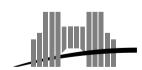
Aspects combinatoires des pavages

Frédéric Chavanon

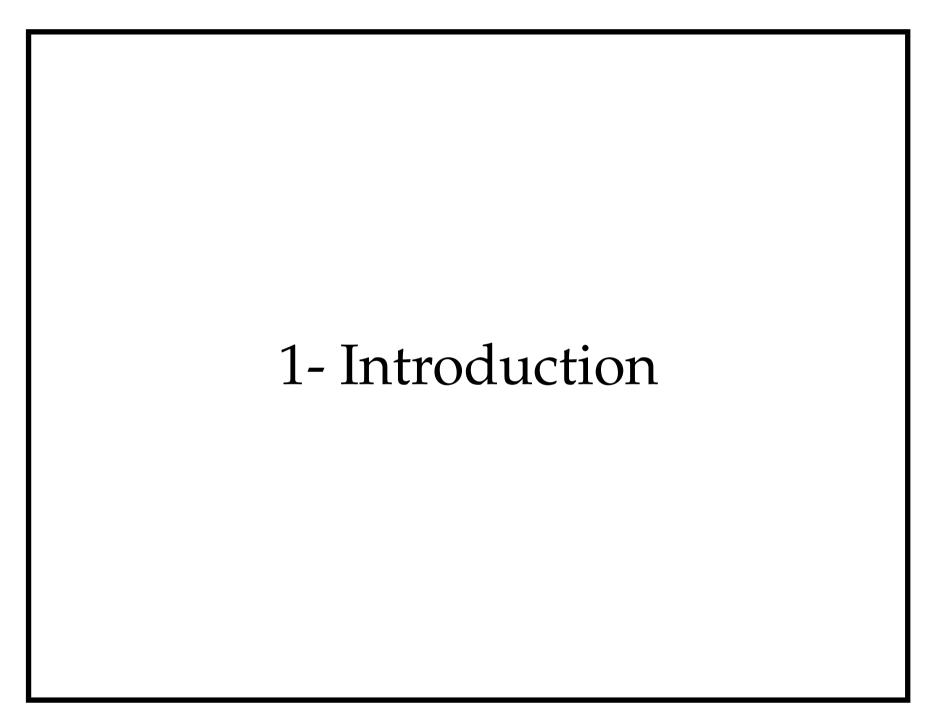
LIP, UMR CNRS - INRIA - Univ. Lyon I - ENS Lyon 5668

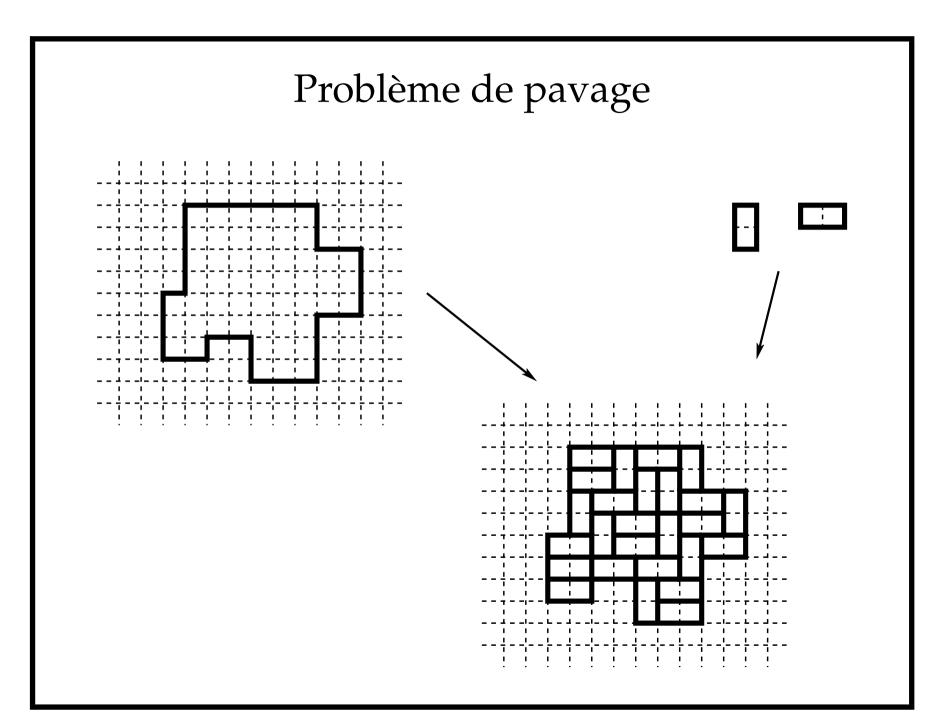
(frederic.chavanon)@ens-lyon.fr



Plan

- 1. Introduction- Problèmes de pavages
- 2. Pavages de zonotopes
- 3. Premier codage, structure d'un pavage
- 4. Deuxième codage, espace de pavages
- 5. Structure en codimension 2
- 6. Conclusion et perspectives



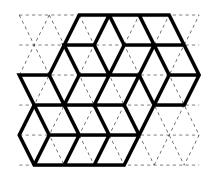


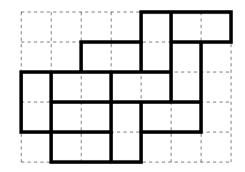
Questions classiques

- Pavabilité
- Nombre de pavages
- Génération aléatoire uniforme

Structure de l'espace des pavages

Etat de l'art : cas des pavages par dominos ou losanges





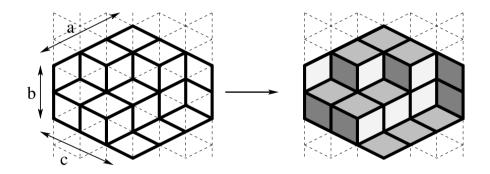
Pavabilité:

Algorithme de Thurston

Nombre de pavages :

Losanges: Formule de MacMahon

$$\frac{H(a+b+c)H(a)H(b)H(c)}{H(a+b)H(a+c)H(b+c)} \quad H(n) = (n-1)!(n-2)!...2!$$



Dominos: Formule de Kasteleyn

$$\left[\prod_{j=1}^{m} \prod_{k=1}^{n} \left(2\cos(\frac{\pi j}{m+1}) + 2i\cos(\frac{\pi k}{n+1}) \right) \right]^{1/2}$$

Structure de l'espace des pavages : treillis distributif (Propp, Rémila)

Génération aléatoire uniforme (Propp-Wilson, Luby-Randall-Sinclair, Wilson)

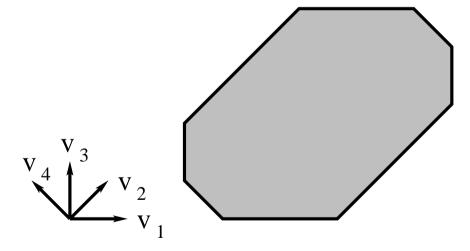
Génération exhaustive - algorithme de Thurston modifié (Desreux-Rémila)

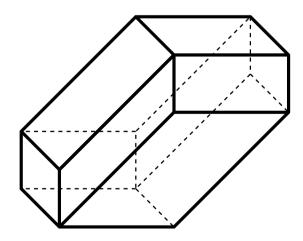
2- Pavages de zonotopes

Zonotope

$$V = (v_1, v_2, v_3, v_4), M = (2, 3, 1, 1), D = 4$$

$$\left\{ \sum_{i=1}^{D} \lambda_i v_i, 0 \le \lambda_i \le m_i, m_i \in M, v_i \in V \right\}$$





taille
$$t = \sum_{i=1}^{D} m_i$$

Pavages de zonotopes proto-tuiles zonotope pavage

Pavages de zonotopes

- Pas de grille sous-jacente (résultats de Thurston non applicables)
- Définis en toute dimension
- Relations avec physique (quasicristaux), structures apériodiques
- Combinatoire (étude des espaces de pavages)

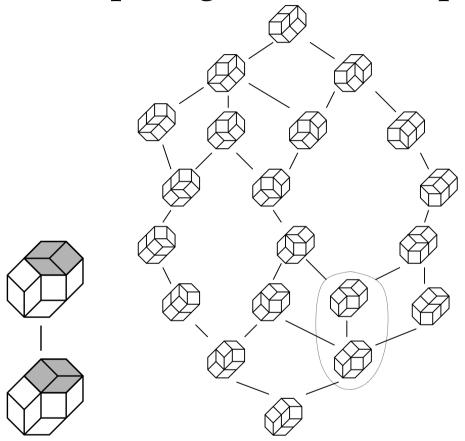
Retour aux questions classiques

Cas des pavages de zonotopes

- Pavabilité évident avec les définitions données
- Nombre de pavages pb ouvert même dans le cas planaire (avec D>4)
- Structure de l'espace des pavages (Kenyon, Elnitsky : connexité par flips pour d=2)
- Génération aléatoire (Propp-Wilson, Luby-Randall-Sinclair pour $D=3\ d=2$)

Flips, espace de pavages

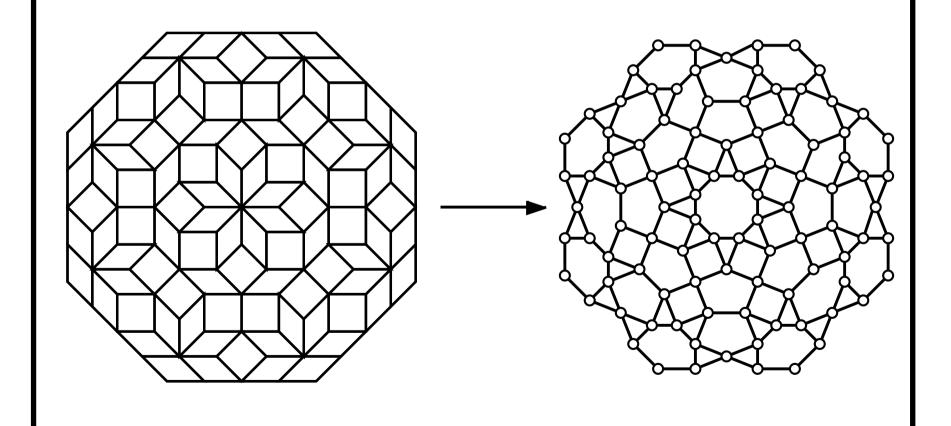
Cas des pavages de zonotopes



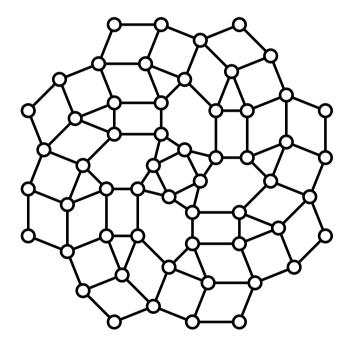
- Treillis distributif en codimension 1.
- Connexe pour les pavages de dimension 2. (Kenyon, Elnitsky)

3- Premier codage, structure d'un pavage de dimension 2

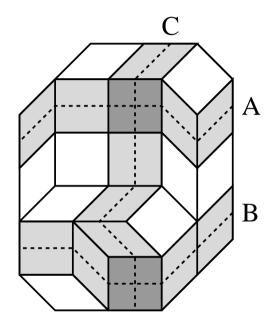
Graphe induit par la relation d'adjacence



Problème de caractérisation



Sections et familles de De Bruijn

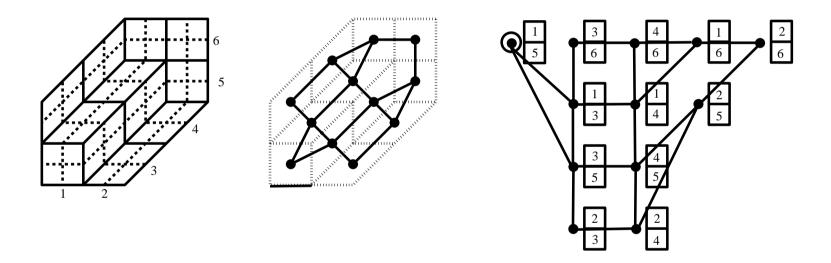


 m_i =nombre de sections de la famille i.

Deux sections de familles différentes se coupent exactement une fois.

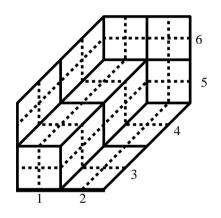
Deux sections d'une famille donnée ne se coupent pas.

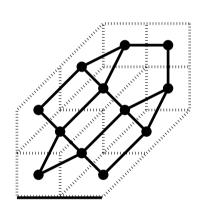
Graphe de De Bruijn

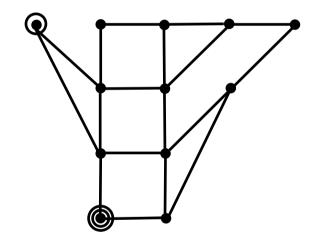


Théorème : il existe un algorithme en O(n), où n est le nombre de tuiles, construisant un pavage T à partir de son graphe de de Bruijn.

Graphe avec origines





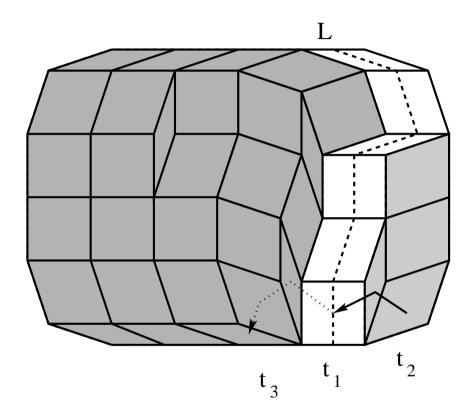


Problèmes:

- calculer les multiplicités
- construire les lignes de de Bruijn

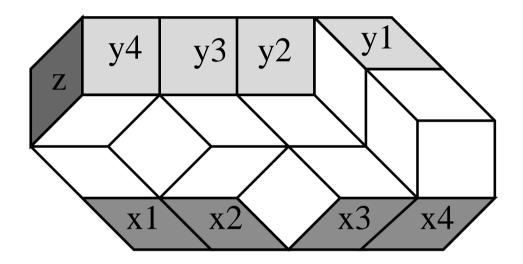
Eventail, bordure

Construction de la bordure



Théorème : il existe un algorithme en $O(m \cdot n)$, où n est le nombre de sommets et m la somme des multiplicités, calculant la bordure d'un graphe de pavage avec origines.

Construction des lignes de De Bruijn

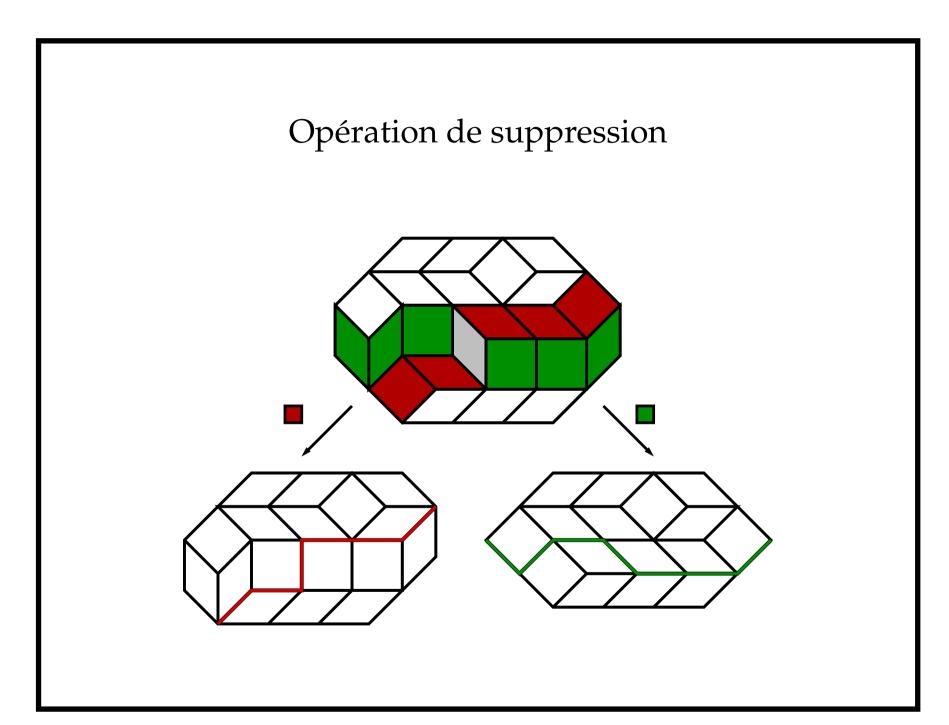


Théorème : il existe un algorithme de complexité $O(m \cdot n)$, où n est le nombre de sommets et m la somme des multiplicités, calculant le graphe de de Bruijn d'un pavage à partir de son graphe avec origines et de sa bordure.

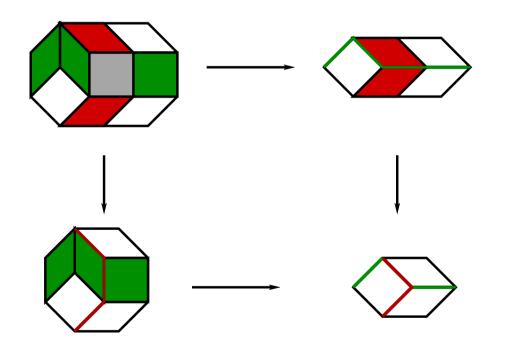
Résultats

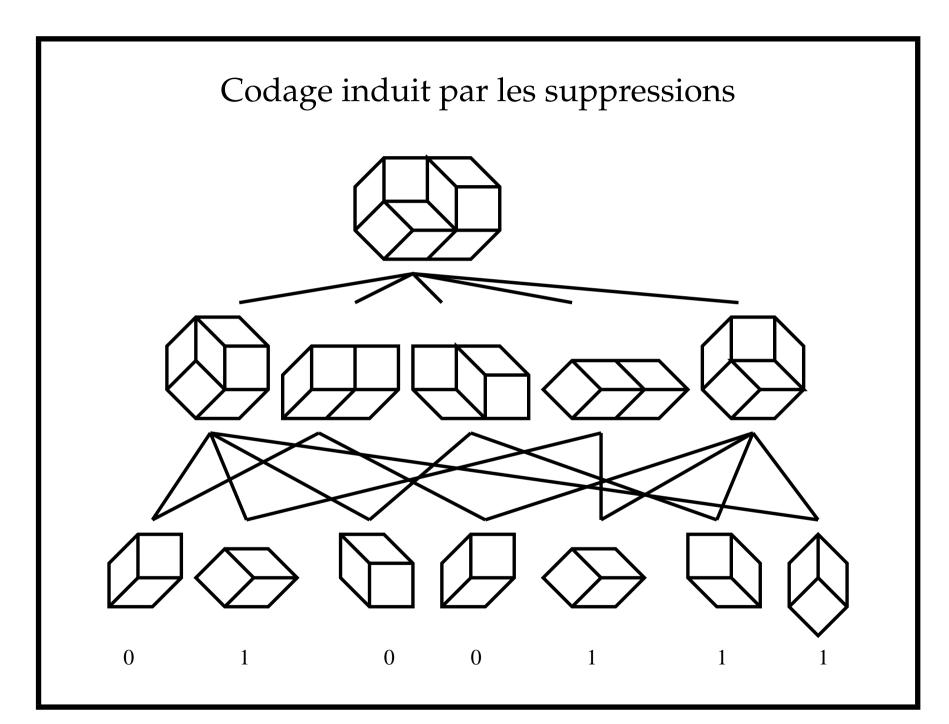
- représentation indépendante de la géométrie
- caractérisation des graphes effectivement codants

4- Deuxième codage, espace de pavages



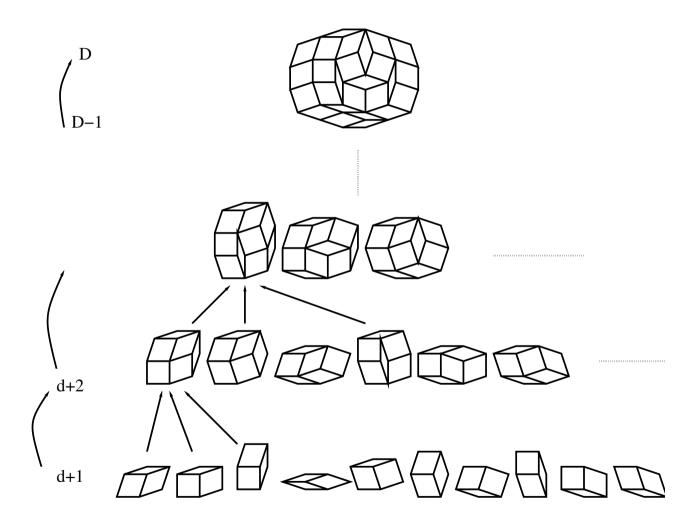
Commutativité des suppressions





Problème de reconstruction

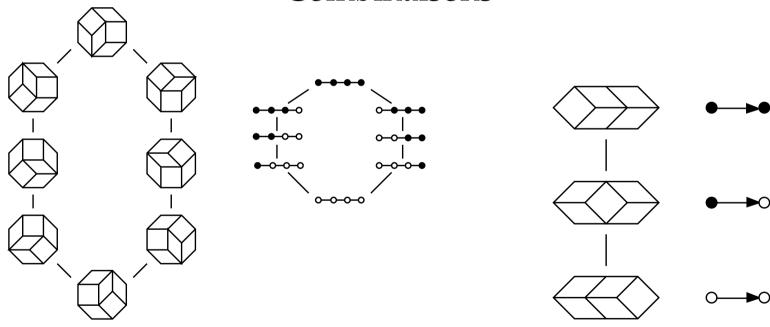
Théorème de reconstruction



Théorème : la première étape suffit

Représentation

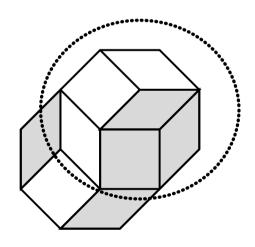
Combinaisons

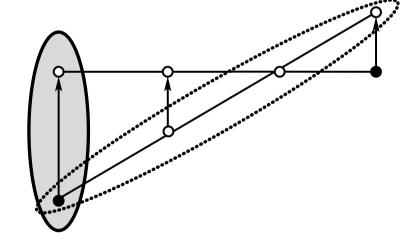


Contrainte de ligne

Contrainte de flèche

Diagramme de représentation





5- Structure en codimension 2

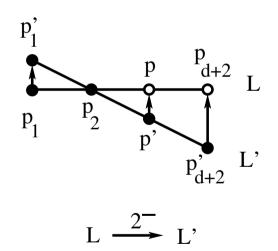
Ordre des flips, ordre des mineurs

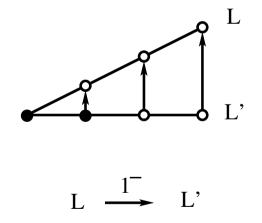
Ordre de flips : $T \leq_{flip} T' \Leftrightarrow$ suite de flips montants de T à T'

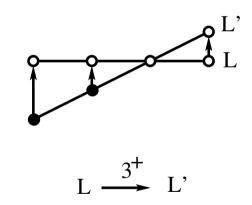
Ordre des mineurs : $T \leq_{mineur} T' \Leftrightarrow \text{pour tout } (d+1)\text{-mineur } X$, $X_T \leq X_{T'}$

Théorème: Ces deux ordres sont identiques.

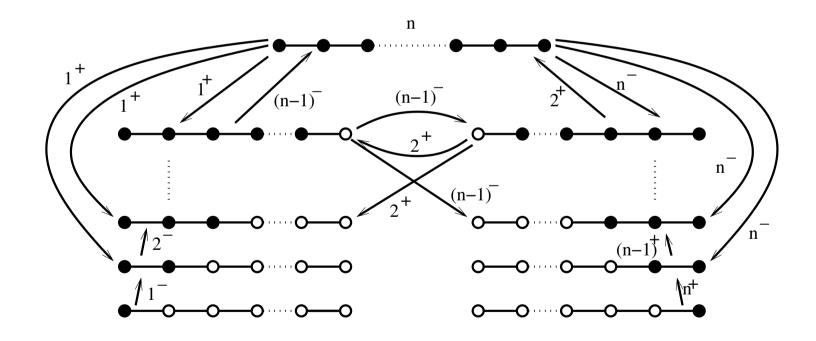
Idée de preuve : graphe d'obstacles







Structure du graphe d'obstacles



Résultats

- Codage par les suppressions
- Théorème de reconstruction
- Structure d'ordre gradué pour la codimension 2⇒
 connexité par flips en codimension 2.
- Pas de structure de treillis dans le cas de codimension
 2

6- Conclusion, perspectives

Conclusion

- ouverture vers un cas particulier sans grille sous-jacente
- adaptation à des dimensions supérieures à 2
- caractérisation des pavages et représentation en grandes dimensions
- connexité par flips en codimension 2

Perspectives

- Distance de flips
- Adaptations aux plus grandes codimensions
- Génération aléatoire uniforme