The graph rewriting calculus: confluence and expressiveness

Clara Bertolissi

LORIA
Soutenance de thèse

October 28, 2005

Term rewriting systems

A tool for reasoning about computation

- composed by a set of terms \mathcal{T} and a set of rules \mathcal{R}
- use matching and substitutions for evaluation

Term rewriting systems

A tool for reasoning about computation

- composed by a set of terms \mathcal{T} and a set of rules \mathcal{R}
- use matching and substitutions for evaluation

Modelling addition by means of rewrite rules:

$$
\mathcal{R}=\left\{\begin{array}{llll}
R_{0}: & 0+x & \rightarrow & x \\
R_{1}: & s(x)+y & \rightarrow & s(x+y)
\end{array}\right.
$$

Term reduction:
$1+2=s(0)+s(s(0)) \rightarrow_{R_{1}} s(0+s(s(0))) \rightarrow_{R_{0}} s(s(s(0)))=3$

λ-calculus

A calculus for modeling functionality

- functions are first-class citizens
- explicit application operator

$$
(\lambda x . s x)(0+s \text { s } 0) \quad \rightarrow_{\beta} \quad s(0+s \text { s } 0)
$$

λ-calculus

A calculus for modeling functionality

- functions are first-class citizens
- explicit application operator

$$
(\lambda x . s x)(0+s \text { s } 0) \quad \rightarrow_{\beta} \quad s(0+s \text { s } 0)
$$

Encoding of addition: $\lambda n p .(\lambda f x . p f(n f x))$

Limits

Rewriting is nice, but

- the rewrite relation is difficult to control
- non-reducibility cannot be expressed syntactically

Lambda-calculus is great, but

- lacks of discrimination capabilities
- non trivial encoding of data

Higher-order rewriting

Combination of TRS and λ-calculus

- Algebraic extensions of λ-calculus [Breazu-Tannen, Gallier88] [Okada89]
- Term rewrite systems with abstraction [Klop80,Nipkow90,Wolfram93]

Higher-order rewriting

Combination of TRS and λ-calculus

- Algebraic extensions of λ-calculus [Breazu-Tannen, Gallier88] [Okada89]
- Term rewrite systems with abstraction [Klop80,Nipkow90,Wolfram93]

The Combinatory Reduction Systems (CRS) [Klop80]

The rewriting calculus [Cirstea,Kirchner00]

A higher-order calculus with more explicit features

- rules are first class objects
- application is explicit
- decision of redex reduction is explicit
- results are defined at the object level

The rewriting calculus [Cirstea,Kirchner00]

A higher-order calculus with more explicit features

- rules are first class objects
- application is explicit
- decision of redex reduction is explicit
- results are defined at the object level
- expressiveness: λ-calculus, TRS[CLW03], objet calculi [CKL01], CRS [BCK03], ...
- extension with explicit substitutions: the ρ_{x}-calculus [CFK04]

From terms to term-graphs

improve efficiency
\Rightarrow save space (sharing terms)
\Rightarrow save time (reduce only once)

From terms to term-graphs

improve efficiency
\Rightarrow save space (sharing terms)
\Rightarrow save time (reduce only once)

letrec $z=s(x)$ in $z * y+z$
improve expressiveness
\Rightarrow infinite regular data
structures

Term graph rewriting: different approaches

- implementation oriented approach (pointers, redirections) [Barendregt et al.87],[Plump98],[Kennaway94],. . .
- categorical approach (push-out diagrams)
[CorradiniDrewes97],[Montanari,Corradini,Gadducci95], . . .
- equational representation (set of recursive equations) [Ariola,Klop96], . .
- Cyclic λ-calculus ($\lambda_{\text {cyc }}$) [Ariola,Klop97]

Towards a ρ-calculus for term graphs

Towards a ρ-calculus for term graphs

Towards a ρ-calculus for term graphs

D Aim: define a generalised calculus to deal with

- terms with sharing and cycles and pattern matching

Towards a ρ-calculus for term graphs

D Aim: define a generalised calculus to deal with

- terms with sharing and cycles and pattern matching
\Rightarrow How: by means of
- recursion equations and explicit matching constraints

Outline

ρ-calculus

ρ_{g}-calculus
Syntax
Semantics
Properties
Expressiveness

Conclusions

The ρ-calculus syntax

Terms

$\mathcal{T}::=$	\mathcal{X}
	\mathcal{K}
	$\mathcal{T} \rightarrow \mathcal{T}$
	$\mathcal{T} \mathcal{T}$
	$\mathcal{T} \imath \mathcal{T}$
	$\mathcal{T}[\mathcal{T} \ll \mathcal{T}]$

(Variables)
(Constants)
(Abstraction)
(Application)
(Structure)
(Delayed matching constraint)

The ρ-calculus syntax

Terms

$\mathcal{T}::=$	\mathcal{X}
	\mathcal{K}
	$\mathcal{T} \rightarrow \mathcal{T}$
\mid	$\mathcal{T} \mathcal{T}$
	$\mathcal{T} \imath \mathcal{T}$
	$\mathcal{T}[\mathcal{T} \ll \mathcal{T}]$

(Variables)
(Constants)
(Abstraction)
(Application)
(Structure)
(Delayed matching constraint)
$f(x) \rightarrow x$
$(f(x) \rightarrow x) f(a)$
$x[f(x) \ll f(a)] \quad$ the term x constrained by a matching problem

The Reduction Semantics

$$
\begin{array}{llll}
(\rho) & \left(\mathcal{T}_{1} \rightarrow \mathcal{T}_{2}\right) \mathcal{T}_{3} & \mapsto_{\rho} & \mathcal{T}_{2}\left[\mathcal{T}_{1} \ll \mathcal{T}_{3}\right] \\
(\sigma) & \mathcal{T}_{2}\left[\mathcal{T}_{1} \ll \mathcal{T}_{3}\right] & \mapsto_{\sigma} & \sigma_{\left(\mathcal{T}_{1} \nless{ }_{\theta} \mathcal{T}_{3}\right)}\left(\mathcal{T}_{2}\right) \\
(\delta) & \left(\mathcal{T}_{1} \prec \mathcal{T}_{2}\right) \mathcal{T}_{3} & \mapsto_{\delta} & \mathcal{T}_{1} \mathcal{T}_{3} \prec \mathcal{T}_{2} \mathcal{T}_{3}
\end{array}
$$

- (ρ) applying $\mathcal{T}_{1} \rightarrow \mathcal{T}_{2}$ to \mathcal{T}_{3} reduces to the delayed matching constraint $\mathcal{T}_{2}\left[\mathcal{T}_{1} \ll \mathcal{T}_{3}\right]$
- (σ) computes $\mathcal{T}_{1} \prec_{\emptyset} \mathcal{I}_{3}$ and applies the result σ to the the term \mathcal{T}_{2}
- (δ) deals with the distributivity of the application on the structures built with the " \imath " constructor

Example of ρ-reduction

- $(x \rightarrow f(x)) a \mapsto_{\rho} f(x)[x \ll a] \mapsto_{\sigma} f(a)$

Example of ρ-reduction

- $(x \rightarrow f(x)) a \mapsto_{\rho} f(x)[x \ll a] \mapsto_{\sigma} f(a)$
- $(f(x, y) \rightarrow g(x, y))) f(a, b) \mapsto_{\rho} g(x, y)[f(x, y) \ll f(a, b)]$ $\mapsto_{\sigma}\{a / x, b / y\} g(x, y)=g(a, b)$

Example of ρ-reduction

- $(x \rightarrow f(x)) a \mapsto_{\rho} f(x)[x \ll a] \mapsto_{\sigma} f(a)$
- $(f(x, y) \rightarrow g(x, y))) f(a, b) \mapsto_{\rho} g(x, y)[f(x, y) \ll f(a, b)]$ $\mapsto_{\sigma}\{a / x, b / y\} g(x, y)=g(a, b)$
- $(f(a) \rightarrow a l f(a) \rightarrow b) f(a)$
$\left.\mapsto_{\delta}(f(a) \rightarrow a) f(a)\right\}(f(a) \rightarrow b) f(a) \mapsto_{p}$ a $\langle b$

The ρ-calculus syntax

Terms

$\mathcal{T}::=$	\mathcal{X}	(Variables)	
	\mathcal{K}	(Constants)	
	$\mathcal{T} \rightarrow \mathcal{T}$	(Abstraction)	
	$\mathcal{T} \mathcal{T}$	(Application)	
	$\mathcal{T} \imath \mathcal{T}$		(Structure)
	$\mathcal{T}[\mathcal{T} \ll \mathcal{T}]$	(Matching constraint)	

The ρ_{g}-calculus syntax [BBCK04]

Terms
\mathcal{G} ::
(Variables)
$\mathcal{K} \quad$ (Constants)
$\mathcal{G} \rightarrow \mathcal{G} \quad$ (Abstraction)
$\mathcal{G} \mathcal{G} \quad$ (Application)
\mathcal{G}) $\mathcal{G} \quad$ (Structure)
$\mathcal{G}[\mathcal{C}] \quad$ (Constraint application)

Constraints $\mathcal{C} \quad::=$
ϵ
$\mathcal{X}=\mathcal{G}$
$\mathcal{G} \ll \mathcal{G}$
\mathcal{C}, \mathcal{C}
(Empty constraint)
(Recursion equation)
(Match equation)
(Conjunction of constraints)
where "," is ACl with neutral element ϵ.

Some ρ_{g}-terms

Some ρ_{g}-terms

$$
\begin{aligned}
& f(x, y)[x=g(y), y=g(x)] \\
& \sim f(x, y)[y=g(x), x=g(y)] \\
& \sim f(x, y)[y=g(x), x=g(y), \epsilon]
\end{aligned}
$$

$$
x[x=(1: x)]
$$

Some ρ_{g}-terms

$f(x, y)[x=g(y), y=g(x)]$ $x[x=(1: x)]$
$\sim f(x, y)[y=g(x), x=g(y)]$
$\sim f(x, y)[y=g(x), x=g(y), \epsilon]$

Remark:

- we work on equivalence classes of terms.

Some ρ_{g}-terms: patterns

$$
(y+y)[y=s(x)] \rightarrow s(x)
$$

Some ρ_{g}-terms: patterns

$$
(y+y)[y=s(x)] \rightarrow s(x)
$$

Remark:

- patterns are algebraic acyclic terms.

$$
\mathcal{A}::=\mathcal{X}|\mathcal{K}|(((f \mathcal{A}) \mathcal{A}) \ldots) \mathcal{A} \mid \mathcal{A}[\mathcal{X}=\mathcal{A}, \ldots, \mathcal{X}=\mathcal{A}]
$$

Some ρ_{g}-terms: patterns

$$
(y+y)[y=s(x)] \rightarrow s(x)
$$

Remark:

- patterns are algebraic acyclic terms.

$$
\mathcal{A}::=\mathcal{X}|\mathcal{K}|(((f \mathcal{A}) \mathcal{A}) \ldots) \mathcal{A} \mid \mathcal{A}[\mathcal{X}=\mathcal{A}, \ldots, \mathcal{X}=\mathcal{A}]
$$

Graphical representation

- terms without constraints: trees

Graphical representation

- terms without constraints: trees
- terms with recursion equations

Graphical representation

- terms without constraints: trees
- terms with recursion equations

- terms with match equations ?

Graphical representation

$$
f(x, y)[x=h(x), y \ll g(a)]
$$

The main rules of the ρ_{g}-calculus semantics

Basic rules:
($\rho)\left(G_{1} \rightarrow G_{2}\right) G_{3} \rightarrow \rho \quad G_{2}\left[G_{1} \ll G_{3}\right]$
($\delta)\left(G_{1} \backslash G_{2}\right) G_{3} \rightarrow \delta \quad G_{1} G_{3} \backslash G_{2} G_{3}$
Example:

$($ twice $(x) \rightarrow x+x) \operatorname{twice}(z)[z=i(z)]$

The main rules of the ρ_{g}-calculus semantics
BASIC RULES:
(ρ) $\left(G_{1} \rightarrow G_{2}\right) G_{3} \rightarrow \rho \quad G_{2}\left[G_{1} \ll G_{3}\right]$
($\delta)\left(G_{1} \backslash G_{2}\right) G_{3} \rightarrow \delta \quad G_{1} G_{3} \backslash G_{2} G_{3}$
Example:

$$
\begin{array}{cccc}
& (\text { twice }(x) \rightarrow x+x) & \text { twice }(z)[z=i(z)] \\
\mapsto_{\rho} & x+x \quad[\text { twice }(x) \ll t w i c e(z)[z=i(z)]]
\end{array}
$$

The main rules of the ρ_{g}-calculus semantics $\quad(2 / 3)$ Basic rules +

Matching Rules:

The main rules of the ρ_{g}-calculus semantics $\quad(2 / 3)$
BASIC RULES +
Matching Rules:

propagate	$G_{1} \ll\left(G_{2}\left[E_{2}\right]\right)$	\rightarrow_{p}	$G_{1} \ll G_{2}, E_{2} \quad$ if $G_{1} \notin \mathcal{X}$
decomp	$K\left(G_{1}, \ldots, G_{n}\right) \ll K\left(G_{1}^{\prime}, \ldots, G_{n}^{\prime}\right)$	$\rightarrow_{d k}$	$G_{1} \ll G_{1}^{\prime}, \ldots, G_{n} \ll G_{n}^{\prime}$
eliminate	$K \ll K, E$	\rightarrow_{e}	E
solved	$x \ll G, E$	\rightarrow_{s}	$x=G, E \quad$ if $x \notin \mathcal{D} \mathcal{V}(E)$

Example (continue):

$$
\begin{array}{ll}
& (\text { twice }(x) \rightarrow x+x) \text { twice }(z)[z=i(z)] \\
\mapsto_{\rho} & x+x \quad[\text { twice }(x) \ll t w i c e(z)[z=i(z)]]
\end{array}
$$

The main rules of the ρ_{g}-calculus semantics
BASIC RULES +
Matching Rules:

propagate	$G_{1} \ll\left(G_{2}\left[E_{2}\right]\right)$	\rightarrow_{p}	$G_{1} \ll G_{2}, E_{2} \quad$ if $G_{1} \notin \mathcal{X}$
decomp	$K\left(G_{1}, \ldots, G_{n}\right) \ll K\left(G_{1}^{\prime}, \ldots, G_{n}^{\prime}\right)$	$\rightarrow_{d k}$	$G_{1} \ll G_{1}^{\prime}, \ldots, G_{n} \ll G_{n}^{\prime}$
eliminate	$K \ll K, E$	\rightarrow_{e}	E
solved	$x \ll G, E$	\rightarrow_{s}	$x=G, E \quad$ if $x \notin \mathcal{D} \mathcal{V}(E)$

Example (continue):

$$
\begin{array}{lll}
& \text { (twice }(x) \rightarrow \quad x+x) \quad \text { twice }(z)[z=i(z)] \\
\mapsto_{\rho} & x+x & {[\text { twice }(x) \ll t w i c e(z)[z=i(z)]]} \\
\mapsto_{p} & x+x \quad[\text { twice }(x) \ll t w i c e(z), z=i(z)] \\
\mapsto_{d k} & x+x \quad[x<z, z=i(z)] \\
\mapsto_{s} & x+x \quad[x=z, z=i(z)]
\end{array}
$$

The main rules of the ρ_{g}-calculus semantics

Basic rules + Matching rules +
Graph rules:

The main rules of the ρ_{g}-calculus semantics $\quad(3 / 3)$
Basic rules + Matching rules +
Graph rules:
external sub $\operatorname{Ctx}[y][y=G, E] \quad \rightarrow_{\text {es }} \quad \operatorname{Ctx}[G][y=G, E]$
acyclic sub $\quad G\left[G_{0} \lll C t x[y], y=G_{1}, E\right] \quad \rightarrow a c \quad G\left[G_{0} \lll C t x\left[G_{1}\right], y=G_{1}, E\right]$ where $\lll \in\{=, \ll\}$
garbage

$$
G\left[E, x=G^{\prime}\right]
$$

$\rightarrow \mathrm{gc} \quad G[E]$
if $x \notin \mathcal{F} \mathcal{V}(E) \cup \mathcal{F} \mathcal{V}(G)$
Example:

$$
(\text { twice }(x) \rightarrow x+x) \text { twice }(z)[z=i(z)]
$$

$\mapsto p g \quad x+x[x=z, z=i(z)]$

The main rules of the ρ_{g}-calculus semantics $\quad(3 / 3)$
Basic rules + Matching rules +
Graph rules:
external sub $\operatorname{Ctx}[y][y=G, E] \quad \rightarrow_{\text {es }} \quad \operatorname{Ctx}[G][y=G, E]$
acyclic sub $\quad G\left[G_{0} \lll C t x[y], y=G_{1}, E\right] \quad \rightarrow \mathrm{ac} \quad G\left[G_{0} \lll C t x\left[G_{1}\right], y=G_{1}, E\right]$ where $\lll \in\{=, \ll\}$
garbage

$$
G\left[E, x=G^{\prime}\right]
$$

$\rightarrow \mathrm{gc} \quad G[E]$

$$
\text { if } x \notin \mathcal{F} \mathcal{V}(E) \cup \mathcal{F} \mathcal{V}(G)
$$

Example:

$$
(\text { twice }(x) \rightarrow x+x) \text { twice }(z)[z=i(z)]
$$

$\mapsto_{p g} \quad x+x \quad[x=z, z=i(z)]$
$\mapsto \quad z+z \quad[x=z, z=i(z)]$
$\mapsto \mathrm{gc}(z+z)[z=i(z)]$

Sharing reduction strategy

Perform a step of reduction using (external sub) or (acyclic sub) if:

- it instantiates a variable in active position by an abstraction or a structure,

$$
x a[x=f(x) \rightarrow x]
$$

- or it instantiates a variable in a stuck match equation,

$$
a[a \ll y, y=a]
$$

- or it instantiates a variable by a variable.

$$
z+z[z=x, x=1]
$$

Multiplication example: the ρ-reduction

$$
\begin{array}{ll}
& (x * s(y) \rightarrow x * y+x) 1 * s(1) \\
\mapsto_{\rho} \quad & {[x * s(y) \ll 1 * s(1)](x * y+x)} \\
\mapsto_{\sigma} \quad & \{1 / x, 1 / y\}(x * y+x) \\
= & 1 * 1+1
\end{array}
$$

Multiplication in the ρ_{g}-calculus

Multiplication in the ρ_{g}-calculus

$$
\begin{array}{ll}
& (x * s(y) \rightarrow x * y+x) z * s(z)[z=1] \\
\mapsto_{\rho} & x * y+x[x * s(y) \ll z * s(z)[z=1]] \\
\mapsto_{p} & x * y+x[x * s(y) \ll z * s(z), z=1] \\
\mapsto_{d k} & x * y+x[x \ll z, y \ll z, z=1] \\
\mapsto_{s} & x * y+x[x=z, y=z, z=1] \\
\mapsto_{\text {es }} & (z * z+z)[x=z, y=z, z=1] \\
\mapsto_{g C} & (z * z+z)[z=1]
\end{array}
$$

Matching example - Non-linearity

Success:

$$
\begin{array}{ll}
& f(y, y) \ll f(a, a) \\
\mapsto_{d k} & y \ll a, y \ll a \\
= & y \ll a \quad \text { (by idempotency) } \\
\mapsto_{s} & y=a
\end{array}
$$

Failure:

$$
\begin{array}{ll}
& f(x, x) \ll f(a, b) \\
\mapsto d k & x \ll a, x \ll b
\end{array}
$$

The reduction is stuck: the condition $x \notin \mathcal{D V}(E)$ is not satisfied.

Confluence of the linear ρ_{g}-calculus [Ber05]

Any reductions starting from two joinable terms converge to two equivalent terms.

- Linearity: we restrict to a ρ_{g}-calculus with linear patterns.
- The congruence \sim is induced by $A C 1$, avoiding I.

Non triviality of the proof

- non termination of the system.
- reductions on equivalent classes of terms.
- need of adapting and combining existing techniques
- properties of equational rewriting adapted to terms with constraints.
- "finite developments method" of the classical λ-calculus.
- Compatibility property:

Proof sketch (1/2)

- the Σ-rules: $(\delta) \cup$ (external sub) \cup (acyclic sub)
- t he τ-rules: $(\rho) \cup$ Matching RULES \cup (garbage)
prove CON_{\sim} for Σ
prove CON_{\sim} for τ

Proof sketch (1/2)

- the \sum-rules: $(\delta) \cup$ (external sub) \cup (acyclic sub)
- the τ-rules: $(\rho) \cup$ Matching rules \cup (garbage)

Proof sketch (2/2)

1. CON_{\sim} for τ : using local confluence and termination of the relation and the compatibility property
2. C_{N} for Σ : using the finite developments method of the λ-calculus adapted to Σ
3. $\operatorname{CON}_{\sim}$ for $(\Sigma \cup \tau)$: using a commutation lemma for the two relations and the compatibility property

Proof sketch (2/2)

1. CON_{\sim} for τ : using local confluence and termination of the relation and the compatibility property
2. C_{N} for Σ : using the finite developments method of the λ-calculus adapted to Σ
3. $\operatorname{CON}_{\sim}$ for $(\Sigma \cup \tau)$: using a commutation lemma for the two relations and the compatibility property

Theorem: The linear ρ_{g}-calculus is Church-Rosser modulo $A C 1$.

Expressiveness of the ρ_{g}-calculus

- Conservativity of the ρ_{g}-calculus vs ρ-calculus
- Conservativity of the ρ_{g}-calculus vs cyclic lambda
- Relationship with term graph rewriting

Conservativity of the ρ_{g}-calculus vs ρ-calculus

- Matching: Given a matching problem $T \ll U$ with T a linear ρ-term, and a substitution $\sigma=\left\{x_{1} / U_{1}, \ldots, x_{n} / U_{n}\right\}$.

$$
\sigma(U)=T \text { if and only if } T \ll U \mapsto \mathcal{M} x_{1}=U_{1}, \ldots, x_{n}=U_{n}
$$

Conservativity of the ρ_{g}-calculus vs ρ-calculus

- Matching: Given a matching problem $T \ll U$ with T a linear ρ-term, and a substitution $\sigma=\left\{x_{1} / U_{1}, \ldots, x_{n} / U_{n}\right\}$.

$$
\sigma(U)=T \text { if and only if } T \ll U \longmapsto \mathcal{M} x_{1}=U_{1}, \ldots, x_{n}=U_{n}
$$

- Completeness:

If $T \longmapsto_{\rho \rho \delta} T^{\prime}$ in the ρ-calculus then $T \mapsto_{\rho \mathrm{g}} T^{\prime}$ in the ρ_{g}-calculus.

- Soundness: Given a ρ-term T. If $T \mapsto_{\rho g} T^{\prime}$ in the ρ_{g}-calculus and T^{\prime} contains no constraints, then $T \mapsto_{\rho o \delta} T^{\prime}$ in the ρ-calculus.

Matching failures in ρ-calculus and ρ_{g}-calculus

ρ-calculus
$(f(a) \rightarrow b) f(c)$
$\longmapsto \rho$
$b[f(a) \ll f(c)]$

Matching failures in ρ-calculus and ρ_{g}-calculus

ρ-calculus
$(f(a) \rightarrow b) f(c)$

$$
\longmapsto \rho
$$

$$
b[f(a) \ll f(c)]
$$

ρ_{g}-calculus

$$
\mapsto{ }_{d k}
$$

$$
\begin{aligned}
& (f(a) \rightarrow b) f(c) \\
& b[f(a) \ll f(c)] \\
& b[a \ll c]
\end{aligned}
$$

Conservativity of the ρ_{g}-calculus vs cyclic lambda

- Translation from a cyclic λ-term t to a ρ_{g}-term $\llbracket t \rrbracket$;
- Completeness:

If $t_{1} \mapsto_{\lambda} t_{2}$ in the cyclic λ-calculus, then $\llbracket t_{1} \rrbracket \mapsto_{p g} \llbracket t_{2} \rrbracket$ in the ρ_{g}-calculus.

- Soundness:

If $T_{1} \mapsto_{\mathrm{g}} T_{2}$ in the ρ_{g}-calculus, with $T_{1}=\llbracket t_{1} \rrbracket$ and T_{2} without matching constraints, then we have $t_{1} \longmapsto \lambda_{c} t_{2}$ with $\llbracket t_{2} \rrbracket=T_{2}$.

ρ_{g}-calculus vs TGR

- Matching: the Matching rules well-behaves w.r.t. the notion of graph homomorphism
- Completeness: If $G_{0} \mapsto G_{n}$ in a $T G R$, then there exist n ρ_{g}-terms H_{1}, \ldots, H_{n}, built from the $T G R$ reduction, such that $\left(H_{1} \ldots\left(H_{n} G_{0}\right)\right) \mapsto p g G_{n}^{\prime}$ with G_{n}^{\prime} homomorphic to G_{n}
- Soundness:

If $\left.G_{\lceil(L \rightarrow R)} G^{\prime}\right\rceil \mapsto^{\prime} G_{\lceil H\rceil}$ with G, G^{\prime}, H, L, R term graphs and L linear, then $G\left[G^{\prime}\right] \mapsto G\left[H^{\prime}\right]$ using the rule (L, R) in the $T G R$, with H^{\prime} homomorphic to H.

General soundness w.r.t. TGR does not hold

Consider the ρ_{g}-term

$$
f((a \rightarrow b) x,(a \rightarrow c) x)[x=a]
$$

General soundness w.r.t. TGR does not hold

Consider the ρ_{g}-term

$$
\begin{array}{rl}
& f((a \rightarrow b) x,(a \rightarrow c) x)[x=a] \\
\mapsto g g & f(b, c)
\end{array}
$$

General soundness w.r.t. TGR does not hold

Consider the ρ_{g}-term

$$
\begin{array}{rl}
& f((a \rightarrow b) x,(a \rightarrow c) x)[x=a] \\
\mapsto g g & f(b, c)
\end{array}
$$

In a $T G R$ we have no corresponding reduction

or

Conclusions

Expressive capabilities of the rewriting calculus:

- ρ-calculus and higher-order rewriting (CRSs)
- ρ-calculus with graph-like structures

ρ-calculus vs CRS

- Characterisation of CRS matching and all its solutions.
- Treat CRS matching as λ-calculus higher-order matching
- Translations from a CRS to simply typed λ-calculus and back
- Completeness and correctness of the approach D uniqueness and decidability of CRS pattern matching
- Encoding of CRS derivations into the ρ-calculus.
- Translation function 【-】
- Preservation of matching solutions
- Given a CRS-derivation $t_{0} \mapsto_{\mathcal{R}} t_{n}$ there exists a ρ-term T, built from this derivation, such that any reduction of T terminates and converges to $\llbracket t_{n} \rrbracket$

ρ-calculus vs CRS: perspectives

- encoding a CRS in the ρ-calculus directly from its set of rewrite rules (following [CLW03])
- encoding the ρ-calculus into CRSs

Conclusions on the ρ_{g}-calculus

A generalisation of the cyclic λ-calculus with matching facilities

- representation of regular infinite entities
- higher-order capabilities
- explicit matching at the object-level
- Properties: Confluence of the linear ρ_{g}-calculus,
- Relation with other formalisms:
- Conservativity w.r.t. the standard ρ-calculus and the cyclic λ-calculus
- Simulation of first-order term-graph rewriting

Perspectives

- Matching: generalisation to cyclic left-hand sides
- Adequacy w.r.t. an infinitary version of the ρ-calculus
- Implementation in TOM (http://tom.loria.fr)
- Applications: semantic web, telecom network, bio-informatics,

