The graph rewriting calculus: confluence and expressiveness

Clara Bertolissi

LORIA

Soutenance de thèse

October 28, 2005

伺 ト く ヨ ト く ヨ ト

Term rewriting systems

A tool for reasoning about computation

- \blacktriangleright composed by a set of terms ${\mathcal T}$ and a set of rules ${\mathcal R}$
- use matching and substitutions for evaluation

伺 ト イ ヨ ト イ ヨ ト

Term rewriting systems

A tool for reasoning about computation

- \blacktriangleright composed by a set of terms ${\mathcal T}$ and a set of rules ${\mathcal R}$
- use matching and substitutions for evaluation

Modelling addition by means of rewrite rules:

$$\mathcal{R} = \begin{cases} R_0: 0+x \rightarrow x \\ R_1: s(x)+y \rightarrow s(x+y) \end{cases}$$

Term reduction:

$$1+2 = s(0)+s(s(0)) \rightarrow_{R_1} s(0+s(s(0))) \rightarrow_{R_0} s(s(s(0))) = 3$$

伺 ト く ヨ ト く ヨ ト

λ -calculus

A calculus for modeling functionality

- functions are first-class citizens
- explicit application operator

$$(\lambda x.s x) (0+s s 0) \longrightarrow_{\beta} s (0+s s 0)$$

▲□▶ ▲ □▶ ▲ □▶

λ -calculus

A calculus for modeling functionality

- functions are first-class citizens
- explicit application operator

$$(\lambda x.s x) (0+s s 0) \longrightarrow_{\beta} s (0+s s 0)$$

Encoding of addition: $\lambda np.(\lambda fx.p f(n f x))$

伺 ト イ ヨ ト イ ヨ ト

Limits

Rewriting is nice, but

- the rewrite relation is difficult to control
- non-reducibility cannot be expressed syntactically

Lambda-calculus is great, but

- lacks of discrimination capabilities
- non trivial encoding of data

通 と く ヨ と く ヨ と

Higher-order rewriting

Combination of *TRS* and λ -calculus

- Algebraic extensions of λ-calculus [Breazu-Tannen, Gallier88] [Okada89]
- Term rewrite systems with abstraction [Klop80,Nipkow90,Wolfram93]

Higher-order rewriting

Combination of *TRS* and λ -calculus

- Algebraic extensions of λ-calculus [Breazu-Tannen, Gallier88] [Okada89]
- Term rewrite systems with abstraction [Klop80,Nipkow90,Wolfram93]
- The Combinatory Reduction Systems (CRS) [Klop80]

The rewriting calculus [Cirstea,Kirchner00]

A higher-order calculus with more explicit features

- rules are first class objects
- application is explicit
- decision of redex reduction is explicit
- results are defined at the object level

The rewriting calculus [Cirstea,Kirchner00]

A higher-order calculus with more explicit features

- rules are first class objects
- application is explicit
- decision of redex reduction is explicit
- results are defined at the object level
- expressiveness: λ-calculus, TRS[CLW03], objet calculi [CKL01], CRS [BCK03], ...
- extension with explicit substitutions: the ρ_x -calculus [CFK04]

From terms to term-graphs

improve efficiency

- \Rightarrow save space (sharing terms)
- \Rightarrow save time (reduce only once)

From terms to term-graphs

- \Rightarrow save space (sharing terms)
- \Rightarrow save time (reduce only once)

improve expressiveness

 \Rightarrow infinite regular data

structures

Term graph rewriting: different approaches

- implementation oriented approach (pointers, redirections) [Barendregt et al.87],[Plump98],[Kennaway94],...
- categorical approach (push-out diagrams) [CorradiniDrewes97],[Montanari,Corradini,Gadducci95], ...
- equational representation (set of recursive equations) [Ariola,Klop96], . . .
 - Cyclic λ -calculus (λ_{Cyc}) [Ariola,Klop97]

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

□→ < □→ < □→</p>

同 ト イ ヨ ト イ ヨ ト

- ⊃ Aim: define a generalised calculus to deal with
 - terms with sharing and cycles and pattern matching

- ⊃ Aim: define a generalised calculus to deal with
 - terms with sharing and cycles and pattern matching
- How: by means of
 - recursion equations and explicit matching constraints

Outline

ρ -calculus

ρ_g-calculus Syntax Semantics Properties Expressiveness

Conclusions

3

▲□▶ ▲ □▶ ▲ □▶

The ρ -calculus syntax

Terms
$$T$$
 ::=

 $= \mathcal{X} \qquad (Variables) \\ | \mathcal{K} \qquad (Constants) \\ | \mathcal{T} \to \mathcal{T} \qquad (Abstraction) \\ | \mathcal{T} \mathcal{T} \qquad (Application) \\ | \mathcal{T} \wr \mathcal{T} \qquad (Structure) \\ | \mathcal{T}[\mathcal{T} \ll \mathcal{T}] \qquad (Delayed matching constraint) \\ \end{cases}$

伺 ト く ヨ ト く ヨ ト

The ρ -calculus syntax

Terms
$$T ::=$$

 $\begin{array}{ll} & \mathcal{X} & (Variables) \\ | & \mathcal{K} & (Constants) \\ | & \mathcal{T} \to \mathcal{T} & (Abstraction) \\ | & \mathcal{T} \mathcal{T} & (Application) \\ | & \mathcal{T} \wr \mathcal{T} & (Structure) \\ | & \mathcal{T}[\mathcal{T} \ll \mathcal{T}] & (Delayed matching constraint) \end{array}$

 $f(x) \rightarrow x$ a standard rewrite rule $(f(x) \rightarrow x) f(a)$ application of the rule $f(x) \rightarrow x$ to the term f(a) $x[f(x) \ll f(a)]$ the term x constrained by a matching problem

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

The Reduction Semantics

- $(\rho) \quad (\mathcal{T}_1 woheadrightarrow \mathcal{T}_2)\mathcal{T}_3 \qquad \mapsto_{\rho} \qquad \mathcal{T}_2[\mathcal{T}_1 \ll \mathcal{T}_3]$
- $(\sigma) \quad \mathcal{T}_2[\mathcal{T}_1 \ll \mathcal{T}_3] \quad \mapsto_{\sigma} \quad \sigma_{(\mathcal{T}_1 \prec_{\leqslant} \mathcal{T}_3)}(\mathcal{T}_2)$
- $(\delta) \quad (\mathcal{T}_1 \wr \mathcal{T}_2) \, \mathcal{T}_3 \qquad \mapsto_{\delta} \qquad \mathcal{T}_1 \, \mathcal{T}_3 \wr \mathcal{T}_2 \, \mathcal{T}_3$
- (ρ) applying T₁ → T₂ to T₃ reduces to the delayed matching constraint T₂[T₁ ≪ T₃]
- (σ) computes $\mathcal{T}_1 \prec_{\emptyset} \mathcal{T}_3$ and applies the result σ to the the term \mathcal{T}_2
- (δ) deals with the distributivity of the application on the structures built with the "¿" constructor

Example of ρ -reduction

• $(x \rightarrow f(x)) a \mapsto_{\rho} f(x)[x \ll a] \mapsto_{\sigma} f(a)$

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

・ロット (雪) (目) (日) (日)

Example of ρ -reduction

►
$$(x \rightarrow f(x)) a \mapsto_{\rho} f(x)[x \ll a] \mapsto_{\sigma} f(a)$$

$$(f(x,y) \rightarrow g(x,y)) f(a,b) \mapsto_{\rho} g(x,y)[f(x,y) \ll f(a,b)]$$
$$\mapsto_{\sigma} \{a/x, b/y\}g(x,y) = g(a,b)$$

・ロン ・団 と ・ ヨ と ・ ヨ と

Example of ρ -reduction

►
$$(x \rightarrow f(x)) a \mapsto_{\rho} f(x)[x \ll a] \mapsto_{\sigma} f(a)$$

$$(f(x,y) \rightarrow g(x,y)) f(a,b) \mapsto_{\rho} g(x,y)[f(x,y) \ll f(a,b)]$$
$$\mapsto_{\sigma} \{a/x, b/y\}g(x,y) = g(a,b)$$

►
$$(f(a) \rightarrow a \wr f(a) \rightarrow b) f(a)$$

 $\mapsto_{\delta} (f(a) \rightarrow a) f(a) \wr (f(a) \rightarrow b) f(a) \mapsto_{\rho\sigma} a \wr b$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

The ρ -calculus syntax

Terms	T :	:=	\mathcal{X}	(Variables)
			\mathcal{K}	(Constants)
			$\mathcal{T} \twoheadrightarrow \mathcal{T}$	(Abstraction)
			T T	(Application)
			$\mathcal{T}\wr\mathcal{T}$	(Structure)
			$T[T \ll T]$	(Matching constraint)

・ロト ・回ト ・ヨト ・ヨト

The ρ_{g} -calculus syntax [BBCK04]

Terms	${\mathcal G}$::= λ	م	(Variables)	
	<i>K</i>		(Constants)	
	9	$\mathcal{G} \twoheadrightarrow \mathcal{G}$	(Abstraction)	
	9	\mathcal{G}	(Application)	
	9	$\wr \mathcal{G}$	(Structure)	
	9	[C]	(Constraint application)	

where "," is ACI with neutral element ϵ .

・ 同 ト ・ ヨ ト ・ - ヨ ト …

Some ρ_{g} -terms

$$f(x,y) [x = g(y), y = g(x)]$$

$$x [x = (1:x)]$$

Clara Bertolissi The graph rewriting calculus: confluence and expressiveness

Some ρ_{g} -terms

x [x = (1:x)]

▲□▶ ▲ □▶ ▲ □▶

-

Some ρ_{g} -terms

$$f(x, y) [x = g(y), y = g(x)] \qquad x [x = (1:x)]$$

~ $f(x, y) [y = g(x), x = g(y)]$

$$\sim f(x, y) [y = \frac{g(x)}{g(x)}, x = \frac{g(y)}{\epsilon}]$$

Remark:

we work on equivalence classes of terms.

(日) (同) (三) (三)

Some ρ_{g} -terms: patterns

$$() \\ s(x) \\ s($$

$$(y+y) [y = s(x)] \rightarrow s(x)$$

Some ρ_{g} -terms: patterns

$$(y+y) [y = s(x)] \rightarrow s(x)$$

Remark:

patterns are algebraic acyclic terms.

 $\mathcal{A} ::= \mathcal{X} \mid \mathcal{K} \mid (((f \mathcal{A}) \mathcal{A}) \dots) \mathcal{A} \mid \mathcal{A} [\mathcal{X} = \mathcal{A}, \dots, \mathcal{X} = \mathcal{A}]$

Some ρ_{g} -terms: patterns

$$(y+y) [y = s(x)] \rightarrow s(x)$$

Remark:

patterns are algebraic acyclic terms.

 $\mathcal{A} ::= \mathcal{X} \mid \mathcal{K} \mid (((f \mathcal{A}) \mathcal{A}) \dots) \mathcal{A} \mid \mathcal{A} [\mathcal{X} = \mathcal{A}, \dots, \mathcal{X} = \mathcal{A}]$

-

terms without constraints: trees

- terms without constraints: trees
- terms with recursion equations

$$\begin{array}{c} \begin{pmatrix} f \\ g \end{pmatrix} \\ x : & g \\ y : & i \\ \end{array}$$

$$f(x,x) [x = g(y), y = i(y)]$$

伺 ト く ヨ ト く ヨ ト

- terms without constraints: trees
- terms with recursion equations

$$\begin{array}{c} \begin{pmatrix} f \\ g \end{pmatrix} \\ y : & \downarrow \\ i \end{array}$$

$$f(x,x) [x = g(y), y = i(y)]$$

terms with match equations ?

同 ト イ ヨ ト イ ヨ ト

$$f(x,y) [x = h(x), y \ll g(a)]$$

<ロ> <同> <同> < 回> < 回>

(1/3)

The main rules of the $\rho_{\rm g}$ -calculus semantics Basic rules:

$$\begin{array}{ll} (\rho) & (G_1 \rightarrow G_2) \ G_3 & \rightarrow_{\rho} & G_2 \ [G_1 \ll G_3] \\ (\delta) & (G_1 \wr G_2) \ G_3 & \rightarrow_{\delta} & G_1 \ G_3 \wr G_2 \ G_3 \end{array}$$

Example:

 $(twice(x) \rightarrow x+x) twice(z) [z = i(z)]$

- 4 同 2 4 回 2 4 回 2 4

(1/3)

The main rules of the $\rho_{\rm g}$ -calculus semantics Basic rules:

$$\begin{array}{ll} (\rho) & (G_1 \rightarrow G_2) \ G_3 & \rightarrow_{\rho} & G_2 \ [G_1 \ll G_3] \\ (\delta) & (G_1 \wr G_2) \ G_3 & \rightarrow_{\delta} & G_1 \ G_3 \wr G_2 \ G_3 \end{array}$$

Example:

$$(twice(x) \rightarrow x+x) \quad twice(z) \quad [z = i(z)]$$

$$\mapsto_{\rho} \quad x+x \quad [twice(x) \ll twice(z) \quad [z = i(z)]]$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

The main rules of the $\rho_{\rm g}$ -calculus semantics BASIC RULES +

(2/3)

MATCHING RULES:

▲□▶ ▲ □▶ ▲ □▶

The main rules of the $\rho_{\rm g}$ -calculus semantics (2/3) BASIC RULES +

MATCHING RULES:

propagate	$G_1 \ll (G_2 \ [E_2])$	\rightarrow_{p}	$G_1 \ll G_2, E_2$	if $G_1 \not\in \mathcal{X}$
decomp	$K(G_1,\ldots,G_n) \ll K(G'_1,\ldots,G'_n)$	→dk	$G_1 \ll G_1', \ldots$	$, G_n \ll G'_n$
eliminate	$K \ll K, E$	\rightarrow_{e}	Ε	
solved	$x \ll G, E$	\rightarrow_{s}	x = G, E if	$f x \notin \mathcal{DV}(E)$

Example (continue):

$$\begin{array}{rcl} (\textit{twice}(x) & \rightarrow & x+x) & \textit{twice}(z) & [z=i(z)] \\ \mapsto_{\rho} & x+x & [\textit{twice}(x) & \ll & \textit{twice}(z) & [z=i(z)]] \end{array}$$

(4月) (日) (日)

The main rules of the $\rho_{\rm g}$ -calculus semantics (2/3) BASIC RULES +

MATCHING RULES:

propagate	$G_1 \ll (G_2 \ [E_2])$	\rightarrow_{p}	$G_1 \ll G_2, E_2$	if $G_1 ot\in \mathcal{X}$
decomp	$K(G_1,\ldots,G_n) \ll K(G'_1,\ldots,G'_n)$	→dk	$G_1 \ll G_1', \ldots$	$, G_n \ll G'_n$
eliminate	$K \ll K, E$	\rightarrow_{e}	Ε	
solved	$x \ll G, E$	\rightarrow_{s}	x = G, E if	$x \notin \mathcal{DV}(E)$

Example (continue):

$$\begin{array}{rcl} (twice(x) & \rightarrow & x+x) & twice(z) & [z=i(z)] \\ \mapsto_{\rho} & x+x & [twice(x) \ll & twice(z) & [z=i(z)]] \\ \mapsto_{\rho} & x+x & [twice(x) \ll & twice(z), & z=i(z)] \\ \mapsto_{dk} & x+x & [x \ll z, & z=i(z)] \\ \mapsto_{s} & x+x & [x=z, & z=i(z)] \end{array}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

The main rules of the ρ_{g} -calculus semantics

Basic rules + Matching rules +

GRAPH RULES:

-

(3/3)

The main rules of the ρ_{g} -calculus semantics

Basic rules + Matching rules +

GRAPH RULES:

 $\begin{array}{lll} \mbox{external sub} & \mbox{Ctx}[y] \; [y = G, E] & \longrightarrow_{es} & \mbox{Ctx}[G] \; [y = G, E] \\ \mbox{acyclic sub} & G \; [G_0 \lll \mbox{Ctx}[y], y = G_1, E] & \rightarrow_{ac} & G \; [G_0 \lll \mbox{Ctx}[G_1], y = G_1, E] \\ \mbox{where} & \ensuremath{\ll} \in \{=, \ll\} \\ \mbox{garbage} & G \; [E, x = G'] & \rightarrow_{gc} & G \; [E] \\ & \mbox{if } x \notin \mathcal{FV}(E) \cup \mathcal{FV}(G) \end{array}$

Example:

$$(twice(x) \implies x+x) \ twice(z) \ [z=i(z)]$$
$$\mapsto_{\mathcal{F}} x+x \ [x = z, \ z=i(z)]$$

The main rules of the ρ_{g} -calculus semantics

Basic rules + Matching rules +

GRAPH RULES:

 $\begin{array}{lll} \mbox{external sub} & \mbox{Ctx}[y] \; [y = G, E] & \rightarrow_{\mbox{es}} & \mbox{Ctx}[G] \; [y = G, E] \\ \mbox{acyclic sub} & G \; [G_0 \lll \mbox{Ctx}[y], y = G_1, E] & \rightarrow_{\mbox{ac}} & G \; [G_0 \lll \mbox{Ctx}[G_1], y = G_1, E] \\ \mbox{where} & \mbox{wee} \in \{=, \ll\} \\ \mbox{garbage} & G \; [E, x = G'] & \rightarrow_{\mbox{gc}} & G \; [E] \\ & \mbox{if } x \notin \mathcal{FV}(E) \cup \mathcal{FV}(G) \end{array}$

Example:

$$(twice(x) \implies x+x) \ twice(z) \ [z=i(z)]$$

$$\mapsto_{gc} x+x \ [x = z, \ z=i(z)]$$

$$\mapsto_{gc} (z+z) \ [z=i(z)]$$

(3/3)

・ロト ・同ト ・ヨト ・ヨト

Sharing reduction strategy

Perform a step of reduction using (external sub) or (acyclic sub) if:

 it instantiates a variable in active position by an abstraction or a structure,

$$x a [x = f(x) \rightarrow x]$$

or it instantiates a variable in a stuck match equation,

$$a [a \ll y, y = a]$$

or it instantiates a variable by a variable.

$$z + z \ [\mathbf{z} = \mathbf{x}, x = 1]$$

Multiplication example: the ρ -reduction

$$(x * s(y) \implies x * y + x) \quad 1 * s(1)$$

$$\mapsto_{p} \quad [x * s(y) \ll 1 * s(1)] \quad (x * y + x)$$

$$\mapsto_{\sigma} \quad \{1/x, 1/y\}(x * y + x)$$

$$= \quad 1 * 1 + 1$$

Multiplication in the $\rho_{\rm g}$ -calculus

$$(x * s(y) \rightarrow x * y + x) z * s(z) [z = 1]$$

Multiplication in the $\rho_{\rm g}$ -calculus

$$(x * s(y) \rightarrow x * y + x) z * s(z) [z = 1]$$

$$\mapsto_{\rho} x * y + x [x * s(y) \ll z * s(z) [z = 1]]$$

$$\mapsto_{\rho} x * y + x [x * s(y) \ll z * s(z), z = 1]$$

$$\mapsto_{dk} x * y + x [x \ll z, y \ll z, z = 1]$$

$$\mapsto_{s} x * y + x [x = z, y = z, z = 1]$$

$$\mapsto_{es} (z * z + z) [x = z, y = z, z = 1]$$

$$\mapsto_{gc} (z * z + z) [z = 1]$$

Matching example - Non-linearity

Success:

$$f(y,y) \ll f(a,a)$$

 $\mapsto_{s} y = a$

Failure:

$$f(x,x) \ll f(a,b)$$

 $\rightarrow_{dk} \quad x \ll a, x \ll b$

The reduction is stuck: the condition $x \notin DV(E)$ is not satisfied.

-

Confluence of the linear ρ_{g} -calculus [Ber05]

Any reductions starting from two joinable terms converge to two equivalent terms.

- Linearity: we restrict to a ρ_{g} -calculus with linear patterns.
- The congruence \sim is induced by *AC*1, avoiding *I*.

Non triviality of the proof

- non termination of the system.
- reductions on equivalent classes of terms.
- need of adapting and combining existing techniques
 - properties of equational rewriting adapted to terms with constraints.
 - "finite developments method" of the classical λ -calculus.
 - Compatibility property:

Proof sketch (1/2)

- ► the Σ -rules: (δ) \cup (external sub) \cup (acyclic sub)
- ▶ t he τ -rules: (ρ) \cup MATCHING RULES \cup (garbage)

prove \textit{CON}_{\sim} for Σ

prove \textit{CON}_{\sim} for au

Proof sketch (1/2)

- ▶ the Σ -rules: (δ) \cup (external sub) \cup (acyclic sub)
- the τ -rules: $(\rho) \cup$ MATCHING RULES \cup (garbage)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Proof sketch (2/2)

- 1. CON_{\sim} for τ : using *local confluence* and *termination* of the relation and the *compatibility* property
- 2. CON $_{\sim}$ for Σ : using the *finite developments* method of the λ -calculus adapted to Σ
- 3. CON_{\sim} for $(\Sigma \cup \tau)$: using a *commutation* lemma for the two relations and the *compatibility* property

・ 同 ト ・ ヨ ト ・ - ヨ ト …

Proof sketch (2/2)

- 1. CON_{\sim} for τ : using *local confluence* and *termination* of the relation and the *compatibility* property
- 2. CON $_{\sim}$ for Σ : using the finite developments method of the $\lambda\text{-calculus}$ adapted to Σ
- 3. CON_{\sim} for $(\Sigma \cup \tau)$: using a *commutation* lemma for the two relations and the *compatibility* property

Theorem: The linear ρ_{g} -calculus is *Church-Rosser* modulo *AC*1.

Expressiveness of the $\rho_{\rm g}$ -calculus

- Conservativity of the ρ_{g} -calculus vs ρ -calculus
- Conservativity of the \(\rho_g\)-calculus vs cyclic lambda
- Relationship with term graph rewriting

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Conservativity of the ρ_{g} -calculus vs ρ -calculus

• Matching: Given a matching problem $T \ll U$ with T a linear ρ -term, and a substitution $\sigma = \{x_1/U_1, \dots, x_n/U_n\}$.

 $\sigma(U) = T$ if and only if $T \ll U \mapsto M x_1 = U_1, \dots, x_n = U_n$

Conservativity of the $\rho_{\rm g}$ -calculus vs ρ -calculus

• Matching: Given a matching problem $T \ll U$ with T a linear ρ -term, and a substitution $\sigma = \{x_1/U_1, \dots, x_n/U_n\}$.

 $\sigma(U) = T \text{ if and only if } T \ll U \rightarrowtail_{\mathcal{M}} x_1 = U_1, \dots, x_n = U_n$

- Completeness: If $T \mapsto_{\rho\sigma} T'$ in the ρ -calculus then $T \mapsto_{\rho g} T'$ in the ρ_g -calculus.
- Soundness: Given a ρ-term T. If T →_{ρg} T' in the ρ_g-calculus and T' contains no constraints, then T →_{ρδ} T' in the ρ-calculus.

Matching failures in ρ -calculus and ρ_{g} -calculus

 $\begin{array}{ll} \rho \text{-calculus} & (f(a) \rightarrow b) \ f(c) \\ \mapsto_{\rho} & b[f(a) \ll f(c)] \end{array}$

伺 と く ヨ と く ヨ と

Matching failures in ρ -calculus and ρ_{g} -calculus

$$\begin{array}{ll} \rho \text{-calculus} & (f(a) \rightarrow b) \ f(c) \\ \mapsto_{\rho} & b[f(a) \ll f(c)] \end{array}$$

$$\begin{array}{ll} \rho_{g}\text{-calculus} & (f(a) \rightarrow b) \ f(c) \\ \mapsto_{\rho} & b \ [f(a) \ll f(c)] \\ \mapsto_{dk} & b \ [a \ll c] \end{array}$$

伺 ト イヨト イヨト

Conservativity of the ρ_{g} -calculus vs cyclic lambda

Translation from a cyclic λ-term t to a ρ_g-term [t];

Completeness:

If $t_1 \mapsto_{\lambda c} t_2$ in the cyclic λ -calculus, then $[t_1] \mapsto_{\beta g} [t_2]$ in the ρ_g -calculus.

Soundness:

If $T_1 \mapsto_{\mathcal{T}_g} T_2$ in the ρ_g -calculus, with $T_1 = \llbracket t_1 \rrbracket$ and T_2 without matching constraints, then we have $t_1 \mapsto_{\lambda_c} t_2$ with $\llbracket t_2 \rrbracket = T_2$.

$\rho_{\rm g}\text{-}{\rm calculus}$ vs TGR

- Matching: the Matching rules well-behaves w.r.t. the notion of graph homomorphism
- ► Completeness: If $G_0 \mapsto G_n$ in a *TGR*, then there exist *n* ρ_g -terms H_1, \ldots, H_n , built from the *TGR* reduction, such that $(H_1 \ldots (H_n G_0)) \mapsto_{\mathcal{H}_S} G'_n$ with G'_n homomorphic to G_n

Soundness:

If $G_{\lceil (L \to R) \ G' \rceil} \mapsto_{\mathcal{H}} G_{\lceil H \rceil}$ with G, G', H, L, R term graphs and L linear, then $G[G'] \mapsto G[H']$ using the rule (L, R) in the TGR, with H' homomorphic to H.

General soundness *w.r.t.* TGR does not hold

Consider the ho_{g} -term

$$f((a \rightarrow b) x, (a \rightarrow c) x) [x = a]$$

(日) (同) (三) (三)

General soundness *w.r.t.* TGR does not hold

Consider the
$$\rho_{g}$$
-term $f((a \rightarrow b) x, (a \rightarrow c) x) [x = a]$
 $\mapsto_{fg} f(b, c)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General soundness *w.r.t.* TGR does not hold

Consider the
$$\rho_{g}$$
-term $f((a \rightarrow b) x, (a \rightarrow c) x) [x = a]$
 $\mapsto_{fg} f(b, c)$

In a TGR we have no corresponding reduction

同 ト イ ヨ ト イ ヨ ト

Conclusions

Expressive capabilities of the rewriting calculus:

ρ-calculus and higher-order rewriting (CRS_s)

• ρ -calculus with graph-like structures

伺 ト イ ヨ ト イ ヨ ト

ρ -calculus vs CRS

- ► Characterisation of CRS matching and all its solutions.
 - Treat CRS matching as λ -calculus higher-order matching
 - \blacktriangleright Translations from a $_{\rm CRS}$ to simply typed $\lambda\text{-calculus}$ and back
 - Completeness and correctness of the approach
 Uniqueness and decidability of CRS pattern matching
- Encoding of CRS derivations into the ρ -calculus.
 - ► Translation function [_]
 - Preservation of matching solutions
 - Given a CRS-derivation t₀ → R t_n there exists a ρ-term T, built from this derivation, such that any reduction of T terminates and converges to [[t_n]]

 ρ -calculus vs CRS: perspectives

- encoding a CRS in the ρ-calculus directly from its set of rewrite rules (following [CLW03])
- encoding the *ρ*-calculus into CRSs

通 と く ヨ と く ヨ と

Conclusions on the $\rho_{\rm g}$ -calculus

A generalisation of the cyclic λ -calculus with matching facilities

- representation of regular infinite entities
- higher-order capabilities
- explicit matching at the object-level
- Properties: Confluence of the linear ρ_{g} -calculus,
- Relation with other formalisms:
 - Conservativity w.r.t. the standard ρ-calculus and the cyclic λ-calculus
 - Simulation of first-order term-graph rewriting

Perspectives

- Matching: generalisation to cyclic left-hand sides
- Adequacy w.r.t. an infinitary version of the ρ-calculus
- Implementation in TOM (http://tom.loria.fr)
- Applications: semantic web, telecom network, bio-informatics, ...

- 同下 - 三下 - 三下 - -