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Résumé

L'étude des fonctions de deux variables et des opératetéigraux associés, ou I'étude di-
recte des noyaux au sens de L. Schwartz [46] (définis comnratepés faiblement continus

du dual topologique d’'un espace vectoriel localement canans lui-méme), est depuis
plus d'un demi-siécle une branche des mathématiques erem@gpansion notamment dans
le domaine des distributions, des équations différeasatiu dans le domaine des probabili-

tés, avec I'étude des mesures gaussiennes et des procasssins.

Les travaux de Moore, Bergman et Aronszajn ont notammenttaho résultat fondamental

suivant qui concerne les noyaux positifs : il est toujoursgigle de construire un sous-
espace préhilbertien a partir d'un noyau positif et, mogemnine hypothéese (faible) supplé-
mentairé, de compléter fonctionnellement cet espace afin d'obtemiespace de Hilbert.

Cet espace posséde alors la propriété d’étre continOmeosidans I'espace vectoriel loca-
lement convexe de départ. |l existe donc une relation forteeenoyaux positifs et espaces
hilbertiens. Dans cette thése, nous nous sommes posé lempmbuivant : que se passe-t-il

si I'on léve I'hypothése de positivité ? d’hermicité ?

Dans cette perspective nous considérons une seconde l@pmpoicconsiste a travailler di-
rectement sur des espaces vectoriels plutét que sur lesoyeécisément, adoptant une
démarche classigue en mathématiques, nous étudions [@#pés d'une classe d'espaces
vérifiant des hypothéses additionnelles. Partant des esgicHilbert contindment inclus
dans un espace localement convexe donné, cette approchdut@ux espaces de Hilbert

a noyau reproduisant de N. Aronszajn [5] puis aux sous-esplaitbertiens de L. Schwartz

!la quasi-complétude de I'espace fonctionnel de départysangle



[46]. Cette théorie est présentée dans la premiére pariéetése, le résultat majeur de cette
théorie étant sans doute I'équivalence entre sous-espaloegiens et noyaux positifs que

I'on peut résumer en ces termes :
“Il existe une bijection entre sous-espaces hibertien®gaux positifs.”

Le principal apport a la théorie existante est I'utilisatimtensive de systémes en dualité
et de formes bilinéaires (et pas uniguement sesquilir@aiize maniére surprenante, cela

conduit a une certaine perte de symétrie qui porte les gedm&sthéorie des sous-dualités.

Dans une seconde partie nous suivons encore les travauxSidwartz et étudions la théo-
rie moins connue des sous-espaces de Krein (ou sous-edpaogsiens). Les espaces de
Krein ressemblent aux espaces de Hilbert mais sont munis gfoduit scalaire qui n’est
plus nécessairement positif. Les sous-espaces de Krestitt@mt donc une premiére géné-
ralisation des sous-espaces hilbertiens. Un des principaérét de I'étude de tels espaces
réside en la disparition de I'équivalence fondamentaleedps notions de sous-espaces et
de noyaux, méme si une relation étroite subsiste. Nousatsighlus particulierement les
similitudes et les différences entre ces deux théoriesnhque retrouverons dans la théorie

des sous-dualités.

La troisieme partie généralise la perte de symétrie évodaés le chapitre 1. Nous dé-
veloppons les bases d’'une théorie non plus fondée sur uneise hilbertienne, mais sur
une certaine dualité. Nous développons ainsi le conceppvuedualité d'un espace vecto-
riel localement convexe (ou d'un systéme dual) et de sonwagaocié. Une sous-dualité
est définie par un systéme de deux espaces en dualité védéargonditions d'inclusion
algébrique (définition 3.2) ou topologique (propositioB)3Plus précisément :

un systéme dudlE, F') est une sous-dualité d’'un espace localement congd€re plus gé-

2toujours sous hypothése de quasi-complétude.



néralement d'un systéme dudl, F)) si E et F' sont faiblement continiment inclus dafis
Dans ce cas, il est possible d’'associer a cette sous-dualitdigue noyau (théoréme 3.6)
d'image dense dans la sous-dualité (théoréme 3.10). Nad®as également I'effet d’'une
application linéaire faiblement continue (théoreme 3.112Jevient alors possible (moyen-
nant une relation d’équivalence) de munir 'ensemble des-slalités d'une structure d’es-
pace vectoriel qui le rend isomorphe algébriquement adleswectoriels des noyaux (théo-
reme 3.13). Nous exhibons ensuite un représentant carod&ues classes d'équivalences
(théoréme 3.20), ce qui permet d’établir une bijection eesious-dualités canoniques et
noyaux.

Nous étudions également le cas particulier des sous-ésiaidR’’, que nous appelons sous-
dualités d’évaluation. Le noyau est alors identifié & unetion noyau reproduisant (défini-
tion 3.34 et lemme 3.35). De telles sous-dualités (et ngyapgaraissent notamment dans
la théorie des espaces de polynémes, des splines de Chelststhe “I'épanouissement”

(blossoming, voir par exemple M-L. Mazure et P-J. Laurent [37].

Une quatrieme et derniére partie propose quelques applisatLe premier champ d’ap-

plication possible est une généralisation du lien entres-espaces hilbertiens et mesures
gaussiennes. Le second est I'étude d'opérateurs pagtisules opérateurs dans les sous-
dualités d’évaluation (sous-dualités H&) et les opérateurs différentiels. Enfin, I'étude de

l'interpolation dans les sous-dualités d’évaluation éstatoppée.

Ce travail souléve de nombreuses questions au niveau qhéoeit applicatif. Les princi-
pales questions portent sur les sous-dualités canoniqueag-on les caractériser, sont elles
les plus intéressantes, peut-on caractériser directdesenbyaux stables ? D’autres portent
sur les opérateurs différentiels et leur lien avec les espde Sobolev. Enfin, l'interpréta-

tion physique des sous-dualités est une question cruciale gpmprendre cette théorie et



ses applications.
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abstract

Functions of two variables appearing in integral trans®(Bergman, Segal, Carleman), or
more generally kernels in the sense of Laurent Schwartz[défined as weakly continuous
linear mappings between the dual of a locally convex vegtacs and itself - have been
investigated for half a century, particularly in the fielddiétributions, differential equations

and in the probability field with the study of Gaussian meeswr Gaussian processes.

The study of these objects may take various forms, but in abpesitive kernels, the study
of the properties of the image space initiated by Moore, By and Aronzjan leads to
a crucial result: the range of the kernel can be endowed withtaral scalar product that
makes it a prehilbertian space and its completion befbtagthe locally convex space. More-
over, this injection is continuous. Positive kernels thears to be deeply related to some
particular Hilbert spaces and our aim in this thesis is tdystine other kernels. What can

we say if the kernel is neither positive, nor Hermitian ?

To do this we actually follow a second path and study diresggices rather than kernels.
Considering Hilbert spaces, some mathematicians haveilesasted in a particular subset
of the set of Hilbert spaces, those Hilbert spaces that aréncmusly included in a common
locally convex vector space. The relative theory is knowtthastheory of Hilbertian sub-
spaces and is thoroughly investigated in the first chaptemain result is that surprisingly
the notions of Hilbertian subspaces and positive kernesquivalertt, which is generally

summarized as follows:

3under some weak additional topological conditions on thellpconvex space.
4under the hypothesis of quasi-completeness of the locallyex space
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“there exists a bijective correspondence between poditimeels and Hilbertian

subspaces”.

The main difference with the existing theory in the first deags the use of dual systems
and bilinear forms and one of its consequence is the emergefimome loss of symmetry

that will lead to our general theory of subdualities.

In the second chapter we study the existing theory of Heamifor Krein) subspaces which
are indefinite inner product spaces. These spaces act@aifrajize the previous notion of
Hilbertian subspaces and their study is a first step to thkbaflgeneralization of chapter
three. These spaces are deeply connected to Hermitiankéutdanterestingly enough the
previous fundamental equivalence is lost. Then we focusherdifferences between this
theory and the Hilbertian one for these differences will@fise remain when dealing with

subdualities.

In the third chapter we present a new theory of a dual systeveaibr spaces called subd-
ualities which deals with the previous chapters as padictéises. A topological definition
(proposition 3.3) of subdualities is as follows: a dualify, F') is a subduality of the dual
system(&, F) if and only if both E and F' are weakly continuously embeddeddn It ap-
pears that we can associate a unigue kernel (in the senseSahlvarz, theorem 3.6) with
any subduality, whose image is dense in the subduality (¢ned.10). The study of the
image of a subduality by a weakly continuous linear operdt@orem 3.12), makes it pos-
sible to define a vector space structure upon the set of slitielétheorem 3.13), but given
a certain equivalence relation. A canonical represemtaivtirely defined by the kernel is
then given (theorem 3.20), which enables us to state a ioijettieorem between canonical
subdualities and kernels.

We also study the particular case of subdualitie®®fwhich we name evaluation subdual-
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ities. Their kernel may the be identified with a kernel fuaot{definition 3.34 and lemma
3.35). Such subdualities and kernels appear for instanteiatudy of polynomial spaces,

Chebyshev splines and blossoming, see for instance M-Lulaand P-J. Laurent [37].

Finally a fourth chapter is dedicated to applications. W finalyse the link between Hilber-
tian subspaces and Gaussian measures and try to exteneding th Krein subspaces and
subdualities. Then we focus on some particular operatgrstabors in evaluation subduali-
ties (subdualities ok*?) and differential operators. In a third section, we finakywelop an

interpolation theory in evaluation subdualities.

This work brings up many questions, with both theoretical applied insights. The main
guestions are devoted to canonical subdualities: is theesaay characterization of canon-
ical subdualities, are they interesting enough, can oneactexize directly stable kernels ?
Other questions deal with differential operators and thelkrwith Sobolev spaces. Finally
the physical interpretation of subdualities is a cruciahpt understand this theory and its

applications.
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Foreword

Motivation

The subject of this thesis is outside the mainstream otientaof nowadays mathematics,
and may not seem directly connected to actual mathematiegtigns. That is why before
really stating the subject of this thesis, | think | shoulglein were it stems from. The start-
ing point of this thesis may actually be strange for todagaders: it dealt with the choice

of models in approximation theory (based on regularizatidihe first work | had to do was

to understand what the possible models were, and how thelyediort appeared that the
framework was clear: we had to work within a Hilbert spacestoaninimize an “energy”,
and the evaluation functionals (thg had to be continuous so that the values at some points

give information about the whole function.

Spaces verifying these two conditions are called Reprodukérnel Hilbert spaces and in
this case, regularization is always feasible thanks to xistence of orthogonal projections
on convex sets in Hilbert spaces. Moreover, the solutionvisngin terms of the “reproduc-
ing kernel” of the Hilbertian subspace, that is a two vaggbbsitive function. Finally, the
link between Hilbertian subspaces and Gaussian stoclpstiesses gives an interpretation

of the solution of the regularization problem in terms of ditional expectation.
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This framework is however not completely satisfactory:

¢ on the practical level, many people found empirically traahe problems were better

solved with non-positive or non hermitian kernels;

e on the conceptual level, if no discussion seems possiblatahe continuity of the
evaluation functionals, the Hilbertian hypothesis seearg gtrong and only for con-

venience.

The relaxation of the Hilbertian hypothesis was then thesébeginning of this thesis that
differs finally very much from its initial idea. We will howev go back to the approximation
problem in the final chapter and use generic kernels, finaligggback to our starting point.
Among the multiple possibilities that offer the loss of thdhdrtian hypothesis, we chose
one actually hidden in the theory of Hilbertian subspacesuriderstand what possibilities
were offered, which ones could keep the link with kernels] what possibility we retain,

an historical approach is now given.

Historical approach

Hilbert spaces were originally defined as spaces with theesg@ometry as the “Hilbert
space” i.e. the space of square summable sequénsagdied by David Hilbert in [29] (see
for instance F. Riesz [44]). They are defined as an algeblaéct a vector space endowed
with a positive inner product together with a topologicabgerty, the completeness of the
space with respect to the norm derived from the inner product

These spaces are a generalization of the well-known Ewaclidpaces and have been widely
used during this century for their numerous propertieslaintd those of Euclidean spaces
such as the existence of a orthonormal basis or the existertenigueness of orthogonal

projections, all deriving from the existence and poskivf the inner product.



16

So Hilbert spaces were defined at the early beginning of thte @htury. At the same time
the notion of “functional” and “operator” came into beingas®d on the existing notion of
continuity (which meant at that time and till about 1935 sfanming convergent sequences
into convergent sequences i.e. sequential continuitg)nttions of duality and topological
duality emerged and in 1908 Frechet and Riesz [44] demdedtthe well-known “Riesz

identification theorem” proving that any real Hilbert spé&ceelf-dual.

Many roads (illustrated figure 0.1) were then open.

One led to metric functional analysis (notably with the baék. Banach [11]) and the par-
ticular study of normed spaces, Hilbert spaces and Frephets.

Another was the topological road: inspired by Hilbert'saris of open neighborhoods for
the plane Hausdorff defined general topological spacesid [Z8]. The notion of uniform
space followed but it was only in 1935 with the works of Von N&nn and Kolmogorov
that topological spaces extended to topological vectorespéin short t.v.s.) with the notion
of locally convex spaces (l.c.s).

Finally, a general theory of duality was created on the hzfdtse works of Mackey ([34],[35]
and Grothendieck [25] (one of its main consequences in fmat analysis being Schwartz’s

theory of distributions [47]).

Another crucial step in the development of functional asislyis the theory of “Hilber-
tian subspaces” (L. Schwartz [46]). In terms of foundati¢tGrundlagen” in German),
this theory is not fundamental since it uses concepts théiaheady appeared. However
it is fundamental in the sense that it links a class of opesdatiie so-called “positive ker-
nels”) and a class of Hilbert spaces (the Hilbertian sulesgaextending the existing results

of Aronszajn [6] concerning positive kernel functions aegnoducing kernel Hilbert spaces.
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But as shown before many different classes of spaces suatpakgical vector spaces,
Banach spaces, dualities, all including Hilbert spacespasticular case (theses notions are
detailed in the Appendix A) have emerged in the 20th century.

That is why it is of prime interest to understand how thostediint notions (such as a norm,
a dual system) are related with the notion of positive inmedpct and what mathematical
objects appear if we weaken some of the hypotheses mainheifointerested in finding a
larger class of spaces than Hilbert spaces. In our particake we want to refine and extend

the theory of Hilbertian subspaces.

An illustrative hierarchy of spaces (precisely of addiibstructure to be put on a vector
space) is given by figure 0.1, where the left part mostly gpoads to algebraic conditions

whereas the right part refers to more topological condstion

topological vector spaces

locally convex spaces

/ \

dualities metric spaces
prehilbert spaces normed spaces
Krein spaces Banach spaces

\ /

Hilbert spaces

Figure 0.1: Hierarchy of spaces.
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In this thesis we mainly investigate the left side of figurk that is the most natural way to
study kernels as the next chapters will show. The right sid#so of interest but leads to a
rather different theory, a theory of multivariate non-Anepplications and subdifferentials
of positive semi-continuous functionals called Banaclaenkls initiated by M. Attéia [9]

that we will not detail here.

Overview of the thesis

Our starting point throughout this thesis will never be ledsnbut rather a certain class of
spaces (Hilbert spaces, Krein spaces, dualities) vegfgatditional inclusion properties rel-
ative to a common reference spatéprecisely to a common dualitf€, F)). Kernels will

then naturally appear.

Since the main originality of this work is the generalizatiof the notion of Hilbertian sub-
space to subdualities (presented chapter 3) it appearsertte first restate the theory of
Hilbertian subspaces and to introduce two generalizatadteswards. This work is then

divided into four chapters:

1. thefirstis devoted to the study of Hilbertian subspacedatally convex space (l.c.s.)
£ that are Hilbert spaces continuously embedded in thefl,@smore generally to the
study of Hilbertian subspaces of a dual systginF). The intensive use of bilinear
rather than sesquilinear form will amazingly lead to a éertass of symmetry that

contains the basis of the theory of subdualities;

2. in the second chapter we generalize to indefinite innedymospaces i.e. we study
Krein (or Hermitian) subspaces, which are Krein spacesmootisly embedded in the

l.c.s€. Most of the results were already contained in L. Schwapajser [46] but it is
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interesting to see how two different approaches can beveliband what difficulties

appear;

3. a new step is made with the generalization of the theorydaoad system of vector
spaces both continuously embedded in the E¢.ehich we call subdualities. This
original theory links subdualities with the total set of kels and gives a coherent and
general setting that includes the previous notions. Moghe$e results have been

published in [36];
4. finally some remarks concerning possible applicatioagyaen in the fourth chapter.

In order to better understand and follow the path of this wirk study of three general ex-
amples will be carried out. The first example is a “toy” one #imple example of the two
dimensional spac®?. The second one, that deals with the theory of differentirators,

is the general example of Sobolev spaces and integral (@éfgrential) operators.

Finally, we will carry the study of polynomial and Chebystspaces (or splines) (i.e. finite
dimensional function spaces) in a third example. The stdidyese spaces and some partic-
ular related dualities is very important in the theory of metric continuity and blossoming

(see for instance Mazure and Laurent [37] or Goldman [22]).

These three examples will be referredB$-example|, | Sobolev spaceFand‘ Polynomials, spline#

afterward.

The theory of Hilbertian subspaces and more generally theryhof subdualities, as its
name indicates, relies mainly on the duality theory for topizal vector spaces. Therefore
we will only consider locally convex (Hausdorff) topologicvector spaces or (Hausdorff)
dualitieS. Throughout this studyg will always be a locally convex (Hausdorff) topological

vector space (in short l.c.s.) ov&r= R or C and (&, F) a dual system of vector spaces.

The link between the two notions is given in the Appendix
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For practical reasons any complex vector spadee. over the scalar fiel@) will be en-
dowed with an anti-involution (conjugatioif); : £ — & such tha€ ~ £. We will then
always be able to identify the dual space of a Hilbert spatie itgelf® but with respect to a
generally asymmetric bilinear form. Moreover, at leastthe first two chapters we suppose

that the duality(&, F) verifies:

(f.2)=(f.e)
so that for any kernel the following equation will hold:c € L(F, &),

wt=tzm=1

Self-adjunction and positivity will then be the classications. This is for instance the case
of any dual systen{€,&’). These last conditions are however not needed in the chapter
dealing with subdualities since we only study bilinear ferfand no positivity or Hermicity

is at stake).

51t can only be identified with its conjugate space in the moskegal setting
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Chapter 1

Hilbertian subspaces

Introduction

While studying Hilbert spaces of holomorphic functions defl on an open subset©f S.
Bergman [13] remarked that those Hilbert spaces were hilgtited with some functions
of two variables he called kernel functions. The same yeakminszajn [6] extended this
link to a wider class of spaces, precisely Hilbert spacesimoously included in the product
spaceC*.

In 1964 L. Schwartz took this definition as a starting poinfather than studying kernels
functions he decided to study the class of Hilbert spacesrmmusly included in a partic-
ular l.c.s.£. This led to the general theory of Hilbertian subspaces dithleir associated
kernels. This chapter is a presentation of this theory argbofe refinements since it gives
the foundations of the general theory of subdualities. &lree some new ideas as for
instance the extensive use of dual systems that open thetogaviously unseen inter-
pretations. For readers interested in the foundationsisftiieory or for precise proofs of
the statements in chapter 1 we recommend [46] and [6] forfkeific case of reproducing

kernel Hilbert spaces.
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1.1 Hilbertian subspaces of a locally convex space and Hilbgan

subspaces of a duality

1.1.1 Definition of a Hilbertian subspace of a locally convex s

Following the work of L. Schwartz ([46]), we define Hilbemigubspaces of a locally convex
space (l.c.s.¥ as Hilbert spaces continuously includedfinTo be more precise we define

first prehilbertian subspaces &f

Definition 1.1 ( — prehilbertian subspace of al.c.s. —et £ be a l.c.s. TherH, is an
prehilbertian subspace &f if and only if H is an algebraic vector subspace &fendowed
with an positive inner product (denoted ky.)) that makes it a prehilbert space and such

that the canonical injection is continuous.

Notice that this last condition is equivalent to:
Ve' € 5’, Vho € Hyg, M. € R+, |(6’,h0)|(51,5) < ME’”hOHHO

where(, )¢ ¢) denotes the duality product between the I.€.snd its topological duaf’.

The definition of Hilbertian subspace follows:

Definition 1.2 (— Hilbertian subspace of al.c.s. —)et€ be al.c.s. TherH is a Hilber-
tian subspace of if and only if H is an algebraic vector subspace &fendowed with an
definite positive inner product that makes it a Hilbert sparel such that the canonical

injection is continuous.

At first sight, one could think that the concept of Hilbertsubspaces is purely topological,
since the obvious requirement is that the canonical imgacis continuous. This is only
partially true since one requires the spdfdo have a Hilbertian structure, which is almost

completely an algebraic requirement (except the compds®n In fact, there is a whole
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algebraic interpretation of Hilbertian subspaces in teofrdual spaces as we will see in the
second and third chapters.

In this direction and like many authors we would like to emphasize the fact that the
initial topology of £ plays no role in the theory of Hilbertian subspaces, which oly
depends on the duality(£,£’). It follows that we can find equivalent conditions for a
Hilbert spaceH to be a Hilbertian subspace 6fbased only on the weak topology or the

Mackey topology:

Proposition 1.3 The three following statements are equivalent:
1. H is a Hilbertian subspace ;
2. the canonical injection is weakly continuous;

3. the canonical injection is Mackey continuous (i.e camdis if H and £ are both

endowed with their Mackey topology).
Proof. — Letus prove thafl) = (2) = (3) = (1):
(1) = (2) corollary 1 p 106 [26]: ifi : H — & is continuous, it is weakly continuous.

(2) = (3) We can cite corollary 2 p 111 [26]: if: H — & is weakly continuous, it is continuous
if H is endowed with the Mackey topology (a&dvith any topology compatible with
the duality).

(3) = (1) The topology of the Hilbert spacH is the Mackey topology sincé& is metrizable
(corollary p 149 [26] or proposition 6 p 71 [15]) and we use fiievious argument
(corollary 2 p 111 [26]). O

Finally, it follows from this proposition that the canoni@ajection, as a weakly continuous

application, has a transpose and an adjoint. From now on,ilvdemote by: the canonical

! These topologies are detailed in the Appendix B
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on'j its transpose anif its adjoint.

R2-example

We introduce here for the first time our “toy” example: thega?.

If we endow it with the scalar product

1
(Y|X) = z1y1 + §$2y2

then it is clearly a Hilbertian subspace®f endowed with the supremum norm.

Sobolev spaces

Let& = D' be the space of distribution on an open@etf R bounded from the left.

Then itis a classical result theb € N the Sobolev space

dpP . ..
WP = {f e D, W(f) € L2, f and all its derivatives

up to orderp null on the left frontier(9) ~ }

endowed with its canonical scalar product

lohws = [ 451550

is a Hilbertian subspace @’'.

Equivalently, Sobolev spaces

($), ¢ € L%, ¢ and all its derivatives

WP = feD’f:£
’ dt?

up to orderp sum to0}

endowed with the canonical scalar product

Sg)w—r = /Q o

are Hilbertian subspaces b¥.
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example 3Let H be a Hilbert space. Then any subspdfg of # is a prehilbert space with
the induced inner product and obviously a prehilbertiarspabe ofH{. Any closed

subspacéd of H is complete and hence a Hilbertian subspacé.of

example 4Rigged Hilbert space:
Let H be a Hilbert space an#l a topological vector space, algebraic subspacH of
such that the inclusion is weakly continuous @fds dense inH. ThenH' is weakly
continuously embedded i’ and by proposition 1.3H’ (generally identified with

H) is a Hilbertian subspace ¢f'2.

1.1.2 Definition of a Hilbertian subspace of a duality

Proposition 1.3 also allows us to define the Hilbertian sabep of a dual systet&, F)3.

We will now follow this perspective all along this thesis. éFl are three reasons for this:
first, since the initial topology of the l.c.s€ plays no role in the Hilbertian theory that
depends only on the dualitf, £’), it seems natural to show this in the names and notations.
Second, for many applications the topological dfais identified with a particular function

space. And finally the third chapter precisely deals with theory.

Definition 1.4 (— Hilbertian subspace (of a duality) — )Yet (£, F) be a duality. TherHf
is a Hilbertian subspace df¢, F) if and only if H is an algebraic vector subspace &f
endowed with an definite positive inner product that makadHtlbert space and such that

the canonical injection is weakly continuous.

Remark that the canonical injection is weakly continuouanid only if any element of

(i.e. any continuous linear form &) restricted toH admits a representative .

2This is notably the case for Hilbertian subspaces of the sphdistributions,F = C* andF’ = D'.
3 Appendix B
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example 5| R?-example

We can identify the dual space & endowed with the supremum norm with the space
R?, the bilinear form being for instance the Euclidean one. fitevious Hilbertian

subspac&®? endowed with the scalar product

1
(Y|X) = 2191 + 7202

is then a Hilbertian subspace of the Euclidean dudliy, R?).

example 6/ Sobolev spaces

By construction ofD’, its topology is the weak topology associated with the dysd s
tem (D, D). Any previously defined Hilbertian Sobolev space will thensbHilber-
tian subspace of the dualify)’, D).

example 7Let Q be an open set of”, £ = L'(Q2), F = L>®(Q) put in duality by the bilinear

form
L:L®Q)xL'(Q) — C

(¥ 4) > [ieq d()p(2)dt

Let = be a compact set &k and H = {qb SRNERS L?(B), ¢|EG = 0} endowed

with the scalar product

HxH — C
() > frez OPE)dE = [icq G(2)(¢)dt
Itis a standard result thdt>® (=) c L?(Z) c L'(Z) henceH is a Hilbertian subspace
of (L'(Q), L>(9)).

The set of Hilbertian subspaces of a dualiy F) (resp. of a l.c.s€) is usually denoted by
Hilb ((E,F)) (resp. Hilb(E) ). We then define the following functionilb : (£, F) —
Hilb ((E,F)) (resp.Hilb : £ — Hilb(&))) which maps dualities (resp. l.c.s.) to the set of

its Hilbertian subspaces.
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We will see that this selilb ((£,F)) has remarkable features after some remarks on the
completion of prehilbertian subspaces that will help ustéerd why one focuses on the set

of Hilbertian subspaces rather than prehilbertian ones.

1.1.3 Comments on the completion of a prehilbertian subspace

In this section, we investigate the following problem: is set of prehilbertian subspaces
interesting, or can we restrict our attention to Hilbertgrbspaces? This question is actu-
ally based on the associated problem of the completion oéhilpertian subspace and the

completion of uniform spaces in general.

This notion of completion is usually well-known in the cadenmetric spaces, but in fact
more general (see [16] for precise statements). Roughbkamg the notion of Cauchy se-
guences is generalized to Cauchy filters, that exist on imigpaces. But topological vector
spaces (t.v.s) are naturally endowed with such a struchdéhee notion of completion arises
naturally. Therefore, the comments of this section can Ipiexpto the more general theory
of subdualities developed in the third chapter of this part.

The main point is the following: the completion of a prehitign space with respect to
its norm is always feasible (and that is why we usually cagrs@hly Hilbert spaces rather
than prehilbert spaces), but in the case of a prehilbertidisgace of a I.c.§, it may hap-
pen that this completion is “bigger” thah More precisely, it is known that the algebraic
dual of £’ is the weak completion of, which therefore can be seen as a subspad®*of
But so does the completion df,, H, and it may happen that is not included inf as
subspaces of’*. Therefore, the Hilbertian subspace completion of a poehilan space

may not exist. However we will see in proposition 1.18 that for a certaiass! of “good”

“See example below
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prehilbertian spaces (those steaming from kernels) andrumeak conditions on the space
&, the Hilbertian completion always exists. This explaing/wie can generally restrict our
attention to the study of Hilbertian subspaces, althougialy mean completing a prehilbert
subspace. In [46] for instance L. Schwartz gives a necesmattysufficient condition for

such a completion to exist whehis quasi-complete, which in this case is of course unique.

Proposition 1.5 Let Hy be a prehilbertian subspace of a quasi-complete | £, 3.its natu-
ral injection. Then it has a Hilbertian subspace completiband only if the extension af

i : Hy — £, is injective. In this case, the Hilbertian subspace conipeis H.

example 8This example is based on L. Schwartz’s paper [46]. £et L%(R) and letH,

be the subspace of continuous function€.6fR). We can endowd,, with the inner product
(flg) = | fg + f(0)g(0) that makes it a prehilbertian subspace&ofWe may identify the
completionH, of Hy with L2(R) x R, which is bigger thar.2(R). H, has no Hilbertian

subspace completion.

1.1.4 The structure of Hilb((€, F))

The notion of Hilbertian subspace leads to two differenhpaif investigation: one can
be interested in the properties of the whole Betb((€, F)), or one can be interested in
the properties of a particular Hilbertian subspace. Thi®se path will be investigated in
the next sectionA remarkable fact concerning the setHilb((£, F)) that highlights the

beauty of the concept is that:

Theorem 1.6 We can endow the sdiilb((€, F)) with an external multiplication law (on
R*), an intern addition law and an order relation which givéZilb((€, F)) the structure

of a convex cone. Moreover, this cone is salient and regular.

The definitions (constructions) of the laws and the ordeati@h are thoroughly discussed

in details in [46] or [48]. They are partly based on the Hitisar structure. We give here a
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brief insight in order to understand the importance of tredascproduct. The results of this
section are strongly related to the transport of structi@eweakly continuous application,
but are best seen in a self-contained material (with remawkserning the transport of the

structure).

addition law

Let H,, Hy € Hilb((£,F)). Then the Hilbertian subspadé; + H is the algebraic
subspace of H = {h = hy + ha, h1 € Hy, hy € Hy} endowed with the norm

1l e, = _inf (Al + [Ae]*)' /2
An easy way to prove that this space is actually a Hilbertsj@to remark that it is isomor-
phic to the Hilbert spacéH; x Hj)/ker S, where® : (hy, hy) — hqi + ho.
Anticipating the results of the next chapter, we can saytti@Hilbertian subspacl + Ho
is the image of the Hilbert spadé; x H, by the weakly continuous operato® : H; x
Hy — &.

Note that this operation is associative, i.e. a true additov.

external multiplication law

Let H € Hilb((€,F)): we want to define for alh € R+ the Hilbertian subspaceH.
If A =0then\H = {0}. If A > 0 then we have the algebraic equalky/ = H, but we

endowAH with the inner product:

1
(hilho)am = X<h1|h2>H

Ssee corollary 1.40.
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Remark that H may also be defined as the image of the Hilbert sgad®y the homothecy
h = (VA)h.

order relation

We define the order relation by, < H, <= H; C H, and the canonical injection has

norm less than.

Structure of a convex cone

Finally, we verify that these laws and order relation are patible with the structure of a

convex cone, that g\, x> 0 :
AN Hy + Hy) = M\Hy + AH>

(A\+up)H =XH + uH

1.2 Schwartz kernel of a Hilbertian subspace

This section is devoted to the study of a certain class ofaipes we call kernels. This class
of operators has many applications, particularly in thelfadl partial differential equations
or tensor products ([50]) or in the probability theory. listBection we study the subset of
positive (self-adjoint) kernels, which is closely linkedthvthe set of Hilbertian subspaces
since the two sets are (under weak assumptions) isomotghipertian kernels of Hilbertian
subspaces have many good properties and for instance titilb&ernels may be seen as the
generalization of orthogonal projection in Hilbert spatearbitrary spaces.

There exist different definitions for kernels related to plagticular point of view one has of

their relation to Hilbertian subspace. The two main definisi are:
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1. Let& be al.c.s.£’ its topological dual and’ the conjugate space of its topological
dual. Then according to L. Schwartz [46], we call kernel amaldy continuous linear

applicationsc : &' — &.

2. Another interesting definition due to C. Portenier [43jhis following. LetF be a
locally convex spaceF! the space of continuous semilinear formsn Then we

call kernel any weakly continuous linear applicatien F — F*.

These two definitions are very convenient when dealing witties products and therefore
appropriate to the study of Hilbertian subspaces. Here, aveehier take a third point of
view since our principal object of interest in this thesisaisluality rather than a Hilbert
space hence a bilinear form rather than a sesquilinear fbtareover, since the notion of
Hilbertian subspace is relative to a duality rather tharcallg convex space, we define ker-
nels of a dual system of vector spa&eecisely, we call kernel relative to a duality(&, F)
any weakly continuous linear application from F into £. In order to avoid technical diffi-
culties we deal with spaces with an anti-involution i.e.day spac& & ~ & but the simple
fact that we should distinguish and€ is crucial. Any Hilbert space will then be in duality

with itself thanks to the following bilinear form:

L:H~HxH — K
hi,ha >  (h1]ha)

but this bilinear form is asymmetric in general and therefwe should (and will) distinguish
them in the sequel.

Transposition is actually defined upon this asymmetriciduahd any weakly continuous
operatoru : H — &£ has two transposes whether we deal with H ~ H — & or

u: H— €.
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1.2.1 Kernels

Definition 1.7 (— kernel (of a duality) —) We call kernel relative to a dualit€, F) (and

notes : F — &) any weakly continuous linear application frafminto £.

The definition of a kernel relative to a locally convex spautivs, since any |.c.<£ defines

a duality (£, &")8.

Definition 1.8 (— kernel (of al.c.s.) —)We call kernel relative to a locally convex topo-
logical vector spac& any weakly continuous linear application from the topotagidual

£ into &, i.e. any kernel relative to the dualitf, £’).

Since a kernel is weakly continuous, it has a transpesand an adjoint<* = ¢¢. But from
the definition of a kernel its transpose and adjoint are adsoéds of the dualityf&, F) and

we can define the symmetry, self-adjoint and positiveneggepties.

Definition 1.9 We say that a kernek is symmetric if 5z = s, self-adjoint (Hermitian) if
»#* = 3. Itis positive if

Vo e F, (¢, (@) (r,e) =0

(equivalently, it is positive i’ € £, (¢, u(?))(g,yg) >0.)
One checks easily that

Lemma 1.10 Any positive kernel is self-adjoint and the positivity citind is equivalent to:
voe F, (p.409)) >0
@ @, () e 2
A remarkable fact about self-adjoint linear operators ftdnnto £ is that they are always
weakly continuous, i.e. kernélsMoreover, kernels are related to bilinear and sesquilinea

forms by the following proposition (see [46]):

SAppendix B
"proposition 4 p.139 in [46]
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Proposition 1.11 There is a bijective correspondence between separatelklyeantinu-
ous bilinear forms (res. symmetric) df x F and kernels (res. symmetric). A separately
weakly continuous bilinear fornk and a kernelr are associated thanks to the following
identity:

Voi,02 € F, L(g1,p2) = (¢1,3(02)) (£ ¢

There is a bijective correspondence between separatelklyweantinuous sesquilinear
forms (res. Hermitian, positive) of x F and kernels (res. Hermitian, positive). It is

given by the following identity:

V1,02 € F, L(pz, 1) = (01, 2(92)) (7.

It is interesting to notice that we can endow the image of atigeskernel with a scalar
product that makes it a prehilbertian space the scalar ptdding the following sesquilinear
form:

V61552 € %(‘7:)’ <62|€1> = (%_1(61)55)(]:75)

The space of kernels (res. symmetric, self-adjoint, p@iis denoted b¥.(F, &), L(E',E)

or simplyL(&) (resp.L!, L*, L*). As for the set of Hilbertian subspaces of a given duality
(&, F) Hilb((€,F)) we can endow the set of positive kernels of this dudlity(F, £) with

an external multiplication law, an intern addition law anmdader relation which gives to
L*(F, &) the structure of a convex cone. Moreover, this cone is datind regulaf. We
will see in the next section that under very smooth hypothiss two setg7ilb((€, F)) and

L+ (F,&) are isomorphic.

Here are some examples to illustrate this notion:

example 1| R?-example

Let (&, F) = (R?,R?) in Euclidean duality. Any kernek may then be identified with

8See [48]
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a matrixK of Ms(R) by

K(i,j) = (ei,%(ej))(f,g)

example 2| Sobolev spaceﬁ(- kernel theorem -)

Let£ = D’ be the space of distribution on an openQeif R. Then we can identify
its dual with the set of test functior’s = D = C§° and by the kernel theorem of L.

Schwartz the set of kernels &f is isomorphic with the set of distributions éhx Q:

ser s (B)() = /ﬂ K_,¢(s)ds
whereK is a distribution orf2 x Q.

example3 Leté = F = H be areal Hilbert space. Then by Riesz theoémF) = (H, H) is
a duality (with symmetric bilinear form) and its kernels &ne continuous endomor-

phisms ofH. The notions of self-adjointness and positivity are thesilzal ones.
exampled Letb € Li(R). Then the symmetric separately continuous bilinear form
L:Ly(R) X Loo(R) — R
(. 4) — [ b(t)(t)e(t)dt
is associated to the symmetric kernel
7: Lo(R) — Li(R)
P r— b
The bilinear form (res. the kernel) is positive if and onlyhé functiond is positive.
Finally as advised by M. Atteia we mention tensor product®e @ample 2 above), for they
are closely related to kernels. The general theory of tapo# tensor products (and the

related nuclear spaces) is due to A. Grothendieck [25]. Amreimensive and clear reference

is [50] and we recommend this book for readers interestduisrstibject. Roughly speaking,
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we can always identify the tensor product of two locally aanspaces with a particular
space of continuous bilinear forms and the completion sftdmsor product (with respect to
different topologies) will be identified with subsets of aggtely continuous bilinear forms,
i.e. kernels. Moreover, under additional assumptionsrfimaif nuclearity), we can identify

sometimes identify the completion of the tensor productepaith the space of kernels.

Precisely, we can state the following theorem:

Theorem 1.12 Let (£, F) be a duality such thaf endowed with the Mackey topology is

nuclear and complete. Then
L(F,&) =ERF ~ERE

where the completion is taken with respect to one of thevidtig equivalent topologies: the

projective topology or the equicontinuous topology.

1.2.2 The Hilbertian kernel of a Hilbertian subspace

In this section we precise the link between Hilbertian sabsp (of a given duality€, 7))
and positive kernels (of the same duality).

A first step to understand how positive kernels and HilberSabspaces are related is to
associate to any Hilbertian subspace of a dugdityF) (resp. of al.c.€) a (unique) positive
definite kernel of £, F) (resp. of€). We will later see that this kernel has many interesting
properties. The definition of the kernel of a Hilbertian quixe is contained in the next

theorem:

Theorem 1.13 Let H be a Hilbertian subspace @£, F). There exist a unique application

x from F into £ such that

Vo € F,Vh € H, (‘Pa](z))(}"g) = (Eaiil ° %(W))(FNH,H) = <h|271 ° %(@»H Z
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It is the linear application

w:F — €&
¢ > 100 gy jover (®) =i00um o ioyer(p)
considering transpositichin the topological dual spaces or simply
w:F — &
¢ > ioj(p) =ioi*(p)
considering transposition in dual systems where H — andj : H ~ H — &
are the canonical injectiort8. This application is a positive kernel called the Hilbertiar

Schwartz kernel off.
Proof. — Vh,e H, p € F

(s i (M) (F.) = (B 5(9)) it iy
= (W'j())n

andz = i o' j. We then check that this linear application is weakly camims by compo-
sition of weakly continuous morphisms and positive taking ;! o () =t j(¢) in the
previous equation.

Finally !5 = i* sinces* = j o i* = j o 4* is self-adjoint. O

Figure 1.1 illustrates this theorem (considering traniioosin topological duals)
and figure 1.2 considers transposition in dual systems.
The same theorem may be obviously be given in the contextlbeHiian kernels of locally

convex space by taking = &’.

Remark 1.14 It is very important to notice that in this definition of thetkel we first put;

theni—!. Defining the kernel the other way round

9see Appendix B
0they are then equal but their transposes are distinct in gane
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H =

Figure 1.2: lllustration of a Hilbertian subspace and its\ké(transposition in dual systems)

Vo € FVh € H, (,i(h)(rey= (77" 0 x(0):h) opr.m)

would have defined an other positive kernel= j of i =t s = 7. This is due to the
asymmetry of the bilinear form af ~ H x H andy = 3 may be seen as the kernellgt

This will be properly explain in the third chapter: subduids.

Hence any Hilbertian subspace(6f F) is associated with a unique positive kerne{&fF)
and thea priori multivoque applicationd : H € Hilb((£,F)) — 3 € LT (F,E) is well
defined morphism. Before studying the injectivity and sttiyaéty of this application, we

can give some properties of this kernel.

Lemma 1.15 Let s« be the Hilbertian kernel off. Then:

e »x=!j:F — H is Mackey-continuous.
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p:F — R
—
@ (so, %(@)) ()
is a lower-semi-continuous semi-norm @) continuous ifF is endowed with its

Mackey topology.

Proof. — These are obvious corollaries of proposition 1.3. |

We will usually note alsor and call kernel of the applicationt; : 7 — H, as in this
lemma.

There is an interesting result concerning the image of thegke

Lemma 1.16 The imageH, of F by a kernelsr is a prehilbertian subspace &%, dense in

H, with scalar product

<h2|h1>H0 = (”il(hl)ah_Z)(]:,g) = <h2|h1>H

entirely defined by the kernel.

Proof. — Corollary p 109 [26]: “If j : E — &£ is one to one, its transpose
tj « F — f has weakly dense image”. It follows thak, is weakly dense irff and fi-

nally dense i for any compatible topology since it is a convex set (theodgn?9 [26]).0

1.2.3 The isomorphism betweerfilb((£, F)) and LT (F, E)

The previous morphisn® : H € Hilb((€,F)) + » € LT(F, &) that associates to any
Hilbertian subspace its (unique) kernel has remarkablpeptis: it is one-to-one (theorem
1.17) and under very mild conditions on the dualify F), it is also onto (theorem 1.19). In

this case, it is moreover an isomorphism of convex conesigmne 1.20).
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P is one-to-one

There are many ways to prove the injectivity of the morphi#npeach related to a particular
property of the link between the kernel and the Hilbertiabspacé!. The one chosen here
is interesting since it gives a construction fit terms of its kernel that will be helpful to

prove the surjectivity of the morphisd.

Theorem 1.17 Let H be a Hilbertian subspace @€, F) with Hilbertian kernelsc. ThenH
is the Hilbertian completion of the prehilbertian spatle = »(F) defined in lemma 1.16
and it follows thatd : H € Hilb((€,F)) — » € L1 (F,&) is one-to-one.

Proof. — Bylemma 1.16 H, is dense ind complete, hencé/ is the completion

of Hy with respect to the topology induced by the scalar produdiobut
Vho € Ho, llholl, = (57" (ho), ho) . = ol

by definition of the kernel and the norm dify induced by the kernel coincides with the

norm onH. O

This result is very important since it gives the injectiviti/®, but also a construction df
starting from the kernel. But the completion of a prehillzartsubspace may be bigger than
£'2 and we need to investigate closely the completion.
® is onto
It is widely believed that the previous application

®: H e Hilb(E,F)) = » € LT(F,€)

is also onto.The surjectivity of this morphism is however false in generg and we need

Hwe characterize for instance the elements of the Hilbertiasace just in terms of its kernel in the sectioz
“Other characterizations of the Hilbertian subspace asttia a kernel”, which proves the injectivity.
12see the section “Comments on the completion of a prehitregiibspace”



41

some more properties on the duality(£, F) to ensure the surjectivity.

To be precise, we can state the following theorem due to GeRier [43]:
Theorem 1.18 Let s« be a positive kernel, such that the semi-norm

p:F — R

o — (%W)wa

is Mackey-continuous. Then the associated prehilbertidnsgaced, = »(F) has a unique

Hilbertian subspace completiaH.

Proof. — The Mackey-continuity of the semi-norm is equivalent to¢batinuity
of s : F — H, if F is endowed with the Mackey topology aif}, with the norm topol-
ogy. It follows thats : F — I/{\O is continuous with dense image hence by transposition
thati = s : Hy — € is injective. H = Hy is the (unique) Hilbertian subspace with kernel

. Od

The Mackey continuity of the semi-norm is then a sufficiemtditon, but it is also necessary
by lemma 1.15. Itis also obvious that the kernel of the colestid Hilbertian subspace is
the one given by theorem 1.13.

It follows that the morphisn® : H € Hilb((E,F)) — s € LT(F, &) is onto if and only if

any semi-norm defined by a positive kernel is Mackey contitsuo

Proposition 1.19 If F endowed with its Mackey topology is barreléathen any semi-norm
is Mackey continuous and in particular any semi-norm defined positive kernel is Mackey
continuous.

If £ is quasi-complete for its Mackey topold§ythen any semi-norm defined by a positive

13See Appendix B
This condition is weaker than the previous since the duallmdirseled space is always weakly (and hence
Mackey) quasi-complete. However the barreleness @ in general easier to verify.
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kernel is Mackey continuous.
Finally, if F is barreled oré Mackey quasi-completed : H € Hilb((E,F)) — » €
Lt (F,&) is onto.

The isomorphism of convex cones

Finally we can state the most important theorem of this @rapt

Theorem 1.20 Supposef is quasi-complete (for its Mackey topology). Then there is a
bijection betweerHilb((€, F)) andL ™ (F, £). Moreover, this bijection is an isomorphism

of convex cones.

Figure 1.3 represents the convex cone of positive kernetsedEuclidean spadg? embed-
ded in the 3 dimensional space of self-adjoint kernels, &i&yadhe isomorphism the convex
cone of Hilbertian subspaces B&f.

We use the matrix representation of kernels (i.e. the kdumeition)

Ap A
As1 Azp

’

with AQ,l = A1,2-
Any reader particularly interested by the isomorphism aivex cone structure can read [46]

p 159-161, where the proof is detailed.

We can illustrate this isomorphism by some examples inuglthe previous kernels seen at

the end of the last section:

example 1| R?-example

Let (£, F) = (R?,R?) in Euclidean duality. The kernel of the Hilbertian subsp&ée

endowed with the scalar product

1
(Y|X) = z1y1 + §$2y2
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Convex cone of positive kernels

A2,1)

10

coeff A(1,2)

coeff A(1,1)

coeff A(2,2)

Figure 1.3: Convex cone of positive kernelsRf isomorphic to the convex cone of Hilber-
tian subspaces @

can be identified with the matrix

»:R2 — R?2

Y = (y1,y2) +— K.Y = (y1,2y2)

example 2| Sobolev spaceﬁ(- Cameron-Martin space -)

Let& = D' be the space of distribution on the openQet|0, 1[. The Hilbert space

W) = {f e D, 1) = [ Bcublds, de L?(ﬂ)}

is a Hilbertian subspace @' since the canonical injection is continuouts kernel

is the opposite of the operator of second order derivation fom D in D’, i.e. the



example3

exampled

exampleb
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integral operator with kernek (¢, s) = min(t, s)
Vit e Q, Vo € D, (¢ /mlnts

This space is sometimes called @ameron-Martin space (of the Wiener measure,
[17]), and the kernel functio (¢, s) = min(¢, s) is the covariance of the Wiener
measure. The link between Gaussian measures and Hilbetiaspaces will be
detailed in the last chapter “Applications”, section 4.XorA Gaussian measures to

Boehmians (generalized distributions) and beyond).

Suppose€ = F is a Hilbert space and let be a positive homomorphism &f.
ThenH, = »(&) is a closed subspace &f it is then a Hilbert space, the Hilbertian

subspace of associated withe.

Let£ = D’ be the space of distribution on an open Qetf K. The Hilbert space
L?(Q) is a Hilbertian subspace d¥’ since the canonical injection is continuous. Its

kernel is the canonical injection @ in D' (K (t,s) = d;(s)):
VieQ Vhe D, xd)) = /Q b1(s)9(s)ds = (1)

Letb € L1(R), b > 0. Then the positive symmetric separately continuous kiline

form
L:Lo(R) X Lo(R) — R

(. 4) —  [gb(t)(t)e(t)dt

is associated to the positive kernel
w: Loo(R) — Li(R)
P r— bap

and the Hilbertian subspace df; (R), L~ (R)) associated teris H = {f, € Lg}

endowed with the scalar product:

¢

()
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1.2.4 Other characterizations of the Hilbertian subspace asgiated to a ker-

nel

We have seen in the previous section that the Hilbertianpsuded? associated to the kernel
» is the completion (irf) of Hy = s(F) with respect to the scalar product induced by the
positive kernel. This is a useful abstract result but sifice_ £ it is natural to wonder if
there exists other simpler criteria to establish whethearsiqular vectorf € & lies in the

Hilbert spaceH or not. It is the aim of this section to study such criteria.

Proposition 1.21 Let s« be the Hilbertian kernel of a Hilbertian subspadé of (£, F).
Let BO(1) be the open unit ball of the prehilbertian spaéky = s»(F). ThenH =

Uxer+ ABO(1) where the closure is the weak closurefin

Proof. — H is the completion offy, H = [J,cp+ ABO(1) where the closure is
taken with respect to the Hilbertian norm . HoweverBO(1) is weakly compact ifd
as the unit ball of a Hilbert space, then weakly compact and finally weakly closed i&.

Thea priori two different notions of closure coincides for the open iai. O

Proposition 1.22 Let » be the Hilbertian kernel of a Hilbertian subspadé of (£, F).
Then for any elemerit € F* (algebraic dual ofF or weak-completion of) we have the

following equivalence:

0. h) £
he H < sup ( )(f’f) < oo

veF (w, () R

In this case, the supremum is the nornhoh H.
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Proof. — Evident since the topological dual &fy = s(F) dense ind endowed

with the norm-topology is identified with/ by the scalar product. |

1.3 Hilbertian functionals and Hilbertian kernels

The material of this section deals with convex analysis.illtnet be used afterwards and
can be skipped at first reading.

In [8], M. Atteia interprets Hilbertian subspaces in ternigjpadratic functionals (he calls
them Hilbertian functionals). He follows J.J. Moreau’s Wwdgd1l] who proved that any
Hilbertian kernel is the subdifferential of a strictly camvquadratic functional. This will
led to the general theory of Banachic kernels [9] we do natstigate here. We refer to [8]
for the proofs.

1.3.1 Hilbertian functional of a Hilbertian subspace

Definition 1.23 ( — Hilbertian functional —) Let(&,F) be a duality.

J:&E—R
is a Hilbertian functional (of &, F)) if:
1. domJ = {e € £, J(e)} is a vector subspace &f
2. J is quadratic overdomJ;
3. J is strictly convex;

4. {e € &, J(e) < 1} is weakly compact iff.

We note the set of Hilbertian functionals @, F) hF ((£,F)).
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To each Hilbertian subspadé of (£, F) we can associate a functiondl: £ — R defined

by:

J:£€ — R

1 (tpﬁ)(fp)
e — isu —LFF)
2 p(pE]‘— (Lp,%(iﬁ))(]__’]__*)

Proposition 1.24 The previous function is a bijection frofiilb((€, F)) onto the set of

Hilbertian functional of(E, F) hF ((€,F)).

Moreover, we can endowf ((£,F)) with an addition law, external multiplication law by
positive real numbers and an order relation that gives soshii the structure of convex cone.
Precisely:

addition law: inf-convolution

LetJi, Jo € hF ((€,F)). Then
Vee &,T1+ Jo(e) = inf (Ji(e1) + Ja(e2))

e=e1+e2

Remark that this operation is commutative and associdte/ea true addition law.

external multiplication law: outer quotient

LetJ € hr ((€,F)): we define for all € R+ the functional”., by

Ve € €, Ta(e) = AT (5)

order relation

We define the order relation by, < J» <= {Ve € &, Ji(e) < Ja(e)}
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Structure of a convex cone

Finally, we verify that these laws and order relation are patible with the structure of a

convex cone, notably

(J1+ T2)x = (J1)x + (J2):r
Tatw) = Ia+ T
Theorem 1.25 The previous function is an isomorphism of convex conesleetiilb( (€, F))

and hr ((€,F)). If £ is quasi-complete for its Mackey topology, then((€, F)) is also
isomorphic toL.* (F, £).

The question is: can we characterize this isomorphism tijréwithout exhibiting the
Hilbertian subspace)?

The answer is positive and investigated in the next section.

1.3.2 Hilbertian kernels as subdifferential of Hilbertian functionals

It is classical in convex analysis do define the dual funetign® : 7 — R:

Vo € F, T () =sup ((9076)(}‘,8) -J (6))
ees

The dual functional of a Hilbertian functional actually dslremarkable properties:

Proposition 1.26 Let J be a Hilbertian functional of £, 7). ThenJ* is a Hilbertian
functional of(F, £).
If 7 be the Hilbertian functional associated i Hilbertian subspace of¢, F), then

1L.VoeF, T(p) = %(% %(‘P))(f,s)

2. 0% = x
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whered J* is the subdifferential of7 *,

0T (¢0) = {6 €& VpeF, T () =T (o) 2 (¢ - 900,5)(.7-',5)}

Consequently this section gives another interesting ckeniaation of Hilbertian subspaces
and Hilbertian kernels in terms of Hilbertian functional$ie arguments of this section will
however collapse in the next chapters since no convex fumaitican be associated with

Krein subspaces or subdualities.

1.4 Reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces (in short r.k.h.s.) laeeHilbertian subspaces 6f=K*
endowed with the product topology, or topology of simplevagence, wheré is any
set. They are thus a special case of Hilbertian subspace endatural to wonder why we
should treat the case especially. There are many reasottsafothe first being historical:
the study of Hilbertian subspaces and their kernels steoms fhe works of Bergman [13]
and Aronszajn [6] in the framework of reproducing kernelliditt spaces and reproducing
kernel functions in the beginning of the 50s and it is onlgigtvith the work of Schwartz
in 1964 [46]) that the notion of Hilbertian subspace emerdé® second reason is that the
study of reproducing kernel Hilbert spaces is “universal’ttie sense that any Hilbertian
subspace may be seen as a r.k.h.s. by the injective mapping:

0:& — O CKY

e — {(&.€)}oeeny

(This may be found in [46] or [8] for instance). These spagesadso very interesting for
applications such as approximation or estimation sincedea¢s with genuine functions, or
for the study of Gaussian stochastic processes. Finadlietis one last reason for paying at-
tention to r.k.h.s.: the locally convex spate= K and its dual space have good topological

and algebraic properties.
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1.4.1 The spac&"

Let Q be any set and = K the space of scalar functions 6n endowed with the product
topology, or topology of simple convergence. Then its dpalcel’ = (KQ)' is the space

of measures with finite support @, i.e. Vu € (K®)',p = Zatét whered, is the Dirac

ten
measure o2 and thes; € K are null except a finite number of them. The duality product is

(ks ¢)((Kn)’ K2) = Z ard(t)

teQ

We may now cite some interesting results alitit

Proposition 1.27 LetQ be any setf = K the space of scalar functions &b endowed

with the product topology an(KQ)' its dual space endowed with the Mackey topology.

1. The space&® and(K®)" are barreled and nuclear;

2. any linear application fronﬁKQ)' into any topological vector space is weakly contin-

uous;
3. L((K®?)', K®?) = 15g %€
Proof. —

1. A product of nuclear spaces is nuclear (proposition 59[50]) and thereforék*? is
nuclear. Itis barreled as the product of barreled spacesKBLUs also reflexive and

it follows that its dual is also barreled and nuclear.

2. Itis necessary and sufficient to prove that any linear fisrmeakly continuous, since
u(K?)" — F is weakly continuous if and only Wy’ € F', ¢ o u is a weakly
continuous linear form (proposition 24 in [26]). Letbe a linear form. Them is
entirely defined by its action on thig, ¢ €  and defines a unique functiar(t) =

u(5t) te Q.

15is isomorph to
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3. The wanted isomorphism is given pyd;)](s) = u(t, s) Vi, s € Q. O

Remark 1.28 In some works (for instance [10]), authors identify the spaEmeasure with

finite support with the space of functions null except on &finiimber of point§ = KI:

p=> € (K?) — ful) = D = € K

teQ teq

The duality of interest is thefK®, KI).

1.4.2 rk.h.s.

Definition 1.29 A Hilbert spaceH is a reproducing kernel Hilbert space (in short r.k.h.s.)
if there exists a sef2, H is a Hilbertian subspace &f = K® endowed with the product

topology (topology of simple convergence).

This definition presupposes the knowledge of Hilbertiarspabes. Since r.k.h.s. are ante-
rior to Hilbertian subspaces, this is of course not the wayagucing kernel Hilbert spaces
were introduced. The next proposition gives a list of egenees that may be taken (and

have been taken in many works) for definitions.

Proposition 1.30 Let H c K be a Hilbert space. The following statements are equivalent
1. Hisark.nh.s.
2. The canonical injection froril into K® is weakly continuous.
3.VteQ, M, Vhe H, |h(t)| < M||h|lg.
4.Vse 0, 3K, € H Vh e H, (K, h)g = h(s).

5. 3K € KM, K(t,s) = (K(.,s)|K(t,.))n
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The last statement is known as the reproduction propertytendord “reproducing kernel”
stems from this statement. We have the following relatiovben the reproducing kernel

K and the Schwartz kernet:

Theorem 1.31 Let H be a rk.h.s. ifK®. Then its reproducing kernét is the image of its
Schwartz kernele under the isomorphism betwe#rf(K?)', K?) and K?* (proposition
1.27):

Vi, s €, K(t,s) = [5(6)](s)

example 1| R?-example

LetQ = {1, 2}. Then the Hilbertian spadg’ endowed with the scalar product

1
(Y|X) = z1y1 + §$2y2

is a reproducing kernel Hilbert space®f and its kernel function can be identified

with the matrix

with
V(i,j) €A xQ, K(i,j) =K,

example 2‘ Sobolev spaceﬁ(- Cameron-Martin space -)

Let £ = D’ be the space of distribution on the open €et=]0,1[. The Hilbert
spaceV ' (Q) = {f € D', f(t) = [, Vs<19(s)ds, ¢ € L*(Q)} is areproducing ker-
nel Hilbert space of2. Its kernel function isK(¢,s) = min(t,s). It verifies the

reproducing property:

(min(., s)[ min(t,.))w10) = /Q Yyu<syUgu<sydu = min(t, s)
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1.4.3 Reproducing kernels

Functions of two variables have been investigated for a tomg and the notions of hermic-
ity and positivity have been defined long before the isomisrprbetweerL((KQ)',KQ)

and K< was known. We have that:

Proposition 1.32

1. Any reproducing kernel is (Hermitian) positive.
QY @Y ~ wAXQ
2. LT((K?) ,K?) = K™%,
Following proposition 1.16, we have the following:

Proposition 1.33
Hy = Span{K;, t € Q}

H = H,

Remark 1.34 In the rk.h.s. setting, the fact thaf{?] c K is investigated in Aronszajn’'s
paper [6] in a self-contained manner. Prehilbertian subspa enjoying this property are
said to admit a functional completion. It states that a pladitian subspace dk® admits

a functional completion (equivalent to the one of Schwahzorem 1.5) is: for a Cauchy

sequencehy,, m € N}, by, — 0= ||hy|| — 0.

example 1| Polynomials, splineg

The two variable function oft = R defined by

- n! o
K(t,s)=(1+1ts)" = JZO ) _j)!tﬂsf

is positive as a positive linear combination of positiverias. Its associated r.k.h.s. is

the finite -dimensional Hilbert space of univariate polyiaisiof degreen H = P,,.
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example 2| Polynomials, splineg

The function
n . n! . .
Kits)=@t—9)"=)Y (-1)"d———"=tIs"J
2 jn = j)!
is not positive. It is not the reproducing function of a r.k.hAccording to [23] it is
however a classical function associated{n We will see how in our second chapter

for n even and in our third chapter (“Subdualities”) for any

1.5 Transport of structure, categories and construction of Hber-

tian subspaces

Previously, the set of Hilbertian subspaces has been shmivave many good properties,
one being its structure of a convex cone. A more significasltés that the set of Hilbertian
subspaces can be endowed with the structure of a convex etegocy isomorphic to the
convex cone category of positive kernels.

This result is a consequence of the next theorems concetiménigansport of structure by a
weakly continuous linear application.

As an application of that result, a construction of Hilbemtsubspaces is given. Other con-

structions of course exist, see for instance [12].

1.5.1 Transport of structure via a weakly continuous linear apgication

The general problem investigated in this section is asvi@lavhat can we say of the image

of an Hilbertian subspace by an operator?

In the case of one-to-one mapping, it is very easy to definalarsproduct on the range of

the operator. More precisely, |€f, F) and(&,§) be two dualitiesy : € — ¢ a linear
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application. We suppose moreover thais one-to-one. Then we can state the following

lemma:

Lemma 1.35 Let H be a Hilbertian subspace ¢£,F) andH = u(H). We can endovid

with an inner product such thaty : H — H is an isometry (and is a Hilbert space):

(u(h1)u(h2))m = (hi1lha)
H is a Hilbertian subspace df¢, §) if and only ifu is weakly continuous.

Proof. — Letjg : H — ¢ be the canonical injection. They = u o jz ot uy

which is weakly continuous if and only if u is weakly contirug O

Suppose now that : £ — & a weakly continuous linear application, but without the
injectivity property. Does the previous result hold? Itdohctually, thanks to orthogonal
decompositions in Hilbert spaces. Sincés weakly continuousKer(u) is weakly closed

and H admits the following orthogonal decomposition:
H = M & ker(u)

where M is a Hilbert space isomorphic td/ker(u). The restriction ofu to M is then

one-to-one and we can use the result of theorem 1.35;

Theorem 1.36 Let (£, F) and (€, §) be two dualitiesu : £ — € a weakly continuous
linear application. Letd be a Hilbertian subspace éf. ThenH = u(H) may be endowed
with the structure of a Hilbert space isomorphic i/ ker(u) that makes it a Hilbertian

subspace ofé¢, F).

This theorem appears for the first time in [46] and can be aeg@irectly to construct Hilber-
tian subspaces.

u(H) is then a Hilbertian subspace (@, §) and therefore has a kernel (theorem 1.13). What
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can we say about the image kernel of the Hilbertian subsp@ié? Under the notations of

the previous theorem, the following proposition holds:

Proposition 1.37 Let s« be the Hilbertian kernel off. Then the Hilbertian kernel & =
u(H) is ®(H) = u o » o .

Proof. — The proof is obvious sinc@y = wojys of upsr anduy, is an isometryd

1.5.2 Categories and functors

This section presupposes some knowledge about categoriesomvex cones and can be
skipped at first reading.

Let C be the category of dual systemis, ), £ Mackey quasi-complete, the morphisms
being the weakly continuous linear applications. Gdte the category of salient and regular
convex cones, the morphisms being the applications priegemultiplication by positive
scalars and addition (hence order). THéreorem 1.36 allows us to seélilb : (£,F) —
Hilb((€,F)) as a functor of categoriesaccording that to a morphism : £ — €& we

associate the morphism
a: Hilb((E,F)) — Hilb((¢,F))

Theorem 1.38 Hilb : (£,F) — Hilb((£,F)) is a covariant functor of categorg into
categoryg.

On the other hand.™ : (£, F) — L (F,&) is also a covariant functor of categafyinto
categoryg, according that to a morphism: £ — €& we associate the morphism

a:LH(F,E) — L3, ¢

¥ — wuoxoly
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and from the isomorphism of the convex cod&gb((€, F)) andL* (€, F) (theorem 1.20)we
deduce that:

Theorem 1.39 The two covariant functoré/ilb and L™ are isomorphic.

1.5.3 Application to the construction of Hilbertian subspacs

There are many works on the construction of Hilbertian sabsg through linear operators
(for instance [45]), but none of them makes reference tot&g@us theorem of L. Schwartz,

whereas they use it implicitly.

Corollary 1.40 (— construction of Hilbertian subspace —) et (&, ) be a duality, H a
Hilbert space,u : H — & a weakly continuous linear applicationd may be seen has
a Hilbertian subspace of itself and using theorem 1.36, lib¥es thatH = «(H) may
be endowed with the structure of a Hilbert space isomorphif/{ ker(u) that makes it a

Hilbertian subspace of¢, §). Its kernel is then the positive operator «*.

Note that any Hilbertian subspa&® may be constructed in this way by taki#f = H and

u = i the canonical injection (that is weakly continuous by psipon 1.3).

example 1| R?-example

Let H = R? endowed with the Euclidean inner product and
E=R cos(zt) +R sin(zt)
2 2
(subspace af- ([0, 1], R)) in self-duality with respect to the bilinear form

L:F=ExE — R
(p,e) = —p(0)e(1) + ¢(1)e(0)
Then the weakly continuous linear mapping
u:R2 — £

X = (z1,22) +— u(X) = 21 cos(t) + z2 sin(t)
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defines a Hilbertian subspace®ft(R?) with kernel
w:F=& — €&
¢ > w(p)(t) = (1) cos(5t) — (0)sin(Ft) = 2¢'(¢)
i.e; the derivation operator since
u:F — R?

@ — (p(1), —¢(0))

example 2| Sobolev spaces

Let £ = D’ be the space of distribution on an open €ebf R. The Hilbertian
subspace ob’ associated to the kernel
w:D — D
¢ — i

is just the Hilbert spac®(L?), where
pP:1? — D
¢ — F¢
sinceP o P* = . Itis the Sobolev spadd ~! (remark that the orthogonal &ér(P)

is the subset of.2 functions that sum t6).

example 3| Sobolev spaceﬁ(- Dual space of the Cameron-Martin space -)

There exists an other characterization of the spéice based on the theory of normal
subspaces. Lé¥'! be the previously defined Cameron-Martin space (with reyred
ing kernelK (t,s) = min(t, s)). Itis a classical result tha is dense iV !. If we
notei the canonical injection, it follows thdi : W' — D’ is injective. The image
of the Hilbert spacéV ! by i is then a Hilbertian subspace @', D). ltis precisely
the spacaV —! with kernel» = %. Remark thatK (t, s) is precisely the Green’s

function associated tal8.

16There exists actually a general result of this type, seetehdg’/Applications”
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example4 Letb € L'(R), b > 0 and define

u:L2(R) — LYR)
$p— Vb

Its adjoint is
u*: L°(R) — L*(R)
and H = u(L?) = v/bL? is the Hilbertian subspace ¢f.', L°) associated to the

positive symmetric kernek = uu™* i.e.

7: Lo(R) — Li(R)
P r— b

1.5.4 The special case of r.k.h.s.

When dealing with reproducing kernel Hilbert spaces, itegpp that weakly continuous lin-
ear mapping have a special form, which allows us to refortaula previous construction.
Weakly continuous linear mapping with rangel¥ hold a very special property, for they

may be represented by a family of linear form indexed by arpatart in Q:

Theorem 1.41u : £ — K% is a weakly continuous linear operator if and only if
HTreF, teQ}, @) =@,9)Fe

Proof. — u : & — K% is a weakly continuous linear operator if and only if

Vt e Q, & 0u e & (proposition 24 in [26]) and the theorem is proved. O

It follows that weakly continuous linear mapping from a Hitbspace with range K are

represented by a family of functions from the Hilbert spawieked by a parametein :
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Corollary 1.42 « : H — K® is a weakly continuous linear operator if and only if

Hve H, e Q) [w(@)l() = (Tlo)u

If H = L?, then such operators are known as Carleman operators (@n@ar integral op-
erators) see for instance [49]. We can now state the maitt @scerning the construction

of rk.h.s.:

Corollary 1.43 (- construction of r.k.h.s. —),
Let H be a Hilbert space{T; € H, t € Q} andu : H — K" the associated operator.
ThenH = wu(H) may be endowed with the structure of a Hilbert space isomorfih

H/ ker(u) that makes it a reproducing kernel Hilbert space and its kéfanction is

Vt,s € £ x €, K(t,s) =(Ts|T)m

example 5| R?-example

1 0
Q = {1,2}. Definel' = ( \/_) ThenH = T'(R?) is a Hilbertian subspace of
0 V2

R? with scalar product

1
(X|Y) = z1y1 + §$2y2

10
Its kernel function is identified with the matrik = I'l'* = ( ) .
0 2

example 6/ Sobolev spaces

Let ©2 be an open set dR bounded from the left. Lel' be the Carleman opera-
tor associated to the family;(.) = 1;<,. The previously defined Hilbert space
WHQ) = {feD, f(t) = [, Us<td(s)ds, ¢ € L*(Q)} is then the reproducing

kernel Hilbert space image @ under the mapping. Its kernel is

K(ta S) = <:“{.§s}|:“{.§t}>L2 = min(ta 3)
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example7 (- Bergman kernel -)

Let H be theC-reproducing kernel Hilbert space on the unit disk, witmia & (2, w) =

_1
1—zw"

{1,2,22, ...} since

Then H = I'(1?[C]) whereT is the operator induced by the family, =

i.e. the Hardy spacH;.

example 8/ Polynomials, splineg

The finite-dimensional Hilbert space of univariate polynalsof degreen H = P,

with kernel
n
n! o
K(t,s)=(1+ts)" = S — Y
(ts) = (1+ts) ;oﬂm—ﬁ!
is the image of the Hilbert spadé = R™ with scalar product

n

n!
YIX — ey
Wi J-Zoj!(n—j)!x]y]
by the operatof” associated to the family
T

Ty = (1,¢,4%, .., ")

example 9| Polynomials, splineg

We can construct in the same manner a r.k.h.gof 1)-multivariate homogeneous
polynomials of degree (see [23]):

Let d be the cardinal of multi-index s, 5] = By + ... + Br = n} and suppose we
order this se{3(V), ..., (D1,

The image of the Hilbert spadé = R? with scalar product

n!

d
YV|X)g =) i %Y

Jj=0
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by the operatof” associated to the family
L — (1 BD 5D tﬂ(d)>T
t — ’ 3 3y

wheret? = 5.1 is ark.h.s, the spacH,,(R¥1) of (k + 1)-multivariate homo-

geneous polynomials of degreewith kernel

! !
W (15)8" = 3 TV BB

d
(d)) !

K(t,s)

Before closing this chapter, it may be interesting to haveief bistorical review of some

less known results concerning reproducing kernel Hilbeacss.

The Moore reproducing property Kolmogorov's decomposition and the Kolmogorov’s

dilation theorem.

It is widely admit that the first results on reproducing ketibert spaces appeared in 1950
with the article of N. Aronszajn [6]. This is true if we coneidit as the first investigation

of the set of reproducing kernel Hilbert spaces and theijpgmies. But it is less known that
the first ones to notice the correspondence between pokétivels and Hilbert spaces were

Moore [40] and Kolmogorov [31]. Their results are contaimethe following theorems:

Theorem 1.44 (— Moore’s “reproducing” property theorem —) LetK be a positive def-

inite kernel on a sef2. Then there exists a functional Hilbert spalec K such that
Vs €Q, Vhe H (K(.,s)|h)g = h(s)

Theorem 1.45 (— Kolmogorov’'s decomposition, Kolmogorov'slilation theorem —) Let

K be a positive definite kernel on a €@t Then up to a unitary equivalence there exists a
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unique Hilbert spacdéd and a unique embedding : 2 — H such that:
V(t, S) € 927 <‘/S|‘/t>H = K(ta 3)

Span {V;, t € Q} is dense i

The pair(H, V) is called a Kolmogorov decomposition of the positive kefel

The r.k.h.s. with kernekK is then the image off by the weakly continuous operator defined
by the family{V'(¢) € H, ¢t € Q} (corollary 1.43).

Conclusion and comments

The basis of the Hilbertian subspace theory have been pegserio a great extent the
results are drawn from L. Schwartz’s paper “Sous espacbertigns d'espaces vectoriels
topologiques et noyaux associés” [46]. The main differaadhat we choose to deal with a
duality (£, F) rather than with a locally convex spa€eand that we introduce the dualities
(E=H,F =H)and(E = H,F = H). We see that one has to be very careful when
using this approach but also that two injections are needdis will be explained in the

third chapter.

Some results not appearing in [46], notably those of sectibris onto” concerning the
Mackey continuity of the semi-norm are due to C. Porteni&].[4The interpretation of
Hilbertian kernels in term of Hilbertian (quadratic) fuimetals is due to M. Atteia [8] after

the works of Moreau [41].

The choice made in this chapter is to present only the getieraty of Hilbertian subspaces

and the properties shared by all Hilbertian subspaces. Aflpapers deal with particular
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subspaces, Hilbertian subspaces of a specific spaceavith applications of Hilbertian sub-
spaces (in terms of Gaussian measures, approximatioetafiffal equations, system theory,

...). They should all have [46] in their references.

Finally, the next chapters may be introduced as follows: bamwe generalize the preceding

notion of Hilbertian subspaces and what would the link wighriels be?
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Chapter 2

Krein (Hermitian) subspaces,
Pontryagin subspaces and admissible

prehermitian subspaces

Introduction

This chapter generalizes the previous theory by giving eptbsitivity of the inner product
while retaining its hermicity. Associated inner producasps are no longer Hilbertian. As
expected these inner spaces hold close relations with Hanr{non necessarily positive)

kernels.
We will follow three different paths and study the close tielas between the different ob-

jects:

e the first is based on a theoretical result that gives theandst of an abstract vector

space starting form a regular convex cone;

¢ the second directly starts from existing spaces relatedilt®eH spaces called Krein
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spaces;
¢ the third is the most general and deals with the total setradriproduct spaces.

Precisely, it has been shown previously that the set of Hilloe subspace of a dual sys-
tem can be endowed with the structure of a regular convex.cbhen the construction of
the associated vector space of formal difference of twodtilan subspaces (not&l®
Hilb((€,F))) is a classical abstract result and L. Schwartz’s startioigtpfor the study
of what he called Hermitian subspaces. Moreover, the isphism of convex cones be-
tween Hilbertian subspaces and positive kernels will alderl to an isomorphism of vec-
tor spaces (the latter being the vector space of formalrdifiee of two positive kernels
R ® LT (F,&)). But whereas this second vector space has a clear intatipretn terms of
Hermitian kernels, the first had no interpretation in terrhsextor subspaces at this time
and it was L. Schwartz’s purpose to give an interpretatioR of Hilb((€, F)) that lead to

Krein subspaces.

On the other hand, some mathematicians but mainly physicad already seen the neces-
sity of dealing with indefinite metrics to solve some probéeoutside the standard scheme
of Hilbert spaces, notably those spaces that can be seer akiffdrence of two Hilbert
spaces. These indefinite inner product spaces may be sdem simplest generalization of
Hilbert spaces and appear to be a good setting to performhw&tz’s program. This was
for instance done in [4]. Those spaces got the name Kreiresgater the name of M. Krein
[32].

We will see that the theory of Hilbertian subspaces exteritéin subspaces with the latter
being now associated to a subset of Hermitian but not nedlggsasitive kernels. However

this extension leads to unexpected difficulties exceptiersubset of Pontryagin subspaces.

1. Schwartz called them Hermitian spaces
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Finally we go further into the abstraction and by followingce again the work of L.
Schwartz develop the theory of admissible prehermitiarsgates which is isomorphic un-
der a quotient relation to the vector space of self-adjoamh&IsL*. Moreover we interpret
the algebraic requirements of L. Schwartz in topologicahtemaking extensive use of dual

systems. That will be the second huge step toward subdgaliti

2.1 Extension of the isomorphism of convex cones to an isomor-

phism of (abstract) vector spaces

2.1.1 Construction of the vector spaces

Any regular convex coné€' generates a real vector space, which we ffote C' and that is
the vector space of formal differences of element§’ofAn element ofR ® C is then the
equivalent class of elements of the form — c_ with respect to the equivalence relation
Recone

(c}F — cl,)Rcone(ci — c2,) = c}r +& = Ci +ct

Isomorphisms of convex cones extend to isomorphisms obvepaces (moreover, the func-
torial character remains).
Example:

Figure 2.1 illustrates this construction. We have drawm f@gctors verifying
ci_ + = cﬁ_ +cb

Moreover, we may interpret this class of equivalence as ¢lotov

Such an interpretation is however not possible in general.
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. ... C (positive cone)

v

R* C {vector sp&‘c’“e)}»_n

Figure 2.1: Real vector space generated by a regular commrex c

From now on and for the rest of this chaptéf, F) is a duality such thaf is Mackey
guasi-complete. Then applying these abstract resultetodhvex cones of the first chapter

“Hilbertian subspacesH:ilb((€,F)) andL*(F, ) we get that:
Theorem 2.1 R @ Hilb((€,F)) andR ® L (F, &) are two isomorphic vector spaces. We
still note this isomorphisn®

d:R@ Hilb((6,F)) — RLY(F,E)

Hie—H_  +— 54—

The previous theory of Hilbertian subspaces extends ribtumathese vector spacé® ®
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Hilb((€,F)) andR ® Lt (F, ) thanks to this isomorphism. The question of an interpreta-

tion of these spaces (other than an abstract equivalenss) idathen open.

2.1.2 Interpretation of these abstract vector spaces

The second vector spae® L™ (F, £) is the easiest to interpret. Two formal differences of
1

2

positive kernelsfi —x and%?F — »~ are equal if the following equality occurs:

1 2 _ .2 1
wy + ot =i o

But since the set of kernels is a vector space with respebeteame addition operator, This

equivalence relation is exactly the equality of the nonitp@skernels

We can interprefR @ L™ (F,£) as the subset d&*(F, £) (the set of self-adjoint kernels)
whose elements admit a decomposition as the differenceagbtsitive kernels. This vector
space will be studied further throughout this chapter.

A direct interpretation of the first vector space is far maféadilt to give. But a first step to
understand this vector space is to define the vector spaceeof Bubspaces for we will see
that these two vector spaces are closely related. It is theoithe next sections to define

Krein subspaces and understand how they are related tottRessélilb((E, F)).

2.2 Krein spaces and Krein subspaces

The previous construction leads to a very important thamletesult, but an interpretation of
the elements dR® Hilb((£, F)) has not been given yet. However, since they are differences
of Hilbert spaces quotiented by an equivalence relatide,nitural to wonder whether they
are related to Krein spaces, which may be seen as differafi¢t¢itbert spaces (that do not

intersect) quotiented by a second equivalence relation.
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2.2.1 Krein spaces, Pontryagin spaces

Krein spaces and Pontryagin spaces are special types afpnoduct spaces, that can be
seen as the sum of a Hilbert space and the antispace of atrifizare. Before going further,
it might be useful to review some prerequisites on inner pecodpaces and antispaces. We

refer for instance to [20] for proofs of these statements.

Definition 2.2 (— inner product space —)An (indefinite) inner product space is a vector
spaceH together with a sesquilinear bilinear form adid x H: (.|.), called inner product

OonH.

Definition 2.3 (— antispace —)Let (H,{.|.)) be an inner product space. Then its anti-

space—H is the inner product spacgd, —(., .)).

It is then classical to define for an inner product the pasjtivnegativity, nondegeneracy

properties. For instance, a prehilbert space is an inngugtspace whose inner product is
strictly positive (i.e. positive nondegenerate).

As for Hilbert spaces, we can define isomorphisms betweesr iproduct spaces and oper-

ators may be symmetric, positive for the inner product.

Krein spaces are a special kind a inner product spacesdelatie Hilbert spaces. There
are at least three equivalent definitions of Krein space. fifsieis about the class of Krein
spaces, the second is based on the decomposition of Kretespao a sum of two inner

product spaces and the third is an operator charactermzatio

Definition 2.4 ( — class of Krein spaces, Krein spaces -The class of Krein spaces is the
smallest class of inner product spaces, closed under oothagdirect sums, that contains
all Hilbert spaces and antispaces of Hilbert spaces. A irpreduct space is a Krein space

if it is in the class of Krein spaces.
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Proposition 2.5 ( — equivalent definitions of Krein spaces —The three following statements

are equivalent:
1. (H,{.].)) is a Krein space;

2. There exists two Hilbert spacég, and H_ such thatd has the fundamental decom-
position

H=H,oH._

3. There exists a Hilbert spadeH |, ((.|.))) and a symmetry (unitary, self-adjoint oper-
ator) J (called the fundamental symmetry or metric operator or Gaparator) such

that
(1)Y= IO

These decompositions are not uniqueHiL H', H?r, H? are four Hilbert spaces such that
HINHL = {0} andH? N H? = {0}, then they define the same Krein space if and only

if they verify the following equivalence relation:
(H} — H)R_(H} — H2) < H,© H! = H} 6 H?

Since these decompositions are not unique, it is importekihow what fundamental prop-
erties of the Krein space do not depend on the particularrdposition chosen. This is the

content of the following lemmas:

Lemma 2.6 Let(H,(.|.)) be a Krein space. Then for any two fundamental decomposition

H=H!oeH! = H? & H?,dim(H}) = dim(H?) anddim(H') = dim(H?).

Lemma 2.7 Let (H,{(.|.)) be a Krein space and|H|', J', (|H|?, J?) two symmetry de-
compositions. Then the norms pH|! and |H|? are equivalent. they are also equivalent
with the norm||ay. + h_|3; = [lh+ |3, + lh-[7_ for any fundamental decomposition

H=H oH_.
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We can now define some intrinsic features of a Krein space:

Definition 2.8 Let H, (.|.) be a Krein space. We call positive (resp. negative) indictef
Krein space the numbénd H = dim(H) (resp. ind_H = dim(H_)). We call strong
topology onH the topology induces by the norm (/.

Remark that from the preceding lemmas, the two quantitiesvadl defined. The negative
index is also known as the Pontryagin index. As a consequéhednner product is con-
tinuous with respect to this topology and the Riesz reptasien theorem holds in Krein

spaces:

Theorem 2.9 Let i be a linear form onH. Theny is continuous with respect to its strong

topology if and only if it is of the form = (.|k) and in this casel is unique.
This result may be restated as follows:

Proposition 2.10 The strong topology ot is the Mackey topology for the dual system

(H, H) with (generally asymmetric) bilinear form

L:F=HxFEF=H — K
hi,hy —  (hi]hs)
From the preceding proposition and lemmas, we have theafimlfpinterpretation of Krein

spaces in terms of Hilbertian subspaces and their kernels:

Corollary 2.11 Let H be a Krein space. Then for any of its fundamental decompasiti
H=H, 6 H_,H; and H_ are Hilbertian subspaces of the dual systeth H) (or of H

endowed with its strong topology) and their Hilbertian kelswerifysc, — e = Idy.

Proof. — The fact thatH ; and H_ are Hilbertian subspaces of the dual system
(H, H) is a direct application of lemma 2.7. The kernels are exah#yorthogonal projec-

tion in the spacéH | which gives the equalitye, — s»c_ = Idpy. O
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2.2.2 Pontryagin spaces

The class of Pontryagin spaces is the class of Krein spadbginite negative indice:

Definition 2.12 ( — Pontryagin space —)An inner product spacél is a Pontryagin space

if and only if it is a Krein spaced andind_H < co.

There is little interest in studying Pontryagin spaces carag with Krein spaces in general

but we will see that when dealing with Hermitian subspade=sy hold a remarkable property.

Example: Minkowski spacetime

The first indefinite metric spaces were probably the finitaatisional Minkowski spaces of
special relativity [21]. They are commonly used nowadaysdaemology for their simple
mathematical properties even if they are not curved spawd$fi@nce do not fit the general

relativity setting.

We consider here the three dimensional Minkowski spgidice R? endowed with the indef-
inite inner product{v |ve) g = z1x9 + T\ 7 — y1yo.
Vectors with positive (resp. negative, zero) length aréedgbositive (resp. negative, neu-

tral). For instancél, 1, v/2) is neutral.

Figure 2.2 (taken from [27]) gives a representation of th&ce, of a positive and negative

subspace and of a neutral cone.

2.2.3 Krein (or Hermitian) subspaces

Hermitian subspaces appear for the first time in the work dd¢hwartz [46] who tries to

generalize the notion of Hilbertian subspaces. The dewsdmp of this notion led him to



74

Negative subspace

Positive subspace

Neutral cone

Figure 2.2: 3-D Minkowski spacetime

the particular study of Krein spaces, even if he did not usewbrd “Krein space” since
this term was not used at the time (and that is why he kept thd Wdermitian”). It initi-

ated a new direction in studying Hermitian kernels, notdbbse that admit a Kolmogorov
decomposition, since they may be associated to Krein (Hirmyisubspaces. As for Hilber-
tian subspaces, Krein subspaces are Krein spaces with diteoadl property that they are

strongly included in a locally convex spa€e
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Precisely, we have seen in the previous section on Kreinesptat we can endow these
spaces with an intrinsic topology for which the inner pradsccontinuous (and the Riesz
identification theorem holds). We then characterize Krélar(nitian) subspaces with re-
spect to this topology (the definition of Krein subspaces tihanics the definition of Hilber-

tian subspaces):

Definition 2.13 ( — Krein (or Hermitian) subspaces — ) et (€, F) be a duality (resp& a
l.c.s). A spacd is a Krein (Hermitian) subspace ¢f, F) (resp. of€) if it is a Krein space

such that:
1. Hcé&

2. The canonical injection is continuousHf is endowed with the strong topology afid

with any topology compatible with the duality (resp. withiititial topology).

We noteKrein((£, F)) the set of Krein (Hermitian) subspaces of the dugliyF).

We can equivalently define Pontryagin subspaces:

Definition 2.14 ( — Pontryagin subspaces —let (£, F) be a duality (resp.£ a l.c.s). A
spaceH is a Pontryagin subspace ¢, F) (resp. off) if and only if it is a Pontryagin

space and a Krein subspace (@f, F) (resp. of€).

For Krein spaces, the Mackey topology that correspondseteet-duality( H, H) is exactly
the strong topology (proposition 2.10). The strong coritynaf the canonical injection can

then be interpreted in terms of the weak or Mackey topology:

Proposition 2.15 (—topological characterization of Krein subspaces -the following state-

ments are equivalent:

1. H is Krein subspace df, F);
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2. The canonical injection: H — & is weakly continuous;
3. 1 : H — £ is continuous with respect to the Mackey topologiedfoand €.
Proof. — Letus prove thafl) = (2) = (3) = (1):
(1) = (2) corollary 1 p 106 [26]: ifj : H — & is continuous, it is weakly continuous.

(2) = (3) We can cite corollary 2 p 111 [26]: jf: H — & is weakly continuous, it is continuous
if H is endowed with the Mackey topology (afidvith any topology compatible with
the duality).

(3) = (1) The strong topology of the Krein spaégis the Mackey topology (proposition 2.10),

and we use the previous argument (corollary 2 p 111 [26]). a

What can we say about the Hilbert spaces appearing in anpifa@dtal decomposition of a

Krein subspace? Are they Hilbertian subspaces? The ans\westtive:

Proposition 2.16 Let (H, (.|.)) be a Krein subspace @£, F). Then for any fundamental
decompositiondl = H, © H_, H, and H_ are Hilbertian subspaces ¢, F).
Conversely, IfH, and H_ are Hilbertian subspaces df, F) in direct sum, therd =

H, 6 H_ is a Krein subspace df ., F).

Proof. — This proposition follows from lemma 2.7 and the definitiortia strong

topology. O

example 1| R?-example

Let H = R? with inner product

(Y|X)n = 211 — 2212
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It is obviously a Krein subspace & and for the fundamental decompositiBA =

R 0 R 0 ) .
e , and are Hilbertian subspaces Bf .
0 R 0 R

example 2| Sobolev spaces

Let 2 be an open set & and define
H=WYQ)eRlg = {f eD, f(t)= /Q Ls<ip(s)ds +a, ¢ € L*(Q), a € R}
with inner product f(t) = [, Ts<id(s)ds + a, g(t) = [, Vs<itp(s)ds + )
(Flabin = (7 = lg = Blwso) = 8 = [ $ls)ple)ds = v
ThenH is a Krein subspace d¥’.

The setKrein((£, F)) is then obviously a vector space. In order to understanthksaith
the vector space of Hermitian kernels, we have to make thebktween this vector space

and the vector spade ® Hilb((€,F)).

2.3 Hermitian kernels and Krein subspaces

There are two ways to develop the link between Krein subspaod Hermitian (or self-
adjoint) kernels. The first is to interpret the ®t® Hilb((£,F)) (isomorphic toR ®
LT (F,¢&)) in terms of Krein subspaces and the second is to mimic tiréioe results (if
possible) of the first chapter. The first is sufficient but theasid gives the (same) results in

a somehow more comprehensible and understandable manner.

2.3.1 Krein((€,F))andR ® Hilb((E,F))

This section is the crucial part of this chapter since allrmults concerning the links be-
tween Krein spaces and Hermitian kernels derive from théagities and differences be-

tween the two set&rein((€, F)) andR ® Hilb((E,F)).
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The first thing is to understand that these two sets are noetdgghic in general.
To be convinced of this, the following example due to L. Sctizvahows that two distinct

Krein spaces may be equal if seen as elemen®&®fHilb((E, F)).

example (- Distinct Krein spaces equal inR ® Hilb((€, F)) -)

Let £ be an infinite dimensional Hilbert spacH,;. and H_ two closed subsets ¢f
such thatH y U H_ = 0 andH & H_ is dense ir€ but not equal t&€ (we say that Z
H, andH_ are in tangent position).

We then defing - and H: they verify H+ U H: = 0 and H{ & H* dense ir¢

but not equal t€ and alsoH, @ H- = H_@ H = €.

This last equation gives the equality &, — H_ and Hf — Ht as elements of
R® Hilb((€,F)), butthe spacell ;. & H_ andHi @® H' are not equal (If they were
equal, they would contaiéi which is in contradiction with the hypothesis), hence two

different Krein spaces.

The two vector spaces are then different, but we can howéater a crucial result based on

the two following lemmas:

Lemma 2.17 Let H be a Krein subspace @€, F). Then for any two canonical decompo-
siionsH = H, & HL. = H3 & H? we have thafl| + H?> = H3 + H., i.e. they define
a unique element & ® Hilb((€, F)).

Proof. — Using corollary 2.11, we have thatly = »! — 3! = 52 — 2 hence

st + 32 =32 + 5! andfinallyH} + H2 = H? + H!. 0

Lemma 2.18 Conversely, letH; — H_ € R ® Hilb((£,F)). Then exists? and H®
Hilbertian subspaces d€, F) such that:

1. HYNHY =0
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2. H. + H° = H} + H,

Proof. — Let s, ands_ be the Hilbertian kernels d , and H_ and define the
positive kernebs = 5, + 3, H its associated Hilbertian subspacg&fF). ThenH ; and
H_ are Hilbertian subspaces éf with kernelsy . andy_. x = x+ — x_ IS a continuous
operator onH and its spectral decomposition givgs= X(i —x% with X& andx’ two
positive operators verifyingl{ (Y H? = 0, H} andH® being the Hilbertian subspaces of
H associated toe%. andx?. The equalityH, + H® = H{ + H, then follows from the

equalityx;+ + x% = x% + x_. O

It follows from these two lemmas that:

Theorem 2.19R ® Hilb((€,F)) is the quotient space aKrein((£, F)) with respect to
the equivalence relatiorR cone:
H'R oneH? if and only if for two canonical decompositions (and then fany two) H! =

H} © H! and H? = H? © H? we have that} + H> = H? + H!.

The isomorphism betweekirein((€, F))/Rcone aNAR® Hilb((£, F)) will then extend to
an isomorphism between the two vector spakesin (€, F))/Rcone andR @ LT (F, ).
Before stating the main definitions and results based origbigorphism, we study more

closely the seR ® Lt (F,&).

2.3.2 Hermitian kernels

We start with some definitions and propositions relativeemkls. At the end of the section
on Hilbertian subspaces, the notion of Kolmogorov decortipnshas been defined for
positive reproducing kernels. We give here an apparentiypbetely different definition for

self-adjoint kernels of an arbitrary duality:
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Definition 2.20 (— Kolmogorov decomposition (first version)-) We say that a self-adjoint
(Hermitian) kernebx € L*(F, ) admits a Kolmogorov decomposition (of the first kind) if

there exist two positive kernels, , > € L1 (F, ) such that
n =y — ¥_
and we note this sd@i?(F, ).
The equivalence relation is then the equality of the Heanilkernels:
(e =3 YR —52) = (o} — #') = (62 — i)

It may not be clear whereas there exists kernels that do moit @dKolmogorov decompo-

sition. The following example answers this question.

example (- Kernel without a Kolmogorov decomposition -)
Let B be a reflexive Banach space (olrthat cannot be endowed with an Hilber-

tian structure. Then the kernel

#:B'xB — BxDB
',0) — (b0
does not admit a Kolmogorov decomposition.
If we could writesc = x4 © x—, then we would have the set equalit, B') =

H, @ H_ andB could be endowed with a Hilbertian structure.

Proposition 2.21 The set of kernels that admit a Kolmogorov decomposkiéi (F, £) is

also the quotient space of formal difference of positivaé&lsr by the equivalence relation
(%}r — %E)Rcone(zﬁ — %E) = %}r + 32 = %i + 2t
i.e. the seR @ LT (F,&):

LAP(F,€) = R@L*(F,€)
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Remark 2.22 This proposition is crucial since it gives the equivalenaween the two
relationsR .., andR— for kernels whereas they are not equivalent for Krein subspa

However, if such a decomposition exists then there are tafinmany decompositions (we

may sum any positive kernel ta, andsc_). We need the following concept:

Definition 2.23 (— independent positive kernels —)
Two positive kernelse, , s € LT (F, &) are independent if any positive kerngbuch that

x < 2y andy < s is zero.

If 5, ands_ are the Hilbertian kernels off; and H_, this definition is equivalent to
H NH-=0.
Even with this restriction, the Kolmogorov decompositidnacself-adjoint kernel in two

independent positive kernels is not unique in general. Z

The following lemma gives equivalent conditions for a kétmeadmit a Kolmogorov de-

composition:
Lemma 2.24 The following statements are equivalent:
¢ the self-adjoint kernek admits a Kolmogorov decomposition;
e there exists two independent positive kernels »c_ € L™ (F,£) such that
=My — A
e There exists a positive kerngldominatings, i.e.

V(15 p2) € F2, (01, 2(02)) .6y < (01, X(91)) (7.6 (92, X(02)) (e

or equivalently

Vo € F. | (0, 2(0)) (7,6) | < (0:X(0)) (5
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Proof. — We refer to the proof in [46] that follows proposition 38 p 242 O

The next two sections will state the main results concerKirgn subspaces and Hermitian
kernels. We will give a second definition of the Kolmogorowadposition of a Hermitian
kernel and prove that the two definitions are equivalent.

2.3.3 The fundamental theorem

Combining theorem 2.1 and theorem 2.19, one gets the egéstdrihe following morphism

that associates any Krein subspace to a unique eleméngoL ™ (F, £):
Theorem 2.25 We have the following factorization

Krein((€,F)) — Krein((€,F))/Reone = R® Hilb((E,F)) 2R LT (F,€)
and we still noted : Krein((€,F)) — R® LT (F, &) this well defined morphism.

However this formalism has a drawback since this definitibrbadeals with equivalent
classes and is purely abstract. It may then be good to rekiateheorem and interpret it
directly. The proofs of the following theorems and progosis are omitted since they all

are a direct application of theorem 2.25.

2.4 Direct interpretation and application of this theorem

This section is devoted to a precise study of the morphismWe ask for instance the
following questions: can we define directly the imagedbgf a Krein subspace? Are there

kernels with a unique antecedent?
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2.4.1 Hermitian kernel of a Krein subspace

Theorem 2.26 To any Krein subspac# of (£, F) is associated a unique Hermitian kernel

», verifying

Vo € FYh e H, (¢,§(h) 5 g = (hi™" 052(9)) gy iy = (Bli™" 0 2(0))

It is the linear applicationsc = i o’ j wherei : H — £ andj : H ~ H — & are the

canonical injections. This application is called the Hetiam kernel (or Krein kernel) of{.

This kernel is the image df under the previous morphisi.

The Hermitian kernel of a Krein space is naturally relatetheoHilbertian kernels of any of

its fundamental decompositions:

Proposition 2.27 Let (H, (.|.)) be a Krein subspace ¢f. F). Then for any fundamental

decompositiond = H © H_ with Hilbertian kernelsz, and »_,
=y — M (2.1)

Remark that for any fundamental decompositién= H, ¢ H_, H, (JH- = 0 and the
Hilbertian kernels are independent.

We can easily find the kernels of the Krein subspaces defindgtiprevious examples:

example 1| R?-example

The kernel of the Krein subspace of the Euclidean dudlty, R2) H = R? with

inner product

<Y|X>H = T1Y1 — T2Y2

»:R2 — R?2

X = (xl,xg) — %(X) = (a:l,—xg) =KX
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] 1 0
with K = .
0 -1

example 2| Sobolev spaces

The kernel of the Krein subspace (@', D)
H=WYQ)eRilg = {f eD, f(t)= / Ls<1p(s)ds +a, ¢ € L*(Q), a € R}
Q
with inner product f(t) = [, Ts<td(s)ds + o, g(t) = [ Vs<i¥p(s)ds + 3)
(Flob = {f = alg = Bwrioy — 8 = [ 9lo)b(s)ds —
Q
is
w:D — D'
o — x(P)(t) = fQ min(s, t)p(s)ds — fQ d(s)ds = fﬂ(min(s,t) —1)¢(s)ds

2.4.2 Krein subspaces associated to a kernel: kernels of urigiand kernels of
multiplicity
Theorem 2.28 Let (£, F) be a duality,£ Mackey quasi-complete and € L(F, &) a self-
adjoint kernel. Then the following propositions are eqigwv
1. x e RQLT(F,E);
2. There exists at least one Krein subspatef (£, F) with kernels.

In this case, for any Kolmogorov decompositien= >, — 3, H = H; & H_ is a Krein
subspace of€, F) with kernelsc and conversely, any fundamental decomposition of a Krein

subspace associated togives a Kolmogorov decompositionsetvia its Hilbertian kernels.

Definition 2.29 (— Kolmogorov decomposition (second versi) —) We say that a self-
adjoint kernelsc € L(F, &) admits a Kolmogorov decomposition (of the second kind) if

there exists a Krein spadé and a weakly continuous operatdr: F — H such that:
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1. %=V*V,
2. V(F)is dense inH.

The pair(H, V) is called a Kolmogorov decomposition of the Hermitian kéae

Theorem 2.301If £ is quasi-complete, the two definitions of a Kolmogorov dguasition

are equivalent.

Remark 2.31 The hypothesis of quasi-completeness of the spafeith respect to the
Mackey topology) is often passed under silence in many, texistly because these texts deal
with a particular space (such asR®) obviously complete for its initial topology. However,
the (quasi)-completeness of the space is fundamental toeetizat V * is one-to-one, i.e.

V(F) dense inH.

In casef is not quasi-complete, one can use the results of propositib8. However, there

are in general many semi-norms associated to a kernel, eaatbepending on the particular
decomposition we use and the continuity of a particular sesnin does not imply in general
the continuity of one another.

The following proposition gives equivalent criteria forethnicity of the Kolmogorov de-

composition:

Proposition 2.32 Let£ be Mackey quasi-complete ande R ® L™ (F, £). The following

statements are equivalent:
1. There is only one Krein subspace(6f F) with kernels;
2. for any two Kolmogorov decompositions of the first kinek s} — sl = 52 — 52,

H, @ H> = H} @ H?;

3. for any two Kolmogorov decompositions of the second it V') and (H?2,V?),

there exists a unitary isomorphisth: H'! — H? such thatV? = UV'!.
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In this case, we say that the Krein kernelis a kernel of unicity , or equivalently that it
admits a unique Kolmogorov decomposition. If one (any) @s¢hconditions is not fulfilled,

we say thate is a kernel of multiplicity.

Conversely, we say that a Krein subspace is of unicity (reggtiplicity) if its Krein kernel

is of unicity (resp. multiplicity).

The results of this chapter can then be summarized as follmith £ Mackey quasi-
complete):

The set of formal differences of Hilbertian subspaces and th set of formal differ-
ences of positive kernels are isomorphic and the results ofieé previous chapter remain
valid. Moreover, we can interpret the first set as the quotiehspace of Krein subspaces
of (£, F) with respect to an equivalence relation and the second as tteubset of self-

adjoint kernels that admit a Kolmogorov decomposition.

The next section gives the main results concerning kerrielsioity and multiplicity.

2.4.3 Kernels of unicity, multiplicity and Pontryagin spaces

Itis of major importance to know whether a given kernel iswitity or of multiplicity. This
is a rather difficult question in general, but some resulselaon the rank of the positive
kernels appearing in any Kolmogorov decomposition existginly when the spac# is

nuclear. Once again we refer to [46] where the proofs ardleéta

Lemma 2.33 Let s = ! — 3! with s} ands! independent anét! of finite rankr. Then

for any other decomposition = »% — »?, »% ands? independentyank(sc?) = r.

In this case, we say that the kernel is a Pontryagin kernel.
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Theorem 2.34 Let »r = 3, — s with 3 of finite rank. Then the kernel is of unicity and
the associated Krein subspace is a Pontryagin space.

Conversely, the Hermitian kernel associated to any Pogiryaubspace is of unicity.

It follows that any positive kernel is of unicity, which watready known thanks to the

Hilbertian subspaces theory.

Corollary 2.35 The set of Pontryagin subspaces(6f F) is a vector space isomorphic to

the vector space of Pontryagin kernels (an isomorphismgb&in

Corollary 2.36 Any kernel of multiplicity is of the formx = s, — 3¢ with 3¢, and s

independent and both of infinite rank.
Apart this statement, two results are interesting conngrkéernels of multiplicity:

Proposition 2.37 Let s« be a kernel of multiplicityH, # H» two different Krein subspaces

associated tor. Then:
1. HHNHS#0
2. Ho(Hf{ #0

This proposition shows that the different Krein subspaessaated with a kernel of multi-

plicity do not verify inclusion relations.

There is an other interesting result concerning kernelsudfipficity based on the properties

of the spaceF?.

Proposition 2.38 SupposeF is barreled (for its Mackey topology) and nuclear. Then
is a kernel of unicity if and only if it admits a Kolmogorov detposition of the form« =

. — s With 3¢ of finite rank.

This result will be notably useful in the section that dealswiite special casé = K*
3Then¢ is weakly quasi-complete.
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Corollary 2.39 If F is barreled and nuclear, the only Krein subspaces of uniaity the

Pontryagin subspaces.

2.5 Reproducing kernel Krein and Pontryagin spaces

As for Hilbertian subspaces, the casefof= K endowed with the product topology, or
topology of simple convergence, wheeis any set, has a special place in the theory and
many papers deal with what are called reproducing kernehkggaces (in short r.k.k.s.) or
reproducing kernel Pontryagin spaces (in short r.k.p.s.).

Many definitions and properties of r.k.h.s. extend natyrtdl the Krein setting and will
be exposed in the first section whereas the second one deally mih the properties of

Pontryagin kernels.

2.5.1 Generalities about r.k.k.s.

Definition 2.40 A Krein spaceH is a reproducing kernel Krein space if there exists a(3et

H is a Krein subspace df = K endowed with the product topology.

We have seen (theorem 2.9) that in a Krein space, the Rieszsesgation theorem holds.

Characterizations of r.k.h.s. in terms of a reproducingié&kextends then naturally to r.k.k.s.

Proposition 2.41 Let H ¢ K* be a Krein space. The following statements are equivalent:
1. Hisarkk.s.
2. The canonical injection froril into R is weakly continuous.
3.VYhe HVteQ IM, |h(t)] < M|kl

4.Vs €O, IK, € H,Vh € H, (K,h)g = h(s).
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5. 3K € KM, K(t,s) = (K(.,s)|K(t,.))n

K is still known as the reproducing kernel and:

Theorem 2.42 Let H be a rk.k.s. ifk®2. Then its reproducing kerndt is the image of the
Schwartz kernelc under the isomorphism betwe#rf(K?)', K2) and K¢ (proposition
1.27):

Vi, s € Q, K(t,s) = [5(d)](s)

Corollary 2.43 It follows that K is Hermitian and admits a Kolmogorov decomposition i.e.

existK; and K_ independent positive kernel&, = K, — K_.

Following proposition 1.16, we have the following:

Proposition 2.44
Hy = Span{K;, t € Q}

H = H,

The previous examples of Krein subspaces fit the r.k.k.8nget

example 1| Sobolev spaces

The Krein space
H=WYQ)eRl, = {f eD, f(t) = /Q Us<1¢(s)ds + o, ¢ € L*(Q), a € R}
with inner product f(t) = [, Ts<¢d(s)ds + o, g(t) = [ Ds<i¥(s)ds + 3)
(Flabin = (f = lg = Blwoy = 8 = [ $ls)ple)ds — v
is a r.k.k.s. ovef2 with kernel function

K(t,s) = min(s,t) — 1
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2.5.2 Pontryagin kernels and reproducing kernels of multipliaty
Proposition 2.45 A reproducing kernel Krein space is of unicity if and onlytiisi a repro-

ducing kernel Pontryagin space.

Proof. — By proposition 1.27(K®)’ is barreled and nuclear and we apply propo-

sition 2.38. O

It follows that reproducing kernel Pontryagin spaces firk) play a special role in this

theory for they are the only reproducing kernel Krein spafasicity.

example 2| R?-example

H = R? with inner product

<Y|X>H = T1Y1 — T2Y2

isark.k.s. (precisely ar.k.p.s.) o@r= {1, 2} with kernel function

example 3| Polynomials, splineg

In the previous chapter we were interested in the (non-gekifunction

n

K(ts) = (1= )" = 3 (-1 = i

= gt —j)!

that, according to [23] is however a classical function aesged toP,, the space of
univariate polynomials of degree In the special case = 2p (n even) K is sym-
metric and spans a finite dimensional space. It follows thatlinits a Kolmogorov

decomposition and that it is associated with a Pontryagatep The Kolmogorov



91

decomposition is

K(t,s) = ((t - )2p = K+(t s) — K ()
P p
) g c LN o @) e o)
= 25( 2p—2] = (25 + D1(2p — 25 + 1)!

However, the case odd cannot be treated within this formalism. Next chaptdl wi

gives us a theory to treat this final case.

2.6 Admissible prehermitian subspaces

In [46] L. Schwartz does more than introduce the notion ofrkigan subspaces entirely
defined after the notion of Hilbertian subspaces, sincethedaces the notion of admissible
prehermitian subspace of a l.c.s. and shows that theresexmirjection from this class of
space onto the space of self-adjoint (Hermitian) kernelsrddver he constructs the image
of an admissible prehermitian subspace, but an equivalehation is still needed to give the
set of admissible prehermitian subspaces the structurecafegory. This section presents

these notions. The formalism will be enlarged in next chapte

2.6.1 Admissible prehermitian subspaces

Definition 2.46 ( — prehermitian space — )A prehermitian space is an inner product space

with a Hermitian inner product.

We can now define admissible prehermitian subspaces of @ydual

Definition 2.47 (— admissible prehermitian subspace (of a duality) Let(€, F) be a du-

ality. A prehermitian spacé/ is an admissible prehermitian subspacg &fF) if:

1. the inner product o is non-degenerate;
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2. HC¢,
3. Vo€ F, 3h, € H, Vh € H, (gp,ﬁ)(fg) = (hlhy)H.
We note this sePreherm((€,F))

This definition that appears in L. Schwartz’s article [4G)isely algebraic and simply states
that any linear form orf restricted toH can be given by the symmetric bilinear form as-
sociated toH. To set a topological interpretation of this definition, oreeds concepts of

dualities (exposed in the Appendix B Algebra).

Proposition 2.48 Suppose the indefinite inner product &his separate such thalf is in
separate duality with itself. Then we can end&wwith the weak or Mackey topology with

respect to this duality and the following statements ara thguivalent:
1. H is an admissible prehermitian subspace &fF);
2. The canonical injection: H — & is weakly continuous;

3. 1 : H — £ is continuous with respect to the Mackey topologiegioend £.

Proof. — Letus prove thafl) = (2) = (3) = (1):

(1)=(2) 5/ : ¢ € F,— h, € H is the transpose of the canonical injection and the canbnica

injection is then weakly continuous.

(2) = (3) We can cite corollary 2 p 111 [26]: if : H — & is weakly continuous, it is continuous
if H is endowed with the Mackey topology (afidvith any topology compatible with
the duality).

(3) = (1) The strong topology of the Krein spaégis the Mackey topology (proposition 2.10,

and we use the previous argument (corollary 2 p 111 [26]). a
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We can of course derive from this definition the definition diressible prehermitian sub-

spaces of al.c.s.:

Definition 2.49 (— admissible prehermitian subspace (ofa$) —) Let £ be a l.c.s. A
prehermitian spacedd is an admissible prehermitian subspaceéoff it is an admissible
prehermitian subspace ¢, &').

2.6.2 Schwartz kernel of an admissible prehermitian subspace

As for Hilbertian or Krein subspaces, we can associate tcadnyissible prehermitian sub-

space of &, F) a self-adjoint kernekc € L*(F., ).

Proposition 2.50 To any admissible prehermitian subspakfeof (£, F) is associated a

unique self-adjoint (Hermitian) kernet, verifying

Vo € FVh e H, (¢,j(h)) 5 g = (hli™ (o))

It is the linear applicatiorse = i o, whered : ¢ — h,, thanks to the property of admissible
prehermitian subspacesty € F, 3h, € H, Vh € H, (p,h) (r.e) = (hlhg)m This

application is called the Hermitian kernel &f.
Proof. — Vh,e H, p € F

(0,3(h) (F.e) = (hlh)m
= (hli~" (i 0 9(p)))mr

ands = j o 9. Finally, we check that this linear application is weaklytouous by com-

position of weakly continuous morphisms and self-adjoint. O
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2.6.3 Image of an admissible prehermitian subspace by a weakly contious

linear application: the category of admissible prehermitiansubspaces

It is interesting to construct directly the image of an adiibie prehermitian subspace by a

weakly continuous morphism and look at the properties ofritage.

Letu : £ — ¢ be a weakly continuous morphism aifl an admissible prehermitian
subspace of€, F) with kernelsc. Definedt = H [ ker u and K the orthogonal oft in H
with respect to its indefinite inner product. M C &£, w4 denotes the restriction of to

the setd, we havedt = ker(u ;). Finally we define
N =K/(KNN)

Lemma 2.51 The linear application: - is well defined and injective, anti(n, ﬁ’) e N x

N, the sesquilinear form (indefinite inner product)
Bluy (), upy (n')) = (nln') i
defines a indefinite inner product spacg, (N).
Proof. — We have the following factorization
w s ker(uygy) " — (ker(uy) ™/ ker(uy ) — €
andu, is one-to-one. Moreover the indefinite inner product
B:upy(N) xupn (V) — K

is well defined since:

V(n1,n9) € 0, V(n},nh) € n', (ng —najn —nb)g = 0. O

Theorem 2.52 The indefinite inner product spaag,(N) is an admissible prehermitian

subspace of¢, §) called the image off by« and notedu(H). Its kernel isu o s o u.
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Proof. — The algebraic inclusions of definition 2.47 are fulfilled &hd space
un(N) is an admissible prehermitian subspacegofu o » o' u satisfies the requirements

of proposition 2.50. O

We can then define the operation of addition and multiplicathanks to the operators

G:ExE — &

(e1,62) — €1+ &9
and

Pr: & — €&

E A€

where) € R butv/X € C in general.
It is interesting to note that we cannot do that directly foeid subspaces since the image
of a Krein subspacaeeds notto be a Krein subspace, but only an admissible prehermitian

subspace.

However, the operation of addition is not a true additiorcsiit is not associative. To
endow the set of admissible prehermitian subsp&begierm((£, F)) with a vector space

structure, one needs the equivalence relation:
H\ReoneHs <= Hy — Hy =0

Remark that we have seen that equivalence relation betassthie equality of the Schwartz
kernels

HiReoneHa = 301 = 300

hence it induces the previously defined equivalence rel&ig,,,. over Krein spaces.

We can then state the following proposition due to L. Schavg®]:
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Proposition 2.53 The three operationf\, H) — \.H, (Hq, Hy) — Hy + Ho, (u,H) —
u(H) pass to the quotient by the previously defined equivalenagae. The seflerm((€, F))=
Preherm((€,F))/Rcone Of equivalent classes of admissible prehermitian subspace
dowed with the laws of multiplication by real scalars and #idd is a vector space oveR
isomorphic to the vector spade* (€, F).

Moreover, letC be the category of dual syster(§, F) (we do not require her€ to be
guasi-complete), the morphisms being the weakly contmiinaar applications and’ be

the category of vector spaces, the morphisms being linepliGgtions. ThenHerm :
(€,F) — Herm((E,F)) is a covariant functor of categorg into categoryG isomorphic

to the covariant functoL* : (£, F) — L*(F, &)

Conclusion and comments

The theory of Krein subspaces may be seen as the pure deaiopfithe theory of Hilber-
tian subspaces with respect to its structure of convex cétmvever two problems arise.
The first is that we need an equivalence relation to endowehef¥rein subspaces a struc-
ture of vector space or study the image of a Krein subspacereder this equivalence
relation is necessary to have a bijection between the quetieset of Krein spaces and the
set of Hermitian kernels that admit a Kolmogorov decompasitThe second is that regard-
ing kernels, the set of kernels that admit a Kolmogorov dgmusition is in general strictly

smaller than the set of Hermitian kerrfels

One answer is then the study of admissible prehermitianpsudes: we still need an equiv-

alence relation but we deal with the total set of Hermitiaif{adjoint) kernels.

The relations between all these sets is given figure Zi3lb (resp. L™,...) stands for

“However the two sets are equakifss finite dimensional or a Hilbert space
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Hilb((E,F)) (resp.L™(F,&),...) with (£, F) a dual systemg Mackey quasi-complete.

R® Hilb<2>R @ L+
7 ~

- ~

/Reone  Krein ® >

-
i — — — ; KD<_ — — _ _ _ _ _ _ +
Hilb Wi Krein Roome LAY < L

\\R: R= ~ -
—~
\\ N N N e

—~
\ -/Rcone AH

[0}
Preherm —— Herm <=—L*

Figure 2.3: Sets of subspaces, sets of Hermitian kernels

Once again only the basic theory of Krein and admissible ggraltian subspaces was pre-
sented. Its implication in some other fields of mathematogery significant (from system

theory to quantum mechanics or algebraic curves). A godibbitaphy on such topics may

be found in [3].

So Krein subspaces (or more generally admissible preiamstbspaces) may be seen as
a generalization of Hilbertian subspaces (that are Krethaamissible prehermitian sub-
spaces) as equivalently Hermitian kernels are a genetializaf positive kernels.

Looking at kernels, we still have two ways to generalize. fitstis based on the following
result: any kernel is the sum of a self-adjoint and anti-ad|bint kernel. Following this
idea and in the spirit of the Kolmogorov decomposition, Dp#\ ([2] or [1]) proposes the

study of kernels of the form:

w=0y —m_ +ix+ —IX—
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wheresc,, 2, x.,x_ are positive kernels (he precisely deals with reproducieméls,
i.e. positive kernel functions). This leads him to the cqiad reproducing kernel Hilbert
spaces of pairs and we refer to his papers for further stutlyese spaces.

The second way is to continue the formalism of admissibldgnmaitian subspaces. The
kernels would however not need to be Hermitian and similadywill need non Hermitian

structures: dualities.
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Chapter 3

Subdualities

Introduction

A careful reader of the previous chapters will certainlydaeticed that in many theorems
and proofs the use of the dualify?, H) (of Hilbert or Krein spaces) shades a new light
notably by introducing two “equal” embeddings (canonicgéctions); and; but with dis-
tinct transposes in general. This remark is the startingtpdithis chapter where Hilbertian
or Krein subspaces are generalized to dualities (i.e. wedate a dual system of vector

spaces) verifying certain algebraic inclusions (definit®2) called subdualities.

These spaces verify the main properties of Hilbertian satep (that appear to be particular
instances of subdualities) and the set of subdualities rotally be endowed with a vec-
tor space structure (given an equivalence relation) isphiorto the vector space of kernels

(theorem 3.13).

This chapter is devoted to the study of these subdualitigspélogical definition equivalent

to definition 3.2, is that a duality”Z, F') is a subduality of the dual systef#, F) if and only
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if both £ and F' are weakly continuously embeddedén(proposition 3.3). It appears that
we can associate to any subduality a unique kernel (in treesafrl.. Schwarz, theorem 3.6),
whose image is dense in the subduality (theorem 3.10). &igur illustrates the different
inclusions related to a subduality and its kernel.

Then we study the image of a subduality by a weakly contindimgsr operator (theorem
3.12) that makes it possible to define a vector space steuctgr the (quotiented) set of
subdualities (theorem 3.13). A canonical representatitieaty defined by the kernel is then

given (theorem 3.20). Finally, we study more precisely sparticular case of subdualities.

3.1 Subdualities and associated kernels

In this section, we introduce a new mathematical object weatall subduality of a dual
system of vector spaces (or equivalently subduality of allpaonvex topological vector
space). These objects appear to be closely linked with leettieorem 3.6 and lemma 3.9)
and could therefore be the appropriate setting to study lsueér applications.

Hilbertian subspaces and Krein subspaces appear to beditiedithat are therefore a good
generalization of the previous concepts. Prehilbertiahmehermitian subspaces are how-
ever also subdualities and the class of subdualities magdogdneral for certain applica-
tions. In particular a problem of completion appears. We adldress this problem and
the choice of a “good” topology to perform the completion lire tsection 3.3 “canonical

subdualities”.
3.1.1 Subdualities of a dual system of vector space

Definitions

The definition of subdualities remains heavily on the dgéniof a duality that therefore is

restated below. This definition, the related notations ardlasic examples are also given
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in the Appendix B.

Definition 3.1 ( — dual system of spaces —TJwo vector spaceg, F' are said to be in du-
ality if there exists a bilinear fornd. on the product spacé” x E separate inE and F',

i.e.:
1.Ve#0€ E,3f € F, L(f,e) #0;
2.Vf#0€ F,3Je€ E, L(f,e) #0.

In this case(FE, F') is said to be a duality (relative td).

The following morphisms are then well defined:

s A

Ym,r) : F — E* algebraic dual of E Oer) B =yerF) — F

y — Ly,.) L(y,.) +— y

We can now give the definition of subdualities. Subdualitiesy be seen as completely
algebraic objects and therefore the first definition is guadgebraicvA C £, u 4 denotes

the restriction ofu to the setA.

Definition 3.2 (— subdualities —)Let(FE, F) and(&, F) be two dualities.
(E, F) is a subduality of £, F) if (figure 3.1) :

e FCE&, FCE&
e ve.n(Fie) S ver)(F), ver (Fir) € vre)(E).
We noteSD((€, F)) the set of subdualities ¢F, F).

If £ is alocally convex space, we say ttiét, F') is a subduality of if it is a subduality of

(&€,&") and we denote bgD (&) the set of subdualities of the I.c&. The second condition
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only states that every vector @, as a linear form o? C £ (resp. onF' C &), isin F
(respectively inF), i.e

Vo € F, there existsf € F, Ve € E, (¢, e)(f’g) = (f, e)(F’E)
We can however interpret the previous algebraic inclusiotgpological terms, since dual-

ities make a bridge between topological and algebraic ptiege An equivalent topological

definition of subdualities is then included in the followitigeorem:

Proposition 3.3 ( — topological characterization — )The following statements are equiva-

lent:
1. (E, F) is a subduality of&, F),
2. The canonical injections: E — &£ andj : F — & are weakly continuous,

3.i: E— Eetj: F — & are continuous with respect to the Mackey topologies on
E, Fand€.

The equivalence between (1) and (3) is notably useful in oaseetric spaces, since any
locally convex metrizable topology is the Mackey topologgrollary p 149 [26] or propo-
sition 6 p 71 [15]).
Proof. — Letus show thafl) = (2) = (3) = (1):
(1) = (2) We define the following mappings:
i: B &, j:F—E,
.

i e, (F) = ven(F), 3 ve,m)(F) = v e (E)

1 andq’ (resp.j andyj’) are transposes for the weak topology hence weakly conisuo
since

Ve' € &' =y 7)(F),Ti'(€') € B = vy, (F), Ve € E:

(Ela i(e))g’,g = (il(gl)a e)E’,E
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that is exactly the definition of the transpose. It is thegitzd link between inclusion

of the topological dual and weak continuity.

Sincei’ (respj’) is weakly continuous, its transpose is continuous for treckéy
topologies (corollary 3 p 111 [26]). We could also cite ctant 2 p 111 [26]: if
u : B — £ is weakly continuous, then it is continuousAf is endowed with the

Mackey topology and with any compatible topology).

Sincei : E — £ andj : F — & are continuous for the Mackey topologies, their
transposedi : £ +— E and'j : £ — F' exist. BUtf = vy 5 (F) andE' =
Y&, (F) (resp. F' = v g)(E)) since the Mackey topology is compatible with the

duality, that prove the result. O

Remark 3.4 If (E, F') is a subduality of £, F), then(F, E) is also a subduality of€, F).

The c

rucial part of this definition of subdualities is not twntinuity of the inclusion, that is

the same requirement than for Hilbertian or Krein subspdmngshe fact that one needs two

continuous inclusion, one for each spdc¢end F' defining the duality E, F'). The case of

inner

example 1

product spaces is of special interest and we will sthdyn after these 5 examples:

R2-example

A classical bilinear form oveR? is the symplectic form that associates to each couple
of vectors the oriented area of the parallelogram they defifrecisely the bilinear

form is
L:RRxR — R

(Y, X) = z19y2 — 7211
and the dual systeniR?, R?) endowed with this bilinear form is a subduality of

(R?,R?) endowed with the canonical Euclidean duality.
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example 2| Sobolev spacefs

Let Q be a bounded open set®&fandE = D'(2), F = D(Q2). Define

E= {e €D e(s) = / Ti<sp(t)dt, ¢ € LQ(Q)}
Q
and
P={ren’ s= [ neois e @)
in duality with respect to the bilinear form
(O = [ g

It is straightforward to see thaf, F') is a subduality of the dual systefd’, D).
Remark thatFy # F'.

example 3‘ Sobolev spaceﬁ(- W (J0, 1)) -)
let Q2 =]0, 1] and define

B=r=wi®) ={se 0 o) = [ Bttt s e Wi

WHQ) = {¢ eD, /QQ |%usdt < oo}

These spaces are called Sobolev-Slobodeckij spaweBesov or fractional Sobolev
spaces.

FE and F' can be put in duality with respect to the (separate) bilifiean
d
(O = [ $0) G dw)du

(f(t) = JoVs<rp(s)ds, e(s) = [ Vicsp(t)dt).
It is straightforward to see th&af, F) is a subduality of the dual systef’, D).
Remark that

¢=F=Wi(9)

!see for instance [51]
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with bilinear form
d
(- D) = | $la) -0(u)du
defines equivalently a subduality of the dual systém, D).
Remark that this bilinear form has a very interesting property: it is invariant

under the action of any diffeomorphism#h : Q@ — Q. Itis a reason to prefer this

particular bilinear form rather than an Hilbertian one.

example 4| Polynomials, splineg

In [42] the authors consider the spadés= F' = P,, of polynomials of degree and

the following bilinear form onF” x E

L:FxE — R
(fre) = iy S [ ) (r)

that does not depend on the particular paimhosen.

It is straightforward to see that this duality is separateubing the monomials) and
that E and F' endowed with the weak-topology are continuously includethe I.c.s.
R® endowed with the topology of simple convergence (or toppiogduct).

(E, F) is then a subduality dk*.

example 5‘ Polynomials, spline# (- Piecewise smooth spaces -)

In [37] the authors study piecewise smooth spaces in dualitgeneral version of
their results is the following:

Let E and F' be two piecewise smooth spaédsn a set?) of dimensionn + 1 and
(egy---s€n),s (fo,---, fn) two basis ofE and F' respectively.

Then the bilinear form defined by

(fja ei)(F’E) = 5ij

2we refer to [37] for the definition of such spaces
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puts £ and F' in duality andE and F' endowed with the weak-topology are continu-
ously included in the I.c.sR? endowed with the topology of simple convergence (or
topology product). In fact, any element Bf? admits a representative i and F
since

(0s,€) (RY RO) = (ij ej )

(F.E)

(0t, ) e ro) (fang ej(. )

where} " f;(t)e;(.) € Eand)>7_, fi(.)e;(s) € F.
(E, F) is then a subduality oR®* (we will study the subdualities d&? in detail in

(F,E)

the section “evaluation subdualities”).

Inner product spaces

Inner product spaces like Hilbert spaces, Krein spacesrmrglly prehermitian spaces are
self-duaf i.e E = F with the same weak topologies. Then when the previous dondiaire
fulfilled for E, they are automatically fulfilled foF’, hence all prehermitian subspaces are
subdualities.

The previous concepts of Hilbertian subspaces, Krein subsgges or prehermitian sub-

spaces are then particular cases of the more general notiori subdualities.

Theorem 3.5 Let H be an inner product spacéH, H) the (self-)duality induced by the
inner product. Ther{H, H) is a subduality of the dual syste(fi, ) if and only if H is
weakly continuously included &. In this case, we say that the inner product spatés a

self-subduality of€, F).

3we still suppose that we have an anti-involution
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Proof. — Evident sincely = F = H. O

3.1.2 The kernel of a subduality

Theorem 3.6 ( —kernel of a subduality — )Each subduality £, F') of (£, F) is associated
with a unique kernel of (€, F) verifying

Vf € Fa \V/(,O € ‘7:7 ((pa](f))(]:,g) = (fallil%(gp))(F’E)
called kernel of the subduality®, F') of (£, F). Itis the linear application

w:F — €&
@ +— i0bpg) o joyer(p)

considering transpositichin the topological dual spaces or simply

w:F — €&
@ +— io'j(p)

considering transposition in dual systems.

Proof. — If we consider transposition in the topological duals:

Vf,eF, pe F

(0, i (NN r.ey = (i ove.n (@), )r.m
= (f,0(r,5) °" 70 Ve.7)(©)(FE)

= (f,i "(io0rp) °" J) o ve.r () (Fp)

The solution is unique sincg(.,.) = (.,.)(r,r) Separated andF' and

% =1i00pp) o joryer

4see Appendix B
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If we consider transposition in dual systems, then the piodirect:

(. 3 (M Fe) = (@), Npr) = L(f,i o' j(p))

Finally, s« is weakly continuous by composition of weakly continuoumedir applicationsd

The concept of subduality and of its associated kernelustilted by figure 3.1 and figure
3.2. In figure 3.1 we consider transposition in the topolaiual spaces and in figure 3.2

transposition in dual systems.

F g s
F =

F— E

t’i % 7
._A

F . &

<

Figure 3.2: lllustration of a subduality and its kernel fisposition in dual systems).

From now on and for the sake of simplicity, we will always congler transposition in

dual systems
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We can then define as for Hilbertian subspaces the applicatio
b :SD((E,F)) — L(F,E)

that associates to each subduality its kernel. It is a wéithee function.

The following lemma can then be deduced directly from thenge3:

Lemma 3.7 » : F — E is weakly continuous i’ and F are equipped with:
1. the weak topologies,
2. the Mackey topologies.

We have seen previously th@F, F) is also a subduality of€, F). Its kernel is the linear
applicationsz = j ol i i.e. 3z = .

Examples:

example 1| R?-example

The dual systeniR?, R?) endowed with the symplectic bilinear form
L:RPxR — R
(Y, X) v z1y2 — 22y
is a subduality of R?, R?) endowed with the canonical Euclidean duality with kernel
x:R? — R

X — (z9,—m1)

example 2| Sobolev spaces

Suppos€? =]0, 1[. The kernel of the subduality®, F') of (D', D) where

E= {e €D, e(s) = /Q L<sp(t)dt, ¢ € L2(Q)}
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and
= {f eD, f(t) = /Q Li<sp(s)ds, 9 € LQ(Q)}

are in duality with respect to the bilinear form

Oy = [ g

»:D(0,1])) — D'(O 1[)

is the integral operator

o — x(p fQ t)dt
where

K(t,s) = (s —t) <,
The kernel of(F, E) is defined by the distribution

'K(t,s) = (t — 5) U<y = K(s,1)

example 3 Sobolev spaces(- W2 (10, 1) -)

The previous subdualityF, F') of the dual systemiD’, D) has for kernel the integral

operator:
»:D(0,1)) — D'(O 1[)
o — x(p fQ t)dt
where
] : 2
K(t,s) = / min(u, t)dt = t min(t, s) — min(f, s)°
0
Note that this kernel is not self-adjoint.
The subduality ¢, §) has for kernel
D(]o,1]) — D’(O 1D
p — % fQ dt

where

ﬁ(t, S) = :“tgs
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example 4 (- The fundamental example of a Hilbert space -)
Let H be a Hilbertian subspace ¢f, F) and define the following bilinear form on

H x H such tha{ H, H) is a duality

L:HxH — K
hi,hy —  (hi|h2)
It is a subduality of &, F) with positive kernebe = i o j wherei : H — £ and
j + H — & are the canonical injections. Its transpése= j o' i = 3z is the kernel
of the subdualit H, H).

3.1.3 The range of the kernel: the primary subduality

The image (or range) of a positive kernel played a special irothe theory of Hilbertian
subspaces: it was a prehilbertian subspace dense in thertititb subspace, that was actu-
ally its completion. This latter point cannot be attained tfte moment due to the to big
generality of subdualiti®s However, the two other points remain for any kernel as wé wil

see below.

Definition 3.8 ( — primary subduality —)We call primary subduality associated to a ker-
nel » the subspaces @ Ey = (F) and Fy =! »(F) put in duality by the following

bilinear form Ly:
Ly:Fy xEy — K
(1), 3(p2) = (1, 52(02)) (re) = (“o2(01)s 02) 6y
Remark that the bilinear form is well defined since the elemefker(sc) are orthogonal to

t3(F) and respectively, the elementslef (‘) are orthogonal te«(F).

Lemma 3.9 The primary subduality is a subduality ¢f, F). Its kernel is»c. Any kernel

may then be associated to at least one subduality.

®That will however be the crucial point in the section 3.3 “cainahsubdualities”



113

Proof. — From the definition of the primary duality we verify easilyath

e K CE&, FCE

* ve.m(Fe) S ver)(F), ver (Fr) € vre)(E).

and from the definition of.( that its kernel is«. O

The following theorem gives an interesting result of deesen

Theorem 3.10 Let (E, F') be a subduality with kernel. Then the primary subduality
(Eo, Fy) associated tor is dense in E, F') for any topology compatible with the duality.

Proof. — We use corollary p 109 [26]: “ih : E — £ is one-to-one, its trans-
poselu : &' — E' has weakly dense image”. Equivalently its transpose cerisigl dual
systemsu : F — F has weakly dense image. Takimg= j gives the desired result
since there is an equivalence between closure and weakelisuconvex sets (anfl is

convex), theorem 4 p 79 [26]. O

It follows that the primary subduality associated withmay be seen as the smallest subdu-
ality (in terms of inclusion) of £, F) with kernel .

Examples:

example 1| R?-example

Since we work with finite dimensional spaces, all subdulitivith the same kernel
are equal (to the primary subduality), in our previous ctsthe dual systeriR?, R?)

endowed with the symplectic bilinear form

L:RRxR — R
Y, X) +— 2192 — 221
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example 2| Sobolev spacefs

We see easily that the primary subduality associated togheek

»x:D(0,1]) — D'(]0,1])

o (o)) = Jo K(ts)p(s)ds

where
K(t,s) = (s — t)1i<s
is
o = {4 € DOO.1D, tisg (e) = 0. Lo () =0}
and

m:{¢eD®nggwn=aggwmzo}

3.2 Effect of a weakly continuous linear application and alge

braic structure of SD((€, F))

We have defined the set of subdualities. It is of prime intexeknow what operations one
can perform on this set and particularly if one can endow g$kiswith the structure of a
vector space. This can be attained by first studying the tedfest weakly continuous linear

application.

3.2.1 Effect of a weakly continuous linear application

We suppose now we are given a second pair of spaces in dpdli§). We have seen in
the first chapter how a Hilbertian structure can be tranepdny a weakly continuous linear
application thanks to the existence of orthogonal decoitiposn Hilbert spaces and that

one can extend this construction to admissible prehemmnstidospaces if it is carefully done.
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Following the same spirit, it is possible to define the imagjedsiality by a weakly contin-
uous linear applicatiom : £ — €, of a subduality(E, F') of (£,F), by using orthogonal
relations in the duality £, F').
VA C &, uj4 denotes the restriction afto the setd. We then define the following quotient
spaces:

M = (ker(u)*/ e ()

Z

and
N = (ker(uw)L/ker(u‘F))

Lemma 3.11 The linear applicationsu . and u, are well defined and injective, and
V(1m,n) € M x N, the bilinear formB (u (1), u ¢ (1)) = (n,m)p g defines a sepa-

rate duality (u (M), ujn (V).

Proof. — We have the following factorization

u: ker(uu:)L — (ker(u|F)L/ ker(u| ) M ¢

andu 4 (resp.uj,) is one-to-one. Moreover the bilinear forBh: u (M) x ujp (V) —
K is well defined since:

V(ml,mg) € m, V(nl,ng) € n, (ml —ma2, N1 — n2)(E,F) = 0. =

The definition of the subduality image ¢, F') by u is then included in the following

theorem:

Theorem 3.12 (—subduality image —)The duality(u (M), u (V) is a subduality of
(¢, %) called subduality image ¢ff, F') by« and denoted.((E, F)). Its kernel isuo ot .



116

Proof. — The algebraic inclusions of definition 3.2 are fulfilled ate tdual
system(u o (M), uj (N)) is a subduality oft.
Leti : (M) — & andj : up(N) — € be the canonical inclusionsu o s of u

satisfies the requirements of theorem 3.6 since:

Vn € U‘/\/(N),Vf € 3’7 (fﬂ.}(n))g’e =B (nai_l ouosx of u(f))

Let f an antecedent by of n in F'. Then:

B (n,i*

Remark that the subduality image (E, F')) is included in the setu(E), u(F')) but smaller
in general.

Examples:

example 1| R?-example

Let& = F = R? endowed with the Euclidean inner product and
¢=3%=R cos(gt) +R sin(gt)
(subspace aof- ([0, 1], R)) in self-duality with respect to the (positive) bilinearrfo

L:F=¢x¢ — R
(f.e) == §(0)e(0) +f(1)e(1)
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Then the image of the subduality (&f, 7)) (R?, R?) endowed with the symplectic

bilinear form
L:R2xR — R

(Y, X) +— z1y2 — 22y1
by the weakly continuous linear mapping
u:R — &
X = (z1,22) —> w(X) = a1 cos(t) + zosin()

defines a subduality di, §) u((R?,R?)).
It is the systemu((R?,R?)) = (&, F) in duality with respect to the bilinear form

L:§=¢x¢ — R

(F,¢) > —f(1)e(0) +(0)e(1)
and its kernel is
w:§=¢ — €
fo— 2(f)(t) = §(1) cos(5t) — 1(0) sin(5t) = 2§'(¢)

example 2| R?-example

Let £ = F = R? endowed with the Euclidean inner product. Then the imagaef t
subduality (of(&, F)) (R?,]R?) endowed with the symplectic bilinear form
L:RPxR — R

(Y, X) > z1y2 — 3201
by the weakly continuous linear mapping

u:R? — R2

X = (z1,22) — w(X) = (21,0)

isu((R2,R?)) = (0,0).
Actually we have that

ker(u‘p)L = ker(ug)
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and
ker(u )" = ker(up)
hence
M = (ker(u‘F)L/ker(u‘E)> =0
and

N = (ker(u‘E)L/ker(uum)) =0

(whereasu(F) = u(E) = (R,0)).

example 3 Sobolev spaces(- W2 (10,1]) -)

For the example OW%(]O, 1[), it is straightforward to see that the subduality of
(D', D) (E, F) where
B=r=wie) ={se 0 o) = [ neptvar, s e Wi )]
Q

are put in duality with respect to the (separate) bilineamfo

d
Oy = [ ) G
is the image of the subdualif¢, §) where
C=F=Wi(®)
with bilinear form
d
(- D) = | $la) -0(u)du
under the weakly continuous mapping
u:D' — D
¢ = u(¢)(s) = fQ ]lt§5¢(t)dt
Conversely( &, §) can be seen as the subduality imagéof F') by the mapping
v: D' — D

g — v(g)=4%g
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As for Hilbertian or Krein subspaces, the transport of gtecis the basic tool to the con-

struction of subdualities.

3.2.2 The vector spacéSD((&, F))/ ker(®), +, *)

Theorem 3.12 allows us to define the operations of additieheagternal multiplication on
the setSD((€, F)) by considering the weakly continuous morphists € x £ — £ and

x : Kx & — £. The associated operations for the kernels are then additid external
multiplication onL(F, £).

However the addition is neither injective nor associativés(yet not associative upon the

subset of admissible prehermitian subspaces):
{(Er, F1) — (B, F2) = 0} % {(E1, F1) = (B2, F2) }
((Er, 1) + (Bn, ) + (B3, F3) # (Ev, F1) + ((Bv, Fi) + (B2, Fy)) ingeneral
and appears the necessity of the following equivalencéioalénduced byker(®)):

(El,Fl)R(EQ,FQ) <~ (El,Fl) — (EQ,FQ) =0 <— M| = M9

Theorem 3.13 (—algebraic structure —)The se{SD((€, F))/ ker(®), +, %) is a vector
space oveifX algebraically isomorphic to the vector space of kerr(sF, £), an isomor-

phism beingd : SD((&, F))/ ker(®) — L(F,E).
Proof. — The following relation
(El,Fl)R(EQ,FQ) < (El,Fl) — (EQ,FQ) =0 <<= 31 =9

is an equivalence relation and the quotient$BY{E)/ ker(Q®) is in bijection with the set of
kernelsL(F,¢).

One verifies rapidly that the addition and external mulktigtion are compatible with this
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bijection, which gives the vector space structure of theS§e{)/ ker(®) and the isomor-

phism of vector space betwe&D(E)/ ker(®) andL(F, ). O

3.2.3 Categories and functors

Let C the category of dual systenf§, F), (we do not require heré€ to be quasi-complete),
the morphisms being the weakly continuous linear appbioatand) the category of vector
spaces, the morphisms being the linear applications. Theording that to a morphism

u: & — € we associate the morphism
i:SD((E,F))/ ker(®) — SD((¢,F))/ker(®)
(B,F) — u((E,F))

we get

Theorem 3.14 (555 : (€, F) = SD((€, F))/ ker(®) is a covariant functor of category

into category).

On the other handLL : (£, F) — L(F,&) is also a covariant functor of categofyinto

category), according that to a morphism: £ — & we associate the morphism

u:L(F, ) — L(F, ¢
% — woxoly
and

Theorem 3.15 The two covariant functorﬁ% andL are isomorphic.

3.3 Canonical subdualities

The classes of equivalences of subdualities with idenkiealel are very large and it may be

interesting to associate each equivalence class with anmatoepresentative enjoying good
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properties. This section aims at defining this particuldio$subdualities that will be called
canonical subdualities. The desired good properties (gwttthe equality with Hilbertian
subspaces in case of positive kernels) are listed below.

Actually, before stating the main results of this part, ongstrask the following question:
what do we mean by canonical representative? And what gaqukepies do we need?
There is probably not a single answer to these questionshemd may be many different
good ways to define canonical representatives. Howevesgihs natural to require some

properties for a canonical representative. Those chosenane:

1. the canonical representative must be “representatif/éieokernel, i.e. entirely de-

fined by the kernel;

2. the definition of the canonical representative must benfegtric”, i.e. if (E, F) is
the canonical subduality associated4ahen(F, ) must be the canonical subduality

associated tbs;

3. the definition of the canonical representative must ¢dewith the definition of the

Hilbertian subspace in case of positive kernels.

It is in this spirit that those canonical subdualities hagerbconstructed.

Since Hilbertian subspaces may be seen as the completitve pFimary subspace associ-
ated to the positive kernel it seems natural to mimic thisstroiction up to a certain extent
i.e. do some completion. The first task is then to define “cenadihtopologies on the sets

F andF.
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3.3.1 Definition of the canonical topologies

The definition of a locally convex topology may take varioosi, one being by means of
semi-norms and another by convergence on bounded sets af aplice. These two are of
course closely linked (see for instance [26]) but since \ae stith a dual system of space
we prefer to use the second method. Precisely we aim at dgfsame “good” bounded
sets. Our choice is as follows:

let 2 € L(F,E&) be a kernel(Ey, Fy) the associated primary subduality. We define the

following sets:

e T, = {o barrels ofEy, 3()\,v) € (R1)?, %((%—1(0),6)(f5)) < Xand
R((tse H(0°),0°) Fe) < 7}, whereo® is the polaf of o for the duality(Ey, Fp);

o Tr,={0° o€ Tg};

under the following convention:

8%((%*1(0),5)(]:75)) < Astands fos € F, x(c) = o andR((<,7) 5 ¢)) < A (resp. for Z
o).

Remark that this convention is useless for symmetric, Himmior antisymmetric kernels
sinceker () (resp. ker(‘s)) is orthogonal td »(F) (resp. tos(F)) and obviously if the

kernelss is one-to-one.

Tr, (resp.Tr,) is a set of weakly bounded sets(d, Fi) and one can define ovéj (resp.
Ey) the topology of7g,-convergence, this topology being locally convex and cdribjea

with the vector space structure (proposition 16 p. 86 [26]).

Let us show tha', (resp.7F,) is a set of weakly bounded sets:

Leto € Tg,. Itis an equilibrated and absorbing set hekifec F, 3a > 0,a.f € Tg,

5Since we deal with barrels, the polar coincide with the absqiatar
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and(a,f)(E’F) is bounded. It follows that® € TF, is a barrel as the absolute polar of an
equilibrated weakly bounded set (corollary 3 p 68 [15]) andlfy, the elements of 5, are

also weakly bounded.

3.3.2 Construction of the canonical subdualities

As for hermitian kernels that do not always admit a Kolmogatecomposition, or for pos-
itive kernels that must verify a certain continuity conalitiwhen the spacé is not Mackey
guasi-complete to be Hilbertian kernels, additional ctbods on the kernel are required to

be able to construct canonical subdualities.

Definition 3.16 ( — stable kernel —)Lets € L(F, &) a kernel. It is stable if:
1. the set¥ g, and 75, are non empty;

2. % : F — Eg (resp. » : F — Fp) is continuous ifF is endowed with the
Mackey topology andz, with the topology of7z,-convergence (respFy with the

Tr,-convergence).

The first condition is necessary to be able to define the caabtopologies whereas the

second condition is needed to perform the completion (semke 3.19 below).

Proposition 3.17 The second condition is equivalent to:
the elements of g, (resp.7r,) are weakly relatively compact if.

This condition is always fulfilled iF is (Mackey) barreled.

Proof. — We use proposition 28 p 110 in [26]. The weakly continuousliapp
cations =! j : F — Ej is continuous ifF is endowed with the Mackey topology and
E, with the topology ofT,-convergence if and only if(7z,) is a set of weakly relatively

compact sets of (recall that the Mackey topology af is the topology of convergence on
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the weakly compact sets 6. O

Remark 3.18 The term “relatively” may be surprising since the elemerft§g, are weakly
closed inEy (as barrels), the weak topology being the topology indugetthé weak topology
on&. But the elements @, are not weakly closed ifi in general; they are just of the form

o = Ey (@ witha being the weak closure ofin £ and being weakly compact.

Lemma 3.19 Letsc € L(F, &) be a stable kernel,Ey, Fy) the associated primary duality.
LetFE = EB (resp. F = FB) be the completion o, endowed with the topology Gy, -
convergence (resp. the completionff endowed with the topology Gf,-convergence).
ThenE (resp. F') is the vector space generated by the closuresﬁ(ﬁm resp. f?B) of the

convex envelopes of finite unions of elementggf(respTr,) andE C £, F C €£.

Proof. — First, F = EB is the vector space generated by the cIosure@Bimf
its neighborhoods of zero, i.e. by polarity by the closurethe convex envelopes of finite
unions of elements of g, .

Second, if we endowF with the Mackey topology andy with the 7z,-convergence, then
» : F — Fp is continuous with dense image and: Fj — £ is one-to-one. Bufj

is the vector space generated by the weak closures of thexemvelopes of finite unions
of elements of7z, in the weak completion of’y (corollary 1 p 91 [26]). It follows that

ECF,cé& sinceEB is continuously included in the weak completionfaf. O

Theorem 3.20 Letsc € L(F, £) be astable kernel,Ey, F) the associated primary duality,
FE and F defined as before. Then the bilinear fofm defined on the primary duality extends
to a unique bilinear forn on F' x E separate. It defines a duality, F') called canonical

subduality associated tg.



125

Proof. — We use the extension of bilinear hypocontinuous forms #madipropo-
sition 8 p 41 [15]). We endow (resp.F’) with the topology of7 z, (resp.7x,)-convergence.
ThenkEy (resp.Fy) is dense in (resp. F'), every point ofE (resp.F) lies in the closure of
an element offg, (resp.7r,) andL, : Fy x Ey — K is hypocontinuous with respect to
Tr, andTr,. The hypothesis of the theorem are then fulfilled dndextends on a unique

bilinear formL on F' x E. This form is separate by the Hahn-Banach theorem. O

Remark 3.21 L is hypocontinuous with respect1g;, and 7z, .

The definition of a canonical subduality follows from thigtnem:

Definition 3.22 ( — canonical subduality —)A subduality(E, F') of (£, F) is a canonical

subduality if it is the canonical subduality associatedttokdernel.

Corollary 3.23 Let » € L(F,€&) be a kernel such thal, and 75, are non empty and

supposeF Mackey barreled. Then the previous construction holds.

Next corollary gives a important result concerning congaiess of the spaces:

Corollary 3.24 If the elements of ;, (resp. of7r,) are weakly relatively compacts @\0
(resp. inFB), then the topology of, -convergence (resp. Gfz,-convergence) is compatible

with the duality(E, F) and E = E\O (resp.F = FB) is complete for its Mackey topology.

We call them weakly locally compact canonical subdualite&sce the topologies of g, -
convergence and Ofy,-convergence are weakly relatively compact. Respectigestable

kernel verifying such conditions is called a weakly compearnel.

Proposition 3.25

1. if (E, F) is the canonical subduality associated #9 then (F, E) is the canonical

subduality associated to;
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2. if s is the Hilbertian kernel of a Hilbertian subspadé, then ¢ is stable (weakly

compact) and the associated canonical subdualityfdsH ~ H).

Proof. — The first statement is obvious by construction and for thersgone we
have that the elements ®f;, are the bounded barrels with bounded polars for the Hillrerti

norm. a

The notion of canonical subdualities is of course importamiy for infinite-dimensional
vector spaces. As we will see with some examples, it is sonestirelatively hard to repre-
sent concretely a canonical subduality, whereas it is etsienow whether a kernel is stable
or not.

Examples:

example 1| Sobolev spaces

Let (2 =]0, 1[. The integral operator
»:D(0,1]) — D'(0,1])
o — x(p)() = [oK(t, )p(t)dt
where

K(t,s) = (s — )<,
is associated with the canonical subdua{iy, F') where
E= {e €D, e(s) = /Q L<sp(t)dt, ¢ € L2(Q)}
and
F={sen 1) = [ newiisy e )
and the bilinear form is
(O = [ g

This is a direct consequence of the following results:
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1. Leto € Tg,, %((%_1(0),6)(f5)) < Aand

R((*se 1(0°), 0)(}.78)) <. Then

e(s):/os¢(t)dt€a:>/9¢2§)\

and

1= [ s o= [ v <

2. By Schwartz inequality

WﬁdeFXHU&mwﬂ§A¢¢

example 2 Sobolev spaces(- W2 (10, 1) -)

The following kernels
»:D(0,1]) — D'(0,1])
o — x(p)() = [o K(t,)p(t)dt
where

min(t, s)?
2

K(t,s) = /0 " min(u, t)dt = £min(t, s) —
and
(¢,3) has for kernel
x:D(0,1)) — D(0,1])
¢ — x(9)() = Jo Rt )e(t)dt
where

~ﬁ(t, S) = :“tfs

are stable and we conjecture (but it is an open problem) hieét tanonical subduali-

ties are the previously defined fractional Sobolev subtesli

3

(E,F) = (W3, W3)
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and

This is based on the following result;

Br) ={sclol,y <1}ue

is an element of ¢, from the following majoration [52]

/
[ w1 <eloly 01,y
However, we did not demonstrate that any elementgfis included in such sets.

example 3 (- Hilbertian subspaces -)
Let H be a Hilbertian subspace ¢f, F) with positive kernebs. Then the canonical

associated subduality is clearly, H ~ H) with asymmetric bilinear form defined

by the scalar product (proposition 3.25).

example 4 (- Krein spaces -)
Let s be an Hermitian kernel that admits a Kolmogorov decompmsitiThen the

canonical subduality associatedstads the self-duality intersection of all Krein sub-

spaces with kernet.

3.3.3 The set of canonical subdualities

In section 3.2 the image of a subduality by a weakly contisumorphism has been de-
fined. Itis of prime interest to see whether the image of ai@absubduality is a canonical
subduality,. Actually, this set is not stable by the actiba aveakly continuous linear appli-

cation. Hence, the set of canonical subdualities cannohbdeveed with the structure of a

vector space.



129

An easy way to see this is to deal with kernels of multiplicity
Letse = s} — ! = 32 — <% be akernel of multiplicity (with two distinct Kolmogorov ele
compositions leading to two different Krein spaces). Theocécal subdualities associated

to sl , —! 32, —5? are the Hilbertian and anti-Hilbertian subdualitig. , H), etc...

and their image by the operator sum £ x & — € are respectivelyH + H:, H! + H!)
and(H? + H2, H? + H?) with H, + H, # H3 + Hy by hypothesis (the kernel is of multi-
plicity). These two subdualities are then distinct and caie both the canonical subduality
associated tor.

The image of a canonical subduality is not a canonical subduity in general. We still

need an equivalence relation.

Topological and algebraic properties of canonical subtiesahave not been investigated yet
(apart from 3.24). It may be interesting to study them intrefes with the properties of the

kernels (for instance, is there an easy characterizatioveakly compact kernels ?)

3.4 Some particular subdualities

To put the framework of subdualities and canonical subtealat work some instantiations
are needed. In particular we study the Banachic case andseeof genuine functions that

we call evaluation subdualities. The study of a class ofwvedeince is also discussed.

3.4.1 Inner and outer subdualities, Banachic subdualities

In the previous section, we considered the topologies iediuxy the whole sefx, and
Tr,. However, we can restrict our attention to a particular sub§7x, (resp. of7g,) and
apply the previous construction. The constructed subiieslhold a deep link with their

kernel and will therefore be called inner subdualitiesh# particular subset reduces to one
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element, it appears that under the hypothesis of theorefis 81 constructed subduality is
a reflexive Banachic subduality.

Other subdualities (not steaming from the kernel) will bkbechouter subdualities.

Inner and outer subdualities

Let s € L(F,E) be a stable kerne{Ey, Fyy) the associated primary duality and 1&g, be
a (non-empty)subset dfg,, stable by homothecyl s, = 117, the subset of 5, associated

to I1x, by polarity. Then we can make the previous constructior;ipedy:

Theorem 3.26 Let By = EB (resp. F = f?\o) be the completion of, endowed with
the topology ollr,-convergence (resp. the completionffendowed with the topology of

I1g,-convergence). Then
1. En Cé€&, Fn C¢;

2. the bilinear formLq defined on the primary duality extends in a unique bilineamfo

LponkFp x Eyp Separate.

The duality( Eyp, F) is a subduality of £, F) called inner subduality associated te, IT).

Proof. — Since the kernel is stable, the elementdlgf, are weakly relatively

compact and the statements of lemma 3.19 and of theorem&r2air valid. O

Conversely, we will say that a subduality is an inner sukituilit may be constructed in
this manner starting from its kernel. Finally, we define thedf outer subdualities to be the

complement of the set of inner subdualities in the whole Estibdualities.
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Banachic subdualities

Banach spaces hold a place of special interest among thiylocavex vector spaces.

Hence, itis interesting to confront the theory of subdiediind the theory of Banach spaces.

Definition 3.27 ( — Banachic duality —) A Banachic duality E, F') is a duality such that

(E, ) (i.e. E endowed with the Mackey topology) is a reflexive Banach space

This definition is in fact symmetric, ifF, F') is a Banachic duality the(F, E) is also a

Banachic duality andF, 7) is a reflexive Banach space.

Remark 3.28 The concept of Banachic dualities is actually old, sinceais bbeen inves-
tigated for instance by N. Aronszajn in [7]. His interest wtae Banachic completion of

dualities.

The definition of Banachic subdualities follows (we also tieeconcept of canonical, inner

and outer subdualities):

Definition 3.29 ( — Banachic subduality —)We call (resp. inner, outer, canonical) Ba-

nachic subduality any (resp. inner, outer canonical) sudiitiyl that is a Banachic duality.
Proposition 3.30 Lets € L(F, ) be a weakly compact kernel such that:
ElO'b € Tan Vo € Tan E|>\1a>\2 € KT; >\10-b CoC >\20b

Then the (weakly relatively compact) canonical subdualggociated tor is a Banachic

subduality.
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Proof. — By polarity, we get\s0; C 0° C A0} and the neighborhood 6fin Fj
o, is bounded. The topology of;,-convergence irFy is then normable (corollary 1 p 33
in [26]). Conversely, the same arguments prove that thelaggaf 7x,-convergence iy
is normable.
Finally, the kernel being weakly compact, the norm-topglagcompatible with the duality

(E,F) and(E, F) is a Banachic subduality. O

There is an easy asymmetric manner to construct Banachitualities:

Let »c € L(F,&) be a kernel(Ey, Fy) the associated primary duality and Bt C & be

a reflexive Banach space continuously included isuch that( Fq, 7) is continuously and
densely included inf. Thens : F — FE is continuous with dense image. Defining

F =! »(E'), we have that:
Lemma 3.31 (E, F) is a Banachic subduality d€, F).

The case of inner Banachic dualities is slightly different:
Let s € L(F, &) be a stable kernel and choose enes Tg,. Let E, (resp. FB) be the
completion of £y, endowed with the topology af°-convergence (resp. the completion of

Fy endowed with the topology ef-convergence).

Proposition 3.32 If o (resp. ¢°) is weakly relatively compact iE\U (resp. inf?B) then the

inner duality (E = By, F = FB) associated tds, o) is an inner Banachic subduality.

This construction can for instance be done with any weakhgpact kernel.

Examples:

example 1/ Sobolev spaces(- W2 (10, 1) -)

The previously defined fractional Sobolev subdualitiés F') = (W%,W%) and
((B),§) = (W2, W?).

are inner Banachic subdualities.
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example 2 (- Krein spaces -)
This fundamental example deals with Krein subspaces.(£eF) be a duality and
» € R® LT (F, &) akernel of multiplicity. Then any Krein subspaégassociated
to >« may be seen as a inner Banachic (self-)subduélityH ) a Banach norm being

the norm of the Hilbert spadéd|.

3.4.2 Example of an equivalence class: the dualities of distnibions

The classes of equivalence of subdualities with a commonekerre also very interesting
to look at and we had a first example with Hermitian kernels aftiplicity. We deal here
with an other example, the dualities associated with themiaal injection fromD into the
space of distribution®’ that is a positive kernel. Remark that the investigationuchssub-
dualities (associated with a positive kernel) is made ir] [#Rler the name of “well-dived
dualities”.

Let 2 be an open subset @', D’ the space of distribution ove2 and D the space of
indefinitely differentiable functions with compact suppdtet »c = Id : D — D’ be the
canonical injection o into D’.

» = Id is a positive kernel and sincB is barreled it is associated to a unique Hilbertian
subspace oD’, H = L?(u), the Hilbert space of square integrable functions with eesp
to the Lebesgue measure Bfi. The following classical dualitie€D’, D), (£',€), (S',S),
(L', L>=), (H*, H=*) are outer subdualities ¢D’, D) with kernelsc = Id.

Figure 3.3 (taken from [14]) illustrates the main functibgpaces in analysis and their rela-
tive inclusions, these inclusions being topological (centinuous with respect to the usual

topologies).
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Cg° =D S C® =¢
\ 7\
L! L2 L>®
— L \
\{k L.
& S’ D!

Figure 3.3: Main functional spaces in analysis

3.4.3 Antisymmetric kernels: symplectic subdualities

Other interesting related mathematical objects are syetiplepaces. These spaces are de-
fined as real inner product spaces such tfate H, (h|h) = 0. Considering these
spaces as subdualities, it follows that their kernels atisyanmetric (or skew-symmetric).
We refer to the previous example I or the following example with kernel function

K(t,s) = (t — s)™ (n odd).

3.4.4 Evaluation subdualities

Definition 3.33 ( — evaluation subduality —)Let Q be any set. We call evaluation sub-
duality (or reproducing kernel subduality) of any subduality oK’ endowed with the

product topology.

Definition 3.34 ( — reproducing kernel —)Let (E, F) be an evaluation subduality &?
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with kernelsc. We call reproducing kernel (function) 0F, F') the function of two variables:

K:OxQ — K
t,s — K(t,s) = (tu(ds), %(5t))(F,E)
Lemma 3.35 Conversely, the kernet can be easily deduced froi by the relatiors«(6;) =

K(t,.) We getEly = Vec{K(t,.), t € Q} (resp.Fy = Vec{K(.,s), s € Q}).

Proof. — K(t.s) = L ('3(8,), (d)) = (%i(ds t))( iy = 2(01)(s).
FormulaEy = Vec{K(t,.), t € Q} derives from(KQ) = Vec{5t, t € Q}. O

Corollary 3.36 (— evaluation, reproduction —)
1. Vse 97VI € Ea I(S) = (K('as)aI)(F,E) (resp-y(t) = (yaK(ta ))(F,E))1

2. K(t,s) = (K(.5), K(t,.)) (.-

Proof. — We apply theorem 3.6:
VfeF,teq,

f(t) = (6taj(f))((]]§9)"]]§9)
= L(f, »(d;)) from theorens.6

=L(f, K(t,.) O

Examples

example 1| R?-example

The dual systeniR?, R?) endowed with the symplectic bilinear form
L:RPxR — R
(Y, X) = z19y2 — 7211

is an evaluation subduality da = {1, 2} with kernel function
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o 0 1
-1 0
example 2| Sobolev spacefs

Suppos&? =|0, 1[. The duality(E, F') where

E = {e €D, e(s) = /Q Li<sp(t)dt, ¢ € L2(Q)}

and

F={1ep. 10 = [ vewisp e o)}
are in duality with respect to the bilinear form
(O = [ g
is an evaluation subduality dn =)0, 1] with asymmetric kernel function
K(t,s) = (s — t)1i<s
The kernel function of F, E) is

LK (t,s) = (t - 5) U<y = K(s,1)

example 3| Sobolev spaceﬁ(- W2 (J0, 1)) -)
The previous subdualityE, F') of the dual systeniD’, D) with kernel the integral

operator:
»:D(0,1)) — D'(0,1])

o — x(p)() = [o K(t,)p(t)dt
is an evaluation subduality dn =)0, 1] with asymmetric kernel function

s : 2
K(t,s) = / min(u, t)dt = t min(t, s) — min(t, s)°
0

The subduality(&, §) is not an evaluation subduality.
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example 4 Polynomials, splineg
The kernel of the subduality®, F') of R¥ whereE = F = P, are in duality with

respect to the bilinear form ofl x E

L:FxFE — R
(fre) — Yy CO p6) (7)eln=d)(7)

is identified with the kernel function
K(t,s)=(t—s)"

remark that whem is odd this kernel is antisymmetric.

example 5| Polynomials, spline# (- Piecewise smooth spaces -)

Consider the previous setting of piecewise smooth spaadsality. Then the equali-

ties

(ds5€) (R R) = (ij ej(s )

(F.E)

(615 f) rer oy = (f > fites( )

show that the reproducing kernel function is

=" filt)e;(s)
j=0

Suppose now we want in addition that

(F,E)

whereA,, (e)(s) = (e(s), €' (s), ...,e™(s)). Then the previous equality

n

K(t,s) = ) fi(t)ej(s)

=0
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givesVt € )
€o en fo(?)
el el .
! " =(0,...,0,1)T
e((]n) e fn(t)
that is exactly equation (2.6) defining the dual space of egpitse smoothiV -space
in [37].

example 6Let £ = [(N) = K" be the set of sequences endowed with the pointwise conver-
gence and leEf = {(e;) € I'(N), ep = 0} be the set of absolutely summable se-
guences starting from zero add = {(f;) € I'(N), >.7°, fi = 0} the set of abso-

lutely summable sequences summing to zero.

These two spaces are in separate duality with respect tolloe/ing bilinear form

L:FxE — R
fre — Z?iofi(Z;zoej):—Z§0(2§:ofj)€i+1

Their kernel is the two dimensional sequence

0 -1 0 0
0 1 -1 0
K@,j5)=]0 0 1 -1
00 0 1

Conclusion and comments

The concept of subduality generalizes the previous coaadtilbertian, Krein or admis-

sible prehermitian subspaces (and also D. Alpay’s concepk.b.s. of pairs). The set of
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subduality quotiented by an equivalence relation can thenblewed with the structure of a
vector space isomorphic to the set of kernels and one getsiedutimeory if one introduces

the notions of canonical and inner subdualities.

The example based on a differential operator shows that saisting spaces (like Sobolev-
Slobodeckij spaces) seem to be closely linked with kernels.

Symplectic structure or more generally no-symmetric stnags (see for instance [24] for an
example of use of non-symmetric bilinear form) are more amdenused in mathematics.
The concept of subdualities gives a new setting to study ebjgcts.

Finally, as L. Schwartz said at the end of [46] after intrddgcthe concept of Hermitian

subspaces: “ll serait intéressant d'étendre aux opégatifférentiels la théorie du potentiel
et le probleme de Dirichlet”. He was heard beyond his expiecissince the theory of Krein
subspaces has now many applications. We hope it will be time $ar this new theory of

subdualities where we can now use kernels that are neitrsgitivgonor Hermitian. Next

chapter then initiates some directions for applications.
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Chapter 4

Applications

Introduction

The previous concepts put an additional structure on lpcalhvex spaces and can therefore
be used to extend existing theories related to this pastictructure (that exist on Hilbert
spaces, Krein spaces or dualities) to locally convex spaldeis is for instance the case for
Gaussian measures over locally convex spaces. We moreo¥ertger into the formalism

and study also its implication in terms of Krein subspaceabssarbdualities.

One can also work the other way round: by embedding a duality & specific locally
convex space (or a duality) one can study some objects wétluske of the kernel. This is

particularly true in the second section that deals with afpertheory.

Finally a third section is devoted to the starting point of owestigation: approximation

theory.
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4.1 From Gaussian measures to Boehmians (generalized distri

butions) and beyond

Hilbertian subspaces play a great role in the (infinite-digienal) probability theory since
Gaussian measures over a locally convex space may be guifahed by a positive kernel
and its associated Hilbertian subspace. After preciseligweéng the link between Gaus-
sian measures and Hilbertian subspaces we will extend theraation to Krein subspaces
which will appear to be strongly linked with some generdi@aof distributions and finally

guestion the case of subdualities. This will be done thralugiract operator algebra theory.

4.1.1 Hilbertian subspaces and Gaussian measures

The Gaussian measures play a fundamental role in prolyabisiory. In infinite-dimensional
probability theory at least two approaches are possible based after Radon measures the-
ory and the other after cylindrical measures. It is the sdowa (briefly) study here for
we can define Gaussian (cylindrical) measures in terms difeltibn subspaces. We refer
to [48] for the general theory of Radon, cylindrical and Gaais measures or to [33] for a

more precise study of Gaussian measures.

Gauss measure over a Hilbert space

The Gauss measure over a finitadlimensional Hilbert spacé is defined as follows: Let
dzr = dxidz,...dz, be the Lebesgue measure BA anddh its image under the isomor-
phism(z;) — h = Y7 z;e; the Gauss measurgon H is dyy = exp(—||h||?)dh. Its

variance and Fourier transform (characteristic functijoage given by:

[ (T vm(an) = 5ol
H ™

Fyu(h) = exp(=n|hlF)
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with the identificationsd’ ~ H ~ H.

We can now define the Gauss measure over a arbitrary Hilbacegp. It is the (unique)

cylindrical measurey defined as follows:

Definition 4.1 (— Gauss measure over a Hilbert space -The Gauss measure is the (unique)

cylindrical measurey such that for any finite-dimensional vector subspé&ce H

pa(ve) = Yo

wherepg is the orthogonal projection oy andy the previously defined Gauss measure

over the finite-dimensional Hilbert spa¢g

The previous equations regarding the covariance and Fdraiesform remain valid.

Gaussian measure over a locally convex space (over a dua)ity

Based after the definition of the Gauss measure over a Hgpare, we can define Gaussian

measures over a locally convex space (or a duality):

Definition 4.2 (— Gaussian measure — ) et be a locally convex space (respf, F) a
duality) andy. a cylindrical measure o. We say thaj is a Gaussian measure if there

exists a Hilbertian subspack of £ (resp. of(&, F)) such that

p=i(vm)
wherevyy is the Gauss measure dh and: : H — &£ the canonical injection.

We noteGauss((€,F)) the set of Gaussian measures over a duédityr).
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Covariance operators, kernels and support

The Hilbertian kernel of{ is closely linked with the covariance operators and FouraaTrs-

form. Precisely

Proposition 4.3 Let (€, F) be a duality ang: the Gaussian measure associated#tothen

. 1
| (@ @) re)) ) = 5 o)
Ful9) = eap (~n(@ 2(8)) 5.e)) = eap (~rl (D)%)

The Hilbertian subspace itself is related to sets assactatRadon measures (theorem 6p 97

[33]):

Proposition 4.4 Suppose: is a Radon Gaussian measure @ F) associated tdd. Then
its topological support, its linear support and the closwifdats kernel (space of admissible

directions) coincide witHH .

Cone convex structure and functors

The image of a measure by a weakly continuous applicationclassical tool in measure
theory and we used it to define Gaussian measures over l.cguatities. As well it is
classical to define the convolutior) (of two measures (that stands for an addition law) or the
external product.] of a measure by a positive number. A very significant resudcerning

Gaussian measures and their Hilbertian subspaces is:

Theorem 4.5 Let (£, F) be a duality. Then there is a bijection betweBwb((£, F)) and
Gauss((€,F)). Moreover, this bijection is compatible with the operasaf addition (resp.
convolution) and external multiplication over the two s¢Gauss((£, F)), , .) is a convex

cone isomorphic to the convex cone of Hilbertian subspaces.
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This bijection is moreover compatible with the effect of Wigacontinuous linear applica-
tions and we can state a theorem regarding categories:

Let C be the category of dual syster(, F) the morphisms being the weakly continuous
linear applications. La§ be the category of salient and regular convex cones, thehisongs
being the applications preserving multiplication by pesitscalars and addition (hence or-

der). Then according that to a morphiam & — & we associate the morphisms

a: Hilb((E,F)) — Hilb((¢,3))

and
a: Gauss((€,F)) — Gauss((€,F))
poo— u(p)
Then

Theorem 4.6 Hilb : (£, F) — Hilb((€£,F)) andGauss : (£, F) — Gauss((E,F)) are

isomorphic covariant functors of categofyinto categoryg.

4.1.2 Krein subspaces and Boehmians

These last two theorems are very important since the regatarex cone of Gaussian mea-
sures will generate a vector spaRep Gauss((£,F)) isomorphic toR @ Hilb((E,F)).
We will be able to use the theory of Krein subspaces but onaieaan interpretation of

R ® Gauss((€,F)) is needed.

Boehmians

The name Boehmians is used for all objects obtained by anaabstigebraic construction
similar to the one of the field of quotients, but even if the tiplication” law has divisors

of zero (by using “quotients of sequences” instead of “qmit”). We will not deal with
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sequences here since convolution admits no divisor of zetloe set of Gaussian measures
but we keep the name since there has been a great study @38],[30]) of Boehmians

based on function spaces (such as distributions).

A precise definition of Boehmians is given in [19]:
Let G be a vector space arid a subspace aF, » a binary operation fron& x H into G and
A a family of sequences of elements/df (the binary operation and the family verifying

additional conditions). Then the class of equivalence ofigats sequence{sgﬁ) verifying

1. Quotient sequencesn € N, g, € G, ¢n €A, Gn* P = Gm * O]

2. Equivalence(g—z)R(i—z) = gp*xPn = fn* Pn;

is called a Boehmian and we note the space of BoehnB&6s M, *, A).
In general functional Boehmians are defined after the cotien. For instance it is com-

monly agreed that by Boehmians one means:
1. G=C[R" — C);
2. M = D(R" —s C);
3. x = x is the standard convolution;

4. Ais the set of delta sequences.

The obtained space of Boehmians contains Schwartz’s sgatdistobutions D’, but also
hyperdistributions, Mikusinski operators, Roumieu ultstributions or regular operators
([19)).

Among all properties we may cite this interesting resulteloasn the Fourier transform
([39)):

Theorem 4.7 The Fourier transform is a one-to-one mapping from the speEfdempered

Boehmians to the space of distributions oié&r.
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Gauss Boehmians
Let (£, F) be a duality. Then we define the following space of Boehmians:

Definition 4.8 (— Gauss Boehmian space —7}he Gauss Boehmian space (oV&r.F)) is

the space of Boehmians with
1. G = Gauss((€,F));
2. M =G,
3. * = x is the standard convolution;
4. A is the set of constant sequences.

A Gauss Boehmian is of the forﬁf and the space of Gauss Boehmians is denoted by
GB((&,F)) .

Theorem 4.9 The two spaceR ® Gauss((£,F)) andGB((&,F)) are equal.

Proof. — They both are the vector space extension of the convex cdBaudsian

measures;((£, F)) with respect to the equivalence relation induced by the cone O

Fourier transform, covariance and support

We can now define the Fourier transform of a Gauss Boehr%gan
2

Proposition 4.10

F <E) (¢) = exp (—7‘{'(8, %(qﬁ)(f’g)) = exp (—71'”%((]5)”%]:}]1@[{2)

YH,
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wheres = 1 — 2.

From theoren.7 it follows that Gauss Boehmians may be seen as ultradisisiis) tem-
pered Boehmians, hyperdistributions etc... whea F is a finite-dimensional space.

We can also state a result concerning “covariance”:

Proposition 4.11

- ) 1
(@0 0 rey) Ltde) = 5 . 0) e

For instance in [30] p 61 they derive the expressio@féfin a hyperdistribution form where
T2

o1 ando» are the variances of two Gaussian measuresRver

Yo i (O-% - O-%)kAQk(s
Yoy k!
2 k=0

In terms of support, we can see that in the Pontryagin keass the support will be exactly
the (unique) Pontryagin space associated to the kernelpiididem arises when speaking
of kernel of multiplicity i.e. in the infinite-dimensionabse.

This infinite-dimensional case then seems of very pecutisarést but the existing theory
on Boehmians, ultradistributions etc... has not been degrio the infinite-dimensional
case so far. The example of Gauss Boehmians would certaiidg mteresting questions

concerning generalized distributions in infinite dimensio

4.1.3 Interpretation in terms of subdualities: the noncommutatve algebra ap-

proach ?

The use of symmetry or symmetric structure has always beemc@ttool in mathematics.
Symmetry appears to be closely linked with commutativitg dme commutativity of the
algebra of continuous function over a gdtgenerates Hilbert spaces through the covariance

operator of the measure. It then appears “natural” to trnterpret the loss of symmetry
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dealing with subdualities in terms of non-commutative htgs. The main difficulty is that
though the Gelfand transform provides a particularly aléesmula to link sets or spaces and
commutative algebras (of functions), it is generally assditihat non-commutative algebras

cannot be interpreted in terms of functions. A solution ni@ntbe the use of subdualities.

Precisely we can interpret Gaussian measures this way£Jek) be a duality andr a
positive kernel. Let4 be the algebra of continuous functions ofeand define the following
involution overA: ¢*(e) = 9(e) (remark that it implies the following identity(y*¢)* =
P ).

Then we can rewrite the covariance equality of Gaussian unesss:

there exists a unique “Gaussian” linear fornover the algebrad (equivalently a Gaussian

measure o&) such that/(¢, 1) € F?

p(*.¢) = /g ((Ja E) (F.&) (¢ 6)(,7—',8)) va (de) = % (Ev %(¢))(f7g)

Remark that by the self-adjoint property of the kernel, wethat

p((*.¢)") = p(d*eh)
or more generally:
Vi € A, u(y*) = p(i)

Regarding subdualities we then would have to define a gépeah-commutative algebra

A such thatF C A and a linear formy on this algebra verifying

p(y*.p) = % (1, 3(9)) (£ ¢)

4.2 Operator theory

Hilbertian subspaces (and to a lesser extent Pontryagispaabs) have been widely used

in (at least) two directions regarding operator theory. fitst concerns operators in repro-
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ducing kernel spaces and the second deals with the partjposétive differential operators.
We then extend these two trends in terms of subdualities éiedehtial kernels of any type.

Finally a third application in terms of similarity in Hilbespaces is given.

4.2.1 Operators in evaluation subdualities

In [3] D. Alpay proves that continuous endomorphisms in ogpicing kernel Hilbert spaces
are characterized by a function of two variables and up ttagnisimilarity by actually a
function of one single variable called the Berezin symbloé¢rem 2.4.1 p 33). This theo-

rem extends naturally to the context of Krein spaces.

In the subduality setting it appears that many morphismsvatuation subdualities are also

characterized by a function of two variables:

Theorem 4.12 Let(E, F') be an evaluation subduality on the $etith reproducing kernel
K(.,.). Then any weakly continuous operater: ' — E andT : E — E (resp. from

E to F or from F' to F) can be written as

whereS(t,.) = S[K(.,t)] € EandT(.,s) =! T[K(.,s)] € F

Proof. — For instance for S:

The following transposition and composition rules follow:
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1. 1S(t,.) = S[K(.,1)] = S(,,1), 'T(s,.) = T[K(s,.)] = T(s,.)
2. T o S'is associated tfiT o S](Z, s) = (T(.,t),S(s,.)) p,p)
3. T o Ty is associated tfT'y o T5](t, s) = (T1(., s), T2(t,.)) (5,

Example: Consider the previous example of evaluation subduality= /(N) is the set of se-

guences endowed with the pointwise convergence,
FE = {(ez) € ll(N), ey = 0}

the set of absolutely summable sequences starting fromaneto

o
F= {(fi) e, Y fi= o}
i=0
the set of absolutely summable sequences summing to zero.

These two spaces are in separate duality with respect tdlithedn form

L:FxE — R
fe — Zzgiofi(z;:oej):—Z§0(2§:0fj)€i+l

and their kernel is the two dimensional sequence

0O -1 0 O
0O 1 -1 0
K@j) =0 0 1 -1
0 0 0 1

For the following weakly continuous operator

S:E — F
e=(e) — fZ{—Zﬁoej,€1,€2a“'}
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a straightforward calculation gives

tS:E — F
e=(e) fZ{el—Z;ioej,eme?n'“}

and finally

00 0 0
1 -1 0 0
St,j)=[0 1 -1 o0
00 1 -1

4.2.2 Differential operators and subdualities

Spaces linked with differential theory such as Sobolev epatce widely used in functional
analysis. In particular it is now standard to define Sobéléiert spaces as Hilbertian sub-
spaces of the space of distributions with a particular difiial operator as kernel (see for
instance [46]).

Obviously there exist too many useful standard Hilbert spd&obolev spaces, Beppo-Levi
spaces, Hardy spaces) to perform a general theory but thiste an interesting result due

to L. Schwartz concerning some generalized Sobolev spddeteger order.

His setting is as follows:

Q is an open set dR" and for any positive integerwe define the spacH ¢ as the equivalent
class of functions of.%(2) such that their derivatives of any order, pa, ..., pn), |p| =
p1+p2 + ... +p, < s areinL?(Q). This space is endowed with the scalar product

Wty = 3 /Q ap AP AP

Ip|<s
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that makes it a Hilbert space where thg are strictly positive constant coefficients and
AP = 22:1 %-

Moreover we define the Hilbert spaces of distributiai§ closure of D(Q2) in H* and
H~% =t j[(H§)'] image inD’'(2) of (Hg)' dual space of{§ by the transpose of the canon-

ical dense injectiorj : D(Q2) — Hj.

Proposition 4.13 The kernel of the Hilbertian subspaég—* of (D'(€2), D(?)) is the pos-

itive differential operator

»D(Q) — D'(Q)
¢ — Z\p\gs(_l)‘p‘a;ﬂAQp(ﬁ

The kernel off{§ is its Green operatof,, and the kernel off® its Neumann operataL ,,.
1

This theorem naturally extends to the Krein subspacesgettith non-necessarily positive
coefficientsa,. We can associate to any differential operator of even cadérein space

constructed after Sobolev spaces of integer order.

The following question then arises naturally: can we asde@ subduality of D' (€2), D(2))
constructed after (possibly fractional) Sobolev spacemtodifferential operator of integer
order? The answer is positive and based after the followiegrem (see also the examples

in chapter 3 concerning Sobolev-Slobodeckij spaces):

Theorem 4.14 Letp = (p1, po, ..., pn) be a positive multi-index,

%xD(Q) — D'(Q)
¢ — AP

the Green operator of a linear elliptic differential operais the “inverse” operator that yields the solution
as a linear map of the data (Courant and Hilbert [18]).
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and H” the Sobolev-Slobodeckij spaidée: . Let as before7? be the closure oD (€2) in H?
andH ? =! j[(HY)'] be the image iD’(2) of (H}')' dual space o} by the transpose of
the canonical dense injectigh: D(2) — HF.

Then(H P, H~P) is a (inner) subduality of D'(©2), D(2)) with kernelsc and The Green’s
and Neumann’s functions are respectively the kernels ofrther subdualities( HY, HY)

and (H?, HP)

Proof. — This result follows directly from the following majoratiqderived from
[52]):

%
W,

I/Qdm(qﬁ)l < CII¢I\W2g-II%(¢)IIW—Tp < 9l z-ll¢l

2 2

Finally any differential operator of integer order can beoasated with a generalized Sobolev
space via the functa$D and the previous results (non constant coefficients witl ishan-

dled by the image of a continuous morphism).

4.2.3 Similarity in Hilbert spaces

We treat here the problem of similarity for operators in rddbert spaces. Lef be on
operator on a Hilbert spadé. Does there exist a self-adjoint operatband a isomorphism
T such thatl, = T—1AT?

We give here an answer in terms of subdualities. (€tF') be the primary subduality

associated td. Then

Proposition 4.15 The answer to the similarity problem is positive if and orflgxists a

positive operato) on H such that:

1. Q(E) =F;
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2. @ : F — Eis self-adjoint for the duality E, F) i.e.
(Q(gl)a52)(F,E) = (Q(62)a51)(F,E)
A choice forT and A is thenT = /(Q) and A = TLT .

Proof. — Suppose the answer is positive. Then one checks easily that

1. 'TT : H — H is a positive and self-adjoint isomorphism;

2. 'TT(E) = F;
3. 'TT : F — Eis self-adjoint for the duality E, F')

Conversely the existence of such an operafogives L = /(Q)'A4/(Q) with A =
V(Q)AV/(Q)~! self-adjoint. O

4.3 Approximation theory: the interpolation problem

Positive reproducing kernels are widely used in the legreimmmunity and the domain of
application is very large. We are interested here in the amation problem, or more
precisely in the interpolation problem. It appears thas ghioblem can easily be solved
using positive kernels. One may then wonder if it is posdibkeolve it without the positivity

requirement.

4.3.1 The problem

A way to state the interpolation problem is as follows:

We are given a data séts;,y;), i € I} (I finite integer set) where the € Q andy; in K



156

and we want to find a “good” functiog in a suitable spac& such that
d(si)=vy; Viel
Obviously the following constraints of follow:
1. E must be a space of genuine functionstone. E C K*

2. The evaluation values must bring some information onuhetfon i.e. the evaluation

functionals must be continuous @which must be continuously embeddedki?

A classical way to solve the problem is to associate to eauttifon of E an “energy” i.e. to
state thatF is a Hilbert space. It follows that it is a R.K.H.S. (we notekernel functionk)

and a possible choice for the “best” interpolating functiauld be the one with least energy.

Mathematically, one has then to solve the minimization [ewb
Problem 4.16 ¢ = arg mingcs ||¢||?

whereS = {f € E, f(s;) =vy; Vi€ I}isthe set of interpolating functions.
Remark that this minimization problem always has a uniquetism sinces is a closed

convex set. 1) = K (s;, s;) is the “covariance matrix” we get

¢ = Z aiK(Sza )
i€l
with
A=(a)=Q7Y

4.3.2 4 equivalent problems: from minimization to projections

It is usual to interpret the previous minimization problemaprojection problem in the

Hilbert spacek:

2py the continuity of the canonical injection
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Problem 4.17 ¢ = p5(0)

wherep§ denotes the orthogonal projection on the closed convef.s€he equivalence of
the two problems is clear since by definition, the projectibfi is the point ofS minimizing
the distance to0.

These two equivalent problems rely however heavily on tHbedtiian structure of? and it
is interesting to state a third and fourth equivalent protsle

Let L be the vector space spanned by #e, s;), i € I (respectively by the((s;,.), i € I
by the symmetry of the kernel). Then

Problem 4.18 Vf € S, ¢ = argminy¢y ||f — A||?

But once again, this minimization problem as an interpi@tain terms of orthogonal pro-

jection:

Problem 4.19
VieS ¢=pr(f) =) aiK(si.)

el
with A = (a) = QY.

In other terms, all the interpolating functions have the sarthogonal projections on the
subspacd..

These results could mean that the finite-dimensional sekdp& a good space to summa-
rized interpolating functions for they all have the saméagbnal projection but we will see

below thatL defines actually the good direction for projection.

4.3.3 Interpolation in evaluation subdualities

The interest of problem 4.19 is that projections on subspacdual systems can be defined

naturally whereas we cannot generally define projectioroomex sets. The main difference
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is that we now have to define two subspaces: a support andcialire
Precisely let E, F') be a dual system with respect to a bilinear fabhand7T Cc E, L C F
finite subspaces such th@, L) are in separate duality with respect/o(and hence” and

L have the same dimension). Then it follows that
1. E=ToL"
2. F=LoT+

and these decompositions define project'p}hé andpiT respectively the projection of vec-

tors of £ onT orthogonally tol. and the projection of vectors @ on L orthogonally toT".

Remark 4.20 If E = F, then any subspacE = L such that(T', T') are in separate duality

is called admissible (see for instance [24]).

Suppose now thatE, F') is an evaluation subduality with kern&. Fix L the vector
subspace of’ spanned by theé<(.,s;), 7« € I and choose a support of the forin =
Vec{K(t;,.), i € I} such that the matriX) = K(t;,s;) is invertible. Then(T, L) is a

duality and the projections are well defined.

Theorem 4.21
VfeS,d=pr"(f) =) «iK(ti,.)

icl
with A = (a) = Q7'Y. ¢ is then independent of the particular interpolating fuoati

projected. Moreovep € S.



159

Proof. — By the reproduction property the orthogonalityfof ¢ with the K (., s;)
is just(f — ¢)(s;) = 0 and the functionp is interpolating. Finally, the invertibility of)

gives the desired result. O

We see that the loss of symmetry and of the norm affects thieeld7": there is now no
intrinsic reason to choose a particular set of po{itsi € I} than another. We can however
state an interesting result when two data sets are available

Suppose we are now given two data sgts, z;), 7 € I} {(si,v:), i € I} (I finite integer
set) where the;, s; € Q andz;,y; in K such that the matrix) = K (t;, s;) is invertible.
DefineS = {f € E, f(si)=v; Viel}andG = {g€ F, f(t;) ==; Viel}andT

and L as before. Then

Theorem 4.22

1.VfeS, ¢=ptt(f) = Yicr iK(ti,.) € SwithA = () = Q™'Y
2.Yg€G,9 =p;"(9) = Xie; BiK(,5) € GwithB = (8) = ('Q)7'X
3. (¢,) stabilizes the quantityg, f) with f € S,g € G

4. (¢,1)) stabilizes the quantityy — N\, f — ) withA € L,r e Tforall f € S,g € G

Proof. — A straightforward calculation gives the desired result. O

Eigule ARupEsinreseetestion a stabilization in the case ofitfi@rent data sets with asym-

metric smooth kernel. . . .
In tﬁe case OP (selrf9-(JuaI|tles, we can do orthogonal pt@es on admissible subspaces and
then use a single data set when admissible. In the followsagneles (figures 4.2 and 4.3),

we use an asymmetric (discontinuous then smooth) kernetitmbased on the Heaviside
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+ sample points
— interpolation in E
—— interpolation in F

Figure 4.1: stabilization

function to detect discontinuity.
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O sample points
— interpolation in E
interpolation in F

F‘Y—M

Figure 4.2: Rupture detection, discontinuous kernel

Conclusion and comments

We have initiated here three possible fields of applicatibias show more insights of the
general theory of subdualities. The first one concerningnégalized” measure theory re-
mains widely open. The second concerning operator theayskome very peculiar uses
but there probably are many more problems that could gairegong at using subdualities.
The case of differential operators gives another perspeoti Sobolev spaces. Finally, we
solve the interpolation problem by using projection in eation subdualities but not without

difficulties due to the lack of a norm. A solution is then toveotwo different interpolation
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O sample points
— approximation in B
—— approximation in H

Figure 4.3: Rupture detection, smooth kernel

problems in a single common setting. This can be appliedgtura detection.
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Appendix A

Generalities

A.1 Basic definitions

Definition A.1 (— topological vector space (t.v.s.) —-A topological vector space is a pair
(€, T) where€ is a vector space over a topological figkd and7 is a Hausdorff (separate)
topology oné such that undeff, the vector space operatioas— Ae is continuous from

K x £to& and(e1,e9) — €1 + €9 is continuous fron€ x £ to &£, whereK x £ and€ x &

are given the respective product topologies.

Proposition A.2 The topology7 of any t.v.s.(€,T) defines a uniform structure afand
the notions of completeness and completion are meaningfal f.v.s. Moreover, the com-

pletion of a t.v.s. remains a t.v.s.
Here are some patrticularly interesting classes of topotdgiector spaces:

Definition A.3 (— locally convex space (l.c.s.) —A locally convex (vector) space (over
any topological fieldK) is a topological vector spac€, 7) such that the topology is de-
fined by a family of semi-norms. In the special case where R or C it is equivalent to

say that7 admits a fundamental system of convex neighbourhoudsaf zer
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Definition A.4 (— normed space — )A normed space is a locally convex sp&€eT ) such
that the topology is defined by a unique norm. In the specisé egheredk = R or C it is
equivalent to say thaf” admits a fundamental system of neighbourhouds of zerodhates

to one convex set.

Definition A.5 (— Banach space —)A Banach space is a complete normed space.

A.2 Linear algebra, Hilbert spaces

A.2.1 Linear, semilinear, bilinear and sesquilinear applicatons
Let E, F, G be three vector spaces. A function £ — F'is linear if:
V(ei,e2) € E, VA € K u(er + Ae2) = u(e1) + Au(ez)

Itis called semilinear if:

V(ei,e2) € E, VA € K u(er + Aea) = ul(er) + Au(es)
Afunction L : F x E — G is bilinear if:
o VfeF,L(f,.)islinear;
e Ve E, L(.,e) is linear.
It is sesquilined if:
e Ve € E, L(.,e) is semilinear;
o Vfe F,L(f,.)islinear.

If G = K we call the application : £ — K a form.

!sesqui means one and a half
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A.2.2 Hilbert spaces

Definition A.6 (— inner product —) We call inner product on a vector spaég any non-

degenerate conjugate symmetric (Hermitian) sesquilimpeesitive form.

Definition A.7 (— prehilbertian space —)We call prehilbertian space any vector space
H, endowed with a non-degenerate conjugate symmetric (Hamhisesquilinear positive

form, i.e. an inner product oi/.

1
2

lholl e = (holho) i, is then a norm that makes, a locally convex space.

Definition A.8 (— Hilbert space —)A Hilbert space is a complete prehilbertian space.
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Appendix B

Dualities

B.1 The algebraic and topological dual spaces

We define the dual space of a t.v.s. upon the linear forms:

Definition B.1 ( — algebraic dual, topological dual —)et £ be a vector space over the
field K. We call algebraic dual of and note£* the space of all linear forms of. If
(€,T) is at.v.s. over the topological field, we call topological dual of and note€’ the
space of continuous linear froms én(whené is endowed with the topoldy and K with

its topology).

B.2 Dualities (dual systems)

Definition B.2 (— dual system of spaces —)wo vector spaceg, F' are said to be in du-
ality if there exists a bilinear fornl, on the product spacé’ x E separate inE and F,

i.e.:

1.Ve#0€ E,3f € F, L(f,¢) £ 0;
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2.Vf#0€ F,3ec E, L(f,e) #0.

In this case(E, F') is said to be a duality (relative td).

The following morphisms are then well defined:

Y,y ¥ — E* algebraic dual of E Or B
y — L(y,.) L{y,.) — y

Exemples :

1. - Fundamental exemple -Let £ be a locally convex spacé;* its algebraic dual.
Then the canonical bilinear forfu, ) — u(e) on&* x £ puts€ and&* in duality.
Ye,ex) : €1 — £ is the identity. The same arguments show that any locallyeon

topological vector spacE can be put in duality with its topological dual’.

2. Let D' be the space of distributions dif’, C*° the space of function€'>° with
compact supportD’ et C* are in duality relative to
L:C*xD — C
($) > fon $(s)b(s)ds

We give here the fundamental exemple of a Hilbert spdcm duality with its conjugate
space (that we should not identify wifth in general). The inner product induces a bilinear

form on the Hilbert spacél x H:

(h_la h2)(ﬁ,H) = L(h1, ho) = (hilha)m (B.1)
By Riesz theorem,
h +—— L(h,.)

is an isomorphism fron& on the topological dual off H'.
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B.3 Topology and duality theory

Definition B.3 (— compatible topologies — Ve call topology onE compatible with the
duality (E, F) any locally convex topology of such thatE’ = Y, 7y (F)-

The weak (resp. Mackey) topology @nis the coarsest (resp. finest) topology compatible
with the dual systeniE, F') and we note it i) (resp.7(z, ))-
The concept of weak (resp. Mackey) continuity is then elytidefined for morphisms of

dualities.

Starting from a dualitf £, F') one can then endo¥ with a locally convex topology (actu-
ally any compatible topology will work) such th&t becomes a locally convex space with

topological dualE’ isomorph toF'.

B.4 Transpose of a weakly continuous morphism

Proposition B.4 Let(E, F), (£, F) be two dualites. Then for any weakly continuous linear
applicationT : E — £ there exists a unique applicatio’ : 7 — F called the

transpose of" verifying:

VpEF, Ve € E ($.T(e))(r.e) = ("T(¢):.€) o

If E and& are two locally convex space, the transpose is defined upoduhlities(E, E')
and(&,&").
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