Problèmes spectraux inverses pour des opérateurs AKNS et de Schrödinger singuliers sur [0,1].

Frédéric Serier

Laboratoire de Mathématiques Jean Leray, Université de Nantes.

Soutenance de thèse 24/06/2005.

Présentation

Frédéric Serier Nantes 24/06/2005 - Transparent 2/16

Les objets

Présentation

- Les objets
- La problématique
- Tour d'horizon

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

Opérateur de Schrödinger radial

(1)
$$\begin{cases} \left(-\frac{d^2}{dx^2} + \frac{a(a+1)}{x^2} + q(x) \right) y = \lambda y, \\ y(0) = y(1) = 0, \end{cases}$$

■ Opérateur A.K.N.S. singulier

(2)
$$\left\{ \begin{array}{l} \left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \frac{d}{dx} + \begin{bmatrix} 0 & -\frac{a}{x} \\ -\frac{a}{x} & 0 \end{bmatrix} + \begin{bmatrix} -q(x) & p(x) \\ p(x) & q(x) \end{bmatrix} \right) Y = \lambda Y, \\ Y(0) = 0, \quad Y(1) \cdot u_{\beta} = 0, \end{array} \right.$$

où $a\in\mathbb{N}$, $\lambda\in\mathbb{C}$ et $p,q\in L^2_{\mathbb{R}}(0,1)$ sont les potentiels.

Les objets

Présentation

Les objets

- La problématique
- Tour d'horizon

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

Opérateur de Schrödinger radial

(1)
$$\begin{cases} \left(-\frac{d^2}{dx^2} + \frac{a(a+1)}{x^2} + q(x) \right) y = \lambda y, \\ y(0) = y(1) = 0, \end{cases}$$

Opérateur A.K.N.S. singulier

(2)
$$\left\{ \begin{array}{l} \left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \frac{d}{dx} + \begin{bmatrix} 0 & -\frac{a}{x} \\ -\frac{a}{x} & 0 \end{bmatrix} + \begin{bmatrix} -q(x) & p(x) \\ p(x) & q(x) \end{bmatrix} \right) Y = \lambda Y, \\ Y(0) = 0, \quad Y(1) \cdot u_{\beta} = 0, \end{array} \right.$$

où $a \in \mathbb{N}$, $\lambda \in \mathbb{C}$ et $p, q \in L^2_{\mathbb{R}}(0, 1)$ sont les potentiels.

Motivations physiques: (1) Hélioseismologie.

- (2) Chromodynamique quantique.

La problématique

Présentation

Les objets

La problématique

Tour d'horizon

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

L'objectif de cette thèse est, pour chaque entier a,

- de construire un système de coordonnées $\lambda^a \times \kappa^a$, sur $L^2_{\mathbb{R}}(0,1)$, qui paramètre les potentiels à partir de données spectrales du problème considéré,
- de décrire les ensembles isospectraux, c'est à dire les ensembles de potentiels de même spectre.

Frédéric Serier

La problématique

Présentation

Les objets

La problématique

Tour d'horizon

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

L'objectif de cette thèse est, pour chaque entier a,

- de construire un système de coordonnées $\lambda^a \times \kappa^a$, sur $L^2_{\mathbb{R}}(0,1)$, qui paramètre les potentiels à partir de données spectrales du problème considéré,
- de décrire les ensembles isospectraux, c'est à dire les ensembles de potentiels de même spectre.

Pour la suite, nous présenterons les divers résultats dans le cadre du problème (1), c'est à dire le problème spectral inverse concernant l'opérateur de Schrödinger radial :

$$H_a(q) := -\frac{d^2}{dx^2} + \frac{a(a+1)}{x^2} + q(x).$$

Tour d'horizon

Présentation

Les objets

La problématique

Tour d'horizon

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

Pour le problème (1), associé à l'opérateur de Schrödinger :

[a = 0] J. Pöschel et E. Trubowitz (1987),

[a = 1] J.C. Guillot et J.V. Ralston (1988),

 $[a \ge -1/2 \text{ r\'eel}]$ L.A. Zhornitskaya et V.S. Serov (1994), R. Carlson (1997).

Tour d'horizon

Présentation

Les objets

La problématique

Tour d'horizon

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

Pour le problème (1), associé à l'opérateur de Schrödinger :

[a = 0] J. Pöschel et E. Trubowitz (1987),

[a=1] J.C. Guillot et J.V. Ralston (1988),

 $[a \ge -1/2 \text{ r\'eel}]$ L.A. Zhornitskaya et V.S. Serov (1994), R. Carlson (1997).

Pour le problème (2) avec a = 0, associé au système AKNS :

 $[\beta = 0]$ B. Grébert et J.-C. Guillot (1993),

 β paramètre L. Amour (1993), L.Amour et J.C. Guillot (1996).

Tour d'horizon

Présentation

Les objets

La problématique

Tour d'horizon

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

Pour le problème (1), associé à l'opérateur de Schrödinger :

[a = 0] J. Pöschel et E. Trubowitz (1987),

[a = 1] J.C. Guillot et J.V. Ralston (1988),

 $[a \ge -1/2 \text{ r\'eel}]$ L.A. Zhornitskaya et V.S. Serov (1994), R. Carlson (1997).

Pour le problème (2) avec a = 0, associé au système AKNS :

 $[\beta = 0]$ B. Grébert et J.-C. Guillot (1993),

 β paramètre L. Amour (1993), L.Amour et J.C. Guillot (1996).

Résultats obtenus dans cette thèse pour tout entier $a \ge 1$:

- lacksquare $\lambda^a imes \kappa^a$ est un difféomorphisme réel-analytique local,
- Description des variétés isospectrales ainsi que des espaces tangents et normaux.

Le problème spectral direct

Frédéric Serier Nantes 24/06/2005 - Transparent 6/16

Construction de λ^a

Présentation

Le problème spectral direct

• Construction de λ^{a}

- ullet Construction de κ^a
- L'application spectrale

Opérateurs de transformation

Le problème spectral inverse

En utilisant et adaptant les travaux précédents, il vient

- Localisation et identification du spectre avec une suite de réels strictement croissante : $\sigma(H_a(q)) = \{\lambda_{a,n}(q)\}_{n\geq 1}$.
- Régularité de chaque application $q \mapsto \lambda_{a,n}(q)$ sur $L^2_{\mathbb{R}}(0,1)$ et détermination du gradient :

$$\nabla_q \lambda_{a,n}(t) = 2j_a(\omega_{a,n}t)^2 + \mathcal{O}\left(\frac{1}{n}\right). \quad \omega_{a,n} = \sqrt{\lambda_{a,n}}$$

Estimation des valeurs propres

$$\lambda_{a,n}(q) = \left(n + \frac{a}{2}\right)^2 \pi^2 + \int_0^1 q(t)dt - a(a+1) + \ell^2(n).$$

L'application λ^a est définie par

$$\lambda^{a}(q) = \left(\int_{0}^{1} q(t)dt, \left(\widetilde{\lambda}_{a,n}(q)\right)_{n\geq 1}\right).$$

Construction de κ^a

Présentation

Le problème spectral direct

- ullet Construction de λ^a
- ullet Construction de κ^a
- L'application spectrale

Opérateurs de transformation

Le problème spectral inverse

Définissons les vitesses terminales par

$$\kappa_{a,n}(q) = \ln \left| \frac{y_2'(1, \lambda_{a,n}(q), q)}{y_2'(1, \lambda_{a,n}(0), 0)} \right|, \quad n \in \mathbb{N}, \quad n \ge 1.$$

Viennent alors les propriétés suivantes

 $\blacksquare q \mapsto \kappa_{a,n}(q)$ est régulière sur $L^2_{\mathbb{R}}(0,1)$ et admet un gradient

$$\nabla_q \kappa_{a,n}(t) = \frac{1}{\omega_{a,n}} j_a(\omega_{a,n}t) \eta_a(\omega_{a,n}t) + \mathcal{O}\left(\frac{1}{n^2}\right),\,$$

■ Uniformément sur les bornés de $L^2_{\mathbb{R}}(0,1)$, nous avons

$$\kappa_{a,n}(q) = \ell_1^2(n) \quad \left(\Leftrightarrow (n\kappa_{a,n})_{n\geq 1} \in \ell_{\mathbb{R}}^2 \right).$$

 \rightsquigarrow Nous considérons l'application κ^a donnée par

$$\kappa^{a}(q) = (n\kappa_{a,n}(q))_{n>1}.$$

L'application spectrale

Présentation

Le problème spectral direct

- Construction de λ^a
- Construction de κ^a
- L'application spectrale

Opérateurs de transformation

Le problème spectral inverse

Nous construisons une application spectrale, définie par

$$\lambda^{a} \times \kappa^{a} : L_{\mathbb{R}}^{2}(0,1) \longrightarrow \mathbb{R} \times \ell_{\mathbb{R}}^{2} \times \ell_{\mathbb{R}}^{2}$$

$$q \longmapsto \left(\int_{0}^{1} q(t)dt, \left\{ \widetilde{\lambda}_{a,n}(q) \right\}_{n \geq 1}, \left\{ n\kappa_{a,n}(q) \right\}_{n \geq 1} \right),$$

vérifiant les propriétés suivantes :

- lacksquare $\lambda^a \times \kappa^a$ est réelle-analytique sur $L^2_{\mathbb{R}}(0,1)$,
- Sa différentielle $d_q(\lambda^a \times \kappa^a)$ est donnée par

$$d_q(\lambda^a \times \kappa^a)[v] = \left(\int_0^1 v(t)dt, \left\{ \left\langle \nabla_q \widetilde{\lambda}_{a,n}(q), v \right\rangle \right\}_{n \ge 1}, \left\{ \left\langle n \nabla_q \kappa_{a,n}(q), v \right\rangle \right\}_{n \ge 1} \right).$$

L'application spectrale

Présentation

Le problème spectral direct

- Construction de λ^a
- Construction de κ^a
- L'application spectrale

Opérateurs de transformation

Le problème spectral inverse

Nous construisons une application spectrale, définie par

$$\lambda^{a} \times \kappa^{a} : L_{\mathbb{R}}^{2}(0,1) \longrightarrow \mathbb{R} \times \ell_{\mathbb{R}}^{2} \times \ell_{\mathbb{R}}^{2}$$

$$q \longmapsto \left(\int_{0}^{1} q(t)dt, \left\{ \widetilde{\lambda}_{a,n}(q) \right\}_{n \geq 1}, \left\{ n\kappa_{a,n}(q) \right\}_{n \geq 1} \right),$$

vérifiant les propriétés suivantes :

- lacksquare $\lambda^a imes \kappa^a$ est réelle-analytique sur $L^2_{\mathbb{R}}(0,1)$,
- Sa différentielle $d_q(\lambda^a \times \kappa^a)$ est donnée par

$$d_q(\lambda^a \times \kappa^a)[v] = \left(\int_0^1 v(t)dt, \left\{ \left\langle \nabla_q \widetilde{\lambda}_{a,n}(q), v \right\rangle \right\}_{n \ge 1}, \left\{ \left\langle n \nabla_q \kappa_{a,n}(q), v \right\rangle \right\}_{n \ge 1} \right).$$

Résoudre le problème spectral inverse va signifier

montrer l'inversibilité de $d_q (\lambda^a \times \kappa^a)$.

Opérateurs de transformation

Frédéric Serier

Les opérateurs élémentaires

Présentation

Le problème spectral direct

Opérateurs de transformation

Les opérateurs élémentaires

La bonne transformation

Le problème spectral inverse

Le point clé : Réduire <u>par étapes</u> la singularité en envoyant les gradients associés à H_a sur ceux associés à H_{a-1} .

Les opérateurs élémentaires

Présentation

Le problème spectral direct

Opérateurs de transformation

Les opérateurs élémentaires

La bonne transformation

Le problème spectral inverse

Le point clé : Réduire <u>par étapes</u> la singularité en envoyant les gradients associés à H_a sur ceux associés à H_{a-1} .

Notons
$$\Phi_a(x) = j_a(x)^2$$
 et $\Psi_a(x) = j_a(x)\eta_a(x)$.

Théorème. Pour tout $a \in \mathbb{N}$, $a \geq 1$ soit $S_a : L^2_{\mathbb{C}}(0,1) \longrightarrow L^2_{\mathbb{C}}(0,1)$ défini par

$$S_a[f](x) = f(x) - 4a x^{2a-1} \int_x^1 \frac{f(t)}{t^{2a}} dt.$$

Alors,

- 1. S_a est un isomorphisme de Banach entre $L^2_{\mathbb{C}}(0,1)$ et $(x\mapsto x^{2a})^{\perp}$.
- 2. Φ_a et Ψ_a vérifient les propriétés suivantes

$$\Phi_a = -S_a^* [\Phi_{a-1}], \quad \Psi_a = -S_a^* [\Psi_{a-1}],$$

$$\Phi_a' = -S_a^{-1} [\Phi_{a-1}'], \quad \Psi_a' = -S_a^{-1} [\Psi_{a-1}'].$$

La bonne transformation

Présentation

Le problème spectral direct

Opérateurs de transformation

Les opérateurs élémentaires

La bonne transformation

Le problème spectral inverse

En composant ces opérateurs, H_0 est "atteint" :

Théorème. Pour tout $a \in \mathbb{N}^*$, soit T_a l'opérateur défini par

$$T_a = (-1)^{a+1} S_a S_{a-1} \cdots S_1.$$

Alors,

- 1. T_a est un isomorphisme de Banach entre $L^2_{\mathbb{C}}(0,1)$ et $\left\{x^2, x^4, \dots, x^{2a}\right\}^{\perp}$.
- 2. Pour tout $\lambda \in \mathbb{C}$, nous avons les relations

$$2\Phi_{a}(\lambda t) - 1 = T_{a}^{*} \left[\cos(2\lambda t)\right], \quad \Psi_{a}(\lambda t) = -\frac{1}{2}T_{a}^{*} \left[\sin(2\lambda t)\right],$$

$$\Phi'_{a}(\lambda t) = T_{a}^{-1} \left[-\sin(2\lambda t)\right], \quad \Psi'_{a}(\lambda t) = T_{a}^{-1} \left[\cos(2\lambda t)\right].$$

Le problème spectral inverse

L'idée

Présentation

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

● L'idée

- La solution
- Les ensembles isospectraux

La différentielle $d_q(\lambda^a \times \kappa^a)$ s'exprime comme un opérateur sur $L^2_{\mathbb{R}}(0,1)$, qui à une fonction associe les produits scalaires contre les éléments de la famille

$$\left\{1, \left\{\nabla_q \widetilde{\lambda}_{a,n}(q)\right\}_{n\geq 1}, \left\{n\nabla_q \kappa_{a,n}(q)\right\}_{n\geq 1}\right\}.$$

L'idée

Présentation

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

● L'idée

- La solution
- Les ensembles isospectraux

La différentielle $d_q(\lambda^a \times \kappa^a)$ s'exprime comme un opérateur sur $L^2_{\mathbb{R}}(0,1)$, qui à une fonction associe les produits scalaires contre les éléments de la famille

$$\left\{1, \left\{\nabla_q \widetilde{\lambda}_{a,n}(q)\right\}_{n\geq 1}, \left\{n\nabla_q \kappa_{a,n}(q)\right\}_{n\geq 1}\right\}.$$

Nous cherchons à appliquer le résultat suivant :

Théorème. Soit $\mathcal{F}:=\{f_n\}_{n\geq 1}$ une suite d'un espace de Hilbert H telle que

- 1. Il existe une base orthonormale $\mathcal{E}:=\{e_n\}_{n\geq 1}$ de H proche de \mathcal{F} , i.e. $\sum \|f_n-e_n\|_2^2<\infty$,
- 2. \mathcal{F} est libre, i.e. aucun des f_n n'est dans l'adhérence de l'espace vectoriel engendré par les autres éléments de \mathcal{F} .

Alors, \mathcal{F} est une base de H et l'application $\mathbf{F}: x \mapsto \{\langle f_n, x \rangle\}_{n \geq 1}$ est un isomorphisme de Banach entre H et ℓ^2 .

La solution

Présentation

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

L'idée

La solution

Les ensembles isospectraux

La famille des gradients donnant $d_q(\lambda^a \times \kappa^a)$ peut s'exprimer comme l'image par T_a^* de la famille

$$\mathcal{F} = \left\{ 1, \left\{ \cos(2\omega_{a,n}t) + R_n(t) \right\}_{n \ge 1}, \left\{ \frac{-n}{2\omega_{a,n}} \sin(2\omega_{a,n}t) + S_n(t) \right\}_{n \ge 1} \right\},\,$$

où R_n et S_n sont des restes uniformes dans $\ell^2_{\mathbb{R}}$.

La solution

Présentation

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

L'idée

La solution

Les ensembles isospectraux

La famille des gradients donnant $d_q(\lambda^a \times \kappa^a)$ peut s'exprimer comme l'image par T_a^* de la famille

$$\mathcal{F} = \left\{ 1, \left\{ \cos(2\omega_{a,n}t) + R_n(t) \right\}_{n \ge 1}, \left\{ \frac{-n}{2\omega_{a,n}} \sin(2\omega_{a,n}t) + S_n(t) \right\}_{n \ge 1} \right\},\,$$

où R_n et S_n sont des restes uniformes dans $\ell_{\mathbb{R}}^2$. Nous obtenons la factorisation :

$$d_q\left(\lambda^a \times \kappa^a\right) = \mathbf{F} \circ T_a,$$

où ${\bf F}$ associe à une fonction de $L^2_{\mathbb R}(0,1)$ ses coefficients de Fourier par rapport à ${\mathcal F}.$

Les propriétés de T_a et de ${\bf F}$ "donnent" le résultat.

Les ensembles isospectraux

Présentation

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

- L'idée
- La solution
- Les ensembles isospectraux

Ces ensembles sont définis par

$$Iso(q_0, a) = \{ q \in L^2_{\mathbb{R}}(0, 1) : \lambda^a(q) = \lambda^a(q_0) \}.$$

Les ensembles isospectraux

Présentation

Le problème spectral direct

Opérateurs de transformation

Le problème spectral inverse

- L'idée
- La solution
- Les ensembles isospectraux

Ces ensembles sont définis par

$$Iso(q_0, a) = \{ q \in L^2_{\mathbb{R}}(0, 1) : \lambda^a(q) = \lambda^a(q_0) \}.$$

Nous obtenons le résultat suivant :

Théorème. Pour tout $q_0 \in L^2_{\mathbb{R}}(0,1)$ et tout $a \in \mathbb{N}$,

- Iso (q_0, a) est une variété réelle-analytique de $L^2_{\mathbb{R}}(0, 1)$.
- De plus, nous avons

$$T_q \operatorname{Iso}(q_0, a) = \left\{ \sum_{n \ge 1} \frac{\xi_n}{n} \left[2 \frac{d}{dx} \nabla_q \lambda_{a, n} \right] : \xi \in \ell_{\mathbb{R}}^2 \right\},$$

$$N_q \operatorname{Iso}(q_0, a) = \left\{ \eta_0 + \sum_{n \ge 1} \eta_n \left[\nabla_q \lambda_{a, n} - 1 \right] : (\eta_0, \eta) \in \mathbb{R} \times \ell_{\mathbb{R}}^2 \right\}.$$