## **Raphaëlle Dianoux**



Charge injection and detection in semiconducting nanostructures studied by Atomic Force Microscopy





CEA Grenoble / DRFMC / SP2M / SiNaPS ESRF / Surface Science Laboratory



## Electrostatic Force Microscopy in dry atmosphere

- Principles of charge injection and detection
- Minimum detectable force gradient in a Brownian motion
- Electrostatic tip-sample interaction: the plane-plane approximation
- Method of charge estimation
- > Limits of this model: numerical evidence of a repulsive force

## Non-linear dynamic force curves

- > Coupling with the higher oscillating modes of the cantilever
- > Analytical treatment of the cantilever motion
- > Adding of the electrostatic interaction

## Charging experiments on semiconducting nanostructures

- Charging the oxide layer
- $\succ$  Si nanocrystals embedded in SiO<sub>2</sub>
- > Si nanostructures made by e-beam lithography

C

**1** - **1** - **1** 

\_

<u>ر ا</u>

5

#### Injection and detection

Min. force gradient Modelling

Change estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

Siloz hayer

Si-nanoerystals in  $SiO_{2}$ 

Lithography Si- nanostric. What is Electrostatic Force Microscopy?

The idea: use the AFM probe to:

**Inject charges locally** 

AND

**Detect** charges

## **Conditions:**

- $\triangleright$  the tip must be metal-coated: W<sub>2</sub>C, PtIr
  - Radius of curvature of the tip: ~35 nm

the system must be electrically connected

# nanostructure SiO<sub>2</sub>

the tip must not touch the surface after injection
 oscillating mode



Min. force gradient Modelling

Change estimation Limits

#### Dynamic force curves

- Coupling to higher modes
- Analytical treatment
- + Electrostatic interaction

#### Charging experiments

- SilO<sub>2</sub> layer
- Sii-nanoerystalls in Si $O_{22}$
- Lithography Si-nanostruc.

## Charge injection with the tip





Application of a voltage (-12 to 12 V) for 1ms to 10s



The setpoint is returned to its original value



Resumes scanning

> Permanent N<sub>2</sub> flux



Min. force gradient Modelling

Change estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analyticall treatment

+ Electrostatic interaction

#### Charging experiments

SiO<sub>2</sub> layer

Sii-nanoerystalls im SilO<sub>22</sub>

Lithography Si- nanostruc.

## Detection of the injected charges The double-pass method

1<sup>st</sup> pass: topography



Localized electric charges

2<sup>nd</sup> pass: EFM signal



EFM signal

1&2: Topography scan.Feedback on the amplitude of oscillation.

**3**: Raising of the AFM probe at a lift height  $z_0$  of 30 to 100 nm. The feedback is cut off.

**4&5**: EFM scan: recording of the phase of oscillation. The tip is brought to potential  $V_{EFM}$ 

The EFM signal is sensitive to electrostatic force gradients.



Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Sii-nanoerystalls in Si $O_{2}$ 

Lithography Si- nanostric.

## Injection and detection of charges

5.0 DM

2.5 nm

).О пм

a)

## Example of charge injection on 7 nm of $SiO_2$ on Si

Topography EFM signal

Conditions: -10V/ 10s



FFM can distinguish the sign of the deposited charges

BUT the tip-sample force is always attractive!

EFM signal  $\propto$  - (potential difference)<sup>2</sup>

#### Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 layer

Si-nanoerystals in SiO<sub>2</sub>

Lithography Si- nanostruc.

## Mechanics of the cantilever



## Euler-Bernouilly equation of movement:

$$EI\frac{\partial^4 z}{\partial x^4}(x,t) + \rho A\frac{\partial^2 z}{\partial t^2}(x,t) = 0$$

Fundamental mode



E : Young modulus I : moment of inertia ρ : density A : section

Single clamped beam



Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 layer

Sii-nanoerystalts in SiO<sub>22</sub>

Lithography Sir-nanostruc.

## Detection of a force gradient



## Point-mass model:

$$\ddot{z}(t) + 2\beta_0 \dot{z}(t) + \omega_0^2 z(t) = \frac{F_{exc}}{m} \cos(\omega t) + \frac{f(z_0 + z)}{m}$$

$$f(z_0 + z) \approx f(z_0) + f'(z_0) \cdot z(t)$$

$$\omega_0^2 = \frac{k}{m}$$
Static def
$$\omega_0^2 = \frac{k}{m}$$
is spring constant of the cantilever  
m: effective massShift of the resonance frequency  
 $\beta_0$ : friction coefficient /m

Attractive force = phase lag

$$\Delta \omega = \omega_0 - \omega_1 \approx \omega_0 \left( \frac{1}{2k} \frac{\partial f}{\partial z} (z_0) \right)$$

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Si-nanoerystals in SiO<sub>2</sub>

Lithography Si- nanostrue.

## Functioning point in amplitude feedback:

Q: quality factor of the oscillator = 100-300  $\omega_{s\pm} \approx \omega_0$  !

$$\frac{dA}{d\omega}(\omega_{s\pm}) = \pm A_m \frac{4Q}{3\sqrt{3}\omega_0}$$

A<sub>m</sub>: maximum amplitude of oscillation

$$\Delta A = \frac{dA}{d\omega}(\omega_s) \cdot \Delta \omega = A_m \frac{2Q}{3\sqrt{3k}} \frac{\partial f}{\partial z}(z_0)$$

Injection and detection

Min. force gradient

Modelling

Change estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

Charging experiments

SilO2 hayer

Si-nanoerystals in SiO<sub>2</sub>

Lithography Si- nanostrue.

## Minimum detectable force gradient in a brownian motion

Thermal noise = white-spectrum noise  $\hat{R}(\omega)$ Langevin equation in Fourier space:

$$\left(-\omega^2 - i\beta_0\omega + \omega_0^2\right)\hat{Z} = \frac{\hat{R}}{m}$$

The generalized susceptibility is defined as (Landau-Lifschitz):

$$\alpha(\omega) = \frac{\hat{Z}}{\hat{R}} = \alpha'(\omega) + i\alpha''(\omega)$$

## The dissipation-fluctuation theorem provides:

Spectral density of the fluctuations

$$\left\langle \left| \hat{Z}(\omega) \right|^2 \right\rangle = \frac{k_B T}{\pi \omega} \alpha''(\omega) = \frac{k_B T Q}{\pi k \omega_0} \cdot \frac{1}{Q^2 \left( 1 - \frac{\omega^2}{\omega_0^2} \right)^2 + \frac{\omega^2}{\omega_0^2}}$$

Injection and detection

Min. force gradient

Modelling

Change estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

Charging experiments

SiO2 layer

Sii-nanoerystals in SiO<sub>2</sub>

Lithography Si-nanostruc.

## Minimum detectable force gradient in a brownian motion

The standard deviation of movement N is:

$$N = \sqrt{4\pi B \left\langle \left| \hat{Z}(\omega) \right|^2 \right\rangle}$$

where B is the bandwidth of the system (in Hz)

## **Simplifications:**

Near the resonance

 $N \approx \sqrt{\frac{4k_{\scriptscriptstyle B}TQB}{k\omega_{\scriptscriptstyle 0}}}$ 

#### Away from resonance

$$N \approx \sqrt{\frac{4k_B TB}{k\omega_0 Q}}$$

The minimum detectable force gradient is given when: **amplitude variation = standard deviation of movement** 

$$\Delta A = N$$

### E'F'M

Injection and detection

Min. force gradient

Modelling

Change, estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

Charging experiments

SiO<sub>2</sub>, layer

 $\begin{array}{l} \text{Si-nancerystals} \\ \text{in SiO}_{22} \end{array}$ 

Lithography Si-nanostrue.

## Minimum detectable force gradient in a Brownian motion

One-dimensional, simple harmonic oscillator

Dissipation-fluctuation theorem: Finite  $Q^{-1}$  = dissipative system = source of noise

White spectral density of the noise force *f* :

$$S_f(\omega) = \frac{4k_B T k}{Q\omega_0}$$

## Units: N<sup>2</sup>/Hz

## Standard deviation of the force:

$$N \propto \sqrt{BS_f(\omega)}$$

 $\frac{1}{2}$ 

## B= bandwidth of system

where:

$$N = \sqrt{\left\langle \left(k_{eff} z \right)^{r} \right\rangle \propto \frac{J}{\partial z}}_{thermal}$$
$$\frac{\partial f}{\partial z}\Big|_{thermal} \propto \frac{1}{A_{m}} \sqrt{\frac{4k_{B}T}{Q\omega_{t}}}$$

 $\prod$ 

$$\frac{1}{k_{hermal}} \propto \frac{1}{A_m} \sqrt{\frac{4k_B T k B}{Q \omega_0}}$$

 $\partial f$ 

 $\cdot A_m$ 

Injection and detection

Min. force gradient Modelling

Charge estimation Limites

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Si-nanocrystals in SiO<sub>2</sub>

Lithography Si- nanostruc.

## Minimum detectable force gradient in a Brownian motion

## At the resonance:



## In our conditions:

•  $A_m = 10-20 \text{ nm}$ •  $k_B T = 26 \text{ meV}$  ambient temperature • Q = 100-300 ambient pressure • k = 0.1-1 N/m•  $\omega_0 = 20 - 100 \text{ kHz}$ • B = 500 Hz



## Relation to min. detectable charge?

Plane-plane approximation



Min. force gradient

Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

Charging experiments

SilO<sub>2</sub> layer

Sii-nanoerystals in SiO<sub>2</sub>

Lithography Si- nanostruc.

## Modelling of the electrostatic tip-sample interaction

The electrostatic force is **capacitive**:

Capacitance C, C"=??

 $f(z) = \frac{1}{2} \frac{\partial C}{\partial z}(z) V^2$ 

 $\frac{\partial f}{\partial z}(z) = \frac{1}{2} \frac{\partial^2 C}{\partial z^2}(z) V^2$ 

## Different capacitor geometries:





Min. force gradient

Modelling

Change estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Si-nanoerystals in SiO $_{22}$ 

Litthography Si- nanostruc.

## Modelling of the electrostatic tip-sample interaction

## Plot of the 2nd derivative of capacitance vs. tip-sample distance



Contribution of cantilever is negligible.

Area of plane capacitor is adapted to fit C"(z) of truncated cone-plane at a lift height of 100 nm.

The simplest geometry is chosen: plane-plane capacitor

$$C''(z) = 2\varepsilon_0\varepsilon_r \frac{A}{z^3}$$





## Modelling of the electrostatic tip-sample interaction

The system is modelled as 2 plane capacitors in series





Min. force gradient

Modelling

Change estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Si-nanoerystals in SiO<sub>22</sub>

Lithography Si- nanostruc.

## Minimum detectable charge at $V_{EFM} = 0$



 $f'_{min} = 3 \times 10^{-5} \text{ N.m}^{-1}$ 

q<sub>min</sub> dependent on: z : lift height d : oxide thickness A : effective plane area

## z=100 nm, $A=14700 \text{ nm}^2$ (disc of 140 nm in diameter)

| d (nm)     | 7   | 10  | 25 | 100 | 400 |
|------------|-----|-----|----|-----|-----|
| q min (e-) | 185 | 162 | 69 | 22  | 11  |

z=50 nm, A=6260 nm<sup>2</sup> (disc of 90 nm in diameter)

| d (nm)     | 7  | 10 | 25 | 100 | 400 |
|------------|----|----|----|-----|-----|
| q min (e-) | 54 | 39 | 18 | 7   | 5   |



Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SiO<sub>2</sub> layer

Sii-nanoerystals in Si $O_{22}$ 

Lithography Si- nanostruc.

## Method of charge estimation

## Imaging and relating the recorded phase to a charge





Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

Charging experiments

SilO<sub>22</sub> layer

Sii-nanoerystalls im SilO<sub>22</sub>

 $\Delta V_{\rm min} =$ 

 $\mathcal{E}_0 \mathcal{E}_{SiO2} \mathcal{E}_{SiO2}$ 

Lithography Si- nanostric.

## Method of charge estimation

Relate the minimum of EFM signal vs. voltage to a charge

Before and after injection, voltage  $V_{EFM}$  applied on tip is scanned

Minimum corresponds to  $V_{EFM} = V_{surface}$ 



Conditions: Injection -10V/10s d = 25 nmLift height: 300 nm  $A= 13 \times 10^{-14} \text{ m}^2$ (disc 400 nm in diam.)





Min. force gradient Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Sii-nanoerystalls in SiO<sub>22</sub>

Lithography Si- nanostruc.

## Limits of the capacitor model

Capacitive force: always attractive

Numerical evidence of a **repulsive** interaction (J.P. Julien, CNRS)

Distribution of equivalent charge q on the tip in rings
 Trapped charge q<sub>0</sub> is modelled above the symmetry plane
 Charges are adjusted to have a constant potential on the tip's

Charges are adjusted to have a constant potential on the tip's surface

Screening charges are taken into account



### <u>EFFM</u>

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SiO<sub>2</sub> layer

Si-nanoerystals in  $SiO_{2}$ 

Lithography Si-nanostruc. Non-linear dynamic force curves

What is a force curve:

- Scanning is stopped
- Feedback on amplitude is cut off
- Cantilever is mechanically excited near resonance frequency
- $\blacktriangleright$  Tip is approached then retracted from the surface (height ~ 200 nm)
- > Amplitude and phase of oscillation are recorded

Coupling to higher oscillating modes of the cantilever Is the movement of the cantilever still that of a harmonic oscillator?

## **NO!** Strong excitation



## YES! Normal excitation





Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 layer

 $\begin{array}{l} \text{Si-nanoerystals} \\ \text{in SiO}_{2} \end{array}$ 

Lithography Si- nanostruc.

## Non-linear tip-sample interaction

Deformation of the resonance curve with increasing tip-surface interaction



Amplitude and phase of oscillation undergo hysteresis



Min. force gradient Modelling

Change estimation Limites

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 layer

Si-nanoerystals in  $SiO_{2}$ 

Lithography Si- nanostruc.

## Non-linear tip-sample interaction

Deformation of the resonance curve with increasing tip-surface interaction



Amplitude and phase of oscillation undergo hysteresis



Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

 $\begin{array}{l} \text{Si-nanoerystals} \\ \text{in SiO}_{2} \end{array}$ 

Lithography Si- nanostric.

## Analytical treatment of the movement of cantilever

Non-perturbative treatment (J.P. Aimé, CPMOH Bordeaux)

> Interaction is van der Waals :  $\frac{\text{HR}}{d^2}$  (attractive force)

Amplitude and distance are normalized to free amplitude at resonance: a=A/A<sub>0</sub>, d= z/A<sub>0</sub>





u= ω / ω<sub>0</sub>
 k<sub>vdW</sub>: dimensionless parameter related with strength of van der Waals forces

#### Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Sii-nanoerystals in SiO<sub>2</sub>

Lithography Si- nanostruc.

## Analytical treatment of the movement of cantilever These analytical curves explain the hysteresis observed experimentally



Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes Analytical

treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

 $\begin{array}{l} \text{Si-nanoerystals} \\ \text{in SiO}_{2} \end{array}$ 

Lithography Si- nanostruc.

## Adding the electrostatic interaction

Capacitive tip-sample coupling taken into account



$$\phi_{A\pm} = \arctan\left(\frac{u^2}{Q(u^2 - 1) + Q\frac{k_{vdW} + k_{elect}V^2}{(d_{A\pm}^2 - a^2)^2}}\right)$$

where

 $k_{elec}V^2$ 

We take advantage of the fact that the capacitive force for a plane capacitor has the same distance-dependence d<sup>-2</sup> as the van der Waals force

## <u>]E]FIM</u>[

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 layer

 $\begin{array}{l} \text{Si-nanoerystals} \\ \text{in SiO}_{22} \end{array}$ 

Lithography Si-nanostrue.

## Adding the electrostatic interaction Analytical curves



Normalized distance

 $A_0 = 14 \text{ nm}$ 

## **Experimental curves**





Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes Analytical

treatment

+ Electrostatic interaction

Charging experiments

SiO<sub>2</sub> layer

Sii-nanoerystals in SiO<sub>2</sub>

Lithography Si- nanostruc.

## Quantitative charge measurement with force curves

Application to carbon nanotubes (M. Paillet, Uni Montpellier)



Fitting the data before injection provides all parameters (A<sub>0</sub>, u, U<sub>vdW</sub>)
 After injection, the fit provides q=10 electrons



## EFM

Injection and detection

Min. force gradient Modelling

Change estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>22</sub> layer

Si-nanoerystals in SiO $_{22}$ 

Lithography Si- nanostruc.

## Charging experiments on semiconducting nanostructures

## <u>3 types of samples:</u>

5 nm ⇔

50-300 nm



23 nm

 $\sqrt{20}$  nm



Si-nanocrystals embedded in SiO<sub>2</sub>
 very small ~5 nm in diameter
 collective behavior

Si-nanostructures made by e-beam lithography
 well-defined, ~100 nm in dimension
 individual behavior



Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SiO<sub>2</sub> layer

Sii-nanoerystalts in SiO<sub>22</sub>

Lithography Si- nanostruc.

## Charging insulators: the case of SiO<sub>2</sub>

Large electric field (~10<sup>8</sup> V.m<sup>-1</sup>) necessary to deposit only a few 100 charges

Charging of 25 nm of thermal oxide, conditions: -10 V/ 10s Recording of the EFM signal



Characteristic retention time: 94 seconds

Low retention time

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SiO<sub>2</sub> layer

 $\begin{array}{l} \text{Si-nanoerystalls} \\ \text{in} \ \text{SiO}_{2} \end{array}$ 

Lithography Si- nanostruc.

## Charging insulators: the case of SiO<sub>2</sub>





Absence of lateral spreading of the charges

## <u>EFFM</u>

#### Injection and detection

Min. force gradient Modelling

Change estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 layer

 $\frac{\text{Si-nanocrystals}}{\text{in SiO}_2}$ 

Lithography Si- nanostruc.

## Silicon nanocrystals embedded in SiO<sub>2</sub>

## Elaboration: (CEA Grenoble/LETI)

- $\triangleright$  deposition of a SiO<sub>x</sub> layer (x < 2) by LP-CVD
- ➤ annealing at 1000°C, 10 minutes
- = precipitation of Si nanocrystals in  $SiO_2$  matrix



## Density depends on x, varies from $3 \times 10^{11}$ to $10^{12}$ cm<sup>-2</sup>

## <u>EFFM</u>

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

## Charging experiments

SiO2 layer

 $\frac{\text{Si-nanocrystals}}{\text{in SiO}_2}$ 

Lithography Si- nanostric.

## Silicon nanocrystals embedded in SiO<sub>2</sub>

## First behavior: very low Si-nc density



Circular shape of injected charges that does not evolve in time Time retention: several hours Estimation of **one electron per nanocrystal** 

Any difference from reference SiO<sub>2</sub> sample?



Injection and detection

Min. force gradient Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SiO2 layer

 $\frac{\text{Si-nanocrystals}}{\text{in SiO}_2}$ 

Lithography Si-nanostruc. Low-density Si-nanocrystals embedded in SiO<sub>2</sub> Same charging conditions: -10 V / 3 s

Si-nanocrystals

SiO<sub>2</sub> reference sample



Smaller electron cloud Higher surface density of electrons

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

## Charging experiments

SiO<sub>2</sub> layer

 $\frac{\text{Si-nanocrystals}}{\text{in SiO}_2}$ 

Litthography Si-nanostrue.

## Evolution of the disc with the injection time



Reference SiO<sub>2</sub>

Larger disc's diameters= easier spreading of the charges

Inhomogeneous distribution of slopes: due to flawed tip-sample contact?



Injection and detection

Min. force gradient Modelling

Change estimation

Limites

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 hayer

 $\frac{\text{Si-nanocrystals}}{\text{in SiO}_2}$ 

Lithography Si- nanostric. Low-density Si-nanocrystals vs. SiO<sub>2</sub> reference sample

Same circular shape of the electron cloud for both samples

BUT

in the same charging conditions:

the electron cloud is smaller and denser for the Si-nanocrystal sample
 and it remains much longer (hours vs. minutes)

 Same logarithmic injection-time dependence BUT
 Si-nanocrystals shows homogeneous distribution of slopes whereas SiO<sub>2</sub> shows an inhomogeneous one

Tip-sample contact resistance is dominant in SiO<sub>2</sub> sample
 Intercrystal-resistance is dominant in Si-nanocrystal sample

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 layer

 $\begin{array}{l} \text{Si-nanocrystals} \\ \text{in SiO}_2 \end{array}$ 

Lithography Si- nanostrue.

## Tentative illustration of charge localization Energetic diagrams

SiO<sub>2</sub> layer



Si nanocrystals in SiO<sub>2</sub> layer

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

Charging experiments

SiO2 hayer

 $\frac{\text{Si-nanocrystals}}{\text{in SiO}_2}$ 

Lithography Si- nanostruc.

## Silicon nanocrystals embedded in SiO<sub>2</sub>



Density depends on x, varies from 3 x  $10^{11}$  to  $10^{12}$  cm<sup>-2</sup>

3 kinds of sample prepared, with varying densities

## Fitting of the ellipsometric measurements provides:

| Sample | Si(%) | SiO2(%) | Fraction x |         |
|--------|-------|---------|------------|---------|
| E1     | 40    | 60      | 0,81       | Η       |
| E2     | 8     | 92      | 1,67       | L       |
| E3     | 6     | 94      | 1,77       | $V_{0}$ |

High Si-nc density Low Si-nc density Very low Si-nc density

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 layer

 $\begin{array}{c} \text{Si-nanocrystals} \\ \text{in SiO}_2 \end{array}$ 

Lithography Si- nanostruc.

## Silicon nanocrystals embedded in SiO<sub>2</sub>

## **Sample E1: metallic behavior**

Si = 40 %

 $SiO_2 = 60 \%$ 



Charges spread away on a time scale of seconds

Si-nc touch one another, no confinement possible

Injection and detection

Min. force gradient Modelling

Change estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

 $\begin{array}{c} \text{Si-nanocrystals} \\ \text{in SiO}_2 \end{array}$ 

Lithography Si- nanostruc.

## Silicon nanocrystals embedded in SiO<sub>2</sub>

## **Sample E3: strongly confining behavior**







Circular shape of injected charges that does not evolve in time Estimation of **one electron per nanocrystal** 

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO2 hayer

 $\begin{array}{l} \text{Si-nanocrystals} \\ \text{in SiO}_2 \end{array}$ 

Litthography Si- nanostric.

## Silicon nanocrystals embedded in SiO<sub>2</sub>

## **Sample E2: partially confining behavior**

Low Si-nc density

Charging conditions -10 V / 10 s



Rough bordeline

> Inhomogeneous distribution of charges inside the electron cloud

Reflects disorder in the distribution of Si-nc at nanoscale

intermediate

metallic

confining



Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

 $\frac{\text{Si-nanocrystals}}{\text{in SiO}_2}$ 

Lithography Si-nanostruc.

## Sample E2: time evolution of the electron cloud

#### EFM images



Irregular spreading of the charges, on a time scale of hours = "kinetic roughening"

Injection and detection

Min. force gradient Modelling

Charge estimation Limits;

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

 $\frac{\text{Si-nanocrystals}}{\text{in SiO}_2}$ 

Lithography Si-nanostruc.

## Sample E2: mechanism of charge spreading



Electron transport is explained with the orthodox model of the **Single Electron Transistor** (SET) with  $V_{gate}=0$ 

Passage from one Si-nc to another occurs through **tunneling** 

**Percolation threshold** related to intercrystal distances (=density)

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

## Charging experiments

SiO<sub>2</sub> layer

 $\begin{array}{c} \text{Si-nanocrystals} \\ \text{in SiO}_2 \end{array}$ 

Lithography Si- nanostruc.

## Sample E2: mechanism of charge spreading

$$C = \mathcal{E}_0 \mathcal{E}_{\text{SiO2}} S / d \sim 1 \text{ aF}$$
$$R_T = \rho_{\text{SiO2}} d / S \sim 10^{19} \Omega$$

Tunneling of the electrons in the frame of orthodox model

Transition rate  $\Gamma = \tau^{-1}$  is:

$$\Gamma = \frac{1}{R_T e^2} \frac{-\Delta F}{1 - \exp(\frac{\Delta F}{k_B T})}$$

where:

>  $\Delta F = f(\Delta V, C)$  energy associated with the passage of one e<sup>-</sup> from one Si-nc to its neighbor ~-80 meV

$$\Gamma = 5 \text{ x } 10^{-2} \text{ s}^{-1} \text{ or } \tau = 20 \text{ s}$$

Progression of the borderline : 1  $\mu$ m/hour 1 electron tunnels through ~200 Si-nc /hour = 1Si-nc / 20s!

Paper accepted in Phys. Rev. B (Dec. 2004)

## **IEIFIM**





Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Si-nanoerystals in SiO $_{22}$ 

Lithography Si- nanostruc.

## AFM characterization





## Most Si nanostructures are well-defined...

#### 100 nm in diameter dots









## ... but some are more extravagant.

50 nm in diameter dots

Charging experiments

SiO<sub>2</sub> layer

 $\begin{array}{l} \text{Sit-nancerystals} \\ \text{in SiO}_{22} \end{array}$ 

Lithography Si- nanostruc.



## Considering the expression of charge vs. phase shift:

*d*1 d  $|\delta \varphi \cdot k| |z_0| +$  $\mathcal{E}_0 A$  $\mathcal{E}_{SiO2}$  $\mathcal{E}_{Si}$ q =d $\mathcal{E}_{SiO2}$  $\mathcal{E}_{Si}$ 

For the same recorded phase shift, there are 7x less charges on thick oxide



Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

- Coupling to higher modes
- Analytical treatment
- + Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Sii-nanoerystals in SiO<sub>22</sub>

Lithography Si- nanostruc. Existence of a voltage threshold for injection of charges On thin-oxide sample:





Minimum electric field of  $\sim 3 \times 10^8 \text{ V.m}^{-1}$  is required

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Sii-nanoerystalls in SiO<sub>22</sub>

Lithography Si- nanostruc.

## Propagation of the charges inside a ramified structure Thin-oxide sample Charging conditions: -10 V / 10 s



## Injection is point-like Charges extend immediately over several microns

## <u>]E]FIM</u>[

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>22</sub> layer

 $\begin{array}{l} \text{Si-nanoerystals} \\ \text{in SiO}_{2} \end{array}$ 

Lithography Si- nanostruc.

## Trapping of charges in the top oxide Charging conditions: -7 V/ 10 S



Injection point

Good quality oxide ("Rapid Thermal Oxide")

traps charges for more than 30 minutes

#### <u>EFFM</u>

Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SiO<sub>2</sub> layer

Sii-nanoerystals in SiO<sub>2</sub>

Lithography Si- nanostruc.

## De-charging of the ramified structures Thin oxide (7 nm) Charging conditions: -10 V/ 10 s



Strong repulsion between the electrons (electronic density is high: ~10<sup>17</sup> cm<sup>-3</sup>)

Existence of a Wigner crystal = ordering of the electrons on a regular lattice?

#### Injection and detection

Min. force gradient Modelling

Charge estimation Limits

#### Dynamic force curves

Coupling to higher modes

Analytical treatment

+ Electrostatic interaction

#### Charging experiments

SilO<sub>2</sub> layer

Sii-nanoerystalls im SilO<sub>22</sub>

Lithography Si- nanostruc.

## Silicon nanocrystals embedded in SiO<sub>2</sub>









Very long retention time



Circular shape of injected charges that does not evolve in time Estimation of **one electron per nanocrystal** 



## Electrostastic Force Microscopy in dry atmosphere:

- ✓ Powerful method to characterize electrical properties at the nanoscale
- ✓ Charge resolution: a few tens elementary charges
- ✓ Analysis of the non-linear tip-sample interaction

## Semiconducting nanostructures:

- ✓ Reference SiO<sub>2</sub> sample shows low charge retention and low charge density
- ✓ Collective behavior of Si-nanocrystals show 3 regimes:
  - metallic
  - Intermediate: observable spreading
  - confining
- ✓ Individual behavior of Si-nanostructures

## Perspectives:

Need for better resolution (charge, drift)

future experiments under vacuum, low temperatures = single electron detection



For the experiments Henk-Jan Smilde Martin Stark Julien Pascal Frederio Martin Charlène Alandi Emilie Dubard Florence Marchi Fabio Comin André Barski Joël Chevrier

CEA Grenoble/LETI LEPES / LSP ESRF **ESRF ESRF ESRF** UJF / LEPES-CNRS **ESRF** CEA Grenoble / DRFMC ESRF / UJF / LEPES CNRS

For the samples Denis Mariolle Nicolas Buffet Pierre Mur

CEA Grenoble/LETI CEA Grenoble/LETI CEA Grenoble/LETI