10−3 .04184± 1.7 10−3

70 .06131± 1.1 10−3 .07505± 1.6 10−3 .04446± 1.2 10−3 .05391± 1.8 10−3

80 .06850± 1.0 10−3 .08499± 1.4 10−3 .05086± 1.1 10−3 .06476± 1.6 10−3

90 .07545± 1.4 10−3 .09406± 1.4 10−3 .05771± 1.5 10−3 .07535± 1.7 10−3

100 .08125± 1.3 10−3 .01018± 1.6 10−3 .06321± 1.7 10−3 .08393± 2.0 10−3

Table 5.1: 99% confidence interval for k = 16 and h = 1

k h Flows PLRBCDT PLRBCRED PLRDT PLRRED

10 .00608± 3.7 10−4 .00645± 3.8 10−4 .00018± 1.9 10−4 .00009± 9.3 10−5

20 .01757± 7.1 10−4 .01834± 6.3 10−4 .00073± 2.6 10−4 .00015± 1.2 10−4

30 .02847± 8.2 10−4 .03070± 8.4 10−4 .00205± 5.2 10−4 .00038± 2.4 10−4

40 .03710± 1.0 10−3 .04200± 8.4 10−4 .00289± 6.2 10−4 .00065± 2.4 10−4

16 4 50 .04622± 1.0 10−3 .05327± 1.0 10−3 .00422± 6.7 10−4 .00125± 3.8 10−4

60 .05473± 1.0 10−3 .06535± 1.1 10−3 .00566± 8.2 10−4 .00241± 5.2 10−4

70 .06103± 1.5 10−3 .07484± 1.4 10−3 .00618± 9.0 10−4 .00453± 7.4 10−4

80 .06959± 1.5 10−3 .08560± 1.4 10−3 .00810± 1.1 10−3 .00885± 1.1 10−3

90 .07543± 1.6 10−3 .09430± 1.6 10−3 .00990± 1.2 10−3 .01222± 1.0 10−3

100 .08177± 1.5 10−3 .10267± 1.7 10−3 .01153± 1.1 10−3 .01618± 1.6 10−3

Table 5.2: 99% confidence interval for k = 16 and h = 4

obtained with k = 8 and h = 2, the threshold is about 100 TCP flows. Above these
thresholds, FEC exhibits better performances with Drop Tail than with RED.

These results show that the number of TCP flows under which RED experiences an
improvement on the PLR as compared to Drop Tail depends on the amount of redundancy.
This number of flows increases as the number of redundancy packets increases. But the
increase becomes slower as h grows.

We have therefore shown that even if RED increases the UDP packet loss rate (which
is in accordance with previous studies [15, 75]), it becomes possible to reduce its PLR by
using FEC and to obtain a PLR less than the PLR for Drop Tail under certain conditions
(precisely for a certain number of TCP flows and a certain amount of redundancy).

5.4.1.3 Queuing delay and delay jitter

The advantage of RED over Drop Tail concerning the queuing delay is maintained with
the addition of redundancy. The addition of redundancy does not influence this metric.
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Figure 5.5(a) shows that whatever the number of flows, RED improves the queuing delay
as compared to Drop Tail. On the other hand, the improvement of RED concerning the
delay jitter represented by Figure 5.5(b) depends on the number of TCP flows. Indeed, for
small number of flows the queue size variance of RED is lower than the one of Drop Tail.
However, for large number of flows as the queue is always almost full we observe for Drop
Tail a lower variance. Note that for few number of flows, FEC in conjunction with RED
manages to reduce the PLR while exhibiting a lower queuing delay and delay jitter.
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Figure 5.5: Average and variance of the queue size for k = 16 and h = 1

5.4.1.4 Loss run length

We have displayed in Figure 5.6 the distribution of the loss run length, for both queue
management mechanisms and in function of the cross traffic. The different curves show
the probabilities of losing consecutively 1, 2 or 3 packets. For this experiment, k = 16 and
h = 1.

This figure confirms that the distributions are different under RED and DT. Under
RED, the probability to have a loss run length equal to 1 packet is much larger than for
Drop Tail (about 90% against 60%, respectively). This holds whatever the number of flows,
since the distribution does not appear to depend much on the cross traffic.

This last observation shows that the situation is not as simple as initially thought. Our
starting assumption was: if RED shows a larger probability to have a loss run length of size
one, then FEC will perform better with RED than with Drop Tail concerning the capacity
of repairing lost packets. This turns out not to be valid for a large cross traffic, although
the loss run length of RED is small throughout the range of experiments. We develop in
Section 5.5 a model which shows that there is actually an efficiency tradeoff between the
size of bursts of lost packets, and their frequency.

151



Chapter 5. The interaction of forward error correction and active queue management

 0.01

 0.1

 1

 10  20  30  40  50  60  70  80  90  100
 0.01

 0.1

 1

Lo
ss

 P
ro

ba
bi

lit
y

Number of TCP flows

P(X = 1) (DT)
P(X = 2) (DT)
P(X = 3) (DT)

P(X = 1) (RED)
P(X = 2) (RED)
P(X = 3) (RED)

Figure 5.6: Distribution of the loss run length for k = 16 and h = 1

5.4.2 Influence of redundancy and FEC block size

In this section, we explore the effect of the FEC block size on the performance of RED/FEC
or DT/FEC. To begin with, we consider a scenario where the number of data and redun-
dancy packets are varied proportionally so as to maintain the UDP offered load constant.
In the second scenario, the number of data packets is changed while keeping constant the
number of redundancy, and the UDP offered load varies.

As it turns out, it is interesting to use large FEC block sizes in order to decrease the
PLR. However, in practice the block size is limited due to the following constraints: with
a larger block, it takes a larger delay for the reception of all packets belonging to the
same block by the destination, and it takes more time for the coding (the generation of all
redundancy packets) and the decoding of the FEC block (i.e. for the correction of all lost
packets).

5.4.2.1 Fixed UDP load

In this section, we varied the size of the FEC block while maintaining the rate h
k
constant

in order to obtain the same load increase for the UDP flow and therefore maintain the same
overall network load. This way we can directly observe the influence of the FEC block size
without the interference of the network load.

For instance, for Figures 5.7(a) and 5.7(b), we add 2 packets of redundancy for 8 data
packets and proportionally 16 packets of redundancy for 64 data packets in order to obtain
a load increase of 25% with respect to the situation without redundancy. For Figures 5.7(c)
and 5.7(d), we add 1 packets of redundancy for 10 data packets and proportionally 8 packets
of redundancy for 80 data packets in order to obtain a load increase of 10%.

The load of the system being constant, the PLRBC is fixed for both RED and Drop
Tail as illustrated by Figure 5.7. However, the PLR decreases when k (and therefore h)
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Figure 5.7: Influence of the block size

increases for both queue management schemes. This means that for this configuration of
the system, it is interesting to increase the FEC block size.

We also notice in Figure 5.7 that RED/FEC appears to be more advantageous than
DT/FEC concerning the PLR under certain conditions depending on the number of TCP
flows, the FEC block size and the amount of redundancy.

This is the case in Figure 5.7(a), even though the PLRBC of RED/FEC is higher than
the one obtained for DT/FEC. Indeed, RED queue management is able to give a slight
performance improvement: for instance, for k = 8 and h = 2, and 50 TCP flows, RED
reduces the PLR by almost a factor of 2.9 as compared to Drop Tail. Moreover, the pair
of values (k = 8, h = 2) shows a higher difference between the PLR of RED and the
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PLR of Drop Tail than the pair (k = 16, h = 4). Indeed, if we compare the intersection
point between the curves of the PLR of RED and Drop Tail depicted by Figures 5.4(c)
and 5.4(d), we note that the configuration with the pair of values (k = 8, h = 2) gives a
better performance than the configuration with the pair (k = 16, h = 4): this intersection
point is obtained for 100 TCP flows for k = 8, h = 2 instead of 80 flows for k = 16,
h = 4. Hence, in this case, RED appears to be more advantageous than Drop Tail if
small sizes of FEC blocks are used. Nevertheless, if the block size is increased then this
performance improvement is diminished and both queue management schemes show the
same performance by repairing almost all lost packets.

On the other hand, if we increase the number of TCP flows from 50 to 100 (Fig-
ure 5.7(b)), Drop Tail is more advantageous than RED. However the PLR difference of
both queue management schemes is negligible (about 0.5% for k = 16 and h = 4) as
compared to the difference of their PLRBC (2.1%). This shows that RED has managed
to approach Drop Tail performances by repairing an important amount of lost packets.
Indeed RED shows a higher correction rate since the absolute difference of the PLRBC
and PLR is about 8.6% for RED whereas it is equal to 7% for Drop Tail.

Unlike the case presented in Figure 5.7(b), the difference between both PLR is more
significant when we reduce the UDP load increase from 25% to 10% for the same number
of TCP flows (100 flows). This is illustrated by Figure 5.7(d). For example, for k = 20
and h = 2, the absolute difference between the PLR for RED and Drop Tail is about 2.1%.
Note that for this case, Drop Tail is far more advantageous than RED. This result can be
explained by a higher rejection rate of RED combined with the presence of low redundancy
in FEC blocks. In addition, when the FEC blocks are larger, their vulnerability is increased,
which leads to worst performances.

But even if the amount of redundancy is not large (10%), Figure 5.7(c) shows that if
the number of TCP flows is not important (50 flows), then RED can be advantageous for a
certain size of FEC block (approximatively for a block size smaller than a block containing
k = 40 packets of information and h = 4 packets of redundancy).

To summarize, all these results suggest that in case of a constant UDP offered load,
the larger the block size, the better the correction rate is for both RED and Drop Tail.
It is more interesting to use FEC with RED instead of Drop Tail in case of small number
of flows, moderate size of FEC block and a relatively important amount of redundancy.
Indeed, our model developed in Section 5.5 confirmed that RED is more efficient if the
redundancy ratio h/k is sufficiently large. If the cross traffic is large, RED/FEC loses its
advantage over DT/FEC whatever the FEC block size and the amount of redundancy.

5.4.2.2 Variable UDP load increase

We now vary the size of the FEC block by increasing the number of data packets k and by
keeping the number of redundancy packets h constant. Therefore, the FEC offered load
ρFEC decreases when the number of data packets k increases (see Equation (5.1)). As
expected, the offered load generated by the UDP flow decreases leading to a slight decrease
of the PLRBC as illustrated by Figures 5.8 and 5.9. However, unlike the case presented in
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Figure 5.8: Packet loss rate before (PLRBC) and after (PLR) correction by FEC for 50
TCP flows

Section 5.4.2.1, the PLR increases with k because as h remains constant and k increases,
the FEC block becomes more vulnerable, i.e. the probability to repair all lost packets
belonging to the same FEC block becomes lower.

Figure 5.8 also shows that by increasing the FEC block size, RED is globally unable to
offer an improved performance as compared to Drop Tail. However, for small sizes of FEC
block that is for small number of data packets and fixed number of redundancy packets,
RED does out-perform Drop Tail. In addition, we have noticed as in Figure 5.4 that there
is an intersection point between the curves of the PLR of RED and the PLR of Drop Tail.
This point moves when the number of redundancy packets increases (these results are also
confirmed by the model developed in Section 5.5). For instance, for h = 1 the intersection
point is obtained for k = 16 which represents a tolerable UDP load increase of about 6.25%.
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Figure 5.9: Packet loss rate before (PLRBC) and after (PLR) correction by FEC for 100
TCP flows

On the other hand, for h = 4, the intersection point is obtained for approximatively k = 40
which represents a higher UDP load increase of about 10%.

Finally, these results showed that when the FEC block size increases, and the UDP
offered load decreases, the PLR for RED and Drop Tail increases since the FEC blocks
become more and more vulnerable. The results also show that RED reduces the PLR as
compared to Drop Tail for small number of data packets belonging to a FEC block. The
number of data packets below which RED out-performs Drop Tail can be increased when
the number of redundancy packets is increased. Indeed, since RED drops packets earlier
and increases the loss rate, as compared to DT, it needs a sufficient amount of redundancy
in order to recover from the excess of losses. As said above, this may not be feasible since
the addition of a large amount of redundancy packets increases the UDP source load and
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therefore may penalize the TCP sources.

5.4.3 Influence of the number of FEC flows

In the previous section, we investigate the influence of RED buffer management on FEC
scheme when only one source implemented FEC. Several works [13, 20] showed that FEC
is not efficient when a large number of sources implement FEC. However this observation
has been derived only in presence of Drop Tail queue management. In this section, we
investigate the bahavior of RED queue management when several sources (8 UDP sources
in Figure 5.10) implement FEC.

The result of these experiments are presented in Figure 5.10. If we compare these results
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Figure 5.10: Packet loss rate before (PLRBC) and after (PLR) correction by FEC in pres-
ence of 8 UDP sources
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with the results of the experiment using 1 FEC source in Figure 5.4, we can observe that
for k = 16 and h = 1 (Figures 5.4(a) and 5.10(a)), the advantage of RED over Drop Tail
is maintained only for a very small number of flows less than 15 for 8 UDP FEC sources
as compared to a number of flows less than 50 for one UDP source.

If the amount of redundancy is increased for k = 16 and h = 2 in Figures 5.4(b) and
5.10(b), the advantage of RED over Drop Tail is maintained for a number of flows less than
30 in case of 8 UDP sources whereas for one UDP source it is maintained for a number of
flows less than 70.

Note that the number of TCP flows under which RED is more advantageous than Drop
Tail increases highly with h for one FEC source as compared to 8 UDP flows. Indeed,
for one UDP source, this number increases from 70 to 80 whereas for 8 UDP sources, it
increases from 30 to 40.

In conclusion, when the number of sources implementing FEC increases, RED losses
more its advantage over Drop Tail. That is the number of flows under which RED shows
a higher correction rate of packet loss as compared to Drop Tail decreases.

5.5 A model for FEC and its application

We develop in this section a simple model which is able to explain most of the phenomena
observed above. For this purpose, we number the packets generated by the FEC source
and focus on lost packets since this model concentrates on the sequence of packets and
among them, the lost packets. The sequence numbers m1, m2, . . . of the lost packets can
be viewed as the instants of an “arrival” process.

Definition 1 (A block of losses) Call a block of losses a set of packets lost consecu-
tively.

If the size of blocks of losses is small compared with the time between two of these
blocks, then by ignoring the time interval (gap) that exits between packets, this discrete
loss process with a geometric distribution is approximated to a continuous loss process
with an exponential distribution. A batch arrival process, where several packets are lost
simultaneously is therefore derived. The sequence numbers m1, m2, . . . of the lost packets
belonging to the same block of losses can now be viewed as one instant of an “arrival”
process. This approximation is illustrated by Figure 5.11.

Accordingly, consider the process where grouped losses occur according to a Poisson
process of rate λ. Assume that the size of the m-th group of losses is a random variable
Am > 0. The sequence {Am}m is assumed to be i.i.d.(Identically and Independently
Distributed), and we shall use the notation A for the generic random variable. Hence,
we have 2 processes, the first process concerns the inter arrival time of blocks of losses
and the second one concerns the sizes of the blocks of losses. The resulting process is a
compound Poisson process.

We can therefore compute the probability that exactly m blocks of losses occur in the
time interval [0, T ] by (λT )me−λT/(m!).
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Figure 5.11: Approximating the discrete loss process to a continuous loss process

Let NT be the distribution of the total number of lost packets in the interval [0, T ]. We
vary the number m of blocks of losses (m ∈ [1,∞]) and compute the probability to loose
h packets in the interval [0, T ] as :

P (NT = h) =

∞∑
m=0

(λT )m

m!
e−λTP (A1 + . . .+ Am = h) . (5.2)

The expected number of losses per unit time, which is to be interpreted as a loss rate of
packets, is p = λE(A).

Consider now two situations where the distribution of the batch size differs, but where
the average loss rate p is the same. Quantities referring to situation i will be superscripted
with “(i)”. Let m(i) = E(A(i)). Since the loss rate is constant, λ(i) = p/m(i). Therefore,
according to (5.2), we have for each h:

P (N
(i)
T ≤ h) =

∞∑
m=0

(pT )m

(m(i))mm!
e−pT/m

(i)

P (A
(i)
1 + . . .+ A(i)m ≤ h) . (5.3)

This probability can be seen as a function of x = pT , the average number of lost packets
in the interval [0, T ].

Coming back to the focus of this chapter, we consider that the first situation is RED/FEC
and that the second is DT/FEC. We choose a simple distribution for the batch size: A = 1
with probability β and A = 2 with probability 1−β. The frequency of blocks of losses of size
1 is therefore β. According to the measurements of Section 5.4.1.4 (see Figure 5.6), the sit-
uations of RED and DT correspond approximately to values β(1) = 9/10, and β(2) = 6/10,
respectively.
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Assume a certain fixed T and some integer h, interpreted as the length of some FEC
block, and the quantity of redundancy it contains, respectively. We are interested in the
difference

∆h(x) = P (N
(1)
T ≤ h) − P (N

(2)
T ≤ h) ,

for x = pT , which measures the difference between the probabilities of repairing this FEC
block in both situations, when the packet loss rate is p. We have displayed in Figure 5.12
the values of ∆h(x) for the first values of h.
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Figure 5.12: Differences ∆h(x) for h = 1 . . . 8 (from left to right)

We see that for each h there exists a threshold value xh such that ∆h(x) ≥ 0 when
and only when x ≤ xh. This difference is therefore positive if x = pT is small enough
(RED/FEC has a better performance), negative if x is large (DT/FEC has a better per-
formance).

The explanation for the shape of the functions ∆h is found analyzing Equation (5.3).
We briefly report the results here. When x = pT is small, (5.3) is dominated by polynomial

terms in x, with coefficients P (A
(i)
1 + . . .+ A

(i)
m ≤ h). Because A(1) is stochastically larger

than A(2), this implies that P (N
(1)
T ≤ h) is larger. Here, the fact that blocks are smaller is

important. On the other hand, if x is large, (5.3) is dominated by the term e−x/m
(i)
. Since

m(1) is smaller, P (N
(1)
T ≤ h) decreases faster and gets smaller than P (N

(2)
T ≤ h). Here, the

fact that blocks of losses are less frequent is more important.

Computing numerically these threshold values further reveals that when h is large
enough, xh � h+C where C is some positive constant value. Using this empirical finding,

160



5.6. Conclusions

and since the size of the block T is k + h, we have: RED/FEC is better if

p(k + h) ≤ h + C ⇐⇒ k ≤ 1− p
p

h +
C

p

⇐⇒ h

k
≥ p

1− p −
C

1− p
1

k
.

The model allows therefore to predict that:

• for a given quantity of redundancy h, RED/FEC is more efficient only for a block
size k small enough;

• RED/FEC is more efficient only if the redundancy ratio h/k is large enough;

• the larger the loss rate p, the smaller the block size k of RED/FEC can be.

All these predictions are confirmed by the experiments reported in Section 5.4.2. We
have seen in Figure 5.8 that, h being fixed, RED/FEC performs better for block sizes
under a threshold which indeed increases with h. In Figure 5.7 we find situations (b) and
(d) where h/k is too small to compensate the loss rate, and (a) and (c) where RED/FEC
as the advantage for block sizes small enough. Observe however that in the experiments,
the loss rate (or PLRBC) p is not the same for both situations. Moreover, the loss run
length distribution we have measured is not exactly that of the model. We believe however
that this first simple model reproduces at least qualitatively the principal features of the
problem.

5.6 Conclusions

In this chapter, we have studied the effect of a forward error correction (FEC) code on queue
management schemes like Drop Tail and RED. We have analyzed the situation where a
small UDP traffic using FEC shares a link with a number of TCP sources. It should be
noted that to the best of our knowledge, no study has been conducted so far concerning
FEC combined with a RED-like active queue management scheme.

It has been shown in literature that RED losses are spread as compared to Drop Tail,
i.e. RED has a higher probability of having a loss run length of size one. For this reason,
one can assume that FEC would be more efficient combined with RED than with Drop Tail.
Indeed, the results have shown that even though RED experiences more losses before FEC
correction as compared to Drop Tail, RED can be more advantageous concerning the losses
after correction. But our results have also shown that RED/FEC does not always perform
better than DT/FEC. This turns out to depend on certain parameters, in particular on
the number of TCP flows that constitute the background traffic, the FEC block size and
the amount of redundancy in a FEC block.

Using the packet loss rate after correction by FEC (PLR) metric, we showed that
RED/FEC is more efficient than DT/FEC for small number of TCP flows since a larger
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number of TCP flows increases the burstiness of the flows and also the network load,
which in turn increases the loss rate for the UDP source implementing FEC. We also
observed that if the loss rate before correction (PLRBC) is too high, RED/FEC gives
worst performance as DT/FEC since it is unable to repair sufficiently many lost packets
whatever the FEC block size and the amount of redundancy packets. The results also show
that the number of TCP flows under which RED is advantageous increases with the amount
of redundancy added in a FEC block. In addition, we checked that in the situation where
RED is advantageous, the performance gains of RED such as queueing delay and delay
jitter are maintained. Moreover, our results show that for a fixed amount of redundancy
packets in a FEC block, the advantage (respectively the disadvantage) of RED/FEC over
DT/FEC is more (respectively less) important for small FEC block sizes than for large
FEC block sizes.

In the case where RED/FEC is more advantageous than DT/FEC, the advantage of
RED over Drop Tail decreases when the FEC block size becomes too large up to a point
where DT/FEC becomes advantageous. This point is reached more or less quickly depend-
ing on the relative amount of redundancy contained in a FEC block. In the case where
RED/FEC gives worst performance as compared to Drop Tail, the performance difference
between RED/FEC and DT/FEC increases with the FEC block size. The performance of
RED/FEC degrades with the relative amount of redundancy contained in a FEC block.

All these results suggest that if the UDP flow implementing FEC has the knowledge
of its PLRBC and if the traffic generated by this flow crosses a RED gateway, then it is
preferable to conform to the following guidelines in order to obtain good performances of
RED/FEC. For this purpose, we should be situated in the case where the PLRBC is not
too high, that is in a case where the number of TCP flows is small. We can then increase
reasonably the relative amount of redundancy in the FEC block without increasing the
network load and penalizing TCP flows. In addition, increasing reasonably the FEC block
size without increasing the delay of the reception of the block and its the time for coding
and decoding improves further the performance of RED/FEC. We noticed that the amount
of redundancy and the FEC block size above which RED loses its advantages is large. Since
it is not practical to choose such large values, it is therefore preferable to opt for RED/FEC
rather than for DT/FEC when the PLRBC is low.

From the point of view of the queue manager, our results suggest the possibility to
swap between RED and Drop Tail depending on the scenario parameters. For instance,
based on the estimated number of TCP flows or the observed PLRBC, and knowing that
FEC is implemented in the UDP flows, the queue manager can make its decision. If the
PLRBC is high, it is more advantageous to use Drop Tail. Otherwise, when the PLRBC
is low, then RED scheme can be used by following the guidelines described just above.

Our next step will be to refine the model of Section 5.5 in order to investigate further
the phenomenon we have observed, in which the correction capacity of FEC is worst when
coupled with RED, despite the fact that losses are almost always isolated. First, it is
necessary to prove the properties on the threshold values xh which we have only empirically
described. Next, we will investigate whether these properties hold with more general batch
size distributions, and can be exploited to obtain decision rules concerning the use of FEC.
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Enhancement proposals to queue management schemes are fundamental so that the current
TCP/IP algorithm supports the spectacular growth of the number of users and behaves
efficiently in presence of the new emerging services required by different applications. That
is why the IETF recommended the use of active queue management schemes which still
constitutes an active area of research in the Internet. The well-known and most studied
active queue management recommended for deployment in the Internet by the IETF is
RED. For all these reasons, the RED active queue management scheme is the focus of this
thesis.

On the first hand, since the main drawback of RED is the dependence of its performance
towards its parameters, this thesis has proposed enhancements to RED’s algorithm also
presented in [3, 1] with the aim of alleviating this problem and improving the QoS for
TCP-based connections. The choice of a TCP-based traffic is motivated as follows. A
large amount of the Internet traffic is still based on TCP. In addition, there is tendency
to classify traffics to support service differentiation in the next generation Internet and
use the appropriate protocol for the class of service. Hence, the study of a uniquely TCP-
based flow can be useful. But the main reason to study a TCP based traffic is that RED
is originally designed to work with TCP through its interaction with the mechanism of
adaptation of the TCP window.

On the second hand, this thesis has studied the RED scheme in presence of the FEC
(Forward Error Correction) mechanism with the perspective that if RED is deployed in
the Internet, it would be interesting to study its behavior with other alternative protocols
to TCP like FEC. To our knowledge, this study has never been conducted earlier.

More specifically, the enhancement of RED we have proposed is based on an adaptive
approach of RED (ARED) since we believe that the basic insight for a solution that alle-
viates RED problems lies in the original adaptive RED proposed in [34] and [41]. Indeed,
this approach is a serious proposal for deployment in the current Internet because it adapts
dynamically RED parameters without relying on hypotheses on the type of traffic whereas
the other approach rely on values of network variables set a priori such as the round trip
time, the number of connections and the link bandwidth. However, as these variables are
not known from RED nodes in practice, it is still difficult to retrieve or infer accurate
informations about these variables from local observations.

This thesis focused on the maximum drop probability Maxp parameter since selection
of this parameter affects significantly the performance of RED. References [34, 41] had
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adapted the value of this parameter by using fixed adjustment factors that do not reflect
the effective change rate of the traffic load. This thesis has shown that, using more elab-
orate dynamic and target-oriented adjustments which are a function of the distance to
the performance objective and allowing modifications to the other RED parameters, offers
performance improvements on the original ARED. The statistical and qualitative analysis
of this new proposal named PSAND showed that as compared to the original adaptive
RED:

• PSAND improves the stability of the queue size by reducing the variance of the queue
length. PSAND responds more quickly to a sudden change in congestion and shows
a better adaptation to the change by bringing back the queue size to a target value.

• PSAND achieves a more predictable and lower average queue size.

PSAND achieves the goal of this thesis which is to minimize the queue size variance with
the constraints to deliver a specified average queue size without substantially increasing the
loss rate. PSAND did not increase the loss rate and even in some cases (for large number
of flows), it decreases it. Moreover, PSAND improves the link utilization rate: it reduces
the probability that the queue becomes empty and keeps the queue size away from buffer
overflow and buffer underflow.

All these performance improvements are obtained whatever the number of flows showing
a more robust performance as the original adaptive RED.

This thesis investigated also the selection of queue size threshold parametersMinth and
Maxth for the proposed adaptive scheme of Maxp (PSAND). On the first hand, investiga-
tions dealing with fixed values of Minth and Maxth showed that:

• Small values of Minth give overall performance improvements in queue size variance,
queueing delay, loss rate and link utilization rate.

• Sufficiently larger values of Maxth around 2K̂T (K̂T being the target queue size)
gives also overall good performances. Maxth should not be chosen too large to avoid
queueing delays.

These results suggested to use a configuration with Minth set to 0 and Maxth set to
2K̂T .

On the second hand, this thesis described several adaptation methods of Minth and
Maxth and investigated if these adaptations can further improve the PSAND performances.
The results showed that the previous fixed configuration gives better performance without
the need to adapt Minth and Maxth.

164



Conclusion

This thesis has proposed an enhancement to ARED scheme. It also compared this
proposal with other well-known or recent schemes such as PI, LRED, AVQ, REM and
Blue. The comparison shows that:

• With less complexity, PSAND gives an overall desirable tradeoff and good perfor-
mances such as small delay and delay jitter, and more robustness. Indeed, other
mechanisms can perform better than PSAND for a certain metric but lose their per-
formance for another metric. For a network configuration with variable RTT, PSAND
showed overall best performances except for the fairness metric. Moreover, unlike all
these schemes, PSAND showed good performances not only for large number of flows
but also for small number of flows.

This thesis did not claim that PSAND is the best or the optimal proposition for solving
RED problems but rather shows that it is possible to obtain competitive and even better
performances by retaining the RED basic spirit and design, and allowing minimal changes
to the algorithm. Schemes like PI, REM, AVQ, Blue and LRED have abandoned the
basic design of RED, without a substantial or for certain schemes with no improvement as
compared to PSAND. Moreover, note that PSAND did not require the values of network
parameters set a priori.

The results of this thesis showed also that PSAND can further be improved. We are
currently working on a way to choose dynamically some of its parameters, in particular
selecting a value of coef and γ that gives best performance. However, we have observed
that these improvements depend on a network variable which is the number of active
flows. These results show that we have tried to go further to enhance the effectiveness of
RED but pushing even further will show the requirement of network variables as an input.
Therefore, a future work that exploits a model requiring these variables as an input will
improve PSAND.

Another contribution of this thesis is the study of the interaction of FEC with RED.
For this study, an UDP flow implementing FEC is multiplexed with multiple TCP flows in
a single bottleneck link where a Drop Tail or RED queue management scheme is used. Our
intuition was that FEC combined with RED would perform better than FEC combined with
Drop Tail since the packet loss behavior of RED showed a smaller number of consecutive
packets drops. Indeed, the results showed that this intuition is not always confirmed but
rather depends on different parameters like the number of TCP active flows, the amount
of redundancy and the FEC block size. Depending on the value of these parameters,
sometimes RED, sometimes Drop Tail gives better performance. An analytical model that
confirms these results obtained by simulation is also presented.

There exists a myriad of propositions for queue management schemes. We do not claim
that RED is better than Drop Tail even though there is no doubt that RED presents in
certain situations an obvious performance improvement as compared to Drop Tail. We
do not claim either that a typical variant of RED is better than the others but rather
believe that the choice of a queue management scheme should be based on the service
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requirement of the application and the end-to-end protocol used. Indeed, there is no
queue management scheme that offers overall good performances under different network
circumstances. Every queue management scheme has its own advantages and shortcomings.
In the next generation Internet where service differentiation is expected and where traffic
should be classified according to the service requirement, different queue management
schemes could be associated with different class of services. Every class of service will be
assigned to a queue management that fits better its requirements.
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[80] J.-L. Mélin. Qualité de service sur IP. Eyrolles, 2001. Mentioned on page(s) 5

[81] T.S.E. Ng and H. Zhang. Predicting Internet network distance with coordinates-based
approaches. In Proc. IEEE INFOCOM’02, New York, NY, June 2002. Mentioned
on page(s) 41

[82] T.J. Ott, T.V. Lakshman, and L.H. Wong. SRED: Stabilized RED. In Proc. IEEE
INFOCOM’99, pages 1346–1355, New York, NY, March 1999. Mentioned on page(s)
31, 68, 124

[83] J. Padhye, V. Firoiu, D. Townsley, and J. Kurose. Modeling TCP throughput: a
simple model and its empirical validation. In Proc. ACM SIGCOMM’98, 1998. Men-
tioned on page(s) 13

[84] Sally Floyd’s page on TCP modeling. http://www.acir.org/floyd/tcp_small.

html. Mentioned on page(s) 13

[85] A. Parekh and R. Gallager. A generalized processor sharing approach to flow control
- the single node case. In Proc. INFOCOM’92, 1992. Mentioned on page(s) 20

173



BIBLIOGRAPHY

[86] M. Parris, K. Jeffay, and F. Smith. Lightweight active router queue management for
multimedia networking. In Proc. SPIE, pages 162–174, San Jose, CA, January 1999.
Mentioned on page(s) 55, 126

[87] J. Postel. User Datagram Protocol, August 1980. RFC 768. Mentioned on page(s)
13

[88] J. Postel. Transmission Control Protocol, Septembre 1981. RFC 793. Mentioned on
page(s) 8, 9

[89] K. Ramakrishnan and S. Floyd. A proposal to add explicit congestion notification
(ECN) to IP, January 1999. RFC 2481. Mentioned on page(s) 17

[90] K. Ramakrishnan, S. Floyd, and D. Black. The addition of explicit congestion noti-
fication (ECN) to IP, Septembre 2001. RFC 3168. Mentioned on page(s) 17

[91] L. Rizzo. Effective erasure codes for reliable computer communication protocols.
Computer Communication Review, 27(2):24–36, April 1997. Mentioned on page(s)
145

[92] H. Sanneck and G. Carle. A framework model for packet loss metrics based on
runlengths. In Proc. Multimedia Computing and Networking Conference (MMCN),
pages 177–187, San Jose, CA, January 2000. Mentioned on page(s) 126, 147

[93] S. Sharma and Y. Viniotis. Convergence of a dynamic policy for buffer management
in shared buffer ATM switches. Performance Evaluation, 36-37:249–266, August
1999. Mentioned on page(s) 16

[94] NS simulator homepage, 2003. http://www.isi.edu/nsnam/ns. Mentioned on
page(s) xxiii, 69, 122, 145

[95] W. Richard Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley, 1994. Men-
tioned on page(s) 5

[96] A. Tanenbaum. Computer Networks. Prentice Hall, Inc, 1996. Mentioned on page(s)
5

[97] C. Wang, B. Li, Y. Hou, K. Sohraby, and Y. Lin. LRED: a robust queue management
scheme based on packet loss ratio. In Proc. INFOCOM’04, March 2004. Mentioned
on page(s) 48, 68, 122

[98] Frank Kelly’s web page. http://www.statslab.cam.ac.uk/~frank/int. Men-
tioned on page(s) 13

[99] Mark Allman’s web page on TCP/IP research papers. http://tcpsat.lerc.nasa.
gov/tcpsat/papers.html. Mentioned on page(s) 13

174



BIBLIOGRAPHY

[100] Cisco web pages. http://www.cisco.com/warp/public/732/netflow/qos_ds.

html. Mentioned on page(s) 5

[101] Y.R. Yang, M.S. Kim, and S.S. Lam. Transient behaviors of TCP-friendly congestion
control protocols. In Proc. INFOCOM’01, Anchorage, Alaska, April 2001. Mentioned
on page(s) 126

[102] B. Zheng and M. Atiquzzaman. DSRED: an active queue management scheme for
next generation networks. In Proc. LCN’00, pages 242–251, Tampa, Florida, Novem-
ber 2000. Mentioned on page(s) 35, 52

[103] B. Zheng and M. Atiquzzaman. DSRED: improving performance of active queue
management over heterogeneous networks. In Proc. ICC’01, June 2001. Mentioned
on page(s) 35

[104] T. Ziegler, C. Brandauer, and S. Fdida. A quantitative model for parameter setting
of RED with TCP traffic. In Proc. IWQoS, 2001. Mentioned on page(s) 68

[105] T. Ziegler, S. Fdida, C. Brandauer, and B. Hechenleitner. Stability of
RED with two-way TCP traffic. In Proc. IEEE ICCN’00, October 2000.
http://www.newmedia.at/tziegler/papers.html. Mentioned on page(s) xxi, 68, 75

175



BIBLIOGRAPHY

176



Index

A
ACK (acknowledgment) . . . . . . . . . . . . . . . . 9
AIMD (Additive Increase Multiplicative De-

crease) . . . . . . . . . . . . . . . . . . . . . . . . 11
Applications

DNS (domain name translation) . . 14
FTP (File Transfer Protocol) . . . . . . 3
HTTP (Hyper Text Transfer Protocol)

3
NFS(remote file server) . . . . . . . . . . . 14
RIP(routing protocol) . . . . . . . . . . . . . 14
SMTP (Simple Mail Transfer Proto-

col) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
SNMP(network management protocol)

14
AQM(Active Queue Management)

RED with aggregate control
ARED (Adaptive RED) . . . . . 37, 38
AVQ (Adaptive Virtual Queue). .42
BLUE . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DSRED (Double slope RED) . . . . 35
GRED (Gentle RED) . . . . . . . . . . . 27
GREEN . . . . . . . . . . . . . . . . . . . . . . . . 39
LRED (Loss Ratio based RED) . 48
P controller (Proportional controller)
45

PI controller (Proportional integral
controller) . . . . . . . . . . . . . . . . . . . . 47

RED (Random Early Detection/Drop)
27

REM (Random exponential marking)
33

SRED (Stabilized RED) . . . . . . . . . 31
RED with class-based threshold
BRED (Balanced RED) . . . . . . . . . 56

CBT-RED (Class Based Threshold
RED) . . . . . . . . . . . . . . . . . . . . . . . . . 55

RIO (RED In-Out) . . . . . . . . . . . . . 57
RED with per flow accounting
FRED (Flow random early drop) 51
SFB (Stochastic Fair Blue). . . . . .53
XRED . . . . . . . . . . . . . . . . . . . . . . . . . . 55

E
ECN (Explicit Congestion Notification)17

F
FEC (Forward Error Correction) . . . . . 14

I
IntServ services

CL(controlled load) . . . . . . . . . . . . . . . . 5
GS (guaranteed service) . . . . . . . . . . . . 5

IP (Internet Protocol) . . . . . . . . . . . . . . . . . .3
ISP (Internet Service Provider) . . . . . . . . 6

P
PHB (Per-Hop Behavior) . . . . . . . . . . . . . . 6
PHB services

AF (Assured Forwarding) . . . . . . . . . . 7
EF (Expedited Forwarding) . . . . . . . . . 7

PQM (Passive Queue Management)
Drop Tail . . . . . . . . . . . . . . . . . . . . . . . . . 16
Drop-from-Front . . . . . . . . . . . . . . . . . . 16
Push-Out . . . . . . . . . . . . . . . . . . . . . . . . . 16

Q
QoS

Architectures
Best Effort . . . . . . . . . . . . . . . . . . . . . . . 5
DiffServ . . . . . . . . . . . . . . . . . . . . . . . . . . 6
IntServ . . . . . . . . . . . . . . . . . . . . . . . . . . 5

177



INDEX

Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Queue scheduling

CBFQ (Class-based fair queueing).20
CBQ (Class-based queueing) . . . . . . 21
FIFO (First In First Out) . . . . . . . . 18
FQ (Fair queueing) . . . . . . . . . . . . . . . 19
PQ (Priority queueing) . . . . . . . . . . . 19
WFQ (Weighted Fair queueing) . . . 20
WRR (weighted bit-by-bit round-robin)

20

R
RSVP ( Resource reSerVation Protocol)5
RTO (retransmission timeout) . . . . . . . . . 9
RTT (Round Trip Time) . . . . . . . . . . . . . . .9

S
SLA (Service Level Agreement) . . . . . . . . 6

T
TCP (Transmission Control Protocol) . . 8
TOS (Type Of Service) . . . . . . . . . . . . . . . . 6
TOS or DS (Differentiated Service) fields

CU (Currently Unused) . . . . . . . . . . . . 6
DSCP(Differentiated Service Code Point)

6

U
UDP (User Datagram Protocol) . . . . . . . 13

178





Résumé

Cette thèse s’intéresse à améliorer la qualité de service (QdS) offerte par des mécanismes
de gestion de file d’attente tels que RED (Random Early Detection). Nous étudions une
approche adaptative de RED appelée ARED. Notre but est de trouver un extension simple
de ARED afin d’améliorer la prédictibilité des mesures de performance comme le délai, le
temps de gigue sans pour autant sacrifier le taux de perte. Pour cela, nous proposons un
nouveau mécanisme nommé PSAND qui configure les paramètres de RED et l’évaluons à
l’aide de simulations. Nos résultats de la comparaison de PSAND avec ARED et d’autres
schémas bien connus ou récemment proposés ont montré que avec une complexité moindre,
PSAND donne un compromis désiré et de bonnes performances telles qu’un faible délai
d’attente dans la file, une faible gigue et une plus grande stabilité en présence d’un fort
trafic. Une autre contribution de cette thèse est l’étude de l’interaction de FEC (Forward
Error Correction) avec des schémas comme Drop Tail et RED. Les résultats ont montré
que selon la valeur des paramètres comme le nombre de flux TCP actifs, le taux de redon-
dance et de la taille des blocs FEC parfois RED ou parfois Drop Tail donne de meilleures
performances. Un modèle analytique ayant confirmé les résultats obtenus par simulations
a également été présenté.

mots-clefs: QdS, RED, mécanisme de gestion active de file d’attente, FEC.

Abstract

This thesis focuses on improving the quality of service (QoS) offered by active queue man-
agement schemes like RED (Random Early Detection). We followed an adaptive approach
of RED namely ARED (Adaptive RED). Our goal is to find a simple extension to ARED
in order to improve the predictability of performance measures like queueing delay and
delay jitter without sacrificing the packet loss rate. To achieve this goal, we propose a new
algorithm called PSAND that tunes RED parameters according to the traffic load. We
evaluate its performance by extensive simulations. Our results show that as compared to
ARED and others well-known, most studied and very recently proposed schemes, PSAND
gives an overall desirable tradeoff and good performances such as small delay and delay
jitter, and more robustness with less complexity.
Another contribution of this thesis is the study of the interaction of forward error correc-
tion (FEC) code with queue management schemes like Drop Tail (DT) and RED. We show,
through simulations, that sometimes FEC combined with RED, sometimes FEC combined
with DT may be more efficient depending on several parameters like the number of TCP
flows that constitute the background traffic, the FEC block size and the amount of redun-
dancy in a FEC block. We conclude generally that using FEC is more efficient with RED
than with DT when the loss rate is small, and a relatively important amount of redundancy
and at most a moderate FEC block size is used. We complement these observations with a
simple model, which is able to capture the tradeoff between the locality and the frequency
of losses.

keywords: QoS, RED, Active Queue Management, FEC.


