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and

Dottore dell’Università di Firenze
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Università degli studi di Firenze, Dipartimento di Fisica
Polo Scientifico di Sesto Fiorentino
Via G. Sansone 1 50019 Sesto Fiorentino - Firenze, Italy

Laboratoire Kastler-Brossel (LKB)
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Figura 1: Exlibris: Fools On A Cart And A Boatload Of Fools The fools are setting out
for their destination, the land of fools. They call out har noch i.e. follow us! and All aboard,
Brothers: it’s leaving, it’s leaving [1]. (see also the notes at the end of the thesis)





Abstract

Nowadays, propagation of light in complex dielectric nano-materials is a rich and fasci-
nating area of research, both for its fundamental implications and for its practical tech-
nological impact. In this thesis we investigate the effects of interference in quasi-ordered
photonic systems.

Light in random dielectric media is described through a random walk from scat-
terer to scatterer. Interference effects do survive the multiple scattering and give rise
to fascinating phenomena. In the strong scattering regime light could even become
localized and propagation is no longer possible. In ordered media, the periodicity leads
to cooperative scattering and interference. In this case the transport becomes strong-
ly frequency-dependent; it can be inhibited (destructive interference) or substantially
improved (constructive interference).

Whereas the knowledge on the propagation of light waves in completely ordered
and disordered structures is now rapidly increasing, little is known about the behavior
of optical waves in the huge intermediate regime between complete order and disorder.

Quasi-ordered systems show breaking of rotational or translational symmetry and
exhibit novel and unusual forms of light transport. Anisotropic scattering random
media and nematic liquid crystals, or specially tailored photonic crystals and Fibonacci
quasi-crystals are examples of quasi-ordered systems that we will investigate in this
thesis.

• What would happen if a preferential scattering direction or a preferential polariz-
ability axis were to be introduced in an isotropic random scattering system?

• How would light propagation be in a periodic dielectric media if a linear optical
potential was superimposed to the crystalline structure?

In this thesis we will try to address these questions, based on theoretical arguments,
numerical simulations and experimental evidences.
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Riassunto

Al giorno d’oggi, la propagazione della luce in nano-materiali dielettrici complessi
è un soggetto di ricerca ricco ed affascinante. In questa tesi studiamo gli effetti
dell’interferenza della luce nei sistemi fotonici quasi-ordinati.

La luce nei mezzi dielettrici disordinati è descritta tramite un modello di cammino
casuale da diffusore a diffusore: gli effetti di interferenza sopravvivono la diffusione
multipla e producono fenomeni interessanti ed inaspettati. Nelle strutture che dif-
fondono molto fortemente, la luce potrebbe persino essere localizzata e il trasporto
inibito. In quelle ordinate, la periodicità della struttura induce una forma di diffusione
e d’interferenza cooperativa: il trasporto diventa fortemente dipendente dalla frequen-
za, può essere inibito (interferenza distruttiva) o favorito sostanzialmente (interferenza
costruttiva).

Mentre la nostra comprensione della propagazione di luce in strutture completa-
mente ordinate o disordinate sta, negli ultimi anni, crescendo considerevolmente, poco
è conosciuto circa il comportamento delle onde luminose nell’enorme regime intermedio
fra ordine e disordine totali. I sistemi quasi-ordinati mostrano la rottura della simmetria
di rotazione o di traslazione e forme nuove e non convenzionali di trasporto della luce.
Da un lato i mezzi disordinati che presentano diffusione anisotropa ed i cristalli liqui-
di nematici, e dall’altro i cristalli fotonici appositamente modificati ed i quasi-cristalli
fotonici di Fibonacci sono esempi di sistemi quasi-ordinati che studieremo in questa
tesi.

• Quali conseguenze potrebbe portare l’introduzione di una direzione preferenziale
di diffusione o di un asse preferenziale di polarizabilità, in un sistema disordinato
a diffusione isotropa?

• Come potrebbe essere alterata la propagazione della luce in una struttura periodica
se una un potenziale ottico lineare fosse aggiunto alla struttura cristallina?

In questa tesi proveremo a rispondere a entrambe queste domande, con argomen-
tazioni teoriche, simulazioni numeriche e prove sperimentali.
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Résumé

Aujourd’hui, la propagation de la lumière dans les nano-matériaux diélectriques com-
plexes est un sujet de recherche riche et fascinant, tant pour ses implications fonda-
mentales que pour son impact technologique. Dans cette thèse, nous étudions les effets
d’interférence de la lumière dans les systèmes photoniques quasi-ordonnés.

Dans des milieux diélectriques aléatoires, on peut décrire le mouvement des pho-
tons mutiplement diffusés par une marche aléatoire de diffuseur en diffuseur: la plu-
part des effets d’interférence se moyennent alors à zéro, mais certains survivent quand
même au désordre et induisent des phénomènes non-triviaux. Dans des milieux qui
diffusent très fortement, la lumière pourrait même devenir localisée et aucun transport
ne serait possible. Dans les milieux ordonnés, la périodicité conduit à des lois de dis-
persion inhabituelles où les effect collectifs d’interférence dominent: le transport est
fortement dépendant de la fréquence, il peut être sensiblement augmenté (interférences
constructives) ou complètement inhibé (interférences destructives).

Notre compréhension de la propagation des ondes lumineuses dans les milieux or-
donnés et désordonnés augmente rapidement, mais le comportement dans le régime
intermédiaire entre les deux extrèmes – ordre parfait et désordre complet – est mal
compris. Les systèmes quasi-ordonnés brisent la symétrie de rotation ou de translation
et présentent des formes nouvelles et non-conventionnelles de transport de la lumière.
Les milieux aléatoires qui diffusent anisotropiquement et les cristaux liquides néma-
tiques, les formes spéciales de cristaux photoniques et les quasi-cristaux photoniques de
Fibonacci sont des exemples de systèmes quasi-ordonnés que nous étudions dans cette
thèse.

• Que se passe-t-il si une direction préférentielle de diffusion ou un axe préférentiel
de polarisabilité est présent dans un milieu aléatoire ?

• Comment la propagation de la lumière est elle modifiée dans une structure péri-
odique si un potential optique est superposé à la structure cristalline ?

Dans cette thèse nous essayerons de répondre à ces questions, avec des arguments
théoriques, des simulations numériques et des résultats expérimentaux.
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Summary

This thesis is the result of a three-year international doctorate on Atomic and Molecular
Spectroscopy and Quantum Optics, done in collaboration between LENS, the European
Laboratory for Non-Linear Spectroscopy, University of Florence, and the University of
Paris VI.

I have carried on the first two years of experimental research at LENS, European
Laboratory for Non-Linear Spectroscopy, in Firenze, under the supervision of Diederik
Wiersma. In the last year I have completed a theoretical and computational project
at Laboratoire Kastler-Brossel, École Normale Supérieure et Université Pierre et Marie
Curie, in Paris, under the supervision of Dominique Delande.

The experiment for the measurement of the anisotropic weak localization from or-
dered nematics has been done together with Sushil Mujumdar, at present in the Univer-
sity of Alberta (Canada), and in collaboration with Arjon G. Yodh and Cecil Cheung,
from the Department of Physics and Astronomy of the University of Pennsylvania,
Philadelphia (USA).

The measurement of the optical analogue of electronic Bloch oscillations has been
done together with Paola Costantino from the University of Florence (Italy), and in
collaborations with Lorenzo Pavesi and Mher Ghulinyan from the University of Trento
(Italy), and Claudio J. Oton from the Department of Fundamental Physics, University
of La Laguna, Tenerife (Spain).

During these three years I have been affiliated to INFM, the Istituto Nazionale di
Fisica della Materia, which kindly supported my work.
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Chapter 1
Introduction to light transport in complex

dielectrics

In the last decades a new frontier has emerged, with the goal of understanding the role
of light interference within light propagation and of exploiting it to control and mould
the flow of light. In the last decades, this fundamental speculation has met the growing
interest of the photonic nano-material world. Recent technological developments make
possible to design and assembly novel photonic structures, and the mesoscopic theories
of light are powerful tools to interpret, understand and engineer them. Nowadays,
propagation of light in complex dielectric nano-materials is a rich and fascinating area
of research and one of the fastest growing subject in modern physics.

Figure 1.1: a) Light passing through a diamond, which is an homogenous dielectric. b) Exam-
ples of complex dielectrics. On the left, diffusion of light in a turbid liquid (courtesy of Francesco
lo Bue). On the right, light reflected from a photonic crystal, titania inverse opal (courtesy of
Willem Vos, from [2]).

With complex dielectrics, we intend dielectric structures with an index of refraction
that has variations on a length scale that is roughly comparable to the incident wave-
length. Such structures strongly scatter light. An homogeneous, non-absorbing medium
is transparent and ordinary refraction and reflections can be observed. A sample with
random dielectric constant is opaque, and typically white, when absorption is absent,
while a periodically modulated one is iridescent and exhibits wavelength dependent
reflection. A glass of milk, white paint or the iridescent wings of some butterflies are

1



2 1. Introduction to light transport in complex dielectrics

examples of complex dielectrics. A possible building block for constructing a complex

Disordered packing Ordered packing

Building block
single scattering

Figure 1.2: Ordered and disordered packing of a single-scattering unit.

dielectric is a micro sphere of diameter comparable to the wavelength, and of a certain
refractive index that is different from its surrounding medium. The single scattering
from such a sphere has a rich structure due to internal resonances in the sphere, but its
behavior is well-understood and can be calculated using the formalism of Mie-scattering
[3]. A complex dielectric material can then be realized by micro-assembly of several
micro spheres. The spheres can be assembled in various ways with two opposite pos-
sibilities: a completely disordered packing and a fully ordered assembly (see Fig. 1.2).
The cumulative behavior after assembly will depend heavily on the way the spheres as
packed together. This is due to the interference between the scattered waves, and the
way the waves are multiply scattered from one sphere to another. If the spheres are
packed according to a crystal-like structure then the interference will be constructive
only in certain well defined directions, giving rise to Bragg refraction and reflection. In
the disordered case, the photons will perform a random walk from one sphere to the
other. The occurrence of interference effects is now less obvious to understand, however
also in random systems, interference effects turn out to be very important.

1.1 Disordered photonics

Disordered photonic systems are media in which the dielectric constant varies randomly
in space, as for example a suspension of scattering micro-particles in a liquid, as it is
the case for ordinary milk, or a grind crystal powder. The phase of the scattered waves
is random, and thus one can model light propagation with a random walk which leads
to a multiple scattering process (see Fig. 1.3). A diffusion model which considers
the transport of photons like hard balls with no internal degree of freedom can be
appropriate. But this simple picture is not complete as some interference effects can
survive the multiple scattering.

When one shines coherent light on a system with fixed disorder, the scattered light
has a ”grainy” random intensity pattern with very bright and dark spots. This is a
signature of preserved phase coherence upon multiple scattering. At the bright spots
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Figure 1.3: Illustration of multiple scattering in a disordered dielectric medium.
Many photons random walks are shown. (courtesy of Jean-Francois Colonna,
http://www.lactamme.polytechnique.fr/.)

many scattered waves interfere constructively while at the dark spots they cancel out.
This effect is called speckle and can be observed with bulk systems and surfaces (see
Fig. 1.4). If we average over many system configurations, as for example in a turbid
liquid, we smooth out the profile and wash out the interference pattern. But some
coherent effects can survive the ensemble averaging. One of the most evident is co-
herent backscattering, a two-waves interference responsible for up to a doubling of the
backscattered intensity and which thus decreases the optical conduction of the medium.

Figure 1.4: Simulated speckle pattern from light incident on a disordered medium. (From [4])

If the disorder is so strong that the light is scattered before completing an optical
cycle, then Anderson localization can occur, a phase transition which brings the system
into a regime where diffusive transport is inhibited (see Fig. 1.5). P. Anderson won the
Nobel prize in 1977 for his investigations into this very important issue [5, 6].

There exist fascinating analogies between electron transport and transport of optical
waves in dielectric structures [7]. Interference of light in random dielectric systems
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Figure 1.5: Illustration of the light intensity distribution in the regime of Anderson localization.
Light is confined in small regions of the medium, the localized states, which are exponentially
confined. (From [4])

influences the transport of light in a way that is similar to the interference that occurs
for electrons when they propagate in disordered conducting materials. In disordered
systems the optical counterpart of weak localization [8, 9, 10, 11], Anderson localization
[12, 13, 14], short and long range correlations [15, 16, 17], and universal conductance
fluctuations [18] have all been observed. These are various examples of wave phenomena
where interference effects play a crucial role both in the optical and the electronic case.
Often these processes are easier to study with light because the coherence length of
an optical wave packet is usually much longer than that of an electronic wavepacket,
photon-photon interaction are extremely weak, and pure wave effects can be singled
out.

1.2 Ordered photonics

On the other hand one can think of ordered photonic media as a set of systems which
can be modelled directly starting from the interference and without a random walk
picture, as the correlation in the position of the scatterers cannot be neglected. The
periodicity allows for a cooperative scattering with important contributions from all
points of the sample. Artificially engineered ordered (periodic) photonic materials are
well known as photonic crystals as in them light behaves as electronic waves in ordinary
crystals [20]. Interference effects in this case cannot be regarded as a correction to a
diffusive picture, but are instead the main process ruling light propagation.

One of the most important technological advances of the last century has been the
control of electron transport in ”electronic devices”. In contrast with the centrality
of electronic devices and their fast development, such a technology, which is based on
electrons, is reaching its limits. The limits of electron systems can be overcome naturally
in equivalent photon systems, which are not subject to decoherence and unwanted
interactions.

If the scattering of the spheres that constitute a photonic crystal is strong enough
(that is the refractive index contrast between the spheres and their surrounding medium
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Figure 1.6: SEM images of internal facets of silicon inverse opal: a, (110) facet. b, (111) facet
(courtesy of A. Blanco, [19]).

is large and their diameter is resonant with the wavelength) the interference can become
destructive in all directions, for a certain range of frequencies. In analogy with the
behavior of electrons in semiconductors, this range of optical frequencies is referred
to as a photonic band gap. Inside a photonic band gap, the density of light modes
becomes zero, which means that spontaneous light emission is inhibited [21]. A defect
in the structure opens up a state in the middle of a bandgap, localized at the defect.
In this way defect lines and circuits can be written on a photonic crystal, which could
allow to control the flow of light.

1.3 Optical anisotropy

In transparent materials with anisotropic dielectric permittivity, important optical ef-
fects can be observed. Birefringency and dichroism are the most common, but also
anisotropic light transport and interference can take place. It is very interesting to
speculate how their microscopic counterpart can affect light scattering in ordered and
disordered structures.

Liquid crystals in the nematic phase are opaque and therefore also give rise to mul-
tiple light scattering. They are strongly scattering materials that differ fundamentally
from common isotropic random media. The nematic phase of a liquid crystal is charac-
terized by a local alignment of the molecules in a direction called the nematic director,
and an otherwise translational disorder [22, 23, 24]. The partial ordering of the nematic
phase leads to an anisotropic scattering function. With an external magnetic field, the
whole sample can be oriented in a common direction (monodomain regime), making
the director a global property of the system. In this case the anisotropy in the scatter-
ing cross section leads, for large enough samples, to an anisotropic multiple scattering
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Figure 1.7: Nematic liquid crystals have a degree of order, as the molecules tend to be parallel
to the nematic director.

process, and monodomain nematics are therefore ideal systems to study anisotropic
multiple light scattering.

Anisotropic diffusion has recently arisen considerable interest as it can allow the
control of the optical properties of materials, and achieve, for example, switching as in
ordinary liquid crystal displays. Moreover, increasing the degree of anisotropy, a three
dimensional type of transport can be brought into a quasi-two dimensional one, where
the diffusion occurs mainly in a plane [25]. In addition the role of transport anisotropy
in Anderson localization is not yet known and tunable anisotropy could be exploited
to bring the system in and out the phase transition.

1.4 In between these extremes

The possibility of exploiting interference effects to control the flow of light has recently
arisen a considerable interest. For this reason the attention is focussed on mesoscopic
samples, in which phase-coherence is preserved. They are of a size intermediate between
the microscopic molecular one, and the averaged bulk. We will investigate samples
whose size does not exceed the coherence length of the wave, which for light waves
can be as long as kilometers, whereas, in electron systems, it is usually smaller than
micrometers [7].

Whereas the laws of light propagation in completely ordered and disordered struc-
tures are well understood, little is known about the behavior of optical waves in the
intermediate regime between total order and disorder.

The breaking of fundamental symmetries of nature manifests itself in various optical
phenomena and can be important for our understanding of the interaction between light
and complex matter. Ordered and disordered systems are characterized by a different
degree of symmetry: disordered systems by the rotational and the translational invari-
ance of the isotropic random medium, ordered ones by the axial and the translational
symmetry of the periodic potential.

From the disordered side we will focus on anisotropic random scattering systems.
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Figure 1.8: Ordered and disordered systems are characterized by a different degree of sym-
metry. Little is known of the regimes which lie in between these extremes (from Man Ray,
rayograph 1926).

The novelties in anisotropic systems lie in the presence of preferential directions, whose
varying degrees of anisotropy break one or more of the symmetries (rotational and
translational, or polarization independence) typical of the isotropic random medium.
A simple average of all the microscopic details is not any more justified. One of the
most robust two-waves interference phenomena, called coherent backscattering, will
be measured and simulated in this thesis, for an ensemble of Rayleigh scatterers and
ordered nematic liquid crystals. We will show that anisotropy survives the multiple
scattering averaging and is still present in the interference pattern.

On the ordered side, we will investigate photonic crystals whose translational sym-
metry is gradually lifted. If a periodic dielectric constant is altered with a linear varia-
tion along a direction, the light propagation is less and less appropriately described with
delocalized Bloch waves. In analogy with electronic systems, when a linear gradient is
introduced in the optical potential (proportional to the dielectric function), the Bloch
states turn into localized Wannier-Stark modes, and the photons perform the optical
analogue of Bloch oscillations between the band-edges of the resulting tilted bandgap
[26].

The class of quasicrystals belongs to the intermediate regime between periodic and
random [27]. In these deterministic non-periodic structures, translational symmetry
is absent. Among the various 1D quasicrystals, the Fibonacci binary quasicrystal has
been the subject of an extensive theoretical and experimental effort in the last two
decades. The Fibonacci structure is realized by stacking two different dielectric layers
accordingly to a non-periodic but deterministic generation rule: the Fibonacci sequence,
each number in the sequence is generated from the sum of the preceding two. Many
electronic quasicrystals follow an analogous construction rule in three dimensions to
produce long-range atomic order without conventional periodicity [28]. Transmission
spectra of quasi-periodic structures possess a rich fractal nature and very narrow reso-
nance peaks which are separated by forbidden frequency regions, called ”pseudo-band
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Figure 1.9: Fibonacci spiral where each new square has a side which is as long as the sum of
the latest two square’s sides (which is the Fibonacci sequence).

gaps”, although the global structure is not periodic [29, 30]. Time-resolved measure-
ments on 1D Fibonacci quasi-crystals show strong pulse delays and pulse stretching for
excitation in the proximity of these pseudo-bandgaps, at the bandedges.

First in chapter 2, the isotropic coherent backscattering model will be presented, then
in chapter 3 an extension to anisotropic scattering will be presented. Anisotropic weak
localization of light in ordered nematic liquid crystals has been measured and will be
discussed in chapter 4. In chapter 5, a Monte Carlo simulation of light propagation in
an ensemble of Rayleigh scatterers will be performed and the anisotropy of the cone of
backscattering enhancement be shown. Then the attention will focus on ordered and
quasi-ordered systems, in chapter 6. The first experimental evidence of the analogue of
electronic Bloch oscillations in photonic crystals with broken translational invariance
will be shown. Then time-resolved experiments on light transport at the band-edges of
Fibonacci quasi-crystals will be reported. The conclusions and future perspectives will
be summarized in chapter 7.







Chapter 2
Coherent Backscattering of light

In this chapter, coherent backscattering of light is presented. The physical origin is
discussed as well as some of the most common and modern theoretical tools to analyze
it. A model of the phenomenon, based upon the diffusion approximation is presented
without going into details. A diagrammatic approach based on an expansion of multiple
scattering on scattering orders is recalled, and the main results are shown. The stan-
dard integral model for coherent backscattering, which assumes isotropic scattering, is
presented, and a generalization to anisotropic scattering is performed. This approach
opens the way for a successive Monte-Carlo simulation that can provide the configura-
tion averaging required to calculate the profile of the coherent backscattering cone in
presence of global anisotropy.

In the first part of this thesis, we will investigate disordered media and light trans-
port. There are few approximations which are very well justified by the experimental
conditions, and which enable to formulate a simpler model.

2.1 Single scattering

The fundamental element in a multiple scattering process is the scattering from a single
scatterer, which is the basic element composing the optical system. The transport of
light is determined by how light is scattered by this microscopic unit and by the way
the partial scattered waves interfere with each other. The latter depends on how the
scatterers are distributed in the system, in an ordered or random fashion. Before
approaching the collective effect of multiple scattering, we recall the single scattering
results that have been known long ago [32, 31].

We consider a scattering event that takes place at the origin, r = 0, of a wave with
k-vector ki (and for simplicity with normalized amplitude); the scattered wave, in the
far field can be described by

E(r) = f(ki,kf)
eikf ·r

r
, (2.1)

where f(ki,kf) stands for the scattering amplitude and kf (with |kf | = |ki| = k) the
scattered k-vector, kf = k r/r.

11
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Figure 2.1: Scattering geometry.

The scattering amplitude contains all the information of the scattering process, but
it is usually inaccessible to the experiments which typically measure only light inten-
sities. For this reason, one usually prefers to deal with the squares of f(ki,kf), which
describes the light pattern scattered from each scatterer. It is called the differential
scattering cross-section

dσ(θ, φ)

dΩ
= |f(ki,kf)|2 (2.2)

and quantifies the normalized intensity scattered in the solid angle dΩ. It provides the
time averaged power radiated by the scatterer in a direction kf , which is labelled by
(θ, φ), in a given polarization state, per unit solid angle and unit incident flux. The
differential scattering cross-section in general depends on the incident polarization and
direction of the light, the notation as in Eq. (2.2) contains implicitly these information.

The scattering mean free path depends on the total probability for a scattering
event, being long if the probability is weak. The total probability for a scattering event
is given by the total integrate differential scattering cross-section

σt =

∫
dσ(θ, φ)

dΩ
dΩ (2.3)

times the scatterer density np. In a diluted medium it can be demonstrated that ℓs is
precisely the reciprocal of the above product,

ℓs =
1

np σt
. (2.4)

The interaction of radiation and matter can be described in most of the cases via
the induction of electric or magnetic (we will restrict to electric dipoles; the magnetic
case is analogous) dipoles in the excited matter [31]. This very general approach is
suitable for scatterer with no geometrical resonances (Mie resonances [32]) and with no
internal structure, and not for example for scatterers with coupled atomic levels, non-
zero Verdet constant, optical non-linearity, etc. . . This requirements are easily fulfilled
in a point-like scatterer, which by definition cannot sustain resonant optical modes [33].

Rayleigh scattering is inherently an elastic process, a linear dipole is induced, and
then it radiates light at the same frequency as the incident one. The amplitude of
the dipole is usually described by α(ω), which is called the polarizability. Therefore
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Figure 2.2: Rayleigh scattering differential cross-section, for a point-like dipole, for excitation
light polarization ǫi and k-vector ki.

the polarization of the radiated light is just the projection of the dipole polarization
p(ω) = α(ω) ǫi on the normal to the scattering direction k. The differential scattering
cross-section for such a Rayleigh scattering process is

dσ

dΩ
(kfǫf ;kiǫi) ∝ α2(ω)|ǫ∗f · ǫi|2 (2.5)

where kiǫi and kfǫf are respectively the incident and scattered k-vector and polarization,
and the star denotes the complex conjugate.

Far from the resonance, the polarizability depends on the k-vector as ∼ k2. The vari-
ation of the scattering cross section with the fourth power of k is the known Rayleigh’s
law, which also explains why the sky is blue or the sunset red, as the blue light is
scattered much more than the red one.

The dipole which has no internal structure can only emit a spherical wave, or in
other words a photon is scattered with the same probability in any direction. The only
constrain in the scattered light pattern is that the transversality of the light has to be
preserved: the field is orthogonal to the k-vector, ǫf ⊥ kf . Eq. (2.5) is exactly the
transversality condition.

An extended scatterer of transverse dimension d can access a phase space which
is the reciprocal of its size, and therefore the scattered pattern can show an angular
structure proportional to 1/d. While Rayleigh scattering is not peaked (Fig. 2.2), as the
scatterer is point-like, large particles are responsible for what is called Mie scattering.
Mie scattering objects are large, of size comparable to the wavelength of the light
and thus they can sustain optical resonances. In Mie scattering the polarizability is
a very complex function, which a priori depends also on the k-vectors. In this case,
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Figure 2.3: Differential scattering cross-section for a Mie sphere of size a = kd = 20, where d
is the sphere diameter and relative refractive index of 1.25.

the scattering is very forward and has a rich structure, as shown in Fig. 2.3 for a Mie
scatterer of size parameter a = k d = 20 and refractive index contrast of 1.25.
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Figure 2.4: Ordered nematic scattering differential cross-section. The two very different
shapes are associated with the two different k-vectors shown in the figure, and the same
ordinary polarization ǫi ≡ i. In both cases, the emerging polarization is extraordinary. In the
left panel the differential scattering cross-section is almost symmetric while in the right panel it
is very forward, and extends up to 4000 in the x-direction.

Later in the thesis we will investigate also light scattering in ordered nematic liquid
crystals, which are neither Rayleigh nor Mie scatterers. Nematics are anisotropic scat-
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tering materials whose scattering process has a different origin, as it relies on collective
scattering due to global fluctuations in the dielectric function. We anticipate here that
the scattering cross-section is very rich, it ranges from almost isotropic to very forward
just changing the polarization and direction of the incident light. The very forward
nature of this scattering process can be explained as it takes place over large volumes
of nematics. In Fig. 2.4 we show few scattering cases, a more detailed description will
be presented in chapter 4.

2.1.1 S-matrix

A microscopic single-scattering process can be modelled with scattering (S) and tran-
sition (T) matrices, which describe how the amplitude of the incident wave is altered
by the scattering process.

The scattering matrix (S matrix) was introduced by Heisenberg to describe a scat-
tering process without any assumption about the details of the interaction [34]. In
this formalism, the process is thought of as a transformation of an incoming state ψin

into an outgoing state ψout, which describe the system far away from the interaction
potential. Hence, the S matrix describes the scattering process asymptotically. The
mathematical transcription of this transformation is an operator relationship

ψout = Sψin, (2.6)

where S is called the S matrix [35]. In scattering by a time-independent potential
(we shall restrict our discussion to this case), this means that the S matrix relates the
far-field amplitudes of the incoming and outgoing fields.

The S matrix exhibits some properties that are independent of the specific problem
under study. In particular, it is unitary and symmetric, these two properties reflecting
probability (or energy) conservation in elastic scattering and reciprocity (notion that we
will discuss in the next section), respectively [36]. The general aim is to get maximum
information about the S matrix with minimum knowledge about the interaction itself.

As we have introduced in sec. 2.1, the scattered wave, in the far field regime can
be described by

E(r) = f(ki,kf)
eikf ·r

r
, (2.7)

where f(ki,kf) stands for the scattering amplitude and kf (with |kf | = |ki| = k) the
scattered k-vector, kf = k r/r. Introducing the van de Hulst [3] scattering matrix S,
one can write

E(r) = S
eikf ·r

ikr
. (2.8)

The linearity of the boundary conditions imposed by the Maxwell equations allows
the relationship between incident and scattered electric field of a plane wave scattered
from an arbitrary scattering center, to be expressed in matrix form. Eq. (2.8) will
be valid for all distances, as long as r is sufficiently far from the origin to be able to
consider far-field objects.

2.1.2 T-matrix

The T -matrix formalism is very useful as it conveys all the information about the
scattering process before energy conservation is build up. While the S-matrix is the
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complete scattering response of the system, obtained from the superposition and in-
terference of all the scattered wave components, the T -matrix can be regarded as the
instantaneous scattering response before the time needed by the interference within
the scattered wave to build up energy conservation. We will use it to calculate the
propagating eigenmodes of the systems, or in other words the Green function of the
system.

The T -matrix of a scattering event describes only the scattered component of the
field, and it is linked to the S-matrix via:

〈ψin|S|ψout〉 = 〈ψin|ψout〉 − i2πδ(ωi − ω0)〈ψin|T(ω)|ψout〉, (2.9)

for ψin ≡ |ki, ǫi〉 and ψout ≡ |kf , ǫf〉. The term δ(ω−ω0) describes the on-shell condition,
as we consider elastic scattering processes.

One can express the scattering amplitude f(ki,kf) of Eq. (2.7) in terms of the
T -matrix,

f(ki,kf) = 〈ki| T |kf〉 (2.10)

We are proceeding for increasing complexity, with the goal of describing multiple-
scattering of light waves. Its basic ingredient is the single-scattering process. Once it
is known and modelled for example with a T matrix, one faces the problem of taking
into account all the contributions and interferences from the waves scattered by each
of the single-scattering centers.

2.2 The multiple scattering model and its approximations

We will focus in this thesis on mesoscopic samples, in which phase-coherence is pre-
served. Their size (L) is intermediate between the microscopic molecular one, and the
averaged bulk, they do not exceed the coherence length (Lφ) of the wave,

λ≪ ℓs ≪ Lφ ≈ L. (2.11)

In Eq. (2.11) a crucial length appears, ℓs, which is the scattering mean free path. ℓs
is the average distance between two scattering events, and for its statistical nature, as
we will see, it is the first and most important element of the mesoscopic theory.

The model we are describing requires a few approximations. The multiple scattering
process takes place in a frozen sample, i.e. with scatterers at fixed positions in space,
even in liquid samples. This is justified as the photons spend a time (tp ∼ 500 ps) in
the medium which is much smaller than the relaxation time (tr ∼ ms) of the Brownian
motion of the liquid. On the other hand the backscattered intensity is recorded for much
longer times, (tm ∼ s), long enough for averaging out the noise or the static scattered
pattern (speckle). More precisely, the requirement for a fixed scattering sample, is
that, during the light transit time tp, the optical path changes much less than a light
wavelength,

vscattp ≪ λ (2.12)

where vscat is the velocity of the Brownian motion.
Even more, diffusing-wave spectroscopy1 [37, 38, 39] has thought us that that the

condition on each scatterer motion has to be stricter. The sample is frozen if the total

1The theory of diffuse wave spectroscopy makes the connection between temporal intensity fluctu-
ations of the speckle field emerging from the sample and the dynamics of the particles in the sample
and has made it possible to use diffuse light to study the motion of particles in opaque suspensions.
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path length variation, which is the cumulative result of the motion of N scatterers, is
smaller than λ . The condition holds if the scatterer velocity satisfies

vscattp ≪ λ√
Nmax

∼ λ

b
(2.13)

(in isotropic samples, on average, the longest scattering path (Nmax) is as long as the
sample optical thickness squared, Nmax ∼ b2).

Another important approximation is the independent scattering approximation, which
is essential to avoid dependent scattering and to consider each scattering event as in-
dependent from all the others.

In order to model the system as a random one, it is important also that the scattering
centers have no positional correlation, i.e. that there is no systematic relation between
the scattered phases. This implies the statistical translational invariance, essential to
perform the ensemble averaging. We need to neglect spatial or scattering correlations
which would make the problem much more complicated. This requirement is easily
fulfilled for a collection of uncorrelated point-like dipoles, as could be a cloud of atoms.
Nematic liquid crystals show scattering correlations within a certain correlation distance
ξ, which is usually much smaller than the scattering mean free path. For distances
bigger then ξ also nematics can be considered as translational invariant.

However, the most important requirement is that the sample is diluted, i.e. that its
scattering strength and its density are weak enough that the dimensionless parameter
kℓs ≪ 1. Such a condition is essential to perform a perturbative approach on kℓs (later
in the chapter) which allows for neglecting the recurrent scattering contributions, where
one scatterer is visited more than once. If this requirement is not satisfied, the theory
becomes at once extremely more complicated, the perturbative approach has to be
abandoned, and one has to rely on more involved self-consistent methods [40].

In addition, we consider only elastic phenomena, in which the scattered photon has
the same energy (wavelength) than the incident one.

The model we are presenting is in the regime of validity of a diffusive model, but has
a more general nature, and can be easily generalized to those cases where the diffusive
approach may not be justified, as for anisotropic scattering and nematic liquid crystals
(in chapter 3).

2.3 The radiative transfer equation

The microscopic model of light scattering is provided by the Maxwell’s equations for
electro-magnetic waves, which contain multiple scattering but which are of difficult
solution when many scattering centers have to be taken into account.

An alternative approach makes use of the radiative transfer equation, which is a local
balance equation, similar to the Boltzman equation in kinetic theory, for the diffused
intensity [3]. Radiative transfer is an old subject that goes back to the end of the 19th

century, when astrophysicists [41] formulated the equation of radiative transfer. In the
equation of radiative transfer, light phase and interference is neglected, and a diluted
medium is assumed. It can, however, be derived directly from Maxwell’s theory.

In literature there exists many equations equivalent to the radiative transfer equa-
tion, and which have been written for specific geometries or in different formats, like
the Bethe-Salpeter, the Boltzman and the Milne equation.
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The radiative transfer equation can be solved also for anisotropic scattering [42] and
nematic liquid crystals [43] but it is quite involved. Few approximations can decrease
considerably the problem.

2.3.1 Diffusion approximation

The simplest model of light transport induced by multiple scattering can be obtained
disregarding interference effects, and introducing a continuity equation for the light
intensity which expresses the conservation of the transported energy. The validity of
this model is only after distances longer than the light wavelength but also longer than
the mean free path.

If we restrict to the light in the bulk, this condition holds, L ≪ ℓs, and we can
neglect the effect of the specific incident light polarization and direction, and that of
the sample border.

Then we can assume that the scattering probability is always the same in each point
of the sample and for each light state. This is usually confirmed by the experimental
evidence of the Beer-Lambert’s law for the light (coherent) transmission in a opaque
medium,

I(r) = I(0) exp−r/ℓs. (2.14)

We are now naturally lead to think that the step length probability P (r) for a photon
is exponential with the distance r,

P (r) ∼ exp−r/ℓs. (2.15)

This will be the first step towards a mesoscopic theory (see later), as it will allow
to move from the microscopic picture of the not-averaged scattering amplitudes, to a
model which is based on a bigger building block with stochastic nature. All the complex
effects that take place for distances smaller than ℓs can be simplified in order to get a
vaster view.

The diffusive model can be interpreted as a stochastic model for an energy wavepacket
(a classical particle) with velocity v. The step length between two successive interac-
tions (collisions) is given by a certain distribution P (r). After each scattering event
the photon is scattered elastically in a direction described by another distribution: the
differential scattering cross-section. This is a random walk, whose mean displacement
r as a function of time (t) satisfies

〈
r2

t

〉
−−−→
t→∞

6D, (2.16)

for a costant D. Eq. (2.16) can be considered as a one of the definitions of the diffusion
constant D.

The diffusive model describes very well the long-distance transport but requires an
assumption on the boundary conditions. The typical assumptions will be discussed
later in the section.

Following this random walk picture one finds the diffusion equation for the light
intensity I(r, t), being the latter the energy flux per unit solid angle at position r and
time t

S(r, t) +
∂I(r, t)

∂t
= D∇2I(r, t) − v

ℓa
I(r, t) (2.17)
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where S(r, t) is the light source, and ℓa the absorption length, over which the light is
attenuated by a factor e−1.

Figure 2.5: Light diffusion in a turbid liquid (courtesy of Francesco lo Bue,
http://olympus.umh.ac.be/).

For comparison with the experiments, we will assume a slab geometry, and we
will investigate the macroscopic light transport from the source through the scattering
medium, as in Fig. 2.5. If the step length probability P (r) is chosen to be exponential
with the distance r, as in Eq. (2.15) consistently with the Beer-Lambert’s law of
attenuation of a spherical wave (radiated from the scatterer), then, from Eq. (2.16),
the diffusion constant D can be expressed as a function of v and ℓt [44]

D =
1

3
v ℓt. (2.18)

The central quantities in a diffusive process are the characteristic length ℓt and
velocity v of the energy random walk in the disordered medium. The energy velocity can
be very different from the light velocity in an equivalent dielectric medium, especially if
scattering resonances are involved [45]. The transport mean free path (ℓt) can be defined
as the average length after which the scattered photon has lost completely memory of its
previous propagation direction. If no further complications are brought by anisotropy,

Figure 2.6: Transport mean free path and scattering mean free path.

birefringency or optical activity, i.e. if the microscopic anisotropy averages out and the
overall diffusive process is isotropic, the transport mean free path can be calculated from
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the scattering mean free path, taking into account the directionality of the scattering
emission, weighting ℓs with the cosine of the scattering angle with respect to the forward
direction:

ℓt =
ℓs

1 − 〈cos θ〉 . (2.19)

On length scales smaller than ℓt, the scattering events are correlated, but for distances
larger than ℓt the microscopic correlations are completely averaged out. The diffused
light is transmitted as if the medium was thinner by a factor (1 − 〈cos θ〉).

For isotropic scattering media ℓt = ℓs as the average of the cosine of the scattering
angle is zero. An example is Rayleigh scattering, where 〈cos θ〉 = 0. For Mie scatterers
we may easily have 〈cos θ〉 as big as 0.5 (see Fig. 2.3), therefore ℓt = 2ℓs and two or
more scattering events are required to lose completely the knowledge of the initial di-
rection. Anisotropic media, as for example nematic liquid crystals, may have a strongly
asymmetric scattering cross-section and therefore ℓt can be as big as hundreds of ℓs (see
Fig. 2.4).

Figure 2.7: Photon concentration vs distance into the sample. Extrapolation length ze and
penetration depth zp are shown.

The main limitation of a diffusion model is that it requires the external information
about the boundary condition, or in other words that diffusion approximation cannot
be used to predict light transport at the first scattering orders. The main boundary
condition is the intensity distribution at the sample front surface, which results from
the multiple scattering. This is accounted for with the extrapolation length ze, the
length over which the modes of diffusion can be considered zero (see Fig. 2.7). Usually
the extrapolation length is chosen to be ze = 0.71ℓt or ze = 2/3ℓt. In Fig. 2.7 also the
penetration length zp is shown, which is instead related to the source of light, and is
typically set to its average value (for isotropic scattering), zp = ℓt.

2.4 Reciprocity

Maybe the most robust interference effect which is not included in the diffusive picture
can be attributed to reversed paths, as illustrated in Fig. 2.8, where the photon follow
the same path in the two opposite directions. Under general conditions, the phase
coherence of these contributions is kept, and their interference has to be considered. A
simple relation between the amplitudes of the reverse paths can be obtained with the
reciprocity principle.
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Figure 2.8: Reversed paths in a 3d random walk.

Optical measurements on linear physical systems obey the general principle of reci-
procity, i.e., their results are invariant with respect to an interchange of source and
detector2 (see, e.g., [3]). A popular version of this law could be: ”if I see you, you see
me”. The concept of reciprocity is strongly linked with that of time-reversal symmetry.

Maxwell’s equations for the electromagnetic field are time-reversal invariant if the
current is. A sufficient condition is the vanishing of free currents, as for example happens
in dielectrics. The concept of time-reversal symmetry is often associated with optical
phase-conjugation. One electromagnetic field is the phase conjugate of another if its
phase is the complex conjugate of the other’s. After phase-conjugation the wavefront
retraces the evolution that it formerly underwent, even to the extent that distortions
induced by a scattering medium are reversed. A time-reversal experiment requires
the phase-conjugation of all the waves, unique condition to revert the full microscopic
process. If one expresses a field in Fourier components, then the microscopical time
reversal of

E(r, t) = A ǫ eik·r e−iωt (2.20)

whose real amplitude is A, polarization ǫ and phase eik·r−iωt, k-vector k and frequency
ω, is

Erev(r, t) = A ǫ
∗ e−ik·r eiωt (2.21)

whose phases are complex conjugated pairs (the star denotes the complex conjugation).
Therefore, optical phase conjugation is equivalent to reversal of time.

As an example of this principle if one could invert the time for all the waves diffused
from a laser beam incident on a scattering medium, then one would see all the scattered
components reenter the medium, retrace back the path they formerly underwent, and
interfere coherently into a coherent laser beam propagating backwards.

2The full electromagnetic system is reciprocal, meaning that for example in presence of a magnetic
field one has to revert its sign to get the reciprocal configuration.
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However reciprocity is not the same as time-reversal symmetry, since reciprocity
relates input and output waves in pairs, irrespective of the presence or absence of
other waves. Reciprocity states that the scattering matrix S and the T -matrix T are

Figure 2.9: Reciprocal configurations, reciprocity ensures that the two processes have the
same probability amplitude.

symmetric, and thus that

〈kiǫi| T |kfǫf〉 = 〈−kfǫ
∗
f | T | − kiǫ

∗
i 〉 (2.22)

The condition of time-reversal invariance is equivalent to both energy conservation
and reciprocity [35], therefore a scattering system may be reciprocal, without being
conservative. In this case, e.g. in presence of (linear) absorption, the system is not
time-reversal invariant, but the equivalence of the direct and reverse amplitude can be
guaranteed by reciprocity.

Figure 2.10: Reciprocal light path configurations, reciprocity ensures that the two light paths
have the same scattering amplitude.

A practical and equivalent formulation of reciprocity, which is suitable for our pro-
poses is the following: given two photon states |kiǫi〉 incident and |kfǫf〉 scattered from
the system, reciprocity ensures that the two diffusion amplitudes (defined in analogy
with f(ki,kf), Eq. (2.7)), Adir and Arev, for the direct and reverse paths are related by:

Adir = A(kiǫi → kfǫf) = A(−kfǫ
∗
f → −kiǫ

∗
i ) = Arev. (2.23)

The equality of the amplitudes of the direct and reverse paths is a consequence of
the symmetry induced by reciprocity. When reciprocity is broken, for example in a
magneto-active medium, then the direct and reverse paths may (and do) have different
complex amplitudes and interference effects can be strongly reduced.
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2.5 Coherent backscattering

One of the most robust interference phenomena that survives multiple scattering is
coherent backscattering or weak localization of light [8, 9, 10, 11]. In weak localization,
interference of the direct and reverse paths leads to a net reduction of light transport
in the forward direction, similar to the weak localization phenomenon for electrons in
disordered (semi)conductors and often seen as the precursor to Anderson (or strong)
localization of light [12, 13, 14]. Weak localization of light can be detected since it
is manifest as an enhancement of light intensity in the backscattering direction. This
substantial enhancement is called the cone of coherent backscattering3.

Weak localization has been initially studied for electronic systems, in the 1970s,
where it has been reported as quantum interference (coherent echo) between electronic
waves multiple scattered by impurities in conductors [46]. Weak localization manifests
itself as an anomaly of the resistance of a conducting thin film [47, 48]. In electronic
systems it has arisen much interest, as it is one of those unique cases where the su-
perposition principle of quantum mechanics leads to observable consequences in the
properties of macroscopic systems [49].

At the beginning of the 1980s, this concept based on interference has been suc-
cessfully exported also to light waves [8, 9, 10, 11], which instead of electrons show
very weak photon to photon interaction, have a much longer coherence time and are
extremely sensitive to interference effects. On the other hand in optical experiment, it
is hard to measure quantities like the total conductance, but it is possible, due to the
long coherence length, to observe its counterpart, i.e. directly the interference-induced
increase diffusion in backscattering: the coherent backscattering cone.

Since the first experimental observation of coherent backscattering from colloidal
suspensions [8, 9, 10], the phenomenon has been successfully studied for electromagnetic
waves in strongly scattering powders [50, 51], cold atom gases [52, 53], two-dimensional
random systems of rods [54], randomized laser materials [55], disordered liquid crystals
[56, 57], chaotic cavities [58] photonic crystals [59, 60] and even sea bottom [61]. The
phenomenon is typical of any wave which is multiply scattered, and it has indeed been
observed also for mechanical waves: acoustic waves in macroscopic disordered systems
[62] and even seismic waves propagating in the earth crust [63].

Weak localization has its origin in the interference between direct and reverse paths
in the backscattering direction. When a multiply scattering medium is illuminated by a
laser beam, the scattered intensity results from the interference between the amplitudes
associated with the various scattering paths; for a disordered medium, the interference
terms are washed out when averaged over many sample configurations, except in a nar-
row angular range around exact backscattering where the average intensity is enhanced.
This phenomenon, is the result of many two-waves interference patterns

I(θ, φ) = I0 (1 + ζ cos(d · ∆k)) (2.24)

where I0 is the total intensity forgetting interferences, ζ the contrast of the interference,
θ and φ the angles with respect to the backscattering direction, and we assume no

3The two terms coherent backscattering and weak localization are often used through each other,
but, if we want to be more precise, the former refers to the light which is backscattered more than
expected by diffusion theory, while the latter to a decrease of the diffusion constant.
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Figure 2.11: Counter-propagating light paths that give rise to coherent backscattering.

additional phase difference along the reverse paths exists. The incident and scattered
k-vector ki and kf are written as

ki = (0, 0, k)

kf = (−k sin θ cosφ,−k sin θ sinφ,−k cos θ). (2.25)

This interference is generated by counter-propagating light paths with entering-exiting
distance d = r1 − rN and initial and final k-vectors ki,kf such that ∆k = kf + ki (see
Fig. 2.11). Maximum interference is obtained when the counter-propagating paths have
the same amplitude (and thus ζ = 1), and only at θ = 0, (see Fig. 2.12). Reciprocity
is an important ingredient as it ensures the equality of the direct and reverse path
amplitudes. For example, as predicted [64], it was experimentally observed [65, 66, 67]
that the presence of an external magnetic field breaks the reciprocity and results in a
decrease of the coherent backscattering enhancement as well as some rather complicated
behavior of the cone shape [68]. Here onwards we will assume ζ = 1.

The cone is the Fourier transform of the spatial distribution of the intensity of
the scattered light on the sample surface, when the latter is illuminated by a point-like
source [65]. The enhanced backscattering relies on the constructive interference between
reverse paths. One can make an analogy with a Young’s interference experiment, where
two diffracting slits would be positioned in place of the ”input” and ”output” scatterers
(see figure 2.11). If the slits are backlit with a plane wave (of wavevector ki), the
interference produces a sinusoidal fringe pattern in the far field, with a maximum
intensity at θ = 0 and a fringe spacing inversely proportional to the transverse spacing
between the scatterers. The coherent backscattering cone comes from a superpositions
of many of these fringes, which are all in phase only at θ = 0 (see for example the top
of figure 2.12).

The triangular top of the coherent backscattered profile is sensitive to the long
and diffusive paths which have very far entrance-exit points, and thus short spatial
frequency contribution. This can be evident if we look at the phase difference between
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Figure 2.12: Coherent backscattering arises from many two-wave interference patterns which
are all in phase at θ = 0. In the figure, the full profile (full line) and the interference that results
from only double scattering (dashed line), and a few lower scattering orders (dotted and mixed
lines) are shown. The line profile is obtained with a Monte Carlo simulation for scalar waves.
In the top panel, a few two-paths interference patterns are shown before averaging.

two paths, which is

∆φ =
2π

λ
(d · ∆k) (2.26)

and which can be simplified in the small θ limit (milliradians) into

∆φ ≈ 2π

λ
θ |rN − r1| (2.27)

If we replace in Eq. (2.27) |rN − r1| by the mean separation between the first and
last scattered, which is of the order of the transport mean free path (ℓt), the phase
difference between the reciprocal paths becomes:

∆φ ≈ 2π

λ
θ ℓt. (2.28)

Under diffusion approximation, one can find for the cone an opening angle (at full
width half maximum) which is

W ≃ 0.7

kℓt
. (2.29)
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The first scattering orders (small N), are very important as they get less dephased (see
Eq. (2.27)). The factor 0.7 of Eq. (2.29) comes from the averaging of many scattering
order contributions, and it has a value close to unity: double scattering dominates.

The wings are influenced by the lower spatial frequencies, and therefore by the
short paths due to low order scattering. The top and full width at half maximum are
determined by the transport mean free path (ℓt), which is an averaged quantity, whereas
the wings are strongly influenced by the details of the not-averaged single scattering
differential cross section. In Fig. 2.12, the profiles of the interference that results from
the different contribution are shown. The line profile is obtained with a Monte Carlo
simulation for scalar waves. In the top panel, few two-paths interference patterns before
averaging show the different spatial frequency contributions.

2.6 Theoretical approaches to multiple scattering of light

The interaction of light and matter can be described by the Maxwell’s equations [69]
which relate the microscopic fields with their induction fields. Under the approximation
of a linear, frequency independent dielectric constant (and magnetic permeability equal
to unity), and no free charges, we can write the wave equation for the electric field

[
∇×∇× +

1

c2
∂2

∂t2
ε

]
E(r, t) = 0 (2.30)

where c stands for the light velocity in free space:

c =
1√
ε0µ0

.

In random media, we can replace the dielectric tensor with

ε = ε+ δε(r, t) (2.31)

whose homogeneous part is ε, and the randomly fluctuating part δε(r, t) is usually a
Gaussian random variable described by a certain correlation function.

We then assume 〈ǫ〉 = 1 and non-absorbing medium Im(ǫ) = 0. Due to the linearity
of the equation, harmonic modes can be separated into a space dependent field pattern,
and the time dependence of Eq. (6.3) can be removed. After some algebra the wave
equation can be put in the form of

[
∇2 + k2

]
E(r) = V (r)E(r) (2.32)

with a potential of the form

V (r) = −k2[ε(r) − 1], (2.33)

and k = ω/c.
The special case of identical isotropic point-like scatterer (Rayleigh scattering) is

very important as it is one of the few that can be solved completely: we can assume
a white noise distribution of the fluctuating part of the dielectric constant, which has
correlation function

k4 〈ε(r)ε(r′)〉ensemble = γ δ(r − r′) (2.34)
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This description of the dielectric constant is valid if the scale of the fluctuations of ε(r)
is large in comparison with λ, the so-called slow-varying envelope approximation. In
such a case the interaction is localized at position Ri, the dielectric constant can be
written as

ǫ(r) = 1 +
∑

i

α δ(r −Ri) (2.35)

where α is the scatterer polarizability. The scalar wave equation then reads:

[
∇2 + k2

]
E(r) = u

∑

i

δ(r −Ri)E(r) (2.36)

where the potential is parameterized by u, the potential strength, u = −k2 α.

2.7 The Green function

A Green’s function is an integral kernel that can be used to solve an inhomogeneous
differential equation with boundary conditions.

We start here with a formalism typical of Quantum Mechanics, for matter waves,
which can easily extended for light waves. To a system characterized by the Hamiltonian
H

H0|ϕE〉 = E|ϕE〉 (2.37)

symbolically one can associate a Green function

G0(E) =
1

E −H0
(2.38)

which satisfies the equation:

[H0(r) − E] G0(r, r
′;E) = −δ(r, r′). (2.39)

The Green function contains all the information on the system, it has a pole at the
energy of each bound state, and each eigenfunction of the Hamiltonian can be obtained
from G0. The eigenvectors of the full problems, for H = H0 + V (r), can then be
obtained from a superposition of Green functions of the unperturbed case [70].

For light waves we replace the Hamiltonian and the energy by

H = −∇2 + V (r)

E = k2. (2.40)

2.7.1 Green function in the wave equation

The vacuum Green function is the solution of the vacuum wave equation (V ≡ 0) for a
δ-function source, a point-like light emitter:

−[∇2 + k2]G0(r, r
′,k′) = δ(r, r′). (2.41)

Formally this equation can be solved and the Green function calculated as

G0 =
1

k2 −H0
=

1

k2 + ∇2
. (2.42)
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Such a Green function is a spherical wave radiating from the scatterer:

G0(r, r
′,k′) = − eik

′·(r−r
′)

4π|r− r′| . (2.43)

The importance of the Green functions is that any solution of the inhomogeneous wave
equation for a potential V (r)

[∇2 + k2]ϕk(r) = −V (r)ϕk(r) (2.44)

which has associated the Green function

G =
1

k2 −H
=

1

k2 + ∇2 − V (r)
, (2.45)

can be expressed in terms of the Green functions of the homogeneous equation (the
vacuum Green functions), in terms of the integral equation (for simplicity we now drop
the index k)

ϕ(r) = ϕ0(r) −
∫
G0(r, r

′,k′)V (r′)ϕ(r′) dr′ (2.46)

and of ϕ0(r), a solution of the vacuum wave equation:

[∇2 + k2] ϕ0(r) = 0. (2.47)

The proof is direct if we apply (∇2 + k2) to both sides of Eq. (2.46) and move it under
the integral:

(∇2 + k2)ϕ(r) = (∇2 + k2)ϕ0(r) −
∫
dr (∇2 + k2)G0(r, r

′,k′)V (r′)ϕ(r′)

(∇2 + k2)ϕ(r) = 0 −
∫
dr δ(r, r′)V (r′)ϕ(r′)

(∇2 + k2)ϕ(r) = −V (r)ϕ(r) (2.48)

2.7.2 The dressed Green function and the T -matrix

Iterating Eq. (2.46) yields

ϕ(r) = ϕ0(r) −
∫
G0(r, r

′′,k′′)T(r′′, r′,k′)ϕ(r′) dr′dr′′ (2.49)

which defines the T -matrix T(r, r′) given by

T(r, r′,k′) = V (r)δ(r, r′) + V (r)G0(r, r
′,k′)V (r′) + (2.50)

+

∫
dr′′V (r)G0(r, r

′′,k′′)V (r′′)G0(r
′′, r′,k′)V (r′) + . . .

One uses the term transition matrix since a T -matrix projects ingoing states of the
incident light onto outgoing states.

A generic solution can always be expressed in terms of the vacuum Green function
and of the single scattering T -matrix [71]

ϕ(r′) = eik·r
′

+ G0(r, r
′,k′) T(r, r′,k′) eik·r (2.51)
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where the first term represents the incoming wave transported to position r′, with
ϕ0 = eik·r. The second term in Eq. (2.51) is the wave transported to position r′ by the
vacuum Green function G0(r

′, r) shown in Eq. (2.43), after it picked up a scattering
factor T (r′, r), the scattering amplitude, at the scatterer.

The single scattering T -matrix of the scattering process (of the full system), can be
expressed as

T = V + V G0V + V G0V G0V + V G0V G0V G0V + . . . (2.52)

In diagrammatic notation T is the sum of all the recurrent scattering events undertaken
by a single scatterer:

Tα = ×α = ◦ + ◦ ◦ + ◦ ◦ ◦ + ◦ ◦ ◦ ◦ + . . . (2.53)

where ◦ is the single scattering from a given scatterer α, the second term is the double
recurrent scattering from the same scatterer, and so on. At first order the scattered field
induces an electric polarization. This polarization changes the scattering properties of
the medium, which modifies the polarization (second order), and so on.

A potential V (r) changes the bare amplitude Green function G0 in such a way that
G (the dressed one) can be described by the Lippmann-Schwinger equation [72]

G(ω) = G0(ω) +G0(ω) V G(ω), (2.54)

which is analogous to Eq. (2.46).
The knowledge of T is equivalent of the knowledge of the complete Green function

of the system as the latter can be expressed, without approximations in terms of T :

G(ω) = G0(ω) +G0(ω)T (ω)G0(ω) +G0(ω)T (ω)G0(ω)T (ω)G0(ω) + . . . (2.55)

For consistency with the usual formalism we now onwards refer with ω to the energy
dependence of the functions, as in Eq. (2.55).

The Green function in Eq. (2.54) and (2.55) is the propagator for a given scatterer
configuration, and therefore it is not translational or rotational invariant, G(r1, r2) 6=
G(|r1 − r2|). Instead the dressed Green function, which is obtained from ensemble
averaging of the Green function of Eq. (2.54), has these two symmetries.

2.8 The mesoscopic approach

In order to model the scattering from an ensemble of discrete scattering centers, we
have to use the complete Green function of the system, which is the solution of the full
wave equation that includes all the scattering centers, as in Eq. (2.32):

−[∇2 + k2]G+
∑

i

V (r − Ri)G = δ(r − r0). (2.56)

This is the microscopic approach. It provides exact equations which are usually
impossible to solve without further approximations, as in an ordinary medium the
number of scatterers can be easily as large as 109 − 1012. We are interested into
properties averaged over the microscopic details, therefore a more effective approach is
the mesoscopic one.
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All the transport quantities we are interested in, like transmission, reflection, dif-
fusion, etc..., can be expressed in terms of the amplitude G. Then one can average it,
and obtain g, the average amplitude Green function. It is the vacuum Green function
’dressed’ by the average interaction with the random scattering potential, which is the
average inter-scattering propagator, which describes how the light is transported from
one scatterer to the other, and in the presence of all the other scatterers.

Exact averaging over the disorder of the Green function is only possible in partic-
ular cases, and cannot be done in general. Facing such a problem, different theories
have followed perturbative treatments, in order to discriminate between relevant and
negligible contributions, and simplify substantially the equations. This means that one
has to rely on a perturbative expansion of G in scattering order or in the diagrammatic
approximation of the self-energy, developed in the scatterer density.

2.9 Diagrammatic approach for multiple scattering

The mesoscopic approach consists in expressing all the sought quantities in terms of the
dressed Green function of the systems, and then to average them. This method has an
equivalent representation in diagrams, which are very useful to visualize the equations.
We choose to follow this approach as it can lead to integral equations which have a
direct interpretation in terms of photon random walk, and thus can be very efficiently
implemented in a Monte Carlo simulation.

We will go through the major results which have already been obtained [73], in order
to introduce the concepts that we will extend and generalize for anisotropic scattering
later in the chapter.

We consider an infinite system of randomly placed point scatterers. We want to cal-
culate the dressed Green function, the average amplitude propagator in the disordered
system. Such an operator takes into account that the propagation between different
scattering centers is dressed with all the scattered fields, and therefore is the sum of
all possible scattering paths that connect the two points in the system. It is therefore
composed of the averaged T -matrix which is the sum of all the recurrent scattering
events undertaken by a single scatterer.

We will in the following introduce the self-energy operator, and we will use it to
obtain the average intensity propagator which describes what is measured in the ex-
periments.

The conventions used throughout this thesis are that lower cases refer to averaged
quantities, such that:

g0 ≡ 〈G0〉 (2.57)

g ≡ 〈G〉
t ≡ 〈T〉,

and the symbols used in the diagrams are:
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connection to identical scatterers
free space, naked Green function G0

dressed Green function g
◦ scattering potential V

⊗ full system average T-matrix t

2.9.1 Averages of multiple scattering

When dealing with an ensemble of scatterers, in order to obtain meaningful properties
that are not configuration-dependent, we have to calculate quantities averaged over
many disorder configuration. Experimentally this is done by rotating the scattering
sample, or letting the Brownian motion of a suspension average the position of the
scatterers. Mathematically it involves the averaging, denoted by 〈· · · 〉, of the Green
function and of the T -matrix. The brackets denote an ensemble averaging over all
positions of the scatterers, in the so-called thermodynamic limit, where the number
of individual scatterers as well as the size of the system tend to infinity, at constant
density of the scatterers. Doing so, we are losing configuration-dependent properties,
like light speckle, or some transient effects; on the other hand, the statistical approach
that we are following allows to get rid of the microscopical details that complicate the
microscopic Maxwell’s equations.

2.9.2 Average amplitude Green function

The average Green function of the system, labelled with g(ω), is given by the sum over
all scattering paths, therefore it is expressed in terms of the T -matrix, from Eq. (2.52):

g(ω) = G0(ω) +
∑

α

〈G0(ω)TαG0(ω)〉 +
∑

α6=β

〈G0(ω)TαG0(ω)TβG0(ω)〉 + . . . (2.58)

where the sum is performed over the scatterers.

If we assume that all the scatterers are statistically independent, then we can replace
the average of the product of two T-matrix 〈TαTβ〉 by the product of the average
〈Tα〉〈Tβ〉 and therefore Eq. (2.58) can be reduced to:

g = 〈G〉 = + ⊗ + ⊗ ⊗ + ⊗ ⊗ ⊗ +

⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ + · · ·
= (2.59)

where ⊗ is the average T-matrix:

t = 〈Tα〉 ≡ ⊗ = ◦ + 〈◦ ◦〉 + . . . (2.60)

Formally we have calculated the dressed propagator g = 〈G〉 averaging Eq. (2.55),
with the help of t, obtained from the averaging of Eq. (2.53). In the isotropic scattering
medium, the T -matrix depends on the scatterer only for its position, and therefore,
upon averaging t does not depend on the position of the scatterers (this is the statistic
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translational invariance). But the series in Eq. (2.55) cannot be averaged over disorder
analytically.

At this point, one is obliged to reduce the complexity of the problem and to rely
on approximate solutions. One way is to omit the third and higher order contribution,
this is the second order Born approximation, which is often used in electronic systems
and is easier for small systems. A disadvantage of this approach is that it provides a
diverging result in the thermodynamic limit of the system size which is increased to
infinity.

2.9.3 The self-energy

In order to perform the ensemble averaging it is convenient to define the self-energy. It
is the series of the recurrent scattering events that contributes to the Green function,
and it is defined via the Dyson equation, which links the dressed or ensemble-averaged
Green function to the naked one [74]:

〈G〉 = 〈G0〉 + 〈G0〉 Σ 〈G〉. (2.61)

Note that g0 = G0 as, in absence of the scattering potential, averaging over the disorder
has no meaning. We rewrite then the Dyson equation, following the conventions defined
in Eq. (2.57), as

g = g0 + g0 Σ g (2.62)

Eq. (2.62) expresses in a compact form an infinite perturbative series:

g = g0 + g0Σg0 + g0Σg0Σg0 + ...

= g0 + g0Σg (2.63)

which is a geometrical series, and thus can be formally solved as

g =
1

g−1
0 − Σ

. (2.64)

The role of the self-energy is to obtain a result for the full propagator g, valid at all
scattering orders. The self-energy is an averaged quantity that cannot be defined for a
single realization of the disorder. Its constitutive elements are the naked Green function
and the averaged T -matrix. All the difficulties in calculating the dressed Green function
are now moved to the self-energy, which is a macroscopic operator, function of t, which
instead has a microscopic nature.

The self energy can be developed in the density, and expressed in irreducible terms:

Σ = ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗
+ . . .

(2.65)

where ⊗ is the T -matrix as defined in Eq. (2.53), averaged over all positions of the
scatterers, at any scattering order. Irreducibility means that any diagram that can
be associated with the self energy cannot be separated into individual diagrams. Eq.
(2.65) is made of many different contributions, which, apart from the first term, are all
recursive (as indicated by the dotted lines). If we neglect recurrent scattering we can
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stop the summation of Eq. (2.65) at the first element, and thus express the self-energy
with the single scattering T -matrix.

Σ(ω) ≈ np t(ω) = np ⊗ (2.66)

This approximation is valid only if the density (np) of the scatterers is not too high;
this last requirement is very well accomplished if kℓ ≫ 1. The extra scatterer density
factors appear as a result of the averaging, and t = 〈T〉.

Finally we can calculate the dressed Green function from the knowledge of the self-
energy, via Eq. (2.64). In the case of a uniform density medium, the propagator for
the electric induction inside the effective medium is described by the dressed Green
function [75]:

G(r, ω) = −k
r
eikrN (ω)ei

r
2ℓs . (2.67)

The self-energy displaces the singularities of the Green function in the complex
plane adding a real and imaginary part to G0. A natural interpretation of Eq. (2.67)
arises: the real part of Σ(ω) contributes to the refractive index of the effective medium,

N (ω) ≡ 1 − ReΣ(ω)

k
, (2.68)

while its imaginary part to the extinction of the wave,

ImΣ(ω) = − 1

2ℓs
(2.69)

as it is connected with the scattering mean free path.

2.9.4 Average light intensity

We want to calculate the light intensity, and therefore we have to deal carefully with
the average of the interference of the light amplitudes. The richness of the interference
phenomena comes from the fact that average of the square is obviously not equal to
the square of the average4. The diagrammatic approach enables to use a two-particle
formalism which provides an equation equivalent to the Dyson equation for the self-
energy, but for the light intensity. The knowledge of the average T -matrix (t) is enough
to know the self-energy (Σ) and therefore the dressed Green function (g). We will arrive
later in the chapter to the Bethe-Salpeter equation, which will connect the average
intensity with the average tensorial product of two T -matrices, 〈T†⊗T〉 5.

The intensity, which is defined as the norm of the complex field amplitude E(r, t) =
A ǫ eik·r+iωt,

‖E‖ = E E∗ = A ǫ eik·r−iωt ×A ǫ
∗ e−ik·r+iωt, (2.70)

is the product of the amplitude of the field times its phase-conjugate, which is its time
reversal counterpart (see section 2.4). We can extend this point of view, and separate
the amplitude for a direct path from the amplitude for its reversed one,

Adir = A(kiǫi → kfǫf) and Arev = A(−kfǫ
∗
f → −kiǫ

∗
i ), (2.71)

4In multiple scattering theory, the latter term has the meaning of the so-called coherent beam, which
is the part of the incident one which has not suffered any scattering event.

5Do not confuse the symbol ⊗ of the tensor product with that of the averaged T -matrix.
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and consider them as independent contribution to the light intensity. What we are doing
is just treat the advanced and retarded Green function independently. We can build
up the intensity propagator pairing one retarded and one advanced amplitude Green
function. The intensity Green function, not averaged over the scattering configurations,
can be written as a sum of all possible diagrams like

G†G = +

⊗

⊗
+

⊗

⊗
+

⊗ ⊗

⊗ ⊗
+ . . .

+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . .

(2.72)

where the † is the transpose conjugate, the dotted lines connect identical scatterers and
the full lines are the dressed Green functions that allow propagation from one scatterer
to the other. Following our statistical approach, we are interested in the intensity
propagator averaged over position of the scatterers which is obtained by the average of
G†G:

〈G†G〉 = +

⊗

⊗
+

⊗ ⊗

⊗ ⊗
+ . . .

+

⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+ . . .

+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+ . . .

(2.73)

The diagrams in which G and G† perform uncorrelated paths are averaged to zero,
given the random nature of their phase difference. Note that even if scatterer to scat-
terer correlations are absent, (independent scattering approximation), there are many
correlated paths, which can be in phase and survive averaging, as for example the class
of reciprocal paths.

We can formulate a relation analogous to the Dyson equation (Eq. 2.62) for the
intensity propagator, relation which is called the Bethe-Salpeter equation:

〈G†G〉 = g†g + g†g U 〈G†G〉. (2.74)

Now the place of the self-energy is taken by the full irreducible vertex U :

U =
⊗

⊗
+

⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗
+

⊗

⊗ ⊗ ⊗
+ . . .

(2.75)

which is connected to the single scattering T -matrix via [76]

〈T†⊗T〉 = U + U 〈G†G〉 U + . . . (2.76)
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Calculation of all possible diagrams is a very complex combinatory task and it provides
an equation that is not easily solvable. For this reason one includes the interference
effects one by one, loosening the approximation any time a new class of diagrams is
included. As for the self-energy, here we keep only the first term of the perturbative
expansion of U . In the lowest order in the scatterer density one can approximate

U ≈
⊗

⊗

(2.77)

or equivalently:

U(k1ǫ1,k2ǫ2) = np〈T†(k1ǫ1)⊗T(k2ǫ2)〉 (2.78)

This approximation is equivalent to the radiative transfer equation, result which is
surprising and encouraging, and confirms the validity of the mesoscopic approach.

Before continuing one needs to check the consistency of the approximation, namely
the conservation of the energy. As we have shown, the averaged amplitude Green func-
tion suffers from extinction, it decays exponentially with the scattering mean free path
(the imaginary part of the self energy, as in Eq. (2.67)). The electromagnetic energy
is related to the average intensity, therefore to the irreducible vertex U(k1ǫ1,k2ǫ2).
Conservation of the energy is ensured by the Ward identity [76]:

ImΣ(ω) =
∑

k2,ǫ2

U(k1ǫ1,k2ǫ2) Im g(k2, ω). (2.79)

In order to be consistent with the Ward identity of Eq. (2.79), the approximations
on Σ(ω) and U(k1ǫ1,k2ǫ2) have to correspond to the same perturbative order. In
Eq. (2.66) we kept only the first term, at zero-th order in kℓ, the so called Born
approximation. One can prove [76] that the expression for the vertex U(k1ǫ1,k2ǫ2) as
in Eq. (2.77) is consistent with energy conservation.

In the radiative transfer equation for diluted media, the only terms that are con-
sidered are the field amplitude squared, without interference. One can construct this
contribution with the above expression of U (Eq. (2.77)) which can be diagrammatically
presented by the so called ladder term:

L =
⊗

⊗
+

⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . .

(2.80)

The first term is single scattering, only one scatterer is involved; the second one is the
double scattering contribution, but without any interference: the scatterers are visited
in the same order, and the result is just the single amplitude squared, and so on6.

Refinements of this crude picture, that excludes all possible interference effects,
involve the addition of some of the crossed diagrams that have been neglected. Coherent
backscattering is originated from the most crossed diagrams which are:

C =
⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . .

(2.81)

6This definition of the ladder term includes also single scattering. To be consistent with the literature
we will change this definition in the next section.
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The first term is the interference coming from the double scattering contribution, for
paths such that the direct and reversed visit the same scatterers but in the opposite
order; the second term is made of all the third order scattering paths, and so on. In Eq.
(2.81) no recurrent diagrams are included, as we are assuming to be at low scatterer
density, such that k ℓs ≫ 1, and thus paths which visit the same scatterer more than
once have negligible contribution.

The ladder term conserves the energy, but the introduction of the crossed one causes
further complications. The crossed term describes additional light intensity in the
backward direction: the energy balance is not satisfied any more. The crossed term
is intrinsically not self-consistent, it does not preserve the Ward identity (Eq. (2.79)),
even if it is perfectly justified by intuition. The surplus intensity in backscattering
which unbalances the energy conservation is proportional to 1/(kℓ)2 which is the solid
angle involved in the coherent backscattering cone. We are performing a zero order
perturbation on (kℓ), and thus the energy missing in the balance, which is a second
order contribution, is acceptable [7].

What we have calculated so far is valid in the bulk of the system, the ladder and
the crossed diagrams start with the first scattering event. In order to calculate the light
transport, the effect of the input and output coupling is very important. The mesoscopic
approach, as a crucial difference with the diffusive, is valid also at the boundaries and
no assumptions are needed to complete the calculations. The input and output coupling
is just described by the Beer-Lambert’s law (Eq. (2.14)) and therefore the intensity
that arrives at the position of the first scattering event is just given by exp(−r/ℓs) of
the incident one, and analogously for the output coupling. This type of calculations
will be clear in section 2.11 when we will traduce the diagrammatic approach into an
integral one.

2.9.5 The weight of the ladder and crossed terms

One of the most important quantity that one want to measure in a coherent backscat-
tering experiment is the enhancement factor, which is the ratio between crossed terms
and all the other contributions. We should then compare Eq. (2.80) and Eq. (2.81).
Usually single scattering, which has no counter-part in the crossed term, is not included
in the ladder term, but it is considered independently as:

S =
⊗

⊗

(2.82)

The new definitions of the ladder and the crossed term are

L =
⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . .

(2.83)

C =
⊗ ⊗

⊗ ⊗
+

⊗ ⊗ ⊗

⊗ ⊗ ⊗
+

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗
+ . . .

(2.84)

The reciprocity (section 2.4) ensures that each direct path has the same amplitude
probability as its reversed one, and therefore also that each element of the crossed term
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can be obtained from its ladder counter-part, just reverting the scattering sequence
for the conjugate wave. The enhancement factor, at exact backscattering (θ = 0), in
absence of single scattering has therefore the value of 2, as

L = C (2.85)

In presence of single-scattering the crossed term is not twice all the other contributions,
and the enhancement is reduced from the value of 2 (see section 2.10.2).

2.10 The coherent backscattering cone line shape

2.10.1 The bistatic coefficient

What one wants to calculate is the component of the backscattered light which is
enhanced compared to the diffusive background. We are interested in studying the so
called ”slab-geometry” where light is incident on a slab of infinite transverse extent,
or the ”semi-infinite geometry” when such a slab has infinite thickness. The quantity
usually calculated in a scattering process is the bistatic coefficient as a function of
angle, around exact backscattering. The bistatic coefficient is related to the scattering
cross-section of the whole medium by [77]

γ(µi, µf) ≡
4π

A

〈
dσ̃

dΩ
(ki −→ kf)

〉
(2.86)

which is a function of µi/f = cosi/f θ the cosine of the incident and scattering angles;
A is the illuminated area on the sample and dσ̃/dΩ the differential scattering cross-
section of the illuminated area of the sample. In this expression the brackets 〈. . .〉
denote the an ensemble averaging over all positions of the scatterers, in the so-called
thermodynamic limit defined in section 2.9.1. Note that Eq. (2.86) is valid only if
A ≪ ℓs, for the average to be meaningful. The bistatic coefficient has the physical
meaning of a normalized scattered intensity per solid angle,

γ =
4πr2

A

〈I(r)〉
I0

(2.87)

where I0 is the incident intensity and r the distance of the observer from the sample.
In general, if the scattering process depends also on other parameters, like polarization,
we can define a more general bistatic coefficient, which has tensorial nature:

γ(kiǫi,kfǫf) =
4π

A

〈
dσ̃

dΩ
(kiǫi −→ kfǫf)

〉
. (2.88)

2.10.2 The enhancement factor

The total normalized backscattered intensity due to multiple scattering is the sum of
a weakly angular dependent diffuse background γL and a contribution from the inter-
ference between reciprocal light paths γC [8, 9, 10]. These two components, called the
ladder (γL) and crossed(γC) terms, can be obtained from the summation of the ladder
and crossed vertex described in the previous section. The γL term corresponds to the
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backscattered intensity if interference were neglected, and it has a weak angular depen-
dence γL ∼ cos(θ) [42] that depends only on the system geometry7. This contribution is
completely flat in the angular range of our experiment. All interference effects are con-
tained in γC. The enhancement factor EF is defined as the enhancement of the intensity
in the exact backscattering direction due to this interference. As we have seen in Eq.
(2.85) the ladder and the crossed term are equal if single scattering is subtracted. This
imply that at exact backscattering γL = γC, the interference is perfectly constructive
and EF = 2. In practice one has to account for single scattering (γS) and stray light
(γstray) which reduce the observed enhancement factor. The normalized backscattered
intensity I(θ), as a function of the scattering angle θ, is written [51]:

I(θ) =
γC(θ) + γL + γS + γstray

γL + γS + γstray
, (2.89)

where only γC depends rapidly on θ, because of its interferential nature, while the other
contributions can be considered flat in the angular range of interest. The backscattering
enhancement EF is the value of Eq. (2.89) at θ = 0, and it is the experimentally
obtained enhancement factor. If only reciprocal contributions are considered, single
scattering is eliminated, and stray light is completely shielded, then

EF ≡ γC(θ = 0) + γL

γL
= 2. (2.90)

This result has been experimentally confirmed [81].

2.10.3 The crossed term in the diffusion approximation

We follow here a standard approach for calculating γC(θ) in which one solves the ra-
diative transfer equation for a random collection of point scatterers in a self-consistent
way and upon diffusion approximation [11]. The solution is based on the summation
of the crossed diagrams, neglecting recurrent scattering events where one scatterer is
visited more than once.

In principle the radiative transfer equation could be solved without further ap-
proximations [42], but it is quite involved. The ladder diagrams could be summed up
without relying on the diffusion approximation and the maximally crossed terms could
be added to this classical transport picture, to account for interference effects and to
predict coherent backscattering. The diffusion approach is much simpler and it can
be very accurate. We will address its limitations further in the thesis, and we show
here the solution obtained with the intensity propagator calculated from the diffusion
equation (a detailed solution can be found, for example, in ref.s [78, 74]). Assuming
that the random walk in the three orthogonal propagation directions is uncoupled, we
obtain the crossed term in the isotropic case, for a semi-infinite slab:

γC(θ) =
3

2(ℓt)3αu

α+ u(1 − exp (−2αze))

(u+ α)2 + η2
, (2.91)

where η ≡ k(1 − µs), u ≡ 0.5 ℓ−1(1 + µ−1
s ), ze = 2/3 ℓt, µs = cos θ, and α = k sin θ,

and k the wave-vector of the light in vacuum. Here θ is the scattering angle, and ℓt the

7This is the reason why we see the sun or a spherical light bulb as uniformly illuminated, as this
angular dependence compensate with the projection factor.
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transport mean free path. For many practical case (almost all cases) one deals with
cones of opening angle much smaller than 100 mrad (as all the experiments described
in this thesis).

Figure 2.13: Theoretical shape of the coherent backscattering cone.

Fig. 2.13 shows the isotropic coherent backscattering cone as described in Eq. (2.91).
Its full width half-maximum W is:

W (θ) ≃ 0.7

2π

λ

ℓt
, (2.92)

and its enhancement is 2.

In the presence of internal reflection at the sample interface, the full width at half-
maximum W becomes [79]

W (θ) ≃ 0.7

2π

λ

ℓt
(1 −R), (2.93)

where R is the average reflectivity coefficient of the interface, which can be calculated
from diffusion theory and Fresnel coefficients [80]. In the following we will neglect
internal reflections as in the experiments the samples are contained in a (quasi) index-
matched quartz cell.

2.10.4 The crossed term from radiative transfer equation

The solution to the complete radiative transfer equation for scalar waves has been
calculated [42]. The exact solution is plotted versus the diffusive solution in Fig. 2.14.
As one can see, the two profiles are different, mainly in the tails. Diffusion theory
underestimate the low orders of scattering, and in particular double scattering, which
is the main large angle contribution [44].

As we will show in the next chapter, a Monte Carlo simulation of scalar waves in
isotropic media (for which ℓt ≡ ℓs) gives a result which is indistinguishable from the
radiative transfer solution provided by Amic et al.[42].
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Figure 2.14: Theoretical shape of the coherent backscattering cone in the semi-infinite geom-
etry, obtained from radiative transfer equation (full line) and from the diffusion equation (dotted
line).

2.10.5 Effect of absorption, gain and recurrent scattering on the cone shape

In Eq. (2.91), absorption is neglected, which is a good approximation as typically
the laser wavelength is outside the region where the medium is absorbing. The cone
profile reflects the path-distribution inside the sample, which defines the weight of the
various contributions. The presence of absorption, in general, changes the line-shape as
it decreases the amplitude of the long paths exponentially more than the short paths.
The result is a cone with a rounded top, as the highest spatial frequencies are absent.
The effect is analogous to having a thin sample, which therefore does not support paths
longer than its thickness squared.

Optical gain acts in the opposite direction as it increases the probability of a very
long path, i.e. very small spatial frequency contribution to the cone. Such a condition
reflects into a cone with a sharper top, but with the same enhancement factor of two,
as both the reciprocal paths and the diffuse background are equally amplified.

In this context it is worth to mention also the more subtle effect of recurrent scat-
tering events, the forerunners of Anderson localization. Recurrent events are present if
the scattering density (or strength) is so high that a wave can be scattered more than
once by the same scatterer, and thus that close paths are possible (see Fig. 2.15). For
same scatterer, here, we do not mean the same point in space, as a random walker
has zero mathematical probability of returning to the same point, even in the localized
regime. Instead we speak about the return to the volume associated to the scattering
center (determined by the total scattering cross-section and the light wavelength). The
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Figure 2.15: Recurrent scattering events. The single scattering cross-section is represented
with the dotted circles.

recurrent path shown in Fig. 2.15 can be expressed in diagram form as:

⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗

(2.94)

This is a diagram which is neither in the ladder series nor in the most crossed one.
It has a non-negligible probability to happen only if the density is very high, such
that k ℓs approaches the value of one (the so-called Ioffe-Regel criterion). Closed loop
scattering paths have a reciprocal counterpart with which they can interfere coherently
for any scattering direction since for such paths rN = r1 and ∆φ = 0 independent of
kf . These patterns are almost angle-independent and therefore they do not contribute
to the cone, but to the flat background. If we look at the recurrent path of Fig. 2.15
we can also understand that the path has a contribution to the diffuse light which is
very similar to single-scattering, and therefore acts to decrease the enhancement factor.
This turns into a backscattering enhancement smaller than 2, but not into a rounded
cone, as the path-length distribution is not changed. The experimental evidence of this
phenomenon has been exhibited and it has been confirmed from a first order density
correction of the diffusive theory [81].

2.10.6 Coherent backscattering from vector waves

Electromagnetic waves, in the far field, are vector waves, with a defined polarization
transverse to the propagation direction. Vector waves are a theoretical complication to
the equations, but can also be of help in the experiments. For circular incident polar-
ization, the cone can be measured in the so-called helicity preserving channel (++) or
in the helicity non-preserving (or reversing) channel (+−). When using linear polar-
ization, the two polarization channels are the polarization preserving channel (lin‖lin)
or the polarization non-preserving channel (lin⊥lin).

In the case of circular polarization, the vectorial nature can be exploited to suppress
single scattering, an essential requirement to achieve the maximum enhancement of
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2. What one can do is to use a quarter-wave plate and an analyzer to detect only
photons in the helicity preserving channel. The quarter-wave plate converts the incident
vertical polarized light to right circularly polarized before impinging into the sample.
Backscattered light that is right-circularly polarized will be reconverted into vertical
polarization upon traversing the quarter-wave plate for the second time, whereas left-
circularly polarized light will be converted to horizontal polarization which will be
blocked by the vertical transmission axis of the analyzer. This optical arrangement has
the added benefit of suppressing the single scattering contribution to the backscattered
intensity. For point-like scatterers, single scattering in the backscattering direction flips
helicity, so for right-circularly polarized incident light the single scattering contribution
is all left-circularly polarized, and therefore it is blocked by the polarization analyzer,
and does not reach the detector. This is not always true if the scatterers are larger in
size or without spherical symmetry.

Single scattering is all in the helicity-reversed channel, which has a weak enhance-
ment. On the other hand the helicity preserving channel exhibits an enhancement value
of 2 [81].

Figure 2.16: Polarization dependence of the first scattering orders for Rayleigh scatterers. The
differential scattering cross-section is shown for two scattering events.

This single-scattering suppression technique cannot apply to the lin‖lin channel, and
single scattering (∼ 16% of the scattered light for isotropic scalar Rayleigh scatterers) is
always present in the measurements. The maximum enhancement is close to 1.8 − 1.9
(1.86 for isotropic scalar Rayleigh scatterers). Due to the nature of the scattering
processes that we will investigate in chapter 3, we will discuss only the case of linear
polarization.

A linear polarization in or normal to the scanning plane introduces an anisotropy
in the backscattered cone, due to trivial polarization effect, not related to anisotropic
diffusion [82]. The direction of the polarization breaks the rotational symmetry of the
system and thus marks the difference between the two different directions, parallel and
orthogonal to it.

The difference lies in the first scattering events, where the differential scattering
cross-section presents a minimum (with value zero) in the direction of the incident
polarization: no light can be scattered if its polarization is orthogonal to the induced
dipole, as the dipole can only radiate evanescent waves in the longitudinal direction.
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The effect can be seen in the lin‖lin channel. At low scattering orders the input-

Figure 2.17: Monte Carlo simulation for coherent backscattering cone from a medium of vec-
torial Rayleigh scatterers (for details see chapter 4).

output distance of reciprocal paths is smaller in the direction parallel to the incident
polarization, and the backscattering cone wider, while it is thinner in the direction
orthogonal to the input polarization (see Fig. 2.17). For higher scattering orders, the
polarization is completely scrambled and the two contributions, parallel and orthogonal
to the incident polarization, are equivalent. For this reason, in the lin‖lin channel, the
tops of the two scans have the same opening angle and circular symmetry: long paths
have completely lost polarization memory and are thus symmetric, while the lower
orders retains memory of the anisotropic single-scattering cross-section.

In the case of crossed polarized channel, lin⊥lin, the cone has a 4-fold symmetry, as
the only symmetry axes that can exist are the bisectors of the incident and measured
polarization [68]. If one performs a scan of the cone with the polarization at 45 deg
with respect to the incident one, one finds an anisotropy and at the same time, a
strongly reduced enhancement. This is again related to the scattering cross-section
of a single dipole. As a result, a time-reversal path for the helicity reversing channel
has less probability to occur than in the helicity preserving channel. The reciprocity
argument does not hold now, as the couple of interfering path are not reverse pairs (see
Eq. (2.23)), and therefore their amplitude are not equivalent. The amplitudes which
interfere are

Adir = A(kiǫi → kfǫf) and Arev = A(−kfǫ
∗
i → −kiǫ

∗
f ). (2.95)
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Reciprocity ensures that

A(kiǫi → kfǫf) = A(−kfǫ
∗
f → −kiǫ

∗
i ), (2.96)

but nothing is said about the lin⊥lin reversed path

Arev = A(−kfǫ
∗
i → −kiǫ

∗
f ). (2.97)

In the lin⊥lin channel, depending on the shape of the path, the interference ranges
from completely constructive to destructive. The small enhancement is due only to low
scattering orders, as it is evident from the rounded top of the lin⊥lin cone.

2.11 The integral formulation of coherent backscattering enhance-

ment

As shown in sec 2.3.1, one of the most intuitive picture to describe light propagation
in random media is that of a random walk of light wavepackets, which we will call for
simplicity photons, but which are of classical nature. In the simplest case of isotropic
scatterers embedded in a dilute homogenous medium, one thinks of the photons as
travelling in straight lines, ballistically, and changing direction upon scattering. The
distance travelled between two scattering events, which on average is the scattering
mean free path ℓs, is ruled by the probability of a scattering event: the weaker the
scattering probability, the longer the distance travelled.

The random walk approach implies that all the scattering details of the scattering
event are mapped into an effective average medium, in which the photons travel ballis-
tically and perform elastic collisions. This mapping consists in including all the features
of the transport process in few parameters, like the diffusion constant, the transport
mean free path or the transport velocity. When the degrees of freedom of the scatter-
ing process start to increase, for example when polarization is included, or scattering
anisotropy is present, or the scatterers have internal structure, then this approximation
have to be carefully extended (or dropped).

We will here rewrite the expressions given in the previous sections with an integral
formulation, which is analogous to the diagrammatic formulation, but more suitable for
a Monte Carlo simulation (see chapter 5). The bistatic coefficient has to be averaged
over the scatterer configuration to provide smooth and meaningful quantities. This
averaging, in this thesis, is not accomplished with the diffusion approximation, but
with the Monte Carlo simulation. This also means that averaged quantities like the
transport mean free path ℓt do not appear in the equations.

2.11.1 Scalar wave in uniform and isotropic scattering media

A single scattering event is isotropic if the scattered light pattern is uniform in the
full solid angle. This implies that the scattering differential cross-section is a scalar
quantity, constant in any direction:

dσ

dΩ
=
σt

4π
, (2.98)

equal to its angular averaging.
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Light undergoes multiple scattering when it propagates through inhomogeneous me-
dia over distances much larger than one scattering mean free path ℓs. The passage from
single to multiple scattering requires therefore the definition of G(k, r12), the ampli-
tude Green function of the system which describes how the light amplitude propagates
between two scattering events. For isotropic scattering, one usually uses a direction
independent propagator, which is the solution of the wave equation described in Eq.
(2.56)

G(k, r12) = − 1

4πr12
exp (ikr12) exp

(
−r12

2ℓs

)
, (2.99)

which is the scalar equivalent of the result of Eq. (2.67). The Green function in Eq.
(2.99) is simply a spherical wave exp(ikr12)/4πr12 attenuated by the Beer-Lambert
factor exp(−r12/2ℓs) which takes into account the presence of the scattering medium;
k is modulus of the wave vector inside the medium (see Fig. 2.18).

Figure 2.18: Real part of the vacuum Green function, which is a spherical wave. Note that in
dressed Green function, Eq. (2.99), an extra exponential damping factor is present.

2.11.2 The ladder term

As already said, the ladder term corresponds to the backscattered intensity if inter-
ferences were neglected, and has a weak angular component that depends only on the
medium geometry. The ladder term can be developed in scattering orders, as shown in
Eq. (2.80). The contributions of the N-th scattering order is:

γ
(N)
L =

4πnN
p

A

∫
e−z1/ℓs

(
dσ

dΩ

)

1

(16π2G(k, r12)G
∗(k, r12))

(
dσ

dΩ

)

2

. . .

. . .

(
dσ

dΩ

)

N−1

(16π2G(k, rN−1,N )G∗(k, rN−1,N ))

(
dσ

dΩ

)

N

e−zN/ℓ dr1dr1 . . . drN

(2.100)
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where the integral is performed over all the possible {r1, r2, . . . , rN} positions of the
scatterers. np is the scatterers density, A the illuminated area and the z-axis is orthog-
onal to the sample front face.

This integral is equivalent to a random walk model, and it can be interpreted as a
collection of successive scattering events, represented by (dσ/dΩ), followed by ballistic
propagation in the average medium, via the amplitude Green function G(k, r12), and
then scattering again, and so on. The first and last exponentials are the boundary
conditions, they account for the intensity lost in the medium before the first scattering
(exp(−z1/ℓs)) event and after the last one (exp(−zN/ℓs)).

If one wanted to add an angular dependence, it would have considered not kf =
−ki = (0, 0,−k), but kf = (−k sin θ cosφ,−k sin θ sinφ,−k cos θ). A change of variable
could get rid of this cos θ, and the ladder term would be the same, but with an extra
weak angular dependence.

2.11.3 Crossed term

The crossed term is the non-diffusive contribution that is at the origin of the coher-
ent backscattering cone (see section 2.10.2). It can be written formally as the ladder
contribution, with in addition the interference term

cos[(kin + kout) · (rN − r1)], (2.101)

for each scattering order, following Eq. (2.81), as

γ
(N)
C =

4πnN
p

A

∫
dr1dr1 . . . drN e−z1/ℓs

(
dσ

dΩ

)

1

(16π2G(k, r12)G
∗(k, r12))

(
dσ

dΩ

)

2

. . .

. . .

(
dσ

dΩ

)

N−1

(16π2G(k, rN−1,N )G∗(k, rN−1,N ))

(
dσ

dΩ

)

N

e−zN /ℓ cos[(kin + kout) · (rN − r1)].

(2.102)

This integral equation is known in each of its components, but it is not so easily solved
analytically. In the case of scalar and vectorial waves in isotropic point-like scatterers
full solutions do exist but are quite involved [42].

The specific example of single and double scattering can help understanding the
model.

2.11.4 Single scattering contribution for scalar waves

Single scattering has no counter-part in the crossed term, as no interference can take
place with only one light path. The integral is very simple as no intra-scattering
propagation is required.

γ
(1)
L =

4πnp

A

∫
e−r01/ℓs

(
dσ

dΩ

)
e−r10/ℓs dr1 (2.103)

The meaning is: the photon enters the medium at position r = r0, then it propagates in
the average medium where it suffers from Beer-Lambert’s attenuation for the distance
r10 = r1 − r0, expressed by the term exp(−r01/ℓs); at position r = r1 it is scattered,
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Figure 2.19: Single scattering event.

(expressed by dσ/dΩ), and then it exits the medium following the same path and being
attenuated again by exp(−r10/ℓs). Here we calculate the single scattering contribution
at exact backscattering as it is so weakly angular dependent that with great accuracy it
can considered constant in the angular range of interest. This means that r01 = r10 =
z1.

The translational symmetry in the x-y direction allows for a trivial integration over
dx and dy

γ
(1)
L =

4πnp

A

∫

A
dx1dy1

∫ ∞

0

(
dσ

dΩ

)
e−2z1/ℓsdz1. (2.104)

Using the isotropic scattering cross-section form Eq. (2.98) and by rescaling all the
dimensions of a mean free path, r −→ r/ℓs, the ladder term can be expressed as:

γ
(1)
L =

4πnpℓs
A

∫

A
dr⊥

∫
σt

4π
e−2z1dz1 =

4πnpℓs
A

A
( σt

4π

) ∫
e−2z1dz1. (2.105)

The integral can be calculated easily, using the relation σtnp = 1/ℓs and first performing
the integral over dr⊥, the direction orthogonal to z, which is

∫
A dr⊥ = A. Finally one

obtains:

γ
(1)
L =

∫ ∞

0
e−2z1dz1 =

1

2
. (2.106)

2.11.5 Double scattering contribution to the ladder term for scalar waves

For double scattering an intermediate propagation step is required, between the first
and last scattering event. Here we use the free space Green function G(k, r12) defined
in Eq. (2.99), as we assume that the scattering centers are contained in an optically
uniform medium. The double scattering ladder term is given by:

γ
(2)
L =

4πn2
p

A

∫
e−z1/ℓs

(
dσ

dΩ

)

1

[16π2G(k, r12)G
∗(k, r12)]

(
dσ

dΩ

)

2

e−z2/ℓs dr1dr2

(2.107)
which is rewritten using Eq. (2.99), via the variable change

{dr1, dr2} −→ {dr1, dr12} −→ {dr1, r
2
12dr12dΩ12} (2.108)
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Figure 2.20: Double scattering event.

where r12 is the relative distance between two scattering events. Then we can perform
the trivial integration over dx1 and dy1 which gives the illuminated area A and obtain:

γ
(2)
L = 4πn2

p

∫
e−z1/ℓs

(
dσ

dΩ

)

1

e−r12/ℓs

(
dσ

dΩ

)

2

e−z2/ℓs dz1dr12dΩ12. (2.109)

In analogy with the calculation for single scattering, the double scattering contribution
to the ladder term around θ = 0 becomes:

γ
(2)
L =

∫
dz1dr12 e

−z1 e−z2 e−r12 =
ln(2)

2
. (2.110)

2.11.6 Double scattering contribution to the crossed term for scalar waves

The bistatic coefficient for the crossed term, in double scattering only, becomes:

γ
(2)
C =

4πn2
p

A

∫
dr1dr2 e

−z1/ℓs

(
dσ

dΩ

)

1

[16π2G(k, r12)G
∗(k, r12)]

(
dσ

dΩ

)

2

e−z2/ℓs cos[(kin + kout) · (r2 − r1)] (2.111)

The integral can be solved [76], and its value is given by F(θ), which we will use again
in chapter 5,

F(θ) =

[
2 arg cosh

(
1

| cos θ|

)
− arg cosh

(
1

cos2 θ

)]
/
√

1 − cos2 θ. (2.112)

The integral formulation of the crossed term is perfectly suitable for a numerical
solution: when light scattering and propagation are known, a Monte Carlo technique
can be used to perform the configuration averaging needed. In the next chapter (Fig.
5.7), we will show that a Monte Carlo simulation can be as accurate as to provide
solutions indistinguishable from the analytical one with little computational time. A
numerical solution can further help in calculating solutions also for anisotropic multiple
scattering, problem which does not have analytical solutions.
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2.12 Isotropic scattering of vector waves

If one wants to describe scattering of vector waves, one has to replace the scalar differ-
ential scattering cross-section of Eq. (2.98) with the vectorial

dσ

dΩ
(|ki, ǫi〉 −→ |kf , ǫf〉) =

3

8π
σ0 |ǫi · ǫ∗f |2. (2.113)

And the propagator Green function of Eq. (2.99) with the vectorial one:

G(k, r12) = − 1

4πr12
exp (ikr12) exp

(
−r12

2ℓs

)
∆r, (2.114)

where ∆r is the projector perpendicular to r acting in the space of polarizations:
(∆r)ij = δij − rirj/r

2.
With these ingredients, all the integral described so far can be extended to the case of

vector waves. The main new concept is the transversality of the electromagnetic waves,
which reflects into the projector ∆r. With all the mesoscopic ingredients presented so
far, we can, in the next chapter, extend the multiple scattering model to anisotropic
scattering and anisotropic weak localization.





Chapter 3
Multiple scattering anisotropy

A scattering event is anisotropic if the radiated pattern is not the same in all directions,
in other words if the differential scattering cross section is not uniform at all angles;
this happens for example with Mie scatterers (particles large compared with the light
wavelength).
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Figure 3.1: Polar plot of the differential scattering cross-section for a Mie sphere of size a =
kd = 20, where d is the sphere diameter.

A Mie scatterer has a very forward peak in the differential scattering cross-section
(see plot of Fig. 3.1), but its anisotropy has no preferential direction as the differential
scattering cross-section depends only on the relative angle between incident and scat-
tered directions. We are interested in the multiple scattering process of light by many
scattering centers, and we want to apply a statistical approach. A random walker in
an ensemble of Mie scatterers will encounter a series of anisotropic scattering events,

51



52 3. Multiple scattering anisotropy

but whose scattering patterns are randomly oriented in the directions of the random
scattered k-vectors. The average of these paths will not produce, in general, anisotropic
diffusion of light, as the average of the microscopic anisotropy is usually statistically
isotropic.

In order to break rotational symmetry of the scattering process we have to introduce
one or more favorable directions of scattering. If this special axis (often called the
optical axis) is not unique in the system, but is defined only on the microscopic scale
(in local domains), like in the case of not-oriented nematic liquid crystal that we will
investigate in the next chapter, then the configuration averaging will reduce the process
to a macroscopic isotropic multiple scattering process.

If we can extend the locally oriented domains to the macroscopic size of the sample,
then a global favorable scattering direction will survive averaging. When the single
scattered pattern depends only on the direction of the incident k-vector, with respect
to a global optical axis, then the anisotropy is only a geometrical effect, i.e. light diffuses
differently in the two directions, parallel and orthogonal to the optical axis. The effect
of the anisotropy is the same for all scattering events, thus it can be factorized out of
the equations. The diffusion approximation applies and can be extended to include two
different diffusion constants, D⊥ 6= D‖ in the two directions ‖ and ⊥ to the optical axis
[83]. The only effect of this form of anisotropy is to resize the transport quantities like
the diffusion constant or the transport mean free path, differently in the two directions.
The coherent backscattering results, as expected, anisotropic as one of the two directions
is rescaled [84].

There are forms of anisotropy that do not average out upon multiple scattering and
that arise much interest, as they can induce anisotropic light transport at all orders
without causing only a geometrical effect, but changing also the light interference.
They can induce an anisotropic differential scattering cross-section, which depends
on the photon light state: the diffusive picture can break down. In such conditions,
anisotropic weak localization is expected and many intriguing interference phenomena
like Anderson localization or coherent random lasing could be affected.

Anisotropic multiple scattering and diffusion has been observed, for example, in
the phenomenon of the photonic Hall effect, in which the Faraday effect induces an
anisotropy of the dielectric constant of the scatterers [85]. In such case a macroscopic
anisotropy survives the multiple scattering and the diffusion of light drifts towards a
direction perpendicular to the propagation direction (and the applied magnetic field).

Here we will study anisotropic transport of light in a collection of anisotropic
Rayleigh scatterers, namely (1) anisotropic propagation in an ensemble of isotropic
scatterers and (2) scatterers with a preferential axis of polarizability. The first case
induces only a geometrical effect, while the latter is characterized by a random walk
with variable step-length according to the polarization of the photon relative to the
optical axis, and is an intrinsic anisotropic process.

3.1 Anisotropic light transport

A random distribution of isotropic scatterers induces a scattering potential whose cor-
relation function is a delta function δ(r, r′), and hence has no long range correlation.
This is the case, for example, for a Gaussian disorder, as shown in Fig. 3.2, where the
potential is presented aside with its correlation function.
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Figure 3.2: (a) Random scattering potential made of a random arrange of isotropic scatterers.
(b) The potential correlation function, which is a delta function centered at r = 0, as shown
from the inset.

If one imagines stretching the position of the scatterers in this random arrangement,
one does not induce correlations, but only changes the average density of scatterers.
What one obtains is again a random potential, in which light propagate isotropically,
as in Fig. 3.3. The action of stretching the space, which conserves the single-scattering
isotropy, is a linear operation, which cannot induce new correlations. This can be

Figure 3.3: (a) Random scattering potential made of isotropic scatterers. (b) Random scatter-
ing potential stretched of a factor of 2 in the vertical direction. No correlations are visible, as
confirmed by the two correlation functions which are a delta-function (not-shown here).

understood also thinking of the density of particles encountered by a ballistic walker in
its propagation; in a given volume, the number of particles is the same (i.e. the density
is a scalar), regardless the direction of propagation, the multiple scattering process has
the same (isotropic) influence on propagation.

A different effect is originated by correlations in the positions of the scatterers,
which can induce long range scattering correlations and thus make the isotropic picture
anisotropic. In Fig. 3.4(a), the scattering potential is made of a periodic arrangement
(hexagonal lattice) of isotropic scatterers. Its correlation function shows peaks at the
positions of the inverse of the spacing between the particles (Fig. 3.4(b)).

For completeness and for further use, in chapter 6, we are presenting here also the
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(a) (b)

Figure 3.4: (a) Correlated scattering potential made of a periodic arrangement of isotropic
scatterers, SEM image of a 3D photonic crystal of SiO2 (done in collaboration with Stefano
Gottardo). (b) The potential correlation function, shown peaks at the positions of the inverse
of the spacing between the particles, with the same periodicity as the optical lattice.

case of a periodic potential, which show Bragg peaks in the correlation function (Fig.
3.4), and a 3D electronic icosahedral quasi-crystal of Zn-Mg-Ho, which has no period-
icity but long range correlations (Fig. 3.5), which shows up in a complex diffraction
pattern.

Figure 3.5: In the left panel a projection of the atom positions (41 × 41Å) of the decagonal
Al72Ni20Co8 quasicrystal is shown. The thin black lines show the Penrose tiling. The right panel
is an X-ray transmission Laue photograph of the icosahedral electronic Zn-Mg-Ho quasicrystal
(courtesy of Hiroyuki Takakura, [86].)

3.1.1 Anisotropic propagation in isotropic Rayleigh scatterers

The simplest way to obtain anisotropic light transport, without changing the single
scattering cross-section is to change the inter-scatterer propagator. This can occur if
there are scattering potential correlations.
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In reality the propagator and the differential scattering cross-section are closely
linked as they are both a function of the system T -matrix, and therefore both of them
should be changed. In fact, this is only a simple model to understand the role of the
anisotropy, testing one of the essential ingredients of the multiple scattering process. As
we will show later, such a case can be very precisely described with an anisotropic dif-
fusive model, if the isotropic diffusion constant D is replaced by an anisotropic diffusion
tensor.

What we want to do is to change the isotropic propagator, making the length of
the random walk step in between two scattering event longer (or shorter) in a special
direction. As a result

G(r12) 6= G(|r12|). (3.1)

The amplitude random step can now be calculated from the distribution

exp

(
−r12 Rr12

2ℓ0r12

)
(3.2)

where ℓ0 is the isotropic mean free path, and R is the spatial anisotropy matrix that
defines the direction and the amount of anisotropy, via the parameter s. The matrix
R is the dilation matrix and can be represented in the laboratory frame, in the basis
{ŝ, e1, e2} as:

R =




s 0 0
0 1 0
0 0 1


 (3.3)

ŝ is the direction of anisotropy, s the amount of stretching (s = 1 gives is the identity
transformation). The step length r = r12 can be expressed from the isotropic step r0

as
r12 = (s− 1)(r0 · ŝ) ŝ + r0 (3.4)

The result is shown in Fig. 3.6, the step vector r12 is increased in magnitude and it is

Figure 3.6: Effect of the anisotropy on the random walk vector: r0 is turned into r. The direction
of ŝ is show, parallel to x.

rotated towards the direction ŝ.

3.1.2 The anisotropic diffusion model

As we have already anticipated, this type of anisotropy can be very precisely described
with an anisotropic diffusive model, such that the isotropic diffusion constant D = vℓt/3
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is replaced by an anisotropic diffusion tensor. The diffusion equation for the light
intensity I = I(r, t) then reads:

S +
∂I

∂t
=

(
Dxx

∂2

∂x2
+ Dyy

∂2

∂y2
+ Dzz

∂2

∂z2

)
I − v

ℓa
I (3.5)

where S = S(r, t) is the source, Dxx, Dyy, and Dzz the diagonal components of the
diffusive tensor, v the energy velocity and ℓa the absorption time. The z axis is parallel
to the slab normal.

The action of the anisotropy in the direction x of the space modifies the variables
as:

x −→ x′ = s× x

y −→ y′ = y

y −→ y′ = z

(3.6)

without changing the scattering cross-section. This is not a real change of variable, as
it acts only on the intra-scattering propagation. From Eq. (3.6) it follows that

∂2

∂x′2
−→ 1

s2
× ∂2

∂x2
. (3.7)

Using this expression the diffusion equation can be rewritten in a form analogue to Eq.
(3.5), including the parameter s in the diffusion tensor:

Dx′x′
∂2

∂x′2
=
(
s2 ×Dxx

) ∂2

∂x2
(3.8)

An analogue way of obtaining the same result starts from the definition of the diffusion
constant, and introducing the anisotropic transport mean free path

Dx′x′ =

(
v′ℓ′t
3

)

xx

=

(
sv sℓt

3

)

xx

= s2 Dxx. (3.9)

We can generalize this relation, and express the diffusion tensor with R, the spatial
anisotropy matrix:

D′ = RDR† =
vℓt
3




s 0 0
0 1 0
0 0 1






1 0 0
0 1 0
0 0 1






s 0 0
0 1 0
0 0 1


 (3.10)

In the special case of uniaxial medium, D ′ is directly proportional to R2,

D′ =
vℓt
3




s2 0 0
0 1 0
0 0 1


 (3.11)

If we add this results to a calculation of the coherent backscattering cone, we can
conclude that the cone will be anisotropic, with anisotropy given by s. One expects
that the cone will be s times wider in the y-direction. In chapter 5 this result will be
confronted with a Monte Carlo simulation.



3.2. Anisotropic polarizability of Rayleigh scatterers 57

3.2 Anisotropic polarizability of Rayleigh scatterers

An anisotropic single scattering cross-section is a more subtle effect responsible for
diffusion anisotropy than the Green function anisotropy. In the isotropic medium, the
induced polarization of the Rayleigh dipoles is always parallel to the incident electric
field and it is related to it by a scalar factor, the polarizability, that is independent
of the direction along which the field is applied. This is no longer true for anisotropic
media. The anisotropy that arises can affect both the single scattering radiated pattern
and the inter-scattering propagator, even if the scattering density is uniform.

3.2.1 Anisotropic Rayleigh scattering

The polarizability of a medium can be non-isotropic, for example asymmetric molecules
that can be more easily excited by a field in a given direction. This common axis (n)
will be the same for all dipoles, and will not average out upon multiple scattering: the
overall pattern will be anisotropic. We can model the scatterer polarizability with an
uniaxial anisotropic dielectric tensor,

D = 1 + (a− 1)|n〉〈n|, (3.12)

which has two degenerate eigenvalues. In the diagonal basis {n̂, ê1, ê2} it can be ex-
pressed as:

D =




a 0 0
0 1 0
0 0 1


 (3.13)

where a is the microscopic parameter determining the degree of anisotropy, being a =
〈n|D|n〉, the value assumed by the dielectric tensor in the direction of the optical axis
n. In the following we will assume for simplicity prolate anisotropy, defined as a > 1,
but an analogue treatment is valid for a < 1 (oblate anisotropy).

From now onwards, for the polarization, we will use the convention typical of the
liquid crystal community,

ǫi = i

ǫf = f (3.14)

and at the same time we will consider only linear incident (and detected) polarization.
The dipole p induced by the incident polarization i is then

p(i) = D|i〉 = (a− 1)(i · n)n + i. (3.15)

If a 6= 1, the dipole is not unitary, being |p|2 = (a2 − 1)(i ·n)2 + 1, and it is rotated
towards n: light emission is more probable for those scattered k-vectors in the plane
orthogonal to n, see Fig. 3.7. The physical picture for the dipole excitation is that
the polarizability of the medium is stronger if the driving field i is parallel to n, a
preferential direction in space. The dipole changes direction but the scattering process
is the same as for the isotropic case, the pattern is just rotated in the direction of n.
Explicitly the differential scattering has the form of:

dσ

dΩ
(|ki, i〉 −→ |kf , f〉) =

3

8π
σ0 |p · f |2 =

3

8π
σ0 |〈i|D |f〉|2, (3.16)
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Figure 3.7: Effect of the anisotropy on the excited dipole p = Di. The dipole is stronger and
rotated towards n; therefore the scattering is more probable in the direction orthogonal to n.

We are interested in the probability of a scattering event in the direction kf , and
therefore we want to integrate over the scattered polarization states dσ/dΩ(|k i, i〉 →
|kf , f〉), for each kf . This sum which is sought is explicitly

dσ

dΩ
(|ki, i〉 −→ |kf〉) = |〈iD†|∆kf

|Di〉|2, (3.17)

where ∆kf
is a projector, in the polarization space, onto the space orthogonal to kf . It

is defined as

(∆k)ij = 1 − kikj, (3.18)

it accounts for the transversality of the light and it is thus the only actor in an isotropic
Rayleigh scattering.

The total scattering cross-section σt(i), is the integral over all scattered states, all
possible scattering directions and polarizations, and it is

σt(i) =

∫
dσ

dΩ
dΩf , (3.19)

where the integration is over dkf and over those df , such that f ⊥ kf : a photon state
is allowed if the field is transverse to the direction of the k-vector.

For the anisotropic Rayleigh scattering this turns into

σt(i) =
3

8π
σ0

∫

4π
〈iD†|∆kf

|iD〉 dkf = σ0|Di|2 = σ0 |p|2 (3.20)

and using Eq. (3.15) this relation can be simplified into:

σt(i) = σ0[(i · n)2(a2 − 1) + 1]. (3.21)

Each polarization state induces a different σt and therefore has a different probability
of being scattered. The mean free path ℓs is therefore not isotropic, and depends on
the polarization of the light. ℓs depends on the scattered direction kf , Fig. 3.8, as for
each direction of emission there is a well defined (transverse) polarization that can be
radiated by the dipole, orthogonal to k in the plane of the dipole p.
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3.3 The dressed Green function for anisotropic Rayleigh scattering

In the previous section, we have shown that, in presence of anisotropic Rayleigh scatter-
ing, the total scattering cross-section is not isotropic. This implies that the scattering
mean free path is not constant any more, (Eq. (3.22)) and therefore also that the
dressed Green function is not isotropic. The scattering mean free path experienced by
a photon with polarization i is

ℓs(i) =
1

σ0

1

(i · n)2(a2 − 1) + 1
. (3.22)

Fig. 3.8 shows a specific case to illustrate the anisotropy in the scattering mean free
path. A photon with polarization i excites a dipole p = Di that we assume to be in
the y-direction. A radiated photon emerging in the direction kf from the dipole has a
polarization which is orthogonal to kf and experiences a total scattering cross-section
shown by the polar plot in Fig. 3.8, which ranges from σ0 to (a2σ0), depending to the
scattering direction.

3.3.1 Optical theorem and scattering cross-section

The T -matrix describes the transfer of energy from the incident beam, which we will
call the coherent beam, into all the other modes. This information is also conveyed by
the differential scattering cross-section

dσ

dΩ
(|ki, i〉 −→ |kf , f〉) ∝ |〈ki, i|T(ω)|kf , f〉|2 (3.23)

An important relation between the scattering cross-section and the T -matrix comes
from the optical theorem, which states that:

σt(ki, i) = −2L3 Im(〈ki, i|T(ω) |ki, i〉). (3.24)

The value of T(ω) over the input and output states quantifies the amount of light
amplitude transferred from the coherent beam |ki, i〉 to the scattered mode |kf , f〉, and
therefore Im〈ki, i|T(ω)|ki, i〉 is what is scattered back into the coherent mode.

The scattering cross section is connected with the probability of scattering forward,
which is the process in which both ki and i do not change, which is the same as the
case when no scattering occurs. The physical meaning of Eq. (3.24) is that the total
scattered wave is given by the incident wave minus the part which is not scattered, and
thus propagates forward after the scattering event. Energy conservation requires that
all that is taken out of the coherent beam |ki, i〉 is transferred to other modes and not
dissipated.

It is worth to notice that the optical theorem puts a constrain on the phase of the
scattered wave, which is related to the total scattering cross-section.

3.3.2 Anisotropic self-energy

We can write the scattering cross-section as a linear operation on the input and output
electric field polarization. We can use the dielectric tensor D which accounts for the
excited dipole, as defined in Eq. (3.13) and the transverse operator ∆kf

which ensure
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Figure 3.8: Total scattering cross-section distribution (top panel) and scattering mean free path
(lower panel) for an anisotropy of a = 3 in the direction n = ẑ. The excited dipole is in the ŷ

direction. On the top right the symmetric σt for a = 1 is shown.

the transverse nature of light. The dipole p induced by the incident polarization i is
p = Di. The transverse operator ∆kf

which projects on the subspace transverse to kf

is, as defined in Eq. (3.18), is here redefined as (we only drop the index f)

∆k = 1 − |kf〉〈kf |. (3.25)

The differential scattering cross-section is related to the excited dipole and to the
transversality condition, as shown in Eq. (3.17). In Eq. (3.17) no dependence on the
incident direction is evident, as the dependence on f is eliminated with the transversal-
ity relation (kf ⊥ f), and by the constraint on the scattered polarization f , which has
to be in plane of the dipole and orthogonal to kf . Rayleigh scattering is not sensitive
on the incident direction ki as the dipole is generated only by the incident polarization.
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Explicitly D†∆kD is:

D†∆kD = [(a2 − 1) − (a− 1)2(n · kf)
2]|n〉〈n| − |kf〉〈kf | +

+1 − (a− 1)(kf · n)(|n〉〈kf | + |kf〉〈n|). (3.26)

Combining equations (3.23) and (3.17), as the two operators act on the same subspace
of the space of {k, ǫ}, we can write the identity:

|〈ki, i| T |kf , f〉|2 = |〈i| D†∆kD |i〉|2. (3.27)

In the measurements one usually observes only intensities, quantities like σt and
no information of the phase of the scattered wave are obtained. The optical theorem
(Eq. 3.24) relates this phase with the σt, showing that the modulus and phase of the
scattered wave are not two independent quantities. We leave here the phase unknown,
but we can assume that far from the resonances it has a slow variation; we consider
it constant for the light states we are investigating, within the spectral width of the
incident laser light. We can conclude that

Tk = D†∆kD, (3.28)

where Tk now acts only on the polarization states, 〈ki, i|T|kf , f〉 = 〈ki|Tk|f〉, as scat-
tered direction (kf) and polarization (f), are related, as we have just shown. With the
help of Eq. (2.66), for dilute media, we can now express the self-energy as:

Σ(kf) ≃ np Tk = np D†∆kD. (3.29)

Our system is made of point-like scatterers in vacuum (or in an homogenous medium)
and therefore the only object that can play a role for light propagation is the T -matrix
responsible for the scattering event, as confirmed in Eq. (3.29).

3.3.3 The dressed Green function for anisotropic Rayleigh scatterers

As shown so far, for anisotropic point-like scatterers, the average Green function of the
system can be calculated from the knowledge of the self-energy,

G(r1, r2,kf) = −e
ikf |r12|

4π|r12|
exp(−iΣ(kf)|r12|)∆r, (3.30)

where r12 = r1 − r2.

The self-energy contains all information about the intra-scattering propagation, Eq.
(3.30) can be interpreted as related to the dispersion law in the medium. As shown in
Eq. (2.68), we can introduce the refractive index matrix

N (kf) = 1 − ReΣ(kf)

k
, (3.31)

the average value of Σ(kf) over the scattered polarization states provides the scattering
mean free path,

〈f | Im(Σ(kf)) |f〉 = − 1

2ℓs
(3.32)
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and its eigenvectors are the principal polarization of the scattered light.

The propagator can be expressed in the same form as the vacuum propagator,

G(r1, r2,kf) = −e
ikN (kf)|r12|

4π|r12|
e−i

|r12|

2ℓs ∆r. (3.33)

The difference now is that the self-energy is no more diagonal in the light polarization,
and not all the directions of propagation are the same. The same effect is present in
an ensemble of atoms in an external magnetic field [87].

3.3.4 Diagonalization of the self-energy: the principal directions of propagation

The self-energy can be diagonalized and brought into the form:

Σ(k) = −inp σ0

2




1 0 0
0 1 + (a2 − 1)(1 − (k · n)2) 0
0 0 0


 (3.34)

if calculated on the eigenbase {e1, e2, e3} made of the vectors:

e1 = k× n ordinary
e2 = (k · n)k − [(a− 1)(1 − (k · n)2)]n extraordinary
e3 = k− (k · n)(a− 1)/a longitudinal

(3.35)

where in the limiting case of (k ·n) = 0 the extraordinary mode e2 = n. These are the
eigenmodes of the polarization, which propagate in the medium without being altered.
The average medium in the presence of anisotropic Rayleigh scattering is dichroic. A
generic polarization rotates upon propagation as the Green functions of the modes are
not ”dressed” in the same way.

If one looks at the eigenvalues λi of the self-energy, one sees that the ordinary mode
behaves as in the isotropic medium (λ1 = 1), the extraordinary one has a different
mean free path, (see Eq. (3.32)), (λ2 = 1 + (a2 − 1)(1 − (k · n)2)) and the third mode,
which is longitudinal, has λ3 = 0, and is the non-propagating one parallel to the group
velocity in the medium.

The total scattering cross-section experienced by the two propagating modes e1,2 is
not the same:

σord ≡ σt(e1) = σ0 (3.36)

σext ≡ σt(e2) = σ0 [1 + (a2 − 1)(1 − (k · n)2)]

The value of the total scattering cross-section can be computed from the optical theorem
of Eq. (3.24), as for low density we have approximated Σ with T. σt is the diagonal
value of Σ calculated on i, and it is perfectly consistent (and equal) with the value
calculated from the standard Rayleigh formula:

σt(f) = σ0 | iD|2 =
2i

np
〈i|Σ(k) |i〉, (3.37)

obtained from Eq. (3.36).
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3.3.5 Evolution of polarization

The two polarization eigenmodes experience a different Lambert-Beer attenuation. This
implies that a generic superposition

|ǫ(z = 0)〉 = ε1|e1〉 + ε2|e2〉 (3.38)

of these two modes will rotate upon propagation as its components on e1 and e2 will
evolve differently:

e(r)

Figure 3.9: Evolution of the polarization vector as a function of the propagated distance r/ℓs.
Initially at r = 0 the light is almost completely polarized extraordinary ε1 = 0.1 and ε2 = 0.995,
while at large r it becomes more and more ordinary. Anisotropy a = 3.

|ǫ(z)〉 = (ǫ(0) · e1) |e1〉 + (ǫ(0) · e2) exp

(
−rσext − σord

2

)
|e2〉

= ε1 |e1〉 + ε2 exp

(
−rσext − σord

2

)
|e2〉 (3.39)

where (σext − σord) is a positive quantity for a > 1, thus the polarization experiences a
total scattering cross-section which varies with the propagation following the law:

σt(ǫ(z)) = 1 + (a2 − 1)(ǫ(z) · n)2. (3.40)

The polarization rotates towards e1 because ǫ(z) · e2 tends to zero upon propagation,
as shown in Fig. 3.9.

The total scattering cross-section experienced by the photon upon propagation re-
duces gradually to the value of σt(e1) = 1. We have calculated σt combining Eq. (3.39)
with the expression of σt of Eq. (3.40), and taking into account the normalization of
the vectors e1,2.

σt(z) = 1 + ε22 (a2 − 1) exp(−r β)

[
a(k · n)2 − (a− 1)

k(k · n) − (a− 1)(1 − (k · n)2)n

]2

(3.41)
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where β is
β = σext − σord = (a2 − 1)(1 − (k · n)2). (3.42)

Fig. 3.10 shows the evolution of ℓs(z) as a function of the propagated distance r/ℓs(ord).
After a scattering mean free path the polarization is almost completely ordinary and
ℓs very close to the ordinary value of ℓs(ord) = 1/npσ0.

Figure 3.10: Evolution of the scattering mean-free path as a function of the propagated
distance r/ℓs(ord). Initially at r = 0 the light is almost completely polarized extraordinary
(ℓs ≃ ℓs(ext)), ε1 = 0.0999 and ε2 = 0.995, while at large r it becomes more and more ordinary
(ℓs ≃ ℓs(ord)). Anisotropy a = 3 (ki = x and n = z).

3.3.6 Propagation step-length distribution

If we now look closer at what happens to the scattered photon, we can see that while
it propagates in the average medium, and its polarization rotates, the probability of a
new scattering event decreases accordingly. The probability of travelling a distance r
before a new scattering event is usually described by a step-length probability P (r). In
the isotropic case, when the total scattering cross-section is a constant σt(z) = σ0, this
function is an exponential with decay constant equal to ℓs = 1/nσ0:

P (r) = exp(−r np σ0)(np σ0) = exp

(
− r

ℓs

)
/ℓs. (3.43)

In the anisotropic case the total scattering cross-section is not constant but decreases
with the travelled space, as in Eq. (3.41). As a direct consequence ℓs increases upon
propagation up to its ordinary value. The anisotropic random walk has a step-length
probability which depends on the space travelled:

P (r) = exp

(
−r np

∫ r

0
σt dr

)
×
(
np

∫ r

0
σt dr

)
. (3.44)

Explicitly this function is:

P (r) = exp

(
− r

ℓs(r)

)
/ℓs(r) =

(
e−r/ℓs(e1)ε21 + e−r/ℓs(e2)ε22

)
/ℓs(r) (3.45)
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Figure 3.11: Step-length distribution in an anisotropic rayleigh scattering medium. At the
beginning the distribution is dominated by the extraordinary P (r) which is more steep as
ℓs(ext) < ℓs(ord), while for larger distances the ordinary P (r) takes over. Note that ℓs(ext) =
(1/a)ℓs(ord). Initially at r = 0 the light is almost completely polarized extraordinary ε1 = 0.0999
and ε2 = 0.995, while at large r it becomes more and more ordinary. Anisotropy a = 3.

where the decay constants of the two exponentials are the scattering mean free path
of the two ordinary and extraordinary eigenmodes (Fig. 3.11). This is consistent with
Eq. (3.39) (which is the superposition principle).

3.4 Conclusions

We have shown that a mesoscopic model can be very well applied to an anisotropic
scattering medium as an ensemble of anisotropic Rayleigh scatterers. The self-energy
is no more diagonal, but the principal propagation directions can be calculated, and
an anisotropic random walk model can be constructed. Given all these ingredients a
Monte Carlo simulation can be employed to model the light transport and to predict
the shape of the coherent backscattering cone.





Chapter 4
Anisotropic coherent backscattering from

ordered nematic liquid crystals

Liquid crystals in the nematic phase are strongly scattering materials that differ fun-
damentally from common isotropic random media. The nematic phase of a liquid
crystal is characterized by a global alignment of the molecules in a direction called
the nematic director n(r), and an otherwise translational disorder. The strong opac-
ity of the nematic phase comes about from local fluctuations in the nematic director
n(r, t) = n0 + δn(r, t), that elastically scatter light [22, 23, 24]. Transmission experi-
ments have shown that light transport in ordered nematic liquid crystals indeed shows
anisotropic features, both in static [88] and dynamic [89] experiments, and that diffu-
sive models and radiative transfer theory can describe light transport in such a complex
medium [90].

Pioneering experiments on coherent backscattering from nematics have been per-
formed, but only the existence of the interference phenomenon could be confirmed
and no other information could be extracted from the experimental data [56, 57, 91].
Anisotropy in coherent backscattering due to an anisotropic transport mean free path
has been predicted numerically in Monte-Carlo simulations [92, 93]. Only recently,
in our experiment, anisotropy in weak localization from ordered nematic liquid crys-
tals has been observed and the cone fully resolved [94], opening the way for further
investigation on light transport in such a complex medium.

The main property of liquid crystals is the dielectric anisotropy that can be oriented
with an external magnetic or electric field. This is the crucial property that allows the
switching of the pixels in liquid crystal displays [95]. Multiple light scattering in these
media is a recent subject of fundamental investigation as they are suitable candidates
to observe anisotropic light transport and to study anisotropic interference phenomena.

Since their discovery [96] more than a hundred years ago by Reinitzer and Lehmann,
liquid crystals are now being used in a wide range of applications, as for example
in display technology. They are also used to construct light valves and spatial light
modulators utilized in real-time image processing and optical computing applications.
Even dynamic scattering in liquid crystals is considered for possible applications due
to the fact that only a relatively small voltage is needed to achieve a large magnitude
of light scattering.

67
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In this chapter we present briefly the main properties of nematic liquid crystals such
as elastic properties, interactions with external electric and magnetic fields, birefrin-
gency and diamagnetism. We then focus on light scattering and on the experimental
measure of the anisotropic coherent backscattering cone from oriented nematic liquid
crystals.

4.1 Physical properties of liquid crystals

The states of matter whose symmetric and mechanical properties are intermediate
between those of a crystalline solid and an isotropic liquid are called ”liquid crystals”1

[97]. Liquid crystals are materials that exhibit one or more intermediate phase(s)
between crystalline solid and isotropic liquid phases. In this intermediate phase they
retain the ability to flow like ordinary liquid, but also possess long-range orientational
order. Some liquid crystals may also have positional order as well.

The basic difference between crystals and liquids is that the molecules in a crystal
are ordered whereas in a liquid they are not. The existing order in a crystal is usually
both positional and orientational, i.e. the molecules are constrained both to occupy
specific sites in a lattice and to point their molecular axes in specific directions. In
liquid crystals, translational symmetry typical of liquids exists but rotational invariance
holds only for certain axis of symmetry, as it occurs in solids. The liquid crystals can
flow as liquids, but they are liquid in which some orientational order is gained, and
in these mesophases the degree of freedom of the liquid are decreased, its symmetries
reduced.

Liquid crystals show self-assembly and a form of self-organization at molecular level
which originates from the complex interplay of molecular interactions and thermal
fluctuations. In ordinary samples the alignment and the optical properties depend
strongly on surface effects which compete strongly with all other external potentials.
We are here investigating bulk optical properties, as our sample has a volume of ∼ 200
ml, with a cell thickness of 8 cm, a much different configuration than in ordinary
experiments, where the cell thickness is of the order of 100 µm (∼ 50µm in LCD
screens).

4.1.1 The phases of liquid crystals

In nature, many types, or better many phases, of liquid crystals exist which depend
on the molecular order of the system, on its symmetry. In Fig. 4.1, two very common
phases are shown. The nematic phase occurs if the rotational order is only along one
axis. In the smectic phase the system can be viewed as a set of two-dimensional liquid
layers stacked on each other with a well defined spacing. In each plane the smectics are
aligned along a director.

Usually nematics and smectics are made of elongated objects (as shown in fig. 4.1)
but there exists liquid crystals, like the columnars, which are made of disk-like molecules
(not shown here). Recently also biaxial nematic liquid crystal have been synthesized
with boomerang-shaped molecules [98, 99]. Liquid crystalline materials in general may

1Discovered at the end of the 19th century (1888-Reinitzer), liquid crystals were considered an oddity
with only pure academic value until 1960, when they were first considered for use in display technology.
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a) b)

c) d)

Figure 4.1: Various phases of liquid crystals: in (a) the uniaxial nematic phase, in (b) biaxial
nematic phase, in (c) the smectic A phase and in (d) the smectic C phase.

have various types of molecular structure. What they all have in common is that they
are anisotropic.

Liquid crystals are mesogenic species, as they can exhibit a multitude of transitions
involving new phases. Transitions to the mesophases may be brought about in two
different ways; one by purely thermal processes, like change of the temperature, and
the other by the influence of solvents. Liquid crystals obtained by the first method are
called thermotropics. This is the only case that we will investigate in this thesis. The
phase of a thermotropic liquid crystal changes from crystalline solid to liquid crystal
when the temperature is raised above its melting point (TM ). When the temperature
is further increased, the phase of the substance changes from liquid crystalline phase to
isotropic liquid phase. This temperature is called the clearing point (TC). In this thesis
the interest in liquid crystals is restricted to nematics, which occur in the temperature
range TM < T < TC (see Fig. 4.2), so in next sections only the properties of such a
phase will be described.

For example 5CB liquid crystals present a melting temperature TM ≃ 297 K, and a
clearing temperature TC ≃ 309 K [100]. These values have to taken with care, as they
depend strongly on the environment conditions, especially on the characteristics of the
cell in which the liquid crystals are contained. We obtained a good nematic sample
keeping the temperature in the safe range of 299 < T < 303 K.

4.1.2 Elastic properties of nematics

The nematic phase is the simplest liquid crystal phase. In this phase the molecules
maintain a preferred orientational direction as they diffuse throughout the sample.
There exists no positional order but there is a long-range orientational order.

Nematic liquid crystals, depicted in Fig. 4.2(b), show some order in the direction
of the molecules. They tend to be parallel to a common axis labelled nematic director
n. Because of the axial symmetry of the molecules, optically a nematic is an uniaxial
medium with the optical axis along n. Another remarkable property is that nematics
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c)a) b)

solide nematic liquid

T < TM T < T < TM C T T> M

Figure 4.2: Phase transition of the liquid crystals. If the temperature is lower than the melting
point (TM ) the liquid crystals are behave as a solid (a). If TM < T < TC there is the nematic
regime (b). For temperatures higher then the clearing point (TC) they behave as an isotropic
liquid.

glass

nematic molecules

Splay

Bend

Twist

Figure 4.3: The three types of deformations occurring in nematics.

flow like liquids. The nuclear magnetic resonance (NMR) spectrum shows line splitting
caused by the uniaxial symmetry, and, at the same time, such lines are narrow enough
to identify rapid molecular motion (like for conventional liquids).

All the elastic properties of nematic liquid crystals can be summarized in an energy
balance equation, which is the well-known Frank expression for the free energy [101]

Fe =
1

2
[K11(∇ · n)2 +K22(n · (∇× n))2 +K33(n × (∇× n))2] , (4.1)

where Kij are the Frank elastic constants, which represent the principal components
of the elastic deformation tensor. The Frank expression is derived from the contin-
uum theory, which considers only liquid crystals elastic energy, and in which the main
hypothesis is that the order parameter Q (a measure of the strength of the local corre-
lation among adjacent molecules, and at the same time the degree of global orientation)
varies over distances ≥ 1 µm, much larger than typical molecular dimensions ∼ 20 Å.
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The constants Kii (i=1,2,3), introduced in Eq. (4.1), are associated with the three
basic types of deformations present in liquid crystals, displayed in Fig. 4.3. For sim-
plicity in the following we will refer to Kii as Ki.

K1 describes splay (∇· n6= 0)

K2 describes twist (n·(∇× n) 6= 0)

K3 describes bend (n×(∇× n) 6= 0).

The typical values for Ki are in the order of 10−11 − 10−12 N. For 5CB liquid crystals
the Frank constants are K3 = 5.3 × 10−12 N, K1 = 0.79K3 and K2 = 0.43K3.

C H5 11 CN

Figure 4.4: In the upper part the molecular structure of 5CB is depicted, while in the lower part
the chemical formula with two benzene rings.

We will not go into the details of the chemical properties of the types of liquid
crystals. For our interest, we present briefly 5CB (p-penthyl-p’ -chanobiphenyl) that
has two benzene rings, as shown in Fig. 4.4, such as many others liquid crystals, which
are diamagnetic. A benzene ring, when exposed to a magnetic field H, tends to rotate
and to align its plane along the field to minimize the electro-magnetic energy.

4.1.3 Magnetic field effect

An external magnetic (or electric) field can induce a global alignment of the crystals,
which find energetically convenient to be parallel to the field (Fig. 4.5). The free energy
becomes

F = Fe + Fm + Fel (4.2)

where Fm and Fel are respectively the magnetic and electric contributions.
The coupling energy between H and a diamagnetic molecule is (µbH)2/U , where

µb is the Bohr magneton and U is the electronic excitation energy. For one molecule
(µbH)2/U ∼ 10−18 eV (an elastic energy Fe ∼ 10 eV and H ∼ 1 Gauss) which is ≪
kT , which means that the thermal agitation is stronger with respect to field alignment.
The properties of nematics are collective, so within one coherence length cube (called
ξ, see later in the section), one can consider a global degree of freedom and not all the
individuals for each molecule. In a ξ3 volume (there are typically N ∼ 1022 molecules),
all molecules rotate together, and the coupling energy is of the order of N(µbH)2/E ≫
kT . The collective orientational energy is stronger than the thermal agitation and the
sample aligns its optical axis n parallel to H.
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magnetic
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Figure 4.5: An external magnetic field can induce a global alinement of the nematic liquid
crystals around a common direction n called the nematic director, parallel to the magnetic field
H.

To investigate the effects of an external magnetic or electric field on nematics, we
have calculate the free energy density. Let’s start with the magnetization M induced
by the magnetic field H. If we suppose an arbitrary angle between n and H, the
magnetization will be:

M = χ⊥H + (χ‖ − χ⊥)(H · n)n , (4.3)

where the magnetic susceptibilities χ‖ and χ⊥ are negative (diamagnetism) (∼ 10−6),
but the difference χ‖−χ⊥ = χa is positive in nematics. The free energy density becomes

F = Fe −
∫ H

0
M · dH = Fe −

1

2
χ⊥H

2 − 1

2
χa(n · H)2 (4.4)

that is minimized when n is parallel to H (χa > 0)2.
The nematic liquid orientation parallel (or orthogonal) to the field is energetically

favored, in absence of other sources of perturbation, which can be induced by defects,
impurities, surface anchoring, etc. . . The resulting orientation is preserved over a length
ξ, called the coherence length, which is defined as the distance over which the distur-
bance of the alignment propagates through the sample. At no field such a perturbation
propagates undisturbed, such that all the nematic molecules are aligned following a
fixed one: the coherence length becomes infinite. The presence of the magnetic field
opposes to such a rotation and the coherence length becomes finite. If we suppose to
be in the one constant approximation (Ki = K), we have

ξ(H) =
1

H

√
µ0
K

χa
. (4.5)

For 5CB and H = 0.5 Tesla, the coherence length is 4.2µm. This expression is derived
starting from Eq. (4.4) (for details see ref. [102]).

The coherence length is very important as it defines the extent of positional order
(Fig. 4.6), and subsequentially the scattering correlations.

2Note that no anchoring energy is present as we assume infinite distance between the cell walls.
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x

Figure 4.6: Coherence length for nematics under a torsion (courtesy of L. Nobre,
http://matagalatlante.org/).

4.1.4 Electric field effect: dielectric anisotropy

A nematic liquid crystal can be considered in first approximation as an insulator. In
this hypothesis, the coupling between a nematic and an external electric field E involves
only the anisotropy of the dielectric constant. What happens is somehow similar to the
case of coupling between H and nematics caused by diamagnetism.

The dielectric tensor of the medium is given by

ε = ε⊥1 + (ε‖ − ε⊥)nnT. (4.6)

The dielectric tensor components, for 5CB nematics, have been determined to be, at
300 K and for 488 nm, ε⊥ = 2.894, and ε‖ = 2.338 (for Merck 5CB) [103]. Typical
values of the refractive indexes for 5CB liquid crystals are, at 300 K and 488 nm,
no = 1.53 and ne = 1.70, and for temperatures above 308 K, niso ≃ 1.57. Suppose we
apply an electric field to a cell filled with nematics, in which the angle between E and
n is generic. We obtain for the electric displacement D

D = ε⊥E + (ε‖ − ε⊥)(n · E)n (4.7)

where, as a difference with the magnetic case, ∆ε = ε‖ − ε⊥ (dielectric anisotropy)
can be positive or negative. In particular, from a chemical point of view, ∆ε > 0
if the liquid crystal has a dominant dipole associated with the C ≡ N group. This
means that a permanent electric dipole exists parallel to the long axis of the molecule
(this is the case of 5CB shown in Fig. 4.4). In other nematics one can have also a
reversed situation, where the permanent electric dipole is orthogonal to the long axis,
for example if the dipole associated to the N − O groups is dominant, which means
∆ε < 0.

The electric dipole contribution to the free energy density is

Fel = − 1

4π

∫ E

0
D · dE =

ε⊥
8π
E2 − ∆ε

8π
(n · E)2 . (4.8)

In this case if ∆ε > 0 the free energy density will be minimized for a parallel alignment,
otherwise for ∆ε < 0 we expect a perpendicular alignment. Usually the dielectric
anisotropy is ∆ε ∼ 0.5 (∆ε = 0.556 for 5CB, at 300 K and 488 nm), and becomes zero
when the temperature is above the clearing point.



74 4. Anisotropic coherent backscattering from ordered nematics

4.2 Scattering properties of nematic liquid crystal

No universal recipe exists to generalize a diffusive model for the case of anisotropic
scattering. That is, it is not evident how to perform the passage from an anisotropic
single-scattering process to anisotropic multiple-scattering and subsequently to aniso-
tropic diffusion. A diffusive model is limited by the fact that all characteristics of the
transport process have to be contained in one single parameter: the diffusion constant.
Single scattering is described by a scattering cross section that depends on incoming and
outgoing wavevectors and polarization vectors and can therefore contain various types
of anisotropy. The chance of being scattered can depend on propagation direction and
polarization, but also the distribution of the light after scattering can be highly aniso-
tropic. In addition, the propagation velocity of the light during the multiple scattering
process can be anisotropic as well. A diffusive model in which all these anisotropies
have to be contained in one single parameter is potentially an over-simplification of the
problem. In addition, the effect of anisotropy on the boundary conditions, required to
solve the diffusion equation, is unknown but of crucial importance.

Ordered nematic liquid crystals are anisotropic scattering media in which light po-
larization plays a central role: the average medium is birefringent and scattering selec-
tion rules favor polarization to flip at each scattering event. Moreover the scattering
cross-section and scattering mean free path depend strongly on the polarization state
and scattering direction [104]. These intricate scattering properties would suggest that
a complete solution of the transport equation is more appropriate than a diffusive
model. Unfortunately the coupled hydrodynamics equations of nematic liquid crystals
and of the electromagnetic field are very difficult to solve [105].

4.2.1 The polarization eigenmodes

Optical birefringence in ordered nematics is present as rotational symmetry is broken
by the nematic director n. Light propagates through nematic liquid crystals in two
characteristic modes. These are the ordinary mode |k,o〉, which has polarization o or-
thogonal to n and k and the extraordinary one |k, e〉 whose polarization e is in the plane
of k and n. A third mode exists, the longitudinal one, but it does not propagate. The
ordinary mode behaves as in an isotropic system, while the extraordinary mode is not
transverse and possesses a direction-dependent index of refraction: its phase and group
velocities are not equal and not parallel. Birefringence lifts the polarization degeneracy
of the propagating modes which become distinct (see Fig. 4.7). The dispersion laws
and the directions of the two polarization modes are given by [92]:

ordinary mode extraordinary mode

ko
i =

√
ε⊥
ω

c
≡ no

ω

c
; ke

i =

√
ε⊥ε‖

ε‖ cos2 ϑ+ ε⊥ sin2 ϑ

ω

c
≡ ne

ω

c
;

|o〉 =
ki × n

|ki × n| ; |e〉 =
ε‖〈ki|n〉ki − 〈ki|ε|ki〉n
|ki × n|

√
〈ki|ε2|ki〉

. (4.9)

where ϑ is the angle between the incident light k-vector and the nematic director, and
ε the dielectric tensor defined in Eq. (4.6). The two eigenstates experience a different
refractive index no 6= ne, and therefore interference between them can be neglected
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Figure 4.7: Scattering geometry: the photon state |ki, i〉 is scattered into |kf , f〉. The nematic
director n and the transferred momentum q = kf − ki are shown. kf ,n and e are in the
same plane, orthogonal to o. The polarization can be decomposed into the two propagation
eigenmodes o and e.

after a distance ∆r ≃ λ/(no−ne). For nematics, ∆r ≃ 2−3µm, which is much smaller
than the length scales of the scattering process, ∆r ≪ ℓs ≃ 50 − 100µm [104]. For this
reason the two eigenstates can be treated independently. It is important to note that,
for the same reason, no elliptical polarization can propagate in an anisotropic medium
without changing its state, because its different linear components correspond to the
two different eigenmodes. Therefore, a constant phase difference between the two linear
polarizations cannot be maintained over a distance longer than few wavelengths [106].

4.2.2 The scattering mean free path

For isotropic systems, the scattering mean free path ℓs is usually defined as the average
distance between two scattering events, and is inversely proportional to the scattering
cross section:

ℓs =
1

ρσt
=

[
ρ

∫
dσ

dΩ
dΩ

]−1

, (4.10)

where ρ is the spatial density of the scatterers. In nematics, the scattering mean free
path ℓs will depend also on the incident direction Ωi (and on the polarization as we will
see later) as a result of the anisotropy of the medium:

ℓs(Ωi) =

[
ρ

∫
d2σ

dΩidΩf
dΩf

]−1

. (4.11)

For k-vectors in the direction of the nematic director, the polarization modes |o〉 and
|e〉 are degenerate and their scattering mean free paths are equal.

An estimation of the scattering mean free path can be obtained from a scalar ap-
proximation [92, 107], thus neglecting all polarization effects:

ℓscalars =
9π ε2⊥K3

k2
⊥ ∆ε2 kBT

, (4.12)
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where k⊥ = k
√
ε⊥. In the case of 5CB liquid crystals, ℓscalars is

ℓscalars ∼ 0.7mm. (4.13)

We will see later in the chapter that this value is surprisingly very close to the measured
vectorial one, ℓexp

s ∼ 0.7 − 0.8mm.
The propagator G(|k, e/o〉, r12) of each of the eigenmodes of the medium is related

to the scattering mean free path ℓs(|k, e/o〉). The Beer-Lambert’s law that determines
the exponential attenuation of the wave intensity reads:

I(r2, |k, e/o〉) = I(r1, |k, e/o〉) × exp

(
− |r2 − r1|
ℓs(|k, e/o〉)

)
. (4.14)

If one tries to identify a dominant transport direction, one is tempted to look at the
scattered k-vectors which correspond to maxima of the radiated pattern d2σ/dΩidΩf .
In a birefringent anisotropic system, this can be inaccurate however: a local maximum
in the differential cross-section for a given direction is not directly a local peak in the
photon density. In a direction of the scattered wavevector in which d2σ/dΩidΩf is
large, σt(Ωf ) =

∫
(d2σ/dΩfdΩ

′
f ) dΩ′

f can be large as well, so that the scattering mean
free path is short. Many photons are radiated in such a direction, but they suffer from
intense scattering into all angles which depletes the light flow along that direction.

We stress here that light transport quantities can be properly defined only after
ensemble averaging of the above picture. This averaging can be done in a numerical
but exact way with Monte Carlo simulations or with a diffusion model [104].

4.2.3 The differential scattering cross-section

Light scattering in ordered nematics occurs because of fluctuations in the orientation
of the nematic directors, n(r, t) = n0 + δn(r, t), which in turn reflects into a variation
of the dielectric tensor ε = ε⊥1 + (ε‖ − ε⊥)nnT. The dielectric correlation function is
given by [108],

Γijkl(r) = 〈εij(0)εkl(r)〉 =
∆ε2kT/4πK1

r
exp(−r/ξ)Πijkl. (4.15)

This relation is valid only for r ≫ ξ, as for distances smaller than the coherence length
there are no fluctuations but coherence. The amplitude of the thermal fluctuations
depends on the anisotropy in the dielectric constants ∆ε = ε‖ − ε⊥ and on the elastic
constant K1. At a wavelength of 488 nm and a temperature of 300 K, ∆ε = 0.556 for
5CB. The fluctuations are weak but with long range. The tensor Πijkl is responsible for
the polarization selection rules, which are the peculiarity of light scattering in nematic
liquid crystals.

Before considering the scattering cross-section it is convenient to introduce the
eigenmodes of the fluctuations δn, which are the unit vectors mα (α = 1, 2):

m1 = m2 × n and m2 =
q× n

|q× n| (4.16)

where q = kf − ki is the scattering wave vector.
The scattering event is ruled by the single scattering cross-section (see Eq. (4.17)),

which depends on the input and output state and in particular on the orientation of the
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Figure 4.8: Spherical plot of the differential scattering cross-section (Eq. (4.17)) for nematic
liquid crystals for few case. The nematic director is along z. The incident k-vector and po-
larization are shown for each panel, as well as the nematic director. In panel a), b) and d)
the polarization flips from ordinary to extraordinary (or viceversa), while in the case c) it is
extraordinary before and after the scattering event. Panel d) shows the very forward peak
(which extends up to 4000) typical of nematics. 5CB liquid crystals a magnetic field of 0.5 T,
K3 = 5.3 × 10−12N , K1 = 0.79K3 and K2 = 0.43K3, ξ = 4.2µm.

polarization and propagation vectors with respect to the nematic director [22, 23, 24],
and which is

d2σ

dΩidΩf
= V

(
∆εk2

4π

)2 ∑

α=x,y

kBT (iαfz + izfα)2

Kαq2⊥ +K3q2‖ +K1ξ−2
, (4.17)

(here we follow the formalism defined in De Gennes’s book [22, 23, 24] depicted in
Fig. 4.7). Ki are the Frank elastic constants. The polarization product iαfz + izfα

determines the polarization selection rules, while the denominator is dominated by
K1ξ

−2 which depends on the external magnetic field. The dependence on q−2 accounts
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for the strong directionality of the cross-section, whose divergence for |q| −→ 0 is
prevented by a finite value of ξ. The pre-factors in Eq. (4.17) are the temperature
T , the Boltzman constant kb, the modulus of the light k-vector k, and the scattering
volume V .

Fig. 4.9 shows the anisotropy of the total scattering cross-section σt for different
polarization eigenmodes of the input and output polarization, as a function of the
emerging direction (k-vector) after the scattering event. In the case of scattering of
an extraordinary mode into an ordinary, the total scattering cross-section is extremely
small for k-vectors in the direction of the nematic director (panel a), while for the
extraordinary-extraordinary case also the plane orthogonal to n exhibits a minimum
value of σt (panel b). A striking effect, for example, is that ordinary polarization
has to change its state of polarization upon scattering, or that an extraordinary mode
propagating parallel to the optical axis will never be scattered in the forward direction
(see Fig. 4.9).

4.2.4 Double scattering process

The process of double scattering is depicted in Fig. 4.10 for the case of ordinary light
incident with k-vector parallel to n, scattered into extraordinary light and then double-
scattered into ordinary light after an average distance ℓs, shown by the length of the
arrows. The emerging light distribution is calculated with a second scattering cross-
section. The smaller is the second scattering cross-section, the lower the scattering
probability, and therefore the longer the scattering mean free path. One can see that
already for the simplest process of two events of scattering, both of the two light
eigenmodes are involved, ordinary and extraordinary, and that their scattering cross-
sections are very different.

In view of these features, in the Monte Carlo simulation any scattered photon has
to be projected onto the birefringent eigenmodes along which then it can propagate
ballistically. Their direction of propagation follows the photon group velocity in the
nematic average medium and the travelled distance, before the following scattering
event, is governed by an anisotropic Lambert-Beer’s probability (see Eq. (4.14)) which
itself depends on the photon state: it is an anisotropic random walk.

4.3 Multiple light scattering experiments in ordered nematics

As we have seen so far, single-scattering in nematics is already a very rich and complex
subject of study. Very thin films of liquid crystals are indeed the subject of a vast
literature, especially as far as the technological applications are concerned. Multiple
scattering occurs in samples optically thick, i.e. many scattering mean free paths thick.
Our extraordinary requirements are therefore a bulk liquid crystal sample, and a high
accuracy setup to record light transport and coherent backscattering.

4.3.1 The experimental setup

The observation and study of weak localization from liquid crystals requires an ex-
tremely high angular resolution of at least 20 µrad. To achieve such resolution, we
use the following measurement scheme. A diffraction limited 8 cm diameter collimated
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Figure 4.9: Total integrated cross-section σt for light scattering in nematic liquid crystals: panel
a) an extraordinary mode into an ordinary (or ordinary into extraordinary); panel b) an extraor-
dinary mode into an extraordinary. One can see that σt, the total probability for a photon of
being scattered, depends on the direction of propagation and on the polarization state. Ne-
matic director in the z-direction for all cases. 5CB liquid crystals in a magnetic field of 0.5 T,
K3 = 5.3 × 10−12N , K1 = 0.79K3 and K2 = 0.43K3, ξ = 4.2µm.
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Figure 4.10: Double scattering process in ordered nematic liquid crystals. Ordinary light in-
cident with k-vector parallel to n is scattered into extraordinary light with a differential cross-
section shown in the center of the picture. Three possible directions are shown. Light prop-
agates for an average distance given by ℓs, shown by the length of the arrows, before the
second scattering event. The second scattering cross-section is plotted for the case in which
the emerging light is ordinary. The top most scattering event occurs at a distance extremely
long and is very rare.
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Figure 4.11: Sketch of the setup for the coherent backscattering measurement. A diffraction
limited 8 cm diameter collimated laser beam is obtained by expanding and spatially filtering
the output of a single mode Argon laser (2W, 488nm). This beam is reflected from a 15 cm
wide beam splitter (BS) onto the sample (LC) which is placed between the poles of an electro-
magnet. The backscattered light from the sample is collected through the beam splitter by
a wide achromatic triplet lens (f=1250 mm) and monitored by a photomultiplier tube (PMT)
through a polarizer (POL) and a 10 µm diameter pinhole placed exactly in the focal plane of
the achromatic lens.

laser beam is obtained by expanding and spatially filtering the output of a single mode
Argon laser (2W, 488nm). This beam is reflected from a 15 cm wide beam splitter
onto the sample. The backscattered light from the sample is collected through the
beamsplitter by a wide achromatic triplet lens (f=1250 mm) and monitored by a pho-
tomultiplier tube through a polarizer and a 10 µm diameter pinhole placed exactly in
the focal plane of the achromatic lens. The detection system is mounted on a stepper-
motor driven x-y translation stage (< 1µm resolution); it acted as a high-resolution,
low noise, window-less CCD camera with unlimited scanning area. The cost of the
detection apparatus is 100 times less than an ordinary CCD camera with the same
characteristics, but the price we pay is the acquisition time, which in our case is of
the order of 3 s per pixel (up to 1 hour per measurement). All lenses are aligned per-
pendicular to the optical beams to avoid astigmatism, and the response of the setup
is carefully checked to be isotropic. The cell (quasi-index matched) is tilted off-axis so
as to keep its window reflection well away from the detector. The measured noise level
is always lower than 1% of the signal. An angular resolution of 10 µrad is obtained,
two orders of magnitude better than previous liquid crystal work, and 10 times better
than the highest resolution reported in the literature. This angular resolution enabled
us to measure transport mean free paths larger than one millimeter, opening up the
possibility to perform weak localization studies on complex fluids and biological tissue,
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Figure 4.12: Acquisition device, analogous to an ordinary CCD camera. The compact photo-
multiplier tube (PMT) is mounted on a x-y translation stage. A 10µm pin-hole is placed in the
focal plane of the acquisition lens (not shown here).

inaccessible to previous coherent backscattering instruments.
The intensity variation across the beam should be small, otherwise the reciprocal

paths will have different amplitudes and the enhancement will be lowered. For this
reason the gaussian beam is expanded and only the central part, which has a flat
intensity profile, is selected and filtered.

Experiments dealing with weak scattering media, like nematic liquid crystals, are
always bounded to face the problem of measuring weak signals, restricted to a narrow
angular range. Great care has been taken to remove the noise from the measured cone.
This noise comes from incoherent backscattered light, scattered from the surrounding
equipment (which results into a speckle pattern) and stray light in the room. The
ambiental noise which is not coming from unwanted scattering of the laser light usually
can be easily filtered out with the lock-in amplifier or with a narrow band frequency
filter. The remaining noise can be reduced only with use of spatial filters.

A high level of incoherent background means a smaller enhancement of the cone.
The incoherent background is not only coming from artifacts, but it can be originated
also from the scattering in the sample. In order to reduce the diffuse background, one
has to prevent light paths which exit the sample from outside the illuminated area,
to reach the detector. These paths cannot have a counterpart, therefore they cannot
contribute to the crossed term, but they decrease the enhancement. This extra source
of diffuse background can be reduced with carefully placed diaphragms.

A more tricky unwanted light is the one that reenters the beam path after being
scattered off the main beam. This source of noise is hard to filter, as it is of the
right wavelength, and in phase with the signal beam. The path difference between
the coherent beam and a scattered one is of the orders of meters, which turns into a
delay of ≃ tens of nanoseconds. Our lock-in operates at 100 kHz, therefore we can
discriminate light contributions which are separated by milliseconds. This means that
all the scattered light is in phase. It can however be blocked by placing many screens
cleverly in the beam path and checking the isotropy of the cone obtained from an
isotropic scattering solution of TiO2 (in 2−methylpentane−2, 4−diol).

The liquid crystals samples consist of p-penthyl-p′-cyanobiphenyl (5CB), and are
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contained in a cylindrical cell of 8 cm diameter, and 4 cm thickness which satisfies
the requirement of having an optically thick sample. The width of the beam limits
the angular resolution as it bounds the exiting distance d (Eq. 2.24) of the reciprocal
paths.

isotropic
polydomain

nematic

monodomain
nematic

Figure 4.13: Monodomain, polydomain and isotropic nematic liquid crystals. The dotted line is
only for illustration, as the transition from one domain to the other is very smooth: a continuous
picture is more appropriate.

A monodomain nematic phase is obtained by heating the system above the nematic-
isotropic phase transition at 309 K, which brings the liquid crystal into the optically
transparent isotropic phase, and then cooling slowly overnight to 301 K in an external
magnetic field of 0.5 Tesla (see section 4.1.1 for the thermotropic properties of nematic
liquid crystals). The sample is left in the magnetic field for several days to assure good
director alignment. Magnetic fields have been observed to modify multiple light scatter-
ing leading to fascinating phenomena such as the photonic Hall effect [85], the breaking
of time-reversal symmetry [65], and the elegant Hanle effect in coherent backscatter-
ing [68]. None of these effects play a role in our samples since the anisotropy is an
intrinsic optical property of the nematic phase. Scattering in nematics is dominated by
fluctuations of the otherwise aligned director and the magnetic field is used to obtain
a monodomain phase. In addition it suppresses long range orientational fluctuations
in the sample that are larger than the magnetic coherence length ξ. In our case the
field strength is modest (0.5 Tesla) and ξ = 4.2µm, much larger than the wavelength,
but orders of magnitude smaller than all sample dimensions, which assures that surface
anchoring effects can be neglected.

4.4 The measured anisotropic coherent backscattering cone

In Fig. 4.14 we report the observed coherent backscattering cone for two monodomain
cases and one polydomain case. The director in the two monodomain cases is in the
sample plane either in the x or y direction. The polarization is linear in the x-direction
and the polarization conserving channel is monitored. A clear angular anisotropy is
visible. The top panel (Fig. 4.14a) corresponds to the nematic director in the x direc-
tion, and the bottom panel (Fig. 4.14c) to the nematic director in the y direction. The
anisotropy clearly depends on the nematic director orientation.

The middle panel (Fig. 4.14b) shows the results for a polydomain nematic phase
which was obtained by heating the sample into the isotropic phase and cooling down in
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Figure 4.14: Coherent backscattering cones in polar colour plots from nematic liquid crystal
for three cases of the nematic director. Top: nematic director in x, bottom: director in y,
middle: polydomain phase. The anisotropy in the backscattering cone is clearly visible. The
polarization is in the x-direction in all cases.
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Figure 4.15: Coherent backscattering from a monodomain nematic for both orthogonal scan-
ning directions, in a linear plot. Nematic director and polarization in the x-direction. The
squares and the triangle indicate, respectively, the scanning direction parallel or orthogonal to
the magnetic field.

zero field while vibrating the system. In a polydomain phase the scattering anisotropy
still exists but only on length scales much smaller than the sample size. Hence the
anisotropy in the mean free path averages out over the whole sample volume and
one expects to observe an isotropic coherent backscattering cone. We observe from
Fig. 4.14b that the anisotropy indeed disappears in the polydomain nematic case.

A more conventional but also instructive way of reporting coherent backscattering
data is the linear plot shown in Fig. 4.15. Here we report the coherent backscattering
cone as recorded in long linear scans in the two orthogonal scanning directions, after
precise determination of the exact backscattering angle. The light is incident normal to
the front sample interface, and the magnetic field is in the plane orthogonal to ki. Again
we can observe that the coherent backscattering cone in the scattering plane parallel
to the nematic director is narrower than the cone in the perpendicular plane. Note
the observed anisotropy cannot be due to polarization effects at the sample surface
(like e.g. birefringent internal reflection [109]) since we are comparing angular scans
with the same polarization direction. The solid line in Fig. 4.15 was obtained from a
fit with a simple coherent backscattering model generalized for an anisotropic system
(described in the next section), and based on the diffusion approximation even if no
actual justification of the validity of this model can be given at this point. In order to
perform the fit, the theoretical curve is convoluted with the instrumental resolution,
which is obtained from a direct measurement of the focal spot-size (∼ 10 − 12µm) at
the detector, if the sample is replaced with a mirror. (The advantage of convolving the
theoretical curve instead of deconvolving the experimental one is that no assumptions
regarding the shape of the latter are needed.)

Fig. 4.15 confirms that the experimental data agree with the classical theoretical
cone shape. The rounded top is due to the finite experimental resolution.
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Anisotropy in coherent backscattering due to an anisotropic transport mean free
path has been predicted numerically in Monte-Carlo simulations [92, 93]. However,
no exact theory on coherent backscattering from nematic liquid crystals is currently
available. As a preliminary step in the direction of a full theory, it is instructive to
generalize the standard coherent backscattering model for an anisotropic mean free
path.

We observe in Fig. 4.15 that the enhancement factor is 1.55 ± 0.05 which is an excel-
lent result considering the difficulties associated with resolving such a narrow backscat-
tering cone [110].

4.5 A first model of anisotropic weak localization

We follow here a standard approach for calculating γC(θ), as explained in sec. 2.10.3, in
which one solves the radiative transfer equation for a random collection of point scat-
terers in a self-consistent way and upon diffusion approximation [11]. In an anisotropic
system like a nematic liquid crystal, the distribution of distance becomes anisotropic,
leading to an anisotropic backscattering cone. Assuming the random walks in the three
orthogonal propagation directions are uncorrelated, we obtain (see section 2.10.3) for
the interference contribution in the anisotropic case:

γc(θ, ϕ) =
3

2ℓ3αu

α+ u(1 − exp (−2αz0))

(u+ α)2 + η2
, (4.18)

where η ≡ k(1 − µs), u ≡ 0.5 ℓ−1(1 + µ−1
s ), z0 = 2/3 ℓ, µs = cos θ, and α = k sin θ

with ℓ = ℓ⊥ sinϕ+ ℓ‖ cosϕ and k the wave-vector of the light in vacuum. Here θ is the
scattering angle, ϕ the angle of the scattering plane with respect to the nematic director
n, and ℓ‖ and ℓ⊥ are the transport mean free paths parallel respectively perpendicular
to the nematic director. Doing this we have assumed that upon multiple scattering
a diffusive transport mean free path can be defined which is not any more a scalar
quantity, but a vectorial one. We denote its components parallel and perpendicular
to n by ℓ ‖ and ℓ⊥ respectively [94, 111]. The director n lies in the sample plane.
Absorption is negligible since the laser wavelength is outside the region where 5CB is
absorbing. Eq. (4.18) describes an anisotropic backscattering cone of which the full
width half-maximum W in the two orthogonal scattering planes is a measure of ℓ‖ and
ℓ⊥:

W (ϕ = 0) ≃ 0.7

2π

λ

ℓ‖
W (ϕ =

π

2
) ≃ 0.7

2π

λ

ℓ⊥
. (4.19)

In Fig. 4.16 we report a comparison between the data and the theoretical curves,
plotted in a polar graph.

A two-dimensional fit of the measured coherent backscattering data can be used to
extract values for the transport mean free paths. The only fitting parameters are the
enhancement factor and the values of ℓ‖ and ℓ⊥. For the extraordinary polarization case
we find mean free paths ℓ‖ = 0.71 mm and ℓ⊥ = 0.83 mm, with a fitting error of about
2.5% and a statistical error of 4%. The fitting error refers to the uncertainty in the
values of the fitting parameters for each measurement, while the statistical one is related
to the spreading of these values when repeated measurements are performed. To our
knowledge these are the first experimental data on the absolute values of the transport
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Figure 4.16: Comparison between data and theoretical curves to determine the anisotropy in
the mean free path. The constant intensity contours are circular in the isotropic middle panel
(polydomain) while they are ellipses in the other two case (monodomain) with the minor axis
in the direction of the director.
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mean free paths in nematic liquid crystals. The resulting anisotropy is: 1.17 ± 0.04.
For the bottom panel (director in y, ordinary polarization) we find: ℓ‖ = 0.67 mm and
ℓ⊥ = 0.77 mm, and ℓ‖/ℓ⊥ = 1.15 ± 0.04. The isotropic case in the middle panel the
fit gives: ℓ‖/ℓ⊥ = 1.01 ± 0.04. These anisotropy values are in good agreement with
available theories regarding anisotropic diffusion in nematics [90] that predict a mean
free path anisotropy of about 1.18. For future studies it would be interesting to examine
the magnetic field dependence of the mean free paths and anisotropy. The mean free
paths are expected to get longer with increasing magnetic field due to a reduction of the
magnetic coherence length, and the anisotropy is expected to become smaller. These
effects should become observable for magnetic field strengths above 10 Tesla [90].

4.6 The polarization reversing channel, a controversy solved.

Our accurate apparatus also enabled us to resolve a discrepancy in the literature about
multiple scattering from liquid crystalline nematics. The liquid crystal birefringence
leads to a substantial phase difference between the ordinary and extraordinary modes
of propagation (much more than 2π over the length scale of the mean free path) and
hence there should be no backscattering enhancement in the polarization reversing
channel [91, 57]. While the experiment by Vithana et al. [91] observed no cone in
this channel, the experiment by Kuzmin et al. [57] revealed the presence of a 3-5%
backscattering enhancement for reversing polarization (see Fig. 4.17).

In Fig. 4.18 we show the backscattered signal in the polarization reversing chan-
nel (lin⊥lin) from our liquid crystal in the monodomain nematic phase. The setup was
aligned in the polarization conserving channel and great care was taken to maintain op-
tical alignment while changing polarization channels. We confirmed there was no resid-
ual backscattering cone in the polarization reversing channels (ordinary-extraordinary
and extraordinary-ordinary) within the noise level of our experiment of 1%. If we as-
sume that the cone in the polarization reversing channels has the same width as in the
other channels, but it is just weaker, then we could observe it in a fit of the data. Such
a fit would have an accuracy

√
Nd better than the 1% mentioned above, as it would be

obtained from Nd significant points. We conclude that no enhancement cone is present
within 1.0/

√
10 % ∼ 0.3%.

In the polarization non-preserving channels, two processes act to destroy the inter-
ference between the direct and the reverse path. Birefringency of nematics implies that
the two paths, which have different polarization, experience different dispersion laws
(no 6= ne) and therefore get off-phase after a distance smaller than the scattering mean
free path: interference is destroyed. Another process that decreases (without killing
completely) the enhancement is related to the differential scattering cross-section, which
depends strongly on the input polarization state. In the lin⊥lin channel, the amplitudes
of the direct and reverse paths are thus different and the interference visibility reduced.

The presence of a 3-5% backscattering enhancement [57] (see Fig. 4.17) is not com-
patible with our measurements and with the theoretical explanation. A possible reason
for this discrepancy could be the presence of a coherent backscattering contribution
also from unwanted scattering sources, like a dirty interface or the sample cell or from
the damped beam at the beamsplitter.
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Figure 4.17: The coherent backscattering (IH
v is the light intensity) as a function of angle in

the liquid crystals, for the polarization reversing channels (courtesy of Vladimir Kuzmin, [57]).
An 3-5% backscattering enhancement is visible.
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Figure 4.18: Backscattered intensity in the polarization non-preserving polarization channel.
No enhancement is observed within the noise level of our data (1%). Wider scans up to 2 µrad
are flat as well.



90 4. Anisotropic coherent backscattering from ordered nematics

4.7 Conclusions

In summary we have investigated weak localization in anisotropic systems, in partic-
ular nematic liquid crystals. We observed an angular anisotropy associated with an
anisotropic transport mean free path in a high-order multiple-scattering interference
phenomenon. The observation of an anisotropic backscattering cone implies that the
weak localization effect is stronger for particular propagation directions inside the sys-
tem. Interesting future studies could involve strongly scattering anisotropic systems,
for example anisotropic meso-porous semiconductors, with mean free paths of order
one wavelength. While our results imply that the weak localization correction can be
direction dependent, it is as yet completely unknown how anisotropy influences the
Anderson localization transition.
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Chapter 5
Monte Carlo simulations of anisotropic

multiple light scattering

The Monte Carlo method has long been recognized as a powerful technique for perform-
ing certain calculations, generally solutions to integral equations. Multiple scattering
equations can be easily put in an integral form, and a Monte Carlo simulation em-
ployed to perform the required configuration averaging [112]. Our strategy is based on
an approach with increasing complexity. We start with a model of isotropic Rayleigh
scattering. Then we extend it to include scattering and spatial anisotropy, at first
keeping the intra-scattering medium homogeneous and isotropic and then with the an-
isotropic propagation eigenmodes. As a last stage, not presented here, light scattering
in ordered nematics can be modelled without ambiguity. In this chapter we present
the numerical calculation of the coherent backscattering cone from a set of anisotropic
Rayleigh scatterers, for different form of anisotropies. In the last section the extension
to the case of scattering from ordered nematics is outlined for a future development.

5.1 The Monte Carlo technique

A Monte Carlo technique is any technique making use of random numbers to solve a
problem. Historically, the first large-scale calculations to make use of the Monte Carlo
method were studies of neutron scattering and absorption, random processes for which
it is quite natural to employ a statistical approach [113]. Whether or not the Monte
Carlo method can be applied to a given problem does not depend on the stochastic
nature of the system being studied, but only on our ability to formulate the problem
in such a way that random numbers may be used to obtain the solution.

At least in a formal sense, all Monte Carlo calculations are equivalent to integrations.
This follows from the definition of a Monte Carlo calculation as producing a result F
which is a function of random numbers ri. Let us assume for simplicity the usual case
that the ri are uniformly distributed between zero and one. Then the Monte Carlo
result F = F (r1, r2, . . . , rn) is an unbiased estimator of the multidimensional integral

I =

∫ 1

0
F (x1, x2, . . . , xn) dx1dx2 . . . dxn (5.1)

93
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or, stated another way, the expectation of F is the integral I. Each iteration of the
numerical procedure we calculate a partial result F , which is then summed up to all
the others and averaged to get the integral I, average which is performed over all the
possible random numbers in [0, 1].

When the problem to be solved is explicitly the problem of integrating a positive
function f , the F above is not to be identified with

∫
f but rather with the Monte

Carlo estimate of its integral ∫

V olume
f(x) dx. (5.2)

The formal equivalence of Eq. (5.1) can be used to lay a firm theoretical justification
for Monte Carlo techniques [113]. If F has finite variance, then it can be demonstrated
that the Monte Carlo estimate converges to the true value of the integral for very large
number of iterations N , as a direct consequence of the central limit theorem.

lim
N→∞

∑

N

F (r1, r2, . . . , rn) =

∫ 1

0
F (r1, r2, . . . , rn) dr1 . . . drn =

∫

V olume
f(x) dx. (5.3)

The Monte Carlo estimate is asymptotically normally distributed, it approaches a gaus-
sian density. The standard deviation, the square root of the variance, of the Monte
Carlo estimate is given by

std =

√
V (F )√
N

(5.4)

where V (F ) is the effective variance of the single iteration F [113], i.e. V (F ) =[∫
f2 −

(∫
f
)2]

.

5.1.1 The crude Monte Carlo integration

Imagine we want to calculate the integral
∫
fdx. We can bound the function f with

a box, and then divide the box area into squares with a grid on it, as in Fig. 5.1.
A numerical way to calculate the integral consists in choosing randomly in the grid

f(x)

x

Figure 5.1: Hit-or-miss Monte Carlo simulation to calculate the area of the function f .

a unit square, and decide whether it hits or misses the area under the function. Via
iteration of this procedure we can calculate the probability of hitting the area that we
want to calculate. If we multiply this probability by the area of the box we get the
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estimate of the integral of f . That’s why the crudest Monte Carlo simulation is also
called hit-or-miss.

(box area) × #hits

#total trials
(N → ∞) =

∫
fdx (5.5)

The variance is related to the number of attempts N (Eq. (5.4)), to the finest division
of the grid, and to the ratio of the area of f(x) to that of the box (if the box is too
large the probability of hitting the area under the function is very small).

5.1.2 Efficiency: variance-reduction techniques

In order to decrease the variance of the integration, we could increase N , but this
improves (converges) very slowly ∼

√
N , while the CPU time required is usually linear

in N . Another way is to try to decrease the effective variance V (f). There are many
ways to do so, in our case we employed only the importance sampling technique that
we are going to describe.

We may feel intuitively that the reason why Monte Carlo integration has such a
large uncertainty is that the points are chosen randomly in the bounding box, therefore
they cover it uniformly. What we are doing is just over-sampling regions of the box
where the function is very small. Monte Carlo calculations will be most efficient when
each point (event) has nearly the same weight, when f is almost constant. This can be
arranged by choosing a large number of points in regions of the sampling space where
the function value is largest and compensating for this overpopulation by reducing the
function values in these regions. This technique is called importance sampling, and
consists mathematically in a change of variable in the integral.

f(x)dx −→ f(x′)
dG(x′)

g(x′)
(5.6)

Points are chosen according to G(x) instead of uniformly, and f is weighted inversely
by g(x) = dG(x)/dx. This is equivalent to choose the random points below g(x), which
is clearly more efficient that choosing them in the box, and the probability of hitting
the area below f(x) (the convergence) is much higher. The relevant variance is now
V (f/g), which will be small if g has been chosen close to f in shape. In the best case,
if we can integrate analytically f (note that in this case the numerical integration is
not necessary) then we may change the variable in order to have

∫ 1

0
f(x)dx −→

∫ F (1)

F (0)
f(x′)

dF (x′)

f(x′)
=

∫ F (1)

F (0)
dF (x′) = F (1) − F (0), (5.7)

therefore the Monte Carlo would be a trivial sum of identical values and the variance
would be zero. A clever choice of g, with the requirements that G(x) =

∫
g(x) dx

exists and is invertible (∃G−1(y) = x) in order to apply the above described change of
variable, can reduce considerably the computational time required for the simulation.

As a side note, importance sampling is the only general method for removing infinite
singularities in the integrand f , by using a sampling function g with a similar singularity
in the same place.
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f(x)

x

g(x)

Figure 5.2: Hit-or-miss Monte Carlo simulation whose efficiency has been improved via im-
portance sampling. The boxing is replaced with the function g(x) which is much closer to
f(x).

5.1.3 Random Numbers

The Monte Carlo integration is based on the random choice of the parameters, or
the system configurations. In the algorithm, this can be accomplished with random
numbers. In principle, a random number is simply a particular value taken on by a
random variable, and thus has a truly unpredictable and unreproducible nature.

In a Monte Carlo calculation, random numbers are replaced by pseudo-random
numbers, which are sequences of numbers which, once they have been determined, are
not at all random in the statistical sense, but may have some properties which are
similar to the properties of a truly random sequence. They are generated according
to a strict mathematical formula, and therefore reproducible, but are supposed to be
indistinguishable from a sequence generated truly randomly.

In order to prevent possible correlations between the random values we have chosen
to use the routine rand[a, b], together with gsl_rng_taus21 which ensures a period of
the random series of 288, out of reach in our simulations.

5.1.4 Random value from a Distribution

One of the crucial steps in a Monte Carlo simulation is when a random number is
picked up in a given probability distribution f(x). The starting point is the random
number generator, which provide a random deviate in a given range [a, b], as for example
rand[a, b].

The distribution f(x) is positive, integrable and ∈ C0, with an analytical expression
for its integral h(x) =

∫ x
−∞ f(p)dp, and with invertible integral, x(y) = h−1(y). Then a

random value x̃f distributed as f(x) can be found by:

{
y = rand[0,

∫∞
−∞ f(x)dx]

x̃f ≡ h−1(y) = {
∫ y
−∞ f(p)dp}−1 (5.8)

where rand is a random deviate in the range [0,
∫∞
−∞ f(x)dx]. The obtained set of

random value h−1(y) are distributed as f(x). Operatively one first choose a random

1It is a maximally equidistributed combined Tausworthe generator by L’Ecuyer [114]. From the
GNU Scientific Library (GSL), http://www.gnu.org/software/gsl/.
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Figure 5.3: Illustration of the technique that allows to sample a random value from the distri-
bution f(x).

deviate in [0,
∫∞
−∞ f(x)dx] and then calculate the corresponding x inverting the integral

h(y) =
∫ y
−∞ f(p)dp.

As an example a random deviate from an exponential distribution f(x) = exp(−x/ℓ)/ℓ
can be obtained calculating

{
y = rand[0, 1]
x̃f ≡ h−1(y) = −ℓ log(1 − rand[0,

∫∞
0 f ]).

(5.9)

When the function h(y) does not exist analytically, which is the most common case,
then x̃f can be obtained using the so called Rejection Method.

5.1.5 Rejection Method

This method consists in bounding the given distribution f(x) with another g(x) such
that g(x) > f(x),∀x, and with

∫ x
−∞ g(p)dp invertible [115]. The method proceeds in

steps:

1. Calculate a x′ distributed as g(x) (x′ ∈ x̃g, i.e. it is distributed as g(x)), with the
inversion method described in the previous section

2. Generate a random deviate y(x′) ≡ rand[0, g(x′)] in the interval [0, g(x′)]

3. Confront this value with the value f(x′). If y(x′) < f(x′) then the couple
(x′, y(x′)) is a random point within f(x) and x′ is accepted, x′ ∈ x̃f and the
loop stops. Otherwise y(x′) is rejected. Go back to step 2 and restart the proce-
dure.

This procedure is repeated for all the random number required. The obtained set of
accepted {x′, y(x′)} is distributed as {x, f(x)}.

5.1.6 Multidimensional distributions

If we want to get a value from a multidimensional distribution, as for example the
direction of scattering when the differential scattering cross-section depends on the
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k-vector and also on the polarization, care has to be taken to extend the previous
methods.

We want to generate a set of {x, y} distributed as f(x, y). The easy case occurs
when the distribution is separable, such as that

f(x, y) = g(x)h(y). (5.10)

This means that the variables x and y are uncorrelated and we can sample them inde-
pendently. Otherwise, the distribution along each dimension

Dy(x) =

∫ y2

y1
f(x, y)dy (5.11)

has to be calculated. Then first x is generated according toDy(x) and then y is obtained
from the conditional probability of getting y after x has been chosen.

Mathematically, given the joint probability density function f(x1, x2, . . . , xN ), we
want to calculate the conditional density functions

hm(xm|x1, x2, . . . , xm−1). (5.12)

This probability is calculated via the marginal distributions gm

gm(x1, x2, . . . , xm) =

∫
f(x1, x2, . . . , xn) dxm+1dxm+2 . . . dxn

=

∫
gm+1(x1, x2, . . . , xm+1) dxm+1 (5.13)

which are the probability of choosing the set (x1, x2, . . . , xm). The conditional density
function h is then given by:

hm(xm|x1, x2, . . . , xm−1) ≡
gm(x1, x2, . . . , xm)

gm−1(x1, x2, . . . , xm−1)
(5.14)

and the sought distribution f(x, y) can now be factorized into

f(x1, x2, . . . , xn) = h1(x1)h2(x2|x1) . . . hn(xn|x1, x2, . . . , xn−1). (5.15)

All the random variables xi can be obtained from the first one x1 with an iterative
procedure.

An alternative to this process consists in using a multidimensional rejection method.
For example to obtain a random unit vector (a vector in a sphere) I can just sample
randomly three numbers a, b, c make with them a vector (abc) and check if it is unitary
(very inefficient!2). The global multidimensional rejection method and the choice of
a value from a multidimensional distribution are two techniques which are equivalent,
the best strategy depends on the specific case in analysis.

2In the code a random vector has been obtained first choosing c randomly in [−1, 1], and then
applying the rejection method to a and b to have a vector in the circle at z = c.
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5.2 Multiple scattering path integral

In chapter 2 an exact formulation of the crossed and ladder bistatic coefficient has been
presented. For scattering of scalar and vectorial waves in isotropic scattering media,
exact analytical solutions have been found [42], but none can be easily applied for
anisotropic scattering or light in nematic liquid crystals.

The bistatic coefficient have an integral formulation which can be well implemented
in a Monte Carlo simulation. We recall here the integral formulation of the coherent
backscattering problem as defined in Eq. (2.102). The contribution for each scattering
order to the crossed term is

γ
(N)
C =

4πnN
p

A

∫
dr1dr2 . . . drN e−z1/ℓs

(
dσ

dΩ

)

1

(16π2G(k, r12)G
∗(k, r12))

(
dσ

dΩ

)

2

. . .

. . .

(
dσ

dΩ

)

N−1

(16π2G(k, rN−1,N )G∗(k, rN−1,N ))

(
dσ

dΩ

)

N

e−zN /ℓ × cos[(kin + kout) · (rN − r1)]

(5.16)

while the ladder one has the same structure without the interference factor at the end
(Eq. (2.100))

γ
(N)
L =

4πnN
p

A

∫
e−z1/ℓs

(
dσ

dΩ

)

1

(16π2G(k, r12)G
∗(k, r12))

(
dσ

dΩ

)

2

. . .

. . .

(
dσ

dΩ

)

N−1

(16π2G(k, rN−1,N )G∗(k, rN−1,N ))

(
dσ

dΩ

)

N

e−zN /ℓ dr1dr2 . . . drN .

(5.17)

These are the two integrals that we want to calculate with the Monte Carlo simulation.
The principle of a Monte Carlo simulation is to probe the system in a large number

of configurations, and to use the average result to describe the whole system. Many
light wavepackets, which we will call for simplicity photons, but which are of classical
nature, are launched into the system and properly propagated; the exiting intensity is
then recorded. The coherent backscattering cone arises in the diffuse intensity, averaged
over the disorder. In the following we perform the average over the position of the
scatterers with a Monte Carlo method, extended for anisotropic scattering. The method
is flexible as it allows to compute many transport quantities at the same time and can
be easily extended to different scattering processes [112].

Before choosing the best numerical strategy, we can look qualitatively at the inte-
grals. The propagators G(k, r12) give contributions that are exponentially weaker for
long paths than for short ones: a crude Monte Carlo would be extremely inefficient,
with very slow convergency, as it would consider with the same weight the short paths
(the dominating contributions) and the many long paths (exponentially attenuated). A
variance reduction techniques can be very effective here, so we have decided to sample
the modulus of the random vector r12 from an exponential distribution exp(r12/ℓs)/ℓs.
The same strategy can be employed to avoid scattering directions for which (dσ/dΩ) is
extremely weak (or zero). This can be accounted for, choosing the direction of the ran-
dom vector r12 from an appropriate distribution, with the same shape as the differential
scattering cross-section.
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Doing this, a natural physical interpretation arises, as the photon we are describing
with the position vector r is scattered in a direction given by (dσ/dΩ) and propagates
for a distance given by G(k, r12): it is a random walk. The Monte Carlo technique
consists in computing the photon random walk (labelled by the variable rw) and then in
summing up the contribution of each photon to the bistatic coefficient. Self-consistency
is ensured stopping the summation when the photon exits the slab.

The contribution of a single photon to the ladder and crossed terms is now reduced
to a very simple form

γL =

∫

Srw

e−zN/ℓs drw (5.18)

γC =

∫

Srw

e−zN /ℓs cos[(kin + kout) · (rN − r1)] drw (5.19)

Following the previous reasoning on the variance of the Monte Carlo, one could think
that for the ladder term the Monte Carlo has almost zero variance, as we are calculating
the integral of an exponential, which has known primitive. This unfortunately is not
true, as the all problem is now transferred to the boundary conditions, and the simu-
lations essentially calculates the volume of the subspace Srw defined by the condition
that the photon is inside the slab, by the points zN .

We will investigate the case of isotropic and anisotropic Rayleigh scattering pro-
cesses. The algorithm has been written for the C programming language, following the
ANSI3 standard [116].

5.2.1 The photon random walk

The first requirement of the code is to simulate a photon random walk in the medium.
This is achieved from the knowledge of the single scattering cross-section which de-
scribes the scattered pattern at each event and the dressed Green function that tells
how much light can reach the following scatterer (in chapter 2).

The (random) choice of the positions of the various scatterers is done successively
starting from the first one, then determining the position of the second one, then the
position of the third one, and so on. Each time the direction of propagation of the
photon is chosen with probability given by the single scattering differential cross-section
dσ/dΩ and the position of the next scatterer, in a random direction from the previous
scatterer, is exponentially distributed accordingly to G(k, r12) (Eq. (2.114)). These
two steps are equivalent to a variable change in the multiple scattering integrals (as
described in section 5.1.2) and they increase the efficiency of the simulation.
More precisely, the algorithm is the following one.

1. Choose randomly the depth of the first scatterer according to an exponential
distribution.

2. Choose randomly the direction of emission according to dσ/dΩ.

3. Choose randomly the position of the next scatterer from the previous scatterer
at a distance given by an exponential distribution, as in Eq. (5.9). If the chosen
position is outside the medium, stop the current scattering path and initiate a
new one (go to step 1).

3the American National Standards Institute.
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Figure 5.4: Isotropic random walk. 34871 scattering events.

4. Go to step 2 and continue the random walk repeating the procedure until the
scattering order N is reached.

5. If the scattering order is N , compute the contribution of this photon.

6. Inject a new photon and restart the full procedure.

A photon random walk obtained from the algorithm is shown in Fig. 5.4. As
predicted by diffusion theory, the average space travelled in the x-direction is ∼

√
N×ℓt.

The specific photon shown in Fig. 5.4 has travelled a path which is ∼ 200 times longer
than the physical thickness of the slab. After 34871 scattering events it exits the
medium from the same face it entered from. The sum of all the intensity contribution
of the diffused photons is the incoherent transport of light, as described by diffusion
approximation. For example the transmitted photon cloud can be calculated, as shown
in Fig. 5.5

When we consider the semi-infinite geometry, we should consider arbitrary long
paths, but this is evidently impossible in a real simulation, as a cut-off has to be
introduced to keep control over the computing time. We thus fix a maximum scattering
order and an optical thickness b and we discard photons which exceed these values. This
means that we are always underestimating the backscattered contributions. In the case
of the isotropic Rayleigh scatterers, the systematic absolute error induced in the bistatic
coefficients is ≃ 4.5/b [117]. This means that the cones are ∼ 1 % (for b = 100) smaller
than they would be in a real semi-infinite medium.
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Figure 5.5: Simulation of the photons transmitted from a slab of spatially isotropic medium, of
optical thickness b = 10. The cloud of photons is symmetric.

Before calculating the crossed and ladder contributions it is important to introduce
the partial photon method that reduces considerably the computing time.

5.2.2 The partial photon method

A crucial point, which saves a lot of computing resources, is to remark that, when
calculating the N -th scattering contribution, all the scattering order inferior to N (as
the (N − 1)-th, the (N − 2)-th, etc . . . ) can be obtained at almost no extra cost. The
contribution of each scattering event to the backscattered (or transmitted) intensity
can be computed independently from the existence of a successive scattering event (or
order). Thus, a scattering path with N scattering events can be used for all orders of
scattering from 1 to N (this is the partial photon method discussed in Appendix C of
Ref. [118]). This trick essentially saves a factor N in the calculation, where N is the
typical scattering order of a path in the medium. In the diffusion approximation, N
is of the order of the square of the optical thickness of the medium. With the optical
thickness in the experiments one finds N ∼ 103, so that the saving is substantial. The
whole procedure actually relies on the ”ladder” structure of the diagram (see chapter
2): the diagram at scattering order N is obtained from the diagram at order (N − 1)
by simply adding an additional rung to the ladder.

In the procedure described in the previous section we can now compute the con-
tribution to the ladder and crossed bistatic coefficient at each scattering order, during
each random walk. During step 3 of the random walk algorithm, the integrals in Eq.
(5.16) and Eq. (5.17) are computed for each scattering event just summing up the val-
ues of the exponentials exp(−zN/ℓs) which account for the transport of the intensity to
the sample surfaces (whose distance is zN ). By restarting the full procedure as soon as
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the position of a scatterer is outside the medium, we ensure automatically the correct
weights of the various scattering orders.
More precisely, the algorithm is the following one.

1. Choose randomly the depth of the first scatterer according to an exponential
distribution.

2. Choose randomly the direction of emission according to dσ/dΩ.

3. Choose randomly the position of the next scatterer from the previous scatterer
at a distance given by an exponential distribution, as in Eq. (5.9). If the chosen
position is outside the medium, stop the current scattering path and initiate a
new one (go to step 1).

4. Compute the contribution of this photon to the present scattering order.

5. Go to step 3 in order to compute the next step in the random walk.

In principle we should be careful in using the partial photon method, as it could
induce small correlations between the scattering events, as they all belong to the same
random walk. This is completely negligible for isotropic scattering, as the photon direc-
tion and polarization are completely randomized after few scattering events, but may
play a role in anisotropic media. This problem is completely avoided if the parameter
space is well sampled, if the average is made over many photons and many scattering
events (we use ∼ 10 − 100 thousands photons and thousands of scattering events for
each photon). Evidence of such a correlation problem would appear in unusual oscilla-
tions in the tails of the cone; with the present simulations we did not experience this
problem.

5.3 The simulated coherent backscattering cone

5.3.1 Isotropic scalar coherent backscattering cone

For the case of isotropic scattering of scalar waves, the simulation can be performed
with little computing time (∼ minutes on a Intel TM Pentium 4, 32-bit processor, 2.8
GHz CPU speed, standard architecture, Linux operating system). There exists also an
analytical solution to the Milne equation, as discussed in chapter 2 and in ref. [42],
which can be confronted with the simulated profile. The comparison is shown in Fig.
5.7, for the case when 100.000 photons are launched in a semi-infinite medium: the
agreement between theory and simulation is excellent.

5.3.2 Isotropic vectorial coherent backscattering cone

The vectorial nature of light waves affects both the elementary scattering event and
the propagation in the average medium. The scattering cross section depends on the
polarization of the incident light but not on the relative orientation of the incoming
and outgoing directions. In order to include scattering of vector waves, one has to use
the scattering cross-section for isotropic vectorial Rayleigh scattering (Eq. (2.113)),

dσ

dΩ
(|ki, i〉 −→ |kf , f〉) =

3

8π
σ0 |i · f |2. (5.20)
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Figure 5.6: In the figure, the full profile (full line) and the interference that results from only
double scattering (dashed line), and a few lower scattering orders (dotted and mixed lines)
are shown. The line profile is obtained with a Monte Carlo simulation for scalar waves and
isotropic scattering (single scattering has been subtracted and the ladder term has been fixed
to 1 for all orders).

and the vectorial Green function propagator

G(k, r12) = − 1

4πr12
exp(ikr12) exp

(
−r12

2ℓs

)
∆r. (5.21)

The differential cross section is no longer isotropic, which means that the scattering
directions are not all equiprobable. We have used two different methods: either choose
randomly the scattering direction at each scattering event and weight the contribution
by the probability of the event (proportional to the differential cross section) or choose
directly the scattering direction with a probability distribution matching the differential
cross section. We have checked that both methods give the same results [112], although
the second one is more accurate, as the integrand in the Monte Carlo integration is
constant, at the price of the integration volume harder to compute (see section 5.2.2).
The Monte Carlo simulation uses the rejection method to obtain a scattering direction
from the distribution shown in Eq. (5.20); after the scattered direction is chosen, a
projection of the excited dipole on the subspace orthogonal to kf allows for getting the
scattered polarization f .

The numerical calculation of the bistatic coefficient is similar to the calculation for
scalar waves. The only difference is that the polarizations of the incoming, outgoing,
and intermediate photons must be taken into account. Special care is needed when
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Figure 5.7: Comparison between the simulated coherent backscattering cone for scalar waves
and the solution of the Milne equation. The agreement is excellent. Crossed term only, while
the ladder is γL ≃ 4.25.

considering the polarization state of scattered photons. Indeed, given a multiple scat-
tering path, the contributions of the possible polarizations of the photon between two
consecutive scatterers must be taken into account. For long paths, the number of con-
tributions increases very rapidly. In the isotropic scattering case (only), the average
amplitude propagator is the same for all polarizations, which means that they all are
attenuated with the same mean-free path. It is thus possible to use a given multiple
scattering path to sum exactly the various contributions having different intermediate
polarizations.

The result is shown in Fig. 5.8. As expected the cone shows, in the lin‖lin channel,
a difference between the two scanning direction with respect to the incident linear
polarization, as a result of a trivial anisotropy related to the first scattering orders [82].
The cone in the helicity-reversing channel shows a much smaller enhancement which is
due only to the depolarized component of the multiple scattered light. In the case of
the lin⊥lin channel, there is anisotropy between the scans at 45 deg of the cone, and at
the same time the enhancement is strongly reduced, as expected from the theory (see
section 2.10.6).

For vectorial waves an exact expression of the cone is available from the theory, but
it is extremely involved [42]. Instead there exists a simple exact solution for the special
case of only double scattering [76].

5.3.3 Double Scattering Coherent Backscattering cone: a test for the code

As a special case, we can test the Monte Carlo simulation against the theoretical calcu-
lations of the profile of the coherent backscattering cone for only the second scattering
order.
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Figure 5.8: Coherent backscattering cone simulated for vectorial waves scattered from a col-
lection of isotropic Rayleigh scatterers.

For only double scattering, the profile of the coherent backscattering cone can be
calculated analytically, as it has been done by Cord Müller [76]. The coherent backscat-
tering signal as a function of the reduced angle of detection µ = kℓtθ, is given by:

γ
(2)
C (µ, φ) =

9

16π

∫ π/2

0
dθ

∫ 2π

0
dϕ

sin θ c1(θ, ϕ, φ)

1 + cos θ − µ2 cos θ cos2 ϕ
(5.22)

where c1(θ, x, φ) is

c1(θ, x, φ) =
1

4
(1 + x2)2 +

1

8
(1 − x2)2 +

(1 − x2)2

8
X2 cos 4φ+

1 − x4

2
X cos 2φ

X = −2

√
(1 + x2)2 + µ2(1 − x2) − 1 − x

(1 − x)µ2

The solution of Eq. (5.22), for the case linear ‖ linear is

γ
(2)
C (µ, φ) =

3

512(1 − µ2)4
[−288 + 48µ2 − 252µ4 − 138µ6 +

+(222 − 144µ2 + 237µ4)
√

1 + µ2

+(192 − 384µ2 + 720µ4 − 336µ6 + 123µ8)F(µ)

+A1(µ) cos 2φ+A2(µ) cos 4φ] (5.23)
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where

A1 = 28µ−2[2(2 − 8µ2 − 4µ6 − 5µ8) + (−4 + 18µ2 − 14µ4 + 15µ6)
√

1 + µ2] +

+12µ2(16 + 8µ2 + 6µ4 + 5µ6)F(µ) (5.24)

A2 = µ−4[2(24 − 76µ2 + 64µ4 + 24µ6 − 106µ8 − 35µ10) +

+(−48 + 176µ2 − 222µ4 + 88µ6) + 111µ8)
√

1 + µ2] (5.25)

and the auxiliary real function F(µ) is given by

F(µ) = [2 arg cosh

(
1

|µ|

)
− arg cosh

(
1

µ2

)
]/
√

1 − µ2 (5.26)

Half of the function F is the crossed bistatic term for double scattering of a scalar wave
scattered in a semi-infinite medium of point-like scatterers.

Figure 5.9: Bistatic coefficient for double scattering of a vectorial wave by point-like scattering
medium. x-y scans of the two linear polarizations channels are shown in the lin‖lin channel.
The profiles from theory and simulation are indistinguishable.

The Monte Carlo simulations show an excellent agreement with the predicted cone
profile, as it is clear from the plot of the theory and simulation together, Fig. 5.9.

5.4 Anisotropic Coherent Backscattering cone from anisotropic prop-

agator

We can generalize this isotropic picture and allow for a non-isotropic Green function
propagator. As a first model, we can change the intra-scattering propagator, and
introduce an anisotropic mean free path in the Green function. We are not changing
each individual scattering cross-section, which should be anisotropic as well. It is indeed
a first model, only to understand the role of the anisotropy, that we will include in the
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next sections. This fist case as been presented already in section 3.1.1, and it has been
described with a diffusion equation generalized for anisotropic mean free path. Here
we present the result of a Monte Carlo simulation for anisotropic scattering mean free
path, which confirms such analysis.

5.4.1 Light transmission

The transmitted light from a slab of a medium with such an anisotropy, and large
optical thickness b > 7 − 8 is dominated by anisotropic light diffusion [119]. Within
the diffusion approximation, the angular spread of the diffuse cloud does not depend
on the transport parameters ℓt or D, as light explore a forward cone of angular opening
∆θ ∼ π/2, which is only due to the equiprobability of a random step in the x, y or
z direction. The width of the isotropic distribution, in the multiple scattering regime

Dx

L

q

Figure 5.10: Illustration of the transmitted photons from a slab of scattering isotropic medium.
The cloud of photons is symmetric.

(ℓ < L) depends only on the slab optical physical thickness L, and it is ∆x = ∆y ∼ 2L.

On the contrary the relative shape of the cloud depends on the ratio between the
transport mean free paths ℓx in the x and ℓy in the y direction [83]. The ratio ℓx/ℓy
describes the probability of a diffusion step in the direction x̂ as compared to the same
probability in the y-direction. In section 3.1.2 we have shown that

∆x

∆y
=
ℓx
ℓy

= s. (5.27)

If the diffusion velocity in the two directions (x-y) is the same, then ∆x/∆y can be
used to know the anisotropy of the diffusion constant as

∆x

∆y
=
ℓx
ℓy

=

√
Dxx

Dyy
= s. (5.28)

As a reference, the isotropic case is plotted in Fig. 5.5: it presents a circular profile of
width ∼ 2L.

Fig. 5.11 is obtained from the Monte Carlo simulation and shows the distribution
of the light exiting from the slab when the scatterer are anisotropically distributed,
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Figure 5.11: Simulated transmitted photons from a slab of spatially anisotropic medium, of
optical thickness b = 10 and s = 3. The cloud is wider in the same direction of ŝ and ∆x/∆y ≃
s = 3.

further apart in the x direction, s = 3 times more distant (see section 3.1.1). The cloud
is more extended in the x-direction and the ratio ∆x/∆y is as expected equal to the
anisotropy parameter s.

5.4.2 The coherent backscattering cone

A Monte Carlo simulation of the coherent backscattering cone from such a medium has
been performed [120] and it is shown in Fig. 5.12. The line profile in the ŷ direction
is unchanged, while the x-cut is narrower proportionally to s. This means that ℓx = ℓ‖
is longer than ℓy = ℓ⊥. Here, the single scattering term γS does not depend on the
parameter s, and therefore the height of the bistatic coefficient is the same as for the
isotropic case.

While dynamical experiments can show that a diffusive process is anisotropic, and
therefore that Dxx 6= Dyy, no information is obtained regarding the transport mean
free paths ℓ‖ and ℓ⊥ if the diffusion velocity is not known. The knowledge of D = vℓ/3
is not enough, as v could also be anisotropic. The coherent backscattering cone in a
medium with a spatial anisotropy can be used to measure directly the transport mean
free path, via the measure of the cone width.

The effect of the anisotropy is shown in figure 5.13, where the ratio between the
FWHMs of the cones, which is W⊥/W‖, is plotted as a function of the anisotropy
parameter s. W⊥ is not affected by the anisotropy, while W‖ decreases. Accordingly to
W‖ ∼ 0.7/kℓ‖, also ℓ‖ decreases as expected,

1/ℓ‖ = 1/(ℓ0 s), (5.29)
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Figure 5.12: Coherent backscattering cone for isotropic Rayleigh scattering (line) and for spa-
tial anisotropy (symbols), s = 3 and ŝ in the x̂ direction. The cut in the ŷ direction is unchanged
by the stretching in the x̂ direction, while the x-cut is narrower. The optical thickness calculated
for ℓ0 is b = 30.

where ℓ0 is the isotropic transport mean free path. The expected behavior of the width
anisotropy is then

W⊥

W‖
∼ 1/ℓ0

1/(ℓ0s)
∼ s, (5.30)

as predicted with an anisotropic diffusion equation in section 3.1.1. The linearity of the
relation in Eq. (5.30) is confirmed by Fig. 5.13.

This effect is the same, but with different origin, as the anisotropy usually reported
in literature (see for example in Ref. [83]), where it is originated from Mie scattering
from elongated objects all oriented in the same direction. In the next section we will
investigate a more subtle form of anisotropy that arises from anisotropic polarizability
of Rayleigh scatterers and which cannot be directly included into a diffusive model.

5.5 Anisotropic Coherent Backscattering cone from anisotropic polar-

izability of the scatterers

We can generalize this isotropic picture and allow for non-isotropic polarizability of
the medium, ex. asymmetric molecules that can be more easily excited by a field in a
given direction. We can model the scatterer polarizability with an uniaxial anisotropic
dielectric tensor D = 1 + (a − 1)|n〉〈n|, where a is the anisotropy parameter that
quantifies the degree of anisotropy (see section 3.2). In this case a diffusive approach
is not strictly justified, and its validity is controversial.
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Figure 5.13: Anisotropy of the coherent backscattering cone, W⊥/W‖, lin‖lin channel, as a
function of the spatial anisotropy parameter s. Increasing the spatial anisotropy in the x̂ direc-
tion the x-cut of the cone gets thinner while it does not change in the ŷ dir. The line is a linear
fit. 1 million photons launched in a slab of optical thickness b = 30.

The simulation is performed as described in the previous section, light is incident
normal to the slab, and the optical axis n lies in the plane of the slab surface. We have
performed two different simulations, for the two input polarization state of the light,
parallel and perpendicular to n. In both cases we have used a propagator which has the
same form as the isotropic one, but which is generalized for an anisotropic scattering
mean free path, neglecting the anisotropy-induced dichroism.

An important difference with isotropic scattering systems is that in this case there is
a strong sensitivity in the input light state. One of the major effects is in the penetration
length of the incident photons, which is very different for the two input polarization
states.

5.5.1 The penetration length

The backscattered light profile is crucially determined by the penetration length zp

(see section 2.3.1) of the photon in the medium, before the first scattering event, see
Fig. 5.14. In the anisotropic medium, two different penetration lengths are important,
for input polarization parallel or perpendicular to n. A different zp implies a different
number of scattering events before exiting the medium, therefore a different mixing of
the two mean free path ℓ⊥ and ℓ ‖.
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zp

lS

d

n

Figure 5.14: Diffusion in backscattering due to anisotropy. The penetration length is zp while
the exiting distance d is obtained from the interplay of zp and the scattering mean free path ℓs

(see section 2.3.1).

Figure 5.15: Comparison of the coherent backscattering cone for isotropic polarizability (dotted
line) and the cone in presence of angular anisotropy. Extraordinary input polarization, i ‖ n,
short penetration length. Plots as a function of anisotropy a, for optical thickness b = 30, and
100 000 photons launched. Anisotropic bistatic coefficients are rescaled to be compared with
the isotropic one.

5.5.2 The simulated cones

Fig. 5.15 shows the simulated cones for extraordinary polarization, parallel to n [120].
The penetration length in this case is very short, zp = ℓs/a

2, a2 times smaller than the
isotropic scattering mean free path. Therefore few events are enough for the photon
to escape the medium. The exiting distance of the photons is thus dominated by low
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scattering orders, which have strong signature of the single scattering anisotropy. This
reflects into the large anisotropy of the cone wings.

Figure 5.16: Comparison of the coherent backscattering cone for isotropic scattering (dotted
line) and the cone in presence of angular anisotropy. Ordinary input polarization i ⊥ n, long
penetration length. Optical thickness b = 30, and 100 000 photons launched. Anisotropic
bistatic coefficients are rescaled to be compared with the isotropic one.

Fig. 5.16 shows the case of ordinary incident polarization. The penetration length
is long, zp = ℓs, equal to the isotropic scattering mean free path and therefore a photon
has to perform many more scattering events before exiting the medium (as shown in Fig.
5.14). Light transport will be dominated by the higher scattering orders and therefore
by the averaged transport mean free path. Again the wings profile is a clear indication
of an averaging process that reduces the effect of single scattering anisotropy: both
the parallel and perpendicular cuts show a large angle behavior similar to the isotropic
case, which is clearly different from the other polarization case reported in Fig. 5.15.
On the contrary, if one looks at the diffusive top, and one extracts the information
about the opening angle, one sees a clear anisotropy between the angular openings θ−1

⊥
and θ−1

‖ , which increases with the parameter a.

5.5.3 Angular opening of the cone

When one is entitled to apply a diffusive model to multiple light scattering in ordered
nematics or anisotropic media, then one can describe the coherent backscattering cone
with an effective length, the transport mean free path, which has a simple relation with
the opening of the cone, being W (θ) ∼ 0.7/kℓt. If one can generalize the isotropic
diffusion equation and obtain an anisotropic diffusive picture, then one can replace the
isotropic cone width W with two different widths in the two orthogonal directions, and
describe the cone with W‖ ∼ 0.7/kℓ‖ et W⊥ ∼ 0.7/kℓ⊥ (as done in first approximation
in section 4.4).
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Figure 5.17: Reciprocal of the opening angle of the cone as a function of the anisotropy a,
for incident extraordinary polarization, i ‖ n, 100 000 photons launched, optical thickness
b = 100. In first approximation the behavior of θ−1

⊥,‖(a) is hyperbolic. It is important to notice the
anisotropy that opens up between the two angles. The values are normalized to the opening
angle for a = 1.

Figure 5.18: Reciprocal of the opening angle of the cones as a function of the anisotropy a,
for incident ordinary polarization, i ⊥ n, 100 000 photons launched, optical thickness b = 100.
Again anisotropy opens up between θ−1

⊥ and θ−1

‖ . The values are normalized to the opening
angle for a = 1.
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In the case of anisotropic Rayleigh scattering, it is not evident how to apply a
diffusive picture, given the tensorial and non-isotropic nature of the scattering function.
One is tempted to relate the width of the cone to an ”effective” transport mean free
path, but no solid justification of such a theoretical step can be provided so far. We
have chosen to describe the cones by their opening angles.

The opening angle of the cone is extracted from linear fits of the triangular top
of the cone. Two angles are obtained, θ‖ and θ⊥, in the direction parallel and per-
pendicular, respectively, to the nematic director. In Fig. 5.17 we show how, in the
case of extraordinary incident polarization, the reciprocal of the opening angle of the
cone (normalized with the opening angle for a = 1) evolves as a function of the single
scattering anisotropy a. Both opening angles decrease hyperbolically, as seen from the
inset. We can perform the same analysis for the ordinary incident polarization (Fig.
5.18) and find a similar behavior.

5.5.4 Angular anisotropy

Figure 5.19: Anisotropy of the reciprocal of the opening angle of the cone, (θ−1

⊥ − θ−1

‖ )/θ−1

⊥ , as
a function of the microscopic anisotropy a, for i ‖ n extraordinary incident polarization (empty
triangles) and i ⊥ n ordinary incident polarization, (full squares). 100 000 photons launched,
optical thickness b = 100. The lines are a guide to the eyes.

A very important quantity is the angular anisotropy (θ−1
⊥ − θ−1

‖ )/θ−1
⊥ , which is

plotted in Fig. 5.19 and which increases with a, as qualitatively expected.

In Fig. 5.19, while, for both incident states, the anisotropy increases with a, there
is also a difference between the two cases. This means that there is not complete
depolarization upon multiple scattering, and a memory of the incident polarization,
associated with its scattering mean free paths, survive the global averaging. This is a
signature that a simple diffusive picture may not be enough to describe these scattering
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systems.

Also in the isotropic case (a = 1) a polarization anisotropy is present in the wings
of the cone, but not in the opening angle of its top. This effect is known and related to
the first scattering orders which show polarization anisotropy (see section 4.3) which is
not related to the microscopic anisotropy a.

5.5.5 Non-diffusive behavior

If one looks at the cones in Fig. 5.15, for example, one can see that for large enough
anisotropies (a > 2 − 3), the cone wings overlap, and the cone profiles are not just the
rescaling of the isotropic ones. This is related to the lowest scattering orders which
have an anisotropy-dependent role (see section 5.5.1). This is a very important result
which we would like to compare with the experiments shown in chapter 2 for the case
of ordered nematic liquid crystals. Unfortunately the weakness of the anisotropy in the
case of ordered nematics (a ∼ 1.15 − 1.17) makes the effect too weak to be evident in
our measurements.

In the Monte Carlo we do not make use of the diffusion approximation, so we can
investigate features which are beyond the results of the usual diffusion theory.

5.6 The anisotropic propagator

So far we have simulated light propagation with the isotropic propagator, generalized
for anisotropic scattering mean free path [120]. This means that we are neglecting
the induced dichroism presented in section 3.3.4. In order to include also this effect
(see section 9) we have diagonalized the self-energy of the problem, and found the
polarization eigenvectors e1 extraordinary and e2 ordinary.

The two eigenmodes of propagation have to be treated independently as far as
attenuation and scattering probability is concerned. In principle one should project
the scattered field onto {e1, e2}, propagate them independently, each of them with its
scattering mean free path ℓ1,2 and calculate the interference of the two modes at each
scattering event. This complex picture can be simplified via the independent scattering
approximation, if each scattering event can be considered independently. In order to
neglect the probability for two different scattering paths to cross each other at a certain
scatterer we need a medium sufficiently diluted, such that kℓs ≫ 1. In order to neglect
the interference of the two eigenmodes, and propagate them independently, the two
modes have to be completely out of phase after a distance smaller than a scattering
mean free path. This condition is easily fulfilled in birefringent media like nematic
liquid crystals. In the case of anisotropic Rayleigh media, the relative amplitude of the
two eigenmodes is exponentially different as they propagate with different scattering
mean free paths. This condition is weaker than for ordered nematics, but allows us to
consider independently the two polarizations.

The integral representing the sought quantity, e.g. transmitted intensity, backscat-
tering probability, etc. . . , is then calculated from an independent summation of all the
independent scattering paths. One strategy could be to propagate two modes each scat-
tering event, and then to scattered them into four, and so on. This procedure requires
an enormous amount of CPU power, as after N scattering events one has to take track
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of 2N photons (N can be thousands). Our choice is then to chose only one of the two
possible photons, choosing it with the appropriate probability.

Operatively this integral is calculated in the following way: the photon is scattered
and then a scattered state |kf , f〉 has to be chosen; we first determine if the output
channel is ordinary (e1) or extraordinary (e2), according to the total probability of
scattering in the two channels:

σ
o/e
t =

∫
dσ

dΩ
(|k0, e0〉) d|k, eo/e〉 (5.31)

Once the scattering channel is chosen one can determine the scattering state |k, eo/e〉
from the conditional probability distribution, dσ/dΩ(k|e/o).

dσ

dΩ
(|k0, e0〉 −→ |k, e〉|e/o) =

dσ

dΩ
(e0, |k, ee/o〉) (5.32)

This scattered state |kf , f〉 = |k, ee/o〉 is now an eigenstate and propagates according
to its scattering mean free path ℓo/e, and without polarization rotation:

|k, eo/e〉(r) = |k, eo/e〉 exp(− |r|
2ℓo/e

) (5.33)

We repeat this procedure until the photon exits the medium, and then we sum up all
contributions from all scattering paths. In the limit of a large number of scattering
paths, the sum converges to the scattering integral. Note that the choice of direc-
tion and polarization can be inter-changed, the above procedure can be inverted, first
determining the direction and then the polarization of the photon.

If the eigenvalues of the self-energy (section 3.3.4) have also a real part, then the
average medium is not only dichroic but also birefringent. This means that the two po-
larization eigenmodes will experience a different refractive index. The two eigenmodes
of the self-energy will then propagate following different directions, their group veloci-
ties which will not be parallel to the k-vector. This is the case of light propagating in
ordered nematic liquid crystals.

5.7 Multiple scattering in ordered nematics, a future development

Monte Carlo simulations with full anisotropic propagator are under development, as
well as simulations of light transport in ordered nematics. In ordered nematics, care
has to be taken in order to treat properly the two essential ingredients, the differential
scattering cross-section and the Green function propagator.

The choice of the direction of emission at the scattering event is complicated by its
dependence on the full photon state, k-vector and polarization, of both incident and
scattered photons. This means that one has to calculate the scattered photon state
from a multidimensional distribution, as shown in section 5.1.6, choosing with the right
weight scattered direction and polarization state.

One fundamental problem of a Monte-Carlo simulation of multiple light scattering
from long-range dielectric fluctuations is the concept of a ”scatterer”. A thermal fluc-
tuation is not a scatterer in the sense a particle is. We deal with a collective excitation
of an ensemble of molecules that induces a fluctuation in the refractive index. The
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Figure 5.20: Energy and phase velocities in a birefringent medium, which are parallel, respec-
tively, to s and k.

range of this movement is described by the correlation length. A numerical simulation
can only be done if the scattering mean free path is much larger than the correlation
length. Only in this case we may assume that the far-field region of the precedent scat-
tering process is reached before a new collision takes place. Fortunately, the condition
ℓs/ξ ≫ 1 is fulfilled for typical parameters of the experiments. A magnetic field of 0.5
Tesla applied to 5CB corresponds to ξ = 4.2µm, whereas the scattering mean free path
is of the order of 100 µm.

In an anisotropic medium with a homogeneous dielectric tensor ε the electromag-
netic field travelling along the unit vector k has two modes with different indices of
refraction and electric polarizations. We assume non-magnetic medium, and therefore
B = µ0 H. The polarization and the displacement field are related by D = εE, where
E is the electric field (E ≡ ǫ), and the orthogonality relation D · k = 0 holds at the
place of the transversality in free space E0 · k0 = 0. While D is transverse, E is no
more [33].

The propagator eigenmodes are the ordinary and extraordinary eigenmodes of the
birefringent medium. As described in the previous section, they can be propagated
independently, along their group velocity, given by the Poynting vector

se/o = Ee/o × H = ǫe/o × H (5.34)

which is not parallel to the scattered k-vector

k ∝ D ×B = εEe/o × B = εǫe/o × B, (5.35)

( see Fig. 5.20). We have here defined two different Poynting vectors, se/o, one for the
extraordinary and one for the ordinary polarization, which are along different directions.

On top of this, the computational effort required is heavier as the scattering function
of ordered nematics is very forward, meaning that many more scattering events are
required for the photon to escape the medium in the backscattering direction, and in
order to perform a satisfactory averaging, many more photon have to be launched.
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5.8 Conclusions

We have observed angular anisotropy in weak localization of light from highly scatter-
ing, orientationally ordered, nematic liquid crystals. No exact theory is available at this
moment to describe the phenomenon. To approach it with a simpler and clearer model
we have performed Monte Carlo simulations of vectorial waves propagating in aniso-
tropic Rayleigh scattering media, with isotropic propagator and anisotropic scattering
mean free path. We obtain anisotropic coherent backscattering cones as a function of
the microscopic parameter a that rules the anisotropy of the single-scattering cross-
section. The cone profile can be described well with a diffusive model only as far as the
top is concerned. The wings show a more complex behavior, which is a consequence
of the sensitivity of the penetration length on the incident light state. As further in-
vestigation, the Monte Carlo simulation will be extended to include also birefringent
light propagation in ordered nematic liquid crystals, and the nematic single scattering
cross-section.





Chapter 6
Photonic Bloch oscillations and Fibonacci

quasi-crystals

6.1 Introduction

In this thesis, so far we have investigated the optical properties of disordered photonic
systems. Light transport has been approached with a random walk model, which de-
scribes light propagation in terms of photons performing a random walk in the medium.
A diffusive model can be applied with success to isotropic disordered scattering systems,
where the isotropic diffuse picture is appropriate. Light interference is a correction to
this model, and can be added to the random walk model. Coherent backscattering can
be very well predicted and the comparison with the experiment is very satisfactory.

Anisotropic systems can be included in the diffusive model only for special forms of
anisotropy, namely those anisotropies that are related only to the direction of the inci-
dent light. The most interesting case of anisotropic polarization-dependent scattering,
anisotropic polarizability of Rayleigh dipoles, or anisotropic scattering from ordered ne-
matics, cannot be easily included in such a simple model. A random walk model can be
generalized to such cases and a Monte Carlo simulation can predict the characteristics
of the diffuse light and of the line shape of the coherent backscattering.

The breaking of fundamental symmetries of nature manifests itself in various optical
phenomena and is essential for our understanding of the interaction between light and
complex matter. The novelties in anisotropic scattering systems lay in the breaking of
one or more symmetries, i.e. rotation and translation, or polarization independence,
typical of the isotropic random medium. These optical systems show that an approach
based on the incoherent average of the scattered intensities, as employed so far, is
incomplete.

On the other hand, one can think of ordered systems as a set of systems which can
be modelled directly without an averaged approach, as the correlation in the position
of the scatterers cannot be neglected (see Fig. 6.1). The periodicity leads to a coop-
erative form of scattering with important contributions from all points of the sample.
Artificially engineered ordered (periodic) photonic materials are well known as photonic
crystals where light behaves akin electronic waves in ordinary crystals [20]. Interference
effects in this case cannot be regarded as a correction of a diffusive picture, but are

121
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Disordered packing Ordered packing

Building block
single scattering

Figure 6.1: Ordered and disordered packing of a single-scattering unit.

instead the main process ruling light propagation.

1 mm

1.5 mm
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b
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b

Figure 6.2: (From left to right) One-dimensional photonic crystal: SEM micrograph of the cross
sectional view of a porous Si multilayer (courtesy of Luca Dal Negro) [121]; two-dimensional
photonic crystal made of porous silicon (courtesy of Kurt Bush [122]). Three-dimensional
photonic crystal: SEM images of internal facets of silicon inverse opal: a, (110) facet. b, (111)
facet (courtesy of Alvaro Blanco [19]).

Photonic crystal structure can be made assembling in an ordered fashion a unitary
element whose dielectric constant is different from the surrounding medium (Fig. 6.1).
The advances of techniques like electron lithography, self-assembly, chemical vapor
depositions, chemical etching, etc . . . have made possible to design and construct one-
dimensional, two dimensional and three-dimensional photonic crystals, as shown in Fig.
6.2.

Periodic structures, such as gratings and photonic crystals, offer the possibility to
control light propagation. Since reflection from these objects is strongly wavelength
sensitive, it can generate iridescent colors of structural origin. Quite recent investiga-
tions, however, have also sought to discover photonic band-gap structures in natural
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(a1)

(a2)

(b1)

(b2) (b3)

Figure 6.3: Natural photonic crystals. (a1) Iridescence in the butterfly Morpho rhetenor (South
America), real color image of the blue iridescence from a Morpho rhetenor wing; (a2) detail of
its scales (from [123]). (b1) Sea mouse, (b2) its iridescent threads, (b3) SEM cross-section of
a spine (from [125]).

specimens as well, in opals and in some animals, a characteristic that allows them to
display gleaming colors, even in the absence of pigments, as for example the colorful
speckles of opals, some crystallites on the wings of butterflies and the spine of the sea-
mouse [123] (see Fig. 6.3). Many have existed naturally for millennia, yet the sheer
physical complexity of these natural systems often renders an accurate representation
of their structure extremely difficult [124].

Despite the far-reaching analogies between electronic waves in semiconductors and
electromagnetic waves in photonic crystals, there are pronounced differences between
the two. Electrons are described by a scalar wavefield. In contrast, the electromag-
netic field is vectorial by nature. Furthermore, the time-independent Schrödinger equa-
tion allows solutions with negative energy eigenvalues, whereas the corresponding wave
equation in electrodynamics (see section 2.7) contains only the square of the eigenfre-
quencies, hence negative eigenvalues are excluded from the outset: no bound states can
exists for photons.

In order to get a complete picture of light propagation in ordered and disordered
systems, it is interesting to study also the case of all these families of systems that lie
in between these two extremes.

In this second half of the thesis, we will start from the fully ordered case and we will
break the periodicity of the ordinary photonic crystal. First, ordered photonic crystals
are introduced, and the main results presented; then a linear gradient is introduced in
the periodic dielectric constant, in order to break the translational invariance which
characterizes the intimate nature of the Bloch states. Photonic Bloch oscillations can
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be predicted and experimental evidence of their existence in specially tailored photonic
crystals has been provided [26].

Quasi-periodic dielectric systems like Fibonacci quasi-crystals, which lie in between
ordered and disordered systems, can also be realized [126] and their interesting time-
resolved transport properties will be shown [127].

6.1.1 Tailoring the photonic density of states

Photonic-band-gap materials are a distinct class of dielectrics which favor two funda-
mentally new optical principles, namely the localization of light and the controllable
inhibition of spontaneous emission of light from atoms and molecules [21]. On the other
hand, in 3D samples, the possibility of suppressing light propagation for any k-vector
could open the way for an omnidirectional reflector.

A complete bandgap entails a complete suppression of the density of states, a mod-
ification of the electromagnetic vacuum density of states. A small impurity inside such
a photonic band gap material will give rise to a localized mode around this impurity.

It has been recognized for some time that the spontaneous emission by atoms is
not necessarily a fixed and immutable property of the coupling between matter and the
electromagnetic vacuum, but that it can be controlled by modification of the properties
of the radiation field. If a local source is placed in a three-dimensionally periodic
dielectric structure which has an electromagnetic band gap, and thus which has zero
local density of states, then spontaneous emission can be rigorously forbidden [128].
Rather, a bound photon-atom state is formed [129].

Light localization is also expected in a disordered dielectric medium [130] when

π2c ρ(ω) ℓ2t ≃ 1. (6.1)

Here, c is the speed of light in vacuum, ρ(ω) is the photon local density of states at
frequency ω, and ℓt is the transport mean free path for photons, determined by the
degree of disorder in the medium. For photons in ordinary vacuum (ω = c k),

ρ(ω) =
ω2

π2c3
(6.2)

and this condition reduces to the Ioffe-Regel condition, kℓt(ω) ≃ 1. However, in a
photonic crystal, ℓt represents the transport mean free path for optical Bloch waves
arising from the deviations of the medium from perfect periodicity. The very low
density of states near the complete band gap provides a very favorable scenario for the
photon localization according to criterion (6.1) even when kℓt(ω) ≫ 1. Localization in
these structures arises from a delicate interplay between order and disorder.

6.2 Ordered systems

So far in this thesis, we have investigated the optical properties of disordered systems.
As for disordered media, also for ordered structure the starting point of our approach
is the wave equation [

∇×∇× +
1

c2
∂2

∂t2
ε

]
E(r, t) = 0 (6.3)
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for the field amplitude
E(r, t) = A ǫ eik·re−iωt,

where ǫ is the field polarization, ε is the dielectric tensor and c stands for the light
velocity in free space:

c =
1√
ε0µ0

.

In section 2.6, for the disordered case, we have replaced the dielectric tensor with

ε = ε+ δε(r, t) (6.4)

whose homogeneous part is ε, and the randomly fluctuating part δε(r, t) is a Gaussian
random variable described by the correlation function (2.6).

Periodic optical media are materials whose dielectric (and permeability) tensor is a
periodic function of x

ε(x) = ε(x + a) (6.5)

which reflects the translational symmetry of the crystal.
The theory of electromagnetic propagation in periodic media has a strong analogy

with the theory of electrons in crystals, and thus adopts concepts like Bloch waves,
forbidden gaps, evanescent waves, etc. . . The essential underlying physics is the same in
both electronic and photonic case, namely constructive interference that gives rise to
Bragg refraction in certain well defined directions or, in the simplest one-dimensional
geometry, to Bragg reflection. For these reasons, regular arrays of materials with dif-
ferent refractive index are called photonic crystals.

In 3D periodic media, Eq. (6.5) holds for any a vector linear combination of the
lattice vectors ai, a =

∑
imiai, ∀m ∈ Z. An obvious difference between ordinary and

photonic crystals is the scale of the lattice constant, which is of the order of Angstrom
for the former and microns for the latter (and visible light).

The translational symmetry of the medium allows us to take (normal) modes for
the field, as

E = EK(x)e−iK·x (6.6)

where
EK(x) = EK(x + a). (6.7)

This is the Bloch condition, which enables us to apply a plane-wave-like model to a
periodic medium, providing that a new dispersion relation is used:

ω = ω(K) (6.8)

Electric field in a crystal obeys the Helmotz equation, which is derived from the wave
equation in Eq. (6.3) after Fourier transforming with respect to time

[
∇×∇×−ω

2

c2
ε(x)

]
E(r) = 0 (6.9)

This equation is usually solved in the reciprocal lattice space, where both the field and
the dielectric function can be expanded in Fourier series:

ε(x) =
∑

G

εG e−iG·x (6.10)
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with

G = px
2π

ax
x̂ + py

2π

ay
ŷ + pz

2π

az
ẑ pi = 0,±1,±2, . . . (6.11)

which are the reciprocal lattice vectors. The electric field can then be expressed as
Bloch waves

E(r) = e−iK·r EK(r) (6.12)

i.e. plane waves modulated by EK(r) which is a periodic function of r with the same
periodicity as the potential EK(r) = EK(r + a). If the medium is homogeneous in the
x and y direction, and has a periodic modulation in z, then the result is of the form

E(r) = e−i(Kxx+Kyy)e−iKzz EK(z) (6.13)

where EK(z) is a periodic function of z.

q

a

a sinq

Iin Iout

Figure 6.4: Bragg condition for constructive interference in reflection.

The Bloch waves solution of the periodic wave equations are delocalized, as they
extend over all the crystal: the difference between the field at a lattice point or another
is only a phase factor (Eq. (6.12)). The probability of finding a photon in a given
position is the same in any point of the lattice. This is the main result of the Bloch
theory, both for electrons and photons.

6.2.1 Photonic band structure

The absolute value of these Bloch waves remains finite for all z provided that the
wavenumber Kz is real. This, in turn, is possible only if Kz falls into one of certain
closed intervals on the real axis, which are separated by forbidden zones. There can exist
frequency regions where Kz becomes a complex number with non-zero imaginary part,
so that the Bloch wave is evanescent. These are the forbidden bands of the periodic
medium: in general light incident within this band will be totally reflected. Intuitively,
this refers to the case where a certain Kz does not satisfy the Bragg condition for
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kz

w

w = (c/n) k

0-p/a p/a

}

band gap

Figure 6.5: Dispersion relation for a 1D photonic crystal (solid line). The boundary of the
first Brillouin zone is denoted by two vertical lines. The dispersion in the uniform material is
denoted by straight dashed lines. We are plotting the reduced Brillouin zone, as we exploit the
periodicity of ω(k). The various plots in the vertical axis differ from each other by a multiple of
2π/a.

constructive interference, mλ = 2a sin θ, where m is an integer and θ the incidence
angle.

The interference between the incident wave scattered at first order with all the
following scattering orders is destructive: after a propagation distance of the order of
the wavelength the transmitted beam is completely depleted: very efficient reflection
occurs. This technique is widely employed to produce high quality reflectors. On the
other hand, when the interference is constructive the incident light propagates in the
medium with almost no attenuation, as if it was transparent. This are the allowed
bands (or pass bands) of the photonic system. Interference plays a central role in light
propagation in strongly correlated systems (like ordered structures), where no diffusive
model can apply.

The full three-dimensional periodicity of λ/2 in the refractive index can result in
a forbidden gap in the electromagnetic spectrum near the wavelength λ, regardless of
propagation direction. This a full 3D photonic bandgap. The photonic band structure
is evident in the dispersion relation shown in Fig. 6.5. As customary in solid-state
physics, the spectrum has been reduced to the fundamental Brillouin zone, ranging
from Kz = −π/a to Kz = π/a. This zone coincides with the periodicity interval of the
dispersion relations.

The lowest band dispersion can be well approximated with a simple cosine function

ω(Kz) ∝ − cos(Kza) (6.14)

which is characteristic for tight-binding models with interaction among nearest-neighbor
lattice site only [131]. Associated with a dispersion relation which deviates from its
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value in free space, i.e. ω(k) = c/n k, there is a modification of the group velocity and
of the density of states. The group velocity, which is

Figure 6.6: Calculated band diagram for a three-dimensional photonic crystal with an FCC
structure (panel a). The band gap opens around ωa/2πc = 0.8 and a main stop band is
present around ωa/2πc = 0.5. The density of states (DOS) is shown, note that the DOS is
zero in the bandgap and that its behavior is very different from the parabolic one in vacuum.
(Courtesy of Sajeev John)

vg(Kz) =
∂ω(Kz)

∂Kz
, (6.15)

is strongly reduced in the vicinity of the bandedges, up to halt of energy transport for
k-vectors equal to ±mπ/a, when vg(±mπ/a) = 0. In the tight-binding model, this is
evident in the explicit expression for vg, obtained combining Eq. (6.14) and (6.15)

vg(Kz) ∝ sin(Kza), (6.16)

which is zero if Kz = ±mπ/a. In this case a standing wave is formed and no transport
can occur.

The density of states ρ(ω) can be calculated from:

ρ(ω) =
1

vg(ω)
. (6.17)

ρ(ω) diverges at the proximity of the bandedges, where the group velocity tends to
zero. Inside a photonic bandgap the group velocity is no longer defined, in general no
energy transport occurs and the density of states falls to zero.

6.3 1D photonic crystals

The light transport in photonic crystals is often easier to investigate in one-dimensional
(1D) multilayer structures. 1D multilayers can be realized in a very controlled manner
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[132, 133] and allow for an exact theoretical description [134]. Ordered dielectric mul-
tilayer structures are widely employed as highly reflective Bragg mirrors with limited
bandwidth. The introduction of a defect layer turns them into a narrow-band filter
with a transmission state within the forbidden band gap.

A 1D photonic crystal is a periodic arrangement of layers of materials with different
dielectric constants. Fig. 6.7 shows the intensity distribution inside such a structure
as a function of the light k-vector. The plot shows the scattering state map, for or-
dered (photonic crystal) and disordered (random multilayer) stacking. The scattering

Figure 6.7: Calculated scattering state map for 1D ordered (top) and disordered (bottom)
systems. The colorbar refers to the intensity of the field, being red the maximum value and
dark blue the minimum. On the right the transmission spectrum is shown. On the top of each
panel a sketch of the multilayer structure is shown (dark layers have higher refractive index.)

state map is obtained with a numerical procedure based on transfer matrices, which is
explained in section 6.3.1.
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On the right hand side of Fig. 6.7, the transmission spectrum is shown. In the top
panel, a spectral range with no transmission is visible, which is the 1D photonic bandgap
(also called stop-band), as well as spectral windows of high transmission, almost 100%,
which are called pass-bands. At the transition frequency from the pass-band and the
stop-band, sharp resonances, the bandedge resonances, are visible. These special states
extend from the front to the end of the sample, they have a long lifetime and can store
much energy.

On the other hand, the random stacking shown in the lower panel in Fig. 6.7
presents many sharp resonant states, which do not necessarily extend over all the
structure, which can have very long life-time and which are separated by very weak
transmission spectral areas. Counterintuitively, both ordered and disordered dielectrics
can be used to decrease locally the density of states and to design high quality reflectors.

6.3.1 Transfer Matrix

Light propagation and interference in multilayer dielectrics, i.e. 1D systems, can be
very efficiently described with transfers matrices, which are a well know technique to
solve exactly the wave equation, Eq. (6.9) [135]. Because of the linearity of the wave
equation, the field at a given point z0 is related to the field at any other point z by a
matrix transformation.

This equivalent to say that we can describe light propagation as a scattering process
with an S matrix as introduced in section 2.1.1. Due to the one-dimensionality of the
structure, the S-matrix will be a 2 × 2 matrix.

We consider light propagation through a film of dielectric material. An incident
beam undergoes external reflection, transmission and internal reflections at the plane
interfaces that separate the film of refractive index n from external medium at n0 and
the substrate at ns, as in Fig. 6.8.
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Figure 6.8: Reflection of a wave from a single-layer film.

In the S-matrix formalism, we would consider light states of the form |ki, ǫi〉, k-
vector and polarization, and the scattered states would be given by the relation

|kf , ǫf〉 = S |ki, ǫi〉. (6.18)

Whereas this representation is convenient for multiple scattering of light from randomly
distributed scattering centers, it is not for scattering from a multilayer. In the |k, ǫ〉
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representation the propagation between the scatterers is very simple, in the direction
of k, but the continuity of the field at the boundary condition is more complicated to
be fulfilled, as it is described by the Snell’s law. If we instead use a representation on
the electric and magnetic field,

|Ef , Bf〉 = M |Ei, Bi〉, (6.19)

the propagation direction of the wave is calculated from k ∝ E × B (each slab is
homogenous) but the boundary conditions are very simple, just the continuity of the
tangential component of the electric field at the interface (and of the normal component
of B). In the following we will follow this second more convenient strategy.

The transfer matrix M(z)

M(z) =

(
m11 m12

m21 m22

)
(6.20)

is obtained adding the amplitudes of all the individual reflected or transmitted beams
to find the resultant reflectance and transmittance. It is important to take into account
also the magnetic field B in order to determine the propagation direction of the wave.

In the literature, transfer matrices have been defined in various but equivalent ways
[136]. We chose as basis of the transfer matrix the total electric (E) and magnetic field
(B) (we define the sign of B in this way):

E(z) = E+(z) + E−(z) (6.21)

B(z) = B+(z) +B−(z) = γ(E+(z) − E−(z))

where γ = n/c at normal incidence, E+(z) is a plane wave propagating from left to
right and E−(z) for right to left (k = 2πn/λ0)

E+(z) = E0 exp(−ikz) (6.22)

E−(z) = E0 exp(ikz).

If we want to consider oblique incidence, then the two polarization states (TE and TM)
are not equivalent, and we have to consider

γTE =
n cos θ

c
(6.23)

γTM =
n

c cos θ

where θ is the angle of propagation inside the layer, calculated with the Snell’s law.
The field at the input surface, defined by the index l (for left), and the field at the

output, labelled with r (for right), can be calculated through:
(
El

Bl

)
= M

(
Er

Br

)

The special case of the matrix of a single-layer film, is

M1 =

(
cos δ i sin δ

γ

iγ sin δ cos δ

)

where δ = k n d cos(θ) is the phase acquired upon propagation in a layer of thickness d.
The transfer matrix method can be applied also for absorbing or amplifying media,

as it has been recently shown by Artoni et al. in ref. [136].
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6.3.2 Scattering states

In order to calculate the reflected and transmitted field, we assume that no light is
incident from the right, at z = L and that the source light is incident from the left of
the structure z = 0.

E+(z = 0) = E+
l = 1 (6.24)

E−(z = L) = E−
r = 0

As a side note, the description here onwards holds only in the classical regime, when
no electromagnetic vacuum is considered. Otherwise one should add the vacuum to the
boundary conditions, which would make the analysis more complicated.

The transfer matrix of a multilayer made of a sequence of N layers of dielectric and
permeability constant ǫi, µi is just the product of the matrices Mi of the single i-th
layer:

M(z) =

N∏

i=1

MN−i(z) = MN ·MN−1 · . . . · M1 (6.25)

Transmission and reflection coefficients for a multilayer of N layers can then be calculate
from the full matrix M(z).

Transfer matrices can provide the unique information of the field distribution inside
the multiple-layer film, the scattering states. These states provide more information
than the total transfer matrix can do, as the latter describes only the overall transmis-
sion and reflection of the sample. The knowledge of the scattering states is equivalent
to that provided by all the transfer matrices with the correct boundary conditions.

A photon impinging an interface can either be reflected or transmitted. The reflec-
tion and transmission coefficient can be calculated from the relation

(
1 + r

γ0(1 − r)

)
=

(
m11 m12

m21 m22

)(
t
γst

)
(6.26)

r(ω) =
E−

l

E+
l

=
(m11 +m12γs)γ0 − (m21 +m22γs)

(m11 +m12γs)γ0 + (m21 +m22γs)
(6.27)

t(ω) =
E+

r

E+
l

=
2γ0

(m11 +m12γs)γ0 +m21 +m22γs
(6.28)

where γ0 is the coefficient of the space on the left of the film and γs of the substrate on
the right. The transmissivity T and reflectivity R (for the intensity) are

R = |r|2 T =
γs

γ0
|t|2 (6.29)

It is possible to obtain the field in each layer of the multilayer, i.e. calculate the
scattering states, using the following expression for the fields at the j-th layer

Ej = (1 + r)mj
22 − (1 − r)mj

12γ0 (6.30)

Bj = −(1 + r)mj
21 + (1 − r)mj

11γ0
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Another possibility is to start from the last layer and go back to the first, in that case
the equivalent expression is

Ej = tmj
11 + tmj

12γs (6.31)

Bj = tmj
21 + tmj

22γs

These formulas comes from the solution of the partial transfer matrix

Mj =

j∏

i=1

Mj−i(z) (6.32)

with the appropriate boundary conditions. We have calculated the field at layer j = 0,
as E0 = 1 + r. This means that we can invert the relation:

(
E0

B0

)
=

(
mj

11 mj
12

mj
21 mj

22

)(
Ej

Bj

)
(6.33)

into
(
Ej

Bj

)
=

(
+mj

22 −mj
12

−mj
21 +mj

11

)(
E0

B0

)
=

(
+mj

22 −mj
12

−mj
21 +mj

11

)(
1 + r

γ0(1 − r)

)
(6.34)

and obtain E(z, ω), the total field inside the structure, which is also called the scattering
state map (Eq. (6.30)).

When the multilayer is periodic, with period a, the overall transfer matrix can be
calculated with the power of the single cell transfer matrix M (which can be made of
many layers), which is

M =

N∏

i=1

Mi(z) = MN . (6.35)

6.3.3 Time-resolved response

We have calculated so far the amplitudes t(ω), r(ω) and E(z, ω) for each monochromatic
wave at ω. We are interested in the propagation of a coherent light beam incident from
the left onto the photonic structure. We can describe the light beam by its frequency
profile with Q(ω), which is usually a gaussian. In order to calculate the transmitted
light amplitude with phase T (ω)1, we just multiply Q(ω) by the transfer function, in
the frequency domain:

T (ω) = t(ω)Q(ω). (6.36)

The temporal evolution T (t) of the transmitted light can be obtained by Fourier trans-
form of T (ω)

T (t) ∝
∫
t(ω)Q(ω) eiωt dω. (6.37)

The same can be done for the matrix E(z, ω), which is the field inside the multilayer,
Fourier transforming in ω, and obtaining a function E(z, t):

E(z, t) ∝
∫
E(z, ω)Q(ω) eiωt dω. (6.38)

1Do not confuse the transmitted signal T with the T -matrix which is not employed here.
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Transfer matrices allow for a calculation of the light amplitude distribution inside the
multilayer and for the temporal propagation of a light pulse incident on the multilayer.

We have calculated the transfer matrix via a simple and flexible numerical code.
This method is equivalent to numerical solution of the 1D Maxwell’s equations in the
multilayer, with the correct boundary conditions.

6.4 Optical microcavities

The importance of one dimensional optical systems lays in the ease of calculating the
light propagation in any given structure and the ease of tailoring these multilayers,
just changing the sequence of refractive indexes and the optical path of each layer.
The only parameters that determine the transmission spectrum are the refractive index
contrast (nj/nj+1) which determines the interface transmission and reflection, in each
layer (labelled by j), and the optical thickness δj = njdj of each slab which accounts
for the acquired phase exp(ikδj) and then for the subsequent interference. In other
words nj/nj+1 fixes the amplitude and δj the phase of the interfering partial waves
that participate in the scattering process.

Figure 6.9: In the upper panel a Bragg mirror made of a periodic series of layers, at different
refractive indices labelled ABAB . . ., is shown. In the lower panel a microcavity made of two
layers BB is presented. An illustration of the spectrum is shown in the vertical axis.

A photonic bandgap is easily obtained with the mirror making technique, with a
sequence of layer with the same λ0/4 optical thickness and different refractive index.
No transmission occurs at the wavelength λ0, light is efficiently reflected, this is a
Bragg mirror (see Fig. 6.9). The physical thickness of each layer was chosen such that
the optical thickness δ ≡ n × d, with n the refractive index and d the physical layer
thickness, was equal to λ0/4. The choice of quarter-wavelength layers is not crucial, but
maximizes the interference, and thus in this way each cavity has the minimum required
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Figure 6.10: (left panel) Scattering state map of a single microcavity made of an extra A layer,
surrounded by two Bragg mirrors made of 30 periods AB. Darker areas have a lower intensity.
In the middle of the bandgap, the single microcavity is visible. (right panel) The transmissivity of
the structure. The two refractive indices are A = 1.58 and B = 2.21 and the central wavelength
is λ = 800 nm.

thickness to be resonant at λ0.

If we place a defect state, an extra layer in between two Bragg mirrors, we are
constructing a microcavity (see Fig. 6.9). A microcavity is a potential well of optical
thickness λ0/2 and thus with only one resonant state, at λ0, in the spectral window
of interest. The resonant spectrum of a microcavity is given by the condition that the
mode wavelength is an integer sub-multiple of λ0:

λr =
1

m
λ0 =

2δ

m
. (6.39)

The scattering state map of a single microcavity presents a single isolated state in
a middle of the photonic bandgap, as shown in Fig. 6.10. The state is distributed over
the all structure, from the first to the last layer, and the wavefunction has a maximum
in the microcavity (which, in photonic crystal context, would be called a defect state).
The next resonant state is λr = λ0/2 which is outside the spectral region of interest.

6.4.1 Coupled Microcavities

When two microcavities resonant at E1 = hc/λ1 and E2 = hc/λ2 (h is the Plank
constant2) are allowed to interact, i.e. when the weak exponential coupling through
the Bragg mirrors is not negligible, then the general phenomenon of avoided crossing
occurs. The effect of a conservative coupling between two degenerate levels is a splitting

2For analogy with the electron case we here speak of resonant energy and not frequency, but the
results presented are within classical optics.
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of their resonance frequency, splitting which is proportional to the strength of the
coupling between them.

The energy of the resulting modes (E+,E−), for fixed optical coupling energy W12,
as a function of the microcavities detuning, is maximum when the two microcavities
are degenerate [72]:

E+ =
(E1 + E2)

2
+

1

2

√
(E1 −E2)2 + 4|W12|2 (6.40)

E− =
(E1 + E2)

2
− 1

2

√
(E1 −E2)2 + 4|W12|2

as shown in Fig. 6.11.

Figure 6.11: Anti-crossing behavior of the energy values of the coupled system as a function
of the modal energy separation normalized for W12, ∆ = (E1 − E2)/2W12.

The splitting of the resonance frequency of two coupled microcavities is visible in
the scattering state map, in Fig. 6.12. The structure is dbr dbr dbr A dbr A
dbr dbr dbr, where the Bragg mirror labelled as dbr is made of 10 periods AB. Two
sharp frequencies are visible in the middle of the bandgap. The dynamical counterpart
of Fig. 6.12 is a resonant tunnelling of the photon which oscillates between the two
microcavities. If a short wavepacket of light is incident on the left interface, then it will
tunnel into the multilayer, the intensity in the first microcavity will grow, and then it
will oscillate between the two cavity sites for resonant tunnelling (see Fig. 6.13).

6.4.2 The optical superlattice

An optical 1D superlattice can be obtained by coupling many identical cavities. This
can be achieved stacking together two types A and B of dielectric multilayers with
different refractive indices. In particular we used the following sequence: BABABABAB
(AA)1 BABABABAB (AA)2 . . . (AA)10 BABABABAB. This structure is a series of
m coupled microcavities (AA)m where the BABABABAB sub-structure functions as
a Bragg reflector. The refractive indices of layers A and B were taken nA = 1.4 and
nB = 2.1 to obtain good optical contrast between the layers. The physical thickness
of each layer was chosen, as discussed, to be equal to λ/4. Taking thicknesses that
are multiples of d would provide similar results but require growing thicker samples.
The optical coupling between the microcavities is tuned by changing the reflectivity of
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Figure 6.12: (left panel) Scattering state map of a two coupled microcavity whose structure
is dbr dbr dbr A dbr A dbr dbr dbr. Darker areas have a lower intensity. In the middle of the
bandgap the two splitted resonance frequencies are visible. (right panel) The transmissivity of
the structure. The two refractive indexes are A = 1.58 and B = 2.21 and the central wavelength
is λ = 800 nm.
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Figure 6.13: Simulated time-resolved response of a short pulse (of 50fs) incident on the two
coupled microcavity structure (dbr dbr dbr A dbr A dbr dbr dbr). The wavepacket enters from
the left at time equal to zero (top left) and then oscillates for resonant tunnelling between the
two microcavities. Darker areas have a lower intensity. The two refractive indexes are A = 1.58
and B = 2.21 and the central wavelength is λ = 800 nm.
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the Bragg reflectors, and it causes the formation of extended photonic states (optical
resonances) in analogy with the electronic coupling of separate quantum wells in a
superlattice. When identical microcavities are coupled, degenerate mode repulsion
arises (Fig. 6.14). Each degenerate optical resonance splits up and a photonic miniband
forms. Due to the periodicity of the structure the photonic minibands are separated
by photonic bandgaps in which propagation is prohibited.
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Figure 6.14: Optical superlattice made of 10 coupled microcavities (A) separated by a Bragg
mirror with 5 periods AB. A miniband opens. Darker areas have a lower intensity. The two
refractive indexes are A = 1.58 and B = 2.21 and the central wavelength is λ = 800 nm.

6.4.3 Porous silicon multilayers

A

B

Bulk Si

HF

PS layers

electrode

Figure 6.15: Example of formation of a two layer structure etching porous silicon wafers (PS)
from bulk silicon (Si). The anodic current is modified and the porosity of the layer changes
consequently [121].
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The structure described so far can be realized using controlled etching of porous
silicon [137, 132] 3. The refractive index of porous silicon depends on the porosity
which in turn depends on the current density used in the electrochemical etch. This
allows to produce dielectric multilayers by modulating the current and hence the local
porosity during the etching process. The electrochemical etch parameters determine
the thickness and refractive index of each layer. We used (100)-oriented p+-type silicon
wafers (resistivity 0.01 Ωcm). The electrolyte was prepared mixing 30 vol.% aqueous
HF (48 wt.%) with ethanol. A current density of 50 mA/cm2 was used to obtain
the low refractive index A layers (nA = 1.4, etch duration 5.9 s) and 7 mA/cm2 for
the high refractive index B layers (nB = 2.1, etch duration 21.5 s) (for λ= 1.55 µm).
Alternating these two currents in the appropriate way we created samples formed by
10 coupled microcavities as described above, as well as single cavities or modulated
aperiodic structures.

Free standing samples were obtained by detaching the sample from the silicon sub-
strate by a high current pulse applied at the end of the etch (400 mA/cm2, 1 s). The
exchange of the electrolyte was improved via etch stops after each layer growth and the
use of a magnetic stirrer. Moreover, the natural refractive index drift was compensated
by changing the etching times for each layer.

6.5 Breaking the translational symmetry: Photonic Bloch Oscillations

So far we have described the optical properties of ordered photonic structures, which,
in analogy with electronics, can be described with delocalized Bloch waves. When the
periodicity is broken, this picture is changed and Bloch oscillations can occur. The
phenomenon has been first introduced to explain the effect of an electric field on an
ideal electronic conductor. We will start from this case, and we will generalize it to the
photonic case.

6.5.1 Electronic Bloch Oscillations

A quantum particle in a periodic potential (a crystal) is described by Bloch waves, which
are delocalized in space and exhibit an energy spectrum characterized by conduction
bands and energy gaps. If such a particle is accelerated by a constant external field,
its velocity will increase until it reaches the Brillouin band edge where the energy band
dispersion leads to a net reduction of the particle velocity up to an inversion of its sign.

When an external electric field E0 is added to the crystal picture, from the acceler-
ation theorem [138] the evolution of the crystal momentum can be described as

~
∂Kz

∂t
= eE0 (6.41)

where e is the electron charge, which means that the crystal momentum distribution
will move through k -space at a constant speed, while preserving its shape. In the
absence of interband tunnelling (Zener tunnelling) and scattering processes, the time
evolution of Kz is

Kz(t) = Kz(t0) +
e

~
E0(t− t0) (6.42)

3The etching has been done in the group of Lorenzo Pavesi, University of Trento and INFM, by
Mher Ghulinyan and Claudio J. Oton.
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The wavepacket describing the electron retains its validity over a time span, in the
form of a ’Bloch particle’. The wavepacket group velocity is periodic and has the
lattice periodicity (see sec. 6.2.1). This means that the electron will be accelerated
up to the end of the first Brillouin zone edge, where its velocity vanishes, and then
will turn direction of propagation, with negative velocity, back to its original position.
This phenomenon is known as electronic Bloch oscillation [139, 140]. This process is a
coherent wavepacket oscillation, with an amplitude equal to ∆band/eE0, where ∆band

is the width of the energy band in which the electrons are moving. The frequency of
the electronic Bloch Oscillations is

ωB =
eE0d

~
(6.43)

The phenomenon can be approached also from the band picture. The linear poten-
tial tilting effectively bends the energy bands. Energy conservation restricts the allowed
space for the electron motion. In unbiased crystals the electron can move freely, with-
out being scattered (translational invariance), but when the bands are bent, it will
encounter a band edge which will reflect it, as in Fig. 6.16.

Figure 6.16: Sketch of the electron motion in absence and presence of an external DC electric
field.

Bloch oscillations were predicted by Bloch and Zener already in 1928 [139], which
lead to several controversies that continued for over 60 years [141]. One of the issues
was the counterintuitive result that an external stationary field could lead to an oscil-
lating current. Electronic Bloch oscillations in regular crystals are difficult to observe in
practice because electrons loose their coherence on a time-scale much shorter than the
expected period of the Bloch oscillations. The remaining incoherent electron transport
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is a regular diffusion process described by Ohm’s law of conductance. The first confir-
mation of the Bloch-Zener model came as the observation of a Wannier-Stark ladder
in the electron energy bands when an external stationary field was applied [142]. The
Wannier-Stark ladder is the frequency domain counterpart of time-resolved Bloch os-
cillations and consists in the formation of equidistant energy levels. These observations
were made possible by the availability of semiconductor superlattices with very narrow
bands [143]. The existence of electronic Bloch oscillations was only recently confirmed
with time-resolved experiments [144, 145, 146] and it was shown that several oscillation
periods can indeed be observed [147, 148].

6.5.2 Bloch Oscillations of matter-waves

Bloch oscillations has been observed also for matter waves, for ultracold cesium atoms
in the ground energy band of the potential induced by an optical standing wave [149].
The atoms driven by a constant inertial force are found to perform Bloch oscillations.
Bloch oscillations have been experimentally observed also for Bose-Einstein condensates
loaded into one-dimensional, off-resonant optical lattices and accelerated by chirping
the frequency difference between the two lattice beams. [150].

6.5.3 Optical Bloch Oscillations

The analogies between photons and electrons naturally raises the question whether it
is possible to mimic the effect of an electric field in photonic systems and observe the
optical counterpart of electronic Bloch oscillations and Zener tunnelling. The role of
the electric potential in photonic systems is played by the refractive index as whereas
electrons move to minimize the potential energy, photon density is higher in higher
refractive index zones.

The optical equivalent of a Wannier-Stark ladder has been discussed theoretically
[151, 152] and different photonic systems have been proposed to observe Bloch oscilla-
tions of light waves [153, 154]. In pioneering experiments on two-dimensional dielectric
systems, spatial Bloch oscillations have been observed [155]. These experiments in-
trinsically rely on a two-dimensional structure, however, since the light wave follows
an oscillatory path in space due to lateral confinement [154]. Optical superlattices
have been proposed as a potentially ideal system to observe Bloch oscillations for light
waves, using a refractive index gradient parallel to the light propagation direction as
the optical equivalent of an external force (the static electric field in the electron case)
[156].

Bloch oscillations are intimately an effect related to the wave-nature of the quantum
particle. This is at the basis of the electron-photon analogy and can be understood
easily if one thinks at Bloch oscillations as position-dependent Bragg reflection. This
point of view is analogous to the previous description, it is the real space analogue of
the crystal momentum picture.

The electron embedded in the crystal, and subjected to the electric field, starts
moving towards region at lower potential energy Vel = eE0z, thus conserving the total
energy Etot = E(k)+Vel(z). When the potential decreases, energy conservation implies
that the crystal momentum has to increase. This process goes on up to the point when
the de Broglie wavelength associated to the electron matches the lattice wavelength,
2d sin θ = nλ, thus leading to Bragg reflection of the wavepacket [157]. The electron
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Figure 6.17: Bloch oscillations as position-dependent Bragg reflection. The wavepacket prop-
agates in the multilayer, until a Bragg reflection occurs. Then it propagates backwards, until a
new Bragg reflection occurs. It’s a Bloch oscillation.

is then pushed towards region at higher potential energy, so its crystal momentum
decreases, up to the next Bragg resonance, where it will invert its propagation direction,
and so on. The electron orbits are closed, and the oscillation in real space are the Bloch
oscillations. Partial translation symmetry implies that there exists a small family of
these resonances, the Wannier-Stark ladder, displaced by n lattice-constants and with
an energy difference equal to the potential drop per period eE0d.

This description is perfectly suitable also for light waves, in which the quantum
particle is a photon with associated its wavelength, and the role of the electric field is
played by linear gradient in the dielectric constant. What is different is only the point
of view (Fig. 6.17).

6.5.4 Translational symmetry breaking: the Wannier-Stark ladder

In a perfectly periodic structure, the eigenmodes of the system are the Bloch waves.
With superpositions of Bloch waves we can construct Wannier states, which are local-
ized at the atomic sites, but which are not stationary. If the translational invariance is
lifted by a potential gradient (as could be an electric field for electronic crystals), then
a new set of states exhibits the property of being stationary: the Wannier-Stark states,
which are localized but which extend over many lattice sites.

In order to observe Bloch oscillations, the one-dimensional translational symmetry
of the system has to be broken. This is done by introducing a gradient in the optical
thickness of the layers, that we express with ∆δ = (δzm − δz1

)/δz1
. This gradient is the

optical counterpart of the external electric field used in electronic superlattices. The
small gradient in the optical thickness changes slightly the resonance of each microcavity
while preserving the mode coupling, which results in a spatial tilting of the minibands
and the photonic bandgaps. In this way, the extended photonic states are turned
into a discrete sequence of energy levels with level spacing ∆EB , which is the optical
equivalent of the Wannier-Stark ladder.
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This strategy encounters the problem of the finite size of the samples we can grow.
While in electron systems the crystal extends over many periods, can always be consid-
ered infinite, and the application of an external field is a very easy experimental task,
in optical systems these two essential ingredients are much harder to handle. We have
to cope with finite-size samples, and with a small range of available optical drift.

For these reasons we have to resort to a way to tilt the optical band within the sample
size. The many efforts that have been done to observe electronic Bloch oscillations
provide us with a winning strategy: if a miniband is designed in the structure, then a
much smaller drift can be enough to tilt it. In electronic systems this idea has been
exploited to decrease the period of the Bloch oscillations, to make it shorter than the
decoherence time of electron waves. For different reasons, we are lead to grow samples
conceptually analogous. The drawback of a superlattice is that it presents partially-
discrete states even in absence of optical drift (see Fig. 6.18). Bloch oscillations can
occur only if the level splitting induced by the optical drift is bigger than the finite-
size effect. Only in this case we can consider the miniband as continuous and apply
the Bloch theory. For drifts smaller than a certain value, as we will see later, the
continuum approximation does not hold and the light transport is dominated by front-
end reflections.

Transfer matrix calculations can be used conveniently to calculate the scattering
state maps of the light distribution inside our system. In Fig. 6.18, the light intensity
distribution is compared for the two cases ∆δ = 0 and 14%. The linear gradient in the
optical thickness induces, to first order, a linear miniband tilting. The resonance of the
first microcavity is given by: E(z1) = hc/2δz1

with c the vacuum velocity of light. The
variation of the resonance energy from layer 1 to layerm is ∆E(z1, zm) = E(z1)−E(zm)
and can be written in terms of the gradient as:

∆E(z1, zm)

E(z1)
=

1

1 + ∆δ
− 1. (6.44)

This describes a linear tilt and compression of the band. For a narrow miniband, E(z1)
can be considered constant within the band and the Wannier-Stark states are equidis-
tant. In Fig. 6.18b one can clearly see how the miniband (between the white dashed
lines) and surrounding photonic bandgaps (dark regions) are tilted. The Wannier-Stark
states are visible as bright horizontal lines that extend between the two tilted photonic
bandgaps. Such a system is expected to exhibit optical Bloch oscillations of period
TB = h/∆EB (h is the Planck constant).

6.5.5 Transmission spectra: probing the Wannier-Stark ladder

Transmission spectra of the photonic structure are very precious information, but very
high resolution is required to resolve the Wannier-Stark states. An ordinary spectrom-
eter signal is a trade off between spectral resolution, which demands very closed slits at
the monochromator, and enough light at the detector, which on the contrary is favored
by wide open slits. For this reason we decided to opt also for a high resolution setup,
in which no monochromator is present, as a narrow-band tunable laser source acts as
the almost monochromatic probe (see Fig. 6.19). Tuning its frequency and measuring
the transmitted intensity we can reconstruct the transmission spectrum of the sample.

A NetTest TUNICS-BT 1560 IR tunable laser in the wavelength range from 1500
to 1610 nm was coupled to a multimode fiber of 115 µm diameter (Fig. 6.19). We
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Figure 6.18: Scattering state calculation of the distribution of the energy spectrum inside an
optical superlattice composed of 10 coupled microcavities. The parameters used in the cal-
culations correspond to samples used in the actual experiment. Panel a) flat band situation,
∆δ = 0. Panel b) tilted band situation, ∆δ = 14%. The dashed lines indicate the theoretical
tilting of the miniband as obtained from Eq. 6.44. Above each panel the coupled microcavity
structure is schematically shown; the gray scale refers to the refractive index variation along
the depth in the sample (the darker the larger n).
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Figure 6.19: High resolution setup built in Trento by Claudio Oton, for the fine transmission
spectra.

used a microscope 25x objective to focalize the laser beam in a spot of 35 µm diameter
on the sample surface. This way, we were able to illuminate a very small area on the
sample, thus highly reducing the broadening of peaks due to lateral inhomogeneities.
A 1 mm diameter pinhole was placed just after the objective in order to reduce the
numerical aperture of the input light. A fiber bunch was placed far from the sample
(∼15-20 cm) which allowed the collection of the signal with a very small numerical aper-
ture (∼0.0075). An InGaAs detector coupled to the fiber bunch was used to measure
the transmitted intensity. The sample was mounted on a rotating table to carry out
angle-dependent transmission measurements. The tunable laser, rotating table and an
InGaAs photodetector were interface-controlled through a computer. The transmission
spectra are normalized with respect to the signal recorded without the sample. The
high resolution setup is able to resolve perfectly a peak of less than half a nanometer
width.

In Fig. 6.20 we report the transmission spectrum of a multilayer sample with optical
thickness gradient ∆δ = 10 %. One can clearly see the occurrence of the Wannier-Stark
ladder as a series of narrow (2 nm of full width at half maximum and 15 nm spaced)
transmission peaks.

6.5.6 The porous silicon optical superlattice

The samples were realized using controlled etching of porous silicon as described in
section 6.4.3, for a central wavelength of λ= 1.55 µm. We created samples formed by
10 coupled microcavities, the total sample consisted of 110 layers. The duration of
the etch stops controls the refractive index gradient and hence the variation ∆δ in the
optical thickness of each layer. We were able to control the optical thickness producing
samples with different gradients in the range from ∆δ = 2 to 14 %. The limits are set
by the two extremes: almost bulk silicon, with the minimum amount of pores to allow
further etching, which has a maximum refractive index of 2.4, and the opposite one,
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Figure 6.20: Transmission spectrum of a sample with gradient ∆δ = 10%. The optical equiv-
alent of the Wannier-Stark ladder is seen as a series of equidistant transmission peaks. The
arrows refer to the expected spectral positions of the transmission peaks obtained by transfer
matrix calculations. The dashed line is the wavelength profile of the incident Gaussian laser
pulse used to perform the time-resolved measurements.

dielectric mirror

λ/2 microcavities

High n
Low n

Figure 6.21: SEM picture of an optical superlattice made of 10 coupled microcavities (in col-
laboration with Mher Ghulinyan.)

almost only air, with the minimum amount of porous silicon to sustain the structure,
which has refractive index 1.3-1.4. Fig. 6.21 is a SEM picture of the optical superlattice
that was grown in Trento. The optical microcavities are shown.

In Fig. 6.22 transmission spectra from optical superlattices at different optical thick-
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ness gradient ∆δ are shown. The higher the gradient, the further apart the Wannier-
Stark states are, as predicted by Eq. (6.44).

6.6 Time resolved spectroscopy with nonlinear optical gating

Spectral measurements, as shown in Fig. 6.22, are essential in characterizing the pho-
tonic structure grown, probing the amplitude of the transmitted light at different wave-
lengths, but they lack the information about the phase of the electric field. Time
resolved measurements on the contrary add the precious knowledge of light propaga-
tion in the multilayer. A gaussian pulse incident on an homogeneous structure with
wavelength independent transmission, like a constant refractive index layer, will be
transmitted preserving its shape; if the same pulse encounters sharp resonances and
bandgaps it experiences delays due to multiple reflection and deformations of its enve-
lope due to resonances and beatings (group velocity dispersion).

6.6.1 Time-resolved setup

The time-resolution which is required to observe photonic Bloch oscillations, which
have an estimate period of 500 fs, is out of reach for fast detectors (a fast-photodiode
is limited by a ns-resolution, a streak camera cannot go beyond few picoseconds) or
electronic shutters. We need to resort to a different strategy. Can we use a slow
detector, and sample the time? In other words, can we take a slow measure with a
very short time window? Observing this time-frames, one after the other, would be
like watching a movie of the phenomenon, which reconstructs the time-evolution. This
can be achieved with a technique which has been widely employed in the chemistry
of ultra-fast reaction [158] and which translate the problem of resolving tens of fs into
tens of µm, via the space-time relation x = c t (for light in vacuum 10 fs correspond
to 3 µm). Ordinary translation stages can easily move with an accuracy better then 1
µm, as the one mounted in the delay line of our the setup, Fig. 6.23.

In order to perform time-resolved transmission experiments, an optical gating tech-
nique has been applied. This involves mixing a reference beam together with the trans-
mitted signal beam in a 0.3 mm thick non-linear BBO (beta barium borate) crystal
to produce a sum frequency signal. This is a well-known non-linear phenomenon [159]
which can act as an optical gating.

In the process of sum-frequency generation, the laser beams at ω1 and ω2 interact in
a nonlinear crystal and generate a nonlinear polarization P(2)(ω3 = ω1 +ω2), which is a
collection of oscillating dipoles, and that acts as a source of radiation at ω3 = ω1 + ω2.
In principle, the radiation can be emitted in every direction, but the phase-coherence
between the waves determines a strongly peaked output in a certain direction. This can
be determined by the phase-matching conditions as to effectively transfer energy from
the pump waves at ω1 and ω2, both momentum and energy must be conserved. The
energy conservation requires that ω3 = ω1 + ω2, while the momentum conservations
k3 = k1 + k2. The latter condition implies that efficient non-linear conversion can be
obtained only if the mixed waves are in phase during their propagation in the crystal.
We have chosen the o − o → e phase-matching configuration, in which two ordinary
waves are mixed to generate an extraordinary one. The mixed waves have the same
polarization, and the sum-frequency radiation is polarized in the orthogonal direction.
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Figure 6.22: High resolution transmission spectra of different coupled microcavities structures
with different gradients of the optical thickness of the layers ( 0 = 1.55 m is the central wave-
length). The top spectrum corresponds to the non drifted sample, with thickness compensa-
tion. The others (b), (c) and (d) show 8%, 11% and 14% drifts. As drift increases, the optical
Wannier-Stark ladder (OWSL) forms, and is observable as equidistant narrow transmission
peaks



6.6. Time resolved spectroscopy with nonlinear optical gating 149

A
rg

o
n

T
i:s

a
p

p
O

p
a

l
BBO-crystal

Sample

delay-line

chopper

PD

lock-in

P
M

T

spectrometer

MM

Figure 6.23: Setup build for the time-resolved measurements. Originated from the laser
sources on the right, the Opal light is sharply focussed on the sample. After the sample,
the signal is collected and sent to the spectrometer or to the BBO-crystal for mixing with the
residual Ti-Sapphire light. The sum-frequency signal is collected by a photodiode and filtered
by a lock-in amplifier.

The phase-matching condition, turns into a relation between the refractive indexes ne

and no, that the waves experience in the material:

ke3(ϑ) = ko1 + ko2 (6.45)

or

ne(ω3)ω3 = no(ω1)ω1 + no(ω2)ω2 (6.46)

Figure 6.24: Propagation of the ordinary and extraordinary beam in a BBO crystal, cut at the
phase-matching angle θpm.

Phase-matching cannot be fulfilled in a normally dispersive medium, as the re-
fractive index is a monotone function of the wavelength. The most common ways to
overcome the problem are temperature tuning and the use of birefringency. β-BBO
(β-Barium Borate, β−BaB2O4) is a birefringent crystal, which combine unusually wide
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transparency, high non-linear parameters (χ(2)), easy phase-matching (angular tuning),
low agroscopicity and high threshold damage, wide temperature bandwidth and excel-
lent optical homogeneity. Phase-matching is obtained changing the angle between light
propagation and the optical axes (Fig. 6.24), as the extraordinary refractive index is
angle-dependent, Eq. (6.47), and so it can be tuned to satisfy Eq. (6.46).

ne(ϑ) =
none√

n2
e cos2 ϑ+ n2

o sin2 ϑ
(6.47)

BBO

photodiodephotodiode

delay line

Figure 6.25: Photo of the non-linear part of the time-resolved setup as shown in Fig. 6.23.

The optical gating technique lays its bases in the fact that the efficiency of the
non-linear process is strongly dependent on the overlapping between the pump and the
signal waves, both in space and in time. The time-evolution is obtained changing the
pump-signal delay and measuring the up-conversion efficiency. The intensity of the
generated signal at ω3 is proportional to the correlation function between the pump
and the probe pulse intensities,

Iω3
(t) ∝

∫
Iω1

(t− τ)Iω2
(t)dτ. (6.48)

A delay line on the reference beam path allows to tune the time delay between
signal and reference, and thus the longitudinal spatial overlapping (see Fig. 6.25).
This technique allows for measuring in a time window equal to the pulse duration, 130
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fs. The constant time profile of the generated signal at 510-540 nm allows for a time
resolution of less than 100 fs. The probe beam is obtained from an optical parametric
oscillator (called OPAL) pumped by a Ti:Sapphire laser at center wavelength 810 nm
(pulse duration 130 fs, average power 2.0 W, repetition rate 82 MHz) yielding short
pulses tunable from 1300 to 1600 nm (average power 100 mW). The reference pulse at
810 nm is obtained from the residual Ti:sapphire beam (450 mW average power). The
sum frequency signal is detected by a photodiode and a standard lock-in technique is
used to suppress noise.

Due to possible sample inhomogeneities, what one would like to do is to check the
spectral response of the multilayer in-situ, on the 30− 50µm diameter spot illuminated
on the sample. The apparatus is designed such that also the transmission spectrum
of the sample can be monitored during the time-resolved measurement, by sampling
a fraction of the transmitted light via the kinematic mirror which couples the signal
beam to a spectrometer (see Fig. 6.23).

6.6.2 The time-resolved Bloch oscillations

In the top panel of Fig. 6.26, we plot the system response without sample from which
we determine the temporal response to be about 250 fs.

Figure 6.26: Temporal response of the system for various values of the gradient ∆δ. The ob-
served oscillations are the optical counterpart of time-resolved Bloch oscillations. The period
of the oscillations decreases while increasing ∆δ, and the transmission decreases. The top
panel reports the undisturbed probe pulse without sample.

Fig. 6.26 shows a series of time-resolved transmission measurements for various
values of the gradient ∆δ. Our transfer matrix calculations predict that above ∆δ ≈
7%, a Wannier-Stark ladder is formed in our samples. From the time-resolved data
we can observe that indeed oscillations occur in transmission. More than 8 periodic
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oscillations are observed in the transmitted intensity, with a period TB that decreases as
∆δ increases. In addition, as the gradient increases the transmitted intensity decreases
which can be understood from the increased tilt of the bandgap (see also Fig. 6.18).
The oscillations are damped with a characteristic time τB.

6.6.3 Period and decay time of the Bloch oscillations

The main parameter ruling the dynamics of Bloch oscillations is the oscillation period
TB . In Fig. 6.27 we compare the measured TB with the one extracted from our trans-
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Figure 6.27: Experimentally observed oscillation period TB and decay time τB as a function of
the gradient ∆δ. The error bars are the standard deviations obtained from various measure-
ments on several positions on the sample and represent therefore the effect of lateral sample
inhomogeneities. The solid line is the predicted behavior from transfer matrix calculations.

fer matrix model for various values of the gradient. As expected, the experimentally
observed values of TB decrease while increasing ∆δ because the miniband tilting gets
steeper. The period depends only on the relative energy tilting from the front to the
end of the sample and not on the sample thickness. Below ∆δ ≈ 7% the increase of TB

saturates. Here the optical thickness gradient is not enough to fully tilt the miniband
within the sample thickness and the remaining oscillations are simply due to internal
reflection at the sample boundaries. In this regime the residual variation in TB of a few
percent is due to a decrease in the optical coupling between the microcavities. The ex-
perimental data are in very good agreement with the calculated theoretical dependence
of TB on optical thickness gradient (solid line).

Another interesting observation in Fig. 6.27 is that the decay time τB by which the
oscillations are damped increases when ∆δ increases. This is a direct consequence of
the increased confinement of the optical modes in the Wannier-Stark ladder. As the
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Wannier-Stark ladder gets steeper the reflection at the bandedge becomes more efficient
and the transmission losses decrease accordingly. At large gradient values, τB saturates
to about 1.2 ps. This saturation is caused by scattering and residual absorption losses
in the porous silicon sample. Hence the total decay time τB can be written as

τB = (τ−1
BO + τ−1

ext)
−1, (6.49)

where τBO is the intrinsic decay time of the Bloch oscillation as due to the release of
energy from the system and τext is the extinction time due to absorption and scattering
losses. The solid line in Fig. 6.27 is obtained by taking τext ∼ 1.3 ps which corresponds
to an extinction coefficient (absorption + scattering) of αext ∼ 100 cm−1, in agreement
with previously determined loss values [132].

6.6.4 Zener tunnelling

For completeness it is worth to mention the optical analogue of electronic Zener tun-
nelling [160] that our group has recently resolved in time [161]. When the linear gradient
is strong enough, two minibands can overlap and Zener tunnelling can occur between
them, in analogy with the Zener breakdown in semiconductors. The expected behavior
of the system, obtained via the transfer matrix model is in very good agreement with
experimental observations [161].

6.7 Fibonacci quasi-crystals

Quasicrystals are a novel form of solids, which show very high structural order, never-
theless they do not possess periodicity as ordinary crystals do.

They were discovered [162] in 1984, being revealed by a rotational symmetry of
X-ray or electron diffraction patterns (for instance, five-fold or ten-fold) which is im-
possible for true periodic crystals. As an example we have shown a diffraction pattern
from a quasi-crystal in chapter 3, in Fig. 3.5. The class of quasicrystals belongs to
the intermediate regime between periodic and random [27]. In these deterministic non-
periodic structures, translational order is absent. Ten years before their discovery in
nature, quasiperiodic patterns with the same geometric properties as those calculated
from five-dimensional hyperspace were described by Roger Penrose [163]. Photonic
quasicrystals are very interesting as they show features of the periodic systems, while
reducing the orientational order so that the systems are more isotropic. The presence
of high symmetries make easier the occurrence of a complete photonic bandgap for all
directions, and allows for structures which are more robust against imperfections and
disorder.

An important class of deterministic aperiodic structures is represented by the Fi-
bonacci binary quasicrystals [164]. It has been the subject of an extensive theoretical
and experimental effort in the last two decades [164, 165]. The Fibonacci structure is
realized by stacking two different dielectric layers accordingly to the simple Fibonacci
generation rule

Fm = Fm−1 Fm−2. (6.50)

In 1985, Merlin et al. reported the first realization of Fibonacci quasicrystals [166].
It has been shown that the transmission spectrum of the Fibonacci system consists of
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a rich fractal (self-similar) structure of narrow modes separated by numerous band-
gap regions with almost zero density of modes, called ”pseudo band-gaps”, despite the
global structure is not periodic, analogous to the forbidden regions in periodic media
[167, 168] (see Fig. 6.28). This has been confirmed by various authors [168, 169].
The pseudo-band gaps are a consequence of the multifractal nature of the Fibonacci
quasiperiodic order. Moreover, the states outside the bandgap are critically localized,
with the electric field profile decaying slower than exponentially [170, 171].

Figure 6.28: Transmission spectra of Fibonacci samples F9 (a) and F12 (b). The solid lines
are the results of a transfer-matrix calculation assuming optical path drifts of 1% (for F9) and
4% (for F12) and optical losses (scattering losses) of α ∼ 120 cm−1. The dots denote the
measured spectra.

Many peculiar and fascinating phenomena, as self-similar wave functions [172], are
directly related to the wave propagation in self-similar (fractal) media. Here we focus
on spatial field localization (field enhancement) and light localization, which not only
characterize finite size periodic structures but have been theoretically predicted also
for aperiodic fractal structures such as those realized with the Fibonacci or Cantor
generating rule. Field localization and enhancement in quasiperiodic structures are
suggesting many possible applications for optical devices such as band-edge lasing,
efficient nonlinear filters, bistability, etc.

We performed ultra-fast time-resolved transmission measurement on the band edge
regions of the 12th order Fibonacci samples (F12). The band edge is also the region
where the periodic-like features (band gap) of the Fibonacci system go over into its dis-
order properties (critically localized states). Fig. 6.29 shows the detailed transmission
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Figure 6.29: The measured transmission spectrum of the sample F12 in the laser tuning region
(solid line). The Gaussians (dashed lines) represent the spectra of some input pulses (named
a, b, c and d)

spectrum of the F12 sample together with 4 typical (a-d) spectra of the incoming laser
pulses (dotted lines) in the range where the temporal measurements were performed.
We have probed the structure at different wavelengths around the band edge region
in order to excite the band edge states. The time-resolved transmission of these four
pulses (a-d) is shown in Fig. 6.30. The undisturbed pulse (with no sample) is also
reported in the plot.

The zero of the time axis in Fig. 6.30 is the time at which the maximum of the
unperturbed pulse arrives on the detector. We have corrected for the trivial delay of
the pulse due to the additional optical path of the sample. That is, the sample of 44 µm
thickness has an optical thickness of 76 µm. (From the refractive indices of the layers we
calculate an average effective refractive index of the structure of neff ≈ 1.88.) The time
offset due to this effect is 99 fs for all pulses that pass through a 12th order Fibonacci
sample. We have corrected for this so that the pulse delays, visible for curves (a-d) in
Fig. 6.30, are purely due to the internal optical mode structure (internal resonances)
inside the sample. Note that by using free-standing porous silicon Fibonacci structures,
one avoids large time-offsets due to the silicon substrate.

As the wavelength of the signal is increased, i.e. as we approach the pseudo-band
gap, the shape of the transmitted pulses changes. In particular, the pulses are delayed
and stretched. In addition, when two states are excited simultaneously, mode beating
occurs at a beating frequency given by the frequency separation of the states. In Fig.
6.31, we have plotted the delay of the center of mass of the pulses and the decay time
for several measurements in the wavelength range between 1410 and 1530 nm, i.e. the
short wavelength edge of the fundamental pseudo-band gap. From the delay time, the
group velocity vg of the wave packet with respect to light velocity v0 in a medium
with effective refractive index of neff ≈ 1.88 is deduced and reported in Fig. 6.31c.
A maximum group velocity reduction by a factor of three (vg/v0 ≈ 0.29) is found at
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Figure 6.30: Time-resolved signal transmitted trough the F12 sample. The undisturbed pulse is
shown in the top plot, and plots a, b, c, and d are the transmitted pulses at wavelengths 1470,
1492, 1500, and 1510 nm respectively. The vertical scale is calibrated.

the band edge frequencies. The electric field of the transmitted pulses decays almost
exponentially with time. The obtained decay time constants extracted from the raw
data are shown in Fig. 6.31d.

Both the delay and the decay times increase as we approach the pseudo-band gap.
One expects that slow decays and retarded arrival times should be accompanied by
narrow peaks in the transmission spectrum at the edge of the band gap, corresponding
to singularities in the density of state. The reason for not observing narrow peaks in
transmission (Fig. 6.28) is due to a technical limitation of the method used to obtain
the transmission spectra. The transmission spectra were recorded by using a broad
source with a large spot of ≫ 1 mm in diameter on the sample surface (see Fig. 6.19).

In conclusion, the Fibonacci band edge states exhibit mode beating, a sizeable
field enhancement, and a group velocity reduction that is 3 times larger than that
observed in three-dimensional colloidal photonic crystals of polystyrene. As in the
photonic crystal case, the Fibonacci band edge states exhibit band edge resonances
which show large delays and strong pulse stretching. We conclude that, at the band
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Figure 6.31: (a) Measured transmission spectrum of F12. (b) Delay time of the center of mass
of the transmitted pulse amplitude with respect to the undisturbed one. (c) Group velocity (as
derived from the delay time of the pulse center of mass) with respect to the light velocity in
a medium with an effective refractive index equal to the weighted average of the refractive
indices of the constituent layers. (d) Decay time of the transmitted signal.

edge, spatially confined Fibonacci states are involved in the quasiperiodicity-induced
critical light transport phenomena.

6.8 Conclusions

In conclusion we have investigated light transport in quasi-periodic 1D mesoscopic sam-
ples. High resolution static and dynamical experiment can be performed and they can
interpreted with a simple and complete transfer matrix theoretical model. We report
the first experimental observation of the optical analogue of electronic Bloch oscilla-
tions in porous silicon superlattices whose translational invariance is lifted. We have
also investigate the light transport in Fibonacci quasi-crystals, which present critical
light transport phenomena.





Chapter 7
Conclusions and future perspectives

In this thesis we have presented our recent investigations in mesoscopic optical com-
plex systems. In particular we have focussed on the light transport in the intermediate
regime between total order and disorder. This regime is characterized by lower sym-
metries than in the two extremes, and for, it is harder to model theoretically. We
have investigated the effect of reduced symmetries on the transport of light, showing
theoretical and experimental evidences of a different and novel behavior.

Multiple scattering of light in ordered nematic liquid crystals can be described
with an anisotropic random walk, which induces an anisotropic transport and even
anisotropic interference effects. We have observed, for the first time, anisotropic weak
localization of light in ordered nematic liquid crystals.

Monte-Carlo simulations of multiple light scattering in an ensemble of anisotropic
Rayleigh scatterers shows anisotropic coherent backscattering and a large angle behav-
ior which is very different than the isotropic case, with a non-diffusive behavior.

When a linear variation in the optical constants of a periodic systems is introduced
along the propagation direction, the translational symmetry of the photonic crystal
is lifted and the Bloch waves become localized. We have predicted and observed the
optical counterpart of electronic Bloch oscillations in optical superlattices of porous
silicon.

At last we have examined optical quasicrystals, deterministic non-periodic struc-
tures, in which translational symmetry is absent. Time-resolved measurements at the
Fibonacci band edge states exhibit mode beating, sizeable field enhancement, and a
group velocity reduction. We conclude that, at the band edge, spatially confined
Fibonacci states are involved in the quasi-periodicity-induced critical light transport
phenomena.

Further developments of the research presented in this thesis will be modelling
and observing other forms of anisotropic multiple scattering or of anomalous diffusion,
as for example light propagation in fractal scattering media. Practical applications
of the investigations on anisotropic multiple scattering could be, for instance, in the
field of medical imaging and diagnostic for inspection of objects within the human
body. In strongly anisotropic random system, the strong localization may be reached or
exited just changing the degree of a tunable anisotropy; on the other hand, localization
could be approached inside a disordered or lower-symmetrical photonic crystal. If a
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gain medium is inserted in the superlattice whose transmission exhibits optical Bloch
oscillations, one expects to observe amplification or lasing of the Wannier-Stark states.
This would be a laser with a novel mode confinement, within the tilted energy band.

In conclusion, the study of quasi-ordered photonic nano-structures has shown to be
extremely interesting, and rich of profitable bridges between the physics of optics and
of solid state.
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Figure 1: The Ship of Fools Hieronymous Bosch, c. 1490-1500. Oil on wood, 23 x 13" (58 x
33 cm) Musée du Louvre, Paris.



From the first pages, Exlibris: Fools On A Cart And A Boatload Of Fools The
fools are setting out for their destination, ”the land of fools”. They call out har noch
i.e. ”follow us!” and ”All aboard, Brothers: it’s leaving, it’s leaving”. The engraving
comes from the book Navicula sive speculum fatuorum [1] which describes with irony
and grotesque images a group of fools of the fifteenth century which free themselves
from any social constrain, dress hats with jingle bells and descend the Rhur river on
a navicula, the boat of fools. Among them, the scientist is present, who, with his
folly/science, can be free from the reality, free to follow his dreams and ideals.

Dalle prime pagine, Exlibris: Folli su un Carro e una Barca Carica di Folli. I folli
stanno scegliendo la rotta, per la ”terra dei folli”. Essi chiamano har noch cioé ”segui-
teci!” e ”Tutti a bordo, Fratelli: parte, parte!”. L’incisione proviene dal libro Navicula
sive speculum fatuorum [1], nel quale con ironia e toni grotteschi viene rappresentato
un gruppo di ’folli’ del quindicesimo secolo che si libera da ogni vincolo sociale, veste un
cappello a sonagli e discende il Reno su una navicula, la nave dei folli. Tra questi folli
é presente anche lo scienziato, che con la sua follia/scienza puó liberarsi dalla realtá e
seguire i suoi ideali.

Des premières pages, Exlibris : Fous sur un chariot et une cargaison des fous. Les
fous choisissent la route pour leur destination, ”la terre du fous” ;. Ils hurlent”har noch
c.-àd. ”suivez-nous! ” et ”Tous à bord, frèes: on y va, on y va!”. La gravure vient du
livre Navicula sive speculum fatuorum, le nef des fous [1] qui décrit avec ironie et images
grotesques un groupe de fous du quinzième siècle qui se livrent de social contraignez,
qui s’habillent avec des chapeaux avec des cloches et qui descendent le fleuve Rhur sur
une navicula, le bateau des fous. Parmi eux, le scientifique est présent, et avec son
folie/science il peut se libérer de la réalité et suivre ses rêves et idéaux.



This Ph.D. thesis can be copied, distributed and modified in any part, for no-
profit purposes, if a link to the author [sapienza@lens.unifi.it] and to the web page
[www.complexphotonics.org] are included.

Questa tesi di dottorato può essere liberamente copiata, distribuita, modificata in
ogni parte, per scopi non-profit, se un link e un riferimento all’autore [sapienza@lens.unifi.it]
e alla pagina web [www.complexphotonics.org] sono inclusi.

Cette thèse de doctorat peut être copiée, distribuée et modifiée dans toutes ses
parties, pour no-profit raisons, si un lien à l’auteur [sapienza@lens.unifi.it] et au page
Web [www.complexphotonics.org] sont inclus.
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Benôıt Grémaud, Thomas Wellens et Olivier Sighwart; je remercie Robert

1Newton to Hooke, 5 Feb. 1676.
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