Thesis

Structure and Evolution of Soap-Like Foams

by

Marco Mancini

13 July 2005

Supervisors:
Christophe Oguey
François Dunlop

Structure and Evolution of Soap-Like Foams

- 2D and 3D Foams at Equilibrium
- Contact with a solid Boundary
- Coarsening of 2D Foams
- Star-Triangle equivalence and T2(3) continuity
- Non-Standard Foams and Decoration
- Star-Triangle equivalence for 3D spherical Foams
- Conclusions

Equilibrated Dry Foams

- Films are two-dimensional surfaces of constant mean curvature H_{F} :

$$
\Delta P=2 \gamma H_{F} \quad \text { Laplace's law }
$$

Pressure drop

- The films meet 3 by 3 at the borders. The angles between the films are 120° (Plateau's law)

Equilibrated Dry Foams

- Different films can have different values of surface tension
[Adler 1995,2000]

| - Equilibrium equations |
| :--- | :--- |
| can be rewritten as: | \(\begin{aligned} \& \sum_{i=1}^{3} \gamma_{i} \boldsymbol{b}_{\boldsymbol{i}}=0

\& \sum_{i=1}^{3} \gamma_{i} H_{i}=0\end{aligned} \quad $$
\begin{aligned} & \boldsymbol{b}_{i} \text { is the co-normal } \\
& \gamma_{i} \text { is the Surface } \\
& \text { tension }\end{aligned}
$$\)

In two Dimensions

- Equilibrium equations are:

The films are circular arcs

A standard experiment

Foams in Contact with a Solid Boundary

Dry Plateau border in contact with a rigid (curved) wall

- Equilibrium
- => Normal incidence of the films
- Clean surface

Foams in Contact with a Solid Boundary

Dry Plateau border in contact with a rigid (curved) wall

- Equilibrium
- => Normal incidence of the films
- Clean surface

The 3D equilibrium implies that on the surface the equilibrium equations at a vertex are:

$$
\begin{aligned}
& \sum_{i=1}^{3} \gamma_{i} \boldsymbol{\tau}_{i}=0 \\
& \sum_{i=1}^{3} \gamma_{i} k_{g}\left(\phi_{i}, S\right)=0
\end{aligned}
$$

γ_{i} is surface tension
$k_{g}\left(\phi_{i}, S\right)$ is the geodesic curvature of ϕ_{i} in S under conformal transformations

Deformed Hele-Shaw Cell and Conformal Foams

Exp.:

A monodisperse foam in special deformed chambers Obs.:
The 2D pattern can be related to the hexagonal foam (honeycomb) by a conformal transformation

Observed

$$
X-\stackrel{f}{\rightarrow} \tilde{X} \begin{aligned}
& \text { Hexagonal } \\
& \text { Reference }
\end{aligned}
$$

[Drenckhan et al. (2004)]

Deformed Hele-Shaw Cell and Conformal Foams

Exp.:

A monodisperse foam in special deformed chambers Obs.:
The 2D pattern can be related to the hexagonal foam (honeycomb) by a conformal transformation

Simulations $-\sqrt{ }$ Experiments

Observed

$$
\text { Observed } X-f \text { pattern } \quad \tilde{X} \begin{aligned}
& \text { Hexagonal } \\
& \text { Reference }
\end{aligned}
$$

[Drenckhan et al. (2004)]

The bubbles' volume is conserved

Deformed Hele-Shaw Cell and Conformal Foams

Can the shape of the film be related to the conformal map?
Yes. Imposing the 3D Laplace's law and considering the film curvature in the third vertical direction k_{v}

Deformed Hele-Shaw Cell and Conformal Foams

Can the shape of the film be related to the conformal map?
Yes. Imposing the 3D Laplace's law and considering the film curvature in the third vertical direction k_{v}

Laplace's law

$$
\Delta P=2 \gamma H_{F}=\gamma\left(k+k_{v}\right)
$$

Geodesic curvature
(horizontal)

Deformed Hele-Shaw Cell and Conformal Foams

Can the shape of the film be related to the conformal map?
Yes. Imposing the 3D Laplace's law and considering

Vertical
curvature the film curvature in the third vertical direction k_{v}

Laplace's law

$$
\Delta P=2 \gamma H_{F}=\gamma\left(k+k_{v}\right)
$$

Geodesic curvature (horizontal)

Normal to the film

h and $\|\nabla h\|_{\text {small }}^{\longrightarrow} k_{v} \simeq \frac{-n \cdot \nabla h}{h}$

Deformed Hele-Shaw Cell and Conformal Foams

Can the shape of the film be related to the conformal map?
Yes. Imposing the 3D Laplace's law and considering

Vertical
curvature the film curvature in the third vertical direction k_{v}

Normal to the film

$\tilde{X}=f(X)$

$$
\Delta P=2 \gamma H_{F}=\gamma\left(k+k_{v}\right)
$$

Geodesic curvature (horizontal) h and $\|\nabla h\|_{\text {small }} \longrightarrow k_{v} \simeq \frac{-n \cdot \nabla h}{h}$

The geodesic curvature transforms as:

$$
k=\left\|f^{\prime}\right\| \tilde{k}+\mathfrak{R}\left\{n\left(\ln f^{\prime}\right)^{\prime}\right\}
$$

Combining these 3 equations:

Deformed Hele-Shaw Cell and Conformal Foams

$$
\frac{\Delta P}{\gamma}=\left\|f^{\prime}\right\| \tilde{k}+\mathfrak{R}\left[n\left(\ln f^{\prime}-2 \ln h\right)^{\prime}\right]
$$

Deformed Hele-Shaw Cell and Conformal Foams

Deformed Hele-Shaw Cell and Conformal Foams

$$
\begin{array}{cc}
\text { Conformal } & \text { Height } \\
\text { transformation } & \text { function }
\end{array}
$$

Geodesic curvature in the reference foam
$\tilde{k}=0$ for \tilde{X} Hexagonal
Different set-ups:
Constant Pressure Constant Volume

$$
h \simeq h_{0}\left\|f^{\prime}\right\|
$$

$$
h \simeq h_{0}\left\|f^{\prime}\right\|^{2}
$$

Deformed Hele-Shaw Cell and Conformal Foams

$$
\begin{array}{cc}
\text { Conformal } & \text { Height } \\
\text { transformation } & \text { function }
\end{array}
$$

$$
\begin{aligned}
& \text { Pressure } \\
& \text { difference }
\end{aligned} \rightarrow \frac{\Delta P}{\gamma}=\left\|f^{\prime}\right\| \tilde{k}+\mathfrak{R}\left[n\left(\ln f^{\prime}-2 \ln h^{\prime}\right)^{\prime}\right]
$$

Geodesic curvature
in the reference foam
$\tilde{k}=0$ for \tilde{X} Hexagonal
Different set-ups:

$$
\begin{array}{cc}
\text { Constant Pressure } & \text { Constant Volume } \\
h \simeq h_{0}\left\|f^{\prime}\right\| & h \simeq h_{0}\left\|f^{\prime}\right\|^{2} \\
\hline
\end{array}
$$

$f(z)=\frac{1}{a^{*}} \exp \left(a^{*} z\right) \quad h \propto \exp (a \cdot z) \quad h \propto \exp (2 a \cdot z)$

$$
f(z) \propto \frac{z^{\alpha}}{\alpha}, \quad(\alpha=m / 6, m \in \mathbb{N}) \quad h \propto\|z\|^{\alpha-1} \quad h \propto\|z\|^{2 \alpha-2}
$$

Deformed Hele-Shaw Cell and Conformal Foams

Example: Spherical vessel $h \propto\|z\|^{2}$

Constant	Constant
Pressure	Volume
$m=18$	$m=12$

Experimental

$$
m=9
$$

$$
\begin{equation*}
f \propto z^{3} \tag{?}
\end{equation*}
$$

$$
f \propto z^{2 / 3}
$$

Deformed Hele-Shaw Cell and Conformal Foams

The volume constraint $h \simeq h_{0}\left\|f^{\prime}\right\|^{2}$ implies that $k_{v}=-2 k$
Laplace's equation $\longrightarrow \frac{\Delta P}{\gamma}=k+k_{v} \simeq-k$
Example: $F(\tilde{z})=f^{-1}(\tilde{z})=\frac{1}{a^{*}} \ln \left(a^{*} \tilde{z}\right)$

Slow Evolution by Gas Diffusion of 2D Fomas

A 2 D dry foam embedded in a 2 -dim manifold S

- Equilibration time \ll time diffusion
- Incompressibility of the gas
- Validity of the Fick's law $\frac{d A}{d t}=-\sigma \sum l_{i} \Delta P_{i}$

- No liquid/solid friction force

Slow Evolution by Gas Diffusion of 2D Fomas

A 2 D dry foam embedded in a 2 -dim manifold S

- Equilibration time \ll time diffusion
- Incompressibility of the gas
- Validity of the Fick's law $\frac{d A}{d t}=-\sigma \sum l_{i} \Delta P_{i}$
- No liquid/solid friction force

Then the area of a n-sided bubble

Slow Evolution by Gas Diffusion of 2D Fomas

A 2 D dry foam embedded in a 2 -dim manifold S

- Equilibration time << time diffusion
- Incompressibility of the gas
- Validity of the Fick's law $\frac{d A}{d t}=-\sigma \sum l_{i} \Delta P_{i}$
- No liquid/solid friction force

Then the area of a n-sided bubble

If S is flat $(\mathrm{G}=0)$ then $\longrightarrow \quad \frac{d A_{n}}{d t}=\kappa(n-6)$
(von Neumann)
(depends only on the topology of the bubble)

Example:2-Bubble cluster

von Neumann $\longrightarrow \boldsymbol{a}(t)=\left\{t_{1}-t, t_{2}-t\right\} \longrightarrow k(t) \equiv \frac{a_{2}(t)}{a_{1}(t)}=\frac{g(\theta)}{g(-\theta)}$

Example:2-Bubble cluster

von Neumann $\longrightarrow \boldsymbol{a}(t)=\left\{t_{1}-t, t_{2}-t\right\} \longrightarrow k(t) \equiv \frac{a_{2}(t)}{a_{1}(t)}=\frac{g(\theta)}{g(-\theta)}$

Limit case $a_{1}=a_{2}=\tilde{a}$
$L(t) \propto \sqrt{\tilde{a}(t)}=\sqrt{\tilde{t}-t}$

Close to extinction (T2, $t \rightarrow t_{2}$)
$L(t)-2 \sqrt{\pi \Delta a} \sim \sqrt{t_{2}-t}$ $\pi / 3-\theta \sim \sqrt{t_{2}-t} \quad$ for $k \neq 1$

$$
\begin{aligned}
& L(t)=\frac{2}{\gamma} \lambda \cdot \boldsymbol{a}(t) \\
& \dot{L}(t)=\frac{1}{\gamma} \lambda \cdot \dot{a}(t)
\end{aligned}
$$

Star-Triangle Equivalence in 2D Foams $(\gamma=c s t)$

For any three-sided bubble (triangle) in an equilibrated foam:

Star-Triangle Equivalence in 2D Foams $(\gamma=c s t)$

For any three-sided bubble (triangle) in an equilibrated foam:
Exists a virtual equilibrated vertex inside the bubble given by the prologation of the external films

Star-Triangle Equivalence in 2D Foams $(\gamma=c s t)$

For any three-sided bubble (triangle) in an equilibrated foam:
Exists a virtual equilibrated vertex inside the bubble given by the prologation of the external films

Replacing any triangle by the virtual vertex and its legs (and "viceversa")
\downarrow

The new foam is still equilibrated

Consequences:

- T2 continuity
- Possible Simplification ("Reduction") in computation of equilibrium patterns

Star-Triangle Equivalence in 2D Foams

Continuity at T 2

During the gas diffusion When a 3 -sided bubble shrinks

T2(3)

The star vertex becomes a real vertex and the foam doesn't go out of equilibrium

Star-Triangle Equivalence in 2D Foams

Continuity at T 2

During the gas diffusion
When a 3 -sided bubble shrinks
T2(3)

The star vertex becomes a real vertex and the foam doesn't go out of equilibrium

Reduction

Star-Triangle Equivalence in 2D Foams

Continuity at T 2

During the gas diffusion
When a 3 -sided bubble shrinks
T2(3)

The star vertex becomes a real vertex and the foam doesn't go out of equilibrium

Reduction

Star-Triangle Equivalence in 2D Foams

Continuity at T 2

During the gas diffusion
When a 3 -sided bubble shrinks
T2(3)

The star vertex becomes a real vertex and the foam doesn't go out of equilibrium

Reduction

Star-Triangle Equivalence in 2D Foams

Continuity at T 2

During the gas diffusion
When a 3 -sided bubble shrinks
T2(3)

The star vertex becomes a real vertex and the foam doesn't go out of equilibrium

Star-Triangle Equivalence in Non-Standard 2D Foams

$$
\begin{aligned}
& \text { SMVP [Moukarzel, 1997] } \begin{array}{l}
\text { Sources: }\left(P_{i}, z_{i}, a_{i}\right) \\
\text { cells } \longrightarrow \Omega_{i}=\left\{x \in \prod_{z}: \frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{i}}<\frac{d\left(x, P_{j}\right)^{2}+z_{j}^{2}}{a_{j}}, \quad \forall j \neq i\right\} \\
\text { edges } \longrightarrow \Gamma_{i j}=\left\{x \in \prod_{z}: \frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{i}}=\frac{d\left(x, P_{j}\right)^{2}+z_{j}^{2}}{a_{j}}<\frac{d\left(x, P_{k}\right)^{2}+z_{k}^{2}}{a_{k}}, \quad \forall k \neq i, j\right\} \\
\text { Source projected on the plane } z=0
\end{array} \\
& \text { Intensity }
\end{aligned}
$$

Star-Triangle Equivalence in Non-Standard 2D Foams

SMVP [Moukarzel, 1997] Sources: $\left(P_{i}, z_{i}, a_{i}\right)$

$$
\text { cells } \longrightarrow \Omega_{i}=\left\{x \in \prod_{z}: \frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{i}}<\frac{d\left(x, P_{j}\right)^{2}+z_{j}^{2}}{a_{j}}, \quad \forall j \neq i\right\}
$$

$$
\text { edges } \longrightarrow \Gamma_{i j}=\left\{x \in \prod_{z}: \frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{i}}=\frac{d\left(x, P_{j}\right)^{2}+z_{j}^{2}}{a_{j}}<\frac{d\left(x, P_{k}\right)^{2}+z_{k}^{2}}{a_{k}}, \quad \forall k \neq i, j\right\}
$$

Circular partition \mathcal{F} is a SMVP

- It is aligned
- It admits an oriented reciprocal figure \mathscr{F}^{*}

Star-Triangle Equivalence in Non-Standard 2D Foams

SMVP [Moukarzel, 1997]
Sources: $\left(P_{i}, z_{i}, a_{i}\right)$
cells $\longrightarrow \Omega_{i}=\left\{x \in \prod_{z}: \frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{i}}<\frac{d\left(x, P_{j}\right)^{2}+z_{j}^{2}}{a_{j}}, \quad \forall j \neq i\right\}$
edges $\rightarrow \Gamma_{i j}=\left\{x \in \prod_{z}: \frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{i}}=\frac{d\left(x, P_{j}\right)^{2}+z_{j}^{2}}{a_{j}}<\frac{d\left(x, P_{k}\right)^{2}+z_{k}^{2}}{a_{k}}, \quad \forall k \neq i, j\right\}$

Circular partition \mathcal{F} is a SMVP

- It is aligned
- It admits an oriented reciprocal figure \mathscr{F}^{*}

Aligned
The centres of the edges meeting at a vertex are
on a line

Star-Triangle Equivalence in Non-Standard 2D Foams

SMVP [Moukarzel, 1997]

Sources: $\left(P_{i}, z_{i}, a_{i}\right)$

$$
\begin{aligned}
& \text { cells } \longrightarrow \Omega_{i}=\left\{x \in \prod_{z}: \frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{i}}<\frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{j}}, \quad \forall j \neq i\right\} \\
& \text { edges } \longrightarrow \Gamma_{i j}=\left\{x \in \prod_{z}: \frac{d\left(x, P_{i}\right)^{2}+z_{i}^{2}}{a_{i}}=\frac{d\left(x, P_{i}\right)^{2}+z_{j}^{2}}{a_{j}}<\frac{d\left(x, P_{k}\right)^{2}+z_{k}^{2}}{a_{k}}, \quad \forall k \neq i, j\right\}
\end{aligned}
$$

Circular partition \mathcal{F} is a SMVP

- It is aligned
- It admits an oriented reciprocal figure \mathscr{F}^{*}

Oriented reciprocal (or dual) figure

- \mathscr{F}^{*} is a triangulation
- A Source \boldsymbol{P}_{i} for any cell
- $\overline{\boldsymbol{P}_{i} \boldsymbol{P}_{\boldsymbol{j}}} \perp$ edge
- $\left(\boldsymbol{P}_{i}, \boldsymbol{P}_{j}, C_{i j}\right)$ ordered

Star-Triangle Equivalence in Non-Standard 2D Foams

Moukarzel's Theorem
A circular partition of the plane, with 3-connectivity, represents an equilibrated 2 D foam \mathcal{F} (non-standard) If and only if there is an oriented dual figure \mathcal{F}^{*}

Star-Triangle Equivalence in Non-Standard 2D Foams

Moukarzel's Theorem

A circular partition of the plane, with 3-connectivity, represents an equilibrated 2 D foam \mathcal{F} (non-standard) If and only if there is an oriented dual figure \mathcal{F}^{*}

Then, Star-Triangle Equivalence is simply proved:

Star-Triangle Equivalence in Non-Standard 2D Foams

Consequences

Consequences 1:

The Decoration Theorem [Weaire, 1992]

Little liquid at the vertices

Ideal dry

Star-Triangle Equivalence in Non-Standard 2D Foams
Consequences

Consequences 1:

The Decoration Theorem [Weaire, 1992]

Little liquid

Ideal dry

Consequences 2 :

Star-Triangle and decoration at a flat boundary

Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams

- Equilibrium Laws (Plateau+Laplace)
- The Films are spherical caps

Star-Triangle Equivalence
The films of vanishing tetrahedral bubbles are approximately spherical cup [Doornum, Hilgenfeldt , 2003]
then T 2 is a continuous process

Proof: (Moebius Invariance of spherical foams)

- Existence of a conjugate vertex
- Inversion map toward a symmetrical figure
- Proof of the existence of a virtual equilibrated vertex
- Inverse transformation

Conclusions

- We have derived the equilibrium equation for 2D Foam at the contact with solid boundaries.
- Invariance under conformal transformations.
- Found an equation linking the conformal transformation to the profile of a deformed Hele-Shaw cell.
- Pressure predicted under constant volume constraints differs from "pure 2D" physics.
- Star-Triangle equivalence in standard and non-standard 2D foams
- New proof and extension of the Decoration theorem
- Similar results along flat boundaries (in 2D)
- T2(3) continuity
- Exact solution in the case of 2-bubbles (2D and 3D)
- Star-Triangle equivalence for 3D spherical bubbles, continuity in tetrahedral bubbles disappearing

Perspective and Projects

- Is the star-triangle equivalence verified by 2D foams embedded in two-dimensional manifold?
- Is there a generalization of the star-triangle equivalence for 3D foams?
- Develop a program which, given the pressures and the topology of a bubble cluster, would construct the exact equilibrated cluster (example: Flower problem).
- Given a random cluster of N bubbles, how many different star-triangle reductions can one do?

Example:2-Bubble cluster. Minimization and Diffusion

- Hp: circular films, 3-connectivity, mono-contact
- Indipendent Variables: $\quad \mathbf{y}=\left\{R_{13}, R_{23}, R_{21}, y\right\}$
- Enthalpy

Equilibrium

$$
\boldsymbol{a}=y^{2}\left\{g\left(-\theta_{12}\right), g\left(\theta_{12}\right)\right\}
$$

$$
\frac{a_{1}}{a_{2}} \text { Is scale invariant: }
$$ on y

- $f(x)=\frac{1}{2}(2 x-\sin (2 x))$

Area of a circular sector of radius $=1$

Example:2-Bubble cluster

Rescaled
von Neumann $\left.\xrightarrow{\binom{a \rightarrow a / 4 \kappa}{t_{i}=a_{i}(0)}} \boldsymbol{a}(t)=\left\{a_{1}(t), a_{2}(t)\right\}=\left\{t_{1}-t, t_{2}-t\right\} \longrightarrow k(t) \equiv \frac{a_{2}(t)}{a_{1}(t)}=\frac{t_{2}-t}{t_{1}-t}=\frac{g\left(\theta_{12}\right)}{g\left(-\theta_{12}\right)}\right)$.

$$
\begin{aligned}
& \text { Limit case } a_{1}=a_{2}=\tilde{a} \\
& L(t) \propto \sqrt{\tilde{a}(t)}=\sqrt{\hat{t}-t} \\
& R(t) \propto \sqrt{\tilde{a}(t)}=\sqrt{\tilde{t}-t}
\end{aligned}
$$

$$
\begin{aligned}
& L(t)=\frac{2}{\gamma} \lambda \cdot \boldsymbol{a}(t) \\
& \dot{L}(t)=\frac{1}{\gamma} \lambda \cdot \dot{a}(t)
\end{aligned}
$$

$$
L(t)-2 \sqrt{\pi \Delta a} \sim \sqrt{t_{2}-t}
$$

$$
\pi / 3-\theta_{12} \sim \sqrt{t_{2}-t}
$$

Example:2-Bubble cluster

Rescaled
von Neumann $\left.\xrightarrow{\binom{a \rightarrow a / 4 \kappa}{t_{i}=a_{i}(0)}} \boldsymbol{a}(t)=\left\{a_{1}(t), a_{2}(t)\right\}=\left\{t_{1}-t, t_{2}-t\right\} \longrightarrow k(t) \equiv \frac{a_{2}(t)}{a_{1}(t)}=\frac{t_{2}-t}{t_{1}-t}=\frac{g\left(\theta_{12}\right)}{g\left(-\theta_{12}\right)}\right)$.

$$
\begin{aligned}
& L(t)=\frac{2}{\gamma} \lambda \cdot \boldsymbol{a}(t) \\
& \dot{L}(t)=\frac{1}{\gamma} \lambda \cdot \dot{a}(t)
\end{aligned}
$$

3D 2-Bubble Cluster $E(t)=\gamma A(t)=\frac{3}{2} \lambda \cdot V$ $\dot{E}(t)=\lambda \cdot \dot{\boldsymbol{V}}$

$$
L(t)-2 \sqrt{\pi \Delta a} \sim \sqrt{t_{2}-t}
$$

$$
\pi / 3-\theta_{12} \sim \sqrt{t_{2}-t}
$$

Star-Triangle Equivalence in 2D Foams $(\gamma=c s t)$

For any three-sided bubble (triangle) inside an equilibrated foam:
Exists a virtual equilibrated vertex inside the bubble gived by the prologations of the external films joining the bubble Replacing any triangle by the virtual vertex and its legs (and "viceversa")
∇

The new foam is still equilibrated
Proof:
Taking a vertex v of the bubble

Star-Triangle Equivalence in 2D Foams $(\gamma=c s t)$

For any three-sided bubble (triangle) inside an equilibrated foam:
Exists a virtual equilibrated vertex inside the bubble gived by the prologations of the external films joining the bubble

Replacing any triangle by the virtual vertex and its legs (and "viceversa")

The new foam is still equilibrated
Proof:
Taking a vertex v of the bubble

It exists an associate conjugate v^{*} (equilibrated) vertex

Applying an Inversion Transformation to the foam centred in v^{*}

$$
z \rightarrow \tilde{z}=1 /\left(z-v^{*}\right)
$$

We obtain:

Star-Triangle Equivalence in 2D Foams

Star-Triangle Equivalence in 2D Foams

Star-Triangle Equivalence in 2D Foams
..Proof

Star-Triangle Equivalence in 2D Foams

Star-Triangle Equivalence in 2D Foams

Using the reflexion symmetry on the 2 flat edges

Star-Triangle Equivalence in 2D Foams

Star-Triangle Equivalence in 2D Foams

 ..ProofUsing the reflexion symmetry
on the 2 flat edges

The centres are an equilateral triangle

Then the prolongation of the external edges meet at an equilibrated vertex \tilde{v}_{0}

Star-Triangle Equivalence in 2D Foams

..Proof

Applying the inverse transformation
Then the prolongation of the external edges meet at an equilibrated vertex \tilde{v}_{0}

$$
\begin{aligned}
& \tilde{z} \rightarrow z=\left(1+\tilde{z} v^{*}\right) / \tilde{z} \\
& \downarrow
\end{aligned}
$$

Star-Triangle Equivalence in 2D Foams

..Proof

Applying the inverse transformation

$$
\tilde{z} \rightarrow z=\left(1+\tilde{z} v^{*}\right) / \tilde{z}
$$

Star-Triangle Equivalence in 2D Foams

..Proof

Applying the inverse transformation

$$
\tilde{z} \rightarrow z=\left(1+\tilde{z} v^{*}\right) / \tilde{z}
$$

Consequences:

- T2 continuity
- Equilibration Reduction

Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams

- Equilibrium Laws (Plateau+Laplace)
- The Films are spherical caps

The vanishing bubbles are
Star-Triangle Equivalence approximately tetrahedral and then
T2 is a continuous process

Proof: (Moebius Invariance of spherical foams)

- Existence of a conjugate vertex
- Inversion map toward a symmetrical figure
- Proof of the existence of a virtual equilibrated vertex
- Inverse transformation

The centres of the 6 films meeting at a vertex are on the same plane

This is a symmetry plane
for the vertex

Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams

- Equilibrium Laws (Plateau+Laplace)
- The Films are spherical caps

The vanishing bubbles are
Star-Triangle Equivalence approximately tetrahedral and then
T 2 is a continuous process

Proof: (Moebius Invariance of spherical foams)

- Existence of a conjugate vertex
- Inversion map toward a symmetrical figure
- Proof of the existence of a virtual equilibrated vertex
- Inverse transformation

Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams

- Equilibrium Laws (Plateau+Laplace)
- The Films are spherical caps

The vanishing bubbles are
Star-Triangle Equivalence approximately tetrahedral and then
T2 is a continuous process

Proof: (Moebius Invariance of spherical foams)

- Existence of a conjugate vertex
- Inversion map toward a symmetrical figure
- Proof of the existence of a virtual equilibrated vertex
- Inverse transformation

Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams

- Equilibrium Laws (Plateau+Laplace)
- The Films are spherical caps

The vanishing bubbles are
Star-Triangle Equivalence \rightarrow approximately tetrahedral and then
T2 is a continuous process

Proof: (Moebius Invariance of spherical foams)

- Existence of a conjugate vertex
- Inversion map toward a symmetrical figure
- Proof of the existence of a virtual equilibrated vertex
- Inverse transformation

