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Introduction to the Grid

Metacomputing: aggregating distributed computers and storage units

the resulting platform is usually called the Grid

• Very high potential (in power and ease of use)

• The Grid hardware is already there
Share of local resources between several organizations ⇒ WAN constellation of LAN

• The Grid software infrastructure only emerging.
Difficulties come from (amongst others):

• Heterogeneity

• Resource sharing (⇒ availability variations)

• Multiple organizations (trust issue)
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Which information for which scheduling?

Random scheduling:
• Tasks list; existing hosts list

Simple scheduling:
• About tasks: theoretical complexity (like O(n))

• About hosts: peak performance or on a given benchmark

• About links: maximal capacities

Current Grid scheduling:
• About hosts: up/down, CPU and memory load

• About links: current capacities matrix

Information quality is crucial to scheduling quality
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Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM
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Overview of this work
Our goal: provide the information needed by the scheduler.
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Motivating example: how to configure NWS?
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Motivating example: how to configure NWS?

• Simplest: measure everything
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ENV [SBW99]:

, maps the network without root access

/ only hierarchical (tree)

ALNeM [LQ04]

• Same approach than ENV, generalized

• Stronger theoretical basements
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Overview

• Introduction

• NWS: Network Weather Service

• FAST: Fast’s Agent System Timer

• ALNeM: Application-Level Network Mapper

• Conclusion
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The Network Weather Service: presentation
Goal: (Grid) system availabilities measurement and forecasting

Leaded by Prof. Wolski (UCSB), used by AppLeS, Globus, NetSolve, Ninf, DIET, . . .

Architecture: Distributed system

Sensor: conducts the measurements
Memory: stores the results
Forecaster: forecasts statistically the tendencies
Name server: directory service like LDAP

Memory

Nameserver

Sensor Sensor

Forecaster
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Measurements and Forecasting

• Provided metrics:
availableCpu (for an incoming process), currentCpu (for existing processes),
bandwidthTcp, latencyTcp (Default: 64Kb in 16Kb messages; buffer=32Kb),
connectTimeTcp, freeDisk, freeMemory, . . .

• Forecasting using statistics
Data = serie: D1, D2, . . . , Dn−1, Dn. We want Dn+1.
Methods are applied on D1, D2, . . . , Dn−1. each one predict Dn.
Selection of the best on Dn to predict Dn+1.

Used statistical methods
mean: running, (adapting) sliding window ;
median: idem ;
gradian: GRAD(t, g) = (1−g)×GRAD(t−1, g) + g×value(t) ;
last value.

Martin QUINSON 10 mai 2004 |// Slide 6 / 27 ..|



Conclusion about NWS

, Complete environment

, Designed for scheduling

, Statistical forecasting

, Widely used

/ Uneasy to extend

/ Sometimes difficult to deploy

/ TCP only (myrinet-based?)

Related work

NetPerf: HP project to sort network components, no interactivity

GloPerf: Globus moves to NWS

PingER: Regular pings between 600 hosts in 72 countries

Iperf: Finds out the bandwidth by saturating the link for 30 seconds

RPS: Forecasting limited to the CPU load

Performance Co-Pilot (SGI):

• Same kind of architecture

• Low level data (/proc)⇒ not easily usable by a scheduler

• No forecasting
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Fast Agent’s System Timer: presentation
Goals:

• gather routine’s performance on a given host at a given time

• interactivity, ease of use

Architecture:

NWS

FAST library

Needs modeling Sys availabilities
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Fast Agent’s System Timer: presentation
Goals:

• gather routine’s performance on a given host at a given time

• interactivity, ease of use

Architecture:

LDAP

Runtime
library

Installation
time

Benchmarker

Client application

NWS

FAST library

Needs modeling Sys availabilities
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Routines needs modeling
Related Work
• Elementary operation count: the myth of the constant Mflop/s
• Analytical model, micro-benchmarking: complex 6⇒ interactive, task description?
• Probability, Markov: how to instanciate it at a given time?

FAST’s approach
• Simple (sequential) routines like BLAS

macro-benchmarking: benchmark {task; host} as a whole at installation
• Getting the time: utime + stime to avoid backgroung load

• Getting the space: step by step execution (like gdb) to track changes and search peak

⇒ rather long, but only once

• Complex routines (ScaLAPACK)
Structural decomposition by source analysis

• Irregular routines (sparse algebra)
No forecasting⇒ selection of the fastest host
Decomposition to extract simple parts
Input of estimators from the application
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Quality of the modeling
Time modeling

dgeadd dgemm dtrsm

icluster paraski icluster paraski icluster paraski

Maximal 0.02s 0.02s 0.21s 5.8s 0.13s 0.31s

error 6% 35% 0.3% 4% 10% 16%

Average 0.006s 0.007s 0.025s 0.03s 0.02s 0.08s

error 4% 6.5% 0.1% 0.1% 5% 7%

dgeadd: Matrix addition

dgemm: Matrix multiplication

dtrsm: Triangular resolution

icluster: bi-Pentium II, 256Mb, Linux, IMAG (Grenoble).

paraski: Pentium III, 256Mb, Linux, IRISA (Rennes).

network: Intra: LAN, 100Mb/s; Inter: VTHD network, 2.5Gb/s.

Space modeling
Almost perfect: Maximal error < 1% ; Average error ≈ 0.1%

Code size + Matrix size
(constant) (polynomial)
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Forecasting with background load
dgemm with background load (CPU-intensive process in background).
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Forecasting of sequence with background load

C =
{

Cr = Ar × Br − Ai × Bi

Ci = Ar × Bi + Ai × Br client/servers over LAN
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Comparison with NetSolve’s forecaster
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Latency reduction
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Responsiveness improvement

Scheduler / NWS collaboration
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Virtual booking: How does it work?
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Benefits of virtual booking
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Contributions of FAST
Forecasting with load
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Summary

• Generic benchmarking solution

• Simple interface to quantitative data

• Parallel routines handling currently integrated

• Integration: DIET, NetSolve, Grid-TLSE, cichlid

• 15 000 lines of C code, Linux, Solaris, True64

• 2 journals and 3 conferences/workshops
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Application-Level Network Mapper
Goal: Mapping the network topology

Authors: Arnaud Legrand, Martin Quinson

Motivation: Server hosting, Simulation, Collective Communication Forecasting

Target application: NWS hosting

Problem: Network experiments must not collide (Clique concept)

Simplest: One big clique ; Better: Hierarchical
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Application-Level Network Mapper
Goal: Mapping the network topology

Authors: Arnaud Legrand, Martin Quinson

Motivation: Server hosting, Simulation, Collective Communication Forecasting

Focus: Discover interferences (limiting common links), not really packet paths
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Application-Level Network Mapper
Goal: Mapping the network topology

Authors: Arnaud Legrand, Martin Quinson

Motivation: Server hosting, Simulation, Collective Communication Forecasting

Focus: Discover interferences (limiting common links), not really packet paths

Related work
Method Restricted Focus Routers Notes

SNMP authorized path all passive, dumb routers, LAN

traceroute ICMP path all level 3 of OSI

pathchar root path all link bandwidth, slow

Other no path din 6= dout tree
tomography bipartite [Rabbat03]

ENV no interference some tree only
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ALNeM: Notations

Def (non-interference): (ab) �rl (cd)⇐⇒ bw�cd(ab)

bw(ab) ≈ 1

Def (interference): (ab) ��rl (cd)⇐⇒ bw�cd(ab)

bw(ab) ≈ 0.5

Def: Interference matrix I(V,��rl)

I(V,��rl)(a, b, c, d) =

1 if (ab) ��rl (cd)

0 if not

INTERFERENCEGRAPH: Given H and I(H,��rl),
Find a graph G(V,E) and the associated routing satisfying:

H ⊂ V

I(H,��G) = I(H,��rl)

|V | is minimal.

.
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Mathematical tools

Def. (total interference): a ⊥ b⇐⇒ ∀(u, v) ∈ H, (au) ��rl (bv)

Lemma (separator): ∀a, b ∈ H, a ⊥ b⇐⇒ ∃ ρ ∈ Ṽ
/
∀z ∈ H : ρ ∈ (a −→ z)∩(b −→ z) .

(⊥⇐⇒ ∃ ρ separator)

Theorem: ⊥ is an equivalence relation (under some assumptions)

Theorem (representativity): C equivalence class under ⊥ (under some assumptions)

∀ρ, σ ∈ C, ∀b, u, v ∈ H, (ρ, u) ��rl (b, v)⇔ (σ, u) ��rl (b, v)

(you can interchange any member of the class by any other in the matrix)
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/
∀z ∈ H : ρ ∈ (a −→ z)∩(b −→ z) .

(⊥⇐⇒ ∃ ρ separator)

Theorem: ⊥ is an equivalence relation (under some assumptions)

Theorem (representativity): C equivalence class under ⊥ (under some assumptions)

∀ρ, σ ∈ C, ∀b, u, v ∈ H, (ρ, u) ��rl (b, v)⇔ (σ, u) ��rl (b, v)

(you can interchange any member of the class by any other in the matrix)

Martin QUINSON 10 mai 2004 |// Slide 21 / 27 ..|



Mathematical tools

Def. (total interference): a ⊥ b⇐⇒ ∀(u, v) ∈ H, (au) ��rl (bv)

Lemma (separator): ∀a, b ∈ H, a ⊥ b⇐⇒ ∃ ρ ∈ Ṽ
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Algorithm for cliques of trees
Equivalence class⇒ greedy algorithm eating the leaves

A

C

D

E

F
G H

I

B

A B C D E F G H I

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.

Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When I contains no interferences, the clique of Ci is a valid solution.
Remark: It is also optimal
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Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b! a

b
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Extension for cycles

Let a, b be the elements of Ci with the more interferences.
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α

β

Finding out how to cut
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Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b! a

b

I1

I2 I3

α

β

Finding out how to cut

8>>>>><>>>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯
I4 = {a; b}

the contrary would imply
a

b
u
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Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

u
v

v

u
a

b

I1

I2 I3

α

β

Finding out how to cut

8>>>>><>>>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯

bα βa

b

α

β

a
1 1

}
}
}

u

1

0
0

1
1

0

v

0\1 I2

I3

I1
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Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

u
v

v

u
a

b

I1

I2 I3

α

β

Finding out how to cut

8>>>>><>>>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯

bα βa

b

α

β

a
1 1

}
}
}

u

1

0
0

1
1

0

v

0\1 I2

I3

I1

Topological sort on the graph associated to the matrix slice gives I1, I2, I3

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|



Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

a

b

I1

I2 I3

Finding out how to cut

How to connect parts afterward

First step on I1 → Finds 2 classes I1a
and I1α

; a ∈ I1a
.

First step on I3 → Finds 2 classes I1b
and I1β

; b ∈ I1b
.
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b

I1

I2 I3

Finding out how to cut

How to connect parts afterward

First step on I1 → Finds 2 classes I1a
and I1α

; a ∈ I1a
.

First step on I3 → Finds 2 classes I1b
and I1β

; b ∈ I1b
.

Reconnect I1a
and I1b

; Reconnect I1α
and I1β

.
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Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

a

b

I1

I2 I3

Finding out how to cut

How to connect parts afterward

First step on I1 → Finds 2 classes I1a
and I1α

; a ∈ I1a
.

First step on I3 → Finds 2 classes I1b
and I1β

; b ∈ I1b
.

Reconnect I1a
and I1b

; Reconnect I1α
and I1β

.

No demonstration of this...
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Data collection

Interference measurement between each pair of hosts.

• Naïve algorithm:

• N4, 30s. per step⇒ 50 days for 20 hosts.

• Speedups thanks to traceroute or other tomography

• Independent tests in parallel

• Validation of information sets

• Refinement of existing graph?

Deserve more investigation
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Contributions of ALNeM
• Retrieve the interference-based topology from direct measurements

• Strong mathemathical basements (optimal for cliques of trees)

• More generic than ENV (algorithm for cycles)

• 2 000 lines of C code; one research report

• Based on GRAS [Quinson03]

• development on simulator (SimGrid [CLM03]) and immediate deployment

• target: distributed event-based applications, C language

• 10 000 lines of C code, Linux, Solaris

• Submitted to one workshop
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Overview

• Introduction

• NWS: Network Weather Service

• FAST: Fast’s Agent System Timer

• ALNeM: Application-Level Network Mapper

• Conclusion
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Conclusion
• Major issue on the Grid: collecting data (before scheduling)
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Conclusion
• Major issue on the Grid: collecting data (before scheduling)

• Gathering quantitative data: NWS + FAST

NWS: System availability

Contributions:

– Lower latency

– Better responsiveness

– Process management

Future work:

– Automatic deployment

FAST: Routine needs

Contributions:

– Generic benchmarking framework

– Unified interface to quantitative data

– Virtual booking

– Integration: DIET, NetSolve, Grid-TLSE

– 2 journals; 3 conferences/workshops

Future work:

– Integration of Freddy

– Irregular routines (sparse algebra)

– New metrics (like I/O)?

– Yet better integration within NWS
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Conclusion
• Major issue on the Grid: collecting data (before scheduling)

• Gathering quantitative data: NWS + FAST

• Gathering qualitative data: ALNeM

ALNeM: Network topology to know about interferences
Contributions:

– Strong mathematical basements

– Optimal in size for cliques of trees

– Partial cycle handling

– GRAS: application development tool

– Submitted to one workshop

Future work:

– Proof of NP-hardness . . .

– . . . or exact algorithm

– Experimentation on real platform

– Optimization of the measurements

– Iterative algo. (modification detection)

– Integration within NWS

– Hosting of DIET
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Selected publications
Book chapter: 1 national

• E. Caron, F. Desprez, E. Fleury, F. Lombard, J.-M. Nicod, M. Quinson, and F. Suter. Une approche
hiérarchique des serveurs de calculs, in Calcul réparti à grande échelle. Hermès Science Paris,
2002. ISBN 2-7462-0472-X.

Journals: 2 internationals (+ 1 submitted), 1 national

• E. Caron, F. Desprez, M. Quinson, and F. Suter. Performance Evaluation of Linear Algebra Routines
for Network Enabled Servers. Parallel Computing, special issue on Cluters and Computational
Grids for scientific computing, 2003.

• F. Desprez, M. Quinson. Dynamic Performance Forecasting for Network-Enabled Servers in a Grid
Environment. Submitted to IEEE Transactions on Parallel and Distributed Systems.

Conferences/workshops: 4 internationals (+ 2 submitted), 2 nationals.

• Ph. Combes, F. Lombard, M. Quinson, and F. Suter. A Scalable Approach to Network Enabled
Servers. Proceedings of the 7th Asian Computing Science Conference. LNCS 2550:110–124,
Springer-Verlag, Jan 2002.

• M. Quinson. Dynamic Performance Forecasting for Network-Enabled Servers in a Metacomputing
Environment. International Workshop on Performance Modeling, Evaluation, and Optimization of
Parallel and Distributed Systems (PMEO-PDS’02), April 15-19 2002.

• A. Legrand, M. Quinson. Automatic deployment of the Network Weather Service using the Effective
Network View. Submitted to Workshop on Grid Benchmarking, associated to IPDPS’04.
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Parallel and Distributed Systems: Testing and Debugging, associated to IPDPS’04.
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Appendix



GRAS overview

• development on simulator (SimGrid) and deployment without modification

• target: distributed event-based applications

• light virtual machine for the study and development of NWS, ALNeM, . . .

• 10 000 lines of code, Linux, Solaris

• Futur: (even higher) performance and portability, interoperability

Error handling

Bandwidth test

Linux SimGrid

TCP SimGrid

Syscalls virtualization Conditional execution

Constitutes a portability layer

Grounding features

Communications

Logs control Leader election

Reality Simulation

Locks

Logs

File

Host management

Data structures Configuration

Data Representation

Messages and callbacks

Simulates execution span
Virtualizes expensive code

Build-in modules

Solaris
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Sensor in the middle

CBA
TestTest

NWS NWS

?

bp(AC) = min (bp(AB); bp(BC))
lat(AC) = lat(AB) + lat(BC)

It’s a must to reassemble measurements in hierarchical monitoring
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RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client

Server

Agent

Monitor

Database
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RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

DB

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client Several user interfaces which submit the requests to servers

Server Runs software modules to solve client’s requests

Agent Gets client’s requests and schedules them onto the servers

Monitor Monitors the current state of the resources

Database Contains static and dynamic knowledges about resources

Knowing the platform is crucial for the agent
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Freddy

Temps pdgemm(M, N, K) =⌈
K

R

⌉
× temps_dgemm + (M ×K)τ q

p + (K ×N)τp
q +

(
λq

p + λp
q

) ⌈
K

R

⌉
.
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F. Suter. Parallélisme mixte et prédiction de performances sur réseaux hétérogènes
de machines parallèles. PhD thesis, 2002.

E. Caron, F. Desprez, M. Quinson, and F. Suter. Performance Evaluation of Linear
Algebra Routines for Network Enabled Servers. Parallel Computing, special issue
on Cluters and Computational Grids for scientific computing (CCGSC’02), 2003.
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Hypothesis on the routing

Hypothesis 1: Routing consistent

• 1-to-N: no merge after branch

• N-to-1: no split after join

A

B

C

Hypothesis 2: Routing symmetric
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Algorithm for cliques of trees

1. Initialization: i← 0; Ci ← H; Ei ← ∅ ; Vi ← ∅

2. Classes lookup: h1, . . . , hp: classes of ⊥ over Ci ; ∀i, li ∈ hi

Ci+1 ← {l1, . . . , lp}

3. Graph update: Vi+1 ← Vi ; Ei+1 ← Ei

∀hj ∈ Ci,∀v ∈ hj , do Ei+1 ← Ei+1 ∪ {(v, lj)} and Vi+1 ← Vi+1 ∪ {v}

4. Interference matrix update

Let lα, lβ , lγ , lδ ∈ Ci+1 represent respectively hα, hβ , hγ , hδ.

For each mα,mβ ,mγ ,mδ ∈ Ci so that mα ∈ hα, mβ ∈ hβ , mγ ∈ hγ ,mδ ∈ hδ.

I(Ci+1,��)
(
lα, lβ , lγ , lδ

)
= I

(
Ci,��

) (
mα,mβ ,mγ ,mδ

)
5. Iterate 2–3 until Ci = Ci+1.
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ALNeM: example of execution
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DIET: Distributed Interactive Engineering Toolbox
Goal : Metacomputing platform (GridRPC model)

• Complete and ready to use for users

• Extensible by researchers

Main functionalities :

• Distributed and hierarchical scheduling;

• Resources localization ;

• Data persistence ;

• Platform monitoring ;

Teams : GRAAL (ENS-Lyon), U. Besançon, Insa-Lyon, Loria (Nancy), Sun.

Targeted applications : Grid-ASP

• Digital elevation model (Geology – LST ENS-Lyon) ;

• Molecular dynamics (Physique – Lyon-I et al.) ;

• HSEP (chemical – SRSMC Nancy) ;

• Circuit simulation (electronic – Ircom) ;

• ACI TLSE (sparse matrix expertise – Toulouse) ;
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DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

MA

LA

LA

LA

S S SSS
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