Modèles autorégressifs à changements de régimes markoviens

Applications aux séries temporelles de vent

Pierre Ailliot

Introduction

Motivations

- Conditions d'états de mer (vent, vagues) influencent...
 - Evolution d'un trait de côte
 - Faisabilité d'une opération en mer
 - Rentabilité d'une ligne maritime
- Données disponibles sur des périodes relativement courtes (≈ 50 ans maxi)
- Utilisation d'un modèle stochastique afin de simuler de nouvelles séries temporelles d'états de mer
- Relations complexes entre les paramètres...
 - Dans un premier temps, séries temporelles de vent
- Les vagues sont générées par le vent...
 - Reconstitution à partir des séries temporelles de vent
 - Filtrage non paramétrique (Monbet et al., 2003)

Introduction

Exemple d'application (projet Egide)

- <u>Objectif</u>: étudier la rentabilité d'une ligne maritime en Mer Egée pour un bateau donné
- Données océano-météorologiques disponibles
 - Conditions d'états de mer sur la ligne (3 ans)
- ...utilisation d'un modèle stochastique afin de simuler de nouvelles séries (500 ans)
 - Vent puis vagues
- Réponse du navire dans les différents états de mer
 - Vitesse maximale du bateau dans chaque état de mer
 - Contraintes structurelles, confort des passagers
- ...développement d'un "simulateur" de traversée
 - <u>Entrée</u>: conditions d'états de mer sur la ligne pendant la traversée
 - <u>Sortie</u>: traversée normale, retardée ou annulée

Introduction

• <u>Résultats obtenus</u>

	Données (3 ans)	Simulées (500 ans)
% de traversées annulées	0.00%	0.58%
% de traversées retardées	11.1%	11.2%

• Variabilité de ces quantités

Répartition du pourcentage de traversées annulées (à gauche) et retardées (à droite)

• 8% des années avec plus de 30% de traversées retardées

Plan de l'exposé

1. Définition des modèles MS-AR

2. Etude théorique des modèles MS-AR

3. Modèles en un point fixe

4. Modèle spatio-temporel

5. Perspectives

Définition

1. Définition

<u>Définition</u>: $\{X_t\} = \{S_t, Y_t\}$ suit un modèle MS-AR si c'est une chaîne de Markov (CM) à espace d'état $\{1...M\} \times Y$ (avec $Y \subset \mathbb{R}^d$) telle que

•
$$P(S_t | S_{t-1} = s_{t-1}, Y_{t-1} = y_{t-1}, \dots, S_0 = s_0, Y_0 = y_0) = P(S_t | S_{t-1} = s_{t-1})$$

• CM homogène ou non-homogène

•
$$q_{\theta}^{(t)}(i,j) = P(S_t = j | S_{t-1} = i), Q_{\theta}^{(t)} = (q_{\theta}^{(t)}(i,j))_{i,j \in \{1...M\}}$$

- $\theta \in \Theta$ avec Θ compact de \mathbf{R}^p
- Processus non observé

•
$$P(Y_t | S_t = s_t, S_{t-1} = s_{t-1}, Y_{t-1} = y_{t-1}, \dots, S_0 = s_0, Y_0 = y_0) = P(Y_t | S_t = s_t, Y_{t-1} = y_{t-1})$$

- $P(Y_t|S_t = s_t, Y_{t-1} = y_{t-1})$: probabilités d'émission
- $P(Y_t \in dy | S_t = s_t, Y_{t-1} = y_{t-1}) = g_{\theta}(y_t | s_t, y_{t-1}) dy$
- Processus observé

 $\Pi_{\theta}^{(t)}$: noyau de transition de la CM "complète" $\{X_t\} = \{S_t, Y_t\}$

Définition

Cas particuliers

- **CM cachées:** $P(Y_t | S_t = s_t, Y_{t-1} = y_{t-1}) = P(Y_t | S_t = s_t)$
- Modèles autorégressifs (M=1)

Deux types de modèles MS-AR utilisés pour le vent...

- Modèle MS-LAR
 - Introduit par *Hamilton (1989)* en économétrie
 - Variable cachée représente les cycles économiques (croissance/récession)
 - Modèle spatio-temporel pour les champs de vent

• **Définition**:
$$Y_t = A_{\theta}^{(S_t)} Y_{t-1} + B_{\theta}^{(S_t)} + H_{\theta}^{(S_t)} \varepsilon_t$$

•
$$A_{\theta}^{(s)} \in M_d(\mathbf{R}), B_{\theta}^{(s)} \in M_{d,1}(\mathbf{R}) \text{ et } \Sigma_{\theta}^{(s)} = H_{\theta}^{(s)}(H_{\theta}^{(s)})' \in S_d^+(\mathbf{R})$$

- $\{\varepsilon_t\}$ un bruit blanc gaussien, ε_t indépendant de $Y_{t'}$ pour t' < t
- Probabilités d'émission:

$$P(Y_t | S_t = s_t, Y_{t-1} = y_{t-1}) \sim N(A_{\theta}^{(s_t)} Y_{t-1} + B_{\theta}^{(s_t)}, \Sigma_{\theta}^{(s_t)})$$

Définition

• <u>Modèle MS-yAR</u>

• $\{Y_t\}$ à valeurs dans \boldsymbol{R}^+

• Intensité du vent, hauteur significative des vagues...

• <u>Définition</u>: $P(Y_t | S_t = s_t, Y_{t-1} = y_{t-1})$ suit une loi gamma

• de moyenne
$$\mu^{(s_t)}(y_{t-1}) = a^{(s_t)}y_{t-1} + b^{(s_t)}$$
 avec $a^{(s)} \ge 0$ et $b^{(s)} > 0$

• **d'écart-type** $\sigma^{(s_t)} > 0$

$$g_{\theta}(y_{t}|s_{t}, y_{t-1}) = \mu^{(s_{t})}(y_{t-1}) \left((\sigma^{(s_{t})})^{2} \Gamma\left(\left(\frac{\mu^{(s_{t})}(y_{t-1})}{\sigma^{(s_{t})}} \right)^{2} \right) \right) \left(\frac{y_{t}\mu^{(s_{t})}(y_{t-1})}{(\sigma^{(s_{t})})^{2}} \right)^{2} \exp\left(-\frac{y_{t}\mu^{(s_{t})}(y_{t-1})}{(\sigma^{(s_{t})})^{2}} \right) \mathbf{1}_{R^{+}}(y_{t})$$

2. Etude théorique des modèles MS-AR

Estimation

Objectif: estimer le paramètre inconnu θ∈ Θ à partir d'une réalisation {y_t}_{t∈ {0...T}} du processus {Y_t}

<u>Définition</u>: un estimateur du maximum de vraisemblance (EMV) est un maximum de la fonction de vraisemblance

$$L_{T, s_0}(\theta) = \sum_{(s_1, ..., s_T) \in \{1...M\}^T t = 1} \prod_{t=1}^{T} q_{\theta}^{(t)}(s_{t-1}, s_t) g_{\theta}(y_t | y_{t-1}, s_t)$$

T

avec $s_0 \in \{1...M\}$ une condition initiale arbitraire

- Calcul numérique des EMV?
- Qualité des EMV?

Validation

• Le modèle permet-il de décrire le phénomène observé?

Calcul numérique des EMV

<u>Algorithme EM (Baum et al. (1970), Dempster et al. (1977))</u> <u>Principe</u>: algorithme itératif, partant de $\theta^{(0)} \in \Theta$. A chaque itération:

- Etape E (Expectation): calcul de la fonction intermédiaire $R(\theta, \theta^{(n-1)}) = E_{\theta^{(n-1)}}[\ln p_{\theta}(y_1^T, S_1^T | y_0, s_0) | y_0^T, s_0]$
 - Expression en fonction des probabilités de lissage $p_{\theta}(S_t | y_0^T, S_0 = s_0)$
 - Algorithme Forward-Backward
- Etape M (Maximisation): calcul de

 $\theta^{(n)} = \operatorname{argmax}_{\theta \in \Theta} R(\theta, \theta^{(n-1)})$

• Selon les modèles, expression analytique ou optimisation numérique

Inconvénients:

- Convergence possible vers des extrema locaux
- Taux de convergence asymptotique linéaire

Algorithme quasi-Newton

- Taux de convergence asymptotique super-linéaire
- Nécessite d'évaluer la fonction de vraisemblance et son gradient en un nombre de points importants
- ...se calculent à partir du filtre de prédiction $p_{\theta}(S_t|y_0^{t-1}, S_0 = s_0)$
- ...qui vérifie une relation de récurrence (algorithme Forward)

Algorithme utilisé en pratique

- Localisation d'un extremum "intéressant"
 - Choix de plusieurs valeurs initiales $\theta^{(0)}$ de manière aléatoire
 - Utilisation de N_1 itérations de l'algorithme EM
- Estimation finale avec l'algorithme quasi-Newton
 - Valeur approchée de la matrice d'information observée

$$I_{T,s_0}^{obs} = -\nabla_{\boldsymbol{\theta}}^2 \ln(L_{T,s_0}(\hat{\boldsymbol{\theta}}_{T,s_0}))$$

Propriétés asymptotiques des EMV

Bibliographie

- Baum et al. (1966)
 - Consistance et normalité asymptotique dans les modèles CMC (Y fini)
- Leroux (1992)
 - Consistance des EMV dans les modèles CMC
- Francq et al. (1998), Krishnamurty et al. (1998)
 - Consistance des EMV dans les modèles MS-AR
- Bickel et al. (1998)
 - Normalité asymptotique des EMV dans les modèles CMC
- Douc et al. (2004)
 - Consistance et normalité asymptotique des EMV dans les modèles MS-AR

... conditions vérifiées par les modèles MS-LAR

Consistance des EMV (modèles MS-yAR homogènes)

- On suppose que le processus $\{Y_t\}$ suit un modèle MS- γ AR de paramètres $\theta_0 = (\theta_{S,0}, \theta_{R,0}^{(1)}, ..., \theta_{R,0}^{(M)})$
- <u>Notation</u>: θ₁ ~ θ₂ si les deux paramètres définissent le même modèle, à la numérotation près des états

<u>Proposition</u>: Supposons que les deux conditions ci-dessous sont vérifiées: (C1) (stabilité): $\forall \theta \in \Theta$, la matrice Q_{θ} est irréductible, le noyau Π_{θ} admet une unique probabilité invariante et la solution stationnaire est ergodique et possède un moment d'ordre $\kappa > 2$

(C2) (identifiabilité):
$$\theta_{R,0}^{(i)} \neq \theta_{R,0}^{(j)}$$
 si $i \neq j$

alors, si $\overline{P}_{\theta_0}^Y$ désigne la loi stationnaire de $\{Y_t\}$, on a

$$\forall s_0 \in \{1...M\}, \ \hat{\theta}_{T,s_0} \rightarrow \theta_0 \ \overline{P}_{\theta_0}^Y \text{ p.s. quand } T \rightarrow \infty$$

pour la topologie quotient associée à ~

Stabilité (modèles MS-yAR homogènes)

- Résultats existants valables pour les modèles MS AR fonctionnels de la forme $Y_t = f^{(S_t)}(Y_{t-1}) + \varepsilon_t$
 - Holst et al. (1994), Francq et al. (1998), Yao et al. (2000 et 2001)

<u>Proposition</u>: Soit $\{X_t\} = \{S_t, Y_t\}$ un processus $MS-\gamma AR$, tel que $\{S_t\}$ soit irréductible et apériodique de probabilité invariante $\pi = (\pi_1, ..., \pi_M)$.

Si l'hypothèse (S1) est vérifiée alors $\{X_t\}$ est géométriquement ergodique

(S1)
$$\sum_{1 \le i \le M} \pi_i \log(a^{(i)}) < 0$$

Si en outre l'hypothèse (S2) avec $\kappa \ge 1$ est vérifiée alors la loi stationnaire de $\{Y_t\}$ admet des moments d'ordre κ

(S2)
$$\rho(R_{\kappa}) < 1$$
 avec $R_{\kappa} = (q(i,j)(a^{(j)})^{\kappa})_{i,j \in \{1...M\}}$

• Conditions (C2) et (S2) (avec $\kappa > 2$) impliquent la consistance des EMV

Normalité asymptotique (modèles MS-yAR homogènes)

• Résultats de Douc et al. (2004) ne s'appliquent pas

 $sup_{\theta \in \Theta, (y_0, y_1, s) \in Y \times Y \times S} g_{\theta}(y_1 | y_0, s) = \infty$

Etude de la qualité des EMV par simulation

- Simulation de N=1000 réalisations de longueur T d'un modèle $MS \gamma AR$
- T équivalent à 22 ans de données de vent ($T \approx 2700$)

	q(1,1)	q(2,2)	a ⁽¹⁾	a ⁽²⁾	b ⁽¹⁾	b ⁽²⁾	σ ⁽¹⁾	σ ⁽²⁾
Vraie valeur	0.97	0.96	0.84	0.78	1.06	2.10	1.23	2.30
Biais	0.001	-0.001	-0.003	-0.002	0.020	0.019	0.001	-0.006
Ecart-type	0.028	0.033	0.049	0.058	0.337	0.499	0.126	0.218
σ _{information}	0.030	0.036	0.055	0.061	0.384	0.604	0.125	0.216

• Comparaison à l'écart-type calculé à partir de la matrice d'information

Validation de modèle

Différents critères sont généralement utilisés...

- Interprétabilité de la variable cachée
 - Cycles économiques, types de temps, déplacement des masses d'air...
- Propriétés des résidus
 - Test d'indépendance, variance du résidu

Tests d'adéquation

- Choix de différents critères, selon l'application
 - Fonction de répartition marginale, fonction d'autocorrélation...
- Pour chacun de ces critères, choix d'une statistique de test W
 - Exemple: distance de Kolmogorov-Smirnov
- Estimation de la loi de W sous H_0 par simulation

Sélection de modèle

• Première sélection avec le critère $BIC = -2l(\hat{\theta}) + n_{par}\ln(T)$

3. Modèles en un point fixe

Données utilisées

- Produites par OCEANWEATHER
- Données de "hindcast"
 - 22 ans, $\Delta t = 6h$
 - Point étudié: (46.25N, 1.67 E)

Composantes non stationnaires

- Pas de tendance significative
- Composantes saisonnières
 - Données mois par mois
- Composantes journalières
 - Négligeables en hiver
 - Modèle spécifique en été

Modèles pour l'intensité du vent (mois de janvier)

- Méthode usuelle (TGP) (Borgman et al., 1991)
 - <u>Hypothèse</u>: $\{V_t\} = \{\Phi^{-1} \circ F_U(U_t)\}$ est un processus gaussien
 - F_U et Φ fonctions de répartition de U_t et de la loi N(0, 1)
 - Simulation du processus gaussien $\{V_t\}$ par des méthodes exactes
 - Permet de décrire la loi marginale et la structure d'ordre 2
 - Ne permet pas de décrire l'existence de "type de temps"

Modèle MS-γAR

• Première sélection avec BIC

М	1	2	3	4	5
BIC	10485	10316	10307	10343	10387

- Modèles à 2 ou 3 régimes?
 - Interprétabilité de la variable cachée et tests d'adéquation

Interprétabilité des différents régimes (M=2)

• Paramètres régissant l'évolution dans les différents régimes

	$\mathbf{\sigma}^{(s)}$	$a^{(s)}$	$b^{(s)}$
Régime 1 (s=1)	1.37 [0.12]	0.79 [0.05]	1.46 [0.33]
Régime 2 (s=2)	2.40 [0.21]	0.77 [0.06]	2.24 [0.49]

- <u>Premier régime</u>: faiblement perturbé, *conditions anticycloniques*
- <u>Deuxième régime</u>: volatilité plus importante, *conditions dépressionnaires*
- Matrice de transition de la CM cachée

q(i,j)	j = 1	<i>j</i> = 2		
i = 1	0.98 [0.03]	0.02 [0.03]		
<i>i</i> = 2	0.03 [0.04]	0.97 [0.04]		

- Temps de séjour moyen:
 - ≈ 14 jours dans le premier régime
 - ≈ 7 jours dans le deuxième régime

Modèles en un point fixe

• Exemple d'évolution des probabilités de lissage

• Répartition empirique de la direction du vent dans les différents régimes

Régime 1

Régime 2

• Conditions dépressionnaires associées à des vents de Sud-Ouest

- Comparaison des modèles TGP et $MS \gamma AR$
 - Valeur entre crochets: limite de la région de rejet au seuil $\alpha = 5\%$

Modèles en un point fixe

Deux extensions (chaîne cachée non-homogène)

• En présence de composantes journalières $q_{\theta}^{(t)}(i,j) = P(S_t = j | S_{t-1} = i) \sim q_{i,j} \exp(\kappa_j \cos(\omega t + \Phi_j))$

•
$$Q = (q_{i,j})$$
 une matrice stochastique, $\kappa_j > 0$, $\Phi_j \in [0, 2\pi[, \omega = \pi/2]$

• Pour décrire la relation avec la direction du vent

$$q_{\theta}^{(t)}(i,j) = P(S_t = j | S_{t-1} = i) \sim q_{i,j} \exp(\kappa_j \cos(\Phi_t - \Phi_j))$$

4. Modèle spatio-temporel

Données utilisées

- Produites par ECMWF
- Données de "hindcast"
 - Disponibles sur tout le globe
 - $\Delta x = \Delta y = 1.125^\circ, \Delta t = 6h$
 - 11 ans (mois de janvier)
 - **Restriction** à une zone *R*₀
 - $600 \, km \times 600 \, km$
 - N = 35 points

Notations

$$Z_t(R_0) = (u(r_1, t), ..., u(r_N, t), v(r_1, t), ... v(r_N, t))$$

u, *v*: composantes zonale et méridienne

•
$$R_0 = (r_1, ..., r_N)$$

<u>Choix du modèle</u>

Les structures météo se déplacent...

- S_t déplacement entre t-1 et t
 - A valeurs dans $\{a_1, ..., a_M\} \subset Z^2$
 - Vitesses inférieures à 150 kmh⁻¹

Utilisation d'un modèle MS - LAR

$$Z_t(R_0) = A_{\theta}^{(S_t)} Z_{t-1}(R_0) + B_{\theta}^{(S_t)} + H_{\theta}^{(S_t)} \varepsilon_t$$

Paramétrisation et estimation

- Estimation des valeurs prises par le processus $\{S_t\}$
 - Utilisation d'information supplémentaire (champs sur une plus grande zone)
- Utilisation de ces déplacements estimés pour...
 - Choisir des formes paramétriques pour $A_{\theta}^{(s)}$, $B_{\theta}^{(s)}$, $\Sigma_{\theta}^{(s)} = H_{\theta}^{(s)}(H_{\theta}^{(s)})'$ et Q_{θ}
 - Obtenir une première estimation de θ
- Réestimation des paramètres du modèle

Paramétrisation de A^(s)

•
$$Z_{t-1}(R_0) \approx Z_t(R_0 + S_t) + \delta_t$$

- δ_t : déformation du champ entre les instants t-1 et t
- $A^{(s)}$ fixée, permettant d'extrapoler le champ sur la zone R_0 à partir du champ sur la zone $R_0 + s$

Paramétrisation de $M^{(s)} = (I - A^{(s)})^{-1} B^{(s)}$

•
$$M^{(s)} = Fs + G$$

• 6 paramètres

Paramétrisation de $\Sigma^{(s)}$

• 7 paramètres

Paramétrisation de l'évolution de la CM cachée

$$q(i,j) = P(S_t = a_j | S_{t-1} = a_i) \sim \exp\left(-\frac{\|a_i - a_j\|^2}{\sigma^2} - (a_j - a_0)'O^{-1}(a_j - a_0)\right)$$

• 6 paramètres

Estimation des paramètres

- Nombre total de paramètres: 19
 - Première estimation à partir des déplacements estimés
 - EM puis quasi-Newton
- Temps de calcul importants...
 - Grand nombre d'états pour la CM cachée
 - Complexité des probabilités d'émission

Modèle spatio-temporel

• En prédiction

• Comparaison avec un modèle AR(1) (trait fin)

Composante méridienne

• <u>En simulation</u>

- Structure d'ordre 2 bien reproduite
- Lois marginales aux différents points mal reproduites

Perspectives

Perspectives

- Etude théorique des modèles MS-AR
 - Normalité asymptotique des EMV dans les modèles $MS \gamma AR$
 - Propriétés asymptotiques des EMV lorsque $\{S_t\}$ est non-homogène
 - Sélection de modèle
- Modèles en un point fixe
 - Tester les modèles sur d'autres paramètres (H_s, T_p,...)
 - Tester les modèles sur des mesures "in-situ"
 - Modèles paramétriques pour les séries directionnelles (Φ , Θ_m ,...)

• Modèle spatio-temporel

- Algorithmes plus efficaces pour le calcul des paramètres
- Tester d'autres paramétrisations
- Reconstruction de H_s , T_p ,... à partir des séries de vent
- Boîte à outils (Matlab)