
Martin QUINSON

University of California, Santa Barbara (UCSB)

Automatic discovery of the

characteristics and capacities

of a distributed computational platform

10 mai 2004

Introduction to the Grid

Metacomputing: aggregating distributed computers and storage units

the resulting platform is usually called the Grid

• Very high potential (in power and ease of use)

• The Grid hardware is already there
Share of local resources between several organizations ⇒ WAN constellation of LAN

• The Grid software infrastructure only emerging.
Difficulties come from (amongst others):

• Heterogeneity

• Resource sharing (⇒ availability variations)

• Multiple organizations (trust issue)

Martin QUINSON 10 mai 2004 |// Slide 2 / 27 ..|

Which information for which scheduling?

Random scheduling:
• Tasks list; existing hosts list

Simple scheduling:
• About tasks: theoretical complexity (like O(n))

• About hosts: peak performance or on a given benchmark

• About links: maximal capacities

Current Grid scheduling:
• About hosts: up/down, CPU and memory load

• About links: current capacities matrix

Information quality is crucial to scheduling quality

Martin QUINSON 10 mai 2004 |// Slide 3 / 27 ..|

Which information for which scheduling?

Random scheduling:
• Tasks list; existing hosts list

Simple scheduling:
• About tasks: theoretical complexity (like O(n))

• About hosts: peak performance or on a given benchmark

• About links: maximal capacities

Current Grid scheduling:
• About hosts: up/down, CPU and memory load

• About links: current capacities matrix

Information quality is crucial to scheduling quality

Martin QUINSON 10 mai 2004 |// Slide 3 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

Server

Server

Server Server

Server
Server

Server

Server

ClientClient Client

Agent

Task2Task1 Task3

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

Server

Server

Server Server

Server
Server

Server

Server

ClientClient Client

Network

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

NWS [RSH99] forecasts:

• bandwidth, latency, memory, disk space, . . .

• host load as percentage
Server

Server

Server Server

Server
Server

Server

Server

Client

90Mo

97Mo
50Mo

534ko

42Mo

1Go
156Mo

1,3ko/s
2ko/s

280o/s
4,5Mo/s

1,7Go/s

23Mo/s 280o/s

60Mo/s

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

NWS [RSH99] forecasts:

• bandwidth, latency, memory, disk space, . . .

• host load as percentage
FAST [Qui02b] provides:

• Task needs benchmarking

time and memory size (fitting to the host)

⇒ Duration of the task on each server

Server

Server

Server Server

Server
Server

Server

Server

Client

1,3ko/s
2ko/s

280o/s
4,5Mo/s

1,7Go/s

23Mo/s 280o/s

534ko

90Mo

42Mo
97Mo

50Mo

156Mo
1Go 156Mo

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

Motivating example: how to configure NWS?

• Simplest: measure everything
Server

Server

Server Server

Server
Server

Server

Server

ClientClient Client

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

Motivating example: how to configure NWS?

• Simplest: measure everything

• Better: hierarchical
Server

Server

Server Server

Server
Server

Server

Server

Client

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

Motivating example: how to configure NWS?

• Simplest: measure everything

• Better: hierarchical
Target:

• logical topology (end-host)

• interferences

Server

Server

Server Server

Server
Server

Server

Server

Client

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

ENV [SBW99]:

, maps the network without root access

/ only hierarchical (tree)
Server

Server

Server Server

Server
Server

Server

Server

Client

?

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview of this work
Our goal: provide the information needed by the scheduler.

I. Quantitative knowledge of needs (tasks) and availabilities (servers and network)
NWS + FAST

II. Qualitative knowledge of network topology
ENV→ ALNeM

ENV [SBW99]:

, maps the network without root access

/ only hierarchical (tree)

ALNeM [LQ04]

• Same approach than ENV, generalized

• Stronger theoretical basements

Server

Server

Server Server

Server
Server

Server

Server

Client

?

166

0

32

42

5

6

1

8

10

16

101

103

20

105

106

109

22

11

12

14

19

110

112

114

39

118

119

121

124

34

126

36

13

15

130

131

133

134

31

136

138

46

60

141

143

144

40

146

147

148

4

7

152

153

154

47

155

158

159

44

18

75

161

164

58

165

167

168

169

17

80

170

171 172

173

174

52

175

176

177

179

59

70

180

182

183

53

2

27

3

51

21

25

28

85

23

24

29

26

30

35

33

37

38

9

45

41

50

54

55

56

57

6162

63

64

66

67

68

69

71

72

73

74

76

78

79

86

92

94

96

98

99

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

Overview

• Introduction

• NWS: Network Weather Service

• FAST: Fast’s Agent System Timer

• ALNeM: Application-Level Network Mapper

• Conclusion

Martin QUINSON 10 mai 2004 |// Slide 4 / 27 ..|

The Network Weather Service: presentation
Goal: (Grid) system availabilities measurement and forecasting

Leaded by Prof. Wolski (UCSB), used by AppLeS, Globus, NetSolve, Ninf, DIET, . . .

Architecture: Distributed system

Sensor: conducts the measurements
Memory: stores the results
Forecaster: forecasts statistically the tendencies
Name server: directory service like LDAP

Memory

Nameserver

Sensor Sensor

Forecaster

Martin QUINSON 10 mai 2004 |// Slide 5 / 27 ..|

The Network Weather Service: presentation
Goal: (Grid) system availabilities measurement and forecasting

Leaded by Prof. Wolski (UCSB), used by AppLeS, Globus, NetSolve, Ninf, DIET, . . .

Architecture: Distributed system

Sensor: conducts the measurements
Memory: stores the results
Forecaster: forecasts statistically the tendencies
Name server: directory service like LDAP

Memory

Nameserver

Sensor Sensor

ForecasterExternal source

TestTest

Steady state: regular tests

Martin QUINSON 10 mai 2004 |// Slide 5 / 27 ..|

The Network Weather Service: presentation
Goal: (Grid) system availabilities measurement and forecasting

Leaded by Prof. Wolski (UCSB), used by AppLeS, Globus, NetSolve, Ninf, DIET, . . .

Architecture: Distributed system

Sensor: conducts the measurements
Memory: stores the results
Forecaster: forecasts statistically the tendencies
Name server: directory service like LDAP

Request

Client

Memory

Nameserver

Sensor Sensor

Forecaster

Handling of a request

Martin QUINSON 10 mai 2004 |// Slide 5 / 27 ..|

The Network Weather Service: presentation
Goal: (Grid) system availabilities measurement and forecasting

Leaded by Prof. Wolski (UCSB), used by AppLeS, Globus, NetSolve, Ninf, DIET, . . .

Architecture: Distributed system

Sensor: conducts the measurements
Memory: stores the results
Forecaster: forecasts statistically the tendencies
Name server: directory service like LDAP

Client

Memory

Nameserver

Sensor Sensor

Forecaster

Handling of a request

Martin QUINSON 10 mai 2004 |// Slide 5 / 27 ..|

The Network Weather Service: presentation
Goal: (Grid) system availabilities measurement and forecasting

Leaded by Prof. Wolski (UCSB), used by AppLeS, Globus, NetSolve, Ninf, DIET, . . .

Architecture: Distributed system

Sensor: conducts the measurements
Memory: stores the results
Forecaster: forecasts statistically the tendencies
Name server: directory service like LDAP

Answer Client

Memory

Nameserver

Sensor Sensor

Forecaster

Handling of a request

Martin QUINSON 10 mai 2004 |// Slide 5 / 27 ..|

Measurements and Forecasting

• Provided metrics:
availableCpu (for an incoming process), currentCpu (for existing processes),
bandwidthTcp, latencyTcp (Default: 64Kb in 16Kb messages; buffer=32Kb),
connectTimeTcp, freeDisk, freeMemory, . . .

• Forecasting using statistics
Data = serie: D1, D2, . . . , Dn−1, Dn. We want Dn+1.
Methods are applied on D1, D2, . . . , Dn−1. each one predict Dn.
Selection of the best on Dn to predict Dn+1.

Used statistical methods
mean: running, (adapting) sliding window ;
median: idem ;
gradian: GRAD(t, g) = (1−g)×GRAD(t−1, g) + g×value(t) ;
last value.

Martin QUINSON 10 mai 2004 |// Slide 6 / 27 ..|

Conclusion about NWS

, Complete environment

, Designed for scheduling

, Statistical forecasting

, Widely used

/ Uneasy to extend

/ Sometimes difficult to deploy

/ TCP only (myrinet-based?)

Related work

NetPerf: HP project to sort network components, no interactivity

GloPerf: Globus moves to NWS

PingER: Regular pings between 600 hosts in 72 countries

Iperf: Finds out the bandwidth by saturating the link for 30 seconds

RPS: Forecasting limited to the CPU load

Performance Co-Pilot (SGI):

• Same kind of architecture

• Low level data (/proc)⇒ not easily usable by a scheduler

• No forecasting

Martin QUINSON 10 mai 2004 |// Slide 7 / 27 ..|

Overview

• Introduction

• NWS: Network Weather Service

• FAST: Fast’s Agent System Timer

• ALNeM: Application-Level Network Mapper

• Conclusion

Martin QUINSON 10 mai 2004 |// Slide 7 / 27 ..|

Fast Agent’s System Timer: presentation
Goals:

• gather routine’s performance on a given host at a given time

• interactivity, ease of use

Architecture:

NWS

FAST library

Needs modeling Sys availabilities

Martin QUINSON 10 mai 2004 |// Slide 8 / 27 ..|

Fast Agent’s System Timer: presentation
Goals:

• gather routine’s performance on a given host at a given time

• interactivity, ease of use

Architecture:

LDAP

Installation
time

Benchmarker

NWS

FAST library

Needs modeling Sys availabilities

Martin QUINSON 10 mai 2004 |// Slide 8 / 27 ..|

Fast Agent’s System Timer: presentation
Goals:

• gather routine’s performance on a given host at a given time

• interactivity, ease of use

Architecture:

LDAP

Runtime
library

Installation
time

Benchmarker

Client application

NWS

FAST library

Needs modeling Sys availabilities

Martin QUINSON 10 mai 2004 |// Slide 8 / 27 ..|

Routines needs modeling
Related Work
• Elementary operation count: the myth of the constant Mflop/s
• Analytical model, micro-benchmarking: complex 6⇒ interactive, task description?
• Probability, Markov: how to instanciate it at a given time?

FAST’s approach
• Simple (sequential) routines like BLAS

macro-benchmarking: benchmark {task; host} as a whole at installation
• Getting the time: utime + stime to avoid backgroung load

• Getting the space: step by step execution (like gdb) to track changes and search peak

⇒ rather long, but only once

• Complex routines (ScaLAPACK)
Structural decomposition by source analysis

• Irregular routines (sparse algebra)
No forecasting⇒ selection of the fastest host
Decomposition to extract simple parts
Input of estimators from the application

Martin QUINSON 10 mai 2004 |// Slide 9 / 27 ..|

Routines needs modeling
Related Work
• Elementary operation count: the myth of the constant Mflop/s
• Analytical model, micro-benchmarking: complex 6⇒ interactive, task description?
• Probability, Markov: how to instanciate it at a given time?

FAST’s approach
• Simple (sequential) routines like BLAS

macro-benchmarking: benchmark {task; host} as a whole at installation
• Getting the time: utime + stime to avoid backgroung load

• Getting the space: step by step execution (like gdb) to track changes and search peak

⇒ rather long, but only once

• Complex routines (ScaLAPACK)
Structural decomposition by source analysis

• Irregular routines (sparse algebra)
No forecasting⇒ selection of the fastest host
Decomposition to extract simple parts
Input of estimators from the application

Martin QUINSON 10 mai 2004 |// Slide 9 / 27 ..|

Routines needs modeling
Related Work
• Elementary operation count: the myth of the constant Mflop/s
• Analytical model, micro-benchmarking: complex 6⇒ interactive, task description?
• Probability, Markov: how to instanciate it at a given time?

FAST’s approach
• Simple (sequential) routines like BLAS

macro-benchmarking: benchmark {task; host} as a whole at installation
• Getting the time: utime + stime to avoid backgroung load

• Getting the space: step by step execution (like gdb) to track changes and search peak

⇒ rather long, but only once

• Complex routines (ScaLAPACK)
Structural decomposition by source analysis

• Irregular routines (sparse algebra)
No forecasting⇒ selection of the fastest host
Decomposition to extract simple parts
Input of estimators from the application

Martin QUINSON 10 mai 2004 |// Slide 9 / 27 ..|

Routines needs modeling
Related Work
• Elementary operation count: the myth of the constant Mflop/s
• Analytical model, micro-benchmarking: complex 6⇒ interactive, task description?
• Probability, Markov: how to instanciate it at a given time?

FAST’s approach
• Simple (sequential) routines like BLAS

macro-benchmarking: benchmark {task; host} as a whole at installation
• Getting the time: utime + stime to avoid backgroung load

• Getting the space: step by step execution (like gdb) to track changes and search peak

⇒ rather long, but only once

• Complex routines (ScaLAPACK) Freddy [CDQF03] ,
Structural decomposition by source analysis integration underway

• Irregular routines (sparse algebra)
No forecasting⇒ selection of the fastest host
Decomposition to extract simple parts
Input of estimators from the application

Martin QUINSON 10 mai 2004 |// Slide 9 / 27 ..|

Routines needs modeling
Related Work
• Elementary operation count: the myth of the constant Mflop/s
• Analytical model, micro-benchmarking: complex 6⇒ interactive, task description?
• Probability, Markov: how to instanciate it at a given time?

FAST’s approach
• Simple (sequential) routines like BLAS

macro-benchmarking: benchmark {task; host} as a whole at installation
• Getting the time: utime + stime to avoid backgroung load

• Getting the space: step by step execution (like gdb) to track changes and search peak

⇒ rather long, but only once

• Complex routines (ScaLAPACK) Freddy [CDQF03] ,
Structural decomposition by source analysis integration underway

• Irregular routines (sparse algebra)
No forecasting⇒ selection of the fastest host
Decomposition to extract simple parts
Input of estimators from the application

Martin QUINSON 10 mai 2004 |// Slide 9 / 27 ..|

Quality of the modeling
Time modeling

dgeadd dgemm dtrsm

icluster paraski icluster paraski icluster paraski

Maximal 0.02s 0.02s 0.21s 5.8s 0.13s 0.31s

error 6% 35% 0.3% 4% 10% 16%

Average 0.006s 0.007s 0.025s 0.03s 0.02s 0.08s

error 4% 6.5% 0.1% 0.1% 5% 7%

dgeadd: Matrix addition

dgemm: Matrix multiplication

dtrsm: Triangular resolution

icluster: bi-Pentium II, 256Mb, Linux, IMAG (Grenoble).

paraski: Pentium III, 256Mb, Linux, IRISA (Rennes).

network: Intra: LAN, 100Mb/s; Inter: VTHD network, 2.5Gb/s.

Space modeling
Almost perfect: Maximal error < 1% ; Average error ≈ 0.1%

Code size + Matrix size
(constant) (polynomial)

Martin QUINSON 10 mai 2004 |// Slide 10 / 27 ..|

Forecasting with background load
dgemm with background load (CPU-intensive process in background).

0

100

200

300

400

500

600

700

128 256 384 512 640 768 896 1024

Ti
m

e
(s

)

 Matrices size

Forecasted time on paraski
Measured time on paraski

Forecasted time on icluster
Measured time on icluster

Maximal error: 22%
Average error<10%

Martin QUINSON 10 mai 2004 |// Slide 11 / 27 ..|

Forecasting of sequence with background load

C =
{

Cr = Ar × Br − Ai × Bi

Ci = Ar × Bi + Ai × Br client/servers over LAN

0

20

40

60

80

100

120

140

160

128 256 384 512 640 768 896 1024

Ti
m

e
(s

)

 Matrices size

Measured time
Forecasted time

Maximal error: 25%; Average error: 13%
Martin QUINSON 10 mai 2004 |// Slide 12 / 27 ..|

Comparison with NetSolve’s forecaster

0

100

200

300

400

500

600

700

0 128 256 384 512 640 768 896 1024

Ti
m

e
(s

)

 Matrices size

NetSolve forecast
Measured time
FAST forecast

Computation time of dgemm.

0

50

100

150

200

250

300

128 256 384 512 640 768 896 1024 1152
Ti

m
e

(s
)

 Matrices size

NetSolve forecast
Measured time
FAST forecast

Communication time of dgemm.

Martin QUINSON 10 mai 2004 |// Slide 13 / 27 ..|

Latency reduction

0.1

T
im

e
(s

)

µ(99569 s) µ(100685 s)
NWS FAST (cache miss)

µ(24 s)
FAST (cache hit)

Martin QUINSON 10 mai 2004 |// Slide 14 / 27 ..|

Responsiveness improvement

Scheduler / NWS collaboration

Idle timeIdle time Task run

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5
Time (minutes)

C
P

U
 a

va
ila

bi
lit

y
(%

)

Forecasting
NWS: out of the box
FAST: {sensors restart + forecaster reset} when the task starts or ends
Theoretical value
Martin QUINSON 10 mai 2004 |// Slide 15 / 27 ..|

Virtual booking: How does it work?

Scheduled
task

NWS
updated

Task
started

Scheduling
decision

Task
ended

NWS
updated

correction 0 1 01

FAST asks NWS to update

NWS
sensor

0 −1

Time

Martin QUINSON 10 mai 2004 |// Slide 16 / 27 ..|

Benefits of virtual booking

Idle time Idle timeTask running

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5

C
pu

 a
va

ila
bi

lit
y

(%
)

Time (minutes)

Measurements

Idle time Idle timeTask running

 0.5 1 1.5 2 2.5 3 3.5
Time (minutes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

C
pu

 a
va

ila
bi

lit
y

(%
)

Forecasting

NWS: ADAPT_CPU
FAST: ADAPT_CPU + virtual booking + sensors restart + forecaster reset
Theoretical value

(Result of 4 different runs)

Martin QUINSON 10 mai 2004 |// Slide 17 / 27 ..|

Contributions of FAST
Forecasting with load

0

20

40

60

80

100

120

140

160

128 256 384 512 640 768 896 1024

Ti
m

e
(s

)

 Matrices size

Measured time
Forecasted time

Responsiveness

Idle time Idle timeTask running

 0.5 1 1.5 2 2.5 3 3.5
Time (minutes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

C
pu

 a
va

ila
bi

lit
y

(%
)

Summary

• Generic benchmarking solution

• Simple interface to quantitative data

• Parallel routines handling currently integrated

• Integration: DIET, NetSolve, Grid-TLSE, cichlid

• 15 000 lines of C code, Linux, Solaris, True64

• 2 journals and 3 conferences/workshops

Martin QUINSON 10 mai 2004 |// Slide 18 / 27 ..|

Overview

• Introduction

• NWS: Network Weather Service

• FAST: Fast’s Agent System Timer

• ALNeM: Application-Level Network Mapper

• Conclusion

Martin QUINSON 10 mai 2004 |// Slide 18 / 27 ..|

Application-Level Network Mapper
Goal: Mapping the network topology

Authors: Arnaud Legrand, Martin Quinson

Motivation: Server hosting, Simulation, Collective Communication Forecasting

Target application: NWS hosting

Problem: Network experiments must not collide (Clique concept)

Simplest: One big clique ; Better: Hierarchical

Martin QUINSON 10 mai 2004 |// Slide 19 / 27 ..|

Application-Level Network Mapper
Goal: Mapping the network topology

Authors: Arnaud Legrand, Martin Quinson

Motivation: Server hosting, Simulation, Collective Communication Forecasting

Target application: NWS hosting

Problem: Network experiments must not collide (Clique concept)

Simplest: One big clique

; Better: Hierarchical

Server

Server

Server Server

Server
Server

Server

Server

ClientClient Client

Martin QUINSON 10 mai 2004 |// Slide 19 / 27 ..|

Application-Level Network Mapper
Goal: Mapping the network topology

Authors: Arnaud Legrand, Martin Quinson

Motivation: Server hosting, Simulation, Collective Communication Forecasting

Target application: NWS hosting

Problem: Network experiments must not collide (Clique concept)

Simplest: One big clique ; Better: Hierarchical

Server

Server

Server Server

Server
Server

Server

Server

Client

Martin QUINSON 10 mai 2004 |// Slide 19 / 27 ..|

Application-Level Network Mapper
Goal: Mapping the network topology

Authors: Arnaud Legrand, Martin Quinson

Motivation: Server hosting, Simulation, Collective Communication Forecasting

Focus: Discover interferences (limiting common links), not really packet paths

Martin QUINSON 10 mai 2004 |// Slide 19 / 27 ..|

Application-Level Network Mapper
Goal: Mapping the network topology

Authors: Arnaud Legrand, Martin Quinson

Motivation: Server hosting, Simulation, Collective Communication Forecasting

Focus: Discover interferences (limiting common links), not really packet paths

Related work
Method Restricted Focus Routers Notes

SNMP authorized path all passive, dumb routers, LAN

traceroute ICMP path all level 3 of OSI

pathchar root path all link bandwidth, slow

Other no path din 6= dout tree
tomography bipartite [Rabbat03]

ENV no interference some tree only

Martin QUINSON 10 mai 2004 |// Slide 19 / 27 ..|

ALNeM: Notations

Def (non-interference): (ab) �rl (cd)⇐⇒ bw�cd(ab)

bw(ab) ≈ 1

Def (interference): (ab) ��rl (cd)⇐⇒ bw�cd(ab)

bw(ab) ≈ 0.5

Def: Interference matrix I(V,��rl)

I(V,��rl)(a, b, c, d) =

1 if (ab) ��rl (cd)

0 if not

INTERFERENCEGRAPH: Given H and I(H,��rl),
Find a graph G(V,E) and the associated routing satisfying:

H ⊂ V

I(H,��G) = I(H,��rl)

|V | is minimal.

.

Martin QUINSON 10 mai 2004 |// Slide 20 / 27 ..|

ALNeM: Notations

Def (non-interference): (ab) �rl (cd)⇐⇒ bw�cd(ab)

bw(ab) ≈ 1

Def (interference): (ab) ��rl (cd)⇐⇒ bw�cd(ab)

bw(ab) ≈ 0.5

Def: Interference matrix I(V,��rl)

I(V,��rl)(a, b, c, d) =

1 if (ab) ��rl (cd)

0 if not

INTERFERENCEGRAPH: Given H and I(H,��rl),
Find a graph G(V,E) and the associated routing satisfying:

H ⊂ V

I(H,��G) = I(H,��rl)

|V | is minimal.

.

Martin QUINSON 10 mai 2004 |// Slide 20 / 27 ..|

ALNeM: Notations

Def (non-interference): (ab) �rl (cd)⇐⇒ bw�cd(ab)

bw(ab) ≈ 1

Def (interference): (ab) ��rl (cd)⇐⇒ bw�cd(ab)

bw(ab) ≈ 0.5

Def: Interference matrix I(V,��rl)

I(V,��rl)(a, b, c, d) =

1 if (ab) ��rl (cd)

0 if not

INTERFERENCEGRAPH: Given H and I(H,��rl),
Find a graph G(V,E) and the associated routing satisfying:

H ⊂ V

I(H,��G) = I(H,��rl)

|V | is minimal.

.

Martin QUINSON 10 mai 2004 |// Slide 20 / 27 ..|

Mathematical tools

Def. (total interference): a ⊥ b⇐⇒ ∀(u, v) ∈ H, (au) ��rl (bv)

Lemma (separator): ∀a, b ∈ H, a ⊥ b⇐⇒ ∃ ρ ∈ Ṽ
/
∀z ∈ H : ρ ∈ (a −→ z)∩(b −→ z) .

(⊥⇐⇒ ∃ ρ separator)

Theorem: ⊥ is an equivalence relation (under some assumptions)

Theorem (representativity): C equivalence class under ⊥ (under some assumptions)

∀ρ, σ ∈ C, ∀b, u, v ∈ H, (ρ, u) ��rl (b, v)⇔ (σ, u) ��rl (b, v)

(you can interchange any member of the class by any other in the matrix)

Martin QUINSON 10 mai 2004 |// Slide 21 / 27 ..|

Mathematical tools

Def. (total interference): a ⊥ b⇐⇒ ∀(u, v) ∈ H, (au) ��rl (bv)

Lemma (separator): ∀a, b ∈ H, a ⊥ b⇐⇒ ∃ ρ ∈ Ṽ
/
∀z ∈ H : ρ ∈ (a −→ z)∩(b −→ z) .

(⊥⇐⇒ ∃ ρ separator)

Theorem: ⊥ is an equivalence relation (under some assumptions)

Theorem (representativity): C equivalence class under ⊥ (under some assumptions)

∀ρ, σ ∈ C, ∀b, u, v ∈ H, (ρ, u) ��rl (b, v)⇔ (σ, u) ��rl (b, v)

(you can interchange any member of the class by any other in the matrix)

Martin QUINSON 10 mai 2004 |// Slide 21 / 27 ..|

Mathematical tools

Def. (total interference): a ⊥ b⇐⇒ ∀(u, v) ∈ H, (au) ��rl (bv)

Lemma (separator): ∀a, b ∈ H, a ⊥ b⇐⇒ ∃ ρ ∈ Ṽ
/
∀z ∈ H : ρ ∈ (a −→ z)∩(b −→ z) .

(⊥⇐⇒ ∃ ρ separator)

Theorem: ⊥ is an equivalence relation (under some assumptions)

Theorem (representativity): C equivalence class under ⊥ (under some assumptions)

∀ρ, σ ∈ C, ∀b, u, v ∈ H, (ρ, u) ��rl (b, v)⇔ (σ, u) ��rl (b, v)

(you can interchange any member of the class by any other in the matrix)

Martin QUINSON 10 mai 2004 |// Slide 21 / 27 ..|

Mathematical tools

Def. (total interference): a ⊥ b⇐⇒ ∀(u, v) ∈ H, (au) ��rl (bv)

Lemma (separator): ∀a, b ∈ H, a ⊥ b⇐⇒ ∃ ρ ∈ Ṽ
/
∀z ∈ H : ρ ∈ (a −→ z)∩(b −→ z) .

(⊥⇐⇒ ∃ ρ separator)

Theorem: ⊥ is an equivalence relation (under some assumptions)

Theorem (representativity): C equivalence class under ⊥ (under some assumptions)

∀ρ, σ ∈ C, ∀b, u, v ∈ H, (ρ, u) ��rl (b, v)⇔ (σ, u) ��rl (b, v)

(you can interchange any member of the class by any other in the matrix)

Martin QUINSON 10 mai 2004 |// Slide 21 / 27 ..|

Algorithm for cliques of trees
Equivalence class⇒ greedy algorithm eating the leaves

A

C

D

E

F
G H

I

B

A B C D E F G H I

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.

Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When I contains no interferences, the clique of Ci is a valid solution.
Remark: It is also optimal

Martin QUINSON 10 mai 2004 |// Slide 22 / 27 ..|

Algorithm for cliques of trees
Equivalence class⇒ greedy algorithm eating the leaves

A

C

D

E

F
G H

I

B

B D G

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.

Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When I contains no interferences, the clique of Ci is a valid solution.
Remark: It is also optimal

Martin QUINSON 10 mai 2004 |// Slide 22 / 27 ..|

Algorithm for cliques of trees
Equivalence class⇒ greedy algorithm eating the leaves

A

C

D

E

F
G H

I

B

B

D G

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.

Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When I contains no interferences, the clique of Ci is a valid solution.
Remark: It is also optimal

Martin QUINSON 10 mai 2004 |// Slide 22 / 27 ..|

Algorithm for cliques of trees
Equivalence class⇒ greedy algorithm eating the leaves

A

C

D

E

F
G H

I

B D

G

B

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.

Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When I contains no interferences, the clique of Ci is a valid solution.
Remark: It is also optimal

Martin QUINSON 10 mai 2004 |// Slide 22 / 27 ..|

Algorithm for cliques of trees
Equivalence class⇒ greedy algorithm eating the leaves

A

C

D

E

F
G H

I

B D

G

B

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.

Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When I contains no interferences, the clique of Ci is a valid solution.
Remark: It is also optimal

Martin QUINSON 10 mai 2004 |// Slide 22 / 27 ..|

Algorithm for cliques of trees
Equivalence class⇒ greedy algorithm eating the leaves

A

C

D

E

F
G H

I

B D

G

B

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.

Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When I contains no interferences, the clique of Ci is a valid solution.
Remark: It is also optimal

Martin QUINSON 10 mai 2004 |// Slide 22 / 27 ..|

Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b! a

b

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|

Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b! a

b

α

β

Finding out how to cut

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|

Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b! a

b

I1

I2 I3

α

β

Finding out how to cut

8>>>>><>>>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯
I4 = {a; b}

the contrary would imply
a

b
u

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|

Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

u
v

v

u
a

b

I1

I2 I3

α

β

Finding out how to cut

8>>>>><>>>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯

bα βa

b

α

β

a
1 1

}
}
}

u

1

0
0

1
1

0

v

0\1 I2

I3

I1

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|

Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

u
v

v

u
a

b

I1

I2 I3

α

β

Finding out how to cut

8>>>>><>>>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯

bα βa

b

α

β

a
1 1

}
}
}

u

1

0
0

1
1

0

v

0\1 I2

I3

I1

Topological sort on the graph associated to the matrix slice gives I1, I2, I3

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|

Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

a

b

I1

I2 I3

Finding out how to cut

How to connect parts afterward

First step on I1 → Finds 2 classes I1a
and I1α

; a ∈ I1a
.

First step on I3 → Finds 2 classes I1b
and I1β

; b ∈ I1b
.

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|

Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

a

b

I1

I2 I3

Finding out how to cut

How to connect parts afterward

First step on I1 → Finds 2 classes I1a
and I1α

; a ∈ I1a
.

First step on I3 → Finds 2 classes I1b
and I1β

; b ∈ I1b
.

Reconnect I1a
and I1b

; Reconnect I1α
and I1β

.

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|

Extension for cycles

Let a, b be the elements of Ci with the more interferences.
Lemma: no solution with ∃z ∈ H so that z ∈ (a −→ b)
⇒ Cut between a and b!

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

a

b

I1

I2 I3

Finding out how to cut

How to connect parts afterward

First step on I1 → Finds 2 classes I1a
and I1α

; a ∈ I1a
.

First step on I3 → Finds 2 classes I1b
and I1β

; b ∈ I1b
.

Reconnect I1a
and I1b

; Reconnect I1α
and I1β

.

No demonstration of this...

Martin QUINSON 10 mai 2004 |// Slide 23 / 27 ..|

Data collection

Interference measurement between each pair of hosts.

• Naïve algorithm:

• N4, 30s. per step⇒ 50 days for 20 hosts.

• Speedups thanks to traceroute or other tomography

• Independent tests in parallel

• Validation of information sets

• Refinement of existing graph?

Deserve more investigation

Martin QUINSON 10 mai 2004 |// Slide 24 / 27 ..|

Contributions of ALNeM
• Retrieve the interference-based topology from direct measurements

• Strong mathemathical basements (optimal for cliques of trees)

• More generic than ENV (algorithm for cycles)

• 2 000 lines of C code; one research report

• Based on GRAS [Quinson03]

• development on simulator (SimGrid [CLM03]) and immediate deployment

• target: distributed event-based applications, C language

• 10 000 lines of C code, Linux, Solaris

• Submitted to one workshop

166

0

32

42

5

6

1

8

10

16

101

103

20

105

106

109

22

11

12

14

19

110

112

114

39

118

119

121

124

34

126

36

13

15

130

131

133

134

31

136

138

46

60

141

143

144

40

146

147

148

4

7

152

153

154

47

155

158

159

44

18

75

161

164

58

165

167

168

169

17

80

170

171 172

173

174

52

175

176

177

179

59

70

180

182

183

53

2

27

3

51

21

25

28

85

23

24

29

26

30

35

33

37

38

9

45

41

50

54

55

56

57

6162

63

64

66

67

68

69

71

72

73

74

76

78

79

86

92

94

96

98

99

Martin QUINSON 10 mai 2004 |// Slide 25 / 27 ..|

Contributions of ALNeM
• Retrieve the interference-based topology from direct measurements

• Strong mathemathical basements (optimal for cliques of trees)

• More generic than ENV (algorithm for cycles)

• 2 000 lines of C code; one research report

• Based on GRAS [Quinson03]

• development on simulator (SimGrid [CLM03]) and immediate deployment

• target: distributed event-based applications, C language

• 10 000 lines of C code, Linux, Solaris

• Submitted to one workshop

166

0

32

42

5

6

1

8

10

16

101

103

20

105

106

109

22

11

12

14

19

110

112

114

39

118

119

121

124

34

126

36

13

15

130

131

133

134

31

136

138

46

60

141

143

144

40

146

147

148

4

7

152

153

154

47

155

158

159

44

18

75

161

164

58

165

167

168

169

17

80

170

171 172

173

174

52

175

176

177

179

59

70

180

182

183

53

2

27

3

51

21

25

28

85

23

24

29

26

30

35

33

37

38

9

45

41

50

54

55

56

57

6162

63

64

66

67

68

69

71

72

73

74

76

78

79

86

92

94

96

98

99

Martin QUINSON 10 mai 2004 |// Slide 25 / 27 ..|

Overview

• Introduction

• NWS: Network Weather Service

• FAST: Fast’s Agent System Timer

• ALNeM: Application-Level Network Mapper

• Conclusion

Martin QUINSON 10 mai 2004 |// Slide 25 / 27 ..|

Conclusion
• Major issue on the Grid: collecting data (before scheduling)

Martin QUINSON 10 mai 2004 |// Slide 26 / 27 ..|

Conclusion
• Major issue on the Grid: collecting data (before scheduling)

• Gathering quantitative data: NWS + FAST

NWS: System availability

Contributions:

– Lower latency

– Better responsiveness

– Process management

Future work:

– Automatic deployment

FAST: Routine needs

Contributions:

– Generic benchmarking framework

– Unified interface to quantitative data

– Virtual booking

– Integration: DIET, NetSolve, Grid-TLSE

– 2 journals; 3 conferences/workshops

Future work:

– Integration of Freddy

– Irregular routines (sparse algebra)

– New metrics (like I/O)?

– Yet better integration within NWS

Martin QUINSON 10 mai 2004 |// Slide 26 / 27 ..|

Conclusion
• Major issue on the Grid: collecting data (before scheduling)

• Gathering quantitative data: NWS + FAST

NWS: System availability
Contributions:

– Lower latency

– Better responsiveness

– Process management

Future work:

– Automatic deployment

FAST: Routine needs

Contributions:

– Generic benchmarking framework

– Unified interface to quantitative data

– Virtual booking

– Integration: DIET, NetSolve, Grid-TLSE

– 2 journals; 3 conferences/workshops

Future work:

– Integration of Freddy

– Irregular routines (sparse algebra)

– New metrics (like I/O)?

– Yet better integration within NWS

Martin QUINSON 10 mai 2004 |// Slide 26 / 27 ..|

Conclusion
• Major issue on the Grid: collecting data (before scheduling)

• Gathering quantitative data: NWS + FAST

NWS: System availability
Contributions:

– Lower latency

– Better responsiveness

– Process management

Future work:

– Automatic deployment

FAST: Routine needs
Contributions:

– Generic benchmarking framework

– Unified interface to quantitative data

– Virtual booking

– Integration: DIET, NetSolve, Grid-TLSE

– 2 journals; 3 conferences/workshops

Future work:

– Integration of Freddy

– Irregular routines (sparse algebra)

– New metrics (like I/O)?

– Yet better integration within NWS

Martin QUINSON 10 mai 2004 |// Slide 26 / 27 ..|

Conclusion
• Major issue on the Grid: collecting data (before scheduling)

• Gathering quantitative data: NWS + FAST

• Gathering qualitative data: ALNeM

ALNeM: Network topology to know about interferences
Contributions:

– Strong mathematical basements

– Optimal in size for cliques of trees

– Partial cycle handling

– GRAS: application development tool

– Submitted to one workshop

Future work:

– Proof of NP-hardness . . .

– . . . or exact algorithm

– Experimentation on real platform

– Optimization of the measurements

– Iterative algo. (modification detection)

– Integration within NWS

– Hosting of DIET

Martin QUINSON 10 mai 2004 |// Slide 26 / 27 ..|

Selected publications
Book chapter: 1 national

• E. Caron, F. Desprez, E. Fleury, F. Lombard, J.-M. Nicod, M. Quinson, and F. Suter. Une approche
hiérarchique des serveurs de calculs, in Calcul réparti à grande échelle. Hermès Science Paris,
2002. ISBN 2-7462-0472-X.

Journals: 2 internationals (+ 1 submitted), 1 national

• E. Caron, F. Desprez, M. Quinson, and F. Suter. Performance Evaluation of Linear Algebra Routines
for Network Enabled Servers. Parallel Computing, special issue on Cluters and Computational
Grids for scientific computing, 2003.

• F. Desprez, M. Quinson. Dynamic Performance Forecasting for Network-Enabled Servers in a Grid
Environment. Submitted to IEEE Transactions on Parallel and Distributed Systems.

Conferences/workshops: 4 internationals (+ 2 submitted), 2 nationals.

• Ph. Combes, F. Lombard, M. Quinson, and F. Suter. A Scalable Approach to Network Enabled
Servers. Proceedings of the 7th Asian Computing Science Conference. LNCS 2550:110–124,
Springer-Verlag, Jan 2002.

• M. Quinson. Dynamic Performance Forecasting for Network-Enabled Servers in a Metacomputing
Environment. International Workshop on Performance Modeling, Evaluation, and Optimization of
Parallel and Distributed Systems (PMEO-PDS’02), April 15-19 2002.

• A. Legrand, M. Quinson. Automatic deployment of the Network Weather Service using the Effective
Network View. Submitted to Workshop on Grid Benchmarking, associated to IPDPS’04.

• O. Aumage, A. Legrand, M. Quinson. Reconciling the Grid Reality And Simulation. Submitted to
Parallel and Distributed Systems: Testing and Debugging, associated to IPDPS’04.

Martin QUINSON 10 mai 2004 |// Slide 27 / 27 ..|

Appendix

GRAS overview

• development on simulator (SimGrid) and deployment without modification

• target: distributed event-based applications

• light virtual machine for the study and development of NWS, ALNeM, . . .

• 10 000 lines of code, Linux, Solaris

• Futur: (even higher) performance and portability, interoperability

Error handling

Bandwidth test

Linux SimGrid

TCP SimGrid

Syscalls virtualization Conditional execution

Constitutes a portability layer

Grounding features

Communications

Logs control Leader election

Reality Simulation

Locks

Logs

File

Host management

Data structures Configuration

Data Representation

Messages and callbacks

Simulates execution span
Virtualizes expensive code

Build-in modules

Solaris

Martin QUINSON 10 mai 2004 |// Slide 28 / 27 ..|

Sensor in the middle

CBA
TestTest

NWS NWS

?

bp(AC) = min (bp(AB); bp(BC))
lat(AC) = lat(AB) + lat(BC)

It’s a must to reassemble measurements in hierarchical monitoring

Martin QUINSON 10 mai 2004 |// Slide 29 / 27 ..|

RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client

Server

Agent

Monitor

Database

Martin QUINSON 10 mai 2004 |// Slide 30 / 27 ..|

RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client Several user interfaces which submit the requests to servers

Server

Agent

Monitor

Database

Martin QUINSON 10 mai 2004 |// Slide 30 / 27 ..|

RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client Several user interfaces which submit the requests to servers

Server Runs software modules to solve client’s requests

Agent

Monitor

Database

Martin QUINSON 10 mai 2004 |// Slide 30 / 27 ..|

RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client Several user interfaces which submit the requests to servers

Server Runs software modules to solve client’s requests

Agent Gets client’s requests and schedules them onto the servers

Monitor

Database

Martin QUINSON 10 mai 2004 |// Slide 30 / 27 ..|

RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client Several user interfaces which submit the requests to servers

Server Runs software modules to solve client’s requests

Agent Gets client’s requests and schedules them onto the servers

Monitor Monitors the current state of the resources

Database

Martin QUINSON 10 mai 2004 |// Slide 30 / 27 ..|

RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

DB

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client Several user interfaces which submit the requests to servers

Server Runs software modules to solve client’s requests

Agent Gets client’s requests and schedules them onto the servers

Monitor Monitors the current state of the resources

Database Contains static and dynamic knowledges about resources

Martin QUINSON 10 mai 2004 |// Slide 30 / 27 ..|

RPC and grid computing: GridRPC
A simple idea: Implement the RPC model over the Grid

• Remote Procedure Call: run a computation remotely

• Good and simple paradigm to implement the Grid

• Some of the functionalities needed:

• Computation scheduling, data migration

• Security, fault-tolerance, interoperability, . . .

DB

C C C C C

S S S S S

Agent

• 5 fundamental components:

Client Several user interfaces which submit the requests to servers

Server Runs software modules to solve client’s requests

Agent Gets client’s requests and schedules them onto the servers

Monitor Monitors the current state of the resources

Database Contains static and dynamic knowledges about resources

Knowing the platform is crucial for the agent

Martin QUINSON 10 mai 2004 |// Slide 30 / 27 ..|

Freddy

Temps pdgemm(M, N, K) =⌈
K

R

⌉
× temps_dgemm + (M ×K)τ q

p + (K ×N)τp
q +

(
λq

p + λp
q

) ⌈
K

R

⌉
.

BA

GbGa

Gv2Gv1

Distributions

Matrices

grids
Possible virtual

0

5

10

15

20

25

30

35

40

45

50

Ga Gb Gv1 Gv2

Multiplication

Redistribution

meas. meas. meas. meas.fore. fore. fore. fore.

F. Suter. Parallélisme mixte et prédiction de performances sur réseaux hétérogènes
de machines parallèles. PhD thesis, 2002.

E. Caron, F. Desprez, M. Quinson, and F. Suter. Performance Evaluation of Linear
Algebra Routines for Network Enabled Servers. Parallel Computing, special issue
on Cluters and Computational Grids for scientific computing (CCGSC’02), 2003.
Martin QUINSON 10 mai 2004 |// Slide 31 / 27 ..|

Hypothesis on the routing

Hypothesis 1: Routing consistent

• 1-to-N: no merge after branch

• N-to-1: no split after join

A

B

C

Hypothesis 2: Routing symmetric

Martin QUINSON 10 mai 2004 |// Slide 32 / 27 ..|

Algorithm for cliques of trees

1. Initialization: i← 0; Ci ← H; Ei ← ∅ ; Vi ← ∅

2. Classes lookup: h1, . . . , hp: classes of ⊥ over Ci ; ∀i, li ∈ hi

Ci+1 ← {l1, . . . , lp}

3. Graph update: Vi+1 ← Vi ; Ei+1 ← Ei

∀hj ∈ Ci,∀v ∈ hj , do Ei+1 ← Ei+1 ∪ {(v, lj)} and Vi+1 ← Vi+1 ∪ {v}

4. Interference matrix update

Let lα, lβ , lγ , lδ ∈ Ci+1 represent respectively hα, hβ , hγ , hδ.

For each mα,mβ ,mγ ,mδ ∈ Ci so that mα ∈ hα, mβ ∈ hβ , mγ ∈ hγ ,mδ ∈ hδ.

I(Ci+1,��)
(
lα, lβ , lγ , lδ

)
= I

(
Ci,��

) (
mα,mβ ,mγ ,mδ

)
5. Iterate 2–3 until Ci = Ci+1.

Martin QUINSON 10 mai 2004 |// Slide 33 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

ALNeM: example of execution

Martin QUINSON 10 mai 2004 |// Slide 34 / 27 ..|

DIET: Distributed Interactive Engineering Toolbox
Goal : Metacomputing platform (GridRPC model)

• Complete and ready to use for users

• Extensible by researchers

Main functionalities :

• Distributed and hierarchical scheduling;

• Resources localization ;

• Data persistence ;

• Platform monitoring ;

Teams : GRAAL (ENS-Lyon), U. Besançon, Insa-Lyon, Loria (Nancy), Sun.

Targeted applications : Grid-ASP

• Digital elevation model (Geology – LST ENS-Lyon) ;

• Molecular dynamics (Physique – Lyon-I et al.) ;

• HSEP (chemical – SRSMC Nancy) ;

• Circuit simulation (electronic – Ircom) ;

• ACI TLSE (sparse matrix expertise – Toulouse) ;
Martin QUINSON 10 mai 2004 |// Slide 35 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

?

C

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

?

?

?
?

?

?

C

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

C

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection
1S =54 3S =120 S =55

C

1 2 3 4 5

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

1S =54 S =55

1S =54 3S =120 S =55

C

1 2 3 4 5

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

S =55

1S =54 S =55

1S =54 3S =120 S =55

C

1 2 3 4 5

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

C

MA

MA

MAMA

MA

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

S 5
C

MA

MA

MAMA

MA

1 2 3 4 5

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

DIET : Handling of a request

1. Clients connect to the MA

2. Request transmission to servers

3. Performance evaluation : FAST (NWS)

4. Back to MA : distributed scheduling

5. (Broadcast if impossible in local tree)

6. Result sent back to the client

7. Direct client-server connection

C

MA

MA

MAMA

MA

1 2 3 4 5

MA

LA

LA

LA

S S SSS

Martin QUINSON 10 mai 2004 |// Slide 36 / 27 ..|

	Introduction
	Introduction to the Grid
	Which information for which scheduling?
	Overview of this work

	NWS: Network Weather Service
	The Network Weather Service: presentation
	Measurements and Forecasting
	Conclusion about NWS

	FAST: Fast's Agent System Timer
	Fast Agent's System Timer: presentation
	Routines needs modeling
	Quality of the modeling
	Forecasting with background load
	Forecasting of sequence with background load
	Comparison with NetSolve's forecaster
	Latency reduction
	Responsiveness improvement
	Virtual booking: How does it work?
	Benefits of virtual booking
	Contributions of FAST

	ALNeM: Application-Level Network Mapper
	Application-Level Network Mapper
	ALNeM: Notations
	Mathematical tools
	Algorithm for cliques of trees
	Extension for cycles
	Data collection
	Contributions of ALNeM

	Conclusion
	Conclusion
	Selected publications

	Appendix
	GRAS overview
	Sensor in the middle
	RPC and grid computing: GridRPC
	Freddy
	Hypothesis on the routing
	Algorithm for cliques of trees
	ALNeM: example of execution
	DIET: Distributed Interactive Engineering Toolbox
	DIET : Handling of a request

