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Résumé

L’étude des fonctions de deux variables et des opérateurs intégraux associés, ou l’étude di-

recte des noyaux au sens de L. Schwartz [46] (définis comme opérateurs faiblement continus

du dual topologique d’un espace vectoriel localement convexe dans lui-même), est depuis

plus d’un demi-siècle une branche des mathématiques en pleine expansion notamment dans

le domaine des distributions, des équations différentielles ou dans le domaine des probabili-

tés, avec l’étude des mesures gaussiennes et des processus gaussiens.

Les travaux de Moore, Bergman et Aronszajn ont notamment abouti au résultat fondamental

suivant qui concerne les noyaux positifs : il est toujours possible de construire un sous-

espace préhilbertien à partir d’un noyau positif et, moyennant une hypothèse (faible) supplé-

mentaire1, de compléter fonctionnellement cet espace afin d’obtenir un espace de Hilbert.

Cet espace possède alors la propriété d’être continûment inclus dans l’espace vectoriel loca-

lement convexe de départ. Il existe donc une relation forte entre noyaux positifs et espaces

hilbertiens. Dans cette thèse, nous nous sommes posé le problème suivant : que se passe-t-il

si l’on lève l’hypothèse de positivité ? d’hermicité ?

Dans cette perspective nous considérons une seconde approche qui consiste à travailler di-

rectement sur des espaces vectoriels plutôt que sur les noyaux. Précisément, adoptant une

démarche classique en mathématiques, nous étudions les propriétés d’une classe d’espaces

vérifiant des hypothèses additionnelles. Partant des espaces de Hilbert continûment inclus

dans un espace localement convexe donné, cette approche a conduit aux espaces de Hilbert

à noyau reproduisant de N. Aronszajn [5] puis aux sous-espaces hilbertiens de L. Schwartz
�

la quasi-complétude de l’espace fonctionnel de départ par exemple
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[46]. Cette théorie est présentée dans la première partie dela thèse, le résultat majeur de cette

théorie étant sans doute l’équivalence entre sous-espaceshilbertiens et noyaux positifs2, que

l’on peut résumer en ces termes :

“Il existe une bijection entre sous-espaces hibertiens et noyaux positifs.”

Le principal apport à la théorie existante est l’utilisation intensive de systèmes en dualité

et de formes bilinéaires (et pas uniquement sesquilinéaires). De manière surprenante, cela

conduit à une certaine perte de symétrie qui porte les germesde la théorie des sous-dualités.

Dans une seconde partie nous suivons encore les travaux de L.Schwartz et étudions la théo-

rie moins connue des sous-espaces de Krein (ou sous-espaceshermitiens). Les espaces de

Krein ressemblent aux espaces de Hilbert mais sont munis d’un produit scalaire qui n’est

plus nécessairement positif. Les sous-espaces de Krein constituent donc une première géné-

ralisation des sous-espaces hilbertiens. Un des principaux intérêt de l’étude de tels espaces

réside en la disparition de l’équivalence fondamentale entre les notions de sous-espaces et

de noyaux, même si une relation étroite subsiste. Nous étudions plus particulièrement les

similitudes et les différences entre ces deux théories, quenous retrouverons dans la théorie

des sous-dualités.

La troisième partie généralise la perte de symétrie évoquéedans le chapitre 1. Nous dé-

veloppons les bases d’une théorie non plus fondée sur une structure hilbertienne, mais sur

une certaine dualité. Nous développons ainsi le concept de sous-dualité d’un espace vecto-

riel localement convexe (ou d’un système dual) et de son noyau associé. Une sous-dualité

est définie par un système de deux espaces en dualité vérifiantdes conditions d’inclusion

algébrique (définition 3.2) ou topologique (proposition 3.3). Plus précisément :

un système dual
✞✑☎ ☞ ☛ ✏

est une sous-dualité d’un espace localement convexe
✡

(ou plus gé-
�

toujours sous hypothèse de quasi-complétude.
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néralement d’un système dual
✞☛✡✌☞✎✍✑✏

) si
☎

et
☛

sont faiblement continûment inclus dans
✡

.

Dans ce cas, il est possible d’associer à cette sous-dualitéun unique noyau (théorème 3.6)

d’image dense dans la sous-dualité (théorème 3.10). Nous étudions également l’effet d’une

application linéaire faiblement continue (théorème 3.12). Il devient alors possible (moyen-

nant une relation d’équivalence) de munir l’ensemble des sous-dualités d’une structure d’es-

pace vectoriel qui le rend isomorphe algébriquement à l’espace vectoriels des noyaux (théo-

rème 3.13). Nous exhibons ensuite un représentant canonique de ces classes d’équivalences

(théorème 3.20), ce qui permet d’établir une bijection entre sous-dualités canoniques et

noyaux.

Nous étudions également le cas particulier des sous-dualités de✞ ✙ , que nous appelons sous-

dualités d’évaluation. Le noyau est alors identifié à une fonction noyau reproduisant (défini-

tion 3.34 et lemme 3.35). De telles sous-dualités (et noyaux) apparaissent notamment dans

la théorie des espaces de polynômes, des splines de Chebyshev et de “l’épanouissement”

(blossoming), voir par exemple M-L. Mazure et P-J. Laurent [37].

Une quatrième et dernière partie propose quelques applications. Le premier champ d’ap-

plication possible est une généralisation du lien entre sous-espaces hilbertiens et mesures

gaussiennes. Le second est l’étude d’opérateurs particuliers, les opérateurs dans les sous-

dualités d’évaluation (sous-dualités de✘ ✙ ) et les opérateurs différentiels. Enfin, l’étude de

l’interpolation dans les sous-dualités d’évaluation est développée.

Ce travail soulève de nombreuses questions au niveau théorique et applicatif. Les princi-

pales questions portent sur les sous-dualités canoniques :peut-on les caractériser, sont elles

les plus intéressantes, peut-on caractériser directementles noyaux stables ? D’autres portent

sur les opérateurs différentiels et leur lien avec les espaces de Sobolev. Enfin, l’interpréta-

tion physique des sous-dualités est une question cruciale pour comprendre cette théorie et
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ses applications.
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abstract

Functions of two variables appearing in integral transforms (Bergman, Segal, Carleman), or

more generally kernels in the sense of Laurent Schwartz [46]- defined as weakly continuous

linear mappings between the dual of a locally convex vector space and itself - have been

investigated for half a century, particularly in the field ofdistributions, differential equations

and in the probability field with the study of Gaussian measures or Gaussian processes.

The study of these objects may take various forms, but in caseof positive kernels, the study

of the properties of the image space initiated by Moore, Bergman and Aronzjan leads to

a crucial result: the range of the kernel can be endowed with anatural scalar product that

makes it a prehilbertian space and its completion belongs3 to the locally convex space. More-

over, this injection is continuous. Positive kernels then seem to be deeply related to some

particular Hilbert spaces and our aim in this thesis is to study the other kernels. What can

we say if the kernel is neither positive, nor Hermitian ?

To do this we actually follow a second path and study directlyspaces rather than kernels.

Considering Hilbert spaces, some mathematicians have beeninterested in a particular subset

of the set of Hilbert spaces, those Hilbert spaces that are continuously included in a common

locally convex vector space. The relative theory is known asthe theory of Hilbertian sub-

spaces and is thoroughly investigated in the first chapter. Its main result is that surprisingly

the notions of Hilbertian subspaces and positive kernels are equivalent4, which is generally

summarized as follows:
�

under some weak additional topological conditions on the locally convex space.
✁

under the hypothesis of quasi-completeness of the locally convex space
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“there exists a bijective correspondence between positivekernels and Hilbertian

subspaces”.

The main difference with the existing theory in the first chapter is the use of dual systems

and bilinear forms and one of its consequence is the emergence of some loss of symmetry

that will lead to our general theory of subdualities.

In the second chapter we study the existing theory of Hermitian (or Krein) subspaces which

are indefinite inner product spaces. These spaces actually generalize the previous notion of

Hilbertian subspaces and their study is a first step to the global generalization of chapter

three. These spaces are deeply connected to Hermitian kernels but interestingly enough the

previous fundamental equivalence is lost. Then we focus on the differences between this

theory and the Hilbertian one for these differences will of course remain when dealing with

subdualities.

In the third chapter we present a new theory of a dual system ofvector spaces called subd-

ualities which deals with the previous chapters as particular cases. A topological definition

(proposition 3.3) of subdualities is as follows: a duality
✞✑☎ ☞ ☛ ✏

is a subduality of the dual

system
✞☛✡✌☞✎✍✑✏

if and only if both
☎

and
☛

are weakly continuously embedded in
✡

. It ap-

pears that we can associate a unique kernel (in the sense of L.Schwarz, theorem 3.6) with

any subduality, whose image is dense in the subduality (theorem 3.10). The study of the

image of a subduality by a weakly continuous linear operator(theorem 3.12), makes it pos-

sible to define a vector space structure upon the set of subdualities (theorem 3.13), but given

a certain equivalence relation. A canonical representative entirely defined by the kernel is

then given (theorem 3.20), which enables us to state a bijection theorem between canonical

subdualities and kernels.

We also study the particular case of subdualities of✞ ✙ which we name evaluation subdual-
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ities. Their kernel may the be identified with a kernel function (definition 3.34 and lemma

3.35). Such subdualities and kernels appear for instance inthe study of polynomial spaces,

Chebyshev splines and blossoming, see for instance M-L. Mazure and P-J. Laurent [37].

Finally a fourth chapter is dedicated to applications. We first analyse the link between Hilber-

tian subspaces and Gaussian measures and try to extend the theory to Krein subspaces and

subdualities. Then we focus on some particular operators: operators in evaluation subduali-

ties (subdualities of✘ ✙ ) and differential operators. In a third section, we finally develop an

interpolation theory in evaluation subdualities.

This work brings up many questions, with both theoretical and applied insights. The main

questions are devoted to canonical subdualities: is there an easy characterization of canon-

ical subdualities, are they interesting enough, can one characterize directly stable kernels ?

Other questions deal with differential operators and theirlink with Sobolev spaces. Finally

the physical interpretation of subdualities is a crucial point to understand this theory and its

applications.
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Foreword

Motivation

The subject of this thesis is outside the mainstream orientations of nowadays mathematics,

and may not seem directly connected to actual mathematical questions. That is why before

really stating the subject of this thesis, I think I should explain were it stems from. The start-

ing point of this thesis may actually be strange for today’s readers: it dealt with the choice

of models in approximation theory (based on regularization). The first work I had to do was

to understand what the possible models were, and how they worked. It appeared that the

framework was clear: we had to work within a Hilbert space so as to minimize an “energy”,

and the evaluation functionals (the
�

✓ ) had to be continuous so that the values at some points

give information about the whole function.

Spaces verifying these two conditions are called Reproducing kernel Hilbert spaces and in

this case, regularization is always feasible thanks to the existence of orthogonal projections

on convex sets in Hilbert spaces. Moreover, the solution is given in terms of the “reproduc-

ing kernel” of the Hilbertian subspace, that is a two variable positive function. Finally, the

link between Hilbertian subspaces and Gaussian stochasticprocesses gives an interpretation

of the solution of the regularization problem in terms of conditional expectation.
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This framework is however not completely satisfactory:

� on the practical level, many people found empirically that some problems were better

solved with non-positive or non hermitian kernels;

� on the conceptual level, if no discussion seems possible about the continuity of the

evaluation functionals, the Hilbertian hypothesis seems very strong and only for con-

venience.

The relaxation of the Hilbertian hypothesis was then the second beginning of this thesis that

differs finally very much from its initial idea. We will however go back to the approximation

problem in the final chapter and use generic kernels, finally going back to our starting point.

Among the multiple possibilities that offer the loss of the Hilbertian hypothesis, we chose

one actually hidden in the theory of Hilbertian subspaces. To understand what possibilities

were offered, which ones could keep the link with kernels, and what possibility we retain,

an historical approach is now given.

Historical approach

Hilbert spaces were originally defined as spaces with the same geometry as the “Hilbert

space” i.e. the space of square summable sequences
✄

� studied by David Hilbert in [29] (see

for instance F. Riesz [44]). They are defined as an algebraic object, a vector space endowed

with a positive inner product together with a topological property, the completeness of the

space with respect to the norm derived from the inner product.

These spaces are a generalization of the well-known Euclidean spaces and have been widely

used during this century for their numerous properties similar to those of Euclidean spaces

such as the existence of a orthonormal basis or the existenceand uniqueness of orthogonal

projections, all deriving from the existence and positivity of the inner product.
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So Hilbert spaces were defined at the early beginning of the 20th century. At the same time

the notion of “functional” and “operator” came into being. Based on the existing notion of

continuity (which meant at that time and till about 1935 transforming convergent sequences

into convergent sequences i.e. sequential continuity), the notions of duality and topological

duality emerged and in 1908 Frechet and Riesz [44] demonstrated the well-known “Riesz

identification theorem” proving that any real Hilbert spaceis self-dual.

Many roads (illustrated figure 0.1) were then open.

One led to metric functional analysis (notably with the bookof S. Banach [11]) and the par-

ticular study of normed spaces, Hilbert spaces and Frechet spaces.

Another was the topological road: inspired by Hilbert’s axioms of open neighborhoods for

the plane Hausdorff defined general topological spaces in 1914 [28]. The notion of uniform

space followed but it was only in 1935 with the works of Von Neumann and Kolmogorov

that topological spaces extended to topological vector spaces (in short t.v.s.) with the notion

of locally convex spaces (l.c.s).

Finally, a general theory of duality was created on the basisof the works of Mackey ([34],[35]

and Grothendieck [25] (one of its main consequences in functional analysis being Schwartz’s

theory of distributions [47]).

Another crucial step in the development of functional analysis is the theory of “Hilber-

tian subspaces” (L. Schwartz [46]). In terms of foundations(“Grundlagen” in German),

this theory is not fundamental since it uses concepts that had already appeared. However

it is fundamental in the sense that it links a class of operators (the so-called “positive ker-

nels”) and a class of Hilbert spaces (the Hilbertian subspaces) extending the existing results

of Aronszajn [6] concerning positive kernel functions and reproducing kernel Hilbert spaces.
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But as shown before many different classes of spaces such as topological vector spaces,

Banach spaces, dualities, all including Hilbert spaces as aparticular case (theses notions are

detailed in the Appendix A) have emerged in the 20th century.

That is why it is of prime interest to understand how those different notions (such as a norm,

a dual system) are related with the notion of positive inner product and what mathematical

objects appear if we weaken some of the hypotheses mainly if one is interested in finding a

larger class of spaces than Hilbert spaces. In our particular case we want to refine and extend

the theory of Hilbertian subspaces.

An illustrative hierarchy of spaces (precisely of additional structure to be put on a vector

space) is given by figure 0.1, where the left part mostly corresponds to algebraic conditions

whereas the right part refers to more topological conditions.

topological vector spaces

��
locally convex spaces

ttjjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTTT

dualities

��

**TTTTTTTTTTTTTTTT metric spaces

��
prehilbert spaces

��

normed spaces

��
Krein spaces

**TTTTTTTTTTTTTTT
Banach spaces

ttjjjjjjjjjjjjjjjj

Hilbert spaces

Figure 0.1: Hierarchy of spaces.
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In this thesis we mainly investigate the left side of figure 0.1 that is the most natural way to

study kernels as the next chapters will show. The right side is also of interest but leads to a

rather different theory, a theory of multivariate non-linear applications and subdifferentials

of positive semi-continuous functionals called Banachic kernels initiated by M. Attéia [9]

that we will not detail here.

Overview of the thesis

Our starting point throughout this thesis will never be kernels, but rather a certain class of

spaces (Hilbert spaces, Krein spaces, dualities) verifying additional inclusion properties rel-

ative to a common reference space
✡

(precisely to a common duality
✞☛✡✌☞✎✍✑✏

). Kernels will

then naturally appear.

Since the main originality of this work is the generalization of the notion of Hilbertian sub-

space to subdualities (presented chapter 3) it appears coherent to first restate the theory of

Hilbertian subspaces and to introduce two generalizationsafterwards. This work is then

divided into four chapters:

1. the first is devoted to the study of Hilbertian subspaces ofa locally convex space (l.c.s.)
✡

that are Hilbert spaces continuously embedded in the l.c.s
✡

, or more generally to the

study of Hilbertian subspaces of a dual system
✞☛✡✌☞✎✍✑✏

. The intensive use of bilinear

rather than sesquilinear form will amazingly lead to a certain loss of symmetry that

contains the basis of the theory of subdualities;

2. in the second chapter we generalize to indefinite inner product spaces i.e. we study

Krein (or Hermitian) subspaces, which are Krein spaces continuously embedded in the

l.c.s
✡

. Most of the results were already contained in L. Schwartz’spaper [46] but it is
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interesting to see how two different approaches can be followed and what difficulties

appear;

3. a new step is made with the generalization of the theory to adual system of vector

spaces both continuously embedded in the l.c.s
✡

, which we call subdualities. This

original theory links subdualities with the total set of kernels and gives a coherent and

general setting that includes the previous notions. Most ofthese results have been

published in [36];

4. finally some remarks concerning possible applications are given in the fourth chapter.

In order to better understand and follow the path of this work, the study of three general ex-

amples will be carried out. The first example is a “toy” one, the simple example of the two

dimensional space✞✂� . The second one, that deals with the theory of differential operators,

is the general example of Sobolev spaces and integral (resp.differential) operators.

Finally, we will carry the study of polynomial and Chebyshevspaces (or splines) (i.e. finite

dimensional function spaces) in a third example. The study of these spaces and some partic-

ular related dualities is very important in the theory of geometric continuity and blossoming

(see for instance Mazure and Laurent [37] or Goldman [22]).

These three examples will be referred as✞✁� -example , Sobolev spaces, and Polynomials, splines

afterward.

The theory of Hilbertian subspaces and more generally the theory of subdualities, as its

name indicates, relies mainly on the duality theory for topological vector spaces. Therefore

we will only consider locally convex (Hausdorff) topological vector spaces or (Hausdorff)

dualities5. Throughout this study
✡

will always be a locally convex (Hausdorff) topological

vector space (in short l.c.s.) over✘✎✍ ✞ or ✏ and
✞☛✡✌☞✎✍✑✏

a dual system of vector spaces.
�

The link between the two notions is given in the Appendix
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For practical reasons any complex vector space
✡

(i.e. over the scalar field✏ ) will be en-

dowed with an anti-involution (conjugation)
�✂✁☎✄ ✡✝✆✟✞ ✡

such that
✡✡✠ ✡

. We will then

always be able to identify the dual space of a Hilbert space with itself6 but with respect to a

generally asymmetric bilinear form. Moreover, at least forthe first two chapters we suppose

that the duality
✞☛✡✌☞✎✍✑✏

verifies:

✌ ☞ ☞ ✄ ✍ ✍ ✞ ☞ ☞ ✄ ✏

so that for any kernel the following equation will hold:☛ ✙✌☞ ✒ ✞✕✍✖☞✠✡✗✏ ☞

✙ ✑ ✍ ✓ ✙ ✍ ✓ ✙

Self-adjunction and positivity will then be the classical notions. This is for instance the case

of any dual system
✞☛✡✌☞✠✡✡✁☛✏

. These last conditions are however not needed in the chapter

dealing with subdualities since we only study bilinear forms (and no positivity or Hermicity

is at stake).

✍
It can only be identified with its conjugate space in the most general setting
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Chapter 1

Hilbertian subspaces

Introduction

While studying Hilbert spaces of holomorphic functions defined on an open subset of✏ ✙ S.

Bergman [13] remarked that those Hilbert spaces were highlylinked with some functions

of two variables he called kernel functions. The same year N.Aronszajn [6] extended this

link to a wider class of spaces, precisely Hilbert spaces continuously included in the product

space✏✗✙ .

In 1964 L. Schwartz took this definition as a starting point. Rather than studying kernels

functions he decided to study the class of Hilbert spaces continuously included in a partic-

ular l.c.s.
✡

. This led to the general theory of Hilbertian subspaces and of their associated

kernels. This chapter is a presentation of this theory and ofsome refinements since it gives

the foundations of the general theory of subdualities. There are some new ideas as for

instance the extensive use of dual systems that open the roadto previously unseen inter-

pretations. For readers interested in the foundations of this theory or for precise proofs of

the statements in chapter 1 we recommend [46] and [6] for the specific case of reproducing

kernel Hilbert spaces.
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1.1 Hilbertian subspaces of a locally convex space and Hilbertian

subspaces of a duality

1.1.1 Definition of a Hilbertian subspace of a locally convex space

Following the work of L. Schwartz ([46]), we define Hilbertian subspaces of a locally convex

space (l.c.s.)
✡

as Hilbert spaces continuously included in
✡

. To be more precise we define

first prehilbertian subspaces of
✡

:

Definition 1.1 ( – prehilbertian subspace of a l.c.s. – )Let
✡

be a l.c.s. Then
�✒✓

is an

prehilbertian subspace of
✡

if and only if
� ✓

is an algebraic vector subspace of
✡

endowed

with an positive inner product (denoted by✓ ✥ ✔ ✥ ✕ ) that makes it a prehilbert space and such

that the canonical injection is continuous.

Notice that this last condition is equivalent to:

☛ � ✁ ☞ ✡ ✁ ☞ ☛ ☞ ✓ ☞ �✔✓ ☞✁�✄✂✆☎ ✕ ☞ ✞ ✓ ☞ ✔ ✞✑� ✁ ☞ ☞ ✓ ✏ ✔ ✁ ☛ ✕ ☎ ☛☞✞✞✝ ✂✆☎ ✕ ✘ ☞ ✓ ✘ ✏✠✟
where

✞ ☞ ✏ ✁ ☛ ✕ ☎ ☛☞✞ denotes the duality product between the l.c.s.
✡

and its topological dual
✡ ✁

.

The definition of Hilbertian subspace follows:

Definition 1.2 ( – Hilbertian subspace of a l.c.s. – )Let
✡

be a l.c.s. Then
�

is a Hilber-

tian subspace of
✡

if and only if
�

is an algebraic vector subspace of
✡

endowed with an

definite positive inner product that makes it a Hilbert spaceand such that the canonical

injection is continuous.

At first sight, one could think that the concept of Hilbertiansubspaces is purely topological,

since the obvious requirement is that the canonical injection is continuous. This is only

partially true since one requires the space
�

to have a Hilbertian structure, which is almost

completely an algebraic requirement (except the completeness). In fact, there is a whole
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algebraic interpretation of Hilbertian subspaces in termsof dual spaces as we will see in the

second and third chapters.

In this direction and like many authors we would like to emphasize the fact that the

initial topology of
✡

plays no role in the theory of Hilbertian subspaces, which only

depends on the duality
✞☛✡✌☞✠✡ ✁✕✏

. It follows that we can find equivalent conditions for a

Hilbert space
�

to be a Hilbertian subspace of
✡

based only on the weak topology or the

Mackey topology1:

Proposition 1.3 The three following statements are equivalent:

1.
�

is a Hilbertian subspace of
✡

;

2. the canonical injection is weakly continuous;

3. the canonical injection is Mackey continuous (i.e continuous if
�

and
✡

are both

endowed with their Mackey topology).

Proof. – Let us prove that
✞✁� ✏✄✂ ✞✆☎ ✏✝✂ ✞✆✞ ✏✄✂ ✞✁� ✏

:

✞✁� ✏✝✂ ✞✆☎ ✏
corollary 1 p 106 [26]: if

✁ ✄ �✠✟✞ ✡
is continuous, it is weakly continuous.

✞✆☎ ✏✝✂ ✞✆✞ ✏
We can cite corollary 2 p 111 [26]: if

✁ ✄ �✠✟✞ ✡
is weakly continuous, it is continuous

if
�

is endowed with the Mackey topology (and
✡

with any topology compatible with

the duality).

✞✆✞ ✏✝✂ ✞✁� ✏
The topology of the Hilbert space

�
is the Mackey topology since

�
is metrizable

(corollary p 149 [26] or proposition 6 p 71 [15]) and we use theprevious argument

(corollary 2 p 111 [26]). ✡

Finally, it follows from this proposition that the canonical injection, as a weakly continuous

application, has a transpose and an adjoint. From now on, we will denote by
✁

the canonical
�

These topologies are detailed in the Appendix B
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injection ✓ ✁
its transpose and

✁ ✑ its adjoint.

example 1 � � -example

We introduce here for the first time our “toy” example: the space ✞ � .

If we endow it with the scalar product

✓✑★ ✔ ✛ ✕ ✍ ✜✂✣✂✁ ✣ ✖ �
☎ ✜ �

✁
�

then it is clearly a Hilbertian subspace of✞ � endowed with the supremum norm.

example 2 Sobolev spaces

Let
✡ ✍☎✄ ✁

be the space of distribution on an open set
✭

of ✞ bounded from the left.

Then it is a classical result that☛✝✆ ☞✟✞ the Sobolev space

✠☛✡ ✍
☞ ☞ ☞ ✄ ✁ ☞✍✌ ✡✌ ✮ ✡ ✞ ☞ ✏ ☞✏✎ � ☞ ☞

and all its derivatives

up to order✆ null on the left frontier
✞✒✑ ✭ ✏✔✓✍✕

endowed with its canonical scalar product

✓ ☞ ✔ ✖ ✕✘✗✚✙ ✍✜✛
✙
✌ ✡✌ ✮ ✡ ✞ ☞ ✏✢✌ ✡✌ ✮ ✡ ✞✣✖ ✏

is a Hilbertian subspace of✄ ✁
.

Equivalently, Sobolev spaces

✠✤✓✝✡ ✍
☞ ☞ ☞ ✄ ✁ ☞ ☞ ✍ ✌ ✡✌ ✮ ✡ ✞ ✜ ✏ ☞ ✜ ☞✏✎ � ☞ ✜ and all its derivatives

up to order✆ sum to✥✧✦
endowed with the canonical scalar product

✓ ☞ ✔ ✖ ✕ ✗✩★✪✙ ✍✜✛
✙

✜ ✢
are Hilbertian subspaces of✄ ✁

.
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example 3Let � be a Hilbert space. Then any subspace
� ✓

of � is a prehilbert space with

the induced inner product and obviously a prehilbertian subspace of� . Any closed

subspace
�

of � is complete and hence a Hilbertian subspace of
✡

.

example 4Rigged Hilbert space:

Let
�

be a Hilbert space and
✍

a topological vector space, algebraic subspace of
�

such that the inclusion is weakly continuous and
✍

is dense in
�

. Then
� ✁

is weakly

continuously embedded in
✍ ✁

and by proposition 1.3,
� ✁

(generally identified with
�

) is a Hilbertian subspace of
✍ ✁ 2.

1.1.2 Definition of a Hilbertian subspace of a duality

Proposition 1.3 also allows us to define the Hilbertian subspaces of a dual system
✞☛✡✌☞✎✍✑✏ 3.

We will now follow this perspective all along this thesis. There are three reasons for this:

first, since the initial topology of the l.c.s.
✡

plays no role in the Hilbertian theory that

depends only on the duality
✞☛✡✌☞✠✡ ✁✕✏

, it seems natural to show this in the names and notations.

Second, for many applications the topological dual
✡✚✁

is identified with a particular function

space. And finally the third chapter precisely deals with this theory.

Definition 1.4 ( – Hilbertian subspace (of a duality) – )Let
✞☛✡✌☞✎✍✑✏

be a duality. Then
�

is a Hilbertian subspace of
✞☛✡✌☞✎✍✑✏

if and only if
�

is an algebraic vector subspace of
✡

endowed with an definite positive inner product that makes ita Hilbert space and such that

the canonical injection is weakly continuous.

Remark that the canonical injection is weakly continuous ifand only if any element of
✍

(i.e. any continuous linear form on
✡

) restricted to
�

admits a representative in
�

.
�

This is notably the case for Hilbertian subspaces of the spaceof distributions,✁✄✂✆☎✞✝ and ✁ ✕ ✂✠✟ ✕ .
�

Appendix B
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example 5 � � -example

We can identify the dual space of✞✁� endowed with the supremum norm with the space

✞ � , the bilinear form being for instance the Euclidean one. Theprevious Hilbertian

subspace✞✂� endowed with the scalar product

✓✑★ ✔ ✛ ✕ ✍ ✜✂✣✂✁ ✣ ✖ �
☎ ✜ �

✁
�

is then a Hilbertian subspace of the Euclidean duality
✞ ✞ � ☞ ✞ � ✏ .

example 6 Sobolev spaces

By construction of✄ ✁ , its topology is the weak topology associated with the dual sys-

tem
✞ ✄ ☞ ✄ ✁ ✏ . Any previously defined Hilbertian Sobolev space will then be a Hilber-

tian subspace of the duality
✞ ✄ ✁☛☞ ✄ ✏ .

example 7Let
✭

be an open set of✏✚✙ ,
✡ ✍ ✎ ✣ ✞ ✭ ✏ , ✍ ✍ ✎✁� ✞ ✭ ✏

put in duality by the bilinear

form ✎ ✄ ✎✁� ✞ ✭ ✏✄✂ ✎ ✣ ✞ ✭ ✏ ✆✟✞ ✏
✞ ✢✔☞ ✜ ✏ ✟ ✆✟✞ ☎

✓✝✆✟✙ ✜ ✞ ✮ ✏ ✢ ✞ ✮ ✏ ✌ ✮
Let ✞ be a compact set of

✭
and

� ✍✠✟ ✜ ☞ ✡✌☞ ✜☛✡ ☞ ☞✏✎ � ✞ ✞ ✏ ☞ ✜ ✡ ☞✍✌ ✍☎✥✏✎ endowed

with the scalar product

�✑✂ � ✆ ✞ ✏
✞ ✢✔☞ ✜ ✏ ✟ ✆ ✞ ☎

✓✝✆ ☞ ✜ ✞ ✮ ✏ ✢ ✞ ✮ ✏ ✌ ✮ ✍ ☎
✓✝✆✟✙ ✜ ✞ ✮ ✏ ✢ ✞ ✮ ✏ ✌ ✮

It is a standard result that✎✒� ✞ ✞ ✏✔✓ ✎ � ✞ ✞ ✏✁✓ ✎ ✣ ✞ ✞ ✏ hence
�

is a Hilbertian subspace

of ✌ ✎ ✣ ✞ ✭ ✏ ☞ ✎✁� ✞ ✭ ✏ ✍ .

The set of Hilbertian subspaces of a duality
✞☛✡✌☞✎✍✑✏

(resp. of a l.c.s.
✡

) is usually denoted by
�✂✁☎✄✝✆✗✞ ✞☛✡✌☞✎✍✑✏✠✏

(resp.
�✂✁☎✄✝✆✟✞☛✡✗✏

). We then define the following function:
�✂✁☎✄✝✆ ✄ ✞☛✡✌☞✎✍✑✏ ✟✞

�✂✁☎✄✝✆✗✞ ✞☛✡✌☞✎✍✑✏✠✏
(resp.

�✂✁☎✄✝✆ ✄ ✡ ✟✞ �✂✁☎✄✝✆✗✞☛✡✗✏✠✏
) which maps dualities (resp. l.c.s.) to the set of

its Hilbertian subspaces.
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We will see that this set
�✂✁☎✄✝✆✗✞ ✞☛✡✌☞✎✍✑✏✠✏

has remarkable features after some remarks on the

completion of prehilbertian subspaces that will help understand why one focuses on the set

of Hilbertian subspaces rather than prehilbertian ones.

1.1.3 Comments on the completion of a prehilbertian subspace

In this section, we investigate the following problem: is the set of prehilbertian subspaces

interesting, or can we restrict our attention to Hilbertiansubspaces? This question is actu-

ally based on the associated problem of the completion of a prehilbertian subspace and the

completion of uniform spaces in general.

This notion of completion is usually well-known in the case of metric spaces, but in fact

more general (see [16] for precise statements). Roughly speaking, the notion of Cauchy se-

quences is generalized to Cauchy filters, that exist on uniform spaces. But topological vector

spaces (t.v.s) are naturally endowed with such a structure and the notion of completion arises

naturally.Therefore, the comments of this section can be applied to the more general theory

of subdualities developed in the third chapter of this part.

The main point is the following: the completion of a prehilbertian space with respect to

its norm is always feasible (and that is why we usually consider only Hilbert spaces rather

than prehilbert spaces), but in the case of a prehilbertian subspace of a l.c.s
✡

, it may hap-

pen that this completion is “bigger” than
✡

. More precisely, it is known that the algebraic

dual of
✡✡✁

is the weak completion of
✡

, which therefore can be seen as a subspace of
✡ ✁ ✑ .

But so does the completion of
� ✓

, �
�✔✓

and it may happen that�
�✔✓

is not included in
✡

as

subspaces of
✡✡✁ ✑ . Therefore, the Hilbertian subspace completion of a prehilbertian space

may not exist4. However we will see in proposition 1.18 that for a certain class of “good”
✁

See example below
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prehilbertian spaces (those steaming from kernels) and under weak conditions on the space
✡

, the Hilbertian completion always exists. This explains why we can generally restrict our

attention to the study of Hilbertian subspaces, although itmay mean completing a prehilbert

subspace. In [46] for instance L. Schwartz gives a necessaryand sufficient condition for

such a completion to exist when
✡

is quasi-complete, which in this case is of course unique.

Proposition 1.5 Let
� ✓

be a prehilbertian subspace of a quasi-complete l.c.s.
✡

,
✁

its natu-

ral injection. Then it has a Hilbertian subspace completionif and only if the extension of
✁
,

�
✁ ✄

�
�✔✓ ✞

�
✡

, is injective. In this case, the Hilbertian subspace completion is �
�✔✓

.

example 8This example is based on L. Schwartz’s paper [46]. Let
✡ ✍ ✎ �

✞ ✞ ✏
and let

� ✓

be the subspace of continuous functions of✎ �
✞ ✞ ✏

. We can endow
� ✓

with the inner product

✓ ☞ ✔ ✖ ✕ ✍ ☎✠☞ ✖ ✖ ☞ ✞ ✥ ✏ ✖ ✞ ✥ ✏ that makes it a prehilbertian subspace of
✡

. We may identify the

completion �
�✔✓

of
�✔✓

with ✎ �
✞ ✞ ✏ ✂ ✞ , which is bigger than✎ �

✞ ✞ ✏
.
�✔✓

has no Hilbertian

subspace completion.

1.1.4 The structure of
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✠✍✏✎✠✎

The notion of Hilbertian subspace leads to two different paths of investigation: one can

be interested in the properties of the whole set
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

, or one can be interested in

the properties of a particular Hilbertian subspace. This second path will be investigated in

the next section.A remarkable fact concerning the set
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

that highlights the

beauty of the concept is that:

Theorem 1.6 We can endow the set
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

with an external multiplication law (on

✞ ✓ ), an intern addition law and an order relation which give
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

the structure

of a convex cone. Moreover, this cone is salient and regular.

The definitions (constructions) of the laws and the order relation are thoroughly discussed

in details in [46] or [48]. They are partly based on the Hilbertian structure. We give here a
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brief insight in order to understand the importance of the scalar product. The results of this

section are strongly related to the transport of structure via a weakly continuous application,

but are best seen in a self-contained material (with remarksconcerning the transport of the

structure).

addition law

Let
� ✣ ☞ �

�
☞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

. Then the Hilbertian subspace
� ✣ ✖ �

� is the algebraic

subspace of
✡✖� ✍✁�✡☞ ✍ ☞ ✣ ✖ ☞ �

☞ ☞ ✣ ☞ � ✣ ☞✄✂
�
☞ �

� ✦ endowed with the norm

✘ ☞✙✘ ✏ � ✓ ✏ � ✍ ☎✝✆✟✞✠☛✡☞✠
� ✓ ✠ �

✞ ✘ ☞ ✣ ✘ � ✖ ✘ ☞ � ✘ � ✏
✣✍✌

�

An easy way to prove that this space is actually a Hilbert space is to remark that it is isomor-

phic to the Hilbert space
✞ � ✣ ✂ �

�
✏✍✌✏✎✒✑✔✓✏✎

, where
✎ ✄ ✞ ☞ ✣ ☞ ☞ �

✏ ✟✞ ☞ ✣ ✖ ☞ � .

Anticipating the results of the next chapter, we can say thatthe Hilbertian subspace
� ✣ ✖ �

�
is the image of the Hilbert space

� ✣ ✂ �
� by the weakly continuous operator5 ✎ ✄ � ✣ ✂

�
�
✆✟✞ ✡

.

Note that this operation is associative, i.e. a true addition law.

external multiplication law

Let
� ☞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

: we want to define for all
✫ ☞ ✞ ✖ the Hilbertian subspace

✫ �
.

If
✫ ✍ ✥ then

✫ � ✍✑�✪✥✧✦ . If
✫✓✒ ✥ then we have the algebraic equality

✫ � ✍ �
, but we

endow
✫ �

with the inner product:

✓ ☞ ✣ ✔ ☞ �✖✕✍✔ ✏ ✍
�

✫ ✓ ☞ ✣ ✔ ☞ �✖✕ ✏
�

see corollary 1.40.
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Remark that
✫ �

may also be defined as the image of the Hilbert space
�

by the homothecy

☞ ✟✞ ✞✁� ✫ ✏ ☞ .

order relation

We define the order relation by
� ✣ ✝ �

�✄✂
✂ � ✣✆☎ �

� and the canonical injection has

norm less than
�
.

Structure of a convex cone

Finally, we verify that these laws and order relation are compatible with the structure of a

convex cone, that is☛ ✫ ☞✞✝✠✟ ✥ ✄

✫ ✞ � ✣ ✖ �
�

✏ ✍ ✫ � ✣ ✖ ✫ �
�

✞ ✫ ✖✡✝ ✏ � ✍ ✫ � ✖✡✝ �

1.2 Schwartz kernel of a Hilbertian subspace

This section is devoted to the study of a certain class of operators we call kernels. This class

of operators has many applications, particularly in the field of partial differential equations

or tensor products ([50]) or in the probability theory. In this section we study the subset of

positive (self-adjoint) kernels, which is closely linked with the set of Hilbertian subspaces

since the two sets are (under weak assumptions) isomorphic.Hilbertian kernels of Hilbertian

subspaces have many good properties and for instance Hilbertian kernels may be seen as the

generalization of orthogonal projection in Hilbert spacesto arbitrary spaces.

There exist different definitions for kernels related to theparticular point of view one has of

their relation to Hilbertian subspace. The two main definitions are:
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1. Let
✡

be a l.c.s.,
✡✡✁

its topological dual and
✡ ✁

the conjugate space of its topological

dual. Then according to L. Schwartz [46], we call kernel any weakly continuous linear

application ✙ ✄ ✡ ✁ ✆ ✞ ✡
.

2. Another interesting definition due to C. Portenier [43] isthe following. Let
✍

be a

locally convex space,
✍✁�

the space of continuous semilinear forms on
✍

. Then we

call kernel any weakly continuous linear application✙ ✄ ✍ ✆✟✞ ✍✂�
.

These two definitions are very convenient when dealing with scalar products and therefore

appropriate to the study of Hilbertian subspaces. Here, we however take a third point of

view since our principal object of interest in this thesis isa duality rather than a Hilbert

space hence a bilinear form rather than a sesquilinear form.Moreover, since the notion of

Hilbertian subspace is relative to a duality rather than a locally convex space, we define ker-

nels of a dual system of vector space.Precisely, we call kernel relative to a duality
✞☛✡✌☞✎✍✑✏

any weakly continuous linear application from
✍

into
✡

. In order to avoid technical diffi-

culties we deal with spaces with an anti-involution i.e. forany space
✡ ✡ ✠ ✡

but the simple

fact that we should distinguish
✡

and
✡

is crucial. Any Hilbert space will then be in duality

with itself thanks to the following bilinear form:

✎ ✄ � ✠ �✑✂ � ✆✟✞ ✘
☞ ✣ ☞ ☞ �

✟ ✆✟✞ ✓ ☞ ✣ ✔ ☞ �✖✕
but this bilinear form is asymmetric in general and therefore we should (and will) distinguish

them in the sequel.

Transposition is actually defined upon this asymmetric duality and any weakly continuous

operator
☎ ✄ � ✆✟✞ ✡

has two transposes whether we deal with
☎ ✄ � ✠ � ✆✟✞ ✡

or
☎ ✄ � ✆✟✞ ✡

.
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1.2.1 Kernels

Definition 1.7 ( – kernel (of a duality) – ) We call kernel relative to a duality
✞☛✡✌☞✎✍✑✏

(and

note ✙ ✄ ✍ ✆ ✞ ✡
) any weakly continuous linear application from

✍
into

✡
.

The definition of a kernel relative to a locally convex space follows, since any l.c.s.
✡

defines

a duality
✞☛✡✌☞✠✡✡✁☛✏ 6.

Definition 1.8 ( – kernel (of a l.c.s.) – )We call kernel relative to a locally convex topo-

logical vector space
✡

any weakly continuous linear application from the topological dual
✡✂✕

into
✡

, i.e. any kernel relative to the duality
✞☛✡✌☞✠✡ ✁✕✏

.

Since a kernel is weakly continuous, it has a transpose✓ ✙ and an adjoint✙ ✑ ✍ ✓ ✙ . But from

the definition of a kernel its transpose and adjoint are also kernels of the duality
✞☛✡✌☞✎✍✑✏

and

we can define the symmetry, self-adjoint and positiveness properties.

Definition 1.9 We say that a kernel✙ is symmetric if✓ ✙ ✍ ✙ , self-adjoint (Hermitian) if

✙ ✑ ✍ ✙ . It is positive if

☛ ✟ ☞ ✍✖☞ ✞ ✟ ☞ ✙ ✞ ✟✌✏✠✏ ✁ ✠✡☎ ☛☞✞ ✟ ✥
(equivalently, it is positive if☛ � ✁ ☞ ✡✂✁☛☞ ✌ �✄✁☛☞ ✙ ✞ � ✁ ✏ ✍ ✁ ☛ ✕ ☎ ☛☞✞ ✟ ✥ .)

One checks easily that

Lemma 1.10 Any positive kernel is self-adjoint and the positivity condition is equivalent to:

☛ ✟ ☞ ✍✖☞✁� ✟ ☞ ✙ ✞ ✟ ✏✄✂ ✁ ✠✡☎ ☛☞✞ ✟ ✥
A remarkable fact about self-adjoint linear operators from

✍
into

✡
is that they are always

weakly continuous, i.e. kernels7. Moreover, kernels are related to bilinear and sesquilinear

forms by the following proposition (see [46]):
✍
Appendix B☎
proposition 4 p.139 in [46]
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Proposition 1.11 There is a bijective correspondence between separately weakly continu-

ous bilinear forms (res. symmetric) on
✍ ✂✂✍

and kernels (res. symmetric). A separately

weakly continuous bilinear form✎ and a kernel✙ are associated thanks to the following

identity:

☛ ✟ ✣ ☞ ✟
�

☞ ✍✖☞ ✎ ✞ ✟ ✣ ☞ ✟
�
✏ ✍ ✞ ✟ ✣ ☞ ✙ ✞ ✟

�
✏✠✏ ✁ ✠✡☎ ☛☞✞

There is a bijective correspondence between separately weakly continuous sesquilinear

forms (res. Hermitian, positive) on
✍ ✂ ✍

and kernels (res. Hermitian, positive). It is

given by the following identity:

☛ ✟ ✣ ☞ ✟
�

☞ ✍✖☞ ✎ ✞ ✟
�
☞ ✟ ✣ ✏ ✍ ✞ ✟ ✣ ☞ ✙ ✞ ✟

�
✏✠✏ ✁ ✠✡☎ ☛☞✞

It is interesting to notice that we can endow the image of a positive kernel with a scalar

product that makes it a prehilbertian space the scalar product being the following sesquilinear

form:

☛ � ✣ ☞ �
�

☞ ✙ ✞✕✍✑✏ ☞ ✓ � �
✔ � ✣ ✕ ✍✗✌ ✙ ✓ ✣ ✞✑� ✣ ✏ ☞ �

�✎✍ ✁ ✠✡☎ ☛☞✞
The space of kernels (res. symmetric, self-adjoint, positive) is denoted by✒ ✞✕✍✖☞✠✡✗✏

, ✒ ✞☛✡ ✁☛☞✠✡✗✏

or simply ✒ ✞☛✡✗✏ (resp. ✒ ✓ , ✒✒✑ , ✒ ✓ ). As for the set of Hilbertian subspaces of a given duality
✞☛✡✌☞✎✍✑✏ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

we can endow the set of positive kernels of this duality✒ ✓ ✞✕✍✖☞✠✡✗✏
with

an external multiplication law, an intern addition law and an order relation which gives to

✒ ✓ ✞✕✍✖☞✠✡✗✏
the structure of a convex cone. Moreover, this cone is salient and regular8. We

will see in the next section that under very smooth hypothesis the two sets
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

and

✒ ✓ ✞✕✍✖☞✠✡✗✏
are isomorphic.

Here are some examples to illustrate this notion:

example 1 � � -example

Let
✞☛✡✌☞✎✍✑✏ ✍ ✞ ✞ �

☞ ✞ �
✏
in Euclidean duality. Any kernel✙ may then be identified with

�

See [48]
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a matrix � of
✖

�
✞ ✞ ✏ by

� ✞☛✁ ☞ ✚ ✏ ✍ ✞ ✄✁� ☞ ✙ ✞ ✄ ✁ ✏✠✏ ✁ ✠✡☎ ☛☞✞
example 2 Sobolev spaces(- kernel theorem -)

Let
✡ ✍✜✄ ✁

be the space of distribution on an open set
✭

of ✞ . Then we can identify

its dual with the set of test functions
✍ ✍ ✄ ✍ � �✓

and by the kernel theorem of L.

Schwartz the set of kernels of✄ ✁
is isomorphic with the set of distributions on

✭ ✂ ✭
:

✙ ✄ ✜ ✟✞ ✙ ✞ ✜ ✏ ✞ ✥ ✏ ✍✜✛
✙

�✄✂ ☎ ☎ ✜ ✞ ✝ ✏ ✌ ✝

where � is a distribution on
✭ ✂ ✭

.

example3 Let
✡ ✍ ✍ ✍ �

be a real Hilbert space. Then by Riesz theorem
✞☛✡✌☞✎✍✑✏ ✍ ✞ �✂☞ � ✏

is

a duality (with symmetric bilinear form) and its kernels arethe continuous endomor-

phisms of
�

. The notions of self-adjointness and positivity are the classical ones.

example4 Let
✆ ☞✏✎ ✣ ✞ ✞ ✏ . Then the symmetric separately continuous bilinear form

✎ ✄ ✎ � ✞ ✞ ✏ ✂ ✎ � ✞ ✞ ✏ ✆✟✞ ✞
✞ ✢✔☞ ✜ ✏ ✟ ✆✟✞ ☎✝✆ ✆✟✞ ✮ ✏ ✜ ✞ ✮ ✏ ✢ ✞ ✮ ✏ ✌ ✮

is associated to the symmetric kernel

✙ ✄ ✎ � ✞ ✞ ✏ ✆✟✞ ✎ ✣ ✞ ✞ ✏✢ ✟ ✆ ✞ ✆ ✥ ✢
The bilinear form (res. the kernel) is positive if and only ifthe function

✆
is positive.

Finally as advised by M. Atteia we mention tensor products (see example 2 above), for they

are closely related to kernels. The general theory of topological tensor products (and the

related nuclear spaces) is due to A. Grothendieck [25]. A comprehensive and clear reference

is [50] and we recommend this book for readers interested in this subject. Roughly speaking,
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we can always identify the tensor product of two locally convex spaces with a particular

space of continuous bilinear forms and the completion of this tensor product (with respect to

different topologies) will be identified with subsets of separately continuous bilinear forms,

i.e. kernels. Moreover, under additional assumptions (mainly of nuclearity), we can identify

sometimes identify the completion of the tensor product space with the space of kernels.

Precisely, we can state the following theorem:

Theorem 1.12 Let
✞☛✡✌☞✎✍✑✏

be a duality such that
✡

endowed with the Mackey topology is

nuclear and complete. Then

✒ ✞✕✍✖☞✠✡✗✏ ✍ ✡✁�✟ ✍ ✁ ✠ ✡ ✟ ✡

where the completion is taken with respect to one of the following equivalent topologies: the

projective topology or the equicontinuous topology.

1.2.2 The Hilbertian kernel of a Hilbertian subspace

In this section we precise the link between Hilbertian subspaces (of a given duality
✞☛✡✌☞✎✍✑✏

)

and positive kernels (of the same duality).

A first step to understand how positive kernels and Hilbertian subspaces are related is to

associate to any Hilbertian subspace of a duality
✞☛✡✌☞✎✍✑✏

(resp. of a l.c.s
✡

) a (unique) positive

definite kernel of
✞☛✡✌☞✎✍✑✏

(resp. of
✡

). We will later see that this kernel has many interesting

properties. The definition of the kernel of a Hilbertian subspace is contained in the next

theorem:

Theorem 1.13 Let
�

be a Hilbertian subspace of
✞☛✡✌☞✎✍✑✏

. There exist a unique application

✙ from
✍

into
✡

such that

Z☛ ✟ ☞ ✍✖☞ ☛ ☞ ☞ �✂☞ ✌ ✟ ☞ ✚ ✞ ☞ ✏ ✍ ✁ ✠✡☎ ☛☞✞ ✍✗✌ ☞ ☞✠✁ ✓ ✣
✂ ✙ ✞ ✟ ✏ ✍ ✁ ✏✁✄ ✏ ☎ ✏✒✞ ✍ ✓ ☞ ✔ ✁ ✓ ✣

✂ ✙ ✞ ✟ ✏ ✕ ✏
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It is the linear application

✙ ✄ ✍ ✆✟✞ ✡
✟ ✟ ✆✟✞ ✁ ✂✁� ✁ ✏✑☎ ✏✒✞ ✂ ✓ ✚ ✂✄✂ ✁ ☛ ☎ ✠ ✞ ✞ ✟ ✏ ✍ ✁ ✂✁� ✁ ✏ ☎ ✏✒✞ ✂ ✓ ✁ ✂✄✂ ✁ ☛ ☎ ✠ ✞ ✞ ✟ ✏

considering transposition9 in the topological dual spaces or simply

✙ ✄ ✍ ✆✟✞ ✡
✟ ✟ ✆✟✞ ✁ ✂ ✓ ✚ ✞ ✟ ✏ ✍ ✁ ✂ ✁ ✑ ✞ ✟ ✏

considering transposition in dual systems where
✁ ✄ � ✆✟✞ ✡

and ✚ ✄ � ✠ � ✆✟✞ ✡

are the canonical injections10. This application is a positive kernel called the Hilbertian or

Schwartz kernel of
�

.

Proof. – ☛ ☞ ☞ ☞ �✂☞ ✟ ☞ ✍

✞ ✟ ☞ ✚ ✞ ☞ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍ ✞ ☞ ☞ ✓ ✚ ✞ ✟ ✏✠✏ ✁ ✏ ✄ ✏ ☎ ✏✒✞
✍ ✓ ☞ ✔ ✓ ✚ ✞ ✟ ✏ ✕ ✏

and ✙ ✍ ✁ ✂ ✓ ✚ . We then check that this linear application is weakly continuous by compo-

sition of weakly continuous morphisms and positive taking☞ ✍ ✚ ✓ ✣
✂ ✙ ✞ ✟ ✏ ✍ ✓ ✚ ✞ ✟ ✏

in the

previous equation.

Finally ✓ ✚ ✍ ✁ ✑ since ✙ ✑ ✍ ✚ ✂ ✁ ✑ ✍ ✚ ✂ ✁ ✑ is self-adjoint. ✡

Figure 1.1 illustrates this theorem (considering transposition in topological duals)

and figure 1.2 considers transposition in dual systems.

The same theorem may be obviously be given in the context of Hilbertian kernels of locally

convex space by taking
✍ ✍ ✡ ✁

.

Remark 1.14 It is very important to notice that in this definition of the kernel we first put✚
then

✁ ✓ ✣
. Defining the kernel the other way round

Z
☎
see Appendix B

�
✟
they are then equal but their transposes are distinct in general
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✍ �✂✁ ✄✆☎ ✝✟✞ //

✠

$$

✡✂✕
✡ �

��

✡ ✁
// � ✕

☛ ✁ ☞ ☎ ☞ ✞
&&MMMMMMMMMMMMM

� ✕
☛ ✁✌☞ ☎ ☞ ✞ &&NNNNNNNNNNNNN

�
�

��� ✁ // ✡

Figure 1.1: Illustration of a subduality, the relative inclusions and its kernel.

✍
✡ ✁

&&NNNNNNNNNNNNN ✠

��

�

�
&&MMMMMMMMMMMMM

✡

Figure 1.2: Illustration of a Hilbertian subspace and its kernel (transposition in dual systems)

☛ ✟ ☞ ✍✖☞ ☛ ☞ ☞ �✂☞ ✞ ✟ ☞✠✁ ✞ ☞ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍✗✌ ✚ ✓ ✣ ✂ ✛ ✞ ✟ ✏ ☞ ☞ ✍ ✁ ✏ ✄ ✏ ☎ ✏✒✞
would have defined an other positive kernel✛ ✍ ✚ ✂ ✓ ✁ ✍ ✓ ✙ ✍ ✙ . This is due to the

asymmetry of the bilinear form on
� ✠ � ✂ �

and ✛ ✍ ✙ may be seen as the kernel of
�

.

This will be properly explain in the third chapter: subdualities.

Hence any Hilbertian subspace of
✞☛✡✌☞✎✍✑✏

is associated with a unique positive kernel of
✞☛✡✌☞✎✍✑✏

and thea priori multivoque application
✕ ✄ � ☞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✟✞ ✙ ☞ ✒✔✓ ✞✕✍✖☞✠✡✗✏

is well

defined morphism. Before studying the injectivity and surjectivity of this application, we

can give some properties of this kernel.

Lemma 1.15 Let ✙ be the Hilbertian kernel of
�

. Then:

� ✙ ✍ ✓ ✚ ✄ ✍ ✆✟✞ �
is Mackey-continuous.
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� ✆ ✄ ✍ ✆ ✞ ✞
✟ ✟ ✆ ✞ � ✟ ☞ ✙ ✞ ✟ ✏ ✂ ✁ ✠✡☎ ☛☞✞

is a lower-semi-continuous semi-norm on
✍

, continuous if
✍

is endowed with its

Mackey topology.

Proof. – These are obvious corollaries of proposition 1.3. ✡

We will usually note also✙ and call kernel of
�

the application✓ ✚ ✄ ✍ ✆ ✞ �
, as in this

lemma.

There is an interesting result concerning the image of the kernel:

Lemma 1.16 The image
� ✓

of
✍

by a kernel✙ is a prehilbertian subspace of
✡

, dense in
�

, with scalar product

✓ ☞ �
✔ ☞ ✣ ✕ ✏✠✟ ✍✗✌ ✙ ✓ ✣ ✞ ☞ ✣ ✏ ☞ ☞ �✎✍ ✁ ✠✡☎ ☛☞✞ ✍ ✓ ☞ �

✔ ☞ ✣ ✕ ✏
entirely defined by the kernel.

Proof. – Corollary p 109 [26]: “If ✚ ✄ ☎ ✆ ✞ ✡
is one to one, its transpose

✓ ✚ ✄ ✍ ✆✟✞ ☞
has weakly dense image”. It follows that

� ✓
is weakly dense in

�
and fi-

nally dense in
�

for any compatible topology since it is a convex set (theorem4 p 79 [26]). ✡

1.2.3 The isomorphism between
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✠✍✏✎✠✎

and
� ✓ ✞☛✍✂☞✠✡ ✎

The previous morphism
✕ ✄ � ☞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✟✞ ✙ ☞ ✒ ✓ ✞✕✍✖☞✠✡✗✏

that associates to any

Hilbertian subspace its (unique) kernel has remarkable properties: it is one-to-one (theorem

1.17) and under very mild conditions on the duality
✞☛✡✌☞✎✍✑✏

, it is also onto (theorem 1.19). In

this case, it is moreover an isomorphism of convex cones (theorem 1.20).
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✕
is one-to-one

There are many ways to prove the injectivity of the morphism
✕

, each related to a particular

property of the link between the kernel and the Hilbertian subspace11. The one chosen here

is interesting since it gives a construction of
�

it terms of its kernel that will be helpful to

prove the surjectivity of the morphism
✕

.

Theorem 1.17 Let
�

be a Hilbertian subspace of
✞☛✡✌☞✎✍✑✏

with Hilbertian kernel✙ . Then
�

is the Hilbertian completion of the prehilbertian space
� ✓ ✍ ✙ ✞✕✍✑✏

defined in lemma 1.16

and it follows that
✕ ✄ � ☞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✟✞ ✙✡☞ ✒ ✓ ✞✕✍✖☞✠✡✗✏

is one-to-one.

Proof. – By lemma 1.16,
� ✓

is dense in
�

complete, hence
�

is the completion

of
�✔✓

with respect to the topology induced by the scalar product on
�

; but

☛ ☞ ✓ ☞ �✔✓ ☞ ✘ ☞ ✓ ✘ � ✏✠✟ ✍✗✌ ✙ ✓ ✣ ✞ ☞ ✓ ✏ ☞ ☞ ✓ ✍ ✁ ✠✡☎ ☛☞✞ ✍ ✘ ☞ ✓ ✘ � ✏
by definition of the kernel and the norm on

� ✓
induced by the kernel coincides with the

norm on
�

. ✡

This result is very important since it gives the injectivityof
✕

, but also a construction of
�

starting from the kernel. But the completion of a prehilbertian subspace may be bigger than
✡ 12 and we need to investigate closely the completion.

✕
is onto

It is widely believed that the previous application

✕ ✄ � ☞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✟✞ ✙✡☞ ✒ ✓ ✞✕✍✖☞✠✡✗✏

is also onto.The surjectivity of this morphism is however false in general, and we need

Z
� �

We characterize for instance the elements of the Hilbertian subspace just in terms of its kernel in the section
“Other characterizations of the Hilbertian subspace associated to a kernel”, which proves the injectivity.

� �

see the section “Comments on the completion of a prehilbertian subspace”
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some more properties on the duality
✞☛✡✌☞✎✍✑✏

to ensure the surjectivity.

To be precise, we can state the following theorem due to C. Portenier [43]:

Theorem 1.18 Let ✙ be a positive kernel, such that the semi-norm

✆ ✄ ✍ ✆ ✞ ✞
✟ ✟ ✆ ✞ � ✟ ☞ ✙ ✞ ✟ ✏✄✂ ✁ ✠✡☎ ☛☞✞

is Mackey-continuous. Then the associated prehilbertian subspace
� ✓ ✍ ✙ ✞✕✍✑✏

has a unique

Hilbertian subspace completion
�

.

Proof. – The Mackey-continuity of the semi-norm is equivalent to thecontinuity

of ✓ ✙ ✄ ✍ ✆✟✞ �✔✓
if
✍

is endowed with the Mackey topology and
� ✓

with the norm topol-

ogy. It follows that ✓ ✙ ✄ ✍ ✆✟✞✁��✔✓
is continuous with dense image hence by transposition

that
✁ ✍ ✙ ✄ ��✔✓ ✆✟✞ ✡

is injective.
� ✍ ��✔✓ is the (unique) Hilbertian subspace with kernel

✙ . ✡

The Mackey continuity of the semi-norm is then a sufficient condition, but it is also necessary

by lemma 1.15. It is also obvious that the kernel of the constructed Hilbertian subspace is

the one given by theorem 1.13.

It follows that the morphism
✕ ✄ � ☞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✟✞ ✙✡☞ ✒ ✓ ✞✕✍✖☞✠✡✗✏

is onto if and only if

any semi-norm defined by a positive kernel is Mackey continuous.

Proposition 1.19 If
✍

endowed with its Mackey topology is barreled13, then any semi-norm

is Mackey continuous and in particular any semi-norm definedby a positive kernel is Mackey

continuous.

If
✡

is quasi-complete for its Mackey topology14 then any semi-norm defined by a positive
� �

See Appendix B
� ✁

This condition is weaker than the previous since the dual of abarreled space is always weakly (and hence
Mackey) quasi-complete. However the barreleness of✁ is in general easier to verify.
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kernel is Mackey continuous.

Finally, if
✍

is barreled or
✡

Mackey quasi-complete,
✕ ✄ � ☞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✟✞ ✙ ☞

✒ ✓ ✞✕✍✖☞✠✡✗✏
is onto.

The isomorphism of convex cones

Finally we can state the most important theorem of this chapter:

Theorem 1.20 Suppose
✡

is quasi-complete (for its Mackey topology). Then there is a

bijection between
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

and ✒ ✓ ✞✕✍✖☞✠✡✗✏
. Moreover, this bijection is an isomorphism

of convex cones.

Figure 1.3 represents the convex cone of positive kernels ofthe Euclidean space✞ � embed-

ded in the 3 dimensional space of self-adjoint kernels, hence by the isomorphism the convex

cone of Hilbertian subspaces of✞✁� .
We use the matrix representation of kernels (i.e. the kernelfunction)

� ✍
✁✂ � ✣ ☎ ✣ � ✣ ☎

��
�

☎ ✣ �
�

☎
�

✄☎

with
�
�

☎ ✣ ✍ � ✣ ☎
� .

Any reader particularly interested by the isomorphism of convex cone structure can read [46]

p 159-161, where the proof is detailed.

We can illustrate this isomorphism by some examples involving the previous kernels seen at

the end of the last section:

example 1 � � -example

Let
✞☛✡✌☞✎✍✑✏ ✍ ✞ ✞ � ☞ ✞ � ✏ in Euclidean duality. The kernel of the Hilbertian subspace✞ �

endowed with the scalar product

✓✑★ ✔ ✛ ✕ ✍ ✜✂✣✂✁ ✣ ✖ �
☎ ✜ �

✁
�
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coeff A(1,1)

Convex cone of positive kernels 

coeff A(2,2)

co
ef

f A
(1

,2
)=

A
(2

,1
)

Figure 1.3: Convex cone of positive kernels of✞ � isomorphic to the convex cone of Hilber-
tian subspaces of✞ �

can be identified with the matrix

� ✍
✁✂ � ✥✥ ☎

✄☎

i.e.
✙ ✄ ✞ �

✆ ✞ ✞ �

★ ✍ ✞ ✁ ✣ ☞ ✁
�

✏ ✟ ✆ ✞ � ✥ ★ ✍ ✞ ✁ ✣ ☞ ☎ ✁
�

✏

example 2 Sobolev spaces(- Cameron-Martin space -)

Let
✡ ✍☎✄ ✁

be the space of distribution on the open set
✭ ✍✁�✣✥ ☞ �✄✂

. The Hilbert space✠ ✣ ✞ ✭ ✏ ✍
☞ ☞ ☞ ✄ ✁ ☞ ☞ ✞ ✮ ✏ ✍✜✛

✙
1l ☎✆☎

✓ ✜ ✞ ✝ ✏ ✌ ✝ ☞ ✜ ☞✏✎ � ✞ ✭ ✏✞✝
is a Hilbertian subspace of✄ ✁

since the canonical injection is continuous.Its kernel

is the opposite of the operator of second order derivation from ✄ in ✄ ✁
, i.e. the
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integral operator with kernel� ✞ ✮ ☞ ✝ ✏ ✍✁� ☎✝✆ ✞ ✮ ☞ ✝ ✏
:

☛ ✮ ☞ ✭ ☞ ☛ ✜ ☞ ✄ ☞ ✙ ✞ ✜ ✏ ✞ ✮ ✏ ✍✜✛
✙
� ☎✝✆ ✞ ✮ ☞ ✝ ✏ ✜ ✞ ✝ ✏ ✌ ✝

This space is sometimes called theCameron-Martin space (of the Wiener measure,

[17]), and the kernel function� ✞ ✮ ☞ ✝ ✏ ✍✂� ☎✝✆ ✞ ✮ ☞ ✝ ✏
is the covariance of the Wiener

measure. The link between Gaussian measures and Hilbertiansubspaces will be

detailed in the last chapter “Applications”, section 4.1: From Gaussian measures to

Boehmians (generalized distributions) and beyond).

example3 Suppose
✡ ✍ ✍

is a Hilbert space and let✙ be a positive homomorphism of
✡

.

Then
�✔✓ ✍ ✙ ✞☛✡✗✏

is a closed subspace of
✡

, it is then a Hilbert space, the Hilbertian

subspace of
✡

associated with✙ .

example4 Let
✡ ✍ ✄ ✁ be the space of distribution on an open set

✭
of ✘ ✙ . The Hilbert space✎ �

✞ ✭ ✏
is a Hilbertian subspace of✄ ✁ since the canonical injection is continuous. Its

kernel is the canonical injection of✄ in ✄ ✁ ( � ✞ ✮ ☞ ✝ ✏ ✍ �

✓
✞ ✝ ✏

):

☛ ✮ ☞ ✭ ☞ ☛ ✜ ☞ ✄ ☞ ✙ ✞ ✜ ✏ ✞ ✮ ✏ ✍✜✛
✙

�

✓
✞ ✝ ✏ ✜ ✞ ✝ ✏ ✌ ✝ ✍ ✜ ✞ ✮ ✏

example5 Let
✆ ☞☛✎ ✣ ✞ ✞ ✏ ☞✑✆ ✒ ✥ . Then the positive symmetric separately continuous bilinear

form ✎ ✄ ✎ � ✞ ✞ ✏ ✂ ✎ � ✞ ✞ ✏ ✆✟✞ ✞
✞ ✢✔☞ ✜ ✏ ✟ ✆✟✞ ☎ ✆ ✆✟✞ ✮ ✏ ✜ ✞ ✮ ✏ ✢ ✞ ✮ ✏ ✌ ✮

is associated to the positive kernel

✙ ✄ ✎ � ✞ ✞ ✏ ✆✟✞ ✎ ✣ ✞ ✞ ✏✢ ✟ ✆ ✞ ✆ ✥ ✢
and the Hilbertian subspace of

✞ ✎ ✣ ✞ ✞ ✏ ☞ ✎ � ✞ ✞ ✏✠✏ associated to✙ is
� ✍ ✟ ☞ ☞☎✄✆ ✝ ☞✏✎ � ✎

endowed with the scalar product:

✓ ✢ ✔ ✜ ✕ ✏ ✍✜✛ ✆ ✜ ✞ ✮ ✏ ✢ ✞ ✮ ✏
✆✟✞ ✮ ✏ ✌ ✮
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1.2.4 Other characterizations of the Hilbertian subspace associated to a ker-

nel

We have seen in the previous section that the Hilbertian subspace
�

associated to the kernel

✙ is the completion (in
✡

) of
� ✓ ✍ ✙ ✞✕✍✑✏

with respect to the scalar product induced by the

positive kernel. This is a useful abstract result but since
� ✓ ✡

it is natural to wonder if

there exists other simpler criteria to establish whether a particular vector
☞ ☞ ✡

lies in the

Hilbert space
�

or not. It is the aim of this section to study such criteria.

Proposition 1.21 Let ✙ be the Hilbertian kernel of a Hilbertian subspace
�

of
✞☛✡✌☞✎✍✑✏

.

Let
✁✁� ✞✁� ✏

be the open unit ball of the prehilbertian space
� ✓ ✍ ✙ ✞✕✍✑✏

. Then
� ✍

✂
✔ ✆ ✆☎✄ ✫ ✁✁� ✞✁� ✏

where the closure is the weak closure in
✡

.

Proof. –
�

is the completion of
� ✓

,
� ✍ ✂

✔ ✆ ✆☎✄ ✫ ✁✁� ✞✁� ✏
where the closure is

taken with respect to the Hilbertian norm in
�

. However
✁✁� ✞✁� ✏

is weakly compact in
�

as the unit ball of a Hilbert space, then weakly compact in
✡

and finally weakly closed in
✡

.

Thea priori two different notions of closure coincides for the open unitball. ✡

Proposition 1.22 Let ✙ be the Hilbertian kernel of a Hilbertian subspace
�

of
✞☛✡✌☞✎✍✑✏

.

Then for any element☞ ☞ ✍ ✑ (algebraic dual of
✍

or weak-completion of
✡

) we have the

following equivalence:

☞ ☞ �
✂

✂✝✆✟✞✡✠
☛ ✆ ✠

✌ ✟ ☞ ☞ ✍ ✁ ✠✡☎ ✠✌☞✣✞� ✟ ☞ ✙ ✞ ✟ ✏✄✂ ✁ ✠✡☎ ✠✌☞✣✞
✝✎✍

In this case, the supremum is the norm of☞ in
�

.
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Proof. – Evident since the topological dual of
� ✓ ✍ ✙ ✞✕✍✑✏

dense in
�

endowed

with the norm-topology is identified with
�

by the scalar product. ✡

1.3 Hilbertian functionals and Hilbertian kernels

The material of this section deals with convex analysis. It will not be used afterwards and

can be skipped at first reading.

In [8], M. Atteia interprets Hilbertian subspaces in terms of quadratic functionals (he calls

them Hilbertian functionals). He follows J.J. Moreau’s work [41] who proved that any

Hilbertian kernel is the subdifferential of a strictly convex quadratic functional. This will

led to the general theory of Banachic kernels [9] we do not investigate here. We refer to [8]

for the proofs.

1.3.1 Hilbertian functional of a Hilbertian subspace

Definition 1.23 ( – Hilbertian functional – ) Let
✞☛✡✌☞✎✍✑✏

be a duality.

✗ ✄ ✡ ✆✟✞ ✞

is a Hilbertian functional (of
✞☛✡✌☞✎✍✑✏

) if:

1. ✌✁� ✠ ✗ ✍✁� � ☞ ✡✌☞✒✗✂✞✑�✟✏ ✦ is a vector subspace of
✡

;

2.
✗

is quadratic over✌✁� ✠ ✗ ;

3.
✗

is strictly convex;

4. � � ☞ ✡✌☞✒✗✂✞✑�✟✏ ✝ � ✦ is weakly compact in
✡

.

We note the set of Hilbertian functionals of
✞☛✡✌☞✎✍✑✏ ☞✛✚ ✞✠✞☛✡✌☞✎✍✑✏✠✏

.
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To each Hilbertian subspace
�

of
✞☛✡✌☞✎✍✑✏

we can associate a functional
✗ ✄ ✡ ✆ ✞ ✞ defined

by:
✗ ✄ ✡ ✆ ✞ ✞

� ✟ ✆ ✞ ✣
�
✆✟✞✡✠ ☛ ✆ ✠ ✞ ☛ ☎ ✠ ✏

✁ ✝ ☎ ✝ ☞ ✞✞ ☛ ☎ ✠ ✁ ☛ ✞ ✏
✁ ✝ ☎ ✝ ☞ ✞

Proposition 1.24 The previous function is a bijection from
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

onto the set of

Hilbertian functional of
✞☛✡✌☞✎✍✑✏ ☞✛✚ ✞✠✞☛✡✌☞✎✍✑✏✠✏

.

Moreover, we can endow☞✛✚ ✞✠✞☛✡✌☞✎✍✑✏✠✏
with an addition law, external multiplication law by

positive real numbers and an order relation that gives to this set the structure of convex cone.

Precisely:

addition law: inf-convolution

Let
✗ ✣ ☞✒✗

�
☞ ☞✛✚ ✞✠✞☛✡✌☞✎✍✑✏✠✏

. Then

☛ � ☞ ✡✌☞ ✗ ✣ ✖ ✗
�
✞✑�✟✏ ✍ ☎✝✆✟✞☎ ✡ ☎

� ✓
☎

�

✞ ✗ ✣ ✞✑� ✣ ✏ ✖ ✗
�
✞✑�

�
✏✠✏

Remark that this operation is commutative and associative,i.e. a true addition law.

external multiplication law: outer quotient

Let
✗ ☞ ☞✛✚ ✞✠✞☛✡✌☞✎✍✑✏✠✏

: we define for all
✫ ☞ ✞ ✖

the functional
✗✁�

✔ by

☛ � ☞ ✡✌☞ ✗✂�
✔
✞✑�✟✏ ✍ ✫✛✗ ✞ �✫ ✏

order relation

We define the order relation by
✗ ✣ ✝ ✗

� ✂
✂ � ☛ � ☞ ✡✌☞✒✗ ✣ ✞✑�✟✏ ✝ ✗

�
✞✑�✟✏ ✦
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Structure of a convex cone

Finally, we verify that these laws and order relation are compatible with the structure of a

convex cone, notably
✞ ✗ ✣ ✖ ✗

�
✏ �

✔ ✍ ✞ ✗ ✣ ✏ �
✔

✖ ✞ ✗
�
✏ �

✔
✗ � ✁ ✔ ✓ ✁ ✞ ✍ ✗✂�

✔
✖ ✗ �

✁

Theorem 1.25 The previous function is an isomorphism of convex cones between
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

and ☞✛✚ ✞✠✞☛✡✌☞✎✍✑✏✠✏
. If

✡
is quasi-complete for its Mackey topology, then☞✛✚ ✞✠✞☛✡✌☞✎✍✑✏✠✏

is also

isomorphic to✒ ✓ ✞✕✍✖☞✠✡✗✏
.

The question is: can we characterize this isomorphism directly (without exhibiting the

Hilbertian subspace)?

The answer is positive and investigated in the next section.

1.3.2 Hilbertian kernels as subdifferential of Hilbertian functionals

It is classical in convex analysis do define the dual functional
✗ ✑ ✄ ✍ ✆ ✞ ✞ :

☛ ✟ ☞ ✍✖☞✒✗ ✑ ✞ ✟ ✏ ✍ ✆✟✞✡✠☎ ✆ ☛
� ✞ ✟ ☞ �✟✏ ✁ ✠✡☎ ☛☞✞ ✆ ✗ ✞✑�✟✏ ✂

The dual functional of a Hilbertian functional actually holds remarkable properties:

Proposition 1.26 Let
✗

be a Hilbertian functional of
✞☛✡✌☞✎✍✑✏

. Then
✗ ✑ is a Hilbertian

functional of
✞✕✍✖☞✠✡✗✏

.

If
✗

be the Hilbertian functional associated to
�

Hilbertian subspace of
✞☛✡✌☞✎✍✑✏

, then

1. ☛ ✟ ☞ ✍✖☞✒✗ ✑ ✞ ✟ ✏ ✍
✣

�
✞ ✟ ☞ ✙ ✞ ✟ ✏✠✏ ✁ ✠✡☎ ☛☞✞

2.
✑✞✗ ✑ ✍ ✙
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where
✑✞✗ ✑ is the subdifferential of

✗ ✑ ,✑✞✗ ✑ ✞ ✟ ✓ ✏ ✍ ✟ � ☞ ✡✌☞ ☛ ✟ ☞ ✍✖☞✒✗ ✑ ✞ ✟ ✏ ✆ ✗ ✑ ✞ ✟ ✓ ✏ ✟ ✞ ✟ ✆ ✟ ✓✟☞ �✟✏ ✁ ✠✡☎ ☛☞✞ ✎
Consequently this section gives another interesting characterization of Hilbertian subspaces

and Hilbertian kernels in terms of Hilbertian functionals.The arguments of this section will

however collapse in the next chapters since no convex functional can be associated with

Krein subspaces or subdualities.

1.4 Reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces (in short r.k.h.s.) are the Hilbertian subspaces of
✡ ✍ ✘ ✙

endowed with the product topology, or topology of simple convergence, where
✭

is any

set. They are thus a special case of Hilbertian subspace and it is natural to wonder why we

should treat the case especially. There are many reasons forthat, the first being historical:

the study of Hilbertian subspaces and their kernels stems from the works of Bergman [13]

and Aronszajn [6] in the framework of reproducing kernel Hilbert spaces and reproducing

kernel functions in the beginning of the 50s and it is only later (with the work of Schwartz

in 1964 [46]) that the notion of Hilbertian subspace emerges. The second reason is that the

study of reproducing kernel Hilbert spaces is “universal” in the sense that any Hilbertian

subspace may be seen as a r.k.h.s. by the injective mapping:

� ✄ ✡ ✆✟✞ � ✞☛✡✗✏ ☎ ✘ ☛ ☞

� ✟ ✆✟✞ � ✞✑� ☞ �✄✁☛✏ ✦✂✁ ☎ ✕ ✆ ☛ ☞☎✄

(This may be found in [46] or [8] for instance). These spaces are also very interesting for

applications such as approximation or estimation since onedeals with genuine functions, or

for the study of Gaussian stochastic processes. Finally, there is one last reason for paying at-

tention to r.k.h.s.: the locally convex space
✡ ✍ ✘ ✙ and its dual space have good topological

and algebraic properties.
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1.4.1 The space� ✙

Let
✭

be any set and
✡ ✍ ✘ ✙ the space of scalar functions on

✭
, endowed with the product

topology, or topology of simple convergence. Then its dual space
✡ ✁ ✍ ✞ ✘ ✙ ✏ ✕

is the space

of measures with finite support on
✭

, i.e. ☛ ✝ ☞ ✞ ✘ ✙ ✏ ✕☎☞✞✝ ✍
✁

✓✝✆✟✙
✄

✓
�

✓ where
�

✓ is the Dirac

measure on
✭

and the
✄

✓
☞ ✘ are null except a finite number of them. The duality product is

✞ ✝ ☞ ✜ ✏ ✁ ✁ ✂☎✄ ✞ ✕ ☎ ✂✆✄ ✞ ✍
✁

✓✝✆✟✙
✄

✓ ✜ ✞ ✮ ✏

We may now cite some interesting results about✘ ✙ :

Proposition 1.27 Let
✭

be any set,
✡ ✍ ✘ ✙ the space of scalar functions on

✭
endowed

with the product topology and
✞ ✘ ✙ ✏ ✕

its dual space endowed with the Mackey topology.

1. The spaces✘✔✙ and
✞ ✘ ✙ ✏ ✕

are barreled and nuclear;

2. any linear application from
✞ ✘ ✙ ✏ ✕

into any topological vector space is weakly contin-

uous;

3. ✒ ✞✠✞ ✘✔✙ ✏ ✕ ☞ ✘ ✙ ✏ ✠✍ 15✘ ✙✞✝ ✙ .

Proof. –

1. A product of nuclear spaces is nuclear (proposition 50.1 in [50]) and therefore✘ ✙ is

nuclear. It is barreled as the product of barreled spaces. But ✘ ✙ is also reflexive and

it follows that its dual is also barreled and nuclear.

2. It is necessary and sufficient to prove that any linear formis weakly continuous, since
☎ ✞ ✘ ✙ ✏ ✕ ✆✟✞ ☛

is weakly continuous if and only if☛ ✟✚✁ ☞ ☛✌✁☛☞ ✟✡✁ ✂ ☎
is a weakly

continuous linear form (proposition 24 in [26]). Let
☎

be a linear form. Then
☎

is

entirely defined by its action on the
�

✓
☞ ✮ ☞ ✭

and defines a unique function✟☎ ✞ ✮ ✏ ✍
☎ ✞ �

✓
✏ ✮ ☞ ✭ .

� �

is isomorph to
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3. The wanted isomorphism is given by
✂ ☎ ✞ �

✓
✏ � ✞ ✝ ✏ ✍ ✟☎ ✞ ✮ ☞ ✝ ✏ ☛ ✮ ☞ ✝ ☞ ✭

. ✡

Remark 1.28 In some works (for instance [10]), authors identify the space of measure with

finite support with the space of functions null except on a finite number of points
✍ ✍ ✘ ✁ ✙✄✂ :

✝ ✍
✁

✓✝✆✟✙
✄

✓
�

✓
☞ ✞ ✘ ✙ ✏ ✕ ✟ ✆ ✞ ☞

✁
✞ ✥ ✏ ✍

✁

✓✝✆✟✙
✄

✓
�

✓
✡ ☎ ☞ ✘ ✁ ✙✄✂

The duality of interest is then
✞ ✘ ✙ ☞ ✘ ✁ ✙✄✂ ✏ .

1.4.2 r.k.h.s.

Definition 1.29 A Hilbert space
�

is a reproducing kernel Hilbert space (in short r.k.h.s.)

if there exists a set
✭

,
�

is a Hilbertian subspace of
✡ ✍ ✘ ✙ endowed with the product

topology (topology of simple convergence).

This definition presupposes the knowledge of Hilbertian subspaces. Since r.k.h.s. are ante-

rior to Hilbertian subspaces, this is of course not the way reproducing kernel Hilbert spaces

were introduced. The next proposition gives a list of equivalences that may be taken (and

have been taken in many works) for definitions.

Proposition 1.30 Let
� ✓ ✘ ✙ be a Hilbert space. The following statements are equivalent:

1.
�

is a r.k.h.s.

2. The canonical injection from
�

into ✘ ✙ is weakly continuous.

3. ☛ ✮ ☞ ✭ ☞ �✄✂
✓
☞ ☛ ☞ ☞ �✂☞ ✔ ☞ ✞ ✮ ✏ ✔ ✝ ✂

✓ ✘ ☞✙✘ ✏ .

4. ☛ ✝ ☞ ✭ ☞ � � ☎ ☞ �✂☞ ☛ ☞ ☞ �✂☞ ✓ � ☎ ✔ ☞ ✕ ✏ ✍ ☞ ✞ ✝ ✏
.

5.
� � ☞ ✘ ✙✞✝ ✙ ☞ � ✞ ✮ ☞ ✝ ✏ ✍ ✓ � ✞ ✥ ☞ ✝ ✏ ✔ � ✞ ✮ ☞✦✥ ✏ ✕ ✏
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The last statement is known as the reproduction property andthe word “reproducing kernel”

stems from this statement. We have the following relation between the reproducing kernel

� and the Schwartz kernel✙ :

Theorem 1.31 Let
�

be a r.k.h.s. in✘✔✙ . Then its reproducing kernel� is the image of its

Schwartz kernel✙ under the isomorphism between✒ ✞✠✞ ✘ ✙ ✏ ✕ ☞ ✘ ✙ ✏ and ✘ ✙✞✝ ✙ (proposition

1.27):

☛ ✮ ☞ ✝ ☞ ✭ ☞ � ✞ ✮ ☞ ✝ ✏ ✍ ✂ ✙ ✞ �

✓
✏ � ✞ ✝ ✏

example 1 � � -example

Let
✭ ✍✁� �✟☞ ☎ ✦ . Then the Hilbertian space✞✂� endowed with the scalar product

✓✑★ ✔ ✛ ✕ ✍ ✜✂✣✂✁ ✣ ✖ �
☎ ✜
�
✁
�

is a reproducing kernel Hilbert space of✞ ✙ and its kernel function can be identified

with the matrix

� ✍
✁✂ � ✥✥ ☎

✄☎

with

☛ ✞☛✁ ☞ ✚ ✏ ☞ ✭ ✂ ✭ ☞ � ✞☛✁ ☞ ✚ ✏ ✍ � � ☎ ✁

example 2 Sobolev spaces(- Cameron-Martin space -)

Let
✡ ✍ ✄ ✁

be the space of distribution on the open set
✭ ✍✁�✣✥ ☞ �✄✂

. The Hilbert

space
✠ ✣ ✞ ✭ ✏ ✍✁� ☞ ☞ ✄ ✁☛☞ ☞ ✞ ✮ ✏ ✍ ☎

✙ 1l ☎✆☎
✓ ✜ ✞ ✝ ✏ ✌ ✝ ☞ ✜ ☞✏✎ � ✞ ✭ ✏ ✕

is a reproducing ker-

nel Hilbert space on
✭

. Its kernel function is� ✞ ✮ ☞ ✝ ✏ ✍ � ☎✝✆ ✞ ✮ ☞ ✝ ✏
. It verifies the

reproducing property:

✓ � ☎✝✆ ✞ ✥ ☞ ✝ ✏ ✔
� ☎✝✆ ✞ ✮ ☞✦✥ ✏ ✕ ✗ � ✁ ✙ ✞ ✍✜✛

✙
1l ✁✄✂ ☎ ☎ ✄ 1l ✁✄✂ ☎ ✓

✄ ✌ ☎ ✍✁� ☎✝✆ ✞ ✮ ☞ ✝ ✏
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1.4.3 Reproducing kernels

Functions of two variables have been investigated for a longtime and the notions of hermic-

ity and positivity have been defined long before the isomorphism between✒ ✞✠✞ ✘ ✙ ✏ ✕ ☞ ✘✔✙ ✏

and ✘ ✙✞✝ ✙ was known. We have that:

Proposition 1.32

1. Any reproducing kernel is (Hermitian) positive.

2. ✒ ✓ ✞✠✞ ✘✔✙ ✏ ✕☎☞ ✘ ✙ ✏ ✠
✍ ✘ ✙✞✝ ✙✓ .

Following proposition 1.16, we have the following:

Proposition 1.33
�✔✓ ✍✁� ✆ ✄ ✆ � � ✓

☞ ✮ ☞ ✭ ✦
� ✍ ��✔✓

Remark 1.34 In the r.k.h.s. setting, the fact that
��✔✓ ✓ ✘ ✙ is investigated in Aronszajn’s

paper [6] in a self-contained manner. Prehilbertian subspaces enjoying this property are

said to admit a functional completion. It states that a prehilbertian subspace of✘ ✙ admits

a functional completion (equivalent to the one of Schwartz,theorem 1.5) is: for a Cauchy

sequence�✟☞✄✂ ☞ ✠ ☞ ✞ ✦ , ☞☎✂ ✞ ✥ ✂ ✘ ☞☎✂ ✘ ✞ ✥ .

example 1 Polynomials, splines

The two variable function on
✭ ✍ ✞ defined by

� ✞ ✮ ☞ ✝ ✏ ✍ ✞✁� ✖ ✮ ✝ ✏ ✙ ✍
✙✁

✁ ✡ ✓
✆✝✆

✚ ✆✕✞ ✆ ✆ ✚ ✏✞✆ ✮
✁ ✝ ✁

is positive as a positive linear combination of positive kernels. Its associated r.k.h.s. is

the finite -dimensional Hilbert space of univariate polynomials of degree
✆✑� ✍✠✟ ✙ .
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example 2 Polynomials, splines

The function

� ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✮ ✆ ✝ ✏ ✙ ✍
✙✁
✁ ✡ ✓

✞ ✆ � ✏ ✙ ✓ ✁ ✆✝✆

✚ ✆✕✞ ✆ ✆ ✚ ✏✞✆ ✮ ✁ ✝ ✙ ✓ ✁
is not positive. It is not the reproducing function of a r.k.h.s. According to [23] it is

however a classical function associated to✟ ✙ . We will see how in our second chapter

for
✆

even and in our third chapter (“Subdualities”) for any
✆

.

1.5 Transport of structure, categories and construction of Hilber-

tian subspaces

Previously, the set of Hilbertian subspaces has been shown to have many good properties,

one being its structure of a convex cone. A more significant result is that the set of Hilbertian

subspaces can be endowed with the structure of a convex cone category isomorphic to the

convex cone category of positive kernels.

This result is a consequence of the next theorems concerningthe transport of structure by a

weakly continuous linear application.

As an application of that result, a construction of Hilbertian subspaces is given. Other con-

structions of course exist, see for instance [12].

1.5.1 Transport of structure via a weakly continuous linear application

The general problem investigated in this section is as follows: what can we say of the image

of an Hilbertian subspace by an operator?

In the case of one-to-one mapping, it is very easy to define a scalar product on the range of

the operator. More precisely, let
✞☛✡✌☞✎✍✑✏

and
✞ ✝ ☞ ✎ ✏

be two dualities,
☎✡✄ ✡ ✆✟✞ ✝

a linear
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application. We suppose moreover that
☎

is one-to-one. Then we can state the following

lemma:

Lemma 1.35 Let
�

be a Hilbertian subspace of
✞☛✡✌☞✎✍✑✏

and � ✍ ☎ ✞ � ✏
. We can endow�

with an inner product such that
☎ ✏ ✄ � ✆ ✞ � is an isometry (and� is a Hilbert space):

✓ ☎ ✞ ☞ ✣ ✏ ✔ ☎ ✞ ☞ �
✏ ✕ ✁ ✍ ✓ ☞ ✣ ✔ ☞ �✖✕ ✏

� is a Hilbertian subspace of
✞ ✝ ☞ ✎ ✏

if and only if
☎

is weakly continuous.

Proof. – Let ✚ ✁ ✄ � ✆ ✞ ✝
be the canonical injection. Then✚ ✁ ✍ ☎ ✂ ✚ ✏ ✂ ✓ ☎ ✏

which is weakly continuous if and only if u is weakly continuous. ✡

Suppose now that
☎ ✄ ✡ ✆✟✞ ✝

a weakly continuous linear application, but without the

injectivity property. Does the previous result hold? It holds actually, thanks to orthogonal

decompositions in Hilbert spaces. Since
☎

is weakly continuous,� ✄✔✁ ✞ ☎ ✏
is weakly closed

and
�

admits the following orthogonal decomposition:

� ✍ ✂✄✂ ✎✒✑✔✓ ✞ ☎ ✏

where
✂

is a Hilbert space isomorphic to
� ✌✏✎✒✑✔✓✟✞ ☎ ✏

. The restriction of
☎

to
✂

is then

one-to-one and we can use the result of theorem 1.35:

Theorem 1.36 Let
✞☛✡✌☞✎✍✑✏

and
✞ ✝ ☞ ✎ ✏

be two dualities,
☎✝✄ ✡ ✆✟✞ ✝

a weakly continuous

linear application. Let
�

be a Hilbertian subspace of
✡

. Then� ✍ ☎ ✞ � ✏
may be endowed

with the structure of a Hilbert space isomorphic to
� ✌✏✎✒✑✔✓✟✞ ☎ ✏

that makes it a Hilbertian

subspace of
✞ ✝ ☞ ✎ ✏

.

This theorem appears for the first time in [46] and can be applied directly to construct Hilber-

tian subspaces.
☎ ✞ � ✏

is then a Hilbertian subspace of
✞ ✝ ☞ ✎ ✏

and therefore has a kernel (theorem 1.13). What
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can we say about the image kernel of the Hilbertian subspace
☎ ✞ � ✏

? Under the notations of

the previous theorem, the following proposition holds:

Proposition 1.37 Let ✙ be the Hilbertian kernel of
�

. Then the Hilbertian kernel of� ✍
☎ ✞ � ✏

is
✕ ✞ � ✏ ✍ ☎ ✂ ✙ ✂ ✓ ☎

.

Proof. – The proof is obvious since✚ ✁ ✍ ☎ ✂ ✚✁� ✂ ✓ ☎
� and

☎
� is an isometry.✡

1.5.2 Categories and functors

This section presupposes some knowledge about categories and convex cones and can be

skipped at first reading.

Let
✕

be the category of dual systems
✞☛✡✌☞✎✍✑✏

,
✡

Mackey quasi-complete, the morphisms

being the weakly continuous linear applications. Let
✖

be the category of salient and regular

convex cones, the morphisms being the applications preserving multiplication by positive

scalars and addition (hence order). ThenTheorem 1.36 allows us to see
�✂✁☎✄✝✆ ✄ ✞☛✡✌☞✎✍✑✏ ✟✞

�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
as a functor of categoriesaccording that to a morphism

☎ ✄ ✡ ✆✟✞ ✝
we

associate the morphism

✟☎ ✄ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✆✟✞ �✂✁☎✄✝✆✟✞✠✞ ✝ ☞ ✎ ✏✠✏
� ✟ ✆✟✞ ☎ ✞ � ✏

Theorem 1.38
�✂✁☎✄✝✆ ✄ ✞☛✡✌☞✎✍✑✏ ✟✞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

is a covariant functor of category
✕

into

category
✖

.

On the other hand,✒ ✓ ✄ ✞☛✡✌☞✎✍✑✏ ✟✞ ✒ ✓ ✞✕✍✖☞✠✡✗✏
is also a covariant functor of category

✕
into

category
✖

, according that to a morphism
☎ ✄ ✡ ✆ ✞ ✝

we associate the morphism

✟☎ ✄ ✒ ✓ ✞✕✍✖☞✠✡✗✏ ✆ ✞ ✒ ✓ ✞ ✎ ☞ ✝ ✏
✙ ✟ ✆ ✞ ☎ ✂ ✙ ✂ ✓ ☎
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and from the isomorphism of the convex cones
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

and✒ ✓ ✞☛✡✌☞✎✍✑✏
(theorem 1.20)we

deduce that:

Theorem 1.39 The two covariant functors
�✂✁☎✄✝✆

and ✒✔✓ are isomorphic.

1.5.3 Application to the construction of Hilbertian subspaces

There are many works on the construction of Hilbertian subspaces through linear operators

(for instance [45]), but none of them makes reference to the previous theorem of L. Schwartz,

whereas they use it implicitly.

Corollary 1.40 ( – construction of Hilbertian subspace – )Let
✞ ✝ ☞ ✎ ✏

be a duality,
�

a

Hilbert space,
☎ ✄ � ✆✟✞ ✝

a weakly continuous linear application.
�

may be seen has

a Hilbertian subspace of itself and using theorem 1.36, it follows that � ✍ ☎ ✞ � ✏
may

be endowed with the structure of a Hilbert space isomorphic to
� ✌✏✎✒✑✔✓✟✞ ☎ ✏

that makes it a

Hilbertian subspace of
✞ ✝ ☞ ✎ ✏

. Its kernel is then the positive operator
☎ ✂ ☎ ✑ .

Note that any Hilbertian subspace� may be constructed in this way by taking
� ✍ � and

☎ ✍ ✁
the canonical injection (that is weakly continuous by proposition 1.3).

example 1 � � -example

Let
� ✍ ✞ � endowed with the Euclidean inner product and

✡ ✍ ✞ ✥✁�✄✂ ✆ ✞✄☎ ☎ ✮ ✏ ✖ ✞ ✥✟✆ ☎✝✆ ✞✄☎ ☎ ✮ ✏

(subspace of
✍✂✞✆✂ ✥ ☞ � � ☞ ✞ ✏ ) in self-duality with respect to the bilinear form✎ ✄ ✍ ✍ ✡ ✂ ✡ ✆ ✞ ✞

✞ ✟ ☞ �✟✏ ✟ ✆ ✞ ✆ ✟ ✞ ✥ ✏ � ✞✁� ✏ ✖ ✟ ✞✁� ✏ � ✞ ✥ ✏
Then the weakly continuous linear mapping

☎ ✄ ✞ �
✆ ✞ ✡

✛ ✍ ✞✢✜✂✣ ☞✤✜
�
✏ ✟ ✆ ✞ ☎ ✞ ✛ ✏ ✍ ✜✂✣✆�✄✂ ✆ ✞ ✮ ✏ ✖ ✜

�
✆ ☎✝✆ ✞ ✮ ✏
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defines a Hilbertian subspace of
✡ ☎ ✞ ✞✁� ✏ with kernel

✙ ✄ ✍ ✍ ✡ ✆✟✞ ✡
✟ ✟ ✆✟✞ ✙ ✞ ✟ ✏ ✞ ✮ ✏ ✍ ✟ ✞✁� ✏ �✄✂ ✆✟✞ ✁

�
✮ ✏ ✆ ✟ ✞ ✥ ✏ ✆ ☎✝✆ ✞ ✁

�
✮ ✏ ✍ �✁

✟✡✁✝✞ ✮ ✏

i.e; the derivation operator since

☎ ✑ ✄ ✍ ✆ ✞ ✞ �
✟ ✟ ✆ ✞ ✞ ✟ ✞✁� ✏ ☞ ✆ ✟ ✞ ✥ ✏✠✏

example 2 Sobolev spaces

Let
✡ ✍ ✄ ✁

be the space of distribution on an open set
✭

of ✞ . The Hilbertian

subspace of✄ ✁
associated to the kernel

✙ ✄ ✄ ✆ ✞ ✄ ✁

✜ ✟ ✆ ✞ ✆ ✧ �

✧ ✓
� ✜

is just the Hilbert space
☛ ✞ ✎ � ✏ , where

☛ ✄ ✎ � ✆✟✞ ✄ ✁

✜ ✟ ✆✟✞ ✧✧ ✓ ✜
since

☛ ✂ ☛ ✑ ✍ ✙ . It is the Sobolev space
✠ ✓ ✣

(remark that the orthogonal of
✎✒✑✔✓ ✞ ☛ ✏

is the subset of✎ � functions that sum to✥ ).

example 3 Sobolev spaces(- Dual space of the Cameron-Martin space -)

There exists an other characterization of the space
✠ ✓ ✣

based on the theory of normal

subspaces. Let
✠ ✣

be the previously defined Cameron-Martin space (with reproduc-

ing kernel � ✞ ✮ ☞ ✝ ✏ ✍ ✠ ✁✝✆ ✞ ✮ ☞ ✝ ✏
). It is a classical result that✄ is dense in

✠ ✣
. If we

note
✁

the canonical injection, it follows that✓ ✁ ✄ ✠ ✣ ✕ ✆✟✞ ✄ ✁
is injective. The image

of the Hilbert space
✠ ✣ ✕

by ✓ ✁ is then a Hilbertian subspace of
✞ ✄ ✁ ☞ ✄ ✏

. It is precisely

the space
✠ ✓ ✣

with kernel ✙ ✍ ✧ �

✧ ✓
� . Remark that� ✞ ✮ ☞ ✝ ✏

is precisely the Green’s

function associated to✙ 16.
� ✍

There exists actually a general result of this type, see chapter 4 ”Applications”
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example4 Let
✆ ☞✏✎ ✣ ✞ ✞ ✏ ☞ ✆ ✒ ✥ and define

☎ ✄ ✎ �
✞ ✞ ✏ ✆✟✞ ✎ ✣ ✞ ✞ ✏

✜ ✟ ✆✟✞ � ✆ ✥ ✜
Its adjoint is

☎ ✑ ✄ ✎✁� ✞ ✞ ✏ ✆ ✞ ✎ �
✞ ✞ ✏✢ ✟ ✆✟✞ � ✆ ✥ ✢

and
� ✍ ☎ ✞ ✎ �

✏ ✍ � ✆ ✎ � is the Hilbertian subspace of
✞ ✎ ✣ ☞ ✎✁� ✏ associated to the

positive symmetric kernel✙ ✍ ☎ ☎ ✑ i.e.

✙ ✄ ✎ � ✞ ✞ ✏ ✆✟✞ ✎ ✣ ✞ ✞ ✏✢ ✟ ✆ ✞ ✆ ✥ ✢
1.5.4 The special case of r.k.h.s.

When dealing with reproducing kernel Hilbert spaces, it appears that weakly continuous lin-

ear mapping have a special form, which allows us to reformulate the previous construction.

Weakly continuous linear mapping with range in✘ ✙ hold a very special property, for they

may be represented by a family of linear form indexed by a parameter
✮

in
✭

:

Theorem 1.41
☎ ✄ ✡ ✆✟✞ ✘✔✙ is a weakly continuous linear operator if and only if

� � ✥ ✓
☞ ✍✖☞ ✮ ☞ ✭ ✦ ☞ ✂ ☎ ✞ ✜ ✏ � ✞ ✥ ✏ ✍ ✞ ✥ ✂ ☞ ✜ ✏ ✁ ✠✡☎ ☛☞✞

Proof. –
☎ ✄ ✡ ✆ ✞ ✘✔✙ is a weakly continuous linear operator if and only if

☛ ✮ ☞ ✭ ☞ �

✓
✂ ☎ ☞ ✡✂✁ (proposition 24 in [26]) and the theorem is proved. ✡

It follows that weakly continuous linear mapping from a Hilbert space with range in✘ ✙ are

represented by a family of functions from the Hilbert space indexed by a parameter
✮

in
✭

:
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Corollary 1.42
☎ ✄ � ✆✟✞ ✘✔✙ is a weakly continuous linear operator if and only if

� � ✥ ✓
☞ �✂☞ ✮ ☞ ✭ ✦ ☞ ✂ ☎ ✞ ✜ ✏ � ✞ ✥ ✏ ✍ ✓ ✥ ✂ ✔ ✜ ✕ ✏

If
� ✍ ✎ � , then such operators are known as Carleman operators (or Carleman integral op-

erators) see for instance [49]. We can now state the main result concerning the construction

of r.k.h.s.:

Corollary 1.43 ( – construction of r.k.h.s. – )
☞

Let
�

be a Hilbert space,� ✥ ✓
☞ �✂☞ ✮ ☞ ✭ ✦ and

☎✝✄ � ✆✟✞ ✘ ✙ the associated operator.

Then � ✍ ☎ ✞ � ✏
may be endowed with the structure of a Hilbert space isomorphic to

� ✌✏✎✒✑✔✓✟✞ ☎ ✏
that makes it a reproducing kernel Hilbert space and its kernel function is

☛ ✮ ☞ ✝ ☞ ✭ ✂ ✭ ☞ � ✞ ✮ ☞ ✝ ✏ ✍ ✓ ✥ ☎ ✔ ✥
✓ ✕ ✏

example 5 � � -example

✭ ✍ � �✟☞ ☎ ✦ . Define
✥ ✍

✁✂ � ✥✥ � ☎

✄☎
. Then

� ✍ ✥ ✞ ✞ �
✏

is a Hilbertian subspace of

✞ � with scalar product

✓✢✛ ✔ ★ ✕ ✍ ✜✂✣✂✁ ✣ ✖ �
☎ ✜

�
✁

�

Its kernel function is identified with the matrix� ✍ ✥✟✥ ✑ ✍
✁✂ � ✥✥ ☎

✄☎
.

example 6 Sobolev spaces

Let
✭

be an open set of✞ bounded from the left. Let
✥

be the Carleman opera-

tor associated to the family
✥

✓
✞ ✥ ✏ ✍ 1l ✁ ✂ ☎ ✓

✄ . The previously defined Hilbert space✠ ✣ ✞ ✭ ✏ ✍ � ☞ ☞ ✄ ✁☛☞ ☞ ✞ ✮ ✏ ✍ ☎
✙ 1l ☎✆☎

✓ ✜ ✞ ✝ ✏ ✌ ✝ ☞ ✜ ☞ ✎ �
✞ ✭ ✏ ✕

is then the reproducing

kernel Hilbert space image of✎ � under the mapping
✥

. Its kernel is

� ✞ ✮ ☞ ✝ ✏ ✍ ✓ 1l ✁ ✂ ☎ ☎ ✄ ✔1l ✁ ✂ ☎ ✓
✄ ✕ � � ✍ � ☎✝✆ ✞ ✮ ☞ ✝ ✏
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example7 (- Bergman kernel -)

Let
�

be the✏ -reproducing kernel Hilbert space on the unit disk, with kernel � ✞✁� ☞✄✂ ✏ ✍✣✣ ✓✆☎ ✝ . Then
� ✍ ✥ ✞ ✄

�
✂ ✏ � ✏ where

✥
is the operator induced by the family

✥
☎ ✍

� �✟☞✞� ☞✞�
�
☞✦✥✧✥✧✥ ✕

since
✁
✟ ✆ ✠

✞✁� ✂ ✏ ✟ ✍
�

� ✆✡� ✂

i.e. the Hardy space� � .

example 8 Polynomials, splines

The finite-dimensional Hilbert space of univariate polynomials of degree
✆ � ✍ ✟ ✙

with kernel

� ✞ ✮ ☞ ✝ ✏ ✍ ✞✁� ✖ ✮ ✝ ✏ ✙ ✍
✙✁

✁ ✡ ✓
✆✝✆

✚ ✆✕✞ ✆ ✆ ✚ ✏✞✆ ✮
✁ ✝ ✁

is the image of the Hilbert space
� ✍ ✞ ✙ with scalar product

✓✑★ ✔ ✛ ✕ ✏ ✍
✙✁

✁ ✡ ✓
✆✝✆

✚ ✆✕✞ ✆ ✆ ✚ ✏✞✆ ✜ ✁ ✁ ✁

by the operator
✥

associated to the family

✥
✓ ✍ ✌ �✟☞ ✮ ☞ ✮ � ☞✦✥✧✥✧✥ ☞ ✮ ✙ ✍

☛

example 9 Polynomials, splines

We can construct in the same manner a r.k.h.s of
✞✌☞ ✖ � ✏

-multivariate homogeneous

polynomials of degree
✆

(see [23]):

Let ✌ be the cardinal of� multi-index
✪✌☞ ✔ ✪ ✔ ✍ ✪ ✓ ✖ ✥✧✥✧✥ ✖ ✪ ✟ ✍ ✆ ✦ and suppose we

order this set� ✪ ✁ ✣ ✞ ☞✦✥✧✥✧✥ ☞✤✪ ✁ ✧ ✞ ✦ .

The image of the Hilbert space
� ✍ ✞ ✧ with scalar product

✓✑★ ✔ ✛ ✕ ✏ ✍ ✧✁
✁ ✡ ✓

✆✝✆
✪ ✁ ✧ ✞ ✆ ✜ ✁ ✁ ✁
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by the operator
✥

associated to the family

✥
✓ ✍ � �✟☞ ✮✁� ✁ � ✞ ☞ ✮✁� ✁ � ✞ ☞✦✥✧✥✧✥ ☞ ✮✁� ✁ ✂ ✞ ✂ ☛

where
✮ � ✍ ✮ � ✟✓ ✥✧✥✧✥ ✮ �☎✄

✟ is a r.k.h.s, the space
�

✙
✞ ✞

✟ ✓
✣ ✏

of
✞✌☞ ✖ � ✏

-multivariate homo-

geneous polynomials of degree
✆

with kernel

� ✞ ✮ ☞ ✝ ✏ ✍ ✧✁
✁ ✡ ✓

✆✝✆
✪ ✁ ✧ ✞ ✆ ✞ ✮ ✝ ✏ � ✂ ✍

✁

✡ � ✡ ✡ ✙

✆✝✆✔ ✪ ✔ ✆ ✮✁� ✝✆�

Before closing this chapter, it may be interesting to have a brief historical review of some

less known results concerning reproducing kernel Hilbert spaces.

The Moore reproducing property Kolmogorov’s decomposition and the Kolmogorov’s

dilation theorem.

It is widely admit that the first results on reproducing kernel Hilbert spaces appeared in 1950

with the article of N. Aronszajn [6]. This is true if we consider it as the first investigation

of the set of reproducing kernel Hilbert spaces and their properties. But it is less known that

the first ones to notice the correspondence between positivekernels and Hilbert spaces were

Moore [40] and Kolmogorov [31]. Their results are containedin the following theorems:

Theorem 1.44 ( – Moore’s “reproducing” property theorem – ) Let � be a positive def-

inite kernel on a set
✭

. Then there exists a functional Hilbert space
� ✓ ✘ ✙ such that

☛ ✝ ☞ ✭ ☞ ☛ ☞ ☞ �✂☞ ✓ � ✞ ✥ ☞ ✝ ✏ ✔ ☞ ✕ ✏ ✍ ☞ ✞ ✝ ✏

Theorem 1.45 ( – Kolmogorov’s decomposition, Kolmogorov’sdilation theorem – ) Let

� be a positive definite kernel on a set
✭

. Then up to a unitary equivalence there exists a
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unique Hilbert space
�

and a unique embedding�
✄ ✭ ✆ ✞ �

such that:

☛ ✞ ✮ ☞ ✝ ✏ ☞ ✭ � ☞ ✓✁� ☎ ✔ � ✓ ✕ ✏ ✍ � ✞ ✮ ☞ ✝ ✏

� ✆ ✄ ✆ �✂� ✓
☞ ✮ ☞ ✭ ✦ is dense in

�

The pair
✞ �✂☞ � ✏ is called a Kolmogorov decomposition of the positive kernel� .

The r.k.h.s. with kernel� is then the image of
�

by the weakly continuous operator defined

by the family �✂� ✞ ✮ ✏ ☞ �✂☞ ✮ ☞ ✭ ✦ (corollary 1.43).

Conclusion and comments

The basis of the Hilbertian subspace theory have been presented. To a great extent the

results are drawn from L. Schwartz’s paper “Sous espaces hilbertiens d’espaces vectoriels

topologiques et noyaux associés” [46]. The main differenceis that we choose to deal with a

duality
✞☛✡✌☞✎✍✑✏

rather than with a locally convex space
✡

and that we introduce the dualities
✞✑☎ ✍ �✂☞ ☛ ✍ � ✏

and
✞✑☎ ✍ �✂☞ ☛ ✍ � ✏

. We see that one has to be very careful when

using this approach but also that two injections are needed.This will be explained in the

third chapter.

Some results not appearing in [46], notably those of section“
✕

is onto” concerning the

Mackey continuity of the semi-norm are due to C. Portenier [43]. The interpretation of

Hilbertian kernels in term of Hilbertian (quadratic) functionals is due to M. Atteia [8] after

the works of Moreau [41].

The choice made in this chapter is to present only the generaltheory of Hilbertian subspaces

and the properties shared by all Hilbertian subspaces. A lotof papers deal with particular
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subspaces, Hilbertian subspaces of a specific space
✡

or with applications of Hilbertian sub-

spaces (in terms of Gaussian measures, approximation, differential equations, system theory,

...). They should all have [46] in their references.

Finally, the next chapters may be introduced as follows: howcan we generalize the preceding

notion of Hilbertian subspaces and what would the link with kernels be?
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Chapter 2

Krein (Hermitian) subspaces,

Pontryagin subspaces and admissible

prehermitian subspaces

Introduction

This chapter generalizes the previous theory by giving up the positivity of the inner product

while retaining its hermicity. Associated inner product spaces are no longer Hilbertian. As

expected these inner spaces hold close relations with Hermitian (non necessarily positive)

kernels.

We will follow three different paths and study the close relations between the different ob-

jects:

� the first is based on a theoretical result that gives the existence of an abstract vector

space starting form a regular convex cone;

� the second directly starts from existing spaces related to Hilbert spaces called Krein
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spaces;

� the third is the most general and deals with the total set of inner product spaces.

Precisely, it has been shown previously that the set of Hilbertian subspace of a dual sys-

tem can be endowed with the structure of a regular convex cone. Then the construction of

the associated vector space of formal difference of two Hilbertian subspaces (noted✞ ✟
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

) is a classical abstract result and L. Schwartz’s starting point for the study

of what he called Hermitian subspaces. Moreover, the isomorphism of convex cones be-

tween Hilbertian subspaces and positive kernels will also extend to an isomorphism of vec-

tor spaces (the latter being the vector space of formal difference of two positive kernels

✞ ✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏
). But whereas this second vector space has a clear interpretation in terms of

Hermitian kernels, the first had no interpretation in terms of vector subspaces at this time

and it was L. Schwartz’s purpose to give an interpretation of✞ ✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
that lead to

Krein subspaces.

On the other hand, some mathematicians but mainly physicists had already seen the neces-

sity of dealing with indefinite metrics to solve some problems outside the standard scheme

of Hilbert spaces, notably those spaces that can be seen as the difference of two Hilbert

spaces. These indefinite inner product spaces may be seen as the simplest generalization of

Hilbert spaces and appear to be a good setting to perform L. Schwartz’s program. This was

for instance done in [4]. Those spaces got the name Krein spaces after the name of M. Krein

[32]1.

We will see that the theory of Hilbertian subspaces extend toKrein subspaces with the latter

being now associated to a subset of Hermitian but not necessarily positive kernels. However

this extension leads to unexpected difficulties except for the subset of Pontryagin subspaces.

�

L. Schwartz called them Hermitian spaces
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Finally we go further into the abstraction and by following once again the work of L.

Schwartz develop the theory of admissible prehermitian subspaces which is isomorphic un-

der a quotient relation to the vector space of self-adjoint kernels✒ ✑ . Moreover we interpret

the algebraic requirements of L. Schwartz in topological terms making extensive use of dual

systems. That will be the second huge step toward subdualities.

2.1 Extension of the isomorphism of convex cones to an isomor-

phism of (abstract) vector spaces

2.1.1 Construction of the vector spaces

Any regular convex cone
�

generates a real vector space, which we note✞ ✟ �
and that is

the vector space of formal differences of elements of
�

. An element of✞ ✟ �
is then the

equivalent class of elements of the form� ✓
✆ � ✓ with respect to the equivalence relation

✁✄✂✆☎
✙✞✝ ✞ �

✣
✓

✆ �
✣✓ ✏✟✁✄✂✆☎

✙✞✝
✞ � � ✓

✆ � � ✓ ✏
✂

✂ �
✣

✓
✖ � � ✓ ✍✠� � ✓

✖ �
✣✓

Isomorphisms of convex cones extend to isomorphisms of vector spaces (moreover, the func-

torial character remains).

Example:

Figure 2.1 illustrates this construction. We have drawn four vectors verifying

�
✣

✓
✖ � � ✓ ✍✠� � ✓

✖ �
✣✓

Moreover, we may interpret this class of equivalence as the vector

� ✍ ✞ �
✣

✓
✆ �

✣✓ ✏ ✍ ✞ � � ✓
✆ � � ✓ ✏

Such an interpretation is however not possible in general.
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C (positive cone)

c

C
-
2

C
+

1

C
-
1

C
+

2

�� C (vector space)

Figure 2.1: Real vector space generated by a regular convex cone

From now on and for the rest of this chapter,
✞☛✡✌☞✎✍✑✏

is a duality such that
✡

is Mackey

quasi-complete. Then applying these abstract results to the convex cones of the first chapter

“Hilbertian subspaces”
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

and ✒ ✓ ✞✕✍✖☞✠✡✗✏
we get that:

Theorem 2.1 ✞✠✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
and ✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏

are two isomorphic vector spaces. We

still note this isomorphism
✕

✕ ✄ ✞✠✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✆✟✞ ✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏
�
✓
✆ � ✓ ✟ ✆✟✞ ✙ ✓

✆ ✙ ✓
The previous theory of Hilbertian subspaces extends naturally to these vector spaces✞ ✟
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�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
and ✞ ✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏

thanks to this isomorphism. The question of an interpreta-

tion of these spaces (other than an abstract equivalence class) is then open.

2.1.2 Interpretation of these abstract vector spaces

The second vector space✞ ✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏
is the easiest to interpret. Two formal differences of

positive kernels✙ ✣
✓

✆ ✙ ✣✓ and ✙ �✓
✆ ✙ �✓ are equal if the following equality occurs:

✙ ✣
✓
✖ ✙ �✓ ✍ ✙ �✓

✖ ✙ ✣✓
But since the set of kernels is a vector space with respect to the same addition operator, This

equivalence relation is exactly the equality of the non-positive kernels

✙ ✣
✓

✆ ✙ ✣✓ ✍ ✙ �✓
✆ ✙ �✓

We can interpret✞ ✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏
as the subset of✒ ✑ ✞✕✍✖☞✠✡✗✏

(the set of self-adjoint kernels)

whose elements admit a decomposition as the difference of two positive kernels. This vector

space will be studied further throughout this chapter.

A direct interpretation of the first vector space is far more difficult to give. But a first step to

understand this vector space is to define the vector space of Krein subspaces for we will see

that these two vector spaces are closely related. It is the aim of the next sections to define

Krein subspaces and understand how they are related to the set ✞✠✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
.

2.2 Krein spaces and Krein subspaces

The previous construction leads to a very important theoretical result, but an interpretation of

the elements of✞ ✟ �✂✁☎✄✝✆✟✞✠✞ ✡✌☞✎✍ ✏✠✏
has not been given yet. However, since they are differences

of Hilbert spaces quotiented by an equivalence relation, itis natural to wonder whether they

are related to Krein spaces, which may be seen as differencesof Hilbert spaces (that do not

intersect) quotiented by a second equivalence relation.
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2.2.1 Krein spaces, Pontryagin spaces

Krein spaces and Pontryagin spaces are special types of inner product spaces, that can be

seen as the sum of a Hilbert space and the antispace of a Hilbert space. Before going further,

it might be useful to review some prerequisites on inner product spaces and antispaces. We

refer for instance to [20] for proofs of these statements.

Definition 2.2 ( – inner product space – )An (indefinite) inner product space is a vector

space
�

together with a sesquilinear bilinear form on
� ✂ �

: ✓ ✥ ✔ ✥ ✕ , called inner product

on
�

.

Definition 2.3 ( – antispace – )Let
✞ �✂☞ ✓ ✥ ✔ ✥ ✕ ✏ be an inner product space. Then its anti-

space
✆✔�

is the inner product space
✞ �✂☞ ✆ ✓ ✥ ☞✦✥ ✕ ✏ .

It is then classical to define for an inner product the positivity, negativity, nondegeneracy

properties. For instance, a prehilbert space is an inner product space whose inner product is

strictly positive (i.e. positive nondegenerate).

As for Hilbert spaces, we can define isomorphisms between inner product spaces and oper-

ators may be symmetric, positive for the inner product.

Krein spaces are a special kind a inner product spaces related with Hilbert spaces. There

are at least three equivalent definitions of Krein space. Thefirst is about the class of Krein

spaces, the second is based on the decomposition of Krein spaces into a sum of two inner

product spaces and the third is an operator characterization.

Definition 2.4 ( – class of Krein spaces, Krein spaces – )The class of Krein spaces is the

smallest class of inner product spaces, closed under orthogonal direct sums, that contains

all Hilbert spaces and antispaces of Hilbert spaces. A innerproduct space is a Krein space

if it is in the class of Krein spaces.
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Proposition 2.5 ( – equivalent definitions of Krein spaces – )The three following statements

are equivalent:

1.
✞ �✂☞ ✓ ✥ ✔ ✥ ✕ ✏ is a Krein space;

2. There exists two Hilbert spaces
�
✓ and

� ✓ such that
�

has the fundamental decom-

position
� ✍ � ✓

� � ✓
3. There exists a Hilbert space

✞✦✔ � ✔ ☞ ✓✣✓ ✥ ✔ ✥ ✕✣✕ ✏ and a symmetry (unitary, self-adjoint oper-

ator) ✁ (called the fundamental symmetry or metric operator or Gramoperator) such

that

✓ ✥ ✔ ✥ ✕ ✍ ✓✣✓✂✁ ✞ ✥ ✏ ✔ ✥ ✕✣✕
These decompositions are not unique: if

� ✣
✓
☞ � ✣✓ ☞ � �✓

☞ �
�✓ are four Hilbert spaces such that

� ✣
✓
✄ � ✣✓ ✍ �✪✥✧✦ and

�
�✓
✄ �

�✓ ✍ � ✥✧✦ , then they define the same Krein space if and only

if they verify the following equivalence relation:

✞ � ✣
✓

✆ � ✣✓ ✏✟✁ ✡ ✞ � �✓
✆ � �✓ ✏ ✂

✂ � ✣
✓
� � ✣✓ ✍ � �✓

� � �✓
Since these decompositions are not unique, it is important to know what fundamental prop-

erties of the Krein space do not depend on the particular decomposition chosen. This is the

content of the following lemmas:

Lemma 2.6 Let
✞ �✂☞ ✓ ✥ ✔ ✥ ✕ ✏ be a Krein space. Then for any two fundamental decompositions

� ✍ �
✣
✓
� � ✣✓ ✍ � �✓

� � �✓ , ☎✄☎ �
✞ � ✣
✓
✏ ✍✆☎✄☎ �

✞ �
�✓
✏

and ☎✄☎ �
✞ � ✣✓ ✏ ✍✆☎✄☎ �

✞ �
�✓ ✏ .

Lemma 2.7 Let
✞ �✂☞ ✓ ✥ ✔ ✥ ✕ ✏ be a Krein space and

✞✦✔ � ✔ ✣ ☞ ✁
✣
,
✞✦✔ � ✔

�
☞ ✁ �
✏

two symmetry de-

compositions. Then the norms on
✔ � ✔ ✣

and
✔ � ✔

� are equivalent. they are also equivalent

with the norm ✘ ☞ ✓
✖ ☞ ✓ ✘ � ✏ ✍ ✘ ☞ ✓ ✘ � ✏ ✄ ✖ ✘ ☞ ✓ ✘ � ✏ ★ for any fundamental decomposition

� ✍ � ✓
� � ✓ .
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We can now define some intrinsic features of a Krein space:

Definition 2.8 Let
�✂☞ ✓ ✥ ✔ ✥ ✕ be a Krein space. We call positive (resp. negative) indice ofthe

Krein space the number
✁✝✆ ✌ ✓ � ✍ ☎✄☎ �

✞ �
✓
✏

(resp.
✁✝✆ ✌ ✓ � ✍ ☎✄☎ �

✞ � ✓ ✏ ). We call strong

topology on
�

the topology induces by the norm on
✔ � ✔

.

Remark that from the preceding lemmas, the two quantities are well defined. The negative

index is also known as the Pontryagin index. As a consequence, the inner product is con-

tinuous with respect to this topology and the Riesz representation theorem holds in Krein

spaces:

Theorem 2.9 Let
✝

be a linear form on
�

. Then
✝

is continuous with respect to its strong

topology if and only if it is of the form
✝ ✍ ✓ ✥ ✔ ☞ ✕ and in this case,☞ is unique.

This result may be restated as follows:

Proposition 2.10 The strong topology on
�

is the Mackey topology for the dual system
✞ �✂☞ � ✏

with (generally asymmetric) bilinear form

✎ ✄ ☛ ✍ �✑✂ ☎ ✍ � ✆✟✞ ✘
☞ ✣ ☞ ☞ �

✟ ✆✟✞ ✓ ☞ ✣ ✔ ☞ �✖✕
From the preceding proposition and lemmas, we have the following interpretation of Krein

spaces in terms of Hilbertian subspaces and their kernels:

Corollary 2.11 Let
�

be a Krein space. Then for any of its fundamental decomposition
� ✍ � ✓

� � ✓ ,
�
✓ and

� ✓ are Hilbertian subspaces of the dual system
✞ �✂☞ � ✏

(or of
�

endowed with its strong topology) and their Hilbertian kernels verify ✙ ✓
✆ ✙ ✓ ✍ ✁ ✌ ✏ .

Proof. – The fact that
�
✓ and

� ✓ are Hilbertian subspaces of the dual system
✞ �✂☞ � ✏

is a direct application of lemma 2.7. The kernels are exactlythe orthogonal projec-

tion in the space
✔ � ✔

which gives the equality✙ ✓
✆ ✙ ✓ ✍ ✁ ✌ ✏ . ✡
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2.2.2 Pontryagin spaces

The class of Pontryagin spaces is the class of Krein spaces with finite negative indice:

Definition 2.12 ( – Pontryagin space – )An inner product space
�

is a Pontryagin space

if and only if it is a Krein space
�

and
✁✝✆ ✌ ✓ �✁� ✍ .

There is little interest in studying Pontryagin spaces compared with Krein spaces in general

but we will see that when dealing with Hermitian subspaces, they hold a remarkable property.

Example: Minkowski spacetime

The first indefinite metric spaces were probably the finite-dimensional Minkowski spaces of

special relativity [21]. They are commonly used nowadays incosmology for their simple

mathematical properties even if they are not curved spaces and hence do not fit the general

relativity setting.

We consider here the three dimensional Minkowski space
� ✍ ✞

✂
endowed with the indef-

inite inner product✓☎✄ ✣ ✔ ✄ �✖✕ ✏ ✍ ✜✂✣✤✜
�

✖ ✜ ✁ ✣ ✜ ✁
�

✆ ✁ ✣ ✁
� .

Vectors with positive (resp. negative, zero) length are called positive (resp. negative, neu-

tral). For instance
✞✁�✟☞ �✟☞ � ☎ ✏

is neutral.

Figure 2.2 (taken from [27]) gives a representation of this space, of a positive and negative

subspace and of a neutral cone.

2.2.3 Krein (or Hermitian) subspaces

Hermitian subspaces appear for the first time in the work of L.Schwartz [46] who tries to

generalize the notion of Hilbertian subspaces. The development of this notion led him to
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Negative subspace

Neutral cone

Positive subspace

y

x

Figure 2.2: 3-D Minkowski spacetime

the particular study of Krein spaces, even if he did not use the word “Krein space” since

this term was not used at the time (and that is why he kept the word “Hermitian”). It initi-

ated a new direction in studying Hermitian kernels, notablythose that admit a Kolmogorov

decomposition, since they may be associated to Krein (Hermitian) subspaces. As for Hilber-

tian subspaces, Krein subspaces are Krein spaces with the additional property that they are

strongly included in a locally convex space
✡

.
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Precisely, we have seen in the previous section on Krein spaces that we can endow these

spaces with an intrinsic topology for which the inner product is continuous (and the Riesz

identification theorem holds). We then characterize Krein (Hermitian) subspaces with re-

spect to this topology (the definition of Krein subspaces then mimics the definition of Hilber-

tian subspaces):

Definition 2.13 ( – Krein (or Hermitian) subspaces – )Let
✞☛✡✌☞✎✍✑✏

be a duality (resp.
✡

a

l.c.s). A space
�

is a Krein (Hermitian) subspace of
✞☛✡✌☞✎✍✑✏

(resp. of
✡

) if it is a Krein space

such that:

1.
� ✓ ✡

2. The canonical injection is continuous if
�

is endowed with the strong topology and
✡

with any topology compatible with the duality (resp. with its initial topology).

We note�✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏ the set of Krein (Hermitian) subspaces of the duality
✞☛✡✌☞✎✍✑✏

.

We can equivalently define Pontryagin subspaces:

Definition 2.14 ( – Pontryagin subspaces – )Let
✞☛✡✌☞✎✍✑✏

be a duality (resp.
✡

a l.c.s). A

space
�

is a Pontryagin subspace of
✞☛✡✌☞✎✍✑✏

(resp. of
✡

) if and only if it is a Pontryagin

space and a Krein subspace of
✞☛✡✌☞✎✍✑✏

(resp. of
✡

).

For Krein spaces, the Mackey topology that corresponds to the self-duality
✞ �✂☞ � ✏

is exactly

the strong topology (proposition 2.10). The strong continuity of the canonical injection can

then be interpreted in terms of the weak or Mackey topology:

Proposition 2.15 ( – topological characterization of Krein subspaces – )the following state-

ments are equivalent:

1.
�

is Krein subspace of
✞☛✡✌☞✎✍✑✏

;
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2. The canonical injection
✁ ✄ �✠✟✞ ✡

is weakly continuous;

3.
✁ ✄ � ✟✞ ✡

is continuous with respect to the Mackey topologies on
�

and
✡

.

Proof. – Let us prove that
✞✁� ✏✄✂ ✞✆☎ ✏✝✂ ✞✆✞ ✏✄✂ ✞✁� ✏

:

✞✁� ✏✝✂ ✞✆☎ ✏
corollary 1 p 106 [26]: if✚ ✄ �✠✟✞ ✡

is continuous, it is weakly continuous.

✞✆☎ ✏✝✂ ✞✆✞ ✏
We can cite corollary 2 p 111 [26]: if✚ ✄ �✠✟✞ ✡

is weakly continuous, it is continuous

if
�

is endowed with the Mackey topology (and
✡

with any topology compatible with

the duality).

✞✆✞ ✏✝✂ ✞✁� ✏
The strong topology of the Krein space

�
is the Mackey topology (proposition 2.10),

and we use the previous argument (corollary 2 p 111 [26]). ✡

What can we say about the Hilbert spaces appearing in any fundamental decomposition of a

Krein subspace? Are they Hilbertian subspaces? The answer is positive:

Proposition 2.16 Let
✞ �✂☞ ✓ ✥ ✔ ✥ ✕ ✏ be a Krein subspace of

✞☛✡✌☞✎✍✑✏
. Then for any fundamental

decompositions
� ✍ �

✓
� � ✓ ,

�
✓ and

� ✓ are Hilbertian subspaces of
✞☛✡✌☞✎✍✑✏

.

Conversely, If
�
✓ and

� ✓ are Hilbertian subspaces of
✞☛✡✌☞✎✍✑✏

in direct sum, then
� ✍

�
✓

� � ✓ is a Krein subspace of
✞☛✡✌☞✎✍✑✏

.

Proof. – This proposition follows from lemma 2.7 and the definition ofthe strong

topology. ✡

example 1 � � -example

Let
� ✍ ✞ � with inner product

✓✑★ ✔ ✛ ✕ ✏ ✍ ✜✂✣ ✁ ✣ ✆ ✜
�

✁
�
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It is obviously a Krein subspace of✞ � and for the fundamental decomposition✞ � ✍✁✂
✞ ✥

✄☎
�

✁✂ ✥
✞

✄☎
,

✁✂
✞ ✥

✄☎
and

✁✂ ✥
✞

✄☎
are Hilbertian subspaces of✞✁� .

example 2 Sobolev spaces

Let
✭

be an open set of✞ and define

� ✍ ✠ ✣ ✞ ✭ ✏ � ✞ ✥
1l ✙ ✍

☞ ☞ ☞ ✄ ✁ ☞ ☞ ✞ ✮ ✏ ✍✜✛
✙

1l ☎✆☎
✓ ✜ ✞ ✝ ✏ ✌ ✝ ✖ ✩ ☞ ✜ ☞✏✎ � ✞ ✭ ✏ ☞ ✩ ☞ ✞ ✝

with inner product (
☞ ✞ ✮ ✏ ✍ ☎

✙ 1l ☎✆☎
✓ ✜ ✞ ✝ ✏ ✌ ✝ ✖ ✩ ☞✢✖ ✞ ✮ ✏ ✍ ☎

✙ 1l ☎✆☎
✓

✢ ✞ ✝ ✏ ✌ ✝ ✖ ✪
)

✓ ☞ ✔ ✖ ✕ ✏ ✍ ✓ ☞☎✆ ✩ ✔ ✖ ✆ ✪ ✕ ✗ � ✁ ✙ ✞ ✆ ✩ ✥ ✪ ✍✜✛
✙

✜ ✞ ✝ ✏ ✢ ✞ ✝ ✏ ✌ ✝ ✆ ✩ ✥ ✪

Then
�

is a Krein subspace of✄ ✁
.

The set�✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏
is then obviously a vector space. In order to understand its link with

the vector space of Hermitian kernels, we have to make the link between this vector space

and the vector space✞✠✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
.

2.3 Hermitian kernels and Krein subspaces

There are two ways to develop the link between Krein subspaces and Hermitian (or self-

adjoint) kernels. The first is to interpret the set✞ ✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
(isomorphic to ✞ ✟

✒ ✓ ✞✕✍✖☞✠✡✗✏
) in terms of Krein subspaces and the second is to mimic directly the results (if

possible) of the first chapter. The first is sufficient but the second gives the (same) results in

a somehow more comprehensible and understandable manner.

2.3.1
�✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✠✍✏✎✠✎

and �✟✞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✠✍✏✎✠✎

This section is the crucial part of this chapter since all theresults concerning the links be-

tween Krein spaces and Hermitian kernels derive from the similarities and differences be-

tween the two sets�✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏
and ✞✠✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

.
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The first thing is to understand that these two sets are not isomorphic in general.

To be convinced of this, the following example due to L. Schwartz shows that two distinct

Krein spaces may be equal if seen as elements of✞ ✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
.

example (- Distinct Krein spaces equal in✞✠✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
-)

Let
✡

be an infinite dimensional Hilbert space,
�
✓ and

� ✓ two closed subsets of
✡

Zsuch that
�
✓
� � ✓ ✍ ✥ and

�
✓

✂ � ✓ is dense in
✡

but not equal to
✡

(we say that
�
✓ and

� ✓ are in tangent position).

We then define
�✂✁
✓ and

�✄✁✓ : they verify
�✂✁
✓
� �✄✁✓ ✍ ✥ and

�✄✁
✓

✂ �✄✁✓ dense in
✡

but not equal to
✡

and also
�
✓

✂ �✄✁
✓ ✍ � ✓ ✂ �✄✁✓ ✍ ✡

.

This last equation gives the equality of
�
✓

✆ � ✓ and
�✄✁
✓

✆ �✄✁✓ as elements of

✞ ✟ �✂✁☎✄✝✆✟✞✠✞ ✡✌☞✎✍✑✏ ✏
, but the spaces

�
✓

✂✖� ✓ and
�✄✁
✓

✂✖�✄✁✓ are not equal (If they were

equal, they would contain
✡

which is in contradiction with the hypothesis), hence two

different Krein spaces.

The two vector spaces are then different, but we can however state a crucial result based on

the two following lemmas:

Lemma 2.17 Let
�

be a Krein subspace of
✞☛✡✌☞✎✍✑✏

. Then for any two canonical decompo-

sitions
� ✍ � ✣

✓
� � ✣✓ ✍ �

�✓
� �

�✓ we have that
� ✣
✓
✖ �

�✓ ✍ �
�✓
✖ � ✣✓ , i.e. they define

a unique element of✞✠✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
.

Proof. – Using corollary 2.11, we have that
✁ ✌ ✏ ✍ ✙ ✣

✓
✆ ✙ ✣✓ ✍ ✙ �✓

✆ ✙ �✓ hence

✙ ✣
✓
✖ ✙ �✓ ✍ ✙ �✓

✖ ✙ ✣✓ and finally
� ✣
✓
✖ �

�✓ ✍ �
�✓
✖ � ✣✓ . ✡

Lemma 2.18 Conversely, let
�
✓

✆ � ✓ ☞ ✞ ✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
. Then exists

� ✓
✓ and

� ✓✓
Hilbertian subspaces of

✞☛✡✌☞✎✍✑✏
such that:

1.
� ✓
✓

✄ � ✓✓ ✍☎✥
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2.
�
✓
✖ � ✓✓ ✍ � ✓✓ ✖ �✔✓

Proof. – Let ✙ ✓ and ✙ ✓ be the Hilbertian kernels of
�
✓ and

� ✓ and define the

positive kernel✙ ✍ ✙ ✓
✖ ✙ ✓ ,

�
its associated Hilbertian subspace of

✞☛✡✌☞✎✍✑✏
. Then

�
✓ and

� ✓ are Hilbertian subspaces of
�

with kernels✛ ✓ and ✛ ✓ . ✛ ✍ ✛ ✓ ✆ ✛ ✓ is a continuous

operator on
�

and its spectral decomposition gives✛ ✍ ✛ ✓ ✓ ✆ ✛ ✓ ✓ with ✛ ✓ ✓ and ✛ ✓ ✓ two

positive operators verifying
� ✓
✓

✄ � ✓✓ ✍ ✥ ,
� ✓
✓ and

� ✓✓ being the Hilbertian subspaces of
�

associated to✛ ✓ ✓ and ✛ ✓ ✓ . The equality
�
✓
✖ � ✓✓ ✍ � ✓✓ ✖ �✔✓

then follows from the

equality ✛ ✓ ✖ ✛ ✓ ✓ ✍ ✛ ✓ ✓ ✖ ✛ ✓ . ✡

It follows from these two lemmas that:

Theorem 2.19 ✞ ✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
is the quotient space of�✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏

with respect to

the equivalence relation
✁ ✂✆☎
✙✞✝ :� ✣ ✁✄✂✆☎

✙✞✝
�

� if and only if for two canonical decompositions (and then forany two)
� ✣ ✍

� ✣
✓

� � ✣✓ and
�

� ✍ �
�✓

� �
�✓ we have that

� ✣
✓
✖ �

�✓ ✍ �
�✓
✖ � ✣✓ .

The isomorphism between�✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏✍✌ ✁ ✂✆☎
✙✞✝ and ✞ ✟ �✂✁☎✄✝✆✟✞✠✞ ✡✌☞✎✍ ✏✠✏

will then extend to

an isomorphism between the two vector spaces�✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏✍✌ ✁ ✂✆☎
✙✞✝ and ✞ ✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏

.

Before stating the main definitions and results based on thisisomorphism, we study more

closely the set✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏
.

2.3.2 Hermitian kernels

We start with some definitions and propositions relative to kernels. At the end of the section

on Hilbertian subspaces, the notion of Kolmogorov decomposition has been defined for

positive reproducing kernels. We give here an apparently completely different definition for

self-adjoint kernels of an arbitrary duality:
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Definition 2.20 ( – Kolmogorov decomposition (first version)– ) We say that a self-adjoint

(Hermitian) kernel✙ ☞ ✒ ✑ ✞✕✍✖☞✠✡✗✏
admits a Kolmogorov decomposition (of the first kind) if

there exist two positive kernels✙ ✓
☞ ✙ ✓ ☞ ✒ ✓ ✞✕✍✖☞✠✡✗✏

such that

✙ ✍ ✙ ✓
✆ ✙ ✓

and we note this set✒ �✂✁ ✞✕✍✖☞✠✡✗✏
.

The equivalence relation is then the equality of the Hermitian kernels:

✞ ✙ ✣
✓
✆ ✙ ✣✓ ✏✟✁ ✡ ✞ ✙ �✓

✆ ✙ �✓ ✏ ✂
✂ ✞ ✙ ✣

✓
✆ ✙ ✣✓ ✏ ✍ ✞ ✙ �✓

✆ ✙ �✓ ✏
It may not be clear whereas there exists kernels that do not admit a Kolmogorov decompo-

sition. The following example answers this question.

example (- Kernel without a Kolmogorov decomposition -)

Let
✁

be a reflexive Banach space (over✞ ) that cannot be endowed with an Hilber-

tian structure . Then the kernel

✙ ✄✆✁ ✁ ✂ ✁ ✆✟✞ ✁ ✂ ✁ ✁
✞✝✆ ✁ ☞ ✆ ✏ ✟ ✆✟✞ ✞✝✆ ☞ ✆ ✁✕✏

does not admit a Kolmogorov decomposition.

If we could write ✙ ✍ ✛ ✓
� ✛ ✓ , then we would have the set equality

✞ ✁ ☞ ✁ ✁ ✏ ✍
�
✓

✂ � ✓ and
✁

could be endowed with a Hilbertian structure.

Proposition 2.21 The set of kernels that admit a Kolmogorov decomposition✒ �✂✁ ✞✕✍✖☞✠✡✗✏
is

also the quotient space of formal difference of positive kernels by the equivalence relation

✞ ✙ ✣
✓
✆ ✙ ✣✓ ✏✟✁✄✂✆☎

✙✞✝
✞ ✙ �✓

✆ ✙ �✓ ✏ ✂
✂ ✙ ✣

✓
✖ ✙ �✓ ✍ ✙ �✓

✖ ✙ ✣✓
i.e. the set✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏

:

✒ �✂✁ ✞✕✍✖☞✠✡✗✏ ✍ ✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏



81

Remark 2.22 This proposition is crucial since it gives the equivalence between the two

relations
✁ ✂✆☎

✙✞✝ and
✁ ✡ for kernels whereas they are not equivalent for Krein subspaces.

However, if such a decomposition exists then there are infinitely many decompositions (we

may sum any positive kernel to✙ ✓ and ✙ ✓ ). We need the following concept:

Definition 2.23 ( – independent positive kernels – )

Two positive kernels✙ ✓
☞ ✙ ✓ ☞ ✒ ✓ ✞✕✍✖☞✠✡✗✏

are independent if any positive kernel✛ such that

✛ ✝ ✙ ✓ and ✛ ✝ ✙ ✓ is zero.

If ✙ ✓ and ✙ ✓ are the Hilbertian kernels of
�
✓ and

� ✓ , this definition is equivalent to
�
✓

✄ � ✓ ✍ ✥ .

Even with this restriction, the Kolmogorov decomposition of a self-adjoint kernel in two

Zindependent positive kernels is not unique in general.

The following lemma gives equivalent conditions for a kernel to admit a Kolmogorov de-

composition:

Lemma 2.24 The following statements are equivalent:

� the self-adjoint kernel✙ admits a Kolmogorov decomposition;

� there exists two independent positive kernels✙ ✓
☞ ✙ ✓ ☞ ✒ ✓ ✞✕✍✖☞✠✡✗✏

such that

✙ ✍ ✙ ✓
✆ ✙ ✓

� There exists a positive kernel✛ dominating ✙ , i.e.

☛ ✞ ✟ ✣ ☞ ✟
�
✏ ☞ ✍ � ☞ ✞ ✟ ✣ ☞ ✙ ✞ ✟

�
✏✠✏ � ✁ ✠✡☎ ☛☞✞ ✝ ✞ ✟ ✣ ☞ ✛ ✞ ✟ ✣ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✞ ✟

�
☞ ✛ ✞ ✟

�
✏✠✏ ✁ ✂ ✂✆☎ ☛☞✞

or equivalently

☛ ✟ ☞ ✍✖☞ ✔ ✞ ✟ ☞ ✙ ✞ ✟ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✔ ✝ ✞ ✟ ☞ ✛ ✞ ✟ ✏✠✏ ✁ ✠✡☎ ☛☞✞
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Proof. – We refer to the proof in [46] that follows proposition 38 p 242. ✡

The next two sections will state the main results concerningKrein subspaces and Hermitian

kernels. We will give a second definition of the Kolmogorov decomposition of a Hermitian

kernel and prove that the two definitions are equivalent.

2.3.3 The fundamental theorem

Combining theorem 2.1 and theorem 2.19, one gets the existence of the following morphism

that associates any Krein subspace to a unique element of✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏
:

Theorem 2.25 We have the following factorization

�✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏ ✆✟✞ �✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏✍✌ ✁✄✂✆☎
✙✞✝ ✍ ✞✠✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏✁�✆ ✞ ✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏

and we still note
✕ ✄ �✂✁☎✄ ✁✝✆ ✞✠✞☛✡✌☞✎✍✑✏✠✏ ✆ ✞ ✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏

this well defined morphism.

However this formalism has a drawback since this definition of
✕

deals with equivalent

classes and is purely abstract. It may then be good to restatethis theorem and interpret it

directly. The proofs of the following theorems and propositions are omitted since they all

are a direct application of theorem 2.25.

2.4 Direct interpretation and application of this theorem

This section is devoted to a precise study of the morphism
✕

. We ask for instance the

following questions: can we define directly the image by
✕

of a Krein subspace? Are there

kernels with a unique antecedent?
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2.4.1 Hermitian kernel of a Krein subspace

Theorem 2.26 To any Krein subspace
�

of
✞☛✡✌☞✎✍✑✏

is associated a unique Hermitian kernel

✙ , verifying

☛ ✟ ☞ ✍✖☞ ☛ ☞ ☞ �✂☞ ✌ ✟ ☞ ✚ ✞ ☞ ✏ ✍ ✁ ✠✡☎ ☛☞✞ ✍ ✌ ☞ ☞✠✁ ✓ ✣
✂ ✙ ✞ ✟ ✏ ✍ ✁ ✏✁✄ ✏ ☎ ✏✒✞ ✍ ✓ ☞ ✔ ✁ ✓ ✣

✂ ✙ ✞ ✟ ✏ ✕ ✏
It is the linear application✙ ✍ ✁ ✂ ✓ ✚ where

✁ ✄ � ✆ ✞ ✡
and ✚ ✄ � ✠ � ✆✟✞ ✡

are the

canonical injections. This application is called the Hermitian kernel (or Krein kernel) of
�

.

This kernel is the image of
�

under the previous morphism
�

.

The Hermitian kernel of a Krein space is naturally related tothe Hilbertian kernels of any of

its fundamental decompositions:

Proposition 2.27 Let
✞ �✂☞ ✓ ✥ ✔ ✥ ✕ ✏ be a Krein subspace of

✞☛✡✌☞✎✍✑✏
. Then for any fundamental

decompositions
� ✍ �

✓
� � ✓ with Hilbertian kernels✙ ✓ and ✙ ✓ ,

✙ ✍ ✙ ✓
✆ ✙ ✓ (2.1)

Remark that for any fundamental decomposition
� ✍ �

✓
� � ✓ ,

�
✓

✄ � ✓ ✍ ✥ and the

Hilbertian kernels are independent.

We can easily find the kernels of the Krein subspaces defined inthe previous examples:

example 1 � � -example

The kernel of the Krein subspace of the Euclidean duality
✞ ✞ �

☞ ✞ �
✏ � ✍ ✞ � with

inner product

✓✑★ ✔ ✛ ✕ ✏ ✍ ✜✂✣ ✁ ✣ ✆ ✜
�

✁
�

is
✙ ✄ ✞ �

✆ ✞ ✞ �

✛ ✍ ✞✢✜✂✣ ☞✤✜
�
✏ ✟ ✆ ✞ ✙ ✞ ✛ ✏ ✍ ✞✢✜✂✣ ☞ ✆ ✜

�
✏ ✍ � ✥ ✛



84

with � ✍
✁✂ � ✥✥ ✆ �

✄☎
.

example 2 Sobolev spaces

The kernel of the Krein subspace of
✞ ✄ ✁☛☞ ✄ ✏

� ✍ ✠ ✣ ✞ ✭ ✏ � ✞ ✥
1l ✙ ✍

☞ ☞ ☞ ✄ ✁ ☞ ☞ ✞ ✮ ✏ ✍✜✛
✙

1l ☎✆☎
✓ ✜ ✞ ✝ ✏ ✌ ✝ ✖ ✩ ☞ ✜ ☞✏✎ � ✞ ✭ ✏ ☞ ✩ ☞ ✞ ✝

with inner product (
☞ ✞ ✮ ✏ ✍ ☎

✙ 1l ☎✆☎
✓ ✜ ✞ ✝ ✏ ✌ ✝ ✖ ✩ ☞✢✖ ✞ ✮ ✏ ✍ ☎

✙ 1l ☎✆☎
✓

✢ ✞ ✝ ✏ ✌ ✝ ✖ ✪
)

✓ ☞ ✔ ✖ ✕ ✏ ✍ ✓ ☞☎✆ ✩ ✔ ✖ ✆ ✪ ✕ ✗ � ✁ ✙ ✞ ✆ ✩ ✥ ✪ ✍✜✛
✙

✜ ✞ ✝ ✏ ✢ ✞ ✝ ✏ ✌ ✝ ✆ ✩ ✥ ✪

is

✙ ✄ ✄ ✆ ✞ ✄ ✁

✜ ✟ ✆ ✞ ✙ ✞ ✜ ✏ ✞ ✮ ✏ ✍ ☎
✙ � ☎✝✆ ✞ ✝ ☞ ✮ ✏ ✜ ✞ ✝ ✏ ✌ ✝ ✆ ☎

✙ ✜ ✞ ✝ ✏ ✌ ✝ ✍ ☎
✙
✞

� ☎✝✆ ✞ ✝ ☞ ✮ ✏ ✆ � ✏ ✜ ✞ ✝ ✏ ✌ ✝

2.4.2 Krein subspaces associated to a kernel: kernels of unicity and kernels of

multiplicity

Theorem 2.28 Let
✞☛✡✌☞✎✍✑✏

be a duality,
✡

Mackey quasi-complete and✙ ☞ ✒ ✞✕✍✖☞✠✡✗✏
a self-

adjoint kernel. Then the following propositions are equivalent:

1. ✙✡☞ ✞✠✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏
;

2. There exists at least one Krein subspace
�

of
✞☛✡✌☞✎✍✑✏

with kernel ✙ .

In this case, for any Kolmogorov decomposition✙ ✍ ✙ ✓
✆ ✙ ✓ ,

� ✍ �
✓

� � ✓ is a Krein

subspace of
✞☛✡✌☞✎✍✑✏

with kernel ✙ and conversely, any fundamental decomposition of a Krein

subspace associated to✙ gives a Kolmogorov decomposition of✙ via its Hilbertian kernels.

Definition 2.29 ( – Kolmogorov decomposition (second version) – ) We say that a self-

adjoint kernel ✙ ☞ ✒ ✞✕✍✖☞✠✡✗✏
admits a Kolmogorov decomposition (of the second kind) if

there exists a Krein space
�

and a weakly continuous operator�
✄ ✍ ✆✟✞ �

such that:
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1. ✙ ✍ � ✑ � ;

2. � ✞✕✍✑✏
is dense in

�
.

The pair
✞ �✂☞ � ✏

is called a Kolmogorov decomposition of the Hermitian kernel ✙ .

Theorem 2.30 If
✡

is quasi-complete, the two definitions of a Kolmogorov decomposition

are equivalent.

Remark 2.31 The hypothesis of quasi-completeness of the space
✡

(with respect to the

Mackey topology) is often passed under silence in many texts, mostly because these texts deal

with a particular space
✡

(such as✞ ✙ ) obviously complete for its initial topology. However,

the (quasi)-completeness of the space is fundamental to ensure that � ✑ is one-to-one, i.e.

� ✞✕✍✑✏
dense in

�
.

In case
✡

is not quasi-complete, one can use the results of proposition 1.18. However, there

are in general many semi-norms associated to a kernel, each one depending on the particular

decomposition we use and the continuity of a particular semi-norm does not imply in general

the continuity of one another.

The following proposition gives equivalent criteria for the unicity of the Kolmogorov de-

composition:

Proposition 2.32 Let
✡

be Mackey quasi-complete and✙ ☞ ✞ ✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏ . The following

statements are equivalent:

1. There is only one Krein subspace of
✞☛✡✌☞✎✍✑✏

with kernel ✙ ;

2. for any two Kolmogorov decompositions of the first kind✙ ✍ ✙ ✣
✓

✆ ✙ ✣✓ ✍ ✙ �✓
✆ ✙ �✓ ,

� ✣
✓

✂ �
�✓ ✍ �

�✓
✂ �

�✓ ;

3. for any two Kolmogorov decompositions of the second kind
✞ � ✣ ☞ �

✣ ✏
and

✞ �
�
☞ � �

✏
,

there exists a unitary isomorphism�
✄ � ✣ ✆ ✞ �

� such that� � ✍✁� �
✣
.
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In this case, we say that the Krein kernel✙ is a kernel of unicity , or equivalently that it

admits a unique Kolmogorov decomposition. If one (any) of these conditions is not fulfilled,

we say that✙ is a kernel of multiplicity.

Conversely, we say that a Krein subspace is of unicity (resp.multiplicity) if its Krein kernel

is of unicity (resp. multiplicity).

The results of this chapter can then be summarized as follows(with
✡

Mackey quasi-

complete):

The set of formal differences of Hilbertian subspaces and the set of formal differ-

Zences of positive kernels are isomorphic and the results of the previous chapter remain

valid. Moreover, we can interpret the first set as the quotient space of Krein subspaces

of
✞☛✡✌☞✎✍✑✏

with respect to an equivalence relation and the second as thesubset of self-

adjoint kernels that admit a Kolmogorov decomposition.

The next section gives the main results concerning kernels of unicity and multiplicity.

2.4.3 Kernels of unicity, multiplicity and Pontryagin spaces

It is of major importance to know whether a given kernel is of unicity or of multiplicity. This

is a rather difficult question in general, but some results based on the rank of the positive

kernels appearing in any Kolmogorov decomposition exists,mainly when the space
✍

is

nuclear. Once again we refer to [46] where the proofs are detailed.

Lemma 2.33 Let ✙ ✍ ✙ ✣
✓

✆ ✙ ✣✓ with ✙ ✣
✓ and ✙ ✣✓ independent and✙

✣✓ of finite rank✁ . Then

for any other decomposition✙ ✍ ✙ �✓
✆ ✙ �✓ , ✙ �✓ and ✙ �✓ independent,✁ ✄ ✆ ☞ ✞ ✙ �✓ ✏ ✍ ✁ .

In this case, we say that the kernel is a Pontryagin kernel.
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Theorem 2.34 Let ✙ ✍ ✙ ✓
✆ ✙ ✓ with ✙ ✓ of finite rank. Then the kernel is of unicity and

the associated Krein subspace is a Pontryagin space.

Conversely, the Hermitian kernel associated to any Pontryagin subspace is of unicity.

It follows that any positive kernel is of unicity, which was already known thanks to the

Hilbertian subspaces theory.

Corollary 2.35 The set of Pontryagin subspaces of
✞☛✡✌☞✎✍✑✏

is a vector space isomorphic to

the vector space of Pontryagin kernels (an isomorphism being
✕

).

Corollary 2.36 Any kernel of multiplicity is of the form✙ ✍ ✙ ✓
✆ ✙ ✓ with ✙ ✓ and ✙ ✓

independent and both of infinite rank.

Apart this statement, two results are interesting concerning kernels of multiplicity:

Proposition 2.37 Let ✙ be a kernel of multiplicity,
� ✣✁�✍ �

� two different Krein subspaces

associated to✙ . Then:

1.
� ✣ ✄ � ✂

�
�✍☎✥

2.
�

�
✄ � ✂✣ �✍☎✥

This proposition shows that the different Krein subspaces associated with a kernel of multi-

plicity do not verify inclusion relations.

There is an other interesting result concerning kernels of multiplicity based on the properties

of the space
✍ 2.

Proposition 2.38 Suppose
✍

is barreled3 (for its Mackey topology) and nuclear. Then✙

is a kernel of unicity if and only if it admits a Kolmogorov decomposition of the form✙ ✍
✙ ✓

✆ ✙ ✓ with ✙ ✓ of finite rank.
�

This result will be notably useful in the section that deals with the special case✂ ✂☎✄ ✄
�

Then ✂ is weakly quasi-complete.
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Corollary 2.39 If
✍

is barreled and nuclear, the only Krein subspaces of unicityare the

Pontryagin subspaces.

2.5 Reproducing kernel Krein and Pontryagin spaces

As for Hilbertian subspaces, the case of
✡ ✍ ✘ ✙ endowed with the product topology, or

topology of simple convergence, where
✭

is any set, has a special place in the theory and

many papers deal with what are called reproducing kernel Krein spaces (in short r.k.k.s.) or

reproducing kernel Pontryagin spaces (in short r.k.p.s.).

Many definitions and properties of r.k.h.s. extend naturally to the Krein setting and will

be exposed in the first section whereas the second one deals mainly with the properties of

Pontryagin kernels.

2.5.1 Generalities about r.k.k.s.

Definition 2.40 A Krein space
�

is a reproducing kernel Krein space if there exists a set
✭

,
�

is a Krein subspace of
✡ ✍ ✘ ✙ endowed with the product topology.

We have seen (theorem 2.9) that in a Krein space, the Riesz representation theorem holds.

Characterizations of r.k.h.s. in terms of a reproducing kernel extends then naturally to r.k.k.s.

:

Proposition 2.41 Let
� ✓ ✘ ✙ be a Krein space. The following statements are equivalent:

1.
�

is a r.k.k.s.

2. The canonical injection from
�

into ✞ ✙ is weakly continuous.

3. ☛ ☞ ☞ �✂☞ ☛ ✮ ☞ ✭ ☞ �✄✂
✓
☞ ✔ ☞ ✞ ✮ ✏ ✔ ✝ ✂

✓ ✘ ☞✙✘ ✡ ✏ ✡ .
4. ☛ ✝ ☞ ✭ ☞ � � ☎ ☞ �✂☞ ☛ ☞ ☞ �✂☞ ✓ � ☎ ✔ ☞ ✕ ✏ ✍ ☞ ✞ ✝ ✏

.



89

5.
� � ☞ ✘ ✙✞✝ ✙ ☞ � ✞ ✮ ☞ ✝ ✏ ✍ ✓ � ✞ ✥ ☞ ✝ ✏ ✔ � ✞ ✮ ☞✦✥ ✏ ✕ ✏

� is still known as the reproducing kernel and:

Theorem 2.42 Let
�

be a r.k.k.s. in✘✔✙ . Then its reproducing kernel� is the image of the

Schwartz kernel✙ under the isomorphism between✒ ✞✠✞ ✘ ✙ ✏ ✕☎☞ ✘ ✙ ✏ and ✘ ✙✞✝ ✙ (proposition

1.27):

☛ ✮ ☞ ✝ ☞ ✭ ☞ � ✞ ✮ ☞ ✝ ✏ ✍ ✂ ✙ ✞ �

✓
✏ � ✞ ✝ ✏

Corollary 2.43 It follows that � is Hermitian and admits a Kolmogorov decomposition i.e.

exist � ✓ and � ✓ independent positive kernels,� ✍ � ✓
✆ � ✓ .

Following proposition 1.16, we have the following:

Proposition 2.44
�✔✓ ✍✁� ✆ ✄ ✆ � � ✓

☞ ✮ ☞ ✭ ✦
� ✍ ��✔✓

The previous examples of Krein subspaces fit the r.k.k.s. setting:

example 1 Sobolev spaces

The Krein space

� ✍ ✠ ✣ ✞ ✭ ✏ � ✞ ✥ 1l ✙ ✍
☞ ☞ ☞ ✄ ✁ ☞ ☞ ✞ ✮ ✏ ✍✜✛

✙
1l ☎✆☎

✓ ✜ ✞ ✝ ✏ ✌ ✝ ✖ ✩ ☞ ✜ ☞✏✎ � ✞ ✭ ✏ ☞ ✩ ☞ ✞ ✝
with inner product (

☞ ✞ ✮ ✏ ✍ ☎
✙ 1l ☎✆☎

✓ ✜ ✞ ✝ ✏ ✌ ✝ ✖ ✩ ☞✢✖ ✞ ✮ ✏ ✍ ☎
✙ 1l ☎✆☎

✓
✢ ✞ ✝ ✏ ✌ ✝ ✖ ✪

)

✓ ☞ ✔ ✖ ✕ ✏ ✍ ✓ ☞☎✆ ✩ ✔ ✖ ✆ ✪ ✕ ✗ � ✁ ✙ ✞ ✆ ✩ ✥ ✪ ✍✜✛
✙

✜ ✞ ✝ ✏ ✢ ✞ ✝ ✏ ✌ ✝ ✆ ✩ ✥ ✪

is a r.k.k.s. over
✭

with kernel function

� ✞ ✮ ☞ ✝ ✏ ✍✁� ☎✝✆ ✞ ✝ ☞ ✮ ✏ ✆ �
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2.5.2 Pontryagin kernels and reproducing kernels of multiplicity

Proposition 2.45 A reproducing kernel Krein space is of unicity if and only if it is a repro-

ducing kernel Pontryagin space.

Proof. – By proposition 1.27,
✞ ✘ ✙ ✏ ✁

is barreled and nuclear and we apply propo-

sition 2.38. ✡

It follows that reproducing kernel Pontryagin spaces (r.k.p.s.) play a special role in this

theory for they are the only reproducing kernel Krein spacesof unicity.

example 2 � � -example
� ✍ ✞ � with inner product

✓✑★ ✔ ✛ ✕ ✏ ✍ ✜✂✣ ✁ ✣ ✆ ✜
�

✁
�

is a r.k.k.s. (precisely a r.k.p.s.) over
✭ ✍✁� �✟☞ ☎ ✦ with kernel function

� ✞☛✁ ☞ ✚ ✏ ✍ � � ☎ ✁
, � ✍

✁✂ � ✥✥ ✆ �

✄☎

example 3 Polynomials, splines

In the previous chapter we were interested in the (non-positive) function

� ✞ ✮ ☞ ✝ ✏ ✍ ✞✠✞ ✮ ✆ ✝ ✏ ✙ ✍
✙✁

✁ ✡ ✓
✞ ✆ � ✏ ✙ ✓ ✁ ✆✝✆

✚ ✆✕✞ ✆ ✆ ✚ ✏✞✆ ✮
✁ ✝ ✙ ✓ ✁

that, according to [23] is however a classical function associated to ✟ ✙ the space of

univariate polynomials of degree
✆

. In the special case
✆ ✍ ☎ ✆ (

✆
even) � is sym-

metric and spans a finite dimensional space. It follows that it admits a Kolmogorov

decomposition and that it is associated with a Pontryagin space. The Kolmogorov
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decomposition is

� ✞ ✮ ☞ ✝ ✏ ✍ ✞✠✞ ✮ ✆ ✝ ✏ � ✡ ✍ � ✓
✞ ✮ ☞ ✝ ✏ ✆ � ✓ ✞ ✮ ☞ ✝ ✏

✍
✡✁

✁ ✡ ✓
✞✆☎ ✆ ✏✞✆☎ ✚ ✆✕✞✆☎ ✆ ✆ ☎ ✚ ✏✞✆ ✮ �

✁ ✝ �
✁ ✡ ✓ ✁ ✞ ✆ ✡✁

✁ ✡ ✓
✞✆☎ ✆ ✏✞✆✞✆☎ ✚ ✖ � ✏✞✆✕✞✆☎ ✆ ✆ ☎ ✚ ✖ � ✏✞✆ ✮ �

✁
✓

✣ ✝ �
✁ ✡ ✓ ✁ ✞ ✓ ✣

However, the case
✆

odd cannot be treated within this formalism. Next chapter will

gives us a theory to treat this final case.

2.6 Admissible prehermitian subspaces

In [46] L. Schwartz does more than introduce the notion of Hermitian subspaces entirely

defined after the notion of Hilbertian subspaces, since he introduces the notion of admissible

prehermitian subspace of a l.c.s. and shows that there exists a surjection from this class of

space onto the space of self-adjoint (Hermitian) kernels. Moreover he constructs the image

of an admissible prehermitian subspace, but an equivalencerelation is still needed to give the

set of admissible prehermitian subspaces the structure of acategory. This section presents

these notions. The formalism will be enlarged in next chapter.

2.6.1 Admissible prehermitian subspaces

Definition 2.46 ( – prehermitian space – )A prehermitian space is an inner product space

with a Hermitian inner product.

We can now define admissible prehermitian subspaces of a duality.:

Definition 2.47 ( – admissible prehermitian subspace (of a duality) – )Let
✞☛✡✌☞✎✍✑✏

be a du-

ality. A prehermitian space
�

is an admissible prehermitian subspace of
✞☛✡✌☞✎✍✑✏

if:

1. the inner product on
�

is non-degenerate;
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2.
� ✓ ✡

;

3. ☛ ✟ ☞ ✍✖☞ � ☞ ☛ ☞ �✂☞ ☛ ☞ ☞ �✂☞ ✌ ✟ ☞ ☞ ✍ ✁ ✠✡☎ ☛☞✞ ✍ ✓ ☞ ✔ ☞ ☛ ✕ ✏ .

We note this set
☛ ✁☎✄✌☞ ✄✔✁✡✠ ✞✠✞☛✡✌☞✎✍✑✏✠✏

This definition that appears in L. Schwartz’s article [46] ispurely algebraic and simply states

that any linear form on
✡

restricted to
�

can be given by the symmetric bilinear form as-

sociated to
�

. To set a topological interpretation of this definition, oneneeds concepts of

dualities (exposed in the Appendix B Algebra).

Proposition 2.48 Suppose the indefinite inner product on
�

is separate such that
�

is in

separate duality with itself. Then we can endow
�

with the weak or Mackey topology with

respect to this duality and the following statements are then equivalent:

1.
�

is an admissible prehermitian subspace of
✞☛✡✌☞✎✍✑✏

;

2. The canonical injection
✁ ✄ �✠✟✞ ✡

is weakly continuous;

3.
✁ ✄ � ✟✞ ✡

is continuous with respect to the Mackey topologies on
☎

and
✡

.

Proof. – Let us prove that
✞✁� ✏✄✂ ✞✆☎ ✏✝✂ ✞✆✞ ✏✄✂ ✞✁� ✏

:

✞✁� ✏✝✂ ✞✆☎ ✏ ✚ ✁ ✄ ✟ ☞ ✍✖☞ ✟✞ ✂ ☛ ☞ �
is the transpose of the canonical injection and the canonical

injection is then weakly continuous.

✞✆☎ ✏✝✂ ✞✆✞ ✏
We can cite corollary 2 p 111 [26]: if

☎ ✄ �✠✟✞ ✡
is weakly continuous, it is continuous

if
�

is endowed with the Mackey topology (and
✡

with any topology compatible with

the duality).

✞✆✞ ✏✝✂ ✞✁� ✏
The strong topology of the Krein space

�
is the Mackey topology (proposition 2.10,

and we use the previous argument (corollary 2 p 111 [26]). ✡



93

We can of course derive from this definition the definition of admissible prehermitian sub-

spaces of a l.c.s.:

Definition 2.49 ( – admissible prehermitian subspace (of a lcs) – ) Let
✡

be a l.c.s. A

prehermitian space
�

is an admissible prehermitian subspace of
✡

if it is an admissible

prehermitian subspace of
✞☛✡✌☞✠✡ ✁✕✏

.

2.6.2 Schwartz kernel of an admissible prehermitian subspace

As for Hilbertian or Krein subspaces, we can associate to anyadmissible prehermitian sub-

space of
✞☛✡✌☞✎✍✑✏

a self-adjoint kernel✙✡☞ ✒ ✑ ✞✕✍✖☞✠✡✗✏ .

Proposition 2.50 To any admissible prehermitian subspace
�

of
✞☛✡✌☞✎✍✑✏

is associated a

unique self-adjoint (Hermitian) kernel✙ , verifying

☛ ✟ ☞ ✍✖☞ ☛ ☞ ☞ �✂☞ ✌ ✟ ☞ ✚ ✞ ☞ ✏ ✍ ✁ ✠✡☎ ☛☞✞ ✍ ✓ ☞ ✔ ✁ ✓ ✣ ✙ ✞ ✟ ✏ ✕ ✏
It is the linear application✙ ✍ ✁ ✂✁� , where�

✄ ✟ ✟✞ ✂ ☛ thanks to the property of admissible

prehermitian subspaces:☛ ✟ ☞ ✍✖☞ � ✂ ☛ ☞ �✂☞ ☛ ☞ ☞ �✂☞ ✌ ✟ ☞ ☞ ✍ ✁ ✠✡☎ ☛☞✞ ✍ ✓ ☞ ✔ ☞ ☛ ✕ ✏ This

application is called the Hermitian kernel of
�

.

Proof. – ☛ ☞ ☞ ☞ �✂☞ ✟ ☞ ✍

✞ ✟ ☞ ✚ ✞ ☞ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍ ✓ ☞ ✔ ☞ ☛ ✕ ✏
✍ ✓ ☞ ✔ ✁ ✓ ✣ ✞☛✁ ✂✂� ✞ ✟ ✏✠✏ ✕ ✏

and ✙ ✍ ✚ ✂✄� . Finally, we check that this linear application is weakly continuous by com-

position of weakly continuous morphisms and self-adjoint. ✡
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2.6.3 Image of an admissible prehermitian subspace by a weakly continuous

linear application: the category of admissible prehermitiansubspaces

It is interesting to construct directly the image of an admissible prehermitian subspace by a

weakly continuous morphism and look at the properties of theimage.

Let
☎ ✄ ✡ ✆✟✞ ✝

be a weakly continuous morphism and
�

an admissible prehermitian

subspace of
✞☛✡✌☞✎✍✑✏

with kernel ✙ . Define � ✍ � ✄ ✎✒✑✔✓ ☎
and ✁ the orthogonal of� in

�

with respect to its indefinite inner product. If☛ � ✓ ✡✌☞ ☎ ✡ ✂ denotes the restriction of
☎

to

the set
�

, we have� ✍ ✎✒✑✔✓ ✞ ☎ ✡ ✏ ✏ . Finally we define

✘ ✍✄✁ ✌ ✞ ✁✄☎✆� ✏

Lemma 2.51 The linear application
☎ ✡ ✝ is well defined and injective, and☛ ✞ ✗✆✗☞ ✗✆ ✁ ✏ ☞ ✘ ✂

✘
, the sesquilinear form (indefinite inner product)

✁ ✞ ☎ ✡ ✝ ✞ ✗✆ ✏ ☞ ☎ ✡ ✝ ✞ ✗✆ ✁ ✏✠✏ ✍ ✓ ✆✒✔ ✆ ✁ ✕ ✏
defines a indefinite inner product space

☎ ✡ ✝ ✞ ✘ ✏
.

Proof. – We have the following factorization

☎ ✄ ✎✒✑✔✓✟✞ ☎ ✡ ✏ ✏ ✁ ✆ ✞ ✞ ✎✒✑✔✓✟✞ ☎ ✡ ✏ ✏ ✁ ✌✏✎✒✑✔✓✟✞ ☎ ✡ ✏ ✏ ✂✟✞ ✠✆ ✞ ✝

and
☎ ✡ ✝ is one-to-one. Moreover the indefinite inner product

✁ ✄ ☎ ✡ ✝ ✞ ✘ ✏✁✂ ☎ ✡ ✝ ✞ ✘ ✏✂✆ ✞ ✘
is well defined since:

☛ ✞ ✆ ✣ ☞✍✆
�
✏ ☞ ✗✆✗☞ ☛ ✞ ✆ ✁ ✣ ☞✍✆ ✁

�
✏ ☞ ✗✆ ✁ ☞ ✓ ✆ ✣ ✆ ✆

�
✔ ✆ ✁ ✣ ✆ ✆ ✁

� ✕ ✏ ✍☎✥ . ✡

Theorem 2.52 The indefinite inner product space
☎ ✡ ✝ ✞ ✘ ✏

is an admissible prehermitian

subspace of
✞ ✝ ☞ ✎ ✏

called the image of
�

by
☎

and noted
☎ ✞ � ✏

. Its kernel is
☎ ✂ ✙ ✂ ✓ ☎

.
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Proof. – The algebraic inclusions of definition 2.47 are fulfilled andthe space
☎ ✡ ✝ ✞ ✘ ✏

is an admissible prehermitian subspace of
✝

.
☎ ✂ ✙ ✂ ✓ ☎ satisfies the requirements

of proposition 2.50. ✡

We can then define the operation of addition and multiplication thanks to the operators

✎ ✄ ✡ ✂ ✡ ✆ ✞ ✡
✞✑� ✣ ☞ �

�
✏ ✟ ✆ ✞ � ✣ ✖ �

�

and �

✔
✄ ✡ ✆ ✞ ✡

� ✟ ✆ ✞ � ✫ ✥ �

where
✫ ☞ ✞ but

� ✫ ☞ ✏ in general.

It is interesting to note that we cannot do that directly for Krein subspaces since the image

of a Krein subspaceneeds notto be a Krein subspace, but only an admissible prehermitian

subspace.

However, the operation of addition is not a true addition since it is not associative. To

endow the set of admissible prehermitian subspaces
☛ ✁☎✄✌☞ ✄✔✁✡✠ ✞✠✞☛✡✌☞✎✍✑✏✠✏

with a vector space

structure, one needs the equivalence relation:

� ✣ ✁✄✂✆☎
✙✞✝
�

� ✂
✂ � ✣ ✆ �

� ✍☎✥
Remark that we have seen that equivalence relation before: it is the equality of the Schwartz

kernels
� ✣ ✁✄✂✆☎

✙✞✝
�

� ✂
✂ ✙ ✣ ✍ ✙

�

hence it induces the previously defined equivalence relation
✁ ✂✆☎

✙✞✝ over Krein spaces.

We can then state the following proposition due to L. Schwartz [46]:
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Proposition 2.53 The three operations
✞ ✫ ☞ � ✏ ✟✞ ✫ ✥ �

,
✞ �✒✣ ☞ �

�
✏ ✟✞ � ✣ ✖ �

� ,
✞ ☎ ☞ � ✏ ✟✞

☎ ✞ � ✏
pass to the quotient by the previously defined equivalence relation. The set

� ✄✔✁✡✠ ✞✠✞☛✡✌☞✎✍✑✏✠✏ ✍
☛ ✁☎✄✌☞ ✄✔✁✡✠ ✞✠✞☛✡✌☞✎✍✑✏✠✏✍✌ ✁✄✂✆☎

✙✞✝ of equivalent classes of admissible prehermitian subspaces en-

dowed with the laws of multiplication by real scalars and addition is a vector space over✞
isomorphic to the vector space✒ ✑ ✞☛✡✌☞✎✍✑✏

.

Moreover, let
✕

be the category of dual systems
✞☛✡✌☞✎✍✑✏

(we do not require here
✡

to be

quasi-complete), the morphisms being the weakly continuous linear applications and
✘

be

the category of vector spaces, the morphisms being linear applications. Then
� ✄✔✁✡✠ ✄

✞☛✡✌☞✎✍✑✏ ✟✞ � ✄✔✁✡✠ ✞✠✞☛✡✌☞✎✍✑✏✠✏
is a covariant functor of category

✕
into category

✖
isomorphic

to the covariant functor✒ ✑ ✄ ✞☛✡✌☞✎✍✑✏✄✟✞ ✒✒✑ ✞✕✍✖☞✠✡✗✏

Conclusion and comments

The theory of Krein subspaces may be seen as the pure development of the theory of Hilber-

tian subspaces with respect to its structure of convex cone.However two problems arise.

The first is that we need an equivalence relation to endow the set of Krein subspaces a struc-

ture of vector space or study the image of a Krein subspace. Moreover this equivalence

relation is necessary to have a bijection between the quotiented set of Krein spaces and the

set of Hermitian kernels that admit a Kolmogorov decomposition. The second is that regard-

ing kernels, the set of kernels that admit a Kolmogorov decomposition is in general strictly

smaller than the set of Hermitian kernels4.

One answer is then the study of admissible prehermitian subspaces: we still need an equiv-

alence relation but we deal with the total set of Hermitian (self-adjoint) kernels.

The relations between all these sets is given figure 2.3.
�✂✁☎✄✝✆

(resp. ✒ ✓ ,...) stands for
✁

However the two sets are equal if✂ is finite dimensional or a Hilbert space
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�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏
(resp. ✒ ✓ ✞✕✍✖☞✠✡✗✏

,...) with
✞☛✡✌☞✎✍✑✏

a dual system,
✡

Mackey quasi-complete.

✞✠✟ �✂✁☎✄✝✆

✡

oo � // ✞✠✟ ✒ ✓

✡

�✂✁☎✄✝✆

��
�]

�]
�]

�]
�]

�]
�]

�]
�]

�]

☞ ✄ ★ ☞ ★�✂✁☎✄✝✆✟✞

77p
p

p
p

p
p

p
p

p
p

p
p

p
☞ ✄ ★ ☞ ★�✡✠

//____ �✂✁☎✄ ✁✝✆ ✂ ✌☞☛ ✁☎✄✝✆✟✞
//

✌

�✎✍
✝ � ✙☛ ✁☎✄✝✆✟✞ oo � //

✌

✒ �✂✁

✌

✒ ✓

✏ ✄ ★ ✏ ★�✂✁☎✄✝✆✟✞

eeK
K

K
K

K
K

K
K

K
K

K

✏ ✄ ★ ✏ ★�✡✠
oo_ _ _ _ _ _ _ _ _ _

yy
y9

y9
y9

y9
y9

y9
y9

y9

☛ ✁☎✄✌☞ ✄✔✁✡✠
✂ ✌☞☛ ✁☎✄✝✆✟✞

// � ✄✔✁✡✠ oo � // ✒✒✑

Figure 2.3: Sets of subspaces, sets of Hermitian kernels

Once again only the basic theory of Krein and admissible prehermitian subspaces was pre-

sented. Its implication in some other fields of mathematics is very significant (from system

theory to quantum mechanics or algebraic curves). A good bibliography on such topics may

be found in [3].

So Krein subspaces (or more generally admissible prehermitian subspaces) may be seen as

a generalization of Hilbertian subspaces (that are Krein and admissible prehermitian sub-

spaces) as equivalently Hermitian kernels are a generalization of positive kernels.

Looking at kernels, we still have two ways to generalize. Thefirst is based on the following

result: any kernel is the sum of a self-adjoint and anti-self-adjoint kernel. Following this

idea and in the spirit of the Kolmogorov decomposition, D. Alpay ([2] or [1]) proposes the

study of kernels of the form:

✙ ✍ ✙ ✓
✆ ✙ ✓ ✖ ✁ ✛ ✓ ✆ ✁ ✛ ✓
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where ✙ ✓
☞ ✙ ✓ ☞ ✛ ✓

☞ ✛ ✓ are positive kernels (he precisely deals with reproducing kernels,

i.e. positive kernel functions). This leads him to the concept of reproducing kernel Hilbert

spaces of pairs and we refer to his papers for further study ofthese spaces.

The second way is to continue the formalism of admissible prehermitian subspaces. The

kernels would however not need to be Hermitian and similarlywe will need non Hermitian

structures: dualities.
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Chapter 3

Subdualities

Introduction

A careful reader of the previous chapters will certainly have noticed that in many theorems

and proofs the use of the duality
✞ �✂☞ � ✏

(of Hilbert or Krein spaces) shades a new light

notably by introducing two “equal” embeddings (canonical injections)
✁

and ✚ but with dis-

tinct transposes in general. This remark is the starting point of this chapter where Hilbertian

or Krein subspaces are generalized to dualities (i.e. we introduce a dual system of vector

spaces) verifying certain algebraic inclusions (definition 3.2) called subdualities.

These spaces verify the main properties of Hilbertian subspaces (that appear to be particular

instances of subdualities) and the set of subdualities may actually be endowed with a vec-

tor space structure (given an equivalence relation) isomorphic to the vector space of kernels

(theorem 3.13).

This chapter is devoted to the study of these subdualities. Atopological definition equivalent

to definition 3.2, is that a duality
✞✑☎ ☞ ☛ ✏

is a subduality of the dual system
✞☛✡✌☞✎✍✑✏

if and only
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if both
☎

and
☛

are weakly continuously embedded in
✡

(proposition 3.3). It appears that

we can associate to any subduality a unique kernel (in the sense of L. Schwarz, theorem 3.6),

whose image is dense in the subduality (theorem 3.10). Figure 3.1 illustrates the different

inclusions related to a subduality and its kernel.

Then we study the image of a subduality by a weakly continuouslinear operator (theorem

3.12) that makes it possible to define a vector space structure over the (quotiented) set of

subdualities (theorem 3.13). A canonical representative entirely defined by the kernel is then

given (theorem 3.20). Finally, we study more precisely someparticular case of subdualities.

3.1 Subdualities and associated kernels

In this section, we introduce a new mathematical object thatwe call subduality of a dual

system of vector spaces (or equivalently subduality of a locally convex topological vector

space). These objects appear to be closely linked with kernels (theorem 3.6 and lemma 3.9)

and could therefore be the appropriate setting to study suchlinear applications.

Hilbertian subspaces and Krein subspaces appear to be subdualities that are therefore a good

generalization of the previous concepts. Prehilbertian and prehermitian subspaces are how-

ever also subdualities and the class of subdualities may be too general for certain applica-

tions. In particular a problem of completion appears. We will address this problem and

the choice of a “good” topology to perform the completion in the section 3.3 “canonical

subdualities”.

3.1.1 Subdualities of a dual system of vector space

Definitions

The definition of subdualities remains heavily on the definition of a duality that therefore is

restated below. This definition, the related notations and two basic examples are also given
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in the Appendix B.

Definition 3.1 ( – dual system of spaces – )Two vector spaces
☎ ☞ ☛

are said to be in du-

ality if there exists a bilinear form✎ on the product space
☛ ✂ ☎

separate in
☎

and
☛

,

i.e.:

1. ☛ ✄ �✍☎✥ ☞ ☎ ☞ � ☞ ☞ ☛ ☞ ✎ ✞ ☞ ☞ ✄ ✏ �✍☎✥ ;
2. ☛ ☞ �✍☎✥ ☞ ☛ ☞ � ✄ ☞ ☎ ☞ ✎ ✞ ☞ ☞ ✄ ✏ �✍☎✥ .

In this case,
✞✑☎ ☞ ☛ ✏

is said to be a duality (relative to✎ ).

The following morphisms are then well defined:

✂ ✁✄✝✙☎ ✂ ✞ ✄ ☛ ✆✟✞ ☎ ✑ algebraic dual of E � ✁✄✝✙☎ ✂ ✞ ✄ ☎✆✕✁�✍ ✂ ✁✄✝✙☎ ✂ ✞ ✞✑☛ ✏ ✆ ✞ ☛✁ ✟ ✆✟✞ ✎ ✞ ✁ ☞✦✥ ✏ ✎ ✞ ✁ ☞✦✥ ✏ ✟ ✆ ✞ ✁
We can now give the definition of subdualities. Subdualitiesmay be seen as completely

algebraic objects and therefore the first definition is purely algebraic.☛ � ✓ ✡✌☞ ☎ ✡ ✂ denotes

the restriction of
☎

to the set
�

.

Definition 3.2 ( – subdualities – )Let
✞✑☎ ☞ ☛ ✏

and
✞☛✡✌☞✎✍✑✏

be two dualities.
✞✑☎ ☞ ☛ ✏

is a subduality of
✞☛✡✌☞✎✍✑✏

if (figure 3.1) :

�
☎✄☎ ✡✌☞ ☛ ☎ ✡

;

� ✂ ✁ ☛ ☎ ✠ ✞ ✞✕✍ ✡ ✝✟✞ ☎ ✂ ✁✄✝✙☎ ✂ ✞ ✞✑☛ ✏ ☞ ✂ ✁ ☛ ☎ ✠ ✞ ✞✕✍ ✡ ✂ ✏ ☎ ✂ ✁✄✂✆☎ ✝✟✞ ✞✑☎ ✏
.

We note
✡☞☛ ✞✠✞☛✡✌☞✎✍✑✏✠✏

the set of subdualities of
✞☛✡✌☞✎✍✑✏

.

If
✡

is a locally convex space, we say that
✞✑☎ ☞ ☛ ✏

is a subduality of
✡

if it is a subduality of
✞☛✡✌☞✠✡✂✁✕✏

and we denote by
✡☞☛ ✞☛✡✗✏

the set of subdualities of the l.c.s.
✡

. The second condition
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only states that every vector of
✍

, as a linear form on
☎✑✓ ✡

(resp. on
☛✑✓ ✡

), is in
☛

(respectively in
☎

), i.e

☛ ✟ ☞ ✍✖☞
there exists

☞ ☞ ☛ ☞ ☛ ✄ ☞ ☎ ☞ ✞ ✟ ☞ ✄ ✏ ✁ ✠✡☎ ☛☞✞ ✍ ✞ ☞ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞
We can however interpret the previous algebraic inclusionsin topological terms, since dual-

ities make a bridge between topological and algebraic properties. An equivalent topological

definition of subdualities is then included in the followingtheorem:

Proposition 3.3 ( – topological characterization – )The following statements are equiva-

lent:

1.
✞✑☎ ☞ ☛ ✏

is a subduality of
✞☛✡✌☞✎✍✑✏

,

2. The canonical injections
✁ ✄ ☎ ✟✞ ✡

and ✚ ✄ ☛ ✟✞ ✡
are weakly continuous,

3.
✁ ✄ ☎ ✟✞ ✡

et ✚ ✄ ☛✠✟✞ ✡
are continuous with respect to the Mackey topologies on

☎ ☞ ☛
and

✡
.

The equivalence between (1) and (3) is notably useful in caseof metric spaces, since any

locally convex metrizable topology is the Mackey topology (corollary p 149 [26] or propo-

sition 6 p 71 [15]).

Proof. – Let us show that
✞✁� ✏✝✂ ✞✆☎ ✏✄✂ ✞✆✞ ✏✝✂ ✞✁� ✏

:

✞✁� ✏✝✂ ✞✆☎ ✏
We define the following mappings:

✁ ✄ ☎ ✟✞ ✡✌☞ ✚ ✄ ☛ ✟✞ ✡✌☞
✁ ✁ ✄ ✂ ✁ ☛ ☎ ✠ ✞ ✞✕✍✑✏✄✟✞ ✂ ✁✄✝✙☎ ✂ ✞ ✞✑☛ ✏ ☞ ✚ ✁ ✄ ✂ ✁ ☛ ☎ ✠ ✞ ✞✕✍✑✏✝✟✞ ✂ ✁✄✂✆☎ ✝✟✞ ✞✑☎ ✏

✁
and

✁ ✁
(resp.✚ and✚ ✁ ) are transposes for the weak topology hence weakly continuous

since

☛ �✄✁ ☞ ✡✂✁ ✍ ✂ ✁ ☛ ☎ ✠ ✞ ✞✕✍✑✏ ☞ � ✁ ✁☎✞✑�✄✁✕✏ ☞ ☎✆✁ ✍ ✂ ✁✄✝✙☎ ✂ ✞ ✞✑☛ ✏ ☞ ☛ ✄ ☞ ☎ ✄

✞✑� ✁ ☞✠✁ ✞ ✄ ✏✠✏ ☛ ✕ ☎ ☛ ✍ ✞☛✁ ✁ ✞✑� ✁ ✏ ☞ ✄ ✏ ✝ ✕ ☎ ✝
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that is exactly the definition of the transpose. It is the classical link between inclusion

of the topological dual and weak continuity.

✞✆☎ ✏✝✂ ✞✆✞ ✏
Since

✁ ✁
(resp.✚ ✁ ) is weakly continuous, its transpose is continuous for the Mackey

topologies (corollary 3 p 111 [26]). We could also cite corollary 2 p 111 [26]: if
☎ ✄ ☎ ✟✞ ✡

is weakly continuous, then it is continuous if
☎

is endowed with the

Mackey topology and
✡

with any compatible topology).

✞✆✞ ✏✝✂ ✞✁� ✏
Since

✁ ✄ ☎ ✟✞ ✡
and ✚ ✄ ☛ ✟✞ ✡

are continuous for the Mackey topologies, their

transposes✓ ✁ ✄ ✡ ✕ ✟✞ ☎ ✕
and ✓ ✚ ✄ ✡ ✕ ✟✞ ☛✌✁

exist. But
✡ ✕ ✍ ✂ ✁ ☛ ☎ ✠ ✞ ✞✕✍✑✏

and
☎ ✕ ✍

✂ ✁✄✝✙☎ ✂ ✞ ✞✑☛ ✏
(resp.

☛✆✁ ✍ ✂ ✁✄✂✆☎ ✝✟✞ ✞✑☎ ✏
) since the Mackey topology is compatible with the

duality, that prove the result. ✡

Remark 3.4 If
✞✑☎ ☞ ☛ ✏

is a subduality of
✞☛✡✌☞✎✍✑✏

, then
✞✑☛ ☞ ☎ ✏

is also a subduality of
✞☛✡✌☞✎✍✑✏

.

The crucial part of this definition of subdualities is not thecontinuity of the inclusion, that is

the same requirement than for Hilbertian or Krein subspaces, but the fact that one needs two

continuous inclusion, one for each space
☎

and
☛

defining the duality
✞✑☎ ☞ ☛ ✏

. The case of

inner product spaces is of special interest and we will studythem after these 5 examples:

example 1 � � -example

A classical bilinear form over✞✁� is the symplectic form that associates to each couple

of vectors the oriented area of the parallelogram they define. Precisely the bilinear

form is ✎ ✄ ✞ � ✂ ✞ � ✆ ✞ ✞
✞ ★ ☞ ✛ ✏ ✟ ✆ ✞ ✜✂✣✂✁

�
✆ ✜

�
✁ ✣

and the dual system
✞ ✞✂� ☞ ✞ � ✏ endowed with this bilinear form is a subduality of

✞ ✞ � ☞ ✞ � ✏ endowed with the canonical Euclidean duality.
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example 2 Sobolev spaces

Let
✭

be a bounded open set of✞ and
✡ ✍☎✄ ✁✝✞ ✭ ✏

,
✍ ✍☎✄ ✞ ✭ ✏

. Define

☎ ✍
☞

✄ ☞ ✄ ✁ ☞ ✄ ✞ ✝ ✏ ✍ ✛
✙

1l ✓
☎ ☎ ✜ ✞ ✮ ✏ ✌ ✮ ☞ ✜ ☞✏✎ � ✞ ✭ ✏✞✝

and
☛ ✍

☞ ☞ ☞ ✄ ✁ ☞ ☞ ✞ ✮ ✏ ✍✜✛
✙

1l ✓
☎ ☎ ✢ ✞ ✝ ✏ ✌ ✝ ☞✣✢ ☞✏✎ � ✞ ✭ ✏✞✝

in duality with respect to the bilinear form

✞ ☞ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞ ✍✜✛
✙
✢ ✞ ☎ ✏ ✜ ✞ ☎ ✏ ✌ ☎

It is straightforward to see that
✞✑☎ ☞ ☛ ✏

is a subduality of the dual system
✞ ✄ ✁ ☞ ✄ ✏

.

Remark that
☎ �✍ ☛

.

example 3 Sobolev spaces(-
✠ �

�
✞ �✣✥ ☞ �✄✂ ✏

-)

let
✭ ✍✁�✣✥ ☞ �✄✂

and define

☎ ✍ ☛ ✍ ✠ �

�
✞ ✭ ✏ ✍

☞ ✖ ☞ ✄ ✁ ☞✢✖ ✞ ✝ ✏ ✍ ✛
✙

1l ✓
☎ ☎ ✜ ✞ ✮ ✏ ✌ ✮ ☞ ✜ ☞ ✠ �

�
✞ ✭ ✏✞✝

where ✠ �

�
✞ ✭ ✏ ✍

☞ ✜ ☞ ✄ ✁ ☞ ✛
✙✞✝ ✙

✔ ✜ ✞ ✮ ✏ ✆ ✜ ✞ ✝ ✏
✞ ✮ ✆ ✝ ✏

�
✔ ✌ ✝ ✌ ✮ � ✍ ✝

These spaces are called Sobolev-Slobodeckij spaces1 or Besov or fractional Sobolev

spaces.
☎

and
☛

can be put in duality with respect to the (separate) bilinearform

✞ ☞ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞ ✍✜✛
✙
✢ ✞ ☎ ✏ ✌✌ ☎ ✜ ✞ ☎ ✏ ✌ ☎

(
☞ ✞ ✮ ✏ ✍ ☎

✙ 1l ☎✆☎
✓
✢ ✞ ✝ ✏ ✌ ✝ ☞ ✄ ✞ ✝ ✏ ✍ ☎

✙ 1l ✓
☎ ☎ ✜ ✞ ✮ ✏ ✌ ✮ ).

It is straightforward to see that
✞✑☎ ☞ ☛ ✏

is a subduality of the dual system
✞ ✄ ✁☛☞ ✄ ✏

.

Remark that
✝ ✍ ✎ ✍ ✠ �

�
✞ ✭ ✏

�

See for instance [51]
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with bilinear form
✞ ✢✔☞ ✜ ✏ ✁ � ☎ ✁ ✞ ✍✜✛

✙
✢ ✞ ☎ ✏ ✌✌ ☎ ✜ ✞ ☎ ✏ ✌ ☎

defines equivalently a subduality of the dual system
✞ ✄ ✁☛☞ ✄ ✏ .

Remark that this bilinear form has a very interesting property: it is invariant

under the action of any diffeomorphism ☞ ✄ ✭ ✆✟✞ ✭
. It is a reason to prefer this

particular bilinear form rather than an Hilbertian one.

example 4 Polynomials, splines

In [42] the authors consider the spaces
☎ ✍ ☛ ✍ ✟ ✙ of polynomials of degree

✆
and

the following bilinear form on
☛ ✂ ☎

✎ ✄ ☛ ✂ ☎ ✆✟✞ ✞
✞ ☞ ☞ ✄ ✏ ✟ ✆✟✞ ✂ ✙✁ ✡ ✓ ✁ ✓ ✣ ✞ ✆ ★☎✄✙✝✆

☞ ✁ ✁ ✞ ✞✟✞ ✏ ✄
✁ ✙ ✓ ✁ ✞ ✞✟✞ ✏

that does not depend on the particular point
✞

chosen.

It is straightforward to see that this duality is separate (by using the monomials) and

that
☎

and
☛

endowed with the weak-topology are continuously included in the l.c.s.

✞
✆

endowed with the topology of simple convergence (or topology product).
✞✑☎ ☞ ☛ ✏

is then a subduality of✞
✆

.

example 5 Polynomials, splines (- Piecewise smooth spaces -)

In [37] the authors study piecewise smooth spaces in duality. A general version of

their results is the following:

Let
☎

and
☛

be two piecewise smooth spaces2 (on a set
✭

) of dimension
✆ ✖ �

and
✞ ✄ ✓✟☞✦✥✧✥✧✥ ☞ ✄ ✙

✏
,
✞ ☞ ✓ ☞✦✥✧✥✧✥ ☞ ☞

✙
✏

two basis of
☎

and
☛

respectively.

Then the bilinear form defined by

✞ ☞ ✁ ☞ ✄✁� ✏ ✁✄✂✆☎ ✝✟✞ ✍ �
�
✁

�

we refer to [37] for the definition of such spaces
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puts
☎

and
☛

in duality and
☎

and
☛

endowed with the weak-topology are continu-

ously included in the l.c.s.✞ ✙ endowed with the topology of simple convergence (or

topology product). In fact, any element of✞ ✙ ✕ admits a representative in
☎

and
☛

since

✞ � ☎ ☞ ✄ ✏ ✁ ✆ ✄ ✕ ☎ ✆ ✄ ✞ ✍
✁✂ ✂ ✙✁

✁ ✡ ✓
☞ ✁ ✞ ✥ ✏ ✄ ✁ ✞ ✝ ✏ � ☞ ✄

✄☎
✁✄✂✆☎ ✝✟✞

✞ �

✓
☞ ☞ ✏ ✁ ✆ ✄ ✕ ☎ ✆ ✄ ✞ ✍

✁✂
☞ ☞ ✂ ✙✁

✁ ✡ ✓
☞ ✁ ✞ ✮ ✏ ✄ ✁ ✞ ✥ ✏ �

✄☎
✁✄✂✆☎ ✝✟✞

where
✂ ✙✁ ✡ ✓ ☞ ✁ ✞ ✮ ✏ ✄ ✁ ✞ ✥ ✏ ☞ ☎

and
✂ ✙✁ ✡ ✓ ☞ ✁ ✞ ✥ ✏ ✄ ✁ ✞ ✝ ✏ ☞ ☛

.
✞✑☎ ☞ ☛ ✏

is then a subduality of✞ ✙ (we will study the subdualities of✞ ✙ in detail in

the section “evaluation subdualities”).

Inner product spaces

Inner product spaces like Hilbert spaces, Krein spaces or generally prehermitian spaces are

self-dual3 i.e
☎ ✍ ☛

with the same weak topologies. Then when the previous conditions are

fulfilled for
☎

, they are automatically fulfilled for
☛

, hence all prehermitian subspaces are

subdualities.

The previous concepts of Hilbertian subspaces, Krein subspaces or prehermitian sub-

spaces are then particular cases of the more general notion of subdualities.

Theorem 3.5 Let
�

be an inner product space,
✞ �✂☞ � ✏

the (self-)duality induced by the

inner product. Then
✞ �✂☞ � ✏

is a subduality of the dual system
✞☛✡✌☞✎✍✑✏

if and only if
�

is

weakly continuously included in
✡

. In this case, we say that the inner product space
�

is a

self-subduality of
✞☛✡✌☞✎✍✑✏

.

�

we still suppose that we have an anti-involution
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Proof. – Evident since
☎ ✍ ☛ ✍ �

. ✡

3.1.2 The kernel of a subduality

Theorem 3.6 ( –kernel of a subduality – )Each subduality
✞✑☎ ☞ ☛ ✏

of
✞☛✡✌☞✎✍✑✏

is associated

with a unique kernel✙ of
✞☛✡✌☞✎✍✑✏

verifying

☛ ☞ ☞ ☛ ☞ ☛ ✟ ☞ ✍✖☞ ✞ ✟ ☞ ✚ ✞ ☞ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍✗✌ ☞ ☞✠✁ ✓ ✣ ✙ ✞ ✟ ✏ ✍ ✁✄✂✆☎ ✝✟✞
called kernel of the subduality

✞✑☎ ☞ ☛ ✏
of
✞☛✡✌☞✎✍✑✏

. It is the linear application
Z

✙ ✄ ✍ ✆ ✞ ✡
✟ ✟ ✆ ✞ ✁ ✂ � ✁✄✂✆☎ ✝✟✞ ✂ ✓ ✚ ✂✄✂ ✁ ☛ ☎ ✠ ✞ ✞ ✟ ✏

considering transposition4 in the topological dual spaces or simply

✙ ✄ ✍ ✆✟✞ ✡
✟ ✟ ✆✟✞ ✁ ✂ ✓ ✚ ✞ ✟ ✏

considering transposition in dual systems.

Proof. – If we consider transposition in the topological duals:

☛ ☞ ☞ ☞ ☛ ☞ ✟ ☞ ✍

✞ ✟ ☞ ✚ ✞ ☞ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍ ✞ ✓ ✚ ✂✄✂ ✁ ☛ ☎ ✠ ✞ ✞ ✟ ✏ ☞ ☞ ✏ ✁✄✂ ✕ ☎ ✂ ✞
✍ ✞ ☞ ☞ � ✁✄✂✆☎ ✝✟✞ ✂ ✓ ✚ ✂ ✂ ✁ ☛ ☎ ✠ ✞ ✞ ✟ ✏✠✏ ✁✄✂✆☎ ✝✟✞
✍ ✞ ☞ ☞✠✁ ✓ ✣ ✞☛✁ ✂ � ✁✄✂✆☎ ✝✟✞ ✂ ✓ ✚ ✏ ✂✄✂ ✁ ☛ ☎ ✠ ✞ ✞ ✟ ✏✠✏ ✁✄✂✆☎ ✝✟✞

The solution is unique since✎ ✞ ✥ ☞✦✥ ✏ ✍ ✞ ✥ ☞✦✥ ✏ ✁✄✂✆☎ ✝✟✞ separates
☎

and
☛

and

✙ ✍ ✁ ✂✁� ✁✄✂✆☎ ✝✟✞ ✂ ✓ ✚ ✂ ✂ ✁ ☛ ☎ ✠ ✞
✁

see Appendix B
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If we consider transposition in dual systems, then the proofis direct:

✞ ✟ ☞ ✚ ✞ ☞ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍ ✞ ✓ ✚ ✞ ✟ ✏ ☞ ☞ ✏ ✁✄✝✙☎ ✂ ✞ ✍ ✎ ✞ ☞ ☞✠✁ ✓ ✣ ✂ ✓ ✚ ✞ ✟ ✏✠✏
Finally, ✙ is weakly continuous by composition of weakly continuous linear applications.✡

The concept of subduality and of its associated kernel is illustrated by figure 3.1 and figure

3.2. In figure 3.1 we consider transposition in the topological dual spaces and in figure 3.2

transposition in dual systems.

✍ �✂✁ ✄✆☎ ✝✟✞ //

✠

&&

✡✂✕
✡ �

��

✡ ✁
// ☛✌✁

☛
✁ � ☎ ✁ ✞

&&MMMMMMMMMMMMM

☎✆✕
☛
✁ ✁ ☎ � ✞ &&NNNNNNNNNNNNN

☎
�

��☛ ✁ // ✡

Figure 3.1: Illustration of a subduality, the relative inclusions and its kernel.

✍

✡ �

��

✡ ✁
//

✠

��

☎

�

��☛ ✁ // ✡

Figure 3.2: Illustration of a subduality and its kernel (transposition in dual systems).

From now on and for the sake of simplicity, we will always consider transposition in

dual systems.
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We can then define as for Hilbertian subspaces the application

✕ ✄☎✡☞☛ ✞✠✞☛✡✌☞✎✍✑✏✠✏ ✆ ✞ ✒ ✞✕✍✖☞✠✡✗✏

that associates to each subduality its kernel. It is a well defined function.

The following lemma can then be deduced directly from theorem 3.3:

Lemma 3.7 ✙ ✄ ✍ ✆✟✞ ☎
is weakly continuous if

☎
and

✍
are equipped with:

1. the weak topologies,

2. the Mackey topologies.

We have seen previously that
✞✑☛ ☞ ☎ ✏

is also a subduality of
✞☛✡✌☞✎✍✑✏

. Its kernel is the linear

application
�✙ ✍ ✚ ✂ ✓ ✁ i.e.

�✙ ✍ ✓ ✙ .

Examples:

example 1 � � -example

The dual system
✞ ✞✂� ☞ ✞ � ✏ endowed with the symplectic bilinear form

✎ ✄ ✞ � ✂ ✞ � ✆ ✞ ✞
✞ ★ ☞ ✛ ✏ ✟ ✆ ✞ ✜✂✣✂✁

�
✆ ✜

�
✁ ✣

is a subduality of
✞ ✞✂� ☞ ✞ � ✏ endowed with the canonical Euclidean duality with kernel

✙ ✄✂✁
�

✆ ✞ ✞ �
✛ ✟ ✆ ✞ ✞✢✜

�
☞ ✆ ✜✂✣ ✏

example 2 Sobolev spaces

Suppose
✭ ✍✁�✣✥ ☞ �✄✂

. The kernel of the subduality
✞✑☎ ☞ ☛ ✏

of
✞ ✄ ✁☛☞ ✄ ✏

where

☎ ✍
☞
✄ ☞ ✄ ✁ ☞ ✄ ✞ ✝ ✏ ✍✜✛

✙
1l ✓
☎ ☎ ✜ ✞ ✮ ✏ ✌ ✮ ☞ ✜ ☞✏✎ � ✞ ✭ ✏✞✝
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and
☛ ✍

☞ ☞ ☞ ✄ ✁ ☞ ☞ ✞ ✮ ✏ ✍✜✛
✙

1l ✓
☎ ☎ ✢ ✞ ✝ ✏ ✌ ✝ ☞✣✢ ☞✏✎ � ✞ ✭ ✏✞✝

are in duality with respect to the bilinear form

✞ ☞ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞ ✍✜✛
✙
✢ ✞ ☎ ✏ ✜ ✞ ☎ ✏ ✌ ☎

is the integral operator

✙ ✄ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ✆✟✞ ✄ ✁✝✞ ✥ ☞ �✄✂ ✏
✟ ✟ ✆✟✞ ✙ ✞ ✟ ✏ ✞ ✥ ✏ ✍ ☎

✙ � ✞ ✮ ☞✦✥ ✏ ✟ ✞ ✮ ✏ ✌ ✮
where

� ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✝ ✆ ✮ ✏
1l ✓

☎ ☎

The kernel of
✞✑☛ ☞ ☎ ✏

is defined by the distribution

✓ � ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✮ ✆ ✝ ✏
1l ☎✆☎

✓ ✍ � ✞ ✝ ☞ ✮ ✏

example 3 Sobolev spaces(-
✠ �

�
✞ �✣✥ ☞ �✄✂ ✏

-)

The previous subduality
✞✑☎ ☞ ☛ ✏

of the dual system
✞ ✄ ✁ ☞ ✄ ✏

has for kernel the integral

operator:
✙ ✄ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ✆✟✞ ✄ ✁✝✞ ✥ ☞ �✄✂ ✏

✟ ✟ ✆✟✞ ✙ ✞ ✟ ✏ ✞ ✥ ✏ ✍ ☎
✙ � ✞ ✮ ☞✦✥ ✏ ✟ ✞ ✮ ✏ ✌ ✮

where

� ✞ ✮ ☞ ✝ ✏ ✍✜✛ ☎
✓ � ☎✝✆ ✞ ☎ ☞ ✮ ✏ ✌ ✮ ✍ ✮

� ☎✝✆ ✞ ✮ ☞ ✝ ✏ ✆ � ☎✝✆ ✞ ✮ ☞ ✝ ✏
�☎

Note that this kernel is not self-adjoint.

The subduality
✞ ✝ ☞ ✎ ✏

has for kernel

✙ ✄ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ✆ ✞ ✄ ✁✝✞ ✥ ☞ �✄✂ ✏
✟ ✟ ✆ ✞ ✙ ✞ ✟ ✏ ✞ ✥ ✏ ✍ ☎

✙
� ✞ ✮ ☞✦✥ ✏ ✟ ✞ ✮ ✏ ✌ ✮

where
� ✞ ✮ ☞ ✝ ✏ ✍ 1l ✓

☎ ☎
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example 4 (- The fundamental example of a Hilbert space -)

Let
�

be a Hilbertian subspace of
✞☛✡✌☞✎✍✑✏

and define the following bilinear form on
�✑✂ �

such that
✞ �✂☞ � ✏

is a duality✎ ✄ �✑✂ � ✆ ✞ ✘
☞ ✣ ☞ ☞ �

✟ ✆ ✞ ✓ ☞ ✣☞✔ ☞ �✖✕
It is a subduality of

✞☛✡✌☞✎✍✑✏
with positive kernel✙ ✍ ✁ ✂ ✓ ✚ where

✁ ✄ � ✆ ✞ ✡
and

✚ ✄ � ✆✟✞ ✡
are the canonical injections. Its transpose✓ ✙ ✍ ✚ ✂ ✓ ✁ ✍ ✙ is the kernel

of the subduality
✞ � ☞ � ✏

.

3.1.3 The range of the kernel: the primary subduality

The image (or range) of a positive kernel played a special role in the theory of Hilbertian

subspaces: it was a prehilbertian subspace dense in the Hilbertian subspace, that was actu-

ally its completion. This latter point cannot be attained for the moment due to the to big

generality of subdualities5. However, the two other points remain for any kernel as we will

see below.

Definition 3.8 ( – primary subduality – ) We call primary subduality associated to a ker-

nel ✙ the subspaces of
✡ ☎ ✓ ✍ ✙ ✞✕✍✑✏

and
☛ ✓ ✍ ✓ ✙ ✞✕✍✑✏

put in duality by the following

bilinear form ✎ ✓
:✎ ✓ ✄ ☛ ✓ ✂ ☎ ✓ ✆✟✞ ✘

✓ ✙ ✞ ✟ ✣ ✏ ☞ ✙ ✞ ✟
�
✏ ✟ ✆✟✞ ✞ ✟ ✣ ☞ ✙ ✞ ✟

�
✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍✗✌ ✓ ✙ ✞ ✟ ✣ ✏ ☞ ✟

�✖✍ ✁ ☛ ☎ ✠ ✞
Remark that the bilinear form is well defined since the elements of

✎✒✑✔✓ ✞ ✙ ✏
are orthogonal to

✓ ✙ ✞✕✍✑✏
and respectively, the elements of

✎✒✑✔✓✟✞ ✓ ✙ ✏
are orthogonal to✙ ✞✕✍✑✏

.

Lemma 3.9 The primary subduality is a subduality of
✞☛✡✌☞✎✍✑✏

. Its kernel is✙ . Any kernel

may then be associated to at least one subduality.

�

That will however be the crucial point in the section 3.3 “canonical subdualities”
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Proof. – From the definition of the primary duality we verify easily that

�
☎✄☎ ✡✌☞ ☛ ☎ ✡

;

� ✂ ✁ ☛ ☎ ✠ ✞ ✞✕✍ ✡ ✝✟✞ ☎ ✂ ✁✄✝✙☎ ✂ ✞ ✞✑☛ ✏ ☞ ✂ ✁ ☛ ☎ ✠ ✞ ✞✕✍ ✡ ✂ ✏ ☎ ✂ ✁✄✂✆☎ ✝✟✞ ✞✑☎ ✏
.

and from the definition of✎ ✓ that its kernel is✙ . ✡

The following theorem gives an interesting result of denseness:

Theorem 3.10 Let
✞✑☎ ☞ ☛ ✏

be a subduality with kernel✙ . Then the primary subduality
✞✑☎ ✓✟☞ ☛ ✓ ✏

associated to✙ is dense in
✞✑☎ ☞ ☛ ✏

for any topology compatible with the duality.

Proof. – We use corollary p 109 [26]: “If
☎ ✄ ☎ ✆ ✞ ✡

is one-to-one, its trans-

pose✓ ☎ ✄ ✡✂✁ ✆✟✞ ☎✆✁
has weakly dense image”. Equivalently its transpose considering dual

systems✓ ☎ ✄ ✍ ✆ ✞ ☛
has weakly dense image. Taking

☎ ✍ ✚ gives the desired result

since there is an equivalence between closure and weak closure for convex sets (and
☎ ✓

is

convex), theorem 4 p 79 [26]. ✡

It follows that the primary subduality associated with✙ may be seen as the smallest subdu-

ality (in terms of inclusion) of
✞☛✡✌☞✎✍✑✏

with kernel ✙ .

Examples:

example 1 � � -example

Since we work with finite dimensional spaces, all subdualities with the same kernel

are equal (to the primary subduality), in our previous case,to the dual system
✞ ✞ �

☞ ✞ �
✏

endowed with the symplectic bilinear form

✎ ✄ ✞ �
✂ ✞ �

✆ ✞ ✞
✞ ★ ☞ ✛ ✏ ✟ ✆ ✞ ✜✂✣✂✁

�
✆ ✜

�
✁ ✣
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example 2 Sobolev spaces

We see easily that the primary subduality associated to the kernel

✙ ✄ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ✆ ✞ ✄ ✁✝✞ �✣✥ ☞ �✄✂ ✏
✟ ✟ ✆ ✞ ✙ ✞ ✟ ✏ ✞ ✮ ✏ ✍ ☎

✙ � ✞ ✮ ☞ ✝ ✏ ✟ ✞ ✝ ✏ ✌ ✝

where

� ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✝ ✆ ✮ ✏
1l ✓
☎ ☎

is
☎ ✓ ✍

☞ ✜ ☞ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ☞✁� ☎ �☎✄✂ ✓ ✜ ✞ ✝ ✏ ✍☎✥ ☞☎� ☎ �☎✄✂ ✓ ✜ ✁ ✞ ✝ ✏ ✍☎✥ ✝
and

☛ ✓ ✍
☞ ✢ ☞ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ☞✁� ☎ �

✓
✆ ✣ ✢ ✞ ✮ ✏ ✍☎✥ ☞☎� ☎ �

✓
✆ ✣ ✜ ✁ ✞ ✮ ✏ ✍☎✥ ✝

3.2 Effect of a weakly continuous linear application and alge-

braic structure of
✝✟✞✡✠☛✠✌☞✎✍✑✏✓✒☛✒

We have defined the set of subdualities. It is of prime interest to know what operations one

can perform on this set and particularly if one can endow thisset with the structure of a

vector space. This can be attained by first studying the effect of a weakly continuous linear

application.

3.2.1 Effect of a weakly continuous linear application

We suppose now we are given a second pair of spaces in duality
✞ ✝ ☞ ✎ ✏

. We have seen in

the first chapter how a Hilbertian structure can be transported by a weakly continuous linear

application thanks to the existence of orthogonal decomposition in Hilbert spaces and that

one can extend this construction to admissible prehermitian subspaces if it is carefully done.
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Following the same spirit, it is possible to define the image subduality by a weakly contin-

uous linear application
☎✌✄ ✡ ✞ ✝

, of a subduality
✞✑☎ ☞ ☛ ✏

of
✞☛✡✌☞✎✍✑✏

, by using orthogonal

relations in the duality
✞✑☎ ☞ ☛ ✏

.

☛ � ✓ ✡✌☞ ☎ ✡ ✂ denotes the restriction of
☎

to the set
�

. We then define the following quotient

spaces:

Z
✖ ✍ �✔✎✒✑✔✓✟✞ ☎ ✡ ✂ ✏ ✁ ✌✏✎✒✑✔✓✟✞ ☎ ✡ ✝ ✏ ✂

and
✘ ✍ �✔✎✒✑✔✓ ✞ ☎ ✡ ✝ ✏ ✁ ✌✏✎✒✑✔✓✟✞ ☎ ✡ ✂ ✏ ✂

Lemma 3.11 The linear applications
☎ ✡ � and

☎ ✡ ✝ are well defined and injective, and

☛ ✞ ✗✠ ☞ ✗✆ ✏ ☞ ✖ ✂ ✘
, the bilinear form

✁ ✞ ☎ ✡ ✝ ✞ ✗✆ ✏ ☞ ☎ ✡ � ✞ ✗✠ ✏✠✏ ✍ ✞ ✆ ☞ ✠ ✏ ✁✄✂✆☎ ✝✟✞ defines a sepa-

rate duality
✞ ☎ ✡ � ✞ ✖ ✏ ☞ ☎ ✡ ✝ ✞ ✘ ✏✠✏

.

Proof. – We have the following factorization

☎ ✄ ✎✒✑✔✓ ✞ ☎ ✡ ✂ ✏ ✁ ✆✟✞ ✞ ✎✒✑✔✓✟✞ ☎ ✡ ✂ ✏ ✁ ✌✏✎✒✑✔✓✟✞ ☎ ✡ ✝ ✏ ✂✟✞ ✁✆✟✞ ✝

and
☎ ✡ � (resp.

☎ ✡ ✝ ) is one-to-one. Moreover the bilinear form
✁ ✄ ☎ ✡ � ✞ ✖ ✏✏✂ ☎ ✡ ✝ ✞ ✘ ✏✂✆ ✞

✘ is well defined since:

☛ ✞ ✠ ✣ ☞ ✠ �
✏ ☞ ✗✠ ☞ ☛ ✞ ✆ ✣ ☞✍✆

�
✏ ☞ ✗✆ ☞ ✞ ✠ ✣ ✆ ✠ �

☞✍✆ ✣ ✆ ✆
�
✏ ✁✄✝✙☎ ✂ ✞ ✍☎✥ . ✡

The definition of the subduality image of
✞✑☎ ☞ ☛ ✏

by
☎

is then included in the following

theorem:

Theorem 3.12 ( –subduality image – )The duality
✞ ☎ ✡ � ✞ ✖ ✏ ☞ ☎ ✡ ✝ ✞ ✘ ✏✠✏

is a subduality of
✞ ✝ ☞ ✎ ✏

called subduality image of
✞✑☎ ☞ ☛ ✏

by
☎

and denoted
☎ ✞✠✞✑☎ ☞ ☛ ✏✠✏

. Its kernel is
☎ ✂ ✙ ✂ ✓ ☎

.
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Proof. – The algebraic inclusions of definition 3.2 are fulfilled and the dual

system
✞ ☎ ✡ �

✞ ✖ ✏ ☞ ☎ ✡ ✝ ✞ ✘ ✏✠✏
is a subduality of

✝
.

Let ✟ ✁ ✄ ☎ ✡ �
✞ ✖ ✏ ✆ ✞ ✝

and ✟✚ ✄ ☎ ✡ ✝ ✞ ✘ ✏ ✆ ✞ ✝
be the canonical inclusions.

☎ ✂ ✙ ✂ ✓ ☎

satisfies the requirements of theorem 3.6 since:

☛ ✆ ☞ ☎ ✡ ✝ ✞ ✘ ✏ ☞ ☛ ✏ ☞ ✎ ☞ ✌ ✏✎☞ ✟✚ ✞ ✆ ✏ ✍ � ☎ ✁ ✍ ✁ ✌ ✆ ☞ ✟ ✁ ✓ ✣
✂ ☎ ✂ ✙ ✂ ✓ ☎ ✞✑✏☎✏ ✍

Let
☞

an antecedent by
☎

of
✆

in
☛

. Then:

✁ ✌ ✆ ☞ ✟ ✁ ✓ ✣
✂ ☎ ✂ ✙ ✂ ✓ ☎ ✞✑✏☎✏ ✍ ✍ ✞ ☞ ☞ ✙ ✂ ✓ ☎ ✞✑✏☎✏✠✏ ✁✄✂✆☎ ✝✟✞

✍ ✞ ☞ ☞ ✓ ☎ ✞✑✏☎✏✠✏ ✁ ☛ ☎ ✠ ✞
✍ ✞ ☎ ✞ ☞ ✏ ☞ ✏☎✏ ✁ ✁ ☎ �☞✞
✍ ✌ ✏✎☞ ✟✚ ✞ ✆ ✏ ✍ ✁ � ☎ ✁ ✞

✡

Remark that the subduality image
☎ ✞ ✞✑☎ ☞ ☛ ✏ ✏

is included in the set
✞ ☎ ✞✑☎ ✏ ☞ ☎ ✞✑☛ ✏✠✏

but smaller

in general.

Examples:

example 1 � � -example

Let
✡ ✍ ✍ ✍ ✞ � endowed with the Euclidean inner product and

✝ ✍ ✎ ✍ ✞ ✥ �✄✂ ✆ ✞✄☎ ☎ ✮ ✏ ✖ ✞ ✥✟✆ ☎✝✆ ✞✄☎ ☎ ✮ ✏

(subspace of
✍✂✞✆✂ ✥ ☞ � � ☞ ✞ ✏

) in self-duality with respect to the (positive) bilinear form

✎ ✄ ✎ ✍ ✝ ✂ ✝ ✆✟✞ ✞
✞✑✏✎☞ ✞ ✏ ✟ ✆✟✞ ✏ ✞ ✥ ✏ ✞ ✞ ✥ ✏ ✖ ✏ ✞✁� ✏ ✞ ✞✁� ✏
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Then the image of the subduality (of
✞☛✡✌☞✎✍✑✏

)
✞ ✞ � ☞ ✞ � ✏ endowed with the symplectic

bilinear form ✎ ✄ ✞ � ✂ ✞ � ✆ ✞ ✞
✞ ★ ☞ ✛ ✏ ✟ ✆ ✞ ✜✂✣✂✁

�
✆ ✜

�
✁ ✣

by the weakly continuous linear mapping

☎ ✄ ✞ � ✆ ✞ ✝

✛ ✍ ✞✢✜✂✣ ☞✤✜
�
✏ ✟ ✆ ✞ ☎ ✞ ✛ ✏ ✍ ✜✂✣✆�✄✂ ✆ ✞ ✮ ✏ ✖ ✜

�
✆ ☎✝✆ ✞ ✮ ✏

defines a subduality of
✞ ✝ ☞ ✎ ✏ ☎ ✞✠✞ ✞ � ☞ ✞ � ✏✠✏ .

It is the system
☎ ✞✠✞ ✞✂� ☞ ✞ � ✏✠✏ ✍ ✞ ✝ ☞ ✎ ✏

in duality with respect to the bilinear form✎ ✄ ✎ ✍ ✝ ✂ ✝ ✆✟✞ ✞
✞✑✏✎☞ ✞ ✏ ✟ ✆✟✞ ✆ ✏ ✞✁� ✏ ✞ ✞ ✥ ✏✏✖ ✏ ✞ ✥ ✏ ✞ ✞✁� ✏

and its kernel is

✙ ✄ ✎ ✍ ✝ ✆✟✞ ✝
✏ ✟ ✆✟✞ ✙ ✞✑✏☎✏ ✞ ✮ ✏ ✍ ✏ ✞✁� ✏ �✄✂ ✆✟✞ ✁

�
✮ ✏ ✆ ✏ ✞ ✥ ✏ ✆ ☎✝✆ ✞ ✁

�
✮ ✏ ✍ �✁

✏✑✁✝✞ ✮ ✏

example 2 � � -example

Let
✡ ✍ ✍ ✍ ✞ � endowed with the Euclidean inner product. Then the image of the

subduality (of
✞☛✡✌☞✎✍✑✏

)
✞ ✞✂� ☞ ✞ � ✏ endowed with the symplectic bilinear form✎ ✄ ✞ � ✂ ✞ � ✆ ✞ ✞

✞ ★ ☞ ✛ ✏ ✟ ✆ ✞ ✜✂✣✂✁
�
✆ ✜

�
✁ ✣

by the weakly continuous linear mapping

☎ ✄ ✞ � ✆✟✞ ✞ �
✛ ✍ ✞✢✜✂✣ ☞✤✜

�
✏ ✟ ✆✟✞ ☎ ✞ ✛ ✏ ✍ ✞✢✜✂✣ ☞ ✥ ✏

is
☎ ✞✠✞ ✞ � ☞ ✞✂� ✏✠✏ ✍ ✞ ✥ ☞ ✥ ✏ .

Actually we have that
✎✒✑✔✓ ✞ ☎ ✡ ✂ ✏ ✁ ✍ ✎✒✑✔✓✟✞ ☎ ✡ ✝ ✏
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and
✎✒✑✔✓ ✞ ☎ ✡ ✝ ✏ ✁ ✍ ✎✒✑✔✓✟✞ ☎ ✡ ✂ ✏

hence
✖ ✍ � ✎✒✑✔✓ ✞ ☎ ✡ ✂ ✏ ✁ ✌✏✎✒✑✔✓✟✞ ☎ ✡ ✝ ✏ ✂ ✍☎✥

and
✘ ✍ �✔✎✒✑✔✓✟✞ ☎ ✡ ✝ ✏ ✁ ✌✏✎✒✑✔✓✟✞ ☎ ✡ ✂ ✏ ✂ ✍☎✥

(whereas
☎ ✞✑☛ ✏ ✍ ☎ ✞✑☎ ✏ ✍ ✞ ✞ ☞ ✥ ✏ ).

example 3 Sobolev spaces(-
✠ �

�
✞ �✣✥ ☞ �✄✂ ✏

-)

For the example of
✠ �

�
✞ �✣✥ ☞ �✄✂ ✏

, it is straightforward to see that the subduality of
✞ ✄ ✁ ☞ ✄ ✏ ✞✑☎ ☞ ☛ ✏ where

☎ ✍ ☛ ✍ ✠ �

�
✞ ✭ ✏ ✍

☞ ✖ ☞ ✄ ✁ ☞✢✖ ✞ ✝ ✏ ✍✜✛
✙

1l ✓
☎ ☎ ✜ ✞ ✮ ✏ ✌ ✮ ☞ ✜ ☞ ✠ �

�
✞ ✭ ✏✞✝

are put in duality with respect to the (separate) bilinear form

✞ ☞ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞ ✍✜✛
✙
✢ ✞ ☎ ✏ ✌✌ ☎ ✜ ✞ ☎ ✏ ✌ ☎

is the image of the subduality
✞ ✝ ☞ ✎ ✏

where

✝ ✍ ✎ ✍ ✠ �

�
✞ ✭ ✏

with bilinear form
✞ ✢✔☞ ✜ ✏ ✁ � ☎ ✁ ✞ ✍✜✛

✙
✢ ✞ ☎ ✏ ✌✌ ☎ ✜ ✞ ☎ ✏ ✌ ☎

under the weakly continuous mapping

☎ ✄ ✄ ✁ ✆ ✞ ✄ ✁

✜ ✟ ✆ ✞ ☎ ✞ ✜ ✏ ✞ ✝ ✏ ✍ ☎
✙ 1l ✓

☎ ☎ ✜ ✞ ✮ ✏ ✌ ✮
Conversely,

✞ ✝ ☞ ✎ ✏
can be seen as the subduality image of

✞✑☎ ☞ ☛ ✏
by the mapping

✄
✄ ✄ ✁ ✆ ✞ ✄ ✁✖ ✟ ✆ ✞

✄
✞✣✖ ✏ ✍ ✧✧ ☎ ✖
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As for Hilbertian or Krein subspaces, the transport of structure is the basic tool to the con-

struction of subdualities.

3.2.2 The vector space
✞✁�✄✂✂✞✠✞☛✡✌☞✠✍✏✎✠✎✆☎✞✝✠✟☛✡ ✞✌☞ ✎ ☞✎✍ ☞✑✏ ✎

Theorem 3.12 allows us to define the operations of addition and external multiplication on

the set
✡☞☛ ✞✠✞☛✡✌☞✎✍✑✏✠✏

by considering the weakly continuous morphisms
✖ ✄ ✡ ✂✂✡ ✞ ✡

and
✘ ✄ ✘ ✂ ✡ ✞ ✡

. The associated operations for the kernels are then addition and external

multiplication on ✒ ✞✕✍✖☞✠✡✗✏
.

However the addition is neither injective nor associative (it is yet not associative upon the

subset of admissible prehermitian subspaces):

� ✞✑☎✌✣ ☞ ☛ ✣ ✏ ✆ ✞✑☎✌✣ ☞ ☛
�
✏ ✍☎✥✧✦✓✒ � ✞✑☎✌✣ ☞ ☛ ✣ ✏ ✍ ✞✑☎

�
☞ ☛

�
✏ ✦

✞ ✞✑☎✌✣ ☞ ☛ ✣ ✏ ✖ ✞✑☎✌✣ ☞ ☛
�
✏✠✏ ✖ ✞✑☎ ✂ ☞ ☛ ✂ ✏ �✍ ✞✑☎✌✣ ☞ ☛ ✣ ✏ ✖ ✞✠✞✑☎✌✣ ☞ ☛ ✣ ✏ ✖ ✞✑☎

�
☞ ☛

�
✏✠✏

in general

and appears the necessity of the following equivalence relation (induced by
✎✒✑✔✓ ✞✝✕ ✏

):

✞✑☎✌✣ ☞ ☛ ✣ ✏✟✁ ✞✑☎
�
☞ ☛

�
✏

✂
✂ ✞✑☎✌✣ ☞ ☛ ✣ ✏ ✆ ✞✑☎

�
☞ ☛

�
✏ ✍☎✥ ✂

✂ ✙ ✣ ✍ ✙
�

Theorem 3.13 ( –algebraic structure – )The set
✞ ✡☞☛ ✞✠✞☛✡✌☞✎✍✑✏✠✏✍✌✏✎✒✑✔✓ ✞✝✕ ✏ ☞✗✖ ☞✙✘✟✏

is a vector

space over✘ algebraically isomorphic to the vector space of kernels✒ ✞✕✍✖☞✠✡✗✏
, an isomor-

phism being
✕ ✄✒✡☞☛ ✞✠✞☛✡✌☞✎✍✑✏✠✏✍✌✏✎✒✑✔✓ ✞✝✕ ✏✂✆ ✞ ✒ ✞✕✍✖☞✠✡✗✏

.

Proof. – The following relation

✞✑☎✌✣ ☞ ☛ ✣ ✏✟✁ ✞✑☎
�
☞ ☛

�
✏

✂
✂ ✞✑☎✌✣ ☞ ☛ ✣ ✏ ✆ ✞✑☎

�
☞ ☛

�
✏ ✍☎✥ ✂

✂ ✙ ✣ ✍ ✙
�

is an equivalence relation and the quotient set
✡☞☛ ✞☛✡✗✏✍✌✏✎✒✑✔✓✟✞✝✕ ✏

is in bijection with the set of

kernels✒ ✞✕✍✖☞✠✡✗✏
.

One verifies rapidly that the addition and external multiplication are compatible with this
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bijection, which gives the vector space structure of the set
✡☞☛ ✞☛✡✗✏✍✌✏✎✒✑✔✓✟✞✝✕ ✏

and the isomor-

phism of vector space between
✡☞☛ ✞☛✡✗✏✍✌✏✎✒✑✔✓ ✞✝✕ ✏

and ✒ ✞✕✍✖☞✠✡✗✏
. ✡

3.2.3 Categories and functors

Let
✕

the category of dual systems
✞☛✡✌☞✎✍✑✏

, (we do not require here
✡

to be quasi-complete),

the morphisms being the weakly continuous linear applications and
✘

the category of vector

spaces, the morphisms being the linear applications. Then according that to a morphism
☎ ✄ ✡ ✆✟✞ ✝

we associate the morphism

✟☎ ✄☎✡☞☛ ✞✠✞☛✡✌☞✎✍✑✏✠✏✍✌✏✎✒✑✔✓ ✞✝✕ ✏ ✆✟✞ ✡☞☛ ✞✠✞ ✝ ☞ ✎ ✏✠✏✍✌✏✎✒✑✔✓ ✞✝✕ ✏
✗✞✑☎ ☞ ☛ ✏ ✟ ✆✟✞ ☎ ✞ ✗✞✑☎ ☞ ☛ ✏ ✏

we get

Theorem 3.14 �
✁✂☎✄✝✆ ✁ � ✞ ✄ ✞☛✡✌☞✎✍✑✏✄✟✞ ✡☞☛ ✞✠✞☛✡✌☞✎✍✑✏✠✏✍✌✏✎✒✑✔✓ ✞✝✕ ✏

is a covariant functor of category
✕

into category
✘

.

On the other hand,✒ ✄ ✞☛✡✌☞✎✍✑✏ ✟✞ ✒ ✞✕✍✖☞✠✡✗✏
is also a covariant functor of category

✕
into

category
✘

, according that to a morphism
☎ ✄ ✡ ✆✟✞ ✝

we associate the morphism

✟☎ ✄ ✒ ✞✕✍✖☞✠✡✗✏ ✆✟✞ ✒ ✞ ✎ ☞ ✝ ✏
✙ ✟ ✆✟✞ ☎ ✂ ✙ ✂ ✓ ☎

and

Theorem 3.15 The two covariant functors �
✁✂☎✄✝✆ ✁ � ✞ and ✒ are isomorphic.

3.3 Canonical subdualities

The classes of equivalences of subdualities with identicalkernel are very large and it may be

interesting to associate each equivalence class with a canonical representative enjoying good



121

properties. This section aims at defining this particular set of subdualities that will be called

canonical subdualities. The desired good properties (suchthat the equality with Hilbertian

subspaces in case of positive kernels) are listed below.

Actually, before stating the main results of this part, one must ask the following question:

what do we mean by canonical representative? And what good properties do we need?

There is probably not a single answer to these questions and there may be many different

good ways to define canonical representatives. However, it seems natural to require some

properties for a canonical representative. Those chosen here are:

1. the canonical representative must be “representative” of the kernel, i.e. entirely de-

fined by the kernel;

2. the definition of the canonical representative must be “symmetric”, i.e. if
✞✑☎ ☞ ☛ ✏

is

the canonical subduality associated to✙ , then
✞✑☛ ☞ ☎ ✏

must be the canonical subduality

associated to✓ ✙ ;

3. the definition of the canonical representative must coincide with the definition of the

Hilbertian subspace in case of positive kernels.

It is in this spirit that those canonical subdualities have been constructed.

Since Hilbertian subspaces may be seen as the completion of the primary subspace associ-

ated to the positive kernel it seems natural to mimic this construction up to a certain extent

i.e. do some completion. The first task is then to define “canonical” topologies on the sets
☎

and
☛

.
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3.3.1 Definition of the canonical topologies

The definition of a locally convex topology may take various form, one being by means of

semi-norms and another by convergence on bounded sets of a dual space. These two are of

course closely linked (see for instance [26]) but since we start with a dual system of space

we prefer to use the second method. Precisely we aim at defining some “good” bounded

sets. Our choice is as follows:

let ✙ ☞ ✒ ✞✕✍✖☞✠✡✗✏ be a kernel,
✞✑☎ ✓✟☞ ☛ ✓ ✏

the associated primary subduality. We define the

following sets:

�✁� ✝ ✟ ✍ ✟✄✂ barrels of
☎ ✓ ☞ � ✞ ✫ ☞ ✂ ✏ ☞ ✞ ✞ ✓ ✏ �

☞✆☎ ✞ ✌ ✙ ✓ ✣ ✞ ✂ ✏ ☞ ✂ ✍ ✁ ✠✡☎ ☛☞✞ ✏ ✝ ✫
and

☎ ✞ ✌ ✓ ✙ ✓ ✣ ✞ ✂✞✝ ✏ ☞ ✂ ✝ ✍ ✁ ✠✡☎ ☛☞✞ ✏ ✝ ✂ ✎ , where✂✟✝ is the polar6 of ✂ for the duality
✞✑☎ ✓✟☞ ☛ ✓ ✏

;

�✁� ✂ ✟ ✍✁�✠✂✞✝ ☞ ✂ ☞ � ✝ ✟ ✦ ;

under the following convention:

Z☎ ✞ ✌ ✙ ✓ ✣ ✞ ✂ ✏ ☞ ✂ ✍ ✁ ✠✡☎ ☛☞✞ ✏ ✝ ✫
stands for

�☛✡ ☞ ✍✖☞ ✙ ✞☞✡ ✏ ✍✌✂ and
☎ ✞✠✞✍✡✟☞

✂
✏ ✁ ✠✡☎ ☛☞✞ ✏ ✝ ✫

(resp. for

✂✞✝ ).

Remark that this convention is useless for symmetric, Hermitian or antisymmetric kernels

since
✎✒✑✔✓✟✞ ✙ ✏ (resp.

✎✒✑✔✓ ✞ ✓ ✙ ✏ ) is orthogonal to✓ ✙ ✞✕✍✑✏
(resp. to ✙ ✞✕✍✑✏

) and obviously if the

kernel ✙ is one-to-one.

� ✝ ✟ (resp. � ✂ ✟ ) is a set of weakly bounded sets of
✞✑☎✌✓ ☞ ☛ ✓ ✏

and one can define over
☛✚✓

(resp.
☎ ✓

) the topology of� ✝ ✟ -convergence, this topology being locally convex and compatible

with the vector space structure (proposition 16 p. 86 [26]).

Let us show that� ✝ ✟ (resp. � ✂ ✟ ) is a set of weakly bounded sets:

Let ✂ ☞ � ✝ ✟ . It is an equilibrated and absorbing set hence☛ ☞ ☞ ☛ ☞✁� ✩ ✒ ✥ ☞ ✩ ✥ ☞ ☞ � ✝ ✟
✍
Since we deal with barrels, the polar coincide with the absolutepolar
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and
✞

✂
☞ ☞ ✏ ✁✄✝✙☎ ✂ ✞ is bounded. It follows that✂ ✝ ☞ � ✂ ✟ is a barrel as the absolute polar of an

equilibrated weakly bounded set (corollary 3 p 68 [15]) and finally, the elements of� ✂ ✟ are

also weakly bounded.

3.3.2 Construction of the canonical subdualities

As for hermitian kernels that do not always admit a Kolmogorov decomposition, or for pos-

itive kernels that must verify a certain continuity condition when the space
✡

is not Mackey

quasi-complete to be Hilbertian kernels, additional conditions on the kernel are required to

be able to construct canonical subdualities.

Definition 3.16 ( – stable kernel – )Let ✙✡☞ ✒ ✞✕✍✖☞✠✡✗✏
a kernel. It is stable if:

1. the sets� ✝ ✟ and � ✂ ✟ are non empty;

2. ✙ ✄ ✍ ✆ ✞ ☎ ✓
(resp. ✙ ✄ ✍ ✆✟✞ ☛ ✓

) is continuous if
✍

is endowed with the

Mackey topology and
☎ ✓

with the topology of� ✂ ✟ -convergence (resp.
☛✚✓

with the

� ✝ ✟ -convergence).

The first condition is necessary to be able to define the canonical topologies whereas the

second condition is needed to perform the completion (see lemma 3.19 below).

Proposition 3.17 The second condition is equivalent to:

the elements of� ✝ ✟ (resp. � ✂ ✟ ) are weakly relatively compact in
✡

.

This condition is always fulfilled if
✍

is (Mackey) barreled.

Proof. – We use proposition 28 p 110 in [26]. The weakly continuous appli-

cation ✙ ✍ ✓✡✚ ✄ ✍ ✆ ✞ ☎ ✓
is continuous if

✍
is endowed with the Mackey topology and

☎ ✓
with the topology of� ✂ ✟ -convergence if and only if✚ ✞ � ✂ ✟ ✏ is a set of weakly relatively

compact sets of
✡

(recall that the Mackey topology on
✍

is the topology of convergence on
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the weakly compact sets of
✡

). ✡

Remark 3.18 The term “relatively” may be surprising since the elements of � ✝ ✟ are weakly

closed in
☎ ✓

(as barrels), the weak topology being the topology induced by the weak topology

on
✡

. But the elements of� ✝ ✟ are not weakly closed in
✡

in general; they are just of the form

✂ ✍ ☎ ✓ ✄
✂ with ✂ being the weak closure of✂ in

✡
and being weakly compact.

Lemma 3.19 Let ✙ ☞ � ✞✕✍✖☞✠✡✗✏
be a stable kernel,

✞✑☎✌✓✟☞ ☛ ✓ ✏
the associated primary duality.

Let
☎ ✍ �☎ ✓

(resp.
☛ ✍ �☛ ✓

) be the completion of
☎ ✓

endowed with the topology of� ✂ ✟ -

convergence (resp. the completion of
☛ ✓

endowed with the topology of� ✝ ✟ -convergence).

Then
☎

(resp.
☛

) is the vector space generated by the closures (in
�☎ ✓

, resp.
�☛ ✓

) of the

convex envelopes of finite unions of elements of� ✝ ✟ (resp.� ✂ ✟ ) and
☎ ✓ ✡✌☞ ☛ ✓ ✡

.

Proof. – First,
☎ ✍ �☎ ✓

is the vector space generated by the closures in
�☎ ✓

of

its neighborhoods of zero, i.e. by polarity by the closures of the convex envelopes of finite

unions of elements of� ✝ ✟ .

Second, if we endow
✍

with the Mackey topology and
☛ ✓

with the � ✝ ✟ -convergence, then

✙ ✄ ✍ ✆ ✞ ☛ ✓
is continuous with dense image and✙ ✄ ☛ ✁✓ ✆ ✞ ✡

is one-to-one. But
☛✆✁✓

is the vector space generated by the weak closures of the convex envelopes of finite unions

of elements of� ✝ ✟ in the weak completion of
☎ ✓

(corollary 1 p 91 [26]). It follows that
☎ ✓ ☛✌✁✓ ✓ ✡

since
�☎ ✓

is continuously included in the weak completion of
☎✆✓

. ✡

Theorem 3.20 Let ✙✌☞ � ✞✕✍✖☞✠✡✗✏
be a stable kernel,

✞✑☎✌✓✟☞ ☛ ✓ ✏
the associated primary duality,

☎
and

☛
defined as before. Then the bilinear form✎ ✓ defined on the primary duality extends

to a unique bilinear form✎ on
☛ ✂ ☎

separate. It defines a duality
✞✑☎ ☞ ☛ ✏

called canonical

subduality associated to✙ .
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Proof. – We use the extension of bilinear hypocontinuous forms theorem (propo-

sition 8 p 41 [15]). We endow
☎

(resp.
☛

) with the topology of� ✂ ✟ (resp. � ✝ ✟ )-convergence.

Then
☎ ✓

(resp.
☛ ✓

) is dense in
☎

(resp.
☛

), every point of
☎

(resp.
☛

) lies in the closure of

an element of� ✝ ✟ (resp. � ✂ ✟ ) and ✎ ✓ ✄ ☛ ✓ ✂ ☎ ✓ ✆✟✞ ✘ is hypocontinuous with respect to

� ✝ ✟ and � ✂ ✟ . The hypothesis of the theorem are then fulfilled and✎ ✓
extends on a unique

bilinear form ✎ on
☛ ✂ ☎

. This form is separate by the Hahn-Banach theorem. ✡

Remark 3.21 ✎ is hypocontinuous with respect to� ✂ ✟ and � ✝ ✟ .

The definition of a canonical subduality follows from this theorem:

Definition 3.22 ( – canonical subduality – )A subduality
✞✑☎ ☞ ☛ ✏

of
✞☛✡✌☞✎✍✑✏

is a canonical

subduality if it is the canonical subduality associated to its kernel.

Corollary 3.23 Let ✙ ☞ � ✞✕✍✖☞✠✡✗✏
be a kernel such that� ✝ ✟ and � ✂ ✟ are non empty and

suppose
✍

Mackey barreled. Then the previous construction holds.

Next corollary gives a important result concerning completeness of the spaces:

Corollary 3.24 If the elements of� ✝ ✟ (resp. of � ✂ ✟ ) are weakly relatively compacts in
�☎ ✓

(resp. in
�☛ ✓

), then the topology of� ✂ ✟ -convergence (resp. of� ✝ ✟ -convergence) is compatible

with the duality
✞✑☎ ☞ ☛ ✏

and
☎ ✍ �☎ ✓

(resp.
☛ ✍ �☛ ✓

) is complete for its Mackey topology.

We call them weakly locally compact canonical subdualities, since the topologies of� ✝ ✟ -

convergence and of� ✂ ✟ -convergence are weakly relatively compact. Respectively, a stable

kernel verifying such conditions is called a weakly compactkernel.

Proposition 3.25

1. if
✞✑☎ ☞ ☛ ✏

is the canonical subduality associated to✙ , then
✞✑☛ ☞ ☎ ✏

is the canonical

subduality associated to✓ ✙ ;
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2. if ✙ is the Hilbertian kernel of a Hilbertian subspace
�

, then ✙ is stable (weakly

compact) and the associated canonical subduality is
✞ �✂☞ � ✠ � ✏

.

Proof. – The first statement is obvious by construction and for the second one we

have that the elements of� ✏✠✟ are the bounded barrels with bounded polars for the Hilbertian

norm. ✡

The notion of canonical subdualities is of course importantonly for infinite-dimensional

vector spaces. As we will see with some examples, it is sometimes relatively hard to repre-

sent concretely a canonical subduality, whereas it is easier to know whether a kernel is stable

or not.

Examples:

example 1 Sobolev spaces

Let
✭ ✍✁�✣✥ ☞ �✄✂

. The integral operator

✙ ✄ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ✆✟✞ ✄ ✁✝✞ ✥ ☞ �✄✂ ✏
✟ ✟ ✆✟✞ ✙ ✞ ✟ ✏ ✞ ✥ ✏ ✍ ☎

✙ � ✞ ✮ ☞✦✥ ✏ ✟ ✞ ✮ ✏ ✌ ✮
where

� ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✝ ✆ ✮ ✏
1l ✓
☎ ☎

is associated with the canonical subduality
✞✑☎ ☞ ☛ ✏

where

☎ ✍
☞

✄ ☞ ✄ ✁ ☞ ✄ ✞ ✝ ✏ ✍✜✛
✙

1l ✓
☎ ☎ ✜ ✞ ✮ ✏ ✌ ✮ ☞ ✜ ☞✏✎ � ✞ ✭ ✏✞✝

and
☛ ✍

☞ ☞ ☞ ✄ ✁ ☞ ☞ ✞ ✮ ✏ ✍ ✛
✙

1l ✓
☎ ☎ ✢ ✞ ✝ ✏ ✌ ✝ ☞✣✢ ☞✏✎ � ✞ ✭ ✏✞✝

and the bilinear form is

✞ ☞ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞ ✍✜✛
✙
✢ ✞ ☎ ✏ ✜ ✞ ☎ ✏ ✌ ☎

This is a direct consequence of the following results:
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1. Let ✂ ☞ � ✝ ✟ ,
☎ ✞ ✌ ✙ ✓ ✣ ✞ ✂ ✏ ☞

✂ ✍ ✁ ✠✡☎ ☛☞✞ ✏ ✝ ✫
and

☎ ✞ ✌ ✓ ✙ ✓ ✣ ✞ ✂✞✝ ✏ ☞ ✂ ✝ ✍ ✁ ✠✡☎ ☛☞✞ ✏ ✝ ✂ . Then

✄ ✞ ✝ ✏ ✍✜✛ ☎
✓ ✜ ✞ ✮ ✏ ✌ ✮ ☞ ✂ ✂ ✛

✙
✜ � ✝ ✫

and
☞ ✞ ✮ ✏ ✍ ✛

✣

✓
✢ ✞ ✝ ✏ ✌ ✝ ☞ ✂ ✝ ✂ ✛

✙
✢ � ✝ ✂

2. By Schwartz inequality

☛ ✞ ☞ ☞ ✄ ✏ ☞ ☛ ✂ ☎ ✔ ✞ ☞ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞ ✔ ✝ ✛
✙
✢ ✜

example 2 Sobolev spaces(-
✠ �

�
✞ �✣✥ ☞ �✄✂ ✏

-)

The following kernels

✙ ✄ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ✆✟✞ ✄ ✁✝✞ ✥ ☞ �✄✂ ✏
✟ ✟ ✆✟✞ ✙ ✞ ✟ ✏ ✞ ✥ ✏ ✍ ☎

✙ � ✞ ✮ ☞✦✥ ✏ ✟ ✞ ✮ ✏ ✌ ✮
where

� ✞ ✮ ☞ ✝ ✏ ✍✜✛ ☎
✓ � ☎✝✆ ✞ ☎ ☞ ✮ ✏ ✌ ✮ ✍ ✮

� ☎✝✆ ✞ ✮ ☞ ✝ ✏ ✆ � ☎✝✆ ✞ ✮ ☞ ✝ ✏
�☎

and

✞ ✝ ☞ ✎ ✏
has for kernel

✛ ✄ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ✆ ✞ ✄ ✁✝✞ ✥ ☞ �✄✂ ✏
✟ ✟ ✆ ✞ ✛ ✞ ✟ ✏ ✞ ✥ ✏ ✍ ☎

✙
� ✞ ✮ ☞✦✥ ✏ ✟ ✞ ✮ ✏ ✌ ✮

where
� ✞ ✮ ☞ ✝ ✏ ✍ 1l ✓

☎ ☎

are stable and we conjecture (but it is an open problem) that their canonical subduali-

ties are the previously defined fractional Sobolev subdualities

✞✑☎ ☞ ☛ ✏ ✍ ✞ ✠ �

�
☞ ✠ �

�
✏
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and
✞✠✞✑☎ ✏ ☞ ✎ ✏ ✍ ✞ ✠ �

�
☞ ✠ �

�
✏

This is based on the following result:

✁ ☛ ✞✁� ✏ ✍
☞ ✜ ☞ ✘ ✜ ✘ ✗ �

�

�

✝ � ✝ � ✝ ✓

is an element of� ✁ ✟ from the following majoration [52]

✔ ✛ ✢ ✜ ✁ ✔ ✝ � ✘ ✜ ✘ ✗ �

�

�

✥ ✘ ✢ ✘ ✗ �

�

�

However, we did not demonstrate that any element of� ✁ ✟ is included in such sets.

example 3 (- Hilbertian subspaces -)

Let
�

be a Hilbertian subspace of
✞☛✡✌☞✎✍✑✏

with positive kernel✙ . Then the canonical

associated subduality is clearly
✞ �✂☞ � ✠ � ✏

with asymmetric bilinear form defined

by the scalar product (proposition 3.25).

example 4 (- Krein spaces -)

Let ✙ be an Hermitian kernel that admits a Kolmogorov decomposition. Then the

canonical subduality associated to✙ is the self-duality intersection of all Krein sub-

spaces with kernel✙ .

3.3.3 The set of canonical subdualities

In section 3.2 the image of a subduality by a weakly continuous morphism has been de-

fined. It is of prime interest to see whether the image of a canonical subduality is a canonical

subduality,. Actually, this set is not stable by the action of a weakly continuous linear appli-

cation. Hence, the set of canonical subdualities cannot be endowed with the structure of a

vector space.
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An easy way to see this is to deal with kernels of multiplicity:

Let ✙ ✍ ✙ ✣
✓
✆ ✙ ✣✓ ✍ ✙ �✓

✆ ✙ �✓ be a kernel of multiplicity (with two distinct Kolmogorov de-

compositions leading to two different Krein spaces). The canonical subdualities associated

to ✙ ✣
✓
☞ ✆ ✙ ✣✓ ☞ ✙ �✓

☞ ✆ ✙ �✓ are the Hilbertian and anti-Hilbertian subdualities
✞ � ✣
✓
☞ � ✣
✓
✏
, etc...

and their image by the operator sum
✖ ✄ ✡ ✂✔✡ ✆✟✞ ✡

are respectively
✞ � ✣
✓

✖ � ✣✓ ☞ � ✣
✓

✖ � ✣✓ ✏
and

✞ �
�✓

✖ �
�✓ ☞ � �✓

✖ �
�✓ ✏ with

� ✣ ✖ �
�

�✍ � ✂ ✖ �✁�
by hypothesis (the kernel is of multi-

plicity). These two subdualities are then distinct and cannot be both the canonical subduality

associated to✙ .

The image of a canonical subduality is not a canonical subduality in general. We still

need an equivalence relation.

Topological and algebraic properties of canonical subdualities have not been investigated yet

(apart from 3.24). It may be interesting to study them in relations with the properties of the

kernels (for instance, is there an easy characterization ofweakly compact kernels ?)

3.4 Some particular subdualities

To put the framework of subdualities and canonical subdualities at work some instantiations

are needed. In particular we study the Banachic case and the case of genuine functions that

we call evaluation subdualities. The study of a class of equivalence is also discussed.

3.4.1 Inner and outer subdualities, Banachic subdualities

In the previous section, we considered the topologies induced by the whole set� ✝ ✟ and

� ✂ ✟ . However, we can restrict our attention to a particular subset of � ✝ ✟ (resp. of � ✂ ✟ ) and

apply the previous construction. The constructed subdualities hold a deep link with their

kernel and will therefore be called inner subdualities. If the particular subset reduces to one
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element, it appears that under the hypothesis of theorem 3.24, the constructed subduality is

a reflexive Banachic subduality.

Other subdualities (not steaming from the kernel) will be called outer subdualities.

Inner and outer subdualities

Let ✙ ☞ � ✞✕✍✖☞✠✡✗✏
be a stable kernel,

✞✑☎ ✓ ☞ ☛ ✓ ✏
the associated primary duality and let

� ✝ ✟ be

a (non-empty)subset of� ✝ ✟ , stable by homothecy,
� ✂ ✟ ✍ �

✝✝ ✟ the subset of� ✂ ✟ associated

to
� ✝ ✟ by polarity. Then we can make the previous construction, precisely:

Theorem 3.26 Let
☎✂✁ ✍ �☎ ✓

(resp.
☛✄✁ ✍ �☛ ✓

) be the completion of
☎ ✓

endowed with

the topology of
� ✂ ✟ -convergence (resp. the completion of

☛ ✓
endowed with the topology of

� ✝ ✟ -convergence). Then

1.
☎☎✁ ✓ ✡✌☞ ☛✆✁ ✓ ✡

;

2. the bilinear form✎ ✓
defined on the primary duality extends in a unique bilinear form✎ ✁ on

☛✆✁ ✂ ☎☎✁
separate.

The duality
✞✑☎✂✁✌☞ ☛✆✁ ✏

is a subduality of
✞☛✡✌☞✎✍✑✏

called inner subduality associated to
✞ ✙ ☞✝� ✏

.

Proof. – Since the kernel is stable, the elements of
� ✝ ✟ are weakly relatively

compact and the statements of lemma 3.19 and of theorem 3.20 remain valid. ✡

Conversely, we will say that a subduality is an inner subduality if it may be constructed in

this manner starting from its kernel. Finally, we define the set of outer subdualities to be the

complement of the set of inner subdualities in the whole set of subdualities.
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Banachic subdualities

Banach spaces hold a place of special interest among the locally convex vector spaces.

Hence, it is interesting to confront the theory of subdualities and the theory of Banach spaces.

Definition 3.27 ( – Banachic duality – ) A Banachic duality
✞✑☎ ☞ ☛ ✏

is a duality such that
✞✑☎ ☞ ✞ ✏

(i.e.
☎

endowed with the Mackey topology) is a reflexive Banach space.

This definition is in fact symmetric, if
✞✑☎ ☞ ☛ ✏

is a Banachic duality then
✞✑☛ ☞ ☎ ✏

is also a

Banachic duality and
✞✑☛ ☞ ✞ ✏

is a reflexive Banach space.

Remark 3.28 The concept of Banachic dualities is actually old, since it has been inves-

tigated for instance by N. Aronszajn in [7]. His interest wasthe Banachic completion of

dualities.

The definition of Banachic subdualities follows (we also usethe concept of canonical, inner

and outer subdualities):

Definition 3.29 ( – Banachic subduality – )We call (resp. inner, outer, canonical) Ba-

nachic subduality any (resp. inner, outer canonical) subduality that is a Banachic duality.

Proposition 3.30 Let ✙✡☞ � ✞✕✍✖☞✠✡✗✏
be a weakly compact kernel such that:

�
✂ ✝ ☞ � ✝ ✟ ☞ ☛✄✂ ☞ � ✝ ✟ ☞ � ✫ ✣ ☞✬✫

�
☞ ✞ ✓✑

☞ ✫ ✣
✂ ✝ ☎

✂
☎ ✫

� ✂
✝

Then the (weakly relatively compact) canonical subdualityassociated to✙ is a Banachic

subduality.
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Proof. – By polarity, we get
✫

� ✂✞✝
✝ ☎

✂✞✝
☎ ✫ ✣

✂✞✝✝ and the neighborhood of✥ in
☛✚✓

✂✞✝✝ is bounded. The topology of� ✝ ✟ -convergence in
☛ ✓

is then normable (corollary 1 p 33

in [26]). Conversely, the same arguments prove that the topology of � ✂ ✟ -convergence in
☎ ✓

is normable.

Finally, the kernel being weakly compact, the norm-topology is compatible with the duality
✞✑☎ ☞ ☛ ✏

and
✞✑☎ ☞ ☛ ✏

is a Banachic subduality. ✡

There is an easy asymmetric manner to construct Banachic subdualities:

Let ✙ ☞ � ✞✕✍✖☞✠✡✗✏
be a kernel,

✞✑☎ ✓✟☞ ☛ ✓ ✏
the associated primary duality and let

☎ ✓ ✡
be

a reflexive Banach space continuously included in
✡

such that
✞✑☎ ✓ ☞ ✞ ✏

is continuously and

densely included in
☎

. Then ✙ ✄ ✍ ✆ ✞ ☎
is continuous with dense image. Defining

☛ ✍ ✓ ✙ ✞✑☎✆✁ ✏
, we have that:

Lemma 3.31
✞✑☎ ☞ ☛ ✏

is a Banachic subduality of
✞☛✡✌☞✎✍✑✏

.

The case of inner Banachic dualities is slightly different:

Let ✙ ☞ � ✞✕✍✖☞✠✡✗✏
be a stable kernel and choose one✂ ☞ � ✝ ✟ . Let

�☎ ✓
(resp.

�☛ ✓
) be the

completion of
☎ ✓

endowed with the topology of✂ ✝ -convergence (resp. the completion of
☛ ✓

endowed with the topology of✂ -convergence).

Proposition 3.32 If ✂ (resp. ✂ ✝ ) is weakly relatively compact in
�☎ ✓

(resp. in
�☛ ✓

) then the

inner duality
✞✑☎ ✍ �☎ ✓ ☞ ☛ ✍ �☛ ✓ ✏

associated to
✞ ✙ ☞

✂
✏

is an inner Banachic subduality.

This construction can for instance be done with any weakly compact kernel.

Examples:

example 1 Sobolev spaces(-
✠ �

�
✞ �✣✥ ☞ �✄✂ ✏

-)

The previously defined fractional Sobolev subdualities
✞✑☎ ☞ ☛ ✏ ✍ ✞ ✠ �

�
☞ ✠ �

�
✏

and
✞✠✞ ☎ ✏ ☞ ✎ ✏ ✍ ✞ ✠ �

�
☞ ✠ �

�
✏
.

are inner Banachic subdualities.
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example 2 (- Krein spaces -)

This fundamental example deals with Krein subspaces. Let
✞☛✡✌☞✎✍✑✏

be a duality and

✙ ☞ ✞ ✟ ✒ ✓ ✞✕✍✖☞✠✡✗✏ a kernel of multiplicity. Then any Krein subspace
�

associated

to ✙ may be seen as a inner Banachic (self-)subduality
✞ �✂☞ � ✏

a Banach norm being

the norm of the Hilbert space
✔ � ✔

.

3.4.2 Example of an equivalence class: the dualities of distributions

The classes of equivalence of subdualities with a common kernel are also very interesting

to look at and we had a first example with Hermitian kernels of multiplicity. We deal here

with an other example, the dualities associated with the canonical injection from✄ into the

space of distributions✄ ✁
that is a positive kernel. Remark that the investigation of such sub-

dualities (associated with a positive kernel) is made in [43] under the name of “well-dived

dualities”.

Let
✭

be an open subset of✞ ✙ , ✄ ✁
the space of distribution over

✭
and ✄ the space of

indefinitely differentiable functions with compact support. Let ✙ ✍ ✁ ✌ ✄ ✄ ✆✟✞ ✄ ✁
be the

canonical injection of✄ into ✄ ✁
.

✙ ✍ ✁ ✌ is a positive kernel and since✄ is barreled it is associated to a unique Hilbertian

subspace of✄ ✁
,
� ✍ ✎ �

✞ ✝ ✏
, the Hilbert space of square integrable functions with respect

to the Lebesgue measure on✞ ✙ . The following classical dualities
✞ ☛ ✁☛☞ ☛ ✏

,
✞☛✡✂✁ ☞✠✡✗✏

,
✞ ✡ ✁ ☞ ✡ ✏

,
✞ ✎ ✣ ☞ ✎✁� ✏ , ✞ � ✟ ☞ � ✓ ✟ ✏

are outer subdualities of
✞ ☛ ✁ ☞ ☛ ✏

with kernel ✙ ✍ ✁ ✌ .

Figure 3.3 (taken from [14]) illustrates the main functional spaces in analysis and their rela-

tive inclusions, these inclusions being topological (i.e.continuous with respect to the usual

topologies).
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� �✓ ✍ ☛
//

��

✡ //
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� � ✍ ✡
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��✡✂✁ // ✡ ✁ // ☛ ✁

Figure 3.3: Main functional spaces in analysis

3.4.3 Antisymmetric kernels: symplectic subdualities

Other interesting related mathematical objects are symplectic spaces. These spaces are de-

fined as real inner product spaces such that☛ ☞ ☞ �✂☞ ✓ ☞ ✔ ☞ ✕ ✍ ✥ . Considering these

spaces as subdualities, it follows that their kernels are antisymmetric (or skew-symmetric).

We refer to the previous example in✞ � or the following example with kernel function

� ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✮ ✆ ✝ ✏ ✙ (
✆

odd).

3.4.4 Evaluation subdualities

Definition 3.33 ( – evaluation subduality – )Let
✭

be any set. We call evaluation sub-

duality (or reproducing kernel subduality) on
✭

any subduality of✘ ✙ endowed with the

product topology.

Definition 3.34 ( – reproducing kernel – )Let
✞✑☎ ☞ ☛ ✏

be an evaluation subduality of
✭
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with kernel ✙ . We call reproducing kernel (function) of
✞✑☎ ☞ ☛ ✏

the function of two variables:

� ✄ ✭ ✂ ✭ ✆✟✞ ✘
✮ ☞ ✝ ✟ ✆✟✞ � ✞ ✮ ☞ ✝ ✏ ✍ ✌ ✓ ✙ ✞ � ☎ ✏ ☞ ✙ ✞ �

✓
✏ ✍ ✁✄✂✆☎ ✝✟✞

Lemma 3.35 Conversely, the kernel✙ can be easily deduced from� by the relation✙ ✞ �

✓
✏ ✍

� ✞ ✮ ☞✦✥ ✏
We get

☎ ✓ ✍ � ✄ � � � ✞ ✮ ☞✦✥ ✏ ☞ ✮ ☞ ✭ ✦ (resp.
☛ ✓ ✍ � ✄ � � � ✞ ✥ ☞ ✝ ✏ ☞ ✝ ☞ ✭ ✦ ).

Proof. – � ✞ ✮ ☞ ✝ ✏ ✍ ✎ ✌ ✓ ✙ ✞ � ☎ ✏ ☞ ✙ ✞ �

✓
✏ ✍ ✍✗✌ ✓ ✁ ✞ � ☎ ✏ ☞ ✙ ✞ �

✓
✏ ✍ ✁✄✂✆☎ ✝✟✞ ✍ ✙ ✞ �

✓
✏ ✞ ✝ ✏

.

Formula
☎ ✓ ✍ � ✄ � � � ✞ ✮ ☞✦✥ ✏ ☞ ✮ ☞ ✭ ✦ derives from

✞ ✘✔✙ ✏ ✕ ✍ � ✄ � � �

✓
☞ ✮ ☞ ✭ ✦ . ✡

Corollary 3.36 ( – evaluation, reproduction – )

1. ☛ ✝ ☞ ✭ ☞ ☛ ✜ ☞ ☎ ☞ ✜✗✞ ✝ ✏ ✍ ✞ � ✞ ✥ ☞ ✝ ✏ ☞✤✜ ✏ ✁✄✂✆☎ ✝✟✞ (resp.
✁ ✞ ✮ ✏ ✍ ✞ ✁ ☞ � ✞ ✮ ☞✦✥ ✏✠✏ ✁✄✂✆☎ ✝✟✞ );

2. � ✞ ✮ ☞ ✝ ✏ ✍ ✞ � ✞ ✥ ☞ ✝ ✏ ☞ � ✞ ✮ ☞✦✥ ✏✠✏ ✁✄✂✆☎ ✝✟✞ .
Proof. – We apply theorem 3.6:

☛ ☞ ☞ ☛ ☞ ✮ ☞ ✭ ☞

☞ ✞ ✮ ✏ ✍ ✞ �

✓
☞ ✚ ✞ ☞ ✏✠✏ ✁ ✁ ✂ ✄ ✞ ✕ ☎ ✂ ✄ ✞

✍ ✎ ✞ ☞ ☞ ✙ ✞ �

✓
✏✠✏

from theorem
✞ ✥ �

✍ ✎ ✞ ☞ ☞ � ✞ ✮ ☞✦✥ ✏✠✏ ✡

Examples

example 1 � � -example

The dual system
✞ ✞✂� ☞ ✞ � ✏ endowed with the symplectic bilinear form✎ ✄ ✞ � ✂ ✞ � ✆ ✞ ✞

✞ ★ ☞ ✛ ✏ ✟ ✆ ✞ ✜✂✣✂✁
�
✆ ✜

�
✁ ✣

is an evaluation subduality on
✭ ✍✁� �✟☞ ☎ ✦ with kernel function
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� ✞☛✁ ☞ ✚ ✏ ✍ � � ☎ ✁ ✍
✁✂ ✥ �

✆ � ✥
✄☎

example 2 Sobolev spaces

Suppose
✭ ✍✁�✣✥ ☞ �✄✂

. The duality
✞✑☎ ☞ ☛ ✏

where

☎ ✍
☞

✄ ☞ ✄ ✁ ☞ ✄ ✞ ✝ ✏ ✍✜✛
✙

1l ✓
☎ ☎ ✜ ✞ ✮ ✏ ✌ ✮ ☞ ✜ ☞✏✎ � ✞ ✭ ✏✞✝

and
☛ ✍

☞ ☞ ☞ ✄ ✁ ☞ ☞ ✞ ✮ ✏ ✍ ✛
✙

1l ✓
☎ ☎ ✢ ✞ ✝ ✏ ✌ ✝ ☞✣✢ ☞✏✎ � ✞ ✭ ✏✞✝

are in duality with respect to the bilinear form

✞ ☞ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞ ✍✜✛
✙
✢ ✞ ☎ ✏ ✜ ✞ ☎ ✏ ✌ ☎

is an evaluation subduality on
✭ ✍✁�✣✥ ☞ �✄✂

with asymmetric kernel function

� ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✝ ✆ ✮ ✏
1l ✓
☎ ☎

The kernel function of
✞✑☛ ☞ ☎ ✏

is

✓ � ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✮ ✆ ✝ ✏
1l ☎✆☎

✓ ✍ � ✞ ✝ ☞ ✮ ✏

example 3 Sobolev spaces(-
✠ �

�
✞ �✣✥ ☞ �✄✂ ✏

-)

The previous subduality
✞✑☎ ☞ ☛ ✏

of the dual system
✞ ✄ ✁☛☞ ✄ ✏

with kernel the integral

operator:
✙ ✄ ✄ ✞ �✣✥ ☞ �✄✂ ✏ ✆✟✞ ✄ ✁✝✞ ✥ ☞ �✄✂ ✏

✟ ✟ ✆✟✞ ✙ ✞ ✟ ✏ ✞ ✥ ✏ ✍ ☎
✙ � ✞ ✮ ☞✦✥ ✏ ✟ ✞ ✮ ✏ ✌ ✮

is an evaluation subduality on
✭ ✍✁�✣✥ ☞ �✄✂

with asymmetric kernel function

� ✞ ✮ ☞ ✝ ✏ ✍ ✛ ☎
✓ � ☎✝✆ ✞ ☎ ☞ ✮ ✏ ✌ ✮ ✍ ✮

� ☎✝✆ ✞ ✮ ☞ ✝ ✏ ✆ � ☎✝✆ ✞ ✮ ☞ ✝ ✏
�☎

The subduality
✞ ✝ ☞ ✎ ✏

is not an evaluation subduality.
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example 4 Polynomials, splines

The kernel of the subduality
✞✑☎ ☞ ☛ ✏

of ✞
✆

where
☎ ✍ ☛ ✍ ✟ ✙ are in duality with

respect to the bilinear form on
☛ ✂ ☎

✎ ✄ ☛ ✂ ☎ ✆✟✞ ✞
✞ ☞ ☞ ✄ ✏ ✟ ✆✟✞ ✂ ✙✁ ✡ ✓ ✁ ✓ ✣ ✞ ✆ ★☎✄✙✝✆

☞ ✁ ✁ ✞ ✞✟✞ ✏ ✄
✁ ✙ ✓ ✁ ✞ ✞✟✞ ✏

is identified with the kernel function

� ✞ ✮ ☞ ✝ ✏ ✍ ✞ ✮ ✆ ✝ ✏ ✙

remark that when
✆

is odd this kernel is antisymmetric.

example 5 Polynomials, splines (- Piecewise smooth spaces -)

Consider the previous setting of piecewise smooth spaces induality. Then the equali-

ties

✞ � ☎ ☞ ✄ ✏ ✁ ✆ ✄ ✕ ☎ ✆ ✄ ✞ ✍
✁✂

✙✁
✁ ✡ ✓

☞ ✁ ✞ ✥ ✏ ✄ ✁ ✞ ✝ ✏ ☞ ✄

✄☎
✁✄✂✆☎ ✝✟✞

✞ �

✓
☞ ☞ ✏ ✁ ✆ ✄ ✕ ☎ ✆ ✄ ✞ ✍

✁✂
☞ ☞ ✙✁
✁ ✡ ✓

☞ ✁ ✞ ✮ ✏ ✄ ✁ ✞ ✥ ✏
✄☎
✁✄✂✆☎ ✝✟✞

show that the reproducing kernel function is

� ✞ ✮ ☞ ✝ ✏ ✍
✙✁
✁ ✡ ✓

☞ ✁ ✞ ✮ ✏ ✄ ✁ ✞ ✝ ✏

Suppose now we want in addition that

�

✙
✞ � ✞ ✝ ☞✦✥ ✏✠✏ ✞ ✝ ✏ ✍ ✞ ✥ ☞ ✥ ☞✦✥✧✥✧✥ ☞ ✥ ☞ � ✏

where
�

✙
✞ ✄ ✏ ✞ ✝ ✏ ✍✗✌ ✄ ✞ ✝ ✏ ☞ ✄ ✁☎✞ ✝ ✏ ☞✦✥✧✥✧✥ ☞ ✄

✁ ✙ ✞ ✞ ✝ ✏ ✍ . Then the previous equality

� ✞ ✮ ☞ ✝ ✏ ✍
✙✁
✁ ✡ ✓

☞ ✁ ✞ ✮ ✏ ✄ ✁ ✞ ✝ ✏
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gives ☛ ✮ ☞ ✭ ✁
�
�
�
�
�
�

✂
✄ ✓ ✥✦✥✦✥ ✄ ✙
✄ ✕ ✓ ✥✦✥✦✥ ✄ ✕✙
...

✥✦✥✦✥ ...

✄
✁ ✙ ✞✓ ✥✦✥✦✥ ✄

✁ ✙ ✞
✙

✄
✁
✁
✁
✁
✁
✁

☎
✁
�
�
�
�
�
�

✂
☞ ✓ ✞ ✮ ✏

...

...
☞
✙
✞ ✮ ✏

✄
✁
✁
✁
✁
✁
✁

☎ ✍ ✞ ✥ ☞✦✥✧✥✧✥ ☞ ✥ ☞ � ✏ ☛

that is exactly equation (2.6) defining the dual space of a piecewise smooth
✠

-space

in [37].

example 6Let
✡ ✍ ✄✠✞ ✞ ✏ ✍ ✘ ✠

be the set of sequences endowed with the pointwise conver-

gence and let
☎ ✍ � ✞ ✄✁� ✏ ☞ ✄ ✣ ✞ ✞ ✏ ☞ ✄ ✓ ✍☎✥ ✕ be the set of absolutely summable se-

quences starting from zero and
☛ ✍ � ✞ ☞ � ✏ ☞ ✄ ✣ ✞ ✞ ✏ ☞ ✂ �� ✡ ✓ ☞ � ✍☎✥ ✕ the set of abso-

lutely summable sequences summing to zero.

These two spaces are in separate duality with respect to the following bilinear form

✎ ✄ ☛ ✂ ☎ ✆✟✞ ✞
☞ ☞ ✄ ✟ ✆✟✞ ✂ �� ✡ ✓ ☞ � ✞ ✂ �✁ ✡ ✓ ✄ ✁ ✏ ✍ ✆ ✂ �� ✡ ✓ ✞ ✂ �✁ ✡ ✓ ☞ ✁ ✏ ✄✁� ✓

✣

Their kernel is the two dimensional sequence

� ✞☛✁ ☞ ✚ ✏ ✍

✁
�
�
�
�
�
�
�
�
�

✂
✥ ✆ � ✥ ✥ ✥✦✥✦✥

✥ � ✆ � ✥ ✥✦✥✦✥

✥ ✥ � ✆ � ✥✦✥✦✥

✥ ✥ ✥ � ✥✦✥✦✥
...

...
...

. . . . . .

✄
✁
✁
✁
✁
✁
✁
✁
✁
✁

☎

Conclusion and comments

The concept of subduality generalizes the previous concepts of Hilbertian, Krein or admis-

sible prehermitian subspaces (and also D. Alpay’s concept of r.k.h.s. of pairs). The set of
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subduality quotiented by an equivalence relation can the beendowed with the structure of a

vector space isomorphic to the set of kernels and one gets a unified theory if one introduces

the notions of canonical and inner subdualities.

The example based on a differential operator shows that someexisting spaces (like Sobolev-

Slobodeckij spaces) seem to be closely linked with kernels.

Symplectic structure or more generally no-symmetric structures (see for instance [24] for an

example of use of non-symmetric bilinear form) are more and more used in mathematics.

The concept of subdualities gives a new setting to study suchobjects.

Finally, as L. Schwartz said at the end of [46] after introducing the concept of Hermitian

subspaces: “Il serait intéressant d’étendre aux opérateurs différentiels la théorie du potentiel

et le problème de Dirichlet”. He was heard beyond his expectations since the theory of Krein

subspaces has now many applications. We hope it will be the same for this new theory of

subdualities where we can now use kernels that are neither positive nor Hermitian. Next

chapter then initiates some directions for applications.
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Chapter 4

Applications

Introduction

The previous concepts put an additional structure on locally convex spaces and can therefore

be used to extend existing theories related to this particular structure (that exist on Hilbert

spaces, Krein spaces or dualities) to locally convex spaces. This is for instance the case for

Gaussian measures over locally convex spaces. We moreover go further into the formalism

and study also its implication in terms of Krein subspaces and subdualities.

One can also work the other way round: by embedding a duality into a specific locally

convex space (or a duality) one can study some objects with the use of the kernel. This is

particularly true in the second section that deals with operator theory.

Finally a third section is devoted to the starting point of our investigation: approximation

theory.
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4.1 From Gaussian measures to Boehmians (generalized distri-

butions) and beyond

Hilbertian subspaces play a great role in the (infinite-dimensional) probability theory since

Gaussian measures over a locally convex space may be entirely defined by a positive kernel

and its associated Hilbertian subspace. After precisely reviewing the link between Gaus-

sian measures and Hilbertian subspaces we will extend the construction to Krein subspaces

which will appear to be strongly linked with some generalization of distributions and finally

question the case of subdualities. This will be done throughabstract operator algebra theory.

4.1.1 Hilbertian subspaces and Gaussian measures

The Gaussian measures play a fundamental role in probability theory. In infinite-dimensional

probability theory at least two approaches are possible, one based after Radon measures the-

ory and the other after cylindrical measures. It is the second we (briefly) study here for

we can define Gaussian (cylindrical) measures in terms of Hilbertian subspaces. We refer

to [48] for the general theory of Radon, cylindrical and Gaussian measures or to [33] for a

more precise study of Gaussian measures.

Gauss measure over a Hilbert space

The Gauss measure over a finite
✆

-dimensional Hilbert space
�

is defined as follows: Let✌ ✜ ✍ ✌ ✜✂✣ ✌ ✜
�
✥✧✥✧✥ ✌ ✜

✙ be the Lebesgue measure on✘ ✙ and ✌ ☞ its image under the isomor-

phism
✞✢✜ � ✏ ✟ ✆✟✞ ☞ ✍ ✂ ✙ ✣ ✜ � ✄✁� the Gauss measure✂ on

�
is ✌ ✂ ✏ ✍ ✄ ✜ ✆ ✞ ✆

☎✒✘ ☞✙✘ �
✏ ✌ ☞ . Its

variance and Fourier transform (characteristic functional) are given by:

✛ ✏ � ✓ ✢ ✔ ☞ ✕ ✏ ✓ ✜ ✔ ☞ ✕ ✏ ✂ ✂ ✏ ✞ ✌ ☞ ✏ ✍
�

☎
☎
✓ ✢ ✔ ✜ ✕ ✏

✍
�

☞ ✞ ☞ ✏ ✍ ✄ ✜ ✆ ✞ ✆
☎✒✘ ☞ ✘ � ✏ ✏
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with the identifications
� ✁ ✠ � ✠ �

.

We can now define the Gauss measure over a arbitrary Hilbert space
�

. It is the (unique)

cylindrical measure✂ defined as follows:

Definition 4.1 ( – Gauss measure over a Hilbert space – )The Gauss measure is the (unique)

cylindrical measure✂ such that for any finite-dimensional vector subspace
� ✓ �

✆✁� ✞ ✂ ✏ ✏ ✍ ✂
�

where✆✁� is the orthogonal projection on
�

and ✂
� the previously defined Gauss measure

over the finite-dimensional Hilbert space
�

.

The previous equations regarding the covariance and Fourier transform remain valid.

Gaussian measure over a locally convex space (over a duality)

Based after the definition of the Gauss measure over a Hilbertspace, we can define Gaussian

measures over a locally convex space (or a duality):

Definition 4.2 ( – Gaussian measure – )Let
✡

be a locally convex space (resp.
✞☛✡✌☞✎✍✑✏

a

duality) and
✝

a cylindrical measure on
✡

. We say that
✝

is a Gaussian measure if there

exists a Hilbertian subspace
�

of
✡

(resp. of
✞☛✡✌☞✎✍✑✏

) such that

✝ ✍ ✁ ✞ ✂ ✏ ✏

where✂ ✏ is the Gauss measure on
�

and
✁ ✄ � ✆ ✞ ✡

the canonical injection.

We note
�✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏

the set of Gaussian measures over a duality
✞☛✡✌☞✎✍✑✏

.
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Covariance operators, kernels and support

The Hilbertian kernel of
�

is closely linked with the covariance operators and Fouriertrans-

form. Precisely

Proposition 4.3 Let
✞☛✡✌☞✎✍✑✏

be a duality and
✝

the Gaussian measure associated to
�

. then

✛ ☛ � ✞ ✢✔☞✁� ✏ ✁ ✠✡☎ ☛☞✞ ✞ ✜ ☞✁� ✏ ✁ ✠✡☎ ☛☞✞ ✂ ✝ ✞ ✌ � ✏ ✍
�

☎
☎
✌ ✢✔☞ ✙ ✞ ✜ ✏ ✍ ✁ ✠✡☎ ☛☞✞

✍
✁
✞ ✜ ✏ ✍ ✄ ✜ ✆ ✌ ✆

☎
✞ ✜ ☞ ✙ ✞ ✜ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍ ✍ ✄ ✜ ✆ ✌ ✆

☎✒✘ ✙ ✞ ✜ ✏ ✘ � ✏ ✍
The Hilbertian subspace itself is related to sets associated to Radon measures (theorem 6p 97

[33]):

Proposition 4.4 Suppose
✝

is a Radon Gaussian measure on
✞☛✡✌☞✎✍✑✏

associated to
�

. Then

its topological support, its linear support and the closureof its kernel (space of admissible

directions) coincide with
�

.

Cone convex structure and functors

The image of a measure by a weakly continuous application is aclassical tool in measure

theory and we used it to define Gaussian measures over l.c.s. or dualities. As well it is

classical to define the convolution (
✘
) of two measures (that stands for an addition law) or the

external product (
✥
) of a measure by a positive number. A very significant result concerning

Gaussian measures and their Hilbertian subspaces is:

Theorem 4.5 Let
✞☛✡✌☞✎✍✑✏

be a duality. Then there is a bijection between
�✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

and
�✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏

. Moreover, this bijection is compatible with the operations of addition (resp.

convolution) and external multiplication over the two sets.
✞ �✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏ ☞✙✘ ☞✦✥ ✏

is a convex

cone isomorphic to the convex cone of Hilbertian subspaces.
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This bijection is moreover compatible with the effect of weakly continuous linear applica-

tions and we can state a theorem regarding categories:

Let
✕

be the category of dual systems
✞☛✡✌☞✎✍✑✏

the morphisms being the weakly continuous

linear applications. Let
✖

be the category of salient and regular convex cones, the morphisms

being the applications preserving multiplication by positive scalars and addition (hence or-

der). Then according that to a morphism
☎ ✄ ✡ ✆✟✞ ✝

we associate the morphisms

✟☎ ✄ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏ ✆✟✞ �✂✁☎✄✝✆✟✞✠✞ ✝ ☞ ✎ ✏✠✏
� ✟ ✆✟✞ ☎ ✞ � ✏

and
✟✟☎ ✄ �✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏ ✆✟✞ �✂✄✆☎✞✝✟✝ ✞✠✞ ✝ ☞ ✎ ✏✠✏

✝ ✟ ✆✟✞ ☎ ✞ ✝ ✏

Then

Theorem 4.6
�✂✁☎✄✝✆ ✄ ✞☛✡✌☞✎✍✑✏ ✟✞ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

and
�✂✄✆☎✞✝✟✝ ✄ ✞☛✡✌☞✎✍✑✏ ✟✞ �✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏

are

isomorphic covariant functors of category
✕

into category
✖

.

4.1.2 Krein subspaces and Boehmians

These last two theorems are very important since the regularconvex cone of Gaussian mea-

sures will generate a vector space✞ ✟ �✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏
isomorphic to✞ ✟ �✂✁☎✄✝✆✟✞✠✞☛✡✌☞✎✍✑✏✠✏

.

We will be able to use the theory of Krein subspaces but once again an interpretation of

✞✠✟ �✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏
is needed.

Boehmians

The name Boehmians is used for all objects obtained by an abstract algebraic construction

similar to the one of the field of quotients, but even if the “multiplication” law has divisors

of zero (by using “quotients of sequences” instead of “quotients”). We will not deal with
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sequences here since convolution admits no divisor of zero in the set of Gaussian measures

but we keep the name since there has been a great study ([38], [39], [30]) of Boehmians

based on function spaces (such as distributions).

A precise definition of Boehmians is given in [19]:

Let
�

be a vector space and
✂

a subspace of
�

, � a binary operation from
� ✂ �

into
�

and
�

a family of sequences of elements of
✂

(the binary operation and the family
�

verifying

additional conditions). Then the class of equivalence of quotients sequences
✞✂✁ ✆✄ ✆

✏
verifying

1. Quotient sequences:☛ ✆ ☞ ✞ ☞ ✖
✙ ☞ � ☞ ✜ ✙ ☞ � ☞ ✖

✙ � ✜ ✂ ✍ ✖ ✂☎� ✜ ✙ ;

2. Equivalence:
✞✆✁ ✆✄ ✆

✏✟✁ ✞ ✄ ✆✝ ✆
✏

✂
✂ ✖

✙ �
✢

✙ ✍ ☞
✙ � ✜ ✙ ;

is called a Boehmian and we note the space of Boehmians✞ ✞ � ☞ ✂ ☞ � ☞ � ✏
.

In general functional Boehmians are defined after the convolution. For instance it is com-

monly agreed that by Boehmians one means:

1.
� ✍ � ✞ ✞ ✙ ✟ ✆ ✞ ✏ ✏

;

2.
✂ ✍☎✄ ✞ ✞ ✙ ✟ ✆ ✞ ✏ ✏

;

3. � ✍ ✘
is the standard convolution;

4.
�

is the set of delta sequences.

The obtained space of Boehmians contains Schwartz’s space of distributions ✄ ✁
, but also

hyperdistributions, Mikusinski operators, Roumieu ultradistributions or regular operators

([19]).

Among all properties we may cite this interesting result based on the Fourier transform

([39]):

Theorem 4.7 The Fourier transform is a one-to-one mapping from the spaceof tempered

Boehmians to the space of distributions over✞ ✙ .
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Gauss Boehmians

Let
✞☛✡✌☞✎✍✑✏

be a duality. Then we define the following space of Boehmians:

Definition 4.8 ( – Gauss Boehmian space – )The Gauss Boehmian space (over
✞☛✡✌☞✎✍✑✏

) is

the space of Boehmians with

1.
� ✍ �✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏

;

2.
✂ ✍ �

;

3. � ✍ ✘ is the standard convolution;

4.
�

is the set of constant sequences.

A Gauss Boehmian is of the form�
☞

�

�
☞

�
and the space of Gauss Boehmians is denoted by

�✂✁ ✞✠✞☛✡✌☞✎✍✑✏✠✏
.

Theorem 4.9 The two spaces✞✠✟ �✂✄✆☎✞✝✟✝ ✞✠✞☛✡✌☞✎✍✑✏✠✏
and

�✂✁ ✞✠✞☛✡✌☞✎✍✑✏✠✏
are equal.

Proof. – They both are the vector space extension of the convex cone ofGaussian

measures
� ✞✠✞☛✡✌☞✎✍✑✏✠✏

with respect to the equivalence relation induced by the cone. ✡

Fourier transform, covariance and support

We can now define the Fourier transform of a Gauss Boehmian�
☞

�

�
☞

�
:

Proposition 4.10

✍✁� ✂ ✏
�

✂ ✏
�✄✂ ✞ ✜ ✏ ✍ ✄ ✜ ✆ ✌ ✆

☎
✞ ✜ ☞ ✙ ✞ ✜ ✏ ✁ ✠✡☎ ☛☞✞ ✍ ✍ ✄ ✜ ✆ ✌ ✆

☎✒✘ ✙ ✞ ✜ ✏ ✘ � ✏ ✡ ✏
�✆☎ ✏ � ✍
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where ✙ ✍ ✙ ✣ ✆ ✙
� .

From theorem� ✥ �
it follows that Gauss Boehmians may be seen as ultradistributions, tem-

pered Boehmians, hyperdistributions etc... when
✡ ✍ ✍

is a finite-dimensional space.

We can also state a result concerning “covariance”:

Proposition 4.11

✛ ☛ � ✞ ✢✔☞✁� ✏ ✁ ✠✡☎ ☛☞✞ ✞ ✜ ☞✁� ✏ ✁ ✠✡☎ ☛☞✞ ✂ ✂ ✏
�

✂ ✏
�

✞ ✌ � ✏ ✍
�

☎
☎
✌ ✢ ☞ ✙ ✞ ✜ ✏ ✍ ✁ ✠✡☎ ☛☞✞

For instance in [30] p 61 they derive the expression of�✂✁ �

�✂✁ �
in a hyperdistribution form where

✂
✣

and ✂ � are the variances of two Gaussian measures over✞ :

✂☎✄
�

✂☎✄
�

✍
�✁

✟ ✡ ✓
✞

✂ �✣ ✆
✂ ��
✏ ✟

☞ ✆ � �
✟ �

In terms of support, we can see that in the Pontryagin kernel case the support will be exactly

the (unique) Pontryagin space associated to the kernel. Theproblem arises when speaking

of kernel of multiplicity i.e. in the infinite-dimensional case.

This infinite-dimensional case then seems of very peculiar interest but the existing theory

on Boehmians, ultradistributions etc... has not been extended to the infinite-dimensional

case so far. The example of Gauss Boehmians would certainly raise interesting questions

concerning generalized distributions in infinite dimension.

4.1.3 Interpretation in terms of subdualities: the noncommutative algebra ap-

proach ?

The use of symmetry or symmetric structure has always been a crucial tool in mathematics.

Symmetry appears to be closely linked with commutativity and the commutativity of the

algebra of continuous function over a set
✂

generates Hilbert spaces through the covariance

operator of the measure. It then appears “natural” to try to interpret the loss of symmetry
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dealing with subdualities in terms of non-commutative algebras. The main difficulty is that

though the Gelfand transform provides a particularly clever formula to link sets or spaces and

commutative algebras (of functions), it is generally assumed that non-commutative algebras

cannot be interpreted in terms of functions. A solution may then be the use of subdualities.

Precisely we can interpret Gaussian measures this way: let
✞☛✡✌☞✎✍✑✏

be a duality and✙ a

positive kernel. Let� be the algebra of continuous functions over
✡

and define the following

involution over � :
✢ ✑ ✞✑�✟✏ ✍ ✢ ✞✑�✟✏

(remark that it implies the following identity:
✞ ✢ ✑ ✜ ✏ ✑ ✍

✜✞✑ ✢ ).

Then we can rewrite the covariance equality of Gaussian measures as:

there exists a unique “Gaussian” linear form
✝

over the algebra� (equivalently a Gaussian

measure on
✡

) such that☛ ✞ ✜ ☞✣✢ ✏ ☞ ✍
�

✝ ✞ ✢ ✑ ✥ ✜ ✏ ✍ ✛ ☛ � ✌ ✢✔☞ � ✍ ✁ ✠✡☎ ☛☞✞ ✞ ✜ ☞✁� ✏ ✁ ✠✡☎ ☛☞✞ ✂ ✂ ✏ ✞ ✌ � ✏ ✍
�

☎
☎
✌ ✢✔☞ ✙ ✞ ✜ ✏ ✍ ✁ ✠✡☎ ☛☞✞

Remark that by the self-adjoint property of the kernel, we get that

✝ ✞✠✞ ✢ ✑ ✥ ✜ ✏ ✑ ✏ ✍ ✝ ✞ ✜ ✑ ✢ ✏
or more generally:

☛ ✢ ☞ � ☞ ✝ ✞ ✢ ✑ ✏ ✍ ✝ ✞ ✢ ✏
Regarding subdualities we then would have to define a generally non-commutative algebra

� such that
✍ ✓ � and a linear form

✝
on this algebra verifying

✝ ✞ ✢ ✑ ✥ ✜ ✏ ✍ �
☎

☎
✞ ✢✔☞ ✙ ✞ ✜ ✏✠✏ ✁ ✠✡☎ ☛☞✞

4.2 Operator theory

Hilbertian subspaces (and to a lesser extent Pontryagin subspaces) have been widely used

in (at least) two directions regarding operator theory. Thefirst concerns operators in repro-
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ducing kernel spaces and the second deals with the particular positive differential operators.

We then extend these two trends in terms of subdualities and differential kernels of any type.

Finally a third application in terms of similarity in Hilbert spaces is given.

4.2.1 Operators in evaluation subdualities

In [3] D. Alpay proves that continuous endomorphisms in reproducing kernel Hilbert spaces

are characterized by a function of two variables and up to unitary similarity by actually a

function of one single variable called the Berezin symbol (theorem 2.4.1 p 33). This theo-

rem extends naturally to the context of Krein spaces.

In the subduality setting it appears that many morphisms on evaluation subdualities are also

characterized by a function of two variables:

Theorem 4.12 Let
✞✑☎ ☞ ☛ ✏

be an evaluation subduality on the set
✭

with reproducing kernel

� ✞ ✥ ☞✦✥ ✏
. Then any weakly continuous operator� ✄ ☛ ✆✟✞ ☎

and �
✄ ☎ ✆ ✞ ☎

(resp. from
☎

to
☛

or from
☛

to
☛

) can be written as

� ✞ ☞ ✏ ✞ ✮ ✏ ✍ ✞ ☞ ☞✂✁✌✞ ✮ ☞✦✥ ✏✠✏ ✁✄✂✆☎ ✝✟✞
�
✞ ✄ ✏ ✞ ✝ ✏ ✍ ✞☎✄✑✞ ✥ ☞ ✝ ✏ ☞ ✄ ✏ ✁✄✂✆☎ ✝✟✞

where
✁✌✞ ✮ ☞✦✥ ✏ ✍ ✓ � ✂ � ✞ ✥ ☞ ✮ ✏ � ☞ ☎

and
✄✑✞ ✥ ☞ ✝ ✏ ✍ ✓✆� ✂ � ✞ ✥ ☞ ✝ ✏ � ☞ ☛

Proof. – For instance for S:

� ✞ ☞ ✏ ✞ ✮ ✏ ✍ ✞ � ✞ ✥ ☞ ✮ ✏ ☞ � ✞ ☞ ✏✠✏ ✁✄✂✆☎ ✝✟✞ ✍ ✌ ☞ ☞ ✓ � ✂ � ✞ ✥ ☞ ✮ ✏ � ✍ ✁✄✂✆☎ ✝✟✞ ✍ ✞ ☞ ☞✂✁✌✞ ✮ ☞✦✥ ✏✠✏ ✁✄✂✆☎ ✝✟✞ ✡

The following transposition and composition rules follow:
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1. ✓ ✁✌✞ ✮ ☞✦✥ ✏ ✍✁� ✂ � ✞ ✥ ☞ ✮ ✏ � ✍ ✁✌✞ ✥ ☞ ✮ ✏
, ✓ ✄✑✞ ✝ ☞✦✥ ✏ ✍ �

✂ � ✞ ✝ ☞✦✥ ✏ � ✍ ✄✑✞ ✝ ☞✦✥ ✏

2. � ✂ � is associated to
✂ ✄ ✂ ✁ � ✞ ✮ ☞ ✝ ✏ ✍ ✞☎✄✑✞ ✥ ☞ ✮ ✏ ☞✂✁✌✞ ✝ ☞✦✥ ✏✠✏ ✁✄✂✆☎ ✝✟✞

3. �
✣ ✂ � � is associated to

✂ ✄✔✣ ✂ ✄
� � ✞ ✮ ☞ ✝ ✏ ✍ ✞☎✄✠✣ ✞ ✥ ☞ ✝ ✏ ☞ ✄

�
✞ ✮ ☞✦✥ ✏✠✏ ✁✄✂✆☎ ✝✟✞

Example: Consider the previous example of evaluation subduality:
✡ ✍ ✄✠✞ ✞ ✏ is the set of se-

quences endowed with the pointwise convergence,

☎ ✍✁� ✞ ✄✁� ✏ ☞ ✄ ✣ ✞ ✞ ✏ ☞ ✄ ✓ ✍☎✥ ✕
the set of absolutely summable sequences starting from zeroand

☛ ✍
✁
✞ ☞ � ✏ ☞ ✄ ✣ ✞ ✞ ✏ ☞ �✁

� ✡ ✓
☞ � ✍☎✥✄✂

the set of absolutely summable sequences summing to zero.

These two spaces are in separate duality with respect to the bilinear form

✎ ✄ ☛ ✂ ☎ ✆✟✞ ✞
☞ ☞ ✄ ✟ ✆✟✞ ✂ �� ✡ ✓ ☞ � ✞ ✂ �✁ ✡ ✓ ✄ ✁ ✏ ✍ ✆ ✂ �� ✡ ✓ ✞ ✂ �✁ ✡ ✓ ☞ ✁ ✏ ✄✁� ✓

✣

and their kernel is the two dimensional sequence

� ✞☛✁ ☞ ✚ ✏ ✍

✁
�
�
�
�
�
�
�
�
�

✂
✥ ✆ � ✥ ✥ ✥✦✥✦✥

✥ � ✆ � ✥ ✥✦✥✦✥

✥ ✥ � ✆ � ✥✦✥✦✥

✥ ✥ ✥ � ✥✦✥✦✥
...

...
...

. . . . . .

✄
✁
✁
✁
✁
✁
✁
✁
✁
✁

☎

For the following weakly continuous operator

� ✄ ☎ ✆✟✞ ☛

✄ ✍ ✞ ✄✁� ✏ ✟ ✆✟✞ ☞ ✍ ✟ ✆ ✂ �✁ ✡ ✓ ✄ ✁ ☞ ✄ ✣ ☞ ✄ �
☞✆☎✆☎✆☎ ✎
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a straightforward calculation gives

✓ � ✄ ☎ ✆ ✞ ☛

✄ ✍ ✞ ✄✁� ✏ ✟ ✆ ✞ ☞ ✍ ✟ ✄ ✣ ✆ ✂ �✁ ✡ ✓ ✄ ✁ ☞ ✄ �
☞ ✄ ✂ ☞✆☎✆☎✆☎ ✎

and finally

✁✌✞☛✁ ☞ ✚ ✏ ✍

✁
�
�
�
�
�
�
�
�
�

✂
✥ ✥ ✥ ✥ ✥✦✥✦✥

� ✆ � ✥ ✥ ✥✦✥✦✥

✥ � ✆ � ✥ ✥✦✥✦✥

✥ ✥ � ✆ � ✥✦✥✦✥
...

...
...

. . . . . .

✄
✁
✁
✁
✁
✁
✁
✁
✁
✁

☎

4.2.2 Differential operators and subdualities

Spaces linked with differential theory such as Sobolev spaces are widely used in functional

analysis. In particular it is now standard to define Sobolev-Hilbert spaces as Hilbertian sub-

spaces of the space of distributions with a particular differential operator as kernel (see for

instance [46]).

Obviously there exist too many useful standard Hilbert spaces (Sobolev spaces, Beppo-Levi

spaces, Hardy spaces) to perform a general theory but there exists an interesting result due

to L. Schwartz concerning some generalized Sobolev spaces of integer order.

His setting is as follows:
✭

is an open set of✞ ✙ and for any positive integer
✝

we define the space
� ☎

as the equivalent

class of functions of✎ �
✞ ✭ ✏

such that their derivatives of any order
✞ ✆ ✣ ☞ ✆ �

☞✦✥✧✥✧✥ ☞ ✆ ✙
✏
,

✔ ✆ ✔ ✍✆ ✣ ✖ ✆ �
✖ ✥✧✥✧✥ ✖ ✆ ✙ ✝ ✝

are in ✎ �
✞ ✭ ✏

. This space is endowed with the scalar product

✓ ✢ ✔ ✜ ✕ ✏✁� ✍
✁

✡ ✡ ✡ ☎ ☎
✛
✙

✄ ✡ � ✡ ✢ � ✡ ✜ ✌ ✝
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that makes it a Hilbert space where the
✄ ✡ are strictly positive constant coefficients and

� ✡ ✍ ✂ ✙ ✟ ✡ ✣ ★ ✙ ✄★ ✓ ✄ ✙ ✄ .

Moreover we define the Hilbert spaces of distributions
� ☎✓

closure of ✄ ✞ ✭ ✏
in

� ☎
and

� ✓ ☎
✍ ✓ ✚ ✂ ✞ � ☎✓ ✏ ✁ � image in ✄ ✁✝✞ ✭ ✏

of
✞ � ☎✓ ✏ ✁

dual space of
� ☎✓

by the transpose of the canon-

ical dense injection✚ ✄ ✄ ✞ ✭ ✏ ✆✟✞ � ☎✓
.

Proposition 4.13 The kernel of the Hilbertian subspace
� ✓ ☎

of
✞ ✄ ✁✝✞ ✭ ✏ ☞ ✄ ✞ ✭ ✏✠✏

is the pos-

itive differential operator

✙ ✄ ✞ ✭ ✏ ✆ ✞ ✄ ✁✝✞ ✭ ✏

✜ ✟ ✆ ✞ ✂ ✡ ✡ ✡ ☎ ☎ ✞ ✆ � ✏ ✡ ✡ ✡ ✄ ✡ �
� ✡ ✜

The kernel of
� ☎✓

is its Green operator
� ✠ and the kernel of

� ☎
its Neumann operator✎ ✠ .

1

This theorem naturally extends to the Krein subspaces setting with non-necessarily positive

coefficients
✄ ✡ . We can associate to any differential operator of even ordera Krein space

constructed after Sobolev spaces of integer order.

The following question then arises naturally: can we associate a subduality of
✞ ✄ ✁ ✞ ✭ ✏ ☞ ✄ ✞ ✭ ✏✠✏

constructed after (possibly fractional) Sobolev spaces toany differential operator of integer

order? The answer is positive and based after the following theorem (see also the examples

in chapter 3 concerning Sobolev-Slobodeckij spaces):

Theorem 4.14 Let ✆ ✍ ✞ ✆ ✣ ☞ ✆ �
☞✦✥✧✥✧✥ ☞ ✆ ✙

✏
be a positive multi-index,

✙ ✄ ✞ ✭ ✏ ✆✟✞ ✄ ✁✝✞ ✭ ✏

✜ ✟ ✆✟✞ � ✡ ✜
�

the Green operator of a linear elliptic differential operator is the “inverse” operator that yields the solution
as a linear map of the data (Courant and Hilbert [18]).
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and
� ✡

the Sobolev-Slobodeckij space
✠ ✙ � . Let as before

� ✡✓ be the closure of✄ ✞ ✭ ✏
in

� ✡
and

� ✓✝✡ ✍ ✓ ✚ ✂ ✞ � ✡✓ ✏ ✁ � be the image in✄ ✁✝✞ ✭ ✏
of

✞ � ✡✓ ✏ ✁
dual space of

� ✡✓ by the transpose of

the canonical dense injection✚ ✄ ✄ ✞ ✭ ✏✂✆ ✞ � ✡✓ .

Then
✞ � ✓✝✡ ☞ � ✓✝✡ ✏

is a (inner) subduality of
✞ ✄ ✁✝✞ ✭ ✏ ☞ ✄ ✞ ✭ ✏✠✏

with kernel ✙ and The Green’s

and Neumann’s functions are respectively the kernels of theinner subdualities
✞ � ✡✓ ☞ � ✡✓ ✏

and
✞ � ✡ ☞ � ✡ ✏

Proof. – This result follows directly from the following majoration(derived from

[52]): ✔ ✛
✙

✢ ✙ ✞ ✜ ✏ ✔ ✝ � ✘ ✢ ✘ ✗ ✙ ��

✥ ✘ ✙ ✞ ✜ ✏ ✘ ✗ ★✪✙�

�

✝ � ✘ ✢ ✘ ✗ ✙ ��

✥ ✘ ✜ ✘ ✗ ✙ ��

✡

Finally any differential operator of integer order can be associated with a generalized Sobolev

space via the functor
✡☞☛

and the previous results (non constant coefficients will also be han-

dled by the image of a continuous morphism).

4.2.3 Similarity in Hilbert spaces

We treat here the problem of similarity for operators in realHilbert spaces. Let✎ be on

operator on a Hilbert space
�

. Does there exist a self-adjoint operator
�

and a isomorphism

� such that✎ ✍ � ✓ ✣ �
� ?

We give here an answer in terms of subdualities. Let
✞✑☎ ☞ ☛ ✏

be the primary subduality

associated to✎ . Then

Proposition 4.15 The answer to the similarity problem is positive if and only if exists a

positive operator
�

on
�

such that:

1.
� ✞✑☎ ✏ ✍ ☛

;
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2.
� ✄ ☛ ✆✟✞ ☎

is self-adjoint for the duality
✞✑☎ ☞ ☛ ✏

i.e.

✞ � ✞✑� ✣ ✏ ☞ �
�

✏ ✁✄✂✆☎ ✝✟✞ ✍ ✞ � ✞✑�
�

✏ ☞ � ✣ ✏ ✁✄✂✆☎ ✝✟✞
A choice for� and

�
is then� ✍✁� ✞ � ✏

and
� ✍ � ✎ � ✓ ✣

.

Proof. – Suppose the answer is positive. Then one checks easily that

1. ✓ � �
✄ � ✆✟✞ �

is a positive and self-adjoint isomorphism;

2. ✓ � �
✞✑☎ ✏ ✍ ☛

;

3. ✓ � �
✄ ☛ ✆ ✞ ☎

is self-adjoint for the duality
✞✑☎ ☞ ☛ ✏

Conversely the existence of such an operator
�

gives ✎ ✍ � ✞ � ✏ ✓ ✣ � � ✞ � ✏
with

� ✍
� ✞ � ✏ � � ✞ � ✏ ✓ ✣

self-adjoint. ✡

4.3 Approximation theory: the interpolation problem

Positive reproducing kernels are widely used in the learning community and the domain of

application is very large. We are interested here in the approximation problem, or more

precisely in the interpolation problem. It appears that this problem can easily be solved

using positive kernels. One may then wonder if it is possibleto solve it without the positivity

requirement.

4.3.1 The problem

A way to state the interpolation problem is as follows:

We are given a data set� ✞ ✝
� ☞ ✁ � ✏ ☞ ✁ ☞ ✁ ✦ (

✁
finite integer set) where the

✝
� ☞ ✭

and
✁ � in ✘
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and we want to find a “good” function✜ in a suitable space
☎

such that

✜ ✞ ✝
� ✏ ✍ ✁ � ☛ ✁ ☞ ✁

Obviously the following constraints on
☎

follow:

1.
☎

must be a space of genuine functions on
✭

i.e.
☎ ✓ ✘ ✙

2. The evaluation values must bring some information on the function i.e. the evaluation

functionals must be continuous on
☎

which must be continuously embedded in✘ ✙

A classical way to solve the problem is to associate to each function of
☎

an “energy” i.e. to

state that
☎

is a Hilbert space. It follows that it is a R.K.H.S. (we note its kernel function� )

and a possible choice for the “best” interpolating functionwould be the one with least energy.

Mathematically, one has then to solve the minimization problem:

Problem 4.16 ✜ ✍✁� ✓✄✂
� ☎✝✆ ✄ ✆ � ✘ ✜ ✘ �

where
✡ ✍✁� ☞ ☞ ☎ ☞✍☞ ✞ ✝

� ✏ ✍ ✁ � ☛ ✁ ☞ ✁ ✦ is the set of interpolating functions.

Remark that this minimization problem always has a unique solution since
✡

is a closed2

convex set. If
� ✍ � ✞ ✝

� ☞ ✝ ✁ ✏
is the “covariance matrix” we get

✜ ✍
✁

� ✆ ☎
✩ � � ✞ ✝

� ☞✦✥ ✏

with
✆ ✍ ✞ ✩ ✏ ✍✞✝ ✓ ✣✠✟

4.3.2 ✡ equivalent problems: from minimization to projections

It is usual to interpret the previous minimization problem as a projection problem in the

Hilbert space
☎

:
�

by the continuity of the canonical injection
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Problem 4.17 ✜ ✍ ✆ ✁

�
✞ ✥ ✏

where✆ ✁

� denotes the orthogonal projection on the closed convex set� . The equivalence of

the two problems is clear since by definition, the projectionof ✥ is the point of� minimizing

the distance to✥ .

These two equivalent problems rely however heavily on the Hilbertian structure of
☎

and it

is interesting to state a third and fourth equivalent problems.

Let ✎ be the vector space spanned by the� ✞ ✥ ☞ ✝
� ✏ ☞ ✁ ☞ ✁

(respectively by the� ✞ ✝
� ☞✦✥ ✏ ☞ ✁ ☞ ✁

by the symmetry of the kernel). Then

Problem 4.18 ☛ ☞ ☞ ✡ ☞ ✜ ✍ � ✓✄✂
� ☎✝✆ ✔ ✆ � ✘ ✞ ✆ ✫ ✘ �

But once again, this minimization problem as an interpretation in terms of orthogonal pro-

jection:

Problem 4.19

☛ ☞ ☞ ✡ ☞ ✜ ✍ ✆ ✁
�

✞ ☞ ✏ ✍
✁

� ✆ ☎
✩ � � ✞ ✝

� ☞✦✥ ✏

with
✆ ✍ ✞ ✩ ✏ ✍✞✝ ✓ ✣ ✟

.

In other terms, all the interpolating functions have the same orthogonal projections on the

subspace✎ .

These results could mean that the finite-dimensional subspace ✎ is a good space to summa-

rized interpolating functions for they all have the same orthogonal projection but we will see

below that✎ defines actually the good direction for projection.

4.3.3 Interpolation in evaluation subdualities

The interest of problem 4.19 is that projections on subspaces in dual systems can be defined

naturally whereas we cannot generally define projection on convex sets. The main difference
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is that we now have to define two subspaces: a support and a direction.

Precisely let
✞✑☎ ☞ ☛ ✏

be a dual system with respect to a bilinear form
✁

and �
✓ ☎

, ✎ ✓ ☛

finite subspaces such that
✞

�
☞ ✎ ✏

are in separate duality with respect to
✁

(and hence
☛

and✎ have the same dimension). Then it follows that

1.
☎ ✍ �

✂ ✎ ✁

2.
☛ ✍ ✎ ✂

�
✁

and these decompositions define projections✆ ✁ �

☛ and✆ ✁ ☛
� respectively the projection of vec-

tors of
☎

on � orthogonally to✎ and the projection of vectors of
☛

on ✎ orthogonally to� .

Remark 4.20 If
☎ ✍ ☛

, then any subspace� ✍ ✎ such that
✞

�
☞

�
✏

are in separate duality

is called admissible (see for instance [24]).

Suppose now that
✞✑☎ ☞ ☛ ✏

is an evaluation subduality with kernel� . Fix ✎ the vector

subspace of
☛

spanned by the� ✞ ✥ ☞ ✝
� ✏ ☞ ✁ ☞ ✁

and choose a support of the form� ✍
� ✄ � � � ✞ ✮ � ☞✦✥ ✏ ☞ ✁ ☞ ✁ ✦ such that the matrix

� ✍ � ✞ ✮ � ☞ ✝ ✁ ✏
is invertible. Then

✞
�

☞ ✎ ✏
is a

duality and the projections are well defined.

Theorem 4.21

☛ ☞ ☞ ✡ ☞ ✜ ✍ ✆ ✁ �

☛ ✞ ☞ ✏ ✍
✁

� ✆ ☎ ✩ � � ✞ ✮ � ☞✦✥ ✏

with
✆ ✍ ✞ ✩ ✏ ✍ ✝ ✓ ✣ ✟

. ✜ is then independent of the particular interpolating function

projected. Moreover✜ ☞ ✡
.
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Proof. – By the reproduction property the orthogonality of
☞ ✆ ✜ with the � ✞ ✥ ☞ ✝

� ✏

is just
✞ ☞ ✆ ✜ ✏ ✞ ✝

� ✏ ✍ ✥ and the function✜ is interpolating. Finally, the invertibility of
�

gives the desired result. ✡

We see that the loss of symmetry and of the norm affects the choice of � : there is now no

intrinsic reason to choose a particular set of points� ✮ � ☞ ✁ ☞ ✁ ✦ than another. We can however

state an interesting result when two data sets are available.

Suppose we are now given two data sets� ✞ ✮ � ☞✤✜ � ✏ ☞ ✁ ☞ ✁ ✦ � ✞ ✝
� ☞ ✁ � ✏ ☞ ✁ ☞ ✁ ✦ (

✁
finite integer

set) where the
✮

� ☞ ✝
� ☞ ✭

and
✜ � ☞ ✁ � in ✘ such that the matrix

� ✍ � ✞ ✮ � ☞ ✝ ✁ ✏
is invertible.

Define
✡ ✍ � ☞ ☞ ☎ ☞ ☞ ✞ ✝

� ✏ ✍ ✁ � ☛ ✁ ☞ ✁ ✦ and
✖ ✍ � ✖ ☞ ☛ ☞✍☞ ✞ ✮ � ✏ ✍ ✜ � ☛ ✁ ☞ ✁ ✦ and �

and ✎ as before. Then

Theorem 4.22

1. ☛ ☞ ☞ ✡ ☞ ✜ ✍ ✆ ✁ �

☛
✞ ☞ ✏ ✍ ✂

� ✆ ☎ ✩ � � ✞ ✮ � ☞✦✥ ✏ ☞ ✡
with
✆ ✍ ✞ ✩ ✏ ✍✞✝ ✓ ✣ ✟

2. ☛ ✖ ☞ ✖ ☞✣✢ ✍ ✆ ✁ ☛
�
✞✣✖ ✏ ✍ ✂

� ✆ ☎ ✪ � � ✞ ✥ ☞ ✝
� ✏ ☞ ✖

with
� ✍ ✞✢✪✗✏ ✍ ✞✂✁ ✝ ✏ ✓ ✣☎✄

3.
✞ ✜ ☞✣✢ ✏ stabilizes the quantity

✞✣✖ ☞ ☞ ✏
with

☞ ☞ ✡ ☞✘✖ ☞ ✖

4.
✞ ✜ ☞✣✢ ✏ stabilizes the quantity

✞✣✖ ✆ ✫ ☞ ☞ ✆ ✞ ✏
with

✫ ☞✏✎ ,
✞ ☞ � for all

☞ ☞ ✡ ☞✘✖ ☞ ✖

Proof. – A straightforward calculation gives the desired result. ✡

Figure 4.1 represents such a stabilization in the case of twodifferent data sets with asym-

metric smooth kernel.

4.3.4 Rupture detection

In the case of (self)-dualities, we can do orthogonal projections on admissible subspaces and

then use a single data set when admissible. In the following examples (figures 4.2 and 4.3),

we use an asymmetric (discontinuous then smooth) kernel function based on the Heaviside
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sample points
interpolation in E
interpolation in F

Figure 4.1: stabilization

function to detect discontinuity.
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sample points
interpolation in E
interpolation in F

Figure 4.2: Rupture detection, discontinuous kernel

Conclusion and comments

We have initiated here three possible fields of applicationsthat show more insights of the

general theory of subdualities. The first one concerning “generalized” measure theory re-

mains widely open. The second concerning operator theory shows some very peculiar uses

but there probably are many more problems that could gain something at using subdualities.

The case of differential operators gives another perspective on Sobolev spaces. Finally, we

solve the interpolation problem by using projection in evaluation subdualities but not without

difficulties due to the lack of a norm. A solution is then to solve two different interpolation
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sample points
approximation in E
approximation in F

Figure 4.3: Rupture detection, smooth kernel

problems in a single common setting. This can be applied to rupture detection.
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Appendix A

Generalities

A.1 Basic definitions

Definition A.1 ( – topological vector space (t.v.s.) – )A topological vector space is a pair
✞☛✡✌☞ � ✏

where
✡

is a vector space over a topological field✘ , and � is a Hausdorff (separate)

topology on
✡

such that under� , the vector space operations
� ✟✞ ✫ �

is continuous from

✘ ✂✖✡
to
✡

and
✞✑� ✣ ☞ �

�
✏✝✟✞ � ✣ ✖ �

� is continuous from
✡ ✂✖✡

to
✡

, where✘ ✂✖✡
and

✡ ✂✖✡
are given the respective product topologies.

Proposition A.2 The topology� of any t.v.s.
✞☛✡✌☞ � ✏

defines a uniform structure on
✡

and

the notions of completeness and completion are meaningful for a t.v.s. Moreover, the com-

pletion of a t.v.s. remains a t.v.s.

Here are some particularly interesting classes of topological vector spaces:

Definition A.3 ( – locally convex space (l.c.s.) – )A locally convex (vector) space (over

any topological field✘ ) is a topological vector space
✞☛✡✌☞ � ✏

such that the topology is de-

fined by a family of semi-norms. In the special case where✘ ✍ ✞ or ✏ it is equivalent to

say that� admits a fundamental system of convex neighbourhouds of zero.
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Definition A.4 ( – normed space – )A normed space is a locally convex space
✞☛✡✌☞ � ✏

such

that the topology is defined by a unique norm. In the special case where✘ ✍ ✞ or ✏ it is

equivalent to say that� admits a fundamental system of neighbourhouds of zero that reduces

to one convex set.

Definition A.5 ( – Banach space – )A Banach space is a complete normed space.

A.2 Linear algebra, Hilbert spaces

A.2.1 Linear, semilinear, bilinear and sesquilinear applications

Let
☎ ☞ ☛ ☞ �

be three vector spaces. A function
☎ ✄ ☎ ✆✟✞ ☛

is linear if:

☛ ✞ ✄ ✣ ☞ ✄ �
✏ ☞ ☎ ☞ ☛ ✫ ☞ ✘ ☞ ☎ ✞ ✄ ✣ ✖ ✫ ✄ �

✏ ✍ ☎ ✞ ✄ ✣ ✏ ✖ ✫ ☎ ✞ ✄ �
✏

It is called semilinear if:

☛ ✞ ✄ ✣ ☞ ✄ �
✏ ☞ ☎ ☞ ☛ ✫ ☞ ✘ ☞ ☎ ✞ ✄ ✣ ✖ ✫ ✄ �

✏ ✍ ☎ ✞ ✄ ✣ ✏ ✖ ✫ ☎ ✞ ✄ �
✏

A function ✎ ✄ ☛ ✂ ☎ ✆ ✞ �
is bilinear if:

� ☛ ☞ ☞ ☛
, ✎ ✞ ☞ ☞✦✥ ✏

is linear;

� ☛ ✄ ☞ ☎
, ✎ ✞ ✥ ☞ ✄ ✏ is linear.

It is sesquilinear1 if:

� ☛ ✄ ☞ ☎
, ✎ ✞ ✥ ☞ ✄ ✏ is semilinear;

� ☛ ☞ ☞ ☛
, ✎ ✞ ☞ ☞✦✥ ✏

is linear.

If
� ✍ ✘ we call the application

☎ ✄ ☎ ✆✟✞ ✘ a form.
�

sesqui means one and a half
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A.2.2 Hilbert spaces

Definition A.6 ( – inner product – ) We call inner product on a vector space
�

any non-

degenerate conjugate symmetric (Hermitian) sesquilinearpositive form.

Definition A.7 ( – prehilbertian space – )We call prehilbertian space any vector space
�✔✓

endowed with a non-degenerate conjugate symmetric (Hermitian) sesquilinear positive

form, i.e. an inner product on
� ✓

.

✘ ☞ ✓ ✘ ✏✠✟ ✍ ✓ ☞ ✓ ✔ ☞ ✓ ✕
�

�✏✠✟ is then a norm that makes
� ✓

a locally convex space.

Definition A.8 ( – Hilbert space – )A Hilbert space is a complete prehilbertian space.
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Appendix B

Dualities

B.1 The algebraic and topological dual spaces

We define the dual space of a t.v.s. upon the linear forms:

Definition B.1 ( – algebraic dual, topological dual – )let
✡

be a vector space over the

field ✘ . We call algebraic dual of
✡

and note
✡ ✑ the space of all linear forms on

✡
. If

✞☛✡✌☞ � ✏
is a t.v.s. over the topological field✘ , we call topological dual of

✡
and note

✡ ✕
the

space of continuous linear froms on
✡

(when
✡

is endowed with the topolgy� and ✘ with

its topology).

B.2 Dualities (dual systems)

Definition B.2 ( – dual system of spaces – )Two vector spaces
☎ ☞ ☛

are said to be in du-

ality if there exists a bilinear form✎ on the product space
☛ ✂ ☎

separate in
☎

and
☛

,

i.e.:

1. ☛ ✄ �✍☎✥ ☞ ☎ ☞ � ☞ ☞ ☛ ☞ ✎ ✞ ☞ ☞ ✄ ✏ �✍☎✥ ;
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2. ☛ ☞ �✍☎✥ ☞ ☛ ☞ � ✄ ☞ ☎ ☞ ✎ ✞ ☞ ☞ ✄ ✏ �✍☎✥ .
In this case,

✞✑☎ ☞ ☛ ✏
is said to be a duality (relative to✎ ).

The following morphisms are then well defined:

✂ ✁✄✝✙☎ ✂ ✞ ✄ ☛ ✆✟✞ ☎ ✑ algebraic dual of E � ✁✄✝✙☎ ✂ ✞ ✄ ☎✆✕✁�✍ ✂ ✁✄✝✙☎ ✂ ✞ ✞✑☛ ✏ ✆ ✞ ☛✁ ✟ ✆✟✞ ✎ ✞ ✁ ☞✦✥ ✏ ✎ ✞ ✁ ☞✦✥ ✏ ✟ ✆ ✞ ✁
Exemples :

1. - Fundamental exemple -Let
✡

be a locally convex space,
✡ ✑ its algebraic dual.

Then the canonical bilinear form
✞ ✝ ☞ �✟✏ ✟✞ ✝ ✞✑�✟✏

on
✡ ✑ ✂✂✡ puts

✡
and

✡ ✑ in duality.

✂ ✁ ☛ ☎ ☛
✑
✞ ✄ ✡ ✑ ✆✟✞ ✡ ✑ is the identity. The same arguments show that any locally convex

topological vector space
☎

can be put in duality with its topological dual
☎ ✁

.

2. Let ✄ ✁ be the space of distributions on✏ ✙ ,
� � the space of functions

� � with

compact support.✄ ✁ et
� � are in duality relative to✎ ✄ � � ✂ ✄ ✁ ✆✟✞ ✏

✞ ✜ ☞✣✢ ✏ ✟ ✆✟✞ ☎✁� ✆ ✢ ✞ ✝ ✏ ✜ ✞ ✝ ✏ ✌ ✝

We give here the fundamental exemple of a Hilbert space
�

in duality with its conjugate

space (that we should not identify with
�

in general). The inner product induces a bilinear

form on the Hilbert space
�✑✂ �

:

✌ ☞ ✣ ☞ ☞ � ✍ ✁ ✏ ☎ ✏✒✞ ✍ ✎ ✞ ☞ ✣ ☞ ☞ �
✏ ✍ ✓ ☞ ✣ ✔ ☞ �✖✕ ✏ (B.1)

By Riesz theorem,
✂ ✁ ✏ ☎ ✏✒✞ ✄ � ✆ ✞ � ✑

☞ ✟ ✆ ✞ ✎ ✞ ☞ ☞✦✥ ✏

is an isomorphism from
�

on the topological dual of
� � ✁

.
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B.3 Topology and duality theory

Definition B.3 ( – compatible topologies – )We call topology on
☎

compatible with the

duality
✞✑☎ ☞ ☛ ✏

any locally convex topology on
☎

such that
☎✠✕ ✍ ✂ ✁✄✝✙☎ ✂ ✞ ✞✑☛ ✏ .

The weak (resp. Mackey) topology on
☎

is the coarsest (resp. finest) topology compatible

with the dual system
✞✑☎ ☞ ☛ ✏

and we note it✂ ✁✄✝✙☎ ✂ ✞ (resp.
✞ ✁✄✝✙☎ ✂ ✞ ).

The concept of weak (resp. Mackey) continuity is then entirely defined for morphisms of

dualities.

Starting from a duality
✞✑☎ ☞ ☛ ✏

one can then endow
☎

with a locally convex topology (actu-

ally any compatible topology will work) such that
☎

becomes a locally convex space with

topological dual
☎

isomorph to
☛

.

B.4 Transpose of a weakly continuous morphism

Proposition B.4 Let
✞✑☎ ☞ ☛ ✏

,
✞☛✡✌☞✎✍✑✏

be two dualites. Then for any weakly continuous linear

application �
✄ ☎ ✆✟✞ ✡

there exists a unique application✓ �
✄ ✍ ✆ ✞ ☛

called the

transpose of� verifying:

☛ ✜ ☞ ✍✖☞ ☛ ✄ ☞ ☎ ✞ ✜ ☞ �
✞ ✄ ✏✠✏ ✁ ✠✡☎ ☛☞✞ ✍✗✌ ✓ �

✞ ✜ ✏ ☞ ✄ ✍ ✁✄✂✆☎ ✝✟✞
If
☎

and
✡

are two locally convex space, the transpose is defined upon the dualities
✞✑☎ ☞ ☎ ✁☛✏

and
✞☛✡✌☞✠✡✂✁✕✏

.
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Index

barrel, 120

Boehmian, 144

Gauss, 145

category, 54

completion, 26

convex cone, 27

functor, 54

covariant, 55

Hilbertian

functional, 44

kernel, 35

subspace (of a duality), 24

subspace (of a l.c.s.), 21

isomorphism

of convex cones, 37

of vector spaces, 66

kernel, 29

Hermitian, 77

Hilbertian, 34

Krein, 81

of a duality, 31

of a l.c.s, 31

of a subduality, 106

of multiplicity, 84

of unicity, 84

positive, 31

Schwartz, 35

self-adjoint (Hermitian), 31

stable, 121

symmetric, 31

weakly compact, 123

law

addition, 28

external multiplication, 28

measure

Gauss, 140

Gaussian, 140
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order relation, 29

polar, 120

quasi-complete, 39

reproducing kernel, 50

Hilbert space, 47

Krein space, 86

Pontryagin space, 88

reproduction property, 50

similarity problem, 152

space

barreled, 39

Krein, 68, 71

nuclear, 48

subdifferential, 44

subdualities, 98

subduality, 100

Banachic, 129

canonical

weakly locally compact, 123

evaluation, 132

image, 113

inner, 128

outer, 128

primary, 110

symplectic, 132

subspace

admissible prehermitian, 89

Krein, 73

Pontryagin, 73

prehilbertian, 21

theorem

Kolmogorov’s decomposition, 60

Kolmogorov’s dilation, 60

Moore “reproducing” property, 60

topology

Mackey, 22

of simple convergence, 48

product, 48

weak, 22

Transport of structure, 52


