
HAL Id: tel-00006328
https://theses.hal.science/tel-00006328

Submitted on 28 Jun 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Analysis of Real Time Systems with
Preemption, Uncertainty and Dependency

Marcelo Zanconi

To cite this version:
Marcelo Zanconi. Modeling and Analysis of Real Time Systems with Preemption, Uncertainty and
Dependency. Networking and Internet Architecture [cs.NI]. Université Joseph-Fourier - Grenoble I,
2004. English. �NNT : �. �tel-00006328�

https://theses.hal.science/tel-00006328
https://hal.archives-ouvertes.fr

Universit�e Joseph FourierNÆ attribu�e par la biblioth�equej = = = = = = = = = =T H �E S Epour obtenir le grade deDOCTEUR DE L'UJFSp�e
ialit�e : \INFORMATIQUE : SYST�EMES ET COMMUNICATION"pr�epar�ee au laboratoire Verimagdans le
adre de l'�E
ole do
torale \MATH�EMATIQUES, SCIENCES ET TECHNOLOGIES DEL'INFORMATION, INFORMATIQUE"pr�esent�ee et soutenue publiquementparMar
elo ZANCONIle 22 Juin 2004Titre :Modeling and Analysis of Real Time Systemswith Preemption, Un
ertainty and Dependen
y(Mod�elisation et Analyse de Syst�emes Temps R�eel,ave
 Preemption, In
ertitude et Dependen
es)Dire
teur de th�ese :Sergio YOVINEJURYDominique Duval PresidenteAlfredo Olivero RapporteurAhmed Bouajjani RapporteurPhilippe Clauss ExaminateurJa
ques Pulou Examinateur

Contents
Remer
iements 9Agrade
imientos 111 Introdu
ing the a
tors 131.1 Real Time Systems . 131.2 Traditional vs Real Time Software . 15The role of rt Modelling . 16The role of Time . 17The role of the S
heduler . 181.3 Contributions . 191.4 Thesaurus . 202 Setting some order in the Chaos: S
heduling 212.1 S
hedulers . 222.2 Periodi
 Independent Tasks . 242.2.1 Rate Monotoni
 Analysis . 252.2.2 Earliest Deadline First . 262.2.3 Comparison . 272.3 Periodi
 Dependent Tasks . 282.3.1 Priority Inheritan
e Proto
ol . 282.3.2 Priority Ceiling Proto
ol . 312.3.3 Immediate Inheritan
e Proto
ol . 332.3.4 Dynami
 Priority Ceiling Proto
ol . 332.4 Periodi
 and Aperiodi
 Independent Tasks . 352.4.1 Sla
k Stealing Algorithms . 36Cal
ulating Idle Times . 372.5 Periodi
 and Aperiodi
 Dependent Tasks . 382.5.1 Total Bandwidth Server . 392.5.2 tbs with resour
es . 393

4 CONTENTS2.6 Event Triggered Tasks . 412.6.1 A Model for ett . 422.6.2 Validation of the Model . 432.7 Tasks with Complex Constraints . 453 Inspiring Ideas 493.1 Introdu
tion . 493.2 Model of a rt-Java Program . 523.2.1 Stru
tural Model . 543.2.2 Behavioral Model . 553.3 S
hedulability without Shared Resour
es . 573.3.1 Model Analysis . 583.3.2 Examples . 603.4 Sharing Resour
es . 633.4.1 Con
i
t Graphs . 673.4.2 Implementation . 694 Life is Time, Time is a Model 714.1 Timed Automata . 714.1.1 Parallel Composition . 744.1.2 Rea
hability . 74Region equivalen
e . 754.1.3 Region graph algorithms . 774.1.4 Analysis using
lo
k
onstraints . 784.1.5 Forward
omputation of
lo
k
onstraints . 784.2 Extensions of ta . 794.2.1 Timed Automata with Deadlines . 804.2.2 Timed Automata with Chronometers . 80Stopwat
h Automaton . 80Timed Automata with tasks . 814.2.3 Timed Automaton with Updates . 834.3 Di�eren
e Bound Matri
es . 844.4 Modelling Framework . 864.5 A framework for Synthesis . 884.5.1 Algorithmi
 Approa
h to Synthesis . 884.5.2 Stru
tural Approa
h to Synthesis . 904.6 S
hedulability through tat . 924.6.1 S
hedulability Analysis . 934.7 Job-Shop S
heduling . 964.7.1 Job-shop and ta . 97

CONTENTS 54.8 Con
lusions . 995 The heart of the problem 1015.1 Motivation . 1015.2 Model . 1025.3 lifo s
heduling . 1045.3.1 lifo Transition Model . 1045.3.2 lifo Admittan
e Test . 1075.3.3 Properties of lifo s
heduler . 1075.3.4 Rea
hability Analysis in lifo S
heduler . 1085.3.5 Re�nement of lifo Admittan
e Test . 1135.4 edf S
heduling . 1155.4.1 edf Transition Model . 1165.4.2 edf Admittan
e Test . 1195.4.3 Properties of edf s
heduler . 1205.4.4 Re�nement of edf Admittan
e Test . 1215.5 General s
hedulers . 1235.5.1 Transition Model . 1245.5.2 Properties of a General S
heduler . 1275.5.3 S
hedulability Analysis . 128Case 1
 . 131Case 2
 . 133Case 3
 . 1345.5.4 Properties of the Model . 1355.6 Final Re
ipe! . 1366 Con
lusions 1376.1 Future Work . 139

6 CONTENTS

List of Figures
2.1 S
hedulers . 232.2 rma appli
ation . 262.3 EDF appli
ation . 272.4 Sequen
e of events under p
p . 332.5 Dynami
 p
p . 352.6 EDL stati
 s
heduler . 382.7 TBS example . 402.8 Sharing resour
es in an hybrid set . 422.9 An example of ett . 433.1 Constru
tion of a rt-Java S
heduled Program . 513.2 Two Threads . 523.3 Two Threads . 553.4 State Model . 563.5 Counter example of priority assignment . 583.6 Partially Ordered Tasks . 603.7 Time Line for ex. 3.1 . 623.8 Time Line for ex. 3.4 . 633.9 Java Code and its Modelisation . 643.10 Time Line [0,20℄ for ex.3.5 . 653.11 Time Line [0,20℄ for ex.3.6 . 653.12 Two Threads with shared resour
es . 663.13 Time Line for ex. 3.7 . 673.14 Wait for Graph example 3.1 . 673.15 Pruned and Cy
li
 wfg . 683.16 Cy
li
 Wait for Graph . 693.17 Two S
heduled Threads . 704.1 Modelling a periodi
 task . 724.2 Invariants and A
tions . 737

8 LIST OF FIGURES4.3 Region Equivalen
e . 754.4 Representation of sets of regions as
lo
k
onstraints . 784.5 Using swa and uta to model an appli
ation . 814.6 Timed Automata Extended with tasks . 824.7 Representation of
onvex sets of regions by dbm's. 854.8 Synthesis using tad . 904.9 A periodi
 pro
ess . 924.10 Priorities . 934.11 Zeno-behaviour . 944.12 En
oding S
hedulability Problem . 954.13 Jobs and Timed Automata . 985.1 A model of a system . 1025.2 Task automaton . 1035.3 One preemption lifo S
heduler . 1055.4 Invariants in lifo S
heduler . 1085.5 Clo
k Di�eren
es in lifo S
heduler . 1115.6 Tasks in a lifo s
heduler . 1145.7 One preemption edf S
heduler . 1165.8 Usage of di�eren
e
onstraints . 1195.9 Automaton for a General S
heduler . 1245.10 General edf S
heduler . 1255.11 Evolution of ~w and ~e . 1275.12 Analysis of dbm M . 1315.13 Case 1
 ��̂ > �� . 1325.14 Case 1
 ��̂ < �� . 1335.15 Case 2
 ��̂ < �� . 1335.16 Case 3
 ��̂ < �� . 1345.17 Ni
ety property . 135

Remer
iementsFinalement, le jour est arriv�e ou on d�e
ide d'�e
rire quelques mots de remer
iements; �
a veut dire quela th�ese est �nie (plus ou moins...), qu'on a fait un tas de
opies provisoires, en esp�erant que
haque
opie soit \la derni�ere", que les rapports sont arriv�es, qu'on attaque la soutenan
e et que �
a a rien de\provisoire". On se dit alors... pourquoi pas penser aux remer
iements? J'y vais!Un tas de noms viennent dans ma tête. Je m'organise:Je voudrais remer
ier mon dire
teur, Sergio Yovine, qui m'a soutenu pendant
es 40 mois; il a �et�etoujours l�a pour m'aider, me
onseiller, me guider, m'enseigner, mais surtout pour me donner
on�an
een
e que je faisais et pour me transmettre que dans la re
her
he on pousse toujours les limites, lesfronti�eres de l'in
onnu. Mer
i, en
ore!Je voudrais remer
ier tout le personnel de Verimag:
her
heurs, enseignants, ing�enieurs, �etudiantset personnel administratif. Ave

haque une et
haque un, je sens que j'ai partag�e un moment: un
af�e,un s�eminaire, une dis
ussion te
hnique, un peu de philosophie, quelques opinions politiques ou mêmedes �e
hanges
ulinaires! C'est sûr qu'apr�es presque trois ans et demi de \vie en
ommun" vous allez memanquer... Un Grand Mer
i �a Joseph Sifakis pour m'avoir a

ueilli
haleureusement et au personneladministratif qui m'a tant aid�e ave
 mon fran�
ais!Un grand mer
i, �a la R�egion Rhônes Alpes qui m'a g�en�ereursement soutenu �nan
i�erement pendanttrois ans et au Gouverment Fran�
ais qui m'a fa
ilit�e �enormement mon d�epla
ement en Fran
e et toutesles d�emar
hes administratives de
artes de s�ejour et visas.Un �enorme mer
i �a Pierre qui est mon soutien; son amour, sa bonne humeur toujours euphoriqueet positive et son bon êtat d'esprit m'a enormement aid�e �a faire fa
e �a la distan
e entre la Fran
e etl'Argentine.Mer
i �a ma famille en Argentine; même si la d�e
ision a �et�e tr�es dure, ils ont
ompris que la r�ealisationd'une th�ese et l'exp�erien
e de vivre �a l'�etranger vaut le malheur qui provoque la distan
e.Un enorme mer
i �a tous mes amis d'Argentine qui jour apr�es jour sont l�a \derri�ere" l'e
ran de monordinateur ave
 un e-mail, un mot d'en
ouragement, une blague.Et bien �evidemment, mer
i aussi �a mes amis de Grenoble ave
 qui je partage un week-end, desbi�eres et toutes les belles
hoses de
ette ville magni�que.
9

10 LIST OF FIGURES

Agrade
imientosEsta es una parte importante de mi tesis, aquella en la que agradez
o a las personas que me ayudarony me a
ompa~naron en esta tarea y por ello esta es
rita en mi lengua materna.Agradez
o en primer lugar a mi dire
tor de tesis, Sergio Yovine quien me respaldo enormementedurante estos 40 meses de labor; estuvo siempre alli, para ayudarme, a
onsejarme, guiarme y sobre todopara darme
on�anza en lo que ha
iamos y transmitirme que en el
ampo de la investiga
ion,
omo enmu
hos otros, hay que saber
ortar barreras y franquear los limites de lo des
ono
ido. Mu
has gra
ias!Quiero agrade
er igualmente a todo el personal de Verimag: investigadores, profesores, ingenieros,estudiantes y personal administrativo. Con
ada uno siento que
omparti un momento agradable:los mediodias de
ru
igramas, los seminarios, la le
tura
omentada del diario y hasta inter
ambios
ulinarios! Gra
ias espe
ialmente a Joseph Sifakis quien me re
ibio
alurosamente en su laboratorio ya todo el personal administrativo que tanto me ha ayudado
on el fran
es!!Mi agrade
imiento va tambien a la Region Rhônes-Alpes y al Gobierno Fran
es por su ayuda�nan
iera durante todos estos a~nos y por fa
ilitarme enormemente los tramites administrativos deestadia.Un profundo agrade
imiento para Pierre por su respaldo y apoyo
onstante; su amor, su buen humorsiempre eufori
o y entusiasta y su buen estado de espiritu han fa
ilitado enormemente el afrontar ladistan
ia entre Argentina y Fran
ia.Mil y mil gra
ias a mi familia en Argentina; aun
uando la de
ision de trasladarse al extranjero fuedi�
il de a
eptar, pronto
omprendieron que la importan
ia de realizar la tesis, bien vale la pena ladesaz�on.Gra
ias a la Universidad Na
ional del Sur y en espe
ial al Departamento de Cien
ias e Ingenieriade la Computa
ion por su apoyo in
ondi
ional a mi de
ision de realizar una tesis en el extranjero y atodos mis profesores que me apoyaron.Enorme y profundo agrade
imento va tambien para mis amigos en Argentina; estuvieron (y es-tan) siempre alli, \detras" de la pantalla,
on un mensaje, una palabra de aliento, un
histe para losmomentos de
ojedad.Y por supuesto, mu
has gra
ias tambien a mis amigos de Grenoble
on quienes
omparto los �nesde semana, innumerables
ervezas y todas las lindas
osas del savoir vivre fran
es.
11

12 LIST OF FIGURES

Chapter 1Introdu
ing the a
tors
R�esum�eLes syst�emes temps-r�eel, str, sont soumis �a des fortes
ontraintes de temps dont la violation peutimpliquer la violation des exigen
es de se
urit�e, de sûret�e et de �abilit�e.Aujourd'hui, les strse
ara
terisent par une forte int�egration de
omposants logi
iels. Leur d�evelop-pement n�e
essite une m�ethodologie permettant de relier, même �a partir de la phase de
on
eption, le
omportement du syst�eme au niveau fon
tionnel ave
 les aspe
ts non fon
tionnels qui doivent être t�enusen
ompte dans la mise en oeuvre et �a l'ex�e
ution, [53℄, [7℄, [51℄.Dans
ette th�ese nous nous interessons au probl�eme de l'ordonnan
ement qui est n�e
essaire pour as-surer le respe
t des
ontraintes temporelles impos�ees par l'appli
ation lors de l'ex�e
ution. L'ordonnan
ement
onsiste �a
oordonner dans le temps l'ex�e
ution des di��erentes a
tivit�es a�n d'assurer que toutes leurs
ontraintes temporelles sont satisfaites. L'ordonnan
ement de syst�emes temps r�eel
ritiques embarqu�esest essentiel non seulement pour obtenir des bonnes performan
es mais surtout pour garantir leur
orre
t fon
tionnement.Cette th�ese
ontribue dans deux aspe
ts de str:� Dans le
hapitre 3 on pr�esente un mod�ele pour une
lasse de strinspir�e par le langage Java etnous d�eveloppons, �a partir de
e mod�ele, un algorithme d'attribution de priorit�es statiques bas�esur la
ommuni
ation entre tâ
hes. Cet algorithme est simple mais in
omplet.� Dans le
hapitre 5 on pr�esente une te
hnique pour traiter le probl�eme d'ordonnan�
abilit�e ave
pr�eemption, d�ependen
es et in
ertitude. Nous etudions le probl�eme d'analyse et de
idabilit�e �atravers d'une nouvelle
lasse d'automates temporis�es.Nous
ompletons notre pr�esentation ave
 un
hapitre d�evou�e aux mod�eles temporis�es,
hapitre 4,et le
hapitre 2 ave
 les te
hniques et m�ethodes d'ordonnan�
abilit�e les plus
onnus.1.1 Real Time SystemsNo doubt that
omputers are everywhere in our daily life. Some years ago, but not so many,
omputerswere devi
es whi
h had some \external" re
ognizable aspe
t, su
h as a box, a s
reen and a keyboard,13

14 CHAPTER 1. INTRODUCING THE ACTORSgenerally used for
al
ulating, data basing and business management. As
ommuni
ation, multime-dia and networking were added to
omputing systems, the use of
omputers expanded to everyone;nowadays
omputers are integrated to planes,
ars, multimedia systems and even... refrigerators!A huge bran
h in
omputer systems began to develop, when
omputers were integrated to enginswhere time played a very important role. Any
omputer system deals with time, in a broad sense; insome systems, time is important be
ause
al
ulations are very heavy and the response time dependson the ar
hite
ture of the system and the algorithm implemented, but time is not part of the system,that is, time is not part of the espe
i�
ation of the problem.These systems are now wideley employed in many real time
ontrol appli
ations su
h as avioni
s,automobile
ruise
ontrol, heating
ontrol tele
ommuni
ations and many other areas. The systemsmust also respond dynami
ally to the operating environment and eventually adapt themselves to new
onditions; they are
ommonly
alled embedded sin
e the \
omputing engine" is almost hidden anddedi
ated to the appli
ation.Real Time Systems, rts, deal with time in the sense that a response is demanded within a
ertaindelay; if this demand is not satis�ed, we
ould produ
e a failure, an a

ident and in general a
riti
alsituation. Compare, for instan
e the fa
t of using an atm to withdraw money and a
ar airbag system;the �rst a
tion takes some time, but the system does not deal with time; we
an take some se
onds to dothe operation and even if the system is over
harged the user tolerates some unspe
i�ed delay (dependingon his patien
e!); the airbag system deals with time, sin
e its response, in
ase of an a

ident, must begiven within a spe
i�ed delay, if not, the driver
ould be hurt. Besides, a late response of the systemis useless, sin
e the
onsequen
es of the a

ident had already happened.Even if a de�nition of rts
an lead to restri
t ourselves, it is worth mentioning one:A real time system is a
omputing system where time is involved in the spe
i�
ation of theproblem and in the response of the system. The
orre
tness of
omputations depends notonly on the logi
al
orre
tness of the implementation, but also on the time response.rts
an be
lassi�ed into hard and soft rts; in general, we say that in hard rts the absen
e of ananswer or an answer whi
h fails to arrive on time
an
ause a
riti
al event or unsafety situation tohappen; in soft rts even if the response deals with the time it is produ
ed, the absen
e of an answerleaves the system in a
orre
t state and some re
overy
an be possible. An example of soft rts isthe integration pro
ess while sending video frames; the system is quite time-dependant, in the sensethat frames must arrive in order and also respe
t some timing
onstraints, to give the user the idea ofviewing a \
ontinous" �lm; but if eventually a frame is lost or if it arrives late, the whole system is
orre
t and, prin
ipally, no
riti
al event is produ
ed.The frontier between soft and hard rts is sometimes not so
lear;
onsider, for instan
e our exampleof video, it
ould be
lassi�ed as hard if the \�lm" transmitted was a distan
e surgery operation.Sometimes, soft rts are more diÆ
ult to spe
ify sin
e it is not easy to de
ide whi
h timing requiremnts
an be relaxed, and how they
an be relaxed, how often and so on, [58℄.As rts deals with the \real world", the
omputer is dedi
ated to
ontrol some part of a system orphysi
al engine; normally, the
omputer is regarded as a
omponent of the pie
e to
ontrol and we saythat these
omputer systems are embedded; sometimes, people are surprised to noti
e that nowadays a
ar has a
omputer in it, sin
e the \traditional" view of a
omputer is not present. We really mean thata pro
essor is installed, dedi
ated to survey a part of the system whi
h intera
ts with the real worldand o�ers an answer to a spe
i�
 stimulus in a predetermined time. Airbag systems, ABS, heating andother \intelligent" household equipments, are examples of rts whi
h we do not see as su
h but arepresent in daily life. Airplane
ontrol, ele
troni
al
ontrol of trains and barriers, nu
lear submarineshave grown mu
h safer sin
e they were helped by
omputers.

1.2. TRADITIONAL VS REAL TIME SOFTWARE 15In summary, rts show some deep di�eren
es
ompared to traditional systems, [34℄:1. Time: in pure
omputing appli
ations, time is not taken into a

ount; one
an talk about the orderof an algorithm as a measure of pro
ess time
onsuming but time is not part of the algorithm. Inrts time must be modelled somehow and there are attempts to represent time in some temporallogi
s, [47℄, or in timed automata, [10, 22℄.2. Events: in rts the inputs
an be
onsidered as data under the form of events. These events aretriggered by a sensor or by another (external) pro
ess, whi
h we will generally
all produ
er. Onthe other hand, these events are served by another pro
ess whi
h we will
all
onsumer. rtsare
hara
terized by two basi
 sytles of design, [49℄, event-driven and time-driven. Time drivena
tivities are those ruled by time, for instan
e, periodi
 a
tivities, in whi
h an event (task, in this
ase) is triggered simply by time passing. Event driven a
tivities are those ruled by the arrival ofan external event whi
h may or may not be predi
ted; it �ts rea
tive appli
ations.3. Termination: in the Turing-Chur
h frame,
omputing is a terminating pro
ess, giving a result.A non terminating pro
ess is
onsidered as defe
tive. However rts are intrinsi
ally non termi-nating pro
esses and even more, a terminating program is
onsidered defe
tive. In summary, intraditional appli
ations ending is really expe
ted but in rts ending is erroneous.4. Con
urren
y: even if some e�orts have been done to manage
on
urren
y and parallelism, thetraditional
riteria for software is based on the idea of serializability, whi
h is perfe
tly embeddedin the Turing-Chur
h ar
hite
ture. In rts appli
ations parallelism is the natural form of
om-putation as a me
hanism of modelling a real life problem, so we are fa
ed to a s
enario wheremultiple pro
esses are running and intera
ting.1.2 Traditional vs Real Time SoftwareSoftware development has dramati
ally
hanged sin
e its beginings in the early 50. In those days,software was really wired to the
omputer, meaning that an appli
ation was in fa
t implemented fora given ar
hite
ture; the simplest modi�
ation implied re-thinking all the appli
ation and re-installingthe program.Su
h a
onstru
tion of software had no methodology; in the earlys 60 many programming languageswere developed and a very important
on
ept, symboli
 memory allo
ation let programmers performan abstra
tion between a program and a given ar
hite
ture. Programs
ould be more or less exportedor run into di�erent ma
hines: the
on
ept of portability was born, but the a
tivity of programmingwas redu
ed to the fa
t of knowing a language and
oding an appli
ation in su
h a language.At the end of 60's, the programming
ommunity realised that the situation was
haoti
; programswere more and more important and large and the programming a
tivity implied many people workingover the same appli
ation. Besides that, it was
lear that programming was mu
h more than simply
oding, implying at least three phases: modelling, implementation and maintainan
e.The �rst phase is of most importan
e, sin
e the appli
ation spe
i�
ation is
learly established andall a
tors involved in it express their views of the problem and their needs. On
e we have su
h a plan ofthe appli
ation and that all restri
tions are neatly written down, we
an atta
k the se
ond phase. Themodelling phase has spread the problem into simpler
omponents, with intera
tion among
omponentsso programmers
an atta
k the implementation of
omponents in parallel sin
e they only need to knowthe \input" and \output" of ea
h
omponent, leaving the fun
tional aspe
t of other
omponents as abla
k box. Evidently the third phase is
apital to the evolution of the appli
ation, as new needs may

16 CHAPTER 1. INTRODUCING THE ACTORSappear and if modelling is
orre
t, we should only modify or
reate some few
omponents but no needto re-implement the whole system.The
onstru
tion of rts began by designing and implementing ad-ho
 software platforms, whi
hwere not reusable for other appli
ations; in this sense, rts su�ered the same experien
e as programmingin the early 60's... no methodology was applied, and hen
e soon people were in fa
e of the
haos whi
h
ondu
ted to the development of good software design and analysis pra
ti
es. No doubt that there hasbeen a great shifting from hardware to software and hen
e we
an now think of in terms of a \realtime engineering", that is, based on some
ommon models, we
an use some previously developped (andproved)
omponents or modules to build a new system, [34℄. Of
ourse, most embedded systems in
ludea signi�
ant hardware design also, as new te
hnologies are developped and a wider area of appli
ationis in
luded.The role of rt ModellingTime is of most importan
e in rts sin
e we deal with
riti
al appli
ations, whose failure may
auseserious or fatal a

idents and also with di�erent te
hnologies whi
h must be integrated. Buildingembedded rts of guaranteed quality in a
ost-e�e
tive manner, raises a
hallenge for the s
ienti�

ommunity, [51℄.As for any pro
ess of software
onstru
tion, it is of paramount importan
e to have a good modelwhi
h
an aid the design of good quality systems and fa
ilitate analysis and
ontrol.The use of models
an pro�tably repla
e experimentation on a
tual systems with many advantagessu
h as fa
ility to modify and play with di�erent parameters, integration of heterogeneous
omponents,observability of behaviour under di�erent
onditions and the possibility of analysis and predi
tabilityby appli
ation of formal methods.The problem of modelling is to represent a

urately the
omplexity of a system; a too \narrow"design
ould simplify the appli
ation to the point of being unreal; on the other hand, la
k of abstra
tion
ondu
ts to a
omplexity whi
h diÆ
ults the per
eption of properties and behaviour.Modelling te
hniques are applied at early phases of system development and at high abstra
tionlevel. The existen
e of these te
hniques is a basis for rigorous design and easy validation.A very important issue in real time modelling is the representation of time whi
h is obtained byrestri
ting the behaviour of its appli
ation software with timing information. Sifakis in [51℄ notes thata ... deep distin
tion between real time appli
ation software and the
oresponding real timesystem resides in the fa
t that the former is immaterial and thus untimedTime is external to the appli
ation and is provided by the exe
ution platform while the operationalaspe
ts of the appli
ation are provided by the language; so the study of a rts requires the use of atimed model whi
h
ombines a
tions of the appli
ations and time progress.The existen
e of modelling te
hniques is a basis for rigorous design, but building models whi
h faith-fully represent rts is not trivial; besides models are often used at an early stage of system developmentat a very high abstra
tion level, and do not easily last the whole design life-
y
le, [52℄.There are many di�erent models of
omputation whi
h may be appropriate for rts su
h as a
tors,event based systems, semaphores, syn
hronization me
hanism or syn
hronous rea
tive systems, [5, 4,14, 35, 38, 39℄. In parti
ular, we have used �nite state ma
hines, fsm as a model; ea
h ma
hinerepresents a pro
ess, where the nodes of fsm represent the di�erent states and the ar
s the transitionsor evolution of the pro
ess. Ea
h pro
ess is then an ordered sequen
e of states ruled by the transitions.

1.2. TRADITIONAL VS REAL TIME SOFTWARE 17Ea
h ar
 is labelled by
onditions.fsm
annot express
on
urren
y nor time, so to ta
kle these problems we have used timed automata,ta, whi
h are fsm extended with
lo
ks. In this s
enario a rts is represented as a
olle
tion of ta,naturally
on
urrent, where
oordination is done through event triggering. This stru
ture permits aformal analysis, using for example model
he
king to test safety, [26, 25, 43, 42, 41℄ or synthesis for
he
king s
hedulability. [8, 9, 7, 52℄.The role of TimeComponents in a rts in
lude
on
urrent tasks often assigned to distin
t pro
essors. These tasks mayintera
t through events, shared memory or by the simple e�e
t of time passing. From the point of viewof
omponent design we need some de�nitions to de
lare temporal properties; temporal logi
, [47℄ isthe
lassi
 representation of time.Traditional software is veri�ed by te
hniques dealing with the fun
tional aspe
ts of the problemand their implementation; we prove that the
ode really performs or behaves as spe
i�ed by the model.These properties are untimed; in rts we have to add another axe of veri�
ation, the non fun
tionalproperties whi
h deal with the environment and more pre
isely with real time. For instan
e, if we say\event a is followed by an event b triggered at most Æ units of time afterwards", we mean that theinterval between termination of a and begining of b should be smaller than Æ units of time measured inreal time.Independently of the ar
hite
ture of the system, non-fun
tional properties are
he
ked through atimed model of the rts; this a
tivity is
alled timing analysis; we
an also take an approa
h guidedthrough synthesis where we look for a
orre
t
onstru
tion using methods that help resolving some
hoi
es made during implementation.Some steps in the transition from appli
ation software to implementation of rts in
lude:1. Partition of the appli
ation software into parallel tasks; these
omponents in
lude
on
urrenttasks often assigned to distin
t pro
essors whi
h intera
t through events, shared memory or bythe simple e�e
t of time passing. From the point of view of
omponent design we need somede�nitions to de
lare temporal properties.2. Usage of some te
hniques for resour
e management and task syn
hronization. This
oordinationmay be due to many fa
tors: temporal
onstraints, a

ess to
ommon resour
es, syn
hronizationamong events, and so on. A s
heduler is in
harge of this
oordination.3. The
hoi
e of adequate s
heduling poli
ies so that non-fun
tional properties of the appli
ationare respe
ted; for rts one of the
riti
al missions of the s
heduler is to assure the timeliness ofthe a
tivities, that is, the respe
t of the temporal
onstraints, whi
h form part of the tasks, atthe same level as other parameters or their fun
tionality.Syn
hronous and asyn
hronous rts Two paradigms are used in the design of rts: syn
hronousand asyn
hronous approa
h.The syn
hronous paradigm assumes that a system intera
ts with its environment and its rea
tion isfast enough to answer before a new external event is produ
ed; this means that environment
hangeso

urring during the
omputation of a step are treated at the next step.The asyn
hronous paradigm atta
ks a multi-tasking exe
ution model, where independent pro
essesexe
ute at their own pa
e and
ommuni
ate via a message passing system. Normally, we have anoperating system whi
h is responsible for s
heduling all tasks so as to perform properly.

18 CHAPTER 1. INTRODUCING THE ACTORSBoth te
hniques have their in
onvenients; the hypothesis for the syn
hronous paradigm is not easyto meet, modularity
annot be easily handled and the asyn
hronous paradigm is less predi
table andhard to analyse, [52℄.The role of the S
hedulerAs a rts appli
ation is
omposed of many tasks, some kind of
oordination is ne
essary to dire
t theappli
ation to a good result. A s
heduler is the part of a system whi
h
oordinates the exe
ution of allthese a
tivities. Roughly speaking s
heduling may be de�ned as the\a
tivity of arranging the exe
ution of a set of tasks in su
h a manner that all tasks a
hievetheir obje
tives"This de�nition, although very impre
ise, gives an idea of the
omplexity of the problem. Coordina-tion may be due to many fa
tors: temporal
onstraints, a

ess to
ommon resour
es, syn
hronizationamong events, and so on. A s
heduler does not
oordinate the exe
ution per se, but its relationshipswith other a
tivities. As already mentioned, one of the
riti
al missions of a rts s
heduler is to assurethe timeliness of the a
tivities.The a
tivity of s
heduling was born when many tasks were run over a ma
hine and the CPU had tobe shared among the tasks, we talk about
entralized s
heduling. These tasks were basi
ally independentprograms, triggered by users (or even the operating system). The kernel of the operating system de
ideswhi
h task must be exe
uted and assures (more or less) a fair poli
y of CPU distribution for all tasks;in this
ontext, time is not part of a task's des
ription, but only its fun
tionality (given by the
ode) isimportant. Later on, when distribution was possible, due to
ommuni
ation fa
ilities among
omputers,the a
tivity of s
heduling distributed tasks was a natural extension of the
entralized approa
h.Sin
e a s
heduler deals with tasks, it is time to de�ne them pre
isely, but not formally:A task is a unit of exe
ution, whi
h is supposed to work
orre
ty while alone in the system,i.e. a task is a veri�ed unit of exe
utionA task is then
orre
t and must be exe
uted entirely, although its exe
ution
an be interruptedby the system and resumed later. A task has its own environment of exe
ution (lo
al variables anddata stru
tures) and perhaps some shared environment, whose
orre
tness must be guaranteed by theexe
ution platform, while lo
al
orre
tness is ensured by the task itself.Tasks are normally grouped to perform one or more fun
tions,
onstituting a system or appli
ation.A real time task, rtt, is a task whose e�e
ts (given by its fun
tionality) must be seen within a
ertain amount of time
alled
riti
al time; its response is needed for another task to
ontinue or forsystem performan
es and the absen
e of response or a late servi
e
an
ause fatal a

idents. The
riti
al time for a task is
alled its deadline, that is a task must response before this limit. Deadlinesare measured in units of times.In summary, we
an envision three main a
tors in a s
heduled system:1. The pro
esses, (sometimes referred to as tasks or modules), in
harge of performing independenta
tions in
oordination with other tasks
ontrolled by the s
heduler.2. The s
heduler or the software (eventually hardware)
ontrolling the operations and the
oordi-nation of a series of pro
esses, whi
h is basi
ally a timed system whi
h observes the state of theappli
ation and restri
ts its behavior by triggering
ontrollable a
tions.

1.3. CONTRIBUTIONS 193. The environment or a series of un
ontrollable a
tions, events, pro
esses arrival or pro
essestermination.Two important issues in the development of rts is analysis and synthesis of s
hedulers. Analysisis the ability to
he
k the model of a system to de
ide if it is
orre
t and if it respe
ts the temporal
ontraints of all tasks in the appli
ation. Synthesis is the ability to
onstru
t an implementation modelwhi
h respe
ts the temporal
ontraints. Of
ourse, both te
hniques points out to answer the samequestions: \is a system s
hedulable?", and if so, \
an we
onstru
t or
he
k that our implementationis s
hedulable?"The
onstru
tion of s
heduled systems has been su
essfully applied to some systems, for example,s
heduling transa
tions in the domain of data bases or s
heduling tasks in the operating system envi-ronment. In the area of rts the existing s
heduling theory is limited be
ause it requires the system to�t into a s
hedulability
riterion, generally to �t into a mathemati
al framework of the s
hedulability
riteria. Su
h studies relax one hypothesis at a time, for instan
e tasks are supposed to be periodi
, oronly worst
ase exe
ution times are
onsidered.1.3 ContributionsThis thesis
on
entrates on the de�nition of te
hniques for task syn
hronization and resour
e manage-ment, as shown in step 2 in the previous se
tion.� Chapter 3 is devoted to the development of a model and its veri�
ation te
hniques for a real timeprogram written in a Java-like language whi
h uses syn
hronization primitives for
ommuni
ationand
ommon resour
es. We show how an abstra
tion of the program
an be analysed to verifys
hedulability and
orre
t resour
e management.� Chapter 5 is devoted to s
hedulability analysis and de
idability;{ We �rst show a proper and new te
hnique to deal with the problem of preemptive s
hedulingand de
idability under an asyn
hronous paradigm;{ We show an evolutive appli
ation of this method starting from a very simple poli
y and�nishing to a general s
heduling poli
y;{ In ea
h step of this evolution we show that our method is de
idable, that is, that its appli-
ation
an leave the system in a safe state and that this state
an be rea
hable.{ We also show a
omplete admission analysis that
an be performed o� line in
ase of a setof periodi
 tasks and on-line in
ase of an hybrid set of periodi
 and aperiodi
 tasks; in any
ase, the admission is the simple
omputation of a formula.We
omplete our presentation with
hapter 4 dedi
ated to timed models, where we show the basi
model of timed automata, some of its extensions and appli
ations to s
hedulability analysis. The mostwell-known te
hniques for s
hedulability of real time systems are developed in
hapter 2.

20 CHAPTER 1. INTRODUCING THE ACTORS1.4 ThesaurusHere's a list of the abbrevations used in this do
ument:Abbrevation Meaningdp
p Dynami
 Priority Ceiling Proto
oldbm Di�eren
e bound Matrixedf Earliest Deadline Firstedl Earliest Deadline as Late as Possibleett Event Triggered Taskfsm Finite State Ma
hineiip Immediate Inheritan
e Proto
oljss Job Shop S
hedulingl
m Least Common Multiplelifo Last In First Outrma Rate Monotoni
 Analysisp
p Priority Ceiling Proto
olpip Priority Inheritan
e Proto
olrts Real Time Systemsrtt Real Time Task(s)srp Sta
k Resour
e Poli
yssp Sla
k Stealing Proto
olswa Stopwat
h Automatonta Timed Automatontad Timed Automaton with Deadlinestat Timed Automaton with Tasktbs Total Bandwidth Serveruta Updatable Timed Automatonwfg Wait For Graphs

Chapter 2Setting some order in the Chaos:S
heduling
R�esum�eCe
hapitre �a pour but d'introduire les
on
epts basiques d'ordonnan
ement d�evelopp�es depuis 1973;en
ommen�
ant par les mod�eles les plus
lassiques nous �nissons ave
 les mod�eles les plus r�e
ents.Une appli
ation temps r�eels est mod�elis�ee par un ensemble de tâ
hes T = fT1; T2; : : : ; Tng,
haquetâ
he Ti; 1 � i � n est
hara
teris�ee par la paire (Ei; Di), o�u Ei est le temps d'�ex�e
ution de Ti et Diest l'e
hean
e relative. Eventuellement, on peut ajouter Pi, Ei < Di � Pi, la p�eriode pour Ti,
'est �adire, l'intervalle de temps entre deux arriv�ees d'une tâ
he. Certaines tâ
hes sont d̂�tes �ev�enementielless'il existe un �ev�enement qui les d�e
len
he; �nalement
ertains auteurs
onsid�erent d'autres paramêtres,telles que le jitter, pr�e
eden
e entre tâ
hes, et
.Dans l'appli
ation on peut utiliser de ressour
es en
ommun;
es ressour
es partag�ees sont a

ed�eespar un proto
ole sp�e
ial qui garantit la bonne utilisation; les tâ
hes qui n'utilisent pas de ressour
es en
ommun sont appell�ees independantes.On organise
e
hap̂�tre selon la taxinomie souivante:

Ensemble de tâ
hes Nature Gestion de ExemplePriorit�es d'algorithmeIndependentes Statique rmaDynamique edfPeriodiques Dependentes Statique pip, p
p, iipDynamique dp
pPeriodiques Independentes Statique ssp, edl, tbset non-periodique Dependent Dynamique tbsEvent Triggered Independantes ettComplex Constraints 2-edf21

22 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING2.1 S
hedulersWe have already introdu
ed the need of some
oordination among tasks, under a rt s
enario. We havede�ned a real time appli
ation as a
olle
tion of tasks, ea
h of whi
h has some temporal
onstraintsand may intera
t with the environement through events. In this
hapter, we will introdu
e formalrepresentations of rts, that is, abstra
tions of real life as simple (or not so simple!) models. We will
over more or less 30 years of e�orts in the area; results shown in this se
tion are general and show thebig headlines; detailed des
riptions
an be found, of
ourse, in the original papers1.A real time appli
ation may be
hara
terized by a set T = fT1; T2; : : : ; Tng of real time tasks, rtt,whi
h may be triggered by external events; ea
h task Ti is
hara
terized by its parameters [Ei; Di℄where Ei is the exe
ution time and Di is the relative deadline. The exe
ution time is
onstant for atask, like in a worst
ase exe
ution environment and it is the time taken by the pro
essor to �nish itwithout interruptions. Deadline Di is relative to the arrival time ri of a task Ti, (sometimes
alledrelease time) and it is the time for Ti to �nish; if a task Ti arrives at time ri, the sum Di + ri is
alledthe absolute deadline.rtt may be periodi
, that is, they are supposed to arrive within a
onstant interval; normallyperiodi
 tasks respond to the fa
t that some appli
ations trigger tasks regularly; in this
ase, we
anextend our set of parameters by Pi, the period for ea
h task, and tasks must be �nished before the nextrequest o
urrs; we need then that Ei � Di � Pi. Some authors normally assume Di = Pi, [37℄.If task arrival is not predi
table, we will say that a task is aperiodi
. Some authors make thedi�eren
e between a semiperiodi
 task and an eventual task; the former may arrive within a
ertainboundary of time, while the latter is really unpredi
table. We will not make this di�eren
e.In the
ontext of periodi
 tasks, we
an see that ea
h periodi
 task Ti is an in�nite sequen
eof instan
es of the same task; we normally note these instan
es as Ti;1; Ti;2; : : :; Ti;1 arrives at timeri;1 = �i,
alled its origin, and its absolute deadline is di;1 = �i +Di = ri;1 +Di; in general we
an saythat the absolute deadline of the kth arrival of Ti is di;k = ri;k +Di = �i + (k � 1)� Pi +Di; in many
ontexts, �i = 0).The question is then how to manage the set T in order to satisfy all of its objetives, modelledas parameters; sin
e we assume tasks are
orre
t, a
hieving task obje
tives is redu
ed to �nish itsexe
ution before its deadline and by extension all tasks in T . This is the a
tivity of s
heduling.De�nition 2.1 A s
heduling algorithm is a set of rules that determines the task to be exe
uted at aparti
ular moment.Many s
heduling poli
ies exist, based on parameters su
h as exe
ution time, deadlines and periodi
-ity. Based on a set T of tasks
hara
terized by its parameters, we
an di�erentiate s
hedulers a
ordingto: � Priority management: assignment of priorities to tasks is one of the most used te
hniques toenfor
e s
hedulability; we distinguish:{ stati
 or �xed: where T is analysed before exe
ution and some �xed priorities are asso
iatedwhi
h are valuable at exe
ution time and never
hanged.{ dynami
: where some
riteria is de�ned to
reate priorities at exe
ution time, meaning thatea
h time a task arrives, a priority is assigned, perhaps taking into a

ount the a
tive set of1As far as possible, we will try to keep an homogeneous notation and so, symbols may di�er from the original works

2.1. SCHEDULERS 23Non-Preemptive PreemptiveStati
 easy to implement easy to implementtoo restri
tive livelinessDynami
 intelligent priority assigment relatively hard to implementless restri
tive
ostly but tend to optimumFigure 2.1: S
hedulerstasks in the system; priorities of tasks might
hange from request to request, a

ording tothe environment.� S
heduler strength: as s
hedulers rule the management of tasks, they have the power to interrupta task; we distinguish:{ non-preemptive: ea
h task is exe
uted to
ompletion, that is, on
e a task is
hosen to exe
ute,it will �nish and never be interrupted.{ preemptive: a task may be interrupted by a higher priority task; the interrupted task is putin a sleeping state, where all of its environment is kept and it will be resumed some timelater in the future.� Nature of tasks:{ Independent: tasks do not depend on the initiation or
ompletion of other tasks and theydo not share resour
es; ea
h task is then 'autonomous' and
an be exe
uted sin
e its arrival.{ Dependent: the request for a task may depend on the exe
ution of another task, perhapsdue to
ertain data produ
ed and
onsumed later or due to appli
ation requirements, su
has shared resour
es whi
h impose some method to a

ess them.Stati
 s
hedulers are very easy to model and to be treated by the s
heduling manager, but they arevery restri
tive, sin
e they are not adaptive; dynami
 s
hedulers may take into a

ount the exe
utionenvironment and evolution of the system. Preemption is a well known te
hnique based on the idea thatthe arrival of a more urgent task may need to interrupt the
urrently exe
uting one; this te
hniqueintrodu
es another problem, liveliness, where a task shows no progress, sin
e other (higher prioritized)tasks are
ontinously delaying its exe
ution.Certainly, we
an design s
hedulers based on a mixed of
on
epts, table 2.1 shows the results of amixtures, assuming independent tasks.The easiest s
hedulers are stati
 and from the system point of view non-preemptive. S
hedulerde
isions are �xed at analysis time, where priorities are assigned and as no preemption is a

epted, thesystem exe
utes to
ompletion, no need to keep environments. Of
ourse, these are the most restri
tives
hedulers but the easiest to implement. One well known problem with s
hedulers is priority inversionwhere a lower priority task prevents a higher priority one to exe
ute. Stati
 non-preemptive s
hedulerssu�er this problem, sin
e an exe
uting task
annot be interrupted and hen
e a re
ently arrived taskwith higher priority must wait.Stati
 s
hedulers with preemptions are very
ommon; a newly arrived task interrupts the
urrentlyexe
uting task if the later has lower priority than the former. The problem is that preemption introdu
esthe problem of liveliness, sin
e interrupted tasks may never regain the pro
essor if higher priority tasks

24 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGarrive
onstantly; some solutions have been proposed to this problem, spe
ially the
eiling proto
ols,[50℄, [48℄.Corresponding to the
lass of �xed priority s
hedulers, Rate Monotoni
 Analysis, rma, is the mostpopular, [37℄.Dynami
 s
hedulers with no preemptions are not very
ommon, be
ause, in prin
iple the \intelli-gen
e" of the assignment pro
edure is hidden by the in
apa
ity of interruption; they are less restri
tivethan stati
 but not suÆ
iently eÆ
ient.Finally, dynami
 s
hedulers with preemptions are the ri
hest ones, the hardest to implement butthe nearest to the optimum. Among the dynami
 proto
ols, the most popular is the Earliest Deadline,ED, [37℄, and from this proto
ol, a very wide bran
h of algorithms exist.From now on, we will use the following de�ntions for a s
hedule algorithm:De�nition 2.2 (Deadline Missing) A system is in a deadline missing state at time t if t is thedeadline of an un�nished task request.De�nition 2.3 (Feasability) A s
heduling algorithm is feasable if the tasks are s
heduled so that nodeadline miss o

urs.De�nition 2.4 (S
hedulable System) A system is s
hedulable if a feasable s
heduling algorithmexists.Feasability is the
apa
ity of a poli
y or s
heduling algorithm to �nd an arrangement of tasks toensure no deadline missing, while s
hedulability is inherent to a set of tasks, that is, a set T maybe s
hedulable even if the appli
ation of an algorithm leads to deadline missings. Finding whether asystem is s
hedulable is mu
h harder than de
iding if it is feasable under a
ertain poli
y. We will showthat
ertain algorithms ensures feasability for s
hedulable systems.We organize this
hapter following this taxonomy:Task Set Nature Priority MethodManagement PrototypeIndependent Stati
 rmaDynami
 edfPeriodi
 Dependent Stati
 pip, p
p, iipDynami
 dp
pPeriodi
 Independent Stati
 ssp, edl, tbsand Aperiodi
 Dependent Dynami
 tbsEvent Triggered Independant ettComplex Constraints 2-edf2.2 Periodi
 Independent TasksIn this se
tion, we show the main results in the area of s
heduling rtt under the hypothesis thattasks are periodi
 and independent, i.e. ea
h task is triggered at regular intervals or rates, it doesnot share resour
es and its exe
ution is independent of other a
tive tasks. We show two main
lassesof s
heduler algorithms; the �rst
lass, Rate Monotoni
 Analysis, rma, is based on stati
 or �xedpriority (generally attributed after an o�-line analysis) and the se
ond
lass, Earliest Deadline First,edf, is based on dynami
 priority assignment, based on the
urrent state of the system.

2.2. PERIODIC INDEPENDENT TASKS 252.2.1 Rate Monotoni
 AnalysisRate Monotoni
 Analysis, rma, was
reated by Liu and Layland in 1973, [37℄. It is based in verysimple assumptions over the set T = fT1; T2; : : : ; Tng. Ea
h task Ti; 1 � i � n is
hara
terized by itsparameters [Ei; Pi℄, for exe
ution time and period, respe
tively, and it is assumed that:� All hard deadlines are equal to periods.� Ea
h task must be
ompleted before the next request for it o

urs.� Tasks are independent.� Exe
ution time is
onstant.� No non-periodi
 tasks are tolerated for the appli
ation; those non-periodi
 tasks in the systemare for initialization or re
overy pro
edures, they have the highest priority and displa
e periodi
tasks but do not have hard deadlines.De�nition 2.5 (Rate Monotoni
 Rule) The rate-monotoni
 priority rule assigns higher prioritiesto tasks with higher request rates.A very simple way to assign priorities in a monotoni
 way is the inverse of the period. Priorities arethen �xed at design time and s
hedulability
an be analysed at design time. For a task Ti of period Piits priority, �i, is 1Pi .The following theorem, due to Liu and Layland, [37℄ establishes the optimum
riteria of rma:Theorem 2.1 If a feasible priority assignment exists for some task set, the rate-monotoni
 priorityassignment is feasible for that task set.An important fa
t in s
heduling pro
essing is the pro
essor utilization fa
tor, i.e, the time spent inthe exe
ution of the task set. Ideally, this number should be near to 1, representing full utilization ofpro
essor; but this is not possible, sin
e there is some time in
ontext swit
hing and of
ourse, the timeused by the s
heduler to take a de
ision.In general, note that for a task Ti, the fra
tion of pro
essor time spent in exe
ution it is expressedby Ei=Pi, so for a set T of n task we have that the utilization fa
tor U
an be expressed as:U = nXi=1(Ei=Pi)This measure is slightly dependent of the ar
hite
ture of the system, due to the \speed" Ei, butupper bounded by the deadlines whi
h are ar
hite
ture independent. Based on the utilization fa
tor,Liu et al. established the following theorem:Theorem 2.2 For a set of n tasks with �xed priority assignment, the least upper bound for the pro
essorutilization fa
tor is Up = n(2(1=n) � 1).whi
h in general shows an U in the order of 70%, rather
ostly in a real time environment. A betterutilization bound it to
hoose periods su
h that any pairs shows an harmoni
 relation.We show the appli
ation of rma through an example due to [19℄.

26 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING
5 10 15 20 25 30 35

7 14 21 28 35

deadline miss

�1�2 tFigure 2.2: rma appli
ationExample 2.1 Let us
onsider a set T = fT1(2; 5); T2(4; 7)g, of periodi
 tasks with parameters (Ei; Pi)as explained above, where periods are
onsidered as hard deadlines.The utilization fa
tor U = 25+ 47 = 3435 ;a

ording to theorem 2.2 Up ' 0:83, so U � Up and set T is not feasible, as shown in �gure 2.2.As T1 has a smaller deadline (or period) than T2, T1 has always the highest priority and preemptsT2 if it is exe
uting, we
an assign �1 = 15 and �2 = 17 . The very �rst instan
e of T2 misses its deadlinesin
e it is interrupted when the se
ond instan
e of T1 arrives; by time t = 7, when a se
ond instan
e ofT2 arrives, it must yet
omplete the �rst instan
e, thus missing the deadline.As priorities are �xed and known in advan
e, it suÆ
es to analyse \a window" of exe
ution betweenstarting time, say t = � and an upper bound
alled hyperperiod, H whi
h is the least
ommon multipleof the tasks periods.Surely a better solution to rma is a dynami
 assignment algorithm. Liu et al. introdu
ed a deadlinedriven s
heduling algorithm
alled Earliest Deadline First, edf.2.2.2 Earliest Deadline FirstThis algorithm is based on the same idea as rma, but in a dynami
 way, i.e. the highest priority isassigned to the task with the shortest
urrent deadline; it is based on the idea of urgen
y of a task. Forperforming this assignment we simply need to know the relative deadline of a task, Pi and its requesttime, ri to
al
ulate the absolute deadline.For this algorithm the feasability is optimum in the sense that if a feasible s
hedule exists for a taskset T , then edf is also appli
able to T .Liu et al. established the following property for edf:Theorem 2.3 For a given set of n tasks, the edf algorithm is feasible if and only ifU = nXi=1 Ei=Pi � 1whi
h basi
ally says that a set is feasible if there is enough time for ea
h task, before its deadlineexpires.Example 2.2 Under this new poli
y, we
an re
onsider example 2.1, as U = 0:97 � 1 we know theset is s
hedulable, (the problem was that rma was not feasable for that set). Figure 2.3 shows how
onsidering absolute deadlines as a priority
riteria enlarges the
lasses of s
hedulable sets.

2.2. PERIODIC INDEPENDENT TASKS 27
5 10 15 20 25 30 35

7 14 21 28 35

�1�2 Figure 2.3: EDF appli
ation� At time t = 0 both tasks arrive; d1 = 5 < d2 = 7 so T1 starts.� At time t = 2 T2 gains the pro
essor.� At time t = 5 a new instan
e of T1 arrives and absolute deadlines are analysed; for T2 its absolutedeadline is 7 while for T1 is 10, so T1 does not preempt T2.� At time t = 6 T1 starts a new exe
ution.� At time t = 7 a new instan
e of T2 arrives: d1 = 10 < d2 = 14, so T2 waits. See how prioritieshave
hanged from one instan
e, to another.� At time t = 14 T2 arrives and begins exe
ution.� At time t = 15 T1 arrives and d1 = 20 < d2 = 21 so T1 preempts T2.� The rest of the instan
es is analysed analogously.We now know that example 2.1 is s
hedulable even if rma leaded to a deadline missing and we seethat under
ertain
onditions edf is better than rma.2.2.3 Comparisonrma is a �xed priority assignment algorithm, very easy to implement sin
e at arrival of a new taskTi the s
heduler knows whether it must preempt the
urrently exe
uting task or simply a

epting Tisomewhere in the ready queue. We assume that stati
 analysis of the set T prevents the system toenter an unfeasable state.edf is a dynami
 priority assignment algorithm whi
h takes into a

ount the absolute deadline di;kof the kth arrival of a periodi
 task Ti; in theory, this priority assignment presents no diÆ
ulty but ina system, priority levels are not in�nite and there may be the
ase that no new priority level exists fora task. In this
ase, a
omplete reordering of the ready queue might be ne
essary.Besides the natural
onsequen
e of
al
ulating priorities at ea
h task instan
e arrival, edf introdu
esless runtime overhead, from the point of view of
ontext swit
hes, than rma sin
e preemptions are lessfrequent. Our example 2.1 shows this behaviour, see [19℄ for experimental results.As seen by the theorems, a set of n tasks is s
hedulable by the rma method if Pni=1Ei=Pi �n(21=n � 1) while edf extends the bound to 1. Some interestings results were shown if any pair ofperiods follows an harmoni
 relation. Under this hypothesis, rma is also bounded to 1.The most important result for edf is that if a system is uns
hedulable with this method, then it isuns
hedulable with all other orderings. This is the optimal result for Liu et al.

28 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGOne restri
tion under both proto
ols is that no resour
e sharing is tolerated, sin
e priorities are basedon deadlines and not on the behaviour of ea
h task. In the next se
tion, we will dis
uss one of themost popular methods for s
heduling tasks whi
h share resour
es: the priority
eiling family. Anotherrestri
tion is that edf does not
onsider the remaining exe
ution time with respe
t to deadlines, toassign priorities, in order to minimize
ontext swit
hings.But the most important result of Liu's work is simpli
ity; their work, written in 1973, showed theway to follow theoreti
al results before implementation and by those days, where we
an
onsider thatsome kind of
haos was installed in the real time
ommunity, their results showed that some order existsthat rule this
haos.2.3 Periodi
 Dependent TasksIn this se
tion, we
onsider some s
heduling proto
ols whi
h relax one of the
onditions of rma andedf: tasks are independent. We
onsider algorithms where tasks share resour
es whi
h are managedby the s
heduler in a mutually ex
lusive way, that is, only one task at a time
an a

ess a resour
e;hen
e when a task demands a resour
e, it must wait if another task is using it.Normally, resour
es are used in a
riti
al se
tion of the program and are a

essed through a demandproto
ol, a task � must lo
k a resour
e before using it, the system may grant it or deny it; in thelatter
ase, � must wait in a waiting queue, its exe
ution is temporaly suspended still retaining othergranted resour
es. This situation may
ause a
ommon problem: deadlo
k that is, a
hain of tasks aresuspended, ea
h of whi
h is waiting for a resour
e granted to another also suspended task. The systemsshows no evolution through time.Proto
ols shown in this se
tion are
alled deadlo
k preventive, that is they prevent the situationwhere a deadlo
k is possible, by \guessing" somehow that in the future a deadlo
k will o

ur; to dothis, they need some information, as the set of resour
es that a task may eventually a

ess.We present three
lasses of proto
ols based on inheritan
e of priorities assigned stati
ally: PriorityInheritan
e Proto
ol, pip, Priority Ceiling Proto
ol, p
p and Immediate Inheritan
e Pro-to
ol, iip. Finally we present another proto
ol where priorities are managed dynami
ally: Dynami
Priority Ceiling Proto
ol, dp
p.2.3.1 Priority Inheritan
e Proto
olThe Priority Inheritan
e Proto
ols, [50℄, were
reated to fa
e the problem of non-independent tasks,whi
h share
ommon resour
es. Ea
h task uses binary semaphores to
oordinate the a

ess to
riti
alse
tions where
ommon resour
es are used and is assigned a priority (stati
 or dynami
) whi
h it usesall long its exe
ution. Tasks with higher priorities are exe
uted �rst, but if at any moment, a higherpriority tasks Ti demands a resour
e allo
ated to a lower priority task Tj , this task steals or inheritsthe priority of Ti, thus letting its exe
ution to be
ontinued; after exiting the
riti
al se
tion, Tj returnsto its original priority.The original proto
ol assumes that:1. Ea
h task is assigned a �xed priority and all instan
es of the same task are assigned the sametask's priority.2. Periodi
 tasks are a

epted and for ea
h task we know its worst
ase exe
ution time, its deadlineand its priority.

2.3. PERIODIC DEPENDENT TASKS 293. If several tasks are eligible to run, that with the highest priority is
hosen.4. If several tasks have the same priority, they are exe
uted in a �rst
ome �rst served, FCFS,manner.5. Ea
h task uses a binary semaphore for ea
h resour
e to enter the
riti
al se
tion;
riti
al se
tionsmay be nested and follow a \last open, �rst
losed" poli
y. Ea
h semaphore may be lo
ked atmost on
e in a single nested
riti
al se
tion.6. Ea
h task releases all of its lo
ks, if it holds any, before or at the end of its exe
ution.Normally, a high-priority task Ti should be able to preempt a lower priority task, immediately uponTi's initiation, but if a lower priority task, say Tj owns a resour
e demanded by Ti, then Tj is notpreempted and even more, Tj will
ontinue its exe
ution even its low priority. This phenomenon is
alled priority inversion sin
e a higher priority task is blo
ked by lower priority tasks and it is for
edto wait for their
ompletion (or at least for their resour
es).The interest of the pip is founded on the fa
t that a s
hedulability bound
an be determined: if theutilization fa
tor stays below this bound, then the set is feasable.When a task Ti blo
ks one or more higher priority tasks, it ignores its original priority assignmentand exe
utes its
riti
al se
tion at the highest priority level of all the tasks it blo
ks. After exiting its
riti
al se
tion, task Ti returns to its original priority level.Basi
ally, we have the following steps:Rule 1 The highest priority task is always exe
uting ex
ept... Task Ti with the highest prioritygains the pro
essor and starts running. If at any moment Ti demands a
riti
al resour
e rj , itmust lo
k the semaphore Sj on this resour
e. If Sj is free, Ti enters the
riti
al se
tion, works onrj and on exiting it releases the semaphore Sj and the highest priority task, if any, blo
ked bytask Ti is awakened. Otherwise, Ti is blo
ked by the task whi
h holds the lo
k on Sj , no matterits priority.Rule 2 No task
an be preempted while exe
uting a
riti
al se
tion on a granted resour
erj . Ea
h task Ti exe
utes at its assigned priority, unless it is in a
riti
al se
tion and blo
ks higherpriority tasks; in this
ase, it inherits the highest priority of the tasks blo
ked by Ti. On
e Ti exitsa
riti
al se
tion, the s
heduler will assign the resour
e to the highest priority task demanding rj .This is very important in nested levels;
onsider a task Ti whi
h in
ludes
ode like this:...lo
k(r1)...lo
k(r2)...unlo
k(r2)...unlo
k(r1)...On
e the task Ti releases r2 it regains the priority it had before lo
king r2; this may be lowerthan its
urrent priority and Ti may be preempted by the task with the highest priority (perhapsone blo
ked by Ti but not ne
essarily). Of
ourse, Ti still holds the lo
k on r1, with the priorityassigned for the highest priority task whi
h had demanded r1.

30 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGRule 3 Priority inheritan
e is transitive. As a
onsequen
e of the previous observation, we dedu
ethat inheritan
e is transitive. We show this through an example:Example 2.3 (Inheritan
e of Priorities) Imagine three tasks T1, T2 and T3 in des
endingpriority order. If T3 is exe
uting then it blo
ks T2 and T1 as it owns a
ommon resour
e wantedby T2 or by both tasks (if not, T3
ould not be exe
uting). Task T3 inherits the priority of T1 viaT2.Consider the following es
enario:Task T3 Task T2 Task T1...lo
k(a) (1) lo
k(
) (2) lo
k(d) (3)...lo
k(b) (6) lo
k(a) (5) lo
k(
) (4)The numbers between bra
kets indi
ate the order of exe
ution. T3 starts exe
ution and lo
ks a,then T2 enters the system and preempts T3 as its priority is higher (for the instant being, T3 hasnot yet inherited T2's priority) a

essing the
riti
al se
tion for resour
e
. Then T1 gains thepro
essor as it has the highest priority a

essing d and it intends to lo
k resour
e
 whi
h is ownedby T2 (point (4)); at this moment T2 inherits T1's priority, resumes its exe
ution until point (5)where resour
e a is owned by T3 and at this moment this task inherits T2's priority whi
h is, infa
t, T1's one.Rule 4 Highest priority task �rst. A task Ti
an preempt another task Tj if Ti is not blo
ked andits priority is higher than the priority, inherited or assigned, at whi
h Tj is running.This proto
ol has a number of properties; one of the most interesting is the fa
t that a task Ti
anbe blo
ked for at most the duration of one
riti
al se
tion for ea
h task of lower priority. Although wedo not give the proof, the example shown above is illustrative of this fa
t.As a
onsequen
e of this me
hanism, the basi
 proto
ol does not prevent deadlo
ks. It is very easyto see through this example:Example 2.4 (Deadlo
k)Task T2 Task T1... ...lo
k(a) (1) lo
k(b) (2)... ...lo
k(b) (4) lo
k(a) (3)... ...unlo
k(b) unlo
k(a)... ...unlo
k(a) unlo
k(b)where T1 has highest priority. T2 enters the systems (1) lo
king a, then T1 at (2) preempts T2, lo
ksb and when it intends to lo
k a (3) is blo
ked by T2, whi
h regains the pro
essor (as it inherits the

2.3. PERIODIC DEPENDENT TASKS 31priority of T1); when T2 intends lo
k b (4) this resour
e had already been assigned. Both tasks aremutually blo
ked, hen
e in deadlo
k.This problem
an be fa
ed by imposing a total ordering on the sempahore a

esses, but blo
kingduration is still a problem sin
e a
hain of blo
king
an be formed as showned in the examples above.2.3.2 Priority Ceiling Proto
olPriority Ceiling Proto
ol, p
p, is a variant of the basi
 pip but it prevents the formation of deadlo
ksand
hained blo
king. The underlying idea of this proto
ol is that a
riti
al se
tion is exe
uted at apriority higher than that of any task that
ould eventually demand the resour
e. The pip promotesan as
ending priority assignment as new higher piority tasks enters the systems and areblo
ked by lower priority tasks, but the p
p assigns the highest priority to the task whi
h�rst gets the resour
e among all a
tive tasks demanding the resour
e.To implement this idea, a priority
eiling is �rst assigned to ea
h semaphore, whi
h is equal to thehighest priority task that
ould ever use the semaphore. We a

ept a task Ti to begin exe
ution ofa new
riti
al se
tion if its priority is higher than all priority
eilings of all the semaphores lo
ked bytasks other than Ti. Note that the demanded resour
e is not taken into a

ount to a

ess the
riti
alse
tion, but the
eilings of other a
tive tasks.Let us revisit our example 2.4 to see how it works:Example 2.5 (Deadlo
k Revisited) Initially T2 enters the system and lo
ks resour
e a (1); later,T1 enters the system, preempts T2 and when it tries to lo
k b (whi
h is free), the s
heduler �nds thatT1's priority is not higher than the priority
eiling of the lo
ked semaphore a; T1 is suspended and T2resumes exe
ution; when T2 tries to lo
k b it has in fa
t the highest priority sin
e no other tasks lo
ksa semaphore; hen
e, T2 lo
ks, exe
utes, �nishes and releases all of its resour
es, letting T1
ontinue itsexe
ution. Observe that even when T2 releases b, the s
heduler will not let T1 resume its exe
ution,sin
e its priority is still lower than T2's.The proto
ol
an be summarized in the following steps:Step 1 A task Ti with the highest priority is assigned to the pro
essor; let S� be the semaphore withthe highest priority
eiling of all semaphores
urrently lo
ked by tasks other than Ti. If Ti triesto enter a
riti
al se
tion over a semaphore S it will be blo
ked if its priority is not higher thanthe priority
eiling of semaphore S�. Otherwise Ti enters its
riti
al se
tion, lo
king S. When Tiexits its
riti
al se
tion, its semaphore is released and the highest priority task, if any, blo
ked byTi is resumed.Step 2 A task exe
utes at its �xed priority, unless it is in its
riti
al se
tion and blo
ks higher prioritytasks; at this point it inherits the highest priority of the tasks blo
ked by Ti. As it exits a
riti
alse
tion, it regains the priority it had just before entry to the
riti
al se
tion.Step 3 As usual, the highest priority task is always exe
uting; a task Ti
an preempt another task Tj ,if its priority is higher than the priority at whi
h Tj is running.Example 2.6 Consider three tasks T0, T1 and T2 in des
ending priority order, a

essing resour
es a,b and
. We s
hematize the steps:

32 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGTask T0 Task T1 Task T2... (5) ... (2) ...lo
k(a) (6)/(9) lo
k(
) (3)/(12) lo
k(
) (1)...unlo
k(a) unlo
k(
) lo
k(b) (4)... (7)lo
k(b) unlo
k(b) (8)... ... (10)unlo
k(b) unlo
k(
) (11)... ... (13)The priority
eilings of semaphores for a and b are equal to T0's priority and for
 at T1's priority.Figure 2.4 illustrates the sequen
e of events.� At time t0 task T2 begins its exe
ution and blo
ks
 (1).� At time t1 task T1 enters the system, (2), preempts T2 and begins its exe
ution but it is blo
kedwhen it tries to lo
k
 (3) owned by T2, whi
h resumes its exe
ution at T1's priority (inheritan
e).� At time t2, task T2 enters its
riti
al se
tion for b sin
e no other semaphore is lo
ked by otherjobs (4).� At time t3, task T0 enters the system, (5), and as it has a higher priority, it preempts T2, whi
h isstill in b's
riti
al se
tion; note that T2's priority (in fa
t, inherited from T1), is lower than T0's.� At time t4 as T0 tries to enter the
riti
al se
tion for a, (6), it is blo
ked sin
e its priority isnot higher than the priority
eiling of the lo
ked semaphore for b. At this point, T2 regains thepro
essor at T0's priority (inheritan
e), (7).� At time t5, T2 releases the semaphore for b, (8), and returns to the previously inherited priorityfrom T1 but T2 is preempted by T0 whi
h regains the pro
essor, (9).� At time t5, T0 a

esses the
riti
al se
tion for a and it is never stopped until termination sin
e ithas the highest priority.� At time t6, T2 resumes its exe
ution, (10), at T1's priority, exits the
riti
al se
tion for
, (11),re
overs its original priority and is preempted by T1.� At time t7, T1 is granted the lo
k over
, (12), �nishes its exe
ution (time t8) and then T2 resumes,(13), and also terminates (time t9).Many properties
hara
terize this proto
ol: it is deadlo
k free and a task will not be blo
ked formore time than the duration of one
riti
al se
tion of a lower priority task; it also o�ers a
ondition ofs
hedulability based on a rma assignment of priorities for a set of periodi
 tasks:Theorem 2.4 (S
hedulability of p
p) A set of n periodi
 tasks using the p
p
an be s
heduled bythe rma if the following
ondition is satis�ed:nXi=1 EiPi +max�B1P1 ; : : : ; Bn�1Pn�1 � � n(21=n � 1)where Bi is the worst
ase blo
king time for a task Ti, that is, the longest duration of a
riti
al se
tionfor whi
h Ti might eventually wait.

2.3. PERIODIC DEPENDENT TASKS 33
T2 t0 t9t8t7t6t5t4t3t2t1

 lo
ked b lo
ked b unlo
ked
 unlo
kedT1
 lo
ked
 unlo
kedT0 a lo
ked b lo
ked

Figure 2.4: Sequen
e of events under p
p2.3.3 Immediate Inheritan
e Proto
olThe main diÆ
ulty with p
p is implementation in pra
ti
e, sin
e the s
heduler must keep tra
k of whi
htask is blo
ked on whi
h semaphore and the
hain of inherited priorities; the test to de
ide whether asemaphore
an be lo
ked or not is also time
onsuming.There is a very simple variant of this method,
alled immediate inheritan
e proto
ol, iip, whi
hindi
ates that if a task Ti wants to lo
k a resour
e r, the task immediately sets its priority to themaximum of its
urrent priority and the
eiling priority of r. On exiting the
riti
al se
tion for r, Ti
omes ba
k to the priority it had just before a

essing r.Ea
h task is delayed at most on
e by a lower priority task, sin
e there
annot have been two lowerpriority tasks that lo
ked two semaphores with
eilings higher than the priority of task Ti, sin
e one ofthem would have inherited a higher priority �rst. As it inherits a higher priority, the other task
annotthen run and lo
k a se
ond semaphore. One of the
onsequen
e of this proto
ol is that if a task Ti isblo
ked, then it is blo
ked before it starts running, sin
e if other task Tj is running and holds a resour
eever needed by Ti then it has at least Ti's priority; so when task Ti is released it will not start runninguntil Tj has �nished.This variation of the p
p is easier to implement and
an be found in many
ommer
ial real timeoperating systems, [58℄.2.3.4 Dynami
 Priority Ceiling Proto
olIn this se
tion we present a
eiling proto
ol whi
h works dynami
ally; in pip and all of its extensions,priorities are assigned stati
ally: ea
h task has a stati
 priority and ea
h resour
e has a
eiling prioritywhi
h varies from pip to p
p. Ea
h task
hanges dynami
ally its priority as it demands resour
es butit always starts at the same priority, regardless of the environment. We have shown the s
hedulabilityresult under the stati
 assignment for rma.The Dynami
 Priority Ceiling Proto
ol, dp
p, was
reated by Chen et al in [21℄ and extended byMaryline Silly in [54℄. A task Ti is assigned a dynami
 priority a

ording to edf proto
ol; as usual a

34 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGtask Ti may lo
k and unlo
k a binary semaphore a

ording to a p
p. A priority
eiling is de�ned forevery
riti
al se
tion and its value at any time t is the priority of the highest priority task, (the taskwith the earliest deadline), that may enter the
riti
al se
tion at or after time t.Ea
h release of Ti may be blo
ked for at most Bi, the worst
ase blo
king time. Bi
orrespondsto the duration of the longest
riti
al se
tion in the set fs; s 2 Sj \ Sk; Dk � Di < Djg, where s is asemaphore to a

ess a resour
e and Si is the list of semaphores a

essed by Ti.A very simple suÆ
ient
ondition for the set T to be s
hedulable isnXi=1 Ei +BiPi � 1in whi
h we \add" to the normal worst
ase exe
ution time, the blo
king time, assuming it as an extra
omputation. We need a more pre
ise s
hedulability
ondition for dp
p.We will assume that deadline equals periods and we de�ne the s
heduling interval for a request Tito be the time [ri; fi℄where ri is the release time and fi is the
ompletion time for Ti. We will denote
j as the deadlineasso
iated to the
eiling priority of sempahore Sj , in fa
t,
j is the deadline of the highest priority taskthat uses or will use semaphore Sj .Let Ii be a s
heduling interval for Ti in whi
h the maximal amount of
omputation time is neededto
omplete Ti and all higher priority tasks. Of
ourse there may be a lower priority task that
anblo
k Ti in Ii; let m be the index of this task. Let Li be the ordered set of requests' deadlines withinthe time interval [Di; Dm℄ and let Li = mint2Li(t �Pnj=1b t+xjPj
:Ej). Li represents a lower bound ofadditional
omputation time that
an be used within Ii while guaranteeing deadlines of lower prioriytasks.Theorem 2.5 (Silly99) Using a dynami
 p
p all tasks of T meet their deadlines if the two following
onditions hold: nXi=1 EiPi � 1 (2.1)Bi � Li 8i; 1 � i � n (2.2)See [54℄ for proof.Example 2.7 Consider three tasks T1 = (4; 12; 16); T2 = (6; 20; 24); T3 = (8; 46; 48), where the �rstparameter represents exe
ution time, the se
ond the deadline and the third the period. Analysis is donewithin the interval [0; 48℄ where three instan
es of T1, two of T2 and one for T3 will arrive. T1 a

essessemaphore S1, T2 a

esses S2 and task T3 both of them. S1 takes 2 units to be unlo
ked and S2 takes 4.Conditions 2.1 and 2.2 are satis�ed; a

ording to deadlines, task T1 has the highest priority and hen
eS1 and T3 has the lowest; S2 is assigned T2's priority. Figure 2.5 shows the s
hedule produ
ed by adynami
 p
p using the earliest deadline as late as possible, edl, whi
h promotes pushing the exe
utionof periodi
 tasks as late as possible, respe
ting their deadlines.� At time t = 0 the three tasks arrives: d1 = 12, d2 = 20 and d3 = 46; T1 is exe
uted �rst at t = 8,the latest possible time to
omplete.

2.4. PERIODIC AND APERIODIC INDEPENDENT TASKS 35
����
����
����
����

����
����
����
����

���
���
���
���

��

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����
���
���
���

���
���
���

����
����
����
����

��
��
��

��
��
��

4 8 12 16 20 24 28 32 36 40 44 48

processor idle

task release

task deadline

no resources
processor buzy

T1T3T2
using S2using S1Figure 2.5: Dynami
 p
p� At time t = 14, T2 is started following the edl poli
y.� At time t = 16, while T2 is exe
uting, a new instan
e of T1 arrives, its deadline d1 = 28 > d2 = 20,T1 does not preempt T2.� At time t = 20, T2
ompletes and at t = 24 a new instan
e of T2 arrives, d2 = 44� At time t = 24, T1 starts and �nishes at t = 28.� As T3 and T2 latest starting time is 38 but T2 deadline is 44, we start at t = 28 T2.� At time t = 32 while T2 is exe
uting the last instan
e of T1 arrives with deadline d1 = 44, so itdoes not preempt T2.� At time t = 34, T1 starts and �nishes at t = 38 unlo
king resour
es ofor T3 to start.We will see in detail this algorithm in se
tion 2.4.1.2.4 Periodi
 and Aperiodi
 Independent TasksOur previous se
tions were dedi
ated to the problem of s
heduling a set of periodi
 tasks; even ifthe methods
an be extended to a mixture of periodi
 and aperiodi
 tasks, the main results overs
hedulability and bounded blo
king time are found for a set of periodi
 tasks. In this se
tion we willtry to analyse some approa
hes to handle a mixture of periodi
 and aperiodi
 tasks.In prin
iple we de�ne an aperiodi
 task as a unit of exe
ution whi
h has irregular and unpredi
tablearrival times, that is, a task that may be driven by the environment at any moment with no relationamong arrivals. These kind of tasks may be exe
uted as soon as possible after their arrival whileperiodi
 tasks might be
ompleted later within their deadlines, taking advantage of the fa
t that weknow their periodi
ity to push their exe
ution as late as possible, but �nishing before deadlines. Insummary, we are respe
ting deadlines for periodi
 tasks and responsiveness for aperiodi
 tasks.

36 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING2.4.1 Sla
k Stealing AlgorithmsIn [36℄ and [57℄ we �nd a sla
k stealing proto
ol, ssp, whi
h be
ame the referen
e in s
heduling a mixedset of tasks. The idea is to use the idle pro
essor time to exe
ute aperiodi
 tasks.As usual, a periodi
 task Ti is
hara
terized by its worst-
ase exe
ution time, Ei, its deadline Diand its period Pi, Di � Pi; a task is initiated at time �i � 0; periodi
 tasks are s
heduled under a �xedpriority algorithm, su
h as rma, and by
onvention tasks are ordered in priority des
ending order.For ea
h aperiodi
 task Ji, we asso
iate an arrival time �i and a
omputing time of
i. Tasks areindexed su
h that 0 � �i � �i+1; between the interval [0; t℄ we de�ne the
umulative workload
ausedby exe
uting aperiodi
 tasks: W (t) = Xij�i�t
iAny algorithm for s
heduling both periodi
 and aperiodi
 tasks a

umulates the e�e
tive exe
utiontime destinated to aperiodi
 tasks, �(t), for a period [0; t℄; of
ourse �(t) � W (t) whi
h is an upperbound of exe
ution times for aperiodi
 tasks.Aperiodi
 tasks are pro
essed in a FIFO manner; the
ompletion of a task Ji, denoted by Fi is givenby Fi = minftj�(t) = iXk=1
kgand the response time for Ji, denoted Ri is given byRi = Fi � �iThe s
heduling algorithm proposed by Leho
zky and Ramos-Thuel minimizes Ri, whi
h is equivalentto minimize Fi.The ssp uses a fun
tion Ai(t) for ea
h task Ti whi
h represents the amount of time that
an beallo
ated to aperiodi
 tasks within the interval [0; t℄ whi
h should run at a priority level i or higher,being the pro
essor
onstantly busy and all tasks meeting their deadlines. The total amount of freetime is A(t); sin
e tasks Ti's are periodi
, it suÆ
es to analyse the interval [0;H℄, where H is the least
ommon multiple of the task periods.1. For ea
h periodi
 task Ti and for ea
h instan
e j of Ti within [0;H℄ we
omputemin(0�t�Dij)f(Aij +Ei(t))=tg = 1whi
h gives the largest amount of aperiodi
 pro
essing possible at level i or higher during interval[0; Fij ℄ su
h that Fij � Dij (Fij is the
ompletion time for the j-th instan
e of task Ti),2. At run time there are three di�erent kind of a
tivities: a
tivity 0 is aperiodi
 task pro
essing,a
tivities 1 : : : n is periodi
 task pro
essing and a
tivity n+ 1 refers to the pro
essor being idle.3. At any time, we keep A the total aperiodi
 pro
essing and Ii the i-level ina
tivity. We supposeperiodi
 tasks are s
hedulable (by some other me
hanism su
h as rma). Suppose we start ana
tivity j at time t, whi
h �nishes at time t0 (t0 > t) and 0 � j � n+ 1). Then if j = 0 we addt0 � t to A and if 2 � j � n then we add t0 � t to I1; : : : ; Ij�1

2.4. PERIODIC AND APERIODIC INDEPENDENT TASKS 374. When a new aperiodi
 task J arrives, we must
ompute the availability for this task. We
omputeA�(s; t) = min(1�i�n)(Ai(s; t)and Ai(s; t) = Aij �A(s)� Ii(s))Suppose J arrives at time t with a w
omputing time; if A�(s; t) � w then we
an pro
essimmediately at [s; s + w℄, at the highest priority level (sin
e we are preempting the
urrentlyexe
uting task). If A�(s; t) � w then, we will exe
ute at tiem [s; s + A�(s; t)℄ but no furtheraperiodi
 pro
essing is available until additional sla
k; this will o

ur when a periodi
 job is
ompleted.The ssp is optimal in the sense that under a �xed priority s
heduler for periodi
 tasks and a FIFOmanagement for aperiodi
 tasks, the algorithm minimizes the response time for aperiodi
 pro
essingamong all s
heduling algorithms whi
h are feasible.Cal
ulating Idle TimesM. Silly, [54℄ introdu
ed a very
lear method to
al
ulate stati
 idle times for a set of independentperiodi
 tasks; these idle times are used to
ompute aperiodi
 tasks. The analysis is based, as forThuel's and Leho
kzy's algorithm, on the assumption that periodi
 tasks may be exe
uted as late aspossible, (based on their deadlines), and that aperiodi
 tasks are exe
uted as soon as possible. Thisalgorithm is
alled Earliest Deadline as Late as possible, edl.We need to
onstru
t two ve
tors in the interval [0;H℄:1. K,
alled stati
 deadline ve
tor, whi
h represents the times at whi
h idle times o

ur and is
onstru
ted from the distin
t deadlines of periodi
 tasks:K = (k0; k1; : : : ; ki; ki+1; : : : ; kq)where ki < ki+1, k0 = 0 and kq = H�minfxi; 1 � i � ng where xi = Pi �Di 81 � i � n.2. D, the stati
 idle time ve
tor, whi
h represents the lengths of the idle times:D = (�0;�1; : : : ;�i;�i+1; : : : ;�q)where ea
h �i gives the length of the idle time interval, starting at ki, 1 � i � q. This ve
tor isobtained by the re
urrent formula:�q = minfxi; 1 � i � ng (2.3)�i = max(0; Fi) for i = q � 1 down to 0 (2.4)with Fi = (H� ki)�Pnj=1dH�xj�kiPj eEj �Pqk=i+1 �kExample 2.8 Re
onsider example 2.7. In prin
iple q = 6 (or smaller); from formulae 2.3 and 2.4 weknow that k0 = 0 and k6 = 48 �minf4; 4; 2g = 46 and �6 = 2. The 'last' moment to start running
an be derived from the di�eren
es among deadlines and exe
ution times. For T1 this moment is at

38 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING
4 8 12 16 20 24 28 32 36 40 44 48

processor buzy

processor idle

task release

task deadline

T1T3T2
Figure 2.6: EDL stati
 s
heduler8 (12-4); for T2 is at 14 (20-6) and �nally for T3 is at 38 (46-8). Deadline ve
tor K is
onstru
tedfrom deadlines; for T1 these are 12, 28, and 44; for T2 we have 20 and 44 and �nally for T3 we have46; sorting these numbers gives K = (0; 12; 20; 28; 44; 46). Cal
ulating D is a little more diÆ
ult. Forinstan
e, F5 = (48� 44)� 3Xj=1d48� xj � k5Pj Ej � 6Xk=6�kwhi
h gives F5 = 4� [0 + 0 + 8℄� 2 = �6so �5 = 0, and so on. Figure 2.6 gives the whole stati
 s
hedulingThis information is now useful at pro
essing time while a new aperiodi
 task task arrives. SupposeJ arrives at time � with an exe
ution time of E and a deadline D. We need to �nd an interval [�; �+D℄where at least E units of idle time exists, and this
an be done easily by using our ve
tors K and D,shifting the origin to �.We will not give the details of these implementation, but only a simple example; see [54℄ for a fulldes
ription and proofs.Example 2.9 Suppose at time � = 7 a task J arrives with E = 5 and D = 15. We need to knowif within [7; 22℄ there exists 5 free units. We
al
ulate this by
reating K0 = (7; 12; 20; 28; 44; 46) andD0 = (1; 2; 4; 0; 0; 2). We have 1 unit in [7,8℄, 2 in [12,14℄ and 4 in [20,24℄, within [7,22℄ we have our5 units. Task J may be a

epted and ve
tors K and D must be
orre
ted.Silly, [54℄ also proposed a dynami
 algorithm to
al
ulate idle times while using a dynami
 priorityalgorithm for periodi
 tasks, su
h as edf.2.5 Periodi
 and Aperiodi
 Dependent TasksThe model presented in this se
tion,
onsiders s
hedulability under a set of periodi
 and aperiodi
 taskswhi
h share some resour
es.

2.5. PERIODIC AND APERIODIC DEPENDENT TASKS 39Under this assumption, we
annot break an aperiodi
 task in multiple
hunks to be exe
uted in idlepro
essor time, be
ause tasks are now not independent and
ould a�e
t the stati
 s
hedulability forperiodi
 tasks; on the other hand, if we s
hedule share resour
es by means of p
p, we need to assign toaperiodi
 tasks a deadline in order to
reate their priority. We will show a simple method,
alled TotalBandwidth Server, tbs, due to Spuri and Buttazzo, [55℄, [56℄ whi
h assigns deadlines to aperiodi
 tasksin order to improve their responsiveness and manage
ommon resour
es.2.5.1 Total Bandwidth ServerThe Total Bandwidth Server, tbs, improves the response time of soft aperiodi
 tasks in a dynami
real-time environment, where tasks are s
heduled a

ording to edf. As usual, periodi
 tasks are
hara
terized by their exe
ution times and deadlines; aperiodi
 tasks are only
hara
terized by theirexe
ution time. This proto
ol does not
onsider
ommon resour
es but introdu
es some ideas whi
hare used for a mix of periodi
 and aperiodi
 dependant tasks.tbs
an be used for a set of periodi
 andaperiodi
 independant tasks.We need a dealine for aperiodi
 tasks. When the kth aperiodi
 request arrives at time t = rk, itre
eives a deadline dk = max(rk ; dk�1) + CakUswhere Cak is the exe
ution time of the request and Us is the server utilization fa
tor. By de�nitiond0 = 0 and the request is inserted into the ready queue of the system and s
heduled by edf, as any(periodi
) instan
e.Example 2.10 Consider two periodi
 tasks T1 = (3; 6) and T2 = (2; 8), where the �rst
omponentrepresents exe
ution time and the se
ond the relative deadline (equal to period), see �gure 2.7.Under this s
enario, Up = 34 and
onsequently Us � 14 . At time t = 6 while the pro
essor is idle, anaperiodi
 task J1 with C1 = 1 arrives and its deadline is set to d1 = r1 + C1Us = 6+ 10:25 = 10. Task
anbe s
heduled sin
e we are not ex
eeding the utilization fa
tor, (110 < 14 , and its deadline is the shortest(no other tasks are in queue), J1 is served inmediately. We also show a task J2 with C2 = 2 whi
harrives at time t = 13 and is served at t = 15, sin
e its deadline is set to 21 but a shorter deadline taskis still a
tive. Finally there is a task J3 with C3 = 1 whi
h arrives at t = 18, exe
uted at t = 22.A
tually, as
an be seen in �gure 2.7, tbs is not optimal, sin
e we
ould improve the responsivenessof aperiodi
 jobs. The authors propose an optimal algorithm,
alled tb*, whi
h iteratively shortensthe assigned tbs deadline using the following property:Theorem 2.6 (Buttazzo and Sensini,97) : Let � be a feasible s
hedule of task set T , in whi
h anaperiodi
 task Jk is assigned a deadline dk, and let fk be the �nishing time of Jk in �. If dk is substitutedwith d0k = fk, then the new s
hedule �0 produ
ed by edf is still feasible.2.5.2 tbs with resour
esThe duration of
riti
al se
tions must be taken into a

ount when we handle
ommon resour
es. Infa
t, when we have a mixture of periodi
 and aperiodi
 tasks, we need to bound the maximum blo
kingtime of ea
h task and analyse the s
hedulability of the hybrid set at arrival of a new aperiodi
 job.Buttazzo et al. based their algorithm assuming a Sta
k Resour
e Poli
y, srp, [11℄, to handle sharedresour
es. We des
ribe brie
y this poli
y.

40 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

2 6 8 10 12 14 16 18 20 22 24 264

T1T2 r1 r2 r3d1 d3d2
Figure 2.7: TBS exampleIn the tbs with resour
es, every task Ti is assigned a dynami
 priority pi based on edf and a stati
preemption level �i su
h that the following property holds:Property 2.1 (Sta
k Resour
e Poli
y) Task Ti is not allowed to preempt task Tj , unless �i > �j .The stati
 priority level for a task Ti with relative deadline Di is �i = 1Di . In addition, everyresour
e Rk is assigned a
eiling de�ned as:
eil(Rk) = f�jTi needs RkgFinally a dynami
 system
eiling is de�ned as:�s(t) = max[f
eil(Rk)jRk is
urrently busy g [f0g℄The srp rule states that:\a task is not allowed to start exe
uting until its priority is the highest among the a
tivetasks, noted a
t(T), and its preemption level is greater than the system
eiling".That is, an exe
uting task will never be blo
ked by other a
tive tasks though it
an be preemptedby higher priority tasks but no blo
king will o

ur.Under this proto
ol, a task never blo
ks its exe
ution; it
annot start exe
uting if its preemptionlevel is not high enough; however, we
onsider the time waiting in the ready queue as a blo
king timeBi sin
e it may be
aused by tasks having lower preemption level. The maximum blo
king Bi for taskTi
an be
omputed as the longest
riti
al se
tion among those with a
eiling greater than or equal tothe preemption level of Ti, (a similar reasoning have been applied in [54℄):Bi = max(Tj2a
t(T))fsj;h j (Di < Dj) ^ �i �
eil(�j;h)g (2.5)

2.6. EVENT TRIGGERED TASKS 41where sj;h is the worst
ase exe
ution time of the hth
riti
al se
tion of task Ti and �j;h is the resour
ea

essed by the
riti
al se
tion sj;h.The following
ondition: 8i; 1 � i � n iXk=1 EkPk + BiPi � 1 (2.6)
an be tested to ensure feasibility of a set of periodi
 tasks with
ommon resour
es.To use srp along with tbs, aperiodi
 tasks must be assigned a suitable preemption level. Buttazzoet al, propose: �k = UsCkfor ea
h aperiodi
 task Jk. We
an still use formula 2.5 ranging over the whole task set, to
al
ulatethe blo
king using Dj = CjUs as deadline of aperiodi
 tasks.The following theorem ensures s
hedulability for an hybrid set of tasks:Theorem 2.7 (Lipari and Buttazzo,99) Let TP be a set of n periodi
 tasks ordered by de
reasingpreemption level (�i � �j i� i < j) and let TA be a set of aperiodi
 tasks s
heduled by tbs withutilization Us. Then, set TP is s
hedulable by edf+srp+tbs ifnXi EiDi + Us � 1 (2.7)8i; 1 � i � n; 8L;Di � L < Dn (2.8)L � iXj=1b LPj
Ej +maxf0; Bi � 1g+ LUs (2.9)Example 2.11 Consider two periodi
 tasks T1 = (2; 8) and T2 = (3; 12) whi
h intera
t with twoaperiodi
 jobs J1 and J2, both having exe
ution time 2 and release times r1 = 0 and r2 = 1, respe
tively.Us � 28 + 312 , Us = 12 . �J1 = �J2 = 122 = 14 ; T1 and J2 share the same resour
e during all their exe
utionbut J2 has a higher preemption level. J1 is served �rst in virtue of FIFO for aperiodi
 tasks and J2 isserved before T1 even if both have the same preemption level, but we enhan
e responsiveness. Figure2.8 shows the s
heduling.2.6 Event Triggered TasksUp to now, we have des
ribed rts as a
olle
tion of tasks, periodi
 and aperiodi
, whi
h are triggeredby external events; impli
itly for periodi
 tasks we assume the \period" as the event that makes a task(better said, a new instan
e of task) be released and enter the system. For aperiodi
 task, we are onlyinterested in its arrival and in its s
heduling taking into a

ount other tasks already a
tive.We
onsider now rts in whi
h a task is triggered by various events in their environment. A taskmight be triggered as a
onsequen
e of another task
ompletion or by various events in the environment.

42 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING

2 6 8 10 12 14 16 18 20 22 24 264

T1T2 d1r1 d2r2J1J2
Figure 2.8: Sharing resour
es in an hybrid setWe will distinguish internal and external events; the former are related to the system itself and morepre
isely to the set of a
tive tasks in the pro
essor; the latter are related to the external environment,that is to the rea
tion of some pro
edures not in
luded in the systems (for instan
e, sensors, measuresinstruments, human a
tion, and so on).Balarin et al, [13℄ have proposed an algorithm for s
hedule validation under a s
ene of event triggeredtasks, ett. We will des
ribe their method as it sets up a new model for rea
tive rts.2.6.1 A Model for ettIntuitively an event triggered system is modelled as an exe
ution graph, where some tasks are enabledby others or by some external events; feasibility of su
h a system is seen as all tasks
ompleting beforea new o

urren
e of the event that triggers it re-appears in the system. We say that a system is
orre
tif
ertain
riti
al events are never \dropped" or missed.Formally, a system for ett is a 6-uple (T; e; U;m;E;C) where:� T = f1; 2; : : : ; ng is a set of internal task identi�ers, where identi�ers also indi
ate tasks priority,the larger the identi�er, the higher the priority. We note by �i the priority of a task i.� e : T ! <+ whi
h assigns to ea
h internal task its (worst) exe
ution time.� U , su
h that U\T = ; is a set of unique external task identi�ers, representing the tasks generatedby external events of the environment.� m : U ! <+ whi
h assigns to every external task the minimum time between two o

urren
es ofthe event that triggers it.� E � (T [U)�T is a set of events; a pair (i; j) indi
ates that a task i (external or internal) enablesthe internal task j; if i is external, we say (i; j) is an external event, otherwise (i; j) is an internalevent. Nodes T [U and edges in E
onstitute the system graph of our appli
ation.

2.6. EVENT TRIGGERED TASKS 43
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 4 3 1 5 4 3 2 34

67 (2,4) (1,2)
(1,5)

(5,3)
(5,4)

(4,3) (2,4) (4,3)
(4,3)(6,2)(7,1)

time

a)

b)

m(7) = 20
m(6) = 10

e(1) = e(3) = e(5) = 2
e(2) = e(4) = 1

UTE
Figure 2.9: An example of ett� C � E is a set of
riti
al eventsExample 2.12 We show in �gure 2.9a) a system with 7 tasks; tasks 6 and 7 are external,
riti
alevents are marked by dots and pro
essing is not all in
lusive, that is an internal task is triggered byone event. For instan
e, task 2 must start after re
eiving information from task 1 but need not wait forinformation from task 6 (event (6,2) is not
riti
al and might be dropped).An exe
ution of a system is a timed sequen
e of events that satis�es the following:� An external task i
an exe
ute at any time, respe
ting the minimum delay m(i) between twoexe
utions.� after i has �nished its exe
ution, all tasks j su
h that (i; j) 2 E are enabled, and task i is disabled.� If a task i is enabled at time t1, then it will �nish its exe
ution or be
ome disabled at time t2 su
hthat in interval [t1; t2℄ the amount of time where i had the highest priority is e(i).An event (i; j) is dropped if after i be
omes disabled, task i is exe
uted again before task j isexe
uted. An exe
ution is
orre
t if no
riti
al events are dropped in it. A system is
orre
t if all of itsexe
utions are. We show an exe
ution of our example in �gure 2.9b).2.6.2 Validation of the ModelIf we want to guarantee
orre
tness, we need to show that no
riti
al event is dropped in any exe
ution;a suÆ
ient
ondition for that is to ensure that for every
riti
al event (i; j), the minimum time betweentwo exe
ution of i is larger than the maximum time between i and j. In Balarin's model, they proposea version where:

44 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING� Only external events
an be dropped; the minimum time between two exe
utions for these eventsis determined by a system des
ription.� Conservative estimation of the maximum time between exe
ution of i and j.The �rst proposition is quite simple:Proposition 2.1 If i < j then (i; j)
annot be dropped.In fa
t, remember that in their model, i < j implies �i < �j and if i triggers j, this task has higherpriority and
an never be dropped by the arrival of a new instan
e of i.Balarin et al. have settled a
ondition for an event (i; j) not to be dropped; it is based on the notionof an ex
lusive frontier for ea
h internal task i.De�nition 2.6 (Ex
lusive Neighborhood) Let (F;N) be a pair of disjoint subsets of tasks; (F;N)is an ex
lusive neighborhood for some internal task i if F and N satisfy the following
onditions:C1 i 2 F [NC2 8j; k : ((k 2 N) ^ ((j; k) 2 E)) ! (j 2 F [N)C3 (8k 2 F [N � i)91j 2 N : (k; j) 2 E and i has no su

essors in N .C4 k < j for every k 2 F and every j 2 N .F is the frontier and N is the interior of an ex
lusive neighborhood, whi
h gives the graph obtainedby traversing ba
kwards from i and stopping at the frontier nodes. For example, task 4 has an ex
lusiveneighborhood with F = f1; 2g and N = f4; 5g.Under this de�nition, the following theorem holds:Theorem 2.8 If (i; j) 2 E and (F;N) is an ex
lusive neighborhood for task i, su
h that: k < j 8k 2 F ,then event (i; j)
annot be dropped.whi
h gives a very simple poli
y to assign priorities to tasks, based on propositon 2.1, whi
h is in fa
ta
orollary of this theorem.On the other hand, we
an verify if a
riti
al event (i; j)
an eventually be dropped; it suÆ
es toperform a ba
kward sear
h of a system graph starting from i. The sear
h �nishes when we rea
h a taskwith priority less than j. If at any time some task is rea
hed for the se
ond time (violating C3) or anexternal task is rea
hed (violating C4), the sear
h �nishes with failure (but results are in
on
lusive).On the
ontrary if no more unexplored nodes with priority larger than j are found, then we satisfy thetheorem and the event
annot be dropped.Finally the authors also propose a methodology to analyse the possibility of an external event bedropped, simpli�ed in [12℄. The problem is quite simple to formulate, but not easy to solve.Basi
ally, to know if an external event (i; j)
an be dropped, we need to
he
k whether the exe
utionof j
an be delayed for more than m(i) units of time. In order to do so, they
al
ulate an interval,
alled �j -busy interval, where the pro
essor is always servi
ing tasks with priorities higher than �j .The �rst step in
omputing su
h a bound is to
ompute partial loads, noted Æ(i; p), as the
ontinuousload at priority p or higher
aused by an exe
ution of task i. At the beginning of a p-busy intervalsome task with priority lower than p, say k, may be exe
uting and eventually at
ompletion, k might

2.7. TASKS WITH COMPLEX CONSTRAINTS 45enable some tasks of priority p or higher. The total workload generated by su
h a task is bounded bymaxfÆ(k; p) j k 2 T; �k < pg.As new tasks
an be triggered as the
onsequen
e of external events, we
onsider that in a p-busyinterval of length �, there
an be at most d �m(u)e exe
utions of an external task u generating a workloadof Æ(u; p) at priority p or higher, hen
e we have:� �maxfÆ(k; p) j k 2 T; �k < pg+Xu2Ud �m(u)eÆ(u; p)whi
h
an be solved by iteration; if p = �j and � < m(i), then (i; j)
annot be dropped.2.7 Tasks with Complex ConstraintsIn this se
tion, we present some ideas to atta
k the problem of s
heduling when tasks must be analysedusing
omplex
onstraints. We borrow from [30℄ the term
omplex
ontraints whi
h means that a setof tasks is
hara
terized not only by simple
onstraints su
h as period, release time and deadline butalso by some other
onstraints whi
h
annot be embedded in traditional s
heduling.Within these
omplex
ontraints, we
an
ite:� Pre
eden
e
onstraints: su
h that a task is triggered by another task or the distribution of tasksin many pro
essors whi
h requires some internode
ommuni
ation.� Jitter: even if a task must �nish before its deadline, the evolution of a task may be di�erent frominstan
e to instan
e. The maximum time variation (relative to the release time) in the o

urren
eof a parti
ular event in two
onse
utive instan
es of a task de�nes the jitter for that event. Forexample, the start time jitter of a task is the maximum time variation between the relative starttimes of any two
onse
utive jobs; similarly we
an de�ne the response time jitter as the maximumdi�eren
e between the response times of any
onse
utive jobs, that is the maximum delay for aninstan
e of a task, [19℄.� Non periodi
 exe
ution: where some instan
es of a tasks might be separated by non
onstantlength intervals (this
annot be handled under edf).� Semanti

onstraints: tasks are
hara
terized by parameters su
h as performan
e or relialiblity;for instan
e: allo
ate a task to a parti
ular pro
essor.We will brie
y des
ribe the method proposed by [30℄ in order to handle tasks with
omplex
on-straints. The method begins by treating periodi
 tasks, whi
h are redu
ed o�ine to
reate s
hedulingtables, [27℄; it allo
ates tasks to nodes and resolves
omplex
onstraints by
onstru
ting sequen
es oftask exe
utions. Ea
h task in a sequen
e is limited by either sending or re
eiving internode messages,prede
essor or su

essor within the sequen
e. The �nal result is a set of independent tasks on sin-gle nodes with start-times and deadlines. These tasks
an be s
heduled a

ording to traditional edfmethod but we have to take into a

ount the eventual arrival of aperiodi
 tasks whi
h
an violate the
omplex
onstraint
onstru
tion.Isovi
 et al. propose an extension of edf,
alled two level edf, [23℄. There is a \normal level"to s
hedule tasks a

ording to edf but a \priority level" to an o�ine task when it needs to start atlatest, similar to the basi
 idea of sla
k stealing for �xed priority s
heduling, [57℄. We need to knowthe amount and lo
ation of resour
es available after o�ine tasks are guaranteed s
hedulability.

46 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGFor ea
h node, we have a set of tasks, with start-times and deadlines, tasks are ordered by in
reasingdeadlines and the s
hedule is divided into a set of disjoint exe
ution intervals. For ea
h instan
e j ofo�ine task Ti we de�ne a window w(T ji). We have:� est(T ji) whi
h is expressed in the o�-line s
hedule as the earliest start time, provided by the task
onstraints.� f(T ji) the s
heduled �nishing time a

ording to the o�-line s
hedule and� start(T ji) the s
heduled start time of instan
e j is the starting time of T ji a

ording to the o�-lines
hedule.Ea
h window w(T ji) = [est(T ji); dl(T ji)℄, where dl(T ji) is the absolute deadline of instan
e j of taski. We de�ne spare
apa
ities to represent the amount of available resour
es for these intervals. Ea
htask deadline de�nes the end of an interval Ii. The start is de�ned as the maximum of the end of theprevious interval or the earliest start time of the task. The end of the previous interval may be laterthan the earliest start time, or earlier, thus it is possible for a task to exe
ute outside its interval, earlierthan the interval start but never before its earliest start time.The spare
apa
ities of an interval Ii are
al
ulated as:s
(Ii) = jIij �XT2Ii ET �min(s
(Ii+1); 0)sin
e a task may exe
ute prior to its interval, we have to de
rease the spare
apa
ities lent to subsequentintervals.Runtime s
heduling is performed lo
ally for ea
h node. If the spare
apa
ities of the
urrent intervalare greater than 0, then edf is applied on the set of ready tasks, -normal level. If no spare
apa
itiesare available, it means that a task has to be exe
uted inmediately (sin
e we have already guaranteeds
hedulability).After ea
h s
heduling de
ision, the s
 for an interval is updated. If a periodi
 task assigned to aninterval I
 exe
utes, no
hanges are need, but if a task T assigned to a later interval Ij , j >
 exe
utes,the spare
apa
ity of Ij is in
reased and that of I
 is de
resead. We will show that
urrent spare
apa
ity is redu
ed by aperiodi
 tasks or idle exe
ution.When an aperiodi
 task Ji arrives to the system at time ti we perform an a

eptan
e test based onother previously arrived aperiodi
 task waiting for exe
ution; if this set is
alled G, we should test ifG [Ji
an be s
heduled,
onsidering o�ine tasks. If so, we
an add Ji to G.The �nishing time of Ji, fi, with exe
ution Ci
an be
al
ulated with respe
t to Ji�1; with no o�inetasks, fi = fi�1 + Ci represents the �nishing time for Ji but we should extend the formula re
e
tingthe amount of resour
es reserved for o�ine tasks:fi = Ci +� t+R[t; f1℄ i = 1fi�1 +R[fi�1; fi℄ i > 1where R[t1; t2℄ stands for the amount of resour
es reserved for the exe
tuion of o�ine tasks from timet1 to t2. We
al
ulate this term by means of spare
apa
ities:R[t1; t2℄ = (t2 � t1)� XI
2(t1;t2)max(s
(I
); 0)

2.7. TASKS WITH COMPLEX CONSTRAINTS 47As fi appears on both sides of the equation, the authors propose an algorithm for a

eptan
e of anew aperiodi
 task Ai in O(n), where n is the number of aperiodi
 tasks in G not already
ompleted.In [23℄, Dobrin, Ozdemir and Fohler propose an algorithm for �xed priority assignment in the
ontext of o�-line tasks. For o�-line tasks we assign priorities based on starting points; as the systemevolves, it
annot always be possible to keep the same priority for di�erent instan
es of the same task,so new '�
ti
iuos' tasks are
reated.

48 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING

Chapter 3Inspiring Ideas
R�esum�eUne premi�ere id�ee a �et�e l'ordonnan
ement de programmes Java Temps R�eel, pour r�epondre aux ques-tions \est-
e qu'on peut mod�eliser un programme Java selon
ertains points d'observation?" et \est-
equ'on peut trouver, �a partir de
e mod�ele, un programm Java Temps R�eel Ordonnan
�e?"Pour resoudre
es deux probl�emes on a
ommen
�e par l'ordonnan
ement �a partir d'un
ertain modelabstrait, [32℄.Un programme Java en Temps R�eel, est un ensemble S de threadsH ;
haque thread est ind�ependente�a l'ex�e
ution mais elle se
ommunique ave
 autres threads par les instru
tions de syn
hronisation.Chaque thread H est divis�ee logiquement en tâ
hes;
haque tâ
he d'une thread H peut être ex�e
ut�eeen parall�ele ou entrela
�ee ave
 autres tâ
hes d'autres threads. Les tâ
hes d'une thread son ordonnan
�eesd'une fa�
on s�equentielle.Formellement, on dit qu'une thread Hj est
ompos�ee par une s�equen
e� j1 ; � j2 ; : : : ; � jnjde tâ
hes. Les \;" separent les di�erentes tâ
hes �a l'interieur d'une thread.Chaque thread Hj peut être p�eriodique, i.e. elle arrive dans
ertains intervalle de temps d�e�nisstatiquement, Tj . A
haque tâ
he � ji on va asso
ier une valeur Ci
orrespondant au temps d'ex�e
ution.Finallement, �a
haque thread Hj on peut asso
ier une �e
hean
e, Dj
orrespondante au temps maximalde �nition de la thread. C'est le
adre
lassique de str, [54℄, [37℄, [36℄.Dans le
adre de notre mod�ele, un programme est une s�equen
e de tâ
hes de di�erentes threads etun programme ordonnan
�e est une s�equen
e de tâ
hes telle que �a l'ex�e
ution elle respe
te les
ontraintestemporelles.3.1 Introdu
tionEmbedded systems play an in
reasingly important role in daily life. The strong in
reasing penetrationof embedded systems in produ
ts and servi
es
reates huge opportunities for all kinds of enterprisesand institutions, [3℄. It
on
erns enterprises and institutions in su
h diverse areas as agri
ulture,49

50 CHAPTER 3. INSPIRING IDEAShealth
are, environment, road
onstru
tion, se
urity, me
hani
s, shipbuilding, medi
al applian
es,language produ
ts,
onsumer ele
troni
s, et
. Real-time embedded systems intera
t
ontinuously withthe environment and have
onstraints on the speed with whi
h they rea
t to environment stimuli.Examples are power-train
ontrollers for vehi
les, embedded
ontrollers for air
rafts, health monitoringsystems and industrial plant
ontrollers. Timing
onstraints introdu
e diÆ
ulties that make the designof embedded systems parti
ularly
hallenging.Hard rt embedded systems have tight timing
onstraints, i.e., they are diÆ
ult to a
hieve andthey must not be violated, with respe
t to the
apability of the hardware platforms used. Hard rt
onstraints
hallenge the way in whi
h software is designed at its roots. Standard software developmentpra
ti
es do not deal with physi
al properties of the system as a paradigm, so we need some new modelswhi
h add non-fun
tional aspe
ts to the logi
 of the problems.As embedded systems are growing, it stands out that a development language for these systems mustbe a popular programming language, whi
h in
ludes interesting features for real time environments.Java is a language whi
h really
overs many of the needs of real time programming, to the extent thattoday we
an talk of Real Time Java, [15℄, rt-Java, and even s
ienti�
 meetings
on
erning Java andEmbedded Systems.Java is a language whi
h provides some basi

omponents su
h as methods, grouped in
lasses andobje
ts belonging to a
lass; it provides
on
urren
y through the spe
ial
lass Thread where di�erentpro
esses
an
oordinate, wait and resume their exe
utions; many of these needs are imperative inrts. Another important feature of Java is its ortogonality, that is, almost everything is redu
ed to the
on
ept of obje
t.Real Time Java deals easily with aspe
ts su
h as s
heduling, memory management, syn
hronization,asyn
hronous event handling and physi
al memory a

ess, in some way platform-independent and hen
eappli
ations are portable and the developement may be distributed. Java te
hnology is already usedin a variety of embedded appli
ations, su
h as
ellular phones and mobility.Some of the advantages of the Java te
hnology are:� Portability. Platform independen
e enables
ode reuse a
ross pro
essors and produ
t lines, allow-ing devi
e manufa
turers to deploy the same appli
ations to a range of target devi
es and hen
elower
osts.� Rapid appli
ation development. The Java programming language o�ers more
exibility duringthe development phase, sin
e it
an begin on a variety of available desktop environments, wellbefore the targeted deployment hardware is available.� Conne
tivity. The Java programming language provides a built-in framework for se
ure network-ing.� Reliability. Embedded devi
es require high reliability. The simpli
ity of the Java programminglanguage, -with its absen
e of pointers and its automati
 garbage
olle
tion-, eliminates manybugs and the risk of memory leaks.It stands out that Java is a language whi
h ful�ls many of the real time requirements over a�rm language ar
hite
ture; even more, Java is very popular and well known for the implementation
ommunity.Java and S
hedulability. Our �rst need was in prin
iple to answer the question \is it possibleto model a rt-Java Program in order to synthesize a s
heduled program whi
h ensures all temporal

3.1. INTRODUCTION 51

Scheduled

Java Program

Real Time

Java Program
Analysis

Model

Sc
he

du
le

r
Sy

nt
he

si
s

Preemption

Dependency

Uncertain execution

Environment

Execution times

Urgency

times

Real Time

Figure 3.1: Constru
tion of a rt-Java S
heduled Program
ontraints?". Our obje
tive
an be resumed in �gure 3.1, where a Java program su�ers a pro
ess ofanalysis in order to
onstru
t, synthetise, the s
heduled program.So, we need to model a Java Program or a rt-Java Program in order to perform s
heduling oper-ations. We are parti
ularly interested in analysing a program to say whether it is s
hedulable or not.S
heduling properties to be respe
ted are deadlines, exe
ution times, syn
hronization points and sharedresour
es. The �nal obje
tive is to �nd a possible sequen
e of exe
ution whi
h
an guarantee all theproperties mentioned above.The result of the analysis should be a s
heduled Java programwith some s
heduling poli
y embeddedin the Java language through its rt platform. Java provides some means to model syn
hronizationamong pro
esses, through two primitives wait and notify and mutual ex
lusion through the attributesyn
hronized over an objet. Java performs
oordination by blo
king an obje
t. So, to be independentof this spe
ial semanti
s, we propose to di�erentiate
learly these two aspe
ts:1. Syn
hronization or
oordination among threads, that is
ommuni
ation in a produ
er/
onsumerfashion is done through two primitives: await to signal waiting of a message and emit to signalsending of a message. Con
eptually speaking it is as if there were no expli
it lo
king of the obje
tover whi
h we wait.2. Mutual ex
lusion, that is an obje
t
annot be a

essed by more than one thread at a time, inorder to assure
orre
tness. This is done through the (Java) attribute syn
hronized over theobje
t whi
h must be preserved.

52 CHAPTER 3. INSPIRING IDEAS
lass Periodi
Th extends Periodi
RTThread{ long p ;ThreadBody b ;Periodi
Th(long p, ThreadBody b){ this.p = p ;this.b = b ;}publi
 void run(){ long t ;Clo
k
 = new Clo
k() ;while(true){ t =
.getTime() ;b.exe
() ;waitforperiod(p + t -
.getTime());}}}interfa
e ThreadBody{ publi
 void exe
() ;}
lass Thread1_body implements ThreadBody{ Event a, b ;Thread1_body (Event a, b){ this.a = a ;this.b = b ;}publi
 void exe
(){ t7 ;t1 ;a.emit;t5 ;b.emit;}}

lass Thread2_body implements ThreadBody{ Event a, b ;publi
 void exe
(){ t6;a.await;t2;b.await;t4;t3;}}
lass Example{ publi
 stati
 void main(String argv[℄){ Event a = new Event() ;Event b = new Event() ;Thread1_body th1_body = new Thread1_body(a,b) ;Thread2_body th2_body = new Thread2_body(a,b) ;Periodi
Th thread1 = new Periodi
Th(10, th1_body) ;Periodi
Th thread2 = new Periodi
Th(20, th2_body) ;}}
lass Event{ publi
 void emit(){ syn
hronized(this) {this.notify}}publi
 void await(){ syn
hronized(this) {this.wait}}}
Figure 3.2: Two ThreadsWe present in �gure 3.2 an example of a Java-like program where we have modi�ed some of itsprimitives.We also need to
oordinate the environment and the appli
ation through the exe
ution platform.The environment is represented by a series of events whi
h may be triggered by time passing or by a
ontrol devi
e; they must be taken into a

ount by the appli
ation in some prede�ned delay, but theappli
ation response depends greatly on the speed of the exe
ution ar
hite
ture.3.2 Model of a rt-Java ProgramWe model a Java Program as a set T of Threads, ea
h thread is independent in its exe
ution but it
ommuni
ates to other threads through await and emit instru
tions to
ooperate in the exe
ution of atask, and syn
hronized blo
ks to
oordinate a

ess to
riti
al se
tions of
ommon resour
es in a mutuallyex
lusive manner.

3.2. MODEL OF A RT-JAVA PROGRAM 53Threads and Tasks. Ea
h thread H is logi
ally divided into blo
ks of instru
tions, whi
h we
alltasks;
ertain tasks
an be exe
uted in parallel or in an interleaved way with other tasks of otherthreads, but tasks within the same thread H are sequentially ordered.Formally, we
an say that a thread Hi is
omposed by a sequen
e� i1; � i2; : : : ; � iniof tasks (note the \;" separating the tasks).This model
an be obtained by appli
ation of some te
hniques su
h as [32, 28℄ where some obser-vation points are
onsidered to \
ut up" the
ode. We are parti
ularly interested in syn
hronizationamong threads through the operations await and emit and use of shared resour
es.Ea
h thread Hi
an be periodi
, that is, it arrives at regular intervals of time, de�ned stati
ally.We note Pi the period for thread Hi. Ea
h task � ik has a (worst
ase) exe
ution time, Eik whi
h is alsostati
 and derives from some o� line analysis. Finally, we asso
iate a deadline Di to ea
h thread Hi.This is the
lassi
al approa
h for rts, [37, 36, 54℄, whi
h we developped in
hapter 2.In our model, a program is a sequen
e of tasks from di�erent threads and a s
heduled program is asequen
e of tasks whi
h in exe
ution will respe
t the timing
onstraints (deadlo
ks, exe
ution times,periods).Tasks and Resour
es. Tasks in H may a

ess some shared resour
es, that is, shared data whosea

ess must be prote
ted by a proto
ol to guarantee that at most one and only one modi�er is presentat any time. As we have seen, before a

essing a shared resour
e, ri, a lo
king operation over ri isdemanded to the data manager who keeps a register of all resour
es and their states (free or busy);su
h operation may be granted if the resour
e is free or denied if it is busy, in this
ase, the demanderwaits for permission.On
e a task has �nished with ri it releases it to the system by an unlo
k operation, ui, whi
h isalways su

essful. We demand an \ordered" usage of lo
k and unlo
k operations, that is the last lo
kedresour
e is the �rst to be unlo
ked, following a sta
k logi
.In Java we re
ognize the lo
k and unlo
k operation by the stru
ture:...syn
hronized(r1){}...where the blo
k between \f" and \g" is the
riti
al se
tion for r1 and syn
hronized is a modi�er of theblo
k indi
ating that before a

essing this
ode, we must obtain a lo
k over the obje
t, (r1 in our
ase),equivalent to a lo
k operation. After exiting this prote
ted
ode, the lo
k over r1 is released.For a set T of threads, we de�ne the set R as the universal set of all shared resour
es used by tasksin T and to ea
h � ik , we asso
iate a set R(� ik) � R of the resour
es it needs.We are now ready to give the following de�nition:De�nition 3.1 A s
heduled program is a sequen
e of tasks of di�erent threads whi
h in exe
utionrespe
ts the timing
onstraints (absen
e of deadlo
ks, exe
ution times and periods) and mutual ex
lusionfor shared resour
es.

54 CHAPTER 3. INSPIRING IDEASRelationships Among Tasks. If we
onsider two tasks � ik and � jl we
an establish one of thefollowing relations:1. � ik, � jl are independent, i 6= j and they
an be exe
uted in any order, that is, they belong todi�erent threads, they do not share resour
es and they do not
oordinate.2. � ik, � jl belong to the same thread Hi, i = j, and will be exe
uted a

ording to the internal logi
of Hi: � ik is exe
uted before � jl , if k < l. We denote � ik; � il the immediate pre
eden
e relation(in fa
t, l = k + 1) of two tasks from thread Hi and � ik ! � jl , the pre
eden
e relation in thesequen
e of the de
omposed thread Hi, i.e., the transitive
losure of the sequen
e relation, \;".3. � ik, � jl belong to di�erent threads and
ommuni
ate through a await/emit relation. In this
asewe
an say that � ik noti�es � jl , denoted � ik � jl . The relation, expresses a waiting state for� jl until the emit arrives, that is we
an see � ik as a produ
er and � jl as a
onsumer and the emitas the fa
t that a produ
t is ready. On the other hand, � jl must be in a waiting state to \hear"a notify. To ea
h thread Hi, we asso
iate the set Ni of noti�ers that is:Ni = f� ikj� ik � jl ; i 6= jg4. � ik, � jl use a
ommon resour
e r, then � ik r$ � jl if r 2 R(� ik) ^ r 2 R(� jl).It should be
lear that both the pre
eden
e and the wait relations impose a hierar
hi
al relationbetween two tasks, but the await/emit relation imposes a
oordination with another task, while thepre
eden
e relation is simply a way to express that a task will be thrown after the
ompletion of itspre
eding in the sequen
e.Pre
eden
e
an be established stati
ally and it is always \su

essful" in exe
ution time, whileawait/emit relation may fail if the waiting task is not ready to hear a notify; in our model, the s
hedulermust assure this pro
edure in order to guarantee su

ess of the operation.In this hierar
hy we distinguish some spe
ial tasks:� Task �Ha is the starting of a thread H if 8k; �Ha ! �Hk� Task �Hz is the last of a thread H if 8k; �Hk ! �Hz� Finally, task � ik is autonomous if it does not wait for another task, that is if :9l; j � jl � ik.3.2.1 Stru
tural ModelWe model a program as a graph, where the set of nodes
orresponds to tasks and the set of ar
s
orresponds to pre
eden
e and await/emit relations. We des
ribe our model through an example.Example 3.1 Figure 3.3 shows the model of the program in �gure 3.2.We
an observe two threads H1 and H2
omposed by the sequen
eH1 = [�7; �1; �5℄and H2 = [�6; �2; �4; �3℄

3.2. MODEL OF A RT-JAVA PROGRAM 55
r1

r1
r1; r2 �2�1

�5
�6

�4
�3

�7

E3 = 2
E4 = 1

E7 = 1
E1 = 2
E5 = 2

E6 = 1
E2 = 1

H1 = [�7; �1; �5℄H2 = [�6; �2; �4; �3℄P1 = D1 = 10P2 = D2 = 20sequen
esyn
hronizationFigure 3.3: Two Threadsrespe
tively1; we
an also see two syn
hronization points as �1 �2 and �5 �4, shown as dotted lines;worst exe
ution time for ea
h of the tasks is indi
ated beneath ea
h task.R = fr1; r2g, task �1 uses a resour
e r1 and �5 uses both r1 and r2; task �4 uses r1 and �1 r1$ �4among others.The model of the program shows a partial order among tasks; those belonging to the same threadare totally ordered, by the sequen
e relation; those tasks tied by a relation are also totally orderedand �nally some tasks are not ordered.3.2.2 Behavioral ModelTask behaviour
an be des
ribed through a
lassi
al state model shown in �gure 3.4, whi
h is self-explanatory. Anyway let us note that the exe
ution platform has three queues: ready (RQ), waiting(WQ) and sleeping (SQ), asso
iated to the respe
tive states. Ea
h task
an be in one of the followingstates:1we will skip the superindex indi
ating the thread if no
onfusion results

56 CHAPTER 3. INSPIRING IDEAS� Idle: task is not a
tive.� Ready: task is in RQ and
an be
hosen by the s
heduler to begin exe
ution. It needs no emitoperation but may need or even have some shared resour
es.� Waiting: task is in WQ, waiting for an emit; its exe
ution is blo
ked until the emit arrives.� Exe
uting: task is running.� Sleeping: task is in SQ be
ause it was preempted by a higher priority task. Later it will resumeits exe
ution (it is not blo
ked).
preempted

resumed

idle

sleeping executing

waitingready

notified

wait for emit

CPU OK

O.K

Figure 3.4: State ModelWe de�ne the following rules to manage the queues over the exe
ution:Ready Rule � ik " ^:9� jl ; i 6= j; � jl � ikRQ! RQ� � ikWaiting Rule � ik " ^9� jl ; i 6= j; � jl � ikWQ!WQ� � ikMigration Rule � ik 2WQ ^ [9� jl ; � jl #; i 6= j ^ � jl � ik℄RQ! RQ� � ik ^WQ!WQ	 � ikPreemption Rule exe
(� ik) ^ [9� jl ; � jl 2 RQ; i 6= j; �ik < �jl ^ :lo
ked(R(� jl))℄SQ! SQ� � ik

3.3. SCHEDULABILITY WITHOUT SHARED RESOURCES 57Exe
ution Rule � ik 2 RQ ^ �ik > highest(RQ) ^ �ik > highest(SQ) ^ :lo
ked(R(� ik))RQ! RQ	 � ik ^ exe
(� ik)Resuming Rule � ik 2 SQ ^ �ik > highest(RQ) ^ �ik > highest(SQ) ^ :lo
ked(R(� ik))SQ! SQ	 � ik ^ exe
(� ik)� The � and 	 represent the queueing and dequeueing operations, respe
tively;� � " and � # represent the arrival and
ompletion of task � ;� Predi
ate:{ exe
(�) indi
ates that � is exe
uting,{ lo
ked(R(�)) the fa
t that � is lo
ked by one or more resour
es and{ highest(Q) gives the maximum priority in queue Q.� �ik is the priority of � ik; next se
tion
lari�es priority assignment.Remark 1 Note that a task that does not wait for an emit is in the RQ, with some priority; if it hasthe highest priority and all resour
es it needs, it exe
utes. Preemption, based on priorities, is permitted.Remark 2 If a task is in the WQ then it needs an emit from some other task; it
an wait for an emitretaining a resour
e lo
ked (and never released) by one of its an
estors but it
annot be waiting for anemit and a new resour
e at the same time, sin
e the await operation prevents exe
ution.3.3 S
hedulability without Shared Resour
esA s
heduling algorithm gives some order among tasks; in a stati
 or dynami
 manner, this order is basedon some restri
tions and relationships among tasks, whi
h
an lead the s
heduler to some de
isions. Asalready said this order is based on timing
onstraints sin
e a task must respond within its deadline orit may
ause a
riti
al event to happen; in our model we need also to s
hedule the pre
eden
e and theawait/emit relation. For the instant being, we are not
onsidering shared resour
es.We have de�ned a simple �xed priority assignment algorithm, whi
h takes into a

ount the pre
e-den
e and await/emit relations:Rule{I To ea
h thread Hi we assign a priority �i based on some
lassi
al �xed s
heduling poli
y,su
h as rma; these poli
ies take into a

ount the period, Pi, or deadline, Di, of threads.For instan
e, in the
ase rma we
an say that �i > �j if Pi < Pj . This is the base priorityfor all tasks in Hi.Rule{II If � ik; � ik+1 ^ � jl � ik+1 ^ (i 6= j)) �ik > �jl . The se
ond rule
hanges the priority tosome tasks within a thread.

58 CHAPTER 3. INSPIRING IDEAS
executing

pending

missed deadline

0 2 7 10 12 15 17 30

�1�2 �3E1 = 5E2 = 5 E3 = 2�1 "�3 " �3 "�3 �1 �2�3��2 ��2 �2#�1 �1"Figure 3.5: Counter example of priority assignmentIf all tasks were independent, the �rst rule suÆ
es to exe
ute ea
h thread autonomously and fol-lowing an rma analysis we
ould know of its s
hedulability (see
hapter 2).The se
ond rule applies to the operation of emit. Remember that a task waiting for an emit is inthe WQ (waiting rule) and will remain there until it \hears" su
h operation. On the other hand, anemit operation is always \su

essful": the noti�er sends an emit and
ontinues its exe
ution (it is tothe exe
ution platform to manage this operation), but the waiter must be in a waiting state to listenthe notify. This rule states that a waiting task, � ik+1, will be triggered by its as
endent � ik, and put intothe WQ before the exe
ution of � jl from whi
h it waits the emit, in order to be ready to \hear" it andbe ready to exe
ute (migration rule). Observe that the starting task �Ha of a thread never waits.In
on
lusion: 8� ik; � jl ; i 6= j; �ik > �jl i�8<: �i > �j ^ � ik =2 Nior9� ik+1 ^ � jl � ik+1whi
h gives a partial set of
onstraints of the form Vi6=j �ik��jl , and � 2 f<;>g.Example 3.2 (See �gure 3.5) Let us
onsider two threads HA = [�1; �2℄ of period 15, where both taskshave an exe
ution time of 5 and a thread HB = [�3℄ of period 10 and �3 exe
utes in 2 units and thennoti�es �2; both threads arrive at t = 0. Considering periods as deadlines and �xing priorities usingex
lusively rma gives �3 > �1 = �2. Under this assignment, the exe
ution shows a deadline missing.On the
ontrary, if we use our rules, we have that no relation
an be stablished among �2 and �3and �3 < �1 (sin
e �1; �2 ^ �3 �2), the system be
omes s
hedulable.3.3.1 Model AnalysisTo ea
h task � ik we
an asso
iate the following \times":� Arrival time, �ik, denoting the time a task is put in the ready or waiting queue.� Blo
king time, �ik, denoting the time a task is retained in the ready or waiting queue.� Sleeping time, �ik, denoting the time a task spends in the sleeping queue, after being preempted.� Finishing time, f ik, denoting the time a task
omplets its exe
ution.

3.3. SCHEDULABILITY WITHOUT SHARED RESOURCES 59De�nition 3.2 The starting time of a thread Hi, �i, is the arrival time of its starting task, i.e.,�i = �ia and � ia = starting(Hi)De�nition 3.3 The �nishing time of a thread Hi, Fi, is the �nishing time of the last task in thethread, i.e., Fi = f iz and � iz = last(Hi)De�nition 3.4 (S
hedulable Thread) A thread Hi is s
hedulable if Fi � Di, that is, its exe
ution�nishes before its deadline.De�nition 3.5 (S
hedulable System) A set T = fH1; H2; : : : ; Hng of threads
omposing an appli-
ation is s
hedulable if all threads Hi are s
hedulable, i.e,8Hi; 1 � i � n; Fi � DiAs noted in
hapter 2, [37℄, to verify s
hedulability it suÆ
ies to analyse the time-window or interval[0;H℄, where H is the hyperperiod for all periodi
 threads, de�ned as the least
ommon multiple of allperiods. For ea
h thread Hi we see its evolution within the interval and if at arrival of a new instan
eof its starting task, the �nishing task
orresponding to the pre
edent exe
ution has already �nished,the thread is s
hedulable. This idea motivates the following revisited de�nitions:De�nition 3.6 (Finishing Time Periodi
 Task) The �nishing time of a task � ik of a periodi
thread Hi in its j-period is
al
ulated asf i;jk = �i;jk + �i;jk + �i;jk +EikDe�nition 3.7 (Finishing Time Periodi
 Thread) The �nishing time of a periodi
 thread Hiin the j-period, that is F ji , is the �nishing time of its last task, in the j-period,F ji = f i;jzwhere �z = last(Hi).De�nition 3.8 (S
hedulable Periodi
 Thread) A periodi
 thread Hi is s
hedulable ifF ji � �ji + Pi = j � Pifor all j; 1 � j � �i, where j is a period, �i is the number of periodi
 arrivals of Hi within [0;H℄If a system respe
ts the previous rule for all its threads, we have a s
hedulable appli
ation.De�nition 3.9 (S
hedulable Periodi
 System) An appli
ation system of periodi
 threads, T =fH1; H2; : : : ; Hng is s
hedulable if all threads Hi are s
hedulable:8i 1 � i � n; F ji � �ji + Piwhere 1 � j � �i, j is a period, �i is the number of periodi
 arrivals of Hi within [0;H℄Resuming, we present an operational approa
h of our model.1. Priorities are assigned o� line a

ording to rules 1 and 2.

60 CHAPTER 3. INSPIRING IDEAS�7 �2�5�6�1 �4�3
Figure 3.6: Partially Ordered Tasks2. At time t = 0 starting tasks of a
tive threads are in RQ.3. The highest priority starting task of a thread Hi begins its exe
ution.4. When a task � ik �nishes, it may trigger another task � ik+1 in the sequen
e, whi
h is put in the RQ(ready rule) or WQ (waiting rule).5. When a task � ik �nishes it may emit to � jl ; a

ordingly to the migration rule, � jl is awakened, ifit is in the WQ and it is sent to RQ; otherwise the event is lost.6. If at a moment t = t0 it arrives a task � jl whi
h has greater priority than that in exe
ution, say� ik, then � ik is preempted.3.3.2 ExamplesExample 3.3 Let us re
onsider our example 3.1, without resour
es.A

ording to the operational approa
h, we assign threads (and tasks within threads) priorities usingour rules; applying this
riteria to our example, gives:1. �1 > �2 sin
e P1 < P22. As �6; �2 and �1 �2 then �6 > �13. As �2; �4 and �5 �4 then �2 > �5A

ording to this me
hanism, the rest of the tasks have the same base priority of their threads or, inother terms, they inherit the priority of their threads. We show in �gure 3.6 the partial order obtainedby appli
ation of our rules.Remark Observe that
ertain tasks, su
h as �1 and �3, are not
omparable; we
an establish somepriority order among them based on a �xed
riteria. For instan
e, �1 > �3 if we
onsider that �1belongs to a thread with higher priority than that of �3's. Tasks from a thread are naturally orderedby the pre
eden
e relationship.

3.3. SCHEDULABILITY WITHOUT SHARED RESOURCES 61Now let us put our example in operation, as should be done by the s
heduler implementing ourapproa
h, supposing a starting time of t=0; the following table shows a possible result:Period 1 Period 2task �ik �ik �ik f i;1k d1k �ik �ik �ik f i;2k d2k�7 0 0 0 1 10 10 0 0 11 20�6 0 1 0 2 20�1 1 1 0 4 10 11 0 0 13 20�2 2 2 0 5 20�5 4 1 0 7 10 13 0 0 15 20�4 5 2 0 8 20�3 8 0 0 10 20We show in �gure 3.7 the time line, where tasks in the upper part are those in exe
ution and thosein the lower part are in the ready or waiting queue.1. At t = 0 the system is initiated, entering both �7 and �6 to the ready queue.2. As �7 has greater priority, it is
hosen to be exe
uted and sent to the exe
ution state.3. As �7 �nishes it triggers �1 whi
h is also sent to the ready queue (�1 is autonomous). The s
heduler
hooses �6 (see point 2 priority assignment).4. �6 is exe
uted and it triggers �2, whi
h is sent to the WQ (waiting rule).5. The s
heduler exe
utes �1 (in fa
t, the only task in the ready queue).6. When �1 �nishes it triggers �5, whi
h is sent to the ready queue; �1 awakes �2, whi
h also goes tothe RQ. Priorities analysed, the s
heduler
hooses �2 (see point 3 priority assignment).7. When �2 �nishes it triggers �4 whi
h is sent to the WQ.8. �5 exe
utes and when it �nishes, it awakes �4 whi
h goes to the RQ. H1 is �nished at time t = 7.9. �4 is exe
uted and triggers �3.10. At t = 8, �3 is exe
uted and �nishes at time t = 10; H2 is �nished.The time analysis a

ording to this s
hedule says that �5 �nishes at time t = 7, ready to pro
essanother arrival of tasks of the next period of H1; �3 �nishes at time t = 10 ready to pro
ess a newinstan
e of H2. As both threads �nish before their deadlines, with no pending tasks in queues, thesystem is s
hedulable in this �rst \round".The se
ond round for H1 is a little simpler, as there are no tasks from H2:1. At t = 10, �7 arrives to the system and it is exe
uted.2. As �7 �nishes, it triggers �1, whi
h is exe
uted; at
ompletion it sends an emit to �2 whi
h is lostand it triggers �5.3. �5 is exe
uted and analogously it noti�es �4, event that is also lost.

62 CHAPTER 3. INSPIRING IDEAS
10

ready or sleeping

executing

0 1 2 3 4 5 6 7 8 9

�5�6
�6 �1 �2 �2 �5 �4 �4
�7 �1 �1 �2 �5 �4 �3 �3

Figure 3.7: Time Line for ex. 3.1The system is �nished at time t = 15, remaining idle until t = 20, when a new set of periodi
tasks from H1 and H2 will arrive, repeating the same pattern. The analysis of time in the interval[0;H℄, where H it is the hyperperiod of all the periodi
al threads, is suÆ
ient to say that the system iss
hedulable (provided both threads start at the same time). Note that F 11 = 7 < 10 and F 21 = 15 < 20and F 12 = 10 < 20.Example 3.4 We will now modify our example, setting the exe
ution time for �3 to 3, that is, E3 = 3.The following table illustrates the rea
tion of our s
heduler:Period 1 Period 2task �ik �ik �ik f i;1k d1k �ik �ik �ik f i;2k d2k�7 0 0 0 1 10 10 0 0 11 20�6 0 1 0 2 20�1 1 1 0 4 10 11 0 0 13 20�2 2 2 0 5 20�5 4 1 0 7 10 13 0 0 15 20�4 5 2 0 8 20�3 8 0 5 16 20The pro
edure is exa
tly the same as before, ex
ept for the last point 10, where �3 is exe
uting (see�gure 3.8 for the time line):1. �3 begins at t = 8, and it exe
utes for 2 units, when �7 arrives for the next period. As �7 hasgreater priority than �3, the latter is preempted and sent to the SQ, (preemption rule).2. �7 is exe
uted until
ompletion and triggers �1.3. No priority relation is established among �1 and �3; if we
onsider a rma
riteria �1 has higherpriority. Let us say that the s
heduler
hooses �1 based on this
riteria, then �3 remains for 2additional units in the SQ.4. On
e �1 �nished, it triggers �5; �1's emit is lost.5. �5 has greater priority than �3 (for the same reason as before); �3 remains for two more units oftime in the SQ.6. At �5
ompletion, �3 regains the pro
essor and �nishes at t = 16.As F 11 = 7 < 10 and F 21 = 15 < 20, H1 is s
hedulable and as F 12 = 16 < 20, H2 is also s
hedulable;20 is the l
m, so it suÆ
ies to assure s
hedulability within the interval [0; 20℄ to assure s
hedulabilityfor the whole system.

3.4. SHARING RESOURCES 63
11 12 13 14 15 16 2017

executing

ready or waiting
0 1 2 3 4 5 6 7 8 9 10

�1�1 �5�7 �7�6 �1 �2 �2 �5 �4 �4 �3 �3 �3 �3 �3�6 �2 �5 �4 �3 �3 �1 �1 �5 �5 �3
Figure 3.8: Time Line for ex. 3.43.4 Sharing Resour
esWe will now
onsider the possibility of sharing resour
es among tasks; the gold rule is to prevent two ormore task to a

ess simultaneously the same resour
e, so our algorithm must impose a mutual ex
lusionpoli
y.As we
onsider a �xed set of tasks, that is, no eventual tasks
an arrive during exe
ution, wewant some stati
 analysis within the hyperperiod to de
ide if the system is s
hedulable and if so,assign priorities in order to guarantee timing
onstraints and mutual ex
lusion. De
isions taken bythe s
heduler are based on the states of ea
h of the a
tive tasks, but this analysis should be o� line tominimize s
heduler invasion during tasks exe
ution.Note that syn
hronization implies a
ertain order of exe
ution among tasks, due to a some pro-du
er/
onsumer relation among them, while sharing resour
es implies a syn
hronization to respe
t themutual ex
lusion rule but no order is implied.Example 3.5 Let us re
onsider our example 3.1 of �gure 3.3; �gure 3.9 shows the
orresponding Java
ode and the model generated by appli
ation of an abstra
tion algorithm. Note the \separation" from awaiting task and a demand of resour
e in �04 and �4, whi
h is immaterial in our previous analysis sin
eno resour
es are
onsidered. Now, let us see how our assignment works in the presen
e of resour
es(the time line in �gure 3.10 shows the evolution of tasks in time):1. �7 has the highest priority but �1 < �6 and �5 < �2 due to the await/emit relation.2. �7 begins exe
ution and �6 goes to the RQ.3. �7 triggers �1 whi
h goes to the RQ and4. �6 is
hosen to be exe
uted; at
ompletion it triggers �2 whi
h goes to the WQ.5. �1 is exe
uted, setting the lo
k over r1 and at its
ompletion it emits to �2 and triggers �5, whi
hgoes to the RQ with r1 retained.6. �2, awaken by �1 goes to the RQ and joins �5; �2 > �5, �2 is
hosen to be exe
uted, and at
ompletion it triggers �4 whi
h goes to the WQ.7. �5 exe
utes, releases its lo
k over r1 and r2, and noti�es �04 , whi
h goes to the RQ \as" �4.8. �4 exe
utes, (over r1), releases r1 and triggers �3.9. �3 exe
utes and �nishes at t = 10.10. At t = 10 the next period of H1 arrives and �7 is exe
uted, triggering �1.

64 CHAPTER 3. INSPIRING IDEAS

synchronized(r1)

a.Notify ;
synchronized(r2)

...{

}
b.Notify

...
{

...

....

}

{
while (true)

}

waitforperiod(10)

}

{
public void run() public void run()

{
while (true)
{

...

...

a.Wait
...

...

...

...

...
{
synchronized(r1)

...

b.Wait

}

waitforperiod(20)
}

}

�7�1�5r1r1; r2 �2�6
r1�04�4�3

Figure 3.9: Java Code and its Modelisation

3.4. SHARING RESOURCES 6511. �1 is the only task in the RQ, and it
an be exe
uted (sin
e resour
e r1 was released by �4). At
ompletion it triggers �5.12. �5 is exe
uted (over r1 and r2) and at
ompletion it releases r1 and it emits to �4 whi
h is lost.
11 12 13 14 15 16 17 18 19 20

executing

ready or sleeping
0 1 2 3 4 5 6 7 8 9 10

r1 r1 r1 r1 r1 r1 r1 r1 r1r2 r2 r2 r2�2 �7 �1 �1 �5 �5�6 �1 �2 �5 �4 �4�7 �6 �1 �1 �5 �5 �4 �3 �3�2 Figure 3.10: Time Line [0,20℄ for ex.3.5Example 3.6 Now suppose the same appli
ation as in example 3.4 (where E3 = 3) but both �3 and �4use r1. The system shows the same evolution as before until point 99. At time t = 8 �4 �nishes and triggers �3 whi
h begins exe
ution.10. At t = 10 the next period of H1 arrives and �7 preempts �3; �3 goes to the SQ with r1 retainedand �7 exe
utes and the triggers �1.11. �1 is the only task in the RQ, and it has higher priority than �3 but it
annot be exe
uted sin
eit needs r1 retained by taui3, waiting at the SQ.12. �3 regains exe
ution �nishing at t = 1213. �1 exe
utes and �nishes at t = 14, triggers �5 whi
h �nishes at t = 16.The time line in �gure 3.11 shows the evolution of this example where some kind of priority inversionis due to resour
e management.
11 12 13 14 15 16 17 18 19 20

executing

ready or sleeping
0 1 2 3 4 5 6 7 8 9 10

r1 r1 r1 r1 r1 r1 r1 r1 r1r1 r1 r1 r1r2 r2r2 r2�2 �7 �3 �1 �1 �5�6 �1 �2 �5 �4 �4 �3 �1�7 �6 �1 �1 �5 �5 �4 �5�3 �3�2 Figure 3.11: Time Line [0,20℄ for ex.3.6Example 3.7 Now suppose an appli
ation as shown in �gure 3.12, where �3 waits for an emit from�5.1. �7 has the highest priority but �1 < �6 and �5 < �4 due to the await/emit relation.2. �7 begins exe
ution and �6 goes to the RQ.3. �7 triggers �1 whi
h goes to the RQ and

66 CHAPTER 3. INSPIRING IDEAS

r1; r2
r1
r1

r1

�4
�3 E3 = 2

E4 = 1
E1 = 2 E2 = 1

E6 = 1
�2
�6�7

�1
�5 H1 = [�7; �1; �5℄H2 = [�6; �2; �4; �3℄P1 = D1 = 10P2 = D2 = 20sequen
esyn
hronization

E5 = 2
E7 = 1

Figure 3.12: Two Threads with shared resour
es4. �6 is
hosen to be exe
uted; at
ompletion it triggers �2 whi
h goes to the WQ.5. �1 is exe
uted, setting the lo
k over r1 and at its
ompletion it emits to �2 and triggers �5.6. �2, awaken by �1, goes to the RQ and joins �5; �5 > �2 �5 is
hosen to be exe
uted, and at
ompletion it emits to �3 whi
h is lost; �5 releases both r1 and r2.7. �2 is exe
uted and triggers �4.8. �4 exe
utes over r1 and when it �nishes it triggers �03 whi
h waits an emit from �5 in WQ retainingr1.9. At t = 10 the next period of H1 arrives and �7 is exe
uted, triggering �1.10. �1 is the only task in the RQ, but it
annot be exe
uted sin
e it needs r1 retained by �3, waitingin the WQ.11. �3 is also blo
ked and it will never be awaken. We are in the presen
e of a deadlo
k.Figure 3.13 shows the time line.

3.4. SHARING RESOURCES 67
11 12 13 14 15 16 17 18 19 20

executing

ready or sleeping
11 12 13 14 15 16 17 18 19 20

executing

ready or sleeping
0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

r1 r1 r1 r1 r1 r1
r1 r1 r1 r1 r1 r1

r2 r2
r1 r1 r1

�2 �7�6 �1 �2 �5 �4 �4 �3 �1�7 �6 �1 �1 �5 �5 �4�2 �2 �7�6 �1 �2 �5 �4 �4 �3 �1�7 �6 �1 �1 �5 �5 �4�2 �3 �3 �3Figure 3.13: Time Line for ex. 3.7
;

;

;

;

;

n

n

;

r1r1
�7�1�5 �4�3

�04�2
�6

Figure 3.14: Wait for Graph example 3.13.4.1 Con
i
t GraphsWe have shown three examples of s
heduling using our poli
y one of whi
h shows a deadlo
k, a situation
learly non-s
hedulable. How
an we dete
t this situation? Are there any stru
tural properties of thesystem whi
h
an lead us to avoid deadlo
k?One well stablished algorithm to deal with tasks and shared resour
es is the p
p or iip; we
ouldapply these proto
ols and perform s
hedulability analysis, using the priorities
omputed by our 2 rules,1 and 2. Instead, we propose to analyse the relationships among our tasks and take advantage of theirstru
ture.Example 3.8 Re
all our example 3.1; �gure 3.14 illustrates the use of our model as a wait for graph,wfg, based on the sequen
e, (\;"), await/emit, (\n") and resour
e, (\r"), relationships.In this graph we
an see a
y
le among (�4, �1, �2, �04) and also among (�1, �5, �4) and as usual,
y
les in a wfg represent a risk of blo
king or deadlo
k situation. Note that �04 is an arti�
ial task to

68 CHAPTER 3. INSPIRING IDEASmark the di�eren
e between �4 waiting for an emit and �4 in the RQ waiting for exe
ution over r1.In this graph, we should eliminate those pre
eden
e relations whi
h are not harmful: typi
ally the\;00 relation is not harmful be
ause when a task �nishes it is \sure" that it triggers its su

essor task(if any). The problem is in the presen
e of \n00-ar
s or \r00-ar
s whi
h risk a task to wait an in�niteamount of time.If we analyse
y
le (�4, �1, �2, �04), we see that �4 will wait for the exe
ution of �2, but this timeis bounded by �2's exe
ution; �2 waits for an emit from �1, whi
h may be lost risking �2 from livelo
k.On the other hand, �1
an be blo
ked by �4 if this task is exe
uting (and hen
e has r1) but this time isbounded. In a similar manner, �4
ould be waiting for �1 and �5 but this time is also bounded. In otherwords, on
e �4 joins the RQ it has the notify it needs and eventually it
an progress as r1 is unlo
ked(by �5 The other
y
le is analysed in a similar manner.So, this apparent
y
les
an be pruned if we delete all safe wait for relations, we
an get a graphwithout
y
les, shown in �gure 3.15(a).
n

n

n

n

(b)(a)

�7�1�5 �2 �7�1�5 �3
�2�6

r1�3r1r1 �04�4
�6

�4 �04r1 �3r1 r1Figure 3.15: Pruned and Cy
li
 wfgExample 3.9 In �gure 3.15(b), we show the wfg for example 3.6 where we have added two ar
s of0r0-type between �1 and �3 and �5 and �3. For simpli
ity, we have omitted the 0;0 ar
s.Even the elimination of the ar
s of type \;00 does not provoke the elimination of
y
les, but a
y
leinvolving just one resour
e is not a deadlo
k. In fa
t, in our model, if resour
e r1 is assigned to �1 then�5
an also progress and hen
e release r1 for �4 and �3. Analogously if r1 is assigned to �4.Example 3.10 In �gure 3.16 we show the wfg for example 3.7, where there are many
y
les but onlyone involves two resour
es, i.e. r1 and the emit from �5 to �3 (whi
h
an be
onsidered as a resour
eretained by �5.In this system the deadlo
k situation
annot be prevented, sin
e �3 waits in the WQ retaining r1and then preventing �1 (and �5) to progress; as �3 needs an emit from �5 the system is in a deadlo
ksituation.

3.4. SHARING RESOURCES 69
n

n

r1
�7�1�5r1 �3r1

r1 �2�6�4
Figure 3.16: Cy
li
 Wait for GraphIn
on
lusion, this system is inherently deadlo
kable under our �xed priority assignment and so it isnon s
hedulable, as indi
ated by the
y
le in the
orresponding graph involving more than one resour
e.We
ould imagine another strategy to handle resour
es, inserting
riteria in the
ode to
reate dynami
priorities a

ording to the state of the system.So, for our priority assignment method, the analysis may be
ompleted by the
onstru
tion of these
on
i
ts graphs, eliminating those ar
s whi
h show a safe wait for relation, that is, ar
s showing asequen
e of tasks and verifying the existen
e of
y
les whi
h show a deadlo
k situation. Our method issafe and simple: asso
iating stati
 priorities and verifying
y
les assures s
hedulability but the methodis not
omplete, sin
e we
an �nd other assigments for our non-s
hedulable systems.3.4.2 ImplementationOn
e we have modelled our Java Program and that a possible s
hedule is found, we must introdu
ethese rules within our
ode, in order to
reate a real time Java program.Our s
heduler, based on temporal
onstraints and await/emit relations
an give the following solu-tion to our appli
ation example 3.1:�7 = 7; �1 = 3; �5 = 3; �6 = 4; �2 = 4; �4 = 2; �3 = 2Rule 1 partially orders some independent tasks from di�erent threads based on some �xed
riteria,su
h as deadline. We
an say �1 > �2, so task �7 has the highest priority; as N1 = f�1; �5 g theirpriorities are treated by rule 2. Then, �6 > �1 but �1 must have a priority greater than �3 and �4 (ifwe want to keep the priority relation within di�erent periods). Similarly �2 > �5, but �5 must havepriority greater than that for �3 and �4.So the s
heduler must pla
e these priority relationships in the syn
hronization points, whi
h
onsiderthe whole set of a
tive tasks when a new arrival is produ
ed. We show in �gure, 3.17 a possibleimplementation using the primitive setpriority from RT-Java.

70 CHAPTER 3. INSPIRING IDEAS

lass Periodi
Th extends Thread{ long p ;ThreadBody b ;Periodi
Th(long p, ThreadBody b){ this.p = p ;this.b = b ;}publi
 void run(){ long t ;Clo
k
 = new Clo
k() ;while(true){ t =
.getTime() ;b.exe
() ;waitforperiod(p + t -
.getTime());}}}interfa
e ThreadBody{ publi
 void exe
() ;}
lass Thread1_body implements ThreadBody{ Event a, b ;Thread1_body (Event a, b){ this.a = a ;this.b = b ;}publi
 void exe
(){ this.setpriority(7);t7 ;this.setpriority(3) ;t1 ;a.emit;this.setpriority(3) ;t5 ;b.emit;}}

lass Thread2_body implements ThreadBody{ Event a, b ;publi
 void exe
(){ this.setpriority(4) ;t6;this.setpriority(4) ;a.await;t2;this.setpriority(2) ;t4;this.setpriority(2) ;b.await;t3;}}
lass S
heduler{ publi
 stati
 void main(String argv[℄){ Event a = new Event() ;Event b = new Event() ;Thread1_body th1_body = new Thread1_body(a,b) ;Thread2_body th2_body = new Thread2_body(a,b);Periodi
Th thread1 = new Periodi
Th(10, th1_body) ;Periodi
Th thread2 = new Periodi
Th(20, th2_body) ;}}
lass Event{ publi
 void emit(){ syn
hronized(this) {this.notify}}publi
 void await(){ syn
hronized(this) {this.wait}}}Figure 3.17: Two S
heduled Threads

Chapter 4Life is Time, Time is a Model
R�esum�eCe
hapitre pr�esente les mod�eles temporels bas�e sur les automates temporis�es et ses extensions. Nousdonnons la d�e�nition d'un automate temporis�e
lassique et nous
ontinuons ave
 les automates ave

hronomêtres et ave
 tâ
hes. Dans une deuxi�eme partie nous presentons trois utilisations di�erentes de
es automates pour attaquer la mod�elisation.Layout of the
hapterThis
hapter deals with models used to abstra
t rts and their appli
ation to the s
hedulability problem.The
hapter is organized as follows: we introdu
e timed models, starting by timed automaton and ananalysis of a well known problem: rea
hability; then we
ontinue with some extensions of this ma
hine:timed automata with deadlines, with
hronometers and with tasks; �nally we show the appli
ation ofthese basi
 models to the s
hedulability problem through three approa
hes: synthesis, task
ompositionand job-shop. No doubt that this
hapter only shows a partial state of the art in the theory and evolutionof timed automata, guided by our needs and
ontributions.4.1 Timed AutomataA timed automaton, ta, is a �nite state automaton with
lo
ks, [10℄. A
lo
k is a real time fun
tionwhi
h re
ords time between events; all
lo
ks advan
e at the same pa
e in a monotonously in
reasingmanner and eventually they
an be updated to a new value.Ea
h transition of a ta is a guarded transition, that is a predi
ate, de�ned over
lo
ks, whi
h if truepermits the transition to be taken. A transition may also be de
orated by
lo
k update operations.Formally, a ta A is a 5-uple (S; C;�; E ; I), where:� S is a set of states (s; v), where s is a lo
ation and v a valuation of
lo
ks.� C is a set of
lo
ks.� � is the alphabet, a set of labels or a
tions. 71

72 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL� E is the set of edges. Ea
h edge e is a tuple (s; �; g; �; s0) where{ s 2 S is the sour
e state and s0 2 S is the target state.{ � 2 � is the label.{ g is the guard or enabling
ondition and{ � is the
lo
k assignment� I is the invariant
onstraint, de�ned over
lo
ks; I(s) is the invariant of s 2 S.We need to formalize what we understand as
lo
k assignment and an invariant
onstraint.An assignment is a mapping of a
lo
k
 2 C into another
lo
k or 0; the operation of setting a
lo
kto zero is
alled reset operation. The set of assignments over C, denoted �C , is the set fC ! C�g, whereC� = C [f0g.The set of valuations of C, denoted VC is the set [C ! <+℄ of total fun
tions from C to <+.Let
 2 �C , we denote by v[
℄ the
lo
k valuation su
h that for all x 2 C we have:v[
℄(
) = � 0 if
(
) 2 �Cv(
) otherwiseDe�nition 4.1 (C-Constraint) A
lo
k
onstraint or C-Constraint is an expression over
lo
ks whi
hfollows the grammar: 	 ::= x � djx� y � dj 1 ^ 2j:	where x; y 2 C are
lo
ks and d 2 Q is a rational
onstant.Invariants and guards are elements of 	; invariants are asso
iated to states, that is to ea
h state weasso
iate a formula I(s) 2 	 and ea
h guard g of an edge e 2 E is also a
lo
k
onstraint; expressionsfrom 	
ontrol the transition operations to traverse an edge and the predi
ate states to remain in astate.Example 4.1 Figure 4.1 shows a simple ta for a periodi
 task T1 with period P = 10.
executing

Idle Error

T1 "p1 := 0 p1 > 10
p1 � 10Figure 4.1: Modelling a periodi
 taskSometimes it is useful to partition the set � into two sets of
ontrollable and un
ontrollable a
tions,noted �
 and �u, respe
tively. Controllable a
tions are those a
tions time independent, whi
h
an beknown at
ompile time and often tied to fun
tional aspe
ts of the appli
ation, for instan
e, a

ess toshared resour
es. Un
ontrollable a
tions are those a
tions dependent of the environment whi
h maysu�er from disturban
es, for instan
e, pro
ess arrival, [8℄.

4.1. TIMED AUTOMATA 73x � 5s1 bx = 5a2 < x < 5
Figure 4.2: Invariants and A
tionsThe role of invariants. Conditions over states, expressed as a formula in 	, allow the spe
i�
ationof hard or soft deadlines: when for some a
tion a deadline is rea
hed, the
ontinuous
ow of time isinterrupted and the a
tion is for
ed to o

ur. We say that and a
tion is then urgent. On the
ontrary,we say that an a
tion is delayable if whenever it is enabled, its exe
ution
an be postponed by lettingtime progress; at some time a delayed a
tion may be
ome urgent. In �gure, 4.2 we see an example;a
tion a is enabled when
lo
k x attains a value greater than 2; the invariant in s1 let us remain whilex � 5; at any moment between (2; 5) we
an exe
ute a
tion a, we say a is delayable. On the
ontrary,when
lo
k x attains 5 we must exe
ute a
tion b, sin
e it is enabled at x = 5 but
annot be postponed,we say b is urgent. Sometimes we will mark an edge e with an urgen
y type � 2 fÆ; �g for delayable orurgent a
tions.Semanti
s. A ta A is then useful to model a transition system (Q;!), where Q is a set of statesand ! is a transition relation. A state of A is given by a lo
ation and a valuation of
lo
ks and atransition is the result of traversing an outgoing edge while respe
ting the enabling
onditions andprobably setting
lo
ks a

ording to an assignment.More pre
isely, A
an remain in a lo
ation while time passes respe
ting the
orresponding invariant
ondition; in this
ase,
lo
ks are updated by the amount of time elapsed; these are
alled timedtransitions. When the valuation satis�es the enabling
ondition of an outgoing edge, A
an
ross theedge, and the valuation is modifed a

ording to the assignment; these are
alled dis
rete transitions.Formally, (Q;!) is de�ned, [60℄:1. Q = f(s; v) 2 S � VCjv j= I(s)g, that is, the set of states is
omposed by pairs of lo
ation and
lo
k valuation, implying the invariant
ondition.2. The transition !� Q� (� [<+)�Q is de�ned by:(a) Dis
rete transitions: (s; �; g; �; s0) 2 E ^ v j= g ^ v[�℄ j= I(s0)(s; v) �! (s0; v[�℄)where (s0; v[
℄) is a dis
rete su

essor of (s; v);
onversely, the latter is the dis
rete prede
essorof the former.(b) Timed transitions: Æ 2 <+ 8Æ0 2 <+ Æ0 � Æ) (s; v + Æ0) j= I(s0)(s; v) Æ! (s; v + Æ)where (s; v + Æ) is a time su

essor of (s; v);
onversely the latter is said to be a timeprede
essor of the former.

74 CHAPTER 4. LIFE IS TIME, TIME IS A MODELDe�nition 4.2 (Exe
ution) An exe
ution or run r of a timed automaton A is an in�nite sequen
eof states and transitions: r = s0 l0! s1 l1! : : :where si 2 S, li 2 (� [<+) and i 2 N.That is, an exe
ution is the evolution of the automaton a

ording to the events and the time elapsedin the system.We denote by RA(q) the set of runs starting at q 2 Q and by RA = Sq2QRA(q) the set of runsfor A.4.1.1 Parallel CompositionHow
an we
ombine two or more timed automata? The
omposition is the
ombination of timedautomata.De�nition 4.3 (Parallel Composition) Let Ai = (Si; Ci;�i; Ei; Ii), for i = 1; 2 be two ta withdisjoint sets of lo
ations and
lo
ks. The parallel
omposition A1jj�A2, de�ned over a set of a
tions� is the ta (S; C;�; E ; I), where:� S = S1 � S2,� C = C1 [C2,� I(s) = I1(s1) ^ I2(s2) if s = (s1; s2), s1 2 S1; s2 2 S2,� E s de�ned by the following rules:e1 = (s1; �; g1; �1; s01) 2 E1; e2 = (s2; �; g2; �2; s02) 2 E2e = ((s1; s2); �; g; �; (s01; s02)) 2 E ; g = g1 ^ g2; � = �1 [�2e1 = (s1; �1; g1; �1; s01) 2 E1; �1 2 �1 ^ �1 =2 �1 \ �2e = ((s1; s2); �1; g1; �1; (s01; s2)) 2 EThat is for those
ommon a
tions, we de�ne a
ommon transition as the produ
t of the individualtransitions; for ea
h of the non-shared a
tions, we de�ne a new transition. The se
ond rule is appliedsymmetri
ally to the other
omponent.4.1.2 Rea
habilityOne main problem in Automata Theory is the rea
hability analysis, that is whi
h are the states rea
h-able from a state q, by exe
uting the automaton, starting at q.De�nition 4.4 (Rea
hability) A state q0 is rea
hable from state q if it belongs to some run startingat q; we de�ne Rea
hA(q) the set of states rea
hable from q:Rea
hA(q) = fq0 2 Qj9r = q0 l0! q1 l1! : : : 2 RA(q); 9i 2 N; qi = q0g

4.1. TIMED AUTOMATA 75

1

1

2

3

2 3 X

Y

0
a

b

c

Figure 4.3: Region Equivalen
eThe problem is how to
ompute this set; there are many di�erent approa
hes; we shall use thenotion of region graphs to develop an algorithm, see [60℄.A region is a hyper
ube
hara
terized by a
lo
k
onstraint.Example 4.2 Figure 4.3 illustrates the
on
ept; a region is de�ned by the
lo
k
onstraint 2 < x <3 ^ 1 < y < 2 ^ x� y < 1, marked in grey in the �gure.Region equivalen
eLet 	C be a non-empty set of
lo
k
onstraints over C. Let D 2 N be the smallest
onstant whi
h isgreater than or equal to the absolute value jdj of every
onstant d 2 Z appearing in a
lo
k
onstraintin 	. We de�ne '	C� VC � VC to be the largest re
exive and symmetri
 relation su
h that v '	C v0i� for all x; y 2 C, the following three
onditions hold:1. v(x) > D implies v0(x) > D2. if v(x) � D then(a) bv(x)
 = bv0(x)
 and(b) v(v(x)) = 0 implies v(v0(x)) = 0, where b�
 is the integer part fun
tion and v(�) is thefra
tional part fun
tion.3. for all
lo
k
onstraints in 	C of the form x� y � d, v j= x� y � d implies v0 j= x� y � d.'	C is an equivalen
e relation and is
alled the bf region equivalen
e for the set of
lo
k
onstraints	C ; as usual, we denote [v℄ the equivalen
e
lass of v. Regions
an be
hara
terized by a
lo
k
onstraint

76 CHAPTER 4. LIFE IS TIME, TIME IS A MODELand as
lo
ks evolve at the same path, ea
h region is graphi
ally represented as a hyper
ube with some45o diagonals.Re
all Figure 4.3 and let v be any
lo
k valuation in this region.1. Consider the assignment y := 0; the
lo
k valuation under this assignment belongs to the region2 < x < 3 ^ y = 0, marked as a in the �gure.2. Consider the assignment x := y; this
lo
k valuation v[x := y℄ belongs to the region 1 < x <2 ^ 1 < y < 2 ^ x = y, marked as b.3. Finally, if we
onsider the su

esor of v we
an see that it belongs to some region
rossed by astraight line drawn in the dire
tion of the arrow.Consider a taA as de�ned in 4.1 and its transition system (Q;!). We extend the region equivalen
e'	C to the states of Q as follows: two states q = (s; v) and q0 = (s0; v0) are region equivalent, denotedq '	C q0 i� s = s0 and v '	C v0. We denote by [q℄ the equivalen
e
lass of q.The region equivalen
e over states
an be stablished as follows:De�nition 4.5 (State Equivalen
e) Let 	A be the set of all
lo
k
onstraints appearing in A andlet q1; q2 2 Q su
h that q1 '	C q2, then:1. For all � 2 �, whenever q1 �! q01 for some q01 there exists q02 su
h that q2 �! q02 and q2 '	C q02.2. For all Æ 2 RR+, whenever q1 Æ! q01 for some q01 there exists q02 and Æ0 2 RR+ su
h that q2 Æ0! q02 andq2 '	C q02.The region equivalen
e over states is said to be stable with respe
t to the transition relation !�Q� (� [RR+)�Q.This de�nition implies that for all region-equivalent states q1 and q2, if some state q01 is rea
hablefrom q1, a region-equivalent state q02 is rea
hable from q2.Let 	̂ � 	C be a set of
lo
k
onstraints, 	̂A be the set of
lo
k
onstraints of A, and ' be theregion equivalen
e de�ned over 	̂ [̂A. Let � =2 � and let �� = � [f�g.De�nition 4.6 (Region-Graph) The region graph R(A; 	̂) is the transition system (Q';!) where:1. Q' = f[q℄ j q 2 Qg2. !� Q' ��� �Q' is su
h that:(a) for all � 2 � and for all �, �0 2 Q'; � �! �0 i� there exists q; q0 2 Q su
h that � = [q℄; �0 = [q0℄;and q �! q0.(b) for all �, �0 2 Q'; � �! �0 i�i. � = �0 is an unbounded region or,ii. � 6= �0 and there exists q 2 Q and a real positive number Æ su
h that q Æ! q0 and� = [q℄; �0 = [q + Æ℄; and for all Æ0 2 RR+, if Æ0 � Æ then [q + Æ0℄ is either � or �0.

4.1. TIMED AUTOMATA 77We de�ne Rea
h(�) to be the set of regions rea
hable from the region � asRea
h(�) = f�0j�!� �0gwhere !� is the re
exive and transitive
losure of !.We denote by hqi any
lo
k
onstraint 2 	 su
h that q j= and for all 0 2 	, if q j= 0 then implies 0. That is, hqi is the tightest
lo
k
onstraint that
hara
terizes the values of the
lo
ks inq. The question whether the state q0 is rea
hable from the state q
an be answered using the followingproperty:Property 4.1 (Rea
hability) let A be a ta, q; q0 2 Q and let R(A; fhqi; hq0ig) be the
orrespondingregion graph, then: q0 2 Rea
h(q) i� [q0℄ 2 Rea
h([q℄)The
onstraints hqi and hq0i
hara
terize exa
tly the equivalen
e
lasses [q℄ and [q0℄ respe
tively.4.1.3 Region graph algorithmsThe basi
 idea of the algorithm using the region graph
on
ept is the use of property Rea
habilityas shown in the previous se
tion. Two ways of answering whether q0 is rea
hable from q are forwardtraversal and ba
kward traversalThe �rst starts from a state q and by visiting its su

esors, and the su

essors of those and so on,until we �nd q0 in some region or all regions have been visited; in summary, we need a sequen
e ofregions F0 � F1 � : : :, su
h that: F0 = [q℄ (4.1)Fi+1 = Fi [Su
(Fi) (4.2)where Su
(Fi) = f� j 9�i 2 Fi: �i ! �gProperty 4.2 (Forward Rea
hability) For all q; q0 2 Q; [q0℄ 2 Rea
h([q℄)i�[q0℄ 2 Si�0 FiThe se
ond approa
h starts from a state q0, visits its prede
essors, and the prede
essors of thoseand so on, until the state q is found or all regions have been visited. Similarly, we
onstru
t a sequen
eof regions B0 � B1 : : : su
h that: B0 = [q0℄ (4.3)Bi+1 = Bi [Pre(Bi) (4.4)where Pre(Bi) = f� j 9�i 2 Bi: �! �igProperty 4.3 (Ba
kward Rea
hability) For all q; q0 2 Q; [q0℄ 2 Rea
h([q℄)i�[q℄ 2 Si�0Bi

78 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL
0 1 2 3

1

2

x

y

c

b

a

3 �3�1�2 �4�5
Figure 4.4: Representation of sets of regions as
lo
k
onstraints4.1.4 Analysis using
lo
k
onstraintsLet F be the set of regions Si�0 Fi
omputed by the forward traversal algorithm explained in Se
-tion 4.1.3. Then F
an be symboli
ally represented as a disjoint union of the form Us2S Fs , where Fsis the
lo
k
onstraint that
hara
terizes the set of regions that belong to F whose lo
ation is equal tos. The same observation holds for B. Indeed, su
h
hara
terization
an be
omputed without a-priori
onstru
ting the region graph.4.1.5 Forward
omputation of
lo
k
onstraintsLet s 2 S, s 2 	C and e = (s; �; g; �; s0) 2 E. We denote by Su
e(s) the predi
ate over C that
hara
terizes the set of
lo
k valuations that are rea
hable from the
lo
k valuations in s when thetimed automaton exe
utes the dis
rete transition
orresponding to the edge e. That is,v j= Su
e(s) i� 9v0 2 Q: v = v0[
℄ ^ v0 j= (s ^):Property 4.4 Su
e(s) 2 	C .Example 4.3 Consider again the example illustrated in Figure 4.4. Re
all that is the
lo
k
onstraint1 < y < 2 ^ 2 < x ^ x� y < 2.a. The result of exe
uting the transition resetting x to 0 is
omputed as follows.Su
a(s) == 9x0; y0: s [x=x0; y=y0℄ ^ y = 0 ^ x = x0= 9x0; y0: 1 < y0 < 2 ^ 2 < x0 ^ x0 � y0 < 2 ^ y = 0 ^ x = x0= 9y0: 1 < y0 < 2 ^ 2 < x ^ x� y0 < 2 ^ y = 0= 2 < x ^ x < 4 ^ y = 0Sin
e the upper bound of 4 is greater than the
onstant C = 3, we
an eliminate the
lo
k
onstraintx < 4 and obtain: Su
a(s) = 2 < x ^ y = 0.

4.2. EXTENSIONS OF TA 79b. Now,
onsider the assignment x := y.Su
b(s) == 9x0; y0: s [x=x0; y=y0℄ ^ y = y0 ^ x = y0= 9x0; y0: 1 < y0 < 2 ^ 2 < x0 ^ x0 � y0 < 2 ^ y = y0 ^ x = y0= 9x0: 1 < y < 2 ^ 2 < x0 ^ x0 � y < 2 ^ x = y= 1 < y < 2 ^ 0 < y ^ x = y= 1 < y < 2 ^ x = yIn other words, to
ompute Su
e(s) is equivalent to visit all the regions that are e-su

essors of theregions in s , but without having to expli
itly represent ea
h one of them.Let s 2 S and s 2 	C . We denote by Su
�(s) the predi
ate over C that
hara
terizes the setof
lo
k valuations that are rea
hable from the
lo
k valuations in s when the timed automaton letstime pass at s. That is,v j= Su
�(s) i� 9Æ 2 RR+: v � Æ j= s ^ 8Æ0 2 RR+: Æ0 � Æ) v � Æ0 j= I(s):Property 4.5 Su
�(s) 2 	C .Example 4.4 Consider again the example illustrated in Figure 4.4. Case

orresponds to letting timepass at the lo
ation. For simpli
ity, we assume here that the invariant
ondition is true.Su
�(s) == 9Æ 2 RR+: s [x=x� Æ; y=y � Æ℄= 9Æ 2 RR+: 1 < y � Æ < 2 ^ 2 < x� Æ ^ (x� Æ)� (y � Æ) < 2= 9Æ 2 RR+: 1 < y � Æ < 2 ^ 2 < x� Æ ^ x� y < 2 ^= 1 < y ^ 2 < x ^ y � x < 0 ^ x� y < 2Noti
e that Su
�(s)
hara
terizes the set of the regions that
ontains the regions
hara
terized by sand the regions rea
hable from them by taking only �-transitions.Now, we
an solve the rea
hability problem by
omputing the sequen
e of sets of
lo
k
onstraintsF0; F1; � � � as follows: F0 = hqiFi+1 = ℄s2S Su
�(Fi;s) ℄ ℄e2E Su
e(Fi;s)!Noti
e that Fi;s implies Fi+1;s for all i � 0 and s 2 S.Property 4.6 Let F = Si�0 Fi, q = (s; v), and q0 = (s0; v0). [q0℄ 2 Rea
h([q℄) i� hq0i implies Fs0 .4.2 Extensions of taFrom the
lassi
 de�nition of ta, there have been developed many variations, prin
ipally regarding thenature of
lo
k operations; we will present some extensions of ta used to model rts.

80 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL4.2.1 Timed Automata with DeadlinesA tad is a tuple (S; C;�; E ; D) where S; C;� and E are de�ned as for ta and D : E ! 	, asso
iateswith ea
h edge e 2 E a deadline
ondition spe
ifying when the edge e is urgent. For s 2 S we de�neD(s) = _e=(s;�;g;�;s0)2ED(e)and we de�ne I(s) = :D(s)whi
h shows that tad behaves like a ta where time
an progress at a lo
ation as long as all the deadline
onditions asso
iated with the outgoing edges are not satis�ed.The di�eren
e between ta and tad is the addition of a deadline
ondition for edges; for a given edgee, its guard ge determines when e may be exe
uted, while D(e) determines when it must be exe
uted;that is the guard is a kind of enabling
ondition while a deadline is an urgen
y
onditions. Clearly, forall the states satisfying :ge ^D(e), time
an be blo
ked and it is reasonable to require D(e) j= ge toavoid time deadlo
ks. When D(e) = ge e is immediate and must be exe
uted as soon as it be
omesenabled. If D(e) is false, e is delayable at any state.We
an now a�ord the operation of
omposition for tad, in whi
h the resulting tad has the samestru
tures for S; C;�; E as mentioned for
omposition for ta ex
ept for deadlines whi
h follow the rules:e1 = (s1; �; g1; �1; s01) 2 E1; e2 = (s2; �; g2; �2; s02) 2 E2; � 2 �e = ((s1; s2); �; g; �; (s1; s02)) 2 E ; g = g1 ^ g2; � = �1 [�2; D = D1 ^D2e1 = (s1; �1; g1; �1; s01) 2 E1; �1 2 �1 ^ �1 =2 �1 \ �2e = ((s1; s2); �1; g1; �1; (s01; s2)) 2 E ; D = D14.2.2 Timed Automata with ChronometersAs seen in the de�nition of ta,
lo
ks may be assigned a value from <; sometimes it is useful to o�er ari
her set of operations over
lo
ks. We present in this se
tion, two variants of ta: stopwat
h automatonand updatable timed automaton.Stopwat
h AutomatonClassi
 ta operates over
lo
ks through the operation of reset or more generally the operation of set:x := d where x is a
lo
k and d a
onstant from Q. Clo
ks evolve at the same
onstant pa
e, that is,for all
lo
ks its derivative is 1.A variant of ta is a stopwat
h automaton, swa, where
lo
ks
an be suspended; M
Mannis et al,[40℄ propose a swa where the rate of in
rease or derivative of a
lo
k
an be set to 0. Later, a
lo
k
anbe unsuspended to resume in
reasing at rate 1. Kesten et al, [31℄ propose a hybrid automaton wherethe derivative of a
lo
k
an be set to any
onstant from the set of integers.The basi
 de�nition of a swa is the same as that for ta ex
ept that we add a relation rate to ea
hlo
ation asso
iated to the
lo
ks in that lo
ation and their behaviour, stopped or running.A swa is a tuple Aswa = (S; C;�;R; E ; I) where S; C;� and I are de�ned as for ta and� R : CS ! f0; 1gN , asso
iates to ea
h
lo
k
i 2 C in state sj 2 S a rate value of 0 or 1. If
i is a
lo
k running in state sj then rji = 1, otherwise it is 0.

4.2. EXTENSIONS OF TA 81
R(1,0)

R(0,1)

Start

R(0,0) R(0,1)

R(1,0)

Start

R(0,0) R(0,1)

R(1,0)

(b)(a)

Serve T1
Wait T1Serve T2

r23 � 2� e1 e2 = 3e2 := 0
1 e1 = 2;e1 := 0
2 e2 = 3e2 := 03 < 2� e1 2 � 3� e2r2 r1r1 Serve T2
Serve T1Wait T2 r12 < 3� e2
1 e1 = 2;e1 := 0
2
2 e2 = 3e2 := 0e1 = 2;e1 := 0
1r2 Serve T2

Serve T1Wait T2
1 e1 = 2;e1 := 0
2 e2 = 3e2 := 0r2r12 < 3� e2e2 := e2 � 2

Figure 4.5: Using swa and uta to model an appli
ation� E is also modi�ed by an update operation, i.e,
lo
ks may be reset, and also be de
remented bysome �xed rational
onstant; if e 2 E is the tuple (s; �; g; �; s0), then s, �, g and s0 are as de�nedfor ta and � is the
lo
k update, in
luding the reset operation (denoted
i := 0) and the de
rementoperation of the form
i :=
i � d, where
i 2 C and d 2 Q..swa are very useful for modelling and analysing rts:Example 4.5 Consider two tasks T1(2; 8); T2(3; 4) where numbers in parentheses represent the exe-
ution time, Ei and the minimal interarrival time, Pi respe
tively, for ea
h task Ti; i 2 f1; 2g. Theappli
ation runs under a least time remaining poli
y, that is, the pro
essor performs the task requiringthe least amount of time to
omplete.Figure 4.5(a) shows the stopwat
h automaton modelling this appli
ation where ea
h lo
ation rep-resents the status of the task in the system: waiting for servi
e, exe
uting or not requested. For ea
htask Ti, we have a timer ei a

umulating the
omputed time and the expression Ei � ei represents theremaining
omputing time whi
h serves as a priority de
ision
riteria. Clo
ks are stopped when the
orresponding task is not exe
uting. Events ri; i 2 f1; 2g represent the arrival ot task Ti, and
i their
ompletion.Unfortunately, the untimed language of a suspension automata is not guaranteed to be w-regularand some tri
ks may be introdu
ed to repla
e the suspension by a de
rementation, as we see in these
tion 4.2.3.Timed Automata with tasksA ta with tasks, tat, is a ta where ea
h lo
ation represents a task. The model was originally developpedby Fersman et al., [26℄; in that paper they
all it extended timed automata.

82 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

(a) (b)

x = 20; x := 0
x > 10; a1x := 0

b2a2;x := 0
b1 x = 20x := 0x = 10x := 0 s1 s2s3s4 Q1(1; 2)

Q2(1; 4)
P(2,8) P2(2; 10) P1(4; 20)
s1

Figure 4.6: Timed Automata Extended with tasksDe�nition 4.7 A timed automata with tasks AT is a tuple(S; C;�; E ; s0; I; T;M)where S, C, �, E, I represent the set of states, the
lo
ks, the alphabet over a
tions, the edges and theinvariants as already de�ned for ta; we distinguish s0 2 S the initial state, T the set of tasks of theappli
ation and M : S ,! T , a partial fun
tion asso
iating to ea
h lo
ation a task.M is a partial fun
tion, sin
e at some lo
ations, there may be no task asso
iated, sin
e the systemis idle.Example 4.6 Figures 4.6 shows an example of an tat; in (a) we see a single periodi
 task P (2; 8) with
omputing time 2 and period 8; in (b) we see four tasks: P1(4; 20) and P2(2; 10) two periodi
 tasks andQ1(1; 2) and Q2(1; 4) two sporadi
 tasks triggered by events b1 and b2 respe
tively, both with
omputingtime 1 and minimal interarrival times 2 and 4, respe
tively.Let P = fP1; P2; : : : ; Pmg denote the universal set of tasks, periodi
 or sporadi
; ea
h Pj ; 1 � j � m
hara
terized by its pair (Ej ; Dj) exe
ution time and deadline, respe
tively.From an operational point of view, a tat represents the
urrently a
tive tasks in the system; asemanti
 state (s; v[
℄; q) gives for a state s the
urrent values of
lo
ks and a queue q, where q has theform [T1(e1; d1); T2(e2; d2); : : : ; Tn(en; dn)℄ where Ti(ei; di); 1 � i � n denotes an a
tive instan
e of taskPj with remaining
omputing time ei and remaining time to deadline di. T1 is the
urrent exe
utingtask.A dis
rete transition will result in a new queue sorted a

ording to a s
heduling poli
y, in
ludingthe re
ently arrived task. A timed transition of Æ units implies that the remaining
omputation timeof T1 is de
reased by Æ; if this value be
omes 0, then T1 is removed from the queue; all deadlines arede
reased by Æ. Formally:De�nition 4.8 Given a s
heduling strategy S
h the semanti
s of a tat AT as given in de�nition 4.7with initial state (s0; v[
0℄; q0) is a transition system de�ned by the following rules:

4.2. EXTENSIONS OF TA 83� Dis
rete transition over an a
tion �:(s; v[
℄; q) ��!S
h (s0; �[
 7! 0℄; S
h(q �M(s0))) if s g;�;
7!0�! s0 ^ � j= gwhere �[
 7! 0℄ indi
ates those
lo
ks, within �-assignment, to be reset (the others keep theirvalues as time does not diverge), � is the insertion of M(s0) in q and S
h is the sorting of aqueue a

ording to a s
heduling poli
y.� Timed transition over Æ units of time:(s; v[
℄; q) Æ�!S
h (s; v[
℄ + t; run((q; Æ))) if (v[
℄ + t) j= I(s)where run(q; Æ) is a fun
tion whi
h returns the transformed queue after Æ units of time of exe
ution.Remark Observe that q
ontains two variables (not
lo
ks), for ea
h a
tive task: the pair (ei; di);as time diverges, these values are updated
onveniently to show this evolution; for example if q =[(5; 9); (3; 10)℄ and time diverges for 3 units, then we have q0 = [(2; 6); (3; 7)℄, that is all deadlines arealso redu
ed by Æ, but the value of ei; i > 1 remains un
hanged. The next example shows what happensif Æ � e1.Example 4.7 Consider on
e again, the example in �gure 4.6(b);
onsider a s
heduling poli
y edf, thefollowing is a sequen
e of typi
al transitions(s0; [x = 0℄; [Q1(1; 2)℄) 1! (s0; [x = 1℄; [Q1(0; 1)℄) � (s0; [x = 1℄; [℄)10! (s0; [x = 11℄; [℄)a1! (s2; [x = 0℄; [P1(4; 20)℄)2! (s2; [x = 2℄; [P1(2; 18)℄)b2! (s3; [x = 2℄; [Q1(1; 4); P1(2; 18)℄)0:5! (s3; [x = 2:5℄; [Q1(0:5; 3:5); P1(2; 17:5)℄)a2! (s4; [x = 0℄; [Q1(0:5; 3:5); P2(2; 10); P1(2; 17:5)℄)1:5! (s4; [x = 0:5℄; [P2(1; 8:5); P1(2; 16)℄): : :We should note two important points shown in this example:� The �rst
on
erns the fa
t that while in state s2 or s4, an in�nite number of instan
es of P1 orP2 may arrive, with 20 or 10 units of delay. No deadline is missing, sin
e at the arrival of a newinstan
e, the old one had already �nished.� The queue may potentially grow but it is
onsiderably emptied in state s1 where we have to waitfor more than 10 units before
onsidering event a1. In fa
t dis
rete transitions make the queuegrow while timed transitions shrink it.4.2.3 Timed Automaton with UpdatesThe model presented for swa was slightly modi�ed to avoid the operation of stopping a
lo
k, retainingthe update operation to de
rement a
lo
k by a
onstant from N ; this model is known as updatable timed

84 CHAPTER 4. LIFE IS TIME, TIME IS A MODELautomaton, uta in the literature, though the original paper
alled it automaton with de
rementation.Ni
ollin et al, [45℄ and Bouyer et al, [18℄, analysed some interesting properties of this
lass of ta.An uta is a tuple (S; C;�; E) where S; C;� are de�ned as for ta and E
hanges in its � to in
ludethe general set operation.Example 4.8 Regaining our exemple 4.5, we
ould modify the model, using a uta, where instead ofstopping e
lo
ks when the
orresponding tasks are preempted, we let them
ontinue running and theirvalues are de
remented by the exe
ution time of the terminating task ea
h time a task
ompletes. Forinstan
e, (see �gure 4.5(a)), while serving T2, T1 arrives and if its remaining time is smaller than T2's,then T1yT2 and e2 is stopped; instead, we
ould de
rement e2 by the preemption time, E1, (see �gure4.5(b)) and when resuming T2 it will have the \true" value. Another solution is to let e2 diverge andwhen T2 resumes, we set e2 := e2�E1. In both
ases, the e�e
t is the same; some
are should be takenin the �rst solution if we do not want
lo
ks to be negative.4.3 Di�eren
e Bound Matri
esWe present in this se
tion a data stru
ture whi
h is
ommonly used to implement some of the algorithmsof rea
hability analysis: di�eren
e bound matri
es, dbm [22℄Let C = f
1; � � � ;
ng, and let � � 	C be the set of
lo
k
onstraints over C de�ned by
onjun
tionsof
onstraints of the form
i �
,
 �
i and
i �
j �
 with
 2 ZZ. Let u be a
lo
k whose valueis always 0, that is, its value does not in
rease with time as the values of the other
lo
ks. Then, the
onstraints in �
an be uniformly represented as bounds on the di�eren
e between two
lo
k values,where for
i 2 C,
i �
 is expressed as
i � u �
, and
 �
i as u�
i � �
.Su
h
onstraints
an be then en
oded as a (n+1)�(n+1) square matrix D whose indi
es range overthe interval [0; � � � ; n℄ and whose elements belong to ZZ1 � f<;�g, where ZZ1 = ZZ [f1g. The �rst
olumn of D en
odes the upper bounds of the
lo
ks. That is, if
i � u �
 appears in the
onstraint,then Di0 is the pair (
;�), otherwise it is (1; <) whi
h says that the value of
lo
k
i is unbounded.The �rst row of D en
odes the lower bounds of the
lo
ks. If u �
i � �
 appears in the
onstraint,D0i is (�
;�), otherwise it is (0;�) be
ause
lo
ks
an only take positive values. The element Dij fori; j > 0, is the pair (
;�) whi
h en
odes the
onstraint
i �
j �
. If a
onstraint on the di�eren
ebetween
i and
j does not appear in the
onjun
tion, the element Dij is set to (1; <).Note that for all elements (i; j) an upper bound Mi;j is given for the di�eren
e
i �
j between
lo
ks
i and
j . During symboli
 state spa
e exploration we are interested in
omputing the futureof M , and we need to take into a

ount whi
h
lo
ks are stopped and whi
h are running. Clearly if
i and
j are both stopped, both running or only
i is stopped, then the bound Mi;j remains valid; ifonly
j is stopped, the di�eren
e may grow to 1; values in M need to be in a
anoni
al form, whereall bounds Mi;j are as tight as possibleExample 4.9 Let � be the
lo
k
onstraint 1 < y < 2 ^ 1 < x ^ x � y < 2. Figure 4.7a shows itsmatrix representation.Remark Every region
an be
hara
terized by a
lo
k
onstraint, and therefore be represented by adbm.As a matter of fa
t, many di�erent dbm's represent the same
lo
k
onstraint. This is be
ause someof the bounds may not be tight enough. As already mentioned, values in M need to be as tight aspossible, [20, 40, 60℄

4.3. DIFFERENCE BOUND MATRICES 85

0 1 2 3

1

2

b

ay
x
0 (0;�)(�1; <)(�1; <)(1; <)(3; <)xy y
0 x

D
D0
0 (0;�)(�1; <)(�1; <)(1; <)(0;�)(1; <)xy (1; <) y
0 x

(0;�)(0;�)(1; <)
(0;�)(2; <)

(2; <)Figure 4.7: Representation of
onvex sets of regions by dbm's.Example 4.10 Consider again the
lo
k
onstraint depi
ted in Figure 4.7. The matrix b is an equiv-alent en
oding of the
lo
k
onstraint obtained by setting the upper bound of x1 to be (3; <) and thedi�eren
e x2 � x1 to be (1; <). Noti
e that this two
onstraints are implied by the others.However, given a
lo
k
onstraint in �, there exists a
anoni
al representative. Su
h a representativeexists be
ause pairs (
;�) 2 ZZ1 � f<;�g,
alled bounds,
an be ordered. This indu
es a naturalordering of the matri
es. Bounds are ordered as follows. We take < to be stri
tly less than �, and thenfor all (
;�); (
0;�0) 2 ZZ1 � f<;�g, (
;�) � (
0;�0) i�
 <
0 or
 =
0 and ���0. Now, D � D0 i�for all 0 � i; j � n, Dij � D0ij .Example 4.11 Consider the two matri
es in Figure 4.7. Noti
e that D0 � D.For every
lo
k
onstraint 2 Cnd, there exists a unique matrix C that en
odes and su
hthat, for every other matrix D that also en
odes , C � D. The matrix C is
alled the
anoni
alrepresentative of and
an be obtained from any matrix D that en
odes , by applying to D theFloyd-Warshall [6℄ algorithm [22, 59, 46, 60℄ for details. We will always refer to a dbm to mean the
anoni
al representative where bounds are tight enough.En
oding
onvex timing
onstraints by dbm's requires then O(n2) memory spa
e, where n is thenumber of
lo
ks. Several algorithms have been proposed to redu
e the memory spa
e needed [17, 33℄.The veri�
ation algorithms require basi
ally six operations to be implemented over matri
es:
on-jun
tion, time su

essors, reset su

essors, time prede
essors, reset prede
essors and disjun
tion. Theseoperations are implemented as follows.Conjun
tion. Given D and D0, D ^D0 is su
h that for all 0 � i; j � n, (D ^D0)i;j = min(Dij ; D0ij).Time su

essors. As time elapses,
lo
k di�eren
es remain the same, sin
e all
lo
ks in
rease at thesame rate. Lower bounds do not
hange either sin
e there are no de
reasing
lo
ks. Upper bounds haveto be pushed to in�nity, sin
e an arbitrary period of time may pass. Thus, for a
anoni
al representativeD, Su
�(D) is su
h that: Su
�(D)ij = � (1; <) if j = 0,Dij otherwise.

86 CHAPTER 4. LIFE IS TIME, TIME IS A MODELReset su

essors. First noti
e that resetting a
lo
k to 0 is the same as setting its value to the valueof u, that is,
(
i) = 0 is the same as
(
i) = u. Now, when we set the value of
i to the value of
j ,
iand
j be
ome equal and all the
onstraints on
j be
ome also
onstraints on
i. Having this in mind,the matrix
hara
terizing the set of reset-prede
essors of D by reset

onsists in just
opying somerows and
olumns. That is, the matrix D0 = Su

(D) is su
h that for all 0 � i; j � n, if
(
i) =
j thenrowi(D0) = rowj(D) and
oli(D0) =
olj(D). 1Time prede
essors. To
ompute the time prede
essors we just need to push the lower bounds to 0,provided that the matrix is in
anoni
al form. Thus, for a
anoni
al representative D, Pre�(D) is su
hthat: Pre�(D)ij = � (0;�) if i = 0,Dij otherwise.Reset prede
essors. Re
all that the
onstraint
hara
terizing the set of prede
essors is obtainedby substituting ea
h
lo
k
i by
(
i). Now suppose that we have two
onstraints xk � xl <
kl andxr � xs <
rs and we substitute xk and xr by
i, and xl and xs by
j . Then, we obtain the
onstraints
i�
j <
kl and
i�
j <
rs whi
h are in
onjun
tion, and so
i�
j < min(
kl;
rs). Thus, the matrixD0 = Pre
(D) is su
h that for all 0 � i � n, D0ij = minfDkl j
(xk) =
i ^
(xl) =
jg.Disjun
tion. Clearly, the disjun
tion of two dbm's is not ne
essarily a dbm. That is, � is not
losedunder disjun
tion, or in other words, the disjun
tion of two
onstraints in 	 is not
onvex. Usually,the disjun
tion of D and D0 is represented as the set fD;D0g. Thus, a lot of
omputational work isneeded in order to determine whether two sets of dbm's represent the same
onstraint.4.4 Modelling FrameworkThe pro
ess of modelling requires spe
i�
ation of ea
h of the
omponents (tasks) drawn from buildingblo
ks fully
hara
terized by their
onstraints. The operation of
omposition is a key of modelling, sin
eea
h
omponent is plugged to the system, intera
ts with other
omponents, represents some
ode andmust respe
t its (timing)
onstraints.To
ompose a system we
an start from a single
omponent, adding other intera
ting
omponents,so that the obtained system satis�es a given property. This integration approa
h establishes a basi
rule for
omposition whi
h says that if a property P holds for a
omponent C, then this property mustbe preserved in the
omposed system. Formally, if jj notes
omposition, if C � P then CjjC 0 � P .This assures
orre
tness from
onstru
tion, unfortunately in general, time dependent properties arenon
omposable, [8, 9℄.Another approa
h to
omposability, whi
h does not oppose to integration is re�nement, that is on
ewe have an abstra
t des
ription of a
omponent T we get a more restri
ted one T 0 whi
h veri�es ifT � P then T 0 � P ; normally T 0 is obtained from T by restri
ting some observability
riteria and abasi
 rule for
omposition says that if we repla
e a
omponent Ti in a
omposition T1jj : : : Ti : : : by itsre�nement T 0i , then the new system T1jj : : : T 0i : : : should be a re�nement of the initial system.A timed model is essential to the pro
ess of synthesis; these models are obtained by adding timevariables, used to measure the time elapsed, to an untimed model. The natural extension of �nite statema
hines to timed ma
hines is ta and they are a general basi
 model adopted to fa
e this problem,1Re
all that
(�) is a total fun
tion.

4.4. MODELLING FRAMEWORK 87[51℄. A ta is a transition system whi
h evolves through a
tions (events) or through time steps whi
hrepresent time progress and uniformly in
rease time variables.Composition of timed models is a natural extension of
omposition of untimed ones, but some
aremust be taken into a

ount sin
e
lo
ks evolve at the same rate, that is, time diverges at the samederivative for all
lo
ks. Furthermore, for timed steps, a syn
hronous
omposition rule is applied as adire
t
onsequen
e of the assumption about a global notion of time.In general, rts are modelled through, [51℄:� A timed model for ea
h task� A Syn
hronization layer� A S
hedulerTimed model for tasks To
reate a timed model for an appli
ation, we need to
reate timedmodels for its building blo
ks, generally termed as tasks. For ea
h task, we need to know its resour
es,a sequen
e of atomi
 a
tions with their exe
ution time (a worst
ase analysis, in general, or an intervaltiming
onstraint with lower and upper bounds) and their timing
onstraints. We have shown anapproa
h in
hapter 3.Syn
hronization layer The
orre
tness of the whole appli
ation depends on the
orre
tness of ea
hof its
omponents (tasks) but also on the intera
tion among them. Some kind of syn
hronization isneeded, through the use of primitives to resolve task
ooperation and resour
e management.We need to di�erentiate two types of syn
hronization: timed and untimed. Untimed syn
hronizationis based on the idea that tasks
ooperate among them in some kind of produ
er/
onsumer model: theoutput of a task (or of an atomi
 a
tion within a task) is needed as input for another task. In general,if C1 and C2 are two
omponents, then C1jjC2 is the untimed syn
hronized
omposition of both tasks.But this
omposition is not enough, we need some timed extension of this
omposition to
onsidertiming
onstraints and hen
e build the timed syn
hronized model. On
e again, if we have the timedmodel of two tasks CT1 and CT2 , then CT1 jjTCT2 represents its timed
omposition, whi
h in
ludes, of
ourse, the untimed syn
hronization.Many problems have been en
ountered for this approa
h:1. Does the timed
omposed system preserve the main fun
tional properties of the
orrespondinguntimed one?2. Does the
omposed system respe
t some essential properties su
h as deadlo
k freedom, livelinessand well timedness?3. How does the implementation rea
t in front of the timed model? It is worth to note that in amodel the rea
tion to some external stimuli does not take time while the implementation does.4. Whi
h are the e�e
ts of interleaving? It has been shown, [16℄, that independent a
tions of untimed
omponents may interleave and
ause a (potential) inde�nite waiting of a
omponent before ita
hieves syn
hronization; the
orreponding timed system may su�er deadlo
k, even if the untimedone is deadlo
k-free.

88 CHAPTER 4. LIFE IS TIME, TIME IS A MODELS
heduler A s
heduler has a
hallenging mission: assure
oordination of exe
ution of all systema
tivities to meet timing and QoS requirements. A s
heduler intera
ts with the environment and withthe internal exe
ution. Altisen et al, [8℄
onsider a s
heduler as a
ontroller of the system model
omposed of timed tasks with their syn
hronization and of a timed model of the external environment.As systems evolve, the role of the s
heduler be
omes more and more
ompli
ated. For independenttasks, the s
heduler is simply an arbiter whi
h dispat
hes tasks in some previously �xed order. As tasksare dependent the s
heduler must know the internal state of a
tive tasks in order to take a de
ision.Finally, for timed tasks the s
heduler must know the (timed) internal state of a
tive tasks, and also thebehaviour of the environment to de
ide whi
h task to sele
t.4.5 A framework for SynthesisRe
all that a timed automaton A is a 5-uple (S; C;�; E ; I), where S is a
olle
tion of states, C is a
olle
tion of
lo
ks, � is an alphabet or set of a
tions, E is a set of edges and I is a
olle
tion ofinvariants asso
iated to states.On
e we have the timed model for a task, how do we
reate a timed model for an appli
ation? Thebasi
 idea is to use the parallel
omposition, explained in part 4.1.1.Sifakis et al, [53℄ propose a general framework for
ompositional des
ription using a variant ofta,
alled timed automata with deadlines, tad, where invariants are repla
ed by deadline
onditions,expressing that if some timing
onstraints are enabled, then the transition must be exe
uted, (seese
tion 4.2.1). tad are not more (or less) powerful than ta, but the operation of
omposition over tadis simpler than in ta.4.5.1 Algorithmi
 Approa
h to SynthesisOne approa
h to
onstru
t a s
heduler s
h
onsists in de�ning a s
heduling poli
y, as we have seen in
hapter 2, that is, we de�ne a systemati
 way of ordering the exe
ution of a set of tasks, based on sometiming
onstraints, but independently of the appli
ation.The traditional approa
h to s
heduling is suitable for rts where the behaviour of the environmentis not predi
table and rea
tions to external stimuli must be immediate. Altisen et al, [7℄ proposed amodel useful in rts where the appli
ation strongly intera
ts with the environment, su
h as multimediaor tele
ommuni
ations systems. For su
h systems it is desirable to generate an ad-ho
 s
heduler at
ompile time that makes optimal use of the underlying exe
ution hardware and shared resour
es,guided by knowledge of all possible behaviours of the environment.A key
on
ept to this approa
h is the distin
tion between
ontrollable and un
ontrollable a
tions. A
ontrollable a
tion
orresponds to a transtion that
an be triggered by the s
heduler and hen
e knownin advan
e at design time. An un
ontrollable a
tion is subje
t to timing
onstraints imposed by theenvironment, whi
h is
onstantly evolving.The semanti
s of the appli
ation is given by a timed model A and a property Q to be satis�ed; themethod
onstru
ts a new timed model AQ whi
h models all the behaviours of A that satisfy Q for anypossible sequen
e of un
ontrollable transitions. In summary, quoting Altisen et al, [7℄... AQ des
ribes all the s
hedules that satisfy the property, a s
hedule being a sequen
e of
ontrollable transitions for a given pattern of un
ontrollable behavioursTypi
ally, the synthesis algorithm is applied to properties of the form 2P , read as \always P". Ini-

4.5. A FRAMEWORK FOR SYNTHESIS 89tially we start with states that satisfy P and keep on iterating over a single step
ontrollable prede
essoroperator pre until a �xed point is rea
hed:Q0 = PrepeatQi+1 = Qi \ pre(Qi)until Qi = Qi+1thus obtaining Q�. Given a predi
ate P of a state, the operator pre represents all the states of thetimed model from whi
h it is possible to rea
h a state of P by taking some
ontrollable transition,possible after letting time pass, while ensuring that there is no un
ontrollable transition that leads into:P .Let Q be a property and Q� = Ss2S Q�s be the set of states
omputed by the algorithm above. Thetimed modelAQ has the same stru
ture asA and the same timing information, ex
ept for its
ontrollableguards, sin
e ea
h guard ge has been repla
ed by g0e = ge ^ Q�s^prea(Q�s0) where prea(P)(s;
) =P (s0; v(
)) ^ g(v), while un
ontrollable transitions remain un
hanged.Example 4.12 We present an example from [7℄ to illustrate the appli
ation of the synthesis algorithmfor rea
hability properties, see �gure 4.8. A multimedia do
ument is
omposed of six tasks: musi
[30,40℄,video[15,20℄, audio[20,30℄, text[5,10℄, applet[20,30℄ and pi
ture [20,1℄ where ea
h task is
hara
terizedby its exe
ution interval.In the begining, musi
, video, audio and applet are laun
hed in parallel and we have the followingsyn
hronization
onstraints:1. video and audio terminate as soon as any one of them ends; their termination is immediatelyfollowed by the text to be displayed;2. musi
 and text must terminate at the same time;3. the applet is followed by a pi
ture;4. the do
ument terminates as soon as both the pi
ture and the musi
 (and text) have terminated;5. the exe
ution times of both the audio and the applet depend on the ma
hine load and are thereforeun
ontrollable.Development Clo
k x
ontrols musi
, y video, audio and text, and z applet and pi
ture. For ea
happli
ation, the
orresponding guard is Em �
 � EM , where
 is its asso
iated
lo
k and Em; EM theminimal and maximal duration time. The �nishing
ondition is g
 = (30 � x ^ 5 � y ^ 20 � z ^ 20 �x� y � 35 ^ x� z � 40 ^ y � z � 10)
 obtained by a pro
ess des
ribed in [7℄.The idea is to seek for the existen
e of a s
heduler that moves the system from the initial state tothe state done. The property is 3done and the result obtain is that the do
ument is indeed s
hedulable.The exe
ution time of text
an be dynami
ally adapted to the duration of video and audio so as to makemusi
 and text terminate syn
hronously. The
orresponding s
heduler is shown in �gure 4.8, where therestri
ted guards of
ontrollable transitions,
omputed by the syntehsis algorithm, are printed in bold.Noti
e that if video terminates at time y < 20, the marking fmusi
, text, appletg will be rea
hed witha valuation satisfying x � y < 20 wihi
h falsi�es the syn
hronization guard g
 and therefore the onlypossible s
hedule guaranteeing the rea
hability of done must terminate video at y = 20.

90 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL
music

music

music

music

video

video

audio

audio

applet

applet

text

text

picture

picture

start

done

(20 � y � 30)u
(20 � y � 30)u (20 � z � 60)u(y = 20)

(y = 20)
fx; y; zg
fyg fyg fyg fygfzg

fzg g

(20 � z � 60)utrue

Figure 4.8: Synthesis using tad4.5.2 Stru
tural Approa
h to SynthesisAltisen et al, [9, 8℄ have proposed a di�erent methodology based on the
onstru
tion of a s
hedulertailored to the parti
ular appli
ation and regardless of any a priori �xed s
heduling poli
y, sin
e we are
onsidering not only the set of tasks but also the behaviour of the environment and some non fun
tionalproperties su
h as QoS.There exists some theoreti
al methodology for the
onstru
tion of s
heduled systems, [8℄ based on:1. A fun
tional des
ription of the pro
esses to be s
heduled, as well as their resour
es and theasso
iated syn
hronization;2. Timing requirements added to the fun
tional des
ription whi
h relate exe
ution speed with theexternal environment;3. Requirements for the s
heduling algorithm:(a) Priorities: �xed or dynami
 (for pending requests of the pro
esses),(b) Idling: a s
heduler may not satisfy a pending request due to higher priority requests and(
) Preemption: a pro
ess of lower priority is preempted when a pro
ess of higher priority raisesa request.Taking into a

ount these model
onstraints, we
an follow a methodology for
onstru
ting a s
hed-uled system and a timed spe
i�
ation of the pro
ess to be s
heduled, [8℄, based on
ontrol invariantsand their
omposability and the s
heduling requirements expressed as
onstraints, (some of whi
h areindeed invariants).The idea is to de
ompose the global
ontroller synthesis pro
edure into the appli
ation of simplersteps. At ea
h step a
ontrol invariant
orresponding to a parti
ular
lass of
onstraints is applied tofurther restri
t the behaviour of the system to be s
heduled. The s
heduler is de
omposed into:

4.5. A FRAMEWORK FOR SYNTHESIS 911. Global S
heduling:
hara
terized by a
onstraint K of the form K = Kalgo ^Ks
hed where Kalgospe
i�es a parti
ular s
heduling algorithm and Ks
hed expresses s
hedulability requirements ofthe pro
esses2. Computation of
ontrol invariants: at ea
h step the
orresponding
ontrol invariant is
omputedin a straightforward manner.3. Iteration: the s
heduled system
an be obtained by su

essive appli
ations of steps restri
tingthe pro
ess behaviour by
ontrol invariants implying all the s
heduling
onstraints, but some
omposability
onditions must be satis�ed.Ea
h
onstraint is a state predi
ate represented as an expression of the form Wni=1 si ^ i where i 2 	 is a C-
onstraint, (an expression over
lo
ks), and si is the boolean denoting presen
e at statesi. Given a timed system TS and a
onstraint K, the restri
tion of TS by K denoted as TS=K is thetimed system T where ea
h guard ge of a
ontrollable transition is repla
ed byg0e = ge ^K(s0; �0)where �0 is the set of
lo
ks reset in e.In a restri
ted system TS=K, the C-
onstraint K is a
ontrol invariant of TS if TS=K j= inv(K),that is K is preserved by edges all long the exe
ution of the transition system.The problem of synthesis was de�ned by Altisen et al, [8℄ as:De�nition 4.9 (Synthesis Problem) Solving the synthesis problem for a timed system TS anda
onstraint K amounts to giving a non-empty
ontrol invariant K 0 of TS whi
h implies K, K 0)K;TS=K 0 j= inv(K 0).We need a s
heduling requirement expressed as a C-
onstraint, K. If K 0 is a
ontrol invariantimplying K then TS=K 0 des
ribes as s
heduled system.To
larify these
on
epts we present an example:Example 4.13 Let us model a periodi
 non-preemptable pro
ess PP of period P > 0, exe
ution timeE and relative deadline D(0 < E � D � P).In �gure, 4.9 we illustrate our example and we
an distinguish three states, sleeping, waiting andexe
uting; the a
tions a; b and f stand for arrive, begin and �nish; timer x is used to measure theexe
ution time, while timer t measures the time elapsed sin
e pro
ess arrival; both timers progressuniformely; b is the only
ontrollable a
tion and guards g are de
orated with an urgen
y type. Noti
ethat sin
e the transition b is delayable, the pro
essor may wait for a non-zero time even if pro
essor isfree.Consider a timed system TS = TS1jjTS2 where TS1 and TS2 are instan
es of the periodi
 pro
essshown in �gure 4.9, with parameters (E;P;D) equal to (5,15,15) and (2,5,5) for pro
ess 1 and 2respe
tively. We
an
reate the
onstraint:Kdlf = [(s1 ^ t1 � 15) _ (u1 ^ x1 � 5 ^ t1 � 15) _ (w1 ^ t1 � 10)℄^[(s2 ^ t2 � 5) _ (u2 ^ x2 � 2 ^ t2 � 5) _ (w2 ^ t2 � 3)℄whi
h expresses the fa
t that ea
h one of the pro
esses is deadlo
k-free: from a
ontrol state, time
anprogress to enable the guard of some exiting transition. This
onstraint is a proper invariant for TS.

92 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

e

s

w

au; (t = T)�t := 0
b
; (t � D �E)Æx := 0fu; (x = E ^ t � D)�

Figure 4.9: A periodi
 pro
essPriorities Priorities are ne
essary in modelling formalisms for rts sin
e there may be urgent pro-
esses or they may be useful as a
on
i
t resolution me
hanism by asso
iating priorities to states ormore generally, spe
ifying a state
onstraint and an asso
iated priority order. Priorities are intrinsi
allyrelated to preemption poli
ies.In [9℄ priorities are de�ned as a stri
t partial order over the a
tions. Formally, a priority order is astri
t partial order �� A
 �A and we say that if a1 � a2, then a1 must be done before a2.Altisen et al, have proved that the appli
ation of a priority rule to a timed system respe
ting
on
i
ting a
tions through a partial priority order de�nes a new timed system.Example 4.14 In �gure 4.10 we see a part of the
omposed automaton for TS, where some
on
i
texists between b1 and b2 as both a

ess a
ommon resour
e. Then from the
ontrol state (w1; w2) of the
omposed system, the priority rule:� = (Di � (ti + Ei) < Dj � (tj +Ej)); bj � biwhere (i; j) 2 f(1; 2); (2; 1)g expresses the rule for
on
i
t resolution; the guards of b1 and b2
an be
onveniently modi�ed as shown in �gure 4.10, (note a
tion b is still
ontrollable but the transition isimmediate).Con
i
t resolution and hen
e priorities are de�ned a

ording to a s
heduling poli
y s
h; in ourexample, we have
hosen the least laxity �rst, [44℄ whi
h is a mixture of edf and remaining exe
utingtimes.4.6 S
hedulability through tatIn this se
tion, we dis
uss another approa
h to modelling, introdu
ed by Fersman et al, [26, 25℄ and�rst dis
ussed in [24℄. The main idea of the model is to o�er a s
hedulability frame, for a set ofnon-periodi
 tasks, triggered by external stimuli, relaxing the general assumption of
onsidering their

4.6. SCHEDULABILITY THROUGH TAT 93
(D1 � (t1 +E1) � D2 � (t2 +E2)))�x1 := 0b
1((t1 � D1 �E1)^ w1w2 b
2; ((t2 � D2 �E2)^x2 := 0(D2 � (t2 +E2) � D1 � (t1 +E1)))�

Figure 4.10: Prioritiesminimal interarrival times as task periods, as this analysis is pessimisti
 in many
ases and indeed itdoes not take into a

ount the evolution of the environment.To model the appli
ation, tat are used, (see se
tion 4.2.2), where ea
h state of the automaton
orresponds to a task; a transition leading to a lo
ation in the automaton denotes an event triggeringa new task and the guard on the transition spe
i�es the possible arrival times of the event;
lo
ks maybe updated by the de
rementation operations shown in 4.2.3. A state of su
h an automaton in
ludesnot only the lo
ation and the
lo
k assignment but also a queue q whi
h
ontains pairs of remaining
omputing times and relative deadlines for all a
tive tasks.Task set is denoted P = fP1; P2; : : : ; Pmg, where ea
h task Pj ; 1 � j � m is
hara
terized by apair (Ej ; Dj), as usual. The a
tive set of tasks is T = fT1; T2; : : : ; Tng where ea
h Ti 2 P; 1 � i � n;the system may a

ept many instan
es of the same task Pj , in whi
h
ase they are
opies of the sameprogram with di�erent inputs2.4.6.1 S
hedulability AnalysisRemember that a tat is a transtion system
hara
terized by triples of the form (s; v[
℄; q) where s isa state, v[
℄ values of
lo
ks in s and q a queue of tasks sorted by some s
heduling poli
y. The notionof s
hedulability is then transposed to q: if all tasks in q
an be
omputed within their deadlines, thesystem is s
hedulable and hen
e an automaton is s
hedulable if all rea
hable states of the automatonare s
hedulable. Two important results are drawn out from this model:1. Under the assumption of non-preemptive s
heduling poli
ies, the s
hedulability
he
kingproblem
an be transformed to a rea
hability problem for tat and thus it is de
idable.2. Under the assumption of preemptive s
heduling poli
ies, a
onje
ture was made over theunde
idability of the s
hedulability
he
king problem, sin
e preemptive s
heduling is asso
iatedwith stop-wat
h automata for whi
h the rea
hability problem is unde
idable. This
onje
ture wasproved as wrong if uta are used, (re
all that in uta
lo
ks may be updated by substra
tion), andif
lo
ks are upper bounded and substra
tion leaves
lo
ks in the bounded zones; the rea
habilityproblem is then de
idable.2sometimes Pi is
alled a task type and we distinguish instan
es as T 1i ; T 2i ; : : :

94 CHAPTER 4. LIFE IS TIME, TIME IS A MODELx > 10; ax := 0 x = 10l1l2 y := 0x := 0ay � 40bb Q(2; 10) P (4; 10)
Figure 4.11: Zeno-behaviourThe s
hedulability problem may be redu
ed to the problem of lo
ation rea
hability as for normalta not
onsidering task assignment, abstra
ting from the extended model; with this analysis we
an
he
k properties su
h as safety, liveliness or many others not related to the task queue.However as properties to the task queue are of interest, Fersman et al, [26℄ have developped anew veri�
ation te
hnique. One of the most intersting properties of tat related to the task queue, iss
hedulability. In fa
t, invariants in lo
ation and guards on edges rule the problem of s
hedulability.Consider, for example, a part of an tat shown in �gure 4.11; while in lo
ation l1 the system
oulda

ept a new event a ea
h 10 units (x � 10) but no more than 4, due to the
onstraint y � 40; in fa
t,ea
h time a new instan
e of P arrives, the previous one had already been exe
uted, so the task queueis bounded (by 1 in this
ase).On the
ontrary if we observe state l2 we see than an in�nite number of Q instan
es
ould be a

eptedsin
e the dis
rete transition b is not guarded, i.e. not
onstraint by some
lo
ks. This behaviour is notdesirable and is
alled the zeno behaviour. Fersman et al have proved that this behaviour
orresponds,of
ourse, to non-s
hedulability as the s
heduler
annot manage to �nish an in�nite number of taskswithin a �nite time (deadline). We also note that zenoness is a ne
essary
ondition for s
hedulabilitybut not a suÆ
ient
ondition, sin
e we
an easily �nd a system non-zeno whi
h is not s
hedulable.The following de�nition relies s
hedulability and rea
hability.De�nition 4.10 (S
hedulability) A state (s; v[
℄; q) of an tat is a failure denoted (s; v[
℄; Error) ifthere exists a task within q whi
h fails to meet its deadline, i.e, if q = [T1(e1; d1); : : : ; Tn(en; dn)℄, thenfrom an initial state (s0; v[
0℄; q0) ��!S
h (s; v[
℄; Error) =) 9i; 1 � i � n; s:t: ei > 0 ^ di < 0 for agiven s
heduling poli
y S
h.In Fersman's methodology, value ei
omputing the remaining exe
uting time de
reases as task �i isexe
uted while values d's
omputing the remaining time to rea
h deadlines de
rease; under this
ontext,s
hedulability
an be
he
ked by verifying that at any instant t :Xi�k ei � dk 8 1 � k � n (4.5)whi
h assures that the waiting time for task �k, given by the sum of the exe
ution times of tasks withhigher priority (a

ording to S
h) is \small enough" to let �k �nish its exe
ution3. Sometimes we
ande
ompose expression 4.5 as3Remember that tasks in q are ordered, being T1 under exe
ution

4.6. SCHEDULABILITY THROUGH TAT 95
empty(q)

non−sched(q)

running(i,j) running(m,n)

Idling

Error non−sched(q)

m
m l

l releasei releasem�i(E;D)
i;j = Ei; status(m; n) = prereleasedm;Run(m;n)Run(i; j)releasedk;
Figure 4.12: En
oding S
hedulability ProblemXi�k ei � dk =Xi<k ei| {z }Bk +ek � dk 8 1 � k � n (4.6)and Bk is
alled the blo
king time for task �k.A very important result in Fersman's model is that the problem of
he
king s
hedulabilityrelative to a preemptive �xed priority s
heduling strategy for tat is de
idable.This result is based on the following ideas, (see �gure 4.12):� For uta the rea
hability problem is unde
idable and hen
e the redu
tion of s
hedulability torea
hability is also unde
idable.� A bounded updatable automata is a uta in whi
h ea
h
lo
k
 is not negative and bounded bya maximal
onstant C
 , that is all operations leave
lo
ks non-negative and
lo
ks do not growbeyond a known
onstant.� The rea
hability problem for bounded updatable automata is de
idable and hen
e the s
hedula-bility problem, [18, 40℄.� They prove that tat are in the
lass of bounded uta.To en
ode the problem of s
hedulability as rea
hability, Fersman et al, develop a methodology basedon three transformation steps:1. The appli
ation is �rst en
oded as a tat AT as we have seen in the pre
edent paragraphs, wherestates represent a task, (possibly in exe
ution).2. AT is transformed to a ta A redu
ed to a
tions triggering tasks.3. Given a s
heduling �xed priority strategy S
h, a tatAS
h is developed whi
h in
ludes all tasks andall possible transitions a

ording to priorities. AS
h is a uta, with the following
hara
teristi
s:

96 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL� There are three types of lo
ations: Idling, Running(i; j) and Error, with Running beingparametrized by a task �i and its instan
e j.� For ea
h task instan
e, we have two
lo
ks:
i to denote a

umulated
omputing time sin
eT ji was started and ri;j denoting the time sin
e T ji was released;
i is a substra
ted
lo
k,substra
tion is applied to note the evolution of time, while Ti is temporarily suspended. Forinstan
e,
i (initially reset to 0) is redu
ed by Æ if task Tk is exe
uted Æ units of time and Tkpreempts Ti. It is this transformation whi
h moves to the \risking zone of unde
idability".4. The third step of the en
oding is to
onstru
t the produ
t automaton AS
hjjA where both au-tomata syn
hronize over identi
al a
tion symbols.Fersman et al. prove that
lo
ks of AS
h are bounded and non negative in the produ
t automaton;for this automaton the rea
hability analysis of the error state is de
idable and equivalent to de
lare thesystem as non-s
hedulable.For this approa
h, the number of
lo
ks needed in the analysis is proportional to the maximalnumber of s
hedulable task instan
es asso
iated with a model, whi
h in many
ases is huge. In a laterpaper, [25℄, Fersman et al prove that for a �xed priority s
heduling strategy, the s
hedulability
he
kingproblem
an be solved by rea
hability analysis on standard ta using only two extra
lo
ks in additionto the
lo
ks used in the original model to de
ribe task arrival times.4.7 Job-Shop S
hedulingTo
on
lude this
hapter, we introdu
e another model for tasks, the job-shop s
heduling problem, jss,suitable for distributed systems, under
ertain
onditions, [1℄.The jss problem is a generi
 resour
e allo
ation problem in whi
h ma
hines are required at varioustime points for given durations by di�erent tasks. Ea
h job J is
hara
terized by a sequen
e of steps(m1; d1); (m2; d2); : : : ; (mk; dk) where mi 2 M and di 2 N ; 1 � i � k, M being the universal set ofma
hines indi
ating the required utilization of ma
hine mi for time duration di. The sequen
e states alogi
al order to a

omplish job J , �rst ma
hine m1 for d1 units of time, then ma
hine m2 for d2 time,and so on.Formally:De�nition 4.11 (Job-Shop Spe
i�
ation) Let M be a �nite set of ma
hines. A job spe
i�
ationover M is a triple J = (k; �; d) where k 2 N is the number of steps in J , � : f1 : : : kg ! M indi
ateswhi
h resour
e is used at ea
h step, and d : f1 : : : kg ! N spe
i�es the length of ea
h step. A job-shopspe
i�
ation is a set J = fJ1; : : : ; Jng of jobs with J i = (ki; �i; di).The model assumes that:� A job
an wait an arbitrary amount of time between two steps, (there is no notion of deadline).� On
e a job starts to use a ma
hine, it
annot be preempted until this step terminates, (that is,there is no preemption).� Ma
hines are used in a mutual ex
lusion manner (while job J is using a ma
hine, no other
anhave a

ess simultaneously) and steps of di�erent jobs using di�erent ma
hines
an exe
ute inparallel.

4.7. JOB-SHOP SCHEDULING 97De�nition 4.12 (Feasible S
hedule) A feasible s
hedule for a job-shop spe
i�
ation J = fJ1; : : : ; Jngis a relation S � J �K � RR+, so that a triple (i; j; t) from S indi
ates that job J i is busy doing itsjth-step at time t and hen
e o

upies ma
hine �i in its j step. A feasible s
hedule should satisfy thefollowing
onditions:1. Ordering: if (i; j; t) and (i; j0; t0) 2 S then j < j0 �! t < t02. Every step is exe
uted
ontinously until
ompletion.3. Mutual Ex
lusion: for every i; i0 2 J ; j; j0 2 K and t 2 RR+ if (i; j; t) and (i0; j0; t) 2 S, then�i(j) 6= �i0(j0), two steps of di�erent jobs whi
h exe
ute at the same time do not use the samema
hine.The optimal jss problem is to �nd a s
hedule with the shortest length over t over all (i; j; t) 2 S.4.7.1 Job-shop and taNaturally, ea
h job J = (k; �; d)
an be modeled as a ta su
h that for ea
h step j where �(j) = m we
reate a state indi
ating the use of m for a duration of d, but we have to mark also the waiting timebefore using m; for this reason, [1℄ proposes to
reate states �m for ea
h ma
hine used by J .We will not give the formal de�nition of this transformation, but illustrate it through an example.Example 4.15 Consider two jobs J1 = f(m1; 4); (m2; 5)g and J2 = f(m1; 3)g, over M = fm1;m2g.The automata
orresponding to these jobs is shown in �gure 4.13(a), where one
lo
k
i for ea
h taskJi is used to model exe
ution time. In [1℄ ea
h ta has a �nal state f .To treat a jss we need to
ompose the automata for ea
h task. This
omposition takes into a

ountthe mutual ex
lusion prin
iple, by whi
h no more than one task
an be a
tive in a ma
hine at any time.The resulting restri
ted
omposition is shown in �gure 4.13(b).From the
omposition automaton, we
an derive the di�erent lengths of exe
utions by analysingdi�erent runs of the automaton, whi
h represent feasible s
hedules for J .Example 4.16 Two di�erent exe
utions for our previous example are shown bellow, where ea
h tupleis of the form (m;m0;
1;
2);m;m0 2 fm1; �m1;m2; �m2g and ? represents an ina
tive
lo
k:S1 :(�m1; �m1;?;?) 0�! (m1; �m1; 0;?) 4�! (m1; �m1; 4;?) 0�! (�m2; �m1;?;?) 0�!(m2; �m1; 0;?) 0�! (m2;m1; 0; 0) 3�! (m2;m1; 3; 3) 0�! (m2; f; 3;?) 2�!(m2; f; 5;?) 0�! (f; f;?;?)S2 :(�m1; �m1;?;?) 0�! (�m1;m1;?; 0) 3�! (�m1;m1;?; 3) 0�! (�m1; f;?;?) 0�!(m1; f; 0;?) 4�! (m1; f; 4;?) 0�! (�m2; f;?;?) 0�! (m2; f; 0;?) 5�!(m2; f; 5;?) 0�! (f; f;?;?)The �rst s
hedule S1 has length 9 while the se
ond S2 has length 12.

98 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

(b)(a)

1 := 0

1 := 0
1 := 0

1 := 0

2 := 0

2 := 0
1 := 0

2 � 3

2 � 3
2 � 3
1 � 5
1 � 5
1 � 5

1 � 4

1 � 4
2 := 0
2 := 0 m2m1 �m2 �m1m2 �m1f �m1 fm1 ff

�m1m1m1 �m1�m2 �m1
�m1 �m1

�m1fm1f�m2fm2f

1 := 0
1 � 4
1 := 0
1 � 5

2 := 0
2 � 3
�m1m1�m2m2f

�m1m1f

Figure 4.13: Jobs and Timed Automata

4.8. CONCLUSIONS 99The previous example shows the idea for jss and timed automata, [1℄: the optimal job-shop s
hedul-ing problem
an be redu
ed to the problem of �nding the shortest path in a a
y
li
 timed automaton.This problem of rea
hability, that is arriving to the tuple (f; f;?;?) is always su

essful sin
e all runslead to f . In [1℄ various te
hniques for traversing the
omposed automaton in order to �nd the shortestpath are presented; algorithms redu
e the number of explored states, still guaranteeing optimality.4.8 Con
lusionsIn this
hapter we presented three main streams for modelling and analysing, based on ta and therea
hability problem.Tailored Synthesis The approa
h studied in [8, 9, 7℄ is based on the
onstru
tion of a s
heduledsystem, guided by some desired properties and the appli
ation itself. From a ta they
onstru
t anew automaton whose invariants must respe
t the desired properties; priorities are used as inputsand its
al
ulation is guided by
on
i
ting states. The problem of preemption is not
learlyhandled. S
hedulability is attained by
onstru
tion.Timed Automata with Tasks The approa
h studied in [26, 25℄ is based on the idea of modellingthe appli
ation under bounded supension automata; the problem of s
hedulability is redu
ed tothe problem of rea
hability of an error state; they prove this problem is de
idable and hen
e sois s
hedulability. The problem with this model is en
oding the appli
ation in a new uta, whi
h
onsiders all possible transition among tasks, and then we are soon fa
e to the problem of stateexplosion. S
heduling poli
ies are �xed priority.Job Shop The approa
h studied in [1, 2℄ is
ompletely di�erent: it treats the problem of (real time)tasks where no deadline restri
tion is imposed and many ma
hines are at disposition for exe
ution.Modelling is based on the idea of
omposing the individual models for tasks and s
hedulability isredu
ed to a rea
hability problem with the shortest time weight. Although simple, the problemis too narrow sin
e periodi
 tasks are not
onsidered (and hen
e, ta are really a
y
li
 ta) andtasks have no deadlines so, s
hedulability analysis is almost inexistant.

100 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

Chapter 5The heart of the problem
R�esum�eCe
hapitre pr�esente les resultats les plus importants de
ette th�ese; nous donnons une nouvelle util-isation d'horloges pour mod�eliser l'ordonnan
ement dans un
adre ave
 preemption, d�ependen
es etun
ertitude.Le
hapitre pr�esente graduellement notre te
hnique; au debut on
onsid�ere des syst�emes ave
une preemption et on les mod�elise �a l'aide des automates temporis�es; on prouve que le probl�eme del'ordonnan
ement est de
idable en montrant que le probl�eme d'atteignabilit�e est de
idable. On etendnotre m�ethode vers un
adre plus general en presentant une mod�elisation qui utilise la di�eren
e entredeux horloges pour simuler la preemption. Finallement, on
on
lut par la preuve de de
idabilit�e de
ette appro
he. Un me
hanisme d'admission de tâ
hes est present�e bas�e sur l'id�ee de temps d'attente.5.1 MotivationAs seen in the previous
hapters, the behavior of real-time systems with preemptive s
hedulers
an bemodelled by stopwat
h automata. Nevertheless, the expressive power of stopwat
h automata dis
our-aged for a long time their use for veri�
ation purposes. Indeed, the rea
hability problem (even for asingle stopwat
h) has been proven to be unde
idable [29, 31, 20℄.There are, however, some de
idable sub-
lasses su
h as the so-
alled integration graphs [31℄ andsuspension automata [40℄. The latter are a
tually useful for modelling and analyzing systems made upof a set of tasks with �xed exe
ution times. swa
an be translated into timed automata with updates,spe
i�
ally de
rementation by a
onstant, for whi
h the rea
hability problem is indeed de
idable [18℄.The result of [40℄ has been extended in [26℄ to a more general model tat, though still requiring
onstant exe
ution times of tasks. The approa
h via timed automata with de
rementation su�ers oftwo main problems. First, it requires a
ostly translation. Se
ond, it only allows modelling tasks with�xed exe
ution times. A te
hnique to
ope with the �rst problem has been proposed in [25℄.In this
hapter we fo
us on preemptive s
heduling of systems of tasks with un
ertain but lower andupper bounded exe
ution times. The behavior of these systems
annot be straightforwardly translatedinto a de
idable extension of timed automata with updates. Our approa
h
onsists in en
oding thevalue of stopped
lo
ks as the di�eren
e of two running ones. We do allow tasks to be restarted again;101

102 CHAPTER 5. THE HEART OF THE PROBLEM�1 "�1 # �2 "
�2 # �4 #

�4 "
�3 "Figure 5.1: A model of a systeminitially we forbid preempting a task more than on
e, then we extend to a more general model. Weshow that the system
an be modelled by formulas involving di�eren
e bounded matri
es, dbm, that is,di�eren
e
onstraints on
lo
ks, and time-invariant equalities
apturing the values of stopped
lo
ks.This result implies de
idability and leads to an eÆ
ient implementation. Moreover, it gives a pre
isesymboli

hara
terization of the state spa
e for the
onsidered
lass of systems.5.2 ModelA real time appli
ation is modelled as a
olle
tion T = f�1; �2; : : : ; �mg of all tasks for the appli
a-tion, whi
h are triggered by external events, in
luding a timed event su
h as period. Ea
h task �i is
hara
terized by a ve
tor of parameters [Gi; Di℄ 1 � i � m where Gi = [Emini ; Emaxi ℄ is the exe
utiontime-interval, i.e. the best and worst
ase exe
ution time and Di is the relative deadline. For ea
h task�i, we have two timed variables, namely ri and ei, that measure the release time and the a

umulatedexe
uted time, respe
tively. Both variables are reset to zero whenever task �i arrives. Task arrival isdenoted by �i " and task
ompletion by �i #.The environment is any untimed relation between arrivals and
ompletions of all tasks (it shouldrespe
t the pre
eden
e relationship between �i " and �i #, though).Example 5.1 In �gure 5.1 we
an see an example of a model of system of four tasks.The general model of an appli
ation is then a graph G = (V;A), where the set of verti
es V � f�i "; �i #g1�i�m where jin(V)j � 1 (no more than one in
oming edge per vertex) and a set of dire
ted edgesA � f�i "! �i #g1�i�m [f�i #! �j "gi6=j; 1�i;j�m [f�i "! �j "gi6=j; 1�i;j�mLet T � T be the �nite set of a
tive tasks in the system, that is, those that have already arrivedand are
urrently being handled by the s
heduler. At any moment, at most one instan
e of a task maybe a
tive. The predi
ate exe
(Ti) indi
ates whether Ti is exe
uting or not and for the set T , exe
(T)denotes the exe
uting task of T . The predi
ate a

ept(�i) indi
ates whether �i is a

epted or not at

5.2. MODEL 103its arrival due to some s
heduling or modelling reasons; for instan
e, �i
ould be reje
ted be
ause itwould produ
e some tasks to miss their deadlines or be
ause there is an a
tive instan
e of this task. Adetailed des
ription of this predi
ate will be given when we pre
ise the s
heduling poli
y. Figure 5.2shows a task automaton.
executing

or
pending

Idle

Modelling Error Scheduling Error

�i # ^exe
(�i)
�i "a

ept(�i)

ei 2 Gi ^ ri � Di�i " ^:a

ept(�i) �i " _ri > Di
Figure 5.2: Task automatonThe dynami
 behavior of the system is represented by a transition system (S; T;!) where S isa set of states, T is the set of a
tive tasks, and ! is the transition relation. S is a tuple of
ontrollo
ations of the task automaton (Fig. 5.2) and of valuations of timed variables. The following rulesgive a sket
hed behaviour of the system; formal and
omplete rules will be given later when analysingparti
ular s
heduling poli
ies, s
h.� Task
ompletion: �i # If ei 2 Gi, ri � Di, and exe
(�i), then(S; T) �i#! (S 0; T 	 f�ig)where S 0 is obtained a

ording to s
h and 	 is the operation of removing a task from T .� Task arrival: �i "If �i 2 T) (S; T) �i"! S
hedulling Error(no more than one instan
e of ea
h task)If �i =2 T ^ :a

ept(S; T; �i)) (S; T) �i"! Modelling ErrorIf a

ept(S; T; �i)) (S; T) �i"! (S 0; T � f�ig)where S0 is obtained a

ording to s
h and � is the operation of inserting a task in T .

104 CHAPTER 5. THE HEART OF THE PROBLEM� Deadline violation: If ri > Di for some �i 2 T)(S; T)! S
hedulling Error� Time passing: Let exe
(�i), Æ � 0, and ei + Æ � Emaxi)(S; T) Æ! (S 0; T)where S0 is obtained from S by adjusting the values of timed variables a

ording to s
h.The �rst rule expresses the
ompletion of the exe
uting task, leaving to the s
heduler the
hoi
eof
hoosing the next task to be exe
uted. The de�nition of exe
(T) and the
omputation of the nextstate are left unspe
i�ed sin
e they are dependant of the s
h.The se
ond rule expresses the arrival of a new task, whi
h
an be a

epted or reje
ted. We distinguishtwo transitions leading to an error state, one for uns
hedulability and the other for a behaviour notsatisfying the modelling assumptions.The third rule expresses the
ase of a deadline violation. The fourth rule expresses time passing ofÆ units of time, adjusting the values of the timed variables in T .In general we will assume the existen
e of an a

eptan
e test at task arrival. This test is related tosome assumptions of our system and of
ourse, to the s
heduling poli
y. On
e the task passes the test,it
an enter the system, either waiting for its turn or exe
uting immediately, preempting the
urrentlyexe
uting task. Predi
ate a

ept(S; T; �i) will be analysed in detail for di�erent s
heduling poli
ies.5.3 lifo s
hedulingTo show our analysis, we start with a very simple s
heduling poli
y: a lifo s
heduler, that is, as
heduler where the
urrent exe
uting task is always preempted by the re
ently arrived task. We alsosuppose that ea
h task
an be preempted for at most on
e.Intuitively speaking, a one preemption lifo s
heduler a

epts tasks in the sta
k, until the task onthe top �nishes; at this moment, as all tasks beneath it had already been preempted, the s
heduler willreje
t any new task, until the sta
k is empty; note, then, that all tasks in the sta
k had been preemptedon
e, ex
ept the task on the top whi
h
ould have never been preempted.Example 5.2 Let T = f�1(4; 12); �2(5; 10); �3(2; 10); �4(3; 6)g be a set of tasks, where the numbers inparentheses represent exe
ution times and deadlines. In this example, deadlines are suÆ
iently long tolet all tasks exe
ute on time.Figure 5.3 shows the rea
tion of a lifo s
heduler at arrival of ea
h task. For instan
e at time t = 3,�2 " and �2y�1; note that at time t = 8, �3 #, and �2 resumes exe
ution, noted as �2%; remark that thearrival of �4 at time t = 9 is ignored by the s
heduler, sin
e �2 had already been preempted. We alsoshow the evolution of
lo
ks.5.3.1 lifo Transition ModelLet T = fT1; T2; : : : Tng be the sta
k of a
tive tasks in the system and let Tn be the task in exe
ution,i.e. Tn = exe
(T); if �i arrives to the system and it is a

epted, then �i preempts Tn, written as �iyTn.

5.3. LIFO SCHEDULING 105
t

30 6 8 10r3 := 0r1 := 0 r3 = 7r2 = 2r2 := 0�1 " �3 " �2 " �2 # �1 #
T = f�3; �1g

�3% �1%
e1 = r1 e3 = r3 e2 = r2 r1 = 8r3 = 5 r1 = 11�3 #�4 "
T = f�1g T = fgT = f�2; �3; �1g T = f�1gT = f�3; �1gFigure 5.3: One preemption lifo S
hedulerWe de�ne a fun
tion � for renaming tasks, � : T ! f1; 2; : : : ;mg, �(Ti) = j; 1 � i � n; 1 � j � mgives the \name" j in T of the task �j pla
ed in position i in sta
k T .An hybrid transition system (S; T;!) for a lifo s
heduler is
omposed of :1. a
olle
tion of states, S = (S;~e; ~r; ~_e; ~p), where:(a) S is a
ontrol lo
ation,(b) ~e a ve
tor of
lo
ks
ounting exe
ution time, where ~ej is the
umulated exe
ution time fortask �j ,(
) ~r a ve
tor for releasing times, where ~rj is the released time for task �j ,(d) ~_e a ve
tor indi
ating those exe
ution
lo
ks whi
h are stopped,(e) ~p a ve
tor for preemption where ~pj = l means that task �l preempts �j , �ly�j , if l 6= 0 or that�j has never been preempted, otherwise. In parti
ular, in the lifo s
heduler, if task �j is atposition k; 1 � k < n in T , that is �j = Tk, then task �l is at position k + 1, that is1 :�(Tk) = j; �(Tk+1) = l; ~p�(Tk) = �(Tk+1) � ~pj = l2. a sta
k of tasks, T � T (with the usual operations pop, top and push).3. a transition relation !We give the operations over our transition system; re
all that the arrival of a task is
aptured bythe s
heduler, who de
ides over the admission. As a
onvention, we will use index j for \names" oftasks, 1 � j � m and k for a
tive tasks in T , 1 � k � n.� Task arrival, �i " (�i 2 T and a

ept(S; T; �i)):(S; T) �i"! (S 0; T 0)where T 0 � push(�i; T) and S 0 = (S0; ~e0; ~r0; ~_e0; ~p0) is:~e0j = � 0 if i = j~ej otherwise1We
ould simplify ~p as a boolean ve
tor where ~pj = �, and � 2 [true; false℄

106 CHAPTER 5. THE HEART OF THE PROBLEM~r0j = � 0 if i = j~rj otherwise~p0j = 8<: i if j = �(top(T))0 if j = i~pj otherwise~_e0j = � 1 if j = i0 otherwiseThat is, as a new task is a

epted, its exe
ution and release
lo
ks are both reset, its rateexe
ution
lo
k is set to 1 to mark it is running, while all other exe
ution
lo
ks are stopped; wemark preemption to the
urrent exe
uting task.� Task
ompletion: Tn # (S; T) Tn#! (S 0; T 0)where T 0 = pop(T) and ~e�(Tn) = ~r�(Tn) =?, all other variables are un
hanged.� Task resumption: Tn% (we assume Tn = top(T) is a task preempted in the past, whi
h regainsthe pro
essor). (S; T) Tn%! (S 0; T)where S 0 = (S0; ~e0; ~r0; ~_e0; ~p0) is: ~_e0j = � 1 if j = �(Tn)0 otherwiseall other variables remain un
hanged.� Time passing: Æ is an elapsed time not enough to �nish the
urrent exe
uting task.(S; T) Æ! (S 0; T)where S 0 = (S0; ~e0; ~r0; ~_e0; ~p0) is: ~e0j = � ~ej + Æ if j = �(Tn)~ej otherwiseand ~r0j = ~rj + Æ 8�j ; �j 2 T , all other variables remain un
hanged.

5.3. LIFO SCHEDULING 1075.3.2 lifo Admittan
e TestIt is time to give an admittan
e test for our lifo s
heduler. We propose:a

eptlifo(S; T; �i) � :a
tive(T; �i) ^ :preempted(T; Tn)that is, we do not a

ept a task if:� There is an a
tive instan
e of the same task, that isa
tive(T; �i) � i = �(Tk) for some k; 1 � k � n� It will preempt an already preempted task, that ispreempted(T; Tn) � ~p�(Tn) 6= 0For the instant being we do not
onsider timing
onstraints; in parti
ular, we are not
onsideringin the a

eptan
e test the fa
t that a new a

epted task may lead to some other tasks in T miss theirdeadlines. Later, we propose a re�nement in that dire
tion.5.3.3 Properties of lifo s
hedulerUnder the one-preemption assumption the following properties hold:1. If ~p�(Tn) = 0) e�(Tn) = r�(Tn)2. e�(Tn�1) = r�(Tn�1) � r�(Tn)3. 8Tk; Tk 2 T; k < n, we have:(a) Preemption: a
tive(Tk) ^ preempted(Tk)(b) Time invariant
ondition:Ilifo(T) � n�1̂k=1 e�(Tk) = r�(Tk) � r�(Tk+1)Ilifo(T) � n�1̂k=1 e�(Tk) = r�(Tk) � r~p�(Tk)(
) S
hedulability: r�(Tk) < D�(Tk)Property 1 simply says that if the
urrently exe
uting task Tn has never been preempted sin
e itsarrival, then both
lo
ks, e�(Tn) and r�(Tn) have the same value.Property 2 is the
onsequen
e of preemption. When Tn�1 was preempted, (i.e. Tn�1 was exe
utingand hen
e on top of T), we know by the previous rule, that e�(Tn�1) = r�(Tn�1) and as r�(Tn) is set tozero, we
an establish the property whi
h is time-invariant while Tn�1 is suspended. This observationleads by indu
tion to property 3b, whi
h we
all the exe
ution invariant under a lifo s
heduling poli
y.Property 3a says that all tasks in sta
k T are a
tive and were preempted in the past (ex
epteventually the task in the top).Property 3
 says that all tasks in T are s
hedulable, (remember our extension of the admittan
etest will go in that dire
tion).

108 CHAPTER 5. THE HEART OF THE PROBLEM
t

30 6 8 10r3 := 0r1 := 0 r3 = 7r2 := 0�1 " �3 " �2 " �2 # �1 #
T = f�3; �1g

�3% �1%
e1 = r1 r1 = 11�3 #�4 "
T = f�1g T = f�2; �3; �1ge2 = r2e3 = r3e1 = r1 � r3 e3 = r3 � r2 r3 = 5r2 = 2e1 = r1 � r3e3 = r3 � r2 e1 = r1 � r3r1 = 10T = f�3; �1gT = f�1g T = fgFigure 5.4: Invariants in lifo S
hedulerExample 5.3 Let us re
onsider the example 5.2; we
an observe that (see �gure 5.4):� At t = 0 r1 = e1 = 0, �1 begins its exe
ution. Ilifo(�1) = true,� At t = 3, �3 arrives, it is a

epted and preempts �1 (later, we will give an admission test dealingwith s
hedulability
onditions). The exe
ution invariant Ilifo(�1; �2) � fe1 = r1 � r3g� At t = 6, �2 " and �2y�3. The exe
ution invariant Ilifo(�1; �2; �3) � fe1 = r1� r3 ^ e3 = r3� r2g.� At t = 8, �2
ompletes its exe
ution and the s
heduler resumes �3. The
omputed time is re
overedfrom the di�eren
e e3 := r3 � r2. Note that ~p3 = 2 and e3 = r3 � r~p3 .� At t = 9, T4 arrives but it is reje
ted by the admittan
e test sin
e: exe
(T) = �3^preempted(�3).� Finally, at t = 10, �3
ompletes and the s
heduler resumes �1; on
e again e1 is re
overed from thedi�eren
e r1 � r3; �1 ends at t = 11.The previous properties motivate the following de�nition:De�nition 5.1 The exe
ution invariant under a lifo s
heduling poli
y isIlifo(T) = ^1�k�n�1 e�(Tk) = r�(Tk) � r�(Tk+1)If the
urrently exe
uting task has already been preempted, the equation r�(Tn) = e�(Tn) may nothold and in this
ase, we
annot simply express e�(Tn) as the di�eren
e of r�(Tn) and r�(Tn+1). So forthe time being, we still retain our assumption of one-preemption. To ensure that r�(Tn) = e�(Tn) holds,we
an
onstrain the predi
ate a

ept(S; T; �i) for every task �i by the
onstrainteexe
(T) = rexe
(T)5.3.4 Rea
hability Analysis in lifo S
hedulerLet 	 be the set of formulas generated by the following grammar: ::= x� y � d j ^ j : j 9x:

5.3. LIFO SCHEDULING 109where x; y 2 C are
lo
ks and d 2 Q is a rational
onstant.To fa
ilitate notation, we will skip in this analysis the use of the fun
tion �, and repla
e it by theposition a task o

upies in the sta
k. Remember then that when saying, for instan
e, ek we really meanthe exe
ution
lo
k e of the task whi
h is in the k position in the sta
k, that is e�(Tk).Let � be a
onstraint
hara
terizing a set of states. We de�ne Tn+1 "(�) to be the set of statesrea
hed when task Tn+1 arrives, that is:Tn+1 "(�) = fs0 : 9s 2 �: s Tn+1"! s0gLet � be of the form Ilifo(T) ^ , with 2 	 a quanti�er free formula. Without loss of generality,we
an assume that either :1. Tn+1 is reje
ted: =) :a

ept(; T; Tn+1)in this
ase, Tn+1 "(�) � � and the system moves to an error state.2. Tn+1 is a

epted: =) a

ept(; T; Tn+1)We have that: Tn+1 "(�) � Ilifo(T � fTn+1g) ^ en+1 = rn+1 = 0 ^ 9en: Moreover, sin
e en = rn, Ilifo(T � fTn+1g)
ontains the equality en = rn � rn+1, we have that:Tn+1 "(�) � Ilifo(T + fTn+1g) ^ en+1 = rn+1 = 0 ^ 0Hen
e, Tn+1 "(�) has the same stru
ture than �, that is, it is the
onjun
tion of an exe
utioninvariant and a formula in 	. Moreover, if is a quanti�er-free formula, that is, a di�eren
e
onstraint (or dbm), we have that 9en: is indeed a dbm. Note that is a formula
ontaining
lo
ks measuring release times and only one exe
ution
lo
k (that of the task on top).Then we have:Proposition 5.1 Let � be of the form Ilifo ^M , where M is a dbm and Ilifo is a one preemptionlifo exe
ution invariant, then, Tn+1 " (�) has the same stru
ture as �.Now, let �% the set of states rea
hed from � by letting time advan
e, that is:�%= fs0 : 9s 2 �; Æ � 0:s Æ! s0gClearly, if � is of the form Ilifo(T) ^M , we have that�%= (Ilifo(T) ^M)%= Ilifo ^M%Proposition 5.2 Let � be of the form Ilifo ^M , where M is a dbm and Ilifo is a one preemptionlifo exe
ution invariant, then, �% has the same stru
ture as �.

110 CHAPTER 5. THE HEART OF THE PROBLEMThus, given a sequen
e of task arrivals T1 "; : : : ; Tn ", the set of rea
hed states
an be representedby the
onjun
tion of the exe
ution invariant Ilifo(T),
hara
terizing the already exe
uted time ofthe suspended tasks, namely T1; : : : ; Tn�1, and a dbm M ,
hara
terizing the relationship between the
orresponding released times and the equality en = rn.A dbm M has the following form:u r1 r2 : : : rn enu � Mur1 Mur2 : : : Murn Muenr1 Mr1u � Mr1r2 : : : Mr1rn Mr1enr2 Mr2u Mr2r1 � : : : Mr2rn Mr2en...rn Mrnu Mrnr1 Mrnr2 : : : � Mrnenen Menu Menr1 Menr2 : : : Menrn �As en = rn, then Mxen = Mxrn and Menx = Mrnx, so from here on we omit en in M .In our
ase, M is
onstru
ted in a very parti
ular way and therefore has a spe
ial stru
ture. Let usanalyse it:Event Equation ExplanationT1 " ;T2 " Mr1r2 = Mr1u � e1 = r1 � r2 �Mr1r2 = Mr1u * r2 = u (5.1)T3 " Mr2r3 = Mr2u � e2 = r2 � r3 �Mr2r3 = Mr2u * r3 = u (5.2)Mr1r3 = Mr1r2 +Mr2r3 (e1 = r1 � r2 �Mr1r2 ^ e2 = r2 � r3 �Mr2r3))r1 � r3 �Mr1r3 = Mr1r2 +Mr2r3 (5.3)T4 " Mr3r4 = Mr3u � e3 = r3 � r4 �Mr3r4 = Mr3u * r4 = u (5.4)Mr2r4 = Mr2r3 +Mr3r4 (e2 = r2 � r3 �Mr2r3 ^ e3 = r3 � r4 �Mr3r4))r2 � r4 �Mr2r4 = Mr2r3 +Mr3r4 (5.5)Mr1r4 = Mr1r2 +Mr2r3 +Mr3r4 (e1 = r1 � r2 �Mr1r2 ^ e2 = r2 � r3 �Mr2r3^e3 = r3 � r4 �Mr3r4))r1 � r4 �Mr1r4 = Mr1r2 +Mr2r3 +Mr3r4 (5.6)We
an observe that equality 5.3 is dedu
ed from 5.1 and 5.2; 5.5 from 5.2 and 5.4 and �nally5.6 from 5.1, 5.2 and 5.4. So we see that the matrix is
onstru
ted from a set of base formulae
orresponding to the di�eren
e of the task being exe
uted and that whi
h preempts it, while all otherdi�eren
es
an be
onstru
ted from this base set. Base formulae are marked with a �.In general, when Tn arrives: Mrn�1rn = Mrn�1uand Mrn�1en�1 = Men�1rn�1 = 0As Tn preempts Tn�1 and

5.3. LIFO SCHEDULING 111
rn�1 := 0 en = rnPj�i�n�1 ei = rj � rn �MrjrnP1�i�n�1 ei = r1 � rn �Mr1rne3e2e1 ej en�1rj := 0r3 := 0r2 := 0r1 := 0 rn := 0Figure 5.5: Clo
k Di�eren
es in lifo S
heduler

Mrjrn = n�1Xi=j Mriri+1 ; j < n� 1 (5.7)Equation 5.7 may be re-written as a re
ursive formula:Mrjrn =Mrjrn�1 +Mrn�1rn ; j < n� 1 (5.8)and Mrju =Mrjrn +MrnuWhat do these di�eren
es mean? Figure 5.5 shows a geometri
 interpretation of the followingrelations: e1 = r1 � r2 � Mr1r2e2 = r2 � r3 � Mr2r3...en�1 = rn�1 � rn � Mrn�1rnP1�i<n ei = P1�i<n ri � ri+1 � P1�i<nMriri+1P1�i<n ei = r1 � rn � P1�i<nMriri+1 (5.9)On the other hand, we know that: r1 � rn �Mr1rn (5.10)From the expression (5.9) and (5.10) and (5.7) we
an dedu
e that:X1�i<n ei = r1 � rn � X1�i<nMriri+1 =Mr1rnThe expression 5.9
an be generalized as:Xj�i<n ei = rj � rn �MrjrnThat is, when Tn arrives we have that:

112 CHAPTER 5. THE HEART OF THE PROBLEMMrn�1rn = Mrn�1u (5.11)Mrn�1en�1 = Men�1rn�1 = 0 (5.12)and for all j < k � n, Mrju = Mrjrk +Mrku (5.13)Murj = Murk +Mrkrj (5.14)Mrjrk = Mrjrk�1 +Mrk�1rk (5.15)Mrkrj = Mrkrk�1 +Mrk�1rj (5.16)Let us
all a dbm M that satis�es properties 5.11 to 5.16 a ni
e dbm.We have therefore proved that:Proposition 5.3 Tn+1 " (�) and% (�) preserve ni
ety.We have shown so far that task arrival and time passing preserve the stru
ture of the symboli

hara
terization of the state spa
e for a lifo s
heduler if tasks are a

epted only under the one-preemption restri
tion. The question that arises then, is whether task
ompletion has the same property.If this is the
ase, we have a
omplete symboli

hara
terization of the state spa
e of su
h s
hedulers.Indeed, the answer is yes, though the reasoning is a bit more involved.Let Tn # (�) be the set of states rea
hable from � when Tn terminates:Tn #(�) = fs0 : 9s 2 �:s Tn#! s0gLet � be of the form Ilifo(T) ^M and Gn be the interval [Eminn ; Emaxn ℄. We have that:Tn # (�) � 9en; rn:Ilifo(T) ^M ^Gn� Ilifo(T � fTng) ^ 9rn:en�1 = rn�1 � rn ^ 9en:(M ^Gn)� Ilifo(T � fTng) ^M 0[rn rn�1 � en�1℄where M 0 � 9en:(M ^Gn), that is we eliminate en from M , sin
e we do not need it. The question is:\ Is M 0 still a ni
e dbm matrix?"We have to show now that M 0[rn rn�1 � en�1℄ is equivalent to a ni
e dbm.When substituting rn by rn�1 � en�1 in M we get:from rn � rn�1 �Mrnrn�1) �en�1 �Mrnrn�1 (5.17)from rn � rj �Mrnrj) rn�1 � en�1 � rj �Mrnrj (5.18)whi
h is not a di�eren
e
onstraint, but from (5.17) andrn�1 � rj �Mrn�1rj

5.3. LIFO SCHEDULING 113we derive that rn�1 � en�1 � rj �Mrnrn�1 +Mrn�1rjSin
e M is ni
e, we have that: Mrnrj = Mrnrn�1 +Mrn�1rjwhi
h means that (5.18) is an implied
onstraint and it
an be eliminated. The same applies for allthe non-di�eren
e
onstraints that appear after subsitution. Sin
e no other new
onstraints on releasedtime variables appear, ni
ety is preserved.In summary:Proposition 5.4 Let � be of the form I ^ M , where M is a ni
e dbm and I is a lifo exe
utioninvariant. Then, Tn# (�) has the same stru
ture than �.Sin
e all variables are bounded, the above results imply the following:Theorem 5.1 The symboli
 rea
hability graph of a system of tasks for a lifo s
heduler satisfying theone-preemption
onstraint is �nite.Hen
e, the rea
hability (and therefore the s
hedulability) problem for our
lass of systems is de
id-able. More importantly, our result gives a fully symboli

hara
terization of the rea
h-set.5.3.5 Re�nement of lifo Admittan
e TestWe have \skipped" the analysis of deadlines; in this se
tion we give a re�nement of our lifo admittan
etest.We propose to test at �i " the predi
ate:a

eptlifo(T; �i) � :a
tive(T; �i) ^ :preempted(T; Tn) ^ s
hedulable(T; �i)that is, we do not a

ept a task if:� There is an a
tive instan
e of the same task, that is a
tive(T; �i) � i = �(Tk) for some k; 1 �k � n.� It will preempt an already preempted task, that is preempted(T; Tn) � ~p�(Tn) 6= 0.� It will miss its deadline or
ause other tasks in T miss their deadlines, i.e,s
hedulable(T; �i) � 8�j 2 fT [�ig; rj +Bj + (EMj � ej) � Dj (5.19)that is we must
al
ulate how many units of time the rj 's will be shifted after
omputing thosetasks whi
h have higher priorities, in
luding �i, and of
ourse how many units of time must atmost exe
ute �j . The time a task �j will be suspended as a
onsequen
e of the exe
ution of higherpriority tasks is
alled the blo
king time, Bj .

114 CHAPTER 5. THE HEART OF THE PROBLEM
.
.
.

.

.

. T1T2
TkTn
Tn+1

s
hedulable(�i)?

�jBlifoj
�i

Figure 5.6: Tasks in a lifo s
hedulerWe should note that a lifo s
heduler is in some kind a dynami
 priority proto
ol, sin
e the arrivalof a new task will, in prin
iple, preempt the
urrently exe
uting one. That is, priorities are given bytask arrival and hen
e by sta
k position, ��(T1) < ��(T2) : : : < ��(Tn).At task arrival, the s
hedulability test must assure no deadline missing for all a
tive tasks, whi
h,due to the one-preemption hypothesis it does not ne
essarily mean that the new task will be a

epted.For ea
h task Tk 2 T , the blo
king time when a new task �i arrives
an be
al
ulated as follows(j = �(Tk); 1 � k � n0) : Blifoj = X��0>�j(E� 0 � e� 0)under the lifo s
heduler we know that ej = rj � r~pj 8 k < n; Tk 2 T; �(Tk) = j. Obviously e�(Tn) =r�(Tn) (if not, �i would violate the one preemption hypothesis and hen
e it should not be a

epted) ande�(Tn+1) = 0, so (see �gure 5.6 for a graphi
al interpretation of these formula):Blifoj = n+1Xl=k+1(EM�(Tl) � e�(Tl))Blifoj = n�1Xl=k+1(EM�(Tl) � e�(Tl)) + (EM�(Tn) � e�(Tn)) +EM�(Tn+1)Using our exe
ution time invariant and the fa
t that ��(Tn)
annot have been preempted (if this

5.4. EDF SCHEDULING 115were the
ase, then surely �i
annot be a

epted), we have:Blifoj = n�1Xl=k+1(EM�(Tl) � (r�(Tl) � r�(Tl+1))) + (EM�(Tn) � r�(Tn)) +EM�(Tn+1)Blifoj = n+1Xl=k+1(EM�(Tl))� n�1Xl=k+1(r�(Tl) � r�(Tl+1))� r�(Tn)Blifoj = n+1Xl=k+1(EM�(Tl))� (r�(Tk+1) � r�(Tn))� r�(Tn)Blifo�(Tk) = n+1Xl=k+1(EM�(Tl))� r�(Tk+1) (5.20)Repla
ing in 5.19 with 5.20, using j = �(Tk) we have:8Tk 2 fT [�ig; rj + n+1Xl=k+1(EM�(Tl))� r�(Tk+1) + (EMj � ej) � Djwhi
h
an be rewritten as8Tk 2 fT [�ig; n+1Xl=k (EM�(Tl)) + (r�(Tk) � r�(Tk+1) � e�(Tk)) � D�(Tk)but e�(Tk) = r�(Tk) � r�(Tk+1) and the test is redu
ed to:8Tk 2 fT [�ig; n+1Xl=k (EM�(Tl)) � D�(Tk) (5.21)This test is pessimisti
, sin
e we are using the worst
ase exe
ution time for tasks in order to
al
ulateblo
king times and s
hedulability. If we
onsider appli
ations where exe
ution times are
ontrollable,that is, appli
ations where we
an in
uen
e in someway the time spent in the exe
ution, we
ould useminimum exe
ution times. This
ould be a

eptable for appli
ations where exe
ution times are relatedto some quality of servi
e, for instan
e performing an approximative
al
ulus instead of an exa
t oneor
omposing an image in di�erent qualities.On the
ontrary, if exe
ution times are un
ontrollable, then we need maximum exe
ution times,sin
e we must a

ept to work under a worst
ase perspe
tive.5.4 edf S
hedulingLet us analyse another s
heduling poli
y, earliest deadline �rst, edf, whi
h is
onsidered to be optimalin the sense that if a set of tasks is s
hedulable under some poli
y, then it is also s
hedulable underedf, [37℄.Under this poli
y we know that tasks are
hosen by the s
heduler a

ording to their deadlines, withthat having the shortest deadline being in exe
ution. The poli
y is generally preemptive, but we
ouldimagine an edf s
heduler not preemptive. We will
onsider a one-preemption edf s
heduler.

116 CHAPTER 5. THE HEART OF THE PROBLEM
30 6 8 10 12 14r3 := 0�3 "r1 := 0e1 = 0�1 "�1 �1 �2 "r2 := 0�3%�1 #

D3 � r3 = 10D1 � r1 = 9f�1; �3g D2 � r2 = 6D3 � r3 = 7 �4 "�3%�2 # �3 #�2 D4 � r4 = 3D3 � r3 = 4f�1g f�2; �3g f�3gFigure 5.7: One preemption edf S
hedulerLet T be the set of a
tive tasks ordered by deadline; in fa
t, T is a queue and by
onvention Tn is thehead of the queue and hen
e
urrently exe
uting; the rest of T is the tail. We also assume the existen
eof the renaming fun
tion �, as explained for lifo and the universe T of tasks, su
h that T � T.Con
eptually speaking, the edf s
heduler is quite simple, when a new task arrives it is a

epted orreje
ted by the s
heduler for s
hedulability reasons and if a

epted it is inserted in T a

ording to itsdeadline. On
e a task is �nished, the s
heduler
an
hoose the next one, whi
h is that behind the head,and so on. Note that a task
an be a

epted and put in T in some position a

ording to its deadline,not ne
essarily preempting the task in the head of T .A one-preemption edf s
heduler works quite similarly to an edf s
heduler ex
ept that if a new task� must preempt the
urrently exe
uting one whi
h has already been preempted, then � is reje
ted evenif the whole system is s
hedulable. On
e again, the reason to do this is our manipulation of
lo
ks.Example 5.4 Let us
onsider a set T = f�1(4; 12); �2(2; 6); �3(5; 10); �4(1; 3)g. In �gure 5.7 we see thebehaviour under a one preemption edf s
heduling poli
y. Some remarks:� At time t = 3, �3 " but its deadline (10) is longer than �1's, so it waits in the queue.� At time t = 4, �1 �nishes and �3, gains the pro
essor.� At time t = 6, �2 ", and its deadline (6) is shorter than �3's, so it preempts it. This is the �rstpreemption for �3 sin
e it is its �rst exe
ution. �3 rejoins the queue.� At time t = 8 �2 �nishes its exe
ution and �3 resumes its exe
ution.� At time t = 9 task �4 arrives and its deadline (3) is shorter than �3's (4) so it should preempt itbut �3 had already been preempted, son our s
heduler reje
ts �4.� At time t = 11 �3 �nishes.As usual, we distinguish the arrival of a task � ", from the resuming of a task � %. Note that inour one-preemption edf s
heduler is not optimal, sin
e the system is feasable (we
ould have a

epted�4) but we reje
ted it.5.4.1 edf Transition ModelWe model an edf appli
ation as a transition system S; T;!)
omposed of:

5.4. EDF SCHEDULING 1171. A
olle
tion of states S = (S;~e; ~r; ~p; ~_e; ~w), where S, ~e, ~r, ~p, ~_e have the same meaning as for lifoand ~w is an auxiliary ve
tor of
lo
ks, ~wj notes the time when task �j begins its exe
ution, whi
his di�erent from its released (or arrival) time; note that in lifo s
heduling, the most re
ent arrivedtask preempts the exe
uting one, so, immediately a

epted, a task begins exe
ution. Under edfs
heduling this is not the
ase, sin
e an a

epted task may go somewhere in the queue, being itsexe
ution delayed until more urgent tasks �nish their exe
utions. Clo
ks w's will serve to notethis gap in time.2. A
olle
tion of a
tive tasks T3. A transition relation !.We introdu
e the operations in our transition system; we note as �
 the
urrently exe
uting task,that is �
 = exe
(T) = ��(Tn)� Task arrival, �i " (remember: �i 2 T and a

ept(S; T; �i)):(S; T;) �i"! (S 0; T 0)whereT 0 � T � �i and � is an ordered insert operation over T for �i a

ording to its deadline. S 0 =(S0; ~e0; ~r0; ~p0; ~_e0; ~w0) is de�ned as:~e0j =8<: ~ej if j 6= i0 for j = i ^D
 � r
 > Di (Exe
ute �i)? otherwise~w0j = 8<: ~wj if j 6= i0 if j = i ^D
 � r
 > Di (Exe
ute �i)? otherwise~r0j = � ~rj if j 6= i0 otherwise~p0j = 8<: i if j =
 ^D
 � r
 > Di (�iy�
)0 if j = i~pj otherwise~_e0j = 8>><>>: 1 if j = i ^D
 � r
 > Di (Exe
ute �i)0 if j = i ^D
 � r
 � Di (Do not start �i)0 if j =
 ^D
 � r
 > Di (Stop �
)~ej otherwise� Task
ompletion: T
 # (S; T) T
#! (S 0; T 0)where T 0 = tail(T) and

118 CHAPTER 5. THE HEART OF THE PROBLEM~e0j = � ? if j =
~ej otherwise~w0j = � ? if j =
~wj otherwise~_e0j = � ? if j =
0 otherwise~rj = � ? if j =
 ^ �p�(Tk) =
; 1 � k < n~rj otherwiseVariable ~p remains un
hanged.� Task resumption: �i% (we assume �i = top(T), arrived and eventually preempted in the past).(S; T) �i%! (S 0; T)where ~e0j = � 0 if j = i ^ pi = 0 (�i was never exe
uted)~ej otherwise~w0j = � 0 if j = i ^ pi = 0 (�i was never exe
uted)~wj otherwise~_e0j = � 1 if j = i0 otherwiseVariables ~p and ~r remain un
hanged.� Time passing: Æ is an elapsed time not enough to �nish the
urrent exe
uting task.(S; T) Æ! (S 0; T)where ~e0j = � ~ej + Æ if j =
~ej otherwiseand ~w0j = 8<: ~wj + Æ if j =
~wj + Æ if ~pj 6= 0? otherwise~r0j = ~rj + Æ 8�j ; �j 2 T and variables ~p and ~_e remain un
hanged.

5.4. EDF SCHEDULING 119
30 6 8 10 12 14e3 :=?�3 "r1 := 0�1 "�1 �1 �2 "r2 := 0;w2 := 0f�2; �3g

�3%�1 #
D3 � r3 = 10D1 � r1 = 9f�1; �3g D2 � r2 = 6D3 � r3 = 7

�3%�2 # �3 #�2r3 := 0 w3 := 0 (e3 = w3 � r2) (e3 := w3 � r2)D4 � r4 = 3D3 � r3 = 4e3 := 0e1 := 0w1 := 0 �4 "f�1g f�3gFigure 5.8: Usage of di�eren
e
onstraintsFor the instant being, our operations do not show the utility of de�ning the new auxiliary
lo
ks ~w;although this is explained in the next se
tion, let us give an example of their usage.The automata model de�ned behind our transition system is a swa where
lo
ks ~e are stopped atpreemption time. We want to eliminate this operation and repla
e it di�eren
e
onstraint using ~w, aswe have done for a lifo s
heduler.In �gure 5.8 we show example 5.7 using ~w; we
an see that:� At time t = 3, �3 ", p3 = r3 := 0; w3 = e3 =?, and �3 joins the queue.� At time t = 4, �3% and we set w3 := 0 (note r3 = 1).� At time t = 6, �2 " and �2y�3; we see that e3
an be expressed as the di�eren
e w3 � r2 and wesee the utility of variable ~w, sin
e we
ould not express the value e3 as r3 � r2, as we have donefor lifo, sin
e �3 arrived and was not immediately exe
uted; we need another
lo
k to mark the�rst exe
ution of �3. Observe that p3 := 2.� At time t = 8, �2 # and �3%; e3 is re
overed from the invariant di�eren
e w3 � r2.� At time t = 9, �4 " and even if its deadline priority is shorter than �3's, it
annot preempt it,(p3 = 2 6= 0).� At time t = 11, �3 �nishes.5.4.2 edf Admittan
e TestAs in lifo, ea
h time a new task, say �i, arrives, we perform an a

eptan
e test a

ording to edf andone-preemption poli
y. For EDF we propose:a

eptedf(T; �i) � :a
tive(T; �i) ^ :preempted(T; �i)that is, we do not a

ept a task if:� There is an a
tive instan
e of the same task:a
tive(T; �i) � (9 Tk 2 T: 1 � k � n)(�(Tk) = i _ p�(Tk) = i)

120 CHAPTER 5. THE HEART OF THE PROBLEM� It will preempt an already preempted task (in fa
t �
) :preempted(T; �i) � p
 6= 0 ^D
 � r
 > DiThe �rst term, reje
ts a new instan
e of an un
ompleted task or a task whose release
lo
k is stilla
tive; the se
ond one deals with the one preemption hypothesis under edf whi
h is rather tri
ky, sin
ea new task may have a shorter deadline than the
urrently exe
uting one, but the latter has alreadybeen preempted in the past, so the new task is reje
ted (even if there is enough time to exe
ute it) orthe new task may go beneath �
 (whi
h was not possible under lifo).Later, we give a re�nement of this admittan
e test,
onsidering deadlines, exe
ution times andsystem state.5.4.3 Properties of edf s
hedulerLet T be the set of a
tive tasks, with �
 = ��(Tn) = head(T) the task under exe
ution. We
anenumerate the following properties:1. if pj = 0) ej = wj ;8�j ; �j 2 T2. if 9 pj =
) ej = wj � rpj � ej = wj � r
3. if �
% ^p
 = 0) e
 = w
 =? ^:9pj =
4. 8pj 6= 0; j 6=
) ej = wj � rpjProperty 1 says that a task �j in T whi
h has never been preempted respe
ts ej = wj =?. In fa
t,if �j 2 T and �j 6= �
, then �j arrived in the past, its deadline was not urgent enough to preempt the
urrently exe
uting task, and it was put in the queue a

ording to its deadline with ej = wj =?; onthe
ontrary if �j = �
 and it has never been preempted, then ej = wj � 0.Property 2 is a
onsequen
e of preemption; if pj =
 it means that �
 preempted �j , in fa
t, when�j was running, pj = 0 (one-preemption assumption) whi
h implies ej = wj (property 1); as �j waspreempted by �
, its
omputation time
an be put as ej = wj � r
 (sin
e r
 = 0 when �
 arrived). Astime passes, while _ei = 0, ej = (wj + Æ)� (r
+ Æ) = wj � r
. This property shows that exe
ution times
an be re-written as di�eren
es of some
lo
ks for those stopped tasks.Property 3 is a
onsequen
e of the EDF poli
y. It means that �
 resumes but it had never beenpreempted; so the s
enario is as follows: when �
 arrived, its deadline was longer than that of the
urrently exe
uting task and hen
e, it was put in the queue, but never exe
uted, so e
 = w
 =?; as ithas not exe
uted, it
ould not have preempted any other task (in parti
ular the one exe
uting at itsarrival time). Note that �

an be preempted during its exe
ution.The last property 4 is our exe
ution invariant for EDF, whi
h says that for all preempted tasks,(ex
ept the
urrent exe
uting task), we
an express its
omputed time as a di�eren
e. This is anextension of property 2 and 3, sin
e there may be tasks in T never preempted and never exe
uted. Thisis a great di�eren
e
ompared to lifo. This property
an be put as:Iedf(T) � ^�j2T;pj 6=0 ej = wj � rpjre
all that ej = wj =?; if �j 2 T ^ pj = 0.For the
urrent exe
uting task, even if preempted in the past, property 4 does not hold sin
e itsexe
ution
lo
k is running.

5.4. EDF SCHEDULING 121Remark Note that property 4 obliges to keep
lo
k rpj even if task �pj has already �nished; for thesame reason, we
annot a

ept a new instan
e of this task if �j is still a
tive. This is a restri
tion of ourmodel (taken into a

ount by the admittan
e test), whi
h
ould be relaxed if we
reate a \preemptable
lo
k" for ea
h task instan
e that preempts; a rather
ostly solution.We
on
lude the se
tion with a theorem, analogous to that give for a lifo s
heduler, without proof,sin
e we will give a detailed proof of the general
ase in se
tion 5.5.Theorem 5.2 The symboli
 rea
hability graph of a system of tasks for an edf s
heduler satisfying theone-preemption
onstraint is �nite.5.4.4 Re�nement of edf Admittan
e TestAs in lifo, ea
h time a new task, say �i, arrives, we perform an a

eptan
e test a

ording to edf andone-preemption poli
y. For EDF we propose:a

eptedf(T; �i) � :a
tive(T; �i) ^ negpreempted(T; �i) ^ s
hedulable(T; �i)The �rst two predi
ates have already been explained; in this se
tion, we develop a test regardingexe
ution times, deadlines and system state. The question is 'will the new arrived task, if a

epted,
ause other tasks in T miss their deadlines?In prin
iple, the predi
ate s
hedulable is:s
hedulable(T; �i) � 8�j 2 fT [�ig; rj +Bj + (EMj � ej) � Dj (5.22)where the blo
king time for a task �j whi
h is in position k of T is expressed as:BEDFj = n+1Xl>k (EM�(Tl) � e�(Tl))Under the edf s
heduler we know that for those �j 2 T preempted in the past, we have ej = wj�rpjand for those �j 's never preempted, ej = wj =?, so the pre
edent expression
an be split into:BEDFj = n�1Xl=k+1;p�(Tl) 6=0(EM�(Tl) � e�(Tl)) + (EM�(Tn) � e�(Tn)) +n�1Xl=k+1;p�(Tl)=0EM�(Tl) +EM�(Tn+1)using the equality for preempted task we have:BEDFj = n�1Xl=k+1;p�(Tl) 6=0(EM�(Tl) � (w�(Tl) � rp�(Tl))) + (E�(Tn) � e�(Tn)) +n�1Xl=k+1;p�(Tl)=0EM�(Tl) +EM�(Tn+1)

122 CHAPTER 5. THE HEART OF THE PROBLEMBEDFj = n+1Xl=k+1EM�(Tl) � n�1Xl=k+1;p�(Tl) 6=0(w�(Tl) � rp�(Tl))� e�(Tn) (5.23)Unfortunately we
an say nothing about the se
ond term in 5.23, so we will try to �nd some boundsfor this term in order to get ne
essary or suÆ
ient
onditions for our s
hedulability test. We deal withtwo fa
ts:1. In 5.23 we have BEDFj � n+1Xl=k+1EM�(Tl) (5.24)sin
e all terms representing exe
ution times are positive. This fa
t gives a suÆ
ient
ondition forthe admission test; whi
h is too
onservative but safe, in the sense that if we a

ept �i we knowall tasks in T , in
luding the new one, will be s
heduled within their deadlines.2. Using minimum exe
ution times: BEDFj � n+1Xl=k+1Em�(Tl) (5.25)sin
e minimum exe
ution times represent the fastest exe
ution, this bound is a ne
essary
on-dition, more laxative but unsafe. If after
onsidering minimum exe
ution times, the test ofs
hedulability is not satis�ed, then no admission is possible; if the test is satis�ed, then we
ana

ept but we know that there may be some exe
utions leading to error states and hen
e we needsome dynami

ontrol.Re
onsidering our s
hedulability test 5.22:8 �j 2 fT [�ig; rj + n+1Xl=k+1EM�(Tl) � n�1Xl=k+1;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + (EMj � ej) � Dj8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k+1;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + (rj � ej) � Dj (5.26)Now we analyse 5.26 to �nd some bounds; we
onsider two
ases:1. pj = 0� for k < n, we know ej = 0 and so 5.26 be
omes:8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k+1;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + rj � Dj (5.27)� for k = n, we know ej = wj � 0 and expression 5.26 is:(EMj +EM�(Tn+1) � (wj � rj) � Dj (5.28)

5.5. GENERAL SCHEDULERS 1232. pj 6= 0, we know ej = wj � r�(Tk+1) so 5.26 be
omes:8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + rj � Dj (5.29)Now
onsidering our bounds 5.24 and 5.25 we have:� 8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + rj � n+1Xl=k EM�(Tl) + rj| {z }� (5.30)If 8 �j 2 fT [�ig; � � Dj then we
an a

ept the new task �i. On the
ontrary, we reje
t it, butwe know we are being too restri
tive.� 8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + rj � n+1Xl=k Em�(Tl) + rj| {z }� (5.31)On
e again, if 9 �j 2 fT [�ig; � > Dj , we do not a

ept �i.These hypothesis
ould be used a

ording to the nature of exe
ution times; if exe
ution times are
ontrollable, that is we
an in
uen
e the time spent in the exe
ution, we
ould use minimum exe
utiontimes. This
ould be a

eptable for appli
ations where exe
ution times are bound to some quality ofservi
e, for instan
e performing an approximative
al
ulus instead of an exa
t one or
omposing animage in di�erent qualities.On the
ontrary, if exe
ution times are un
ontrollable, then we need maximum exe
ution times,sin
e we must a

ept to work under a worst
ase perspe
tive.5.5 General s
hedulersIn this se
tion we
onsider general s
heduling poli
ies, that is, preemptive s
hedulers based on somepriority assignment me
hanism whi
h
an be �xed or dynami
. We will relax the
onstraint of one-preemption imposed to lifo and edf s
hedulers and we
onsider un
ertain, but bounded, exe
utiontimes.Instead of using a stopwat
h automaton as we have done in the previous se
tions, we use a modelbased on timed automata as shown in �gure, 5.9 where to ea
h task �i we add a
lo
k wi whi
h initially
ounts the a

umulated
omputed time for a task. The main idea is to repla
e a stopped
lo
k by anoperation of di�eren
e of two running
lo
ks, to keep tra
k of already exe
uted time.Clo
ks w's are used as follows: preemption is only possible at arrival of a new task, say �j and ea
htime a task �jy�i, ei is a

umulated in wi, �j gains pro
essor and when �i is resumed, we re
over eias the di�eren
e wi � rj ;
lo
k ei is then never stopped but updated. This pro
edure relaxes the onepreemption hypothesis but still obliges to keep
lo
k rj even if task �j has �nished its exe
ution andhen
e it is not a
tive.

124 CHAPTER 5. THE HEART OF THE PROBLEM

Pending

Executing

ErrorIdle

ei := ri := 0a

ept(�i)�i " ^ �i " _ri > Di
�i " ^a

ept(�i)ri := 0

ri � Di�i # ^exe
(�i)
�i " _ri > Di

ei 2 [Emi ; EMi ℄ wi := eiei :=? ei := wi � rpi�i%
Figure 5.9: Automaton for a General S
hedulerExample 5.5 Let us
onsider T = f�1(4; 13); �2(5; 10); �3(2; 10); �4(3; 6)g; we show how the introdu
-tion of w's
lo
ks
an help to relax the
onstraint of one-preemption under an edf s
heduler, see �gure5.10.� At time t = 0, �1 ", r1 = e1 := 0� At time t = 2, �2 " and its deadline 10 is shorter than �1's (11), so, �1 is preempted and joins thequeue; w1 := e1 = 2. From there on the value of e1 = w1 � r2.� At time t = 4, �3 " and its deadline 10 is longer than �2's, so it joins the queue (after �1).� At time t = 5, �4 ", its deadline 6 is shorter than �2's, whi
h is preempted and we set w2 := e2 = 3;from there on e2 = w2 � r4.� At time t = 8, �4 # and e2 is updated as w2 � r4 = 6� 3; taui2 resumes exe
ution.� The rest of the tasks pro
eed in a similar manner. Note that at time t = 12, �3 gains the pro
essorfor the �rst time, e3 and w3 are inde�ned.5.5.1 Transition ModelFormally the transition system is of the form (S; Q;!)
omposed of dis
rete events and time passingtransitions, as already mention in the pre
edent se
tions.� S = (S;~e; ~r; ~p; ~w), where S, ~e, ~r and ~p have the same meaning as in edf and ~w is the auxiliaryve
tor to re
onstru
t the exe
ution times after preemption,� Q is a queue of tasks, with the usual operations: �, for adding an element, pop to remove theelement at the head, top, to
hoose the task at the head.

5.5. GENERAL SCHEDULERS 125
30 6 8 10 12 14

�3 #�1 "r1 := 0e1 := 0 �2 " �3 " w2 = 6
�2 # �1 #�1% �3%�2%�4 # r2 = 8w1 = 10r2 := 0 r4 = 3�4 "w1 := e1�2 > �1 w2 := e2�4 > �2f�1g f�2; �1g f�4; �2; �1; �3g f�2; �1; �3g f�1; �3g f�3g

�1 �2 �4
(e1 = w1 � r2) (e2 = w2 � r4) e1 := 2e1 := w1 � r2e2 := 3f�2; �1; �3g e2 := w2 � r4

Figure 5.10: General edf S
heduler� ! is the transition relation.We list the operations over our transition system; re
all that the arrival of a task is
aptured by thes
heduler, who de
ides over the admission. We assume also that the s
hedulers 'knows' the priority ofea
h task (dynami
 or �xed); of
ourse, the
urrently exe
uting task, denoted �
, is on the head of thequeue and has the highest priority; priority of task �i is noted �i, as usual; the operation � works ona queue a

ording to a s
heduling poli
y.� Task arrival, �i " (�i 2 T): (S; Q) �i"! (S0; Q0)whereQ0 = Q� �i. ~e0j =8<: ~ej if j 6= i0 if j = i ^ �i > �
 (exe
(�i))? otherwise~r0j = � 0 if j = i~rj otherwise~p0j =8<: i if j =
 ^ �i > �
 (�iy�
)0 if j = i (no task preempted �i)~pj otherwise~w0j = 8<: ~ej if j =
 ^ �i > �
 (�iy�
)? if j = i~wj otherwiseNote that w
 := e
 if �
 is preempted by �i and wi =?.

126 CHAPTER 5. THE HEART OF THE PROBLEM� Task
ompletion: �
 # (S; Q) �
#! (S0; Q0)where Q0 = pop(Q) and ~e0j = � ? if j =
~ej otherwise~w0j = � ? if j =
~wj otherwise~rj = � ? if j =
 ^ �p�(Tk) =
; 1 � k < n~rj otherwiseVariable ~p remains un
hanged.� Task resumption: �i% (we assume �i = top(Q) is a task whi
h regains the pro
essor).(S;Q) �i%! (S0; Q)where ~e0j = 8<: ~wj � ~r~pj if j = i ^ ~pj 6= 0 (�~pj y�i)0 if j = i ^ ~pj = 0 (�i was never preempted)~ej otherwiseVariables ~r, ~p and ~w remain un
hanged.� Time passing: Æ is an elapsed time not enough to �nish the
urrent exe
uting task, �
.(S;Q;~e; ~r; ~p; ~w) Æ! (S0; Q; ~e0; ~r0; ~p; ~w0)where ~e0j = � ~ej + Æ if j =
~ej otherwiseand ~r0j = ~rj + Æ and ~w0j = ~wj + Æ 8�j 2 QRemark I Note that
lo
k wi is initially set to bottom at �i arrival, and it is updated to ei if thistask is preempted, so saving the
umulated exe
uting time; from there on wi grows (while ei is ?)and when �i regains pro
essor its
umulated time is re
overed from the di�eren
e between wi and thereleased
lo
k of the preempter (kept in ~pi). This implies that released
lo
ks
annot disappear untilthe preempted task regains the pro
essor. This
ondition must be tested at admission time of a newtask. Figure 5.11 shows the evolution of
lo
ks.A possibly more elegant way of solving the problem
onsists in systemati
ally adding the newvariable hi for ea
h task, and use it in the time-invariant equations of the form e
 = w
 � hi. In this
ase, the r variables are eliminated at
ompletion time but many 'instan
es of h' may be ne
essary

5.5. GENERAL SCHEDULERS 127

�i "ri := 0 �i% �jy�irj := 0 �i%
ri rjwi

tei := 0

eiei = wi � rjwi := ei
pi := j ei := wi � rpi:exe
(�i)Figure 5.11: Evolution of ~w and ~eto be
reated as �i may be a very eager task with high priority preempting di�erent tasks at ea
harrival. This approa
h unne
essary
ompli
ates the proofs (as it requires
arrying through additionalinvariants). Besides, it is not very useful in pra
ti
e as it augments the
omplexity by in
reasing thenumber of
lo
ks.Remark II We will show that the fa
t of simulating a stopped
lo
k ei by a di�eren
e
onstraint ofthe form wi � rpi , both running does not disturbe the semanti
s of the systems; indeed we will provethat the relationships where ei is involved
an be repla
ed by this expression while ei is stopped andstill the problem of s
hedulability, view as the problem of rea
hability of an error state is de
idable.5.5.2 Properties of a General S
hedulerLet Q be the queue of a
tive tasks, Q 2 T where �
 = top(Q). We
an enumerate the followingproperties:1. if pj = 0) ej = wj ;8�j ; �j 2 Q2. if 9 pj =
) ej = wj � r
3. if �
% ^p
 = 0) e
 = w
 =? ^:9pj =
; for any �j 2 Q4. 8�j 2 fQ� top(Q)g ^ pj 6= 0) ej = wj � rpjProperties 1, 2 and 3 are
ompletely analogous to the
orresponding edf s
heduler properties. Thelast property 4
an be reformulated to
reate our general exe
ution invariant:Is
h(Q) � ^�j2Q0;pj 6=0 ej = wj � rpj ^ ^�j2Q0;pj=0 ej = ?

128 CHAPTER 5. THE HEART OF THE PROBLEMwhere Q0 = pop(Q).The invariant says that for those tasks waiting for exe
ution and preempted their
umulated exe
utedtime
an be express as a di�eren
e of
lo
ks; evidently, for those tasks never exe
uted at all their
umulated exe
uted time is unknown.5.5.3 S
hedulability AnalysisLet 	 as explained in lifo analysis and let � be a
onstraint
hara
terizing a set of states. We de�ne�i " (�) to be the set of states rea
hed when task �i arrives, that is:�i " (�) = fs0 : 9s 2 �: s �i"! s0gLet � be of the form Is
h(Q) ^ , with 2 	; that is �
hara
terizes a state with the exe
utioninvariant for all waiting tasks and
lo
k relationships expressed as di�eren
es.Without loss of generality, we
an assume that either:1. �i is reje
ted: =) :a

ept(;Q; �i), in whi
h
ase we have �i "(�) � �.2. �i is a

epted: =) a

ept(;Q; �i). Does �iy�
?if :�iy�
; then �i " (�) � Is
h(Q� �i) ^ ri = 0 ^ ei =? ^wi =? ^ � Is
h(Q0) ^ if �iy�
; then �i " (�) � Is
h(Q� �i) ^ ri = 0 ^ ei = 0 ^ [e
 := w
℄ � Is
h(Q0) ^ 0where [e
 := w
℄ is the substitution of e
 for w
 in . In summary:�i " (�) � Is
h(Q0) ^ 0Hen
e, we have:Proposition 5.5 �i "(�) has the same stru
ture than �, that is, it is the
onjun
tion of an exe
utioninvariant and a formula in 	.Now, let �% be the set of states rea
hed from � by letting time advan
e, that is:�%= fs0 : 9s 2 �; Æ � 0:s Æ! s0gClearly, if � is of the form Is
h(Q) ^ , we have that�%= (Is
h(Q) ^)%� Is
h(Q) ^ %As 2 	 over
lo
ks in S, we
an express these di�eren
es in a dbm. The following propositiongives this equivalen
e:Proposition 5.6 Let � be of the form I ^M , where M is a dbm and I is an exe
ution invariant unders
h. Then, �i " (�) and �% have the same stru
ture as �.

5.5. GENERAL SCHEDULERS 129Thus, given a sequen
e � of task arrivals the set of rea
hed states �(�)
an be represented bythe
onjun
tion of the exe
ution invariant Is
h(Q),
hara
terizing the already exe
uted time of thesuspended tasks and a dbm M ,
hara
terizing the relationships between the
orresponding r's and w's
lo
ks.A dbm M has the following form (sin
e en = rn we omit it; in order to fa
ilitate
omprehension,we \name"
lo
ks a

ording to the position of their
orresponding tasks in Q):M u r1 w1 r2 w2 : : : rn wnu � Mur1 Muw1 Mur2 Muw2 : : : Murn Muwnr1 Mr1u � � Mr1r2 Mr1w2 : : : Mr1rn Mr1wnw1 Mw1u � � Mw1r2 Mw1w2 : : : Mw1rn Mw1wnr2 Mr2u Mr2r1 Mr2w1 � � : : : Mr2rn Mr2wnw2 Mw2u Mw2r1 Mw2w1 � � : : : Mw2rn Mw2wn...rn Mrnu Mrnr1 Mrnw1 Mrnr2 Mrnw2 : : : � �wn Mwnu Mwnr1 Mwnw1 Mwnr2 Mwnw2 : : : � �On
e again, M is
onstru
ted in a very spe
ial way and has a parti
ular stru
ture. Let us analyseit: � The new matrix M is
onstru
ted as new tasks �i's arrive; we denote M 0 =M�i" the values in Mimmediately after a

eptan
e of �i.� When �i ", we have two possible situations (assuming it is a

epted):{ �iy�
, then ri = ei := 0, we need to stop e
 and
reate w
 with value e
, we have thate
 = w
 � ri �M 0w
ri =Me
ri , but ri = 0 and so M 0w
ri =Me
ri =Me
u =M 0w
u.{ :(�iy�
), then ri := 0; ei :=?, we have r
� ri �M 0r
ri , ri = 0 and so we haveM 0rir
 =Mr
u.This relation is also respe
ted in the pre
edent
ase.� When �
 #, we have again two situations:{ �pj =
; �j 2 Q: (Is
h(Q) ^)[w
 :=?; r
 :=?℄ � Is
h(pop(Q)) ^ 0{ 9pj =
; �j 2 Q: (Is
h(Q) ^)[w
 :=?℄� When �i%, on
e again two situations are possible:{ pi = j;: (Is
h(Q) ^)[rj := wi � ei℄ � Is
h(pop(Q)) ^ 0{ pi = 0: Is
h(Q) ^ ^ ei := 0So, the
hara
terization of ea
h state as time passes or new tasks arrive or resume ispreserved as di�eren
es of running
lo
ks. At ea
h operation, the representation under adbm keeps the stru
ture of bounded di�eren
es

130 CHAPTER 5. THE HEART OF THE PROBLEMNow, what is the stru
ture of M after a task
ompletion? Is it still a dbm?We will prove that this operation still enables us to
hara
terize the states as bounded di�eren
esin a dbm, so establishing that �i # (�) is still the
onjun
tion of an invariant and a formula in 	.Let us expose the s
enario when a task �i �nishes. At that moment, the s
heduler will
hooseanother task, say � to regain the pro
essor; this task had been eventually preempted in the past byanother task, say � and the relation e := w � r shows the
omputed time for � . Clo
k r
an now beeliminated from M and repla
ed by w � e. What happens to all di�eren
es in M where �r is named?We have the following relations involving �r:1. Base relations: w � r �Mwr) e� u �Mwr (5.32)r � w �Mrw) u� e �Mrw (5.33)u� r �Mur) e� w �Murr � u �Mru) w � e �Mru2. Let x be another
lo
k di�erent from w and u:x� r �Mxr) x� (w � e) �Mxr (5.34)r � x �Mrx) (w � e)� x �Mrx (5.35)We
an
onsider that these di�eren
es
an be de
omposed in the following ways:1. In 5.34 and
onsidering 5.32:x� w � Mxwe� u � Mwr �) x� (w � e) �Mxw +MwrMxw +Mwr � Mxr (5.36)2. In 5.35 and
onsidering 5.33w � x � Mwxu� e � Mrw �) (w � e)� x �Mrw +MwxMrw +Mwx � Mrx (5.37)Both expressions are not di�eren
e
onstraints but we will show that in 5.36 and 5.37 � representsequality; that is, we will prove that: Mxw +Mwr = Mxr (5.38)Mrw +Mwx = Mrx (5.39)and hen
e they are dedu
tible from M , no need to keep them in the M 0�i#.To prove this we will
onsider a task � whi
h regains the pro
essor after being interrupted byanother task �� , point I
 in �gure 5.12; a third task �̂ will be used to express the evolution of di�eren
es

5.5. GENERAL SCHEDULERS 131�̂ " �� " �̂ " �%��y��%�̂ " w := e�r = �e := 0a
1
 2
 3
 b
r̂ = ê := 0e := e0r̂ = ê := 0 r̂ = ê := 0 e := w � �rI
Figure 5.12: Analysis of dbm Mas � is exe
uting or waiting. In the �gure we show the three di�erent possibilities of arrival for su
ha task �̂ in the system, namely 1
, 2
, 3
; � % at point a
 indi
ates the last exe
ution for � when itwas preempted by �� ; its
umulated exe
uted time is e0. We are analysing
lo
k relationships when �prepares to resume its exe
ution (point b
 in �gure 5.12), after it was preempted by ��It is of extreme importan
e to remark two properties
on
erning our s
enario:� Monotony:
lo
ks grow at the same rate; in our model the derivative of a
lo
k is always 1 (ifit is running) or 0 (if it is stopped).� Continuity: From point a
 to point b

lo
ks for � were not reset neither updated. They werenot reset, be
ause any new instan
e of � should have been reje
ted by the s
heduler, sin
e aprevious instan
e is still a
tive (and reset is only applied at task arrival). On the other hand,
lo
ks were not updated, be
ause the only possibility is to update e by the operation e := w� �r orw by the operation w := e, but we are supposing that in between no resuming of � o

urs; in fa
tpoint b
 is the �rst exe
ution after the last preemption, point I
, so no su
h update operation ispossible.In interval [a
, b
℄,
lo
ks r and w are running monotonously and
ontinuously while
lo
k e isstopped. This means that di�eren
es su
h as r�x and w�x where x is also running, do not invalidatethe respe
tive bounds Mrx and Mwx; also, x
annot be a stopped
lo
k, sin
e if it were, it would be anexe
ution
lo
k e0 of a preempted task � 0 and in that
ase, we should have repla
ed it by its appropriatedi�eren
e involving two
ontinous
lo
ks. In point b

lo
k �r
an be eliminated and repla
ed by w � ein M whi
h leaves us with three term di�eren
es su
h as 5.34: we will prove that these di�eren
es
anbe dedu
ed by simple bounded di�eren
es.We know that if ��y� then it must be ��� > �� . At preemption time, that is when �� ", we set w := e,�r = �e := 0 and �w := ?.We note that arrival times are indeed intervals, sin
e our exe
ution times are unknown but bounded;remember that values inM are
hara
terized by a super-index indi
ating its value at a
ertain moment;for instan
e M ��"eu means \the maximum value for e at arrival of ��".We will prove equality for expression 5.38 but it is absolutely simetri
 for 5.39.Case 1
We distinguish two
ases a

ording to priority relationships; either ��̂ > �� or ��̂ < ��1. ��̂ > �� , this means that at �%, task �̂ did �nish its exe
ution but there may be anohter task~� preempted by �̂ still a
tive, with priority �~� < �� ; under this s
enario
lo
k r̂ is still running,but
lo
k ŵ has disappeared.

132 CHAPTER 5. THE HEART OF THE PROBLEMFigure 5.13 shows the situation graphi
ally.
�� "�̂ " � % M ��"ue M ��"euM ��"r̂u�

 � �%b
I
a
 Figure 5.13: Case 1
 ��̂ > ��M�%r̂w +M�%w�r �M�%r̂�r� M�%r̂w =M ��"r̂e =M�%r̂eThis su
ession of equalities is based on our properties of monotony and
ontinuity; in fa
t,the di�eren
e r̂ � w at �% (point b
) is the same sin
e w was
reated, that is in point I
when �� ", whi
h equals the value e; this di�eren
e is
onstant as both e and r̂ were running(point a
). The same reasoning as a
hain of equalities is kept all over the proof.� M�%w�r =M ��"eu = �+ e0� M�%r̂�r =M ��"r̂u� In �gure 5.13 we have: M ��"ue =
 + e0and M ��"r̂u � � = ��
 !M ��"r̂u = ��
 + �adding e0 gives M ��"r̂u = (�+ e0)| {z }M�%w�r �(
 + e0) + �| {z }Mr̂w !M�%r̂w +M�%w�r =M�%r̂�rproving that in fa
t the relationship � is equality.2. ��̂ < �� , this means that at �%, task �̂ did not �nish its exe
ution and hen
e
lo
ks r̂ and ŵ areboth a
tive. The analysis for r̂ is the same as above; let us see what happens to ŵ. Figure 5.14shows the situation graphi
ally. M�%̂ww +M�%w�r �M�%̂w�rIn �gure 5.14 we have:

5.5. GENERAL SCHEDULERS 133
�� "�̂ " � % M ��"ue M ��"eu�� 00 "� 00y�̂ M�%ŵu �%a
 b
I
Figure 5.14: Case 1
 ��̂ < ��� M�%̂ww =M ��"̂we =M�%ŵe =M�%ŵu � e0The di�eren
e between ŵ and w at the moment of resuming � (point a
) is the same as thedi�eren
e when w was
reated, point I
, that is at arrival of �� ; by the property of monotonythis di�eren
e is kept sin
e both e and ŵ were running, that is � % at point a
. Finally,by monotony this value is the same as the di�eren
e between the initial value for ŵ, that isM�%̂wu and e0.� M�%w�r =M ��"eu = �+ e0 and� M�%̂w�r =M ��"̂wu =M�%ŵu + � adding e0 gives:M�%̂wu + �| {z }M�%̂w�r =M�%̂wu � e0| {z }M�%̂ww +�+ e0| {z }M�%w�rhen
e proving M�%̂ww +M�%w�r =M�%̂w�rCase 2
Re
all �gure 5.12; we have also two possibilities for �̂1. ��̂ > �� , this situation is not possible under our s
enario sin
e we are
onsidering � preemptedby �� during its last exe
ution.2. ��̂ < �� , then �̂ did not exe
ute at all: its priority being smaller, it must wait at least for � to�nish; only r̂ is running. Figure 5.15 shows this situation graphi
ally;
�� " M ��"eu� % �̂ " M ��"ue �

M ��"r̂u �%�
Figure 5.15: Case 2
 ��̂ < ��

134 CHAPTER 5. THE HEART OF THE PROBLEMM�%r̂w +M�%w�r �M�%r̂�r� M�%r̂w =M ��"r̂w =M ��"ue = �(� + e0)� M�%w�r =M ��"eu = �+ e0� M�%r̂�r =M ��"r̂u� In �gure 5.15 we have: �� � =M ��"r̂u(�+ e0)| {z }M�%w�r � (� + e0)| {z }M�%r̂w =M ��%r̂uhen
e proving M�%r̂w +M�%w�r =M�%r̂�rCase 3
On
e again, we have two possibilities for �̂1. ��̂ > �� , in this
ase �̂ did �nish at �% and if �̂ preempted a task, it should be one with higherpriority than � , so both tasks have �nished by the moment �%, (point b
) and no
lo
k r̂ exists.2. ��̂ < �� , then �̂ did not exe
ute at all, only
lo
k r̂ is running. Figure 5.16 shows the s
enario.
�% M ��"eu �̂ "M �̂"ur̂ M �̂"r̂uM �̂"ur̂

� � �%�� "Figure 5.16: Case 3
 ��̂ < ��M�%r̂w +M�%w�r �M�%r̂�r� M�%r̂w =M �̂"r̂w =M �̂"uw = �(� + e0)� M�%w�r =M �̂"w�r =M ��"eu = �+ e0� M�%r̂�r =M �̂"u�r� In �gure 5.16 we have: �� � =M �̂"ur̂

5.5. GENERAL SCHEDULERS 135(�+ e0)| {z }M�%w�r �(� + e0)| {z }M�%r̂w =Mur̂�̂"hen
e proving M�%w�r +M�%r̂w = M�%r̂�rThus, we have proved that the rea
hability problem in our transition system (S; Q;!) using ade
rementation of the form e = w � �r for preempted tasks, is solvable. Relationships among running
lo
ks
an be en
oded using a dbm; we have proved that relationships involving stopped
lo
ks whenrepla
ed by their di�eren
es do not give a di�eren
e
onstraint, but these di�eren
e
onstraints
an bededu
ed from other di�eren
e
onstraints in M , thus they
an be eliminated. The following theoremresumes our theory:Theorem 5.3 Given a task model as de�ned in 5.5.1 and a general s
heduling poli
y, the rea
habilitygraph of the system
an be symboli
ally
hara
terized using predi
ates of the form I ^M where I is a
onjun
tion of equalities e = w � �r and M is a dbm. Moroever, the rea
hability graph is �nite.As a
orollary: the s
hedulability problem for this
lass of systems is de
idable.5.5.4 Properties of the ModelWe have shown that the relationships among release
lo
ks for \free" tasks, that is tasks whi
h havenot preempted ea
h other,
an be implied by the sum of relationships between a preempted task, itsalready
omputed time and the
orresponding release
lo
ks. This is a very useful property be
ause itredu
es the amount of relationships in M . In fa
t, all those di�eren
es envolving released
lo
ks of freetasks
an be dedu
ed from a base set of bounds, involving only released
lo
ks from free tasks and w
lo
k from a preempted task and hen
e matrix representation is also redu
ed.The properties of
ontinuity and monotony are exploted for our rea
hability analysis, implying thatit is possible to
onstru
t the rea
hability graph.
s s’. . .

x:=0

continuity & monotony

Msyx = � Ms0yx = �Figure 5.17: Ni
ety propertyIn general if we
onsider two states s and s0 in a timed automaton, see �gure 5.17, where
lo
kx is reset in s and no reset or update operations are done in between, we
an see that the di�eren
eis kept; this phenomena is due to the fa
t that both
lo
ks show a monotonously in
reasing property(time passing) and also a
ontinuity property (no update is done). Under this
ontext, another
lo
kz (not ne
essarily
ontinuous) shows the property: Mzy = Mzx +Mxy and hen
e no need to keep thisdi�eren
e, (intuitively it is as if the stopped time for z were \absorbed" by x and y, both running).

136 CHAPTER 5. THE HEART OF THE PROBLEM5.6 Final Re
ipe!Now that we know the problem
an be modelled as the transition system de�ned in se
tion 5.2, we
ansket
h an operational approa
h of our system.1. Given a rt problem, we
an partition it into tasks
hara
terized by timing
onstraints. If theproblem is expressed in Java, we
an use te
hniques su
h as [28, 32℄ to
ut up the appli
ation intosmaller tasks.2. Ea
h task is assigned a �xed or a dynami
 priority whi
h is used by the s
heduler; naturally, weimpose that at arrival of a task, a priority is known.3. The s
heduler keeps a queue Q of tasks, preempted or not, ordered by priority, being the taskwith highest priority on the head of Q.4. As a new task �i arrives, an admittan
e test is performed to analyse if its exe
ution leaves thesystem in a safe state, that is, a state where all tasks in Q, in
luding �i, �nish their exe
utionsbefore their respe
tive deadlines and that no information of preemption is lost. We have givenan admittan
e test for edf. +5. If �i is a

epted:� it preempts the
urrently exe
uting task �
 if �i > �
; we update the information of preemp-tion marking that p
 := i and also setting
lo
k w
 := e
; �i joins the queue Q as the newhead and �
 is behind it.� it does not preempt �
 if �i � �
; in this
ase, �i joins the queue Q somewhere a

ording toits priority.6. When �
 �nishes, the s
heduler
an eliminate it from Q but its release
lo
k is kept if 9pj =
 forsome task �j 2 Q; otherwise all
lo
ks
an be eliminated.7. When a task �i resumes exe
ution, its already exe
uted time
an be re
overed from the di�eren
eei := wi � rpi if pi 6= 0; otherwise ei := 0.

Chapter 6Con
lusionsIn this thesis we have followed two main resear
h lines:� S
hedulability of Java-like real time programs� De
idability of General Preemptive S
hedulersThe approa
h to s
hedulability of a Java-like program is inspired in the use of the syn
hro-nization primitives provided by the language to attain good
ommuni
ation among threads and the useof
ommon resour
es.Primitives that provide syn
hronization
an have two general forms: a primitive to de
lare a taskis waiting for a response from another task, and
onversely a primitive to signal an event to a task.The �rst primitive is
ommonly
alled wait, await, re
eive, in di�erent languages and even they havedi�erent semanti
s, they do share a feature: the task interrupts its exe
ution and waits until it \hears"a response from another task(s); this event permits the task to awake itself and be ready to resume itsexe
ution. The se
ond primitive,
ommonly referred to as notify, emit, send has as mission awake atask whi
h is (presumably) waiting for this event; in general it is not a blo
king operation, that is, thetask emiting it
ontinues its exe
ution.This simple syn
hronization me
hanism permits to implement proper
ommuni
ation among tasks:if a task needs to start as a
onsequen
e of an (external) event, then an easy solution is to wait untilthe event happens. We
an also use it in a produ
er/
onsumer environment where the output of a taskis needed as input for another, and we
an also use it when some kind of 'order' among tasks is neededto assure fun
tional
orre
tness.Besides syn
hronization, tasks may a

ess some
ommon resour
es (data) in a
ompetitive man-ner, that is, as tasks need data to operate on, they demand them to the data manager who de
idesabout granting or reje
ting this demand; tasks do not ne
essarily
ommuni
ate ea
h other as in theprodu
er/
onsumer hypothesis where
ooperation is expli
it, instead they may run independently andthe a

ess to resour
es does not imply some other order to assure fun
tional
orre
tness.These two fa
ts, inspired us to model a Java like program into fun
tional
omponents, that is, pie
esof program performing some well de�ned task; the program is \
ut" into two main levels: appli
ationlevel and task level. The �rst level spreads a program into major
omponents,
alled threads in ourmodel; ea
h
omponent has its timing
onstraints and logi
ally performs some general fun
tion. These
ond level spreads a
omponent into minor modules,
alled tasks in our model; these modules mayuse some (shared) resour
es and
an syn
hronize with other modules from other threads.137

138 CHAPTER 6. CONCLUSIONSThe \
ut" of a thread into tasks may be guided by the use of
ommon resour
es or syn
hronizationprimitives. In order to fa
ilitate a
ooperative
ompetition among tasks, we need to
ir
ums
ribe thearea where a shared resour
e is used; if a shared resour
e is used in a pie
e of
ode of a thread, thenthis area
an be abstra
ted as a task. To fa
ilitate syn
hronization, if a blo
k of
ode is pre
eded byan await operation, we
an abstra
t it as task.We have
reated a graphi
al and behavioral model of a Java-like real time program, using bothsyn
hronization and
ommon resour
es; we have
hara
terized this model by two timing
onstraints:periods for threads and exe
ution times for tasks and also by the set of resour
es used by ea
h task.For su
h a model, we have given a stati
 priority assignment algorithm based on the operations ofsyn
hronization; this priorities
an be inserted in the Java
ode to produ
e a s
heduled Java program.For shared resour
es we have given a heuristi
 te
hnique based on a wait for graph to de
ide aboutdeadlo
ks in an o�-line manner but this priority assignment
ould be used in the
ontext of a priorityinheritan
e proto
ol to assure deadlo
k freedom during exe
ution. One interesting property of ourassignment me
hanism is the fa
t that this order is not
omplete, that is, tasks involved in syn
hro-nization are tied to �xed priorities while independent tasks are free and
an be dynami
ally assignedsome
onvenient priority.The se
ond axe of this thesis is the problem of s
hedulability for preemptive s
hedulers;for these s
hedulers the
orresponding
omputation model is stop wat
h automaton for whi
h therea
hability problem is unde
idable, and hen
e, we
ould not in general, answer the question \
an werea
h a �nal state where all tasks have �nished before their deadlines expire?". Even if some resultsapply to this question, we are
onstrained by the fa
t that exe
ution times are bounded but unknownpre
isely; we have not rely on a worst
ase exe
ution time hypothesis, but on an interval of exe
ution.We have
reated a model of real time tasks
hara
terized by an interval of exe
ution time, based onthe idea of best and worst exe
ution time and also a deadline; periodi
ity is not a parti
ular restri
tionof our model; we only need to know a priority for ea
h task, whi
h
an be stati
 or dynami
.For this model, we have presented a transition system where states are
hara
terized by a lo
ationand a set of
lo
ks: release and exe
ution
lo
ks, (as it is
lassi
al in these models), and a

umulatedexe
ution
lo
k; besides we have one variable to note preemption. We have
hara
terized this transitionsystem by three event operations: task arrival, resuming and
ompletion and a timed operation:� Adding one
lo
k per task whi
h
ounts the a

umulated exe
ution time of a task, serves as amean to let a general preemptive s
heduler work
orre
tly.� This
lo
k is used to update the value of the exe
ution
lo
k of a task when it resumes exe
utionafter preemption.We have shown that the rea
h set of a system of tasks with un
ertain but lower and upper boundedexe
ution times, and s
heduled a

ording to a preemptive s
heduler,
an be
hara
terized by
onstraintsinvolving:1. time-invariant equations that
apture pre
isely the already exe
uted time of suspended tasks, and2. a dbm
hara
terizing the di�eren
es among the release times of all the a
tive (i.e., suspended orexe
uting) tasks, as long as there exists for ea
h task at most one instan
e in the system.3. The stru
ture of the dbm is foreseeable, in the sense that there is a (small) set of basi
 di�eren
e
onstraints whi
h derive other relationships (not ne
essarily di�eren
e
onstraints).

6.1. FUTURE WORK 139This result implies the de
idability of the rea
hability problem for this
lass of systems. The ni
estru
ture of the dbm's generated by the analysis permits a spa
e-eÆ
ient implementation, redu
ing thespa
e needed to represent a dbm from 4n2 up to 4n, in the
ase of lifo s
heduling poli
y; moreover,for lifo, our result does not require introdu
ing any additional
lo
k. For general s
hedulers, our
hara
terization requires using at most one more
lo
k per task. A
tually, the number of additional
lo
ks depends on the number of delayed tasks allowed to be suspended at any time. This number maybe
ontrolled via the admission
ontrol test. Indeed, the number of extra
lo
ks may be
ompensatedby the more
ompa
t representation of the state spa
e.Besides this, we have given an admittan
e test for an edf s
heduler; this test is based on deadlinesand on blo
king times; we have given two bounds for admissibility, taking advantage of our interval ofexe
ution: an optimisti
 (but unsafe) bound whi
h is appli
able under the hypothesis of
ontrollableexe
ution time or in
ase of dynami
 deadline
ontrol; the pesimisti
 (but safe) bound whi
h is basedon the worst
ase exe
ution time or in
ase of un
ontrollable exe
ution time.The idea of
ontrollable and un
ontrollable exe
ution time is useful to
hara
terize some real timeappli
ations. Classi
al real time theory deals with (worst) exe
ution time or un
ontrollable exe
utiontime, that is, the user or the appli
ation itself
annot in
uen
e the exe
uting time; but many (modern)appli
ation are
hara
terized by the idea of a
ontrollable exe
ution time, that is the appli
ation, theenvironment (and even the user)
an in
uen
e this time, by given \more or less aproximative results"(for instan
e, in multimedia, lowering the quality of rendering images); the
orre
tness is not alteredby this approximation, and more importantly, it may lead to s
hedulability when worst exe
ution doesnot.The admittan
e test is thought to help the appli
ation to attain s
hedulability using the exe
utionbounds and
ontrollability.We have proved that a general s
heduler implemented using our method is de
idable, in the sensethat the s
hedulability problem expressed as rea
hability problem is de
idable.6.1 Future WorkWe
an mention that as future work, we
an:� Give an implementation of our method; indeed, our method is part of a proje
t to
reate a
hainof programs to manage real time appli
ations; starting by a des
ription of the appli
ation, itsmodel, the
onstru
tion of the s
heduled program. The implementation must take advantageof the ni
ety property to
reate appropriate data stru
tures; then we shold validate it to someappli
ations to prove properties su
h as liveliness and in general all properties preserved by therea
hability graph as mentioned in [17℄.� Controllability and un
ontrollability of time is not suÆ
iently exploited in our model, that is, themodel does not in
lude
ontrollability of exe
ution time; we use it for the admittan
e test, butwe
ould design a model based on this idea.� We base our model on timed automata but we
an imagine another base model su
h as push-down automata. Roughly speaking, the automaton would have arrival, resuming,
ompletionand time passing as operations and the idea is to test the rea
hability to a �nal state to dedu
es
hedulability. The sta
k
ontains 3-uples of the form (ei; ri; wi) for ea
h a
tive task �i.

140 CHAPTER 6. CONCLUSIONS

Bibliography[1℄ Yasmina Abdedda��m and Oded Maler. Job-shop s
heduling using timed automata. In SpringerVerlag, editor, Le
ture Notes in Computer S
ien
e. Spe
ial Edition for CAV'2001, volume 2102,pages 478{492, 2001.[2℄ Yasmina Abdedda��m and Oded Maler. Preemptive job-shop s
heduling using stopwat
h automata.In Springer Verlag, editor, Le
ture Notes in Computer S
ien
e. Spe
ial Edition for TACAS 2002,volume 2280, pages 113{126, 2002.[3℄ Advan
ed Real-Time Systems - Information So
iety Te
hnologies. Artist Proje
t: Advan
ed Real-Time Systems, IST-2001-34820.[4℄ G. Agha. A model of Con
urrent Computation in Distributed Systems. MIT Press, 1986.[5℄ G. Agha. Con
urrent obje
t oriented programming. Communi
ations of the ACM, 33(9):125{141,1990.[6℄ A.V. Aho, J. E. Hop
roft, and J. D. Ullman. The design and analysis of
omputer algorithms.Addison-Wesley, 1974.[7℄ Karine Altisen, Greg Goessler, Amir Pnueli, Joseph Sifakis, Stavros Tripakis, and Sergio Yovine.A framework for s
heduler synthesis. In Pro
eedings of the 1999 IEEE Real-Time Systems Sym-posium, RTSS'99, de
ember 1999.[8℄ Karine Altisen, Greg Gossler, and Joseph Sifakis. A methodology for the
onstru
tion of s
heduledsystems. In FTRTFT 2000 Pro
eedings, 2000.[9℄ Karine Altisen, Greg Gossler, and Joseph Sifakis. S
heduler modeling based on the
ontrollersynthesis paradigm. Te
hni
al report, Verimag, 2 Av. Vignate, 38610 - Gieres - Fran
e, 2000.[10℄ R. Alur and D. Dill. Automata for modeling real time systems. Theoreti
al Computer S
ien
e,126(2):183{236, 1994.[11℄ T. P. Baker. Sta
k-based s
heduling of real time pro
esses. The Journal of Real Time Systems,3(1):67{100, 1991.[12℄ Feli
e Balarin. Priority assignment for embedded rea
tive real-time systems. Languages, Compilersand Tools for Embedded Systems. Workshop LCTES'98, 1474:146{155, 1998.[13℄ Feli
e Balarin and Alberto Sangiovanni-Vin
entelli. S
hedule validation for embedded rea
tive realtime systems. In Pro
eedings of Design Automation Conferen
e, Anaheim(CA), 1997.141

142 BIBLIOGRAPHY[14℄ G. Berry and G. Gonthier. The esterel syn
hronous programming language: Design, semanti
s,implementation. S
ien
e of Computer Programming, 2(19):87{152, 1992.[15℄ Greg Bollella. Real Time Spe
i�
ation for Java. Addison Wesley, 1999.[16℄ Sebastian Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgen
y in timed systmes. InLe
ture Notes in Computer S
ien
e. Spe
ial Edition for COMPOS'97, volume 1536, 1998.[17℄ Ahmed Bouajjani, Stavros Tripakis, and Sergio Yovine. On-the-
y symboli
 model-
he
king forreal-time systems. In Pro
. 18th IEEE Real-Time Systems Symposium, RTSS'97, San Fran
is
o,USA, De
ember 1997.[18℄ Patri
ia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Are timed automataupdatable? In Pro
eedings of the 12th Int. Conf. on Computer Aided Veri�
ation, pages 464{479,Chi
ago, USA, July 2000.[19℄ Giorgio Buttazzo. Rate monotoni
 vs edf: Judgment day. In Pro
eedings of the 3rd ACM Inter-national Conferen
e on Embedded Software (EMSOFT 2003), Philadephia, O
tober 13-15 2003.[20℄ Fran
k Cassez and Kim Larsen. The impressive power of stopwat
hes. Le
ture Notes in ComputerS
ien
e, 1877:138+, 2000.[21℄ Min Chen and Kwei Lin. Dynami
 priority
eilings: a
on
urren
y
ontrol proto
ol for real-timesystems. Real Time Systems Journal, 2(4):325{346, 1990.[22℄ D. Dill. Timing assumptions and veri�
ation of �nite-state
on
urrent systems. Pro
. 1st Workshopon Computer-Aided Veri�
ation. LNCS, 407, 1989.[23℄ Radu Dobrin, Yusuf Ozdemir, and Gerhard Fohler. Task attribute assignment of �xed prioritys
heduled tasks to reena
t o�-line s
hedules. In Pro
eeding of RTCSA 2000, Korea, 2000.[24℄ C. Eri
sson, A. Wall, and W. Yi. Timed automata as task models for event-driven systems. InIEEE Computer So
iety Press, editor, Pro
eedings of the 6th International Conferen
e on RealTime Computing Systems and Appli
ations, 1999.[25℄ Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. S
hedulability anaysis usingtwo
lo
ks. In ETAPS 2003, 2003.[26℄ Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asyn
hronous pro
esses:S
hedulability and de
idability. In ETAPS 2002, 2002.[27℄ Gerhard Fohler. Joint s
heduling of distributed
omplex periodi
 and hard aperiodi
 tasks instati
ally s
heduled systems. In Pro
eedings of the 16th Real Time Systems Symposium, Pisa,Italy, 1995.[28℄ D. Garbervetsky, C. Nakhli, S. Yovine, and H. Zorgati. Program instrumentation and run-timeanalysis of s
oped memory in java. In Pro
eeding of International Workshop on Runtime Veri�-
ation. ETAPS 2004, Bar
elona. Spain, April 2004.[29℄ Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What's de
idable abouthybrid automata? In Pro
eedings of the 27th Annual ACM Symposium on Theory of Computing,pages 373{382, 1995.[30℄ Damir Isovi
 and Gerhard Fohler. EÆ
ient s
heduling of sporadi
, aperiodi
 and periodi
 taskswith
omplex
onstraints. In Pro
eedings of the 21st IEEE RTSS, Florida - USA, november 2000.

BIBLIOGRAPHY 143[31℄ Y. Kesten, A. Pnueli, J. Sifakis, and S.Yovine. Integration graphs: A
lass of de
idable hybridsystems. LNCS. Sepe
ial Edition on Hybrid Systems, 736:179{208, 1993.[32℄ Christos Kloukinas, Chaker Nakhli, and Sergio Yovine. A methodology and tool support forgenerating s
heduled native
ode for real-time java appli
ations. In Pro
eedings of the ThirdInternational Conferen
e on Embedded Software (EMSOFT 2003), pages 274{289. Le
ture Notesin Computer S
ien
e-2855, Springer Verlag, o
tober 2003.[33℄ Kim Larsen, Frederik Larsson, Paul Pettersson, and Wang Yi. EÆ
ient veri�
ation of real-timesystems:
ompa
t data stru
ture and state-spa
e redu
tion. In Pro
. 18th IEEE Real-Time SystemsSymposium, RTSS'97, San Fran
is
o, California, USA, De
ember 1997.[34℄ Edward Lee. Embedded software - an agenda for resear
h. UCB ERL Memorandum M99/63,De
ember 1999.[35℄ Edward Lee and Antonio Snagiovanni-Vin
entelli. A framework for
omparing models of
ompu-tation. IEEE Transa
tions on CAD, De
ember 1998.[36℄ John Leho
zky and Sandra Thuel. An optimal algorithm for s
heduling soft aperiodi
 tasks in�xed priority preemptive systems. IEEE Real Time Symposium, De
ember 1992.[37℄ C.L. Liu and James Layland. S
heduling algorithms for multiprogramming in a hard real-timeenvironment. Journal of the ACM, 20:46{61, January 1973.[38℄ D. C. Lu
kham and J. Vera. An event-based ar
hite
ture de�nition language. IEEE Transa
tionson Software Engineering, 21(9):717{734, September 1995.[39℄ Floren
e Maranin
hi. The argos language: Graphi
al representation of automata and des
riptionof rea
tive systems. In Pro
eedings of the IEEE Workshop on Visual Languages, O
tober 1991.[40℄ Jennifer M
Manis and Pravin Varaiya. Suspension automata: a de
idable
lass of hybrid au-tomata. In Pro
.6th International Conferen
e on Computer Aided Veri�
ation, CAV'94, Stanford,California, USA, volume 818, pages 105{117. Springer-Verlag, 1994.[41℄ Jesper M�ller. EÆ
ient veri�
ation of timed systems using ba
kwards rea
hability analysis. Te
h-ni
al Report IT-TR-2002-11, Department of Information Te
hnology - Te
hni
al University ofDenmark, Febrary 2002.[42℄ Jesper M�ller, Henrik Hulgaard, and Henrik Reif Andersen. Symboli
 model
he
king of timedguarded
ommands using di�eren
e de
ision diagrams. Journal of Logi
 and Algebrai
 Program-ming, 52-53:53{77, 2002.[43℄ Jesper M�ller, Jakob Li
htenberg, Henrik Reif Andersen, and Henrik Hulgaard. On the sym-boli
 veri�
ation of timed systems. Te
hni
al Report IT-TR-1999-024, Department of InformationTe
hnology - Te
hni
al University of Denmark, February 1999.[44℄ A.K. Mok. Fundamental Design Problems for Hard Real Time Environments. PhD thesis, MIT,1983.[45℄ Xavier Ni
ollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. An approa
h to the des
riptionand analysis of hybrid systems. LNCS Spe
ial Edition on Hybrid Systems, 736:149{178, 1993.[46℄ Alfredo Olivero. Mod�elisation et analyse de syst�emes temporis�es et hybrides. PhD thesis, InstitutNational Polyte
hnique de Grenoble, Fran
e, September 1994.

144 BIBLIOGRAPHY[47℄ Amir Pnueli. The temporal logi
 of programs. In Pro
eedings of the 18th Symposium on Founda-tions of Computer S
ien
e, (IEEE FOCS 77), 1977.[48℄ Ragunthan Rjakumar, Liu Sha, John Leho
zky, and Krithi Ramamritham. An optimal priorityinheritan
e poli
y for syn
hronization in real-time systems. In Sang H. Song, editor, Advan
es inReal Time Systems. Prenti
e-Hall, 1995.[49℄ Manas Saksena, A. Ptak, P. Freedman, and P. Rodziewi
z. S
hedulability analysis for automatedimplementations of real time obje
t oriented models. In Pro
eedings of the IEEE-Real Time Sys-tems Symposium, 1998.[50℄ Lui Sha, Ragunathan Rjakumar, and John Leho
zky. Priority inheritan
e proto
ols: An approa
hto real-time syn
hronization. IEEE Transa
tions on Computers, 39:1175{1185, 1990.[51℄ Joseph Sifakis. Modeling real time systems: Challenges and work dire
tions. In Le
ture Notes inComputer S
ien
e. Spe
ial Edition for EMSOFT 2001, volume 2211, 2001.[52℄ Joseph Sifakis, Stavros Tripakis, and Sergio Yovine. Building models of real-time systems fromappli
ation software. Pro
eedings of the IEEE, Spe
ial issue on modeling and design of embeddedsystems, 91(1)::100{111, January 2003.[53℄ Joseph Sifakis and Sergio Yovine. Compositional spe
i�
ation of timed systems (extended ab-stra
t). In Pro
eedings of the 13th Annual Symposium on Theoreti
al Aspets of Computer S
ien
e,pages 347{359, 1996.[54℄ Maryline Silly. The edl server for s
heduling periodi
 and soft aperiodi
 tasks with resour
e
onstraints. Journal of Time-Criti
al Computing Systems, 17:87{111, 1999.[55℄ Mar
o Spuri and Georgio Buttazzo. EÆ
ient aperiodi
 servi
e under earliest deadline s
heduling.In Pro
eedings of the IEEE Real Time Systems Symposium, de
ember 1994.[56℄ Mar
o Spuri and Giorgio Buttazzo. S
heduling aperiodi
 tasks in dynami
 priority systems. Journalof Real Time Systems, 10(2), 1996.[57℄ Sandra Thuel and John Leho
zky. Algorithms for s
heduling hard aperiodi
 task in �xed prior-ity systems using sla
k stealing. In Pro
eedings of the '94 Real Time Symposium, Puerto Ri
o,De
ember 1994.[58℄ Ken Tindell. Real time systems and �xed priority s
heduling. Te
hni
al report, Department ofComputer Systems, Uppsala University, 1995.[59℄ Sergio Yovine. M�ethodes et outils pour la v�eri�
ation symbolique de syst�emes temporis�es. PhDthesis, Institut National Polyte
hnique de Grenoble, Fran
e, May 1993.[60℄ Sergio Yovine. Model-
he
king timed automata. Le
ture Notes in Computer S
ien
e, 1494, 1998.

