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Chapter 1

Introducing the actors

Résumé

Les systemes temps-réel, STR, sont soumis a des fortes contraintes de temps dont la violation peut
impliquer la violation des exigences de securité, de sureté et de fiabilité.

Aujourd’hui, les STRse caracterisent par une forte intégration de composants logiciels. Leur dévelop-
pement nécessite une méthodologie permettant de relier, méme a partir de la phase de conception, le
comportement du systéeme au niveau fonctionnel avec les aspects non fonctionnels qui doivent étre ténus
en compte dans la mise en oeuvre et a l’exécution, [53], [7], [51].

Dans cette these nous nous interessons au probleme de I’ordonnancement qui est nécessaire pour as-
surer le respect des contraintes temporelles imposées par I'application lors de ’exécution. L’ordonnancement
consiste a coordonner dans le temps ’exécution des différentes activités afin d’assurer que toutes leurs
contraintes temporelles sont satisfaites. L’ordonnancement de systéemes temps réel critiques embarqués
est essentiel non seulement pour obtenir des bonnes performances mais surtout pour garantir leur
correct fonctionnement.

Cette these contribue dans deux aspects de STR:

e Dans le chapitre 3 on présente un modeéle pour une classe de STRinspiré par le langage Java et
nous développons, a partir de ce modele, un algorithme d’attribution de priorités statiques basé
sur la communication entre taches. Cet algorithme est simple mais incomplet.

e Dans le chapitre 5 on présente une technique pour traiter le probleme d’ordonnancabilité avec
préemption, dépendences et incertitude. Nous etudions le probleme d’analyse et decidabilité a
travers d’une nouvelle classe d’automates temporisés.

Nous completons notre présentation avec un chapitre dévoué aux modeles temporisés, chapitre 4,

et le chapitre 2 avec les techniques et méthodes d’ordonnancabilité les plus connus.

1.1 Real Time Systems

No doubt that computers are everywhere in our daily life. Some years ago, but not so many, computers
were devices which had some “external” recognizable aspect, such as a box, a screen and a keyboard,

13



14 CHAPTER 1. INTRODUCING THE ACTORS

generally used for calculating, data basing and business management. As communication, multime-
dia and networking were added to computing systems, the use of computers expanded to everyone;
nowadays computers are integrated to planes, cars, multimedia systems and even... refrigerators!

A huge branch in computer systems began to develop, when computers were integrated to engins
where time played a very important role. Any computer system deals with time, in a broad sense; in
some systems, time is important because calculations are very heavy and the response time depends
on the architecture of the system and the algorithm implemented, but time is not part of the system,
that is, time is not part of the especification of the problem.

These systems are now wideley employed in many real time control applications such as avionics,
automobile cruise control, heating control telecommunications and many other areas. The systems
must also respond dynamically to the operating environment and eventually adapt themselves to new
conditions; they are commonly called embedded since the “computing engine” is almost hidden and
dedicated to the application.

Real Time Systems, RTS, deal with time in the sense that a response is demanded within a certain
delay; if this demand is not satisfied, we could produce a failure, an accident and in general a critical
situation. Compare, for instance the fact of using an ATM to withdraw money and a car airbag system,;
the first action takes some time, but the system does not deal with time; we can take some seconds to do
the operation and even if the system is overcharged the user tolerates some unspecified delay (depending
on his patience!); the airbag system deals with time, since its response, in case of an accident, must be
given within a specified delay, if not, the driver could be hurt. Besides, a late response of the system
is useless, since the consequences of the accident had already happened.

Even if a definition of RTS can lead to restrict ourselves, it is worth mentioning one:

A real time system is a computing system where time is involved in the specification of the
problem and in the response of the system. The correctness of computations depends not,
only on the logical correctness of the implementation, but also on the time response.

RTS can be classified into hard and soft RTS; in general, we say that in hard RTS the absence of an
answer or an answer which fails to arrive on time can cause a critical event or unsafety situation to
happen; in soft RTS even if the response deals with the time it is produced, the absence of an answer
leaves the system in a correct state and some recovery can be possible. An example of soft RTS is
the integration process while sending video frames; the system is quite time-dependant, in the sense
that frames must arrive in order and also respect some timing constraints, to give the user the idea of
viewing a “continous” film; but if eventually a frame is lost or if it arrives late, the whole system is
correct and, principally, no critical event is produced.

The frontier between soft and hard RTS is sometimes not so clear; consider, for instance our example
of video, it could be classified as hard if the “film” transmitted was a distance surgery operation.
Sometimes, soft RTS are more difficult to specify since it is not easy to decide which timing requiremnts
can be relaxed, and how they can be relaxed, how often and so on, [58].

As RTS deals with the “real world”, the computer is dedicated to control some part of a system or
physical engine; normally, the computer is regarded as a component of the piece to control and we say
that these computer systems are embedded; sometimes, people are surprised to notice that nowadays a
car has a computer in it, since the “traditional” view of a computer is not present. We really mean that
a processor is installed, dedicated to survey a part of the system which interacts with the real world
and offers an answer to a specific stimulus in a predetermined time. Airbag systems, ABS, heating and
other “intelligent” household equipments, are examples of RTS which we do not see as such but are
present in daily life. Airplane control, electronical control of trains and barriers, nuclear submarines
have grown much safer since they were helped by computers.
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In summary, RTS show some deep differences compared to traditional systems, [34]:

1. Time: in pure computing applications, time is not taken into account; one can talk about the order
of an algorithm as a measure of process time consuming but time is not part of the algorithm. In
RTS time must be modelled somehow and there are attempts to represent time in some temporal
logics, [47], or in timed automata, [10, 22].

3

2. Events: in RTS the inputs can be considered as data under the form of events. These events are
triggered by a sensor or by another (external) process, which we will generally call producer. On
the other hand, these events are served by another process which we will call consumer. RTS
are characterized by two basic sytles of design, [49], event-driven and time-driven. Time driven
activities are those ruled by time, for instance, periodic activities, in which an event (task, in this
case) is triggered simply by time passing. Event driven activities are those ruled by the arrival of
an external event which may or may not be predicted; it fits reactive applications.

3. Termination: in the Turing-Church frame, computing is a terminating process, giving a result.
A non terminating process is considered as defective. However RTS are intrinsically non termi-
nating processes and even more, a terminating program is considered defective. In summary, in
traditional applications ending is really expected but in RTS ending is erroneous.

4. Concurrency: even if some efforts have been done to manage concurrency and parallelism, the
traditional criteria for software is based on the idea of serializability, which is perfectly embedded
in the Turing-Church architecture. In RTS applications parallelism is the natural form of com-
putation as a mechanism of modelling a real life problem, so we are faced to a scenario where
multiple processes are running and interacting.

1.2 Traditional vs Real Time Software

Software development has dramatically changed since its beginings in the early 50. In those days,
software was really wired to the computer, meaning that an application was in fact implemented for
a given architecture; the simplest modification implied re-thinking all the application and re-installing
the program.

Such a construction of software had no methodology; in the earlys 60 many programming languages
were developed and a very important concept, symbolic memory allocation let programmers perform
an abstraction between a program and a given architecture. Programs could be more or less exported
or run into different machines: the concept of portability was born, but the activity of programming
was reduced to the fact of knowing a language and coding an application in such a language.

At the end of 60’s, the programming community realised that the situation was chaotic; programs
were more and more important and large and the programming activity implied many people working
over the same application. Besides that, it was clear that programming was much more than simply
coding, implying at least three phases: modelling, implementation and maintainance.

The first phase is of most importance, since the application specification is clearly established and
all actors involved in it express their views of the problem and their needs. Once we have such a plan of
the application and that all restrictions are neatly written down, we can attack the second phase. The
modelling phase has spread the problem into simpler components, with interaction among components
so programmers can attack the implementation of components in parallel since they only need to know
the “input” and “output” of each component, leaving the functional aspect of other components as a
black box. Evidently the third phase is capital to the evolution of the application, as new needs may
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appear and if modelling is correct, we should only modify or create some few components but no need
to re-implement the whole system.

The construction of RTS began by designing and implementing ad-hoc software platforms, which
were not reusable for other applications; in this sense, RTS suffered the same experience as programming
in the early 60’s... no methodology was applied, and hence soon people were in face of the chaos which
conducted to the development of good software design and analysis practices. No doubt that there has
been a great shifting from hardware to software and hence we can now think of in terms of a “real
time engineering”, that is, based on some common models, we can use some previously developped (and
proved) components or modules to build a new system, [34]. Of course, most embedded systems include
a significant hardware design also, as new technologies are developped and a wider area of application
is included.

The role of RT Modelling

Time is of most importance in RTS since we deal with critical applications, whose failure may cause
serious or fatal accidents and also with different technologies which must be integrated. Building
embedded RTS of guaranteed quality in a cost-effective manner, raises a challenge for the scientific
community, [51].

As for any process of software construction, it is of paramount importance to have a good model
which can aid the design of good quality systems and facilitate analysis and control.

The use of models can profitably replace experimentation on actual systems with many advantages
such as facility to modify and play with different parameters, integration of heterogeneous components,
observability of behaviour under different conditions and the possibility of analysis and predictability
by application of formal methods.

The problem of modelling is to represent accurately the complexity of a system; a too “narrow”
design could simplify the application to the point of being unreal; on the other hand, lack of abstraction
conducts to a complexity which difficults the perception of properties and behaviour.

Modelling techniques are applied at early phases of system development and at high abstraction
level. The existence of these techniques is a basis for rigorous design and easy validation.

A very important issue in real time modelling is the representation of time which is obtained by
restricting the behaviour of its application software with timing information. Sifakis in [51] notes that
a

... deep distinction between real time application software and the coresponding real time
system resides in the fact that the former is immaterial and thus untimed

Time is external to the application and is provided by the execution platform while the operational
aspects of the application are provided by the language; so the study of a RTS requires the use of a
timed model which combines actions of the applications and time progress.

The existence of modelling techniques is a basis for rigorous design, but building models which faith-
fully represent RTS is not trivial; besides models are often used at an early stage of system development
at a very high abstraction level, and do not easily last the whole design life-cycle, [52].

There are many different models of computation which may be appropriate for RTS such as actors,
event based systems, semaphores, synchronization mechanism or synchronous reactive systems, [5, 4,
14, 35, 38, 39]. In particular, we have used finite state machines, FSM as a model; each machine
represents a process, where the nodes of FSM represent the different states and the arcs the transitions
or evolution of the process. Each process is then an ordered sequence of states ruled by the transitions.
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Each arc is labelled by conditions.

FSM cannot express concurrency nor time, so to tackle these problems we have used timed automata,
TA, which are FsM extended with clocks. In this scenario a RTS is represented as a collection of TA,
naturally concurrent, where coordination is done through event triggering. This structure permits a
formal analysis, using for example model checking to test safety, [26, 25, 43, 42, 41] or synthesis for
checking schedulability. [8, 9, 7, 52].

The role of Time

Components in a RTS include concurrent tasks often assigned to distinct processors. These tasks may
interact through events, shared memory or by the simple effect of time passing. From the point of view
of component design we need some definitions to declare temporal properties; temporal logic, [47] is
the classic representation of time.

Traditional software is verified by techniques dealing with the functional aspects of the problem
and their implementation; we prove that the code really performs or behaves as specified by the model.
These properties are untimed; in RTS we have to add another axe of verification, the non functional
properties which deal with the environment and more precisely with real time. For instance, if we say
“event a is followed by an event b triggered at most § units of time afterwards”, we mean that the
interval between termination of a and begining of b should be smaller than ¢ units of time measured in
real time.

Independently of the architecture of the system, non-functional properties are checked through a
timed model of the RTS; this activity is called timing analysis; we can also take an approach guided
through synthesis where we look for a correct construction using methods that help resolving some
choices made during implementation.

Some steps in the transition from application software to implementation of RTS include:

1. Partition of the application software into parallel tasks; these components include concurrent
tasks often assigned to distinct processors which interact through events, shared memory or by
the simple effect of time passing. From the point of view of component design we need some
definitions to declare temporal properties.

2. Usage of some techniques for resource management and task synchronization. This coordination
may be due to many factors: temporal constraints, access to common resources, synchronization
among events, and so on. A scheduler is in charge of this coordination.

3. The choice of adequate scheduling policies so that non-functional properties of the application
are respected; for RTS one of the critical missions of the scheduler is to assure the timeliness of
the activities, that is, the respect of the temporal constraints, which form part of the tasks, at
the same level as other parameters or their functionality.

Synchronous and asynchronous rRTS Two paradigms are used in the design of RTS: synchronous
and asynchronous approach.

The synchronous paradigm assumes that a system interacts with its environment and its reaction is
fast enough to answer before a new external event is produced; this means that environment changes
occurring during the computation of a step are treated at the next step.

The asynchronous paradigm attacks a multi-tasking execution model, where independent processes
execute at their own pace and communicate via a message passing system. Normally, we have an
operating system which is responsible for scheduling all tasks so as to perform properly.
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Both techniques have their inconvenients; the hypothesis for the synchronous paradigm is not easy
to meet, modularity cannot be easily handled and the asynchronous paradigm is less predictable and
hard to analyse, [52].

The role of the Scheduler

As a RTS application is composed of many tasks, some kind of coordination is necessary to direct the
application to a good result. A scheduler is the part of a system which coordinates the execution of all
these activities. Roughly speaking scheduling may be defined as the

“activity of arranging the execution of a set of tasks in such a manner that all tasks achieve
their objectives”

This definition, although very imprecise, gives an idea of the complexity of the problem. Coordina-
tion may be due to many factors: temporal constraints, access to common resources, synchronization
among events, and so on. A scheduler does not coordinate the execution per se, but its relationships
with other activities. As already mentioned, one of the critical missions of a RTS scheduler is to assure
the timeliness of the activities.

The activity of scheduling was born when many tasks were run over a machine and the CPU had to
be shared among the tasks, we talk about centralized scheduling. These tasks were basically independent
programs, triggered by users (or even the operating system). The kernel of the operating system decides
which task must be executed and assures (more or less) a fair policy of CPU distribution for all tasks;
in this context, time is not part of a task’s description, but only its functionality (given by the code) is
important. Later on, when distribution was possible, due to communication facilities among computers,
the activity of scheduling distributed tasks was a natural extension of the centralized approach.

Since a scheduler deals with tasks, it is time to define them precisely, but not formally:

A task is a unit of execution, which is supposed to work correcty while alone in the system,
i.e. a task is a verified unit of execution

A task is then correct and must be executed entirely, although its execution can be interrupted
by the system and resumed later. A task has its own environment of execution (local variables and
data structures) and perhaps some shared environment, whose correctness must be guaranteed by the
execution platform, while local correctness is ensured by the task itself.

Tasks are normally grouped to perform one or more functions, constituting a system or application.

A real time task, RTT, is a task whose effects (given by its functionality) must be seen within a
certain amount of time called critical time; its response is needed for another task to continue or for
system performances and the absence of response or a late service can cause fatal accidents. The
critical time for a task is called its deadline, that is a task must response before this limit. Deadlines
are measured in units of times.

In summary, we can envision three main actors in a scheduled system:

1. The processes, (sometimes referred to as tasks or modules), in charge of performing independent
actions in coordination with other tasks controlled by the scheduler.

2. The scheduler or the software (eventually hardware) controlling the operations and the coordi-
nation of a series of processes, which is basically a timed system which observes the state of the
application and restricts its behavior by triggering controllable actions.
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3. The environment or a series of uncontrollable actions, events, processes arrival or processes
termination.

Two important issues in the development of RTS is analysis and synthesis of schedulers. Analysis
is the ability to check the model of a system to decide if it is correct and if it respects the temporal
contraints of all tasks in the application. Synthesis is the ability to construct an implementation model
which respects the temporal contraints. Of course, both techniques points out to answer the same
questions: “is a system schedulable?”, and if so, “can we construct or check that our implementation
is schedulable?”

The construction of scheduled systems has been sucessfully applied to some systems, for example,
scheduling transactions in the domain of data bases or scheduling tasks in the operating system envi-
ronment. In the area of RTS the existing scheduling theory is limited because it requires the system to
fit into a schedulability criterion, generally to fit into a mathematical framework of the schedulability
criteria. Such studies relax one hypothesis at a time, for instance tasks are supposed to be periodic, or
only worst case execution times are considered.

1.3 Contributions

This thesis concentrates on the definition of techniques for task synchronization and resource manage-
ment, as shown in step 2 in the previous section.

e Chapter 3 is devoted to the development of a model and its verification techniques for a real time
program written in a Java-like language which uses synchronization primitives for communication
and common resources. We show how an abstraction of the program can be analysed to verify
schedulability and correct resource management.

e Chapter 5 is devoted to schedulability analysis and decidability;

— We first show a proper and new technique to deal with the problem of preemptive scheduling
and decidability under an asynchronous paradigm;

— We show an evolutive application of this method starting from a very simple policy and
finishing to a general scheduling policy;

— In each step of this evolution we show that our method is decidable, that is, that its appli-
cation can leave the system in a safe state and that this state can be reachable.

— We also show a complete admission analysis that can be performed off line in case of a set
of periodic tasks and on-line in case of an hybrid set of periodic and aperiodic tasks; in any
case, the admission is the simple computation of a formula.

We complete our presentation with chapter 4 dedicated to timed models, where we show the basic
model of timed automata, some of its extensions and applications to schedulability analysis. The most
well-known techniques for schedulability of real time systems are developed in chapter 2.
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CHAPTER 1.

1.4 Thesaurus

Here’s a list of the abbrevations used in this document:

Abbrevation

Meaning

DPCP
DBM
EDF
EDL
ETT
FSM
1P
JSS
lcm
LIFO
RMA
PCP
PIP
RTS
RTT
SRP

SWA
TA
TAD
TAT
TBS
UTA
WFG

Dynamic Priority Ceiling Protocol
Difference bound Matrix

Earliest Deadline First

Earliest Deadline as Late as Possible
Event Triggered Task

Finite State Machine

Immediate Inheritance Protocol
Job Shop Scheduling

Least Common Multiple

Last In First Out

Rate Monotonic Analysis

Priority Ceiling Protocol

Priority Inheritance Protocol
Real Time Systems

Real Time Task(s)

Stack Resource Policy

Slack Stealing Protocol
Stopwatch Automaton

Timed Automaton

Timed Automaton with Deadlines
Timed Automaton with Task
Total Bandwidth Server
Updatable Timed Automaton
Wait For Graphs

INTRODUCING THE ACTORS



Chapter 2

Setting some order in the Chaos:
Scheduling

Résumé

Ce chapitre a pour but d’introduire les concepts basiques d’ordonnancement développés depuis 1973;
en commencant par les modeles les plus classiques nous finissons avec les modeles les plus récents.

Une application temps réels est modélisée par un ensemble de taches T = {T,T>,...,T,}, chaque
tache T;,1 < i < n est characterisée par la paire (E;, D;), ou E; est le temps d’éxécution de T; et D;
est l’echeance relative. Eventuellement, on peut ajouter P;, E; < D; < P;, la période pour T;, c’est a
dire, l'intervalle de temps entre deux arrivées d’une tache. Certaines taches sont dites événementielles
s’il existe un événement qui les déclenche; finalement certains auteurs considerent d’autres paramétres,
telles que le jitter, précedence entre taches, etc.

Dans 'application on peut utiliser de ressources en commun; ces ressources partagées sont accedées
par un protocole spécial qui garantit la bonne utilisation; les taches qui n’utilisent pas de ressources en
commun sont appellées independantes.

On organise ce chapitre selon la taxinomie souivante:

Ensemble de taches Nature Gestion de | Exemple

Priorités d’algorithme
Independentes | Statique RMA

Dynamique | EDF

Periodiques Dependentes Statique PIP, PCP, ITP
Dynamique | brPcP

Periodiques Independentes | Statique SSP, EDL, TBS

et non-periodique Dependent Dynamique | TBS

Event Triggered Independantes ETT

Complex Constraints 2-EDF
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2.1 Schedulers

We have already introduced the need of some coordination among tasks, under a RT scenario. We have
defined a real time application as a collection of tasks, each of which has some temporal constraints
and may interact with the environement through events. In this chapter, we will introduce formal
representations of RTS, that is, abstractions of real life as simple (or not so simple!) models. We will
cover more or less 30 years of efforts in the area; results shown in this section are general and show the
big headlines; detailed descriptions can be found, of course, in the original papers’.

A real time application may be characterized by a set T' = {11, Ts,...,T,} of real time tasks, RTT,
which may be triggered by external events; each task T; is characterized by its parameters [E;, D;]
where F; is the execution time and D; is the relative deadline. The execution time is constant for a
task, like in a worst case execution environment and it is the time taken by the processor to finish it
without interruptions. Deadline D; is relative to the arrival time r; of a task T;, (sometimes called
release time) and it is the time for T; to finish; if a task T; arrives at time r;, the sum D; + r; is called

the absolute deadline.

RTT may be periodic, that is, they are supposed to arrive within a constant interval; normally
periodic tasks respond to the fact that some applications trigger tasks regularly; in this case, we can
extend our set of parameters by P;, the period for each task, and tasks must be finished before the next
request ocurrs; we need then that E; < D; < P;. Some authors normally assume D; = P;, [37].

If task arrival is not predictable, we will say that a task is aperiodic. Some authors make the
difference between a semiperiodic task and an eventual task; the former may arrive within a certain
boundary of time, while the latter is really unpredictable. We will not make this difference.

In the context of periodic tasks, we can see that each periodic task T; is an infinite sequence
of instances of the same task; we normally note these instances as T; 1,75 2,...; T;1 arrives at time
r;,1 = 0;, called its origin, and its absolute deadline is d;1 = 6; + D; = r;1 + D;; in general we can say
that the absolute deadline of the k' arrival of T} is dir =rir+D;=60; + (k—1) x P + D;; in many
contexts, #; = 0).

The question is then how to manage the set T in order to satisfy all of its objetives, modelled
as parameters; since we assume tasks are correct, achieving task objectives is reduced to finish its
execution before its deadline and by extension all tasks in 7". This is the activity of scheduling.

Definition 2.1 A scheduling algorithm is a set of rules that determines the task to be executed at a
particular moment.

Many scheduling policies exist, based on parameters such as execution time, deadlines and periodic-
ity. Based on a set T of tasks characterized by its parameters, we can differentiate schedulers acording
to:

e Priority management: assignment of priorities to tasks is one of the most used techniques to
enforce schedulability; we distinguish:

— static or fixed: where T is analysed before execution and some fixed priorities are associated
which are valuable at execution time and never changed.

— dynamic: where some criteria is defined to create priorities at execution time, meaning that
each time a task arrives, a priority is assigned, perhaps taking into account the active set of

T As far as possible, we will try to keep an homogeneous notation and so, symbols may differ from the original works
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Non-Preemptive Preemptive
Static easy to implement easy to implement
too restrictive liveliness
Dynamic | intelligent priority assigment | relatively hard to implement
less restrictive costly but tend to optimum

Figure 2.1: Schedulers

tasks in the system; priorities of tasks might change from request to request, according to
the environment.

e Scheduler strength: as schedulers rule the management of tasks, they have the power to interrupt
a task; we distinguish:

— non-preemptive: each task is executed to completion, that is, once a task is chosen to execute,
it will finish and never be interrupted.

— preemptive: a task may be interrupted by a higher priority task; the interrupted task is put
in a sleeping state, where all of its environment is kept and it will be resumed some time
later in the future.

e Nature of tasks:

— Independent: tasks do not depend on the initiation or completion of other tasks and they
do not share resources; each task is then ‘autonomous’ and can be executed since its arrival.

— Dependent: the request for a task may depend on the execution of another task, perhaps
due to certain data produced and consumed later or due to application requirements, such
as shared resources which impose some method to access them.

Static schedulers are very easy to model and to be treated by the scheduling manager, but they are
very restrictive, since they are not adaptive; dynamic schedulers may take into account the execution
environment and evolution of the system. Preemption is a well known technique based on the idea that
the arrival of a more urgent task may need to interrupt the currently executing one; this technique
introduces another problem, liveliness, where a task shows no progress, since other (higher prioritized)
tasks are continously delaying its execution.

Certainly, we can design schedulers based on a mixed of concepts, table 2.1 shows the results of a
mixtures, assuming independent tasks.

The easiest schedulers are static and from the system point of view non-preemptive. Scheduler
decisions are fixed at analysis time, where priorities are assigned and as no preemption is accepted, the
system executes to completion, no need to keep environments. Of course, these are the most restrictive
schedulers but the easiest to implement. One well known problem with schedulers is priority inversion
where a lower priority task prevents a higher priority one to execute. Static non-preemptive schedulers
suffer this problem, since an executing task cannot be interrupted and hence a recently arrived task
with higher priority must wait.

Static schedulers with preemptions are very common; a newly arrived task interrupts the currently
executing task if the later has lower priority than the former. The problem is that preemption introduces
the problem of liveliness, since interrupted tasks may never regain the processor if higher priority tasks
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arrive constantly; some solutions have been proposed to this problem, specially the ceiling protocols,
[50], [48].

Corresponding to the class of fixed priority schedulers, Rate Monotonic Analysis, RMA, is the most
popular, [37].

Dynamic schedulers with no preemptions are not very common, because, in principle the “intelli-
gence” of the assignment procedure is hidden by the incapacity of interruption; they are less restrictive
than static but not sufficiently efficient.

Finally, dynamic schedulers with preemptions are the richest ones, the hardest to implement but
the nearest to the optimum. Among the dynamic protocols, the most popular is the Earliest Deadline,
ED, [37], and from this protocol, a very wide branch of algorithms exist.

From now on, we will use the following defintions for a schedule algorithm:

Definition 2.2 (Deadline Missing) A system is in a deadline missing state at time t if t is the
deadline of an unfinished task request.

Definition 2.3 (Feasability) A scheduling algorithm is feasable if the tasks are scheduled so that no
deadline miss occurs.

Definition 2.4 (Schedulable System) A system is schedulable if a feasable scheduling algorithm
erists.

Feasability is the capacity of a policy or scheduling algorithm to find an arrangement of tasks to
ensure no deadline missing, while schedulability is inherent to a set of tasks, that is, a set 7" may
be schedulable even if the application of an algorithm leads to deadline missings. Finding whether a
system is schedulable is much harder than deciding if it is feasable under a certain policy. We will show
that certain algorithms ensures feasability for schedulable systems.

We organize this chapter following this taxonomy:

Task Set Nature Priority Method

Management | Prototype
Independent | Static RMA

Dynamic EDF

Periodic Dependent Static PIP, PCP, IIP
Dynamic DPCP

Periodic Independent | Static SSP, EDL, TBS

and Aperiodic Dependent Dynamic TBS

Event Triggered Independant ETT

Complex Constraints 2-EDF

2.2 Periodic Independent Tasks

In this section, we show the main results in the area of scheduling RTT under the hypothesis that
tasks are periodic and independent, i.e. each task is triggered at regular intervals or rates, it does
not share resources and its execution is independent of other active tasks. We show two main classes
of scheduler algorithms; the first class, Rate Monotonic Analysis, RMA, is based on static or fixed
priority (generally attributed after an off-line analysis) and the second class, Earliest Deadline First,
EDF, is based on dynamic priority assignment, based on the current state of the system.
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2.2.1 Rate Monotonic Analysis

Rate Monotonic Analysis, RMA, was created by Liu and Layland in 1973, [37]. It is based in very
simple assumptions over the set T' = {T1,T>,...,T,}. Each task T;,1 < i < n is characterized by its
parameters [E;, P;], for execution time and period, respectively, and it is assumed that:

e All hard deadlines are equal to periods.

e Each task must be completed before the next request for it occurs.

Tasks are independent.

Execution time is constant.

e No non-periodic tasks are tolerated for the application; those non-periodic tasks in the system
are for initialization or recovery procedures, they have the highest priority and displace periodic
tasks but do not have hard deadlines.

Definition 2.5 (Rate Monotonic Rule) The rate-monotonic priority rule assigns higher priorities
to tasks with higher request rates.

A very simple way to assign priorities in a monotonic way is the inverse of the period. Priorities are
then fixed at design time and schedulability can be analysed at design time. For a task T; of period P;
its priority, m;, is %i.

The following theorem, due to Liu and Layland, [37] establishes the optimum criteria of RMA:

Theorem 2.1 If a feasible priority assignment exists for some task set, the rate-monotonic priority
assignment is feasible for that task set.

An important fact in scheduling processing is the processor utilization factor, i.e, the time spent in
the execution of the task set. Ideally, this number should be near to 1, representing full utilization of
processor; but this is not possible, since there is some time in context switching and of course, the time
used by the scheduler to take a decision.

In general, note that for a task Tj, the fraction of processor time spent in execution it is expressed
by E;/P;, so for a set T of n task we have that the utilization factor U can be expressed as:

U=7 (Ei/P)

This measure is slightly dependent of the architecture of the system, due to the “speed” E;, but
upper bounded by the deadlines which are architecture independent. Based on the utilization factor,
Liu et al. established the following theorem:

Theorem 2.2 For a set of n tasks with fixed priority assignment, the least upper bound for the processor
utilization factor is Up = n(201/™) — 1),

which in general shows an U in the order of 70%, rather costly in a real time environment. A better
utilization bound it to choose periods such that any pairs shows an harmonic relation.

We show the application of RMA through an example due to [19].
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Figure 2.2: RMA application

Example 2.1 Let us consider a set T = {T1(2,5),T2(4,7)}, of periodic tasks with parameters (E;,
as explained above, where periods are considered as hard deadlines. The utilization factor U = %+% =

according to theorem 2.2 Up ~ 0.83, so U > Up and set T is not feasible, as shown in figure 2.2.
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As T has a smaller deadline (or period) than Ty, Ty has always the highest priority and preempts
T5 if it is executing, we can assign m = % and m = % The very first instance of T misses its deadline
since it is interrupted when the second instance of T3 arrives; by time ¢ = 7, when a second instance of
T, arrives, it must yet complete the first instance, thus missing the deadline.

As priorities are fixed and known in advance, it suffices to analyse “a window” of execution between
starting time, say ¢ = § and an upper bound called hyperperiod, H which is the least common multiple
of the tasks periods.

Surely a better solution to RMA is a dynamic assignment algorithm. Liu et al. introduced a deadline
driven scheduling algorithm called Earliest Deadline First, EDF.

2.2.2 Earliest Deadline First

This algorithm is based on the same idea as RMA, but in a dynamic way, i.e. the highest priority is
assigned to the task with the shortest current deadline; it is based on the idea of urgency of a task. For
performing this assignment we simply need to know the relative deadline of a task, P; and its request
time, r; to calculate the absolute deadline.

For this algorithm the feasability is optimum in the sense that if a feasible schedule exists for a task
set T', then EDF is also applicable to T'.

Liu et al. established the following property for EDF:

Theorem 2.3 For a given set of n tasks, the EDF algorithm is feasible if and only if

i=1

which basically says that a set is feasible if there is enough time for each task, before its deadline
expires.

Example 2.2 Under this new policy, we can reconsider example 2.1, as U = 0.97 < 1 we know the
set is schedulable, (the problem was that RMA was not feasable for that set). Figure 2.3 shows how
considering absolute deadlines as a priority criteria enlarges the classes of schedulable sets.
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Figure 2.3: EDF application

At time t = 0 both tasks arrive; d;y = 5 < dy = 7 so T} starts.

At time t = 2 T, gains the processor.

At time t = 5 a new instance of T arrives and absolute deadlines are analysed; for T, its absolute
deadline is 7 while for T; is 10, so T} does not preempt T5.

At time t = 6 T, starts a new execution.

At time ¢t = 7 a new instance of Ty arrives: d; = 10 < dy = 14, so Ty waits. See how priorities
have changed from one instance, to another.

At time t = 14 T, arrives and begins execution.

At time t = 15 T, arrives and d; = 20 < dy = 21 so T; preempts T5.

The rest of the instances is analysed analogously.

We now know that example 2.1 is schedulable even if RMA leaded to a deadline missing and we see
that under certain conditions EDF is better than RMA.

2.2.3 Comparison

RMA is a fixed priority assignment algorithm, very easy to implement since at arrival of a new task
T; the scheduler knows whether it must preempt the currently executing task or simply accepting T;
somewhere in the ready queue. We assume that static analysis of the set T prevents the system to
enter an unfeasable state.

EDF is a dynamic priority assignment algorithm which takes into account the absolute deadline d; j
of the kN arrival of a periodic task T;; in theory, this priority assignment presents no difficulty but in
a system, priority levels are not infinite and there may be the case that no new priority level exists for
a task. In this case, a complete reordering of the ready queue might be necessary.

Besides the natural consequence of calculating priorities at each task instance arrival, EDF introduces
less runtime overhead, from the point of view of context switches, than RMA since preemptions are less
frequent. Our example 2.1 shows this behaviour, see [19] for experimental results.

As seen by the theorems, a set of n tasks is schedulable by the RMA method if Y1 | E;/P; <
n(2'/" — 1) while EDF extends the bound to 1. Some interestings results were shown if any pair of
periods follows an harmonic relation. Under this hypothesis, RMA is also bounded to 1.

The most important result for EDF is that if a system is unschedulable with this method, then it is
unschedulable with all other orderings. This is the optimal result for Liu et al.
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One restriction under both protocols is that no resource sharing is tolerated, since priorities are based
on deadlines and not on the behaviour of each task. In the next section, we will discuss one of the
most popular methods for scheduling tasks which share resources: the priority ceiling family. Another
restriction is that EDF does not consider the remaining execution time with respect to deadlines, to
assign priorities, in order to minimize context switchings.

But the most important result of Liu’s work is simplicity; their work, written in 1973, showed the
way to follow theoretical results before implementation and by those days, where we can consider that
some kind of chaos was installed in the real time community, their results showed that some order exists
that rule this chaos.

2.3 Periodic Dependent Tasks

In this section, we consider some scheduling protocols which relax one of the conditions of RMA and
EDF: tasks are independent. We consider algorithms where tasks share resources which are managed
by the scheduler in a mutually exclusive way, that is, only one task at a time can access a resource;
hence when a task demands a resource, it must wait if another task is using it.

Normally, resources are used in a critical section of the program and are accessed through a demand
protocol, a task 7 must lock a resource before using it, the system may grant it or deny it; in the
latter case, T must wait in a waiting queue, its execution is temporaly suspended still retaining other
granted resources. This situation may cause a common problem: deadlock that is, a chain of tasks are
suspended, each of which is waiting for a resource granted to another also suspended task. The systems
shows no evolution through time.

Protocols shown in this section are called deadlock preventive, that is they prevent the situation
where a deadlock is possible, by “guessing” somehow that in the future a deadlock will occur; to do
this, they need some information, as the set of resources that a task may eventually access.

We present three classes of protocols based on inheritance of priorities assigned statically: Priority
Inheritance Protocol, pip, Priority Ceiling Protocol, pcP and Immediate Inheritance Pro-
tocol, 11p. Finally we present another protocol where priorities are managed dynamically: Dynamic
Priority Ceiling Protocol, DPCP.

2.3.1 Priority Inheritance Protocol

The Priority Inheritance Protocols, [50], were created to face the problem of non-independent tasks,
which share common resources. Each task uses binary semaphores to coordinate the access to critical
sections where common resources are used and is assigned a priority (static or dynamic) which it uses
all long its execution. Tasks with higher priorities are executed first, but if at any moment, a higher
priority tasks 7; demands a resource allocated to a lower priority task 7}, this task steals or inherits
the priority of 7T}, thus letting its execution to be continued; after exiting the critical section, T} returns

to its original priority.

The original protocol assumes that:

1. Each task is assigned a fixed priority and all instances of the same task are assigned the same
task’s priority.

2. Periodic tasks are accepted and for each task we know its worst case execution time, its deadline
and its priority.
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3. If several tasks are eligible to run, that with the highest priority is chosen.

4. If several tasks have the same priority, they are executed in a first come first served, FCFS,
manner.

5. Each task uses a binary semaphore for each resource to enter the critical section; critical sections
may be nested and follow a “last open, first closed” policy. Each semaphore may be locked at
most once in a single nested critical section.

6. Each task releases all of its locks, if it holds any, before or at the end of its execution.

Normally, a high-priority task T; should be able to preempt a lower priority task, immediately upon
T;’s initiation, but if a lower priority task, say 7; owns a resource demanded by Tj, then Tj is not
preempted and even more, T} will continue its execution even its low priority. This phenomenon is
called priority inversion since a higher priority task is blocked by lower priority tasks and it is forced
to wait for their completion (or at least for their resources).

The interest of the PIP is founded on the fact that a schedulability bound can be determined: if the
utilization factor stays below this bound, then the set is feasable.

When a task T; blocks one or more higher priority tasks, it ignores its original priority assignment
and executes its critical section at the highest priority level of all the tasks it blocks. After exiting its
critical section, task 7T; returns to its original priority level.

Basically, we have the following steps:

Rule 1 The highest priority task is always executing except... Task 7; with the highest priority
gains the processor and starts running. If at any moment 7; demands a critical resource r;, it
must lock the semaphore S; on this resource. If S; is free, T; enters the critical section, works on
r; and on exiting it releases the semaphore S; and the highest priority task, if any, blocked by
task T; is awakened. Otherwise, T; is blocked by the task which holds the lock on S;, no matter
its priority.

Rule 2 No task can be preempted while executing a critical section on a granted resource
r;. Each task T; executes at its assigned priority, unless it is in a critical section and blocks higher
priority tasks; in this case, it inherits the highest priority of the tasks blocked by T;. Once T; exits
a critical section, the scheduler will assign the resource to the highest priority task demanding r;.
This is very important in nested levels; consider a task 7; which includes code like this:

Lock(r1)

Lock (r2)

ﬁﬁiock(r?)

aﬁiock(rl)

Once the task T; releases ry it regains the priority it had before locking ry; this may be lower
than its current priority and T; may be preempted by the task with the highest priority (perhaps

one blocked by T; but not necessarily). Of course, T; still holds the lock on ry, with the priority
assigned for the highest priority task which had demanded ry.
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Rule 3 Priority inheritance is transitive. As a consequence of the previous observation, we deduce
that inheritance is transitive. We show this through an example:

Example 2.3 (Inheritance of Priorities) Imagine three tasks Ty, To and T3 in descending
priority order. If Ty is executing then it blocks Ty and T as it owns a common resource wanted
by Ty or by both tasks (if not, Tz could not be executing). Task T3 inherits the priority of Ty via
Ts.

Consider the following escenario:

Task T3 Task T2 Task T1
i;;:k(a) (1) i;;:k(c) (2) ic;c.:k(d) (3)
i<.)<.:k(b) (6) i<.)<.:k(a) (5) Z.L(.)ék(c) (4)

The numbers between brackets indicate the order of execution. T3 starts execution and locks a,
then T5 enters the system and preempts T3 as its priority is higher (for the instant being, T3 has
not yet inherited T5’s priority) accessing the critical section for resource ¢. Then T gains the
processor as it has the highest priority accessing d and it intends to lock resource ¢ which is owned
by Ts (point (4)); at this moment Ty inherits T}’s priority, resumes its execution until point (5)
where resource a is owned by T3 and at this moment this task inherits T5’s priority which is, in
fact, T1’s one.

Rule 4 Highest priority task first. A task 7; can preempt another task T} if T; is not blocked and
its priority is higher than the priority, inherited or assigned, at which T} is running.

This protocol has a number of properties; one of the most interesting is the fact that a task 7; can
be blocked for at most the duration of one critical section for each task of lower priority. Although we
do not give the proof, the example shown above is illustrative of this fact.

As a consequence of this mechanism, the basic protocol does not prevent deadlocks. It is very easy
to see through this example:

Example 2.4 (Deadlock)

Task T2 Task T1
lock(a) (1) lock(b) (2)
lock(b)  (4) lock(a) (3)
ﬁﬁiock(b) ﬁﬁiock(a)
unlock(a) unlock (b)

where Ty has highest priority. T, enters the systems (1) locking a, then T} at (2) preempts T5, locks
b and when it intends to lock a (3) is blocked by T, which regains the processor (as it inherits the
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priority of T;); when T, intends lock b (4) this resource had already been assigned. Both tasks are
mutually blocked, hence in deadlock.

This problem can be faced by imposing a total ordering on the sempahore accesses, but blocking
duration is still a problem since a chain of blocking can be formed as showned in the examples above.

2.3.2 Priority Ceiling Protocol

Priority Ceiling Protocol, PCP, is a variant of the basic PIP but it prevents the formation of deadlocks
and chained blocking. The underlying idea of this protocol is that a critical section is executed at a
priority higher than that of any task that could eventually demand the resource. The pPiP promotes
an ascending priority assignment as new higher piority tasks enters the systems and are
blocked by lower priority tasks, but the pcp assigns the highest priority to the task which
first gets the resource among all active tasks demanding the resource.

To implement this idea, a priority ceiling is first assigned to each semaphore, which is equal to the
highest priority task that could ever use the semaphore. We accept a task 7; to begin execution of
a new critical section if its priority is higher than all priority ceilings of all the semaphores locked by
tasks other than T;. Note that the demanded resource is not taken into account to access the critical
section, but the ceilings of other active tasks.

Let us revisit our example 2.4 to see how it works:

Example 2.5 (Deadlock Revisited) Initially T» enters the system and locks resource a (1); later,
T, enters the system, preempts To and when it tries to lock b (which is free), the scheduler finds that
Ty ’s priority is not higher than the priority ceiling of the locked semaphore a; Ty is suspended and Ts
resumes execution; when Ty tries to lock b it has in fact the highest priority since no other tasks locks
a semaphore; hence, Ty locks, executes, finishes and releases all of its resources, letting Ty continue its
execution. Observe that even when Ty releases b, the scheduler will not let Ty resume its execution,
since its priority is still lower than Ts’s.

The protocol can be summarized in the following steps:

Step 1 A task T; with the highest priority is assigned to the processor; let S* be the semaphore with
the highest priority ceiling of all semaphores currently locked by tasks other than T;. If T; tries
to enter a critical section over a semaphore S it will be blocked if its priority is not higher than
the priority ceiling of semaphore S*. Otherwise T; enters its critical section, locking S. When T;
exits its critical section, its semaphore is released and the highest priority task, if any, blocked by
T; is resumed.

Step 2 A task executes at its fixed priority, unless it is in its critical section and blocks higher priority
tasks; at this point it inherits the highest priority of the tasks blocked by T;. As it exits a critical
section, it regains the priority it had just before entry to the critical section.

Step 3 As usual, the highest priority task is always executing; a task T; can preempt another task 7},
if its priority is higher than the priority at which 7} is running.

Example 2.6 Consider three tasks Ty, 11 and Ts in descending priority order, accessing resources a,
b and c. We schematize the steps:
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Task TO Task T1 Task T2

.. (5) - (2) ..

lock(a) (6)/(9) 1lock(c) (3)/(12) 1lock(c) (1)

ﬁgiock(a) ﬁgiock(c) i;ék(b) (4)

- e ... (7)

lock(b) unlock(b) (8)

- - (10)

unlock(b) unlock(c) (11)
(13)

The priority ceilings of semaphores for a and b are equal to Ty’s priority and for ¢ at T ’s priority.
Figure 2.4 illustrates the sequence of events.

e At time ¢ task Ty begins its execution and blocks ¢ (1).

e At time ¢; task Ty enters the system, (2), preempts Ty and begins its execution but it is blocked
when it tries to lock ¢ (3) owned by T, which resumes its execution at T3’s priority (inheritance).

e At time to, task T enters its critical section for b since no other semaphore is locked by other
jobs (4).

e At time t3, task T enters the system, (5), and as it has a higher priority, it preempts T%, which is
still in b’s critical section; note that T4’s priority (in fact, inherited from T7), is lower than Tjy’s.

e At time t4 as Ty tries to enter the critical section for a, (6), it is blocked since its priority is
not higher than the priority ceiling of the locked semaphore for b. At this point, T regains the
processor at Ty’s priority (inheritance), (7).

e At time t5, T» releases the semaphore for b, (8), and returns to the previously inherited priority
from T but T» is preempted by Ty which regains the processor, (9).

e At time t5, Ty accesses the critical section for a and it is never stopped until termination since it
has the highest priority.

e At time tg, Ty resumes its execution, (10), at T’s priority, exits the critical section for ¢, (11)
recovers its original priority and is preempted by T;.

e At time t7, T} is granted the lock over ¢, (12), finishes its execution (time tg) and then T% resumes,
(13), and also terminates (time tg).

Many properties characterize this protocol: it is deadlock free and a task will not be blocked for
more time than the duration of one critical section of a lower priority task; it also offers a condition of
schedulability based on a RMA assignment of priorities for a set of periodic tasks:

Theorem 2.4 (Schedulability of pPcP) A set of n periodic tasks using the PCP can be scheduled by
the RMA if the following condition is satisfied:

n
Ei <B1 anl ) 1
— +max | —,..., <n(2/" -1
; P; P P,y )~ ( )
where B; is the worst case blocking time for a task T;, that is, the longest duration of a critical section
for which T; might eventually wait.
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a locked ¢ ‘b locked

To
¢ locked ¢ ‘c unlocked
Ty
¢c locked W’ locked ¢b unlocked ¢c unlocked

Figure 2.4: Sequence of events under PCP

2.3.3 Immediate Inheritance Protocol

The main difficulty with pCP is implementation in practice, since the scheduler must keep track of which
task is blocked on which semaphore and the chain of inherited priorities; the test to decide whether a
semaphore can be locked or not is also time consuming.

There is a very simple variant of this method, called immediate inheritance protocol, 11p, which
indicates that if a task 7T; wants to lock a resource r, the task immediately sets its priority to the
maximum of its current priority and the ceiling priority of . On exiting the critical section for r, T;
comes back to the priority it had just before accessing r.

Each task is delayed at most once by a lower priority task, since there cannot have been two lower
priority tasks that locked two semaphores with ceilings higher than the priority of task 7;, since one of
them would have inherited a higher priority first. As it inherits a higher priority, the other task cannot
then run and lock a second semaphore. One of the consequence of this protocol is that if a task T} is
blocked, then it is blocked before it starts running, since if other task 7} is running and holds a resource
ever needed by T; then it has at least T;’s priority; so when task T} is released it will not start running
until 7} has finished.

This variation of the PCP is easier to implement and can be found in many commercial real time
operating systems, [58].

2.3.4 Dynamic Priority Ceiling Protocol

In this section we present a ceiling protocol which works dynamically; in PIP and all of its extensions,
priorities are assigned statically: each task has a static priority and each resource has a ceiling priority
which varies from piP to PCP. Each task changes dynamically its priority as it demands resources but
it always starts at the same priority, regardless of the environment. We have shown the schedulability
result under the static assignment for RMA.

The Dynamic Priority Ceiling Protocol, DPCP, was created by Chen et al in [21] and extended by
Maryline Silly in [54]. A task 7; is assigned a dynamic priority according to EDF protocol; as usual a
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task T; may lock and unlock a binary semaphore according to a PCP. A priority ceiling is defined for
every critical section and its value at any time ¢ is the priority of the highest priority task, (the task
with the earliest deadline), that may enter the critical section at or after time .

Each release of T; may be blocked for at most B;, the worst case blocking time. B; corresponds
to the duration of the longest critical section in the set {s,s € S; NSk, Dy < D; < D;}, where s is a
semaphore to access a resource and S; is the list of semaphores accessed by T;.

A very simple sufficient condition for the set T' to be schedulable is

i=1

in which we “add” to the normal worst case execution time, the blocking time, assuming it as an extra
computation. We need a more precise schedulability condition for DPCP.

We will assume that deadline equals periods and we define the scheduling interval for a request T;
to be the time

[7“1: ; f?]

where r; is the release time and f; is the completion time for 7T;. We will denote ¢; as the deadline
associated to the ceiling priority of sempahore Sj;, in fact, c¢; is the deadline of the highest priority task
that uses or will use semaphore S;.

Let I; be a scheduling interval for T; in which the maximal amount of computation time is needed
to complete T; and all higher priority tasks. Of course there may be a lower priority task that can
block T; in I;; let m be the index of this task. Let £; be the ordered set of requests’ deadlines within
the time interval [D;, Dy, and let L; = mingeg, (t — >0, L%J .E;). L; represents a lower bound of
additional computation time that can be used within I; while guaranteeing deadlines of lower prioriy
tasks.

Theorem 2.5 (Silly99) Using a dynamic PCP all tasks of T meet their deadlines if the two following
conditions hold:

Z % (2.1)
Li Vi,

B, 1<i<n (22)

See [54] for proof.

Example 2.7 Consider three tasks Ty = (4,12,16),Ty = (6,20,24),T3 = (8,46,48), where the first
parameter represents execution time, the second the deadline and the third the period. Analysis is done
within the interval [0, 48] where three instances of Tv, two of Ty and one for Ty will arrive. Ty accesses
semaphore Sy, Ty accesses So and task T3 both of them. Sy takes 2 units to be unlocked and Sy takes 4.
Conditions 2.1 and 2.2 are satisfied; according to deadlines, task T\ has the highest priority and hence
S1 and T3 has the lowest; Sy is assigned Ts’s priority. Figure 2.5 shows the schedule produced by a
dynamic PCP using the earliest deadline as late as possible, EDL, which promotes pushing the execution
of periodic tasks as late as possible, respecting their deadlines.

e At time ¢t = 0 the three tasks arrives: dy = 12, ds = 20 and d3s = 46; T; is executed first at ¢t = §,
the latest possible time to complete.
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Figure 2.5: Dynamic pCP

e At time t = 14, T3 is started following the EDL policy.

e At time ¢t = 16, while T} is executing, a new instance of T; arrives, its deadline d; = 28 > dy = 20,
T does not preempt Ts.

e At time t = 20, T> completes and at ¢t = 24 a new instance of Ty arrives, dy = 44

e At time ¢t = 24, T} starts and finishes at ¢t = 28.

e As T3 and T5 latest starting time is 38 but Ty deadline is 44, we start at t = 28 T5.

e At time ¢t = 32 while T is executing the last instance of T} arrives with deadline d; = 44, so it
does not preempt T5.
e At time ¢t = 34, T} starts and finishes at ¢ = 38 unlocking resources ofor T3 to start.

We will see in detail this algorithm in section 2.4.1.

2.4 Periodic and Aperiodic Independent Tasks

Our previous sections were dedicated to the problem of scheduling a set of periodic tasks; even if
the methods can be extended to a mixture of periodic and aperiodic tasks, the main results over
schedulability and bounded blocking time are found for a set of periodic tasks. In this section we will
try to analyse some approaches to handle a mixture of periodic and aperiodic tasks.

In principle we define an aperiodic task as a unit of execution which has irregular and unpredictable
arrival times, that is, a task that may be driven by the environment at any moment with no relation
among arrivals. These kind of tasks may be executed as soon as possible after their arrival while
periodic tasks might be completed later within their deadlines, taking advantage of the fact that we
know their periodicity to push their execution as late as possible, but finishing before deadlines. In
summary, we are respecting deadlines for periodic tasks and responsiveness for aperiodic tasks.
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2.4.1 Slack Stealing Algorithms

In [36] and [57] we find a slack stealing protocol, sSSP, which became the reference in scheduling a mixed
set of tasks. The idea is to use the idle processor time to execute aperiodic tasks.

As usual, a periodic task T; is characterized by its worst-case execution time, E;, its deadline D;
and its period P;, D; < P;; a task is initiated at time 6; > 0; periodic tasks are scheduled under a fixed
priority algorithm, such as RMA, and by convention tasks are ordered in priority descending order.

For each aperiodic task J;, we associate an arrival time a; and a computing time of ¢;. Tasks are
indexed such that 0 < a; < a;41; between the interval [0, ¢] we define the cumulative workload caused
by executing aperiodic tasks:

W)= > ¢

i|la; <t

Any algorithm for scheduling both periodic and aperiodic tasks accumulates the effective execution
time destinated to aperiodic tasks, €(t), for a period [0,%]; of course €(t) < W(t) which is an upper
bound of execution times for aperiodic tasks.

Aperiodic tasks are processed in a FIFO manner; the completion of a task J;, denoted by F; is given
by

2
F; = min{t[e(t) = Y ex}

k=1

and the response time for .J;, denoted R; is given by
Ri=F —a;

The scheduling algorithm proposed by Lehoczky and Ramos-Thuel minimizes R;, which is equivalent
to minimize Fj.

The ssp uses a function A;(t) for each task T; which represents the amount of time that can be
allocated to aperiodic tasks within the interval [0, ¢] which should run at a priority level i or higher,
being the processor constantly busy and all tasks meeting their deadlines. The total amount of free
time is A(t); since tasks T;’s are periodic, it suffices to analyse the interval [0, H], where H is the least
common multiple of the task periods.

1. For each periodic task T; and for each instance j of T; within [0, ] we compute
ming<;<p,;;){(A4ij + Ei(t))/t} =1

which gives the largest amount of aperiodic processing possible at level i or higher during interval
[0, F};] such that F;; < D;; (F;; is the completion time for the j-th instance of task T;),

2. At run time there are three different kind of activities: activity 0 is aperiodic task processing,
activities 1...n is periodic task processing and activity n + 1 refers to the processor being idle.

3. At any time, we keep A the total aperiodic processing and Z; the i-level inactivity. We suppose
periodic tasks are schedulable (by some other mechanism such as RMA). Suppose we start an
activity j at time ¢, which finishes at time ¢ (¢’ > t) and 0 < j < n +1). Then if j = 0 we add
t'—ttoAandif 2<j<nthen weaddt —ttoT,...,Z;_q
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. When a new aperiodic task .J arrives, we must compute the availability for this task. We compute

A*(s,t) = min(i<ij<n) (Ai(s, 1)
and
Ai(s,t) = Aij — A(s) = Li(s))

Suppose J arrives at time ¢ with a w computing time; if A*(s,#) > w then we can process
immediately at [s,s + w], at the highest priority level (since we are preempting the currently
executing task). If A*(s,t) < w then, we will execute at tiem [s,s + A*(s,t)] but no further
aperiodic processing is available until additional slack; this will occur when a periodic job is

completed.

The ssP is optimal in the sense that under a fixed priority scheduler for periodic tasks and a FIFO

management for aperiodic tasks, the algorithm minimizes the response time for aperiodic processing
among all scheduling algorithms which are feasible.

Calculating Idle Times

M. Silly, [54] introduced a very clear method to calculate static idle times for a set of independent
periodic tasks; these idle times are used to compute aperiodic tasks. The analysis is based, as for
Thuel’s and Lehockzy’s algorithm, on the assumption that periodic tasks may be executed as late as
possible, (based on their deadlines), and that aperiodic tasks are executed as soon as possible. This

algorithm is called Farliest Deadline as Late as possible, EDL.

We need to construct two vectors in the interval [0, H]:

1. K, called static deadline vector, which represents the times at which idle times occur and is

constructed from the distinct deadlines of periodic tasks:
K= (k01k17-'-7ki:ki+]:'":kq)

where k; < kiy1, ko =0 and k, = H — min{z;,1 <i <n} where z; = P, — D; V1 <i <n.

. D, the static idle time vector, which represents the lengths of the idle times:

D= (Ao, A1, A Ajyr, o Ay)

where each A; gives the length of the idle time interval, starting at k;, 1 < i < ¢g. This vector is
obtained by the recurrent formula:

A, = min{z;,1<i<n} (2.3)
A; = max(0, F;)fori=q—1down to0

with F; = (H — k;) — Z?:1 |—Hi+];kr|E7 — D hmiv1 Ak

Example 2.8 Reconsider example 2.7. In principle ¢ = 6 (or smaller); from formulae 2.3 and 2.4 we
know that ko = 0 and ke = 48 — min{4,4,2} = 46 and Ag = 2. The ’last’ moment to start running
can be derived from the differences among deadlines and execution times. For T, this moment is at
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Figure 2.6: EDL static scheduler

8 (12-4); for Ty is at 14 (20-6) and finally for T3 is at 38 (46-8). Deadline vector K is constructed
from deadlines; for Ty these are 12, 28, and 44; for Ty we have 20 and 44 and finally for T3 we have
46; sorting these numbers gives K = (0,12,20,28,44,46). Calculating D is a little more difficult. For
instance,

3 6
Fy = (48 — 44) 2[48_ i~k Z
7j=1 k=6

which gives
F;=4—-[0+0+8 —-2=-6

so A5 =0, and so on. Figure 2.6 gives the whole static scheduling

This information is now useful at processing time while a new aperiodic task task arrives. Suppose
J arrives at time a with an execution time of E and a deadline D. We need to find an interval [o, a+ D]
where at least E units of idle time exists, and this can be done easily by using our vectors K and D,
shifting the origin to a.

We will not give the details of these implementation, but only a simple example; see [54] for a full
description and proofs.

Example 2.9 Suppose at time o = 7 a task J arrives with E = 5 and D = 15. We need to know
if within [7,22] there exists 5 free units. We calculate this by creating K' = (7,12,20, 28, 44, 46) and
D' =(1,2,4,0,0,2). We have 1 unit in [7,8], 2 in [12,14] and 4 in [20,24], within [7,22] we have our
5 units. Task J may be accepted and vectors K and D must be corrected.

Silly, [54] also proposed a dynamic algorithm to calculate idle times while using a dynamic priority
algorithm for periodic tasks, such as EDF.

2.5 Periodic and Aperiodic Dependent Tasks

The model presented in this section, considers schedulability under a set of periodic and aperiodic tasks
which share some resources.
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Under this assumption, we cannot break an aperiodic task in multiple chunks to be executed in idle
processor time, because tasks are now not independent and could affect the static schedulability for
periodic tasks; on the other hand, if we schedule share resources by means of PCP, we need to assign to
aperiodic tasks a deadline in order to create their priority. We will show a simple method, called Total
Bandwidth Server, TBS, due to Spuri and Buttazzo, [55], [56] which assigns deadlines to aperiodic tasks

in order to improve their responsiveness and manage common resources.

2.5.1 Total Bandwidth Server

The Total Bandwidth Server, TBS, improves the response time of soft aperiodic tasks in a dynamic
real-time environment, where tasks are scheduled according to EDF. As usual, periodic tasks are
characterized by their execution times and deadlines; aperiodic tasks are only characterized by their
execution time. This protocol does not consider common resources but introduces some ideas which
are used for a mix of periodic and aperiodic dependant tasks.TBS can be used for a set of periodic and
aperiodic independant tasks.

We need a dealine for aperiodic tasks. When the k' aperiodic request arrives at time ¢t = ry, it

receives a deadline Y

C
di = max(rk,dk,l) + —k
Us
where C} is the execution time of the request and U, is the server utilization factor. By definition
dp = 0 and the request is inserted into the ready queue of the system and scheduled by EDF, as any
(periodic) instance.

Example 2.10 Consider two periodic tasks Ty = (3,6) and To = (2,8), where the first component
represents execution time and the second the relative deadline (equal to period), see figure 2.7.

Under this scenario, U, = % and consequently Uy < %. At time ¢t = 6 while the processor is idle, an
aperiodic task .J; with C; = 1 arrives and its deadline is set to dy = r; + (C}—‘ =6+ 0]? = 10. Task can
be scheduled since we are not exceeding the utilization factor, (% < %, and its deadline is the shortest
(no other tasks are in queue), J; is served inmediately. We also show a task Jo with Cy = 2 which
arrives at time ¢t = 13 and is served at t = 15, since its deadline is set to 21 but a shorter deadline task
is still active. Finally there is a task J3 with C'5 = 1 which arrives at ¢ = 18, executed at t = 22.

Actually, as can be seen in figure 2.7, TBS is not optimal, since we could improve the responsiveness
of aperiodic jobs. The authors propose an optimal algorithm, called TB*, which iteratively shortens
the assigned TBS deadline using the following property:

Theorem 2.6 (Buttazzo and Sensini,97) : Let o be a feasible schedule of task set T, in which an
aperiodic task Jy, is assigned a deadline dy,, and let fy be the finishing time of Jy in o. If dy, is substituted
with dj, = fi., then the new schedule o' produced by EDF is still feasible.

2.5.2 7TBS with resources

The duration of critical sections must be taken into account when we handle common resources. In
fact, when we have a mixture of periodic and aperiodic tasks, we need to bound the maximum blocking
time of each task and analyse the schedulability of the hybrid set at arrival of a new aperiodic job.
Buttazzo et al. based their algorithm assuming a Stack Resource Policy, srP, [11], to handle shared
resources. We describe briefly this policy.
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Figure 2.7: TBS example

In the TBS with resources, every task T; is assigned a dynamic priority p; based on EDF and a static
preemption level 7; such that the following property holds:

Property 2.1 (Stack Resource Policy) Task T; is not allowed to preempt task T;, unless m; > 7.
The static priority level for a task T; with relative deadline D; is m; = DL In addition, every
resource Ry is assigned a ceiling defined as:
ceil(Ry) = {x|T; needs Ry}
Finally a dynamic system ceiling is defined as:

I1,(t) = max[{ceil(Ry)|Riis currently busy } U {0}]

The SRP rule states that:

“a task is not allowed to start executing until its priority is the highest among the active
tasks, noted act(T"), and its preemption level is greater than the system ceiling”.

That is, an executing task will never be blocked by other active tasks though it can be preempted
by higher priority tasks but no blocking will occur.

Under this protocol, a task never blocks its execution; it cannot start executing if its preemption
level is not high enough; however, we consider the time waiting in the ready queue as a blocking time
B; since it may be caused by tasks having lower preemption level. The maximum blocking B; for task
T; can be computed as the longest critical section among those with a ceiling greater than or equal to
the preemption level of T;, (a similar reasoning have been applied in [54]):

B; = maX(T].eMt(T)){SLh | (D; < Dj) ANm < ceil(pj,h)} (2.5)
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where s; , is the worst case execution time of the ht" critical section of task T; and p; p is the resource
accessed by the critical section s; .

The following condition:

LB
V71<7<WZ F <1 (2.6)
k=1

can be tested to ensure feasibility of a set of periodic tasks with common resources.

To use SRP along with TBS, aperiodic tasks must be assigned a suitable preemption level. Buttazzo

et al, propose:
Us
T = ——
A
for each aperiodic task J;, We can still use formula 2.5 ranging over the whole task set, to calculate
the blocking using D; = J as deadline of aperiodic tasks.

The following theorem ensures schedulability for an hybrid set of tasks:

Theorem 2.7 (Lipari and Buttazzo,99) Let T* be a set of n periodic tasks ordered by decreasing
preemption level (m; > m; iff i < j) and let T4 be a set of aperiodic tasks scheduled by TBS with
utilization U,. Then, set TT is schedulable by EDF+SRP+TBS if

L 4+U,<1 2.7

2., *Uss (2.7)
Vi,1<i<mn,VL,D; <L<D, (2.8)
L>Z[—JE + maz{0, B; — 1} + LU, (2.9)

7j=1

Example 2.11 Consider two periodic tasks Ty = (2,8) and To = (3,12) which interact with two

appriodi(‘ jobs Jy and Jz, both having execution time 2 and release times 1y = 0 and ro = 1, respectively.
T

U, < 2 =+ 132, Us = ]5 Ty =Ty, = 5 = %; Ty and Js share the same resource during all their execution

but ]2 has a higher preemption level. Jy is served first in virtue of FIFO for aperiodic tasks and Js is

served before T, even if both have the same preemption level, but we enhance responsiveness. Figure

2.8 shows the scheduling.

2.6 Event Triggered Tasks

Up to now, we have described RTS as a collection of tasks, periodic and aperiodic, which are triggered
by external events; implicitly for periodic tasks we assume the “period” as the event that makes a task
(better said, a new instance of task) be released and enter the system. For aperiodic task, we are only
interested in its arrival and in its scheduling taking into account other tasks already active.

We consider now RTS in which a task is triggered by wvarious events in their environment. A task
might be triggered as a consequence of another task completion or by various events in the environment.
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Figure 2.8: Sharing resources in an hybrid set

We will distinguish internal and ezternal events; the former are related to the system itself and more
precisely to the set of active tasks in the processor; the latter are related to the external environment,
that is to the reaction of some procedures not included in the systems (for instance, sensors, measures
instruments, human action, and so on).

Balarin et al, [13] have proposed an algorithm for schedule validation under a scene of event triggered
tasks, ETT. We will describe their method as it sets up a new model for reactive RTS.

2.6.1 A Model for ETT

Intuitively an event triggered system is modelled as an execution graph, where some tasks are enabled
by others or by some external events; feasibility of such a system is seen as all tasks completing before
a new occurrence of the event that triggers it re-appears in the system. We say that a system is correct
if certain critical events are never “dropped” or missed.

Formally, a system for ETT is a 6-uple (T,e,U, m, E,C) where:

e T'={1,2,...,n} is a set of internal task identifiers, where identifiers also indicate tasks priority,
the larger the identifier, the higher the priority. We note by m; the priority of a task i.

e ¢: T — R which assigns to each internal task its (worst) execution time.

U, such that UNT = ) is a set of unique external task identifiers, representing the tasks generated
by external events of the environment.

e m : U — N which assigns to every external task the minimum time between two occurrences of
the event that triggers it.

E C(TUU)xT is a set of events; a pair (i, 7) indicates that a task ¢ (external or internal) enables
the internal task j; if 7 is external, we say (i, j) is an external event, otherwise (i, j) is an internal
event. Nodes T'U U and edges in E constitute the system graph of our application.
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Figure 2.9: An example of ETT

e (' C E is a set of critical events

Example 2.12 We show in figure 2.9a) a system with 7 tasks; tasks 6 and 7 are external, critical
events are marked by dots and processing is not all inclusive, that is an internal task is triggered by
one event. For instance, task 2 must start after receiving information from task 1 but need not wait for
information from task 6 (event (6,2) is not critical and might be dropped).

An ezecution of a system is a timed sequence of events that satisfies the following;:

e An external task ¢ can execute at any time, respecting the minimum delay m(i) between two
executions.

e after 7 has finished its execution, all tasks j such that (i, j) € E are enabled, and task i is disabled.

e If a task i is enabled at time t;, then it will finish its execution or become disabled at time t5 such
that in interval [t1,?5] the amount of time where i had the highest priority is e(i).

An event (i,j) is dropped if after i becomes disabled, task i is executed again before task j is
executed. An execution is correct if no critical events are dropped in it. A system is correct if all of its
executions are. We show an execution of our example in figure 2.9b).

2.6.2 Validation of the Model

If we want to guarantee correctness, we need to show that no critical event is dropped in any execution;
a sufficient condition for that is to ensure that for every critical event (i, j), the minimum time between
two execution of i is larger than the maximum time between ¢ and j. In Balarin’s model, they propose
a version where:
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e Only external events can be dropped; the minimum time between two executions for these events
is determined by a system description.

e Conservative estimation of the maximum time between execution of ¢ and j.

The first proposition is quite simple:
Proposition 2.1 Ifi < j then (i,j) cannot be dropped.

In fact, remember that in their model, ¢ < j implies 7; < 7; and if i triggers j, this task has higher
priority and can never be dropped by the arrival of a new instance of 1.

Balarin et al. have settled a condition for an event (i, 7) not to be dropped; it is based on the notion
of an exclusive frontier for each internal task 1.

Definition 2.6 (Exclusive Neighborhood) Let (F, N) be a pair of disjoint subsets of tasks; (F, N)
is an exclusive neighborhood for some internal task i if F and N satisfy the following conditions:

Clie FUN
C2 Vj,k:((ke N)A((j, k) € E)) = (j € FUN)
C3 (Vke FUN —i)31j € N: (k,j) € E and i has no successors in N.

C4 k < j for every k € F and every 7 € N.

Fis the frontier and N is the interior of an exclusive neighborhood, which gives the graph obtained
by traversing backwards from i and stopping at the frontier nodes. For example, task 4 has an exclusive
neighborhood with F' = {1,2} and N = {4, 5}.

Under this definition, the following theorem holds:

Theorem 2.8 If (i,j) € E and (F, N) is an exclusive neighborhood for task i, such that: k < jVk € F,
then event (i,7) cannot be dropped.

which gives a very simple policy to assign priorities to tasks, based on propositon 2.1, which is in fact
a corollary of this theorem.

On the other hand, we can verify if a critical event (i,7) can eventually be dropped; it suffices to
perform a backward search of a system graph starting from i. The search finishes when we reach a task
with priority less than j. If at any time some task is reached for the second time (violating C3) or an
external task is reached (violating C4), the search finishes with failure (but results are inconclusive).
On the contrary if no more unexplored nodes with priority larger than j are found, then we satisfy the
theorem and the event cannot be dropped.

Finally the authors also propose a methodology to analyse the possibility of an external event be
dropped, simplified in [12]. The problem is quite simple to formulate, but not easy to solve.

Basically, to know if an external event (i, j) can be dropped, we need to check whether the execution
of j can be delayed for more than m(i) units of time. In order to do so, they calculate an interval,
called m;-busy interval, where the processor is always servicing tasks with priorities higher than =;.
The first step in computing such a bound is to compute partial loads, noted (i, p), as the continuous
load at priority p or higher caused by an execution of task i. At the beginning of a p-busy interval
some task with priority lower than p, say k, may be executing and eventually at completion, £ might
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enable some tasks of priority p or higher. The total workload generated by such a task is bounded by
max{d(k,p) | k € T,m < p}.

As new tasks can be triggered as the consequence of external events, we consider that in a p-busy
interval of length A, there can be at most [ﬁ] executions of an external task u generating a workload
of d(u,p) at priority p or higher, hence we have:

A < max{d(k,p) |k € T,m, < p}+ Z [%15(%@
uelU

which can be solved by iteration; if p = 7; and A < m(3), then (4, j) cannot be dropped.

2.7 Tasks with Complex Constraints

In this section, we present some ideas to attack the problem of scheduling when tasks must be analysed
using complex constraints. We borrow from [30] the term complez contraints which means that a set
of tasks is characterized not only by simple constraints such as period, release time and deadline but
also by some other constraints which cannot be embedded in traditional scheduling.

Within these complex contraints, we can cite:

e Precedence constraints: such that a task is triggered by another task or the distribution of tasks
in many processors which requires some internode communication.

e Jitter: even if a task must finish before its deadline, the evolution of a task may be different from
instance to instance. The maximum time variation (relative to the release time) in the occurrence
of a particular event in two consecutive instances of a task defines the jitter for that event. For
example, the start time jitter of a task is the maximum time variation between the relative start
times of any two consecutive jobs; similarly we can define the response time jitter as the maximum
difference between the response times of any consecutive jobs, that is the maximum delay for an
instance of a task, [19].

e Non periodic execution: where some instances of a tasks might be separated by non constant
length intervals (this cannot be handled under EDF).

e Semantic constraints: tasks are characterized by parameters such as performance or relialiblity;
for instance: allocate a task to a particular processor.

We will briefly describe the method proposed by [30] in order to handle tasks with complex con-
straints. The method begins by treating periodic tasks, which are reduced offline to create scheduling
tables, [27]; it allocates tasks to nodes and resolves complex constraints by constructing sequences of
task executions. Each task in a sequence is limited by either sending or receiving internode messages,
predecessor or successor within the sequence. The final result is a set of independent tasks on sin-
gle nodes with start-times and deadlines. These tasks can be scheduled according to traditional EDF
method but we have to take into account the eventual arrival of aperiodic tasks which can violate the
complex constraint construction.

Isovic et al. propose an extension of EDF, called two level EDF, [23]. There is a “normal level”
to schedule tasks according to EDF but a “priority level” to an offline task when it needs to start at
latest, similar to the basic idea of slack stealing for fixed priority scheduling, [57]. We need to know
the amount and location of resources available after offline tasks are guaranteed schedulability.
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For each node, we have a set of tasks, with start-times and deadlines, tasks are ordered by increasing
deadlines and the schedule is divided into a set of disjoint execution intervals. For each instance j of
offline task 7; we define a window w(7}). We have:

. est(T;i) which is expressed in the off-line schedule as the earliest start time, provided by the task
constraints.

o f(lei) the scheduled finishing time according to the off-line schedule and

. start(T;?) the scheduled start time of instance j is the starting time of lei according to the off-line
schedule.

Each window w(T;?) = [est(Tl:i)7 dl(lei)], where dl(T;?) is the absolute deadline of instance j of task

We define spare capacities to represent the amount of available resources for these intervals. Each
task deadline defines the end of an interval I;. The start is defined as the maximum of the end of the
previous interval or the earliest start time of the task. The end of the previous interval may be later
than the earliest start time, or earlier, thus it is possible for a task to execute outside its interval, earlier
than the interval start but never before its earliest start time.

The spare capacities of an interval I; are calculated as:

se(l;) = [I;] = > Er — min(sc(Iiy1),0)

Tel;

since a task may execute prior to its interval, we have to decrease the spare capacities lent to subsequent,
intervals.

Runtime scheduling is performed locally for each node. If the spare capacities of the current interval
are greater than 0, then EDF is applied on the set of ready tasks, -normal level. If no spare capacities
are available, it means that a task has to be executed inmediately (since we have already guaranteed
schedulability).

After each scheduling decision, the sc for an interval is updated. If a periodic task assigned to an
interval I, executes, no changes are need, but if a task 7" assigned to a later interval I;, j > c executes,
the spare capacity of I; is increased and that of I, is decresead. We will show that current spare
capacity is reduced by aperiodic tasks or idle execution.

When an aperiodic task .J; arrives to the system at time ¢; we perform an acceptance test based on
other previously arrived aperiodic task waiting for execution; if this set is called G, we should test if
G U J; can be scheduled, considering offline tasks. If so, we can add .J; to G.

The finishing time of J;, f;, with execution C; can be calculated with respect to J;_1; with no offline
tasks, f; = fi_1 + C; represents the finishing time for .J; but we should extend the formula reflecting
the amount of resources reserved for offline tasks:

[ t+RILA r=1
fi=Cit { fici + R[fi—1, fi) i>1

where Rlt,t2] stands for the amount of resources reserved for the exectuion of offline tasks from time
t1 to ta. We calculate this term by means of spare capacities:

Rlty,ts] = (ta — 1) — Y max(sc(I,),0)
I.€(t1,t2)
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As f; appears on both sides of the equation, the authors propose an algorithm for acceptance of a
new aperiodic task A; in O(n), where n is the number of aperiodic tasks in G not already completed.

In [23], Dobrin, Ozdemir and Fohler propose an algorithm for fixed priority assignment in the
context of off-line tasks. For off-line tasks we assign priorities based on starting points; as the system
evolves, it cannot always be possible to keep the same priority for different instances of the same task,

so new ’ficticiuos’ tasks are created.
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Chapter 3

Inspiring Ideas

Résumé

Une premiere idée a été I'ordonnancement de programmes Java Temps Réel, pour répondre aux ques-
tions “est-ce qu’on peut modéliser un programme Java selon certains points d’observation?” et “est-ce
qu’on peut trouver, a partir de ce modele, un programm Java Temps Réel Ordonnancé?”

Pour resoudre ces deux probleémes on a commencé par ’ordonnancement a partir d’un certain model
abstrait, [32].

Un programme Java en Temps Réel, est un ensemble S de threads H; chaque thread est indépendente
a I'exécution mais elle se communique avec autres threads par les instructions de synchronisation.

Chaque thread H est divisée logiquement en taches; chaque tache d’une thread H peut étre exécutée
en parallele ou entrelacée avec autres taches d’autres threads. Les taches d’une thread son ordonnancées
d’une fagon séquentielle.

Formellement, on dit qu'une thread H; est composée par une séquence

J. . J. o
3Ty Ty,
de taches. Les “;” separent les differentes taches a I'interieur d’une thread.

Chaque thread H; peut étre périodique, i.e. elle arrive dans certains intervalle de temps définis
statiquement, T;. A chaque tache Tij on va associer une valeur C; correspondant au temps d’exécution.
Finallement, & chaque thread H; on peut associer une écheance, D; correspondante au temps maximal
de finition de la thread. C’est le cadre classique de STR, [54], [37], [36].

Dans le cadre de notre modele, un programme est une séquence de taches de differentes threads et
un programme ordonnancé est une séquence de taches telle que & 'exécution elle respecte les contraintes
temporelles.

3.1 Introduction
Embedded systems play an increasingly important role in daily life. The strong increasing penetration
of embedded systems in products and services creates huge opportunities for all kinds of enterprises

and institutions, [3]. It concerns enterprises and institutions in such diverse areas as agriculture,
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health care, environment, road construction, security, mechanics, shipbuilding, medical appliances,
language products, consumer electronics, etc. Real-time embedded systems interact continuously with
the environment and have constraints on the speed with which they react to environment stimuli.
Examples are power-train controllers for vehicles, embedded controllers for aircrafts, health monitoring
systems and industrial plant controllers. Timing constraints introduce difficulties that make the design
of embedded systems particularly challenging.

Hard rT embedded systems have tight timing constraints, i.e., they are difficult to achieve and
they must not be violated, with respect to the capability of the hardware platforms used. Hard RT
constraints challenge the way in which software is designed at its roots. Standard software development
practices do not deal with physical properties of the system as a paradigm, so we need some new models
which add non-functional aspects to the logic of the problems.

As embedded systems are growing, it stands out that a development language for these systems must
be a popular programming language, which includes interesting features for real time environments.
Java is a language which really covers many of the needs of real time programming, to the extent that
today we can talk of Real Time Java, [15], RT-Java, and even scientific meetings concerning Java and
Embedded Systems.

Java is a language which provides some basic components such as methods, grouped in classes and
objects belonging to a class; it provides concurrency through the special class Thread where different
processes can coordinate, wait and resume their executions; many of these needs are imperative in
RTS. Another important feature of Java is its ortogonality, that is, almost everything is reduced to the
concept of object.

Real Time Java deals easily with aspects such as scheduling, memory management, synchronization,
asynchronous event handling and physical memory access, in some way platform-independent and hence
applications are portable and the developement may be distributed. Java technology is already used
in a variety of embedded applications, such as cellular phones and mobility.

Some of the advantages of the Java technology are:

e Portability. Platform independence enables code reuse across processors and product lines, allow-
ing device manufacturers to deploy the same applications to a range of target devices and hence
lower costs.

e Rapid application development. The Java programming language offers more flexibility during
the development phase, since it can begin on a variety of available desktop environments, well
before the targeted deployment hardware is available.

e Connectivity. The Java programming language provides a built-in framework for secure network-
ing.

e Reliability. Embedded devices require high reliability. The simplicity of the Java programming
language, -with its absence of pointers and its automatic garbage collection-, eliminates many
bugs and the risk of memory leaks.

It stands out that Java is a language which fulfils many of the real time requirements over a
firm language architecture; even more, Java is very popular and well known for the implementation
community.

Java and Schedulability. Our first need was in principle to answer the question “is it possible
to model a RT-Java Program in order to synthesize a scheduled program which ensures all temporal
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Figure 3.1: Construction of a RT-Java Scheduled Program

contraints?”. Our objective can be resumed in figure 3.1, where a Java program suffers a process of
analysis in order to construct, synthetise, the scheduled program.

So, we need to model a Java Program or a RT-Java Program in order to perform scheduling oper-
ations. We are particularly interested in analysing a program to say whether it is schedulable or not.
Scheduling properties to be respected are deadlines, execution times, synchronization points and shared
resources. The final objective is to find a possible sequence of execution which can guarantee all the
properties mentioned above.

The result of the analysis should be a scheduled Java program with some scheduling policy embedded
in the Java language through its RT platform. Java provides some means to model synchronization
among processes, through two primitives wait and notify and mutual exclusion through the attribute
synchronized over an objet. Java performs coordination by blocking an object. So, to be independent
of this special semantics, we propose to differentiate clearly these two aspects:

1. Synchronization or coordination among threads, that is communication in a producer/consumer
fashion is done through two primitives: await to signal waiting of a message and emit to signal
sending of a message. Conceptually speaking it is as if there were no explicit locking of the object
over which we wait.

2. Mutual exclusion, that is an object cannot be accessed by more than one thread at a time, in
order to assure correctness. This is done through the (Java) attribute synchronized over the
object which must be preserved.
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class PeriodicTh extends PeriodicRTThread class Thread2_body implements ThreadBody
{ long p ; { Event a, b ;
ThreadBody b ;
PeriodicTh(long p, ThreadBody b) public void exec()
{ this.p = p ; { t6;
this.b = b ; a.await;
} t2;
public void run() b.await;
{ long t ; t4;
Clock ¢ = new Clock() ; t3;
while(true) }
{t = c.getTime() ; }
b.exec() ;
waitforperiod(p + t - c.getTime()); class Example
} { public static void main(String argv[])
} { Event a = new Event() ;
} Event b = new Event() ;

Threadl_body thl_body = new Threadl_body(a,b) ;
interface ThreadBody Thread2_body th2_body = new Thread2_body(a,b) ;
{ public void exec() ; PeriodicTh threadl = new PeriodicTh(10, thi_body) ;
} PeriodicTh thread2 = new PeriodicTh(20, th2_body) ;

}
class Threadl_body implements ThreadBody }
{ Event a, b ;
Threadl_body (Event a, b) class Event
{ this.a = a ; { public void emit()
this.b = b ; { synchronized(this) {this.notify}
} }
public void exec()
{t7 ; public void await()
tl { synchronized(this) {this.wait}
a.emit; }
t5 ; }
b.emit;
}
}

Figure 3.2: Two Threads

We present in figure 3.2 an example of a Java-like program where we have modified some of its
primitives.

We also need to coordinate the environment and the application through the execution platform.
The environment is represented by a series of events which may be triggered by time passing or by a
control device; they must be taken into account by the application in some predefined delay, but the
application response depends greatly on the speed of the execution architecture.

3.2 Model of a rT-Java Program

We model a Java Program as a set T of Threads, each thread is independent in its execution but it
communicates to other threads through await and emit instructions to cooperate in the execution of a
task, and synchronized blocks to coordinate access to critical sections of common resources in a mutually
exclusive manner.
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Threads and Tasks. FEach thread H is logically divided into blocks of instructions, which we call
tasks; certain tasks can be executed in parallel or in an interleaved way with other tasks of other
threads, but tasks within the same thread H are sequentially ordered.

Formally, we can say that a thread H; is composed by a sequence

T13Tos e T,

of tasks (note the “;” separating the tasks).

This model can be obtained by application of some techniques such as [32, 28] where some obser-
vation points are considered to “cut up” the code. We are particularly interested in synchronization
among threads through the operations await and emit and use of shared resources.

Each thread H; can be periodic, that is, it arrives at regular intervals of time, defined statically.
We note P; the period for thread H;. Each task 7/ has a (worst case) ezecution time, Ei which is also
static and derives from some off line analysis. Finally, we associate a deadline D; to each thread H;.
This is the classical approach for RTs, [37, 36, 54], which we developped in chapter 2.

In our model, a program is a sequence of tasks from different threads and a scheduled program is a
sequence of tasks which in execution will respect the timing constraints (deadlocks, execution times,
periods).

Tasks and Resources. Tasks in H may access some shared resources, that is, shared data whose
access must be protected by a protocol to guarantee that at most one and only one modifier is present
at any time. As we have seen, before accessing a shared resource, r;, a locking operation over r; is
demanded to the data manager who keeps a register of all resources and their states (free or busy);
such operation may be granted if the resource is free or denied if it is busy, in this case, the demander
waits for permission.

Once a task has finished with r; it releases it to the system by an unlock operation, u;, which is
always successful. We demand an “ordered” usage of lock and unlock operations, that is the last locked
resource is the first to be unlocked, following a stack logic.

In Java we recognize the lock and unlock operation by the structure:

synchronized(r1)

{

where the block between “{” and “}” is the critical section for 1 and synchronized is a modifier of the
block indicating that before accessing this code, we must obtain a lock over the object, (r; in our case)
equivalent to a lock operation. After exiting this protected code, the lock over r; is released.

3

For a set T of threads, we define the set R as the universal set of all shared resources used by tasks
in T and to each 7}, we associate a set R(7;) C R of the resources it needs.

We are now ready to give the following definition:

Definition 3.1 A scheduled program is a sequence of tasks of different threads which in execution
respects the timing constraints (absence of deadlocks, execution times and periods) and mutual exclusion
for shared resources.
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Relationships Among Tasks. If we consider two tasks 7} and le we can establish one of the
following relations:

1.

T, le are independent, i # j and they can be executed in any order, that is, they belong to
different threads, they do not share resources and they do not coordinate.

T le belong to the same thread H;, ¢ = j, and will be executed according to the internal logic

of H;: 7} is executed before 7, if k < I. We denote 7/;7/ the immediate precedence relation

(in fact, I = k + 1) of two tasks from thread H; and 7} — le, the precedence relation in the
sequence of the decomposed thread H;, i.e., the transitive closure of the sequence relation, “;”.

7',27 7{ belong to different threads and communicate through a await/emit relation. In this case
we can say that 7} notifies 7, denoted T~ 7{. The ~~ relation, expresses a waiting state for
Ti7 until the emit arrives, that is we can see T,i as a producer and Ti7 as a consumer and the emit

as the fact that a product is ready. On the other hand, le must be in a waiting state to “hear”
a notify. To each thread H;, we associate the set N; of notifiers that is:

Ni = {rilri =~ 7 i # j}

J

, L , 4
4. 74, 7{ use a common resource r, then 7, < 7} if r € R(7}) Ar € R(1}).

It should be clear that both the precedence and the wait relations impose a hierarchical relation
between two tasks, but the await/emit relation imposes a coordination with another task, while the
precedence relation is simply a way to express that a task will be thrown after the completion of its
preceding in the sequence.

Precedence can be established statically and it is always “successful” in execution time, while
await /emit relation may fail if the waiting task is not ready to hear a notify; in our model, the scheduler
must assure this procedure in order to guarantee success of the operation.

In this hierarchy we distinguish some special tasks:

e Task 7/ is the starting of a thread H if Vk, 71 — 7}/

e Task 77 is the last of a thread H if Vk, 7}/ — 7/

e Finally, task 7{ is autonomous if it does not wait for another task, that is if =31, 5 7/ ~ /.

3.2.1 Structural Model

We model a program as a graph, where the set of nodes corresponds to tasks and the set of arcs
corresponds to precedence and await/emit relations. We describe our model through an example.

Example 3.1 Figure 3.3 shows the model of the program in figure 3.2.

and

We can observe two threads Hy and Hy composed by the sequence

Hy = [r7;71; 5]

Hy = [16; T2; T4; T3]
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Er=1
T1

FE1 =2
1,72

Hy = [17;7T1;T5]

™ & Hy = [76;72; 743 73]
By =1 Py =D; =10
Py = Dy =20
—® sequence
,,,,,,, » synchronization
E3 =2

Figure 3.3: Two Threads

respectively' ; we can also see two synchronization points as 71 ~ 7o and 75 ~ T4, shown as dotted lines;
worst execution time for each of the tasks is indicated beneath each task.

T
R = {r1,r2}, task 71 uses a resource r1 and 75 uses both r1 and ro; task T4 uses r1 and 1 S
among others.

The model of the program shows a partial order among tasks; those belonging to the same thread
are totally ordered, by the sequence relation; those tasks tied by a ~ relation are also totally ordered
and finally some tasks are not ordered.

3.2.2 Behavioral Model

Task behaviour can be described through a classical state model shown in figure 3.4, which is self-
explanatory. Anyway let us note that the execution platform has three queues: ready (RQ), waiting

(WQ) and sleeping (SQ), associated to the respective states. Each task can be in one of the following
states:

1

we will skip the superindex indicating the thread if no confusion results
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e Idle: task is not active.

e Ready: task is in RQ and can be chosen by the scheduler to begin execution. It needs no emit

operation but

e Waiting: task

may need or even have some shared resources.

is in WQ, waiting for an emit; its execution is blocked until the emit arrives.

e Executing: task is running.

e Sleeping: task is in SQ because it was preempted by a higher priority task. Later it will resume
its execution (it is not blocked).

wait for emit

notified

preempted

resumed

Figure 3.4: State Model

We define the following rules to manage the queues over the execution:

Ready Rule

Waiting Rule

Migration Rule

Preemption Rule

T,;T /\—EIle,i # j,le‘w T,f;
RQ—=RQ® T}

TéT /\37’{,2' #* j,le ~ ”r,f
WwWQ —» WQ @Té

) EWQA[Hle,lei,i#,jAle ~ T}
RQ—-RQa 7 AWQ > WQoT

exec(ri) A 37/, 1) € RQ,i # j, i < A =locked(R(1}))]
5Q 5 5Q@ T
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Execution Rule

i € RQ A7} > highest(RQ) A 7§ > highest(SQ) A —locked(R(7}))
RQ — RQ & 7} Aexec(r})

Resuming Rule

i € SQ A mi > highest(RQ) A wi > highest(SQ) A —locked(R(r}))
SQ — SQ & 7} A exec(r})

The & and & represent the queueing and dequeueing operations, respectively;

71 and 7| represent the arrival and completion of task ;

Predicate:

— exec(7) indicates that 7 is executing,
— locked(R(7)) the fact that 7 is locked by one or more resources and

— highest(Q) gives the maximum priority in queue Q.

i . . . 1/ . . . . . .
m}, is the priority of 7;; next section clarifies priority assignment.

Remark 1 Note that a task that does not wait for an emit is in the RQ, with some priority; if it has
the highest priority and all resources it needs, it executes. Preemption, based on priorities, is permitted.

Remark 2 If a task is in the WQ then it needs an emit from some other task; it can wait for an emit
retaining a resource locked (and never released) by one of its ancestors but it cannot be waiting for an
emit and a new resource at the same time, since the await operation prevents execution.

3.3 Schedulability without Shared Resources

A scheduling algorithm gives some order among tasks; in a static or dynamic manner, this order is based
on some restrictions and relationships among tasks, which can lead the scheduler to some decisions. As
already said this order is based on timing constraints since a task must respond within its deadline or
it may cause a critical event to happen; in our model we need also to schedule the precedence and the
await/emit relation. For the instant being, we are not considering shared resources.

We have defined a simple fized priority assignment algorithm, which takes into account the prece-
dence and await/emit relations:

Rule T To each thread H; we assign a priority II; based on some classical fixed scheduling policy,
such as RMA; these policies take into account the period, P;, or deadline, D;, of threads.
For instance, in the case RMA we can say that II; > II; if P; < P;. This is the base priority
for all tasks in H;.

Rule-1T If ”r,f;;T,f;H A le ~ T,i+1 A #j) = al > 7r'li. The second rule changes the priority to
some tasks within a thread.
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T3 T T3 T2 Tal executing

\ | | | | | | | | | |

\ \ \ \ \ \ \ \ \ \ \

0 2 7 10 12 15 17 30

i 75 75 \ pending g, =5 E;=2
nt st it missed deadline

731

Figure 3.5: Counter example of priority assignment

If all tasks were independent, the first rule suffices to execute each thread autonomously and fol-
lowing an RMA analysis we could know of its schedulability (see chapter 2).

The second rule applies to the operation of emit. Remember that a task waiting for an emit is in
the WQ (waiting rule) and will remain there until it “hears” such operation. On the other hand, an
emit, operation is always “successful”: the notifier sends an emit and continues its execution (it is to
the execution platform to manage this operation), but the waiter must be in a waiting state to listen
the notify. This rule states that a waiting task, TZ;+1, will be triggered by its ascendent 7}, and put into

the WQ before the execution of le from which it waits the emit, in order to be ready to “hear” it and
be ready to execute (migration rule). Observe that the starting task 7/7 of a thread never waits.

In conclusion:

o ' ‘ Hi>H_7‘/\TIz¢./\/i
V1,10 # j,my, > m iff ¢ or ‘
i j i
I AT TR

which gives a partial set of constraints of the form /\#j 7r,’;07r{, and 6 € {<,>}.

Example 3.2 (See figure 3.5) Let us consider two threads H s = [11; 12| of period 15, where both tasks
have an execution time of 5 and a thread Hg = [13] of period 10 and 13 executes in 2 units and then
notifies 7o ; both threads arrive at t = 0. Considering periods as deadlines and fizing priorities using
exclusively RMA gives w3 > w1 = mo. Under this assignment, the execution shows a deadline missing.

On the contrary, if we use our rules, we have that no relation can be stablished among 7o and T3
and 3 < T (since T1;Ta A T3 ~ T2 ), the system becomes schedulable.

3.3.1 Model Analysis
To each task 7, we can associate the following “times”:
e Arrival time, afc, denoting the time a task is put in the ready or waiting queue.
e Blocking time, 8%, denoting the time a task is retained in the ready or waiting queue.
e Sleeping time, 0};, denoting the time a task spends in the sleeping queue, after being preempted.

e Finishing time, f;, denoting the time a task complets its execution.
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Definition 3.2 The starting time of a thread H;, «;, is the arrival time of its starting task, i.e.,
a; = a), and 7} = starting(H;)

Definition 3.3 The finishing time of a thread H;, F;, is the finishing time of the last task in the
thread, i.e., F; = fi and 7! = last(H;)

Definition 3.4 (Schedulable Thread) A thread H; is schedulable if F; < D;, that is, its ezecution
finishes before its deadline.

Definition 3.5 (Schedulable System) A set T = {H;,Hs,...,H,} of threads composing an appli-
cation is schedulable if all threads H; are schedulable, i.e,

As noted in chapter 2, [37], to verify schedulability it sufficies to analyse the time-window or interval
[0, H], where H is the hyperperiod for all periodic threads, defined as the least common multiple of all
periods. For each thread H; we see its evolution within the interval and if at arrival of a new instance
of its starting task, the finishing task corresponding to the precedent execution has already finished,
the thread is schedulable. This idea motivates the following revisited definitions:

Definition 3.6 (Finishing Time Periodic Task) The finishing time of a task 7} of a periodic
thread H; in its j-period is calculated as

ij i ghd L i i
[yl =ap + 67 +o,” + B

Definition 3.7 (Finishing Time Periodic Thread) The finishing time of a periodic thread H;
in the j-period, that is F}, is the finishing time of its last task, in the j-period,

F =11
where 1, = last(H;).
Definition 3.8 (Schedulable Periodic Thread) A periodic thread H; is schedulable if
F/<al+P=jxP
for all j,1 < j < m;, where j is a period, n; is the number of periodic arrivals of H; within [0, H]
If a system respects the previous rule for all its threads, we have a schedulable application.

Definition 3.9 (Schedulable Periodic System) An application system of periodic threads, T =
{H,,Hs,...,H,} is schedulable if all threads H; are schedulable:

Vil<i<n,F/ <al+P
where 1 < j <n;, j is a period, n; is the number of periodic arrivals of H; within [0, H]
Resuming, we present an operational approach of our model.

1. Priorities are assigned off line according to rules 1 and 2.
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Figure 3.6: Partially Ordered Tasks

2. At time ¢t = 0 starting tasks of active threads are in RQ.
3. The highest priority starting task of a thread H; begins its execution.

4. When a task 7/ finishes, it may trigger another task 7/, in the sequence, which is put in the RQ
(ready rule) or WQ (waiting rule).

5. When a task 7/ finishes it may emit to le; accordingly to the migration rule, le is awakened, if
it is in the WQ and it is sent to RQ; otherwise the event is lost.

6. If at a moment ¢ = ¢’ it arrives a task le which has greater priority than that in execution, say
71, then 7/ is preempted.
3.3.2 Examples

Example 3.3 Let us reconsider our example 3.1, without resources.

According to the operational approach, we assign threads (and tasks within threads) priorities using
our rules; applying this criteria to our example, gives:

1. H] >H2 sinceP1 <P2
2. As 14; 5 and 71 ~ 7 then mg > m

3. As m; 74 and 75 ~ 74 then m > 7

According to this mechanism, the rest of the tasks have the same base priority of their threads or, in
other terms, they inherit the priority of their threads. We show in figure 3.6 the partial order obtained
by application of our rules.

Remark Observe that certain tasks, such as 7 and 73, are not comparable; we can establish some
priority order among them based on a fixed criteria. For instance, m; > w3 if we consider that 7
belongs to a thread with higher priority than that of 73’s. Tasks from a thread are naturally ordered
by the precedence relationship.
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Now let us put our example in operation, as should be done by the scheduler implementing our
approach, supposing a starting time of t=0; the following table shows a possible result:

Period 1 Period 2
task | ap | AL | o [ F [d | ok | B ol [ F7 ] &
Ty 0 0 0 1 101 10| O 0 11 | 20
Tg 0 1 0 2 20
T 1 1 0 4 10 (] 11| 0O 0 13 | 20
Ty 2 2 0 5 20
T 4 1 0 7 109 13 ] 0 0 15 | 20
T4 5 2 0 8 20
T3 8 0 0 10 | 20

We show in figure 3.7 the time line, where tasks in the upper part are those in execution and those
in the lower part are in the ready or waiting queue.

1. At ¢t = 0 the system is initiated, entering both 7; and 74 to the ready queue.
2. As 17 has greater priority, it is chosen to be executed and sent to the execution state.

3. As 7 finishes it triggers 71 which is also sent to the ready queue (7; is autonomous). The scheduler
chooses 7¢ (see point 2 priority assignment).

4. 74 is executed and it triggers 7o, which is sent to the WQ (waiting rule).
5. The scheduler executes 71 (in fact, the only task in the ready queue).

6. When 7 finishes it triggers 75, which is sent to the ready queue; 7, awakes 75, which also goes to
the RQ. Priorities analysed, the scheduler chooses 7 (see point 3 priority assignment).

7. When 7y finishes it triggers 74 which is sent to the WQ.
8. 75 executes and when it finishes, it awakes 74 which goes to the RQ. H; is finished at time ¢t = 7.
9. 74 is executed and triggers 3.

10. At t = 8, 73 is executed and finishes at time ¢ = 10; Hs is finished.

The time analysis according to this schedule says that 75 finishes at time ¢t = 7, ready to process
another arrival of tasks of the next period of H;; 73 finishes at time ¢ = 10 ready to process a new
instance of Hy. As both threads finish before their deadlines, with no pending tasks in queues, the
system is schedulable in this first “round”.

The second round for H; is a little simpler, as there are no tasks from Hs:

1. At ¢t =10, 77 arrives to the system and it is executed.

2. As 77 finishes, it triggers 71, which is executed; at completion it sends an emit to 75 which is lost
and it triggers 75.

3. 75 is executed and analogously it notifies 74, event that is also lost.
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T7 T6 T1 T1 T2 T5 T5 T4 T3 T3 executing

\ \ \ \ \ \ \ \ \ \

[ | | | | | | ]

0 1 2 3 4 5 6 7 8 9 10

T6 1 T2 D) T5 T4 T4 readyorsleeping

Figure 3.7: Time Line for ex. 3.1

The system is finished at time ¢t = 15, remaining idle until ¢ = 20, when a new set of periodic
tasks from H; and H, will arrive, repeating the same pattern. The analysis of time in the interval
[0, H], where # it is the hyperperiod of all the periodical threads, is sufficient to say that the system is
schedulable (provided both threads start at the same time). Note that F! =7 < 10 and F2 = 15 < 20

and F} =10 < 20.

Example 3.4 We will now modify our ezample, setting the execution time for t3 to 3, that is, E3 = 3.
The following table illustrates the reaction of our scheduler:

Period 1 Period 2
task | ap | AL | o [ F" [ db | oi | B oL [ F7 ] &
Ty 0 0 0 1 101 10| O 0 11 | 20
Tg 0 1 0 2 20
sl 1 1 0 4 10 11| O 0 13 | 20
Ty 2 2 0 5 20
T 4 1 0 7 109 13 ] 0 0 15 | 20
T4 5 2 0 8 20
T3 8 0 5 16 | 20

The procedure is exactly the same as before, except for the last point 10, where 73 is executing (see

figure 3.8 for the time line):

1. 73 begins at t = 8, and it executes for 2 units, when 7; arrives for the next period. As 77 has
greater priority than 3, the latter is preempted and sent to the SQ, (preemption rule).

2. 17 is executed until completion and triggers 7.

3. No priority relation is established among 71 and 73; if we consider a RMA criteria 71 has higher
priority. Let us say that the scheduler chooses 71 based on this criteria, then 73 remains for 2

additional units in the SQ.

4. Once 7 finished, it triggers 75; 71’s emit is lost.

5. 75 has greater priority than 73 (for the same reason as before); 73 remains for two more units of
time in the SQ.

6. At 75 completion, 73 regains the processor and finishes at ¢t = 16.

As F' =7 < 10 and F? = 15 < 20, H; is schedulable and as F) = 16 < 20, H> is also schedulable;
20 is the lcm, so it sufficies to assure schedulability within the interval [0,20] to assure schedulability
for the whole system.
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T7 TG T1 T1 To T5 Ts T4 T3 T3 T7 T1 T1 T5 T5 T3 executi ng

| | | | | | | | | | | | | | | | |
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20
T6 T1 T2 T2 T5 T4 T4 T3 T3 T3 T3 T3 ready or waiting

Figure 3.8: Time Line for ex. 3.4

3.4 Sharing Resources

We will now consider the possibility of sharing resources among tasks; the gold rule is to prevent two or
more task to access simultaneously the same resource, so our algorithm must impose a mutual exclusion
policy.

As we consider a fixed set of tasks, that is, no eventual tasks can arrive during execution, we
want some static analysis within the hyperperiod to decide if the system is schedulable and if so,
assign priorities in order to guarantee timing constraints and mutual exclusion. Decisions taken by
the scheduler are based on the states of each of the active tasks, but this analysis should be off line to
minimize scheduler invasion during tasks execution.

Note that synchronization implies a certain order of execution among tasks, due to a some pro-
ducer/consumer relation among them, while sharing resources implies a synchronization to respect the
mutual exclusion rule but no order is implied.

Example 3.5 Let us reconsider our example 3.1 of figure 3.3; figure 3.9 shows the corresponding Java
code and the model generated by application of an abstraction algorithm. Note the “separation” from a
waiting task and a demand of resource in 9 and T4, which is immaterial in our previous analysis since
no resources are considered. Now, let us see how our assignment works in the presence of resources
(the time line in figure 8.10 shows the evolution of tasks in time):

1. 77 has the highest priority but 7; < 7 and 75 < 72 due to the await/emit relation.
2. 77 begins execution and 74 goes to the RQ.

3. 77 triggers 7y which goes to the RQ and

4. 76 is chosen to be executed; at completion it triggers 7 which goes to the WQ.

5. 711 is executed, setting the lock over r; and at its completion it emits to 7 and triggers 75, which
goes to the RQ with r; retained.

6. 72, awaken by 7 goes to the RQ and joins 75; s > w5, 7o is chosen to be executed, and at
completion it triggers 74 which goes to the WQ.

7. 75 executes, releases its lock over 71 and 73, and notifies 79, which goes to the RQ “as” 74.
8. 74 executes, (over rq), releases 1 and triggers 73.
9. 713 executes and finishes at ¢ = 10.

10. At £ = 10 the next period of H; arrives and 77 is executed, triggering 7.
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public void run() public void run()
{ {
while (true) while (true)
{
synchronized(rl) -
{ .. aWalt
aNotify ) j/\———>
synchronized(r2)
{ 1,72
b.wait
b.Notify j/\/'
} synchronized(rl)

}
waitforperiod(10)
)
) l }
waitforperiod(20)

}
}

Figure 3.9: Java Code and its Modelisation
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71 is the only task in the RQ, and it can be executed (since resource r; was released by 74). At
completion it triggers 5.

75 is executed (over r1 and r9) and at completion it releases r; and it emits to 74 which is lost.

ry o ry ro
r o™ 1 or1 o™ o om T r1
7 6 T1 T 9 5 5 T4 T3 3 7 T1 T1 5 5 execli ng
| | | | | | | | | | | | | | | | | | | | |
- rrrrrrrrt -ttt 1> > 1T 1T 1T 1T 1T 7T/
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
6 T o 5 T4 T4 ready or sleeping

Figure 3.10: Time Line [0,20] for ex.3.5

Example 3.6 Now suppose the same application as in example 3.4 (where Ez = 3) but both 73 and 74
use r1. The system shows the same evolution as before until point 9

9.
10.

11.

12.
13.

At time ¢t = 8 7, finishes and triggers 73 which begins execution.

At ¢t = 10 the next period of H; arrives and 77 preempts 73; 73 goes to the SQ with ry retained
and 77 executes and the triggers 7.

71 is the only task in the RQ, and it has higher priority than 73 but it cannot be executed since
it needs rq retained by taui3, waiting at the SQ.

T3 regains execution finishing at ¢ = 12

71 executes and finishes at ¢ = 14, triggers 75 which finishes at ¢ = 16.

The time line in figure 3.11 shows the evolution of this example where some kind of priority inversion
is due to resource management.

™
1 1 7‘? 1 ™ 1 1 1 1 1 1 1

T T§ T1 T1 T9 T T T4 T3 T3 T7 T3 T Tl Th executing
| | | | | | | | | | | | | | | | | | | |
e rrrrrrrrrrrr-r T T

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

Tg T1 T2 To T5 T4 T4 T3 T ready or sleeping

1

Figure 3.11: Time Line [0,20] for ex.3.6

Example 3.7 Now suppose an application as shown in figure 3.12, where 13 waits for an emit from

T5 -

1. 77 has the highest priority but m; < 7g and 75 < 74 due to the await/emit relation.

2. 77 begins execution and 7 goes to the RQ.

3. 77 triggers 71 which goes to the RQ and
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Fg =1
Er =1
T1
Fr=2 By =1
r1,T2
By =2

Hy = 173715 75]

Hy = [76;72; 74; 73]

P1 = D1 =10
Py = Dy =20
—®  sequence
2\ =
,,,,,,, * synchronization
E3 =2

Figure 3.12: Two Threads with shared resources

76 is chosen to be executed; at completion it triggers 7o which goes to the WQ.
71 is executed, setting the lock over r; and at its completion it emits to 7o and triggers 7.

Ty, awaken by 11, goes to the RQ and joins 75; m5 > my 75 is chosen to be executed, and at
completion it emits to 73 which is lost; 75 releases both r; and rs.

Ty is executed and triggers 74.

74 executes over r; and when it finishes it triggers 7 which waits an emit from 75 in WQ retaining
r1.

. At t = 10 the next period of H; arrives and 77 is executed, triggering ;.

71 is the only task in the RQ, but it cannot be executed since it needs r; retained by 73, waiting
in the WQ.

73 is also blocked and it will never be awaken. We are in the presence of a deadlock.

Figure 3.13 shows the time line.
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) )
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71

Figure 3.13: Time Line for ex. 3.7

n

Figure 3.14: Wait for Graph example 3.1

3.4.1 Conflict Graphs

We have shown three examples of scheduling using our policy one of which shows a deadlock, a situation
clearly non-schedulable. How can we detect this situation? Are there any structural properties of the
system which can lead us to avoid deadlock?

One well stablished algorithm to deal with tasks and shared resources is the PCP or 11P; we could
apply these protocols and perform schedulability analysis, using the priorities computed by our 2 rules,
1 and 2. Instead, we propose to analyse the relationships among our tasks and take advantage of their
structure.

Example 3.8 Recall our example 3.1; figure 3.14 illustrates the use of our model as a wait for graph,
WFG, based on the sequence, (%;”), await/emit, (“n”) and resource, (“r”), relationships.

In this graph we can see a cycle among (74, 71, T2, 7§) and also among (71, 75, 74) and as usual,
cycles in a WFG represent a risk of blocking or deadlock situation. Note that 7§ is an artificial task to
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mark the difference between 74 waiting for an emit and 74 in the RQ waiting for execution over ry.

In this graph, we should eliminate those precedence relations which are not harmful: typically the
relation is not harmful because when a task finishes it is “sure” that it triggers its successor task
(if any). The problem is in the presence of “n'-arcs or “r’’-arcs which risk a task to wait an infinite

amount of time.

w. n
)

If we analyse cycle (74, 71, T2, 7¥), we see that 74 will wait for the execution of 75, but this time
is bounded by 7»’s execution; 7 waits for an emit from 7y, which may be lost risking 7» from livelock.
On the other hand, 7, can be blocked by 74 if this task is executing (and hence has r1) but this time is
bounded. In a similar manner, 74 could be waiting for 7; and 75 but this time is also bounded. In other
words, once 74 joins the RQ it has the notify it needs and eventually it can progress as r; is unlocked
(by 75 The other cycle is analysed in a similar manner.

So, this apparent cycles can be pruned if we delete all safe wait for relations, we can get a graph

without cycles, shown in figure 3.15(a).
E @

1

@ ®)

1

1

Figure 3.15: Pruned and Cyclic Wra

Example 3.9 In figure 3.15(b), we show the WFG for example 3.6 where we have added two arcs of

'r'-type between 7 and T3 and 75 and 3. For simplicity, we have omitted the ';' arcs.

Even the elimination of the arcs of type ;" does not provoke the elimination of cycles, but a cycle
involving just one resource is not a deadlock. In fact, in our model, if resource r; is assigned to 7 then
75 can also progress and hence release ry for 74 and 73. Analogously if r; is assigned to 74.

Example 3.10 In figure 3.16 we show the W¥G for example 3.7, where there are many cycles but only
one involves two resources, i.e. r1 and the emit from 75 to 73 (which can be considered as a resource
retained by Ts.

In this system the deadlock situation cannot be prevented, since 73 waits in the WQ retaining
and then preventing 71 (and 75) to progress; as 73 needs an emit from 75 the system is in a deadlock
situation.
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Figure 3.16: Cyclic Wait for Graph

In conclusion, this system is inherently deadlockable under our fized priority assignment and so it is
non schedulable, as indicated by the cycle in the corresponding graph involving more than one resource.
We could imagine another strategy to handle resources, inserting criteria in the code to create dynamic
priorities according to the state of the system.

So, for our priority assignment method, the analysis may be completed by the construction of these
conflicts graphs, eliminating those arcs which show a safe wait for relation, that is, arcs showing a
sequence of tasks and verifying the existence of cycles which show a deadlock situation. Our method is
safe and simple: associating static priorities and verifying cycles assures schedulability but the method
is not complete, since we can find other assigments for our non-schedulable systems.

3.4.2 Implementation

Once we have modelled our Java Program and that a possible schedule is found, we must introduce
these rules within our code, in order to create a real time Java program.

Our scheduler, based on temporal constraints and await/emit relations can give the following solu-
tion to our application example 3.1:

7T7:7,7T1 :3,7{'5 :3,7{'6 :4,71'2 :4,71'4:2,71'3 =2

Rule 1 partially orders some independent tasks from different threads based on some fixed criteria,
such as deadline. We can say II; > Ily, so task 77 has the highest priority; as N7 = {71,75 } their
priorities are treated by rule 2. Then, mg > m but 71 must have a priority greater than 3 and 74 (if
we want to keep the priority relation within different periods). Similarly mo > w5, but 75 must have
priority greater than that for 73 and 74.

So the scheduler must place these priority relationships in the synchronization points, which consider

the whole set of active tasks when a new arrival is produced. We show in figure, 3.17 a possible
implementation using the primitive setpriority from RT-Java.
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class PeriodicTh extends Thread class Thread2_body implements ThreadBody
{ long p ; { Event a, b ;

ThreadBody b ;

PeriodicTh(long p, ThreadBody b) public void exec()

{ this.p =p ; { this.setpriority(4) ;

this.b = b ; t6;

} this.setpriority(4) ;

public void run() a.await;

{ long t ; t2;

Clock ¢ = new Clock() ; this.setpriority(2) ;

while(true) t4;

{t = c.getTime() ; this.setpriority(2) ;
b.exec() ; b.await;
waitforperiod(p + t - c.getTime()); t3;

} }

} }
}
class Scheduler
interface ThreadBody { public static void main(String argv[])
{ public void exec() ; { Event a = new Event() ;
3 Event b = new Event() ;

Threadl_body thl_body = new Threadl_body(a,b) ;
class Threadl_body implements ThreadBody Thread2_body th2_body = new Thread2_body(a,b);
{ Event a, b ; PeriodicTh threadl = new PeriodicTh(10, thil_body) ;

Threadl_body (Event a, b) PeriodicTh thread2 = new PeriodicTh(20, th2_body) ;
{ this.a = a ; 3
this.b = b ; }
}
public void exec() class Event
{ this.setpriority(7); { public void emit()

t7 { synchronized(this) {this.notify}

this.setpriority(3) ; }

tl

a.emit; public void await()

this.setpriority(3) ; { synchronized(this) {this.wait}
t5 ; }

b.emit; }

}
}

Figure 3.17: Two Scheduled Threads



Chapter 4

Life 1s Time, Time is a Model

Résumé

Ce chapitre présente les modéles temporels basé sur les automates temporisés et ses extensions. Nous
donnons la définition d’'un automate temporisé classique et nous continuons avec les automates avec
chronomeétres et avec taches. Dans une deuxieme partie nous presentons trois utilisations differentes de
ces automates pour attaquer la modélisation.

Layout of the chapter

This chapter deals with models used to abstract RTS and their application to the schedulability problem.
The chapter is organized as follows: we introduce timed models, starting by timed automaton and an
analysis of a well known problem: reachability; then we continue with some extensions of this machine:
timed automata with deadlines, with chronometers and with tasks; finally we show the application of
these basic models to the schedulability problem through three approaches: synthesis, task composition
and job-shop. No doubt that this chapter only shows a partial state of the art in the theory and evolution
of timed automata, guided by our needs and contributions.

4.1 Timed Automata

A timed automaton, TA, is a finite state automaton with clocks, [10]. A clock is a real time function
which records time between events; all clocks advance at the same pace in a monotonously increasing
manner and eventually they can be updated to a new value.

Each transition of a TA is a guarded transition, that is a predicate, defined over clocks, which if true
permits the transition to be taken. A transition may also be decorated by clock update operations.

Formally, a TA A is a 5-uple (S,C, X%, €, I), where:

e S is a set of states (s,v), where s is a location and v a valuation of clocks.
e Cis a set of clocks.

e Y is the alphabet, a set of labels or actions.

71
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e £ is the set of edges. Each edge e is a tuple (s,0,g, 1, s') where
— s € Sis the source state and s’ € S is the target state.
— o € ¥ is the label.
— g is the guard or enabling condition and

— p is the clock assignment

e [ is the invariant constraint, defined over clocks; I(s) is the invariant of s € S.

We need to formalize what we understand as clock assignment and an invariant constraint.

An assignment is a mapping of a clock ¢ € C into another clock or 0; the operation of setting a clock
to zero is called reset operation. The set of assignments over C, denoted I¢, is the set {C — C*}, where
c* =CuUd{0}.

The set of valuations of C, denoted V¢ is the set [C — RT] of total functions from C to R*.
Let v € I, we denote by v[y] the clock valuation such that for all 2z € C we have:

1)[7]((3) = { S(C) ioftg((;\)iviesepc

Definition 4.1 (C-Constraint) A clock constraint or C-Constraint is an expression over clocks which
follows the grammar:

U=z S d‘l’—y S d"(/)] /\'(/)2“"1’

where x,y € C are clocks and d € Q is a rational constant.

Invariants and guards are elements of ¥; invariants are associated to states, that is to each state we
associate a formula I(s) € ¥ and each guard g of an edge e € £ is also a clock constraint; expressions

from ¥ control the transition operations to traverse an edge and the predicate states to remain in a
state.

Example 4.1 Figure 4.1 shows a simple TA for a periodic task Ty with period P = 10.

TlT p1>10

s

Figure 4.1: Modelling a periodic task

Sometimes it is useful to partition the set X into two sets of controllable and uncontrollable actions,
noted X° and X", respectively. Controllable actions are those actions time independent, which can be
known at compile time and often tied to functional aspects of the application, for instance, access to
shared resources. Uncontrollable actions are those actions dependent of the environment which may
suffer from disturbances, for instance, process arrival, [8].
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Figure 4.2: Invariants and Actions

The role of invariants. Conditions over states, expressed as a formula in ¥, allow the specification
of hard or soft deadlines: when for some action a deadline is reached, the continuous flow of time is
interrupted and the action is forced to occur. We say that and action is then urgent. On the contrary,
we say that an action is delayable if whenever it is enabled, its execution can be postponed by letting
time progress; at some time a delayed action may become urgent. In figure, 4.2 we see an example;
action a is enabled when clock x attains a value greater than 2; the invariant in s; let us remain while
x < 5; at any moment between (2,5) we can execute action a, we say a is delayable. On the contrary,
when clock z attains 5 we must execute action b, since it is enabled at = = 5 but cannot be postponed,
we say b is urgent. Sometimes we will mark an edge e with an urgency type ¢ € {4, ¢} for delayable or
urgent actions.

Semantics. A TA A is then useful to model a transition system (Q, —), where Q is a set of states
and — is a transition relation. A state of A is given by a location and a valuation of clocks and a
transition is the result of traversing an outgoing edge while respecting the enabling conditions and
probably setting clocks according to an assignment.

More precisely, A can remain in a location while time passes respecting the corresponding invariant
condition; in this case, clocks are updated by the amount of time elapsed; these are called timed
transitions. When the valuation satisfies the enabling condition of an outgoing edge, A can cross the
edge, and the valuation is modifed according to the assignment; these are called discrete transitions.

Formally, (Q, —) is defined, [60]:

1. @ = {(s,v) € S x Ve|v = I(s)}, that is, the set of states is composed by pairs of location and
clock valuation, implying the invariant condition.

2. The transition =C Q x (X URT) x Q is defined hy:

(a) Discrete transitions:
(s,0,9,p,8") € ENvIEgAV[u] E I(s)
(5,0) = (5", v[u])
where (s',v[7]) is a discrete successor of (s,v); conversely, the latter is the discrete predecessor
of the former.

(b) Timed transitions:
JERTVY eRT 6" <d= (s,v+0") | I(s')

(s,0) > (s,0 +0)

where (s,v + 0) is a time successor of (s,v); conversely the latter is said to be a time
predecessor of the former.
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Definition 4.2 (Execution) An execution or run r of a timed automaton A is an infinite sequence
of states and transitions:

1 !
=38 %8 ...

where s; €S, I; € (BEURT) and i € N.

That is, an execution is the evolution of the automaton according to the events and the time elapsed
in the system.

We denote by Ra(q) the set of runs starting at ¢ € Q and by Ra = {J,co Ra(q) the set of runs
for A.
4.1.1 Parallel Composition

How can we combine two or more timed automata? The composition is the combination of timed
automata.

Definition 4.3 (Parallel Composition) Let A; = (S;,Ci, X, &, 1;), for i = 1,2 be two TA with
disjoint sets of locations and clocks. The parallel composition A||szA., defined over a set of actions

Y is the TA (S,C, X, E,1), where:
e S=85 xSy,
o C=CUCy,
o I(s) = Ii(s1) N I2(s2) if s = (s1,52), 51 € S1,82 € S,

o & s defined by the following rules:

€1 = (8170—791:1141:8,1) € 51=62 = (82:0—:92:”2:8{2) € 52
€= ((31732)70797/17 (’9’173’2)) € glq =01 /\QQ:H = M1 U/’LQ

er = (81,010,091, 11,81) €E&E,01 €1 Ao ¢ 51N,
€ = ((51,52)701:917111: (SIDSQ)) € E

That is for those common actions, we define a common transition as the product of the individual
transitions; for each of the non-shared actions, we define a new transition. The second rule is applied
symmetrically to the other component.

4.1.2 Reachability

One main problem in Automata Theory is the reachability analysis, that is which are the states reach-
able from a state g, by executing the automaton, starting at q.

Definition 4.4 (Reachability) A state ¢' is reachable from state q if it belongs to some run starting
at q; we define Reacha (q) the set of states reachable from g:

Reacha(q) ={¢' € Q3r=q0 % 1 55 ... € Ra(q),Fi € N.g = ¢'}
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Figure 4.3: Region Equivalence

The problem is how to compute this set; there are many different approaches; we shall use the
notion of region graphs to develop an algorithm, see [60].

A region is a hypercube characterized by a clock constraint.

Example 4.2 Figure 4.3 illustrates the concept; a region is defined by the clock constraint 2 < x <
N1 <y<2Az—y<1, marked in grey in the figure.

Region equivalence

Let U¢ be a non-empty set of clock constraints over C. Let D € N be the smallest constant which is
greater than or equal to the absolute value |d| of every constant d € Z appearing in a clock constraint
in U. We define ~y,.C Ve X Ve to be the largest reflexive and symmetric relation such that v ~y, v’
iff for all =,y € C, the following three conditions hold:

1. v(z) > D implies v'(z) > D

2. if v(z) < D then
(a) [v(z)] = [v'(z)] and

(b) C(v(x)) = 0 implies C(v'(x)) = 0, where |-] is the integer part function and C(-) is the
fractional part function.

3. for all clock constraints in ¥¢ of the form z —y < d, v =z —y < d impliesv' Fz —y < d.

~y, is an equivalence relation and is called the bf region equivalence for the set of clock constraints
U¢; as usual, we denote [v] the equivalence class of v. Regions can be characterized by a clock constraint
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and as clocks evolve at the same path, each region is graphically represented as a hypercube with some
45° diagonals.

Recall Figure 4.3 and let v be any clock valuation in this region.

1. Consider the assignment y := 0; the clock valuation under this assignment belongs to the region
2 <z <3Ay=0, marked as a in the figure.

2. Consider the assignment z := y; this clock valuation v[z := y] belongs to the region 1 < z <
2A1 <y <2Az =y, marked as b.

3. Finally, if we consider the succesor of v we can see that it belongs to some region crossed by a
straight line drawn in the direction of the arrow.

Consider a TA A as defined in 4.1 and its transition system (Q, —). We extend the region equivalence

~y,. to the states of Q as follows: two states ¢ = (s,v) and ¢' = (s',v') are region equivalent, denoted

q~v,. ¢ iff s=¢" and v ~y, v'. We denote by [g] the equivalence class of q.

The region equivalence over states can be stablished as follows:

Definition 4.5 (State Equivalence) Let W be the set of all clock constraints appearing in A and
let g1,q2> € Q such that g1 ~w, q2, then:

1. For all 0 € X, whenever q1 = ¢} for some ¢ there exists ¢ such that g2 > ¢ and g2 ~w,. gb-

2. For all § € RT, whenever ¢, LA q, for some ¢\ there exists ¢, and ' € R™ such that g» % g5 and
!
a2 =w. 4.

The region equivalence over states is said to be stable with respect to the transition relation —C

Ox(ZUR") x Q.

This definition implies that for all region-equivalent states ¢; and ¢o, if some state ¢; is reachable
from g1, a region-equivalent state ¢} is reachable from gs.

Let ¥ C U be a set of clock constraints, U A be the set of clock constraints of A, and ~ be the
region equivalence defined over W U Wa. Let 7 ¢ ¥ and let ¥, = LU {7}.

Definition 4.6 (Region-Graph) The region graph R(A, \il) is the transition system (Q~,—) where:

1. 9~ ={[gl|q € Q}

2. 5C Q~ X X, x Q~ is such that:

(a) forall 0 € ¥ and for all p, p' € Q~, p > p' iff there exists ¢, ¢’ € Q such that p = [¢], p’ = [¢'],
and ¢ > ¢'.
(b) for all p, p' € O, p = p' iff
i. p=p' is an unbounded region or,

ii. p # p' and there exists ¢ € @ and a real positive number § such that ¢ N q" and
p=1q],p' = [q+ 6], and for all &' € R, if §' < § then [q + §'] is either p or p'.
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We define Reach(p) to be the set of regions reachable from the region p as
Reach(p) = {p'|p =" p'}

where —* is the reflexive and transitive closure of —.

We denote by (¢) any clock constraint ¢ € ¥ such that ¢ = ¢ and for all ¢’ € ¥, if ¢ = ¢’ then
1 implies 1'. That is, (g) is the tightest clock constraint that characterizes the values of the clocks in
g- The question whether the state ¢' is reachable from the state ¢ can be answered using the following

property:

Property 4.1 (Reachability) let A be a TA, q,q' € Q and let R(A, {{q),(q")}) be the corresponding
region graph, then:

q' € Reach(q) iff [¢'] € Reach([q])

The constraints (¢) and (¢') characterize exactly the equivalence classes [q] and [¢'] respectively.

4.1.3 Region graph algorithms

The basic idea of the algorithm using the region graph concept is the use of property Reachability
as shown in the previous section. Two ways of answering whether ¢' is reachable from ¢ are forward
traversal and backward traversal

The first starts from a state ¢ and by visiting its succesors, and the successors of those and so on,
until we find ¢’ in some region or all regions have been visited; in summary, we need a sequence of
regions Fy C F; C ..., such that:

Fo = ld (4.1)
F,j_|_1 = Fl @] SIIC(F,;) (42)
where Suc(F;) = {p|3p; € F;. pi = p}
Property 4.2 (Forward Reachability) For all q,q' € Q,[¢'] € Reach([q))iff[¢'] € ;s Fi

The second approach starts from a state ¢', visits its predecessors, and the predecessors of those
and so on, until the state ¢ is found or all regions have been visited. Similarly, we construct a sequence
of regions By C By ... such that:

By = [{] (4.3)
Bi+1 = B, U PrP(B1) (44)
where Pre(B;) = {p|3p; € Bi. p — pi}

Property 4.3 (Backward Reachability) For all q,q' € Q,[q'] € Reach([q])iff[¢] € U,>, Bi
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Figure 4.4: Representation of sets of regions as clock constraints

4.1.4 Analysis using clock constraints

Let F' be the set of regions |J,5, Fi computed by the forward traversal algorithm explained in Sec-
tion 4.1.3. Then F can be symbolically represented as a disjoint union of the form W,es Fs, where F
is the clock constraint that characterizes the set of regions that belong to F' whose location is equal to
s. The same observation holds for B. Indeed, such characterization can be computed without a-priori
constructing the region graph.

4.1.5 Forward computation of clock constraints

Let s € S, ¢s € Ue and e = (s,0,9,u,s') € £, We denote by Suc, (1)) the predicate over C that
characterizes the set of clock valuations that are reachable from the clock valuations in ¢, when the
timed automaton executes the discrete transition corresponding to the edge e. That is,

v ESuce(v) iff F' € Q. v=0[y] AV = (s AY).
Property 4.4 Suc.(¢s) € Pe.

Example 4.3 Consider again the example illustrated in Figure 4.4. Recall that 1 is the clock constraint
1<y<2A2<zAhz—y<2

a. The result of executing the transition resetting x to 0 is computed as follows.

Suc,(s) =
= Ja" Y Yslz/2 yly Ay =0Az =2
= 'y 1<y <2A2<2' AN’ —y <2Ay=0A2 =2
= . 1<y <2A2<azAz—y <2Ay=0
= 2<zAhNz<4Nny=0

Since the upper bound of 4 is greater than the constant C = 3, we can eliminate the clock constraint
x < 4 and obtain: Suc,(¢Ys) =2<zAy=0.



4.2. EXTENSIONS OF TA 79

b. Now, consider the assignment x :=y.

Sucy(vs) =
= 3y Yslx/d y YAy =y Ae =y
= d2,y. 1<y <2A2<2' AN -y <2Ay=y' Az =19
= F21<y<2A2<' AT —y<2AzT =1y
= 1<y<2AN0<yAhz=y
= 1<y<2Ahz=y

In other words, to compute Suc, ()5) is equivalent to visit all the regions that are e-successors of the
regions in v, but without having to explicitly represent each one of them.

Let s € S and ¢ € ¥e. We denote by Suc, (1) the predicate over C that characterizes the set
of clock valuations that are reachable from the clock valuations in ¥3 when the timed automaton lets
time pass at s. That is,

v = Suc () iff IERT. v -5, AVY e RY. 6 <5 =00 [=I(s).
Property 4.5 Suc.(vs) € Ye.

Example 4.4 Consider again the example illustrated in Figure 4.4. Case c corresponds to letting time
pass at the location. For simplicity, we assume here that the invariant condition s true.

Suc-(¢s) =
= 35 R Ys[z/z —6,y/y — 0]
= FER . 1<y-—06<2A2<z—0A(z—68) —(y—9) <2
= BeR . 1<y—56<2A2<z—-0Az—y<2A
= I<yn2<zAy—zxz<0ANz—y<2

Notice that Suc,(1s) characterizes the set of the regions that contains the regions characterized by
and the regions reachable from them by taking only 7-transitions.

Now, we can solve the reachability problem by computing the sequence of sets of clock constraints
Fy, Fy, - - - as follows:

F = (q)
Fi+1 = L‘ﬂ (SUCT(FLS) (O] H‘J SUCE (th)>
SES ecé

Notice that F; s implies Fj1q s foralli > 0and s € S.

Property 4.6 Let F'=J,5, Fi, ¢ = (s,v), and ¢' = (s',v"). [¢'] € Reach([q]) iff (¢') implies Fl .

4.2 Extensions of TA

From the classic definition of TA, there have been developed many variations, principally regarding the
nature of clock operations; we will present some extensions of TA used to model RTS.
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4.2.1 Timed Automata with Deadlines

A TAD is a tuple (S,C,%, &, D) where S,C, ¥ and £ are defined as for TA and D : £ — ¥, associates
with each edge e € £ a deadline condition specifying when the edge e is urgent. For s € § we define

D(s) = \/ D(e)

e=(s,0,9,1,5')EE

and we define
I(s) = ~D(s)

which shows that TAD behaves like a TA where time can progress at a location as long as all the deadline
conditions associated with the outgoing edges are not satisfied.

The difference between TA and TAD is the addition of a deadline condition for edges; for a given edge
e, its guard g, determines when e may be executed, while D(e) determines when it must be executed;
that is the guard is a kind of enabling condition while a deadline is an urgency conditions. Clearly, for
all the states satisfying —g. A D(e), time can be blocked and it is reasonable to require D(e) = g. to
avoid time deadlocks. When D(e) = g, e is immediate and must be executed as soon as it becomes
enabled. If D(e) is false, e is delayable at any state.

We can now afford the operation of composition for TAD, in which the resulting TAD has the same
structures for S,C, Y, £ as mentioned for composition for TA except for deadlines which follow the rules:

€1 = (Sl7o7gl7lu1:S’1) € 51:62 = (8270792:N2:S’2) € 5210 5P
e=((s1,52),0,9,1,(51,8,)) €E,9 = g1 Aga,pp = p1 U pa, D = D1 A Dy

e1 = (51,01,91,11,51) €&E1,00 €L Ao ¢ 1N Yy
€= ((31732)=C’1=917M1=(5'1732)) € 57D = Dl

4.2.2 Timed Automata with Chronometers

As seen in the definition of TA, clocks may be assigned a value from R; sometimes it is useful to offer a
richer set of operations over clocks. We present in this section, two variants of TA: stopwatch automaton
and updatable timed automaton.

Stopwatch Automaton

Classic TA operates over clocks through the operation of reset or more generally the operation of set:
z := d where z is a clock and d a constant from Q. Clocks evolve at the same constant pace, that is,
for all clocks its derivative is 1.

A variant of TA is a stopwatch automaton, swa, where clocks can be suspended; McMannis et al,
[40] propose a SWA where the rate of increase or derivative of a clock can be set to 0. Later, a clock can
be unsuspended to resume increasing at rate 1. Kesten et al, [31] propose a hybrid automaton where
the derivative of a clock can be set to any constant from the set of integers.

The basic definition of a SWA is the same as that for TA except that we add a relation rate to each
location associated to the clocks in that location and their behaviour, stopped or running.

A swa is a tuple Agwa = (S,C, X, R, &, I) where §,C, X and I are defined as for TA and

e R:C% — {0,1}", associates to each clock ¢; € C in state s; € S a rate value of 0 or 1. If ¢; is a
clock running in state s; then r! = 1, otherwise it is 0.
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Figure 4.5: Using SWA and UTA to model an application

e £ is also modified by an update operation, i.e, clocks may be reset, and also be decremented by
some fixed rational constant; if e € £ is the tuple (s, 0,9, u,s’), then s, o, g and s’ are as defined
for TA and p is the clock update, including the reset operation (denoted ¢; := 0) and the decrement
operation of the form ¢; := ¢; — d, where ¢; € C and d € Q..

SWA are very useful for modelling and analysing RTS:

Example 4.5 Consider two tasks T1(2,8),T(3,4) where numbers in parentheses represent the exe-
cution time, E; and the minimal interarrival time, P; respectively, for each task T;, i € {1,2}. The
application runs under a least time remaining policy, that is, the processor performs the task requiring
the least amount of time to complete.

Figure 4.5(a) shows the stopwatch automaton modelling this application where each location rep-
resents the status of the task in the system: waiting for service, executing or not requested. For each
task T;, we have a timer e; accumulating the computed time and the expression E; — e; represents the
remaining computing time which serves as a priority decision criteria. Clocks are stopped when the
corresponding task is not executing. Events r;,i € {1,2} represent the arrival ot task T;, and ¢; their
completion.

Unfortunately, the untimed language of a suspension automata is not guaranteed to be w-regular
and some tricks may be introduced to replace the suspension by a decrementation, as we see in the
section 4.2.3.

Timed Automata with tasks

A TA with tasks, TAT, is a TA where each location represents a task. The model was originally developped
by Fersman et al., [26]; in that paper they call it extended timed automata.
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Figure 4.6: Timed Automata Extended with tasks

Definition 4.7 A timed automata with tasks A7 is a tuple
(8767215780717T:M)

where S, C, X, £, I represent the set of states, the clocks, the alphabet over actions, the edges and the
invariants as already defined for TA; we distinguish sqg € S the initial state, T the set of tasks of the
application and M : S — T, a partial function associating to each location a task.

M is a partial function, since at some locations, there may be no task associated, since the system
is idle.

Example 4.6 Figures 4.6 shows an example of an TAT; in (a) we see a single periodic task P(2,8) with
computing time 2 and period 8; in (b) we see four tasks: Py (4,20) and P»(2,10) two periodic tasks and
Q1(1,2) and Q2(1,4) two sporadic tasks triggered by events by and by respectively, both with computing
time 1 and minimal interarrival times 2 and 4, respectively.

Let P = {P, P, ..., P,} denote the universal set of tasks, periodic or sporadic; each P;,1 < j <m
characterized by its pair (E;, D;) execution time and deadline, respectively.

From an operational point of view, a TAT represents the currently active tasks in the system; a
semantic state (s,v[c], q) gives for a state s the current values of clocks and a queue ¢, where ¢ has the
form [Ty (e1,dy), Ta(ea, dz), ..., Tn(en, dn)] where T;(e;,d;),1 < i < n denotes an active instance of task
P; with remaining computing time e; and remaining time to deadline d;. T} is the current executing

task.

A discrete transition will result in a new queue sorted according to a scheduling policy, including
the recently arrived task. A timed transition of § units implies that the remaining computation time
of T is decreased by d; if this value becomes 0, then Tj is removed from the queue; all deadlines are
decreased by §. Formally:

Definition 4.8 Given a scheduling strategy Sch the semantics of a TAT A as given in definition 4.7
with initial state (so,v[co, qo) is a transition system defined by the following rules:
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e Discrete transition over an action o:

g,0,c>0

(s5,v[c],q) —Zssen (8", pfc > 0],Sch(qg® M(s')) if s 725" s/ Apl=g

where plc — 0] indicates those clocks, within p-assignment, to be reset (the others keep their
values as time does not diverge), @ is the insertion of M(s') in ¢ and Sch is the sorting of a
queue according to a scheduling policy.

e Timed transition over § units of time:

(s, 0lc], 4) ~Ssen (s, 0[] + t.Tun((q,8))) if (v[c] + ) = I(s)

where run(q, §) is a function which returns the transformed queue after § units of time of execution.

Remark Observe that ¢ contains two variables (not clocks), for each active task: the pair (e;, d;);
as time diverges, these values are updated conveniently to show this evolution; for example if ¢ =
[(5,9),(3,10)] and time diverges for 3 units, then we have ¢' = [(2,6), (3,7)], that is all deadlines are
also reduced by §, but the value of e;,i > 1 remains unchanged. The next example shows what happens
if § 2 €.

Example 4.7 Consider once again, the example in figure 4.6(b); consider a scheduling policy EDF, the
following is a sequence of typical transitions

(s0, [z = 0L,[@1(1,2)]) = (50, [z =1],[Q1(0,1)]) = (s0, = =1],[)
3 (50, [z = 11,)
2 (s2, [z = 0], [P1(4,20)])
2 (89, [z =2, [P1(2,18)])
% (s, [e =2, [Q1(1,4), Pi(2,18)))
83 (s3] = 2.5],[Q1(0.5,3.5), P(2,17.5)))
B (s4,[z = 0],[Q1(0.5,3.5), P»(2,10), P1(2,17.5)])
52 (sq, [z = 0.5],[P2(1,8.5), P1(2,16)])

We should note two important points shown in this example:

e The first concerns the fact that while in state ss or s4, an infinite number of instances of P; or
P, may arrive, with 20 or 10 units of delay. No deadline is missing, since at the arrival of a new
instance, the old one had already finished.

e The queue may potentially grow but it is considerably emptied in state s; where we have to wait
for more than 10 units before considering event a;. In fact discrete transitions make the queue
grow while timed transitions shrink it.

4.2.3 Timed Automaton with Updates

The model presented for SWA was slightly modified to avoid the operation of stopping a clock, retaining
the update operation to decrement a clock by a constant from N; this model is known as updatable timed
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automaton, UTA in the literature, though the original paper called it automaton with decrementation.
Nicollin et al, [45] and Bouyer et al, [18], analysed some interesting properties of this class of TA.

An uTa is a tuple (S,C, %, €) where S,C, X are defined as for TA and £ changes in its p to include
the general set operation.

Example 4.8 Regaining our exemple 4.5, we could modify the model, using a UTA, where instead of
stopping e clocks when the corresponding tasks are preempted, we let them continue running and their
values are decremented by the execution time of the terminating task each time a task completes. For
instance, (see figure 4.5(a)), while serving To, Ty arrives and if its remaining time is smaller than Ty ’s,
then T11T> and e is stopped; instead, we could decrement es by the preemption time, E, (see figure
4.5(b)) and when resuming Ts it will have the “true” value. Another solution is to let es diverge and
when Ty resumes, we set es := eo — K. In both cases, the effect is the same; some care should be taken
in the first solution if we do not want clocks to be negative.

4.3 Difference Bound Matrices

We present in this section a data structure which is commonly used to implement some of the algorithms
of reachability analysis: difference bound matrices, DBM [22]

Let C ={c1, - ,cn}, and let A C e be the set of clock constraints over C defined by conjunctions
of constraints of the form ¢; < ¢, ¢ < ¢; and ¢; — ¢; < ¢ with ¢ € Z. Let u be a clock whose value
is always 0, that is, its value does not increase with time as the values of the other clocks. Then, the
constraints in A can be uniformly represented as bounds on the difference between two clock values,
where for ¢; € C, ¢; < cisexpressed as¢; —u <c,and ¢ < ¢; asu — ¢; < —c.

Such constraints can be then encoded as a (n+1) x (n+1) square matrix D whose indices range over
the interval [0, -- ,n] and whose elements belong to Z,, x {<, <}, where Z,, = Z U {c0}. The first
column of D encodes the upper bounds of the clocks. That is, if ¢; — u < ¢ appears in the constraint,
then D;q is the pair (¢, <), otherwise it is (0o, <) which says that the value of clock ¢; is unbounded.
The first row of D encodes the lower bounds of the clocks. If u — ¢; < —¢ appears in the constraint,
Dy; is (—c¢, <), otherwise it is (0, <) because clocks can only take positive values. The element D;; for
i,j > 0, is the pair (¢, <) which encodes the constraint ¢; — ¢; < ¢. If a constraint on the difference
between ¢; and ¢; does not appear in the conjunction, the element D;; is set to (oo, <).

Note that for all elements (i,j) an upper bound M; ; is given for the difference ¢; — ¢; between
clocks ¢; and ¢;. During symbolic state space exploration we are interested in computing the future
of M, and we need to take into account which clocks are stopped and which are running. Clearly if
c; and ¢; are both stopped, both running or only ¢; is stopped, then the bound M; ; remains valid; if
only c; is stopped, the difference may grow to oo; values in M need to be in a canonical form, where
all bounds M; ; are as tight as possible

Example 4.9 Let A be the clock constraint 1 <y < 2A1 < xAx —y < 2. Figure 4.7a shows its
matriz representation.

Remark Every region can be characterized by a clock constraint, and therefore be represented by a
DBM.

As a matter of fact, many different DBM’s represent the same clock constraint. This is because some
of the bounds may not be tight enough. As already mentioned, values in M need to be as tight as
possible, [20, 40, 60]
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Figure 4.7: Representation of convex sets of regions by DBM’s.

Example 4.10 Consider again the clock constraint depicted in Figure 4.7. The matriz b is an equiv-
alent encoding of the clock constraint obtained by setting the upper bound of x1 to be (3,<) and the
difference xo — x1 to be (1,<). Notice that this two constraints are implied by the others.

However, given a clock constraint in A, there exists a canonical representative. Such a representative
exists because pairs (¢, <) € Z X {<, <}, called bounds, can be ordered. This induces a natural
ordering of the matrices. Bounds are ordered as follows. We take < to be strictly less than <, and then
for all (¢, <), (d',<') € Z x {<, <}, (6, <) < (¢, <) iff c < or c =¢ and <<<'. Now, D < D' iff
for all 0 S 'L] S n, D” S D;7

Example 4.11 Consider the two matrices in Figure 4.7. Notice that D' < D.

For every clock constraint ¢ € Cnd, there exists a unique matrix Cy that encodes ¢ and such
that, for every other matrix D that also encodes 1, Cyy < D. The matrix Cy is called the canonical
representative of 1) and can be obtained from any matrix D that encodes 1, by applying to D the
Floyd-Warshall [6] algorithm [22, 59, 46, 60] for details. We will always refer to a DBM to mean the
canonical representative where bounds are tight enough.

Encoding convex timing constraints by DBM’s requires then O(n?) memory space, where n is the
number of clocks. Several algorithms have been proposed to reduce the memory space needed [17, 33].

The verification algorithms require basically six operations to be implemented over matrices: con-
junction, time successors, reset successors, time predecessors, reset predecessors and disjunction. These
operations are implemented as follows.

Conjunction. Given D and D', D A D' is such that for all 0 <i,j <n, (DA D'); j = min(D;j;, D;;).

Time successors. As time elapses, clock differences remain the same, since all clocks increase at the
same rate. Lower bounds do not change either since there are no decreasing clocks. Upper bounds have
to be pushed to infinity, since an arbitrary period of time may pass. Thus, for a canonical representative
D, Suc, (D) is such that:

_ (o0,<) ifj=0,
Sucr(D)ij = { D;; otherwise.
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Reset successors. First notice that resetting a clock to 0 is the same as setting its value to the value
of w, that is, v(¢;) = 0 is the same as y(¢;) = u. Now, when we set the value of ¢; to the value of ¢;, ¢;
and ¢; become equal and all the constraints on ¢; become also constraints on ¢;. Having this in mind,
the matrix characterizing the set of reset-predecessors of D by reset 7y consists in just copying some
rows and columns. That is, the matrix D' = Suc, (D) is such that for all 0 < i,j < n, if y(¢;) = ¢; then
row;(D’) = row,; (D) and col;(D') = col;(D). '

Time predecessors. To compute the time predecessors we just need to push the lower bounds to 0,
provided that the matrix is in canonical form. Thus, for a canonical representative D, Pre.(D) is such
that:

(0,<) ifi=0,

D;; otherwise.

Pre;(D);; = {

Reset predecessors. Recall that the constraint characterizing the set of predecessors is obtained
by substituting each clock ¢; by v(¢;). Now suppose that we have two constraints z — x; < ¢ and
z, — s < ¢y and we substitute z; and z, by ¢;, and x; and z, by ¢;. Then, we obtain the constraints
¢i —¢j < ci and ¢; — ¢ < ¢y which are in conjunction, and so ¢; — ¢; < min(cg, ¢r5). Thus, the matrix
D' = Pre, (D) is such that for all 0 <i <n, Dj; = min{Dy | v(z1) = ci Ay(w1) = ¢;}.

Disjunction. Clearly, the disjunction of two DBM’s is not necessarily a DBM. That is, A is not closed
under disjunction, or in other words, the disjunction of two constraints in ¥ is not convex. Usually,
the disjunction of D and D’ is represented as the set {D, D’}. Thus, a lot of computational work is
needed in order to determine whether two sets of DBM’s represent the same constraint.

4.4 Modelling Framework

The process of modelling requires specification of each of the components (tasks) drawn from building
blocks fully characterized by their constraints. The operation of composition is a key of modelling, since
each component is plugged to the system, interacts with other components, represents some code and
must respect its (timing) constraints.

To compose a system we can start from a single component, adding other interacting components,
so that the obtained system satisfies a given property. This integration approach establishes a basic
rule for composition which says that if a property P holds for a component C, then this property must
be preserved in the composed system. Formally, if || notes composition, if C' F P then C||C' E P.
This assures correctness from construction, unfortunately in general, time dependent properties are
non composable, [8, 9].

Another approach to composability, which does not oppose to integration is refinement, that is once
we have an abstract description of a component 7" we get a more restricted one T’ which verifies if
T E P then T' £ P; normally T" is obtained from T by restricting some observability criteria and a
basic rule for composition says that if we replace a component 7T; in a composition Ti||...T; ... by its
refinement T, then the new system T1||... T} ... should be a refinement of the initial system.

A timed model is essential to the process of synthesis; these models are obtained by adding time
variables, used to measure the time elapsed, to an untimed model. The natural extension of finite state
machines to timed machines is TA and they are a general basic model adopted to face this problem,

TRecall that (-) is a total function.
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[51]. A TA is a transition system which evolves through actions (events) or through time steps which
represent time progress and uniformly increase time variables.

Composition of timed models is a natural extension of composition of untimed ones, but some care
must be taken into account since clocks evolve at the same rate, that is, time diverges at the same
derivative for all clocks. Furthermore, for timed steps, a synchronous composition rule is applied as a
direct consequence of the assumption about a global notion of time.

In general, RTS are modelled through, [51]:

e A timed model for each task
e A Synchronization layer

e A Scheduler

Timed model for tasks To create a timed model for an application, we need to create timed
models for its building blocks, generally termed as tasks. For each task, we need to know its resources,
a sequence of atomic actions with their execution time (a worst case analysis, in general, or an interval
timing constraint with lower and upper bounds) and their timing constraints. We have shown an
approach in chapter 3.

Synchronization layer The correctness of the whole application depends on the correctness of each
of its components (tasks) but also on the interaction among them. Some kind of synchronization is
needed, through the use of primitives to resolve task cooperation and resource management.

We need to differentiate two types of synchronization: timed and untimed. Untimed synchronization
is based on the idea that tasks cooperate among them in some kind of producer/consumer model: the
output of a task (or of an atomic action within a task) is needed as input for another task. In general,
if Cy and Cy are two components, then C4||Cy is the untimed synchronized composition of both tasks.
But this composition is not enough, we need some timed extension of this composition to consider
timing constraints and hence build the timed synchronized model. Once again, if we have the timed
model of two tasks C{ and CF, then Cf||TCY represents its timed composition, which includes, of
course, the untimed synchronization.

Many problems have been encountered for this approach:

1. Does the timed composed system preserve the main functional properties of the corresponding
untimed one?

2. Does the composed system respect some essential properties such as deadlock freedom, liveliness
and well timedness?

3. How does the implementation react in front of the timed model? It is worth to note that in a
model the reaction to some external stimuli does not take time while the implementation does.

4. Which are the effects of interleaving? It has been shown, [16], that independent actions of untimed
components may interleave and cause a (potential) indefinite waiting of a component before it
achieves synchronization; the correponding timed system may suffer deadlock, even if the untimed
one is deadlock-free.
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Scheduler A scheduler has a challenging mission: assure coordination of execution of all system
activities to meet timing and QoS requirements. A scheduler interacts with the environment and with
the internal execution. Altisen et al, [8] consider a scheduler as a controller of the system model
composed of timed tasks with their synchronization and of a timed model of the external environment.

As systems evolve, the role of the scheduler becomes more and more complicated. For independent
tasks, the scheduler is simply an arbiter which dispatches tasks in some previously fixed order. As tasks
are dependent the scheduler must know the internal state of active tasks in order to take a decision.
Finally, for timed tasks the scheduler must know the (timed) internal state of active tasks, and also the
behaviour of the environment to decide which task to select.

4.5 A framework for Synthesis

Recall that a timed automaton A is a 5-uple (S,C,X,&,I), where S is a collection of states, C is a
collection of clocks, ¥ is an alphabet or set of actions, £ is a set of edges and I is a collection of
invariants associated to states.

Once we have the timed model for a task, how do we create a timed model for an application? The
basic idea is to use the parallel composition, explained in part 4.1.1.

Sifakis et al, [53] propose a general framework for compositional description using a variant of
TA, called timed automata with deadlines, TAD, where invariants are replaced by deadline conditions,
expressing that if some timing constraints are enabled, then the transition must be executed, (see
section 4.2.1). TAD are not more (or less) powerful than TA, but the operation of composition over TAD
is simpler than in TA.

4.5.1 Algorithmic Approach to Synthesis

One approach to construct a scheduler SCH consists in defining a scheduling policy, as we have seen in
chapter 2, that is, we define a systematic way of ordering the execution of a set of tasks, based on some
timing constraints, but independently of the application.

The traditional approach to scheduling is suitable for RTS where the behaviour of the environment
is not predictable and reactions to external stimuli must be immediate. Altisen et al, [7] proposed a
model useful in RTS where the application strongly interacts with the environment, such as multimedia
or telecommunications systems. For such systems it is desirable to generate an ad-hoc scheduler at
compile time that makes optimal use of the underlying execution hardware and shared resources,
guided by knowledge of all possible behaviours of the environment.

A key concept to this approach is the distinction between controllable and uncontrollable actions. A
controllable action corresponds to a transtion that can be triggered by the scheduler and hence known
in advance at design time. An uncontrollable action is subject to timing constraints imposed by the
environment, which is constantly evolving.

The semantics of the application is given by a timed model A and a property @ to be satisfied; the
method constructs a new timed model Ag which models all the behaviours of A that satisfy @) for any
possible sequence of uncontrollable transitions. In summary, quoting Altisen et al, [7]

... Ag describes all the schedules that satisfy the property, a schedule being a sequence of
controllable transitions for a given pattern of uncontrollable behaviours

Typically, the synthesis algorithm is applied to properties of the form OP, read as “always P”. Ini-
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tially we start with states that satisfy P and keep on iterating over a single step controllable predecessor
operator pre until a fixed point is reached:

Q =P
repeat

Q! = Q' Npre(Q))
until Q! = Q!

thus obtaining Q*. Given a predicate P of a state, the operator pre represents all the states of the
timed model from which it is possible to reach a state of P by taking some controllable transition,
possible after letting time pass, while ensuring that there is no uncontrollable transition that leads into
-P.

Let @ be a property and Q* = |J .4 @ be the set of states computed by the algorithm above. The
timed model Ag has the same structure as .4 and the same timing information, except for its controllable
guards, since each guard g. has been replaced by ¢, = g. A QiApre,(Q%) where pre,(P)(s,c) =
P(s',v(c)) A g(v), while uncontrollable transitions remain unchanged.

Example 4.12 We present an example from [7] to illustrate the application of the synthesis algorithm
for reachability properties, see figure 4.8. A multimedia document is composed of siz tasks: music[30,40],
video[15,20], audio[20,30], text[5,10], applet[20,30] and picture [20,00] where each task is characterized

by its execution interval.

In the begining, music, video, audio and applet are launched in parallel and we have the following
synchronization constraints:

1. video and audio terminate as soon as any one of them ends; their termination is immediately
followed by the text to be displayed;

2. music and text must terminate at the same time;
3. the applet is followed by a picture;
4. the document terminates as soon as both the picture and the music (and text) have terminated;

5. the execution times of both the audio and the applet depend on the machine load and are therefore
uncontrollable.

Development Clock x controls music, y video, audio and text, and z applet and picture. For each
application, the corresponding guard is E™ < ¢ < EM | where ¢ is its associated clock and E™, EM the
minimal and maximal duration time. The finishing condition is ¢ = (30 <z A5 < yA20 < 2A20 <
x—y<3Az—2<40Ay— 2z < 10)° obtained by a process described in [7].

The idea is to seek for the existence of a scheduler that moves the system from the initial state to
the state done. The property is G done and the result obtain is that the document is indeed schedulable.
The execution time of text can be dynamically adapted to the duration of video and audio so as to make
music and text terminate synchronously. The corresponding scheduler is shown in figure 4.8, where the
restricted guards of controllable transitions, computed by the syntehsis algorithm, are printed in bold.
Notice that if video terminates at time y < 20, the marking {music, text, applet} will be reached with
a valuation satisfying = — y < 20 wihich falsifies the synchronization guard g¢ and therefore the only
possible schedule guaranteeing the reachability of done must terminate video at y = 20.
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Figure 4.8: Synthesis using TAD

4.5.2 Structural Approach to Synthesis

Altisen et al, [9, 8] have proposed a different methodology based on the construction of a scheduler
tailored to the particular application and regardless of any a priori fixed scheduling policy, since we are
considering not only the set of tasks but also the behaviour of the environment and some non functional
properties such as QoS.

There exists some theoretical methodology for the construction of scheduled systems, [8] based on:

1. A functional description of the processes to be scheduled, as well as their resources and the
associated synchronization;

2. Timing requirements added to the functional description which relate execution speed with the
external environment;

3. Requirements for the scheduling algorithm:

(a) Priorities: fixed or dynamic (for pending requests of the processes),
(b) Idling: a scheduler may not satisfy a pending request due to higher priority requests and

(c) Preemption: a process of lower priority is preempted when a process of higher priority raises
a request.

Taking into account these model constraints, we can follow a methodology for constructing a sched-
uled system and a timed specification of the process to be scheduled, [8], based on control invariants
and their composability and the scheduling requirements expressed as constraints, (some of which are
indeed invariants).

The idea is to decompose the global controller synthesis procedure into the application of simpler
steps. At each step a control invariant corresponding to a particular class of constraints is applied to
further restrict the behaviour of the system to be scheduled. The scheduler is decomposed into:
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1. Global Scheduling: characterized by a constraint K of the form K = K150 A Kgcpea where Kyjgo
specifies a particular scheduling algorithm and Kg.peq expresses schedulability requirements of
the processes

2. Computation of control invariants: at each step the corresponding control invariant is computed
in a straightforward manner.

3. Iteration: the scheduled system can be obtained by successive applications of steps restricting
the process behaviour by control invariants implying all the scheduling constraints, but some
composability conditions must be satisfied.

Each constraint is a state predicate represented as an expression of the form \/?:] si N\ 1; where
1; € ¥ is a C-constraint, (an expression over clocks), and s; is the boolean denoting presence at state
S;-

Given a timed system T'S and a constraint K, the restriction of T'S by K denoted as T'S/K is the
timed system 7" where each guard g. of a controllable transition is replaced by

g. = ge NK(s', o)

where pq is the set of clocks reset in e.

In a restricted system T'S/K, the C-constraint K is a control invariant of TS if TS/K = inv(K),
that is K is preserved by edges all long the execution of the transition system.

The problem of synthesis was defined by Altisen et al, [8] as:

Definition 4.9 (Synthesis Problem) Solving the synthesis problem for a timed system T'S and
a constraint K amounts to giving a non-empty control invariant K' of T'S which implies K, K' =
K, TS/K' =inv(K').

We need a scheduling requirement expressed as a C-constraint, K. If K’ is acontrol invariant
implying K then T'S/K' describes as scheduled system.

To clarify these concepts we present an example:

Example 4.13 Let us model a periodic non-preemptable process PP of period P > 0, execution time
E and relative deadline D(0 < E < D < P).

In figure, 4.9 we illustrate our example and we can distinguish three states, sleeping, waiting and
executing; the actions a,b and f stand for arrive, begin and finish; timer z is used to measure the
execution time, while timer ¢ measures the time elapsed since process arrival; both timers progress
uniformely; b is the only controllable action and guards g are decorated with an urgency type. Notice
that since the transition b is delayable, the processor may wait for a non-zero time even if processor is
free.

Consider a timed system TS = TS;||TS, where TS; and TS, are instances of the periodic process
shown in figure 4.9, with parameters (E, P,D) equal to (5,15,15) and (2,5,5) for process 1 and 2
respectively. We can create the constraint:

Kdlf: [(S] /\t] S 15)\/ ('LL] N\ T S 5/\t] S 15)\/ ('LU] /\t] S 10)]/\
[(82/\152 SE))V('U‘Q /\.’I,‘Q SQ/\?‘Q SE))V('U}Q/\tQ S?))]

which expresses the fact that each one of the processes is deadlock-free: from a control state, time can
progress to enable the guard of some exiting transition. This constraint is a proper invariant for TS.
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f“ (z=ENt<D)

Figure 4.9: A periodic process

Priorities Priorities are necessary in modelling formalisms for RTS since there may be urgent pro-
cesses or they may be useful as a conflict resolution mechanism by associating priorities to states or
more generally, specifying a state constraint and an associated priority order. Priorities are intrinsically
related to preemption policies.

In [9] priorities are defined as a strict partial order over the actions. Formally, a priority order is a
strict partial order <C A¢ x A and we say that if a; < as, then a; must be done before as.

Altisen et al, have proved that the application of a priority rule to a timed system respecting
conflicting actions through a partial priority order defines a new timed system.

Example 4.14 In figure 4.10 we see a part of the composed automaton for TS, where some conflict
exists between by and by as both access a common resource. Then from the control state (w1, w2) of the
composed system, the priority rule:

m=(D;— (ti + E;) < Dj — (t; + Ej)),bj < b

where (i,7) € {(1,2),(2,1)} expresses the rule for conflict resolution; the guards of by and by can be
conveniently modified as shown in figure 4.10, (note action b is still controllable but the transition is
immediate).

Conflict resolution and hence priorities are defined according to a scheduling policy SCH; in our
example, we have chosen the least laxity first, [44] which is a mixture of EDF and remaining executing
times.

4.6 Schedulability through TAT

In this section, we discuss another approach to modelling, introduced by Fersman et al, [26, 25] and
first discussed in [24]. The main idea of the model is to offer a schedulability frame, for a set of
non-periodic tasks, triggered by external stimuli, relaxing the general assumption of considering their
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Figure 4.10: Priorities

minimal interarrival times as task periods, as this analysis is pessimistic in many cases and indeed it
does not take into account the evolution of the environment.

To model the application, TAT are used, (see section 4.2.2), where each state of the automaton
corresponds to a task; a transition leading to a location in the automaton denotes an event triggering
a new task and the guard on the transition specifies the possible arrival times of the event; clocks may
be updated by the decrementation operations shown in 4.2.3. A state of such an automaton includes
not only the location and the clock assignment but also a queue ¢ which contains pairs of remaining
computing times and relative deadlines for all active tasks.

Task set is denoted P = {Py, P»,..., Pn}, where each task P;,1 < j < m is characterized by a
pair (E;, D;), as usual. The active set of tasks is T = {T,T5,...,T,} where each T; € P,1 < i < n;

the system may accept many instances of the same task P;, in which case they are copies of the same
program with different inputs?.

4.6.1 Schedulability Analysis

Remember that a TAT is a transtion system characterized by triples of the form (s, v[c],¢) where s is
a state, v[c] values of clocks in s and ¢ a queue of tasks sorted by some scheduling policy. The notion
of schedulability is then transposed to g¢: if all tasks in ¢ can be computed within their deadlines, the
system is schedulable and hence an automaton is schedulable if all reachable states of the automaton
are schedulable. Two important results are drawn out from this model:

1. Under the assumption of non-preemptive scheduling policies, the schedulability checking
problem can be transformed to a reachability problem for TAT and thus it is decidable.

2. Under the assumption of preemptive scheduling policies, a conjecture was made over the
undecidability of the schedulability checking problem, since preemptive scheduling is associated
with stop-watch automata for which the reachability problem is undecidable. This conjecture was
proved as wrong if UTA are used, (recall that in UTA clocks may be updated by substraction), and
if clocks are upper bounded and substraction leaves clocks in the bounded zones; the reachability
problem is then decidable.

2sometimes P; is called a task type and we distinguish instances as Ti1 ,Tf, o
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Figure 4.11: Zeno-behaviour

The schedulability problem may be reduced to the problem of location reachability as for normal
TA not considering task assignment, abstracting from the extended model; with this analysis we can
check properties such as safety, liveliness or many others not related to the task queue.

However as properties to the task queue are of interest, Fersman et al, [26] have developped a
new verification technique. One of the most intersting properties of TAT related to the task queue, is
schedulability. In fact, invariants in location and guards on edges rule the problem of schedulability.

Consider, for example, a part of an TAT shown in figure 4.11; while in location [; the system could
accept a new event a each 10 units (z > 10) but no more than 4, due to the constraint y < 40; in fact,
each time a new instance of P arrives, the previous one had already been executed, so the task queue
is bounded (by 1 in this case).

On the contrary if we observe state ls we see than an infinite number of () instances could be accepted
since the discrete transition b is not guarded, i.e. not constraint by some clocks. This behaviour is not
desirable and is called the zeno behaviour. Fersman et al have proved that this behaviour corresponds,
of course, to non-schedulability as the scheduler cannot manage to finish an infinite number of tasks
within a finite time (deadline). We also note that zenoness is a necessary condition for schedulability
but not a sufficient condition, since we can easily find a system non-zeno which is not schedulable.

The following definition relies schedulability and reachability.

Definition 4.10 (Schedulability) A state (s,v[c],q) of an TAT is a failure denoted (s,v|c], Error) if
there exists a task within q which fails to meet its deadline, i.e, if ¢ = [T1(e1,dy1), ..., Tn(en,ds)], then
from an initial state (so,v[co],q0) ——sen (s,v[c],Error) = 3i,1 < i < n,st. e; > 0Ad; <0 for a
given scheduling policy Sch.

In Fersman’s methodology, value e; computing the remaining executing time decreases as task 7; is
executed while values d’s computing the remaining time to reach deadlines decrease; under this context,
schedulability can be checked by verifying that at any instant ¢ :

Y ei<dV1<k<n (4.5)
i<k
which assures that the waiting time for task 7y, given by the sum of the execution times of tasks with

higher priority (according to Sch) is “small enough” to let 73 finish its execution®. Sometimes we can
decompose expression 4.5 as

3Remember that tasks in ¢ are ordered, being T} under execution
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Figure 4.12: Encoding Schedulability Problem

dei<di=) eiter<dyV1<k<n (4.6)
i<k i<k
——"
By,

and By, is called the blocking time for task .

A very important result in Fersman’s model is that the problem of checking schedulability
relative to a preemptive fixed priority scheduling strategy for TAT is decidable.

This result is based on the following ideas, (see figure 4.12):

e For UTA the reachability problem is undecidable and hence the reduction of schedulability to
reachability is also undecidable.

e A bounded updatable automata is a UTA in which each clock ¢ is not negative and bounded by
a maximal constant C., that is all operations leave clocks non-negative and clocks do not grow
beyond a known constant.

e The reachability problem for bounded updatable automata is decidable and hence the schedula-
bility problem, [18, 40].

e They prove that TAT are in the class of bounded UTA.

To encode the problem of schedulability as reachability, Fersman et al, develop a methodology based
on three transformation steps:

1. The application is first encoded as a TAT A7 as we have seen in the precedent paragraphs, where
states represent a task, (possibly in execution).

2. A7 is transformed to a TA A reduced to actions triggering tasks.

3. Given a scheduling fixed priority strategy Sch, a TAT As.y, is developed which includes all tasks and
all possible transitions according to priorities. Agc, is a UTA, with the following characteristics:
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e There are three types of locations: Idling, Running(i,j) and Error, with Running being
parametrized by a task 7; and its instance j.

e For each task instance, we have two clocks: ¢; to denote accumulated computing time since

T/ was started and r; ; denoting the time since T} was released; ¢; is a substracted clock,
substraction is applied to note the evolution of time, while T} is temporarily suspended. For
instance, ¢; (initially reset to 0) is reduced by § if task T}, is executed ¢ units of time and T}

preempts T;. It is this transformation which moves to the “risking zone of undecidability”.

4. The third step of the encoding is to construct the product automaton Age||/A where both au-
tomata synchronize over identical action symbols.

Fersman et al. prove that clocks of Agse, are bounded and non negative in the product automaton;
for this automaton the reachability analysis of the error state is decidable and equivalent to declare the
system as non-schedulable.

For this approach, the number of clocks needed in the analysis is proportional to the maximal
number of schedulable task instances associated with a model, which in many cases is huge. In a later
paper, [25], Fersman et al prove that for a fized priority scheduling strategy, the schedulability checking
problem can be solved by reachability analysis on standard TA using only two extra clocks in addition
to the clocks used in the original model to decribe task arrival times.

4.7 Job-Shop Scheduling

To conclude this chapter, we introduce another model for tasks, the job-shop scheduling problem, Jss,
suitable for distributed systems, under certain conditions, [1].

The JSs problem is a generic resource allocation problem in which machines are required at various
time points for given durations by different tasks. Each job J is characterized by a sequence of steps
(ma,dy), (ma,da),...,(mg,d;) where m; € M and d; € N,;1 < i < k, M being the universal set of
machines indicating the required utilization of machine m; for time duration d;. The sequence states a
logical order to accomplish job .J, first machine m for d; units of time, then machine msy for ds time,
and so on.

Formally:

Definition 4.11 (Job-Shop Specification) Let M be a finite set of machines. A job specification
over M is a triple J = (k,u,d) where k € N is the number of steps in J, pu: {1...k} = M indicates
which resource is used at each step, and d : {1...k} — N specifies the length of each step. A job-shop
specification is a set J = {J', ..., J"Y of jobs with J' = (K, ut, d").

The model assumes that:

e A job can wait an arbitrary amount of time between two steps, (there is no notion of deadline).

e Once a job starts to use a machine, it cannot be preempted until this step terminates, (that is,
there is no preemption).

e Machines are used in a mutual exclusion manner (while job .J is using a machine, no other can
have access simultaneously) and steps of different jobs using different machines can execute in
parallel.
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Definition 4.12 (Feasible Schedule) A feasible schedule for a job-shop specification J = {J',..., J"}
is a relation S C J x K x R", so that a triple (i,j,t) from S indicates that job J' is busy doing its

jth-step at time t and hence occupies machine p' in its j step. A feasible schedule should satisfy the
following conditions:

1. Ordering: if (i,j,t) and (i,5',t') € S then j < j —t <t
2. Every step is executed continously until completion.

3. Mutual Exclusion: for every i,i' € J,j,j' € K andt € R if (i,7,t) and (i',j',t) € S, then
i (j) # ut (j"), two steps of different jobs which execute at the same time do not use the same
machine.

The optimal Jss problem is to find a schedule with the shortest length over ¢ over all (i, j,t) € S.

4.7.1 Job-shop and TA

Naturally, each job J = (k, u,d) can be modeled as a TA such that for each step j where u(j) = m we
create a state indicating the use of m for a duration of d, but we have to mark also the waiting time
before using m; for this reason, [1] proposes to create states m for each machine used by J.

We will not give the formal definition of this transformation, but illustrate it through an example.

Example 4.15 Consider two jobs J' = {(m1,4), (m2,5)} and J* = {(m1,3)}, over M = {m,m}.

The automnata corresponding to these jobs is shown in figure 4.13(a), where one clock ¢; for each task
Ji is used to model execution time. In [1] each TA has a final state f.

To treat a JSS we need to compose the automata for each task. This composition takes into account
the mutual exclusion principle, by which no more than one task can be active in a machine at any time.
The resulting restricted composition is shown in figure 4.13(b).

From the composition automaton, we can derive the different lengths of executions by analysing
different runs of the automaton, which represent feasible schedules for 7.

Example 4.16 Two different executions for our previous example are shown bellow, where each tuple
is of the form (m,m',c1,¢c2),m,m' € {my,m1,ma, M2} and L represents an inactive clock:

S]Z

(1, g, L, L) 5 (my,img, 0, L) 5 (my, iy, 4, L) 2 (ma,my, L, 1) -
(mQ:th:l) L) (mZ:m170:0) i> (mQ:th:g) i> (m27f73=l) i)
(m27f757J-)i)(f7f7J-7J-)

SQS

(M1, ma, L, L) =5 (ma,mi, L,0) =5 (ma,mi, L,3) = (ma, f, L L) =5
(m17f70:l) i) (m17f74:l) L) (m2=f:J—:J~) L> (m27f70:l) i)
(m27f757J-) L) (f/f/J-/J-)

The first schedule Sy has length 9 while the second Sy has length 12.



98 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

c1:=0 cz:=0
O
c1 >4 c2 >3
OO
c1:=0
()
c1>5H

@ (b)

Figure 4.13: Jobs and Timed Automata
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The previous example shows the idea for Jss and timed automata, [1]: the optimal job-shop schedul-
ing problem can be reduced to the problem of finding the shortest path in a acyclic timed automaton.
This problem of reachability, that is arriving to the tuple (f, f, L, 1) is always successful since all runs
lead to f. In [1] various techniques for traversing the composed automaton in order to find the shortest
path are presented; algorithms reduce the number of explored states, still guaranteeing optimality.

4.8 Conclusions

In this chapter we presented three main streams for modelling and analysing, based on TA and the
reachability problem.

Tailored Synthesis The approach studied in [8, 9, 7] is based on the construction of a scheduled
system, guided by some desired properties and the application itself. From a TA they construct a
new automaton whose invariants must respect the desired properties; priorities are used as inputs
and its calculation is guided by conflicting states. The problem of preemption is not clearly
handled. Schedulability is attained by construction.

Timed Automata with Tasks The approach studied in [26, 25] is based on the idea of modelling
the application under bounded supension automata; the problem of schedulability is reduced to
the problem of reachability of an error state; they prove this problem is decidable and hence so
is schedulability. The problem with this model is encoding the application in a new UTA, which
considers all possible transition among tasks, and then we are soon face to the problem of state
explosion. Scheduling policies are fixed priority.

Job Shop The approach studied in [1, 2] is completely different: it treats the problem of (real time)
tasks where no deadline restriction is imposed and many machines are at disposition for execution.
Modelling is based on the idea of composing the individual models for tasks and schedulability is
reduced to a reachability problem with the shortest time weight. Although simple, the problem
is too narrow since periodic tasks are not considered (and hence, TA are really acyclic TA) and
tasks have no deadlines so, schedulability analysis is almost inexistant.
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Chapter 5

The heart of the problem

Résumé

Ce chapitre présente les resultats les plus importants de cette thése; nous donnons une nouvelle util-
isation d’horloges pour modéliser I’'ordonnancement dans un cadre avec preemption, dépendences et
uncertitude.

Le chapitre présente graduellement notre technique; au debut on considere des systemes avec
une preemption et on les modelise a 'aide des automates temporisés; on prouve que le probleme de
I’ordonnancement est decidable en montrant que le probleme d’atteignabilité est decidable. On etend
notre méthode vers un cadre plus general en presentant une modélisation qui utilise la difference entre
deux horloges pour simuler la preemption. Finallement, on conclut par la preuve de decidabilité de
cette approche. Un mechanisme d’admission de taches est presenté basé sur l'idée de temps d’attente.

5.1 Motivation

As seen in the previous chapters, the behavior of real-time systems with preemptive schedulers can be
modelled by stopwatch automata. Nevertheless, the expressive power of stopwatch automata discour-
aged for a long time their use for verification purposes. Indeed, the reachability problem (even for a
single stopwatch) has been proven to be undecidable [29, 31, 20].

There are, however, some decidable sub-classes such as the so-called integration graphs [31] and
suspension automata [40]. The latter are actually useful for modelling and analyzing systems made up
of a set of tasks with fixed execution times. SWA can be translated into timed automata with updates,
specifically decrementation by a constant, for which the reachability problem is indeed decidable [18].

The result of [40] has been extended in [26] to a more general model TAT, though still requiring
constant execution times of tasks. The approach via timed automata with decrementation suffers of
two main problems. First, it requires a costly translation. Second, it only allows modelling tasks with
fixed execution times. A technique to cope with the first problem has been proposed in [25].

In this chapter we focus on preemptive scheduling of systems of tasks with uncertain but lower and
upper bounded execution times. The behavior of these systems cannot be straightforwardly translated
into a decidable extension of timed automata with updates. Our approach consists in encoding the
value of stopped clocks as the difference of two running ones. We do allow tasks to be restarted again;

101
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Figure 5.1: A model of a system

initially we forbid preempting a task more than once, then we extend to a more general model. We
show that the system can be modelled by formulas involving difference bounded matrices, DBM, that is,
difference constraints on clocks, and time-invariant equalities capturing the values of stopped clocks.
This result implies decidability and leads to an efficient implementation. Moreover, it gives a precise
symbolic characterization of the state space for the considered class of systems.

5.2 Model

A real time application is modelled as a collection T = {m,72,..., 7} of all tasks for the applica-
tion, which are triggered by external events, including a timed event such as period. Each task 7; is
characterized by a vector of parameters [G;, D;] 1 < i < m where G; = [E™", ™3] is the execution
time-interval, i.e. the best and worst case execution time and D; is the relative deadline. For each task
T;, we have two timed variables, namely r; and e;, that measure the release time and the accumulated
erecuted time, respectively. Both variables are reset to zero whenever task 7; arrives. Task arrival is
denoted by 7;1 and task completion by 7;|.

The environment is any untimed relation between arrivals and completions of all tasks (it should
respect the precedence relationship between 7;1 and 7; ], though).

Example 5.1 In figure 5.1 we can see an example of a model of system of four tasks.

The general model of an application is then a graph G = (V, A), where the set of vertices V C {r; 1
, Ti 4} 1<i<m where |in(V)] <1 (no more than one incoming edge per vertex) and a set of directed edges

AC{nT= milhicicm U{Tid= 7 T}z, 1<ij<m U{TiT= 751 }izj, 1<ij<m

Let T' C T be the finite set of active tasks in the system, that is, those that have already arrived
and are currently being handled by the scheduler. At any moment, at most one instance of a task may
be active. The predicate exec(T;) indicates whether T; is executing or not and for the set T', exec(T')
denotes the executing task of T'. The predicate accept(7;) indicates whether 7; is accepted or not at
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its arrival due to some scheduling or modelling reasons; for instance, 7; could be rejected because it
would produce some tasks to miss their deadlines or because there is an active instance of this task. A
detailed description of this predicate will be given when we precise the scheduling policy. Figure 5.2
shows a task automaton.

T

N

accept(T;

executing
or
pending

7i | Nexec(T;)

=T A ei € GiANr; < D;

—accept(;)

Modelling Error Scheduling Error

Figure 5.2: Task automaton

The dynamic behavior of the system is represented by a transition system (S,7T,—) where S is
a set of states, T' is the set of active tasks, and — is the transition relation. S is a tuple of control
locations of the task automaton (Fig. 5.2) and of valuations of timed variables. The following rules
give a sketched behaviour of the system; formal and complete rules will be given later when analysing
particular scheduling policies, SCH.

e Task completion: 7;| If ¢; € G;, r; < D;, and exec(7;), then

(S,T) 3 (S, Te{n})
where S’ is obtained according to sCH and & is the operation of removing a task from 7.

e Task arrival: 7;1
Ifr,eT=>
(S, T) 7 Schedulling Error
(no more than one instance of each task)
If 7, ¢ T A —accept(S,T,7;) =

(S,T) i) Modelling Error

If accept(S,T,7;) =
(8, 7) 3 (S, T & {n:})

where S’ is obtained according to SCH and @ is the operation of inserting a task in T.
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e Deadline violation: If r; > D; for some 7; € T =

(S,T) — Schedulling Error
e Time passing: Let exec(r;), § > 0, and e; + 6 < EM® =
(8,7) > (8, 7T)
where S’ is obtained from S by adjusting the values of timed variables according to SCH.

The first rule expresses the completion of the executing task, leaving to the scheduler the choice
of choosing the next task to be executed. The definition of exec(T) and the computation of the next
state are left unspecified since they are dependant of the sCH.

The second rule expresses the arrival of a new task, which can be accepted or rejected. We distinguish
two transitions leading to an error state, one for unschedulability and the other for a behaviour not
satisfying the modelling assumptions.

The third rule expresses the case of a deadline violation. The fourth rule expresses time passing of
0 units of time, adjusting the values of the timed variables in T

In general we will assume the existence of an acceptance test at task arrival. This test is related to
some assumptions of our system and of course, to the scheduling policy. Once the task passes the test,
it can enter the system, either waiting for its turn or executing immediately, preempting the currently
executing task. Predicate accept(S, T, 7;) will be analysed in detail for different scheduling policies.

5.3 LIFO scheduling

To show our analysis, we start with a very simple scheduling policy: a LIFO scheduler, that is, a
scheduler where the current executing task is always preempted by the recently arrived task. We also
suppose that each task can be preempted for at most once.

Intuitively speaking, a one preemption LIFO scheduler accepts tasks in the stack, until the task on
the top finishes; at this moment, as all tasks beneath it had already been preempted, the scheduler will
reject any new task, until the stack is empty; note, then, that all tasks in the stack had been preempted
once, except the task on the top which could have never been preempted.

Example 5.2 Let T = {r1(4,12),72(5,10),75(2,10),74(3,6)} be a set of tasks, where the numbers in
parentheses represent execution times and deadlines. In this example, deadlines are sufficiently long to
let all tasks execute on time.

Figure 5.3 shows the reaction of a LIFO scheduler at arrival of each task. For instance at time ¢ = 3,
791 and 7977 ; note that at time ¢ = 8, 73|, and 73 resumes execution, noted as 5 /*; remark that the
arrival of 74 at time ¢ = 9 is ignored by the scheduler, since 7 had already been preempted. We also
show the evolution of clocks.

5.3.1 LIFO Transition Model

Let T = {Ty,T>,...T,} be the stack of active tasks in the system and let T}, be the task in execution,
i.e. T, = exec(T); if 7; arrives to the system and it is accepted, then 7; preempts T,,, written as 7;1T,.
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3 ) 1 N
1t 73 T T2 1 l mt ml nl
| ‘ ‘ | ‘ ‘ | ‘ | ‘ | |
T T T T T T T T T T T T
0 3 6 8 10
1“1:20 T3:=0 1“2:20 1"222 1"3271“1:11
e =7 €3 =1T3 €2 =Ty 1"325
1"1:8
T:{T1} T:{Tg,T]} TZ{T27T3,T1}T:{7-377—1} T:{T]T:{}

Figure 5.3: One preemption LIFO Scheduler

We define a function y for renaming tasks, p: T — {1,2,...,m}, u(T;) =4, 1 <i<n,1<j<m
gives the “name” j in T of the task 7; placed in position i in stack T'.

An hybrid transition system (S, T, —) for a LIFO scheduler is composed of :

1. a collection of states, S = (S, €, 7, e:ﬁ), where:

(a) S is a control location,

(b) € a vector of clocks counting execution time, where €; is the cumulated execution time for
task 7;,

(c) 7 a vector for releasing times, where 7 is the released time for task 7;,
(d) ¢ a vector indicating those execution clocks which are stopped,

(e) P a vector for preemption where 5; = [ means that task 7, preempts 7;, 7{7;, if I # 0 or that
7; has never been preempted, otherwise. In particular, in the LIFO scheduler, if task 7; is at
position k,1 < k <mn in T, that is 7; = T}, then task 7 is at position k + 1, that is' :

w(Tw) = §, w(Tks1) =1, Py = w(Thy1) =95 =1
2. a stack of tasks, T' C T (with the usual operations pop, top and push).

3. a transition relation —

We give the operations over our transition system; recall that the arrival of a task is captured by
the scheduler, who decides over the admission. As a convention, we will use index j for “names” of
tasks, 1 < j < m and k for active tasks in T, 1 < k < n.

e Task arrival, ;1 (7; € T and accept(S,T,7;)):
(8.1 43 (s 1)
where 7' = push(r;,T) and &' = (S', ¢/, 1/, €', p') is:

S [0 ifi=j
€; otherwise

I'We could simplify § as a boolean vector where pj =0, and 0 € [true, false]
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,:,j:{g if i =j

7 otherwise

S (1 ifj=i
€571 0 otherwise

That is, as a new task is accepted, its execution and release clocks are both reset, its rate
execution clock is set to 1 to mark it is running, while all other execution clocks are stopped; we
mark preemption to the current executing task.

e Task completion: T3,

(S,T) = (8, T")

where T' = pop(T) and €,,(1,) = 7(t,) =L, all other variables are unchanged.

e Task resumption: T, / (we assume T, = top(T) is a task preempted in the past, which regains
the processor).

(8.7) =5 (8',T)
where §' = (5, ¢/,
3 1 if j = p(Th)

€= { 0 otherwise

all other variables remain unchanged.

e Time passing: ¢ is an elapsed time not enough to finish the current executing task.

(8, T) > (8, T)

-

ol e+ ifj=puT)
i & otherwise
f herwise

and r-;j =15 + V7, 7; €T, all other variables remain unchanged.
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5.3.2 LIFO Admittance Test

It is time to give an admittance test for our LIFO scheduler. We propose:
acceptypo(S,T,1;) = —active(T, 7;) A —~preempted(T,T),)
that is, we do not accept a task if:
e There is an active instance of the same task, that is
active(T,7;) =i = pu(Ty) for some k,1 <k <n
e It will preempt an already preempted task, that is

preempted(T,T,,) = py(7,) # 0

For the instant being we do not consider timing constraints; in particular, we are not considering
in the acceptance test the fact that a new accepted task may lead to some other tasks in 7' miss their
deadlines. Later, we propose a refinement in that direction.

5.3.3 Properties of LIFO scheduler

Under the one-preemption assumption the following properties hold:

LI pyur,) = 0= euer,) = Tu(r,)

2. (T, 1) = Tw(Tu_1) — Tu(Tw)

3. VT, Ty, € T,k < n, we have:

(a) Preemption: active(T}) A preempted(T})

(b) Time invariant condition:

n—1

Iiro(T) = Cu(Th) = Twu(T) — Ti(Tegr)
k=1

n—1
Iwvo(T) = /\ Cu(Tr) = Tu(Tr) — Thu(ry)
k=1

(¢) Schedulability: r,(r,) < D (r,)

Property 1 simply says that if the currently executing task T, has never been preempted since its
arrival, then both clocks, e, (7,) and r,(7,) have the same value.

Property 2 is the consequence of preemption. When T),_; was preempted, (i.e. T,,_; was executing
and hence on top of T'), we know by the previous rule, that e, _,) = r,(r,_,) and as r,,) is set to
zero, we can establish the property which is time-invariant while T}, _; is suspended. This observation
leads by induction to property 3b, which we call the ezecution invariant under a LIFO scheduling policy.

Property 3a says that all tasks in stack T are active and were preempted in the past (except
eventually the task in the top).

Property 3c says that all tasks in T are schedulable, (remember our extension of the admittance
test will go in that direction).
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Figure 5.4: Invariants in LIFO Scheduler

Example 5.3 Let us reconsider the example 5.2; we can observe that (see figure 5.4):

e Att=0r; =e =0, 7 begins its execution. I po(71) = true,

e At ¢t =3, 73 arrives, it is accepted and preempts 7; (later, we will give an admission test dealing
with schedulability conditions). The execution invariant Itpo(m1,72) = {e1 =71 —r3}

e Att =6, 1 and 7ofr3. The execution invariant I jpo (71,72, 73) = {e1 =11 —r3Aes3 =r3 —ra}.

e Att = 8, 75 completes its execution and the scheduler resumes 3. The computed time is recovered
from the difference e3 := 73 — ry. Note that p5 = 2 and e3 =13 — r5,.

e Att =9, T, arrives but it is rejected by the admittance test since: exec(T) = T3 Apreempted(7s).

e Finally, at t = 10, 73 completes and the scheduler resumes 71; once again e; is recovered from the
difference ry — r3; 71 ends at ¢ = 11.

The previous properties motivate the following definition:

Definition 5.1 The execution invariant under a LIFO scheduling policy is

Turo(M) = N eum) = Tuem) = Tumin)
1<k<n—1

If the currently executing task has already been preempted, the equation r,(r,) = e,(r,) may not
hold and in this case, we cannot simply express e, (7, ) as the difference of r,(7, ) and r, 7, ). So for
the time being, we still retain our assumption of one-preemption. To ensure that r,(7,) = e,(r,) holds,

we can constrain the predicate accept(S,T, ;) for every task 7; by the constraint

€exec(T) = Texec(T)

5.3.4 Reachability Analysis in LIFO Scheduler

Let ¥ be the set of formulas generated by the following grammar:

Yr=e—y<d|YAy| |3y
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where z,y € C are clocks and d € QQ is a rational constant.

To facilitate notation, we will skip in this analysis the use of the function u, and replace it by the
position a task occupies in the stack. Remember then that when saying, for instance, e; we really mean
the execution clock e of the task which is in the k position in the stack, that is e, 7,).

Let ¢ be a constraint characterizing a set of states. We define T, 11 1(¢) to be the set of states
reached when task T),1; arrives, that is:

Toi1 (@) ={s' :Is € . s gad s'}

Let ¢ be of the form Itrpo(T) A4, with ¢ € ¥ a quantifier free formula. Without loss of generality,
we can assume that either :

1. T)41 is rejected:
dj - ﬁaccept(lﬁ:T: Tn+1)

in this case, T\, 11 1(¢) = ¢ and the system moves to an error state.

2. Ty is accepted:
1/} - accept(¢7T, Tn+1)

We have that:
Tot1M(@) = Iiro (T & {Thnt1}) N ens1 = g1 = 0A Jep )

Moreover, since e, = ry,, ILipo (T @ {Th+1}) contains the equality e, = r, — r,+1, we have that:
Tn+1 T(¢) = ILIFO (T + {Tn+1 }) A €n+1 = Tnt1 = 0OA 1'[),

Hence, T,,11 1(¢) has the same structure than ¢, that is, it is the conjunction of an execution

invariant and a formula in ¥. Moreover, if ¢ is a quantifier-free formula, that is, a difference

constraint (or DBM), we have that e, .1 is indeed a DBM. Note that 1) is a formula containing
clocks measuring release times and only one execution clock (that of the task on top).

Then we have:

Proposition 5.1 Let ¢ be of the form Irjro A M, where M is a DBM and I1,1ro S a one preemption
LIFO ezecution invariant, then, Tn111 (¢) has the same structure as ¢.

Now, let ¢  the set of states reached from ¢ by letting time advance, that is:
¢/ ={s:3s€ ¢, >0.s LN s'}
Clearly, if ¢ is of the form Iy 1po(T) A M, we have that
¢ /= (Iuro (T) A M) /= ILipo A M 7

Proposition 5.2 Let ¢ be of the form Itjro A M, where M is a DBM and I11ro S a one preemption
LIFO ezecution invariant, then, ¢ /* has the same structure as ¢.
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Thus, given a sequence of task arrivals T 1,..., T, T, the set of reached states can be represented
by the conjunction of the execution invariant Itiro(7), characterizing the already executed time of
the suspended tasks, namely T4,...,T,_1, and a DBM M, characterizing the relationship between the
corresponding released times and the equality e,, = r,.

A DBM M has the following form:

u T1 Tro A A7) €n
T Myr, Myr, .. My, — My,
rn M. -— My oo My My,
re Myyy Mpyr, — cor Myyy, My,
Tn Mr"u Mr,,,m ]\4'1",l T2 - MTn,en
en Me,w Me,r, Me,vy ... Mo, —
As e, =y, then M,., = M,,, and M, , = M, ,, so from here on we omit e, in M.

In our case, M is constructed in a very particular way and therefore has a special structure. Let us
analyse it:

FEvent Equation Explanation
T 1 0
T>7 M vy = My 1y ber=r—ro <M, =M, T2=u (5.1)
57 Miyry = Myyu bes=ry—r3 < Mpypy =My o r3=1u (5.2)
M vy = Myyry + My, (e1r=r1 —ra < My, Ny =19 =13 < Myypy) =
1 =713 < Myjry = Myyry + Migrg (5.3)
Ty Miyry = Myyu ez3=r3—rs <M, =My ra=u (5.4)
My, = Myyry + My, (2 =1y =13 < Myypy Nez =13 =74 < Myyp,) =
Ty — 74 < Myyry = Myyry + Mgy, (5.5)

Mnm = MT‘]T‘2 + MT2T3 + Mr3r4 (el =Ty —T2 S MT‘]T‘2 Ney =Ty — 713 S MT2T3
Nez =13 =14 < Mpyy,) =
1 — 14 < Myjry = Myypy + Mygrg + Mg, (5'6)

We can observe that equality 5.3 is deduced from 5.1 and 5.2; 5.5 from 5.2 and 5.4 and finally
5.6 from 5.1, 5.2 and 5.4. So we see that the matrix is constructed from a set of base formulae
corresponding to the difference of the task being executed and that which preempts it, while all other
differences can be constructed from this base set. Base formulae are marked with a ¢.

In general, when T,, arrives:

M

Tp—1Tn — Mrnfw

and
M,

Tn—1€n—1

=M., yr, ,=0

As T, preempts T,,_1 and
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Doicicn 1€ =71 Tn < My,

ngignq e =71j —Tp < My,

el e2 es e;j en—1

| | | | | | |

111

T T T x\/\/{ I [

r1:=07r9:=0r3:=0 r; =0 rp—1:=0

Figure 5.5: Clock Differences in LIFO Scheduler

n—1
M;jr, = Z Miyiriirs J<n—1
i=j
Equation 5.7 may be re-written as a recursive formula:

Mrjr" = Mrjr,,,q + Mr"qr,,,: J<n-—1

and
Mr]-u = Mr]-r" + Mr"u

(5.8)

What do these differences mean? Figure 5.5 shows a geometric interpretation of the following

relations:
€1 = ry —7Tre S M’I‘]’I‘2
€2 - Ty — T3 S MT2T3
€n—1 - Tn—1 —Tn S Mr",n""
Z1§i<n €i = Z1§i<n ri = Trig1r < Zlgz‘<n Miri
Zngn ei = 1 —r, < Z1§i<n M1 (5.9)
On the other hand, we know that:

ry—7Tn < My, (5.10)

From the expression (5.9) and (5.10) and (5.7) we can deduce that:
Z € =T1—Tn S Z MT,'Ti+1 = MTl’l"n
1<i<n 1<i<n
The expression 5.9 can be generalized as:
Z € =T; —Tn S Mr]'r"
j<i<n

That is, when T,, arrives we have that:
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My, v, M;, u (5.11
MT’n,fle,,,q - Me,,,,lr"q =0 (5.12
and for all j < k < n,
M,y = My, +M,., (5.13)
MUT]‘ = J\4ur;c + MTkT]‘ (514)
M’f'jT’k = Mrjrk,1 + Mrk—l""k (515)
M’f'k,f’j = M’r‘kf’k,1 + M’r'k,rr'j (516)

Let us call a DBM M that satisfies properties 5.11 to 5.16 a nice DBM.
We have therefore proved that:

Proposition 5.3 T,111 (-) and 7 (-) preserve nicety.

We have shown so far that task arrival and time passing preserve the structure of the symbolic
characterization of the state space for a LIFO scheduler if tasks are accepted only under the one-
preemption restriction. The question that arises then, is whether task completion has the same property.
If this is the case, we have a complete symbolic characterization of the state space of such schedulers.
Indeed, the answer is yes, though the reasoning is a bit more involved.

Let T,, | (¢) be the set of states reachable from ¢ when T,, terminates:
' Tod 1
Tol(p) ={s :3s € p.s ¥ s'}
Let ¢ be of the form I 1p0(T) A M and G,, be the interval [E™® E™ax] We have that:

Tn\], (d)) = Elen, o ILIFO (T) ANMANG,
Iywo(T — {Tw}) N3rpn.en1 =rn_1 —rn Aden. (M ANG,)
= Iuro(T —{TW}) ANM'[ry =101 —en ]

where M' = Je,,.(M A G,), that is we eliminate e,, from M, since we do not need it. The question is:
“TIs M' still a nice DBM matrix?”

We have to show now that M'[r,, < r,,_1 — €,_1] is equivalent to a nice DBM.

When substituting r, by r,—1 —e,—1 in M we get:

fromr, —r, 1 < My ., => —€p1 <M, . _, (5.17)

fromr, —r; <M, . = rp 1 —eq —15 < M, (5.18)
which is not a difference constraint, but from (5.17) and

Tpn—1 — ’I“]' S Mr",n"j
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we derive that
Tn—1 —€pn—1 —Tj S Mr'nrn,—l + Mrn—ﬂ‘j

Since M is nice, we have that:

M, ., =M. v+ M. .,

which means that (5.18) is an implied constraint and it can be eliminated. The same applies for all
the non-difference constraints that appear after subsitution. Since no other new constraints on released
time variables appear, nicety is preserved.

In summary:

Proposition 5.4 Let ¢ be of the form I AN M, where M is a nice DBM and I is a LIFO ezecution
invariant. Then, T, | (¢) has the same structure than ¢.

Since all variables are bounded, the above results imply the following:

Theorem 5.1 The symbolic reachability graph of a system of tasks for a LIFO scheduler satisfying the
one-preemption constraint is finite.

Hence, the reachability (and therefore the schedulability) problem for our class of systems is decid-
able. More importantly, our result gives a fully symbolic characterization of the reach-set.
5.3.5 Refinement of LIFO Admittance Test

We have “skipped” the analysis of deadlines; in this section we give a refinement of our LIFO admittance
test.

We propose to test at ;1 the predicate:

acceptyro (T, 7;) = —active(T, ;) A ~preempted(T,T,) A schedulable(T, ;)
that is, we do not accept a task if:

e There is an active instance of the same task, that is active(T,r;) = i = u(T}) for some k,1 <
k<mn.

e It will preempt an already preempted task, that is preempted(T',T,,) = p),(r,) # 0.
e It will miss its deadline or cause other tasks in T' miss their deadlines, i.e,

schedulable(T,7;) = Vr; € {TU T}, rj + B + (E) —¢;) < D; (5.19)

that is we must calculate how many units of time the r;’s will be shifted after computing those
tasks which have higher priorities, including 7;, and of course how many units of time must at
most execute 7;. The time a task 7; will be suspended as a consequence of the execution of higher
priority tasks is called the blocking time, B;.
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schedulable(r;)?

Tn+1

BLIFO T,
J

Tj Ty,

T

Ty

Figure 5.6: Tasks in a LIFO scheduler

We should note that a LIFO scheduler is in some kind a dynamic priority protocol, since the arrival
of a new task will, in principle, preempt the currently executing one. That is, priorities are given by
task arrival and hence by stack position, 7,1y < Ty - - < Ty(T,)-

At task arrival, the schedulability test must assure no deadline missing for all active tasks, which,
due to the one-preemption hypothesis it does not necessarily mean that the new task will be accepted.

For each task Ty € T, the blocking time when a new task 7; arrives can be calculated as follows
(j = u(Te), 1< k < no) :

B;_JIFO — Z (E-,—I _ e‘r’)

T >Tj

under the LIFO scheduler we know that e; = r; —rg Vk <n, T € T, u(Ty) = j. Obviously e,(r,) =
ru(cr,) (if not, 7; would violate the one preemption hypothesis and hence it should not be accepted) and
€u(T,11) = 0, so (see figure 5.6 for a graphical interpretation of these formula):

n+1
LIFO
B; = Y (Biln) —eum)
I=k+1
n—1
O
By = Y (Bylny — euwn) + (Bylr,) — eur) + Eulr, )
I=k+1

Using our execution time invariant and the fact that 7,(7,) cannot have been preempted (if this
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were the case, then surely 7; cannot be accepted), we have:

n—1
LIFO M M M
B; = Z (Euiry — (um) = rumen) + (Byir,y = Twra) + Eyr, )
I=k+1
n+1 n—1
LIFO M
B; = > (Bilzy) = D (uem) = rumign) = Tur)
I=k+1 I=k+1
n+1
LIFO M
BT = Y (Blry) = (rutiogn) = Tu(r) = Tu(t)
I=k+1
n+1
LIFO M
BH(Tk) = Z (Eu(Tz)) = T(Tita) (5.20)
I=k+1
Replacing in 5.19 with 5.20, using j = u(T}) we have:
n+1
VT e {TUn}, rj+ Y (Biny) = tuinyn) + (B} —e;) < D;
I=k+1

which can be rewritten as

n+1
VT € {T U Ti}7 Z(E%Tl)) + (TN(Tk) T Tu(Teyr) — elJ(Tk)) < Du(Tk)
1=k

but e, (1,) = (1) — Tu(Tis,) and the test is reduced to:

n+1
VT, € {TUT}, > (Bpr) < Dy (5.21)
1=k

This test is pessimistic, since we are using the worst case execution time for tasks in order to calculate
blocking times and schedulability. If we consider applications where execution times are controllable,
that is, applications where we can influence in someway the time spent in the execution, we could use
minimum execution times. This could be acceptable for applications where execution times are related
to some quality of service, for instance performing an approximative calculus instead of an exact one
or composing an image in different qualities.

On the contrary, if execution times are uncontrollable, then we need maximum execution times,
since we must accept to work under a worst case perspective.

5.4 EDF Scheduling

Let us analyse another scheduling policy, earliest deadline first, EDF, which is considered to be optimal
in the sense that if a set of tasks is schedulable under some policy, then it is also schedulable under
EDF, [37].

Under this policy we know that tasks are chosen by the scheduler according to their deadlines, with
that having the shortest deadline being in execution. The policy is generally preemptive, but we could
imagine an EDF scheduler not preemptive. We will consider a one-preemption EDF scheduler.
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Tl T2l

T1 T1 T3 T2 73 /" T3l
| ‘ ‘ | ‘ ‘ | ‘ ‘ | ‘ ‘ | ‘ |
i \ \ i \ \ i \ \ i \ \ i \ i
0 3 6 8 10 12 14
1 1 T3 T T2 1 Ta T
r1:=20 r3 =20 r9 =20
e1 =0 D3 —r3 =7 Dy —14=3
{Tl} Di—r1 =9 Dy —1r9 =6 D3 —r3 =4

D3 —r3 =10 {12,713} {rs}

{m1,73}

Figure 5.7: One preemption EDF Scheduler

Let T be the set of active tasks ordered by deadline; in fact, T is a queue and by convention T}, is the
head of the queue and hence currently executing; the rest of T is the tail. We also assume the existence
of the renaming function p, as explained for LiFO and the universe T of tasks, such that 7' C T.

Conceptually speaking, the EDF scheduler is quite simple, when a new task arrives it is accepted or
rejected by the scheduler for schedulability reasons and if accepted it is inserted in T according to its
deadline. Once a task is finished, the scheduler can choose the next one, which is that behind the head,
and so on. Note that a task can be accepted and put in 7" in some position according to its deadline,
not necessarily preempting the task in the head of T

A one-preemption EDF scheduler works quite similarly to an EDF scheduler except that if a new task
T must preempt the currently executing one which has already been preempted, then 7 is rejected even
if the whole system is schedulable. Once again, the reason to do this is our manipulation of clocks.

Example 5.4 Let us consider a set T = {1(4,12),72(2,6),75(5,10),74(1,3)}. In figure 5.7 we see the
behaviour under a one preemption EDF scheduling policy. Some remarks:

o At time t = 3, 1371 but its deadline (10) is longer than 7 ’s, so it waits in the queue.

o At timet =4, 7y finishes and 13, gains the processor.

At time t = 6, 7o 1, and its deadline (6) is shorter than 13’s, so it preempts it. This is the first
preemption for T3 since it is its first execution. T3 rejoins the queue.

At time t = 8 19 finishes its execution and T3 resumes its execution.

At time t = 9 task T4 arrives and its deadline (3) is shorter than 13’s (4) so it should preempt it
but 73 had already been preempted, son our scheduler rejects 4.

o At time t = 11 73 finishes.

As usual, we distinguish the arrival of a task 7 1, from the resuming of a task 7 . Note that in
our one-preemption EDF scheduler is not optimal, since the system is feasable (we could have accepted
74) but we rejected it.

5.4.1 EDF Transition Model

We model an EDF application as a transition system S, T, —) composed of:
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1. A collection of states S = (S, €, 7, c?, W), where S, €, 7, P, ¢ have the same meaning as for LIFO
and @ is an auxiliary vector of clocks, w; notes the time when task 7; begins its execution, which
is different from its released (or arrival) time; note that in L1IFO scheduling, the most recent arrived
task preempts the executing one, so, immediately accepted, a task begins execution. Under EDF
scheduling this is not the case, since an accepted task may go somewhere in the queue, being its
execution delayed until more urgent tasks finish their executions. Clocks w’s will serve to note
this gap in time.

2. A collection of active tasks T

3. A transition relation —.

We introduce the operations in our transition system; we note as 7. the currently executing task,
that is 7. = exec(T') = 7,(1,,)

e Task arrival, ;1 (remember: 7; € T and accept(S, T, 7;)):

(S.T,) 3 (s, 1)

where

T'=T & 1; and @ is an ordered insert operation over T for 7; according to its deadline. &' =
S
(S',e,7,p, ¢ ") is defined as:

e ifj#i

e'j=¢ 0 forj=iAD,—r.>D,; (Execute ;)
1 otherwise
wj it jFi

wi=4¢ 0 ifj=iAND,—r.>D; (Execute r;)
1 otherwise

G i
J 0 otherwise
i ifj=cAD.—r.>D;(Tit7)
p; otherwise

1 ifj=iAD.—r.>D; (Execute 7;)
;}_ 0 ifj=iAD.—r.<D;(Donot start ;)
7)Y 0 ifj=cAD.—r.>D;(StopT.)

€; otherwise

[

e Tagsk completion: T, ]

(S, T) 3 (s, 1)

where T' = tail(T") and
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o= 1 ifj=c
"7 € otherwise

- L ifj=c
wi =4 .
w; otherwise

5 1L ifj=c
971 0 otherwise

- 1 ifj:c/\}ﬂpu(Tk):c,lgk<n
77 7 otherwise

Variable § remains unchanged.

e Task resumption: 7; 7 (we assume 7; = top(7T), arrived and eventually preempted in the past).

(S, T) ™5 (S',T)
where

5 0 ifj=1iAp; =0 (r; was never executed)
€; otherwise

- 0 ifj=1iAp; =0 (r; was never executed)
w; otherwise

) 1 ifj=i
€ 0 otherwise
Variables 7 and 7 remain unchanged.

e Time passing: § is an elapsed time not enough to finish the current executing task.

(S, T) > (S, T)

where
57-—{ g +6 ifj=c
€ otherwise
and
wij+d ifj=c
wy =< @+ if§ A0
L otherwise

-
!,

;=7 +6VYr;,7; € T and variables 7 and é remain unchanged.
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1 T}

T1 T1 T3/ To T3/ T3l
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{m1, 73} (es = w3 — T2)

Figure 5.8: Usage of difference constraints

For the instant being, our operations do not show the utility of defining the new auxiliary clocks ;
although this is explained in the next section, let us give an example of their usage.

The automata model defined behind our transition system is a SWA where clocks € are stopped at
preemption time. We want to eliminate this operation and replace it difference constraint using w, as
we have done for a LIFO scheduler.

In figure 5.8 we show example 5.7 using u/; we can see that:
e At time t =3, 1371, p3 = r3 := 0, w3 = e3 =L, and 73 joins the queue.
e At time ¢t = 4, 73/ and we set ws := 0 (note r3 = 1).

e At time t = 6, 7o T and 7o {73; we see that e can be expressed as the difference w3 — ro and we
see the utility of variable «/, since we could not express the value e3 as r3 — ry, as we have done
for LIFO, since 73 arrived and was not immediately executed; we need another clock to mark the
first execution of 73. Observe that p3 := 2.

e At time t = 8, o] and 73 ; e3 is recovered from the invariant difference ws — rs.

e At time t = 9, 74 1 and even if its deadline priority is shorter than 73’s, it cannot preempt it,
(ps =2 #0).

e At time ¢t = 11, 73 finishes.

5.4.2 EDF Admittance Test

As in LIFO, each time a new task, say 7;, arrives, we perform an acceptance test according to EDF and
one-preemption policy. For EDF we propose:

acceptypp (7, 7;) = —active(T, 7;) A —~preempted(T, ;)
that is, we do not accept a task if:

e There is an active instance of the same task:

active(T,7;) = (3 Tp € T- 1 < k <n)(u(Ty) =iV py(r,) = 1)
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e It will preempt an already preempted task (in fact 7.) :

preempted(T,7;) = p. Z0AN D, —r. > D;

The first term, rejects a new instance of an uncompleted task or a task whose release clock is still
active; the second one deals with the one preemption hypothesis under EDF which is rather tricky, since
a new task may have a shorter deadline than the currently executing one, but the latter has already
been preempted in the past, so the new task is rejected (even if there is enough time to execute it) or
the new task may go beneath 7. (which was not possible under LIFO).

Later, we give a refinement of this admittance test, considering deadlines, execution times and
system state.

5.4.3 Properties of EDF scheduler

Let T be the set of active tasks, with 7. = 7,(1,) = head(T') the task under execution. We can
enumerate the following properties:

L ifp;=0=e; =w;,Vrj,7; €T

2. ifﬂpj:cﬁej:wj—rp,

g =€ = Wj —Te

3. ifT(?/ /\pp :O:>€(3 = W =1 /\—Elpj =cC
4. Vp; #0,j#¢c = e; =wj —1p,

J

Property 1 says that a task 7; in 7" which has never been preempted respects e; = w; =1. In fact,
if 7, € T and 7; # 7., then 7; arrived in the past, its deadline was not urgent enough to preempt the
currently executing task, and it was put in the queue according to its deadline with e; = w; =1; on
the contrary if 7; = 7. and it has never been preempted, then e; = w; > 0.

Property 2 is a consequence of preemption; if p; = ¢ it means that 7. preempted 7;, in fact, when
7; was running, p; = 0 (one-preemption assumption) which implies e; = w; (property 1); as 7; was
preempted by 7., its computation time can be put as e; = w; — r. (since 7. = 0 when 7, arrived). As
time passes, while é; =0, e; = (w; +6) — (rc +9) = w; —r.. This property shows that execution times
can be re-written as differences of some clocks for those stopped tasks.

Property 3 is a consequence of the EDF policy. It means that 7. resumes but it had never been
preempted; so the scenario is as follows: when 7, arrived, its deadline was longer than that of the
currently executing task and hence, it was put in the queue, but never executed, so e, = w. =1; as it
has not executed, it could not have preempted any other task (in particular the one executing at its
arrival time). Note that 7. can be preempted during its execution.

The last property 4 is our execution invariant for EDF, which says that for all preempted tasks,
(except the current executing task), we can express its computed time as a difference. This is an
extension of property 2 and 3, since there may be tasks in T never preempted and never executed. This
is a great difference compared to LiIFO. This property can be put as:

(M) = N\ ej=wj—my,
7 €T,p; #0
recall that e; =w; =1, if ; € T Ap; = 0.

For the current executing task, even if preempted in the past, property 4 does not hold since its
execution clock is running.



5.4. EDF SCHEDULING 121

Remark Note that property 4 obliges to keep clock rp, even if task 7,, has already finished; for the
same reason, we cannot accept a new instance of this task if 7; is still active. This is a restriction of our
model (taken into account by the admittance test), which could be relaxed if we create a “preemptable
clock” for each task instance that preempts; a rather costly solution.

We conclude the section with a theorem, analogous to that give for a LIFO scheduler, without proof,
since we will give a detailed proof of the general case in section 5.5.

Theorem 5.2 The symbolic reachability graph of a system of tasks for an EDF scheduler satisfying the
one-preemption constraint is finite.

5.4.4 Refinement of EDF Admittance Test

As in LTIFO, each time a new task, say 7;, arrives, we perform an acceptance test according to EDF and
one-preemption policy. For EDF we propose:

acceptppp (T, 7;) = —active(T, ;) A negpreempted (T, 7;) A schedulable(T', 7;)

The first two predicates have already been explained; in this section, we develop a test regarding
execution times, deadlines and system state. The question is ’will the new arrived task, if accepted,
cause other tasks in 7" miss their deadlines?

In principle, the predicate schedulable is:

schedulable(T, ;) =Vr; € {TU~r}, r; + B; + (E;V" —e;) < Dj (5.22)

where the blocking time for a task 7; which is in position k of T' is expressed as:

n+1

EDF __ M
BPPT =% (ENz) — eur)
1>k

Under the EDF scheduler we know that for those 7; € T' preempted in the past, we have e; = w; —rp,
and for those 7;’s never preempted, e; = w; =1, so the precedent expression can be split into:

n—1

EDF M M
B! = > (Bilny —ewm) + (Bir,) — e +
l=k+1 7pu(Tz)7é0

n—1

M M
Y Einyt+Bir,.
l=k+1,p,(1,)=0

using the equality for preempted task we have:

n—1

BEF = Yo (Biny — ) — ) + (Bugr) — euera) +
l:k+1,pH(Tl)7/:0

n—1

M M
Yo Biny+Ein,,
l:k’+1’pH(Tl):0
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n+1 n—1
EDF M
BPY = N Epp - > (W) o) — € (5.23)
I=k+1 I=k+1,p, (1) 70

Unfortunately we can say nothing about the second term in 5.23, so we will try to find some bounds
for this term in order to get necessary or sufficient conditions for our schedulability test. We deal with
two facts:

1. In 5.23 we have
n+1

EDF M
B s S B, (321
I=k+1

since all terms representing execution times are positive. This fact gives a sufficient condition for
the admission test; which is too conservative but safe, in the sense that if we accept 7; we know
all tasks in T, including the new one, will be scheduled within their deadlines.

2. Using minimum execution times:
n+1

EDF m
BEPT> Y By, (5.29
I=k+1

since minimum execution times represent, the fastest execution, this bound is a necessary con-
dition, more laxative but unsafe. If after considering minimum execution times, the test of
schedulability is not satisfied, then no admission is possible; if the test is satisfied, then we can
accept but we know that there may be some executions leading to error states and hence we need
some dynamic control.

Reconsidering our schedulability test 5.22:

n—+1 n—1
VTj € {TU Ti}, rj+ Z E;%Tl) — Z (“’u(Tz) — TpH(Tz)) + (E;M — ej) < Dj
I=k+1 l:k+1,pH(Tl)7/:0
n+1 n—1
Vre{Tum}, Y Enn - > (W) — o) (1 — ) < D (5.26)
1=k I=k+1,p, (7, 70

Now we analyse 5.26 to find some bounds; we consider two cases:
1. pj =0

e for k < n, we know e; = 0 and so 5.26 becomes:

n+1 n—1
Vr; e {T U}, Z E;%T,) - Z (Wu(T) = Tpuer,)) 75 < Dj (5.27)
1=k l:k+1,pﬂ(q~l)9£0

e for k = n, we know e; = w; > 0 and expression 5.26 is:
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2. pj #0, we know e; = w; — 1y(T,,,) 80 5.26 becomes:

n+1 n—1
Vo e{Tun}t, > Elny — > (Wum) = Touay,) +75 < D; (5.29)
1=k l:k7pu(Tl)7$0

Now considering our bounds 5.24 and 5.25 we have:

n+1 n—1 n+1
Vr; e {TUTr}, Z E;%T,) — Z (wy(ry) — T?’um)) +r; < Z E;%T,) +r; (5.30)
I=k 1=k.p,,(1,) 70 I=Fk

07

IfV7; € {TUT} a < D; then we can accept the new task 7;. On the contrary, we reject it, but
we know we are being too restrictive.

n+1 n—1 n+1
Vo € {TUnb Y Eplry— D (Wum) = Touery,) +75 2 D By + 7 (5.31)
I=k 1=k,pyu(1,)#0 I=k

Once again, if 37; € {TUr;},8 > D;, we do not accept 7.

These hypothesis could be used according to the nature of execution times; if execution times are
controllable, that is we can influence the time spent in the execution, we could use minimum execution
times. This could be acceptable for applications where execution times are bound to some quality of
service, for instance performing an approximative calculus instead of an exact one or composing an
image in different qualities.

On the contrary, if execution times are uncontrollable, then we need maximum execution times,
since we must accept to work under a worst case perspective.

5.5 General schedulers

In this section we consider general scheduling policies, that is, preemptive schedulers based on some
priority assignment mechanism which can be fixed or dynamic. We will relax the constraint of one-
preemption imposed to LIFO and EDF schedulers and we consider uncertain, but bounded, execution
times.

Instead of using a stopwatch automaton as we have done in the previous sections, we use a model
based on timed automata as shown in figure, 5.9 where to each task 7; we add a clock w; which initially
counts the accumulated computed time for a task. The main idea is to replace a stopped clock by an
operation of difference of two running clocks, to keep track of already executed time.

Clocks w’s are used as follows: preemption is only possible at arrival of a new task, say 7; and each
time a task 7;17;, e; is accumulated in w;, 7; gains processor and when 7; is resumed, we recover e;
as the difference w; — r;; clock e; is then never stopped but updated. This procedure relaxes the one
preemption hypothesis but still obliges to keep clock r; even if task 7; has finished its execution and
hence it is not active.
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T A
accept (7;)
€; =T = 0

T Vvr; > D;

7i 4 Nexec(1;)
€; € [EZ-m7EZM

w; = € i /)
e; =1 € 1= W; — Tp,

Pendin,
ng T Vvr; > D;

ri =0

Y

Figure 5.9: Automaton for a General Scheduler

Example 5.5 Let us consider T = {71(4,13),72(5,10),75(2,10),74(3,6)}; we show how the introduc-
tion of w’s clocks can help to relax the constraint of one-preemption under an EDF scheduler, see figure
5.10.

e Attimet=0,711T,7r1 =€ :=0

e At time t = 2, 757 and its deadline 10 is shorter than 7;’s (11), so, 71 is preempted and joins the
queue; wy := e; = 2. From there on the value of ey = w; — rs.

e At time t = 4, 737 and its deadline 10 is longer than 7’s, so it joins the queue (after 7).

e At timet = 5, 141, its deadline 6 is shorter than 75’s, which is preempted and we set wy := €5 = 3;
from there on ey = wy — r4.

e At time t = 8, 74 and ey is updated as wy — r4 = 6 — 3; taui2 resumes execution.

e The rest of the tasks proceed in a similar manner. Note that at time ¢ = 12, 73 gains the processor
for the first time, ez and w3 are indefined.

5.5.1 Transition Model

Formally the transition system is of the form (S, @, —) composed of discrete events and time passing
transitions, as already mention in the precedent sections.

e S =(S,e 7 p,), where S, € 7 and p have the same meaning as in EDF and « is the auxiliary
vector to reconstruct the execution times after preemption,

e () is a queue of tasks, with the usual operations: &, for adding an element, pop to remove the
element at the head, top, to choose the task at the head.
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v /) T3,/
s T T4 sl T2l 71 T3
I (S— |
0 3 6 8 10 12 14
mnt T 1 3t m™? ry =3 re =8
ry =0 ry =0 {m,7,73} wy = 6 wi = 10
e =0 Ty > T T4 > To €2 = W2 — T4 €1 := W1 — Ty
wy = e Wy 1= €3 e =3 er =2
{Tl} {TQJTl} {7—477—277—117—3} {7—277—177—3} {7—177—3} {T3}

(e1 = w1 —ra) (eg =wqg —14)

Figure 5.10: General EDF Scheduler

e — is the transition relation.

We list the operations over our transition system; recall that the arrival of a task is captured by the
scheduler, who decides over the admission. We assume also that the schedulers '’knows’ the priority of
each task (dynamic or fixed); of course, the currently executing task, denoted 7., is on the head of the
queue and has the highest priority; priority of task 7; is noted m;, as usual; the operation ¢ works on
a queue according to a scheduling policy.

e Task arrival, ;1 (1; € T):

(S,Q) 2 (5,Q"

where
Q' =Q®T;.
e ifj#i
e;j=¢q 0 ifj=iAm >mn (exec(r;))
1 otherwise

5 _{ 0 ifj=i

rl. =< .
J 7; otherwise

i ifj=cAm>m. (TitTe)
p'; =4 0 ifj =14 (no task preempted 7;)
pP;j otherwise

. ¢ ifj=cAm>m (rir)
wi=<¢ L ifj=i
w; otherwise

Note that w,. := e, if 7. is preempted by 7; and w; =1.
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e Task completion: 7.

(S.Q) = (5, Q"

where ' = pop(Q) and

;' . 1 lf_] =cC
"7 7| € otherwise

*'7—{ 1L o ifj=c

w; otherwise

o L if,j:cAﬂpu(Tk):c,1§k<n
77| 7 otherwise

Variable 7 remains unchanged.

e Task resumption: 7; 7 (we assume 7; = top(Q)) is a task which regains the processor).

(5.Q) 5 (5, Q)

where
. W — 7, i j =i AP #£0 (7517)
e€;i=¢ 0 it j =i Ap; =0 (1; was never preempted)
€; otherwise

Variables 7,  and « remain unchanged.

e Time passing: ¢ is an elapsed time not enough to finish the current executing task, ..

- - -
! !

(S,Q,& 7, p @) > (S',Q,é,7,p,uw)

where
- egi+d ifj=c
J &; otherwise

and 7 = 7 + 6 and w'; = W, + 6 V7 € Q

Remark I Note that clock w; is initially set to bottom at 7; arrival, and it is updated to e; if this
task is preempted, so saving the cumulated executing time; from there on w; grows (while e; is 1)
and when 7; regains processor its cumulated time is recovered from the difference between w; and the
released clock of the preempter (kept in p;). This implies that released clocks cannot disappear until
the preempted task regains the processor. This condition must be tested at admission time of a new
task. Figure 5.11 shows the evolution of clocks.

A possibly more elegant way of solving the problem consists in systematically adding the new
variable h; for each task, and use it in the time-invariant equations of the form e, = w. — h;. In this
case, the r variables are eliminated at completion time but many ’instances of h’ may be necessary
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T i/t T uva t
ri =0 i =0 7;:=0 € 1= W; — Tp,
—exec(T;) D=

Figure 5.11: Evolution of « and €

to be created as 7; may be a very eager task with high priority preempting different tasks at each
arrival. This approach unnecessary complicates the proofs (as it requires carrying through additional
invariants). Besides, it is not very useful in practice as it augments the complexity by increasing the
number of clocks.

Remark IT We will show that the fact of simulating a stopped clock e; by a difference constraint of
the form w; — r},, both running does not disturbe the semantics of the systems; indeed we will prove
that the relationships where e; is involved can be replaced by this expression while e; is stopped and
still the problem of schedulability, view as the problem of reachability of an error state is decidable.

5.5.2 Properties of a General Scheduler

Let @ be the queue of active tasks, Q € T where 7. = top(Q)). We can enumerate the following
properties:

1. ifp; =0=e; =w,;, V7,7, €Q
2. iffdpj=c=>e;=w; — 1,
3. if . /*Ap.=0= e, =w, =L A~dpj =c,for any 7; € Q

4. V1 € {Q —top(Q)} Ap; # 0= e; = wj — 1,

Properties 1, 2 and 3 are completely analogous to the corresponding EDF scheduler properties. The
last property 4 can be reformulated to create our general execution invariant:

Iscu(Q) = /\ ej =w; — 1Ty, A /\ ej =1

T, €Q",p; #0 T €EQ',p;=0
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where Q' = pop(Q).

The invariant says that for those tasks waiting for execution and preempted their cumulated executed
time can be express as a difference of clocks; evidently, for those tasks never executed at all their
cumulated executed time is unknown.

5.5.3 Schedulability Analysis

Let ¥ as explained in LIFO analysis and let ¢ be a constraint characterizing a set of states. We define
7T (4) to be the set of states reached when task 7; arrives, that is:

TiT(ng):{s':HSEng.sT—iIs'}

Let ¢ be of the form Igcu(Q) A v, with ¢ € U; that is ¢ characterizes a state with the execution
invariant for all waiting tasks and clock relationships expressed as differences.

Without loss of generality, we can assume that either:

1. 7; is rejected: ¢p = —accept(y, Q,7;), in which case we have 7;1(¢) = ¢.

2. 7; is accepted: v = accept (¢, Q, ;). Does 7;i7.7?

if =717, then 7,1 (¢) = Iscu(Q & ) Ar; =0A e; =L Aw; =L A = Iscu(Q') A

if TiTTu then ;1 ((;5) = ISCH(Q &) Tz') Ar;=0ANe; =0A ’I/J[ec = ’LUC] = ISCH(QI) A\ ’l/)’

where 9]e. := w,] is the substitution of e. for w, in 1. In summary:

71 (¢) = Iscu(Q) A9
Hence, we have:

Proposition 5.5 7;1(¢) has the same structure than ¢, that is, it is the conjunction of an execution
invariant and a formula in V.

Now, let ¢  be the set of states reached from ¢ by letting time advance, that is:
¢ /={s' 135 € 6,6 > 0.5 5"}
Clearly, if ¢ is of the form Iscu(Q) A v, we have that
¢ /= (Iscu(Q) AY) /= Iscu(Q) A 7

As ¢ € ¥ over clocks in S, we can express these differences in a DBM. The following proposition
gives this equivalence:

Proposition 5.6 Let ¢ be of the form I AM, where M is a DBM and I is an ezecution invariant under
SCH. Then, 7;1 (¢) and ¢  have the same structure as ¢.
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Thus, given a sequence o of task arrivals the set of reached states o(¢) can be represented by
the conjunction of the execution invariant Iscp(Q), characterizing the already executed time of the
suspended tasks and a DBM M, characterizing the relationships between the corresponding r’s and w'’s
clocks.

A DBM M has the following form (since e, = r,, we omit it; in order to facilitate comprehension,
we “name” clocks according to the position of their corresponding tasks in Q):

M u r1 w1 2 w2 A ) Wn

u - Mum Muun Murg Muwg s Jw-ur7l Muw,,
LS| Mmu - - Mrw‘g mez s Mﬁrn Mﬁwn
w1 Mwlu - - Mwﬂ"z Mw1w2 s Mw17‘n, Munw"
T2 Mrgu Mrgrl Mrgwl - - s M’r'zrn MTzwn
wa szu szrl szwl - - e ngrn ngw"
Tn TR Mr"rl Mr"ml Mr"rz Mr"mg e T -

==

Wy,

WnU Mwnrl Mwnwl Mwnrz Mwnwz s - -
Once again, M is constructed in a very special way and has a particular structure. Let us analyse

it:

e The new matrix M is constructed as new tasks 7;’s arrive; we denote M' = M the values in M
immediately after acceptance of 7;.

e When 7; 1, we have two possible situations (assuming it is accepted):

— 1;t7e, then r; = e; := 0, we need to stop e, and create w, with value e., we have that
ec=we.—1; <M . =M., butr;,=0andso M), , = M..,, =M., =M,

WeT; WeT; wWe”
— —(mt7e), then 7y == 0,e; := L, we have r. —r; < M, ., r; = 0 and so we have M . = M, ,.
This relation is also respected in the precedent case.

e When 7.}, we have again two situations:
~Mj=c T EQ:
(Iscu(Q) AN)[we :=1,r. :=1] = Iscu(pop(Q)) Ay’

—dpj=c T EQ:
(Iscu (@) AN ) [w, :=1]

e When 7; 7, once again two situations are possible:

— Di = j::
(Iscu(Q) A )[rj == w; — e;] = Iscu(pop(Q)) Ay
- pi=0:
Iscu(Q) ANb Aei:=0

So, the characterization of each state as time passes or new tasks arrive or resume is
preserved as differences of running clocks. At each operation, the representation under a
DBM keeps the structure of bounded differences
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Now, what is the structure of M after a task completion? Is it still a DBM?

We will prove that this operation still enables us to characterize the states as bounded differences
in a DBM, so establishing that ;| (¢) is still the conjunction of an invariant and a formula in ¥.

Let us expose the scenario when a task 7; finishes. At that moment, the scheduler will choose
another task, say 7 to regain the processor; this task had been eventually preempted in the past by
another task, say 7 and the relation e := w — 7 shows the computed time for 7. Clock 7 can now be
eliminated from M and replaced by w — e. What happens to all differences in M where 7 is named?

We have the following relations involving 7:

1. Base relations:

w—T< My = e—u< My (5.32)
T—w<Ms = u-—e< Mz, (5.33)
u—r< Mz = e—w< My
T—u< Mz = w—e< Mg,
2. Let 2 be another clock different from w and u:
r—T< My = z—(w—e)< My (5.34)
FT—2 <My = (w—e)—x<Mp (5.35)

We can consider that these differences can be decomposed in the following ways:

1. In 5.34 and considering 5.32:

.::;u 2 ]\]é:;’ } =1z — (w—e) < Myy+ Myr
Myw + Myz 6 My (5.36)
2. In 5.35 and considering 5.33
Z}:: i %:’1: } = (w—e)—x < Mry + My,
My + My 6 Mg, (5.37)

Both expressions are not difference constraints but we will show that in 5.36 and 5.37 8 represents
equality; that is, we will prove that:

Mww + MwF = Mz? (538)
Mzy + My, = My, (539)

and hence they are deductible from M, no need to keep them in the M'™#.

To prove this we will consider a task 7 which regains the processor after being interrupted by
another task 7, point (I) in figure 5.12; a third task 7 will be used to express the evolution of differences
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71 T [ 71 71 71 T 1

F=¢é:=0 e:=eg r=eé:=0 Tir r=¢6:=0 e =w—rm
@ wi=e ®

D @ F=e:=0 &)

Figure 5.12: Analysis of bBM M

as 7 is executing or waiting. In the figure we show the three different possibilities of arrival for such
a task 7 in the system, namely 0),@,3); 7 " at point @ indicates the last execution for 7 when it
was preempted by 7; its cumulated executed time is eg. We are analysing clock relationships when 7
prepares to resume its execution (point () in figure 5.12), after it was preempted by 7

It is of extreme importance to remark two properties concerning our scenario:

e Monotony: clocks grow at the same rate; in our model the derivative of a clock is always 1 (if
it is running) or 0 (if it is stopped).

e Continuity: From point @ to point ® clocks for 7 were not reset neither updated. They were
not reset, because any new instance of 7 should have been rejected by the scheduler, since a
previous instance is still active (and reset is only applied at task arrival). On the other hand,
clocks were not updated, because the only possibility is to update e by the operation e := w — 7 or
w by the operation w := e, but we are supposing that in between no resuming of 7 occurs; in fact
point () is the first execution after the last preemption, point (I), so no such update operation is

possible.

In interval [@, ®)], clocks r and w are running monotonously and continuously while clock e is
stopped. This means that differences such as r — z and w — x where z is also running, do not invalidate
the respective bounds M,, and M,,,; also, z cannot be a stopped clock, since if it were, it would be an
execution clock €’ of a preempted task 7/ and in that case, we should have replaced it by its appropriate
difference involving two continous clocks. In point (B) clock 7 can be eliminated and replaced by w — e
in M which leaves us with three term differences such as 5.34: we will prove that these differences can
be deduced by simple bounded differences.

We know that if 777 then it must be 7z > 7. At preemption time, that is when 71, we set w := e,
r=e:=0and w:= L.

We note that arrival times are indeed intervals, since our execution times are unknown but bounded;
remember that values in M are characterized by a super-index indicating its value at a certain moment;
for instance M7 means “the maximum value for e at arrival of 7”.

We will prove equality for expression 5.38 but it is absolutely simetric for 5.39.

Case (D
We distinguish two cases according to priority relationships; either 7; > 7, or m; < 7,

1. wz > m,, this means that at 7 7, task 7 did finish its execution but there may be anohter task
7 preempted by 7 still active, with priority 77 < 7,; under this scenario clock 7 is still running,
but clock w has disappeared.
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Figure 5.13 shows the situation graphically.

- = (X
- -
L | | \ I |
\ \ I I
71 T/ ML Tt M T/
- - M
- - B
&) ) ®

Figure 5.13: Case O 7w+ > 7,

M+ M oM,

rw
™ _ g
* Mf‘w - Mf"e - Mf"e
This sucession of equalities is based on our properties of monotony and continuity; in fact,
the difference # — w at 7/ (point () is the same since w was created, that is in point ()
when 71, which equals the value e; this difference is constant as both e and 7 were running
(point @). The same reasoning as a chain of equalities is kept all over the proof.
. MZ,? =Ml =a+eg
T/ _ g7t
® Mi“f - Mﬁu
e In figure 5.13 we have:
MZL =7+eo

and

M;tfﬂ:af'y%Mg:af’y-{—ﬁ

adding eq gives
M, = (a+e0) —(y+ o) + 8 —
—_————
e My

wT

wr

./ . _ g
M;7, + My = MZ
proving that in fact the relationship 6 is equality.

2. m; < m,, this means that at 7 7, task 7 did not finish its execution and hence clocks # and @ are
both active. The analysis for 7 is the same as above; let us see what happens to w. Figure 5.14
shows the situation graphically.

M2+ MIZ7OM

ww wr

In figure 5.14 we have:
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T”Tf'
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Figure 5.14: Case D 7+ < 7,

C MY =ML =ML =M o
The difference between 4 and w at the moment of resuming 7 (point @) is the same as the
difference when w was created, point (), that is at arrival of 7; by the property of monotony
this difference is kept since both e and w were running, that is 7 / at point @. Finally,
by monotony this value is the same as the difference between the initial value for w, that is
M7 and eq.

wu
. M;f :Meﬂu:oz+eg and
. M;f = Mfu = MTU/ + a adding eq gives:

w

M;f+a:Mgf —ep+a+eg
———— ——— e
- e M
hence proving
M+ My =MY
wr

wWw wWrE

Case (2

Recall figure 5.12; we have also two possibilities for 7

1. m; > m,, this situation is not possible under our scenario since we are considering 7 preempted
by 7 during its last execution.

2. w < m,, then 7 did not execute at all: its priority being smaller, it must wait at least for 7 to
finish; only 7 is running. Figure 5.15 shows this situation graphically;

- - M7
5 Fu
| L S |
T /) 7t M 71 M T
- -

Figure 5.15: Case @ 7z < 7,
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M7 + M7 oML

wr

M7 =M =M = —(B+e)

7

MT/‘:M;TL:oz+eO

wr

M7 = M7

7

In figure 5.15 we have:
a—f= M:Z

(a+eo) — (B +eo) = ML,
M7 M7

hence proving
T/ T T/
M7, + Mg = M2

wr

Case @

Once again, we have two possibilities for 7

1. m; > 7., in this case 7 did finish at 7" and if 7 preempted a task, it should be one with higher
priority than 7, so both tasks have finished by the moment 7, (point () and no clock # exists.

2. m; < 7, then 7 did not execute at all, only clock r is running. Figure 5.16 shows the scenario.

M
| |
\ \ \ \
T 7t M7} MLt M} T
- -
- ~ B

Figure 5.16: Case @ 7+ < 7,

M7 + M7 oML

wr

M =M = M = —(8+eo)

rw rw
o M =Ml =M =a+e
-l

In figure 5.16 we have:
a—pB=M"

ur
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(a + 60) _(6 + 60) = Mm’“’:'r
——— e —
T/ M:"/‘

wT

hence proving
M7+ M7 = M7,

Thus, we have proved that the reachability problem in our transition system (S,Q),—) using a
decrementation of the form e = w — 7 for preempted tasks, is solvable. Relationships among running
clocks can be encoded using a DBM; we have proved that relationships involving stopped clocks when
replaced by their differences do not give a difference constraint, but these difference constraints can be
deduced from other difference constraints in M, thus they can be eliminated. The following theorem
resumes our theory:

Theorem 5.3 Given a task model as defined in 5.5.1 and a general scheduling policy, the reachability
graph of the system can be symbolically characterized using predicates of the form I A M where I is a
conjunction of equalities e = w — 7 and M is a DBM. Moroever, the reachability graph is finite.

As a corollary: the schedulability problem for this class of systems is decidable.

5.5.4 Properties of the Model

We have shown that the relationships among release clocks for “free” tasks, that is tasks which have
not preempted each other, can be implied by the sum of relationships between a preempted task, its
already computed time and the corresponding release clocks. This is a very useful property because it
reduces the amount of relationships in M. In fact, all those differences envolving released clocks of free
tasks can be deduced from a base set of bounds, involving only released clocks from free tasks and w
clock from a preempted task and hence matrix representation is also reduced.

The properties of continuity and monotony are exploted for our reachability analysis, implying that
it is possible to construct the reachability graph.

continuity & monotony

T

x:=0

7
s _
MS = Mya:*a
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Figure 5.17: Nicety property

In general if we consider two states s and s’ in a timed automaton, see figure 5.17, where clock
x is reset in s and no reset or update operations are done in between, we can see that the difference
is kept; this phenomena is due to the fact that both clocks show a monotonously increasing property
(time passing) and also a continuity property (no update is done). Under this context, another clock
z (not necessarily continuous) shows the property: M, = M., + M, and hence no need to keep this
difference, (intuitively it is as if the stopped time for z were “absorbed” by x and y, both running).
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5.6 Final Recipe!

Now that we know the problem can be modelled as the transition system defined in section 5.2, we can
sketch an operational approach of our system.

1. Given a RT problem, we can partition it into tasks characterized by timing constraints. If the
problem is expressed in Java, we can use techniques such as [28, 32] to cut up the application into
smaller tasks.

2. Each task is assigned a fixed or a dynamic priority which is used by the scheduler; naturally, we
impose that at arrival of a task, a priority is known.

3. The scheduler keeps a queue ) of tasks, preempted or not, ordered by priority, being the task
with highest priority on the head of Q.

4. As a new task 7; arrives, an admittance test is performed to analyse if its execution leaves the
system in a safe state, that is, a state where all tasks in @, including 7;, finish their executions
before their respective deadlines and that no information of preemption is lost. We have given
an admittance test for EDF. +

5. If 7; is accepted:

e it preempts the currently executing task 7. if m; > 7.; we update the information of preemp-
tion marking that p, := ¢ and also setting clock w. := e.; 7; joins the queue @) as the new
head and 7. is behind it.

e it does not preempt 7. if m; < 7.; in this case, 7; joins the queue () somewhere according to
its priority.

6. When 7, finishes, the scheduler can eliminate it from @) but its release clock is kept if Ip; = ¢ for
some task 7; € @; otherwise all clocks can be eliminated.

7. When a task 7; resumes execution, its already executed time can be recovered from the difference
e; 1= w; — rp, if p; # 0; otherwise e; := 0.

i



Chapter 6

Conclusions

In this thesis we have followed two main research lines:

e Schedulability of Java-like real time programs

e Decidability of General Preemptive Schedulers

The approach to schedulability of a Java-like program is inspired in the use of the synchro-
nization primitives provided by the language to attain good communication among threads and the use
of common resources.

Primitives that provide synchronization can have two general forms: a primitive to declare a task
is waiting for a response from another task, and conversely a primitive to signal an event to a task.
The first primitive is commonly called wait, await, receive, in different languages and even they have
different semantics, they do share a feature: the task interrupts its execution and waits until it “hears”
a response from another task(s); this event permits the task to awake itself and be ready to resume its
execution. The second primitive, commonly referred to as notify, emit, send has as mission awake a
task which is (presumably) waiting for this event; in general it is not a blocking operation, that is, the
task emiting it continues its execution.

This simple synchronization mechanism permits to implement, proper communication among tasks:
if a task needs to start as a consequence of an (external) event, then an easy solution is to wait until
the event happens. We can also use it in a producer/consumer environment where the output of a task
is needed as input for another, and we can also use it when some kind of ’order’ among tasks is needed
to assure functional correctness.

Besides synchronization, tasks may access some common resources (data) in a competitive man-
ner, that is, as tasks need data to operate on, they demand them to the data manager who decides
about granting or rejecting this demand; tasks do not necessarily communicate each other as in the
producer/consumer hypothesis where cooperation is explicit, instead they may run independently and
the access to resources does not imply some other order to assure functional correctness.

These two facts, inspired us to model a Java like program into functional components, that is, pieces
of program performing some well defined task; the program is “cut” into two main levels: application
level and task level. The first level spreads a program into major components, called threads in our
model; each component has its timing constraints and logically performs some general function. The
second level spreads a component into minor modules, called tasks in our model; these modules may
use some (shared) resources and can synchronize with other modules from other threads.
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The “cut” of a thread into tasks may be guided by the use of common resources or synchronization
primitives. In order to facilitate a cooperative competition among tasks, we need to circumscribe the
area where a shared resource is used; if a shared resource is used in a piece of code of a thread, then
this area can be abstracted as a task. To facilitate synchronization, if a block of code is preceded by
an await operation, we can abstract it as task.

We have created a graphical and behavioral model of a Java-like real time program, using both
synchronization and common resources; we have characterized this model by two timing constraints:
periods for threads and ezecution times for tasks and also by the set of resources used by each task.

For such a model, we have given a static priority assignment algorithm based on the operations of
synchronization; this priorities can be inserted in the Java code to produce a scheduled Java program.
For shared resources we have given a heuristic technique based on a wait for graph to decide about
deadlocks in an off-line manner but this priority assignment could be used in the context of a priority
inheritance protocol to assure deadlock freedom during execution. One interesting property of our
assignment mechanism is the fact that this order is not complete, that is, tasks involved in synchro-
nization are tied to fixed priorities while independent tasks are free and can be dynamically assigned
some convenient priority.

The second axe of this thesis is the problem of schedulability for preemptive schedulers;
for these schedulers the corresponding computation model is stop watch automaton for which the
reachability problem is undecidable, and hence, we could not in general, answer the question “can we
reach a final state where all tasks have finished before their deadlines expire?”. Even if some results
apply to this question, we are constrained by the fact that execution times are bounded but unknown
precisely; we have not rely on a worst case execution time hypothesis, but on an interval of execution.

We have created a model of real time tasks characterized by an interval of execution time, based on
the idea of best and worst execution time and also a deadline; periodicity is not a particular restriction
of our model; we only need to know a priority for each task, which can be static or dynamic.

For this model, we have presented a transition system where states are characterized by a location
and a set of clocks: release and ezecution clocks, (as it is classical in these models), and accumulated

execution clock; besides we have one variable to note preemption. We have characterized this transition
system by three event operations: task arrival, resuming and completion and a timed operation:

e Adding one clock per task which counts the accumulated execution time of a task, serves as a
mean to let a general preemptive scheduler work correctly.

e This clock is used to update the value of the execution clock of a task when it resumes execution
after preemption.

We have shown that the reach set of a system of tasks with uncertain but lower and upper bounded
execution times, and scheduled according to a preemptive scheduler, can be characterized by constraints
involving;:

1. time-invariant equations that capture precisely the already executed time of suspended tasks, and

2. a DBM characterizing the differences among the release times of all the active (i.e., suspended or
executing) tasks, as long as there exists for each task at most one instance in the system.

3. The structure of the DBM is foreseeable, in the sense that there is a (small) set of basic difference
constraints which derive other relationships (not necessarily difference constraints).
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This result implies the decidability of the reachability problem for this class of systems. The nice
structure of the DBM’s generated by the analysis permits a space-efficient implementation, reducing the
space needed to represent a DBM from 4n? up to 4n, in the case of LIFO scheduling policy; moreover,
for LIFO, our result does not require introducing any additional clock. For general schedulers, our
characterization requires using at most one more clock per task. Actually, the number of additional
clocks depends on the number of delayed tasks allowed to be suspended at any time. This number may
be controlled via the admission control test. Indeed, the number of extra clocks may be compensated
by the more compact representation of the state space.

Besides this, we have given an admittance test for an EDF scheduler; this test is based on deadlines
and on blocking times; we have given two bounds for admissibility, taking advantage of our interval of
execution: an optimistic (but unsafe) bound which is applicable under the hypothesis of controllable
execution time or in case of dynamic deadline control; the pesimistic (but safe) bound which is based
on the worst case execution time or in case of uncontrollable execution time.

The idea of controllable and uncontrollable execution time is useful to characterize some real time
applications. Classical real time theory deals with (worst) execution time or uncontrollable execution
time, that is, the user or the application itself cannot influence the executing time; but many (modern)
application are characterized by the idea of a controllable execution time, that is the application, the
environment (and even the user) can influence this time, by given “more or less aproximative results”
(for instance, in multimedia, lowering the quality of rendering images); the correctness is not altered
by this approximation, and more importantly, it may lead to schedulability when worst execution does
not.

The admittance test is thought to help the application to attain schedulability using the execution
bounds and controllability.

We have proved that a general scheduler implemented using our method is decidable, in the sense
that the schedulability problem expressed as reachability problem is decidable.

6.1 Future Work

We can mention that as future work, we can:

e Give an implementation of our method; indeed, our method is part of a project to create a chain
of programs to manage real time applications; starting by a description of the application, its
model, the construction of the scheduled program. The implementation must take advantage
of the nicety property to create appropriate data structures; then we shold validate it to some
applications to prove properties such as liveliness and in general all properties preserved by the
reachability graph as mentioned in [17].

e Controllability and uncontrollability of time is not sufficiently exploited in our model, that is, the
model does not include controllability of execution time; we use it for the admittance test, but
we could design a model based on this idea.

e We base our model on timed automata but we can imagine another base model such as push-
down automata. Roughly speaking, the automaton would have arrival, resuming, completion
and time passing as operations and the idea is to test the reachability to a final state to deduce
schedulability. The stack contains 3-uples of the form (e;, r;, w;) for each active task ;.
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