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Motivation and scientific context

Management of networked systems
(e.g., telecommunication networks)
Probabilistic model for:

performance evaluation

analysis of observations with incomplete information

distributed fault diagnosis

distributed statistical learning
(inferring local parameters from local observations)
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Requirements

Distributed architecture:
[Benveniste-Haar-Fabre-Jard 03]
occurrences of synchronous and asynchronous events

1. Nodes have local clocks

2. Asynchronous events cannot be chronologically
compared:

no global clock

if a clock is imposed, different interleavings of
asynchronous events must be identified

events in an execution form a causal partial order
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Probabilistic extensions of concurrency models

Composition of probabilistic automata ([Segala 95,02])
a 2-steps semantics

1. synchronisation w.r.t. labelling is scheduled

2. random decisions are private and do not interfere with
synchronisation

the probability is not defined up to interleaving: it
does not match our requirements

– p.4/33



Probabilistic extensions of concurrency models

Timed approaches (Continuous time Markov chains)

Stochastic Petri nets based on race policies to solve
conflicts

applications in queuing theory

connexions with (max,+) algebra (Baccelli,
Mairesse,. . .)

Stochastic process algebras: stochastic extensions
of languages of timed processes

performance evaluation, bisimulation
(Hermanns-Herzog-Katoen)
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Probabilistic extensions of concurrency models

Timed approaches (Continuous time Markov chains)

Transform the model, e.g. the Petri net, into a stochastic
process (Xt)t≥0 on a (huge) state space

partial orders are randomised through the
temporisation: what happens without global clock?

– p.4/33



Probabilistic models: a new approach

In the model of safe Petri nets

No global clock t ≥ 0

randomize the set Ω of maximal executions of the
system

randomize Ω in a recursive way

[Völzer 2001,
Benveniste-Haar-Fabre 2003,
Varacca-Winskel-Völzer 2004,
Abbes 2004]
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Summary

Objectives:

provide a probabilistic framework for safe Petri nets
without reference to a global clock
obtain asymptotic results and statistical applications

Problematic:
is it true that a probabilistic Petri net is a Markov chain
(DTMC) with several tokens?
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Contributions

Continuous domain of configurations
identification of the space of maximal configurations
as a projective limit
locally finite unfoldings for extension of probabilities

Occurrence nets and event structures
decomposition of true-concurrent processes through
branching cells (local states)
computability

Probabilistic model
construction of the distributed probabilities
stopping operators and the Strong Markov property
part of a recurrence theory
Law of large numbers
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1. Background: unfoldings and representations of space Ω

2. Extension of probabilities

3. Decomposition of true-concurrent processes

4. Distributed product of probabilities

5. Markov nets: the Markov property and the Law of large
numbers

6. Computability of local finiteness

7. Conclusion and perspectives
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Representation of Ω (1)

Transition system (T.S.):

A B

C

A partial execution is a sequence of moves of the token

= a path in the finite graph of the T.S.

A maximal execution ω ∈ Ω is a sequence finite or infinite

that cannot be continued
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Representation of Ω (1)

covering tree = transition system (infinite)

acyclic

same dynamics than the T.S.: a path in the T.S. is
lifted into a unique path in the covering tree

A B

C

A

B C

C B A B

– p.9/33



Representation of Ω (1)

covering tree = transition system (infinite)

acyclic

same dynamics than the T.S.: a path in the T.S. is lifted
into a unique path in the covering tree

Ω is the boundary at infinity of the covering tree

initial state

final state

ω ∈ Ω
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Representation of Ω (2)
Unfolding of a safe Petri net (Winskel 80)

A firing sequence of the
Petri net is lifted into a
firing sequence of the
unfolding.
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A firing sequence of the
Petri net is lifted into a
firing sequence of the
unfolding.
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Representation of Ω (2)
Unfolding of a safe Petri net (Winskel 80)

A trace of the Petri net
is lifted into a trace of
the unfolding.
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Representation of Ω (2)

The unfolding U of a safe Petri net N is a labelled
occurrence net , labelled by N , and with the same
true-concurrent dynamics than N .

a finite configuration of U leads to a marking of net N

U

v

m
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Representation of Ω (2)

The unfolding U of a safe Petri net N is a labelled
occurrence net , labelled by N , and with the same
true-concurrent dynamics than N .

Ω = {maximal configurations} = boundary at infinity of U

ω ∈ Ω

Ω

U
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1. Background: unfoldings and representations of space Ω

2. Extension of probabilities

3. Decomposition of true-concurrent processes

4. Distributed product of probabilities

5. Markov nets: the Markov property and the Law of large
numbers

6. Computability of local finiteness

7. Conclusion and perspectives
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Finite approximations of Ω

Case of a transition system.
Ωn = finite set of executions after n moves

? Existence of P: P(X0, . . . , Xn) = Pn(X0, . . . , Xn) ∀n ≥ 0?

(Ωn+1, Pn+1)

(Ωn, Pn)

Ω

Kolmogorov-Prokhorov extension theorem: the extension
occurs iff:

Pn

(
X0, . . . , Xn

)
=

∑

s∈S

Pn+1

(
X0, . . . , Xn, s

)
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Finite approximations of Ω

Case of a transition system.
Ωn = finite set of executions after n moves

?Existence of P: P(X0, . . . , Xn) = Pn(X0, . . . , Xn) ∀n ≥ 0?

(Ωn+1, Pn+1)

(Ωn, Pn)

Ω

Kolmogorov-Prokhorov extension theorem relies on:

Ω = lim←−n Ωn

︸ ︷︷ ︸

tree model

+
extension theorem for projective limits
of probabilities (Prokhorov, 1930’s)

︸ ︷︷ ︸

probability theory – p.12/33



Finite approximations of Ω

For concurrent models (N , U , Ω), is there a projective
systems of finite sets (Γn)n such that:

Ω = lim←−n Γn ? (n ranges over a countable lattice)
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Finite approximations of Ω

For concurrent models (N , U , Ω), is there a projective
systems of finite sets (Γn)n such that:

Ω = lim←−n Γn ? (n ranges over a countable lattice)

Theorem: yes, if and only if Ω is compact in the Scott
topology, and in this case we can take:

P finite prefix of U , ΓP =
{
ω ∩ P , ω ∈ Ω

}

Ω is the limit of its traces over finite prefixes of U
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Locally finite unfoldings

A general compact case for Ω

minimal conflict on U : e#µ e′

a stopping prefix of U is a prefix #µ -closed

Property: for stopping prefix B:

ΩB = {ω ∩B, ω ∈ Ω}

the traces of Ω over stopping prefix B coincide with ΩB

→ interesting property from a computational point of
view
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Locally finite unfoldings

A general compact case for Ω

an unfolding U is locally finite if for every node x of U ,
there is a stopping prefix B s.t.:

x ∈ B, B is finite

Theorem: if U is locally finite, then Ω is compact, and:

Ω = lim←−B ΩB

→ restrict the study to nets with locally finite unfoldings
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Examples

Locally finite: unfoldings of
transition systems
confusion-free and free-choice nets
nets with finite unfoldings
some other nets

Non locally finite:

a c
b

transition c is in competition with infinitely many
occurrences of transition a

– p.14/33



1. Background: unfoldings and representations of space Ω
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3. Decomposition of true-concurrent processes

4. Distributed product of probabilities

5. Markov nets: the Markov property and the Law of large
numbers
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7. Conclusion and perspectives
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Future

N a finite safe Petri net with unfolding U from marking M0

For v a configuration of U

Uv = future of v = unfolding of N from m(v)

M0

Ω

v

U

Uv

Nodes not in v and
not in conflict with v
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Future

N a finite safe Petri net with unfolding U from marking M0

For v a configuration of U

Uv = future of v = unfolding of N from m(v)

M0

Ω

v

U

Uv

w

m(v)
Uv
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Future

N a finite safe Petri net with unfolding U from marking M0

For v a configuration of U

Uv = future of v = unfolding of N from m(v)

v + w

M0

Ω

v

U

w

m(v)
Uv
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Future

N a finite safe Petri net with unfolding U from marking M0

For v a configuration of U

Uv = future of v = unfolding of N from m(v)

associative composition v + w

defined for w a configuration of Uv

→ suggests recursive decompositions of maximal
processes
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Decompositions of configurations

Safe Petri net N , unfolding U . Fix a maximal configuration ω.
Definition: An initial branching cell of U is a minimal 6= ∅
stopping prefix of U .

initial branching cells of U

Ω

λ3λ1 λ2
U

ω

initial marking – p.17/33



Decompositions of configurations

Safe Petri net N , unfolding U . Fix a maximal configuration ω.
Definition: An initial branching cell of U is a minimal 6= ∅
stopping prefix of U .

Ω

λ3λ1 λ2
U

ω

initial marking

Step 1: select a initial
branching cell, say λ3
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Decompositions of configurations

Safe Petri net N , unfolding U . Fix a maximal configuration ω.
Definition: An initial branching cell of U is a minimal 6= ∅
stopping prefix of U .

Ω

λ3λ1 λ2
U

ω

initial marking

Step 1: select a initial
branching cell, say λ3

Set v1 = ω ∩ λ3.
v1 is maximal in λ3
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Decompositions of configurations

Safe Petri net N , unfolding U . Fix a maximal configuration ω.
Definition: An initial branching cell of U is a minimal 6= ∅
stopping prefix of U .

Ω

λ3λ1 λ2

ω

initial marking

U

Uv1

Step 1: select a initial
branching cell, say λ3

Set v1 = ω ∩ λ3.
v1 is maximal in λ3

Step 2: consider
Uv1 = future of v1
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Decompositions of configurations

Safe Petri net N , unfolding U . Fix a maximal configuration ω.
Definition: An initial branching cell of U is a minimal 6= ∅
stopping prefix of U .

Ω

λ3λ1 λ2

ω

initial marking

U

Uv1

λ4

Step 1: select a initial
branching cell, say λ3

Set v1 = ω ∩ λ3.
v1 is maximal in λ3

Step 2: consider
Uv1 = future of v1

Initial branching cells of Uv1

are: λ1, λ2, λ4
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Decompositions of configurations

Safe Petri net N , unfolding U . Fix a maximal configuration ω.
Definition: An initial branching cell of U is a minimal 6= ∅
stopping prefix of U .

Ω

ω

initial marking

U

Uvn

vn

Step 1: select an initial
branching cell, say λ3

Set v1 = ω ∩ λ3.
v1 is maximal in λ3

Step 2: consider
Uv1 = future of v1

Initial branching cells of Uv1

are: λ1, λ2, λ4

Repeat to construct
v1, v2,. . .
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Branching cells

Finite well stopped (w.s) configurations are all the vn

that can be constructed, for ω ranging over Ω

Branching cells are initial branching cells of U v, for v

finite w.s

v

U

Theorem: a finite w.s config-
uration v admits a unique de-
composition:

v =
⋃

finite

ξλ, ξλ ∈ Ωλ

and branching cells λ are
disjoint
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Branching cells

Properties

if B is a finite stopping prefix, then every maximal
configuration ωB ∈ ΩB is well stopped

Stability under concatenation
if v is well stopped in U , if w is well stopped in U v,
then v + w is well stopped in U

Remark: Well stopped configurations form the smallest

class with both properties.
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Branching cells

Comments:

branching cells are dynamic, because of concurrency
An event t can belong to different branching cells,
according to the context of t

U

t

t
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Comments:

branching cells are dynamic, because of concurrency
An event t can belong to different branching cells,
according to the context of t

U

t

t
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Branching cells

Comments:

branching cells are dynamic, because of concurrency

Case of a tree: branching cells do not overlap

U
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1. Background: unfoldings and representations of space Ω

2. Extension of probabilities

3. Decomposition of true-concurrent processes

4. Distributed product of probabilities

5. Markov nets: the Markov property and the Law of large
numbers

6. Computability of local finiteness

7. Conclusion and perspectives
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Construction of a probability

Data: a countable family of finite probabilities (qλ)λ,
λ ranging over the branching cells of U

Define, for configuration v =
⋃

λ

ξλ finite w.s

p(v) =
∏

λ

qλ(ξλ)
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Construction of a probability

Data: a countable family of finite probabilities (qλ)λ,
λ ranging over the branching cells of U

Define, for configuration v =
⋃

λ

ξλ finite w.s

p(v) =
∏

λ

qλ(ξλ)

for every finite stopping prefix B, PB(ωB) =def p(ωB)

is a probability on ΩB

(PB)B is a projective system of probabilities on (ΩB)B

B ⊆ B′, ∀ωB ∈ ΩB, PB(ωB) =
∑

ωB′∈ΩB′

PB′(ωB′)
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Construction of a probability

Data: a countable family of finite probabilities (qλ)λ,
λ ranging over the branching cells of U

Define, for configuration v =
⋃

λ

ξλ finite w.s

p(v) =
∏

λ

qλ(ξλ)

Extension theorem: there is a unique probability P on Ω

s.t. for all B:

P(ω ⊇ ωB) = p(ωB)

and then for every v finite w.s: P(ω ⊇ v) = p(v)

– p.20/33



Construction of a probability

Ω(v) = {ω ∈ Ω : ω ⊇ v} is the shadow of v

p(v) = P
(
Ω(v)

)

v

Ω

Ω(v) Ω(v′)

Call P the distributed product of family (qλ)λ⊆U

P =
⊗d

λ⊆U

qλ
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Probabilities induced in past and future

Ω(v) = {ω ∈ Ω : ω ⊇ v} is the shadow of v

p(v) = P
(
Ω(v)

)

v

Ω

Ω(v) Ω(v′)

Probabilistic future of configuration v: probability P
v

on the shadow Ω(v)

A ⊆ Ω(v), P
v(A) =

1

p(v)
P(A)
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Probabilities induced in past and future

Ω(v) = {ω ∈ Ω : ω ⊇ v} is the shadow of v

Ωv

Uv

v

Ω

Ω(v) Ω(v′)

Probabilistic future of configuration v: probability P
v

on the boundary at infinity Ωv of the future Uv

A ⊆ Ωv, P
v(A) =

1

p(v)
P(A)
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Probabilities induced in past and future

Ω(v) = {ω ∈ Ω : ω ⊇ v} is the shadow of v

Ωv

Uv

v

Ω

Ω(v) Ω(v′)

Property: conservation of distributed products w.r.t.
future

P =
⊗d

λ⊆U

qλ =⇒ P
v =

⊗d

λ⊆Uv

qλ
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Probabilities induced in past and future

U

B
ωB

B stopping prefix (past )→ probability PB on ΩB

PB(ωB) = P
(
Ω(ωB)

)
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Probabilities induced in past and future

U

B
ωB

Property: conservation of distributed products w.r.t.
past

P =
⊗d

λ⊆U

qλ =⇒ PB =
⊗d

λ⊆B

qλ
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Probability and concurrency

Let P be a distributed product P =
⊗d

λ⊆U

qλ. Fix v w.s

v
λ1

λ2

λ1, λ2 = branching cells
enabled from v

(minimal 6= ∅
stopping prefixes of Uv )

Set stopping prefix B = λ1 ∪ λ2. Then: ΩB = Ωλ1
×Ωλ2

and

P
v

B = P
v

λ1
⊗ P

v

λ2
= qλ1

⊗ qλ2
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Probability and concurrency

if P is a distributed product P =
⊗d

λ⊆U

qλ. Fix v w.s

v
′λ3

λ1 v′ = v + ξ, ξ ∈ Ωλ2

Set stopping prefix B′ = λ1 ∪ λ3. Then:

P
v′

B′ = P
v′

λ1
⊗ P

v′

λ3
= qλ1

⊗ qλ3
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Probability and concurrency

Theorem: a probability P is a distributed product iff

for every v finite w.s, the product decomposition holds:

P
v
B = P

v
λ1
⊗ · · · ⊗ P

v
λn

with B = B⊥(Uv) = λ1 ∪ . . . ∪ λn

and for λ fixed, P
v
λ = qλ is independent of v

In this case: P =
⊗d

λ⊆U

qλ

P is a distributed probability
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Probability and concurrency

product form for a distributed probability P

B = λ1 ∪ . . . ∪ λn, P
v
B = qλ1

⊗ · · · ⊗ qλn

a horizontal independence due to concurrency

locality in space: new feature

randomization by local agents:
dynamic
without communication during asynchronous
actions
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Markov nets

A distributed product is given by a countable family of
finite probabilities (qλ)λ

there are finitely many classes of branching cells as
labelled occurrence nets

finite alphabet Σ = { classes of branching cells }
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Markov nets

A distributed product is given by a countable family of
finite probabilities (qλ)λ

there are finitely many classes of branching cells as
labelled occurrence nets

finite alphabet Σ = { classes of branching cells }

a Markov net is a pair (N , (qs)s∈Σ),
qs a (finite) probability on Ωs

the associated distributed probability:

〈λ〉 = class of λ, P =
⊗d

λ⊆U

q〈λ〉
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Homogeneity and the Markov property

Homogeneity: Markov net (N , (qs)Σ),
2 configurations v, v′ finite w.s leading to same
marking m

Ωv = Ωv
′

Uv = Uv
′

U

marking m

v

Ω

Ω(v)

v′

Ω(v′)
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Homogeneity and the Markov property

Homogeneity: Markov net (N , (qs)Σ),
2 configurations v, v′ finite w.s leading to same
marking m

Ωv = Ωv
′

Uv = Uv
′

U

marking m

v

Ω

Ω(v)

v′

Ω(v′)

homogeneity P =
⊗d

λ⊆U

q〈λ〉 =⇒ P
v = P

v′

=
⊗d

λ⊆Uv

q〈λ〉
– p.25/33



Homogeneity and the Markov property

Homogeneity: Markov net (N , (qs)Σ),
2 configurations v, v′ finite w.s leading to same
marking m

Ωv = Ωv
′

Uv = Uv
′

U

marking m

v

Ω

Ω(v)

v′

Ω(v′)

The probabilistic future P
v only depends on the marking m(v)
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Homogeneity and the Markov property

Stopping operators generalize stopping times for
sequential systems
A stopping operator is a random variable V such that:

V (ω) is a w.s configuration, V (ω) ⊆ ω

∀ω, ω′ ∈ Ω, ω′ ⊇ V (ω)⇒ V (ω′) = V (ω)

Example: (sequential) first return of the initial state
ωω′

N

V (ω)
V (ω) = V (ω′)
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Homogeneity and the Markov property

Reformulated with stopping operators, the Strong
Markov Property (from Markov chains) holds for
Markov nets

adapt the (beginning of) recurrence theory of Markov
chains→ global recurrence of Markov nets

in a recurrent Markov net, reachable markings have
probability 1 to return infinitely often

there are results for a local recurrence
(coincides with global recurrence for Markov chains)
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The Law of large Numbers

Case of a recurrent Markov chain (Xn)n≥1

with state space S

f : S → R a test function
For integer n ≥ 1:

ergodic sum: Snf = f(X1) + · · · + f(Xn)

ergodic mean: Mnf =
1

n
Snf =

sum of outputs of f

time elapsed

LLN: there is a probability α on S such that:

lim
n→∞

Mnf = α(f), P-a.s. α(f) =
∑

s∈S

α(s)f(s)

– p.26/33



The Law of large Numbers

Case of a recurrent Markov chain (Xn)n≥1

with state space S

f : S → R a test function
For integer n ≥ 1:

ergodic sum: Snf = f(X1) + · · · + f(Xn)

ergodic mean: Mnf =
1

n
Snf =

sum of outputs of f

time elapsed

For concurrent systems

what is the state space? what are the test functions?

what is the time elapsed?
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The Law of large Numbers

Case of a recurrent Markov chain

f is tested along
configuration v

〈f, v〉 =
∑

x∈v

f(x)

= f(s1) + f(s2) + f(s1)

duration of v = 〈1, v〉 = 3 s1

s2

s1

Ergodic mean of f along v

Mf(v) =
〈f, v〉

〈1, v〉
– p.26/33



The Law of large Numbers

Classes of branching cells
act like local states
A distributed function is
a (finite) family
f = (fs)s∈Σ of real valued
functions fs : Ωs → R

〈f, v〉 =
∑

λ

f〈λ〉(v ∩ λ)

〈1, v〉 = 6 = duration of v

v

U

ω

limit of ergodic means: Mf(v) =
〈f, v〉

〈1, v〉
, v → ω?
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The Law of large Numbers

A sequence of stopping operators (Vn)n≥1 is regular if:

for all n, Vn ⊆ Vn+1
⋃

n Vn(ω) = ω with probability 1

there are K1,K2 > 0 such that for all n:

K1 ≤
〈1, Vn〉

n
≤ K2

– p.26/33



The Law of large Numbers

A sequence of stopping operators (Vn)n≥1 is regular if:

for all n, Vn ⊆ Vn+1
⋃

n Vn(ω) = ω with probability 1

there are K1,K2 > 0 such that for all n:

K1 ≤
〈1, Vn〉

n
≤ K2

Definition: For a distributed function f = (fs)s∈Σ, the

ergodic means Mf(·) =
〈f, ·〉

〈1, ·〉
converge to a function

µ : Ω→ R if, for every regular sequence of stopping
operators (Vn)n≥1:

lim
n→∞

Mf
(
Vn(ω)

)
= µ(ω), P-a.s.
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The Law of large Numbers

The convergence of ergodic means cannot hold if net N is
the product of two independent components N1 ∪N2

→ need for a synchrony assumption

U1 U2 U1 U2

Vn Wn

Mf(Vn) and Mf(Wn) have different limits
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The Law of large Numbers

The convergence of ergodic means cannot hold if net N is
the product of two independent components N1 ∪N2

→ need for a synchrony assumption

Markov net N has integrable concurrency height if
for each partial execution of the system, leading to
marking m, and for each place P of m, there is a time of
finite expectation before the token in place P moves.
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The Law of large Numbers

Theorem (LLN) Let (N , (qs)s∈Σ) be a Markov net,
recurrent and with integrable concurrency height.

For f = (fs)s∈Σ a distributed function, the ergodic
means Mf(·) converge to a function µf : Ω→ R,
and µf is constant with probability 1.

There is a (finite) probability α on Σ s.t.:

µf =
∑

s∈Σ

α(s)qs(fs)

– p.26/33



Comments on the LLN

µf =
∑

s∈Σ

α(s)qs(fs)

If N is actually a Markov chain, α(s)’s are the
coefficients from the sequential LLN
(stationary measure).

Classes of branching cells s ∈ Σ appear as local states
of the concurrent system.

coefficients α(s) is the asymptotic density of local
state α(s)
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Conjecture and consequences

Conjecture: U the unfolding of a safe Petri net N .
Assume that for every event e, the set:

{f ∈ U : f #µ e}

is finite.

Then U is locally finite.

– p.29/33



Conjecture and consequences

Consequences

U locally finite⇒ Ω compact OK
With the conjecture:

the converse holds

locally finite constructions are made easy

Local finiteness is decidable,
branching cells are computable
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Decidability of local finiteness

N a safe Petri net with unfolding U

Question: is U locally finite?

Reductions:

decide the finiteness of {f ∈ U : f #µ e} for e ∈ U

(conjecture)

assume that e is minimal in U

decide the finiteness of
Ft′(e) = {f ∈ U : f #µ e, f labelled by t′}

for t′ a fixed transition

assume that Ft′(e) contains an event f minimal in U
– p.30/33



Decidability of local finiteness

N a safe Petri net with unfolding U , ρ : U → N

fix e minimal event of U , labelled by transition t

assume that Ft′(e) = {f ∈ U : f #µ e, ρ(f) = t
′}

contains an event minimal in U

Question: finiteness of Ft′?

f1 (t′)e (t)

•
t

•
t
′

– p.30/33



Decidability of local finiteness

N a safe Petri net with unfolding U , ρ : U → N

fix e minimal event of U , labelled by transition t

assume that Ft′(e) = {f ∈ U : f #µ e, ρ(f) = t
′}

contains an event minimal in U

Question: finiteness of Ft′?

•
t

•
t
′

f1 (t′)e (t)

f2 (t′)

v

If v is a configuration
that enables
f2 ∈ Ft′(e)

tokens in •
t have

not moved

at least one
token in •

t
′ has

moved – p.30/33



Decidability of local finiteness

N a safe Petri net with unfolding U , ρ : U → N

fix e minimal event of U , labelled by transition t

assume that Ft′(e) = {f ∈ U : f #µ e, ρ(f) = t
′}

contains an event minimal in U

Question: finiteness of Ft′?
Draw a finite graph in the submarkings of M0 \ •

t,
M0 = initial marking of N
Ft′(e) is infinite if and only if the graph has a cycle

Conclusion: under the conjecture, local finiteness is
decidable

– p.30/33
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3. Decomposition of true-concurrent processes

4. Distributed product of probabilities

5. Markov nets: the Markov property and the Law of large
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6. Computability of local finiteness

7. Conclusion and perspectives
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Conclusion

probabilistic framework for true-concurrency
models

extension finite Markov chains theory to safe Petri
nets
construction of a Markovian probability,
from a finite number of local parameters
concurrency matches a probabilistic independence
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Conclusion

Contributions
Continuous domain of configurations

identification of the space Ω as a projective limit
locally finite unfoldings and extension of probabilities

Occurrence nets
decomposition of true-concurrent processes through
branching cells (local states)
computability

Probabilistic model
construction of the distributed product
stopping operators and the Strong Markov property
part of a recurrence theory
Law of large numbers
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Extensions

Open questions
above conjecture: topological consequences and
decidability of local finiteness

more about the density coefficients of the LLN:
positivity? (potential theory)

Central Limit Theorem? (Martingales)

branching cells form a (non prime) event structure?

– p.33/33



Extensions

Extensions
non locally finite nets and products of nets

Distributed HMM (Hidden Markov Models)?
Probabilistic extension of diagnosis algorithms

Temporisation
add temporisation after randomization of runs
→ performance evaluation
Markov nets as a “uniformisation” of stochastic Petri
nets?

– p.33/33
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