
HAL Id: tel-00010650
https://theses.hal.science/tel-00010650

Submitted on 17 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emergence of Oriented Circuits driven by Synaptic
Pruning associated with Spike-Timing-Dependent

Plasticity (STDP)
Javier Iglesias

To cite this version:
Javier Iglesias. Emergence of Oriented Circuits driven by Synaptic Pruning associated with Spike-
Timing-Dependent Plasticity (STDP). Neurons and Cognition [q-bio.NC]. Université Joseph-Fourier
- Grenoble I, 2005. English. �NNT : �. �tel-00010650�

https://theses.hal.science/tel-00010650
https://hal.archives-ouvertes.fr

Faculté des Sciences

Emergence of Oriented Circuits
driven by Synaptic Pruning associated

with Spike-Timing-Dependent Plasticity (STDP)

Emergence de circuits neuromimétiques orientés
sous l’effet de l’épissage associé à la plasticité synaptique

à modulation temporelle relative (STDP)

Thèse de doctorat

présentée à

la Faculté des Sciences de
l’Université de Lausanne

l’Université Grenoble I Joseph Fourier
Neurosciences - Neurobiologie

par

Javier Iglesias

Diplômé en Biologie
Université de Lausanne

Jury
Prof. François Grize, Président
Dr. Brigitte Quenet, Rapporteur

Prof. Juan Manuel Moreno Arostegui, Rapporteur
Prof. Marco Tomassini, Codirecteur de thèse

Prof. Alessandro E.P. Villa, Codirecteur de thèse
Dr. Jean-Francois Vibert, Expert

Lausanne et Grenoble
2005

iii

iv

to my parents

Maria Esther and Fernando

who know the price
of every single page

vi

vii

Emergence of Oriented Circuits driven by Synaptic Pruning

associated with Spike-Timing-Dependent Plasticity (STDP)

Javier Iglesias

inforge – Institut d’Informatique et Organisation, Université de Lausanne

Laboratoire de Neurosciences Précliniques – inserm u318, Université Grenoble 1

Massive synaptic pruning following over-growth is a general feature of mammalian brain

maturation. Pruning starts near time of birth and is completed by time of sexual maturation.

Trigger signals able to induce synaptic pruning could be related to dynamic functions that

depend on the timing of action potentials. Spike-timing-dependent synaptic plasticity (stdp) is

a change in the synaptic strength based on the ordering of pre– and postsynaptic spikes. The

relation between synaptic efficacy and synaptic pruning suggests that the weak synapses may be

modified and removed through competitive “learning” rules. This plasticity rule might produce

the strengthening of the connections among neurons that belong to cell assemblies characterized

by recurrent patterns of firing. Conversely, the connections that are not recurrently activated

might decrease in efficiency and eventually be eliminated.

The main goal of our study is to determine whether or not, and under which conditions,

such cell assemblies may emerge out of a locally connected random network of integrate-and-fire

units distributed on a 2D lattice receiving background noise and content-related input organized

in both temporal and spatial dimensions. The originality of our study stands on the relatively

large size of the network, 10,000 units, the duration of the experiment, 106 time units (one time

unit corresponding to the duration of a spike), and the application of an original bio-inspired

stdp modification rule compatible with hardware implementation.

A first batch of experiments was performed to test that the randomly generated connectivity

and the stdp-driven pruning did not show any spurious bias in absence of stimulation. Among

other things, a scale factor was approximated to compensate for the network size on the ac-

tivity. Networks were then stimulated with the spatiotemporal patterns. The analysis of the

connections remaining at the end of the simulations, as well as the analysis of the time series

resulting from the interconnected units activity, suggest that feed-forward circuits emerge from

the initially randomly connected networks by pruning.

viii

ix

Émergence de circuits neuromimétiques orientés

sous l’effet de l’épissage associé à la plasticité synaptique

à modulation temporelle relative (STDP)

Javier Iglesias

inforge – Institut d’Informatique et Organisation, Université de Lausanne

Laboratoire de Neurosciences Précliniques – inserm u318, Université Grenoble 1

L’élagage massif des synapses après une croissance excessive est une phase normale de la ma-

turation du cerveau des mammifères. L’élagage commence peu avant la naissance et est complété

avant l’âge de la maturité sexuelle. Les facteurs déclenchants capables d’induire l’élagage des

synapses pourraient être liés à des processus dynamiques qui dépendent de la temporalité rela-

tive des potentiels d’actions. La plasticité synaptique à modulation temporelle relative (stdp)

correspond à un changement de la force synaptique basé sur l’ordre des décharges pré– et post-

synaptiques. La relation entre l’efficacité synaptique et l’élagage des synapses suggère que les

synapses les plus faibles pourraient être modifiées et retirées au moyen d’une règle “d’appren-

tissage” faisant intervenir une compétition. Cette règle de plasticité pourrait produire le ren-

forcement des connexions parmi les neurones qui appartiennent à une assemblée de cellules

caractérisée par des motifs de décharge récurrents. A l’inverse, les connexions qui ne sont pas

activées de façon récurrente pourraient voir leur efficacité diminuée et être finalement éliminées.

Le but principal de notre travail est de déterminer s’il serait possible, et dans quelles

conditions, que de telles assemblées de cellules émergent d’un réseau d’unités integrate-and-

fire connectées aléatoirement et distribuées à la surface d’une grille bidimensionnelle recevant à

la fois du bruit et des entrées organisées dans les dimensions temporelle et spaciale. L’originalité

de notre étude tient dans la taille relativement grande du réseau, 10’000 unités, dans la durée des

simulations, 1 million d’unités de temps (une unité de temps correspondant à une milliseconde),

et dans l’utilisation d’une règle stdp originale compatible avec une implémentation matérielle.

Une première série d’expériences a été effectuée pour tester que la connectivité produite

aléatoirement et que l’élagage dirigé par stdp ne produisaient pas de biais en absence de stimu-

lation extérieure. Entre autres choses, un facteur d’échelle a pu être approximé pour compenser

l’effet de la variation de la taille du réseau sur son activité. Les réseaux ont ensuite été stimulés

avec des motifs spatiotemporels. L’analyse des connexions se maintenant à la fin des simulations,

ainsi que l’analyse des séries temporelles résultantes de l’activité des neurones, suggèrent que

des circuits feed-forward émergent par l’élagage des réseaux initiallement connectés au hasard.

x

Adresses

Président
Prof. François Grize
École des Hautes Études Commerciales
Bâtiment de la Faculté des Sciences Humaines 1
Université de Lausanne
CH-1015 Lausanne

Rapporteur
Dr. Brigitte Quenet
École Supérieure de Physique et de Chimie Industrielles
Bâtiment C
10, rue Vauquelin
FR-75231 Paris Cedex 5

Rapporteur
Prof. Juan Manuel Moreno Aróstegui
Universitat Politècnica de Catalunya
Departament d’Enginyeria Electrònica
Edifici C4, Campus Nord, Gran Capità s/n
ES-08034 Barcelona

Codirecteur de Thèse
Prof. Marco Tomassini
INFORGE – Institut d’Informatique et Organisation
Collège Propédeutique 1
CH-1015 Lausanne

Codirecteur de Thèse
Prof. Alessandro E.P. Villa
Laboratoire de Neurosciences Précliniques – inserm u318
Pavillon B - CHU
BP 217
FR-38043 Grenoble Cedex 9

Expert
Dr. Jean-François Vibert
b3e esim inserm u707
Faculté de Médecine Saint-Antoine
27, rue Chaligny
FR-75571 Paris Cedex 12

xi

xii

Liste des publications

Iglesias J., Eriksson J., Pardo B., Tomassini M., Villa A.E.P. Stimulus-Driven Unsupervised
Pruning in Large Neural Networks, in proceedings of BV&Ai 2005, Lecture Notes in Com-
puter Science, LNCS 3704:59-68, 2005.

Moreno J.M., Eriksson J., Iglesias J., Villa A.E.P. Implementation of Biologically Plausible
Spiking Neural Networks Models on the poetic Tissue, in proceedings of ICES 2005,
Lecture Notes in Computer Science, LNCS 3637:188, 2005.

Iglesias J., Eriksson J., Pardo B., Tomassini M., Villa A.E.P. Emergence of Oriented Cell Assem-
blies Associated with Spike-Timing-Dependent Plasticity, in ICANN 2005, Lecture Notes
in Computer Science, LNCS 3696:127–32, 2005.

Iglesias J., Eriksson J., Grize F., Tomassini M., Villa A.E.P. Dynamics of Pruning in Simulated
Large-Scale Spiking Neural Networks, Biosystems, 79(1-3):11-20, 2005.

Villa A.E.P., Tetko I.V., Iglesias J. Computer Assisted Neurophysiological Analysis of Cell As-
semblies, Neurocomputing, 38-40:1025–30, 2001.

Villa A.E.P., Tetko I.V., Iglesias J., Filipov D. Transdisciplinary approach to scientific data
analysis through Internet, in Transdisciplinarity: Joint Problem-Solving among Science,
Technology and Society? (Häberli R., Scholz R.W., Bill A., Welti M. Eds.), Haffmans
Sachbuch Verlag Zürich, 550-5, 2000

xiii

Liste des conférences et des présentations

European Conference on Evolvable Systems (ices 2005), September, 12–14, 2005. presentation,
Sitges (Barcelona), Spain.

International Conference on Artificial Neural Networks (icann 2005), September 11–15, 2005.
Oral presentation, Warsaw, Poland.

6th International Neural Coding Workshop (ncws 2005), August 23–28, 2005. Oral presentation,
Marburg, Germany.

Federation of European Neuroscience Societies (fens Forum 2004), July 10–14, 2004. Poster
presentation, Lisboa, Portugal.

Workshop: Nonlinear dynamics and noise in biological systems, April 19–21, 2004. Oral presen-
tation, Torino, Italy.

International School: Does noise simplify or complicate the dynamics of nonlinear systems?,
April 13–17, 2004. Poster presentation, Torino, Italy.

Second International Conference on Multimedia and Information and Communication Technolo-
gies in Eduction (m-icte 2003), December 3–6, 2003. Poster presentation, Badajoz, Spain.

5th International Neural Coding Workshop (ncws 2003), September 20–25, 2003. Poster pre-
sentation, Aulla, Italy.

EU Advanced Course in Computational Neurosciences 2003, August 11 - September 5, 2003.
Oral presentation, Obidos, Portugal.

Federation of European Neuroscience Societies (fens Forum 2002), July 13–17, 2002. Poster
presentation, Paris, France.

Information Science Technology meeting (ist 2002), November 4–6, 2002. Poster presentation,
Copenhaguen, Denmark.

4th International Neural Coding Workshop (ncws 2001), September 10–14, 2001. Poster pre-
sentation, Plymouth, UK.

31st Annual General Meeting of the European Brain and Behaviour Society (ebbs 1999),
September 29 - October 3, 1999. Poster presentation, Roma, Italy.

xiv

Preface

With logic, one can go from A to B.
With imagination, one goes anywhere.

– Albert Einstein

Óbidos, August 2003. It’s a warm evening in the medieval village located north of Lisbon,
Portugal. We are having a drink under a weeping willow after spending the day at the European
Union Advanced Course in Computational Neuroscience. Rudy Guyonneau, a fellow student,
suggests an intriguing theory:

“ What if the brain were just a silly device,

equipped with a security mechanism

that starts producing chaotic patterns of activity

as soon as we try to reverse-engineer it? ”

I have the conviction that we come closer to unraveling the neural code when we mutually
exchange knowledge across the artificial barriers of scientific fields. Together, physiologists,
mathematicians, chemists, engineers, . . . can meet the bet of deducing how the brain performs,
with the only help coming from the concepts and artifacts our own (collective) (cyber-)brains
can produce. Only 116 years elapsed since Santiago Ramón y Cajal argued that nerve cells are
independent elements, and 57 years since the announcement of the transistor invention by Bell
Labs and there is plenty of room for progress in the field of computational neuroscience. The
present work marks the beginning of my own modest contribution to this endeavour.

Acknowlegements

Beside the transdisciplinary approach of my research, I happen to be involved in a multicultural
scientific and social environment. This acknowledgement section is therefore written in several
languages: what is the sense of thanking people in a language they do not fully understand and
that I do not master anyway?

To Prof. Alessandro E.P. Villa who has been my guide and tutor for the last few years,
pushing me constantly to work harder and better. I hope I have deserved all the time and
energy he spent helping me to find my way into Science.

To Prof. Marco Tomassini for proposing to a young biologist a position in a computer science
research group, and thus giving me the opportunity to realize this transdisciplinary journey.

xv

xvi

To Prof. François Grize, president of the jury, who challenged me to undertake the respon-
sibility of the computing equipement for the group, and provided me the thrust and support
needed to accomplish this task to the point that everyone thinks I am useless.

I would like to thank the jury members, Dr. Brigitte Quenet, Prof. Juan Manuel Moreno
Arostegui, and Dr. Jean-François Vibert, for accepting to review and critically comment my
work despite the tight schedule and the additional paperwork imposed by the joint Ph.D. pro-
gramme. I am really proud that you recognized me as a colleague.

To Prof. L.B. Kier from the Virginia Commonwealth University, Richmond (VA), who
happened to visit Prof. Tomassini during summer 2005, just in time to read, correct the spelling,
and comment this document. He deserves many thanks for his contribution as well as the kind
comments that came along with the corrections.

To Dr. Jan Eriksson, Dr. Yoshiyuki Asai, Dr. Roberta Sirovich and Dr. Sean Hill for
their direct or indirect contributions to my scientific work. I would like to thank collectively the
numerous scientists that commented my work during the workshops, poster sessions, and other
scientific manifestations. My path has been perceptibly deflected at their contact.

The work discussed in this document would not have been possible without the help of an
army of devoted and gifted coding hands, giving their work away for free. The resources of
about 50 different open source projects have been put together to interact into this research
project. I am indepted to the Open Source community as a whole, and I see no other way to
thank it, than to continue to contribute my work, hoping that the culture of meritocracy and
open standards will finally rule the world of software. Who knows? maybe other human fields
of activity could be enlighted by that time.

À Madame Elisabeth Fournier Pulfer pour son aide dans les démarches administratives et
son soutien tout au long de mon engagement à l’IIS/Inforge. Et c’est pas encore fini !

À Messieurs Michel Schüpbach, Julien Gianotti et Gill Cordey qui furent mes compagnons sur
la Grande Galère des Ressources Informatiques de l’Institut. Ensemble, nous avons réussi, non
sans mal, à faire d’une épave en perdition une petite embarcation grinçante mais téméraire. Une
transformation périlleuse qu’il nous a fallu obtenir tout en naviguant. Qu’ils soient remerciés
ici pour leur aide par le passé et pour continuer à faire flotter l’engin et péréniser ainsi mon
investissement.

À tous ceux qui ont supporté (ou supportent encore) mes bruits incongrus dans le bureau
commun : Laurent Bucher, Mathieu Perrenoud, Jonathan Jaccard, Dr. Mario Giacobini, Marc
Mercier, Christian Darabos, ainsi que les autres assistants répartis dans les bureaux annexes
du Collège Propédeutique 1 : Dr. Leonardo Vanneschi, Leslie Luthi et Denis Rochat. S’ils ont
subi ma présence et mes absences ces dernières années, j’espère qu’ils sont conscients que nos
échanges et leurs questions m’ont permis, d’une manière ou d’une autre, d’acquérir un savoir-faire
informatique qui m’est précieux aujourd’hui, justifiant ainsi mon approche transdisciplinaire.
Même si ce n’est pas évident au jour le jour, j’ai été ravi de me mettre à leur service pendant
ces quelques années. J’aimerais remercier ici collectivement les équipes de l’U318 et de l’Inforge
dans leur ensemble pour m’avoir accueilli.

À Monsieur Gérald Marcel Savary pour son incroyable patience face à un garnement indis-
cipliné et maladivement décalé. Les problèmes administratifs liés à la cotutelle furent admira-
blement démêlés par Madame Jeanine DiMarco du secrétariat de l’Ecole Doctorale Chimie et
Sciences du Vivant, ainsi que Mesdames Elisabeth Perrin et Céline Legrenzi du secrétariat du
Collège Doctoral de l’Université Grenoble 1 Joseph Fourier. Je n’aurais pu tracer mon chemin
au travers de la jungle administrative française sans l’aide de ces trois anges gardiens. Qu’elles
soient ici chaleureusement remerciées pour la patience qu’elles ont su montrer à mon égard.

xvii

À mon épouse, Denise Anja Hayward Iglesias, pour avoir relu et corrigé ce document à
plusieurs reprises ; pour avoir suggéré les améliorations de structure et de forme nécessaires ;
pour avoir supporté pendant quatre ans la vie complexe et futile, ponctuée de doutes et de coups
de blues, du docteur en devenir ; pour avoir accepté de m’accompagner dans la vie inconfortable
que nécessite le parcours académique. Merci de tout mon coeur pour savoir être là et pour me
laisser en faire autant.

À mes amis les plus chers, Laurent Burgbacher et Jacques Beaud, qui continuent à me
parler, à mon grand étonnement, malgré les “ça va pas être possible” qui n’ont pas manqué ces
dernières années. Si je n’ai pas été suffisamment disponible, vous avez su, par votre présence,
me donner l’élan nécessaire. Il est rare, semblerait-il, de rencontrer des personnes véritablement,
fondamentalement talentueuses. Alors en rencontrer deux. . .

A mis padres, Maria Esther y Fernando Iglesias quien, año tras año, siempre me han acompa-
ñado en mis empresas las mas ambiciosas. No solo les debo la vida, claro, que también les debo
de haberme enseñado a escoger las soluciones justas (usualmente complicadas), la abnegación,
y el valor del trabajo bien hecho. Les doy las gracias por haberme transmitido estos valores,
aunque no sean caracteres genéticos.

Javier Iglesias
Lausanne, 9 octobre 2005

xviii

Résumé

Il est très difficile de trouver
un chat noir dans une pièce sombre,

surtout s’il n’y est pas.

– Stéphane Belloc

L’élagage massif des synapses est une propriété générale des cerveaux des mammifères (Ra-

kic et al., 1986). L’élagage commence peu avant la naissance et est complété avant l’âge de la

maturité sexuelle. Les signaux déclanchants capables d’induire l’élagage des synapses pourraient

être liés à des fonctions dynamiques qui dépendent du moment des potentiels d’action. La plas-

ticité synaptique à modulation temporelle relative (Spike-Timing Dependent synaptic Plasticity

– stdp) est un changement de la force des synapses basé sur l’ordre pré– et postsynaptique des

potentiels d’action. La relation entre l’efficacité synaptique et l’élagage des synapses (Chechik

et al., 1999; Mimura et al., 2003) suggère que les synapses les plus faiblement efficaces pourraient

être modifiées et éliminées au moyen de règles «d’apprentissage» compétitives. Une telle règle de

plasticité entrâınerait le renforcement des connexions entre les neurones qui appartiennent à des

groupes de cellules caractérisés par des motifs récurrents de décharges. Ces groupes particuliers

seront définis «assemblées de cellules». Inversement, l’efficacité des connexions qui ne sont pas

activées de façon récurrente pourrait décrôıtre et ces connexions seraient finalement éliminées.

Le but principal de notre travail est de déterminer s’il est possible, et sous quelles conditions,

que de telles assemblées de cellules puissent émerger d’un réseau d’unités integrate-and-fire

distribuées sur une grille bidimensionnelle et connectées localement de manière aléatoire, alors

qu’elles sont caractérisées par une activité spontanée et reçoivent des afférences organisées à

la fois dans les dimensions spatiale et temporelle. L’originalité de notre travail se trouve dans

la taille relativement grande du réseau (10’000 unités), la durée des expériences (106 unités de

temps, où une unité de temps correspond à la durée d’un potentiel d’action), et à l’application

d’une règle stdp originale bio-inspirée de modification des poids synaptiques compatible avec

une implémentation matérielle (Eriksson et al., 2003).

xix

xx

Plasticité synaptique

Nous avons considéré de nombreuses hypothèses simplificatrices dans notre modèle, comme

la présence de seulement deux types d’unités, leur dynamique integrate-and-fire, leurs distribu-

tions, ainsi que la dynamique de la fonction de transfert des synapses qui les connectent. En

tenant compte de toutes ces approximations, nous avons observé que le réseau parvenait à un

état d’équilibre lorsque les poids synaptiques étaient soit renforcés à leur valeur maximale, soit

diminués à leur valeur la plus faible (figure 4.4). Nos résultats sont en accord avec la distribution

bimodale des forces synaptiques observée avec d’autres modèles basés sur stdp (Chechik et al.,

1999; Abbott and Nelson, 2000; Dayan and Abbott, 2001). Cet effet est interprété comme étant

la démonstration qu’une règle stdp entrâıne les neurones présynaptiques à entrer en compétition

pour obtenir le contrôle de la production de potentiels d’action par la cellule postsynaptique.

Il a été montré que cette compétition assurait cependant des afférences constantes au neurone

postsynaptique (Abbott and Nelson, 2000; Song and Abbott, 2001).

De plus en plus d’indices suggèrent que les synapses à états ont un fondement biologique

vraisemblable (voir Montgomery and Madison (2004) pour une revue). Le modèle de synapse que

nous avons utilisé n’était cependant pas basé sur ces résultats expérimentaux. Nos niveaux d’ac-

tivation sont issus d’une simplification requise pour l’implémentation matérielle discutée ailleurs

dans ce document (section 7.2.1, p.109). Ils peuvent être interprétés comme étant une combinai-

son de deux facteurs : le nombre de boutons synaptiques entre les unités pré– et postsynaptiques

et la modification de la conductance synaptique. Néanmoins, le travail expérimental et théorique

entrepris autour des synapses à états nous aidera certainement à affiner notre simplification et

à maintenir un degré de vraisemblance biologique dans le futur. Parmi les questions en suspens,

la question de la dépendance de la régulation des récepteurs nmda de l’état de la synapse reste

ouverte. Si cette dépendance était avérée, un aspect métaplastique (Abraham and Bear, 1996)

pourrait être ajouté à la plasticité synaptique à modulation temporelle relative.

La métaplasticité est définie comme la plasticité de la plasticité. Un modèle en cascade a été

proposé dernièrement (Fusi et al., 2005) comme un mécanisme théorique pour la mémorisation

des expériences quotidiennes. L’acquisition de tels souvenirs – comme lors de l’apprentissage au

premier essai – requiert un haut degré de plasticité, alors que la rétention de ces mêmes sou-

venirs nécessite une protection contre les changements induits par l’activité et les expériences

postérieures. Les auteurs définissent deux niveaux de force synaptique («faible» et «fort») ca-

ractérisés par différents degrés de plasticité. Chaque niveau est associé à une cascade de n états

xxi

qui introduisent un intervalle de transitions possibles entre les deux niveaux synaptiques. Passer

d’un état à un autre ne modifie en rien la force de la synapse, mais diminue la probabilité de

changer de niveau, induisant une métaplasticité.

Il faut remarquer que la métaplasticité est liée de manière inhérente à l’apprentissage. Dans

notre travail, nous avons simulé un élagage synaptique contrôlé par l’activité des cellules dans

le cadre d’une expérience de développement. Néanmoins, un léger changement à notre modèle

permettrait une transition graduelle de l’élagage à l’apprentissage tout en conservant le même

principe de fonctionnement synaptique. Il serait alors possible de simuler les transitions de l’en-

fance à l’adolescence, et de l’adolescence à l’âge adulte. Dans la section 3.3.1, p.20, nous observons

que la variable continue Lji(t) est utilisée pour contrôler les niveaux d’activation discrets Aji(t)

à travers une règle stdp. Les limites définies par l’utilisateur L0 < L1 < · · · < LN−1 < LN ont

été utilisées pour déterminer les transitions entre les différents niveaux d’activation, avec une

lente décroissance menant Lji(t) vers la limite inférieure, entrâınant l’élagage de la connexion

(figure 3.3c). Cette règle pourrait être modifiée continuellement vers une relation entre Lji(t) et

Aji(t) de sorte que la décroissance de Lji(t) l’entrâınerait vers la valeur Lk−Lk−1

2 (Eriksson et al.,

2003). De cette façon, les synapses auraient tendance à conserver le niveau d’activation acquis

et l’apprentissage deviendrait possible. Il a été observé qu’une telle règle était capable de main-

tenir des souvenirs en présence de bruit (Fusi, 2001). Dans le cas qui nous occupe ici, nous avons

arbitrairement décidé de fixer ∆Lk = Lk − Lk−1 = 20 pour tous les niveaux attracteurs [Ak].

En plus de la transition proposée précédemment, la modification de ∆Lk en fonction du temps

passé dans un attracteur particulier [Ak], par exemple, pourrait introduire une métaplasticité

dans notre modèle.

Il a été rapporté récemment que dans des cultures d’hippocampe et des tranches d’hippo-

campe, les enregistrements électrophysiologiques ont montré que le poids des synapses gabaer-

giques pouvait être modifié de façon persistente par la décharge répétée de la cellule postsy-

naptique dans les 20 ms qui précédent ou suivent l’activation de la synapse (Woodin et al.,

2003). La détection et la modification de ces synapses par la cöıncidence des potentiels d’action

pré– et postsynaptiques permettent de moduler le niveau d’inhibition en fonction du moment

des décharges. Une telle modification des connexions inhibitrices-excitatrices et inhibitrices-

inhibitrices n’a pas été prise en compte dans notre modèle simplifié. Nous avons observé, au

commencement des simulations, des périodes au cours desquelles, selon les conditions choisies,

l’activité du réseau était saturée alors que le réseau était transitoirement composé d’un grand

nombre de synapses au niveau d’activation le plus élevé (observez la figure 4.4a autour du temps

xxii

de la première stimulation). Ceci suggère la nécessité d’une plus forte inhibition pendant cette

période pour éviter autant de bouffées d’activité qui ne sont pas réalistes. Au cours de la si-

mulation, alors que les connexions excitatrices-excitatrices sont éliminées du réseau, la force

des connexions inhibitrices devrait probablement être adaptée afin de maintenir une balance

dynamique entre excitation et inhibition.

Effet de la taille du réseau

Le choix d’une topologie en grille bidimensionnelle nous a permis d’étudier l’effet de l’aug-

mentation de la taille du réseau de 10 × 10 à 100 × 100 unités. Il est intéressant d’observer

que le nombre de synapses actives à la fin de la simulation est inférieur à 10% des synapses

initialement présentes. Ce nombre ne varie que marginalement en fonction de la taille du réseau.

L’effet des différentes initialisations du tirage de nombres pseudo-aléatoires est également limité.

Nous avons observé que le nombre de synapses actives caractérisées par le niveau d’activation

maximal peut transitoirement atteindre 50% du nombre de synapses initiales.

La mise en évidence d’un facteur d’échelle permettant d’ajuster l’activité du réseau en fonc-

tion de sa taille indique que de très grands réseaux ne seraient pas nécessaires pour que des

circuits récurrents émergent. Ce résultat est en accord avec plusieurs découvertes liées à la

théorie des similarités dynamiques (MacGregor et al., 1995).

Des «modules» interconnectés de 50×50 ou 60×60 unités immergés dans un réseau plus grand

pourraient être plus efficaces pour recruter des synapses actives qui entreraient en compétition

pour produire un potentiel d’action postsynaptique. La question de savoir si la capacité de

grandes assemblées de neurones à «calculer» des tâches pouvait être en partie une conséquence

de l’interaction collective d’un grand nombre de neurones très simples (Hopfield, 1982) a été

posée. L’observation que la plus grande partie du cortex cérébral est composée de circuits locaux

aux fonctions bien définies – les colonnes corticales (Lorente de No, 1949; Mountcastle, 1957;

Douglas and Martin, 1991) et les hypercolonnes (Sur et al., 1980) – suggère que le pont entre

les circuits simples et les propriétés complexes du cerveau serait dû à l’émergence spontanée de

nouvelles capacités computationnelles du comportement collectif d’un grand nombre d’éléments

simples de calcul.

xxiii

Emergence de circuits

Un biais dans l’orientation géométrique des synapses produirait des effets importants sur

la dynamique globale, tout comme il pourrait introduire des singularités dans la topologie du

réseau. Ces singularités pourraient permettre la formation d’attracteurs présentant une balance

altérée entre excitation et inhibition si elles étaient la conséquence d’activité afférente associée

à un stimulus particulier. Si de tels attracteurs apparaissaient à cause uniquement de l’ac-

tivité spontanée, ils pourraient masquer les propriétés liées à la nature des afférences. Nous

avons observé que le renforcement de quelques synapses se faisait sans distorsion géométrique,

ni en fonction de la direction, ni en fonction de la distance entre les unités pré- et postsy-

naptiques à la surface de la grille bidimensionnelle. L’épissage synaptique apparâıt comme un

processus homogène et isotrope dans tout le réseau. En présence d’activité spontanée aléatoire,

l’implémentation de notre règle stdp est équivalente à un épissage aléatoire et n’introduit pas

de biais.

Nous avons observé qu’en présence d’activité spontanée, un motif de stimulation spatio-

temporel récurrent pouvait induire l’émergence d’assemblées de cellules orientées lorsqu’il était

associé à un épissage entrâıné par une règle stdp. Le processus d’épissage non supervisé, as-

socié à des motifs de stimulation courts et stables, tendrait à organiser les unités en assemblées

fortement interconnectées selon le modèle feed-forward à la suite des unités stimulées. Cepen-

dant, l’émergence de projections divergentes est plus difficile à observer que celle des projections

convergentes.

La détection de motifs d’activité spatiotemporelle complexes dans l’activité des unités si-

mulées suggère que des topologies en couches peuvent apparâıtre pendant le processus d’épissage.

Les synfire chains (Abeles, 1991) sont des châınes divergentes / convergentes de neurones se

déchargeant de manière synchrone pour soutenir la propagation de l’information au travers d’un

réseau neuronal feed-forward. Ce modèle est très efficace pour expliquer la transmission d’infor-

mation temporelle précise dans les réseaux de neurones, mais les mécanismes qui soutiennent

l’apparition de telles châınes dans le cerveau mature n’ont jamais été profondément recherchés.

Certains travaux ont utilisé des règles d’apprentissage hebbiennes (Bienenstock, 1995; Hertz and

Prugel-Bennett, 1996a,b) ou stdp (Levy et al., 2001; Kitano et al., 2002) pour faire ressortir des

structures semblables aux synfire chains dans des réseaux de taille relativement petite, générés

aléatoirement. Les assemblées résultantes étaient composées de quelques (3-4) groupes de neu-

rones se déchargeant en synchronie et en boucle, mais la distribution topologique des connexions

xxiv

n’a pas été discutée.

L’organisation non supervisée de neurones à décharges (spiking neurons) en assemblées a été

récemment décrite dans une étude présentant des réseaux simulés de grande dimension, connectés

par des projections qui s’adaptent selon une règle stdp (Izhikevich et al., 2004). 80’000 unités

excitatrices et 20’000 unités inhibitrices (à comparer avec nos tailles de réseau de 100 × 100 et

leurs distributions des connexions) ont été connectées sur une surface sphérique par 8,5 millions

de connexions (sur nos grilles de 100 × 100, le nombre total de connexions était initialement

de plus de 3 millions) en utilisant une règle de connexion locale, à laquelle s’ajoute une petite

surface connectée à longue distance par les unités excitatrices. La structure spatiotemporelle

des motifs émergeants de décharges a mis en évidence, lorsque les temps de conduction axonaux

et une règle stdp sont incorporés au modèle, l’organisation spontanée, en présence de bruit,

des neurones du réseau en assemblées, même en absence d’afférences corrélées. Des motifs de

décharges récurrents ont également été observés entre les unités topologiquement proches les

unes des autres. L’approche de ces auteurs (Izhikevich et al., 2004) et la nôtre sont similaires,

en dehors du fait que leurs simulations n’avaient pas pour but l’étude de l’élagage synaptique,

mais l’émergence des assemblées. Suite à la détection des motifs spatiotemporels d’activité, des

listes d’unités produisant ces activités ont été déterminées et les circuits correspondants ont été

reconstruits. Au cours de leurs simulations, l’émergence, la maintenance et la disparition de ces

circuits ont été observées. Ces circuits étaient composés en moyenne de moins de 30 unités, et

moins de 7.5% de toutes les unités faisaient partie de ces circuits.

L’étude réalisée par Izhikevich et al. (2004) met l’accent sur l’importance des délais de

conduction que nous n’avons pas initialement considérés dans notre modèle. Des unités présyn-

aptiques caractérisées par des vitesses de conduction axonale différentes peuvent provoquer une

dépolarisation suffisante au niveau postsynpatique en fonction d’un certain motif temporel. Alors

la décharge simultanée des unités présynaptiques ne permet pas de provoquer une décharge dans

l’unité postsynaptique (Bienenstock, 1995). Au moyen d’un autre motif de décharges, les mêmes

unités présynaptiques pourraient provoquer la décharge d’une autre unité postsynaptique. Nous

considérons actuellement la possibilité d’ajouter à notre modèle des délais de conduction.

Il existe une tendance pour l’utilisation des méthodes liées à la théorie des graphes (voir

Albert and Barabasi (2002) pour une revue) dans l’analyse des motifs de connexion neuronale

(Sporns, 2002; Sporns et al., 2004). En particulier, la théorie des graphes a été appliquée avec

succès aux données obtenues par imagerie fonctionnelle par résonance magnétique (fMRI) lors

d’une tâche de tapotement des doigts (Chialvo, 2004), suggérant que les réseaux fonctionnels

xxv

sont indépendants de l’échelle d’observation, c’est-à-dire que les nœuds fortement connexes sont

connectés, en moyenne, avec d’autres nœuds fortement connexes, ce qui représente une propriété

inattendue dans un système organisé hiérarchiquement. Dans l’état actuel des connaissances, la

théorie des graphes a peu d’outils à offrir pour les problèmes liés à des réseaux dynamiques,

orientés et pondérés comme les nôtres. Nous avons recherché un indice approprié pour estimer

la qualité des circuits reconstruits comme ceux de la figure 4.8. Aucun des indices standards,

comme le cœfficient de clustering (la fraction des connexions présentes entre les voisins d’un

nœud par rapport au nombre maximal théoriquement possible) ou la longueur du trajet moyen

(le nombre minimal de liens nécessaires pour connecter deux nœuds), n’était adapté à la mesure

de réseaux convergents / divergents. Nous sommes encore à la recherche d’un indice approprié

pour cette mesure.

Epissage synaptique

L’épissage synaptique massif qui se déroule au cours de l’enfance, après une phase de sur-

croissance synaptique, est une propriété intriguante du développement cérébral chez les mam-

mifères. Peu d’études théoriques ont été menées pour déterminer l’avantage computationnel

d’une stratégie de développement apparemment si dispendieuse. Dans un premier travail théori-

que, Chechik et al. (1998) ont suggéré que les performances d’apprentissage d’un réseau at-

teignaient leur niveau optimal si, sous des contraintes métaboliques limitant leur nombre et

leurs forces, les synapses étaient d’abord surnuméraires avant d’être épissées. Deux «organismes

adultes» disposant des mêmes ressources synaptiques peuvent stocker un nombre différent de

souvenirs selon la manière dont ils ont acquis leurs densités synaptiques finales. Un organisme

doté d’un excès de synapses soumis à un épissage synaptique sélectif pourrait donc stocker da-

vantage de souvenirs qu’un autre adulte dont la densité synaptique a été fixée pendant l’enfance.

Les simulations ont été réalisées en utilisant une règle de plasticité synaptique hebbienne, et une

fonction d’épissage qui éliminait les connexions les plus faibles du réseau. Il a été démontré qu’un

tel algorithme pouvait maintenir les performances du réseau.

La régulation neuronale est un mécanisme identifié expérimentalement qui régule la force des

afférences synaptiques pour maintenir l’homéostase de la membrane du neurone postsynaptique

(Turrigiano et al., 1998). Horn et al. (1998) ont suggéré que la régulation neuronale pourrait

maintenir, en théorie, les performances d’apprentissage des réseaux subissant un épissage sy-

naptique sélectif. Dans l’article de Chechik et al. (1999), les auteurs discutent du rôle de la

xxvi

régulation neuronale dans le maintien des projections postsynaptiques, en retirant les synapses

les plus faibles et en modifiant les autres synapses en conséquence (voir Mimura et al. (2003)

pour une discussion analytique de ces résultats). Il a été également démontré que stdp main-

tenait le champ des projections postsynaptiques (Abbott and Nelson, 2000; Song and Abbott,

2001). Pour cette raison, stdp serait une règle de modification de la force synaptique appropriée

à la simulation de l’épissage synaptique.

Le darwinisme neuronal – également nommé théorie de la sélection des groupes neuronaux

– est une théorie de populations du système nerveux, qui a pour but la compréhension de la

signification de la variation et de la sélection dans le développement du cerveau (voir Edel-

man (1993) pour une revue). Selon cette théorie, le monde se caractérise perceptiblement, pour

un organisme, par la conséquence de deux processus interactifs de sélection après variation.

Le premier processus apparâıt pendant les phases de développement embryonnaire et postna-

tal, lorsque les neurones adjacents tendent à être fortement interconnectés en «assemblées» de

taille et de structure variables dénommés «groupes neuronaux». Le second processus consiste

en l’altération des forces synaptiques suivant l’activité de l’individu, et la sélection des groupes

neuronaux adaptatifs sur la base de la corrélation de leurs réponses. Dans l’Edelmanisme Neuro-

nal (voir Crick (1989) pour une critique de la théorie), l’emphase est placée sur la «compétition»

entre les groupes neuronaux sans référence au mécanisme d’épissage synaptique. Nous devons re-

connâıtre que la théorie de l’Edelmanisme Neuronal produit des résulats qui mettent à l’épreuve

nos propres résultats.

Effet des taux de décharges

Les résultats présentés ici suggèrent que des topologies en couches, compatibles avec des

synfire chains, peuvent apparâıtre au cours d’un processus d’épissage synaptique non supervisé.

Il n’a pas été possible de déterminer les conditions exactes permettant au mécanisme d’épissage

synaptique de conduire à l’émergence de châınes convergentes / divergentes balancées, c’est-à-

dire présentant des kin et kout comparables.

Les unités fortement interconnectées (SI -units, voir section 4.2, p.34) présentaient des taux

de décharges situés entre 30 et 40 décharges par seconde. Bien que cette valeur soit trop grande

pour être biologiquement plausible dans le contexte d’un modèle de cortex cérébral, nous avons

observé une corrélation négative entre le taux de décharge moyen et le kout. Cette corrélation

est inhérente à la règle de modification stdp standard. Comme représenté dans la figure 5.2a,b,

xxvii

une unité se déchargeant plus rapidement que les autres aura tendance à maintenir toutes ses

entrées et à perdre toutes ses sorties. En conséquence, nous pouvons suggérer qu’à cause des

taux de décharges excessivement élevés, stdp tend à être trop affecté par les différences de taux

de décharges.

En tenant compte de cette observation concernant la dynamique de stdp, un scénario peut

être proposé pour expliquer l’évolution des indices de connectivité kin et kout, comme présenté

dans la figure 4.6. Il est possible que pendant les quelques premiers pas de la simulation, les

unités excitatrices qui, par hasard, ont été dotées d’un grand nombre d’unités présynaptiques

excitatrices commencent à se décharger avec une fréquence élevée, sous la seule action de leurs

nombreuses entrées. La figure 5.2b suggère que ces unités renforceraient leurs entrées, aug-

mentant d’autant leur taux de décharge. Parallèlement, la figure 5.2a suggère que les unités

présentant un taux de décharge élevé ont tendance à perdre toutes leurs projections, ce qui cor-

respond à la dynamique d’élagage observée pour presque toutes les SI-units. Ce scénario propose

une explication possible à l’excès de convergence par rapport à la divergence observé dans les

réseaux émergeants de notre travail.

Il a été observé sur des préparations de tranches de cortex cérébral visuel de rats (Froemke

and Dan, 2002), que la contribution de chaque paire de décharges pré-/postsynaptiques à la

modification synaptique dépendait non seulement de l’intervalle entre les paires, mais également

du moment de la décharge précédente. L’efficacité de chaque décharge sur la modification sy-

naptique était supprimée par la décharge précédente du même neurone intervenant dans un

intervalle de plusieurs dizaines de millisecondes. Les auteurs suggèrent que le moment de la

première décharge de chaque bouffée domine la modification synaptique, alors que les décharges

additionnelles n’offrent qu’une contribution marginale. Sur la base de cette observation, un neu-

rone à décharge présentant une règle de modification du poids synaptique inspirée de stdp pour

la première décharge uniquement a été proposé dans un article théorique récent (Guyonneau

et al., 2005). L’unité qui décharge recevait une vague provenant de 1’000 unités présynaptiques

et apprenait à réagir plus rapidement à un motif afférent de décharges qui se répétait. La latence

de la décharge postsynaptique tendait à se stabiliser autour d’une valeur minimale alors que les

premières synapses étaient complètement renforcées et les suivantes complètement déprimées

(reproduisant la distribution bimodale des efficacités), impliquant que la règle stdp donnait

plus d’importance aux afférences rapides et répétées et ignorait les autres.

La figure 5.2c,d montre de quelle manière, en ne considérant que les premières paires de

décharges, la proportion entre convergence et divergence pourrait être modifiée d’une manière

xxviii

balancée. Avec une telle règle stdp modifiée, l’impact des unités se déchargeant rapidement sur

la perte des connexions sortantes pourrait être limité et pourrait faire disparâıtre complètement

le problème lié aux unités à fort taux de décharge. Si nous considérons la possibilité de simuler

des réseaux de tailles plus grandes, alors l’introduction d’une telle modification dans la règle

stdp semble nécessaire.

Synfire chains

Le rôle des neurones inhibiteurs dans la stabilisation d’un réseau pourvu de synfire chains

a été récemment proposé. Dans un travail théorique, Aviel et al. (2004) suggèrent la nécessité

d’une inhibition dans un réseau balancé – un réseau où chaque unité reçoit un nombre égal

d’excitations et d’inhibitions – pour éviter l’allumage spontané des synfire chains et pour éviter

que l’activité du reste du réseau ne soit saturée par la décharge synchrone des couches des

synfire chains figure 2.3. La balance de l’inhibition serait obtenue à chaque niveau des synfire

chains par la connexion à un groupe «fantôme» d’unités inhibitrices (dénommé shadow pool),

qui reçoivent les entrées convergentes de la couche précédente comme si elles faisaient partie de

la couche suivante. De plus, ces unités inhibitrices ne se projettent pas de façon divergente sur la

couche suivante mais localement à l’intérieur du réseau comme des interneurones ordinaires. La

nécessité d’un tel mécanisme d’inhibition pour la propagation d’une vague d’activité au travers

de la synfire chain pose la question du rôle des unités inhibitrices dans nos simulations. Nous

avons observé une activité balancée dans notre réseau, ainsi que l’apparition d’une inhibition à

la fin des stimuli, qui est dépendante de l’intensité de ceux-ci (comparez les figures 4.13 et 4.14).

Ceci suggère que nous pourrions considérer des unités inhibitrices dans les circuits émergés.

L’analyse des corrélogrammes est souvent considérée comme un outil de grande valeur pour

la déduction de la connectivité fonctionnelle (Abeles, 1982a). La figure 4.14b montre un pic

asymétrique près du temps t = 0 qui pourrait être interprété comme une corrélation temporelle

entre les unités 1234 et 7794, qui suggère une projection directe de l’unité 1234 sur l’unité 7794.

Toutefois, cette projection n’existe pas dans la topologie du circuit (voir figure 4.8b). La courbe

de corrélation pourrait être expliquée par un retard systématique dans les temps de décharge

de l’unité 7794 par rapport à l’unité 1234. Une telle variabilité est néanmoins consistante avec

l’activité synfire (Gewaltig et al., 2001). Dans tous les cas, des recherches supplémentaires sont

requises pour déterminer si une activité synfire soutenue (Tetzlaff et al., 2004) pourrait apparâıtre

dans de tels circuits inclus dans un plus vaste réseau. La caractérisation de l’état du réseau

xxix

proposé par Brunel (2000) pourrait être utile pour cette analyse, mais les taux de décharge des

unités excitatrices ne devraient pas dépasser les niveaux incompatibles avec stdp.

xxx

Contents

Preface xiv

Résumé xviii

Chapter 1 Introduction 1

Part I Neuro(Informatics) 3

Chapter 2 Neurobiological perspective 5
2.1 Brain development . 5

2.1.1 Differentiation . 5
2.1.2 Synaptogenesis . 6
2.1.3 Neurogenesis . 8

2.2 Cortical micro-circuits . 9
2.2.1 Synaptic efficacy . 9
2.2.2 Spike-timing-dependent synaptic plasticity 11
2.2.3 Synfire chains . 13

Chapter 3 Modeling 15
3.1 Network model . 15

3.1.1 Layout . 15
3.1.2 Connectivity . 16

3.2 Neuromimetic model . 18
3.2.1 Membrane potential . 18
3.2.2 Background activity . 19

3.3 Synaptic connection model . 20
3.3.1 Adaptation . 20
3.3.2 Pruning . 23

3.4 Stimuli models . 23
3.4.1 Simple spatiotemporal pattern . 24
3.4.2 Complex spatiotemporal pattern . 26

Chapter 4 Results 29
4.1 Preliminary work . 30

4.1.1 Size effect . 30
4.1.2 Seed effect . 31

4.2 Stimulated networks . 34
4.2.1 Stimulus duration . 36
4.2.2 Circuit emergence . 37

xxxi

xxxii CONTENTS

4.2.3 Stimulus intensity . 42
4.2.4 Spatiotemporal pattern of activity . 47

Chapter 5 Discussion 51
5.1 Synaptic plasticity . 52
5.2 Network size effect . 54
5.3 Circuit emergence . 55
5.4 Synaptic pruning . 58
5.5 Effect of firing rate . 59
5.6 Synfire chains . 61

Part II (Neuro)Informatics 65

Chapter 6 Software 67
6.1 Simulation environment . 69

6.1.1 feign: a spiking neuron simulator . 71
6.1.2 forge: a simulation organizer . 75

6.2 Data manipulation . 78
6.2.1 fnetdb: handling graphs through relational databases 78
6.2.2 DataToolbox: an interactive tool . 79
6.2.3 manip: a versatile filter and editor . 83

6.3 Data analysis . 85
6.3.1 fnetdig: searching graphs . 86
6.3.2 oan: a distributed analysis framework . 87

6.4 Visualization . 88
6.4.1 fnetview: interactive reconstruction of feed-forward networks 88
6.4.2 XY-Viewer: a generic plot viewer . 89
6.4.3 RasterViewer: a raster-plot viewer . 95
6.4.4 YaTiSeWoBe: an interactive workbench . 96

6.5 File formats . 97
6.5.1 .fnet: feign networks . 98
6.5.2 .xpdl: feign protocols . 98
6.5.3 .xyv: XY-Viewer native data format . 100
6.5.4 Existing formats . 100

Chapter 7 Hardware 103
7.1 Beowulf-class cluster . 104

7.1.1 Overview . 104
7.1.2 Hardware configuration . 105
7.1.3 Cluster management . 107

7.2 poetic tissue . 108
7.2.1 Neuron implementation . 109

Chapter 8 Conclusion 113

Chapter A On the web 115

CONTENTS xxxiii

Chapter B Sample files 117
B.1 .fnet: feign network . 117
B.2 .xpdl: experimental protocol . 121
B.3 .xyv: XY-Viewer native file format . 123
B.4 .graphml: graphs . 125
B.5 .sdf: time series . 126
B.6 .sng: Scriptable Network Graphics . 127

Chapter C Procedure 129
C.1 Setup . 129
C.2 Simulation . 130
C.3 Manipulation . 131
C.4 Analysis . 132
C.5 Visualization . 133

Bibliography 135

List of Figures

2.1 State and continuous synapse models scheme . 10
2.2 stdp rules . 12
2.3 Synfire chain representation . 13

3.1 Connection details . 17
3.2 Neuron model overview sketch . 18
3.3 Graphical relation between Lij(t) and Aij(t) . 21
3.4 Interactions between Si and Mi . 22
3.5 How Aji(t) and Lji(t) are linked . 23
3.6 Stimuli models time decomposition . 25

4.1 Maximum activation levels . 31
4.2 Distribution of percentages with different seeds 32
4.3 Evolution of the preference along simulation time 33
4.4 Evolution of activation levels distribution . 35
4.5 Index of connected units . 36
4.6 Evolution of the out-degrees (kout) vs. in-degrees (kin) 38
4.7 Comparing out-degrees (kout) and in-degrees (kin) 39
4.8 Emergence of a feed-forward circuit . 41
4.9 Localization of the circuit layers . 42
4.10 Location of strongly interconnected units . 42
4.11 Response of 2 sample strongly interconnected units 43
4.12 Construction of a differential time series . 44
4.13 Stimulation intensity effect: 30 mV . 45
4.14 Stimulation intensity effect: 60 mV . 46
4.15 kin and kout vs. mean firing rate ρ . 47
4.16 Sample spatiotemporal pattern of activity . 48

5.1 Extending model towards childhood to adolescence to adulthood transitions . . . 53
5.2 stdp and fast spiking units . 60

6.1 Software overview . 70
6.2 feign architecture . 72
6.3 feign periodic logging . 73
6.4 forge distributed system sketch . 76
6.5 forge data model . 77
6.6 DataToolbox screenshot . 80
6.7 Time series data model . 81
6.8 Time series data manipulation model . 84

xxxv

xxxvi LIST OF FIGURES

6.9 fnetview screenshot . 88
6.10 XY-Viewer screenshot . 90
6.11 Rendering library . 92
6.12 Stylesheets . 93
6.13 Automatically generated dialog screenshot . 95
6.14 RasterViewer screenshot . 96
6.15 YaTiSeWoBe screenshot . 97
6.16 .xyv graphics representation model . 101

7.1 Cluster overview . 105
7.2 poetic decay block diagram . 109
7.3 poetic learning block diagram . 110
7.4 poetic synapse block diagram . 111
7.5 poetic serial implementation block diagram . 111

LIST OF FIGURES xxxvii

Chapter 1

Introduction

The First Law of Explanation

When you’re explaining something to somebody
and they don’t get it, that’s not their problem,

it’s your problem.

– Tim Bray

Résumé Ce Chapitre est une introduction au présent document. Son organisation

générale s’articule autour de deux parties principales. La première (p.5) regroupe les in-

formations neuroscientifiques liées à notre travail, ainsi que les résultats et la discussion

des simulations. La seconde (p.67) présente les réalisations logicielles et matérielles.

The present work results from the collaboration between a neuroscience laboratory – inserm

u318, University of Grenoble 1, France – and a computer science department – inforge, Uni-

versity of Lausanne, Switzerland. Most of the work has been produced at the Swiss location

with continuous input from the French side. The document was produced according to (partly

incompatible) requirements formulated by both universities.

For the sake of readability, and despite the fact that they were undertaken synchronously, the

computational and neuroscientific aspects of our investigation are discussed in two distinct parts.

We will begin at page 5 with the neuroscientific part. An introduction to the neurobiological

structures and concepts underpinning our research is presented in Chapter 2, p.5. In Chapter 3,

p.15, the network, the leaky integrate-and-fire neuromime, and the synaptic models are treated

with analytic details. The simulation results are analysed in Chapter 4, p.29 before being

discussed in the Chapter 5, p.51.

Starting at page 67, the computational aspects are presented. The different pieces of software

developed directly for – or in close relation with – this work are described in Chapter 6, p.67.

An account is provided on the hardware (Chapter 7, p.103) that sustained the computational

load for our simulations. The novel platform on which our model is expected to evolve in the

future is also presented. A final conclusion (Chapter 8, p.113) closes the second part.

1

2 CHAPTER 1. INTRODUCTION

The electronic version of the document features hypertext links. Clicking on the section

references or on the bibliographic citations will pop the appropriate page up. Clicking on the

urls will point your browser to the corresponding web page. Check the Appendix A, p.115 for

details on how to get the electronic document.

Part I

Neuro(Informatics)

3

Chapter 2

Neurobiological perspective

My brain?
It’s my second favorite organ.

– Woody Allen

Résumé Ce Chapitre introduit de façon succincte les structures biologiques et les

concepts théoriques que nous avons cherché à modéliser. Certains aspects dévelop-

pementaux et fonctionnels du système nerveux central des mammifères sont abordés.

Les notions de plasticité synaptique à modulation temporelle relative (stdp), d’épissage

des synapses et de synfire chains sont présentées ici.

This Chapter presents the biological structures and the established theoretical concepts

underpinning our modeling effort. We will discuss some aspects of the developmental process

leading to the mature brain. The functional aspects of the cortical circuits will be presented,

in particular the notions of spike-timing-dependent synaptic plasticity (stdp), synaptic pruning

and synfire chains.

2.1 Brain development

2.1.1 Differentiation

The entire mammalian central nervous system is derived from the walls of the neural tube that

is formed at an early stage of embryological development. The structures of the brain become

more elaborate through the differentiation of the neural tube into three vesicles. The vesicles

will further differentiate into the forebrain, the midbrain and the hindbrain, while the rest of

the neural tube will differentiate into the spinal cord. We will focus on the development of the

forebrain, that gives rise – among other structures – to the optic vesicles and the telencephalon.

The telencephalon consists of the two cerebral hemispheres, the walls of which are the site of the

proliferation and differentiation of the precursor cells into the neurons of the cerebral cortex.

5

6 CHAPTER 2. NEUROBIOLOGICAL PERSPECTIVE

The cellular development of the mammalian cerebral cortex follows a consistent pattern,

with large pyramidal neurons of the lower layers taking laminar positions and differentiating

earlier than neurons intended to be situated more superficially (Rakic, 1974). Cortical neurons

originate in proliferative zones close to the ventricular surface and migrate to the cortical plate

only after the final division of the precursor cells. Cells destined for the deep cortical positions

are generated first, and the more superficial ones at progressively later times.

In the mature brain, the cerebral cortex appears as a layered structure (layers I-VI, Bear

et al. (1996)) characterized by the changes in the density of cells and neuropil morphology. The

thickness and definition of each layer varies from area to area of the cortex (Brodmann, 1909),

but the layered structure is generally maintained (Douglas and Martin, 1991). The human

cerebral cortex is a highly folded sheet of neurons at a density of circa 105 neurons per mm2.

Its thickness varies between 1 and 4.5mm, with an overall average of approximately 2.5mm (von

Economo, 1929; Zilles, 1990). One half of these cells are pyramidal cells which are characterized

by the distal connection of their axon (Abeles, 1991). The physiological ratio is about one

inhibitory neuron for four excitatory neurons (Braitenberg and Schuez, 1998).

2.1.2 Synaptogenesis

There is experimental evidence that the cerebral cortex develops as a whole rather than re-

gionally, as synaptogenesis proceeds concurrently in all cortical areas and layers. Simultaneous

overproduction of a critical mass of synapses in each cortical area may be essential for their par-

allel emergence through competitive interactions between extrinsic afferent projections. Such

competition has been observed between the projections of the two eyes during the formation of

visual centers (Hubel et al., 1977; Rakic, 1981).

Genetic programs are assumed to drive the primordial pattern of neuronal connectivity

through the actions of a limited set of trophic factors and guidance cues, initially forming exces-

sive branches and synapses, distributed somewhat diffusely (Innocenti, 1995). Then, refinement

processes act to correct initial inaccuracies by pruning inappropriate connections while preserv-

ing appropriate ones. The embryonic nervous system is refined over the course of development

as a result of the twin processes of cell death and selective axon pruning. Apoptosis – genetically

programmed cell death – and necrosis – pathologic or accidental cell death due to irreversible

2.1. BRAIN DEVELOPMENT 7

damage – are two rough mechanisms for refining embryonic connections. However, the creation

of complex connectivity patterns often requires the pruning of only a selected subset of the

connections initially established by a neuron.

It is generally agreed that changes in cortical function are associated with corresponding

alterations in the density and arrangement of synaptic circuits. Pruning events at the neu-

romuscular junction – where the motor neuron synapses with the targeted muscle cell – may

provide mechanistic insights into how this type of segregation could occur (Lichtman and Col-

man, 2000). Individual muscle fibers are initially contacted by many motoneurons, resulting

in a highly overlapping pattern of innervation. Eventually, as a result of synaptic competition

between asynchronous inputs, synapse pruning followed by branch pruning occurs, and the in-

nervation pattern becomes strictly segregated so that no two motoneurons maintain a junction

onto the same muscle fiber.

Quantitative analyses of synaptogenesis in the rat (Aghajanian and Bloom, 1967), the Rhesus

monkey (Bourgeois and Rakic, 1993), and human (Huttenlocher, 1979) cortex have suggested

a transient phase of high density of synapses during infancy. The rapid rate of synaptogenesis

begins a few weeks after the end of neurogenesis and completion of neuronal migration. The

density of synapses continues to increase during infancy and remains above adult levels. After

a relatively short period of stable synaptic density, a pruning process begins: synapses are

constantly removed, yielding a marked decrease in synaptic density. This process continues

until puberty, when synaptic density stabilizes at adult levels which are maintained until old

age. For the human brain, the peak level of synaptic density in childhood is 150 to 200%

compared to adult levels, depending on the brain region. The changes in synaptic density are

not the result of changes in total brain volume, but reflect true synaptic pruning. If experience

alters synaptic density during development, it does so by causing selective survival of certain

synapses, and not by regulating their initial formation.

The cerebral cortex has come to be associated with a remarkable capacity for functional

and anatomical plasticity during pre– and postnatal development periods. The phenomenon

of synaptic over-growth and pruning was found in humans (Huttenlocher, 1979), as well as in

other mammals such as monkeys (Bourgeois and Rakic, 1993) and cats (Innocenti, 1995). It was

observed through widespread brain regions including cortical areas (Bourgeois and Rakic, 1993;

8 CHAPTER 2. NEUROBIOLOGICAL PERSPECTIVE

Huttenlocher et al., 1982) and the projection fibers between hemispheres (Innocenti, 1995). For

example, during infancy to adolescence of Macaque monkeys, an average of 5,000 synapses per

second are lost in the striate cortex – the primary visual area – of both hemispheres (provided

that they are being pruned equally over 24 hours cycle).

Adult patterns of neuronal connectivity develop from a transient embryonic template charac-

terized by exuberant projections to both appropriate and inappropriate target regions. However,

behavioral competence continues to increase beyond the stage of excess synapses. Pruning may

also play a role in establishing topographic maps, as it can be seen in the retinotectal system

(Nakamura and O’Leary, 1989). This suggests that full functional maturation may be related

to synapse pruning and acquisition of synaptic efficiency at the molecular level. While there

have been huge advances made in identifying the cellular and molecular events involved in initial

axon guidance events, there has been much less progress in identifying the biological mechanisms

involved in pruning.

2.1.3 Neurogenesis

There is increasing evidence that neurogenesis – the birth of new neurons – occurs in at least

the olfactory bulb and the hippocampal dentate gyrus of the adult mammalian brain (see Em-

sley et al. (2005) for a review), against the dogmatic view of a static mature brain. In these

regions, some molecular and cellular events required for neuronal development observed in the

embryonic brain may appear at the adult stage under non-pathological conditions. Endogenous

precursor cells have the ability to migrate to selected brain regions, differentiate into neurons,

and functionally integrate the adult brain circuitry, developing mature electrophysiological ac-

tivity. Newborn neurons are morphologically identical to surrounding neurons. Hippocampal

neurogenesis can be modulated by physiological and behavioral extreme events such as stress,

seizure, learning and exercise throughout adulthood, but declines with age. Despite these recent

results, the function of neurogenesis in adult brains is still under investigation as it seems to

represent a marginal phenomenon with respect to the massive cell death naturally occurring as

a function of age. We did not include any neurogenesis-like process into our current model, but

we are considering the opportunity to integrate it, at least partially, in terms of synaptogenesis.

2.2. CORTICAL MICRO-CIRCUITS 9

2.2 Cortical micro-circuits

During the embryonic and postnatal development, adjacent neurons tend to be strongly inter-

connected in collectives of variable size and structure. In regions of the central nervous system

where specific roles can be assigned to neurons, local mosaic arrangements that provide a nat-

ural basis for a functional arrangement are observed. These include ocular dominance columns

(Rakic, 1981), blobs (Purves and LaMantia, 1990), and barrels (Rice and Van Der Loos, 1977).

Anatomical results provide quantitative local connectivity rules in the mature cortex, like

in the rat visual cortex (Douglas and Martin, 1991; Hellwig, 2000). The probability for two

pyramidal neurons to share a synapse decreases with distance in a Gaussian fashion. This rule

ignores the axonal patches (Amir et al., 1993), extensive horizontal axons from pyramidal neu-

rons in superficial layers that provide a substrate for lateral interactions across cortical columns.

These connections are believed to link functionally similar regions (Yabuta and Callaway, 1998).

2.2.1 Synaptic efficacy

Synapses can change their strength in response to the activity of both pre– and postsynaptic

cells (see next section). This property is assumed to be associated with learning, synapse

formation and pruning. Alterations in the synaptic transmission can be roughly subdivided into

two classes of mechanisms: long-term potentiation (ltp), and long-term depression (ltd). ltp

is measured as a persistent increase in the amplitude of the excitatory postsynaptic potentials

(epsp), whereas ltd is measured as a persistent decrease in the amplitude of the epsps.

Recent works (see Montgomery and Madison (2004) for a review) suggest that the strength of

the synapses may vary between discrete mechanistic states, rather than by adjusting their efficacy

along a continuum. This type of synaptic plasticity has primarily been studied in the excitatory

glutamatergic synapses of the brain, particularly in the hippocampus. Glutamatergic synapses

use the glutamate released in the active zones of the presynaptic membrane for transduction

into postsynaptic cell membrane depolarization. Among the glutamate receptors, ampa and

nmda receptor subtypes play predominant roles in the excitatory synaptic transmission and

plasticity (Bear et al., 1996). Experimental observations have led to the proposal that the ampa

receptor subtype mediates ion fluxes across the membrane during synaptic transmission, whereas

10 CHAPTER 2. NEUROBIOLOGICAL PERSPECTIVE

potentiated

active

depressedsilent

recently

silent

LTD

LTD

LTD

30 min

LTP

LTP

depressed potentiated

a

b

Figure 2.1: Schematic comparison of the state
and the continuous synaptic models. (a):
transitions between the synaptic states de-
scribed in main text (modified from Montgomery
and Madison (2002)); (b): continuous rep-
resentation between depressed and potentiated
synapses.

nmda receptors primarily play a role in inducing or modulating synaptic plasticity of the ampa-

receptor-mediated transmission. We recapitulate here the five synaptic states that have been

suggested (Montgomery and Madison, 2002) without entering into the molecular details (see

figure 2.1 for an overview):

active state: Both ampa- and nmda-receptor-mediated responses are present.

potentiated state: Active synapses undergoing ltp enter this state. It is related to the active

state, except for a different ltd molecular mechanism.

depressed state: Active synapses undergoing ltd enter this state. It is currently ill-defined,

and it might differ little from the active state.

silent state: Synapses in this state are characterized by the lack of synaptic response at normal

postsynaptic membrane potentials due to the absence of ampa receptors in the postsynap-

tic membrane. nmda receptors are present in the postsynaptic membrane, but they are

subject to voltage-dependent Mg2+ blocking. Synapses in this state can be potentiated in

the same way as active synapses, though.

recently silent state: Silent synapses undergoing ltp enter this state. It differs from the

active state in that synapses cannot undergo ltd. The transition to the active state takes

about one half hour after leaving the silent state.

2.2. CORTICAL MICRO-CIRCUITS 11

The regulation of the dynamic transport (by endocytosis and exocytosis) of ampa receptors

into and out of the synaptic membrane (Malinow and Malenka, 2002) has been proposed as the

mechanism behind discrete synapse state transitions. In most cases, the insertion and removal

of ampa receptors on the postsynaptic membrane is triggered by Ca2+ influx through the nmda

receptors. According to the discrete state model, previous studies may not have revealed the

existence of the discrete states because they recorded activity in large populations of synapses,

averaging out the properties of individual synapses (Montgomery and Madison, 2002). The

synaptic heterogeneity is preserved because no single activity protocol can alter all synapses in

the same way. In the continuous synaptic model, plasticity is coded only in the current strength

of the synapse. The discrete states synapse model features an historical aspect that is absent

from the continuous model. Depending on their previous state, synapses have different abilities

to express synaptic plasticity, and use differing mechanisms to achieve it.

2.2.2 Spike-timing-dependent synaptic plasticity

Donald Hebb was the first to suggest a precise rule that might govern the synaptic changes

(Hebb, 1949). He proposed that the efficiency of a connection from a pre– to a postsynaptic

neuron is increased if the presynaptic neuron repeatedly or persistently contributes to firing

the postsynaptic neuron. His hypothesis emphasized the role of causality between the pre– and

postsynaptic spikes, but did not provide a rule for the decreasing of the synapse efficiency, nor

did he address the issue of the effective time window.

Recent experiments suggest that both potentiation and depression obey the timing of pre–

and postsynaptic spikes. Spike-timing-dependent synaptic plasticity (stdp) is a mechanism to

explain the synaptic strength modification based on such spiking order, first observed by Bell

et al. (1997). Different correlations have been observed in various preparations (see Roberts

and Bell (2002) for a review). Some of them (figure 2.2a-c) are consistent with Hebb’s proposal

that pre– before postsynaptic spikes should increase the efficiency of the projection (“Hebbian”

rules), but the reverse relation holds for others (“anti-Hebbian” rules, figure 2.2d,e).

The Antisymmetric Hebbian rule depicted in figure 2.2a has been observed in the mammalian

cortex (Markram et al., 1997), and in cultured hippocampal neurons (Bi and Poo, 1998). It has

been proposed to explain the origin of long-term potentiation (ltp), i.e. a mechanism for

12 CHAPTER 2. NEUROBIOLOGICAL PERSPECTIVE

-40 400

-60 600 -25 250 -40 400

-50 500-100 100

s
y
n
a
p
ti
c
 c

h
a
n
g
e

s
y
n
a
p
ti
c
 c

h
a
n
g
e

s
y
n
a
p
ti
c
 c

h
a
n
g
e

s
y
n
a
p
ti
c
 c

h
a
n
g
e

s
y
n
a
p
ti
c
 c

h
a
n
g
e

a b

c d e

time [ms]

time [ms] time [ms] time [ms]

time [ms]

Figure 2.2: stdp rules where time in-
dicates the interspike interval. Positive
times correspond to the postsynaptic spike
following the presynaptic spike; negative
times correspond to the presynaptic spike
following the postsynaptic spike. (a): an-
tisymmetric Hebbian rule; (b): antisym-
metric Hebbian rule with differential dy-
namics; (c): symmetric Hebbian rule; (d):
symmetric anti-Hebbian rule; (e): asym-
metric anti-Hebbian rule. Modified from
Roberts and Bell (2002).

reinforcement of synapses repeatedly activated shortly before the occurrence of a postsynaptic

spike (Kelso et al., 1986). It has also been proposed to explain long-term depression (ltd), which

corresponds to the weakening of synapses strength whenever the presynaptic cell is repeatedly

activated shortly after the occurrence of a postsynaptic spike (Karmarkar and Buonomano,

2002). This is the rule we used for our model.

The glutamatergic nmda receptors were initially identified as the receptor site with all biolog-

ical features compatible with ltp induced by coincident pre– and postsynaptic cell discharges

(Wigstrom and Gustafsson, 1986). The involvement of nmda receptors in timing-dependent

long-term depression (tltd) has been described (Sjostrom et al., 2003). Other investigations

suggest that glutamatergic receptors with ampa channels and gabaergic receptors may also

undergo modifications of the corresponding postsynaptic potentials as a function of the timing

of pre– and postsynaptic activities (Engel et al., 2001; Woodin et al., 2003). These studies sug-

gest that several mechanisms, mediated by several neurotransmitters, may exist at the synaptic

level for changing the postsynaptic potential, either excitatory or inhibitory, as a function of the

relative timing of pre– and postsynaptic spikes.

The important consequences from changes in synaptic strength may produce for information

transmission, and subsequently for synaptic pruning, have raised an interest to simulate the

activity of neural networks with embedded synapses characterized by stdp (Lumer et al., 1997;

Fusi et al., 2000; Hopfield and Brody, 2004).

2.2. CORTICAL MICRO-CIRCUITS 13

3.5

3.32.3

2.21.2

1.1

2.4

1.3

3.1

1.5 2.5

3.4

2.1

1.4

3.2

[...] [...]

Figure 2.3: A schematic synfire chain. A synfire chain is characterized by its width (w), defined as the
number of neurons in each pool of the chain, and its multiplicity (m), defined as the number of projections
from a neuron in pool n to a neuron in pool n + 1. The synfire chain is said to be incomplete if m < w,
like in this example: w = 5 and m = 3. Note that individual neurons can appear in multiple pools of the
same or different synfire chains.

2.2.3 Synfire chains

This section makes the connection between the biological and the modeling aspects of this re-

search. Synfire chains are theoretical models (Abeles, 1991) for the transmission and processing

of precisely timed information through the cerebral cortex. They suggest how precise timing

can be sustained by means of pools of neurons linked together in a feed-forward chain. Waves

of activity can propagate from pool to pool through convergent/divergent connections. It has

been postulated that such a wave corresponds to an elementary cognitive event (Bienenstock,

1995). A prediction from this model is that simultaneous recording of activity of cells belonging

to the same assembly and involved repeatedly in the same process should be able to reveal

repeated occurrences of spatiotemporal firing patterns (Villa, 2000). Figure 2.3 is a convenient

representation of a synfire chain section from which the topological distribution of the pools in

the network has been removed, leaving only the logical chain. One has to imagine that neurons

in the same pool are not necessarily located in an immediate neighbourhood.

The memory capacity of networks embedding synfire chains has been theoretically studied

(Herrmann et al., 1995; Aviel et al., 2005). Many spatiotemporal patterns can be stored in a

network. As each neuron can participate several times in the same synfire chain, or in several

chains, it introduces a crosstalk noise that limits the network capacity. Among other tasks,

synfire chains have been successfully applied to recognition of patterns (Arnoldi et al., 1999)

14 CHAPTER 2. NEUROBIOLOGICAL PERSPECTIVE

and spatiotemporal sequences of spikes (Jin, 2004), as well as the modeling of compositional-

ity1 (Abeles et al., 2004; Hayon et al., 2005). Most studies have emphasized, analytically or

numerically, the robustness, against noise, of the synchronous volleys propagation through iso-

lated pre-wired synfire chains (Diesmann et al., 1999; Gewaltig et al., 2001; Tetzlaff et al., 2002;

Yazdanbakhsh et al., 2002), or pre-wired synfire chains embedded in large networks (Mehring

et al., 2003; Aviel et al., 2003; Tetzlaff et al., 2004).

If synfire chains are found in real brains, the successive synaptic connections between the

pools must develop through some form of unsupervised process. The mechanisms that may

underlie the appearance of synfire chains in the mature brain have received less attention.

Some works have used the Hebbian learning rule (Bienenstock, 1995; Hertz and Prugel-Bennett,

1996a,b), or stdp (Levy et al., 2001; Kitano et al., 2002) to let synfire-like structures emerge

out of relatively small randomly generated networks. The resulting assemblies were composed

of a few (3-4) groups of neurons firing synchronously in loops, but the topological distribution

of the connections was not discussed.

1 The principle of compositionality states that the meaning of a complex expression is determined by the
meanings of its parts, and by their relations.

Chapter 3

Modeling

Fifth Young’s Rule

Mistakes are human,
but to really mess things up,

you must involve a computer.

– Anonymous

Résumé Tous les aspects du modèle simulé sont abordés dans ce Chapitre. Le réseau,

le neurone, le bruit, ainsi que les règles d’adaptation et de plasticité sont décrits dans

le détail de leurs formulations analytiques. La construction des stimuli utilisés pour les

simulations présentées dans le Chapitre 4, p.29, est également discutée.

All aspects of the simulated model are discussed in this Chapter. The network, the neuron,

the noise, as well as the adaptation and pruning rules are described in the details of their

analytical expressions. At the end of the Chapter, the construction of the stimuli used for

simulations described in Chapter 4, p.29 is presented.

3.1 Network model

3.1.1 Layout

The network is a 2D lattice folded as a torus to limit the edge effect where the units near the

boundary receive less input. The size of the network varies between 10 × 10 and 110 × 110

units. Several types of units may be defined. In this study, we define two types, q ∈ {1, 2}.

80% of Type I (q = 1) units and 20% of Type II (q = 2) units are uniformly distributed over

the network according to a space-filling quasi-random Sobol distribution (Press et al., 1992, Fig.

7.7.1). A unit of either type may project to a unit of either type, but self-connections are not

allowed.

15

16 CHAPTER 3. MODELING

3.1.2 Connectivity

Each unit is assumed to be at the center of a relative 2D map, with coordinates x = 0, y = 0 .

The probability that another unit located at coordinates (x, y) receives a projection is provided

by the following density function

G(x, y) = α[q] · exp

(
−2π · (x2 + y2)

σ2
[q]

)
+ φ[q] (3.1)

where α[q] is a scaling factor for maximal probability of establishing a connection with the closest

neighbours, σ[q] is a scaling factor for the width of the Gaussian shaped function, and φ[q] is

a uniform probability (Hill and Villa, 1997). The density function defining the probability of

the connections is different for each type of unit and is illustrated in figure 3.1a,e. The values

of the parameters used for the density functions are indicated in table 3.1, p.19. These values

approximate the connectivity distribution and spatial extents within the cortex, but not the

characteristic long distance patches.

The random selection of the target units is run independently for each unit of either type.

An example of the spatial distribution of the projections of one Type I unit, and of one Type II

unit, is illustrated for a 100 × 100 network in figure 3.1b, and figure 3.1f, respectively. In this

example, the Type I unit (figure 3.1b) projects to 233 units and the Type II unit (figure 3.1f)

projects to 537 units overall. For each unit, it is possible to illustrate the orientation of its

connections in the 2D lattice by plotting the deviation from a perfect isotropic distribution in

polar coordinates. In case of an isotropic distribution, the orientations would be illustrated by a

circular line around the center. If this line is not circular, it shows that some orientations have

been selected preferentially by chance, as it may occur in a random selection procedure. The

orientations of the projections of the two example units are illustrated in figure 3.1c,g. It appears

that, at the single unit level, a large degree of anisotropy exists in the connection topology.

Figure 3.1d shows the cumulative distribution of all connections established by Type I units

projecting to either type in a 100× 100 network. The histograms modes show that on average

one unit of Type I is projecting to 50 units of Type II and to 190 units of Type I. Figure 3.1h

illustrates the cumulative distribution of all connections established by Type II units and shows

that on average one unit of Type II is projecting to 115 units of Type II and to 460 units of

3.1. NETWORK MODEL 17

50
0

-50

x -50

 0.0

 0.2

 0.4

 0.6
probability

e

50
0

-50

x

50

0

-50
y

 0.0

 0.2

 0.4

 0.6
probability

+500-50

x

+50

0

-50

y

f

+500-50
x

+50

0

-50

y

+50

0

-50
+500-50

y

x

+50

0

-50
+500-50

y

x

g

 0

 250

 500

 0 200 400

ce
ll

co
un

t

connection count

 0

 250

 500

 0 200 400

ce
ll

co
un

t

connection count

a b c d

h

50

0 y

 i e
 i i

 600

e e

e i

 600

Figure 3.1: Main connectivity features for Type I unit (upper row) and Type II unit (lower row).
(a,e): connectivity density function for a unit located at coordinates 0,0 on a 100 × 100 2D lattice;
(b,f): example of two projecting units, one for each type, located at the center of the 2D map. Dots
represent the location of a target unit connected by the projecting unit; (c,g): orientation map of the
projections of the same example units with polar coordinates smoothed with a bin equal to 12◦. A
circular line would represent a perfect pattern of isotropic connections; (d,h): cumulative distributions
of the connections. Type I are assumed to represent excitatory units (e→) and Type II inhibitory units
(i→).

18 CHAPTER 3. MODELING

V(t)
S(t)

B(t)

w(t)

~190 excitations

~115 inhibitions

Figure 3.2: A sketch overview of the neuron model. See text for details on the membrane potential V (t)
and the neuron state S(t) (section 3.2.1, p.18); the background activity B(t) (section 3.2.2, p.19); and
the postsynaptic potentials w(t) functions (section 3.3, p.20). Connection numbers are mean values for
a 100× 100 network, before simulation begins.

Type I.

3.2 Neuromimetic model

3.2.1 Membrane potential

All units of the network are simulated by leaky integrate-and-fire neuromimes. At each time

step, the value of the membrane potential of the ith unit, Vi(t), is calculated such that

Vi(t + 1) = Vrest[q] + Bi(t)

+(1− Si(t))((Vi(t)− Vrest[q])kmem[q])

+
∑

j

wji(t) (3.2)

where Vrest[q] corresponds to the value of the resting potential for the units of class type [q], Bi(t)

is the background activity arriving to the ith unit (see section 3.2.2, p.19), Si(t) is the state of

the unit as expressed below, kmem[q] = exp(−1/τmem[q]) is the time constant associated to the

current of leakage for the units of class type [q], and wji(t) are the postsynaptic potentials of

the jth units projecting to the ith unit (see section 3.3, p.20).

The state of a unit Si(t) is a function of the membrane potential Vi(t) and a threshold

potential θ[q]i , such that Si(t) = H(Vi(t)− θ[q]i). H is the Heaviside function, H(x) = 0 : x < 0,

H(x) = 1 : x ≥ 0. In addition, the state of the unit depends on the refractory period trefract[q],

3.2. NEUROMIMETIC MODEL 19

Variable Type I Type II Short description
0.80 0.20 proportion in network [%]

φ 0.02 0.00 uniform connection probability
α 0.60 0.20 Gaussian maximal probability
σ 10 75 Gaussian distribution width
P 0.84 -1.40 post synaptic potential [mV]
Vrest -78 -78 membrane resting potential [mV]
θi -40 -40 membrane threshold potential [mV]
trefract 3 2 absolute refractory period [ms]
τmem 15 15 membrane time constant [ms]
τsyn 40 40 synaptic plasticity time constant [ms]
τact 11000 11000 activation time constant [ms]

Table 3.1: Parameter list of the main variables used for both types of units for 100× 100 networks. See
text for details.

such that

Si(t + ∆t) =
(trefract[q] −∆t)

trefract[q]
· Si(t) (3.3)

for any ∆t < trefract[q] . For a refractory period equal to 1 time unit, the state Si(t) is a binary

variable. It is assumed that a unit can generate a spike only for Si(t) = 1. The parameter values

used for the simulations are listed in table 3.1, p.19.

3.2.2 Background activity

The background activity Bi(t) is used to simulate the input of afferents to the ith unit that are

not explicitly simulated within the network. Let us assume that each type of unit receives next[qi]

external afferents. In the present study, we simplify by a setting that all units receive the same

number of external projections and that all of them are excitatory. Specifically, we assume that

ni ≡ n ≡ 50 and that the postsynaptic potential generated by these external afferents is fixed at

a value equal to P[1,1]. In the current case (see table 3.1, p.19), each external afferent generates

an excitatory postsynaptic potential equal to 0.84 mV .

We assume that the external afferents are correlated among themselves. This means that each

time a unit is receiving a correlated input from 50 external afferents, its membrane potential is

depolarized to an extent that will generate a spike. Such external input is distributed according

to a Poisson process which is independent for each unit and with mean rate λi. The rate of

external background activity is a critical parameter. In the present study, we have set the

20 CHAPTER 3. MODELING

Poisson input to a rate λi = 5 spikes/s for most simulations, but network activity was sustained

with frequencies as low as λi = 3 spikes/s.

3.3 Synaptic connection model

The postsynaptic potential wji is a function of the state of the presynaptic unit Sj , of the “type”

of the synapse P[qj ,qi], and of the activation level of the synapse Aji. This is expressed by the

following equation

wji(t + 1) = Sj(t) ·Aji(t) · P[qj ,qi]. (3.4)

Notice that the “type” of the synapse is a parameter that depends on the types of units in

the network. In the current study, we assume that P[1,1], i.e. (Type I → Type I), and P[1,2]

connections, i.e. (Type I → Type II), are of the same kind. A similar assumption was made for

P[2,1] and P[2,2] connections. In order to maintain a balanced level of depolarization (excitatory)

and hyperpolarization (inhibitory), the Type I unit was considered as excitatory and Type II

as inhibitory. We set P[1,1] = P[1,2] = 0.84mV and P[2,1] = P[2,2] = −1.40mV .

3.3.1 Adaptation

It is assumed a priori that modifiable synapses are characterized by activation levels [A] with N

attractor states [A1] < [A2] < · · · < [AN]. Activation levels of type [1, 1] synapses are integer-

valued levels Aji(t), with Aji(t) ∈ {[A1] = 0, [A2] = 1, [A3] = 2, [A4] = 4}. Index j is referred

to as the presynaptic unit and index i as the postsynaptic unit. We assume that postsynaptic

potentials generated by synapses of type [1, 1] correspond to synaptic currents mediated by

nmda glutamatergic receptors. These discrete levels could be interpreted as a combination of

two factors: the number of synaptic boutons between the pre– and postsynaptic units and the

changes in synaptic conductance as a result of Ca2+ influx through the nmda receptors. In

the current study, we attributed a fixed activation level (that means no synaptic modification)

Aji(t) = 1, to exc → inh, inh → exc, and inh → inh synapses.

A real-valued variable Lji(t) is used to implement the spike-timing-dependent synaptic plas-

ticity (stdp) rule for Aji(t), with integration of the timing of the pre– and postsynaptic activities.

The variables Lji(t) are user-defined boundaries of attraction L0 < L1 < L2 < · · · < LN−1 < LN

3.3. SYNAPTIC CONNECTION MODEL 21

time
L0

L1

L2

L3

L4

time
L0

L1

L2

L3

L4

time
L0

L1

L2

L3

L4

a b c
A4

A3

A2

A1

Figure 3.3: The real-valued variable Lji is increased or decreased according to the stdp rule. If the value
Lji reaches one of the Lk user-defined boundaries, a jump occurs in the integer-valued variable [Ak]. In
the beginning, all (e→e) synapses have been set at activation level [A3]. (a): example of potentiation
with an increase in synaptic strength that is stabilized on the long term; (b): example of depression
with a fast decrease in synaptic activation level down to its minimal level, [A1] = 0 which provokes the
elimination of the synapse; (c): example of a synaptic link that is neither affected by potentiation nor
by depression, but which efficacy decays down to [A1] = 0 according to the time constant τact.

satisfying Lk−1 < [Ak] < Lk for k = 1, · · · , N . This means that whenever Lji > Lk, the activa-

tion variable Aji jumps from state [Ak] to [Ak+1]. Similarly, if Lji < Lk the activation variable

Aji jumps from state [Ak+1] to [Ak]. Moreover, after a jump of activation level [A] occurred at

time t, the real-valued variable Lij is reset to Lij(t+1) = Lk+Lk+1

2 (see figure 3.3 for a graphical

example).

stdp defines how the value of Lji at time t is changed by the arrival of presynaptic spikes, by

the generation of postsynaptic spikes and by the correlation existing between these events. On

the generation of a postsynaptic spike (i.e. when Si = 1), the value Lji receives an increment

which is a decreasing function of the elapsed time from the previous presynaptic spike at that

synapse (i.e. when Sj = 1). Similarly, when a spike arrives at the synapse, the variable Lji

receives a decrement which is likewise a decreasing function of the elapsed time from the previous

postsynaptic spike. This rule is summarized by the following equation: Lji(t + 1) = Lji(t) +

(Si(t) ·Mj(t))− (Sj(t) ·Mi(t)), where Si(t), Sj(t) are the state variables of the ith and jth units

and Mi(t),Mj(t) are inter-spike decay functions. Mi(t) may be viewed as a “memory” of the

latest inter-spike interval,

Mi(t + 1) = Si(t) ·Mmax[qi]

+(1− Si(t)) ·Mi(t) · ksyn[qi] (3.5)

22 CHAPTER 3. MODELING

post

pre

S (t)i

-M (t)i

S (t)j

M (t)j

time

time

L (t)ij

Figure 3.4: Graphical representation of the interactions between S(t) and M(t) variables in our stdp
rule. Time flows from the left to the right. Presynaptic cell activity (j) appears on the bottom line,
postsynaptic cell activity (i) on the top line. Bold ticks mark the occurrences of spikes (S(t) = 1) that
correspond to the times when M(t) is reset to Mmax. M(t) is an exponentially decaying variable. When
the spike order is pre– before postsynaptic (up arrows), the positive contribution of Si(t) ·Mj(t) can be
read where the interrupted line crosses Mj(t). When the spike order is post– before presynaptic (down
arrows), the negative contribution of Sj(t) ·Mi(t) can be read where the interrupted line crosses Mi(t).

where ksyn[qi] = exp(−t/τsyn[qi]) is the time constant associated to the memory, τsyn[qi] is the

synaptic plasticity time constant characteristic of each type of unit, and Mmax[qi] was set

Mmax[qi] = 2 for all units of either type in this study. In the event where neither the pre–

nor the postsynaptic unit should fire a spike, the real-valued variable will decay with a time

constant kact[qj ,qi] = exp
(
−1/τact[qj ,qi]

)
characteristic for each type of synapse, such that the

final equation is the following:

Lji(t + 1) = Lji(t) · kact[qj ,qi]

+(Si(t) ·Mj(t))

−(Sj(t) ·Mi(t)). (3.6)

Figure 3.4 shows a graphical representation of the interaction between S(t) and M(t) variables.

In the present study, the differences between the user defined boundaries Lk were all equal,

such that ∆Lk = Lk−Lk−1 = 20 for any attractor state [Ak]. In the beginning of the simulation,

all modifiable synapses were set to activation level [A3] = 2. Figure 3.3a illustrates a case when

the synaptic link receives a potentiation determined by the stdp rule described above. The

activation variable jumps from [A3] to [A4] and stabilizes at highest activation level. Figure 3.3b

illustrates a case when the synapse is continuously depressed such that the activation variable

jumps from [A3] to [A2], and then from [A2] to [A1] faster than its spontaneous decay, determined

3.4. STIMULI MODELS 23

L
ji(

t)
A

ji(
t)

time [s]
50 100 1500

4

2

1

0

Figure 3.5: Co-evolution of Lji(t) and Aji(t) for a sample excitatory-excitatory connection during the
first 150 seconds of a simulation. Each time Lji(t) outcomes the upper bound (down-pointing triangles),
or the lower bound (up-pointing triangles), Aji(t) state changes accordingly, constrained by the possible
values {0, 1, 2, 4}. At t ' 137 seconds, Aji(t) reaches the value of 0 and the connection is definitely
pruned. Lji and Aji are dimension-less variables.

by time constant kact[qj ,qi]. Figure 3.3c illustrates a case when the synapse is neither depressed

nor potentiated, and the activation level spontaneously decays down to the minimal level.

3.3.2 Pruning

No generation of new projections is allowed in the present study, although specific rules could be

defined to this purpose. Synaptic pruning occurs when the activation level of a synapse reaches a

value of zero. This means that synaptic pruning may occur only for synaptic connections of type

[1, 1], which are also the most abundant, when the activation level Aji decreases to its minimal

value, i.e. [A1] = 0. In this case, the synapse [i, j] is eliminated from the network connectivity.

Figure 3.5 shows side by side the evolution of Lji and Aji for a sample simulated connection.

3.4 Stimuli models

The first experiments discussed in the following Chapter involved networks that were not stim-

ulated. The subsequent ones were stimulated with one of the two types of stimuli described

here. The generic simulation layout was the following: from t = 0 to t = 9 ms, every unit

received a small input on the membrane, randomly chosen between 0 to 30 mV, to “shake” the

network and to provide a non-uniform initial state; from t = 10 to t = 999 ms, the network

24 CHAPTER 3. MODELING

was left alone to relax before starting the experiment; from t = 1, 000 ms to the end of the

simulation, a stimulus was presented every 2,000 ms. The simulation duration was set to 5 · 105

or 1 · 106 time steps, 500 or 1,000 seconds respectively, after checking that the networks usually

had reached a steady-state by that time. Overall, this represented 250 or 500 presentations of

the stimulus along one simulation run. Note that we arbitrarily decided that one simulation

time step corresponds to the duration of a spike: 1 ms. To ease the reading, we will ignore the

difference between these two measures.

3.4.1 Simple spatiotemporal pattern

The stimulus was composed of vertical bars uniformly distributed over the 2D lattice surface,

each bar being one lattice column wide (see figure 3.6a). At each time step during stimulus

presentation, the bars were simultaneously moved one column to the right, such that each bar

slipped over the entire surface of the network. See Appendix A, p.115 for animated sequences

of this stimulus. Depending on the protocol needs, several parameters of this stimulus were

modified:

size: The number of bars composing the stimulus was a function of the simulated network sizes:

9 bars for 90 × 90 networks, 10 bars for 100 × 100 networks, and 11 bars for 110 × 110

networks, such that the bars were always distant of 10 columns from one another and

spanning over all the available surface.

duration: Three stimulus durations were used: 50 ms followed by 1,950 ms without any external

input, 100 ms followed by 1,900 ms without any external input, and 200 ms followed by

1,800 ms without any external input.

input units: The stimulus was applied only to a fraction of the population formed by excitatory

units; these units are called input units. The number of input units was expressed as a

ratio (i.e. 3, 5, 7, or 10%) of the initial number of excitatory units. For a 100×100 network,

10% of input units corresponds to 800 input units, i.e. 10% of the 80% excitatory units of

the 10,000 units. See below how the input units were chosen.

intensity: The stimulus applied to a particular input unit provoked a depolarization on its

3.4. STIMULI MODELS 25

a b c

t = 1

stimulation

onset

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t=duration

(50, 100

or 200 ms)

[...] [...] [...]

Figure 3.6: Stimuli models time
decomposition. Squares represent
100× 100 networks. Points mark
the position of the input units re-
ceiving the stimulus at each time
step – one time step per line. The
10 ms basic stimuli described in
this section are looped to con-
struct longer stimuli lasting 50,
100 or 200 ms, (a): simple stim-
ulus, 5% input units. Note that
the input units are aligned on
10 columns slowly moving to the
right; (b): complex stimulus A,
5% input units; (c): complex
stimulus B, 5% input units. See
Appendix A, p.115 for animated
sequences.

26 CHAPTER 3. MODELING

membrane with amplitudes equal to 0 (i.e. no stimulus), 30, 40, 50, and 60 mV. The

stimulus intensity was selected in the beginning and was stable during a simulation run.

To summarize the stimulation procedure, let us consider the following example. For each of

the input units – selected among the 80% of excitatory units – of a 100×100 network stimulated

with a 100 ms stimulus, one stimulus presentation resulted in a sequence of 10 external inputs

equally distributed in time every 10 ms. At the network level, each stimulus presentation

corresponded to a spatiotemporal sequence characterized by 10 groups of 80 synchronously

excited units stimulated 10 times during 10 ms. Note that the spatial distribution of the 10

groups was constrained by the bars pattern.

In addition to the stimulus parameters previously defined, and in order to control the effect

of the stimulation, we introduced 3 protocols differing in the method used to choose the input

units:

no stimulation: No input units were chosen at all. This condition corresponds to a stimulation

of zero intensity;

random stimulation: At each stimulus presentation, the input units were randomly chosen,

such that the input units changed at every new stimulus presentation;

fixed stimulation: The input units were selected in the beginning of the simulation and re-

mained the same for every stimulus presentation.

3.4.2 Complex spatiotemporal pattern

This stimulus pattern is slightly more complex than the previous (see figure 3.6b and c). The

timing components are related, but the spatial component is different. This pattern was used

only once, for the experiment described in section 4.2.4, p.47. For this reason, it was only defined

for 100× 100 networks and used only with the intensities of 60 mV and 0 mV (control). Before

the simulation started, two non-overlapping sets of 400 units were randomly selected from the

8,000 excitatory units, labeled sets A and B. Each set was randomly divided into 10 ordered

groups of 40 units, A = {A1, A2, . . . , A10} and B = {B1, B2, . . . , B10}. At each time step during

a stimulus presentation, the 40 units of one group received a large excitatory input on their

3.4. STIMULI MODELS 27

membrane, leading to their synchronous firing. The 10 groups of a set were stimulated following

an ordered sequence, thus defining a 10 ms long spatiotemporal pattern (see Appendix A, p.115

for animations). These 10 ms patterns were then concatenated to compose 100 ms stimuli

according to one of the six following protocols:

No stimulation: No input units were stimulated. This condition corresponds to a stimulation

of zero intensity;

AA stimulation: 10× pattern A in a row;

BB stimulation: 10× pattern B in a row;

AB stimulation: 5× pattern A followed by 5× pattern B;

BA stimulation: 5× pattern B followed by 5× pattern A;

AB|BA stimulation: A random mixture of stimulus 5× pattern A followed by 5× pattern B,

and stimulus 5× pattern B followed by 5× pattern A. Before each presentation, one of

the two stimuli was randomly selected with equal probability.

Chapter 4

Results

Fett’s Law

Never try to repeat
a successful first experiment.

– Anonymous

Résumé Les résultats des simulations sont présentés dans ce Chapitre. Une première série

d’expériences a été réalisée dans le but de tester que la connectique tirée aléatoirement

et l’épissage associé à la plasticité synaptique à modulation temporelle relative (stdp) ne

présentaient pas de biais intrinsèques en absence de stimuli externes au réseau. L’espace

des paramètres du modèle étant très important, seuls les résultats obtenus lors de l’ex-

ploration de certains d’entre eux sont rapportés ici. Ainsi, un facteur d’échelle a pu être

approximé pour compenser l’effet de la taille du réseau sur l’intensité de l’activité. Les

réseaux ont ensuite été stimulés avec les motifs spatiotemporels plus ou moins complexes

décrits précédemment. L’analyse des connexions survivantes à la fin des simulations, ainsi

que l’analyse des séries temporelles résultantes de l’activité des neurones fortement in-

terconnectés, suggèrent que des circuits feed-forward émergent par épissage des réseaux

initialement tirés au hasard.

Simulation results are presented in this Chapter. A first batch of experiments was performed

to test that the randomly generated connectivity and the stdp-driven pruning did not show any

spurious bias in absence of stimulation. The model parameter space is so vast, that only the

results obtained for some of them are described here. Among other things, a scale factor was

approximated to compensate for the network size on the activity. Networks were then stimulated

with the spatiotemporal patterns discussed previously. The analysis of the connections remaining

in the end of the simulations, as well as the analysis of the time series resulting from the

interconnected units activity, suggest that feed-forward circuits emerge by pruning from the

initially randomly connected networks. Each experiment is described in a separate section. A

parameters summary box helps keeping track of the differences between the increasingly more

complex simulation setups.

29

30 CHAPTER 4. RESULTS

N size φ∗[1] [%] P ∗
[1,1] [mV]

1 10× 10 9.28 2.36
2 20× 20 5.84 1.64
3 30× 30 4.46 1.35
4 40× 40 3.68 1.19
5 50× 50 3.17 1.08
6 60× 60 2.81 1.01
7 70× 70 2.53 0.95
8 80× 80 2.32 0.90
9 90× 90 2.14 0.87

10 100× 100 2.00 0.84
11 110× 110 1.88 0.81

Table 4.1: Scaled parameter values for each network size N . Note that the values for N = 10 correspond
to those listed in table 3.1, p.19. See text for details.

4.1 Preliminary work

4.1.1 Size effect

We investigated the pruning dynamics with networks of different
parameters summary

network size 10 × 10
to 100 × 100

background 10 sp/s
stimulus none
scaled yes

sizes. The smallest network was defined by 10 × 10 units and the

largest by 100 × 100 units, i.e. (10 ×N)2, with N ∈ {1, . . . , 10}. To

compensate for the changes in the balance between excitation and

inhibition induced by the change of size, we introduced the scaling

factor

f = 3

√
104

(10 ·N)2
(4.1)

where N is the size as described before. The uniform probability for an excitatory unit to project

to any other unit of the network φ[1] was scaled according to

φ∗[1] = f · φ[1]. (4.2)

The level of postsynaptic depolarization for excitatory-excitatory synapses P[1,1] was scaled

according to

P ∗
[1,1] =

(
1 +

f − 1
2

)
· P[1,1]. (4.3)

This way, small networks have a larger number of stronger excitatory connections to balance

4.1. PRELIMINARY WORK 31

 1

 10

 100

100010010

a
c
ti
v
e

 s
y
n

a
p

s
e

s
 [

A
4

]
(%

)

time [s]

1
2
3
4
5
6
7
8
9

10

Figure 4.1: Pruning dynamics averaged over
n = 10 simulations for each network size. With
the proposed size scaling factor, the pruning dy-
namics are comparable for network sizes N ∈
{4, · · · , 10}. Simulations for N = 1 and N = 2
saturated, suggesting that the scaled parameter
values were too large for these two specific sizes.

the inhibitory connections when the simulation begins. Table 4.1, p.30 lists the scaled values of

φ∗[1] and P ∗
[1,1] for the network dimensions we simulated.

It is interesting to notice that the final ratio of active synapses (Rmax[A]) represented only few

percents of the initial number of synapses (see figure 4.1). In addition, it is important to notice

that the connections reaching the maximal activation level did not necessarily remain active

until t = tsteady. Several synapses reached the activation level [A4] after some delay, and then

decreased at variable speed to [A1] = 0, before they were eventually eliminated. The network is

expected to work in a range such that background activity is unable to create spurious attractors

by stdp. This means that background activity alone should not create stable connections that

would shape the topology of cell assemblies. The size of the network is critical if the goal is to

detect the emergence of circuits embedded in a large network. Figure 4.1 shows that the ratio of

active synapses with activation level equal to [A4] could be as high as 50% of all initial synapses.

The final percentage of active units is much less variable and it is always less than 10% at tsteady

for networks that did not saturate.

4.1.2 Seed effect

A simulation study that relies on large use of randomly generated
parameters summary

network size 100 × 100
background 10 sp/s
stimulus none
random number
generator seeds 100

numbers may fall into local minima or spurious attractors simply by

chance. It was necessary to assess the effect of the random number

generator seed on our simulations. The most critical effect of the

randomization might occur in the very beginning, when the initial

network topology is created according to the connection density functions for the different types

32 CHAPTER 4. RESULTS

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7

c
o
u
n
t

percentage of synapses [A4]

R1 R2

n=100

Figure 4.2: “Seed effect” on the number of
synapses remaining after 1,000 seconds. n = 100
simulations were performed using different ran-
dom number generator seeds. The distribution
of Rmax[A] at time t = tsteady = 1, 000 seconds
shows that, in the majority of the runs, synaptic
pruning left 3.0 to 6.0% active synapses at the
maximum level [A4] (bin=0.5).

of units. The very same simulation, with the parameter set described in table 3.1, p.19 was

repeated 100 times using different random number generator seeds with the 100 × 100 units

network size.

The choice of the seed had a significant impact on the value of Rmax[A] at time tsteady,

as it could vary in the range [1.30, 6.03]%. However, as shown by the distribution of Rmax[A]

(figure 4.2), about 90% of these values were comprised between 3.0 and 6.0%. Moreover, we

never observed cases with absence of convergence at delays as large as t = 1, 000 seconds. This

indicates the existence of a “seed effect”, which does not cause changes in the overall dynamics

of synaptic pruning.

A bias in the connections orientation could occur by random choices. In order to test this

hypothesis, two cases of extreme values of Rmax[A] observed in the distribution of figure 4.2

were selected. The first case corresponds to Rmax[A] as low as R1 = 1.97% . The second case

corresponds to Rmax[A] as high as R2 = 6.03%. For both cases, we calculated the deviation from

an isotropic connection (see figure 3.1c and g) for all active synapses, i.e. with an activation

level not equal to [A1] = 0. Then, we calculated an average deviation plot that corresponds to

the mean of the orientations computed over all active synapses at given times t.

Figure 4.3a shows the evolution of the orientation map in the case R1, when the network

stabilizes with a low level of active connections. In this example, the number of active excitatory-

excitatory connections n was: n = 1, 517, 240 initially, n = 330, 920 at t = 100s, and n = 172, 503

at t = 200s. The network eventually stabilized with n = 30, 864 active synapses at t = tsteady =

1, 000 seconds. The orientation map shows that the deviations from an isotropic distribution

4.1. PRELIMINARY WORK 33

y

x

y

x

y

x

a

0

-50
0-50

y

x

0

-50
0-50

y

x

0

-50
0-50

y

x

1.5

1.0

0.5
71250

ra
tio

1.5

1.0

0.5
71250

ra
tio

1.5

1.0

0.5
71250

ra
tio

1.5

1.0

0.5
71250

ra
tio

1.5

1.0

0.5
71250

ra
tio

1.5

1.0

0.5
71250

ra
tio

cb d

distance

distance

distance

distance

distance

distance

50

50

50

50

50

50

0-50 50

0-50 50

0-50 50

0

-50

0

-50

0

-50

50

50

50

t =
 1

,0
00

 s
t =

 2
00

 s
t =

 1
00

 s

50

50

50

50

50

50

Figure 4.3: Random number generator seed effect on the active connections orientation and length. (a):
Average orientation map. A circular line indicates an isotropic projection orientation of a unit ideally
located in the center marked by a cross. This data corresponds to run R1 from figure 4.2. The average
deviation from isotropy for all active connections is plotted at various times. The last line shows the
situation at tsteady: 30, 864 synapses remained active, all with active state [A4], representing 1.97% of
the initial number of synapses at time t = 0. (b): Normalized histogram of the source-to-target length
measured as the Euclidean distance in the 2D lattice for simulation run R1. A flat line at ratio = 1
indicates that the distances are totally predicted by the modified 2D Gaussian density function described
in section 3.1.2, p.16. (c): Average orientation map corresponding to run R2 from figure 4.2. At tsteady,
93, 346 synapses remained active, all with active state [A4], representing 6.03% of the initial number of
synapses at time t0. (d): Normalized histogram of the source-to-target length measured as the Euclidean
distance in the 2D lattice for simulation run R2.

34 CHAPTER 4. RESULTS

were equally distributed in all directions. Another factor that could be affected by the random

choice is the distance from source-to-target (calculated as an Euclidean distance over the 2D

lattice) of the remaining projections. The distance distribution histogram (figure 4.3b and d)

was normalized with respect to the probability distribution of establishing a connection. In

this normalized histogram, a ratio of 1 means that the count is perfectly determined by the

probability distribution. In the case of R1, we observed a tendency to some deviation from the

original probability function, but this variance was the same for any source-to-target distance.

In the case R2, the initial number of synapses was n = 1, 512, 634 and n = 93, 346 active

synapses remained at tsteady. This analysis shows that the “seed effect” does not introduce

significant biases either in the orientation, or in the length of the connections that were selected

by pruning.

4.2 Stimulated networks

After checking the intrinsic properties of our model, we studied the effect of selected stimuli on

pruning dynamics and distributions. The type of stimuli, as well as the experimental protocols

were described in section 3.4, p.23.

Figure 4.4 shows the evolution of the proportions of excitatory-excitatory connections in each

activation level during a simulation. We observed that, in presence of mere background activity,

about 20% of the connections had been pruned (Aji = [A0]), and about 20% of the connections

had reached the strongest state (Aji = [A3]) by the time of the first stimulus presentation

(t = 1 second). The first stimulus presentation was followed by a period of network saturation

of less than 1 second during which the proportions of connections did not change. After this

period of artificial hyper-activity, the pruning resumed until t = tsteady = 500 seconds when the

proportions reached a stable state. Among the remaining active synapses, defined by Aji 6= [A0],

almost all were characterized by the largest activation level.

In the end of the simulation, i.e. at t = tsteady = 500 seconds, we identified the pool of

excitatory units that were still “alive”, discarding all the input units. From this pool, a subset

of units was selected on the basis of their connection pattern from and to the pool itself. Those

units with at least three strong projections to (kout ≥ 3) and three projections from (kin ≥ 3)

other units of the pool are dubbed strongly interconnected units (SI -units).

4.2. STIMULATED NETWORKS 35

0

20

40

60

80

100

0 5 10 15 20

0

20

40

60

80

100

0 200 400 600 800 1,000

time [s]

time [s]

c
u
m

u
la

te
d

d
is

tr
ib

u
ti
o
n
 [
%

]

a

b

c
u
m

u
la

te
d

d
is

tr
ib

u
ti
o
n
 [
%

]

Figure 4.4: Evolution of the proportion of excitatory-excitatory connections at each activation level
[A] as a function of simulated time. (a): from t = 0 to t = 20s (close-up view); (b): from t = 0 to
t = 1000s; white: [A0]; dark gray : [A1]; black : [A2]; light gray : [A3]; down-pointing triangles: onset
of first and second stimulus presentations. At t = 0, all connections (n = 1, 516, 384) are initialized at
Aji = [A2]. The proportion of connections at levels [A1] and [A2] rapidly tend to 0. At t = 500 seconds:
87.29% [A0], 0.05% [A1], 0.09% [A2], 12.57% [A3]. At t = 1, 000 seconds: 87.59% [A0], 0.02% [A1], 0.04%
[A2], 12.35% [A3]. Network size: 100× 100; stimulus duration: 100 ms; stimulus intensity: 60 mV; input
units ratio: 10%; fixed stimulus protocol.

36 CHAPTER 4. RESULTS

 0

 5

 10

 15

 10 7 5 3

IC
U

ratio of input units [%]

90 x 90

100 x 100

110 x 110

 0

 5

 10

 15

 10 7 5 3

ratio of input units [%]

a b

IC
U

Figure 4.5: The index of connected units (icu), i.e. the ratio between the number of input units and the
number of SI -units, as a function of the ratio of input units, stimulus duration, and network dimensions.
Labels of stimulus duration: ◦: 50 ms; ×: 100 ms; •: 200 ms. (a): simulations performed with the
parameter values listed in table 3.1, p.19 for all network sizes; (b): like (a) except for the size-specific
scaled variables defined in table 4.1, p.30. Stimulus intensity: 60 mV; fixed stimulation protocol.

4.2.1 Stimulus duration

During the pruning process, only the modifiable con-
parameters summary

network size 90×90 to 110×110
background 5 sp/s
input units ratio 3, 5, 7, 10%
stimulus pattern simple
stimulus duration 50, 100, 200 ms
stimulus intensity 60 mV
scaled yes, no

nections that keep a sufficient level of stdp-driven activ-

ity can “survive”. The first step for searching an oriented

topology was to detect the excitatory neighbourhood of the

SI -units. This neighbourhood corresponds to the set of ex-

citatory units that send a projection to the SI -units, that

receive a projection from the SI -units, or that both send and receive projections. Thus, this

neighbourhood may also include input units, i.e. the units that are depolarized by the stimulus.

The ratio between the number of input units belonging to the neighbourhood and the number of

SI -units defines the index of connected units (icu). The larger the icu, the larger the influence

of the input units on the SI -units.

The icu was computed for different network dimensions, with and without scaled parameters,

stimulus durations, and input units ratio for the fixed stimulus protocol. The results are gathered

in figure 4.5. With an input units ratio equal to 3%, we observed that the value of icu is almost

equal to zero and independent of the other parameters, because the amount of stimulus delivered

to the network is not large enough to distinguish a stimulus-driven pruning. Such pruning

appears with 5% of input units and becomes clearly visible with 7 and 10% of input units. It

4.2. STIMULATED NETWORKS 37

is worth noting that a stimulus lasting 200 ms provoked an effect similar to a stimulus lasting

50 ms. Conversely, the “network size” effect is not interesting by itself, as it is consistent with

the fact that the smaller the network, the larger the impact of a certain input units ratio. In

addition, applying the parameter scaling factor introduced in section 4.1.1, p.30, almost canceled

the size effect (compare figure 4.5a and b).

4.2.2 Circuit emergence

The evolution of the in– and out-degrees for the SI -units and
parameters summary

network size 100×100
background 5 sp/s
input units ratio 10%
stimulus pattern simple
stimulus duration 100 ms
stimulus intensity 60 mV
stimulus protocol none,

random, fixed

their neighbourhood was studied as a function of the simulation

duration for a 100 × 100 network. Three experimental proto-

cols with the simple spatiotemporal stimulus were used: none,

random and fixed stimulation. The state of the network was

analysed at t = 50, t = 200 and t = 500 seconds (figure 4.6).

In the beginning of a simulation, an average excitatory unit receives and sends projections to

about 190 other excitatory units, i.e. kin = kout ≈ 190 (see figure 4.6a-c). The variability comes

from the connectivity probability distribution used to randomly set these connections. As no

new connections are established during the simulation, kin and kout can only decrease under

the pressure of the pruning process. Some units tend to loose their incoming connections first,

others tend to loose their outgoing connections first. The existence of other processes combining

different speeds for the loss of input and output connections results in the smear of points visible

in figure 4.6d-f.

We observed that as soon as t = 50 seconds, corresponding to 25 stimulus presentations with

the fixed stimulation protocol (figure 4.6f), the evolution of the neighbourhood units input and

output degrees was different from the other two protocols. Plots for t = 200 and t = 500 seconds

show that most units have kout � kin, which indicates that the pruning modified the topology of

the connections and favored the emergence of the converging pattern. The comparison of these

degrees between t = 200 and t = 500 s (figure 4.7a-c vs. figure 4.7d-f) shows that the tendency

to loose outward projections continued during the last part of the simulation. In particular,

notice that a large part of the neighbourhood population lost all its input connections (kin = 0);

these units “survived” only because the background noise maintained some of their outward

connections timely tuned with the discharges of their targets.

38 CHAPTER 4. RESULTS

t
=

 2
0

0
 s

e
c
o

n
d

s
t

=
 5

0
0

 s
e

c
o

n
d
s

k
_

o
u

t
k
_
o

u
t

0

100

200

0

100

200

k
_

o
u

t
k
_
o

u
t

stimulus amplitude = 0mV stimulus amplitude = 60mV

stimulus protocol = random

stimulus amplitude = 60mV

stimulus protocol = fixed

k_in k_in k_in

0 100 200 0 100 200 0 100 200

0

100

200

0

100

200

k
_

o
u

t
k
_
o

u
t

100

200

0

100

200

100

200

t
=

 5
0

 s
e

c
o

n
d

s

k
_

o
u

t

t
=

 0

c

d e f

g h i

j k l

0

0

a b

100

200

k
_

o
u

t

0

Figure 4.6: Evolution of the out-degrees (kout) vs. in-degrees (kin) for (•): SI -units; and (·): their
neighbourhood units. (a, d, g, j): in absence of any input (362 SI -units, 6, 954 neighbours); (b, e,
h, k): random stimulation protocol (425 SI -units, 6, 996 neighbours); (c, f, i, l): fixed stimulation
protocol (123 SI -units, 6, 762 neighbours). (a, b, c): initial situation at t = 0 is identical for all three
protocols; (d, e, f): at t = 50; (g, h, i): at t = 200 seconds; (j, k, l): at t = 500 seconds; See
figure 4.7 for a closer look to panels (g-l). Network size: 100×100; stimulus duration: 100 ms; input units
ratio: 10%.

4.2. STIMULATED NETWORKS 39

a

b

c

d

e

f

t
=

 2
0
0
 s

e
c
o
n
d
s

t
=

 5
0

0
 s

e
c
o

n
d
s

0

20

40

0

20

40

k
_

o
u

t
k
_
o

u
t

0

20

40

0

20

40

k
_

o
u

t
k
_
o

u
t

stimulus amplitude = 0mV stimulus amplitude = 60mV

stimulus pattern = random

stimulus amplitude = 60mV

stimulus pattern = fixed

k_in k_in k_in

0 100 200 0 100 200 0 100 200

Figure 4.7: Evolution of the out-degrees (kout) vs. in-degrees (kin) for (•): SI -units; and (·): their
neighbourhood units. These panels correspond to panels (g-l) in figure 4.6 with appropriately scaled
axes. (a, b, c): t = 200 seconds; (d, e, f): t = 500 seconds. (a, d): in absence of any input; (b,
e): random stimulation protocol; (c, f): fixed stimulation protocol. Network size: 100×100; stimulus
duration: 100 ms; input units ratio: 10%.

40 CHAPTER 4. RESULTS

Figure 4.7 shows that the distribution patterns for the random stimulation protocol (fig-

ure 4.7a,d) and in the absence of stimulation (figure 4.7b,e) are very similar. A random stimulus

could not drive any significant effect, which was somehow expected, but it was necessary as

a control experiment to detect any bias introduced in the simulation program. In the fixed

stimulus protocol (figure 4.7c,f), we observed n = 415 units with 30 ≤ kin ≤ 130 at t = 200 s

that are maintained at t = 500 s. There are only 26 units with these properties in the other two

conditions. This population is composed of 407 input units belonging to the neighbourhood.

These input units maintained a large kin, because of the synchronization of their activity during

the stimuli presentations. The vast majority of the input units (> 85%) were presynaptic with

respect to the SI -units, thus confirming that the topology organized towards a feed-forward

converging pattern of connections.

The number of SI -units was smaller with the fixed stimulus and their kin ≈ 180 and 3 ≤

kout ≤ 20. It is important to notice that the distribution of the kin of the SI -units did not

change in time. In fact, the SI -units were characterized by an input pattern very close to the

one they had when the simulation began. Their connectivity pattern, initially set at random,

appeared to match some requirements for maintaining almost all the input connections. The

interpretation is that the cell assembly formed by the SI -units was initially determined by

chance, and maintained because of its internal connections when the pruning process started to

select the active connections. The pruning let a particular network emerge, that was already

embedded in the network at time t = 0. Different random seeds generated different populations

of SI -units but the number of these units did not vary much as a function of the random seed.

Figure 4.8 shows the evolution of all the interconnections among a group of strongly inter-

connected units. The simulation lasted 500 seconds, corresponding to 250 simple spatiotemporal

stimulus presentations. At t = 500 seconds, 49 SI -units were detected, connected by 69 pro-

jections (figure 4.8b). At t = 0 (figure 4.8a), these SI -units were connected by 98 connections

randomly set according to the topographic rules described in section 3.1.1, p.15. At this point,

connections have no feed-back or feed-forward directions. After 500 seconds of synaptic pruning

driven by the stimulus and by stdp (figure 4.8b), an oriented topology emerged. According to

this connection pattern, it was possible to determine a layered structure with a connection map

characterized by feed-forward connections. Within this structure, a “layer” is virtual, in the

4.2. STIMULATED NETWORKS 41

5326

5697

2800

5550

7199

7297

9661

992

4695

1539

1202

8402

1608

8889

931931

81208120

80222267

3027

2007

1152

2666

8467

1151

7928

5724 5724

490 490490

45478863

4761

2279

804

826782678267

1234

1048

1435

8300

7794

1049

2532

1842 4622

24272427

9983

2848

1845

492492

147214721472

7235

5326

5697

2800

5550

7199

7297

9661

992

4695

1539

1202

8402

1608

8889

931931

81208120

80222267

3027

2007

1152

2666

8467

1151

7928

5724 5724

490 490490

45478863

4761

2279

804

826782678267

1234

1048

1435

8300

7794

1049

2532

1842 4622

24272427

9983

1845

2848

492492

147214721472

7235

a

b
time = 500 s

time = 0 s

layer 1 layer 2 layer 3 layer 4 layer 5

Figure 4.8: The 49 selected SI -units appear to be embedded into a layered circuit. (a): in the beginning
of the simulation, 98 projections; (b): at t = tsteady = 500 seconds, 69 projections. Units are arranged in
layers according to a best fit of their connections. Plain lines: projections going forward (left to right);
large interrupted lines: projections going backward (right to left); thin interrupted line: projections to
the same layer (up or down). Some units appear in more than one layer. Replicas are not surrounded
with a black ellipse. Units surrounded by bold ellipses are further investigated in figures 4.13 and 4.14.
Network size: 100× 100; stimulus duration: 100 ms; stimulus intensity: 60 mV; input units ratio: 10%;
fixed protocol.

42 CHAPTER 4. RESULTS

x

y

 0

 50

 100

 0 50 100

layer 1 layer 2 layer 3 layer 4 layer 5

Figure 4.9: Each layer unit of figure 4.8 is represented as a dot at its position on the 2D lattice.

x

y

 0

 50

 100

 0 50 100

30 mV 40 mV 50 mV 60 mV

Figure 4.10: Example of the location of strongly interconnected units as a function of the stimulus-
induced depolarization amplitude. Network size: 100×100; stimulus duration: 200 ms; input units: 10%
of the excitatory units; fixed stimulation protocol.

sense that it groups a number of SI -units sharing feed-forward projections to the next “layer”,

and no topology is implied. The units belonging to each layer are scattered over the 2D lattice

surface as shown in figure 4.9. The structure represented in figure 4.8 is not unique, and alter-

native circuits, very similar to the one presented here, could be determined. We have started

to search for an efficient algorithm to detect the most plausible layered topology. At this stage,

we rely on Graphviz1 and hand editing, which is not totally satisfactory for our purpose. The 4

units surrounded by bold ellipses in figure 4.8 are further analysed in figures 4.13 and 4.14.

4.2.3 Stimulus intensity

The number of SI -units after 500 seconds depended on both the stimulation protocol and the

amplitude of the stimulus-induced depolarization. In the fixed stimulation protocol condition,

a small group of SI -units appeared with stimulus depolarizations as weak as 30 mV and their

number increased with stronger stimuli (figure 4.10). Conversely, in the random stimulation

protocol condition, the number of SI -units remained high and we did not observe a significant

4.2. STIMULATED NETWORKS 43

0

20

40

60

80

100

-100 0 100 200 300 400 500 600 700

time [ms]

0

20

40

60

80

100

-100 0 100 200 300 400 500 600 700

time [ms]

a b

dc

0

50

0

50

-100 0 700 -100 0 700
time [ms] time [ms]

d
e
n
s
it
y
 [

e
v
/s

]

d
e
n
s
it
y
 [

e
v
/s

]

Figure 4.11: Response of two strongly interconnected sample units to 50 presentations of the fixed
stimulation between time t = 450 and t = 500 seconds from the simulation start. (a, b): peri-event
densities (psth) for the last 50 presentations of the stimulus, interrupted line: mean activity, dotted lines:
confidence limits according to Abeles (1982b), Gaussian smoothing bin: 5ms; (c, d): corresponding
raster plots. Network size: 100×100; background activity: 5 sp/s; stimulus duration: 200 ms; stimulus
intensity: 60 mV; ratio of input units: 10%; fixed stimulation protocol.

change in response to stimulus intensity.

The activity of all the SI -units was affected by the fixed stim-
parameters summary

network size 100 × 100
background 5 sp/s
input units ratio 10%
stimulus pattern simple
stimulus duration 100, 200 ms
stimulus intensity 0, 30, 40,

50, 60 mV
stimulus protocol fixed

ulation presentation. Figure 4.11 shows the response of two SI -

units to a simple spatiotemporal stimulus (200 ms), using the fixed

stimulation protocol. The majority (nearly 80%) of the SI -units

were excited during the stimulus presentation (e.g. figure 4.11b),

despite the fact that, by definition, none of the SI -units was an

input unit. It is interesting to notice that the remaining SI -units were strongly inhibited during

the stimulus presentations (e.g. figure 4.11a), despite the fact that the stimulus was delivered

only to excitatory cells. This is explained by the network of inhibitory units that receive the

projections from the input units. The inhibitory response observed in the pool of the SI -units

is due to the balanced network reacting to the increased activity by more inhibition.

We compared the SI -units circuits that emerged for stimulus intensities 30 and 60 mV.

We selected four SI -units that were present in both emerged circuits and that received no

common input from other SI -units (surrounded by bold ellipses in figure 4.8). We recorded the

activity of these units in the fixed stimulation protocol conditions, and compared the time series
1http://www.graphviz.org/

http://www.graphviz.org/

44 CHAPTER 4. RESULTS

a

b

c

-100 +900time [ms]

Figure 4.12: Construction of a differential raster. A raster plot is a cumulated representation of the
neuron spiking activity aligned on a specific event. Ticks mark the occurrence of a spike. Time flows
from left to right. Each line of the raster is stacked on top of the previous so that the stimulus onsets are
aligned on the vertical bar at time t = 0. (a): original time serie recorded from the spiking activity of
a neuron for the 50 last presentations of the stimulus; (b): spikes generated by the neuron background
activity (see section 3.2.2, p.19); (c): the subtraction of the (b) time serie from (a) time serie. Network
size: 100 × 100; background activity: 5 sp/s; stimulus : simple; stimulus duration: 100 ms; stimulus
intensity: 60 mV; input units: 10%.

with mean firing rates in the range of 30 to 40 spikes/s. We computed the differential raster

plots by subtracting the known random background activity from the recorded time series (see

figure 4.12). Using this technique, the part of the activity driven by the interactions with the

other units of the network can be extracted from the background activity. We observed that

the stimulus offset is followed by a period of lower activity, explained by the balanced network

reaction discussed before. The duration of this poststimulus inhibition period was a function of

the stimulus intensity (compare 30 and 60 mV, figure 4.13a and figure 4.14a respectively).

Using the differential time series, it is possible to compute the crosscorrelation between each

pair of units. Some of the resulting crosscorrelograms were significant, suggesting some kind of

temporal relation in the firing patterns of the investigated SI -units. Comparing figure 4.13b with

figure 4.14b for 30 and 60 mV respectively, we observed that the correlation between units #1234

and #7794 was amplified with the stronger stimulus. At the same time, the correlation between

4.2. STIMULATED NETWORKS 45

#3027 - #8300 R1=40.72 R2=38.31 (t=0)

#1234 - #7794 R1=28.64 R2=37.88 (t=1)

#1234 - #8300 R1=28.64 R2=38.31 (t=0)

-5

0

5

10

15

fr
e
q
u
e

n
c
y
 [

s
p
ik

e
s
/s

]

-200 -100 0 100 200

time [ms]

#3027 - #7794 R1=40.72 R2=37.88 (t=0)

-100 +900

#
3
0

2
7

#
1
2

3
4

#
7
7
9

4
#

8
3

0
0

a

b

-5

0

5

10

15

fr
e
q
u
e

n
c
y
 [

s
p
ik

e
s
/s

]

-200 -100 0 100 200

time [ms]

-200 -100 0 100 200

time [ms]

-200 -100 0 100 200

time [ms]

-5

0

5

10

15

fr
e
q
u
e

n
c
y
 [

s
p
ik

e
s
/s

]

-5

0

5

10

15

fr
e
q
u
e

n
c
y
 [

s
p
ik

e
s
/s

]

time [ms]

Figure 4.13: Effect of the 30 mV stimulus intensity. 4 sample units were selected from the emerged
circuit presented in figure 4.8. (a): raw raster plots for the 50 last presentations of the stimulus; (b):
crosscorrelograms based on the differential time series, like figure 4.12c, interrupted line: mean activity,
dotted lines: confidence limits according to Abeles (1982b), Gaussian smoothing bin: 5ms. Compare
with the 60 mV stimulus, figure 4.14. Network size: 100 × 100; background activity: 5 sp/s; stimulus:
simple; stimulus intensity: 30 mV; stimulus duration: 100 ms; input units: 10%.

46 CHAPTER 4. RESULTS

-5

0

5

10

15

fr
e
q
u
e

n
c
y
 [

s
p
ik

e
s
/s

]

-200 -100 0 100 200

time [ms]

-100 +900

#
3
0

2
7

#
1
2

3
4

#
7
7
9

4
#

8
3

0
0

a

b

-5

0

5

10

15

fr
e
q
u
e

n
c
y
 [

s
p
ik

e
s
/s

]

-200 -100 0 100 200

time [ms]

-200 -100 0 100 200

time [ms]

-200 -100 0 100 200

time [ms]

-5

0

5

10

15

fr
e
q
u
e

n
c
y
 [

s
p
ik

e
s
/s

]

-5

0

5

10

15

fr
e
q
u
e

n
c
y
 [

s
p
ik

e
s
/s

]

#3027 - #7794 R1=40.75 R2=43.85 (t=-1)

#3027 - #8300 R1=40.75 R2=53.53 (t=0)

#1234 - #7794 R1=30.95 R2=43.85 (t=0)

#1234 - #8300 R1=30.95 R2=53.53 (t=0)

time [ms]

Figure 4.14: Effect of the 60 mV stimulus intensity. (a): raw raster plots for the 50 last presentations
of the stimulus; (b): crosscorrelograms based on the differential time series, like figure 4.12c, interrupted
line: mean activity, dotted lines: confidence limits according to Abeles (1982b), Gaussian smoothing bin:
5ms. Compare with the 30 mV stimulus, figure 4.13. Note the stimulus offset inhibition. Network size:
100× 100; background activity: 5 sp/s; stimulus: simple; stimulus intensity: 30 mV; stimulus duration:
100 ms; input units: 10%.

4.2. STIMULATED NETWORKS 47

 0

 50

 100

 150

 200

 250

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

a b

 0 20 40 60 80 100 120

mean firing rate [spikes/s]mean firing rate [spikes/s]

k
_
in

k
_
o
u
t

Figure 4.15: Connectivity indexes for 26 SI -units at t = 500 seconds vs. mean firing rates ρ between
t = 450 and t = 500 seconds. (a): kin vs. ρ; (b): kout vs. ρ. ·: values for one SI -unit. The four units
surrounded by circles are part of the spatiotemporal pattern of activity shown in figure 4.16. Network
size: 100× 100; background activity: 5 spikes/s; stimulus: complex; stimulus intensity: 60 mV; stimulus
duration: 100 ms; stimulus protocol: AB|BA; input units: 10%.

units #1234 and #8300 was reversed with the stronger stimulus compared to the weaker.

4.2.4 Spatiotemporal pattern of activity

The last batch of simulations was performed with the complex
parameters summary

network size 100×100
background 5 sp/s
input units ratio 10%
stimulus pattern complex
stimulus duration 100 ms
stimulus intensity 60 mV
stimulus protocol none,

AA, BB, AB,
BA, AB|BA

spatiotemporal stimulus protocols defined in section 3.4.2, p.26.

All protocols were run a first time with the same initial conditions

and random generator seed. The networks that emerged from

the initial random connections through pruning were analysed at

time t = 500 seconds. From the excitatory units that were not

directly stimulated, we extracted 26 units that had kin = kout = 0

in absence of stimulus (none stimulus protocol), but maintained strong input and output exc–

exc connections under every other protocol (AA, BB, AB, BA, AB|BA). These 26 units were

recorded for the complete duration of a second run of simulations. We restarted the simulations

for each protocol with the same initial conditions and random generator seed as previously, but

from time t = 500 seconds on, the simulations were continued in two directions. In the first

case, the stdp-driven pruning was maintained as before (continuous pruning), and in the second

case, synaptic pruning was discontinued, i.e. the pruning stopped after the first 500 seconds

(interrupted pruning).

The recordings were chopped into 50 seconds chunks, and analysed separately. We observed

48 CHAPTER 4. RESULTS

10008006005004002000
time [seconds]

10008006005004002000
time [seconds]

a b

dc
time [ms]

0-100 500400100 200 300
time [ms]

0-100 500400100 200 300
0

40

0

40

continuous pruning pruning stopped at t=500s

#5

#9

#4

#2

#5

#9

#4

#2

Figure 4.16: Sample spatiotemporal pattern of activity < 5, 9, 4, 2; 13, 53, 109 >. (a, b): raster plots of
the spatiotemporal pattern < 5, 9, 4, 2; 13, 53, 109 > aligned on the first spike of the pattern. Full abscissa
scale is 600 ms. (c, d): strip representing 1,000 seconds of simulated time, with ticks marking the
timing of the first spike of the pattern. The pattern (n = 6 occurrences) was significantly detected in the
interval 450− 500 seconds (dark shaded area) and then searched throughout the simulation run starting
from t = 200 seconds. 8 occurrences were observed in the interval 200 − 450 seconds. We observed 10
additional occurrences during continuous pruning (a, c); 26 additional occurrences if pruning stopped
after 500 seconds (b, d). Network size: 100 × 100; background activity: 5 spikes/s; stimulus: complex;
stimulus intensity: 60 mV; stimulus duration: 100 ms; stimulus protocol: AB|BA; input units: 10%.

a negative correlation between the firing rate ρ and the number of outgoing connections kout

between t = 450 and t = 500 seconds (see figure 4.15b). Units with large kout tended to

have weaker firing rates than units with comparable kin but lower kout. Some units displayed

unrealistic mean firing rates up to ρ = 110 spikes/s.

From the group of 26 units, we arbitrarily chose the 11 units with the smaller mean firing

rates (ρ ≤ 40 spikes/s), and their time series were searched for spatiotemporal patterns of

activity between t = 450 and t = 500 seconds (Tetko and Villa, 2001c). We analysed the

different stimulation protocols separately, and no significant difference could be found. For this

reason, table 4.2, p.49 summarizes all the patterns that were found in all the recordings with a

maximal duration of 200 ms, a jitter of 3 ms around each pattern spike, and a level significance

of 0.1.

Most patterns (12 out of 14) were composed by the activity of a single unit (different units

= 1), like the triplet < 5, 5, 5; 92, 156 >. On 21 occasions between t = 450 and t = 500 seconds

during the AB|BA protocol, unit #5 spiked a first time followed 92 ± 3 ms later by a second

spike, and a third spike 156 ± 3 ms after the first. Two quadruplets were composed by spikes

4.2. STIMULATED NETWORKS 49

number of number of number of pattern shortest longest
different different pattern duration interval interval

units patterns repetitions [ms] [ms] [ms]
N N N̂ ± SEM t̂± SEM t̂± SEM t̂± SEM

triplet 1 4 34.5± 9.6 128.8± 22.2 47.5± 8.9 82.0± 15.4
quadruplet 1 8 31.3± 6.6 149.5± 11.3 22.6± 2.2 84.0± 8.8
quadruplet 4 2 10.5± 3.5 119.5± 10.5 21.0± 8.0 58.5± 2.5

Table 4.2: Summary of all detected spatiotemporal patterns of activity for 11 selected units across all
protocols and conditions between t = 450 and t = 500 (see text). sem stands for ”standard error of the
mean”. Confidence level: 0.1; jitter: 3 ms; maximum pattern duration: 200 ms.

produced by four different units, like the pattern < 5, 9, 4, 2; 13, 53, 109 >. On seven occasions

between t = 450 and t = 500 seconds during the AB|BA protocol, unit #5 spiked 13 ± 3 ms

before unit #9, 53 ± 3 ms before unit #4, and 109 ± 3 ms before unit #2. The four units

composing this pattern are encircled in figure 4.15. Between t = 450 and t = 500 seconds, 3.86%

of all spikes of the 11 units were detected as being part of a spatiotemporal pattern.

The detected patterns were then searched in both continuous and interrupted pruning con-

ditions between t = 200 and t = 1, 000 seconds. The results of the quadruplet pattern described

previously are shown in figure 4.16. After the pruning was stopped at t = 500 seconds, 26 addi-

tional occurrences appeared between t = 500 and t = 1, 000 seconds (figure 4.16b,d), while only

10 could be found when pruning continued after t = 500 seconds (figure 4.16a,c). It is possible

that after t = 500 seconds, the pruning process removed by chance one or more connections that

were necessary for the production of the spatiotemporal pattern.

Chapter 5

Discussion

What I find helps me
to understand what I seek for.

– Pablo Picasso

Résumé Les résulats présentés au Chapitre précédent sont discutés ici à la lumière des

travaux réalisés par d’autres groupes. Tout d’abord, le point est fait sur les problèmes

liés à la plasticité synaptique et les synapses à états finis. Les propriétés émergentes

dans les réseaux de neurones sont ensuite abordées, avant de revenir sur la structure

des circuits mis en évidence par le pruning. Après quelques considérations autour de la

simulation de l’élagage synaptique pendant le développement, les problèmes rencontrés

avec les interactions entre les taux de décharge élevés de certaines unités et la plasticité

synaptique à modulation temporelle relative (stdp) sont discutés, avant de terminer sur

les “synfire chains”.

Massive synaptic pruning following over-growth is a general feature of mammalian brain

maturation (Rakic et al., 1986). Pruning starts near time of birth and is completed by the

time of sexual maturation. Trigger signals able to induce synaptic pruning could be related

to dynamic functions that depend on the timing of action potentials. Spike-timing-dependent

synaptic plasticity (stdp) is a change in the synaptic strength based on the ordering of pre–

and postsynaptic spikes. The relation between synaptic efficacy and synaptic pruning (Chechik

et al., 1999; Mimura et al., 2003) suggests that the weak synapses may be modified and removed

through competitive “learning” rules. This plasticity rule might produce the strengthening of the

connections among neurons that belong to cell assemblies characterized by recurrent patterns of

firing. Conversely, the connections that are not recurrently activated might decrease in efficiency

and eventually be eliminated.

The main goal of our study is to determine whether or not, and under which conditions,

such cell assemblies may emerge out of a locally connected random network of integrate-and-fire

units distributed on a 2D lattice receiving background noise and content-related input organized

51

52 CHAPTER 5. DISCUSSION

in both temporal and spatial dimensions. The originality of our study stands on the relatively

large size of the network, 10,000 units, the duration of the experiment, 106 time units – one time

unit corresponding to the duration of a spike – and the application of an original bio-inspired

stdp modification rule compatible with hardware implementation (Eriksson et al., 2003).

5.1 Synaptic plasticity

We assumed a number of simplified hypotheses about the presence of only two types of units,

their leaky integrate-and-fire dynamics, their distribution and the dynamics of the transfer

functions of the synapses that connect them. With all these assumptions, we observed that

the network reached a steady state when the synaptic weights were either incremented to the

maximum value or decremented to the lowest value (see figure 4.4). Our result is in agreement

with the bimodal distribution of synaptic strengths observed with different stdp-based models

(Chechik et al., 1999; Abbott and Nelson, 2000; Dayan and Abbott, 2001). This effect is inter-

preted as the effect of the stdp rule leading presynaptic neurons to compete for the capacity to

drive the postsynaptic unit to produce an action potential. This competition has been shown to

maintain the average neuronal input to a postsynaptic neuron (Abbott and Nelson, 2000; Song

and Abbott, 2001).

There is increasing evidence for a biologically plausible function to state synapses (see Mont-

gomery and Madison (2004) for a review). The synapse model we use here was not based on

these experimental results. Our discrete activation level states simplification was required for the

hardware implementation discussed later (section 7.2.1, p.109). They could be interpreted as a

combination of two factors: the number of synaptic boutons between the pre– and postsynaptic

units and the changes in synaptic conductance. Nevertheless, the experimental and theoretical

work undertaken around the state synapses will certainly help us to refine our simplification and

maintain a degree of biological plausibility in the future. Among other questions, if nmda recep-

tor regulation proves to be state-dependent, this would provide a metaplastic aspect (Abraham

and Bear, 1996) to state-dependent synaptic plasticity.

Metaplasticity is defined as the plasticity of synaptic plasticity. A cascade model has been

recently proposed (Fusi et al., 2005) as a theoretical mechanism for the storage of everyday

5.1. SYNAPTIC PLASTICITY 53

time

Lji(t)

timetime

a b c
Lji(t) Lji(t)

time

d

Lji(t)

time

e

Lji(t)

time

f

Lji(t)

Figure 5.1: Extending the model towards simulating continuous childhood to adolescence to adulthood
transitions. A sample evolution of Lji(t) as a function of time in a representation similar to figure 3.5,
p.23. Each time Lji(t) outcomes the upper bound (down-pointing triangles), or the lower bound (up-
pointing triangles), Aji(t) state changes accordingly. (a,b,c): continuous transition from pruning to
learning; (d,e,f): introduction of a metaplastic aspect to the model. (a): original model presented
here, Lji(t) decreases towards the lower bound Lk−1; (b): sample transitory state between (a) and (c);
(c): Lji(t) is attracted by the center of the class, inducing a more stable acquired activation level; (d):
same as (c) to serve as the starting point for the introduction of metaplasticity; (e): sample transitory
state between (d) and (f); (f): a larger ∆Lk makes it gradually more difficult for Lji(t) to outcome the
upper or the lower bound. Note that in this example, metaplasticity is introduced following the transition
from pruning to learning, while these transitions could be performed separately, synchronously or in the
reversed order. See text for a discussion.

experience memories. Acquiring such memories, like single-trial learning, requires a high degree

of plasticity but retaining these memories requires protection against changes induced by further

activity and experience. The authors defined two synaptic strength levels (“weak” and “strong”)

characterized by different degrees of plasticity. Each level is associated with a cascade of n states

that introduce a range of transition probabilities between the two synaptic levels. Moving from

one state to the next does not modify the synaptic strength, but lowers the probability to switch

synaptic level, hence the metaplasticity.

Note that metaplasticity is inherently related to learning. In the present work, we simulated

activity-driven synaptic pruning during a development experiment. Nonetheless, a slight change

to our model could provide a gradual transition from pruning to learning, keeping the same

synaptic principle, allowing to simulate childhood to adolescence to adulthood transitions (see

figure 5.1). In section 3.3.1, p.20, we have seen that a continuous internal variable Lji(t) was used

to control the discrete activation level Aji(t) using stdp. User-defined boundaries L0 < L1 <

· · · < LN−1 < LN were used to determine the transitions between activation levels states, with

54 CHAPTER 5. DISCUSSION

a slow decaying factor driving Lji(t) towards the lower boundary leading to synaptic pruning

(figure 3.3c). This rule could be changed continuously, as in figure 5.1a-c, with a transition

towards a relation between Lji(t) and Aji(t) where the decaying factor drives Lji(t) to Lk−Lk−1

2

(figure 5.1c) instead of driving it to Lk−1 (figure 5.1a) (Eriksson et al., 2003). In this situation,

synapses tend to stay stable at their acquired activation level, and learning becomes possible.

Such a rule has been shown to be capable of maintaining memories in the presence of noise (Fusi,

2001). Here, we arbitrarily decided that ∆Lk = Lk −Lk−1 = 20 for any attractor state [Ak]. In

addition to the transition proposed above, modifying ∆Lk as a function of the time spent in a

particular state [Ak], like in figure 5.1d-f for example, would introduce a metaplastic aspect to

our model. Indeed, the larger the ∆Lk, the more stable will be the acquired activation level.

It was reported recently that both in hippocampal cultures and acute hippocampal slices,

the synaptic strength of gabaergic synapses could be persistently modified through repetitive

postsynaptic spiking within 20 ms before and after the activation of the synapse (Woodin et al.,

2003). The detection and modification of these synapses by coincident pre– and postsynaptic

spiking allows the level of inhibition to be modulated according to a spike timing rule. Such a

modification of inhibitory-excitatory and inhibitory-inhibitory connections has not been consid-

ered in our simplified model. In the beginning of the simulations, depending on the conditions,

we observed periods of saturated network activity while the network is transiently composed of

a large number of synapses in the strongest activation level (see figure 4.4a around first stimulus

presentation). This suggests the need for stronger inhibition during that period to avoid unreal-

istic periods of high activity. As the simulation runs, and the excitatory-excitatory connections

are pruned from the network, the strength of inhibitory connections should probably be adapted

to maintain a dynamic balance between excitation and inhibition.

5.2 Network size effect

The choice of a 2D lattice topology allowed us to study the effect of incrementing the network

size from 10 × 10 to 100 × 100 units. It was interesting to observe that the final number of

synapses that remained active was below 10% of the number of initially active synapses. This

number varied only slightly with changes in network size. The effect of different random number

5.3. CIRCUIT EMERGENCE 55

generator seeds was also limited. We observed that the number of active synapses characterized

by the maximum strength could transiently reach a proportion as high as 50% of all initial

synapses.

The existence of a scaling factor to adjust the activity of the network as a function of

the network size could indicate that a very large network may not be necessary for recurrent

networks to emerge. This result is in agreement with several findings of the theory of dynamic

similarity (MacGregor et al., 1995). Interconnected sizable “modules” up to 50× 50 or 60× 60

units embedded in larger networks may offer a more efficient way to recruit active synapses that

compete for generating a postsynaptic spike. The question was raised whether the ability of large

collections of neurons to perform “computational” tasks may in part be a spontaneous collective

consequence of having a large number of interacting simple neurons (Hopfield, 1982). The

observation that most of the cerebral cortex is composed of local circuits, the cortical columns

(Douglas and Martin, 1991) and hypercolumns (Sur et al., 1980), with well-defined functions

suggests that the bridge between simple circuits and the complex computational properties of the

brain may be the spontaneous emergence of new computational capabilities from the collective

behaviour of large numbers of simple processing elements.

5.3 Circuit emergence

A bias in the geometrical orientation of the synapses might produce important effects on the

global dynamics as it could introduce singularities in the network topology. These singularities

could sustain attractors with unbalanced excitatory/inhibitory inputs if they were the conse-

quence of content-related inputs. In the presence of only background activity, these attractors

would be spurious and could mask input-related features. We observed that the reinforcement

of few synapses occurred without geometric distortion either in direction and or in source-to-

target distance over the 2D lattice. Synaptic pruning proceeded in a homogeneous and isotropic

way across the network. This result suggests that, in the presence of mere random background

activity, the implementation of the current stdp rule is equivalent to random pruning and does

not introduce spurious biases.

We observed that a recurrent spatiotemporal stimulation pattern, in the presence of back-

56 CHAPTER 5. DISCUSSION

ground activity, could induce the emergence of oriented cell assemblies when associated with

stdp-driven pruning. We observed that the unsupervised pruning process, associated with short

and stable stimulation patterns, tended to organize units in strongly interconnected feed-forward

assemblies on top of the input units. However, the emergence of the diverging projections was

much more difficult to observe than the convergence.

The detection of complex spatiotemporal patterns in the simulated firing activity suggests

that layered topologies may appear during our pruning process. Synfire chains (Abeles, 1991) are

diverging / converging chains of neurons discharging synchronously to sustain the propagation

of the information through a feed-forward neural network. This theoretical model has proven to

be very efficient for the transmission of precisely timed information through the cerebral cortex,

but the mechanisms that may underlie its appearance in the mature brain have never been

deeply investigated. Some works have used the Hebbian learning rule (Bienenstock, 1995; Hertz

and Prugel-Bennett, 1996a,b), or stdp (Levy et al., 2001; Kitano et al., 2002) to let synfire-like

structures emerge out of relatively small randomly generated networks. The resulting assemblies

were composed of a few (3-4) groups of neurons firing synchronously in loops, but the topological

distribution of the connections was not discussed.

An alternative approach to the emergence of selected circuits has been proposed by Quenet

et al. (2005). They formally described networks of multistate neurons connected by multidi-

mensional synapses which allow the emergence of selected spatiotemporal patterns of activity

strongly associated with precise stimuli. Each neuron state corresponds to an activity state,

like inactive, spiking, bursting, etc. A synapse between two neurons is not defined by its single

efficacy but by a weight matrix. This allows us to take into account the facts that neurons can

be in different states, that different types of synapses can be used, e.g. involving different neuro-

transmitters, and that multiple contacts might exist between the neurons in different locations

on the dendritic tree.

The self-organization of spiking neurons into neuronal groups was recently described in a

study featuring large simulated networks connected through stdp-driven projections (Izhikevich

et al., 2004). 80,000 excitatory and 20,000 inhibitory spiking neuromimes (to compare with

network size and distribution of our 100× 100 2D lattice) were wired on a spherical surface by

8.5 millions connections (in our 100 × 100 2D lattice, the total number of connections in the

5.3. CIRCUIT EMERGENCE 57

beginning was about 3 millions) using a random local connectivity rule, plus one small long-

distance connectivity spot for excitatory units. They studied the spatiotemporal structure of

emerging firing patterns, finding that if axonal conduction delays and stdp were incorporated in

the model and in the presence of noise, neurons in the network spontaneously self-organized into

neuronal groups, even in the absence of correlated input. They also observed recurrent firing

patterns appearing spontaneously among units that were located close to one another. Their

approach is similar to ours, despite the fact that their simulations were not aimed at studying

the synaptic pruning, but the emergence of neural groups. Time locked presynaptic spikes were

able to fire postsynaptic units with precise timing due to the modeled axonal conduction delays.

After the detection of spatiotemporal patterns of activity, they could determine the set of units

producing this activity, and reconstruct the circuits. During the simulations, they could assist

in the emergence, maintenance and disappearance of such circuits. On average, there were less

than 30 units per circuits, and less than 7.5% of all the units were part of any such circuit.

The study by Izhikevich et al. (2004) emphasizes the importance of axonal conduction delays

that we did not initially consider in our model. If spikes arrive at the postsynaptic unit at

different times, then the simultaneous firing of presynaptic units is not the proper way to fire a

postsynaptic unit (Bienenstock, 1995). Presynaptic units with matching conduction delays and

firing in a certain temporal pattern can drive a postsynaptic unit to spike by time-locking the

arrival of their spikes. Through a different firing pattern, the same presynaptic units could drive

another postsynaptic unit. We are currently considering the addition of conduction delays to

our model.

There is a trend towards the use of graph theory methods (see Albert and Barabasi (2002)

for a review) for the analysis of neuroscientific data (Sporns et al., 2004). For example, these

methods have been used for the analysis of neural connectivity patterns (Sporns, 2002). In

particular, graph theory has been successfully applied to functional magnetic resonance imaging

(fMRI) data for a finger tapping task (Chialvo, 2004), suggesting that functional networks are

scale free, where the highly connected nodes are, on average, connected with highly connected

nodes, a feature that is inverse to a hierarchical organization. However, the current status of

graph theory has little to offer to problems involving dynamic oriented weighted graphs, like

58 CHAPTER 5. DISCUSSION

ours. We have been looking for a proper index to estimate the quality of circuit reconstructions

like the one in figure 4.8. None of the standard indexes, like the clustering coefficient (the fraction

of connections between the neighbours of a node with respect to the maximum possible) or the

average path length (the minimum number of links necessary to connect two nodes), suited to

the measure of a converging / diverging network. We are still trying to find an appropriate

index for such a measure.

5.4 Synaptic pruning

Massive synaptic pruning during childhood after synaptic over-growth is an intriguing feature

of the mammalian brain development. A few theoretical works were undertaken to investigate

the computational advantage of such a seemingly wasteful developmental strategy. In a first

theoretical work, Chechik et al. (1998) suggested that the memory performance of a network

is optimally maximized if, under limited metabolic energy resources restricting their number

and strength, synapses are first overgrown and then pruned. Two “adult organisms” with the

same synaptic resources can store different numbers of memories depending on the way they

acquired their adult synaptic densities. An organism with an excessive number of synapses that

are selectively pruned can store more memories than another adult with fixed synaptic density

during infancy. The simulations were performed with an Hebbian synaptic modification rule,

and a minimal value deletion function to prune the weakest connections from the network. Such

an algorithm was shown to maintain the network performance.

Neuronal regulation is an experimentally identified mechanism regulating the input synaptic

strength to maintain the homeostasis of the neuron’s membrane potential (Turrigiano et al.,

1998). Horn et al. (1998) suggested that, theoretically, neuronal regulation might maintain the

memory performance of networks undergoing synaptic degradation. In Chechik et al. (1999), the

authors discussed the role of the neuronal regulation in maintaining the average postsynaptic

input field, removing the weaker synapses and modifying the remaining synapses (see Mimura

et al. (2003) for an analytical discussion of these results). stdp has also been shown to maintain

the postsynaptic input field (Abbott and Nelson, 2000; Song and Abbott, 2001). For this reason,

stdp might be a proper choice as a synapse modification rule for synaptic pruning simulation.

5.5. EFFECT OF FIRING RATE 59

Neural Darwinism – or the theory of neuronal group selection (TNGS) – is a population the-

ory of the nervous system aimed at understanding the significance of variation and selection in

the brain development and function (see Edelman (1993) for a review). According to this theory,

the world becomes perceptually categorized to an organism as a consequence of two interactive

processes of selection upon variation. The first process occurs during embryonic and postna-

tal development, when adjacent neurons tend to be strongly interconnected in “assemblies” of

variable size and structure called “neuronal groups”. The second process consists of alterations

in synaptic strengths following individual’s activity, with a selection of the adaptive neuronal

groups on the basis of their correlated responses. In Neural Edelmanism (see Crick (1989) for a

criticism of the theory), the emphasis is put on the “competition” between the neuronal groups

without referring to the mechanisms of synaptic pruning. We must recognize that the Neural

Edelmanism theoretical framework produces many results that challenge our approach.

5.5 Effect of firing rate

The results presented here suggest that layered topologies compatible with synfire chains may

appear during unsupervised pruning processes. However, it was not possible to determine the

exact requirements to let the synaptic pruning mechanisms drive the emergence of balanced

converging / diverging chains, i.e. with comparable kin and kout.

The strongly interconnected units (SI -units, see section 4.2, p.34) displayed mean firing rates

in the range of 30 to 40 spikes/s. Besides the value being too high to be biologically plausible

for a model of the cerebral cortex, we observed a negative correlation between the mean firing

rate and the kout. This is inherent in a standard stdp rule. As explained in figure 5.2a,b, a unit

spiking faster than the others will tend to maintain all its inputs, and loose all its outputs. As

a consequence, we may assume that due to excessively high firing rates, stdp tended to be too

much affected by firing rate differences.

With this observation concerning the dynamics of stdp, a scenario can be drawn to explain

the evolution of the connectivity indexes kin and kout as presented in figure 4.6. It is possible

that during the first few time steps of the simulation, the excitatory units that were randomly

connected from a large set of presynaptic excitatory units start spiking with a large rate, because

60 CHAPTER 5. DISCUSSION

post

pre

S (t)i

-M (t)i

S (t)j

M (t)j

c d
post

pre

S (t)i

-M (t)i

S (t)j

M (t)j

time

time

time

time

post

pre

S (t)i

-M (t)i

S (t)j

M (t)j

a b
post

pre

S (t)i

-M (t)i

S (t)j

M (t)j

time

time

time

time

L (t)ji

L (t)ji L (t)ji

L (t)ji

Figure 5.2: stdp and units spiking at different rates. Compare with figure 3.4. A fast spiking unit will
tend to keep all the input connections, and loose all the output connections. (a): presynaptic unit spikes
faster than postsynaptic unit. Multiple presynaptic spikes will integrate the decay of Mi(t) resulting
in the pruning of the connection; (b): postsynaptic unit spikes faster than presynaptic unit. Multiple
postsynaptic spikes will integrate the decay of Mj(t) resulting in the reinforcement of the connection; (c):
considering only the first pair of spikes, the effect of a fast spiking presynaptic unit can be reduced; (d):
considering only the first pair of spikes, the effect of a fast spiking postsynaptic unit can be reduced; Note
that for the sake of clarity, the evolution of Lji(t) functions ignore the slow decaying term introduced in
section 3.3.1, p.20, as kact >> klearn.

of the numerous inputs. Figure 5.2b suggests that these units will reinforce their inputs, thus

inducing even more postsynaptic activity. At the same time, figure 5.2a suggests that the fast

spiking units will start loosing all their outputs. Such a dynamic results in the unit running

down the kout axis in figure 4.6, corresponding to the pruning dynamics observed for almost all

SI -units. This scenario provides an explanation for the excess of convergence over divergence in

the emerged networks.

It has been observed in rat visual cortical slices preparation (Froemke and Dan, 2002), that

the contribution of each pre–/postsynaptic spike pair to synaptic modification depends not only

on the interval between the pair, but also on the timing of preceding spikes. The efficacy of

each spike in synaptic modification was suppressed by the preceding spike in the same neuron,

occurring within several tens of milliseconds. The authors suggest that the timing of the first

5.6. SYNFIRE CHAINS 61

spike in each burst is dominant in synaptic modification, with the additional spikes having only

a marginal contribution. Based on this observation, an integrate-and-fire neuromime with an

stdp-inspired learning rule for its first spike only was proposed in a recent theoretical study

(Guyonneau et al., 2005). The spiking unit receiving a wave of input from 1,000 presynaptic

units learned to react faster to a repeated input spike pattern. The postsynaptic spike latency

tended to stabilize at a minimal value while the first synapses became fully potentiated and

later ones fully depressed (the bimodal distribution of efficacies), implying that the stdp rule

was able to focus on the spikes whose timing is reproducible and early, while discarding the rest.

Figure 5.2c,d shows how considering only the first pairs of spikes could modify the conver-

gence/divergence proportion in a balanced way. With such a modified stdp rule, the impact of

the fast firing units on the loss of output connections could be limited. Besides, avoiding a unit

entering into the vicious circle of firing more, inducing stronger connections, inducing even more

firing, could remove the problem of large firing rates altogether. If we plan to simulate larger

networks with more connections, then introducing this modified stdp rule seems necessary.

5.6 Synfire chains

A recent addition to the original synfire chain description, as depicted in figure 2.3, is the role

of the inhibitory neurons in stabilizing a network with embedded synfire chains. In a theoretical

work, Aviel et al. (2004) emphasized the necessity for inhibition in a balanced network – a

network where each unit receives equal excitation and inhibition – to avoid spontaneous ignition

of embedded synfire chains, and to avoid that the rest of the network activity becomes saturated

by the synchronous discharge of the synfire chain layers. The necessary balanced inhibition is

obtained by wiring to each layer a shadow pool of inhibitory units that receive convergent inputs

from the previous layer as if they were excitatory units. In addition, these inhibitory units do

not project diverging connections to the following layer, but project locally within the network

like ordinary interneurons. The necessity for such inhibition mechanism for the propagation of

a wave of activity through a synfire chain opens the question of the role of inhibitory units in

our simulations. We have observed balanced activity in our networks, even the appearance of

an intensity-dependent stimulus offset inhibition (compare figures 4.13 and 4.14). This suggests

62 CHAPTER 5. DISCUSSION

that we might consider inhibitory units when looking for emerging circuits.

The analysis of the correlograms is often considered as a valuable tool for the deduction of

functional connectivity (Abeles, 1982a). Figure 4.14b shows an asymmetrical peak near time

zero which could be interpreted as a temporal correlation between units #1234 and #7794,

that suggests a direct projection from unit #1234 to unit #7794. However, there is not such

a projection in the actual topology (see figure 4.8b). The timing of that correlation could be

explained by a systematic lag in the firing of #7794 with respect with #1234. Such a variability

is nonetheless consistent with the synfire activity (Gewaltig et al., 2001). In any case, further

investigation is required to determine if self-sustained synfire activity (Tetzlaff et al., 2004) may

appear in the observed emerging circuits embedded in the complete network. The network state

characterization proposed by Brunel (2000) could be of great help in this task, but the firing

rate of the excitatory units should not exceed the levels incompatible with stdp.

Part II

(Neuro)Informatics

65

Chapter 6

Software

Programming today is a race between software engineers
striving to build bigger and better idiot-proof programs, and

the Universe trying to produce bigger and better idiots.

So far, the Universe is winning.

– Rich Cook

Résumé Ce Chapitre commente brièvement les nombreux logiciels qui ont été développés
dans le cadre de ce travail, en mettant l’accent sur leur indépendance par rapport à
la plateforme et leur interactivité avec l’utilisateur. La figure 6.1 donne un aperçu de
l’organisation des deux châınes distinctes de traitement de l’information : la première
pour les circuits émergés par élaguage au cours des simulations (moitié supérieure de la
figure) ; la seconde pour les séries temporelles résultant de l’activité des neurones (moitié
inférieure). Les logiciels sont décrits par familles, selon qu’ils sont utilisés pour simuler le
modèle (section 6.1, p.69), manipuler les données produites (section 6.2, p.78), analyser
ces données (section 6.3, p.85), ou visualiser les résultats (section 6.4, p.88).
Les séries temporelles multivariées qui ont fait l’objet de ce travail ont été produites par
des simulations, mais le traitement peut également être appliqué à tout enregistrement
électrophysiologique in vivo, voire à tout processus qui peut être représenté par une série
temporelle.

Les programmes présentés sont construits sur des librairies logicielles libres pré-existantes

validées par leurs communautés d’usagers respectives. Ils sont tous disponibles sous la

gnu Public License (gpl). Toutes les informations nécessaires à leur téléchargement, leur

compilation et leur exécution se trouvent regroupées dans l’Appendix A, p.115.

Simulating large spiking neural networks implies a large computational power and several

pieces of software. This Chapter is dedicated to the description of the different programs that

were necessary to simulate, analyse, and visualize our model. The next Chapter, starting at

page 103, is dedicated to the hardware sustaining our computational needs.

It appeared clearly since the beginning of the work that, in order to perform the simulations,

we would need to rely on several computers, and that the whole software setup would need to

scale up with our modeling needs. In order to exploit at best the available hardware substrate,

the software had to be portable. It had to be able to run on GNU/Linux, Apple MacOS X,

as well as on Microsoft Windows computers. No programming language or platform suits all

needs. We used three approaches to produce portable code: Sun’s Java programming language,

67

68 CHAPTER 6. SOFTWARE

ANSI C code with GNU platform libraries, as well as interpreted scripting languages like Perl,

Python, bash or php.

The Java programming language relies on the existence of a virtual machine for the under-

lying operating system (OS), removing the need to compile for a specific OS by compiling into

the virtual machine language. We used this strategy mainly for interactive programs, for the

convenience of the graphical user interfaces and the interactive features of the graphical tools.

ANSI C code was written for the GNU platform, providing portable libraries and tools (like

compilers and linkers) for all the targeted platforms. Note that the Windows platform, lacking

some of the most interesting concepts of Unix, required the use of a GNU environment like

Cygwin1 or mingw2. We used this strategy for programs that were generating, analysing or

manipulating the data.

The glue between the different pieces of software was implemented using the different script-

ing languages enumerated before, resulting sometimes in short-span ad hoc solutions.

The software had to run on different Operating Systems, but it also had to interoperate and

exchange information between the different platforms, operating systems, and programming

languages. For this reason, text-based file formats were preferred to binary ones. xml, one of

the most versatile by-products of the web, was used for structured information.

The reuse of components available from identified sources has been emphasized, as well

as producing reusable components. A large amount of work was saved by collecting the fruit

of the work of many programmers all over the web into a set of modular applications. All

programs and applications were written in a modular way, opting for all kinds of dynamical

linking to modules instead of monolithic architectures. This approach required more thought,

planning and programming at the beginning of the project. Relational and object databases

were used in multiple places of the complete system, as a persistent storage, but also as a volatile,

programmable data structure.

Beside the existence of portable environments like the Java platform or the GNU project,

this work was made possible by the availability of an amazing amount of software written

by clever and dedicated programmers and distributed under one of the many different Open

Source licenses. We are indebted to them collectively as they made this work possible. As a
1http://www.cygwin.com/
2http://mingw.sourceforge.net/

http://www.cygwin.com/
http://mingw.sourceforge.net/

6.1. SIMULATION ENVIRONMENT 69

demonstration of our gratitude, and knowing that the Open Source scheme is the only possible

way for scientific programming, the software produced during this work is itself available on

the web, under the GPL licensing scheme. Feel free to use, correct and expand the code base.

Details concerning how to obtain, compile and run the software presented in the following pages

have been gathered into Appendix A, p.115.

Figure 6.1 presents a structured view of the programs and applications further described in

this Chapter. All software pieces are organized in four parts: simulation, data manipulation,

data analysis, and visualization of the results. The Chapter is organized around these four parts,

one section for each part. An additional section (section 6.5, p.97) is devoted to file formats,

with emphasis on those defined along the software developments, and on established file formats

that have been used.

When simulating models, odds are that none of the existing software precisely suits your

needs. The downstream manipulation and analysis of the simulated results will require either a

lot of time-consuming human hand-work or a set of home-made tools. Our philosophy was to

hand-craft programs, relying as much as possible on existing frameworks and tools, and to design

them to be as flexible and portable as possible to minimize development effort and, possibly,

ease reuse of the software in other groups or even other fields. oan (see section 6.3.2, p.87) and

XY-Viewer (see section 6.4.2, p.89) are two showcases of this philosophy.

In this Chapter, we will explore the different pieces of software, with the objective to stress

some of the unusual or innovative uses of existing programs and concepts, and how they can

contribute to acquire insight into spiking neuron modeling even outside of the present research.

Source code and programming interfaces (API) are volatile, they do not belong on a permanent

media. Nevertheless, should the reader be interested in those elements, they are accessible from

the web, as explained in Appendix A, p.115.

6.1 Simulation environment

Our approach required the simulation of a large number of interconnected integrate-and-fire

neuron models. The model we described in section 3.2, p.18 is compatible with a hardware

implementation that was not available at the time we started our research. To circumvent the

70 CHAPTER 6. SOFTWARE

v
is

u
a
liz

a
tio

n
a

n
a

ly
s
is

m
a

n
ip

u
la

tio
n

s
im

u
la

tio
n

time series network

.sn
g

stim
ulation

.xp
d
l

protocol

.txt

data

.fn
e
t

netw
ork

.sd
f

tim
e-series

.sd
f

tim
e-series

.sd
f

tim
e-series

.xyv

graphics

.p
d
f

graphics

.g
ra

p
h
m

l

netw
ork

sq
lite

m
ysq

l

D
a
ta

To
o
lb

o
x

X
Y
-V

ie
w

e
r

R
a
ste

rV
ie

w
e
r

fn
e
tV

ie
w

fo
rg

e

d
a
n
.u

n
il.ch

m
a

n
ip

fn
e

td
b

fe
ig

n

D
A

N

fn
e

td
ig

g
n
u

p
lo

t

A
n

a
ly

s
is

A

A
n

a
ly

s
is

B

F
igure

6.1:
O

verview
ofallsoftw

are
pieces.

P
rogram

s
are

show
n

as
cubes

(black
boxes),applications

as
stylized

“w
indow

s”,and
databases

as
cylinders.

Softw
are

is
logically

organized
in

four
parts:

sim
ulation

(section
6.1,p.69),data

m
anipulation

(section
6.2,p.78),data

analysis
(section

6.3,p.85),and
results

visualization
(section

6.4,
p.88).

R
ead

dedicated
sections

for
details

on
each

part.
D

ata
form

ats
are

discussed
in

section
6.5,

p.97.
G

nuplot,
M

ySQ
L

and
SQ

L
ite

are
existing

projects
that

w
ere

reused.

6.1. SIMULATION ENVIRONMENT 71

computing power problem, we turned to the cheapest architecture available: a Beowulf-class

cluster of PCs (see section 7.1, p.104). The next problem to solve was to decide which simulator

to run.

The two most commonly used simulators in the field of computational neuroscience are Neu-

ron3, a project lead by Michael Hines; and GENESIS4, lead by Dave Beeman. The main dif-

ference between the two is the model programming language (GENESIS being object-oriented).

Still both were specifically designed to solve the equations that describe nerve cells based on

their ionic currents. XNBC5, a project lead by Jean-François Vibert, offers a rich set of neuron

models, some of them phenomenological. It is slightly different from the previous two by its

physiological/biophysical approach, providing extended possibility to interactively apply drugs

for example. These simulators, and a few others, come with a large number of interactive tools

to specify and control the simulations. For our needs, they were consuming computer resources

focusing on details of the model we were not interested in.

The NEST Initiative6, coordinated by Marc-Oliver Gewaltig, is an evolution of the (now

outdated) synod simulator showing great promise. The approach is closer to ours, centered on

large numbers (up to 106) integrate-and-fire model neurons. The simulation environment has

been efficiently parallelized for multiprocessor computers as well as distributed architectures

(Morrison et al., 2005). At the time we started our research, this software was not available,

either. Having checked those options, and others, we decided to develop our own simulator,

adhering closely to the evolution of our needs in relation to our distributed setup.

6.1.1 feign: a spiking neuron simulator

feign is a modular simulation framework aimed at providing the basic functionalities that are

common to different neural network simulations, with hooks to implement the model-specific

parts of the simulation. It does not provide a language for the models description. feign is im-

plemented in ANSI C. All details on getting, and compiling the simulator and the documentation

are available in Appendix A, p.115.

As sketched in figure 6.2, the main core of feign gathers modules and services together.
3http://www.neuron.yale.edu/
4http://www.genesis-sim.org/
5http://www.b3e.jussieu.fr/xnbc/
6http://www.nest-initiative.org/

http://www.neuron.yale.edu/
http://www.genesis-sim.org/
http://www.b3e.jussieu.fr/xnbc/
http://www.nest-initiative.org/

72 CHAPTER 6. SOFTWARE

services

modules

implementations

exceptions masks properties xpdl protocols stimulations

feign core

configuration logging output simulation

file db . . . file db . . . sdf sng

Figure 6.2: Layer-cake diagram sketching feign logical split into a core providing services to modules
implementations. Modules and services are defined by their interfaces. Only one implementation of every
module can be compiled in the final executable. Read text for details on modules and services.

Modules code for the behaviour of the simulations. Services are a set of generic functionalities

available for the modules implementations at runtime.

The details of a simulation are scattered in several configuration files: model constants,

network connectivity statistics, experimental protocol, stimulation files, . . . are separated entities

that can be mixed and reused in different ways to produce slightly different simulations.

6.1.1.1 Modules

Modules are portions of the program that can be implemented in different ways. The user

chooses one implementation for each module that will be compiled into the program and used

during the simulation. Modules are not linked dynamically at runtime to avoid the measurable

overhead cost. Each of the four modules has a short interface (set of functions) that is defined

in appropriate header files. The interfaces were designed to minimize the dependences between

the modules. There can be many different implementations for each module, but only one of

them is statically compiled into the executable.

configuration module: loads a configuration from some source into the properties service

described later. It was expected that each simulation run would have a slightly different

configuration. Currently, two implementations were written for this module. The first uses

a text-based file format. The second collects the necessary information from a relational

database. See section 6.1.2, p.75 for more information on database usage.

logging module: keeps trace of what happens and at which speed. Two types of information

6.1. SIMULATION ENVIRONMENT 73

setup

setupSimulation

runSimulation

teardownSimulation

teardown

updateStatus

SIGALRM
SIGUSR1
SIGUSR2

Figure 6.3: uml activity diagram. Program ex-
ecution runs from top to bottom. Left path: re-
lying on ANSI C alarms and signaling features,
the status of the simulation is periodically writ-
ten to the log; Right path: the sequence of sim-
ulation module specific functions corresponds to
the most time consuming code of the execution.

are logged: the status of the simulation and the messages. Status is stored periodically by

feign as shown in figure 6.3, while messages can be logged at any time from any portion of

the code. Saved logs contain information concerning simulations that might be used later

for debugging, forensics (in case of crash), or as reference. Currently, three implementa-

tions were written for this module. The first does not store logs at all, throwing away

every information it receives. The second uses a text-based file format. The third writes

log information into a relational database. See section 6.1.2, p.75 for more informations

on database usage.

output module: saves the multivariate time series for the simulated neuron spiking times.

Storing the activity of some or all spiking units of the simulated network leads to the

analysis of their time series. Currently, three implementations were written for this module.

The first does not store time series at all, throwing away all information it receives. The

second saves events into the spike data format (see section 6.5.4.2, p.101) used for time

series analysis as discussed later in this Chapter. The third saves events into one sng

image per time step (see section 6.5.4.3, p.102) for visual inspection.

simulation module: contains the neuron model and network description to be simulated. The

purpose of all the other modules and services is to help this module to perform its task.

74 CHAPTER 6. SOFTWARE

Currently, two implementations were written for this module. The first does not simulate

anything and is mainly used for testing. The second is the implementation of the model

discussed in Part 1 of this document.

6.1.1.2 Services

Some general purpose features were required by several modules. They are labeled services,

isolated into their own interfaces and exposed to the modules by the core. Services are uncon-

ditionally compiled in feign and available for all module implementations.

exceptions service: allows any portion of the code to gracefully stop the execution of the pro-

gram by throwing a logged exception. This functionality is consistent with the philosophy

of the simulator: any problem should be reported to the user and no simulation should be

run in an improper state. This service is implemented using the long jump functionality

of ANSI C.

masks service: defines vectors of yes and no that answer to runtime questions concerning

neuromime units and time steps like “shall unit #7438 be recorded at time step 22,343?”

or “is unit #445 to receive stimuli at time step 12,703?” This service is also used to

determine the duration and composition of the spiking activity recordings.

properties service: stores configuration settings at runtime. All the settings for the simulator

and the modules are collectively known as properties, i.e. key-value pairs. They are used

by the different modules to determine their configuration and behaviour. There is only

one properties object per feign process, such that properties name clashes might appear.

There are three different ways to set these properties:

• at compilation time. Default property values can be hard-coded in the source files.

• at runtime. Multiple command line arguments -Pkey=value can be used to set prop-

erties at start-up time. This method is mainly used to set the properties required by

the configuration module implementation.

• through a configuration module implementation. Many ways can be conceived to

define properties (from flat files, databases, environment variables, . . .) The config-

6.1. SIMULATION ENVIRONMENT 75

uration module interface has been designed to let developers write their own imple-

mentations.

xpdl experimental protocols service: defines (stochastic) sequences of steps to follow dur-

ing the simulation run. xpdl stands for eXtensible experimental Protocol Description

Language. It is an XML grammar that describes the protocols to follow as a discrete state

machine. It is extensible in the way that the language describes the transitions between

the machine states as sequences, loops, and branches, but has no limitations on the com-

plexity of the states that are left to the programmer’s choice. Details concerning the xpdl

data format can be found in section 6.5.2, p.98. Several protocols can be loaded for the

same feign process, i.e. the implementation is reentrant. Protocols are used to determine

simulations sequences and timing. They can also be used to temporarily switch on or off

the stdp synaptic plasticity.

stimulator service: applies an arbitrarily complex stimulus on the simulated network. The

stimulus details are described in a sequence of sng images (see section 6.5.4.3, p.102). The

use of an image format to describe stimulus enables simple visual inspection, like the ones

available from Appendix A, p.115.

6.1.2 forge: a simulation organizer

Organizing and keeping track of the thousands of simulations that were required for the present

work would have been difficult without the help of an assistant. It appeared early in the work that

editing, checking and comparing the simulation configurations were difficult tasks. They usually

only differed from a couple of lines and could be easily interchanged. The distributed nature

of the simulation environment required a centralized persistent location where configurations

and logs could be stored for each simulation for later reference. A MySQL database server

accessible from the network was a suitable answer to this problem. feign configuration and

logging modules were implemented to optionally access that database instead of flat text files.

Thanks to those implementations, the simulation status is periodically sent to log (see figure 6.3)

along with the percentage of completion. Beside the persistent storage, this information can be

used to dynamically monitor the ongoing simulation effort in a distributed way.

76 CHAPTER 6. SOFTWARE

forg
e

program
A

program
A

program
B

MySQL

Figure 6.4: A sketch drawing showing how forge outsources the persistence and distributed concurrent
access handling to a MySQL database. This clean design simplified the development process and removed
any direct dependency between programs and forge.

forge is a light-weight, html based user interface on top of the database contents. It can be

used to edit, copy and compare simulation configurations, and to monitor running simulations

for progress from all over the world. forge is an unanticipated development that turned out to

become a cornerstone of the system.

Using a MySQL database server as the persistent repository is like giving away the most

complex problems to be solved. The database management system is in charge of handling the

problems related to the concurrent access to the information that is inherent to such a decoupled

design. It is also responsible for the consistency of the data.

The database design is fairly simple. It aims at expressing the concept of a Program, a piece

of software written to communicate with the database. A Program has many Executions to be

monitored and/or configured. These Executions can be optionally grouped into Experiments

to help the end user keep track and organize her work. Experiments themselves can be added

to other Experiments. How these classes are related one to another, and the role of some other

minor classes are shown in the uml class diagram of figure 6.5.

forge was such an unanticipated development that it grew out of multiple, short and un-

supervised coding sessions. If using a networked relational database server was the fastest way

to get such a tool up and running, the use of html for graphical user interface made it really

reactive and flexible for change.

A first version of forge was implemented using Apache7 and php8. It turned out to be a

quick and dirty version, which is currently being reimplemented with Java technologies, using

7http://www.apache.org/
8http://www.php.net/

http://www.apache.org/
http://www.php.net/

6.1. SIMULATION ENVIRONMENT 77

Program

id : int

name : String

description : String

hasConfig : boolean

hasLog : boolean

canMonitor : boolean

canNotify : boolean

hasDescription : boolean

Execution

id : int

begin : Date

end : Date

program : int

status : int

completion : int

host : String

notify : boolean

log : int

ForgeItem

id : int

type : int

creation : Date

lastModified : Date

description : String

hidden : boolean

parent : int

Experiment

id : int

items : List

expanded : boolean

Alias

id : int

reference : int

ExecutionConfiguration

properties : List

Property

id : int

creation : Date

execution : int

name : String

value : String

ExecutionLog

entries : List

ExecutionLogEntry

id : int

time : Date

execution : int

type : int

author : String

message : String

Figure 6.5: uml class diagram for the forge data model. The central class is Execution. It
represents one run of a Program. It comes with a configuration (a list of Property grouped into
an ExecutionConfiguration instance) and a log (a list of ExecutionLogEntry grouped into an
ExecutionLog instance). Experiments are ordered lists of Excecutions and other Experiments grouped
together according to some user rules. Aliases are place holders used for including an Execution at
several positions in a list.

78 CHAPTER 6. SOFTWARE

Tomcat9 and the Spring Framework10. This reimplementation will help cleaning the code, give

new opportunities for enhancement, and simplify the installation procedure of forge.

As well as feign can be used to run any kind of simulation that produces multivariate time

series, forge can be used to setup, monitor and archive any kind of process. Nothing in the

design of forge is intimately bound to feign or to spiking neural networks. Thus, forge is

available from the web as a separate project (see Appendix A, p.115). Note that forge is not a

distributed scheduling system. It cannot be used to start or stop executions through the network

or interact in any way with remote processes, except with the database server.

6.2 Data manipulation

The output produced by the simulations has to be prepared before being analysed. The time

series must be processed to extract the interesting parts from the complete recordings. The

circuits that emerged from the initial random network as a result of the pruning must be trans-

formed in a representation suitable for investigation. This is the role of the data manipulation

programs presented in this section. These tools are also the entry point in the system for data

that might have been collected using different techniques than the ones presented here (other

simulators, in vivo recordings, . . .)

From this point on, time series and networks will follow parallel ways in the information flow

described in figure 6.1, Note that the “fnet” prefix is used for the programs – fnetdb, fnetdig,

and fnetview – and file formats related to the networks produced by the simulation runs. It is

the contraction of “feign-networks”.

6.2.1 fnetdb: handling graphs through relational databases

Results presented in Part 1 show the emergence of subnetworks in larger networks associated with

spike-timing-dependent synaptic plasticity (stdp). A flexible representation of the graphs was

required to investigate the relations between spiking neuromimes interconnected in a network.

We chose to represent these relations in a relational database. Beside considerably easing the

development effort by relying on a fully debugged data structure, the possibility to search the

9http://java.apache.org/tomcat/
10http://www.springframework.org/

http://java.apache.org/tomcat/
http://www.springframework.org/

6.2. DATA MANIPULATION 79

network using a relational language like sql was an incredibly versatile solution.

fnetdb is the shell script developed to load and query .fnet network states (see section 6.5.1,

p.98) into SQLite311 file databases. These databases are binary files containing the relational

table structures and indexes that can be queried using the SQLite command line tool, or through

the libsqlite programming interface. fnetdb is an interface on top of the SQLite command tool,

that translates graph queries into sql queries. The relational queries were complex enough not

to be typed directly to fnetdb, but by using fnetdig, an helper script described in section 6.3.1,

p.86.

6.2.2 DataToolbox: an interactive tool

Most of the programs and applications we have developed in the last few years are aimed at

interactively manipulating point process time series, both simulated in silico and recorded in

vivo. Working with simulated time series data looks like working with recorded time series data.

It only requires far less effort to record thousands of simulated units for hours than properly

separate and record tens of neurons out of implanted electrodes. The resulting simulated files

are usually larger and contain more, different event types than the recorded ones, ensuing many

information management issues. The latest recording developments using optical methods and

micro-electrodes arrays suggest that the same problems are becoming visible to the experimen-

talists working on both behaving animals and brain preparations. YaTiSeWoBe (see section 6.4.4,

p.96) is a contribution to the management of multivariate time series by a team of collaborating

scientists over a computer network.

The simplest tool that emerged from this experience is the DataToolbox, a modular Java

application aimed at manipulating time series data through filter tools that are dynamically

discovered at application start-up. Sitting on top of the data manipulation libraries developed

along YaTiSeWoBe, DataToolbox shows most of the advanced features present in YaTiSeWoBe,

but at a smaller scale. Two aspects are shared by both applications: the time series data model

and the filtering data manipulation model. The implementation of these two models is available

from the web (nhrg-java-apps), as explained in Appendix A, p.115. We will now describe these

two models.

11http://www.sqlite.org/

http://www.sqlite.org/

80 CHAPTER 6. SOFTWARE

Figure 6.6: DataToolbox screenshot. The application is vi-
sually organized into 3 distinct parts. Top part defines the
origin of the data to be manipulated (Source). Files and
URLs can be dragged on the component. Alternatively, the
“Browse” button can be hit to pop a file chooser up. Middle
part is composed of tabs, one tab for each tool detected at
start-up, plus one for the common “Log” tab. Each tool is
responsible for laying down its front-end controls, help and
output with unbound complexity. In the case of the “Trans-
late” tool, it offers the possibility to choose a file (Destina-
tion) where data should be written to, along with the desired
format, and a button to launch translation. The destination
format is usually different from the source format. Bottom
part shows a common “Status” bar providing information
on what is going on in real time.

6.2.2.1 Time series data model

A clear model of the objects at hand is an important tool to have when manipulating data. It

took us a few years working with time series to develop the data model described in the class

diagram figure 6.7. This model was not the objective of our work, but a tool to describe how

data is consistently understood and handled in the different programs.

The left part of the figure 6.7 models single events of the time series. This part is directly in-

fluenced by the Spike Data Format sdf (see section 6.5.4.2, p.101), with the use of a RecordType

composed of a code and a qualifier. Codes and qualifiers are used to create a hierarchical clas-

sification of the event types. All event types of the same “kind” (e.g. recorded cell, stimulus

onset, . . .) have the same code and are distinguished by the qualifier (e.g. recorded cell #1,

recorded cell #2, . . .). Using the bitwise and operator, event types can be grouped into classes

of events, like with RecordTypeImpl’s mask attribute. The stream filters described in the next

section typically handle Record objects. The center part of the figure 6.7 models sequences

of contiguous data like digitalized signals and point processes. DigitalSignals focus on the

intensity of a variable along time, and are typically a continuous sample of a physical variable.

PointProcesses focus on the timing of the data, and are a resource-friendly simplification of

digital signals in the case of a two state variable (’0-1’, ’yes-no’, . . .), with one of the states

having a small probability of occurrence, like the spiking activity recorded during our simula-

6.2. DATA MANIPULATION 81

<
<

In
te

rf
a
c
e
>

>

D
a
ta

g
e
tU

R
L
()

 :
 U

R
L

g
e
tA

n
n
o
ta

ti
o
n
s
()

 :
 L

is
t

<
<

In
te

rf
a
c
e
>

>

T
im

in
g
D

a
ta

g
e
tT

im
e
()

 :
 i
n

t

g
e
tT

im
e
U

n
it
()

 :
 T

im
e
U

n
it

<
<

In
te

rf
a
c
e
>

>

L
a
s
ti
n
g
D

a
ta

g
e
tD

u
ra

ti
o
n
()

 :
 i
n

t

<
<

In
te

rf
a
c
e
>

>

S
e
c
ti
o

n

D
ig

it
a
lS

ig
n
a
l

s
a
m

p
le

s
 :
 L

is
t

v
a
lu

e
s
 :
 L

is
t

ra
te

 :
 S

a
m

p
le

R
a
te

P
o
in

tP
ro

c
e
s
s

e
p
is

o
d
e
s
 :
 L

is
t

ti
m

e
s
 :
 L

is
t

<
<

In
te

rf
a
c
e
>

>

R
e
c
o
rd

T
y
p
e

g
e
tC

o
d
e
()

 :
 i
n

t

g
e
tQ

u
a
lif

ie
r(

)
:
in

t

<
<

In
te

rf
a
c
e
>

>

R
e
c
o
rd

S
a
m

p
le

v
a
lu

e
 :
 d

o
u
b
le

ra
te

 :
 S

a
m

p
le

R
a
te

E
p
is

o
d

e

<
<

In
te

rf
a
c
e
>

>

R
e
c
o
rd

T
y
p
e
S

e
le

c
to

r

m
a
tc

h
e
s
(t

y
p
e
:
R

e
c
o
rd

T
y
p
e
)

:
b
o
o
le

a
n

<
<

In
te

rf
a
c
e
>

>

R
e
c
o
rd

S
e
le

c
to

r

m
a
tc

h
e
s
(r

e
c
o
rd

:
R

e
c
o
rd

)
:
b
o
o
le

a
n

D
e
s
ti
n
a
ti
o

n

P
a
u
s
e

C
o
m

m
e
n
t

A
n
n
o
ta

ti
o

n

k
e
y
 :
 S

tr
in

g

v
a
lu

e
 :
 S

tr
in

g

T
im

e
U

n
it

S
a
m

p
le

R
a
te

R
e
c
o
rd

T
y
p
e
Im

p
l

g
e
tM

a
s
k
()

 :
 i
n

t

<
<

u
s
e
>

>

<
<

u
s
e
>

>

<
<

u
s
e
>

>

<
<

u
s
e
>

>

<
<

u
s
e
>

>

S
o
u
rc

e

u
rl
 :
 U

R
L

m
im

e
 :
 S

tr
in

g

<
<

u
s
e
>

>

F
ig

ur
e

6.
7:

u
m
l

cl
as

s
di

ag
ra

m
fo

r
th

e
ti

m
e

se
ri

es
da

ta
m

od
el

,
bo

th
po

in
t

pr
oc

es
se

s
an

d
di

gi
ta

liz
ed

si
gn

al
s.

T
he

le
ft

pa
rt

is
ai

m
ed

at
m

od
el

in
g

si
ng

le
re

co
rd

s;
th

e
ce

nt
er

pa
rt

m
od

el
s

co
nt

in
uo

us
re

co
rd

in
gs

;
an

d
th

e
ri

gh
t

pa
rt

m
od

el
s

m
et

a-
in

fo
rm

at
io

n
th

at
ca

n
be

ga
th

er
ed

ar
ou

nd
ti

m
e

se
ri

es
th

ro
ug

h
th

e
A
n
n
o
t
a
t
i
o
n
s

at
ev

er
y

le
ve

l
of

th
e

cl
as

s
hi

er
ar

ch
y.

82 CHAPTER 6. SOFTWARE

tions. Some data manipulation algorithms are more efficient on a Section representation than

using separated Records. Finally, the right part of the figure models the different pieces of

meta-information that can be attached to all the objects of the hierarchy, and specifically the

Annotations, a dictionary-like list of key-value pairs.

One unusual aspect of the class diagram figure 6.7 requires some explanation. There are two

circular dependencies running from the Record interface to the Data interface, one by extension

of interface RecordType and the second by extension of interface TimingData. In a parallel

manner, the Section interface extends the RecordType and the LastingData interfaces, that

both extend Data. Those cycles result from the need for both a top Data interface and a mean

to manipulate Sections and individual Records in similar ways. It is not straightforward until

one starts programming with the data model, but the existence of those cycles in the object

hierarchy greatly simplifies the data manipulation model discussed later.

Despite the historical link, this data model is not bound to the sdf data format. It has

been successfully used to map data stored in different file formats like Holland Sleep Research’s

binary European Data Format (edf and edf+)12, and Cambridge Electronic Design’s ced13.

6.2.2.2 Data manipulation model

The proposed data model separates the data representation, like data formats, from data ma-

nipulation. According to figure 6.8, Sources of data are entirely defined by the location where

they are stored (expressed as a url) and the data format (expressed as a mime type). The mime

type provides enough information to determine which parser to use, provided as one of the im-

plementations of the FormatedDataReader interface. The role of the FormatedDataReader is

to load data into a DataBridge implementation, through such methods as addComment() and

addEpisode(). Linking a simple string of characters (the mime type) with a parser can be

determined at runtime and allows multiple file formats support. At this point, the data is free

from any formatting and enters the realm of the proposed data model described in figure 6.7.

It is only linked back to its original source by its url. Figure 6.8 shows the relations between

the different objects associated with data manipulation.

The DataBridge object encapsulates many different processes. For now, two of them have
12http://www.hsr.nl/edf/
13http://www.ced.co.uk/

http://www.hsr.nl/edf/
http://www.ced.co.uk/

6.2. DATA MANIPULATION 83

been described: a DataFilter subclass modifies and/or discards data somehow before passing

it further to another DataBridge subclass; a FormatedDataWriter represents data back into

a specific format, and stores it into a Destination, potentially in a different format than the

original one.

DataFilters manipulate streams of data, as time series flow through them. Despite the

thousands of ways to articulate chains of filters to produce the desired results, some manipula-

tions, like merging two Sources into one Destination for example, are out of reach with this

construction. For those cases, a DataRepository is a place that can optionally store one or

more sources of data in a representation with a finer-grain interface suitable for more complex

algorithms. When ready, the data can be dumped back into a DataBridge for further processing

and/or formatting to a Destination.

With this simple construction, it is possible to read data from a URL, parse the format,

manipulate information through successive independent filters and write it back in some different

format. It is greatly influenced by the piping facilities available on Unix operating systems, where

the output of one program can be chained into the input of another. The conceptual benefits

are valid – independent programs communicating through a simple and well defined interface

scale better with the complexity of the tasks – but time series semantics are enforced.

DataToolbox is a generic graphical front-end for DataFilters. Each implementation de-

tected while starting the application gets its own tab in the middle part of the window, as

described in figure 6.6. FormatedDataWriter implementations are listed in the open (save) file

dialog list of available formats.

6.2.3 manip: a versatile filter and editor

After acquiring time series, either by simulation or by in vivo recording, and before analysing

them, there was a need for a tool to extract the interesting parts from the raw series. manip was

developed with the objective of simplifying the cutting of the data along the time axis, selecting

portions of the recording duration (e.g. around the stimulation times) as well as along the event

axis, selecting the events we are interested in (e.g. getting rid of episodes recorded from cells

#2 and #4.) This program was written in C with the help of several Open Source projects.

It relies on the SQLite3 in-memory relational database library to store the configuration and

84 CHAPTER 6. SOFTWARE

<<Interface>>

DataBridge

setSource(source: Source) : void

setTimeUnit(unit: TimeUnit) : void

addComment(comment: Comment) : void

addEpisode(episode: Episode) : void

addSample(sample: Sample) : void

addPause(pause: Pause) : void

close() : void

<<Interface>>

DataRepository

createBridge(source: Source) : DataBridge

getSources() : Iterator

getTimeUnit(url: URL) : TimeUnit

getComments(url: URL) : Iterator

getTimes(url: URL) : Iterator

getValues(url: URL) : Iterator

getPauses(url: URL) : Iterator

getDuration(url: URL) : int

<<Interface>>

FormatedDataWriter

setDestination(dest: Destination) : void

<<Interface>>

FormatedDataReader

parse(source: Source,bridge: DataBridge) : void

<<use>>

<<use>>

DataFilter

<<Interface>>

Data

getURL() : URL

getAnnotations() : List

Source

url : URL

mime : String

Destination

<<use>>

<<use>>

<<use>>

Figure 6.8: uml class diagram for the time series data manipulation model. Formated data is represented
by Source and Destination classes. DataFilter subclasses can be used to manipulate time series data
in any appropriate way before passing information to the next DataBridge, that can manipulate data
further, format it back to some persistent location through a FormatedDataWriter, or place it into a
DataRepository. Only part of the rich DataRepository interface has been represented for the sake of
readability. This figure is related to figure 6.7 through Data, Source, and Destination classes.

the data at runtime. This unusual solution was preferred over others that would have required

more coding, debugging, and maintenance. The processing required from manip is expressed

as a set of SQL queries efficiently interpreted by the library with the help of the automatically

maintained indexes. The program comes with its own imperative configuration language. The

use of the GNU flex14 fast lexical analyser generator and the GNU bison15 general purpose

parser generator eased the writing of the program, its maintenance, and its evolution.

manip is used like most Unix command line programs, with the possibility to introduce it in

a pipe of programs reading the input from stdin and writing their output to stdout. Working

this way allows maximum flexibility and performs particularly well in collaboration with many

other existing programs. A special mode turns manip into a general-purpose pre-processing stage

for other analyses. Another mode provides a detailed description of a file contents for human

inspection. Using a third mode, the spiking activity of the cells can be efficiently searched

for patterns of activity with the help of a template. manip can list all the occurrences of cell

14http://www.gnu.org/software/flex/
15http://www.gnu.org/software/bison/

http://www.gnu.org/software/flex/
http://www.gnu.org/software/bison/

6.3. DATA ANALYSIS 85

#10 firing 243ms before cell #1, and 341ms before cell #5, for example, optionally allowing

a jitter around each inter-spike interval. The search algorithm was efficiently implemented

within minutes, thanks to the SQL relational query language and the indexes maintained by

the database. Some functionalities of manip were general enough to be placed in the libNHRG

library.

6.2.3.1 libNHRG: a data manipulation and analysis library

This C library was developed to encapsulate common tasks for programs and applications.

Among them are APIs for time series data reading and formatting and XY-Viewer graphics

production. The common time series data format used between all programs is the Spike Data

Format (sdf), described in section 6.5.4.2, p.101. The library allows different data formats to

be manipulated though, thanks to the time series data model presented in section 6.2.2.1, p.80.

XY-Viewer is a general-purpose 2d plot rendering application described in section 6.4.2, p.89.

Formating data analysis results in a suitable form for that application, described in section 6.5.3,

p.100, would be cumbersome without a proper programming interface like the one provided by

libNHRG.

6.3 Data analysis

A large amount of data came out of every single simulation we performed. Part of the data is

related to the circuits that emerged from the randomly connected network through the synaptic

pruning. The rest is composed of the multivariate time series recorded from the activity of the

neurons. The circuits were analysed with the tools provided by the graph theory (see Albert

and Barabasi (2002) for a review). Some well known indices of the graphs were used to describe

the emerged circuits, like the input/output degrees (kin and kout) which represent the number

of incoming and outgoing projections of one neuron, respectively. The mathematical field of

statistics provides the methods for the description and investigation of the time series, like first

order statistics (mean and variance) and second order statistics (auto– and crosscorrelations).

In addition to those established methods, we also used the search for spatiotemporal patterns of

activity as a mean to detect the presence of recurrent “functional” paths in the emerged circuits.

86 CHAPTER 6. SOFTWARE

No time was spent describing new methods or implementing existing ones. We did spend

some time and energy trying to put together a comprehensible and distributed environment to

simplify the usage and dissemination of established and novel methods in the field of neuro-

science. The current state of the project is described in section 6.3.2, p.87.

6.3.1 fnetdig: searching graphs

The status of the networks at specific times during the simulations were dumped as graphs. In

order to investigate them, they were loaded into relational databases with the help of fnetdb

(see section 6.2.1, p.78). fnetdig is a shell script around a GNU make script that uses fnetdb

to query the database. It constructs textual lists of units or projections that show a particular

aspect, e.g. units that have more than 7 strong inputs, 10 strong outputs among which one goes

to unit #132. These textual lists are then further merged, compared for union or exclusion with

the GNU coreutils16 (sed, grep, cut, sort, uniq, tr, . . .)

GNU make17 is a tool which controls the generation of some files from other files. Make

figures out automatically the proper order to produce files, in case one file depends on another.

Consider the following scenario: a user wants to compute the list d of all units with kin > 7,

kout > 10 and a connection to unit #132. Make has been instructed that in order to compute

d, it requires list a of units with kin > 7, list b of units with kout > 10, and list c of units

projecting to unit #132. It then computes the intersection of these 3 lists. If any of a, b or c

is missing, it will first be constructed before performing the intersection. Recursively, if any of

a, b or c relies on the existence of other lists, those will be computed first.

The way fnetdig uses the make tool is rather unusual, but it helped saving a lot of time.

First by simplifying the development. Second because some of the lists are quite expensive to

obtain, computationally speaking. Make saved a considerable amount of time by not recomput-

ing lists that were already available, and by computing only the strict amount of information

required to get the job done.

The use of SQLite3 as a data structure, make for dependency solving, and coreutils for list

processing proved to be solid and versatile. Looking for new aspects of the graphs is just a

matter of defining how pieces of existing information can be merged together to extract the new
16http://www.gnu.org/software/coreutils/
17http://www.gnu.org/software/make/

http://www.gnu.org/software/coreutils/
http://www.gnu.org/software/make/

6.3. DATA ANALYSIS 87

aspect, or writing the sql query to get the information out of the database. The amount of

work required to get new functionalities out of the program is small. The next best thing would

be to develop a complete programming language to manipulate the graphs, although requiring

a larger investment. One important drawback is that it is left to be checked if the scripts are

fully portable.

6.3.2 oan: a distributed analysis framework

A critical feature of brain theories is whether neurons convey a noisy rate code or a precise

temporal code. One of the most valuable ways to test these theories consists of collecting

the electrophysiological activity of cell assemblies under several experimental conditions. The

sequences of cell discharges, – the spike trains – form a time series whose dynamics are strongly

related to the information processing carried out in the brain areas under study.

The targeted users of oan are graduates and PhD students as well as senior scientists working

in electrophysiology. We expect these people to work in a University, a High School or other

public or private educational departments. The number of users cannot be anticipated because

oan is only a partial set of our Virtual laboratory that expanded with several modules since the

beginning of the project. The original programs designed for electrophysiological analyses have

been generalized in order to accept data from several types of discrete time series. A current

field of interest is represented by the simulation of neural networks.

The overall objective of this project is to create an integrated multi-platform software al-

lowing the neuroscience research scientist, starting at the level of graduate students, to perform

a comprehensive series of electrophysiological data analyses without the need of a long training

with a specific software. This goal can be achieved by using the Internet browser as a multipur-

pose graphic terminal. The possibility to use remote computers for data analysis represents an

important feature of the framework oan and is based on the powerful network features provided

by the Java language. Our purpose is to provide a user-friendly computational framework that

is compatible with a more general concept of ’Virtual laboratory’, i.e. a laboratory where data

collection, computational power for analysis and display of results can be distributed over a

computer network, like Internet.

88 CHAPTER 6. SOFTWARE

Figure 6.9: fnetview screen-
shot. The top part of the win-
dow shows an interactive repre-
sentation of a 4 layer synfire-
chain. Ovals represent neu-
rons, arrows the directed con-
nections, and their thickness
the strength of the projec-
tion. Neurons can be reordered
by clicking and dragging them
around. The layers are “sticky”
and neurons are always kept in
line. Neurons and projections
are dynamically color coded to
help users finding the best po-
sition of a neuron in a feed-
forward structure.

6.4 Visualization

The applications discussed in this section help users to visualize, interpret, and save for later

reference the large amounts of information implied by large scale simulations. Without them, the

task of plotting and screening the activity of tens of recorded units activity, and the subsequent

correlations would have been out of reach. The outputs of these applications are vector graphics

files in PDF, EPS, or SVG format. General-purpose vector graphics editors can be used to turn

these high quality outputs into scientific journal figures. XY-Viewer is of special interest in this

area, as it can be reused immediately outside the work presented here, and even outside the field

of computational neuroscience. Most figures and plots of this document were generated using

XY-Viewer.

6.4.1 fnetview: interactive reconstruction of feed-forward networks

Graph visualization18 is a research field of its own. There are complex issues associated with

rendering large graphs with lots of connections. fnetview is a first attempt to represent and

edit layered feed-forward networks in a user-friendly and interactive way.

18http://www.graphdrawing.org/

http://www.graphdrawing.org/

6.4. VISUALIZATION 89

fnetview relies on the drawing capabilities offered by the Java Universal Network/Graph

Framework jung19 Open Source project. It reads graphml files and displays the contents on a

sticky grid. The nodes can be moved around the grid in an attempt to reorganize the network.

The resulting network can be exported to svg vector images for further processing with a vector

graphics editor. The same network can be loaded at several time steps of the simulation. The

rendering can be switched from one time step to the next in order to display the evolution of the

connection weights through time. Many aspects of this application could be developed further.

In order to represent synfire like structures, the 2d coordinate system should be replaced by

some kind of cylindrical coordinates.

6.4.2 XY-Viewer: a generic plot viewer

XY-Viewer is a Java application that displays x-y plots (see figure 6.10) described in a dedicated

xml based format discussed in section 6.5.3, p.100. This application was originally developed

during summer 2002 by Olexiy Gospodarchuk at the PNN software company under my super-

vision as a side product of the oan project (section 6.3.2, p.87). The original implementation

had several flaws that led to its complete rewriting at the end of year 2004.

Within the oan project, the need appeared to have a portable and user-friendly tool that

could provide a fast glimpse on the output of different unrelated scientific analyses. We needed

a generic front-end for scientific plotting. None of the tools available at that time had the

possibility to display a wide range of graphics obtained through the web, run on multiple plat-

forms without needing complicated installation procedures, and produce scientific journal-quality

graphics output. For free.

The work on XY-Viewer was largely influenced by the web technologies like LATEX and css,

and the daily use of Gnuplot20, a portable command-line driven interactive data and function

plotting utility available for many platforms. The desire for clear separation of the data, the

format in which the data is stored, the details of the graphics rendering, and finally the rendering

driver (on screen or virtual paper) drove the development of this application by mimetism.

Gnuplot is designed as a command-line tool and a rendering engine. The handling of a large

19http://jung.sourceforge.net/
20http://www.gnuplot.info/

http://jung.sourceforge.net/
http://www.gnuplot.info/

90 CHAPTER 6. SOFTWARE

Figure 6.10: XY-Viewer screenshot. The application is designed to render on screen and in print
(pdf) a wide variety of scientific data described as sets of X-Y values. Many convenient shortcuts
help users to browse large numbers of plots in an efficient way. It contains a high quality, and style-
based rendering library (see section 6.4.2.1, p.91), driven by style sheets that the user “teaches” to
the application whenever it encounters a new class of graphics. User can dynamically interact with
plotted data. The modular nature of the application leaves multiple hooks for future enhancements and
customizations, from data file format (see section 6.5.3, p.100 for default format), to rendering details,
through statistical analysis.

6.4. VISUALIZATION 91

number of graphics, multiple graphics per page, and point-and-click interaction with the graphics

are available features, but not really user-friendly.

Sun Microsystem’s Java language has many features that suit perfectly with the requirements

of the application. Beside the availability of the Java virtual machine for most common operating

systems21, full-featured applications can be deployed over the network with a single click, using

Java Webstart22 technology. It even ensures that the latest version is always run, downloading

updated components before launching the application. Since the appearance of Java 2, the

graphics environment allows one to draw at the best quality of the different drivers, on screen

and on print. Multiple projects have exploited this feature. We used the iText23 library to

generate pdf files on the fly. The heart of the system, the rendering library, was developed from

scratch. The original ideas date back to 1999 and were first sketched out for RasterViewer

(see section 6.4.3, p.95), at a time when the quality of Java graphics implementation was less

obvious, like the lack of sub-pixel precision.

6.4.2.1 Rendering library

XY-Viewer and YaTiSeWoBe share the same underlying graphical rendering engine that stresses

the separation of the content from the representation, and the model from the view. That

library evolved on top of the Java 2 standard graphics capabilities to circumvent some of its

limitations. The principal concepts of the library are: the spot, encapsulating the details of

how a mathematical point should be displayed; the path, encapsulating the details of how the

connection between points should be displayed; the label, encapsulating the details of how a piece

of text should be displayed; and finally the stylesheet, a dictionary associating style information

to keys. The hierarchy of classes in the library is reproduced in figure 6.11.

Each class is usually extended with multiple implementations. Some of the SpotDrawingStyle

implementations are: the cross (×), the dot (·), the oval (◦), and the empty spot (). In-

stances can be resized, both foreground and background colors can be assigned, leading to

a finite but large number of combinations. Current StrokeStyle implementations are: dot-

ted (· · ··), interrupted (- - -), plain (—), and empty stroke (). Two implementations of

21http://www.java.com/
22http://java.sun.com/products/javawebstart/
23http://www.lowagie.com/iText/

http://www.java.com/
http://java.sun.com/products/javawebstart/
http://www.lowagie.com/iText/

92 CHAPTER 6. SOFTWARE

<<Interface>>

Style

LabelStyle

foreground : ColorStyle

background : ColorStyle

font : FontStyle

drawLabel(text: String) : void

FontStyle ColorStyle DrawingStyle

stroke : StrokeStyle

PathDrawingStyle

color : ColorStyle

drawPath(x: List,y: List) : void

DecoratedPathDrawingStyle

start : SpotDrawingStyle

middle : SpotDrawingStyle

stop : SpotDrawingStyle

SpotDrawingStyle

foreground : ColorStyle

background : ColorStyle

drawSpot(x: double,y: double) : void

StrokeStyle StyleSheet

attributes : List

functions : List

styles : List

<<use>> <<use>> <<use>>

<<use>>

<<use>>
<<use>>

Figure 6.11: uml class diagram for the rendering library. At the top of the hierarchy is the Style inter-
face. The interface is empty and is used as tag marking all classes in the library. StyleColor, StyleFont,
and StrokeStyle are wrapper classes tagging as Styles the Java standard classes java.awt.Color,
java.awt.Font, and java.awt.BasicStroke respectively. SpotDrawingStyles, PathDrawingStyles,
and LabelStyles encapsulate the details of rendering mathematical points, and connections between
points and texts respectively. StyleSheets are further detailed in figure 6.12.

6.4. VISUALIZATION 93

StyleSheet

attributes : List

functions : List

styles : List

<<Interface>>

Style

<<use>>

Function

attributes : List

functions : List

styles : List

<<use>>

<<use>>

Attribute

values : Object

<<use>>

<<use>>

Figure 6.12: uml class diagram for the style sheet collaborations. StyleSheets are the central objects in
the rendering library hierarchy, containing Styles, Functions and Attributes. They offer two recursion
possibilities, first by being able to contain other StyleSheets, and second by containing Functions, that
can themselves contain other StyleSheets.

PathDrawingStyle are missing from figure 6.11. One connects each point in a path with a

line; the other is usually used for histograms, connecting successive points with a step. Using

the DecoratedPathDrawingStyle implementation of PathDrawingStyle, one can combine spot

styles with stroke styles to produce a large number of different path styles, like a line starting

with an oval spot, ending with a rectangle spot, and connected by an interrupted stroke (◦- - -�).

The cornerstone of the library is the StyleSheet object, that helps organizing Styles, along

with two other types of Objects: Attributes and Functions. Attributes are Integer, String,

Boolean or Double values associated with keys. Attributes offer a solution to get some simple

object values that are not Style-tagged into the rendering engine configuration. Functions

are pieces of interchangeable implementations for a specific action. There are two extensions

of Function defined in the library: IntervalMappingFunctions, used to map some piece of

a 2d space on screen; and DataSmoothingFunctions, used to smooth data before rendering

it. Current implementations for IntervalMappingFunction are LinearIntervalMapping and

LogarithmicIntervalMapping, but polar or hyperbolic coordinate systems could be imple-

mented. Current implementations for DataSmoothingFunction are NoSmoothing, that does not

perform smoothing on data at all, GaussianSmoothing that performs a Gaussian bell convo-

lution on the data, and CERNSmoothing that implements an unusual smoothing function based

on running medians (Friedman, 1974). Finally, two more classes, StyleSheetEncoder and

StyleSheetDecoder, can be used to recursively dump to and load from xml files the complete

94 CHAPTER 6. SOFTWARE

style sheet tree. The above lists of implementations are not constrained. When the library is

loaded during application start-up, the complete list of available implementations is built ac-

cording to what is found on the system at that time, through the Java Service Provider Interface

(spi). To hide the details of this runtime catalog construction from the library users, a factory

class GraphFactory is provided that will return all the available implementations for each Style

extensions.

6.4.2.2 Configuring styles

Providing the end-user with the graphical user interface widgets she expects from modern ap-

plications to configure all the possible combinations of spots, path and functions is a daunting

task. First, writing the end-user graphical interface (buttons, menus, point-and-click handling,

. . .) is one of the most time consuming tasks for a programmer. Second, style sheets provide a

recursive and fine-grain description of the rendering details. Third, the exact number of available

implementations of each style, and its nature is only known at the time the library is loaded

to memory. This is precisely the reason why the rendering library comes with a sister library

aimed at generating the graphical user interfaces automatically, based on the contents of the

style sheets.

Consider the following example of the style edition complexity: as of version 0.2.0 of XY-Viewer,

each plot axis has three LabelStyles (ticks, exponent and label), and one PathDrawingStyle

(axis line and ticks rendering). Each of them has multiple styles and attributes, plus two

DoubleAttributes (range minimum and maximum), and one IntegerAttribute (number of

ticks). Each of these objects requires a different dialog window for edition, some of them with

the ability to edit sub-styles further, like PathDrawingStyles that are optionally associated to

SpotDrawingStyles. Figure 6.13 is a screenshot of the dialog window automatically generated

by the library for the edition of a PathDrawingStyle.

The technique used to generate the graphical user interface from the contents of the style

sheet is loosely related to the Mozilla’s framework cross-platform toolkit24 and the xul move-

ment25. These efforts aim at describing a graphical user interface through the use of portable

xml files instead of using one specific toolkit. At runtime, an engine is responsible for translating
24http://www.mozilla.org/xpfe/
25http://xul.sourceforge.net/

http://www.mozilla.org/xpfe/
http://xul.sourceforge.net/

6.4. VISUALIZATION 95

Figure 6.13: Screenshot of a dialog window auto-
matically generated by the rendering engine con-
figuration library for the edition of the details of
a PathDrawingStyle. The left part of the dialog
displays a catalogue of the available styles: “Pre-
sets” lists the available implementations with their
default settings; “Users’” lists the styles defined by
the current user and stored for later use. On the
right part, below the “Preview” of the currently se-
lected style, are the editors of the 5 sub-styles for
this PathDrawingStyle. Hiting the different but-
tons opens a different dialog window, tailored for
the edition of the details of the specific sub-style.

the description file into calls to the toolkit available on the system.

The current implementation is transitory. XForms26 appears to be a cleaner solution to the

problem, as one describes what one wants (e.g. “an integer value between 5 and 12”), rather

than how one asks for it (“a text box at 12 pixels horizontally, 24 vertically”), like with xul

solutions. XForms is a rich and complex recommendation of the World Wide Web Consortium

(W3C) that has not yet reached a sufficient momentum. The absence of a small and compliant

library for XForms rendering with Java portable toolkit, along with the missing time for this

secondary task, has momentarily stopped development in that direction. Another interesting

aspect of XForms is its potential to solve the problems of automatic form generation for oan

analyses.

6.4.3 RasterViewer: a raster-plot viewer

RasterViewer is the oldest of all the tools presented here. It was written in 1999 with the

objective to display the spiking activity of cells recorded in vivo. It reads time series in the .sdf

format and displays them as raster plots.

Discrete time series of point processes (e.g. sequences of neuronal discharges – the spike

trains) can be displayed as dot rasters. Each display line corresponds to a time interval (e.g.

a single trial or a stimulus repetition) that is repeated one line on top of the other. Each dot

26http://www.w3.org/MarkUp/Forms/

http://www.w3.org/MarkUp/Forms/

96 CHAPTER 6. SOFTWARE

Figure 6.14: RasterViewer
screenshot. The purpose of the
application is to help the user
to screen spiking activity. It
is designed with a semi-direct
graphical user interface. A re-
mote controller (front window)
is used to determine the details
of what should be displayed on
the main application window
(in the back) after pressing the
“Redraw” button.

represents the occurrence of an event (e.g. a cell discharge). The rasters are aligned by a trigger

event (e.g. the beginning of the trial or the start of the subject’s response).

This software allows one to analyse rasters of points corresponding to time series of recorded

point processes. The user can customize the layout for the display of multiple rasters (one

raster is referred to one type of event) by selecting the number of rasters on screen, as well as

the number of rasters per line of display. The duration of the time interval can be selected and

the rasters are dynamically controlled with a slider. The user has the possibility to select the

event that will be the trigger of the raster display.

Sooner or later, RasterViewer is expected to be replaced by YaTiSeWoBe.

6.4.4 YaTiSeWoBe: an interactive workbench

YaTiSeWoBe stands for Yet Another Time Series Workbench. It is a pluggable framework aimed

at providing groups of collaborating researchers a mean to exchange time series data, tools

to visualize them, and results over a computer network. YaTiSeWoBe is designed to gather a

maximum amount of information and knowhow for team members to access and manipulate

them. This application represents the outcome of an ambitious project to merge some of the

aspects of oan and XY-Viewer into a user-friendly desktop application. So far, the work has

been limited to the modeling and implementation of the underlying libraries for time series data

6.5. FILE FORMATS 97

Figure 6.15: YaTiSeWoBe
screenshot. The activity of 4
cells, one per line, is plotted
around the stimulus onset (red
bar). First column: raster
plots akin to the first four lines
of figure 6.14; Second column:
raw (un-convoluted) peri-event
time histograms; Third column:
inter-spike interval return map.

processing and graphics rendering on which DataToolbox and XY-Viewer are also based. A

powerful file format has also been designed and implemented to support the rich features of the

application. A lot of work remains to be done on the graphical user interface and the scientific

quality of the analysis.

Figure 6.15 shows the current status of the workbench. As an evolution of RasterViewer,

YaTiSeWoBe can plot rasters of activity. Other types of representations can be plotted simul-

taneously, with all the power of the rendering library discussed previously. Unlike XY-Viewer,

YaTiSeWoBe produces the graphics internally and does not read them from an external source.

Users can interactively modify their contents along with their rendering details.

6.5 File formats

Following our software philosophy, text based formats were preferred to any binary file format

for portability and interoperability reasons. Existing file formats were used when appropriate

(see section 6.5.4, p.100) while ad hoc formats are xml grammars. Extensible Markup Language

(xml) is a World Wide Web consortium (W3C) recommendation. It is defined as a simple and

very flexible text format derived from SGML (ISO-8879). It is out of the scope of this discussion

to provide details on xml, as many resources and tutorials are available.

Using xml to exchange information between programs has many advantages: parsers, val-

98 CHAPTER 6. SOFTWARE

idators and formatters are generic. Many of them are available as Open Source projects. They

have been written, optimized and debugged for all modern languages. xml tags tend to auto-

document the format for humans that would open the files using a simple text editor of their

choice. Many technologies around the xml data files simplify information manipulation, like xml

Schemas, XPath and XSLT, to cite a few. Relying on existing generic information manipulation

tools has been of great help in the course of the present work.

The main disadvantage of xml files is the usual verbosity of the format that, along with the

use of text encoding, leads to larger disk usage than binary formats. By experience, the use of

a generic compression algorithm such as GZip allows far smaller files that still maintain most of

the advantages listed above.

Sample files for each of the following formats are available in Appendix B, p.117 and from

Appendix A, p.115.

6.5.1 .fnet: feign networks

A dedicated file format was required at some point to store the complete status of the simulated

network at one time step. This format contains information concerning the connections between

units, as well as the model details for the units and the connections. This way, the status of

the network could be saved and analysed, or reloaded into the simulator and further simulated.

The .fnet data files are used for that purpose. The information structure is described in an

xml grammar. Such files are produced by the simulator, feign (see section 6.1.1, p.71), that is

also able to read them back to continue a simulation from a previously saved state. They are

loaded into relational databases by fnetdb (see section 6.2.1, p.78) in order to be analysed by

fnetdig (see section 6.3.1, p.86).

6.5.2 .xpdl: feign protocols

XPDL stands for eXtensible experimental Protocol Description Language. Each protocol is a

finite state machine mapped on a DOM xml tree. The “states” are the leaves of the tree. They

are not specified by the xpdl grammar. The non terminals define the possible transitions (as of

version 1.1 of the format). A sample protocol can be found in Appendix A, p.115.

protocol: The root of the state machine from where it starts and where it ends. A protocol

6.5. FILE FORMATS 99

contains either one of sequence, loop, branch or terminal.

sequence: An ordered sequence of states or transitions that a state machine will go through.

A sequence contains any list of sequences, loops, branches and terminals.

loop: A repetition of its content, either a transition or a terminal. The repetition count can be

fixed a priori (e.g. 4 times), randomly bound (e.g. between 10 and 20 times), or unbound

(until computer stops). A loop contains either one of sequence, loop, branch or terminal.

branch: A point in the protocol where only one of the optional paths will be randomly chosen,

according to their declared probabilities. Another possibility is to declare the branch

equiprobable: one of the options will be randomly selected, with equal chance. A branch

contains at least two options in which cumulated probabilities should be equal to 1.

option: A path of the protocol that can be followed with some explicit probability. If part of

an equiprobable branch, the probability is ignored. An option contains one of a sequence,

loop, branch or terminal.

The flexibility of xml name spaces allows the addition of undetermined terminals to this set

of transitions. The principle of using the xpdl protocols is that once the finite state machine

is loaded from the protocol, the machine is programmatically put to motion by successive calls

to function protocol getNextState(). The returned state is a terminal that the program using

the state machine is in charge of analysing with the help of function protocol getAttributeValue()

to determine the actions associated with that state of the machine. The following call to function

protocol getNextState() will run the finite state machine through the different transitions of

the protocol: branches, loops, etc – until the next state is reached. That state is returned to

the calling program by the function.

There are many advantages in using this solution. At the programmer level, it is possible

to use a standard DOM xml parser to read and validate the grammar before starting the

experiment; the DOM tree representation can be used to travel through the protocol, jumping

from leaf to leaf using simple XPath queries. Generating xpdl files can be done by hand, or

tools could be developed to interactively design protocols using the basic transitions. Because

of missing time, and a lack of interest from our undergraduate students, no such tool has been

100 CHAPTER 6. SOFTWARE

written so far.

6.5.3 .xyv: XY-Viewer native data format

XY-Viewer (see section 6.4.2, p.89) is a generic plotting application aimed at displaying scientific

data into journal quality figures. We needed a data format able to act as the glue between oan

analyses (see section 6.3.2, p.87) and the viewer, encapsulating multiple sets of points with

an arbitrary number of dimensions, along with meta-information related to the origin of the

data and the treatment performed on it. The format had to be simple enough to be generated

by analyses potentially developed by unknown contributors. In the field of cross-platform and

cross-language data representation, xml has become the typical answer, and .xyv data format

is no exception.

The .xyv data format is an xml grammar providing a default implementation for XY-Viewer’s

representation model for multi-dimensional plots proposed in figure 6.16. Both reader and writer

feature an optional and transparent non-destructive compression, using the GZip algorithm that

typically reduces the size of the original file by a factor of 6 to 10 times. The compressed variant

of the format is typically labeled .xyvz. The distinction is suggested but not imposed. This

implementation was selected as the native data format for the application, but is by no means

the only possible or desirable implementation. At start-up time, XY-Viewer looks for all the

implementations available on the system and proposes to the end-user to choose between them

during the session.

6.5.4 Existing formats

The obligation to define and maintain dedicated file formats has a price that should be avoided

as much as possible. We tried to use existing file formats, whenever such formats existed and

were suitable to our needs. Only a few of them are mentioned here because they deserve special

attention.

6.5.4.1 .graphml: Graph Markup Language

Many file formats are established in the field of graph theory. A few of them are xml grammars.

xml is really adapted for this purpose because of its hierarchical structure. Among the different

6.5. FILE FORMATS 101

<<Interface>>

Document

getAttributes() : Map

getFrames() : List

getSource() : Source

<<Interface>>

Frame

getAttributes() : Map

getFigures() : List

<<Interface>>

Figure

getAttributes() : Map

getAxes() : List

getPlots() : List

<<Interface>>

Plot

getAttributes() : Map

getAxes() : List

getData() : List

getDimensions() : int

<<Interface>>

Axis

getAttributes() : Map

getStart() : double

getStop() : double

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 6.16: uml class diagram for XY-Viewer
representation model for multi-dimensional
plots. A Document is composed of one or more
Frames, each of them describing an ordered set
of logically related Figures. Each Figure is de-
fined in Rn with one Axis instance represent-
ing each of the n dimensions. One Figure can
contain multiple Plots, each of them encapsu-
lating an unbound ordered set of points defined
in Rm ⊆ Rn and associated with the instances
of Axis representing the m dimensions of the
sub-space (m ≤ n). Each object of the model
can be documented with annotations, an un-
bound dictionary-like structure that associates
one key with one value. The .xyv data format
discussed in this document (see section 6.5.3,
p.100) is one of the possible implementations of
this model.

available formats, graphml27 was preferred because of its simple and extensible nature, as well

as the existence of many software pieces able to read and understand that format. Any time we

needed general algorithms for graph manipulation, we used the Java Universal Network/Graph

jung28 framework.

6.5.4.2 .sdf: Spike Data Format

Persistent storage of multi-variate time series is achieved in the Spike Data Format sdf proposed

by Moshe Abeles in 1991. sdf is a text-based format structured with a semi-formated header

and a body containing the episode types and times, along with optional free-text comments. At

the time this file format was developed, data used to be transfered on untrusty serial lines. The

presence of checksums in the format body ensures that the information is not modified during

file transfer.

The main drawback of this data format is the absence of structured meta-information like

acquisition time, a feature present in other formats like edf or edf+29. The structure as well

27http://graphml.graphdrawing.org/
28http://jung.sourceforge.net/
29http://www.hsr.nl/edf/

http://graphml.graphdrawing.org/
http://jung.sourceforge.net/
http://www.hsr.nl/edf/

102 CHAPTER 6. SOFTWARE

as the format of this information are left to user interpretation.

The simplicity, efficiency and portability of this simple text-based format are un-matched for

now. Nonetheless, an update of the meta-information capabilities of the format will certainly

by required in the upcoming years in order to cope with the challenge of large-scale simulations

and new electro-physiological recording techniques.

6.5.4.3 .sng: Scriptable Network Graphics

The Portable Network Graphics file format (png) is a Recommendation of the World Wide Web

Consortium for lossless, portable, and well-compressed storage of raster images30. The Scriptable

Network Graphics file format (sng) is a minilanguage designed specifically to represent the

contents of a png file in an editable form.

sng files are used in two places of feign: to define stimuli patterns to be applied on the net-

work during simulation, and as a way to store spiking activity with an optional implementation

of feign’s output module. Stimulation patterns are decomposed in one separated .sng file for

each time steps. A tool could be written to interactively construct the stimuli, but a general-

purpose text editor is good enough. Using an Open Source program31, the ascii representation

can be converted into an animated raster image for visual inspection. Animated sequences for

the two usages can be found in the Appendix A, p.115.

30http://www.w3.org/Graphics/PNG/
31http://sng.sourceforge.net/

http://www.w3.org/Graphics/PNG/
http://sng.sourceforge.net/

Chapter 7

Hardware

Communications without intelligence is noise;
Intelligence without communications is irrelevant.

– Gen Alfred. M. Gray

Résumé Les ressources de calculs nécessaires pour simuler en grand nombre des réseaux

de grandes tailles ont été puisées dans une grappe de 18 PCs constituée pour l’occasion.

Les détails de la mise en place de ces machines multiprocesseurs dédiées au calcul scien-

tifique sont donnés dans ce Chapitre. En outre, le modèle de réseaux neuronaux décrit

précédemment a été développé pour une implémentation matérielle réalisée dans le cadre

d’un projet annexe. Quelques informations pertinentes sur ce projet et sur l’implémentation

matérielle sont fournies ici.

During the early phase of the research presented in this document, the question of the large

computing power required to simulate large-scale neural networks for long durations was raised.

The model we chose is suitable for an hardware implementation, but that hardware was not

expected to be available for the next few years.

In 1994, a team of NASA researchers developed a technique to get supercomputer perfor-

mances without the budget to buy one. They hooked up off-the-shelf personal computers with

open source software (GNU/Linux) to create a system that could scale up to deliver supercom-

puter performances. A Beowulf system1 is built out of truly commodity systems, unlike other

clusters commercially available for years from large computer companies. Clusters of computers

are typically used for High Availability (HA) for greater reliability, or High Performance Com-

puting (HPC) to provide greater computational power than a single computer can. Most of the

time, they use message passing to achieve parallel computations.

The idea of clusters of commodity PCs as an inexpensive alternative to expensive super-

computers turned somehow into an even larger scale idea. In 1999, another team of NASA

1http://www.beowulf.org/

103

http://www.beowulf.org/

104 CHAPTER 7. HARDWARE

researchers launched the SETI@home project2 to search for extraterrestrial intelligence through

signals collected by the Arecibo Radio Telescope with the help of thousands of volunteers that

gave their free CPU cycles (e.g. during night) to the SETI project. Currently, about 40 giga-

bytes of data is pulled down daily by the telescope and sent to computers all over the world

to be analysed. The results are sent back through the Internet, and the program then collects

a new segment of radio signals for the PC to work on. The Grid Computing3 was born. Our

cluster was used like a computing farm, closer to the Grid computing philosophy than to the

High Performance computing philosophy, with the advantage of having a complete control over

the execution of the simulations. That control simplified enormously the development of the

simulator as well as the management of the simulations.

We never intended to parallelize our simulator (see section 6.1.1, p.71) to run on multiple

CPUs at the same time. The task is daunting, as there are many technical problems to solve. The

NEST Initiative4 is a promising project in this field. The developers already have several years

of experience with large-scale neuronal network simulations on multi-processor supercomputers

and Beowulf clusters.

In this Chapter, we will not discuss the theory of distributed computing, nor the details of

the clusters of computers. We will extract from our experience a pragmatic approach to the

usage of clusters of commodity computers for scientific research.

7.1 Beowulf-class cluster

7.1.1 Overview

We built an 18 + 2 Beowulf class cluster. There are 18 bi-processor nodes for calculation, 1 bi-

processor computer to act as the head of the nodes (master), and 1 bi-processor computer with

a safe storage facility to store the valuable results and access them trough the network (store).

Figure 7.1 shows how these 20 computers were hooked together on a dedicated network switch,

and how they are accessible from the rest of the University local area network.

The Institute for Computer Science of the Faculty of Sciences funded the cluster in 2001 for

2http://setiathome.ssl.berkeley.edu/
3http://www.grid.org/
4http://www.nest-initiative.org/

http://setiathome.ssl.berkeley.edu/
http://www.grid.org/
http://www.nest-initiative.org/

7.1. BEOWULF-CLASS CLUSTER 105

node01-node18

iis
s
to

re

s
to

re

iis
s
q

u
id

m
a

s
te

r

130.223.70.*
unil.ch

192.168.0.*
squid.unil.ch

Gigabit over fiber

Gigabit over copper

Fast-Ethernet

Figure 7.1: Overview of the Beowulf-class cluster we built for the purpose of the present research.
Calculation nodes have a dedicated network used to communicate with the head of the cluster, the
master. The store machine is used as a general-purpose network storage facility.

a total amount of about 50,000e. The initial budget plan was to recycle the computers of the

cluster into the students’ computer room every 2-3 years. There, they could still be used for

scientific research through a Grid computing software for another 2-3 years. With this plan, the

hardware could have been optimally used for 5-6 years, with a new dedicated cluster hardware

setup refreshed every 2-3 years. This original idea explains why some solutions were preferred

despite their disadvantages, like the use of standard “tower” vs. “thin” rackable boxes that

could not be used in a classroom.

7.1.2 Hardware configuration

In order to simplify the administration of the cluster, and as we had the opportunity to buy

all the hardware at the same time, we chose one machine type and multiplied it 20 times. The

two special computers (master and store) were extended from the basic setup with addition of

some special hardware tuned for their specific tasks. To save time for the order and money on

the bill, all machines were hand-crafted in-house from separated pieces bought at a computer

pieces reseller at the end of the year 2001.

The computers were built around the first bi-processor motherboard available for AMD

athlon CPUs. Bi-processors were chosen to save space and money, as only one power unit, one

network interface, one floppy disk, and one case are necessary for two CPUs. The choice of

conventional ATX cases instead of rackable ones was dictated by the price difference between

them, the availability of a large room, and the original idea to recycle the cluster in the classroom.

106 CHAPTER 7. HARDWARE

The details of the 18 calculation nodes is provided here:

board : 1× Dual AMD S462, 64bit PCI, ATX (Tyan Tiger MP S2460)
CPU : 2× athlon 1600+ (AMD AX1600MT3C AGKGA0135SPFW)
RAM : 4× 512MB 266MHz DDR ECC (Kingston ValueRAM KVR266X72RC25/512)
HDD : 1× 20.5Gb, RPM 7200 (IBM DeskStar IC35L020AVER07-0)

network : 1× Fast Ethernet (Netgear Bay Networks FA310TX Rev-D2)

This basic setup is aimed at providing computing power. The master is derived from this

configuration by the addition of larger storage and broader networking capabilities. At that

time (end of 2001), Gigabit Ethernet over copper had just hit the market, and no compatible

hardware was available. We used the extension bays of the network switch (see below) to connect

Gigabit Ethernet over fiber modules, despite the higher cost of that technology. The following

hardware was added to the master:

HDD : 3× 123.5Gb, RPM 7200 (IBM DeskStar IC35L120AVVA07-0)
RAID : 1× RAID0 “striping” (Adaptec ATA RAID 2400A)

network : 1× Gigabit Ethernet over fiber (Netgear Networks GA621)

The storage facility computer, store, was also derived from the basic configuration by ad-

dition of larger and safer storage as well as broader networking capabilities. The motherboard

died after a few months, and had to be changed. By that time, the original motherboard was

not available anymore and we had to change for another brand. About a year later, we could

finally have access to Gigabit over copper links in our building, and an interface was installed

on that machine.

board : 1× Dual Socket A, AMD 760MPX (Asus A7M266-D/PA-UAY)
HDD : 3× 123.5Gb, RPM 7200 (IBM DeskStar IC35L120AVVA07-0)

RAID : 1× RAID5 “striping” and checksum (Adaptec ATA RAID 2400A)
network : 1× Gigabit Ethernet over fiber (Netgear Networks GA621)

1× Gigabit Ethernet over copper (3COM 3C996B-T)

Finally, three standard garage-like metal shelves were installed in a air-conditioned server

room to accommodate the twenty 70 centimeters high “tower” boxes, the network switches, the

two keyboard/video/mouse (KVM) switches and an uninterruptible power supply (UPS) for the

master and the store computers. This miscellaneous hardware is listed here:

7.1. BEOWULF-CLASS CLUSTER 107

network switch : 1× bandwidth 17.5 Gbps (Extreme Networks Summit 48)
KVM switch : 2× 16 port PS/2, VGA (Aten MasterView Pro CS-1016)

UPS : 1× 700VA, 450W, RS-232 (APC Smart-UPS 700)
metal shelves : 3× H200 × W100 × D50 cm

7.1.3 Cluster management

Hooking together a bunch of computers into a Beowulf-class cluster is becoming easier every

day. Dedicated GNU/Linux distributions like Scyld5 can be used as an all-in-one solution for

installation and management of large clusters of computers.

We tried this kind of solutions, but they did not fit well with our hardware and local setup.

Bearing in mind that the cluster computers would someday be used as student workstations,

we decided to go for a general-purpose GNU/Linux distribution, SuSE6. It had the drivers

for all our hardware and proposed many software packages for High Performance Computing

out-of-the-box.

The most time consuming task for a Beowulf-class cluster management is the installation

process. Installing each computer by hand is impractical. Using SystemImager7, the 18 nodes of

our cluster can be reinstalled in a matter of 15 minutes, mainly devoted to booting the systems

on floppy disks before the complete system image can be downloaded automatically from the

master through the network.

Our cluster will soon be 4 years old. During this time, some nodes have been running for

months, sometimes on a 100% load, without a single crash, besides the three local area power

breakdowns of 2002, 2004 and 2005. The first few months were characterized by multiple, ap-

parently uncorrelated problems, which resulted from the master fast-ethernet network interface

not being fast enough to handle the connections from the 18 nodes. Since the introduction of

the Gigabit over fiber interface, these erratic problems have disappeared. Two computers broke,

apparently due to motherboard failures.

The most problematic piece of hardware appeared to be the air-conditioner. One was com-

pletely broken due to a mishandling of the outgoing water pipe. The current air-conditioner

5http://www.scyld.com/
6http://www.suse.com/
7http://www.systemimager.org/

http://www.scyld.com/
http://www.suse.com/
http://www.systemimager.org/

108 CHAPTER 7. HARDWARE

was undersized by the technical people, forcing us to shut down some of the computers to avoid

overheating. . . It also had water leakages due to problems of sealing with the water tank. A

roof had to be built on top of the computers.

7.2 poetic tissue

The neuromimetic model described in section 3.2, p.18 was originally designed (Eriksson et al.,

2003) for an hardware implementation using a novel electronic device (Tyrrell et al., 2003)

that includes features derived from some living beings’ properties. The poetic tissue is a ma-

trix of reconfigurable poetic chips, physically interconnected by a bidirectional bus, featuring

self-repairing mechanisms, automatic routing features, and rich input/output connectivity to

external devices. At the logical level, the tissue was designed to provide a flexible substrate for

three organizing principles – the POE axes (Mange and Tomassini, 1998) – driving living beings

as we know them on Earth:

Phylogeny: also called evolution. It includes all the mechanisms that allow: to encode a possi-

ble solution to a problem (organism) into a mutable description (genome); to measure the

performance of the organism (fitness); and to manipulate the genome (mutation operators)

to give rise to a new organism derived from one or more well-performing ancestors, mim-

icking the natural selection by means of environmental pressure. With the poetic tissue,

a user can encode the configuration details in a genome. There are no hard wired mecha-

nisms for fitness evaluation and genome mutation, though. The evolution of a population

can be performed off-line, and organisms can be uploaded on the tissue to be simulated

sequentially.

Ontogeny: also called development. It describes the unfolding of events involved in the develop-

ment of an individual organism changing gradually from a simple to a more complex level.

The poetic chips feature the possibility to reprogram themselves partially or completely

at runtime. They provide the mean to colonize the available electronic substrate, starting

from a small set of totipotent cells that multiply and differentiate into the components of

a complex organism. This process is driven by the information contained in the genome.

7.2. POETIC TISSUE 109

shift

reg

FF

6

1

load

init x

MSB

mpar step

>

counter

rst

*

_ decx

_

>

Figure 7.2: Block diagram for the decay block. The value x is obtained and input into the shift register,
which is controlled by x most significant bit and the external parameter mpar. The output is subtracted
from x. This operation is performed when the time control indicates it. The time control is achieved by
the value of a counter that is compared to the result of choosing between the external value step and the
(step · (MSB −mpar)). The decay time constant τ depends on the input parameters mpar and step.

Epigeny: also called adaptation or plasticity. It includes the processes that allow an organism

to modify its internal structure or behaviour to adapt to its environment. The poetic chips

can be programmed to perform neuromimetic simulations showing such properties. A serial

implementation of our spiking neuron model (Torres et al., 2004) has been proposed and

implemented to overcome the limited quantity of available chips.

7.2.1 Neuron implementation

A neuron model, very close to ours (see section 3.2, p.18), has been implemented (Eriksson et al.,

2003) and optimized (Torres et al., 2004) for the poetic platform. We will stress the relation be-

tween our model and the hardware implementation, without entering in the details of the novel

elementary programmable elements underpinning it. According to Moreno (personal communi-

cation), the membrane potential V has a resolution of 12 bits, with a range [−2048, 2047]. The

threshold is kept fixed at +640. For efficiency reasons, the refractory period is set to trefract = 1

for both excitatory and inhibitory neurons. The membrane time constant was set to τmem = 20.

A decay block (see figure 7.2) has been defined to approximate the logarithmic decay of the

input (x) in an efficient way (Eriksson et al., 2003). This decay block is used for the membrane

potential computation, as well as for the learning and the synapse blocks.

110 CHAPTER 7. HARDWARE

M j

A(L)

LthM i

A

reg

S i

S j

reg

reg

+ / -

Figure 7.3: Block diagram for the stdp learning block. When a spike is produced Sn = 1, the corre-
sponding memory variable Mn is reset to its maximal value and starts decaying. The ordering of pre–
Sj and postsynaptic Si spikes determines if the decaying learning variable Lji is incremented or decre-
mented. The activation level Aji is updated whenever Lji overcomes the threshold value Lth, unless it
has already reached its minimal or maximal value.

The learning block implements the spike-timing-dependent synaptic plasticity (stdp) de-

scribed in section 3.3.1, p.20. Depending on the timing of the presynaptic neuron Sj(t) and the

postsynaptic neuron Si(t), as well as on the type of neurons (excitatory and/or inhibitory), the

activation level of the synapse will be updated as depicted in figure 7.3. The memory variable

M , the learning variable L and the learning variable threshold Lth have resolutions of 6, 8 and 8

bits respectively. Four activation levels are defined for A. The synaptic plasticity time constant

is set to τsyn = 20, whereas the slow synaptic pruning time constant is set to τact = 4, 000.

Note that the Lji / Aji relation is different from the one presented in section 3.3.1, p.20. In

our model, Aji state is switched when Lji leaves the range]0.0001, Lth[with a decaying function

driving Lji to 0. The connections tend to switch Aji states down, leading to the synaptic

pruning. In the present variant, Aji state is switched when Lji leaves the range] − Lth, Lth[

with a decaying function driving Lji to 0, the middle of the range. The connections tend to keep

the same Aji state, a learning rule proposed to address the problem of memory loss in noisy

environments (Fusi, 2001).

The synapse block shown in figure 7.4 computes the contribution wji to the postsynaptic

membrane potential by a synapse from presynaptic neuron j of type qj , and postsynaptic neuron

i of type qi. This block has been carefully designed and tailored to spare hardware resources.

The complex neuron model was optimized for the poetic platform. The resulting model

simplification for a serial implementation is presented in figure 7.5. The same hard wired neuron

can simulate multiple units sequentially, storing variable values in a local memory. Using this

time multiplexing technique, 10,000 units networks can be simulated in real time.

7.2. POETIC TISSUE 111

P

A

+

20
3
0

shift reg

τ

q ,qi j

reg

S j

wji

Figure 7.4: Block diagram for the synapse block. The quantum postsynaptic potential P[qj ,qi] is mul-
tiplied by the value of the projection activation level Aji = 0, 1, 2, 4 thanks to a shift register. The
contribution is then added to the decaying value, which time constant is a function of the types of neu-
rons qj and qi, excitatory and/or inhibitory sorted out by a multiplexer. wji has a resolution of 8 bits,
but, internally, the synapse block has a 10 bits resolution.

+

S j

n ,ts m

M i

S i

Vth

Vi

-

reg-L

Lreg-t

reg-A

reg-w

comp+

reg
learning

reg-tw

synapse

jM

ns

reg-P

reg

reg

reg

reg

reg

reg
reg

n ,ts m

Figure 7.5: Block diagram for the neuron model serial implementation. It results from the optimization
of the neuron model for the poetic platform.

Chapter 8

Conclusion

The first 90% of a project takes 90% of the time,
the last 10% takes the other 90% of the time.

– Anonymous

Résumé En guise de conclusion, quelques remarques sur le déroulement du travail sont

fournies ici. Elles mettent l’accent sur les difficultés liées à la simulation de réseaux de

grande taille et sur les contributions de ce travail pour aider à y répondre.

Simulating large-scale networks is a time consuming task. The number of parameters of

the simulated system, and the complexity of their non-linear interactions required an initial

parameter tuning phase that lasted for several months. During this period, we had to determine

the right measures to assess that the network activity corresponded to our needs, and test a wide

range of parameter values before we could start any real experiment. In a first approximation,

one might think that the duration of the simulations is the limiting factor. In fact, our experience

taught us that, given enough computational power, the human part in the analysis of the data

collected during the simulations was the real bottleneck.

One contribution of this work is the large set of tools that has been developed for the semi-

automatic manipulation and analysis of the data. These tools were made user-friendly because

they represent a large investment that will take years to return; they were given portable and

modular designs to be able to adapt to the changes in users’ needs in the forthcoming years;

they were made Open Source to be accessible to anyone interested in using them, and maybe in

contributing to their feature lists.

The timing of an endeavour is also an important factor for its success. On the one hand,

the availability of “cheap” multi-core 64bits CPUs, inexpensive Gigabit over-copper networks,

and the parallelized open source NEST simulator with a growing community of users; On the

other hand, the poetic tissue has been physically available in spring 2005 for fast hardware

113

114 CHAPTER 8. CONCLUSION

implementation of our model. Starting our research now would have been a perfect timing! We

look forward having the opportunity to continue the investigation of our model on that novel

hardware.

Appendix A

On the web

The world of software is about change.
Putting crap on a permanent media doesn’t help it.

– Hazah

Some information did not fit into the permanent format of this document. Dynamic con-
tent like animations and sample data are impossible to reproduce or of little use on a printed
media. A web page was set up on my personal web site to gather the electronic copy of this
document, the virtual appendices like multimedia files, links to the downloadable software, and
some bookmarks. You will find this page at:

http://jiglesia.alawa.ch/phd/

I will maintain that page along with the rest of the information on my web site for some time. . .
probably as long as I will be involved in some kind of professional activity. I cannot swear there
will be anything at all by the time you will try to access the url.

115

http://jiglesia.alawa.ch/phd/

Appendix B

Sample files

Give a person a fish and you feed them for a day;
teach that person to use the Internet
and they won’t bother you for weeks.

– Anonymous

This Appendix collects sample files, one for each file format discussed in section 6.5, p.97.
Check Appendix A, p.115 to find how to download those files in a digital format.

B.1 .fnet: feign network

The following file describes the state, at some simulated time step, of a 4×3 network (l.5) spiking
units (11 excitatory and 1 inhibitory) wired in a complete synfire chain of length l = 4 and width
w = 3. The neuromimetic model parameters are defined in the cellTypes header section of the
document (l.7–23). Two types of units are defined in sequence: excitatory units with cell type=0
(l.8–14), and inhibitory units with cell type=l (l.16–23). There is no limitation to the number of
cell types in the file format. 4 connection types are then defined in the connectionTypes header
section (l.25–44), one for each combination of pre– and postsynaptic unit types (C2

2 = 4):

presynaptic postsynaptic connection
cell type cell type type

0 0 ⇒ 0
0 1 ⇒ 1
1 0 ⇒ 2
1 1 ⇒ 3

In our simulations, only excitatory–excitatory connections (type = 0, l.26–31) were subject
to spike-timing-dependent synaptic plasticity, with Aji(t) ∈ {0, 1, 2, 4} (l.27–30). The other
types of connections were assigned Aji(t) = 1 (l.34, l.38, and l.42).

Between l.46 and l.110, the 12 units of the network are defined in sequence along with their
incoming projections. To limit the xml syntax overhead as much as possible, tag and attribute
names were limited to 1-2 characters in this section. In a file containing thousands of units
and millions of connections, this trick saves megabytes of text, at the expense of a less human-
readable format. There is one <c> tag for each “cell” in the network, with the following attribute
values (see section 3.2, p.18 for details):

117

118 APPENDIX B. SAMPLE FILES

attribute description value
i unique index in network 0 to network size
t type of unit (index of cellType) 0 to cellTypes count
m Vi(t) membrane potential
s Si(t) state of the cell 0 or 1

wr Mi(t) memory of previous spike when presynaptic 0 to w max pre
wo Mi(t) memory of previous spike when postsynaptic 0 to w max post
c time steps (clock) since last spike

For each cell, there is one <p> tag for each incoming “projection”, with the following attribute
values:

attribute description value
t type of projection (index of connectionType) 0 to connectionTypes count
f unit index from which the projection is coming 0 to network size
a Aji(t) activation level of the projection one of the levels for this type
l Lji(t) learning variable l min to l max

This sample file can be loaded by feign (section 6.1.1, p.71) as a starting point for a simulation,
or transformed by fnetdb (section 6.2.1, p.78) into a relational database for further investigation
with fnetdig (section 6.3.1, p.86). See section 6.5.1, p.98 for a description of the format.

1 <?xml version="1.0"?>

2 <state

3 xmlns="http://feign.nhrg.org/schema/snn/network"

4 version="1.1"

5 width="4" height="3">

6

7 <cellTypes count="2">

8 <cellType

9 index="0" label="excitatory"

10 k_membrane="0.954842" refractory="3"

11 reset="-78.0" threshold="-40.0"

12 k_learn_pre="0.982821" k_learn_post="0.982821"

13 m_max_pre="2.0" m_max_post="2.0"

14 psp="0.84" />

15

16 <cellType

17 index="1" label="inhibitory"

18 k_membrane="0.954842" refractory="2"

19 reset="-78.0" threshold="-40.0"

20 k_learn_pre="0.982821" k_learn_post="0.982821"

21 m_max_pre="2.0" m_max_post="2.0"

22 psp="-1.4" />

23 </cellTypes>

24

25 <connectionTypes count="4">

26 <connectionType index="0" count="4" l_min="0.00001" l_max="20.0" k_act="0.999937">

27 <activation value="0"/>

28 <activation value="1"/>

29 <activation value="2"/>

30 <activation value="4"/>

31 </connectionType>

B.1. .FNET: FEIGN NETWORK 119

32

33 <connectionType index="1" count="1" l_min="0.0" l_max="0.0" k_act="0.0">

34 <activation value="1"/>

35 </connectionType>

36

37 <connectionType index="2" count="1" l_min="0.0" l_max="0.0" k_act="0.0">

38 <activation value="1"/>

39 </connectionType>

40

41 <connectionType index="3" count="1" l_min="0.0" l_max="0.0" k_act="0.0">

42 <activation value="1"/>

43 </connectionType>

44 </connectionTypes>

45

46 <cells count="12">

47

48 <!-- layer #1 receives no projections -->

49 <c i="0" t="0" m="-94.461342" s="0" wr="0.002323" wo="0.002323" c="390" />

50 <c i="1" t="0" m="-91.170998" s="0" wr="0.292193" wo="0.292193" c="111" />

51 <c i="2" t="0" m="-91.442390" s="0" wr="0.002715" wo="0.002715" c="381" />

52

53 <!-- layer #2 receives projections from layer #1 -->

54 <c i="3" t="0" m="-96.317589" s="0" wr="0.0" wo="0.0" c="1105">

55 <p t="0" f="0" a="3" l="11.044183"/>

56 <p t="0" f="1" a="3" l="10.502504"/>

57 <p t="0" f="2" a="3" l="15.415247"/>

58 </c>

59 <c i="4" t="1" m="-68.236671" s="0" wr="0.032352" wo="0.032352" c="238">

60 <p t="1" f="0" a="0" l="0.0"/>

61 <p t="1" f="1" a="0" l="0.0"/>

62 <p t="1" f="2" a="0" l="0.0"/>

63 </c>

64 <c i="5" t="0" m="-96.602310" s="0" wr="0.933032" wo="0.933032" c="44">

65 <p t="0" f="0" a="3" l="8.652210"/>

66 <p t="0" f="1" a="3" l="17.744703"/>

67 <p t="0" f="2" a="3" l="13.020258"/>

68 </c>

69

70 <!-- layer #3 receives projections from layer #2 -->

71 <c i="6" t="0" m="-89.785965" s="0" wr="0.138696" wo="0.138696" c="154">

72 <p t="0" f="3" a="3" l="16.295609"/>

73 <p t="2" f="4" a="0" l="0.000000"/>

74 <p t="0" f="5" a="3" l="12.725195"/>

75 </c>

76 <c i="7" t="0" m="-46.665009" s="0" wr="0.151249" wo="0.151249" c="149">

77 <p t="0" f="3" a="3" l="18.882530"/>

78 <p t="2" f="4" a="0" l="0.0"/>

79 <p t="0" f="5" a="3" l="11.053406"/>

80 </c>

81 <c i="8" t="0" m="-95.146950" s="0" wr="0.0" wo="0.0" c="949">

82 <p t="0" f="3" a="3" l="11.093911"/>

83 <p t="2" f="4" a="0" l="0.000000"/>

84 <p t="0" f="5" a="3" l="17.009546"/>

85 </c>

86

87 <!-- layer #4 receives projections from layer #3 -->

88 <c i="9" t="0" m="-97.246460" s="0" wr="0.615571" wo="0.615571" c="68">

89 <p t="0" f="6" a="3" l="16.732300"/>

90 <p t="0" f="7" a="3" l="9.454819"/>

120 APPENDIX B. SAMPLE FILES

91 <p t="0" f="8" a="3" l="9.624744"/>

92 </c>

93 <c i="10" t="0" m="-50.104996" s="0" wr="0.366020" wo="0.366020" c="98">

94 <p t="0" f="6" a="3" l="10.889402"/>

95 <p t="0" f="7" a="3" l="11.312034"/>

96 <p t="0" f="8" a="3" l="12.388318"/>

97 </c>

98 <c i="11" t="0" m="-80.327469" s="0" wr="1.866066" wo="1.866066" c="4">

99 <p t="0" f="6" a="3" l="16.865042"/>

100 <p t="0" f="7" a="3" l="12.081224"/>

101 <p t="0" f="8" a="3" l="10.807630"/>

102 </c>

103

104 </cells>

105 </state>

B.2. .XPDL: EXPERIMENTAL PROTOCOL 121

B.2 .xpdl: experimental protocol

The following protocol describes a simulation experiment that starts with an initialization of
the network (l.7) and a recovery pause (l.8), followed by a learning phase (l.10–17) during which
a specific 100 time steps stimulation is presented ten times in a row (l.12–14), every 2,000 time
steps (l.15). After the learning stage, the spike-timing-dependent synaptic plasticity process is
switched off (l.19). For the rest of the simulation duration (l.21), 5% of the stimulus presentations
(l.24) will be constituted of 3 variants of the learned stimulus in equivalent proportions (l.25–41).
The other 95% of the times (l.43), the learned stimulus will be presented (compare l.13 and l.45,
versus l.27, l.33 and l.38).

Tags in the xpdl: name space (l.3) are the transitions – protocol, sequence, loop, branch
and option – defined by the language described in section 6.5.2, p.98, while the tags in the
(fake) snn: name space (l.4) are the terminals – initialization, pause and stimulation – of the
finite state machine used to represent the protocol and are interpreted by the software loading
the protocol. In the case of this file, it represents a feign experimental protocol for the model
discussed previously. See section 6.5.2, p.98 for a description of the format.

1 <?xml version="1.0"?>

2 <xpdl:protocol

3 xmlns:xpdl="http://feign.nhrg.org/schema/xpdl"

4 xmlns:snn="http://jiglesia.alawa.ch/schema/protocol/snn/stimulation"

5 version="1.1">

6 <xpdl:sequence>

7 <snn:initialization duration="10" />

8 <snn:pause duration="990" />

9

10 <xpdl:loop current="0" to="10" label="learning">

11 <xpdl:sequence>

12 <snn:stimulation

13 file="training.stim"

14 code="52" qualifier="1" />

15 <snn:pause duration="1900" />

16 </xpdl:sequence>

17 </xpdl:loop>

18

19 <snn:stdp swith="off" />

20

21 <xpdl:loop infinite label="experiment">

22 <xpdl:sequence>

23 <xpdl:branch>

24 <xpdl:option probability="0.05" label="variant">

25 <xpdl:branch equiprobable="true">

26 <xpdl:option>

27 <snn:stimulation

28 file="variant-001.stim"

29 code="52" qualifier="2" />

30 </xpdl:option>

31 <xpdl:option>

32 <snn:stimulation

33 file="variant-002.stim"

34 code="52" qualifier="3" />

35 </xpdl:option>

36 <xpdl:option>

37 <snn:stimulation

38 file="variant-003.stim"

122 APPENDIX B. SAMPLE FILES

39 code="52" qualifier="4" />

40 </xpdl:option>

41 </branch>

42 </xpdl:option>

43 <xpdl:option probability="0.95" label="invariant">

44 <snn:stimulation

45 file="training.stim"

46 code="52" qualifier="1" />

47 </xpdl:option>

48 </xpdl:branch>

49 </xpdl:sequence>

50 </xpdl:loop>

51 <xpdl:sequence>

52 </xpdl:protocol>

B.3. .XYV: XY-VIEWER NATIVE FILE FORMAT 123

B.3 .xyv: XY-Viewer native file format

XY-Viewer (section 6.4.2, p.89) can load .xyv files describing the data to represent according to
the data model presented in figure 6.16. Each section of the document can optionally contain
an unbound number of meta-informations (attributes), associating a key with a value (e.g.
l.12–16). Some of these keys are interpreted by XY-Viewer, the others are ignored and can be
used by other programs manipulating the file. The frame (l.6–75) contains two figures, each of
them defining two axes (e.g. l.17–30), and one plot (e.g. l.32–39), encapsulating a string of
points in the space defined by the axes (e.g. l.38). See section 6.5.3, p.100 for a description of
the format.

1 <?xml version="1.0" standalone="yes"?>

2 <gallery

3 xmlns="http://xyviewer.nhrg.org/schema/xyv"

4 version="1.0">

5 <frames>

6 <frame>

7 <attributes>

8 <attribute name="title">ISI</attribute>

9 </attributes>

10 <figures>

11 <figure>

12 <attributes>

13 <attribute name="title">ISI (reg) [1,2] ../2476/2476-raw.sdf</attribute>

14 <attribute name="description">T=50.0, R=23.34, E=1164.84, F=0.46 </attribute>

15 <attribute name="class">nhrg:ISI</attribute>

16 </attributes>

17 <axes>

18 <axis name="1">

19 <attributes>

20 <attribute name="title">Lag</attribute>

21 <attribute name="unit">ms</attribute>

22 </attributes>

23 </axis>

24 <axis name="2">

25 <attributes>

26 <attribute name="title">Density</attribute>

27 <attribute name="unit">ev/s</attribute>

28 </attributes>

29 </axis>

30 </axes>

31 <plots>

32 <plot>

33 <attributes>

34 <attribute name="title">renewal density</attribute>

35 <attribute name="mean-firing-rate">23.339999</attribute>

36 <attribute name="total-time-measurement">0.001000</attribute>

37 </attributes>

38 <data tuple="2" axes="1 2 "> 4.0 23999.998 5.0 7999.999 [...] </data>

39 </plot>

40 </plots>

41 </figure>

42

43 <figure>

44 <attributes>

45 <attribute name="title">ISI (reg) [1,2] ../2476/2476-raw.sdf</attribute>

46 <attribute name="description">T=50.0, R=23.34, E=1129.02, F=0.46 </attribute>

124 APPENDIX B. SAMPLE FILES

47 <attribute name="class">nhrg:ISI</attribute>

48 </attributes>

49 <axes>

50 <axis name="1">

51 <attributes>

52 <attribute name="title">Lag</attribute>

53 <attribute name="unit">ms</attribute>

54 </attributes>

55 </axis>

56 <axis name="2">

57 <attributes>

58 <attribute name="title">Density</attribute>

59 <attribute name="unit">ev/s</attribute>

60 </attributes>

61 </axis>

62 </axes>

63 <plots>

64 <plot>

65 <attributes>

66 <attribute name="title">renewal density</attribute>

67 <attribute name="mean-firing-rate">23.339999</attribute>

68 <attribute name="total-time-measurement">0.001000</attribute>

69 </attributes>

70 <data tuple="2" axes="1 2 ">10.0 8640.899740 11.0 [...] </data>

71 </plot>

72 </plots>

73 </figure>

74 </figures>

75 </frame>

76 </frames>

77 </gallery>

B.4. .GRAPHML: GRAPHS 125

B.4 .graphml: graphs

This sample file contains a representation of the network described for the .fnet example. This
graph being a simulated neural network is only visible by two extensions we made to the original
file format: the time attribute (l.5) and the activation attribute (e.g. l.22). The nodes of the
graph are defined (l.7–18) first. Then, the edges are listed as connections between a source
node and a target node (l.20–48). This file can be loaded by fnetview (section 6.4.1, p.88).
See section 6.5.4.1, p.100 for a description of the format.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <graphml xmlns="http://graphml.graphdrawing.org/xmlns/graphml"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml">

5 <graph id="synfire-chain" time="0" edgedefault="directed">

6 <!-- nodes by pools -->

7 <node id="0" label="1.1" /> <node id="3" label="2.1" />

8 <node id="1" label="1.2" /> <node id="4" label="2.2" />

9 <node id="2" label="1.3" /> <node id="5" label="2.3" />

10

11 <node id="6" label="3.1" /> <node id="9" label="4.1" />

12 <node id="7" label="3.2" /> <node id="10" label="4.2" />

13 <node id="8" label="3.3" /> <node id="11" label="4.3" />

14

15 <!-- pool #1 projects on pool #2 -->

16 <edge source="0" target="3" activation="3" />

17 <edge source="0" target="4" activation="3" />

18 <edge source="0" target="5" activation="1" />

19 <edge source="1" target="3" activation="3" />

20 <edge source="1" target="4" activation="3" />

21 <edge source="1" target="5" activation="3" />

22 <edge source="2" target="3" activation="3" />

23 <edge source="2" target="4" activation="3" />

24 <edge source="2" target="5" activation="3" />

25 <!-- pool #2 projects on pool #3 -->

26 <edge source="3" target="6" activation="3" />

27 <edge source="3" target="7" activation="3" />

28 <edge source="3" target="8" activation="3" />

29 <edge source="4" target="6" activation="2" />

30 <edge source="4" target="7" activation="3" />

31 <edge source="4" target="8" activation="3" />

32 <edge source="5" target="6" activation="3" />

33 <edge source="5" target="7" activation="3" />

34 <edge source="5" target="8" activation="3" />

35 <!-- pool #3 projects on pool #4 -->

36 <edge source="6" target="9" activation="3" />

37 <edge source="6" target="10" activation="3" />

38 <edge source="6" target="11" activation="3" />

39 <edge source="7" target="9" activation="3" />

40 <edge source="7" target="10" activation="2" />

41 <edge source="7" target="11" activation="3" />

42 <edge source="8" target="9" activation="3" />

43 <edge source="8" target="10" activation="1" />

44 <edge source="8" target="11" activation="3" />

45 </graph>

46 </graphml>

126 APPENDIX B. SAMPLE FILES

B.5 .sdf: time series

A .sdf file is composed of a semi-structured header part (l.1–3), where keys and values are asso-
ciated, and a body part (l.4–43) containing the time series enclosed between a 0,1,0 triplet and
a pair of 0,2,0 and 0,FFFF,0 triplets. Only a few keys are defined by the format specification,
and the others are left to the user to interpret. The data is coded by triplets of numbers: the first
two numbers describe the event and the third, a time value. The first number describes the type
of the event. The second is used to provide additional information associated to the event and is
referred to as the qualifier. The third describes the time of occurrence, expressed as an interval
since the previous event. Such .sdf files can be read by DataToolbox (section 6.2.2, p.79), manip
(section 6.2.3, p.83), RasterViewer (section 6.4.3, p.95), and YaTiSeWoBe (section 6.4.4, p.96).
See section 6.5.4.2, p.101 for a description of the format.

1 "VERSION=0"

2 "TIME_UNITS=0.001"

3 "TITLE(0)=’0:SPONT <15:52:30>’"

4 0,1,0

5 51,1,0

6 1,4,54

7 1,5,10

8 1,3,76

9 1,5,2

10 1,4,1

11 1,6,61

12 1,6,34

13 1,5,1

14 1,3,47

15 1,3,43

16 1,5,5

17 1,3,80

18 1,3,72

19 1,2,31

20 1,5,72

21 1,7,142

22 1,6,63

23 1,4,102

24 1,3,74

25 51,1,29

26 1,5,46

27 1,3,109

28 1,5,56

29 "CHKSM=1C52"

30 1,3,20

31 1,5,41

32 1,7,27

33 [...]

34 1,5,35

35 1,4,23

36 1,3,48

37 1,6,83

38 1,5,63

39 0,2,11

40 "CHKSM=17C2"

41 0,FFFF,0

B.6. .SNG: SCRIPTABLE NETWORK GRAPHICS 127

B.6 .sng: Scriptable Network Graphics

This is an example of the subset of .sng files that feign stimulation service is able to load and
apply on the network. A complex stimulus can be built on several of those .sng files, applying
one file per time step, much like a cartoon. The first part (l.1–12) gives some meta information
concerning the file, like the dimensions of the network (l.3–4). From l.13 to l.35, one can read the
hexadecimal ASCII representation of the stimulus. Values are coded on 8 bits (0–255) as a pair
of characters in {0, 1, 2, . . . , 9, a, b, . . . , f}, with 00 standing for value 0, 80 for value 128, and
ff for value 255. One can distinguish an interrogation mark, but using the sng1 program, this
script can be compiled into a PNG image for visual inspection. This file format has also been
used to record the activity of the network during the simulation to produce some of the animated
sequences accessible from Appendix A, p.115. See section 6.5.4.3, p.102 for a description of the
format.

1 #SNG: This is a sample stimulus

2 IHDR: {

3 width: 20;

4 height: 20;

5 bitdepth: 8;

6 using grayscale;

7 }

8 bKGD {gray: 0;}

9 tEXt: {

10 keyword: "Title";

11 text: "Sample SNG stimulus";

12 }

13 IMAGE: {

14 pixels hex

15 00

16 00

17 00

18 0000000000000000ffffffa08000000000000000

19 00000000000000ffffffffffa080000000000000

20 000000000000ffff800000ffffa0800000000000

21 0000000000ffff8000000000ffffa08000000000

22 0000000000ffff8000000000ffffa08000000000

23 000000000000ffff000000ffffa0800000000000

24 00000000000000000000ffffa080000000000000

25 000000000000000000ffffa08000000000000000

26 0000000000000000ffffa0800000000000000000

27 0000000000000000ffffa0800000000000000000

28 00

29 000000000000000000ffa0000000000000000000

30 0000000000000000ffffffa00000000000000000

31 0000000000000000ffffffa00000000000000000

32 000000000000000000ffa0000000000000000000

33 00

34 00

35 }

1http://sng.sourceforge.net/

http://sng.sourceforge.net/

Appendix C

Procedure

The question of whether computers can think
is like the question of whether submarines can swim.

– Edsger Dijkstra

In this section, we will go through a complete session of simulation, analysis and visualization
using the software developped during the course of the present work. Look at Appendix A, p.115,
to find a package containing the configuration and partial result files – in the formats described
in Appendix B, p.117 – as well as the source code of the different programs and applications we
are going to run.

C.1 Setup

For sake of simplicity, we will only consider here a computer system able to run a bash shell
interpreter, that is, among others: GNU/Linux, Apple MacOS X, and Microsoft Windows with
Cygwin installed. Note that we are going to compile C code into executables, which requires
a compiler (GCC) and dependency libraries (libsqlite3, libxml2, libxslt and the GNU Scientific
Library).

You will need to download, compile and install feign and manip according to the documen-
tation included in each package. The compilation and installation procedure can be boiled down
to:

1 $> tar xvzf <program>-<release>.tar.gz

2 [...]

3 $> cd <program>-<release>/

4 $> ./configure

5 [...]

6 $> make

7 [...]

8 $> make install

9 [...]

10 $> cd ..

After decompressing the downloaded package (l.1) and entering the newly created directory
containing the source code for the program (l.3), all the dependencies will be checked (l.4).
This command will fail loudly in case of a missing library on your system. Conform to the
provided explanations and fix all problems before running line 4 again. Once the previous step
is completed successfully, the software will be compiled (l.6) into an executable suitable for your
computer, that will finally be copied to /usr/local/bin (l.8) according to the default behaviour.
Specific details are available from the package documentation, like, for instance, the indication to
run ./configure --enable-simul=snn for the feign package to compile the appropriate simulation
module into feign.

129

130 APPENDIX C. PROCEDURE

After compiling and installing feign and manip, you should be able to run the following
commands, bearing in mind that some details, like the release numbers, might differ from the
printed information:

1 $> feign --help

2 NHRG Feign Simulator 0.10.0

3 Copyright (c) 2003-2005, INFORGE-NHRG, javier iglesias <javier.iglesias@alawa.ch>

4 Submit bug reports to http://sourceinforge.unil.ch/bugs/?group=nhrg-feign

5

6 Specialized neural network simulator that extracts most of it’s

7 functionalities from compiled modules:

8

9 config : FILE config ($Id: config-file.cc 14 2005-04-06 16:38:09Z jiglesia $)

10 logger : FILE logger ($Id: logging-file.cc 14 2005-04-06 16:38:09Z jiglesia $)

11 output : SDF output ($Id: output-sdf.cc 14 2005-04-06 16:38:09Z jiglesia $)

12 protocol : XSPDL ($Id: protocol.cc 28 2005-04-08 17:42:15Z jiglesia $)

13 simulation : SNN 2D simulation ($Id: simul-snn.cc 62 2005-06-01 08:35:58Z jiglesia $)

14

15 [...]

16

17 $> manip --help

18 NHRG Data Manipulation Tool, Javier Iglesias <javier.iglesias@alawa.ch>

19 Copyright (c) 2002-2005, NHRG-INFORGE

20 release: NHRG Analyses 0.5.0

21 revision: $Id: manip.cc,v 1.11 2005/05/27 07:35:02 jiglesia Exp $

22

23 Type ’manip -G’ or ’manip --generate’

24 to produce a documented example of a configuration file.

25

26 [...]

Now that the software is ready, it is time to get the configuration package from the web site
(see Appendix A, p.115) and decompress it in an appropriate location on your computer. The
cheating directory contains partial result files, should you wish to jump over a step.

1 $> tar xvzf procedure.tar.gz

2 [...]

3 $> cd procedure/

4 $> ls

5 cheating

6 simulation

7 manipulation

8 visualization

9 $> ls cheating/

10 simulation.sdf

11 data.sdf

12 correlations.xyv

C.2 Simulation

1 $> cd simulation/

2 $> ls

3 simul.ini

4 no-input.xpdl

C.3. MANIPULATION 131

5 recorded-times.mask

6 recorded-units.mask

7 $> feign

8 [...]

9 $> ls

10 simul.log

11 simulation.sdf

12 dump-00000000.xml

13 dump-00010000.xml

14 input.log

15 input-protocol.log

16 sneak.activations

17 [...]

18 $> cp simulation.sdf ../manipulation/

19 $> cd ../

We will now run a simulation using the feign simulator compiled in the previous section.
simul.ini (l.3) is read at start-up to determine the details of the simulation. Among other things,
the network size, the simulation duration, the parameters of the simulated units and connections,
the stimulation protocol no-input.xpdl (l.4), the recorded times recorded-times.mask (l.5) and
range of units recorded-units.mask (l.6) are defined.

After running for a few seconds (l.8), you can check that the simulator produced a few new
files in the same directory: simul.log (l.10) containing the runtime log; simulation.sdf (l.11)
containing the time series of the formated recorded units; two network files dump-00000000.xml
and dump-00010000.xml (l.11-12) containing respectively the complete network status at t = 0
and t = 104 time steps; and a set of sneak.* files providing information on the network activity
evolution. All these files can be read and modified using an ascii text editor.

The file simulation.sdf is considered in this procedure as the result of the simulation and
will be further analysed. This is the reason why we copy it to the manipulation directory (l.18).
Note that the network files could be analysed further to extract the circuits or displayed. This
will not be discussed here. It is also possible to instruct feign to continue a simulation from
one of these network status files, or another one that could have been wired by hand. You
are invited to edit the configuration using an ascii text editor and run simulations with larger
networks, or longer durations to experience the ease of use.

C.3 Manipulation

1 $> cd manipulation/

2 $> ls

3 manip.cfg

4 simulation.sdf

5 $> manip -B simulation.sdf

6 Source : simulation.sdf

7 Time unit : 0.001000 [s]

8 Duration : 10.00 [s]

9 Sections : 1

10 Annotations:

11 TITLE(0) : generated by SDF output $Id: output-sdf.cc 14 2005-04-06 16:38:09Z jiglesia $

12 Events:

13 1,0 : 61 episodes => 6.10 [ep/s]

14 1,1 : 93 episodes => 9.30 [ep/s]

15 [...]

132 APPENDIX C. PROCEDURE

16 1,18E : 90 episodes => 9.00 [ep/s]

17 1,18F : 97 episodes => 9.70 [ep/s]

18 ----------------

19 31136 episodes

20

21 $> manip -f manip.cfg -o data.sdf simulation.sdf

22 $> manip -B data.sdf

23 Source : data.sdf

24 Time unit : 0.001000 [s]

25 Duration : 10.00 [s]

26 Sections : 1

27 Annotations:

28 TITLE(0) : generated by SDF output $Id: output-sdf.cc 14 2005-04-06 16:38:09Z jiglesia $

29 SOURCE : simulation.sdf

30 MANIP : # Tue Sep 27 12:47:25 2005

31 MANIP : # $Id: manip.cc,v 1.12 2005/05/27 14:03:58 jiglesia Exp $

32 MANIP : INCLUDE 1,FA&FFFF ;

33 MANIP : INCLUDE 1,12&FFFF ;

34 MANIP : INCLUDE 1,A&FFFF ;

35 TITLE(99) : formatted by $Id: SDFFormatter.cc,v 1.5 2005/02/03 16:41:42 jiglesia Exp $

36 Events:

37 1,A : 60 episodes => 6.00 [ep/s]

38 1,12 : 62 episodes => 6.20 [ep/s]

39 1,FA : 76 episodes => 7.60 [ep/s]

40 ----------------

41 198 episodes

42

43 $> cd ../

We are not going to analyse the complete set of time series produced by the simulation and
stored in file simulation.sdf. To extract only the time series we are interested in from all the
available ones (l.13-17), we will use the manip tool. The manipulation details are configured in
the manip.cfg script. Like all other files in this procedure, this configuration can be edited using
an ascii text editor. There, you can read that manip is instructed to extract three time series
from the original data, those corresponding to the units #A, #12 and #FA in hexadecimal
notation, and to units #10, #18 and #250 in decimal notation.

Issuing manip -B <file> (l.5, 22) prints a human readable description of the contents of the
<file> to the terminal. Note that manip leaves traces of all the actions it undertakes (l.30-34)
in the output file to help recovering the memory of the different processings a data set could
have gone through. Reader is invited to consult the configuration file manip.cfg to discover
the numerous functionalities offered by manip. Such a fresh, up-to-date and empty commented
configuration file can be produced at any time issuing manip -G -o manip.cfg.

C.4 Analysis

The data analysis will be performed online, thanks to the oan framework:

http://openadap.net/

Please read the online documentation for the details of how to run the program. This part is
too volatile to be described on a paper medium. Note that, at some point, you will be asked
to pre-process your data. At that point, you should explicitly confirm that you want all the 1.*
event types to be included for analysis.

http://openadap.net/

C.5. VISUALIZATION 133

The analysis we will perform here is named correlograms. After the analysis is successfully
completed (this should take a few seconds), you will be proposed to plot graphics directly from
the analysis results page. This is equivalent to applying the visualization procedure explained in
the next section. Would you wish to save the analysis results for future inspection, you should
download and save the output of the analysis to your hard disk. You are invited to save this
data to the visualization directory of the package tree, under the file name correlations.xyv.

C.5 Visualization

To visualize large number of graphics and produce reports in a semi-automatic way on multiple
platforms, XY-Viewer is an efficient solution. It can be installed, updated and launched from
the web, thanks to the Java Web Start Technology, by browsing to the page:

http://jiglesia.alawa.ch/phd/

You will find the Launch Me link to XY-Viewer in the Software section. From the main appli-
cation window, it is possible to load the data files through the usual File > Open menu item,
or the appropriate button in the toolbar.

http://jiglesia.alawa.ch/phd/

Bibliography

Abbott, L. F., Nelson, S. B., November 2000. Synaptic plasticity: taming the beast. Nature
Neuroscience 3, 1178–83.

Abeles, M., 1982a. Local cortical circuits. Springer-Verlag, Berlin.

Abeles, M., 1982b. Quantification, smoothing, and confidence limits for single-units’ histograms.
Journal of Neuroscience Methods 5, 317–325.

Abeles, M., 1991. Corticonics: Neural Circuits of the Cerebral Cortex, 1st Edition. Cambridge
University Press.

Abeles, M., Gat, I., 2001. Detecting precise firing sequences in experimental data. Journal of
Neuroscience Methods 107, 141–154.

Abeles, M., Gerstein, G. L., 1988. Detecting spatiotempral firing patterns among simultaneously
recorded single neurons. Journal of Neurophysiology 60 (3), 910–924.

Abeles, M., Hayon, G., Lehmann, D., 2004. Modeling compositionality by dynamic binding of
synfire chains. Journal of Computational Neuroscience 17, 179–201.

Abraham, W. C., Bear, M. F., April 1996. Metaplasticity: the plasticity of synaptic plasticity.
Trends in Neurosciences 19 (4), 126–30.

Adams, R., teBoekhorst, R., Rust, A. G., Kaye, P., Schilstra, M., 2004. Design of spatially
extended neural. IJCNN-2004.

Aghajanian, G. K., Bloom, F. E., December 1967. The formation of synaptic junctions in de-
veloping rat brain: A quantitative electron microscopic study. Brain Research 6 (4), 716–27.

Aihara, K., Tokuda, I., 2002. Possible neural coding with interevent intervals of synchronous
firing. Physical Review E 66.

Albert, R., Barabasi, A. L., 2002. Statistical mechanics of complex networks. Rev. Mod. Phys.
74, 47–97.

Albo, Z., Prisco, G. V., Chen, Y., Kangarajan, G., Trucculo, W., 2004. Is partial coherence a
viable technique for identifying generators of neural oscillations? Biol. Cybern. 90, 318–26.

Amin, H. H., Fujii, R. H., 2004. Spike train decoding scheme for a spiking neural. IJCNN-2004.

Amir, Y., Harel, M., Malach, R., 1993. Cortical hierarchy reflected in the organization of intrinsic
connections in macaque monkey visual cortex. Journal of Comparative Neurology 334 (1), 19–
46.

135

136 BIBLIOGRAPHY

Amit, D. J., Mongillo, G., 2003. Spike-driven synaptic dynamics generating working memory
states. Neural Computation 15, 565–96.

Arnoldi, H. R., Englmeier, K., Brauer, W., 1999. Translation-invariant pattern recognition based
on synfire chains. Biol. Cybern. 80, 433–47.

Aviel, Y., Horn, D., Abeles, M., March 2004. Synfire waves in small balanced networks. Neuro-
computing 58-60, 123–7.

Aviel, Y., Horn, D., Abeles, M., 2005. Memory capacity of balanced networks. Neural Compu-
tation 17, 691–713.

Aviel, Y., Mehring, C., Abeles, M., Horn, D., June 2003. On embedding synfire chains in a
balanced network. Neural Computation 15 (6), 1321–40.

Awiszus, F., 1997. Spike train analysis. Journal of Neuroscience Methods 74, 155–166.

Baudry, M., Davis, J. L., Thompson, R. F., 2000. Advances in Synaptic Plasticity, 1st Edition.
Vol. 1. MIT Press.

Bear, M. F., Connors, B. W., Paradiso, M. A., 1996. Neuroscience: Exploring the Brain.
Williams and Wilkins.

Bell, C. C., Han, V. Z., Sugawara, Y., Grant, K., May 1997. Synaptic plasticity in a cerebellum-
like structure depends on temporal order. Nature 387 (6630), 278–281.

Ben-Shaul, Y., Bergman, H., Ritov, Y., Abeles, M., 2001. Trial to trial variability in either
stimulus or action causes apparent correlation and synchrony in neuronal activity. Journal of
Neuroscience Methods 111, 99–110.

Bi, G., 2002. Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms.
Biol. Cybern. 87, 319–32.

Bi, G., Poo, M., 1998. Synaptic modifications in cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience 18 (24),
10464–10472.

Bi, G., Wang, H., 2002. Temporal asymmetry in spike timing-dependent synaptic plasticity.
Physiology and behaviour 77 (2002), 551–555.

Bienenstock, E., May 1995. A model of neocortex. Network: Comput. Neural Syst. 6 (2), 179–
224.

Boergers, C., Kopell, N., 2005. Effects of noisy drive on rhythms in networks of excitatory and
inhibitory neurons. Neural Computation 17, 557–608.

Bourgeois, J., Rakic, P., 1993. Changes of synaptic density in the primary visual cortex of the
macaque monkey from fetal to adult stage. Journal of Neuroscience 13, 2801–20.

Braitenberg, V., Schuez, A., 1998. Cortex: statistics and geometry of neuronal connectivity, 2nd
Edition. Springer, Berlin.

Brodmann, K., 1909. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien
dargestellt auf Grund des Zellenbaues. Barth, Leipzig.

BIBLIOGRAPHY 137

Brunel, N., May 2000. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. Journal of Computational Neuroscience 8 (3), 183–208.

Burkitt, A. N., Meffin, H., Grayden, D. B., 2004. Spike-timing-dependent plasticity: The rela-
tionship to rate-based learning for models with weight dynamics determined by a stable fixed
point. Neural Computation 16, 885–940.

Caldarelli, G., Castellano, C., Petri, A., 1999. Criticality in models for fracture in disordered
media. Physica A 270, 15–20.

Cateau, H., Fukai, T., 2003. A stochastic method to predict the consequence of arbitrary forms
of spike-timing-dependent plasticity. Neural Computation 15, 597–620.

Changizi, M. A., February 2001. Principles underlying mammalian neocortical scaling. Biological
Cybernetics 84 (3), 207–15.

Chechik, G., 2003. Spike timing dependent plasticity and relevant information maximization.
Neural Computation 15 (7), 1481–1510.

Chechik, G., Meilijson, I., Ruppin, E., 1997. Synaptic pruning : A novel account in neural terms.
Computational Neuroscience Meeting Proceedings.

Chechik, G., Meilijson, I., Ruppin, E., October 1998. Synaptic pruning in development: A
computational account. Neural Computation 10 (7), 1759–77.

Chechik, G., Meilijson, I., Ruppin, E., 1999. Neuronal regulation: A mechanism for synaptic
pruning during brain maturation. Neural Computation 11, 2061–2080.

Chialvo, D. R., 2004. Critical brain networks. Physica A 340, 756–765.

Chialvo, D. R., Bak, P., June 1999. Learning from mistakes. Neuroscience 90 (4), 1137–48.

Christen, M., Kern, A., Nikitchenko, A., Steeb, W., Stoop, R., 2004a. Fast spike pattern detec-
tion using the correlation integral. Phys. Rev. E 70, 0119011–7.

Christen, M., Kern, A., Stoop, R., 2003. A correlation integral based method for pattern recog-
nition in series of interspike intervals. Proceedings of the 11th Workshop on the Nonlinear
Dynamics of Electronic Systems, 49–52.

Christen, M., Kern, A., van der Vyver, J., Stoop, R., 2004b. Pattern detection in noisy signals.
Proc. of ISCAS 4, 669–72.

Cisse, Y., Crochet, S., Timofeev, I., Steriade, M., 2004. Synaptic responsiveness of neocortical
neurons to callosal volleys during paroxysmal depolarizing shifts. Neuroscience 124, 231–239.

Cossart, R., Aronov, D., Yuste, R., 5 2003. Attractor dynamics of network up states in the
neocortex. Nature 423, 283–288.

Cox, D. R., Isham, V., 1980. Point Processes, 1st Edition. Monographs on Applied Probability
and Statistics. Chapman and Hall.

Crick, F., 1989. Neural edelmanism. Trends in Neurosciences 12 (7), 240–8.

Dayan, P., Abbott, L. F., 2001. Theoretical Neuroscience, 1st Edition. Vol. 1. MIT Press.

138 BIBLIOGRAPHY

De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., June 2001. Sex differences
in brain maturation during childhood and adolescence. Cerebral Cortex 11 (6), 552–557.

De Los Rios, P., 2001. Power law size distribution of supercritical random trees. Europhys. Lett.
56 (6), 898–903.

DeFelipe, J., Alonso-Nanclares, L., Arellano, J. I., March 2002. Microstructure of the neocortex:
Comparative aspects. Journal of Neurocytology 31 (3), 299–316.

Delorme, A., Thorpe, S. J., November 2003a. Spikenet: an event-driven simulation package for
modelling large networks of spiking neurons. Network: Comput. Neural Syst. 14 (4), 613–627.

Delorme, A., Thorpe, S. J., 2003b. Spikenet: an event-driven simulation package for modelling
large networks of spiking neurons. Network: Comput. Neural Syst. 14, 613–27.

Derakhshani, R., Schuckers, S. A., 2004. Continuous time delay neural networks for detection
of temporal patterns in signals. IJCNN-2004.

Diesmann, M., Gewaltig, M., Aersten, A., 1999. Stable propagation of synchronous spiking in
cortical neural networks. Nature 402 (6761), 529–533.

Diesmann, M., Gewaltig, M., Rotter, S., Aertsen, A., 2001. State space analysis of synchronous
spiking in cortical neural networks. Neurocomputing 38-40, 565–71.

Doboli, S., Minai, A. A., 2004. Using latent attractors to discern temporal order. IJCNN-2004.

Douglas, R. J., Martin, K. A., 1991. A functional microcircuit for cat visual cortex. Journal of
Physiology 440, 735–69.

Edelman, G. M., February 1993. Neural darwinism: Selection and reentrant signaling in higher
brain function. Neuron 10 (2), 115–25.

Elston, G. N., 2003. Cortex, cognition and the cell: New insights into the pyramidal neuron and
prefrontal function. Cerebral Cortex 13 Supplement 1001 (11), 1124–1138.

Emsley, J. G., Mitchell, B. D., Kempermann, G., Mackli, J. D., April 2005. Adult neurogenesis
and repair of the adult cns with neural progenitors, precursors, and stem cells. Progress in
Neurobiology 75 (5), 321–41.

Engel, D., Pahner, I., Schulze, K., Frahm, C., Jarry, H., 2001. Plasticity of rat central inhibtiory
synapses through gaba metabolism. Journal of Physiology 535 (2), 473–482.

Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., 2003. Spiking neural network for
reconfigurable poetic tissue. Lecture Notes in Computer Science 2606, 165–173.

Eriksson, J., Villa, A. E., January-March 2005. Event-related potentials in an auditory oddball
situation in the rat. Biosystems 79 (1), 207–212.

Foldy1, C., Dyhrfjeld-Johnsen, J., Soltesz, I., November 2004. Structure of cortical microcircuit
theory. Journal of Physiology 562 (1), 47–54.

Foss, J., Milton, J., August 2000. Multistability in recurrent neural loops arising from delay. J.
Neurophysiol. 84 (2), 975–85.

BIBLIOGRAPHY 139

Frazor, R. A., Albrecht, D. G., Geisler, W. S., Crane, A. M., 2004. Visual cortex neurons of mon-
keys and cats: Temporal dynamics of the spatial frequency response function. J. Neurophysiol
91, 2607–27.

Friedman, J. H., 1974. Data analysis techniques for high energy particle physics. Proc. of the
1974 CERN School of Computing, 271–366.

Froemke, R. C., Dan, Y., 2002. Spike-timing-dependent synaptic modification induced by natural
spike trains. Nature 416 (6879), 433–438.

Fusi, S., June 2001. Long term memory: Encoding and storing strategies of the brain. Neuro-
computing 38-40, 1223–8.

Fusi, S., 2002. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates.
Biol. Cybern. 87, 459–70.

Fusi, S., Annunziato, M., Badoni, D., Salamon, A., Amit, D. J., 2000. Spike-driven synaptic
plasticity: Theory, simulation, vlsi implementation. Neural Computation 12 (10), 2227–2258.

Fusi, S., Drew, P. J., Abbott, L. F., 2005. Cascade models of synaptically stored memories.
Neuron 45, 599–611.

Gardner, E. P., Palmer, C. I., Hamalinen, H., Warren, S., 1992. Simulation of motion on the
skin. v. effect of stimulus temporal frequency on the representation of moving bar patterns in
primary somatosensory cortex of monkeys. Journal of Neurophysiology 67 (1), 37–63.

Gat, I., October 2000. Ladies and gentleman: The ultimate cutengine.

Gewaltig, M., Diesmann, M., Aersten, A., March 2001. Propagation of cortical synfire activity:
survival probability in single trials and stability in the mean. Neural Networks 14, 657–73.

Gomez, L., Budelli, R., Saa, R., Stiber, M., Segundo, J. P., February 2005. Pooled spike trains of
correlated presynaptic inputs as realizations of cluster point processes. Biological Cybernetics
92 (2), 110–27.

Gutig, R., Aertsen, A., Rotter, S., 2003. Analysis of higher-order neuronal interactions based on
conditional inference. Biol. Cybern. 88, 352–359.

Guyonneau, R., Van Rullen, R., Thorpe, S. J., 2005. Neurons tune to the earliest spikes through
stdp. Neural Computation 17, 859–79.

Hamaguchi, K., Aihara, K., 2004. Quantitative information transfer through layers of spiking
neurons connected by mexican-hat-type connectivity. Neurocomputing 58-60, 85–90.

Harris, K. D., May 2005. Neural signatures of cell assembly organization. Nature Reviews Neu-
roscience 6, 399–407.

Hayon, G., Abeles, M., Lehmann, D., 2005. A model for representing the dynamics of a system
of synfire chains. Journal of Computational Neuroscience 18, 41–53.

Hebb, D., 1949. The organization of behavior. John Wiley, New York.

Hellwig, B., January 2000. A quantitative analysis of the local connectivity between pyramidal
neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics 82 (2), 111–121.

140 BIBLIOGRAPHY

Herrmann, M., Hertz, J. A., Prügel-Bennett, A., February 1995. Analysis of synfire chains.
Network: Computation in Neural Systems 13 (1), 115–129.

Hertz, J. A., Prugel-Bennett, A., 1996a. Learning short synfire chains by self-organization.
Network: Computation in Neural Systems 7, 357–363.

Hertz, J. A., Prugel-Bennett, A., September 1996b. Learning synfire chains: turning noise into
signal. International Journal of Neural Systems 7 (4), 445–50.

Hess, G., Donoghue, J. P., June 1994. Long-term potentiation of horizontal connections provides
a mechansim to reorganize cortical motor maps. Journal of Neurophysiology 71 (6), 2543–7.

Hilgetag, C., Burns, G. A., O’Neill, M. A., Scannell, J. W., 2000. Anatomical connectivity
defines the organization of clusters of cortical areas in the macaque and the cat. Philosophical
Transactions: Biological Sciences 355 (1393), 91–110.

Hill, S., Villa, A. E., 1997. Dynamic transitions in global network activity influenced by the
balance of excitation and inhibtion. Network: computational neural networks 8, 165–184.

Hopfield, J. J., 1982. Neural networks and physical systems with emergent collective computa-
tional abilities. Proc Natl Acad Sci USA 79 (8), 2554–8.

Hopfield, J. J., Brody, C. D., 2000. What is a moment? ”cortical” sensory integration over a
brief interval. Proc Natl Acad Sci U S A 97 (25), 13919–13924.

Hopfield, J. J., Brody, C. D., 2004. Learning rules and network repair in spike-timing-based
computation networks. Proc Natl Acad Sci U S A 101 (1), 337–342.

Horn, D., Levy, N., Ruppin, E., January 1998. Memory maintenance via neuronal regulation.
Neural Computation 10 (1), 1–18.

Hosaka, R., Ikeguchi, T., Nakamura, H., Araki, O., 2004. Information transformation from a
spatiotemporal. IJCNN-2004.

Hubel, D. H., Wiesel, T. N., LeVay, S., April 1977. Plasticity of ocular dominance columns in
monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278 (961), 377–409.

Huttenlocher, P. R., March 1979. Synaptic density in human frontal cortex – developmental
changes and effects of aging. Brain Research 163 (2), 195–205.

Huttenlocher, P. R., de Courten, C., Garey, L. J., Van der Loos, H., December 1982. Synaptoge-
nesis in human visual cortex – evidence for synapse elimination during normal development.
Neuroscience Letters 33 (3), 247–252.

Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., Villa, A. E., 2005a. Dynamics of pruning in
simulated large-scale spiking neural networks. BioSystems 79 (1), 11–20.

Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M., Villa, A. E., 2005b. Emergence of oriented
cell assemblies associated with spike-timing-dependent plasticity. Lecture Notes in Computer
Science.

Innocenti, G. M., September 1995. Exuberant development of connections, and its possible
permissive role in cortical evolution. Trends in Neurosciences 18 (9), 397–402.

BIBLIOGRAPHY 141

Izhikevich, E. M., 2004. Which model to use for cortical spiking neurons? IEEE Transactions
on Neural Networks 15 (5), 1063–70.

Izhikevich, E. M., Gally, J. A., Edelman, G. M., August 2004. Spike-timing dynamics of neuronal
groups. Cerebral Cortex 14, 933–44.

Jahnke, A., Schonauer, T., Roth, U., Mohraz, K., Klar, H., October 1997. Simulation of spiking
neural networks on different hardware platforms. Lecture Notes in Computer Science 1327,
1187–92.

Jin, D. Z., 2004. Spiking neural network for recognizing spatiotemporal sequences of spikes.
Physical Review E 69, 021905.

Kanamaru, T., Sekine, M., 2005. Synchronized firings in the networks of class 1 excitable neurons
with excitatory and inhibitory connections and their dependences on the forms of interactions.
Neural Computation 17, 1315–38.

Kantor, D. B., Kolodkin, A. L., June 2003. Curbing the excesses of youth: Molecular insights
into axonal pruning. Neuron 38, 849–52.

Karmarkar, U. R., Buonomano, D. V., 2002. A model of spike-timing dependent plasticity: one
or two coincidence detectors? J Neurophysiol 88 (1), 507–513.

Karmarkar, U. R., Najarian, M. T., Buonomano, D. V., 2002. Mechanisms and significance of
spike-timing dependent plasticity. Biol. Cybern. 87, 373–82.

Kelso, S. R., Ganong, A. H., Brown, T. H., 1986. Hebbian synapses in hippocampus. Proc Natl
Acad Sci U S A 83 (14), 5326–5330.

Kemp, B., Olivan, J., Sept. 2003. European data format plus (edf+), an edf alike standard
format for the exchange of physiological data. Clin Neurophysiol 114 (9), 1755–61.

Kepecs, A., van Rossum, M. C., Song, S., Tegner, J., 2002. Spike-timing-dependent plasticity:
common themes and divergent vistas. Biological Cybernetics 87, 446–458.

Kim, B., October 2004. Geographical coarse graining of complex networks. Physical Review
Letters 93 (16), 168701.

Kitano, K., Cateau, H., Fukai, T., May 2002. Self-organization of memory activity through
spike-timing-dependent plasticity. Neuroreport 13 (6), 795–8.

Kitano, K., Fukai, T., 2002. A multiple synfire-chain model for the predictive synchrony in the
motor-related cortical areas. NIP 4, 1634–38.

Knoblauch, A., 2003. Synchronization and pattern separation in spiking associative memo-
ries and visual cortical areas. Ph.D. thesis, Universität Ulm, http://www.informatik.uni-
ulm.de/ni/publ/AKnoblauch/Knoblauch2003B.pdf.

Knoblauch, A., Palm, G., 2004. What is signal and what is noise in the brain? BioSystems.

Kopka, H., Daly, P. W., 1999. A Guide to LaTeX, 3rd Edition. Addison Wesley Longman Ltd.

Kuhn, A., Rotter, S., Aertsen, A., June 2002. Correlated input spike trains and their effects on
the response of the leaky integrate-and-fire neuron. Neurocomputing 44-46, 121–6.

142 BIBLIOGRAPHY

Lestienne, R., Tuckwell, H. C., 1998. The significance of precisely replicating patterns in mam-
malian cns spike trains. Neuroscience 82, 315–336.

Levy, N., Horn, D., Meilijson, I., Ruppin, E., July 2001. Distributed synchrony in a cell assembly
of spiking neurons. Neural Networks 14 (6), 815–24.

Lichtman, J. W., Colman, H., February 2000. Synapse elimination and indelible memory. Neuron
25 (2), 269–78.

Litvak, V., Sompolinsky, H., Segev, I., Abeles, M., 2003. On the transmission of rate code in
long feedforward networks with excitatory inhibitory balance. The Journal of Neuroscience
23 (7), 3006–3015.

Lorente de No, R., 1949. Cerebral cortex: architecture, intracortical connections, motor projec-
tions. Oxford University Press.

Lovelace, J. J., Cios, K. J., 2004. Dual threshold based neural modeling to study. IJCNN-2004.

Lumer, E. D., Edelman, G. M., Tononi, G., apr/may 1997. Neural dynamics in a model of
the thalamocortical system. i. layers, loops and the emergence of fast synchronous rhythms.
Cerebral Cortex 7, 207–227.

Lytton, W. W., Hines, M. L., 2005. Independent variable time-step integration of individual
neurons for network simulations. Neural Computation 17, 903–21.

Maass, W., Natschlaeger, T., Markram, H., 2002. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural Computation 14 (11),
2531–60.

MacGregor, R. J., 1991. Sequential configuration model for firing patterns in local neural net-
works. Biological Cybernetics 65, 339–349.

MacGregor, R. J., 1993. Composite cortical networks as systems of multimodal oscillators. Bio-
logical Cybernetics 69, 243–255.

MacGregor, R. J., Ascarrunz, F. G., Kisley, M. A., 1995. Characterization, scaling, and par-
tial representation of neural junctions and coordinated firing patterns by dynamic similarity.
Biological Cybernetics 73, 155–166.

MacGregor, R. J., Gerstein, G. L., 1991. Cross-talk theory of memory capacity in neural net-
works. Biological Cybernetics 65, 351–355.

MacGregor, R. J., Tajchman, G., August 1988. Theory of dynamic similarity in neuronal sys-
tems. Journal of Neurophysiology 60 (2), 751–68.

Malinow, R., Malenka, . C., March 2002. Ampa receptor trafficking and synaptic plasticity.
Annual Review of Neuroscience 25, 103–26.

Mange, D., Tomassini, M., 1998. Bio-Inspired Computing Machines: Towards novel Computa-
tional Architectures. Presses Polytechniques et Universitaires Romandes.

Markram, H., Lubke, J., Frotscher, M., Sakmann, B., 1997. Regulation of synaptic efficacy by
coincidence of postsynaptic aps and epsps. Science 275 (5297), 213–215.

BIBLIOGRAPHY 143

Masuda, N., Aihara, K., 2004. Self-organizing dual coding based on spike-time-dependent plas-
ticity. Neural Computation 16, 627–63.

Matsumoto, N., Okada, M., December 2002. Self-regulation mechanism of temporally asymmet-
ric hebbian plasticity. Neural Computation 14 (12), 2883–902.

Matsumoto, N., Okada, M., September 2004. Impact of deviation from precise balance of spike-
timing-dependent plasticity. Neural Networks 17 (7), 917–24.

Mattia, M., Del Giudice, P., 2000. Efficient event-driven simulation of large networks of spiking
neurons and dynamical synapses. Neural Computation 12, 2305–29.

Mehring, C., Hehl, U., Kubo, M., Diesmann, M., Aersten, A., 2003. Activity dynamics and prop-
agation of synchronous spiking in locally connected random networks. Biological Cybernetics
88, 395–408.

Mehta, M. R., Lee, A. K., Wilson, A., June 2002. Role of experience and oscillations in trans-
forming a rate code into a temporal code. Nature 417, 741–6.

Mimura, K., Kimoto, T., Okada, M., 2003. Synapse efficiency diverge due to synaptic pruning
following over-growth. Phys Rev E Stat Nonlin Soft Matter Phys 68, 031910.

Montgomery, J. M., Madison, D. V., February 2002. State-dependent heterogeneity in synaptic
depression between pyramidal cell pairs. Neuron 33 (5), 765–777.

Montgomery, J. M., Madison, D. V., December 2004. Discrete synaptic states define a major
mechanism of synapse plasticity. Trends in Neurosciences 27 (12), 744–750.

Morrison, A., Mehring, C., Geisel, T., Aersten, A., Diesmann, M., 2005. Advancing the bound-
aries of high connectivity network simulation with distributed computing. Neural Computa-
tion.

Mountcastle, V. B., July 1957. Modality and topographic properties of single neurons in cat’s
somatic sensory cortex. Journal of Neurophysiology 20, 408–34.

Nakamura, H., O’Leary, D. D., November 1989. Inaccuracies in initial growth and arborization
of chick retinotectal axons followed by course corrections and axon remodeling to develop
topographic order. Journal of Neuroscience 9 (11), 3776–95.

Newman, M. E., Watts, D. J., Strogatz, S. H., February 2002. Random graph models of social
networks. PNAS 99, 2566–72.

Nowotny, T., Huerta, R., 2003. Explaining synchrony in feed-forward networks: Are McCulloch-
Pitts neurons good enough? Biol. Cybern. 89, 237–41.

Nowotny, T., Rabinovich, M. I., Abarbanel, H., 2003a. Spatial representation of temporal infor-
mation through spike-timing-dependent plasticity. Physical Review E 68, 0119081–0119089.

Nowotny, T., Zhigulin, V. P., Selverston, A. I., Abarbanel, H. D., Rabinovich, M. I., October
2003b. Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent
plasticity. Journal of Neuroscience 23 (30), 9776–85.

Okatan, M., Grossberg, S., September 2000. Frequency-dependent synaptic potentiation, de-
pression and spike timing induced by hebbian pairing in cortical pyramidal neurons. Neural
Networks 13 (7), 699–708.

144 BIBLIOGRAPHY

Oram, M. W., Wiener, M. C., Wiener, M. C., Richmond, B. J., 1999. Stochastic nature of
precisely timed spike patterns in visual system neuronal responses. J. Neurophysiol 81, 3021–
3033.

Palotai, Z., Szirtes, G., Lorincz, A., 2004. Emerging evolutionary features in noise driven.
IJCNN-2004.

Pantic, L., Torres, J. J., Kappen, H. J., Gielen, S. C., December 2002. Associative memory with
dynamic synapses. Neural Computation 14 (12), 2903–23.

Peterson, K. B., september 2004. The matrix cookbook.
URL http://www.imm.dtu.dk/pubdb/p.php?3274

Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., 1992. Numerical
recipes in C: The art of scientific computing, 2nd Edition. Cambridge University Press,
http://www.nr.com/.

Prut, Y., Vaadia, E., Bergman, H., Slovin, H., Abeles, M., 1998. Spatiotemporal structure of
cortical activity: Properties and behavioral relevance. J. Neurophysiol 79, 2857–2874.

Purves, D., LaMantia, A. S., August 1990. Numbers of ”blobs” in the primary visual cortex of
neonatal and adult monkeys. Proc Natl Acad Sci USA 87 (15), 5764–7.

Quenet, B., Horcholle-Bossavit, G., Wohrer, A., Dreyfus, G., January-March 2005. Formal mod-
eling with multistate neurones and multidimensional synapses. Biosystems 79 (1), 21–32.

Quenet, B., Horn, D., February 2003. The dynamic neural filter: A binary model of spatiotem-
poral coding. Neural Computation 15 (2), 309–29.

Rakic, P., February 1974. Neurons in rhesus monkey visual cortex: Systematic relation between
time of origin and eventual disposition. Science 183 (4123), 425–427.

Rakic, P., November 1981. Development of visual centers in the primate brain depends on
binocular competition before birth. Science 214 (4523), 928–931.

Rakic, P., Bourgeois, J., Eckenhoff, M. F., Zecevic, N., Goldman-Rakic, P. S., 1986. Concur-
rent overproduction of synapses in diverse regions of the primate cerebral cortex. Science
232 (4747), 232–235.

Ramakers, G. J., 2005. Neuronal network formation in human cerebral cortex. Progress in Brain
Research 147, 1–14.

Rao, R. P., Sejnowski, T. J., 2001. Spike-timing-dependent hebbian plasticity as temporal dif-
ference learning. Neural Computation 13, 2221–37.

Reyes, A. D., 2003. Synchrony-dependent propagation of firing rate in iteratively constructed
networks in vitro. Nature Neuroscience 6 (6), 593–9.

Rice, F. L., Van Der Loos, H., 1977. Development of the barrels and barrel field in the so-
matosensory cortex of the mouse. The Journal of Comparative Neurology 171 (4), 545–60.

Roberts, P. D., Bell, C. C., 2002. Spike timing dependent synaptic plasticity in biological systems.
Biol. Cybern. 87, 392–403.

http://www.imm.dtu.dk/pubdb/p.php?3274

BIBLIOGRAPHY 145

Rubin, J. E., Terman, D., 2004. High frequency stimulation of the subthalamic nucleus elimi-
nates pathological thalamic rhythmicity in a computational model. Journal of Computational
Neuroscience 16, 211–235.

Rumsey, C. C., Abbott, L. F., 2004. Equalization of synaptic efficacy by activity- and timing-
dependent synaptic plasticity. J. Neurophysiology 91, 2273–80.

Sakata, S., Komatsu, Y., Yamamori, T., March 2005. Local design principles of mammalian
cortical networks. Neuroscience Research 51 (3), 309–15.

Schauer, C., Gross, H., 2004. Design and optimization of amari neural fields. IJCNN-2004.

Schemmel, J., Meier, K., Mueller, E., 2004. A new vlsi model of neural microcircuits. IJCNN-
2004.

Scott, A., 2002. Neuroscience: A Mathematical Primer. Springer.

Segala, M., Korkotiana, E., Murphy, D. D., February 2000. Dendritic spine formation and
pruning:next term common cellular mechanisms? Trends in Neurosciences 23 (2), 53–57.

Segundo, J. P., Stiber, M., Vibert, J., Hanneton, S., 1995a. Periodically modulated inhibition
and its postsynaptic consequences-ii. influence of modulation slope, depth, range, noise and
of postsynaptic natural discharges. Neuroscience 68 (3), 693–719.

Segundo, J. P., Vibert, J., Stiber, M., Hanneton, S., 1995b. Periodically modulated inhibition
and its postsynaptic consequences-i. general features. influence of modulation frequency. Neu-
roscience 68 (3), 657–692.

Senn, W., 2002. Beyond spike timing: the role of nonlinear plasticity and unreliable synapses.
Biol. Cybern. 87, 344–55.

Senn, W., Markram, H., Tsodyks, M., 2000. An algorithm for modifying neurotransmitter release
probability based on pre- and postsynaptic spike timing. Neural Computation 13, 35–67.

Seth, A. K., Baars, B. J., March 2005. Neural darwinism and consciousness. Consciousness and
Cognition 14 (1), 140–168.

Shen, Y., Gao, H., Yao, H., 2005. Spike timing-dependent synaptic plasticity in visual cortex:
A modeling study. Journal of Computational Neuroscience 18, 25–39.

Shepherd, G. M., 1994. Neurobiology, 3rd Edition. Oxford University Press.

Singer, W., March 1993. Synchronization of cortical activity and its putative role in information
processing and learning. Annual Review of Physiology 55, 349–374.

Sjostrom, P. J., Turrigiano, G. G., Nelson, S. B., December 2001. Rate, timing, and cooperativity
jointly determine cortical synaptic plasticity. neuron 32, 1149–64.

Sjostrom, P. J., Turrigiano, G. G., Nelson, S. B., 2003. Neocortical LTD via coincident activation
of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654.

Song, S., Abbott, L. F., 2001. Cortical development and remapping through spike timing-
dependent plasticity. Neuron 32 (2), 339–350.

146 BIBLIOGRAPHY

Song, S., Miller, K. D., Abbott, L. F., 2000. Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity. Nature Neuroscience 3, 919–26.

Sporns, O., 2002. Graph theory methods for the analysis of neural connectivity patterns. in
Neuroscience Databases. A Practical Guide., 169–83.

Sporns, O., Chialvo, D. R., Kaiser, M., Hilgetag, C. C., September 2004. Organization, devel-
opment and function of complex brain networks. Trends in Cognitive Sciences 8 (9), 418–25.

Stiber, M., 2005. Spike timing precision and neural error correction: Local behavior. Neural
Computation 17, 1577–1601.

Stiber, M., Pottorf, M., 2004. Response space construction for neural error. IJCNN-2004.

Stoop, R., Bank, D. A., van der Vyver, J., Kern, A., 2001a. Synchronization-based computation,
chaos and spike patterns in neocortical neural networks. Circuit Paradigm in the 21st Century,
ECCTD’01 1, 221–4.

Stoop, R., van der Vyver, J., Kern, A., 2001b. Detection of noisy and pattern responses in
complex systems. NDES IEEE Conference on Nonlinear Dynamics of Electronic Systems,
113–6.

Stuart, G. J., Hausser, M., 2001. Dendritic coincidence detection of epsps and action potentials.
Nature Neuroscience 4 (1), 63–71.

Sur, M., Merzenich, M. M., Kaas, J. H., August 1980. Magnification, receptive-field area, and
”hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol
44 (2), 295–311.

Suri, R. E., Sejnowski, T. J., 2002. Spike propagation synchronized by temporally asymmetric
Hebbian learning. Biol. Cybern. 87, 440–5.

Takacs, J., Hamori, J., 1994. Developmental dynamics of purkinje cells and dendritic spines in
rat cerebellar cortex. Journal of Neuroscience Research 38 (5), 515–530.

Tetko, I., Villa, A. E., 2001a. Pattern grouping algorithm and de-convolution filtering of non-
stationary correlated poisson processes. Neurocomputing, 1709–1714.

Tetko, I. V., Villa, A. E., 1997a. A comparative study of pattern detection algorithm and
dynamical system approach using simulated spike trains. Lecture notes in computer science
1327, 37–42.

Tetko, I. V., Villa, A. E., 1997b. Fast combinatorial methods to estimate the probability of
complex temporal patterns of spikes. Biol. Cybern. 76, 397–407.

Tetko, I. V., Villa, A. E., 2001b. A pattern grouping algorithm for analysis of spatiotemporal
patterns in neuronal spike trains. 1. detection of repeated patterns. Journal of Neuroscience
Methods 105, 1–14.

Tetko, I. V., Villa, A. E., 2001c. A pattern grouping algorithm for analysis of spatiotemporal
patterns in neuronal spike trains. 2. application to simultaneous single unit recordings. Journal
of Neuroscience Methods 105, 15–24.

BIBLIOGRAPHY 147

Tetzlaff, T., Geisel, T., Diesmann, M., 2002. The groundstate of cortical feed-forward networks.
Neurocomputing 44-46, 673–8.

Tetzlaff, T., Morrison, A., Geisel, T., Diesmann, M., 2004. Consequences of realistic network
size on the stability of embedded synfire chains. Neurocomputing 58-60, 117–21.

Tonnelier, A., 2005. Catgorization of neural excitability using threshold models. Neural Com-
putation 17, 1447–55.

Torres, O., Eriksson, J., Moreno, J. M., Villa, A. E., August-October 2004. Hardware opti-
mization and serial implementation of a novel spiking neuron model for the poetic tissue.
BioSystems 76 (1), 201–208.

Troyer, T. W., Miller, K. D., 1997. Physiological gain leads to high isi variability in a simple
model of a cortical regular spiking cell. Neural Computation 9, 971–983.

Turova, T. S., 2003. Long paths and cycles in dynamical graphs. Journal of Statistical Physics
110 (1), 385–417.

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., Nelson, S. B., February 1998.
Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391 (6670),
892–6.

Tyrrell, A. M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., 2003. Poetic: An integrated
architecture for bio-inspired hardware. Lecture Notes in Computer Science 2606, 129–140.

Uzzell, V. J., Chichilnisky, E. J., 2004. Precision of spike trains in primate retinal ganglion cells.
J. Neurophysiol 92, 780–9.

van Ooyen, A., 2003. Modeling Neural Development, 1st Edition. Vol. 1. MIT Press.

Villa, A. E., 1992. Temporal aspects of information processing in the central nervous system.
Annales CARNAC 5, 15–42.

Villa, A. E., 2000. Time and the Brain. Vol. 2. Harwood Academic Publishers.

Villa, A. E., Tetko, I., Hyland, B., Najem, A., 1999. Spatiotemporal activity patterns of rat
cortical neurons predict responses in a conditioned task. Proc. Natl. Acad. Sci. USA 96,
1106–1111.

Villa, A. E., Tetko, I. V., Iglesias, J., June 2001. Computer assisted neurophysiological analysis
of cell assemblies activity. Neurocomputing 38-40, 1025–1030.

Villa, A. E., Tetko, I. V., Iglesias, J., Filipov, D., 2000. Transdisciplinary approach to scientific
data analysis through Internet. Haffmans Sachbuch Verlag, Zürich.

von Economo, C., 1929. The Cytoarchitectonics of the Human Cerebral Cortex. Oxford Univer-
sity Press, London.

Watts, D. J., 1999. Small Worlds: The Dynamics of Networks between Order and Randomness.
Princeton University Press.

Wiener, M. C., Richmond, B. J., 2003. Decoding spike trains instant by instant using order
statistics and the mixture-of-poissons model. The Journal of Neuroscience 23, 2394–2406.

148 BIBLIOGRAPHY

Wigstrom, H., Gustafsson, B., 1986. Postsynaptic control of hippocampal long-term potentia-
tion. Journal of Physiology 81 (4), 228–236.

Woodin, M. A., Ganguly, K., Poo, M., 2003. Coincident pre- and postsynaptic activity modifies
GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39, 807–820.

Yabuta, N. H., Callaway, E. M., 1998. Cytochrome-oxidase blobs and intrinsic horizontal con-
nections of layer 2/3 pyramidal neurons in primate v1. Visual Neuroscience 15 (6), 1007–27.

Yazdanbakhsh, A., Babadi, B., Rouhani, S., Arabzadeh, E., Abbassian, A., 2002. New attractor
states for synchronous activity in synfire chains with excitatory and inhibitory coupling. Biol.
Cybern. 86, 367–78.

Yoshida, M., Hayashi, H., 2004. Organization of cell assemblies that code. IJCNN-2004.

Yoshioka, M., 2001. Spike-timing-dependent learning rule to encode spatiotemporal patterns in
a network of spiking neurons. Physical Review E. 65, 011903.

Zecevic, N., Rakic, P., 1991. Synaptogenesis in monkey somatosensory cortex. Cerebral Cortex
1 (6), 510–523.

Zilles, K., 1990. in: The Human Nervous System, 757th Edition. Academic Press (G. Paxino,
Ed.), San Diego.

	Preface
	Résumé
	Introduction
	I Neuro(Informatics)
	Neurobiological perspective
	Brain development
	Differentiation
	Synaptogenesis
	Neurogenesis

	Cortical micro-circuits
	Synaptic efficacy
	Spike-timing-dependent synaptic plasticity
	Synfire chains

	Modeling
	Network model
	Layout
	Connectivity

	Neuromimetic model
	Membrane potential
	Background activity

	Synaptic connection model
	Adaptation
	Pruning

	Stimuli models
	Simple spatiotemporal pattern
	Complex spatiotemporal pattern

	Results
	Preliminary work
	Size effect
	Seed effect

	Stimulated networks
	Stimulus duration
	Circuit emergence
	Stimulus intensity
	Spatiotemporal pattern of activity

	Discussion
	Synaptic plasticity
	Network size effect
	Circuit emergence
	Synaptic pruning
	Effect of firing rate
	Synfire chains

	II (Neuro)Informatics
	Software
	Simulation environment
	feign: a spiking neuron simulator
	forge: a simulation organizer

	Data manipulation
	fnetdb: handling graphs through relational databases
	DataToolbox: an interactive tool
	manip: a versatile filter and editor

	Data analysis
	fnetdig: searching graphs
	OAN: a distributed analysis framework

	Visualization
	fnetview: interactive reconstruction of feed-forward networks
	XY-Viewer: a generic plot viewer
	RasterViewer: a raster-plot viewer
	YaTiSeWoBe: an interactive workbench

	File formats
	.fnet: feign networks
	.xpdl: feign protocols
	.xyv: XY-Viewer native data format
	Existing formats

	Hardware
	Beowulf-class cluster
	Overview
	Hardware configuration
	Cluster management

	POEtic tissue
	Neuron implementation

	Conclusion
	On the web
	Sample files
	.fnet: feign network
	.xpdl: experimental protocol
	.xyv: XY-Viewer native file format
	.graphml: graphs
	.sdf: time series
	.sng: Scriptable Network Graphics

	Procedure
	Setup
	Simulation
	Manipulation
	Analysis
	Visualization

	Bibliography

