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Abstract

This work is motivated by the study of parabolic evolution equations and, in
particular, of their regularity in a Lp sense. Such questions lead to the investigation
of singular integral operators with operator valued kernels acting on a Banach space.
We are interested in boundedness results for such operators and their applications
to evolution equations. Our focus is on the relationship between these results and
the geometry of the underlying Banach space. We study various problems, both
in discrete and continuous time, and relate their behavior to the R-boundedness of
certain sets of bounded linear operators acting on a UMD space (for Lp regularity
with 1 < p <∞) or to the existence of a complemented copy of c0 or `1 (for `∞ and
`1 regularity).

Ce travail est motivé par l’étude des équations paraboliques et en particulier
de leur régularité Lp. On est amené à considérer des opérateurs intégraux dont le
noyau est une fonction à valeur dans un espace d’opérateurs agissant sur un espace
de Banach. Les questions concernent alors le caractère borné de tels opérateurs
intégraux et l’application de tels resultats à l’étude des équations d’évolution. Plus
particulièrement on s’intéresse au rôle de la géométrie de l’espace de Banach sous-
jacent dans ce type de résultats. Ce travail est une étude de différents problèmes
abstraits, en temps discret et continu, où la régularité est liée au caractère R-borné
de certains ensembles d’opérateurs linéaires agissant sur un espace de Banach UMD
(régularité Lp pour 1 < p < ∞) ou à l’existence de copies complémentées de c0
(resp. de `1) dans l’espace de Banach sous-jacent (respectivement pour la régularité
au sens de `∞ et de `1).
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directeur des études doctorales à Columbia et aussi le “deuxième lecteur” de cette
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naissant. Ma gratitude va aussi à l’équipe d’analyse fonctionnelle bisontine dans son
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Et finalement je voudrais mentionner mes deux plus proches amis, Frédéric
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Željko played a very special role in my two American years and so did Angélique,
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“die Wissenschaft unter der Optik des Künstlers zu sehen, die Kunst
aber unter der des Lebens...”
Friedrich Nietzsche in “Die Geburt der Tragödie”. 1

1“to look at scientific enquiry from the perspective of the artist, but to look at art from the
perspective of life. . .” Friedrich Nietzsche in “The Birth of Tragedy”.



Introduction (français)

Ce travail concerne les équations d’évolution déterministes, c’est à dire les modèles
mathématiques de l’évolution d’un système scientifique (e.g. biologique, physique,
économique) dans le temps, en supposant que cette évolution est prédeterminée. De
tels modèles utilisent des représentations mathématiques du temps et du système
considéré. Pour le temps, on considère deux principaux objets : des intervalles de R
pour les problèmes continus et des suites de R pour les problèmes discrets (d’autres
approches existent cependant, voir la Section 3.2). Pour le système, on utilise un
espace d’états qui, dans ce travail, est toujours un espace de Banach. Il est important
de noter que, dans la plupart des cas, cet espace est de dimension infinie. Ce fait a
d’importantes conséquences. Du point de vue philosophique, d’une part, il implique
que, bien que les équations soient déterministes, les systèmes qu’elles représentent ne
sont pas forcément prédictibles. Il se peut par exemple que les états ne puissent être
interprétés que de manière probabiliste, comme c’est le cas en mécanique quantique.
Du point de vue mathématique, d’autre part, les espaces de Banach de dimension
infinie possèdent une très riche classification isomorphique linéaire. Il est donc
naturel de se demander comment le choix de l’espace des états, par rapport à cette
classification, influence le comportement des équations d’évolution. En schématisant
largement, c’est là le sujet du présent travail.

Plus précisément, on approche les équations d’évolution par la théorie des semi-
groupes d’opérateurs linéaires. Ceci signifie que (en temps continu) l’on considère
un espace de Banach X et un ensemble {Tt ; t ∈ R+} ⊂ B(X) (où B(X) désigne
l’ensemble des opérateurs linéaires agissant sur X) tel que{

TtTs = Tt+s ∀(t, s) ∈ R2
+,

T0 = I.
(1)

L’équation (1) signifie, bien sur, que {Tt ; t ∈ R+} est un semigroupe. On peut aussi
interpréter ce fait (voir l’épilogue de [EN00]) comme une expression mathématique
du déterminisme scientifique puisque il énonce que, si le système est redémarré pour
s unités de temps après avoir évolué pendant t unités de temps, il atteindra le même
état que si il avait évolué pendant t + s unités de temps. Un tel semigroupe (de la

forme Tt = etA où Ax = lim
h→0

T (h)x−x
h

pour tout x tel que cette limite existe) donne
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une solution faible u(t) = Ttx+
∫ t

0
Tt−sf(s)ds du problème de Cauchy

(CP )R+,A

{
u′(t)− Au(t) = f(t) ∀t ∈ R+,

u(0) = x.

Ceci siginifie que l’étude du problème (CP )R+,A (qui peut être une expression ab-
straite d’une équation aux dérivées partielles si X est un espace de fonctions et A
un opérateur différentiel) peut se faire via l’étude du semigroupe {Tt ; t ∈ R+} (voir
[EN00]). De plus ceci suggère l’étude de fonctions de la variable de temps à valeurs
dans l’espace de Banach X et, en particulier, des fonctions de la forme

Ox : R+ → X
t 7→ Ttx

et
If : R+ → X

t 7→
t∫

0

Tt−sf(s)ds.

Dans le deuxième cas, on reconnait un opérateur intégral invariant par translation
avec un noyau opératoriel. Ceci suggère donc l’utilisation des espaces de Bochner
Lp(R+;X) et l’extension des résultats classiques de l’analyse harmonique des fonc-
tions de Lp(R+,C) à ces espaces de Bochner. Ce travail s’intéresse à ces extensions
et à leur rôle dans l’étude des équations d’évolution et se concentre plus parti-
culièrement sur les relations entre de tels résultats et la théorie des espaces de
Banach.

La thèse comprend deux parties. La première s’intitule “Preliminaries” et con-
tient des définitions et des résultats qui illustrent cette approche des problèmes
d’évolution. La deuxième partie s’intitule “Contributions” et présente les problèmes
particuliers que cette thèse considère. La présentation se veut autosuffisante en ce
sens que les résultats et définitions utilisés dans la deuxième partie sont rappelés
dans la première. Cette dernière comprend trois chapitres. Le premier concerne les
espaces de Banach et les opérateurs entre espaces de Banach. Il commence par rap-
peler des propriétés géométriques nécessaires à l’extension des résultats d’analyse
harmonique (espace UMD : Section 1.1), puis s’intéresse aux résulats sur l’existence
de suites particulières et donc d’orbites particulières pour les semigroupes (espaces
contenant c0 : Section 1.2) et à l’existence de décomposition de Schauder partic-
ulières et donc de semigroupes particuliers (Sections 1.3 et 1.4). Ensuite on présente
une notion cruciale sur le caractère aléatoirement borné de certains sous-ensembles
de B(X) (Section 1.5) qui s’avère être un élément clef dans l’extension de résultats
hilbertiens au cadre des espaces UMD. Finalement la notion d’analyticité pour un
semigroupe est présentée, à la fois en temps continu et en temps discret (respective-
ment Section 1.6 et Section 1.7). Ceci est bien sur très important puisque ce travail
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ne considère que les équations d’évolution paraboliques, c’est à dire les équations
impliquant des générateurs de semigroupes analytiques.

Le deuxième chapitre est un résumé des résultats d’analyse harmonique pour
les fonctions de Lp(R+;X). Il commence avec le travail crucial de Bourgain dans
les années 80 (Section 2.2) puis présente les principaux résultats récents tels que le
théorème de multiplicateur de Weis.

Dans le troisième chapitre on aborde finalement les équations d’évolution et, en
particulier, la question de leur régularité maximale. On considère donc, disons pour
un problème continu, la relation entre la régularité (au sens d’un espace de fonctions
donné) du terme inhomogène f et de la solution u. Ceci est expliqué en détail dans
la Section 3.1. La Section 3.2 présente ensuite rapidement la théorie des échelles
de temps avant que ne soit introduite, dans différents sens du terme, la notion de
régularité maximale (Sections 3.4, 3.5 et 3.6). Ce chapitre se termine ensuite avec
un survol des problèmes concrets pour lesquels la régularité maximale a déjà été
utilisée.

La seconde partie contient elle aussi trois chapitres. Le quatrième s’intéresse à la
régularité maximale des équations d’évolution discrètes (i.e. avec Z+ comme notion
de temps). On y montre tout d’abord que, en dehors des espaces de Hilbert, il existe
des problèmes paraboliques qui n’ont pas la régularité maximale au sens de `2. On
considère ensuite la relation entre la régularité `1 et `∞ des problèmes et l’existence
d’une copie complémentée de `1 (resp. de c0) dans l’espace de Banach sous-jacent.
Finalement, on présente d’autres relations du même type ainsi qu’une comparaison
des différentes notions de régularité discrète (au sens de `1, `p (1 < p <∞) et `∞ ).
Les résultats de ce chapitre ont été publiés dans [Po03] (Semigroup Forum).

Le cinquième chapitre s’intéresse aussi aux problèmes discrets mais dans le cas
où le pas de discrétisation n’est pas forcément constant (i.e. en considérant une
suite croissante de R pour le temps). Pour ces problèmes on introduit les no-
tions adéquates (notamment l’analyticité de certaines familles d’évolution) et on
caractérise la régularité maximale `p (1 < p < ∞) dans le cas où l’échelle de
temps est basée sur un échantillon (i.e. quand la suite des pas de discrétisation
est périodique). Finalement on obtient un résulat plus général par un argument de
perturbation. Les résultats de ce chapitre ont été prépubliés dans [Po04] et soumis
pour publication.

Le dernier chapitre s’intéresse à un problème général de l’analyse harmonique des
fonctions de Lp(R+;X) motivé par l’étude des problèmes d’évolution non autonome
(comme par exemple les problèmes considérés dans le chapitre précédent). On y
considère le caractére Lp borné d’opérateurs pseudo-différentiels de la forme

Taf(x) =

∫
Rn

eix.ξa(x, ξ)f̂(ξ)dξ

où f̂ représente la transformée de Fourier de f et a(x, ξ) ∈ B(X) pour tout (x, ξ) ∈
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Rn×Rn. On montre que Ta se prolonge en un opérateur borné sur Lp(Rn;X) si l’on
suppose que X est UMD et que a(x, ξ) vérifie certaines conditions de type Mihlin
en ξ et de régularité Hölderienne en x. En application on considère la question de
la régularité maximale Lp pour des équations non autonomes en temps continu. Ce
chapitre donne une nouvelle preuve d’un résultat non publié de Željko Štrkalj et fait
partie du travail en collaboration [PoS04]. L’article est en préparation.

Introduction (english)

This work is motivated by deterministic evolution equations, i.e. mathematical
models of the evolution of a scientific (e.g. biological, physical, economical) system
with time, in the case where this evolution is thought to be predetermined. Such
equations involve a mathematical representation of time and of the system under
consideration. For time we use two main objects : intervals of R for continuous
problems and sequences in R for discrete ones (although more general approaches
can be investigated as it can be seen in Section 3.2). For the system we use a state
space which, in our work, is always a Banach space. It is particularly important
to remark that, in most cases, this space is infinite dimensional. A philosophical
consequence of this fact is that, although the equations are deterministic, the systems
they represent are not necessarily predictable. It may be, for instance, that the
states can only be interpreted in a probabilistic way, as it is the case, for instance,
in quantum mechanics. But this infinite dimensional nature of the state space has
also an important mathematical consequence. Indeed, the classification of infinite
dimensional Banach spaces, up to linear continuous isomorphisms, is very rich. It
is therefore natural to wonder how the choice of the state space, from the point
of view of Banach space theory, influences the behavior of the evolution equation.
Put in a very general way, this is the purpose of the present work. More precisely
we approach evolution equations with the theory of semigroups of linear operators.
This means that (when time is assumed to be continuous) we consider a Banach
(state) space X and a set {Tt ; t ∈ R+} ⊂ B(X) (where B(X) denotes the set of
bounded linear operator acting on X) such that{

TtTs = Tt+s ∀(t, s) ∈ R2
+,

T0 = I.
(2)

Equation 2 is, of course, the semigroup law. Note that it can also be seen (see
the Epilogue of [EN00]) as the law of determinism for it states that the system, if
restarted after t units of time for s units of time, will reach the state it would have
reached after t + s units of time if not restarted. Such a semigroup (of the form

Tt = etA where Ax = lim
h→0

T (h)x−x
h

for each x where this limit exists) gives the mild
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solution u(t) = Ttx+
∫ t

0
Tt−sf(s)ds of the Cauchy problem

(CP )R+,A

{
u′(t)− Au(t) = f(t) ∀t ∈ R+,

u(0) = x.

This means that the study of (CP )R+,A (which can be seen as an abstract expression
of a partial differential equation by lettingX be a function space and A be differential
operator) can be done through the study of the semigroup {Tt ; t ∈ R+} (see
[EN00]). Moreover this suggests to study the functions of the time variable with
values in the Banach space X and in particular the maps of the form

Ox : R+ → X
t 7→ Ttx

and

If : R+ → X

t 7→
t∫

0

Tt−sf(s)ds.

Considering the latter maps, one can recognize a translation invariant singular in-
tegral operator with an operator-valued kernel. This, in turn, suggests the use of
Bochner spaces Lp(R+;X) and the extension of harmonic analytic results for func-
tions in Lp(R+; C) to such spaces. This work is concerned with such extensions and
their role in the study of evolution equations. But, most of all, it investigates the
interplays between these issues and the theory of Banach spaces.

The thesis consists of two parts. The first one is called “Preliminaries” and
gives various definitions and results which illustrate the questions and features of
this approach to evolution equations. The second part is called “Contributions”
and presents the particular problems I have been interested in during my PhD.
The presentation is meant to be self-contained in the sense that the results and
definitions used in the second part are recalled in the first one. The latter consists
in three chapters.

It starts with Banach spaces and linear operators acting on them. This first
chapter contains results on the geometry of Banach spaces related to the extension
of harmonic analytic results (UMD spaces in Section 1.1), the existence of particular
sequences and thus of particular orbits of semigroups (spaces containing c0 in Section
1.2) and the existence of particular Schauder decompositions and thus of particular
semigroups (Sections 1.3 and 1.4). Then it presents a crucial notion of boundedness
for sets in B(X) which turns out to be the key element in the extension of results
from Hilbert to UMD spaces (Section 1.5). Finally the notion of analyticity for a
semigroup (both in the continuous and discrete sense) is presented (Sections 1.6
and 1.7). This is especially important since we consider only parabolic evolution
equations, i.e. equations involving generators of analytic semigroups.

Chapter 2 consists in an overview of the harmonic analytic theory for functions
in Lp(Rn;X). It starts with the crucial work of Bourgain in the 80’s (Section 2.2)
and then presents the main recent results such as Weis’ multiplier theorem.

In Chapter 3 we finally turn to evolution equations and, in particular, to the
question of maximal regularity. This means that we consider, for a problem (say
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in continuous time) (CP )R+,A, the relationship between the regularity (in the sense
of a function space Y ) of the inhomogeneous term f and the solution u. This is
explained in details in Section 3.1. Section 3.2 then presents briefly the time scale
theory which allows to consider various notions of time. After this short digression,
maximal regularity in different senses is considered (Sections 3.4, 3.5 and 3.6). This
part is then concluded with a quick overview of the concrete problems to which
maximal regularity has already been applied.

The second part also consists in three chapters. Chapter 4 deals with maximal
regularity of discrete time evolution equations (i.e. with time being Z+). It is shown
that, except in Hilbert spaces, not all parabolic evolution equations enjoy maximal
regularity in the `2 sense. Then it focuses on maximal regularity in the `1 and the `∞
sense and considers the relationships between these properties and the fact that the
Banach space contains or not a copy of c0 (resp. a complemented copy of `1). In the
final section (4.5) more of these relationships are presented along with a comparison
between maximal regularity in the `1, `p (1 < p < ∞) and `∞ sense. The results
from this chapter can also be found in the article [Po03] from Semigroup Forum.

Chapter 5 is also concerned with discrete problems but in the case where the
step size is not necessarily constant (i.e. with time being any increasing sequence
of real numbers). For these problems we introduce the corresponding semigroup
notions (especially analyticity) and then characterize maximal regularity in the `p
sense (1 < p <∞) for the sample based case (i.e. when the sequence of step sizes is
periodic). Finally more general cases are treated via a perturbation argument. The
results from this chapter can be found in the preprint [Po04] from the Université de
Franche-Comté which has been submitted for publication.

The last chapter deals with a general problem in the harmonic analysis of func-
tions in Lp(Rn;X) which is motivated by the study of non autonomous evolution
equations (such as continuous analogues of the equations considered in Chapter 5).
We investigate the Lp boundedness of pseudo-differential operators of the form

Taf(x) =

∫
Rn

eix.ξa(x, ξ)f̂(ξ)dξ

where f̂ denotes the Fourier transform of f and a(x, ξ) ∈ B(X) for each (x, ξ) ∈
Rn × Rn. We show that Ta extends to a bounded operator on Lp(Rn;X) provided
X is UMD and a(x, ξ) satisfies some conditions of Mihlin’s type in ξ and of Hölder’s
type in x. As an application we consider the question of Lp-maximal regularity for
non autonomous evolution equations in continuous time. This chapter gives a new
proof of an unpublished result by Željko Štrkalj and is part of the joint work [PoS04].
The paper is in preparation.
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Part I

Preliminaries
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Chapter 1

Notions from the Banach spaces
and operators theories

1.1 UMD spaces

LetX be a Banach space and B(X) denote the set of bounded linear operators acting
on X. In order to extend harmonic analytic results from Lp(Rn; C) (1 < p <∞) to
Bochner’s spaces Lp(Rn;X) (1 < p < ∞) one has to assume an adequate property
of X. This is the purpose of the following definition.

Definition 1.1.1
For ε ∈ (0, 1) and 1 < p <∞ let us define the operators Hε ∈ B(Lp(R;X)) by

Hε =
1

π

∫
ε<|s|< 1

ε

f(t− s)

s
ds.

X is said to be a UMD space if lim
ε→0

Hεf exists in Lp(R;X) for every f ∈ Lp(R;X).

The operator H = lim
ε→0

Hε is then called the Hilbert transform.

This definition is natural for harmonic analytic applications and gives that C is a
UMD space (this is a classical result due to Riesz, see for instance [Gr04]) How-
ever, much of the interest of the UMD class comes from the fact that it can be
characterized by properties of a somewhat different nature.

Theorem 1.1.2 (Bourgain 1983, Burkholder 1981,1983)
Let X be a Banach space. The following assertions are equivalent.

(i) X is a UMD space.
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(ii) There exists C > 0 such that, for every probability space (Ω,Σ, µ), every mar-
tingale (fk)k∈Z+ ⊂ Lp(Ω;X) and every n ∈ N,

sup
εk=±1

‖
n∑
k=0

εk(fk+1 − fk)‖Lp(Ω;X) ≤ C‖
n∑
k=0

(fk+1 − fk)‖Lp(Ω;X).

(iii) There exists a biconvex function ζ : X ×X → R such that ζ(0, 0) > 0 and for
every (x, y) ∈ X2 such that ‖x‖ = ‖y‖ = 1 we have

ζ(x, y) ≤ ‖x+ y‖.

Remark 1.1.3
• (ii) is in fact the original definition of a UMD space, which stands for “Un-

conditional Martingale Differences”.

• (i) =⇒ (ii) was proved by Bourgain in [B83].

• (ii) =⇒ (i) was proved by Burkholder in [Bu83].

• (iii) ⇐⇒ (ii) was proved by Burkholder in [Bu81].

• One could add other characterizations to Theorem 1.1.2. Namely one could
replace the boundedness of the Hilbert transform on Lp(R;X) by analogue
statements on Lp(T;X) or by the boundedness of the Riesz projection and one
could also replace (ii) by analogue statements involving martingale transforms
(see [Bu85] and [Rf86] for further information).

Besides this interesting ubiquitous nature, UMD spaces possess important Banach
spaces theoretical properties (see [Rf86], [Pi74] and [Pi75]).

Theorem 1.1.4 (Pisier 1974)
UMD spaces are super-reflexive but not every super-reflexive space is UMD.

Remark that Bourgain even found (in [B83]) a super-reflexive Banach lattice which
is not UMD.

Proposition 1.1.5
Let X be a Banach space. Then the following hold.

(a) X is UMD if and only if X∗ is UMD.

(b) If X is UMD then for each measured space Ω with a σ finite measure µ, the
space Lp(Ω;X) is UMD.

(c) If X is UMD and Y is a closed linear subspace of X then Y and X/Y are UMD
spaces.
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The UMD class therefore contains many classical Banach spaces, which makes it
especially interesting in applications. For instance we have the following examples.

Example 1.1.6
• Finite dimensional spaces, `p spaces and Lp spaces (1 < p < ∞) are UMD

spaces.

• For 1 < p < ∞ and any von Neuman algebra M, non commutative Lp(M)
spaces (such as the Schatten classes) are also UMD (see [PX97] and the survey
[PX03]).

Further information can be found in the survey articles [Rf86] by Rubio de
Francia and [Bu85] by Burkholder.

1.2 Spaces containing c0 : results by C. Bessaga

and A. Pelczyński

Whereas the UMD property is crucial for the Lp (1 < p < ∞) theory of evolution
equations, the fact that the underlying Banach space contains or not a copy of c0
is of importance for the L∞ theory (respectively complemented copies of `1 play a
role in the L1 theory). For this reason we present here a characterization of this
property, due to Bessaga and Pelczyński in [BP58], which will be of great use in
Chapter 4. We start by recalling some definitions.

Definition 1.2.1
Let X be a Banach space and (xk)k∈N ⊂ X. The series

∞∑
k=1

xk is said to be uncon-

ditionally convergent (u.c.) if the series
∞∑
k=1

εkxk converges for each choice of signs

εk = ±1. It is said to be weakly unconditionally convergent (w.u.c.) if there exists
a constant C > 0 such that

sup
n∈N

sup
εk=±1

‖
n∑
k=1

εkxk‖ ≤ C.

Theorem 1.2.2 (Bessaga,Pelczyński 1958)
Let X be a Banach space. The following assertions are equivalent.

(i) There exists in the space X a w.u.c. series which is not u.c. ..

(ii) There exists a w.u.c. series
∞∑
k=1

xk ∈ X such that inf
k∈N

‖xk‖ > 0.

(iii) X contains a subspace isomorphic to c0.
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In applications we use this fundamental theorem together with the following duality
result.

Theorem 1.2.3 (Bessaga,Pelczyński 1958)
Let X be a Banach space such that X∗ contains a subspace isomorphic to c0. Then
X contains a complemented subspace isomorphic to `1.

Remark 1.2.4
In the above result the role of c0 and `1 can not be interchanged. For instance if
X = `1 then `1 ⊂ X∗ but c0 6⊂ X. However Johnson and Rosenthal have shown
that if X is separable and X∗ contains `1 then c0 is isomorphic to a quotient of X
(see Proposition 2.e.9 in volume 1 of [LT77]).

We end this section with a particular case of a result of Sobczyk (in [So41]) which
is also very useful.

Theorem 1.2.5 (Sobczyk 1941)
Let X be a separable Banach space with a subspace Y isomorphic to c0. Then Y is
a complemented subspace of X.

All the results from this section can be found in [BP58] (Sobczyk’s result is reproved
using bases theory). Further information can be found in Section 2.e of [LT77]
(volume 1).

1.3 Hilbert spaces among spaces with an uncon-

ditional basis

It is a common problem to decide whether a result, which is known to hold in Hilbert
spaces, extends to more general Banach spaces. When it is not the case one may
want to relate the result to characterizations of Hilbert spaces in Banach spaces
theory. In this section we present such a characterization, which is used in [KL00]
(and also in [Po03]) and which is a consequence of deep results by Lindenstrauss
and Tzafriri and by Pelczyński. We start with some definitions.

Definition 1.3.1
Let X be a Banach space.
(xk)k∈N ⊂ X is called a Schauder basis if, for every x ∈ X, there exists a unique

sequence (ak)k∈N ⊂ C such that x =
∞∑
k=1

akxk.

It is called an unconditional basis if the series converges unconditionally.

A sequence of non-zero vectors (uj)j∈N ⊂ X of the form uj =
pj+1∑

n=pj+1

anxn for some

(an)n∈N ⊂ C and an increasing sequence of integers (pj)j∈N is called a block basis of
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(xk)k∈N.

Two bases (xj)j∈N and (yj)j∈N are called equivalent provided a series
∞∑
j=1

ajxj (for

(aj)j∈N ⊂ C) converges if and only if
∞∑
j=1

ajyj converges.

It is interesting to remark that many classical Banach spaces have an unconditional
basis. It is, for instance, the case of finite dimensional spaces, `p spaces and Lp
spaces (1 < p < ∞). It is, however, not the case of L1 (see [P61]) or of some non
commutative Lp spaces, even when 1 < p <∞ (see [PX03]).

Theorem 1.3.2 (Lindenstrauss, Tzafriri 1971)
Let (xk)k∈N ⊂ X be a normalized unconditional basis of a Banach space X. Assume
that for every permutation π and for every block basis (uj)j∈N of (xπ(k))k∈N, the closed
linear span of (uj)j∈N is complemented. Then (xk)k∈N is equivalent to the canonical
basis of c0 or `p for some 1 ≤ p <∞.

Theorem 1.3.3 (Pelczyński 1960)
For p ∈ (1, 2) ∪ (2,∞), the spaces `p have two non equivalent unconditional bases.

The following corollary is then a direct consequence.

Corollary 1.3.4
Let X be a Banach space with an unconditional basis. Assume that X 6' c0 and
X 6' `1. Moreover, assume that for each normalized unconditional basis (xk)k∈N ⊂
X, each permutation π and each block basis (uj)j∈N of (xπ(k))k∈N, the closed linear
span of (uj)j∈N is complemented.
Then X ' `2.

Further information can be found in Section 2.a. of [LT77].
This concludes our preliminaries on the geometry of Banach spaces. We now focus
our attention on operator theoretical notions.

1.4 Multipliers on a Schauder decomposition

In order to relate properties of linear operators (and ultimately of evolution equa-
tions) to the geometry of the underlying Banach space one can consider special
operators, which properties are closely related to properties of the space. Such
operators are defined as follows.

Definition 1.4.1
A normalized sequence (∆k)k∈Z ⊂ B(X) is called a Schauder decomposition of X if
the following hold.
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(i) k 6= l =⇒ ∆k∆l = 0.

(ii) ∀x ∈ X
∑
k∈Z

∆kx = x.

It is called unconditional if the series converges unconditionally.
Given a sequence (λn)n∈Z and a Schauder decomposition (∆n)n∈Z ⊂ B(X), the
linear operator T defined by

T (
n∑

k=−n

∆kx) =
n∑

k=−n

λk∆kx

is called a multiplier on (∆n)n∈Z associated to (λn)n∈Z.

It is then a simple but useful fact that{
(λn)n∈Z ∈ `∞
(∆n)n∈Z unconditional

=⇒ T ∈ B(X).

This property characterizes unconditional decompositions in the sense that, when-
ever the decomposition is conditional, there exists a bounded sequence (λn)n∈Z ⊂ C
such that the corresponding multiplier is unbounded. For a conditional decomposi-
tion it is therefore unclear which conditions should be imposed on (λn)n∈Z in order
to define a bounded operator T . Nevertheless we have that

(λn+1 − λn)n∈Z ∈ `1 =⇒ T ∈ B(X).

Moreover we have the following lemma which can essentially be found in [Ve93] (see
also [La98]).

Lemma 1.4.2
Let X be a Banach space, (∆n)n∈N ⊂ B(X) be a Schauder decomposition of X and
(λn)n∈N be a sequence of scalars. Let us define

D(T ) = {x ∈ X ;
∑
k∈N

λk∆kx converges inX}

and ∀x ∈ D(T ) Tx =
∑
k∈N

λk∆kx
(1.1)

Then :

(i) T is closed and densely defined.

(ii) If λn 6= 0∀n ∈ N then T is injective and has dense range.

This provides us with an interesting way to construct (counter)examples. The idea
goes back, at least, to Baillon (in [Ba80]) and will be of importance in Chapter 4.
Further information on Schauder decompositions can be found in Section 1.g of
[LT77]. For multipliers important references are the article [CPSW00] and the PhD
thesis [Wi00].
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1.5 R-boundedness of a family of bounded linear

operators

The notion of a multiplier on an unconditional Schauder decomposition can be
extended by considering (Tk)k∈N ⊂ B(X) such that Tk commutes with ∆k for each
k and the operator defined by

T (
n∑
k=1

∆kx) =
n∑
k=1

Tk∆kx ∀x ∈ X ∀n ∈ N.

In Hilbert spaces, if we assume uniform boundedness of the operators Tk we obtain
that T ∈ B(X). But this result is not clear in general Banach spaces. However
we can obtain an analogue result if we replace uniform boundedness by a stronger
assumption. This will be the following notion of R-boundedness.

Definition 1.5.1
Let X be a Banach space. Ψ ⊂ B(X) is called R-bounded if
∃C > 0, ∀n ∈ N, ∀T1, ..., Tn ∈ Ψ, ∀x1, ..., xn ∈ X∫ 1

0

‖
n∑
j=1

εj(t)Tjxj‖dt ≤ C

∫ 1

0

‖
n∑
j=1

εj(t)xj‖dt (1.2)

where (εj)j∈N is the usual sequence of Rademacher functions on [0, 1] (i.e. εj(t) =
sign(sin(2jπt))).

Notation 1.5.2
For a R-bounded set Ψ ⊂ B(X), we denote by R(Ψ) the smallest constant C such
that 1.2 holds.

R-boundedness stands for Riesz-boundedness, Rademacher-boundedness or Randomized-
boundedness depending on the authors. Given that a similar notion can be de-
fined using Gaussian variables instead of Rademacher variables (which turns out
to be equivalent in spaces with cotype), we choose to call this notion Rademacher-
boundedness. It appears implicitly in the work [B83] of Bourgain and explicitly in
the article [BG94] of Berkson and Gillespie. It turns out to be a crucial notion in
Banach space valued harmonic analysis (see Chapter 2) but, from an abstract point
of view, the role of this notion is to a great extent summarized in the following
proposition (see [CPSW00] and [Wi00]).

Proposition 1.5.3 (Clément, De Pagter, Sukochev, Witvliet 2000)
Let X be a Banach space and (∆k)k∈Z ⊂ B(X) be an unconditional decomposition
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of X. Consider a R-bounded family (Tk)k∈N ⊂ B(X) such that Tk commutes with
∆k for each k and the operator defined by

T (
n∑
k=1

∆kx) =
n∑
k=1

Tk∆kx ∀x ∈ X ∀n ∈ N.

Then T defines a bounded linear operator on X.

The application to the harmonic analysis of functions in Lp(R;X) then follows from
the existence of special unconditional decompositions of the spaces Lp(R;X) (see
Section 2.1). Moreover R-boundedness generalizes the notion of square functions
estimates in Lq spaces. More precisely consider Ψ ⊂ B(Lq) for some 1 < q < ∞.
Then by Khintchine-Kahane’s inequalities and Fubini’s theorem, Ψ is R-bounded if
and only if
∃C > 0, ∀n ∈ N, ∀T1, ..., Tn ∈ Ψ, ∀x1, ..., xn ∈ Lq

‖(
n∑
j=1

|Tjxj|2)
1
2‖q ≤ C‖(

n∑
j=1

|xj|2)
1
2‖q.

In applications one also needs some stability results for R-boundedness. They can
be found, for instance, in [CPSW00] and are summarized in the following lemma.

Lemma 1.5.4
Let X be a Banach space and Ψ ⊂ B(X) be a R-bounded family. Then the absolute
convex hull and the strong closure of Ψ are also R-bounded.

Nice surveys on R-boundedness can be found in the PhD [Wi00] and the master the-
sis [Hy00]. More informations and applications can be found in [BG94], [CPSW00],
[W01] and [KW01].

1.6 Analytic semigroups of bounded linear oper-

ators

Since evolution equations are our main motivation, the families of operators that
we consider are often semigroups. Moreover, in the applications we are interested in
(parabolic evolution equations), these semigroups are even analytic. In this section
we recall what it means along with some classical properties.

Definition 1.6.1
Let δ ∈ (0, π

2
] and Σδ = {λ ∈ C ; |arg(λ)| < δ}∪{0}. A family of operators (Tz)z∈Σδ

is called an analytic semigroup (of angle δ) if

(i) T (0) = I and T (z + z′) = T (z)T (z′) for all z, z′ ∈ Σδ.
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(ii) The map z 7→ T (z) is analytic in Σδ.

(iii) lim
z∈Σδ′ ,z→0

T (z)x = x for all x ∈ X and 0 < δ′ < δ.

If in addition {‖T (z)‖ ; z ∈ Σδ′} is bounded for each 0 < δ′ < δ, then (Tz)z∈Σδ
is

called a bounded analytic semigroup.

It is also important to recall that such semigroups are exactly those which generators
are sectorial in the following sense.

Definition 1.6.2
A closed linear operator (A,D(A)) with dense domain acting on a Banach space X
is called sectorial (of angle θ) if there exists θ ∈ (0, π

2
] such that

(i) Σπ
2
+θ\{0} ⊂ ρ(A).

(ii) For each ε ∈ (0, θ) there exists Mε > 0 such that

‖λR(λ,A)‖ ≤Mε ∀λ ∈ Σπ
2
+θ−ε.

We have then the following characterization (see Theorem 4.6 in [EN00]).

Theorem 1.6.3
For a closed linear operator (A,D(A)) acting on a Banach space X the following
assertions are equivalent.

(a) A generates a bounded analytic semigroup (Tz)z∈Σδ
.

(b) There exists θ ∈ (0, π
2
) such that the operators e±iθA generate bounded strongly

continuous semigroups.

(c) A generates a bounded strongly continuous semigroup (Tt)t∈R+ such thatRan(T (t)) ⊂
D(A) for all t > 0 and

sup
t>0
‖tAT (t)‖ <∞.

(d) A generates a bounded strongly continuous semigroup (Tt)t∈R+ and there exists
a constant C > 0 such that

‖sR(r + is, A)‖ ≤ C ∀r > 0 ∀s ∈ R.

(e) A is sectorial.
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This result is of course of great importance since it is the starting point of useful
theories developed for analytic semigroups. For instance property (c) suggests the
use of operator-valued singular integral operators (see Chapter 3) whereas property
(e) allows a functional calculus approach. The latter is unfortunately outside the
scope of this work. The interested reader could look, for instance, at [Ha03] and
[KW01] for further information.

For our purposes it is also important to remark that one can construct easily
analytic semigroups using multipliers on a Schauder decomposition.

Remark 1.6.4
If (λn)n∈N is a monotone sequence of non positive real numbers then the operator T
defined by (1.1) generates an analytic semigroup (see [BC91] or [La98]).

Besides these Banach space theoretical examples it is also noticeable that many clas-
sical differential operators do generate analytic semigroup. The main examples are
given by elliptic operators on various functions spaces (Lp for 1 < p ≤ ∞, Cα for 0 ≤
α ≤ 1) and under various smoothness conditions on the coefficients and the bound-
ary.

Informations on these concrete examples can be found in [Lu95] and in Chapter
8 of [Ar04]. For general informations on semigroups our main reference is [EN00]
where Section 2.4.a is devoted to analytic ones. The recent survey [Ar04] also
contains a chapter on analytic semigroups.

1.7 Power-bounded operators and Ritt’s condi-

tion

Semigroups of bounded linear operators (T (t))t∈R+ are important objects in the
study of continuous time evolution equations. But we are also interested in discrete
time evolution equation which suggest the use of discrete semigroups (T n)n∈Z+ where
T ∈ B(X) and Z+ denotes the set of non negative integers. We say that such a
semigroup is bounded if T is power-bounded (i.e. ∃C > 0 ∀n ∈ Z+ ‖T n‖ ≤ C). It
is, however, harder to define an analogue of the notion of analyticity. The following
definition was nevertheless introduced by Coulhon and Saloff-Coste in [CS90] and
turns out to be the right one.

Definition 1.7.1
Let X be a Banach space. A discrete time semigroup (T n)n∈Z+ ⊂ B(X) is said to
be analytic if

∃C > 0 ‖n(T n+1 − T n)‖ ≤ C ∀n ∈ Z+.
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The interest of this definition is clear when one consider the following result inde-
pendently obtained by Nagy,Zemanek in [NZ99] and Lyubich in [Ly99].

Theorem 1.7.2 (Nagy,Zemanek / Lyubich 1999)
Let X be a Banach space and T ∈ B(X). The following assertions are equivalent.

(i) ∃C > 0 ‖T n‖ ≤ C and ‖n(T n+1 − T n)‖ ≤ C ∀n ∈ Z+.

(ii) ∃K > 0 ‖(λ− 1)R(λ, T )‖ ≤ K ∀|λ| > 1.

The condition (ii) is called Ritt’s condition and is studied in operator theory in
relation with the growth of the powers of an operator (see [Ne01]). The question
of the relationship between boundedness and analyticity of discrete semigroups has
also been deeply studied. The main results in this direction are the following (see
[Es83], [KT86], [KMSOT04]).

Theorem 1.7.3 (Esterle/Katznelson, Tzafriri 1986)
Let X be a Banach space, T ∈ B(X) be power-bounded and σ(T ) ∩ T = {1}. Then

lim
n→∞

‖T n+1 − T n‖ = 0.

Theorem 1.7.4
(Kalton, Montgomery-Smith, Oleszkiewicz, Tomilov 2004)
Let X be a Banach space, T ∈ B(X) and assume that

lim sup
n→∞

‖n(T n+1 − T n)‖ < 1

e
.

Then T is power-bounded.

Remark that this improves a former result by Esterle in [Es83] where the constant
1
96

was used instead of 1
e
. In the above result 1

e
is sharp (see [KMSOT04]).

Theorem 1.7.5
(Kalton, Montgomery-Smith, Oleszkiewicz, Tomilov 2004)
On any infinite dimensional Banach space there exists an analytic semigroup wich

is not bounded.

These theorems are, of course, of great importance. Our focus, however, is on
bounded analytic discrete time semigroups and our use of these operator theoretical
results only involves Theorem 1.7.2 as a (recent) discrete analogue to the well known
Theorem 1.6.3.

Further information can be found in [Ne01], [NZ99], [Ly99] and [KMSOT04].
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Chapter 2

Results in vector-valued harmonic
analysis

2.1 Introduction

In this chapter we consider some harmonic analytic results for functions in Lp(Rn;X)
where 1 < p < ∞ and X is a Banach space. More precisely we are interested in
singular integral operators initially defined on the Schwartz class S(Rn;X) by

Tf(x) =

∫
Rn

k(x, y)f(y)dy ∀x ∈ Rn (2.1)

with k(x, y) ∈ B(X) ∀(x, y) ∈ R2n. We want to obtain conditions on k for T to
extend to a bounded operator on Lp(Rn;X) (1 < p < ∞). This question has of
course also a pseudodifferential formulation. Namely we want to know whether the
operator initially defined on S(Rn;X) by

Tf(x) =

∫
Rn

eix.ξa(x, ξ)f̂(ξ)dξ ∀x ∈ Rn (2.2)

with a(x, ξ) ∈ B(X) ∀(x, ξ) ∈ R2n extends to a bounded operator on Lp(Rn;X)
(1 < p < ∞). As a particular but highly interesting case we consider translation
invariant operators of the form

Tf(x) =

∫
Rn

k(x− y)f(y)dy ∀x ∈ Rn (2.3)

or equivalently

Tf(x) =

∫
Rn

eix.ξm(ξ)f̂(ξ)dξ ∀x ∈ Rn (2.4)
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where the functions k and m take values in B(X). This means that we are interested
in vector-valued extensions of Lp boundedness results for singular integral operators,
Fourier multipliers and pseudodifferential operators. The first results in this direc-
tion were obtained in the 60’s by J.Schwartz in [Sc61] and Benedek, Calderón and
Panzone in [BCP62]. On the one hand, following the “real method” of Calderón
and Zygmund, Benedek, Calderón and Panzone showed the following analogue of a
classical result by Hörmander.

Theorem 2.1.1 (Benedek, Calderón, Panzone 1962)
Let X be a Banach space and T be defined by 2.3. Assume, moreover that there

exists C > 0 such that∫
|y|>2|x|

|k(x)− k(x− y)|dy ≤ C ∀x ∈ Rn.

Then the following assertions are equivalent.

(i) T extends to a bounded operator on Lp(Rn;X) for some 1 < p <∞.

(ii) T extends to a bounded operator on Lp(Rn;X) for all 1 < p <∞.

This result, however, is not as helpful as in the scalar valued case, since Plancherel’s
theorem does hold on L2(Rn;X) only if X is a Hilbert space. On the other hand, J.
Schwartz obtained in [Sc61] the following extension to Calderón-Zygmund’s theorem
in the case where X = Lq for some 1 < q <∞.

Theorem 2.1.2 (J. Schwartz, 1961)

Let k : Rn\{0} → R be of the form k(x) =
Ω( x

|x| )

|x|n where Ω : Rn\ → R is a smooth
function, homogeneous of order 0 and whose surface integral over the surface of
the unit sphere is zero. Then T defined by 2.3 extends to a bounded operator on
Lp(Rn;Lq) for all 1 < p, q <∞.

In the same paper he also gave the following hilbertian extension of Marcinkiewiecz’s
multiplier theorem.

Theorem 2.1.3 (J. Schwartz, 1961)
Let H be a Hilbert space, 1 < p <∞, χk be the characteristic function of [2k, 2k+1]
and m : R\{0} → B(H) be a bounded function such that

sup
k∈Z

V ar(mχk) <∞.

Then the Fourier multiplier defined by 2.4 extends to a bounded operator on Lp(R;H).
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But, although these results were natural extensions of the scalar-valued ones, they
did not contain the ideas needed to extend the theory to a larger class of Banach
spaces. In the 80’s a main step towards such a generalization was then reached by
Bourgain. From his papers [B83] and [B86] it turns out that one has to assume
that X is a UMD Banach space (see Section 1.1). Indeed the UMD class appears
to be the class of spaces to which Littlewood-Paley’s decomposition can be extended.

Further information, including a nice historical perspective, can be found in the
introductory chapter of the PhD thesis [Hy03]. More on the extension of Calderón-
Zygmund’s theory can be found in [RRT86].

2.2 Vector-valued Littlewood-Paley decomposition

In the scalar-valued case, many results rely on the dyadic decomposition of Little-
wood and Paley. Let us recall (see for instance [S93] for details) that it is obtained by
considering dyadic partitions of unity in S(Rn,R), i.e. sequences (φk)k∈Z ⊂ S(Rn,R)
defined by

φk(x) = ψ(2−k|x|)
for some non negative function ψ ∈ S(R,R) supported in [1

2
, 2] and such that∑

k∈Z
ψ(2−kx) = 1 ∀x ∈ R∗. The decomposition is then given by a sequence (∆k)k∈Z ∈

B(Lp(Rn;X)) defined by

∆k : Lp(Rn;X) → Lp(Rn;X),

f 7→ f ∗ φ̌k.
(2.5)

This is indeed a decomposition in the sense that f =
∑
k∈Z

∆kf ∀f ∈ Lp(Rn;X).

Although this is not a Schauder decomposition since ∆k(X)∩∆k+1(X) 6= {0} ∀k ∈
Z it plays the same role in applications. It is in fact close to an unconditional
decomposition in the following sense.

Theorem 2.2.1 (Littlewood,Paley)
Let 1 < p <∞, f ∈ Lp(Rn) and (∆k)k∈Z ∈ B(Lp(Rn; C)) be defined as above. Then
there exists C > 0 such that

1

C
‖f‖p ≤ ‖(

∑
k∈Z

|∆kf |2)
1
2‖p ≤ C‖f‖p.

In [B86], Bourgain generalized this result to UMD spaces. It is particularily inter-
esting to note that his proof uses both the boundedness of the Hilbert transform
(assumption 1 of Theorem 1.1.2) and the unconditional martingale differences prop-
erty (assumption 2 of Theorem 1.1.2). In the following Theorem (εk)k∈Z denotes a
sequence of Rademacher functions (see Section 1.5).
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Theorem 2.2.2 (Bourgain 1986)
Let X be a UMD Banach space, 1 < p <∞ and (∆k)k∈Z ∈ B(Lp(Rn;X)) be defined
by 2.5. Then there exists C > 0 such that for all f ∈ Lp(Rn;X)

1

C
‖f‖Lp(Rn;X) ≤

1∫
0

‖
∑
k∈Z

εk(t)∆kf‖|Lp(Rn;X) ≤ C‖f‖Lp(Rn;X).

¿From this result Bourgain was able to deduce the following generalization of Marcinkievicz’s
multiplier theorem. The highest dimensional case is due to Zimmermann in [Z89].

Theorem 2.2.3 (Bourgain (n=1) 1986, Zimmermann 1989)
Let X be a UMD Banach space, 1 < p < ∞ and m : Rn\{0} → C be a bounded

function such that sup
j∈Z

V ar(φjm) < ∞ Then the Fourier multiplier defined by 2.4

extends to a bounded operator on Lp(Rn;X).

Further information can be found in [B86] and in [GW03-2] (where these results
are given as steps towards fully vector-valued ones as presented in Section 2.3). For
a nice historical point of view one can also read the introduction of [Hy03].

2.3 Vector-valued Fourier multipliers

In the applications to evolution equations, the need for vector-valued harmonic
analytic results was first focused on Fourier multipliers (see [Am97],[W01]), i.e.
on operators of the form 2.4. Although Bourgain’s extension of Marcinkiewicz’s
mutliplier theorem provides many insights on the general case it lacks the possibility
of having an operator-valued symbol m. This can be overcome in vector-valued
Besov spaces (see [Am97], [GW03-1]) but not in the case of Lp(Rn;X) spaces. To
treat this case one has to assume that X is UMD in order to apply Bourgain’s
results but one also has to assume that some quantities are R-bounded to fully
exploit Theorem 2.2.2. This leads to the following generalization of Marcinkiewicz’s
theorem.

Theorem 2.3.1 (Weis 2001)
Let X and Y be UMD Banach spaces and 1 < p < ∞. Consider a function m :
R∗ → B(X, Y ) of the form

m(ξ) =
∑
j∈Z

m̃(ξ)φj(ξ)Mj

where (φj)j∈Z is a dyadic partition of unity in S(Rn,R), {Mj ; j ∈ Z} is R-bounded
and sup

j∈Z
V ar(φjm̃) < ∞. Then the operator defined by 2.4 extends to a bounded

operator from Lp(R;X) to Lp(R;Y ).
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Then, approximation arguments allow to show the following generalization of Mih-
lin’s theorem.

Theorem 2.3.2 (Weis 2001)
Let X and Y be UMD Banach spaces and 1 < p < ∞. Consider a differentiable

function m : R∗ → B(X, Y ) such that the following hold.

(i) {m(t) ; t ∈ R∗} is R-bounded.

(ii) {tm′(t) ; t ∈ R∗} is R-bounded.

Then the operator defined by 2.4 extends to a bounded operator from Lp(R;X) to
Lp(R;Y ).

This result also holds in the periodic case (i.e. on Lp(T;X)) by a result of Arendt
and Bu in [AB02] and in the discrete case (i.e. on `p(X)) by a result of Blunck in
[Bl01-1].

Theorem 2.3.3 (Blunck 2001)
Let X be a UMD Banach space and 1 < p < ∞. Let I = (−π, 0) ∪ (0, π) and
M : I → B(X) be a differentiable function such that the set

{M(t) ; t ∈ I} ∪ {tM ′(t) ; t ∈ I}

is R-bounded. Then the operator TM , initially defined for a finitely supported se-
quence (fk)k∈Z+ by

TMf(m) =

∫
I

eimtM(t)(
∑
k∈Z+

fke
−ikt)dt

extends to a bounded operator on `p(X).

One should also remark that assumption (i) in Theorem 2.3.2 can not be avoided.
This is partially shown in [W01] and, in fact, the following stronger statement holds
(see [CP00]).

Proposition 2.3.4 (Clément, Prüss 2000)
Let X and Y be Banach spaces and m : R∗ → B(X, Y ) be such that the operator
defined by 2.4 extends to a bounded operator on L2(R;X).
Then {m(ξ) ; ξ is a Lebesgue point ofm} is R-bounded.

In [Bl01-1] this was generalized to locally compact abelian groups in the following
way.
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Proposition 2.3.5 (Blunck 2001)
Let X be a Banach space, 1 < p <∞ and G be a LCA group with Haar measure µ.
Let the dual group (Ĝ, µ̂) be equipped with a translation invariant metric such that

sup
n∈N

µ̂(B bG(e, n−1))−1‖F−1(χB bG(e,n−1))‖Lp(G)‖F−1(χB bG(e,n−1))‖Lp′(G)
<∞,

where F denotes the Fourier transform and B bG(e, n−1) denotes the ball in Ĝ centered

at the identity e and of radius 1
n
. Consider a function m ∈ L1,loc(Ĝ, B(X)) such

that f 7→ F−1mFf defines a bounded operator on Lp(G;X). Then the set

{m(ξ) ; ξ is a Lebesgue point ofm}

is R-bounded.

Following the ideas of Zimmermann in [Z89] a higher dimensional version of Theorem
2.3.2 was then obtained independantly by Štrkalj and Weis in [SW00] and Haller,
Heck and Noll in [HHN02]. These results have recently been improved by Girardi
and Weis in [GW03-2]. They obtained a generalization of classical Fourier multiplier
theorems under Hörmander and Mihlin types of condition and with an optimal order
of the derivatives involved. It is interesting to remark that this order depends on
the Fourier type of X (let us recall that a Banach space X is said to have Fourier
type p if the Fourier transform defines a bounded linear operator from Lp(R;X)
to Lp′(R;X)). As a corollary of a general abstract result they, in fact, obtain the
following (where [a] denotes the integer part of a).

Theorem 2.3.6 (Girardi, Weis 2004)
Let X and Y be UMD spaces with Fourier type p ∈ (1, 2], l = [n

p
] + 1 and m :

Rn\{0} → B(X, Y ) be a measurable function whose distributional derivatives are
represented by measurable functions. Assume that one of the following hold.

1. ∃C > 0 ∀α ∈ Zn
+ |α|1 ≤ l R({|ξ||α|1Dαm(ξ) ; ξ ∈ Rn\{0}}).

2. ∃C > 0 max
α∈Zn

+
|α|1≤l

∫
1
2
≤|ξ|≤2

(
R({|2kξ||α|1Dαm(2kξ) ; k ∈ Z})

)p
dξ ≤ C.

Then the operator defined by 2.4 extends to a bounded operator from Lq(Rn;X) to
Lq(Rn;Y ) for all 1 < q <∞.

In the theorem above, condition 1 is of course of Mihlin type whereas condition 2 is
of Hörmander type. But, in [Hy04-2], Hytönen proves that, in fact, these conditions
can be weaken into a “Hörmander∩Mihlin” one. This is especially surprising since
it also improves on the classical scalar-valued results.
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Theorem 2.3.7 (Hytönen 2004)
Let X and Y be UMD spaces with Fourier type p ∈ (1, 2], l = [n

p
] + 1 and m :

Rn\{0} → B(X, Y ) be a measurable function whose distributional derivatives are
represented by measurable functions. Assume that the set

{|ξ|αDαm(ξ) ; ξ ∈ Rn\{0}})

is R-bounded for all α ∈ Zn
+ such that |α|∞ ≤ 1 and |α|1 ≤ [n

p
] + 1. Then the

operator defined by 2.4 extends to a bounded operator from Lq(Rn;X) to Lq(Rn;Y )
for all 1 < q <∞.

Moreover [Hy04-2] also contains analogue results for multipliers on vector-valued
Besov and H1 spaces.

Further information can be found in [GW03-2], [Hy03] and [Hy04-2]. Since the
periodic case contains the main ideas and less technicalities, the article [AB02] is
also very useful. See also Chapter 6 from the recent survey [Ar04].

2.4 Vector-valued singular integral operators

We now turn to operators of the form 2.1 and, in particular, of the form 2.3 in
the translation-invariant case. As mentionned in Section 2.1, a first result in that
direction (for convolution integrals) was obtained in 1962 by Benedek, Calderón
and Panzone in [BCP62]. Later on, a Calderón-Zygmund theory for operator-valued
kernels was developed, in particular in the article [RRT86] by Rubio de Francia, Ruiz
and Torrea. In this work they generalized Theorem 2.1.1 to the non translation-
invariant setting in the following way.

Definition 2.4.1
Let X and Y be Banach spaces. A kernel K : R2n → B(X, Y ) satisfies (D) if there
exists (ck)k∈N ∈ `1 such that∫

Sk(y,z)

‖K(x, y)−K(x, z)‖dx ≤ ck
|Sk(y, z)|

for all k ∈ N and all (y, z) ∈ R2n where

Sk(y, z) = {x ∈ Rn ; 2k|y − z| ≤ |x− z| ≤ 2k+1|y − z|}.

Theorem 2.4.2 (Rubio de Francia, Ruiz, Torrea 1986)
Let X and Y be Banach spaces, 1 < q <∞ and k : R2n → B(X, Y ) be a kernel such
that the operator T defined by 2.1 extends to a bounded operator from Lq(Rn;X) to
Lq(Rn;Y ). If k satisfies (D) then the following hold.
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(i) For all 1 < p ≤ q the operator T extends to a bounded operator from Lq(Rn;X)
to Lq(Rn;Y ).

(ii) The operator T extends to a bounded operator from L1(Rn;X) to weak L1(Rn;Y ).

(iii) For all 1 < p ≤ q the operator T extends to a bounded operator from H1(Rn;X)
to Lp(Rn;Y ).

A dual result result is also given. Moreover they obtained, in the convolution case,
the following version of a classical theorem by Hörmander (see [H60]) which gener-
alizes Theorem 2.1.1.

Theorem 2.4.3 (Benedek, Calderón, Panzone 1962)
Let X and Y be Banach spaces and T be defined by 2.3. Assume, moreover that

there exists C > 0 such that∫
|y|>2|x|

‖(k(x)− k(x− y))a‖Y dy ≤ C‖a‖X ∀a ∈ X ∀x ∈ Rn.

Then the following assertions are equivalent.

(i) T extends to a bounded operator on Lp(Rn;X) for some 1 < p <∞.

(ii) T extends to a bounded operator on Lp(Rn;X) for all 1 < p <∞.

[RRT86] also contains various applications of these results, in particular to maxi-
mal operators. However, for our purpose (namely Lp boundedness of such integral
operators), Theorem 2.4.2 (and its dual version) and Theorem 2.4.3 are not fully sat-
isfying since they require a priori estimates which are hard to obtain outside Hilbert
spaces. For operators of the convolution type 2.3 this motivated a recent work of
Hytönen and Weis who obtained results in UMD-valued Lp spaces (in [HW04]) and
in vector-valued Besov spaces (in [HW02]). We state their results in the Lp setting,
starting with an extension of Theorem 2.4.2.

Theorem 2.4.4 (Hytönen, Weis 2004)
Let X and Y be Banach spaces and k ∈ S ′(Rn;B(X,Y )) be a kernel whose Fourier
transform is strongly measurable, essentially bounded and such that, for every x ∈
X, k(.)x agrees, away from the origin, with a locally integrable Y -valued function.
Assume the following

(i) {k̂(ξ) ; ξ ∈ Rn} is R-bounded.

(ii) There exists C > 0 such that∫
|t|>2|s|

R({2−nj(k(2−j(t− s))− k(2−jt)) ; j ∈ Z})ω(t)dt ≤ Cω(s) ∀s ∈ Rn

where ω(t) = log(2 + |t|).
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Then the operator defined by 2.1 extends to a bounded operator from Lq(Rn;X) to
Lq(Rn;Y ) for all 1 < q <∞.

In this result it is particularily interesting to point out the growth factor log(2+ |t|).
This is a consequence of the fact that, although the group of translations on Lp(Rn)
is not R-bounded (for p 6= 2), one does have the following estimates (see [B86]).

Proposition 2.4.5 (Bourgain 1986)
Let X be a UMD space and (fj)j∈Z ⊂ Lp(Rn;X) be a finitely non-zero sequence such

that suppf̂j ⊂ B(0, 2j). Let (hj)j∈Z ⊂ Rn be a sequence, lying on a line through the
origin and such that |hj| < K2j for some constant K > 0. Then there exists C > 0
such that∫ 1

0

‖
n∑
j=1

εj(t)fj(.− hj)‖Lp(Rn;X)dt ≤ Clog(2 +K)

∫ 1

0

‖
n∑
j=1

εj(t)fj‖Lp(Rn;X)dt

where (εj)j∈N is a sequence of Rademacher functions on [0, 1].

Moreover Hytönen and Weis also proved the following more concrete result.

Theorem 2.4.6 (Hytönen, Weis 2004)
Let X and Y be UMD Banach spaces and k ∈ C1(Rn\{0};B(X, Y )) be an odd kernel
such that the following hold.

(i) {|t|nk(t) ; t ∈ Rn\{0}} is R-bounded.

(ii) {|t|n+1∇k(t) ; t ∈ Rn\{0}} is R-bounded.

Then the operator defined by 2.1 extends to a bounded operator from Lq(Rn;X) to
Lq(Rn;Y ) for all 1 < q <∞.

In this result, assuming that the kernel is odd may be unreasonable in applications.
However, Hytönen and Weis also give (in [HW04]) other conditions that can replace
the oddness assumption and that are considerably less restrictive (although more
technical).

Further information can be found in [Hy03] and [HW04].

2.5 Vector-valued pseudo-differential operators

As observed in Sections 2.3 and 2.4, translation-invariant operators of the form
2.3 and their Fourier multiplier counterpart (of the form 2.4) are now fairly well
understood. In the general case of singular intergal operators of the form 2.1 and of
pseudodifferential operators of the form 2.2 the situation is, however, not as good.
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So far, Theorem 2.4.2 is the only available result for general singular integrals.
But, as explained in Section 2.4, it requires a priori estimates which are difficult to
obtain. For pseudo-differential operators, however, some results have been obtained.
In Hilbert spaces, first of all, the following result is due to Hieber and Monniaux in
[HM00].

Theorem 2.5.1 (Hieber, Monniaux 2000)
Let H be a Hilbert space and a ∈ L∞(R2, B(H)). Assume that ξ 7→ a(x, ξ) admits
a holomorphic extension z 7→ a(x, z) to Σθ and −Σθ for some θ ∈ (0, π

2
) such that

sup
z∈Σθ∪(−Σθ)

sup
x∈R

‖a(x, z)‖B(H) < ∞. Then the operator defined by 2.2 extends to a

bounded operator on L2(R;H).

The case of general UMD Banach spaces was then considered by Štrkalj in his Phd
thesis [St00] where the following result was obtained.

Theorem 2.5.2 (Štrkalj 2000)
Let X be a UMD Banach space, 1 < p < ∞, n ∈ N, δ ∈ [0, 1) and r ∈ (0, 1).

Consider a : Rn × Rn → B(X)) such that ∀α ∈ Zn
+ ∃Cα > 0{

R({(1 + |ξ|)|α|∂αξ a(x, ξ) : ξ ∈ Rn}) ≤ Cα ∀x ∈ Rn

‖∂αξ a(x, ξ)− ∂αξ a(y, ξ)‖ ≤ Cα|x− y|r(1 + |ξ|)δr−|α| ∀(x, y) ∈ R2n (2.6)

Then Ta defined by 2.2 extends to a bounded operator on Lp(Rn, X).

This gives a natural extension of Weis’ multiplier theorem 2.3.2 to a class of non
regular pseudo-differential operators (i.e. with just Hölder regularity in the first
variable). Unfortunately Štrkalj stopped doing research after his PhD and never
published this result. A different, hopefully simpler, proof is presented in the joint
work [PoS04] and is the subject of Chapter 6.

Further information can be found in Chapter 6 and in [HM00], [St00], [PoS04].
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Chapter 3

Maximal regularity of parabolic
evolution equations

3.1 Introduction

We now come to our initial motivation, namely parabolic evolution equations. We
therefore consider a Banach (state) space X and a set T ⊂ R+ (such that 0 ∈ T )
which represents time and is called a time scale. This notion comes from the theory
of dynamic equations on time scales, which includes difference equations (T being a
sequence) and differential equations (T being an interval), but also provides a wide
generalization of these models of time (see Section 3.2 for more informations on this
theory). In this introduction we restrict our attention to the case where T is either
an interval or Z+. Acting on X we then consider an operator (A,D(A)) which is
assumed to generate an analytic semigroup in the appropriate sense. This means
that in the case where T is an interval, then (A,D(A)) is sectorial of angle φ < π

2

(see Section 1.6) and that, in the case where T = Z+, A is a bounded operator
such that ((I−A)n)n∈Z+ is a discrete time bounded analytic semigroup (see Section
1.7). Given the time scale T , the state space X and the operator A acting on X we
consider a (input) function f : T → X and the Cauchy problem

(CP )T ,A

{
u∆(t)− Au(t) = f(t) ∀t ∈ T ,

u(0) = 0,

where, for all t ∈ T , u∆(t) = u′(t) if T is an interval and u∆(t) = u(t+ 1)− u(t) if
T = Z+. We are then interested in the relationship between the regularity of f and
the regularity of the mild solution of (CP )T ,A (where the mild solution is given by

u(t) =
t∫

0

e(t−s)Af(s)ds if T is an interval and u(n+ 1) =
n∑
j=0

T n−jfj, for T = I − A,

if T = Z+). By “regularity” we mean that the function belongs to a given subspace
Y (X) of the space F(T ;X) of functions from T to X (e.g. Y = L2(R+), Y = `2).
More precisely we consider the following maximal regularity property.
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Definition 3.1.1
Let X be a Banach space, T ⊂ R+ be a time scale, (A,D(A)) be a linear operator
acting on X and Y (X) ⊂ F(T ;X). Then (CP )T ,A is said to have Y -maximal
regularity if, for each f ∈ Y (X), the mild solution u is such that u∆ ∈ Y (X). It is
said to have strong Y -maximal regularity if, for each f ∈ Y (X), the mild solution
u belongs to Y (X) and is such that u∆ ∈ Y (X).

Of course if A = 0 then (CP )T ,A has Y -maximal regularity for all Banach spaces,
all time scales T ⊂ R+ and all Y (X) ⊂ F(T ;X). The question we are interested in
is then the following.

Question 3.1.2
Given a Banach space X, a time scale T and a notion of regularity defined by
Y (X) ⊂ F(T ;X), what should be assumed on A in order to obtain that (CP )T ,A
has Y -maximal regularity (resp. strong Y -maximal regularity) ?

And, more specifically, what are the relationships between these conditions on A
and the geometrical properties of X ?
Before we address this question, which is, to a great extent, the main question of
this thesis, let us recall that, for the continuous time scales (i.e T being an interval),
the study of maximal regularity usually divides into two branches. The first one is
concerned with the case Y = Lp (p ∈ [1,∞]) whereas the second one is concerned
with the case Y = Cα (α ∈ (0, 1)). Since Lp spaces are more natural from an
harmonic analytic point of view we are mostly interested in maximal regularity in
this sense. Cα maximal regularity, which is an important theory, deeply based on
interpolation spaces, is therefore not considered in this work.

Further information can be found in the book [Am95] of Amann (Lp case) and
in the book [Lu95] of Lunardi (Cα case). More references, in various settings, are
given in the next sections.

3.2 Introduction to calculus on time scales

Before going further with maximal regularity we present briefly the basics of the
time scale theory. The latter was introduced by Hilger (in his PhD thesis [Hilg88])
in order to unify discrete and continuous calculus but turned out to provide not
only a unification but also an extension of the concepts of time used in dynamic
equations. A time scale T is an arbitrary closed non empty subset of the real line.
The theory consists in a calculus for functions from T to R and results on dynamic
equations on T . The basics definitions are as follows and can be found in the book
[BP01].
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Definition 3.2.1
Let T be a time scale. For t ∈ T we define the forward jump operator σ : T → T
by

σ(t) = inf{s ∈ T ; s > t}
with the convention that inf∅ = supT . The function µ : T → R+ defined by
µ(t) = σ(t)− t is then called the graininess function.

We can now define the notion of derivative on a time scale (called delta or Hilger
derivative).

Definition 3.2.2
Let T be a time scale, X be a Banach space, and consider f : T → X. We say
that f is delta differentiable at a point t ∈ T provided there exists a unique point
f∆(t) ∈ X with the property that, given any ε > 0 there exists δ > 0 such that
∀s ∈ (t− δ, t+ δ) ∩ T

‖(f(σ(t))− f(s)− f∆(t)(σ(t)− s)‖ ≤ ε|σ(t)− s|.

f∆(t) is then called the delta derivative (or Hilger derviative) of f at t.

Of course, delta-differentiation corresponds to classical differentiation if T is an
interval and we have f∆(t) = f(t + 1) − f(t) if T = Z+, but one can also obtain
many results in intermediate cases (see [BP01]). Integration in both the Riemann
and the Lebesgue sense can be defined too and the integral of f between t and s is

denoted by
s∫
t

f(ξ)∆ξ. Since we use it in only very special cases we will not recall

its construction here. We refer the reader to the chapter 5 “Riemann and Lebesgue
Integration” in the book [BP03] for a detailed construction of both integrals. In this
work we will be interested in the cases where T is either an interval (continuous
time) or a sequence (discrete time scale). In the continuous setting, the time scale
calculus coincides with the classical calculus. In the discrete time scale setting (i.e.
T = {tk ; k ∈ Z+ for an increasing sequence (tk)k∈Z+), we have that every function
f : T → X (where X is a Banach space) is differentiable at each point t with
derivative

f∆(tk) =
f(tk+1)− f(tk)

µ(tk)
.

Moreover
tl∫
tk

f(t)∆t =
l−1∑
j=k

µ(tj)f(tj). These time scales are particularily interesting

since they correspond to discrete schemes with non constant step sizes (the step
size being precisely the graininess). `p maximal regularity for evolution equations
on such time scales is the subject of Chapter 5.

Further information on the time scale theory can be found in the books [BP01]
and [BP03].
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3.3 Lp maximal regularity (1 < p <∞)

For continuous time evolution equations (i.e T being an interval), maximal regu-
larity in the Lp sense has been deeply studied. In this case, some important basic
observations should be made. Their proofs can be found, for instance, in Dore’s
survey article [Do00].

Proposition 3.3.1
Let X be a Banach space, 1 < p <∞, T ∈ R∗ and consider (CP )[0,T ],A as in Section
3.1. Then the following hold.

(i) If (CP )[0,T ],A has Lp-maximal regularity, then A generates an analytic semi-
group.

(ii) If (CP )R+,A has Lp-maximal regularity then (CP )[0,T0],A has Lp-maximal reg-
ularity for each T0 ∈ R+.

(iii) If (CP )[0,T ],A has Lp-maximal regularity and A is invertible then (CP )R+,A has
Lp-maximal regularity.

(iv) If (CP )[0,T ],A has Lp-maximal regularity for some 1 < p < ∞ then it has
Lq-maximal regularity for all 1 < q <∞.

In the above Proposition (i) means that Lp-maximal regularity can only occur in
parabolic problems. (ii) and (iii) gives an interesting idea of the difference between
the finite and infinite time situation. For finite interval one can always assume
that A is invertible (rescaling the semigroup) and hence Lp maximal regularity and
strong Lp maximal regularity are equivalent. But, on an infinite interval, it seems
that Lp-maximal regularity is more interesting than its strong counterpart since the
latter would require invertibility of A and some natural differential operators may
not be invertible (the Laplacian for instance). We therefore focus our attention on
the weak notion. Let us also mention that there exists a Banach space X and an
operator A such that (CP )[0,T ],A has Lp-maximal regularity for each T ∈ R+ but
(CP )R+,A does not have Lp-maximal regularity. The counterexample is due to Le
Merdy in [LeM99]. Finally, let us point out that the independance in p given in (iv)
is a consequence of the harmonic analytic Theorem 2.1.1.
We now turn to the main question, namely what are the sufficient conditions which
can ensure Lp-maximal regularity. The first result in this direction is due to De
Simon in [DeS64].

Theorem 3.3.2 (De Simon 1964)
Let H be a Hilbert space, 1 < p <∞ and (A,D(A)) be the generator of an analytic
semigroup. Then (CP )R+,A has Lp-maximal regularity.

In the case X = Lq for some 1 < q <∞, the following results were then obtained.
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• (CP )[0,T ],A has Lp-maximal regularity if A generates a contraction semigroup
on Lq for all 1 ≤ q <∞ which is analytic on Lq for 1 < q <∞ (Lamberton in
[Lam87]).

• (CP )R+,A has Lp-maximal regularity if A generates an analytic positive semi-
group of contractions on Lq (Weis in [W00]).

• (CP )[0,T ],A has Lp-maximal regularity if the kernel corresponding to the semi-
group (etA)t∈R+ satisfies Poisson estimates (Hieber and Prüss in [HP97] and
Coulhon and Duong in [CD00]).

For more abstract spaces the following results were obtained with a different method
(namely the “sum of operators” method) by Da Prato and Grisvard first and then
by Dore and Venni.

• Let (A,D(A)) be the generator of an analytic semigroup on a Banach space

X̃ and let X = (X̃,D(A))θ,r for some θ ∈ (0, 1). Then (CP )[0,T ],A has Lp-
maximal regularity on X (Da Prato and Grisvard in [DaPG75]).

• LetX be a UMD space andA have bounded imaginary powers. Then (CP )[0,T ],A

has Lp-maximal regularity on X (Dore and Venni in [DV87]).

¿From these particular results one can wonder which class of Banach spaces should
be considered. It turns out that the UMD class is especially interesting. Namely,
Coulhon and Lamberton have proved in [CL84] that if A generates the Poisson
semigroup on X = L2(Y ) (i.e. etA = Pt ⊗ IY where Y is a Banach space) then
(CP )[0,T ],A has Lp-maximal regularity on X if and only if X is UMD. By that time
the conjecture was then that, in UMD spaces, (CP )[0,T ],A would have Lp-maximal
regularity if and only if A generates an analytic semigroup. It turns out to be
wrong. In fact, De Simon’s result is, in some sense, a characterization of Hilbert
spaces. This surprising result was obtained by Kalton and Lancien in [KL00] (some
extensions are also given in [KL01]). The theorem is the following.

Theorem 3.3.3 (Kalton, Lancien 2000)
Let X be a Banach space with an unconditional basis. Assume that, for each ana-

lytic semigroup (etA)t∈R+, the Cauchy problem (CP )[0,T ],A has Lp-maximal regularity.
Then X is isomorphic to `2.

Shortly afterwards the right analogue of De Simon’s theorem was found by Weis
(see [W01]). The result is based on Theorem 2.3.2. Indeed the operator defined by
2.1 with k(t) = etAχR+ ∀t ∈ R extends to a bounded operator on Lp(R;X) if and
only if the Fourier multiplier T defined by 2.4 with m(ξ) = iξR(iξ;A) ∀ξ ∈ R∗

extends to a bounded operator on Lp(R;X). This gives the following result.
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Theorem 3.3.4 (Weis 2001)
Let X be a UMD space, 1 < p < ∞ and (A,D(A)) the generator of a bounded

analytic semigroup on X. Then the following are equivalent :

(i) (CP )R+;A has Lp-maximal regularity,

(ii) {itR(it, A) ; t ∈ R∗} is R-bounded,

(iii) {etA , tAetA ; t > 0} is R-bounded.

An operator A satisfying (ii) is then called R-sectorial and the semigroup generated
by A is called R-analytic.

Remark 3.3.5
This result solves the problem of Lp-maximal regularity using Banach space valued
harmonic analyis but it also suggests that R-boundedness has to be used to gener-
alize results on the sum of operators such as the famous Dore-Venni theorem. This
is indeed the case and has been achieved by Kalton and Weis in [KW01].

Further information can be found in the book of Amann [Am95], the survey
articles of Dore [Do00], [D093], the sixth chapter of the recent survey [Ar04] and
the articles of Weis [W00] and [W01].

3.4 Lp maximal regularity (p ∈ {1,∞})

In the preceeding section we have seen that, in the case 1 < p < ∞, Lp-maximal
regularity is closely related to harmonic analytic questions in Banach spaces. To
extend this approach to the case p = 1 it is therefore natural to consider H1-
maximal regularity (in the sense of the real-variableH1-space) instead of L1-maximal
regularity. This was done by Hytönen in [Hy04-1] where the following result was
proved.

Theorem 3.4.1 (Hytönen 2004)
Let X be a UMD space and (A,D(A)) the generator of a bounded analytic semigroup
on X. Then the following are equivalent :

(i) (CP )R+;A has H1-maximal regularity,

(ii) {itR(it, A) ; t ∈ R∗} is R-bounded,

(iii) {etA , tAetA ; t > 0} is R-bounded.

But considering L1 (or L∞) maximal regularity is also possible and turns out to
be related to other geometrical properties of the underlying Banach space than the
UMD property required in the harmonic analytic approach. The main result in this
direction was obtained by Baillon in [Ba80] where the following was shown.
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Theorem 3.4.2 (Baillon 1980)
Let X be a separable Banach space and (A,D(A)) be the generator of an analytic

semigroup. Then the following conditions are equivalent.

(i) X does not contain a copy of c0.

(ii) If (CP )[0,T ];A has L∞-maximal regularity then A is bounded.

Later on, a dual version was obtained by Guerre-Delabriere in [GD95].

Theorem 3.4.3 (Guerre-Delabriere 1995)
Let X be a Banach space and (A,D(A)) be the generator of an analytic semigroup.
Then the following conditions are equivalent.

(i) X does not contain a complemented copy of `1.

(ii) If (CP )[0,T ];A has L1-maximal regularity then A is bounded.

These two results, which are based on the work of Bessaga and Pelczyński (see Sec-
tion 1.2) are the motivation of an analogue study in the discrete case which is part
of Chapter 4.

Further information can be found in [Hy04-1], [Ba80] and [GD95].

3.5 `p-maximal regularity (1 < p <∞)

Because of its interest in applications (see Section 3.6), maximal regularity, in various
settings, is a common question in the study of continuous time evolution equations.
But, as explained in Section 3.1, it is also a natural question on different time
scales and in particular for difference equations. Moreover, discrete analogues of the
basic results on continuous time analytic semigroups have been obtained recently
(see Section 1.7) and allow to approach (CP )Z+;A in a way which is similar to the
semigroup approach to (CP )R+;A. This was first done by Blunck in [Bl01-1]. In this
work (CP )Z+;A is considered and the question of `p-maximal regularity (1 < p <∞)
is treated with harmonic analytic techniques. To do so, Blunck gives a discrete
analogue of Weis’ multiplier Theorem 2.3.2 together with Proposition 2.3.5 which is a
converse to the multiplier theorem. As in the continuous case, `p-maximal regularity
is equivalent to the boundedness, in `p(X), of a “singular integral” operator given
by

KAf(m) =
m∑
n=0

kA(n)f(m− n),
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where kA =

{
A(I − A)n if n ∈ Z+,

0 otherwise.

We can then express this operator as a Fourier multiplier and obtain that (CP )Z+;A

has `p-maximal regularity if and only if the operator TA, defined by

TAf(m) =

∫
T

λm(λ− 1)R(λ, I − A)(
∑
k∈Z+

fkλ
−k)dλ,

is bounded on `p(X). This leads to the following result.

Theorem 3.5.1 (Blunck 2001)
Let X be a UMD space, 1 < p < ∞ and (T n)n∈Z+ be a bounded analytic discrete

time semigroup. Then the following are equivalent :

(i) (CP )Z+;I−T has `p-maximal regularity.

(ii) {T n , n(T n+1 − T n) ; n ∈ Z+} is R-bounded.

(iii) {(λ− 1)R(λ, T ) ; |λ| = 1 , λ 6= 1} is R-bounded.

(iv) {et(I−T ) , t(I − T )et(I−T ) ; t > 0} is R-bounded.

(v) (CP )R+;(I−T ) has Lp-maximal regularity,

In particular this gives the following concrete condition.

Theorem 3.5.2 (Blunck 2001)
Let 1 < p, q < ∞ and T ∈ B(`q) be a subpositive contraction (i.e. there exists
a positive operator S such that |Tf | ≤ S|f | for all f ∈ `q) such that (T n)n∈Z+

is a bounded analytic discrete time semigroup. Then (CP )Z+;I−T has `p-maximal
regularity.

Remark 3.5.3
More “concrete” cases, namely when T is an integral operator satisfying certain
Poisson bounds, are given in [Bl01-2].

Remark 3.5.4
Just as in the continuous case, `p-maximal regularity for 1 < p < ∞ turns out to
be independant of p (see [Bl01-1]).

Remark 3.5.5
Without looking at the proof, Theorem 3.5.1 may be somewhat misleading. Indeed,
one should keep in mind that the equivalence between (i) and (v) is obtained via
Weis’ characterization and not directly.
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This work gives a fairly complete treatment of the case 1 < p < ∞. However, one
may wonder, given that Kalton-Lancien’s counterexamples in the continuous case
(see Section 3.3) are unbounded operators, whether or not R-boundedness is needed
in Theorem 3.5.1. Also, one may consider the question of `1 and `∞-maximal reg-
ularity, especially in the light of the results presented in Section 3.4. This is the
motivation of Chapter 4.

Further information can be found in [Bl01-1] and [Po03].

3.6 Applications of maximal regularity

In the continuous time setting maximal regularity, both in the Lp and the Cα sense,
has been used in various applications to solve problems which are more complex than
the simple Cauchy problem (CP )R+;A. A precise exposition of these applications is
clearly far beyond the scope of this section. We therefore restrict ourselves to a brief
presentation of some examples which illustrate the wide range of problems in which
maximal regularity has been used.

Non autonomous parabolic equations

In the study of problems of the form{
u′(t)− A(t)u(t) = f(t) ∀t ∈ [0, T ],

u(0) = x,

where (A(t), D)t∈[0,T ] is a family of generators of analytic semigroups, maximal reg-
ularity of (CP )[0,T ],A(t0) for each t0 ∈ [0, T ] is used to obtain a solution (with a
desired regularity) through perturbation arguments. This is done for instance in
Chapter 6 of [Lu95], under the assumption that A(.) ∈ Cα([0, T ];B(D,X)) for
some α ∈ (0, 1), where a strict solution is obtained provided f ∈ Cα([0, T ];X), x ∈
D,A(0)x + f(0) ∈ D. Such a result is also obtained in [PS04] where a solu-
tion in W 1,p([0, T ];X) ∩ Lp([0, T ];D) is found under the assumption that A(.) ∈
C([0, T ];B(D,X)), f ∈ Lp([0, T ];X) and x ∈ (X,D)1− 1

p
,p. More results of this type

can be found in [Am95].

Nonlinear equations

Maximal regularity is also used in the study of problems of the form

(QLCP )

{
u′(t)− Au(t) = g(t, u(t)) + f(t) ∀t ∈ [0, T ],

u(0) = x,
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where g and f are Lipschitz continuous functions and A is the generator of an
analytic semigroup. Here one considers an operator Γ defined by Γu = v where v is
the solution of

(LCP )

{
v′(t)− Av(t) = g(t, u(t)) + f(t) ∀t ∈ [0, T ],

u(0) = x.

Using maximal regularity of (LCP) , one can then obtain a local solution (i.e. a
solution defined in [0, T0] for a sufficiently small T0 ) of (QLCP) as a fixed point of
Γ. Such approaches can be found, for instance, in [Am95], [Lu95] and [CL93].

Integrodifferential and delay equations

Consider problems of the form u′(t)− Au(t) =
t∫

0

k(t, s)Au(s)ds ∀t ∈ [0, T ],

u(0) = x.

where k is a real valued function and of the form{
u′(t)− Au(t) = Au(t− r) ∀t ∈ [0, T ],

u|[−r,0] = φ0.

with r > 0 and φ0 : [−r, 0] → D(A). For such problems, maximal regularity has
been used, also through a fixed point argument, by considering the integral term
(resp. the delay term) as a perturbation of u′−Au. These techniques are presented
in the books of Prüss [Pr93] and Lunardi [Lu95].

More applications

Besides the main applications presented above, maximal regularity has also been
used for second order problems (see [CGD98]) and to prove the uniqueness of the
solution of a Navier-Stokes equation (see [Mo99]).

Further information can be found in the books [Am95] by Amann, [Lu95] by
Lunardi and [Pr93] by Prüss.
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Part II

Contributions
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Chapter 4

On discrete maximal regularity

4.1 Introduction

In this chapter we are interested in the question of `p-maximal regularity (1 ≤
p ≤ ∞) for discrete time parabolic evolution equations. We therefore consider a
complex Banach space X, the time scale T = Z+ and an operator A ∈ B(X) such
that ((I − A)n)n∈Z+ is a bounded analytic semigroup (see Section 1.7). In the case
1 < p < ∞, the problem has already been considered by Blunck in [Bl01-1] (see
Section 3.5). In the latter paper, `p-maximal regularity (1 < p <∞) is characterized
by the R-analyticity of the discrete time semigroup ((I − A)n)n∈Z+ . It is, however,
unclear, whether this notion differs from the simple analyticity of ((I − A)n)n∈Z+ .
This leads us to a first question.

Question 4.1.1
Given a Banach space X, does there exist T ∈ B(X) such that

{T n ; n ∈ Z+} ∪ {n(T n+1 − T n) ; n ∈ Z+}

is bounded but not R-bounded ?

This is, of course, a discrete version of the famous “problem of Lp-maximal regular-
ity” in the continuous setting, which was solved by Kalton and Lancien in [KL00]
(see Theorem 3.3.3). Their counterexamples are unbounded and, unfortunately, can
not directly be adapted. Given Blunck’s Theorem 3.5.1, Question 4.1.1 can therefore
be reformulated as follows : given a Banach space X, does there exist a bounded
operator A ∈ B(X) which generates a (continuous) bounded analytic semigroup
which is not R-analytic ? In Section 4.2, we show that such a counterexample can
be found in any Banach space with an unconditional basis, which is not isomorphic
to a Hilbert space.

We then turn to `p-maximal regularity in the case where p ∈ {1,∞}. Given the
results of Baillon (Theorem 3.4.2) and Guerre-Delabrière (Theorem 3.4.3) in the
continuous setting we are interested in the following question.
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Question 4.1.2
Given a Banach space X, does the fact that c0 6⊂ X (resp. `1 6⊂c X) impose
a condition on the operators A ∈ B(X) such that (CP )Z+,A has `∞ (resp. `1)
maximal regularity ?

This question seems to be especially natural since, in the continuous setting, such a
condition exists and states that A has to be bounded, and since boundedness is not
a restriction in the discrete setting. It turns out that such a condition also exists in
the discrete setting and states that {nA(I −A)n ; n ∈ Z+} has to be bounded from
below. This is shown is Section 4.3 for the case p = ∞ and in Section 4.4 for the
case p = 1.

Finally we consider the relationships between these notions of maximal regular-
ity. The last section is therefore devoted to the following question.

Question 4.1.3
Given a Banach space X, are the notions of `1, `p (1 < p < ∞), and `∞ maximal
regularity comparable ?

We show the following.

• If X is UMD then `p-maximal regularity (1 < p <∞) does not imply `1 (resp.
`∞) maximal regularity.

• If c0 ⊂c X (resp. `1 ⊂c X) then `∞ (resp. `1) maximal regularity does not
imply `1 (resp. `∞) maximal regularity.

• If c0 6⊂c X (resp. `1 6⊂c X) and if T n tends to zero in the strong operator
topology (resp. (T ∗)nx∗ tends to zero in the w∗-topology for each x∗ ∈ X∗ )
then `∞ (resp. `1) maximal regularity implies `p-maximal regularity (1 < p <
∞).

In fact we obtain a much stronger result than the latter statement. Indeed we show
that, under the above hypothesis, `∞ (resp. `1 )maximal regularity can only occur
in trivial cases (namely when the spectral radius r(I − A) is strictly smaller than
1).

4.2 Counterexamples to `2-discrete maximal reg-

ularity

4.2.1 preliminaries

First we consider the following definitions (the first one is already used in [Hy00]).
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Definition 4.2.1
In a Banach space X, a sequence (Tn)n∈N ⊂ B(X) is called R-bounded relative to a
sequence (Xn)n∈N of closed subspaces of X if
∃C > 0 ∀n ∈ N ∀xk ∈ Xk 1 ≤ k ≤ n∫ 1

0

‖
n∑
j=1

εj(t)Tjxj‖dt ≤ C

∫ 1

0

‖
n∑
j=1

εj(t)xj‖dt.

Definition 4.2.2
A Banach space X is said to have the discrete maximal regularity property (DMRP)
if for every discrete-time bounded analytic semigroup the associated discrete Cauchy
problem has `2-discrete maximal regularity .

Definition 4.2.3
A discrete-time analytic semigroup is called R-analytic (resp. R∗-analytic) if the set
{T n, n(T n+1 − T n) ; n ∈ N} (resp. {T ∗n, n(T ∗n+1 − T ∗n) ; n ∈ N}) is R-bounded
on X (resp. on X∗).

Definition 4.2.4
A Banach space X is said to have the (AR) property (resp. the (AR)∗ property) if
every discrete-time bounded analytic semigroup is R-analytic (resp. R∗-analytic).

The results of Sönke Blunck ([Bl01-1]) show that the R-analyticity of a discrete-
time bounded analytic semigroup is a necessary, and in (UMD) spaces sufficient, con-
dition for (DCP )T to have `2-discrete maximal regularity. We show that (DMRP)
implies that X has both properties (AR) and (AR)∗. We then deduce some prop-
erties of Schauder decompositions in such spaces. We recall that a Schauder de-
composition of a Banach space X is a sequence of closed subspaces of (Xn)n∈N such
that every element x ∈ X has a unique representation of the form x =

∑
n∈N

xn with

xn ∈ Xn for all n (see [LT77] pages 47-52 and Section 1.4 for further information).
Finally we use the results of N.Kalton and G.Lancien (see [KL00] and Theorem
3.3.3) to obtain that Hilbert spaces are the only spaces with this property among
spaces with an unconditional basis. More precisely we prove the following Theorem.

Theorem 4.2.5
Let X be a Banach space with (DMRP) and (En, Pn)n∈N be a Schauder decomposi-
tion of X. Then {P2n , n ∈ N} is R-bounded relative to (span(E2n−1, E2n))n∈N and
{P ∗2n , n ∈ N} is R-bounded relative to (span(P ∗2n−1(X

∗), P ∗2n(X
∗)))n∈N.

Once Theorem 4.2.5 is proved, the proofs of Corollary 3.2 and Theorem 3.3 in [KL00]
lead to the following result.

Theorem 4.2.6
Let X be a Banach space with (DMRP) and an unconditional basis,
then X is isomorphic to a Hilbert space.
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We recall that these proofs are based on two facts. First it is impossible to have
the conclusion of Theorem 4.2.5 in c0 and `1. Secondly, this conclusion implies
that every block basis of every permutation of the unconditional basis of X spans a
complemented subspace. The conclusion then follows from Corollary 1.3.4 which is
itself based on Theorem 1.3.2 by Lindenstrauss and Tzafriri and Theorem 1.3.3 by
Pelczyński. We now turn to the proof of Theorem 4.2.5.

4.2.2 proof of the main result

We need the following lemma.

Lemma 4.2.7
LetX be a Banach space and (T n)n∈N be a discrete-time bounded analytic semigroup
. (DCP )T has then `2-discrete maximal regularity on X if and only if (DCP )T ∗ has
`2-discrete maximal regularity on X∗.

Proof :
We consider the following.

kT : Z → B(X),

n 7→

{
(T n+1 − T n) if n ∈ N,
0 otherwise.

As remarked in [Bl01-1] (Remark 2.2), (DCP )T has `2-discrete maximal regularity
if and only if the operator

KT : `1(Z, X) → `∞(Z, X),
(fn)n∈Z 7→ (

∑
j∈Z

kT (n− j)fj)n∈Z,

extends to a bounded operator on `2(Z, X). We are going to show that it is the
case if and only if KT ∗ extends to a bounded operator on `2(Z, X∗). We need the
following isometry.

J : `2(Z, X) → `2(Z, X),
(fn)n∈Z 7→ (f−n)n∈Z.

For f ∈ `2(Z, X) and g∗ ∈ `2(Z, X∗) two sequences with finite support, we then
have the following.

< KT ∗(g
∗), f > =

∑
n∈Z

<
∑
j∈Z

kT ∗(n− j)g∗j , fn >=
∑
n∈Z

∑
j∈Z

< kT ∗(−n+ j)g∗−j, f−n >,

=
∑
n∈Z

∑
j∈Z

< g∗−j, kT (j − n)f−n >,

=< J∗g∗, KT (J(f)) > .

(4.1)

43



This gives the desired result by density of finitely supported sequences. �

Corollary 4.2.8
Let X be a Banach space with (DMRP). X has then both properties (AR) and
(AR)∗.

According to this corollary, the only thing which remains to prove is the following.

Proposition 4.2.9
LetX be a Banach space with (AR) (resp. (AR)∗) and (En, Pn)n∈N be a Schauder de-
composition ofX. {P2n , n ∈ N} is thenR-bounded relative to (span(E2n−1, E2n))n∈N
(resp. {P ∗2n , n ∈ N} R-bounded relative to (span(P ∗2n−1(X

∗), P ∗2n(X
∗)))n∈N ) .

We need another lemma.

Lemma 4.2.10
A multiplier on a Schauder decomposition associated to a monotone increasing se-
quence of real numbers belonging to [0, 1] defines a discrete-time bounded analytic
semigroup .

Proof :
In view of Theorem 2.3 in [Bl01-1], it is equivalent to show that I − T is the nega-
tive generator of a bounded analytic semigroup or to show that I − T is a sectorial
operator with angle less than π

2
. But this is a classical fact (see Remark 1.6.4 and

[BC91]). �

Proof of proposition 4.2.9 :
Let Ta and Tb be the multipliers on (En)n∈N associated respectively to the sequences
(an)n∈N and (bn)n∈N defined by

a2n−1 = b2n−1 = b2n = 1− 2−(n−1) a2n = 1− 2−n.

These operators are power-bounded and analytic by Lemma 4.2.10.
We obtain that for all n and for all un ∈ span(E2n, E2n+1)

i2−n(1 + i2−n − Tb)
−1un − i2−n(1 + i2−n − Ta)

−1un =
ı

(i+ 2)(i+ 1)
P2nun.

From [Bl01-1] and the fact that X has (DMRP ) we obtain that the following sets
are R− bounded.

{(λ− 1)R(λ, Ta) ; λ ∈ 1 + iR , λ 6= 1},
{(λ− 1)R(λ, Tb) ; λ ∈ 1 + iR , λ 6= 1}.
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Thus we have that the sets

{i2−n(1 + i2−n − Ta)
−1 ; n ∈ N},

{i2−n(1 + i2−n − Tb)
−1 ; n ∈ N},

are R−bounded and then that the family of projections (P2n)n∈N is R−bounded rel-
ative to (span(E2n−1, E2n))n∈N . The same proof with T ∗a and T ∗b gives us that prop-
erty (AR)∗ implies that {P ∗2n , n ∈ N} is R-bounded relative to (span(P ∗2n−1(X

∗), P ∗2n(X
∗)))n∈N.

�

4.3 The Banach space c0 and `∞-discrete maximal

regularity

In the continuous time setting (see [Ba80] and Theorem 3.4.2) the existence of
semigroups with unbounded generators such that the associated Cauchy problem has
L∞-maximal regularity is equivalent to the condition c0 ⊂ X in separable Banach
spaces. Looking for such a result in the discrete time setting, we need to replace
the assumption “having an unbounded generator” by the equivalent condition for
analytic semigroups (see [Hi50]) : limsup

t→0
‖tAT (t)‖ ≥ 1

e
. This condition can be

expressed in the discrete setting in the following way.

∃C > 0 : ∀n ∈ N ‖n(T n+1 − T n)‖ ≥ C. (4.2)

We obtain the following results.

Proposition 4.3.1
There exists a bounded operator T acting on c0 and verifying the condition

∃C > 0 : ∀n ∈ N ‖n(T n+1 − T n)‖ ≥ C,

such that (DCP )T has `∞-discrete maximal regularity.

Proof :Let T be the multiplier on the canonical basis (ek)k∈N associated to the
sequence (1− 1

k
)k∈N. This operator is power-bounded and analytic by Lemma 4.2.10.

First we prove that T satisfies condition (4.2). We have that

‖(T n+1 − T n)en‖ =
1

n
|1− 1

n
|n.

This proves that ‖n(T n+1 − T n)‖ ≥ e
2

for n sufficiently large, which gives us (4.2).
Now we have to prove that (DCP )T has `∞-discrete maximal regularity. Let (fn)n∈N
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be a sequence belonging to `∞(c0). Let n be an integer and denote by (Pk)k∈N the
coordinate functionals of the canonical basis, we have that

‖
n∑
j=0

(T j+1 − T j)fn−j‖ = sup
k∈N

|
n∑
j=0

1

k
(1− 1

k
)jPk(fn−j)|,

≤ sup
k∈N

n∑
j=0

1

k
|1− 1

k
|j‖(fn)n∈N‖`∞(c0),

≤ sup
k∈N

(1− |1− 1

k
|n+1)‖(fn)n∈N‖`∞(c0),

≤ ‖(fn)n∈N‖`∞(c0).

This proves that (DCP )T has `∞-discrete maximal regularity. �

Remark 4.3.2
There is an interesting relationship between this example and the one constructed
by Giovanni Dore in section 8 of [Do00]. The later is a multiplier on the canonical
basis of the space c of converging sequences associated to the sequence (−k)k∈N such
that the corresponding Cauchy problem has L∞-maximal regularity (and therefore
L2-maximal regularity by section 7 of [Do00]). The operator T defined in the above
proposition is therefore such that (DCP )T has `∞-discrete maximal regularity and
(CP )(I−T )−1 has L∞-maximal regularity. It is remarkable since, in UMD spaces,
it follows from Sönke Blunck’s result (in [Bl01-1]) that (DCP )T has `2-discrete
maximal regularity if and only if (CP )(I−T )−1 has L2-maximal regularity. This fact
has been pointed out to me by the anonymous referee. I would like to thank him/her
for that and for many other valuable comments.

Let us now state the main result.

Theorem 4.3.3
Let X be a separable Banach space. The following assertions are equivalent.

(i) c0 ⊂ X.

(ii) There exists a bounded operator T acting on X and verifying the condition

∃C > 0 : ∀n ∈ N ‖n(T n+1 − T n)‖ ≥ C,

such that (DCP )T has `∞-discrete maximal regularity.

Proof :
Since every separable Banach space containing c0 contains it as a complemented
subspace (see [So41] and Theorem 1.2.5), Proposition 4.3.1 gives us that (i) implies
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(ii). Indeed one defines an operator on X equal to the operator of proposition 4.3.1
on the complemented subspace isomorphic to c0 and equal to the identity on its
complement. Now consider a bounded operator T verifying the conditions of (ii)
and define the following sequences.

(yn)n∈N ⊂ X ; ∀n ∈ N ‖yn‖ = 1 and ‖n(T n+1 − T n)yn‖ >
C

2
,

(un)n∈N ⊂ N ;

{
un = 2nun−1 ∀n > 0,
u0 = 1,

(xn)n∈N ⊂ X ; ∀n ∈ N xn = un(T
un+1 − T un)yun .

(4.3)

We thus have that ∀n ∈ N ‖xn‖ > C
2
. Using a result of C.Bessaga and A.Pelczyński

(see [BP58] and Theorem 1.2.2), we obtain the result if this sequence (xn)n∈N also
verifies

∃M > 0 ∀n ∈ N sup
εk=±1

‖
n∑
k=0

εkxk‖ ≤M. (4.4)

We consider the following sequence

fun−j =

{
εi+1T

ui+1−jyui+1
if ui ≤ j < ui+1 (i = 0, .., n− 2),

0 otherwise.

Since T is power-bounded this sequence belongs to `∞(X). We thus obtain

un∑
j=0

(T j+1 − T j)fun−j =
n−2∑
i=0

ui+1−1∑
k=ui

εi+1(T
ui+1+1 − T ui+1)yui+1

,

=
n−2∑
i=0

εi+1(ui+1 − ui)(T
ui+1+1 − T ui+1)yui+1

,

=
n−1∑
i=1

εi(ui − ui−1)(T
ui+1 − T ui)yui

.

This leads to

∀n ≥ 2 ‖
n−1∑
i=1

εi(ui − ui−1)(T
ui+1 − T ui)yui

‖ ≤ CDMR‖(fj)j∈N‖`∞(X), (4.5)

where CDMR is the constant of `∞-discrete maximal regularity.
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Moreover we have the following.

‖
n∑
i=0

εi(T
ui+1 − T ui)yui

−
n−1∑
i=1

εi(ui − ui−1)(T
ui+1 − T ui)yui

‖,

≤ ‖(T 2 − T )y1‖+ ‖
n−1∑
i=1

εi
ui−1

ui
ui(T

ui+1 − T ui)yui
‖+ ‖(T un+1 − T un)yun‖,

≤ 2KT +
n−1∑
i=1

KT

2i
≤ 3KT ,

where KT is the constant of analyticity of T .
Using (4.5) we obtain

∀n ≥ 2 ‖
n−1∑
i=1

εiui(T
ui+1 − T ui)yui

‖ ≤ CDMR‖(fj)j∈N‖`∞(X) + 3KT ,

which gives (4.4). �

Remark 4.3.4
It should be noticed that the separability of X was only used to prove that (i)
implies (ii) and that the converse assertion remains valid if we drop this assertion.

In this theorem the fact that (ii) implies (i) remains valid if we weaken condition
4.2 by replacing N by an unbounded subset E of N (just choose (un)n∈N ⊂ E such
that un ≥ 2nun−1 ∀n ∈ N).
We therefore obtain the following corollary.

Corollary 4.3.5
Let X be a Banach space such that c0 6⊂ X and (T n)n∈N be a discrete-time bounded
analytic semigroup such that (DCP )T has `∞-discrete maximal regularity . We then
have that

‖n(T n+1 − T n)‖ →
n→∞

0.

4.4 The Banach space `1 and `1-discrete maximal

regularity

In the continuous setting, Sylvie Guerre Delabriere (see [GD95] and Theorem 3.4.3)
proved the following dual result to Baillon’s theorem : X contains `1 as a com-
plemented subspace (which will be denoted `1 ⊂c X) if and only if there exists a
bounded analytic semigroup with an unbounded generator such that (CP )A has
L1-maximal regularity. In a similar way, we are going to prove the following.
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Theorem 4.4.1
Let X be a Banach space. The following assertions are equivalent.

(i) `1 ⊂c X.

(ii) There exists a bounded operator T acting on X and verifying the condition

∃C > 0 : ∀n ∈ N ‖n(T n+1 − T n)‖ ≥ C,

such that (DCP )T has `1-discrete maximal regularity.

To prove this theorem, we need the following lemma on the duality between `∞-
discrete maximal regularity and `1-discrete maximal regularity.

Lemma 4.4.2
LetX be a Banach space and (T n)n∈N be a discrete-time bounded analytic semigroup
. (DCP )T has then `1-discrete maximal regularity on X if and only if (DCP )T ∗ has
`∞-discrete maximal regularity on X∗.

Proof :
We first assume that (DCP )T has `1-discrete maximal regularity and write S = T ∗.
As it is done in Lemma 4.2.7, we define

kT : Z → B(X),

n 7→

{
(T n+1 − T n) if n ∈ N,
0 otherwise.

The problem in this case is that the translates of sequences supported in Z+ are not
dense in `∞(Z, X∗). It is therefore not possible to apply the reasoning of Lemma
4.2.7.
However, since (DCP )T has `1-discrete maximal regularity, we can also define the
following bounded operator

KT : `1(X) → `1(X),

(fn)n∈N 7→ (
∞∑
j=0

kT (n− j)fj)n∈N.

Therefore we have that K∗
T belongs to B(`1(X)∗) and then that K∗

T belongs to
B(`∞(X∗)). Now let N be an integer,h∗ be an element of `∞(X∗) and f be an
element of `1(X). We define the following sequence g∗ ∈ `∞(X∗) .

g∗n =


0 if n < N,

h∗2N−m if N ≤ n ≤ 2N,

0 otherwise.
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We have that

< K∗
T (g∗), f >=

∑
n∈N

< g∗n,
∑
j∈N

kT (n− j)fj >,

=
∑
n∈N

∑
j∈N

< kT (n− j)∗g∗n, fj > .

Now denote by k∨T ∗ the following operator

k∨T ∗ : Z → B(X∗),

n 7→

{
(S−n+1 − S−n) if n ≤ 0,

0 otherwise.

We obtain that < K∗
T (g∗), f >=

∑
j∈N

<
∑
n∈N

k∨T ∗(j − n)g∗n, fj >.

Therefore we have that K∗
T (g∗) = (

∑
m≥j

k∨T ∗(j −m)g∗m)j∈N. But, since K∗
T belongs to

B(`∞(X∗)) we have that

‖
∑
m≥N

k∨T ∗(N −m)g∗m‖ ≤ ‖K∗
T‖‖g∗‖.

And then

‖
N∑
m=0

(Sm+1 − Sm)h∗N−m‖ = ‖
N∑
m=0

(Sm+1 − Sm)g∗N+m‖,

= ‖
0∑

m=−N

k∨T ∗(m)g∗N−m‖,

≤ ‖K∗
T‖‖g∗‖ ≤ ‖K∗

T‖‖h∗‖.

which proves that (DCP )S has `∞-discrete maximal regularity.
Now we turn to the other direction and assume that (DCP )T ∗ has `∞-discrete max-
imal regularity on X∗. In this case we define KT ∗ as in Lemma 4.2.7. Since the
translates of sequences supported in Z+ are dense in c0(Z, X∗) and (DCP )T ∗ has
`∞-discrete maximal regularity on X∗ we obtain that KT ∗ extends to a bounded
operator on c0(Z, X∗). The result then follows from the same idendity for finitely
supported sequences as in (4.1) of Lemma 4.2.7 and the fact the c0(Z, X∗) norms
`1(Z, X). �

Proposition 4.4.3
There exists a bounded operator T acting on `1 and verifying the condition (4.2)

∃C > 0 : ∀n ∈ N ‖n(T n+1 − T n)‖ ≥ C,

such that (DCP )T has `1-discrete maximal regularity.
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Proof :
Let T be the multiplier on the canonical basis of `1 ((ek)k∈N) associated to the
sequence (1 − 1

k
)k∈N. Since T = S∗ where S is the multiplier associated to the

same sequence but acting on the canonical basis of c0 it is clear, in view of the proof
proposition 4.3.1, that this operator is power-bounded, analytic and satisfy condition
(4.2). Now we have to prove that (DCP )T has `1-discrete maximal regularity.
Let (f ∗n)n∈N be a sequence belonging to `1(`1). Since `1(`1) = c0(c0)

∗ we have the
following (denoting by (λn,j)(n,j)∈N2 some adapted sequence of complex numbers of
modulus 1)

∞∑
n=0

‖
n∑
j=0

(T n−j+1 − T n−j)f ∗j ‖ = sup
g∈Bc0(c0)

∞∑
n=0

n∑
j=0

< (T n−j+1 − T n−j)f ∗j , λn,j.gn >,

= sup
g∈Bc0(c0)

∞∑
j=0

∞∑
n=j

< f ∗j , (S
n−j+1 − Sn−j)λn,j.gn >,

= sup
g∈Bc0(c0)

∞∑
j=0

< f ∗j ,
∞∑
m=0

(Sm+1 − Sm)λm+j,j.gm+j >,

≤ sup
g∈Bc0(c0)

∞∑
j=0

‖f ∗j ‖.sup
k∈N

∞∑
m=0

1

k
(1− 1

k
)m.‖g‖c0(c0),

≤ ‖f ∗‖`1(`1).

which proves the proposition. �
Now we can finish the proof.

Proof of Theorem 4.4.1:

Proposition 4.4.3 gives us that (i) implies (ii).
Now suppose (ii). T ∗ is then an operator on X∗ satisfying (4.2). Moreover, Lemma
4.4.2 implies that (DCP )T ∗ has `∞-discrete maximal regularity.
So, by Theorem 4.3.3 and Remark 4.3.4 we obtain that c0 ⊂ X∗.
But, by a result of C.Bessaga and A.Pelczyński (see [BP58] and Theorem 1.2.3),
this implies that X contains `1 as a complemented subspace. �
In view of this result and of Corollary 4.3.5 we also obtain the following corollary.

Corollary 4.4.4
Let X be a Banach space such that `1 6⊂c X and (T n)n∈N be a discrete-time bounded
analytic semigroup such that (DCP )T has `1-discrete maximal regularity . We then
have that

‖n(T n+1 − T n)‖ →
n→∞

0.
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4.5 Discrete maximal regularities

With the preceding results in mind, we would like to compare these three notions
of discrete maximal regularity. First we apply the preceeding results to show some
differences between them in particular Banach spaces. We then show that, in some
sense, `2-discrete maximal regularity is a weaker notion than `∞ (resp. `1)-discrete
maximal regularity in Banach spaces that do not contain c0 (resp. a complemented
copy of `1).

Proposition 4.5.1
a) Let X be a (UMD) Banach space with an unconditional basis. There exists

T ∈ B(X) such that (DCP )T has `2-discrete maximal regularity but neither `1
nor `∞-discrete maximal regularity .

b) There exists T ∈ B(c0) such that (DCP )T has `∞-discrete maximal regularity
but not `1-discrete maximal regularity .

c) There exists T ∈ B(`1) such that (DCP )T has `1-discrete maximal regularity
but not `∞-discrete maximal regularity .

Proof :In all the three cases we look at multipliers T associated to the sequence
(1− 1

k
)k∈N acting on the unconditional basis (the canonical one in the c0 and the `1

case ) (en)n∈N. Such an operator is power-bounded and analytic by Lemma 4.2.10.
Moreover, we have that

‖(T n+1 − T n)en‖ =
1

n
|1− 1

n
|n which gives us (4.2).

a) the (UMD) case
By Theorem 1.1 of [Bl01-1] it suffices to show that I−T has L2-maximal regularity.
But, since I − T is a multiplier on an unconditional basis it admits a bounded H∞

calculus (f(I − T ) for functions in H∞ of some sector are multipliers associated to
the bounded sequence (f(1 − 1

n
))n∈N and unconditionality leads the boundedness

of f(I − T )). Therefore I − T has L2-maximal regularity by Dore-Venni’s theorem
(see the survey on maximal regularity [D093]). Now, since X is reflexive and thus
does not contain an isomorphic copy of c0 we obtain that (DCP )T does not have
`∞-discrete maximal regularity by Theorem 4.3.3 and since X also does not contain
a complemented copy of `1 we obtain that (DCP )T does not have `1-discrete max-
imal regularity by Theorem 4.4.1.
b) the c0 case
Since c0 does not contain `1 we obtain that (DCP )T does not have `1-discrete max-
imal regularity by Theorem 4.4.1 and that it has `∞-discrete maximal regularity by
Proposition 4.3.1.
c) the `1 case
Since `1 does not contain c0 we obtain that (DCP )T does not have `∞-discrete max-
imal regularity by Theorem 4.3.3 and that it has `1-discrete maximal regularity by
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proposition 4.4.3. �
Now using Corollary (4.3.5) we can deduce a spectral property for operators associ-
ated with `∞ (resp. `1) regular discrete Cauchy problems in Banach spaces that do
not contain c0 (resp. a complemented copy of `1). I thank Sönke Blunck and Gilles
Lancien for suggesting the following corollary.

Corollary 4.5.2
Let X be a Banach space such that c0 6⊂ X, and (T n)n∈N be a discrete-time bounded
analytic semigroup such that (DCP )T has `∞-discrete maximal regularity .
Then there exists 0 ≤ s0 < 1 such that

σ(T ) ⊂ B(0, s0) ∪ {1},

where B(0, s0) denotes the closed disc of center 0 and radius s0.

Proof :Since ‖n(T n+1−T n)‖ tends to 0 as n tends to infinity we have that sup
λ∈σ(T )

n|1−

λ||λ|n must also tend to 0. But this also implies that

sup
λ∈σ(T )

n(1− |λ|)|λ|n →
n→∞

0. (4.6)

Now consider the function of one real variable defined by fn(s) = n(1− s)sn ∀s ∈
[0, 1]. A closer look at this function shows that it is increasing from 0 to 1 − 1

n+1

and decreasing afterwards. Moreover {fn(1 − 1
n
) ; n ∈ N} is bounded from below.

We then obtain that

∃C > 0 ∀n ≥ 2 ∀s ∈ [1− 1

n
, 1− 1

n+ 1
] fn(s) ≥ C. (4.7)

But using (4.6) and (4.7) we obtain that

∃n0 ∈ N ∀λ ∈ D |λ| 6= 1 |λ| ≥ 1− 1

n0

=⇒ λ 6∈ σ(T ).

Now the proof is completed using the fact that the analyticity of T already implies
that σ(T ) ∩ T ⊂ {1} (see [Bl01-1]). �
With the same proof we also obtain the following.

Corollary 4.5.3
LetX be a Banach space such that `1 6⊂c X, and (T n)n∈N be a discrete-time bounded
analytic semigroup such that (DCP )T has `1-discrete maximal regularity .
Then there exists 0 ≤ s0 < 1 such that

σ(T ) ⊂ B(0, s0) ∪ {1},

where B(0, s0) denotes the disc of center 0 and radius s0.
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Finally we are going to show that, with an additional assumption, the situation
of the preceeding corollaries can only happen in trivial cases. This comes from the
following theorem whose idea is due to Nigel Kalton.

Theorem 4.5.4
Let X be a Banach space and (T n)n∈Z+ be a discrete-time bounded analytic semi-
group such that

(i) T n tends to zero in the strong operator topology,

(ii) (DCP )T has `∞-discrete maximal regularity .

Then ∃C1 > 0 ∃C2 > 0 ∃a ∈ N ∀x ∈ X

C1 sup
k∈Z+

‖(T ak+1 − T a
k

)x‖ ≤ ‖x‖ ≤ C2

(
sup
k∈Z+

‖(T ak+1 − T a
k

)x‖+ ‖(I − T )x‖

)
.

Proof :
Let us first remark that for any increasing sequence (nk)k∈Z+ ⊂ Z+ and any (xk)k∈Z+ ∈
`∞(X) we have that

‖
∞∑
k=0

(T nk+1 − T nk)xk‖ ≤ CDMR sup
k∈Z+

‖xk‖,

where CDMR denotes the maximal regularity constant. Moreover we remark that
(i) implies that, for all a ∈ N,

‖x‖ ≤ ‖
∑
k∈Z+

(T a
k+1 − T a

k

)x‖+ ‖(I − T )x‖.
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We then obtain the following, where � denotes inequalities up to a constant which
does not depend on x.

‖
∑
k∈Z+

(T a
k+1 − T a

k

)x‖

� ‖
∑

(k,j)∈Z2
+

|k−j|≤3

(T a
k+1 − T a

k

)(T a
j+1 − T a

j

)x‖+ ‖
∑
k∈Z+

∞∑
m=3

(T a
k+1 − T a

k

)(T a
k+1+m − T a

k+m

)x‖

+ ‖
∑
k∈Z+

(T a
k+1 − T a

k

)(I − T )x‖

� sup
k∈Z+

‖(T ak+1 − T a
k

)x‖+ ‖(I − T )x‖+ ‖
∑
k∈Z+

∞∑
m=3

(T a
k+1 − T a

k

)(T a
k+1+m − T a

k+m

)x‖

� sup
k∈Z+

‖(T ak+1 − T a
k

)x‖+ ‖(I − T )x‖

+
∞∑
m=3

‖
∑
k∈Z+

(T a
2k+1+a2k+m−1 − T a

2k+a2k+m−1

)(T a
2k+1+m−a2k+m−1 − T a

2k+m−a2k+m−1

)x‖

+
∞∑
m=3

‖
∑
k∈Z+

(T a
2k+2+a2k+m − T a

2k+1+a2k+m

)(T a
2k+2+m−a2k+m − T a

2k+m+1−a2k+m

)x‖

� sup
k∈Z+

‖(T ak+1 − T a
k

)x‖+ ‖(I − T )x‖

+
∞∑
m=3

sup
k∈Z+

‖(T ak+1+ak+m−1 − T a
k+ak+m−1

)x‖ (using maximal regularity)

� sup
k∈Z+

‖(T ak+1 − T a
k

)x‖+ ‖(I − T )x‖

+
∞∑
m=3

sup
k∈Z+

(
log(

ak+1 + ak+m−1

ak + ak+m−1
)

)
‖x‖ (using the analyticity of (T n)n∈Z+)

� sup
k∈Z+

‖(T ak+1 − T a
k

)x‖+ ‖(I − T )x‖+
∞∑
m=3

a2−m‖x‖.

This gives the result by picking a large enough (the other inequality of course follows
from the boundedness of (T n)n∈Z+). �
Now using the same theorem due to C.Bessaga and A.Pelczyński (see [BP58] and
Theorem 1.2.2) as in Theorem 4.3.3 we can show the following.

Corollary 4.5.5
Let X be a Banach space and let (T n)n∈Z+ be a discrete-time bounded analytic
semigroup such that
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(i) T n tends to zero in the strong operator topology,

(ii) (DCP )T has `∞-discrete maximal regularity .

(iii) c0 6⊂ X.

Then ‖T n‖ →
n→∞

0.

Proof :
We first claim that

∃N ∈ N ∃C > 0 ∀x ∈ X ‖x‖ ≤ C

(
max

0≤k≤N
‖(T ak+1 − T a

k

)x‖+ ‖(I − T )x‖
)
.

To prove this we assume the contrary and pick an increasing sequence of positive
integers (pn)n∈Z+ and a sequence (xn)n∈Z+ in the unit ball of X such that for some
δ > 0 we have, for all n ∈ N, that

‖T apn+1 − T a
pn
xn‖ ≥ δ.

Now let yn = T a
pn+1 − T a

pn
xn. We have that ‖yn‖ ≥ δ ∀n ∈ Z+. Moreover

`∞-maximal regularity leads to the following.

sup
M∈N

sup
εn=±1

‖
M∑
n=0

εnyn‖ ≤ C.

Therefore, by Theorem 1.2.2 of Bessaga and Pelczyński, we obtain that c0 ⊂ X,
which is a contradiction. This means that

∃C > 0 ∀x ∈ X ∀n ∈ N ‖T nx‖ ≤ C

(
max

0≤k≤N
‖(T ak+1+n − T a

k+n)x‖+ ‖(T n+1 − T n)x‖
)
.

The results then follows from the analyticity of (T n)n∈Z+ . �

It should be noticed that the assumption (iii) in the above statement can not be
removed. Indeed, the multiplier T , acting on the canonical basis of c0 and associated
to the sequence (1 − 1

2n )n∈N is such that (DCP )T has `∞-maximal regularity (for
the same reason as the example considered in Proposition 4.3.1). Moreover, given
ε > 0 and x ∈ c0, there exists N ∈ N such that

∀k ∈ Z+ ‖T kx‖ ≤ max
n≤N

(1− 1

2n
)k‖x‖+ ε,

which gives that T k tends to zero in the strong operator topology. But T k can not
tend to zero in norm since the spectrum of T contains {1}.

We also obtain the following dual results.
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Proposition 4.5.6
Let X be a Banach space and (T n)n∈Z+ be a discrete-time bounded analytic semi-
group . Let us denote by S the adjoint operator of T acting on X∗ and assume
that

(i) For each x∗ ∈ X∗, Snx∗ tends to zero in the w∗-topology,

(ii) (DCP )T has `1-discrete maximal regularity .

Then the following hold.

1. ∃C1 > 0 ∃C2 > 0 ∀x ∈ X

C1

∞∑
j=0

‖(T j+1 − T j)x‖ ≤ ‖x‖ ≤ C2

∞∑
j=0

‖(T j+1 − T j)x‖.

2. ∃C3 > 0 ∃C4 > 0 ∃a ∈ N ∀x∗ ∈ X∗

C3 sup
k∈Z+

‖(Sak+1−Sak

)x∗‖ ≤ ‖x∗‖ ≤ C4

(
sup
k∈Z+

‖(Sak+1 − Sa
k

)x∗‖+ ‖(I − S)x∗‖

)
.

Proof :
Let x ∈ X. For n ∈ Z+, pick x∗n ∈ X∗ such that

‖(T n+1 − T n)x‖ =< (T n+1 − T n)x, x∗n > .

Since (CP )Z+,I−S has `∞-maximal regularity we have that there exists C > 0 such
that for each N ∈ N

N∑
k=0

‖(T k+1 − T k)x‖ ≤ ‖
N∑
k=0

(Sk+1 − Sk)x∗n‖‖x‖ ≤ C‖x‖.

To prove the other direction we let x∗ be a norm 1 functional and use (i) to obtain
that there exists C > 0 such that

< x, x∗ >=< x,

∞∑
j=0

(Sj − Sj+1)x∗ >≤ C

∞∑
j=0

‖(T j+1 − T j)x‖.

This proves 1. The proof of 2 is then the same as the proof of Theorem 4.5.4. �

Corollary 4.5.7
Let X be a Banach space and (T n)n∈Z+ be a discrete-time bounded analytic semi-
group . Let us denote by S the adjoint operator of T acting on X∗ and assume
that

57



(i) For each x∗ ∈ X∗, Snx∗ tends to zero in the w∗-topology,

(ii) (DCP )T has `1-discrete maximal regularity .

(iii) c0 6⊂ X∗.

Then ‖T n‖ →
n→∞

0.

Proof :
The proof is the same as in Corollary 4.5.5. Thanks to Proposition 4.5.6 and to (iii)
we obtain that ∃C > 0 ∃a ∈ N ∃N ∈ N ∀x∗ ∈ X∗

‖x∗‖ ≤ C

(
max

0≤k≤N
‖(Sak+1 − Sa

k

)x∗‖+ ‖(I − S)x∗‖
)
.

But this implies that ‖Sn‖ and thus ‖T n‖ tends to zero. �

Since (DCP )T clearly has `2-discrete maximal regularity if ‖T n‖ tends to zero,
we finally obtain the following.

Corollary 4.5.8
Let X be a Banach space such that c0 6⊂ X (resp. `1 6⊂c X). Let (T n)n∈Z+ be a
discrete-time bounded analytic semigroup , denote by S the adjoint operator of T
acting on X∗ and assume that

(i) T n tends to zero in the strong operator topology (resp. for each x∗ ∈ X∗, Snx∗

tends to zero in the w∗-topology),

(ii) (DCP )T has `∞(resp. `1)-discrete maximal regularity .

Then (DCP )T has `2-discrete maximal regularity .
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Chapter 5

Maximal regularity of evolution
equations on discrete time scales

5.1 Introduction

In this chapter we are interested in the question of `p-maximal regularity (1 < p <
∞) for evolution equations on discrete time scales. This generalizes the problem
treated in Chapter 4 by replacing the time scale Z+ by a general increasing sequence
T = {tk ; k ∈ Z+} ⊂ R+. The corresponding Cauchy problem (CP )T ,A may
therefore be seen as a discretized one where the discretization scheme has a variable
step size. In fact the sequence of step sizes (µ(tk))k∈Z+ (where µ(tk) = tk+1 − tk)
is nothing but the graininess sequence of T . The question we consider is then the
following.

Question 5.1.1
Given a Banach space X and a time scale T = {tk ; k ∈ Z+} ⊂ R+ (where (tk)k∈Z+

is increasing), which necessary and/or sufficient conditions should be imposed on an
operator A ∈ B(X) for (CP )T ,A to have `p-maximal regularity (1 < p <∞) ?

This means, of course, that we are looking for an analogue of Weis’ Theorem 3.3.4
and of Blunck’s Theorem 3.5.1 , and hence that we think about these conditions
as an appropriate analogue to R-analyticity. The problem is that the solution of
(CP )T ,A is not simply given by a translation invariant singular integral operator as
in the cases T = R+ or T = Z+. In fact (CP )T ,A can be seen as the following non
autonomous problem{

u(tn+1)− u(tn) + µ(tn)Au(tn) = µ(tn)f(tn) ∀n ∈ Z+,
u(t0) = 0.

This suggests the use of evolution families instead of semigroups and the expression
of the solution with a singular integral operator with a non symmetric kernel (namely

59



we have u(tn+1) =
n∑
k=0

µ(tk)(
n∏
j=k

I − µ(tj)A)f(tk) ∀n ∈ Z+).

In Section 5.2, the adequate definitions are given, especially the notion of ana-
lyticity for such an evolution family.

We then turn, in Section 5.3, to a special case, namely the case of sample based
time scales (i.e. time scales such that (µ(tk))k∈Z+ is periodic). This particular
setting has many interesting properties. First it allows us to prove the necessity
of the analyticity of the evolution family. Then it makes it possible to relate the
properties of the evolution family to properties of a discrete semigroup (T n)n∈Z+ .
And finally it allows to rewrite the problem (CP )T ,A on the Banach space X as
a problem (CP )Z+,A⊗Ir on a product space Xr where A ⊗ Ir denotes the diagonal
operator with all diagonal entries equal to A. This, in turn, makes it possible to
use Blunck’s multiplier Theorem 2.3.3, although with more complicated symbols as
in the original result of Blunck (see [Bl01-1]). This leads our Theorem 5.3.7 which
gives the desired answer to Question 5.1.1.

The last section is then devoted to a perturbation result which allows to consider
discrete time scales which are not sample based but just “asymptotically sample
based”. More precisely we replace T by a time scale T̃ = {t̃k ; k ∈ Z+} where
µ(t̃k) = µ(tk) + εk and give an admissibility condition on the perturbation sequence
(εk)k∈Z+ in order to preserve `p-maximal regularity. Although this condition (see
Definition 5.4.1) depends both on the initial time scale T and on the operator A, it
allows any perturbation (εk)k∈Z+ ∈ `1 (see Example 5.4.2).

5.2 Cauchy problems on discrete time scales

We consider a Banach space X and a time scale T = {tk; k ∈ Z+} ⊂ R+ (where tk
is increasing). In this setting one considers the Cauchy problem

(CP )T ,A

{
u∆(t)− Au(t) = f(t) ∀t ∈ T ,

u(t0) = 0,

where u∆ is defined in the sense of the time scale calculus. Let us recall that, in
this sense, we can define the derivative of a function on T as a sequence (u∆(tn))n∈N

with u∆(tn) = u(tn+1)−u(tn)
µn+1

(where (µk)k∈N is the graininess function defined by

µk = tk− tk−1 for k ≥ 1) and the integral between t0 and tn of a sequence (u(tn))n∈N

as
n−1∑
k=0

µk+1u(tk) (see [BP01] and Section 3.2 for more informations on time scale

calculus). We therefore define an `p(T ;X) norm for functions on the time scale :

‖f‖`p(T ;X) = (
∞∑
k=0

µk+1‖f(tk)‖p)
1
p .

The corresponding notion of maximal regularity is then as follows.
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Definition 5.2.1
We say that (CP )T ,A has `p-maximal regularity if there exists a constant C > 0
such that for every input function f ∈ `p(T ;X)

‖u∆‖`p(T ;X) ≤ C‖f‖`p(T ;X).

We now relate `p-maximal regularity to properties of an evolution family generated
by A.

Definition 5.2.2
The family EA,T = (eA,T (tk, tn))(k,n)∈Z2

+,n≥k where

eA,T (tk, tn) =


n−1∏
j=k

(I − µj+1A) if k < n

I if k = n

is called the evolution family associated to (CP )A,T .

Moreover, one defines
EA,T : T → B(X)

tk 7→ eA,T (tk, t0)

that gives a functional counterpart to eA,T and satisfies the differential equation

E∆
A,T (tk) = −AEA,T (tk) ∀k ∈ N.

This allows to define the following analogue to classical semigroups properties.

Definition 5.2.3
The associated evolution family EA,T is called bounded (resp. R-bounded) if it is a
bounded (resp. R-bounded) set. It is called analytic (resp. R-analytic) if the set
{(tk − t0)AEA,T (tk+1) ; k ∈ Z+} is bounded (resp. R-bounded).

Remark 5.2.4
If the time scale is Z+ we recover the corresponding notions for discrete time semi-
groups. In this case EA,T (tk) = (I − A)k, the semigroup is bounded (resp. R-
bounded) if and only if ((I −A)n)n∈Z+ is and it is analytic (resp. R-analytic) if and
only if (A((I − A)n+1 − (I − A)n))n∈Z+ is bounded (resp. R-bounded).

Let us now point out that the solution of (CP )A,T can be expressed using the
associated evolution family :

u(tn) =
n−1∑
k=0

µk+1.eA,T (tk, tn)f(tk) ∀n ∈ N.
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Moreover, assuming that EA,T is bounded and defining an operator K with

K(f)(tk) =

A
n−1∑
k=0

µk+1.eA,T (tk, tn)f(tk) if k > 0,

0 if k = 0,

one obtains that (CP )A,T has `p-maximal regularity if and only if K extends to a
bounded operator on `p(T , X). Under an additional assumption on the time scale
we now exhibit relationships between the boundedness of K and R-analyticity of
EA,T .

5.3 Maximal regularity on sample based time scales

Definition 5.3.1
A time scale T = {tk; k ∈ N} ⊂ R+ is called sample based with period r if the
graininess sequence is r-periodic.

On such a time scale we now have the following necessary condition for `p-maximal
regularity. The proof is essentially the same as in both the discrete and the contin-
uous case.

Proposition 5.3.2
Let X be a Banach space and T = {tk; k ∈ Z+} be a sample based time scale with
period r. Let 1 < p < ∞ and assume that EA,T is bounded and that (CP )A,T has
`p-maximal regularity. Then EA,T is analytic.

Proof :

Let x ∈ X, N ∈ N and define f(tk) =

{
EA,T (tk+1)x if k < N

0 otherwise
.

We have that there exists M > 0 such that ‖eA,T (tk, tn)‖ ≤M ∀k ≥ n. Therefore,

‖f‖p`p(T ;X) ≤Mp(
N∑
k=0

µk+1)‖x‖p. (5.1)

Since T is sample based we remark that there exists C > 0 such that

(i) N
C
≤

N∑
k=0

µk+1 ≤ CN ,

(ii) N1+p

C
≤

N∑
k=0

µk+1(
k−1∑
j=0

µj+1)
p ≤ CN1+p.
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We thus obtain the following, where � denotes inequalities up to a constant which
does not depend on N .

‖K(f)‖p`p(T ;X) =
∞∑
l=0

µl+1‖
l−1∑
k=0

µk+1AeA,T (tk+1, tl)f(tk)‖p,

≥
N∑
l=0

µl+1‖
l−1∑
k=0

µk+1AeA,T (t0, tl)x‖p ≥M−p
N∑
l=0

µl+1‖
l−1∑
k=0

µk+1AEA,T (tN)x‖p,

= M−p
N∑
l=0

µl+1(
l−1∑
k=0

µk+1)
p‖AEA,T (tN)x‖p � N1+p‖AEA,T (tN)x‖p,

� N‖(tN−1 − t0)AEA,T (tN)x‖p.

Combining the later with (5.1) leads to ‖(tN−1 − t0)AEA,T (tN)x‖ ≤ C ′‖x‖ for some
constant C ′ > 0. �

Remark 5.3.3
One can notice that the assumption on the boundedness of EA,T , which is usual
in the study of maximal regularity, is not a consequence of analyticity. Even in
the case where T = Z+ it has been shown by N.Kalton, S.Montgomery-Smith,
K.Oleszkiewicz and Y.Tomilov ([KMSOT04]) that, on any infinite dimensional Ba-
nach space, there exists a discrete analytic semigroup that is not bounded (see
Theorems 1.7.4 and 1.7.5)

We now assume that EA,T is bounded and analytic and define

T = EA,T (tr).

This is of course a discrete analogue of the monodromy operator used in the study of
periodic nonautonomous Cauchy problem in the continuous case. The boundedness
of EA,T implies that (T n)n∈Z+ defines a bounded discrete time semigroup. We show
that it is actually analytic and that it is R-analytic if and only if EA,T is. This is a
consequence of the following lemma.

Lemma 5.3.4
Let T be a sample based time scale with period r and EA,T be an analytic evolution
family. Then T = EA,T (tr) is such that there exists a bounded invertible operator
B ∈ B(X) such that

I − T = A.B

Proof :
There exists a polynomial P , of order less than r, such that B = P (A). It is thus
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enough to show that 0 6∈ σ(P (A)). We first remark that P (0) =
r∑
j=1

µj 6= 0. Using

the spectral mapping theorem it is then sufficient to show that

∀λ ∈ σ(A) P (λ) = 0 =⇒ λ = 0.

Let us therefore consider λ0 ∈ σ(A) such that 1 =
r∏
j=1

(1− µjλ0). Then

‖(trn − t0)AE(trn)‖ ≥ |λ0|(trn − t0) ∀n ∈ N.

But, because of the analyticity of eA,T , this implies that λ0 = 0. �
We thus obtain the desired result as a corollary.

Corollary 5.3.5
In the setting of the above lemma we have that (T n)n∈Z+ is an analytic discrete time
semigroup and that it is R-analytic if and only if EA,T is.

Proof :
This follows directly from the fact that there exists C > 0 such that for any N ∈ N
and any (xn)

N
n=1 ⊂ X,

1

C

∫ 1

0

‖
N∑
n=1

εn(t)(trn − t0)AE(trn)xn‖dt ≤
∫ 1

0

‖
N∑
n=1

εn(t)n(T − I)T nxn‖dt

≤ C

∫ 1

0

‖
N∑
n=1

εn(t)(trn − t0)AE(trn)xn‖dt

where (εj)j∈N is the usual sequence of Rademacher functions on [0, 1]. �
The last step to allow the use of Fourier multipliers techniques is now to restate the
problem in `p(X

r) (where Xr is equipped, for instance, with the `rp norm). Denoting

by
(
(u

(1)
n , ..., u

(r)
n )
)
n∈Z

an element of `p(X
r), we define the operators

D
(
(u(1)

n , ..., u(r)
n )
)
n∈Z =

(
(
u

(2)
n − u

(1)
n

µ1

, ...,
u

(r)
n − u

(r−1)
n

µr−1

,
u

(1)
n+1 − u

(r)
n

µr
)

)
n∈Z

and
A
(
(u(1)

n , ..., u(r)
n )
)
n∈Z =

(
(Au(1)

n , ..., Au(r)
n )
)
n∈Z .

By considering sequences (u(j))n∈Z (for j = 1, ..., r) with

u
(j)
n =

{
u(tj−1+rn) ifn ≥ 0

0 otherwise
for a function u of the time scale one obtains that
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the `p-maximal regularity of (CP )T ,A is equivalent to the existence of a constant
C > 0 such that

‖Dy‖ ≤ C‖(D +A)y‖ ∀y ∈ `p(Xr) (5.2)

D is now our differentiation operator which turns out to be a Fourier multiplier. Let
us recall that a Fourier multiplier is an operator of the form FMf = F−1(M.Ff)
where M is a map from (−π, π) to B(X), F denotes the Fourier transform for
the group Z (thus with the dual group T) and the operator is initially defined for
finitely supported sequences. A direct computation of the Fourier transform shows
that D = FM where

M(t) =



− I
µ1

I
µ1

0 · · · · · · 0

0 − I
µ2

I
µ2

0 · · · 0

0 0
. . . . . . 0 0

0 0 0
. . . . . . 0

0 0 0 0 − I
µr−1

I
µr−1

e−it

µr
I 0 · · · · · · 0 − I

µr


It should be noticed that in the discrete and the continuous settings, the differentia-
tion operator is a Fourier multiplier with an essentially scalar symbol (i.e. a symbol
of the form m(t)I where m is scalar valued), whereas in this setting the symbol is
operator valued. The problem can now be expressed as an operator matrix valued
Fourier multiplier question. To do so remark that M(t) +A is invertible provided
its determinant

∆(t, A) = (−1)r+1(
r∏

k=1

1

µk
)(e−it − T )

is. But since EA,T is analytic T n+1−T n tends to zero by Corollary (5.3.5). Therefore
σ(T ) ∩ T ⊂ {1}. ∆(t, A) is thus invertible for all t ∈ (−π, 0) ∪ (0, π) which allows
us to define

N : (−π, 0) ∪ (0, π) → B(X)
t 7→ M(t).(M(t) +A)−1 .

Since inequality (5.2) holds if and only if FN extends to a bounded operator on
`p(X

r) we have the following lemma.

Lemma 5.3.6
Let X be a Banach space, T = {tk; k ∈ Z+} ⊂ R+ be a sample based time scale,
1 < p < ∞ and EA,T be an associated bounded analytic evolution family. Then
(CP )T ,A has `p-maximal regularity if and only if FN extends to a bounded operator
on `p(X

r).

Using Blunck’s multiplier Theorem 2.3.3 we have that, if X is an UMD space, and
if the sets

{N (t); t ∈ (−π, 0) ∪ (0, π)} and {(e−it − 1)(e−it + 1)N ′(t); t ∈ (−π, 0) ∪ (0, π)}
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are R-bounded, then FN defines a bounded multiplier on `p(X
r). Reciprocally the

later implies that the set

{N (t); t ∈ (−π, 0) ∪ (0, π)}

is R-bounded. This leads our result.

Theorem 5.3.7
Let X be a UMD Banach space, T = {tk; k ∈ Z+} ⊂ R+ be a sample based time
scale, 1 < p <∞ and EA,T be a bounded analytic associated evolution family. Then
the following assertions are equivalent.

(i) EA,T is R-analytic.

(ii) (CP )A,T has `p-maximal regularity.

(iii) (T n)n∈Z+ is a R-analytic discrete time semigroup.

(iv) (CP )I−T,Z+ has `p-maximal regularity.

Proof :
(iii) ⇐⇒ (iv) is due to Sönke Blunck (see Theorem 3.5.1).
(iii) ⇐⇒ (i) is given by Corollary 5.3.5.
(iii) =⇒ (ii) as remarked above, we only have to show that the sets

{N (t); t ∈ (−π, 0) ∪ (0, π)} and {(e−it − 1)(e−it + 1)N ′(t); t ∈ (−π, 0) ∪ (0, π)}

are R-bounded. Moreover we have that

N (t) = I − (A)(M(t) +A)−1 and N ′(t) =
−ie−it

µr
(I −N (t))Er,1(M(t) +A)−1

where (Ei,j)1≤i,j≤r denotes the canonical basis of the space of r × r matrices. It is
therefore sufficient to show that the sets

{A(M(t) +A)−1; t ∈ (−π, 0) ∪ (0, π)}

and {(e−it − 1)(M(t) +A)−1; t ∈ (−π, 0) ∪ (0, π)}
are R-bounded (finite sum and products of R-bounded families are R-bounded).
Since all entries ofM(t)+A are commuting we have that (M(t)+A)−1 = (∆(t, A)−1⊗
Ir)B(t, A) where ∆(t, A) is the determinant of M(t)+A , B(t, A) is the transpose of
its comatrix and, for C ∈ B(X), C ⊗ Ir denotes the diagonal operator matrix with
diagonal entries equal to C. Remarking that B(t, A) has entries which are polyno-
mial of order less than r in e−it and A we obtain that {B(t, A) ; t ∈ (−π, 0)∪ (0, π)}
is R-bounded. It therefore suffices to show that the sets

{AR(eit, T ); t ∈ (−π, 0) ∪ (0, π)} and {(eit − 1)R(eit, T ); t ∈ (−π, 0) ∪ (0, π)}
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are R-bounded. But it follows from Lemma 5.3.4 that the first of these sets is
R-bounded if and only if {(T − I)R(eit, T ); t ∈ (−π, 0) ∪ (0, π)} is R-bounded.
The result now follows from Theorem 3.5.1 of [Bl01-1] that shows that the later is
equivalent to (iii).
(ii) =⇒ (iii) as remarked above, (ii) implies that the set {M(t)(M(t) +A)−1; t ∈
(−π, 0) ∪ (0, π)} is R-bounded. But, as seen is the proof of (iii) =⇒ (ii) this also
implies that the set

{(AR(e−it, T )⊗ Ir)B(t, A); t ∈ (−π, 0) ∪ (0, π)}

is R-bounded and therefore that, for any 1 ≤ i, j ≤ r the set

{(AR(e−it, T )⊗ Ir).Ei,jB(t, A)Ej,i; t ∈ (−π, 0) ∪ (0, π)}

is R-bounded. Now since the entry on the first row and the r-th column of B(t, A)

is equal to
r∏

k=1

1
µk

we obtain that the set {AR(e−it, T ); t ∈ (−π, 0) ∪ (0, π)} is R-

bounded. Lemma 5.3.4 finally gives that {(I − T )R(e−it, T ); t ∈ (−π, 0) ∪ (0, π)} is
R-bounded which implies (iii) by Theorem 1.1 of [Bl01-1]. �

5.4 A perturbation result

In this section we obtain maximal regularity of a Cauchy problem on a time scale
that is not necessarily sample based but that is asymptotically close to a sample
based time scale on which maximal regularity holds. We consider a Banach space
X, a sample based time scale (of period r) T = {tj, j ∈ Z+} (let us recall that
µj = tj − tj−1 ∀j ∈ N), a bounded operator A ∈ B(X), a sequence (εj)j∈Z+ ⊂ R+,

and a perturbed time scale T̃ = {t̃j, j ∈ Z+} such that{
t̃0 = t0,

µ̃j+1 = t̃j+1 − t̃j = µj+1 + εj.

Definition 5.4.1
In the above setting, the sequence (εj)j∈Z+ is called an admissible perturbation of
(CP )T ,A if there exists an open set Ω ⊂ C satisfying

(i) σ(A) ⊂ Ω,

(ii) 1
µj
6∈ Ω ∀j = 1, ..., r,

such that for n ≥ k ≥ 0 the functions

gn,k : Ω → C,

λ 7→

n∏
j=k

(1− εjλ

1−µj+1λ
)− 1

λ
,
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define a sequence in H∞(Ω) such that ∃C > 0 ∃α ∈ [0, 1)

‖gn,k‖∞ ≤ C|n− k|α.

Example 5.4.2
If (εj)j∈Z+ ∈ `1 then it is an admissible perturbation of (CP )T ,A for any sample

based time scale T and any operator A ∈ B(X) such that T =
r∏
j=1

(I − µjA) is

invertible.

This follows from the fact that for λ 6= 0,

|gn,k(λ)| ≤
exp(

n∑
j=k

| εjλ

1−µj+1λ
|) + 1

|λ|
,

and that |gn,k(0)| = |
n∑
j=k

εj|.

Theorem 5.4.3
Let X be a Banach space, T = {tk; k ∈ N} ⊂ R+ a sample based time scale (of
period r), 1 < p < ∞ and EA,T an associated bounded evolution family. Consider

a perturbation (εj)j∈Z+of (CP )T ,A and the corresponding perturbed time scale T̃ =

{t̃j ; j ∈ Z+} ⊂ R+ and assume the following.

(i) (CP )T ,A has `p-maximal regularity,

(ii) ∃C > 0 ∀j ∈ N 1
C
≤ µ̃j ≤ C,

(iii) (εj)j∈Z+ is an admissible perturbation of (CP )T ,A.

Then (CP )A,eT has `p-maximal regularity.

Proof :
Let (f(t̃k))k∈Z+ ∈ `p(T̃ ;X). We estimate K̃f where

K̃(f)(t̃k) =

A
n−1∑
k=0

µ̃k+1.eeT ,A(t̃k, t̃n)f(t̃k) ifn > 0,

0 ifn = 0.
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To do so let N ∈ N and let us denote by � inequalities up to a multiplicative
constant independent of n and N . We have

I =
N∑
n=1

(µn+1 + εn)‖A
n−1∑
k=0

(µk+1 + εk)(
n−1∏
j=k

I − (µj+1 + εj)A)f(t̃k)‖p,

�
N∑
n=1

‖A
n−1∑
k=0

µk+1(
n−1∏
j=k

I − µj+1A)(
µk+1 + εk
µk+1

)f(t̃k)‖p,

+
N∑
n=1

(
n−1∑
k=0

‖A(
n−1∏
j=k

I − (µj+1 + εj)A)− (
n−1∏
j=k

I − µj+1A)‖‖f(t̃k)‖

)p

.

Now using (i) and Dunford calculus we obtain

I � ‖f‖p
`p( eT ;X)

+
N∑
n=1

(
n−1∑
k=0

‖A2(
n−1∏
j=k

I − µj+1A)gn−1,k(A)‖‖f(t̃k)‖

)p

.

Lemma 5.3.4 and (iii) then imply that

I � ‖f‖p
`p( eT ;X)

+
N∑
n=1

(
n−1∑
k=0

‖(I − T )2Tm‖|n− k|α‖f(t̃k)‖

)p

.

where m is the entire part of n−k
r

. Since (T n)n∈Z+ is a discrete analytic semigroup
by Proposition 5.3.2 and Corollary 5.3.5 we have that

‖(I − T )2Tm‖ � 1

|n− k|2
.

The result follows therefore from Young’s inequalities. �
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Chapter 6

Lp boundedness of
pseudodifferential operators with
operator valued symbols and
application

6.1 Introduction

This chapter is motivated by the question of Lp-maximal regularity for non au-
tonomous Cauchy problems of the form

(NACP )

{
u′(t)− A(t)u(t) = f(t) ∀t ∈ [0, T ],

u(0) = 0,

where (A(t), D(A(t)))t∈[0,T ] is a family of generators of analytic semigroups. It has
been shown in [HM00] that this problem is related to the boundedness, in Lp(Rn;X),
of pseudodifferential operators defined on the Schwartz class by

Taf(x) =

∫
Rn

eix.ξa(x, ξ)f̂(ξ)dξ, (6.1)

where a : Rn × Rn → B(X) is an operator valued symbol. As recalled in Sec-
tion 2.5, Hieber and Monniaux have proved in [HM00] the boundedness of a large
class of such operators on Lp(Rn;H) where H is a Hilbert space. On the other
hand, Štrkalj proved boundedness results on Banach space valued Bessel and Besov
function spaces in his PhD thesis [St00]. In this chapter we consider the following
question.

Question 6.1.1
Given a UMD Banach space, for which classes of symbols a : Rn × Rn → B(X)
do the operator Ta defined by 6.1 extend to bounded operators on Lp(Rn;X) for
1 < p <∞ ?
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This was already answered in [St00]. However the proof was rather involved and
never published (except in Željko Štrkalj’s thesis). We present here a different and
hopefully more direct approach to this question which can also be found in the joint
work [PoS04] with Željko Štrkalj.

In Section 6.2 we introduce two classes of symbols which naturally generalize
classical classes of scalar valued symbols and state the corresponding boundedness
results. The first result deals with regular symbols whereas the second one considers
the general “non regular” case.

The theorem in the regular case is then proved in Section 6.3. Following the
work of Coifman and Meyer (see [CM78]) we prove that the problem reduces to the
study of some elementary symbols. Lp boundedness for such symbols is then proved
using an operator valued analogue of the technique of almost orthogonality.

The non regular case is then treated in Section 6.4 using a method due to Nagase
(see [Na77]) which allows to reduce this general case to the one treated in Section
6.3.

Finally we give, in Section 6.5, an application of this result to the study of
maximal regularity for non autonomous evolution equations in continuous time.

6.2 Main results

Let X be a Banach space. We consider the following classes of symbols.

Definition 6.2.1
Let 0 ≤ δ < 1, n ∈ N and m ∈ N.
Consider a ∈ Cm(Rn × Rn\{0}, B(X)). We say that

a ∈ S0
1,δ(m,X)

if the following hold.

(a) ∀α ∈ (Z+)n |α| ≤ m ∃Cα > 0

R({(1 + |ξ|)|α|∂αξ a(x, ξ) , ξ ∈ Rn}) ≤ Cα ∀x ∈ Rn, (6.2)

(b) ∀α ∈ (Z+)n 0 < |α| ≤ m ∀β ∈ (Z+)n |β| ≤ m ∃Cα,β > 0 such that
∀(x, ξ) ∈ Rn × Rn\{0}

‖∂βx∂αξ a(x, ξ)‖ ≤ Cα,β(1 + |ξ|)δ|β|−|α|. (6.3)

Definition 6.2.2
Let 0 ≤ δ < 1, 0 < r < 1, n ∈ N and m ∈ N.
Consider a symbol a : Rn×Rn\{0} → B(X) of class Cm in the second variable. We
say that

a ∈ S0
1,δ(r,m,X)

if the following hold.
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(a) ∀α ∈ (Z+)n |α| ≤ m ∃Cα > 0

R({(1 + |ξ|)|α|∂αξ a(x+ ty, ξ) , ξ ∈ Rn , t ∈ R}) ≤ Cα ∀(x, y) ∈ R2n, (6.4)

(b) ∀α ∈ (Z+)n 0 < |α| ≤ m ∃Cα > 0 ∀(x, y) ∈ R2n ∀ξ ∈ Rn

‖∂αξ a(x, ξ)− ∂αξ a(y, ξ)‖ ≤ Cα|x− y|r(1 + |ξ|)δr−|α|. (6.5)

Our main result is then the following.

Theorem 6.2.3
Let X be a UMD space , 1 < p <∞, a ∈ S0

1,δ(r,m,X) and m > max( 2n
1−δ , 2n+ 4),

then Ta defined by (6.1) extends to a bounded operator on Lp(Rn;X).

As a first step we prove the following “regular” version.

Theorem 6.2.4
Let X be a UMD space , 1 < p < ∞, a ∈ S0

1,δ(m,X), and m > max( 2n
1−δ , 2n + 4),

then Ta defined by (6.1) extends to a bounded operator on Lp(Rn;X).

6.3 Proof of Theorem 6.2.4

We start by proving a similar result for “elementary” symbols. Then we use an
operator valued version of the Coifman-Meyer decomposition to reduce the case
a ∈ S0

1,δ(m,X) to the case of “elementary” symbols. This is based on the Littlewood-
Paley decomposition. Hence we consider dyadic partitions of unity in S(Rn,R), i.e.
sequences (φk)k∈Z+ ⊂ S(Rn,R) defined by

φk(x) =

ψ(2−k|x|) if k 6= 0,

1−
∑
k∈N

ψ(2−k|x|) if k = 0,

for some non negative function ψ ∈ S(R,R) supported in [1
2
, 2] and such that∑

k∈Z
ψ(2−kx) = 1 ∀x ∈ R∗. Given such a partition we consider operators

Dk : Lp(Rn;X) → Lp(Rn;X)

f 7→ f ∗ φ̌k

Remark that we have DkDj = 0 whenever |j − k| > 1. We recall the following
results of Bourgain.
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Theorem 6.3.1 (Bourgain 1986)
Let X be a UMD Banach space, 1 < p < ∞ and (Dk)k∈Z+ ∈ B(Lp(Rn;X)) be

defined as above. Then there exists C > 0 such that for all f ∈ Lp(Rn;X)

1

C
‖f‖Lp(Rn;X) ≤

1∫
0

‖
∑
k∈Z+

εk(t)Dkf‖Lp(Rn;X)dt ≤ C‖f‖Lp(Rn;X).

Theorem 6.3.2 (Bourgain (n=1) 1986, Zimmermann 1989)
Let X be a UMD Banach space, 1 < p < ∞ and m : Rn\{0} → C be a bounded

function such that

sup{|ξ||α|‖Dαm(ξ)‖ ; ξ ∈ Rn\{0} α ∈ (Z+)n |α| ≤ n} <∞.

Then the Fourier multiplier, initially defined on S(Rn, X) by Taf(x) =
∫

Rn e
ix.ξm(ξ)f̂(ξ)dξ,

extends to a bounded operator on Lp(Rn;X).

We also need the following corollaries.

Corollary 6.3.3 (Kalton, Weis 2001)
Let X be a UMD Banach space and 1 < p < ∞. Then (Dk)k∈Z+ ∈ B(Lp(Rn;X)),

defined as above, is a R-bounded family.

Proof :
By Theorem 6.3.2 we have that

sup
n∈N

sup
εk=±1

‖
n∑
k=1

εkDk‖ <∞.

The result therefore follows from Theorem 3.3 in [KW01]. �

Corollary 6.3.4
LetX be a UMD Banach space and 1 < p <∞. Then ∃C > 0 ∀N ∈ N ∀(f0, ..., fN) ∈
Lp(Rn;X)N

‖
N∑
k=0

Dkfk‖Lp(Rn;X) ≤ C

1∫
0

‖
N∑
k=0

εk(t)Dkfk‖Lp(Rn;X)dt.

Proof :
Denoting by � inequalities up to a constant which does not depend on N and
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(f0, ..., fN) we have

‖
N∑
k=0

Dkfk‖Lp(Rn;X) �
1∫

0

‖
∑
j∈Z+

εj(t)Dj

N∑
k=0

Dkfk‖Lp(Rn;X)dt (by Theorem 6.3.1)

�
1∫

0

(‖
N∑
k=1

εk−1(t)Dk−1Dkfk‖Lp(Rn;X) + ‖
N∑
k=0

εk(t)DkDkfk‖Lp(Rn;X)

+ ‖
N∑
k=0

εk+1(t)Dk+1Dkfk‖Lp(Rn;X))dt

�
1∫

0

‖
N∑
k=0

εk(t)Dkfk‖Lp(Rn;X) (by Corollary 6.3.3)

�

Proposition 6.3.5
Let X be a UMD Banach space, 1 < p < ∞, n ∈ N, δ ∈ (0, 1) and m the smallest
integer such that m > max( n

1−δ , n+ 2). Consider

a(x, ξ) =
∑
j∈Z+

ψj(ξ)aj(x) ∀x ∈ Rn ∀ξ ∈ Rn

where

(i) ∃C > 0 R({aj(x) ; j ∈ Z+}) ≤ C ∀x ∈ Rn.

(ii) ∀j ∈ Z+ aj ∈ C2m(Rn, B(X)) and

∃Cα > 0 ‖∂αaj(x)‖ ≤ Cα2
jδ|α| ∀x ∈ Rn

(iii) (ψj)j∈Z+ ⊂ S(Rn; R) is such that

(a) ∃C > 0 |∂αξ ψj(ξ)| ≤ C2j|α| ∀ξ ∈ Rn ∀α ∈ Zn
+|α| ≤ n+ 2,

(b) supp(ψ0) ⊂ {ξ ∈ Rn ; |ξ| ≤ 1} and, ∀j ∈ N, supp(ψj) ⊂ {ξ ∈ Rn ; 2j−2 ≤
|ξ| ≤ 2j+2}.

Then Ta defined by (6.1) extends to a bounded operator on Lp(Rn;X).

Proof :
For f ∈ S(Rn × Rn\{0}, X) let us define

Tjf(x) =

∫
Rn

eix.ξψj(ξ)aj(x)f̂(ξ)dξ ∀x ∈ Rn.
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We have that

Taf =
∑
j∈Z+

Tjf =
∑
k∈Z+

∑
j∈Z+

DkTjf ∀f ∈ S(Rn × Rn\{0}, X).

Moreover, by Corollary 6.3.4 there exists a constant C > 0 such that, letting D−j =
0 ∀j ∈ N, the following holds.

‖
∑
j∈Z+

∑
k∈Z+

DkTjf‖ ≤
4∑

k=−4

‖
∑
j∈Z+

Dj+kTjf‖+

∑
j∈Z+

∑
k∈Z+
|k−j|>4

‖DkTj‖

 ‖f‖,

≤ C
4∑

k=−4

∫ 1

0

‖
∑
j∈Z+

εj(t)Dj+kTjf‖dt+

∑
j∈Z+

∑
k∈Z+
|k−j|>4

‖DkTj‖

 ‖f‖,
where (εj)j∈Z+ is a sequence of Rademacher functions. It therefore suffices to show

1. ∃C > 0 ∀N ∈ N
∫ 1

0
‖
∑
j∈Z+

εj(t)Dk(j)Tjf‖Lp(Rn;X)dt ≤ C‖f‖Lp(Rn;X),

where, given an integer l such that |l| ≤ 4, k : Z+ → Z+ is of the form
k(m) = m+ l ∀m ∈ Z.

2. ∃C ′ > 0
∑

(k,j)∈Z2
+

|k−j|>4

‖DkTj‖B(Lp(Rn;X)) ≤ C ′.

Let us start with 1. Let f ∈ S(Rn × Rn\{0}, X). Denoting by � inequalities up to
a constant which does not depend on f and N we obtain

(

∫ 1

0

‖
N∑
j=0

εj(t)Dk(j)Tjf‖Lp(Rn;X)dt)
p

�
∫ 1

0

‖
N∑
j=0

εj(t)Dk(j)Tjf‖pLp(RnX)dt (by Kahane’s inequalities)

�
∫ 1

0

‖
N∑
j=0

εj(t)Tjf‖pLp(Rn;X)dt (by Corollary 6.3.3)

�
∫ 1

0

∫
Rn

‖
N∑
j=0

εj(t)aj(x)

∫
Rn

eix.ξψj(ξ)f̂(ξ)dξ‖pXdxdt

�
∫ 1

0

∫
Rn

‖
∫

Rn

eix.ξ
N∑
j=0

εj(t)ψj(ξ)f̂(ξ)dξ‖pXdxdt (by (i))

� ‖f‖pLp(Rn;X) (by Theorem 6.3.2 and (iii)).
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We now turn to 2. Let k and j be two integers such that |k − j| > 4. First we
remark that

∀x ∈ Rn DkTjf(x) =

∫
Rn

Kj,k(x, y)f(y)dy

where Kj,k(x, y) =
∫

R3n φk(η)ψj(ξ)e
iξ.(z−y)eiη.(x−z)aj(z)dzdηdξ. Now we consider a

function χ ∈ S(Rn,R) with compact support satisfying χ(0) = 1 and define, for
ε ∈ (0, 1) the following kernels.

Kj,k,ε(x, y) =

∫
R3n

φk(η)ψj(ξ)e
iξ.(z−y)eiη.(x−z)χ(εz)aj(z)dzdηdξ..

Integrating by parts in the z-variable and denoting by ∆z the Laplace operator with
respect to the variable z we obtain

Kj,k,ε(x, y) =

∫
R3n

eiξ(z−y)eiη(x−z)

(1 + |ξ − η|2)m
φk(η)ψj(ξ)(I −∆z)

mχ(εz)aj(z)dzdηdξ

Now integrating by parts in the other variables we obtain the following, where m′

is such that n < 2m′ ≤ n+ 2.

Kj,k,ε(x, y) =

∫
R3n

eiξ(z−y)eiη(x−z)

(1 + |z − x|2)m′(1 + |z − y|2)m′

(I −∆η)
m′

(I −∆ξ)
m′
(

φk(η)ψj(ξ)

(1 + |ξ − η|2)m

)
(I −∆z)

mχ(εz)aj(z)dzdηdξ.

Using (ii) we obtain a constant C > 0, independant of ε such that

‖Kj,k,ε(x, y)‖B(X) ≤ C22jδm

∫
R2n

|(I −∆η)
m′

(I −∆ξ)
m′
(

φk(η)ψj(ξ)

(1 + |ξ − η|2)m

)
|dξdη

∫
Rn

1

(1 + |z − x|2)m′

1

(1 + |z − y|2)m′ dz.

Now using the fact that supp(φl) ⊂ {s ∈ Rn ; 2l−1 ≤ |s| ≤ 2l+1} and |k − j| > 4 we
remark that there exists a constant C ′ > 0 such that∫

R2n

|(I −∆η)
m′

(I −∆ξ)
m′
(

φk(η)ψj(ξ)

(1 + |ξ − η|2)m

)
|dξdη

≤ C ′2max(j,k)(2n−2m).

Therefore, letting ε tend to zero, we obtain a constant C̃ > 0 such that

‖Kj,k(x, y)‖ ≤ C̃22jδm2max(j,k)(2n−2m)

∫
Rn

1

(1 + |z − x|2)m′

1

(1 + |z − y|2)m′ dz.
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And thus ∃C ′ > 0 such that

‖DkTj‖B(Lp(Rn;X)) ≤ C ′22jδm2max(j,k)(2n−2m),

which concludes the proof since

∑
(j,k)∈Z+×Z+

22jδm2max(j,k)(2n−2m) ≤ 2
∞∑
j=0

j4j(n−2(1−δ)m) <∞.

�

We now consider an analogue of the Coifman-Meyer decomposition.

Proposition 6.3.6
Let X be a Banach space, n ∈ N, m ∈ N such that m ≥ 2n+ 4 and a ∈ S0

1,δ(m,X).
Then there exists a sequence (cj)j∈Zn ⊂ `1, a sequence (ψk)k∈Z+ ⊂ S(Rn; R) and a
sequence of functions from Rn to B(X) (aj,k)(j,k)∈Zn×Z+ such that

(i) a(x, ξ) =
∑

(j,k)∈Zn×Z+

cjψk(ξ)
e2
−kij.ξ

(1+|j|)n+2aj,k(x) ∀(x, ξ) ∈ Rn × Rn\{0},

(ii) ∃C > 0 R({aj,k(x) ; k ∈ Z+}) ≤ C ∀x ∈ Rn ∀j ∈ Z,

(iii) ∃K > 0 ∀β ∈ (Z+)n |β| ≤ m

‖∂βxaj,k(x)‖ ≤ K2kδ|β| ∀x ∈ Rn ∀j ∈ Zn ∀k ∈ Z+.

Proof :
Let (φk)k∈Z+ be a dyadic partition of unity in S(Rn,R). For each x ∈ Rn and k ∈ Z+

define
bk(x, ξ) = a(x, 2kξ)φk(2

kξ),

and consider the functions Bk : ξ 7→
∑
j∈Zn

bk(x, ξ−2jπ). Expanding those functions as

Fourier series, and considering two functions ψ0, ψ1 ∈ S(Rn; R) such that supp(ψ0) ⊂
{ξ ∈ Rn ; |ξ| ≤ 1} and supp(ψ1) ⊂ {ξ ∈ Rn ; 2−2 ≤ |ξ| ≤ 4} we can write

b0(x, ξ) =
∑
j∈Zn

1

(1 + |j|2)n+2
eij.ξψ0(ξ)aj,k(x) ∀(x, ξ) ∈ Rn × Rn\{0}

and, for all k ∈ N,

bk(x, ξ) =
∑
j∈Zn

1

(1 + |j|2)n+2
eij.ξψ1(ξ)aj,k(x) ∀(x, ξ) ∈ Rn × Rn\{0}
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where

aj,k(x) =

∫
[−π,π]n

e−ij.ξ(I −∆ξ)
n+2bk(x, ξ)dξ ∀(j, k) ∈ Zn × Z+ ∀x ∈ Rn. (6.6)

Letting, for all k ∈ N,ψk(ξ) = ψ1(2
−kξ) ∀ξ ∈ Rn, we have that, for all (x, ξ) ∈

Rn × Rn\{0},

a(x, ξ) =
∑
k∈Z+

bk(x, 2
−kξ) =

∑
(k,j)∈Z+×Zn

(1 + |j|)n+2

(1 + |j|2)n+2
ψk(ξ)

e2
−kij.ξ

(1 + |j|)n+2
aj,k(x).

This gives (i) with cj = (1+|j|)n+2

(1+|j|2)n+2 ∀j ∈ Zn.

Since a ∈ S0
1,δ(X) we also have that

∃C > 0 R({(1+|2kξ|2)n+2
(
(I −∆ξ)

n+2a(x, .)
)
(2kξ) ; ξ ∈ Rn , k ∈ Z+}) ≤ C ∀x ∈ Rn,

and therefore that

∃C ′ > 0 R({(I −∆ξ)
n+2bk(x, ξ) ; ξ ∈ Rn , k ∈ Z+}) ≤ C ′ ∀x ∈ Rn.

Given (6.6) this leads (ii).
Finally we observe that, since a ∈ S0

1,δ(X),
∀β ∈ (Z+)n |β| ≤ m ∃Cβ, C ′β > 0 such that ∀(k, j) ∈ Z+ × Zn

‖∂βxaj,k(x)‖ ≤ Cβ

∫
[−π,π]n

‖∂βx (I −∆ξ)
n+2bk(x, ξ)‖dξ

≤ C ′β2
kδ|β|.

This gives (iii). �
Proof of Theorem (6.2.4) :
Let a ∈ S0

1,δ(m,X) and f ∈ S(Rn × Rn\{0}, X). By Proposition (6.3.6) we have

a(x, ξ) =
∑

(j,k)∈Zn×Z+

cjψk(ξ)
e2

−kij.ξ

(1 + |j|)n+2
aj,k(x) ∀(x, ξ) ∈ Rn × Rn\{0}.

Let ψ̃k,j(ξ) = ψk(ξ)
e2
−kij.ξ

(1+|j|)n+2 ∀ξ ∈ Rn ∀(k, j) ∈ Z+ × Zn and

ãj(x, ξ) =
∑
k∈Z+

ψk(ξ)aj,k(x) ∀(x, ξ) ∈ Rn × Rn\{0} ∀j ∈ Zn. By Proposition

6.3.5 the operators Teaj
are bounded on Lp(Rn;X) uniformly in j ∈ Zn. The result

therefore follows from the fact that (cj)j∈Zn ∈ `1 and that Ta =
∑
j∈Zn

Teaj
. �
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6.4 Proof of Theorem 6.2.3

To reduce this case to the one treated in Theorem 6.2.4 we use an analogue of a
decomposition technique due to M.Nagase. Starting with a symbol a ∈ S0

1,τ (r,m,X)
we show in this section that

a = b+ r

with b ∈ S0
1,δ(m,X) ( for some δ ∈ (0, 1)) and r being such that Tr defined by (6.1)

extends to a bounded operator on Lp(Rn;X) (1 < p <∞). We start with a lemma
giving a condition on a symbol r for Tr to be Lp bounded.

Lemma 6.4.1
Let X be a Banach space, 1 < p <∞, n ∈ N and r : Rn×Rn\{0} → B(X) be such
that ∃ρ ∈ (0, 1) ∀α ∈ (Z+)n |α| ≤ n+ 1 ∃Cα > 0 such that

(1 + |ξ|)|α|+ρ‖∂αξ r(x, ξ)‖ ≤ Cα.

Then Tr defined by (6.1) extends to a bounded operator on Lp(Rn;X).

Proof :
This follows the proof of Theorem 2 from [Na77]. Let χ ∈ S(Rn,R) be a compactly
supported function satisfying χ(0) = 1, ε ∈ (0, 1) and define the following.

rε(x, ξ) = χ(εξ)r(x, ξ)

‖r‖ρ =
∑

|α|≤n+1

sup{(1 + |ξ|)|α|+ρ‖∂αξ r(x, ξ)‖ ; ξ ∈ Rn}

‖rε‖ρ =
∑

|α|≤n+1

sup{(1 + |ξ|)|α|+ρ‖∂αξ rε(x, ξ)‖ ; ξ ∈ Rn}

Kε(x, y) =

∫
Rn

ei(x−y)ξχ(εξ)r(x, ξ)dξ

Letting α ∈ (Z+)n, |α| ∈ {n, n + 1} and integrating by parts leads, for all (x, y) ∈
Rn × Rn\{0}

‖(x−y)αKε(x, y)‖ = ‖
∫
Rn

ei(x−y)ξ∂αξ (χ(εξ)r(x, ξ))dξ‖ = ‖
∫
Rn

(ei(x−y)ξ−1)∂αξ (χ(εξ)r(x, ξ))dξ‖.

Moreover |ei(x−y)ξ − 1| ≤ 2|x − y|ρ′(1 + |ξ|)ρ′ for all (x, y) ∈ Rn × Rn\{0} and all
ρ′ ∈ (0, 1). Picking ρ′ ∈ (0,min(ρ, 1)) we obtain that, for all (x, y) ∈ Rn × Rn\{0},
there exists C > 0 independant of ε such that ‖(x − y)αKε(x, y)‖ ≤ C|x − y|ρ′−ρ.
Therefore we have that, as ε tends to 0, Kε tends to a function K : Rn×Rn\{0} →
B(X) such that

Trf(x) =

∫
Rn

K(x, y)f(y)dy ∀x ∈ Rn,
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which satisfies

‖(1 + |x− y|)|x− y|nK(x, y)‖ ≤ C ′|x− y|ρ′ ∀(x, y) ∈ Rn × Rn\{0}

for some constant C ′ independant of ε. Schur’s lemma therefore gives the result. �

We now turn to the decomposition itself.

Proposition 6.4.2
Let X be a Banach space, (r, τ) ∈ (0, 1)2, n ∈ N, m ∈ N, m ≥ n + 1 and a ∈
S0

1,τ (r,m,X). Then there exists functions b, r, from Rn × Rn\{0} to B(X), such
that

(i) ∃δ ∈ (0, 1) such that b ∈ S0
1,δ(m,X).

(ii) ∃ρ ∈ (0, 1) ∀α ∈ (Z+)n |α| ≤ n+ 1 ∃Cα > 0 such that

(1 + |ξ|)|α|+ρ‖∂αξ r(x, ξ)‖ ≤ Cα

Proof :
Let δ ∈ (τ, 1) and consider φ ∈ C∞c (Rn) such that

∫
Rn

φ(y)dy = 1. Define, for

(x, ξ) ∈ Rn × Rn\{0},

b(x, ξ) =

∫
Rn

φ((1 + |ξ|)δ(x− y))(1 + |ξ|)nδa(y, ξ)dy and r(x, ξ) = a(x, ξ)− b(x, ξ).

We have to show that b satisfies (i) and that r satisfies (ii).
Let us start with (i).
Let α ∈ (Z+)n, 0 < |α| ≤ m, β ∈ (Z+)n, |β| ≤ m. We have ∀(x, ξ) ∈ Rn × Rn\{0}

∂βx∂
α
ξ b(x, ξ) =

∑
α′≤α

α!

α′!(α− α′)!

∫
Rn

∂α
′

ξ (φ(β)((1+|ξ|)δ(x−y))(1+|ξ|)δ(n+|β|))∂α−α
′

ξ a(y, ξ)dy

where φ(β)(z) = ∂βz φ(z). As in [Na77] we remark that, denoting by � inequalities
up to a constant independant of x, y and ξ, we have, for all (x, ξ) ∈ Rn × Rn\{0},

|∂α′ξ (φ(β)((1 + |ξ|)δ(x− y))(1 + |ξ|)δ(n+|β|))|

�
∑
γ≤α′

(1 + |ξ|)−|α′||
(
(1 + |ξ|)δ(x− y)

)γ ||φ(β+γ)((1 + |ξ|)δ(x− y))|(1 + |ξ|)δ(n+|β|).

Therefore

‖∂βx∂αξ b(x, ξ)‖ �
∑
α′≤α

∑
γ≤α′

∫
Rn

(1 + |ξ|)−|α|+δ|β||zγφ(β+γ)(z)|dz � (1 + |ξ|)−|α|+δ|β|
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since φ has compact support.
Moreover, considering N ∈ N, (εj)

N
j=1 a sequence of Rademacher functions,

(ξj)
N
j=1 ⊂ Rn, (xj)

N
j=1 ⊂ X and α ∈ Zn

+, |α| ≤ m, we have that

1∫
0

‖
N∑
j=1

εj(t)(1 + |ξj|)|α|∂αξ b(x, ξj)xj‖dt �
∑
α′≤α

1∫
0

‖
N∑
j=1

εj(t)(1 + |ξj|)|α|∫
Rn

∂α
′

ξ (φ(β)((1 + |ξj|)δ(x− y))(1 + |ξj|)δ(n+|β|))∂α−α
′

ξ a(y, ξj)dy‖dt

Now let us define a function Ψα′ : Rn → R such that

∂α
′

ξ (φ(β)((1 + |ξ|)δ(x− y))(1 + |ξ|)δ(n+|β|))

= Ψα′(ξ)(1 + |ξ|)δn
(
(1 + |ξ|)δ(x− y)

)γ
φ(γ)((1 + |ξ|)δ(x− y))

and remark that
|Ψα′(ξ)| � (1 + |ξ|)−|α′|.

We then have that

1∫
0

‖
N∑
j=1

εj(t)(1 + |ξj|)|α|∂αξ b(x, ξj)xj‖dt

�
∑
α′≤α

∑
γ≤α′

1∫
0

‖
N∑
j=1

εj(t)(1 + |ξj|)|α|
∫
Rn

Ψα′(ξ)z
γφ(γ)(z)∂

α−α′
ξ a(x− z

(1 + |ξj|)δ
ξj)xjdz‖dt,

�
∑
α′≤α

∑
γ≤α′

1∫
0

∫
Rn

|zγφ(γ)(z)|‖
N∑
j=1

εj(t)(1 + |ξj|)|α−α
′|∂α−α

′

ξ a(x− z

(1 + |ξj|)δ
ξj)xj‖dtdz,

�
∑
α′≤α

∑
γ≤α′

1∫
0

∫
Rn

|zγ|φ(γ)(z)|dz‖
N∑
j=1

εj(t)xj‖dt,

�
1∫

0

‖
N∑
j=1

εj(t)xj‖dt,

since a ∈ S0
1,τ (r,m,X).

We now turn to (ii).
Let α ∈ (Z+)n , |α| ≤ n+1. Pick ρ ∈ (0, (δ−τ)r). ¿From the fact that

∫
Rn

φ(z)dz = 1

we have that ∀(x, ξ) ∈ Rn × Rn\{0}

r(x, ξ) =

∫
Rn

φ((1 + |ξ|)δ(x− y))(1 + |ξ|)nδ(a(x, ξ)− a(y, ξ))dy.
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As before we then have that

‖∂αξ r(x, ξ)‖ �
∑
α′≤α

∑
γ≤α′

(1 + |ξ|)−|α′|∫
Rn

|
(
(1 + |ξ|)δy

)γ ||φ(γ)((1 + |ξ|)δy)|(1 + |ξ|)δn‖∂α−α′ξ (a(x− y), ξ)− a(x, ξ)‖dy,

�
∑
α′≤α

∑
γ≤α′

∫
Rn

|
(
(1 + |ξ|)δy

)γ ||φ(γ)((1 + |ξ|)δy)|(1 + |ξ|)δn|y|r(1 + |ξ|)−|α|+τrdy,

�
∫
Rn

|zγφ(γ)(z)||zr|(1 + |ξ|)−|α|+(τ−δ)rdz � (1 + |ξ|)−|α|−ρ.

6.5 Application to maximal regularity of non au-

tonomous evolution equations

We consider the following Cauchy problem, where (A(t), D(A(t)))t∈[0,T ] is a family
of generators of analytic semigroups.

(NACP )

{
u′(t)− A(t)u(t) = f(t) ∀t ∈ [0, T ],

u(0) = 0,

This problem is said to have Lp-maximal regularity (1 < p < ∞) if, for each f ∈
Lp([0, T ];X), it has a unique solution u ∈ W 1,p

0 ([0, T ];X). We make the following
assumptions.

(A) ∃φ ∈ (0,
π

2
) ∃M > 0 ∀t ∈ [0, T ] ∀λ 6∈ Σφ,

σ(A(t)) ⊂ Σφ and ‖(1 + |λ|)R(λ,−A(t))‖ ≤M.

(AT ) ∃K > 0 ∃0 ≤ α < β ≤ 1 ∃φ ≤ ψ <
π

2
∀(t, s) ∈ [0, T ]2 ∀λ 6∈ Σψ,

‖A(t)R(λ,−A(t))(A(t)−1 − A(s)−1)‖ ≤ K
|t− s|β

1 + |λ|1−|α|
.

Since the article [AT87], where Acquistapace and Terreni introduced condition (AT),
the problem (NACP) is known to have a unique classical solution as soon as (A) and
(AT) are assumed (see [MR00] for a proof using evolution families) Moreover, Hieber
and Monniaux have proved in [HM00] that (NACP) has Lp-maximal regularity if
and only if the operator Ta defined by 6.1 with

a(x, ξ) =


iξR(iξ, A(0)) if x < 0,

iξR(iξ, A(x)) if x ∈ [0, T ],

iξR(iξ, A(T )) if x > T,

(6.7)
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extends to a bounded operator on Lp(R;X). To obtain such a maximal regularity
we therefore replace (A) by the following stronger hypothesis.

(RA) ∃φ ∈ (0,
π

2
) ∃M > 0 σ(A(t)) ⊂ Σφ ∀t ∈ [0, T ]

and R({(1 + |λ|)R(λ,−A(t)) ; λ 6∈ Σφ , t ∈ [0, T ]}) ≤M.

We then obtain the following result.

Corollary 6.5.1
Let X be a UMD Banach space, 1 < p < ∞ and (A(t), D(A(t)))t∈[0,T ] be a family
of operators satisfying (RA) and (AT). Then (NACP) has Lp-maximal regularity.

Proof :
Given Theorem 6.2.3 we just have to show that the symbol a defined by 6.7 belongs
to S0

1,δ(m, r;X) for some m > max( n
1−δ , 2n+ 4) and some (δ, r) ∈ (0, 1). Condition

6.4 follows from (RA). Moreover, for (t, s) ∈ [0, T ]2 and ξ ∈ R, we have by (RA)
and (AT) that

‖R(iξ, A(t))−R(iξ, A(s))‖ ≤ ‖A(s)R(iξ, A(s))‖‖A(t)R(iξ, A(t))(A(t)−1 − A(s)−1)‖,

≤MK
|t− s|β

(1 + |ξ|)1−|α| ,

which leads 6.5 with r = β and δ = α
β
. �
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(1974), Ecole Polytechnique, Paris.

[Pi75] G. Pisier. Martingales with values in uniformly convex spaces, Israel J. Math.
20 (1975), 326-350.

[PX97] G. Pisier, Q. Xu. Non-commutative martingale inequalities, Comm. Math.
Phys. 189 (1997), 667-698.

[PX03] G. Pisier, Q. Xu. Non commutative Lp spaces, in Handbook of the geometry
of Banach spaces, volume 2, 1459-1517. North-Holland, Amsterdam, 2003.

[Po03] P. Portal. Discrete time analytic semigroups and the geometry of Banach
spaces, Semigroup Forum 67 (2003), 125-144.

[Po04] P. Portal. Maximal regularity of evolution equations on discrete time scales,
submitted.
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