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Term rewriting systems

A tool for reasoning about computation

I composed by a set of terms T and a set of rules R
I use matching and substitutions for evaluation

Modelling addition by means of rewrite rules:

R =

{
R0 : 0 + x → x
R1 : s(x) + y → s(x + y)

Term reduction:

1+2 = s(0)+ s(s(0)) →R1 s(0+ s(s(0))) →R0 s(s(s(0))) = 3
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λ-calculus

A calculus for modeling functionality

I functions are first-class citizens

I explicit application operator

(λx .s x) (0 + s s 0) →β s (0 + s s 0)

Encoding of addition: λnp.(λfx .p f (n f x))
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Limits

Rewriting is nice, but

I the rewrite relation is difficult to control

I non-reducibility cannot be expressed syntactically

Lambda-calculus is great, but

I lacks of discrimination capabilities

I non trivial encoding of data
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Higher-order rewriting

Combination of TRS and λ-calculus

I Algebraic extensions of λ-calculus
[Breazu-Tannen, Gallier88] [Okada89]

I Term rewrite systems with abstraction
[Klop80,Nipkow90,Wolfram93]

The Combinatory Reduction Systems (crs) [Klop80]
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The rewriting calculus [Cirstea,Kirchner00]

A higher-order calculus with more explicit features

I rules are first class objects

I application is explicit

I decision of redex reduction is explicit

I results are defined at the object level

I expressiveness: λ-calculus, TRS[CLW03], objet calculi
[CKL01], crs [BCK03], . . .

I extension with explicit substitutions: the ρx-calculus [CFK04]
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From terms to term-graphs

improve efficiency

improve expressiveness

⇒ save space (sharing terms)

⇒ infinite regular data

⇒ save time (reduce only once)

structures
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letrec z = s(x) in z ∗ y + z
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1
letrec z = (1 : z) in z
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Term graph rewriting: different approaches

I implementation oriented approach (pointers, redirections)
[Barendregt et al.87],[Plump98],[Kennaway94],. . .

I categorical approach (push-out diagrams)
[CorradiniDrewes97],[Montanari,Corradini,Gadducci95], . . .

I equational representation (set of recursive equations)
[Ariola,Klop96], . . .

I Cyclic λ-calculus (λCyc) [Ariola,Klop97]
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Towards a ρ-calculus for term graphs

λ
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ρ
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Towards a ρ-calculus for term graphs

let(rec)
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Towards a ρ-calculus for term graphs

letrec

''OOOOOOO λ
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TRS
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λCyc

{{
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ρ
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ρg
##

ò Aim: define a generalised calculus to deal with

I terms with sharing and cycles and pattern matching

ò How: by means of
I recursion equations and explicit matching constraints
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Outline

ρ-calculus

ρg-calculus
Syntax
Semantics
Properties
Expressiveness

Conclusions
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The ρ-calculus syntax

Terms T ::= X (Variables)

| K (Constants)

| T _ T (Abstraction)

| T T (Application)

| T o T (Structure)

| T [T � T ] (Delayed matching constraint)

f (x) _ x a standard rewrite rule

(f (x) _ x) f (a) application of the rule f (x) _ x to the term f (a)

x [f (x) � f (a)] the term x constrained by a matching problem

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness
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The Reduction Semantics

(ρ) (T1 _ T2)T3 7→ρ T2[T1 � T3]

(σ) T2[T1 � T3] 7→σ σ(T1≺≺∅T3)(T2)

(δ) (T1 o T2) T3 7→δ T1 T3 o T2 T3

I (ρ) applying T1 _ T2 to T3 reduces to the delayed matching
constraint T2[T1 � T3]

I (σ) computes T1 ≺≺∅ T3 and applies the result σ to the the
term T2

I (δ) deals with the distributivity of the application on the
structures built with the “o” constructor

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness
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Example of ρ-reduction

I (x _ f (x)) a 7→ρ f (x)[x � a] 7→σ f (a)

I (f (x , y) _ g(x , y))) f (a, b) 7→ρ g(x , y)[f (x , y) � f (a, b)]

7→σ {a/x , b/y}g(x , y) = g(a, b)

I (f (a) _ a o f (a) _ b) f (a)

7→δ (f (a) _ a) f (a) o (f (a) _ b) f (a) 7→→ρσ a o b

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness
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The ρ-calculus syntax

Terms T ::= X (Variables)

| K (Constants)

| T _ T (Abstraction)

| T T (Application)

| T o T (Structure)

| T [T �T ] (Matching constraint)
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The ρg-calculus syntax [BBCK04]

Terms G ::= X (Variables)

| K (Constants)

| G _ G (Abstraction)

| G G (Application)

| G o G (Structure)

| G [C] (Constraint application)

Constraints C ::= ε (Empty constraint)
| X=G (Recursion equation)
| G�G (Match equation)
| C, C (Conjunction of constraints)

where “,” is ACI with neutral element ε.
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Some ρg-terms
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f (x , y) [x = g(y), y = g(x)] x [x = (1:x)]

∼ f (x , y) [y = g(x), x = g(y)]

∼ f (x , y) [y = g(x), x = g(y), ε]

Remark:

I we work on equivalence classes of terms.
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Some ρg-terms: patterns

_

  B
BB

BB

{{www
www

+

�� ��

x

s(x)

_

����
��

��;
;;

;;

i
$$

a

_

  A
AA

AA

~~||
||

|

@

!!B
BB

BB

��~~~
~~

a
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(y + y) [y = s(x)] _ s(x)

Remark:

I patterns are algebraic acyclic terms.

A ::= X | K | (((f A)A) . . .)A | A [X = A, . . . ,X = A]
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Graphical representation

I terms without constraints: trees

I terms with recursion equations

f
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x :

g

��

y :

i
zz

f (x , x) [x = g(y), y = i(y)]

I terms with match equations ?
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Graphical representation
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f (x , y) [x = h(x), y � g(a)]
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The main rules of the ρg-calculus semantics (1/3)
Basic rules:

(ρ) (G1 _ G2) G3 →ρ G2 [G1 � G3]

(δ) (G1 o G2) G3 →δ G1 G3 o G2 G3

Example:

twice

��

_ +

%% yy
x x

twice

��
i
zz

(twice(x) _ x + x) twice(z) [z = i(z)]

7→ρ x + x [twice(x) � twice(z) [z = i(z)]]
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The main rules of the ρg-calculus semantics (2/3)
Basic rules +

Matching rules:

propagate G1 � (G2 [E2]) →p G1 � G2,E2 if G1 6∈ X

decomp K (G1, . . . ,Gn) � K (G ′
1, . . . ,G

′
n) →dk G1 � G ′

1, . . . ,Gn � G ′
n

eliminate K � K ,E →e E

solved x � G ,E →s x = G ,E if x 6∈ DV(E )

Example (continue):

(twice(x) _ x + x) twice(z) [z = i(z)]
7→ρ x + x [twice(x) � twice(z) [z = i(z)]]
7→p x + x [twice(x) � twice(z), z = i(z)]
7→dk x + x [x � z , z = i(z)]
7→s x + x [x = z , z = i(z)]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness
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The main rules of the ρg-calculus semantics (3/3)

Basic rules + Matching rules +

Graph rules:

external sub Ctx[y ] [y = G ,E ] →es Ctx[G ] [y = G ,E ]

acyclic sub G [G0 �� Ctx[y ], y = G1,E ] →ac G [G0 �� Ctx[G1], y = G1,E ]
where ��∈ {=,�}

garbage G [E , x = G ′] →gc G [E ]
if x 6∈ FV(E ) ∪ FV(G )

Example:

(twice(x) _ x + x) twice(z) [z = i(z)]
7→→ρg x + x [x = z , z = i(z)]
7→→es z + z [x = z , z = i(z)]
7→→gc (z + z) [z = i(z)]

+

)) ��i
zz
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Sharing reduction strategy

Perform a step of reduction using (external sub) or (acyclic sub) if:

I it instantiates a variable in active position by an abstraction or
a structure,

x a [x = f (x) _ x ]

I or it instantiates a variable in a stuck match equation,

a [a � y , y = a]

I or it instantiates a variable by a variable.

z + z [z = x , x = 1]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness
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Multiplication example: the ρ-reduction
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(x ∗ s(y) _ x ∗ y + x) 1 ∗ s(1)

7→ρ [x ∗ s(y) � 1 ∗ s(1)] (x ∗ y + x)
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Multiplication in the ρg-calculus
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+

��

yy

∗

vv((
1

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness



Introduction ρ-calculus ρg-calculus Conclusions Syntax Semantics Properties Expressiveness

Multiplication in the ρg-calculus

∗

  @
@@

@@

��~~~
~~

x s

��
y

_ +

��~~~
~~

rr

∗

����
��

�
  @

@@
@@

x y

∗

))

��@
@@

@

s

��
1

(x ∗ s(y) _ x ∗ y + x) z ∗ s(z) [z = 1]
7→ρ x ∗ y + x [x ∗ s(y) � z ∗ s(z) [z = 1]]
7→p x ∗ y + x [x ∗ s(y) � z ∗ s(z) , z = 1]
7→→dk x ∗ y + x [x � z , y � z , z = 1]
7→→s x ∗ y + x [x=z , y=z , z = 1]
7→→es (z ∗ z + z) [x = z , y = z , z = 1]
7→→gc (z ∗ z + z) [z = 1]

+

��

yy

∗

vv((
1

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness



Introduction ρ-calculus ρg-calculus Conclusions Syntax Semantics Properties Expressiveness

Matching example - Non-linearity

Success:
f (y , y) � f (a, a)

7→dk y�a, y�a

= y�a (by idempotency)

7→s y=a

Failure:
f (x , x) � f (a, b)

7→dk x � a, x � b

The reduction is stuck: the condition x 6∈ DV(E ) is not satisfied.
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Confluence of the linear ρg-calculus [Ber05]

Any reductions starting from two joinable terms converge to two
equivalent terms.

G1

ρg �� ��

oooo
ρg∪∼

// // G2

ρg����
G ′

1 ∼ G ′
2

I Linearity: we restrict to a ρg-calculus with linear patterns.

I The congruence ∼ is induced by AC1, avoiding I .
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Non triviality of the proof

I non termination of the system.

I reductions on equivalent classes of terms.

I need of adapting and combining existing techniques

I properties of equational rewriting adapted to terms with
constraints.

I “finite developments method” of the classical λ-calculus.

I Compatibility property:

G1

o

� ρg// G2

o

G ′
1

� ρg// G ′
2
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Proof sketch (1/2)

I the Σ-rules: (δ) ∪ (external sub) ∪ (acyclic sub)

I t he τ -rules: (ρ) ∪ Matching rules ∪ (garbage)

prove CON∼ for Σ prove CON∼ for τ
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Proof sketch (1/2)

I the Σ-rules: (δ) ∪ (external sub) ∪ (acyclic sub)

I the τ -rules: (ρ) ∪ Matching rules ∪ (garbage)

prove CON∼ for Σ

''OOOOOOOOOOOOOOOO prove CON∼ for τ

wwoooooooooooooooo

deduce CON∼ for (Σ ∪ τ)
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Proof sketch (2/2)

1. CON∼ for τ : using local confluence and termination of the
relation and the compatibility property

2. CON∼ for Σ: using the finite developments method of the
λ-calculus adapted to Σ

3. CON∼ for (Σ ∪ τ): using a commutation lemma for the two
relations and the compatibility property

Theorem: The linear ρg-calculus is Church-Rosser modulo AC1.
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Expressiveness of the ρg-calculus

I Conservativity of the ρg-calculus vs ρ-calculus

I Conservativity of the ρg-calculus vs cyclic lambda

I Relationship with term graph rewriting
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Conservativity of the ρg-calculus vs ρ-calculus

I Matching: Given a matching problem T � U with T a linear
ρ-term, and a substitution σ = {x1/U1, . . . , xn/Un}.

σ(U) = T if and only if T � U 7→→M x1 = U1, . . . , xn = Un

I Completeness:
If T 7→→ρσδ T ′ in the ρ-calculus then T 7→→ρg T ′ in the ρg-calculus.

I Soundness: Given a ρ-term T .
If T 7→→ρg T ′ in the ρg-calculus and T ′ contains no constraints,
then T 7→→ρσδ T ′ in the ρ-calculus.
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Matching failures in ρ-calculus and ρg-calculus

ρ-calculus (f (a) _ b) f (c)
7→ρ b[f (a) � f (c)]

ρg-calculus (f (a) _ b) f (c)
7→ρ b [f (a) � f (c)]
7→dk b [a � c]
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Matching failures in ρ-calculus and ρg-calculus
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Conservativity of the ρg-calculus vs cyclic lambda

I Translation from a cyclic λ-term t to a ρg -term [[t]];

I Completeness:
If t1 7→→λc t2 in the cyclic λ-calculus, then [[t1]] 7→→ρg [[t2]] in the
ρg-calculus.

I Soundness:
If T1 7→→ρg T2 in the ρg-calculus,

with T1 = [[t1]] and T2 without matching constraints,

then we have t1 7→→λc t2 with [[t2]] = T2.
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ρg-calculus vs TGR

I Matching: the Matching rules well-behaves w.r.t. the notion
of graph homomorphism

I Completeness: If G0 7→→Gn in a TGR, then there exist n
ρg-terms H1, . . . ,Hn, built from the TGR reduction, such that
(H1 . . . (Hn G0)) 7→→ρg G ′

n with G ′
n homomorphic to Gn

I Soundness:
If Gd(L_R) G ′e 7→→ρg GdHe with G ,G ′,H, L,R term graphs and L
linear, then G [G ′] 7→→G [H ′] using the rule (L,R) in the TGR,
with H ′ homomorphic to H.
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General soundness w.r.t. TGR does not hold

Consider the ρg-term f ((a _ b) x , (a _ c) x) [x = a]

7→→ρg f (b, c)

In a TGR we have no corresponding reduction

f

~~  

7→TGR f

~~  

or f

~~  

7→TGR f

~~  
a b a c
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Conclusions

Expressive capabilities of the rewriting calculus:

I ρ-calculus and higher-order rewriting (crss)

I ρ-calculus with graph-like structures
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ρ-calculus vs crs

I Characterisation of crs matching and all its solutions.

I Treat crs matching as λ-calculus higher-order matching

I Translations from a crs to simply typed λ-calculus and back

I Completeness and correctness of the approach
ò uniqueness and decidability of crs pattern matching

I Encoding of crs derivations into the ρ-calculus.

I Translation function [[ ]]

I Preservation of matching solutions

I Given a crs-derivation t0 7→→R tn there exists a ρ-term T , built
from this derivation, such that any reduction of T terminates
and converges to [[tn]]
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ρ-calculus vs crs: perspectives

I encoding a crs in the ρ-calculus directly from its set of
rewrite rules (following [CLW03])

I encoding the ρ-calculus into crss
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Conclusions on the ρg-calculus

A generalisation of the cyclic λ-calculus with matching facilities

I representation of regular infinite entities

I higher-order capabilities

I explicit matching at the object-level

I Properties: Confluence of the linear ρg-calculus,

I Relation with other formalisms:

I Conservativity w.r.t. the standard ρ-calculus and the cyclic
λ-calculus

I Simulation of first-order term-graph rewriting
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Perspectives

I Matching: generalisation to cyclic left-hand sides

I Adequacy w.r.t. an infinitary version of the ρ-calculus

I Implementation in TOM (http://tom.loria.fr)

I Applications: semantic web, telecom network, bio-informatics,
. . .
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