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Abstract

This PhD thesis is divided into three parts: (1) the experimental incorporation of Th in

monazite and xenotime, (2) the behaviour of the monazite structure under temperature-

induced healing, and (3) the experimental resetting of the U-Pb geochronological system in

monazite.

(1) The Th distribution between monazite and xenotime as a result of the Th + Si =

REE + P substitution mechanism was experimentally determined in the T-P-range of 600 to

1100°C and 2Kbar. Starting mixtures consisted of gels and were composed of equal amounts

of CePO4 and YPO4 with addition of 10, 20 and 50 mole % of ThSiO4. Run products were

analysed using AEM and XRD. At all temperatures, the ThSiO4 component is partitioned

almost exclusively into monazite for a ThSiO4 component of 10 and 20 mole %. Xenotime is

apparently ThSiO4-free. In the T-range 600°C-900°C and for ThSiO4 = 50 mole %, thorite is

additionally formed indicating ThSiO4 saturation within monazite at these conditions. At

1000°C, only monazite and a small amount of xenotime crystallised. No thorite was observed.

(2) The healing of radiation damage in a natural and chemically homogeneous

concordant (474±1 Ma) monazite has been experimentally investigated (500-1200°C/~7days).

XRD, TEM, Raman microprobe and Cathodoluminescence analysis were performed. The

unheated monazite has a mosaic structure consisting of two domains corresponding to two

monazite crystals with different lattice parameters. (A) domains correspond to well-

crystallised areas where He atoms are trapped, thus inducing their lattice expansion. (B)

domains are interpreted to exhibit a He-free distorted monazite crystal lattice which can be

referred to old alpha-recoil tracks. With increasing temperature, He diffuses out of the

monazite lattice, thus inducing its relaxation. Additionally, the nm-sized defect domains (B)

are getting healed. The complete healing is achieved at 900°C after 7 days.

(3) In order to investigate the influence of fluid composition and temperature on

resetting, abraded fragments (200-400 µm) from monazite used in (2) were experimentally

treated (800-1000°C/14-39 days) within solutions of different compositions (H2O up to

1200°C/5 days, NaCl, SrCl2 CaCl2-fluids and a Pb-spike-fluid). Products were analysed using

SEM, EMP, SIMS and ID-TIMS. For all runs, EMP traverses revealed no Pb-diffusion

profiles. Significant overgrowths of newly formed monazite occurred only in the 1000°C

experiments when either CaCl2 or Pb-bearing fluids were present. For CaCl2, inherited core

and newly formed Ca-rich and Pb-free monazite rim were produced by

dissolution/precipitation. Significant discordancy was only observed when grains were treated

with SrCl2 (16%) and CaCl2 (68%) solutions at 1000°C. Finally, experiments performed in

the presence of Pb-standard produced sub-concordant monazite with a 207Pb/206Pb apparent

age older than prior to the experiment indicating Pb-contamination by the fluid.
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Zusammenfassung

Die vorgelegte Dissertation beschäftigt sich mit (1) der Th Verteilung zwischen

Monazit und Xenotim, (2) der Veränderung der Monazit Struktur beim Aufheizen, und (3)

dem „Resetting“ des U-Pb Systems in Monaziten.

(1) Die Th Verteilung zwischen Monazit und Xenotim wurde, als Resultat der Th + Si

= REE + P Substitution, experimentell (600-1100°C/2 kbar) untersucht. Dazu wurden Gele

mit den gleichen Gehalten an CePO4 und YPO4 plus 10, 20 und 50 Mol % ThSiO4 als

Anfangsmaterial benutzt. Nach den Experimenten wurden die Produkte mit AEM und XRD

analysiert. Für alle Temperaturen und für Ausgangszusammensetzungen von 10 und 20 Mol

% ThSiO4 wird ThSiO4 fast vollständig in Monazit eingebaut. Für 50 Mol % ThSiO4,

kristallisiert zwischen 600° und 900°C Thorit. Das belegt, daß bei diesen Bedingungen

Monazit an ThSiO4 gesättigt ist. Bei 1000°C kristallisierten Monazit, wenig Xenotim und kein

Thorit.

(2) Die Ausheilung von Strahlungsdefekten in einem natürlichen, homogenen, bei 474

± 1 Ma konkordanten Monazit, wurde unter Verwendung von XRD, TEM, Raman und

Kathodoluminescenz experimentell untersucht (500-1200°C/~7Tage). Der unbehandelte

Monazit besteht aus einem Mosaik zweier Domänentypen (A) und (B), die zwei Monaziten

mit unterschiedlichen Gitterkonstanten entsprechen. Die Domänen (A) entsprechen gut

kristallisierten Bereichen, in denen He Atome, die eine Gitterexpansion induzieren,

eingeschlossen sind. Die Domänen (B) entsprechen einem beschädigten Gitter (ohne He),

dessen Defekte durch Alpha-Rückstoß Nuclei verursacht wurden. Während der Ausheilung,

diffundiert das He aus dem Monazit-Gitter und induziert eine Gitterrelaxation. Gleichzeitig

werden die defektreichen Domänen (B) ausgeheilt. Die komplette Heilung ist bei 900 nach 7

Tagen erreicht.

(3) Um den Einfluß verschiedener Flüssigkeitszusammensetzungen und Temperaturen

auf den Prozess des „Resettings“ in Monazit zu untersuchen, wurden im Luftstrom gerundete

Partikel (200-400 µm) des in (2) verwendeten Monazit experimentell (800-1000°C/14-39

Tage) in verschiedenen Lösungen (H2O bis 1200°C/5 Tage, NaCl, SrCl2, CaCl2, und „Pb-

spike“) behandelt. Die Produkte wurden mit REM, EMP, SIMS und ID-TIMS analysiert. Für

alle Experimente wurden mit EMP keine Pb Diffusionsprofile nachgewiesen. Signifikantes

Aufwachsen von Monazit wurde nur bei 1000°C, in CaCl2 oder „Pb-spike“ haltigen

Experimenten beobachtet. In CaCl2-Lösungen erfolgte das Aufwachsen von neuem Monazit

auf alten Monazitkörnern entsprechend einem Auflösungs/Ausfällungs Mechanismus.

Signifikante Diskordanz wurde nur für den bei 1000°C in SrCl2 (16%) und CaCl2 (68%)-

Lösungen ausgesetzten Monazit beobachtet. Monazite, die mit „Pb-spike“ Lösungen

koexistierten, zeigen nach den Experimenten höhere 207Pb/206Pb Alter.
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Résumé

Cette thèse présente les résultats d’étude expérimentales sur (1) le partage du Th entre

la monazite et le xenotime, (2) l’effet du recuit sur la structure de la monazite ainsi que (3) la

remise à zéro des systèmes géochronologiques U-Pb dans la monazite.

(1) Le partage du Th entre la monazite et le xenotime a été déterminé

expérimentallement (600-1100°C/2Kbar) en considérant le mécanisme de substitution

suivant: Th + Si = REE + P. Le matériel de départ est un gel constitué d’un mélange de

CePO4 et YPO4 (1:1) plus 10, 20 ou 50 mole % de ThSiO4. Les produits sont analysés au

MET et en DRX. Quelque soit la température et pour une composition initiale de 10 ou 20

mole % de ThSiO4, le Th est presque entièrement réparti dans la monazite. Entre 600 et

900°C et pour une composition initiale de 50 mole % de ThSiO4, la cristallisation de la thorite

montre une saturation en Th de la monazite. A 1000°C, seuls la monazite et un peu de

xénotime sont observés; la thorite est absente.

(2) Le recuit des dégats d’irradiation dans une monazite naturelle, homogène

chimiquement et concordante à 474 ± 1 Ma, a été étudié expérimentallement (500-1200°C/~7

jours). Les produits ont été analysés en DXR, MET, Raman et cathodoluminescence. La

monazite non-chauffée révèle une structure en “mosaïque” composée de 2 domaines, qui sont

2 cristaux de monazites de paramètres de maille différents. Les domaines (A) correspondent

aux domaines parfaitement cristallisés, où l’hélium emprisonné provoque une expansion du

réseau. Les domaines (B) correspondraient à des domaines exempts d’hélium, où le réseau a

été déterioré par les noyaux de recul-alpha. Lors du recuit de la monazite l’hélium diffuse

hors du cristal, ce qui induit une relaxation du réseau dans les domaines (A). En même temps,

les domaines (B), défectueux, sont recuits. A 900°C, le réseau de la monazite est entièrement

recuit.

(3) Afin d’étudier l’effet de fluides et de la température sur le “resetting” des systèmes

U-Pb dans la monazite, des fragments abrasés (200-400 µm) de l’échantillon utilisé en (2) ont

été chauffés (800-1000°C/14-39 jours) en présence de solutions de diverses compositions (eau

pure jusqu’à 1200°C/5 jours, fluides à NaCl, SrCl2 CaCl2 et standard de Pb) puis analysés au

MEB, EMP, SIMS et ID-TIMS. Quelle que soient les expériences aucun profil de diffusion

du Pb n’est observé (EMP). En présence de fluide à CaCl2 ou à standard de Pb et uniquement

pour les expériences réalisées à 1000°C on observe des surcroissances. A 1000°C et dans un

fluide à CaCl2 on observe une zonation, coeur hérité et bordure enrichie en Ca et exempt de

Pb, formée par dissolution/précipitation. Des discordances significatives sont observées

uniquement pour les expériences réalisées à 1000°C dans les fluides à SrCl2 (16%) ou CaCl2

(68%). Enfin, l’utilisation du fluide à standard de Pb induit un vieillissement des monazites

initiales, ce qui indique une contamination de la monazite par ce fluide.
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INTRODUCTION

Rare earth elements (REE), Y, Th and U are very powerful tools for modelling

petrogenetic processes in granites. Accessory minerals, like zircon, monazite, apatite, allanite,

xenotime, Th-orthosilicates (thorite and huttonite), control the behaviour from these elements.

For example, depletion of LREE in granite can be attributed to crystallisation of the LREE-

orthophosphate monazite. In particular, the REE-orthophosphates monazite and xenotime are

in the centre of our interest. Monazite occurs in many pelitic schists and gneisses of upper

amphibolite and granulite metamorphic grade and pelitic compositions, and in metaluminous

to peraluminous granitoid rocks (Overstreet, 1967; Parrish, 1990; Nabelek et al., 1995; Franz

et al., 1996). This LREE-phosphate contains also high U and Th content (1.5 wt.% UO2 and

14 wt.% ThO2). Surprisingly, minor importance has been given to the HREE-Y-

orthophosphate xenotime, which also may incorporate relatively high amounts of U (2 wt.%

UO2) and, to a somewhat minor extent, also Th (< 1 wt.% ThO2) (values from metapelite after

Franz et al., 1996). Xenotime also occurs in granitoids and metamorphic rocks too and was

found together with monazite for a large range of metamorphic and magmatic conditions. The

compositions of these coexisting minerals depend on bulk composition and on the partitioning

coefficients between them. These coefficients are pressure and temperature dependent and

therefore appropriate for use as geothermobarometer (Franz et al., 1996; Gratz and Heinrich,

1997; Heinrich et al., 1997; Andrehs and Heinrich, 1998).

The LREE Sm-Nd, U-Pb, and Th-Pb are very powerful geochronometers. Monazite is

widely used in U-Th-Pb geochronology to determine the timing of magmatic and

metamorphic events (Parrish, 1990). This is because monazite contains very high U and Pb

contents and commonly occurs in peraluminous rocks, where zircon often is full of inherited

cores and thus not useful for U-Pb dating. Mostly, 
206

Pb/
238

U and 
207

Pb/
235

U ages in monazites

are concordant. However, discordant U-Pb ages have also been reported (Cocherie et al.,

1998; Paquette et al., 1999). Any correct interpretation of measured isotope ratios requires a

detailed understanding of the resetting process that may affect the isotope system of monazite.

Two processes are commonly considered to explain the resetting of an isotopic system: (1)

loss of Pb by volume diffusion out of the monazite grain, or (2) dissolution via a coexisting

fluid and precipitation of a newly formed Pb-free monazite. For the U-Th-Pb systems, the

radioactive decay produces radiation damages that may partially or totally destroy the crystal

lattice, thus producing a so-called metamict crystal. Whatever the mechanism of resetting is
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considered to be, it can be anticipated that the kinetics of resetting will strongly be influenced

by the degree of metamictization of the crystal. A good knowledge of the structure of the

studied monazite and its behaviour under irradiation and heating is strongly required. No

detailed model for dissolution/precipitation resetting is available, but we can predict that the

kinetics of dissolution, the solubility of the crystal, and the nature of the fluid phase should be

important parameters.

This experimental work is divided in three parts, each of them consisting of one

article. These publications were submitted in different international journals and are written

together with other scientists. The first chapter is focused on the Th partitioning between

monazite and xenotime. The second part reports investigations on the monazite structure

using X-Ray diffraction (XRD), transmission electron microscopy (TEM) and Raman

spectroscopy, and on the annealing of radiation damages of a natural monazite. Finally, in the

last chapter, an experimental study of the resetting of the U-Pb geochronological system of

natural monazite is developed. In the following an introduction of each part is given.

I- Th partitioning between monazite and xenotime

Monazite is monoclinic, with space group P21/n, and isostructural with huttonite

(ThSiO4). Xenotime is tetragonal, with space group I41/amd, and isostructural with thorite,

which is the dimorph of huttonite. Both atomic arrangements are based on [001] chains of

alternative edge-sharing phosphate tetrahedra and REE polyhedra, with a REEO8 polyhedron

in xenotime and a REEO9 polyhedron in monazite (figure 1). Monazite preferentially

incorporates the larger light REE, i.e. elements with ionic radii between La (1.216 Å) and Gd

(1.107 Å), whereas xenotime incorporates Y (1.019 Å) and the smaller, heavy REE, i.e.

elements between Tb (1.040 Å) and Lu (0.977 Å) (figure 2). Th may be incorporated as two

components in monazite and xenotime: the brabantite [REE-2Ca1Th1] and the Th-silicate [P-

1REE-1Si1Th1] component (Franz et al., 1996; Van Emden et al., 1997; Förster 1998).

In this study, only incorporation of Th as ThSiO4 was investigated. ThSiO4 naturally

occurs as the 2 dimorphs thorite and huttonite. In our experiments pressure was set at 2 Kbar

and temperatures were in the range of 600 to 1100°C. For these conditions thorite is stable

(Seydoux and Montel, 1997). A simple ternary system CePO4-YPO4-ThSiO4 was chosen as a

model system. CePO4 and YPO4 are, respectively, suitable representatives of monazite and
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xenotime of natural compositions. From the three binaries that compose this system, only the

CePO4-YPO4 binary is well-constrained (Gratz and Heinrich, 1997). From experimental

works of Podor and Cuney (1995; 1997) it is known that total miscibility exists along the two

binaries LaPO4-Ca0.5Th0.5PO4 and LaPO4-Ca0.5U0.5PO4 at 2 kbar and 780°C. However,

nothing is known about the CePO4-ThSiO4 or YPO4-ThSiO4 binaries. In this first part the

ThSiO4 partitioning between monazite and xenotime is investigated in order to test the effect

of ThSiO4 on the monazite-xenotime geothermobarometer.

II- Structure of a natural monazite: behaviour under heating

Monazite contains considerable amounts of 
232

Th, 
238

U and 235
U. Their radioactive

decay produces 6, 8, and 7 α-particles, respectively, resulting in 
208

Pb, 
206

Pb and 
207

Pb. During

an α-event a heavy atom nucleus liberates its energy by ejecting an α-particle (4He-nuclei),

which carries 98% of the initial energy. The α-particle, which has an energy between 3.9 to

8.4 MeV, is ejected to about 10-40 µm from the point of disintegration. It dissipates most of

its energy by ionisation and produces isolated defects (~ 100 atomic displacements). In

contrast, the remaining nucleus is recoiled in the opposite direction to about 10-20 nm from

the α-particle, according to the principle of momentum conservation, and causes collision

cascades (~ 700-1000 atomic displacements). Most of the atomic displacements leading to

amorphization of a crystal lattice are caused by alpha-recoil nuclei (Ewing et al. 1995; 2000;

Weber et al. 1998) (figure 3).

In contrast to zircon (Speer 1982), metamict monazite is rarely found in nature (Ewing

1975). Even old, radioactive monazites are mostly crystalline, despite the intensive radiation

doses they received. However, there is some evidence of radiation damage in natural monazite

grains, which are limited to isolated domains within the crystal (Black et al. 1984; Meldrum et

al. 1998). This suggests that, even at low temperature, the monazite lattice is healed easily

(Boatner and Sales 1988). Radiation damages in minerals can be induced by using external

heavy-ion irradiation. For most crystals it is possible to define an amorphization dose above

which the crystal is totally metamict (amorphous state). The amorphization dose increases

with increasing temperature and reaches a critical temperature above which amorphization

can no longer be achieved, because the crystal lattice is faster thermally reconstructed than it

is destroyed. It has been shown that monazite is not more resistant to irradiation than zircon,
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because at room temperature amorphization dose is similar for the two minerals. The main

difference is based on the critical temperature, which for monazite is in the range 100-200°C,

but for zircon is above 700°C (figure 4). Therefore monazite is able to restore its structure at

low temperature, although it is not specifically resistant to radiation damage.

Previous works on the annealing of monazite provided different results. Karioris et al.

(1981) in a XRD study, and Meldrum et al. (1998) in a TEM study, both using an ion-beam-

amorphised monazite, observed recrystallization at 300 and 450°C respectively. In contrast, in

a XRD study Smith and Giletti (1997) completely healed a natural crystalline monazite

between 800°C and 1100°C. In this study, the healing of radiation damages in a natural

crystalline monazite has been experimentally investigated using XRD, TEM, Raman

microprobe and Cathodoluminescence analyses. The starting material was a chemically

homogeneous monazite from a Brazilian pegmatite with a concordant age of 474 ± 1 Ma

showing nm-scale defects induced by radioactive decay.

III- Resetting of U-Pb isotopic geochronological system

U-Pb concordance means that, during geological events, the monazite U-Pb system is

either completely reset, i.e. monazite has lost all its radiogenic Pb, or remains totally

unaffected. Discordant U-Pb ages means that monazite has lost some radiogenic Pb since its

crystallization or since the last event, that completely reset it. These discordances may result

from U-Pb analyses which are performed on monazite fractions of mixed grain populations

crystallised at different times within a particular rock. One case of discordance attributed to

diffusive Pb loss has been reported by Suzuki et al. (1994). Mostly, discordances result from

mixtures of newly grown rims with inherited cores (figure 5). However, the controlling

mechanisms that induce resetting during a geological event, i.e. loss of Pb by volume

diffusion or dissolution via a coexisting fluid and precipitation of a newly formed lead-free

monazite, are only poorly understood.

With respect to resetting by diffusive Pb-loss, there are several attempts to interpret

discordant ages of natural monazite grains in terms of the closure temperature’s concept

(Dodson, 1973). This model is defined for a geochronological or a geochemical system. It

assumes that volume diffusion controls the loss of the daughter nuclide (here Pb) and at the

closure temperature the daughter nuclide begins to accumulate in the crystal. The closure

temperature will also depend on the size of the crystal, its shape, the cooling rate during the
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geological event, and the diffusion coefficient of the daughter elements. However, two

important facts limit the use of this concept. First, it ignores quantification of the main driving

force for any diffusion process, i.e. the chemical potential gradient of the Pb-bearing

component between monazite and the adjacent phase. Second, it implies a resetting by

diffusion, which is not very realistic, considering results from experiments on Pb–self-

diffusion in monazite by Smith and Giletti (1997), which showed that diffusion is very slow,

even at high temperatures. Furthermore, it has been shown by De Wolf et al. (1993), Kalt et

al. (2000), Montel et al. (2000) that monazite inclusions, which are shielded by host minerals

such as quartz and garnet, were not subject to resetting, despite the fact that they were

exposed to granulite-facies temperatures of more than 800°C over long time scales.

Dissolution/precipitation in the presence of a fluid phase is another possible

mechanism for resetting of the monazite isotope system. If so, one would expect that the fluid

composition had a major effect on the process. Previously, Teufel and Heinrich (1997)

showed that significant dissolution and precipitation along with Pb-loss into pure water was

only observed for very fine powdered monazite as starting material. Hydrothermal treatment

of natural monazite grains larger than 40 µm at 750°C/3 kbar and in pure water did not affect

their U-Pb system.

In the third part, we propose to evaluate which of the two mechanisms -

dissolution/precipitation or volume diffusion- controls the resetting of the U-Th-Pb isotope

system in monazite, and to see the influence of fluid composition and temperature on the

extent of this process.
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An experimental determination of the Th partitioning between monazite

and xenotime using Analytical Electron Microscopy (AEM)

Abstract:

The Thorium distribution between monazite and xenotime has been determined experimentally using

the coupled substitution Th + Si  REE + P. Experiments have been conducted in standard cold seal

hydrothermal and internally heated pressure vessels at 200 MPa in the range of 600-1100°C. Starting mixtures

were prepared from gels composed of equal amounts of CePO4 and YPO4 with addition of 10, 20 and 50 mol%

ThSiO4. The grain sizes of the run products were in the range of a few microns. Analytical electron microscopy

(AEM) methods were applied to obtain reliable chemical compositions of the reaction products. Lattice

parameters of run products were determined using Rietveld analysis. For runs with 10 and 20 mol% ThSiO4

component in the bulk the ThSiO4 component distributes almost exclusively into monazite at all temperatures.

The amount of the YPO4 component in monazite increases relative to the Th-free system if significant amounts

of ThSiO4 are present within the structure. ThSiO4 favours incorporation of YPO4 resulting in a shift of the

monazite limb and the shrinkage of the monazite-xenotime miscibility gap. Thermobarometric calculations based

on monazite-xenotime equilibria must be corrected for this effect. For runs with 50 mol% ThSiO4 in the bulk,

thorite formed as an additional phase at 600 to 900°C but was absent at higher temperatures. At high XThSiO 4
bulk

and low T, the system is three-phase. The three-phase stability field strongly shrinks with increasing

temperature. A tentative phase diagram of the ternary system CePO4-YPO4-ThSiO4 is proposed and discussed in

the light of monazite-xenotime-thorite-bearing assemblages in natural rocks.

Key words Monazite • Xenotime • Thorium • XRD • AEM
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1 – Introduction

The REE-orthophosphate minerals monazite and xenotime occur together in many

metamorphic (Franz et al., 1996; Heinrich et al., 1997; Andrehs & Heinrich, 1998; Harlov &

Förster, 2001) and magmatic rocks (Bea, 1996; Förster, 1998a,b; Viskupic & Hodges, 2001).

Monazite is commonly used for U-Th-Pb age determination because of its high U and Th

contents (Parrish, 1990). Minor emphasis has been given to xenotime, which also incorporates

relatively high amounts of U and, to a somewhat minor extent, also Th. Monazite

preferentially incorporates the light rare earth elements (LREE), and xenotime the heavy rare

earth elements (HREE) and Y (Franz et al., 1996; Heinrich et al., 1997). Monazite is

monoclinic, with the space group P21/n, and isostructural to huttonite, the high P – high T

modification of ThSiO4. Xenotime is tetragonal, with the space group I41/amd, and

isostructural to thorite, which is the low P – low T polymorph of ThSiO4 (Pabst & Hutton,

1951; Berzelius, 1829). Both atomic arrangements are based on chains along [001] of

intervening phosphate tetrahedra and REE polyhedra, where the REE ions are 8-fold

coordinated in xenotime and 9-fold in monazite (Ni et al., 1995). It is known from natural

assemblages (Franz et al, 1996; Van Emden et al., 1997; Förster, 1998a,b) that Th and U are

incorporated by two exchange mechanisms in monazite and xenotime: the brabantite

exchange [REE-2Ca1(U, Th)1] and the huttonite/thorite exchange [P-1REE-1Si1(U, Th)1]. In

natural rocks, coexisting monazite-xenotime pairs suggest that Th is preferentially

incorporated into monazite as brabantite and U into xenotime as thorite component, however,

quantitative relationships are unknown.

Complete U-Th-Pb dating of monazite single crystals have shown that U-Pb and Th-

Pb age determinations can result in different ages (Barth et al., 1994; Parrish & Carr, 1994).

Different processes might explain this behaviour. One possibility is that crystals are

compositionally zoned. Zonation may be induced during slow metamorphic growth over

several Ma. Within a single crystal, different domains can be dated assuming a sufficient

precision of the spatial resolution and the resolution of the time scale of the age determination

method (Harrison et al., 1995; Montel et al., 1996; Cocherie et al., 1998; Crowley & Ghent,

1999; Grove & Harrison, 1999; Paquette et al., 1999; Poitrasson et al., 2000). Using such

radiometric age determinations together with geothermometry, growth temperatures can be

directly correlated with time (Viskupic & Hodges, 2001).
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Prograde zoning of metamorphic monazite seems to be very common (Heinrich et al., 1997)

and it has been shown that the partitioning of each REE between monazite and xenotime is a

function of temperature and pressure. This allows the use of the REE partitioning between

monazite and xenotime as a geothermobarometer (Gratz & Heinrich, 1997; Heinrich et al.,

1997; Andrehs & Heinrich, 1998; Gratz & Heinrich, 1998). It would therefore appear that the

U-Th partitioning between coexisting monazite and xenotime were also temperature and

pressure dependent and that crystals might be zoned in respect to their U/Th ratios.

The present study reports the experimental determination of the Th distribution between

monazite and xenotime and provides information on how the presence of Th in the system

affects the CePO4-YPO4 geothermobarometer. Here, only the incorporation of Th as ThSiO4

component into both phases will be considered. The ternary system CePO4-YPO4-ThSiO4 was

chosen as a model system. From the three binaries that define the ternary system, only the

CePO4-YPO4 binary is experimentally well-constrained (Gratz & Heinrich, 1997). In a closely

related system complete miscibility exists along the two binaries LaPO4-Ca0.5Th0.5PO4 and

LaPO4-Ca0.5U0.5PO4 at 200 MPa and 780°C (Podor & Cuney, 1995; 1997). However, there is

no information about the CePO4-ThSiO4 and YPO4-ThSiO4 binaries and we only know that at

200 MPa and 600 to 1100°C thorite is probably the stable ThSiO4 polymorph (Seydoux &

Montel, 1997).

Synthesis of REE-phosphates in presence of the ThSiO4 component produces extremely fined

grained crystals. Analytical electron microscopy (AEM) and X-ray diffraction (XRD) were

therefore applied. We will show that at low ThSiO4 concentrations in the bulk it is mainly

partitioned into monazite and that it shifts the position of the monazite limb within the

miscibility gap of the CePO4-YPO4 binary. This allows interpreting discrepancies in

temperature estimations that use the monazite-xenotime thermobarometer. We further show

that for high ThSiO4 concentrations in the bulk and low temperatures, thorite is stable and

tentatively present phase relations within the CePO4-YPO4-ThSiO4 ternary at different

temperatures.
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2 - Experimental and analytical techniques

2-1 - Starting materials

For all experiments gels were used as starting materials. This allowed the preparation

of stoichiometric mixtures of the starting materials and always resulted in homogeneous

crystals. The disadvantage of the gel method is that the run products were very small (≤ 2µm)

and that at temperatures below 800°C the products were poorly crystallized. This is

particularly true at high amounts of ThSiO4 in the bulk. At these conditions, the products

could not be analyzed adequately by AEM and XRD, respectively.

Pure ThN4O12, 5 H2O (Merck); YN3O9, 6 H2O (Riedel de Haën) and CeN3O9, 6 H2O (Merck,

ultrapure) were dissolved in water. Tetra-ethyl-ortho-silicate (TEOS) together with the same

amount of ethanol, and HPO4N2O8, dissolved in water, were added. Nitrates and water were

removed from the precipitate by drying and firing resulting in a gel, which consisted of

CePO4, ThSiO4, and YPO4. Three different gel bulk compositions were prepared and

consisted of equal amounts of CePO4 and YPO4 with additional 10, 20 and 50 mol% of

ThSiO4. About 50 mg of gel together with SiO2 in excess were filled in Pt capsules (20 mm

long, 3 mm in diameter) and welded. The capsules were checked for leaks by heating them at

110°C for 24 hours.

Oxide mixtures with excess H3PO4 as used by Gratz & Heinrich (1997; 1998) resulted

in somewhat larger crystals. However, excess of H3PO4 resulted in formation of thorium

phosphate with an unknown structure. On the other hand, it is impossible adding a

stoichiometric amount of solid H3PO4 during loading of the capsules because it is extremely

hygroscopic. Therefore, experiments that used oxide mixtures were discarded.

2-2 - Experimental procedure

Experiments at 100 and 200 MPa up to 900°C (Table 1) were carried out in standard

cold seal hydrothermal vessels with water as pressure medium. The temperature was recorded

using Ni-CrNi thermocouples inside the vessel close to the sample. The total temperature

uncertainties are estimated at about ± 3°C. Pressure was measured using a transducer

calibrated against a Heise gauge manometer. The indicated pressure is accurate within ± 50

bars. Run durations were between 240 and 816 hours. The capsules were quenched with

compressed air to room temperature within 3 minutes.



Chapter I – Th partitioning between monazite and xenotime

16

Table 1 - Experimental conditions and bulk compositions.

Run No. P T Duration Bulk composition (molar fraction)

(MPa)  (°C) (Hours) CePO
4

ThSiO
4

YPO
4

MXTh99-31 200 800 456 0,45 0,10 0,45

MXTh99-35 100 900 240 0,45 0,10 0,45

MXTh99-38 100 900 240 0,40 0,20 0,40

MXTh99-44 200 800 408 0,25 0,50 0,25

MXTh99-45 200 600 816 0,25 0,50 0,25

MXTh99-47 100 900 312 0,25 0,50 0,25

MXTh99-54 200 1000 236 0,45 0,10 0,45

MXTh99-55 200 1000 236 0,40 0,20 0,40

MXTh99-56 200 1000 236 0,25 0,50 0,25

MXTh0-5 200 1100 548 0,45 0,10 0,45

MXTh0-6 200 1100 548 0,40 0,20 0,40

MXTh0-7 200 1100 548 0,25 0,50 0,25

All bulk products consist of gel + SiO2 in excess
Runs at 1000 and 1100°C were performed in IHPV
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Experiments at 200 MPa for 1000 and 1100°C were performed in internally heated

pressure vessels (IHPV) with Ar as pressure medium (Table 1). The temperatures were

recorded using three Pt87Rh13-Pt thermocouples. The total temperature uncertainties are

estimated to be about ± 10°C. Run durations were 236 hours at 1000°C and 548 hours at

1100°C. The capsules were quenched to room temperature within a few minutes. After

quenching the capsules were checked for leaks. The run products were investigated by optical

microscopy, scanning electron microscopy, analytical electron microscopy and X-ray powder

diffraction.

2-3 - Analytical electron microscopy (AEM)

Because of the small size of the products, EMP analyses were not performed. The

chemical composition of coexisting phases was therefore determined by AEM. AEM

investigations were carried out with a Philips CM200 electron microscope. The electron

microscope is equipped with an EDAX X-ray analyzer with ultrathin window. The

acceleration voltage was 200kV, and the electron source was a LaB6 filament. Analyses were

carried out in transmission mode with a spot size of 40 nm and a beam current of 0.2 nA. The

specimen was tilted 20° towards the detector and acquisition time was 200 seconds. The

spectra were corrected for absorption and fluorescence applying the EDAX software package

for thin films. The foil thickness, necessary for absorption correction was determined by

electron energy-loss spectroscopy (EELS) using the total intensity of the electrons reaching

the EEL spectrometer and the intensity of the zero loss peak (Egerton, 1996). EDX analyses

were quantified by applying the ratio technique of Cliff & Lorimer (1975) for thin foils. The

factors kCe
L

/SiK
, kYK/SiK

, kThL/SiK
 and kPK/SiK

 were determined using synthetic CePO4, YPO4,

(Ce,Y)PO4 solid solutions (Gratz & Heinrich, 1997), and natural monazite. The chemical

compositions of the standards were determined by electron microprobe analysis (Table 2 and

3). The TEM foil was prepared from the same section of the standard, which has been

measured by EMP. The precision of the analyses depends on the counting statistic, the errors

of k-value determination and the error measurement of the different intensities of the elements

(Joy et al., 1989). The relative statistical error of the analysis is calculated by applying the

equation: rel.error =
t99

n−1 * s

n * x 
*100% (t99

n −1 = Student t value, s = standard deviation, n =

number of measurements, x  = mean value). The total statistical relative error for the different

oxides is given in Table 4.
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Table 2 -  AEM analyses of synthetic monazites of the CePO4-YPO4

binary from Gratz and Heinrich (1997) compared with compositions
obtained from lattice parameters (see their Table 1)

Run No. P7 P14 P13
Number of analyses 14 11 10

Wt%

P2O5 31.49 30.34 30.50
Ce2O3 64.44 63.63 61.61
Y2O3 4.09 6.05 7.90

Σ 100.02 100.02 100.01
Cations

P 1.02 0.98 0.98
Ce 0.90 0.90 0.86
Y 0.08 0.12 0.16
Σ 2.00 2.00 2.00

XY (AEM) 0.08 (2) 0.12(4) 0.16(3)
XY (XRD) 0.07 (1) 0.10 (1) 0.15 (1)

XY: Y concentration (mole fraction) in monazite

Table 3 -  Comparison between EMP and AEM
analyses from a natural ThSiO4-bearing monazite
from Brazil (Seydoux-Guillaume et al., submitted)

Wt % EMP AEM**

SiO2 1.47 (15) 2.55 (54)
P2O5 28.64 (29) 29.79 (96)
CaO 0.45 (9) 0.90 (24)

La2O3 14.95 (15) 14.01 (39)
Ce2O3 31.50 (32) 29.91 (68)
Pr2O3 3.24 (32) 3.15 (25)
Nd2O3 10.51 (11) 10.45 (48)
Sm2O3 2.11 (21) 1.83 (48)
ThO2 7.13 (71) 7.42 (60)

Σ* 100 99,99

Σ* has been set to 100%
** average of 11 analyses
Errors in brackets (2σ)



Table 4 -  Relative amounts of phases in the run products and their lattice parameters

Run No. T X
ThSiO4

Rel. amounts of products Lattice parameters of monoclinic monazite Lattice parameters of tetragonal phases

(weight fraction) Xenotime Thorite

 (°C) Bulk Mz Xe Qz Th a (Å) b (Å) c (Å) ß (°) V (Å
3
) a = b (Å) c (Å) V (Å

3
) a = b (Å) c (Å) V (Å

3
)

MXTh99-31 800 0.10 0.64 0.26 0.10 6.768(1) 6.991(1) 6.461(1) 103.52(1) 297.26(9) 6.891(1) 6.029(1) 286.29(9)

MXTh99-35 900 0.10 0.69 0.22 0.10 6.763(1) 6.984(1) 6.458(1) 103.55(1) 296.56(5) 6.889(1) 6.028(1) 286.07(9)

MXTh99-54 1000 0.10 0.72 0.21 0.07 6.753(1) 6.975(1) 6.452(1) 103.57(1) 295.50(5) 6.890(1) 6.027(1) 286.14(5)

MXTh0-5 1100 0.10 0.75 0.18 0.07 6.738(1) 6.960(1) 6.439(1) 103.60(1) 293.55(4) 6.888(1) 6.024(1) 285.79(8)

MXTh99-38 900 0.20 0.74 0.14 0.12 6.753(1) 6.970(1) 6.457(1) 103.65(1) 295.38(5) 6.894(1) 6.035(1) 286.85(9)

MXTh99-55 1000 0.20 0.77 0.13 0.10 6.745(1) 6.964(1) 6.454(1) 103.66(1) 294.62(5) 6.897(1) 6.036(2) 287.13(16)

MXTh0-6 1100 0.20 0.81 0.10 0.09 6.733(1) 6.950(1) 6.442(1) 103.69(1) 292.89(4) 6.892(2) 6.033(2) 286.63(12)

MXTh99-45 600 0.50 0.39 0.03 0.02 0.56 6.776(4) 6.985(4) 6.475(3) 103.90(5) 297.52(28) 6.925(12) 6.058(17) 290.50(96) 7.093(3) 6.270(3) 315.44(28)

MXTh99-44* 800 0.50 0.51 0.01 0.47 6.767(2) 6.972(2) 6.473(2) 104.12(2) 296.21(14) 6.925(10) 6.066(14) 290.89(80) 7.078(2) 6.263(2) 313.85(16)

MXTh99-47 900 0.50 0.69 0.02 0.29 6.757(1) 6.961(1) 6.471(1) 104.26(1) 295.04(12) 6.930** 6.097** 292.81** 7.070(2) 6.253(2) 312.60 (18)

MXTh99-56 1000 0.50 0.83 0.10 0.07 6.748(1) 6.952(1) 6.468(1) 104.35(1) 294.00(4) 6.944(3) 6.090(3) 293.71(36)

MXTh0-7 1100 0.50 0.89 0.09 0.02 6.738(1) 6.941(1) 6.458(1) 104.31(1) 292.67(4) 6.894(6) 6.086(9) 293.42(52)

CePO4 synthetic (Gratz and Heinrich, 1997) 6.800 7.027 6.474 103.46 300.84

YPO4 synthetic (Gratz and Heinrich, 1997) 6.883 6.021 285.28

Huttonite (Taylor and Ewing, 1978) 6.784 6.974 6.500 104.92 297.15

Thorite (Taylor and Ewing, 1978) 7.133 6.319 321.51

Mz: monazite, Xe: xenotime, Th: thorite,  Qz: quartz
*contains traces of thorianite ThO2

**not refined
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It is clear that compositional data acquired by AEM have distinctly larger uncertainties

than those obtained by standard EMP analysis. Matrix effects are difficult to correct and it is

therefore necessary to use standards that have very similar compositions to the investigated

minerals. The kAB-factor for a certain element varies with composition. For example, in

synthetic CePO4 the kCe,P factor is 2.99, whereas in natural monazite with substantial amounts

of LREE, Th, and U it is 2.01. In synthetic YPO4 kY,P is 2.72 and in synthetic Ce0.98Y0.02PO4,

it  is 3.18. The major problem was to find suitable standards to determine the kAB-factors used

for quantification based on the thin film approximation and the ratio technique described by

Cliff & Lorimer (1975). It is shown below that analyses of synthetic monazites with high

amounts of ThSiO4 component (> 20 mol%) are of somewhat poorer quality. We believe that

this is because a monazite standard with high amounts of ThSiO4 was not available. Another

problem is that the SiK and YLi-lines and the YL and PK-lines in the X-Ray spectra overlap.

Therefore, the YK-line was used for quantifying instead of the YL-line, thus improving the

results of the Y measurements. However, overlapping of the YLi
 and SiK-lines has a

significant influence on the xenotime analyses, because YPO4 is the major constituent of

xenotime. Raw xenotime analyses always showed too large SiO2 concentrations and all

analyses needed to be corrected for that. Th in xenotime is incorporated by a coupled

substitution Th
4+

 + Si
4+

  (Ce,Y)
3+

 + P
5+

. Based on this substitution, the molar amount of Si

must not exceed that of Th. Therefore, all components given in Tables 5 and 6, and Figure 1

are calculated using the normalisation on Ce+Y+Th and not the normalisation on P+Si.

2-4 - X-Ray diffraction (XRD)

All run products were investigated with a focusing STOE X-ray powder-

diffractometer (Stadi P) using CuKα1 radiation and a position-sensitive detector using

resolution of 0.02°. The diffractometer was calibrated externally using the NBS SRM-640b

silicon standard. The unit-cell refinements were performed using the Rietveld-refinement

program of the GSAS software package (Larson & Von Dreele, 1988).

3 – Results

The relative amounts of phases in the run products are given in Table 4. At XThSiO 4
bulk of

0.1 and 0.2, respectively, the products were exclusively composed of monazite and xenotime



Table 5 -  Compositions of produced monazites obtained by AEM

Run No. MXTh99-31 MXTh99-35 MXTh99-38 MXTh99-54 MXTh99-55 MXTh0-5 MXTh0-6
T (°C) 800 900 900 1000 1000 1100 1100

P (MPa) 200 100 100 200 200 200 200
XThSiO4 (bulk) 0,1 0,1 0,2 0,1 0,2 0,1 0,2

Number of analyses 14 16 18 14 12 15 15
Weight %

SiO2 1.92 ± 0.40 1.81 ± 0.29 3.96 ± 0.44 1.86 ± 0.28 4.11 ± 0.39 2.13 ± 0.26 4.38 ± 0.48
P2O5 28.23 ± 1.14 27.29 ± 1.04 25.81 ± 1.02 27.84 ± 0.86 25.25 ± 0.92 27.94 ± 0.83 25.95 ± 1.06

Ce2O3 54.09 ± 5 52.29 ± 4.18 39.79 ± 3.22 48.61 ± 3.67 37.73 ± 3.12 45.77 ± 3.34 37.06 ±3.62
ThO2 9.37 ± 0.97 10.44 ± 1.18 21.56 ± 1.68 10.85 ± 0.71 21.52 ± 1.52 10.38 ± 0.69 20.42 ± 1.80
Y2O3 6.35 ± 1.16 8.16 ± 1.23 8.91 ± 1.34 10.82 ± 1.64 11.4 ± 1.63 13.77 ± 1.75 14.2 ± 2.00

Σ 99.96 99.99 100.03 99.98 100.01 99.99 102.01
Cations calculated on the basis of 4 Oxygens

Si 0.075 0.071 0.156 0.072 0.162 0.082 0.167
P 0.932 0.912 0.863 0.916 0.844 0.908 0.840

Ce 0.772 0.755 0.575 0.692 0.546 0.643 0.519
Th 0.083 0.094 0.194 0.096 0.193 0.091 0.178
Y 0.132 0.171 0.187 0.224 0.240 0.281 0.289
Σ 1.993 2.004 1.975 2.000 1.985 2.004 1.992

P+Si 1.006 0.983 1.019 0.988 1.007 0.989 1.007
Ce+Th+Y 0.987 1.021 0.956 1.011 0.979 1.015 0.985

Mole fraction of components
CePO4 0.78 0.74 0.60 0.68 0.56 0.63 0.53
ThSiO4 0.09 0.09 0.20 0.10 0.20 0.09 0.18
YPO4 0.13 0.17 0.20 0.22 0.24 0.28 0.29

Errors are the total relative error.



Table 6 -  Compositions of produced xenotimes obtained by AEM

Run No. MXTh99-31 MXTh99-35 MXTh99-38 MXTh99-54 MXTh99-55 MXTh99-56 MXTh0-5 MXTh0-6
T (°C) 800 900 900 1000 1000 1000 1100 1100

P (MPa) 200 100 100 200 200 200 200 200
XThSiO4

 (bulk) 0.1 0.1 0.2 0.1 0.2 0.5 0.1 0.2

Number of analyses 7 8 8 10 8 1 2 3
Weight %

SiO
2

3.89 ± 0.90 4.00 ± 0.66 4.59 ± 0.76 3.76 ± 0.47 4.76 ± 0.89 7.70 3.95 4.47

P
2
O

5
38.57 ± 1.63 37.80 ± 1.78 36.09 ± 2.19 36.86 ± 1.64 35.16 ± 2.03 24.60 37.40 37.73

Ce
2
O

3
1.83 ± 1.07 1.31 ± 0.86 2.18 ± 1.82 1.94 ± 0.90 1.90 ± 1.34 2.30 1.70 2.90

ThO
2

2.64 ± 0.48 1.71 ± 0.63 4.73 ± 1.35 1.31 ± 0.46 4.35 ± 1.07 15.40 1.05 3.97

Y
2
O

3
53.09 ± 7.17 55.18 ± 8.07 52.44 ± 8.69 56.11 ± 8.46 53.85 ± 8.79 50.10 55.85 50.90

Σ 100.02 100.00 100.03 99.98 100.02 100.10 99.95 99.97
Cations calculated on the basis of 4 Oxygens

Si 0.116 0.120 0.140 0.114 0.147 0.266 0.119 0.135
P 0.975 0.958 0.935 0.946 0.916 0.720 0.952 0.962

Ce 0.020 0.014 0.024 0.022 0.021 0.029 0.019 0.032
Th 0.018 0.012 0.033 0.009 0.030 0.121 0.007 0.027
Y 0.843 0.880 0.854 0.905 0.882 0.922 0.894 0.816
Σ 1.972 1.984 1.986 1.995 1.997 2.058 1.990 1.971

P+Si 1.091 1.078 1.075 1.060 1.063 0.986 1.071 1.097
Ce+Th+Y 0.881 0.906 0.911 0.936 0.934 1.073 0.919 0.875

Mole fraction of components
CePO

4
0.02 0.02 0.03 0.02 0.02 0.03 0,02 0.04

ThSiO
4

0.02 0.01 0.04 0.01 0.03 0.11 0.01 0.03

YPO
4

0.96 0.97 0.94 0.97 0.95 0.86 0.97 0.93

Errors are the total relative error.
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at all temperatures, plus some additional quartz which was added in excess to the starting

mixture. Monazite is always the dominant phase. At XThSiO 4
bulk of 0.5, thorite additionally formed

in large amounts at 600°C, 800°C, and 900°C, but was absent at 1000°C and 1100°C. Where

thorite is present, the amount of xenotime is very small (Table 4).

3-1 - Compositions of monazite and xenotime determined by AEM

Compositions of coexisting monazite and xenotime are presented in Tables 5 and 6

and in Figure 1. We have, unfortunately, no reliable chemical compositions of thorite, because

suitable AEM standards for the CePO4 and YPO4 components in thorite were not available.

At XThSiO 4
bulk of 0.1 and 0.2, respectively, the ThSiO4 component is partitioned almost exclusively

in monazite at all temperatures (Figure 1). Xenotime is very poor in CePO4 and ThSiO4

components and has, given the relatively large analytical uncertainties, nearly the same

composition at all temperatures. The compositions of monazite and xenotime synthesised

from these bulk compositions are consistent with the boundaries of the miscibility gap of the

CePO4-YPO4 binary (Gratz & Heinrich, 1997). The temperature dependence of this gap is

traced into the ternary (dotted lines in Figure 1). Monazite incorporates most of the ThSiO4

component and the gap shrinks towards the YPO4 apex as more YPO4 component is

incorporated with increasing temperature. Since the ThSiO4 component is always taken up by

monazite, XThSiO 4
mon does not significantly vary with temperature at a given bulk composition.

Therefore, XThSiO 4
mon is ~ 0.09 at XThSiO 4

bulk = 0.1, and ~ 0.19 at XThSiO 4
bulk  = 0.2 in the relevant

temperature range (Figs. 1 and 2). XYPO 4
mon increases strongly with temperature, and the

important point is that it increases also with increasing XThSiO 4
mon at given temperature (Fig. 2).

This implies that the monazite limb is systematically shifted towards higher YPO4

concentrations if ThSiO4 is present. It is clear that this has a significant effect on the

monazite-xenotime thermobarometer (see discussion below).

At XThSiO 4
bulk of 0.5, analytical problems did not allow for precise determination of

ThSiO4 in monazite and xenotime. The analytical scatter of monazite compositions produced

in thorite-free experiments at 1000°C and 1100°C are represented by elliptical areas in Figure

1. With respect to their CePO4 and YPO4 concentrations, however, the compositional data

agree with the broadly outlined shape of the miscibility gap in the ternary (Fig. 1). This is also
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Figure 1: Compositions of monazite and xenotime plotted into the CePO
4
-ThSiO

4
-YPO

4
ternary diagram.  Data are from Tables 5 and 6. Ellipses represent scattering of AEM analyses
at high ThSiO

4
 bulk compositions. Data for the ThSiO

4
-free binary system are from Gratz &

Heinrich (1997). Dashed lines represent monazite compositions at the respective temperatures
at 200 MPa. For analytical errors see Tables 5 and 6.

Figure 2: Plot of the concentration of YPO4 in monazite versus temperature at  concentrations
of 0 (filled circles); ~ 0.09 (open circles), and ~ 0.19 (triangles). XThSiO4 in monazite is nearly
independent of temperature for a given bulk composition because ThSiO4 strongly
fractionates into monazite at all temperatures. Data are from Table 5, those for the ThSiO4-
free system from Gratz & Heinrich (1997). For analytical errors see Table 5.
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seen in xenotime compositions indicating that at very high XThSiO 4
bulk , some ThSiO4 is now

incorporated into xenotime (open triangle in Fig. 1).

3-2 - Rietveld refinement results and composition-volume relationships

Relative amounts of the phases along with their refined lattice parameters are given in

Table 4. Details of XRD-patterns from three selected runs at XThSiO 4
bulk = 0.1 and 1000°C;

XThSiO 4
bulk = 0.5 and 1000°C; and at XThSiO 4

bulk = 0.5 and 900°C are shown in Figure 3.

At XThSiO 4
bulk of 0.1 and 0.2 where thorite is absent, the amount of monazite increases with

temperature from 0.64 at 800°C to 0.75 at 1100°C, and from 0.74 at 900°C to 0.81 at 1100°C,

respectively. Simultaneously, the amount of xenotime decreases from 0.26 at 800°C to 0.18 at

1100°C, and from 0.14 at 900°C to 0.10 at 1100°C. This simply reflects the increasing

incorporation of xenotime component into monazite at higher temperatures, in line with the

fact that xenotime is always poor in the CePO4 component.

There is also agreement between compositional data of the REE-phosphates obtained

by AEM and their lattice parameters. The monoclinic monazite structure is considerably

denser than the tetragonal xenotime structure. The cell volume of pure CePO4-monazite is

300.84 Å
3
, that of pure YPO4-xenotime 285.28 Å

3
. Pure thorite, i.e. ThSiO4 with xenotime

structure has 321.51 Å
3 and pure huttonite, ThSiO4 with monazite structure, 297.15 Å

3

(Taylor & Ewing, 1978; Table 4). A hypothetical YPO4-phase with monazite structure had a

cell volume of 271.19 Å
3
 and a hypothetical CePO4-phase with xenotime structure 321.35 Å

3

(Gratz & Heinrich, 1997, 1998). In run products with XThSiO 4
bulk of 0.1 and 0.2, the unit-cell

volumes of xenotimes are in the range of 285.8 Å
3
 to 286.9 A

3
 which is very similar to that of

pure YPO4 (see also Fig. 3a). Given the distinctly larger cell volumes of tetragonal CePO4 and

ThSiO4, this shows that xenotimes are in fact very poor in these components and have

uniform compositions close to pure YPO4. In contrast, the cell volume of monazite is

significantly reduced in all run products (Fig. 3a-c). At XThSiO 4
bulk of 0.1, it decreases with

increasing temperature from 297.26 Å
3 at 800°C to 293.55 Å

3 at 1100°C, and at XThSiO 4
bulk of 0.2

from 295.38 Å
3
 at 900°C to 292.89 Å

3
 at 1100°C (Table 4). Since the difference between the

unit-cell volumes of monoclinic YPO4 and CePO4 is large (29.65 Å
3
), and that of huttonite

and CePO4 small (3.69 Å
3
), the effect is mainly caused by the enhanced incorporation of the
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Figure 3: Details of the XRD patterns from MXTh99-54 (1000°C, XThSiO4

bulk = 0.1), MXTh99-56

(1000°C, XThSiO4

bulk  
= 0.5) and MXTh99-47 (900°C, XThSiO4

bulk  = 0.5). Arrows indicate shifts of

some reflections relative to the pure endmembers due to incorporation of ThSiO4, CePO4 and

YPO4. Reflections are broader at high ThSiO4 concentrations and at lower temperature. At

XThSiO4

bulk  = 0.5, thorite is present at 900°C and disappeared at 1000°C.
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Figure 4: Unit cell volume of monazite at XThSiO4

bulk  = 0.1 (open circles) and 0.2 (open squares)

versus a) XThSiO4

mon   and b) XYPO 4

mon . Data are from Tables 4 and 5. Since XThSiO4

mon  is nearly

independent of temperature at a given bulk composition (a, see also Fig. 2), the decreasing

volume results mainly from increasing incorporation of YPO4 with increasing temperature

(b).
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YPO4- component. The influence of the ThSiO4 component on the cell volume of monazite is

minor. This is shown in Figure 4 where a linear volume reduction with increasing

incorporation of ThSiO4 (a) and YPO4 (b) is obvious. At XThSiO 4
bulk of 0.1, XThSiO 4

mon is ~ 0.09 at all

temperatures (see above) and the cell volume of monazite decreases by about 4 Å
3 as XYPO 4

mon

increases from 0.13 to 0.28. A similar range exists for XThSiO 4
mon of ~ 0.19. If XThSiO 4

mon increases

from ~0.09 to ~0.19 at constant temperature, the cell volume is decreased by less than 0.5 Å
3
.

In summary, the compositional results obtained by AEM are fully supported by determination

of the lattice parameters via the Rietveld technique.

For experiments with 50 mol% ThSiO4 in the bulk, thorite appeared as additional

phase at low temperatures indicating ThSiO4 saturation of both REE-phosphates. Rietveld

analysis showed that the amount of thorite decreases strongly with increasing temperature

from 0.56 (weight fraction) at 600°C to 0.47 at 800°C, and to 0.29 at 900°C, accompanied by

an increasing amount of monazite which is 0.39 (weight fraction) at 600°C, 0.51 at 800°C,

and 0.69 at 900°C (Table 4). At 1000°C and 1100°C, the amount of monazite further

increased and thorite is absent (Fig. 3b,c). Obviously, the incorporation of the ThSiO4-

component into monazite depends strongly on temperature and the miscibility gap along the

monazite-thorite-rich side of the ternary narrows rapidly as temperature increases (see below).

Though precise compositional data at XThSiO 4
bulk = 0.5 are not available, the evolution of the

system to higher temperatures is also seen in the lattice parameters of the phases. The unit-cell

volume of monazite continuously decreases from 297.52 Å
3 at 600°C to 292.67 Å

3
 at 1100°C,

mainly reflecting the enhanced incorporation of the YPO4 component. Again, the influence of

the ThSiO4 component on the cell volume of monazite is only minor (see above). The unit cell

of xenotime at 800°C is 290.89 Å
3
, considerably larger than in runs at all temperatures with

low ThSiO4-contents in the bulk. Because thorite has a larger volume this indicates that at

XThSiO 4
bulk = 0.5 significant amounts of ThSiO4 are incorporated into xenotime, in line with AEM

results (open triangle in Fig. 1). There is also a continuous increase of the xenotime cell

volume with increasing temperature from 290.50 Å
3
 at 600°C to 293.42 Å

3
 at 1100°C. This is

interpreted as enhanced ThSiO4 incorporation with temperature. The effect cannot result from

enhanced CePO4 incorporation because this is not seen at low bulk ThSiO4 contents. Finally,

the unit cell volume of thorite is 315,44 Å
3 at 600°C, 313.85 Å

3 at 800°C, and 312.60 Å
3 at

900°C, which is by far smaller than that of pure thorite (321.51 Å
3
; Table 4). The unit-cell
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volumes of thorite and hypothetical CePO4 in thorite structure are very similar (321.51 Å
3
 vs.

321.35 Å
3
), that of YPO4, however, much smaller (285.28 Å

3
). Thus, the smaller cell volume

of thorite results from large amounts of YPO4 in the structure, which is enhanced by

increasing temperature.

4 – Discussion

4-1 - A tentative diagram of phase relations in the ternary system CePO4-YPO4-ThSiO4

We have shown above that, despite the somewhat limited analytical database, bulk

composition, phase compositions, and relative amounts of the phases agree within analytical

errors indicating that equilibrium conditions have been achieved. This allows for establishing

a tentative phase diagram of the CePO4-YPO4-ThSiO4 ternary at the relevant P-T-conditions.

Three isothermal sections at 200 MPa and 600°C, 900°C, and 1000°C are shown in Figure 5.

At low ThSiO4 concentrations in the bulk, where the system is two-phase, monazite and

xenotime compositions are well constrained. Tie-lines indicate preferential incorporation of

the ThSiO4 component into monazite at all temperatures. At high XThSiO 4
bulk , the system is three-

phase, however, the three-phase stability field strongly shrinks with increasing temperature.

Monazite has the most flexible structure expanding its stability field with temperature by

enhanced incorporation of both the ThSiO4 and the YPO4 components. Xenotime has a very

small stability field, which is moderately expanded towards the ThSiO4 apex as temperature

increases. The shape of the thorite stability field is uncertain because appropriate analytical

data are not available.

An important point is that the ThSiO4 phase in our experiments is thorite, thus

confirming earlier experiments by Seydoux & Montel (1997) on the thorite-huttonite phase

transition which revealed that thorite is the stable polymorph at low P-high T, and huttonite at

high P-low T conditions. This is further supported by phase assemblages in low to medium

grade metapelites where monazite + xenotime + thorite parageneses have been described (e.g.

Franz et al., 1996). REE-, Y-, and Th-rich assemblages in a variety of granites showed that

thorite coexisting with monazite and xenotime is always enriched in the HREE+Y- relative to

the LREE components (Bea, 1996), in line with the shape of the thorite stabilitity field

derived from our experiments (Figure 5). In the rocks described by Bea (1996) ”some P-rich

ThSiO4 varieties having high concentrations of LREE are probably intermediate monazite-
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Figure 5: Tentative diagram of phase relations in the CePO4-ThSiO4-YPO4 ternary

system at 600°C, 900°C and 1000°C at 200 MPa. At XThSiO4

bulk  = 0.5 and equal amounts of

CePO4 and YPO4 (open triangle) the system is three-phase at 900°C, and two-phase at

1000°C (Table 4). The diagram assumes tetragonal thorite as the stable ThSiO4 polymorph

along the complete temperature range (see text).
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huttonite phases” which exactly correspond to our ThSiO4-rich monazites coexisting at high

temperatures. Noteworthy, monazites with XThSiO 4
mon of about 0.5, such as formed in runs

MXTh99-56 and MXTh0-7 and analysed in granites by Bea (1996) are termed huttonitic

monazite (Bowie & Horne, 1953) though thorite is the coexisting ThSiO4 polymorph at low

pressure conditions.

4-2 - The monazite-xenotime thermobarometer in presence of ThSiO4

The thermobarometric potential of monazite coexisting with xenotime lies in the fact

that incorporation of the HREE and particularly of Y into monazite is strongly temperature

and only slightly pressure-dependent. Experimental calibrations of the monazite

geothermometer are restricted to the binary system CePO4-YPO4 (Gratz & Heinrich, 1997),

the ternary sytem CePO4-GdPO4-YPO4 (Gratz & Heinrich, 1998), and the (REE+Y)PO4

multicomponent system where the relative amounts of REE corresponded to REE

distributions typical for metapelitic rocks (Andrehs & Heinrich, 1998). An empirical

calibration using monazite-xenotime pairs from a suite of metapelites that equilibrated over a

large P-T range was presented by Heinrich et al. (1997). Based on these calibrations,

monazite-xenotime equilibria have been successfully applied for thermobarometry and

thermochronometry of a wide range of low to high grade felsic metamorphic rocks (e.g. Pyle

et al., 2001; Viskupic & Hodges, 2001). However, discrepancies do exist, suggesting that in

some cases calculated temperatures exceed true temperatures by about 50 to 100°C. A

reasonable explanation is that the influence of the ThSiO4 component on the thermometer has

been, so far, not considered.

Our experiments have shown that the amount of the YPO4 component in monazite

increases relative to the Th-free system if significant amounts of ThSiO4 are present within

the structure. ThSiO4 favours incorporation of YPO4 resulting in a shift of the monazite limb

and the shrinkage of the miscibility gap. For a nearly constant XThSiO 4
mon of 0.09, XYPO 4

mon  increased

from 0.13 at 800°C to 0.28 at 1100°C, whereas in the Th-free system it ranges from 0.09 to

0.20 along the same temperature range (Fig. 3). Values of XThSiO 4
mon ~ 0.09 correspond to

monazites with about 10wt% ThO2, which are typical upper values for monazites from felsic

metamorphic rocks (Franz et al., 1996; Pyle et al., 2001; Viskupic & Hodges, 2001). Figure 6

shows an XYPO 4
mon  versus temperature plot with the position of the two monazite limbs. The
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Figure 6: Temperature-dependent incorporation of YPO4 into monazite coexisting with

xenotime. Filled circles: Synthetic monazite from the CePO4-YPO4 binary (Gratz and

Heinrich, 1997). Open squares: Natural monazites with varying Th concentrations

equilibrated from greenschist to granulite facies conditions at 300 to 500 MPa (Heinrich et al.,

1997). Open circles: this study; only monazite compositions with XThSiO4

mon  of about 0.09 are

shown, corresponding to XThSiO4

bulk  
= 0.1.
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ThSiO4-free limb using experimental data from Gratz & Heinrich (1997) has been calculated

with:

T (°C) = 439.75 ln(XY) + 1810.4 (1)

For XThSiO 4
mon ~ 0.09 the values of this study have been extrapolated to lower temperatures using

the empirical fit of

T (°C) = 410.62 ln(XY) + 1663.3 (2).

It is obvious that for any given XYPO 4
mon  in the relevant temperature range between 400°C

and 750°C, calculated temperatures are too high by about 50 to 70°C, if the ThSiO4

component in monazite is neglected. This gains further support from observations of Viskupic

& Hodges (2001) on monazite-xenotime pairs in gneisses from the Nepalese Himalaya.

There, populations of monazite with varying ThO2 concentrations on a thin section scale exist.

Calculations using the Gratz & Heinrich thermobarometer gave, for example, 640°C on Th-

poor monazites, in good agreement with phase relations and phase compositions of coexisting

silicates. With the same calibration, however, temperatures of up to 100°C higher resulted for

Th-rich monazites within the same specimen. That the monazite-xenotime thermobarometer

must be corrected for Th is also seen in the empirical calibration of Heinrich et al. (1997;

squares in Fig. 6). Most XYPO 4
mon of monazite-xenotime pairs versus temperature estimated from

silicate phase compositions plot towards higher values, implicitly indicating that ThO2 is

present in most monazites (see also analyses in Franz et al., 1996).

5 - Concluding remark

Thorium incorporation into monazite via the coupled substitution Th + Si  REE + P

is not the only substitution mechanism. The brabantite substitution Th + Ca  2 REE is also

important. Compositions of metamorphic monazite-xenotime pairs show that Th is also

strongly fractionated into monazite if this mechanism is operating (e.g. Franz et al., 1996;

Pyle et al., 2001; Viskupic & Hodges 2001). One may reasonably assume that enhanced

brabantite incorporation would also favour increased incorporation of the xenotime

component, with similar effects on the monazite-xenotime thermobarometer. Quantitative

informations, however, must await further experimental results on the CaThPO4-bearing

system.
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Structure of a natural monazite: behaviour

under heating

“La pensée n’est qu’un éclair au milieu de la nuit. Mais c’est cet éclair qui est tout.”

Henri Poincaré - La Valeur de la science
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An XRD, TEM and Raman study of experimental annealing of natural

monazite

Abstract

The healing of radiation damage in natural monazite has been experimentally studied using XRD, TEM,

Raman microprobe and Cathodoluminescence analysis. The starting material was a chemically homogeneous

monazite from a Brazilian pegmatite with a concordant age of 474 ± 1 Ma showing nm-scale defects induced by

radioactive decay. The X-ray pattern of the unheated starting material revealed two distinct “phases” (A) and

(B). These are interpreted as two monazites with slightly different lattice parameters. Monazite (A) shows sharp

reflections of high amplitudes and slightly expanded lattice parameters compared to a standard monazite. The

second “phase”(B) exhibits very broad reflections of low amplitudes. Two sets of experiments were performed.

First, dry monazite powder was annealed at 500, 800 and 1000°C for 7 days. Each run product was analysed by

X-Ray diffractometry. Second, monazite grains were hydrothermally annealed at temperatures from 500 to

1200°C for about 10 days. TEM observations showed that partial healing of the monazite lattice already

occurred at 500°C and increased gradually with temperature, so that after 10 days at 900°C complete healing was

achieved.

The observations are interpreted accordingly: unheated monazite has a mosaic structure consisting of

two domains (A) and (B), which are basically two monazite crystals with different lattice parameters. Diffraction

domains (A) show sharp reflections of high amplitudes and a well-crystallised lattice with only a small volume

expansion (1%). Diffraction domains (B) exhibit very broad reflections of low amplitudes and represent a

distorted lattice. We suggested that the (A) domains correspond to well-crystallised areas where He atoms are

trapped. The He causes expansion of the (A) monazite lattice. Diffraction domains (B) are interpreted as a He-

free distorted monazite crystal lattice, which can be referred to old alpha-recoil tracks. They are composed of

“islands” with an expanded lattice, induced by the presence of interstitials, and “islands” of a compressed

monazite lattice, induced by presence of vacancies. Both the “islands” will pose stress on the lattice in the

vicinity of the islands. The broadening of the B-reflections is due to the expanded or compressed diffraction

domains and due to the different amount of the distortion.

With increasing temperature He diffuses out of the lattice of monazite, thus inducing a relaxation of the

lattice that results in a decrease of the unit-cell volume, i.e. the positions of the A-reflections shift to smaller dhkl

values. At the same time, the nm-sized defect domains (B) are healed. At 900-1000°C only one phase remains

that is a monazite with well-crystallised lattice and minimum unit cell volume.

Keywords: Monazite • annealing • Helium • XRD • TEM
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1 - Introduction

Monazite, the natural light rare earth orthophosphate, is widely used in U-Th-Pb

geochronology (Parrish 1990) because of its high actinide content (up to 6 wt-% UO2 and up

to 20 wt-% ThO2). In contrast to zircon, monazite is mostly concordant in a U-Pb concordia

diagram (Schärer et al. 1986; Corfu 1988; Smith and Barreiro 1990; Landzirotti and Hanson

1995; Parrish 1995). This U-Pb concordance means that during most geological events the

monazite U-Pb system is either completely reset or remains totally unaffected. To understand

the significance of the U-Pb ages measured from monazite samples, one needs to understand

the mechanism of U-Pb resetting.

Two processes are commonly considered to explain the resetting of an isotopic

system: loss of Pb by volume diffusion out of the monazite grain or dissolution via a

coexisting fluid and precipitation of a new-formed lead-free monazite. Dodson (1973)

investigated the resetting by diffusion theoretically. In this model the resetting results from

the outward diffusion of the daughter elements (here Pb) out of the crystal. This models

introduces the concept of a closure temperature, which depends on the size of the crystal, its

shape, the cooling rate during the geological event, and the diffusion coefficient of the

daughter elements. For example, in a metamict crystal, Pb is able to diffuse relatively fast

along the interfaces between amorphous and crystalline domains in comparison to the

diffusion in the amorphous and in the crystalline domains themselves (Cherniak 1991, 1993;

Murakami et al. 1991; Salje 2000; Weber et al. 1998). The resetting by a dissolution-

precipitation mechanism is based on the dissolution of the crystal in a melt or in a fluid phase,

followed by a re-precipitation of a newly formed crystal without re-incorporation of the

daughter element. No detailed model for dissolution precipitation resetting is available, but

we can predict that the kinetics of dissolution, the solubility of the crystal and the nature of

the fluid phase to be important parameters.

However, for the U-Th-Pb systems, the radioactive decay produces also radiation

damage that may partially or totally destroy the crystal lattice, thus producing a so-called

metamict crystal. Whatever the mechanism of resetting is considered to be, it can be

anticipated that the kinetics of resetting will be strongly influenced by the degree of

metamictization of the crystal.
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Previous studies on metamictization:

The monazite studied in the present work contains considerable amount of 232Th, 238U

and 235U (Table 1). Their radioactive decay produces 6, 8, and 7 α-particles, respectively,

until 208Pb, 206Pb and 207Pb are finally created. During an α-event a heavy atom nucleus

liberates its energy by ejecting an α-particle (4He-nuclei), which carries 98% of the initial

energy. The α-particle, which has an energy between 3.9 to 8.4 MeV (Firestone and Shirley

1996), is ejected to about 10-40 µm (Owen 1988; Ewing et al. 2000; Nasdala et al. 2001b)

from the point of disintegration. It dissipates most of its energy by ionisation along of its path

with limited elastic collisions occurring at the end of its trajectory (Nasdala et al. 2001a) and

produces isolated defects (~ 100 atomic displacements). These isolated defects or Frenkel

pairs consist also of vacant and interstitial sites that may increase the unit-cell volume of the

crystal. In contrast, the remaining nucleus is recoiled in an opposite direction to about 10-20

nm from the α-particle, according to the principle of momentum conservation, and causes

collision cascades (~ 700-1000 atomic displacements) (Gögen and Wagner 2000; Nasdala et

al. 2001b). Most of the atomic displacements leading to amorphization of a crystal lattice are

caused by alpha-recoil nuclei (Ewing et al. 1995; 2000; Nasdala et al. 1996; Weber et al.

1998).

In contrast to zircon (Speer 1982), metamict monazite is rarely found in nature (Ewing

1975). Even old, radioactive monazites are mostly crystalline, despite the intensive radiation

doses they received. However, there is some evidence of radiation damage in natural monazite

grains, which are limited to isolated domains within the crystal (Black et al. 1984; Meldrum et

al. 1998). This suggests that, even at low temperature, the monazite lattice is healed easily

(Boatner and Sales 1988).

Radiation damage in minerals can also be induced by using external heavy-ion

irradiation. For most crystals it is possible to define an amorphization dose above which the

crystal is totally metamict (amorphous state). The amorphization dose increases with

increasing temperature and reaches a critical temperature above which amorphization can no

longer be achieved, because the crystal lattice is faster thermally reconstructed than it is

destroyed.

The results of intensive irradiation studies carried out on silicates and phosphates with

monazite or zircon structure can be summarised as follows. At room temperature, the

amorphization dose is similar for all the investigated structures. It shows that monazite is not

specifically resistant to radiation damages. The main difference is based on the critical
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temperature, which for monazite is in the range 100-200°C, but for zircon is above 1000°C

(Meldrum et al. 1996; 1997; 1998; 2000). Therefore monazite is able to restore its structure at

low temperature, although it is not specifically resistant to radiation damage.

Previous works on the annealing of monazite provided different results. Karioris et al.

(1981) in a X-ray diffraction (XRD) study, and Meldrum et al. (1998) in a Transmission

Electron Microscopy (TEM) study, both using an ion-beam-amorphised monazite, observed

recrystallization at 300 and 450°C respectively. In contrast, in a XRD study Smith and Giletti

(1997) completely healed a natural crystalline monazite between 800°C and 1100°C.

The present paper shows the results of annealing experiments using a natural

crystalline monazite. Using XRD and TEM (High-Resolution Transmission Electron

Microscopy (HRTEM) and Dark Field (DF)), the annealing of radiation damages was

evaluated. The experimental work is completed by first attempts to document the structural

recovery of heat-treated monazites by Raman spectroscopic and CL (cathodoluminescence)

analyses. Implications of our results for U-Pb geochronology and nuclear waste storage are

discussed.

2 - Experimental

2-1 - Starting material

A yellow-orange single crystal of monazite (3 ✕  2 cm in size) from a Brazilian

pegmatite (Cruz et al. 1996) was used for this study. Scanning electron microscopy and

optical microscopy observations showed that the crystal is almost free of solid or fluid

inclusions. The chemical composition was determined using electron microprobe Cameca SX

50. The operating conditions were given in Förster (1998). The crystal is homogeneous on the

micron scale. It contains about 1300 ppm of U, 69000 ppm of Th and 1600 ppm of Pb (Table

1).

The age of the crystal was determined by U-Pb dating. It is concordant in a U-Pb

concordia diagram at 474 ± 1 Ma (Seydoux et al. 1999; Seydoux-Guillaume et al. submitted).

From the Pb, U and Th content and the age, a time-integrated α-dose of about 2.43 ✕  1016

α/mg is calculated, which corresponds to about 2 dpa (displacements per atom).

Previous X-ray diffraction patterns obtained with Si as an internal standard showed that

the starting material is well crystallised and following cell-parameters were derived:

a=6.815(1) Å, b=7.021(1) Å, c=6.496(1) Å, ß=103.91(1)°.



Chapter II - Structure of a natural monazite: behaviour under heating

43

Table 1 - EMP analyses of unheated monazite (Moacir 0).

Oxides Wt % Cations
La2O3 14.51 0.860
Ce2O3 30.59 1.799
Pr2O3 3.14 0.184
Nd2O3 10.20 0.585
Sm2O3 2.05 0.114
Gd2O3 0.94 0.050
Dy2O3 0.11 0.006
Er2O3 0.05 0.002
SiO2 1.42 0.229
Y2O3 0.71 0.061
P2O5 27.81 3.782
CaO 0.44 0.076
ThO2 6.92 0.253
UO2 0.13 0.005
PbO 0.16 0.007
Total 99.19 8.011

The data represent an average of 30 analyses of a

400 µm in diameter single grain. Cations per

formula unit are calculated on the basis of 16

Oxygens.

Table 2 - Experimental conditions of annealing experiments.

Run Description Temperature Pressure Duration
(°C) (bar) (days)

VRM97-1 single grain 500 1000 12
VRM97-2 " 800 " 15
VRM98-1 " 900 7000 10

VRM97-10 " 1000 " 7
VRM97-6 " 1200 " 5
Mo500-24 powder 500 1 1
Mo500-48 " " " 2
Mo500-72 " " " 3
Mo500-96 " " " 4
Mo500120 " " " 5
Mo500-6d " " " 6
Mo500-7d " " " 7
Mo50014d " " " 14
Mo50030d " " " 30
Mo800-7d powder 800 1 7
Mo80014d " " " 14
Mo80021d " " " 21
Mo80030d " " " 30
Mo10007d powder 1000 1 7
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2-2 - Annealing experiments

Dry and wet annealing experiments were performed. Dry annealing was carried out by

heating monazite powdered at different temperatures and run durations, in order to study the

evolution of XRD patterns with temperature and time. The starting monazite was crushed in

an agate mortar into a fine powder with a grain size in the range of < 1 µm to 20 µm (Figure

1a). About 20 mg of this powder was heated for 7 days at 500, 800 and 1000°C in a platinum

crucible using a chamber furnace Heraeus K1252 (Table 2). In order to investigate the

kinetics of annealing, experiments at 500°C and 800°C were performed for different run

durations (Table 2). Subsequently, run products were prepared for X-ray powder diffraction

investigations.

Single grains of the starting monazite were heated hydrothermally, in order to study

the evolution of the lattice healing with temperature. Monazite with a grain size of 200-

400µm was used as a starting material. The grains were abraded by compressed air (1.15 bars,

20 hours) and grains free of inclusion, free of impurities, and well-rounded (Figure 1b) were

selected carefully for the experiments (Seydoux-Guillaume et al. submitted). 10 grains were

placed in a platinum capsule together with 20µl of ultrapure water. The capsules

(15✕ 3✕ 0.2mm) were sealed by welding and checked for leaks by heating them at 110°C for

24 hours. Experiments were carried out in standard cold seal hydrothermal pressure vessels at

2 kbar and 500 and 800°C and in an internally heated pressure vessel at 7 kbar and 900, 1000,

and 1200°C (Table 2). Run durations were about 10 days. Maximum error in the temperature

measurements was ± 10 °C. At the end of each run, the vessels were quenched to room

temperature within a few minutes. Run products were washed with ultrapure water and

prepared for TEM.

2-3 - Analytical methods

- XRD

1 mg of each powder of monazite was measured in transmission mode using a fully

automated STOE STADI P diffractometer (Cu-Kα1 radiation) equipped with a primary

monochromator and a 7°-position sensitive detector (PSD). The spectra were recorded in the

range of 5-125 (2θ) using a step interval of 0.1°. The resolution of the PSD was set to 0.02°.

Counting time was set to 135 s per detector step. Peak positions were calibrated externally

using the NBS SRM-640b silicon standard. The unit-cell refinements were performed using

the Rietveld-refinement program of the GSAS software package (Larson and Von Dreele
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1988). XRD patterns were also recorded for all samples in the range of 26-28° (2θ), which

corresponds to the position of the reflection (200) of the monazite. Counting time was set to

1000 s per detector step. XRD patterns in the range of 26-28° (2θ) were fitted by a Gauss +

Lorentz Area function, in order to measure the full width at half maximum (FWHM),

amplitudes, areas and diffraction maximum positions of the (200) reflection.

- TEM

The single crystals were cut in random orientation and TEM foils were prepared by

hand polishing and ion milling at 5 kV. TEM studies were carried out using a Philips CM 200

TEM operated at 200 kV using a LaB6 electron source. HRTEM images were acquired as

energy filtered images applying a 10 eV window to the zero-loss peak using a Gatan GIFTM

system.

- Raman analysis

Raman spectra were obtained using a Renishaw RM 1000, which is a notch filter-

based Raman spectrometer equipped with Leica DMLM optical microscope  and Peltier-

cooled CCD (charge-coupled device) detector. He-Ne 632.8 nm (3 mW) exitation was used.

Measurements were done with a Leica 50× objective (numerical aperture 0.75). A grating

with 1200 grooves per mm was used, resulting in an effective spectral resolution (apparatus

function) of 3 cm-1. For more experimental details see Nasdala and Massonne (2000).

Previous Raman measurements had shown that the FWHM of the ν1(PO4) Raman band,

which is used to monitor the degree of short-range order, does not show any significant

orientational dependence (Nasdala et al. 1999). Therefore, the polished monazite samples

(prepared in microprobe mounts with random crystallographic orientation) were oriented

under the Raman microscope to get a high ν1(PO4) Raman band signal.

- Cathodoluminescence

CL images of monazites were taken using a JEOL JXA 8900 RL electron microprobe.

The voltage was set to 20 kV with a beam current of 50 nA. As the absolute CL signal

intensity emitted from a sample is most strongly affected by the experimental conditions,

samples to be compared were brought simultaneously in the vacuum chamber and were

analysed with exactly the same experimental conditions (identical size of scanned area,

constant signal amplification, constant exposure time). Although conclusions from the
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absolute intensities of the CL emission are widely limited, relative comparison of intensities is

possible between images taken of the same analysis run.

3 - Results

3-1 - X-ray diffraction analysis

- Unheated monazite:

The diffraction pattern of unheated monazite (Figure 2a) shows sharp reflections of

relatively high amplitudes. For some reflections a broadening at the reflection bases was

observed. This broadening seems to be more pronounced along the a-direction, e. g. (200)

reflection between 26-28° (2θ). A typical diffraction pattern in the range of 26-28°(2θ) of the

unheated monazite is given in figure 2b. It shows one characteristic reflection (A) of high

amplitude, which is very sharp (FWHM = 0.091°) and additionally a broad (FWHM = 0.425°)

shoulder (B) of low amplitude (Table 3). The B-reflection maximum is located at a larger 2θ

value of 27.04° (3.295Å) than the A-reflection maximum, which is located at 26.88° (3.314

Å) (Table 3). The area percentage of A and B reflections are 47.01% and 52.99% respectively

(Table 3). Careful examination of the whole diffraction pattern shows that this is a general

feature of all reflections.

Rietveld-refinement of the unheated monazite, assuming only a single-phase (A) with

a monazite structure, failed. However, introducing a second phase (B) also with monazite

structure resulted in a successful Rietveld refinement. Consequently the patterns were

interpreted as two monazite phases with different lattice parameters (Table 3). Monazite (A)

shows larger lattice parameters (1% in volume) than the reference crystal from Ni et al.

(1995). The lattice parameters of monazite (B) are about the same as that of the reference.

- Evolution with temperature:

In order to evaluate the annealing effect on the lattice of monazite, the (200)

reflections between 26 and 28° (2θ) of the unheated monazite were compared with those of

the monazite heated of 500°C, 800°C and 1000°C (Figure 3). A different evolution of the

sharp reflection (A) and the broad reflection (B) was observed. With increasing temperature

the A-diffraction maximum shifts from 26.88 (3.314 Å) to 27.00° (3.300Å) and maximum

number of counts increases from 7533 to 11226. Annealing causes a reduction of the lattice
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Table 3 - Unit-cell parameters (Å), FWHM (°2θ), amplitude (counts), centre of the maximum diffraction angle

(2θ) and % area for the (200) diffraction maximum (phases A and B) for the unheated monazite and for different

annealing conditions.

Sample N° Moacir 0 Mo500-7d Mo800-7d Mo10007d Moacir 0 Mo500-7d Mo800-7d
A B

a 6.823(1) 6.813(1) 6.801(1) 6.786(1) 6.783(5) 6.788(7) 6.773(6)
b 7.026(1) 7.019(1) 7.012(1) 7.007(1) 7.014(6) 7.001(7) 6.995(7)
c 6.499(1) 6.484(1) 6.468(1) 6.464(1) 6.489(5) 6.471(6) 6.443(6)
ß 103.79(1) 103.73(1) 103.65(1) 103.57(1) 103.69(9) 103.67(10) 103.77(10)
V 302.60(9) 301.22(9) 299.78(6) 298.77(3) 299.98(36) 298.83(42) 296.48(38)

FWHM 0.091(1) 0.093(1) 0.083(1) 0.092(1) 0.425(6) 0.420(14) 0.296(18)
Amplitude 7533 3436 11153 11226 2026 736 1088

Centre 26.88 26.92 26.95 27 27.04(1) 27.08(1) 27.16(1)
% Area 47.01 51.01 75.11 ~100 52.99 48.99 24.89

Run duration for all experiments is 7 days. Numbers in brackets correspond to 2σ errors. Moacir 0 corresponds to
the unheated monazite.

Table 4 - Amplitude ratios of the (200) reflections of the two phases A and B at 500°C and 800°C as a

function of time.

500°C 800°C
Durations (hours) A/A+B B/A+B A/A+B B/A+B

24 0.73 0.27 - -
48 0.84 0.16 - -
72 0.80 0.20 - -
96 0.76 0.24 - -

120 0.74 0.26 - -
144 0.68 0.32 - -
168 0.82 0.18 0.91 0.09
336 0.75 0.25 0.84 0.16
504 - - 0.90 0.10
720 0.79 0.21 0.87 0.13

Table 5 - Spectral parameters of the ν1(PO4) Raman band

Sample Annealing
temperature

Annealing
pressure

Band position
(cm-1)

Measured
FWHM

-1

Corrected
FWHM*

-1

untreated - - 972.2 15.6 ± 1.0 15.0 ± 1.0
VRM97-1 500 1 972.5 13.3 ± 1.0 12.6 ± 1.0
VRM97-2 800 2 974.3 7.2 ± 0.7 5.8 ± 0.7
VRM97-4 900 1 974.4 7.1 ± 0.7 5.7 ± 0.7
VRM98-1 900 7 974.3 7.4 ± 0.7 6.1 ± 0.7

VRM97-10 1000 7 974.4 7.3 ± 0.7 5.9 ± 0.7
VRM97-8 1100 7 974.4 7.3 ± 0.7 5.9 ± 0.7
VRM97-6 1200 7 974.4 7.3 ± 0.7 5.9 ± 0.7

* Measured FWHMs were corrected for the apparatus function (here 3 cm-1) and real FWHMs were
calculated according to Irmer (1985).
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parameters of monazite (A) (Table 3). However the FWHM of (A) remains small and constant

(≈ 0.09°). At 1000°C, the A-lattice parameters approach those of the reference from Ni et al.

(1995).

With increasing temperature the B diffraction maximum decreases in amplitude and

disappears completely at 1000°C.

- Evolution with time:

Figure 4 shows the evolution of the amplitude ratios of A and B reflections at 500°C

and at 800°C as a function of time (ratios are given in Table 4). Significant variations of the

A/(A+B) and B/(A+B) amplitude ratios were not observed, neither at 500°C nor at 800°C as a

function of time. At 500°C the A/(A+B) ratio is about 0.8 and the B/(A+B) ratio is 0.2

whereas at 800°C the A/(A+B) ratio is about 0.9 and the B/(A+B) ratio is 0.1 (Figure 4). The

ratio B/(A+B) decreases with increasing temperature but remains constant during 30 days.

3-2 - Selected Area Diffraction and HRTEM observations

SAD patterns of the unheated monazite (Figure 5a) always show sharp reflections. No

differences between these SAD patterns and the SAD patterns of the sample heated at 900°C

were observed. However, HRTEM image of the unheated monazite revealed isolated areas (5

nm) where the lattice fringes were blurred or absent (Figure 5a). The distorted areas pose

strain on the lattice in the vicinity, which causes inhomogeneous contrast distribution close to

the distorted areas (Figure 5a). These distorted domains completely disappeared at 900°C:

HRTEM images of this monazite showed undistorted lattice fringes and homogeneous

contrast (Figure 5b).

3-3 - Dark Field images

Dark field (DF) images of the unheated monazite (Figure 6a) show mottled diffraction

contrast as a result of a mosaic structure of the crystal. The slightly different oriented

domains, which represent coherent scattering volumes with slightly varying orientations, are

quite homogeneously distributed in the monazite. The bright areas, e. g. figure 6a, represent

small coherent scattering volumes, which have no or only a small deviation from the exact

Bragg position. At 500°C these domains were still observed. However, the coherent scattering

volumes became larger (Figure 6b). At 800°C, only small amounts of the distorted domains

remained (Figure 6c) and they are no longer observed at 900°C (Figure 6d).
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Line scan of a certain volume of monazite did not show any detectable change in chemical

composition.

3-4 - Raman measurements

The Raman spectra of monazites annealed at high temperature (Figure 7) show clearly

narrower bands than the spectrum of untreated monazite, which shows however only

moderate band broadening. Monazite annealed at 500 °C shows only moderately decreased

Raman band broadening. Raman spectral parameters obtained from samples annealed

between 800 and 1200 °C are identical within their errors (Table 5). At 800 °C, the recovery

of the short-range order was almost as complete as after annealing at 1200 °C.

3-5 - Cathodoluminescence

The CL results are only briefly documented here and will be described in more detail

elsewhere. CL images of monazites were taken from areas 30 ×120 µm in size. Four sample

images are presented in figure 8. We did not observe notable inhomogeneities, which

confirms the statement above that the studied monazite is chemically homogeneous at a

micro-scale. Series of images were obtained in order to check potential changes of the relative

CL signal intensity with annealing. In figure 8 it can be seen that annealed monazites emit

more intense CL than the untreated sample. Corresponding with the other analytical results,

most changes are observed between 500 and 800°C whereas above 800°C intensity variations

are insignificant.

4 - Discussion

4-1 - Interpretation of the results

X-Ray diffraction patterns of the unheated monazite show the coexistence of two

diffraction domains (A) and (B), which can be interpreted as two monazite phases with

slightly different lattice parameters and different crystallinity (Table 3). The first one (A)

shows sharp reflections of high amplitudes (Figure 2b). This means that (A) corresponds to a

well-ordered, well-crystallised monazite with larger unit-cell volume (302.60 Å3). The second

diffraction domains (B) show broad reflections of low amplitudes, 3.5 times lower than (A)

(Table 3). Diffraction domain (B) is interpreted as a distorted monazite crystal lattice

composed of “islands” with an expanded lattice, induced by presence of interstitials, and
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“islands” of a compressed monazite lattice, induced by presence of vacancies. These

vacancies and interstitials (Frenkel pairs) have resulted from α-recoil damage. The recoiled

heavy nucleus knocks atoms from its lattice position into an interstitial position. The

interstitials induce an expansion of the unit-cell volume of adjacent crystalline areas. The

removed atoms create vacancies causing slight relaxations of the lattice (Figure 9b). Both the

“islands” of expanded and contracted lattice will pose stress on the lattice vicinity, which is

visible in the HRTEM images (Figure 5a) and accounts for the decreased short-range order

causing Raman band broadening. The broadening (XRD) of the B-reflection, with its centre at

the position of the reference reflection from Ni et al. (1995), is due to the expanded or

compressed diffraction domains and additional small particle size. Furthermore, expansion of

the A-domains will exert stress on the (B) domains too. The similar area percentages of the

two domains show that the volume fraction of (A) in monazite seems to be the same as for

(B). The expansion of the A-monazite lattice is discussed below, because it could be due to

several mechanisms like differences in chemical composition compared with the B-monazite,

disordering of atoms in the lattice, i.e. presence of defects in the A-monazite, or incorporation

of He in the lattice.

TEM images (HRTEM and DF) support also the idea of the presence of two domains:

nm-sized domains with blurred lattice fringes and well-crystallised domains (Figure 5a).

According to the XRD results, we refer the (A) phase to these crystallised domains and the

(B) phase to the distorted nm-sized domains. Consequently, the unheated monazite is a

mosaic crystal composed of well-crystallised domains (A) and nm-sized distorted regions (B).

With increasing annealing temperature XRD-patterns exhibited a lower amplitude of

the broad reflections (B) (Figure 3 and Table 3). This is also supported by TEM images (DF)

with a gradual coarsening of the mosaic structure (Figures 6b and c). We interpret this as a

progressive healing of defects in distorted domains (B) with increasing temperature. On the

contrary, the FWHM of (A) reflections remain constant and narrow with increasing

temperature, suggesting that (A)-domains in the unheated monazite were already well

crystallised (Table 3). The complete absence of the broad reflections in the XRD pattern at

1000°C, correlates with the absence of the distorted domains in the HRTEM image (Figure

5b) and a homogeneous diffraction contrast on the DF image (Figure 6d). At 900°C the

presence of a well-crystallised monazite lattice indicates complete healing of the structural

radiation damage.
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Raman spectroscopy was introduced by Nasdala et al. (1995) as a method to estimate

the degree of metamictisation. These authors found that the gradually decreasing short-range

order in metamict zircons causes increasingly broadening of Raman bands, accompanied by

frequency shifts towards lower wavenumbers due to the general widening of bond lengths. In

the case of monazites, however, decreased short-range order and, with that, Raman band

broadening as well as shifted peak positions, can be due to both structural (radiation damage)

and chemical causes (e.g., local lattice distortion due to uneven cation occupation). For

instance, Podor (1995) has demonstrated that Raman spectra of synthetic REE phosphates

show systematic band broadening and peak shifts with increasing actinide content.

Correspondingly, Nasdala et al. (1999) obtained significantly broadened Raman spectra from

natural monazites that were, in spite of Th contents exceeding 10 wt-% and self-irradiation

doses exceeding 5 ✕  1016 α/mg, well crystalline. Therefore, quantitative estimation of the

degree of radiation damage from the Raman spectra alone is limited. It is, however, possible

to analyse the spectra obtained from our chemically identical samples in view of potentially

different contributions of their different degrees of radiation damage to the Raman spectral

parameters. Observations in figure 7 suggest that a major portion of the initial Raman band

broadening is caused by radiation damage. The greatly enhanced short-range order of the

heat-treated samples points clearly to the structural recovery through annealing. This is also

consistent with the observed moderate band shifts towards higher wavenumbers (Table 5; c. p.

discussion on zircon by Nasdala et al. 1995). Furthermore, the observations suggest that most

of the healing of the initially metamict structure must have occurred between 500 and 800°C.

This is in agreement with the results given by the other methods.

Although quantitative conclusions are widely limited at the present stage, the

comparison of the obtained spectra (Figure 7) with the Raman band broadening of other

radiation-damaged minerals such as zircon (Nasdala et al. 1995) and biotite (Nasdala et al.

2001a) suggests that the untreated monazite sample represents only intermediate

metamictization. This is consistent with the TEM observations above. Considering that

minerals are fully amorphised after accumulating about 0.3 – 0.5 dpa (e.g., Weber et al.

1991), it is clear that the studied monazite (self-irradiation dose ≈ 2 displacements per atom

(dpa)) cannot have accumulated the complete radiation damage since the time of its growth

474 Ma ago. In contrast, only a small portion of the damage is stored whereas most of the

radiation damage must have been annealed. The major annealing of the radiation damage has,

however, not affected the concordant U-Th-Pb iotope system of the monazite. The common
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radiation damage annealing without significant Pb loss has been documented by Nasdala et al

(2001b) for zircons from Sri Lanka and other localities.

The results using the CL confirm first, that monazites are poor CL emitters, when

compared with zircon. The recorded CL intensity was generally low and high signal

amplification was needed to produce greyscale images. Thus, CL emission of natural minerals

is not only determined by their chemical composition but is also affected by structural

parameters, in our case the degree of radiation damage.

In the following the small A-lattice parameters, the shift of reflection (A) towards

larger scattering angles and the decrease in amplitude of the B-reflection with increasing

annealing temperature is discussed.

Chemical heterogeneities

The unit cell of monazite depends on its composition. Monazite is a complex solid

solution, and the unit-cell volume of the major end member are 296.23 Å3 (huttonite), 289.47

Å3 (brabantite), 292.95 Å3 (Nd), 305.69 Å3 (La), 299.49 Å3 (Ce), but can be as low as 279.08

Å3 (Gd) (Devidal and Montel 1999). Consequently, two coexisting monazites with different

chemical compositions would have different unit-cell parameters. If a different chemical

composition would be the origin of the peak shift, we should expect a progressive

homogenisation of the crystal with increasing temperature.

A volume increase of the A-monazite due to different chemical compositions is

rejected, because monazite is very homogeneous on a nm-scale. If there is any chemical

heterogeneity in the crystal, it must be beyond the detection and resolution limit of TEM,

which is unlikely. Another argument against this hypothesis is that such a lattice expansion

was recently also reported for monazite (Smith and Giletti 1997), for zircon (Holland and

Gottfried 1955; Murakami et al. 1991) and for pyrochlore (Lumpkin and Ewing 1988). The

lattice expansion might be a more general problem related to the amorphization/annealing

process.

Presence of Frenkel defects

We interpret the distorted (B) domains as old alpha-recoil tracks. These isolated

“islands” are expanded or can be compressed, and consequently compress or expand the

adjacent crystalline regions of the sample (Lumpkin and Ewing 1988; Salje et al. 1999).
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Expansion of (A) results in a compressive stress on (B). However, the scattering volumes

referred to the A-reflections (Table 3) show a well-crystallised lattice with a volume increase

of 1% compared with monazite, which was annealed at 1000°C. The expansion has been

explained previously with the presence of Frenkel defects (Murakami et al. 1986; 1991;

Weber et al. 1998). Such point defects cannot be resolved by HRTEM and XRD, which is

also demonstrated in a recent study by Nasdala et al. (2001a).

With increasing temperature Frenkel defects are healed, i.e. interstitial cations diffuse

into the vacant sites, resulting in a relaxation of the lattice and a shift of the A-reflections to

smaller dhkl values. Alpha-recoil-tracks are healed and consequently the B-domains disappear.

However, with increasing temperature the FWHM of (A) remains constant. Healing of

point defects should have resulted in a reduction of the FWHM, which is not observed. This

suggests that either the effect of the interstitial atoms ordering in the lattice is not significant

enough so that we observe a decrease of the A-FWHM with increasing temperature, or that

this hypothesis is not correct. Furthermore, interstitials in the (A)-lattice will induce an

expansion of the lattice, which can be compensated by vacancies. This would be in

contradiction to the observed increase of the lattice parameters.

Presence of He (Figure 9)

We calculated that the studied monazite has experienced about 2.43 ✕  1016 alpha

decay-events per mg since its growth 474 Ma ago. Ultimately those particles will become He

atoms. We have calculated that each gram of the monazite produced 0.17 mg of He. Direct

measurements of the He content in this monazite are in agreement with this calculation, and

lead to U/Th-He age of 430 Ma (Pik, Personal Communication). This means that since 474

Ma nearly all the He has been stored in the monazite lattice. The accumulation of such a large

amount of He in the monazite lattice should expand the monazite lattice (Weber et al. 1998).

It seems to be unlikely that He is accumulated in the distorted lattice domains,

corresponding to the broad (B) reflections. He cannot accumulate in those areas because the

crystal lattice is distorted, unable to trap atoms. Furthermore, during an alpha-decay event He

is ejected far away (10-30 µm) in the opposite direction as the alpha-recoil-atom (10-20 nm),

i.e. far from the old alpha-recoil-tracks-(B) domains.

The sharp reflections (A) correspond to the well-crystallised areas where He atoms are

homogeneously distributed, thus inducing an expansion of the monazite lattice.

Homogeneously distributed He in these domains will not modify the periodicity of the unit-
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cell, i.e. not modify the FWHM of monazite (=0.09°(2θ)), which is in agreement with our

results.

During heating, the alpha-recoil-tracks are healed, then disappear progressively.

Simultaneously to the healing of the alpha recoil tracks with annealing, He diffuses out of the

monazite lattice, inducing a relaxation of the lattice. This results in a decrease of the unit-cell

volume, i.e. A-reflections shift to higher 2θ values (smaller dhkl values) but the FWHM of (A)

remains constant. Erichsen (1951) has demonstrated that at 600°C, 6 days, only about 50% of

the total He of the monazite is lost. This is in agreement with our results, which still showed

an expansion of domains (A) at 500°C.

A rough estimate of the accumulated He in monazite can be done using a very simple

solid sphere model: 2.5 × 1016 He /mg is about 0.01 mole He in 1 mole of monazite. The

volume occupied by atoms in 1 mole of monazite, calculated from the composition given in

Table 1, is 30.71 cm3. The volume of 0.01 mole of He atoms (atomic radius 1.28 Å) is then

0.053 cm3. The increase in volume of atom due to the presence of He is about 0.2%. The

observed relative variation in volume change of the unit cell during the annealing process is

1%, which is 5 times more than calculated. The discrepancy is not large considering two

arguments. First, in this model, all the He atoms are assumed to be accumulated only in the

volume fraction represented by the sharp-reflections (A). Consequently, the amount of He in

the undistorted lattice volume is larger. Second, the method we used to estimate the effect of

He on the monazite structure is very crude because it takes in account only volumes, and not

geometry. Therefore we conclude that as far as volume is concerned, the He accumulation

may explain the order of magnitude of expansion observed in undistorted regions (A).

Concerning the kinetic of the annealing process, we conclude that after 24 hours and

even at 800°C it is too slow to show significant change of the A/B amplitude ratios (Figure 4

and Table 4) within experimental conditions (here 1 month). This is in agreement with the

slow rate of cation diffusion in monazite (Smith and Giletti 1997; Suzuki et al. 1994; Montel

and Seydoux 1998). However, Erichsen (1951) demonstrates that the He is leaving the

monazite within the first 10-20 hours; then, they observed a “steady state”. We suggest that,

during the 10-20 first hours He diffuses faster out of the crystal due to the radiation damage in

domains (B). In the same time there is a rearrangement of the atoms by diffusion in these

domains. This diffusion will be relatively fast if the vacancies and the interstitials are not so

far from each other. However, there is a moment where the atoms are too far away and where
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the diffusion will be too slow (after 20 hours). This might explain why the A/A+B or B/A+B

ratios are quite constant (Figure 4). Thus, He diffusion becomes to slow and He is trapped in

the monazite lattice.

4-2 - Comparison with previous studies

In the introduction, we mentioned some contradictions in the literature concerning the

annealing temperature of monazite. Two different temperature ranges are proposed: between

300 (Karioris et al. 1981) and 450°C (Meldrum et al. 1998) and between 1100°C (Smith and

Giletti 1997) and 900°C (this study). The first difference, between 300 and 450°C, is

attributed to the different methods used to characterise the process of annealing. Karioris et al.

1981 only used XRD, whereas Meldrum et al. (1998) used HRTEM. However, using only

XRD it is more difficult to exactly determine if a structure is completely healed or if it still

contains some defects (cf. this study). The difference between our study and that of Smith and

Giletti (1997) is explained by the same argument.

Considering the difference between 450°C (Meldrum et al. 1998) and 900°C (this

study) we would argue that the starting material was different for these studies. A completely

metamict monazite, amorphised by 800 KeV Kr+ ions, was used by Meldrum et al. (1998),

and a crystalline monazite with a small amount of defects in the study presented here. The

differences in temperature may be due to the type of healing process: epitaxial

recrystallization vs. diffusion. Epitaxial recrystallization starts immediately after the

beginning of nucleation (not observed in our study). We observed that the diffusion rate is

very slow and healing of defects by diffusion needs higher temperature to be more efficient.

Metamict monazite begins to recrystallise at about 450°C. The lattice defects of crystalline

monazite, which contains isolated distorted domains due to irradiation damage, are healed at

about 900°C. This observation seems to concur very well with recent results of Nasdala et al.

(2001b) who found that isolated Frenkel pairs are a comparably stable type of radiation

damage whereas more radiation-damaged clusters are more easily annealed.

Furthermore, it is important to note that these studies treat annealing without considering the

competing amorphization process. In nature there is always competition between these two

processes. Many studies illustrate that monazite already healed at 200°C (Meldrum et al.

1996; 1997; 1998; 2000...).
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4-3 - Differences between monazite and zircon

The reflection broadening in XRD-patterns mentioned above was already observed in

the Harriman monazite by Smith and Giletti (1997) (Figure 6 page 1052). However the

resolution of their diffractometer was not sufficient to clearly separate the two reflections and

therefore, the authors did not interpret the diffraction pattern. Nevertheless, it is obvious that

the raw monazite (200) reflection is composed of two reflections: a sharp one on the left and a

broad one on the right. The broad reflection decreases with increasing temperature and totally

disappears at the annealing at 1100°C, just like in our study.

Murakami et al. (1991) investigated irradiation damage in zircon. They presented

results of a study of a suite of natural zircon samples from Sri Lanka that span a range of

doses over which the transition from the crystalline to amorphous metamict state occurred.

They defined three different stages of damage accumulation (Figure 17 page 1527 in article).

We did not observe the complete range of these stages in our study. Our starting monazite is

equivalent to Murakami’s Ib stage, which corresponds to a crystalline monazite with nm-sized

distorted domains. Murakami et al. (1986) and (1991) described their XRD (200) pattern in

stage Ib as an asymmetric reflection resulting from a combination of a Bragg diffraction

maximum and a diffuse scattering component (Figure 2 page 749 in Murakami et al. 1986).

We supposed that this asymmetry is visible, only because they used a low-resolution

diffractometer. The Bragg diffraction component may correspond to the reflection (A) in our

study and the diffuse scattering component may be referred to the reflection (B). The authors

report that the symmetric Bragg diffraction maximum shifts to smaller values of 2θ with

increasing dose (increasing unit-cell volume), which is in agreement with our observations.

The diffuse scattering component in the diffraction pattern is assigned to interstitial defects.

This explanation seems not to be appropriate, because the presence of defects should increase

the lattice volume, i.e. a diffuse scattering component should be located at smaller scattering

angles. We suggest to explain the diffuse scattering component in terms of the reflection (B)

observed in our study.

4-4 - Applications for geochronology

Presently, two processes are proposed to explain the resetting of an isotopic system in

monazite: loss of Pb by volume diffusion out of the monazite grain or dissolution by a

coexisting fluid and precipitation of a newly formed monazite.

Pb diffusion in monazite is known to be very slow (Suzuki et al. 1994; Smith and Giletti

1997). However radiation damages can increase the rate of diffusion, because these defects
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provide channels for the diffusion. Resetting of monazite depends on the behaviour of its

crystal lattice with temperature. If the monazite lattice is destroyed by irradiation, Pb can be

lost by diffusion through these channels, i.e. interface between crystalline and amorphous

domains. If the monazite lattice is pristine, Pb diffusion will be not an efficient mechanism for

resetting, because of the slow rate of Pb diffusion in monazite; resetting occurs by a

dissolution-precipitation process.

It is generally observed in nature that monazite is very often well crystalline, because

irradiation damage is rapidly healed at low temperature. This means that, in geologic samples,

Pb diffusion occurs predominantly within a pristine, organised crystal structure. To conclude,

discordant U-Pb ages obtained for monazite mainly result from resetting by dissolution-

precipitation.

Cherniak (1993) studied the Pb diffusion in titanite. She demonstrated that metamict

titanite is much less retentive for Pb and that Pb isotope ratios should rarely be preserved in

this structure. The author calculated the closure temperatures, i.e. the temperature at which the

daughter nuclide begins to accumulate in the structure, for metamict and crystalline titanite. A

titanite crystal (0.005 cm-diameter) will still retain Pb isotope information when heated at

600°C for several million years. In contrast, a metamict titanite of the same size will retain Pb

only when heated at a temperature < 200°C, for several million years. All these results show

that closure temperature for minerals should be used carefully. We cannot explain an age

discordance by simply using the closure temperature of a mineral, because it depends much

on the lattice of the mineral, metamict or crystalline. This might explain the reported

differences in closure temperature of monazite between 720-750°C (Copeland et al. 1988) and

530 ± 25°C (Black et al. 1984).

4-5 - Implications for nuclear waste

Monazite is studied in order to check its ability to incorporate large amount of

actinides and to investigate its resistance to dissolution and irradiation damage. The aim is to

find crystalline ceramics with a monazite-like structure as a container for high-level nuclear

waste (Boatner et al. 1980; 1981; Boatner and Sales 1988).

Our study shows that although old (474 Ma), radioactive (1300 ppm of U and 69000

ppm of Th) and containing small amounts of nanometer scale irradiation damages, our

monazite is not metamict, because of its ability to repair damage domains at relatively low

temperature. Irradiation experiments show that monazite cannot be amorphised at

temperatures exceeding 200°C (Meldrum et al. 1997; 1998). That means that radiation
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damages cannot accumulate in monazite because during annealing the defects are healed

faster than the lattice is damaged. Therefore it can be speculated that nuclear waste in a

monazite-like matrix will remain in crystalline state during all the storage time.

5 - Conclusions

It is concluded that the investigated Brazilian monazite is like a mosaic crystal. The

mosaic consists of two domains (A) and (B), which are basically two monazite crystals with

slightly different lattice parameters. Diffraction domains (A) show sharp reflections with high

amplitude. They are assigned to a well-crystallised lattice with small volume expansion (1%).

Diffraction domains (B) exhibit very broad reflections with low amplitude and represent a

distorted lattice, which can be referred to old alpha-recoil tracks. We calculated that about 2.5

✕  1016 α/mg have been accumulated in this monazite since 474 Ma. It is suggested that the

(A) domains correspond to well-crystallised areas where He atoms are trapped. The trapped

He causes an expansion of the monazite lattice (A). Consequently the A-reflections are shifted

to smaller scattering angles 2θ. Diffraction domains (B) are interpreted as a distorted

monazite crystal lattice composed of “islands” with an expanded lattice (interstitials), and

“islands” of a compressed monazite lattice, (vacancies). Both the “islands” will pose stress

(compression and/or dilatation) on the lattice in the vicinity. The broadening of the B-

reflections is due to the expanded/compressed diffraction domains and due to the different

amount of the distortion. Therefore, in the (B) domains, He cannot accumulate because the

crystal net is very poor, unable to trap atoms.

During annealing, the alpha-recoil-tracks are healed, and the diffraction domains (B)

progressively disappear. At the same time, He diffuses out of the monazite lattice, inducing a

relaxation of the lattice (volume decrease). The (A) reflections are shifted to larger scattering

angles (smaller dhkl-values). At 900°C only one phase remains that is a monazite with well-

crystallised lattice and minimum unit cell volume.

Why is monazite never metamict? Although it is obvious that monazite is able to heal

its structure at low temperature (100-200°C), it is not sure that this low temperature annealing

is the only effect. It is surprising that during annealing nearly all the He remains accumulated

in the monazite lattice. It is also possible to consider an ionisation-annealing induced by He-

ion irradiation, a phenomenon observed in apatite (Ouchani et al. 1997). This is in agreement

with the assumption that the well-crystallised domains correspond to the He-rich domains.



Chapter II - Structure of a natural monazite: behaviour under heating

64

Acknowledgements:

We would like to thank very much Moacyr Marinho who kindly provide us the monazite

sample. We thanks I. Bauer for providing the XRD analyses and E.M. Schemmert and K.

Paech for the preparation of the TEM samples. We are grateful to A. Kronz (Göttingen) for

taking the CL images. A. Beran and E. Libowitzky (Wien) kindly made a Raman system

available for analysis. Thanks to R. Pik (CRPG-Nancy, France) for its personal

communication concerning the U/Th-He age of our monazite.

References

Black LP, Fitzgerald JD, Harley SL (1984) Pb isotopic composition, colour, and

microstructure of monazites from a polymetamorphic rock in Antarctica. Contrib Mineral

Petrol 85: 141-148

Boatner LA, Beall GW, Abraham MM, Finch CB, Huray PG, Rappaz M (1980) Monazite and

other lanthanide orthophosphates as alternative actinide waste forms. In: Scientific Basis

for Nuclear Waste Management, Northrup Jr CJM (ed) 2: 289-296 Plenum Press New

York

Boatner LA, Abraham MM, Rappaz M (1981) The characterization of nuclear waste forms by

EPR spectroscopy. In: Scientific Basis for Nuclear Waste Management, Moore JG (ed) 3:

181-188 Plenum Press New York

Boatner LA, Sales BC (1988) Monazite. In: Radioactive Waste Forms for the Future. Lutze

W, Ewing RC (ed) 495-564 Elsevier

Cherniak DJ, Lanford WA, Ryerson FJ (1991) Lead diffusion in apatite and zircon using ion

implantation and Rutherford back-scattering techniques. Geochim Cosmochim Acta 55:

1663-1673

Cherniak DJ (1993) Lead diffusion in titanite and preliminary results on the effect of radiation

damage on Pb transport. Chem Geol 110: 177-194



Chapter II - Structure of a natural monazite: behaviour under heating

65

Copeland P, Parrish RR (1988) Identification of inherited radiogenic Pb in monazite and its

implications for U-Pb systematics. Nature 333: 760-763

Corfu F (1988) Differential response of U-Pb systems in coexisting accessory minerals,

Winnipeg River Subprovince, Canadian Shield: implications for Archean crustal growth

and stabilization. Contrib Mineral Petrol 98: 312-325

Cruz MJ, Cunha JC, Merlet C, Sabaté P (1996) Datação pontual das monazitas da região de

Itambé, Bahia, através da microssonda electrônica. XXXIX Congresso Brasileiro de

Geologia

Devidal JL, Montel JM (1999) Crystal chemistry of the brabantite-monazite group. EUG 10 J

Conf Abstract, 4, 524.

Dodson MH (1973) Closure temperature in cooling geochronological and petrological

systems. Contrib Mineral Petrol 40: 257-259

Erichsen LV (1951) Über die Heliumabgabe von Monazit in abhängigkeit von Gasphase,

Druck und Temperatur. N Jahrbuch F Mineralogie. Monatshefte: 25-33

Ewing RC (1975) The crystal chemistry of complex niobium and tantalum oxides IV The

metamict state: Discussion. Am Mineral 60: 728-733

Ewing RC, Chakoumakos BC, Lumpkin GR, Murakami T, Greegor RB, Lytle FW (1988)

Metamict minerals: natural analogues for radiation damage effects in ceramic nuclear

waste forms. Nucl Instr Meth B32: 487-497

Ewing RC, Weber WJ, Clinard FW Jr (1995) Radiation effects in nuclear waste forms.

Progress Nucl Energy 29: 63-127

Ewing RC, Meldrum A, Wang LM, Wang SX (2000) Radiation-Induced Amorphization. In:

Reviews in Mineralogy and Geochemistry, Ribbe PH (ed) 39: 319-361 Mineralogical

Society of America, Washington DC



Chapter II - Structure of a natural monazite: behaviour under heating

66

Firestone RB, Shirley VS (1996) Table of isotopes 2. John Wiley & Sons Inc, C5-C6

Förster HJ (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in

peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The

monazite-(Ce)-brabantite solid solution series. Am Mineral 83: 259-272

Gögen K, Wagner GA (2000) Alpha-recoil track dating of Quaternary volcanics. Chem Geol

166: 127-137

Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon.

Acta Crystallogr 8: 291-300

Irmer G (1985) Zum Einfluß der Apparatefunktion auf die Bestimmung von

Streuquerschnitten und Lebensdauern aus optischen Phononenspektren. Exper Techn Phys

33: 501-506

Karioris FG, Appaji Gowda K, Cartz L (1981) Heavy ion bombardment of monoclinic

ThSiO4, ThO2 and monazite. Rad Eff Lett 58: 1-3

Landzirotti A, Hanson GN (1995) U-Pb dating of major and accessory minerals formed

during metamorphism and deformation of metapelites. Geochim Cosmochim Acta 59:

2513-2526

Larson AC, Von Dreele RB (1988) GSAS-Generalized structure analysis system. Los Alamos

National Laboratory Report LAUR, 86-758, 1-150

Lumpkin GL, Ewing RC (1988) Alpha-decay damage in minerals of the pyrochlore groups.

Phys Chem Mineral 16: 2-20

Meldrum A, Wang LM, Ewing RC (1996) Ion-beam-induced amorphization of monazite.

Nucl Instr Meth Phys Res B116: 220-224



Chapter II - Structure of a natural monazite: behaviour under heating

67

Meldrum A, Boatner LA, Ewing RC (1997) Electron-irradiation-induced nucleation and

growth in amorphous LaPO4, ScPO4, and zircon. J Matter Res 12: 1816-1827

Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and

monazite. Geochim Cosmochim Acta 62: 2509-2520

Meldrum A, Boatner LA, Zinkle SJ, Wang SX, Wang LM, Ewing RC (1999) Effects of dose

rate and temperature on the crystalline-to-metamict transformation in the ABO4

orthosilicates. Can Mineral 37: 207-221

Meldrum A, Boatner LA, Ewing RC (2000) A comparison of radiation effects in crystalline

ABO4-type phosphates and silicates. Mineral Mag 64: 183-192

Montel JM, Seydoux AM (1998) Sm-Nd interdiffusion in monazite. EMPG VII, Terra abst

Supl 1 to Terra Nova 10: 42

Murakami T, Chakoumakos BC, Ewing RC (1986) X-Ray Powder Diffraction Analysis of

Alpha-Event Radiation Damage in Zircon (ZrSiO4). In: Advances in ceramics: Nuclear

waste management II, Clark DE, White WB and Machiels J (ed) 20: 745-753 American

Ceramic Society, Columbus, Ohio

Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay

event damage in zircon. Am Mineral 76: 1510-1532

Nasdala L, Massonne H-J (2000) Microdiamonds from the Saxonian Erzgebirge, Germany: in

situ micro-Raman characterisation. Eur J Mineral 12: 495-498

Nasdala L, Wolf D, Irmer G (1995) The degree of metamictization in zircon: a Raman

spectroscopic study. Eur J Mineral 7: 471-478

Nasdala L, Pidgeon RT, Wolf D (1996) Heterogeneous metamictization of zircon on a

microscale. Geochim Cosmochim Acta 60: 1091-1097



Chapter II - Structure of a natural monazite: behaviour under heating

68

Nasdala L, Finger F, Kinny P (1999) Can monazite become metamict? Eur J Mineral 11, Beih

1: 164

Nasdala L, Wenzel M, Andrut M, Wirth R, Blaum P (2001a) The nature of radiohaloes in

biotite. Am Mineral 86: 498-512

Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001b) Metamictisation of

natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage.

Contrib Mineral Petrol 141:125-144

Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime

structures. Am Mineral 80: 21-26

Ouchani S, Dran JC, Chaumont J (1997) Evidence of ionization annealing upon helium-ion

irradiation of pre-damaged fluorapatite. Nucl Instr Meth Phys Res B132: 447-451

Owen MR (1988) Radiation-damage halos in quartz. Geology 16: 529-532

Parrish RR (1990) U-Pb dating of monazite and its application to geological problems.

Canadian J Earth Sci 27: 1431-1450

Parrish RR (1995) Thermal evolution of the southeastern Canadian Cordillera. Can J Earth

Sci 32: 1618-1642

Podor R (1995) Raman spectra of the actinide-bearing monazites. Eur J Mineral 7: 1353-1360

Salje EKH, Chrosch J, Ewing RC (1999) Is “metamictization” of zircon a phase transition?

Am Mineral 84: 1107-1116

Salje EKH (2000) Structural transformations in minerals The role of temperature and

radiation damage. Berichte der Deutschen Mineralogischen Gesellschaft, Beihefte zum Eur

J Miner 12: 175



Chapter II - Structure of a natural monazite: behaviour under heating

69

Schärer U, Xu RH, Allègre CJ (1986) U-(Th)-Pb systematics and ages of Himalayan

leucogranites, South Tibet. Earth Plan Sci Lett 77: 35-48

Seydoux AM, Montel JM, Paquette JL, Marinho M (1999). Experimental study of the

resetting of the U-Th-Pb geochronological system of monazite. EUG X, Terra Nova 10,

Abstract Supplement 1: 800

Seydoux-Guillaume AM, Paquette JL, Wiedenbeck M, Montel JM, Heinrich W. Experimental

resetting of the U-Th-Pb system in monazite. Submitted in Chem Geol

Smith HA, Barreiro B (1990) Monazite U-Pb dating of staurolite grade metamorphism in

pelitic schists. Contrib Mineral Petrol 105: 602-615

Smith HA, Giletti BJ (1997) Lead diffusion in monazite. Geochim Cosmochim Acta 61:

1047-1055

Speer JA (1982) Zircon. In: Reviews in Mineralogy Ribbe PH (ed) 5: 67-112 Mineralogical

Society of America, Washington DC

Suzuki K, Adachi M, Kajizuka I (1994) Electron microprobe observations of Pb diffusion in

metamorphosed detrital monazites. Earth Plan Sci Lett 128: 391-405

Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous

transition in zircon. J Mater Res 9: 688-698

Weber WJ, Ewing RC, Catlow CRA, Diaz de la Rubia T, Hobbs LW, Kinishita C, Matzke

HJ, Motta AT, Nastasi M, Salje EHK, Vance ER, Zinkle SJ (1998) Radiation effects in

crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J

Mater Res 13: 1434-1484



CCHHAAPPTTEERR  IIIIII
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system

“C’est en un sens à force d’étudier l’homme que nous nous sommes mis hors d’état de le connaitre."

Jean-Jacques Rousseau - Discours sur l’origine de l’inégalité parmis les hommes
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Experimental resetting of the U-Th-Pb system in monazite

Abstract

Abraded fragments (200 to 400 µm) of a large and chemically homogeneous Brazilian monazite crystal,

characterised by a concordant U-Pb ages of 474 ± 1 Ma (208Pb/206Pb=19.5), were hydrothermally treated at

varying temperatures with solutions of different compositions.

Experiments with pure water over a temperature range of 800 to 1200°C, at 700 MPa and durations ranging from

5 to 60 days showed that even at 1200°C any dissolution and recrystallization of new monazite is confined to the

outermost surface of the grain. Neither Pb-diffusion at the EMP scale, nor significant discordancy was observed.

Additionally, we were performed experiments at 800°C and 1000°C for different durations using different fluid

compositions at quartz saturation: a 10 wt % CaCl2 fluid, a 10 wt % SrCl2 fluid, a 10 wt % NaCl fluid and a fluid

containing NBS 982 Pb standard (208Pb/206Pb=1). Product monazites from each run were analysed with SEM,

EMP, SIMS and ID-TIMS.

For all runs, EMP traverses revealed no Pb-diffusion profiles. Significant overgrowths of newly formed

monazite are documented by SEM analyses. They occurred only in the 1000°C experiments when either CaCl2

or Pb-bearing fluids were present. In the CaCl2 experiment two zones could be distinguished within the crystal: a

core possessing the initial monazite composition and a rim consisting of newly formed monazite produced by

dissolution/precipitation which was enriched in Ca and Pb-free. ID-TIMS dating of single grains treated with

SrCl2 and CaCl2 solutions at 1000°C are significantly discordant. Experiments employing the NBS Pb-standard

produced sub-concordant monazite, for which the 207Pb/206Pb apparent age has become older than prior to the

experiment (544 Ma at 800°C and 495 Ma at 1000°C). The newly grown monazite rim had obviously

incorporated Pb from the fluid.

None of our reaction products contained a detectable diffusion profile. Except for the Pb-experiment at

800°C, the only resetting mechanism we detected involved dissolution/precipitation. It is clear that the extent of

the dissolution/precipitation process depends on fluid composition. Based on these results, we conclude that

dissolution/precipitation rather than diffusion controls the resetting of monazite in natural rocks.

Keywords: Monazite • U-Pb isotopes • SIMS • resetting • fluid • dissolution/precipitation
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1 - Introduction

The light rare earth element (LREE)-phosphate monazite is widely used as a U-Th-Pb

geochronometer to determine the timing of both magmatic and metamorphic events (Parrish,

1990). In most cases, 206Pb/238U and 207Pb/235U ages in monazites are concordant (e. g.

Schärer et al., 1986; Corfu, 1988; Smith and Barreiro, 1990; Landzirotti and Hanson, 1995;

Parrish, 1995; Simpson et al., 2000...); nevertheless, discordant U-Pb ages have also been

reported. Such discordant data may reflect mixing of different grain populations that

crystallised at different times within a particular rock (Black et al., 1984; Bertrand et al.,

1993; Childe et al., 1993); or a mixture of newly grown rims with inherited cores (Montel et

al., 1996; Braun et al., 1998; Cocherie et al., 1998; Crowley and Ghent, 1999; Williams et al.,

1999; Zhu and O’Nions, 1999; Poitrasson et al., 2000; Rubatto et al., 2001; Townsend et al.,

2001...); or else a diffusive Pb loss (Suzuki and Adachi, 1994; Suzuki et al., 1994). Clearly

the correct interpretation of measured isotope ratios, then of the ages, requires a detailed

understanding of the resetting process that affects the isotope system of monazite.

Despite the fact that major analytical progress on the U-Th-Pb isotope system in

natural monazite has recently been achieved by SIMS (Harrison, 1995; Grove and Harrison,

1999; Zhu et al., 1997, Rubatto et al., 2001...), LA-ICP-MS (Poitrasson, 1996; 2000) and

EMP methods (Montel et al., 1996; Cocherie et al., 1998; Crowley and Ghent, 1999), the

controlling mechanisms that induce its partial or complete resetting during a geological event

are only poorly understood. There is overall agreement that, in nature, the U-Th-Pb system in

monazite may be reset by loss of Pb by interacting with coexisting fluids, implying a

dissolution/precipitation process. The partitioning of elements between fluid and growing

monazite would thus define the U-Th-Pb budget of any newly formed rims.

With respect to resetting by diffusive Pb-loss, there have been several attempts to

interpret discordant ages of natural monazite grains in terms of Dodson’s (1973)-closure

temperature. Estimations for closure temperatures range from 530 ± 25°C (Black et al., 1984)

to 725 ± 25°C (Copeland et al., 1988). A major drawback of the closure temperature concept

is that it ignores all quantification of the main driving force for any diffusion process; in this

case the chemical potential gradient of the Pb between monazite and the adjacent phase, be it

silicate, fluid or melt. If this gradient is small or zero, significant Pb-loss via volume diffusion

is unlikely. Additionally, experiments on Pb–self-diffusion in monazite by Smith and Giletti

(1997) showed that such self-diffusion is very slow, even at high temperatures. Furthermore,

it has been shown that monazite inclusions shielded by host minerals such as quartz or garnet
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are not subject to resetting, despite the fact that they were exposed to granulite-facies

temperatures of more than 800°C over long time scales (De Wolf et al., 1993; Kalt et al.,

2000; Montel et al., 2000). It thus appears that volume diffusion is not a key mechanism for

the resetting of the U-Pb system of monazite.

Dissolution/precipitation in the presence of a fluid phase is a second possible

mechanism for a partial or even a complete resetting of the monazite isotope system. If so,

one would expect that fluid composition has a major effect on the process. In a previous

study, Teufel and Heinrich (1997) demonstrated that the hydrothermal treatment of natural

monazite grains larger than 40µm at 750°C/0.3 GPa using pure water did not affect their U-Pb

system. Significant dissolution and precipitation along with Pb-loss into pure water was only

observed when very fine powdered monazite was used as starting material. Obviously these

experiments with pure water did not demonstrate definitely whether dissolution-precipitation

is an important process for resetting large natural monazites.

In this study we present an experimental study of the resetting of a natural monazite

under hydrothermal conditions. The effects of pure water at high temperature (>800°C),

NaCl, CaCl2 and SrCl2-bearing fluids on the dissolution-precipitation process and the

concomitant redistributions of elements and isotopes are evaluated. NaCl was used as an

analogue for relevant crustal fluid. Sr- and Ca-bearing fluids were used to test for an exchange

between Ca2+ (1.18 Å) or Sr2+ (1.31 Å) with Pb2+ (1.35 Å) (radii from Shannon, 1976) and

because both of these elements are abundant in monazite hosting minerals such as garnet and

plagioclases. Further, we investigated the effect on the Pb-isotopic compositions of monazite

if treated with a NBS 982 Pb solution. This Pb-spike is very depleted in 208Pb compared to

monazite so that any modification to the Pb system should be readily visible. Furthermore,

because crustal fluids are generally SiO2 saturated, we buffered most experiments with SiO2,

except for those experiments involving pure water. Our data constrain which mechanisms

dominate the resetting of the U-Th-Pb isotope system in monazite and we establish what

influence the composition of the fluid phase and temperature have on this process.
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Table 1 - EMP analyses for the untreated monazite (Untreated Mz) and some representative analyses for a
monazite grain from the VRM0-1 experiment (1000°C, 1GPa, 21 days) at different distances from the
crystal rim (see figure 3).

Distance along E-F (µm) in VRM0-1 (1000°C, CaCl2-bearing fluid)

Untreated Mz 24 80 100 102 104 110

Weight %
P2O5 27.81 27.46 28.07 27.14 27.03 27.33 27.51
SiO2 1.42 1.77 1.42 1.51 1.83 1.66 1.43
ThO2 6.92 7.27 6.92 7.55 9.37 8.64 7.24
UO2 0.13 0.21 0.08 0.05 0.06 0.15 0.12
Y2O3 0.71 0.70 0.63 0.41 0.27 0.63 0.69
La2O3 14.51 13.83 14.17 14.05 13.90 13.43 13.93
Ce2O3 30.59 29.99 29.92 29.87 29.23 29.56 30.05
Pr2O3 3.14 3.22 3.13 2.96 3.10 3.17 3.02
Nd2O3 10.2 10.53 10.03 10.47 10.86 10.34 10.28
Sm2O3 2.05 2.22 2.13 2.19 2.03 2.13 2.04
Gd2O3 0.94 1.06 0.92 1.00 0.88 0.97 0.92
Tb2O3 – 0.12 0.07 0.11 0.14 0.02 0.07
Dy2O3 0.11 0.15 0.16 0.07 0.01 0.09 0.12
Ho2O3 – 0.00 0.04 0.00 0.00 0.00 0.00
Er2O3 0.05 0.08 0.11 0.00 0.10 0.01 0.02
Yb2O3 – 0.02 0.03 0.01 0.00 0.00 0.06
Lu2O3 – 0.04 0.00 0.00 0.00 0.00 0.00
PbO 0.16 0.00 0.00 0.00 0.00 0.13 0.18
CaO 0.44 0.53 0.61 0.57 0.56 0.45 0.39

Σ 99.18 99.19 98.43 97.94 99.35 98.71 98.06
Cations (pfu) on the basis of 16 Oxygens

P 3.782 3.734 3.812 3.75 3.704 3.747 3.784
Si 0.229 0.284 0.228 0.247 0.296 0.269 0.232
Th 0.253 0.266 0.253 0.28 0.345 0.318 0.268
U 0.005 0.007 0.003 0.002 0.002 0.005 0.004
Y 0.061 0.06 0.054 0.035 0.023 0.054 0.06
La 0.86 0.819 0.838 0.846 0.83 0.802 0.835
Ce 1.799 1.764 1.757 1.785 1.732 1.753 1.788
Pr 0.184 0.188 0.183 0.176 0.183 0.187 0.179
Nd 0.585 0.604 0.575 0.61 0.628 0.598 0.596
Sm 0.114 0.123 0.118 0.123 0.113 0.119 0.114
Gd 0.05 0.056 0.049 0.054 0.047 0.052 0.049
Tb – 0.006 0.004 0.006 0.007 0.001 0.004
Dy 0.006 0.008 0.008 0.003 0 0.005 0.006
Ho – 0 0.002 0 0 0 0
Er 0.002 0.004 0.005 0 0.005 0.001 0.001
Yb – 0.001 0.001 0 0 0 0.003
Lu – 0.002 0 0 0 0 0
Pb 0.007 0 0 0 0 0.006 0.008
Ca 0.076 0.092 0.105 0.100 0.097 0.078 0.067
Σ 8.013 8.018 7.995 8.017 8.012 7.995 7.998

End members

LREEPO4 0.898 0.889 0.880 0.899 0.883 0.878 0.890
YHREEPO4 0.017 0.020 0.019 0.011 0.009 0.015 0.019

CaThU(PO4)2 0.038 0.025 0.053 0.028 0.034 0.039 0.034
PbThU(PO4)2 0.004 0.000 0.000 0.000 0.000 0.003 0.004

ThSiO4 0.043 0.054 0.037 0.056 0.069 0.059 0.049
USiO4 0.001 0.001 0.000 0.000 0.000 0.001 0.001

Σ 1.001 0.989 0.989 0.994 0.996 0.995 0.996



Table 2 - U-Pb isotope data for monazite reactants and products (single grain analysis)

U Pb rad 206Pb 208Pb 206Pb 207Pb 207Pb 206Pb 207Pb 207Pb Discordancy
(ppm) (ppm) 204Pb 206Pb 238U 235U 206Pb 238U 235U 206Pb

Analysed
sample

Weight
(µg)

concentrations atomic ratios apparent ages (Ma) (%)

Untreated monazite 1 40 1216 1670 3692 19.5718 0.07631 ± 5 0.5950 ± 5 0.05655 ± 2 474 474 474 0

Untreated monazite 2 58 1310 1788 4651 19.4575 0.07629 ± 5 0.5951 ± 4 0.05657 ± 2 474 474 475 0

Untreated monazite 3 41 868 1189 3773 19.4590 0.07650 ± 27 0.5973 ± 22 0.05662 ± 6 475 476 477 0

Untreated monazite 4 38 1286 1758 3693 19.4553 0.07634 ± 36 0.5956 ± 29 0.05659 ± 4 474 474 475 0

Untreated monazite 5 37 1005 1399 1350 19.6078 0.07646 ± 64 0.5965 ± 52 0.05658 ± 15 475 475 475 0

VRM97-10 (1000°C, H2O) 87 1248 1650 2290 19.2005 0.07457 ± 37 0.5814 ± 40 0.05657 ± 26 464 465 474 3.2

VRM97-8 (1100°C, H2O) 123 1087 1471 1757 19.3870 0.07554 ± 53 0.5892 ± 60 0.05657 ± 40 469 470 475 1.3

VRM97-8 (2) (1100°C, H2O) 116 1051 1412 1758 19.2604 0.07542 ± 115 0.5878 ± 99 0.05652 ± 41 469 469 473 1.2

VRM97-6 (1200°C, H2O) 107 1224 1623 2141 18.9959 0.07555 ± 33 0.5887 ± 42 0.05652 ± 30 470 470 473 0

VRM99-2 (1100°C, H2O-SiO2) 26 1076 1484 416 19.0767 0.07579 ± 216 0.5915 ± 299 0.05660 ± 226 471 472 476 1.2

VRM0-7 (800°C, Pb-spike) 116 852 1254 253 16.9981 0.08699 ± 44 0.7000 ± 37 0.05836 ± 87 538 539 543 _

VRM0-18 (1000°C, Pb-spike) 78 1024 1392 530 18.1686 0.07851 ± 70 0.6181 ± 57 0.05710 ± 12 487 489 495 _

VRM0-4 (800°C, CaCl2) 102 576 780 706 18.8929 0.07640 ± 147 0.5959 ± 178 0.05657 ± 124 475 475 475 0

VRM0-1 (1000°C, CaCl2) 204 507 226 3253 19.7006 0.02464 ± 43 0.1921 ± 35 0.05655 ± 23 157 178 474 67.8

VRM0-3 (800°C, SrCl2) 90 645 878 3630 19.3986 0.07626 ± 75 0.5945 ± 60 0.05654 ± 14 474 474 476 0

VRM0-2 (1000°C, SrCl2) 126 669 767 4555 19.4326 0.06416 ± 105 0.5001 ± 82 0.05653 ± 9 401 412 473 16.0

VRM0-17 (800°C, NaCl) 83 677 918 2838 19.5046 0.07546 ± 36 0.5873 ± 35 0.05645 ± 20 469 469 470 0

For untreated monazites, a 4 pg blank correction was applied corresponding to a corrected 206Pb/204Pb ratio of around 6500. For the treated monazites, it was necessary to add an
experimental blank in the calculations. Nevertheless, it is not possible to precisely define an experimental blank.
Consequently, an individual experimental blank was determined for each experiment in order to obtain a corrected 206Pb/204Pb ratio of 6500.
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2 - Sample selection and description, and experimental procedure

A monazite single crystal, 3✕ 2-cm in size, from the Itambe pegmatite district (Brazil,

Cruz et al., 1996) was used for this study. The yellow-orange crystal is nearly free of fluid and

solid inclusions, and is homogeneous at the micrometer scale. EMP-analyses show a

composition typical for natural monazites (Table 1, first column) and it contains 7.25 wt.%

ThO2, 0.13 wt.% UO2 and 0.16 wt.% PbO. In terms of end-members, the LREELa-GdPO4

component makes up 89.8 mol% and the Y+HREETb-LuPO4 component 1.7 mol%. Th is

incorporated through about equal amounts of brabantite CaTh(PO4)2 (~3.8 mol%) and

huttonite ThSiO4 (4.3 mol%) components. Detailed study using TEM, XRD, and raman

methods showed that this monazite is non-metamict (Seydoux-Guillaume et al., submitted).

Multiple ID-TIMS dating yielded concordant U-Pb ages of 474 ± 1 Ma (Table 2).

A fragment of the crystal was broken and sieved into different grain size fractions. For

our experiments the 200-400 µm fraction was used. The angular grains obtained after

crushing were mechanically air-abraded (Krogh, 1982) in order to obtain a rounded

morphology (Figure 1a). This was done to avoid the preferential dissolution of the angular

edges during hydrothermal experiments (Teufel and Heinrich, 1997). Abraded fragments were

washed in 0.1N HNO3. Only well rounded grains devoid of micro-inclusions were selected

for our experiments.

A long duration experiment using pure water was performed at 800°C/0.2 GPa for 60

days. Shorter duration runs were performed at 1000°C, 1100°C and 1200°C/0.7 GPa for 7, 12

and 5 days, respectively (Table 3). About 10 grains of abraded fragments were placed into a

platinum capsule (0.2 mm wall thickness) filled with ~20 mg of distilled H2O. The capsules,

15 mm in length and 3 mm in diameter, were welded and checked for leaks by heating at

110°C for 24 hours. A standard cold seal pressure vessel was used for the 800°C/0.2 GPa

experiment. For experiments at higher temperatures an internally heated pressure vessel

(IHPV), using N2 as the pressure medium, was employed. Temperature error is within ± 2°C

for the 800°C, and ± 25°C for the 1200°C. Details about the apparatus and calibration

procedure can be found in Vielzeuf and Montel (1994). At the end of the runs, vessels were

quenched to room temperature within a few minutes. After quenching each capsule was

checked for leakage by weighing.
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Table 3 - Experimental conditions of all runs

Sample # Weight of
monazite (mg)

Weight of fluid
(mg)

Composition of
fluid

Temperature
(°C)

Pressure
(Gpa)

Duration
(days)

VRM97-3 0.97 20 H2O 800 0.2 60

VRM97-10 0.62 20 H2O 1000 0.7 7

VRM97-8 1.14 20 H2O 1100 0.7 12

VRM97-6 0.72 20 H2O 1200 0.7 5

VRM99-2 0.55 10 H2O + SiO2 1100 0.2 27

VRM0-7 2.33 11.44 NBS 982 Pb
+ SiO2

800 0.2 26

VRM0-18 1.03 11.52 NBS 982 Pb
+ SiO2

1000 1 14

VRM0-4 1.96 11.71 10 wt% CaCl2

+ SiO2

800 0.2 39

VRM0-1 2.27 11.84 10 wt% CaCl2

+ SiO2

1000 1 21

VRM0-3 1.92 12.05 10 wt% SrCl2

+ SiO2

800 0.2 39

VRM0-2 2.05 11.42 10 wt% SrCl2

+ SiO2

1000 1 21

VRM0-17 0.97 11.85 10 wt% NaCl
+ SiO2

800 0.2 18
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One experiment was performed at 1100°C/0.2 GPa in silica saturated water. For that

about 30 monazite grains plus 1 mg SiO2 powder were placed into a Pt-capsule along with 10

µl distillated H2O. This experiment was also run in an IHPV.

In another series of experiments, monazites were treated with fluids of different

compositions: H2O-NaCl, H2O-CaCl2 or H2O-SrCl2. Salt concentrations were 10 wt% in all

runs. Additionally, an HNO3-bearing solution containing 950 µg/g NBS 982 Pb standard

(208Pb/206Pb=1.000, 207Pb/206Pb=0.467 and 206Pb/204Pb=36.765) was used in two runs. At

800°C/0.2 GPa, experiments were again performed in standard cold seal hydrothermal

pressure vessels, and at 1000°C/1 GPa in a piston-cylinder apparatus with a 22 mm diameter

pressure chamber and CaF2 as pressure medium. In the latter, Pt-PtRh thermocouples were

used for temperature control. The temperature difference along the 13 mm long capsules was

± 13°C at 1000°C, and the variation of temperature during the run was ± 2°C. Piston cylinder

experiments were quenched in a few seconds. Experimental conditions of all runs are

summarised in Table 3.

Subsequent to each run the samples were hand-picked and split up for optical

microscopy, SEM, EMP and SIMS analyses. A single grain of each run was selected for ID-

TIMS analysis.

3 - Analytical methods

Grain surface morphology was investigated using a SEM. BSE and SE images were

made on grains for each using a Zeiss DSM962 scanning electron microscope. Acceleration

voltage was typically 15 kV.

Additionally, EMP analyses of polished single monazite grains mounted in epoxy

resin were obtained using a CAMECA SX-50 electron microprobe equipped with a wave-

length dispersive system. The operating conditions are given in Förster et al. (1998a). Core-

rim relationships of at least one monazite grain from each run were evaluated by measuring

compositional profiles in 2 µm steps across the grain. Furthermore, X-ray imaging was

conducted on a monazite grain from run VRM0-1 (1000°C, 1 GPa, CaCl2-bearing solution)

using a Cameca SX 100 microprobe. Element mapping for Th-Mα, Pb-Mß and U-Mß was

made in wave-length-dispersive mode, and for Ca-Kα, Ce-Lα and P-Kα in energy dispersive
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mode with the following conditions: accelerating potential 20 kV, beam current 30 nA and

scan of 256✕ 256 pixels with 600 ms/pixel.

The Cameca ims 6f ion probe in Potsdam was used to acquire digital images of the

relative concentration distributions of selected elements within our monazite sample VRM0-1

(1000°C, CaCl2 fluid). In addition to images acquisition, profiles across the margins of grains

produced in VRM0-7 (800°C, 0.2 GPa, Pb-spike solution) and VRM0-18 (1000°C, 1 GPa,

Pb-spike solution) were also performed. This technique provides more precise information of

one-dimensional variations of the target elements, but at the cost of reduced spatial resolution

(see appendix for details).

Individual thermal ionisation U-Pb isotope analyses were performed in Clermont-

Ferrand on five abraded monazite fragments from our starting material plus on one product

grain from each experiment. The handpicked selected grain was washed before in a 0.1N

HNO3 heated solution in order to clean grains from experiment derived in common Pb

contamination. The selected monazite grain was dissolved using 8N HCl in a PFA Teflon

modified version of Parrish-type microcapsules (Parrish, 1987) at 210°C, during 16-20 hours.

Chemical separation and mass spectrometry were performed according to Pin and Paquette

(1997).

4 - Results

Optical microscope revealed a complete decolorisation of the monazite grains after all

runs. Teufel and Heinrich (1997) have already reported this effect. The colour changed from

yellowish orange to whitish grey.

4-1 - Grain-surface morphology:

SEM images for experiments with H2O+SiO2, NaCl, SrCl2, CaCl2 at 800°C and Pb-

spike at 800°C showed no textural modifications of the monazite grains after the run (Figures

1 d, e and f). Quartz crystals related to the SiO2 in excess in the capsule were present in all

runs. For the experiment with SrCl2 fluid at 800°C few small SrCl2 crystals were found in the
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run products. For the experiment with CaCl2 fluid at 800°C, precipitation of some brabantite

crystals (Ca, Th) (PO4)2 occurred.

For experiments with pure H2O SEM observations showed little modifications at the

surface of the grains. At 800°C, there is no apparent modification of monazite grains excepted

the precipitation of numerous 200 nm “bright” (in fact appearing bright in BSE mode in

SEM) crystals on the grain surfaces (Figure 1b). However, at temperatures higher than

1000°C the development of new, ~5 µm long crystal faces on the grain surface as well as

“bright” crystals, 1-2 µm large, were observed. At 1100°C these faces are longer, reaching 12

µm in length. Finally, by 1200°C the grain surface was totally recrystallised completely

replacing the original abraded morphology. Large newly formed faces (>40 µm) and larger

“bright” crystals with visible morphology are visible (Figure 1c). EDS analysis demonstrated

that the faces are newly formed, Th-free monazite and that the “bright” crystals are ThO2

(thorianite), which is consistent with their cubic morphology.

Because Th can be incorporated in monazite via the [P-1REE-1Si1Th1] thorium-silicate

component, the presence of silica might have affected the monazite solution interactions. In

contrast to the SiO2-free experiment VRM97-8, SEM observations of monazite grain from our

experiment VRM99-2 (water + SiO2), figure 1d shows no growth of newly formed monazite

and no ThO2 on the surface. We conclude that an excess of SiO2 in the system prevented the

formation of new ThO2 crystals. This is a first indication of the effect of fluid composition on

monazite behaviour in fluids.

Finally, two experiments showed significant overgrowths. The first with CaCl2 fluid at

1000°C (Figure 1g) and the second with Pb fluid at 1000°C (Figure 1h). In both experiments

the monazite grains seems to have fully recrystallised.

4-2 - Modifications of chemical compositions:

EMP imaging (BSE and X-ray) and concentration profiles from the rims to the centres

of monazite grains showed no variation of the chemical composition; particularly important is

that we detected no Pb-diffusion profiles for experiments with H2O, H2O+SiO2, NaCl, SrCl2,

CaCl2 at 800°C and Pb fluids.
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Only the experiment with CaCl2 at 1000°C showed significant variations in monazite

chemical composition. In order to confirm this result a second grain was analysed. BSE

imaging and EMP traverses of these two monazite fragments both document significant

zonation. Figure 2 shows BSE image for one grain prepared for EMP. Two domains are

clearly visible demarked by a “bright” discontinuity (1). The external domain (rim) shows

sharper faces as compared to the internal domain (core). On this grain, EMP profile E-F from

the rim to the core of the grain (Figure 3), X-ray imaging (Figure 4) and SIMS imaging

(Figure 5) were performed. The EMP and SIMS maps show that the results obtained on the

profile can be generalised to the whole grain. Two zones with different chemical

compositions, separated by a sharp boundary (1) could be readily distinguished in all data

sets. At a distance of 102 µm from the rim, a significant enrichment in Th and Si is observed

over a 2-4 µm distance, correlated with a P and Ce depletion. The rim is free of Pb but

enriched in Ca relative to the initial monazite (Figures 3, 4 and 5). Furthermore, in contrast to

the core, the ThSiO4 end-member newly formed in the rim is greater than the REEPO4

component (Table 1). A more gradual decrease in both U and Y concentrations at about 80

µm from E is also observed (Figure 3). The (Y+HREE)PO4 xenotime and USiO4 coffinite

components decrease (Table 1) whereas Ca increases. U and Y are depleted between (1) and

(2) over a distance of ~30µm (Figures 4 and 5), whereas Ca is enriched. The discontinuity (2),

better visible using SIMS imaging (Figure 5), is more diffuse. Furthermore, the Si content

increases gradually starting 60 µm away from E (Figure 3). The core showed the same

composition than the initial monazite (Table 1) and no other significant variations were

observed.

4-3 - Isotopic modifications:

The results from U-Pb isotope analyses are reported in table 2. For the experiments

employing H2O, H2O+SiO2, NaCl, SrCl2 and CaCl2 at 800°C, single grains analyses yielded

sub-concordant to concordant U-Pb ages in the range of 458-475 Ma (Table 2 and Figure 6).

U and Pb concentrations coincide within error limits (Table 2). A duplicate of the experiment

at 1100°C with H2O demonstrates the reproducibility of the U-Pb isotope analyses and the

homogeneity of run products.

Significant discordancy was only observed at 1000°C when CaCl2 or SrCl2 were present in

the fluid. In the SrCl2 enriched fluid, the discordancy was about 16 % (Table 2 and Figure 6),
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whereas in the case of CaCl2 enriched fluid the discordancy was 68% (Figure 6). This Pb-loss

is in agreement with the EMP results, which show a volume of about 70% from the newly

grown, Pb-free monazite.

U-Pb analyses of experiments with the Pb-enriched fluid show very different isotopic

Pb ratios than before the experiments, this effect is most pronounced in the 800°C run. The
208Pb/206Pb ratio decreases from ~19.5 to 17.0 at 800°C and 18.2 at 1000°C and the
207Pb/206Pb increase from ~0.0566 to 0.0584 at 800°C and 0.0571 at 1000°C, reflecting an

enrichment of both 207Pb and 206Pb relative to 208Pb (Table 2). This results in sub-concordant

analytical data points where the apparent 207Pb/206Pb age is older than that of the initial

monazite (Figure 6). Thus, the 207Pb/206Pb age obtained from the experiment at 800°C (543

Ma) is older than that for the experiment at 1000°C (495 Ma). SIMS traverses from epoxy to

the centre of the grains, with a 3 µm step size, were performed in one grain produced from

each of these two experiments: A-B for VRM0-7 (800°C) and C-D for VRM0-18 (1000°C)

(Figures 7 and 8). The observed 208Pb and 206Pb secondary ion intensities were normalised to
140Ce to compensate for any drift in the primary ion beam intensity. For the experiment at

800°C, the 206Pb/140Ce ratio increases exponentially from the centre B to the boundary of the

grain, while the 208Pb/140Ce ratio slowly increases (Figures 8a). The weaker increase in 208Pb

results from the very high initial 208Pb content in monazite (~95%); a so small variation in
208Pb will not be possible to detect. For the experiment at 1000°C, the same trends were

observed but they are less pronounced (Figures 8b). These results are in good agreement with

results from ID-TIMS.

5 - Discussion

Even experiments at the very high temperature of 1200°C (5 days in water) showed no

resetting, neither by diffusion nor by dissolution-precipitation. For all runs, EMP traverses

show no diffusion profiles, and in particular no Pb-diffusion profile. For Pb, this is in

agreement with the data about Pb diffusion in monazite (Suzuki et al., 1994; Smith and

Giletti, 1997). From these data we can calculate the diffusion distance for Pb in monazite

using the Einstein relation:
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x=√(4Dt)

where x is the characteristic distance for diffusion (m)

D is the diffusion coefficient (m2/s)

t is the duration (s) at fixed temperature

From the data of Smith and Giletti (1997), we can calculate that at 1200°C, a diffusion of only

40 nm would be generated in 5 days. This cannot be detected by EMP.

In the water experiments, the presence of both ThO2 crystals and of a Th-poor layer in

the newly formed monazites are related to the absence of SiO2 in the initial solution. The

starting material, containing Th, initially undergoes a dissolution step, which subsequently

results in the precipitation of Pb-free monazite faces. Th is insoluble in water (Faure, 1986),

consequently 1 atom of Si (Franz et al., 1996; Van Emden et al, 1997; Förster, 1998) is

necessary for the following substitution conditions: Th4+ + Si4+ = REE3+ + P5+. The Si,

coming from the dissolved monazite, stays in the fluid and the insoluble Th precipitates as

euhedral ThO2 crystals. When SiO2 is present in the initial solution neither ThO2 crystals nor

Th-poor layer appear. The dissolution of monazite and the subsequent formation of ThO2 are

prohibited by the presence of SiO2 in the initial solution.

Strong chemical modification was observed only for the 1000°C-CaCl2 experiment

(Table 1 and Figure 3, 4 and 5). Only ~20 grains were recovered from the initial 30, showing

that some grains were totally dissolved during the run. We interpret this as resulting from a

dissolution/precipitation mechanism that operated in this run. Because the P-T conditions in

this run were different from the conditions of formation of the starting monazite, the newly

formed monazite has a distinctly new composition. Because very little is known about the

thermodynamic of REE-phosphate and other monazite end-members, we cannot discuss in

more detail the change in composition and the formation of the Th-rich limit. However, it

seems likely that the starting monazite dissolved up to interface (1) and then began to

crystallise from (1) to the grain margin (Figure 4). Because Th is very insoluble in the fluid,

the first monazite that recrystallised was enriched in ThSiO4 and because Y, HREE and U are

less compatible the initial product was depleted in these elements. At a certain moment during

the crystallisation process a progressive enrichment in U, Y and HREE was initiated.
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A very important conclusion from this experiment was that Pb was not reincorporated

into the newly formed monazite. This confirms the results of Teufel and Heinrich (1997) who

showed that recrystallization is associated with strong discordancy. Finally, no self-diffusion

of Pb or inter-diffusion of Ca-Pb were observed, even at the interface between the two zones

where the optimal conditions for such diffusion were present. Relative to solid state diffusion,

dissolution/precipitation is clearly a more efficient, faster mechanism for inducing

discordancy.

More intense Pb-loss was observed in the experiment using CaCl2 fluid (67%

discordancy), than was the case with SrCl2 (16% discordancy). This underlines the

importance of the fluid composition in resetting process. However, in the run at 1000°C with

SrCl2 neither overgrowths nor chemical heterogeneity were observed. We cannot say at

present if this discordancy results from simple Pb-loss from Sr-Pb exchange or from the

formation of a small Pb-free-overgrowth, because neither dissolution features nor diffusion

profiles were observed using SEM and EMP.

We have shown that no significant discordancy occurs at 1200°C/5 days/pure water,

whereas at 1000°C/21 days/CaCl2-fluid a 68% discordancy was present (Table 2).

Temperature, and consequently volume diffusion, is not the most significant parameter which

causes discordancy. As a consequence, the concept of “closure temperature” from Dodson

(1973) must be invoked with extreme caution.

Our most surprising result relates to the Pb-enriched fluid experiments that however

not reflect a “normal” geologic environment, as nature seldom provides such extremely Pb-

enriched-fluid. The starting monazite (208Pb/206Pb~19.5 and 207Pb/206Pb~0.0566) was mixed

with NBS 982 standard (208Pb/206Pb=1.00 and 207Pb/206Pb=0.467; Table 2). After experiments,

the measured 208Pb/206Pb ratios of the monazite were ~17 at 800°C and ~18 at 1000°C; the

measured 207Pb/206Pb ratios were ~0.058 at 800°C and ~0.057 at 1000°C. These lower
208Pb/206Pb and higher 207Pb/206Pb ratios are clearly related to a contamination of the monazite

by the Pb-bearing fluid. In a 208Pb/206Pb vs. 207Pb/206Pb diagram (Figure 6f), both 800°C and

1000°C treated monazites plot significantly below the mixing line between the starting

monazite and the NBS Pb spike. This implies that the decrease of 208Pb relative to 206Pb and
207Pb is not the product just of a simple contamination mechanism. In the starting monazite

~95% of the Pb is 208Pb. Consequently, if monazite is affected by a Pb-loss, the 208Pb/206Pb

ratio will decrease. Additionally, the increase of 206Pb and at a lower scale 208Pb, observed on
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the SIMS diagrams (Figure 8), implies a Pb-excess in the newly formed monazite rim,

possibly the by-product of a Camonazite-Pbfluid exchange.

Using this mechanism for generating older ages in natural monazites is not realistic.

The contamination of the starting monazite has clearly occurred. Furthermore, a highly 208Pb

enriched component apparently was leached out of the monazite (in fact this second

mechanism must have involved a component which was >>95% 208Pb). It is difficult to

distinguish which phenomenon was the earliest and their relative intensity. The first one will

produce Pb-excess in monazite and the second one the 208Pb-loss. Two mechanisms are

possible: (1) exchange involving both Pb-Pb self-diffusion and Camonazite-Pbfluid inter-

diffusion, or (2) a partial dissolution of the starting monazite with a subsequent precipitation

of newly grown monazite containing Pb predominantly derived from the fluid. This second of

these hypothesis seems unlikely, because no dissolution features were visible in the 800°C-

product and SIMS traverse suggest a diffusion profile rather than a sharp interface (Figure

8a). Consequently, at 800°C a diffusion mechanism is favoured, nevertheless the distance is

not defined, because of the large ion beam diameter (~15 µm; Figure 7). At 1000°C, SEM

images demonstrate that dissolution/precipitation was active (Figure 1h).

Finally, the results obtained on the experiments at 800°C and 1000°C suggest the

activity of different mechanisms and, surprisingly, those occurring at 800°C apparently were

much more efficient. This cannot be an artefact because of the good agreement between SIMS

(Figure 8) and ID-TIMS (Figure 6) data, performed on different monazite fragments.

However, an interpretation of that difference is tricky, because two parameters, temperature

and duration, were different, associated with variations of kinetic and solubility.

6 - Conclusions

Significant dissolution-precipitation and corresponding discordancy only occurred for

experiments with CaCl2 or Pb-bearing fluids at 1000°C. In the case of experiments with a

SrCl2 fluid the effect was much weaker. Diffusion profiles were not observed for any element,

including Pb. One exception may be for the 800°C experiment with Pb-bearing fluid. In that

case, we propose as preliminary interpretation a Pb exchange via Pbfluid-Camonazite inter-

diffusion, suggesting a mechanism for creating a Pb-excess in monazite. Additional to this

exchange, it appears that 208Pb may have been preferentially lost from the monazite products



Chapter III - Resetting of U-Pb isotopic geochronological system

91

of both the 800 and 1000°C experiments. Although this phenomenon is not well understand,

we underline that this situation is not a “natural” condition, as nature seldom provides such

extremely Pb-enriched-fluids. We conclude that dissolution/precipitation is the dominant

mechanism by which the U-Pb monazite system can be modified and its impact depends both

on the fluid composition and temperature.

The presence of Ca in the fluid has major consequences on U-Pb isotopic system of

monazite. In nature a monazite frequently occurs as inclusions in either a plagioclase or a

garnet. In this case, circulation of a fluid in the rock could mobilise the Ca from the host

phase which can result in a partial or total resetting of monazite (De Wolf et al., 1993; Braun

et al., 1998; Montel et al., 2000). If such a fluid is rich in SiO2, then Th would be

reincorporated into the monazite structure, favouring the crystallisation of a Th-rich and Pb-

free rim. In natural samples Th-rich zones frequently occur. These latter are often younger,

i.e., contain a lower Pb content than the adjacent domains (Cocherie et al., 1998; Crowley and

Ghent, 1999). In the presence of intense deformation it is possible to obtain discordant U-Pb

monazite ages, resulting from new overgrowths of Pb-free monazites produced by

dissolution/precipitation (Krohe and Wawrzenitz, 2000). In nature, resetting (discordancy) by

diffusion is unlikely. Fluid occurrences and compositions, and textural positions of the

monazite in the rock (Paquette et al., 1999; Montel et al., 2000) are more important. The use

of the closure temperature concept from Dodson (1973) must then be viewed with caution in

the case of the U-Th-Pb system in monazite.
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Appendix: SIMS analytical details

Images used a 12.7 kV, 20 nA, 16O- primary beam which was rastered over an area of

150 x 150 µm. Samples were cleaned in ethanol, dried at 75°C and coated with a conductive

gold film prior to analysis. The selected area for imaging was initially pre-sputtered in order
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to remove the gold coat. Digital image acquisition, employing a resistive anode encoder,

involved peak-stepping 20 times through the cycle: 1H (8 seconds), 28Si (8 s), 31P (8 s), 40Ca

(8 s), 89Y (8 s), 140Ce (8 s), 206Pb (60 s), 208Pb (30 s), 232Th (8 s), 238U (30 s). Total analytical

time per imaged area was thus some 65 minutes. For these analyses the mass spectrometer

was operated at low mass resolving power employing a 10kV secondary ion extraction

potential in conjunction with a 50V energy bandpass. In order to suppress artefacts due both

to sample charging as well as from polyatomic ions a-80V bias was applied to our sample.

The field-of-view for our images was circa 75µm in diameter and our spatial resolution was

better than 2µm.

We employed a 0.1nA 16O- primary beam operated in shaped beam mode using a

100µm primary L4 aperture. Subsequent measurements with both a stylus profilometer and

using backscattered electron imaging (Figure 7) indicated a beam diameter of 12µm of which

circa 80% of the primary intensity was focused to a diameter of < 6µm. An automatic 600s

preburn was conducted prior to each analysis in order to sputter off the sample’s gold coat and

so that equilibrium sputtering conditions would be established. Our mass spectrometer was

operated at low mass resolution (M/DM = 400) using a 400µm contrast aperture in

conjunction with a 60µm diameter filed-of-view. Isobaric molecular interferences were

suppressed using a 100V offset voltage. Each analysis involved 50 cycles of the peak-

stepping sequence: 139.5bkg (0.1 seconds), 140Ce (2 s), 206Pb (10 s), 208Pb (2 s), 208.5bkg (0.1 s).

A single analysis, including the 10 minutes preburn, lasted 24 minutes followed by an

automatic 3µm sample movement using the instrument’s stepping motor.
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CONCLUSIONS

In this thesis we first tried to understand how Th is partitioned between monazite and

xenotime and if this distribution has an influence on the CePO4-YPO4 geothermometer. It has

been demonstrated that for a ThSiO4 content in the bulk composition of 0.1 or 0.2 mole

fraction, Th was almost partitioned in monazite. The incorporation of ThSiO4 depends on the

XThSiO4
 content, whereas Y incorporation is more temperature dependent. Xenotime is

apparently Th-free. For a ThSiO4 content in the bulk composition of 0.5 mole fraction, thorite

is additionally formed for temperature <1000°C. This indicates a saturation of monazite (and

xenotime), i.e. solvus between monazite and thorite (and thorite and xenotime) has been

intersected. Above 1000°C only monazite, a small amount of xenotime and no thorite were

present. This indicates that the solvus shrinks considerably at high temperatures. All ThSiO4

is also partitioned between monazite and xenotime. The position of the solvus depends on the

Th content present in the system and also on the phases present. Our results show that the

interpretation of the calculated temperatures using the Y-partitioning between monazite and

xenotime should be treated with caution. The Th content in monazite has to be taking into

account.

The structure investigations of a natural, chemically homogeneous monazite crystal

concordant at 474 Ma (2.5 ✕  1016 α/mg accumulated), indicate that the crystal consists of two

domains (A) and (B), which are basically two monazite crystals with slightly different lattice

parameters. Diffraction domains (A), showing sharp reflections with high amplitude, are

assigned to a well-crystallised lattice with small volume expansion (1%). Diffraction domains

(B), exhibiting very broad reflections with low amplitude, represent a distorted lattice, which

can be referred to old alpha-recoil tracks. It is suggested that the (A) domains correspond to

well-crystallised areas, within which He atoms are trapped, causing an expansion of the

lattice. Diffraction domains (B) are interpreted as a distorted monazite crystal lattice

composed of “islands” with an expanded lattice (interstitials), and “islands” of a compressed

monazite lattice, (vacancies). Both the “islands” will pose stress (compression and/or

dilatation) on the lattice in the vicinity. The broadening of the (B)-reflections is due to the

expanded/compressed diffraction domains and due to the different amount of the distortion.

Therefore, in the (B) domains, He cannot accumulate because quality of the crystal net is very

poor, unable to trap atoms.
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The behaviour of this monazite under healing was investigated. With increasing temperature,

alpha-recoil-tracks are healed, i.e. diffraction domains (B) progressively disappear. At the

same time, He diffuses out of the monazite lattice, inducing a relaxation of the lattice resulting

in a volume decrease. At 900°C only one phase remains that is a monazite with well-

crystallised lattice and minimum unit-cell volume. This study confirms the good crystallinity

observed for most of natural monazites. In natural samples, Pb-diffusion will occur

predominantly within a pristine, organised crystal structure. Because it is known that Pb-

diffusion in monazite is very slow (Suzuki et al. 1994; Smith and Giletti 1997), we suggest

that Pb-diffusion will not be an efficient mechanism for resetting.

In a third part, experiments on the same monazite as used in part II were focused on

the understanding of the resetting mechanisms of the U-Pb isotope system. It could be shown

that dissolution/precipitation is the predominant mechanism by which the U-Pb monazite

system can be modified and its extension is strongly dependent on the fluid composition. At

1000°C in a CaCl2 fluid significant dissolution/precipitation, demonstrated by presence of

inherited core and newly formed Ca-rich/Pb-free monazite rim, and corresponding

discordancy (68%), occurred. In the case of a fluid with SrCl2 the effect is weaker (16%

discordancy). In a pure water fluid, no significant modifications are visible even at 1200°C/5

days. Temperature, and consequently volume diffusion, was never observed in our study

except for the very particular experiment at 800°C using Pb-spike. Therefore, we propose that

volume diffusion is neither the only nor the most significant parameter that causes

discordancy. In nature, resetting (discordancy) by diffusion is most therefore unlikely,

whereas fluid occurrences, fluid compositions, and textural positions of the monazite in the

rock (Paquette et al., 1999; Montel et al., 2000) are the most important parameters. As a

consequence, the concept of “closure temperature” from Dodson (1973) must be viewed with

extreme caution.

Experiments with Pb-bearing fluid demonstrated the possibility to create a Pb-excess

in monazite, maybe by a Pb exchange via Pbfluid-Camonazite inter-diffusion. Additional to this

exchange, it appears that 208Pb may have been preferentially lost from the monazite products

of both the 800 and 1000°C experiments. Although this phenomenon is not well understand,

we underline that this situation is not a “natural” condition, as nature seldom provides such

extremely Pb-enriched-fluids.
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Each part of the thesis was done with other authors and the papers were submitted in different

international journals:

PartI:

Seydoux-Guillaume A.M., Wirth R., Heinrich W. and Montel J.M. Experimental

determination of the Th partitioning between monazite and xenotime using Analytical

Electron Microscopy. Submitted to European Journal of Mineralogy.

PartII:

Seydoux-Guillaume A.M., Wirth R., Nasdala L., Gottschalk M., Montel J.M. and Heinrich

W. An XRD and TEM study of an experimentally annealed monazite. Accepted in

Physics and Chemistry of Minerals

Nasdala, L., Lengauer, C.L., Hanchar, J.M., Kronz, A., Blanc, P., Kennedy, A.K., Seydoux-

Guillaume A.M. Annealing metamictisation and the recovery of cathodoluminescence.

Submitted to Chemical Geology

PartIII:

Seydoux-Guillaume A.M., Paquette J.L., Wiedenbeck M., Montel J.M. and Heinrich W.

Experimental resetting of the U-Th-Pb system in monazite. Submitted to Chemical

Geology



RReeffeerreenncceess

“Quand nous avons soif, il nous semble que nous pourrions boire tout un océan: c’est la foi; et quand nous nous

mettons à boire, nous buvons un verre ou deux: c’est la science.”

Anton Tchekhov - Calepin
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