The graph rewriting calculus: confluence and
expressiveness

Clara Bertolissi

LORIA

Soutenance de thése

October 28, 2005

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Term rewriting systems

A tool for reasoning about computation

» composed by a set of terms 7 and a set of rules R

» use matching and substitutions for evaluation

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Introduction

Term rewriting systems

A tool for reasoning about computation

» composed by a set of terms 7 and a set of rules R

» use matching and substitutions for evaluation

Modelling addition by means of rewrite rules:

R — Ro: 0+ x — X
LR s()+y — s(x+y)

Term reduction:

142 = 5(0)+5(s(0)) —r, s(0+5(s(0))) —r, s(s(s(0))) = 3

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

M-calculus

A calculus for modeling functionality

» functions are first-class citizens

» explicit application operator

(Ax.sx) (0+ss0) —5 s(0+ss50)

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

M-calculus

A calculus for modeling functionality

» functions are first-class citizens

» explicit application operator

(Ax.sx) (0+ss0) —5 s(0+ss50)

Encoding of addition: Anp.(Afx.p f(n f x))

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Limits

Rewriting is nice, but
» the rewrite relation is difficult to control

» non-reducibility cannot be expressed syntactically

Lambda-calculus is great, but
» lacks of discrimination capabilities

» non trivial encoding of data

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Higher-order rewriting

Combination of TRS and A-calculus

» Algebraic extensions of A-calculus
[Breazu-Tannen, Gallier88] [Okada89]

» Term rewrite systems with abstraction
[Klop80,Nipkow90,Wolfram93]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Higher-order rewriting

Combination of TRS and A-calculus

» Algebraic extensions of A-calculus
[Breazu-Tannen, Gallier88] [Okada89]

» Term rewrite systems with abstraction
[Klop80,Nipkow90,Wolfram93]

The Combinatory Reduction Systems (Crs) [Klop80]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Introduction

The rewriting calculus [Cirstea,Kirchner00]

A higher-order calculus with more explicit features

> rules are first class objects
> application is explicit
> decision of redex reduction is explicit

> results are defined at the object level

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

The rewriting calculus [Cirstea,Kirchner00]

A higher-order calculus with more explicit features

> rules are first class objects
> application is explicit
> decision of redex reduction is explicit

> results are defined at the object level

> expressiveness: A-calculus, TRS[CLWO03], objet calculi
[CKLO1], crs [BCKO3], ...

> extension with explicit substitutions: the py-calculus [CFK04]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Introduction

From terms to term-graphs

improve efficiency
= save space (sharing terms)

= save time (reduce only once)

l’

e

*

s
s
!
X
z=s(x)inzxy+z

letrec

Clara Bertolissi

The graph rewriting calculus: confluence and expressiveness

From terms to term-graphs

improve efficiency
= save space (sharing terms)

= save time (reduce only once)

s(x)inzxy 4z

improve expressiveness
= infinite regular data

structures

5

1
letrecz=(1:z)in z

The graph rewriting calculus: confluence and expressiveness

Term graph rewriting: different approaches

> implementation oriented approach (pointers, redirections)
[Barendregt et al.87],[Plump98],[Kennaway94],. ..

> categorical approach (push-out diagrams)
[CorradiniDrewes97],[Montanari,Corradini,Gadducci95], ...

> equational representation (set of recursive equations)
[Ariola,Klop96], ...

» Cyclic A-calculus (Agyc) [Ariola,Klop97]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Towards a p-calculus for term graphs

A TRS

N

p

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Introduction

Towards a p-calculus for term graphs

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Introduction

Towards a p-calculus for term graphs

letrec

A TRS
\)\C / \p/

RN
Pg

> Aim: define a generalised calculus to deal with

» terms with sharing and cycles and pattern matching

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Introduction

Towards a p-calculus for term graphs

letrec

~ /\/

)\Cyc
! =N /;"
Pg

> Aim: define a generalised calculus to deal with
» terms with sharing and cycles and pattern matching

> How: by means of
> recursion equations and explicit matching constraints

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Outline

p-calculus

pg-calculus
Syntax
Semantics
Properties
Expressiveness

Conclusions

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

p-calculus

The p-calculus syntax

Terms T = X (Variables)
| K (Constants)
| T —-T (Abstraction)
| T7T (Application)
| 71T (Structure)
| 7|7 < 7] (Delayed matching constraint)

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

The p-calculus syntax

Terms T = X (Variables)

| K (Constants)

| T —-T (Abstraction)

| T7T (Application)

| 71T (Structure)

| 7|7 < 7] (Delayed matching constraint)
f(x) — x a standard rewrite rule

(f(x) — x) f(a) application of the rule f(x) — x to the term f(a)

x[f(x) < f(a)] the term x constrained by a matching problem

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

The Reduction Semantics

() (h—=D0)h = DL

(0) BIh<T] = on<n)(T2)
) BT 5 HEIBT

> (p) applying 73 — 7, to 73 reduces to the delayed matching
constraint To[7; < 73]

> (o) computes 73 < 73 and applies the result o to the the
term 7>

» (0) deals with the distributivity of the application on the

structures built with the ‘" constructor

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Example of p-reduction

> (x = f(x)) a —, f(x)[x < a]—, f(a)

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Example of p-reduction

> (x = f(x)) a —, f(x)[x < a]—, f(a)

> (f(x.y) — &(x,))) f(a,b) =, g(x,y)[f(x,y) < f(a,b)]
—o {a/x,b/ytg(x,y) = g(a,b)

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

p-calculus

Example of p-reduction

> (x = f(x)) a —, f(x)[x < a]—, f(a)

> (f(x.y) — &(x,))) f(a,b) =, g(x,y)[f(x,y) < f(a,b)]
—o {a/x,b/ytg(x,y) = g(a,b)

» (f(a) — alf(a) — b) f(a)
—s (f(a) — a) f(a) L (f(a) = b) f(a) —u alb

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

The p-calculus syntax

Terms 7T = X (Variables)
| K (Constants)
| 7 — 7 (Abstraction)
| TT (Application)
| T T (Structure)
| T[7T<7T| (Matching constraint)

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

The pg-calculus syntax [BBCKO4]

Terms g = X (Variables)
| K (Constants)
| 6—G (Abstraction)
| GG (Application)
| GG (Structure)
| G [C] (Constraint application)

Constraints C € (Empty constraint)
=G (Recursion equation)

G<G (Match equation)
C

(Conjunction of constraints)

where """ is ACI with neutral element e.

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness
Some pg-terms

N =

g g 1

fix,y) Ix=g(y),y = g(x)] x [x = (L:x)]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness
Some pg-terms

N =

g g 1
~____—

f(x,y) [x=g(y),y = g(x)] x [x = (1:x)]
~ f(x,y) [y = g(x),x = g(y)]
~ f(x,y) Iy = g(x),x = g(y), €

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness
Some pg-terms

N =

g g 1
~____—

f(x,y) [x=g(y),y = g(x)] x [x = (1:x)]
~ f(x,y) [y = g(x),x = g(y)]
~ f(x,y) Iy = g(x),x = g(y), €

Remark:

» we work on equivalence classes of terms.

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Some pg-terms: patterns

+ /ﬂ\x
()
s(x)

(v +y) Iy = s(x)] — s(x)

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Some pg-terms: patterns

., . \X
()
s(x)
(v +y) Iy = s(x)] — s(x)

Remark:

> patterns are algebraic acyclic terms.

A= X | K| ((FAA)..)A| A[X=A,...,Xx = A

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Some pg-terms: patterns

2 VNV N
() - RN
(v +y) [y =s(x)] — s(x)

Remark:

> patterns are algebraic acyclic terms.

A= X | K| ((FAA)..)A] A[X=A,...,X = A

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Graphical representation

» terms without constraints: trees

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Graphical representation

» terms without constraints: trees

» terms with recursion equations

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Graphical representation

» terms without constraints: trees

» terms with recursion equations

f(x,x) [x = g(y),y = i(y)]

» terms with match equations 7

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Graphical representation

fxy) [x = h(x),y < g(a)]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

The main rules of the p,-calculus semantics (1/3)
BASIC RULES:

(p) (Gl g G2) Gs —p Go [Gl < G3]
(5) (Gl { G2) Gs —s Gy G311 Gy G3

Example:
twice — + twice
o T
(twice(x) x + x) twice(z) [z = i(z)]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

The main rules of the p,-calculus semantics (1/3)
BASIC RULES:

(p) (Gl g G2) Gs —p Go [Gl < G3]
(5) (Gl { G2) Gs —s Gy G311 Gy G3

Example:
twice — + twice
. |
'/
(twice(x) X+ x) twice(z) [z = i(z)]
=, X+ X [twice(x) twice(z) [z = i(2)]]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

The main rules of the p,-calculus semantics (2/3)
BASIC RULES +

MATCHING RULES:

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

The main rules of the p,-calculus semantics (2/3)
BASIC RULES +

MATCHING RULES:

propagate Gy < (Gy [Ey]) — G <KGE ifGEgX
decomp K(Gi,...,G,) < K(G{,...,G)) —u G <G|, ...,G, <G
eliminate K < K,E — E

solved x <& G,E —s x=G,E ifx¢DV(E)

Example (continue):

(twice(x) — x+x) twice(z) [z =i(z)]
=, x+x [twice(x) twice(z) [z = i(z)]]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness
The main rules of the p,-calculus semantics (2/3)
BASIC RULES +

MATCHING RULES:

propagate Gy < (Gy [Ey]) — G <KGE ifGEgX
decomp K(Gi,...,G,) < K(G{,...,G)) —u G <G|, ...,G, <G
eliminate K < K,E — E

solved x <& G,E —s x=G,E ifx¢DV(E)

Example (continue):

(twice(x) — x+x) twice(z) [z =i(z)]
=, x+x [twice(x) twice(z) |]
=, X+ x [twice(x) twice(z), z = i(z)]
—ak X+x [x <z, z=1i(z)]
—s X+x [x =z z=i(z)]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

The main rules of the py-calculus semantics (3/3)

BASIC RULES + MATCHING RULES +

GRAPH RULES:

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

The main rules of the py-calculus semantics (3/3)

BaAsic RULES + MATCHING RULES -+
GRAPH RULES:
Cixy] [y = G, E] —
G [Go « Ctx[y],y = G1, E] —.

ac

G [E,x=G"] -,

gc
Example:

(twice(x) — x4+ x) twice(z) [z
e X+X [x =z, z=1i(2)]

Ctx[G] [y = G, E]

G [Go < Ctx[Gy],y = Gy, E]
where K€ {=,<}

G [E]

if x & FV(E) U FV(G)

i(2)]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

The main rules of the py-calculus semantics (3/3)

BASIC RULES + MATCHING RULES -+
GRAPH RULES:
Cixly] [y = G, E] —es Ctx[G] [y = G, E]
G [Go « Ctx[y],y = G1,E] —ac G [Gy & Ctx[G1],y = Gy, E]
where K€ {=,<}
G [E,x=G"] —gc G [E]
if x & FV(E) U FV(G)
Example:
(twice(x) — x4+ x) twice(z) [z = i(z)]
e X+X [x =z, z=1i(2)]

e z+z [x =z, z=i(2)] +
~ e oE=dE) |
A

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Sharing reduction strategy

Perform a step of reduction using (external sub) or (acyclic sub) if:

> it instantiates a variable in active position by an abstraction or

a structure,
xa[x = f(x) = x]

> or it instantiates a variable in a stuck match equation,
ala<y,y =4
> or it instantiates a variable by a variable.

z+z[z=x,x=1]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Multiplication example: the p-reduction

ES

SN NN
VAN

R <—W0

(x*xs(y) — x*xy+x) 1xs(1)
o [xxs(y) < 1xs(1)] (xxy +x)

v {1/% 1y} (xxy +x) /+\
= 1x1+1 & 1
1/ \1

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Multiplication in the pg-calculus

N \E /*/ Q¢

(x=*s(y) xky+x) zxs(z) [z=1]

—> + *

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Multiplication in the pg-calculus

N J

1

Yk

t1d

— -

*

3 /

X y

(x=*s(y) xky+x) zxs(z) [z=1]
x*y+x [xxs(y) zxs(z) [z=1]]
xxy+x [xx*s(y) zxs(z) ,z=1]
xxy+x [x <zy <z z=1]
X*xy+x [x=z,y=z, z=1]
(zxz4+2) [x=2z,y=2z,z=1]
(zxz+2) [z=1]

*

N

.
:

C

1

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Matching example - Non-linearity

Success:
fly,y) < f(aa)
—ak y<ka,y<a
= y<a (by idempotency)
—s y=a
Failure:

f(x, x) < f(a, b)
—dk X < a, X <K b

The reduction is stuck: the condition x & DY(E) is not satisfied.

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Confluence of the linear p,-calculus [Ber05]

Any reductions starting from two joinable terms converge to two
equivalent terms.

G~ G2
Pg ¥ Pg
G ~ G}

> Linearity: we restrict to a pg-calculus with linear patterns.

» The congruence ~ is induced by AC1, avoiding /.

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Non triviality of the proof

» non termination of the system.
» reductions on equivalent classes of terms.

» need of adapting and combining existing techniques

» properties of equational rewriting adapted to terms with
constraints.

> “finite developments method” of the classical A-calculus.

» Compatibility property:

P,

Gy |—>g Gy
14 P 1é

G e G

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Proof sketch (1/2)

» the X-rules: (§) U (external sub) U (acyclic sub)

» t he 7-rules: (p) U MATCHING RULES U (garbage)

prove CON., for © prove CON., for 7

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Proof sketch (1/2)

> the X-rules: (§) U (external sub) U (acyclic sub)

> the 7-rules: (p) U MATCHING RULES U (garbage)

prove CON., for © prove CON., for T

\/

deduce CON., for (X U 7)

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Proof sketch (2/2)

1. CON. for 7: using local confluence and termination of the
relation and the compatibility property

2. CON. for X: using the finite developments method of the
A-calculus adapted to &

3. CON. for (X U 7): using a commutation lemma for the two
relations and the compatibility property

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Proof sketch (2/2)

1. CON. for 7: using local confluence and termination of the
relation and the compatibility property

2. CON. for X: using the finite developments method of the
A-calculus adapted to &

3. CON. for (X U 7): using a commutation lemma for the two
relations and the compatibility property

Theorem: The linear pg-calculus is Church-Rosser modulo ACL.

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Expressiveness of the p,-calculus

» Conservativity of the pg-calculus vs p-calculus
» Conservativity of the pg-calculus vs cyclic lambda

» Relationship with term graph rewriting

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Conservativity of the p,-calculus vs p-calculus

» Matching: Given a matching problem T < U with T a linear
p-term, and a substitution 0 = {x1 /U1, ..., x,/Un}.

o(U)=T ifandonly if T< U —nx3=Us,...,xn= U,

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Conservativity of the p,-calculus vs p-calculus

» Matching: Given a matching problem T < U with T a linear
p-term, and a substitution 0 = {x1 /U1, ..., x,/Un}.

o(U)=T ifandonly if T< U —nx3=Us,...,xn= U,

» Completeness:
If T T’ in the p-calculus then T+, T’ in the pg-calculus.

» Soundness: Given a p-term T.

If T+ T’ in the pg-calculus and T” contains no constraints,
then T 5 T’ in the p-calculus.

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Matching failures in p-calculus and pg-calculus

p-calculus (f(a) — b) f(c)
p b[f(a) < f(c)]

—

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness

Matching failures in p-calculus and pg-calculus

p-calculus (f(a) — b) f(c)
= b[f(a) < f(c)]

pg-calculus (f(a) — b) f(c)
=, b [f(a) < f(c)]
— dk b [a < C]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Conservativity of the p,-calculus vs cyclic lambda

> Translation from a cyclic A-term t to a pg-term [t];

» Completeness:
If t1 —=nc t2 in the cyclic A-calculus, then [t;] = [t2] in the
pg-calculus.

» Soundness:
If T1 5 T2 in the pg-calculus,

with 71 = [t1] and T, without matching constraints,

then we have t; —» . ta with [t&] = T».

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

pg-calculus Syntax Semantics Properties Expressiveness
pg-calculus vs TGR

» Matching: the Matching rules well-behaves w.r.t. the notion
of graph homomorphism

» Completeness: If Go—»G, in a TGR, then there exist n
pg-terms Hy, ... H,, built from the TGR reduction, such that
(Hi...(Hn Go)) 4 G, with G/ homomorphic to G,

» Soundness:
If Gr(.—-Rr) ¢/ & GrH] With G, G', H, L, R term graphs and L
linear, then G[G'] —>G[H'] using the rule (L, R) in the TGR,
with H' homomorphic to H.

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

General soundness w.r.t. TGR does not hold

Consider the pg-term f((a — b)x,(a—c)x) [x = 4]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

General soundness w.r.t. TGR does not hold

Consider the pg-term f((a — b)x,(a—c)x) [x = 4]

g f(b,c)

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

General soundness w.r.t. TGR does not hold

Consider the pg-term f((a — b)x,(a—c)x) [x = 4]

=

223 f(b’ C)

In a TGR we have no corresponding reduction

f /7GR f f_ PPTGR f

OO OO

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Conclusions

Expressive capabilities of the rewriting calculus:

» p-calculus and higher-order rewriting (CRSs)

» p-calculus with graph-like structures

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

p-calculus vs CRS

» Characterisation of CRS matching and all its solutions.
» Treat CRS matching as A-calculus higher-order matching
» Translations from a CRS to simply typed A-calculus and back

» Completeness and correctness of the approach
2 uniqueness and decidability of CRS pattern matching

» Encoding of CRS derivations into the p-calculus.
» Translation function [_]
» Preservation of matching solutions

» Given a CRS-derivation ty+»g t, there exists a p-term T, built
from this derivation, such that any reduction of T terminates
and converges to [t,]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

p-calculus vs CRS: perspectives

» encoding a CRS in the p-calculus directly from its set of
rewrite rules (following [CLWO3])

» encoding the p-calculus into CRSs

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Conclusions on the pg-calculus

A generalisation of the cyclic A-calculus with matching facilities

> representation of regular infinite entities
> higher-order capabilities

» explicit matching at the object-level
> Properties: Confluence of the linear pg-calculus,

» Relation with other formalisms:

» Conservativity w.r.t. the standard p-calculus and the cyclic
A-calculus

» Simulation of first-order term-graph rewriting

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Perspectives

» Matching: generalisation to cyclic left-hand sides
» Adequacy w.r.t. an infinitary version of the p-calculus
» Implementation in TOM (http://tom.loria.fr)

» Applications: semantic web, telecom network, bio-informatics,

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

	Introduction
	-calculus
	g-calculus
	Syntax
	Semantics
	Properties
	Expressiveness

	Conclusions

