Soutenance de thèse

Matériaux ferromagnétiques : influence d'un espaceur mince non magnétique, et homogénéisation d'agencements multicouches, en présence de couplage sur la frontière

Kévin SANTUGINI *LAGA*, *Université Paris XIII*,

Sous la direction de Laurence HALPERN et Stéphane LABBÉ

Paris XIII, 16 décembre 2004

PLAN

- (1) Introduction
- (2) Le modèle du micromagnétisme de Brown
- (3) Caractère bien posé du système de Landau-Lifchitz en présence d'énergies de surfaces
- (4) Le problème d'espaceur
- (5) Résultats numériques
- (6) Homogénéisation
- (7) Conclusion et perspectives

(1) Introduction

Quelques propriétés des matériaux ferromagnétiques

- Peuvent présenter une aimantation non nulle en l'absence d'excitation extérieure
- La courbe d'aimantation présente un cycle d'hystérésis

Applications

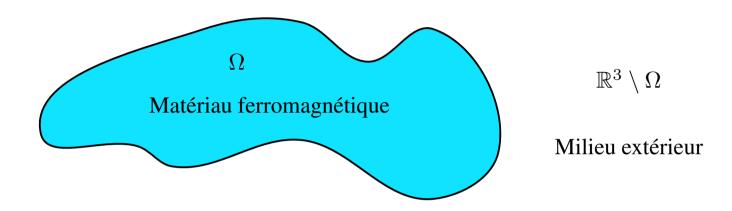
- Stockage de l'information
- Protection radar
- Télécommunications (circulateurs d'ondes)
- Gestion de l'énergie

Les apports de ce travail

- (1) Caractère bien posé de l'équation de Landau-Lifchitz en présence d'énergies de surface
- (2) Condition équivalente de bord en présence d'un espaceur non magnétique
- (3) Simulations numériques en présence d'énergies de surface
- (4) Homogénéisation pour des domaines régulièrement perforés et des agencements multicouches

(2) LE MODÈLE DU MICROMAGNÉTISME DE BROWN

Principes qualitatifs



- État magnétique d'un matériau ferromagnétique caractérisé par son aimantation m
- Module local de l'aimantation constant. Après adimensionnement :

$$|\boldsymbol{m}| = \begin{cases} 1 & \sup \Omega, \\ 0 & \sup \mathbb{R}^3 \setminus \Omega. \end{cases}$$
 (CTR)

- − Chaque interaction physique ⇒ une énergie
- Problème statique : minimisation de l'énergie sous contrainte non convexe (CTR)

Les énergies d'interactions de volume

Composantes des énergies de volume :

	Énergie	Opérateur d'excitation H
Échange	$rac{A}{2} \int_{\Omega} abla m{m} ^2 \mathrm{d}m{x},$	$A \triangle \boldsymbol{m}$ dans Ω ,
Anisotropie	$rac{1}{2} \int_{\Omega} (\mathbf{K}(oldsymbol{x}) oldsymbol{m} \mathrm{d} oldsymbol{x},$	$-\mathbf{K}(\boldsymbol{x})\boldsymbol{m}$ dans $\Omega,$
Démagnétisant	$-rac{1}{2}\int_{\Omega}oldsymbol{h}_d\cdotoldsymbol{m}\mathrm{d}oldsymbol{x},$	$\mathcal{H}_d(m{m}) = m{h}_d \qquad ext{dans } \Omega,$
Zeeman	$-\int_{\Omega}oldsymbol{h}_{ ext{ext}}\cdotoldsymbol{m}\mathrm{d}oldsymbol{x},$	$oldsymbol{h}_{\mathrm{ext}}$ dans $\Omega.$

 h_d vérifie les équations de la magnétostatique

$$\mathbf{rot}(\boldsymbol{h}_d) = 0, \qquad \operatorname{div}(\boldsymbol{h}_d + \boldsymbol{m}) = 0 \qquad \operatorname{dans} \mathbb{R}^3,$$

$$\mathcal{H}_{vt}(\boldsymbol{m}, \boldsymbol{h}_{\mathrm{ext}}) = A \triangle \boldsymbol{m} - \mathbf{K} \boldsymbol{m} + \mathcal{H}_d(\boldsymbol{m}) + \boldsymbol{h}_{\mathrm{ext}}, \qquad \mathcal{H}_v(\boldsymbol{m}) = \mathcal{H}_{vt}(\boldsymbol{m}, \boldsymbol{0}).$$

Les énergies d'interactions de surfaces

Espaceur traversant un corps ferromagnétique



Phénomènes physiques sur l'interface : super-échange et anisotropie surfacique

Super-échange : contrôle le saut de l'aimantation

Anisotropie surfacique : favorise souvent l'aimantation parallèle à la normale de la surface

$$E_{se}(\boldsymbol{m}) = \frac{J_1}{2} \int_{\Gamma} |\gamma^+ \boldsymbol{m} - \gamma^- \boldsymbol{m}|^2 d\sigma(\boldsymbol{x}) + J_2 \int_{\Gamma} |\gamma^+ \boldsymbol{m} \wedge \gamma^- \boldsymbol{m}|^2 d\sigma(\boldsymbol{x}),$$

$$E_{sa}(\boldsymbol{m}) = \frac{K_s}{2} \int_{\Gamma^- \cup \Gamma^+} |\gamma \boldsymbol{m} \wedge \boldsymbol{\nu}|^2 d\sigma(\boldsymbol{x}).$$

Conditions aux limites

Effet mathématique des interactions de surfaces : conditions aux limites de Neumann non homogènes

$$A\boldsymbol{m} \wedge \frac{\partial \boldsymbol{m}}{\partial \boldsymbol{\nu}} = \begin{cases} 0 & \operatorname{sur} \partial \Omega \setminus \Gamma^{\pm}, \\ K_s(\gamma \boldsymbol{m} \cdot \boldsymbol{\nu}) \gamma \boldsymbol{m} \wedge \boldsymbol{\nu} + J_1 \gamma \boldsymbol{m} \wedge \gamma' \boldsymbol{m} + 2J_2(\gamma \boldsymbol{m} \cdot \gamma' \boldsymbol{m}) \gamma \boldsymbol{m} \wedge \gamma' \boldsymbol{m} & \operatorname{sur} \Gamma^{\pm}. \end{cases}$$
(CL)

Proviennent des conditions de stationnarité d'Euler-Lagrange.

Contrainte non convexe $|\mathbf{m}| = 1 : \mathbf{m} \cdot \frac{\partial \mathbf{m}}{\partial \mathbf{\nu}} = 0 :$

$$A \frac{\partial \boldsymbol{m}}{\partial \boldsymbol{\nu}} = \begin{cases} 0 & \text{sur } \partial \Omega \setminus \Gamma^{\pm}, \\ K_s(\gamma \boldsymbol{m} \cdot \boldsymbol{\nu})(\boldsymbol{\nu} - (\gamma \boldsymbol{m} \cdot \boldsymbol{\nu})\gamma \boldsymbol{m}) \\ + (J_1 + 2J_2(\gamma \boldsymbol{m} \cdot \gamma' \boldsymbol{m}))(\gamma' \boldsymbol{m} - (\gamma' \boldsymbol{m} \cdot \gamma \boldsymbol{m})\gamma' \boldsymbol{m}) \end{cases} \text{sur } \Gamma^{\pm}.$$

Ni super-échange ni anisotropie surfacique : conditions de Neumann homogènes.

Équation d'évolution dynamique

Équation de Landau-Lifchitz sur les grandeurs mésoscopiques :

$$\partial_t \boldsymbol{m} = -\boldsymbol{m} \wedge \mathcal{H}_{vt}(\boldsymbol{m}, \boldsymbol{h}_{\mathrm{ext}}) - \alpha \boldsymbol{m} \wedge (\boldsymbol{m} \wedge \mathcal{H}_{vt}(\boldsymbol{m}, \boldsymbol{h}_{\mathrm{ext}})),$$

avec les conditions (CL) et la contrainte : $|\boldsymbol{m}|=1$ dans $\Omega\times(0,T)$.

Inégalité d'énergie :

$$E(\boldsymbol{m}(\cdot,T)) + \frac{\alpha}{1+\alpha^2} \int_0^T \left| \frac{\partial \boldsymbol{m}}{\partial t} \right|^2 dt \le E(\boldsymbol{m}(\cdot,0)).$$

Résultats connus en l'absence d'énergies de surfaces :

- (1) Solutions faibles : appartenant à $L^{\infty}(0, +\infty; \mathbb{H}^1(\Omega)) \cap \mathbb{H}^1(\Omega \times (0, T))$. Existence globale pour C.I. dans H^1 , (Alouges-Soyeur, Labbé).
- (2) Solutions fortes appartenant à $\mathbb{H}^{3,\frac{3}{2}}(\Omega \times (0,T))$. Existence-unicité en temps fini pour C.I. dans \mathbb{H}^2 , (Carbou-Fabrie).

Existence de solutions faibles pour énergies de surfaces quadratiques (Hamdache-Tilioua).

(3) CARACTÈRE BIEN POSÉ DU SYSTÈME DE LANDAU-LIFCHITZ

Théorème 1 Soit m_0 dans $\mathbb{H}^1(\Omega)$, telle que $|m_0| = 1$ presque partout. Alors, il existe au moins une solution faible, du système de Landau-Lifchitz en présence d'anisotropie surfacique et de super-échange.

Théorème 2 Soit une excitation extérieure h_{ext} appartenant à $\mathbb{H}^{1,\frac{1}{2}}(\Omega \times (0,T))$. Si la C.I. m_0 appartient à $\mathbb{H}^2(\Omega)$, $|m_0| = 1$, et vérifie les C.L.

$$\frac{\partial \boldsymbol{m}}{\partial \boldsymbol{\nu}} = \begin{cases} 0 & sur \, \partial \Omega \setminus \Gamma^{\pm}, \\ \left(Q_r^{\pm}(\gamma \boldsymbol{m}, \gamma' \boldsymbol{m}) \cdot \gamma \boldsymbol{m} \right) \gamma \boldsymbol{m} - Q_r^{\pm}(\gamma \boldsymbol{m}, \gamma' \boldsymbol{m}) & sur \, \Gamma^{\pm}, \end{cases}$$

alors, il existe un temps positif $T^* > 0$ et une solution forte \mathbf{m} de Landau-Lifchitz avec \mathbf{m}_0 comme condition initiale. La fonction $\mathbf{m}_0 \to T^*$ est semi-continue inférieurement et la fonction qui à \mathbf{m}_0 associe la solution \mathbf{m} est continue de $\mathbb{H}^2(\Omega)$ dans $\mathbb{H}^3(\Omega \times (0,T))$, pour tout $T < T^*$.

(4) LE PROBLÈME D'ESPACEUR

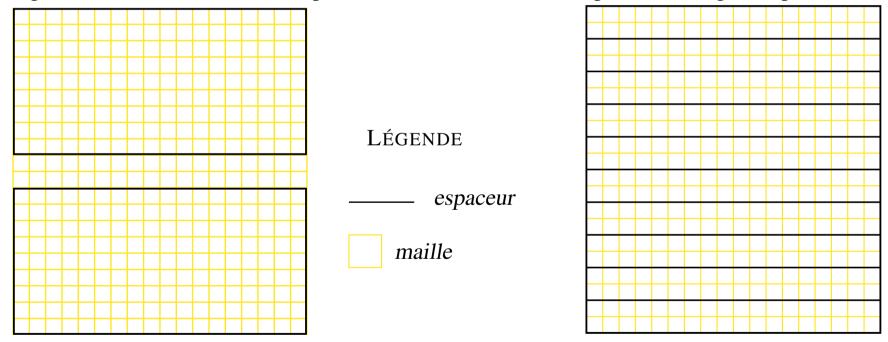
Les difficultés de l'implémentation dans les géométries minces

Configurations géométriques intéressantes peu favorables à la simulation numérique.

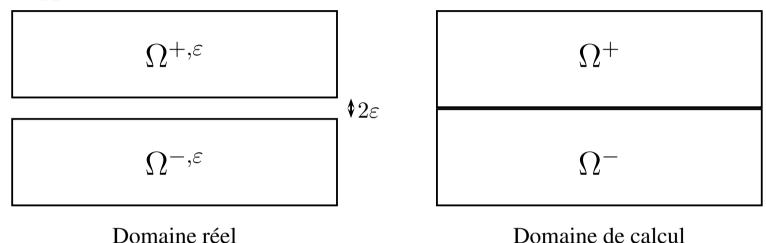
Calcul du terme magnétostatique par FFT très avantageux. Nécessite un maillage régulier.

Autres méthodes rapides : Spectre non respecté.

Agencements multicouches et espaceurs minces nécessitent un pas de maillage très petit.



Le développement à l'ordre 1 et la méthode



Notre but : obtenir un problème équivalent sur géométrie avec espaceur d'épaisseur nulle.

Méthodes d'échelle à éviter pour pouvoir traiter plus tard des coupures.

Suppression d'une couche matérielle au lieu d'ajout.

- ⇒ Réduction de l'énergie par rapport au problème limite.
- ⇒ Coercivité insuffisante de l'énergie.

Développement à l'ordre 1 de m^{ε} solution de Landau-Lifchitz sur Ω^{ε} .

 $m{m}^{arepsilon} = m{m}^{(0)} + arepsilon m{m}^{(1)}$ sur $\Omega^{arepsilon} \Longrightarrow$ Obtention d'une condition équivalente de bord.

Le problème limite : les équations formelles

D'abord développement de l'équation d'évolution :

$$\frac{\partial \boldsymbol{m}^{(0)}}{\partial t} = -\boldsymbol{m}^{(0)} \wedge \mathcal{H}_{vt}(\boldsymbol{m}^{(0)}, \boldsymbol{h}_{\text{ext}}) - \alpha \boldsymbol{m}^{(0)} \wedge \left(\boldsymbol{m}^{(0)} \wedge \mathcal{H}_{vt}(\boldsymbol{m}^{(0)}, \boldsymbol{h}_{\text{ext}})\right),$$

$$\frac{\partial \boldsymbol{m}^{(1)}}{\partial t} = -\boldsymbol{m}^{(1)} \wedge \mathcal{H}_{v}(\boldsymbol{m}^{(0)}) - \boldsymbol{m}^{(0)} \wedge \mathcal{H}_{v}(\boldsymbol{m}^{(1)}) - \alpha \boldsymbol{m}^{(1)} \wedge \left(\boldsymbol{m}^{(0)} \wedge \mathcal{H}_{v}(\boldsymbol{m}^{(0)})\right)$$

$$- \alpha \boldsymbol{m}^{(0)} \wedge \left(\boldsymbol{m}^{(1)} \wedge \mathcal{H}_{v}(\boldsymbol{m}^{(0)})\right) - \alpha \boldsymbol{m}^{(0)} \wedge \left(\boldsymbol{m}^{(0)} \wedge \mathcal{H}_{v}(\boldsymbol{m}^{(1)})\right)$$

$$+ \boldsymbol{m}^{(0)} \wedge \mathcal{H}_{d}(\gamma \boldsymbol{m}^{(0)} d\Gamma) + \boldsymbol{m}^{(0)} \wedge \left(\boldsymbol{m}^{(0)} \wedge \mathcal{H}_{d}(\gamma \boldsymbol{m}^{(0)} d\Gamma)\right).$$

Avec les contraintes $|\boldsymbol{m}^{(0)}|=1$ et $\boldsymbol{m}^{(0)}\cdot\boldsymbol{m}^{(1)}=0$, les conditions initiales $\boldsymbol{m}^{(0)}(\cdot,0)=\boldsymbol{m}_0^{(0)}$ et $\boldsymbol{m}^{(1)}(\cdot,0)=\boldsymbol{m}_0^{(1)}$. Et la condition aux limites :

$$\frac{\partial \boldsymbol{m}^{(1)}}{\partial \boldsymbol{\nu}} = \begin{cases} 0 & \text{sur } \partial \Omega \setminus \Gamma \times (0, T), \\ DQ^{\pm}(\gamma \boldsymbol{m}^{(0)}, \gamma' \boldsymbol{m}^{(0)}) \cdot (\gamma \boldsymbol{m}^{(1)} - \gamma^1 \boldsymbol{m}^{(0)}, \gamma' \boldsymbol{m}^{(1)} - \gamma^{1'} \boldsymbol{m}^{(0)}) \\ + \frac{\partial^2 \boldsymbol{m}^{(0)}}{\partial \boldsymbol{\nu}^2} & \text{sur } \Gamma^{\pm} \times (0, T), \end{cases}$$

Obtention formelle de la condition de bord d'ordre 1

$$\frac{1}{\varepsilon} \frac{\partial (\boldsymbol{m}^{\varepsilon} - \boldsymbol{m}^{(0)})}{\partial z} (\cdot, \cdot, \varepsilon, \cdot) \approx -\frac{1}{\varepsilon} \left(Q^{+} (\gamma_{\varepsilon}^{+} \boldsymbol{m}^{\varepsilon}, \gamma_{\varepsilon}^{-} \boldsymbol{m}^{\varepsilon}) - Q^{+} (\gamma_{\varepsilon}^{+} \boldsymbol{m}^{(0)}, \gamma_{\varepsilon}^{-} \boldsymbol{m}^{(0)}) \right)
- \frac{1}{\varepsilon} \left(Q^{+} (\gamma_{\varepsilon}^{+} \boldsymbol{m}^{(0)}, \gamma_{\varepsilon}^{-} \boldsymbol{m}^{(0)}) - Q^{+} (\gamma^{+} \boldsymbol{m}^{(0)}, \gamma^{-} \boldsymbol{m}^{(0)}) \right) - \frac{1}{\varepsilon} \left(\frac{\partial \boldsymbol{m}^{(0)}}{\partial z} (\cdot, \cdot, \varepsilon, \cdot) - \frac{\partial \boldsymbol{m}^{(0)}}{\partial z} (\cdot, \cdot, 0, \cdot) \right)
\approx - DQ^{+} (\gamma^{+} \boldsymbol{m}^{(0)}, \gamma^{-} \boldsymbol{m}^{(0)}) \cdot \left(\gamma^{+} \boldsymbol{m}^{(1)} + \frac{\partial \boldsymbol{m}^{(0)}}{\partial z}, \gamma^{-} \boldsymbol{m}^{(1)} - \frac{\partial \boldsymbol{m}^{(0)}}{\partial z} \right) - \frac{\partial^{2} \boldsymbol{m}^{(0)}}{\partial \boldsymbol{\nu}^{2}}.$$

Cas simple : $K_s = J_1 = J_2 = 0$:

$$\frac{\partial (\boldsymbol{m}^{(0)} + \varepsilon \boldsymbol{m}^{(1)})}{\partial \boldsymbol{\nu}} (\boldsymbol{x} - \varepsilon \boldsymbol{\nu}, \cdot) \approx 0 \quad \text{pour tout } \boldsymbol{x} \in \Gamma.$$

Après développement formel à l'ordre 1 :

$$\frac{\partial \boldsymbol{m}^{(1)}}{\partial \boldsymbol{\nu}}(\boldsymbol{x},\cdot) pprox \frac{\partial^2 \boldsymbol{m}^{(0)}}{\partial \boldsymbol{\nu}^2}(\boldsymbol{x},\cdot) \qquad ext{pour tout } \boldsymbol{x} \in \Gamma.$$

Étude du système de Landau-Lifchitz linéarisé

Théorème 3 Le système de Landau-Lifchitz linéarisé est bien posé dans $\mathbb{H}^{2,1}(\Omega\times(0,T))$ pour une condition initiale $\boldsymbol{m}_0^{(1)}$ dans $\mathbb{H}^1(\Omega)$ satisfaisant $\boldsymbol{m}_0^{(0)}\cdot\boldsymbol{m}_0^{(1)}=0$ et des conditions aux limites de Neumann affines dans $\mathbb{H}^{\frac{1}{2},\frac{1}{4}}_{\mathrm{morc}}(\partial\Omega\times(0,T))$.

Théorème 4 Le système de Landau-Lifchitz linéarisé est bien posé dans $\mathbb{H}^{3,\frac{3}{2}}(\Omega\times(0,T))$ pour une condition initiale $\boldsymbol{m}_0^{(1)}$ dans $\mathbb{H}^2(\Omega)$ satisfaisant $\boldsymbol{m}_0^{(0)}\cdot\boldsymbol{m}_0^{(1)}=0$ et des conditions aux limites de Neumann linéaires avec termes affines dans $\mathbb{H}^{\frac{3}{2},\frac{3}{4}}_{00}(\partial\Omega\times(0,T))$.

Théorème 5 Le système de Landau-Lifchitz linéarisé est bien posé dans $\mathbb{H}^{2,1}(\Omega \times (0,T))$ pour $\boldsymbol{m}_0^{(1)}$ dans $\mathbb{H}^1(\Omega)$ satisfaisant $\boldsymbol{m}_0^{(0)} \cdot \boldsymbol{m}_0^{(1)} = 0$ et des conditions aux limites de Neumann linéaires avec termes affines dans $\mathbb{H}^{\frac{1}{2},\frac{1}{4}}_{\mathrm{morc}}(\partial\Omega \times (0,T))$.

Convergence à l'ordre 0

 m^{ε} converge-t-il vers $m^{(0)}$? Estimations sur la norme $\mathbb{H}^{2,1}(\Omega^{\varepsilon} \times (0,T))$ de $m^{\varepsilon} - m^{(0)}$. Première approche : estimations et Gronwall. Termes de bord difficiles à traiter. Solution : technique utilisée pour la preuve de l'existence de $m^{(1)}$ sur une équation proche.

 $m{m}^{arepsilon}-m{m}^{(0)}$ solution de Landau Lifchitz linéarisée développée autour de $m{m}^{arepsilon}$ et $m{m}^{(0)}$.

Nouveau système linéaire bien posé dans $\mathbb{H}^{2,1}$ à partir d'une C.I. dans \mathbb{H}^1 .

Données dominées par ε près de 0:

$$\|\boldsymbol{m}^{\varepsilon} - \boldsymbol{m}^{(0)}\|_{\mathbb{H}^{2,1}(\Omega^{\varepsilon} \times (0,T))} = O(\varepsilon).$$

Construction prolongement $\widetilde{\boldsymbol{m}}^{\varepsilon}$ sur Ω , telle que :

$$\|\widetilde{\boldsymbol{m}}^{\varepsilon} - \boldsymbol{m}^{(0)}\|_{\mathbb{H}^{2,1}(\Omega \times (0,T))} = O(\varepsilon).$$

Convergence à l'ordre 1

Théorème 6 Le champ de vecteur $\frac{\widetilde{\boldsymbol{m}}^{\varepsilon} - \boldsymbol{m}^{(0)}}{\varepsilon}$ tend faiblement vers $\boldsymbol{m}^{(1)}$ dans $\mathbb{H}^{2,1}(\Omega \times (0,T))$.

Une limite faible $\overline{{m m}^{(1)}}$ existe, à une sous-suite près.

But : prouver que $\overline{m^{(1)}}=m^{(1)}$. $\overline{m^{(1)}}$ solution du système LL linéarisé.

Seul point délicat : condition de bord sur Γ :

$$\int_0^T \int_{\Gamma} \left| \frac{\partial (\widetilde{\boldsymbol{m}}^{\varepsilon} - \boldsymbol{m}^{(0)})}{\partial z} (\boldsymbol{x}', \varepsilon, t) - \frac{\partial (\widetilde{\boldsymbol{m}}^{\varepsilon} - \boldsymbol{m}^{(0)})}{\partial z} (\boldsymbol{x}', 0^+, t) \right|^2 d\sigma(\boldsymbol{x}') dt \le \varepsilon^3 \left\| \frac{\widetilde{\boldsymbol{m}}^{\varepsilon} - \boldsymbol{m}^{(0)}}{\varepsilon} \right\|_{\mathbb{H}^{0,2,0}}^2.$$

Donc, sur Γ^+ , nous avons

$$\frac{\partial \overline{\boldsymbol{m}^{(1)}}}{\partial z}(\cdot, 0^{+}, \cdot) = \lim_{\varepsilon_{k} \to 0} \frac{1}{\varepsilon_{k}} \frac{\partial (\widetilde{\boldsymbol{m}}^{\varepsilon_{k}} - \boldsymbol{m}^{(0)})}{\partial z}(\cdot, \varepsilon_{k}, \cdot),$$

$$= -\operatorname{D}Q^{+}(\gamma \boldsymbol{m}^{(0)}, \gamma' \boldsymbol{m}^{(0)}) \left(\overline{\boldsymbol{m}^{(1)}} + \frac{\partial \boldsymbol{m}^{(0)}}{\partial z}, \overline{\boldsymbol{m}^{(1)}} - \frac{\partial \boldsymbol{m}^{(0)}}{\partial z} \right) - \frac{\partial^{2} \boldsymbol{m}^{(0)}}{\partial z^{2}}.$$

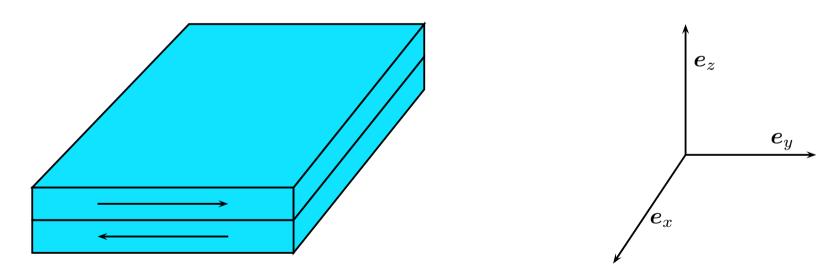
(5) RÉSULTATS NUMÉRIQUES

Calcul des états d'équilibre pour deux couches superposées par EMicroM.

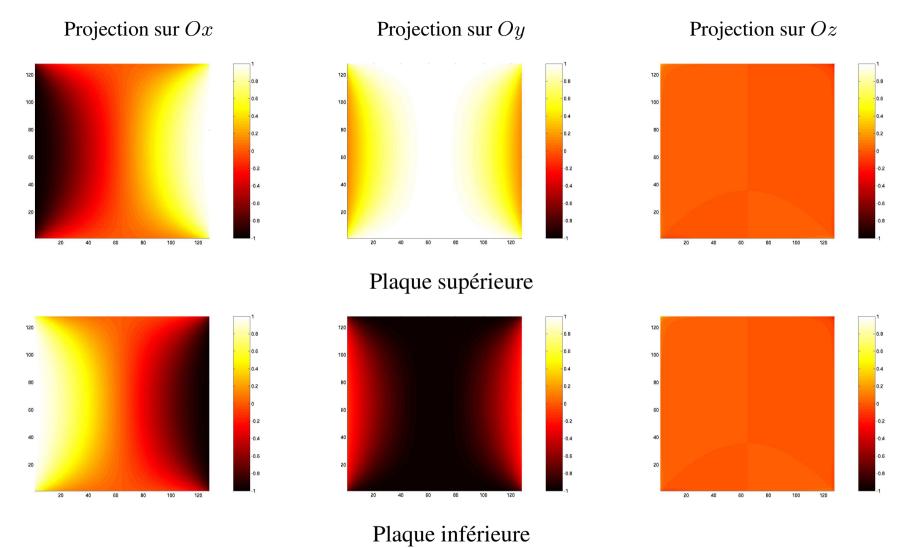
Méthode dynamique par schéma explicite d'ordre 2, pas de temps optimisé (Labbé).

Maillage $128 \times 128 \times 2$, condition initiale e_y sur la couche supérieure, et $-e_y$ sur la couche inférieure.

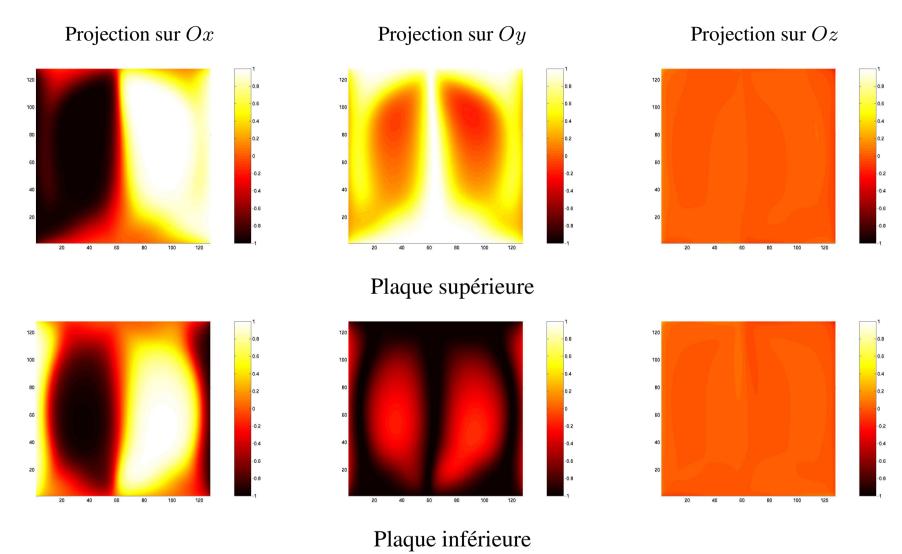
- (1) D'abord, état d'équilibre sans espaceur.
- (2) Espaceur dans la tranche. Différentes valeurs de J_1 .



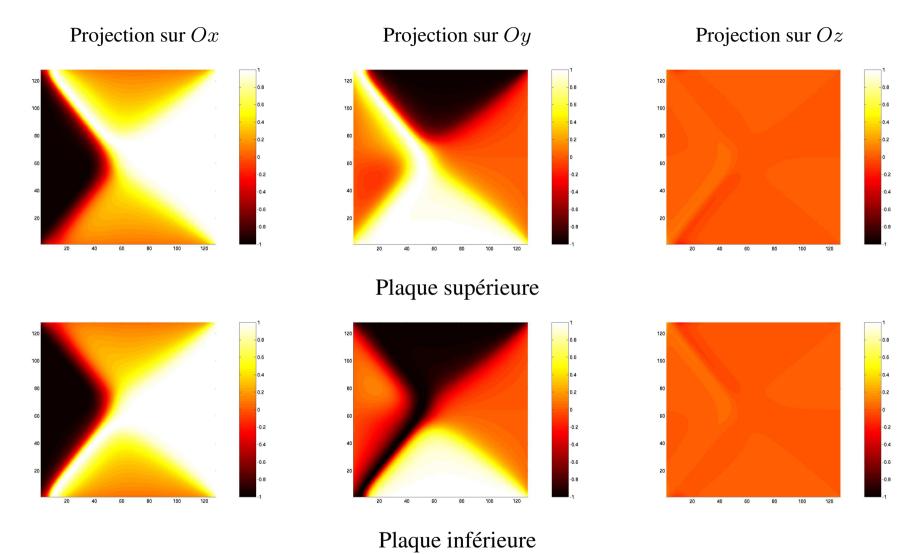




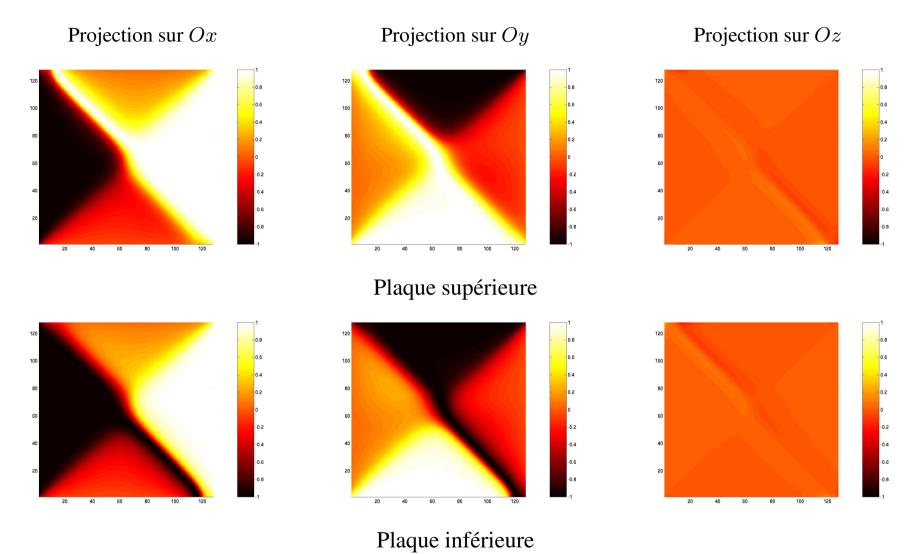
Simulation avec espaceur : $m^{(0)}$, $J_1 = 2 \times 10^{-5}$,



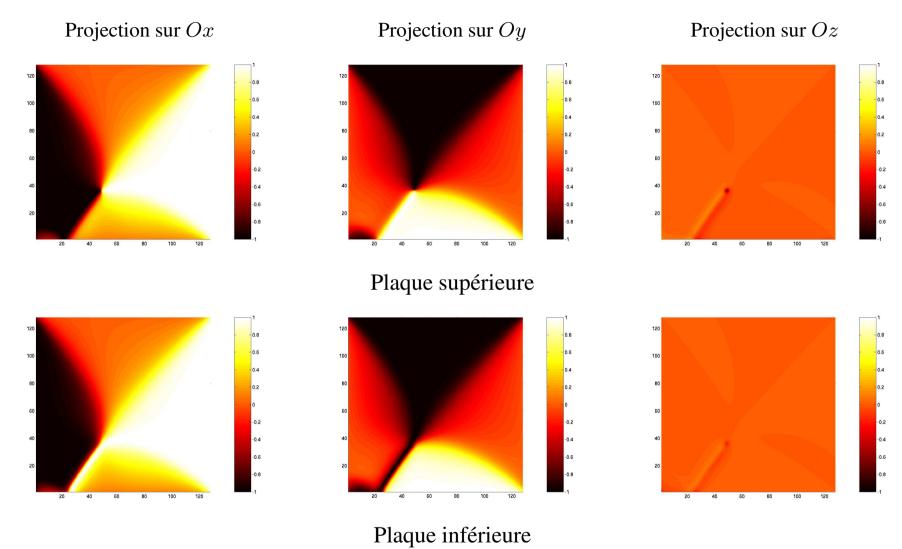
Simulation avec espaceur : $m^{(0)}$, $J_1 = 5 \times 10^{-5}$,



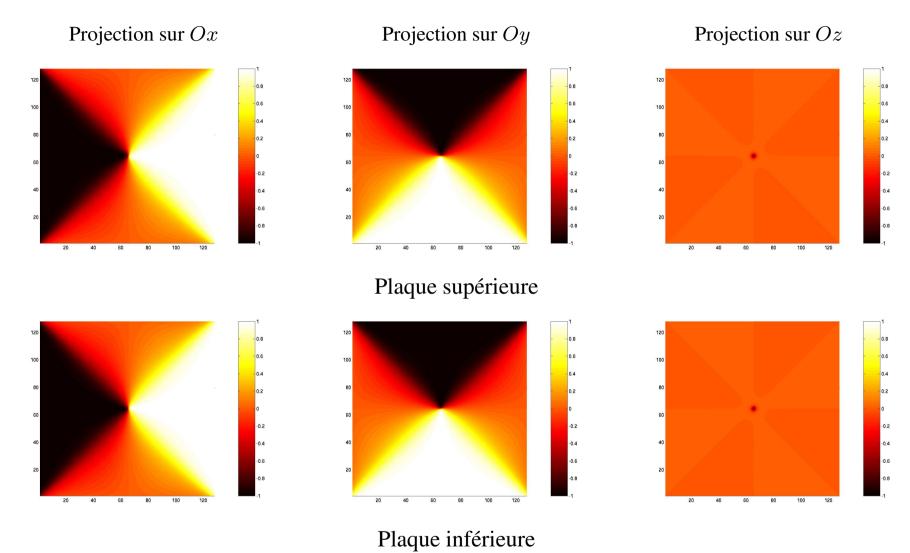
Simulation avec espaceur : $m^{(0)}$, $J_1 = 8 \times 10^{-5}$,



Simulation avec espaceur : $m^{(0)}$, $J_1 = 1 \times 10^{-4}$,



Simulation avec espaceur : $m^{(0)}$, $J_1 = 5 \times 10^{-4}$,



Simulation avec espaceur : $m^{(0)}$, $J_1 = 8 \times 10^{-4}$,

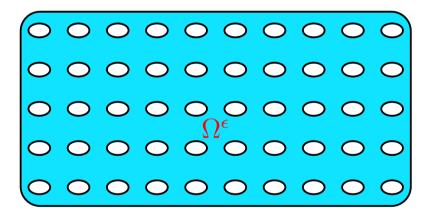
(6) HOMOGÉNÉISATION EN DOMAINE PERFORÉ

Géométrie du problème

Deux types de domaines : domaines perforés et agencements multicouches.

Problèmes physiques périodiques avec petite échelle ϵ .

Passage à la limite quand ϵ tend vers 0.



Échange anisotrope A.

Taille des trous isolés ϵ .

$$\mathcal{Y} = (0,1)^3,$$

 $\mathcal{T}_0 \subset \mathcal{Y}$ le trou de base. $\mathcal{Y}^* = \mathcal{Y} \setminus \mathcal{T}_0$.

$$T_{\epsilon} = \bigcup_{k \in \mathbb{Z}} \{ \epsilon(k + \mathcal{T}_0) \mid \epsilon(k + \mathcal{Y}) \subset \Omega \},$$

$$\Omega^{\epsilon} = \Omega \setminus T_{\epsilon}.$$

 m^{ϵ} solution de LL avec conditions de Neumann homogènes sur les trous.

Existence d'un opérateur de prolongement sur tout le domaine sans trou.

Limite suivant la méthode de la convergence double-échelles (Allaire, Briane, Neuss-Radu).

Existence d'une limite $\widetilde{\boldsymbol{m}}^0$ au sens de la convergence double-échelles.

Équation homogénéisée

La limite vérifie

$$\frac{\partial \widetilde{\boldsymbol{m}}^{0}}{\partial t} - \alpha \widetilde{\boldsymbol{m}}^{0} \wedge \frac{\partial \widetilde{\boldsymbol{m}}^{0}}{\partial t} = -(1 + \alpha^{2})\widetilde{\boldsymbol{m}}^{0} \wedge \left(\operatorname{div}((\mathbf{A}^{*} \cdot \nabla)\widetilde{\boldsymbol{m}}^{0}) - \overline{\mathbf{K}}\widetilde{\boldsymbol{m}}^{0} + \mathcal{H}_{d}(\overline{\chi}\widetilde{\boldsymbol{m}}^{0}) + \mathbf{H}_{d}\widetilde{\boldsymbol{m}}^{0}\right),$$

dans $\Omega \times \mathbb{R}^+$,

$$\widetilde{\boldsymbol{m}}^0(\cdot,0) = \boldsymbol{m}_0^0 \quad \text{dans } \Omega, \quad \frac{\partial \widetilde{\boldsymbol{m}}^0}{\partial \boldsymbol{\nu}} = 0 \quad \text{sur } \partial \Omega \times (0,+\infty).$$

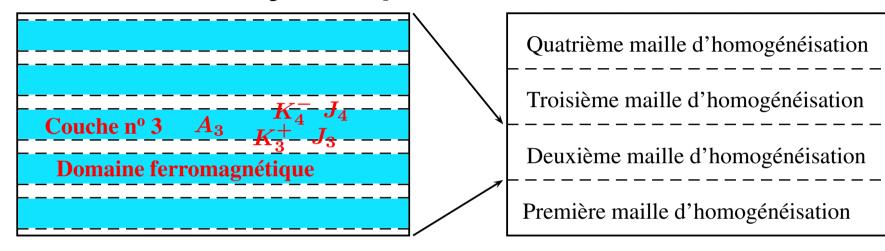
 ${\bf A}^*$: matrice d'homogénéisation classique, $\bar{{\bf K}}$: moyenne usuelle, $\bar{\chi}$: taux d'occupation. Terme difficile de correction démagnétisant dépendant de la géométrie des trous.

$$(\mathbf{H}_d)_{ij} = \frac{1}{\bar{\chi}} \int_{\mathcal{Y}} (\nabla w_i'(\mathbf{y}) + \chi_{\mathcal{Y}^*}(\mathbf{y}) \mathbf{e}_i) \cdot (\nabla w_j'(\mathbf{y}) + \chi_{\mathcal{Y}^*} \mathbf{e}_j) \, d\mathbf{y} - 1.$$
$$\int_{\mathcal{Y}} (\nabla_{\mathbf{y}} w_i'(\mathbf{x}, \mathbf{y}) + \chi_{\mathcal{Y}^*}(\mathbf{y}) \mathbf{e}_i) \, \nabla_{\mathbf{y}} \psi \, d\mathbf{y} = 0, \quad \oint_{\mathcal{Y}} w_i'(\mathbf{y}) \, d\mathbf{y} = 0.$$

(7) HOMOGÉNÉISATION POUR DES AGENCEMENTS MULTICOUCHES

Géométrie et prolongements

N : nombre de mailles d'homogénéisation. p : nombre de couches dans une maille.



Une maille d'homogénéisation, p = 5

Domaine multicouche, N=4

Existence d'opérateur de prolongement de $H^1(\Omega^N)$ dans $H^1(\Omega)$, P_n :

$$||P_{N}(u)||_{L^{2}(\Omega)} \leq C||u||_{L^{2}(\Omega^{N})}, \quad ||\nabla_{2D}P_{N}(u)||_{L^{2}(\Omega)} \leq C||\nabla_{2D}u||_{L^{2}(\Omega^{N})},$$

$$||\frac{\partial P_{N}(u)}{\partial z}||_{L^{2}(\Omega)} \leq C\left(||\frac{\partial u}{\partial z}||_{L^{2}(\Omega^{N})} + \sqrt{N}\left(\sum_{i=1}^{Np-1}||\gamma^{+}u - \gamma^{-}u||_{L^{2}(\Gamma_{(i)}^{N})}^{2}\right)^{\frac{1}{2}}\right).$$

Homogénéisation de l'équation de Landau-Lifchitz

Plusieurs paramètres:

- p constantes d'échange A_i et p Matrices d'anisotropie \mathbf{K}_i .
- 2p constantes d'anisotropies surfaciques K_i^+ et K_i^- .
- 2p constantes de super-échange $J_{1,i}$ et $J_{2,i}$.

Deux cas d'énergies de surfaces rigidifiant suffisamment le système :

Anisotropie surfacique dominante

Constante d'anisotropie surfacique indépendante de la distance intercouche.

Force l'alignement de l'aimantation sur l'orthogonal aux couches.

Force la stationnarité en temps de la limite : $\frac{\partial m^{\infty}}{\partial t} = 0$.

Super-échange dominant

Constante d'anisotropie surfacique proportionnelle à la distance intercouche.

Constante de super-échange inversement proportionnelle à la distance intercouche.

Rigidifie suffisamment le système pour opérateur de prolongement.

Passage à la limite rigoureux dans les termes non linéaires.

Équation homogénéisée pour le cas du super-échange dominant

Par les méthodes de la convergence double-échelle (avec et sans surfaces périodiques),

$$\frac{\partial \widetilde{\boldsymbol{m}}^{\infty}}{\partial t} - \alpha \widetilde{\boldsymbol{m}} \wedge \frac{\partial \widetilde{\boldsymbol{m}}^{\infty}}{\partial t} = -(1 + \alpha^{2}) \left(A_{T} \widetilde{\boldsymbol{m}}^{\infty} \wedge \Delta_{2D} \widetilde{\boldsymbol{m}}^{\infty} + A_{N} \widetilde{\boldsymbol{m}}^{\infty} \wedge \frac{\partial^{2} \widetilde{\boldsymbol{m}}^{\infty}}{\partial x_{3}^{2}} \right) \\
- (1 + \alpha^{2}) \widetilde{\boldsymbol{m}}^{\infty} \wedge \overline{\mathbf{K}} \widetilde{\boldsymbol{m}}^{\infty} - (1 + \alpha^{2}) \overline{K} (\widetilde{\boldsymbol{m}}^{\infty} \cdot \boldsymbol{e}_{z}) \widetilde{\boldsymbol{m}}^{\infty} \wedge \boldsymbol{e}_{z} \\
- (1 + \alpha^{2}) \overline{\chi} \widetilde{\boldsymbol{m}}^{\infty} \wedge \mathcal{H}_{d} (\widetilde{\boldsymbol{m}}^{\infty}) \quad \text{dans } \Omega \times \mathbb{R}^{+}.$$

$$\widetilde{\boldsymbol{m}}^{\infty} \wedge \frac{\partial \widetilde{\boldsymbol{m}}}{\partial \boldsymbol{\nu}_{A}} = 0 \operatorname{sur} \partial \Omega \times \mathbb{R}^{+},$$

où
$$A_N = \frac{1}{\bar{\chi}} \frac{1}{\sum_{i=0}^{p-1} \left(\frac{\bar{\chi}_i}{A_i} + \frac{1}{L(J_{1,i} + 2J_{2,i})}\right)} \text{ et } \bar{K} = \sum_{i=0}^{p-1} \frac{K_{s,i}^+ + K_{s,i}^-}{L\bar{\chi}} - (1 - \bar{\chi}).$$

Méthode : trouver un lien entre la limite double-échelles avec surfaces périodiques de N fois le saut intercouche et la limite double-échelle de l'aimantation.

Par passage à la limite sur l'équation LL et sur l'équation de Stokes.

Homogénéisation de l'équation de la chaleur en présence de conduction intercouche $\frac{\partial u^N}{\partial t} - A_i \triangle u^N = 0$ sur la i^e couche.

$$A_i \frac{\partial u^N}{\partial \boldsymbol{\nu}} = \begin{cases} 0 & \text{sur le bord extérieur,} \\ -J_i(\gamma u^N - \gamma' u^N) - \frac{K_i^{\pm}}{N} \gamma u^N & \text{sur les intercouches.} \end{cases}$$

Le prolongement garantit seulement la borne de $\frac{1}{\sqrt{N}} \frac{\partial P_n(u^N)}{\partial z}$ dans $L^2(\Omega)$.

Apparition d'une troisième échelle en x_3/\sqrt{N} .

Inégalité d'énergie et régularité elliptique $\implies \sqrt{N} \frac{\partial u^N}{\partial z}$ bornée dans $L^2(\Omega^N)$.

Choix d'une période a arbitraire pour la variable semi-rapide y_s .

La limite triple-échelles $\widetilde{u}^{\infty}(\boldsymbol{x},t,y_s)$ a-périodique en y_s .

$$u^N(\boldsymbol{x},t) \approx \widetilde{u}^{\infty}(\boldsymbol{x},t,\sqrt{N}x_3),$$
 formellement.

Le « bon » choix de la période dépend de la limite triple-échelles de la C.I.

Limite triple-échelles C.I. pour période ka, a-périodique \implies pareil pour solution.

Équation homogénéisée pour la chaleur

Toujours obtenue par passage à la limite dans Stokes et l'équation de la chaleur.

Équation de la chaleur anisotropique où la variable semi-rapide a remplacé la troisième variable d'espace.

$$\frac{\partial \widetilde{u}^{\infty}}{\partial t} - A_T \triangle_{2D} \widetilde{u}^{\infty} - A_N \frac{\partial \widetilde{u}^{\infty}}{\partial {y_s}^2} + \bar{K} \widetilde{u}^{\infty}(\boldsymbol{x}, t) = 0,$$

dans $B \times \mathbb{R}^+ \times (0, a)$, pour tout x_3 dans (0, L), et les conditions de bord :

$$\frac{\partial \widetilde{u}^{\infty}}{\partial \boldsymbol{\nu}} = 0 \quad \text{sur } \partial B \times (0, L) \times \mathbb{R}^{+} \times (0, a),$$
$$\widetilde{u}^{\infty}(\boldsymbol{x}, t, 0) = \widetilde{u}^{\infty}(\boldsymbol{x}, t, a), \quad \text{pour tout } \boldsymbol{x}, t \text{ dans } \Omega \times \mathbb{R}^{+},$$

où
$$A_N = \frac{1}{\bar{\chi}} \frac{1}{\sum_{j=0}^{p-1} \frac{1}{J_j}}$$
 et $\bar{K} = \left(\sum_{i=0}^{p-1} \frac{K_i^- + K_i^+}{L\bar{\chi}}\right)$.

(8) CONCLUSION ET PERSPECTIVES

Étude d'espaceurs moins réguliers : espaceurs non plans, coupures et fentes.

Implémentation : prise en compte du terme biquadratique du super-échange, $J_2 \neq 0$.

Augmentation de l'ordre pour la prise en compte des interactions surfaciques.

Homogénéisation de l'équation de Landau-Lifchitz avec anisotropie et super-échange faible.

Critères de compacité nécessaires pour la convergence double-échelles ou autres méthodes.

Pas de bonne période pour une échelle donnée. Limite quand la période augmente?

Décomposition de domaines pour l'équation de Landau-Lifchitz?

Calcul du terme global magnétostatique difficile!

PUBLICATIONS

- [1] Solutions to the Landau-Lifchitz system with nonhomogenous boundary conditions. preprint http://www-math.math.univ-paris13.fr/prepub/pp2004/pp2004-11.html, Mars 2004, soumis à Nonlinear Analysis.
- [2] Modelization of a split in a ferromagnetic body by an equivalent boundary condition: Part 1. The classical case: no surface energies present. preprint http://www-math.math.univ-paris13.fr/prepub/pp2004/pp2004-25.html, Septembre 2004, soumis à Asymptotic Analysis.
- [3] Modelization of a split in a ferromagnetic body by an equivalent boundary condition: Part 2. The influence of super-exchange and surface anisotropy. preprint

 http://www-math.math.univ-paris13.fr/prepub/pp2004/pp2004-26.html,
 Septembre 2004, soumis à Asymptotic Analysis.