
HAL Id: tel-00009757
https://theses.hal.science/tel-00009757

Submitted on 13 Jul 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typed Groups for the Grid
Laurent Baduel

To cite this version:
Laurent Baduel. Typed Groups for the Grid. Modeling and Simulation. Université Nice Sophia
Antipolis, 2005. English. �NNT : �. �tel-00009757�

https://theses.hal.science/tel-00009757
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

École Doctorale
« Sciences et Technologies de l’Information et de la Communication »

de Nice - Sophia Antipolis

Discipline Informatique

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS
FACULTÉ DES SCIENCES

TYPED GROUPS FOR THE GRID

par

Laurent BADUEL

Thèse dirigée par Françoise BAUDE et Denis CAROMEL

au sein de l’équipe OASIS,

équipe commune de l’I.N.R.I.A. Sophia Antipolis et du laboratoire I3S

présentée et soutenue publiquement le 8 juillet 2005 à l’E.S.S.I. devant le jury composé de

Président du Jury Johan MONTAGNAT Laboratoire I3S, Nice - Sophia Antipolis

Rapporteurs Henri BAL Vrije Universiteit, Amsterdam
André SCHIPER École Polytechnique Fédérale de Lausanne
El Ghazali TALBI Laboratoire d’Informatique Fondamentale de Lille

Invité industriel Emmanuel CECCHET Consortium ObjectWeb

Directeur de thèse Denis CAROMEL Université de Nice - Sophia Antipolis,
Institut Universitaire de France

Co-directrice de thèse Françoise BAUDE Université de Nice - Sophia Antipolis

ii

iii

To my parents,
— Laurent

iv

Contents

List of Figures ix

Acknowledgements xi

I Résumé étendu en français (Extended french abstract) xiii

Introduction et objectifs xv
1.1 Contexte . xv
1.2 Besoins . xv
1.3 Organisation de la thèse . xvi

Résumé xix
2.1 État de l’art . xix
2.2 ProActive . xxi
2.3 Communication de groupe typé . xxiii
2.4 Implémentation et évaluation par micro-tests . xxvi
2.5 Une application test : Jem3D . xxviii
2.6 SPMD orienté-object . xxx
2.7 Travaux en cours et travaux collaboratifs . xxxii

Conclusion xxxv
3.1 Accomplissements . xxxv
3.2 Perspectives . xxxvi

II Thesis 1

1 Introduction and objectives 3
1.1 Context . 3
1.2 Needs . 3
1.3 Thesis organization . 4

2 Related work 7
2.1 Group properties . 7

2.1.1 Structure . 7
2.1.2 Reliability and semantics . 8
2.1.3 Dynamicity . 10
2.1.4 Ordering . 10
2.1.5 User interface . 11

2.2 Group toolkits . 12
2.2.1 Internet multicast . 12
2.2.2 Isis and Horus . 15
2.2.3 Parallel Virtual Machine . 17
2.2.4 Message Passing Interface . 18

v

vi CONTENTS

2.2.5 Object Group Service: a CORBA Service . 19
2.2.6 JGroups . 20
2.2.7 Group Method Invocation . 21

2.3 Analysis of related work . 23
2.3.1 Drawbacks . 23
2.3.2 Proposal . 24

3 ProActive 27
3.1 Programming model . 27

3.1.1 Distribution model . 27
3.1.2 Active objects . 28
3.1.3 Communication by messages . 29
3.1.4 Synchronization . 31
3.1.5 Service policy and control of the activity . 31

3.2 Environment and implementation . 32
3.2.1 Mapping active objects to JVMs: Nodes . 32
3.2.2 MOP: Meta-Objects Protocol . 34
3.2.3 Migration . 35

4 Typed group communication 39
4.1 The typed group model . 39

4.1.1 Objectives . 39
4.1.2 Typed groups . 40

4.2 Application Programming Interface . 41
4.2.1 Group creation . 41
4.2.2 Group of Objects: a Collection and a Map 43
4.2.3 The communication is a method call . 44
4.2.4 Group of futures . 45
4.2.5 Synchronization . 46
4.2.6 Broadcast vs. scatter . 47
4.2.7 Operation semantics on result group . 49

4.3 Advanced group features . 50
4.3.1 Errors and exceptions . 50
4.3.2 Hierarchical group . 53
4.3.3 Active group . 55
4.3.4 Dynamic dispatch group . 56

5 Implementation and micro-benchmarks 61
5.1 Implementation details . 61

5.1.1 Motivations . 61
5.1.2 A proxy for the group . 62

5.2 Features . 63
5.2.1 Thread pool . 63
5.2.2 Factorization of common operations . 65

5.3 Micro-benchmarks . 66
5.3.1 In a cluster context . 66
5.3.2 In a Grid context . 69

5.4 Matrix multiplication . 71

6 Applicative benchmark: Jem3D 75
6.1 Basic architecture of Jem3D . 76

6.1.1 Geometry definition . 76
6.1.2 Application aspects . 77
6.1.3 Overall skeleton and control . 78

6.2 Design of the parallel and distributed version of Jem3D 79
6.2.1 Basic ideas and principles . 79
6.2.2 Partitioning, local and remote objects . 80

CONTENTS vii

6.3 A group communication model to enhance performances 81
6.4 Benchmarking . 82

6.4.1 Benchmarks on cluster . 82
6.4.2 Benchmarks on an Intranet heterogeneous cluster 85
6.4.3 Benchmarks on a grid using a fast RMI protocol 87

7 Object-Oriented SPMD 93
7.1 Context and related works . 93

7.1.1 SPMD programming . 94
7.1.2 SPMD programming with an object-oriented flavor 94
7.1.3 Our SPMD programming approach . 95

7.2 Object-Oriented SPMD . 96
7.2.1 Design and principles . 96
7.2.2 Requirements . 96
7.2.3 Main principles of OO SPMD . 97
7.2.4 Topologies . 98
7.2.5 Synchronization barriers . 100
7.2.6 Extensibility and reactivity . 101

7.3 Example and benchmarks . 102
7.3.1 MPI Jacobi . 103
7.3.2 OO SPMD Jacobi . 104
7.3.3 Benchmarks . 105

7.4 Comparison with the MPI API . 106

8 Ongoing and collaborative work 111
8.1 Group behavior component . 111
8.2 Using IP multicast . 114
8.3 Components . 116
8.4 Peer-to-peer computing . 119

9 Conclusion 123
9.1 Achievements . 123
9.2 Perspectives . 124

Bibliography 127

Abstract & Résumé 136

viii CONTENTS

List of Figures

2.1 Group structures . 8
2.2 FIFO message ordering . 10
2.3 Causal message ordering . 11
2.4 Total message ordering . 11
2.5 RMTP Network Architecture . 15
2.6 Horus layers . 17
2.7 The Object Group Service . 19
2.8 JGroups architecture . 21
2.9 RepMI . 22
2.10 The integration approach . 24
2.11 The service approach . 24
2.12 The interception approach . 25

3.1 Seamless parallelization and distribution with active objects 28
3.2 Execution of an asynchronous and remote method call 30
3.3 Base-level and meta-level of an active object . 34
3.4 Migration and tensioning . 36

4.1 Typed group and Group representations . 43
4.2 One-way method call on a group . 45
4.3 Method call on a group, with results . 46
4.4 Scattered parameters . 48
4.5 Exception mechanism of an asynchronous method call on group 52
4.6 Exception mechanism of a one-way method call on group 53
4.7 The add method . 54
4.8 The addMerge method . 54
4.9 Hierarchical groups . 54
4.10 Hierarchical and active groups . 57
4.11 Differences between basic groups and dynamic dispatch groups: behavior and usage 58

5.1 Adaptative thread pool . 64
5.2 Factorization of common operations . 66
5.3 Method call on cluster . 67
5.4 Method call on cluster depending on group size . 68
5.5 Speedup on cluster . 68
5.6 The map of current Grid’5000 . 69
5.7 Method call on Grid . 70
5.8 Method call on Grid with a hierarchical group . 72
5.9 Broadcast-Broadcast matrices multiplication performances 73

6.1 Definition of an element and a control volume in 2D and 3D 77
6.2 Definition of a facet in 2D and 3D . 78
6.3 Overall application skeleton . 79
6.4 Architecture of the sequential version of Jem3D . 80
6.5 Architecture of the distributed version of Jem3D . 81

ix

x LIST OF FIGURES

6.6 Average duration of 100 iterations . 83
6.7 Speedup . 84
6.8 Intranet computing . 86
6.9 Grid computing . 88
6.10 Rendering of a Jem3D computation . 90
6.11 JECS: a Java Environment for Computational Steering and Visualization 90
6.12 A more complex and irregular mesh . 91

7.1 An SPMD group . 97
7.2 Topologies . 98
7.3 Topologies classes . 99
7.4 Data distribution schemes . 103
7.5 Distributed algorithm . 103
7.6 Performances of C/MPI and Java/OO SPMD versions 106
7.7 OO SPMD scalability in a peer-to-peer experiment . 107
7.8 MPI to Java translations . 109

8.1 The communicator component . 115
8.2 Group RMI vs Group IP Multicast . 117
8.3 The three types of grid components . 118
8.4 Redistribution from M components to N components 119
8.5 A peer-to-peer infrastructure . 120
8.6 An heart beat sent as a group communication . 121

Acknowledgements

During the course of my thesis work, there were many people who were fundamental in helping
me. Without their guidance, help, and patience, I would have never been able to accomplish the
work of this thesis. I would like to take this opportunity to acknowledge them for their help,
either technical or moral, or both.

First of all, I would like to thank Denis Caromel, my supervisor. He has constantly encour-
aged and motivated me. I thank him for the trust he placed on me since the very beginning of our
fecund collaboration. I admire his vast knowledge and skill in many areas of computer science.
I am grateful for all those opportunities, to make interesting research, to publish, to travel, to
teach, etc. he offered me.

I would like to express my gratitude to my second supervisor, Françoise Baude, whose ex-
pertise, understanding, patience, and permanent availability added considerably to my graduate
experience. I appreciate her precious assistance in writing reports and the infinite kindness she
attests everyday to all her students.

My greetings go also to Henri Bal, André Schiper, and El Ghazali Talbi who honored me by
accepting to be reviewers for my thesis. I thank Emmanuel Cecchet for taken part of the jury,
and Johan Montagnat for presided at it.

I am sure that the first reviews of my thesis were an horrible, boring, and displeasing work.
So I am very grateful to Françoise B., Denis C., Alexandre D., and Fabrice H. who did it with
courage and with great care.

I really enjoyed the time I was PhD student. I known what was responsible for that: it was the
wonderful atmosphere that was in the OASIS research group, and more generally in the INRIA
lab at Sophia Antipolis. I met here people from many countries who generously shared their
work and life experiences with me. I thank all the OASIS members and my friends at INRIA for
those four years in their company.

A special acknowledgement goes to Arnaud Contes, my office-mate. I know him for a very
long time now. Our friendship started when we both began an internship in the OASIS team, I
hope it will last for many years again. We immersed ourselves together in the ProActive library
and the distributed computing world. We had shared happiness, irritation, frustration, success,
and many pleasant moments. Arnaud, my words for you are: “Courage, you are the next!”

I would like to salute other PhD students with who I shared this adventure. Older ones gave
me advices; younger ones gave me fresh views on my work. Thank you Fabrice H. (“tonton looz”),
Julien V. (master of the MOPs), Carine C. (I’m happy you feel well in your new position in Eng-
land), Ludovic H. the untiring sportsman, Rabéa B. (congratulations for your position), Felipe L.
the Mexican expert of French spoonerism, “papi” Rémi C., the “chi-Chilean” clan: Tomás B. and
Javier B., Christian B. my sport partner, Olivier N. the new World Company agent, Laurent Q.
my homonym partner, Alexandre G. the “celtic”, Christian D. my “punk” friend, Matthieu M. the
Britain engineer-student, Alexandre D. the Apple fashion victim, and those I may have forgotten.

xi

xii ACKNOWLEDGEMENTS

I thank the engineers of the team that frequently helped me. Thank Lionel M., Romain Q.,
and Igor “the kangaroo” R..

A research group would not be completed without a dark army of interns. Even if they did
not stay for a long time with us, they often did a very valuable work. I would like to salute
Santosh A. (Ma poule, I promise I will visit you in Italy soon), Guillaume C. the gifted geek, the
D.L.P. team (Benjamin “the squirrel” B., Sébastien “duffman” C., and Katia P.), Nicolas G. the
little electromagnetic genius, Christian L. the Austrian “topgnu”, Christophe M. the rocker of
diamond, Jonathan S. the German uber-coder, the “marseillais”: Patrice F. and Olivier C., and
Damien P. (you work too much).

I would like to thank my friends for their presence, especially when I returned frustrated
from the work (it was too often). They bore my mood swings with patience and kindness. Thank
you Ludovic “casimir” L., Fabian B. the rich merchant banker, Virginie L. “la ch’tite”, Alexan-
dre G. the eternal student, Stéphane V. (stop trying to convince me to skydive, I should accept),
Stéphane C. said “Yeyette”, Thomas S. “grandes oreilles” and the pretty Maïa S..

I thank Claire Senica, our project assistant at INRIA, whose efficiency frequently helped me
to solve administrative annoyances. I thank her for her attention to our PhD students’ concerns.
Thank also to Patricia Lachaume, our project assistant at I3S, for the same reasons.

I will never forget my teaching experience. I am convinced that students learnt me as much
as I learnt them. For all those questions that made me doubt, and for the efforts of organization
and clarification I had to do, I thank them. I am grateful to the professors and professor assis-
tants with who I taught in the University of Nice - Sophia Antipolis.

Of course, I would like to thank my family for the support they provided me through my entire
life. I must acknowledge my parents, Irène and Pierre, without whose love, encouragement, and
assistance, I would not have finished this thesis.

My last words are for Isabelle Attali, the project leader of the OASIS team, who tragically
died with her two young sons Ugo and Tom in the Tsunami, Sri Lanka, December 2004. I thank
you for the great opportunities you gave me and for the constant interest you attest in our works.
Your generosity, your dynamism, and your kindness were the sun of OASIS.

This thesis is also dedicated to you.

Part I

Résumé étendu en français
(Extended french abstract)

xiii

Introduction et objectifs

1.1 Contexte
De nombreuses applications destinées aux grilles de calculs telles que les simulations numériques,
l’acquisition et l’analyse de données, intègrent des calculs intensifs et la gestion d’énormes quan-
tités de données qui doivent être transférées et traitées sur de multiples machines de façon à
améliorer les performances globales de traitement.

Ces dernières années, beaucoup d’intergiciels et d’outils ont été développés pour les grilles
(Globus [GLO], Legion [NAT 02], Unicore [UNI], Condor-G [FRE 01], HiMM [SAN 03], ...). Géné-
ralement ces intergiciels adoptent des mécanismes fiables de communications point-à-point. Ce-
pendant les applications destinées aux grilles peuvent souvent tirer profit de schémas de com-
munication de type un-vers-plusieurs ou plusieurs-vers-plusieurs [JEA 03, MAI 02].

Fournir un intergiciel pour le calcul sur grilles incorporant une implémentation efficace de
l’abstraction des groupes au niveau de la programmation peut aider au développement de logi-
ciels et réduire le coût des communications à grandes et même petites échelles. Les performances
d’un programme s’exécutant sur des machines parallèles à mémoires non-partagées sont grande-
ment dépendantes de l’efficacité des communications inter-processus. Les environnements de
programmation parallèle n’offrent souvent qu’un support médiocre pour des modèles de commu-
nication haut niveau. Cette thèse propose un modèle de communication de group à haut niveau
pour ces architectures.

Selon l’Object Group design pattern [MAF 96], un groupe est le représentant local d’un en-
semble d’objets distribués sur des machines interconnectées et à qui on peut assigner l’exécution
d’une tâche. Le modèle de l’«objet group» spécifie que lorsqu’une méthode est invoquée sur un
groupe, l’environnement d’exécution envoie une requête d’invocation de la méthode sur les mem-
bres du groupe, attend une ou plusieurs réponses des membres selon une politique définie, et
retourne le(s) résultat(s) au client. Ces groupes sont habituellement dynamiques, c’est-à-dire
que l’ensemble constitué par les membres peut changé à l’exécution.

1.2 Besoins
Depuis quelques années, l’intérêt porté au langage Java pour construire des applications de
calculs à hautes performances n’a cessé de croître. Java fournit un modèle de programmation
orienté-objet avec support de la concurrence, ramasse-miettes, et sécurité. Java est également
capable d’exprimer le multitâche et l’invocation distante de méthode (RMI : Remote Method In-
vocation) [SUN98], une version orienté-objet de l’appel distant de procédure (RPC : Remote Pro-
cedure Call (RPC) [BIR 84]).

La programmation d’applications à hautes performances nécessite la définition et la coordi-
nation de plusieurs activités parallèles. Une librairie pour la programmation parallèle se doit
de fournir, non seulement une communication point à point, mais également des primitives de
communication au sein de groupes d’activités.

xv

xvi INTRODUCTION ET OBJECTIFS

Dans le monde Java, RMI, le mécanisme standard de communication point à point, est appro-
prié aux interactions de type client/serveur. Dans un contexte de calculs à hautes performances,
des communications asynchrones et collectives doivent être accessibles au programmeur, ainsi le
seul usage de RMI n’est pas suffisant.

Nous avons développé ProActive [PRO], une librairie 100% Java pour la programmation par-
allèle, distribuée et concurrente, incluant des mécanismes de sécurité et de migration. ProActive
fournit de façon transparente un service d’invocation de méthodes à distance vers des objets ac-
tifs distribués, des communications asynchrones avec futurs transparents et des mécanismes de
synchronisation de haut niveau tels que l’attente par nécessité.

Au niveau de la programmation, les groupes peuvent faciliter le développement de logiciels
puisqu’ils simplifient l’implémentation de modèle de programmation. Au niveau des communi-
cations, les groupes peuvent réduire le coût des communications plus plusieurs raisons. D’abord
la distribution du même message à un ensemble de receveurs peut bénéficier de l’abstraction
des groupes puisque des optimisations spécifiques peuvent être appliqués même si la couche
de transport est basée sur un modèle point-à-point. Par exemple, le transfert des objets sur le
réseau nécessite une sérialisation avant l’envoi. La sérialisation étant un processus significa-
tivement lent, envoyer la même copie sérialisée de l’objet aux membres du groupes améliore
grandement le temps totale de la communication de groupe. Ensuite, le mécanisme haut niveau
de communication de groupe peut aussi être implémenté sur un protocole de transport de type
un-vers-plusieurs.

1.3 Organisation de la thèse
Le but de notre recherche est de définir un mécanisme efficace et élégant de communication de
groupe dédié particulièrement au calcul sur Grille. Ce mécanisme doit être basé sur un modèle
qui s’intègre parfaitement dans le modèle orienté-objet de Java. Ce travail s’applique à étendre
le mécanisme de RMI en fournissant la possibilité d’exprimer également des communications
multipoints de façon à améliorer les performances des applications et à réduire la complexité de
programmation de ces applications réparties. Plus généralement, nous visons à fournir un mod-
èle qui aide à la définition et à la coordination d’activités distribuées.

Le document est organisé comme suit :

• Le chapitre 2 (résumé dans la section 2.1, page xix) donne une vue d’ensemble des travaux
relatifs aux mécanismes de communication de groupe dans différents domaines. J’en iden-
tifie les principales caractéristiques selon les domaines d’applications et présente un état
de l’art des outils les plus remarquables. Une discussion sur les fonctionnalités requises
conclue le chapitre.

• Dans le chapitre 3 (résumé dans la section 2.2, page xxi), je présente l’intergiciel ProActive.
J’introduis le modèle de programmation et donne une description de ses fonctionnalités
pour le calcul parallèle et distribué. Cette présentation décrit les principaux éléments de
l’interface de programmation d’application (API).

• Le chapitre 4 (résumé dans la section 2.3, page xxiii) introduit un model orienté-objet pour
un mécanisme de communication de groupe haut-niveau. Je décris l’approche typée par la
présentation de l’API ajoutée dans l’intergiciel ProActive. De cette façon, nous observerons
les fonctionnalités de ce mécanisme.

• Le chapitre 5 (résumé dans la section 2.4, page xxvi) donne des détails sur l’implémentation.
Il présente les points principaux d’optimisation su système. Des évaluations de perfor-
mances sur cluster et grilles concluent le chapitre.

• Dans le chapitre 6 (résumé dans la section 2.5, page xxviii) je présente une application
numérique, nommée Jem3D, dont l’implémentation est basée sur le mécanisme des com-

1.3. ORGANISATION DE LA THÈSE xvii

munications de groupe pour l’échange intensif des données et la synchronisation des pro-
cessus. Les performances de l’application, ainsi que son passage à l’échelle, sont présentés
sur plusieurs plateformes.

• Le chapitre 7 (résumé dans la section 2.6, page xxx) introduit le modèle de programmation
SPMD orienté-objet. Ce chapitre décrit les concepts existants de la programmation SPMD
et présente notre approche objet. Le code et les performances sont analysés en utilisant un
programme de typique : les itérations de Jacobi.

• Dans le chapitre 8 (résumé dans la section 2.7, page xxxii), je présente les plus récentes
fonctionnalités liées au mécanisme des communications de groupe qui sont encore en cours
de développement. Il s’agit du composant de comportement, de l’utilisation d’IP multicast,
de l’implémentation des composants Fractal, et du calcul pair-à-pair.

• Enfin, je conclue en dressant le bilan des accomplissements de cette thèse et en présentant
les perspectives.

xviii INTRODUCTION ET OBJECTIFS

Résumé

2.1 État de l’art
Par opposition à la communication point-à-point, la communication multipoint implique deux
processus ou plus. Un tel type de communication est employé dans une panoplie croissante
d’applications à large échelle. La diffusion consiste à envoyer les mêmes données répliquées à
plusieurs récepteurs. Beaucoup d’applications réparties exigent la livraison des messages et des
services d’adhésion pour un groupe de processus.

Propriétés d’un groupe
Selon leurs structures, les groupes peuvent supporter un large spectre d’applications. La struc-
ture d’un groupe est choisie selon les besoins de l’application. Pour chaque besoin de programma-
tion d’une application correspond une structure de groupe plus appropriée. Généralement quatre
structures de groupe sont proposées : les groupes de pairs, les groupes clients-serveur, les groupes
de diffusion, et les groupes hiérarchiques.

Un groupe peut être ouvert ou fermé. Dans un groupe ouvert tout objet ou processus peut
envoyer des messages aux membres du groupe. Dans un groupe fermé seuls les membres du
groupe peuvent envoyer des messages. Un groupe est dynamique si des membres peuvent être
ajoutés ou supprimé pendant l’exécution. Un groupe non dynamique est dit statique. Un groupe
est dit égalitaire si tous les membres du groupe ont une même activité et aucun d’entre eux n’est
responsable de services supplémentaires.

La sémantique de livraison définit si une communication de groupe réussit à communiquer
un message au groupe. Habituellement, il y a cinq possibilités pour cette sémantique : le zéro
livraison, la livraison unique, la n livraison, la livraison par quorum, et la livraison atomique (ou
totale). La sémantique de réponse définit le nombre de réponses attendues pour considérer réus-
site la réponse d’une communication de groupe. On identifie cinq sémantiques : le zéro réponse,
la réponse unique, la n réponse, la réponse par quorum, et la réponse totale.

Systèmes de communications de groupe
Nous avons identifié quatre communautés qui étudient les communications de groupe ; chacune
pour ses propres intérêts qui peuvent différer ou être tout à fait similaires aux autres. D’abord, la
communauté Internet se concentre sur les aspects réseaux et protocole. Ensuite, la communauté
des systèmes d’exploitation s’intéresse aux logiciels d’exploitation répartis. Puis, la communauté
d’algorithme distribué est impliquée dans la conception d’application tolérante aux pannes. Pour
finir, la communauté du parallélisme est intéressée par les plateformes d’exécution pour des ap-
plications parallèles.

Dans cette section certains des systèmes de communications de groupe les plus significatifs
présentés. Ils sont conçus soit pour l’Internet, soit pour les systèmes d’exploitation répartis, soit
pour des systèmes tels que UNIX (en tant qu’outils), soit pour des applications tolérantes aux
pannes, soit pour des environnements d’applications distribuées. Le plus éloigné de nos travaux
est présenté d’abord, menant aux projets qui sont les plus proches de nos recherches.

xix

xx RÉSUMÉ

• Le besoin de communication de groupe dans le monde d’Internet diffère du besoin dans le
monde applicatif. IP Multicast est la base de la plupart des autres protocoles. Il fournit un
dispositif de base pour l’émission de messages. MTP, XTP, RAMPE et RMTP sont d’autres
protocoles qui représentent l’ensemble des principales solutions.

• Isis et Horus sont deux projets développés à l’université de Cornell pour construire des
applications réparties, tolérantes aux pannes. Leurs modèles de programmation sont basés
sur la synchronisation virtuelle des processus. Les sémantiques de communication sont
définit par l’utilisation d’un ensemble spécifiques de primitives.

• PVM (Parallel Virtual Machine) et MPI (Message Passing Interface) sont des bibliothèques
pour la conception d’applications distribuées. Leurs modèles fournissent une abstraction
de la plateforme d’exécution de manière. Ces bibliothèques proposent des mécanismes
pour réaliser des opérations collectives (communications et synchronisation) impliquant
plusieurs processus.

• Enfin, plus proches de nos considérations, des outils tels que l’OGS (Object Group Service)
pour CORBA, et JGroups et GMI (Group Method Invocation) pour Java, introduisent des
mécanismes de communication de groupe dans des langages à objets. Contrairement à
JGroups, OGS et GMI tentent de tirer partie du style de programmation orienté-objet pour
réaliser des communications de groupe.

Proposition
Notre but est de libérer le programmeur de l’implémentation d’un code de communication com-
plexe nécessaire pour la communication de groupe. Nous voulons réaliser ceci en permettant au
programmeur de se focaliser sur l’application elle-même. Les communications de groupe doivent
être exprimées en utilisant des invocations de méthode distantes juste comme le RMI exprime les
communications point-à-point. L’intégration dans les langages orientés-objet devient naturelle.

Cependant nous ne voulons pas forcer le programmeur à implémenter ou prolonger des in-
terfaces et des classes spécifiques. En effet, un tel engagement apporterait des contraintes à la
création de l’application et porterait atteinte à la dynamicité pendant l’exécution. Les préoccu-
pations au sujet des groupes doivent être abordées par le mécanisme de groupe sans impacts
sur l’écriture du code du programmeur. L’interface commune des membres d’un groupe doit être
suffisante pour exprimer le plus grand ensemble de schémas de communication, tels que diverses
stratégies d’envoi et de réception de messages. Naturellement, une interface est nécessaire pour
contrôler explicitement des groupes. Cette interface doit définir la création, l’ajout et la sup-
pression de membres, . . . : des opérations qui ne sont pas accessibles par l’interface de membres.
Nous visons clairement à séparer les préoccupations de gestion de groupe des préoccupations des
aspects fonctionnels (c’est à dire des communications par invocation de méthode). La séparation
des préoccupations est essentielle pour maîtriser la complexité des opérations collectives.

Conclusion
Selon leurs besoins respectifs, chaque communauté considère différemment les communications
de groupe. Des problèmes peuvent être spécifiques à une certaine communauté et de fait, être
d’importance mineur ou même totalement ignoré dans les autres communautés. Par exemple, les
environnements tolérant aux pannes (par réplication) se concentrent sur l’ordonnancement des
processus. D’un autre côté, pour construire des applications distribuées, l’importance se porte
plutôt sur les schémas de communication. Nous nous intéressons à la conception d’applications
réparties ; notre challenge est de fournir aux programmeurs les outils de communication de
groupe les plus simples et les plus efficaces.

2.2. PROACTIVE xxi

2.2 ProActive
La librairie ProActive repose sur les APIs standards de Java (Java RMI, l’API de réflexion, . . .).
Aucune modification de l’environnement d’exécution n’est requise, ni aucun préprocesseur ou
compilateur spécial. Une machine virtuelle Java standard suffit à utiliser la librairie. Le modèle
de distribution de ProActive est parti d’un effort de simplification et d’un souci de réutilisation de
code d’applications dans des systèmes à objets [CAR 93, CAR 96], en respectant une sémantique
précise [ATT 00].

Modèle de programmation
Une application distribuée et/ou concurrente construite avec ProActive est composée d’entités de
grain moyen appelées objets actifs. Chaque objet actif possède une activité propre et la capac-
ité de décider dans quel ordre servir les appels de méthode qu’il reçoit et stocke dans une file
d’attente de requêtes. Les appels de méthode envoyés à un objet actif sont rendus asynchrones
avec génération d’objets futurs transparents qui sont soumis à des mécanismes de synchronisa-
tion tels que l’attente par nécessité [CAR 93]. Au début de chaque appel distant asynchrone, un
rendez-vous se produit pour s’assurer que la requête de l’appelant se place dans la file d’attente
de l’objet actif appelé.

ProActive fournit la capacité de créer à distance des objets actifs. Pour cela, il faut être
en mesure d’apporter quelques nouveaux services, notamment l’identification de la machine
virtuelle Java (JVM). ProActive définit des objets dont le rôle est de recueillir plusieurs objets
actifs dans une entité logique : ce sont les nœuds. Les nœuds procurent une abstraction pour
la localisation physique d’un ensemble d’objets actifs. Pour appeler et manipuler les nœuds, un
nom symbolique leur est associé.

La création d’un objet actif se fait en spécifiant le nœud sur lequel il sera positionné :

A a = (A) ProActive.newActive("A", parametres, noeud);

ProActive se base sur Java RMI pour les communications entre objets. Un appel à Java RMI
est bloquant. Ceci peut causer des latences inutiles dans l’exécution d’un programme : par ex-
emple l’attente d’un résultat qui ne sera utilisé que plus tard. Par défaut ProActive fournit des
communications asynchrones (et à sens unique), mais peut aussi communiquer de façon syn-
chrone.

• Appel synchrone : l’appel de méthode est bloquant, le fil d’exécution est suspendu jusqu’à
l’arrivée du résultat de la méthode invoquée avant de reprendre le fil d’exécution.

• Appel asynchrone : l’appel est non bloquant, l’exécution du programme sans que le résul-
tat soit revenu. Toutefois, un rendez-vous assure que la requête est bien parvenue dans le
contexte de l’appelé avant que l’activité ne reprenne. Un objet futur est créé en attente du
résultat.

• Appel à sens unique : l’appel est non bloquant (le rendez-vous est toujours présent). Au-
cun résultat n’est attendu ; aucun futur n’est créé.

Ces caractéristiques de synchronisation sont adaptées à chaque méthode d’un objet actif en fonc-
tion de sa signature. Sauf configuration explicite de l’utilisateur, une méthode ne renvoyant
aucun résultat (void) sera à sens unique, une méthode renvoyant des objets non-réifiables sera
appelée de façon synchrone, et une méthode renvoyant des objets réifiables sera appelée de façon
asynchrone 1.

Un futur représente le résultat d’un appel de méthode qui n’est pas encore arrivé. Pour créer
de l’asynchronisme lors d’un appel de méthode, ProActive construit et renvoie immédiatement un

1Le Protocole à Meta-Objets de ProActive qualifie de réifiable les classes qui peuvent être sous-classés ; c’est à dire
toutes les classes à l’exclusion des classes finales (et des types primitifs).

xxii RÉSUMÉ

objet vide : un futur. Pendant ce temps, la requête RMI est déléguée à un autre fil d’exécution.
Lorsque la requête a été traitée, le résultat obtenu est placé dans le futur. Le futur implémente
la même interface que l’objet résultat.

Dans le cas où le futur est utilisé (lecture, modification, appel de méthode) alors que sa valeur,
le résultat de l’appel, n’est pas encore arrivée le mécanisme de l’attente par nécessité intervient.
De façon transparente et automatique, l’activité est suspendue jusqu’à ce que le résultat parvi-
enne au client.

Environnement
Afin d’aider la phase de déploiement des objets actifs d’une application, le concept de nœuds
virtuels comme entités pour placer les objets actifs a été présenté dans [BAU 02]. Ces nœuds
virtuels sont décrits extérieurement par des descripteurs XML qui sont lus à l’exécution et ser-
vent à instancier des nœuds pour y placer des objets actifs. Ils permettent d’abstraire du code
source les préoccupations de création et de recherche de nœuds. Le but est de déployer une appli-
cation n’importe où sans avoir à modifier le code source. Les nœuds associés à un nœud virtuel
ne sont créés qu’à l’activation de celui-ci :

// Retour d’un objet Descriptor a partir du fichier XML
Descriptor pad = ProActive.getDescriptor("file://descriptor.xml");

// Retour du noeud virtuel decrit dans le fichier XML sous
// forme d’objet Java

VirtualNode noeudVirtuel = pad.getVirtualNode("noeudV");
// Activation la creation des noeuds associe au noeud virtuel

noeudVirtuel.activateMapping();
// Renvoi des noeuds crees

Node[] noeud = noeudVirtuel.getNodes();

ProActive est bâti sur un Protocole à Meta-Objets (MOP). Pour représenter localement un ob-
jet distant le MOP crée un couple souche et mandataire sur la machine virtuelle locale. La souche
implémente la même interface de l’objet distant, elle est générée puis compilée dynamiquement.
Elle réifie les appels de méthode, c’est à dire qu’elle les transforme en objet MethodCall. Le
mandataire quant à lui est responsable de la sémantique de communication. Il est également
chargé de créer l’objet futur.

ProActive propose une migration faible des objets actifs. Les objets actifs possèdent une file
d’attente des requêtes à servir. Cette file d’attente est soumise à une politique, FIFO par dé-
faut mais que le programmeur peut redéfinir à sa guise. Lors d’une migration faible, le service
des requêtes est suspendu entre deux requêtes ; à ce moment là, la pile d’exécution de la ma-
chine virtuelle est vide : les données et l’activité de l’objet peuvent être déplacées sans perte
d’informations. Deux solutions de localisation des objets migrant sont proposés : la chaîne de
répéteurs et le serveur de localisation.

Conclusion
En conclusion, l’essence de ProActive est : un modèle de programmation distribuée orienté-objet
qui étendu pour fournir également un modèle de programmation à composants. De plus notre
modèle est orienté vers le calcul sur grille car il incorpore des mécanismes adéquats pour aider
au déploiement sur tous les types de support, notamment les grilles. ProActive cible entre autres
les applications à très large échelle.

En plus de RMI, ProActive permet d’utiliser d’autres protocoles de communication tels que
Jini, Ibis, HTTP, . . . De nouvelles fonctionnalités sont en cours de développement. Les plus re-
marquables sont (par ordre décroissant de maturité) : une sécurité hiérarchique basé sur le dé-
ploiement [ATT 03], la tolérance aux pannes [BAU 04], des exceptions non-fonctionnelles [CAR 03],
du balancement de charge, et du calcul pair-à-pair.

2.3. COMMUNICATION DE GROUPE TYPÉ xxiii

2.3 Communication de groupe typé

Notre système de communication de groupe repose sur le mécanisme élémentaire d’invocation
distante et asynchrone de méthodes. Comme l’ensemble de la librairie, ce mécanisme est mis en
application en utilisant une version standard de Java. Le mécanisme de groupe est indépendant
de la plateforme. Il doit être considéré comme une réplique de plusieurs invocations à distance
de méthode vers des objets actifs. Naturellement, le but est d’incorporer quelques optimisations
à l’exécution, de façon à réaliser de meilleures exécutions qu’un accomplissement séquentiel de n
appels de méthode à distance. De cette façon, notre mécanisme est la généralisation du mécan-
isme d’appel de méthode asynchrone sur des objets distants.

Modèle du groupe typé

La disponibilité d’un tel mécanisme de communication de groupes simplifie la programmation
des applications en regroupant les activités semblables fonctionnant en parallèle. En effet, du
point de vue de la programmation, utiliser un groupe d’objets du même type, appelé groupe typé,
prend exactement la même forme que l’utilisation d’un simple objet de ce type. Ceci est possible
grâce à des techniques de réification : la classe d’un objet que nous voulons rendre actif et acces-
sible à distance est étendue au moment de l’exécution, et les appels de méthode sont réifiés.

D’une manière transparente, les appels de méthode dirigés vers un objet actif sont exécutés
au travers d’une souche qui est d’un type compatible avec l’objet original. Le rôle de la souche
est de réifier l’appel de méthode. Ensuite un mandataire applique la sémantique de communica-
tion exigée : s’il s’agit d’un appel vers un objet actif distant simple, alors l’invocation à distance
asynchrone standard est appliquée ; si l’appel est dirigé vers un groupe d’objets, alors la séman-
tique des communications de groupes est appliquée comme nous le verrons dans le reste de cette
section.

Interface de programmation d’application

Les groupes sont créés en utilisant la méthode statique :

ProActiveGroup.newGroup("NomDeLaClasse", parametres[], noeuds[]);

La superclasse commune à tous les membres du groupe doit être indiquée à la création du
groupe, et lui donne ainsi un type minimal. Les groupes peuvent être créés vides, puis remplis
par des objets actifs déjà existants. Des groupes non-vides peuvent aussi être construits en
utilisant deux paramètres supplémentaires : une liste de paramètres requis pour la construction
des membres du groupes et la liste des nœuds où ils seront créés. Le n-ième objet actif est créé
avec les n-ièmes paramètres sur le n-ième nœud. Dans ce cas, le groupe est créé et les objets
actifs sont construits puis immédiatement inclus dans le groupe. Prenons le cas d’une classe
standard Java :

public class A {
public A() {}
public void foo () {...}
public V bar () {...}

}

Voici un exemple de la création d’un groupe et de ses membres :

// Pre-construction de parametres pour la creation des membres
Object[][] parametres = { {...} , {...} , ... };

// Noeuds sur lesquels seront crees les membres (objets actifs)
Node[] nodes = { ... , ... , ... };

// Un groupe de type "A" et ses membres sont crees en meme temps
A ag = (A) ProActiveGroup.newGroup("A", params, nodes);

xxiv RÉSUMÉ

Des éléments ne peuvent être inclus dans un groupe que si leur type est compatible avec la
classe spécifiée à la création du groupe. Par exemple, un objet de classe B (B étendant A) peut
être inclus dans le groupe. Cependant, étant basées sur le type de A, seules les méthodes définies
dans la classe A peuvent être appelées sur le groupe, mais notons que la redéfinition de méthode
va fonctionner normalement.

La limitation principale de la construction de groupe est que la classe indiquée au groupe doit
être réifiable, selon les contraintes imposées par le protocole à méta-objets de ProActive : le type
ne doit pas être un type primitif (int, double, boolean,...), ni une classe final. Dans ces cas,
le MOP ne peut pas créer de groupe d’objet.

L’invocation d’une méthode sur un groupe a une syntaxe identique à une invocation de méth-
ode sur un objet Java :

// Une communication de groupe
ag.foo();

Bien sûr, un appel de ce type a une sémantique différente : l’appel de méthode est rendu asyn-
chrone et est propagé vers tous les membres du groupe. Un appel de méthode sur un groupe est
un appel de méthode sur chaque membre du groupe. Ainsi, si un membre est un objet actif, la
sémantique de communication de ProActive sera utilisée, s’il s’agit d’un objet Java, la sémantique
sera celle d’un appel de méthode classique.

Par défaut, les paramètres de la méthode invoquée sont diffusés à tous les membres du groupe
(broadcast). Il est également possible, grâce à des méthodes statiques, de changer le comporte-
ment des groupes pour que les paramètres soient distribués selon les membres (scatter) et non
plus diffusés : pour distribuer les données à travers une communication de groupe, il suffit alors
de rassembler ces données au sein d’un groupe et de passer ce groupe en paramètre à un appel
de méthode.

La particularité de notre mécanisme de communication est que le résultat de la communica-
tion d’un groupe typé est un groupe typé. Ce groupe résultat est construit dynamiquement et de
façon transparente au moment de l’invocation de la méthode, avec un futur pour chaque réponse
attendue. Le groupe résultat est mis à jour au fur et à mesure que les réponses arrivent dans
le contexte de l’appelant. Toutefois, il peut être instantanément utilisé pour lancer un appel de
méthode sachant que le mécanisme d’attente par nécessité entre en jeu : si tous les résultats ne
sont pas encore arrivés, l’appel de méthode se fera automatiquement au moment de leurs retours.

Fonctionnalités avancées
En plus de l’utilisation standard des groupes (invocation de méthode et gestion de l’appartenance
des membres), le mécanisme a été étendu de façon à supporter quelques fonctionnalités supplé-
mentaires. Quatre d’entre elles semblent fondamentales dans le cas d’un mécanisme de commu-
nication de groupe dédié à la conception d’application :

• Un système de traitement des erreurs. Au sein de la plateforme Java les erreurs et les
pannes sont exprimées par les Exceptions. Dans le cadre de ProActive, où la distribution
est transparente, il est impossible de distingués les exceptions “fonctionnelles” qui peuvent
être naturellement levées par la méthode invoquée des exceptions “non-fonctionnelles” qui
résultent d’une erreur inattendue du système (par exemple, la déconnexion de l’appelé). Le
mécanisme des communications de groupe adresse ces deux types d’exception grâce à un
dispositif capable de collecter et retransmettre les erreurs survenues lors d’une communi-
cation.

• Une composition hiérarchique des groupes. Pour construire de très grande application
en terme de nœud et d’objet, nous fournissons le concept de groupe hiérarchique : un groupe
d’objets qui est constitué totalement ou en partie de groupes : un groupe de groupes. Ce
mécanisme aide à l’organisation et à la distribution des données. Il assure également le

2.3. COMMUNICATION DE GROUPE TYPÉ xxv

passage à l’échelle des applications. Un groupe hiérarchique est très simplement construit
en ajoutant la référence d’un groupe dans un autre groupe. Bien entendu, les types de ces
groupes doivent être compatibles.

• Un accès distant à un service de communication de groupe. Les groupes sont des
représentations locales. Il est cependant possible de vouloir y accéder de façon distante. Un
groupe accessible à distance devient un service : un message est d’abord communiqué au
service avant d’être réexpédié aux membres du groupes. ProActive fournit un moyen simple
de transformer n’importe quel objet en objet accessible à distance : il le transforme en objet
actif. Nous appelons groupe actif, un groupe transformé en objet actif. En plus de l’accès
distant un groupe actif acquiert également la capacité de migrer et de voir sa politique de
service FIFO modifiée.

• Une distribution des données dépendante de l’activité des membres. Dans le cas
particulier où les groupes sont utilisés pour créer du parallélisme, sans se soucier de savoir
quel membre traître quelle donnée, nous pouvons améliorer les performances du système
en ordonnançant de façon plus flexible l’envoi des requêtes vers les membres. L’idée est
d’envoyer plus de données aux membres les plus rapides pour diminuer le temps total de
traitement de l’appel de méthode.

Conclusion
Les communications de groupe sont un dispositif crucial pour le calcul sur grilles et le calcul
à haute performance. Le système présenté ici est à la fois simple et très expressif. Il fournit
un modèle transparent, robuste, flexible, et simple d’utilisation qui vise à aider la construction
d’applications réparties. Au travers d’invocation de méthode, le système adapte la sémantique
d’appel, et gère la collecte et la synchronisation des résultats.

xxvi RÉSUMÉ

2.4 Implémentation et évaluation par micro-tests
La manière dont nous avons implémenté le mécanisme des communications de groupe dépend des
propriétés que nous voulions obtenir et de celles que nous voulions maintenir. Nos considérations
ont éliminé certains modèles et nous ont guidé vers de possibles implémentations. Notre choix
s’est porté sur une implémentation générique, sujette à optimisations. Ces optimisations ont été
testées dans le but de prouver leur efficacité, et incorporées dans l’implémentation.

Détails d’implémentation
Tel que mentionné dans [MAA 03], une approche possible pour implémenter les communications
de groupe typé au sein de ProActive aurait pu être d’étendre notre bibliothèque avec une biblio-
thèque externe telle que MPI. Des travaux ont été réalisé dans ce sens : [CAR 00] et [GET 99].
Cependant le modèle de passage de messages s’adapte mal au modèle orienté-objet d’invocation
de méthode. De plus MPI a été conçu pour manipuler des groupes statiques de processus et non
pas des objets possédant leur propre fil d’exécution.

Une seconde solution aurait été d’interfacer ProActive avec une bibliothèque qui interagit di-
rectement avec un protocole réseau de type un-vers-plusieurs. Par exemple [BAN 98] et [ROS 98]
proposent ce genre de service. En nous immisçant à un niveau plus bas que MPI nous pouvons
gagner en flexibilité. Mais encore une fois, en imposant leur propre interface d’utilisation, ces
bibliothèques cassent le modèle objet qui fournit une communication par appel de méthode. De
plus le déploiement de ces protocoles est rarement assuré à l’échelle d’une grille.

Finalement nous avons opté pour l’approche dite multi un-vers-un. Le multi un-vers-un est la
réplication de communication un-vers-un. Cette approche est parfois décriée car dans sa forme
la plus simple, elle est moins performante que d’autres approches. Cependant nous l’avons choisi
car elle permet de maintenir la flexibilité et surtout l’adaptabilité des communications vers cha-
cun des membres d’un groupe, et ce dans un modèle orienté-objet non altéré. De plus cette
approche est ouverte à plusieurs optimisations, qui finalement rendent les performances très
compétitives.

Fonctionnalités
L’utilisation de plusieurs fils d’exécution (threads) permet l’envoi simultané des messages vers
chaque destinataire. Les temps des rendez-vous RMI sont ainsi recouverts et non pas cumulés
comme cela aurait été le cas si les appels avaient été successifs. Pour conserver la sémantique
de ProActive une barrière de synchronisation assure que toutes les requêtes ont été transmises
aux objets distants et placées dans leur file d’attente avant de passer à l’instruction suivant une
communication de groupe.

Le protocole RMI se charge de transmettre les paramètres de l’appel à tous les membres en
les sérialisant puis en les transmettant sur le réseau. La sérialisation est un processus parti-
culièrement lent de Java [MAA 01]. Dans le cas d’une diffusion des mêmes paramètres à tous
les objets (broadcast), ces paramètres seront sérialisés par chaque fil d’exécution. Pour éviter
ce gaspillage de ressources, une sérialisation unique des paramètres de l’appel est faite par le
mécanisme de communication de groupes avant que les appels ne soient délégués à RMI.

Micro-tests
Une première implémentation apportait déjà des gains de performances [BAD 02b]. Un appel
de méthode sur un groupe de n objets est plus rapide que le contact des n objets de façon indi-
viduelle. Cette première amélioration provient de l’économie de plusieurs réifications d’appels
de méthode. Cette opération du méta-niveau construit un objet représentant l’appel de méthode.
Lors d’un appel de groupe un seul objet de ce type est construit.

2.4. IMPLÉMENTATION ET ÉVALUATION PAR MICRO-TESTS xxvii

Nous avons réalisé des mesures de performances sur plusieurs types de plateformes. Nos
premiers tests ont été réaliser sur une grappe de 216 bi-AMD Opteron 64 bits @ 2 GHz avec 2 Go
de mémoire et interconnectés par un réseau Ethernet gigabit. Ensuite nous avons déployé nos
tests sur une grille de calcul. Grid’5000 est une plateforme expérimentale qui regroupe huit sites
géographiquement distribués en France et dont l’ambition est d’atteindre les 5000 processeurs.
Sur chacune de ses plateformes, notre mécanisme de communication de groupe produit de bonnes
performances.

Multiplication de matrices
Pour valider la conception et l’implémentation des communications de groupe nous avons pro-
grammé une application numérique basique : une multiplication en parallèle de matrices denses.
Nous avons délibérément choisi un algorithme qui utilise intensivement des communications
collectives. Grâce aux optimisations introduites dans le mécanisme, à l’asynchronisme des com-
munications, et à la synchronisation automatique fournit par l’attente par nécessité, les résultats
sont concluants : le code produit est simple et les performances sont bonnes.

Conclusion
L’approche que nous avons choisit pour implémenter le mécanisme des communication de groupe
a été guidée par une interface élégante qui permet une utilisation transparente des groupes dans
la conception d’applications réparties. L’implémentation fournit flexibilité et adaptabilité. Des
optimisations telles que l’invocation de méthode en parallèle et la factorisation des opérations
communes contribuent à améliorer l’efficacité du système. Les expérimentations menées aussi
bien sur une grappe que sur une grille montrent les bonnes performances et l’aptitude à passer
à l’échelle.

xxviii RÉSUMÉ

2.5 Une application test : Jem3D
Dans la tendance de réaliser des calculs distribués basés sur une programmation objet, nous
présentons la conception et l’implémentation d’une simulation numérique pour la propagation
d’ondes électromagnétiques. Le but de ce travail est de souligner les bénéfices qu’apporte notre
bibliothèque (modèle objet, portabilité, facilité de déploiement, . . .) pour les aspects d’ingénierie
logicielle.

Architecture de base de Jem3D
Jem3D est la traduction en Java de EM3D-VFC, un logiciel écrit en Fortran 77 pour la simulation
numérique de propagation d’ondes électromagnétiques en temps fini. La version actuelle résout
les équations tridimensionnelles de Maxwell pour des milieux homogènes et hétérogènes.

Le modèle objet que nous proposons est tel, qu’il peut être réutilisé pour le développement
d’outils de simulation basés sur des méthodes à volume fini et des maillages non-structurés.
L’application est pour le moment limitée aux équations de Maxwell mais peut-être étendue pour
traiter les équations d’Euler ou de Navier-Stokes. Le modèle orienté objet consiste essentielle-
ment en deux types de classes:

• les classes qui concernent la définition de la géométrie (ou domaine de calcul).

• Les classes en relations avec l’application (par exemple les composants physiques et numé-
riques).

Ses classes sont fortement liées au contexte physique sous considération (la propagation d’ondes
électromagnétiques dans notre cas).

Le squelette du résolveur est une boucle constituée de trois étapes principales:

1. L’équilibre des flux magnétiques est calculé selon la distribution des champs magnétiques
à l’étape précédente. Cet équilibre des flux intervient dans le calcul du champ électrique.

2. L’équilibre des flux électriques est calculé selon la distribution des champs électriques à
l’étape précédente. Cet équilibre des flux intervient dans le calcul du champ magnétique.

3. L’énergie électromagnétique discrétisée est calculée. Cette valeur scalaire est utilisée pour
observer la cohérence des calculs : d’après les analyses théoriques cette valeur doit rester
constante.

Création de la version parallèle et distribuée de Jem3D
Les facettes de frontière sont les facettes d’un objet localisées à la frontière de l’espace de calcul
(le domaine). Lors de la distribution, nous avons introduit les facettes de frontière virtuelles et les
sous-domaines. Une facette de frontière virtuelle (FFV) représente une facette qui est à cheval
sur deux sous-domaines (les sous-domaines sont des sous-ensembles du domaine de calcul). Dans
un couple de sous-domaines qui partagent des facettes, chacun possède une référence (locale) vers
les facettes partagées. Les FFVs sont donc répliquées sur chaque sous-domaine, et chacune des
FFVs “jumelles” participe au calcul. Ces FFVs jumelles, qui sont des copies, s’échangent et combi-
nent leurs valeurs, et restent cohérentes. Pour la mise à jour de valeur, il est de la responsabilité
du sous-domaine de communiquer les valeurs aux sous-domaines voisins qui accèderont à leurs
FFVs. Les sous-domaines sont implémentés en tant qu’objet actif.

Grâce au polymorphisme et à l’association dynamique, il n’est pas nécessaire de connaître le
type réel des facettes : internes ou de frontière. Les méthodes qui leur sont appliquées sont donc
inchangées ; le code qui parcourt l’ensemble des facettes n’est pas modifié.

L’architecture distribuée est totalement décentralisée. L’application communique de voisin à
voisin sans l’intervention d’aucun superviseur. Les points de centralisation étant souvent sujets

2.5. UNE APPLICATION TEST : JEM3D xxix

à congestion lorsque le système est surchargé, notre approche décentralisée assure un meilleur
passage à l’échelle.

Un modèle de communication de group pour améliorer les performances
En ce qui concerne les accès en lecture, une solution naïve aurait été de laisser chaque facette
invoquer de façon indépendante une méthode pour effectuer les opérations de lecture. Comme
l’algorithme est implémenté selon une version séquentielle qui itère sur la liste des facettes à
chaque étape, cela implique que le calcul n’aurait lieu que lorsqu’une face aurait enfin obtenu la
valeur distante, ajoutant ainsi de la latence du au protocole RMI et à la couche réseau. Comme
nous savons qui a besoin d’une valeur précise (la FFV jumelle), l’idée est de pousser les données
plutôt que de les tirer, évitant ainsi une communication qui transmet une requête de lecture.

De manière à obtenir ce comportement, chaque sous-domaine maintient un lien vers les
voisins avec lesquels il partage une facette de frontière virtuelle. L’ensemble de ces voisins est
stocké dans un groupe typé. Comme nous l’avons vu, un tel groupe est directement opérable grâce
à des appels de méthode : seule une invocation de méthode est propagée aux membres. Le con-
cept du groupe typé évite aussi la programmation d’une structure de données qui aurait nécessité
l’utilisation d’un itérateur pour parcourir de façon séquentielle l’ensemble des voisins. Chaque
FFV doit recevoir la valeur de sa jumelle : cela est possible simplement grâce à la diffusion dans
les groupes typés.

Tests
Comme Jem3D est une application scientifique, entièrement écrite avec ProActive, et que ses
principaux modèles de communication reposent sur les communications de groupe, nous sommes
très intéressés par l’évaluation des performances, et ceux sur tous types de plateformes : grappes
homogènes, hétérogènes, et grilles.

Nos premières expérimentations ont eu lieu sur une grappe de 32 machines puis nous avons
étendu nos tests sur 64 machines. Ensuite nous avons déployé Jem3D sur des stations de tra-
vail pour atteindre 294 processeurs. Ces machines, présentes sur le réseau de l’INRIA Sophia-
Antipolis, sont très hétérogènes. Enfin nous avons utilisé DAS-2, une grille de calcul néer-
landaise, pour tester une version de Jem3D qui utilise Ibis comme couche de communication.
Ibis est une version optimisée de RMI, destiné aux calculs hautes-performances.

Conclusion
Jem3D, la version Java de EM3D, a un grand potentiel d’évolution grâce à sa réalisation qui a
suivit un modèle objet. Parallèlement, la dégradation des performances entre la version Java et
la version Fortran semble raisonnable. Nous observons un facteur de 3,5. C’est un bon résultat
selon [FRU 03] qui montre qu’une application Java est en moyenne entre 3,3 à 12,4 fois plus lente
que la même application écrite en Fortran. De plus notre version Java est encore récente et peut
sans doute bénéficier de quelques optimisations. En utilisant ProActive et sa communication de
groupe typé comme bibliothèque de conception d’application à haut niveau, la version parallèle
de Jem3D fut facile à obtenir et à déployer.

xxx RÉSUMÉ

2.6 SPMD orienté-object
Dans ce chapitre, nous proposons le mécanisme de communication de groupe typé comme base à
un modèle de programmation appelé SPMD2orienté-objet. Ce modèle se veut être une alternative
au modèle standard de SPM par passage de message. Étant placé dans un contexte orienté-objet,
nous montrons que notre mécanisme aide à la définition et à la coordination d’activités parallèles
et distribuées. Notre approche offre à travers une extension de l’interface des groupes, de la flex-
ibilité de structuration et une implémentation novatrice. L’automatisation de mécanismes clés
de communication et de synchronisation simplifie l’écriture de code pour des activités parallèles.

Contexte et état de l’art

La programmation SPMD fournit une méthodologie pour organiser un programme parallèle sur
une machine parallèle, une grappe, ou plus récemment une grille. Un unique programme est écrit
et chargé sur chaque nœud d’une plateforme parallèle. Chaque copie du programme s’exécute in-
dépendamment à côté des messages de coordination. Chaque copie du programme (ou processus)
est identifiée par un numéro de rang. Cet identificateur unique est utilisé dans le code pour trou-
ver le chemin d’exécution correspondant au processus.

En tant que langage orienté-objet relativement abouti, et compte tenu de ces récentes amélio-
rations, Java devient une base sérieuse pour réalisation d’applications scientifiques. Les travaux
précédents sur la programmation SPMD traitent principalement des modèles non objets, basés
sur des échanges de messages. Cependant quelques projets ont tenté d’introduire une forme
orienté-objet dans le modèle SPMD, soit en maintenant le passage de messages, soit en utilisant
des invocations de méthode distantes.

SPMD orienté-objet

Il est possible de reproduire le parallélisme de la programmation SPMD dans un modèle orienté-
objet en se basant sur le mécanisme des communications de groupe typé et en associant une
activité à chaque machine participant au calcul. Les besoins d’un modèle SPMD sont les suivants:

• L’identification de chaque membre prenant part dans le calcul parallèle et si possible une
notion de position relative entre ces membres.

• L’expression du programme exécuté par chaque membre prenant part dans le calcul.

• Un ensemble complet d’opérations de communication, notamment des opérations collectives
(pour la communication mais aussi la synchronisation des processus).

Un groupe OO SPMD (OO pour orienté-objet) est défini comme suit : c’est un groupe d’objets
actifs (exclusivement) dans lequel chaque membre possède une référence vers le groupe lui-
même. Chaque objet actif se voit donc doté d’un numéro de rang : celui de sa place dans le
groupe. Chaque membre est capable au groupe et à son numéro de rang dans le groupe. Les
groupes OO SPMD ne sont pas immutables, mais il est de la responsabilité du programmeur de
s’assurer que toute modification sur le groupe maintient sa propriété.

Un membre effectue un envoi ou une réception de données au travers du service asynchrone
d’une méthode appelée à distance par un autre membre du groupe. Le service est nécessairement
FIFO. Traditionnellement, dans les programmes SPMD, le contrôle de l’exécution repose exclu-
sivement des expressions if ou case basées sur le rang du processus. Dans notre approche, le
contrôle de l’exécution peut aussi être basé sur des groupes créés dynamiquement.

Pour simplifier l’accès aux processus avec lesquels une activité interagit le plus souvent, nous
avons introduit la notion de voisinage. Étant donnée une topologie, c’est à dire une représentation

2SPMD signifie Single Program Multiple Data (Programme Unique, Données Multiples).

2.6. SPMD ORIENTÉ-OBJECT xxxi

géométrique de la distribution des processus, il est fréquent que certains processus, géométrique-
ment proches, communiquent plus que des processus éloignés. Les topologies sont des groupes.
La création d’une topologie à partir d’un groupe fournit un ensemble de méthodes spécifiques
d’accès aux processus et la notion de voisinage. Une topologie peut être créée à partir d’un groupe
(copie des références des membres) ou par extraction depuis une topologie déjà existante.

En plus des mécanismes de futur et d’attente par nécessité, notre modèle de programma-
tion OO SPMD propose, tout comme les modèles SPMD standard, des opérations collectives en
charge de la synchronisation des activités : les barrières. Cependant nous proposons non pas une
méthode de barrière mais trois. La barrière globale, implique tous les processus qui suspendent
leur activité jusqu’à ce que tous aient soit parvenu à l’invocation de la barrière. La barrière de
voisinage fonctionne comme la barrière globale mais n’implique qu’un sous ensemble des proces-
sus ; cela permet de ne pas bloquer inutilement certains processus. Enfin la barrière sur méthode
n’implique que le processus qui l’appel, il suspend son activité jusqu’à ce qu’il ait reçu les requêtes
de méthodes spécifiées au moment de l’invocation de la barrière.

Exemple et tests
Nous illustrons la programmation OO SPMD avec un exemple concret. Nous avons choisi les
itérations de Jacobi parce que c’est une application simple, facile à distribuer dans le modèle
SPMD classique. La méthode de Jacobi résout des équations linéaires. L’algorithme effectue des
calculs, échange des données, et se synchronise avec les autres processus ; il recommence ensuite
ces étapes jusqu’à ce qu’une condition d’arrêt soit vérifiée (convergence de valeurs ou nombre fixé
d’itérations).

Cet algorithme est d’abord présenté sous sa forme SPMD classique, écrite en C avec la biblio-
thèque MPI. Ensuite nous présentons son écriture avec notre modèle OO SPMD. Nous montrons
aussi comment utiliser les différentes barrières de synchronisation sur ce cas précis. Des tests
de performances effectués sur une grappe montre les temps de calcul et prouve le bon passage à
l’échelle du modèle.

Comparaison avec l’interface MPI
MPI (Message Passing Interface) est sans doute la bibliothèque la plus utilisée pour la program-
mation SPMD. Nous ne cherchons pas à coller exactement à la syntaxe de MPI, nous souhaitons
au contraire bénéficier de la syntaxe objet des communications de groupe typé. Cependant une
comparaison des interfaces de programmation peut aider à la compréhension. C’est pourquoi, en
faisant le parallèle entre activité de ProActive et processus de MPI, puis groupe typé de ProActive
et communicateur de MPI, nous comparons les principales méthodes des deux bibliothèques.

Conclusion
Nous avons introduit un nouveau modèle de programmation parallèle que nous avons appelé
SPMD orienté-objet comme alternative possible au SPMD par passage de message. Avant tout
ce modèle permet une plus grande flexibilité et un meilleur niveau d’abstraction. D’abord il
assure que seul l’activité émettrice d’un message spécifie la communication, ensuite il fournit
une interface ouverte de topologies pour le placement et l’interaction des activités, et enfin il
propose différentes sémantiques de barrière pour la synchronisation de ces activités, le tout dans
un style orienté-objet.

xxxii RÉSUMÉ

2.7 Travaux en cours et travaux collaboratifs

Les communications de groupe typé sont la base de nouveaux travaux. Le mécanisme des com-
munications de groupe peut encore bénéficier d’améliorations, en terme d’expressivité du langage
et aussi en terme de performances sur des réseaux à grande vitesse permettant des communi-
cations un-vers-plusieurs. Le mécanisme des groupes typés est aussi utile dans la définition de
composants et dans la réalisation de réseaux pour le calcul pair-à-pair.

Composant de comportement

Nous proposons de prolonger la syntaxe de la création de groupe et de changer la syntaxe et
la sémantique de la gestion de groupe. À cet effet, nous présentons un comportement interne
dynamique, appelé le comportement de groupe pour chaque groupe typé, afin de définir la sé-
mantique adoptée par le groupe lors d’une invocation de méthode. Par la définition d’un com-
portement et son assignation dynamique à un groupe, celui-ci peut changer son comportement
interne à l’exécution et de nouvelles politiques peuvent être facilement mises en application et
ce sans interventions sur la bibliothèque ni même sur le code de l’application. Grâce à la réflex-
ion du langage Java, un comportement de groupe nouvellement créé peut être chargé pendant
l’exécution du programme ; de cette façon, un groupe peut d’une manière transparente adapter
son comportement au contexte dans lequel il agit.

Pour assurer la flexibilité et l’extensibilité, la configuration et la personnalisation d’un com-
portement de groupe sont obtenues par un objet GroupBehavior. Cet objet indique le comporte-
ment d’un groupe en réponse à la demande d’invocation de méthode et est la composition de
quatre sémantiques définies ci-dessous. Chaque sémantique a un état par défaut et peut être
modifié dynamiquement.

• La sémantique de traitement des requêtes définit à quels membres du groupe s’applique un
appel de méthode.

• La sémantique de distribution définit la façon dont les paramètres d’un appel de méthode
sont partagés entre les membres du groupe.

• La sémantique de synchronisation définit les conditions d’attente sur les résultats d’un ap-
pel de méthode avant que l’activité de l’appelant ne continue son exécution.

• La sémantique de collecte des résultats définit la façon dont les résultats sont retournés à
l’appelant.

Utilisation d’IP multicast

Du point de vue de la communication à l’intérieur d’un groupe, une amélioration importante peut
être apportée. L’idée est de tirer avantage de transmissions de données de type un-vers-plusieurs
disponibles sur les réseaux modernes. Par exemple selon certaines informations sur le réseau,
il est possible d’employer, quand cela est possible, une couche transport basée un protocole un-
vers-plusieurs au lieu des mécanismes communément utilisés de type un-vers-un.

ProActive est particulièrement approprié pour mettre en œuvre un tel mécanisme, grâce à sa
modularité élevée et ses mécanismes de personnalisation qui associe les services de communica-
tion au niveau transport du réseau physique.

Notre solution est basée sur la définition d’un nouveau composant, le communicateur, dont la
tâche principale est de contrôler la transmission de données à l’intérieur d’un groupe pour chaque
appel de méthode. Un tel composant est le seul composant à se rendre compte des services de
communication fourni par les réseaux physiques et à pouvoir ainsi associer la sémantique de
communication à la couche transport disponible, qui est la plus appropriée.

2.7. TRAVAUX EN COURS ET TRAVAUX COLLABORATIFS xxxiii

Composants
Le calcul de grilles et les réseaux pair-à-pair sont par définition hétérogènes et distribués, et pour
cette raison ils conduisent à nouveaux défis technologiques : complexité dans la conception des
applications, complexité du déploiement, complexité de la réutilisation du code et complexité de
l’exécution. ProActive fournit une réponse à ces préoccupations par l’implémentation d’un modèle
à composants extensible, dynamique, et hiérarchique appelé Fractal.

Fractal définit un modèle général de composants, avec une interface de programmation d’appli-
cation en Java. Selon la documentation officielle, le modèle à composants de Fractal est un mod-
èle modulaire et extensible qui peut être employé avec de divers langages de programmation pour
concevoir, implémenter, déployer et modifier divers systèmes et applications, depuis des logiciels
d’exploitation jusqu’aux plateformes de logiciel personnalisé et aux interfaces graphiques. Le
modèle Fractal est basé sur les concepts de l’encapsulation, de la composition, du partage, du
cycle de vie, des activités, et de la dynamicité. Un composant Fractal est formé de trois parties:

• un contenu, qui peut être récursif (composant composite).

• un ensemble de contrôleurs qui fournissent les propriétés nécessaires d’introspection.

• un ensemble d’interfaces par lesquelles le composant interagit avec d’autres composants.

L’implémentation de Fractal avec ProActive étend le modèle sur deux points. D’abord un
composant peut être distribué sur plusieurs machines virtuelles. Ensuite nous définissons les
composants parallèles qui encapsulent d’autres composants d’un même type et vers lesquels des
appels de méthode sont envoyés simultanément. Ces composants définissent une interface collec-
tive. Bien entendu le mécanisme des groupes typés est un dispositif clé ces composants parallèles.

Calcul pair-à-pair
Le calcul pair-à-pair émerge comme un nouvel environnement d’exécution. Le potentiel de cen-
taines de milliers de nœuds reliés ensemble pour exécuter une application est très attrayant,
particulièrement pour le calcul de grille. Imitant le pair-à-pair de données, il serait possible de
commencer un calcul qu’aucune panne ne pourrait arrêter. ProActive fournit une interface de
programmation d’application pour le calcul pair-à-pair visant principalement à utiliser les cycles
d’unité centrale disponibles de machines d’un réseau d’entreprise, éventuellement combiné aux
machines d’une grappe ou d’une grille. Le but est de déployer des applications sur un ensemble
décentralisé de nœuds et d’employer la plupart des ressources disponibles sur un réseau.

L’infrastructure de pair-à-pair fonctionne comme réseau de recouvrement. Elle se compose de
services “pair-à-pair” (les pairs) qui deviennent à leur tour des nœuds de calcul. Un objet actif,
appelé P2PService et déployé sur une machine virtuelle, met en application le service.

Dans cette architecture décentralisée, chaque pair possède une part de responsabilité vis à
vis de la propagation de messages et du maintient de la connectivité. Les messages fonctionnels
qui transitent sont essentiellement des demandes de ressources, c’est à dire des demandes de
nœuds. Si un service pair-à-pair n’est pas capable de répondre à la demande de l’utilisateur,
il transmet cette demande à ses voisins. Cette communication entre pairs est assurée par une
communication de groupe typé. De même pour éviter un partitionnement du réseau pair-à-pair,
les services émettent régulièrement un battement de cœur. Ce battement de cœur est un message
transmit à tous les voisins du pair de façon à détecter les pannes et si le nombre de voisins
“vivants” est jugé insuffisant un message de recherche de nouveaux nœuds est propagée. Ces
messages sont également diffusés dans le réseau grâce aux communications de groupe typé.

xxxiv RÉSUMÉ

Conclusion

3.1 Accomplissements

Java possède beaucoup d’avantages pour le calcul sur grilles. Avant tout, étant basé sur le con-
cept de machine virtuelle, il est naturellement plus portable que les langages traditionnels, sta-
tiquement compilés. Cela rend l’exécution d’applications Java plus aisé sur des environnements
de grilles, qui sont par nature hétérogènes. Aussi, Java est basé sur un modèle de programma-
tion haut-niveau et fortement typé qui supporte la concurrence et la distribution des processus.

L’objet actif est l’unité de base de ProActive pour exprimer une activité et la distribution et
ainsi construire des applications concurrentes. Un objet actif est créé à distance sur un noeud.
Les appels de méthode sont envoyés aux objets actifs de façon asynchrone, avec création trans-
parente d’un objet futur et synchronisation par attente-par-nécessité.

En plus des simples objets actifs, ProActive offre maintenant un mécanisme de communi-
cation de groupe qui permet l’invocation d’une méthode sur un ensemble d’objets, regroupés et
référencés par un unique nom collectif. Un groupe de ProActive est aussi appelé groupe typé
puisqu’il est composé d’objets appartenant à des classes qui hérite d’une même superclasse ou
implémente une même interface. Un groupe typé est une “réplication” d’objets sur un ensemble
de noeud, une communication de groupe et une “réplication” d’un appel de méthode sur ces ob-
jets. Chaque objet membre peut être une instance d’une classe différente mais tous doivent avoir
une classe ou une interface ancêtre commun.

Alors que de nombreuses bibliothèques et plateformes de programmation qui fournissent des
communications de groupe imposent des contraintes spécifiques aux programmeurs. Grâce à son
Protocole à Meta-Objets, ProActive fournit un mécanisme plus flexible et transparent. Au travers
de la réification des appels de méthode et de constructeur, le MOP rend possible d’initier une com-
munication de groupe par l’invocation d’une méthode. En conséquence, utiliser un groupe typé
prend exactement la même forme que l’utilisation d’un simple et unique objet. Quand un appel
de méthode est invoqué sur un groupe, la sémantique de communication est implémentée au
dessus d’un système de communication asynchrone qui traite de façon interne la construction et
l’envoi de requêtes, l’ordonnancement des évènements de transmission de requêtes, notification
d’erreurs, collecte des résultats, . . . Un tel système propage efficacement et de façon asynchrone
les appels de méthode à tous les membres du groupe en utilisant plusieurs fils d’exécution. Un
appel de méthode sur un groupe est asynchrone est produit un objet futur transparent qui col-
lecte les résultats.

Actuellement, les groupes de ProActive fournissent au programmeur des outils pour la gestion
de la distribution des paramètres d’entrée, tels que la diffusion ou la distribution. En choisissant
la diffusion, les mêmes paramètres sont envoyés à tous les membres. Dans le cas de la distri-
bution, une partie différente de l’ensemble des paramètres est envoyée vers chaque membre du
group. Dans ce cas, les paramètres à distribuer doivent être explicitement passés sous forme de
groupe, dont chaque membre est une fraction du paramètre. Le comportement par défaut est la
diffusion, pour le changer le programmeur doit invoquer la méthode statique setScatterGroup
de la classe ProActiveGroup sur le paramètre. Ainsi la sémantique de partage des paramètres
repose uniquement sur les paramètres d’appel.

xxxv

xxxvi CONCLUSION

Le résultat d’une communication de groupe est également un group. Ce résultat est dy-
namiquement mis à jour avec les retours de résultats. Grâce à la synchronisation implicite du
mécanisme d’attente-par-nécessité, ce résultat est immédiatement opérable : il peut être utilisé
pour exécuter un appel de méthode même si tous les résultats qui le composent ne sont pas en-
core disponibles.

Nous avons introduit un modèle de programmation parallèle que nous appelons SPMD orienté-
objet et que nous proposons comme une alternative au traditionnel SPMD par passage de mes-
sages. L’API résultante est déjà pleinement intégrée dans l’intergiciel ProActive, membre du
consortium Object Web. Notre ambition est d’utiliser cette nouvelle approche dans des applica-
tions à taille réelle. Nous avons déjà réussi à appliquer avec succès le modèle des communi-
cations de groupe typé pour réaliser des simulations d’électromagnétisme. Notre travail actuel
est d’appliquer l’ensemble de l’approche OO SPMD. Ensuite nous prévoyons de viser d’autres do-
maines d’application telles que la génétique (appliquer BLAST en parallèle) pour laquelle nous
avons déjà développé une application mais pas encore sur le modèle OO SPMD.

3.2 Perspectives
Les groupes de ProActive définissent un modèle complet pour la programmation par groupe typé.
Une implémentation a été réalisée, évaluée, et utilisée pour construire des applications. Le mod-
èle de programmation OO SPMD propose une approche plus flexible de la programmation SPMD.
Il permet une meilleure flexibilité pour la synchronisation des activités par barrières et supprime
les boucles explicites. Il devient également possible de privilégier la réactivité et la réutilisation
de code.

Cependant plusieurs problèmes restent ouverts. Les principaux points pour des travaux fu-
turs sont listés ici:

• Un dimensionnement “intelligent” du réservoir à fil d’exécution. Définir une solution
générique qui permet d’allouer de façon optimale les ressources pour effectuer une commu-
nication de groupe n’est pas chose facile. De nombreux paramètres entre en compte : le
nombre de membres dans le group bien sûr, mais aussi la fréquence de communication, la
taille des données échangées, la charge du système, la bande passante du réseau, . . . Nous
avons expérimenté dans plusieurs applications que le meilleur mécanisme de dimension-
nement est souvent obtenu après observations et modifications de la part du programmeur.
C’est pour cela que notre choix final est de laisser au programmeur la possibilité de redéfinir
sa propre méthode qui dimensionne le réservoir selon ses conditions. Il serait cependant in-
téressant de regarder plus en profondeur de façon à voir si quelques modèles émergent pour
répondre plus efficacement et plus généralement à cette préoccupation.

• Une étude sur l’ordonnancement de livraison. Les communications de groupe typé
fournissent un ordonnancement FIFO : étant donné une source, les messages sont reçus
dans l’ordre dans lequel ils ont été émis. Cette sémantique suffit généralement pour la con-
ception d’applications distribuées. Elle fournit de bonnes performances et une sémantique
plus forte peut être ajoutée par le programmeur. Avec les groupes actifs, l’ordonnancement
est total : les messages sont reçus dans le même ordre par tous les membres du groupes.
Cela garantit par le fait qu’un groupe actif n’expose qu’un unique point d’entrée qui re-
laie les appels. Une étude précise sur l’impact de l’une ou l’autre de ces sémantiques sur
l’écriture de code et les performances à l’exécution serait intéressante. Nous pouvons aussi
considérer l’introduction de l’ordonnancement causal.

• Des mesures poussées sur l’utilisation d’IP multicast. L’implémentation actuelle qui
lie ProActive à une librairie d’IP multicast n’est qu’un prototype. Nous devrons produire
une version finale qui s’intègrerait dans la distribution standard de ProActive. Nous pour-
rons aller plus loin dans l’analyse des performances avec cette version des groupes typés

3.2. PERSPECTIVES xxxvii

sur IP multicast. Des mesures seront effectués sur grappes et grilles, avec des simples
tests basiques et une applications numérique (probablement Jem3D). Il serait aussi très in-
téressant d’observer le comportement du système avec un schéma de communication mixte :
par exemple, dans un environnement de grille où les communications inter-cluster sont as-
surées par des communications standards de ProActive (pour passer les pare-feux) alors
que les communications intra-cluster sont assurées par IP multicast (pour bénéficier des
capacités de réseaux très rapides).

• Une redistribution NxM. Au sujet des composants, nous aimerions automatiser l’envoi des
paramètres d’un appel de méthode, et symétriquement, la collecte des résultats, dans le cas
d’une redistribution de M vers N. Dans notre implémentation actuelle du modèle Fractal
ce problème n’est pas encore traité. Les communications de groupe typé assument que
l’unité de base de la transmission de données est l’objet. Une solution serait de demander
au programmeur d’implémenter une méthode de redistribution de ses données de n’importe
quel nombre M d’objets vers n’importe quel nombre N d’objets, et d’utiliser cette méthode
dons notre modèle à composant. Cependant nous cherchons toujours une solution plus
autonome et transparente. Les communications de groupe typé avec des groupes de futurs
ouvrent la voie à de nombreuses perspectives dans ce domaine.

• Une évaluation plus précise du modèle OO SPMD. Notre modèle de programmation
OO SPMD a été évalué avec un programme simple s’exécutant sur une grappe. Nous
souhaitons tester une application à taille réelle : Jem3D semble encore le candidat idéale
puisque son modèle correspond au modèle SPMD (l’algorithme est basé sur des itérations
et chaque sous-domaine effectue la même tâche). Les performances de cette application
mesurées sur une grille pourront nous apprendre beaucoup sur la validité de notre ap-
proche et son comportement sur des systèmes à très large échelle.

xxxviii CONCLUSION

Part II

Thesis

1

Chapter 1

Introduction and objectives

1.1 Context

Many Grid applications such as simulations applied to scientific and engineering fields, or data
acquisition and analysis from distributed measurement instrumentations and sensors deal with
intensive computations and management of huge amount of data which have to be transferred
and processed on multiple resources in order to improve the performance.

In recent years, many Grid middleware platforms and toolkits have been developed (Globus
[GLO], Legion [NAT 02], Unicore [UNI], Condor-G [FRE 01], HiMM [SAN 03], etc.). These mid-
dleware platforms, typically adopt unicast communication mechanisms implemented atop reli-
able protocols. However, Grid systems could strongly benefit in many applications from a one-to-
many or many-to-many communication mechanisms [JEA 03, MAI 02].

Providing a middleware for Grid computing with an effective and efficient implementation
of the group abstraction at programming level could ease software development and reduce the
communication overhead both in a small scale and in a large scale. Performances of programs
on distributed memory parallel machines are highly dependent of the efficiency of interprocess
communications. Parallel programming environments often offer poor support for high level
communication models. This thesis deals with high level group communications in such archi-
tectures.

According to the Object Group design pattern [MAF 96], a group is a local surrogate for a set of
objects distributed across networked machines to which can be assigned the execution of a task.
The object group pattern specifies that when a method is invoked on a group, the runtime system
sends the method invocation request to the group members, waits for one or more member-replies
on the basis of a policy, and returns the result back to the client. Groups are usually dynamic,
i.e. the set of group members can continuously change.

1.2 Needs

For few years, the interest in using Java for high-performance computing has increased. Java
provides an object-oriented programming model with support for concurrency, garbage collec-
tion, and security. It features multithreading and Remote Method Invocation (RMI) [SUN98] (an
object-oriented version of Remote Procedure Call (RPC) [BIR 84]).

Programming high-performance applications requires the definition and the coordination of
parallel activities. Hence, a library for parallel programming should provide not only point-to-
point but collective communication primitives on groups of activities.

3

4 CHAPTER 1. INTRODUCTION AND OBJECTIVES

In the Java world, the RMI mechanism is the standard point-to-point communication mecha-
nism, and is adequate mainly for client-server interactions, via synchronous remote method calls.
In a high-performance computing context, asynchronous and collective communications should
be accessible to programmers, so the usage of RMI is not sufficient.

We have developed ProActive [PRO], a 100% Java library, for parallel, distributed, concurrent
computing with security and mobility. RMI is by default used as the transport layer. Besides
remote method invocation services, ProActive features transparent remote active objects, asyn-
chronous two-way communications with transparent futures, high-level synchronization mecha-
nisms, migration of active objects with pending calls and an automatic localization mechanism
to maintain connectivity for both “requests” and “replies”.

At programming level, groups can ease software development since they simplify the im-
plementation of some high-level computing models, such as master-slave, pipeline, and work-
stealing.

At communication level, groups can reduce the communication overhead for several reasons.
First, the delivery of the same content to a collection of receivers can benefit from the group
abstraction since specific optimizations can be applied even if the underlying transport layer is
based on unicast communication. For instance, the network transfer of objects requires serial-
ization before sending them. Since serialization takes a significant processing time, sending the
same object to the members of the group is easily improved if the same serialized copy of the
object is used for a unicast transfer towards each member. Second, group communication can be
implemented through its mapping on a multicast transport layer.

1.3 Thesis organization
The goal of our research is to design an efficient and elegant communication mechanism dedi-
cated to grid computing. It must provide a model that integrates cleanly into the object-oriented
model of Java. The focus of this work is to extend the RMI mechanism to support a more ex-
pressive form that allows multi-point communications. This should improve performances while
reducing the programming complexity of distributed applications. More generally, we aim at pro-
viding a model that helps the definition and the coordination of distributed activities.

The document is organized as follow:

• Chapter 2 gives an overview of the related works on group communication mechanisms in
various domains. It identifies the main features being required depending on the domain of
application. This chapter includes a state of the art presenting the most noticeable systems
for group communication. A discussion about required features concludes the chapter.

• In Chapter 3, I present the ProActive middleware. I introduce the programming model,
and then give a description of its features for parallel and distributed computing. This
presentation describes some elements of the API.

• Chapter 4 introduces an object-oriented model for a high-level group communication mech-
anism. I describe the typed approach with the presentation of the group API added in the
ProActive middleware. Thus, I introduce the features of this typed mechanism.

• Chapter 5 gives details of the implementation. It presents the main points of optimization
introduced in the system. Then it evaluates performances with basic benchmarks on both
clusters and grid platforms.

• In Chapter 6, I present a numeric application, named Jem3D, which implementation is
heavily based on the group communication mechanism for intensive communications and
process synchronization. Performances and scalability of Jem3D, obtained on several exe-
cution platforms, are presented.

1.3. THESIS ORGANIZATION 5

• Chapter 7 introduces the object-oriented SPMD programming model. This chapter de-
scribes the background concepts of SPMD programming, and then presents our object-
oriented approach. Codes and performances are analyzed using a typical program: the
Jacobi iterations.

• In Chapter 8, I present features related to the group communication mechanism that are
currently in development. They are the behavior component, the use of IP multicasting, the
Fractal’s components implementation, and the peer-to-peer computing.

• Finally, Chapter 9 summarizes the major achievements of this thesis, and presents perspec-
tives.

6 CHAPTER 1. INTRODUCTION AND OBJECTIVES

Chapter 2

Related work

By opposition to point-to-point communication, multipoint communication involves two or more
processes. Such kind of communication is used in a wide growing range of application, especially
diffusion (broadcast and multicast) that consists in sending the same replicated data to many
receivers. Many distributed applications require delivery of messages and membership services
for a group of processes.

A group is a set of objects that are addressed as a single entity. Those objects can be, not
exclusively, processes, activities, hosts or objects (as in object-oriented languages). Throughout
this document, each term may be used interchangeably.

This chapter is organized as follows: in a first time Section 2.1 introduces the main properties
of group communication. In the most general way, it defines the points on which all kinds of group
communications have agreed upon. For each of those main topics, I present the usual answers
supplied by the large communities working around communications systems. Then Section 2.2
gives an overview of the existing libraries and tools. This state of the art presents the most
significant projects related to the wide scope of group communication. It details specificities of
each project and shows their main interests depending on their targeted area of applications.

2.1 Group properties
[MAN 98] exposes the diversity of requirement in group communication. Some applications ex-
pect a total ordering for the message delivery, while others might not need it. In some applica-
tions, every process is able to send messages, while in others only few ones are authorized. In
some application data is only in one place, while in others data is replicated in many places. In
some applications groups contain few members and are static, while in others, groups contain
large amounts of members (about 100,000) and are dynamics. Some applications are not aware
about transmission reliability while others are.

We have identify four communities that study group communications; each one for its own
purposes that may differ or be quite similar from the others. Firstly, the Internet community
focuses on network aspects and protocol. Secondly, the operating system community is interested
in distributed operating system. Thirdly, the distributed algorithm community is involved in
fault-tolerant application and protocol design. Finally, the parallelism community is interested
in execution platform for parallel applications.

2.1.1 Structure
Depending on their structures, groups can support a wide range of applications. One has to
choose the group structure that best suits the application needs. To all programming needs or
user applications match a group structure. Four group structures are proposed to provide the
most appropriate policy (as presented in [BIR 91]):

7

8 CHAPTER 2. RELATED WORK

1. A peer group is formed by a set of member cooperating for a particular purpose. Typi-
cally, the applications using peer groups are fault-tolerant or load sharing applications (see
Figure 2.1 (a)). Peer group does not scale very well.

2. A client-server group is composed of a possibly large amount of clients and a peer group
of servers. Messages are sent to the members of the group by a non member client (see
Figure 2.1 (b)).

3. A diffusion group is a client-server group where a single message is sent by one of the
server to the set of clients and servers. Such groups benefit from a multicast network (see
Figure 2.1 (c)).

4. A hierarchical group is an extension of a client-server group. In applications distributed
on a large number of computers, it is important to localize the interactions between mem-
bers in order to reduce the number of exchanged messages to improve performance (see
Figure 2.1 (d)). The root group becomes a centralized point whose failure is critical.

(a) Peer group (b) Client−server group (c) Diffusion group (d) Hierarchical group

Figure 2.1: Group structures

A group is said egalitarian if all members of the group have the same activity and no one is in
charge of extra services. For instance a hierarchical group is not egalitarian: some members that
are groups relay the message. Another example of non-egalitarian group is the use of one process
in the group (often the process of rank 0) to coordinate and control ordering or membership.

The management of a group is distributed if every member takes (a same) part to the manage-
ment of the group. The management is centralized if only one member is in charge of it. Finally,
the management is hierarchical if the management is performed by some members, each one in
charge of a subset of members.

According to [TAN 90, TAN 94], groups can be classified in two categories: closed groups and
open groups.

• In a closed group, only members of the group can send and receive messages. Conse-
quently, all communicating processes belong to the closed group. The closed group seman-
tics implemented by the application layer is typical of a parallel processing application
where a group of processes work together to formulate a result which does not require the
interaction of members outside the group. Indeed, this group communication style is often
implemented in a peer group or diffusion group programming style.

• In an open group not only the members of the group can send and receive messages;
the non-members do not need to join the group to communicate with the members. An
open group semantic best suits replicated server applications where non-members can send
messages to the group. Usually, a client server group or a hierarchical group is the best
structure for an open group.

2.1.2 Reliability and semantics
A communication is reliable if, without hardware failure, the sent messages are received by the
receiver(s) and the data integrity is kept. Reliability is much more difficult to maintain for group

2.1. GROUP PROPERTIES 9

communication than for point-to-point communication. For instance, the System V [CHE 85] and
Chorus [ROZ 92] only provide unreliable group communication, pretending to reduce the over-
heads in group communication, and consequently provide acceptable performances. However the
need for reliable message delivery becomes crucial in case of requirement of consistent service or
data.

If an application using unreliable group communication needs reliability, the reliable mecha-
nism has to be performed at the user level. In that case, the overhead appears at the application
layer and writing a reliable program becomes harder. That is why most group communication
protocols provide reliable group communication at the transport level or at the interprocess com-
munication level.

Communication networks are fundamentally unreliable. Packets can be lost through the net-
work. So the group communication protocol or system must provide the basic mechanisms for
reliability to ensure the exchange of messages from a sender to the group members.

Delivery semantic

The delivery semantic defines if a group communication succeeds to deliver a message to the
group. Usually, there are five possibilities for delivery semantic:

1. With the zero delivery semantic the group communication is considered to be successful
even if no message reaches a member of the group. Actually, in zero delivery semantic all
deliveries are successful.

2. In single delivery semantic, only one member of the group needs to receive the message
for the group communication to be considered successful.

3. The n-delivery semantic requires that at least n members of the group receive the message
for the group communication to be successful. n-delivery may be a zero delivery if n=0 or a
single delivery if n=1.

4. The quorum delivery semantic requires that a majority of the members receive the mes-
sage for the group communication to be successful. The number of messages required to
achieve the quorum may vary with the size of the group.

5. The atomic delivery semantic requires that all or none of the members receive the message
for the group communication to be successful. The atomic delivery is the strongest delivery
semantic.

Response semantic

As for the message delivery semantics, group communication has to provide a range of seman-
tics for the responses. The message response semantic defines the number and type of awaited
responses to consider succeeded the response of the group communication. Symmetrically to the
delivery semantics, there are five response semantics:

1. With the zero response semantic the group communication is considered to be successful
even if no response returns to the sender. Zero response semantic provides unreliable group
communication.

2. In single response semantic, only one response from one member of the group is needed to
consider the response successful.

3. The n-response semantic requires that at least n responses from members of the group
return to the sender. The zero response semantic is an n-response semantic where n=0, the
single response semantic is an n-response semantic where n=1.

10 CHAPTER 2. RELATED WORK

4. The quorum response semantic requires that a majority of response is received by the
sender of the message for the group communication to be successful. The number of re-
sponses required to achieve the quorum may vary with the size of the group.

5. The total response semantic requires that a response from all members of the group return
to the sender.

2.1.3 Dynamicity
A group is dynamic if members can join and leave at any time. By opposite, groups that do not
allow join and leave operations at any time are static. Dynamic groups can be classified in two
categories: the dynamic transient groups and the dynamic persistent groups. A transient group
disappears when the last member has left. As opposed to a transient group, a persistent group
survives to the disappearance of its last member. Even empty the group continues to exist.

Dynamicity may be the source of lost of consistency between copies of local surrogates of a
same group. Modifications on a surrogate may be not (or not in time) reflected on other surro-
gates, thus introducing inconsistency between them. Many group toolkits using local represen-
tation for their groups choose not providing dynamicity to avoid this problem.

2.1.4 Ordering
The ordering of message delivery in group communication systems was an open discussion.
[CHE 94] argued that group communication should not provide any ordering of message de-
livery, leaving the ordering issue to the programmer at the application layer. In opposition,
[BIR 93a, BIR 94] and [COO 94] defended the opinion that a group communication should pro-
vide the full set of message delivery semantics presented below.

Ordering semantics are classified in four categories:

1. First, the no ordering semantic implies that all messages will be sent to the target group
in no specific order.

2. The FIFO ordering (by source) semantic ensures that messages are received in the order
they were sent by the source (First In First Out), for example see Figure 2.2 (a). Note that
FIFO ordering messages are all referenced to the sender (i.e. the source), which is the pro-
cess A in the figure.

m 1

m 2

m 4

m 3

m 1

m 2m 3

m 4

C

B

A A

B

C

(a) FIFO ordered (b) not FIFO ordered

Figure 2.2: FIFO message ordering

In a group communication with multiple receivers, if FIFO delivery of point-to-point is not
guaranteed, it may be possible that messages m1 and m3 may be delivered in FIFO order
while messages m2 and m4 may not, breaking the FIFO ordering; see Figure 2.2 (b). FIFO
ordering requires FIFO point-to-point communications, as a necessary condition.

3. The Causal ordering semantic implies that messages are received in the same order as
they were sent (FIFO ordering) and, if the diffusion of a message m was initiated and this
message leads to the sending of a message m’ by one of its receivers, then all the messages
m must be received before the messages m’ by all the receivers of both messages.

2.1. GROUP PROPERTIES 11

Causal ordering has been inspired by the Lamport’s definition of the relation “happen be-
fore” of events in distributed systems [LAM 78]:
“The relation→ on the set of event of a system is the smallest relation satisfying the following three
conditions: (1) if a and b are events in the same process, and a comes before b, then a → b. (2) if a is
the sending of a message by one process and b is the receipt of the same message by another process,
then a→ b. (3) If a→ b and b→ c then a→ c.”

Figure 2.3 (a) presents a causal ordered message delivery. We write m1 → m4|5|6’ the fact
that m1 → m4’, m1 → m5’, and m1 → m6’. The group receiving both m and m’ messages is
composed of B and C, we will note it {B|C}. Figure 2.3 (a) exposes {B|C} managing a causal
ordered message delivery: all the m’ messages induced by m1, one of the m messages, are
received after the m messages on B and C. In Figure 2.3 (b) the causal ordering is broken by
the process C that receives the m6’ message before the m3 message while m1 → m4|5|6’.

m 1

m 2 m 5’

m 6’

m 3

m 1

m 2

m 4’

m 5’

m 3m 6’

m 4’

C

B

A

B

C

A

D D

(a) causal ordered (b) not causal ordered

Figure 2.3: Causal message ordering

4. The Total ordering semantic supposes that all messages are reliably delivered in the same
sequence to all members of the group. It guarantees that all members receive the messages
in the same order. Causal ordering takes care of the relationship of messages while total
ordering takes care of the same order of messages delivery for all members of a group.
In Figure 2.4, the considered group is again {B|C}. The left picture (a) presents a total
ordered message delivery, all group members receives the messages in the same order: first
the m message, then the m’ message, then the m” message. In the right picture (b) the total
ordering is broken: process C receives m, m’, m” while process B receives m, m”, m’.

m 1

m 2

m 1

m 2

m ’3

m ’4
5m ’’

m ’’6

m ’3

m ’4

5m ’’

m ’’6

(a) total ordered (b) not total ordered

C

B

A

D

C

B

A

D

Figure 2.4: Total message ordering

The semantics of message ordering is an important factor in providing good application layer
performance and a reduction in the complexity of distributed application programming. The
order of message delivery to members of a group dictates the type of group application it is able
to support.

2.1.5 User interface
Finally, there are different ways the programmer may trigger group communications in source
code. Two approaches emerges. In the communication by message approach, the programmer
builds a message containing the data he or she wants to diffuse, and then invoke a communica-
tion primitive that effectively send this message. In the typed communication approach, a group
communication is achieved through a remote procedure call. We said “typed” because remotely
accessible procedures compose an interface (a type) and return a typed result. Such communica-
tion automatically creates the message, sends it, and may receive a result (i.e. an other message).

12 CHAPTER 2. RELATED WORK

2.2 Group toolkits
In this section some of the most significant group communications systems are presented. They
are designed either for Internet, for distributed operating system, for UNIX operating system (as
toolkit), for fault-tolerant applications, and for distributed application environments. The most
distant is presented first, leading to the projects which are the closest to our research interest.
The semantics they provide is emphasized and summed up in tables.

2.2.1 Internet multicast
Internet was asking for group communication. The need for group communication in the Internet
world differs from need of group communication in the applicative world. IP Multicast, presented
first, is the base of most of other protocols. It provides a basic broadcast communication scheme.
Then, MTP, XTP, RAMP and RMTP will be briefly presented. Those protocols represent the set
of main solutions.

IP Multicast

IP multicasting is the transmission of an IP datagram to a host group: a set of zero or more hosts
identified by a single IP destination address. A multicast datagram is delivered to all members of
its destination host group with the same best-efforts reliability as regular unicast IP datagram.
There is no guarantee that the datagram reaches all the destinations or it arrives in the same
order.

The group membership is dynamic. Thanks to the Internet Group Management Protocol
(IGMP) [DEE 89], there is no limitation on the location or number of members in a group and a
host may be a member of more than one group. A group may be permanent (i.e. persistent); it
keeps the same address independently of the membership, even if there is no more member. Oth-
erwise IP Multicast allows also groups to be transient; a group keeps its address until it becomes
empty.

IP Multicast does not provide reliability or ordering of communications. However it offers the
basic mechanisms to build high-level protocols. IP Multicast is now integrated in IPv6 standards
[HUI 96].

Membership Dynamic
Structure Open group
Ordering No-ordered
Reliability Not reliable
User interface Communication by message

Table 2.1: IP Multicast properties

Multicast Transport Protocol

Multicast Transport Protocol (MTP), presented in [ARM 92] is a protocol build at the transport
layer. It provides reliable and efficient communications over protocols build at the network layer
(like IP Multicast). MTP creates groups named webs. Members of a web can be consumer (only),
consumer and producer, or master (a master is also consumer and producer). The master controls
the communications in a web. There is only one master by web.

The master initializes the web. Then members join the group specifying if they are just con-
sumer or consumer and producer. The request for registering also contains information about the
quality of the transmission: reliable or best-effort, one-to-all or all-to-all, the minimal through-
put requested and the maximum size of a datagram.

2.2. GROUP TOOLKITS 13

The master schedules the communications and controls the throughput with a token mech-
anism. By giving the token to a producer, the master allows it to send some packets. Delivery
failures are detected using Negative Acknowledgments (NAck). Only the lost packets are retrans-
mitted. Consequently, each producer has to store the transmitted data during a sufficient amount
of time.

Despite its qualities, the centralized approach of MTP introduces a bottleneck. It damages
the scalability of the protocol. Moreover, the waiting for the token introduces a delay in all
communications.

Membership Dynamic
Structure Closed group
Ordering FIFO ordered
Reliability Reliable or not reliable
User interface Communication by message

Table 2.2: MTP properties

Xpress Transfer Protocol

Xpress Transfer Protocol (XTP) is a transport layer protocol [FOR 95]. It was designed for a large
scope of applications: from distributed systems to real-time systems. XTP can be used over the
network layer (IP) or directly over the data link layer (Media Access Control (MAC) and Logical
Link Control (LLC)) or over the ATM Adaptation Layer (AAL).

XTP provides the same communication features as TCP, UDP, and IP Multicast, and reli-
able and FIFO ordered communications. XTP provides, independently, error detection on control
(with positive acknowledgments), retransmission of lost packet, flow control, acknowledgment
management, priority management, throughput control, and traffic description.

XTP groups are called multicast groups. A multicast group is composed of a single sender
and many receivers. To build many-to-many communications, XTP requires the combination of
multicast groups (as many as senders). Groups are dynamics, and membership is accessible at
the application level.

XTP is a very complete protocol. However it is not very scalable: all receivers are connected
with the sender. Furthermore, the combination of several one-to-many communications to build
a many-to-many communication requires the opening of a lot of XTP connections and makes all
the point-to-point communications concurrent.

Membership Dynamic
Structure Closed group
Ordering FIFO ordered
Reliability Reliable or not reliable
User interface Communication by message

Table 2.3: XTP properties

Reliable Adaptive Multicast Protocol

Reliable Adaptive Multicast Protocol (RAMP) is a transport layer protocol [BRA 93]. It was ini-
tially built to send huge sized pictures to numerous users. It comes with the Multicast Group
Authority (MGA), a service in charge of the group ID allocation and group management. RAMP

14 CHAPTER 2. RELATED WORK

plans various qualities of service depending on receivers. To achieve this, RAMP uses two unreli-
able modes. The first one is best-effort; the second one ensures reliability only with the members
asking for it.

RAMP allows the senders to use one among two modes. In the Burst Mode, sequences of
packets are sent in a short time step. The receivers have to send a positive acknowledgment for
each burst. In the Idle Mode, the senders never stop to send packet, even if there is no useful
data (empty packets are sent). The burst mode is more suitable with low-speed network because
the amount of data sent is minimized. The idle mode is more suitable when the receivers are
numerous.

RAMP proposes dynamic groups and a differentiated quality of service for a unique data flow.
It is well appropriate to reliable and heterogeneous networks which are the typical networks
nowadays. As XTP, RAMP lacks of scalability due to the connection between senders and re-
ceivers.

Membership Dynamic
Structure Open group
Ordering FIFO ordered
Reliability Reliable or not reliable (on demand for each

receiver)
User interface Communication by message

Table 2.4: RAMP properties

Reliable Multicast Transport Protocol

Reliable Multicast Transport Protocol (RMTP) [LIN 96] is a reliable multicast transport protocol
for the Internet developed by Lucent Technologies. Do not confuse with the RMTP technology
developed by the IBM Tokyo Research Laboratory and the NTT Information and Communication
Systems Laboratory.

RMTP provides ordered and reliable data stream from one sender to a group of receivers.
RMTP is implemented using a multi-level hierarchical approach, in which the receivers are
grouped into a hierarchy of local regions, with a Designated Receiver (DR) in each local region
[PAU 97]. The local regions can be mapped on the underlying network. Receivers in each local re-
gion periodically send acknowledgments to their corresponding DR, DRs send acknowledgments
to the higher-level DRs, until the DRs in the highest level send acknowledgments to the sender,
thereby avoiding the acknowledgment implosion problem (see Figure 2.5). DRs cache received
data and respond to retransmission requests of the receivers in their corresponding local regions,
thereby decreasing end-to-end latency.

Most recent version of RMTP includes support for “asynchronous streaming” meaning that
RMTP enables reliable multicast of a continuous stream of very small messages (less than 100
bytes) with rigorous end-to-end latency requirements per message.

Membership Dynamic (but static for the DRs)
Structure Open group
Ordering FIFO ordered
Reliability Reliable
User interface Communication by message

Table 2.5: RMTP properties

2.2. GROUP TOOLKITS 15

Router

Router Router

Router

Router

Router DRRouterDR

RouterDR

Sender

DR Designated Receiver Receiver Ackwnoledgment

Figure 2.5: RMTP Network Architecture

2.2.2 Isis and Horus

Isis and Horus are both projects developed at the Cornell University to build distributed appli-
cations, possibly fault-tolerant.

Isis

Isis started by researches in fault tolerance in distributed systems [BIR 85]. It supports fault-
tolerant distributed computing by automatically replicating data and code. The system imple-
ments a set of techniques for building software for distributed systems, Isis claims to exploit
parallelism and to be robust against both software and hardware crashes. Isis provides a toolkit
mechanism for distributed programming. The tools allow connecting simple non-distributed pro-
grams in order to obtain a distributed system. Tools are included for automating recovery, syn-
chronizing distributed computations, managing replicated data and dynamically reconfiguring a
system to accommodate changing workloads. [TAM 98] presents a singular example of such com-
position: a team of robots playing soccer. Individual agents collaborate to achieve a common goal.

The Isis programming model is based on virtually synchronous processes. During a virtual
synchronization, all the members of a group receive an ordered and consistent flow of events.
The synchronization is said virtual because events are synchronous in regards of logical time
but asynchronous in regards of physical time. This synchronization lets appear the system to be
synchronous at the application level.

One of the major advantages of the Isis implementation is the ability to run over any network
supplying an Internet Group Multicast Protocol (IGMP). Isis abstracts the group communication.
This abstraction takes the form of a multicast service composed of a set of basic primitives pro-
viding different kinds of broadcast operations. The most noticeable basic primitive is the Causal

16 CHAPTER 2. RELATED WORK

BroadCAST (CBCAST). CBCAST sends and receives messages in an atomic fashion with a causal
order. The Atomic BroadCAST (ABCAST) primitive ensures a total order and an atomic delivery
of messages. Finally, the Group BroadCAST (GBCAST) primitive is in charge of groups’ manage-
ment (creation, destruction, membership, etc.), and specially to inform the members of a group
that one of them disappears (a fault). GBCAST delivers messages in causal order.

CBCAST, ABCAST and GBCAST are based on a time service. This service is also linked with
the group membership service in order to provide a precise description of the group state at a
given time. The virtual synchronization concepts and the CBCAST, ABCAST, GBCAST primitives
are presented in [BIR 93b].

Isis was successful. Lots of companies and universities employ(ed) the toolkit in a very large
scope of activities: from telecommunications switching systems to financial trading floors. Isis
exposed, the first, the real needs of group communication tools in distributed application devel-
opment. The interests in Isis and its group communications made the project evolve in Horus,
where the group communication takes a bigger importance.

Membership Dynamic
Structure Open group
Ordering Total, causal, and FIFO
Reliability Reliable
User interface Communication by message

Table 2.6: Isis properties

Horus
The Horus project [REN 93] began as an effort to reorganize the group communication system
of Isis 1. It has evolved into a general purpose communication architecture with advanced sup-
port for the development of robust distributed systems in settings for which Isis was not suitable,
such as applications that have special real-time or security requirements (for instance, automatic
communication encryption in unsecured environment is not supported in Isis).

The major improvements target the architecture and the flexibility of the system. The strat-
egy of the Horus system takes up the principle of the streams introduced by the UNIX System V.
This strategy consists in separating the concerns into independent modules. Each module is in
charge of a specific communication feature: flow control, acknowledgment, encryption, etc. Those
modules can be stacked up like the streams. The user chooses the modules he needs depending
on the execution context and composes them. Figure 2.6 presents the architecture of Horus.

The MUlticast Transport Service (MUTS), the lower layer, hides the underlying operating sys-
tem (interfacing issues, network protocol, thread creation and synchronization, etc.). The MUTS
gives an abstraction of the underlying system for the higher (user) layers. It provides an asyn-
chronous, reliable, one-to-many message passing model over lots of network protocols.

The Virtual synchronous subsystem (Vsync) runs on the top of MUTS. It function is to extend
MUTS into a full group communication environment, supporting fault-tolerant multicast. Vsync
provides ordering semantics on multicast communication and basic process group abstraction,
with strong semantics on the ordering.

Vsync is composed of the Vsync membership layer and, over, the Vsync protocols layer. The
Vsync membership layer, also called VIEWS, is in charge of membership, atomicity and encryp-
tion. The Vsync protocols layer provides total ordering, multiplexing, progressive and conserva-
tive protocols. The qualities of service of Horus include best-effort and reliable communications
(with different ordering: FIFO, causal, synchronous).

1In Egyptian mythology, Horus is the son of Isis.

2.2. GROUP TOOLKITS 17

Synchronization
Threads and Address Space

Management

Conservative
Protocol

Multiplexing
Layer

Progressive
Protocol

LightWeight
Group

Multicast Transport Service (MUTS)

Vsync Membership

Vsync Subsystem

Vsync Protocols

Membership Atomicity

Timer ManagementTransport Protocol

Encryption

Sequencing

Figure 2.6: Horus layers

Finally, at the user level, Horus offers Isis compatibility libraries and tools. Optimizations
and improvements of Horus regarding to Isis are presented in [REN 96, REN 94]. Isis, and
consequently Horus, have contributed a lot towards the theory of virtual synchrony.

Membership Dynamic
Structure Open group
Ordering Total, causal, FIFO, and non-ordered
Reliability Reliable or not reliable
User interface Communication by message

Table 2.7: Horus properties

2.2.3 Parallel Virtual Machine
Parallel Virtual Machine (PVM) [GEI 94] is a generic system for the programming of parallel
and distributed applications communicating by exchange of messages. The PVM environment is
composed of libraries and processes of service. The libraries (one for the C language and another
for the FORTRAN language) connect the parts of a distributed application and the PVM system.
Processes of service run on each node of the platform to manage the application’s processes and
their communications. PVM aims to operate heterogeneous systems in a transparent way.

PVM was a key component of the evolution of the community of distributed applications. PVM
contributed to the emergence of use of network of workstations instead of parallel machines (i.e.
Symmetrical Multi-Processing (SMP) computers). PVM gives the illusion to applications that
they are running on a (virtual) parallel machine. If more than one user runs a PVM appli-
cation on the same set of hosts, each application runs independently, on independent parallel
virtual machine. PVM manages the tasks of an application and can be in charge of an automatic
processes placement on the nodes composing the virtual machine. However there is no load-
balancing concern in the placement mechanism; processes are placed using a cyclic manner with
no regards to the load of the node.

PVM proposes point-to-point and multipoint, reliable, asynchronous, communications FIFO
ordered by the source. Multipoint communications are achieved with direct addressing or with
process groups. Process groups are dynamic and open (only in the same application of course).
Group management is centralized; primitives return information about the composition of a
group (ID, instance, size, etc.). The schemes of multipoint communication are multicast, bar-
rier and reduce. Send and receive functions are blocking.

18 CHAPTER 2. RELATED WORK

Group communications are not very efficient in PVM. The first step of a group communica-
tion is to acquire the list of group members from a group server. Then, a replication of point-
to-point communication addressed to each member achieves the group communication. Some
implementations provide optimizations for parallel machines. For network of computers, some
implementations optimize the mechanism using reliable and ordered IP protocols.

Membership Dynamic
Structure Open group
Ordering FIFO ordered
Reliability Reliable
User interface Communication by message

Table 2.8: PVM properties

2.2.4 Message Passing Interface
The Message Parsing Interface (MPI) results from a standardization effort to build parallel and
distributed applications communicating by exchange of messages [MPI94]. The MPI forum, in-
volving more than sixty peoples, led to a standard designed for high performance on both mas-
sively parallel machines and on workstation clusters.

MPI aims to ease design and portability of parallel and distributed applications. MPI is widely
available, with both free available and vendor-supplied implementations targeting both parallel
machines and networks of workstations. For instance, LAM [BUR 94] and MPICH [GRO 96] are
famous free implementations of the MPI standard. The standard proposes bindings for C and
Fortran 77 languages. An application written for a specific platform using one implementation
should be able to run on any platform that provides an implementation of MPI. Actually, the
standard is so large in terms of features that implementations proposed on various platforms do
not implement all those features.

The MPI Forum chose to define an Application Programming Interface (API) that proposes
efficient and reliable schemes of communication. The goal is to overlap computing phases with
communications and avoid memory copies of messages, this, in a possible heterogeneous envi-
ronment. The API is independent of the programming language. Finally, the standard defines
point-to-point communications, collective communications (understand group communication in
the MPI vocabulary) and processes management for communication.

Collective communications are performed using lists of processes named communicators. Com-
municators are static, but new communicators can be created at runtime descending from exist-
ing one. A collective operation is executed by having all processes in the group call the commu-
nication routine, with matching arguments. Communicators are key arguments, they define the
group of participating processes and provides a context for the operation. Basic primitives such
as broadcast or gather have a single sending or receiving process named root. Some arguments
in the collective primitives are said “significant only at the root”; all participants except the root
ignore them. Advanced primitives such as all-gather or all-to-all involve several sender and re-
ceiver processes in a more complex scheme.

Collective primitives may (not necessarily) return as soon as their participation in the col-
lective communication is complete. The completion of a primitive call does not indicate that the
other processes in the group have completed or even started the operation; it just indicates that
the caller process is now free to access the communication buffer. So a collective communication
may (or may not) have a synchronization effect on the calling processes 2.

2We ignore here the barrier primitive whose role is exclusively to synchronize processes and not to exchange data.

2.2. GROUP TOOLKITS 19

The initial standard document was updated by the MPI Forum. The new version (MPI-2)
contains both significant enhancements to the existing MPI core and new features [MPI97]. Im-
provements mainly address dynamic process creation and management, one-sided communica-
tion, parallel Input/Output, and C++ bindings.

Membership Static
Structure Closed group
Ordering FIFO and no-ordered
Reliability Reliable
User interface Communication by message

Table 2.9: MPI’s collective communication properties

2.2.5 Object Group Service: a CORBA Service
The Common Object Request Broker Architecture (CORBA), specified by the Object Management
Group (OMG), provides interoperability between languages, platforms, and implementations in
an object-oriented way. CORBA does not offer basically a high-level group communication service.
Several projects proposed their solution, for instance: Electra [MAF 95] and Orbix+Isis [ION 94].

[FEL 96] proposes the design, and [FEL 97, FEL 98b] the implementation, of a CORBA ser-
vice for a reliable multicast communication. The “object” group communication takes the form of
a service added in CORBA. This approach is similar to the one adopted by the OMG to enhance
CORBA with transactions, persistence, event channels, etc. The Object Group Service (OGS)
emerged as a new service based on other existing services: principally the naming, messaging,
monitoring, and multicast services. The multicast service of CORBA only provides unreliable
message broadcasts without any quality of service or ordering [OMG01]. Group communication
may have be obtained with the event service [OMG04], but it presents some limitations: no guar-
antees concerning ordering, atomicity, and failures.

Consensus service

Monitoring service

Messaging service Multicast service

...

Application Objects

Caller CalleeCalleeCallee

Object Group Service

Object Request Broker

Naming service

Figure 2.7: The Object Group Service

In a group, the objects are of the same type; like for any CORBA object, the type is defined
with the Interface Definition Language (IDL). It allows a client to communicate with the objects
of a group by invoking an operation (method) defined in the IDL interface. Old fashion group
communication is still available with the deliver() operation, nevertheless only the values of
type any can be send as messages.

20 CHAPTER 2. RELATED WORK

Each client has to perform a specific binding phase to acquire a reference to the group. Then,
it becomes possible to execute communication. By default a group communication returns only
one result; to receive more results the client must invoke explicitly the OGS and so looses the
benefits of transparency.

Groups are dynamic. When a member joins or leaves the group, all group members are no-
tified; so each member knows the current membership. OGS uses a special interface to man-
age the status of an object with regard to a group; typically, join (join_group()) or leave
(leave_group()) the group.

Membership Dynamic, with a dedicated view for group
management

Structure Open group
Ordering Total, FIFO, and no-ordered
Reliability Reliable
User interface Typed communication

Table 2.10: Object Group Service properties

2.2.6 JGroups
JGroups (previously named JavaGroups) is a reliable group communication toolkit written en-
tirely in Java [BAN 98]. It was developed at the Cornell University. It is based on IP Multicast,
but extends it with reliability and advanced group membership. Reliability includes lossless
transmission of a message to all recipients (with retransmission of missing messages), fragmen-
tation of large messages into smaller ones and reassembly at the receiver’s side, FIFO ordering of
messages, and atomicity. The JGroups’ membership includes knowledge of who the members of
a group are and notification when a new member joins, an existing member leaves, or an existing
member has crashed.

The architecture of JGroups, shown in Figure 2.8, consists of 3 parts: (1) the building blocks,
which are layered on top of the channel and provide a higher abstraction level, (2) the Channel
API used by application programmers to build reliable group communication applications, and
(3) the protocol stack, which implements the properties specified for a given channel.

JGroups offers building blocks that provide more sophisticated APIs on top of a Channel.
Building blocks either create and use channels internally, or require an existing channel to be
specified when creating a building block. Applications communicate directly with the building
block, rather than the channel. Building blocks are intended to save the application programmer
from having to write tedious and recurring code.

Dynamic group management is performed with Channel. A channel represents a group. To
join a group, an object has to reach a channel by specifying its name. If the channel already
exists, the object is added to the group. If the channel does not exist, it is immediately cre-
ated. Members of a channel send messages only to all others members, and receive messages
only from other members. A channel is destroyed when its last member leaves. Channels are
similar to BSD sockets: messages are stored in a channel until a client removes the next one
(pull-principle). When no message is currently available, a client is blocked until the next avail-
able message has been received. A channel can be implemented over a number of alternatives
for group transport. Therefore, a channel is an abstract class, and concrete implementations are
derived from it.

JGroups is based on a flexible protocol stack, which allows programmers to adapt it in order
to best fit their application requirements. All messages sent and received over a channel have
to pass through the protocol stack. Every layer may modify, reorder, pass or drop a message,
or add a header to a message. A fragmentation layer might break up a message into several
smaller messages, adding a header with an id to each fragment, and re-assemble the fragments

2.2. GROUP TOOLKITS 21

Channel

Building
blocks

NakAck

UDP

Application

Failure detection

Group membership

Fragmentation

Channel

Building
blocks

NakAck

UDP

Application

Failure detection

Group membership

Fragmentation

Channel

Building
blocks

NakAck

UDP

Application

Failure detection

Group membership

Fragmentation

Network

Figure 2.8: JGroups architecture

on the receiver’s side. The composition of the protocol stack is determined by the creator of the
channel. JGroups comes with already defined protocols (UDP, IP Multicast, TCP, etc.) and offers
the ability to adapt to new protocols.

Through its flexible protocol stack architecture, JGroups can be adapted to many environ-
ments. This can be done by replacing, removing or modifying existing protocols, or by adding
new protocols. JGroups is a good testbed for development and experimentation of new reliable
multicast protocols written in Java.

Membership Dynamic
Structure Closed group
Ordering Total, causal, and FIFO
Reliability Reliable
User interface Communication by message

Table 2.11: JGroups properties

2.2.7 Group Method Invocation
The first approach of the Vrije Universiteit, Amsterdam, to group communication in Java was
Replicated Method Invocation (RepMI) [MAA 00]. RepMI is only designed for replication. The
goal is to make parallel applications more efficient without increasing the complexity of imple-
mentation. The idea is to copy and distribute the objects frequently accessed. A local copy of such
object reduces the overhead introduced by numerous remote accesses.

Read operations are only performed on one local (copy) object. Write operations are performed
on the (closed) group of replicates named cloud using a synchronized method to ensure consis-
tency. Each cloud has a single entry point (the root), which is the only object on which methods
may be invoked from outside a cloud.

22 CHAPTER 2. RELATED WORK

in
te

rf
ac

e

Replicated
Object

result()read

Replicated
Object

Replicated
Object

result()read

write(x)

read()

JVM

write(x)

write(x)

write(x)

JVM

JVM

read()

Cloud

Figure 2.9: RepMI

RepMI was unsatisfactory to build distributed applications. RepMI is only suitable for ex-
pressing shared data. So the Group Method Invocation (GMI) was developed to provide a com-
plete and flexible group communication mechanism [MAA 02, MAA 03]. Like RepMI, GMI ex-
presses group communication using method invocation and is based on a specific compiler.

GMI extends the RMI model in three ways: (1) a stub may refer to a group of object, (2)
method invocations and gathering of results may be managed in different ways, and (3) stubs
and skeletons are configurable at runtime to provide different schemes of communication.

Groups are created dynamically but become immutable3 as soon as they are created. Objects
of the group must extend the GroupMember class that provides some methods needed by the GMI
environment. Objects of the group must also implement the GroupInterface. This interface
does not define any method; it is just a marker interface for the compiler. To finish, group mem-
bers must implement a common interface. Only the methods defined in this last interface can be
invoked as group communication.

Method invocation schemes can be configured independently for each method. GMI gives four
schemes to the programmer: The single invocation that invokes a method on only one object of
the group, the group invocation that forwards the call to every group members, the personalized
invocation that communicates with every group members while parameters vary from a member
to an other, and finally, the combined invocation that uses different group references and several
threads to invoke the same method on a group using a combinator method on the results defined
by the programmer.

Result-handling is also configurable. The provided schemes are: the discard result that does
not return any result, the return one result, the forward results that returns all the results in
a handler object defined by the programmer, the combine results that combines all the results
using a combinator method defined by the programmer, and the personalized result that returns
a result to each thread involved in the group communication.

GMI offers a flexible mechanism to achieve group communication in Java. It proposes an effi-
cient object-oriented approach to build high-performance application, based on a specific compiler
and the use of low-level multicast primitives provided by the network.

3The term immutable means unchangeable in object-oriented parlance. Immutable objects do not change once their
constructor has executed.

2.3. ANALYSIS OF RELATED WORK 23

Membership Static: Immutable after a dynamic creation
of the group

Structure Open group
Ordering FIFO ordering
Reliability Reliable (but advocates that unreliability

could be easily added in future)
User interface Typed communication

Table 2.12: Group Method Invocation properties

2.3 Analysis of related work

In this section, I discuss about the points I judge negative in the last presented group toolk-
its that address object-oriented environments (the Java language and CORBA). Then, I outline
the features I believe fundamental for a group communication toolkit intended to ease efficient
distributed programming.

2.3.1 Drawbacks

Let us start with JGroups. It is a valuable project that recently succeeded being an important
part of the underlying framework for implementing the clustering features of the JBoss J2EE
Application server. However JGroups is more centered on the low layers of communication than
on the API provided to the programmers (the building blocks). This choice allows adaptability
and fine configuration of the protocols stacks at the cost of easiness in complex code writing. The
building blocks that may offer a far more sophisticated interface than the channels are actually
too few to provide a full set of communication schemes useful at a final application level. JGroups’
author admits: “The point is that I have really never put much effort into the building blocks, b/c
my focus has always been protocol design.” In practice, the building blocks may be totally ignored
and the application may directly address to the channel layer. The channel programming style
is a socket programming style. One can regret that JGroups, a Java toolkit, do not deal with the
object-oriented programming style, i.e. remote method invocation.

The Object Group Service is a pioneer work in adding a group communication mechanism
into CORBA, an object-oriented middleware, using an object-oriented programming style. The
integration into the middleware is well thought; it attests much cares to comply with the CORBA
models and philosophy. Actually the implementation is too much CORBA-focused and pains to
express more general patterns for adding group communication into other middlewares. Also the
main concern of OGS is the fault tolerance handling by replication. Thus as previously mentioned
a group communication returns (by default) only one result from the group of replicated objects.
To receive more results the client has to invoke explicitly the OGS and so loses the benefits of
transparency. This group communication mechanism is less suitable for building any distributed
application than for introducing fault tolerance in an existing application.

Finally, let us consider RepMI and GMI. RepMI provides only replication, but contrarily to
OGS it is not principally designed for fault tolerance but for increasing performances of dis-
tributed application by accelerating access to shared data. Replication is not really group com-
munication; it is only suitable for expressing shared data, so GMI was introduced. Both RepMI
and GMI communicate through an interface to the groups members; they are extensions of the
object-oriented communication scheme of RMI. GMI offers a large set of communication strate-
gies, in the sending of method invocations and in the result handling. Actually, despite the effort
to hide complex communication code to the programmer, he or she has to write the desired strat-
egy for a group communication. Moreover, objects that are subjects to be added in a group must
implement the marker interface GroupInterface and extend the GroupMember class, which

24 CHAPTER 2. RELATED WORK

acts like the UnicastRemoteObject of RMI. This yields two problems: (1) It lacks of dynamic-
ity, an instance of a class that does not extend GroupMember nor implements GroupInterface
will never be able to belong to a group; and (2) It takes back the drawback of RMI that forces to
inherit from a specific class and thus may disturb the original class hierarchy built by the pro-
grammer. Finally, one may regret that GMI groups are static; dynamicity is a valuable property
for building distributed applications.

2.3.2 Proposal
According to the experience of [FEL 98a], we had to choose between three approaches for adding
group communication to a middleware:

1. The integration approach consists of modifying and extending the part of the middleware
acting as Object Request Broker (ORB) with group communication. This approach has been
adopted in both Orbix+Isis [ION 94] and Electra [MAF 95] projects. A client is allowed to
perform invocation to a group of objects as if it was a plain object. The communication layer
of the middleware performs replicated invocations to group members, gathers the result
and returns them to the client. This approach provides a complete group transparency in
the writing of code.

Caller Callee CalleeCallee

Object Request Broker

Figure 2.10: The integration approach

2. The service approach consists of providing the group communication as service in the mid-
dleware, on top of the ORB. This approach was adopted in the Object Group Service, the
group mechanism introduced in the CORBA middleware and described in [FEL 96, FEL 97,
FEL 98b] (see Section 2.2.5). The external service offers a basic set of primitives for han-
dling group mechanism: management and remote method invocation. Achieving group
transparency is not straightforward with this approach.

Caller Callee CalleeCallee
Service
Group

Object Request Broker

Figure 2.11: The service approach

3. With the interception approach, the ORB is not aware of replication. Requests are inter-
cepted transparently on client and server sides using low-level interception mechanisms;
they are then passed to a group communication toolkit that forwards them using group
multicasting. This approach does not require any modification to the ORB, but relies on
OS-specific mechanisms for request interception. For instance, Eternal [MOS 98] uses the
Unix operating system abilities to intercept the messages before they join the TCP/IP layer
and redirect them into a group communication mechanism.

2.3. ANALYSIS OF RELATED WORK 25

Caller Callee CalleeCallee

Object Request Broker

External group toolkit

InterceptionInterception

Figure 2.12: The interception approach

Considerations regarding implementations and the choice we made to build our group com-
munication mechanism are presented in Chapter 5. Here, let us focus on the main points we
want to contribute on. Our goal is to free the programmer from having to implement the complex
communication code required for group communication, this by allowing the focus to be on the
application itself. Group communications must be expressed using (remote) method invocations
just like RMI expresses point-to-point communications. This integrates well with the object-
oriented fashion of modern languages.

However we do not want to force the programmer to implement or extend specific interfaces
and classes. Indeed, such an obligation would yield constraints at creation of the application
and would arm dynamicity at runtime. Group issues must be addressed by the group mecha-
nism with no impact on the programmer’s code writing. The common interface of group members
must be sufficient to express the largest set of communication schemes, such as various sending
and receiving strategies. Of course, an interface is necessary to explicitly manage groups when
needed. This interface must define creation, add, remove, etc. operations that are not accessible
from the members interface. We aim at clearly separate the concerns for group management and
the concerns for functional aspects (i.e. communications by method invocations). Separation of
concern is essential for mastering complexity.

In addition, a solution that would seamlessly integrate the group transparency paradigm
from the beginning of the call to the gathering of replies is still missing. Indeed, if transparency
of method invocation is well assumed by existing toolkits, none provides a transparency of the
result handling that still has to be aware of the group aspect with no lost of information. Two
partial solutions are generally proposed. The first one consists of returning a single result that
may be the combination of the whole results or an arbitrary selection among them. In this case,
information about each individual results may have been discarded (even by combination or
selection). The second solution is to explicitly invoke the group service or handle multiple results
within a specific object: in that case transparency is broken. We propose to look for a solution
that deals with multiple results gathering while conserving all individual replies and being type
compatible with the expected result.

Conclusion
Depending on their needs, each community addresses group communication in its own way. Some
specific issues might be dedicated to a community, so they should be given a minor importance or
simply ignored by others. For example, environment to build fault-tolerant application focus on
the ordering issue and does not matter of the scheme of group communication at the programmer
layer. On the other hand, to build distributed applications a FIFO ordering is most of time
sufficient but elaborate schemes of group communication at the programmer layer are required.
We are interested in the issues of building distributed applications; our challenge is to provide
the most easy to use and flexible group toolkit to the programmers.

26 CHAPTER 2. RELATED WORK

Chapter 3

ProActive

This chapter presents the environment in which my work is included. ProActive is an open
source1 Java library for parallel, distributed, and concurrent computing, also featuring mobility
and security in a uniform framework. With a reduced set of simple primitives, ProActive provides
a comprehensive API allowing to simplify the programming of applications that are distributed
on Local Area Network (LAN), on cluster of workstations, or on Internet Grids. ProActive is only
made of standard Java classes, and requires no changes to the Java Virtual Machine, no pre-
processing or compiler modification; programmers write standard Java code. Based on a simple
Meta-Objects Protocol, the library is itself extensible, making the system open for adaptations
and optimizations. ProActive currently uses the RMI Java standard library as default portable
transport layer.

Section 3.1 presents the programming model promoted by ProActive. It introduces the distri-
bution model based on active objects and the way those objects communicate. Section 3.2 gives
details of the library. It presents the deployment model, the Meta-Objects protocol on which
ProActive relies, and the migration mechanisms.

3.1 Programming model

Due to its platform-independent execution model, its support for networking, multithreading and
mobile code, Java has given hope that easy Internet-wide high-performance network computing
was at hand. Numerous attempts have then been made at providing a framework for the de-
velopment of such metacomputing applications. Unfortunately, none of them addresses seamless
sequential, multithreaded, and distributed computing, i.e. the execution of the same application
on a multiprocessor shared-memory machine as well as on a network of workstations, or on any
hierarchical combination of both. ProActive addresses such features [CAR 98a].

3.1.1 Distribution model

The ProActive library was designed and implemented with the aim of importing reusability
into parallel, distributed, and concurrent programming in the framework of a MIMD2 model.
Reusability has been one the major contributions of object-oriented programming, ProActive
brings it into the distributed world. Most of the time, activities and distribution are not known
at the beginning, and change over time. Seamless implies reuse, smooth and incremental transi-
tions.

A huge gap yet exists between multithreaded and distributed Java applications which for-
bid code reuse in order to build distributed applications from multithreaded applications. Both

1Source code under LGPL license
2MIMD stands for Multiple Instruction Multiple Data

27

28 CHAPTER 3. PROACTIVE

Java RMI and Java IDL, as examples of distributed object libraries in Java, put an heavy bur-
den on the programmer because they require deep modifications of existing code in order to turn
local objects into remote accessible ones. In these systems, remote objects need to be accessed
through some specific interfaces. As a consequence, these distributed objects libraries do not al-
low polymorphism between local and remote objects. This feature is the first requirement for a
metacomputing framework. It is strongly required in order to let the programmer concentrate
first on modeling and algorithmic issues rather than lower-level tasks such as object distribution,
mapping, and consequently communications in a distributed environment.

The model of distribution and activity of ProActive is part of a larger effort to improve simplic-
ity and reuse in the programming of distributed and concurrent object systems [CAR 93, CAR 96],
including a precise semantics [ATT 00]. It contributes to the design of a concurrent object cal-
culus named ASP (Asynchronous Sequential Processes) [CAR 04, CAR 05b]. As shown in Fig-
ure 3.1, ProActive seamlessly transforms a standard centralized monothreaded Java program
into a distributed and multithreaded program.

Passive object Java Virtual Machine / ComputerThreaded Object

Sequential DistributedMulti−threaded

Figure 3.1: Seamless parallelization and distribution with active objects

3.1.2 Active objects

A distributed or concurrent application built using ProActive is composed of a number of medium-
grained entities called active objects. Each active object has one distinguished element, the root,
which is the only entry point to the active object. Each active object has its own thread of control
and is granted the ability to decide in which order to serve the incoming method calls that are
automatically stored in a queue of pending requests. Objects that are not active are designated
as passive.

Given a standard object, we provide the ability to give it: location transparency, activity trans-
parency and synchronization. This is obtained only with modifications of the instantiation code.
For example, see the standard Java object created by:

A a = new A ("toto", 17);

There are three ways to transform a standard object into an active one:

1. The Class-based approach is the more static one. A new class must be created extending
an existing class, and must implement the Active interface. The Active interface is a tag
interface that does not specify any method. This approach allows adding specific methods
useful in distributed environment and possibly to define a new service policy in place of the
default First In First Out (FIFO) service (see Section 3.1.5 for further details about service
policy).

3.1. PROGRAMMING MODEL 29

public class pA extends A implements Active { }

Object[] params = new Object[] {"toto", new Integer (17)};

A a = (A) ProActive.newActive("pA", params, node);

The array of objects params represents the parameters to use for the remote creation of the
object of type A. node is an abstraction to the physical location of an active object (refer to
Section 3.2.1).

2. With the Instantiation-based approach, a Java class that does not implement the Active
interface is directly instantiated without any modification to create an active object. The
parameters params and node play the same role as previously.

Object[] params = new Object[] {"toto", new Integer (17)};

A a = (A) ProActive.newActive("A", params, node);

3. Finally, the Object-based approach is the more dynamic approach. It allows transforming
an already existing Java object into an active object possibly remote. It is possible to turn
active and remote objects for which the source code is not available, a necessary feature in
the context of code mobility. If the node parameter is null or designate the local JVM new
elements are created to transform the object into active object (those elements are meta-
objects presented in Section 3.2.2). Otherwise, if node refers to a remote JVM a copy of
the object is sent on the remote JVM and transformed into an active object. The original
passive object remains on the local JVM.

A a = new A ("toto", 17);

a = (A) ProActive.turnActive(a, node);

3.1.3 Communication by messages
The active object creation primitives of ProActive locally return an object compatible with the
original type regarding to polymorphism. So one can perform method call on this object, even
if source code was not originally designed to achieve distribution. In distributed object-oriented
programming, method call takes the place of Inter-Process Communication.

Let us see in details the A class:

public class A {
public void foo () {...}
public V bar () {...}
public V gee () {...} throws AnException {...}

}

Both of those methods will be remotely invoked but the communication semantic will differ.

• The method named foo does not return any result, so call the method foo will perform
only a communication from the caller to the callee. This is a one-way method call.

• The bar method requires a bidirectional communication. Firstly, from the caller to the
callee of course, then from the callee to the caller in order to return the result. With ProAc-
tive this communication is separated in two steps detailed below. Between those steps the
activity of caller does not stop. This is an asynchronous method call.

• The gee method is quite similar to the method bar except that it can raise an exception.
As the activity of the caller can not continue, it might go out of the try/catch block. The
call to gee is a synchronous method call. Methods returning a primitive type or a final class
are also invoked in a synchronous way (details come below).

30 CHAPTER 3. PROACTIVE

In both cases, a rendez-vous ensures that the method call reaches the callee. As RMI is the
transport layer, and as RMI is reliable, the remote method call of ProActive remains reliable.
Objects given as parameters are copied on the caller side to be transmitted to the callee side. The
Table 3.1 summarizes the communication schemes according to method signatures.

Communication schemes Conditions
One-way return void and do not declare throwing any exception
Asynchronous return a reifiable 3 object and do not declare throwing any exception
Synchronous return a non-reifiable object or declare throwing an exception

Table 3.1: Communication schemes depending on method signature

Figure 3.2 exposes an asynchronous call sent to an active object and introduces the trans-
parent future objects and synchronization handled by a mechanism known as wait-by-necessity
[CAR 93]. Asynchronous method call is the most developed and usual mechanism, that is why it
is detailed here. There is a short rendez-vous at the beginning of each remote call, which blocks
the caller until the call has reached the context of the callee; on Figure 3.2, it means that step 1
blocks until step 2 has completed. In the same time a future object is created (step 3). A future is
a promised result that will be updated later, when the reply of the remote method call will return
to the caller (step 5). The next section presents synchronization and control of such futures.

3− A future object
is created

1− Object A performs
a call to method foo

2− The request for foo
is appended to the queue

5− The body updates the future
with the result of the execution of foo

6− Object A can use the result
throught the future object

4− The thread of the body
executes method foo on object B

Object BObject A

Proxy Body

Object A

Future

Result

Local node Remote node

Object B

Figure 3.2: Execution of an asynchronous and remote method call

In a synchronous method call, the steps are nearly similar except two main differences.
Firstly, the future is not created (no step 3). This is due to the incapacity of the Meta-Objects
Protocol to create a future in the case the return type is not reifiable. Secondly, the activity of
the caller stops until step 5 has completed (instead of steps 2/3 for an asynchronous call). This
ensures that the try/catch block is not passed when the result arrives. A one-way call blocks the
activity of the caller until step 2 is achieved; all the future operations (creation, update, etc.) are
avoided.

ProActive features several optimizations improving performance. For instance, whenever two
active objects are located within the same virtual machine, a direct communication is always
achieved, without going through the network stack. This optimization is ensured even when the
co-location occurs after a migration of one or both of the active objects.

3The definition of “reifiable” will be given later, in Section 3.2.2. For the moment just notice that the non-reifiable
objects are final objects and primitive types, and reifiable objects are all the others.

3.1. PROGRAMMING MODEL 31

3.1.4 Synchronization
As just explained, semantic of the communication depends on the method signature. ProActive
automatically chooses the best semantic for the given method and automatically deals with the
future but it may be possible that the programmer wants to control if by himself or herself. In a
first time, we will see the default behavior with the futures and then, we will observe the control
that the programmer is able to use to manage the asynchronism.

Wait-by-necessity

See our active object a now well known:
A a = (A) ProActive.newActive("A", params, node);

and the asynchronous method call:
V v = a.bar();

As previously seen, v is a future. ProActive provides an elegant way to automatically deals
with future. It is called wait-by-necessity. Consider the new instruction:

v.glop();

There is no guarantee that the future v was updated when the method glop is invoked. If the
result is arrived and the future updated when the call to glop is performed the activity do not
stop. Else, if the future was not arrived, the Wait-by-necessity is released. This mechanism stops
the current activity until the future returns, and then the activity resumes and executes the
method. The Wait-by-necessity mechanism ensures a maximum efficiency of the asynchronism.

Explicit control

ProActive automatically chooses the best semantic for the given method but it may be possible
that the programmer wants to control it by himself. ProActive allows the programmer to control
the synchronization of asynchronous method calls. After the method call:

V v = a.bar();

The programmer can use the static primitives isAwaited and waitFor respectively to test the
state of a future and to wait for a future.

ProActive.isAwaited(v);
ProActive.waitFor(v);

Explicit control gives a finer control to the programmer, no more at the method level but at the
object level (future).

Besides, automatic continuations allow to pass in parameter (or return as a result) future
objects without blocking to wait their final value. When the result is available on the object that
originated the creation of the future, this object must update the result in all objects to which it
passed the future. An automatic continuation is caused by the propagation of a future outside
the activity that has sent the corresponding request.

3.1.5 Service policy and control of the activity
Customizing the activity of the active object is at the core of ProActive because it allows specify-
ing the behavior of an active object. By default, an object turned into an active object serves its
incoming requests in a FIFO manner. In order to specify another policy for serving the requests
or to specify any other behavior one can implement interfaces defining methods that will be au-
tomatically called by ProActive.

The remote method calls being asynchronous, they are stored in the queue (as request) on the
callee side. By default the requests are served by a FIFO Service: Active objects are sequential
processes. The creation of active object with the class-based (remember Section 3.1.2) permits to
change this service policy. The programmer must implement the RunActive interface with the
runActivity method in order to define a new service policy.

32 CHAPTER 3. PROACTIVE

Here is a subset of the primitives provided by ProActive:

void serveOldest (); // Serves the oldest request in queue

void serveOldest (String s); // Serves the oldest s request

void serveOldest (String s, String t); // the oldest of s or t request

void serveOldestWithoutBlocking (); // Serves without blocking

void serveMostRecentFlush (String s); // Serves the newest request
// and removes the others

void serveOldestTimed (int t); // Serves the oldest during no more
// than t milliseconds

void waitForNewRequest (); // Non active wait for a request

For a concrete example, the following code presents a bounded buffer:

public class BoundedBuffer implements Active, RunActive {
public void runActivity (Body body) {
Service service = new Service(Body);
while (body.isActive()) {
if (this.isFull()) body.serveOldest("get");
else if (this.isEmpty()) body.serveOldest("put");
else body.serveOldest();
body.waitForNewRequest();

} } }

The programming of the activity is explicit and the service also. This kind of programming
method is very useful when a fine control of the activity is required.

3.2 Environment and implementation
ProActive is only made of standard Java classes, and requires no change to the Java Virtual Ma-
chine (JVM), no preprocessing or compiler modification; programmers write standard Java code.
Using a no modified Java development and execution kit, and the standard Java classes ensure
portability and allow running applications with all the JVM implementations. For debugging
aspect, especially critical in distributed environment, it is more efficient to avoid source code
modification. ProActive uses reflection techniques in order to manipulate runtime events such
as a method call for instance. Supplementary code is dynamically generated in the same fashion
used by generative or active libraries [CZA 00, VEL 98]. Based on a simple Meta-Object Protocol,
the library is itself extensible, making the system open for adaptations and optimizations. ProAc-
tive currently uses the RMI Java standard library as a portable communication layer, even if the
transport layer may be changed (by relying on the Adapter object that is in charge of protocol
interface with ProActive).

3.2.1 Mapping active objects to JVMs: Nodes
Another extra service provided by ProActive (compared to RMI for instance) is the capability to
remotely create remotely accessible objects. For that reason, there is a need to identify JVMs, and
to add a few services. Nodes provide those extra capabilities: a Node is an object defined in ProAc-
tive whose aim is to gather several active objects in a logical entity. It provides an abstraction
for the physical location of a set of active objects. At any time, a JVM hosts one or several nodes.
The traditional way to name and handle nodes in a simple manner is to associate them with a
symbolic name, which is a URL giving their location, for instance rmi://lo.inria.fr/node1.

Let us take a standard Java class A. The following instruction creates a new active object of
type A on the JVM identified with node1.

3.2. ENVIRONMENT AND IMPLEMENTATION 33

// Creation of an active object on a JVM of lo.inria.fr
A a1 = (A) ProActive.newActive("A", params, "rmi://lo.inria.fr/node1");

No parameter or a parameter null will conduct the active object to be created on the local
JVM (i.e. the JVM in which the newActive primitive is called).

// Creation of two active objects on the current JVM
A a2 = (A) ProActive.newActive("A", params);
A a3 = (A) ProActive.newActive("A", params, null);

Passing an active object as parameter triggers the co-allocation mechanism. The active object
a4 will be created in the JVM containing the active object a1.

// Creation of an active object on the JVM containing a1
A a4 = (A) ProActive.newActive("A", params, a1);

Note that an active object can also be bound dynamically to a node as the result of a migration.

Active objects will eventually be deployed on very heterogeneous environments where secu-
rity policies may differ from place to place, where computing and communication performances
may vary from one host to the other, etc. As such, the effective locations of active objects must
not be tied in the source code.

A first principle is to eliminate from the source code: the computer names, the creation pro-
tocols and the registry and lookup protocols. The goal is to deploy any application anywhere
without changing the source code. For instance, we use various protocols (rsh, ssh, Globus
GRAM, LSF, etc.) for the creation of the JVMs needed by the application. In the same man-
ner, the discovery of existing resources or the registration of the ones created by the application
can be done with various protocols such as RMIregistry, Jini, Globus MDS, LDAP, UDDI, etc.
Therefore, the creation, registration, and discovery of resources have to be done externally to the
application.

To reach that goal, the programming model relies on the specific notion of Virtual Nodes
(VNs): (1) A VN is identified as a name (a simple string), (2) a VN is used in a program source,
(3) a VN is defined and configured in a deployment descriptor, and, (4) a VN, after activation, is
mapped to one or to a set of nodes. The concept of virtual nodes as entities for mapping active
objects has been introduced in [BAU 02]. Those virtual nodes are described externally through
XML-based descriptors which are then read by the runtime when needed. They help in the de-
ployment phase of ProActive active objects (and components).

Of course, active objects are created on Nodes, not on Virtual Nodes. There is a strong need
for both Nodes and Virtual Nodes. Virtual Nodes are a much richer abstraction, as they provide
mechanisms such as cyclic mapping, for instance. Another key aspect is the capability to describe
and trigger the mapping of a single VN that generates the allocation of several JVMs. This is
critical to get at once machines from a cluster of computers managed through Globus or LSF. It
is even more critical in a Grid application, when trying to achieve the co-allocation of machines
from several clusters across several continents.

Moreover, a Virtual Node is a concept of a distributed program or component, while a Node is
actually a deployment concept: it is an object that lives in a JVM, hosting active objects. There
is of course a correspondence between Virtual Nodes and Nodes: the function created by the de-
ployment, the mapping. This mapping can be specified in an XML descriptor. By definition, the
following operations can be configured in such a deployment descriptor: (1) the mapping of VNs
to Nodes and to JVMs, (2) the way to create or to acquire JVMs, (3) the way to register or to
lookup VNs.

Now, within the source code, the programmer can manage the creation of active objects with-
out relying on machine names and protocols. For instance, the following piece of code allows
creating an active object onto the Virtual Node Dispatcher. The Nodes (JVMs) associated in a

34 CHAPTER 3. PROACTIVE

descriptor file with a given VN are started (or acquired) only upon activation of a VN mapping
(virtualNode.activateMapping() in the code below).

// Returns a Descriptor object from the xml file
Descriptor pad = ProActive.getDescriptor("file://descriptor.xml");

// Returns the virtual node described in the xml file
// as a Java object

VirtualNode virtualNode = pad.getVirtualNode("vnode");

// Activates the mapping for the virtual node
virtualNode.activateMapping();

// Returns the first node available among nodes mapped
// to the virtual node

Node node = virtualNode.getNode();

// Creates an active object on a node
A a = ProActive.newActive("A", params, node);

3.2.2 MOP: Meta-Objects Protocol
ProActive is built on top of a Meta-Object Protocol (MOP) [KIC 91] that permits reification of
method invocations and constructor calls. As this MOP is not limited to the implementation of
the transparent remote objects library, it also provides an open framework for implementing pow-
erful libraries for the Java language. As for any other element of ProActive, the MOP is entirely
written in Java and does not require any modification or extension to the Java Virtual Machine,
as opposed to other Meta-objects protocols for Java [KLE 96]. It makes extensive use of the Java
Reflection API.

An active object provides a set of services, in particular asynchronous communication. It is
important to separate concerns to ensure extensibility and maintenance. A meta-object was in-
troduced for each service provided by an active object. Figure 3.3 shows the final decomposition.

Figure 3.3: Base-level and meta-level of an active object

The MOP creates the couple stub/proxy and the body with its meta-objects. The stub is an
entry point for the meta-level. The stub inherits from the type of the object. Due to its commit-
ment to be a 100% Java library, the MOP has a few limitations: primitive types cannot be reified
because they are not instance of a standard class, or final classes (which includes all arrays) be-
cause they cannot be subclassed. So primitive types and final classes are said not reifiable. The

3.2. ENVIRONMENT AND IMPLEMENTATION 35

stub overloads the public methods of the class. A method invocation creates a MethodCall object
that represents the executed method call. This object contains the invoked Method, information
about return type, and a copy of the parameters.

The proxy maintains a reference on the active object. It is responsible for the communi-
cation semantic: (1) it hides the concept of remote or local reference, and (2) it transmits the
MethodCall object (embedded into a Request4 object) to the body of the active object. If a pro-
grammer wants to implement a new meta-behavior using our meta-object protocol, he or she has
to write both a concrete (as opposed to abstract) class and an interface. The concrete class pro-
vides an implementation for the meta-behavior he or she wants to achieve while the interface
contains its declarative part. The concrete class implements the Proxy interface and provides
an implementation for the given behavior through the method reify:

public Object reify (MethodCall c) throws Throwable;

This method takes a reified call as a parameter and returns the value returned by the execution
of this reified call. Automatic wrapping and unwrapping of primitive types is provided. If the
execution of the call completes abruptly by throwing an exception, it is propagated to the calling
method, just as if the call had not been reified.

The body is the entry point for all communications addressed to the active object. It is the only
part of the active object remotely accessible. The body is in charge of its attached meta-objects.
A request queue is attached to the body. This request queue stores the messages sent by other
active objects to the body. Requests are served with a FIFO service policy that can be customized
by the programmer, as presented in the previous section.

3.2.3 Migration
Mobility is the ability to relocate at runtime the components of a distributed application. The
ProActive library provides a way to migrate an active object from any JVM to any other one
[BAU 00]. ProActive migrations are weak: it means that the code moves but not the execution
state (on contrary to strong mobility). Activity restarts from a stable state.

Any active object has the possibility to migrate. If it references some passive objects, they
will also migrate to the new location. Since we rely on the serialization to send the object on the
network, an active object has to implement the serializable interface to be able to migrate.
The migration of an active object is triggered by the active object itself, or by an external agent.
In both cases a single primitive will eventually get called to perform the migration. The principle
is to have a very simple and efficient primitive to perform migration, and then to build various
abstractions on top of it. The name of the primitive is migrateTo. In order to ease the use of the
migration, the ProActive class provides two sets of static methods.

The first set is aimed at the migration triggered from the active object that wants to migrate.
The methods rely on the fact that the calling thread is the active thread of the active object:

• migrateTo(Object o): migrate to the same location as an existing active object

• migrateTo(String nodeURL): migrate to the location given by the URL of the node

• migrateTo(Node node): migrate to the location of the given node

The second set is aimed at the migration triggered from another agent than the target active
object. In this case the external agent must have a reference to the Body of the active object it
wants to migrate.

• migrateTo(Body body, Object o, boolean priority): migrate to the same loca-
tion as an existing active object

4Request extends Message.

36 CHAPTER 3. PROACTIVE

• migrateTo(Body body, String nodeURL, boolean priority): migrate to the loca-
tion given by the URL of the node

• migrateTo(Body body, Node node, boolean priority): migrate to the location of
the given node

The priority parameter represents two possible strategies: (1) The request is high priority and
is processed before all existing requests the body may have received (priority = true); (2) The
request is normal priority and is processed after all existing requests the body may have received
(priority = false).

In order to implement autonomous active objects, a complete API was build on top of the
migrateTo method. We use itineraries and automatic execution. An itinerary is a dynamic list
of destination, action pairs, where destination is the host to migrate and action is the name of the
method to execute on arrival. The method to execute differs from host to host. Automatic execu-
tion is handled by onArrival and onDeparture methods of the MigrationStrategyManager
class. Those methods can call other methods and access attributes of the object. onArrival
executes instructions when the object arrives on a new location, before it begins to serve external
requests. onDeparture executes instructions just before the object leaves the node.

To answer the location problem (find a migrated object, maintain connectivity), we propose
two solutions: the forwarders and the location server. A forwarder is a reference left by the ac-
tive object when it leaves a host: this reference points the new location of the object. Multiple
migrations create a chain of forwarders; some elements of chains may become temporarily or
permanently unreachable because of a network partition or a single machine in the chain fail-
ure. Longer chains produce worse performance because of multiple “jumps” of the message. So
ProActive uses tensioning to shortcut the chain of forwarders: after a migration, the first method
call updates the location of the migrated object to the caller and creates a direct link. This mech-
anism is presented by Figure 3.4.

Initial state

Migration

Tensioning

�����������
�����������
�����������

�����������
�����������
�����������

Active object

Active object

node bnode a node c

Active object

Forwarder Active object

node cnode a node b

Active object

Active object

node cnode bnode a

Figure 3.4: Migration and tensioning

With the second solution, the location server tracks the location of each active object. Every
time an object migrates, it sends its new location to the location server. After a migration, all the
references pointing to the previous location become invalid. When an object tries to communicate

3.2. ENVIRONMENT AND IMPLEMENTATION 37

with a migrated active object (the reference is no more valid), the call fails and a lazy mechanism
transparently (1) queries the location server for the new location of the active object, (2) updates
the reference regarding to the server’s response, and (3) re-performs the call on the object at
its new location. On contrary to the forwarder approach, the location server approach produces
additional messages: firstly, by the migrated object to the server after its move, and secondly, by
the failed communication. Those approaches are discussed and modeled in [HUE 02] regarding
many parameters such as migration rate, communication rate, average time on site, average
time of migration, communication latency, etc.

Conclusion
In summary, the essence of ProActive is as follows: a distributed object oriented programming
model that we are extending smoothly to get a component based programming model (in the form
of a 100% Java library, refer to Section 8.3 for more details); moreover this model is “grid-aware”
in the sense that it incorporates from the very beginning adequate mechanisms in order to fur-
ther help in the deployment and runtime phases on all possible kind of infrastructures, notably
secure grid systems. This programming framework is intended to be used for large scale grid
applications.

In addition to RMI, ProActive also permits the use of other communication protocols, such
as Jini, Ibis, HTTP, etc. Many new features are currently in development. The more noticeable
ones are (by order of decreasing maturity): hierarchical deployment-based security [ATT 03],
fault tolerance [BAU 04, BAU 05], non-functional exception handling [CAR 03, CAR 05a], load
balancing, and peer-to-peer computing.

38 CHAPTER 3. PROACTIVE

Chapter 4

Typed group communication

The RMI model only provides synchronous point-to-point communication. The communication
of ProActive enhances the RMI communication of Java with asynchronism, futures, automatic
synchronization and wait-by-necessity. Despite those improvements, very often, a parallel and
distributed application needs more advanced models like group communication. Many parallel
and distributed applications need the ability to combine many objects (remote or not) in order
to communicate with them in one shot. Such kind of operations has to be more efficient than a
replication of a simple point-to-point communication while it must preserve a similar behavior.
In addition we want to maintain a transparency regarding group communication, not only during
the sending of method invocations but also during the gathering of replies.

In this chapter, I present the design and features of a typed group communication provid-
ing an elegant way to extend the ProActive communication scheme (and consequently the RMI
communication scheme). Section 4.1 presents the objectives aimed for a group communication
mechanism and the model I propose. Section 4.2 describes the programmer interface and at the
same time the communication semantic. Finally, Section 4.3 presents advanced features provided
by the group communication mechanism.

4.1 The typed group model

Alternate approaches for parallel and distributed computing in Java include the use of more ded-
icated parallel programming frameworks, such as parallel and distributed collections [FEL 02]
which hide the presence of parallel processes, or implementations of MPI-like libraries in an
SPMD programming style [NEL 01]. As defined in [BAD 02b], the group mechanism I propose
is more general, as it enables to build such alternate parallel programming models, while being
able to provide group communication to distributed applications originally not aimed at being
parallel.

4.1.1 Objectives

ProActive is oriented to cluster computing, grid computing and desktop computing. The objectives
and constraints in term of platform are the following: we aim at very large amount of comput-
ers. Grid computing may involve up to 100,000 computers. Of course, in such large amount of
computers, computers are heterogeneous; they can be personal computers, members of a cluster,
multi-processors or not. ProActive, with Java, hides the hardware, and exposes only JVMs. Any
operating system providing a Java environment (JVM) is acceptable. There is no requirement
about the network, except that any computer should be able to join any other computer; the
topology of the network has not to be known. Finally, the environment is, of course, multi-user
and multi-task.

39

40 CHAPTER 4. TYPED GROUP COMMUNICATION

The design of the group communication system is an important aspect in providing a flexible
environment for the development of a wide range of distributed applications and services. So,
about the group communication system itself, the objectives are:

• Efficiency. System resources must be saved. A group communication must be more effi-
cient than a succession of point-to-point communications. The network latency must be
overlapped. Efficiency is the key feature in distributed computing world.

• Scalability. This is the second key feature. In a wide network such as Internet, many
computers are available. The combination of several clusters may also reach thousands of
computers. The group communication system must be able to handle a very large number
of members.

• Transparency. The call to group communication primitives for management (creation,
membership, etc.) must be minimized. The source code must remain clear. The activity
should be exhibited while the group management concerns should be pushed into the back-
ground. The addition of group communication should be the less intrusive it is possible in
code writing. Existing code should be not or just slightly modified to benefit from group
communication.

• Dependability. The behavior must remain coherent in case of failure: disappearing of com-
puters, unexpected results (exceptions), etc. The robustness of a distributed application
may depend on the robustness of its group communication system.

• Flexibility. The group communication must adapt itself to the needs of a large scope of ap-
plications. So it should not be too restricting, it means that the group communication must
be sufficiently open to provide all semantics of communication required by the programmer
to build him or her specific application.

• User-friendliness. The API must be quite easy to use and very functional. The group com-
munication difficulties have to be hidden to the programmer. It must be managed by the
environment runtime system.

• Evolution. The group mechanism must be able to adapt to new communication protocols
(RMI-like or not). It should adapt also to non-functional features, principally security mech-
anisms, but also fault tolerance and extended asynchronism such as automatic continua-
tion.

4.1.2 Typed groups
The group communication mechanism is built upon the ProActive elementary mechanism for
asynchronous remote method invocation with automatic future for collecting a reply. As this last
mechanism is implemented using standard Java, such as RMI, the group mechanism is itself
platform independent: it requires no changes to the JVM, no preprocessing or compiler modifi-
cation, like the rest of the library. A group communication must be thought of as a replication of
more than one (say N) ProActive remote method invocations towards N active objects. Of course,
the aim is to incorporate optimizations into the group mechanism implementation, in such a
way as to achieve better performances than a sequential achievement of N individual ProActive
remote method calls. In this way, our mechanism is a generalization of the remote method call
mechanism of ProActive, built upon RMI, but as we will see further nothing prevents from using
other transport layers in the future.

The availability of such a group communication mechanism, simplifies the programming of
applications with similar activities running in parallel. It is natural to group together similar
activities because they are subject to receive the same data or the same instructions. Similar
method invocations target similar activities. In an object-oriented framework, this idea of sim-
ilar activities is translated by the fact of implementing an interface. All members of a group
have to implement a common interface, or extend a common superclass. Indeed, from the pro-
gramming point of view, using a group of active objects of the same type, subsequently called

4.2. APPLICATION PROGRAMMING INTERFACE 41

a typed group, takes exactly the same form as using only one active object of this type. The
multi-communication, to each member of a group, is abstracted from the code; only the func-
tional aspect remains.

The construction of such group is possible due to the fact that the ProActive library is built
upon reification techniques: the class of an object that we want to make active, and thus remotely
accessible, is reified at the meta-level, at runtime. In a transparent way, method calls towards
such an active object are executed through a stub which is type compatible with the original
object. The stub’s role is to enable to consider and manage the call as a first class entity and
applies to it the required semantic: if it is a call towards one single remote active object, then the
standard asynchronous remote method invocation of ProActive is applied; if the call is towards a
group of objects, then the semantic of group communications is applied. The rest of the chapter
defines this semantic.

4.2 Application Programming Interface
The ProActive group API provides a valuable basis for building parallel programs. Its design
goals aim to ease the construction of parallel applications, separating the concerns, thus helping
to solve the problem of developing large applications; all that, maintaining an elegant and fully
object-oriented syntax.

4.2.1 Group creation
Groups are created using the static method:

ProActiveGroup.newGroup("ClassName", ...);

The superclass or the interface common for all the group members has to be specified, thus
giving the group a minimal type. Groups can be created empty and existing active objects can be
added later as described in Section 4.2.2. Let us take a standard Java class:

public class A {
public A() {}
public void foo () {...}
public V bar () {...}

}

// Solution 1:
// create an empty group of type "A"

A ag1 = (A) ProActiveGroup.newGroup("A");

Non-empty groups (groups and their members) can be built at once using two additional pa-
rameters: a list of parameters required by the constructors of the members and a list of nodes
where to map those members. In that case the group is created and new active objects are con-
structed using the list parameters and are immediately included in the group. The nth active
object is created with the nth parameter on the nth node. If the list of parameters is longer than
the list of nodes (i.e. we want to create more active objects than the number of available nodes),
active objects are created and mapped in a round-robin fashion on the available nodes. Remotely
creating the objects at the same time as the group itself is a powerful deployment ability that re-
inforces dynamicity and avoids numerous and repetitive adding operations. Here are examples
of some group creation operations:

// Pre-construction of some parameters:
// For constructors:

Object[][] params = {{...} , {...} , ... };
// Nodes to identify JVMs to map objects

Node[] nodes = { ... , ... , ... };

42 CHAPTER 4. TYPED GROUP COMMUNICATION

// Solution 2:
// A group of type "A" and its members are created at once,
// with parameters specified in params, and on the nodes
// specified in nodes

A ag2 = (A) ProActiveGroup.newGroup("A", params, nodes);

// Solution 3:
// A group of type "A" and its members are created at once,
// with parameters specified in params, and on the nodes
// directly specified

A ag3 = (A) ProActiveGroup.newGroup("A", params,
{"rmi://laurel.inria.fr/Node1", "rmi://hardy.inria.fr/Node2"});

The deployment of a group of activities can benefit a lot from the Virtual Node abstraction
presented in Section 3.2.1. Groups and their active objects can be created using a virtual node
instead of an array of nodes. First, the virtual node is activated (activateMapping()), then it
is possible to use it into a group-and-objects creation. See the following example:

// Activates the mapping for the VirtualNode vn
vn.activateMapping();

// Solution 4:
// A group of type "A" and its members are created at once,
// with parameters specified in params, and on the nodes
// of the virtual node (specified in the XML deployment file)

A ag4 = (A) ProActiveGroup.newGroup("A", params, vn);

Those creation processes assumes that the number of active objects to create is known. The
number of created objects depends on the params size. In some cases, the number of objects
we want to create is not fixed and depends on the number of available nodes. So, primitives are
provided to build activities depending on vn size and not on params size. In those cases one object
is created by node and each object is created with the same parameters. The params parameter
is a one dimensional array containing the parameters used to create each active object.

// Pre-construction of some the common parameters
// Note that params is now a 1Dimensional array

Object[] params = { ... , ... , ... };

// Solution 5:
// A group of type "A" and its members are created at once,
// with the same parameters specified in params, and on all
// the available nodes

A ag5 = (A) ProActiveGroup.newGroup("A", params, vn);

Elements can be included into a typed group only if their class implements the interface, or
equals or extends the class, specified at the group creation: the classes of all the members of
a group have a common ancestor. Note that we do allow and handle polymorphic groups. For
example, an object of class B (B extending A) can be included into a group of type A. However, only
the methods defined in the class A can be invoked on the group.

The main limitation of the group construction is that the specified class of the group has to be
reifiable, according to the constraints imposed by the Meta-Object Protocol of ProActive: the type
has to be neither a primitive type (int, double, boolean, etc.), nor a final class, in which cases,
the MOP would not be able to create a typed group object. However, those constraints are easy
to explain, to identify, and to check.

4.2. APPLICATION PROGRAMMING INTERFACE 43

4.2.2 Group of Objects: a Collection and a Map

The typed group representation presented in the preceding section corresponds to the functional
view of groups of objects. In order to provide a dynamic management of groups, a second and
complementary representation of a group has been designed. In order to manage a group, this
second representation must be used instead. This (second) representation follows a more stan-
dard pattern for grouping objects: the interface Group extends the Java Collection interface
which provides management methods like add, remove, size, etc. Those group management
methods feature a simple and classical semantic (add in group, remove the nth element, etc.)
which provides a ranking order property of elements of a group.

The management methods for a group are not available on the typed group representation, but
instead, on the group representation. It is a design choice among two possibilities: one that would
have consisted in using static methods of the ProActiveGroup class in order to manage groups,
and as such, yielding to just one representation of a group. The other consists in associating to a
group two complementary representations, one for functional use only, the other for management
purposes only. At the implementation level, we are careful to have a strong coherence between
both representations of the same group, which implies that modifications executed through one
representation are immediately reported on the other one. In order to switch from one repre-
sentation to the other, two methods have been defined (see Figure 4.1): the static method of the
ProActiveGroup class, named getGroup, returns the Group form associated to the given group
object; the method getGroupByType defined in the Group interface does the opposite.

static method of the ProActiveGroup class

method of the Group interface

ProActiveGroup.getGroup(og)

go.getGroupByType()

Typed group

ag1

Group

gA

representation
Real Java

Figure 4.1: Typed group and Group representations

Below is an example of when and how to use each representation of a group:

// Definition of one standard Java object and two active objects
A a1 = new A();
A a2 = (A) ProActive.newActive("A", paramsA, node);

// Remember that B extends A
B b = (B) ProActive.newActive("B", paramsB, node);

// For management purposes, get the representation as a group
// given a typed group

Group gA = ProActiveGroup.getGroup(ag1);

// Now, add objects to the group:
// Note that active and non-active objects may be mixed in groups

gA.add(a1);
gA.add(a2);
gA.add(b);

44 CHAPTER 4. TYPED GROUP COMMUNICATION

// A new reference to the typed group can also be built as follows
A ag1new = (A) gA.getGroupByType();

Notice that groups do not necessarily contain only active objects, but may contain standard
Java objects as members. The only restriction is that their type must be compatible with the
class of the group. We will see in the next section the implication of such heterogeneous groups
on the management of communications towards group elements.

The Group interface also defines most of the methods of the Map interface. Group does not
directly extend Map because it is impossible to extend both Collection and Map interface: the
methods remove are incompatibles1. A Map is an object that maps keys to objects. A map cannot
contain duplicate keys; each key can map to at most one value. It allows to name the object we
put in a group, and to find it back with its unique name. See the example below:

// Creates a new object
A a3 = (A) ProActive.newActive("A", params, node);

// Adds a3 in the group in the Map fashion with a unique key
gA.add(b,"MyFavoriteObject");

// Retrieves the a3 object with the key
A a3new = gA.get("MyFavoriteObject");

The collection interface provides ordering, while the Map interface provides indexing. Any ob-
ject in a group has a rank, but not necessarily a key.

Group membership is dynamic. No consistency is assured between a group and its possi-
ble copies. Actually we consider that a copy of a group is an entirely new group (references to
members are copied). In that way, we free ourselves from the consistency problem.

4.2.3 The communication is a method call

A method invocation on a group has a similar syntax to a standard method invocation:

Object[][] params = {{...} , {...} , ...};
Node[] nodes = {... , ... , ...};
A ag = (A) ProActiveGroup.newGroup("A", params, nodes);

// A group communication:
ag.foo();

Of course, such a call has a different semantic which is as follows: the call is propagated to all
members of the group using multithreading (further information are exposed in Section 5.2.1).
Like in the ProActive basic model, a method call on a group is non-blocking and creates a trans-
parent future object to collect the results. A method call on a group yields a method call on each of
the group members. If a member is a ProActive active object, the method call will be a ProActive
call and if the member is a standard Java object, the method call will be a standard Java method
call (within the same JVM).

For example, Figure 4.2 presents a one-way group communication on the group ag. ag is
composed of a remote active object a1, a local active object a2, and a standard Java object a3.
The one-way call is asynchronously transmitted to each object regarding their location and their
form (active or not). On the figure, the call 1, addressed to the remote active object, is a remote
asynchronous call. The call 2, addressed to the local active object, is a local asynchronous call.

1The remove method of the Collection interface returns a boolean that represents if the collection changed after
the call. The remove method of the Map interface returns the removed object. As Java does not allow method overloading
with methods returning result with different types, those two methods are incompatibles.

4.2. APPLICATION PROGRAMMING INTERFACE 45

Finally the call 3, addressed to the standard Java object, is a standard method invocation with-
out any extra-service. The Group communication adapts each communication in a very fine way.

call 1

call 2

call 3

a3

a2

a1group

Active object Remote node

Local node

Java object

Active object

Active object

ag

Figure 4.2: One-way method call on a group

The parameters of the invoked method are broadcasted to all the members of the group. As
described in Section 4.2.6, another semantic is available in order to scatter the parameters to the
group members instead of broadcasting them.

Like the Meta level hides the remote access for a basic ProActive method call (presented in
Section 3.2.2), the Meta level also hides the multi-communication in a ProActive group commu-
nication.

4.2.4 Group of futures
A particularity of this group communication mechanism is that the result of a typed group com-
munication is also a group.

Given the following code:

// A method call on a group, returning a result
V vg = ag.bar(); // vg is a typed group of "V"

As shown in Figure 4.3, the result group is transparently built at invocation time, with a
future for each elementary reply (in case of asynchronous call of course). It will be dynamically
updated with the incoming results, thus gathering results. If one result is an active object (with
a remote access), only the reference to this active object is send to the result group. Nevertheless,
the result group can be immediately used to execute another method call2, even if all the results
are not available (more details come in the wait-by-necessity paragraph in the next section). The
transformation of the result typed group into a group of object of type V in this example, is also
immediately available (through the method getGroup() presented in Section 4.2.2).

The ranking order of elements in a group is a property that is kept through a method in-
vocation: the nth member of a result group (i.e., of vg) corresponds to the result of the method
executed by the nth member in the calling group (i.e., of ag). We will see later, in Section 4.3.2,
that another property is maintained between the group onto which the call is performed and the
group of corresponding results: the hierarchical structure. A result group has an identical form
to the caller group.

As previously explained, groups whose type is based on final classes or primitive types cannot
be built. So, the construction of a dynamic group as a result of a group method call is also limited.
Consequently, only methods whose return type is either void or is a reifiable type, in the sense

2This call will be either a standard call or a ProActive remote call, depending of the real type of results

46 CHAPTER 4. TYPED GROUP COMMUNICATION

3

2

1

futur 1 futur 2 futur 3

Remote node

Active object BRemote node

agvg

Active object
group

result group

Local node

Remote node Active object B

Active object B

Figure 4.3: Method call on a group, with results

of the Meta Object Protocol of ProActive (see above), may be called on a group of objects; other-
wise, they will raise an exception at runtime, because the transparent construction of a group of
futures of non-reifiable types fails.

4.2.5 Synchronization
Once again, depending on the method signature, the communication scheme is automatically
chosen. Let us remember the three communication schemes; one-way, asynchronous, and syn-
chronous; and see their behavior in a group context.

• A one-way group communication is performed in an asynchronous way with no generation
of a group of results. The caller blocks until each call reaches its receiver, it is a kind of
generalized rendez-vous; generalized to the context of group communication.

• The asynchronous group communication follows the semantic of a one-way call (asynchro-
nism and rendez-vous). The difference is that a group of results is created at the early
beginning of the rendez-vous step. The creation of the result group over, as well as the
rendez-vous, the activity of the caller is resumed (possibly before all the results have re-
turned).

• Finally, a synchronous group communication is quite similar to an asynchronous communi-
cation, except that the caller blocks until all the messages are sent (the rendez-vous) and
all results have returned.

The rendez-vous ensures a FIFO ordering of message delivery. The group communication ex-
tends also the synchronizations applied on the result after a basic ProActive method call. The
Wait-by-necessity mechanism has evolved to be group-compliant and new primitives to control
the synchronization have been introduced. Of course such mechanisms are only useful with an
asynchronous method invocation (that is the most frequent case in our framework).

Whatever be the communication semantic, the method invocation on a standard Java object,
member of a group, is always synchronous and never return a future. This because Java object
are not able to express asynchronism.

Wait-by-necessity

The result group is immediately available to execute a method call, even if not all results are ar-
rived on the caller side. In that case the wait-by-necessity mechanism implemented in the ProAc-
tive group communication system is used: the call is applied on the already returned replies (i.e.

4.2. APPLICATION PROGRAMMING INTERFACE 47

group members) and if some replies are still awaited, then, the caller blocks. Then, as soon as
one reply arrives in the result group, the method call on this result is executed: in this way, the
asynchronism is pushed further. In the code below, a new f1() method call is automatically
triggered as soon as one reply from the call vg = ag.bar() comes back in the group vg.

Eventually, the instruction vg.f1() completes when f1 has been called on all members. It
means that the caller continues its activity only when the call to f1 has reached every member
of vg. Consequently, the activity may not resume before the call to bar has totally completed
meaning that all the results of the call ag.bar() have returned into vg.

// A method call on a group, returning a result
V vg = ag.bar();

// vg is a typed group of "V": operation below is also
// a collective operation triggered on results

vg.f1();

Synchronization primitives

To take advantage with the asynchronous remote method call model of ProActive, some new
synchronization mechanisms have been added. Static methods defined in the ProActiveGroup
class enable to execute various forms of synchronization. For instance: waitOne, waitN, waitAll,
waitTheNth, etc. Here are examples:

// A method call (with result) on a typed group
V vg = ag1.bar();

// To wait and capture the first returned member of vg
V v = (V) ProActiveGroup.waitAndGetOne(vg);

// To wait all the members of vg are arrived
ProActiveGroup.waitAll(vg);

This explicit control gives a finer (and stronger) control to the programmer, no more at the
method level but at the group level. It also may allow avoiding unnecessary waits. For instance,
in a context where objects of a group are concurrent workers to achieve a same task, the interest
is to obtain the result as quick as possible, with no matter about the identity of which object has
returned the result. So methods like waitAndGetOne or waitAndGetN may be really useful. In
any case, all calls are executed and all results returned, even if the programmer needs only the
first or the nth results.

4.2.6 Broadcast vs. scatter
Regarding the parameters of a method call towards a group of objects, the default behavior is to
broadcast them to all members. But sometimes, only a specific portion of the parameters, usually
depending on the rank of the member in the group, may be really useful for the method execu-
tion, and so, the bigger parts of the parameter transmissions are useless: it is quite inefficient.
In other words, in some cases, there is a need to transmit different parameters to the various
members.

Give up the benefit of group communication in term of expressiveness and performance and
perform a set of point-to-point communications to achieve such kind of method invocation would
be bad. On the contrary, the group communication must provide a way to scatter the parameter(s)
of a method call between the members of the group. A common way to achieve the scattering of
a global parameter is to use the rank of each member of the group to select the appropriate part
that a member should get to execute the method. There is a natural translation of this idea
inside the group communication mechanism: the use of a group of objects in order to represent a
parameter of a group method call that must be scattered to its members.

48 CHAPTER 4. TYPED GROUP COMMUNICATION

A one to one correspondence between the nth member of the parameters group and the nth

member of the group is obtained by the ranking property already mentioned in Section 4.2.4.

Like any other object, a group of parameters of type P can be passed instead of a single pa-
rameter of type P specified for a given method call. The default behavior regarding parameters
passing for a method call on a group is to pass a deep copy of the group of type P to all members 3.
Thus, in order to scatter this group of elements of type P instead, the programmer must apply the
static method setScatterGroup of the ProActiveGroup class to the group. In order to switch
back to the default behavior, the static method unsetScatterGroup is available.

The control of diffusion (broadcast) and distribution (scatter) is very fine. It can be specified
parameter by parameter. Non-group object are always broadcasted. As presented in the code
below, and illustrated in Figure 4.4, a distribution and a diffusion of data can be performed in
the same group communication.

// Broadcast the object a and the groups bg and cg to all the
// members of the group ag:

ag.foo(a, bg, cg);

// Change the distribution mode of the parameter group cg:
ProActiveGroup.setScatterGroup(cg);

// Broadcast the object a and the group bg but
// scatter the members of cg onto the members of ag:

ag.foo(a, bg, cg);

recieved
parameters

recieved
parameters

recieved
parameters

ag

Active object
group

Active object

Local node

Remote node

Active object

Active object

Remote node

a

parameter group (scatter)

parameter group

parameter

Remote node

c4

b1

b2

b3
c1

c2

c3

bg cg

parameters given to the method b1

b2
b3

bg

b1

b2
b3

bg

b1

b2
b3

bg

a

a

a c1

c2

c3

Figure 4.4: Scattered parameters

Notice that, should the parameter group be bigger than the target group; the excess members
of the parameter group will be ignored. Conversely, should the target group be larger than the
size of the parameter group, then the members of the parameter group will be reused (i.e. sent
more than once) in a round-robin (cyclic) fashion.

Note that this parameter dispatching mechanism is in many ways a very flexible one. It
provides:

• automatic sending of a group to all members of a group (default),

• the possibility to scatter groups in a cyclic manner (setScatterGroup),
3If the members of the group of type P are in fact active objects or groups, then only copies of the stubs are done.

Indeed, the group collecting such members does not effectively contain a copy of those active objects, but only references
to them.

4.2. APPLICATION PROGRAMMING INTERFACE 49

• the possibility to mix non-group, group, cyclic-scatter group as arguments in a given call.

All of this is achieved without any modification to the method signature.

4.2.7 Operation semantics on result group
By default, there is absolutely no distinction between a group, newly created by the newGroup
method, and a result group dynamically created by a method invocation applied on an already
existing group.

Method invocation

However, regarding method invocation semantic, one may want to introduce divergences. In-
deed, result group may be composed by one or many group members that are futures not yet
updated. The behavior to adopt in front of method invocations on not updated futures fall in
three categories. Given the following instructions:

// ag is a typed group
V vg = ag.bar();
...
vg.gee();

1. The “Target group order” strategy: Execution of gee() is triggered in the order of the results
in the group, as soon as results return, one after the other. The execution is deterministic.

2. The “Sequential return order” strategy: Execution of gee() is triggered in the order of
returning result (future’s update), one after the other. The execution is not deterministic.

3. The “Return order in parallel” strategy: Execution of gee() is triggered in the order of
returning result, potentially all simultaneously. The execution is not deterministic and
introduces parallelism.

By default, this last strategy is used. It agrees the most to the non-result group communica-
tion semantic and thus provides a more uniform framework. Section 8.1 presents extensions of
the API that allow to express any other strategies.

Reduction

A reduce operation combines the elements provided in a group, using a specified operation, and
returns the combined value. The typed group API does not provide a standard primitive to
achieve such operation, but prefers to leave to the programmer the care to implement it. We
assume two ways to achieve a reduce operation, a local and sequential one, and a possibly remote
and parallel one. Here are their description:

• The sequential combination may be achieve by an iteration on the group members. Mem-
bers are combined one after the other thanks to a static method, possibly extern from the
class of the objects. For instance, given ag a typed group of A and combine a user-defined
static method, the following code performs a reduce operation:

// reduce may be of any type the programmer wants
reduce = null;
Iterator it = ProActiveGroup.getGroup(ag).iterator();
while (it.hasNext()) {
reduce = A.combine(reduce, it.next());

}
// reduce contains the result of the reduction

If the group is a result group that contains futures, the execution of the method combine
will trigger wait-by-necessity. The execution is deterministic.

50 CHAPTER 4. TYPED GROUP COMMUNICATION

• The parallel combination achieve a reduction using a group communication. In this case,
the class of a typed group has to define a method which takes in parameter an user-defined
“storage” object. The invocation of a combination method on the group with a storage object
as parameter achieves reduction in a parallel fashion. Here is an example, with a typed
group ag and a combination method named combine defined in the class A:

// the group communication
// storage was locally initialized by the programmer

ag.combine(storage);
// storage contains the result of the reduction

When the call is over, the storage object contains result of the reduce operation. This way
to achieve a reduce is most of time more efficient than the sequential version because com-
binations may be done simultaneously following the result return order. However, the pro-
grammer have to ensure that simultaneous reading and writing accesses on the storage
object value are safe.

In both cases we assume that we do not benefit from binomial propagation and combination
of the results that many library for collective communication may provide. The group behavior
component we are currently adding in the ProActive library is a third integrated solution to
perform a reduce operation; it is presented in Section 8.1.

4.3 Advanced group features

In addition to the regular use of group, method invocation and group management, the mecha-
nism is extended in order to support more advanced abilities. Four of them look quite fundamen-
tal for a complete group communication system: the error handling mechanism, the hierarchical
composition of groups, the remote access to a group service, and a processing-based group activity.

4.3.1 Errors and exceptions

The failure model provides a mechanism to handle the failure of a method execution or of a
method invocation. In the Java framework failures and errors are expressed with Exceptions.
We can distinguish two kinds of exceptions: the exceptions raised during the method execution
and the exceptions raised by the system or the middleware. The first exceptions may be expected
while the second may not. The group communication system manages both exceptions in a uni-
fied manner.

The group communication system does not remove a failed member from a group. It is the
programmer’s responsibility to do that. Because it is impossible to guess how an application
should react regarding an exception, the final treatment always yield to the programmer. The
group communication system assumes that itself is not able to solve the problem (i.e. determine
if the member is lost, unavailable for a moment, or if the exception is an expected behavior). It
only avoids the propagation of errors; i.e. method invocations on a “failed” member.

In group communication, exceptions are not directly propagated. There are two main reasons
for that. Firstly, because groups are transparent for the functional aspect (method invocation),
the language does not expect a particular behavior dedicated to group. As soon as one exception
is raised, the system will stop the call. This is not what we expect: we want the call to be finished
by communicating with all members. Secondly, it is impossible to choose only one exception to
propagate in case of multiple exceptions occurred. The language allows only one exception to be
raised and caught. This is not satisfying for a group communication.

4.3. ADVANCED GROUP FEATURES 51

Asynchronous calls

In case of an asynchronous call, the caller thread may have already left the try/catch statement
when the exception occurs, so the standard way to manage exception is no longer acceptable. We
need a structure to store raised exception in order to inspect them at any time (before the call
completes, or after). Given ag a typed group of A:

A ag = (A) ProActiveGroup.newGroup("A",params,nodes);

If a member of a group communication raises an exception, this exception is stored in the
result group at the exact place where should be the awaited result. Exceptions are stored in
an object named ExceptionInGroup that contains also a reference to the object on which we
try to invoke a method and which triggers the exception. This allows identifying the object that
possibly failed and eventually remove it. See the following method invocation on the group ag:

V vg = ag.bar(); // vg may contain exceptions

The typed group vg may contain exceptions. To examine those exceptions, the method get-
ExceptionList() returns an object ExceptionList that extends RuntimeException and
implements the List interface. The ExceptionList is a List of ExceptionInGroup. An
Iterator allows to iterate on each exception and observe them or perform some treatments as
presented below:

// Gets the Group interface
Group gV = ProActiveGroup.getGroup(vg);

// Retrieves the exceptions list
ExceptionList el = gV.getExceptionList();

// Iterates on the exceptions
Iterator it = el.iterator();
while (it.hasNext()) {

... // Treatment
}

A method invocation on a group ignores the members that are Exceptions. The call is only
propagated to valid members. In order to maintain the ordering property a null reference is
placed in the result group at the same index than the exception member. As for the exception
members, a method invocation is not relayed on null members.

// The call to f2 is not relayed on the exceptions
// contained in vg. wg will contain null members.

W wg = vg.f2();

The method purgeExceptionAndNull() removes the null and exception members. The
lost of those unnecessary members breaks the ordering property. It can be compared to the
trimToSize() method of the ArrayList and Vector classes that trims the capacity of those
collection instances to be the list’s current size. Beware, a call to purgeExceptionAndNull()
impacts the ranking order of the group.

Group gW = ProActiveGroup.getGroup(wg);
gW.purgeExceptionAndNull();
gV.purgeExceptionAndNull();

// now, vg and wg do not contain anymore null or exception members

Figure 4.5 summarizes the presented operations.

52 CHAPTER 4. TYPED GROUP COMMUNICATION

gW.purgeExceptionAndNull();
Group gW = PAGroup.getGroup(wg);

ExceptionList

Group gV = PAGroup.getGroup(vg);

gV.purgeExceptionAndNull();

gV.getExceptionList();

vg = ag.bar(); wg = vg.f2();

Exception null

Exception

bg

vg wg

cg

ag

v3 w1 w3

a1 a2 a3 v1 v3 w1 w3

v1

Figure 4.5: Exception mechanism of an asynchronous method call on group

Synchronous calls

The mechanism for synchronous call is identical to the mechanism presented above for asyn-
chronous call. Even with a synchronous execution, no exception is raised. They are stored in the
result group to be potentially inspected later with an ExceptionList object. The reason is still
the same: we have to handle possibly many and different exceptions and we do not want to favor
one regardless the others.

In consequence, the try/catch statement surrounding the invocation of a method that can
throw exception will never be reached. The exception mechanism of group communication inter-
cepts the raised exceptions and put them in the result group. However the try/catch statement
has to be written, because the Java language forces the exception to be caught (or thrown). This
is one bad effect of the group transparency.

Another way would have been to throw the ExceptionList object. But this is not the ex-
pected exception. The try/catch statement problem would have been the same: it would have
never been reached.

One-way calls

In the case of one-way method call, the exception handling mechanism slightly differs from
the mechanism deployed in asynchronous and synchronous method call. There is no longer
a structure (the result group) able to store the raised exceptions. Exceptions are embedded
into ExceptionInGroup and inserted in an ExceptionList similarly to the (a)synchronous
method, but the ExceptionList is systematically raised if it contains at least one exception.
ExceptionList extends RuntimeException, so it is not an obligation to write a try/catch
block. In the following example, the ExceptionList is caught to be analyzed:

4.3. ADVANCED GROUP FEATURES 53

try {
ag.foo();

}
catch (ExceptionList el) {

Iterator it = el.iterator();
while (it.hasNext()) {

... // Treatment
} }

If the programmer chooses to write a try/catch block, he or she has to keep in mind that
a one-way call has an asynchronous semantic. An exception may be raised when the block is
already passed. For practical purposes the try/catch block should be placed in a synchronous
method that encapsulates the group invocation to be able to catch all the exceptions.

Figure 4.6 exposes the behavior in a one-way call context:

ExceptionList

ag.foo();

Exception

ag

a1 a2 a3

Figure 4.6: Exception mechanism of a one-way method call on group

4.3.2 Hierarchical group
To build large applications, we provide the concept of hierarchical group: a group of objects that
is built as a group of groups. This mechanism may help in the data structuring of the application
and makes it more scalable.

A hierarchical group is easily built by just adding group references to a group. This operation
is very simple because groups are typed objects, and thus subject to be added into another typed
group. Compatible type is the only condition to be part of a group. Here is an example showing
the creation of a hierarchical group, (Figure 4.7 illustrates the operations):

// Two groups
A ag1 = (A) ProActiveGroup.newGroup("A",...);
A ag2 = (A) ProActiveGroup.newGroup("A",...);

// Get the group representation
Group gA = ProActiveGroup.getGroup(ag1);

// Then, add the group ag2 into ag1
gA.add(ag2);

// ag2 is now a member of ag1

Note that one can merge two groups, rather than add them in a hierarchical way. This is
provided through the addMerge method of the Group interface. For instance, the instruction:

// Add the members of ag2 into ag1
gA.addMerge(ag2);

adds all the members of a group into another one as shown in Figure 4.8.

54 CHAPTER 4. TYPED GROUP COMMUNICATION

ag1 ag2

.add ()

ag1

ag2

hierarchical group

Figure 4.7: The add method

ag1

.addMerge ()

ag2 ag1 "flat" group

Figure 4.8: The addMerge method

As seen previously, a group of results has the same form of the caller group. This is ensured
by the property: the nth member of the result group corresponds to the result of the method exe-
cuted by the nth member in the caller group.

This correspondence remains true in the case of hierarchical groups. As the result of a method
call applied on a group is also a group, the members which are a group return a group as result.
Finally, the result group of a method invocation on a hierarchical group is a hierarchical group
with the exact same form as shown in Figure 4.9 (group on the left is the result of a method call
invoked on the hierarchical group on the right: vg = ag.bar()).

vg = ag.bar();

hierarchical group

Active object
ag vg

hierarchical group
result

Figure 4.9: Hierarchical groups

With hierarchical groups, the rendez-vous is still the same than with regular groups, but has
some special implications. The caller always waits for the call has reached all members of a group
to continue. The fact is that members of a group added into another are not members of the root
group. In the example, members of ag2 will never be considered as members of ag1. However
as the rendez-vous ends when all the members of the root group have received the method call,

4.3. ADVANCED GROUP FEATURES 55

and as the reception for the sub-groups is also subject to a rendez-vous, the activity of the caller
is resumed as soon as all members and all sub-group members have received and queued the
method call4. The rendez-vous can be said “recursive”5.

Depending on the parameters they receive (scatter or not), communication schemes (scatter
or broadcast) of the root group and its sub-group may differ. In that way, one can combine the
schemes in order to build a more complex scheme. For instance the root group may scatter its
data between its members, and some of its sub-groups may broadcast their piece of data to all
their members.

4.3.3 Active group
Groups are local. Because one may want to access them remotely, we have to provide a way to
achieve this. A group remotely accessible looks like a service: a message is first addressed to the
service, and then forwarded to the group members.

ProActive provides an easy way to transform any object into a remotely accessible object. As
such, a typed group may be turned into an active object. We name it an active group. Thus,
a group earns all the abilities of an active object. It becomes among other properties, remotely
accessible, served by a FIFO policy, and subject to migration.

There are two manners to obtain an active group:

1. The Instantiation-based approach: a Java class is directly instantiated to create an active
group. The parameters params and nodes play the same role as previously in the basic
group context: they are used to build the group members.

// Pre-construction of parameters
Object[][] params = {{...} , {...} , ... };
Node[] nodes = { ... , ... , ... };

// Creation of an active group
A active_ag =

(A) ProActiveGroup.newActiveGroup("A", params, nodes, node);

If the node parameter is null or not specified, the active group is created locally. Oth-
erwise, if node refers to a remote JVM the active group is created and activated in this
designed node.

2. The Object-based approach: this is more dynamic. It transforms an already existing typed
group into an active group.

// Creation of a typed group
A ag = (A) ProActiveGroup.newGroup("A", params, nodes);

// The typed group turned active
A active_ag = (A) ProActiveGroup.turnActiveGroup(ag, node);

If node refers to a remote JVM the group is copied to the remote location and turned active.

An active group remotely exposes only its functional interface. The management interface
(the Group interface) is remotely unavailable. So any management operations have to be done
locally to the active group. It is also possible to create another active object which drives the

4This behavior differs from the case where a root group member has a reference on a group and relays itself the method
invocation to this group (by method override for instance). In that case the rendez-vous only ensures that the method
call has reached the group member; there is no guarantee about the propagation of the call on the “sub-group” members.

5Implementation details come in Section 5.1.2, but we can notice now that a call on a hierarchical group is triggered
by recursive calls on the reify methods in charge of the communication semantic.

56 CHAPTER 4. TYPED GROUP COMMUNICATION

group for management purpose. By providing the Group’s methods, this active object may simu-
late a remote access to the Group interface.

Active groups are particularly effective to communicate with remote clusters. Indeed in a grid
environment, a group call departing from a computer in a cluster and addressed to computers of
another cluster must use an active group. Otherwise multiple replicated messages would pass
through the interconnection network to reach a common destination cluster. Because this is a
waste of network resources and because, the interconnection network may be Internet, with no
guarantee of Quality of Service and high latency, the use of active group is strongly recommended.

With an active group, a unique “entry point” relays the calls to the members. This property
linked with the rendez-vous to communicate with any active object assures that message delivery
is totally ordered. Of course, the transmission of a call to this unique entry point is supported by
the rendez-vous of ProActive; thus successive calls to such a group will be totally ordered. How-
ever, within an asynchronous call, the generalized rendez-vous defined by group communication
(see Section 4.2.5) is no longer maintained. An active group ensures that the method invoca-
tion is received by the entry point but not necessarily transmitted to the members. Indeed, this
generalized rendez-vous has become useless since the group exposes a unique entry point and
subsequently assures a reliable delivery. Nevertheless the communication semantic remains un-
changed with synchronous method invocation: the caller waits for all results are returned to
resume its activity.

Migration of a typed group is performed with the static methods migrateTo provided by the
ProActive class. Only the group migrates (with its standard Java object members, but not with
the members that are active objects). Standard Java objects have to be migrated with the group
because they are not remotely accessible, and in consequence would be lost after the migration.
On contrary, the active objects, members of the group, remain in their location. Those objects
may be migrated individually using the migrateTo methods. Otherwise if their common inter-
face implements a method that triggers a migration, a migration of all members may be triggered
by the method invocation on the group. The mobility of the group and also of its members allows
for instance to migrate the objects before a cluster shuts down, and thus save the data and the
state of the application while the application keeps running.

Finally, like for any other active object, service policy of an active group may be redefined by
the programmer, thus giving a total control on the method execution schedule. Of course, the
default policy is a FIFO service of the requests. This is done by redefining the runActivity
method in the class of the group.

Combination of active and hierarchical groups

Combined to hierarchical groups, active groups are a very effective and efficient solution to ag-
gregate clusters in a grid environment. This allows to easily distribute data and activities in a
complex hardware structure, as presented in Figure 4.10.

4.3.4 Dynamic dispatch group

In the particular case where groups are used to produce parallelism regardless which data is
processed by which group member, the basic behavior of group communication (synchronization
and data to member mapping) can be improved in order to best schedule the overall computation.
A dynamic dispatching of the group parameter will be achieved, based on the relative observed
speed of execution.

The idea is to send more pieces of the parameter data to faster members than to slower
members in order to provide a more efficient distribution of the call. The goal is to reduce the
time needed to treat a method call on a group by a distribution of method call adapted to the

4.3. ADVANCED GROUP FEATURES 57

Internet

Active object
ag

Remote cluster Remote cluster

Remote cluster

active group

active group

active group

Local node

hierarchical group

Figure 4.10: Hierarchical and active groups

performances of the group members. The scattering of data remains on the programmer’s re-
sponsibility, as in standard scatter communication (build the scattered parameter groups). What
will mainly differ in a dynamic dispatch group is the dispatching of parameter to group member.
The cyclic manner to dispatch parameter to group members (presented in Section 4.2.6) does not
consider the difference in term of performance of the members. In a dynamic dispatch group, the
requests are not sent entirely to the group members at the beginning of the call; the requests
are first queued on the caller side and then successively sent to a group member available for a
computation. As soon as a group member ends a computation it asks for a new request to the
caller. By this way, faster workers may serve many requests while slower workers serve each a
single request.

Of course, the ranking property ensuring that the nth member of a group parameter will be
passed to the nth member of the worker group is no longer maintained. The allocation is not de-
terministic: it is impossible to predict which parameter will be sent to which worker. Moreover,
there is no warranty for the order of service of the requests because different members serve
methods at different speed. The service of a request r1 sent to a slow worker w1 at time t1 may
end after the service of a request r2 sent to a faster worker w2 at time t2, where t1 < t2.

Finally, the structure of the result group is no longer based on the group on which the method
is invoked. In the dynamic dispatch group context, the construction of the result group is based
on the first parameter that is a scatter group 6. It means that the nth member of the result group
is the result of the method invoked with the nth member of the parameter group on a worker.

Dynamic dispatch groups are created with the method newDynamicDispatchGroup of the
ProActiveGroup class. Parameters are similar to those used to build a standard typed group:

6Indeed, if there are several groups in the parameters of the call, the first scatter one is considered to lead the call and
define the size of the result group.

58 CHAPTER 4. TYPED GROUP COMMUNICATION

// Construction of parameters and nodes
Object[][] params = {{...} , {...} , ... };
Node[] nodes = { ... , ... , ... };

// Dynamic dispatch group creation
A ddag = (A) ProActiveGroup.newDynamicDispatchGroup("A",params,nodes);

Of course, communications remain performed in a remote method invocation style:

// A dynamic dispatch group communication
ddag.foo(a,b,sg); // sg is a scatter group

At least one parameter of the method invocation has to be a scatter group, otherwise a dy-
namic dispatch group triggers a standard broadcast operation. In case of multiple scatter groups
used as parameter, the first one is arbitrarily chosen to lead the call and the others are scattered
in a round-robin fashion.

Figure 4.11 shows how a dynamic dispatch group behaves in comparison with a basic group.
To compute N data with M active objects, a basic group needs at least N/M method invocations,
and as a consequence, N/M result groups are created (see Figure 4.11 (a)). On the contrary, a
dynamic dispatch group requires only one method invocation and produces only one result group
(see Figure 4.11 (b)). Only one result group makes the gathering and the combination of result
data easier than it could be possible with basic group communication that requires a combina-
tion of the several result groups. The mechanism also ensures that all members will be working
until there is no more request to serve, ensuring a more efficient global execution (see request
queues of active objects on the figure). It is interesting to notice that active object in dynamic
dispatch group got two requests in the queue. At the beginning of the call, two requests are sent
to each object, then a new request is sent as soon as the service of a request finishes. It allows
overlapping the data transfer over the network: a request is immediately available (no latency)
and a new request is transferred while the other is processed.

Queue of requests (to send)
of a dynamic dispatch group

Queue of requests (to serve)
of an active object

...

(a) basic group communications
Single (dynamic dispatch) group communication

(b) dynamic dispatch group communication
Multiple group communications

Requests

group

Active objectActive object
ag

Results

Result

group

dynamic
dispatch

ddag

Figure 4.11: Differences between basic groups and dynamic dispatch groups: behavior and usage

Using dynamic dispatch groups, the computations are structured around the data to be pro-
cessed instead of around the available workers. It fits well with stateless system and embarrass-
ingly parallel problem solving. Stateless systems have no record of previous interactions and
each request has to be based entirely on information that comes with it. A problem of size N is
embarrassingly parallel if it is quite easy to achieve a computational speedup of N without any
interprocess communication and each process can be given 1/N of the computations that can be

4.3. ADVANCED GROUP FEATURES 59

independently done. Dynamic dispatch groups are well suited to applications where the amount
of data is greatly superior to the amount of workers. For instance, this is the case for SETI@home
[SET] or BLAST applications [ANA 04].

Conclusion
Group communication is a crucial feature for high-performance and Grid computing. The group
communication system presented here is both simple and very expressive. It provides a trans-
parent, robust, flexible, and easy-to-use framework to build distributed and parallel applications.
Through a remote method invocation scheme, it allows automatic choice of the communication
semantic. The system handles itself automatic grouping, in a typed manner, and synchronization
of the results.

The following table summarizes the properties of the ProActive’s typed group mechanism:

Membership Dynamic
Structure Open group
Ordering FIFO ordering (total ordering with active groups)
Reliability Reliable
User interface Typed communication

Table 4.1: ProActive group properties

60 CHAPTER 4. TYPED GROUP COMMUNICATION

Chapter 5

Implementation and
micro-benchmarks

The way we have implemented the group communication mechanism depends on the properties
we want to obtain and on the existing properties we want to maintain. Our considerations discard
some models and give directions to possible implementations. The chosen implementation was
subject to optimizations; such optimizations have been tested in order to prove their efficiency,
and then, incorporated in the final implementation. This chapter presents the implementation of
the presented group communication. It also exposes performances of the system through micro-
benchmarks representing basic operations.

The first section of this chapter presents our motivation and explains our choices of implemen-
tation. Section 5.2 presents the main optimization points of the group mechanism. After that,
in Section 5.3, benchmarks of plain group communications are shown and discussed. Finally,
in Section 5.4, a small application (matrix multiplication) shows the benefit from using group
communication.

5.1 Implementation details

This section describes the considered alternatives to implement the group communication mech-
anism. It exposes our choice and then the ways we had to improve the system performances, in
term of delay of operation achievement and in term of resources saving.

5.1.1 Motivations

As mentioned in [MAA 03], an approach to implement group communication could be to extend
our Java library with support for collective communication through an external library such as
MPI. Some works were done in this direction, [CAR 00, GET 99]. However this increases ex-
pressiveness at the cost of adding a separate model based on message passing, which does not
integrate well with the remote method invocation of an object-based model. Also, MPI was de-
signed to deal with static groups of processes rather than with objects and threads. MPI uses
collective communication. Such communication operation, for instance a broadcast, must be ex-
plicitly invoked by all participating processes. This requires processes to execute in lockstep, a
model that does not fit very well with object-oriented programs which are most of the time mul-
tithreaded.

A second solution is to interface ProActive with a library dealing directly with a multicast
protocol. For instance, [BAN 98] and [ROS 98] propose such kind of service. By stepping in at a
lower level than a library like MPI, we gain in flexibility. But once again, because those libraries
provide their own API, it breaks the object-based model using remote method invocation. It also

61

62 CHAPTER 5. IMPLEMENTATION AND MICRO-BENCHMARKS

introduces a deployment problem in grid environment: a part of the grid or one network inter-
connection may not support the multicast protocol.

Finally, a group communication (1→N) can be obtained by the replication of point-to-point
communication (1→1) to each member of the group. It is called multi-unicast. The multi-unicast
is frequently disparaged. This model is blamed to be non-optimal in term of performances. The
criticism targets not only the time of execution, but also the consumed resources. The required
time to send messages is supposed longer because each message needs to be copied in the low-
level communication layers in destination to a receiver. As well, this technique is costly in re-
sources: the amount of additional work holds the availability of the processor and needs more
memory to record the identical copies of the message to send.

Despite this criticism, the group communication mechanism is built upon an optimized multi-
unicast technique. A group communication is the replication of N remote method invocations
towards N objects. Of course, optimizations added into the group mechanism implementation,
achieve better performances than a sequential accomplishment of N individual remote method
calls. By not redefining a new communication mechanism, this approach gives a major advan-
tage: it allows maintaining a fully object-oriented model. In addition, this high-level mechanism
preserves the properties of basic point-to-point, principally the asynchronism. The ability to
adapt to others RMI-like protocol is also maintained.

After considering the integration, service, and interception approaches presented in Sec-
tion 2.3, we chose the integration approach. It best follows the ProActive philosophy, by not
introducing centralized points (services) in charge of group communications. Centralized archi-
tectures provided by a service approach are especially sensitive to failure1 and may produce poor
performances. The interception approach is very system dependent. This arms adaptability and
portability of a group toolkit. In addition to its compliance with the ProActive model, a major
advantage of the integration approach is the transparency, naturally leading to the typed group
communications.

5.1.2 A proxy for the group
As mentioned in Section 3.2.2, the proxy is responsible for the communication semantic. This
meta-object maintains a reference to an active object hiding its location (local or remote), is in
charge to create the futures objects and thus the asynchronism, and is in direct contact with the
transport library (RMI, Ibis, HTTP, etc.) through an adapter object.

It was natural to create a new proxy dedicated to group communication. Indeed, group com-
munication is a new communication semantic. This new proxy has to adapt to the group context.
Firstly, it has to maintain a reference to not only one object but many, possibly remote, possi-
bly passive. Then, it has to create a complex future structure to handle many returns during a
method invocation. The asynchronism mechanism is different and has to be reconsidered. Fi-
nally the group proxy has to manage a set of remote objects with which the communication may
use different transport libraries.

The ProxyForGroup class extends the AbstractProxy class and implements the Proxy
interface. The reify method defined in the interface is the central point of communication be-
havior. This method takes a reified method call as parameter, performs the call with the best
adapted semantic, and returns the result value of the call. In case of asynchronous calls, the
returned value is a future. In a group communication context, the result value is a group.

The proxy for group stores references to the member objects. It was unnecessary to create a
fully new and redundant multi-semantic and multi-protocol proxy. Communications rely on ex-
isting point-to-point communications, i.e. on existing proxies. Consequently the stored references

1A service can be constituted of several objects deployed on different nodes, and thus reducing the probability of a total
service failure.

5.2. FEATURES 63

are ProActive references: the couple stub, plus proxy. The reify method of a group proxy prop-
agates the incoming method call by invoking the reify method of the proxy of each member.
Of course, the reify method of group introduces group concerns such as parallel propagation
mechanism, complex synchronization, and exceptions handling.

As the proxy stores the references to group members, it is natural that the proxy implements
the Group interface. So, in addition to communication semantic, the proxy is also responsible
for group management. The ProxyForGroup class inherits the add, remove, get, waitOne,
waitAll, etc., methods from this interface. The proxy for group is the “real Java representation”
of group presented in Figure 4.1. It is also the object returned by the ProActiveGroup.getGroup
method.

5.2 Features
A prototype implementation [BAD 01] already gave us acceptable results: a group communica-
tion produced better achievements compared to the similar action performed with sequential
method invocations. Nevertheless, new improvements were added to enforce the efficiency of the
mechanism; to make it faster, more scalable, and less resources consuming [BAD 02a, BAD 03].

5.2.1 Thread pool

Using several threads allows sending messages simultaneously. Doing this way, for each group
member to which a ProActive call instead of a standard Java call must be made, the delays re-
quired to make the rendez-vous are recovered and no more added. In order to maintain the
ProActive method invocation semantic based on rendez-vous, we introduce an additional syn-
chronization. We extend the notion of rendez-vous for group communication: doing this, an
asynchronous group communication blocks until the method invocation has reached all group
members.

Because group membership is dynamic, a fixed number of threads used to communicate with
the group members is not appropriate. Firstly, whatever be the chosen number of threads, the
number of group members is subject to growth a lot, and then the threads will become insufficient
to ensure a proper delay to perform the group communication. Secondly, even with a very large
number of threads the performances may not be optimal. In the case the group members remain
in a lower quantity than the threads, many threads are not used. The system is overloaded by
those unused threads (more memory used, additional context switch, etc.).

A better approach is to adapt the number of threads depending on the number of group mem-
bers. So, the amount of threads becomes dynamic as the amount of members in the group.
However, a one-to-one group members to threads ratio is no more suitable: too many threads will
harm performances, particularly in case of large groups, and the network may be flooded.

The best solution is to associate to a group an adaptive pool of threads in which the mem-
ber / thread ratio may be adapted by the programmer depending of the requirement of its appli-
cation. The best ratio for efficient group communications may depend on the group size, the size
of exchanged data, the frequency of communication, etc. The default value of the ratio is 8. It
was chosen empirically to best fit to most of the applications we have tested.

A fixed number of additional threads is also present in order to maintain a fixed number of
threads if needed. There are two interests of this. Firstly, one may want to maintain a fixed
number of threads for a particular purpose: for instance maintaining only one thread in order
to emulate a mono-threaded sequential service. To achieve this, the programmer has to set the
ratio to 0 and set the additional number to 1. Secondly, additional threads allow to early benefit
of multithreading. It means that the programmer needs not to wait for the number of group
members to reach the ratio number to obtain a second thread in the pool. This is very useful

64 CHAPTER 5. IMPLEMENTATION AND MICRO-BENCHMARKS

because, even small sized groups produce better performances with two or more threads. For
instance a group with only 7 members, runs 2 threads if its additional number is set to 1 (1 is the
default value). Thus, this group benefits from the multithreading. In summary, we propose what
we name “the linear approach”: at any moment of the execution, the number of threads involved
in a group communication is:

if ratio 6= 0 : nbThreads = d
nbGroupMembers

ratio
e + additionalThreads

0 is a special value for the ratio. It means that the thread pool size is no longer depending on the
group size: it is no more dynamic, so:

if ratio = 0 : nbThreads = additionalThreads

The ProActive property ensuring that the caller blocks until a call has reached the callee is
generalized to the group communications. In a group context, the rendez-vous ensures that the
caller blocks until all group members have received the call. A kind of barrier implemented in
the thread pool does this job. It is in charge of blocking the caller until all calls were processed
by the threads.

Figure 5.1 plots the average time (in milliseconds) spent to perform one asynchronous method
invocation depending on the number of objects in a group. The group members are distributed
on 16 machines (cluster of Pentium III @ 933 MHz interconnected with a 100 Mb/s Ethernet net-
work). The curves represent the performances depending on the number of threads used to make
the calls. The more we used threads the smaller is the delay to make the group communication.
The four upper curves are associated with a fixed number of threads. The lowest is associated
with a dynamic number of threads. It shows better performance, because the number of threads
is (automatically and transparently) at any moment the adequate number needed.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

du
ra

tio
n

(i
n

m
s)

number of objects in the group

1 thread
2 threads
4 threads
8 threads

adaptive threadpool

Figure 5.1: Adaptative thread pool

5.2. FEATURES 65

The linear approach is the simplest approach to handle the thread pool dimensioning prob-
lem. It works well with average sized groups, and with method requiring short and long time
of service. That is why it is the default way to manage the pool size. However it is not fully
satisfying. The groups are subjects to grow to very large size, and then, the amount of threads
will arm performance by overloading the system. Even with a big member-to-thread ratio, the
resulting number of threads may be too big. A solution is to introduce a limit to the number of
created threads. Moreover small groups also suffer of a strict linear scheme if the ratio is too
high. Not enough threads will serve the method invocations. Some kinds of logarithm-based
formulas seem to be the more compliant way to handle highly dynamic groups that quickly vary
from few members to many.

As it is very difficult to define a generic approach that could adapt to any group, we choose to
let the programmer define the formula to compute the pool size. The linear formula is the default
behavior but it can be redefined. By implementing the ThreadPoolDimensioner interface one
can define an object in charge of the dimensioning. This interface defines the changePoolSize()
method. The object is then attached to the group and invoked to adapt the thread pool size.

5.2.2 Factorization of common operations

Many operations are common while invoking a method on a group of objects. In a basic approach
they were duplicated for each member of the group. Of course, those operations may be factorized
to save memory and processing resources.

First is the reification operation. This operation of the Meta Object Protocol transforms the
method invocation into a Java object. It involves reflection techniques that are known to be time
expensive. In the typed group framework of ProActive, the method invocation being the same
for all group members because of the object-oriented syntax, the operation only has to be done
once. In addition to the time saved, factorizing reification process also saves memory and CPU
resources by avoiding creating many replications of a same method call. With group communi-
cation, reification operation runs in O(1) instead of O(n). This operation becomes more and more
efficient when the size of the group increases.

Second point subject to factorization is the serialization of the method parameters sent during
the group communication. In a broadcast operation the same data is marshaled to be serialized
and sent to every group member. The serialization operation is located on the caller side and
so, subject to factorization. As the Java serialization process is very slow [MAA 01], we want to
avoid the repetition of this operation. Our solution is to pre-serialize parameters. Before the RMI
mechanism steps in, the parameters (and codebase information) are converted into a byte array.
This allows to be more efficiently sent several times by RMI. Only the effective arguments packed
in the method call object are serialized. Other fields included in the request are not serialized;
especially routing information such as receiver (and sender) identity which is different for each
group member. Of course, this unique serialization does not apply in the case of a scatter group
in which parameters for each member differ. In such situation, the standard RMI mechanism
keeps the full responsibility of serialization and sending for all messages to all group members.
The unique serialization operation becomes better and better when the size of the parameters of
a group communication increases.

Figure 5.2 presents the average time (in milliseconds) spent to perform one asynchronous
method invocation depending on the amount of data to send (objects used as parameters). The
group contains 80 objects distributed on 16 machines (cluster of Pentium III @ 933 MHz intercon-
nected with a 100 Mb/s Ethernet network). The upper curve exposes the performances without
any operation factorized. The curve in the middle plots the performances obtained by factorizing
the reification operations. The last curve represents the performances obtained by factorizing
the reification operations and the serialization. The gap between the two upper curves repre-
sents the time spent by the multiple reifications of the same method invocation. As the number
of group members remains the same during the whole experiment, the benefit of the factorized

66 CHAPTER 5. IMPLEMENTATION AND MICRO-BENCHMARKS

reification remains the same (one operation instead of 80). This is why the gap remains almost
constant. Meanwhile the factorized serialization becomes more effective depending on the pa-
rameters size. Joint factorization allows better performances (up to a 3.9 ratio in the example
presented in Figure 5.2).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000

av
er

ag
e

du
ra

tio
n

(i
n

m
s)

common ops with unique serialization
common ops

no common ops

number of Objects used as broadcasted parameters

Figure 5.2: Factorization of common operations

5.3 Micro-benchmarks
This section presents performance measurements of basic method invocations on group. It ex-
poses, and discusses, the performances of the three schemes of communications. To have a con-
crete idea on how the group mechanism behaves, benchmarks are done in the two main modern
environments for computing: clusters and Grid.

5.3.1 In a cluster context
First experimentation is measurement of a group communication. Figure 5.3 presents the du-
rations for a group method calls, depending on the number of members in the group. The three
curves plot the performances obtained with the three communication schemes: one-way call,
asynchronous call, and synchronous call. The invoked methods are empty methods: they do not
perform any computation nor take any parameter. They act like a “ping” operation.

Remote objects, members of the group, are distributed one by host. I use a cluster composed of
216 bi-AMD Opteron 64 bits @ 2 GHz and 2 GB of memory, interconnected by a Gigabit Ethernet
network. It runs under Debian with a kernel 2.6.9. The Java Virtual Machine is a 1.5.0 by Sun
for 64 bits processors.

In each configuration, the method calls trigger a rendez-vous during the concurrent and re-
mote invocations. It means that the delay exposed in the figure represents the duration for the
caller activity to be blocked. At the end of this time:

• for a one-way communication, the call has reached all the group members.

• for an asynchronous communication, the call has reached all the group members and the re-
sult group has been created containing all the futures (some of them may have been already
updated with the expected results).

5.3. MICRO-BENCHMARKS 67

one−way call
asynchronous call
synchronous call

 0

 20

 40

 60

 80

 100

 120

 40 60 80 100 120 140 160 180 200

av
er

ag
e

du
ra

tio
n

(i
n

m
s)

number of members in the group

Figure 5.3: Method call on cluster

• for a synchronous communication, the call has reached all the group members and the
result group has been created and contains all the results.

In this experiment synchronous (and asynchronous) method return a null value in order to
not make the serialization process of the returned value interfere with the call duration. Fig-
ure 5.3 shows that one-way calls are faster than asynchronous calls, which are faster than syn-
chronous calls. This is logic because each kind of call has more operations to perform: creation of
the result group and futures, from one-way call to asynchronous call, and wait for the futures to
be updated, from asynchronous call to synchronous call.

In order to best understand the latency of typed group communication, here is the description
of a single ProActive communication (performed on the same computers). The details regard on
one-way calls. The average duration is 5.1 ms. We have break it up in five parts: (1) the reifi-
cation operation, 0.81 ms; (2) the serialization, 0.86 ms; (3) the network transfer, 0.97 ms; (4) the
deserialization, 1.95 ms; and (5) the operations on server side, 0.51 ms.

Figure 5.4 is a similar experimentation. It differs only by the number of group members. In
this experiment, the number of machines is set to 205 (i.e. 410 processors) and does not evolve.
Each machine hosts a node on which several objects are created: from 1 to 24. Measurements
target the achievement of one-way, asynchronous, and synchronous communication from one ob-
ject on a node to the others. Because the test involves many objects, up to 5000, I change the
member-to-thread ratio to 20, to avoid an oversupply of threads by the default ratio: 8.

We observe that the asynchronous curve and the synchronous curve remain quite close. The
reason is due to the invoked methods. The synchronous method and the asynchronous method
do not perform any computation. The time for the service is near zero: the methods only return
a null object. Synchronous call blocks until the service ends, not the asynchronous ones. As the
time of service is small in the invoked methods, the difference between the curves is small too.

The next graph presents the speedup induced by group communication. The previous exper-
iment was reproduced without group communication. The curves in Figure 5.5 plots the ratio
duration without group

duration with group
. The values for the duration with group are the ones of Figure 5.4. The val-

ues for the duration without group are obtained using serial sends. We notice that one-way calls
take the more advantage of group communication. In this test it goes to a 10.78 speedup. Next

68 CHAPTER 5. IMPLEMENTATION AND MICRO-BENCHMARKS

are the synchronous calls, with a culminating point at 5.99. Finally the best speedup achieved
by asynchronous communication is 4.78. The three curves begin to go up, until the group size
reaches around 2500 objects, then the performances decrease. It goes down all the way to 4000
objects. After that speedups seem to remain regular. We blame the number of threads for that. A
member-to-thread ratio set to 20 was too small for large groups. Around the breakpoint, at 2500
objects, the group runs with 125 threads. After this limit the caller was overloaded by too many
threads. As said in Section 5.2.1, defining an effective and generic formula to obtain a correct
thread pool dimensioning is not easy.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
e

du
ra

tio
n

(i
n

m
s)

one−way call
asynchronous call
synchronous call

number of members in the group (on 410 proc.)

Figure 5.4: Method call on cluster depending on group size

 0

 2

 4

 6

 8

 10

 12

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

sp
ee

du
p

in
du

ce
d

by
 g

ro
up

 c
om

m
un

ic
at

io
n

one−way call
asynchronous call
synchronous call

number of members in the group (on 410 proc.)

Figure 5.5: Speedup on cluster

5.3. MICRO-BENCHMARKS 69

5.3.2 In a Grid context
Now, let us come to a grid environment. The Grid’5000 project, funded by the ACI GRID, aims
at building an experimental Grid platform gathering 8 sites geographically distributed in France
combining up to 5000 processors. The current plans are to assemble a physical platform featuring
8 clusters, each with an hundred to a thousand computers, connected by the Renater Education
and Research Network. All clusters are connected to Renater at 2.5 Gb/s (10 Gb/s is expected
in the near future). This high collaborative research effort is funded by the French ministry of
Education and Research, INRIA, CNRS, the Universities of all sites and several regional councils.

The main objective of the project is to provide the community of Grid researchers in France
with an experimental platform for their research, fully configurable for each experiment. The
scope of the experiment that could be conducted on Grid’5000 covers all the software stack layers
between the user and the Grid hardware (clusters and networks). Typically a Grid researcher
will be able to configure the platform with its favorite network protocols, Operating System ker-
nel and distribution, middleware, runtimes and applications and run experiments on this setting.
Grid’5000 will also provide a set of software tools to allow easy experiment preparation, run and
control, and fast experiment turn around.

The experiments currently envisioned by the Grid’5000 participants concern: high speed net-
work protocol design and evaluation, operating system adaptation and improvement in the per-
spective of a single system image for Grids, adding sandboxing and visualization in Operating
System for the Grid, testing the benefit of object oriented middleware for application coupling,
evaluating a large variety of fault tolerance techniques at the runtime level, testing application
gridification, evaluating novel algorithms for High Performance Computing on the Grid.

Figure 5.6: The map of current Grid’5000

Because the clusters and systems installations on all sites are not completed (even not started
in Lille, the 8th site), I use only a subset of what will be the Grid’5000 platform. Only the
clusters of Nice (Sophia-Antipolis), Paris (Orsay), Lyon, Rennes, and Toulouse are available for
computation.

• The cluster in Nice is composed of 106 computers with bi-AMD Opteron 64 bits @ 2 GHz
and 2 GB of memory. Operating system is Red Hat 9 with a 2.4.21 kernel. Interconnection
is assured by a 1 Gb/s Ethernet network.

• The cluster in Paris is a part of Grid eXplorer [GDX]. It is composed of 216 bi-AMD Opteron
64 bits @ 2 GHz and 2 GB of memory, interconnected by a Gigabit Ethernet network. It runs
under Debian with a kernel 2.6.9.

• The cluster in Lyon is composed of 56 computers with bi-AMD Opteron 64 bits @ 2 GHz and

70 CHAPTER 5. IMPLEMENTATION AND MICRO-BENCHMARKS

2 GB of memory running under Debian, kernel 2.6.8. Interconnection is assured by a 1 Gb/s
Ethernet network.

• Three clusters compose the Grid’5000’s cluster in Rennes. The first one is a 64 bi-AMD
Opteron @ 2.2 GHz, 2 GB of memory, Debian 2.6.10, cluster. The second is composed of 64
bi-Intel Xeon @ 2.4 GHz with 1 GB of memory running under Debian with a kernel 2.4.22.
Finally the third cluster is composed of 32 bi-Power Macintosh G5 @ 2 GHz with 1 GB of
memory, and running under Darwin, kernel 7.8.0. All machines are interconnected with
Gigabit Ethernet networks, in a cluster, and between clusters.

• The cluster in Toulouse is composed of 31 computers with bi-AMD Opteron 64 bits @
2.2 GHz and 2 GB of memory. Operating system is Fedora Core 3, kernel 2.6.10. Inter-
connection is assured by a 1 Gb/s Ethernet network.

All clusters run a Sun Java Virtual Machine 1.5.0, except the Macintosh in Rennes that run a
1.4.2 version. In conclusion, the aggregation of those five clusters constitutes a Grid with a total
of 1138 processors, distributed on five sites, in a wide area (1175 km from Nice to Rennes, 670 km
from Paris to Toulouse).

On this grid platform, I reproduce the experimentation led on the cluster (Figure 5.3). The
goal is to observe the impact of a grid environment (high latency, shared high-speed links of com-
munication between sites, etc.) on the performances of the group communication mechanism.
Figure 5.7 presents the results. Source code remains the same as the previous benchmarks.
Only the external deployment descriptor file changes in order to deploy on several remote loca-
tions. Remote objects are fairly distributed on the five sites.

one−way call
asynchronous call
synchronous call

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 50 100 150 200 250

av
er

ag
e

du
ra

tio
n

(i
n

m
s)

number of members in the group

Figure 5.7: Method call on Grid

Relations between the communication schemes performances remain the same. Meanwhile
group communication achievement becomes slower: up to a factor 10 compared to the cluster ex-
periment. As the computers of each cluster look quite similar in term of performances, we blame
the grid network for this decreased efficiency. More precisely the round trip time (RTT) inside the
cluster is around 0.07 milliseconds while it is around 12 to 20 milliseconds in the period of the
experiment (with some culminating values at more than 650 milliseconds to reach Lyon’s cluster).

Next experiment regards performances with large deployment involving hierarchical and ac-
tive groups. The deployment is achieved in two steps:

5.4. MATRIX MULTIPLICATION 71

1. In the first step, a descriptor file deploys ProActive nodes located on each cluster. Then the
“first level” group is created. This group consists of objects that play the role of entry point
in a cluster. In this experiment, five objects are deployed, one on each cluster.

2. During the second step, the five objects activate in turn deployment descriptors local to
each cluster. The deployment mechanism creates new nodes on all available machines. The
“second level” group members are created on those nodes. The roots of these groups are the
entry point objects.

At the end of those operations, a hierarchical group composed of active groups (i.e. the five entry
point objects) is built and deployed on five clusters. It has a form similar to the one presented by
Figure 4.10.

All experiments made with more than 569 nodes (the current number of machines in Grid’5000)
are done with some machines running two nodes. In order to reach more than 1000 nodes we cre-
ate two nodes by host. As all hosts are bi-processor machines, we can say that we deploy one node
by processor. Figure 5.8 shows a hierarchical group of 1010 objects each one deployed on a dif-
ferent processor. The totality of the Grid’5000’s processors is not used because in such amount of
machines, some are temporarily down while some are reserved by other users in exclusive access.

The performance measurements are exposed in Figure 5.8. It is no sense to compare the
curves for one-way and asynchronous call of this experiment to the curves obtained in the previ-
ous experiments (Figure 5.7). In a hierarchical context, one-way call and asynchronous call block
until the method has reached the first level members, not all the members of the sub-groups. In
this case, the first level members remain the five entry point objects in the whole experiment.
That is why the two curves remain parallel disregarding of the growing amount of objects in the
sub-groups. The curve representing the synchronous call is more informative. Even in a hier-
archical context, synchronous calls block the caller until all the members and the sub-members
receive the method invocation and return a result. So this curve can be directly compared to
the synchronous curves of previous experiments. As expected, the hierarchical approach is more
efficient. The factor is about 10. The high latency between clusters is paid only once, from the
caller to the remote cluster. Then intra-cluster communications, which are much more efficient,
achieve the method invocation delivery and the gathering of local results. Finally, in accordance
with the default behavior of hierarchical groups, inter-clusters communication callback the caller
to advise it that the call has ended and the results are collected. Figure 5.8 clearly confirms that
a hierarchical approach provides better scalability and performances.

5.4 Matrix multiplication

To validate the design and the implementation of group communication, we have programmed a
basic numerical application pertaining to a parallel dense matrix multiplication. We have chosen
the algorithm based on the Broadcast-Broadcast Approach described in [LI 96]. This algorithm
pertains to our work as it extensively uses collective communications. As our group communica-
tion features some asynchronism, we foresee performance improvements compared to the same
algorithm implemented without using the group mechanism but only point-to-point ProActive
method calls.

Like most of the algorithms for parallel dense matrix multiplication, the Broadcast-Broadcast
Approach algorithm performs a multiplication of the form C = αAB + βC on a two dimensional
logical process grid with P rows and Q columns. In this demonstration we consider only the case
where P=Q.

Once the distribution is done, sub-matrices of the two matrices to multiply are located on each
computer which takes part in the computation. The Broadcast-Broadcast Approach algorithm
consists in four steps:

72 CHAPTER 5. IMPLEMENTATION AND MICRO-BENCHMARKS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

du
ra

tio
n

(i
n

m
s)

number of nodes

one−way call
asynchronous call
synchronous call

Figure 5.8: Method call on Grid with a hierarchical group

1. Broadcast the sub-matrices of A along the rows.
2. Broadcast the sub-matrices of B along the columns.
3. Update partial C sub-matrices with A and B sub-matrices multiplication in each process.
4. Repeat Step 1 through Step 3 P times.

At the end of those steps, the sub-matrices of C contain the result of the A*B multiplication.

It is obvious that each process of the logical grid will be represented by one active object, whose
class represents a sub-matrix. The active objects of each row (resp. column) of the logical grid
build up one group. Broadcast communication of sub-matrices along one row (resp. one column)
will be achieved thanks to the group method call mechanism. Here is an implementation of the
algorithm:

// The method multiply is a basic centralized matrix multiplication;
// it updates the right sub-matrix of C that in this code does not
// need to be explicit, as it is obtained as result of the call to
// this chunk of code.

// row[i] and column[i] return the i-th row and i-th
// column of the logical grid, in a typed group form.

// The distributed matrix multiply method implementation:
for (int i=0 ; i<P ; i++)

A.row[i].multiply(B.column[i]);

The mechanism of group communication provides a simpler implementation. The two lines of
code replace about twenty lines of pseudo-instructions seen in [LI 96].

Figure 5.9 shows the time spent in order to compute the matrix multiplication depending of
size of one side of square matrix. Three implementations of the algorithm are tested. Two of
them use the ProActive library. The first one does the computation in a “centralized” manner;
it means that the algorithm is deployed on only one computer. The second implementation is
quite similar, it uses the ProActive library without group communication mechanism but it is
distributed on nine computers. Finally, the last implementation uses the group communication
mechanism. Experimentations were done using either one (see curve centralized) or nine Intel

5.4. MATRIX MULTIPLICATION 73

Pentium III @ 933 MHz on the same 100 Mb/s local area network (see curves distributed and dis-
tributed using groups).

Obviously the centralized approach is quickly dismissed. With very small matrices (< 400*400
doubles) it is more efficient because the cost for computation is smaller than the cost for sending
messages. When the matrix size increases, the distributed algorithms become more efficient.
Again, this experiment proves that the implementation using groups achieves better perfor-
mances than the one without.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 200 400 600 800 1000 1200 1400 1600

T
im

e
in

 m
ill

is
ec

on
ds

Size (number of doubles) of one side of square matrix

centralized
distributed

distributed using groups

Figure 5.9: Broadcast-Broadcast matrices multiplication performances

Conclusion
The approach we chose to implement the group mechanism was driven by an elegant API allow-
ing a seamless use of the group communication in object-oriented distributed programs. The im-
plementation provides flexibility and adaptability. Hand-optimizations such as parallel achieve-
ment of the method invocation and factorization of common operations contribute to improve
efficiency. The experiments performed on both cluster and grid environment expose both good
performances and scalability.

74 CHAPTER 5. IMPLEMENTATION AND MICRO-BENCHMARKS

Chapter 6

Applicative benchmark: Jem3D

Within the trend of object-based distributed computing, my research group (OASIS), conjointly
with the CAIMAN research group1 presented the design and implementation of a numerical sim-
ulation for electromagnetic waves propagation.

The general objective of this collaboration between computer scientists and applied mathe-
maticians was to use modern programming languages and libraries such as Java and ProActive,
for the design of a problem solving environment for complex applications in the bio-electroma-
gnetic field. Such an environment ideally integrates software components for geometric modeling
from medical images, unstructured grid generation, numerical simulation and scientific visual-
ization. An example of such an environment based on CORBA is given in [SHI 01]. While such
work uses the option of wrapping legacy code, the work presented here has concentrated on a full-
fledged object-oriented version, for the sake of extensibility and adaptability. Overall, from an
existing Fortran application named EM3D ([PIP 02]), a modular and extensible object-oriented
version was developed using Java: Jem3D.

The approach we proposed was to define an object-oriented model of a code in Java, and use
it for programming a sequential version. Then, in order to take advantage of parallelism and
distribution, we use ProActive, for its additional characteristics compared to the standard Java
RMI API, particularly the typed group communication. We have deliberately chosen not to use
an explicit message-passing library (MPI, or Java version of it like MPJ [CAR 99], or MPIjava
[CAR 98b]) for taking advantage of distribution: we aim at enforcing code reuse by applying the
remote method invocation mechanism instead of explicit message-passing.

The aim of this work was to emphasize on the benefits we get on software engineering as-
pects (possible extension of the Java version, full portability, ease of deployment, etc.) through a
complete rewriting of the Fortran version. Recent works such as [HEN 03] also mention the ad-
vantages of using object-oriented practices for finite element analysis; the main difference is that
we do not rely on direct parallel solvers. We do not get the performance of executing native code
resulting from Fortran or C++ programming; see for instance works that wrap MPI-based legacy
codes as Java or CORBA components [LI 01, DEN 03]. Even under those conditions, with a pure
object-oriented programming approach entirely based on point-to-point or collective method in-
vocations in Java; we still get good performances and speedup. This work was subject to the
publication [BAD 04b].

EM3D: a parallel solver for electromagnetic waves propagation

The Fortran EM3D software has been designed for the numerical simulation of electromagnetic
waves propagation in the time domain. The software numerically solves the 3D Maxwell equa-
tions for homogeneous or heterogeneous linear media. It relies on a Finite Volume Time Domain

1OASIS and CAIMAN are both research groups at INRIA in Sophia-Antipolis, France.

75

76 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

(FVTD) method designed on unstructured tetrahedral meshes, potentially applicable to general
hybrid meshes. The FVTD method adopts a cell centered formulation2 (a control volume is taken
to be a tetrahedron) with a centered numerical scheme for the computation of convective fluxes,
combined to an explicit leap-frog time integration scheme. The resulting solver is second-order
accurate in time and space for regular meshes, and provides unsteady solutions that conserve
a certain form of discrete electromagnetic energy [PIP 02]. It is interesting to note that such fi-
nite volume formulations were originally designed for computational fluid dynamics, such as 3D
Euler or Navier-Stokes equations [LAN 96]. This clearly motivates the development of a general
object-oriented framework that would facilitate the development of various simulation softwares
for Partial Differential Equations (PDE).

Finally, the parallelization of EM3D combines a domain partitioning strategy with a message
passing programming model using the Message Passing Interface (MPI). The partitioning of the
computational domain is obtained with the ParMETIS tool [KAR 99].

6.1 Basic architecture of Jem3D
The proposed object-oriented model is such that it can be reused for the development of simula-
tion software tools which are based on finite volume type methods on unstructured meshes. The
application of this model is currently limited to the Maxwell equations for electromagnetic waves
propagation but it can be extended to deal with Euler or Navier-Stokes equations that model
compressible flow calculations [LAN 96]. Moreover, the model could also be extended to include
classical finite element type discretization methods. The three main features of the model are:

• The ability to deal with 2D and 3D computational domains,

• The possibility of choosing between different types of discretization elements (triangle,
quadrangle, tetrahedron and hexahedron),

• The inclusion of the two main classes of finite volume methods i.e. the vertex centered and
element centered formulations.

The object-oriented model essentially consists of two types of classes:

• Classes that are concerned with the definition of the geometry (or computational domain),

• Classes that are related to the application (for instance physical and numerical compo-
nents).

These classes are strongly linked to the physical context under consideration (electromagnetic
waves propagation in the present case).

Definition: Domain: A domain is the overall volume of the calculation.

6.1.1 Geometry definition
The finite volume methods adopted in [PIP 02] and [LAN 96] rely on the use of an unstructured
mesh for the discretization of the computational domain. The construction of such meshes can
be based on various types of discretization elements. The standard situation is such that only
one type of discretization element is considered for the definition of a given unstructured mesh.
However, in the general case, the computational domain could be discretized by combining sev-
eral types of elements (hybrid discretization). The classes considered here are concerned with
the definition of the discretized geometry with an unstructured mesh. In order to do so, one es-
sentially needs two basic geometric entities: the vertex and the element. The element is used to
connect a number of vertices and an unstructured mesh is defined by filling the computational
domain with elements. These two geometric entities are included in our object-oriented model

2Other widely used finite volume methods rely on a vertex centered formulation.

6.1. BASIC ARCHITECTURE OF JEM3D 77

through the definition of several classes: Vertex2D and Vertex 3D (which extends Vertex2D) are
simple concrete classes for the definition of a vertex in 2D and 3D; Element, Element2D and
Element3D are abstract classes for the definition of an element in 2D and 3D (see Figure 6.1).

TriangleElt

Element2D

Element

Element3D

TetrahedronElt HexahedronElt

ControlVolume2D

ControlVolume

ControlVolume3D

TriangleCV QuandrangleCV HexahedronCV

QuadrangleElt

TetrahedronCV

Figure 6.1: Definition of an element and a control volume in 2D and 3D

6.1.2 Application aspects
Starting from the discretized geometry, it is then necessary to define the classes related to the
numerical methods (finite volume methods in the present case). Finite volume methods typically
yield the computation of a flux balance through the boundary of a control volume (also called a
cell). Indeed, a control volume is a geometric entity that can be seen as another building block
for the discretization of the computational domain but it is not the natural basic entity for the
definition of an unstructured mesh. In some sense, it is introduced artificially since it represents
the calculation support of finite volume type methods. Note that for finite element type meth-
ods, the calculation support is simply given by the element. In the finite volume framework, the
unknowns of the problem are averages of the physical quantities computed over control volumes
while in finite element methods, the unknowns are the values of the physical quantities associ-
ated to the vertices of the mesh.

In the object-oriented model, the control volume is defined through a hierarchy of classes
partially shown in Figure 6.1. At that point, it is worthwhile to make two remarks:

• As for the vertex and the element entities, the definition of the control volume includes
classes dedicated to the 2D and 3D cases. In addition, we have taken into account the
two main families of finite volume methods i.e. the vertex centered and element centered
formulations. In a vertex centered formulation, a control volume is built around a vertex
using partial contributions from the set of elements attached to this vertex. In an element
centered formulation, the control volume is simply taken to be an element (triangle, quad-
rangle, tetrahedron or hexahedron). In Figure 6.1, the latter formulation is illustrated with
the choice between HexaedronCV and TetrahedronCV.

• In practice, the flux balance is evaluated as the combination of elementary fluxes computed
through a series of facets that describe the boundary of the control volume. This yields
another hierarchy of classes for the definition of various types of facets (see Figure 6.2).

Finally, we note that the EM3D solver is based on an element centered formulation where
the control volume is a tetrahedron and the facet is a triangular face. Therefore, at the lowest
level of the hierarchy of classes for the definition of a facet, we currently have the various types
of triangular faces that are considered in the EM3D solver: either an internal face or a boundary
face and, for a boundary face, several subclasses corresponding to the different types of boundary
conditions.

78 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

Facet

VtxCenteredFacet

VtxCenteredFacet2D VtxCenteredFacet3D EltCenteredFacet2D EltCenteredFacet3D

QuadrangleFacetTriangleFacet

InternalFacetBorderFacet

VirtualBorderFacet MetalBorderFacet InfBorderFacet

EltCenteredFacet

Figure 6.2: Definition of a facet in 2D and 3D

6.1.3 Overall skeleton and control
The overall skeleton of the EM3D solver is shown in Figure 6.3 and so will be reproduced as
such in Jem3D. Let tn = t0 + n∆t, E and H respectively denote the discrete time, the discrete
electric field and the discrete magnetic field (both fields are vectors of size 3 × Ncv consisting
of the x, y and z components of the physical quantity computed on each control volume). In
the leap-frog time integration scheme adopted in EM3D, each time step allows the calculation
of

(

E
n+ 1

2 , H
n+1

)

from
(

E
n− 1

2 , H
n
)

. In practice, the main time stepping loop of Figure 6.3 is
decomposed in three phases:

1. The flux balance for the magnetic field is computed from the distribution of the magnetic
field obtained at the previous time step (i.e. H

n). This flux balance is used to update
the electric field (i.e. to compute E

n+ 1

2 from E
n− 1

2 using the flux balance for H
n). Group

communications perform propagation of data and control the end of the step (ensure that
all required data was exchanged before continue to the next step).

2. The flux balance for the electric field is computed from the distribution of the electric field
resulting from the previous phase (i.e. E

n+ 1

2). This flux balance is used to update the
magnetic field (i.e. to compute H

n+1 from H
n using the flux balance for E

n+ 1

2). Group
communications perform propagation of data and control the end of the step (ensure that
all required data was exchanged before continue to the next step).

3. The discrete electromagnetic energy (which is a scalar value) is computed from the distri-
butions E

n+ 1

2 and H
n+1. This particular quantity is used to monitor the simulation in the

sense that, according to the results of the theoretical analysis [PIP 02], it should remain
constant.

The first and second phases are implemented using loops over the lists of triangular faces
using different numerical schemes for the calculation of fluxes through internal and boundary
faces. Since the original EM3D code is programmed in Fortran 77, the information related to the
definition of internal and boundary faces (as well as for vertices and tetrahedra) are stored using
array data structures.

In the Java version of EM3D, lists of vertices, elements, control volumes and facets are imple-
mented using the ArrayList class from the standard Java API. ArrayList is a resizable-array
implementation of the List interface. Like an array, it contains components that can be accessed
using an integer index. The size of an ArrayList can grow or shrink as needed to accommodate
adding and removing items after the ArrayList has been created. This class is equivalent to
Vector except that it is unsynchronized: it permits simultaneous and faster access.

6.2. DESIGN OF THE PARALLEL AND DISTRIBUTED VERSION OF JEM3D 79

t < tmax

t = tmax

(vertices and element connectivity)
Tetrahedral mesh

(internal and boundary faces)

tables

Calculation of auxiliary quantities
(volumes of tetraedra, components of

the normal vectors to faces , ...)

Construction of auxiliary connectivity

Time stepping loop

Calculation of the flux balance for the magnetic
field and update of the electric field

Calculation of the flux balance for the electric
field and update of the magnetic field

Calculation of the discrete
electromagnetic energy

Stopping test

Construction of the lists of faces

Setting of simulation parameters

Geometry

Problem initialization

Solution saving and statistics

Figure 6.3: Overall application skeleton

The components of the object-oriented model as described can be viewed as contributing to a
general library on top of which a particular application can be built. Such an application based
upon a vertex centered formulation has yield to Jem3D, the Java version of the EM3D solver, but
several others could be considered in the future.

6.2 Design of the parallel and distributed version of Jem3D

This section explains how, using the ProActive library and its typed group communication mecha-
nism, we have programmed an efficient, parallel, and distributed version of Jem3D starting from
the sequential one.

6.2.1 Basic ideas and principles

Figure 6.4 describes the architecture of the sequential version of Jem3D: all (triangle) facets,
whatever be their real type (internal or not), are grouped in an ArrayList of facets; all (tetra-
hedron) control volumes are grouped into an ArrayList. As each internal facet belongs to two
control volumes (CV), one can see the corresponding two references (from a face to two CVs).

After the initialization phase, the main loop repetitively executes the three phases presented
in Figure 6.3, by going over the ArrayList of facets. The three phases read or update some
values (i.e. the X,Y,Z coordinates of the electric and magnetic fields) of the corresponding CV(s).

80 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

Border
facet

Internal
facet

Border
facet

Control
Volume

Control
Volume

Domain

List of facets

List of Control Volume

Figure 6.4: Architecture of the sequential version of Jem3D

The partitioning follows a standard decomposition of the entire domain into a set of geometric
sub-domains. As we will see, our object-oriented approach brings a specific advantage: sequen-
tial references to some data-structures (e.g. facets, CVs) can be turned into remote references in
a transparent manner for the code using them.

Definition: Sub-Domain: A sub-domain defines a part of the distributed application whose
elements are located in the same address space.

The partitioning first occurs on facets: each one is assigned to a unique sub-domain. As a
consequence, some CVs will be shared by two sub-domains (or sometimes more); indeed a shared
CV is referenced by facets belonging to different sub-domains. Of course, specific programming
techniques are used in order to read and update shared CVs.

6.2.2 Partitioning, local and remote objects
Figure 6.5 shows the architecture for the distributed version of Jem3D. The underlying idea for
the parallelization is to apply a standard and natural geometric decomposition of the 3D compu-
tational domain into sub-domains. As such, some facets will contribute to control volumes that
may be located onto neighbor sub-domains.

Definition: Border Facet: We name border facet the facets of the thetrahedra located on
the boundary of a (sub-)domain.

We introduce the Virtual Boder Facets (VBF) to represent these facets that belong to two sub-
domains. In a couple of neighbor sub-domains, both have a reference to a VBF designating the
shared facet. Each VBF contributes to the computation. Two twin VBFs which are copies of the
same facet must exchange and combine their values to obtain the value of the facet. For the
update access, it is the responsibility of the sub-domain to trigger a remote method call onto the
corresponding neighbor sub-domain – implemented as an active object –, which itself sets values
in the twin VBF. Eventually, the value of the facet is set in both VBFs.

Thanks to polymorphism and dynamic binding, there is no need to explicitly deal with the
effective real types of facets: internal or virtual border. As a result, the control volumes that
reference virtual border facet, as well as the loop that uses them, can execute unchanged.

The architecture features a totally decentralized approach. The application is fully peer-to-
peer: each sub-domain communicates with the others without any centralized supervisor. As

6.3. A GROUP COMMUNICATION MODEL TO ENHANCE PERFORMANCES 81

centralized points are usually bottlenecks due to overload problems, we aim at achieving a better
scalability.

Border
facet

Internal
facet

Control
Volume

Control
Volume

border facet
Virtual Internal

facet
Border
facet

Control
Volume

Control
Volume

Virtual
border facet

List of facets

Sub−domain 1 (Active Object)

List of Control Volumes

List of facets

(Active Object)Sub−domain 2

List of Control Volumesof the remote copies (twins) of his virtual border facet
Each sub−domain has a list of adresses

The same facet
is duplicated

Figure 6.5: Architecture of the distributed version of Jem3D

6.3 A group communication model to enhance performances

Regarding a read access, a naive solution would have been to let each facet independently trig-
gers a remote method call to read (pull) the values of its corresponding control volume (through
an access via the remote sub-domain active object). As the algorithm implemented in the sequen-
tial version loops over facets in each phase, this implies that the computation could proceed only
when a given facet effectively gets the remote values, adding up RMI and network latency. As we
actually know who will need a given value, the idea is to push it rather than pulling it, avoiding
one way of the communication needed for a pull.

In order to achieve that behavior, a sub-domain maintains a link to all its neighbors with
which it shares a facet, in order to be able to push new values to the corresponding virtual border
facets. The set of neighbors is stored using a typed group. As seen, such a group is directly oper-
able with method calls: only one method call is enough to reach all members of the group. Here,
the main point is that this avoids programming a data structure that would require an iterator in
order to visit each neighbor sub-domain, and as such, perform the communications sequentially.
Each virtual border facet has to receive the value of its twin. It has been again possible to take
advantage of the group communication feature in order to simply program this operation.

More precisely, at initialization time, each sub-domain executes the following (refer to Fig-
ure 6.5 for illustration):

// Builds group of neighbor sub-domains
SubDomain neighbors =

ProActiveGroup.newGroup("SubDomain", {sd1,sd2,...});

// For each sub-domain j, builds up a VBFFieldExchange
// collecting all references to virtual border facets that
// are shared by the current sub-domain with sub-domain j

VBFFieldExchange VBFValues_j = ...

// A group of VBFFieldExchanges to be scattered to shared VBFs
VBFFieldExchange exchangeValues =

ProActiveGroup.newGroup("VBFFieldExchange",
{...,VBFValues_j,...});

ProActiveGroup.setScatterGroup(exchangeValues);

82 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

SubDomain is the class name of the sub-domain active object. The variable neighbors stands
for the neighbor sub-domains group, while exchangeValues for the neighbor-shared VBF val-
ues group. As seen in Chapter 4 the setScatterGroup is a ProActive feature allowing to specify
that a group parameter, subsequently used in a group communication, has to be isomorphically
dispatched to the members of the group: the ith element of group parameter goes (as the remote
method call parameter) to the ith target object in the group.

Then, at the beginning of each phase of the main loop after an update of the VBFs, the follow-
ing simple instruction is executed in order to push appropriate values on each remote and shared
VBF:

neighbors.push(exchangeValues);

This means that on each sub-domain j referenced in the group neighbors, it calls the method
push taking as parameter the corresponding VBFFieldExchange referencing VBFs that are
shared with sub-domain j. Method push will set values of each VBF in the corresponding remote
VBF on sub-domain j. Subsequently, those values will be available locally by the control volumes
when needed.

6.4 Benchmarking
As Jem3D is a real application entirely written with ProActive and as the main communication
patterns are based on the typed group communication, we are very interesting in evaluating its
performances on various platforms. Experiments are done on homogeneous and heterogeneous
clusters, with fast and slow networks.

6.4.1 Benchmarks on cluster
To do measurement up to 32 processors, the benchmarks use a cluster of 16 Intel Pentium IV bi-
Xeon @ 2 GHz, 1 GB (RDRAM), Linux Red Hat 2.4.17, interconnected with a 1.5 Gb/s Ethernet.
In order to measure performances on 64 processors, we add a second cluster of 16 bi-Pentium III
@ 933 MHz, 512 MB (SDRAM), Linux Red Hat 2.4.17, interconnected with a 100 Mb/s Ethernet.
Each computer belonging to the second cluster communicates with computers in the first cluster
through a 100 Mb/s Ethernet link. We use the Sun Java Virtual Machine 1.4.0.

The bench aims at computing the time evolution of the eigenmode (1,1,1) in a cubic metallic
cavity. Reported results are the total execution time for 100 time steps. To give an idea of the
data involved, a mesh size of e.g. 81x81x81 represents 521,441 vertices, 3,072,000 tetrahedra,
6,220,800 faces. All of them are represented at runtime by objects in the Java version. Only
sub-domains are active objects. In all experiments we map one node by processor, and one sub-
domain by node. The whole domain’s mesh for computation is fairly split between sub-domains.

In a first time, let us compare the sequential Fortran version, with the Java version. On each
of the configurations we have tested (different numbers of processors, different amount of data)
we have noticed an average ratio of execution time of one loop ranging from 3.5 to 3.7.

6.4. BENCHMARKING 83

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

du
ra

tio
n

(s
ec

)

21*21*21
31*31*31
43*43*43
55*55*55
81*81*81
97*97*97

number of processors (cluster 1)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

du
ra

tio
n

(s
ec

)

21*21*21
31*31*31
43*43*43
55*55*55
81*81*81
97*97*97

113*113*113
121*121*121

number of processors (both clusters)

Figure 6.6: Average duration of 100 iterations

84 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

21*21*21
31*31*31
43*43*43
55*55*55
81*81*81
97*97*97

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

sp
ee

du
p

number of processors (cluster 1)

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

sp
ee

du
p

number of processors (both clusters)

31*31*31
43*43*43
55*55*55
81*81*81
97*97*97

121*121*121

21*21*21

113*113*113

Figure 6.7: Speedup

6.4. BENCHMARKING 85

We have benchmarked the Java parallel version. Results are reported in Figure 6.6. Both
graphics present the average duration in seconds of several executions of the benchmark (bench-
mark which loops in the main loop for 100 time steps). The upper one plots experiment results
when running on the 16 most powerful computers (cluster 1), whereas the lower one is when
running on all the computers (cluster 1 and 2). Due to the synchronization step at the end of
each loop, the measured time is the slowest computer (i.e. the longer time). Moreover, the dura-
tion highly decreases up to 8 processors for small data sizes (less than 55x55x55); then adding
resources becomes rather ineffective: from 8 to 18 processors speedup only improves from 5 to 7
on a 55x55x55 mesh. For larger size problems, starting as low as 81x81x81, the parallelization
is useful all the way up to 64 processors.

Figure 6.7 presents the time speedup of hundred iterations of the main loop, depending on
the number of processors involved in the computation. The upper graphic shows measurements
using the most powerful cluster, and the lower one using both clusters. For some of the problem
sizes, the reference execution time (i.e. the sequential execution) is extrapolated, because these
problem sizes were so huge that the problem could not been solved sequentially on one processor;
in practice, the experimentations lead to an out-of-memory error. The extrapolation is computed
in the following way: first, we calculate the time spent in the treatment of a control volume,
which is to be considered as the elementary data in the application, by dividing the total execu-
tion time of the benchmark by the number of control volumes involved. Secondly, we estimate
the execution time for large size problems by multiplying the elementary time by the number
of control volumes in the problem. The curves expose an efficiency in the range of 30% to 35%
for the larger problems using all available processors. Reducing the number of processors, the
efficiency steadily increases up to 75% on two processors for all cases.

6.4.2 Benchmarks on an Intranet heterogeneous cluster
In order to experiment with very large data set and large number of processors, we run bench-
marks on the INRIA production network, such configuration being sometimes called Intranet
grid since it relies on desktop machines interconnected via an Intranet network. The deployment
scheme remains the same: no additional feature is introduced to ease or make more efficient nei-
ther the deployment phase nor the computation phase. Experiments are done by night in order
to avoid at most interferences produced by the regular users of the desktop machines.

Such kind of grid is very heterogeneous, as well in term of machines (single or multi-processor,
CPU speed, memory size, etc.), as in networks (bandwidth, protocol, etc.)3, and as in operating
systems (distribution, kernel version, etc.). We choose to discard slow computers. They are sub-
jects to harm performances in a too large dimension. We fix the acceptation threshold to 1 GHz
computers with at least 1 GB memory and a 100 Mb/s connection. Fastest computers were Pen-
tium IV @ 3 GHz. Thanks to Java, all operating systems that provide a Java Virtual Machine
were accepted. We were able to “collect” up to 252 machines, with a total of 294 processors.

As previously, (1) the bench aims at computing the time evolution of the eigenmode (1,1,1) in
a cubic metallic cavity, (2) in all experiments one node is mapped on one processor, and one sub-
domain on one node, and (3) the total domain of computation is fairly divided into sub-domains.

3In practice, most of the Intranet networks are Ethernet networks, only the network bandwidth varies, not the proto-
col. This is the case in the INRIA’s Intranet.

86 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

43*43*43
55*55*55
81*81*81
97*97*97

113*113*113

 0

 50

 100

 150

 200

 250

 300

 350

 35 40 45 50 55 60 65

du
ra

tio
n

(s
ec

)

number of processors

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 140 160 180 200 220 240 260 280 300

du
ra

tio
n

(s
ec

)

number of processors

81*81*81
97*97*97

113*113*113
121*121*121
151*151*151

Figure 6.8: Intranet computing

6.4. BENCHMARKING 87

Figure 6.8 presents the average duration of 100 iterations on small and large Intranet cluster.
Results are split in two graphs in order to obtain a better readability: both graphs are obtained
within the same experimental context. With small Intranet clusters (less than 64 processors)
curves appear very regular (see the upper curves): the computation time decreases while the
number of involved processors increases. Duration and speedup exposed here, are better than
the one obtained on the “regular” clusters in the previous section (see Figure 6.7). The reason
is that we systematically choose the most competitive computers among the 252 available ones.
Those 36, 48 and 64 more competitive computers are faster than the computers in the cluster,
thus it achieves better results.

It is more difficult to discuss about the lower curves produced with more than 128 processors.
Irregularity may be caused by overloads of some computers, causing swap and general slowdown
of the computation. Or it might be caused by unexpected uses of the computers by their owner
during the measurements. We don’t find a generic pattern to justify this behavior. However, the
set of measurements is complete for 294 processors and seems quite coherent. The execution
time varies with the mesh size; it requires more time to compute bigger meshes.

6.4.3 Benchmarks on a grid using a fast RMI protocol
As the group communication of ProActive is a high-level mechanism, it is possible to change the
underlying communication protocol. RMI, the base of Java’s distributed computing, has impor-
tant shortcomings for high-performance Grid computing. In [HUE 04], Ibis is proposed as an
alternative to RMI, and tested with the Jem3D application.

Ibis is a project at the Vrije Universiteit Amsterdam that aims to design and implement an
efficient and flexible Java-based programming environment for Grid computing, in particular
for distributed supercomputing applications. Ibis boosts RMI performance using several opti-
mizations, especially to avoid the high overhead of runtime type inspection that current RMI
implementations have. The philosophy behind Ibis is to try to obtain good performance without
using any native code, but allow native solutions to further optimize special cases. For example, a
Grid application developed with Ibis can use a pure-Java RMI implementation over TCP/IP that
will run "everywhere". However, when the application runs, for instance on a Myrinet cluster,
the RMI runtime system can request Ibis to load a more efficient communication implementation
for Myrinet that partially uses native code.

Following [FOS 02] stating that a grid is a system that coordinates resources without central-
ized control, using standard protocols and interfaces to achieve a non trivial quality of service, we
experiment on a grid in the Netherlands named Distributed ASCI Supercomputer 2. DAS-2 is a
wide-area distributed computer of 200 bi-Pentium III nodes running at 1GHz, with 1GB of mem-
ory. The machine is built out of clusters of workstations, which are interconnected by SurfNet,
the Dutch university Internet backbone for wide-area communication, whereas Myrinet, a popu-
lar multi-Gigabit LAN, is used for local communications.

Once again, the bench computes the time evolution of the eigenmode (1,1,1) in a cubic metallic
cavity. The mapping is one node on one processor, and one sub-domain on one node. The total
domain of computation is fairly divided into sub-domains, independently on which cluster it is
located. We have no control on the sub-domain allocation: two sub-domains that highly interact
may be deployed on two different clusters.

Thanks to the ProActive deployment scheme, it was quite easy to deploy on the DAS-2. Taking
full advantage of it, multi-cluster experiments are performed by requesting nodes on each of its
parts. Figure 6.9 shows the result of the experiments. The upper graph demonstrates that
execution remains regular in spite of the data distribution over a grid. The lower graph presents
the speedup. On 150 nodes the speedup is 97 (efficiency 64.67%). The average efficiency of those
experiments is 75.99%. The best performance is 85.4% on 80 nodes with a 201*201*201 mesh.
Two curves plots the performances of the application using standard RMI. It allows to visualize
the benefits of the fast RMI protocol. Ibis improves performances by a factor around 1.48.

88 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

201*201*201 RMI
211*211*211 RMI

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 40 60 80 100 120 140

du
ra

tio
n

(s
ec

)

number of processors

171*171*171 Ibis
181*181*181 Ibis
201*201*201 Ibis
211*211*211 Ibis

201*201*201 RMI
211*211*211 RMI

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 40 60 80 100 120 140

sp
ee

du
p

number of processors

171*171*171 Ibis
181*181*181 Ibis
201*201*201 Ibis
211*211*211 Ibis

Figure 6.9: Grid computing

6.4. BENCHMARKING 89

Conclusion
The Java version of EM3D has great potential for extension and adaptability: going from ele-
ment to volume methods, using structured, unstructured, or hybrid meshes. At the same time,
the performance penalty for such an abstract architecture implemented in Java seems reason-
able: in a factor of 3.5 to 4 compared to the Fortran version. This is a good result according to
[FRU 03] that shows Java applications have a factor from 3.3 to 12.4 slower than the correspond-
ing Fortran operations. Moreover, this Java version is rather recent compared to the Fortran one,
and there are still a lot of rooms for code optimizations. Using ProActive as high-level library,
the parallel version was easy to obtain, maintaining the structuring of the sequential one. As a
consequence, if an evolution of the sequential version occurs, the parallel one should remain, and
evolve automatically.

Getting at performance figure, first it is important to note that the parallel object-oriented
approach, using fully standard and portable elements of the Java platform, is already effective
on the problem size. The parallel version allowed us on the clusters to get results with data
size significantly larger than the sequential version (121x121x121 versus 43x43x43). The for-
mer number is to be compared to the largest size the Fortran version can currently execute:
161x81x81 (which is equivalent to 101x101x101 mesh). Even if this is due in the current Fortran
program to a problem of static array allocation which could be improved with some restructuring,
it probably tells something about the flexibility of a more dynamic approach.

Analysis of the executions confirms that progress should come from two yet-to-be-improved
pieces of the current platform: serialization and standard RMI. As it is well known [GET 01,
PHI 00], the standard Java RMI mechanism is rather slow for cluster and grid computing. So,
in order to reach better scalability using the parallel version, the first step is to use fast imple-
mentations of the transport layer. We choose Ibis to achieve this. Experiments demonstrate that
numeric applications can be written with a Java library and give acceptable results especially if
this library provides efficient group communications and transport protocol.

In order to give a more tangible representation of Jem3D computations, the following pic-
tures show screenshots of the graphical interface plugged on the computations. For instance,
Figure 6.10 shows an iso-surface of the electric field induced in a cubic metallic cavity at a given
time. Figure 6.11 presents JECS, a Java Environment for Computational Steering and Visu-
alization of 3D numerical simulations. It was mainly developed by Saïd El Kasmi, member of
the CAIMAN team. It is a generic distributed environment that supports interactive visualiza-
tion and remote computational steering of parallel and distributed applications in a collaborative
manner. The aim of this environment is to provide tools for easy coupling of running numerical
simulations to a remote visualization server and allow visualization in a real-time fashion. Fi-
nally, Figure 6.12 presents a Jem3D computation involving a more complex mesh: a plane. Upper
picture shows the mesh in wireframe, while the lower picture shows the electro-magnetic values
on the surface of the plane.

90 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

Figure 6.10: Rendering of a Jem3D computation

Figure 6.11: JECS: a Java Environment for Computational Steering and Visualization

6.4. BENCHMARKING 91

Figure 6.12: A more complex and irregular mesh

92 CHAPTER 6. APPLICATIVE BENCHMARK: JEM3D

Chapter 7

Object-Oriented SPMD

Last advances in Java Virtual Machines, compilers [BUR 99, ANT 00] and communication schemes
allow handling Java as a suitable environment for high-performance computing. Multithreading
and remote method invocations are key features to build parallel and distributed programs in
an object-oriented programming model. ProActive already extends those features: firstly with
the creation of threaded objects (the active objects) and, secondly with asynchronous communica-
tions. The main disadvantage of RMI is that it only provides point-to-point communication with
a client/server model. This is not enough: most of distributed applications require a multipoint
communication model and a suitable parallel programming model, such as for instance the most
popular: the Single Program Multiple Data (SPMD) one. Many projects tried to introduce MPI-
like collective operations in Java. MPJ [BAK 98, CAR 00] encloses language bindings of MPI into
Java. This solution does not fit well with both object-oriented model of Java and process concep-
tion of MPI. Other projects support MPI operations on Java using a C implementation bound to
Java with the Java Native Interface (JNI). This approach cancels the “run every where” ability of
Java and introduces an overhead [GET 99].

This chapter presents the mechanism of typed group communication as the basis of Object-
Oriented SPMD, an alternative to the standard message-based SPMD programming model. While
being placed in an object-oriented context, we will show that the mechanism helps with the def-
inition and the coordination of parallel and distributed activities. The approach offers, through
modest expansion of the group API, structuring flexibility and innovative implementation. The
automation of key communication mechanisms and synchronization simplifies the writing of the
code for the parallel activities.

Firstly, Section 7.1 presents the approaches proposed by several related projects. Then Sec-
tion 7.2.1 exposes the design and the principles of our SPMD model. Section 7.2 describes the
API we propose relying on the group communication mechanism. Section 7.3 presents an exam-
ple and performances measurements. Finally, Section 7.4 summarizes our API by comparing it
with the MPI API.

7.1 Context and related works

As a relatively straightforward object-oriented language, and with regards to recent improve-
ments, Java becomes now a plausible basis for a scientific parallel programming language. Re-
lated works of SPMD programming mainly deals with non-object models, based on message pass-
ing. However some projects tried to introduce an object-oriented form in the SPMD model, either
by maintaining message passing or by using remote method invocation.

93

94 CHAPTER 7. OBJECT-ORIENTED SPMD

7.1.1 SPMD programming
SPMD stands for Single Program Multiple Data. SPMD programming is a common way to or-
ganize a parallel program, on both clusters of workstations and parallel machines, and more
recently also on grids [FOX 02]. A single program is written and loaded onto each node of a par-
allel computer. Each copy of the program runs independently, coordination events apart. So the
instruction streams executed on each node can be completely different, alas for the most common
pattern, i.e. master-slave, only two different streams are needed. Each copy of program (process)
owns a rank number: a unique ID. The specific path through the code is in part selected by this
unique ID.

Traditionally, in the SPMD model, the language itself does not provide implicit data transmis-
sion semantics. In general, the communication patterns are explicit message-passing imple-
mented as library primitives. This simplifies the task of the compiler, and encourages program-
mers to use algorithms that exploit locality. Data on remote processors are accessed exclusively
through explicit library calls.

SPMD model maps easily and efficiently to distributed and to parallel applications and dis-
tributed memory computing. The most famous environments implementing a message-passing
SPMD model are PVM (Parallel Virtual Machine) and MPI (Message Passing Interface).

7.1.2 SPMD programming with an object-oriented flavor
Message-Passing SPMD

In the 1990’s, due to the increasing success of object-oriented programming, many research
groups have experimented the idea to both combine the usage of an object-oriented program-
ming language (such as C++ or Java) and MPI (or PVM) for writing and running parallel and
distributed applications. One of the precursors has been the MPI-2 specification itself, collect-
ing the notions of the MPI standard as suitable class hierarchies in C++, and defining most of
the library functions as class member functions. This specification has been further extended
in Object-Oriented MPI (OOMPI) [SQU 96] in order to be able to deal with the transmission of
objects. Essentially, OOMPI provides mechanisms to build user-defined data types according to
the MPI spec, in order to represent those objects, and further communicating them. More pre-
cisely OOMPI is a class library specification that encapsulates the functionality of MPI into a
functional class hierarchy to provide a simple, flexible, and intuitive interface.The MPI-1 speci-
fication, however, does not deal with objects. It only specifies how data may be communicated.
OOMPI provides the capability for sending the data that is contained within objects. Moreover,
since the data contained within an object is essentially a user-defined structure, mechanisms are
required to build MPI user-defined data types for object data and to communicate that data in a
same manner as communicating primitive data types.

Those approaches have been even further developed with the success of Java and have even-
tually leaded to two main categories of propositions for having message-passing SPMD within
Java:

• a wrapping of the native MPI implementation library itself within the object oriented lan-
guage (e.g. mpiJava [BAK 99], or JavaMPI [MIN 97] where wrappers are automatically
generated)

• an MPI-like implementation of a message-passing specification as MPI, written using the
object-oriented language itself, and available as a library. Notably, MPIJ [JUD 98] which
seeks to be competitive with native MPI implementations. The most achieved is MPJ
[CAR 00], in which notions such as Communicators, Datatype for the type of the elements
in the message buffers, etc., are modeled as classes.

Overall, in the early 2000’s, those works – done under the auspices of the JavaGrande Fo-
rum [JGF] – were considered as a first phase in a broader venture to define a more Java-centric

7.1. CONTEXT AND RELATED WORKS 95

high performance message-passing environment. The main aim was to succeed to conciliate both
performance and portability, while not departing from the consensual goal of offering MPI-like
services to Java programs.

Remote method based SPMD

All propositions grounding up on remote method invocation for communication among activities
take for granted that this enables the exchange of any typed data, by automatic marshaling-
unmarshaling. Clearly, this better suits to the object oriented paradigm than explicit message-
passing, in which send and receive must be explicitly programmed in matched pairs. One work
grounding on Java remote method invocation, but generalizing it so it can support communica-
tion between more than two parties is CCJ [NEL 01]. Specifically, CCJ aims at adding collective
operations to Java’s object model (implementing everything on top of RMI). Parallel activities are
expressed as threads groups and not as objects groups (in fact, activities in Java are expressed by
threads which are orthogonal to objects). As threads may belong to several groups, this implies
that any method of the CCJ API (e.g. barrier, broadcast, reduce, etc.) aiming at executing
an MPI-like collective operation must have the reference of the group of threads as parameter
(in a similar way as passing the communicator as parameter in any MPI communication). Also,
in CCJ, all threads have the same program and, in particular, any collective operation must be
called by all threads in the implied group.

Differently to the approach followed in CCJ, our concept for collective communications is to
group Java objects into groups, and extend the remote method invocation mechanism such that
it transparently applies to a group of possibly remote objects. It fits much better in the object-
oriented approach: triggering the execution of a chunk of code (described in any public method in
the class) in parallel is done simply by calling the corresponding method on the group, remotely
and possibly asynchronously. By doing this, remote method invocation is exploited as the only
communication mechanism between any numbers of remote activities.

We have experimented that having a group of objects towards which methods are invoked
is a suitable OO abstraction for building distributed applications – even if it usually requires
the additional usage of multicast delivery protocols such as causally or totally order delivery.
The suitability of groups and associated group method invocation mechanisms are more rarely
studied as a suitable support for parallel computing (notable exceptions being GMI [MAA 02] in
Java, ARMI [SAU 03] in C++).

7.1.3 Our SPMD programming approach
As exposed in [BAD 05a], we propose a pure object-oriented SPMD programming model as an
extension of our typed group communication mechanism. For this, the objects groups supporting
the distributed computation will also be further organized following a topology, i.e. adding the
notion of an ID for each member in the SPMD group and the way to easily reference its neigh-
bors. Collective operations will be revisited and extended with barrier synchronization such as
providing a complete Object Oriented SPMD model.

The SPMD programming solution we define is a smooth and perfectly integrated extension
of the active object principle. We want to demonstrate to the programmer that using it, he can
define programs grounded on a single concept, the active object. Using this paradigm, he can
seamlessly target the whole spectrum of applications: from sequential mono-threaded, concur-
rent and multi-threaded, distributed, up to parallel and distributed ones.

GMI generalizes Java RMI. As such, it is confronted with its constraints, specially, the need
for the programmer to take care of possible concurrent executions of a same method (implying to
mix functional code with the usage of regular Java monitor mechanisms). On the contrary, the
active object pattern is a cleaner abstraction for distributed computing, and as such should end
up easier for programming Object-Oriented SPMD applications.

96 CHAPTER 7. OBJECT-ORIENTED SPMD

7.2 Object-Oriented SPMD

The proposed active objects group mechanism presented in Chapter 4 is already a usable and
even efficient basis to program non embarrassingly parallel applications using a pure object-
oriented paradigm, i.e. using only object-oriented method invocation for e.g. computational elec-
tromagnetism, (see [BAD 04b, HUE 04] and Chapter 6). But, some of the features specific to
SPMD programming were lacking, and their addition constitutes the core of this section. We
name the resulting proposition as Object-Oriented SPMD (OO SPMD for short).

7.2.1 Design and principles

As previously mentioned, it is possible to reproduce SPMD parallelism in a pure object-oriented
way, by relying on the mechanism of a group of objects and associating a thread, an activity
to each ’machine’ that has to participate in the parallel computation. For instance, in GMI
[MAA 02], the main thread naturally supports the task involved in the parallel SPMD computa-
tion, while all distributed threads communicate by concurrently applying methods on the group
of objects. As noticed in [MAA 03], this SPMD style can even be combined with the client/server
one such as to yield a mixed style, which we think is very appropriate to one of the many possi-
ble applications of grid computing: the coupling of, on one side a parallel object-oriented SPMD
computation, and on the other side, an external and remote application that is in charge of, for
instance, steering, visualization, etc.

In GMI, the underlying computing model is Java RMI, which is extended towards groups.
But, RMI concurrency-related problems must be explicitly taken into account by the program-
mer. If instead, the ProActive active object model extended towards groups is used, concurrency
management is automatic and transparent: only one request is served at a time, and the de-
fault service policy of method invocation requests is FIFO (it can be personalized if needed). So
programmers should be able to concentrate on their functional code. Meanwhile, according to
the active object pattern, the ’main’ method is no more usable to express and run the core of the
parallel task. On the contrary, the ’main’ thread is devoted to support the sequential service of
requests. This implies to think a bit differently about the way to express the core of the SPMD
task, i.e. how the control flow dedicated to the parallel algorithm is implemented (more details
on that latter).

7.2.2 Requirements

The SPMD specificities lacking in our typed group communication mechanism fall into three
categories:

• identification of each member taking part in the parallel computation, and concept of mem-
ber position relatively to the others; for instance a neighboring relation among members.
It can be expressed with a basic ranking order or with more complex organizations such as
topologies.

• expression of the program run by each member taking part in the parallel computation. In
pure object groups based paradigms (e.g. as GridRPC for grid computing on Network En-
abled Servers like NetSolve [NET] or Ninf [NIN]), members act in a sense as passive servers
only activated by method calls triggered by clients. Servers do not have their own activity.
On the contrary, in SPMD computing, all members are active by their own even if, for sim-
plicity, they all execute the same program (e.g., in all flavors of MPI, in CCJ [NEL 01], in
GMI [MAA 02], this program is run by the main thread on each process or participating
JVM). In ProActive, each active object is by essence the support of a proper activity (there
is no main, but a runActivity method). This activity aims at enacting the sequential
service of requests (see Section 3.1.5). So, in our approach, the SPMD program will not be
expressed as a classical big loop, but as the implicit result of a succession of request ser-
vices executed in FIFO order. As will be emphasized below, this way of expressing the core

7.2. OBJECT-ORIENTED SPMD 97

of any member’s SPMD program enables behaviors pertaining to reactivity, adaptability,
dynamicity usually considered to be far away from the traditional SPMD model.

• full range of collective operations (communication and global synchronization) among the
members. Considering the presentation of the typed group communications in Chapter 4,
only the expression of global synchronization barriers is lacking and so needs to be consid-
ered below.

7.2.3 Main principles of OO SPMD
An OO SPMD group is defined as follows: it is a group of active objects (exclusively) where each
member has a reference, a group proxy, towards the group itself (see Figure 7.1). Each active
object in the SPMD group is also provided with a specific rank in the group. With the additional
feature that this reference is known by each member in the group automatically, at the time
the group is created. Each member is able to access the group and to get its rank in the group.
SPMD groups are not immutable. It is the programmer’s responsibility to ensure that possible
modifications of an SPMD group (add new member, remove member, etc.) maintain the property.

// A group of type "A" and its members are created at once by
// an external active object

Object[][] params = {{...}, {...}};
Node[] nodes = { ... , ... , ... };
A ag = (A) ProSPMD.newSPMDGroup("A", params, nodes);

// The computation on each member may now be started, i.e.
// invoking a method called e.g compute() defined in class A

ag.compute();

Each has a reference towards the group itself
The members forming the SPMD group

The ’external’
active object

Figure 7.1: An SPMD group

On each group member created, one of the first actions to run is to get the reference of the
group it belongs to, the rank, etc. One must be careful to clearly distinguish a classical Java
reference to the object (this), and a ProActive asynchronous reference to it, as an active object.
This last one enables the active object to implement the parallel task. Traditionally in SPMD,
the parallel task is expressed as an iterative or recursive loop, which essentially handles message
receptions and triggers the corresponding treatment, according to the message’s tag (a case or
an if control structure is usually programmed). In OO SPMD, the parallel task on any member
of the SPMD group is run by repetitively invoking asynchronous methods to itself (so, the need
to have an asynchronous reference). A member triggers data receptions and the corresponding
treatment through the asynchronous service of methods remotely called by other members in the
group. All method services are FIFO-ordered.

98 CHAPTER 7. OBJECT-ORIENTED SPMD

// A reference to the typed group I belong to
A a = (A) ProSPMD.getSPMDGroup();
// An asynchronous reference to myself

A me = (A) ProActive.getStubOnThis();
// My rank in the group

int rank = ProSPMD.getMyRank();
// Start the ’iterative’ loop by sending myself
// an asynchronous method call
me.loop();
// To iterate, loop() again calls me.loop()

Notice that any method calls triggered by other members can be served between services of
the method calls sent by a member to itself (the service policy is assumed to be FIFO). This is
useful for effectively receiving and treating the data sent by others through remote method invo-
cations.

Concretely, the parallel task is implemented as iterative asynchronous calls of a method (e.g.
named loop) by the member to itself, such as to maintain an activity. This implies that the
reception of data from other active objects in the system (belonging either to the SPMD group
or not) is possible only between two successive services of the method (e.g. successive services of
loop): indeed, receiving such data is effective by serving the corresponding request that is next
in the request queue. This implies that any wait in the loop is prohibited if the member wants to
receive data from other members. Of course, triggering the next loop pertaining to the activity
must be done through the asynchronous reference of the member, never through this.

Moreover, in a traditional SPMD program, execution control is exclusively based on if state-
ments and process ID or rank numbers. In our approach, switching execution control can be also
based on dynamically created groups at any moment at runtime. Such groups can be derived
from existing ones (sub-groups, or group combination for instance) or according to any kind of
properties (rank, fields of the object, etc.).

7.2.4 Topologies
To simplify the access to neighbors in the group with which a given member must communicate
according to the parallel algorithm, it is useful if the SPMD group is further organized according
to Cartesian topologies (as in MPI). At this time, we offer the following: line, plan, ring, cube,
hypercube, torus, torusCube (torus in 3 dimensions) and tetrahedron but, contrary to statically
designed topologies, the addition of new topologies is open. Figure 7.2 presents possible logical
organization given to a group through topologies. Topologies may also be obtained from another
topology by combination or extraction.

TetrahedronLine Ring Plan Cube Torus Hypercube

Figure 7.2: Topologies

Topologies are groups: any existing group may be understood as a topology. Creating a topol-
ogy from a group allows to access to a specific set of methods and introduce the neighborhood
relationship between group members. This property is translated by inheritance in an object-
oriented framework like ours: the Topology abstract class inherits from the interface Group 1.

1More precisely, the Topology class extends the ProxyForGroup class that implements the Group interface.

7.2. OBJECT-ORIENTED SPMD 99

Figure 7.3 presents the class hierarchy of already existing topologies. Topology or any other
classes can be extended to create new topologies or to redefine the access method to the neigh-
bors. 3Dimensional structures (Cube and TorusCube) extend 2Dimensional ones (resp. Plan
and Torus) that themselves extends 1Dimensional structures (resp. Line and Ring): width,
height and depth are successively added to go from a 1D to 3D logical representation of activities
organization and interaction.

Cube

Plan

Line Ring

Torus
Tetrahedron Hypercube

Topology

Group

TorusCube

Figure 7.3: Topologies classes

A topology is built by copying a group: it is quite similar to a copy-constructor. References
to the group members (and not the members themselves of course) contained in the group are
copied to the newly created topology. The group and the topology become two distinct objects, so
the modifications performed on one object is not reflected on the other. Here is a topology creation
example using the previously obtained SPMD group a:

// Organize my group as a 2D plan
Plan topology = new Plan(a, aWidth, anHeight);

The topologies provide methods to easily access the neighbors of a specified activity, i.e. to
access to the activities which are the most interacting with the given activity. The set of methods
depends on the topology. For instance, a Line topology provide left and right methods while a
Cube topology provide left, right, up, down, ahead, behind, line, plan, etc. Those methods
ease the conception and the organization of distributed applications by avoiding long, painful and
error-prone codes which manipulate group index in order to emulate a more complex structure.
Additionally all topologies provide a neighbors method which returns a group composed of the
closer objects of a given member. For instance, the neighbors method of Line returns a group
composed of the left and right neighbors; the neighbors method of Plan returns a group com-
posed of the left, right, up and down neighbors. The notion of neighborhood is strongly attached
to the topology. By extending a topology, the programmer may reformulate the neighborhood
definition to best fit the needs of the application. Here is a basic example about how to get and
communicate with neighbors:

// Get a reference to my neighbors in the plan
A left = (A) topology.left(me);
A down = (A) topology.down(me);

// One-way communication with neighbors in an asynchronous fashion
left.foo(params);
down.foo(params);

100 CHAPTER 7. OBJECT-ORIENTED SPMD

There are two ways to obtain Topology objects. The first one is to explicitly invoke a con-
structor with the new operation. The second one is to extract a new topology from an existing one.
It is obvious that a plan can be considered as a set of horizontal or vertical lines, for example.
Many topologies provide methods returning topologies. By extracting sets that possibly have a
common property, such methods contribute also to easily build distributed applications. Here is
an example:

// Get a reference to the topology formed by the first line of
// the plan

Line line = topology.line(0);
// Get a reference to the topology formed by the first column of
// the plan

Line line = topology.column(0);

As topologies are groups, and any group is also a typed group, all topologies can be viewed
as typed group: in this case we can also call it a typed topology for a better understanding. The
getByType method converts the topologies into typed groups (i.e. typed topologies), as presented
with standard group mechanism in Section 4.2.2. Symmetrically, the getGroup static method of
the ProActiveGroup class does the opposite: it gives a group (assignable to a topology) from a
typed topology. Like a typed group, a typed topology exposes a common interface of its members.
Method invocations achieve communication towards group members. Already presented group
communication semantic is applied to perform such method call. The following example presents
communications addressed to topologies:

// Convert the topologies into typed topologies
A gplan = topology.getByType();
A gline = line.getByType();

// communicate with the topologies member
gplan.foo();
gline.foo();

7.2.5 Synchronization barriers
The only collective behavior related methods of our OO SPMD API pertains to global barriers.
Indeed, as already explained in Section 4, all collective (resp. point-to-point) communications
within the group can be expressed as applicative-level method calls triggered via the group proxy
(resp. via the asynchronous reference of the target group); so only the coordination of those ac-
tivities requires additional methods.

The standard definition of a global barrier is that all members in the group (or those enrolled
in the barrier, see below) must not proceed further in their computation while not all the mem-
bers have reached the barrier. Given the active object model, we propose a slightly different but
more appropriate semantic: from the viewpoint of a member reaching a barrier, it is effective
(i.e. it blocks the member) only in the future: more precisely the exact moment when the current
service has terminated. In practical terms, all instructions lying after the barrier in the current
method being served will be executed, so care must be taken (see an example in Section 7.3.2).
Nevertheless, the meaning of what is a global synchronization barrier is as usual, but instead of
pertaining to the next instruction, it pertains to the next request’s service: when encountering
a barrier, the service of the first request incoming from an SPMD group member and waiting in
the request queue will be able to proceed on any enrolled member only when all have reached the
barrier. As mentioned further, requests originated from “external” objects may be served.

Technically, when an active object executes a call to a global barrier this triggers the storage
in the front of its request queue of a specific token. Associated to this token is the total number of
members (including the member itself) to wait for, i.e. that must reach the barrier. Each time a
given global barrier is reached by a member, this triggers the decrement of this number on each

7.2. OBJECT-ORIENTED SPMD 101

member enrolled in the barrier. Eventually, the barrier is released on each enrolled member,
as soon as the number reaches zero. An activity that has invoked a barrier tags its outgoing
requests with the barrier ID until it blocks. These outgoing requests that are triggered after the
barrier has been crossed in the same service execution. This tag indicates to the request receivers
that the request must not be served before the specified barrier has been released.

A suspended activity remains able to receive requests and put them in queue. In that way, all
objects are allowed to communicate with the suspended object. Even if those methods will not be
served instantaneously, the sending overlaps the wait. A barrier is limited to its participants. It
means that requests sent by an object not belonging to the SPMD group involved in the barrier
can be served, even if the activity is blocked by a barrier.

Actually, we propose three kinds of barriers, two global and one more local:

• First, a total barrier, within which a string parameter represents a unique identity name
for the barrier. It is assumed that this blocks all the members in the SPMD group.

ProSPMD.barrier("MyBarrier");

• A neighbor barrier, involving not all the members of an SPMD group, but only the active
objects specified in a given group. Those objects, which contribute to the end of the barrier
state, are called neighbors as they are usually local to a given topology. An active object
that invokes the neighbor barrier must be in the group given as parameter.

ProSPMD.barrier("bar", neighborsGroup);

It is interesting to notice that the following instruction:

ProSPMD.barrier("bar", ProSPMD.getSPMDGroup());

is similar to a total barrier call. If the neighborhood involved in a neighbor barrier is the
whole SPMD group, then the neighbor barrier becomes a total barrier.

• A method barrier stops the active object that calls it, waiting for a request on all the specified
methods to be served. The order of the methods does not matter, nor the active objects they
come from. As such, this barrier is purely local, and does not trigger extra messages to be
exchanged as the two others.

ProSPMD.barrier({"foo","bar","gee"});

One may want a sequential treatment of the methods, it means block the current activity
until, first foo has arrived, then bar, then gee. To achieve this, just invoke several times
the method barrier in the desired order, just as follow:

ProSPMD.barrier({"foo"});
ProSPMD.barrier({"bar"});
ProSPMD.barrier({"gee"});

Actually, a method barrier needs not the involvement of the SPMD group or of a neigh-
bor group. In opposition to the previous barriers (total and neighbor), the method barrier
blocks the service of all requests are they originated from a member of the SPMD group (or
neighbor group) or not.

Of course, none of those barriers is implemented with an active wait. Resources are not
consumed while waiting. The activity passively waits for the condition to be satisfied to resume.

7.2.6 Extensibility and reactivity
High performance computers and high speed networks provide now a sufficient level of power to
consider coupling numerical codes. It is no more about run only one code, but several, collabo-
rating together in order to produce a more precise result, involving a bigger amount of concepts.

102 CHAPTER 7. OBJECT-ORIENTED SPMD

Software environment must provide the possibility to integrate and couple several numerical
codes. This integration needs parallel and distributed mechanisms. Parallelism to address per-
formance issues, distribution to satisfy resources and security requirements.

This necessity to unify parallelism and distribution has implication on the programming
model. Two approaches emerge:

• Extend parallel programming in order to take account of the distribution. The matter is
to increase the functionalities of a parallel environment. For instance, make the different
codes communicate through existing message passing libraries.

• Use distributed programming and its communication mechanisms, such as distributed ob-
jects and remote procedural call, for parallel programming.

In the first case, extensions do not allow a software component programming model. Paral-
lelism and distribution use the same communication mechanisms, it makes the codes difficult to
maintain and without any clear interface to use them in application requiring coupling. On the
other hand, the second case is able to handle such problems. Sure, it imposes the use of a specific
communication model.

Thanks to the queuing of requests, the model we propose allows our objects to remain avail-
able for external applications. An active object member of an SPMD group is still responsive to
requests coming from an object outside the SMPD group. Requests coming from other codes may
entwine with the requests of the application. This property is very interesting to monitor the
application at runtime for instance. This feature represents a step to a more wide-ranged scope
of coupled applications.

7.3 Example and benchmarks
We illustrate OO SPMD with a concrete example. We choose Jacobi iterations because it is a sim-
ple application, easy to distribute in a traditional SPMD manner. The algorithm performs local
computation and communication to exchange data. The Jacobi method is a method of solving
a linear matrix equation. Each element is solved by computing the mean value of the adjacent
values. The process is then iterated until it converges; it means until the difference between old
and new value in absolute becomes lower than a given threshold.

The following code shows the main loop (an iteration based loop) of a solver. In each iteration,
the value at a point is replaced by the average of the up, down, left, and right neighbor values.
External boundary values are fixed statically at the beginning of the application and do not
change at runtime.

while (!converged) {
for (y=1 ; y<MATRIX_HEIGHT-1 ; y++) {
for (x=1 ; x<MATRIX_WIDTH-1 ; x++) {

new(x,y) = (old(x,y-1) + old(x,y+1) +
old(x-1,y) + old(x+1,y))/4;

if (abs(new(x,y)-old(x,y)) < THRESHOLD) {
converged = true;

}
exchange(new,old);

} } }

The structure of this code is quite simple, so we use a coarse-grained data-parallel approach
to transform it into a similar parallel code. The arrays old and new are distributed over nodes
taking the form of active objects. Each active object, named SubMatrix, is responsible for receiv-
ing boundary values from adjacent sub-matrixes and computing its own part of data.

7.3. EXAMPLE AND BENCHMARKS 103

The parallel algorithm depends on the data distribution scheme. We choose a two-dimensional
distribution scheme. It is essential for the data distribution to be correctly balanced between
nodes. It allows to minimize the amount of data exchanged and to allocate a good amount of data.
Figure 7.4 illustrates two possible distributions on 6 nodes. The first one is a one-dimensional
distribution, where the matrix is partitioned in stripes. The second distribution scheme is two-
dimensional; the matrix is partitioned in squares.

1D distribustion 2D distribution

Figure 7.4: Data distribution schemes

As shown in Figure 7.5, communications occur at block boundaries. So the amount of data ex-
changed is minimized by the two-dimensional distribution which has a better internal area / border
ratio. With this partition, each sub-matrix may communicate with two, three, or four neighbors,
depending of their position (respectively at a corner, a border, or in the center of the whole ma-
trix). This partition is more effective when the data to processor ratio is large.

... ...

...
Figure 7.5: Distributed algorithm

Communications appear at sub-matrix boundaries to send boundaries values to neighbors
and receive values from neighbors. A copy of the boundary of each sub-matrix is present in its
neighbor sub-matrix. Storage of boundary data is allocated at the producer, and at the consumer
sub-matrixes. This is a static allocation because the size and the location of boundary buffers is
fixed and never evolve during Jacobi. This is induced by the Jacobi algorithm itself, but if needed,
our framework could support strongly dynamic algorithms.

7.3.1 MPI Jacobi
Using a message passing approach based on asynchronous send and receive, with the MPI library,
the resulting parallel code is something like:

104 CHAPTER 7. OBJECT-ORIENTED SPMD

while (!converged) {
internal_compute(&converged);
MPI_Send(north_border, SUBMATRIX_WIDTH,

MPI_DOUBLE, north, 1,
MPI_COMM_WORLD, &status);

MPI_Recv(border_received_from_north,
SUBMATRIX_WIDTH, MPI_DOUBLE,
north, 1, MPI_COMM_WORLD, &status);

// send and receive for south, east, west
...
boundaries_compute(&converged);
exchange(new,old);

} } }

The send and receive operations are repeated for each communication with a neighbor (up to
4), even if the operations are the same.

7.3.2 OO SPMD Jacobi
Using our OO SPMD approach, the code becomes much more concise. The whole matrix is dis-
tributed and understood as a two-dimensional topology using the Plan topology. The neighbor-
hood of any SubMatrix, named neighbors in the example, is automatically obtained through
methods of the Plan topology.

In a first time, we obtain a reference on the activity itself to be able to asynchronously invoke
method on it (put the requests in queue instead of execute them instantaneously).

// Gets a reference to the active object itself
SubMatrix me = (SubMatrix) ProActive.getStubOnThis();

Three implementations of a Jacobi iteration present the three barriers. jacobiIteration is
the name of the method that does an iteration.

• The total barrier requires that all sub-matrices invoke the barrier before continuing the
execution and thus recursively go to the next iteration. Thereby, all sub-matrices are syn-
chronized: they are all in the same iteration and simultaneously go in the next iteration.

public void jacobiIteration() {
internal_compute(); //updates converged
neighbors.send(boundariesGroup);
ProSPMD.barrier("barrierUID"); // invoke a total barrier
me.boundaries_compute(); //updates converged
me.exchange();
if (!converged) me.jacobiIteration();

}

The total barrier is not very well adapted to the Jacobi iterations. Unconnected sub-
matrices wait each others even if they have no interaction.

• With a neighbor barrier, a sub-matrix resumes its activity as soon as its neighbors and itself
have invoke the barrier.

public void jacobiIteration() {
internal_compute(); //updates converged
neighbors.send(boundariesGroup);
ProSPMD.barrier("barrierUID", neighbors); // a neighbor barrier
me.boundaries_compute(); //updates converged
me.exchange();
if (!converged) me.jacobiIteration();

}

7.3. EXAMPLE AND BENCHMARKS 105

The neighbor barrier produces only to the objects members of the neighbor group. It sends
less messages on the network, and furthermore, allows two neighbors to have one iteration
in difference.

• The method barrier does not necessarily relate to the SPMD group or to the neighbors. It
waits for the specified methods to resume the activity.

public void jacobiIteration() {
internal_compute(); //updates converged
neighbors.send(boundariesGroup);
ProSPMD.barrier({"send", ... , "send"}); // a method barrier
me.boundaries_compute(); //updates converged
me.exchange();
if (!converged) me.jacobiIteration();

}

In our example, the number of send methods to wait for, depends on the number of neigh-
bors that sends their boundary values to the activity. As already mentioned, a method
barrier does not emit any message.

The three implementations are very similar. Actually only the line where we invoke the bar-
rier changes, and thus modifies the way the barrier is preformed. In both of them, the variable
converged is updated by the compute methods. As soon as one activity sets converged to
true, it sends a “stop” message to all other activities using a group communication in order to
end the computation.

Synchronization is done by data flow, and the barrier ensures that the sub-matrix and its
neighbors have exchanged their own boundaries values before computing the whole boundaries.
The method calls performed after the barrier must be asynchronous (put in the queue of the ac-
tive object); otherwise they would be served immediately, i.e. before the execution of the barrier.
Overall, according to the semantic of the barriers, the data (i.e. parameter of send) will have
been exchanged before the barrier will be released, guarantying that any member gets the data
in order to compute the boundaries values (boundaries_compute).

Data communication to all neighbors is performed using a scatter group (the group of bound-
aries values boundariesGroup): as the real parameter of the send method is a group declared
as of type scatter, it is transparently scattered to each member of the neighbors group. As for the
MPI version, the construction of the structures containing boundaries values was not specified
on this chunk of code. It only consists of building a group containing the boundaries.

A very interesting property of our model is that it remains reactive. It means that any part or
any member of an OO SPMD application may also serve incoming method call requests incom-
ing from another application. This is allowed by the fact that the parallel task is expressed as
asynchronous calls to a method (jacobiIteration for instance): an external request is thus
able to come in between requests addressed to the active object. We think this flexibility is very
appropriate to one of the many possible applications of grid computing: the coupling of, on one
side a parallel object-oriented SPMD computation, and on the other side, an external and remote
application that is in charge of, for instance, steering, visualization, etc.

7.3.3 Benchmarks
Data scalability
The first benchmark, presented by Figure 7.6, uses a cluster of 16 bi-Pentium III @ 933 MHz
512MB (SDRAM) - 256 Kb L2 cache, Linux RedHat 2.4.20, interconnected with a 100 Mb/s Eth-
ernet. Even if machines are bi-processor, we used only one processor per machine during our
experimentations. For the C/MPI version we used gcc 3.3.2 and MPICH 1.2.5.2. For the Java
version, we used the Sun Java Virtual Machine 1.5.0.

106 CHAPTER 7. OBJECT-ORIENTED SPMD

ratio OO−SPMD/MPI

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

av
er

ag
e

du
ra

tio
n

of
 o

ne
 it

er
at

io
n

(i
n

m
s)

OO SPMD
MPI

ra
tio

 O
O

−
SP

M
D

/M
PI

data size on each node (in millions of doubles)

Figure 7.6: Performances of C/MPI and Java/OO SPMD versions

The graphic presents the average duration, in milliseconds, of one Jacobi iteration depending
of the data contained on each node, in millions of double. The average time was computed after
100 iterations. Of course, the C language with MPI remains more efficient than Java with RMI.
But the ratio of 3.3 (average) of performance is maintained despite the growth of data (see the
bold curve). It is interesting to notice that 3.3 is also the ratio of performance between Java
and C for the sequential versions. Our approach thus allows an efficient distribution and is
scalable regarding data. For 29M of doubles, speedup of the C/MPI version is 15.41; speedup of
the Java/OO SPMD is 15.23.

Deployment scalability

Figure 7.7 presents the Jacobi application running on up to 130 machines. This experimentation
was done using a Peer-to-Peer deployment scheme provided by ProActive within an Intranet con-
figuration. The machines used are desktop computers, simultaneously used by their users. They
are heterogeneous (slowest is a Pentium III @ 993 MHz 512MB, fastest is a bi-Pentium IV @ 3,2
GHz 2GB), they are interconnected with 100 Mb/s network, they are running under Linux (with
different kernel versions). Deployed applications run with a lower priority (nice 19) in order to
not disturb regular users. We used the Sun Java Virtual Machine 1.4.2.

To further analyze the performances, it is important to notice that for all measurements, each
node is responsible for the same amount of data (2000x2000 doubles). The overall size of the
problem grows with the number of nodes involved in the computation. The line plots the average
duration, in milliseconds, of one Jacobi iteration depending of the number of nodes involved. As
previously, the average time was computed after 100 iterations.

Compared to the previous benchmarks, for the same amount of data per node (see arrow in
Figure 7.6), execution is 7 times slower. We blame the lower priority of execution and the older
JVM for this loss of performance. Besides, the performance remains regular, regardless of the
number of used nodes. From this, we conclude that the application is scalable.

7.4 Comparison with the MPI API
We do not try to fit to the exact syntax of MPI. Our choice is to benefit from the typed syntax
of the group communication. In MPI, heavy-weight processes communicate with point-to-point

7.4. COMPARISON WITH THE MPI API 107

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 30 40 50 60 70 80 90 100 110 120 130

av
er

ag
e

du
ra

tio
n

of
 o

ne
 it

er
at

io
n

(i
n

m
s)

number of nodes

Figure 7.7: OO SPMD scalability in a peer-to-peer experiment

and collective operations through communicators. A communicator is a collection of processes
ordered by their rank. In a communicator any process is able to retrieve its rank and the num-
ber of process members of the communicator. All processes belong to the communicator named
MPI_COMM_WORLD. New communicators can be built from existing ones but all communicators
are immutable: once created, they can not be modified.

The Java multithreading model and the MPI heavy-weight process do not fit very well. How-
ever we can map easily the concepts of the ProActive library and its group communication onto
the concepts of MPI. Naturally, our OO SMPD translates processes into active objects. Commu-
nicators are translated in SPMD groups.

We consider the following methods as the most significant of MPI: MPI_Init and MPI_Finalize,
MPI_Comm_size, MPI_Comm_rank, MPI_Send and MPI_Recv, MPI_Barrier, MPI_Bcast, MPI_-
Scatter, MPI_Gather, and MPI_Reduce. Let us see how those methods are translated in our
framework. We begin with the external user command mpirun that initiates the processes.

mpirun is responsible for the instantiation of the processes. mpirun is a user command so the
creation of processes is a static operation placed outside the source code. There is no equivalence
for mpirun in our API. However, we can assimilate this command to the dynamic creation of
SPMD groups. In our mechanism the creation of activities is explicitly done in the source code
with the ProSPMD.newGroup primitive.

MPI_Init initializes the MPI execution environment. MPI_Finalize terminates it. Those
functions, essential in all MPI programs, have no direct translation in our API because we do not
use a special environment to operate SPMD operations.

MPI_Comm_size determines the number of processes associated to a communicator. MPI’s
communicators are represented by groups in our API, so the method getMyGroupSize trans-
lates MPI_Comm_size. This method, provided by the static class ProSPMD, returns the size of
the SMPD group the activity belongs to.

MPI_Comm_rank specifies the rank of the caller process in a communicator. In our API,
the method getMyRank provides the same information. getMyRank is a static method of the
ProSPMD class.

108 CHAPTER 7. OBJECT-ORIENTED SPMD

MPI_Send sends a message to a process. This message is effectively received by the recipient
when this one invokes the MPI_Recv method possibly specifying the identity (the rank) of the
sender and the number identifying the message. MPI provides many primitives for sending and
receiving messages regarding be they synchronous or not, blocking or not, etc. 2. In our frame-
work, the invoked method automatically adapts the communication scheme, so the programmer
does not have to care about the correct scheme of communication to use. Simple functional
methods allow communicating data. For instance, a getter returns data to the caller. The caller
initiates the communication in a pulling way: an activity asks for the data to another activity.
On contrary, a setter sends data (embedded as a parameter) to a remote activity. In this case the
initiative comes from the activity that owns the data. It is a pushing approach. A method using
parameters and returning results allows a simultaneous bilateral communication.

MPI_Barrier stops the execution of the process that invokes the method until all other pro-
cesses of the communicator reach the same instruction. The ProSPMD class supplies not only one
method barrier but several. We have seen previously the difference between those different
versions. We aim to provide more efficient barriers, with strong and weaker semantics. Two
characteristics define our barriers. The first one is the ability to maintain a reception activity
(receive requests and put them in queue) while the service activity is locked by a barrier. It al-
lows to overlap the wait for the end of the barrier with message receptions. It allows also to serve
requests coming from external objects that do not belong to the SPMD group, and consequently
do not take part in the SPMD group activity. The second one is the possibility to block on a
specific method invocation, thanks to the method barrier, and thus to do not produce additional
messages to manage such barrier.

MPI_Bcast sends a message from a process to many processes through a communicator.
Every process member of the communicator receives a copy of the message. Obviously, in our
framework, a typed group communication provides such kind of communication: a copy of the
parameters of the invoked method is sent to every member of the SPMD group.

MPI_Scatter sends the same messages with different data to many processes. The data
exchanged from the sender to the receivers are fairly scattered between all the receivers with
a regular split depending on the number of receivers. A typed group communication, using an-
other scattered typed group as parameter translates the MPI_Scatter primitive. As presented
in Section 4.2.6, the parameter group is regularly scattered between the members of the callee
group depending on the rank of the objects. Notice that the sharing of data is done according to
the structure of the group build by the programmer and given as parameter, so it allows a very
fine control on the sharing of data.

MPI_Gather gathers data from the processes that belong to a communicator. Of course, such
operation is performed, once again, by a typed group communication in our framework. The re-
sult of a group communication is local to the caller, so a group communication behaves like the
gathering operation of MPI MPI_Gather. A result group is composed of futures that seamlessly
gather the results in an asynchronous way.

MPI_reduce combines data from the processes that belong to a communicator using a prede-
fined operation (min, max, sum, product, ...). Because our model deals with objects and no more
with primitive types, we leave the programmer write the combination method. After that, each
object of an SPMD group invokes this method specifying an object that will store the temporary
result until every group member has returned its reply. Then the external object may return the
final result to all members of the group. Another solution would be to perform a gather operation,
and to iterate over all elements in order to combine them with the programmer’s method. This
second method is less parallel than the first one. In both cases we assume that we do not benefit
from binomial propagation and combination of the results that most of the MPI implementations

2For instance: MPI_Send, MPI_Bsend, MPI_Ibsend, MPI_Irsend, MPI_Issend, MPI_Ssend, etc.

7.4. COMPARISON WITH THE MPI API 109

provide. The group behavior component we are currently adding in the ProActive library is a
third integrated solution to perform a reduce operation; it is presented in Section 8.1.

Figure 7.8 summarizes the translations of the MPI’s primitives into our framework. It clearly
exposes that the large amount of primitives used in MPI can be hugely reduced in our object-
oriented framework for SPMD programming. The programmer only focuses on the functional
code and forgets the troublesome manipulation of many communication primitives.

getMyGroupSize

getMyRank

MPI_Comm_Size

MPI_Comm_rank

MPI_Init
MPI_Finalize

MPI_*Send

activities creation

MPI

mpirun deployment

MPI_*Recv

MPI_Barrier

scatter group as parameter

MPI_Bcast

MPI_Scatter

MPI_Gather

method call

method call with a

result of a group
communication

method call
(setter and getter)

barrier

ProActive

MPI_Reduce programmer’s method

Figure 7.8: MPI to Java translations

Contrary to MPI that requires all members of a group to collectively call the same commu-
nication primitive, our group communication scheme lets the possibility to one activity to call
a method on the group. MPI deals with simple data structures (arrays) while RMI is aware
about complex objects. Organize the data in arrays to be exchanged through collective operations
is painful. The programmer benefits from the remote method invocation scheme to make the
parallel activities easily communicate.

Conclusion
We have introduced a parallel programming model, which we name Object-Oriented SPMD as
an alternative to the traditional Message-Passing SPMD style. Overall, it allows more flexibility,
and a higher level of abstraction. Firstly, it enforces members taking part in the computation
just the required involvement in collective operations. E.g. in MPI, a call to MPI_broadcast
must be run by all members, even if for all except the sender, this call aims only at receiving
the message. On the contrary, using our solution, a method invocation towards a single active
object to trigger a point-to-point interaction, or towards a SPMD group of active objects to trigger
a collective interaction between all the members only differ by the target object reference. This
way, we promote asynchronous remote method invocation and the active object pattern as the
only required communication and structuring mechanism. Secondly, our approach to SPMD
programming has potential for evolution. Instead of defining the parallel task as a single ’big’
loop as in traditional SPMD programming, OO SPMD enables to receive and treat data in a more
flexible order (discarding the need to program sometimes intricate case statements depending
of received message’s tag).

110 CHAPTER 7. OBJECT-ORIENTED SPMD

Chapter 8

Ongoing and collaborative work

This chapter introduces ongoing collaborative work based on the works presented in the previous
chapters. The group communication mechanism may benefit from new enhancements, in term
of language expressiveness and eventually in term of performance on high-speed and multicast
networks as well. The group mechanism has also been useful in order to build components and
peer-to-peer overlays networks for distributed computing.

The chapter is organized as follow. Firstly, Section 8.1 presents an extension to the group API
that allows more precise and adaptable behavior of group communication. In Section 8.2, IP mul-
ticasting is introduced in the group communication mechanism. Section 8.3 shows how a typed
group communication is useful to build the notion of composite component with a multi-port. Fi-
nally, Section 8.4 presents the use of the group communication in a peer-to-peer infrastructure
for grid and cluster computing.

8.1 Group behavior component

Grid applications typically deal with huge amount of data and often the same data have to be
transferred and processed on many resources. Nevertheless, the majority of existing middle-
ware platforms for Grid computing does not provide suitable programming and communication
models to make easy software development and to improve communication performances when
a large set of receivers is involved. Some middlewares for wide area network computing, such
as ProActive, provide the group abstraction to transparently deal with a number of similar re-
ceivers. We propose an extension of such a mechanism in order to improve its features for Grid
environments. In particular, ProActive groups have been extended both at programming and
communication levels in order to support different internal behaviors. Those works were done in
collaboration with Nadia Ranaldo and Eugenio Zimeo [BAD 05d].

In order to simplify distributed programming, more abstractions and high-level distributed
models should be provided by a group communication mechanism at programming level, in order
to free the programmer from the implementation details of system aspects of programming such
as object distribution, mapping and load balancing mechanisms. This leads also to a performance
improvement, thanks to the possibility to automatically and transparently adapt the application
to the system configuration.

We propose to extend the syntax of group creation and to change the syntax and semantics
of group management. To this end, we introduce a dynamic internal behavior, called Group Be-
havior, for each ProActive group, so as to define the semantics adopted by the group for a method
invocation. Through the definition of a behavior and its dynamic assignment to a group, this
one can change its internal behavior at runtime and new policies can be easily implemented and
attached without interventions on the library or even on the application code. In fact, through
the Java reflection, a newly created group behavior can be loaded during the program execution

111

112 CHAPTER 8. ONGOING AND COLLABORATIVE WORK

to install a different behavior in a running group. This way, a group can transparently adapt its
behavior to the context in which it operates.

In recent years, several group semantics have been defined. Each of them contributes to
specify the behavior of a group. In particular, from the point of view of the method invocation the
following semantics can be individuated:

• Request mapping: it handles the mapping of each request to the group members. Some
examples are (1) One, the request is assigned to only one group member, selected with a
scheduling policy (for example random, round-robin, more sophisticated policies based on
QoS) ; (2) Fixed, the request is scheduled for a defined number of group members; (3) All,
the request is propagated to all the group members.

• Input parameters distribution: it allows for splitting the input parameter of each group
method before sending the request to the group members selected for the request mapping.
Examples are: (1) Broadcast, an input parameter of the method invocation is sent to all
the scheduled group members; (2) Scatter, a group that receives the invocation of a method
could be able to split the value, received as parameter, in a number of chunks and to pass
each one to the same method of each member.

• Output parameters collection: it handles the return value replied to the caller. Examples
are (1) Gather, the output parameter is obtained collecting the partial results of the group
members; (2) Merging, the output parameter is obtained by assembling the partial results
of the group members.

• Synchronization: it specifies the condition that blocks the caller when a return parameter
of a group method invocation is used. (1) All, the totality of the scheduled group members
execute the request, and all the results are to be collected and returned to the caller; (2)
Majority, the execution request is active until the majority of the scheduled group members
have executed the request and replied the results; (3) One, in this case, groups can be used
to improve the reactivity related to the processing triggered by a method of the group by
moving the invocation to all the scheduled members and collecting the result coming from
the most reactive or the nearest member; (4) Fixed, a number of executions specified by the
user are required.

From the point of view of communication inside a group, the following schemes can be adopted:

• Unicast, a point-to-point communication. In this case each member is contacted separately
in order to receive different input data.

• Multicast, a point-to-multipoint communication. In this case all the members receive the
same input.

• Multicast with scattering, a point-to-multipoint communication. In this case the group
is subdivided in “sub-groups” and, for each sub-group, a different input data is delivered to
all the members that compose the sub-group.

Communication semantics have to be selected according to the behavior chosen for the group.
For example the multicast semantic is adopted when a request execution is sent to a part of the
group members and the input parameters are sent with the broadcast semantic, etc., whereas
the unicast semantic is adopted for a request execution when an input parameter is scattered
and each part has to be sent to a different group member.

For each one of the semantics reported above, a reliable or unreliable schema can be adopted,
depending on the selected semantics of the group. Some group semantics for the creation phase
can also be individuated. Examples are the policy for the selection of host nodes on which to allo-
cate the group members, the management of each constructor parameter of the group members
and also the semantic that determines the condition of success of a group creation. In this section
only the method invocation semantics are analyzed, whereas those related to the group creation
phase are subject to ongoing work.

8.1. GROUP BEHAVIOR COMPONENT 113

To ensure flexibility and extensibility the configuration and customization of a behavior for
a group is obtained through GroupBehavior. Such class specifies the behavior of a group in re-
sponse to the method invocation request and is the composition of the four semantics defined
above. Each semantic has a default implementation and can be modified at runtime.

A semantic is associated to an instance of one of the following interfaces:

• RequestMappingSemantic

• InputDistributionSemantic

• SynchronizationSemantic

• OutputCollectionSemantic

Each interface has some methods that have to be implemented to define a specific semantic. Such
methods are invoked by a component of the framework, called GroupBehaviorEnactor.

RequestMappingSemantic

The body of the method Vector getMembers(MethodCall mc, Vector memberList) spec-
ifies the group members at which the request has to be sent. It receives an instance of the
MethodCall class, which contains information on the current method invocation on the group
(opportunely captured at runtime by the MOP: refer to Section 3.2.2), in particular on the method
signature and the effective arguments. The other input parameter is the list of the current group
members.

InputDistributionSemantic

The implementation of the method
Vector manageInputs(MethodCall mc, Vector memberList, Communicator comm)
specifies how the input parameters have to be distributed to the group members for a method in-
vocation request. It receives the MethodCall instance which represents the current method in-
vocation request, the list of the group members chosen for the request execution by the Request-
MappingSemantic. The last input parameter represents a component responsible for the imple-
mentation of the logical communication semantic to use for data transmission inside a group
(more details come in Section 8.2). Such class has the method
void setLogicalCommunication(String commSchema, Parameters qos)
which permits a user to configure a logical communication semantic for a method execution re-
quest. The method uses a string representing a communication schema supported by the mid-
dleware and some parameters of QoS which have to be satisfied. Parameters is a class that con-
tains instances of Parameter, which is a couple of attribute-value. Currently, we consider only a
parameter, which represents the reliability level defined by the attribute reliability and can
assume the values "reliable" and "unreliable". The communication schemas currently
supported by our protoype implementation are: "unicast", "multicast" and "multicast-
scattered".

From the programming point of view the possibility to specify the logical communication se-
mantic inside a group is provided without any awareness on the leveraged transport layers sup-
ported by the physical networks. For example, although unicast group communication could be
implemented by employing a unicast transport protocol such as TCP or UDP, multicast group
communications could be implemented both by using a unicast transport protocol and a multi-
cast one, depending on the availability of the underlying transport layers.

Finally the return parameter is a vector which contains the result of the distribution semantic
applied to each effective argument, obtained by the MethodCall instance, corresponding to the
input parameter identified by its index in the parameter list.

114 CHAPTER 8. ONGOING AND COLLABORATIVE WORK

SynchronizationSemantic

Through the implementation of the method void waitFor(MethodCall mc, Vector futures)
it is possible to specify the synchronization policy when a result of a group method invocation is
used for another method call. Such method is invoked on a vector of future objects, each of which
is associated to the asynchronous call on a group member scheduled for the execution.

This method can be easily implemented leveraging the static methods of ProActive related to
the synchronization on a future object or a vector of future objects.

OutputCollectionSemantic

It determines how to reply to the caller the final return parameter of a group method invo-
cation through the method Object manageOutput(MethodCall mc, Vector futures). It
receives an instance of MethodCall and a vector of future objects, containing the stubs of the re-
sults. The implementation of this method defines the operation to perform on the futures before
returning a final result for the method invocation. This operation may be for instance, combina-
tion, selection 1, transformation into a typed group, etc.

Group behavior usage

The extension of the ProActive group requires only few modifications to the syntax of the cur-
rent version. In particular the client application creates an instance of a group specifying the
GroupBehavior to apply. As a consequence, the static methods of the ProActiveGroup class
have been modified to include this parameter. Group creation is now performed through the
method newGroup which specifies the group class, the constructor parameters, the nodes, and
the group behavior. Here is an example of group creation specifying a group behavior:

// Parameters and nodes
Object[][] params = {{...} , {...} , ... };
Node[] nodes = { ... , ... , ... };

// Creation of the semantics
RequestMappingSemantic ms = new UserMappingImplementation();
InputDistributionSemantic ds = new UserDistributionImplementation();
SynchronizationSemantic ss = new UserSynchronizationImplementation();
OutputCollectionSemantic oc = new UserOutputImplementation();

// Creation of the GroupBehavior object
GroupBehavior behavior = new GroupBehavior(ms,ds,ss,oc);

// Creation of a typed group with the defined group behavior
A a = (A) ProActiveGroup.newGroup("A", params, nodes, behavior);

Overall, this work has led to the following: thanks to the reification, the semantic related to
the management of method invocations on groups can be intercepted and customized at runtime
in order to logically show a specific behavior.

8.2 Using IP multicast
From the point of view of the communication inside a group, a major improvement can be made.
The idea is to perform the data transmission leveraging the potentialities of the network connec-
tions effectively available at the moment. For example some network information can be used
in order to adopt, when it is possible, as an alternative to the commonly used unicast transport
communication based on TCP/IP, a transport layer based on multicast protocols.

1Combination (for instance addition or multiplication), and selection (for instance minimum or maximum) are able to
express reduce operations.

8.2. USING IP MULTICAST 115

Multicast transport

Reliable

Unreliable

Multi−unicast
transport

Communicator

Proxy

Proxy

Proxy

Proxy

Figure 8.1: The communicator component

In this case, differently from real-time multimedia distributed systems, which tolerate unre-
liable data streaming to reduce latency, other ditributed systems often require reliable multicast
protocols to deliver replicated application data without losses and errors. These considerations
have motivated an intense research activity which has led to many protocol definitions for im-
plementing reliability in multicast communication. The paper [CHI 98] proposes an interesting
solution integrated in a Java framework, JRMS (Java Reliable Multicast Service) [ROS 98], that
provides several reliable multicast protocols.

ProActive is particularly suitable to implement such a mechanism, thanks to its high modular-
ity and customization mechanisms related to the mapping of logical application data communi-
cation to the real services available at transport level for data transmission on physical networks.

Our solution is based on the definition of a new ProActive component, the Communicator
(presented on Figure 8.1), which has the main task to manage the data transmission inside a
group for each method execution request. Such component is the only component to be aware
of the communication services delivered by the physical networks and so to be able to map the
logical communication semantic onto an available transport layer, which is the most suitable one.

For multi-unicast communications, the Communicator can access to the standard Proxy ser-
vices, one for each member scheduled for the request execution, which is able to handle the
transmission on the network of a request adopting one among the available unicast transport
layers. For multicast communication, the Communicator can access to the MulticastProxy,
a completely new component, able to handle the transmission of a request adopting a multicast
mechanism.

The default communication protocol adopted in ProActive is RMI. It limits the possibility to
improve the performances of applications. In fact RMI is implemented on TCP which requires
multiple connections to simulate a group method. For this reason, we propose an implementation
of ProActive groups atop a transport layer based on IP multicast.

Integrating reliable multicast inside a middleware for Grid computing is still an open issue.
Some solutions aim at easily porting existing applications to multi-destination environments by
enriching TCP with multicast capabilities [JEA 03]. To efficiently exploit a multicast protocol,
the Grid computing middleware should be able to manage the sub-parts of the Grid infrastruc-

116 CHAPTER 8. ONGOING AND COLLABORATIVE WORK

ture in which the multicast communication is supported at data-link or network layers. This is
the case of a cluster in which the resources are connected through a common LAN which supports
broadcast communication at data-link layer, or a set of workstations directly connected to an IP
multicast-enabled router.

Unreliable multicast typically provides scalability up to tens of thousands of nodes, but its se-
mantics are generally too weak for application developers to depend upon. Messages are subject
to long and unpredictable transmission delays, message loss, and out of order delivery. Processes
may crash and network links may fail; such failures are hard to detect when the communication
delays are unpredictable and messages can be lost. To avoid those, we use a reliable multicast
service to integrate into the transport layer of ProActive.

The master-slave pattern [BUS 96] for distributed programming was implemented to test our
proposal. Two implementations of this programming model are shown and compared, the first
one adopts the standard group mechanism and the second one adopts the extended group mech-
anism. A slave object is implemented by means of a group member, each of which is opportunely
distributed onto remote machines.

The canonical matrix multiplication is used as case study. Class Matrix is used to repre-
sent the abstract data-type matrix, and delivers the methods necessary to perform the row-for-
column multiplication. In particular Matrix delivers a constructor Matrix (float[][] m)
where the parameter m is a two-dimensional array of float, and the method Matrix multiply
(float[][] a), that performs the multiplication algorithm where the current instance repre-
sents the right matrix and the matrix passed as parameter the left matrix. Such matrix has to
be split in equivalent sub-parts, using a row-based decomposition, each of that has to be sent
to a different group member that represents a slave object. On the other hand, the constructor
parameter will be the overall right matrix, which so will be the same for each of them.

A performance evaluation of the proposed approach was conducted by comparing the per-
formances obtained with two different implementations of the case-study. An implementation
was based on the standard groups (with unicast communications), the other one was based on
extended groups (with multicast communications). For the first case, the default ProActive im-
plementation based on Java RMI was adopted, while for the second one, a prototypical version
of the ProActive group mechanism was implemented using a reliable multicast protocol, TRAM
(included in JRMS 1.1).

The testbed was a cluster of eight nodes, each one equipped with Intel Pentium II @ 350 MHz,
128 MB of RAM and 100 Mb/s Ethernet network card, and a machine equipped with Intel Pen-
tium IV @ 2.4 GHz, 256 MB of RAM and 100 Mb/s Ethernet network card.

Figure 8.2 shows the execution times of the application matrix multiply, considering a fixed
matrix dimension to 1000x1000 float numbers, and a varying number of slaves. As it is possible
to note, the implementation based on reliable multicast exhibits better performances, mainly
due to the reduced traffic on the network. The adopted implementation in fact employs multicast
communication for sending and gathering data from group members, each of which receives the
right matrix with the broadcast semantic, so strongly reducing the network utilization compared
to repeated unicast communication adopted by the original ProActive groups.

8.3 Components
Computing grids and peer-to-peer networks are inherently heterogeneous and distributed, and
for this reason they drive new technological challenges: complexity in the design of applications,
complexity of deployment, reusability and performance issues. ProActive provides an answer to
these problems through the implementation of an extensible, dynamical and hierarchical compo-
nent model named Fractal [FRA].

8.3. COMPONENTS 117

Group JRMS/TRAM

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5 6 7 8

ex
ec

ut
io

n
tim

e
(i

n
se

c)

number of slaves

Group RMI

Figure 8.2: Group RMI vs Group IP Multicast

Fractal defines a general conceptual model, along with an application programming interface
in Java. According to the official documentation, the Fractal component model is "a modular and
extensible component model that can be used with various programming languages to design, im-
plement, deploy and reconfigure various systems and applications, from operating systems to mid-
dleware platforms and to graphical user interfaces". The Fractal model is based on the concepts
of encapsulation, composition, sharing, life-cycle, activities, control, and dynamicity [BRU 02]. A
Fractal component is formed out of three parts:

• a content that can be recursive. As a component can contain other components, the model
is hierarchical.

• a set of controllers that provide introspection capabilities for monitoring and exercising
control over the execution of components.

• a set of interfaces with which the component interacts with other components. These
interfaces can be either client or server, and are interconnected using bindings.

As ProActive offers many features, such as distribution, asynchronism, and mobility that
would be interesting for Fractal component; an implementation of the Fractal API based on
ProActive was written by Matthieu Morel [BAU 03].

A ProActive component is parallelizable and distributable as we aim at building grid-enabled
applications by hierarchical composition [BAD 04a, BAD 05b]. Build a component acts as a glue
to couple codes that may be parallel and distributed codes requiring high performance comput-
ing resources. Hence, components should be able to encompass more than one activity and be
deployed on parallel and distributed infrastructures. Such requirements for a component are
summarized by the concept we have named Grid Component. Figure 8.3 sums up the different
kinds of grid components we provide.

The implementation for ProActive currently defines two extensions to the base component
model of Fractal:

• Distributed deployment: components can be deployed onto distributed virtual machines,
using the deployment facilities of ProActive.

• Parallel components: this type of components is a specialization of the composite com-
ponents, as they encapsulate other components. They encapsulate other components of the

118 CHAPTER 8. ONGOING AND COLLABORATIVE WORK

U

V

S

T

C

X

B

Y

Z

A

C is a parallel component, redispatching
calls on its external server interface

collective port.
to internal components through a

Controller Binding Server port Client port

X, Y and Z can themselves be primitive,
composite, or parallel components.

B is a composite component.

A is a primitive component.

Note: Invocations originate from server ports and propagate to client ports

Figure 8.3: The three types of grid components

same type, and all incoming calls are forwarded to the corresponding internal interfaces
of the enclosed components. This allows parallel processing while just manipulating one
entity, the enclosing parallel component. We name collective ports the ports allowing such
operation.

The typed group API is a key feature for parallel components. The implementation of col-
lective port is based on the ProActive groups. According to the Fractal specification, a collective
interface only has sense for a client interface, that would like to be bound to several server in-
terfaces. Besides, a server interface can always be accessed by several client interfaces, the calls
being processed sequentially. Specifying a server interface as collective would not change its be-
havior.

The ProActive group API allowing group communication in a transparent manner, the imple-
mentation of the collective interfaces slightly differs from the Fractal specification: instead of
creating one new interface with an extended name for each member of the collection, we just use
one interface (that is actually a group). Collective bindings are then performed transparently as
if they were multiple successive bindings on the same interface. Using a collective interface will
then imply using the typed group formalism, including the possibility to choose between scatter-
ing and broadcasting of the calls. A feature is that unbinding operations on a collective interface
will result in the removal of all the bindings of the collection.

In order to couple parallel components, we plan to provide facilities for composing collective
ports. Every parallel component has a set of meta-objects associated to it and could serve as
a sophisticated re-dispatcher: for the set formed from each client port of interest of each inner
component of the parallel component (thus defining the notion of a collective client port of a
parallel component), to the server collective port of interest it is bound to. The objective – but
maybe not the solution – is similar to what is achieved by introducing collective communica-
tions as tees in the ICENI Grid oriented component model [MAY 02]: switch, combiner, splitter,
gather, broadcast; the same regarding the collective port extending CCA ports, experimented in

8.4. PEER-TO-PEER COMPUTING 119

[KEA 01], which is in fact implemented as a combination of translation components (i.e. cus-
tomizable components, efficiently called by the framework, to tackle translation/redistribution of
data, collective invocation and returns, e.g. a MxN component).

As presented in [BAD 05c], our challenge is to provide a solution adapted to the component-
oriented model we propose, that is, without the explicit introduction of additional components
(either generic or programmer-modifiable), but only through the definition of Fractal ports and
the usage of the ProActive group communication mechanism. An illustration of this objective is
given in Figure 8.4: the idea is to automate the broadcasting or scattering of invocation param-
eters, and symmetrically the gathering of reply parameters. In the case where the communi-
cations occur from M components to N components this also requires a redistribution policy of
the parameters and replies from M invokers to N receivers. Schematically, this could end up by
also synchronizing M calls and gathering their parameters, and then scatter them onto N calls.
Regarding the replies, the inverse operation is needed: gathering N replies and automatically
scattering them onto M invokers. In this sense, our design of collective ports composition is re-
lated to the one in [DEN 04], which is based on collective RMI calls extended with the usage of
a MxN redistribution scheme introduced in recent CCA compliant implementations of parallel
data redistribution [DAM 03, BER 04].

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

M components

N components

Scattering Gathering

Redistribution

Figure 8.4: Redistribution from M components to N components

8.4 Peer-to-peer computing
Computational peer-to-peer (P2P) is emerging as a key execution environment. The potential of
100,000 of nodes interconnected to execute a single application is rather appealing, especially
for Grid computing. Mimicking data peer-to-peer, one could start a computation that no failure
would be able to stop. ProActive provides an API for peer-to-peer computing that aims to use
spare CPU cycles from organization or institution’s workstations possibly combined with grids
and clusters. The goals are to deploy applications on a decentralized set of nodes and to use most
of available resources on a network. This API was mainly written by Alexandre di Costanzo.

The peer-to-peer infrastructure works as an overlay network. It is composed of peer-to-
peer services (the peers) which in turn become computational nodes. An active object, named
P2PService and mapped on a ProActive JVM, implements the service. Figure 8.5 presents a
network of hosts where some JVMs are running and several of them are running a P2PService.

120 CHAPTER 8. ONGOING AND COLLABORATIVE WORK

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host Host

P2PService P2PService P2PService

P2PService P2PService

P2PService P2PService

Figure 8.5: A peer-to-peer infrastructure

The peer-to-peer infrastructure is self-organized and configurable. When the infrastructure
is running, it is kept up by itself, with no action from the user. There are three main configurable
parameters to achieve this:

• The Time To Update (TTU) represents the duration between connectivity examinations:
when its TTU expires, a peer checks if its known peers are still available.

• The Number Of Acquaintances (NOA) is the minimal number of peers that one peer have
to know. In order to keep the infrastructure running, each peer tries to maintain references
on this number of other peers.

• The Time To Live (TTL) is not really a duration in time. TTL refers to a number of mes-
sages retransmission. It is the depth of message propagation in “hops”.

The bootstrapping, or first contact problem, is to define how a new peer can join the peer-
to-peer infrastructure. A solution for that is to use a specific protocol. ProActive provides an
interface for JINI, a network-centric services protocol. JINI can be used for discovering services
in a dynamic computing environment, such as a fresh peer which would like to join a peer-to-peer
network. This protocol is perfectly adapted to solve the bootstrapping problem. However JINI is
limited to work only in the same sub-network that means JINI doesn’t pass through firewall or
NAT and can’t be considered to be used for Internet.

Therefore, we choose a different solution for the bootstrapping problem. It is inspired from
data peer-to-peer networks: when creating a new peer, we specify one or several addresses of sup-
posed peers which are running in the peer-to-peer infrastructure. After that this list of addresses
is then dynamically updated when the peer discovers new peers or when it detects known peers’
failure. The bootstrapping follows those steps:

1. A fresh peer has a list of “server” addresses. These are peers that have a high potential
to be available and present in the peer-to-peer network. In a certain way, they act as the
peer-to-peer network core.

2. With this list the fresh peer tries to contact each server. When a server is reachable the
fresh peer adds it in its list of known peers, and increases its Number Of Acquaintances.

3. Then the fresh peer knows some other peers; it is fully integrated in the peer-to-peer net-
work. Its list is dynamically updated.

8.4. PEER-TO-PEER COMPUTING 121

In the case of the fresh peer can not contact any peers from the list, the fresh peer will try ev-
ery Time To Update to recontact all of them until one or several of them become finally available.
At any moment, if the Number Of Acquaintances of a peer reaches 0 (the peer knows nobody
because all of its acquaintances became unavailable), the peer will try to reconnect to the peer-
to-peer network as if it was looking for a first contact.

As a peer-to-peer infrastructure is a dynamic environment, the list of acquaintances is dy-
namic. Many acquaintances could become unavailable, and then should be removed from the
list. All peers have to keep their lists up-to-date. In order to verify the acquaintances availabil-
ity, the peer sends an Heart Beat to all of its acquaintances, every Time To Update. Unreachable
peers are removed from the list of acquaintances.

Those communications between peers are performed with one-way group communication, but
for sending response of a request message, it’s a point-to-point communication. The group com-
munication rendez-vous guarantees the message is successfully received by the receiver, if this
one is up and reachable. If an acquaintance is down, the failure of heart beat message delivery
produces a Java exception caught by the group exception handling mechanism and redirected as
an exception of the peer-to-peer API.

The P2PAcquaintanceManager manages the list of acquaintances; this list is represented
by a typed group of P2PService. The P2PAcquaintanceManager is an active object linked
to the P2PService object on each node of the peer-to-peer network. At its initialization it con-
structs an empty P2PService group. It exposes few access group methods, such as remove,
add, and getSize methods. All other peers (such as the P2PService active objects) have to
use P2PAcquaintanceManager methods to access to the group. The manager also exposes the
P2PService interface. Those methods are bound on the typed group; that is the way the mes-
sages are propagated from a peer to its acquaintances (i.e. from the manager to the remote
peer-to-peer services). Figure 8.6 presents the role of the P2PAcquaintanceManager in the
broadcast of heart beat messages.

ProActive node

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host

ProActive node

Host

P2PService

P2PService

P2PService

P2PService

P2PService

P2PService

P2PService

Heart Beat

Manager
P2PAcqu.

Figure 8.6: An heart beat sent as a group communication

Deployment on such peer-to-peer network is transparently achieved thanks to the deployment
descriptors. The activity deploying the application, send a request for available hosts to a known
peer of the network, specified in the XML descriptor. The peer looks for available hosts in its list
of acquaintances and if there is not enough hosts, it forwards the request to it acquaintances to
ask for more available hosts. The request is recursively propagated until the required number of
hosts was reached (or a time out stops the recursive search).

122 CHAPTER 8. ONGOING AND COLLABORATIVE WORK

Chapter 9

Conclusion

9.1 Achievements

Java has many advantages for Grid computing. Foremost, by being based on a virtual machine
concept, it is inherently more portable than traditional, statically compiled languages, making
it much easier to execute Java applications in a heterogeneous Grid environment. Also, Java is
based on a high-level, object-oriented, type-safe programming model and it has built-in support
for multithreading and distributed computing.

The basic unit of activity and distribution used by ProActive to build concurrent applications
is the Active Object. An active object is remotely created on a host involved in the computation.
Methods calls sent to active objects are asynchronous with transparent future objects and the
synchronization is handled by a mechanism known as wait-by-necessity.

In addition to simple active objects, ProActive offers a group communication mechanism that
allows for method invocations on sets of objects, grouped together and referenced by a single
collective name. A ProActive group is also called typed group since it is composed of objects
belonging to classes inheriting from the same superclass or implementing the same interface.
Typed group is the "clonation" of an active object on a set of nodes and a group communication is
the "replication" of a remote method invocation on them. Each member can be an instance of a
different class but all the members must have the same ancestor.

While many libraries and programming frameworks delivering group abstraction impose spe-
cific constraints on programmers, thanks to the use of a Meta-Object Protocol, ProActive delivers
a more transparent and flexible mechanism. ProActive MOP, through the reification of method
invocation and constructor call, makes it possible to initiate group communication invoking a
method of the group object. As a consequence using a typed group takes exactly the same form
as using only one active object. When a method call is invoked towards a group, the seman-
tics of communication are implemented on an asynchronous underlying communication system
which internally handles execution requests as sequences of events related to request trans-
missions, request dispatching, failure notifications, result collecting, etc. Such communication
system asynchronously and efficiently propagates the call to all members of the group using mul-
tithreading. A method call on a group is asynchronous and provides a transparent future object
to collect the results.

Currently, ProActive groups provide the programmer with some mechanisms for the manage-
ment of input parameters, such as broadcasting and scattering. By adopting the broadcasting,
the same parameter is sent to all the members. On the other hand, by adopting the scattering, a
part of the overall parameter is transferred to the members. In this case, the parameter has to
be explicitly passed as a group, which is built splitting the original parameter in several parts.
The default behavior is the broadcasting, while in order to scatter a parameter the programmer
has to invoke the static method setScatterGroup of the ProActiveGroup class to the input
parameter group. So, the scatter policy is tied only to a specific input parameter instance.

123

124 CHAPTER 9. CONCLUSION

The result of a typed group communication is also a group, requiring so an explicit manage-
ment of its group members when an aggregation policy has to be adopted. The result will be
dynamically updated with the incoming partial results. Thanks to the wait-by-necessity syn-
chronization mechanism, a result can be immediately used to execute a method call, even if all
the results are not available.

We have introduced a parallel programming model, which we name Object-Oriented SPMD as
an alternative to the traditional Message-Passing SPMD style. The resulting OO SPMD API al-
ready forms part of the ProActive open-source library, freely distributed through the Object Web
consortium for open-source middleware. Our ambition is to have this approach used on real
size applications. We already successfully applied the typed group communication mechanism
to solve simulation in electromagnetism. Our current work is to apply the whole OO SPMD
approach to it. Next, we plan to target other application domains, such as biogenetics (apply-
ing BLAST in parallel), for which we already have developed applications, but not yet using
OO SPMD.

9.2 Perspectives
The ProActive groups define a complete framework for typed group support. An implementation
has been realized, evaluated, and used to build applications. The OO SPMD programming model
proposes a more flexible approach of SPMD programming. It allows techniques to introduce flex-
ibility in barrier synchronization and to remove any explicit loop. It makes possible to privilege
reactivity and reuse.

However, several issues remain open. The main focuses for future work are listed here:

• A smart thread pool dimensioning. Define a generic solution that allows to optimally
allocate resources for a group communication is not easy. Many parameters step in: the
amount of group members of course, but also the communication frequency, the size of
exchanged data, the system load, the network speed, etc. Because we have experimented in
many applications that the better dimensioning mechanism is often obtained by practical
observations and then user adaptations, our final choice is to let the programmer define his
or her own method to correctly size the pool. But it should be interesting to look deeper in
order see if some patterns may emerge to build dimensioning mechanisms that can answer
more generically to this issue.

• A study on ordering delivery semantic. Basic typed group communications provide a
FIFO ordering semantic: given a source, messages are received in the order they were
sent. This semantic is generally sufficient for the conception of distributed application. It
provides good performances; and stronger semantic may be added by the programmer if
needed as an extension of the group mechanism. With active groups, the ordering is total:
messages are delivered in the same order to all members of the group. This is guaranteed
because an active group provides a unique entry point that relays the calls. A study of
the impact of one or the other semantic on application writing and execution should be
interesting. We may also consider the introduction of a causal ordering semantic.

• A large multicast benchmark. The current implementation that links the ProActive
group and an IP multicast library is a prototype implementation. We should produce a fi-
nal and releasable version that could come with the standard ProActive distribution. We
should also go further in the analysis of performances of this IP multicast version of our
typed group communication. We should evaluate performances on cluster and grid plat-
forms, with basic benchmarks and with a numeric application (probably Jem3D). It should
be also very interesting to observe the behavior of the system with a mixed communication
scheme; for instance in a grid environment where inter-cluster communications are as-
sumed by standard ProActive communication (to pass through firewalls) while intra-cluster

9.2. PERSPECTIVES 125

communications are assumed by IP multicasting (to benefit from the high-speed network
abilities).

• A MxN redistribution. Regarding the components, we would like to automate the sending
of method call parameters, and in a symmetric manner, the gathering of results in the case
of M to N data redistribution. In our current implementation of the Fractal model, this issue
is not yet addressed. Typed groups assume that the unit of data transmission is the object.
A solution should be to ask the programmer to implement a method that redistributes his
or her data from any M objects to any N objects, and to use automatically this method in
our component framework. But we are still looking further for a more autonomous and
transparent solution. Typed group communications with group of futures open the way to
a wide range of new perspectives in this area.

• A more accurate OO SPMD model evaluation. The OO SPMD programming model has
been evaluated with a simple algorithm running on a simple cluster. We would like to try
it with a real sized numerical application: possibly Jem3D since it fits well with SPMD
models (its algorithm is based on iterations and each sub-domain performs the same task),
or a totally new application built from scratch. Then performance measurements of this
application running on a grid may teach a lot about the validity of our approach and its
behavior in a very large scale system.

126 CHAPTER 9. CONCLUSION

Bibliography

[ANA 04] SANTOSH ANAND. GeB, Grid-enabled BLAST with Distributed Objects. Master’s
thesis, DEA RSD, University of Nice Sophia-Antipolis, September 2004.

[ANT 00] GABRIEL ANTONIU, LUC BOUGÉ, PHILIP J. HATCHER, MARK MAC BETH, KEITH
MC GUIGAN, and RAYMOND NAMYST. “ Compiling Multithreaded Java Bytecode for
Distributed Execution ”. In Proceedings of the 6th International Euro-Par Conference
on Parallel Processing, pages 1039–1052, München, Germany, August 2000. Springer
Verlag. Lecture Notes In Computer Science vol. 1900.

[ARM 92] SUSAN M. ARMSTRONG, ALAN O. FREIER, and KEITH A. MARZULLO. “ Multicast
Transport Protocol (RFC 1301) ”. Technical report, IETF Network Working Group,
February 1992.

[ATT 00] ISABELLE ATTALI, DENIS CAROMEL, and ROMAIN GUIDER. “ A Step Towards Auto-
matic Distribution of Java Programs ”. In FMOODS 2000, pages 141–161, Stanford
University, California, USA, September 2000. Kluwer Academic.

[ATT 03] ISABELLE ATTALI, DENIS CAROMEL, and ARNAUD CONTES. “ Hierarchical and
Declarative Security for Grid Applications ”. In Proceedings of the International
Conference On High Performance Computing, Hyderabad, India, December 2003.
Springer Verlag.

[BAD 01] LAURENT BADUEL. Communications de groupes efficaces pour objets actifs répartis.
Master’s thesis, DEA Réseaux et Systèmes Distribués, University of Nice Sophia-
Antipolis, June 2001.

[BAD 02a] LAURENT BADUEL, FRANÇOISE BAUDE, and DENIS CAROMEL. Communication de
groupes typés dans ProActive. Winter School, École thématique sur la globalisation
des ressources informatiques et des données (GRID), December 2002.

[BAD 02b] LAURENT BADUEL, FRANÇOISE BAUDE, and DENIS CAROMEL. “ Efficient, Flexible,
and Typed Group Communications in Java ”. In Joint ACM Java Grande - ISCOPE
Conference, pages 28–36, Seattle, Washington, USA, November 2002. ACM Press.
ISBN 1-58113-559-8.

[BAD 03] LAURENT BADUEL, and DENIS CAROMEL. “ Communications de groupe typé pour
objets répartis ”. In RenPar15 (French-speaking meetings of Parallelism, 15th edition),
pages 119–126, La Colle-sur-Loup, France, October 2003. INRIA Edition. ISBN 2-
7261-1264-1.

[BAD 04a] LAURENT BADUEL, FRANÇOISE BAUDE, DENIS CAROMEL, ARNAUD CONTES, FAB-
RICE HUET, MATTHIEU MOREL, and ROMAIN QUILICI. Components for numerical
GRIDs. Communication in European Congress on Computational Methods in Applied
Sciences and Engineering, ECCOMAS, July 2004.

[BAD 04b] LAURENT BADUEL, FRANÇOISE BAUDE, DENIS CAROMEL, CHRISTIAN DELBÉ,
SAÏD EL KASMI, NICOLAS GAMA, and STÉPHANE LANTERI. “ A Parallel Object-
Oriented Application for 3D Electromagnetism ”. In Proceedings of the 18th Inter-
national Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, New
Mexico, USA, April 2004. IEEE Computer Society.

127

128 BIBLIOGRAPHY

[BAD 05a] LAURENT BADUEL, FRANÇOISE BAUDE, and DENIS CAROMEL. “ Object-Oriented
SPMD ”. In Proceedings of Cluster Computing and Grid, Cardiff, United Kingdom,
May 2005.

[BAD 05b] LAURENT BADUEL, FRANÇOISE BAUDE, DENIS CAROMEL, ARNAUD CONTES, FAB-
RICE HUET, MATTHIEU MOREL, and ROMAIN QUILICI. “ Grid Computing: Soft-
ware Environments and Tools ”, chapter Programming, Deploying, Composing, for
the Grid. Springer Verlag, 2005.

[BAD 05c] LAURENT BADUEL, FRANÇOISE BAUDE, DENIS CAROMEL, LUDOVIC HENRIO, FAB-
RICE HUET, STÉPHANE LANTERI, and MATTHIEU MOREL. “ Grid Components Tech-
niques: Composing, Gathering, and Scattering. Can it be Used for Coupled Prob-
lems ? ”. In Proceedings of Coupled Problems, Thematic Conference of ECCOMAS,
Santorini Island, Greece, May 2005.

[BAD 05d] LAURENT BADUEL, FRANÇOISE BAUDE, NADIA RANALDO, and EUGENIO ZIMEO.
“ Effective and Efficient Communication in Grid Computing with an Extension of
ProActive Groups ”. In JPDC, 7th International Worshop on Java for Parallel and
Distributed Computing at IPDPS, Denver, Colorado, USA, April 2005.

[BAK 98] MARK BAKER, BRYAN CARPENTER, SUNG HOON KO, and XINYING LI. “ mpiJava:
A Java interface to MPI ”. In First Workshop on Java for High Performance Network
Computing, Europar ’98, University of Southampton, United Kingdom, September
1998.

[BAK 99] MARK BAKER, BRYAN CARPENTER, GEOFFREY FOX, SUNG HOON KO, and SANG
LIM. “ mpiJava: An Object-Oriented Java interface to MPI ”. In International Work-
shop on Java for Parallel and Distributed Computing, IPPS/SPDP, San Juan, Puerto
Rico, April 1999.

[BAN 98] BELA BAN. “ Design and Implementation of a Reliable Group Communication Toolkit
for Java ”. Technical report, Department of Computer Science, Cornell University,
September 1998.

[BAU 00] FRANÇOISE BAUDE, DENIS CAROMEL, FABRICE HUET, and JULIEN VAYSSIÈRE.
“ Communicating Mobile Active Objects in Java ”. In Proceedings of the 8th Interna-
tional Conference on High Performance Computing and Networking Europe, volume
1823 de LNCS, pages 633–643, Amsterdam, The Netherlands, May 2000. Springer
Verlag.

[BAU 02] FRANÇOISE BAUDE, DENIS CAROMEL, FABRICE HUET, LIONEL MESTRE, and
JULIEN VAYSSIÈRE. “ Interactive and Descriptor-Based Deployment of Object-
Oriented Grid Applications ”. In 11th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC), pages 93–102, Edinburgh, Scotland, July
2002. IEEE Computer Society.

[BAU 03] FRANÇOISE BAUDE, DENIS CAROMEL, and MATTHIEU MOREL. “ From Distributed
Objects to Hierarchical Grid Components ”. In Proceedings of the International Sym-
posium on Distributed Objects and Applications, Catania, Italy, November 2003.
Springer Verlag, Lecture Notes in Computer Science, LNCS.

[BAU 04] FRANÇOISE BAUDE, DENIS CAROMEL, CHRISTIAN DELBÉ, and LUDOVIC HENRIO.
“ A Fault Tolerance Protocol for ASP calculus: Design and Proof ”. Technical report
RR-5246, INRIA, Sophia-Antipolis, France, June 2004.

[BAU 05] FRANÇOISE BAUDE, DENIS CAROMEL, CHRISTIAN DELBÉ, and LUDOVIC HENRIO.
“ A Hybrid Message Logging-CIC Protocol for Constrained Checkpointability ”. In
Proceedings of EuroPar, Lisboa, Portugal, August 2005.

BIBLIOGRAPHY 129

[BER 04] FELIPE BERTRAND, and RANDALL BRAMLEY. “ DCA: A Distributed CCA framework
based on MPI ”. In 9th International Workshop on High-Level Parallel Programming
Models and Supportive Environments at IPDPS, Santa Fe, New Mexico, USA, April
2004. IEEE Computer Society.

[BIR 84] ANDREW D. BIRELL, and BRUCE J. NELSON. Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems, 2(1):39–59, February 1984.

[BIR 85] KENNETH. P. BIRMAN, AMR EL ABBADI, WALLY DIETRICH, THOMAS A. JOSEPH,
and THOMAS RAEUCHLE. “ An Overview of the Isis Project ”. In IEEE Distributed
Processing Technical Committee Newsletter, January 1985.

[BIR 91] KENNETH P. BIRMAN, ANDRÉ SCHIPER, and PAT STEPHENSON. Lightweigt causal
and atomic group multicast. ACM Trans. Comput. Syst., 9(3):272–314, 1991.

[BIR 93a] KENNETH P. BIRMAN. “ A Response to Cheriton and Skeen’s Criticism of Causally
and Totally Ordered Communications ”. Technical report, Department of Computer
Science, Cornell University, Ithaca, New York, USA, 1993.

[BIR 93b] KENNETH P. BIRMAN. “ The Process Group Approach to Reliable Distributed Com-
puting ”. In Communications of the ACM, vol 36, pages 37–53, 1993.

[BIR 94] KENNETH P. BIRMAN. “ A Response to Cheriton and Skeen’s Criticism of Causally
and Totally Order Communications ”. In Operating System Review, 15th ACM Sym-
posium on Operating System Principles, volume 28. ACM Press, January 1994.

[BRA 93] ROBERT BRAUDES, and STEVE ZABELE. “ Requirements for Multicast Protocols (RFC
1458) ”. Technical report, IETF Network Working Group, May 1993.

[BRU 02] ERIC BRUNETON, THIERRY COUPAYE, and JEAN-BERNARD STEFANI. “ Recursive
and Dynamic Software Composition with Sharing ”. In Proceedings of the Seventh
International Workshop on Component-Oriented Programming at ECOOP, Malaga,
Spain, June 2002.

[BUR 94] GREG BURNS, RAJA DAOUD, and JAMES VAIGL. “ LAM: An Open Cluster Envi-
ronment for MPI ”. In Proceedings of Supercomputing Symposium, pages 379–386,
Washington D.C., USA, November 1994.

[BUR 99] M. BURKE, J. CHOI, S. FINK, D. GROVE, M. HIND, V. SARKAR, M. SERRANO,
V. SREEDHAR, H. SRINIVASAN, and J. WHALEY. “ The Jalapeño Dynamic Optimiz-
ing Compiler for Java ”. In Proceedings of JavaGrande/ISCOPE Conference, pages
129–141, San Francisco, California, USA, June 1999. ACM Press.

[BUS 96] FRANK BUSCHMANN, REGINE MEUNIER, HANS ROHNERT, PETER SOMMERLAD,
MICHAEL STAL, PETER SOMMERLAD, and MICHAEL STAL. “ Pattern-Oriented Soft-
ware Architecture: A System of Patterns ”, volume 1. John Wiley and sons, August
1996. ISBN 0471958697.

[CAR 93] DENIS CAROMEL. Towards a Method of Object-Oriented Concurrent Programming.
Communications of the ACM, 36(9):90–102, September 1993.

[CAR 96] DENIS CAROMEL, FABRICE BELLONCLE, and YVES ROUDIER. “ The C++// Lan-
guage ”. In Parallel Programming using C++, pages 257–296. MIT Press, 1996. ISBN
0-262-73118-5.

[CAR 98a] DENIS CAROMEL, WILFRIED KLAUSER, and JULIEN VAYSSIÈRE. Towards Seam-
less Computing and Metacomputing in Java. Concurrency: Practice and Experience,
10(11–13):1043–1061, 1998.

[CAR 98b] BRYAN CARPENTER, and AL. “ MPI for Java - Position Document and Draft API
Specification ”. Technical report JGF-TR-03, Java Grande Forum, November 1998.

130 BIBLIOGRAPHY

[CAR 99] BRYAN CARPENTER, GEOFFREY FOX, SONG HOON KO, and SANG LIM. mpiJava 1.2:
API Specification, October 1999.
http://www.npac.syr.edu/projects/pcrc/mpiJava/mpiJava.html.

[CAR 00] BRYAN CARPENTER, VLADIMIR GETOV, GLENN JUDD, ANTHONY SKJELLUM, and
GEOFFREY FOX. MPJ: MPI-like message passing for Java. Concurrency: Practice
and Experience, 12(11):1019–1038, September 2000.

[CAR 03] DENIS CAROMEL, and ALEXANDRE GENOUD. “ Non-Functional Exceptions for Dis-
tributed and Mobile Objects ”. In Proceedings of the Workshop on Exception Handling
in Object Oriented Systems at ECOOP, Darmstadt, Germany, July 2003.

[CAR 04] DENIS CAROMEL, LUDOVIC HENRIO, and BERNARD SERPETTE. “ Asynchronous and
Deterministic Objects ”. In Proceedings of the 31st ACM Symposium on Principles of
Programming Languages, pages 123–134, Venice, Italy, January 2004. ACM Press.
ISBN 1-58113-729-X.

[CAR 05a] DENIS CAROMEL, and GUILLAUME CHAZARAIN. “ Robust Exception Handling in an
Asynchronous Environment ”. In Proceedings of the Workshop on Exception Handling
in Object Oriented Systems at ECOOP, Glasgow, United Kingdom, July 2005.

[CAR 05b] DENIS CAROMEL, and LUDOVIC HENRIO. “ A Theory of Distributed Objects ”.
Springer, 2005. ISBN 3-540-20866-6.

[CHE 85] DAVID R. CHERITON, and WILLY ZWAENEPOEL. Distributed Process Groups in the
V Distributed System. ACM Trans on Computer Systems, 3(2):77–107, 1985.

[CHE 94] DAVID R. CHERITON, and DALE SKEEN. “ Understanding the Limitations of Totally
Order Communications ”. In Operating System Review, 14th ACM Symposium on
Operating System Principles, volume 27, Asheville, North Carolina, USA, 1994. ACM
Press.

[CHI 98] DAH-MING CHIU, STEPHEN HURST, MIRIAM KADANSKY, and JOSEPH WESLEY.
“ TRAM : A tree-based reliable multicast protocol ”. Technical report, Sun Microsys-
tems, Palo Alto, California, USA, July 1998. TR-98-66.

[COO 94] ROBERT COOPER. “ Experience with Causally and Totally Ordered Communication
Support: a Cautionary Tale ”. In Operating System Review, 15th ACM Symposium on
Operating System Principles, volume 28. ACM Press, January 1994.

[CZA 00] KRZYSZTOF CZARNECKI, ULRICH EISENECKER, and AL. “ Generic Programming ”,
volume 1766 of LNCS, chapter Generative Programming and Active Libraries (Ex-
tended Abstract), pages 25–39. Springer Verlag, 2000.

[DAM 03] KOSTADIN DAMEVSKI, and STEVEN PARKER. “ Parallel Remote Method Invocation
and M-by-N Data Redistribution ”. In 4th Los Alamos Computer Science Institute
Symposium, October 2003.

[DEE 89] STEPHEN E. DEERING. “ Host Extentions for IP Multicasting (RFC 1112) ”. Technical
report, IETF Network Working Group, Stanford University, California, USA, August
1989.

[DEN 03] ALEXANDRE DENIS, CHRISTIAN PÉREZ, THIERRY PRIOL, and ANDRÉ RIBES.
“ Padico: A Component-Based Software Infrastructure for Grid Computing ”. In Pro-
ceedings of the 17th International Parallel and Distributed Processing Symposium
(IPDPS), Nice, France, April 2003. IEEE Computer Society.

[DEN 04] ALEXANDRE DENIS, CHRISTIAN PÉREZ, THIERRY PRIOL, and ANDRÉ RIBES.
“ Bringing High Performance to the CORBA Component Model ”. In SIAM Confer-
ence on Parallel Processing for Scientific Computing, San Francisco, California, USA,
February 2004.

BIBLIOGRAPHY 131

[FEL 96] PASCAL FELBER, BENOÎT GARBINATO, and RACHID GUERRAOUI. “ The Design of a
CORBA Group Communication Service ”. In Proceedings of the 15th Symposium on
Reliable Distributed Systems (SRDS-15), Niagara-on-the-Lake, Canada, 1996.

[FEL 97] PASCAL FELBER, RACHID GUERRAOUI, and ANDRÉ SCHIPER. “ A CORBA Object
Group Service ”. Technical report, EPFL, Computer Science Department, 1997.

[FEL 98a] PASCAL FELBER. “ The CORBA Object Group Service: A Service Approach to Object
Groups in CORBA ”. PhD thesis, École Polytechnique Fédérale de Lausanne (Swiss
Federal Institute of Technology), Lausanne, Switzerland, 1998.

[FEL 98b] PASCAL FELBER, RACHID GUERRAOUI, and ANDRÉ SCHIPER. The Implementation
of a CORBA Object Group Service. Theory and Practice of Object Systems, 4(2):93–
105, 1998.

[FEL 02] VIOLETA FELEA, and BERNARD TOURSEL. “ Methodology for Java Distributed and
Parallel Programming Using Distributed Collections ”. In Proceedings of the Work-
shop on Java for Parallel and Distributed Computing at IPDPS, Fort Lauderdale,
Florida, USA, April 2002.

[FOR 95] XTP FORUM. “ Xpress Transport Protocol Specifications: XTP Revision 4.0 ”. Techni-
cal report, XTP Forum, Santa Barbara, California, USA, May 1995.

[FOS 02] IAN FOSTER. What is the Grid? A Three Point Checklist. GridToday, July 2002.

[FOX 02] GEOFFREY FOX, MARLON PIERCE, DENNIS GANNON, and MARY THOMAS.
“ Overview of Grid Computing Environments ”. Informational, Global Grid Forum,
2002.

[FRA] The Fractal Project. http://fractal.objectweb.org.

[FRE 01] JAMES FREY, TODD TANNENBAUM, MIRON LIVNY, IAN FOSTER, and STEVEN
TUECKE. “ Condor-G: A Computation Management Agent for Multi-Institutional
Grids ”. In Proceedings of the 10th International Symposium on High Performance
Distributed Computing (HPDC-10’01), pages 55–63, San Francisco, California, USA,
August 2001. IEEE Computer Society.

[FRU 03] MICHAEL FRUMKIN, MATTHEW SCHULTZ, HAOQIANG JIN, and JERRY YAN.
“ Performance and Scalability of the NAS Parallel Benchmarks in Java ”. In JPDC,
Workshop on Java for Parallel and Distributed Computing at IPDPS, Nice, France,
April 2003.

[GDX] Grid eXplorer. http://www.lri.fr/˜fci/GdX/.

[GEI 94] AL GEIST, ADAM BEGUELIN, JACK J. DONGARRA, WEICHENG JIANG, ROBERT
MANCHEK, and VAIDY SUNDERAM. “ PVM: Parallel Virtual Machine - A Users’ Guide
and Tutorial for Networked Parallel Computing ”. MIT Press, 1994.

[GET 99] VLADIMIR GETOV, PAUL GRAY, and VAIDY SUNDERAM. “ MPI and Java-MPI: Con-
trasts and Comparisons of Low-Level Communication Performance ”. In Proceed-
ings of the 1999 ACM/IEEE conference on Supercomputing, Portland, Oregon, USA,
November 1999.

[GET 01] VLADIMIR GETOV, GREGOR VON LASZEWSKI, MICHAEL PHILIPPSEN, and IAN FOS-
TER. Multiparadigm Communications in Java for Grid Computing. Communications
of the ACM, 44(10):118–125, October 2001.

[GLO] The Globus Project. http://www.globus.org.

[GRO 96] WILLIAM GROPP, EWING LUSK, NATHAN DOSS, and ANTHONY SKJELLUM. A High-
Performance, Portable Implementation of the MPI Message Passing Interface Stan-
dard. Parallel Computing, 22(6):789–828, September 1996.

132 BIBLIOGRAPHY

[HEN 03] BRIAN J. HENZ, and DALE R. SHIRES. “ An Object-Oriented Programming Frame-
work for Parallel Finite Element Analysis with Application: Liquid Composite Mold-
ing ”. In PDSECA, Workshop on Parallel and Distributed Scientific and Engineering
Computing with Applications at IPDPS, Nice, France, April 2003.

[HUE 02] FABRICE HUET. “ Objets mobiles : conception d’un middleware et évaluation de la
communication ”. PhD thesis, Université de Nice Sophia-Antipolis, Nice, France, De-
cember 2002.

[HUE 04] FABRICE HUET, DENIS CAROMEL, and HENRI E. BAL. “ A High Performance Java
Middleware with a Real Application ”. In Proceedings of the Supercomputing confer-
ence, Pittsburgh, Pensylvania, USA, November 2004.

[HUI 96] CHRISTIAN HUITEMA. “ IPv6: The New Internet Protocol ”. Prentice Hall, 1996. ISBN
0-13-241936-X.

[ION 94] IONA, and ISIS. “ An introduction to orbix+isis ”. Technical report, IONA Technolo-
gies Ltd. and Isis Distributed Systems, Inc., 1994.

[JEA 03] KARL JEACLE, and JON CROWCROFT. “ Reliable High-Speed Grid Data Delivery
Using IP Multicast ”. In Proceedings of the UK e-Science All-Hands Meeting, Notting-
ham, United Kingdom, September 2003.

[JGF] Java Grande Forum. http://www.javagrande.org.

[JUD 98] GLENN JUDD, MARK CLEMENT, and QUINN SNELL. DOGMA: Distributed Object
Group Metacomputing Architecture. Concurrency: Practice and Experience, 10(11-
13):977–983, September 1998.

[KAR 99] GEORGE KARYPIS, and VIPIN KUMAR. Parallel Multilevel k-way Partition Scheme
for Irregular Graphs. SIAM Review, 41(2):278–300, 1999.

[KEA 01] KATARZINA KEAHEY, PATRICIA FASEL, and SUSAN MNISZEWSKI. “ PAWS: Collec-
tive Interactions and Data Transfers ”. In Proceedings of 10th International Sympo-
sium on High Performance Distributed Computing, San Francisco, California, USA,
August 2001.

[KIC 91] GREGOR KICZALES, JIM DES RIVIÈRES, and DANIEL G. BOBROW. “ The Art of the
Metaobject Protocol ”. MIT Press, July 1991. ISBN 0262610744.

[KLE 96] JÜRGEN KLEINÖDER, and MICHAEL GOLM. MetaJava: An Efficient Run-Time Meta
Architecture for Java. International Workshop on Object Orientations in Operating
Systems (IWOOOS), 1996.

[LAM 78] LESLIE LAMPORT. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, July 1978.

[LAN 96] STÉPHANE LANTERI. Parallel Solutions of Compressible Flows Using Overlapping
and Non-Overlapping Mesh Partitioning Strategies. Parallel Comput., 22:943–968,
1996.

[LI 96] JIN LI. A Poly-Algorithm for Parallel Dense Matrix Multiplication on Two-
Dimensional Process Grid Topologies. Master’s thesis, Falculty of Mississippi State
University, Mississippi, USA, December 1996.

[LI 01] MAOZHEN LI, OMER F. RANA, and DAVID W. WALKER. Wrapping MPI-based Legacy
Codes as Java/CORBA components. Future Generation Computer Systems, October
2001.

[LIN 96] JOHN C. LIN, and SANJOY PAUL. “ RMTP: A Reliable Multicast Transport Protocol ”.
In INFOCOM, pages 1414–1424, San Francisco, California,USA, March 1996.

BIBLIOGRAPHY 133

[MAA 00] JASON MAASSEN, THILO KIELMANN, and HENRI E. BAL. “ Efficient Replicated
Method Invocation in Java ”. In Java Grande, pages 88–96, San Francisco, California,
USA, June 2000. ACM Press.

[MAA 01] JASON MAASSEN, ROB VAN NIEUWPOORT, RONALD VELDEMA, HENRI E. BAL,
THILO KIELMANN, CERIEL J. H. JACOBS, and RUTGER F. H. HOFMAN. Efficient
Java RMI for parallel programming. Transactions on Programming Languages and
Systems, 23(6):747–775, 2001.

[MAA 02] JASON MAASSEN, THILO KIELMANN, and HENRI E. BAL. “ GMI: Flexible and Ef-
ficient Group Method Invocation for Parallel Programming ”. In Sixth Workshop
on Languages, Compilers, and Run-time Systems for Scalable Computers (LCR’02),
Washington D.C., USA, March 2002.

[MAA 03] JASON MAASSEN. “ Method Invocation Based Communication Models for Parallel
Programming in Java ”. PhD thesis, Vrije Universiteit, Amsterdam, The Nether-
lands, June 2003.

[MAF 95] SILVANO MAFFEIS. “ Run-Time Support for Object-Oriented Distributed Program-
ming ”. PhD thesis, Fakultat der Universitat Zurich, 1995.

[MAF 96] SILVANO MAFFEIS. “ The Object Group Design Pattern ”. In Proceedings of the Second
USENIX Conference on Object-Oriented Technologies, Toronto, Canada, June 1996.

[MAI 02] MOUFIDA MAIMOUR, and CONGDUC PHAM. “ An Active Reliable Multicast Frame-
work for the Grids ”. In Proceedings of the International Conference on Computational
Science, pages 588–597, Amsterdam, The Netherlands, April 2002.

[MAN 98] ALLISON MANKIN, ALLYN ROMANOW, SCOTT BRADNER, and VERN PAXSON.
“ Criteria for Evaluating Reliable Multicast Transport and Application Protocols
(RFC 2357) ”. Technical report, IETF Network Working Group, June 1998.

[MAY 02] ANTHONY MAYER, STEPHEN MC GOUGH, MURTAZA GULAMALI, LAURIE YOUNG,
JIM STANTON, STEVEN NEWHOUSE, and JOHN DARLINGTON. “ Meaning and Be-
haviour in Grid Oriented Components ”. In 3rd International Workshop on Grid Com-
puting at Grid2002, pages 100–111, Baltimore, Maryland, USA, November 2002. vol-
ume 2536 of LNCS.

[MIN 97] SAVA MINTCHEV, and VLADIMIR GETOV. “ Towards portable message passing in
Java: Binding MPI ”. In Recent Advances in PVM and MPI, number 1332 in LNCS.
Springer Verlag, 1997.

[MOS 98] LOUISE E. MOSER, MICHAEL MELLIAR-SMITH, and PRIYA NARASIMHAN. Consis-
tent Object Replication in the Eternal System. Theory and Practice of Object Systems,
4(2):81–92, April 1998.

[MPI94] “ MPI: A Message-Passing Interface Standard ”. Technical report, MPI Forum, Uni-
versity of Tennessee, Knoxville, Tennessee, June 1994.

[MPI97] “ MPI-2: Extensions to the Message-Passing Interface ”. Technical report, MPI Fo-
rum, University of Tennessee, Knoxville, Tennessee, August 1997.

[NAT 02] ANAND NATRAJAN, ANH NGUYEN-TUONG, MARTY A. HUMPHREY, and ANDREW S.
GRIMSHAW. The Legion Grid Portal. Concurrency and Computation: Practice and
Experience, 14(13-15):1365–1394, 2002.

[NEL 01] ARNOLD NELISSE, THILO KIELMANN, HENRI E. BAL, and JASON MAASSEN.
“ Object-based Collective Communication in Java ”. In Joint ACM Java Grande - IS-
COPE Conference, pages 11–20, Palo Alto, California, USA, June 2001. ACM Press.
ISBN 1-58113-359-6.

134 BIBLIOGRAPHY

[NET] NetSolve. http://icl.cs.utk.edu/netsolve.

[NIN] Ninf-G. http://ninf.apgrid.org.

[OMG01] Object Management Group. “ Unreliable Multicast Inter-ORB Protocol ”, October
2001. OMG Specifications.

[OMG04] Object Management Group. “ Event Service Specification (version 1.2) ”, October 2004.
OMG Specifications.

[PAU 97] SANJOY PAUL, KRISHAN K. SABNANI, JOHN C. H. LIN, and SUPRATIK BHAT-
TACHARYYA. Reliable multicast transport protocol (RMTP). IEEE Journal of Selected
Areas in Communications, 15(3):407–421, 1997.

[PHI 00] MICHAEL PHILIPPSEN, BERNHARD HAUMACHER, and CHRISTIAN NESTER. More
Efficient Serialization and RMI for Java. Concurrency: Practice and Experience,
12(7):495–518, May 2000.

[PIP 02] SERGE PIPERNO, MALIKA REMAKI, and LOULA FEZOUI. A Nondiffusive Finite
Volume Scheme for the Three-Dimensional Maxwell’s Equations on Unstructured
Meshes. SIAM J. Numeri. Anal., 39(6):2089–2108, 2002.

[PRO] ProActive. http://www-sop.inria.fr/oasis/ProActive.

[REN 93] ROBBERT VAN RENESSE, KENNETH P. BIRMAN, ROBERT COOPER, BRABDFORD
GLADE, and PATRICK STEPHENSON. The Horus system: Reliable Distributed Com-
puting with the Isis Toolkit. IEEE Computer Society Press, September 1993.

[REN 94] ROBBERT VAN RENESSE, TAKAKO M. HICKEY, and KENNETH P. BIRMAN. “ Design
and performance of Horus: A lightweight group communications system ”. Technical
report, Department of Computer Science, Cornell University, Ithaca, New York, USA,
1994. TR94-1442.

[REN 96] ROBBERT VAN RENESSE, KENNETH P. BIRMAN, and SILVANO MAFFEIS. Horus: A
flexible group communication system. Communications of the ACM, 39(4), 1996.

[ROS 98] PHIL ROSENZWEIG, MIRIAM KADANSKY, and STEVE HANNA. “ The Java Reliable
Multicast Service: A Reliable Multicast Library ”. Technical report, Sun Microsys-
tems, Palo Alto, California, USA, September 1998. TR-98-68.

[ROZ 92] M. ROZIER, V. ABROSSIMOV, F. ARMAND, I. BOULE, M. GIEN, M. GUILLE-
MONT, F. HERRMAN, C. KAISER, S. LANGLOIS, P. LÉONARD, and W. NEUHAUSER.
“ Overview of the Chorus Distributed Operating System ”. In Workshop on Micro-
Kernels and Other Kernel Architectures, pages 39–70, Seattle, Washington, USA,
1992.

[SAN 03] MICHELE DI SANTO, NADIA RANALDO, and EUGENIO ZIMEO. “ A Broker Architec-
ture for Object-Oriented Master/Slave Computing in a Hierarchical Grid System ”. In
Proceedings of Parallel Computing, Dresden, Germany, September 2003.

[SAU 03] STEVEN SAUNDERS, and LAURENCE RAUCHWERGER. “ ARMI: An Adaptive, Plat-
form Independant Communication Library ”. In Proceedings of the ninth ACM SIG-
PLAN symposium on Principles and Practice of Parallel Programming (PPoPP), pages
230 – 241, San Diego, California, USA, June 2003. ISBN 1-58113-588-2.

[SET] SETI@home: the Search for ExtraTerrestrial Intelligence.
http://setiathome.ssl.berkeley.edu.

[SHI 01] MATTHEW S. SHIELDS, OMER F. RANA, and DAVID W. WALKER. “ A Collabora-
tive Code Development Environment for Computational Electro-Magnetics ”. In IFIP
TC2/WG2.5 Working Conference on the Architecture of Scientific Software, pages 119–
141. Kluwer Academic Publishers, 2001.

BIBLIOGRAPHY 135

[SQU 96] JEFFREY M. SQUYRES, BRIAN C. MCCANDLESS, and ANDREW LUMSDAINE. “ Object
Oriented MPI: A Class Library for the Message Passing Interface ”. In Proceedings of
the POOMA conference, Santa Fe, New Mexico, USA, February 1996.

[SUN98] Sun Microsystems. “ Java Remote Method Invocation Specication ”, October 1998.
ftp://ftp.javasoft.com/docs/jdk1.2/rmi-spec-JDK1.2.pdf.

[TAM 98] MILIND TAMBE, JAFAR ADIBI, YASSER ALONAIZON, ALI ERDEM, GAL A. KAMINKA,
STACY C. MARSELLA, ION MUSLEA, and MARCELLO TALLIS. “ ISIS: Using an ex-
plicit model of teamwork in RoboCup’97 ”. In RoboCup’97: Proceedings of the first
robot world cup competition and conferences. Springer Verlag: Heidelberg, Germany,
1998.

[TAN 90] ANDREW S. TANENBAUM, ROBBERT VAN RENESSE, HANS VAN STAVEREN, GRE-
GORY J. SHARP, SAPE J. MULLENDER, JACK JANSEN, and GUIDO VAN ROSSUM.
Experiences with the Amoeba Distributed Operating System. Communications of the
ACM, 33(12):46–63, December 1990.

[TAN 94] ANDREW S. TANENBAUM. “ Distributed Operating Systems ”. Pearson Education,
1994. ISBN 0132199084.

[UNI] Unicore. http://unicore.sourceforge.net.

[VEL 98] TODD L. VELDHUIZEN, and DENNIS GANNON. “ Active Libraries: Rethinking the
roles of compilers and libraries ”. In Proceedings of the SIAM Workshop on Object
Oriented Methods for Inter-operable Scientific and Engineering Computing (OO’98),
Philadelphia, Pennsylvania, USA, 1998.

TYPED GROUPS FOR THE GRID
Abstract

Group communication is a crucial feature for high-performance and Grid computing. While
previous works and libraries proposed such a characteristic, the use of groups imposed specific
constraints on programmers, for instance the use of dedicated interfaces to trigger group commu-
nications; this thesis presents a more flexible mechanism. More specifically, it proposes a scheme
where, given a Java class, one can initiate group communications using the standard public
methods of the class together with the classical dot notation; in that way, group communications
remain typed.

Furthermore, groups are automatically constructed to handle the result of collective opera-
tions, providing an elegant and effective way to transparently gather operations. This group
communication system is based on a Meta-Object Protocol. This system allows an object notation
and a dynamic management of the results (ex: B groupB = groupA.foo();). This flexibility
also allows to handle results that are groups of remotely accessible objects, and to use a group as
a means to dispatch different parameters to different group members. In addition, hierarchical
groups can be easily and dynamically constructed; an important feature to achieve the use of sev-
eral clusters in Grid computing. Performance measures and a numerical software demonstrate
the viability of the approach.

Last works led to an Object-Oriented SPMD (Single Program Multiple Data) programming
style, based on the typed group communication, which allows extended numerical programming
abilities while keeping all the benefit of the typed approach. For this, the objects groups sup-
porting the distributed computation can also be further organized according to a topology, i.e.
adding the notion of an ID for each member in the SPMD group and the way to easily reference
its neighbors. Collective operations were revisited and extended with barrier synchronization
such as providing a complete Object-Oriented SPMD model.

Keywords : Group Communication, Object-oriented programming, Middleware.

GROUPES TYPÉS POUR LA GRILLE
Résumé

La communication de groupe est un dispositif crucial pour le calcul haute performance no-
tamment sur les grilles de calculs. Tandis que les bibliothèques issues des travaux antérieurs
imposent des contraintes spécifiques aux programmeurs (par exemple l’utilisation d’interfaces
consacrées) pour effectuer des communications de groupes, cette thèse présente un mécanisme
qui se veut plus flexible. En particulier, nous proposons un modèle, où, étant donnée une classe
Java, les communications de groupes sont déclanchées par appel aux méthodes publiques de la
classe en conservant la notation pointée; de cette façon les communications et les groupes devi-
ennent typés.

De plus, des groupes sont automatiquement construits pour collecter les résultats d’une opéra-
tion collective. Ce système est basé sur un Protocole à Méta-Objets. Cela permet une notation
objet et une gestion dynamique des résultats (ex: B groupB = groupA.foo();). Cette flexi-
bilité permet également de gérer les résultats qui sont eux mêmes des groupes d’objets acces-
sibles à distance, et d’utiliser un groupe comme paramètre d’appel de méthode pour que ses
membres soient distribués entre les membres d’un groupe d’appel. De plus, des groupes hiérar-
chiques peuvent être facilement et dynamiquement construits : une importante fonctionnalité
de déploiement dans un contexte de grilles. Des mesures de performances et une application
numérique démontrent la viabilité de l’approche.

Nos derniers travaux mènent à un style de programmation SPMD (Single Program Multi-
ple Data) orienté-objet basé sur les communications de groupes typés et qui permet un contrôle
étendu sur des applications de calculs intensifs tout en préservant les bénéfices d’une approche
typée. Les groupes d’objets soutenant le calcul distribué sont organisés selon une topologie, c’est
à dire l’ajout de la notion d’une identification pour chaque membre dans le groupe SPMD et la
possibilité de référencer facilement ses voisins. Les opérations collectives ont été revisitées et
étendues par des barrières de synchronisation de façon à fournir un modèle complet de program-
mation SPMD orienté-objet.

Mots-clefs : Communication de groupe, Programmation orientée-objet, Intergiciel.

