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• A main concern of “Complex Systems”:

a relatively simple microscopic rule
completely defined local rule (given)

may produce

a very complex macroscopic behavior
far more complex global rule (induced)

• Cellular Automata provide a simple – not simplistic –
and uniform model for studying this problem.

Approach
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Definition. A d-CA A is a 4-uple
(
Zd, S,N, δ

)
where:

• S is the finite state set of A;
• N ⊂ Zd, finite, is the neighborhood of A;

• δ : S|N| → S is the local rule of A.

A configuration C is a mapping from Zd to S.

The global rule applies δ uniformly according to N:
∀p ∈ Zd, G(C)p = δ (Cp+N1 , . . . , Cp+Nν)
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σ = (Z, {��,��} , {−1} , q 7→ q)

Σ2 = (Z, {��,��} , J−1, 0K, (q, q ′) 7→ q⊕ q ′),
where ({��,��} ,⊕) is isomorphic to (Z2,+)

Examples (1)
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(Z, {��,��} , J−1, 1K,maj),
where maj is majority between 3

(Z, {��,��,��,��,��,��} , J−1, 1K, δ6)

Examples (2)
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• Endow S with the trivial topology.
• Endow SZd with the induced product topology.
• The shift σv : SZ

d → SZ
d is defined as

σv(C)p+v = Cp .

Theorem[Hedlund 69]. A map G : SZ
d → SZ

d is the
global rule of a d-CA if and only if it is continue and
commutes with shifts.
Consequences. We can freely compose CA and
invert bĳective CA to obtain new CA.

Topological Charact.

8 CCJ ◦BBB ×



• Endow S with the trivial topology.
• Endow SZd with the induced product topology.
• The shift σv : SZ

d → SZ
d is defined as

σv(C)p+v = Cp .

Theorem[Hedlund 69]. A map G : SZ
d → SZ

d is the
global rule of a d-CA if and only if it is continue and
commutes with shifts.

Consequences. We can freely compose CA and
invert bĳective CA to obtain new CA.

Topological Charact.

8 CCC ◦BBB ×



• Endow S with the trivial topology.
• Endow SZd with the induced product topology.
• The shift σv : SZ

d → SZ
d is defined as

σv(C)p+v = Cp .

Theorem[Hedlund 69]. A map G : SZ
d → SZ

d is the
global rule of a d-CA if and only if it is continue and
commutes with shifts.
Consequences. We can freely compose CA and
invert bĳective CA to obtain new CA.

Topological Charact.

8 CCC ◦IBB ×



• ACAA is isomorphic to a CA B (A ∼= B) if there exists
a bĳective map ϕ : SA → SB such that

ϕ ◦GA = GB ◦ϕ

Definition. A ⊆ B if there exists an injective map
ϕ : SA → SB such that this diagram commutes:

C
ϕ

−−−−→ ϕ(C)

GA

y yGB
GA(C) −−−−→

ϕ
ϕ(GA(C))

Subautomaton
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• An autarkic CA ψ is a CA with neighborhood {0} and
local rule ψ : S→ S. (notice that ψ is ultimately periodic)

• An elementary shift is a shift σv such that ‖v‖1 = 1.

• The composition A ◦ B of two CA A and B satisfies
GA◦B = GA ◦GB .

• The Cartesian product A× B of two CA satisfies
GA×B = GA ×GB .

Closure (1)
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• A new characterization of CA

Theorem. The set of CA is the closure of the set of
autarkic CA and elementary shifts by the operations of
composition, Cartesian product and subautomaton.

Theorem. The set of reversible (bĳective) CA is the
closure of the set of bĳective autarkic CA and elemen-
tary shifts by the operations of composition, Cartesian
product and subautomaton.

Closure (2)
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Wolfram (1984) First classification.

“ [. . . ] In class 1, the behavior is very
simple, and almost all initial condi-
tions lead to exactly the same uniform
final state.
In class 2, there are many differ-
ent possible final states, but all of
them consist just of a certain set of
simple structures that either remain
the same forever or repeat every few
steps.

In class 3, the behavior is more com-
plicated, and seems inmany respects
random, although triangles and other
small-scale structures are essentially
always at some level seen.
And finally [. . . ] class 4 involves
a mixture of order and random-
ness: localized structures are pro-
duced which on their own are fairly
simple, but these structures move
around and interact with each other
in very complicated ways. [. . . ] ”

S. Wolfram [ANKOS, chapter 6, pp. 231–235]

Experimental Work

13 CCJ ◦BBB ×



Wolfram (1984) First unformal classification.

“ [. . . ] In class 1, the behavior is very
simple, and almost all initial condi-
tions lead to exactly the same uniform
final state.
In class 2, there are many differ-
ent possible final states, but all of
them consist just of a certain set of
simple structures that either remain
the same forever or repeat every few
steps.

In class 3, the behavior is more com-
plicated, and seems inmany respects
random, although triangles and other
small-scale structures are essentially
always at some level seen.
And finally [. . . ] class 4 involves
a mixture of order and random-
ness: localized structures are pro-
duced which on their own are fairly
simple, but these structures move
around and interact with each other
in very complicated ways. [. . . ] ”

S. Wolfram [ANKOS, chapter 6, pp. 231–235]

Experimental Work

13 CCC ◦BBB ×



Wolfram (1984) First unformal classification.

“ [

Nilpotency
. . . ] In class 1, the behavior is very

simple, and almost all initial condi-
tions lead to exactly the same uniform
final state.
In class 2, there are many differ-
ent possible final states, but all of
them consist just of a certain set of
simple structures that either remain
the same forever or repeat every few
steps.

In class 3, the behavior is more com-
plicated, and seems inmany respects
random, although triangles and other
small-scale structures are essentially
always at some level seen.
And finally [. . . ] class 4 involves
a mixture of order and random-
ness: localized structures are pro-
duced which on their own are fairly
simple, but these structures move
around and interact with each other
in very complicated ways. [. . . ] ”

S. Wolfram [ANKOS, chapter 6, pp. 231–235]

Experimental Work

13 CCC ◦BBB ×



Wolfram (1984) First unformal classification.

“ [

Nilpotency
. . . ] In class 1, the behavior is very

simple, and almost all initial condi-
tions lead to exactly the same uniform
final state.
I

Ult. Periodic
(up to a shift)
n class 2, there are many differ-
ent possible final states, but all of
them consist just of a certain set of
simple structures that either remain
the same forever or repeat every few
steps.

In class 3, the behavior is more com-
plicated, and seems inmany respects
random, although triangles and other
small-scale structures are essentially
always at some level seen.
And finally [. . . ] class 4 involves
a mixture of order and random-
ness: localized structures are pro-
duced which on their own are fairly
simple, but these structures move
around and interact with each other
in very complicated ways. [. . . ] ”

S. Wolfram [ANKOS, chapter 6, pp. 231–235]

Experimental Work

13 CCC ◦BBB ×



Wolfram (1984) First unformal classification.

“ [

Nilpotency
. . . ] In class 1, the behavior is very

simple, and almost all initial condi-
tions lead to exactly the same uniform
final state.
I

Ult. Periodic
(up to a shift)
n class 2, there are many differ-
ent possible final states, but all of
them consist just of a certain set of
simple structures that either remain
the same forever or repeat every few
steps.

In

Chaoticity
class 3, the behavior is more com-

plicated, and seems inmany respects
random, although triangles and other
small-scale structures are essentially
always at some level seen.
And finally [. . . ] class 4 involves
a mixture of order and random-
ness: localized structures are pro-
duced which on their own are fairly
simple, but these structures move
around and interact with each other
in very complicated ways. [. . . ] ”

S. Wolfram [ANKOS, chapter 6, pp. 231–235]

Experimental Work

13 CCC ◦BBB ×



Wolfram (1984) First unformal classification.

“ [

Nilpotency
. . . ] In class 1, the behavior is very

simple, and almost all initial condi-
tions lead to exactly the same uniform
final state.
I

Ult. Periodic
(up to a shift)
n class 2, there are many differ-
ent possible final states, but all of
them consist just of a certain set of
simple structures that either remain
the same forever or repeat every few
steps.

In

Chaoticity
class 3, the behavior is more com-

plicated, and seems inmany respects
random, although triangles and other
small-scale structures are essentially
always at some level seen.
A

Complexity
nd finally [. . . ] class 4 involves

a mixture of order and random-
ness: localized structures are pro-
duced which on their own are fairly
simple, but these structures move
around and interact with each other
in very complicated ways. [. . . ] ”

S. Wolfram [ANKOS, chapter 6, pp. 231–235]

Experimental Work

13 CCC ◦BBB ×



Wolfram (1984) First unformal classification.

“ [

Nilpotency
. . . ] In class 1, the behavior is very

simple, and almost all initial condi-
tions lead to exactly the same uniform
final state.
I

Ult. Periodic
(up to a shift)
n class 2, there are many differ-
ent possible final states, but all of
them consist just of a certain set of
simple structures that either remain
the same forever or repeat every few
steps.

In

Chaoticity
class 3, the behavior is more com-

plicated, and seems inmany respects
random, although triangles and other
small-scale structures are essentially
always at some level seen.
A

Complexity
nd finally [. . . ] class 4 involves

a mixture of order and random-
ness: localized structures are pro-
duced which on their own are fairly
simple, but these structures move
around and interact with each other
in very complicated ways. [. . . ] ”

S. Wolfram [ANKOS, chapter 6, pp. 231–235]

Experimental Work

13 CCC ◦IBB ×



• Only one proposition of classification
(to our knowledge)

J. Mazoyer and I. Rapaport. Inducing an order on cellular
automata by a grouping operation. Discrete Applied Mathe-
matics 91(1-3):177–196. 1999

• Grouping relies on an algebraic approach

Idea. Define a quasi-order on CA using the subau-
tomaton relation, up to some geometrical transforma-
tion of these CA.

Understanding class 4
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How to eliminate the periodic background pattern ?
You can zoom out and use shades of grey...

C ′p = 1/9
∑

v∈J0,2K2
C3p+v

Example - Particles (1)
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How to eliminate the periodic background pattern ?
...but also make blocks of bottom cells of the squares

C ′p =
(
C3p+(0,0), C3p+(1,0), C3p+(2,0)

)

Example - Particles (2)

17 CCJ ◦IBB ×



We consider 1D CA with neighborhood J−1, 1K.

• Define the kth power Ak of a CA A.

Definition. A CA B simulates a CA A, A 6
�
B, if

there exists m and n such that Am ⊆ Bn.

Theorem. The relation 6
�

is a quasi-order.

It admits a global minimum, some equivalence classes
at the bottom of the order correspond to simple known
CA families. It admits no global maximum.

Grouping
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Claim. The grouping operation doesn’t take into ac-
count some classical geometrical transformations of
the literature, natural in the context of:

• Transformation from CA to OCA,

• Nilpotency,

• Intrinsic Universality.

Extension

20 CCJ ◦IBB ×



• Classical transformations are usually of the type:

q1,1 . . . q1,m q1,m+1 . . . q1,2m

qn,1+k . . . qn,m+k qn,m+1+k . . . qn,2m+k

m

n

k

G
〈m,n,k〉
A = o−1

m ◦ σk ◦GnA ◦ om

Classical transform.

21 CCJ ◦IBB ×



• A geometrical transformation on space-time dia-
grams transforms a cellular automaton into a
new one by combining cells of a space-time dia-
gram of the first one to construct a space-time diagram
of the second one.

• Formally, it is a pair (k,Λ) where

Λ : N× Zd −→ (
N× Zd

)k
���
���
���
���

���
���
���
��� 7−→

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Formalization (1)
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• To apply a transformation (k,Λ) to a space-time di-
agram ∆ over S, we define ΛS : SN×Z

d → (
Sk
)N×Zd

by
ΛS(∆)(t, p) = (∆(Λ(t, p)1), . . . , ∆(Λ(t, p)k)) .

•We define an operation rather similar to composition:

(k ′,Λ ′) ◦ (k,Λ) = (kk ′,Λ ′ ◦Λ)

where(
Λ ′ ◦Λ

)
(t, p) =

(
Λ
(
Λ ′(t, p)1

)
1
. . . ,Λ

(
Λ ′(t, p)k ′

)
k

)

Formalization (2)
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•We also introduce Λ̃ as

Λ̃ : 2N×Z
d

−→ 2N×Z
d

X 7−→ ⋃
(t,p)∈X

{Λ(t, p)1, . . . ,Λ(t, p)k}

• A good geometrical transformation satisfies

1. ∀A,∃B,
{
ΛSA(∆)

}
∆∈Diag(A)

= Diag(B) ;

2. ∀t ∈ N, Λ̃
(
{t+ 1}× Zd

)
* Λ̃

(
{t}× Zd

)
.

Formalization (3)
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v0

v1

PF,v(t, p) = t~ (F⊕ (p� v))
Transformed CA global rule:

o−1
F,v ◦G ◦ oF,v

Packing
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���
���
���
���

���
���
���
��� 7−→ ���

���
���
���

���
���
���
���

CT (t, p) = (tT, p)

Transformed CA global rule:
GT

Cutting
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���
���
���
���

���
���
���
��� 7−→

�����
�����
�����
�����

�����
�����
�����
�����

Ss (t, p) = (t, p⊕ ts)

Transformed CA global rule:
σs ◦G

Shifting
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We define PCS transformations as
PCSF,v,T,s = PF,v ◦Ss ◦CT

PCSF,v,T,s(t, p) = tT ~ (F⊕ (p� v⊕ ts))

Transformed CA global rule:
o−1
F,v ◦ σs ◦GT ◦ oF,v

PCS transformations are closed under composition.

Composition
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Theorem. A geometrical transformation is a good
geometrical transformation if and only if it can be ex-
pressed as a PCS transformation.

The proof highly relies on the uniformity of cellular automata
and the construction of counter-examples.

Characterization

29 CCJ ◦IBB ×
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• We don’t want to reproof that we have a quasi-order
for each kind of grouping we introduce.

• Some properties are generic and do not rely on
painful computation at the level of geometrical trans-
formations but come from more abstract properties.

• We introduce a logical theory to uniformize the work
with grouping.

Abstract Bulking

31 CCJ ◦IBB ×



Definition. An abstract bulking A is a logical theory
on the signature(

Obj,Trans; apply : Obj×Trans→ Obj,
divide ⊆ Obj×Obj,

combine : Trans×Trans→ Trans
)
.

Notation. An object y simulates an object x if they
satisfy the formula

x 4 y ≡ ∃α∃β
(
xα | yβ

)

Definition
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Combination. (Trans, ·) is a monoid.

A ` ∃1∀α (α · 1 = α∧ 1 · α = α)

∧ ∀α∀β∀γ ((α · β) · γ = α · (β · γ))

Compatibility. (Trans, ·) acts on Obj through apply.

x = x1 x xα xα·β

A ` ∀x
(
x1 = x

)
∧ ∀x∀α∀β

(
(xα)

β
= xα·β

)

Axioms (1)

33 CCJ ◦IBB ×



Divisibility. divide is a quasi-order on Obj.

A ` ∀x (x | x) ∧ ∀x∀y∀z ((x | y∧ y | z)→ x | z)

Transitivity. apply is compatible with divide.

x y

xα yα

A ` ∀x∀y∀α (x | y→ xα | yα)

Axioms (2)
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Surjectivity. apply preserve the richness of objects.

y x

yα

A ` ∀α∀x∃y (x | yα)

Axioms (3)
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Proximity. apply keeps objects nearby. There exists
two functions ζ and ξ such that

x

xα

xβ

(xα)
ζ(x,β)

(
xβ
)ξ(x,α,β)

A ` ∀x∀α∀β
(
(xα)

ζ(x,β)
|
(
xβ
)ξ(x,α,β)

)

Axioms (4)
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Theorem. “4 is a quasi-order” is a bulking property.

A ` ∀x (x 4 x) ∧ ∀x∀y∀z ((x 4 y∧ y 4 z)→ x 4 z)

• u is universal if ∀x (x 4 u).

• u is strongly universal if ∀x∃α (x | uα).

Theorem. “If there exists a strongly universal objet
then each universal object is strongly universal” is a
bulking property.

Properties
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3. Geometrical Transformations
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Idea. Use abstract bulking theory with:
Obj the set of d-CA,
Trans the set of PCS transformations,
apply the transformation operator,
divide the subautomaton relation,
combine the composition of transformations.

Argh! The Proximity axiom is not satisfied.

First try
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P̃: restriction on P transformations.

P̃(m1,...,md),τ = P∏d
i=1J0,mi−1K,(στ(1),...,στ(d))⊗m

v1

v0

Regular Packing
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Idea. Use abstract bulking theory with:
Obj the set of d-CA,
Trans the set of P̃CS’ transformations,
apply the transformation operator,
divide the subautomaton relation,
combine the composition of transformations.

(P̃CS’ and P̃CS define the same relation of simulation)

It works: All the axioms are satisfied.

Second try
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Applying a P̃CS transformation 〈mτ, n, k〉 to a CA A:

G
〈mτ,n,k〉
A = o−1

mτ ◦ σk ◦G
n
A ◦ omτ

Definition. A CA A is simulated by a CA B, A 6 B,
if there exists two P̃CS transformations 〈mτ, n, k〉 and
〈m ′τ, n ′, k ′〉 such that:

A〈mτ,n,k〉 ⊆ B〈m
′
τ,n

′,k ′〉

Theorem. The relation 6 is induced by an abstract
bulking model.

Summary
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Corollary. The relation 6 is a quasi-order.

• In dimension 1, the relation 6
�

refines 6.
• × corresponds to a local maximum.
•We still have infinite chains.

ξm,n

6≷

6≷

<

>

m

n

Basic properties

43 CCJ ◦BBB ×



Corollary. The relation 6 is a quasi-order.
• In dimension 1, the relation 6

�
refines 6.

• × corresponds to a local maximum.
•We still have infinite chains.

ξm,n

6≷

6≷

<

>

m

n

Basic properties

43 CCC ◦BBB ×



Corollary. The relation 6 is a quasi-order.
• In dimension 1, the relation 6

�
refines 6.

• × corresponds to a local maximum.

•We still have infinite chains.

ξm,n

6≷

6≷

<

>

m

n

Basic properties

43 CCC ◦BBB ×



Corollary. The relation 6 is a quasi-order.
• In dimension 1, the relation 6

�
refines 6.

• × corresponds to a local maximum.
•We still have infinite chains.

ξm,n

6≷

6≷

<

>

m

n

Basic properties

43 CCC ◦IBB ×



⊥ level 0

level 1
σ-PerNil (Zp,⊕)

· · ·

Bottom of the order
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U

∞

There is no quasi-universal CA.

Top of the order
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Theorem. Given a CA, deciding whether it is intrinsi-
cally universal is undecidable.

Theorem. There exists no real-time intrinsically uni-
versal CA (∀A,∃n,A ⊆ U 〈n,n,0〉).

•We can construct very small intrinsically universal CA
(ex. 1D, von Neumann neighborhood, 6 states)

Universality
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• The structure of products of shifts,
∏k
i=1 σvi , and CA

they simulate can be completely described.

(2) (3)

(2, 3) (2, 4)

< <

< <

The relation 6 induces no semi-lattice structure.

Idea. Modify bulking so that × defines a supremum.

Structure
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• New transformations: (k, l,Λ) where

Λ : N× Zd −→ (
J1, lK×N× Zd

)k
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• PCST(Fi,vi,Ti,si)i∈J1,lK
transforms A into(

o−1
F1,v1

◦σs1◦G
T1
A ◦oF1,v1

)
×· · ·×

(
o−1
Fl,vl
◦σsl◦G

Tl
A ◦oFl,vl

)

A new bulking (1)
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Idea. Use abstract bulking theory with:
Obj the set of d-CA,
Trans the set of P̃CST’ transformations,
apply the transformation operator,
divide the subautomaton relation,
combine the composition of transformations.

• P̃CST transformations are defined like P̃CS ones.
• All the axioms are satisfied.
• The relation of simulation induces a sup-semi-lattice
with × as a supremum operator.

A new bulking (2)
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• An ideal is a set of equivalence classes stable by ×
and lower element by 6.

⊥

UR

ult. per. inj.

surj.

Ideals
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• CA at the bottom and the top of the order seem to
correspond to CA which are easy to describe. What
about CA in “the middle” ?

• Links between stuctural properties of bulking and de-
cidability questions have been presented. What about
topological properties ?

• Study abstract bulking in the case of a different kind
of dynamical system, refine the choice of axioms, gen-
erals properties.

Perspectives
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