
HAL Id: tel-00009933
https://theses.hal.science/tel-00009933

Submitted on 12 Aug 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamique et contrôle actif avec délai de la dynamique
des structures mécaniques à potentiel ϕ6 monostable

non bornés
Blaise Romeo Nana Nbendjo

To cite this version:
Blaise Romeo Nana Nbendjo. Dynamique et contrôle actif avec délai de la dynamique des structures
mécaniques à potentiel ϕ6 monostable non bornés. Physics [physics]. Université de Yaoundé I, 2004.
English. �NNT : �. �tel-00009933�

https://theses.hal.science/tel-00009933
https://hal.archives-ouvertes.fr


Laboratory of mechanics 
 

 
 

PhD Thesis in Non-linear Mechanics 
 

1

  

DYNAMICS AND ACTIVE CONTROL WITH 

DELAY OF THE DYNAMICS OF UNBOUNDED 

MONOSTABLE MECHANICAL STRUCTURES 

WITH φ6 POTENTIAL 

NANA NBENDJO Blaise Roméo 
Laboratoire de Mécanique, Faculté des Sciences, Université de Yaoundé I, 

B. P. 812 Yaoundé, Cameroun 

Email : brnana@uycdc.uninet.cm & nananbendjo@yahoo.com 

Directed by : 
WOAFO Paul 

Associate Professor 
University of Yaoundé I

Email : pwoafo1@yahoo.fr & pwoafo@uycdc.uninet.cm  

Academic year 2004 



Laboratory of mechanics 
 

 
 

PhD Thesis in Non-linear Mechanics 
 

2

TABLE OF CONTENTS 



Laboratory of mechanics 
 

 
 

PhD Thesis in Non-linear Mechanics 
 

3

 

TABLE OF CONTENTS 
 
LIST OF THE PERMANENT TEACHING STAFF OF THE FACULTY 

OF SCIENCE, UNIVERSITY OF YAOUNDE I .....……………………...A-E 

DEDICATION......................................................................................................i 

ACKNOWLEDGMENTS ................................................................................iii 

TABLE OF CONTENTS................................................................................…3 

ABSTRACT/RESUME ......................................................................................5 

Abstract..................................................................................................….6 

Résumé..................................................................................................…..9 

GENERAL INTRODUCTION....................................................................…12 

1°) Generalities on  mechanical structures with φ6  potential…...........…12 

2°) Control of the dynamics of mechanical structures..............................13 

3°) Problematic of the thesis…………….................................................14 

References ………………........................................................................16 

 

CHAPTER I: MODELLING AND DYNAMICS OF UNBOUNDED 

MONOSTABLE MECHANICAL STRUCTURES WITH φ6 POTENTIAL 

I-Introduction................................................................................……….19 

II- Modelling of the dynamics of mechanical structures by an unbounded 

single well φ6.potential…………………………...………………...........21 

II-1- An inverted pendulum..…………............................................…21 

II-2-Beam with articulated ends under transversal excitation…..........25 

II-3-Elastic beam fixed at its base and free at the top………………..30 

III-Dynamics of unbounded φ6 monostable mechanical structures under  

anharmonic excitation....................……………………...........................33 

III-1-Condition for escape from a potential well.................................33 

III-2-Melnikov criteria for chaos…………………..............................36 



Laboratory of mechanics 
 

 
 

PhD Thesis in Non-linear Mechanics 
 

4

IV-Conclusion……………………………………………...……………41 

References...........................................................................……………..42 

 

CHAPTER II : CONTROL BY SANDWICH AND WITH 

PIEZOELECTRIC ABSORBER OF THE DYNAMICS OF UNBOUNDED 

MONOSTABLE MECHANICAL STRUCTURES WITH φ6 POTENTIAL 

I-Introduction.............................................................................................45 

II-Modelling of the dynamics of mechanical structures under control.....46 

 II-1-Control by sandwich…………………………………………46 

  II-1-1-Case of an articulated beam…………………………46 

  II-1-2-Case of an inverted pendulum………………………48 

 II-2- Control by using piezoelectric absorbers……………………51 

  II-2-1- Generalities on the piezoelectric materials…………51 

  II-2-2- Case of an articulated beam………………...………51 

a) Physical model…………………………………...51 

b) General mathematical formalism………………...52 

II-2-3-Presentation of the control design of inverted 

pendulum and elastic beam with piezoelectric absorber………………...54 

 III-Control of amplitude and unbounded motion………………………..55 

  III-1- Stability of the system under control……………………….55 

III-2- Effects of the control on the amplitude of harmonic 

oscillations………………………………………........................…….....62 

III-3-Effects of the control on the appearance of unbounded 

motion...………………………………………………………………….64 

IV-Control of Melnikov chaos……………...………...............................64 

IV-1-Analytical study……………………….....................….........64 

a) Case of elastic coupling……………………………...…65 

b) Case of a dissipative coupling………………………….66 



Laboratory of mechanics 
 

 
 

PhD Thesis in Non-linear Mechanics 
 

5

IV-2- Basin of stability………………………………………........67 

V-Conclusion.............................................................................................71 

References……………….........................................................................72 

CHAPTER III : ACTIVE CONTROL WITH DELAY OF THE 

DYNAMICS OF UNBOUNDED MECHANICAL STRUTURES WITH φ6 

POTENTIAL 

I-Introduction.............................................................................................74 

II-Model and stability analysis….........................................................….74 

II-1-The model………....................................................................74 

II-2- Stability of the control system…...................................….....75 

III-Control of vibration, escape from a potential well and Melnikov 

chaos : effect of time delay........................................................................78 

III-1-Effects of time delay on the control of vibration....................78 

III-2-Effects of time-delay on the control of catastrophic 

escape....82 

III-3-Effects of time-delay on the control of Melnikov chaos……84 

III-4- Effects of time-delay on the basin of stability……………...87 

IV-Conclusion...........................................................................................90 

References……………………………………………………………….91 

GENERAL CONCLUSION…..................................................................…...92 

1°) Summary of the main results.............................................……92 

2°) Perspectives........………………...........................................…94 

LIST OF PULICATIONS...........……………….................................…….…96 

 
 

 

 

 

 



Abstract/Résumé 
 

 
 

PhD Thesis in Non-linear Mechanics 
 

6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
ABSTRACT 



Abstract/Résumé 
 

 
 

PhD Thesis in Non-linear Mechanics 
 

7

ABSTRACT 
 Dynamics and active control with delay of the dynamics of unbounded 

monostable mechanical structures with φ6  potentials, that is the main purpose of 

this work. It may be viewed as a contribution to the study of the control of the 

dynamics of physical systems in which the potential have a catastrophic single 

well φ6  configuration. Active structural enhancement consists of the use of 

active control to modify the structural behaviour. 

 We present in chapter I, some important physical systems related to the 

non-linear mechanical structures with catastrophic single well φ6  potential. It is 

shown that, the mathematical model of various non-linear structures (inverted 

pendulum, articulated beam, elastic beam fixed at its base and free at the top) is 

that of a particle moving in a catastrophic single well φ6  potential. The 

condition for escape from a potential well are obtained and the criteria for the 

appearance of horseshoes chaos are derived using the Melnikov theory. 

Numerical simulation of the original equation is carried out to complement our 

analysis and metamorphism of the basin of attraction is observed. 

 Chapter II is devoted to the control by sandwich and with piezoelectric 

absorber of the dynamics of mechanical structures as presented in chapter I. The 

first control strategy  consists of coupling the non-linear beam by a linear one. 

The linear one serves as control element used to reduce the amplitude of 

vibration of the non-linear beam. The effects of the control parameters on the 

dynamical behaviour of the system is  analysed and the conditions for the 

effectiveness of the control as well are obtained. Approximate criterion for the 

appearance of Melnikov in the control model is  derived and the effects of 

control gain parameters are analysed. 

 In chapter III, we consider the effect of time-delay between the detection 

of the structure’s motion and the restoring action of the control system. The 

stability of the control system under control is studied using the Lyapunov 
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concept and the domain subdivision method. The effect of time delays in the 

critical force leading to the reduction of amplitude and escape from a potential 

well is obtained analytically and verified numerically. The effects of the control 

strategy and time-delays in the onset of Melnikov chaos is presented. 

 Our study ends with a general conclusion summarising the most important 

results obtained and listing some other problems encountered. We also present 

the other perspectives open by this work.   
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RESUME 
Dynamique et contrôle actif avec délai de la dynamique des structures 

mécaniques à potentiel φ6  monostable non borné, tel est le thème de ce travail 

qui se veut être une contribution à l’étude du contrôle de la dynamique des 

structures mécaniques régis par le potentiel φ6  monostable catastrophique. Le 

renchérissement actif de  la structure consiste à utiliser le control actif pour 

modifier le mouvement de la structure. 

 Nous présentons au chapitre I des systèmes physiques pouvant être 

modélisés par le modèle potentiel φ6 monostable catastrophique. Nous 

établissons que, les systèmes suivants : pendule inversé, poutres articulées aux 

deux extrémités, poutre élastique libre à une extrémité et fixée à l’autre, sont 

décrits par une équation identique à celle d’une particule se mouvant dans un 

potentiel  φ6 monostable catastrophique. La condition du saut de puits de 

potentiel est obtenue de même que le critère d’apparition du chaos du fer à 

cheval, en utilisant la théorie de Melnikov. La simulation numérique de 

l’équation originale est faite pour compléter les analyses et les métamorphoses 

du bassin d’attraction sont observées. 

Le chapitre II est consacré au contrôle par sandwich et avec absorbeur 

piézoélectrique de la dynamique des structures mécaniques tel que présentés au 

chapitre I. Nous considérons dans  le cas du contrôle par sandwich une stratégie 

consistant à coupler la structure non-linéare à une autre linéaire, la structure 

linéaire ici servant d’élément de contrôle utilisé pour réduire l’amplitude des 

vibrations de la structure non-linéaire. L’effet des paramètres de contrôle sur la 

dynamique du système sont  analysés et la condition d’efficience du contrôle est 

obtenue. Nous obtenons approximativement le critère d’apparition du chaos 

dans le modèle contrôlé et l’effet des paramètres de gain de contrôle est analysé. 

 Au chapitre III, nous considérons l’effet du retard entre la détection 

du mouvement de la structure et l’action restitué du système de contrôle.  La  
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stabilité du système sous contrôle est étudiée en utilisant le concept de 

Lyapunov et la méthode de subdivision du domaine. L’effet du délai sur la force 

critique conduisant à la réduction d’amplitude ou au saut du puits de potentiel 

est obtenu analytiquement et vérifié numériquement. L’effet de la stratégie de 

contrôle et du retard sur l’apparition du chaos de Melnikov est présenté. 

 Notre étude s’achève par une conclusion générale résumant les 

résultats importants obtenus et faisant état de quelques problèmes rencontrés au 

cours  de l’étude, puis de quelques perspectives en rapport avec le travail 

effectué. 
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GENERAL INTRODUCTION 
1°) Generalities on mechanical structures with φ6 potential  

The non linear dynamics in mechanical structures has been investigated by 

an increasing number of researchers in recent years. The reason for this high 

interest is due to the fact that non linear modelling permits to explain various 

phenomena in chemistry, economy, biology, etc and especially in all the branches 

of physics. Basically, all the problems in mechanics are non linear from the out set. 

The linearisations commonly practised are approximating devices that are good 

enough or quite satisfactory for must purposes. There are however, also certain 

cases in which linear treatments may not be applicable at all [1]. In this line, 

particular attention had been paid to the modelling of mechanical structures by the 

Duffing oscillator (oscillator with φ4 potential) [2-5]. For instance taking the case 

of softening Duffing oscillator [6], a large number of studies permit to explain  that 

it modelises a variety of physical phenomena such as the rolling motion of a ship, 

Josehpson oscillators, Foucoult’s pendulum, etc [7]. These studies have revealed 

various types of interesting behaviours: hysteresis, multistability, period-doubling 

bifurcation, intermittent transition to chaos, fractal basin boundarie etc [8-12]. 

Another model which deserves particular attention is the extended Duffing 

oscillator (oscillator with φ6 potential). This potential can present many 

configurations which may be classified in two groups: bounded configurations 

(with one well, two or three wells) and unbounded or catastrophic configuration 

(with one well or two wells). The first group always leads to bounded dynamics 

while the second group can give rise to unbounded motion resulting to catastrophic 

consequences. The interest devoted to the model, is due to the fact that in addition 

to results obtained from the classical Duffing oscillator, it can permit us to have 

more information about the dynamics of the system and in certain cases  to foresee 

the failure of the structure. The first analysis of that model has been done in 1991 

by Debnath and Chawdhury [13] who studied the stability, the response of the 

models and the onset of period-doubling through the harmonic balance method. In 

the same way, Li and Moon [14] studied the dynamics of a cantilever steel beam 
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with free ends and subjected to the action of three magnets placed in a regular 

manner to give the bounded tristable   configuration. In 1999, Lenci et al [15] 

considered the dynamics of slender column fixed at its base and resting on a 

Winkler foundation. By extending the reactive force exerted by the foundation on 

the column to include a fifth order term, they found that depending on the value of 

the vertical load applied to the free end, the single mode dynamics can be 

described by bounded potential with two or three wells. They then derived the 

criteria for the occurrence of Melnikov chaos. Recently, Tchoukuegno [16] shed 

some light on other aspects of this φ6  model, but his attention was focused only in 

the case of φ6 potential with three wells and catastrophic two wells configurations.  

 In this thesis, we will continue to throw more light on the other aspects of 

this φ6 model. Our attention will be paid on the unbounded single well φ6 potential 

Some of the questions like which types of mechanical structures can be modelised 

by this model and what is the advantage of using this model will be answered.  

2°) Control of the dynamics of mechanical structures 
All mechanical systems exhibit vibrating responses when subjected to time 

varying disturbances. The predictions and control of these disturbances is 

fundamental to the design and operation of mechanical equipment. For instance, in 

automobile and aeronautic industries, one of the most dangerous effects is the 

influence of parasite perturbation, notably in the propulsion jet, propeller shaft and 

crankshaft. Around us, one can remind himself about the state of roads,  bridges,  

agriculture and the shakes in industries. Further, one can see the turbulent zone in  

aircraft. Very often these perturbations forestall the growing of agriculture 

structures and can lead them to catastrophic failure.  

Considerable efforts have been devoted to the control of linear and non 

linear vibrating structures. Among the control strategies, the active control plays a 

particular role [17-20]. Another reason that active control has been receiving an 

increasing amount of attention has to do with the rapid advances that have been 

taking place in allied technologies. The development of the active control must go 

hand-in hand with advanced areas such as computers, electronics, measurement 
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techniques, instrumentations, controllers, actuators, materials etc [21]. 

Consequently, the study of active control in dynamical structures has given rise to 

considerable development in many domains such as industries. One of the first 

application was in the increment of critical speed of aircraft modulation [22]. 

Recently, due to new technologies, the  use of control theory in mechanical system 

has increased a lot. For instance in reference [23], the author gives a thorough 

review of the description and the main results are that, control scheme mitigates 

the effects of the dynamic loading on the vibration amplitude and prevent 

dangerous instability phenomena, with a load carrying capacity of buckled beams 

increasing with the degree of non linearity of the control strategy. In 1985, Bailey 

et al. [25] introduced piezoelectric actuators  to active vibration control. They used 

the actuators bonded to the surface of a cantilever beam in their feedback vibration 

damping design. Demitriadis et al [26] in 1991 performed a two-dimensional 

extension of Crawley and Deluis work [27], applying pair of laminated 

piezoelectric actuators to a plate. They demonstrated that the location and shape of 

the actuator dramatically affected the vibration response of the plate. Recently in 

2002, Morgan et al. [24] proposed a semi active piezoelectric absorber for 

suppressing harmonic excitation with varying frequency. 

 Another effect which arises in control strategies is the inevitable time-delay 

between the detection of the structure motion and the restoring action of the 

control. In reference [28], the authors considered such a problem in linear 

structures and showed that time-delay can even lead to the instability of the whole 

structure. Thus it is of interest to pursue this study in non-linear structures. In this 

dissertation  we consider many control strategies with the effect of time delay on 

the control strategy. 

3°) Problematic and organisation of the thesis 
The aim of this thesis is to study the dynamics and control of mechanical 

structures with unbounded single well φ6 potential. 

In chapter I, we  present the modelling of mechanical structures with 

unbounded single well φ6 potential. Later, we derive the condition for escape from 
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the potential well [29]. At the end of this chapter, we will follow the Melnikov 

method [30] to derive the criteria for the occurrence of fractal basin boundaries for 

the heteroclinic orbit. 

In chapter II, we describe two types of control strategy (sandwich control 

and piezoelectric control). After the establishment of the resultant equations  of 

motion of the models, we derive the range of control gain parameters that can 

produce an effective control (stability of the model and reduction of amplitude) 

along with the condition for the escape from a potential well. The other part of this 

chapter deals with the derivation of Melnikov criterion for suppressing chaos and 

the effect of the control gain parameters on the basin of attractions. 

Chapter III deals with the study of the effects of time delays in the control 

strategy. We find the stability of the system under control using the Lyapunov 

concept and D-subdivision method. The effect of time delays in the amplitude and 

critical forcing for catastrophic and Melnikov chaos are analysed. 

 We end the thesis with a general conclusion and the perspectives offered by 

our investigations. 
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I-INTRODUCTION  
In recent years, considerable efforts have been devoted to the study of non-

linear vibrating structures. This is due to the fact that they appear in various fields 

of fundamental and applied sciences [1-5]. Among these studies, particular 

attention has been paid on the dynamics of Duffing structures. The Duffing 

oscillator is beside the Van der Pol  oscillator [6,7 ] one of the non-linear oscillator 

that has received a lot of attention in recent years, since it modelises a large variety 

of systems in physical sciences. Another model of interest is the extended Duffing 

oscillator with non-linear terms of order greater than four. When one restricts the 

development to the sixth order term, the potential is called the φ6 potential and is 

given by 

2 4 61 1 1( )
2 4 6

V x bx cx dx= + +                                                                              (I-1) 

where b, c, d are constants. 

This potential permits to foresee the behaviour of  structures when the 

amplitude of the oscillation is large. It gives rise to  many configurations 

depending on the nature and the environment of the structure in movement. The 

configurations can be classified into two groups as follow. 

 • The hard spring systems (see figure I-1a): for these systems, as the 

amplitude of the external excitation increases, the system becomes tense and the 

natural frequency of the free vibrations increases. The curve of the energy versus 

the deformation is concave towards the up. These systems can possess one, two or 

three potential  wells according to the values of c  and d . 

 

 

 

 CHAPTER I: MODELLING AND DYNAMICS OF 
UNBOUNDED MONOSTABLE MECHANICAL 

STRUCTURES WITH φ6 POTENTIAL 



Chapter I : Modelling and dynamics of unbounded monostable mechanical structures with φ6 potential 

PhD Thesis in Non-linear Mechanics 20

 

 

 

 

 

 

 

 

 

•The soft spring system (see figure I-1b): in these systems, the energy versus the 

deformation is concave downward as presented below. 

 

 

 

 

 

 

 

 

 

The soft spring systems can be described by the φ6 potential with one or two 

potential wells according to the consistence of the environment in which it is 

found. 

 In this chapter, we will focus our attention on a soft spring system 

corresponding to a catastrophic or unbounded potential well. Section II deals with 

the modelling of physical systems described by the unbounded monostable φ6 

potential. In each system, the interest of using a φ6 potential is clarified. Section III 

deals with the general dynamics of the system and section IV summarises the 

chapter. 

 

Figure. I-1a: Evolution of the energy versus the 
deformation in the case of hard spring systems 
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Figure I-1b: Evolution of the energy versus the 
deformation in the case of soft spring systems 
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II-MODELLING OF THE DYNAMICS OF MECHANICAL 

STRUCTURES BY AN UNBOUNDED SINGLE WELL φ6 

POTENTIAL 

II-1- An inverted pendulum 
 The inverted pendulum is considered as a rigid rod attached to the soil by a 

rotary spring and dashpot (viscous damper) as shown in figure I-2. The forces 

acting on this system are: the weight and the reaction of the soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This reaction is related to the mechanical properties of the soil. The coefficients of 

the reaction (damping and elastic coefficients) of each structure can be deduced 

from a free vibration test. The inclination of the rod must be less than the critical 

amplitude, if not the structure will break. We encounter this type of structure in 

various domains.  

♦In agriculture, it represents rigid plants such as corn plant and tree [8-10 ]. 

In this case, the reaction is also related to the depth and the configuration of the 

roots. 

   kC

  2L

θ

Fig 1 : Inverted pendulum
 Figure I-2 : An inverted pendulum 

Cd
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 ♦In civil engineering, we have electrical poles either in wood or in iron. 

We also have the one-dimensional version of a rocket on take-off, the vehicle 

being balanced by an engine thrust [11]. 

♦In biomechanics the prosthetic limb for physically disabled persons  [11] 

can also be described by such a model.  

Under the action of the external excitation, the motion of the inverted 

pendulum  is obtained using the fundamental equation governing the dynamics of 

the system in rotation and it is given by 

( )
2

2 sind
d dJ C k mgl M t
dt dt
θ θ θ θ ′+ + − =                                                                       (I-2) 

where J is the moment of inertia , m the rod mass and l the height at  mid length of 

the rod. g, Cd and k are respectively the gravitational acceleration, the damping 

coefficient and the spring constant. θ is the angle the rod makes with the 

equilibrium position and ( )M t′  stands for the external forces. ( )M t′  can be the 

effects of wind or  the action of machine used to uproot the mechanical structure. 

Very often, these forces are stochastic and when the amplitude is small, one can 

assimilate it to a gaussian white noise [12]. They can also be approximated by 

periodic functions whose amplitude and frequency are deduced by using averaging 

procedures (statistics analysis, Fourier analysis, noise analysis, etc..). 

 An interesting case of this study is to foresee the critical amplitude of the 

external excitation for which the failure appears. Using equation (I-2), the potential 

energy is given by  

( ) 21 cos
2

V k Dθ θ θ= +                        Where D=mgl                                              (I-3) 

The critical amplitude θu is obtained when the following conditions are satisfied 

( ) ( )0         and       V 0V θ θ′ ′′=                                                                                (I-4) 

But obtaining the analytical expression using equation (I-3) is not possible. That is 

why, we carry out the expansion of cosθ  up to the sixth order around the 

equilibrium position θ=0, to obtain 
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( ) ( ) 2 4 61 1 1
2 24 120

V D k D D Dθ θ θ θ+ − + −                                                                 (I-5) 

Since 61
720

Dθ⎛ ⎞−⎜ ⎟
⎝ ⎠

 is negative, we have a φ6 potential [13], showing one stable 

equilibrium point (θ=0) and two unstable equilibrium points at 
1

2610 20 1u
k

D
θ

⎛ ⎞⎛ ⎞= ± + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
as it appears in figure I-3. Thus, unbounded motion can 

appear for uθ θ≥ . 

Following equation (I-5), equation (I-2) becomes  

( ) ( )
2

3 5
2

1 1
6 120d

d dJ C k D D D M t
dt dt
θ θ θ θ θ ′+ + − + − =                                                 (I-6) 

Using the following dimensionless quantities 

( ) ( )2 4
20 0

0 02
0 0 0 0

DD ,  b=1- ,  c= ,  ,  = ,  , q=  and , 
k 6k 720

d M tC D kd t M
J k J J

θ θ θλ τ ω τ ω
ω ω θ θ

′
= = − = =      (I-7) 

Where 0θ  is a reference amplitude 

We obtain 

( )
2

3 5
2

d q dq bq cq dq M
d d

λ τ
τ τ

+ + + + =                                                                             (I-8) 

As an example, we consider a structure having the following parameters: mass 

m=2 kg, length of the stalk 2l=2.5 meter, damping coefficient Cd=0.15 Ns/meter, 

natural frequency ω0=8.8 rad/s and gravity acceleration given by g=9.8 meter/s2. 

Such a structure is compatible with a corn plant as reported in reference [9]. We 

thus obtain the following values for the dimensionless parameters: 

λ=0.009, b=0.92, c=0.013 and d=-0.0008 

Throughout the thesis we will use this set of dimensionless parameters. 
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Figure I-3 : a) Catastrophic single-well 6φ  potential with the following 
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II-2 Beam with articulated ends under transversal excitation 
The model is a strongly non-linear beam of length l with articulated ends 

subjected to the action of a transversal excitation P (figure I-4).  

 

 

 

 

 

 

 

 

This model is generally found in civil and mechanical engineering. 

 In civil engineering, it is used in building construction where it serves as an 

element of skeleton, floor-plates and in cross over like bridges and viaducts. The 

transversal excitation can be the movement of vehicles or people on the bridge, the 

movement of robots or vibrating machines on the floor-plates (for example in 

industries). It can also result from the action of seismic waves on engineering 

structures. 
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 Figure I-5: Element of a beam in the deflected and 
undeflected positions 
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L
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Figure I-4: Articulated beam under transversal excitation 
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To deal with the modelling, let w and u be the transversal and longitudinal 

displacements respectively. We consider an element of the beam of length dx at 

rest (figure I-5). We label the end of an infinitesimal length of string by F and G in 

the undeformed position and F’ and G’ in the deformed position. The displacement 

of F is given by 

( ) ( ), ,F u x t i w x t j∆ = +                                                                                  (I-9) 

and the displacement of G is given by 

 u wG u dx i w dx j
x x
∂ ∂⎛ ⎞ ⎛ ⎞∆ = + + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                                                                (I-10) 

It follows from figure I-5 that 

 F F G F dxi′ ′∆ + ∆ = ∆ +                                                                                  (I-11) 

where F G′ ′∆  is the vector giving the position G’ relative to F’  

Let ds be the corresponding length when the beam is deflected. It is given by 
1

2 2 2

1 u wds F G dx
x x

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞′ ′= ∆ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
                                                      (I-12) 

 The unit vector parallel to this deflected element can be expressed as  

1F G u w dsn i j
x x dxF G

′ ′∆ ⎛ ∂ ∂ ⎞⎛ ⎞= = + +⎜ ⎟⎜ ⎟∂ ∂′ ′ ⎝ ⎠∆ ⎝ ⎠
                                                           (I-13) 

where 

,  are partial derivatives with respect to x. i and ju w
x x
∂ ∂
∂ ∂

 are the unit vectors in the u and w 

directions respectively. 

During the motion the length of the string changes and hence  the tension in the 

string changes. The instantaneous value of the tension is given by  

( )dx
 with =E  

thus, N=

ds dxN S E
dx dx

ds dxES
dx

σ σ
∆ −⎛ ⎞= = ⎜ ⎟

⎝ ⎠
−⎛ ⎞

⎜ ⎟
⎝ ⎠

                                                   (I-14)    

where E and S are respectively the Young’s modulus and cross sectional area of 

the beam. We consider the presence of a viscous damping of coefficient δ in the w 
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direction. The dynamical behaviour of the beam is therefore described by the 

following equations:  

  
( )

( ) ( )

2

2

2

2

um N n i
t x
w V wm EI N n j P t

t x t x
δ

⎧ ∂ ∂
=⎪⎪ ∂ ∂

⎨
∂ ∂ ∂ ∂⎪ + + = +⎪ ∂ ∂ ∂ ∂⎩

                                                            (I-15) 

where  P(t) is the transversal load per unit length and m the mass per unit length 

and V the shear force. Knowing that the relation between the bending moment (M) 

and the shear force is 
2

20 and  M=EIM wV
x x

∂ ∂
− =
∂ ∂

 where I is the moment of inertia, 

equation (I-15) becomes 

( )

( ) ( )

2

2

2 4

2 4

um N n i
t x
w w wm EI N n j P t

t x t x
δ

⎧ ∂ ∂
=⎪⎪ ∂ ∂

⎨
∂ ∂ ∂ ∂⎪ + + = +⎪ ∂ ∂ ∂ ∂⎩

                                                            (I-16) 

 Carrying out the development of dx
ds

 up to the second order, we obtain 

                
22 2 2 21 31 2 2

2 8
dx u u w u u w
ds x x x x x x

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
                                 (I-17) 

    Inserting equations (I-13) and (I-17) in equation (I-16), the evolution of the 

system is governed by the following set of equations 

 
22 3 3 2 22 2

2 2

2 2 2

1 35 2
2 4

w 3                         -3
x 4

u u w u u w u wm ES ES
t x x x x x x x x

u w u u
x x x x

⎡ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢− = − − − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

( )

22 2

2 4

2 4 ,

w
x

w w w wm EI ES e P x t
t x t x x

δ

⎧
⎪
⎪
⎪
⎪ ⎤⎛ ⎞∂⎪ ⎛ ⎞ ⎥+⎜ ⎟⎨ ⎟ ⎜ ⎟⎜ ⎟∂ ⎥⎠ ⎝ ⎠⎪ ⎝ ⎠ ⎦
⎪

∂ ∂ ∂ ∂ ∂⎛ ⎞⎪ + + = +⎜ ⎟⎪ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎪
⎩

       (I-18) 

where 
22 2 2 2 2 21 3 3

2 2 8
u u w u u w u we
x x x x x x x x

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
                      (I-19) 
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The system of equation (I-18) contains the first, second third and fourth order 

power of u arising from the deflection induced by the motion. Only the first order 

approximation of u will be considered here. This means that the transversal 

displacement is more important than the longitudinal one. It follows that the 

following assumption can be made u=0(w4). We therefore neglect the following 

terms ( )2 2 3 2 2 2,  ,  ,  x x x x x x xu u w u u u w+ and equation (I-17) becomes 

 
2 41 3

2 8
u w we
x x x
∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

                                                                                   (I-20) 

Then the system of equation (I-18) becomes 

( )

32 2 2

2 2 2

2 4

2 4

1 3                    
2 2

u u w w wm ES ES
t x x x x

w w w wm EI ES e P t
t x t x x

δ

⎧ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞− = −⎪ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎪ ⎝ ⎠⎨
⎪ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = +⎜ ⎟⎪ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎩

                                          (I-21) 

We use the following boundaries conditions: 

( ) ( )0, , 0u t u l t= =                                                          (I-22) 

This means that the boundaries do not move longitudinally. Due to the complexity 

of equation (I-21), approximated methods are usually employed to seek for the 

solutions. The appropriate approximation parameter is the radius of gyration r. 

Assuming that r is small enough, the longitudinal inertia 
2

2

u
t

∂
∂

 is small compared to 

the restoring force. Using the boundaries conditions  (I-22) and after some 

simplification its comes the following equation 
2 4

0 0

1 3
2 8

l lw we dx dx
l x l x

∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫                                                                                (I-23) 

Thus the general equation governing the behaviour of the beam with 

articulated ends is given by  

( )
2 42 4 2

2 4 20 0

1 3
2 8

l lw w w w w wm EI ES dx dx P t
t x t l x l x x

δ
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − − =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫             (I-24) 

We stress here the presence of the fourth order term 
4

0

3
8

l w dx
l x

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠∫  in the 

equation. Since the pioneering work of Holmes [14], investigations had always  
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neglected this term. Its consideration brings the sixth order non-linearity and 

new dynamics for the beam. Consider the following dimensionless quantities:  

( ) ( ) 4
*

2

122 2 2

1

,  ,  ,  ,  ,

,  ,   and 

P t Lw x l t EIW z l F z
r L L L m EIr

Ar L r Ik k r
I L AmEI

τ τ

δλ

= = = = =

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                   

where L is a reference length. The non-dimensional equation of motion is given by 

( )
* *2 42 4 2

1
2 4 * * 20 0

1 3
2 8

l lW W W W k W Wk dz dz F
z l z l z z

λ τ
τ τ

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − − =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫                   (I-25) 

We assume for beam simply supported boundaries conditions: 

( ) ( )
( ) ( )

*

*

0, , 0

0, , 0

W W l

W W l

τ τ

τ τ

= =

′′ ′′= =
                                                           (I-26) 

We assume that the external excitation F(τ) is a periodic force coinciding with the 

first mode of the beam. That is     

( ) ( )cosoF Fτ τ= Ω                                                                                               (I-27a)                 

Taking into account the boundaries conditions, we set 

( ) ( ) ( )
1

  , sin
n

j
j

W z q jzτ τ π
=

=∑                                                                                 (I-27b) 

Inserting equation (I-27) in equation (I-25), multiplying the result by ( )sin zπ and 

performing the integration from 0 to *l , we obtain the normalised equation given 

by  

( )
2 2 4 2

2 4 2 4 41
12

1 1

9 cos
4 16

n n
j j

j r r j o j
r r

d q dq j k kj q r q r q q F
d d

π πλ π τ δ
τ τ = =

⎡ ⎤
+ + + − = Ω⎢ ⎥

⎣ ⎦
∑ ∑                 (I-28a) 

 For the first mode of vibration, we obtain  

( )
2

4 3 5
2 coso

d q dq q cq dq F
d d

λ π τ
τ τ

+ + + + = Ω                                                               (I-28b) 

Where          4 6
1

1 9  and   d=-
4 64

c k k kπ π=  

Taking for example a single rectangular steel beam (flexural rigidity E=200.109 

N/m2 and density ρ=7850 kg/m3) of length l=2m and section S=0.05x0.03m2, we 

obtain after some calculations c=24.3 and d=-0.01. Therefore, the model 
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describing the single mode dynamics behaviour of the non-linear beam with 

articulated ends is that of a particle moving in a catastrophic single well φ6 

potential. The same equation has been obtained by Tchoukuegno [15].   

II-3 Elastic beam fixed at its base  and free at the top 
   Figure I-6, shows  an elastic beam fixed at its base, subjected to a transversal 

load. The beam is presumed to be a slender, isotropic, uniform rod whose bending 

moment depends linearly on the curvature. We encounter these types of structures 

in many areas such as flexible plants (wheat, tree [8,10]), telecommunication 

antennas and musical instruments like diapason. In engineering, it also describes a 

model for tall buildings [16,17], thin poles (used as pole vaulting  for example) and 

many other structures in building construction and mechanical engineering.  

When forces are applied transversally to the beam, it bends. Consider y as 

the lateral displacement of the center line and x its vertical location, the bending 

moment due to the couple is given by [18] 
2

2

3
2 2

1 where 
R

1

d y
EI dxM
R dy

dx

= =
⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                                                          (I-29) 

R being the radius of curvature and EI the flexural rigidity. Since that the moment 

varies from one point to another, there  also exists a shear force which is added to 

the parallel forces to the x axis. Let V be that shear force in a section of the beam, 

knowing that the different  forces acting in this section lead to a dynamical 

equilibrium, we obtain the following relation: 

0MT
x

∂
+ =
∂

                                                                                                 (I-30) 

Let us assume now that the forces of volume exist (for example inertia forces). If G 

is the resultant volume forces per unit length of the beam, then at the equilibrium, 

we have  

0TG
x

∂
+ =
∂

                                                                                                 (I-31) 

 



Chapter I : Modelling and dynamics of unbounded monostable mechanical structures with φ6 potential 

PhD Thesis in Non-linear Mechanics 31

           

 

 

 

 

 

 

 

 

 

 

 

          

 

  If that volume forces are only due to the inertia,  G will be defined by  

          
2

2

yG S
t

ρ ∂
= −

∂
                                                                                                        (I-32) 

 Where ρ is the density and S the section area of the beam. Consequently the   

equilibrium equation is given by: 
2

2

y TS
t x

ρ ∂ ∂
=

∂ ∂
                                                                                              (I-33) 

Inserting equation (I-30) into equation (I-33)  it leads to 

 
2 2

2 2 0y MS
t x

ρ ∂ ∂
+ =

∂ ∂
                                                                                                (I-34) 

          Considering the expression of M given by equation (I-29), we arrive at the 

following equation: 
2 2

2 2

1 0yS EI
t x R

ρ ∂ ∂ ⎛ ⎞+ =⎜ ⎟∂ ∂ ⎝ ⎠
                                                                              (I-35) 

We obtain here a general equation governing the transversal vibration of a 

prismatic bar. In an attempt to go closer to reality and knowing that at  the 

 

Figure I-6: Elastic beam 

  y

x   p
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elasticity limit the gradient 1y
x
∂
∂
≺≺ , we carry out the expansion of 1

R
up to the 

fourth order. This leads us to 
2 42 2 2

2 2 2

3 51 0
2 8

y y y yS EI
t x x x x

ρ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

                                          (I-36) 

When we neglect the non-linear terms, we obtain the well-known linear 

equation given by [16,19] 
2 4

2 4 0y yS EI
t x

ρ ∂ ∂
+ =

∂ ∂
                                                                                     (I-37) 

           When the external excitation is large, the equation with non-linear terms can 

permit us to foresee the behaviour of the structure. Taking into account the 

dissipation and the external excitation, we obtain 

( )
2 42 2 2

2 2

3 51
2 8

y y y y yS EI P t
t t x x x x

ρ δ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − + =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

                                        (I-38) 

          where δ is the damping coefficient and P(t) the external excitation per unit length. 

Looking now the equation of a single mode dynamics, we can express y in the 

form 

( ) ( )n ny X x Q t=                                                                                           (I-39) 

where Xn is the solution of the eigen value problem obtained by solving equation  

(I-37)  the linear equation without damping excitation.  qn(t) is the amplitude of the 

nth mode and its dynamical equation is obtained by inserting equation (I-39) into 

equation (I-38). Considering the case of our model as presented above, the 

boundary conditions are given as follows: 

( )

( )

0

3

3

0, 0  ;  0

 0 t
, 0 ;  0

x

x l

yy x t
x

yM x l t
x

=

=

∂ ⎫⎛ ⎞= = =⎜ ⎟ ⎪∂⎝ ⎠ ⎪ ≤ ≤ ∞⎬
⎛ ⎞∂ ⎪= = =⎜ ⎟ ⎪∂⎝ ⎠ ⎭

                                                        (I-40) 

          and Xn(x) is given by 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )sin sinh

cos cosh sin sinh
cos cosh

n n
n n n n n

n n

k l k l
X x k x k x k x k x

k l k l
+

= − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦+
   (I-41) 



Chapter I : Modelling and dynamics of unbounded monostable mechanical structures with φ6 potential 

PhD Thesis in Non-linear Mechanics 33

where kn is the solution of the transcendental equation ( ) ( )cos cosh 1n nk l k l = −  

[16,19]. Here we will consider only the first mode of vibrations on which the major 

part of the energy is concentrated. Assuming that the frequency of the external 

excitation is close to that of natural vibration of the first mode, we thus insert 

equation (I-41) and equation (I-39) for n=1 (according to [19], 1
1.875k

l
= ) into 

equation (I-38). Multiplying the result and performing the integral from 0 to l (l is 

the length of the beam), we obtain 

( )
2

3 5
2

d q dq q cq dq f
d d

λ τ
τ τ

+ + + + =                                                                   (I-42) 

          where ( ) ( )4
2 2 2 4 41

0 0 1 1 2
0 0

;  = ;  ;  ;  0.2 ;  0.7  and 
p tQ EIkq t c k L d k L f

L S S SL
δτ ω δ ω τ

ρ ω ρ ρ ω
= = = = = − =                 

(I-43)  

           L is a reference length. Considering the case of a metallic beam with section 

S=0.015m2, length l=2meter and reference length L=1meter, we obtain 

 0.17 and 0.54c d= = − .We thus arrive at a φ6 model with monostable catastrophic 

potential which has an advantage not only to describe well the behaviour of large 

amplitude dynamics, but also  helps to derive the critical load leading the rupture 

of the structure. 

  

III-DYNAMICS OF UNBOUNDED φ6 MONOSTABLE 

MECHANICAL STRUCTURES UNDER ANHARMONIC 

EXCITATION 

III-1 Condition for escape from a potential well 
The equation of motion of the mechanical system as presented above under 

periodic force can be written as  

( )
2

2 3 5
0 02 cosd q dq q cq dq f

d d
λ ω τ

τ τ
+ + + + = Ω                                                               (I-44) 

We remind that the following parameters are used corresponding to 
2
00.009,  0.92,  0.013 and 0.0008c dλ ω= = = = − . In this section we deal with the frontier 
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in the ( )0, fΩ  plane, which separates  two types of motion. Indeed, depending on 

the value of f0 and Ω, the structure initially moving inside the potential well can 

escape to an unbounded motion. It is important to analyse the condition on the 

parameters of the equation where unbounded (catastrophic) motions appear. For 

this purpose, according to Virgin et al [20] , the best criterion to obtain the escape 

from a potential well is the condition max cE V≥  (Emax being the maximum of the total 

energy and Vc the potential energy at the nearest unstable equilibrium point) 

instead of the condition that stipulates that the maximum displacement should 

reach the nearest unstable equilibrium state. The total energy of the system can be 

written as follows: 

2 2 2 4 6
0

1 1 1 1
2 2 4 6

E q q cq dqω= + + +                                                                               (I-45) 

We consider the symmetrical oscillation around the point (0,0) . 

 For this aim we set 

( ) ( )cosq t A τ ϕ= Ω +                                                                                              (I-46) 

where A is the amplitude of the oscillation and ϕ is the phase between the output 

q(t) and the excitation. Inserting equation (I-46) into equation (I-44) and equating 

the coefficients of ( ) ( )cos  and sinτ τΩ Ω  separately to zero (assuming that the terms 

due to higher frequencies can be neglected), we obtain 

2 2 2 4
0 0

2 2 2 4
0

3 5 cos sin
4 8

3 5cos sin 0
4 8

cA dA A A f

A cA dA A

ω ϕ λ ϕ

λ ϕ ω ϕ

⎧⎛ ⎞−Ω + + − Ω =⎜ ⎟⎪⎪⎝ ⎠
⎨

⎛ ⎞⎪− Ω − −Ω + + =⎜ ⎟⎪ ⎝ ⎠⎩

                                                   (I-47) 

After some algebraic manipulations, it comes that the amplitude A satisfies the  

10 th-order algebraic equation given by 

( ) ( ) ( )2 10 8 2 2 2 6 2 2 4 2 2 2 2 2 2
0 0 0 0

25 15 9 5 3
64 16 16 4 2

d A cdA c d A c A A fω ω ω λ⎡ ⎤+ + + −Ω + −Ω + −Ω − Ω =⎢ ⎥⎣ ⎦
 

Now inserting equation (I-46) into (I-45) and after some mathematical 

transformations, the maximum energy  of the system is given by 

(I-48) 
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( )

( )( )
2 2 2 2 2 3

max 0

2 2 2
0

1 1 1 1
2 2 4 6

4
where   

2

m m m

m

E A X cX dX

c c d
X

d

ω

ω

= Ω + −Ω + +

− − − −Ω
=

                                                        (I-49) 

The potential energy at the nearest unstable equilibrium state 
1

22 2
04

2c

c c d
q

d
ω⎛ ⎞− − −

⎜ ⎟= ±
⎜ ⎟
⎝ ⎠

(see figure I-3a) is 

   2 2 4 6
0

1 1 1
2 4 6c c c cV q cq dqω= + +                                                                                    (I-50) 

At this position, the following equality is satisfied:  

Emax=Vc                                                                                                               (I-51) 

Considering equation (I-49) along with (I-50) and (I-51), it comes that the 

amplitude of motion at the frontier separating bounded from unbounded motions is 

given as follows: 

( )
1

2
2 2 2 3
0

2

1 12
2 3c m m m

b

V X cX dX
A

ω⎛ ⎞− −Ω − −⎜ ⎟
= ⎜ ⎟Ω⎜ ⎟⎜ ⎟
⎝ ⎠

                                                            (I-52) 

Inserting equation (I-52) into equation (I-48), we find that the amplitude of the 

excitation at the frontier between the bounded and unbounded motions is given by 

( ) ( )
2

22 2 2 3 5
0 0

3 5
4 8b b b bf A cA dA Aω λ⎛ ⎞= −Ω + + + Ω⎜ ⎟

⎝ ⎠
                                                          (I-53)   

In figure (I-7), we have plotted the variation of the critical forcing as a function of 

the external frequency. We also use a direct numerical simulation of equation (I-

44) to determine the frontier between bounded and unbounded motions. The result 

 is presented in the same figure. For each curve, the range where the bounded 

motion is obtained is below the curve. The minimum critical forcing amplitude is  

fc=0.27  at 0.94Ω =  ( this means  fc=65.34 N.m/rad in the dimensional form), 

which is associate with a primary resonance. Dips in the curve near forcing 

frequency of one-half, one third, one fourth, one-fifth and one-sixth of Ω  may be 

related to  superharmonic resonances and the dip near twice that frequency may be 

related to  subharmonic resonances. For most forcing frequency  Ω  the 
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approximate critical forces are smaller than that those obtained by analytical 

calculation.  

 

 

 

 

 

 

 

 

 

 

 

 
 

III-2 Melnikov criteria for chaos 
 In this section, we are interested in the study of global bifurcation before and 

after loss of stability [18,22]. Since these bifurcations can be detected analytically, 

it is important to obtain the condition for theoretically preventing chaotic 

dynamics. In view of deriving the condition for the appearance of chaos, we use 

the Melnikov method. It helps to define the condition for the existence of the so-

called transverse intersection points in the sense of Poincaré maps. This may imply 

the existence of fractal basin boundaries and thus the so-called horseshoes structure 

of chaos. 

Consider the generalised dynamical equation of a given system written in 

vector form as 

( ) ( )0 ,pU g U g U tε= +                                                                                  (I-54) 

where ( ) ( ), ,U q p p q=  is the state vector, ( )0 1 2,g g g=  is the vector field defined as 

0 0
1 2 and H Hg g

q q
∂ ∂

= = −
∂ ∂

                                                                              (I-55) 

Figure I-7: Escape boundary 
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where H0 is the Hamiltonian and gp  is a periodic perturbation function. In our 

model, we have 

( ) ( ) ( ) ( )( )2 3 5
0 0 p 0,  and g , 0, cosg U p q cq dq U t p f tω λ= − − − = − + Ω                               (I-56) 

Let us assume that the unperturbed Hamiltonian system possesses saddle points 

connected by a separatrix or heteroclinic orbit u0(t). In the presence of the 

perturbation gp(U,t), the orbit is perturbed. When the perturbed and the 

unperturbed manifolds intersect transversally, the geometry of the basin of 

attraction may become fractal, indicating the high sensitivity to initial conditions, 

thus chaos. The Melnikov theorem which gives the condition for the fractal basin 

boundary can be given as follows [22]. Let the Melnikov’s function be defined as 

( ) ( )( ) ( )( )0 0 0,  with e pM t g u t g u t t t t
+∞

−∞
= Λ + −∞ +∞∫ ≺ ≺                                          (I-57) 

If Me(t0) has simple zeros so that for a given t0≠0, one has Me(t0)=0 with 

( )0
0

0

0 at t
dH t

t
dt

≠ =  (condition for transversal intersection), then the system (I-54) can 

present fractal basin boundaries for motions around the stable equilibrium point. 

 To apply the Melnikov theorem to our model, we first derive  the equation 

for the heteroclinic orbit. The Hamiltonian of the system is defined by 

( ) 2 2 4 6
0

1 1 1 1,
2 2 4 6

H q q p p bq cq dq= = + + +                                                                 (I-58) 

 Making use of integrals tables [23] (see also Ref. [17]), we obtain the heteroclinic 

orbit (connecting the unstable points cq−  and cq ) given by 

( )

( ) ( )( )
( )

( ) ( )( )

0 1
22 2

0 3
22 2

sinh

2 1 1 sinh

cosh

2 1 1 sinh

X Y
q

Y

X Y Y
p

Y

ξ τ

ξ τ

ξ τ

ξ τ

±
=

+ −

±
=

+ −

                                                                            (I-59) 

where 
( ) ( ) ( )

1
2

2 2 2 2 2 2
1 1 2

1

2 2 2 2
0 02 2

1 2

23 ,  1 ,  ,  H
2 3 1

4 4
,  

2 2

d qX q H Y q H H H
qH

c c d c c d
q q

d d

ξ

ω ω

−⎛ ⎞= + = + = =⎜ ⎟ +⎝ ⎠

− − − − −
= =

 

After calculating the Melnikov function,  the condition for chaos is 
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( ) ( )
2 2

22

0 2

1 sinh 1 33 1 12 ln
8 1 2 1c

Y X
Yf f

πλ ξ ξξ ξ
ξ π ξ ξ ξ

Ω⎛ ⎞− ⎜ ⎟ ⎡ ⎤+ ⎛ ⎞− +⎝ ⎠ ⎢ ⎥≥ = + ⎜ ⎟Ω − −⎢ ⎥⎝ ⎠⎣ ⎦
                                 (I-60)                 

This condition is depicted in Figure (I-8) in the (Ω,f0) plane along with the escape 

boundary. The chaotic behaviour occurs in the domain above the curve (thick line). 

 

 

 

 

 

 

 

 

 

 

 

 

   

It appears  in these curves  that for  certain value of amplitude and frequency of 

external excitation for which the behaviour are bounded, one can lead to transverse 

intersection of heteroclinic orbit and at the primary resonant the state the frontier a 

given by the same values. A particular characteristic of the Melnikov chaos is the 

fractality of the basin of attraction and the resulting unpredictability due to the 

dependence  on initial conditions. This characteristic has also been analysed here to 

confirm the validity of our results by performing a scan of the initial condition in 

the ( )0, 0q p  plane for various values of f0. We find that when the amplitude of the 

external excitation is less than the critical value, the basins of attraction (marked 

region) are regular (see figure I-9). For instance in the case of figure I-10a, the 

basin of attraction presents the classical shape, this implies the non-existence of 

chaos. As the amplitude of the excitation increases, the regular shape of the basins 
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of attraction is destroyed and the fractal behaviour becomes more and more visible. 

(see figures I-9b and I-9c). f0 increases, the smooth basin boundary first generates 

small tails (figure I-9b) and finally develops fingers (figure I-9c) , a scenario well 

known in the case of a φ4 potential with a single well [24].  
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IV-CONCLUSION 
In this chapter, the modelling and dangerous motion of mechanical 

structures with a catastrophic monostable φ6 potential subjected to a sinusoidal 

additive excitation have been analysed. It has been shown that the mathematical 

model of various non-linear structures (inverted pendulum, articulated beam, 

elastic beam fixed at its base and free at the top) is that of a particle moving in a 

catastrophic single well φ6 potential. This model seems to be more realistic 

compared to that described by the classical Duffing oscillator as presented earlier. 

The conditions for escape from a potential well are obtained. The criteria for the 

appearance of horseshoes chaos have also been derived using the Melnikov theory. 

The analytical results have been complemented by the numerical simulation of the 

original non-linear equation and metamorphoses of the basin of attraction have 

been observed.  

In the next chapter, we will analyse the effects of an active control of the 

dynamics of structures both in the regular regime (reducing the amplitude of the 

oscillations and controlling the escape from the potential well) and in the chaotic 

regime (avoiding Melnikov chaos). 
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I-INTRODUCTION  
In structural engineering, one of the constant challenges is to find new and 

better means of protecting constructed structures from damaging effects of 

destructive environmental forces. One avenue opened to researchers and designers 

is to introduce more conservative design so that structures such as buildings and 

bridges are better able to cope with large external loads. However, this approach 

can be untenable both technologically and economically. Another possible 

approach is to make structures behave more like machines, aircraft, or human 

beings in the sense that they can be made adaptive or responsive to external forces 

[1].  

In this line, we begin by focussing our attention to the non-linear structures 

coupled in a sandwich manner with the linear structures. The linear one serves as a 

control element used to reduce the amplitude of vibration of the non-linear one. In 

reference [2], Aida et al. proposed a plate type dynamics vibration absorber to 

control the vibration of plates and in reference [3], they also used the beam type 

dynamic vibration absorber to control the bending vibration of a beam. In  these 

cases, the beams (or plates) are assumed to be in the linear dynamics. So, there is a 

need to investigate the induced geometrically non-linear effects on static and 

dynamic characteristics of structures in order to accurately design and effectively 

control them.  

Secondly, in the development of intelligent structures systems, piezoelectric 

materials are widely used as sensors and actuators for the monitoring and control 

of structures and mechanical systems [4]. In references [5,6], it has been shown by 

the authors that piezoelectric materials can be used as passive electromechanical 

vibration absorbers by shunting them with electrical networks. 
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The chapter is organised as follows. In section two, we deal with the control 

models both in the case of sandwich and piezoelectric control and the 

establishment of the resulting equations of motion is also presented. Section three 

is devoted to the optimisation of the control design. Firstly we analyse the stability 

of the system under control and we determine the range of the control parameters 

that can conveniently reduce the amplitude of vibration. Secondly, we emphasise 

on the external excitation that can produce the catastrophic failure of the structure 

or escape from a potential well ([7] and chapter I). In section four, derivation and 

analysis of the conditions for the appearance of Melnikov chaos as well as the 

effects of the parameters of the active control strategy on chaotic motions are 

carried out . Section five summarises the chapter. 

II-MODELLING OF THE DYNAMICS OF MECHANICAL 

STRUCTURES UNDER CONTROL 

II-1 Control by sandwich 
II-1-1 Case of an articulated beam 

To control the bending vibration of this structure, we couple it in a sandwich 

manner to a linear beam-type dynamic vibration absorber as in references [2,3]. 

This consists of a dynamic absorbing beam with the same boundaries conditions 

(figure II-1). In this case, the sandwich component can be a polymer or a fluid. 

 

 

 

 

 

 

 

 

The equations governing the motion of these two structures are given by 

Figure II-1: Beams with sandwich coupling 
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=⎪ ⎟
⎠⎪⎩

                    (II-1) 

where Ei, Ii, mi and δi  (i=1,2) are respectively the Young's modulus, the moment of 

inertia, the mass per unit length and the transversal damping coefficient of the 

beams. C12 and k12 are respectively the viscous damping and the stiffness 

coefficients due to the coupling. 

 In non-dimensional form, equations (II-1) take the form 

( ) ( )

( )

* *2 42 4 2
1 1 1 1 1 1 1

12 4 * * 20 0

1 2
1 2

2 4
2 2 2 2 1

2 2 12 4
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                  + ,

0

l lW W W W k W Wk dz dz
z l z l z z
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λ µβ µα
τ τ τ τ
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∫ ∫
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                  (II-2) 

where 

( ) ( ) 4 2
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2
1 1 1 2 1 1 1 1 1

1
22 2 2 42

1 1 2 1 1 12
1 2 1

1 1 2 1 11 1 1 1 1 1

,
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i
i
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⎛ ⎞ ⎛ ⎞= = = = = = =⎜ ⎟ ⎜ ⎟
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We assume for both beams simply supported boundaries conditions: 

( ) ( )*0, , 0i iW W lτ τ= =                                                                                            (II-3a) 

( ) ( )*0, , 0i iW W lτ τ′′ ′′= =                                                                                           (II-3b) 

We also assume that the force F(τ) is a periodic force coinciding with the first 

mode of the beam and that its time dependence is also sinusoidal (see chapter I, 

equation (I-23a)). Taking into account the boundaries conditions, we set 

( ) ( ) ( )1
1

, sin
n

j
j

W z q jzτ τ π
=

=∑                                                                                   (II-4a) 
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( ) ( ) ( )2
1

, sin
n

j
j

W z y jzτ τ π
=

=∑                                                                                   (II-4b) 

Inserting equation (II-4) in equation (II-3) and making the same analysis as 

presented in chapter I, we obtain 
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∑ ∑

                            (II-5) 

For the first mode of vibration (j=1) we have 

( ) ( ) ( )

( ) ( )
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2
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22
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o
d q dq dyq cq dq y F
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where 

4 6
1

1 9  and   d=-
4 64

c k k kπ π=  

Here q=q1 and y=y1 (we restrict the analysis on the first modes where the main part 

of the energy of the system is distributed (see Reference [9, 13]) and chapter I).It is 

noted that the mass of the controller is greater than the mass of the structure. 

Taking into account this consideration, the amplitude of vibration of the controller 

will be small so that the non-linear effect can be neglected, thus the controller will 

present a linear dynamics. 

II-1-2 Case of an inverted pendulum 

   The inverted pendulum as presented in chapter I (figure I-2), is now tied to 

another homogeneous pendulum of mass m2 larger than the mass m1 ( )2 1m m  

with the mediation of a dissipative and elastic structures (see figure II-2). The 

damping coefficient of the coupling structure is denoted by 12C  and the stiffness 

coefficient by 12k . The elastic beam free at the top and fixed at its base can also be 

subjected to such type of control (see figure II-3). Let us give the equations in the 

case of an inverted pendulum. 
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Figure II-3 : Elastic beam under sandwich control 
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Figure II-2 : Inverted pendulums with dissipative and elastic coupling 
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When the system is excited, the energies brought to play are : 

-Kinetic energy of the system 
2 2

2 21 2
1 2

1 1
2 2

d dT m l m l
dt dt
θ θ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                                                           (II-7a) 

-Potential energy of the system 

( ) ( ) ( )22 2 2 2 2
1 1 2 2 12 1 2 1 1 2 2

1 1 1 cos cos
2 2 2

V k l k l k l m gl m glθ θ θ θ θ θ= + + − + +                          (II-7b) 

-Dissipation energy of the system 

1 2

2 2 2
2 2 21 2 1 2

12
1 1 1
2 2 2d d d

d d d dF C l C l C l
dt dt dt dt
θ θ θ θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                                        (II-7c) 

Consider that, the external excitation is ( )f t  and using the Lagrange formalism, 

the model is described by the following differential equations system 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2

2
1 1 1 2

1 12 1 12 1 1 12 2 122

2
2 2 2 1

2 12 2 12 2 2 12 1 122

sin

sin 0

d

d

d d m g dm C C k k k C f t
dt dt l dt
d d m g dm C C k k k C
dt dt l dt

θ θ θθ θ θ

θ θ θθ θ θ

⎧
+ + + + − − − =⎪⎪

⎨
⎪ + + + + − − − =⎪⎩

                  (II-8) 

Equations (II-8) can be normalised and expressed by the following equations  

( ) ( ) ( )

( ) ( )

2
3 5

12

2

22

d q dq dyb q cq dq y f
d d d
d y dy dqa y q
d d d

λ α β β α τ
τ τ τ

λ µα µβ µβ µα
τ τ τ

⎧
+ + + + + + − − =⎪⎪

⎨
⎪ + + + + = +⎪⎩

                                       (II-9) 

where 

( ) ( )

1 12 21 2 1 1 2
0 0 1 2 1

0 0 1 2 1 0 2 0 2

2 4 2
20 0 12 12 1
02 2 2 2 2 2

0 0 1 0 1 0 1 0 0 0

,  ,  ,  ,  , ,  ,  

,  ,  ,  ,  ,  ,  
6 120

d dC Ck m k gt q y
m m m m m l

f tg g k C gc d f a b
l l m m m l l

θ θτ ω ω µ λ λ ω
θ θ ω ω

θ θ ωβ α τ ω
ω ω ω ω ω θ ω

= = = = = = = = −

−
= = = = = = = −

 

Throughout this chapter we will use the set of dimensionless parameters which we 

obtained for the structure as presented in chapter I (this means 

1 0.009,  0.92, 0.013 and 0.0008b c dλ = = = = − ), and  coupled it with another structure 

having the following characteristics; ω0 =2.13 rad/s, m2=33.4 kg, Cd1=6.83 Ns/m . 

Such a structure is compatible to a tree as reported in reference [10]. After 

mathematical calculations  these set of parameters lead us to 

2 0.07,  0.52 and 0.06aλ µ= = = . It is noted that the system with a linear feedback 
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control is described by the same set of equation for all the control design reported 

in this chapter. Thus, all the results obtained in the following analysis can also be 

applied in any of the system under control. 

II-2 Control by using piezoelectric absorbers 
II-2-1 Generalities on the piezoelectric materials 

 The piezoelectric effect was first discovered in 1880 by Pierre and Jacque 

Curie [14] who demonstrated that when a stress field is applied to certain 

crystalline materials (quartz, lithium, zirconium, titanate, etc), an electrical charge 

is produced on the material surface. It was subsequently demonstrated that the 

converse effect is also true; when an electric field is applied to a piezoelectric 

material, it changes its shape and size. This effect was found to be due to electrical 

dipoles of the materials spontaneously aligning in the electrical field. Due to the 

internal stiffness of the material, piezoelectric elements were also found to 

generate relatively large forces when their natural expansion was constrained. Lead 

zirconium titanate (PZT) is the most widely used piezoelectric ceramic since its 

discovery is 1954 [6,14]. Because of their active and passive damping features, 

piezoelectric materials have been explored for their active-passive hybrid control 

abilities, which could have the advantages of both the passive and active systems 

[15-18]. 

II-2-2 Case of an articulated beam:  
a) Physical model 

 The physical model presented in figure II-4 is an isotropic articulated beam 

with a piezoelectric actuator. In addition, it can also be assumed that the local 

vibration in the structure can be monitored using a piezoelectric sensor. The 

configuration integrates piezoelectric materials with an active voltage source and a 

passive resistance and inductance shunting circuit. On one hand, structural 

vibration energy can be transferred to and dissipated in the tuned shunting circuit 

passively. On the other hand the control voltage will drive the piezo–layer, through 

the circuit, and actively suppress vibration in the host structure [5]. The passive 

inductance of the shunt circuit Lp, is selected so that the absorber is tuned to the 
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nominal or expected excitation frequency. No resistance is intentionally added to 

the circuit,  however  the passive inductor may have significant internal resistance 

which is represented by Rp. An important element of any practical control system 

 

 

 

 

 

 

 

 

 

 

 

 

 

are the transducers used for implementation of the control . Sensors are needed for 

measurements which can be used to estimate important disturbance and system 

variables. Actuators are used to apply control signals to the system in order to 

change the system response in the required manner. In general sensors provide 

information to the controller to determine the performance of the control system or 

to provide signals related to the system response. Thus sensors and actuators 

provide the link between the controller and the physical system to be controlled 

and their design and implementation is of prime importance. 

b) General mathematical formalism 

To derive the system equations, let us assume that the rotational inertia is 

negligible, the piezoelectric material layers are thin and short compared to the 

beam, and the applied voltage is uniform. Thus it is assumed that the model of the 

structure and the piezoelectric absorber can be obtained and it is given by 

Piezo-actuator 

controller

Voltage 
source 

Piezo-sensor 

Rp Lp 

Figure II-4 : General configuration of the system 
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( )
2 42 4 2

2 4 2
0 0

2

2

1 3
2 8

1

l l

c

p p c c
p

w w w w w wm EI ES dx dx k Q f t
t x t l x l x x

d Q dQL R Q k w V
dt dt C

δ
⎧ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ + + − − + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎢ ⎥⎣ ⎦⎨
⎪

+ + − =⎪
⎩

∫ ∫
            (II-10) 

where E, I, m and δ are respectively the Young’s modulus, the moment of inertia, 

the mass per unit length and the transversal damping coefficient of the beam. Lp 

and Rp are the passive inductance and resistance of the shunt circuit, Q is the 

charge on the piezoelectric material, Cp is the capacitance of the piezoelectric 

under constant strain and Vc is the control voltage. L is the length of the beam and 

kc the coupling coefficient represents the conversion from mechanical energy to 

electrical energy and vice-versa. Using the dimensionless variables. 

*

0

,  , ,  w x Q lW z q l
L L q L

= = = =  where q0 and L are respectively the reference charge 

and reference  length and  

2 0
0 0 14 2 2 2

0 0 0

2

22 2 2 2
0 0 0 0 0 0

,  ,  ,  ,  ,

1,  ,  ,  ,  

c

p c

p p p p p

k qEI ESt k
mL m m L mL

R Vf mLF a U
mL L L C L q L q

δτ ω ω λ β
ω ω ω

λ µ
ω ω ω ω

= = = = =

= = = = =
 

then the above two differential equations reduces to the following set of non 

dimensional differential equation 
* *2 42 4 2

12 4 * * 2
0 0

2

22

1 3
2 8

l lW W W W W Wk dz dz q F
z l l

d q dq aq W U
d d

λ β
τ τ τ τ τ

λ µβ
τ τ

⎧ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ + + − − + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎪ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎨
⎪

+ + − =⎪
⎩

∫ ∫
                  (II-11) 

Taking into account the boundary conditions given by (II-3a) along with (II-4b) 

and assuming that the force F is defined like indicated in chapter I, we obtain for 

the first mode of vibration 

( ) ( )4 3 5
1 0

2

cosy y y cq dq q f
q q aq y U

λ α π β τ
λ µ β

′⎧ + + + + + + = Ω⎪
⎨

′ ′+ + − =⎪⎩
                                                  (II-12) 

where 4 61 9, ,   and 
4 64 2 2

c k d k µ ππ π µ β β′ ′= = − = =  . That form of equation has been 

obtained earlier (see equation II-6) 
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II-2-3 Presentation of the control design of inverted pendulum and elastic 

beam with piezoelectric absorber 

Under the horizontal excitation, the displacement of the structure relative to 

the top may cause the rotation of the rigid arm (see figure II-5). The control force 

induced by a piezoelectric actuator depends on the restraint of the axial 

deformation of   piezoelectric material produced by the applied voltage. Therefore 

a lever system is designed to reduce the required axial deformation of the 

piezoelectric actuator and then reduce the relative displacement of the structure. In 

the other hand, the two piezoelectric materials can be used as two piezoelectric 

actuator in a moment controller through the lever system. This is done by applying 

a voltage to each piezoelectric actuator to generate a pre-compressive force of such 

magnitude that two actuators work always in compression [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

III-CONTROL OF AMPLITUDE AND UNBOUNDED 

MOTION 

 

 

controler

Voltage 
source 

Rp 

Lp 

P 

Rigid arm

Rigid connecting rod 
Lever 

Piezo-actuator 
Piezo-sensor

Figure II-5: Elastic or rigid structure under control 

controller 
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 A mathematical modelling of the system presented in figure II-5 leads to 

equation similar to equations (II-9 and II-12). 

 To end with this section dealing with the modelling of the mechanical 

structures under sandwich and piezoelectric controls, we note that in both cases, 

the fundamental equations are the same. Thus the theoretical analysis which 

follows in this chapter and in chapter III, is more general and the results obtained 

are applicable both for the piezoelectric control strategy and for the sandwich 

control strategy. 

III- CONTROL OF AMPLITUDE AND UNBOUNDED MOTION 

III-1 Stability of active structural control 
Following the classical local stability analysis of Lyapunov, we first 

examine the fixed points of our system. Consider the system of equation II-9, one 

finds that 0 (0,0,0,0)u =  is a fixed points for all parameter values and that there are 

two more fixed points 

( )
( )

( )
4 4

,0, ,0
2 2

c d b c d b
a a

u
d a d

µβ µββ β
µβ µβµβ

µβ±

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − + − − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟= ± ±⎜ ⎟⎜ ⎟ ⎜ ⎟
+⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 the 

local stability can be determined by investigating the linearised system. The 

autonomous system is obtained for 0 0f = , In this case  equation (II-9) becomes in 

the linear limit 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2

dq
v

d
dv

b q v y u
d

dy u
d
du q v a y u
d

τ
τ

τ
τ

β τ λ α τ β τ α τ
τ

τ τ
τ

τ µβ τ µα τ µβ τ λ µα τ
τ

⎧
=⎪

⎪
⎪

= − + − + + +⎪⎪
⎨
⎪ =⎪
⎪
⎪ = + − + − +
⎪⎩

                                   (II-13)                   

To study the stability of this system, we apply the Lyapunov concept by examining 

the fundamental solution esτ . For that we set 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0exp ,  exp ,  exp ,  expq q s v v s y y s u u sτ τ τ τ τ τ τ τ= = = =                 (II-14)                 

Inserting (II-14) into equations (II-13) we obtain the characteristic equation of the 

eigen system given by 

( ) ( )1

                  1                        0                           0
 - -                                          

0                     0                      -                         

s
b s

s
β α λ β α

−

− + +

( ) ( )2

0
    1

                               -        - -a sµβ µα µβ λ µβ

=

+ +

                                        (II-15)                 

 Which gives  
4 3 2

0 1 2 3 0s a s a s a s a+ + + + =  

with  

0 2 1a λ λ α µβ= + + + ,               

( ) ( )1 1 2 2 11 ,a a b β µ λ λ α λ µλ= + + + + + +  

( ) ( ) ( )2 1 2a a b a bλ µβ λ β α µ= + + + + + ,       

( )3a ba a bβ µ= + + .                                                                                                   

From the classical local stability analysis of Lyapunov, it is known that the fixed 

points are stable if the real parts of the roots of the characteristics equation are all 

negative. Otherwise (if at least one root has a positive real part), the fixed points is 

unstable. Using Routh-Hurwitz criterion [11], for the sign of the real part of roots, 

we obtain that the real parts of the roots are negative provided that all the 

coefficients 0 1 2 3,  ,  and a a a a  are positive and that all the determinants 

( ) 2
1 0 2 2 2 0 1 2 0 3 2-  and a a a a a a a a a∆ = ∆ = − −  are positive also. Knowing that all these 

coefficients are positive and considering the case where the gain parameters 

 and α β  are also positive, the above analysis leads to the following condition for 

the control for the stability of the fixed points ( )0,0,0,0  for the system under 

control 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )
1 2 1 2 2 1 1 2

2
1 2 1 2

1

0

a b a b a b

ba a b a b a b

λ λ α µβ β µ λ λ α λ µλ λ µβ λ β α µ

λ λ α µβ β µ λ µβ λ β α µ

+ + + + + + + + + + + + + +

− + + + + + − + + + + +
 

Let us use the dynamics of the controlled system with the parameters defined in 

section II-1-2. As it appears in the bifurcation diagram of figure II-6, the shaded 

(II-16) 
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region represents the set of control gain parameters leading to instability of the 

control design. 
 

 

 

 

 

 

 
 

 

 

 

 

 

III-2 Effects of the control on the amplitude of harmonic oscillations 
The harmonic balance method is used to determine the amplitude of the vibration. 

For that, we set 

 ( )cosq A τ= Ω +Φ                                                                            (II-17) 

where A is the amplitude of vibration. Let us first consider the system when the 

effects of the non linear terms are negligible (that is c=d=0). In this case, the 

amplitude of the harmonic oscillations of the controlled system is given by 

 
( )( ) ( )( )

1
2 2 22

11

o
c

FA

b β ζ α η λ α ηβ α ς

=
⎡ ⎤−Ω + − + Ω + Ω + − − Ω⎢ ⎥⎣ ⎦

                        (II-18) 

Where 

Figure II-6 : Stability boundary in the control gain parameter 

α  

β
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2
2

2 22 2
2

2
2

2 22 2
2

                       

and

                       

a

a

a

a

µ β µβ α λ µα
ζ

µβ λ µα

µ α µβ β λ µα
η

µβ λ µα

⎡ ⎤+ −Ω + Ω +⎣ ⎦=
+ −Ω +Ω +

⎡ ⎤Ω + −Ω − +⎣ ⎦=
+ −Ω +Ω +

                                

It is necessary to look for the condition fulfilled by the control parameters so that 

the control should be effective. In fact, the control is effective when 

    c ncA A≺                                                                    (II-19) 

Anc being the amplitude of the oscillations of the uncontrolled system. It implies 

that the amplitude of the vibration is reduced, when the control parameters satisfy 

the following condition 

( )( ) ( ) ( )( )
( ) ( )( )

2

1

1 2 1

                        2 0

bβ ζ α η β ζ α ζ

α ηβ α ζ λ α ηβ α ζ

− + Ω −Ω + − + Ω

+ Ω − − Ω + Ω− − Ω
                                (II-20) 

    To illustrate this criterion, it is plotted in figure (II-7) in the (α,β) space 

parameters for 0.52Ω =  . The shaded region represents the range where the control 

is inefficient. Note that α and β are respectively proportional to the elastic coupling 

k12 and damping coupling C12. For instance from the figure for β=2 the minimum 

value of α for the effectiveness of the control is 10.33; this means k12=308.6 N/m 

and C12=181.8 Ns/m in the real dimension. Figure II-8 presents the intersection 

between the stability chart and the domain  in space parameters where amplitude is 

reduced. It appears that to optimise the control strategy it is necessary to use the 

coupling structure having the parameters in the shaded region.  
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Figure II-7 :Domain in space parameters (α,β) where the control is efficient. 
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Figure II-8 : Stability boundary  in the parameters ( ),α β  for which control is 

β
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Considering the non-linear case, the amplitude of the oscillations satisfy the 

following tenth order algebraic equation 

( )( )

( )( )

( ) ( )( )

2 2 10 8 2 2 6

4 2 4

2 22 2
1

25 15 9 5 1
64 16 16 4

3           1
2

              1

oF d A cdA c d b A

c A

b A

β ζ α η

π β ζ α η

β ζ α η λ α ηβ α ζ

⎛ ⎞= + + + −Ω + − + Ω⎜ ⎟
⎝ ⎠

+ −Ω + − + Ω

⎡ ⎤+ −Ω + − + Ω + Ω + − − Ω⎡ ⎤⎣ ⎦⎣ ⎦

                     (II-21) 

Assuming that at the frontier separating regions of efficiency and inefficiency of 

the control, the amplitudes of both the controlled and uncontrolled (α=β=0) 

systems are equal, it comes that the amplitude of the oscillations at this limit is 

given by 

 ( )2 3 2 / 5lA c dν ν= − − ∆                                                                               (II-22) 

where   

( )

( ) ( )( )( )2 2
1

        1
and

9        5 2 2 2
4

c d b

ν β ζ α η

ν ν ν ν α ηβ α ζ λ α ηβ α ζ

= − + Ω

∆ = − − Ω+ + + Ω − − Ω Ω+Ω − − Ω

         

 This leads us to the following boundary condition for the effectiveness 

of the control ( by inserting equation (II-22) into equation (II-21)): 

( ) ( )( )
22

22 2
12

9 3 21
40 10 5o

c cF b
d d d

νβ ζ α η λ α ηβ α ζ
ν ν

⎡ ⎤ ⎡ ⎤⎛ ⎞∆ − − ∆
= −Ω + − + Ω − + + Ω + − − Ω⎢ ⎥ ⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

                    

 Figure II-9 presents the evolution of the force F0 as a function of β with  

α =0 and 0.92Ω =  (we remind the reader that 0.92 is the frequency at the primary 

resonance). This result is obtained by using the analytical expression given by 

equation (II-23) (thin line) along with direct numerical simulations of equation II-6 

(doted line). This numerical simulation is done using the fourth order Runge Kutta 

algorithm. The domain of the efficiency of the control is below the curve. As the 

excitation amplitude increases, we need greater values of β to reduce the vibration 

of the structure. The contrary is observed in figure II-10 when we look for the 

effects of α.. When α increases, the region of efficiency of the control decreases. 

 

(II-23) 
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Figure II-10: Boundary of the domains in the space parameters (f0,β) where the control of 
amplitude is efficient for 0, 0.1, 0.2 and 0.25α α α α= = = = . 
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III-3 Effects of the control on the appearance of unbounded motion 
Depending on the value of the external force and those of the other parameters, the 

system initially moving inside the potential well can cross the barrier of the 

potential to exhibit unbounded motions leading to failure. It is important to analyse 

the effects of the control parameters on the condition for the escape from the 

potential well. We use the  method of energy [8,10] as described in chapter I. We 

thus find that the amplitude of the excitation at the frontier between catastrophic 

and bounded motions is given by 

( )( ) ( )( )
2

22 2 3 5 2
1

3 51
4 8c b b b bf b A cA dA Aβ ζ α η λ α ηβ α ζ

⎡ ⎤⎛ ⎞= −Ω + − + Ω + + + Ω + − − Ω⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (II-24) 

with 

( )2 2 2 3 21 12 /
2 3b c m m mA V b X cX dX⎛ ⎞= − −Ω − − Ω⎜ ⎟

⎝ ⎠
 

Equations (II-24) gives an approximate expression for the critical forcing  above 

which a catastrophe can occur. Its variation as a function of α and β is plotted in 

figure II-10 (with 0α = )and II-11 (with 0β = ) with the results of the direct 

numerical simulation of equation (II-9). We find that fc increases with α and β. 

Practically, this means that the result can be applied as follows: For a stiffness 

coefficient of the coupling parameter given by 12 232.25 /k N m= ( i.e. 1.5β = ), the 

critical forcing for the apparition of unbounded motion is 2630.54P N=  (i.e 

10.87cf = ). Taking into account the case of dissipative coupling parameter, for 

12 26.4 /C Ns m=  ( 1.5α = ) critical forcing amplitude is given by 1875.5p N=  

( 7.75cf = ). Good agreement is obtained between the analytical and numerical 

results. This means that the analytical prediction can  be used to prevent the  failure 

of the structures. 
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Figure II-12: Critical forcing amplitude for the apparition of catastrophic motion as 
function of α with 0β =  
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Figure II-11: Critical forcing amplitude for the apparition of catastrophic motion as 
function of β with 0α =  
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IV-Control of Melnikov chaos 
IV-1 Analytical study 
 In chapter I, we derived the condition for the occurrence of horseshoes chaos 

using the Melnikov theory. One would like to know how the control strategy 

affects the Melnikov criterion or, in what range of the control parameters the 

heteroclinic chaos in our model could be inhibited. To deal with such a question, 

let us express the dynamical structure under control with forcing regarded as a 

perturbation from an autonomous system in the form 

( ) ( ) ( )3 5
1 0 cosq q b q cq dq y y fλ α β β α τ+ + + + + + − − = Ω                                        (II-25) 

where  y is the control force and y  the time derivative. This control force can be 

obtained by solving the characteristic equation of the control system given by 

( ) ( ) ( ) ( )2 y a y q qλ µα µβ µβ τ µα τ+ + + = +        (II-26)                 

It should be noted that due to the fact that 2 1m m>> , we have used this assumption 
2

2 0d y
dt

  in equation  (II-9) to obtain equation (II-26). This is done to derive 

analytically, an approximate criterion for the occurrence of Melnikov chaos.  

Equation (II-25) can be expressed in the form 

( ) ( )0 ,pU g u g uε τ= +                                                                                            (II-27) 

where ( ),u q p q=  is the state vector ( )( )3 5
0 ,g p b q cq dqβ= − + − −  and 

( ) ( )( )0 10, cospg f p y yτ λ α β α= Ω − + + +  the heteroclinic orbit is defined be equations 

(I-61) of chapter I. 

Also, by solving equation (II-26), we find 

( )

( )( )

( ) ( )( )

( )

( )

2
0 1

22 222

2

22

sinh exp
exp

2 1 1 sinh

cosh exp
                                         exp

2

x
aY s s

X ay d
Ys

aYs s
XY a

τ

µβτ
λ µαµβ ξ µβ τ τ

λ µαλ µα ξ

µβ
λ µαµα ξ µβ τ

λ µαλ µα

−∞

  +
−   +  +   = ± −  ++    + −

 +
 +  +  ± −  ++   

∫

( ) ( )( )
1

22 21 1 sinh
d

Ys

τ
τ

ξ
−∞


 
 

+ −
∫

 (II-28)                 

The Melnikov function is defined by 
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( ) ( ) ( )

( ) ( )

0 0 0 0 0

0 0 1 0 0 0

,

          cos

pM g u g u d

p f p y y d

τ τ τ τ τ τ

τ λ α β α τ

+∞

−∞

+∞

−∞

= × +      

= Ω − + + +  

∫
∫

                              (II-29) 

where 0τ is a phase angle, 0 0 and p q are the unperturbed separatrices  

a) Case of elastic coupling 

 Taking into account the case where the coupling is only elastic ( )0α =  and 

carrying out the integral in equation (II-29), we obtain: 

( )
( )

( ) ( )
2 2

0 1
0 0 2

2

3 1 1 3 1cos ln
8 1 2 11 sinh

2

X f XYM k
Y

Y

ξπ λ ξ ξ ξτ τ βπ ξ ξ ξξ

 − + +
= Ω − + + Ω − − −

         (II-30) 

with ( )
( ) ( )

( ) ( )( )

( ) ( )

( ) ( )( )
2 2 2

2 2
3 1

22 2 22 22

cosh exp sinh exp

2 1 1 sinh1 1 sinh

a a
Y Ys s

X Yk ds d
YsY

τ

µβ µβ
τ τ

λ λµβ ξβ τ
λ ξξ τ

+∞

−∞ −∞

 + +   
−     
    =  

+ −+ −   
 

∫ ∫  

Using the Melnikov criterion, chaos is suppressed when  

( )
( )

2
2 2 2

1
0 0 2

1 sinh 3 1 1 3 12 ln
8 1 2 1c

Y X YYf f k

πξ λ ξ ξ ξ β
ξπ ξ ξ ξ

Ω
−   − + +

≤ = + +  Ω − −  
                (II-31) 

Therefore, the critical value of amplitude of the external excitation depends 

nonlinearly on the control parameter through ( )k β . Thus we need the evaluation of 

this quantity as β  varies. To deal with such a problem, let us set 

( ) ( )exp , exp  Ys Yυ η τ= = , therefore 

( ) ( )
( )

( )( )
( )

( )

( )( )

2 2
1 1

2 22 2 2

3 1
22 22 2 2 22 2 22 0 0

1 12

4 1 14 1 1

a a
Y Y

Xk d d
Y

µβ µβ
λ ληη η υ υµβ ξβ υ η

λ
υ ξ υη ξ η

+ +
− + −

+∞
 
 + −

=  
    + − −+ − −         

∫ ∫  

Then assuming that  and 
1 1

p
p

ψη υ
ψ

= =
− −

,we obtain 

( )
( ) ( )

( )

( ) ( )( )( )
( )

( )

( ) ( )( )( )

2 2
1 1

2 2
2 2 2 1
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ψψ ψ ψ
ψµβ ξβ ψ

λ ξψ ψ ξ ψ
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    − − + −    − −   =  
 − + − −− + − −   
 

∫ ∫

With the above, we can numerically compute the variation of ( )k β  . Figure II-13 

(II-32) 
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shows that  ( )k β  increases with β . This implies that  0cf  increases with β. 

Consequently, the control becomes more and more efficient when  β increases  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Case of a dissipative coupling 

Considering now the case where the coupling is only dissipative,  the Melnikov 

criterion is given by 

( )
( )

( ) ( )
2 2
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3 1 1 3 1cos ln
8 1 2 11 sinh

2

X f XYM k
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 − + +
= Ω − + + Ω − − −

         (II-33) 

with  
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Figure II-13 : Evolution of ( )k β  as a function of β for 0.92Ω =  
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Carrying out the same expansion like in the previous section, we can conclude that 

the critical forcing for the appearance of chaos increases with α . 
IV-2  Basin of stability 

  To complement and validate the analytical predictions, we have simulated 

numerically the system of equations (II-9) to look for the effects of the control 

parameters  on the onset of the fractality in the basins of attraction. Considering 

firstly the case of the system without control, figure II-14a shows that the boundary 

is fractal when 0 0.2f =  (i.e ƒ0=48.4N in real dimensions) and becomes more and 

more visible as 0f  increases (see chapter I figure I-10). The corresponding value 

predicted by the Melnikov boundary is 0 00.18 ( 43.56  in real dimension)f f N= =  . Now 

taking into account the presence of the control, we begin by considering only the 

effects of β on the critical value 0cf  (we have set  0.8β =  (or k12=117.2N/m) ). 

Figure II-14b shows that with the same parameters as in figure II-14a, the system 

and this is accompanied by an enlargement of the basin of attraction. By varying 0f  

the fractality reappears only when 0 1.5f ≥  or f0≥363N   in real dimension (see 

figure II-14c). Consider now the case of dissipative coupling ,we realise in figure 

II-15  that the fractal basin boundary disappear for 1α =  and reappear for 0 4.5f = . 

This means that by making a good choice of the coupling parameters we can 

conveniently suppress chaos in our system. 
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Figure III-7a : A fractal basin boundary diagram for the uncontrolled 
system for Ω=0.92. 
Figure II-14a : A fractal basin boundary diagram for the 
uncontrolled system for 0.92Ω =  and 0 0.2f =  

Figure II-14b: Basin of attraction for the case where control is efficient with 0.8β = ,  0 0.2 and =0.92f = Ω    
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IV-CONCLUSION 
In this chapter, the possibility of using linear structure and piezoelectric 

absorber to control the dynamics of a non-linear structures has been presented. 

After the modelling, we have derived the amplitude equation of the mechanical 

structure with φ6 potential coupled with a linear oscillator. The effects of the 

control parameters on the dynamical behaviour of the system has also been 

analysed and the conditions for the effectiveness of the control as well are 

obtained. Numerical simulation has been performed to confirm and complement 

the analytical calculations. Another part of this chapter deals with the analysis of 

the effects of control parameters on the onset of horseshoes chaos. It appears that 

for a good choice of these parameters one can suppress the Melnikov chaos.

 In the next chapter  particular attention will be paid on the effects of time 

delay between the detection of vibration and the action of the control on the 

effectiveness of the control strategy. 
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I-INTRODUCTION 
 In this chapter we will continue to make the assumptions in the previous 

chapter: that the system under control is a non linear mechanical structure with 

φ6 potential and that the secondary structure is fully active. In reference [1,2], 

the authors showed that one of the most important effects which limit the 

performance of the control strategy is the time delay between the detection of 

the structure motion and the restoring action of the control. In fact, they showed 

that time-delay can even lead to the instability of the control process in linear 

structures. In reference [3-7], the authors presented many control strategies in 

non-linear structures but did not take into account the effects of the inevitable 

time delay. Thus, it is of interest to analyse the same problem for structures with 

non linear dynamics as presented in this thesis. 

 The organisation of the chapter is as follows. Section 2 presents the 

model and the results of the stability analysis. Section 3 deals with the effects of 

time delay of the control of the harmonic vibration, catastrophic escape from the 

potential well. Section IV deals with the problem of inhibition of Smale-

horseshoes chaos in the model. Concluding remarks will come in the last 

section. 

II-MODEL AND STABILITY ANALYSIS 
II-1 The model 

The governing equations of the mechanical systems under control as 

presented in chapter II are repeated in the following 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2
3 5

1 02

2

22

cos
dyd q dq b q cq dq y f

d d d
d y dy dqa y q
dt d d

τ
τ λ α τ β τ τ τ β τ α τ

τ τ τ

τ λ µα τ µβ τ µβ τ µα τ
τ τ

⎧
+ + + + + + − − = Ω⎪⎪

⎨
⎪ + + + + = +⎪⎩
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 The delay is materialised by the fact that the control system doesn’t act at 

the same time with the excited structure. Mathematically, this effect is taken into 

account by using the retarded functional differential equation [1]. Thus, for a 

control system with delay, the differential equation given by (III-1) becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2
3 5

1 02

2

22

cos

x x

dyd q dq b q cq dq y f
d d d
d y dy dqa y q
dt d d

τ
τ λ α τ β τ τ τ β τ α τ

τ τ τ

τ λ µα τ µβ τ µβ τ τ µα τ τ
τ τ

⎧
+ + + + + + − − = Ω⎪⎪

⎨
⎪ + + + + = − + −⎪⎩

      

Where  and x xτ τ  are the time delays for displacement and velocity feedback force 

in the system respectively.  

II-2 Stability of the control system  
Following the method presented in chapter II section III-1, the local stability of 

the fixed points ( )0,0,0,0  leads us to the equation of eigen system as follow 

( ) 1

                  1                   0                           0
    - -                                           

0                     0                -                             1
e

s
b s

s
β λ β α

µβ −

−

− +

( ) ( )-
2

0

              -        - -x xs se a sτ τµα µβ λ µβ

=

+ +

                                       (III-3)                     

the characteristic equation for the stability of the system under control with 

delay is thus given by 

( ) ( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )( )
( )( ) ( )

4 3 2 2
2 1 2 1

2 1

2

1 1 exp

exp exp

exp 0

x

x x

x

s s a b s s

b a s s s

b a s

λ λ α µ β µ λ µα λ α µα τ

β λ µα λ α µβ µαβ τ τ

β µβ µβ τ

⎡ ⎤+ + + + + + + + + + + − − +⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤+ + + + + − − + −⎣ ⎦
+ + + − − =

     (III-4)                      

To obtain the stability boundary in the plane of the control parameter ( ), xβ τ , we 

use the D-subdivision method (see reference [3]). According to this method, the 

stability boundary in the plane ( ), xβ τ  is determined by the points that yield 

either to a root s=0 or a pair of pure imaginary roots of equation (III-4) 

Substituting s=0 into equation (III-4), one finds 
ba

b a
β

µ
−

=
+

                                                                                                       (III-5) 

(III-2) 
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setting s iγ=  (where γ is a real constant) into the characteristic equation (III-4), 

gives the system of equation 

( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( )

( )( ) ( )
( )( ) ( ) ( )( ) ( )( )( ) ( )

4 2 2
2 1

2

3 2 2
1 2

2
2 1

1 cos sin sin

                cos 0

1 sin

          cos cos sin 0

x x x

x

x

x x x

a b

b a

b a

γ β µ λ µα λ α µα γτ γ µαβγ γτ γτ

β µβ µβ γτ

λ λ α µ γ µα γ γτ

β λ µα µαβ γτ γτ λ α µβ γ µβ γτ

⎧ − + + + + + + − − + +
⎪
⎪ + + − =⎪
⎨
− + + + − −⎪
⎪

+ + − + + + + + =⎪⎩
                    

The stability boundary in plane ( ),α β  can be found from the bifurcation curve 

defined by the parametric equation (III-6) and the bifurcation line defined in 

equation (III-5). For our set of parameter equation (III-5) lead to a negative 

value of β  thus, we present the stability boundaries  in figure III-1 using 

equation III-6 for 0 0,0.2,0.4 and 0.6x xτ τ τ= = = . The  region (B) situated below the 

curve is the region where instability is obtained, domain (A) presents  the stable 

position It appears that as the delay increases the region of stability  decreases. 

We are reminded that in order to  to plot this graph we have set 1γ = , this 

parameters can be the   frequency of the external excitation. 
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Figure III-1 : Stability boundary in the control space parameters ( ),α β for  
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III-CONTROL OF VIBRATION AND CONTROL OF ESCAPE 

FROM A POTENTIAL WELL : EFFECTS OF TIME DELAY 

III-1 Effects of time-delay on the control of vibration 
 In the linear limit (c=d=0), the amplitude of the harmonic oscillation of 

the controlled system is  

( ) ( )( )
0

1
2 2 22

1 2 1 2 1

c
fA

b β βη α η λ α βη α η

=
⎡ ⎤+ −Ω − − Ω + Ω + + − Ω⎢ ⎥⎣ ⎦

                             (III-6) 

where 

( ) ( )( )( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )( ) ( ) ( ) ( )( )
( ) ( )( )

2
2

1 2 22
2

2
2

2 2 22
2

cos sin sin cos

sin cos cos sin

x x x x

x x x x

a

a

a

a

β τ α τ µβ λ µα β τ α τ
η µ

µβ λ µα

β τ α τ µβ λ µα β τ α τ
η µ

µβ λ µα

⎡ ⎤Ω + Ω Ω + −Ω −Ω + Ω − Ω Ω
⎢ ⎥=
⎢ ⎥+ −Ω + Ω +⎣ ⎦
⎡ ⎤Ω − Ω Ω + −Ω +Ω + Ω + Ω Ω
⎢ ⎥=
⎢ ⎥+ −Ω + Ω +⎣ ⎦

    

Comparing Ac to the amplitude Anc of the vibrations of the uncontrolled system, 

we see that the control is efficient if Ac<Anc. This means that the control 

parameters satisfy the following condition: 

( )( ) ( ) ( )( )
( )( )

2
1 1 1 2

2 1 2 1 1

1 1 2

                      2 0

bβ η α η β η α η

α βη α η α βη α η λ

⎡ ⎤− − Ω − − Ω + −Ω⎣ ⎦
+ Ω + − Ω Ω + − Ω + Ω⎡ ⎤⎣ ⎦

                       (III-7) 

Figure III-2 displays the stability boundary in plane ( ),α β  with 0x xτ τ τ= =  and 

0.52Ω = .  The curve with a thick line represents the  case where the delay is not 

considered and the region below this curve represents the case where control is 

inefficient. Taking into account the effects of delay, we present in the same 

graph the case where the delay is given by 0 00.2 and 0.4τ τ= =  and we arrive at 

the following conclusion. Due to the fact that every graph presents three regions, 

the inefficient region can increase or decrease depending on the value of time 

delay. To complement and validate this result, we display in figure III-3 the 
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evolution of amplitude versus the time for 00.4 and 0.5x fτ = = with  and α β  taken 

in every  
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region as presented in figure III-2. It appears that to optimise the reduction of 

amplitude of vibration in the system the value of control gain parameters ( ,α β ) 

should be taken in region (III). 

In the non linear case, the amplitude A  of harmonic vibrations obeys the 

following non linear algebraic equation: 

( ) ( )

( ) ( )( )

2 10 8 2 2 6 2 4
1 2 1 2

2 22 2 2
1 2 1 2 1 0

25 15 9 5 3
64 16 16 4 2

0

d A cdA c d b A c b A

b A f

β βη α η β βη α η

β βη α η λ α βη α η

⎡ ⎤+ + + + −Ω − − Ω + + −Ω − − Ω⎢ ⎥⎣ ⎦
⎡ ⎤+ + −Ω − − Ω + Ω + + − Ω − =⎢ ⎥⎣ ⎦

We remind the reader that 1 2 x x and  are function of  and η η τ τ as given here before. 

To determine analytically the domain in the parameter space where the control 

of amplitude is efficient, we proceed as presented in chapter II. In this spirit, we 

find that at the boundary, the amplitude is given  by 

( )( )
( )( )

2
1 22

1 2

3 1 2
5 1b

c
A

d
β η α η ζ
β η α η

− − − Ω −
=

− − Ω
                                                                       (III-9) 

where 

( )( ) ( )( ) ( )( ) ( )2 2 22
1 2 1 2 1 2 2 1

9 1 5 1 1
4

c dζ β η α η β η α η β η α η α βη α η⎡ ⎤= − − Ω − − − Ω − − Ω + Ω + − Ω
⎣ ⎦

 Inserting equation (III-9) in equation (III-8) (with A=Ab), we obtain the 

boundary separating the domain where the control is efficient (reduction of 

amplitude of vibration) to the domain where it is inefficient. In figure III-4, we 

have plotted this boundary in the ( )0,x fτ  plane, assuming that x xτ τ=  along with 

the case where delay is not taken into account (solid horizontal line). This is 

done for α=0, β=0.2 (figure III-4a) and for α=0.5, β=0 (figure III-4b).  The 

choice of α and β take into account  the fact that we have demonstrated in 

chapter II that for a good choice of coupling parameters, the control is efficient. 

It is found that 0f  is a periodic function of xτ . Thus, we find that with a good 

choice of time delay, a better protection of the structure can be obtained. 

However for some values of time-delay the control is affected in the bad 

direction. 

(III-8) 
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Figure III-4a : Evolution of amplitude as function of time delay with α=0 and β=0.2. 
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III-2 Effects of time-delay in the control of catastrophic escape 
Using the same procedure as presented in chapter II, section III-3 and 

taking into account the effect of time-delay we obtain the critical force 

characteristics leading the system to catastrophic motion as follow  

( ) ( )( )
2

22 5 3 2 2
1 2 1 2 1

5 3
8 4c b b b bf dA cA b A Aβ βη α η λ α βη α η⎛ ⎞= + + + −Ω − − Ω + Ω + + − Ω⎜ ⎟
⎝ ⎠

 

(III-10) 

with ( )2 4 6 2 2 3
2

2

6 3 2 6 3 2
6

c c c m m m
b

bq cq dq b X cX dX
A

+ + − −Ω − −
=

Ω
 

where   

( )( )2 24

2m

c c d b
X

d

− − − −Ω
=  and 

2 4 
2c

c c dbq
d

⎛ ⎞− − −
= ±⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

We display  in figure III-5 the variation of the critical force as function of time 

delay for α= 0, β=0.2 (figure III-5a) and α= 0.1, β=0 (figure III-5b),  The 

horizontal line represents the results in the case where there is no delay. We find 

that for a certain choice of time delay, cf  is greater than that of the case without 

delay. We can thus conclude that the time delay can render, for a good choice of 

time delay, the control of escape more efficient. 
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III-3 Effects of time delay of the control of Melnikov chaos 
 Our aim in this section is to find how the time-delay of the active control 

strategy affects the Melnikov condition for chaos. As in chapter II, we assume 

for the analytical treatment that 
2

2 0d y
dτ

. In this case, the components of the 

heteroclinic orbit are given by equations (I-68) of chapter I and the component 

y0 is now given by  

( )

( )( )

( ) ( )( )( )

( )

( )( )

2
0 1

22 222

2

22

sinh exp
exp

2 1 1 sinh

cosh exp
                                         exp

2

x

x

x

aY s s
X ay d

Y s

aY s
XY a

τ

µβτ
λ µαµβ ξ µβ τ τ

λ µαλ µα ξ τ

µβτ
λ µαµα ξ µβ τ

λ µαλ µα

−∞

⎛ ⎞⎛ ⎞+
− ⎜ ⎟⎜ ⎟+⎛ ⎞⎛ ⎞+ ⎝ ⎠⎝ ⎠= ± −⎜ ⎟⎜ ⎟++ ⎝ ⎠⎝ ⎠ + + −

⎛ +
−

+⎛ ⎞⎛ ⎞+
± −⎜ ⎟⎜ ⎟++ ⎝ ⎠⎝ ⎠

∫

( ) ( )( )( )
1

22 21 1 sinh x

s
d

Y s

τ
τ

ξ τ
−∞

⎛ ⎞⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+ + −
∫

    (III-11)          

Thus the Melnikov function is given by (assuming the dissipate coupling absent)                     

 

( )
( )

( ) ( )
2 2

0 1
0 0 2

2

3 1 1 3 1cos ln ,
8 1 2 11 sinh

2

x
X f XYM k

Y
Y

ξπ λ ξ ξ ξτ τ β τπ ξ ξ ξξ

⎡ ⎤− + +
= Ω − + +⎢ ⎥Ω − −⎣ ⎦−

    (III-12) 

with 

( )
( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )( )( )
2 2 2

2 2
3 1

22 2 22 22

cosh exp sinh exp
,

2 1 1 sinh1 1 sinh

x

x

x

a a
Y Y s s

X Yk ds d
Y sY

τ

µβ µβ
τ τ τ

λ λµβ ξβ τ τ
λ ξ τξ τ

+∞

−∞ −∞

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠⎜ ⎟= ⎜ ⎟

+ − −+ − ⎜ ⎟⎜ ⎟
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∫ ∫

 Therefore the condition for the absence of chaos is 

( )
( )

2
2 2 2

1
0 0 2

1 sinh 3 1 1 3 12 ln ,
8 1 2 1c x

Y X YYf f k

πξ λ ξ ξ ξ β τ
ξπ ξ ξ ξ

Ω− ⎡ ⎤⎡ ⎤− + +
≤ = + +⎢ ⎥⎢ ⎥Ω − −⎣ ⎦⎣ ⎦

                (III-13) 

The critical value of amplitude of the external excitation ocf  depends nonlinearly 

on the control parameter and the time-delay through ( ), xk β τ . We have found  in 

chapter II that as β  increases, the critical forces leading to horseshoes chaos 
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increases too. Consider that β  is known, we can evaluate the evolution of 

( ), xk β τ  as  xτ   varies. Carrying out the development used in the previous section 

, by setting  ( ) ( ) ( )exp , exp  and exp 2 xYs Y Yυ η τ χ τ= = = − , we obtain  

( ) ( )
( )

( )( )
( )

( )

( ) ( )

2 2
1 1

2 22 2 2

3 1
22 22 2 2 22 2 22 0 0

1 12,
4 1 14 1 1

a a
Y Y

x
Xk d d
Y

µβ µβ
λ ληη η χυ υµβ ξβ τ υ η

λ
χυ ξ χυη ξ η

+ +
− + −

+∞
⎛ ⎞
⎜ ⎟+ −

= ⎜ ⎟
⎜ ⎟⎡ ⎤⎡ ⎤ + − −+ − − ⎜ ⎟⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎝ ⎠

∫ ∫  

then assuming that  and 
1 1

p
p

ψη υ
ψ

= =
− −

we obtain 

( )
( )

( )

( ) ( )( )( )
( )( )

( )

( ) ( ) ( )( )
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1 1
22 2

2 2 2 1
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⎛ ⎞⎜ ⎟− + − − − + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫

                                                                                                                                                                    (III-25) 

 With the above, we can numerically compute the variation of ( ), xk β τ  . Figure 

III-6  which reports the variations of ( ), xk β τ  as xτ varies for β=0.8, it shows that 

( ), xk β τ  decreases when xτ increases. Consequently, the control becomes less 

and less efficient when the time-delay increases. More generally, to deal with 

the effect of delay on the critical forcing leading to Melnikov chaos, we derive 

that the critical forcing  decreases with the increasing of time delay. This means 

that in the presence of time delays chaos appears for smaller values of fc as 

compared to the system without delay 

 

 

 

 

 

 

 

 

(III-14) 
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 Consider now the case of  dissipative coupling  ( 0β = ); the Melnikov function 

is  given by  

( )
( )

( ) ( )
2 2
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     (III-16) 

with

( )
( )

( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )( )( )

( )

( ) ( )( ) ( )

( )

2 2 2 2
2 2

2 3 1
22 2 22 22

2 2 2 2
2

22

cosh exp cosh exp
,

2 1 1 sinh1 1 sinh

cosh cosh exp
        +

2 1 1 sin

x

x

x

x

a aY Y s s
X Y ak ds d

Y sY

aY Y s
X Y

τ
τ τ τ

λ µα λ µαµα ξα τ τ
λ µα ξ τξ τ

τ τ τ
λ µαµα ξ

λ µα ξ

+∞

−∞ −∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟

+ +⎜ ⎟⎝ ⎠ ⎝ ⎠= ⎜ ⎟+ + − −+ − ⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞

− −⎜ ⎟
+⎝ ⎠

+ + −

∫ ∫

( )( ) ( ) ( )( )( )
31

2 22 2 2h 1 1 sinh x

d
Y Y s

τ
τ ξ τ

+∞

−∞
+ − −

∫

 

Carrying out the same manipulation as presented in the previous section we  

arrive to the fact that   ( ), xk α τ  also decreases when  time-delay ( xτ ) increases.  

 ( )xk τ  

xτ
Figure III-6 : Evolution of k(β,τx) with τx for β=0.8
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III-4 Effects of time-delay on the basin of stability 
The investigation has so far been carried out in a completely analytical context. 

In this section some numerical simulations are performed to verify the 

theoretical prediction. Of course a comprehensive numerical study would 

require the description of the whole dynamics by taking a general equation given 

by  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2
3 5

1 02

2

22

cos

x x

dyd q dq b q cq dq y f
d d d
d y dy dqa y q
dt d d

τ
τ λ α τ β τ τ τ β τ α τ

τ τ τ

τ λ µα τ µβ τ µβ τ τ µα τ τ
τ τ

⎧
+ + + + + + − − = Ω⎪⎪

⎨
⎪ + + + + = − + −⎪⎩

 

And by constructing their basins of attraction. Turning our interest on the effects 

of the time delays, we find that the fractality appears more earlier because it is 

found in chapter II that for the external excitation given 

by 0 0.2,  =0 and =0.8f α β= . Taking the case of 0 1.5 and 1.5f β= = , figure III-7 

confirm that Melnikov chaos is suppressed in the system. It appears now in 

figure III-7 that for the one value of delay given by 2.005xτ =  the fractality 

reappear. This effect when we look for the effect of dissipative coupling 

parameters ( )α . 
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Another effect which arises in the system is the extreme sensibility of the system 

because of delay. For instance, with 2xτ = , the boundary of the basin remains 

regular this for 1.5β = , and  fo=1.5 (figure III-8a). Setting now the value of  

2.005xτ =   the fractality reappears (figure III-8b) in the system which was 

regular. This in also confirmed in figure III-8c when the value of delay is 

2.1xτ = , The fractality becomes more and more visible. This means that the best 

estimation of the optimal parameters for the efficiency of the control should not 

neglect the effects of time-delays. 
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IV-CONCLUSION 
 In this chapter, we have analysed the effects of time delay on the control 

of vibration, the escape and horseshoes chaos of an harmonically excited system 

in a catastrophic (unbounded) single well φ6 potential. The stability of the 

system under control has been studied using the Lyapunov concept and D-

subdivision method. The effects of time-delay in the approximate critical force 

leading to reduction of amplitude and the effects of control parameters and time 

delays on the critical forces for Melnikov chaos, appear to be important and 

should be taken into account for the designing of control devices. 
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GENERAL CONCLUSION AND PERSPECTIVES 

 1°) Summary of the main results  
Before ending with this dissertation, let us give a summary of the main 

results. This thesis has dealed with the study of the dynamics and active control 

with delay of the dynamics of unbounded monostable mechanical structures with 

φ6 potential.  

It has been demonstrated in chapter I that, the mathematical model of such a 

structure like inverted pendulum, articulated beam and elastic beam fixed at the 

ends and free at the top, is that of a particle moving  in a catastrophic single well φ6 

potential. This model is more realistic compared to that described by the classical 

Duffing oscillator as presented earlier. We have studied the dynamics of a φ6 

oscillator submitted to an external sinusoidal excitation. The approximate critical 

force leading to catastrophic motions has been obtained analytically and verified 

numerically. The criteria for the appearance of horseshoes chaos have also been 

derived using the Melnikov theory and metamorphoses of the basin of attraction 

have been observed. 

 In chapter II, the control of vibration and catastrophe of a non-linear 

structure by a linear one coupled in a sandwich manner has been studied. We have 

also presented a model of control in mechanical structures by using an active-

passive piezoelectric absorber. The effects of the control parameters and the 

dynamical behaviour of the system have been also analysed. The condition for the 

effectiveness of the control as well as that of the escape from the potential well are 

obtained. Numerical simulations have been performed to confirm and complement 

the analytical calculations. We derive and analyse the approximate conditions for 

the appearance of Melnikov chaos as well as the effects of the control gain 

parameters. For a good choice of coupling parameters, the control strategy can be 

optimised.  

In chapter III, we have analysed the effects of time delays on the control 

strategy. The stability of the system under control has been studied. The 

approximate critical force leading to reduction of amplitude and to catastrophic 
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motions has been obtained analytically. The effects of control parameter along 

with time delay on the critical forces for Melnikov chaos have been  are obtained 

and the main conclusion is that the best estimation of the optimal parameters for 

the efficiency of the control should not neglect the effects of time delay. 

2°) Perspectives 
Despite the results obtained in this thesis, other points of interests will be solved in 

the future to complement and get a better understanding of this work.  

♦Most of the environmental loads, such as wind and earthquakes, to which 

civil engineering structures are subjected, are random in nature. Hence, the 

analysis of the behaviour of an actively controlled as well as an uncontrolled 

structure will be based on the theory of random vibrations. 

♦Another point of interest is to couple many inverted pendulums and see 

how the coupling influence the dynamics of the system. This may have implication 

in agriculture. 

♦During this dissertation, when we were discussing about beams, we 

consider only the case of the first mode of vibration. It will be of interest to take 

into account all the normal modes vibration to ameliorate the precision of our 

results. Moreover a direct numerical simulation of the non-linear partial differential 

equation of the beam dynamics should be carried out. 

♦Our study has focussed on the analytical and numerical study of the 

control of the dynamics in mechanicals structures. To complement our knowledge 

in such devices, experimental studies should be carried out for eventual 

technological exploitation in engineering and in agriculture. 
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