
Thèse

présentée au

Laboratoire d’Analyse et d’Architecture des Systèmes

en vue de l’obtention du

Doctorat de l’Institut National Polytechnique de Toulouse
Ecole Doctorale Informatique et Télécommunications

Spécialité : RCFR

par Solange LEMAI-CHENEVIER

IXTET-EXEC : planification, réparation de plan et contrôle
d’exécution avec gestion du temps et des ressources

IXTET-EXEC: planning, plan repair and execution

control with time and resource management

Soutenue le 21 juin 2004, devant le Jury composé de :

Raja Chatila Président
Félix Ingrand Directeur de thèse
Malik Ghallab Co-directeur de thèse
François Charpillet Rapporteurs
Maria Fox
Nicola Muscettola

Marie-Claire Charmeau Invités
Henri Farreny
Pierrick Grandjean

Avant-propos
Voilà. Ce manuscrit marque la fin d’une expérience très enrichissante. Maintenant que ce
bout de vie s’achève et que je regarde un peu en arrière, j’ai envie de remercier.

Remercier ceux qui m’ont donné l’occasion de faire cette thèse dans d’aussi
bonnes conditions.

Remercier ceux qui m’ont permis de progresser, d’apprendre, d’avoir des idées,
d’approfondir, . . .

Remercier tous ceux qui ont contribué à faire de ce bout de vie des années
sympathiques.

ALORS :

ii Avant-propos/Acknowledgements

Sommaire
1 Contexte et état de l’art 9

1.1 Problématique 9
1.2 Planifier... 10

1.2.1 ...pour un domaine lié à une application “réelle” 10
1.2.2 ...pour une exécution dans un environnement dynamique 13
1.2.3 Conclusion 15

1.3 Intégrer des mécanismes de planification dans un système autonome complexe 15
1.3.1 Architecture 15
1.3.2 “Planification réactive” : un exécutif doté de capacités de délibération 18
1.3.3 “Planification par lots” : planification → exécution → replanification 20
1.3.4 “Planification continue” : planification et exécution entrelacées 20
1.3.5 Planification à tous les niveaux d’abstraction 24
1.3.6 Conclusion 27

1.4 Notre approche 27
1.5 Exemple de mission 30

2 Le planificateur IXTET 39
2.1 Une représentation fonctionnelle à base de chroniques 40

2.1.1 Variables d’état 40
2.1.2 “Timeline” 42
2.1.3 Ressources 42
2.1.4 Représentation des actions 44
2.1.5 Problème de planification 45
2.1.6 Discussion concernant l’exécution du plan 46

2.2 Les gestionnaires de contraintes sous-jacents 49
2.2.1 Le réseau temporel 49
2.2.2 Le réseau atemporel 51
2.2.3 Les contraintes mixtes 53
2.2.4 Discussion concernant l’exécution du plan 55

2.3 Planification non linéaire causale avec des variables partiellement instanciées 57
2.3.1 Recherche dans l’espace des plans partiels 57
2.3.2 Une étape de planification dans IXTET 62
2.3.3 Analyse des défauts 64
2.3.4 Contrôle de la recherche 73
2.3.5 Discussion concernant l’exécution du plan 83

2.4 Extension de la gestion des ressources 84
2.4.1 Conflit de ressource 84
2.4.2 Détection des conflits 86
2.4.3 Résolvantes 89
2.4.4 Conclusion 92

iv Sommaire

3 IXTET-EXEC : intégrer planification et exécution de plans temporels 99
3.1 L’exécutif temporel 100

3.1.1 Vue d’ensemble 100
3.1.2 Interactions avec le système contrôlé 101
3.1.3 Exécution du réseau temporel 102
3.1.4 Situations non nominales et stratégies d’adaptation du plan 104

3.2 Définition d’un plan exécutable 105
3.2.1 Un plan partiel partiellement exécuté jusqu’à l’instant t 105
3.2.2 Niveau d’une ressource allouée r à l’instant t dans le plan Pt 106
3.2.3 Exécutabilité 108

3.3 Cycle “Perception/Réparation du plan/Action” 109
3.4 Perception 112

3.4.1 Intégration des messages 112
3.4.2 Rupture de liens causaux supplémentaires 120

3.5 Réparation du plan 123
3.6 Action 126
3.7 Replanification complète 128
3.8 Discussion 131

3.8.1 Réparation de plan ou replanification? 131
3.8.2 Contrôlabilité temporelle 131

4 Intégration dans l’architecture LAAS 139
4.1 L’architecture LAAS 141

4.1.1 Le niveau fonctionnel 141
4.1.2 Le niveau de contrôle des requêtes 143
4.1.3 Le niveau décisionnel 143

4.2 Les modèles 146
4.2.1 Le modèle IXTET-EXEC 146
4.2.2 Le modèle OpenPRS 147

4.3 Résultats 150
5 Exemple illustratif 161

5.1 Domaine 162
5.2 Réparation et exécution de plan entrelacées ou replanification? 162
5.3 Ressources 168

1 Algorithmes pour le calcul des cliques maximales 181

2 Tests sur Dala 183
2.1 Le modèle IXTET-EXEC 183
2.2 Trace pour le “Run3” 190

Références 201

Contents
1 Context and State of the art 9

1.1 Problematic . 9
1.2 Planning. 10

1.2.1 . . . for a real-world domain . 10
1.2.2 . . . for execution in a dynamic environment 13
1.2.3 Conclusion . 15

1.3 Embedding planning in a complex autonomous system 15
1.3.1 Architecture . 15
1.3.2 Executive enhanced with deliberative capabilities or “reactive plan-

ning” . 18
1.3.3 Planning → execution → replanning or “batch planning” 20
1.3.4 Interleaved planning and execution or “continuous planning” 20
1.3.5 Planning at any level of abstraction 24
1.3.6 Conclusion . 27

1.4 Our approach . 27
1.5 Mission example . 30

2 The IXTET planning system 39
2.1 A time-oriented functional representation 40

2.1.1 State variables . 40
2.1.2 Timelines . 42
2.1.3 Resources . 42
2.1.4 Representation of actions . 44
2.1.5 Planning problem . 45
2.1.6 Discussion with respect to plan execution 46

2.2 The underlying CSP managers . 49
2.2.1 Time Map . 49
2.2.2 Variable Map . 51
2.2.3 Mixed constraints . 53
2.2.4 Discussion with respect to plan execution 55

2.3 Partial Order Causal Link Planning with unbound variables 57
2.3.1 Search in the plan space . 57
2.3.2 IXTET planning process . 62
2.3.3 Analysis module . 64
2.3.4 Search Control module . 73
2.3.5 Discussion with respect to plan execution 83

2.4 Resource management extension . 84
2.4.1 Resource conflict . 84
2.4.2 Conflict detection . 86
2.4.3 Resolvers . 89
2.4.4 Conclusion . 92

vi CONTENTS

3 IXTET-EXEC: Interleaving temporal planning and plan execution 99
3.1 Temporal executive . 100

3.1.1 Overview . 100
3.1.2 Interactions with the controlled system 101
3.1.3 Temporal network execution . 102
3.1.4 Non nominal situations and strategies of plan adaptation 104

3.2 An executable plan . 105
3.2.1 A partial plan partially executed up to time t 105
3.2.2 Level of an allocated resource r at time t in the partial plan Pt . . . 106
3.2.3 Executability . 108

3.3 “Sensing/Plan Repair/Action” cycle . 109
3.4 Sensing . 112

3.4.1 Message integration . 112
3.4.2 Deletion of additional causal links 120

3.5 Plan repair . 123
3.6 Action . 126
3.7 Complete replanning . 128
3.8 Discussion . 131

3.8.1 Plan repair vs replanning . 131
3.8.2 Temporal controllability . 131

4 Integration in the LAAS Architecture 139
4.1 The LAAS architecture . 141

4.1.1 Functional level . 141
4.1.2 Requests control level . 143
4.1.3 Decisional level . 143

4.2 Models . 146
4.2.1 IXTET-EXEC model . 146
4.2.2 OpenPRS model . 147

4.3 Runs . 150

5 Illustrative example 161
5.1 Domain . 162
5.2 Plan repair interleaved with plan execution vs replanning 162
5.3 Resources . 168

1 Algorithms for maximal cliques computation 181

2 Tests on Dala 183
2.1 IXTET-EXEC model . 183
2.2 IXTET-EXEC trace of Run 3 . 190

Bibliography 201

Résumé
Les systèmes spatiaux tels que les satellites, sondes et rovers, disposent maintenant de
nombreux capteurs, actionneurs et capacités de traitement à bord. Pour des raisons de
manque de réactivité, de délais de communication avec le sol, de problèmes de visibilité, il
n’est plus souhaitable de les téléopérer entièrement du sol mais plutôt de les contrôler au
niveau buts et tâches. Augmenter l’autonomie décisionnelle des sytèmes spatiaux soulève
de nouveaux problèmes tels que la planification des activités pour accomplir un but, le
contrôle de l’exécution du plan, et la surveillance et le diagnostic de l’état du système.

Nous nous intéressons plus particulièrement à la planification d’une mission et au
contrôle de son exécution dans le cadre d’une application avec des contraintes temporelles
(rendez-vous avec des fenêtres temporelles de visibilité, etc.) et la gestion de ressources
limitées (énergie, carburant, etc.).

Cette thèse propose un cadre général pour combiner la planification délibérative, le
contrôle d’exécution d’un plan et l’adaptation réactive d’un plan en exploitant la flexi-
bilité temporelle et le parallélisme des plans produits par un planificateur non linéaire
causal (POCL) basé sur des techniques de satisfaction de contraintes, notamment la
représentation des contraintes temporelles sous la forme d’un STN (Simple Temporal Net-
work). Cette approche a été mise en oeuvre dans le système IXTET-EXEC qui se compose
d’un exécutif temporel et d’un composant de planification qui est basé sur les principes
et algorithmes du planificateur IXTET, modifiés pour prendre en compte la progression du
temps et la durée de la planification.

Un premier plan complet est produit puis déroulé par l’exécutif temporel selon un cycle
“Perception/Réparation de plan/Action”: intégrer les messages externes, réparer le plan
si nécessaire, décider des actions à exécuter à l’instant courant.

Deux mécanismes d’adaptation de plan ont été mis en place pour réagir aux événements
en cours d’exécution (échec d’une action, dépassement de délai, chûte du niveau d’une
ressource, nouveau but). Si le plan est encore temporellement flexible, il est partiellement
invalidé en fonction du type d’événement et une réparation est tentée pour restaurer les
propriétés perdues tout en poursuivant l’exécution en parallèle de la partie valide du plan.
Dans d’autres cas, il faut interrompre l’exécution, abandonner le plan en cours et effectuer
une replanification complète à partir de la situation courante, des buts restants et de leurs
contraintes temporelles.

Le système IXTET-EXEC a été intégré dans le niveau décisionnel de l’architecture LAAS,
en interaction avec l’exécutif procédural OpenPRS, pour contrôler un robot mobile au-
tonome avec une mission d’exploration.

Le premier chapitre positionne notre approche par rapport aux systèmes existants.
Le deuxième chapitre présente le planificateur IXTET et les modifications apportées pour
améliorer son expressivité et permettre la représentation de domaines plus réalistes (util-

2 Résumé

isation de quantités de ressources variables, dépendant de la durée d’une action). Le
troisième chapitre détaille le système IXTET-EXEC: les interactions de l’exécutif temporel
avec le système contrôlé, les phases du cycle d’exécution, les conditions formelles pour
l’exécution et la réparation simultanées d’un plan et les stratégies d’adaptation de plan. Le
quatrième chapitre présente l’intégration dans l’architecture LAAS et les tests effectués sur
une plateforme robotique. Le dernier chapitre présente et analyse des tests supplémentaires
réalisés en simulation.

Ces travaux ont été réalisés dans le cadre d’une collaboration avec EADS-Astrium et
le CNES.

Summary
Space systems such as spacecraft, satellites or rovers embed various and numerous sensors,
effectors and processing functions. Due to a lack of reactivity, long communication de-
lays with the ground or restricted visibility windows, these systems can not efficiently be
completely teleoperated from the ground. Improving their autonomy requires decisional
capabilities such as: on-board planning of the activities necessary to achieve the mission
goals, control of the execution of these activities, diagnostic and monitoring of the state
of the system.

Our work focused on the processes of planning a mission and controlling its execution
in the context of applications requiring the enforcement of temporal constraints (visibility
windows, etc.) and the management of limited resources (energy, propellant, etc.).

This thesis proposes a general framework to combine deliberative planning, execution
control and reactive adaptation of a plan, that takes advantage of the temporal flexibility
and parallelism of the plans produced by a POCL planning system based on CSP managers
(particularly, the temporal constraints are handled through an STN). This approach has
been implemented in the IXTET-EXEC system. It is composed of two processes: a temporal
executive and a planning system. The latter one relies on the principles and algorithms
of the IXTET planner, modified to take into account the execution context.

A complete plan is produced by IXTET and then sequenced by the executive according
to a “Sense/Plan Repair/Act” cycle: integrate the external messages, repair the plan if
necessary, decide when to launch or stop the actions. Two mechanisms of plan adaptation
are provided to react to some of the events that may occur during the plan execution
(action failure, temporal failure, drop of a resource level, new goal). If there is some
temporal flexibility left in the plan, it is partially invalidated according to the type of
event and a plan repair process is launched to try to restore the failed properties of the
plan, while executing valid actions in parallel. Otherwise, the execution is interrupted and
a new plan is produced from the current situation, the remaining goals and their temporal
constraints.

IXTET-EXEC has been integrated in the decisional level of the LAAS architecture, in
interaction with the procedural executive OpenPRS, in order to control an autonomous
mobile robot with an exploration mission.

The first chapter compares our approach with other existing systems. Chapter 2
describes the underlying IXTET planning system. We focus especially on its interesting
features in a context of plan execution (representation of time and resource, flexibility,
plan space search), and present the extension that we made to provide a more realistic
and flexible management of resources. Chapter 3 gives a detailed description of the IXTET-
EXEC framework and formally addresses the issue raised by the interleaving of plan repair
and execution processes on the same plan. Chapter 4 presents the integration of IXTET-
EXEC in the LAAS architecture and the experiments carried out on a robotic platform.

4 Summary

Finally, chapter 5 presents additional examples and results obtained by simulation.

This work was funded by a contract with EADS-Astrium and CNES.

Chapitre 1
Problématique

Les travaux de cette thèse portent sur les interactions entre la planification d’une mission
et le contrôle de l’exécution des plans dans le but d’augmenter l’autonomie décisionnelle
de systèmes spatiaux tels que les satellites ou les rovers. Ce type d’application impose de
respecter des contraintes temporelles et de gérer des ressources limitées. Dans ce chapitre
nous considérons comment ce type de problème a pu être traité. Nous nous concentrons
sur deux aspects :

1. Quelles sont les techniques de planification les mieux adaptées dans ce contexte?

2. Comment doivent interagir les processus de planification et d’exécution des plans?

Planifier. . .

. . . pour un domaine lié à une application “réelle”

Prendre en compte le temps

Nous rappelons brièvement les formalismes développés pour représenter et raisonner sur
le temps : algèbre des instants, algèbre des intervalles, réseau de contraintes temporelles
(TCSP). Nous évoquons l’impact sur la représentation des opérateurs de planification.
Deux catégories se distinguent : les approches basées sur une représentation par états et
les approches basées sur des chroniques.

Planifier & ordonnancer

Différents types de ressources doivent être pris en compte. Ils se caractérisent par la ca-
pacité de la ressource (unaire, multiple) et l’usage qui en est fait (consommation, emprunt,
etc.). La gestion de ces ressources implique des mécanismes d’ordonnancement (ordre des
actions, allocation des ressources). Dans les planificateurs récents, ces mécanismes sont
intégrés dans le processus de planification.

. . . pour une exécution dans un environnement dynamique

Un planificateur pour un système autonome doit prendre en compte une certaine forme
d’incertitude qui vient à la fois d’une connaissance approximative de l’état du monde au
moment de l’exécution des actions, et des effets non déterministes des actions. Plusieurs
techniques de planification ont été proposées pour gérer une partie de cette incertitude :

6 Chapitre 1

• les planificateurs “conformant” produisent des plans qui réalisent les buts quelles
que soient les circonstances,
• les planificateurs conditionnels produisent des plans contenant des actions de per-

ception et des branches séparées qui seront exécutées en fonction des résultats de
chaque perception.

Cependant, l’énumération complète de tous les contextes d’exécution possibles est com-
pliquée par l’introduction d’actions avec durées et effets quantitatifs. Des mécanismes
de révision de plans pendant l’exécution demeurent nécessaires. Les plans vérifiant cer-
taines caractéristiques (une flexibilité sur les instants d’exécution des actions et sur leurs
paramètres) seront plus robustes à l’exécution.

Notre approche utilise le planificateur IXTET pour les raisons suivantes :

1. Il permet de gérer le temps et les ressources (représentation à base de chroniques).
2. Il est basé sur une planification non linéaire causale (POCL) combinée avec des

techniques de satisfaction de contraintes, produisant ainsi des plans partiellement
ordonnées et partiellement instanciés.

3. La recherche dans l’espace des plans partiels peut être adaptée pour effectuer de la
réparation de plan.

Intégrer des mécanismes de planification dans un système au-
tonome complexe

Architecture

La conception d’un système autonome repose sur une architecture logicielle. Nous rap-
pelons certaines des architectures classiques qui intègrent des capacités de planification.
En résumé, deux niveaux peuvent être distingués : un niveau décisionnel qui génère les
plans d’actions accomplissant les buts de la mission et exécute ces plans; et un niveau
fonctionnel qui est responsable de l’exécution des actions. Le niveau décisionnel contient
deux composants principaux :

• un planificateur qui fournit des mécanismes de délibération pour la gestion de mission
à long terme avec des ressources limitées mais qui est souvent coûteux,
• un exécutif plus réactif pour le contrôle de l’exécution des plans.

Dans les sections suivantes, nous développons certaines des stratégies proposées dans la
littérature pour faire interagir délibération et réaction.

“Planification réactive” : un exécutif doté de capacités de délibération

L’exécutif est le composant principal. Il contient une librairie de sous-plans précompilés.
Le planificateur est utilisé comme une ressource par l’exécutif pour l’aider à faire des

Chapitre 1 7

choix, pour anticiper en simulant une séquence de sous-plans ou pour générer un nouveau
sous-plan correspondant à la situation courante.

“Planification par lots” : planification → exécution → replanification

La planification et l’exécution forment deux processus distincts. A partir de la description
d’un état initial, d’un ensemble de buts et d’un modèle, le planificateur génère un plan sur
l’horizon de la mission. Ce plan est ensuite passé à l’exécutif qui le séquence et contrôle son
exécution. En cas d’échec non réparable par l’exécutif, le planificateur génère un nouveau
plan à partir de la situation courante. Le processus de planification est complet mais peut
prendre un certain temps, pendant lequel le système reste passif.

“Planification continue” : planification et exécution entrelacées

Les processus de planification et d’exécution sont entrelacés de façon continue. Le proces-
sus de planification reste actif pour adapter le plan lorsque de nouveaux buts sont ajoutés
ou pour résoudre des conflits après une mise à jour de l’état du système. En outre, les
actions qui sont exécutables sont lancées même si le plan n’a pas encore été complètement
élaboré.

Planification à tous les niveaux d’abstraction

A l’opposé des approches précédentes qui cantonnent l’utilisation de planificateurs pour
l’élaboration de plans d’actions et l’optimisation de l’utilisation des ressources sur un
horizon à long terme, un nouvelle approche propose d’utiliser la planification comme
mécanisme de raisonnement à tous les niveaux d’abstraction (planification de mission,
exécution réactive, . . .).

Finalement, peu d’approches tiennent compte explicitement du temps. Les applica-
tions qui nous concernent (actions avec des durées, rendez-vous temporels) nécessitent
l’introduction d’un exécutif temporel qui décide des dates de lancement et d’arrêt des ac-
tions, surveille la durée des actions et les rendez-vous et réagit a différents types d’échecs
temporels. Prendre en compte le temps au moment de l’exécution est délicat (le pro-
cessus d’exécution lui-même prend du temps), surtout si l’exécution est combinée avec
l’adaptation du plan. L’exécutif doit alors contrôler la durée du processus de planifica-
tion. Une notion de cycle d’exécution apparâıt : mettre à jour l’état du système et intégrer
les messages, planifier si nécessaire, exécuter les actions à temps.

8 Chapitre 1

Notre approche

IXTET-EXEC est constitué de deux composants qui interagissent sur le même plan : un
planificateur et un exécutif temporel. IXTET-EXEC fournit deux mécanismes pour réagir
aux événements survenant pendant l’exécution du plan (échecs ou nouveaux buts) : (1)
une réparation du plan en parallèle de l’exécution de ses parties valides, (2) un arrêt de
l’exécution du plan et une replanification complète. Ces deux mécanismes sont basés sur
la même technique de planification non linéaire (IXTET), modifiée pour prendre en compte
le contexte d’exécution.

IXTET-EXEC a été intégré dans le niveau décisionnel de l’architecture LAAS, en inter-
action avec un exécutif procédural.

Le chapitre se termine sur la description d’un exemple de mission pour un rover.

Chapter 1

Context and State of the art
1.1 Problematic

Space systems such as spacecraft, satellites or rovers become more and more complex: they
embed various and numerous sensors, effectors and processing functions. Such systems
usually execute a sequence of commands elaborated and monitored by experts from a
ground station (SOJOURNER), or by mixed initiative planning systems (MAPGEN for
MER [Ai-Chang 03]). Due to a lack of reactivity, long communication delays with the
ground or restricted visibility windows, these systems cannot efficiently be completely
teleoperated from the ground. Improving their autonomy requires to supply decisional
capabilities on-board, allowing the ground to teleoperate at a goal level. These decisional
capabilities include the choice of activities to perform in order to achieve the goals, the
control of the execution of these activities and the diagnostic and monitoring of the state
of the system. In 1999, such an autonomous system, called Remote Agent, has been
tested in flight by NASA on-board the DeepSpace1 spacecraft [Muscettola 98]. Embarking
decisional capabilities is also an active domain of research in “earth” robotics systems such
as UAV, Personal Assistant Robots, etc.

Space applications however have stringent requirements. These remote systems have
limited resources. For example, the energy is often provided by solar panels and batteries
during “shadowed” activities. Thus the system needs to forecast charge and decharge
cycles and manage the battery level. Some systems also use propellant (in spacecraft
or satellites to perform maneuvers). Such reservoir resource is finite, and the lifetime of
the system heavily relies on a careful management of this resource. These systems often
embark a payload to make scientific experiments (e.g. cameras). Generally, the memory
storage on-board is limited too, and the system needs to download regularly its data to
the ground. All these resources and activities need to be properly managed to maximize
the mission objectives.

Another main characteristic of space domain is the importance of time. Almost all
data are denoted by temporal windows: the visibility windows of ground stations, or, for
a satellite, its position on its orbit and the areas it flies over.

We will consider how such a system can be endowed with planning capabilities. The

10 Chapter 1. Context and State of the art

system receives a set of goals from the ground, or establishes new goals “on the fly”
(after image analysis for instance) and has a model of its skills: what actions it can
perform, what are the conditions to execute them, what are their effects, and how do
they interfere. It should decide (or “plan”) its course of actions in order to achieve the
goals. The system must also be able to execute this plan of actions. A space system is
complex and the planning model is often abstract and imperfect. Actions may have non-
deterministic effects not accounted for by the model. A space system is also subject to
harsh environmental conditions and may evolve in an unknown and dynamic environment
(rover). Therefore, it has to monitor the execution of the plan and react to events.

Our work aimed to provide mechanisms to improve the overall robustness of the de-
cisional processes to complete the mission of the system. In the following sections, we
discuss how this problem has been tackled so far. We will focus on two main issues:

• What kind of planning techniques is best suited, both in the context of a “real-world”
domain, with time and resource requirements, and in the context of plan execution
in a dynamic environment?

• How should the planning and execution control processes be linked?

We do not attempt to present an exhaustive list of existing temporal planning tech-
niques and plan execution strategies. Instead, we try to highlight the main difficulties
linked to the application requirements and the main characteristics of some approaches,
in order to justify the orientation and choices of our own approach.

1.2 Planning. . .

1.2.1 . . . for a real-world domain

Reasoning about time

Classical planning represents actions as instantaneous transitions between states, and
goals are not constrained in time. More realistic applications however involve actions with
different durations and goals with deadlines.

To introduce temporal reasoning into classical planning, one needs a specific repre-
sentation of time. Two main formalisms have been developed: the timepoint algebra
[Vilain 86] and the interval algebra [Allen 84]. The first one reasons about instants and
qualitative binary constraints between instants (based on the following relation symbols:
{<,>,=}). The second one reasons about intervals and qualitative binary constraints
between intervals (using 13 primitive relations1). Several subsets of these algebra have
been studied and consistency checking algorithms have been proposed.

1These primitive relations are: {b, m, o, s, d, f} standing respectively for before, meet, overlap, start,
during, finish; {b′, m′, o′, s′, d′, f ′} standing for after, is-met-by, is-overlapped-by, is-started-by, includes,
is-finished-by ; and {e} standing for equal.

1.2. Planning. . . 11

The type of applications that we are concerned with also requires to express quantita-
tive numerical constraints. The framework proposed in [Dechter 89] and called Temporal
Constraint Satisfaction Problem (TCSP) allows the specification of quantitative unary
and binary constraints on a set of timepoints: (a1 ≤ ti ≤ b1) ∨ . . . ∨ (an ≤ ti ≤ bn) and
(a1 ≤ tj−ti ≤ b1)∨. . .∨(an ≤ tj−ti ≤ bn) with a1, b1, . . . , an, bn ∈ <. The general problem
takes into account disjunctions of constraints on the distance between two timepoints. A
simplified version of the problem, called Simple Temporal Problem and represented as a
Simple Temporal Network (STN) is commonly used by temporal planners to reason about
temporal variables and constraints [Laborie 95b, Rabideau 99, Frank 03]. The nodes in
an STN represent timepoints and the arcs represent duration constraints between two
timepoints. Arcs are labeled with a single numeric interval. Efficient algorithms exist to
add constraints and check the network consistency.

Furthermore, the handling of time impacts the representation of planning operators.
In a STRIPS formulation [Fikes 71], actions and their associated preconditions and effects
are instantaneous. An extended version (e.g. used in the DEVISER planner [Vere 83])
assumes that preconditions have to be true at the start and remain verified throughout
the action, whereas effects are undefined during the action and become true at the end.
The PDDL2.1 Level3 language [Fox 02b], used during the AIPS’02 planning competition
[Fox 02a], improves the expressiveness by allowing the specification of local preconditions
and effects on start and end timepoints of a durative action, as well as invariant conditions
to maintain throughout the action. PDDL2.1 also supplies the use of numeric variables
which value can be accessed and updated instantaneously. These improvements allow the
expression of resource usage and a weaker mutex relation2.

These languages share a common representation of an action as a transition between
two global states. Intermediate timepoints inside the action cannot be specified, and joint
effects of actions cannot be addressed. This type of representation has been widely used
with various planning techniques. Examples include TLplan [Bacchus 01] and TALplan
[Doherty 01] in state-space planning, TGP [Smith 99] and SAPA [Do 01] in planning graph
approaches, O-Plan[Currie 91] and SHOP2 [Nau 01] in HTN planning and [Coddington 02]
in plan space planning.

In another approach, called “time-oriented” as opposed to the previous “state-oriented”
one, the world is described as a set of state variables which are functions of time. A time-
line, associated with each state variable, describes the history of changes and persistences
of the state variable’s value over the planning horizon. A plan is made of the set of time-
lines. Several planners are based on this time-oriented approach. We will introduce two
variants:

• A timeline in the Europa planner [Frank 03] and its predecessor HSTS [Muscettola 94]
consists in a sequence of token intervals representing either a state (persistence) or
an activity (change of state). Domain constraints define for each token the set of

2Two actions can be concurrent if there is no interactions between the timepoints of an action and the
timepoints (if simultaneous) or the invariants of the other action.

12 Chapter 1. Context and State of the art

(:durative-action MOVE
 :parameters (?init-pos ?final-pos)
 :duration (?duration 10)
 :condition (at start (at ?init-pos))
 :effect (and (at start (not (at ?init-pos)))
 (at end (at ?final-pos))))

(Define-Compatibility
((S-V Position)
 (MOVE(?init-pos ?final-pos)))
 :duration_bounds [8 10]
 :compatibility_spec
 (AND
 (met-by (S-V Position (AT(?init-pos))))
 (meets (S-V Position (AT(?final-pos))))))

PDDL2.1 Level3

AT(?init-pos) AT(?final-pos)MOVE(?init-pos,?final-pos)
S-V Position

t-start t-end

EUROPA

t-start t-end

(at ?init-pos)

(at ?init-pos) (at ?final-pos)

IxTeT

t-start t-end

SV- AT()

moving

?init-pos ?final-pos

task MOVE(?init-pos,?final-pos)(t-start,t-end){
 event(AT():(?init-pos,moving),t-start)
 hold(AT():moving,(t-start,t-end))

event(AT():(moving,?final-pos),t-end)
(t-end - t-start) in [8,10]}

Figure 1.1: Example of various representations for a durative action

configurations in which its insertion in the plan is valid.

• A timeline in IXTET [Laborie 95b] is a sequence of temporal assertions that can
represent either an instantaneous change of values or the persistence of a value over
an interval. In the IXTET formalism, an action describes the partial evolution of a
subset of state variables over the action’s duration interval.

Figure 1.1 illustrates and compares the description of an action in the state-oriented
approach and in the two variants of the time-oriented approach. We assume in this example
that the action move(?init-pos,?final-pos) only affects the position of the robot (the other
characteristics of the world remain unchanged). Note that the action duration in this
example is expressed as a numerical value or interval. However, in the three cases, more
elaborate relations can be expressed between the duration and the effects of the action
(e.g. the duration can be computed according to the distance between the two locations
and the speed of the robot). The time-oriented representation allows the expression of
intermediate timepoints and more complex synchronization mechanisms between actions.
The time-oriented approach and its use in temporal planning are thoroughly discussed in
[Ghallab 04].

1.2. Planning. . . 13

Planning & Scheduling

Achievement of goals requires the execution of actions (“what” needs to be done), the
selection of agent and resources that execute them (“how” the actions should be done)
and the determination of time of occurrence and action ordering (“when” the actions
should be done). Classically, planning deals with the determination of “what” to do and
“when”according to causal constraints, whereas scheduling refers to the determination of
“when” to schedule precisely the actions and “how” to allocate the resources. Autonomous
spacecraft or robot applications involve both planning and scheduling problems: the sys-
tem may choose actions in order to achieve a new goal, while assigning limited resources
to actions.

Different types of resource and resource usage need to be considered. Reusable re-
sources are “borrowed” by an action and released when it finishes. Such a resource
can have a multiple capacity (e.g. power) and concurrent actions requiring this resource
are allowed providing that their cumulative usage does not exceed the resource capacity.
Moreover, a unary reusable resource, such as a camera, imposes a total order between
actions requiring it. Consumable resources can be consumed and possibly produced
by an action. A reservoir resource (e.g. fuel tank) is a consumable resource which has a
maximum capacity and may have an initial level. Planning with actions requiring reservoir
resources imposes to check for each resource that the level profile over the plan horizon
never exceeds the capacity or becomes negative.

In [Smith 00], the authors describe several scheduling and classical planning techniques
and discuss how these planning techniques have been (not so easily) extended to handle
time and/or metric resources. Recent planners take into account the action scheduling and
resource allocation problems while planning. Some planners embed Operation Research
techniques such as linear programming (Zeno [Penberthy 94]) or integer programming
[Vossen 99] to manage metric quantities.

A promising framework to handle such problems seems to be the use of a time-oriented
approach combined with the use of underlying constraint networks and constraint satisfac-
tion techniques (an STN for instance allows continuous time handling). Examples of such
planners include HSTS, Europa and IxTeT. Useful algorithms for propagating resource
constraints in a CSP-based, integrated planning and scheduling framework can be found
in [Laborie 01].

1.2.2 . . . for execution in a dynamic environment

An autonomous agent such as a robot or a spacecraft is a complex system and evolves in a
dynamic and unpredictable environment. The planning process of choosing which actions
to do in order to achieve a goal has to deal with uncertainty. This uncertainty comes both
from an incomplete and incorrect knowledge of the state at execution time, and from the
non-deterministic effects of the actions. Several planning methods have been developed to

14 Chapter 1. Context and State of the art

handle part of this indeterminacy.

Conformant planners (CGP [Smith 98], CMBP [Cimatti 00], C-PLAN [Ferraris 00])
produce plans that achieve the goals in all possible circumstances. Such a plan contains
only actions that are applicable and lead to the goal whatever the current state is. Consider
for instance a “painter” robot. Initially, there are two objects (O1, O2) and several cans
of paint, with everything of unknown color. The goal is to have both objects painted in
the same color. A conformant plan would consist in picking up one can and painting both
objects using this can. Being quite restrictive, conformant planning is often practically
inapplicable.

Conditional (or contingent) planners (SGP [Weld 98], MBP [Bertoli 01], GPT [Bonet 00],
Shaper [Guéré 01]) produce plans with sensing actions. After each sensing action, the plan
contains separate branches corresponding to the different plan continuations, according to
the different possible results of the state observation. The painter robot for instance will
first sense the color of both objects. If they are the same color, the goal is achieved. If not,
the robot senses the colors of the cans. If one can has the same color as one object, then it
paints the other object with that can. If not, it chooses one can and paints both objects.
Contingent planning can be computationally too expensive to be performed on-board a
spacecraft or robot within the limited computational resources (memory, processor speed
and time to react) typically available to control these systems.

In a more complex domain involving for instance durative actions and quantitative
effects (resource usage), the set of all possible situations is too large to be enumerated.
In such a context, the agent needs to monitor the execution and revise the plan when
necessary. Thus, in [Washington 99], a contingent plan is uplinked to a planetary rover, as
well as alternate plans used during execution to perform failure recovery. We will introduce
in section 1.3 other existing strategies for plan adaptation during execution.

Nevertheless a certain amount of plan revisions can be avoided depending on the plan-
ning techniques used to generate plans. Plans with the following properties are especially
worthwhile in an execution context:

• order-constrained plans – Some metric temporal planners ([Do 01], [Bacchus 01],
[Smith 99], [Edelkamp 01]) produce position-constrained plans which specify the
exact start time for each action. Some others ([Penberthy 94], [Muscettola 94],
[Laborie 95b]) produce order-constrained plans which only specify precedence con-
straints between actions. Such plans provide a better execution flexibility and an
improved makespan. Indeed, an order-constrained plan corresponds to a set of
position-constrained plans, each being suitable for execution. In [Do 03], the au-
thors propose a post-processing method to generate an order-constrained plan from
a position-constrained temporal plan.

• plans with unbound variables – The parameters of the actions remain flexible
and the plan only specifies separation constraints between variables. Similar to the
temporal flexibility in order-constrained plans, the parameters of the actions can be

1.3. Embedding planning in a complex autonomous system 15

further constrained during execution. If the painter robot has two brushes, and one
object to paint, the action paint(O1,?b) with brush ?b in {B1,B2} remains executable
even if one brush mysteriously disappears. If the robot has two objects to paint, an
order-constrained plan with unbound variables contains two actions paint(O1,?b1)
and paint(O2,?b2), linked by the constraint ?b1 6=?b2, that can be concurrently exe-
cuted.

1.2.3 Conclusion

We opted for the planning/scheduling system IXTET for the following reasons:

1. It represents and reasons about continuous time and metric resources. It is based on
a “time-oriented” approach, with a description of the domain through state variables.
Ordering constraints, numeric temporal constraints and resource metric constraints
are managed using constraint networks and constraint satisfaction techniques.

2. It is based on a Partial Order Causal Link (POCL) planning process combined with
CSP-techniques, thus producing order-constrained plans with unbound variables and
providing execution flexibility.

3. Search in the partial plan space can be adapted to perform plan repair. Since plans
possibly contain parallel actions that are executed concurrently, interleaved plan
repair and execution can be envisioned.

Chapter 2 describes in more details the IXTET planning system and the modifications we
made to make it more suitable for plan execution.

1.3 Embedding planning in a complex autonomous system

1.3.1 Architecture

The definition of a software architecture contributes towards designing, developing and de-
ploying complex autonomous systems. An architecture describes the different components
(from basic built-in action and perception functions to reasoning capabilities) and how
they interact to perform the task of the system. Among the various approaches proposed
for autonomous mobile robots and spacecraft, we will focus on architectures embedding
planning capacities.

First approaches were based on a simple “Sense/Plan/Act” open-loop: sense the world,
translate the data into a world model, generate a plan to achieve a goal based on this model
and execute the plan (cf. Figure 1.2(a)). Shakey [Fikes 72] was the first robot to integrate
perception, planning and execution. The PLANEX system on-board Shakey used the
STRIPS planner to generate plans and triangle tables to monitor the execution. These
tables allowed basic failure recovery: if an action fails and its preconditions are still valid,

16 Chapter 1. Context and State of the art

(b)(a)

Deliberate Layer

Control Layer

Executive Layer

SystemSystem

ActingSensing

PlanningWorld Modeling

Figure 1.2: (a) The “Sense/Plan/Act” open-loop, (b) The three-layered architecture

the action is launched again, otherwise a new plan is generated. This open-loop plan
execution proved to be inadequate in dynamic environments.

More recent works rely on an approach, called P-SA in [Kortenkamp 98], in which the
system “plans based on initial conditions and common knowledge (P) and then executes
this plan using sense-act (SA) behaviors, replanning only when the reactive behaviors run
out of routine solutions”.

Many of these architectures rely on three layers. E. Gat highlights in [Kortenkamp 98]
the equivalence between the 3T ([Bonasso 97]) and ATLANTIS ([Gat 92]) architectures:
the three layers consist of three components which are a reactive feedback control sys-
tem, a reactive plan execution system and a time-consuming deliberative system (cf. Fig-
ure 1.2(b)).

MIR

MI MR

Planner/Scheduler
Goals

Remote Agent

Executive

System Software

Figure 1.3: Remote Agent architecture

The architecture deployed for the Remote
Agent experiment [Muscettola 98] on-board
the DeepSpace1 probe in 1999 could be de-
scribed as a three-layered architecture with
three main components (cf. Figure 1.3). A plan-
ner/scheduler based on the HSTS planning sys-
tem [Muscettola 94] is responsible for back-to-
back mission planning and replanning. An ex-
ecutive based on ESL [Gat 97] refines the ac-
tions in the plan and eventually tries alterna-
tive methods to recover from a failure. Finally
a diagnostic system, called MIR (Mode Iden-
tification and Recovery) and based on the Liv-
ingstone technology [Williams 96] estimates the
state of the system from the sensor data and can
suggest recovery actions to the executive.

1.3. Embedding planning in a complex autonomous system 17

The LAAS architecture [Alami 98] is also decomposed into three layers, with several
components: a functional level contains a set of modules encoding the basic functionalities,
a decisional level is responsible for both plan generation and plan execution, and the in-
between execution control level has a fault protection role and filters the commands sent
to the functional level. Our temporal planning/execution system IXTET-EXEC has been
integrated in the decisional level. This integration is detailed in chapter 4.

A “two-layer” architecture is being developed at Jet Propulsion Laboratory, called
CLARAty (Coupled Layer Architecture for Robotic Autonomy) (see [Volpe 00]). The func-
tional layer embeds communicating objects encoding basic functionalities. Each object has
the possibility to predict its resource consumption and provide this information to the de-
cisional level as requested. The decisional level contains two interacting components: a
planner/scheduler (based on a declarative model) and an executive (based on a procedu-
ral model). In the long-term, the authors plan to have a common plan database based
on a representation language combining procedural and declarative structures. Mean-
while, the CASPER [Chien 00] and CLEaR [Estlin 01] systems are presented as instances
of this decisional layer. CASPER associates the planning system ASPEN [Rabideau 99]
with a simple executive and CLEaR associates CASPER with an executive based on TDL
[Simmons 98].

As seen in the previous examples, the number, role and components of layers in an
architecture vary. Generally speaking, we can consider two main levels. A decisional
level is in charge of generating a plan of actions to achieve mission goals, and executing
the plan in a robust way. A functional level is in charge of executing the actions of the
plan. It is interfaced with the hardware. The execution of an action may require diverse
processing functions and control loops. This level also interprets and merges sensor data to
provide the above level with the system state. Indeed the decisional level needs a knowledge
of the global state of the system, whereas functional processes reason on subsets of this
state.

Managing long-term missions with limited resources requires deliberation mechanisms
which are often computationally expensive, whereas evolving in a dynamic environment
requires a reactive behavior. Thus the decisional level is broken down into two main
components: a planner and an executive. The planner, based on a declarative model,
the system state and a set of goals, produces plans which execution should achieve the
goals. The executive is in charge of executing and monitoring plans (predefined and/or
automatically generated). It has a time-bounded reaction to events (such as using pre-
compiled error handlers in response to execution failures).

We are interested in the key problem of defining how the two components should
interact to balance deliberation and reaction. Various strategies have been applied so
far. In section 1.3.2 we discuss approaches based on a strong executive and little planning.
Section 1.3.3 presents an example of batch-oriented planning and its limitations. In section
1.3.4 we discuss some of the mechanisms proposed to interleave planning and execution in
a continuous way. Finally section 1.3.5 describes recent and innovative work on the use of

18 Chapter 1. Context and State of the art

temporal planning techniques at various levels of the architecture.

1.3.2 Executive enhanced with deliberative capabilities or “reactive planning”

The executive is the main component and is given a set of pre-compiled subplans. The
planner serves as a resource for the executive to help it make choice, to anticipate by
simulating a sequence of subplans or to generate a new subplan corresponding to the
current situation.

Examples of “simple” executives include RAP, ESL and TDL. The Reactive Action
Package system [Firby 94] has been designed for the reactive execution of the tasks of a
symbolic plan. For each task, the RAP system selects a refinement method in a set of
predefined methods according to the situation. Concurrent task execution is allowed and
synchronized with events (reports from the functional level). In case of failure, a new
method is selected, and so on, until the task is completed.

The Execution Support Language [Gat 97] provides constructs to encode execution
knowledge in autonomous agents, including features such as: contingency handling, task
management, goal achievement and logical database management. Contingency handling
in ESL is similar to RAP. Multiple outcomes of an action are categorized as success or
failure. The system responds immediately to failures by applying recovery procedures.

The Task Description Language [Simmons 98] also provides support for task decompo-
sition, synchronization, execution monitoring and exception handling. A task is executed
following a task tree generated dynamically according to the current perception data. Ex-
ception handlers are associated with nodes in the tree and specific “reasons”. In case of
failure, an exception handler that matches the failure reason is looked for and invoked. It
can eventually fail in recovering the error, and the search for a matching exception handler
continues up the tree.

These systems fail if they face a situation for which no explicit method or procedure
is provided. The following approaches propose to extend an executive with deliberative
capabilities.

In PROPEL [Levinson 95], the executive relies on predefined programs for routine
situations, and uses predictive search to evaluate choices and generate procedures in un-
expected situations. Propel embeds two main components: an executive and a planner.
Both use the same procedural search engine. Being reactive, the executive does not per-
form backtracking through the search tree, whereas the planner can backtrack on previous
choice points. This planning ability is used with two aims: (1) anticipation and (2) un-
expected failure handling. (1) The planner is extended to simulate sensing and effecting
and produce a plan corresponding to a set of choice selection rules associated with a top-
level procedure. These rules guide the executive in the choice points encountered during
the procedure execution. (2) When the executive is frozen by an unexpected failure, the
planner performs backtrack through the search tree originally generated by the executive

1.3. Embedding planning in a complex autonomous system 19

and provides new selection rules, used by the executive to handle the situation.

Similar functions have been implemented in Propice-Plan [Despouys 99]. A procedural
executive (OpenPRS3) is endowed with plan synthesis and anticipation planning. The
executive requests plan synthesis when encountering a new goal for which no procedure
is available. Planning amounts to selecting and combining existing procedures to achieve
the goal from the current situation. During the executive’s idle time, future choices are
simulated. This anticipation process advises the executive in the selection of the best
option and forecasts problems.

Another approach worth mentioning is the use of transformational planning by an
executive. XFRM [Beetz 94] for instance has been developed and tested on indoor robot
applications. The robot’s executive is provided with a library of plans specified in the
procedural language RPL. There is at least one default plan for each goal sent to the
executive. XFRM also has a taxonomy of failure models. The default procedure is executed
if the executive has no time left to reason. Otherwise, transformational planning diagnoses
“bugs” in the default plan (future possible plan failures) and tries to improve it. Planning
is thus a search in the space of complete and executable plans. A search step is divided
into three phases: projection of execution scenarios, diagnosis of projected plan failures
and plan revision via a set of transformational rules. These revisions are not guaranteed
to improve the plan or even eliminate the bug, but potentially make it more robust.

Still, the systems presented above do not perform a projection of the state far in the
future. This look-ahead is yet necessary to manage the level of a limited resource (such as
power or memory space) during the entire mission. It is then desirable to have a long-term
plan that predicts the evolution of the resource over the mission horizon.

In [Washington 99], the authors propose an architecture for a planetary rover without
on-board planner. Instead, a library of plans (which actions consist in low-level commands)
is uploaded to the on-board executive. This library contains a long-term plan with contin-
gent branches and a set of alternate plans. The executive sequences the plan and selects a
branch in the plan according to a utility function. During execution, a resource manager
regularly compares a resource actual usage and predicted usage to the resource availability
profile and detects current conflicts or potential future conflicts. Similarly, a model-based
estimator regularly updates the state knowledge of the executive. In case of failure and
in addition to the contingent branches, the executive can use alternate plans to adapt
locally the plan and recover, or to switch to an overall backup plan. If no alternate plan
is applicable, the planner on the ground is still needed.

Moreover, procedural executive such as TDL, ESL or PRS [Georgeff 89] do not handle
quantitative temporal constraints and scheduling problems. A new approach, presented
in [Kim 01], proposes a language RMPL (Reactive Model-based Programming Language)
along with a mixed planning/execution system called Kirk. RMPL aims at combining

3This executive is integrated in the LAAS architecture and frequently used on-board indoor and outdoor
robots. It is described in chapter 4.

20 Chapter 1. Context and State of the art

in a unified representation the flexibility of reactive execution languages and the forward
looking scheduling ability of temporal planners. RMPL programs are compiled by Kirk
into Temporal Plan Networks (TPNs). A TPN is a Simple Temporal Network [Dechter 89]
augmented with symbolic constraints and decision nodes. The arcs are labeled with the
classical temporal constraints and new symbolic constraints: condition assertions or re-
quirements. Specific decision nodes encode multiple strategies and contingencies (choices
are made by the planner). The online planning algorithm searches for unconditional, tem-
porally consistent paths in the TPN, thus producing an order-constrained temporal plan.
This plan is then executed following the plan runner strategy used on-board the Remote
Agent [Tsamardinos 98]. This approach does not yet provide resource management, nei-
ther replanning or exception handling although RPML allows the expression of exception
handlers. This extension would require more expensive conditional planning algorithms.

Finally, these “smart” executives are useful to provide reactive behaviors but an on-
board planning process may still be required to handle unpredicted events, or to manage
resource constraints and temporal constraints (such as deadlines) over the mission horizon.

1.3.3 Planning → execution → replanning or “batch planning”

In this framework, planning and plan execution are two separate and successive processes.
Given an initial state, a set of goals and a model, the planner generates a plan ranging
over the mission horizon. This plan is then passed to the executive which sequences it and
monitors its execution. If a failure occurs and cannot be recovered by the executive, the
planner is requested to replan, i.e. generate a new plan from the current situation and the
updated set of goals. The replanning process is generally complete (if a solution exists, it
will find it) but may take a lot of time. And in the meantime, the system has to stay in
a standby mode.

The Remote Agent [Muscettola 98] was also performing back to back planning. Time
is broken into a set of planning horizons. The current plan contains a planning action
near the end of its horizon. The executive achieves this action by transmitting the request
to the planner, along with an estimation of the resource constraints and of the initial
state of the following plan (corresponding to the future state at the end of the current
plan). However, it is difficult to anticipate the maximum time needed by most planning
systems to come up with a plan, and hence to foresee the duration of this planning action.
The “future initial state” may also deviate from the predicted one (therefore, this state is
required to correspond to a standby one).

1.3.4 Interleaved planning and execution or “continuous planning”

Continuous planning implies that planning and plan execution processes are seamlessly
interleaved. The planning process remains active to adapt the plan when new goals are
added or to resolve conflicts appearing after a state update. Besides, actions that are

1.3. Embedding planning in a complex autonomous system 21

ready to be executed are committed to execution even if the plan is not yet completely
generated.

Planning, execution and monitoring have even been integrated in the same process in
the IPEM framework (Integrated Planning Execution and Monitoring) [Ambros-Ingerson 88].
IPEM is based on a hierarchical partial-order planning technique. Using this technique,
a solution plan is found by fixing all flaws in a partial plan. Flaws are classically: unsup-
ported preconditions of actions, conflicts between actions or unexpanded actions. Each
flaw is associated with a specific fix or plan transformation. IPEM extends this set of {IF
<flaw> THEN <fix>} rules to handle execution and monitoring:

• Execution is pursued thanks to two new rules: (1) {Unexecuted Action/Execute} and
(2) {Timed-Out Action/Excise action}. (1) An action is executed if its preconditions
are supported and if it is not in conflict with a “live” action (the plan is order-
constrained thus allowing concurrent execution). (2) The action is completed and
removed from the plan.
• Monitoring is done by detecting redundant actions (their effects are already present

in the current state description) and unsupported protections. The plan is then fixed
by removing actions or asserting new protections.

The search in the partial plan space is guided by a flaw ordering heuristic. It is important
to note that the use of these new “execution flaws” leads to non-backtrackable executed
fixes, thus compromising the completeness of the search process.

The SPEEDY system [Bastié 96] presents similar features. The main differences rely
in the use of a linear planning technique to help in determining the executable actions,
coupled with a triangle table used to eventually execute actions in parallel.

The ROGUE system [Haigh 98] makes up the decisional level on board Xavier the
robot. It is composed of a task planner (PRODIGY4.0), an execution processing module
that monitors the environment for exogenous events, and a learning module. PRODIGY
[Stone 96] is a domain-independent nonlinear state-space planner that uses means-ends
analysis and backward chaining to reason about multiple goals and multiple alternative
operators to achieve the goals. It has been extended to handle asynchronous goal requests
and interleave planning and plan execution. Replanning proceeds if there exist not satisfied
top-level goals or if execution monitoring reveals a failure situation. Each time the planner
generates an executable plan step, the action is executed and monitored. In case of failure,
the state knowledge is updated and the next plan step is generated. An interesting feature
of the ROGUE system is its ability to learn from real execution to improve planning.
Robot’s execution traces are analyzed to identify situations in which the planner’s behavior
needs to change. Situation-dependent rules are created and used by the planner to select
between alternatives.

SIPE (System for Interactive Planning and Execution monitoring) [Wilkins 88] is a
hierarchical non-linear planning system allowing some resource reasoning and replanning.
Planning and execution are interleaved by partitioning the set of goals: the user specifies
which goals can be delayed. An original plan is elaborated for the non-delayed goals.

22 Chapter 1. Context and State of the art

Figure 1.4: The CPEF architecture, from [Myers 99]

Its execution is started in parallel with a background planning process for the delayed
goals. The original plan is executed until either an unexpected event occurs or the goals
whose planning has been delayed are reached. The “background” plan is then retrieved
(eventually after waiting for the planning process to finish) and updated with information
on already executed actions. In case of unexpected situation, SIPE also offers a replanning
ability, which corresponds in fact to a plan repair: “transform the plan, retaining as much
of the old plan as is reasonable, into one that will still accomplish the original goal from
the current situation”. The unexpected situation is translated into a list of problems in
the plan. A set of domain-independent replanning actions is then used to modify the plan
(by inserting new goals). This new planning problem is finally solved by the standard
planner.

SIPE has been integrated into a Continuous Planning and Execution Framework (CPEF)
[Myers 99] to update plans in a timely fashion in response to new information and require-
ments. CPEF proposes a distributed multi-agent architecture (cf. Figure 1.4) in which
plan generation, execution, monitoring and dynamic plan repair are fluidly integrated.
The SIPE-2 planner provides plan generation and adaptation capabilities. Users can in-
fluence the planning process through the Advisable Planner (AP). Plan execution and
monitoring are performed by the procedural system PRS [Georgeff 89]. The always active
plan manager monitors the environment and directs the overall plan generation, monitor-
ing and execution processes. CPEF supports indirect execution, i.e. supervises activities
execution by agents outside the system. The plan execution tracking is limited by the fact
that reports on outcome of actions are taken into account in precedence order on actions.
Finally, an interesting feature of CPEF is the specification of failure models and various
monitors (as event-response rules). Failure models include unattributable failures and
aggregate failures. Failure monitors encode appropriate responses to failures. Knowledge
monitors test for the availability of information needed for decision making, and Assump-
tion monitors test for situation changes that violate plan assumptions. This architecture
has been tested by simulating realistic air-campaigns but has not been interfaced with a

1.3. Embedding planning in a complex autonomous system 23

Figure 1.5: The CASPER architecture, from [Chien 00]

“functional level” of an autonomous agent.

IPEM and SPEEDY are purely classical planning systems and time is not represented
explicitly in SIPE (time is managed as a “consumable resource”). CASPER [Chien 00]
extends an IPEM-like approach to metric time and resources. In the CASPER system
(Continuous Activity Scheduling Planning Execution and Replanning), the ASPEN plan-
ner [Rabideau 99] is provided with a set of goals, a plan, the current state and projections
of the state in the future according to the plan. This plan is extended incrementally and
regularly updated to respond to feedback. The planner receives and propagates updates:
state updates (corresponding to changes to the state variables), activity updates (notifi-
cations of activity start and end times) and resource updates (actual resource usages and
availabilities). Potential future conflicts are incrementally resolved by performing itera-
tive repair techniques with a most-commitment strategy (all parameters are instantiated).
This strategy simplifies the projections, especially the estimation of the resource level
profiles, but reduces the plan flexibility.

Some issues relevant to interleaved temporal plan execution and repair are raised in
[Chien 00], namely: “When to replan? What to execute during planning time? How much
time should the planner be given to replan? How to ensure the planner does not change
activities that are already in execution?”

The CASPER approach attempts to minimize the amount of time for replanning.
Replanning is done when the projection of the current state according to the current
plan reveals future flaws. During replanning, and depending on the domain application,
nothing is executed (rover application) or a portion of the old plan is executed (spacecraft
application). In that case, a commitment window, corresponding to the replanning time
interval forbids the modification of committed activities by the replanning process, as
well as the execution of non committed activities by the executive. Note however that

24 Chapter 1. Context and State of the art

CASPER cannot handle conflicts which appear within the commitment window.

Figure 1.5 summarizes the CASPER basic mechanisms. The synchronization pro-
cess sequences the tasks performed by the planner: planning, goal update, state update,
executed plan update and commitment status of activities update. CASPER has been in-
tegrated in the Rocky7 rover architecture for scientific goals planning and has been tested
on-board the EO1 satellite as part of the ST6 technology demonstration.

Interleaved scheduling and execution processes have also been used to improve the
management of the operations in ground control centers. The approach proposed in the
TIMELINE software [Grandjean 04] and implemented by EADS-Astrium in the INTEL-
SAT control center, integrates operations scheduling (including resource allocations such
as antennas . . .), execution monitoring and re-scheduling (required by a task or constraint
modification induced by the user interface or by the execution process). TIMELINE re-
lies on a multi-threaded software architecture. A schedule management thread generates,
when required, “scheduling jobs” which are handled by a scheduling thread. These jobs
are ranked according to an emergency priority and processed one by one. Their results
are applied to the current schedule. As for the CASPER system, a commitment win-
dow (corresponding to an upper-bound of the scheduling possible duration) forbids the
modification of the operations occuring during this time interval. The scheduling process
relies on classical constraint propagation algorithms. Reactivity is improved by dedicated
algorithms and by limiting “scheduling jobs” to re-optimize only a portion of the global
schedule.

Many systems, confronted with “real” applications and requiring reactivity, supply in-
terleaving mechanisms between planning and plan execution processes. Various techniques
have been applied so far, but very few really take into account timing problems, such as
actions with durations and goals with deadlines, and their effects on both processes.

1.3.5 Planning at any level of abstraction

Opposed to the approaches presented in the previous sections, where planners are mainly
used to schedule high-level actions and optimize resource usage over a long-term mission
horizon, a new architectural concept, called IDEA (Intelligent Distributed Execution Ar-
chitecture), is currently under development at NASA Ames Research Center. The IDEA
approach [Muscettola 02] proposes to use planning as the core reasoning engine at each
level of abstraction: mission planning as well as reactive execution. The basic concept be-
hind IDEA is that any control system can be designed as a plan database and a planning
mechanism to select the next action to execute in response to new goals and new sensory
inputs.

IDEA defines a unified virtual machine. Complex autonomous systems can be designed
as networks of IDEA agents interacting through a uniform, declarative communication
protocol. The IDEA “virtual machine” consists of four main components (cf. Figure 1.6).

1.3. Embedding planning in a complex autonomous system 25

Plan
Runner

...

Controlling
System

Goal Execution Feedback

Controlling
System

Goal

Execution
FeedbackControlled

System

Controlled
System

Plan Service
Layer Search

Engine
Search
Control

Plan Database

Model

Reactive Planner

Goal Register

Plan
Runner

Plan
Runner

...

Controlling
System

Goal Execution Feedback

Controlling
System

Controlling
System

Goal

Execution
FeedbackControlled

System Goal

Execution
FeedbackControlled

System

Controlled
System

Plan Service
Layer

Plan Service
Layer Search

Engine
Search
Engine

Search
Control

Plan Database

Model

Reactive Planner

Goal Register

Figure 1.6: Structure of an IDEA agent, from [Dias 03]

A plan database represents the actions currently executed as well as the actions planned
for the future. A plan runner is in charge of closing the loop by integrating execution
feedback and reading the next actions to execute in the plan. The plan service layer
provides the communication infrastructure for actions, goals and sensor data exchanges
with other controlled or controlling agents and/or hardware drivers. Finally, a reactive
planner is activated by the plan runner each time a new information is received or an
action deadline expires.

The plan database is composed of a set of parallel timelines. Each timeline corresponds
to a specific state variable (representing a dynamic property of the system), and describes
the sequence of (past and future) actions and states linked to this state variable. Both
actions and states are represented by the same structure, called token. A token corresponds
to a time interval during which a procedure has to be executed. This procedure may have
a set of input values and a vector of return status parameters. It is sent to other agents
or drivers for execution. A procedure is completed when the return status is bound to a
specific value or when the token deadline has elapsed.

Each timeline should contain one active token at current time. Thus, when a procedure
returns or must be terminated, the reactive planner uses subgoaling search and constraint
satisfaction techniques to guarantee that the next tokens are consistent with respect to
the constraints in the agent’s model. Reactive performance is obtained by limiting the
horizon over which planning operates (e.g. make decisions only for the next step).

Each agent is given an execution latency that corresponds to the duration allowed
for the “sense/plan/act” cycle to complete. This latency permits a quantification of the
agent’s responsiveness (the maximal duration between an event and its response is always

26 Chapter 1. Context and State of the art

equal to two latencies). Deliberative planning can also be introduced as a module con-
trolled by the plan runner that operates on the same plan database but on a planning
horizon that does not intersect with the reactive planning horizon.

To determine if an executive based on model-based reactive planning can be as respon-
sive as, for instance, a procedural executive, some experimentations have been carried out
to control a rover and an outdoor robot. During two stays4 at NASA Ames, I took part5 in
the elaboration of a rover executive based on model-based reactive planning. Two IDEA
agents (a system-level or “executive” agent and a mission-level agent) have been designed
and implemented to autonomously control the K9 rover in real-time. The system has
been evaluated in the scenario where the rover must acquire images from a specified set
of locations. The IDEA agents are responsible for enabling the rover to achieve its goals
while monitoring the execution and safety of the rover and recovering from dangerous
states when necessary. The system-level agent achieved a 2Hz control rate on a 300MHz
Pentium. The implementation of the two interacting IDEA agents and the models used
to control the K9 rover are further detailed in [Dias 03].

This preliminary experimentation has been extended to control an outdoor robot
(Gromit, an RWI ATRV Junior) embedding more complex functionalities requiring syn-
chronization between processes and unary resource allocation. The robot navigation is
based on a map of the environment computed by fusing position-tagged stereo-correlated
images, while the cameras are also used to monitor en route interesting targets. An inter-
esting feature of IDEA is the possibility to assign various planning horizons to the reactive
planner. Different models have been tested on Gromit (see [Finzi 04]). A purely reactive
behavior (planning one latency ahead) requires a careful (and somewhat painful) model
design, with mixed domain and control knowledge: for each execution context, the set of
available procedures is explicitly specified. This model achieved a control of Gromit with
a 0.3s latency. Since loops appeared in the behavior of the functional processes, a model
reflecting one loop and functioning with a “long-term” reactive horizon (40s) has been
tested. The reactive planner plans for this intermediate horizon and then monitors the
execution of this plan at each execution cycle. This look-ahead makes the model design a
lot easier but decreases the performance (1.5s latency).

The planning technique currently used in the IDEA framework does not handle non-
unary resources yet, but the look-ahead abilities should allow the management of resource
levels on a long-term horizon. The plan repair possibilities are also limited. When op-
erating with some look-ahead, if the return status of procedures are not consistent with
the plan expectations, the plan is broken and has to be regenerated. Compared with a
procedural executive, an IDEA executive is somewhat slower but acceptable. Its main
advantages are the look-ahead abilities with flexible planning horizons; the use of a formal
model easier to validate; and the use of a common language at any level of abstraction.

4In summer 2001 and summer 2002.
5This work has been done in collaboration with M. B. Dias, PhD-student at Carnegie Mellon University,

under the direction of N. Muscettola and with the help of the “IDEA team”: G. A. Dorais, C. Fry, R.
Levinson, C. Plaunt and B. Vijayakumar.

1.4. Our approach 27

1.3.6 Conclusion

We emphasized in this section the need for an organization of the software components in
a well-defined architecture. Robust mission execution especially requires a decisional level
with planning capabilities and smart execution mechanisms. A procedural executive pro-
vides task refinement and reactive exception handlers. Planning look-ahead capabilities
are still required to manage unforeseen situations and resource levels over the mission du-
ration. Interaction between both processes is a key problem. Batch planning implies long
idle times. A more reactive behavior, interleaving planning and plan execution amounts
to a trade-off between search completeness and reactivity, indeed plan execution commits
plan steps early but gathers information that may open or prune alternatives for the plan-
ner. Likewise, interleaving plan repair and plan execution also requires a compromise
between reactivity and plan quality: the longer the planner is given, the more likely it will
be able to resolve all of the problems.

Finally, very few approaches explicitly deal with timing problems. We are concerned
with applications requiring durative actions and goal deadlines. Thus we advocate the
use of a temporal executive that can decide on action start times (and eventually end
times), monitor action durations and rendez-vous and react to different types of “timing
failures”. Dealing with time at execution time is delicate: the execution process itself
takes some time (in [Tsamardinos 98], the authors propose an efficient execution strategy
for temporal plans based on STN techniques). The issue becomes even more difficult if
temporal execution is combined with plan adaptation. The temporal executive has then
also to control the planning process duration. A notion of execution cycle appears: update
the state knowledge or integrate messages, plan if necessary, execute the actions on time.
This cycle has a certain duration that has to be taken into account in the temporal plan
model and search (cf. the update rate and commitment window in CASPER and the
execution latency in IDEA).

1.4 Our approach

In IXTET-EXEC, we propose a framework to combine temporal -deliberative planning, -
plan repair and -execution control. Figure 1.7 summarizes our approach. The IXTET-EXEC
system is composed of two interacting components: the IXTET planner that provides delib-
erative mechanisms and a new temporal executive TEXEC. IXTET-EXEC has been integrated
in the decisional level of the LAAS architecture [Alami 98], in interaction with the proce-
dural executive OpenPRS [Georgeff 89].

IXTET-EXEC provides two mechanisms to react to events (failures or new goals): (1)
concurrent plan repair and plan execution for reactivity, and (2) replanning to regain
completeness properties (providing there is enough time).

1. If some temporal flexibility remains, plan repair occurs after a partial invalidation
of the plan. The plan structure is kept and the planner tries to restore the lost

28 Chapter 1. Context and State of the art

properties. Execution of the valid part of the plan is pursued in parallel.

2. Replanning consists in abandoning the failed plan and generating, from the current
situation, a new one for the remaining goals.

Both plan repair and replanning are based on the same lifted partial-order planning tech-
niques, modified to take into account resource updates and time constraints. Indeed, we
want our approach to address the following issues:

• the plan is regularly updated (including resource levels) and checked,

• the system still reacts to events even during plan repair,

• execution takes time into account,

• plan repair and replanning take time and planning duration into account.

It should be noted however that our work focuses on the robust execution of a mission
plan with temporal and resource constraints and that the proposed approach presents
some limitations. The non-linear CSP-based planning technique has interesting features
w.r.t plan execution (flexibility, plan adaptations), but its performances somewhat limit
the size of the planning problems that can be handled. It is also difficult to produce plans
optimized according to a specific criterion (e.g. some resource consumption, the makespan,
etc.)6. The performances of IXTET-EXEC also depend on the flexibility left in the plan. If
failures occur during the execution of a temporally over-constrained plan, the replanning
process may abandon most of the goals. In any case, if the situation becomes critical, one
can always rely on predefined emergency plans and procedures to put the system in a safe
state.

6The plans are least-committed in the number of actions and constraints.

1.4. Our approach 29

Commands

Messages

TeXeCTeXeCTeXeC

Sensing
Plan Repair
Action

IxTeTIxTeTIxTeT

PlanPlanPlan

IxTeT-eXeCIxTeTIxTeT--eXeCeXeC

Chapter 2Chapter 2Chapter 2

Chapter 3Chapter 3Chapter 3

Decisional Level

Functional Level

Requests Control Level

mission report

GenoM modules

ExoGen Requests and Resources Checker

OpenPRSOpenPRS

Procedural Executive
IxTeT-eXeCIxTeTIxTeT--eXeCeXeC

Environment

N

S

W E

Chapter 4Chapter 4Chapter 4

SimulationSimulationSimulation

Chapter 5Chapter 5Chapter 5

Figure 1.7: Outline

30 Chapter 1. Context and State of the art

1.5 Mission example

The evaluation of our planning and execution architecture requires attention to the exper-
imental setup and to the definition of reasonable metrics of performance. In fact, it is not
possible to access standard benchmarks (such as those used by the planning community
[Fox 02a]) for our domains of interest because they do not involve a realistic treatment of
time and resources. Our objective is to demonstrate and evaluate our system in a realistic
environment with relevance to space applications.

Thus we decided to integrate IXTET-EXEC in the LAAS architecture and perform tests on
a real robotic platform. We use the outdoor robot Dala7 as a “simulated” planetary rover
with an exploration mission scenario. A navigation task in a totally unknown environment
implies complex processes such as localization, map building or motion generation. Many
contributions on these issues have been developed at LAAS [Lacroix 02] and integrated in
the LAAS architecture.

We used these autonomous navigation capabilities to build up an exploration mission
scenario. The rover receives three types of goals. A high-priority goal requires the rover to
be back at the lander location by the end of the mission horizon. Medium-priority goals
request communications between the rover and an orbiter or a ground-station during its
visibility windows. Finally, lower-priority goals consist in a list of targets to take a picture
of. At the mission planning level, the planetary rover domain is composed of the
following set of actions:

• move(?x1, ?y1, ?x2, ?y2) - This action represents the navigation task between two
locations. The coordinates (?xi, ?yi) correspond to real numbers, the origin (0,0)
being defined as the start location (near the lander). The actions move-x and move-
y are possibly added, respectively corresponding to a navigation along the x-axis or
the y-axis. A navigation task involves map building and stereo odometry, thus the
cameras are required to look forward during a move action. Given the speed of the
rover and the distance between the two locations, an estimate of the action duration
can be computed. Note however that this estimate cannot take into account in
advance the time needed to eventually avoid obstacles and adjustments need to be
done during the plan execution.

• take-image(?target, ?x, ?y) - The rover takes a high-quality image of a specific target
at location (?x, ?y). This action requires that the rover stays still and that the
cameras look towards the target. The image is compressed and stored. Once again,
the model cannot be accurate: the compression rate varies according to the image
that is actually taken, and the memory storage real availability needs to be updated
during the plan execution.

• move-pan-tilt-unit(?pos1, ?pos2) - This action changes the orientation of the cameras.
7Dala is an iRobot ATRV equipped with odometry sensors and a stereo camera pair mounted on a

pan&tilt unit.

1.5. Mission example 31

• download-images() - This action downlinks the stored images to the lander and thus
frees some memory storage. Likewise, the quantitative effects and duration of this
action are not precisely known in advance.

• communicate(?w) - The rover is given a prediction of the visibility windows. This
action corresponds to the communication between the rover and the ground-station
during the visibility window ?w. It is not compatible with the action download-images
(they use the same channel resource) and requires the rover to stay still. Note that
this type of action enforces temporal rendez-vous with the ground station.

• init-PTU-driver() and init-mvt-generation() - These actions are failure handlers. They
correspond to the initialization of some functional processes in response to a certain
type of failure.

A real planetary rover would also require a careful monitoring and management of the
battery level. Since the robot we are using is not equipped with autonomous means to
provide its energy (no solar panels for instance), we did not take this resource into account
in the model described above. However, the IXTET-EXEC system can handle problems where
resource usages during actions can be estimated but not accurately predicted, and where
the resource level should be regularly checked and projected in the future.

Figure 1.7 summarizes the outline of this thesis. Chapter 2 describes the underlying
IXTET planning system. We focus especially on its interesting features in a context of
plan execution (representation of time and resource, flexibility, plan space search), and
present the extension that we8 made to provide a more realistic and flexible management of
resources. Chapter 3 gives a detailed description of the IXTET-EXEC framework and formally
addresses the issue raised by the interleaving of plan repair and execution processes on the
same plan. Chapter 4 presents the integration of IXTET-EXEC in the LAAS architecture and
the experiments carried out on a robotic platform. Finally, chapter 5 presents additional
examples and results obtained by simulation9.

We will use this planetary rover domain to illustrate Chapters 2 and 3.

8Part of this extension has been done jointly with Romain Trinquart.
9The controlled system is simulated by specific procedures in OpenPRS.

Chapitre 2
Ce chapitre décrit le système de planification IXTET. Ce planificateur a été développé au
LAAS et a fait l’objet de nombreuses contributions : recherche dans l’espace des plans
partiels avec une stratégie de moindre engagement [Ghallab 94, Laruelle 94], intégration de
la gestion de ressources partageables [Laborie 95b, Laborie 95a], hiérarchie d’abstraction
gérée dynamiquement pendant la planification [Garcia 95] et extension des gestionnaires
de contraintes pour traiter des variables atemporelles numériques et des contraintes mixtes
entre variables temporelles et atemporelles [Trinquart 01].

La première section présente la représentation fonctionnelle à base de chroniques
utilisée pour modéliser les opérateurs et le problème de planification. La deuxième sec-
tion détaille les reseaux de contraintes et les techniques de satisfaction de contraintes
employées. La troisième section décrit l’algorithme de recherche dans l’espace des plans
patiels. Finalement, la dernière section détaille notre contribution : une extension de
l’expressivité et de la flexibilité dans la gestion des ressources.

Une représentation fonctionnelle à base de chroniques

Variables d’état

Le monde est décrit par un ensemble de variables d’état (ou attributs logiques) qui sont
des fonctions du temps multivaluées. On distingue des attributs contrôlables, contingents
et rigides.

“Timeline”

Le temps est représenté par un ensemble ordonné d’instants (ou timepoints) qui sont des
variables sur <+. L’évolution de la valeur des attributs est spécifiée par la proposition
hold, qui impose la persistance d’une valeur sur un intervalle temporel, et la proposition
event qui représente un changement instantané de ressource. A chaque attribut logique
est associée une timeline qui représente l’historique de ces changements et persistances.

Ressources

D’autres attributs représentent spécifiquement des types de ressource. Les propositions
use, consume et produce spécifient, respectivement, l’emprunt sur un intervalle, la con-
sommation ou la production à un instant donné d’une certaine quantité de ressource.

34 Chapitre 2

Représentation des actions

Une action comporte : un ensemble d’events décrivant les changements du monde in-
duits par l’action, un ensemble d’assertions hold exprimant les conditions requises ou la
protection d’un fait entre deux événements, un ensemble de propositions d’utilisation de
ressources, un ensemble de contraintes temporelles entre les timepoints de l’action et un
ensemble de contraintes entre les variables atemporelles.

Problème de planification

Le problème de planification est également décrit par une chronique (i.e. un ensemble de
propositions temporelles et de contraintes) qui comprend : l’état initial (les valeurs initiales
des attributs instanciés), les événements prévus pour certains attributs contingents, les
profils de disponibilité des ressources prévus, les buts à accomplir (valeurs souhaitées pour
des attributs instanciés spécifiques) et un ensemble de contraintes entre ces éléments.

Discussion concernant l’exécution du plan

Dans cette partie, nous discutons l’influence de l’exécution sur la représentation des actions
et la définition des modéles. Des informations supplémentaires sont nécessaires (interrupt-
ibilité des actions) et certaines précautions doivent être prises.

Les gestionnaires de contraintes sous-jacents

Pendant la recherche, l’affinement du plan ajoute des contraintes : contraintes de précédence
entre timepoints, contraintes d’unification entre variables atemporelles, contraintes numériques
sur les quantités de ressource, etc. Ces contraintes sont gérées grâce à des techniques de
satisfaction de contraintes (un CSP temporel et un CSP atemporel). Un CSP (Constraint
Satisfaction Problem) est défini par un ensemble de variables, leurs domaines respectifs et
un ensemble de contraintes entre ces variables. Lors de la planification, des algorithmes de
propagation calculent les domaines minimaux qui garantissent la consistance des CSPs.

Le réseau temporel

Il est modélisé par un STN (Simple Temporal Network) (les variables sont les timepoints
et les contraintes sont des intervalles numériques représentant la durée entre deux time-
points). Des algorithmes de type Floyd-Warshall assurent la propagation.

Chapitre 2 35

Le réseau atemporel

Ce CSP gère des variables atemporelles (arguments, valeur des attributs, etc.) symboliques
et numériques, avec des contraintes de type unification, séparation, restriction de domaine,
numériques, etc. Deux types de techniques de propagation sont employées : une technique
exhaustive et coûteuse qui assure la consistance globale du réseau, et une technique de
filtrage qui assure sa consistance locale.

Les contraintes mixtes

Des contraintes mixtes entre variables temporelles et atemporelles peuvent être spécifiées:
?x = c ∗ (tj − ti). Elles sont gérées par un superviseur qui transfère les informations d’un
CSP à l’autre.

Discussion concernant l’exécution du plan

L’utilisation de techniques de satisfaction de contraintes offre deux avantages principaux:
une modélisation plus réaliste du monde (notamment concernant les effets quantitatifs des
actions) et une flexibilité du plan produit.

Planification non linéaire causale avec des variables partiellement
instanciées

La planification consiste à déterminer, à partir d’un modèle de la situation initiale et
des actions réalisables, un plan d’actions qui permet d’accomplir un ensemble de buts.
IXTET effectue une recherche dans l’espace des plans partiels : un plan incomplet est
progressivement affiné par l’insertion d’actions et de contraintes jusqu’à l’obtention d’un
plan solution valide. Un noeud de l’arbre de recherche est alors un plan partiel et une
transition entre deux plans partiels correspond à une transformation du plan pour résoudre
un défaut. Par ailleurs, les plans produits sont partiellement ordonnés et instanciés et des
liens causaux permettent de conserver les liens entre les actions (protéger l’établissement
d’une propriété par une action).

Cette section présente l’espace de recherche et l’algorithme de planification dans le
cadre d’IXTET, détaille les défauts et résolvantes potentiels et discute les heuristiques
utilisées pour guider la recherche.

36 Chapitre 2

Recherche dans l’espace des plans partiels

Un noeud de l’arbre de recherche est un plan partiel caractérisé par (A,C, L, F), i.e. un
ensemble d’actions A, un ensemble de contraintes C sur les variables apparaissant dans
A et L, un ensemble de liens causaux L et un ensemble de défauts F . En utilisant la
représentation d’IXTET, un plan peut être représenté de façon similaire par une chronique
(Evt,Hold, Use, Prod, Cons, C) qui contient des ensembles de propositions event, hold,
use, produce, consume et les contraintes sur les variables apparaissant dans ces proposi-
tions.

Une telle chronique peut contenir trois types de défauts :

• des sous-buts, i.e. des propositions event ou hold pas encore établies (la valeur de
l’attribut n’est pas justifiée par l’état initial ou par un événement antérieur);

• des menaces, i.e. des paires de propositions event et hold dont les valeurs sont
potentiellement en conflit (un attribut instancié ne peut avoir qu’une seule valeur à
un instant donné);

• des conflits de ressource, i.e. des ensembles de propositions use qui sont potentielle-
ment en recouvrement et qui surconsomment une même ressource.

Un plan partiel est un plan solution si il ne contient aucun défaut et si les réseaux de
contraintes sous-jacents sont consistants.

Une étape de planification dans IXTET

Une étape de planification se décompose en quatre phases :

1. le plan partiel est analysé pour détecter ses défauts et associer à chaque défaut une
disjonction de résolvantes potentielles,

2. un défaut est sélectionné,

3. une de ses résolvantes est choisie,

4. cette résolvante est insérée dans le plan.

Si le plan contient un défaut nécessaire ou si la résolvante aboutit à un plan inconsis-
tant, l’algorithme revient sur les points de choix des résolvantes.

Analyse des défauts

L’analyse recherche les défauts, calcule les résolvantes et associe un coût à chaque résolvante
qui sera utilisé pour guider la sélection du défaut et le choix de la résolvante à appliquer.
Ce coût est calculé en se basant sur une stratégie de moindre engagement. Une telle
stratégie implique de choisir le défaut avec le facteur de branchement le plus faible (le
moins de résolvantes). Elle a été étendue dans IXTET pour prendre en compte l’engagement

Chapitre 2 37

de chaque résolvante : le coût d’une résolvante reflète son influence sur la réduction de
l’espace des plans solutions atteignables depuis le plan partiel courant.

Cette sous-section détaille pour les trois types de défauts : comment ils sont détectés,
leurs résolvantes et leurs fonctions de coût.

Contrôle de la recherche

Les défauts du plan partiel sont classés en fonction d’une hiérarchie d’abstraction. Le
planificateur traite tous les défauts appartenant à un même niveau d’abstraction avant
de prendre en compte les défauts du niveau suivant. La hiérarchie définie dans IXTET est
associée aux noms des attributs et vérifie la propriété de Monotonicité Ordonnée. Elle
diffère des autres hiérarchies par sa flexibilité : un graphe d’abstraction est calculé hors-
ligne, mais les niveaux sont définis en ligne, en fonction de l’évolution de la recherche.

Parmi les défauts de l’état d’abstraction courant, un défaut est sélectionné en fonction
d’un facteur (K) calculé à partir des fonctions de coût de la disjonction de résolvantes
associée. Ce facteur suit une stratégie de moindre engagement opportuniste.

Enfin, la progression dans l’arbre de recherche peut être guidée de deux façons différentes:
un algorithme Aε, ou une recherche en profondeur ordonnée d’abord. Les fonctions heuris-
tiques f = g + h sont calculées en fonction des coûts des résolvantes.

Nous discutons finalement les performances globales du planificateur et les avantages
et inconvénients des diverses heuristiques.

Discussion concernant l’exécution du plan

La recherche dans l’espace des plans partiels fournit un bon cadre pour la planification
incrémentale et la réparation de plan.

Extension de la gestion des ressources

Nous avons étendu la représentation des ressources dans deux directions:

• une ressource type peut maintenant avoir plusieurs allocations possibles,
• les quantités empruntées, consommées ou produites pendant une action peuvent être

représentées comme des variables numériques.

Conflit de ressource

Ces modifications imposent de redéfinir la notion de conflit de ressource.

38 Chapitre 2

Détection des conflits

De même, les algorithmes de détection (recherche de cliques surconsommatrices dans un
graphe des intersections possibles) doivent être modifiées.

Résolvantes

Finalement, il faut définir de nouveaux types de résolvantes. En distinguant plusieurs
types de conflits de ressource, on peut de plus réduire le facteur de branchement.

Cette extension des ressources permet une représentation plus réaliste du monde, mais
surtout augmente la flexibilité d’un plan vis à vis de l’utilisation des ressources, le rendant
plus robuste aux aléas de l’exécution.

Chapter 2

The IXTET planning system
As introduced in the previous chapter, embedding decisional capabilities in autonomous
space systems strongly suggests the use of a planning system capable of reasoning about
time and resources. In a context of plan execution in a dynamic environment, the
IXTET planner/scheduler has interesting properties. Based on a time-oriented represen-
tation, it combines a POCL1 planning process with constraint satisfaction techniques,
thus producing flexible and parallel plans. Moreover, previous works (notably IPEM
[Ambros-Ingerson 88]) have demonstrated that, in domains without temporal and resource
considerations, a plan-space search process can be adapted to perform interleaved planning
and plan execution.

In this chapter, we describe the IXTET planning system. Developed at LAAS, it orig-
inally proposed an efficient Time Map manager whose lattice of timepoints relied on
an indexed spanning tree (IXTET stands for Indexed Time Table) [Ghallab 89]. It has
been improved by multiple contributions: search in the plan space with a least com-
mitment strategy [Ghallab 94, Laruelle 94], integration of sharable resource management
[Laborie 95b, Laborie 95a] and integration of abstraction hierarchies dynamically managed
during planning [Garcia 95]. Still, IXTET exhibited a weak expressiveness in a context of
real-world applications. The atemporal CSP manager could only handle symbolic vari-
ables ranging over finite domains. It was not possible for instance to represent the initial
and final locations of a move action by real numeric coordinates. Besides, the resource
manager could only handle resource usages of a constant numeric quantity, thus forbidding
the expression of more realistic relations between the effects of an action and its param-
eters (the energy consumed by a move(?loc1, ?loc2) action, for example, varies with the
distance between ?loc1 and ?loc2).

A recent work [Trinquart 01] has improved the expressiveness of the planner by ex-
tending the CSP manager of atemporal variables to handle mixed symbolic and numeric
variables, ranging over finite and continuous domains. Has also been added the possibility
to express mixed constraints between temporal and atemporal variables, thus allowing the
representation of dependence between the effects of an action and its duration (typically
the duration of a move(?loc1, ?loc2) action varies with the speed of the rover and the

1Partial Order Causal Link

40 Chapter 2. The IXTET planning system

distance between ?loc1 and ?loc2).

One goal of this chapter is to provide the reader (and the potential IXTET user) with a
unified picture of all aspects of the current version of the planner, gathering information
essentially from [Laruelle 94], [Laborie 95a], [Gaborit 96], and [Trinquart 04].

The last part of the chapter focuses on our main contribution to the IXTET planner: we
have proposed and implemented algorithms to extend the resource management to deal
with allocated resources and the usage of variable quantities of resources. Other ”minor”
modifications resulted from our tests of IXTET-EXEC with the rover application and the
need to improve the performances.2

This chapter is organized as follows. Section 2.1 presents the time-oriented functional
representation. Section 2.2 details the underlying constraint networks and constraint sat-
isfaction techniques. Section 2.3 describes the search algorithm in the plan space. Finally,
section 2.4 details our contribution in the resource management.

2.1 A time-oriented functional representation

The IXTET formalism presupposes that the world is fully observable and that the actions are
deterministic. The world is described by a set of state variables, each being a function of
time. During planning, the evolution of the value of the state variables is partially specified
by temporal propositions picturing change and persistence. For each state variable, a
timeline represents its history of changes and persistences over time.

2.1.1 State variables

State variables are also called logical attributes in the IXTET formalism. A logical at-
tribute stands for a property of the world that can take only one value at a time (e.g. the
position of the rover). It is defined by the tuple:

(AttName, (?x1, . . . , ?xn), ?vt)
(also noted: “AttName(?x1, . . . , ?xn) :?vt”)

AttName refers to the symbolic name of the function, (?x1, . . . , ?xn) to its arguments
and ?vt to its value at time t. The arguments are variables ranging over finite domains,
whereas the value is a variable ranging over finite or continuous domains. An attribute is
called grounded if all its arguments are instantiated.

2These modifications are described in more details along the chapter and notably concern: the use of an
Ordered Depth First search strategy instead of the Aε algorithm, the modification of the backtrack strategy
by caching partial plans and the introduction of contingent attributes into the abstraction hierarchy.

2.1. A time-oriented functional representation 41

attribute AT_ROVER_X(){
 ?value in]-oo,+oo[;
}

 attribute VISIBILITY_WINDOW(?w){
 ?w in {W1,W2,W3,W4};
 ?value in {IN,OUT};
 }

Figure 2.1: Examples of logical attribute declaration

Logical attributes can be separated into two classes: contingent and controllable at-
tributes.

• The value of a contingent attribute varies with time, but cannot be controlled
by the planning agent. An example is the attribute representing the visibility win-
dow ?w with the ground station: “V ISIBILITY WINDOW (?w) :?v”, with ?v ∈
{IN,OUT} (see Figure 2.1).

• The changes of value of a controllable attribute are controlled by the planning
agent. Examples are the attributes representing the position of the rover along the x-
axis and the y-axis “AT ROV ER X() :?x” and “AT ROV ER Y () :?y” with ?x, ?y ∈ <
(see Figure 2.1).

 #define distance(_x1,_y1,_x2,_y2,_d)\
 _x1 in]-oo,+oo[; _y1 in]-oo,+oo[;\
 _x2 in]-oo,+oo[; _y2 in]-oo,+oo[;\
 variable ?Y; ?Y in]-oo,+oo[;\
 variable ?Yc; ?Yc in]-oo,+oo[;\
 variable ?Ypos; ?Ypos in]-oo,+oo[;\
 variable ?X; ?X in]-oo,+oo[;\
 variable ?Xc; ?Xc in]-oo,+oo[;\
 variable ?Xpos; ?Xpos in]-oo,+oo[;\
 ?X = _x2 - _x1; ?Xc = _x1 - _x2;\
 ?Y = _y2 - _y1; ?Yc = _y1 - _y2;\
 ?Xpos = max(?X,?Xc);\
 ?Ypos = max(?Y,?Yc);\
 _d = ?Xpos + ?Ypos

Figure 2.2: Example of constraints for the rigid property DISTANCE

It is also possible to express rigid conditions, i.e. properties which value remains
invariant in time. “DISTANCE(?x1, ?y1, ?x2, ?y2) :?d” for instance depicts the distance
between the locations (?x1, ?y1) and (?x2, ?y2), or “SPEED() :?s” represents the speed of
the rover [0.03, 0.1]. In IXTET, these rigid properties are expressed and managed through
a set of constraints on variables. Thus “SPEED() :?s” is equivalent to the constraint: “?s
in [0.03, 0.1]”. Figure 2.2 illustrates the set of constraints for DISTANCE. It computes a
manhattan distance by ?d = |?x2−?x1| + |?y2−?y1|. As shown in the distance example,
the type of rigid properties that can be expressed is limited by the type of constraints
that are currently managed by the CSP managers. However, it is always possible to add
specific constraints if one can define their propagation behavior.

42 Chapter 2. The IXTET planning system

forward

downward

t1 t2 t3

event(PTU_POSITION():(downward,forward),t1)

hold(PTU_POSITION():forward,(t2,t3))

PTU_POSITION()

Figure 2.3: Partial specification of the evolution of the attribute PTU POSITION()

2.1.2 Timelines

Time is explicitly represented as a set of linearly ordered instants. These instants, or
timepoints are variables ranging over <+. A time interval corresponds to the temporal
distance between two timepoints. Binary constraints are expressed between two timepoints
t1 and t2 such as ordering constraints t1 < t2 or t2 < t1, or more generally quantitative
constraints: (t2 − t1) ∈ I, I being an interval on <.

Attributes are piece-wise constant functions of time. Their value evolution is tempo-
rally qualified by two types of temporal propositions:

• hold(AttName(?x1, . . . , ?xn) :?v, (t1, t2)) asserts the persistence of the value ?v over
the time interval (t2 − t1) defined by the timepoints t1 and t2,
• event(AttName(?x1, . . . , ?xn) : (?v1, ?v2), t) states the instantaneous change of value

from ?v1 to ?v2 at the instant t.

Figure 2.3 presents an example of partial specification of the evolution of an attribute
representing the position of a pan&tilt unit.

2.1.3 Resources

A resource is defined as a substance or a set of objects whose availability induces constraints
on the actions that use them. Whereas actions modify in an absolute way the value of
state variables, a resource is only influenced in a relative way, by an increase or decrease
of its available quantity.

Resources are classified according to their capacity and their usage.

• A reusable resource is used by an action and released when the action terminates.
A device (such as a camera) is an example of unary reusable resource. It imposes a
total order between the actions that borrow it. A multiple capacity reusable resource,
such as the power of a battery, can be used by concurrent actions, providing that
their cumulative usage does not exceed the resource capacity.

2.1. A time-oriented functional representation 43

resource CAMERA(){
 defaultcapacity = 1;
}

 reservoir resource MEMORY_STORAGE(?d){
 ?d in {DISK1,DISK2,DISK3,DISK4};
 defaultcapacity = 54660;
 capacity(DISK1) = 46675;
 capacity(DISK3) = 38894;
 }

Figure 2.4: Examples of resource attribute declaration

• A consumable resource is consumed and possibly produced by actions. Especially,
a reservoir resource, as for instance the space available for image storage, is a
consumable resource with a maximum capacity. Planning with actions requiring a
reservoir resource imposes to check that the level of the resource never exceeds the
capacity or never becomes negative during the plan horizon.

In IXTET, resources are gathered in a set of resource types: two resources belong
to the same type if they can be equally used. Consider for instance that an image can
be indifferently stored on disk1 or disk2, then both resources are of the same “memory
storage” type. A resource type is represented by a resource attribute: RsceType(?r)
(e.g. MEMORY STORAGE(?d), ?d ∈ {disk1, disk2}). A resource is allocated when its
parameter is instantiated.

In [Laborie 95b], the authors first introduced a resource management in the temporal
planner IXTET. They proposed algorithms to manage multiple capacity non-parameterized
resources and resource usages of constant quantities. In section 2.4 we detail how we
extended these algorithms to manage resource types with several possible allocations and
resource usages of variable quantities.

More precisely, a resource is defined as shown in Figure 2.4 and each allocated resource
is associated with a capacity3 (a default one if the specific capacity is not mentioned).

During planning, the resource management algorithms guarantee that the level of
a resource never becomes negative, but does not guarantee that it never exceeds the
maximal capacity. Thus, when a resource attribute R is defined as a reservoir resource,
it is internally associated with a complementary resource attribute R CPT , which has a
null capacity and a “mirror” usage: R CPT is consumed when R is produced and vice
versa.

Resource availability profiles and resource usages are described through three piece-
wise constant temporal propositions:

3Due to implementation constraints, the definition of the default capacity should correspond to the
maximal capacity of the different allocated resources of the same type.

44 Chapter 2. The IXTET planning system

task TAKE_PICTURE(?obj,?x,?y)(t_start,t_end){
 ?obj in OBJECTS;
 ?x in]-oo,+oo[; ?y in]-oo,+oo[;

 hold(AT_ROBOT_X():?x,(t_start,t_end));
 hold(AT_ROBOT_Y():?y,(t_start,t_end));
 hold(PTU_POSITION():downward,(t_start,t_end));

 event(PICTURE(?obj,?x,?y):(none,doing),t_start);
 hold(PICTURE(?obj,?x,?y):doing,(t_start,t_end));
 event(PICTURE(?obj,?x,?y):(doing,done),t_end);

 use(CAMERA():1,(t_start,t_end));
 variable ?image_size;
 variable ?cr;
 compression_rate(?cr);
 ?image_size = 175610 * ?cr;
 consume(STORAGE():?image_size,t_start);

 (t_end - t_start) in]0,60];
}nonPreemptive

AT_ROBOT_X()

AT_ROBOT_Y()

PTU_POSITION()

PICTURE(?obj,?x,?y)

CAMERA()

STORAGE()

t_start t_end

?x

?y

downward

taking

donenone

-1 +1

-?image_size

TAKE_PICTURE(?obj,?x,?y)

Figure 2.5: Example of action declaration

• use(R(?r) :?q, (t1, t2)) specifies the borrowing of a quantity ?q of the resource ?r of
type R during the time interval defined by the timepoints t1 and t2,

• consume(R(?r) :?q, tc) specifies the consumption of a quantity ?q at time tc,

• produce(R(?r) :?q, tp) specifies the production of a quantity ?q at time tp.

?q is a variable quantity whose domain is an interval of real numbers [qmin, qmax].

2.1.4 Representation of actions

Using the terminology of [Ghallab 04], IXTET follows a chronicle planning approach. A
chronicle for a set of state variables is formally defined as a pair (F , C) where F is a set
of temporal propositions, i.e. event and persistence conditions about the state variables,
and C is a set of temporal and atemporal constraints.

In IXTET, a chronicle on a set of logical attributes is represented by the tuple (Evt,Hold, C)
where Evt is a conjunction of event propositions on these attributes, Hold is a conjunction
of hold propositions and C is a conjunction of temporal, atemporal and mixed constraints
between the variables (timepoints, arguments, values) appearing in Evt and Hold.

This structure is completed by taking into account resource attributes and resource
temporal propositions. Thus, we define a chronicle on a set of logical attributes LAtt and
a set of resource attributes RAtt as the tuple (Evt,Hold, Use, Prod, Cons, C) where Evt
and Hold are respectively conjunctions of event and hold propositions on the attributes
in LAtt; Use, Prod and Cons are respectively conjunctions of use, produce and consume
propositions on the attributes in RAtt, and C is a conjunction of temporal, atemporal and
mixed constraints between the variables appearing in Evt, Hold, Use, Prod and Cons.

A planning operator, also called action or task, corresponds to a chronicle on subsets

2.1. A time-oriented functional representation 45

of logical and resource attributes. The event propositions describe the changes of the
world induced by the action, the hold propositions express required conditions or the
protection of some property between two events. Figure 2.5 shows an example of action
description. To take a picture of a target ?obj at location (?x, ?y), the rover must stay
still at this location and the cameras should look downward throughout the action. The
action borrows the camera pair and results in the storage of an image which size varies
with the compression rate.

The user can also specify that a task A contains a set of subtasks {Ai} whose starting
and ending timepoints correspond to intermediate timepoints of A.4

The use of chronicles allows the definition of intermediate timepoints and thus the
expression of more flexible and efficient interactions between actions (a resource can be
released before the end of the action, intermediate effects can be used by concurrent
actions, etc.).

2.1.5 Planning problem

The planner is given a planning domain and a planning problem. The planning domain
consists in the declaration of logical and resource attributes, rigid properties and planning
operators. The planning problem represents the initial scenario and the goals to achieve.
In IXTET, this problem is represented through a chronicle on logical and resource attributes.

The initial scenario describes the initial state of the domain: the initial value of each
grounded logical attribute is established by an explained5 event proposition, the initial
level of each allocated resource (if different from the capacity) is set by a consumption of
the difference between the capacity and the level. These initial propositions happen at
the origin of the plan horizon. The initial scenario also describes the expected evolution
of attributes independently of the actions, such as the evolution of contingent attributes6

or the availability profiles of resources.

Goals are expressed as event or hold propositions that need to be established by
the planning process. Two information are specified with each goal (goal(p, dachiev)): a
priority p and (if available) an estimation of the minimal duration needed to achieve
the goal dachiev. The problem chronicle also contains temporal constraints such as the
duration of the planning horizon, deadlines on goal timepoints, etc. The example given

4However, this “task decomposition” is just a user programming facility to build models of complex
tasks on the basis of simpler ones. After the compilation of the model into the data structure used by the
planner, this task hierarchy is lost, the subtasks being replaced with their corresponding chronicles in the
top-level task.

5The label explained before a proposition hold(AttName(?x1, . . . , ?xn) :?v∗, (t, t∗)) or
event(AttName(?x1, . . . , ?xn) : (?v, ?v∗), t) is used to assert that the attribute has the value ?v∗
at time t, no matter what its previous value was; and the planner does not need to justify the establish-
ment of this value. Thus the initial state is described through explained events occurring at the origin of
the plan horizon. These events can be used to establish the values of future propositions.

6These temporal propositions are labeled as contingent in the initial task declaration.

46 Chapter 2. The IXTET planning system

 task Init()(t_start,t_end){
 timepoint t_visi1, t_visi2;
 timepoint t_goal1, t_goal2s, t_goal2e;
 timepoint t_goal3s, t_goal3e, t_goal4s, t_goal4e;

 // Initial state
 explained event(AT_ROBOT_X():(?,0),t_start);
 explained event(AT_ROBOT_Y():(?,0),t_start);
 explained event(ROVER_STATUS():(?,still),t_start);
 explained event(PTU_POSITION():(?,forward),t_start);

 explained event(PTU_DRIVER_INITIALIZED():(?,true),t_start);
 explained event(MVT_GENERATION_INITIALIZED():(?,true),t_start);

 explained event(COMMUNICATION(W1):(?,none),t_start);
 variable ?x1,?y1;
 ?x1 in]-oo,+oo[; ?y1 in]-oo,+oo[;
 explained event(PICTURE(OBJ1,?x1,?y1):(?,none),t_start);
 variable ?x2,?y2;
 ?x2 in]-oo,+oo[; ?y2 in]-oo,+oo[;
 explained event(PICTURE(OBJ2,?x2,?y2):(?,none),t_start);

 // Visibility window
 contingent event(VISIBILITY_WINDOW(W1):(?,out),t_start);
 contingent event(VISIBILITY_WINDOW(W1):(out,in),t_visi1);
 contingent event(VISIBILITY_WINDOW(W1):(in,out),t_visi2);
 (t_visi2-t_visi1) in [120,120];
 (t_visi1-t_start) in [300,300];

 // Goals
 hold(AT_ROBOT_X():0,(t_goal1,t_end)) goal(3,0);
 hold(AT_ROBOT_Y():0,(t_goal1,t_end)) goal(3,0);

 hold(COMMUNICATION(W1):done,(t_goal2s, t_goal2e)) goal(2,0);

 hold(PICTURE(OBJ1,6,-3):done,(t_goal3s,t_goal3e)) goal(1,0);
 hold(PICTURE(OBJ2,9,8):done,(t_goal4s,t_goal4e)) goal(1,0);

 // Horizon
 (t_end - t_start) in [900,900];
 }latePreemptive

Figure 2.6: Example of planning problem

in Figure 2.6 represents the planning problem for the planetary rover domain with a high
priority goal to be back at the lander at the end of the mission horizon, a medium priority
communication goal with the ground-station and two lower priority goals to take targets
at different locations into picture.

2.1.6 Discussion with respect to plan execution

About the assumption on the determinism of actions

The assumption that planning operators are deterministic implies that the value of an
attribute is not changed by the execution of an action, unless this change is explicitly
declared. The rover evolves in a non-deterministic environment and, as a complex system,
is subject to failures. However, the operator knows how the rover has been built and how it

2.1. A time-oriented functional representation 47

is expected to behave. Unlike the action of throwing a dice which has definitely a random
effect, the non-determinism of actions in the rover domain comes from possible failures
or external events. Thus, it seems reasonable to use a deterministic planning domain
representation that models the nominal course of actions and let an execution controller
check if an action execution is effectively nominal and react to failures.

Action execution

IXTET-EXEC is composed of two components: the planning system and a temporal executive
which interacts with an external procedural executive. The temporal executive is given a
plan to execute, i.e. a set of partially ordered actions and decides when to start and even-
tually stop actions and monitors their timing, whereas the procedural executive expands
actions into detailed commands to the controlled system, monitors the execution of each
action and transmits status reports to the temporal executive upon action completion.

From an “execution point of view”, an action in the plan is characterized by its name
a, its grounded7 parameters pa, a starting timepoint sta, an ending timepoint eta and an
identifier ia. The temporal executive needs additional information on the action behavior.
If an action is not controllable by the agent that can only wait for it to terminate, the
action model is labeled nonPreemptive. If an action is controllable, it can be stopped as
soon as possible (label earlyPreemptive) or as late as possible (label latePreemptive).
Thus a move action is late preemptive: the rover can be stopped but is given as much time
as possible to reach its destination. Considering the example of a robot that takes objects
and moves them to diverse locations, the early preemptive carry action that monitors that
the robot keeps an object in its hand is stopped as soon as the robot has reached the
object destination.

Model design restrictions

The design of a domain involves two models: one (in the IXTET formalism) for IXTET-EXEC
and one (a library of procedures) for the procedural executive. Actually, IXTET-EXEC does
not yet allow to exploit the full expressiveness of the IXTET formalism and the following
restrictions need to be applied.

The temporal executive launches actions by sending the information (a, pa, ia) to the
procedural executive. The procedural model contains a procedure associated with each
action name a. It describes the expansion into commands and a model of the report to
send back to IXTET-EXEC. This report contains a partial description of the system state,
i.e. the procedural executive computes, from sensor information, the level of the resources
used by the action and the current value for each logical attribute appearing in the action
definition. Thus, when executing an action, the procedural executive needs to know the

7The parameters of an action are not necessarily grounded at the end of the planning process, in order
to keep execution flexibility, but an action is completely instantiated before its execution: a value is chosen
and propagated through the constraints of the plan.

48 Chapter 2. The IXTET planning system

values of the arguments of logical and resource attributes relevant to the action. Thus,
when designing the IXTET domain model, one should be careful that all attributes are either
grounded or their arguments are variables appearing in the list of the action parameters.

During an action execution, an active monitoring of the resource levels is performed
by the procedural executive8. As far as IXTET-EXEC is concerned, the “theoretical” level of
a resource in the plan is updated by its actual value at the end of each action requiring
the resource and projected to the rest of the plan to detect potential future conflicts. The
computation of this theoretical resource level takes into account the global borrowing,
consumption or production of the resource over past actions, as well as a worst case
estimation of the global resource usage of actions currently in execution. Thus IXTET-
EXEC does not yet handle the description of profiles of resource usage with intermediate
timepoints during an action. Because of the worst case estimation, when designing an
IXTET domain model, one should associate the global consumption of a resource during an
action with its starting timepoint, the global production with the ending timepoint and the
global borrowing with the action duration interval.

Finally the current implementation restricts goals to be specified as hold propositions
on grounded attributes with fixed values. This specification still allows to require a specific
property to be simply established, or established and maintained during a time interval.

8In the LAAS architecture, a specific component, at the execution control level (R2C), also checks that
a command will not lead to an unsafe state due to insufficient resources.

2.2. The underlying CSP managers 49

2.2 The underlying CSP managers

During the planning process, refinements add constraints to the plan: ordering constraints
between timepoints, binding constraints between arguments or values, numeric constraints
on resource quantities, etc. These constraints are managed using constraint satisfaction
techniques. A Constraint Satisfaction Problem (CSP) is commonly defined by a set of vari-
ables, their respective domains and a set of constraints between these variables. Finding
a solution to this problem amounts to assigning a value to each variable, such that these
values are compatible with all the constraints. A CSP is said consistent if such a solution
exists. In a CSP-based planning process, where least-commitment is desirable, the aim is
not to find such a particular solution but to keep all possible solutions by computing the
minimal domains for each variable that guarantee the consistency of the CSP.

A planning domain in IXTET includes two types of variables: temporal variables, or
timepoints, ranging over continuous numeric domains, and atemporal variables, ranging
either over symbolic or continuous numeric domains. These variables and their associated
constraints are handled thanks to two CSP managers: a Time Map and a Variable Map.
Mixed constraints between temporal and atemporal variables can also be expressed. They
are handled by a supervisor that transfers information from one CSP manager to the other
one when required.

2.2.1 Time Map

During the planning process, two types of binary constraints are added to the constraint
network by the insertion of new actions and the resolution of conflicts, and handled by the
Time Map manager: symbolic ordering constraints9 (such as the precedence ti ≺ tj) and
numeric duration constraints between two timepoints of the form (tj − ti) in [lbij , ubij].
The Time Map manager has to fulfill various types of requests. It is used to incrementally
add constraints, to consult the coherence of a specific constraint such as “Is t1 before t2?”
and to check the global consistency of the constraint network.

The Time Map manager is based on the Simple Temporal Problem framework presented
in [Dechter 89]. It corresponds to a specific CSP where variables are timepoints and
constraints are quantitative constraints of the form lbij ≤ tj−ti ≤ ubij . A Simple Temporal
Network (STN) can be represented as a graph where nodes are variables and arcs are
labeled by a single numeric interval. Constraint propagation and consistency checking are
done using path-consistency algorithms which are polynomial in the number of timepoints
n. An STN is conveniently implemented as a n × n array D where Dij represents for a
pair of timepoints (ti, tj) the domain of the time distance (tj − ti) compatible with all the
constraints. The network is inconsistent if ∃(i, j)/Dij = ∅.

9These constraints can also be expressed as numeric binary constraints: ti ≺ tj is equivalent to (tj − ti)
in]0, +∞[.

50 Chapter 2. The IXTET planning system

Using this structure, the consultation of the coherence of one constraint is done in
constant time: “Is t1 before t2?” is equivalent to “D12∩]0,+∞[6= ∅?”, or “Are t1 and t2
simultaneous?” is equivalent to “D12 == [0, 0]?”, etc.

Network consistency checking is achieved through a complete propagation of the set
of constraints. Global propagation is performed, with a O(n3) complexity, using the PC-
1 algorithm presented in Table 2.1. Path Consistency imposes local consistency among
triplets of variables until a fixed point is reached or until the network is shown inconsistent.
It has been demonstrated in [Dechter 89] that, in the specific case of an STN, one iteration
of the PC loop is sufficient and that the resulting network is minimal, i.e. the time intervals
Dij represent the minimal domain (with respect to the intersection) compatible with all
constraints.

Global-Propagation()
% Returns true if the network is consistent, false otherwise.
% Dij,i6=j is initialized with:
% - [lbij , ubij] if a constraint ((tj − ti) in [lbij , ubij]) exists,
% -]−∞,+∞[otherwise.
% Dii is initialized with [0, 0].

for k:=0 to n− 1 do
for i,j:=0 to n− 1 do

Dij ← (Dik + Dkj) ∩Dij ;
if Dij = ∅ return false;

return true;

Table 2.1: Global propagation algorithm

An incremental version of this algorithm, presented in Table 2.3, with a complexity in
O(n2 + n), propagates the constraints between the pair of timepoints (i0, j0). It is used
when a new constraint C0 on i0 and j0 is added to the network during the planning process
(see Table 2.2), and presupposes that the constraints on the other timepoints have already
been propagated.

Figure 2.7 displays an example of STN for a simple plan: the rover moves to a location
while downloading images. t0 and t1 represent respectively the starting and ending time-
points of the plan horizon. t2 and t3 are the starting and ending timepoints of the move
action, whereas t4 and t5 are the starting and ending timepoints of the download-images
action. During the planning process, the following constraints are posted: the horizon du-
ration (10min), the actions durations and precedence constraints (represented by dotted
lines). The array shows the state of D after a complete propagation.

As said before, both propagation algorithms compute a minimal network, in the sense
that the Dij intervals correspond to the minimal domains compatible with all constraints.

2.2. The underlying CSP managers 51

Add-Constraint(i0,j0,C0)
% Returns true if the network is consistent, false otherwise.

if (Di0j0 ⊂ C0) do
return true;

else if (Di0j0 ∩ C0 = ∅) do
return false;

else do
Di0j0 ← Di0j0 ∩ C0;
Incremental-Propagation(i0,j0);
return true;

Table 2.2: Add a constraint C0 between the timepoints i0 and j0

Incremental-Propagation(i0,j0)
% Assumes that D is completely propagated except for the timepoints i0 and j0.

for i:=0 to n− 1 do
Dij0 ← (Dii0 + Di0j0) ∩Dij0 ;

for i,j:=0 to n− 1 do
Dij ← (Dij0 + Dj0j) ∩Dij ;

Table 2.3: Incremental propagation algorithm

This condition is necessary to guarantee that a complete execution of the plan is possible.
The temporal executive decides when to “execute”10 a timepoint based on the information
contained by the STN. The timepoint t0 representing the origin of the time axis, the
possible times at which the event corresponding to a timepoint ti should occur are given
by the domain interval (ti − t0) or D0i. If this domain is minimal, for each of its value vi,
there is a global solution to the STP with (ti− t0) = vi. The same propagation algorithms
are used during execution to update11 the network and keep it minimal.

2.2.2 Variable Map

Thanks to the extension proposed in [Trinquart 01], the Variable Map manager can handle
both symbolic variables ranging other finite domains and numeric variables ranging over

10We detail in section 3 what the execution of a timepoint consists in, depending on its type. For an
action starting timepoint for instance, it amounts to sending the corresponding launch message to the
procedural executive.

11When the event corresponding to a timepoint ti occurs, the timepoint is set to the occurrence time
tocc by adding and propagating the constraint (ti − t0) = tocc.

52 Chapter 2. The IXTET planning system

0 1

2 3

4 5

[120,300]

[120,240]

[600,600]

i

0

5

4

3

2

1 [-600,-600]

j
0 54321

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

]-480,0[

]0,480[

]-600,-120[

]120,600[

]-480,0[

]0,480[

]-600,-120[

]120,600[[600,600]

]120,600[

]-600,-120[

]0,480[

]-480,0[

]120,600[

]-600,-120[

]0,480[

]-480,0[

[-300,-120]

[120,300]

]-480,480[

]-480,480[

]-600,360[

]-360,600[

]-360,600[

]-600,360[

]-480,480[

]-480,480[

[120,240]

[-240,-120]

Figure 2.7: Example of temporal constraint network

continuous domains. The following constraints apply to both types of variables:

• binding (?x =?y),

• separation (?x 6=?y),

• domain restriction (?x ∈ Dx),

• dependency (?x ∈ Dx ⇒?y ∈ Dy).

It is also possible to express numeric constraints of the form:

• ?x+?y =?z,

• ?x−?y =?z,

• ?x∗?y =?z,

• max(?x, ?y) =?z,

• min(?x, ?y) =?z,

•
∑

i=1..n ?xi ≤?y (this constraint is used to bound the sum of consumptions of con-
current temporal propositions on the same resource),

•
∑

i=1..n ?xi =?y (this constraint is used during execution to update the level of a
resource).

During the planning and execution processes, the Variable Map manager needs to
fulfill various requests such as checking the coherence of a binding or separation constraint
between two variables with the constraint network, incrementally adding and propagating
new constraints, or checking the global consistency of the network. Variables are gathered

2.2. The underlying CSP managers 53

together into equivalence classes, each one representing a set of unified variables which
share the same valuation domain.

To compute minimal domains compatible with all constraints, two types of techniques
are used:

• Exhaustive propagation techniques guarantee the global consistency of the network.
These techniques are expensive and NP-complete.

• Filtering techniques (such as propagation by arc-consistency) guarantee a local con-
sistency. These techniques can be solved in polynomial time but only provide a
necessary and not sufficient condition to the network consistency.

During the planning process, a trade-off between both types of technique is done.
The constraint network is incrementally built and its consistency is approximated by a
filtering technique at each planning step, whereas a complete propagation is performed
when a candidate solution plan is available, to check its global consistency.12

Thus, each time a new constraint is added, an arc-consistency algorithm performs a
local propagation from the equivalence classes concerned by the constraint: the domain
of an equivalence class i is restricted until all its values are compatible with the set of
constraints involving the variables contained by i. The use of numeric variables and
constraints does not especially affect the filtering algorithm and only requires the definition
of operators on disjunction of intervals as well as the definition of propagation rules for
each numeric constraint.

However, the use of variables ranging over continuous domains does affect the global
propagation algorithm. The initial propagation algorithm performed an exhaustive for-
ward checking search and tested every possible instantiations to eliminate values leading
to an inconsistent network. The extension proposed by R. Trinquart allows to handle
mixed discrete and numeric variables. The exhaustive variable instantiations are replaced
by domain splitting guided by the dependency constraints. The principle and algorithms
are further detailed in [Trinquart 01, Trinquart 04].

2.2.3 Mixed constraints

A Global Map manager handles a specific type of constraint, mixing both temporal and
atemporal variables. Such a constraint has the following form: ?x = c ∗ (tj − ti) where ti
and tj are timepoints, ?x is a numeric atemporal variable and c is a constant coefficient.
It allows the expression of dependency between the effects of an action and its duration.
For example, in the rover domain, the duration of a move action is computed by the set of
constraints: ?duration = (tend − tstart) with ?distance =?speed∗?duration (and distance
depends on the initial and final locations), or the duration of a download-images action

12During the execution process, new constraints on atemporal variables are added when a choice of value
is made for an action parameter previous to the action launch (restriction of the domain to a singleton)
and when the level of a resource is updated. Complete propagation is performed in both cases.

54 Chapter 2. The IXTET planning system

depends on the quantity of memory storage to free and the download rate: ?duration =
(tend − tstart) with ?q =?duration∗?rate.

The Global Map manager supervises the insertion of a new mixed constraint as two
distinct constraints in the corresponding constraint networks. The constraint tj − ti =
Dx/c, with Dx corresponding to the current domain of the variable ?x, is inserted in the
STN, whereas the constraint ?x = c ∗ Dij , with Dij corresponding to the current time
interval between ti and tj , is inserted in the atemporal CSP. During the planning process,
Dx and Dij may be further restricted. These restrictions are alternatively propagated
in both constraint networks, the information on Dx and Dij being transfered by the
supervising Global Map manager from one CSP to the other one, and this until a fixed
point is reached in both networks.

Likewise, two types of mixed propagation are considered: a “local” one that uses
arc-consistency propagation and a “global” one that uses complete propagation for the
atemporal network. In both cases, the path consistency algorithm is used for the STN.

However, the use of mixed constraints may have an impact on the temporal network.
Indeed, the introduction of a mixed constraint on an atemporal variable ranging over a
domain made of a disjunction of intervals induces the splitting of the temporal domain
into a disjunction of temporal intervals, thus transforming the STP into a more general
TCSP (Temporal Constraint Satisfaction Problem, cf. [Dechter 89]).

In the TCSP framework, deciding if a network is consistent is NP-complete and de-
ciding whether it is minimal is NP-hard. Thus path consistency algorithms (such as the
PC-1 loop described in Table 2.1 run until a fixed point is reached) are incomplete (may
fail to detect an inconsistency). The complexity induced by the disjunctive constraints
comes from a possible problem of fragmentation: the total number of intervals in the
path consistent network might be exponential in the number of intervals per constraint
in the input network. This is due to the relaxation operation used in the PC algorithm:
Dij ← (Dik + Dkj) ∩ Dij , where the number of intervals of (Dik + Dkj) is bounded by
nDik

∗ nDkj
, with nDxy representing the number of intervals in the disjunction Dxy.

Some approaches have been proposed to handle the complexity of TCSPs. In addition
to the path consistency algorithms (such as PC-2 or DPC) which are incomplete, still
quite effective to detect inconsistency but present the drawback of possible explosion due
to the fragmentation problem, the authors in [Schwalb 97] propose two types of algorithms
which are incomplete, somewhat less effective but polynomial. These algorithms are based
on approximations. The first one, called ULT (Upper Lower Tightening), approximates a
disjunction by a single interval made from the lower and upper bounds of the disjunction.
The corresponding STN is propagated and its consistency is checked. Finally, the initial
TCSP is intersected with the resulting STN. The second algorithm, called LPC (Loose Path
Consistency), is more efficient than ULT. It is similar to a PC algorithm whose intersection
operator has been redefined as a loose intersection operator13. These algorithms can be

13Let T = {I1, I2, I3, . . .} and S = {J1, J2, J3, . . .} be two disjunctions of intervals, the loose intersection

2.2. The underlying CSP managers 55

used as filtering or preprocessing functions to detect inconsistencies, but do not compute
a minimal network.

However, it is interesting to note that, practically, the PC algorithm often converges
to the minimal network ([Dechter 89]). Other experimental results [Shapiro 99] also show
that the fragmentation problem is a worst-case scenario hard to achieve. The number of
intervals in the output of a sum of two interval sets (Dik + Dkj) effectively varies as the
product nDik

∗ nDkj
if nD is limited (< 10), but quickly decreases when nD > 15.

Keeping a minimal network is a necessary condition for the execution process which
relies on the minimal domains to decide the consistent execution time of timepoints. A
minimal network can be computed thanks to a PC filtering algorithm followed by an expen-
sive backtrack search algorithm if the resulting network is not minimal (see [Dechter 89]).
This method is not completely satisfying in the context of temporal execution with fre-
quent updates and constraint propagation in a limited amount of time.

Thus the issue of TCSP management still needs to be addressed. In the meantime,
we restrict the expression of mixed constraints to the ones involving atemporal variables
ranging over a single continuous interval and which will not contain gaps in the course
of propagation. This restriction does not affect the model of the rover domain. In the
constraint ?duration = (tend − tstart) with ?distance =?speed∗?duration, for example,
?speed represents the speed range of the rover from 0.03 to 0.1 m.s−1 (?speed ∈ [0.03, 0.1])
and ?distance, originally ranging over]−∞,+∞[, is computed depending on the numeric
values of ?x1, ?x2, ?y1 and ?y2 following the rigid property represented in Figure 2.2.
Thus, the temporal constraint network remains a Simple Temporal Problem.

2.2.4 Discussion with respect to plan execution

More realistic models

The use of CSPs allows the design of a more realistic model of the world. As said before,
mixed constraints are useful to represent interactions between the effects of an action and
its duration. Besides, most of the time, an action does not last an exact duration nor use
an exact amount of a resource. The use of numeric variables with domains ranging over
continuous intervals allows to reflect part of the uncertainty on quantitative effects and
durations on to the model of actions.

between T and S corresponds to the disjunction {I ′1, I ′2, I ′3, . . .} with I ′i = [lbi, ubi], lbi and ubi being the
lower and upper bounds of the intersection Ii ∩ S. The loose intersection is equivalent to the intersection
in the case of STN.

56 Chapter 2. The IXTET planning system

Flexibility

The plans produced are not instantiated, linearized and time-stamped set of actions. In-
stead the plan is flexible, keeping for each temporal and atemporal variable a minimal
domain which only reflects the necessary constraints. As discussed in section 1.2.2, such
order-constrained plans with unbound variables are worthwhile, the plan being further
constrained during the plan execution according to the actual timings and events.

The STN framework also provides an efficient support to the plan execution. The tem-
poral executive relies on the plan’s temporal network to determine what to do and when.
The temporal data (occurrence time of events) are regularly updated during execution by
the simple insertion and propagation of a domain restriction constraint. Furthermore, we
take advantage in the IXTET-EXEC framework of the temporal flexibility to try and repair
the plan after an execution failure and eventually postpone the execution of some actions,
while executing the valid part of the plan.

2.3. Partial Order Causal Link Planning with unbound variables 57

2.3 Partial Order Causal Link Planning with unbound variables

Planning consists in determining, from a knowledge of an initial situation and the set
of possible actions, the course of actions to achieve a set of goals. In classical planning,
two main strategies have been applied. Planning can be viewed as a search in the state
space, i.e. the search space is a graph where a node represents a state of the world and a
transition from a state S1 to a state S2 corresponds to an action that is applicable in S1

and whose effects lead to S2. Planning then amounts to finding a path from the initial
state to a final state where all goals are satisfied. The other strategy performs a search
in the plan space. A rough and incomplete plan is progressively expanded and refined by
the insertion of actions and constraints until a complete and valid plan is found. A node
in the search tree then corresponds to a partial plan and a transition from P1 to P2 to a
plan transformation that fixes a specific flaw of P1.

The plan space approach produces plans whose actions are partially ordered. A widely
used strategy to keep track of the interactions between the actions consists in record-
ing them through a set of causal links that represent and protect the establishment of a
property by an action. The IXTET planning system follows such a Partial Order Causal
Link (POCL) planning approach. Using the commonly adopted principle of least com-
mitment during the search: to postpone as late as possible a choice that is not mandatory
now, IXTET will produce plans that are also partially instantiated. Moreover, the clas-
sical POCL framework has been extended to handle time and scheduling problems with
resource allocations.

In this section, we briefly present the search space and the planning algorithm in the
IXTET framework, we then detail the possible flaws and plan transformations, and finally
discuss the heuristics used to guide the search.

2.3.1 Search in the plan space

A partial plan in the classical POCL planning framework

In the POCL planning framework, the search process explores a tree in the partial plan
space. A partial plan is generally defined as a 4-tuple (A,C, L, F) where:

• A is a set of partially instantiated actions,

• C is a set of constraints on temporal and atemporal variables appearing in A and
L,

• L is a set of causal links,

• and F is a set of flaws.

A causal link ai
p→ aj denotes a commitment by the planner that a proposition p of

action aj is established by an effect of action ai. The precedence constraint ai ≺ aj and
binding constraints for variables of ai and aj appearing in p are in C. The set F may

58 Chapter 2. The IXTET planning system

contain two types of flaw: open conditions and threats. Open conditions correspond to
propositions that have not yet been established in the plan, by the initial situation or by
the actions in A, and protected by a causal link. A threat appears in the plan if an action
ak has effects in contradiction with the establishment of the proposition p by the causal
link ai

p→ aj and (ai ≺ ak ≺ aj) is consistent. The execution of a partial plan containing
such flaws can lead to a situation where an action is not applicable.

Using this definition, the planning problem, i.e. the initial state and the goals, is
expressed as a specific partial plan PI containing two types of “null” actions: one “initial”
action whose effects correspond to the description of the initial state, and several “goal”
actions, each one having a top-level goal as a precondition. The set of flaws F of PI

contains the preconditions of the goal actions. PI is the root node of the search tree. A
planning step involves selecting a flaw in the partial plan and resolving it, resulting in a
new partial plan. This process is repeated until a solution plan is found.

A partial plan P is a solution plan to the planning problem if it forms a complete and
consistent plan. P is consistent if the corresponding temporal and atemporal constraint
networks are consistent. These networks record for each variable its minimal valuation
domain. Thus a partial plan stands for a set of plan interpretations, where an interpre-
tation is a linearization of the partial plan by a complete and consistent assignment of
values to the temporal and atemporal variables. P is complete if each of its possible
interpretations forms a path in the state space between the initial state and a state in
which all goals are satisfied. It is equivalent to characterize a solution plan as a partial
plan where the set of constraints C is consistent and the set of flaws F is empty. This last
characterization can serve as termination condition for the search process.

A partial plan in IXTET

In IXTET, the POCL framework has been extended to the chronicle approach (presented
in section 2.1.4). The search process relies on a chronicle on a set of logical attributes and
a set of resource attributes:

C = (EvtC ,HoldC , UseC , P rodC , ConsC , CC)

This structure is similar to the partial plan (A,C, L, F) defined above. Each action in A,
as well as the planning problem corresponding to the “initial” and “goal” null actions, is
expressed as a chronicle on subsets of logical and resource attributes. EvtC , HoldC , UseC ,
ProdC and ConsC gather the temporal propositions present in the set of actions A. The
causal links are materialized as specific hold propositions (cf. the following definition of
an established proposition). Thus L is contained by a subset of HoldC . The temporal,
atemporal and mixed constraints on the variables appearing in A and L are present in CC .
Finally, the set of flaws F is also contained by EvtC , HoldC , UseC , ProdC and ConsC . A
chronicle C may involve three types of flaws: open conditions, threats and resource

2.3. Partial Order Causal Link Planning with unbound variables 59

conflicts. The two first ones are similar to the classical flaws presented above, whereas
the latter is specific to the management of scheduling problems.

In short, open conditions are event and hold propositions that have not yet been
established (the value of the logical attribute is not justified by the initial scenario or an
effect of a previous action). The establishment of a proposition is recorded and protected
thanks to causal links (materialized by specific hold propositions). A grounded logical
attribute can take only one value at a time. During the planning process, causal links can
be “threatened” by another overlapping proposition. Thus threats correspond to pairs of
event and hold propositions on the same logical attribute that potentially have the same
arguments, potentially overlap and whose values can be in conflict. Finally resource
conflicts are sets of temporal propositions on the same resource type that potentially
overlap and over-consume an allocated resource.

Let define more formally the flaws in the IXTET framework. A temporal proposition on
a logical attribute is either

hold(AttName(?x1, . . . , ?xn) :?v1, (t1, t2))
or event(AttName(?x1, . . . , ?xn) : (?v1, ?v2), t1).

It can eventually be labeled as explained or contingent. Explained propositions are
used to assert the initial state of the world, whereas contingent propositions are used to
describe the evolution of contingent attributes on which the planning agent has no means
of control. In both cases, the planning system considers that the propositions are already
established14 and does not try to justify them.

Otherwise, a temporal proposition on a logical attribute in a partial plan is said es-
tablished if the two following conditions hold.

Definition 2.3.1 (established proposition). A temporal proposition is established iff:
1. there is an establisher event in the plan: event(AttName(?x′1, . . . , ?x

′
n) : (?v′1, ?v

′
2), t

′
1)

such that ?v′2 =?v1, ∀i ?xi =?x′i and t′1 ≤ t1 hold; and
2. if (t′1 < t1), there is a causal link that maintains the value of the attribute between the
establisher and the established proposition. This causal link is represented by a proposition:
hold(AttName(?x′′1, . . . , ?x

′′
n) :?v′′1 , (t′′1, t

′′
2)) with the constraints ?v′′1 =?v1, ∀i ?x′′i =?xi,

t′′1 = t′1 and t′′2 = t1.

This definition leads to the one of an open condition flaw as:

Definition 2.3.2 (open condition). Is an open condition any temporal proposition on
a logical attribute that is not established in the current partial plan.

Besides, a chronicle may contain two types of threats (cf. Figure 2.8):
14Moreover, these establishments do not need to be protected by causal links. The planner can neither

introduce actions that have effects occurring at the beginning of the plan, nor actions that have some effect
on a contingent attribute.

60 Chapter 2. The IXTET planning system

Definition 2.3.3 (threat). A threat is a possibly conflicting pair of temporal proposi-
tions in the current partial plan, i.e. either:

1. a pair (e,cl) where

e = event(AttName(?x′1, . . . , ?x
′
n) : (?v′1, ?v

′
2), t

′
1) and

cl = hold(AttName(?x1, . . . , ?xn) :?v1, (t1, t2))

such that the current partial plan does not contain one of the constraints {(t′1 < t1); (t′1 = t1
and ?v1 =?v′2); (t2 < t′1); (t2 = t′1 and ?v1 =?v′1); (?x1 6=?x′1); . . . ; (?xn 6=?x′n)}; or

2. a pair (h,cl) where

h = hold(AttName(?x′1, . . . , ?x
′
n) :?v′1, (t

′
1, t

′
2)) and

cl = hold(AttName(?x1, . . . , ?xn) :?v1, (t1, t2))

such that the current partial plan does not contain one of the constraints {(t′2 < t1); (t2 <
t′1); (?x1 6=?x′1); . . . ; (?xn 6=?x′n); (?x1 =?x′1 and . . . and ?xn =?x′n and ?v1 =?v′1)}.

AttName(?x1,...,?xn)

AttName(?x1',...,?xn')
t1'

?v1'

?v2'

?v1

t1 t2
AttName(?x1,...,?xn)

?v1

t1 t2

AttName(?x1',...,?xn')
?v1'

t1' t2'

Figure 2.8: Threats

To introduce the third type of flaw, namely resource conflicts, we first define a criterion
of coherence of a partial plan with respect to resources. Let consider a chronicle C and one
of its interpretations Ci, corresponding to a complete assignment of values to the timepoints
and the atemporal variables (including the variables representing the borrowed, consumed
and produced amounts of resources) compatible with the constraints in CC .

We note C(r) the capacity of the allocated resource R(r). Let note respectively
Prodi(r), Consi(r) and Usei(r) the sets of produce, consume and use propositions on
R(r) present in the interpretation Ci. A production p in Prodi(r) of a quantity qp occurs
at a timepoint tp. A consumption c in Consi(r) of a quantity qc occurs at a timepoint tc.
Finally, a borrowing u in Usei(r) of a quantity qu occurs between the timepoints stu and
etu. Using these notations, the variation at a timepoint t of the available quantity of an
allocated resource R(r) is equal to:

∆(R(r), t) =
∑

u∈Usei(r)/
etu=t

qu +
∑

p∈Prodi(r)/
tp=t

qp −
∑

u∈Usei(r)/
stu=t

qu −
∑

c∈Consi(r)/
tc=t

qc

2.3. Partial Order Causal Link Planning with unbound variables 61

An interpretation is said coherent with respect to resources if, for each allocated resource,
its available quantity Q(R(r)) remains positive over time. That is, Ci is coherent with
respect to resources iff, for each allocated resource and at each timepoint t:

Q(R(r), t) = C(r) +
∑

t′/t′≤t

∆(R(r), t′) ≥ 0.

Finally, a chronicle is necessarily coherent with respect to resources if all its possible
interpretations are coherent with respect to resources.

From this global criterion, a local one, relying on the notion of minimal critical sets
(MCS), has been defined to check the coherence w.r.t. resources of a chronicle. To intro-
duce the notion of MCS, we will refer to the first implementation of resource management
in IXTET, as described in [Laborie 95a, Laborie 95b]. Thus, we restrict the problem by
considering only borrowings, consumptions and productions of fixed quantities on non-
parameterized types of resource. An extension of the notion of MCS to the case of variable
amounts and resource types with different possible allocations is presented in section 2.4.

First, the representation of resource usage is unified to simplify the algorithms: the
produce and consume propositions are translated into equivalent use propositions. Indeed,
the consumption of a quantity q at time t can also be viewed as a borrowing of the same
quantity between t and the end of the horizon. Thus:

consume(R() : q, t)⇔ use(R() : q, (t,+∞))

And the production of a quantity q at time t can be viewed as a production of this
quantity at the early beginning, quantity that is not available until time t. Or, similarly,
the production corresponds to an increment of the resource capacity CR by q along with
a borrowing of this quantity between the origin and t. Thus:

produce(R() : q, t)⇔
{

use(R() : q, (0, t))
CR = CR + q

The plan now contains a set of partially ordered use propositions. A critical set
corresponds to a potential contention of a resource, i.e. a set of potentially overlapping
use propositions whose cumulative usage exceeds the resource capacity. We can then
define a resource conflict as:

Definition 2.3.4 (resource conflict). A resource conflict is a set of use propositions
{u1, . . . , uk} present in the current partial plan P such that, if ui = use(R() : qi, (sti, eti)):
1. P does not contain one of the constraints {(eti < stj)i6=j}; and

2.
∑k

i=1 qi > CR.

A minimal critical set S is then a resource conflict, such that any subset of S is
not a resource conflict. And, as proved in [Laborie 95a], a chronicle (or partial plan) is
necessarily coherent w.r.t. resources iff it does not contain any minimal critical set.

62 Chapter 2. The IXTET planning system

In conclusion, a chronicle C represents a solution plan iff it does not contain any flaw,
i.e.:

• the constraint networks are consistent,

• each proposition on a logical attribute is established,

• the chronicle does not contain any conflicting pair (event, hold) or (hold, hold),

• the chronicle does not contain any minimal critical set.

2.3.2 IXTET planning process

As introduced before, a POCL planner explores a tree in the plan space: a node is a
partial plan and a branch corresponds to a resolver that fixes a flaw. We detail in the next
subsection what are the possible resolvers for each type of flaw. Briefly, they correspond to
the insertion of new constraints (promotion, demotion, separation, etc.) that solve conflicts
or to the insertion of a new action to establish a proposition or produce a resource.

Plan-one-step(C)

% 1. Analysis:

% find the flaws contained by C and compute a disjunction of resolvers for each flaw

(flaws, resolvers)← analyse(OpenCond(C) ∪ Threats(C) ∪MCS(C));
if (flaws = ∅ and CC is consistent) then

return(C); % solution plan

% 2. Flaw selection

select one flaw f ∈ flaws;
if (resolvers(f) = ∅) then

return(failure); % backtrack

% 3. Resolver choice

non deterministically choose a resolver r in resolvers(f);
% 4. Resolver insertion

C′ ← insert(C,r);
if (CC′ is not consistent) then

return(failure); % backtrack

Table 2.4: Planning step

Table 2.4 presents the principle of a planning step. It is composed of four phases: first
the partial plan is analyzed to find its flaws15 and to propose a disjunction of potential
resolvers for each flaw, a flaw is then selected and one of its possible resolvers is chosen and

15In IXTET however, the plan is not completely analyzed at each step. As presented later, only a subset of
the attributes is considered during the analysis and an agenda of the flaws is maintained and incrementally
updated at each step.

2.3. Partial Order Causal Link Planning with unbound variables 63

Resolvers
(costs)

Insertion

resolver
of the chosen

Abstraction Graph
(off−line)

Event
Hold
Use

Temporal
Manager

Variable
Manager

Backtrack

of the partial plan
Reconstruction

Flaw Selection
(Kmin)

and

requests

insertion

Analysis Module

Open Conditions

Plan Manager

Search Control Module

or

Threats

Resource Conflicts

Global Search Tree

Resolver Choice
Control Algorithm

Figure 2.9: IXTET modules

inserted, resulting in a new partial plan. This planning step is repeated until a solution
plan is found.

Two sorts of decisions are made during a planning step: the selection of a flaw, and
the non deterministic choice of a resolver for that flaw. In the same time, two failures
may arise: the plan contains a necessary flaw, or a resolver insertion leads to inconsistent
constraint networks. To guarantee the completeness of the search, the planning algorithm
backtracks on the resolver choice points: a previous node in the tree is chosen and another
resolver, different from the one that led to the failure, is applied. It is not necessary to call
the flaw selection into question, since all flaws in the plan need to be addressed anyway.
However, a smart choice on the order in which the flaws are addressed can significantly
reduce the search space. This planning procedure is sound and complete: if a solution to
the planning problem exists, the process terminates and returns a solution plan.

Figure 2.9 presents the organization in modules of the IXTET planner. The Analysis
module is in charge of detecting the flaws of the current partial plan. It computes for each
flaw the complete set of its resolvers and associates with each resolver a cost that is used
to guide the future non deterministic choice. Besides, flaws are ranked according to an
abstraction hierarchy computed off-line and satisfying the Ordered Monotonicity Property

64 Chapter 2. The IXTET planning system

P0

r1r2

Reach(P0)

Reach(P1)

Reach(P2)

P1P2

Figure 2.10: Reachability in the plan space

[Knoblock 94]. The analysis encompasses only flaws that belong to the level of abstraction
that is currently considered by the search process. Unlike the classical use of hierarchies,
this abstraction level is dynamically built during the search process.

Among the set of flaws of a same abstraction level, the Search Control module selects a
flaw, apart from its type, according to an opportunistic least-commitment strategy, based
on an estimation of the commitment induced by each resolver (its “cost”). Moreover,
the search tree is controlled either by a near-admissible Aε algorithm or by an ordered
depth first search strategy16. Finally, the insertion and propagation through the constraint
networks of a resolver are achieved by the Plan Manager module. We detail the Analysis
module and the Search Control module in the two following subsections.

2.3.3 Analysis module

The Analysis module detects flaws in the partial plan, computes the set of resolvers for
each flaw and associates a cost with each resolver. These costs are used to guide the flaw
selection and resolver choice.

The flaw selection strategy proposed in [Ghallab 94, Laborie 95a] extends the principle
of least commitment to temporal planning. A least-commitment strategy defines a selec-
tion criterion applicable to all types of flaw. The flaw preferably chosen at a search step
is the one for which the branching factor in the search tree is minimal, i.e. the flaw with
fewest resolvers. This principle has been extended in IXTET to estimate the commitment of
a resolver as its influence on the reduction of the solution plans reachable from the current
partial plan in the plan space. And a flaw is selected according to its number of resolvers
but also according to the easiness to choose between its resolvers the least committed one.

Considering P a node in the partial plan space, we note Reach(P) the set of partial
16The plan repair process and replanning process in IXTET-EXEC use the ordered depth first search strat-

egy.

2.3. Partial Order Causal Link Planning with unbound variables 65

plans that are reachable from P (cf. Figure 2.10). We also note Reachi(P) the set of all
possible interpretations17 of the plans in Reach(P). If P0 represents the initial problem
(the root node) and Sol(P0), Soli(P0) represent respectively the set of solution plans to
this problem and the set of the interpretations of these solution plans, then Soli(P0) is a
subset of Reachi(P0).

The insertion of a resolver r1 to solve a flaw of P0 leads to the partial plan P1 = P0⊕r1.
The set of reachable plan interpretations is reduced and the solution plan interpretations
contained by Reachi(P0)\Reachi(P1) are removed.

The notion of least commitment then corresponds to the choice, among a set of possible
resolvers, of the one that removes fewest possible solutions. Under the assumption that the
solution plan interpretations are uniformly distributed over Reachi(P), a criterion consists
in preferring the resolver that reduces the least the set of reachable plan interpretations.

Thus, if it is possible to measure the size µ of the set of reachable plan interpretations,
the commitment of a resolver r from a partial plan P is estimated by:

commit(P, r) = 1− µ(Reachi(P ⊕ r))
µ(Reachi(P))

The value of commit(P, r) ranges from 0 (the resolver is redundant) to 1 (the resolver
leads to an inconsistent plan).

P0 P1 Pn[...]
rnr1

r

r2

Figure 2.11: Conjunction of elementary resolvers

If a resolver r is a conjunction of elementary resolvers (r1, . . . , rn) (see Figure 2.11)
with

commit(Pj−1, rj) = 1− µ(Reachi(Pj−1 ⊕ rj))
µ(Reachi(Pj−1))

= 1− µ(Reachi(Pj))
µ(Reachi(Pj−1))

for j = 1..n, and

commit(P0, r) = 1− µ(Reachi(Pn))
µ(Reachi(P0))

,

then

1− commit(P0, r) =
n∏

j=1

(1− commit(Pj−1, rj)).

If two elementary resolvers ri and rj are of a different type, it is reasonable to assume that
the ratio of instances deleted by the insertion of ri is the same if ri is posted in P or in

17cf. page 58.

66 Chapter 2. The IXTET planning system

P ⊕ rj . This assumption leads to the formula:

1− commit(P0, r) =
n∏

j=1

(1− commit(P0, rj)),

and, since commit(Px, rx) < 1, a first order approximation of the commitment of the
resolver r applied to P0 is:

commit(P0, r) ≈
n∑

j=1

commit(P0, rj).

The measurement function µ is difficult to establish, especially in the case of the
insertion of a new action. So, the commitment of r is approximated by a cost function
associated with each type of resolver. These cost functions are intuitive estimations of the
ratio of instantiations of P removed by the insertion of a resolver.

In the following, we detail for each type of flaw how it is detected, what are the possible
resolvers and what are the associated cost estimations.

Threats

Protection

Threat

established hold

hold

hold established holdestablished event event

Y Y Y Y

YNNN

Figure 2.12: Different categories of threats

Detection - The threat detection requires to search through the pairs (e, h) ∈
EventAttName ×HoldAttName and (h1, h2) ∈ Hold2

AttName for each logical attribute AttName
of the current abstraction level. In IXTET, the establishment status of a temporal proposi-
tion is updated during the search. Thus the potential threats can be classified according
to the establishment status of the involved propositions, as shown in Figure 2.12. The
flaw analysis module can be parameterized to not take into account some of the threat
categories. The threats involving two established propositions are necessarily considered
to guarantee the completeness of the search process. On the other hand, it can be worth
ignoring threats on non established propositions, since their future establishment will cor-
respond to an extension of the temporal interval on which the value needs to be protected.

2.3. Partial Order Causal Link Planning with unbound variables 67

ht1 t2

v

e

t
v1

v2

e

t
v1

v2

ht1 t2

v

[...]

Flaw:
open condition h

Resolver:
establisher e'
+ causal link h'

Flaw:
threat (e,h)

Resolver:
t<t1

Flaw:
open condition h

Resolver:
establisher e'

+ causal link h'

h' ht1 t2

v

e

t
v1

v2

t'

v

v'

e'

Flaw:
threat (e,h')

Resolver:
t<t'

Figure 2.13: Threat on non established propositions

Figure 2.13 illustrates such a scenario, where it appears useless to solve the threat (e,h).
Finally, Figure 2.12 presents the default control parameters used in IXTET (Y/N: the threat
is taken into account/ignored).

Resolvers - The possible resolvers for a threat are the insertion in the current partial
plan of temporal and atemporal constraints leading to the promotion or demotion of the
threatening proposition, or the separation of the attribute arguments. More precisely,
considering a threat (e, h) where

e = event(AttName(?x′1, . . . , ?x
′
n) : (?v′1, ?v

′
2), t

′
1) and

h = hold(AttName(?x1, . . . , ?xn) :?v1, (t1, t2))

the disjunction of resolvers is made of the constraints {[(t′1 < t1)], [(t′1 = t1), (?v1 =
?v′2)], [(t2 < t′1)], [(t2 = t′1), (?v1 =?v′1)], [(?x1 6=?x′1)], . . . , [(?xn 6=?x′n)]} that are compati-
ble with the constraint networks. And, considering a threat (h1, h2) where

h1 = hold(AttName(?x′1, . . . , ?x
′
n) :?v′1, (t

′
1, t

′
2)) and

h2 = hold(AttName(?x1, . . . , ?xn) :?v1, (t1, t2))

68 Chapter 2. The IXTET planning system

the disjunction of resolvers is made of the constraints {[(t′2 < t1)], [(t2 < t′1)], [(?x1 6=
?x′1)], . . . , [(?xn 6=?x′n)], [(?x1 =?x′1), . . . , (?xn =?x′n), (?v1 =?v′1)]} that are compatible
with the constraint networks.

Costs - An ordering resolver (promotion/demotion) corresponds to the insertion of a
constraint (t1 < t2), or similarly (t2− t1) in]0,+∞[. Posting this constraint results in the
deletion of the negative instances of the time interval Dt1t2 = [lbt1t2, ubt1t2] in the STN18.
Thus the commitment of an ordering resolver is approximated by:

cost(P, (t1 < t2)) =
−min(lbt1t2 , 0)
ubt1t2 − lbt1t2

∗ cT

A separation resolver corresponds to the insertion of a constraint ?x 6=?y. If we note
Dx and Dy the valuation domains of the variables ?x and ?y before the constraint is
posted, then there are card(Dx)∗card(Dy) possible instantiations of the pair (?x, ?y). The
constraint forbids all instantiations such that ?x =?y, i.e. card(Dx ∩ Dy) instantiations.
The commitment of a separation resolver is then computed using the formula:

cost(P, (?x 6=?y)) =
card(Dx ∩Dy)

card(Dx) ∗ card(Dy)
∗ cS

Other resolvers imply a binding constraint ?x =?y. Posting this constraint leads to
the reduction of the domains of ?x and ?y to the values in Dx ∩ Dy. The cost of this
constraint is then computed using the formula:

cost(P, (?x =?y)) =
card(Dx) ∗ card(Dy)− card(Dx ∩Dy)

card(Dx) ∗ card(Dy)
∗ cB

Finally, the cost of a conjunction of such constraints C = (c1 ∨ . . . ∨ cn) is defined as
the sum of the elementary costs: cost(P,C) =

∑n
i=1 cost(P, ci).

The constant coefficients cT , cS and cB can be tuned by the user (their default value
is 1), in order to prioritize some type of resolver.

Open conditions

Detection - In IXTET, the establishment status of a proposition is explicitly represented,
and so the detection of open conditions is straightforward.

18If the temporal network is a TCSP, the cost is computed using the formula

cost(P, (t1 < t2)) =
length(D′

t1t2)

length(Dt1t2)
∗ cT

where D′
t1t2 = Dt1t2∩]−∞, 0] and length([a1, b1]∨ . . .∨ [an, bn]) = (b1−a1)+ . . .+(bn−an), the intervals

[ai, bi] being disjoint.

2.3. Partial Order Causal Link Planning with unbound variables 69

Resolvers - If h = hold(AttName(?x1, . . . , ?xn) :?v, (t, ∗)) (similarly e = event(AttName
(?x1, . . . , ?xn) : (?v, ∗), t)) is an open condition, then fixing such a flaw consists in find-
ing an establisher event eest = event(AttName(?x′1, . . . , ?x

′
n) : (∗, ?vest), test) either in

the current partial plan or thanks to the insertion of a new action A, and protecting the
establishment by a causal link cl = hold(AttName(?x1, . . . , ?xn) :?v, (test, t)).

With each potential establisher event is associated one of the following conjunctions of
elementary resolvers: [(test < t) ∧ (?x′1 =?x1) ∧ . . . ∧ (?x′n =?xn) ∧ (?vest =?v) ∧ cl] for an
intern establisher, or [A, (test < t) ∧ (?x′1 =?x1) ∧ . . . ∧ (?x′n =?xn) ∧ (?vest =?v) ∧ cl] for
an extern establisher. Finally, the disjunction of resolvers for an open condition gathers
the conjunctions of all possible establishments.

Costs - The cost of an intern establishment is computed using the formula:

cost(P, causal link) = cost(P, (test < t))

+cost(P, (?vest =?v)) +
n∑

i=1

cost(P, (?x′i =?xi))

+coefcl ∗DurationRatio

DurationRatio reflects the fact that a causal link forbids events on the grounded attribute
to occur during a part of the plan between the establisher event and the established
proposition. Thus the least committed causal link is the one that minimizes the constraint
DurationRatio = lbtestt

lbhorizon
where lbtestt is the minimal time distance between test and t,

and lbhorizon is the minimal plan duration. coefcl is a constant coefficient. This control
parameter is tuned by the user.

The cost of an extern establishment is computed using the formula:

cost(P, action insertion) = CA

CA corresponds to an estimation of the cost of the action insertion. Two strategies have
been adopted. The first one allows the user to specify a fixed cost for each action model.
The second one performs a look ahead to estimate the amount of new open conditions
induced by the action insertion. As presented in [Ghallab 94], this procedure relies on a
subgoal decomposition and expands an AND/OR tree where the nodes AND represent
the set of new subgoals introduced by an action and the nodes OR represent the set of
actions that can possibly establish a given subgoal. The expansion of the tree is limited
to a fixed depth d and controlled by an AO∗ algorithm. The cost of an action is computed
as the sum of the costs of its subgoals, whereas the cost of a subgoal is computed as
the minimal cost of its children actions or of establisher events present in the current
partial plan. This strategy presents two weaknesses. First, it does not take into account
the interactions between actions and resources. Second, the expansion of the tree at
each open condition analysis is expensive. Practically, best performances are obtained for
d ∈ {0, 1, 2} (cf. [Laborie 95a]). By default, the IXTET planner uses the strategy of fixed
costs.

70 Chapter 2. The IXTET planning system

Resource conflicts

u1,50

u5,50

u2,60

u4,50

u3,20

u6,70

u7,40

50 time units

Capacity: 100

use proposition
quantity

u1 u2 u3

u4u5 u6

u7

PIG

Figure 2.14: Example of PIG

Detection - Once again, we present the case involving non-parameterized resources
and usages of fixed quantities as developed in [Laborie 95a, Laborie 95b]. For each resource
attribute R with a maximal capacity CR, the analysis module looks for the Minimal
Critical Sets (MCS) present in the current partial plan.

An MCS is a set of use propositions U =< u1, .., uk >, with ui = use(R() : qi, (sti, eti)),
such that:

• all propositions ui potentially overlap,
•

∑
U qi > CR,

• ∀U ′ ⊂ U,
∑

U ′ qi ≤ CR.

This search is limited to the detection of the smallest MCS which are the most inter-
esting ones in the context of a least commitment approach, since they are solved by fewer
resolvers.

The MCS detection is based on a specific structure: a Possible Intersection Graph
(PIG). This non-oriented graph represents the temporal relations between the use propo-
sitions on a given resource attribute R. A node of the PIG stands for a use proposition,
and there is an edge between two nodes i and j if their corresponding propositions ui

and uj overlap in some temporal interpretation of the partial plan. Figure 2.14 shows an
example of PIG for the set < u1, ..., u7 >, where each proposition lasts exactly 10 time
units, all propositions occur in a time interval of 50 time units and are constrained by the
precedence constraints represented by the dotted arrows19.

An MCS is equivalent to a minimal over-consuming clique in the PIG. As shown in
[Laborie 95a], the PIG has the advantage of being a weakly triangulated graph, for which

19Another precedence constraint between the end of the proposition u5 and the beginning of the propo-
sition u4 is induced by the propagation of the numeric constraints.

2.3. Partial Order Causal Link Planning with unbound variables 71

u1 u2 u3

u4u5 u6

u7

[...]

N1

N2

N3

N4

N5

Figure 2.15: Principle of the MCS search tree

the maximum clique problem for instance can be solved in polynomial time (whereas it
is an NP-complete problem for an arbitrary graph). An exhaustive search of all MCS is
intractable, thus the analysis process develops a specific search tree to find the smallest
over-consuming cliques.

A node N in this search tree represents a clique Γ(N), and the search principle consists
in scanning cliques whose size increases when exploring a branch of the tree. If (N0, . . . , Nk)
is a path from the root to a leaf, then Γ(0) = ∅ ⊂ Γ(N1) ⊂ . . . ⊂ Γ(Nk).

More formally, a node N is defined by the triplet < ∆(N), P (N),Φ(N) >. ∆(N)
is the set of propositions that contribute to the enlargement of the current clique Γ(N).
P (N) is the pool of candidate propositions to enlarge the current clique in the children
nodes. Φ(N) contains the sub-cliques of Γ(N) which are MCS. Figure 2.15 illustrates the
principle of this search tree: at each node N the shadowed ellipse, black points and squares
represent respectively the current clique Γ(N), ∆(N) and P (N).

A node N is developed in three steps. First, P (N) is partitioned into disjoint sets
∆(M), where each node M corresponds to a son of node N . Second, the set P (M) is
computed for each node M . Finally, Φ(M) is computed by searching the MCS which have

72 Chapter 2. The IXTET planning system

u2,u6,u7 {}
{u6,u7}
{u6,u2}

u3,u4 u6,u7 u5 u2,u3

u2 {}
{u2,u5}

u3 {}

u1 u5,u7

u7 {}u5 {}

P(N)

(N)

(N)

u1,u2,u3,u4,u5,u6,u7{}

u6,u7 {}

{u6,u4}
{u3,u4,u7}

Figure 2.16: Example of search tree developed with the DECLIC algorithm

at least one proposition in each ∆(Nf), Nf ∈ fathers(M) ∪M . To limit the breadth
and depth of the search tree, P (N) is partitioned into sets whose cardinality can be
greater than 1. The algorithm DECLIC detailed in [Laborie 95a] computes simultaneously
{∆(M)}M∈Sons(N) and {P (M)}M∈Sons(N) through a vertex ordering of P (N) similar to
the computation of a perfect combination for a triangulated graph. Figure 2.16 details the
search tree developed by the DECLIC algorithm for the example given in Figure 2.14.

The most expensive step is the enumeration of the sub-cliques of Γ(N) to find the
ones corresponding to MCS. For a node N , the method computes all cliques with one
proposition in each ∆(Nf), Nf ∈ fathers(N) ∪ N . These cliques are then progressively
enlarged by adding one proposition from the sets {∆(Nf)}Nf∈fathers(N)∪N . A clique γ is
added to Φ(N) if

∑
γ q > CR and

∑
γ q −minγ(q) ≤ CR (the conflict is minimal). This

enumeration method is in O(2k) where k is bounded by the size of the maximum clique
of the PIG20. The search tree is explored using a breadth first search to detect first the
smallest MCS (the size of a conflict in Φ(N) is greater than or equal to the depth of the
node).

Resolvers - Given an MCS U =< u1, . . . , un > with ui = use(R() : qi, (sti, eti)),
it can be solved either by posting one of the following precedence constraints {(eti ≺
stj)(i,j)∈[1..n]×[1..n],i6=j} or by inserting an action that produces the resource.

The MCS can be solved by at most n(n − 1) precedence constraints. However, some
of them are redundant. A minimization procedure computes for an MCS U the minimal
disjunction of temporal resolvers by removing the resolvers r that would imply another
resolver r′ of U . This minimization allows to prune some over-constraining branches of
the plan search tree. If we consider the MCS < u3, u4, u7 > in the previous example, it

20However, this maximum clique can be quite big. If N actions in the partial plan consume the same
resource, the corresponding use propositions form a clique of size N. In IXTET-EXEC, as time progresses and
actions are executed, the overlapping resource propositions are aggregated in one equivalent proposition,
thus drastically reducing the analysis search space.

2.3. Partial Order Causal Link Planning with unbound variables 73

can be solved by {(et3 ≺ st4), (et3 ≺ st7), (et7 ≺ st3), (et7 ≺ st4), (et4 ≺ st3)}, but, since
r = (et4 ≺ st3) implies (et7 ≺ st3), r will not be considered.

The MCS U over-consumes the quantity OC =
∑

ui∈U qi−CR. Each action model Ap

that produces a quantity greater than or equal to OC of the resource R at a timepoint tp
can be inserted in the plan before one of the timepoints {sti}i=1..n to solve the conflict.
A similar minimization procedure is applied to the set of possible resolvers involving Ap:
{(Ap, tp ≺ sti)}i=1..n. If the constraint (sta ≺ stb)a 6=b exists, then (tp ≺ ta) implies (tp ≺ tb)
and (Ap, tp ≺ ta) will not be considered.

Costs - A resolver is either an ordering constraint or an action insertion. The corre-
sponding costs are the same as those described before.

2.3.4 Search Control module

We detail in this subsection the heuristics used to guide the search. We first consider
how the flaws of a partial plan are ranked according to an abstraction hierarchy. We
then describe the opportunistic least-commitment approach used to select a flaw and the
strategy of search tree exploration. We finish with a discussion on the performances of
the planner.

Abstraction hierarchy

The use of abstraction hierarchies is a widely adopted strategy to explore large search
trees. In the context of non-linear planning, the principle consists in sorting flaws and
gathering them into classes, each class being associated with a specific abstraction level.
The control of the search then relies on this classification: the planner fixes all flaws of a
given level before taking into account the flaws of a less abstract level. This classification
is also used to improve the performances of the flaw analysis by limiting it to the flaws
belonging to the current abstraction level.

Diverse abstraction hierarchies have been proposed. The one exploited in IXTET verifies
the Ordered Monotonicity Property (OMP) defined in [Knoblock 94]. If Pi is an abstract
plan, i.e. a solution plan that does not contain any flaw of the abstraction level i, then Pi−1

is a refinement of the abstract plan Pi if Pi−1 is an abstract plan itself and differs from Pi

just by the addition of resolvers for the flaws of the abstraction level (i − 1). The OMP
states that for all abstract plans, every refinement of those plans leaves the literals estab-
lished in the abstract plan unchanged. Such a hierarchy can reduce the sources of backtrack:
the cause for backtracking arises not because of an interaction across abstraction levels, but
because in some cases no refinement exists (necessary flaws and inconsistent constraints).
Furthermore, an ordered monotonicity hierarchy can be automatically generated from the
description of the domain.

The contribution of the approach proposed in [Garcia 98, Garcia 95] and implemented

74 Chapter 2. The IXTET planning system

in IXTET is twofold: the classical STRIPS-like abstraction formalism has been adapted to
the chronicle representation, and a dynamic hierarchy has been defined. Indeed, unlike pre-
vious works (ABSTRIPS [Sacerdoti 74], ABTWEAK [Yang 90], ALPINE [Knoblock 94]),
where static hierarchies are totally ordered off-line and exploited as-is during the search,
this approach automatically generates a set of admissible hierarchies off-line. The ef-
fective abstraction hierarchy is then dynamically managed during planning following a
least-commitment strategy.

Since a flaw in IXTET always affects a unique attribute name, it has been chosen to
characterize the abstraction level of a flaw by its attribute name.

Hypothesis 2.3.1 (one level per attribute). Abstraction levels are sets of flaws. Two
flaws with the same attribute name are necessarily in the same level.

The hierarchy between abstraction levels is then required to satisfy the following prop-
erty:

Property 2.3.1 (Ordered Monotonicity Property for IXTET). For all possible cur-
rent partial plans, every potential transformation of those plans in order to solve flaws
only creates new flaws belonging to the current or next abstraction levels.

The automatic generation of such an abstraction hierarchy relies on the extraction of
sufficient conditions on the abstraction levels (i.e. on sets of attribute names) from the
syntactic description of the domain actions. These conditions amount to the definition of
a partial order on the set of attribute names. We note attp the attribute name present in
the temporal proposition p (either hold, event, use, produce or consume).

Definition 2.3.5 (Ordering constraints ≺ on attributes). For every action A of
the domain, if m is either an event proposition on a controllable attribute, or a produce
proposition on a resource attribute of A, and if p is any temporal proposition of A, then
attp ≺ attm.

Based on these relations between attributes, an order between sets of attributes that
are ≺-equivalent is defined as:

Definition 2.3.6 (Ordering constraints < on classes of ≺-equivalent attributes).
For each attribute name att, we note att = {att′/(att ≺ att′) ∧ (att′ ≺ att)} its class of
≺-equivalence. Then att < att′ iff att 6= att′ and att ≺ att′.

Finally, an acyclic abstraction graph, generated automatically from the description of
actions, represents the partial order < on the classes of ≺-equivalent attributes. Its nodes
correspond to the ≺-equivalence classes, and its oriented edges represent the < ordering
constraints. During the planning process, a constraint att < att′ implies that it should
not be allowed to solve a flaw on an attribute in att until all flaws concerning attributes
in att′ have been fixed.

2.3. Partial Order Causal Link Planning with unbound variables 75

COMMUNICATION

CAMERA

ROBOT_STATUS

MVT_GENERATION_INITIALIZED
VISIBILITY_WINDOW

PTU_DRIVER_INITIALIZEDPTU_POSITIONAT_ROBOT_X
AT_ROBOT_Y

PICTURE

STORAGE
STORAGE_CPT

CHANNEL

Figure 2.17: Abstraction graph for the rover domain

We slightly modified the conditions on the abstraction levels defined in [Garcia 95] to
differentiate contingent from controllable attributes. Indeed, contingent conditions impose
constraints on the plan and it is preferable to address flaws on contingent attributes as
soon as possible in the search process. A contingent attribute is automatically detected as
an attribute that appears exclusively in hold temporal propositions in the description of
actions (the agent has no means to change its value). The following redefinition of the ≺
relation allows to place a contingent attribute as high as possible in the abstraction graph
without calling the satisfaction of the OMP into question.

Definition 2.3.7 (Ordering constraints ≺ on contingent and controllable at-
tributes). For every action A of the domain, if m is an event proposition on a control-
lable attribute, or a produce proposition on a resource attribute, or an hold proposition on
a contingent attribute of A, and if p is any temporal proposition of A, then attp ≺ attm.

Besides, a reservoir resource attribute R is internally associated with a complemen-
tary resource attribute R CPT which has a mirror behavior (cf. subsection 2.1.3). R
and R CPT are ≺-equivalent. Figure 2.17 shows the abstraction graph for the rover do-
main, where V ISIBILITY WINDOW is a contingent attribute, and STORAGE CPT is
a complementary resource.

Whereas the abstraction graph is computed off-line, the effective hierarchy is defined
on-line, according to the evolution of the search. An abstraction state is associated with
each node of the planning search tree:

Definition 2.3.8 (abstraction state). An abstraction state is a pair (S, C) where S is
the set of attributes that have been completely solved so far, and C is the set of attributes
that are currently in process.

76 Chapter 2. The IXTET planning system

S

C

S'

C'

Figure 2.18: Example of consecutive abstraction states

Let denote the attribute name involved in the flaw f by attf . Hence, the current
abstraction level L can be formally defined as

L = {f/attf ∈ C}

and the definition of a hierarchy is equivalent to the specification of the update rules for
the abstraction state during the planning process. A classical hierarchical approach would
consist in waiting for the set C to become empty before computing a new set C ′ and a
new level L′. In the IXTET approach however, new attributes can be immediately added
to C if the ≺ constraints are respected. The initial abstraction state associated with the
root node is set to (S0, C0) with S0 = ∅ and C0 = {att/{att′/att < att′} = ∅}, and (S, C)
is progressively updated according to the following rule:

Definition 2.3.9 (abstraction state update). When a set attsolved of ≺-equivalent at-
tributes is completely solved, attsolved is removed from C, added to S, and C is recomputed
from the new set of solved attributes S′ as:

S′ = S ∪ attsolved

C ′ = (C\attsolved) ∪ {attnew/(attnew < attsolved) ∧ ({att/attnew < att} ⊂ S′)}

Figure 2.18 shows two consecutive abstraction states. The hierarchy defined this way is
an ordered monotonic one. A proof can be found in [Laborie 95a]. Basically, the treatment
of a flaw f ∈ L will not introduce any flaw involving an attribute in S. Indeed, if a new
flaw f ′ appears with the insertion of a new action in order to solve f , then, according to
the definition of ≺ constraints: attf ′ < attf or attf ′ = attf .

Apart from its role in the ordering of flaws, the abstraction graph provides other
interesting features. Notably, it records which attributes are linked to the primary effects
of each action (we call them main attributes). Primary effects specify the real purpose
of the actions, as opposed to the secondary effects which are only its side effects. During
the planning process, an operator is selected to establish an open condition or to produce

2.3. Partial Order Causal Link Planning with unbound variables 77

a resource based on its primary effects. In IXTET-EXEC, the information about the main
attributes of actions is also used during the execution process, when the plan is partially
invalidated, to determine which causal links should be broken to allow the insertion of
specific new actions.

Flaw selection

The Search Control module has to select a flaw among the ones that affect attributes in
the set C of the current abstraction state. A flaw selection criterion, based on the resolver
cost functions, has been defined. These cost functions are used to determine the least
committed resolver for each flaw (i.e. with the minimal cost), and the opportunity Opp(ϕ)
of solving a flaw ϕ corresponds to the estimation of the easiness to make a choice between
its resolvers. The isolation degree of the optimal resolver is quantified by the formula:

K =
1

Opp(ϕ)
=

∑
r∈resolvers(ϕ)

1
1 + cost(r)− costmin

The Search Control module selects the flaw with the minimal factor K. If all resolvers
have the same cost, K is equal to the number of resolvers, and if a flaw is determinist, the
factor K is minimal and equal to 1.

Search tree control

Given a flaw, the choice of a resolver amounts to decide which branch of the search tree the
planner should develop. The user can choose between two algorithms to control the tree
exploration: either an Aε algorithm or an Ordered Depth First (ODF) search strategy.
Both algorithms rely on the heuristic information f = g + h that estimates, for each node
N , the cost (g) of the path explored between the root and N combined with the cost (h)
of the path to be explored between N and a solution plan.

N0

Ni-1

Ni

N"i+1N'i+1

r"
i+1

r'
i+1

r i

...

i+1

Figure 2.19: Develop-
ment of node Ni

At each step of the search, a pending node Ni is chosen
(cf. Figure 2.19) and developed by: inserting its associated re-
solver (ri), analyzing the resulting partial plan, selecting a flaw
(ϕi+1) and creating a successor node for each of its possible re-
solvers (N ′

i+1, N
′′
i+1, . . .). Each successor node is characterized by

its corresponding resolver and a heuristic estimate f , and added
to the set of pending nodes.

The ODF search strategy develops next the successor node
with the minimal f . If a node has no successor, it backtracks
to the last branching node and develops its next best successor.
The Aε algorithm also prioritizes a depth-first exploration and

develops next the best successor node if it is acceptable, i.e. if its estimate f satisfies:
f ≤ (1 + ε)fmin, where fmin is the smallest estimate in the set of pending nodes. If there

78 Chapter 2. The IXTET planning system

is no acceptable successor, the algorithm backtracks to the pending node with the minimal
f .

For a node Ni, g(Ni) corresponds to the cumulative commitment of the plan transfor-
mations along the path from N0 to Ni:

g(Ni) =
i∑

k=1

cost(rk).

h(Ni) corresponds to an estimation of the distance between the partial plan Pi and a
solution plan, hence it is computed as the sum of the minimal costs induced by the
resolution of the flaws present in Pi:

h(Ni) =
∑

ϕ∈flaws(Pi)

minr∈resolvers(ϕ)(cost(r))

The main difference between the two search control algorithms is that, in the case of
the ODF search, the estimate f is only used to compare resolvers (and choose the one
with the minimal cost), whereas, in the Aε algorithm, the function f can also serve as a
cause for backtrack, the aim being to combine a depth first search with the search of a
good quality plan (i.e. a plan with as little actions as possible and the least committed
constraints).

However the estimate f defined above is not always efficient to guide the choice of
the best pending node on which to backtrack in an Aε algorithm. Indeed, the function h
entails several approximations:

• It does not take into account the interactions between flaws and the fact that a same
resolver can fix several flaws.

• It does not take into account the possibility for a resolver to introduce new flaws
(especially if the cost of an action insertion is computed using the fixed costs strat-
egy).

• Estimating the function h for a node requires to insert the corresponding resolver
and analyze the flaws present in the resulting partial plan. Since the information
h(Ni+1) is needed at the end of the development of its parent node Ni, and since it
is very expensive to completely expand and analyze all successor nodes of Ni, h is
further approximated by:

h̃(Ni+1) = h(Ni)−minr∈resolvers(ϕi+1)(cost(r))

This formula is coherent with the previous approximations: the partial plan Pi+1 is
assumed to correspond to Pi with exactly one flaw solved (ϕi+1) and no additional
flaws. Hence, at each node Ni, the function f is computed for each successor node
as:

f(Ni+1) = g(Ni) + cost(ri+1) + h̃(Ni+1)

2.3. Partial Order Causal Link Planning with unbound variables 79

• Finally, this function h is even less informed since h(Ni) is computed based on a
partial analysis of Pi that considers only flaws belonging to the current abstraction
level. On one hand, it is expensive to perform a complete analysis at each node and
the abstraction ordering of flaws considerably reduces the number of backtracks, but
on the other hand, the comparison of estimates f for nodes at different abstraction
levels does not provide enough information to decide on the best backtrack node.
The search process is likely to backtrack on nodes at a high-level of abstraction, since
the estimation of their distance to a solution plan does not encompass the lower level
flaws.

Example

Figure 2.20: Example of plan for the rover domain

Figure 2.20 shows an example of plan produced by IXTET for the rover domain. The
initial scenario contains 7 goals: one goal requires the rover to be back in position (0,0)
at the end of the mission, 2 goals require the rover to communicate with the ground
station during a visibility window, 4 goals correspond to images taken at four different lo-
cations. The square brackets represent the temporal flexibility, the arrows, the precedence
constraints between the timepoints of the actions.

Table 2.5 shows how the performances of the planner evolve when the number of

80 Chapter 2. The IXTET planning system

“image” goals in the above problem increases. These tests have been run on a Pentium
IV, using the ODF strategy.21

Nb of Nb of developed Nb of backtrack Depth of Time
“image” goals nodes points solution node (s)

1 image 49 3 46 0.5
2 images 61 4 57 1
3 images 91 6 85 3.7
4 images 134 9 121 31.5
5 images 167 12 149 60.9
6 images >1000 >192 / >1286.5

Table 2.5: Examples of planning performances

Conclusion and improvement

We briefly summarize the influence of the diverse guidance criteria on the global perfor-
mances of the search process.

• The use of a dynamic abstraction hierarchy essentially reduces the causes for back-
track and speeds up the search at each node by limiting the analysis space.

• In practice, the use of the estimate f , based on the approximation of the resolver
costs, is quite efficient to discriminate the best resolvers (especially from a set of
resolvers of the same type) and generally produces good quality plans.

• However, this heuristic f is not sufficiently informed to efficiently guide the backtrack
process. Thus, we have implemented the ODF strategy which relies on chronological
backtracking. The search control in IXTET-EXEC is based on it.

The backtrack process presents another difficulty. Once the backtrack node has been
chosen, diverse strategies can be deployed to recover the data of the corresponding partial
plan. A space-consuming one consists in recording each partial plan. The one implemented
in IXTET rebuilds the backtrack partial plan by successively inserting and propagating in
the initial plan the resolvers associated with the parents of the backtrack node. However
this strategy is not satisfactory in the context of plan repair in IXTET-EXEC. The worst-case
duration of the execution cycle depends, among other things, on the worst case duration
of a planning step. In practice, this worst case often corresponds to the reconstruction of
a deep backtrack node (in the order of a few seconds in our experiments).

In order to bound the time spent in the reconstruction of the partial plan of a spe-
cific node, we have modified the backtrack strategy. The partial plan is cached every r
developed nodes. The plan of a node N is built by recovering the plan corresponding to
its closest parent node that has been cached and successively inserting in this plan the

21The Aε algorithm could not solve these problems in a reasonable amount of time.

2.3. Partial Order Causal Link Planning with unbound variables 81

resolvers leading to N . This caching frequency r is specified by the user. If r = 0, the
plan is built starting from the initial plan; if r = 1, all the plans are cached; if r = 5, plans
are cached every 5 steps; etc.

Figure 2.21 shows the influence of plan caching, for the rover domain, on the total
planning duration and on the memory size used at the end of the planning process. These
tests have been made on five of the planning problems presented in Table 2.5. It results
from this sample that recording each plan is both space and time consuming, but that
recording every 5 nodes for instance, can considerably improve the performances (the
initial planning duration for the “5 images” problem was 60.9s and has been reduced to
38.9s). Recording the partial plan every 10 nodes seems to be a good trade-off between
time and space for the application we are concerned with.

82 Chapter 2. The IXTET planning system

Memory usage

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

r

S
iz

e
(K

) 1 image

2 images

3 images

4 images

5 images

Duration

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

r

ti
m

e
(s

)

Figure 2.21: Variations of memory usage and planning durations for r={0,1,3,5,10,15,20}

2.3. Partial Order Causal Link Planning with unbound variables 83

2.3.5 Discussion with respect to plan execution

Adaptability of the search in the plan space

The main drawback of non-linear planners is a lack of powerful heuristics to guide the
search. Such a planner can usually produce plans from scratch limited to 20-30 actions.

The search in the plan space however provides a good framework to perform plan
adaptations. The IXTET planner has already been used to accomplish incremental plan-
ning [Gout 99] and plan merging operations in a context of multi-robot cooperation
[Gaborit 96]. In the first case, the temporal planner IXTET has been integrated in the de-
cisional level of a software architecture designed for an autonomous observation satellite.
In this context, it has been used as an incremental planner that could handle successive
goal requests under certain restrictions: the insertion of a new goal and the actions that
achieve it did not interfere with the global plan previously found and currently executed.
In the second case, P. Gaborit defined operators on temporal plans in order to distribute
the generation of a global plan between several agents. These operators include the union
of plans and the insertion of new goals inside a plan. They rely on a disruption of chains
of causal links, that allows to re-establish propositions thanks to the insertion of other
actions.

The work pursued in IXTET-EXEC focuses more on the adaptation of a plan in reaction
to failures, state updates or new goals. The integration of these unexpected events may
break causal links or reveal resource conflicts, and the plan repair process tries to re-
establish these lost properties by performing a search in the plan space, starting from a
partially invalidated plan. This plan contains the flaws revealed by the report integration,
but also actions that remain flawless and executable. It is further invalidated by the
relaxation of causal constraints (using the technique proposed by P. Gaborit), but only
on specific attributes (selected using the information on main attributes of actions given
by the abstraction graph) to limit the number of planning decisions and keep as many
executable actions as possible.

84 Chapter 2. The IXTET planning system

2.4 Resource management extension

The resource management presented so far is not totally adequate to describe the resource
usages involved by more realistic domains. In order to handle conditions such as “The
energy consumed at the end of a navigation task varies with the time needed to cover the
distance to the destination”, “The memory space consumed by an image varies with the
compression rate”, or “An image can be stored indifferently on disk1 or disk2”, we need
to extend the resource representation in two directions:

• a resource type R has several potential allocations (represented by a symbolic vari-
able ?r),

• the quantities borrowed, consumed or produced during an action can be expressed
as numeric variables ?q.

These variables can be linked to other variables to express resource usages depending on
the parameters of an action or on its duration, etc. Such modifications also improve the
flexibility of the final plan and make it more robust to the execution hazards.

In this section, we consider how this extension of the expressiveness and flexibility
impacts the resource management, i.e. the definition of a resource conflict, its detection,
and its possible resolvers.

2.4.1 Resource conflict

We consider now a resource type R with several potential allocations DR = {r1, . . . , rn},
each having a specific initial capacity C0(ri).

The internal representation and algorithms in IXTET consider that all resource alloca-
tions share the same initial capacity CR, associated with the resource type, and defined
as the maximal initial specific capacity: CR = maxri∈DR

(C0(ri)). For each resource allo-
cation ri such that C0(ri) < CR, a borrowing proposition of the quantity CR−C0(ri) over
the plan horizon is added to the plan. Figure 2.22 illustrates the declaration of a resource
and its corresponding internal representation.

use(MEMORY_STORAGE(DISK1):7985,(0,+oo))

use(MEMORY_STORAGE(DISK3):15766,(0,+oo))

 resource MEMORY_STORAGE(?d){
 ?d in {DISK1,DISK2,DISK3,DISK4};
 defaultcapacity = 54660;
 capacity(DISK1) = 46675;
 capacity(DISK3) = 38894;
 }

 resource MEMORY_STORAGE(?d){
 ?d in {DISK1,DISK2,DISK3,DISK4};
 C = 54660;
 }

R

Figure 2.22: Internal representation of the initial specific capacities

2.4. Resource management extension 85

t

qmax

qmin

0
(a) (b)

t

qmax−?q
Ubef

Uaft

0

CIncr

Figure 2.23: Equivalent resource profiles for a produce proposition (a), and for its trans-
lation < ubef , uaft, CIncr > (b)

t0
(a) (b)

0 t

use : ?q in [qmin, qmax]

qmin

qmax

Figure 2.24: Equivalent resource profiles for a consume proposition (a), and for its trans-
lation into a use proposition (b)

Resource conflicts are detected as over-consuming sets of potentially overlapping bor-
rowing propositions of the form:

use(R(?r) :?q, (t1, t2)),
with ?r ∈ D′

R ⊆ DR

and ?q ∈ [qmin, qmax].

As done before, the consume and produce propositions are translated into equivalent use
propositions at the compilation of the domain model. However, the previous rewriting rule
of a produce(R():q,t), as a borrowing proposition use(R():q,(0,t)) along with an increase
of the capacity, does not hold anymore. Rewriting a production as a usage becomes more
complicated due to the introduction of the two variables ?r and ?q.

First, we need to limit the flexibility of the production representation: the resource
produced by an action is allocated in order to be able to decide which specific capacity
is increased by the action. Second, if ?q is not instantiated, it is not possible to decide
by how much this specific capacity should be incremented. This problem is solved by the
following rewriting rule:

produce(R(rP) :?q, t)
?q ∈ [qmin, qmax]

⇔

ubef = use(R(rP) : qmax, (0, t))
uaft = use(R(rP) : qmax−?q, (t, +∞))
CIncr = qmax

The rewriting rule for a consume proposition is straightforward: the consumption of
a quantity ?q at time t is equivalent to a borrowing of the same quantity between t and

86 Chapter 2. The IXTET planning system

the end of the horizon.

consume(R(?r) :?q, t)⇔ use(R(?r) :?q, (t, +∞))

Figures 2.23 and 2.24 present these rules in a graphical way.

The constant capacity increment CIncr is associated with the proposition ubef . During
the search, the current capacities of the allocated resources in the partial plan P are
computed as:

∀ri ∈ DR, Capa(ri) = CR +
∑

ubef (ri)∈P

CIncr.

The plan contains a set of partially ordered and partially instantiated use propositions.
It is not coherent w.r.t. resources if, in one of its interpretations, the cumulative usage of
a set of overlapping use propositions on the same resource allocation exceeds its specific
capacity. We now define a resource conflict in a partial plan as:

Definition 2.4.1 (resource conflict). A resource conflict is a set of use propositions
U = {u1, . . . , uk} present in the current partial plan P such that, if ui = use(R(?ri) :
?qi, (sti, eti)) with ?ri ∈ D?ri

and ?qi ∈ [qimin , qimax]:

1. the propositions potentially overlap (P does not contain one of the constraints {(eti <
stj)i6=j}); and

2. the propositions potentially involve the same resource allocation: the variables {?ri}i=1..k

can be unified in a unique equivalence class ?rU , with a non-empty valuation domain
DU =

⋂
i=1..k D?ri

; and

3. there is at least one allocated resource r ∈ DU such that
∑k

i=1 qimax > Capa(r).

2.4.2 Conflict detection

The analysis of a partial plan still consists in detecting Minimal Critical Sets which can
be solved by the insertion of one resolver.

We slightly modified the detection algorithms described in section 2.3.3, which search
for the smallest over-consuming cliques in a Possible Intersection Graph. One method
could have been to consider each allocated resource separately. In that case, the PIG
computed for an allocated resource r takes into account only propositions whose attribute’s
argument can be unified with r, and the clique search tree is developed for each graph as
detailed before. This approach however can lead to useless clique computations: a clique U
with DU = {r1, r2}, for instance, would be considered twice, in the graphs corresponding
to r1 and to r2.

2.4. Resource management extension 87

{u1,u2,
u3,u4}

Cl

{u2,u3,
u4}

Cl
 {u1}

{u3,u4}Cl
 {u2}

{u4}Cl
 {u3}

{}Cl
 {u4}

{u3,u4}Cl
 {u1,u2}

Cl
 {u1,u3}

{u4} {}Cl
 {u1,u4}

{u4}Cl
 {u2,u3}

{}Cl
 {u3,u4}

{u4}
Cl

 {u1,u2,
u3}

{}
Cl

 {u1,u2,
u4}

Cl
 {u1,u3,

u4}
{}

{}Cl
 {u2,u4}

Cl
 {u2,u3,

u4}
{}

{}
Cl

 {u1,u2,
u3,u4}

EC

Figure 2.25: Example of enlargement tree

Instead, we associate a PIG with the resource type R. As explained before, the nodes
of this PIG are the use propositions on the resource attribute R and an edge between two
nodes exists if the corresponding propositions overlap in some temporal instantiation of
the plan. A similar search tree is developed to find the cliques of the PIG. A node is defined
by the same triplet < ∆(N), P (N),Φ(N) >. This time however, Φ(N) is computed by
searching the minimal critical sets U such that:

• they have at least one proposition in each ∆(Nf), Nf ∈ fathers(N) ∪N ,
• the attributes’ arguments of all propositions can be unified in one equivalence class

?rU , with the valuation domain DU ,
•

∑
U qmax > minr∈DU

(Capa(r)),
• the conflict is minimal.

The principle of the enumeration method used to compute Φ(N) consists in 3 steps:

1. compute the set of cliques CLIQUES having one proposition in each ∆(Nf), Nf ∈
fathers(N) ∪ N , and such that their arguments can be unified in one equivalent
variable ?rC ;

2. progressively enlarge each clique Cl ∈ CLIQUES by adding one proposition from Pool,
where Pool is made of the propositions belonging to the sets {∆(Nf)}Nf∈fathers(N)∪N

whose arguments can be unified with ?rC ;
3. add a clique to Φ(N) if it is over-consuming and a minimal conflict.

Nevertheless, it should be noted that the capacity criterion used to detect an over-
consumption now varies with the clique. Especially, if we consider a sub-clique C ′ ⊆ C,
then DC ⊆ DC′ , and minr∈DC′ (Capa(r)) ≤ minr∈DC

(Capa(r)). This property has an
impact on the performance of the second step of this enumeration method (i.e. the clique
enlargement) and on the verification that a conflict is minimal. Thus, the procedure orig-
inally implemented to achieve the clique enlargement has been complemented by a second
one.

The enlargement process can be viewed as the development of an ordered tree (cf. Fig-
ure 2.25), whose nodes are defined by the pair < C, E >, where C corresponds to a clique

88 Chapter 2. The IXTET planning system

to enlarge, and E corresponds to the set of propositions that can be used to do so, sorted by
their consumption value, starting at the most consuming. A node M =< C, {u1, . . . , uk} >
has k children {M i}i=1..k computed as:

M i =< C ′, E′ >,
C ′ = C ∪ {ui},
E′ = {ui+1, . . . , uk}.

The root node is equal to M0 =< Cl, Pool > and each time a clique is a MCS, it is added
to Φ(N). The analysis process looks for all smallest MCS, and it is not necessary to fully
develop this tree. The two procedures differ by their exploration strategy. The first one
is more efficient if the conflicts are situated in the depths of the tree. It is employed when
Cl and Pool concern propositions whose resource attributes are all fully allocated. The
second one is used otherwise.

First procedure

The tree is developed following a depth-first strategy with some pruning. A branch is
explored so far as to find a conflict. In that case, the next branch is explored in the same
way. If a conflict-less leaf is reached, the information is reported back to the root node of
the branch and the following branches starting from this node are pruned. This pruning
is justified by the inclusion of the following cliques in the cliques found in the branch.
Thus, the next sub-cliques will not contain any other conflict. This property however does
not hold if the resource attributes are not all fully allocated since the capacity criterion
minr∈DC

(Capa(r)) possibly decreases when the size of the clique decreases.

Figure 2.26 presents the recursive function that implements this strategy, as well as
an example of exploration of the tree described in Figure 2.25. In this example, the tree
only contains the conflict Cl∪{u1, u2, u3, u4} (the black node). The numbers indicate the
order in which the nodes have been computed, the white nodes have been pruned.

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)

(9)

(10)

conflict

no conflict

Stop = false;
while(Pool = and !Stop) do
 get first proposition p in Pool;
 remove p from Pool;
 Clique Clique {p};
 if(Clique is over-consuming) do
 Conflicts Clique;
 else do
 SubConflicts = ;
 if(Pool =)
 Explore(Clique,Pool,SubConflicts);
 if(SubConflicts =) do
 Stop = true;
 else
 Conflicts SubConflicts;

Explore(Clique,Pool,Conflicts)

Figure 2.26: Tree exploration with the first procedure

2.4. Resource management extension 89

DOMAIN

resource R(?x){
 ?x in {r1,r2,r3};
 defaultcapacity = 4;
}

PARTIAL PLAN

produce(R(r1):2,ta); (u1)

consume(R(?x1):2,tb); (u2)
consume(R(?x2):2,tc); (u3)
consume(R(?x3):2,td); (u4)

?x1,?x2,?x3 in {r1,r2,r3};
ta<tb<tc<td;

u1

u2

u3

u4Capa(r1)=6
Capa(r2)=4
Capa(r3)=4

Figure 2.27: Example of conflict solved by separation or domain reduction

Second procedure

The second procedure explores the tree following a breadth-first strategy with some prun-
ing. A node M i is computed if the argument of ui can be unified with ?rC , and the tree
is developed as long as the size of the new clique remains less than or equal to the size
of the smallest MCS found so far by the analysis process. This method guarantees that,
when a conflict is found, it is minimal.

2.4.3 Resolvers

To guarantee the completeness of the search process, we need to propose additional re-
solvers besides the ordering constraints and the action insertions presented in section
2.3.3. In this subsection, we detail these new resolvers, their costs, and consider how we
can reduce the branching factor by sorting the resource conflicts in different classes, for
which some of the resolvers can be discarded.

New resolvers

Let us consider an MCS U = {u1, . . . , uk}, with ui = use(R(?ri) :?qi, (sti, eti)), ?ri ∈ D?ri
,

?qi ∈ [qimin , qimax]. The variables {?ri}i=1..k can be unified in the equivalence class ?rU

corresponding to the valuation domain DU =
⋂k

i=1 D?ri
. And the set U is over-consuming

w.r.t. the capacity criterion CapaU = minr∈DU
(Capa(r)).

• An obvious resolver, called separation, consists in posting one of the following
differentiation constraints {(?ri 6=?rj)}(i,j)∈[1..k]×[1..k],i6=j .

• Another resolver, called domain reduction, can be applied if for some allocated
resource r ∈ DU , the set U is not a conflict. We partition DU into D′

U ∪D′′
U , where

90 Chapter 2. The IXTET planning system

D′
U corresponds to the allocations for which U is a conflict, and D′′

U corresponds to
the allocations for which U is not a conflict. The resolver consists in selecting one
proposition uj and removing the set D′

U from the valuation domain of ?rj . The cost
of this resolver is computed using the formula:

cost(domain reduction) =
card(D′

U)
card(D?rj

)
∗ cR,

where cR is a coefficient tuned by the user. The conflict {u2, u3, u4} in Figure 2.27 can
be solved by the following disjunction of resolvers: (?x1 6=?x2)∨ (?x1 6=?x3)∨ (?x2 6=
?x3) ∨ (?x1 /∈ {r2, r3}) ∨ (?x2 /∈ {r2, r3}) ∨ (?x3 /∈ {r2, r3}).

• The following resolver, called quantity limitation, consists in reducing the do-
mains of the resource usages so as to nullify the over-consumption: OverConso =∑k

i=1 qimax − CapaU . This resolver is applicable if
∑k

i=1 qimin ≤ CapaU holds, and
amounts to posting the constraint:

k∑
i=1

?qi ≤ CapaU .

The global quantity consumed by the propositions ranges in an interval whose length
is: Q =

∑k
i=1(qimax − qimin), and the cost of the resolver is computed as:

cost(quantity limitation) =
OverConso

Q
∗ n ∗ cL.

Once again, cL is a parameter tuned by the user.

• Finally, the resolver presented in section 2.3.3, that consists in inserting an action
that produces a quantity ?qp of the resource is complemented with the constraint:

?qp ≥
k∑

i=1

?qi − CapaU .

Classes of resource conflicts

The result of the resource analysis is the set of the smallest MCS with their associated
disjunction of resolvers. This can lead to a quite important branching factor. Hopefully,
it is possible to detect and discard early during this analysis phase some resolvers which
will lead to dead-end branches, or some resolvers which lead to useless constraints.

Consider for instance the simple partial plan described in figure 2.28 and containing five
consume propositions on the resource attribute R(?x). The resource analysis process will
detect and propose resolvers for all conflicts of the minimal size (i.e. 2 propositions). The

2.4. Resource management extension 91

PARTIAL PLAN

consume(R(?x1):?q1,t1); (u1)
consume(R(?x2):?q2,t2); (u2)
[...]
consume(R(?x5):?q5,t5); (u5)

?x1,?x2,...,?x5 in {r1,r2};
?q1,?q2,...,?q5 in [1,2];

DOMAIN

resource R(?x){
 ?x in {r1,r2};
 defaultcapacity = 2;
}

task PROD_r1(){
 produce(R(r1):?qp,t);
 [...]
}

task PROD_r2(){
 produce(R(r2):?qp,t);
 [...]
}

Figure 2.28: Example of type-conflict

MCS {u1, u2} for instance can be solved by (x1 6= x2) ∨ (?q1+?q2 ≤ 2) ∨ (PROD r1()) ∨
(PROD r2()). But the two first resolvers appear to be useless as the total resource
capacity is 4 whereas the minimal consumption in the plan is 5. Therefore, separation and
quantity limitation can be discarded from the disjunction of resolvers in certain cases.

We implemented such a strategy by doing a pre-analysis for each resource type R, with
the possible allocations DR, and the initial capacity CR. Using the same algorithm as for
the MCS detection, but without considering resource parameters, we search for the type-
conflicts UT = {u1, . . . , um} corresponding to cliques such that no ordering constraint is
possible and:

m∑
i=1

qimin > CR ∗ card(DR) +
∑

ubef (r)∈Plan,r∈DR

CIncr

Then, during the conflict detection process, we test if the MCS is included in at least one
type-conflict. In that case, the set of resolvers is reduced to the possible action insertions.

DOMAIN

resource R(){
 defaultcapacity = 5;
}

PARTIAL PLAN

consume(R():?q1,t1); (u1)
consume(R():?q2,t2); (u2)
[...]
consume(R():?q4,t4); (u4)

?q1,?q2,...,?q4 in [1,3];

Figure 2.29: Example of resource contention solved by a maximal quantity limitation
resolver

Another type of simplification can be deduced from the resource conflict analysis.
Consider now the example presented in Figure 2.29. The analysis process will detect the
smallest MCS {ui, uj}(i,j)∈[1..4]×[1..4],i6=j and propose for each one a disjunction of resolvers,

92 Chapter 2. The IXTET planning system

reduced in this example to the deterministic quantity limitation ?qi+?qj ≤ 5. The planning
process will successively solve the conflicts of size 2, then handle the conflicts of size 3
(solved by a constraint ?qi+?qj+?qk ≤ 5), etc.

We can note however, that this partial plan could have been fixed in one step, by the
insertion of the constraint ?q1+?q2+?q3+?q4 ≤ 5. Thus we propose a new resolver, called
maximal quantity limitation, and only applicable to MCSs that satisfy the following
conditions: the propositions necessarily overlap and the arguments are unified.

If such an MCS is found, the Necessary Intersection Graph22 is computed, as well
as the set of its maximal cliques {UMi}i=1..l that contain the MCS. The disjunction of
resolvers for the MCS includes l maximal quantity limitations, each one corresponding to
a quantity limitation constraint posted for a maximal conflict UMi . The algorithms used
to compute the maximal cliques are detailed in Appendix 1.

Finally, the MCS are sorted into different classes, summarized in Table 2.6. To each
class corresponds a set of potentially applicable resolvers.

Characteristics Classes
of the MCS C1 C2 C3

Is contained by
a type-conflict Y N N
Propositions necessarily
overlap and / Y N
arguments are unified
Potential Resolvers action insertion action insertion action insertion

maximal quantity limitation ordering
separation

domain reduction
quantity limitation

Table 2.6: Classes of MCS

2.4.4 Conclusion

In conclusion, the extension of the expressiveness of the resource usages to variable quan-
tities is very useful, both to represent more realistic models and to provide execution
flexibility. Its main impact concerns the possible resolvers and the branching factor linked
to a resource conflict.

The execution flexibility is illustrated in Figure 2.30 for the resource STORAGE con-
22The nodes of the NIG are the use propositions on the resource attribute, and an edge between two

nodes exists if their corresponding propositions necessarily overlap and if the attribute’s arguments of both
propositions are unified.

2.4. Resource management extension 93

sumed and produced by the plan in Figure 2.20. The higher part represents the use
propositions and their variable quantities along with their valuation domains. In this
particular example, their timepoints are totally ordered. The lower part represents the
possible variations of the resource level over the plan horizon, and the least committed
constraints contained by the plan that guarantee that this level never becomes negative
nor exceeds the maximal capacity.

origin endt25 t23 t19 t32 t21

Picture(OBJ1) Picture(OBJ2)
Picture(OBJ3)Picture(OBJ4) Download

?q1 in [17561,22829.3]

?q2 in [17561,22829.3]

?q4 in [17561,22829.3]

?q3 in
[17561,22829.3]

?qaft in [0,37097.5]
?qbef in [66000,66000]Cincr=

66000

66000
61756

48439

43170.7

30878

20341.4

1756.1

13317

0

-2487.9

-21073.2

79317

max level

min level

?q1+?q2+?q4<=66000

?q1+?q2+?q4+?qaft+?q3<=132000

?q1+?q2+?q4+?qaft>=66000

authorized level variations

4244

Figure 2.30: Resource usage flexibility for the plan example in Figure 2.20

On the other hand, the extension to diverse resource allocations is less useful and
makes the resource detection process even more expensive (test of potential unification of
the variables, etc.)

Chapitre 3
Ce chapitre décrit l’approche que nous avons mise en place pour exécuter un plan temporel
et réagir aux événements imprévus. Cette approche exploite la flexibilité et le parallélisme
des plans produits par IXTET. Elle combine planification, réparation de plan et contrôle
d’exécution en tenant compte tout particulièrement des contraintes temporelles et des
mises à jour des niveaux de ressource.

IXTET-EXEC est constitué :

• d’un exécutif temporel, TEXEC, qui interagit avec le système contrôlé,
• du planificateur IXTET modifié pour prendre en compte le contexte d’exécution.

Les deux processus agissent sur la même base de données : un plan initial produit
par IXTET puis “déroulé” par TEXEC selon un cycle “Perception / Réparation de plan
/ Action”. Lorsque l’intégration des messages dans le plan l’invalide partiellement, une
réparation peut être menée en parallèle de l’exécution des parties valides. Dans certains
cas cependant, le cycle doit être arrêté et une replanification complète est requise.

La première section décrit l’exécutif temporel : son rôle, ses interactions avec le système
et les stratégies employées dans les différents cas d’échec. La deuxième section définit sous
quelles conditions un plan peut être simultanément exécuté et adapté. La troisième sec-
tion présente les principes sur lesquels le cycle d’exécution repose. Les sections 3.4 à 3.6
détaillent les trois phases du cycle. La septième section décrit la stratégie de replanifica-
tion. Le chapitre se termine sur une discussion des avantages et améliorations possibles
du système.

L’exécutif temporel

L’exécutif temporel remplit les fonctionnalités suivantes :

• il contôle le réseau temporel du plan pour décider de l’exécution des actions,
• il intègre dans le plan les bilans d’état retournés à la fin de chaque action,
• il surveille la durée des actions et réagit lorsque les contraintes temporelles ne sont

pas satisfaites,
• il réagit aux échecs d’action, aux nouveaux buts et à des modifications soudaines de

capacité des ressources,
• il lance et contrôle les deux processus d’adaptation de plan (réparation / replanifi-

cation).

TEXEC envoie deux types de commande (lancement/interruption des actions si elles
sont préemptibles). Il reçoit par ailleurs trois types de message :

• un bilan à la fin de l’exécution de chaque action contenant le statut de l’action et
l’état du système (notamment le niveau des ressources),

96 Chapitre 3

• une notification de la modification de la capacité d’une ressource,
• un nouveau but.
L’exécution se base sur le réseau temporel. Une stratégie particulière d’exécution est

associée à chaque type de timepoint (timepoints de début/fin d’une action, d’un but, d’une
proposition contingente, etc.).

Pendant l’exécution d’un plan, les situations qui nécessitent l’adaptation du plan sont:

• l’arrivée d’un nouveau but,
• une mise à jour du niveau des ressources impliquant un conflit futur,
• l’échec d’une action,
• les échecs temporels (un bilan est reçu trop tôt ou trop tard . . .).

Définition d’un plan exécutable

Dans cette section, nous précisons la définition d’un plan partiel partiellement exécuté
jusqu’à l’instant t, et détaillons comment est effectué le calcul du niveau théorique d’une
ressource à t. Nous définissons ensuite sous quelles conditions un plan et ses différents
objets (timepoint, action, but) sont exécutables.

Cycle “Perception/Réparation de plan/Action”

TEXEC se réveille lorsque un message a été reçu, lorsque il est temps d’exécuter un time-
point ou lorsque une réparation de plan est en cours. La réparation de plan correspond à
une recherche dans l’espace des plans partiels distribuée sur plusieurs cycles : une portion
limitée de la durée du cycle est allouée à la réparation pour permettre l’exécution d’actions
et la réception de messages. La planification est reprise dans la phase Réparation du cycle
suivant.

Cet entrelacement de la planification et de l’exécution peut être poursuivi tant qu’un
plan exécutable (réseaux de contraintes consistants et actions en cours supportées par le
plan) est disponible à la fin de chaque phase du cycle. Autrement, le cycle est interrompu
pour replanifier.

Perception

Nous détaillons pour les trois types de message comment le message est intégré dans le
plan et comment il peut partiellement l’invalider (en introduisant des sous-buts à établir
et/ou des conflits de ressource). Si une réparation du plan est nécessaire, il faut de plus
rompre certains liens causaux pour permettre l’insertion de nouvelles actions.

Chapitre 3 97

Réparation de plan

La distribution de la planification sur plusieurs cycles pose deux problèmes :

• Sur quel plan repose l’exécution dans la phase “Action” du cycle, surtout si aucune
solution n’a été trouvée?

• A partir de quel plan et de quel arbre de recherche se poursuit le processus de
planification dans le cycle suivant?

Action

TEXEC exécute les timepoints dont l’échéance arrive avant la fin du cycle. L’exécution
d’un timepoint varie selon le type de timepoint et est éventuellemnt retardée si l’objet
correspondant (action/but) n’est pas exécutable lorsque un processus de réparation est en
cours.

Replanification complète

Un plan initial est composé à partir de l’état courant du système et des buts pas encore
réalisés. La difficulté principale vient de l’incertitude sur la durée de la planification : il
faut pouvoir garantir qu’à la fin de la planification il reste suffisamment de temps pour
exécuter le plan solution tout en respectant les rendez-vous temporels.

Discussion

La réparation de plan est plus efficace pour des applications dont les plans sont temporelle-
ment flexibles et avec un fort parallélisme (des actions pouvant s’exécuter indépendamment
les unes des autres).

Les performances du système pourraient être améliorées en tenant compte de la con-
tingence des durées, avec des plans dont le réseau temporel vérifie les propriétés de pseudo
contrôlabilité et contrôlabilité dynamique.

Chapter 3

IXTET-EXEC: Interleaving temporal planning
and plan execution

The previous chapter detailed the principles and mechanisms of an STN-based POCL
planner and scheduler. We now consider how we can exploit the parallelism and flexibility
of the plans produced by IXTET to deal with many types of execution events.

Commands

Messages

TeXeCTeXeCTeXeC

Sensing
Plan Repair
Action

IxTeTIxTeTIxTeT

PlanPlanPlan

IxTeT-eXeCIxTeTIxTeT--eXeCeXeC

Figure 3.1: Components

We propose a new framework to combine deliberative planning, plan repair and ex-
ecution control that takes into account resource level updates and temporal constraints.
These processes are embedded thanks to two components (cf. Figure 3.1):
• a temporal executive, called TEXEC, interacting with the controlled system (e.g.

through a procedural executive);
• the temporal planner IXTET, modified to take into account the execution context.

Both components reason about and act upon the same plan database. A first solution
plan is produced by IXTET. This plan is then run by the temporal executive following a
“Sense/Plan Repair/Act” cycle. The executive wakes up when it needs to do something,
i.e. a message has been received, or it is time to execute some timepoint or a plan repair
process is in progress.

Let us call ExecutingPlan the plan currently under execution. Sensing consists in
integrating messages in ExecutingPlan, some of which may partially invalidate it. If Exe-
cutingPlan contains new flaws, a plan repair consists in keeping the structure of the plan

100 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

and taking advantage of the temporal flexibility to try to find a solution plan. Planning
is distributed on several cycles and thus interleaved with execution to allow reactivity to
events and concurrent execution of the valid part. Acting consists in determining which
timepoints have to be executed, processing them or detecting time-out.

Under certain circumstances, this cycle must be stopped and a complete replanning
is mandatory. The execution of the current plan is aborted, and a new plan is generated
from the description of the current state and the set of not yet achieved goals.

In section 3.1, we briefly introduce the temporal executive: its role, its interactions
with the controlled system and the strategies proposed to handle events (new goals and
execution failures). In section 3.2, we formally define under which conditions a plan can
be simultaneously executed and adapted. In section 3.3 we present the principles on which
the execution cycle relies. In sections 3.4 to 3.6, we explicit the three phases of the cycle:
sensing, plan repair, action. In section 3.7, we describe the replanning strategy. We finish
with a discussion on the advantages and possible improvements of the system.

3.1 Temporal executive

3.1.1 Overview

The key component in IXTET-EXEC is the temporal executive TEXEC, which interacts
with the planner and the controlled system. In our experiments, TEXEC is interfaced with
a procedural executive (OpenPRS) that allows interactions with the user and with the
functional modules of the robot (see Chapter 4 for a thorough description of this). The
plan execution is controlled by both executives as follows. TEXEC decides when to start
or stop an action in the plan and handles plan adaptations. OpenPRS expands the action
into commands to the functional modules, monitors its execution and can recover from
specific failures. It reports to TEXEC upon the action completion and also transmits the
user requests.

We further detail the functionalities of the temporal executive:

• It controls the temporal network of the plan to decide the execution of actions
(launch/stop) and maps the timepoints to their real execution time.

• It integrates in the plan the state reports (including resource levels) sent by the
controlled system upon each action completion.

• It monitors the duration of actions and reacts when temporal constraints are not
satisfied.

• It reacts to action failures reported by the controlled system, as well as to requests
to insert a new goal and to sudden alterations of resources capacity.

• It starts and controls the processes of plan adaptation (plan repair and replanning).

3.1. Temporal executive 101

One remark can be drawn from this list. At planning level, the model represents the
world as a set of abstract state variables, functions of time, generally piece-wise constant.
Thus, the executive actively monitors the temporal constraints of the plan, the effects of
actions but not their progress. The monitoring of the internal state of the controlled system
is left to the procedural executive and the more informed lower levels of the architecture1.

3.1.2 Interactions with the controlled system

TEXEC sends commands to and receives messages from the procedural executive.

As presented before (cf. section 2.1.6), an action in the plan is characterized by:
its name a, its grounded parameters pa, its starting timepoint sta, its ending time-
point eta, an identifier ia and a label denoting its execution behavior (earlyPreemptive/
latePreemptive/nonPreemptive).

TEXEC starts the execution of an action by sending the command (LAUNCH a pa

ia) to the controlled system. If the action is controllable and did not already terminate
by itself, the command (END ia) is sent to the system as soon as possible if the action
is earlyPreemptive, as late as possible if it is latePreemptive. If the action is non
preemptive, TEXEC just monitors if it is completed in due course.2

TEXEC receives three types of messages: a report upon an action completion, a notifi-
cation of the alteration of a resource capacity, or a new goal3.

• An action report has the following form:

(REPORT ia status <logical state> <resource levels>)

It necessarily contains the ending status of the action, i.e. either nominal, interrupted
or failed. If the action model specifies some resource usage, the report contains the
level of the allocated resource at the end of the action. Note that the system returns
a global level of a resource and not a report on the specific quantity used by the
action. Indeed, in case of concurrent actions, it is often impossible to discriminate
the exact share of a resource usage due to each action. If the ending status is not
nominal, the report also contains a partial description of the logical state of the
system, i.e. the final values of the grounded logical attributes which are relevant to
the action.

1The Requests control level of the LAAS architecture can perform such monitoring.
2The difference between a late preemptive action and a non preemptive one relies in the capacity for

the system to actually command the stop of the action or not. This label does not take into account the
possible contingency of an action duration, and a late preemptive action may be stopped even though
its effects are not completely achieved (thus requiring plan update and adaptation). We will consider in
section 3.8 how the non-controllability of the duration links could be taken into account to improve the
overall performances.

3This goal may come from the user or from the controlled system itself, for instance when an on-board
image processing reveals new interesting targets.

102 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

• A message notifying a capacity alteration has the following form:

(CAPACITY Res q +/-)

It indicates that the capacity of the allocated resource Res has increased or decreased
by a certain quantity q. For instance, this type of message will inform TEXEC of a
partial loss of memory storage, or of the sudden unavailability of a device.

• A new goal is specified by:

(GOAL Att Val Prio Dur Orig MinAchiev)

A goal corresponds to a new hold proposition on the grounded attribute Att set to
the fixed value Val. The other data define the priority of the goal (Prio), the duration
of the hold proposition (a real interval Dur), a temporal constraint between the origin
timepoint of the plan and the starting timepoint of the goal (Orig), and an estimation
(MinAchiev) of the minimal duration required to achieve the goal (possibly null, if
no estimation is available).

3.1.3 Temporal network execution

TEXEC bases its control on the temporal network of the plan. This network is an STN. The
constraints are propagated during the planning process by quite efficient algorithms that
keep the network minimal (cf. section 2.2.1). During the execution process, these same
algorithms are used to propagate the actual occurrence time of timepoints. If the plans
are big and the number of timepoints becomes significant, it could be interesting to use
some more efficient execution algorithms like the one proposed in [Tsamardinos 98] and
based on a filtering of non-dominating edges and local propagation in the filtered network.

The executive discriminates between different types of timepoints:

• stH and etH , respectively the origin and the ending timepoint of the planning hori-
zon;

• the starting timepoints of the actions (sta);

• the ending timepoints of the actions (eta), with a distinction between the ending
timepoints of an early, late or non preemptive action;

• the starting and ending timepoints of the goal propositions (stg and etg);

• the timepoints of contingent propositions (which specify the evolution of contingent
attributes in the initial scenario, cf. 2.1);

• miscellaneous timepoints, such as the intermediate timepoints used in the description
of actions.

3.1. Temporal executive 103

et Hst H
Move

MovePTU Take-
image

MovePTU Move

Communicate

[2,2]

[120,120]

[300,300]

image
goal

location
goal

communication
goal

visibility window

st or etg g

st or eta a

timepoint of a contingent proposition

action duration
precedence constraint

other constraint

t 1t 0

2t

5t

4t

3t

6t

7t

10t

11t

8t

9t

12t

20t 13t 14t18t
15t 19t

16t 17t

Figure 3.2: Example of temporal plan network

TEXEC decides when to execute a timepoint from the numeric constraints of the STN,
and how to execute it from its type. Currently, the executive has a well defined execution
strategy for the action and goal timepoints. Future work may improve the skills of the ex-
ecutive by allowing it, for instance, to check that contingent events actually occurred or to
perform specific monitoring at the intermediate timepoints. For the moment, TEXEC exe-
cutes the timepoints of contingent propositions by a simple instantiation to their execution
time and skips the “miscellaneous” timepoints.

Figure 3.2 shows an example of temporal plan network for the rover domain4. The
plan achieves 3 goals: one image goal, one communication goal with the ground station
during the visibility window and one location goal (the rover is back at the lander at
the end of the mission). We can notice an important characteristic of the type of STN
produced by IXTET: the timepoints of an action are exclusively linked to the timepoints
outer of the action by precedence constraints, more or less flexible according to the global
constraints of the plan duration and horizon. This feature is induced by the use of a
causal link structure during the planning process and provides some temporal flexibility,
used during parallel planning and execution to postpone the launch of an action or to
insert a new action.

Afterwards, we will call execution interval the time interval during which a future
timepoint t should be executed to be consistent with the temporal constraints. This
interval, noted [tlb, tub], corresponds to the domain of (t− stH).

An execution time texec is also associated with each future timepoint. It corresponds
to the time at which the timepoint t should be executed and its value varies with the type
of the timepoint (see section 3.6).

4The STN contains a link between each pair of timepoints. For clarity, this figure only represents the
most relevant ones.

104 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

Finally, the occurrence time tocc of a timepoint corresponds to its actual execution
time, and the executive updates the STN by posting and propagating the constraint
(t− stH) = tocc.

3.1.4 Non nominal situations and strategies of plan adaptation

A plan is produced and then executed by controlling its temporal network. We consider
which situations may arise that forbid further execution of the plan without adapting it:

1. A new goal is requested.

2. Resource level adjustment - A resource conflict appears in the plan after the
update of a resource level, or a sudden alteration of capacity. If an action has
consumed/produced more/less than expected, the plan may contain future resource
contention. If a reservoir-like resource is over-produced, it may contain future over-
flow.

3. Action failure - The controlled system returns a non nominal report.

4. Temporal failures - The temporal network constrains each timepoint to occur
inside its execution interval. Thus two types of failure lead to an inconsistent plan:
the event corresponding to the timepoint (typically the end of an action) happens
too early or too late (time-out).

Actually we need to make a distinction between two types of time-out situations. In one
case, some temporal flexibility remains in the rest of the plan. This situation may arise
for instance when a non preemptive action takes more time than forecast in the action
model. In the other case, the plan is temporally over-constrained (the links corresponding
to precedence constraints are squeezed to the minimal possible duration). This situation
may arise for instance when the starting timepoint of an action has been postponed for
too long a time.

To take advantage of the temporal flexibility of the plan, the dynamic plan adaptation
strategy has two steps. A first attempt consists in a plan repair. The plan has been
partially invalidated by the integration of the failure context5, its structure (the actions
and their ordering) is kept as is, and the planner tries to restore the lost properties. The
execution of the valid part is pursued in parallel. In certain conditions however (notably
if the plan repair fails or if a timepoint times out), the execution must be aborted and a
replanning process is started. Generally, this process searches for a new plan, applicable
in the current state of the system and achieving the set of remaining goals. If such a plan
is not found in due time, a goal is abandoned, and the replanning process is started again.
However, in case of time-out with no temporal flexibility left, one goal is directly removed
from the replanning problem.

5The plan may now contain open conditions and/or resource conflicts.

3.2. An executable plan 105

3.2 An executable plan

The plan repair and plan execution processes are interleaved and operate on the same plan
database. This intertwining of partial order planning and execution may introduce new
flaws in the plan, and we need to formally specify under which conditions such a partial
plan remains executable. With this aim in view, we introduce some useful notations and
definitions.

3.2.1 A partial plan partially executed up to time t

We extend the definition of a partial plan in the POCL framework presented in section
2.3.1 (page 57) to the definition of Pt: a partial plan partially executed up to time
t.

Definition 3.2.1. Pt = (RAt, FAt, St, Gt, Cot, Ct, Lt, Ft)

• RAt is the set of currently running actions (a ∈ RAt if staub < t and etaub > t).

• FAt is the set of future actions (a ∈ FAt if staub ≥ t).

• St represents the state of the system at time t. It is composed of 2 sets corre-
sponding to the logical state and to the resource state of the system:

– LgcSt contains the last value of each grounded logical controllable attribute la
present in the plan or, similarly in IXTET, the last executed event proposition
for each la.

– RscLt contains the level at time t of each allocated resource present in the
plan.

• Gt is the set of goals not yet completely achieved at time t (and potentially not
established). Gt contains goals such that etgub ≥ t.

• Cot is more specific to IXTET. It contains the future evolution profile of grounded
contingent attributes, i.e. the contingent propositions hold(∗ : ∗, (sth, eth)) and
event(∗ : (∗, ∗), te) such that ethub ≥ t and teub ≥ t.

• Ct is the set of constraints on the variables appearing in FAt, RAt, St, Gt and
Cot.

• Lt is the set of causal links supporting future actions.

• Ft is the set of flaws (open conditions, threats, resource conflicts) present in the
partial plan at time t.

106 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

Past actions do not belong to the plan anymore. Their variables (timepoints and pa-
rameters) have been instantiated and the corresponding constraints have been propagated
in the constraint networks. Useful information about their effects is kept in St.

3.2.2 Level of an allocated resource r at time t in the partial plan Pt

The “theoretical”6 level of a resource at a certain time in the future cannot be computed,
since it depends on the partial order of the actions using this resource. But at time t the
past part of the plan is completely instantiated and linearized. Figure 3.3 summarizes the
effects of a past action on the level of a resource.

qmin

qmax

?q

Borrowing action

qmin

qmax

?q

Producing action

qmin

qmax

?q

Consuming action

t tt

Figure 3.3: Resource level after a past action

The computation of the level at time t takes into account the global production or
consumption of the resource over the past actions, as well as a worst case estimation of
the global resource usage of the actions currently in execution. In fact, we need to consider
two cases:

• case (a): if no running action modifies the allocated resource r, the exact level can
be computed;
• case (b): if at least one action in RAt requires the resource, only an estimation is

available.

In case (a), the exact level is computed in IXTET according to formula (3.1). We note
Capa(r) the capacity of the allocated resource. Let p be a production, belonging to the
action ap, of a quantity ?qp of the resource r at time tp and P (r) be the set of productions
of resource r in the plan. Similarly, C(r) is the set of consumptions c, belonging to the
action ac, of a quantity ?qc at time tc, and U(r) is the set of borrowings u, belonging to
the action au, of a quantity ?qu between stu and etu. Then, if no running action modifies
r:

RscLt(r) = Levpast
t (r) (3.1)

6i.e. according to the model of the actions and the constraints of the plan.

3.2. An executable plan 107

with Levpast
t (r) = Capa(r) +

∑
p∈P (r)/

tpub<t and
ap /∈RAt

?qp −
∑

c∈C(r)/
tcub<t and
ac /∈RAt

?qc

This level is a variable ranging over [levpast
lb , levpast

ub].

qmin

qmax

?q

Borrowing action

qmin

qmax

?q

Producing action

qmin

qmax

?q

Consuming action

t tt

Figure 3.4: Resource level during a running action

In case (b), the uncertainty follows from the insufficient model of the resource usage
(piece-wise constant whereas a production, for instance, may correspond to a monotonic
increase). The previous level definition is completed by an estimation of the level modifi-
cation induced by the running actions (LevRA(r)) according to formula (3.2). The total
amount produced, consumed or borrowed by an action is represented by a variable ?q in
[qmin, qmax]. At a given time in the course of the action, the only information that the
planner can deduce is that the amount produced/consumed up to now is in [0, qmax] or
that the amount borrowed is in [qmin, qmax] (cf. Figure 3.4). An estimation of the level
would then be:

levRA
min ≤ RscLt(r)− Levpast

t (r) ≤ levRA
max (3.2)

with levRA
min = −

∑
c∈C(r)/
ac∈RAt

qcmax −
∑

u∈U(r)/
au∈RAt

qumax

levRA
max =

∑
p∈P (r)/
ap∈RAt

qpmax −
∑

u∈U(r)/
au∈RAt

qumin

Finally, the level of a resource r at time t is comprised in the interval [RscLlb, RscLub]
with, in case (a):

RscLlb = levpast
lb

RscLub = levpast
ub ,

108 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

and in case (b):

RscLlb = levpast
lb + levRA

min

RscLub = levpast
ub + levRA

max.

During the plan execution, this theoretical level is regularly compared with the value
returned by the controlled system and adjusted (see section 3.4).

3.2.3 Executability

We now consider in which conditions the different objects of the plan are executable.

A timepoint in the temporal network is executed if it corresponds to a goal timepoint,
to a starting or ending timepoint of an action or to a timepoint of a contingent proposition.

Definition 3.2.2 (executable timepoint). A timepoint T is executable at time t if
all timepoints T p that must directly precede it in the temporal network have already been
executed (T p

lb = T p
ub < t) and if t is contained by its execution interval.

A goal corresponds to a property to achieve and eventually to maintain between stg

and etg. A goal is satisfied if the associated hold proposition is established in the plan
and not threatened by any other proposition. Thus:

Definition 3.2.3 (achievable goal). A goal g is achievable at time t if stg is executable
and if g /∈ Ft.

Let Af
t be the set of actions that are involved in the flaws of the plan at time t.

The determination of Af
t is straightforward in the case of open conditions and resource

conflicts. In a threat case, an action ak has effects in contradiction with the establishment
of a proposition p by the causal link ai

p→ aj and (ai ≺ ak ≺ aj) is consistent. Af
t will

contain ak and aj .

Definition 3.2.4 (executable action). A future action a is executable at time t if its
starting timepoint is executable and if a /∈ Af

t .

Finally, we define an executable plan at time t as a plan that supports the actions
currently in execution.

Definition 3.2.5 (executable plan). A partial plan Pt is executable at time t if the
constraint networks are consistent and if RAt ∩Af

t = ∅.

3.3. “Sensing/Plan Repair/Action” cycle 109

3.3 “Sensing/Plan Repair/Action” cycle

The pseudo-code algorithm in Table 3.1 (page 111) complemented by the algorithms in
Table 3.2 to Table 3.8 present, in a simplified version, how the execution cycle has been
implemented in IXTET-EXEC.

The executive determines, among the set of executable timepoints (ExecutableTPs),
what should be the next one to execute and its execution time (texec). In fact, several time-
points may have to be executed during one cycle. The set of these timepoints (ExecTPs)
is initialized with the set of timepoints whose execution time is texec and updated during
the cycle (each time a timepoint is assigned its occurrence time) with the newly executable
timepoints which have to be executed before the end of the cycle. Consider for instance
the plan shown in Figure 3.2. If the executive wakes up to integrate a nominal report for
the Take-image action, stMovePTU and stimage−goal become executable and are executed in
the current cycle.

A cycle is not necessarily composed of the three phases (Sense, Plan repair, Act). The
executive may wake up just to send a command or to integrate a report. If a report partially
invalidates the plan and requires a plan adaptation, two strategies can be applied. One,
called plan repair, consists in keeping the structure of the plan (the future actions and
their ordering) and try to restore its lost properties. The other one, called replanning,
consists in interrupting the execution cycle and generating a new plan from scratch.

A plan repair process is distributed on several cycles: a limited share of the cycle
duration is assigned to planning; when this time is reached, planning is stopped to al-
low possible action execution and/or message reception, and resumed in the immediately
following cycle.

To interleave in such a way plan execution and plan adaptation, we need to guarantee
a certain coherence of the plan Pt with respect to the execution context. We distinguish
between two criteria of coherence. A local one is defined by the coherence between the
planned actions and the executed ones at time t, which holds if:

1. Once an action is committed to execution, the planning process will not attempt to
modify it.

2. The executive will not commit an action that may need to be modified by the
planning process.

This criterion is complemented with a global one on the coherence of the temporal con-
straints over the plan horizon and the coherence of the atemporal constraints (such as
resource quantities).

Thus planning and execution can be interleaved in cycles if the executive only launches
actions which are executable and if the plan remains temporally and atemporally consis-
tent and does not contain any flaw on the running actions. Finally, the execution cycle
proposed in our approach relies on the following principle:

110 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

Cycling can be pursued as long as an executable plan is available at the end
of each phase of a cycle. If this condition does not hold, cycling is interrupted
and a complete replanning is mandatory.

The duration of the cycles determines the reactivity of the executive. Unlike the IDEA
system [Muscettola 02] which guarantees a reaction time of two cycles by enforcing the
planning process to complete and lead to a solution7 within one cycle, in IXTET-EXEC, the
plan repair process is given as much time as allowed by the temporal flexibility left in
the plan to find a complete solution plan. However, interleaving plan repair and plan
execution allows to guarantee that an event (failure, new goal, etc.) will be integrated in
the plan and taken into account in the planning problem and execution context within
two cycles.

In IXTET-EXEC, the duration of a cycle can not be known precisely. Its value mainly
depends on the size of the plan and several factors have an influence, among them: the
number of timepoints executed during the same cycle, the duration of the propagation in
the STN, the duration of a message integration and plan invalidation in case of failure,
the duration of the most expensive planning step, etc.

We call timestep the maximum time allowed to the execution cycle. It is defined
by the user and may vary with the application. The uncertainty on the duration of the
execution cycle has some consequences on the exact occurrence time of timepoints. If
two timepoints have to be executed within an interval less than one timestep, the only
guarantee is that they will be executed during the same cycle, according to their precedence
constraints. This restriction imposes to design action models with a minimal duration
greater than one timestep. We consider that a timestep of a few seconds is acceptable at
this mission planning level.

Note also that the timestep is a worst case estimation: the cycle usually takes less
time (especially if no plan repair is in process), and the global reactivity to new messages
is better.

In the following sections, we further detail the three phases of a cycle and how the
modifications made to the plan can leave it executable.

7A short planning duration is obtained by limiting the horizon of the planning problem (e.g. “what
should be the next step?”). Execution failures can be repaired if a purely reactive model encompasses the
reactions to all possible failure scenarios.

3.3. “Sensing/Plan Repair/Action” cycle 111

Execution Cycle

% ExecutingP lan: plan currently under execution

% RunningActions: set of actions currently under execution

% RunningActionsWithThreat: set of actions currently under execution

% which are threatened by the report of another action

% stcycle, etcycle: start and end time of the current cycle

% ExecutableTPs: the set of timepoints that are executable

% texec: execution time of the next executable timepoint

% ExecTPs: set of timepoints to execute during the cycle

% WaitingExecTPs: set of timepoints whose execution has been postponed

% WaitingEndTPs: set of ending timepoints for which an END command has been sent

% and the report has not yet been received

% AbandonedGoals: set of goals which have been abandoned during replanning attempts

repair ← false
abort← false
replan← false
newRepairSearchTree← true
noF lexT imeout← false
initialize ExecutableTPs, texec, ExecTPs

cycle forever
wake up if (current time ≤ texec) or (repair) or (MsgQueue not empty)

stcycle ← current time
etcycle ← stcycle + timestep
if (MsgQueue not empty)

for each Msg
if (Goal)

Integrating Goal()
if (CapacityChange)

Integrating Capa()
if (Report))

Integrating Report()
if (abort) and (RunningActions is empty)

replan← true
if (repair)

Plan Repair()
if (replan)

Replanning()
Act()
get next texec

add executable timepoints which execution time is texec to ExecTPs
end cycle

Table 3.1: Execution Cycle

112 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

3.4 Sensing

A message can be of three different types: new goal request, notification of a capacity
alteration or report upon action completion. We consider in each case how the message
integration can partially invalidate the plan. In that case and if a plan repair is required
to fix open conditions and/or resource conflicts, the causal structure of the plan is further
broken to allow the possible insertion of new actions.

3.4.1 Message integration

Goal request

Integrating Goal()

% Goal(g,Id,Ig,Ag)

% g: hold(GoalAtt:GoalVal,(stg ,etg))

% Ag = {a ∈ RunningActions/g may threaten a proposition in a}
% TemporalConstraints = {(etg ≺ etH), (stg > etcycle), ((etg − stg) in Id), ((stg − stH) in Ig)}
% ∪{(eta ≺ stg)}a∈Ag

if (TemporalConstraints are consistent with ExecutingP lan)
add g and TemporalConstraints to ExecutingP lan
newRepairSearchTree← true
if (!abort)

Remove Causal Links(GoalAtt,stg)
repair ← true

else
reject the goal

Table 3.2: Integration of a “goal” message

A goal is associated with two time intervals, one specifying the duration of the goal
proposition (Id) and one constraining the execution interval of the starting timepoint of
the goal proposition (Ig). The insertion of a goal involves the creation of two timepoints
stg and etg, constrained by:

etg ≺ etH (before the end of the plan horizon)
stg > etcycle (after the end of the current cycle)

(etg − stg) in Id (duration)
(stg − stH) in Ig (execution interval)

To guarantee the plan executability, the goal proposition is also constrained to occur

3.4. Sensing 113

hold causal linkevent

VISI_WINDOW(W1)

t 1t 0 2t 5t4t 3t 6t7t10t 11t8t9t 12t20t 13t 14t18t15t 19t16t 17t

in
out out out

in

t 2221t

doing

COMMUNICATION(W1) none done

PICTURE(T1,10,2) none done
doing

PICTURE(T2,13,6) none done

PTU_POSITION() forward downward
moving moving

forward
forward

PTU_DRIVER_INIT() true true true

MVT_GEN_INIT() true true true

ROBOT_STATUS() still still still still
moving moving

AT_ROBOT_X() 0 01010 10 0
/ /

AT_ROBOT_Y() 0 022 2 0
/ /

PAST GOAL

Figure 3.5: Evolution of logical attributes and new goal

after the end of each running action which contains a proposition on the goal attribute. If
Ag represents the set of running actions which have a proposition possibly threatened by
the goal proposition, then the goal ending timepoint must satisfy the following constraints:

{(eta ≺ stg)}a∈Ag

If one of the above constraints leads to an inconsistent plan, the goal is rejected.
Otherwise, the plan contains an open condition to establish. Figure 3.5 represents the
evolution8 of the logical attributes in the plan example introduced in Figure 3.2. A flexible
goal (GOAL Picture(T2,13,6) done 1 [2,2] [0,900] 0) has been received during the execution of
the first MovePTU action, and inserted (timepoints t21 and t22).

The establishment of a goal requires to break causal constraints on a subset of grounded
logical attributes between etcycle and stg. In Figure 3.2 for instance, the goal establishment
implies the insertion of Move, MovePTU and Take-image actions which have effects on
the attributes AT ROBOT X(), AT ROBOT Y(), ROBOT STATUS(), MVT GENERATION INIT(),
PTU DRIVER INIT(), PTU POSITION() and PICTURE(T2,13,6).

8The partially ordered future timepoints have been linearized in the figure for clarity purpose.

114 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

Capacity alteration

Integrating Capa()

% CapacityChange(RsceAtt,q,+/−)

update the capacity
newRepairSearchTree← true
if (−) and (!abort) and (resource conflict exists)

check executability of ExecutingP lan % search for resource conflicts involving running actions

if (ExecutingP lan not executable)
abort← true
repair ← false

else
Remove Causal Links(RsceAtt,etH)
repair ← true

if (+) and (AbandonedGoals not empty)
abort← true
repair ← false

Table 3.3: Integration of a “capacity alteration” message

As a consequence of an exogenous uncontrollable event, the capacity of a resource
RsceAtt has decreased (-) or increased (+) by a quantity q. In IXTET, such a modification
is reflected on the plan by the insertion of a consume proposition (case (-)) or a produce
proposition (case (+)) of the quantity q. This capacity update may induce future resource
conflicts or on the contrary have serendipitous effects. In the current implementation of
IXTET-EXEC two strategies are followed.

1. If the capacity has decreased and the plan contains a conflict on RsceAtt, but is
still executable, a plan repair is requested. As for a goal establishment, the repair
of a resource conflict may require the insertion of actions to produce the resource.
Likewise, causal links on a subset of grounded logical attributes have to be broken.

To guarantee the executability of the plan, we need to find out that there is no
resource conflict that involves a proposition belonging to a running action. If U is
the set of use propositions on RsceAtt belonging to the running actions, for each
u ∈ U , we compute the maximal cliques containing u in the Possible Intersection
Graph using the algorithm described in Appendix 1. If none of these cliques is
over-consuming, then the plan remains executable.

2. If the capacity has increased and some goals have been previously abandoned during
replanning attempts, we exploit this opportunity to re-introduce the goals and re-
plan. This strategy is basic, but allows to handle situations such as the following one.
If the camera becomes out of order for a while (capacity decreased by 1), the plan
repair process will fail and the replanning attempts will progressively abandon all

3.4. Sensing 115

goals except maybe the communication with the ground station (the robot can not
take pictures, nor safely move). If the breakdown is recovered (capacity increased
by 1), the replanning process will find a plan achieving all abandoned goals whose
deadline is coherent with the current time.

However, this strategy should be improved. It would be useful for instance to be
able to filter the abandoned goals and consider only the ones that could benefit from
a resource capacity increase.

Action report

A report is associated with the ending timepoint of the corresponding action (eta). An
action either terminates by itself or is interrupted by an END command. In the latter case
(eta ∈ WaitingEndTPs), the action is removed from the set of running actions and the
ending timepoint is mapped to its occurrence time only when the termination report is
received.

In both cases, the reception time of the report (stcycle) can either be consistent with the
temporal network (and eta is instantiated) or outside the bounds of the execution interval
of eta. In the latter case, the instantiation of eta will lead to an inconsistent temporal
network, unless we can replace it by a new timepoint without invalidating the temporal
constraints of the plan.

If the message is received too late, two situations need to be considered, depending on
whether there is some temporal flexibility left in the plan or not. As stated before9, the
only constraints that can be posted between eta and another timepoint apart from the
action a are flexible precedence constraints]0,+∞[. To check the remaining flexibility, we
consider all timepoints that are preceded by eta. If there is some timepoint T for which
the precedence link with eta has been so squeezed that there is less than one timestep left
between now and T 10, then the plan is not flexible enough to insert the new timepoint and
guarantee the plan executability. A replanning process, with the immediate abandon of
one goal is requested. On the contrary, if there is some flexibility, a new ending timepoint
eta′, set to stcycle, is created and the failed timepoint eta is relaxed.

If the message is received too early (typically, a failed action can terminate very soon),
a new ending timepoint eta′, set to tocc, is also created, and the timepoints of the action
occurring after stcycle are considered to be failed and relaxed.

The new timepoint is constrained to occur before the future timepoints (i.e. a prece-
dence constraint between eta′ and each executable timepoint is added to the STN).

The relaxation of a failed timepoint amounts to removing the temporal constraints on
the timepoint from the set of constraints and recomputing the network. These operations
keep the temporal network consistent.

9cf. page 103.
10(T − eta) in]0, timestep + stcycle − eta

ub]

116 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

Integrating Report()

% Report(eta,status,logState,rsceLevels)

% eta: the report corresponds to the action a and is associated with its ending timepoint eta

% status: ending status of the action (nominal, failed, interrupted)

% logState: if the report is not nominal, logState contains the value returned by the

% controlled system for each grounded logical attribute relevant to a

% rsceLevels: set containing the level at the end of a returned by the controlled system

% for each allocated resource used by the action

% flawAttributes: list of attributes invalidated by the report (open conditions, resource conflicts)

% lastF lawTP : starting timepoint of the last flaw revealed in the plan

newRepairSearchTree← true
possibly remove eta from ExecutableTPs, ExecTPs, WaitingEndTPs
remove a from RunningActions
if ((eta is executable) or (eta ∈WaitingEndTPs)) and (stcycle ∈ [etalb, et

a
ub])

% message received inside the execution interval of eta

set occurrence time: ((eta − stH) = stcycle)
else if (stcycle > etaub) % time-out

noF lexT imeout← check the temporal flexibility of the plan
if (noF lexT imeout)

abort← true
repair ← false

else
create new timepoint eta′

else
create new timepoint eta′

needRepair ← false
if (logState not empty)

(needRepair,RunningActionsWithThreat)← insert new state
if (rsceLevels not empty)

for each allocated resource Rsce relevant to a
compute its theoretical level
(needRepair, abort)← check and adjust the level
if (needRepair)

rsceAttributes← rsceAttributes ∪ {Rsce}
if (!abort) and (needRepair)

(flawAttributes,lastF lawTP)← get open conditions revealed in ExecutingP lan
if (rsceAttributes not empty)

flawAttributes← flawAttributes ∪ rsceAttributes
lastF lawTP ← etH

Remove Causal Links(flawAttributes,lastF lawTP)
repair ← true

forget the past
update ExecutableTPs and ExecTPs

Table 3.4: Integration of a “report” message

3.4. Sensing 117

If the report contains information about the state, the logical and resource states of
the system are updated in the following way:

State variables - The logical state of the system LgcSt contains the last value for
each grounded logical attribute (or similarly the last executed event). If the report is
nominal, LgcSt is updated with the effects of the action expected in the plan. Otherwise,
it is updated with the values returned in the report (logState).

In IXTET-EXEC, the value of a grounded attribute lattg is updated to the new value
v ∈ logState through the insertion of an explained event event(lattg : (∗, v), t) occurring
at t = eta or t = eta′ according to the situation. Such an event may or may not be inserted
in the plan. It is not inserted if it leads to a non executable plan, i.e. threatens some
proposition of a running action ar. In that case, and if ar is preemptive, its interruption
is requested (ar → RunningActionsWithThreat). Otherwise, the event is inserted. If
the new value is in contradiction with some propositions of the failed action, or with some
causal links, the causal links are broken and the propositions are removed. Thus, the sate
update may reveal new open conditions to re-establish (needRepair = true).

Consider for instance the plan in Figure 3.2 and the execution situation illustrated
in Figure 3.6. If a failure occurs during the execution of the first move action (e.g fail-
ure of map building) and stops the robot in an intermediate location (5,1), the proce-
dural executive returns: logState = {(PTU POSITION(), forward), (MVT GEN INIT(), false),

(ROBOT STATUS(), still), (AT ROBOT X(), 5), (AT ROBOT Y(), 1)}. This report is received
too early according to the execution interval of the timepoint t16 which is relaxed, whereas
the timepoint t21 is created. The insertion of the new state breaks causal links on the
attributes MVT GEN INIT(), AT ROBOT X() and AT ROBOT Y(), thus revealing 5 open con-
ditions to re-establish.

Resource level - For each resource r relevant to the action, the report returns the
current “real” level lr. The “theoretical” level of the resource in the partial plan RscLt(r) is
computed according to the formula presented in section 3.2.2. RscLt(r) is then compared
to lr and adjusted according to the schema in Figure 3.7 (cases (a) and (b) refer to the
ones presented in section 3.2.2).

• If lr ∈ [RscLlb, RscLub], the plan is consistent with reality. If the exact level can be
computed (case (a)), its value is updated by adding and propagating the constraint
RscLt(r) = lr.

• If (lr < RscLlb), the over-consumption is reflected on the plan by adding a con-
sumption11 of quantity c = RscLlb − lr. In case (a), the new level (RscL′

t(r) =
RscLt(r) − c) is updated by adding the constraint RscL′

t(r) = lr, or equivalently
RscLt(r) = RscLlb. If some running action modifies r (case (b)), the part of the
level due to past actions (Lpast

t (r)) is updated by considering the worst case and
adding the constraint Levpast

t (r) = levpast
lb .

11The mirror production of the complementary resource is also added if r is a reservoir resource.

118 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

VISI_WINDOW(W1)

t 1t 0 2t 5t4t 3t 6t7t10t 11t8t9t 12t20t 13t 14t18t15t 19t16t 17t

in
out out out

in

doing

COMMUNICATION(W1) none done

PICTURE(T1,10,2) none done
doing

PICTURE(T2,13,6) none

PTU_POSITION() forward downward
moving moving

forward
forward

PTU_DRIVER_INIT() true true true

MVT_GEN_INIT() true true true

ROBOT_STATUS() still still still still
moving moving

AT_ROBOT_X() 0 01010 10 0
/ /

AT_ROBOT_Y() 0 022 2 0

/ /

PAST

VISI_WINDOW(W1)

t 1t 0 2t 5t4t 3t 6t7t10t 11t8t9t 12t20t 13t 14t18t15t 19t17t

in
out out out

in

doing

COMMUNICATION(W1) none done

PICTURE(T1,10,2) none done
doing

PICTURE(T2,13,6) none

PTU_POSITION()
forward downward

moving moving
forward

forward

PTU_DRIVER_INIT() true true true

MVT_GEN_INIT() true true true

ROBOT_STATUS() still still still still

moving moving

AT_ROBOT_X() 0 010
10 0

/ /

AT_ROBOT_Y() 0 02
2 0

/ /

PAST

21t

false

5

1

OPEN CONDITIONS O.C.

O.C.

Figure 3.6: Failure report insertion

• If (lr > RscLub), the over-production is reflected on the plan by adding a produc-
tion12 of quantity p = lr − RscLub. Similarly, the level is updated by adding the
constraint RscLt(r) = RscLub in case (a), and Levpast

t (r) = levpast
ub in case (b).

12The mirror consumption of the complementary resource is also added if r is a reservoir resource.

3.4. Sensing 119

l r

l > RscLr ub

l < RscLr lb

Networks are
consistent?

Networks are
consistent?

Networks are
consistent?

Reservoir
resource ?

Does the plan
contain a resource

conflict ?

Does a conflict
involve an action

 in RA ? t
(case(b))

Update the level

Case(a)-RscL (r)=RscL t lb

Case(b)-Lev (r)=lev t lb
past past

Update the level

Case(a)-RscL (r)=RscL t ub

Case(b)-Lev (r)=lev t ub
past past

Correct the level
Add produce(r):p

Correct the level
Add consume(r):c

l r
t

Compare
 and RscL (r)

YY N N

YN

YN

NY

Y N

Update the level
Case(a)-RscL (r)=l rt

Nominal
needRepair =false

abort =false

Plan Repair
needRepair =true

abort =false

Replanning
needRepair =false

abort=true

l in [RscL ,RscL]r lb ub

Figure 3.7: Check and adjust the resource level

In case of over-consumption or in case of over-production of a reservoir resource, a
conflict may appear in the plan and require a plan repair. The existence of a conflict is
checked using the maximal cliques algorithms. In case (b), it is also necessary to check
that no conflict concerns a running action. Depending on the plan executability, a plan
repair or a replanning process is requested.

In conclusion, the report integration leads either to: a nominal plan whose execution
can be pursued, to a non executable plan requiring the execution abortion, or to an
executable plan with open conditions and/or resource conflicts requiring a plan repair.
In the last case, we also need to break additional causal links: either between etcycle and
the starting timepoint of the last open condition, or between etcycle and etH if the plan
contains a resource conflict.

120 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

3.4.2 Deletion of additional causal links

Remove Causal Links(Attflaw, lastTP)

% Attflaw: set of grounded attributes involved in the flaws (resource conflicts and/or open conditions)

% present in the current partial plan

% lastTP : timepoint corresponding to the starting timepoint of the latest open condition if the plan

% contains no resource conflict, to etH otherwise

% LogAttinsert/RsceAttinsert: set of grounded or partially grounded logical/resource attributes appearing

% in the (partially grounded) models of actions possibly inserted to repair the flaws

% Eventi: set of events on the attributes in LogAttinsert occurring before lastTP

% Assertions(e): set of hold propositions established by the event e and imposed by an action model

% CausalLinks(e): set of hold propositions established by the event e and corresponding to causal links

% Extension(e): interval during which the value established by the event e is imposed by some assertions

% 1- Compute LogAttinsert

LogAttinsert ← ∅
RsceAttinsert ← ∅
NewAttinsert ← Attflaw

while (NewAttinsert not empty)
select and remove AttNamei(parami) from NewAttinsert

if (AttNamei is logical attribute)
LogAttinsert ← LogAttinsert ∪ {AttNamei(parami)}

else
RsceAttinsert ← RsceAttinsert ∪ {AttNamei(parami)}

ActionModels(AttNamei(parami))← get partially grounded models of actions for
which AttNamei(parami) is a main attribute

for each action model Ag ∈ ActionModels(AttNamei(parami))
for each AttName(param) ∈ Ag

if (AttName(param) /∈ (NewAttinsert ∪ LogAttinsert ∪RsceAttinsert))
NewAttinsert ← NewAttinsert ∪ {AttName(param)}

% 2- Compute the causality chains and select causal links to break

compute Eventi

for each event e in Eventi

compute Assertions(e), CausalLinks(e) and Extension(e)
RemovableCausalLinks(e)← get c.l. that do not belong to Extension(e) and

do not support a running action
CausalLinksToRemove← CausalLinksToRemove ∪RemovableCausalLinks(e)

% 3- Break causal links

delete propositions ∈ CausalLinksToRemove

Table 3.5: Removal of additional causal links

After the integration of a message, the plan may contain flaws on a set of grounded
attributes Attflaw. Fixing these flaws may require the insertion of new actions. Let us

3.4. Sensing 121

note LogAttinsert and RsceAttinsert the sets of logical and resource attributes appearing
in these actions. Additional causal links, protecting the establishment of propositions on
attributes in LogAttinsert, have to be broken to allow the insertion of new actions in the
current structure of the plan.

Consider for instance the goal integration example given in Figure 3.5 (page 113). The
establishment of the open condition hold(PICTURE(T2,13,6): done) requires the insertion
of the action Take-image(T2,13,6). This insertion may introduce new open conditions on
the attributes PTU POSITION(), AT ROBOT X(), AT ROBOT Y() which in turn may require
the insertion of Move and MovePTU actions, etc.

The determination of the set LogAttinsert is based on information given by the ab-
straction graph generated offline from the model description (see section 2.3.4). This
abstraction graph notably records which attributes are linked to the primary effects of
each action. The primary effects are used to select an action in order to establish an open
condition or to produce a resource. These attributes, which justify the insertion of an
action, are also called main attributes.

Starting from the grounded attributes in Attflaw, LogAttinsert and RsceAttinsert are re-
cursively computed by considering the partially grounded models of actions13 for which the
attributes in LogAttinsert and RsceAttinsert are main attributes, and adding the (grounded
or not grounded) attributes contained by the actions and not yet taken into account in
LogAttinsert and RsceAttinsert; and thus until a fixed point is reached.

Causal links on the attributes in LogAttinsert are removed, but not all of them. The
selection of the causal links to break is based on the work presented in [Gaborit 96].

[...]

events

beams of hold propositions

Figure 3.8: Chain of causality for an attribute

In a solution plan, the events on a same attribute are totally ordered and form a chain
of causality. The hold propositions that are established by the same event e form a “beam”
which can be separated into two sets:

• Assertions(e) contains the hold propositions imposed by the initial scenario or by
13Consider the action model A, for which AttNamei is a main attribute, and AttNamei(parami) ∈

LogAttinsert. A has several potential partial instantiations. The set of these partially grounded mod-
els of actions are computed by considering successively each event(AttNamei(paramevent)) and binding
paramevent and parami. Similarly, if AttNamei(parami) ∈ RsceAttinsert, the partially grounded models
of actions are computed by considering the produce propositions.

122 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

an action in the plan,
• CausalLinks(e) contains the hold propositions that have been inserted during the

planning process to serve as causal links.

Figure 3.8 represents such a chain of causality. In IXTET-EXEC, the breaking process is
applied to the causality chains of the attributes in LogAttinsert formed by the events
occurring before lastTP (Eventi).

Among the causal links of a beam, some do not need to be broken. P. Gaborit defines
the extension of an event e as the set of assertions that necessarily extend the value estab-
lished by e. If e = event(AttNamei(parami) : (∗, ∗), t) and h = hold(AttNamei(parami) :
∗, (t1, t2)) then Extension(e) is recursively defined by the equations:

h ∈ Extension(e) ⇐ ((h ∈ Assertions(e)) and (t1 = t))
h ∈ Extension(e) ⇐ ((h ∈ Assertions(e)) and

(∃h′ = hold(AttNamei(parami) : ∗, (t′1, t′2)) such that
(h′ ∈ Extension(e)) and (t1 ≤ t′2)))

The first equation encompasses the assertions that intersect necessarily the event, whereas
the second equation adds to Extension(e) the assertions that necessarily overlap a propo-
sition in Extension(e).

Therefore, a causal link cl = hold(AttNamei(parami) : ∗, (t1, t2)) ∈ CausalLinks(e)
can be removed if cl is not necessarily covered with assertions that belong to Extension(e),
i.e.

@h = hold(AttNamei(parami) : ∗, (t′1, t′2)) such that (h ∈ Extension(e)) and (t2 ≤ t′2)

Figure 3.9 illustrates this deletion criterion.

event e event e'

Extension(e) assertions

removable
causal links

causal links
to keep

Figure 3.9: Application of the deletion criterion

Finally, a causal link is removed if it satisfies the above condition and if it does not
take part in the establishment of a proposition that belongs to a running action.

3.5. Plan repair 123

At the end of this process, the plan is executable, the causality chains of a subset of
attributes are broken, but the set of actions independent from the failures and their repair
remain executable.

3.5 Plan repair

Plan Repair()

% µ: percentage that corresponds to the share of a timestep allocated to the sensing and plan repair

% phases of the cycle

% tlimit: deadline for planning in the current cycle, tlimit = stcycle + µ
100

∗ timestep

get tlimit

if (newRepairSearchTree)
set ExecutingP lan as root of the new search tree

newRepairSearchTree← false
SolutionFound← false
NoSolution← false
while (!SolutionFound) and (!NoSolution) and (current time < tlimit)

(SolutionFound, NoSolution) ← plan one step(etcycle, RunningActions)
if (NoSolution)

abort← true
repair ← false

if (SolutionFound)
ExecutingP lan← solution plan
repair ← false

else
ExecutingP lan← get last executable partial plan

update ExecutableTPs and ExecTPs

Table 3.6: Plan Repair during one cycle

124 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

Sense

Plan
Repair

ExecutingPlan

Plan
Repair

Plan
Repair

Act

time

Plan
Repair

Sense

Plan
Repair

Act

Sense

Act

[...]

[...]Message

Message

Message

Command

Command

Command

Solution
Plan

root node
executable
non executable

Figure 3.10: Interleaved plan-
ning and execution

The plan repair process is similar to the IXTET search
process in the plan space, but distributed (if necessary)
on several cycles, thus allowing the executive to be re-
sponsive during the intermediate “action” and “sensing”
phases (cf. Figure 3.10).

Distributing planning on several cycles raises two im-
portant problems:

1. On which plan relies the execution in the
“act” phase of a cycle, especially if no solu-
tion has been found? This plan has to be exe-
cutable. At each planning step, the node is labeled
if the corresponding partial plan fully supports the
running actions. When the maximum time allowed
to plan repair in the cycle is reached, and if the
current partial plan is not acceptable, the last exe-
cutable node is chosen and its corresponding plan
becomes ExecutingPlan.

2. On which plan and which search tree relies
the planning process in the next cycle? If
no decision has been made meanwhile (no time-
point execution, no message reception), the search
tree can be kept as is and further developed dur-
ing the next “plan repair” phase. It is even possi-
ble to backtrack on decisions made in previous cy-
cles. However, if the plan has been modified, a new
search tree is mandatory (newRepairSearchTree
= true). Its root node is made of the new Exe-
cutingPlan. The planning decisions made in the
previous cycles are now fixed, no backtrack is pos-
sible.

During the “plan repair” phase of each cycle, plan-
ning is done one step at a time until it results in a dead-end (NoSolution = true), or a
solution is found (SolutionFound = true), or a deadline (tlimit) is reached. This dead-
line corresponds to the percentage (µ) of the timestep that is dedicated to the message
integration and the plan repair phases. The parameter µ can be tuned by the user.

Slight modifications have been made to the IXTET planning process.

• In order to take current time and planning duration into account, each time a new
timepoint T is inserted in the plan, it is constrained to occur after the end of the
current cycle (T > etcycle).

3.5. Plan repair 125

• The flaw analysis process now records the identifiers of the actions involved in each
flaw.

• A step has been added in the development of a search node. If the insertion of the
resolver leads to a (locally) consistent plan, the support status of the running actions
is checked. More precisely, we check that they are not involved in the flaws found
by the analysis module, as well as in the flaws on the lower levels of abstraction.
For that, we consider, for each running action, its logical propositions on attributes
belonging to lower abstraction classes and check that they are established and not
threatened. Likewise, we consider the resource propositions and check that they
are not contained by an over-consuming maximal clique. A node is labeled if the
running actions are supported.

At the end of the plan repair phase of a cycle, we search for the last labeled node,
build the corresponding partial plan and check the global consistency of its networks.
ExecutingP lan is updated with the last labeled and consistent plan.

We also implemented some mechanisms during the execution process that allow to
reduce the space analysis in case of plan search process. These mechanisms are denoted
“forget the past” in the algorithms presented in Table 3.4 and Figure 3.11. Each time
a timepoint is executed, the sets of logical and resource propositions are updated. More
precisely, it is of no use to look for threats or establishing events in the past. Thus, the past
hold and event propositions are removed, except the last executed event for each grounded
attribute. Similarly, the past use propositions are removed14. The use propositions which
use a constant quantity of a resource, whose starting timepoint is in the past and which
have the same ending timepoint in the future are aggregated in a unique proposition15.
This aggregation mechanism may considerably reduce the size of the cliques in the PIG
and thus the time needed for resource conflict detection. Consider for instance a plan for
the rover domain with 6 image goals. It contains 6 Take-image actions, i.e. 6 consume
propositions on the resource STORAGE (i.e. use propositions ending at etH). After the
execution of the second Take-image, the two first propositions are aggregated. The number
of propositions potentially involved in a future conflict is further reduced to 4 after three
Take-image executed actions, etc.

14Still, the information on the past productions and capacity increments are kept.
15Its quantity is the sum of the quantities used by the aggregated propositions.

126 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

3.6 Action

Act()

endCycle← false
WaitingExecTPs← ∅
while (ExecTPs not empty) and (!abort) and (!endCycle)

(ExecutedTP, texec)← get first timepoint in ExecTPs to execute
if (texec > etcycle)

% ExecTPs can contain timepoints to execute in another cycle (wake up for Msg or repair)

endCycle← true
else

execute ExecutedTP
update ExecutableTPs, ExecTPs

if (!abort)
add WaitingExecTPs to ExecTPs
send commands to stop the actions in RunningActionsWithThreat

else
send commands to stop the actions in RunningActions which are preemptive

Table 3.7: Action

Each timepoint t is associated with its execution time texec. Its value varies with
the type of timepoint. In case of goal timepoints, starting timepoints of actions and
ending timepoints of early-preemptive actions, texec = tlb. In case of ending timepoints of
late-preemptive actions, texec = tub − timestep. Finally, in case of ending timepoints of
non-preemptive actions, texec = tub.

During the “action” phase, TEXEC successively executes the timepoints of the set
ExecTPs, that contains the timepoints which are executable and whose execution time
happens before the end of the current cycle. ExecTPs is updated after each timepoint
execution to take into account newly executable timepoints. The execution strategy also
varies according to the type of the timepoint. It is summarized in Figure 3.11.

During a plan repair process, if a goal is not achievable or an action not executable,
and if their execution interval has some flexibility left, their execution is postponed (→
WaitingExecTPs), and will be reconsidered in the following cycle. However, if no delay is
admissible, a timeout situation occurs and the execution abortion and replanning process
are requested. If the goal/action are achievable/executable, the timepoint is executed,
i.e. it is instantiated and its value is propagated through the temporal network. On
the contrary, the ending timepoint of a preemptive action is not instantiated when the
command is sent, but upon the report reception (expected in the next cycle). Finally,
TEXEC detects when the report associated with a non-preemptive action has not been
received in time (before etaub) and reports a timeout situation. However, TEXEC keeps
waiting for the report until there is no flexibility left in the plan.

3.6. Action 127

-set occurrence time
 (ExecutedTP-st =)
-newRepairSearchTree=true
-forget the past

Goal is
achievable?

Action
Type?

ubExecutedTP

> et ? cycle

Time-out with
Temporal

Flexibility?

Time-Out
noFlexTimeout=true

abort=true
repair=false

Postpone Execution
Add ExecutedTP to
 WaitingExecTPs

Send Command

ubExecutedTP

 >= st ? cycle

CONTINGENT PROPOSITION

GOAL
START ACTION

END ACTION

exect =st cycle

exect <st ?cycle

Timepoint
Type?

Action is
executable?

PRE-
EMPTIVE

NON
PREEMPTIVE

YY N N

NY

Y N

YN

NY

Timepoint
Type?END

ACTION

OTHER

Execute

exectH

START ACTION

timepoint: ExecutedTP
execution time: t exec

Execute
-set occurrence time
 (ExecutedTP-st =)
-newRepairSearchTree=true
-forget the past
-add the action to
 RunningActions

H exect

Figure 3.11: Execution of a timepoint

During a plan repair process, a record of the actions involved in the flaws detected
during the analysis process, as well as the set of attributes considered during this analysis
is kept along with ExecutingP lan. Thus, to check that an action is executable (similarly
a goal is achievable) during the “action” phase, it is sufficient to check that the action is
not contained by this set of actions and to analyze the flaws on the propositions involving
non already analyzed attributes.

128 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

3.7 Complete replanning

If an execution abortion has been requested, cycling is stopped once the reports of all
running actions have been received and integrated, leading to the partial plan Pts =
(∅, FAts , Sts , Gts , Cots , Cts , Lts , Fts). The planning problem is extracted from Pts . It cor-
responds to an initial plan P attempt

init that contains the state of the system at ts, the future
contingent profiles and the set of not yet completely achieved goals whose temporal con-
straints are coherent with current time. More precisely, a goal is rejected if its associated
constraints (Dur, Orig and MinAchiev, cf. section 3.1.2) are incompatible with the time
left between now and the planning horizon.

P attempt
init = (∅, ∅, Sattempt

init , Gattempt
init , Coattempt

init , Cattempt
init , ∅, F attempt

init)

with
Sattempt

init = Sts ,

Gattempt
init = {g ∈ Gts/ temporal constraints on g are coherent with current time},

Coattempt
init = {proposition p ∈ Cots/p occurs in the future},

Cattempt
init = {c ∈ Cts/c is a constraint just on variables appearing in Sattempt

init ,
Coattempt

init and Gattempt
init }

(Cattempt
init notably contains constraints on origin and horizon timepoints),

F attempt
init contains the open conditions in Gattempt

init .

The main difficulty in the replanning process comes from the uncertainty linked to
the POCL planning technique. We do not know in advance how much time the planning
process will take and we cannot interrupt it at any time and come up with an applicable
plan. As illustrated in Figure 3.12, the problem is to guarantee that at the end of the
replanning process, there remains enough time to execute the solution plan and meet the
goal deadlines.

et Hst H

execution
is aborted

t s T end

replanning process plan

Figure 3.12: Replanning and time progress

We have been inspired by the approach used in the Remote Agent [Pell 97]: “planning
to plan”, that considers the planning process as one of the actions of the plan being
elaborated. We propose to add a specific flexible timepoint T end to the partial plan. This
timepoint represents the end of the planning process. Initially, T end is only constrained to

3.7. Complete replanning 129

occur between now and the end of the planning horizon. Its interval [T end
lb , T end

ub] is further
squeezed during the planning process: each time a new timepoint is inserted in the plan,
it is constrained to happen after T end (and before the end of the horizon). Thus T end

ub

decreases as new actions or new temporal constraints are added. The only way T end
ub can

increase is caused by a backtrack. During the planning process, there will not be enough
time to execute the current partial plan if: T end

ub < current time.

The strategy consists then in planning one step at a time until it results in a dead-
end (NoSolution= true), or a solution is found (SolutionFound= true), or a deadline
treplan−limit is reached. treplan−limit is defined as treplan−limit = T end

ub − d, d being a slack
duration (tuned by the user) to save enough time at the end of planning for execution
cycle initialization. This deadline is updated after each planning step. Planning is stopped
when treplan−limit is reached unless the next planning step corresponds to a backtrack
node (isBacktrackNode= true). In that case, and if the next step increases treplan−limit,
planning is pursued.

If planning is aborted without finding a solution, a new planning attempt is done with
fewer goals. A new initial plan P attempt

init is extracted from Pts as before. A first selection
of the goals may reject the goals of the previous attempt whose temporal constraints are
no more consistent with the current time. Otherwise one goal is selected. Is abandoned
the goal with the lowest priority, and, if several goals have the same priority, the goal with
the less flexibility for its achievement (this flexibility is computed as (stgub - MinAchiev)).
This criterion has been chosen to keep the goals that are more likely to be achieved in due
course.

A drawback of this strategy is that the state of the controlled system is supposed to
remain unchanged during the planning process. The solution found is valid with respect
to this initial state. The advantage of our global approach is that, if the state has changed,
the plan may be repaired once execution is started (resource updates, etc.). An improve-
ment would consist in updating the system state (Sts) between each complete replanning
attempt.

130 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

Replanning()

% P attempt
init : initial plan for the replanning attempt

% Goals: set of goals to take into account in the replanning attempt

% treplan−limit: deadline for the replanning attempt

newPlanningAttempt← true
Pts ← ExecutingP lan
Goals← {g ∈ Gts

/temporal constraints on g are coherent with current time}
if (noF lexT imeout)

select and remove one goal g from Goals
add g to AbandonedGoals
noF lexT imeout← false

else
Goals← Goals∪

{g ∈ AbandonedGoals/temporal constraints on g are coherent with current time}
P attempt

init ← extract initial plan(Pts , Goals, current time)
while (newPlanningAttempt)

NoSolution← false, SolutionFound← false, isBacktrackNode← false
set P attempt

init as root of the new search tree
get treplan−limit

while (!NoSolution) and
(((!SolutionFound) and (current time < treplan−limit)) or (isBasktrackNode))

(SolutionFound, NoSolution, isBacktrackNode) ← plan one step
update treplan−limit

if (SolutionFound) and (current time < treplan−limit)
% A solution has been found in time

ExecutingP lan← solution plan
newPlanningAttempt← false

else
Goals← {g ∈ Gattempt

init /temporal constraints on g are coherent with current time}
if (Goals is empty) or (card(Goals) == card(Gattempt

init) == 1)
newPlanningAttempt← false
ExecutingP lan← extract initial plan(Pts

, ∅, current time)
else

% New replanning attempt with fewer goals

if (card(Goals) == card(Gattempt
init))

select and remove one goal g from Goals
add g to AbandonedGoals

P attempt
init ← extract initial plan(Pts

, Goals, current time)
% Cycle initialization

replan← false, abort← false
stcycle ← current time
etcycle ← stcycle + timestep
update ExecutableTPs, ExecTPs

Table 3.8: Replanning attempts

3.8. Discussion 131

3.8 Discussion

3.8.1 Plan repair vs replanning

The plan repair process aims to provide reactivity and avoid aborting execution and com-
pletely replanning at each failure. It is not guaranteed to find a valid plan, notably because
backtrack nodes may be frozen by execution. The plan repair process keeps all actions of
the initial plan, and thus cannot take into account serendipitous effects, the resulting plan
may also contain useless actions.

However, the restricted invalidation of the plan previous to its repair limits the search
space, so that a repaired plan may be found in a few cycles. In parallel, the actions that
are independent from the failure and from its repair (their supporting causal links have not
been removed) can be launched as scheduled in the initial plan. Actually, plan repair is
especially efficient and useful for temporally flexible plans and plans with some parallelism
(some sets of actions can be executed independently).

This mechanism is also efficient to compensate for inadequate models of the numeric
effects of actions (duration, resource usage). For instance, it is almost impossible to have
an accurate estimation of the time taken by a robot to go from a location (x1, y1) to
a location (x2, y2) in an unknown and dynamic environment. In the IXTET-EXEC model,
move(x1,y1,x2,y2) is defined as a late preemptive action. If the robot takes longer than
expected in the model (e.g. due to obstacle avoidance), the action is interrupted. The
controlled system returns the intermediate location (xi, yi) and, if some temporal flexibility
remains, a new move(xi,yi,x2,y2) is quickly inserted and launched. This example is simple
but representative of the failures that frequently break plan execution.

When a plan adaptation is needed, the current strategy consists in trying plan repair
while the plan remains executable, and then replanning if the plan repair fails (no solution
exists) or times out. In some cases however, it could be useful to be able to detect
that a plan repair is guaranteed to fail and avoid wasting time in a useless attempt.
Such a situation happens for instance in case of capacity decrease of a non producible
resource, when the future actions consume more than allowed by the new capacity. It can
also happen when the temporal constraint of an open condition is too tight to allow the
insertion of its establishing action(s). A future work direction could be the definition of a
“repairable” plan criterion. Still, there may be a trade-off to consider between the time
spent in the analysis of the plan structure and the time spent in plan repair cycles before
the planning process detects by itself that no solution is possible, or times out.

3.8.2 Temporal controllability

In the first version of IXTET-EXEC, the temporal network is encoded as a Simple Temporal
Network defined by the set of timepoints present in the plan and the duration interval of

132 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

the links between each pair of timepoints. In this context, all temporal links are considered
equivalent, and the propagation algorithms may equally squeeze their duration intervals.
However, these links have different roles in the plan.

Some correspond to precedence constraints and their initial interval]0,+∞[can actu-
ally be squeezed by the propagation of constraints, notably the plan horizon, thus reflecting
the flexibility left in the plan.

Other links correspond to the duration of actions that are completely controlled by
the system (a monitoring action for instance): the robot can interrupt the action without
invalidating its nominal behavior and effects. In that case, the temporal link is considered
controllable and can be squeezed by propagation without questioning the action execution
success.

In many cases however, the actual duration of an action nominal execution cannot
be controlled by the system. It notably concerns non preemptive actions, and some late
preemptive ones (consider for instance a move action, which may take more or less time,
depending on the obstacles along its path). The initial duration defined in the action
model reflects the uncertainty on the real execution duration. If the interval of such a
contingent link is tightened during propagation, the plan will not encompass all possible
temporal scenarii, and the execution of this action is more likely to time out and require
replanning (with no flexibility left in the plan).

Work is in progress (see [Gallien 04]) to increase the performances of IXTET-EXEC by
taking into account explicitly contingent links in the elaboration of plans.

This work is based on the STNU framework (Simple Temporal Network with Uncer-
tainty) which makes a distinction between two types of links: controllable and contingent16

ones. Several levels of controllability have been defined in this context [Vidal 99]. Two
are of particular interest in our case:

1. pseudo controllability - A consistent temporal network is said pseudo controllable
if none of its contingent links has been squeezed by the propagation process (e.g. a
path consistency process PC1).

2. dynamic controllability - If a controllable timepoint T ctr has strict constraints
with respect to a contingent timepoint T ctg,17 we want to guarantee that, whenever
the corresponding contingent event occurs inside the bounds of T ctg, these con-
straints are satisfied. In other words, we need a dynamic execution strategy, where
the execution of each controllable timepoint is decided only according to the past
observations, and a consistent execution is ensured under all possible scenarii. A
consistent and pseudo controllable network is said dynamically controllable if such a
dynamic execution strategy exists.

Dynamic controllability can be checked in polynomial time by the algorithm 3DC+
16In this framework, a contingent link has a duration interval [l, b] such that 0 < l < b < ∞.
17A contingent timepoint corresponds to the end timepoint of a contingent link, other timepoints are

said controllable.

3.8. Discussion 133

presented in [Morris 01, Huguet 02]. First, the consistency and pseudo controllability
are checked by a path consistency algorithm. The 3DC+ algorithm then considers the
relationships between each pair of controllable/contingent timepoints (T ctr, T ctg). The
controllable timepoint may occur necessarily after T ctg (case 1), necessarily before (case
2), or the timepoints are unordered (case 3). The first case does not raise any controllability
issue. In case 2 and 3, the execution interval of T ctr may be tightened to guarantee the
dynamic controllability. In the last case, it may even be necessary to insert a so-called
wait condition < T ctg, d > on the execution of T ctr: wait for the execution of T ctg or for
at least a time delay d.

Let us consider the example of Figure 3.13. It represents a plan with two actions a1

and a2, both of contingent duration (respectively [a, b] and [c, d]). a2 is further constrained
to occur during a1. TEXEC will reason on the network of Figure 3.13b), which is consistent
(and pseudo controllable) on the unique condition b > c. However, the dynamic control-
lability is ensured if the additional constraints a > c and b > d are satisfied (cf. Figure
3.13c)). In this example, the current execution strategy of TEXEC does not need to be
modified and leads to the same execution scenario with the pseudo controllable network
and the dynamically controllable one.

[a,b]

[c,d]

st
a1 et a1

st
a2 et

a2

]0,+oo[]0,+oo[

a) Initial constraints

[a,b]

[c,d]

st
a1 et a1

st
a2 et

a2

]0,b-c[]0,b-c[

b) After PC1

]c,b[

]c,b[

[a,b]

[c,d]

st
a1 et a1

st
a2 et

a2

]0,
min(a-c,b-d)[]0,b-c[

c) After 3DC+

]c,a[

]c,b[

contingent link

controllable link

Figure 3.13: Pseudo and Dynamic Controllability

Consider now the example in Figure 3.14. The action a2 is required to wait for an
ending effect of action a1 before being allowed to terminate. Depending on the respective
durations of the contingent links (b−c > a or b−c < a), a dynamic strategy may introduce
a wait condition or not. We present in both cases the plan on which TEXEC currently relies
(“after PC1”), and the same plan after the application of 3DC+. We detail the expected
behavior of TEXEC in the four cases:

• In cases (1) and (3) (i.e. the current implementation, without 3DC+), sta1 is exe-
cuted at t = 0.18 sta2 is then executed at t = 1 and propagation restricts the bounds
of eta1 to [5, 5] and eta2 to [4, 4]. The network is no more pseudo controllable and
the execution is likely to fail.

• In case (2), sta1 is similarly executed at t = 0. But sta2 is only executed at t = 4,
18For clarity purpose, we omit the open bound. sta1 is actually instantiated at t = 0.001.

134 Chapter 3. IXTET-EXEC: Interleaving temporal planning and plan execution

and the contingent links are not squeezed. Thus, if the duration model is correct,
the execution will not encounter temporal failures.

• In case (4), the TEXEC execution strategy can not be used as is. We need to extend
the definition of an executable timepoint (cf. section 3.2.3):
A timepoint T is executable at time t if:

1. all timepoints T p that must directly precede it in the temporal network have
already been executed (T p

lb = T p
ub = tp < t); and

2. for each controllable link (T p, T) that contains a wait condition on the contin-
gent timepoint Tw: < Tw, d >, then Tw has already been executed or t ≥ tp+d;
and

3. t is comprised in the execution interval of T .
A priori, the definition of the execution time of timepoints does not need to be
modified.

Case: b-c>a

Case: b-c<a

[a,b]

[c,d]

st
a1

et a1

st
a2 et

a2

]0,+oo[

]0,+oo[

]0,+oo[

st
H

 Initial constraints

[5,6]

[2,4]

st
a1

et a1

st
a2 et

a2

]0,+oo[
]0,+oo[

]1,+oo[

st
H

After PC1

]-oo,4[

]5,+oo[

]1,+oo[

[5,6]

[2,4]

st
a1

et a1

st
a2 et

a2

]0,+oo[
]0,+oo[

]4,+oo[

st
H

]-oo,2[

]6,+oo[

]4,+oo[

After 3DC+

[5,10]

[2,4]

st
a1

et a1

st
a2 et

a2

]0,+oo[
]0,+oo[

]1,+oo[

st
H

After PC1

]-oo,4[

]5,+oo[

]1,+oo[

[5,10]

[2,4]

st
a1

et a1

st
a2 et

a2

]0,+oo[
]0,+oo[

]5,+oo[

st
H

]-oo,2[

]7,+oo[

]5,+oo[
<et ,8>a1

After 3DC+

(1) (2)

(3) (4)

[a,b]=[5,6]
[c,d]=[2,4]

[a,b]=[5,10]
[c,d]=[2,4]

Figure 3.14: Dynamic Controllability and Execution

As we can see in these examples, the performances of IXTET-EXEC could benefit from
a checking of the dynamic controllability. Our system proposes mechanisms to repair
temporal failures, but the number of possible failures can be reduced by imposing some

3.8. Discussion 135

controllability criterion. In fact, three criteria can be applied to the network: only consis-
tent, consistent and pseudo controllable, consistent and dynamically controllable. They
can be added to the definition of a solution plan and/or the definition of an executable
plan. Future work should study which criterion needs to be chosen and in which condi-
tions, considering that the 3DC+ algorithm will make the propagation process heavier,
and that it implies a good confidence in the model of the contingent durations.

Another important issue needs to be considered: the impact on the atemporal network
if some contingent temporal link (T i, T j) is involved in a mixed constraint ?x = c∗(T j−T i).
Likewise the atemporal variable ?x is not controllable but the propagation algorithms may
reduce its domain, thus reducing the contingent duration interval. The differentiation
between controllable and non controllable variables and its influence on the notion of
consistency has been dealt with in [Fargier 96], but for discrete CSPs.

Chapitre 4
Les expérimentations menées au LAAS sur divers robots mobiles s’appuient sur une archi-
tecture logicielle. Dans ce chapitre, nous décrivons comment IXTET-EXEC a été intégré
dans l’architecture LAAS pour contrôler un robot mobile d’extérieur avec la mission
d’exploration présentée au premier chapitre.

L’architecture LAAS

L’architecture LAAS se décompose en trois niveaux :

• Le niveau fonctionnel réalise tous les services et traitements de base associés aux
capteurs/effecteurs. Ces services sont encapsulés dans des modules qui sont activés
par des requêtes, retournent des bilans et exportent des données.

• Le niveau de contrôle des requêtes filtre les requêtes selon l’état courant du robot et
un modèle formel des états permis et interdits.

• Le niveau décisionnel comprend tous les processus délibératifs : planification, recon-
naissance de situation, etc.

La navigation autonome dans un environnement inconnu est un vaste domaine de
recherche. Nous exploitons les algorithmes développés au LAAS pour : la modélisation de
l’environnement (carte 3D), la localisation du robot (stéréo-odométrie) et la planification
de trajectoires. Ces tâches sont réalisées par le niveau fonctionnel.

Le niveau décisionnel comprend IXTET-EXEC et un exécutif procédural OpenPRS qui
interagit avec l’opérateur, les modules fonctionnels et TEXEC. Si l’exécutif temporel décide
du lancement et de l’arrêt des actions du plan, l’exécutif procédural de son côté :

• affine chaque action en requêtes pour les modules,

• surveille l’exécution de chaque action et calcule les bilans retournés à TEXEC,

• surveille les ressources,

• dispose d’une certaine latitude pour réagir rapidement à certains échecs,

• met le robot dans un mode d’attente lorsque une replanification est en cours.

Les modèles

Cette section détaille les modèles (IXTET et OpenPRS) utilisés pendant l’expérimentation.
Une partie des actions ont été réalisées par le robot, une autre partie a été simulée à bord
(“communication avec une station-sol”, “téléchargement des images”).

138 Chapitre 4

Résultats

Nous présentons trois exécutions différentes pour un même scénario initial. Ils illustrent la
capacité du système à réagir à des échecs temporels (obstacles ralentissant le robot) tout
en respectant des échéances (fenêtres de visibilité pour les communications). Il illustrent
également comment la flexibilité au niveau des ressources permet de traiter l’incertitude sur
leur utilisation (taux de compression effectif des images connu au moment de l’exécution).

Chapter 4

Integration in the LAAS Architecture
One of the main reasons to extend IXTET with execution, dynamic planning and replan-
ning capabilities is to use it on board autonomous systems such as rovers or satellites.
Those systems are usually developed and deployed using a particular architecture and its
associated tools. We used the LAAS architecture to integrate IXTET-EXEC.

Decisional Level

Functional Level

Temporal Executive

Requests Control Level

Environment

mission report

ExoGen

GenoM

Requests and Resources Checker

OpenPRS

Procedural
Executive

Planner

IxTeT-eXeC

POM
Position
Manager

Pos

Camera Images
pos-tag

LANE
Local
Env.

Env

P3D
3D reactive

Motion
Planner

Speed

SCorrel
Cor. Im
pos-tag

STEO
Stereo

Odometry
Pos

Platine
Pla
Pos RFLEXPos

Figure 4.1: Instantiation of the LAAS architecture on Dala

The LAAS architecture [Alami 98] provides a support in order to design and integrate
complex autonomous systems. This architecture has three levels, with different temporal

140 Chapter 4. Integration in the LAAS Architecture

constraints and uses different data representations. From the bottom to the top, the levels
are:

• The functional level- It includes all the basic built-in robot action and perception
capabilities, encapsulated into controllable communicating modules. Modules are
activated by requests, send reports upon completion and export data.

• The requests control level- It filters the requests according to the current state
of the system and a formal model of allowed and forbidden states.

• The decisional level- It includes the deliberative capabilities of the robot such as:
producing actions plans, recognizing situations, fault detections, etc. IXTET-EXEC has
been integrated in this level and interacts with the procedural executive OpenPRS.

Figure 4.1 presents the architecture as set for the experiment1 on Dala, an iRobot
ATRV (cf. Figure 4.2). Dala runs a Pentium III (850 MHz) under Linux and is equipped
with the following sensors: odometry, a stereo camera pair mounted on a pan&tilt unit
(PTU) and a Sick laser range finder. IXTET-EXEC has been deployed on Dala with the
exploration mission scenario described in section 1.5.

Figure 4.2: The outdoor robot Dala

The first section of this chapter gives a short description of the concepts and tools
on which each level relies, and further details the role of the procedural executive in this
context. The next section presents how the experiment has been set up, especially the
models developed for the decisional components. In the last section, we consider how the
robot, controlled by IXTET-EXEC, did perform a specific mission on different runs.

1In fact, the Requests and Resource Checker has not been used during our tests.

4.1. The LAAS architecture 141

4.1 The LAAS architecture

4.1.1 Functional level

The functional level is made of a set of controllable communicating modules. Each module
encapsulates operational functions that can be activated, interrupted or parameterized by
asynchronous requests sent to the module. Upon completion or abnormal termination,
reports (with status) are sent back to the requester, which can be the procedural executive
as well as another module or an operator. During the execution of functions, a module
can export data in public structures, called posters. Therefore, data, such as the robot
position, can be made available for other modules and the above levels. The temporal
requirements of the modules depend on the type of processing they perform. Modules
running servo loop (which have to be run at precise rates and intervals without any lag)
will have a higher temporal requirement than a motion planner, or a localization algorithm.

The modules are automatically generated by Gen
oM [Fleury 94] using a template which

fields allow to define requests (parameters, failure reports, incompatibility with other
requests,. . .), real-time constraints (period and lag if any), the type of data exported in
posters and their update frequency, etc.

The functional level in Figure 4.1 details the network2 of modules used during our
tests on Dala to perform autonomous navigation tasks in an unknown environment. A
navigation task implies complex processes: environment modeling, robot localization and
trajectory planning. An overview of the methods developed by the LAAS to fulfill these
functionalities can be found in [Lacroix 02]. Following is a brief description of the methods
we used:

• Environment modeling- To generate elementary trajectories on rough terrains, a
digital elevation map is computed as the robot navigates. This method uses stereo-
vision data as input and represents the terrain as a set of elevations computed on a
regular horizontal Cartesian grid (cf. Figure 4.3) (module LANE).

• Robot localization- Two algorithms are used to estimate the robot position on
the basis of the on-board data: odometry and visual motion estimation (or visual
odometry). The first one produces a position estimate at a regular high frequency
but is error prone due to the wheels slippage (module RFLEX). The second one
uses pixel tracking in the video images. It produces reliable position estimates,
but at a variable low frequency (module STEO). A position manager collects these
data and produces a single consistent position, thus addressing the issues of sensor
geometrical distribution, asynchronism and fusion of the various position estimates
(module POM).

• Trajectory planning- On a rough terrain, the trajectory planner has to compute
a path to reach a way-point that avoids obstacles. The P3D algorithm evaluates

2The octagons are posters produced by the adjacent modules. An arrow indicates that a module can
read and use the pointed poster.

142 Chapter 4. Integration in the LAAS Architecture

elementary circle arcs while taking into account ground/robot collision constraints
and stability constraints on the basis of the digital elevation map and the robot
configuration (module P3D). The algorithm periodically reevaluates the position
and chooses an arc to execute which is translated into a speed reference (executed
then by RFLEX).

Figure 4.3: Digital elevation map

Table 4.1 summarizes the encapsulation of these functions in the modules.

Module Description Poster
Hardware PLATINE Pan-tilt unit controller - PTU position
controllers CAMERA Cameras controller - pair of stereo images tagged

(settings + acquisition) with the acquisition time
and current robot position

RFLEX Odometry and servo-control - robot position estimate
Localization STEO Visual odometry - robot position estimate

POM Position manager - current robot position
SCORREL Stereo vision - stereo-correlated image

(correlation procedures) tagged with the acquisition
time and robot position

Environment modeling LANE Map building - digital elevation map
Motion generation P3D 3D local planner - speed reference

Table 4.1: Modules used on board Dala

4.1. The LAAS architecture 143

4.1.2 Requests control level

Located in between the functional and the decisional levels, the Requests and Resources
Checker (R2C) has a fault protection role [Ingrand 02]. It checks the requests sent to the
modules (either from the procedural executive, but also internally from the functional level
itself), as well as the resources usage. It is synchronous with the modules, in the sense
that it sees all the requests sent to them, and all the reports coming back from them. It
acts as a filter which allows or disallows requests to pass, according to the current state of
the system (which is built online from the past requests and past reports) and according
to a formal model (given by the user) of allowed and forbidden states of the functional
system. When reports of the requests are being sent back to the R2C, it passes them to
the requester, after updating its internal state. The temporal requirements of this level
are hard real-time.

The model of acceptable and required states is specified through a set of constraints
describing contexts that block or are necessary for the execution of a particular request.
These contexts can be: termination condition of the last executed instance of the request,
precedence relations between requests, resource values and compatibility with requests
currently in execution. The EXoGEN tool compiles off-line this model into an OBDD
(Ordered Binary Decision Diagram) like structure which is then used to check the specified
constraints in real-time. The R2C controls the system by rejecting or killing requests.

This component has been implemented and tested on-board Dala in parallel with our
tests, but future work should encompass a complete integration of the three levels of the
architecture.

4.1.3 Decisional level

The decisional level embeds the processes that require anticipation and a knowledge of
the robot mission, of its global state and of the execution context. These processes are:

• The temporal planner/executive IXTET-EXEC which produces plans of high-level
actions achieving the mission goals, and supervises their execution and timing.

• A procedural executive which interacts with the operator and the functional level
(possibly through the R2C), refines the actions of the plans, supervises the execution
of each action and reacts to incoming events. This executive has been implemented
using the OpenPRS tool.

OpenPRS

In the context of robot experiments, the Procedural Reasoning System [Ingrand 96] has
interesting properties:

144 Chapter 4. Integration in the LAAS Architecture

– a high-level language allowing for the representation of goals and conditional sub-
plans,

– the ability to deal with different activities in parallel,
– a bounded reaction time to new events is guaranteed.

OpenPRS is composed of a set of tools to represent and execute procedures:

• A database- It contains facts representing the system view of the world, and is con-
stantly and automatically updated as new events appear (internal events or external
events from an operator, TEXEC or the functional modules). Thus the database can
contain symbolic and numerical information such as the position of the robot or the
status reports of requests.
• A library of procedures- Each procedure describes a particular sequence of actions

and tests that may be performed to achieve given goals3 or to react to certain
situations. Each procedure is self-contained: it describes in which conditions it is
applicable and the goals it achieves.
• A task graph- It corresponds to a dynamic set of tasks currently executing. Tasks

are dynamic structures which keep track of the state of execution of the intended
procedures and of the state of their posted subgoals.

An interpreter runs these components: it receives new events and internal goals, selects
appropriate procedures based on the new situation and places them on the task graph,
chooses one task and finally executes one step of its active procedure. This can result in
a primitive action (e.g. a request sent to a module), or the establishment of a new goal.

In complement, the Transgen tool allows a complete integration between OpenPRS
and Gen

oM. It takes a list of functional modules as input and generates a PRS kernel
including the basic procedures for each request and poster and all the encoding/decoding
functions.

Execution control within the procedural executive

In the decisional level, the procedural executive is the only component closing the loop with
the lower levels: it sends requests to the functional modules and collects the corresponding
reports. This executive is also reactive to the commands sent by the operator (e.g. high-
level goals) and interacts with TEXEC. TEXEC provides it with actions (belonging to a plan)
to execute. In return, OpenPRS informs IXTET-EXEC about data relevant to planning: new
goals, actions termination status, the system state and resources levels.

The execution control of plans is divided between the procedural and the temporal
executives. On one hand, TEXEC decides when to start the high-level actions of the current

3In PRS, goals correspond to the description of a desired state along with the behavior to reach/test
this state. Thus goals can be: achieve a condition, test a condition, wait for a condition to become true,
passively preserve a condition or actively maintain a condition while doing something else. Apart from
goals, the possible instructions in a procedure include explicit addition or removal of facts in the database,
standard programming structures (if-then-else, while, etc.) and an extensive use of variables.

4.1. The LAAS architecture 145

plan and when to stop them if they are preemptive. On the other hand, the procedural
executive has to fulfill the following functionalities:

• Action refinement
To each high-level action (fully instantiated by TEXEC) corresponds at least one
procedure that expands the action into requests to the modules.4 The library can
contain several such procedures for each action, that are applicable in different con-
texts.

• Action execution monitoring

– During the action execution, OpenPRS checks the termination report of each
request.

– The procedures corresponding to preemptive actions have to be receptive to
a possible interruption message at any time. They apply in response a sub-
procedure that stops the activities of the action (running modules. . .) in a
clean and safe manner.

– Once an action is finished, OpenPRS computes the report sent to TEXEC ac-
cording to the reports of the requests and to the state of the system (available
through posters).

• Resources monitoring
OpenPRS performs a regular monitoring of the state of the resources and devices,
to signal a problem to IXTET-EXEC.

• Failure recovery
OpenPRS has some latitude to recover from requests failures before they get reported
to IXTET-EXEC as a last resort:

– First, all subgoals are automatically reposted until a “complete” failure is
reached. By complete failure, we mean that all the applicable procedures
(with all possible context bindings) have failed.

– Second, often procedures are written in such a way that they test at run time
what is the best execution path to take according to the context (requests
reports, resource availability, etc.), and may recover from immediate failures.

However, all recovery activities should be compatible with the preemption status of
the action. If a recovery procedure for a preemptive action takes some time and can
not be interrupted, it should result from an explicit planning process and correspond
to a non preemptive action in the plan.

• Standby mode
Finally, OpenPRS should have a standby procedure to rely on while plan execution
is aborted and replanning is in progress. In our case, the robot just stays still.

4A TakePicture action, for instance, corresponds to the sequence of requests OneShot (take a raw image)
and Save (compress and store the image in a specific location) sent to the Camera module.

146 Chapter 4. Integration in the LAAS Architecture

4.2 Models

The exploration mission scenario requires the robot to accomplish three types of goals:
take pictures of specific targets, communication with a ground station during visibility
windows and a return near the lander at the end of the mission. These goals can be
achieved through five main high-level actions (cf. section 1.5):

• move between two absolute locations,
• take an image,
• move the pan&tilt unit from a position to another one,
• download images to the lander,
• communicate with a ground station during its visibility window.

The first three actions can be physically performed by Dala. The execution of the last two
actions however can only be simulated on-board the robot. This is done through specific
PRS procedures which simulate the visibility windows or the gradual download of images.
We briefly present the models developed for the experiment.

4.2.1 IXTET-EXEC model

This model is given in Appendix 2. It contains 9 state variables (including the x and y po-
sition of the robot, etc.), 2 unary resources (e.g. the camera bench) and 1 reservoir resource
(memory storage). 6 rigid attributes represent diverse characteristics of the domain: the
speed of the robot (between 0.03 and 0.1 m.s−1), the capacity of memory storage5, the
download rate, the image compression rate, etc.

The model contains 9 actions in all (cf. their description in section 1.5):

• move(?x1, ?y1, ?x2, ?y2), movex(?x1, ?y1, ?x2, ?y2) and movey(?x1, ?y1, ?x2, ?y2) are
latePreemptive actions. They correspond to the navigation between the absolute
locations (?x1, ?y1) and (?x2, ?y2).6 The duration of the action is estimated ac-
cording to the speed of the robot and to the Manhattan distance between the two
locations.

• move pan tilt unit(?initpos,?finalpos) is a latePreemptive action.

• take picture(?obj,?x,?y) is a nonPreemptive action. The image compression rate has
been defined according to a sample of 40 images taken during tests.

• download images() is a latePreemptive action. It is intended to completely free the
memory, thus its theoretical duration is defined according to the size of the directory
and to the download rate.

5We simulate a limited storage capacity (66 kB): the images are stored in a specific directory on Dala
which size should never exceed the chosen capacity.

6The 3 actions correspond to an equivalent execution procedure. The actions movex and movey along
the x and y axis are only given to improve the performances of the planner.

4.2. Models 147

• communicate() is a latePreemptive action. It is constrained to occur during a con-
tingent temporal window and the robot should not move.

• init ptu driver() and init mvt generation() are nonPreemptive actions. They corre-
spond to recovery actions used when move pan tilt unit and move fail with specific
failure reports. The first one implies a reinitialization of the Platine module, the sec-
ond one implies the reinitialization of the Lane and P3D modules. These processes
should not be interrupted.

Figure 4.4 shows the plan generated for the following initial scenario:

– Initial situation: the robot is in (0,0); the storage directory is empty; the cameras
orientation is “forward”.

– Goals: 4 images in (0,0), (9,0), (10,-3), and (8,-5); 2 communications during the
visibility windows w1 and w2; be back in (0,0) at the end of the mission.

– Temporal constraints: the window w1 starts at t = 300s and lasts 120s; the
window w2 starts at t = 600s and lasts 120s; the planning horizon is 2000s.

This initial plan contains 19 actions and 57 timepoints.

Figure 4.4: Initial plan

4.2.2 OpenPRS model

The procedures of the model can be sorted in 3 main sets:

148 Chapter 4. Integration in the LAAS Architecture

1. the procedures in connection with the navigation task,
2. the procedures linked to the joint plan execution with TEXEC,
3. the procedures used to simulate the download and communication actions.

Navigation

To perform a move action, we use the library developed by G. Infantes. In brief, there
are multiple ways to perform a navigation task (depending on the methods used for lo-
calization, map building, motion generation). Each such way, also called modality7, can
be modeled as a Hierarchical Task Network whose primitives are sensory-motor functions.
An automatic generation ensures the consistency of these modalities by taking into ac-
count the data flow between functions (e.g. video images). Further details can be found in
[Infantes 03]. Few modalities are available for outdoor navigation on rough terrains and
we mainly performed our tests with the modality based on stereo odometry and the P3D
trajectory planner.

Mission

This set contains:

• Procedures to communicate with the temporal executive such as the following ones,
fired by the LAUNCH and END commands sent by TEXEC.

(defop |start-task|

:invocation (LAUNCH $REQUESTER $TASK_NAME $TASK_ID $PARAMS)

:body

(

(!($TASK_NAME $TASK_ID $PARAMS $RETURN))

(!(SEND-MESSAGE $REQUESTER (BILAN $TASK_ID $RETURN)))

)

)

(defop |end-task|

:invocation (END $TASK_ID)

:body

(

(=> (INTERRUPT $TASK_ID)))

)

)

• One “action refinement” procedure for each high-level action. Following is an ex-
ample of “refinement” procedure for the preemptive move pan tilt unit action. Such

7The different modalities are more or less appropriate depending on the environment (cluttered, dy-
namic, narrow, etc.). The relationship between the execution context and the appropriate modality can be
learned from experiment as a Markov Decision Process which provides a general policy for the navigation
task. This work is detailed in [Morisset 02] as well as the thorough experiments made on an indoor robot.

4.2. Models 149

a procedure achieves at least two roles: the expansion in requests to the modules
(PLATINE-CMDPOSCOORD-REPORT, PLATINE-STOP-REPORT) and the computation
of the report sent to TEXEC ($RETURN).

(defop |task-move-pan-tilt-unit|

:invocation (!(MOVE_PAN_TILT_UNIT $TASK_ID (PARAMETERS $POSI $POSF) $RETURN))

:effects ((~> (INTERRUPT $TASK_ID)))

:body

(

(? (PAN_ANGLE $POSF $P_ANGLE))

(? (TILT_ANGLE $POSF $T_ANGLE))

(// ((^ (INTERRUPT $TASK_ID))

(! (PLATINE-STOP-REPORT $STOP_PTU_REPORT))

)

((! (PLATINE-CMDPOSCOORD-REPORT

(PLATINE_REF_COORD_POS_STR

(UNITY PLATINE_DEG)

(CMDTYPE PLATINE_ABSOLUTE)

(PAN $P_ANGLE)

(TILT $T_ANGLE)

(SURVENDFLAG PLATINE_TRUE)

(UNUSED 0))

$MOVE_PTU_REPORT))

(IF (? (EQUAL $MOVE_PTU_REPORT "OK"))

(! (= $RETURN (NOMINAL)))

(=> (INTERRUPT $TASK_ID))

ELSE

(IF (? (INTERRUPT $TASK_ID))

(! (= $ENDSTATUS INTERRUPTED))

ELSE

(! (= $ENDSTATUS FAILED))

(=> (INTERRUPT $TASK_ID)))

(IF (? (EQUAL $MOVE_PTU_REPORT "DRIVER_NOT_INITIALIZED"))

(!(= $ATT_INIT (PTU_DRIVER_INITIALIZED F)))

ELSE

(!(= $ATT_INIT (PTU_DRIVER_INITIALIZED T)))

)

(! (GET_PTU_POS $PTU_POS))

(!(= $ATT_POS (PAN_TILT_UNIT_POSITION $PTU_POS)))

(! (= $RETURN ($ENDSTATUS (STATEBILAN $ATT_POS $ATT_INIT))))

)

)

)

)

)

• Miscellaneous procedures to monitor resources, check the robot or pan&tilt unit
position, etc.

150 Chapter 4. Integration in the LAAS Architecture

Simulation

• Limited memory storage- Once compressed, an image is stored in a specific
directory. However the image is deleted and the take picture action fails if there is
not enough space in this directory with respect to the specified capacity limit. A
download action consists in transferring the images from this directory to another
one. Before each file transfer, the procedure waits for a certain duration computed
according to the file size and a specified download rate. The storage level returned
at the end of the take picture and download actions to TEXEC is the current size of the
storage directory and thus reflects the uncertainty on the actual size of the images.

• Visibility windows- A specific procedure simulates the start and exit of the visi-
bility windows. The communicate procedure checks that the window remains active
during the action execution.

In the following section, we present examples of runs where no specific failure has been
injected in the simulated part of the mission.

4.3 Runs

Dala has been given an initial plan (Figure 4.4) to execute autonomously. Each resulting
run was different (in the number of actions, mission duration, etc.). We illustrate the
performances of IXTET-EXEC with three of these runs. For each run: timestep = 2s and
µ = 60%. Figures 4.6, 4.8 and 4.10 represent the execution traces. They give for each cycle
of TEXEC: the messages8 exchanged with OpenPRS and the actions that are postponed
when a plan repair is in progress. In complement, Figures 4.7, 4.9 and 4.11 indicate for
each cycle: its starting time, its total duration and the duration of each phase of the cycle.

Run 1

During this run, the robot has achieved the trajectory shown in Figure 4.5. All goals have
been accomplished in a quite straightforward manner. There has been three execution
events requiring a plan repair.

1. Taking too much time, the move(9,0,10,-3) action has been interrupted in cycle 12.
The report is received too late, thus leading to a time-out situation where some
temporal flexibility is left. The plan repair process (40 planning steps distributed
on 3 cycles) inserts a new move action to complete the navigation, but after the
communication with the ground station, thus respecting its deadline.

8In bold: the launch or interruption of an action. In italic: the report sent back at the end of the action.

4.3. Runs 151

2. The take picture(O4, 10,−3) action lasted less than expected in the model. The
plan repair in this case mainly rebuilt the causal links removed during the message
integration (done in 29 planning steps and 3 cycles).

3. The return to the position (0,0) takes longer than expected in the model, thus
move(8,-5,0,0) is interrupted in cycle 29. The plan repair process inserts a move
action to complete the navigation (in 12 planning steps and 2 cycles).

On a run of 1370s, IXTET-EXEC woke up 33 times and used 640s of CPU time. The
other main processes: STEO, CAMERA, SCORREL, OpenPRS, LANE and P3D, have
respectively used 271s, 144s, 119s, 75s, 52s and 20s of CPU time.

Figure 4.5: Path covered by Dala during Run 1. The trajectories labeled “rflex” and “steo”
represent the position estimated respectively by odometry and visual odometry along the
path. The visual odometry is indispensable even if it considerably slows down the robot.

Run 2

Some unknown obstacles have been added (approximately in (3,-1) and (6,1)). All goals
have been achieved. Two execution events required a plan repair:

152 Chapter 4. Integration in the LAAS Architecture

1. Due to the obstacles, the movex(0,0,9,0) action takes much more time than expected.
It is interrupted in cycle 5. Not much flexibility is left before the visibility window
w1, still the plan repair finds a solution (in 50 planning steps and 4 cycles) before the
starting timepoint of the communicate action times out. A move action is inserted
after the communication.

2. Here again, a take picture action takes less time than expected. The plan repair
process (39 planning steps) is distributed on 4 cycles (14 to 17). Note that a
move pan tilt unit action is launched as soon as it is supported in the plan (cycle
16), and before a solution plan is found.

On a run of 1285s, IXTET-EXEC woke up 32 times and used 541s of CPU time. The
other main processes: STEO, CAMERA, SCORREL, OpenPRS, LANE and P3D, have
respectively used 270s, 145s, 123s, 80s, 55s and 18s of CPU time.

Run 3

This time, the obstacles have been placed approximately in (3,1) and (6,-2). The robot
did not achieve all initial goals. The following events occurred (a detailed trace of this run
is given in Appendix 2):

1. Similarly to the previous run, the first move action takes too long and is interrupted
in cycle 5. The plan is repaired with the insertion of a move action after the com-
munication (in 51 planning steps).

2. However, this second move action takes also too much time and is interrupted (cycle
12). This time, no temporal flexibility is left in the plan (due to the temporal
constraints of the visibility window w2) and IXTET-EXEC completely replans with
the abandon of the goal requiring a picture in (10,-3). The new plan contains a
communication in w2, a travel to (8,-5) to take a picture, a return to (9,0) to take a
picture and a final return to (0,0).

3. The execution of the move(8,-5,9,0) action takes a lot of time due to the obstacles.
It is interrupted and a new navigation action is replanned several times (cycles 25,
28, 31).

4. Finally, the robot is stopped while it is going back to (0,0) because we had specified
a too short mission horizon :-(.

On a run of 2000s, IXTET-EXEC woke up 39 times and used 881s of CPU time. The
other main processes: STEO, CAMERA, SCORREL, OpenPRS, LANE and P3D, have
respectively used 448s, 227s, 193s, 80s, 24s and 23s of CPU time.

When no plan repair is required, the execution control rate is much better than 0.5Hz:
the average duration cycle (with no plan repair) was 0.169s during Run 1, 0.19s during

4.3. Runs 153

Run 2 and 0.095s during Run 3. A message integration takes more time when the storage
level is updated. For example, during Run 1, the resource update takes respectively 0.196s,
0.147s, 0.173s, 0.255s and 0.238s in the cycles 3, 7, 20, 26 and 27.

154 Chapter 4. Integration in the LAAS Architecture

1

2

3

4

5

6

7

8

9

10

11

MovePTU(F,D) - 14

nominal 14
TakePict(O1,0,0) - 4

nominal 4
MovePTU(D,F) - 15
nominal 15
MoveX(0,0,9,0) - 9

nominal 9
MovePTU(F,D) - 13

nominal 13
TakePict(O2,9,0) - 3

nominal 3
MovePTU(D,F) - 16

nominal 16

Communicate(W1) - 6
Visibility(W1):IN

nominal 6
Move(9,0,10,-3) - 8

Visibility(W1):OUT

12

13

14

15

16

17

18

19

20

21

22

End 8

Interrupted 8 (time-out)

nominal 5
Move(10.1,-2.2,10,-3) - 20

nominal 20
MovePTU(F,D) - 12
nominal 12

Visibility(W2):OUT
nominal 1 (too early)

Move(10,-3,8,-5) - 11
nominal 17

nominal 11

nominal 7

nominal 2

MovePTU(D,F) - 19
nominal 19
Move(8,-5,0,0) - 10

nominal 21

23

24

25

26

27

28

29

30

31

32

33

Postpone MovePTU 12

Solution found

Visibility(W2):IN

Communicate(W2) - 5

TakePict(O4,10,-3) - 1

Postpone MovePTU 17

Solution found
MovePTU(D,F) - 17

MovePTU(F,D) - 18
Download - 7
nominal 18

TakePict(O3,8,-5) - 2

End 10

Interrupted 10 (time-out)

Solution found
Move(1.3,-1.2,0,0) - 21

END

Run 1cycles

Figure 4.6: Run 1 - Execution trace

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60

1-
0.

03
2

2-
4.

83
8

3-
7.

0

4-
11

.2
71

5-
28

3.
87

8

6-
28

8.
28

1

7-
29

0.
31

8

8-
29

4.
72

8

9
-3

0
0

10
-4

04
.9

28

11
-4

20

12
-5

19
.6

08

13
-5

23
.6

71

14
-5

25
.1

64

15
-5

26
.4

45

16
-6

00

17
-7

04
.9

24

18
-7

16
.0

88

19
-7

19
.6

38

20
-7

21
.6

16

21
-7

23
.0

8

22
-7

24
.4

94

23
-7

29
.3

48

24
-8

54
.3

98

25
-8

59
.0

21

26
-9

21
.8

34

27
-9

24
.2

28

28
-9

29
.3

98

29
-1

32
7.

41

30
-1

33
1.

42

31
-1

33
2.

94

32
-1

36
8.

65

33
-1

37
0.

66

Cycle: number - start time (s)

C
yc

le
 d

u
ra

ti
o

n
 (

s)

Act

Plan Repair

Sense

Run 1

Figure 4.7: Run 1 - Cycle start time and duration

4.3. Runs 155

1

2

3

4

5

6

7

8

9

11

MovePTU(F,D) - 14

nominal 14
TakePict(O1,0,0) - 4
nominal 4
MovePTU(D,F) - 15
nominal 15
MoveX(0,0,9,0) - 9

Communicate(W1) - 6

Visibility(W1):IN

nominal 6
Move(8,1.6,9,0) - 20

Visibility(W1):OUT

12

13

14

15

16

17

18

19

20

21

22

nominal 13

nominal 16
Move(9,0,10,-3) - 8

Visibility(W2):OUT

nominal 8

nominal 17

nominal 5

nominal 11

nominal 18

MovePTU(D,F) - 19

nominal 7

Move(8,-5,0,0) - 10

23

24

25

26

27

28

29

30

31

32

MovePTU(D,F) - 16

MovePTU(D,F) - 17

Move(10,-3,8,-5) - 11

TakePict(O3,8,-5) - 2

nominal 19

END

Run 2cycles

End 9

Interrupted 9 (time-out)
Postpone MovePTU 13

Postpone MovePTU 13
Postpone Communicate 6

Postpone Communicate 6
Postpone Move 20

Solution found

nominal 20
MovePTU(F,D) - 13

TakePict(O2,9,0) - 3

nominal 3 (too early)
Postpone MovePTU 16

Postpone MovePTU 16

Solution found

Visibility(W2):IN

MovePTU(F,D) - 12
Communicate(W2) - 5
nominal 12
TakePict(O4,10,-3) - 1

nominal 1

MovePTU(F,D) - 18
Download - 7

nominal 2

nominal 10

10

Figure 4.8: Run 2 - Execution trace

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90

1-
0.

02
6

2-
4.

39
8

3-
6.

75
6

4-
10

.6
52

5-
29

2.
00

2

6-
29

6.
86

1

7-
29

8.
77

1

8-
30

0.
17

3

9-
30

1.
42

8

10
-4

06
.8

45

11
-4

20
.0

13

12
-4

90
.9

62

13
-4

94
.4

85

14
-4

96
.4

4

15
-4

97
.9

21

16
-4

99
.2

69

17
-5

00
.6

16

18
-5

04
.1

62

19
-6

00
.0

03

20
-6

13
.1

72

21
-6

17
.5

21

22
-6

20
.7

82

23
-6

25
.4

92

24
-7

17
.8

22

25
-7

20
.0

03

26
-8

36
.8

02

27
-8

41
.7

52

28
-9

07
.9

44

29
-9

10
.4

30
-9

15
.3

12

31
-1

28
3.

26

32
-1

28
5.

27

Cycle: number - start time (s)

C
yc

le
 d

u
ra

ti
o

n
 (

s)

Act

Plan Repair

Sense

Run 2

Figure 4.9: Run 2 - Cycle start time and duration

156 Chapter 4. Integration in the LAAS Architecture

1

2

3

4

5

6

7

8

9

11

MovePTU(F,D) - 14

nominal 14
TakePict(O1,0,0) - 4
nominal 4
MovePTU(D,F) - 15
nominal 15
MoveX(0,0,9,0) - 9

Communicate(W1) - 6

Visibility(W1):IN

nominal 6
Move(7.2,-4.4,9,0) - 20

Visibility(W1):OUT

14

15

16

17

18

19

20

21

22

23

24

nominal 23

nominal 31

Move(9.9,-0.7,8,-5) - 31

Visibility(W2):OUT

End 24

TakePict(O3,8,-5) - 21

nominal 34

END timeout
w.r.t planning horizon
Robot position: (4.7,0.8)

Run 3cycles

End 9

Interrupted 9 (time-out)
Postpone MovePTU 13

Postpone MovePTU 13

Postpone Communicate 6

Postpone Communicate 6
Postpone Move 20

Solution found

MovePTU(F,D) - 27

TakePict(O2,9,0) - 22

Solution found

Visibility(W2):IN

MovePTU(D,F) - 29

nominal 29
Move(8,-5,9,0) - 24

nominal 28

End 20
25

26Interrupted 20
(time-out , no flexibility left)

Replanning
Solution found in 64 steps

Communicate(W2) - 23

Move(10.2,-1.7,8,-5) - 25

End 25

Interrupted 25 (time-out)

nominal 27

nominal 21 (too early)
Solution found

Solution found
Interrupted 24 (time-out)

Move(8.1,-3.9,9,0) - 32

End 32

Solution found
Interrupted 32 (time-out)

Move(5.7,-2.1,9,0) - 33

End 33

Interrupted 33 (time-out)

Solution found
Move(5.5,-2.1,9,0) - 34

MovePTU(F,D) - 28

MovePTU(D,F) - 30

nominal 22 (too early)

Solution found

nominal 30
MoveX(9,0,0,0) - 26

End 26

10

12

13

27

28

29

30

31

32

33

34

35

36

37

38

39

Figure 4.10: Run 3 - Execution trace

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25

1-
0.

02
7

2-
5.

37
3-

7.
75

8
4-

11
.6

06
5-

29
2.

98
6

6-
29

7.
58

3
7-

29
9.

53
2

8-
30

0.
89

4
9-

30
2.

20
3

10
-4

08
.2

86
11

-4
20

.0
07

12
-5

87
.4

58
13

-5
91

.1
96

14
-6

00
15

-7
04

.2
06

16
-7

20
17

-8
84

.7
2

18
-8

88
.9

46
19

-8
90

.9
56

20
-1

06
0.

02
21

-1
06

4.
48

22
-1

06
6.

48
23

-1
07

1.
01

24
-1

25
2.

35
25

-1
25

6.
48

26
-1

25
8.

49
27

-1
39

8.
68

28
-1

40
3.

01
29

-1
40

5.
02

30
-1

56
6.

35
31

-1
57

1.
08

32
-1

57
2.

32
33

-1
71

8.
42

34
-1

72
2.

88
35

-1
72

4.
73

36
-1

72
6.

06
37

-1
73

0.
9

38
-1

99
6.

01
39

-2
00

0.
68

Cycle: number - start time (s)

C
yc

le
 d

u
ra

ti
o

n
 (

s)

Replanning

Act

Plan Repair

Sense

Run 3

Figure 4.11: Run 3 - Cycle start time and duration

4.3. Runs 157

Figures 4.12 and 4.13 show the evolution of the memory storage level during Run 1
and Run 2. Measures are done:

– at the beginning of the mission (cycle 1),

– after each picture in (0,0), (9,0), (10,-3) and (8,-5) (cycles 3, 7, 20, 27 in Run 1 /
cycles 3, 14, 22, 29 in Run 2),

– after the download action (cycle 26 in Run 1 / 28 in Run 2).

The points linked by lines correspond to the minimal and maximal levels authorized in the
initial plan (cf. Figure 2.30, page 93). The circles and crosses show how these minimal and
maximal “theoretical” levels evolve when updated during execution. Finally, the squares
represent the real level at the end of each action. Thus, at each action end, the real level is
compared with the corresponding theoretical bounds, which are then updated accordingly.

The extension to a flexible model of resources proposed in section 2.4 allows to handle
the uncertainty on the actual usage of the resource at execution time. This usage varies
with each run, but a plan repair becomes necessary only if the level is outside of the
theoretical bounds for which the plan is guaranteed valid and if a conflict is detected (an
over-consuming maximal clique).

Run 1- Memory storage level

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Cycle number

L
ev

el

(c
ap

ac
ity

 6
60

00
)

Theoretical Level - min

Theoretical Level - max

Real Level

Initial Plan Level - min

Initial Plan Level - max

Figure 4.12: Run 1 - Evolution of the storage level

Run 2- Memory storage level

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000

0 2 4 6 8 101214 161820 222426 2830 Cycle number

L
ev

el

(c
ap

ac
ity

 6
60

00
)

Theoretical Level - min

Theoretical Level - max

Real Level

Initial Plan Level - min

Initial Plan Level - max

Figure 4.13: Run 2 - Evolution of the storage level

158 Chapter 4. Integration in the LAAS Architecture

Conclusion

The flexibility of durations and resource usages provides an initial plan robust to execution
contingencies. Furthermore, the plan repair process allows a quite reactive response to
numerous failures. Consider for instance the interruption of move(0,0,9,0) in Run 2. The
plan repair takes 4 cycles, i.e. much less than the time needed for a complete replanning
at that state of the mission execution (with 6 goals left including 3 images and 2 com-
munications)9. In the above runs, the communication windows are respected despite the
delays of the robot.

We have encountered several types of failures during our tests, some of which could
be repaired, some other could not. For example, the Platine module has returned a
“DRIVER NOT INITIALIZED” report a few times which could be successfully repaired by
the reinitialization of the module. More often, the P3D module has returned a report
notifying that the robot was blocked even if no obstacle were present on its way. In such
cases, the reinitialization of the digital elevation map and of the P3D module sometimes
solved the problem. It also happened that the brakes were put on by the controller for no
apparent reason, thus stopping the robot. This problem was not reported by any modules
and could not be handled by the above levels.

Our experiments rely on other algorithms which have not necessarily been implemented
with the aim of being used by a supervisor in a completely autonomous mode. Diagnostic
and recovery activities need to be enforced at any level of the architecture. The IXTET-
EXEC system is a just step towards a more robust autonomous behavior w.r.t. the mission
temporal and resource constraints.

9The initial plan (for 7 goals including 4 images and 2 communications) is found in 79.6s, 126 developed
nodes and 8 backtrack nodes.

Chapitre 5
Ce chapitre présente des résultats supplémentaires obtenus par simulation du comporte-
ment du système contrôlé grâce à des procédures spécifiques sous OpenPRS.

Domaine

Les exemples présentés se basent sur un nouveau domaine : un robot chargé d’explorer
une zone inconnue et de ramener les objets découverts en chemin.

Entrelacement de la réparation et de l’exécution du plan vs Re-
planification

Nous comparons les deux stratégies lorsque le robot découvre de nouveaux buts ou doit
réagir à deux échecs consécutifs : (1) entrelacement de la réparation et de l’exécution
du plan, (2) arrêt de l’exécution et replanification complète. Nous analysons plus parti-
culièrement le temps global passé dans l’exécution des actions du plan, dans les phases
“Perception” et “Action”, et en planification.

Ressources

Le modèle prend maintenant en compte l’énergie consommée par le robot. Nous montrons
comment le système réagit à des variations plus ou moins importantes du niveau par
rapport aux prédictions, et à une chûte de la capacité.

Chapter 5

Illustrative example
IXTET-EXEC provides two plan adaptation mechanisms (plan repair / replanning) in re-
sponse to the following situations:

1. temporal failures,

2. failures of actions,

3. new goals,

4. detection of future resource contention.

The runs on Dala presented in the previous chapter show how the system can react to
temporal failures when deadlines have to be respected. In this chapter, we illustrate the
reactions to the other situations. We use a new domain example: a robot has to explore an
unknown area and bring back objects that it discovers on its way. IXTET-EXEC is interfaced
with OpenPRS and the behavior of the robot is simulated by specific procedures.

The first section presents the domain. The second section aims to compare the plan
repair and replanning strategies in this context. In the last section, we consider how the
energy consumption can be handled by the system.

162 Chapter 5. Illustrative example

5.1 Domain

O2

O4

L0

L4L3

L5L2

L6L1

A robot, equipped with two arms
(LH and RH) and initially lo-
cated in L0, is required to ex-
plore an area divided into 6 loca-
tions (L1. . .L6). The robot takes
images in each location, analyses
them and brings back (to L0) any
object present in the location and
revealed by the image processing.

The robot capabilities are described as a set of 5 actions:

• move(?li,?lf) - move from location ?li to location ?lf ,

• scan(?l) - take images in location ?l and process them,

• take(?o,?l,?h) - take the object ?o in location ?l with the arm ?h,

• put(?o,?l,?h) - put the object ?o on the ground in location ?l with the arm ?h,

• carry(?o,?li,?lf ,?h) - carry the object ?o from location ?li to location ?lf with the
arm ?h (this action can be executed in parallel with the other actions: it checks that
the object is kept in the arm during the travel).

The move action is late preemptive. Scan, take and put are non preemptive actions. Carry
is an early preemptive action: it will be terminated as soon as the robot arrives in the final
location with the object. The initial goals of the mission are: “scan each location” and
“be back in L0 at the end of the mission”. Thus the initial plan is a sequence of alternated
move and scan actions. New goals appear during the mission execution when objects are
discovered. Such a goal requires an object to be in L0 at the end of the mission. For the
following tests, we suppose that there is at most one object Oi in Li (i = 1..6). No specific
temporal constraints are required.

The tests have been run on a Pentium IV. The simulated durations of the actions
are: 3s for scan and 8s for put and take. The duration of the move action varies with the
distance (10s for (L0, L1), 20s for (L2, L4), 30s for (L1, L4), etc.). During the execution of
a move action, the simulated position of the robot is set to an intermediate location (L1

for (L0, L2), L1 for (L1, L2), etc.).

5.2 Plan repair interleaved with plan execution vs replanning

Using this domain example, we compare the two strategies of plan adaptation:

• interleave plan repair and plan execution (PR&E),

• abort the plan execution and replan from scratch (Replan).

5.2. Plan repair interleaved with plan execution vs replanning 163

For each planning strategy, Figure 5.1 presents the total duration of the mission exe-
cution when the following sets of objects are present in the area: ∅ (case (0)), {O1} (case
(1)), {O1,O2} (case (2)), . . . , {O1,O2,O3,O4,O5,O6} (case (6)). Case (0) corresponds to
the nominal execution of the initial plan. In all other cases, the PR&E strategy leads to
a shortest mission. Though, it is interesting to decompose this global duration and detail
the share of each subprocess. This duration can be decomposed in:

1. The time spent in the execution of the actions by the simulator while IXTET-EXEC is
idle (labeled “Execution” in the figure).

2. The time spent in the “Sense” and “Act” phases of the execution cycles.
3. The total time spent in planning. In the PR&E case, it corresponds to the time spent

in the “plan repair” phases of the execution cycles. In the figure, this total time is
split in two parts, labeled “Execution & plan repair” and “Planning”, depending
whether an action is concurrently executed or not.1

Let us detail for each subprocess where the differences between the strategies lie in.

• The quality of the plan (in terms of makespan) varies with the planning strategy.
In cases (1) and (2), the PR&E strategy inserts an immediate grasp of each object
which are carried while the robot goes on with its scanning mission. The objects are
put on the ground at the end of the mission. The Replan strategy produces almost
the same plan, but the ordering of the visited locations is modified, thus increasing
the total distance. In the other cases, the PR&E strategy brings back the additional
objects one by one. The Replan strategy produces plans significantly different but
not necessarily better (no optimization can be done by the IXTET planner). The
makespans of these final plans remain comparable.

• More time is spent in the “Sense” phase of the cycles with the Replan strategy.
This is due to the execution abortion before replanning. Actions are interrupted
and the system integrates non nominal reports. The most expensive process in this
case is the possible relaxation of the ending timepoint of the action (which implies
a recomputation of the temporal network).

• More time is spent in the “Act” phase of the cycles with the PR&E strategy. The
main reason is that the number of timepoints in the temporal network can only
grow using this strategy (past timepoints are not removed and new actions are
inserted by plan repair). The propagation in the STN at each timepoint execution
takes progressively more time. Whereas replanning from scratch leads to a network
containing mainly the horizon and future actions/goals timepoints.

• The total time spent in planning is lower with the PR&E strategy than with the
Replan strategy in cases (1), (2) and (3); similar in case (4); and greater in cases (5)
and (6). We detail case (6) in Table 5.1.

1Thus, the planning duration can be read on the figure by summing the “Execution & plan repair” and
“Planning” durations. Likewise, the makespan of the plan corresponds to the sum of the “Execution &
plan repair” and “Execution” durations.

164 Chapter 5. Illustrative example

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

0
-

P
R

&
E

0
-

R
ep

la
n

1
-

P
R

&
E

1
-

R
ep

la
n

2
-

P
R

&
E

2
-

R
ep

la
n

3
-

P
R

&
E

3
-

R
ep

la
n

4
-

P
R

&
E

4
-

R
ep

la
n

5
-

P
R

&
E

5
-

R
ep

la
n

6
-

P
R

&
E

6
-

R
ep

la
n

Number of objects

M
is

si
o

n
 d

u
ra

ti
o

n
 (

s)

Execution (simulation) Execution & plan repair Planning "Sense" "Act"

Figure 5.1: Mission duration when 0 to 6 objects are present in the area, for each planning
strategy

5.2. Plan repair interleaved with plan execution vs replanning 165

This table details the planning process after each goal insertion for both strategies: the
planning duration, the corresponding number of planning steps, the number of timepoints
in the solution plan, and, for the PR&E strategy, the number of cycles and search trees
(timestep = 1s, µ = 50%). The second search tree is due to the execution of goal
timepoints. The third search tree is required because a move action is launched as soon
as it is supported in the plan (leading to concurrent plan execution and repair).

At the beginning of the plan (insertion of the first and second goals), plan repair takes
less time than replanning: there are less decisions to take and the average duration of a
planning step is equivalent with both strategies.

After awhile however, plan repair is much more expensive than replanning.

– Plan repair implies two additional processes: checking the executability status of
the plan at each planning step; and recovering the last executable plan at the end
of the plan repair phase of each cycle. But these processes do not have a significant
influence on the global planning duration.

– During the execution, past actions are partially “forgotten”: their propositions will
not be considered during plan repair. However their timepoints are not removed
from the temporal network. And the average duration of a planning step increases
drastically with the number of timepoints.

PR&E Replan
(c, st) Nb of Plan Nb of Nb of Planning Nb of

c: Nb of planning repair timepoints planning duration timepoints
cycles steps duration in solution steps (s) in solution

New st: Nb of (s) plan plan
Goal search trees
1st (4,2) 52 1.56 52 74 2.70 50
2nd (4,2) 40 1.57 63 76 3.27 60
3rd (8,2) 52 4.11 78 105 5.79 53
4th (11,3) 63 6.14 93 90 5.02 56
5th (17,3) 73 9.48 108 75 3.13 50
6th (23,3) 82 13.71 123 65 2.26 42

Table 5.1: Plan repair vs replanning

Still, plan repair interleaved with plan execution is competitive. Actions can be
launched before the end of the planning process, and events are taken into account during
the planning process. Consider for instance the following sequence of events: the area con-
tains two objects (O1 and O2); the robot carries both objects and explores the remaining
locations; 5s after the start of the last move action towards L0, the robot lets O1 fall on
the ground; 1.7s later, it lets the second object fall on the ground.

Figure 5.2 shows the behavior of the system with both planning strategies. In the
Replan case, the system is notified of the first event, aborts the execution of the current

166 Chapter 5. Illustrative example

actions and replans. The second event happens during the replanning process. The system
is notified only when it tries to execute the solution plan, and has to wait for the termi-
nation of the non preemptive action take before starting a new replanning process. In the
PR&E case, the system is notified of the first event and starts plan repair. It interrupts
the move(L6,L0) action which is threatened by the event. It integrates the second event as
it happens, as well as the move termination report. It launches a take action as soon as it
is supported in the plan. A solution plan is finally found in the 6th cycle (timestep = 1.5s,
µ = 50%). The global reactivity to both events is much better with the PR&E strategy
even if the planning duration is longer.

It is difficult to draw general conclusions on the most appropriate planning strategy. It
varies with the type of domain and the execution situations. In the given example, replan-
ning is efficient since a complete plan can be found quickly and there is little parallelism
in the plan. In IXTET-EXEC, both strategies can be used. Further work needs to be done
to define when the system has to switch from one strategy to the other one.

Plan repair is useful when the plan contains actions that can be executed independently.
It is also useful to adapt a plan when few decisions need to be taken (e.g. in case of temporal
failures that do not require the insertion of new actions. . .) and when the elaboration of
a complete plan is expensive (cf. the time needed to compute the initial plan in the rover
domain). Still, the performances of the plan repair process could be greatly improved
if past timepoints and constraints could be removed from the STN (without making the
timepoint execution process too expensive).

5.2. Plan repair interleaved with plan execution vs replanning 167

END Carry(02,L2,L0,RH)
 Move(L5,L0)

176.1

Interrupted
At-robot():L1

Interrupted
On(O2):RH
At-obj(O2):L1
At-robot():L1
Available(RH):F

Carry(O2,L1,L0,RH)

Take(O1,L1,LH)

176.7

Failed
On(O2):L1
At-obj(O2):L1
At-robot():L1
Available(RH):T

177.8

184.9
Nominal

Carry(O1,L1,L0,LH)

Take(O2,L1,RH)

[...]

t(s)

Drop O2

Move(L5,L0)

Carry(O1,L1,L0,LH) Carry(O2,L2,L0,RH)

175

Failed
On(O1):L1
At-obj(O1):L1
At-robot():L1
Available(LH):T

[...]

Drop O1

!!!

REPLAN

Drop O2

Move(L6,L0)

Carry(O1,L1,L0,LH) Carry(O2,L2,L0,RH)

102.2

Failed
On(O1):L1
At-obj(O1):L1
At-robot():L1
Available(LH):T

[...]

Drop O1

END Move(L6,L0)

104.1

Failed
On(O2):L1
At-obj(O2):L1
At-robot():L1
Available(RH):T

105.5

Interrupted
At-robot():L1

106.4

Take(O2,L1,RH)
107.3

t(s)

!!!

PR E

Replan

Cycle

Valid solution found!!!

Failures

Figure 5.2: Reaction to a sequence of failures

168 Chapter 5. Illustrative example

5.3 Resources

The domain model presented in the previous sections is modified to take into account the
energy consumed by the robot. The energy is represented as a reservoir resource (battery).
The main consuming actions are: move, take and put. The quantity consumed by each
action is specified according to the duration of the action and a discharge rate. The robot
can recharge its battery in L0. A recharge() action is added to the model. The final
quantity produced by this action depends on its duration and a recharge rate.

The decrease of the energy level is simulated in OpenPRS with two discharge rates:
a low and permanent one, and a higher one during the execution of the main consuming
actions. Furthermore, a procedure checks regularly that there is enough energy to go back
to L0 according to the current simulated position of the robot. The currently running
actions are stopped if this safety condition does not hold.

Figure 5.3 shows the evolution of the theoretical energy level (minimal and maximal
bounds represented respectively by crosses and circles) and of the simulated level (repre-
sented by squares) during the execution of the exploration mission (no object present in
the area).

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
Time (s)

E
n

er
g

y
le

ve
l

Theoretical Level-min Theoretical Level-max Real Level Test 0

M
(L

0 ,L
1)

S
(L

1)

M
(L

1 ,L
2)

S
(L

2)

M
(L

2 ,L
3)

S
(L

3)

M
(L

3 ,L
4)

S
(L

4)

M
(L

4 ,L
5)

S
(L

5)

M
(L

5 ,L
6)

S
(L

6)

M
(L

6 ,L
0)

NE

NE Nominal execution PR&E Interleaved plan repair & execution

M(L1,L2) : move(L1,L2) S(L1) : scan(L1) R() : recharge_battery()

Figure 5.3: Evolution of the energy level during a nominal execution

5.3. Resources 169

What works. . .

One of the aims of the IXTET-EXEC system is to update regularly its knowledge of the
resource level, to check the resource usage over the complete mission and to detect potential
future resource contentions.

We simulate a “leak” of energy l while the robot is moving from L1 to L2. Figures 5.4
and 5.5 represent the evolution of the theoretical and simulated energy levels when the
leak is respectively l = 35 and l = 55. The theoretical level is updated at the end of the
move(L1,L2) action and the system checks if the plan now contains a resource conflict,
i.e. checks if the maximal cliques in the Possible Intersection Graph are over-consuming.
In the first case, the leak does not endanger the execution of the remaining actions in the
plan. A nominal execution is pursued. In the second case however, the energy left is not
sufficient to achieve the plan which is repaired. The actions move(L2,L0) and recharge()
are added and executed.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Time (s)

E
n

er
g

y
le

ve
l

Theoretical Level-min Theoretical Level-max Real Level
Test 1

M
(L

0 ,L
1)

S
(L

1)

M
(L

1 ,L
2)

S
(L

2)

M
(L

2 ,L
3)

S
(L

3)

M
(L

3 ,L
4)

S
(L

4)

M
(L

4 ,L
5)

S
(L

5)

M
(L

5 ,L
6)

S
(L

6)

M
(L

6 ,L
0)

NE

Figure 5.4: Evolution of the energy level - l = 35

Figure 5.6 presents a case where the capacity is permanently damaged at t=12s (the
capacity drops from 130 to 100). The leak l = 35 is then simulated as before. This time a
conflict is detected and the plan is repaired with the insertion of the actions move(L2,L0)
and recharge() (the recharge duration takes into account the altered capacity).

The conflict detection is efficient. As an example, the average duration of the resource
update (including the level correction and the conflict detection for both ENERGY and
ENERGY CPT resource attributes) during this last run is 131ms.

170 Chapter 5. Illustrative example

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Time (s)

E
n

er
g

y
le

ve
l

Theoretical Level-min Theoretical Level-max Real Level Test 2

M
(L

0 ,L
1)

S
(L

1)

M
(L

1 ,L
2)

S
(L

2)

M
(L

2 ,L
3)

S
(L

3)

M
(L

3 ,L
4)

S
(L

4)

M
(L

4 ,L
5)

S
(L

5)

M
(L

5 ,L
6)

S
(L

6)

M
(L

6 ,L
0)

NE PR&E

M
(L

2 ,L
0)

R
()

M
(L

0 ,L
2)

Figure 5.5: Evolution of the energy level - l = 55

0

10

20

30
40

50

60

70

80

90

100

110
120

130

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Time (s)

E
n

er
g

y
le

ve
l

Theoretical Level-min Theoretical Level-max Real Level
Test 3

M
(L

0 ,L
1)

S
(L

1)

M
(L

1 ,L
2)

S
(L

2)

M
(L

2 ,L
3)

S
(L

3)

M
(L

3 ,L
4)

S
(L

4)

M
(L

4 ,L
5)

S
(L

5)

M
(L

5 ,L
6)

S
(L

6)

M
(L

6 ,L
0)

NE PR&E

M
(L

2 ,L
0)

R
()

M
(L

0 ,L
2)

Capacity -30

Figure 5.6: Evolution of the energy level - ∆capa = 30, l = 35

5.3. Resources 171

What does not work. . .

We consider now that the objects O1 and O2 are present in the area. The plan is extended
by the plan repair process after the insertion of each new goal. The second object induces
one resource conflict that can be solved by a quantity limitation resolver. However, the
actions inserted to handle a third object require a recharge action.

We present 4 tests with the following sets of objects present in the area: {O1,O2,O3},
{O1,O2,O4}, {O1,O2,O5} or {O1,O2,O6}. The planning duration explodes when the third
goal is inserted. Most of the time is spent in the analysis of the partial plan at each
planning step, and more particularly in the analysis of the resource conflicts. This process
looks for the set of smallest Minimal Critical Sets and computes the associated resolvers
(cf. sections 2.3.3 and 2.4.2).

Figure 5.7 represents the duration of the analysis of the conflicts on one resource
according to the number of use propositions present in the plan. Measures have been
done during the plan repair phases that occured in the 4 tests after the insertion of an
object-goal. Each point corresponds to the detection of a set of n MCS of size s.2 The
corresponding (s, n) pairs are given for the conflicts induced by the insertion of the object-
goal O3.

The analysis duration explodes when the number of propositions present in the plan
increases. We encounter here the problem mentioned page 72. The enumeration method
used to compute the set of MCS is in O(2k) where k is bounded by the size of the maximum
clique of the PIG. In our case, the maximal clique is almost equal to the complete set of
propositions. In the tests, the plan repair is tractable if the third object is O6 (and
intractable if the object is O3) thanks to the mechanism of TEXEC that aggregates past
use propositions in an equivalent one.

Finally, the method used in IXTET for the resource analysis is efficient for certain types
of resources: those which lead to maximal cliques of limited size (up to 8). The power or
CPU resources, which authorize only a limited number of processes to share the resource,
can be handled this way. But the method is inadequate for energy like resources, for which
a small quantity of the resource is consumed by each action in the plan.

2If a same set of conflicts is detected several times during the plan search, the value in the graph
corresponds to the average duration.

172 Chapter 5. Illustrative example

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of propositions

C
P

U
 t

im
e

(m
s) Obj3

Obj4

Obj5

Obj6

Obj2

(7,4)

(7,3)

(7,2)

(7,1)

(9,6)

(10,6)

(10,3)

(10,6)

(10,3)

(11,1)

(11,1)

(4,1)

(5,8)

(10,21)
(8,1)

(6,21)

(4,7)
(7,6)

(s,n)

s: size of the smallest conflict
n: number of conflicts of size s

Figure 5.7: Evolution of the resource analysis duration according to the number of use
propositions in the plan

Conclusion and prospects
The global objective of this work was to integrate mission planning in an autonomous
system (e.g. a rover), taking into account the interactions between planning and plan
execution; and this in the context of applications involving temporal constraints (goal
deadlines) and the management of limited resources.

We have proposed a new framework to integrate deliberative planning, execution con-
trol and the reactive adaptation of a plan. These processes are embedded thanks to two
components:

• a planning system that represents and reasons about time and resources, and with
the following properties:

– a temporal representation based on state variables,

– a Partial Order Causal Link planning process,

– it generates flexible plans based on CSP managers (particularly, the time-map
relies on a Simple Temporal Network).

• a temporal executive that:
– controls the temporal network of the plan to decide the execution of actions,

– integrates the system state reports (including resource levels) in the plan,

– reacts to execution events (action failure, temporal failure, future resource
contention, new goal),

– controls the processes of plan adaptation.

We use the principles and algorithms of the IXTET planning system, modified to take
into account the current execution time and context and the planning duration. We have
also improved the expressiveness and flexibility of its resource representation (notably by
allowing the usage of variable quantites of a resource). Thus IXTET provides an initial plan
with temporal and resource flexibility which is more robust to execution contingencies.

This plan is then run by the temporal executive following a cycle: integrate external
messages, repair the plan if needed, decide which actions to execute. This cycle enables in-
teractions with the controlled system by taking into account runtime failures and timeouts,
and updating the plan accordingly.

Two mechanisms of plan adaptation have been implemented:

1. Interleaved plan repair and plan execution.

2. Execution abortion and replanning from scratch.

The first one was motivated by the the fact that some parts of the plan may remain valid
and executable and that the plan is temporally flexible, thus allowing postponing and
inserting actions. The second one provides a planning search process which is guaranteed
to find a solution plan (providing there is enough time before the end of the planning
horizon).

174 Chapter 5. Illustrative example

This approach has been implemented and integrated in the decisional level of the LAAS
architecture, in interaction with an executive based on a procedural reasoning system.

The ability of the system to respect goal deadlines, to react to a series of events, to
integrate new goals and to detect and react to future resource conflicts has been shown
through tests performed on-board an outdoor robot with an exploration mission and in
simulation.

Throughout this document, we have highlighted some limits and prospects:

• Planning system
Non-linear planning has some interesting properties with respect to the interleav-
ing of plan execution and plan adaptation, but its performances limit the size of the
planning problems that can be handled (cf. page 80). Future work could take advan-
tage of the heuristic proposed by R. Trinquart to guide the search in the partial plan
space [Trinquart 04]. We have also seen (page 171) that the resource management
in IXTET is not well adapted for certain types of resources.

• Integrating planning and execution
The plans produced by IXTET contain different types of timepoints (start/ end/
intermediate timepoints of actions, goals, contingent events, etc.). The current im-
plementation defines an execution strategy for a restricted set of categories. A future
work direction could be to improve the skills of the temporal executive by extending
the set of timepoints taken into account during execution. This could be used for
instance to check the occurrence of contingent events, to monitor the state of the
system during the actions, etc.

The current policy followed by IXTET-EXEC to choose between plan repair and re-
planning is to try plan repair as long as an executable plan is available, and then
replan with the potential abandon of some goals. Executability is a necessary con-
dition on the plan to perform interleaved plan repair and plan execution. Further
work could define more precisely under which conditions a plan repair is likely to fail
(cf. page 131). A similar failure and plan analysis could help define more appropriate
criteria to select a goal to abandon.

We have also discussed the interest of taking into account the non controllability
of duration links in the propagation algorithms (cf. section 3.8.2). The enforcement
of the pseudo and dynamic controllability during the planning and execution pro-
cesses will reduce the need for plan repair (some work is in progress to address this
issue). We have also seen that propagation algorithms in the STN have an impact
on the performances of plan repair (cf. page 165), and dynamic controllability can
make these algorithms more expensive. The possibility to remove past timepoints
should also be considered.

• Integration in the LAAS architecture for an autonomous robot

5.3. Resources 175

Future work should integrate the Requests Control Level and take into account
its reports when requests are killed or rejected. Another important step towards
an autonomous behavior consists in defining and implementing potential recovery
actions for each error diagnosed and reported by the functional modules.

Conclusion et perspectives
L’objectif principal de ces travaux était d’intégrer la planification de tâches au niveau mis-
sion dans un système autonome (par exemple un rover) en tenant compte des interactions
entre la planification et l’exécution des plans; et ce pour des applications impliquant des
contraintes temporelles et la gestion de ressources limitées.

Nous avons proposé une nouvelle approche pour intégrer l’élaboration de plans, le
contrôle de leur exécution et leur adaptation réactive. Ces processus sont assurés par
deux composants :

• un système de planification qui permet de représenter et raisonner sur le temps et
les ressources, et qui présente les propriétés suivantes :

– une représentation temporelle basée sur des variables d’état,

– un processus de planification non linéaire causal,

– il génère des plans flexibles basés des CSPs (en particulier, le réseau temporel
est un STN).

• un exécutif temporel qui :
– contrôle le réseau temporel du plan et décide de l’exécution des actions,

– intègre dans le plan les bilans sur l’état du système (notamment le niveau des
ressources),

– réagit aux événements survenant pendant l’exécution (échec d’une action, échec
temporel, conflit de ressource, nouveau but),

– contrôle les processus d’adaptation du plan.

Nous nous sommes basés sur les principes et algorithmes du planificateur IXTET, que
nous avons modifié pour prendre en compte le contexte d’exécution (entre autres l’instant
courant) et la durée de la planification. Nous avons également amélioré l’expressivité et
la flexibilité de la représentation des ressources dans IXTET (en permettant notamment
de spécifier l’utilisation de quantités variables). Ainsi, un plan initial produit par IXTET
est flexible temporellement et au niveau des ressources et sera plus robuste aux aléas de
l’exécution.

Ce plan est “déroulé” par l’exécutif temporel selon un cycle : intégrer les messages
externes, réparer le plan si nécessaire, décider des actions à exécuter. Ce cycle permet
d’interagir avec le système contrôlé, de prendre en compte les échecs et les dépassements
de délai en cours d’exécution et d’adapter le plan en conséquence.

Deux mécanismes d’adaptation du plan ont été implémentés :

1. Réparation et exécution de plan entrelacés,

2. Arrêt de l’exécution et replanification complète.

178 Chapter 5. Illustrative example

Le premier mécanisme est justifié par le fait que certaines parties du plan peuvent rester
valides et exécutables et que le plan est temporellement flexible, ce qui permet de retarder
l’exécution des actions et d’en insérer de nouvelles. Le deuxième mécanisme fournit un
processus de planification complet qui offre la garantie de trouver un plan solution (à
condition qu’il reste suffisamment de temps avant la fin de l’horizon de planification).

Cette approche a été implémentée et intégrée dans le niveau décisionnel de l’architecture
LAAS, en interaction avec un autre exécutif basé sur un système de raisonnement procédural.

La capacité du système à respecter les dates limites des buts, à réagir à une série
d’événements, à intégrer de nouveaux buts et à detecter et réparer des conflits de ressource
futurs a été montrée à la fois en simulation et à travers des tests menés à bord d’un robot
d’extérieur avec une mission d’exploration.

Tout au long de ce document, nous avons mis en avant certaines limites de l’approche
et de futures pistes de recherche :

• Système de planification
La planification non linéaire a des propriétés intéressantes concernant l’entrelacement
de l’exécution et de l’adaptation d’un plan, mais ses performances limitent la taille
des problèmes de planification qui peuvent être traités (cf. page 80). Il pourrait
être intéressant d’exploiter l’heuristique proposée par R. Trinquart pour guider la
recherche dans l’espace des plans partiels [Trinquart 04]. Nous avons également
constaté (page 171) que la gestion des ressources dans IXTET n’était pas bien adaptée
pour certaines catégories de ressource.

• Intégrer planification et exécution
Les plans produits par IXTET comprennent différents types de variables d’instant
(instants de début/ de fin/ intermédiaires d’une action, de buts, d’événements con-
tingents, etc.). L’implémentation actuelle ne définit une stratégie d’exécution que
pour un nombre restreint de ces catégories. Un futur axe de travail pourrait étendre
les capacités de l’exécutif temporel en tenant en compte d’autres types d’instants
durant l’exécution, par exemple pour vérifier la réalisation d’un événement contin-
gent, pour surveiller l’état du système au cours de l’exécution des actions, etc.

La stratégie suivie actuellement par IXTET-EXEC pour choisir entre réparation de
plan et replanification est de tenter une réparation tant qu’un plan exécutable est
disponible, puis de replanifier avec potentiellement l’abandon de certains buts.
L’exécutabilité est une condition nécessaire sur le plan pour pouvoir effectuer en par-
allèle sa réparation et son exécution. Il serait intéressant de définir plus précisément
sous quelles conditions une réparation de plan est susceptible d’échouer (cf. page
131). Une analyse similaire du plan et des cas d’échec pourrait également permettre
de définir de meilleurs critères de sélection des buts à abandonner.

Nous avons également évoqué l’intérêt de prendre en compte la non contrôlabilité

5.3. Resources 179

des durées dans les algorithmes de propagation des contraintes (cf. section 3.8.2).
Le respect des propriétes de pseudo-contrôlabilité et de contrôlabilité dynamique
pendant les processus de planification et d’exécution pourrait permettre de réduire
les cas nécessitant une réparation (des travaux sont en cours dans ce sens). Nous
avons également vu que les algorithmes de propagation pour le STN ont un impact
sur les performances de la réparation de plan (cf. page 165), et que rechercher la
contrôlabilité dynamique peut rendre ces algorithmes plus coûteux. La possibilité
de supprimer les variables d’instant révolues devrait aussi être étudiée.

• Intégration dans l’architecture LAAS
Il faut encore intégrer le niveau de Contrôle des Requêtes et prendre en compte les
bilans qu’il renvoie lors du rejet de requêtes. Il reste enfin une étape importante pour
parvenir à un comportement réellement autonome : la définition et l’implémentation
d’actions de recouvrement pour chaque erreur pouvant être diagnostiquée et re-
tournée par les modules du niveau fonctionnel.

Appendix 1

Algorithms for maximal cliques computation
A clique in an unoriented graph G = (V,E) is a subset V ′ ⊆ V of vertices, each pair of
which is connected by an edge in E. A maximal clique is a clique that is not contained in
any larger clique.

The following algorithms compute SM , the set of maximal cliques containing the clique
C = {x1, . . . , xk}. The neighbourhood of a vertex x is noted N(x) = {y|y 6= x, (x, y) ∈ E}.

Compute Maximal Cliques(C)

SM ← ∅;
Partition← ∅;
MutualN ← N(x1);
for i:=2 to k do

MutualN ←MutualN ∩N(xi);
if (Is Clique(MutualN , Partition)) do

% There is only one maximal clique containing C
SM ← (C ∪MutualN);

else
% Several maximal cliques
SM ← Partition Mutual Neighbours(C, MutualN , Partition);

return SM ;

182 Appendix 1. Algorithms for maximal cliques computation

Is Clique(MutualN , Partition)
% Returns true if MutualN is a clique.
% MutualN = {y1, . . . , yl}

for i:=1 to l do
for j:=i+1 to l do

if (yi /∈ N(yj)) do
Partition← Partition ∪ {yi, yj};

return (Partition == ∅);

Partition Mutual Neighbours(C, MutualN , Partition)

localSM ← ∅;
while (Partition 6= ∅) do

localPartition← ∅;
get first element e in Partition;
remove e from Partition;
localMutualN ←MutualN ∩N(e);
if (Is Clique(localMutualN , localPartition)) do

localSM ← localSM ∪ (C ∪ localMutualN ∪ {e});
Partition← Partition− localMutualN ;

else
Partition← Partition− localPartition;
localSM ← localSM∪ Partition Mutual Neighbours(C ∪ {e}, localMutualN , localPartition);

return localSM ;

Figure 1.1: Examples

Appendix 2

Tests on Dala
2.1 IXTET-EXEC model

An IXTET model is specified through three files.

1. The file “model-relations” contains the definition of the constants and attributes
(logical, resource, rigid).

2. The file “model.task” contains the model of actions.

3. The file “model-init.task” contains the description of the initial situation, initial
goals and profiles of contingent attributes.

These files are compiled and loaded in IXTET-EXEC at the initialization of the mission.

“model-relations”

constant BOOL = {T, F};

constant OBJECTS = {OBJ1, OBJ2, OBJ3, OBJ4, OBJ5, OBJ6};

constant STATUS = {NONE,DONE};

constant PANTILT_POSITIONS = {FORWARD, DOWNWARD, OTHER_POSITION};

constant VISIBILITY_WINDOWS = {W1,W2};

constant IN_OUT = {IN,OUT};

attribute VISIBILITY_WINDOW(?w){

?w in VISIBILITY_WINDOWS;

?value in IN_OUT;

}

attribute COMMUNICATION(?w){

?w in VISIBILITY_WINDOWS;

?value in STATUS | {COMMUNICATION_IDLE};

}

attribute PTU_DRIVER_INITIALIZED(){

?value in BOOL | {PTU_DRIVER_INITIALIZED_IDLE};

}

attribute MVT_GENERATION_INITIALIZED(){

?value in BOOL | {MVT_GENERATION_INITIALIZED_IDLE};

}

184 Appendix 2. Tests on Dala

attribute AT_ROBOT_X() {

?value in]-oo,+oo[;

}

attribute AT_ROBOT_Y() {

?value in]-oo,+oo[;

}

attribute ROBOT_STATUS(){

?value in {MOVING,STILL};

}

attribute PICTURE(?o, ?x, ?y) {

?o in OBJECTS;

?x in]-oo,+oo[;

?y in]-oo,+oo[;

?value in STATUS | {PICTURE_IDLE};

}

attribute PAN_TILT_UNIT_POSITION() {

?value in PANTILT_POSITIONS | {PAN_TILT_UNIT_POSITION_IDLE};

}

resource CAMERA() {

defaultcapacity = 1.;

}

resource CHANNEL() {

defaultcapacity = 1.;

}

reservoir resource STORAGE(){

defaultcapacity = 66000.;

}

// The distance between two points is estimated by d = X+Y, with

// X = |xf-xi| et Y=|yf-yi|

#define distance(_xi, _yi, _xf, _yf, _d)\

variable ?Y;\

variable ?Yc;\

variable ?Ypos;\

variable ?X;\

variable ?Xc;\

variable ?Xpos;\

_xi in]-oo,+oo[;\

_xf in]-oo,+oo[;\

_yi in]-oo,+oo[;\

_yf in]-oo,+oo[;\

_d in]-oo,+oo[;\

?X in]-oo,+oo[;\

?Xc in]-oo,+oo[;\

?Xpos in]-oo,+oo[;\

?Y in]-oo,+oo[;\

?Yc in]-oo,+oo[;\

?Ypos in]-oo,+oo[;\

?X =. _xf -. _xi;\

?Xc =. _xi -. _xf;\

?Y =. _yf -. _yi;\

?Yc =. _yi -. _yf;\

?Xpos =. max(?X,?Xc);\

?Ypos =. max(?Y,?Yc);\

_d =. ?Xpos +. ?Ypos

2.1. IXTET-EXEC model 185

// The above approximation of the distance is improved by d*[0.7,1]

#define distance_uncertainty(_u)\

_u in [0.7,1]

#define speed(_sp)\

_sp in [0.03,0.1]

#define compression_rate(_cr)\

_cr in [0.1,0.13]

#define download_rate(_r)\

_r in [800,800]

#define storage_capacity(_cs)\

_cs in [66000,66000]

“model.task”

#include "model-relations"

task MOVE(?x1,?y1,?x2,?y2)(t_start, t_end){

?x1 in]-oo,+oo[;

?x2 in]-oo,+oo[;

?y1 in]-oo,+oo[;

?y2 in]-oo,+oo[;

hold(PAN_TILT_UNIT_POSITION():FORWARD,(t_start,t_end));

hold(MVT_GENERATION_INITIALIZED():T,(t_start,t_end));

event(AT_ROBOT_X():(?x1,1000),t_start);

hold(AT_ROBOT_X():1000,(t_start,t_end));

event(AT_ROBOT_X():(1000,?x2),t_end);

event(AT_ROBOT_Y():(?y1,1000),t_start);

hold(AT_ROBOT_Y():1000,(t_start,t_end));

event(AT_ROBOT_Y():(1000,?y2),t_end);

event(ROBOT_STATUS():(STILL,MOVING),t_start);

hold(ROBOT_STATUS():MOVING,(t_start,t_end));

event(ROBOT_STATUS():(MOVING,STILL),t_end);

use(CAMERA():1,(t_start,t_end));

variable ?di;

distance(?x1,?y1,?x2,?y2,?di);

variable ?du;

distance_uncertainty(?du);

variable ?dist;

?dist =. ?di *. ?du;

variable ?s;

speed(?s);

variable ?duration;

?dist =. ?s *. ?duration;

?duration =. t_end - t_start;

}latePreemptive

task MOVEX(?x1,?y1,?x2,?y2)(t_start, t_end){

?x1 in]-oo,+oo[;

?x2 in]-oo,+oo[;

?y1 in]-oo,+oo[;

?y2 in]-oo,+oo[;

?y1 = ?y2;

186 Appendix 2. Tests on Dala

hold(PAN_TILT_UNIT_POSITION():FORWARD,(t_start,t_end));

hold(MVT_GENERATION_INITIALIZED():T,(t_start,t_end));

event(AT_ROBOT_X():(?x1,1000),t_start);

hold(AT_ROBOT_X():1000,(t_start,t_end));

event(AT_ROBOT_X():(1000,?x2),t_end);

hold(AT_ROBOT_Y():?y2,(t_start,t_end));

event(ROBOT_STATUS():(STILL,MOVING),t_start);

hold(ROBOT_STATUS():MOVING,(t_start,t_end));

event(ROBOT_STATUS():(MOVING,STILL),t_end);

use(CAMERA():1,(t_start,t_end));

variable ?di;

distance(?x1,?y1,?x2,?y2,?di);

variable ?du;

distance_uncertainty(?du);

variable ?dist;

?dist =. ?di *. ?du;

variable ?s;

speed(?s);

variable ?duration;

?dist =. ?s *. ?duration;

?duration =. t_end - t_start;

}latePreemptive

task MOVEY(?x1,?y1,?x2,?y2)(t_start, t_end){

?x1 in]-oo,+oo[;

?x2 in]-oo,+oo[;

?y1 in]-oo,+oo[;

?y2 in]-oo,+oo[;

?x1 = ?x2;

hold(PAN_TILT_UNIT_POSITION():FORWARD,(t_start,t_end));

hold(MVT_GENERATION_INITIALIZED():T,(t_start,t_end));

event(AT_ROBOT_Y():(?y1,1000),t_start);

hold(AT_ROBOT_Y():1000,(t_start,t_end));

event(AT_ROBOT_Y():(1000,?y2),t_end);

hold(AT_ROBOT_X():?x2,(t_start,t_end));

event(ROBOT_STATUS():(STILL,MOVING),t_start);

hold(ROBOT_STATUS():MOVING,(t_start,t_end));

event(ROBOT_STATUS():(MOVING,STILL),t_end);

use(CAMERA():1,(t_start,t_end));

variable ?di;

distance(?x1,?y1,?x2,?y2,?di);

variable ?du;

distance_uncertainty(?du);

variable ?dist;

?dist =. ?di *. ?du;

variable ?s;

speed(?s);

variable ?duration;

?dist =. ?s *. ?duration;

?duration =. t_end - t_start;

}latePreemptive

task MOVE_PAN_TILT_UNIT(?initpos,?finpos)(t_start, t_end){

?initpos in PANTILT_POSITIONS;

2.1. IXTET-EXEC model 187

?finpos in PANTILT_POSITIONS;

event(PAN_TILT_UNIT_POSITION():(?initpos,PAN_TILT_UNIT_POSITION_IDLE),t_start);

hold(PAN_TILT_UNIT_POSITION():PAN_TILT_UNIT_POSITION_IDLE,(t_start,t_end));

event(PAN_TILT_UNIT_POSITION():(PAN_TILT_UNIT_POSITION_IDLE,?finpos),t_end);

hold(PTU_DRIVER_INITIALIZED():T,(t_start,t_end));

(t_end - t_start) in [3,10];

}latePreemptive

task TAKE_PICTURE(?obj,?x,?y)(t_start, t_end){

?obj in OBJECTS;

?x in]-oo,+oo[;

?y in]-oo,+oo[;

hold(AT_ROBOT_X():?x,(t_start,t_end));

hold(AT_ROBOT_Y():?y,(t_start,t_end));

hold(PAN_TILT_UNIT_POSITION():DOWNWARD,(t_start,t_end));

event(PICTURE(?obj,?x,?y):(NONE,PICTURE_IDLE),t_start);

hold(PICTURE(?obj,?x,?y):PICTURE_IDLE,(t_start,t_end));

event(PICTURE(?obj,?x,?y):(PICTURE_IDLE,DONE),t_end);

use(CAMERA(): 1, (t_start,t_end));

variable ?image_size;

variable ?cr;

compression_rate(?cr);

?image_size =. 175610 *. ?cr;

consume(STORAGE():?image_size,t_start);

(t_end - t_start) in]2,60];

}nonPreemptive

task DOWNLOAD_IMAGES()(t_start,t_end){

use(CAMERA(): 1, (t_start,t_end));

use(CHANNEL(): 1, (t_start,t_end));

variable ?q;

variable ?qbis;

variable ?duration;

variable ?capa;

storage_capacity(?capa);

variable ?rate;

download_rate(?rate);

?qbis =. ?capa -. ?q;

?qbis in [0,+oo[;

?q =. ?duration *. ?rate;

produce(STORAGE():?q,t_end);

?duration =. t_end - t_start;

}latePreemptive

task COMMUNICATE(?w)(t_start, t_end){

?w in VISIBILITY_WINDOWS;

hold(VISIBILITY_WINDOW(?w):IN,(t_start,t_end));

event(COMMUNICATION(?w):(NONE,COMMUNICATION_IDLE),t_start);

hold(COMMUNICATION(?w):COMMUNICATION_IDLE,(t_start,t_end));

event(COMMUNICATION(?w):(COMMUNICATION_IDLE,DONE),t_end);

hold(ROBOT_STATUS():STILL,(t_start,t_end));

188 Appendix 2. Tests on Dala

use(CHANNEL(): 1, (t_start,t_end));

(t_end - t_start) in]100,200];

}latePreemptive

//- Failure recovery actions

task INIT_PTU_DRIVER()(t_start, t_end){

// Do nothing while the modules are initialized

hold(ROBOT_STATUS():STILL,(t_start,t_end));

use(CAMERA(): 1, (t_start,t_end));

event(PTU_DRIVER_INITIALIZED():(F,PTU_DRIVER_INITIALIZED_IDLE),t_start);

hold(PTU_DRIVER_INITIALIZED():PTU_DRIVER_INITIALIZED_IDLE,(t_start,t_end));

event(PTU_DRIVER_INITIALIZED():(PTU_DRIVER_INITIALIZED_IDLE,T),t_end);

(t_end - t_start) in]2,60];

}nonPreemptive

task INIT_MVT_GENERATION()(t_start, t_end){

// Do nothing while the modules are initialized

hold(ROBOT_STATUS():STILL,(t_start,t_end));

use(CAMERA(): 1, (t_start,t_end));

event(MVT_GENERATION_INITIALIZED():(F,MVT_GENERATION_INITIALIZED_IDLE),t_start);

hold(MVT_GENERATION_INITIALIZED():MVT_GENERATION_INITIALIZED_IDLE,(t_start,t_end));

event(MVT_GENERATION_INITIALIZED():(MVT_GENERATION_INITIALIZED_IDLE,T),t_end);

(t_end - t_start) in]2,60];

}nonPreemptive

“model-init.task”

#include "model-relations"

task Init()(t_start,t_end){

timepoint t_svisi1, t_evisi1;

timepoint t_svisi2, t_evisi2;

timepoint t_goal1;

timepoint t_goal3s,t_goal3e;

timepoint t_goal4s,t_goal4e;

timepoint t_goal5s,t_goal5e;

timepoint t_goal6s,t_goal6e;

timepoint t_goal7s, t_goal7e;

timepoint t_goal8s, t_goal8e;

//initial situation

explained event(AT_ROBOT_X():(?,0),t_start);

explained event(AT_ROBOT_Y():(?,0),t_start);

explained event(ROBOT_STATUS():(?,STILL),t_start);

explained event(PAN_TILT_UNIT_POSITION():(?,FORWARD),t_start);

explained event(PTU_DRIVER_INITIALIZED():(?,T),t_start);

explained event(MVT_GENERATION_INITIALIZED():(?,T),t_start);

explained event(COMMUNICATION(W1):(?,NONE),t_start);

explained event(COMMUNICATION(W2):(?,NONE),t_start);

contingent event(VISIBILITY_WINDOW(W1):(?,OUT),t_start);

contingent event(VISIBILITY_WINDOW(W2):(?,OUT),t_start);

variable ?x1,?y1;

2.1. IXTET-EXEC model 189

?x1 in]-oo,+oo[;

?y1 in]-oo,+oo[;

explained event(PICTURE(OBJ1,?x1,?y1):(?,NONE),t_start);

variable ?x2,?y2;

?x2 in]-oo,+oo[;

?y2 in]-oo,+oo[;

explained event(PICTURE(OBJ2,?x2,?y2):(?,NONE),t_start);

variable ?x3,?y3;

?x3 in]-oo,+oo[;

?y3 in]-oo,+oo[;

explained event(PICTURE(OBJ3,?x3,?y3):(?,NONE),t_start);

variable ?x4,?y4;

?x4 in]-oo,+oo[;

?y4 in]-oo,+oo[;

explained event(PICTURE(OBJ4,?x4,?y4):(?,NONE),t_start);

variable ?x5,?y5;

?x5 in]-oo,+oo[;

?y5 in]-oo,+oo[;

explained event(PICTURE(OBJ5,?x5,?y5):(?,NONE),t_start);

variable ?x6,?y6;

?x6 in]-oo,+oo[;

?y6 in]-oo,+oo[;

explained event(PICTURE(OBJ6,?x6,?y6):(?,NONE),t_start);

//- Visibility windows

contingent event(VISIBILITY_WINDOW(W1):(OUT,IN),t_svisi1);

contingent event(VISIBILITY_WINDOW(W1):(IN,OUT),t_evisi1);

contingent event(VISIBILITY_WINDOW(W2):(OUT,IN),t_svisi2);

contingent event(VISIBILITY_WINDOW(W2):(IN,OUT),t_evisi2);

(t_evisi1 - t_svisi1) in [120,121];

(t_svisi1 - t_start) in [300,301];

(t_evisi2 - t_svisi2) in [120,121];

(t_svisi2 - t_start) in [600,601];

//- Goals

//- Be back near the lander at the end

hold(AT_ROBOT_X():0,(t_goal1,t_end)) goal(2,0);

hold(AT_ROBOT_Y():0,(t_goal1,t_end)) goal(2,0);

//- Communication with ground stations

hold(COMMUNICATION(W1):DONE,(t_goal3s,t_goal3e)) goal(1,0);

hold(COMMUNICATION(W2):DONE,(t_goal4s,t_goal4e)) goal(1,0);

//- Pictures

hold(PICTURE(OBJ1,0,0):DONE,(t_goal5s,t_goal5e)) goal(1,0);

hold(PICTURE(OBJ2,9,0):DONE,(t_goal6s,t_goal6e)) goal(1,0);

hold(PICTURE(OBJ3,8,-5):DONE,(t_goal8s,t_goal8e)) goal(1,0);

hold(PICTURE(OBJ4,10,-3):DONE,(t_goal7s,t_goal7e)) goal(1,0);

(t_end - t_goal1) in [2,2];

t_goal1 >t_goal8s;

t_goal8s > t_goal7s;

t_goal7s > t_goal6s;

t_goal6s > t_goal5s;

(t_end-t_start) in]800,2000];

}earlyPreemptive

190 Appendix 2. Tests on Dala

2.2 IXTET-EXEC trace of Run 3

CYCLE N◦1 - WAKE UP AT : 0.027

########### ACT #############

Instantiation of Start timepoint 45 at 0.027

Send-command : (LAUNCH IXTET_EXEC MOVE_PAN_TILT_UNIT 14 (PARAMETERS FORWARD DOWNWARD))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [46] at 8.027

CYCLE DURATION : 0.123

MsgQueue not empty : [MsgBilan (BILAN, Task 14, nominal, state bilan[] , resource bilan []), timepoint 46]

CYCLE N◦2 - WAKE UP AT : 5.37

########### SENSE #############

Receive bilan

Timepoint lower_bound : 3.027

Timepoint upper_bound : 10.027

Instantiation of Msg timepoint 46 at 5.37

Update ExecTPs : [25]

########### ACT #############

Instantiation of Start timepoint 25 at 5.38

Send-command : (LAUNCH IXTET_EXEC TAKE_PICTURE 4 (PARAMETERS OBJ1 0 0))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [26] at 65.38

CYCLE DURATION : 0.081

MsgQueue not empty : [MsgBilan (BILAN, Task 4, nominal, state bilan[] ,

resource bilan [(CAMERA() 1), (STORAGE_CPT() 21812), (STORAGE() 44188)]), timepoint 26]

CYCLE N◦3 - WAKE UP AT : 7.758

########### SENSE #############

Receive bilan

Timepoint lower_bound : 7.39

Timepoint upper_bound : 65.38

Instantiation of Msg timepoint 26 at 7.758

Update ExecTPs : [47, 14]

########### ACT #############

Instantiation of Start timepoint 47 at 7.768

Send-command : (LAUNCH IXTET_EXEC MOVE_PAN_TILT_UNIT 15 (PARAMETERS DOWNWARD FORWARD))

Update ExecTPs : [14]

Instantiation of Goal timepoint 14 at 7.768

Update ExecTPs : [15]

Instantiation of Goal timepoint 15 at 7.778

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [48] at 15.768

CYCLE DURATION : 0.489

MsgQueue not empty : [MsgBilan (BILAN, Task 15, nominal, state bilan[] , resource bilan []), timepoint 48]

CYCLE N◦4 - WAKE UP AT : 11.606

########### SENSE #############

Receive bilan

Timepoint lower_bound : 10.768

Timepoint upper_bound : 17.768

Instantiation of Msg timepoint 48 at 11.606

Update ExecTPs : [35]

########### ACT #############

Instantiation of Start timepoint 35 at 11.616

Send-command : (LAUNCH IXTET_EXEC MOVEX 9 (PARAMETERS 0 0 9 0))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [36] at 292.949

CYCLE DURATION : 0.081

CYCLE N◦5 - WAKE UP AT : 292.986

########### ACT #############

Send-command : (END 9)

WaitingExecTPs : []

############################

Next ExecTPs [] at 1.79769e+308

CYCLE DURATION : 0.052

MsgQueue not empty : [MsgBilan (BILAN, Task 9, interrupted, state bilan[(PAN_TILT_UNIT_POSITION() FORWARD),

(MVT_GENERATION_INITIALIZED() T), (AT_ROBOT_Y() -4.42851), (AT_ROBOT_X() 7.25533), (ROBOT_STATUS() STILL)] ,

resource bilan [(CAMERA() 1)]), timepoint 36]

2.2. IXTET-EXEC trace of Run 3 191

CYCLE N◦6 - WAKE UP AT : 297.583

########### SENSE #############

Receive bilan

Timepoint lower_bound : 71.116

Timepoint upper_bound : 294.949

New timepoint 57

Waiting End Timepoint 57 TIMED OUT

New state insertion...

34 causal links are removed on the attributes:

[MVT_GENERATION_INITIALIZED(), AT_ROBOT_X(), AT_ROBOT_Y(), ROBOT_STATUS(), PTU_DRIVER_INITIALIZED(),

PAN_TILT_UNIT_POSITION()]

Update ExecTPs : [43]

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 1

... No solution found

Update ExecTPs : [43]

########### ACT #############

Timepoint 43 is not supported, upper_bound : 589.44

-> WaitingExecTPs

Update ExecTPs : [43]

WaitingExecTPs : [43]

############################

Next ExecTPs [43] at 297.593

CYCLE DURATION : 1.949

CYCLE N◦7 - WAKE UP AT : 299.532

########### PLAN REPAIR #############

nb planning steps: 13

... No solution found

Update ExecTPs : [43, 2]

########### ACT #############

Timepoint 43 is not supported, upper_bound : 589.44

-> WaitingExecTPs

Update ExecTPs : [43, 2]

Instantiation of Extern timepoint 2 at 300

Update ExecTPs : [29]

Timepoint 29 is not supported, upper_bound : 320.98

-> WaitingExecTPs

Update ExecTPs : [29]

WaitingExecTPs : [29, 43]

############################

Next ExecTPs [29, 43] at 297.593

CYCLE DURATION : 1.362

CYCLE N◦8 - WAKE UP AT : 300.894

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 14

... No solution found

Update ExecTPs : [58, 29]

########### ACT #############

Timepoint 29 is not supported, upper_bound : 320.98

-> WaitingExecTPs

Update ExecTPs : [58, 29]

Timepoint 58 is not supported, upper_bound : 549.718

-> WaitingExecTPs

Update ExecTPs : [58]

WaitingExecTPs : [58, 29]

############################

Next ExecTPs [58, 29] at 300.01

CYCLE DURATION : 1.308

CYCLE N◦9 - WAKE UP AT : 302.203

########### PLAN REPAIR #############

nb planning steps: 23

... Solution found

Update ExecTPs : [29]

########### ACT #############

Instantiation of Start timepoint 29 at 302.203

Send-command : (LAUNCH IXTET_EXEC COMMUNICATE 6 (PARAMETERS W1))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [30] at 418.99

CYCLE DURATION : 1.155

MsgQueue not empty : [MsgBilan (BILAN, Task 6, nominal, state bilan[] , resource bilan [(CHANNEL() 1)]), timepoint 30]

CYCLE N◦10 - WAKE UP AT : 408.286

########### SENSE #############

Receive bilan

Timepoint lower_bound : 402.213

192 Appendix 2. Tests on Dala

Timepoint upper_bound : 420.99

Instantiation of Msg timepoint 30 at 408.286

Update ExecTPs : [58, 10]

########### ACT #############

Instantiation of Start timepoint 58 at 408.296

Send-command : (LAUNCH IXTET_EXEC MOVE 20 (PARAMETERS 7.255328 -4.428510 9 0))

Update ExecTPs : [10]

Instantiation of Goal timepoint 10 at 408.296

Update ExecTPs : [11]

Instantiation of Goal timepoint 11 at 408.306

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [3] at 420

CYCLE DURATION : 0.293

CYCLE N◦11 - WAKE UP AT : 420.007

########### ACT #############

Instantiation of Extern timepoint 3 at 420.007

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [59] at 587.44

CYCLE DURATION : 0.102

CYCLE N◦12 - WAKE UP AT : 587.458

########### ACT #############

Send-command : (END 20)

WaitingExecTPs : []

############################

Next ExecTPs [] at 1.79769e+308

CYCLE DURATION : 0.044

MsgQueue not empty : [MsgBilan (BILAN, Task 20, interrupted, state bilan[(PAN_TILT_UNIT_POSITION() FORWARD),

(MVT_GENERATION_INITIALIZED() T), (AT_ROBOT_Y() -1.70755), (AT_ROBOT_X() 10.1826), (ROBOT_STATUS() STILL)] ,

resource bilan [(CAMERA() 1)]), timepoint 59]

CYCLE N◦13 - WAKE UP AT : 591.196

########### SENSE #############

Receive bilan

Timepoint lower_bound : 448.008

Timepoint upper_bound : 589.43

New timepoint 60

Waiting End Timepoint 60 TIMED OUT

NO TEMPORAL FLEXIBILITY LEFT, replan

Update ExecTPs : []

########### COMPLETE REPLANNING #############

REPLANNING ATTEMPT N◦1
with 5 goals:

* Priority 2,

Minimal achievement duration 0s,

Constraint with origin:] 798 , 1998],

Duration: [2 , 2],

Proposition: hold(AT_ROBOT_X():0, (6,1))

* Priority 1,

Minimal achievement duration 0s,

Constraint with origin:] 0 , 1998 [,

Duration:] 0 , 2000 [,

Proposition: hold(PICTURE(OBJ3,8,-5):DONE, (7,8))

* Priority 1,

Minimal achievement duration 0s,

Constraint with origin:] 0 , 1998 [,

Duration:] 0 , 2000 [,

Proposition: hold(PICTURE(OBJ2,9,0):DONE, (9,10))

* Priority 1,

Minimal achievement duration 0s,

Constraint with origin: [0 , 2000 [,

Duration:] 0 , 2000]

Proposition: hold(COMMUNICATION(W2):DONE, (11,12))

* Priority 2,

Minimal achievement duration 0s,

Constraint with origin:] 798 , 1998],

Duration: [2 , 2]

Proposition: hold(AT_ROBOT_Y():0, (6,1))

Update replanning_limit_time 1995.98, with current_time : 591.608 and backtrack 0

Update replanning_limit_time 1995.98, with current_time : 591.612 and backtrack 0

Update replanning_limit_time 1995.98, with current_time : 591.623 and backtrack 0

Update replanning_limit_time 1995.98, with current_time : 591.646 and backtrack 0

Update replanning_limit_time 1899.98, with current_time : 591.679 and backtrack 0

Update replanning_limit_time 1899.98, with current_time : 591.704 and backtrack 0

2.2. IXTET-EXEC trace of Run 3 193

Update replanning_limit_time 600.99, with current_time : 591.731 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.755 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.784 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.815 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.825 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.835 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.845 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.859 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.868 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.875 and backtrack 1

.Update replanning_limit_time 600.99, with current_time : 591.953 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.967 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 591.98 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.015 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.027 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.037 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.048 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.072 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.118 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.143 and backtrack 1

.Update replanning_limit_time 600.99, with current_time : 592.239 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.272 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.297 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.32 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.34 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.368 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.38 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.392 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.42 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.436 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.446 and backtrack 1

.Update replanning_limit_time 600.99, with current_time : 592.542 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.573 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.588 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.601 and backtrack 1

.Update replanning_limit_time 600.99, with current_time : 592.773 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.811 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.832 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.848 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.863 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.902 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 592.921 and backtrack 1

.Update replanning_limit_time 600.99, with current_time : 593.025 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.073 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.101 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.117 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.156 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.18 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.193 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.203 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.213 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.263 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.293 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.306 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.319 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.33 and backtrack 0

Update replanning_limit_time 600.99, with current_time : 593.344 and backtrack 0

nb of planning steps: 64

SOLUTION FOUND

REPLANNING Total Duration : 2.196

Start cycle at 593.489

Update ExecTPs : [3]

########### ACT #############

Instantiation of EndPlanning timepoint 3 at 593.489

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [4] at 600

CYCLE DURATION : 0.048

CYCLE N◦14 - WAKE UP AT : 600

########### ACT #############

Instantiation of Extern timepoint 4 at 600

Update ExecTPs : [17]

Instantiation of Start timepoint 17 at 600.01

Send-command : (LAUNCH IXTET_EXEC COMMUNICATE 23 (PARAMETERS W2))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [18] at 719.99

CYCLE DURATION : 0.169

MsgQueue not empty : [MsgBilan (BILAN, Task 23, nominal, state bilan[] , resource bilan [(CHANNEL() 1)]), timepoint 18]

194 Appendix 2. Tests on Dala

CYCLE N◦15 - WAKE UP AT : 704.206

########### SENSE #############

Receive bilan

Timepoint lower_bound : 700.02

Timepoint upper_bound : 721.99

Instantiation of Msg timepoint 18 at 704.206

Update ExecTPs : [21, 11]

########### ACT #############

Instantiation of Start timepoint 21 at 704.216

Send-command : (LAUNCH IXTET_EXEC MOVE 25 (PARAMETERS 10.182649 -1.707548 8 -5))

Update ExecTPs : [11]

Instantiation of Goal timepoint 11 at 704.216

Update ExecTPs : [12]

Instantiation of Goal timepoint 12 at 704.226

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [5] at 720

CYCLE DURATION : 0.105

CYCLE N◦16 - WAKE UP AT : 720

########### ACT #############

Instantiation of Extern timepoint 5 at 720

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [22] at 884.719

CYCLE DURATION : 0.013

CYCLE N◦17 - WAKE UP AT : 884.72

########### ACT #############

Send-command : (END 25)

WaitingExecTPs : []

############################

Next ExecTPs [] at 1.79769e+308

CYCLE DURATION : 0.034

MsgQueue not empty : [MsgBilan (BILAN, Task 25, interrupted, state bilan[(PAN_TILT_UNIT_POSITION() FORWARD),

(MVT_GENERATION_INITIALIZED() T), (AT_ROBOT_Y() -0.727463), (AT_ROBOT_X() 9.91046), (ROBOT_STATUS() STILL)] ,

resource bilan [(CAMERA() 1)]), timepoint 22]

CYCLE N◦18 - WAKE UP AT : 888.946

########### SENSE #############

Receive bilan

Timepoint lower_bound : 742.542

Timepoint upper_bound : 886.719

New timepoint 33

Waiting End Timepoint 33 TIMED OUT

New state insertion...

19 causal links are removed on the attributes:

[MVT_GENERATION_INITIALIZED(), AT_ROBOT_X(), AT_ROBOT_Y(), ROBOT_STATUS(), PTU_DRIVER_INITIALIZED(),

PAN_TILT_UNIT_POSITION()]

Update ExecTPs : [25]

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 33

... Solution found

Update ExecTPs : []

########### ACT #############

WaitingExecTPs : []

############################

Next ExecTPs [34] at 890.956

CYCLE DURATION : 1.153

CYCLE N◦19 - WAKE UP AT : 890.956

########### ACT #############

Instantiation of Start timepoint 34 at 890.956

Send-command : (LAUNCH IXTET_EXEC MOVE 31 (PARAMETERS 9.910457 -0.727463 8 -5))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [35] at 1095.06

CYCLE DURATION : 0.047

MsgQueue not empty : [MsgBilan (BILAN, Task 31, nominal, state bilan[] , resource bilan [(CAMERA() 1)]), timepoint 35]

CYCLE N◦20 - WAKE UP AT : 1060.02

########### SENSE #############

Receive bilan

Timepoint lower_bound : 934.237

Timepoint upper_bound : 1097.06

Instantiation of Msg timepoint 35 at 1060.02

Update ExecTPs : [25]

2.2. IXTET-EXEC trace of Run 3 195

########### ACT #############

Instantiation of Start timepoint 25 at 1060.03

Send-command : (LAUNCH IXTET_EXEC MOVE_PAN_TILT_UNIT 27 (PARAMETERS FORWARD DOWNWARD))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [26] at 1068.03

CYCLE DURATION : 0.058

MsgQueue not empty : [MsgBilan (BILAN, Task 27, nominal, state bilan[] , resource bilan []), timepoint 26]

CYCLE N◦21 - WAKE UP AT : 1064.48

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1063.03

Timepoint upper_bound : 1070.03

Instantiation of Msg timepoint 26 at 1064.48

Update ExecTPs : [13]

########### ACT #############

Instantiation of Start timepoint 13 at 1064.49

Send-command : (LAUNCH IXTET_EXEC TAKE_PICTURE 21 (PARAMETERS OBJ3 8 -5))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [14] at 1124.49

CYCLE DURATION : 0.062

MsgQueue not empty : [MsgBilan (BILAN, Task 21, nominal, state bilan[] , resource bilan [(CAMERA() 1),

(STORAGE_CPT() 41699), (STORAGE() 24301)]), timepoint 14]

CYCLE N◦22 - WAKE UP AT : 1066.48

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1066.5

Timepoint upper_bound : 1124.49

New timepoint 36

Failed timepoints : [14]

New state insertion...

26 causal links are removed on the attributes:

[AT_ROBOT_X(), MVT_GENERATION_INITIALIZED(), AT_ROBOT_Y(), ROBOT_STATUS(), PTU_DRIVER_INITIALIZED(),

PAN_TILT_UNIT_POSITION(), PICTURE(OBJ3,8 ,-5)]

Update ExecTPs : [29, 7]

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 27

... Solution found

Update ExecTPs : [29, 7]

########### ACT #############

Instantiation of Start timepoint 29 at 1066.49

Send-command : (LAUNCH IXTET_EXEC MOVE_PAN_TILT_UNIT 29 (PARAMETERS DOWNWARD FORWARD))

Update ExecTPs : [7]

Instantiation of Goal timepoint 7 at 1066.49

Update ExecTPs : [8]

Instantiation of Goal timepoint 8 at 1066.5

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [30] at 1074.49

CYCLE DURATION : 1.106

MsgQueue not empty : [MsgBilan (BILAN, Task 29, nominal, state bilan[] , resource bilan []), timepoint 30]

CYCLE N◦23 - WAKE UP AT : 1071.01

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1069.49

Timepoint upper_bound : 1076.49

Instantiation of Msg timepoint 30 at 1071.01

Update ExecTPs : [19]

########### ACT #############

Instantiation of Start timepoint 19 at 1071.02

Send-command : (LAUNCH IXTET_EXEC MOVE 24 (PARAMETERS 8 -5 9 0))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [20] at 1252.35

CYCLE DURATION : 0.065

CYCLE N◦24 - WAKE UP AT : 1252.35

########### ACT #############

Send-command : (END 24)

WaitingExecTPs : []

############################

Next ExecTPs [] at 1.79769e+308

196 Appendix 2. Tests on Dala

CYCLE DURATION : 0.023

MsgQueue not empty : [MsgBilan (BILAN, Task 24, interrupted, state bilan[(PAN_TILT_UNIT_POSITION() FORWARD),

(MVT_GENERATION_INITIALIZED() T), (AT_ROBOT_Y() -3.86292), (AT_ROBOT_X() 8.09759), (ROBOT_STATUS() STILL)] ,

resource bilan [(CAMERA() 1)]), timepoint 20]

CYCLE N◦25 - WAKE UP AT : 1256.48

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1109.52

Timepoint upper_bound : 1254.35

New timepoint 37

Waiting End Timepoint 37 TIMED OUT

New state insertion...

9 causal links are removed on the attributes:

[MVT_GENERATION_INITIALIZED(), AT_ROBOT_Y(), AT_ROBOT_X(), ROBOT_STATUS(), PTU_DRIVER_INITIALIZED(),

PAN_TILT_UNIT_POSITION()]

Update ExecTPs : [27]

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 23

... Solution found

Update ExecTPs : []

########### ACT #############

WaitingExecTPs : []

############################

Next ExecTPs [38] at 1258.49

CYCLE DURATION : 0.965

CYCLE N◦26 - WAKE UP AT : 1258.49

########### ACT #############

Instantiation of Start timepoint 38 at 1258.49

Send-command : (LAUNCH IXTET_EXEC MOVE 32 (PARAMETERS 8.097589 -3.862917 9 0))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [39] at 1398.67

CYCLE DURATION : 0.088

CYCLE N◦27 - WAKE UP AT : 1398.68

########### ACT #############

Send-command : (END 32)

WaitingExecTPs : []

############################

Next ExecTPs [] at 1.79769e+308

CYCLE DURATION : 0.05

MsgQueue not empty : [MsgBilan (BILAN, Task 32, interrupted, state bilan[(PAN_TILT_UNIT_POSITION() FORWARD),

(MVT_GENERATION_INITIALIZED() T), (AT_ROBOT_Y() -2.13912), (AT_ROBOT_X() 5.73907), (ROBOT_STATUS() STILL)] ,

resource bilan [(CAMERA() 1)]), timepoint 39]

CYCLE N◦28 - WAKE UP AT : 1403.01

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1288.35

Timepoint upper_bound : 1400.67

New timepoint 40

Waiting End Timepoint 40 TIMED OUT

New state insertion...

9 causal links are removed on the attributes:

[MVT_GENERATION_INITIALIZED(), AT_ROBOT_Y(), AT_ROBOT_X(), ROBOT_STATUS(), PTU_DRIVER_INITIALIZED(),

PAN_TILT_UNIT_POSITION()]

Update ExecTPs : [27]

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 23

... Solution found

Update ExecTPs : []

########### ACT #############

WaitingExecTPs : []

############################

Next ExecTPs [41] at 1405.02

CYCLE DURATION : 1.213

CYCLE N◦29 - WAKE UP AT : 1405.02

########### ACT #############

Instantiation of Start timepoint 41 at 1405.02

Send-command : (LAUNCH IXTET_EXEC MOVE 33 (PARAMETERS 5.739069 -2.139120 9 0))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [42] at 1566.35

CYCLE DURATION : 0.055

2.2. IXTET-EXEC trace of Run 3 197

CYCLE N◦30 - WAKE UP AT : 1566.35

########### ACT #############

Send-command : (END 33)

WaitingExecTPs : []

############################

Next ExecTPs [] at 1.79769e+308

CYCLE DURATION : 0.025

MsgQueue not empty : [MsgBilan (BILAN, Task 33, interrupted, state bilan[(PAN_TILT_UNIT_POSITION() FORWARD),

(MVT_GENERATION_INITIALIZED() T), (AT_ROBOT_Y() -2.13628), (AT_ROBOT_X() 5.52935), (ROBOT_STATUS() STILL)] ,

resource bilan [(CAMERA() 1)]), timepoint 42]

CYCLE N◦31 - WAKE UP AT : 1571.08

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1439.32

Timepoint upper_bound : 1568.35

New timepoint 43

Waiting End Timepoint 43 TIMED OUT

New state insertion...

9 causal links removed on the attributes:

[MVT_GENERATION_INITIALIZED(), AT_ROBOT_Y(), AT_ROBOT_X(), ROBOT_STATUS(), PTU_DRIVER_INITIALIZED(),

PAN_TILT_UNIT_POSITION()]

Update ExecTPs : [27]

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 17

... No solution found

Update ExecTPs : []

########### ACT #############

WaitingExecTPs : []

############################

Next ExecTPs [44] at 1573.09

CYCLE DURATION : 1.245

CYCLE N◦32 - WAKE UP AT : 1572.32

########### PLAN REPAIR #############

nb planning steps: 6

... Solution found

Update ExecTPs : [44]

########### ACT #############

Instantiation of Start timepoint 44 at 1573.09

Send-command : (LAUNCH IXTET_EXEC MOVE 34 (PARAMETERS 5.529349 -2.136283 9 0))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [45] at 1741.32

CYCLE DURATION : 0.361

MsgQueue not empty : [MsgBilan (BILAN, Task 34, nominal, state bilan[] , resource bilan [(CAMERA() 1)]), timepoint 45]

CYCLE N◦33 - WAKE UP AT : 1718.42

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1608.83

Timepoint upper_bound : 1743.32

Instantiation of Msg timepoint 45 at 1718.42

Update ExecTPs : [27]

########### ACT #############

Instantiation of Start timepoint 27 at 1718.43

Send-command : (LAUNCH IXTET_EXEC MOVE_PAN_TILT_UNIT 28 (PARAMETERS FORWARD DOWNWARD))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [28] at 1726.43

CYCLE DURATION : 0.092

MsgQueue not empty : [MsgBilan (BILAN, Task 28, nominal, state bilan[] , resource bilan []), timepoint 28]

CYCLE N◦34 - WAKE UP AT : 1722.88

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1721.43

Timepoint upper_bound : 1728.43

Instantiation of Msg timepoint 28 at 1722.88

Update ExecTPs : [15]

########### ACT #############

Instantiation of Start timepoint 15 at 1722.89

Send-command : (LAUNCH IXTET_EXEC TAKE_PICTURE 22 (PARAMETERS OBJ2 9 0))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [16] at 1782.89

CYCLE DURATION : 0.068

198 Appendix 2. Tests on Dala

MsgQueue not empty : [MsgBilan (BILAN, Task 22, nominal, state bilan[] , resource bilan [(CAMERA() 1),

(STORAGE_CPT() 63948), (STORAGE() 2052)]), timepoint 16]

CYCLE N◦35 - WAKE UP AT : 1724.73

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1724.9

Timepoint upper_bound : 1782.89

New timepoint 46

Failed timepoints : [16]

New state insertion...

16 causal links are removed on the attributes:

[AT_ROBOT_X(), MVT_GENERATION_INITIALIZED(), AT_ROBOT_Y(), ROBOT_STATUS(), PTU_DRIVER_INITIALIZED(),

PAN_TILT_UNIT_POSITION(), PICTURE(OBJ2,9,0)]

Update ExecTPs : [31, 9]

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 13

... No solution found

Update ExecTPs : [31, 9]

########### ACT #############

Timepoint 31 is not supported, upper_bound : 1935.48

-> WaitingExecTPs

Update ExecTPs : [31, 9]

Instantiation of Goal timepoint 9 at 1724.74

Update ExecTPs : [10]

Instantiation of Goal timepoint 10 at 1724.75

Update ExecTPs : []

WaitingExecTPs : [31]

############################

Next ExecTPs [31] at 1724.74

CYCLE DURATION : 1.335

CYCLE N◦36 - WAKE UP AT : 1726.06

########### PLAN REPAIR #############

New Repair Search Tree

nb planning steps: 2

... Solution found

Update ExecTPs : [31]

########### ACT #############

Instantiation of Start timepoint 31 at 1726.06

Send-command : (LAUNCH IXTET_EXEC MOVE_PAN_TILT_UNIT 30 (PARAMETERS DOWNWARD FORWARD))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [32] at 1734.06

CYCLE DURATION : 0.292

MsgQueue not empty : [MsgBilan (BILAN, Task 30, nominal, state bilan[] , resource bilan []), timepoint 32]

CYCLE N◦37 - WAKE UP AT : 1730.9

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1729.06

Timepoint upper_bound : 1736.06

Instantiation of Msg timepoint 32 at 1730.9

Update ExecTPs : [23]

########### ACT #############

Instantiation of Start timepoint 23 at 1730.91

Send-command : (LAUNCH IXTET_EXEC MOVEX 26 (PARAMETERS 9 0 0 0))

Update ExecTPs : []

WaitingExecTPs : []

############################

Next ExecTPs [24] at 1995.99

CYCLE DURATION : 0.074

CYCLE N◦38 - WAKE UP AT : 1996.01

########### ACT #############

Send-command : (END 26)

WaitingExecTPs : []

############################

Next ExecTPs [] at 1.79769e+308

CYCLE DURATION : 0.072

MsgQueue not empty : [MsgBilan (BILAN, Task 26, interrupted, state bilan[(PAN_TILT_UNIT_POSITION() FORWARD),

(MVT_GENERATION_INITIALIZED() T), (AT_ROBOT_Y() 0.852485), (AT_ROBOT_X() 4.66933), (ROBOT_STATUS() STILL)] ,

resource bilan [(CAMERA() 1)]), timepoint 24]

CYCLE N◦39 - WAKE UP AT : 2000.68

########### SENSE #############

Receive bilan

Timepoint lower_bound : 1790.41

Timepoint upper_bound : 1997.99

2.2. IXTET-EXEC trace of Run 3 199

New timepoint 47

Waiting End Timepoint 47 TIMED OUT

NO TEMPORAL FLEXIBILITY LEFT, replan

REPLANNING ATTEMPT N◦1
with 0 goals.

Could not find a new plan - NO MORE GOAL

Bibliography
[Ai-Chang 03] M. Ai-Chang, J. Bresina, L. Charest, A. Jónsson, J. Hsu, B. Kanef-

sky, P. Maldague, P. Morris, K. Rajan & J. Yglesias. MAPGEN:
Mixed initiative planning and scheduling for the Mars 03 MER mis-
sion. In International Symposium on Artificial Intelligence Robotics
and Automation in Space (iSAIRAS), 2003.

[Alami 98] R. Alami, R. Chatila, S. Fleury, M. Ghallab & F. Ingrand. An
Architecture for Autonomy. International Journal of Robotics Re-
search, Special Issue on Integrated Architectures for Robot Control
and Programming, vol. 17, no. 4, 1998.

[Allen 84] J. Allen. Towards a General Theory of Action and Time. Artificial
Intelligence, vol. 23, 1984.

[Ambros-Ingerson 88] J. Ambros-Ingerson & S. Steel. Integrating Planning, Execution and
Monitoring. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 1988.

[Bacchus 01] F. Bacchus & M. Ady. Planning with Resources and Concurrency:
A Forward Chaining Approach. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2001.

[Bastié 96] C. Bastié & P. Régnier. Intégration de la planification et du contrôle
d’exécution en environnement dynamique : le système SPEEDY. In
Actes de RFIA, Reconnaissance des Formes et Intelligence Artifi-
cielle, 1996.

[Beetz 94] M. Beetz & D. V. McDermott. Improving Robot Plans During Their
Execution. In Proceedings of the International Conference on AI
Planning Systems (AIPS), 1994.

[Bertoli 01] P. Bertoli, A. Cimatti, M. Roveri & P. Traverso. Planning in
Nondeterministic Domains under Partial Observability via Sym-
bolic Model Checking. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2001.

[Bonasso 97] R. P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. P. Miller &
M. G. Slack. Experiences with an Architecture for Intelligent, Re-
active Agents. Journal of Experimental & Theoretical Artificial
Intelligence, vol. 9, no. 2/3, pages 237–256, April 1997.

[Bonet 00] B. Bonet & H. Geffner. Planning with Incomplete Information as
Heuristic Search in Belief Space. In Proceedings of the International
Conference on AI Planning Systems (AIPS), 2000.

202 Bibliography

[Cambon 02] S. Cambon, S. Lemai & R. Trinquart. Compétitions de planification.
Revue d’Intelligence Artificielle, volume 16, n◦3, 2002.

[Chien 00] S. Chien, R. Knight, A. Stechert, R. Sherwood & G. Rabideau.
Using Iterative Repair to Improve the Responsiveness of Planning
and Scheduling. In Proceedings of the International Conference on
AI Planning Systems (AIPS), 2000.

[Cimatti 00] A. Cimatti & M. Roveri. Conformant Planning via Symbolic Model
Checking. Journal of Artificial Intelligence Research, vol. 13, pages
305–338, 2000.

[Coddington 02] A. Coddington. A Continuous Planning Framework with Durative
Actions. Ninth International Symposium on Temporal Representa-
tion and Reasoning (TIME’02), 2002.

[Currie 91] K. Currie & A. Tate. O-Plan: the Open Planning Architecture.
Artificial Intelligence, vol. 52, 1991.

[Dechter 89] Rina Dechter, Itay Meiri & Judea Pearl. Temporal Constraint Net-
works. In KR’89: Principles of Knowledge Representation and Rea-
soning. Morgan Kaufmann, 1989.

[Despouys 99] O. Despouys & F. Ingrand. Propice-Plan: Toward a Unified Frame-
work for Planning and Execution. In Proceedings of the European
Conference on Planning (ECP), 1999.

[Dias 03] M. B. Dias, S. Lemai & N. Muscettola. A Real-Time Rover Exec-
utive Based On Model-Based Reactive Planning. In Proceedings of
the International Conference on Advanced Robotics (ICAR), 2003.

[Do 01] M. Do & S. Kambhampati. Sapa: A Domain-Independent Heuristic
Metric Temporal Planner. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2001.

[Do 03] M. Do & S. Kambhampati. Improving the Temporal Flexibility of
Position Constrained Metric Temporal Plans. In Proceedings of the
International Conference on Automated Planning and Scheduling
(ICAPS), 2003.

[Doherty 01] P. Doherty & J. Kvarnström. TALplanner: A Temporal Logic Based
Planner. AI magazine, vol. 22, no. 3, 2001.

[Edelkamp 01] S. Edelkamp. First Solutions to PDDL+ Planning Problems. In
PlanSig Workshop, 2001.

[Estlin 01] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt &
S. Chien. Decision-Making in a Robotic Architecture for Autonomy.

Bibliography 203

In International Symposium on Artificial Intelligence Robotics and
Automation in Space (iSAIRAS), 2001.

[Fargier 96] H. Fargier, J. Lang & T. Schiex. Mixed Constraint Satisfaction:
a Framework for Decision Problems under Incomplete Knowledge.
In Proceedings of the National Conference on Artificial Intelligence
(AAAI), 1996.

[Ferraris 00] P. Ferraris & E. Giunchiglia. Planning as Satisfiability in Nonde-
terministic Domains. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2000.

[Fikes 71] R.E. Fikes & N.J. Nilsson. STRIPS: A New Approach to the Ap-
plication of Theorem Proving to Problem Solving. Artificial Intelli-
gence, vol. 2, 1971.

[Fikes 72] R.E. Fikes, P. E. Hart & N. J.Nilsson. Learning and executing
generalized robot plans. Artificial Intelligence, vol. 3, 1972.

[Finzi 04] A. Finzi, F. Ingrand & N. Muscettola. Robot Action Planning and
Execution Control. In International Workshop on Planning and
Scheduling for Space, 2004.

[Firby 94] R. J. Firby. Task Networks for Controlling Continuous Processes.
In Artificial Intelligence Planning Systems, 1994.

[Fleury 94] S. Fleury, M. Herrb & R. Chatila. Design of a Modular Architec-
ture for Autonomous Robot. In Proceedings of the International
Conference on Robotics and Automation (ICRA), 1994.

[Fox 02a] M. Fox & D. Long. International Planning Competition.
http://www.dur.ac.uk/d.p.long/competition.html, 2002.

[Fox 02b] Maria Fox & Derek Long. PDDL 2.1 : An Extension to PDDL for
Expressing Temporal Planning Domains. Technical Report, Univer-
sity of Durham, UK, 2002.

[Frank 03] J. Frank & A. Jónsson. Constraint-Based Attribute and Interval
Planning. Constraints, vol. 8, no. 4, 2003.

[Gaborit 96] P. Gaborit. Planification distribuée pour la coopération multi-
agents. PhD Thesis, Université Paul Sabatier de Toulouse, 1996.

[Gallien 04] M. Gallien. Planification et contrôle d’exécution. Master Thesis,
Université Paul Sabatier de Toulouse, 2004.

[Garcia 95] F. Garcia & P. Laborie. Hierarchisation of the search space in
temporal planning. In Proceedings of the European Workshop on
Planning (EWSP), 1995.

204 Bibliography

[Garcia 98] F. Garcia & P. Laborie. Hiérarchisation dynamique de la recherche:
Application au planificateur IxTeT. Revue d’Intelligence Artificielle,
vol. 12, 1998.

[Gat 92] E. Gat. Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for controlling real-world mobile robots. In
Proceedings of the National Conference on Artificial Intelligence
(AAAI), 1992.

[Gat 97] E. Gat. ESL : A Language for Supporting Robust Plan Execution
in Embedded Autonomous Agents. In Proceedings of the 1997 IEEE
Aerospace Conference, 1997.

[Georgeff 89] M. P. Georgeff & F. Ingrand. Decision Making in an Embedded
Reasoning System. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 1989.

[Ghallab 89] M. Ghallab & A. Mounir-Alaoui. Managing Efficiently Temporal
Relations Through Indexed Spanning Trees. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI),
1989.

[Ghallab 94] M. Ghallab & H. Laruelle. Representation and Control in IxTeT, a
Temporal Planner. In Proceedings of the International Conference
on AI Planning Systems (AIPS), 1994.

[Ghallab 01] M. Ghallab, F. Ingrand, S. Lemai & F. Py. Architecture and Tools
for Autonomy in Space. In International Symposium on Artificial
Intelligence Robotics and Automation in Space (iSAIRAS), 2001.

[Ghallab 04] M. Ghallab, D. Nau & P. Traverso. Automated planning: Theory
and practice. Morgan Kaufmann, 2004.

[Gout 99] J. Gout, S. Fleury & H. Schindler. A New Design Approach of Soft-
ware Architecture for an Autonomous Observation Satellite. In In-
ternational Symposium on Artificial Intelligence Robotics and Au-
tomation in Space (iSAIRAS), 1999.

[Grandjean 04] P. Grandjean & A. Pitie. Operational multi-mission spacecraft oper-
ations on-line scheduling and automated execution. In International
Workshop on Planning and Scheduling for Space, 2004.

[Guéré 01] E. Guéré. Extraire la structure des domaines pour planifier en
présence d’incertitudes. PhD Thesis, Université Paul Sabatier de
Toulouse, 2001.

[Haigh 98] K. Z. Haigh & M. M. Veloso. Planning, Execution and Learning in
a Robotic Agent. In Proceedings of the International Conference on
AI Planning Systems (AIPS), 1998.

Bibliography 205

[Huguet 02] M.-J. Huguet, P. Lopez & T. Vidal. Dynamic task sequencing in
temporal problems with uncertainty. In WS On-line Planning and
Scheduling, AIPS, 2002.

[Infantes 03] G. Infantes. Apprentissage Actif et Planification en Robotique. Mas-
ter Thesis, Université Paul Sabatier de Toulouse, 2003.

[Ingrand 96] F. Ingrand, R. Chatila, R. Alami & F. Robert. PRS: A High Level
Supervision and Control Language for Autonomous Mobile Robots.
In Proceedings of the International Conference on Robotics and
Automation (ICRA), 1996.

[Ingrand 02] F. Ingrand & F. Py. An Execution Control System for Autonomous
Robots. In Proceedings of the International Conference on Robotics
and Automation (ICRA), 2002.

[Kim 01] P. Kim, B. Williams & M. Abramson. Executing Reactive, Model-
based Programs through Graph-based Temporal Planning. In Pro-
ceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), 2001.

[Knoblock 94] C. Knoblock. Automatically generating abstractions for planning.
Artificial Intelligence, vol. 68, 1994.

[Kortenkamp 98] D. Kortenkamp, R. Bonasso & R. Murphy. Artificial intelligence
and mobile robots: Case studies of successful robot systems. AAAI
Press, 1998.

[Laborie 95a] P. Laborie. IxTeT : une approche intégrée pour la gestion de
ressources et la synthèse de plans. PhD Thesis, Ecole Nationale
Supérieure des Télécommunications, 1995.

[Laborie 95b] P. Laborie & M. Ghallab. Planning with Sharable Resource Con-
straints. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 1995.

[Laborie 01] P. Laborie. Algorithms for Propagating Resource Constraints in A.I.
Planning and Scheduling: Existing Approaches and New Results.
Proceedings of the European Conference on Planning (ECP), 2001.

[Lacroix 02] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb
& R. Chatila. Autonomous Rover Navigation on Unknown Terrains:
Functions and Integration. International Journal of Robotics Re-
search, vol. 21, no. 10-11, 2002.

[Laruelle 94] H. Laruelle. Planification temporelle et exécution de tâches en robo-
tique. PhD Thesis, Université Paul Sabatier de Toulouse, 1994.

206 Bibliography

[Lemai 02] S. Lemai & R. Trinquart. Bringing out IxTeT in the dynamic world?
In WS On-line Planning and Scheduling, AIPS, 2002.

[Lemai 03] S. Lemai & F. Ingrand. Interleaving Temporal Planning and Exe-
cution: IXTET-EXEC. In WS Plan Execution, ICAPS, 2003.

[Lemai 04a] S. Lemai & F. Ingrand. Interleaving Temporal Planning and Ex-
ecution for an Autonomous Rover. In International Workshop on
Planning and Scheduling for Space, 2004.

[Lemai 04b] S. Lemai & F. Ingrand. Interleaving Temporal Planning and Exe-
cution in Robotics Domains. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), 2004.

[Lemai 04c] S. Lemai & F. Ingrand. Planification et contrôle d’exécution tem-
porels : IXTET-EXEC. In Actes de RFIA, Reconnaissance des Formes
et Intelligence Artificielle, 2004.

[Levinson 95] R. Levinson. A General Programming Language for Unified Plan-
ning and Control. Artificial Intelligence, vol. 76, 1995.

[Morisset 02] B. Morisset & M. Ghallab. Learning How to Combine Sensory-
Motor Modalities for a Robust Behavior. Advances in Plan-Based
Control of Robotic Agents. M. Beetz, J. Hertzberg, M. Ghallab, M.
E. Pollack - Springer, vol. 2466, 2002.

[Morris 01] P. Morris, N. Muscettola & T. Vidal. Dynamic Control of Plans
with Temporal Uncertainty. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2001.

[Muscettola 94] N. Muscettola. HSTS: Integrated planning and scheduling. In Fox,
M., and Zweben, M., eds, Intelligent Scheduling, Morgan Kaufman,
1994.

[Muscettola 98] N. Muscettola, P. P. Nayak, B. Pell & B. Williams. Remote Agent
: To Boldly Go Where No AI System Has Gone Before. Artificial
Intelligence, vol. 103, 1998.

[Muscettola 02] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson & C. Plaunt.
IDEA: Planning at the Core of Autonomous Reactive Agents. In In-
ternational NASA Workshop on Planning and Scheduling for Space,
2002.

[Myers 99] Karen L. Myers. CPEF: Continuous Planning and Execution
Framework. AI Magazine, vol. 20, no. 4, 1999.

[Nau 01] D. Nau, H. Mun oz Avila, Y. Cao, A. Lotem & S. Mitchell. Total-
Order Planning with Partially Ordered Subtasks. Proceedings of the

Bibliography 207

International Joint Conference on Artificial Intelligence (IJCAI),
2001.

[Pell 97] B. Pell, E. Gat, R. Keesing, N. Muscettola & B. Smith. Robust
Periodic Planning and Execution for Autonomous Spacecraft. In
Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), 1997.

[Penberthy 94] J. S. Penberthy & D. Weld. Planning with Continuous Change.
In Proceedings of the National Conference on Artificial Intelligence
(AAAI), 1994.

[Rabideau 99] G. Rabideau, R. Knight, S. Chien, A. Fukunaga & A. Govind-
jee. Iterative Repair Planning for Spacecraft Operations in the AS-
PEN System. In International Symposium on Artificial Intelligence
Robotics and Automation in Space (iSAIRAS), 1999.

[Sacerdoti 74] E. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces. Arti-
ficial Intelligence, vol. 5, 1974.

[Schwalb 97] E. Schwalb & R. Dechter. Processing Disjunctions in Temporal
Constraint Networks. Artificial Intelligence, vol. 93, pages 29–61,
1997.

[Shapiro 99] R. Shapiro, Y. Feldman & R. Dechter. On the Complexity of
Interval-Based Constraint Networks. In MISC’99 Workshop on Ap-
plications of Interval Analysis to Systems and Control, 1999.

[Simmons 98] R. Simmons & D. Apfelbaum. A Task Description Language for
Robot Control. In Proceedings of Conference on Intelligent Robotics
and Systems, 1998.

[Smith 98] D. Smith & D. Weld. Conformant Graphplan. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), 1998.

[Smith 99] D. Smith & D. Weld. Temporal Planning with Mutual Exclusion
Reasoning. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 1999.

[Smith 00] D. Smith, J. Frank & A. Jónsson. Bridging the Gap Between Plan-
ning and Scheduling. Knowledge Engineering Review, 15(1):61–94,
2000.

[Stone 96] P. Stone & M. M. Veloso. User-guided Interleaving of Planning and
Execution. In New Directions in AI Planning. IOS Press, 1996.

[Trinquart 01] Romain Trinquart & Malik Ghallab. An Extended Functional Rep-
resentation in Temporal Planning : towards Continuous Change. In
Proceedings of the European Conference on Planning (ECP), 2001.

208 Bibliography

[Trinquart 02] R. Trinquart, S. Lemai & S. Cambon. One step on the left, one step
on the right and back to the middle: exploring temporal domains in
a POP fashion. In WS Planning for Temporal Domains, AIPS,
2002.

[Trinquart 04] R. Trinquart. Planification en Robotique: Analyse d’accessibilité
dans l’espace des plans partiels. PhD Thesis, Institut National Poly-
technique de Toulouse, 2004.

[Tsamardinos 98] I. Tsamardinos, N. Muscettola & P. Morris. Fast Transformation
of Temporal Plans for Efficient Execution. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), 1998.

[Vere 83] S. Vere. Planning in Time: Windows and Durations for Activities
and Goals. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 5, 1983.

[Vidal 99] T. Vidal & H. Fargier. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal of Experi-
mental and and Theoretical Artificial Intelligence, vol. 11, 1999.

[Vilain 86] M. Vilain & H. Kautz. Constraint Propagation Algorithms for Tem-
poral Reasoning. In Proceedings of the National Conference on Ar-
tificial Intelligence (AAAI), 1986.

[Volpe 00] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras & H. Das.
CLARAty : Coupled Layer Architecture for Robotic Autonomy.
Technical Report, Jet Propulsion Laboratory, Dec. 2000.

[Vossen 99] T. Vossen, M. Ball, A. Lotem & D. Nau. On the Use of Integer
Programming Models in AI Planning. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 1999.

[Washington 99] R. Washington, K. Golden & J. Bresina. Plan Execution, Mon-
itoring and Adaptation for Planetary Rovers. In Proceedings of
the IJCAI-99 Workshop, Scheduling and Planning meet Real-time
Monitoring in a Dynamic and Uncertain World., 1999.

[Weld 98] D. Weld, C. Anderson & D. Smith. Extending Graphplan to Handle
Uncertainty and Sensing Actions. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1998.

[Wilkins 88] D. E. Wilkins. Practical planning: Extending the classical ai plan-
ning paradigm. Morgan Kaufmann, 1988.

[Williams 96] B. Williams & P. Nayak. A Model-based Approach to Reactive Self-
Configuring Systems. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 1996.

Bibliography 209

[Yang 90] Q. Yang & J. D. Tenenberg. ABTWEAK: Abstracting a nonlinear,
least commitment planner. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 1990.

