Méthodes Multipôles Rapides pour l'Électromagnétisme : Parallélisme et Basses Fréquences

Laboratoire Jacques-Louis Lions Thèse dirigée par O. Pironneau présentée le 13 Mai 2004

Pascal HAVÉ

Plan

- I. L'idée générale de la méthode
- II. La méthode SPW-FMM
- III. Développements informatiques pour les FMM
- IV. Résultats numériques
- V. Conclusions

Quelle est l'*idée* derrière la méthode ?

Problème à N corps

N² interactions : système complet Coût rapidement prohibitif

Quelle est l'*idée* derrière la méthode ?

Problème à N corps

L'approche multipôle :

Calcul précis des interactions proches.

Quelle est l'*idée* derrière la méthode ?

Problème à N corps

L'approche multipôle :

- Calcul précis des interactions proches.
- Calcul approché de groupes d'interactions lointains suivant 3 étapes : Gathering, Transfer, Scattering.
- Dépend de la régularité des potentiels.

Survol de la méthode multipôle

Soient H(r) un potentiel, x et y deux particules, r = x - y. Objectif :

$$u_i = \sum_j H(x_i - x_j) v_j \iff u = M_H v$$

Prérequis :

$$H(r) = \int K(\zeta, s) \ T(\zeta, t) \ \mathrm{d}\zeta, \quad \text{ avec } r = s + t \in \mathbb{R}^3$$

ainsi qu'une propriété d'homomorphisme

$$K(\zeta, r_1 + r_2) = K(\zeta, r_1) \cdot K(\zeta, r_2) \text{ pour } r_1, r_2 \in \mathbb{R}^3$$

FMM à 1 niveau : $u^{far} = M_H^{far} v$

 $\forall x_i \in P_p$

$$u_i^{far} = \int K(\zeta, x_i - C_r) \left[\sum_{P_q \text{ loin de } P_p} T(\zeta, C_r - C_t) \left[\sum_{x_j \in P_q} v_j K(\zeta, C_t - x_j) \right] \right] dr$$

Complexité du stockage et du calcul : $O(N^{3/2})$

Méthodes Multipôles Rapides pour l'Électromagnétisme : Parallélisme et Basses Fréquences – p. 5/43

Décomposition hiérarchique de l'espace

Objectif :

- réduction du coût des interactions proches
- réduction du nombre d'interactions lointaines

Soit un quadtree à 3 niveaux (L_0 , L_1 , L_2), et 3 cellules $P_{p_2} \subset P_{p_1} \subset P_{p_0}$

 À chaque niveau, calcul des fonctions de radiation

$$F_q(\zeta) = \sum_{x_j \in P_q} v_j K(\zeta, C_q - x_j)$$

Soit un quadtree à 3 niveaux (L_0 , L_1 , L_2), et 3 cellules $P_{p_2} \subset P_{p_1} \subset P_{p_0}$

À chaque niveau, calcul des fonctions de radiation

$$F_q(\zeta) = \sum_{x_j \in P_q} v_j K(\zeta, C_q - x_j)$$

 Calcul des transferts à l'intérieur de chaque niveau

$$G_p(\zeta) = \sum_{\substack{P_q \text{ , } P_p \text{ non proches} \\ \text{et de parents proches}}} F_q(\zeta) \ T(\zeta, C_p - C_q)$$

Transferts au niveau L_2

Afin de "propager l'information" du niveau le plus grossier L_0 au plus fin L_2

$$\tilde{G}_{p_1}(\zeta) = G_{p_1}(\zeta) + K(\zeta, C_{p_1} - C_{p_0})G_{p_0}(\zeta)
\tilde{G}_{p_2}(\zeta) = G_{p_2}(\zeta) + K(\zeta, C_{p_2} - C_{p_1})\tilde{G}_{p_1}(\zeta)$$

Ce qui nous permet d'obtenir $u^{far} = M_{H}^{far}v$,

$$\forall x_i \in P_{p_2} \quad u_i^{far} = \int K(\zeta, x_i - C_{p_2}) \,\tilde{G}_{p_2}(\zeta) \,\mathrm{d}\zeta$$

A quelques détails près ...

- Comment discrétiser en ζ pour remplacer
 l'intégrale par une quadrature numérique,
- Comment construire \tilde{G}_{p_i} à partir de $\tilde{G}_{p_{i-1}}$ vu que les quadratures peuvent différer,
- Comment utiliser la structure hiérarchique pour réduire le coût des calculs des fonctions de radiations.

Simulation électromagnétique

Condition de radiation à l'infi ni de Silver-Müller :

$$\lim_{|r|\to+\infty} |r||\sqrt{\epsilon_0}E - \sqrt{\mu_0}H \wedge r| = 0$$

1 \cdots Γ Spw p e // Grf Ez Num

Formulation intégrale : EFIE

 $\forall y \in \Gamma$ surface parfaitement conductrice, $\forall t \perp n(y)$

$$-4\pi E^{i}(y) \cdot t = \imath \omega \mu_{0} \int_{\Gamma} t \cdot G(x - y) j(x) \, \mathrm{d}\sigma(x) + \frac{\imath}{\omega \epsilon_{0}} \int_{\Gamma} t \cdot \nabla_{x} G(x - y) \mathrm{div}_{\Gamma} j(x) \, \mathrm{d}\sigma(x)$$

avec
$$\kappa = \omega \sqrt{\epsilon_0 \mu_0}$$
 et $G(r) = \frac{e^{i\kappa|r|}}{|r|}$.

Discrétisation par les éléments finis de Raviart-Thomas.

Méthodes existantes et limitations

Solveurs directs

- Coûts numériques très importants voire limitants en temps / mémoire
- HF-FMM en basses fréquences
 - Terme de transfert instable
 Limitations en nombre de niveaux, en précision et en fréquence.
- LF-FMM en hautes fréquences
 - Combinaison des développements multipolaire classique et en ondes planes.
 - Nombreuses transformations complexes

Les objectifs d'une nouvelle méthode ?

- Opérateur de transfert diagonal
- Méthode unique stable à toutes fréquences
- Précision arbitraire
- Peu de contraintes sur le nombre de niveaux ⇒ Réduction potentielle du coût des interactions proches

Méthode LF-FMM

L. Greengard et al.

$$\begin{aligned} \frac{e^{\imath\kappa|r|}}{|r|} = & \frac{\imath\kappa}{2\pi} \int_{S^{z^+}} e^{\imath\kappa\langle\sigma,r\rangle} \,\mathrm{d}\sigma \\ &+ \frac{1}{2\pi} \int_{\chi=0}^{+\infty} \int_{\phi=0}^{2\pi} e^{-\chi z} e^{\imath\sqrt{\chi^2 + \kappa^2}(x\cos\phi + y\sin\phi)} \,\mathrm{d}\phi \,\mathrm{d}\chi \end{aligned}$$

avec $S^{z^+} = \{r = (x, y, z) \in S^2, z > 0\}$

1 \cdots Γ Spw p e // Grf Ez Num

Méthode LF-FMM

L. Greengard et al.

$$\begin{aligned} \frac{e^{\imath\kappa|r|}}{|r|} = & \frac{\imath\kappa}{2\pi} \int_{S^{z^+}} e^{\imath\kappa\langle\sigma,r\rangle} \,\mathrm{d}\sigma \\ &+ \frac{1}{2\pi} \int_{\chi=0}^{+\infty} \int_{\phi=0}^{2\pi} e^{-\chi z} e^{\imath\sqrt{\chi^2 + \kappa^2}(x\cos\phi + y\sin\phi)} \,\mathrm{d}\phi \,\mathrm{d}\chi \end{aligned}$$

- 2 termes : H(r) propagatif, V(r) évanescent
- Stabilité numérique apparente
- Présence d'une intégrale généralisée
- Approche directionnelle (z > 0).

Terme propagatif : Difficultés

Intégration sur S^{z^+}

 $\int_{S^{z^+}} e^{i\kappa\langle\sigma, x_i - x_j\rangle} \,\mathrm{d}\sigma$

Terme propagatif : Difficultés

Intégration sur S^{z^+}

$$\int_{S^{2}} e^{i\kappa\langle\sigma, x_{i} - x_{j}\rangle} d\sigma$$
$$= \int_{S^{2}} e^{i\kappa\langle\sigma, x_{i} - C_{p}\rangle} \left\{ e^{i\kappa\langle\sigma, C_{p} - C_{q}\rangle} \mathbf{1}_{S^{z^{+}}}(\sigma) \right\} e^{i\kappa\langle\sigma, C_{q} - x_{j}\rangle} d\sigma$$

Terme propagatif : Difficultés

Intégration sur S^{z^+}

$$\int_{S^{z^+}} e^{i\kappa\langle\sigma, x_i - x_j\rangle} \,\mathrm{d}\sigma$$

$$= \int_{S^2} e^{i\kappa\langle\sigma, x_i - C_p\rangle} \left\{ e^{i\kappa\langle\sigma, C_p - C_q\rangle} \mathbf{1}_{S^{z^+}}(\sigma) \right\} e^{i\kappa\langle\sigma, C_q - x_j\rangle} \,\mathrm{d}\sigma$$

⇒ Supprimer les hautes fréquences induites par la discontinuité

Terme propagatif : Lissage AHT

Estimation de type Song & Chew : $L \approx \kappa d + 1.8 d_0^{2/3} (\kappa d)^{1/3}$, $d_0 = \log_{10}(1/\epsilon)$, intégration en $(L+1) \times (L+1)$ points.

Réutilisation des opérateurs d'interpolation de la HF-FMM.

Terme propagatif : Lissage DFT

Par symétrisation du transfert suivant

$$S(\theta, \psi) = (2\pi - \theta, \pi + \psi)$$

et lissage en Fourier 2D de fréquences $\{-L \dots L\}$ avec $L \approx \kappa d + 1.8 d_0^{2/3} (\kappa d)^{1/3}$, $d_0 = \log_{10}(1/\epsilon)$, une intégration précise est possible avec seulement $1 + L \times (L + 1)$.

- Relativement peu de points (moins que AHT)
- Opérateurs d'inter/anter-polation de type FFT
- Réutilisation pour HF-FMM

Terme evanescent : Troncature

$$\begin{split} K(\chi, z, \rho) &\stackrel{\text{def}}{=} \exp(-\chi z) \; \exp(i\rho\sqrt{\chi^2 + \kappa^2}), \\ V(x, y, z) &\stackrel{\text{def}}{=} \int_0^{\chi_{max} = +\infty} d\chi \int_0^{2\pi} d\phi \; K(\chi, z, x\cos\phi + y\sin\phi), \\ V_0(x, y, z) &\stackrel{\text{def}}{=} \frac{1}{2\pi} V(x, y, z). \end{split}$$

Terme evanescent : Troncature

$$\begin{split} K(\chi, z, \rho) &\stackrel{\text{def}}{=} \exp(-\chi z) \; \exp(i\rho\sqrt{\chi^2 + \kappa^2}), \\ V(x, y, z) &\stackrel{\text{def}}{=} \int_0^{\chi_{max} = +\infty} d\chi \int_0^{2\pi} d\phi \; K(\chi, z, x\cos\phi + y\sin\phi), \\ V_0(x, y, z) &\stackrel{\text{def}}{=} \frac{1}{2\pi} V(x, y, z). \end{split}$$

Erreur
$$\epsilon$$
 suivant $V_0: \chi'_{max}(\epsilon) \ge -\frac{\log(z_{min}\epsilon)}{z_{min}}$
Erreur ϵ suivant $K: \chi_{max}(\epsilon) \ge -\frac{\log \epsilon}{z_{min}}$.

Terme evanescent : Discrétisation ϕ

Quadrature uniforme de taille $n_{\phi} = L + 1$ avec

$$L \approx L_0 + d_e^{2/3} L_0^{1/3},$$

$$d_e \stackrel{\text{def}}{=} \log(1/\epsilon)$$
 et $L_0 \stackrel{\text{def}}{=} \sqrt{2}R \sqrt{\left(\frac{2d_e}{R}\right)^2 + \kappa^2}.$

Terme evanescent : Discrétisation χ

Quadrature de Gauss «Optimale» (Greengard & Rokhlin)

Terme evanescent : Schéma à 2 niveaux

• 6 directions : +x, -x, +y, -y, +z et -z

- 6 directions : +x, -x, +y, -y, +z et -z
- Coût élevé des interpolations

- 6 directions : +x, -x, +y, -y, +z et -z
- Coût élevé des interpolations
- Optimisation des opérations aux feuilles

- 6 directions : +x, -x, +y, -y, +z et -z
- Coût élevé des interpolations
- Optimisation des opérations aux feuilles

Implémentations parallèles

- Formulations intégrales : EFIE, MFIE, CFIE
- 2 modèles : HF-FMM, SPW-FMM gestion par FMM générique
- Code C⁺⁺ : Programmation OO, généricité, iWarp
- Parallélisme de type Cluster
 Mémoire distribuée, MPI, EasyMSG, Load Balancing, gestion «in/out of core»
- Bibliothèques optimisées : FFTW, Blas, Lapack, METIS

Partitionnement des dépendances

Méthodes classiques

Courbe de Morton 2D à 3 niveaux

Courbe de Hilbert 2D à 3 niveaux

Localité garantie en pleine dimension ...

Partitionnement des dépendances

Méthodes classiques

Courbe de Morton 2D à 3 niveaux

Courbe de Hilbert 2D à 3 niveaux

Localité garantie en pleine dimension ... sinon le pire est possible.

Partitionnement des dépendances

Octree

Graphes à poids

Objet	CPUs	Volume	Transf	Up	Global
Sphere	8	+0.0%	-0.2%	+0.0%	
	10	-8.8%	-8.1%	+2.2%	
Falcon	8	-34.1%	-53.7%	+1.9%	-32.0%
	10	-30.1%	-29.0%	+20.0%	-29.9%
RFalcon	8	-21.6%	-32.7%	+7.1%	-23.0%
	10	-25.7%	-31.4%	+6.5%	-23.5%

Pourquoi?

- Estimations statiques complexes : Algorithmes, communications...
- Architecture parallèle hétérogène : Processeurs, réseaux, compétition d'accès...

Pourquoi?

- Estimations statiques complexes : Algorithmes, communications...
- Architecture parallèle hétérogène : Processeurs, réseaux, compétition d'accès...

Prérequis :

- Estimateurs *a priori* \sim quantité de données
- Estimateurs a posteriori
 ressources consommées (ex : temps)

Environnement hétérogène

Accompagné de méthodes de

- Partitionnement «from scratch»
- Re-partitionnement de graphes
- Migration + reconstructions locales

Optimisation par «Overlapping»

Mélange Calculs/Communications «classique»

Optimisation par «Overlapping»

Mélange Calculs/Communications «classique»

Optimisation par «Overlapping»

CPUs	local interactions	interactions non locales	temps	effi ccacité
CSR	-	-	6.60s	-
1	1150×10^3	0	4.08s	100%
2	577×10^3	2300	2.02s	101%
4	$287 imes 10^3$	2300	1.00s	102%
8	143×10^3	1700	0.49s	104%
16	71×10^3	2000	0.31s	82%*

Interactions proches (matrice «Block CSR Matrix» de 16×10^6 valeurs)

Optim. par «Overlapping» Adaptatif

EasyMSG : Bibliothèque C⁺⁺/MPI de gestion simplifi ée de communications pour l'«Overlapping»

Optim. par «Overlapping» Adaptatif

Réglage automatique : Optimisation par compétition Réseau hétérogène

Adaptativité plus réactive : à l'intérieur d'une itération fort traffic & collisions

Performance parallèle

Effi cacité des composants FMM

Résultats Numériques

- Objets parfaitement conducteurs
- Constantes diélectriques : $\mu_0 = 1.25751 \times 10^{-6}, \epsilon_0 = 8.84806 \times 10^{-12}$ (c = 299792548.2m/s)
- Formulation CFIE
- Solveur Iteratif : GMRES
- Approximation du noyau à $\epsilon = 10^{-4}$

Résultats Numériques : Sphère 600K20

FMM à 8 niveaux avec des discrétisations de 160×81 à 20×11 et de $(7:4) \times 140$ à $(14:5) \times 40$.

Résultats Numériques : Sphère 600K20

Résultats Numériques : Sphère 50K $\frac{\lambda}{5}$

FMM à 8 niveaux avec des discrétisations de 12×7 à 6×4 et de $(17:6) \times 40$ à $(16:5) \times 40$.

Résultats Numériques : Sphère 50K $\frac{\lambda}{5}$

Résultats Numériques : Voiture 11K $\frac{\lambda}{2}$

Comparaison des SER entre par SPW-FMM et par assemblage de la matrice du système. 42min/320Mo et 6min/3.2Go pour 352 itérations.

Résultats Numériques : Voiture 11K $\frac{\lambda}{2}$

Avion 42λ , 500K

HF-FMM

SPW-FMM

Méthodes Multipôles Rapides pour l'Électromagnétisme : Parallélisme et Basses Fréquences - p. 41/43

Avion 42λ , 500K

	HF-FMM		SPW-FMM				
Initialisation+Intégration	9s	(6%)	92s	(16%)			
Agrégation	18s	(13%)	96s	(17%)			
Transfert	103s	(73%)	318s	(57%)			
Dispersion	11s	(8%)	52s	(9%)			
Total	141s		557s				
Coûts FMM par itération							

1 \cdots Γ Spw p e // Grf Ez Num

Conclusions

- Stabilité à toutes fréquences : Domaine de performance plutôt orienté de basses à moyennes fréquences
- De fort gain potentiel au niveau de la réduction du nombre de transferts $K(\zeta, \vec{z_1} + \vec{z_2}) = K(\zeta, \vec{z_1})K(\zeta, \vec{z_2})$
- Les prémisses de l'adaptativité
 ~> au niveau FMM
 ~> maillage adaptatif
- Des outils d'optimisations du parallélisme
 ~> Plus de coopération moins de compétition.

Conclusions

Améliorations à base de FFT
 Plus rapides, plus fiables

