Développement méthodologique de l'application d'agents pharmacologiques renforçateurs de l'effet photoélectrique pour l'utilisation du rayonnement synchrotron en radiothérapie anticancéreuse

Stéphanie CORDE

Équipe d'accueil n° 2941, Université Joseph Fourier, Grenoble « Rayonnement Synchrotron et Recherche Médicale »

Rayonnement synchrotron: principe

Rayonnement synchrotron: ligne médicale

Tomographie quantitative par rayonnement synchrotron

Faisabilité

SRCT: performance des mesures quantitatives						
< 33.169 keV > 33.169 keV [iode]		 Φ 10 cm RSB=3 5 cGy/pi 	<pre>Φ 16.5 cm + 0.5 RSB=3 60 cGy/pi</pre>			
	K-e	57 μg/ml	185 μ g/ml			
< 50.239 keV > 50.239 keV [gadolinium]	dge	60 μg/ml	81 μ g/ml			
Sans iode Avec iode [iode]	Tem	51 μg/ml (33.2 keV)	90 µg/ml (50 keV)			
	nporelle	57 μg/ml (50.3 keV)	58 μg/ml (50.3 keV)			

SRCT: faisabilité in vivo

IRM

SRCT: résultats quantitatifs

Image SRCT Iode

Concentrations injectées

I	Gd	Gd
Hexabrix®	Magnevist ®	Gadovist ®
320 mg/ml	78.5 mg/ml	157 mg/ml
0.4 ml/100g	0.5 ml/100g	0.25 ml/100g

Concentrations mesurées (10 min post injection) (n=5) Image SRCT -Gadolinium

mg/cm ³	[I]	[Gd]	[Gd]
Périphérie	0.8 (0.4)	0.5 (0.1)	0.6 (0.1)
Centre	0.6 (0.4)	0.2 (0.2)	0.4 (0.2)
Controlatéral	0.3 (0.1)	0.1 (0.06)	0.13 (0.09)

SRCT: cinétiques de diffusion

0.5 ml/100 g Magnevist®

10 min

20 min

40 min

1 h

0.25 ml/100 g Gadovist®

5 min

10 min

20 min

1 h

SRCT: bilan et implications pour l'homme

Gadolinium (Z=64)

- **S** Concentrations
- 🕲 Meilleur RSB, seuil K, pas d'allergie

■Iode (Z=53)

😕 Seuil K, risque d'allergie

Soustraction temporelle, + concentré

Homme ?

I-10 mg/cm³ intratumoral grâce rupture BHE (optimisation)

SRCT: outil d'irradiation?

imageur en temps réel (anatomique et fonctionnel), quantifiant in vivo les concentrations d'agents de contraste => données de base d'une thérapie binaire

Mesurer un gain d'énergie déposée

De la radiologie à la dosimétrie

Effet photoélectrique: dosimétrie

$$Dose_{(J/kg)} = \Phi_{(m^{-2})} E_{(J)} \left(\frac{\mu_{en}}{\rho}\right)_{mat(m^2/kg)}^E$$

Facteur d'augmentation

de dépôt d'énergie

 $\left(\frac{\mu_{en}}{\rho}\right)$) mélange DEF $\frac{\mu_{en}}{\rho}$

Relation dose-effet:

méthodologie

Relation dose-effet: RX de 50 keV

Relation dose-effet: optimisation de l'énergie

Mesure du gain d'énergie:

- Présence d'iode augmente radiotoxicité des RX de basse énergie ⁽³⁾
- 50 keV est l'énergie optimale 😂
- 10 mg/ml d'iode dans le milieu de culture permettent de réduire de moitié la dose de RX de 50 keV nécessaire pour obtenir un taux de survie de 10% ^(S)
- SRxCT vs CTRx

conclusions

Cibler le dépôt d'énergie

Efficacité biologique de l 'induction photonique externe de cascades d 'électrons Auger sur un hétéroatome de l 'ADN

Analogue de base de l'ADN: *l' IUdR*

Sellules en cycle

Cible privilégiée des populations cellulaires à croissance rapide

Emetteurs Auger radioactifs

Securité limitée mais radiosensibilisant

IUdR: radiosensibilisation en fonction RX

IUdR: supra-additivité des effets

IUdR: Conclusions

- Radiosensibilisation par l'IUdR dépend de l'énergie d'irradiation; 50 keV en est l'optimum (2.62) ⁽²⁾
- Courbes caractéristiques rayonnement fort TEL (2)
- 10 μ M IUdR (48h) 30 % plus efficace que 10 mg/ml d'iode dans le milieu de culture 😂
- Supra-additivité des traitements pharmacologiques combinés ⁽²⁾

Agent à comportement alkylant: CDDP

Cis-diamminedichloroplatinum (II)

Se Diffusion ou transport actif

Search Adduits

CDDP: courbes de survies cellulaires

CDDP: dosage Pt par ICP-SM

CDDP: dosage Pt par SR-XRF

CDDP: cartographies subcellulaires

SQ20B 100 μ M CDDP- 6 h ; 100 s/ points; 30x30 μ m²; 1 (v) x 3 (h) μ m² résolution spatiale

CDDP: conclusions survie cellulaire

- Pas de différence de courbes de survie
- Localisation platine intracellulaire
- Toxicité du CDDP sur SQ20B masque-t-elle radiosensibilisation liée interaction photoélectrique des RX sur drogue?

CDDP: *inhibition réparation par suture de brins*

CDDP: propositions et conclusions

- Modèle de travail plus adapté (cellules, drogue)
- Fenêtre de visibilité des effets : conditions idéales

 LMDS: formation de dommages multiples très localisés, réparés par le mode de réparation de cassures de brins le plus fidèle

 Voies de réparation: à l'origine de l'absence de différence sur les courbes de survie cellulaire?

En conclusion...

Conclusions

un concept original en radiothérapie anticancéreuse

« Des capteurs d'interactions physiques placés dans des lieux stratégiques de la viabilité des cellules tumorales pour rendre l'irradiation biologiquement plus efficace »

Merci!

Institut national de la santé et de la recherche médicale

Pour en savoir plus...

« Lack of cell death enhancement after irradiation by monochromatic synchrotron X-ray at the K-edge of platinum incorporated in living SQ20B human cells as cis-diamminedichloroplatinum (II)» Corde S., Biston MC. *et al.* (2002) Radiation Research 158 : sous presse

« Performance of computed tomography for contrast agent concentration measurements with monochromatic x-ray beams: comparison of K-edge versus temporal subtraction» Elleaume H., Charvet AM. *et al.* (2002) Physics in Medicine and Biology 47 (18): 3369-3385

« Feasibility of synchrotron radiation computed tomography on rats bearing glioma after iodine or gadolinium injection» Le Duc G., Corde S. *et al.* (2000) European Radiology 10 (9): 1487-1492

« Research at the European Synchrotron Radiation Facility Medical Beamline» Thomlinson W., Berkvens P. *et al.* (2000) Cellular and Molecular Biology 46 (6): 1053-1063

« In vivo K-edge imaging with synchrotron radiation» Elleaume H., Charvet AM. *et al.* (2000) Cellular and Molecular Biology 46 (6): 1065-1075

« Absolute cerebral blood volume and blood flow measurements based on synchrotron radiation quantitative computed tomography» Adam JF., Elleaume H. *et al.* (en révision favorable pour publication dans Journal of cerebral blood flow metabolism, Octobre 2002)

« Synchrotron photoactivation of cisplatin elicits an extra-number of DNA breaks that stimulate BRCA1dependant repair pathways» Corde S., Balosso J. *et al.* (soumis à Cancer Research, Septembre 2002)

« An objective method to measure cell survival by computed-assisted image processing using numeric images of Petri dishes» Biston MC., Corde S. *et al.* (soumis à International Journal of Radiation Oncology Biology and Physics, Octobre 2002)