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Rôle des ganglions de la base dans l'apprentissage associatif conditionnel : une approche
multidisciplinaire
___________________________________________________________________________
RESUME en français

Avec l'expérience, nous acquérons une panoplie de règles, associations arbitraires
entre des stimuli externes et des actes moteurs, qui nous permettent d'adapter notre
comportement à l'environnement (apprentissage associatif conditionnel). Ce type
d'apprentissage met en jeu les boucles reliant les ganglions de la base (GGB) et le cortex
frontal. Ce travail visait à préciser le rôle des GGB dans l’apprentissage de règles visuo-
motrices conditionnelles en utilisant plusieurs approches : 1) l’enregistrement de l’activité des
neurones du striatum chez le singe éveillé, 2) l’étude chez des patients atteints de la maladie
de Parkinson (une pathologie neurodégénérative touchant les GGB) et 3) la neuroimagerie
fonctionnelle chez l'homme sain. Les résultats des trois expériences convergent pour indiquer
que les GGB sont impliqués à la fois dans l'acquisition et la rétention des associations visuo-
motrices.

Role of basal ganglia in conditional associative learning : a multidisciplinary approach

___________________________________________________________________________
RESUME en anglais

The arbitrary mapping of sensory information onto action forms an important element
of the intelligent behavior of primates (also called conditional associative learning). The
cortico-basal ganglia-thalamo-cortical loops are thought to play a key role in such behavior.
The present research was undertaken to investigate the role of the basal ganglia (BG) in
conditional visuo-motor associative learning using three complementary approaches: 1)
single-unit recordings in awake monkeys, 2) behavioral testing in patients suffering from
Parkinson's disease (a neurodegenerative disease affecting the BG), and 3) functional
neuroimaging in healthy subjects. The results of all three studies converge to indicate that the
BG are involved in both the acquisition and the retention phases of visuo-motor associations.
___________________________________________________________________________
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OVERVIEW

In the typical course of daily events, we make a variety of body movements on the

basis of what we sense in our environment. Often, we gaze at an object present in our peri-

personnal space (e.g. a cup of coffee), attend to its features and place, reach toward it, and

grasp it. Such movements were termed by Wise and colleagues (1996) standard sensorimotor

mapping in that the movement is mapped accurately onto the target of action. The brain uses

the location of the object to guide the hand through space, and the shape, size and texture of

the object to form the appropriate grasp (Jeannerod, 1997). This type of visuomotor

transformations relies on direct, cortico-cortical connections linking the occipito-parietal

visual pathway (dorsal visual stream), which processes visuospatial information, to the frontal

motor and premotor regions, which control the selection, planning and execution of voluntary

movements (Figure O1)

 However, mammals in general, and primates in particular, perform far more than

simple standard movements. Through evolution, the brain has developed a tremendous

capacity to link sensory information to motor responses through purely arbitrary rules. In

humans, this non-standard mapping (Wise et al., 1996) is present in numerous everyday

activities. Abilities such as car driving and phone handling depend on it, as do many

language-related skills. We have all learned to stop at a red traffic light and to go at a green

one, or to wait for a specific tone before dialing a phone number and to hang up when hearing

a busy signal. Likewise, reading is based on learned relationships between the visual form of

letters and the movements necessary to pronounce them. Arbitrary sensorimotor associations

are also of highly adaptive value for nonhuman primates living in their natural habitat. For

example, African vervet monkeys learn through experience to select an escape response

according to the specific sound of their conspecifics' alarm calls. Schematically, one sound

instructs to stand up, peer into the surrounding grass and watch for a snake, another, to flee

into trees away from a leopard, and still another, to run into bushes to hide from an eagle

(Cheney & Seyfarth, 1990).  

Understanding how arbitrary sensorimotor associations are learned, and how they are

retrieved and used when the context requires them, has been one of the challenging issues for

cognitive neuroscience. Experimental tasks have therefore been designed in order to assess

this type of associations in laboratory situations. Generally, these experimental tasks use two

or more stimuli taken from the same category (colors, tones, pictures, positions etc.) and an
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equivalent number of motor responses, also from the same class (hand postures, lever

displacements, etc.). Subjects, whether human or nonhuman primates, are required to learn

and then execute arbitrary rules such as 'if green go right, if red go left'. Hence, these tasks are

often referred to as 'conditional' associative tasks. A noteworthy particularity of conditional

tasks is that all stimuli being equally associated with reward (or success), correct responses

cannot be driven by simple stimulus-reward associations (i.e. approach the rewarded item or

class of items, and avoid the non-rewarded one). Instead, subjects must link a stimulus with a

response which in turn leads to reward. In their vast majority, experimental studies have

focused on how visual stimuli are mapped onto motor responses, in part because the brain

organization of vision is better known than that of other sensory modalities. A few

experiments on auditory-motor associations suggest, however, that results obtained for vision

could apply to other modalities as well.

Figure O1. Schematic representation of the cerebral substrates of standard (blue) and
non-standard (red) sensorimotor mapping. The former relies on the dual parieto-premotor
pathway controlling reaching and grasping, whereas the latter involves a more complex
network centered on the loop linking the premotor cortex to the striatum.
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Prefrontal

Premotor
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Temporal

Parietal

Globus Pallidus
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Over the last two decades, investigation of the neural bases of conditional visuomotor

associations has relied on a combination of four main approaches, human neuropsychology in

brain-damaged patients, experimental lesions in monkeys, imaging studies in healthy human

subjects, and electrophysiological recordings in intact, awake monkeys. Valuable insights

have been gained that indicate that non-standard mapping involves a complex brain network

through which the posterior sensory cortices (in particular the dorsal and ventral visual

streams), but also the prefrontal cortex, the hippocampal region, and possibly the cerebellum,

interact with the loop linking the lateral premotor cortex to the basal ganglia, via the thalamus

(Figure O1). Much remains to be done, however, to fully understand the specific contribution

of each of this network components to the complex processes underlying arbitrary

sensorimotor associations. 

Four years ago, at the time the present project was initiated, available data provided

strong evidence that the dorsal portion of the lateral premotor cortex (PMd), a region well-

known for its role in motor preparation, plays an important role in arbitrary visuomotor

associations. Briefly, damage to PMd in humans (Halsband & Freund, 1990) and monkeys

(e.g. Halsband & Passingham, 1985) had been found to profoundly disrupt both the

acquisition of new associations and the execution of well-learned ones. In addition, single-cell

recordings had not only revealed neural properties in PMd cells likely to reflect the selection

of action in response to sensory cues in over-trained monkeys (Boussaoud & Wise, 1993a,b),

but had also demonstrated the existence, within PMd, of a learning-related plasticity in

animals engaged in the acquisition of novel associations (Mitz et al., 1991). By contrast,

knowledge regarding the role of the basal ganglia, and in particular, of its main input

structure, the striatum, which is intimately linked with PMd, was scarce. A few

neuropsychological studies of patients suffering from Parkinson's disease, one of the main

pathologies affecting the basal ganglia, had provided contradictory findings as to whether or

not these patients remained able to learn conditional associative tasks (e.g. Gotham et al.,

1988; Pillon et al., 1998), and, among them, only one had specifically addressed the issue of

sensorimotor (as opposed to sensory-sensory) arbitrary associations (Canavan et al., 1989a).

Lesion studies in monkeys had provided only indirect evidence of a basal ganglia involvement

by demonstrating an impairment following damage to the thalamic relays that convey

information from the basal ganglia to the frontal cortex (Canavan et al., 1989b). Likewise,

few electrophysiological data were available. Some, recorded in well-trained animals,

strongly suggested that the striatum does possess the neural properties necessary to store
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arbitrary sensorimotor associations, but little was known on how these properties emerge

during learning (Boussaoud & Kermadi, 1997). 

In this context, the present research was undertaken in order to specifically test the

hypothesis of a pivotal role of the basal ganglia in the learning of new conditional visuomotor

associations. In order to obtain converging evidence, the original plan was to combine the

four approaches hitherto used in the field by combining: 1) electrophysiological recordings in

the monkey striatum during learning of a visuomotor conditional task, 2) reversible

inactivation of different striatal subregions in the same animals, 3) a neuropsychological

evaluation of the ability of patients with Parkinson’s disease to learn such a task, and 4) a

brain imaging study of the neuronal correlates of this type of learning in the normal human

subject. The single-cell recordings were intended to demonstrate the existence of a learning-

related plasticity within the striatum, and compare it to that described in PMd. The monkey

and human lesion studies were aimed at providing further evidence that the basal ganglia are

indeed necessary for normal learning.  Finally, the imaging technique was seen as a unique

tool to investigate different stages of learning, and evaluate how these two parameters affect

activation in the basal ganglia and their anatomical connections, in particular in the frontal

lobe. In all experiments, the subjects (monkeys, Parkinson’s patients and healthy human

subjects) had to learn the same type of arbitrary associations, or rules, between visual cues

and either hand or finger movements. 

Because the reversible inactivation study has not yet been completed, the present

report will focus on three experiments. In the first experiment, we recorded single unit activity

in the striatum while monkeys either executed familiar associations (acquired prior to the

recordings), or learned novel ones. The results identified strong learning-related changes of

neuronal activity in the striatum, which were either transient (i.e. selectively occurring during

early learning stages), or relatively long lasting (i.e. persisting through both early and late

stages of learning). These results demonstrate for the first time that the learning-related

changes that have been described earlier in PMd are also present in the striatum.

In the second experiment, advanced Parkinson's patients were tested on a series of

tasks to determine the possible source of their difficulties in learning conditional associations.

Their performance was assessed both with (ON) and without (OFF) dopaminergic treatment,

and was compared to the performance of normal controls. We found that a subgroup of PD

patients had marked difficulties to learn conditional associations in the OFF condition. This

deficit was associated to poor use of a compensatory strategy (termed 'motor strategy'). 
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In the third experiment, we investigated the brain network underlying conditional

associative learning using functional MRI. Learning-related activation was studied by

contrasting the pattern of activation observed during the early phase of learning new

associations (EARLY) to that observed either during the final stage of learning (LATE) or

during execution of well-mastered associations (FAMILIAR). Both contrasts revealed brain

activation in a network including the premotor regions, medially (anterior cingulate cortex

and the presupplementary motor area) and laterally (PMd), as well as the dorsolateral

(Brodmann's areas 9/46 - 10) and ventrolateral (Brodmann's areas 47/44) prefrontal cortex,

the parietal cortex (intraparietal sulcus, precuneus), the right inferior temporal gyrus, and the

cerebellum. Interestingly, subcortical regions, and more precisely, the striatum and

mediodorsal thalamic nucleus, were found to be equally active during EARLY and

FAMILIAR stages, but less importantly recruited during the LATE stage. 

Taken together, the findings of these experiments not only confirm a role of the basal

ganglia in the learning and use of arbitrary rules, but also improve our understanding of the

dynamics of activity changes in the striatum and the precise source of the deficits related to

dopamine depletion in Parkinson’s patients. In the following chapters, an Introduction on the

anatomy and function of the basal ganglia will be presented, before describing data from each

of the three experiments. The overall contribution of this research to current understanding of

the basal ganglia involvement in nonstandard mapping will then be discussed in a final

General Discussion section.
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SECTION 1 - BASAL GANGLIA ANATOMY

The basal ganglia (BG) are the largest subcortical nuclei in the human brain. They

form a functional system consisting of several structures. The naming of the BG has led to

some confusion over the years as to which structures should be included within this

description. Now, it is generally admitted, albeit not unanimously, that the BG include the

caudate nucleus and the putamen (which are collectively referred to as the striatum), the

globus pallidus, the substantia nigra and the subthalamic nucleus. These nuclei are heavily

interconnected. Specifically, they are organized in functional loops, the cortico-basal ganglia-

thalamo-cortical loops. Dysfunction of the BG, and of the functional loops they are involved

in, leads to major motor disorders such as Parkinson's disease (characterized by hypokinesia)

and Huntington's disease (characterized by hyperkinesia). There is, however, growing

evidence that the BG are not important solely for the preparation, initiation and execution of

complex automatic and voluntary movements, but contribute as well to non-motor, cognitive

and motivational functions. 

I. THE BASAL GANGLIA CONCEPT : HISTORICAL EVOLUTION 

The first clear identification of the ‘basal ganglia’ was published by the English anatomist

Thomas Willis in 1664, in his basic foundational text on the anatomy of the central nervous

system, Cerebri Anatomie, written in Latin (Figure A1, cf. Parent, 1986). The term ‘basal

ganglia’ was not yet introduced. These subcortical structures were then denominated as the

‘corpus striatum’, and included the caudate nucleus, the putamen and the globus pallidus.

Two characteristics drew attention to them. First, their central position in the brain suggested

that they should play an important role. Second, massive ascending fibers projecting to them

and descending fibers emerging from them raised the possibility that the BG might both

receive all sensory modalities and initiate all motor acts.

By the 18th century, subsequent research shed light on the cerebral cortex, living the

corpus striatum in the dark. Indeed, the attractiveness of the histological organization of the

cortex, and the possibility of localizing higher mental functions drew many neurologists of

both the 18th and 19th centuries to cortical research.

In 1876, the British neurologist David Ferrier introduced the English term basal

ganglia, as an adaptation of the German term ‘Stommganglion’ previously proposed by Forel
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in 1872. During the 20th century, for the majority of the neuroanatomists, the term basal

ganglia (also called basal nuclei) referred to the corpus striatum of Willis.

At the beginning of the 20th century, these structures began to gain importance once

again with the discovery that their lesions often result in disorders of motor functions in

humans (Wilson, 1914, see page 16). There were serious attempts to provide detailed

comparative descriptions of the corpus striatum (Wilson, 1914; Cajal, 1911; Vogt & Vogt,

1920). Vogt & Vogt (1920) published descriptions of the connections between the thalamus

and corpus striatum. This accumulation of data was accompanied by controversies regarding

the list of structures composing the BG, apart from the corpus striatum of Willis. This lack of

consensus explains the famous sentence of Thomas Thach: ‘the basal ganglia are no longer

mysterious now they are just confusing'. Parts of the thalamus, the amygdala, and the

claustrum, have all in turn been viewed as part of the BG, before the currently predominant

view including the substantia nigra and the subthalamic nucleus emerged. 

Over the 2nd half of the 20th century, the corpus striatum came progressively to be

viewed as the major component of the "extrapyramidal motor system" (Parent, 1986), a

system responsible for coordinating and integrating various aspects of motor behavior or body

movements. Its “motor” role has been extensively studied. More recently, it has been

implicated in various cognitive functions.
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II. THE BASAL GANGLIA COMPONENTS (FIGURE A2)

From a functional and clinical point of view, the BG include the striatum (caudate and

putamen) and the globus pallidus, together with two brain stem nuclei, the substantia nigra

and the subthalamic nucleus (Carpenter, 1981), which are derivatives of the diencephalon and

mesencephalon, respectively. Despite their phylogenitically and ontogenetically distinct

origins, these brain stem nuclei are parts of the functional system that arise from the cortex,

pass through the striatum, the pallidum and substantia nigra, the thalamus, and project back to

the frontal cortex. The striatum constitutes the input stage of the BG. It receives information

from virtually all cortical areas as well as from several subcortical areas, including most of the

neuromodulatory systems. In this section, a description of the BG will be provided with

special emphasis on the striatum. 

1. The striatum

The term ‘striatum’ was first introduced by Vogt & Vogt in 1920 to refer to the

telencephalic ensemble formed by the caudate nucleus and the putamen. It consists of the

largest component of the BG and is considered to represent the first stage of neural

computation in the BG. 

The caudate nucleus is a large C-shaped structure located medial to the internal

capsule. The term derived from a Latin word that means ‘having a tail’. It has an enlarged

rostral component (head) that bulges into the lateral wall of the frontal horn of the lateral

ventricle. The body in turn becomes further attenuated to form the tail which terminates at the

amygdaloid nuclei. The body follows the lateral wall of the lateral ventricle. The tail occupies

a position in the roof of the inferior (temporal) horn of the lateral ventricle. In essence, the

caudate nucleus follows the curvature of the lateral ventricle. 

The putamen is a shell-shaped structure situated medial to the cortex of the insula and

surrounded laterally by the external capsule, medially by the lateral medullary lamina of the

globus pallidus, and dorsally by the white matter of the corona radiata.

In primates, the putamen and caudate nucleus are incompletely separated by the

internal capsule. The two nuclei form a homogenous component, sharing anatomical and

cytological similarities (DeLong & Georgopoulos, 1981). They are continuous at the base of

the hemisphere around the anterior limb of the internal capsule and are linked by scattered

cells that bridge across the anterior limb of the internal capsule. The head of the caudate
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nucleus and the putamen are connected by thin bridges of grey matter (pontes grisei

caudatolenticularis). The name striatum or striate body is derived from the striated (striped)

appearance of the internal capsule as it passes through these nuclei. In rodents, the two

structures are not separated by the internal capsule, and are therefore often referred to as the

caudate-putamen.

a. Anatomical subdivisions

The striatum is functionally divided into the dorsal and the ventral striatum. The dorsal

striatum includes most of the caudate nucleus and the putamen while the ventral striatum

comprises the medial and ventral parts of the caudate/putamen, the adjacent nucleus

accumbens, and the striatal part of the olfactory tubercle. Allo- and periallocortical areas

project principally to the ventral striatum, and neocortical areas project mainly to the dorsal

striatum (e.g Lynd-Balta & Haber, 1994). It is on the basis of this regional organization that

the dichotomy into limbic- vs. nonlimbic-related striatal regions has been introduced (Heimer

& Wilson, 1975). Across this thesis, most of the work presented or cited will be related to the

dorsal striatum. 

b. Cytology

Unlike cortical cells, striatal cells are densely packed and do not exhibit any dominant

configurations or laminations (Jones, 1984). However, as all other major central nervous

system nuclei, the striatum is composed of both projection neurons and local interneurons

corresponding to Golgi type I and type II cells, respectively, as first identified and

denominated by DiFiglia et al. (1976). Still, contrary to most brain structures, the projection

neurons greatly outnumber interneurons in the striatum. The ratio of projection neurons versus

interneurons is approximately 9:1 in rodents, whereas it is 3:1 in primates (Graveland &

Difiglia, 1985).
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 Projection neurons: the medium spiny neurons 

The striatum is primarily composed of projection neurons, originally described by

Ramon y Cajal in 1911 (Graybiel et al, 1979, Kemp & Powell, 1971). They have a medium

sized cell body (12-20 µm in diameter), which gives rise to 3-5 smooth primary dendritic

branches, densely covered in spines (Kemp and Powell 1971; DiFiglia et al. 1976). Due to

these morphological characteristics, the projection neurons have thus been termed "medium

spiny" neurons. Furthermore, the axons of these neurons emit several collaterals, which

arborize profusely and contact other spiny neurons (Kawaguchi et al., 1990). An example of

these neurons is shown in Figure A3. Striatal projection neurons utilize GABA as their

primary neurotransmitter (Smith et al. 1987). They also express a number of neuroactive

peptides, such as substance P, enkephalin, dynorphin and neurotensin (Bolam et al., 1983).

Not all of these peptides are found in every spiny neuron. The expression of these peptides

seems to be related to the target nuclei of the spiny cell. 

Neostriatal spiny neurons exhibit spontaneous fluctuations in membrane voltage which

consist of transitions between two preferred potentials (Wilson & Groves, 1981), a relatively

depolarized level referred to as the Up state (-55 mV) and a more polarized condition termed

the Down state (-77 mV; see Wilson, 1993 for review). Action potentials are only generated

from the Up state. The spiny cells are thus electrically quiescent in the absence of any

extrinsic influence and require massive, relatively synchronous excitatory inputs to produce

state transitions and spike triggering. As a consequence, they exhibit low firing rates (< 0.01 -

0.5 Hz), and short duration extracellular action potential waveforms (Alexander & DeLong,

1985). The main striatal inputs, the cortical inputs, are glutamatergic, and the projection

neurons have both non-NMDA and NMDA receptors (Kita, 1996). The striatum also receives

dopaminergic inputs, and the projection neurons thus express dopaminergic receptors. There

are two subtypes of DA receptors in the striatum. D1 receptors have an excitatory effect, and

D2 receptors have an inhibitory effect (DiChiara, 1994). 
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 Interneurons

Two broad categories of interneurons have been identified based on their cell

diameters: the giant aspiny interneurons and the medium aspiny interneurons (see Kawaguchi

et al., 1995). The giant aspiny neurons contain choline acetyltransferase (Bolam et al. 1984;

Phelps et al. 1985; Graybiel et al. 1986; DiFiglia, 1987). The medium aspiny neurons include

the paravalbumin-containing GABAergic aspiny cells (Gerfen et al. 1985; Kita et al. 1990).

Other subcategories have also been described such as the somatostatin/NOS (nitric

oxide synthase) containing GABAergic apsiny cells (for a review, see Kawaguchi et

al., 1995). For the purpose of this review, there will be only a brief description of the two

principal subcategories of interneurons, namely the cholinergic-, and the parvalbumin-

containing neurons.

The giant aspiny cholinergic interneurons are the best known interneurons. Ramon y

Cajal first considered them to be projection neurons. These cells possess large spherical, oval

or elongated cell bodies (approximately 20-35 µm in diameter in rat and primate) from which

2-5 smooth or sparsely spiny dendrites radiate (Bolam et al. 1984; Phelps et al. 1985; DiFiglia

1987). They are identifiable by their content in choline acetyltransferase, the most faithful

marker of cholinergic neurons (DiFiglia, 1987; Phelps et al, 1985). These neurons are

supposed to correspond to the physiologically defined tonically active neurons (TANs), so

called because they fire tonically yet irregularly at 2-10 Hz (Kimura et al., 1984; Bolam et al.,

1984, for a review, see Apicella, 2002). Their resting potential is relatively close to the spike

threshold. Pharmacological blockade of spontaneous excitatory, inhibitory and

neuromodulatory synaptic inputs to cholinergic interneurons did not influence spontaneous

firing in vitro, demonstrating that these cells are tonically active in the absence of any input

(Bennett and Wilson, 1999).

The paravalbumin-containing GABAergic aspiny cells (fast-spiking cells) exhibit

spherical cell bodies (14-15 µm) and have axons with very dense collateral arborizations (Kita

et al., 1990). They display immunoreactivity to GABA and/or its synthesizing enzyme

glutamic acid decarboxylase (GAD) and also to paravalbumin, a calcium-fixating protein.

This class of interneurons, embedded with gap-junctions, fire phasically at high frequency in

response to cortical stimulation (Kita et al., 1990). 

To summarize, the striatum contains two broad categories of neurons: the projection

neurons and the interneurons. The principal and more numerous cells are the spiny
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projection neurons. Like pyramidal cells in the cortex, they receive most of the inputs to the

striatum and send almost all the efferent fibers. Hence, they provide synaptic input to other

BG nuclei and, through local axon collaterals, contact interneurons and other spiny cells. The

interneurons, despite their relatively small number compared to the projection neurons, have

been shown to exert a powerful control on the activity of projection neurons in the striatum.

Nonetheless, like projection neurons, interneurons receive direct inputs from cortical and

other afferents to the striatum. Although there are numerous morphologically distinct classes

of striatal cells, typically only two types of neurons are reported in unit recording studies. The

first class refers to the projection neurons, which exhibit phasic increases in firing in

response to cortical stimulation (Phasically Active Neurons, PANs). The second class

corresponds  to the cholinergic interneurons (Tonically Active Neurons,  TANs).

c. Functional domains : matrix/striosome compartments

Neurochemical evidence has allowed to subdivide the striatum into two broad

compartments, the striosomes (also called patches) and the matrix (Gaybiel & Ragsdale,

1978; Graybiel, 1995). These compartments were defined by the intensity of histochemical

staining for acetylcholinesterase in cats and primates (Gaybiel & Ragsdale, 1978), and by

heterogeneous distribution of µ opiate receptors in rodents (Herkenham & Pert, 1981). This

compartmentalization is present both in the dorsal and ventral striatum, with the exception of

the shell region of the nucleus accumbens (Voorn et al., 1989). 

The striosomes, which occupy only about 15% of the striatum (Johnson et al., 1990),

are rich in µ opiate receptors, neurotensin and AMPA receptors. They constitute a set of

discrete modules with clearly defined boundaries. They are surrounded by a large matrix,

which is rich in AChE, somatostatin and calbindin. Striosome-like domains have been

identified in the matrix (Graybiel et al., 1994; 1995), and have been termed ‘matrisomes’.

Individual cortical cells projecting to the matrix often form several small discrete

arborizations of approximately the same size as those in the striosomes (Kincaid et al., 1998).

This particular architecture provides the striatum with a discrete modular organization in a

way that is analogous to the columnar structure of the cortex. Spiny neurons strictly obey the

striatal compartment boundaries, with cells in the striosomes keeping their dendritic fields

restricted to the striosomes and cells in the matrix having their dendritic fields contained

within the matrix. The TANs are largely confined to the borders of the striosomes and the

matrix. Given this preferential localization, these interneurons are believed to mediate
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interactions between striatal projections of both compartments (Aosaki et al., 1995;

Kawaguchi et al., 1995). These interneurons have been suggested to be recipients of direct

cortical, thalamic as well as dopaminergic inputs (Wilson et al. 1990) and have been

implicated in striatal plasticity. 

In summary, the striatum is a heterogeneous structure, exhibiting different levels of

anatomical and neurochemical organization. 

2. The Globus pallidus (GP)

The globus pallidus is a wedge-shaped structure located between the putamen and the

posterior limb of the internal capsule. It is situated medial to the putamen and is separated

from it by a thin lamina of myelinated fibers, the lateral medullary lamina. A similar lamina,

the medial medullary lamina, divides the GP into a lateral (or external) segment and a medial

(or internal) segment. Thus, the GP is crossed by numerous myelinated fibers which explain

its characteristic appearance in stained sections and from which derives its name ‘pale body’.

The term ‘lenticular or lentiform’ nucleus is sometimes applied to the putamen and globus

pallidus together because of their combined lens-shaped aspect in brain sections. 

The globus pallidus is divided into three functional domains: the internal (GPi), the

external (GPe) globus pallidus and the ventral pallidum (VP, the more anterior part of the GP,

located under the anterior commissure). Although these domains are traversed by fibers, their

neuronal populations are extremely similar, and for the most part morphologically

indistinguishable (Carpenter, 1981). In humans, the GPe constitutes 70% of the total volume

of the globus pallidus (Thorner et al., 1975). In non primates, the GPe and GPi usually have a

larger separation and are referred to as the pallidum and entopeduncular nucleus, respectively. 

There is a variety of neuronal types in the globus pallidus, but all are GABAergic

neurons. The majority of them has a large ovoid body (20-60 µm in their long axis), with four

to five long, thick and relatively smooth dendrites (Francois et al., 1984). The large dendrites

can extend up to 1mm in length as illustrated in Figure A3. In rodents, it has been shown that

the dendrites form a discoidal dendritic field and are disposed perpendicularly to striatal

afferent axons (i.e. parallel to the lateral medullary lamina separating the globus pallidus from
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the putamen). This positions the dendritic fields so as to intercept maximal numbers of striatal

afferents (Park et al. 1982). GP cells are 100 times less numerous than spiny striatal neurons,

which suggests a numerical convergence of striatal projections neurons on pallidal cells.

3. The substantia nigra (locus niger)

The substantia nigra is the largest single mesencephalic nucleus. It lies in the ventral

tegmentum of the mesencephalon, forming an elongated nucleus that runs throughout the

midbrain (Figure A2). It is divided into two components that have different connections and

distinct neurotransmitters, a more ventral part with low cell density, the substantia nigra pars

reticulata (SNr), and a dorsal part with high cell density, the substantia nigra pars compacta

(SNc),. The latter is composed of large neurons exhibiting a characteristic black pigmentation;

hence the origin of the structure's name ("black substance or locus niger"). Neurons of the

SNc use dopamine as a neurotransmitter and project primarily to the striatum. Neurons in the

SNr project principally to the thalamus (ventral anterior, ventral lateral and mediodorsal

nuclei) but also to brainstem nuclei (superior colliculus, pedonculopontine nucleus) and use

GABA as neurotransmitter. These neurons fire regularly and continuously at a very high rate

(up to 100 Hz at rest; Chevalier & Deniau, 1990).

4. The Subthalamic nucleus (Luys Body)

The subthalamic nucleus is a biconvex structure located on the medial side of the

internal capsule (Figure A2). It was discovered in 1865 by the French doctor Jules Bernard

Luys, and was later named Luys body by August Forel, in recognition of its discoverer. Luys

not only discovered the subthalamic nucleus, but he was also the first to think of this structure

as being intimately linked to the BG. Among the BG neurons, the subthalamic neurons

represent the only excitatory ones, using glutamate as their neurotransmitter. 

In summary, the BG are the largest subcortical nuclei in the human brain. They form

a functional system consisting of several structures: the striatum, composed of the caudate

nucleus and the putamen, the globus pallidus (internal, external, and ventral segments), the

substantia nigra (pars compacta and pars reticulata) and the subthalamic nucleus. From the

morphological characteristics of the different components of the BG, two important features

should be outlined. First, as illustrated for the PANs striatal neurons and GP neurons (Figure
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A3), the BG neurons exhibit large dendritic fields and important axonal collaterals. Second,

there is a dramatic decrease of cerebral tissue volume from the cerebral cortex to the striatum

as well as within the BG structures. Yelnik and co-workers (2002) have made a computer-

aided, three dimensional cartography of the BG (cf Figure A4). They found that the volume of

the striatum is 12 times larger than that of the GPe, 20 times larger than that of the GPi and

SNr, and 60 times larger than that of the STN. It has been proposed an estimated convergence

of about 30:1 (rat) to 80:1 (monkey) for striatal projections onto their target neurons.

Anatomically, the striatopallidal system is thus characterized by a considerable volumic,

numeric, as well as geometric convergence. These features obviously denote an important and

complicated pattern of connectivity between these different nuclei.
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III.  INPUTS TO THE BASAL GANGLIA AND 'THE BASAL GANGLIA LOOPS'

The BG are classically viewed as part of neural circuits that arise from the cortex, pass

through the striatum, the pallidum and substantia nigra, the thalamus, and project back to the

cortex, especially the frontal cortex (Figure A5). The striatum constitutes the input stage of

the BG. The GPi and SNr constitute the principal output stages of the BG. The striatum

receives projections from almost all cortical areas, as well as from subcortical areas, including

most neuromodulatory systems. Among these afferent inputs, the projections arising from the

cortex are by far the most prominent, and originate mainly from the ipsilateral cortex.

Depending on the striatal target, they arise from neurons located in either supragranular and

infragranular cortical layers (Gerfen, 1990). These cortical projections are of particular

interest as they seem to impose upon the striatum a pattern of functional organization that is

maintained throughout the BG, i.e. what is known as the BG loops or the cortico-basal

ganglia-thalamo-frontocortical circuits. In addition to their close relationship with the frontal

cortex, the BG nuclei send outputs to brainstem nuclei involved in motor control, including

the superior colliculus, which controls axial orientation and saccadic eye movements.

1. The cortico-striatal projections : a funneling or a parallel processing?

The existence of a corticostriatal projection had been a somewhat contentious issue

until convincingly shown by Glees (1944). Subsequently, several models have been proposed,

suggesting either convergence or segregation of the information processing throughout the

BG. I will review some of these models below.

a. Kemp & Powell's proposal

Early investigations with the Glees (Glees, 1944) and Nauta lesion-based techniques

(e.g. Nauta & Mehler, 1966) have shown the presence of cortico-striatal fibers arising from

the entire extent of the neocortex. Although Cajal (Cajal, 1911) considered corticostriatal

fibers to be collaterals of corticofugal projections destined for lower centers, studies using

horseradish peroxidase (HRP) have clearly demonstrated that these fibers, both ipsilateral and

controlateral, arise from cell populations distinct from those that form the corticospinal,

corticobulbar, corticopontine, corticorubral and corticothalamic systems (Jones et al.,

1977a,b). In order to characterize the organization of the cortico-striatal projections, Powell

and his co-workers made lesions in virtually every areas of the cortex of 47 rabbits (Carman

et al 1963) as well as in monkeys (Kemp & Powell, 1970; 1971), and plotted the ensuing
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degeneration on reconstruction of the striatum. The cortico-striatal fibers have been found to

constitute a massive, topographically organized projection to the striatum with a relative

degree of overlap. A mediolateral and anteroposterior topography was described, with the

cortex of the frontal lobe being related to the anterior part of the head of the caudate nucleus

and putamen, and the visual cortex at the occipital pole to the posterior part of the striatum. In

the frontal lobe, the medial surface projects dorsally in the striatum, the lateral surface

laterally and the orbital cortex medially. Thus, according to the view proposed by Kemp and

Powell, the cortico-striatal projections followed the 'rule of proximity, each striatal region

receiving projections from the nearest overlying cortical area' (Parent & Hazrati, 1995a). 

From these data, Kemp & Powell proposed that the BG serve to integrate diverse

inputs from the entire cerebral cortex and to 'funnel' these influences to the BG output and to

the primary motor cortex (Allen & Tsukahara, 1974; Evarts & Thach, 1969; Kemp & Powell,

1971; Nauta & Mehler, 1966). According to this view, there is “funnelling” from wide-spread

cortical territories to narrower target areas in the thalamus. Thus, the BG could provide a

route by which 'not only the sensory pathways but also the areas of the association cortex of

the frontal and parietotemporal lobes' could influence the motor cortex, allowing

convergence of the information relevant to the initiation and control of movement (Kemp &

Powell, 1971). On the basis of these anatomical findings and the motor deficits observed after

BG lesions, these structures were thought to project exclusively to motor cortical areas and to

participate essentially to motor functions.

 b. Alexander, Delong and Strick's proposal

The funneling model has been challenged by more recent data. First, it has been

suggested that cortical projections to the striatum are topographically organized, in such a

manner that non-adjacent, but functionally related regions, such as areas in the prefrontal and

parietal cortices, project to close or even overlapping striatal sectors (Selemon & Goldman-

Rakic, 1985; Flaherty & Graybiel, 1991). Second, the BG were found to send information not

only to motor areas, but to various frontal regions as well.

In the early 1980's, DeLong and his coworkers suggested that the topographic

mapping of cortical inputs provided functionally differentiated striatal subregions which in

turn give rise to topographic, restricted projections to the GPi/SNr and thalamic nuclei,

preserving the organization until the frontal cortex. This organization introduced the notion of

parallelism (Delong & Georgopoulos, 1981; Delong et al, 1983; Kemp & Powell, 1970;

1971). In this view, it was proposed that there are two distinct loops through the BG, a motor
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loop which links the sensorimotor and premotor cortex through the putamen, and an

'association or complex' loop passing through the caudate nucleus, which receives inputs from

the association areas and return to the prefrontal cortex (Delong & Georgopoulos, 1981;

Delong et al, 1983). In this model, the loops are relatively segregated and subserve distinct

functional roles. The recognition that information originating from different parts of the

cortex may remain segregated in parallel pathways that pass through the striatum to the

pallidum or substantia nigra challenged the traditional view according to which the striatum

serves as a kind of funnel trough which information from the cortex converges onto a limited

number of output targets.

In 1986, the same group extended this new idea of segregated loops (Alexander et al.,

1986, see Figure A6) by suggesting the existence of at least five loops, defined by their

cortical origin: a motor loop originating in the supplementary motor area, an oculomotor loop

originating in the frontal eye field, a dorsolateral prefrontal cortex (DLPF, area 46) originating

loop, a lateral orbitofrontal cortex (LOF, area 12) originating loop, and a loop originating in

the anterior cingulate and medial orbitofrontal cortices (AC/mOFC, areas 24 and 13)

(Alexander et al., 1986). An additional feature of this scheme is that the loops are not only

parallel but essentially closed, originating and terminating in the same frontal cortical region.

The motor loop has received much attention because of its supposed involvement in

movement-related disorders such as those observed in Parkinson’s disease.

Considerable anatomical and neurophysiological evidence supports the concept of a

parallel BG organization. Hoover and Strick (1993) provided the most convincing evidence in

experiments using attenuated herpes virus as a transneuronally transmitted tracer of

connectivity. This view posits that the BG are in a position that enables them to influence

frontal regions involved not only in motor functions, but also in higher executive functions

such as planning, working memory, learning, and attention.
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c. Parent's poposal (Figure A7)

In a similar simplified manner, Parent suggested the subdivision of the striatum into

three functional domains: a sensorimotor, an associative and a limbic domain (Parent, 1990;

Joel & Weiner; 1994), based on the topographical organization of the corticostriatal

projections. In primates, the motor striatum comprises the dorsolateral postcommissural

putamen and the dorsolateral region of the caudate nucleus. It is innervated by the primary

motor cortex, premotor cortex, supplementary motor and lateral premotor area (Alexander &

Crutcher, 1990; Alexander et al., 1990; Parent, 1990; Yeterian & Pandya, 1991; Selemon &

Goldman-Rakic, 1985). This domain resembles the motor loop as defined by Alexander et al.

(1986). The associative striatum comprises large parts of the putamen, rostral to the anterior

commissure, and most of the head, body and tail of the caudate nucleus. It receives inputs

from associative areas of the cortex, including areas 8, 9, 10 and 46 of the prefrontal cortex in

the primate (Parent, 1990; Yeteran & Pandya, 1991). This domain resembles the striatal target

of the oculomotor, the DLPF as well as the LOF loops, as proposed by Alexander and

colleagues (1986). The limbic striatum comprises the nucleus accumbens and the most ventral

parts of the caudate and putamen. It receives extensive inputs from limbic structures, such as

the hippocampus and amygdala, as well as from prefrontal areas subserving limbic and

autonomic functions, i.e the orbitofrontal cortex and anterior cingulate areas. This last domain

resembles the striatal target of the AC/OFC loop as defined by Alexander and colleagues

(1986). 

2. The Nigrostriatal projections

The mesencephalic dopaminergic (DA) system is the largest dopaminergic system in

the brain. The organization of DA neurons in rats and primates is generally similar. First

described in rats using a fluorescence histochemical method (Dahlström & Fuxe, 1964) and

subsequently in non-human (Felten et al., 1974) and human primates (Nobin & Björklund,

1973), this mesencephalic DA system is formed by three cell groups: the retrorubral area

(RRA, group A8), the substantia nigra (almost exclusively the SNc and to some extent the

SNr, group A9) and the ventral tegmental area (VTA, group A10). 

The anatomical division of the DA cells is considered to reflect differences in their

efferent projections as well as morphological and chemical characteristics. The loosely spaced

neurons in the dorsal tiers, i.e the dorsal part of the SNc, the VTA and the RRA, display a

strong immunoreactivity for clabindin d-28K and relatively low level of tyrosine hydroxylase
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(Gerfen et al., 1985; Haber et al., 1995). The ventral tiers (ventral part of the SNc) includes

two parts, a densocellular part, which lies dorsal to the SNr, and columns of dopaminergic

neurons that penetrate deeply into the SNr (Joel & Weiner, 2000; Smith & Kieval, 2000).

Unlike the dorsal tiers, the ventral tiers does not display immunoreactivity for clabindin d-

28K (Gerfen et al., 1985; Haber et al., 1995; Agid et al., 1987; Graybiel et al., 1990; Prensa et

al., 1999; 2000; Joel & Weiner, 2000). In rats, the DA neurons from the ventral tiers innervate

preferentially the striosomes whereas DA neurons from the dorsal tiers innervate

preferentially the matrix (Gerfen et al., 1987). This preferential distribution of the DA

projections to specific compartments in the striatum is less clear in the monkey (Graybiel et

al., 1987).

Recent reviews have summarized the DA inputs to the striatum according to its

functional subdivisions, i.e. the associative, the motor and the limbic subdivisions (Haber &

Fudge, 1997; Smith & Kieval, 2000). It seems that the sensorimotor striatum receives its main

DA inputs from the cell columns in the ventral part of the SNc in primates. The limbic

striatum receives different DA inputs arising from the VTA as well as from the dorsal part of

the SNc. Finally, the associative sector of the striatum is innervated by a wide range of DA

neurons located in the densocellular part of the ventral SNc. Five types of DA receptors have

been described, the D1, D2, D3, D4 and D5. It seems that DA stimulation leads to an

activation of the D1 and D5 receptors (previously grouped as D1-like receptors) and an

inhibition of D2/D3/D4 receptors (previously grouped as D2-like receptors). Throughout the

three sectors of the striatum, spiny neurons contain D1 and D2 receptors. A certain degree of

co-localization of these two subtypes of receptors has been reported in the spiny neurons

(Aizman et al., 2000). D3 receptors are also found in the limbic striatum. This receptor seems

also to co-localize with D1 and D2 receptors. Some interneurons also expressed dopaminergic

receptors. For instance, cholinergic interneurons have been found to express D2 and D5

receptors (Lemoine & Bloch, 1990).

Some studies have suggested that SNc and VTA dopamine neurons also innervate,

although less massively, the globus pallidus particularly the internal segments, the ventral

pallidum and the STN (Lindvall & Kjorkund, 1979; Cossette et al., 1999). Another non

negligible source of DA inputs to the BG is the dentritic release of DA in the SNr, where

dopaminergic receptors have also been identified (Mrzljak et al., 1996). 

Thus, the interactions between the mesencephalic DA nuclei and the BG seem to be

more important and more diffuse than previously believed.
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3. The Thalamostriatal projections

In addition to the cerebral cortex, the thalamus constitutes another important source of

excitatory inputs to the striatum (Parent, 1986; Wilson et al. 1983). The thalamostriatal

projections were first demonstrated in humans by Vogt and Vogt in 1941 (Vogt & Vogt,

1941, Parent, 1986). These projections seem to be almost exclusively ipsilateral and they

innervate the whole striatum including the nucleus accumbens (Parent, 1986). 

The thalamus is composed of several nuclei, including : 1) the intralaminar nuclei, i.e.

the centromedian and parafascicular nuclei (CM-PF), 2) the relay nuclei, namely the lateral

nuclei subdivided into the ventrolateral (VL), anterolateral (VA) and lateroposterior (LP)

nuclei, the mediodorsal (MD) nucleus and the pulvinar, and 3) the midline nuclei.

The most prominent projections to the striatum arise from the intralaminar nuclei

(Powell & Cowan, 1954; 1956). Other thalamostriatal projections originate in the midline

thalamic nuclei (paraventricular, paratenial, rhomboid and reuniens nuclei), the MD and to a

lesser degree in the lateral and posterior thalamic groups (Nauta & Mehler, 1966; Mengual et

al., 2000). These thalamostriatal projections are topographically organized. The midline

thalamic nuclei, the MD and the PF project preferentially to the associative and limbic

territories of the striatum, whereas the rostral intralaminar nuclei, the CM, the ventral nuclei

and LP groups project preferentially to the sensorimotor territory of the striatum (Giménez et

al., 1995; Nakano et al., 1990). 

4. Amygdalostriatal projections

The amygdala is a heterogeneous structure including several nuclei, the basolateral

nuclear group (BL), the corticomedial region, and the central nucleus, which are thought to

play specific roles in emotional processing (see Rolls, 2000). Because the amygdala has been

considered as a component of the limbic system, it has been suggested that its projections to

the striatum were mainly directed toward the limbic part of the striatum. 

These amydgalo-striatal projections are topographically organized (see for example,

Kitai & Kitai, 1990). Electrophysiological studies suggested that these projections are

excitatory (Noda et al., 1968). A recent study in non human primates reported that the

amygdala projections are preferentially directed toward the shell of the nucleus accumbens

(Fudge et al., 2002). The BL seems to be the source of all amygdaloid inputs to the limbic

striatum outside the shell. These projections terminate mainly in the striosomes compartments

(Ragsdale & Graybiel, 1988). In the shell, projections to the striatum arise from the medial
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part of the central amygdaloid complex as well as from the BL. Furthermore, few fibers have

been found to arise from the BL and to project to the associative striatum. However,

projections from the amygdala to other sectors than the limbic one is still a matter of

controversy (Krettek & Price, 1978; Russchen & Price, 1985). A potential confound across

studies is the variable definition of the ventral striatum due to its lack of cytoarchitectural

boundaries.

5. Other sources of striatal inputs

The neuromediator serotonin (5-HT) is present in relatively high concentrations in the

striatum, where it is believed to act as an inhibitory transmitter (Miller et al., 1975; Olpe &

Koella, 1977). It arises from the dorsal nucleus of the raphe, also known as the supratrochlear

nucleus (Szabo, 1970). Serotoninergic fibers are thought to innervate the striatum as well as

the substantia nigra and the globus pallidus (for a review, see Halliday et al., 1995). Sparse

noradrenalin fibers originating from the locus coeruleus have also been identified in the

striatum (Marien et al., 1994).  

6. Integration by striatal neurons of different inputs

Excitatory, glutamatergic inputs from the cerebral cortex synapse almost exclusively

with the spine heads and distal dendritic areas, whereas inputs from the substantia nigra pars

compacta, the thalamus, or other intrinsic striatal neurons contact the proximal dendrites and

somata (Kemp & Powell 1970, 1971). The latter inputs are therefore in a crucial position to

modulate or inhibit cortical influences. Thus, spiny projection cells are recipients of synaptic

inputs from an extremely diverse collection of axons arising from both extrinsic and intrinsic

sources as illustrated in Figure A8.

Striatal interneurons, particularly the cholinergic and the somatostatin-containing ones,

also receive a very diverse synaptic input. However, one clear anatomical difference between

the interneurons, at least the cholinergic and GABAergic cells, and the spiny projection

neurons is the spatial distribution of their inputs. As stated above, excitatory inputs are

directed to the distal regions of spiny projection cells whereas interneurons receive excitatory

inputs on the proximal dendrites and somata. This anatomical arrangement coupled with the

profound differences in the electrical properties of interneurons indicates that the regulation of

action potential generation in interneurons is likely to differ dramatically from that in spiny

cells. 
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IV. OUTPUT OF THE BASAL GANGLIA AND 'THE BASAL GANGLIA LOOPS'

The GPi and the SNr represent the main output nuclei of the BG. They send their

projections to the thalamus, the superior colliculus and to the premotor nuclei of the

brainstem. 

It has long been suggested that the GPi is innervated by the motor striatum while the

SNr is innervated by the associative striatum. But another view, elaborated by Alexander et al

(Alexander et al., 1990; Alexander & Crutcher, 1990; Kawaguchi et al., 1990), suggested that

each striatal region innervates both GPi and SNr. It seems that the functional segregation of

the corticostriatal projections is largely maintained trough the circuitry of the BG (Alexander

et al., 1986; Parent & Hazrati, 1995a,b) and through the pallidothalamic projection (Sidibé et

al., 1997). The ventrolateral two thirds of the GPi, which receive inputs from the sensorimotor

striatum, project to the VL and the central part of the CM. The regions of the GPi innervated

by the associative and limbic striatum project to the parvocellular VA and the rostral part of

PF (Sidibé et al., 1997). The VP, which is mostly innervated by the limbic striatum, projects

modestly to the most medial magnocellular part of the mediodorsal nucleus (Haber et al.,

1993). 

The rostral nuclei of the ventral thalamus (VA, VL, VM) territories innervated by the

BG outputs widely overlap with the thalamic territories projecting to the striatum; whereas

more restricted areas of overlap are visible in the rostral and caudal intralaminar nuclei (CM-

PF), which is the source of the major thalamic input to the striatum (Parent & Hazrati, 1992;

1993). The various thalamic nuclei send in turn projections to the frontal cortex, hence

'closing the loop'. In addition, other BG components send projection to the thalamus. For

example, the GPe projects to the reticular thalamic nucleus (Hazrati & Parent, 1991).

Interestingly, it was recently demonstrated that the frontal lobe is not the unique and

'privileged' indirect BG target. Strick and colleagues, using retrograde transneuronal transport

of herpes virus type 1, elegantly demonstrated projections to specific areas of the

inferotemporal (Middleton & Strick, 1996) and posterior parietal cortices (West, Lynch and

Strick, unpublished observations). Moreover, GPi as well as specific territories in the striatum

send direct inputs to the pedonducopontine tegmental nucleus (PPN) (Nauta & Melher, 1966;

Parent & Hazrati, 1995b). These projections to the PPN have long been ignored in the current

model of the BG organization (Parent & Cicchetti, 1998).
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V. BASAL GANGLIA INTRINSIC CIRCUITS: THE DIRECT AND INDIRECT PATHWAYS

On the basis of anatomical findings, Albin and co-workers (1989) proposed two

segregated feedfoward pathways from the striatum to the GPi/SNr1 (Figure A9). The direct

pathway is formed by a projection from the striatum to the GPi/SNr, and then to the thalamus.

The indirect pathway projects to the GPi/SNr complex via the GPe and the STN. Early

retrograde labeling investigations have supported the idea of distinct striatofugal projections

arising from separate neuronal populations in the striatum (Parent et al., 1984; Selemon &

Goldman-Rakic, 1990; Flaherty and Graybiel, 1993). These studies demonstrated that the

majority of spiny neurons which project monosynaptically to the output nuclei of the BG,

specifically the GPi and SNr, contain substance P and dynorphin and express the D1

dopamine receptor (Gerfen et al. 1990). The neurons projecting to the output structures

through the Gpe and the STN express enkephalin and D2 dopamine receptors (Gerfen et al.

1990).

Dopamine modulates the activity of striatal neurons that give rise to the direct and

indirect pathways, a modulation which depends on the type of receptor involved. D1 receptors

have an excitatory effect, whereas D2 receptors have an inhibitory effect (Chiara, 1994).

Thus, dopamine allows the direct and indirect pathways to counterbalance each other.

Furthermore, the two pathways have antagonistic effects on the output structures: the direct

pathway sends an inhibitory output to the GPi/SNr, whereas the indirect pathway results in

excitatory effects, eventually promoting activation of the frontal cortex and action.

The main strength of this model (i.e. imbalance between the activity in the direct and

indirect pathways) lies in its capacity to account for pathophysiological mechanisms of both

hypokinetic and hyperkinetic movement disorders (DeLong, 1990, Albin et al., 1989).

Converging evidence suggests that in Parkinson's disease, the loss of neurons in the

nigrostriatal dopamine-containing pathway leads to an activation of striatal outputs to the

GPe, and to an inhibition of striatal projections to the GPi and the SNr (see Albin et al., 1989).

The model predicts that inhibition of the GPe neurons release the STN from its tonic

inhibition by the GPe. Increased activity in the STN, the only region of the BG to contain

                                                
1 In 1966, Nauta & Mehler already provided evidence of separate projections of the internal and

external segments of the globus pallidus to the thalamus/midbrain and subthalamic nucleus, respectively. The
pattern of organization described in the paper is not significantly different from that identified in much more
recent studies with more sensitive techniques.
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excitatory projection neurons, contributes to the increased output from the GPi and SNr to

which it projects, resulting in the inhibition of the thalamus projections to the cortex

(Alexander & Crutcher, 1990). This hypothesis is supported by the findings that STN and GPi

firing rates are increased in PD (DeLong, 1990). Moreover, it has been shown that

inactivation of these nuclei can alleviate the motor symptoms in Parkinsonian animals

(Bergman et al., 1990) and human patients (Benabid et al., 2000).
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VI. INFORMATION PROCESSING IN THE BASAL GANGLIA: A RE-EVALUATION OF

THE CLASSICAL MODEL 

The BG models have gained considerable clinical relevance because of their

importance in guiding drug development and new surgical approaches. With time, however,

the shortcomings of these models have become apparent, necessitating revision and updating.

1. The striatum and the GPi/SNr complex: input and output structures,

respectively? 

Like the striatum, the STN also receives direct excitatory inputs from motor, premotor

and prefrontal areas of the cortex (Hartmann-von Monakow et al., 1978; Nambu et al., 1996,

Maurice et al., 1998). In primates, the projections arising from the primary motor cortex are

the most important. Some cortical neurons innervate both the STN and the striatum,

particularly in the prefrontal cortex (see Parent & Hazrati, 1995b). These direct cortical inputs

to the STN innervate the entire STN with a mediolateral topography (Afsharpour 1985;

Camteras et al 1990, Parent & Hazrati, 1995b). Therefore, the STN can also be considered as

an input structure through which cortical information is transferred to output nuclei of the BG

(Kitai & Deniau, 1981; see for review, Joel & Weiner, 1997, Smith et al., 1998). 

Although the GPi/SNr complex represents the major output structure of the BG, direct

projection from the GPe to the thalamus as well as to the PPN has been also described (Nauta

& Melher, 1966; Parent & Hazrati, 1995a,b).

2. Direct/indirect model?

Although many data corroborate the Albin-Delong model, some recent findings seem

incompatible with this current dual model of the BG. Indeed, neurons in the BG show

extensive collateral connectivity (Parent et al., 2000). The results of the single-cell labeling

studies (see also Parent et al., 1995) have revealed an abundance of striatal projection neurons

with highly collateralized axons that provide branches to two or three of the striatal recipient

structures. Such a high degree of axonal collateralization allows striatal neurons to send

efferent copies of the same information to virtually all striatal targets and additional internal

and external projections (Bolam et al., 2000). 
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Furthermore, D1 and D2 receptors co-localize on striatal neurons (Aizman et al.,

2000), which suggest that all striatal neurons that project to the GPi could also project to the

GPe (Wu et al., 2000). Wu and his co-workers (2000), and Parent & Parent (2002) showed

that virtually all striatofugal axons send collaterals to the GPe and none project exclusively to

GPi/SNr. They divided striatal spiny neurons into three subtypes, based on anatomical data.

Type I medium spiny neurons that project solely to the GPe. Type II medium spiny neurons

project to both the GPe and SNr. Type III medium spiny neurons project to the GPe, GPi and

SNr (Wu et al., 2000). Thus as concluded by Parent & Hazrati (1995b) the 'GPe cannot be

considered as a simple relay structure in the indirect pathway, instead, it appears to be a

major integrative structure that can affect virtually all components of the basal ganglia'. 

Moreover, lesions to the GPi not only ameliorate the hypokinetic clinical

characteristics of PD, but also alleviate hyperkinetic disturbances, and lesions of the thalamus

do not lead to PD-like motor symptoms (Obeso et al., 2000), as opposed to what can be

predicted by the model. Thus, currently accumulating evidence is challenging the classical

Albin-DeLong model. 

3. Information processing in the basal ganglia: feedfoward/feedback -

parallelism/convergence?

Despite the above considerations, the striatum could still be viewed as an important

recipient structure. The current debates concern principally the information processing

through the BG. Indeed, until recently the Albin-DeLong model has been widely accepted.

According to this view, information processing in the BG followed essentially a feedfoward

route. However, considerable internal BG feedback loops have been identified. For example,

the GPe is reciprocally connected with the striatum and the STN. The striatum is also

reciprocally connected with the SNc and some thalamic nuclei, particularly the CM/PF

complex. Furthermore, the dopaminergic inputs arising from the SNc do not only influence

the striatum but several other BG components, such as the GPi and the STN. Another

important connection has long been ignored in the current model of the BG organization, the

connection with the PPN (for a review, see Winn et al., 1997). This brainstem structure,

containing cholinergic and non cholinergic neurons, receives direct input from striatum. This

structure is reciprocally connected with the SN, GP and the STN, and is directly involved in

the basal-ganglia-mediated control of behavior (Nauta & Melher, 1966; Winn et al., 1997).

For instance, it has been suggested that the striatum could desinhibit the control of descending

PPN influences on medullary and spinal targets. 
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Concerning the debate on parallel versus convergent processes trough the BG, it is

important to realize that the proponents of these opposing views use different levels of

analysis. Most arguments favoring convergence focus on the structure of the dendritic fields

of the neurons in the BG nuclei, i.e. the convergence within the recipient structure of inputs

arising from different parts of the projecting structures (see § 1, Basal ganglia component, for

the numeric and volumic convergence). In contrast, the concept of parallel segregated

organization was established on the basis of the topographical organization of the projections

with the different basal ganglia thalamocortical circuits. Synaptic convergence within the BG

nuclei is not incompatible with the evidence that the striatal efferent projections are

topographically organized. Integration between different basal ganglia-thalamocortical

circuits is essential for producing coherent behavior. The question is how this integration

takes place through the BG?

4. New perspectives?

a. Joel and Weiner model: the “split circuits"

Joel and Weiner (1994) introduced an architecture called the “split circuit”, in which

input from one cortical area splits into two circuits: one that terminates in the original cortical

area (a closed loop) and another that terminates in some other cortical area (an open loop). For

example, a motor split circuit contains a closed motor circuit that reenters the motor cortex

and an open motor pathway than terminate in the prefrontal cortex. The associative split

circuit contains a closed circuit that reenters associative prefrontal cortex and an open

associative pathway that terminates in the pre-motor cortex, and so forth. This model

reconciles parallel and associative processing which can occur simultaneously in the BG. The

converging inputs may allow contextual processing, while the parallel frontal loops may

prevent conflicting motor plans from interacting.

b. Striatal compartments (figure A10)
The neurochemically distinguished striosome and matrix

compartments of the striatum represent not only anatomically

distinct subdivisions of the striatum but also subdivisions

that differ in terms of connectivity. Firstly, cortico-striatal neurons

in infragranular layers project principally to striosomes while those in supragranular layers

send their axons to the matrix (Gerfen, 1992). The striosomes receive essentially cortical
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afferents from prefrontal and limbic cortices (orbitofrontal cortex and anterior cingulate

cortex), while the matrix receives cortical afferents from primary motor, somatosensory

cortex, as well as frontal, parietal and occipital cortex (Gerfen, 1992; Aosaki et al., 1994).

Thalamic efferents project preferentially to the matrix (Ragsdale & Graybiel, 1991; Sadikot et

al., 1992). Dopaminergic innervation to the striatum is also heterogeneous. The targets of the

striatal compartments also differ, the striosomes targeting principally the SNc and the matrix

targeting both pallidal segments and the SNr.

The different connections of the striosomes and matrix suggest that they participate

differentially in limbic-based (striosome) and sensorimotor-associative (matrix) circuits. In

this line, a recent study demonstrated that the highest metabolic activity in
the striatum occurs in the matrix compartment rather than in

striosomes in awake behaving animals under a range of

behavioral conditions, including voluntary movement, light

restraint, and focal stimulation of different parts of the body

surface (Brown et al., 2002).

Finally, the subdivisions into strisosomes/matrix functional compartments coexist

with, and do not replace the functional compartmentalization of the striatum according to

cortical projections (motor/limbic/sensorimotor). As porposed by Gerfen, striatal patch-matrix

compartments may be viewed as two phylogenetically distinct neuroanatomical circuits

through which cortical information is processed. Regionally, the mix of these two circuit

systems varies such that in the ventromedial striatum, allo-and periallocortical circuitry

dominates, whereas in the dorsolateral striatum, neocortical circuitry dominates. In much of

the striatum the two circuits coexist, and interactions between them may provide mechanisms

for regulating the balance in the striatopallidal and striatonigral systems (Gerfen, 1992)

In summary, these new perspectives, although interesting, do not provide a clear

answer to the question as to how the integration of the multitude of incoming signals takes

place in the organization of the BG and across the complex multiple interactions between the

different BG components. 
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Models are necessary because they try to provide an integrated view of a variety of

data. However, in doing so, they often tend to oversimplify the reality. Regarding this issue,

Parent & Cicchetti wrote: “Models in science tend to reassure and appease researchers who

do not like to wander alone in the universe of knowledge. However, models may have a

perverse effect, such as the selective neglect of data that do not fit into the model (modellus

deformans disease). It would be unwise to rush into the formulation of a new basal ganglia

model until the real significance of the enormous amount of new data on basal ganglia

becomes clear. Furthermore, formulating models is a difficult task. On the one hand, efficient

models have to be simple, but simple models can provide only part of the reality and are thus

bound to be wrong (for example, current basal ganglia model). On the other hand, an

elaborated model that would embody all the complexities of a given reality (for example, any

new basal ganglia model) is doomed to be useless. We therefore suggest to stay away from

basal ganglia model for some time. This will give us the opportunity to appreciate the real

value of raw data and to realize that the beauty of nature lies in details.”

Parent A. & Cicchetti F.

Movement Disorders

Vol. 13, N°2, 1998, pp. 199-202.
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 SECTION 2 - CONDITIONAL VISUO-MOTOR LEARNING IN PRIMATES : 

A KEY ROLE FOR THE BASAL GANGLIA

The basal ganglia have been considered as a motor substrate since the end of the

nineteenth century: 'the corpus striatum contained the centers of automatic or sub-voluntary

integration of the various motor centers where habitual or automatic movements become

organized" (Mardsen, 1982). However, there is now a large agreement that the basal ganglia

are also important for cognitive and motivational functions.

In monkeys, early observations showed that lesions of the striatum elicit changes in

emotional behavior, including a lack of emotional expression, display of dominance,

motivation and curiosity (Mettler, 1945; MacLean, 1972). In the 1950's, Rosvold and

collegues proposed that lesion in the caudate nucleus, receiving projections from the

prefrontal cortex, could evoke deficits in the delayed alternation task, a memory task which

depends on the prefrontal cortex (Rosvold & Delgado, 1956). This hypothesis was confirmed

and extended by Divac et al. (1967) who demonstrated that the delayed alternation deficit

produced by dorsolateral prefrontal lesions, the object reversal learning impairment typically

following orbital frontal lesions, and the visual discrimination difficulties known to follow

inferior temporal cortex, could each be mimicked by discrete lesions targeting the specific

striatal regions to which each of these cortical regions projects. 

The idea that the basal ganglia are important for learning and memory was

subsequently developed by Mishkin and colleagues (1984). This proposal emerged with the

discovery that memory is not a unitary function, but rather comprise several anatomo-

functional systems (Schatcher & Tulving, 1994; Squire & Zola, 1996). Briefly, short-term or

working memory depends on the prefrontal cortex, whereas long-term memory comprises at

least two systems.  One, often termed declarative memory, ensures the storage of facts and

events, and depends on the medial temporal lobe. The other was denominated habit memory

by Mishkin, and was thought to ensure the storage of stimulus-response associations, via the

basal ganglia.  A 'habit' was defined as an automatic stimulus–response bond which develops

with repetition; it is learned slowly and possibly unconsciously, and, once established, is

remarkably resistant to forgetting.  Habit memory is more primitive, ontogenically and

phylogenetically, than the knowledge-based declarative memory. Thus, the striatum, an

evolutionarily ancient part of the brain which 1) receives massive inputs for the cortex,
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including the sensory systems, 2) has access to motor regions, and 3) is the target of

dopaminergic reward-related signals, appeared well suited to provide the relatively direct

links between stimulus, action, and reward which are implicit in the notion of habit.

Mishkin's view is now largely accepted (see for example Brown et al., 1995; White, 1997;

Gaffan et al., 1996; Wise et al., 1996;  Graybiel, 1995; 1998; Packard & Knowlton, 2002) and

is supported by numerous results (see for example Knowlton et al., 1996; Packard &

McGaugh, 1996; Passingham 1993; Curran and Keele 1993; Brashers-Krug et al. 1996;

Deiber et al. 1997; Karni et al. 1998; Honda et al. 1998; Grafton et al. 1998; Toni et al. 1998;

Krakauer et al. 1999, Jog et al., 1999, Hollerman et al.,1998). In particular, the striatum is

now thought to contribute to various forms of motor learning, including sequential motor

learning (Jueptner et al., 1997a,b; Miyachi et al., 1997; Miyachi et al., 2002, Hikosaka et al.,

1999), skill learning (Jog et al., 1999; Sarazin et al., 2002), and reward-based learning

(Hollermann et al., 1998; Tremblay et al., 1998). The following paragraphs will focus on

conditional sensorimotor learning which, although undoubtedly recruiting short-term

(working memory) processes during its acquisition phase, nevertheless can be viewed as one

of the major forms of habit memory once established.   

I. ROLE OF THE FRONTO-STRIATAL SYSTEM IN CONDITIONAL

VISUOMOTOR ASSOCIATIONS 

1. The frontal cortex: brief anatomical description

The frontal lobe lies anterior to the central sulcus and includes both the agranular

motor (M1) and premotor regions (PM), and the granular prefrontal cortex (PF) (Figure A11).

Multiple subdivisions have been identified within both the PM and PF cortices, based on

anatomical, physiological and neuropsychological evidences (Petrides & Pandya, 1999;

Preuss & Goldman-Rakic, 1991; Rajkowska & Goldman-Rakic, 1995). Schematically, PM

comprises two main regions. The medial one includes the supplementary motor area (SMA),

subdivided in a rostral (pre-SMA) and a caudal region (SMA proper), and the cingulate motor

area (CMA). The lateral one includes the dorsal (PMd) and ventral (PMv) premotor areas.

Finer subdivisions have been proposed, but this distinction will suffice for the purpose of the

present review. PF is subdivided in at least three major regions, the orbitofrontal (PFo), the

dorsolateral (PFdl), and the ventrolateral (PFvl). 
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2. Role of the frontal cortex in conditional visuomotor associations

a. Neuropsychology in humans and monkeys

In humans, extensive unilateral frontal excisions, including a large portion of

prefrontal cortex and often extending into premotor cortex, severely impair trial-and-error

learning of a set of arbitrary associations between visual or spatial stimuli and motor

responses (Canavan et al., 1989; Petrides, 1985). This impairment persists even when the

correct response is provided verbally before testing and after each error (Petrides, 1997). The

patients can discriminate the visual stimuli, and are also able to perform the motor responses,

hence, their deficit seems due to a specific difficulty in selecting, from a set of competing

responses, the appropriate one for each stimulus (Petrides, 1997). A profound impairment was

also reported by Halsband and Freund (1990) after smaller unilateral lesions centered on the

premotor cortex. These patients acquired sensory-sensory associations normally (between a
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visual cue and a spatial location), but failed to learn sensory-motor associations linking six

different visual, tactile, or auditory stimuli with six different arm movements. 

Of course, in patients, lesions are rarely confined to specific anatomical regions.

Experimental lesions or reversible inactivations in monkeys have therefore helped to identify

the contribution of the different frontal areas to conditional sensory-motor associations

(Delacour et al., 1972; Kurata & Hoffman, 1994, Passingham, 1986; Petrides, 1985). Bilateral

lesions of the ventral premotor, medial premotor or primary motor cortex leave the animals'

performance largely unaffected (Kurata & Hoffman, 1994; Passingham, 1987). By contrast,

bilateral PMd lesions severely disrupt both the retention of pre-operatively learned

associations and the acquisition of novel visual or spatial ones (Crowne et al., 1989; Kurata &

Hoffman, 1994). As in humans (Halsband & Freund, 1990), the deficits following PMd

lesions in monkeys are specific to sensory-motor tasks requiring non-standard mapping.

Indeed, visuo-visual and visuo-motor tasks that can be solved using standard mapping (e.g. to

push a blue lever versus to pull a red one, note that in these cases the visual cues are not

spatially dissociated from the handle used to execute the motor response) are readily acquired

by the animals (Halsband & Passingham, 1982; 1985; Passingham, 1985; Petrides, 1985).

Thus, PMd, a region well-known for its role in motor preparation, seems to be particularly

important for the selection of action in response to a sensory cue based on arbitrary rules, and

to be equally critical for both the formation of these rules and their later use.

Lesion studies in monkeys have also somewhat clarified the role of PF in conditional

sensory-motor associations (Delacour et al., 1972; Passingham, 1986; Petrides, 1985).

Bilateral PFdl lesions involving the periprincipalis region do not affect retention of tasks

requiring for example to either grasp a handle or touch a button depending on the visual or

auditory stimulus presented (Passingham, 1986; Petrides, 1982; 1986), but can yield a mild

retardation in learning new visuo-motor associations (Gaffan & Harrison, 1989). The most

severe impairment has however been found after bilateral lesions of the ventral aspect of PF

(PFvl and PFo). Animals with such damage executed familiar sensori-motor associations

almost normally, but failed to learn new ones (Bussey et al., 2001). These data suggest that,

unlike PMd, PF, in particular its ventral aspect, is selectively involved in the acquisition of

new conditional visuo-motor associations. The other difference between the two regions is

that the deficits following PF lesions are not restricted to sensory-motor associations, but

extend to sensory-sensory associations as well (Parker & Gaffan, 1998; Petrides, 1985). A

summary of the effect of damage to the fronto-striatal system in conditional learning is

provided in Figure A12.
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b. Brain imaging in humans and neurophysiology in monkeys 

A number of neuroimaging studies in humans using either Positron Emission

Tomography (PET) or functional Magnetic Resonance Magnetic (fMRI) have confirmed an

implication of the PF and the PMd in non-standard mapping (Deiber et al., 1997; Toni &

Passingham, 1999). In two recent PET studies (Grafton et al., 1998; Toni et al., 2001a; see

also Deiber et al., 1997), brain activation was compared during performance of two tasks

requiring the transformation of visual stimuli into motor responses. The first task was a

reaching task requiring standard sensorimotor mapping. The second required the subject to

associate a hand gesture with a visual cue, the association between the cue and the movement

being arbitrary. The two tasks elicited different cortical activation, the reaching task activating

preferentially PMv and the parietal cortex, whereas the conditional task preferentially

activated PFvl and PMd. Likewise, an fMRI study showed that PMd was significantly more

activated during execution of well learned auditory-motor associations than during execution

of auditorily instructed sequences of finger movements (Kurata  et al., 2000). In addition, in

order to determine the regions specifically involved in the acquisition of arbitrary

associations, visuo-motor conditional learning was compared with visuo-motor sequence

learning (Toni & Passingham, 1999). In agreement with neuropsychological data, learning

new visuo-motor associations elicited a preferential activation in PFvl (Toni & Passingham,

1999). Furthermore, direct comparison between learning of new visuo-motor associations

versus execution of well-known ones revealed a selective involvement of PFvl and, also of

PFdl, in early stages of learning (Toni et al., 2001b). PMd was, by contrast, equally activated

during both the execution and the acquisition phases.

In monkeys, several studies have demonstrated that both PMd and PFdl possess neural

properties subserving execution of familiar visuo-motor associations (Boussaoud & Kermadi,

1997; Boussaoud & Wise, 1993a,b). These findings will be described in part II below. By

contrast, only few studies have addressed the neuronal changes within these areas during

learning. In one study, Germain and Lamarre (1993) recorded two samples of neurons from

PMd and M1, one before and one after monkeys acquired associations between auditory tones

and specific limb movements. Prior to learning (i.e. when the animal performed at chance

levels), 34% of M1 cells and 35% of PMd cells were modulated by the tones. After learning,

the proportion of M1 cells that were sensitive to the tone did not change, whereas the

proportion of such cells increased dramatically in PMd (76%). These findings suggest that
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learning increases the representation of the conditional cue in PMd. In another study, Mitz

and colleagues (1991) used a different approach. They recorded cells from PMd during

learning, by trial-and-error, of associations between visual cues and specific movements of a

manipulandum. They found that the activity of over half of the PMd neurons studied changed

with learning, and that these changes followed the improvement of the behavioral

performance. Chen and Wise (1995a,b) used a similar task, but requiring eye rather than arm

movements, and also found learning-related changes in cell activity in the two premotor

regions involved in the control of ocular saccades, the supplementary eye field (SEF) and the

frontal eye field (FEF).

There has been no systematic study of the changes of PF neurons during learning of

conditionally instructed arm movements. However, Asaad and colleagues (1998) described

such learning-related changes in a conditional oculomotor task. They recorded neuronal

activity in PFdl and PFvl and found cells with activity that reflects a particular association

between a stimulus and the appropriate response. An interesting finding in Asaad and

colleagues' study was that the selectivity for saccadic eye movements made in response to

conditional cues appeared earlier in the trial as the animals mastered the associations,

suggesting a role for PF in the learning of conditional sensorimotor associations. 

To summarize, among the frontal areas, PF as well as PMd are critical for conditional

sensori-motor mapping. PF is specifically involved in the formation of new associations

whereas PMd is needed during both learning and consolidation. Note, that surprisingly, within

PF, the dorsolateral aspect, which is directly connected with PMd, seems to make a less

crucial contribution to conditional learning than the ventrolateral aspect, which lacks such

direct connections, but receives direct inputs from temporal visual cortical areas.

3. The basal ganglia and conditional visuomotor associations

a. Neuropsychology in humans and monkeys

Indirect evidence of the contribution of the BG to arbitrary mapping comes from the

study of patients with either Parkinson or Hungtington disease. These two pathologies affect

BG function due to degeneration of the SNc and of the striatal spiny neurons, respectively.

Patients suffering from these diseases are impaired in learning various conditional tasks

including visuo-motor tasks (Canavan et al., 1989a, Gotham et al., 1988, Sprengelmeyer et al.,

1995; Taylor at al., 1990; Vriezen & Moscovitch, 1990). Of course, these neurodegenerative

diseases lead to dysfunction in other parts of the brain as well, in particular the frontal cortex
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(Marié et al., 1999), which could be partly responsible for the impairment. Nevertheless, the

deficits observed in Parkinson patients (Vriezen & Moscovitch, 1990) differ from those

reported in frontal patients (Petrides, 1997). Both populations have difficulties to learn by

trial-and-error. The difference is that when the arbitrary associations are explicitly given by

the experimenter, performance of Parkinson patients improves, whereas that of frontal

patients does not. This suggests that Parkinson disease does not interfere with motor selection

once the rule is provided, but selectively alters the learning of arbitrary rules. The BG thus

seem to play a specific role in the formation and long-term storage of visuo-motor

associations.

The idea of an implication of the BG in conditional learning is strengthened by the

finding that lesions of the ventral anterior thalamic nucleus (which projects to PMd) induce

deficits in postoperative relearning of visuo-motor associations, whereas lesions of the ventral

lateral (oralis) nucleus (which projects to SMA and M1) do not cause any impairment

(Canavan et al., 1989b). These results demonstrate that the integrity of the basal ganglia-

thalamo-cortical circuitry involving PMd is necessary for arbitrary sensory-motor mapping.

b.Brain imaging in humans and neurophysiology in monkeys

In their comparison of standard versus conditional visuo-motor mapping, Toni and

colleagues (Toni et al., 2001a) found subcortical activation in the striatum that was

preferentially elicited by the conditional task. Comparison of learning visuo-motor

associations with learning of visuo-motor sequences also revealed a selective activation in the

striatal region (Toni & Passingham, 1999). In addition, using event fMRI to follow the

temporal dynamic of brain activity while subjects learned to associate visual cues with

different finger movements, Toni and colleagues (Toni et al., 2001b) found selective

activation in the caudate nucleus that correlated with performance. According to this study,

the ventrolateral prefrontal cortex and the hippocampal formation are first recruited before the

implication of the striatum.

Few neurophysiolological studies have investigated the role of the striatum in

conditional tasks. Boussaoud and Kermadi (1997) have recorded neuronal activity in the

striatum while monkeys were performing well-learned visuo-motor associations. They found

an important population of neurons coding specific associations between a particular cue and

a particular movement (for detail, see part II-2 below). Tremblay and colleagues (1998) have

recorded cells in the anterior part of the striatum during learning of novel associations

between visual stimuli and behavioral responses. They found a substantial proportion of cells
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whose activity changes with learning. Although these changes were mainly related to reward

expectation, their existence suggests that the striatum undergoes adaptive changes during the

formation of new visuomotor associations.

In conclusion, despite the scarcity of neurophysiological evidence, available data are

consistent with an implication of the BG, and perhaps more precisely of the striatum, in both

learning and execution of arbitrary conditional rules. 
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II. LINKING SENSORY INFORMATION TO MOTOR RESPONSES: A SPECIFIC ROLE

FOR THE STRIATUM

Traditionally, the BG have been thought to play a modulatory role, through a

disinhibitory mechanism, of voluntary movements planned at the cerebral cortex level (Allen

& Tsukahara, 1974; Marsden, 1982). In this view, the fronto-striatal system functions in a

serial mode, without any contribution of the BG in the selection of action. This view has been

challenged by the discovery that the BG contribute to complex cognitive processes including

movement initiation, anticipation of events, learning, and memory (Apicella et al., 1992;

Gardiner & Nelson, 1992; Hikosaka et al., 1989a,b,c; Kermadi & Joseph, 1995; Schultz et al.,

1993). For instance, Divac and colleagues (1967), and later, Fernandez-Ruiz and colleagues

(2001) showed that lesions involving the ventrocaudal striatum impaired visual discrimination

learning. Also, Miyachi and colleagues (1997) found a deficit during learning of sequential

hand movements following inactivation of the striatum with muscimol. Inactivation of the

anterior part selectively impaired learning of new sequences, whereas inactivation of the

middle or posterior part of the striatum altered both learning of new sequences and execution

of learned sequences.

1. The striatum: a site of convergence for sensory, motor, and reward signals

The BG are the largest subcortical structures in the human forebrain, within which the

striatum constitutes an important site of convergence of information. As already mentioned,

one characteristic of the striatum is that it receives sensory as well as motor information from

cortical areas, and thus is in an ideal position to link these two types of information, as in

arbitrary sensory-motor mapping. However, another important characteristic of the striatum,

is that it is the target of massive dopaminergic inputs from the midbrain systems, i.e, the

retrorubral area (RRA), the substantia nigra pars compacta (SNc) and the ventral tegmental

area (VTA). Schematically, the striatum can be divided in two distinct parts, each receiving a

different dopaminergic input. The dorsal striatum, formed by most of the caudate-putamen

complex, receives its input mainly from the SNc (nigro-striatal pathway). The ventral

striatum, including the ventromedial part of the caudate-putamen and the nucleus accumbens

receives its input essentially from the VTA (meso-limbic pathway).

Traditionally, the nigrostriatal dopaminergic system was thought to play a role in

motor acts whereas the mesolimbic system was thought to be involved in reinforcement and

motivational processes (Carli et al., 1985). More recently, however, new evidence revealed
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some common features of these two pathways. In particular, dopamine neurons share reward-

related neuronal properties, as elegantly demonstrated by Schultz and colleagues. Midbrain

dopamine neurons are activated by the unpredictable occurrence of reward (Hollerman et al.,

1998; Ljungberg et al., 1992; Mirenowicz & Schultz, 1994; Schultz et al., 1993), during free

delivery reward tasks, or early stages of visual discrimination learning. Once the reward

becomes predictable (when the paired stimuli are learned, or in a simple visual or auditory

reaction time task), these neurons no longer respond to the reward but instead respond to the

instruction cue, although even this response is abolished following extensive overtraining

(response habituation). Conversely, if an expected reward is not given, the activity of

dopamine neurons is depressed (Hollerman et al., 1998). Based on these results, Schultz and

colleagues suggested that these dopaminergic neurons could deliver reward-predictive signals

to the striatum. This signal reinforces behaviors by strengthening associations between stimuli

and behavioral responses as first stated by Thorndike (1911) ('Law of Effect: Any act which

in a given situation produces satisfaction becomes associated with the situation so that when

the situation recurs the act is more likely than before to recur also’). This reward-predictive

signal is of particular interest for non-standard mapping, which in fact requires to link a

stimulus with a response, according to an outcome. Furthermore, dopaminergic inputs to the

striatum are critical for normal striatum functioning, as demonstrated in pathology such as

Parkinson disease. Dopamine depletion using local infusion of drugs such as dopamine

antagonists, suppresses for instance previously acquired behavior-related neuronal activities

in the striatum (Aosaki et al., 1994; Watanabe & Kimura, 1998) as well as long term

potentiation and depression in this structure (Calabresi et al., 1997).

As a result, the striatum can be seen as funnel-shaped. It receives many types of

different sensory, motor and reward predicting signals. Sending output essentially to the

frontal areas, puts this structure in an ideal position to influence frontal cortex functions. 

2. Coding for stimulus versus movement in frontal cortex and striatum

The capacity of the brain to link sensory information to action relies not only on the

existence of structures that receive both sensory and motor information but also on the

existence of neuronal networks whose activity combines stimulus features with movement

attributes, such that a given cell's activity reflects specific input-output combinations.

Dissociating "sensory" activity from "motor" activity has been a challenging task for

neurophysiologists, especially in higher order brain areas such as the frontal cortex and BG.
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One way to do so has been to develop tasks with instructed delays, whose rationale was to

establish temporal correlation between neuronal activity and specific task events (Weinrich et

al., 1984). Neuronal activity of a cell would reflect stimulus properties if locked to the onset

of the instructional cue, or movement parameters if locked to the onset of movement. 

Based on the above principle, Boussaoud and colleagues trained monkeys to perform a

conditional visuomotor task where the color of a visual cue instructed a limb movement to the

right (red cue) or to left (green) (Boussaoud & Kermadi, 1997; Boussaoud & Wise, 1993a,b).

One of the aims of these studies was to determine the degree to which motor preparatory

activity reflected the stimulus parameters, the direction of the motor response, or specific

combinations of both. Figure A13 summarizes the proportions of cells with stimulus and

movement effects across frontal areas (PFdl and PMd) and the striatum. Stimulus effect is

highly frequent in PFdl (57%), but extremely rare in PMd (2-5%). The proportions are

reversed for movement effect. Relatively few cells varied their discharge rate in relation to

movement direction in PFdl, whereas 71-75% of PMd cells did so. Figure A14 illustrates this

property. Interestingly, the proportions of cells with combined stimulus and movement effects

are predominant in the striatum (Figure A15). For example, the neuron shown in Figure A16

is active shortly after the onset of the instructional cue. However, its activity depends on both

movement direction (compare a-d and e) and the location of the cue (compare a and b-d).

Activity in half of the striatum cells reflected specific stimulus-movement combinations, a

property that was present in less than 30 % of frontal cells.

The striatum, unlike the PMd an PFdl, is in an ideal position to link sensory, motor

and motivational signals (Dominey et al., 1995; Graybiel, 1995; Houk & Wise, 1995).

According to this hypothesis, the striatum would receive incoming signals about the current

status of events as well as signals predicting future events. One of the striatal functions would

be to compare sensory inputs with previously learned repertoire of possible motor responses,

and generate an output signal, which would mediate the selected response, to motor and

premotor cortex, via the thalamus (Alexander et al., 1986). In instructed delay tasks, it is

plausible that sustained activity during the delay period is maintained by repeated

reverberations through the cortico-basal ganglia-thalamo-cortical loop, as has been proposed

by Schultz and Romo (1992). Alternatively, Houk and Wise (1995) proposed that sustained

cortical activity provides a positive cortico-thalamic feedback which serves to register that a

context has been recently selected at the level of the striatum.
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III. A MODEL FOR DISTRIBUTED PROCESSING IN THE FRONTO-STRIATAL SYSTEM

DURING LEARNING

Arbitrary sensori-motor learning is complex and involves several processes. First, one

needs to discriminate the different stimuli presented and, subsequently, recognize and

memorize each of them. Second, because there is no direct link between the stimuli and the

appropriate response, one has to learn by trial-and-error the correct associations. This implies

on-line monitoring of the associations already tried and of their consequences (correct or

incorrect). Finally, once learned, the associations have to be consolidated. Each component of

the large network involved in this type of learning likely makes a specific contribution to

these different processes (Figure A17).

1. Lateral prefrontal cortex (PFdl and PFvl)

The specific role of the dorsal and ventral aspects of the lateral PF remains

controversial. One view (Goldman-Rakic, 1995) considers that PFdl and PFvl are concerned

with the type of information processed, such that PFdl is involved principally with spatial

locations, whereas PFvl is involved with visual object information ("domain specific"

modularity). This regional bias is based on the organization of the cortical visual system. The

visual cortex contains two relatively separate anatomical pathways, a dorsal and a ventral one

(Ungerleider & Mishkin, 1982), which have preferential (albeit overlapping) connections with

PFdl and PFvl, respectively. The dorsal pathway is thought to be devoted to the "where"

information, whereas the ventral one is thought to be devoted to the "what" information.

However, recent neuroimaging studies in humans (Haxby et al., 2000; Postle et al., 2000) and

neurophysiology studies in monkeys (Rainer et al., 1998a,b; Rao et al., 1997) report an

intermixing of "what" and "where" properties in the lateral PF cortex. Accordingly, Petrides

and Owen have suggested that the dorsal and ventral regions mediate distinct processes

("process specific" modularity). In their view, PFvl is concerned with 'first order executive

processes, such as active selection, comparison and judgement of stimuli held in short-term

and long term memory' [Petrides, 1996, page 1457] whereas PFdl is concerned with more

demanding processes, such as the active manipulation and monitoring of series of information

(Petrides, 1995). The data reviewed in this paper are more in accordance with this second

view.
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PFdl seems not to make a major contribution to arbitrary sensory-motor mapping,

whether the information is spatial or not (Deiber et al., 1997, Toni et al., 2001a). Although

arbitrary sensory-motor mapping likely requires organizing and manipulating information in

working memory, the contribution of PFdl to these processes does not seem essential,

probably because most conditional tasks reviewed here involve simple movements, rather

than planification of complex sequences of actions (Pochon et al., 2001; Rowe et al., 2000).

By contrast, PFvl seems particularly involved during the acquisition and to a lesser

degree during the retention phase. PFvl receives different types of sensory information,

including visual inputs from the infero-temporal cortex, and auditory inputs from the superior

temporal cortex (see Passingham, 1993). Neurons with activity reflecting the sensory stimulus

have been recorded in this area (Fuster et al., 2000; Rao et al., 1997). In addition, neuronal

activity in this area is modulated by cues predicting a specific reward (Watanabe, 1996).

Thus, like the striatum, PFvl possesses stimulus and reward-related properties. Nevertheless,

unlike the striatum, this structure lacks direct motor projections, suggesting that the

establishment of sensory-motor associations is more likely to take place in the striatum. The

early contribution of PFvl in arbitrary sensori-motor mapping (together probably with the

hippocampal system, see Wise & Murray, 1999), might thus be to hold in memory the stimuli

presented, as well as the consequences of the already tried associations (see also Murray et al.,

2000; Passingham et al., 2000; Wallis et al., 2001; White & Wise, 1999).

2. The dorsal premotor cortex (PMd)

PMd is involved in both the execution and the learning of arbitrary sensory-motor

mapping. In light of its well-known importance for motor preparation, PMd is in the position

to select a motor program in response to an incoming stimulus, and then send it to the primary

motor cortex, which is responsible for the execution of the movements. In our network

dedicated to arbitrary sensory-motor mapping, PMd thus constitutes the output stage (see

Figure A17), a position that explains why it is equally critical whether the associations are

new or well known. An important finding in Mitz and colleagues' study (1991) was that the

learning-related changes observed in the neuronal activity of PMd lagged behind the

improvement of the behavioral performance. This finding indicates that plasticity in PMd is

the consequence, rather than the cause of learning.
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3. The striatum

As mentioned earlier, there is no evidence for a direct connection between PFvl and

PMd. It seems that one way for PMd to receive information from PFvl is via the BG loops.

Thus, despite the scarcity of neuropsychological and neurophysiological data in monkeys, we

postulate that the striatum, under PFvl influence, occupies a privileged position to link visual

inputs with motor responses through arbitrary rules, and that its output signal to PMd contains

information on these rules. On the basis of such information that PMd could select the

appropriate motor response. The interaction between the striatum and PMd is illustrated by

the within-trial temporal evolution of the percentage of neurons that code for stimulus

attributes versus movement direction, in a well-learned conditional visuo-motor task (Figure

A16). Neural activity was analyzed at three epochs between stimulus presentation and

movement execution. Shortly after cue onset, the proportions of neurons in the striatum that

code for stimulus or for movement are both high. They remain so during the preparatory

phase until the monkey receives instruction to execute movement (go signal), and then fall to

a low level. In PMd, stimulus representation is weak throughout time, whereas movement

representation increases progressively to reach its maximum level after the go signal. Thus, in

a well learned task, striatal neurons maintain both stimulus and movement representations as

long as response execution is not required, as if the appearance of a particular cue activates, in

the striatum, the representation of the particular rule associated with it, until the intervention

of PMd for the selection of the appropriate motor response.

In summary, learning to associate visuo-motor information through arbitrary rules

requires the integrity of a network including PFvl, PMd and the striatum. Figure A17

schematically summarizes how these structures might contribute to learning. The striatum

integrates sensory, motor and reward information, and under PFvl influence, links these

information through arbitrary rules. PFvl contribution might be to hold in memory the stimuli

presented, as well as the consequences of the already tried associations. Finally, information

flow from the BG, via the thalamus, influences PMd which is responsible for the selection of

the motor response. Once learned, use of the visuo-motor rules requires particularly the

striatum, that seems to contain a representation of these rules, as well as PMd, the output stage

of the circuit.



A. INTRODUCTION

- 64 -



- 65 -

B - Neurophysiological study in monkeys



B. Neurophysiological study in monkeys

- 66 -

I. INTRODUCTION

The basal ganglia have been proposed as structures critical for reward-based learning.

Indeed, as already developed in part A, the striatum occupies an ideal position to link sensory

inputs with motor responses according to their behavioral outcomes. Previous

neurophysiological studies have reported learning-related activity changes in both the TANs

(Aosaki et al., 1994) and PANs (Jog et al., 1999; Miyashi et al., 2002; Tremblay et al., 1998)

striatal neurons. Among them, one study has investigated striatal activity during learning of a

visuomotor conditional associative task (Tremblay et al., 1998). However, in this study,

activity from the anterior striatum was recorded while monkeys learned a go/no-go task,

during which learning usually took only two trials. It was therefore difficult to follow the

temporal dynamics of learning-specific modifications of the activity.

In order to further examine this issue, we used a task similar to that of Mitz et al.

(1991), allowing the comparison between the striatum and the premotor cortex (PMd), an

important area for conditional visuo-motor behavior. In PMd, transient or long-lasting, albeit

relatively late, activity changes were recorded during the acquisition of visuo-motor

associations. These changes were thought to participate to the selection of the appropriate

motor response (Mitz et al., 1991). Our prediction was that, in the striatum, changes of

neuronal activity during conditional visuo-motor learning would reflect an involvement in the

early processes leading to the acquisition of conditional visuo-motor associations. These data

are in the process of publication in Experimental Brain Research (Hadj-Bouziane &

Boussaoud, in press).

II. MATERIALS AND METHODS

1. Subjects and apparatus

Three rhesus monkeys (Macaca mulatta) were subjects in this study: 2 males, MO and

MH, weighing 8 and 9 kg, respectively, and a female (MS) weighing 5 KG. The training took

several months during which each monkey learned to sit quietly in a primate chair and

perform a rather complex task. The monkey faced a video screen where visual stimuli were

presented, and had access to a joystick which was constrained to move in 4 orthogonal

directions (referred to as right, left, up and down). All three animals used their right arm, the



B. Neurophysiological study in monkeys

- 67 -

left one did not have access to the joystick, but was free to move inside the monkey chair. In

the early phase of training, monkeys worked with their head free to move. After surgery, the

head was fixed using a head fixation device implanted surgically. Eye position was monitored

with the use of a scleral search coil. 

2. Training and behavioral paradigm

Each monkey was taught a conditional visuo-motor task that required to associate

complex visual cues with joystick movements. They were first trained with a set of four

stimulus/movement pairs, presented concurrently, until they reached the criterion of 80

percent correct responses (familiar condition). These 4 familiar pairs remained unchanged

throughout the whole experiment. Then, the animal was taught to search, by trial and error,

for the correct responses to cues never presented before. This was the 'novel condition', where

2 to 4 new cues were presented concurrently until the animal reached the criterion of 4 correct

responses out of 5 consecutive presentations of each cue.

Figure B1 illustrates the sequencing of events during the task. Typically, a trial started

when the animal held the joystick at a central position for 0.25s (Figure B1). A stimulus was

then presented at the center of the screen for a delay of 0.75 to 2s (with a 0.25 s step), after

which it blinked, instructing the monkey to respond (go signal) within 1s by moving the

joystick in one of the 4 directions. If movement direction was correct (i.e. if it was in the

predetermined direction associated with the stimulus), a reward (fruit juice) was delivered

after a fixed delay of 0.8 s; if it was incorrect, a purple circle appeared for 1.5s as an error

signal.

3. Surgery and recordings

Surgery was performed under aseptic conditions and deep anesthesia using propofol or

isoflurane. A stainless steel (monkey MO) or cilux (compatible with magnetic resonance

imaging, monkeys MH and MS) recording chamber (Crist Instruments) was implanted on

the left hemisphere. The center of the chamber (φ: 18 mm) was positioned at an antero-

posterior coordinate of +17 mm, with an angle of 30° from the vertical plane, giving access to

the anterior striatum. A head restraining device and a scleral search coil were also implanted

for head fixation and monitoring of eye movements, respectively. The animals received

antibiotics and analgesics postoperatively.



B. Neurophysiological study in monkeys

- 68 -

During daily recording sessions, tungsten electrodes (FHC Instruments, impedance:

1-3 MΩ) were inserted into the brain, through the dura mater, and advanced with a hydraulic

microdrive into the striatum. Action potentials were then amplified, filtered with a bandpass

of 300 Hz to 3 kHz, and discriminated on the basis of their waveform, using a multi-spike

detector (Alpha-Omega Engineering). For monkey MH, the recording sites were verified by

magnetic resonance imaging (MRI).

In a typical recording session, the animal performed first the familiar associations,

while searching to isolate neurons. Each isolated neuron was then tested first with the four

familiar associations, then with up to 4 sets of novel associations. The data were analyzed off

line, and activity during the novel condition was compared to the activity during the familiar

one.

4. Data analysis

Single neuron activity and behavior. Data analysis was carried out, in parallel, on the

behavioral performance (% correct responses and mean response times) and neuronal activity.

For neuronal activity, raster displays and histograms of the discharge rates were constructed,

and activity was identified in different task epochs by visual inspection, and compared to a

reference period (500 ms before the cue onset) using a t-test. These epochs were as follows:

reference period, 500 ms before the cue onset; stimulus-related, following the cue onset

(maximum duration: 500 ms); instructed delay, from the end of stimulus period until the go

signal; movement-related, starting at the go signal and extending until the end of the

movement execution; expectation of reward, from the end of movement to reward delivery;

reward, from delivery up to the end of the trial (500ms). These time windows were adapted to

particular activity profiles. Task-related activity and directional selectivity were assessed and

then compared for familiar versus novel condition, using paired t-tests (P < 0.05). Changes of

activity and behavioral performance across the learning process were plotted using a 5-point

moving average window. 

Population analysis. In order to perform a population analysis, neuronal activity was

standardized and realigned on the learning criterion. However, individual neurons may be

active in relation with different task events, and they may undergo different modulations of

their activity depending on epochs in the trial. For example, during learning, the activity of a

given cell may decrease for one epoch (e.g. IS-related activity) and increase for another epoch

(e.g. reward related activity). The question is how to include such neurons in the population
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analysis. Our approach was to consider each epoch with task-related activity and learning-

related modulation, as one case. A neuron may thus contribute more than once to the

population signal. We then made two groups of cases, one where modulation is a transient

increase of activity, and one where the modulation is more long lasting. As was done for

individual neurons, behavioral performance was also averaged across the different cases. This

analysis produced curves representing changes of activity within populations of cells and

behavioral performance during the learning process. 
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III. RESULTS

1. Behavior

During the recording sessions, the performance in the familiar condition reached 85%

correct responses for monkey MO and 97% for monkey MH. For the novel condition, the two

monkeys learned at different rates, but they used a similar strategy, which is illustrated in

Figure B2 for monkey MH. This monkey usually learned up to 4 sets of 4 associations in one

session, and was more consistent than monkey MO. Figure B2 shows the number of trials

necessary to reach the learning criterion for each association, as well as the mean response

times, averaged over 30 new sets. It appears that new associations, although presented in a

pseudorandom order within each block of 4 trials, were learned sequentially, as the number of

trials required to learn a single association increased exponentially (R2 = 0.99). Learning took

between 4.5 trials on average, for the first-learned association, and 25.8 trials for the last one,

with progressive increase in between. As illustrated in Figure B2, mean response times were

significantly longer in the novel condition as compared to the familiar one. Furthermore, there

was a significant decrease in response times during learning, which is represented by the

difference in response time between correct and incorrect trials. 
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2. Neuronal activity

The results presented here are based on a sample of 72 neurons recorded from the

striatum of monkeys MO (18 cells) and MH (54 cells). The recordings from monkey MS are

still ongoing and will not be included in this thesis. The location of recording sites in the

striatum was verified in monkey MH using MRI. Figure B3 shows the trajectory of an

electrode pointing toward the head of the caudate nucleus. Monkey MO is still involved in the

experiment and was implanted with a non MRI compatible device. Histological verification

has yet to confirm the precise location of the recorded neurons, but according to stereotaxic

coordinates, the recordings were made from the dorso-medial portion of the putamen and

caudate nucleus. 

a. General properties of the striatal neurons

In the familiar condition, 50 out of 72 neurons displayed a modification of activity in

relation with one or several events of the task. Task-related activity was observed in relation

with the IS onset (n= 30) or anticipating the IS onset (n= 5), during the preparatory period (n=

20), the execution of the movement (n= 20) and/or reward (n= 4). These modifications of the

activity consisted most often (80 % of the cases) in increases of activity relative to the

baseline discharge rate. 

When no learning was required, i.e. when the monkey performed familiar trials, the

majority of neurons exhibited complex patterns of task-related activity, showing activity

changes with more than one task event. Examples of the different patterns of activity observed

are illustrated in Figure B4. This figure shows the activity of 4 different striatal cells. The first

examples (B4-A and B4-B) illustrate the case of striatal neurons with a typical phasic

response in relation with either the instructional cue (B4-A) or with execution of the

movement (B4-B). Figure B4-C and B4-D show cases with more complex properties. The

neuron illustrated in B4-C responds both during movement execution and continues to

discharge during later phases of the trial including expectation of reward and its delivery. In

the case shown in Figure B4-D, a strong phasic activity was observed in relation with reward

delivery. However, this activity started well before the reward delivery. Indeed, after the end

of the movement, there was a delay of 800ms, during which the activity increased

progressively (reward expectation). 

In the previous examples, the activity for the four different directions of movement

was pooled to show the general patterns of activity of different neurons. However, the activity
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associated with the different cue-response associations was rarely the same. The majority of

striatal neurons were selectively active for one or two particular associations. Such selectivity

could be observed during different trial epochs as illustrated in Figures B5 and B6. Figure B5

shows the case of a neuron with a significant increase of activity in relation to the onset of the

IS and to the execution of the movement. The neuron responded similarly to the 4 cues, but its

discharge rate during movement execution varied markedly depending on movement

direction. This particular neuron “preferred” the upward movement. The examples shown in

Figure B6 illustrate selectivity for the cues (B6-A), or for the expectation of reward (B6-B).
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b. Modification of striatal activity during learning

A sample of forty neurons was studied under both familiar and novel conditions, and it

was thus possible to examine their activity during learning. In 60% of the cases, significant

activity changes occurred as the monkey learned new associations during at least one epoch of

the task. The learning related changes of activity were either transient or long lasting

modulations of task related activity as the behavioral performance improved. These changes

were often relatively simple increases (observed in 36 % of the cases, MH n=11, MO n=3) or

decreases (38 %, MH n=13, MO n=2) in the firing rate relative to the familiar condition. In

some cells, however, modulations of activity were more complex with combinations of

increases and decreases in activity (26 %, MH n=9, MO n=1). 

 Various types of modulation during learning

Modulation of activity during learning could affect any type of task-related activity,

and there was no clear relationship between the type of modulation and the type of activity. In

other words, stimulus-related activity was not modulated in a particular way during learning,

and movement-related activity in another way. In fact, a given cell may show different

modulations depending on the task period considered. Examples of the most frequently

observed modulations are illustrated in Figures B7-10. 

Figure B7 illustrates a cell with a long lasting increase of activity during learning. In

the familiar condition, with a cue instructing a rightward movement, this cell showed a phasic

discharge following stimulus onset and during movement execution (B7-a). In the novel

condition, when a cue instructed the same movement direction, stimulus related activity was

higher than that observed for the familiar condition (dashed lines), and this increase persisted

throughout the entire learning process (B7-b, left panel). By contrast, movement related

activity was nearly absent in the early stage of learning but emerged progressively during later

stages (B7-b, right panel). The profile of activity changes was closely linked to the

fluctuations of the animal's performance, and it stabilized at a high discharge rate when the

monkey’s performance reached 100% correct responses. An additional analysis dissociating

correct trials (i.e. rightward movements) from incorrect ones (all other motor responses)

confirmed that the movement related activity appeared with learning. Indeed, this activity

slowly emerged with a repetition of correct responses, and with progressively shorter

latencies, whereas it remained weak in all incorrect trials (B7-c).

Figure B8 illustrates a neuron whose activity decreased during learning. For the

familiar condition, the neuron showed a phasic discharge in relation with movement



B. Neurophysiological study in monkeys

- 78 -

execution, especially for downward movements (directional preference). This response was

initially increased by the presentation of novel associations but then rapidly regained the level

observed for the familiar condition. In addition, novel associations triggered a phasic

discharge in relation to the stimulus onset. Like movement related activity, this stimulus

related activity was transient, the neuron's activity regaining the level observed for familiar

associations after few correct trials (Figure 8-A/B).

Figure B9 illustrates a neuron with more complex transient modulations of activity

during learning. For the familiar condition, this neuron showed a low (but significant) activity

during the expectation of reward, and a strong activity with reward delivery. The activity,

illustrated for two familiar and two new associations, developed when the monkey

successfully learned a new association, but was absent for a novel association that the animal

failed to learn. When learning did occur, both the reward expectation and the reward delivery

activities increased significantly with the improvement of performance. After the animal

reached 100% correct responses, both activity types decreased slowly, to a level below that

recorded for the familiar condition. Note that in the novel condition, the magnitude of the

increase was significantly higher for the reward delivery activity than for the reward

expectation activity. 

Figure B10 illustrates a neuron with increased activity during anticipation of the onset

of the IS. Interestingly, as illustrated in the previous example, when the monkey failed to

learn a novel association, the neuron remained silent during the anticipatory period and the

rest of the trial. It appears as if this activity developed with learning. 
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Population analysis

Overall, in the familiar condition, the activity of striatal cells remained relatively

stable throughout the recording period as illustrated in Figure B11. The standardized neuronal

activity and behavioral performance, averaged over several sessions, are represented for one

association (cue instructing a movement to the right). The monkeys’ performance was stable

and tended to 100 % correct responses. The activity of striatal cells while animals performed

these well-learned associations did not show any significant changes across time. An identical

pattern was observed for  the 3 remaining conditions (not illustrated). 

As already described for individual cells, the firing rate of the striatal neurons

underwent dramatic changes during learning of new conditional visuo-motor associations. As

stated before, two types of changes were observed, and classified as “transient” or “long

lasting”. We pooled together the cases with transient activity and found that the modulation

consisted of an early increase of activity followed by a progressive decrease along the

learning period and after the learning criterion was reached (Figure B12). In early stages of

learning, i.e. before the animals reached the learning criterion, the activity of the striatal

neurons was relatively high. However, in later stages of learning, i.e. once the performance of

the animals tended to reach 100% correct responses, the activity decreased progressively.

When the performance stabilized, the activity of striatal cells also tended to stabilized around

the level of activity seen in the familiar condition and in some cases even below this level.

The other important pattern of modulation observed in the striatum during learning

consisted of a slow increase of activity as learning occurred. Figure B13 illustrates the pooled

activity of neurons in 19 cases. The dynamics of activity changes paralleled that of the

improvement of the animal’s behavior. Contrary to the transient modulation described above,

here the activity increased progressively with the percent correct responses and then

stabilized, after performance had reached 100 % correct responses, around the level of activity

measured during execution of familiar associations. In the very few cases (5/19) which could

be recorded over a long post-criterion period (i.e. more than 22 trials), the acquired learning-

related activity eventually decreased. It is unclear, however, whether this final decrease would

have been observed had a larger sample of neurons been recorded during over training. 
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IV. DISCUSSION

1. Summary of the principal findings

In the present study, activity of phasically active neurons (PANs) was recorded while

monkeys executed FAMILIAR arbitrary visuo-motor associations and learn NOVEL ones.

The results shows that neuronal activity in the striatum undergoes strong modulations during

learning of conditional visuo-motor associations. Task-related activity recorded during

execution of well learned associations changes during learning of new associations. Learning-

related effects are complex, but they can be summarized as three types of modulations. In

some cases, cell activity increased gradually as the animals learned and it stabilized at the end

of learning. In others, activity appeared only during the early phase of learning and

disappeared when the monkey's performance reached a plateau. Finally, in some instances,

activity modulations during learning were combinations of increases and decreases,

depending on the level of learning. Overall, these activity modulations are either transient or

long lasting. We will discuss their possible functional implications, in relation with previously

published data.

2. General properties of striatal neurons during the execution of well-learned arbitrary

visuo-motor associations.

During execution of familiar associations, striatal neurons display a phasic discharge

in relation with a variety of task events including anticipation of the cues, the onset of the

cues, movement preparation and/or execution, and reward (see Figure B4). Single neurons

may present activity in relation with more than one of these events. These properties are well

known in the striatum (Hikosaka et al., 1989a,b,c; Alexander & Crutcher, 1990; Kawagoe et

al., 1998; Kimura & Matsumoto, 1997; Rolls, 1994, Schultz et al., 2003; Boussaoud &

Kermadi, 1997), and there have been several interpretations of their functional implications.

One important aspect is that this divers pattern of activity has led to the now accepted view of

basal ganglia role in more than motor control. Indeed, it now well accepted that these

structures play a crucial role in complex processes such as context dependent selection of

action, memory, and motivational states in relation with reward. In fact, previous studies have

shown that instead of serving as a motor relay for cortical information, basal ganglia may

control high level processes of action selection by influencing cortical activity via the
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thalamus (e.g. Alexander & Crutcher, 1990; Boussaoud & Kermadi, 1997). With recent work

on dopamine neurons (Schultz, 2002, Fiorillo et al., 2003), and striatal plasticity (Jog et al.,

1999), basal ganglia appear in a key position to use these multiple signals to optimize learning

capacity.

3. Modulation of activity in the striatum during learning of novel visuo-motor arbitrary

associations: a comparison with changes in the frontal lobe

As summarized above, the multiple types of striatal activity undergo transient and/or

long lasting changes during learning. One important observation is the labile neuronal

properties of striatum cells. If, for example, a cell has a preferred direction during the familiar

task, during learning of a new set of associations, its preferred direction may not be the same.

One may interpret this observation in the following way: each new experience or learning

creates a new distribution of activity among the population of striatal neurons. By

comparison, neurons in the cortex tend to have relatively fixed properties which are retrieved

after new learning (Mitz et al., 1991).

Comparison of the present results with frontal cortex data suggests that the same

modulations exist at both levels. Indeed, our “transient” and “long lasting” effects of learning

have an equivalent in frontal cortex described as "learning-selective" and "learning-dependent

or learning-static", respectively (Chen and Wise, 1995a,b). Thus, the present study, as well as

the study by Tremblay et al. (1998), suggest that the striatum and frontal cortex share

common, and possibly related, adaptive mechanisms during the acquisition of conditional

visuo-motor behavior. The question remains as to whether and how the striatum and frontal

cortex contribute differentially to such learning. 

Wise and colleagues proposed that in the premotor cortex (i.e., SEF and PMd), the

long lasting and the transient activity changes "may underlie responses selected on the basis

of learned associations, and those selected by trial and error", respectively (Chen and Wise,

1995a; Mitz et al., 1991). Here we propose that distinct processes may underlie the changes

observed in the striatum. Our conjecture is that transient changes in the striatum may play a

critical role in the short-term maintenance in memory of the stimulus previously seen, the

already tried associations and their outcome. This is consistent with the transient modulations

of stimulus and reward related activities observed here (Figure B8 and B9) as well as in a

previous study (Tremblay et al., 1998). Indeed, the increased activity related to the stimulus or

to the reward might reflect increased processing of the new stimulus and its behavioral
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outcome (reward expectation as a positive feedback). This is probably mediated in close

relationship with the PFvl and the hippocampus, which have been shown to participate in the

earliest stages of learning (e.g. Passingham et al., 2000; Wise & Murray, 1999). By contrast,

the long lasting striatal changes might contribute to the long term storage of learned

associations. Indeed, as observed in well-learned associations, activity does not reflect a

specific stimulus, or a specific motor response, rather it seems to reflect a specific association

between one particular stimulus and one particular movement (Figure B7). As previously

said, this finding is in agreement with a previous study showing that, in a well-learned

conditional task, striatal activity was correlated with specific stimulus-response associations

(Boussaoud & Kermadi, 1997). Interestingly, the proportion of such cells was higher in the

striatum than in PMd, suggesting that the new stimulus-response associations might be stored,

at least in part, in the striatum.

One important issue is the interaction between the striatum and the PMd. During

learning, both transient and long lasting changes of striatal activity may modulate neuronal

activity in PMd, via the basal ganglia output nuclei and thalamus. This conjecture is supported

by recent evidence of early neuronal changes in the GPi (internal globus pallidus), one of the

output nuclei of the basal ganglia to the frontal cortex during acquisition of conditional visuo-

motor associations (Inase et al., 2001). Additional support of this idea comes from a recent

fMRI study by Toni et al. (2002), who found that learning visuo-motor rules strengthens

effective connectivity between the striatum and PMd. In this regard, transient modulations are

of particular interest, as they might first drive the changes observed in the PMd, before the

reinforcement by the long lasting changes. After learning, the strengthened connectivity

between basal ganglia and PMd is crucial for task performance, as demonstrated by lesion

studies (Canavan et al., 1989b; Passingham, 1986; Petrides, 1985).

4. Alternative explanations

Alternative explanations could account for the modifications of activity observed in

the NOVEL conditions. These modifications could indeed be related to attentional processes

following the presentation of a novel stimulus (Boussaoud & Kermadi, 1997). First, one

might argue that the observed activity changes during learning could reflect the changes in

attentional demands, which decrease as the monkeys become familiar with the new

associations. This interpretation does not appear to be compatible with our observation. This

interpretation would require that the activity would be higher for the first trials and would
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decreases progressively with learning. However, during learning, activity was low for the first

trials and increased progressively as the animal learned. Second, if activity reflected the

novelty, the changes of activity in relation to attention would be expected to occur for both

learned and unlearned associations (see Figure B9). 

Another possible interpretation could be that the changes of activity in the striatum

could reflect the expectation of reward, which increases as the animals learn. This

interpretation can indeed account for the cases where activity increased as the animal acquired

the novel associations, but for the cases with transient modifications (where activity of these

neurons decreased). 

5. Limits

It is important to point out that the sample of neurons recorded here may introduce a

bias. Indeed, in a typical recording session, the animal performed first the FAMILIAR

associations, while searching to isolate neurons. We usually isolated 1 to 2 neurons from the

electrode. In order to isolate neurons, we slowly advanced the electrode toward a region

showing phasic task-related activities. Activity of the neurons was recorded during the

FAMILIAR condition. Then, novel stimuli were presented and activity of the neurons was

recorded while the animals learned these NOVEL associations. However, during the

FAMILIAR condition, the neurons could be silent (not showing any task-related response).

When presented with NOVEL associations, this neuron will started to fire, either for a short or

a longer period of time. Our sampling method may have underestimated these cases. This is

indeed likely as Miyachi et al. (2002) reported neurons specifically active in relation with

either NOVEL (new preferring neurons) or FAMILIAR (learned preferring neurons) visuo-

motor sequences, which followed an anteroposterior gradient. The former were more

numerous in the anterior striatum ('associative') whereas the latter were predominant in the

posterior striatum ('sensorimotor'). According to the MRI scan obtained for monkey MH, our

recording sites were located in both of these regions. 
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INTRODUCTION

Various forms of conditional associative learning (CAL) have been studied in patients

suffering from Parkinson's disease (PD), as summarized in Table C1 (Canavan et al., 1989;

Gotham et al., 1988; Marié et al., 1999; Pillon et al., 1998; Postle et al., 1997; Sprengelmeyer

et al., 1995; Taylor et al., 1990; Vriezen & Moscovitch, 1990). These studies have yielded

contradictory results.  Although PD patients were often found to perform less efficiently than

controls, a lack of impairment was also reported in several instances. As typical in

neuropsychology, several parameters vary across studies, including the age of the patients,

their stage in the disease, their pharmacological treatment, the task modalities and the

stimulus presentation mode. 

The age of the patients may influence the patients' performance. For example,

although Canavan et al. (1989) reported no significant impairment in either visuo-motor or

visuo-visual CAL in a group of 19 early PD patients, some of the oldest patients (over 70

years of age) did perform poorly compared to controls. However, given that there is an age-

related decline in CAL in normal subjects (Levine et al., 1997), the poor performance of old

PD patients (over 70 years) may reflect normal aging rather than a disease effect. Since the

age of the control subjects in the Canavan et al.'s study ranged from 54 to 67 years, this

possibility cannot be ruled out. 

The stage of the disease does not appear to be a determinant factor as both Early and

‘Standard’ PD patients2 were found to be equally impaired in several studies (see for example,

Pillon et al., 1998).  

Pharmacological treatment with anticholinergic drugs does not seem to influence PD

patients' performance in CAL (Canavan et al., 1989). By contrast, L-dopa, despite its

beneficial effects on motor symptoms, could have a negative impact. First, Gotham et al.

(1988) reported that the same patients that performed well during L-dopa withdrawal, were

impaired under L-dopa treatment.  Second, among the two studies that used a visuo-visual

task based on color-shape associations to evaluate early PD patients (Canavan et al. 1989, and

Marié et al. 1999), only the one carried out in patients treated with L-dopa (Marié et al. 1999)

reported an impairment. This negative effect of the L-dopa may be due to an overstimulation

                                                
2 Early versus 'Standard' (or advanced) patients correspond approximately to patients with less versus

more than 10 years of disease, respectively. 
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of the dopaminergic (DA) system projecting to the prefrontal cortex, which is supposed to be

spared in the early stage of the disease (Marié et al. 1999). 

In addition, it seems that whenever a spatial component is introduced in the task,

whether in the stimulus or in the response arrays, the performance of PD patients is

systematically impaired. It is the case for Early as well as 'Standard' PD patients, with or

without treatment, and whether stimuli were successively or simultaneously presented (Pillon

et al., 1998; Postle et al., 1997; Taylor et al., 1990; Vriezen & Moscovitch, 1990). 

Finally, presenting complex abstract visual stimuli simultaneously, as opposed to

successively, seems to ameliorate PD patients performance. In the simultaneous mode of

presentation, all the visual stimuli are presented at the same time and one is highlighted, the

one for which the subject has to give a response. This mode of presentation offers the

possibility to directly compare the different stimuli, thereby facilitating their discrimination

and recognition (Postle et al., 1997; Vriezen & Moscovitch, 1990). 

In summary, earlier studies on CAL in PD patients suggest that dopaminergic

treatment, tasks involving a spatial component, and successive presentation of the stimuli, all

deteriorate the performance. By contrast, these earlier studies provide little insight on the

exact type of difficulty PD patients encounter when they are impaired on CAL. 

As already mentioned in the previous section, the defining characteristic of conditional

associative tasks is that there are several, competing responses, each being correct when

performed in the presence of the appropriate stimulus (Petrides, 1985). Several processes are

confounded when subjects are asked to learn by trial and error a set of stimulus-response

associations. For each stimulus presented, subjects have first to discriminate it from the other

stimuli (recognition memory). Subsequently, they need to select a response and most

importantly to hold its consequence (i.e correct versus incorrect) in working memory. A

correct or an incorrect response must be integrated, probably under the influence of reward

and error signals. All this information needs to be organized and monitored in working

memory across trials before each stimulus-response association can be first established and

then consolidated. In addition, because several associations are learned concurrently, specific

strategies (e.g. focusing on one association at a time) may be used to optimize performance.

Thus, cognitive processes such as recognition memory, on-line maintenance and organization

of information in working memory, response selection, and feedback use are all confounded

in CAL. Each of these different processes may be impaired in PD patients (for a review, see

Dubois & Pillon, 1997), thus measuring global performance can not provide clues about the

specific process that is altered in PD patients during conditional associative learning. 
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One study (Vriezen & Moscovitch, 1990) has shown that verbally providing the

correct response to PD patients after each error did alleviate their impairment on visuo-verbal

CAL. This suggested that, unlike frontal lobe damage (Petrides, 1997), Parkinson's disease

does not interfere with motor selection once the rule is provided, but selectively alters trial-

and-error learning of arbitrary rules. Other studies have calculated the number of times

subjects tried the same incorrect association. In Postle et al.'s study (1997), PD patients made

more of these errors than controls only in the spatial condition. These types of errors were

also reported in the Pillon et al.'s study (1998), except for the Early PD in the visuo-spatial

condition. Overall, according to these two studies, PD patients tend to repeat the same

incorrect association more often than controls. In addition, Pillon et al. (1998) calculated the

number of times PD subjects failed to inhibit a response for which they had already found the

correct stimulus. They found that Early as well as Standard PD groups made significantly

more of these perseveration errors than the controls groups. 

Thus, neurophysiological studies (see previous part) suggested clearly a role of the

basal ganglia in CAL task, but it is not obvious whether their dysfunction alters learning in

this tasks. We reasoned that a systematic investigation using the same task as in the

neurophysiological study would reveal an impairment in PD patients. We have thus tested the

ability of a group of 'Standard' PD patients first to form a single stimulus-response association

with and without using working memory, and then to learn, by trial-and-error, a conditional

task during which sets of three visual stimuli had to be mapped onto four possible

movements.  For CAL, we have attempted to analyze the patients' performance in detail so as

to gain some insight on the specific difficulty they encounter when impaired.
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SUBJECTS AND METHODS

Subjects

Nine patients with Parkinson’s disease (PD) and eight controls were tested in these

experiments. The main characteristics of these two groups are summarized in Table C2. The

protocol was approved by the local Ethics Committee for clinical investigations, and informed

consent was obtained from all subjects. 

a. Patients

Nine patients with idiopathic PD were recruited from the clinical department of

Neurology of the Hospital of LYON. The diagnosis of PD was established on the basis of the

following criteria: 1) existence of either an akinetorigid syndrome, resting tremor, or both; 2)

good sensitivity to levodopa treatment. All patients selected in this study were treated with

levodopa and were candidates for a surgical implantation of chronically implanted electrodes

in the subthalamic nucleus. They were thus selected following strict criteria (Limousin et al,

1998; Thobois et al, 2002). All patients had marked "on" state dyskinesias and on-off

fluctuations. Details concerning motor, cognitive states as well as treatments are summarized

in Tables C3 and C4 for each patient. A routine neuropsychological tests were administrated

only in the ON condition, and their details are provided in annex.

The Patients were tested under two conditions: 'ON' and 'OFF' levodopa state. In this

preliminary study, seven patients were first tested in the ‘OFF’ condition, i.e. after overnight

withdrawal of medication (12 hours). In the ‘ON’ condition, the testing lasted approximately

one hour after (levodopa) treatment with a standard dose of levodopa (= 1.5 times their

current dose). The two remaining patients were first tested in the ‘ON’ condition (same as

above) and then in the OFF condition.

b. Controls 

Eight control subjects, recruited from local advertisements in the Lyon area,

participated in this study. They had no neurological or psychiatric history, and matched the

PD patients for age and level of education.
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Materials

Subjects sat in front a computer screen where visual stimuli were presented (Figure

C1). Visual stimuli consisted of complex geometric colored patterns that were difficult to

verbalize. They were presented on a dark background. All the experiments were controlled by

a home-made program running under Windows. Subjects gave their responses using a joystick

which could be moved in four directions (referred to as right, left, up and down). They

practiced to move the joystick before testing started. None of the patients included in the

study had difficulty using the joystick. 

Procedure

The experiment consisted of a series of tasks presenting an increasing level of

difficulty (Figure C2). In all tasks, a trial started by the presentation of a yellow central

fixation cross during 1s, instructing to the subject to pay attention to the screen, and the

subjects were informed about the result of their response after each trial,. If the subject gave a

correct response, a green smiley face appeared for 1s, if the response was incorrect, a red

unhappy face was presented for 1s. In the task involving learning, we considered that subjects

had learned when they responded correctly over 3 consecutive presentations of a given

stimulus. 

Each subject completed a series of tasks in the following order (Figure C2): 1) a

standard mapping task, 2) a learning task where they had to associate by trial and error one

visual stimulus with the correct response, with or without load in working memory, 3) a

conditional learning task where they had to associate by trial and error three visual stimuli

with their correct responses. In all tasks, the same categories of visual stimuli were used and

subjects were asked to respond as quickly as possible. 

Standard mapping task (SM)

In this task, after the presentation of the fixation point, a visual stimulus was presented

at one of four positions on the screen : UP - RIGHT - LEFT - DOWN. The position of the

visual stimulus varied pseudo-randomly within each block of four trials. The subject was

asked to displace the joystick in the direction indicated by the stimuli. A feedback was

presented in the direction chosen by the subject. A block of 12 trials were completed by each

subject for all (three per direction). The same visual stimulus was used for all 12 trials.   
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Single association learning without working memory (SLnoWM)

For this task, a new visual stimulus was presented at the center of the screen after the

extinction of the fixation point. The subjects were asked to find the correct joystick movement

associated with this stimulus. They were explicitly informed that there was no direct link

between the physical features of stimulus and the correct motor response. Every time the

subject tried a response, he/she received a feedback which remained on the screen during the

rest of the trials. For example, if the subject moved the joystick to the right and the right was

not the correct direction, a negative feedback (unhappy face) was presented on the right side

of the screen and remained on during the following trials. In such a situation, the subject did

not have to hold in memory the outcomes of preceding trials. The aim here was to test the

subject’s capacity to select one movement among the still possible ones and the ability to

refrain from perseverating in incorrect choices. The testing lasted until the learning criterion

was reached. Two separate associations were successively presented until the learning

criterion of three correct consecutive responses was achieved.

Single association learning with working memory (SL_WM)

This task was identical to the previous one except that feedback was presented on the

center of the screen. The subjects were asked to remember their different responses and their

consequences (correct/incorrect). Two associations were successively presented until the

learning criterion was achieved.

Visuo-motor Conditional associative learning task (CAL)

In this task, sets of three visual stimuli were used. The stimuli were presented one at a

time, at the center of the screen, in a pseudo-random order within each block of three trials.

As in the previous experiments, the subjects were asked to learn by trial and error the correct

movement associated with each stimulus, until they reach the learning criterion for each

visuo-motor associations. One to three sets of three stimulus-response associations were

completed by each subject. In each block, three different novel stimuli chosen within the same

family (e.g. same color) were used. One block was completed when subjects reached the

learning criterion for the three stimulus-response associations. 

As compared to the SL_WM task, in this task, subjects had to handle a large amount

of information in working memory. They had to discriminate the different stimuli presented

and to remember the responses tried for each stimulus and whether that response was correct

or incorrect.
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Data analysis

Performance as well as response times were collected for both groups in all tasks.

Response times corresponded to the time from stimulus presentation until the end of the

subject responses. In the SM task, performance referred to the percent correct responses. In

the SLnoWM and the SL_WM tasks, performance corresponded to the mean number of trials

necessary to reach the learning criterion (the 3 trials of the learning criterion was always

included). 

In CAL task, we calculated the total number of trials to achieve learning criterion for

each of the 3 associations. If subjects failed to achieve the criterion, we also used the total

number of trials performed by these subjects. We also calculated the number of errors and the

percentage of error (number of errors/total numbers of trials). As in SLnoWM and SL_WM

tasks, we then calculated the number of trials needed to learn each stimulus-response

association (3 stimulus-response associations). 

Once the subjects reached the learning criterion for a given stimulus-response

association, we evaluated the number of times they executed an incorrect response for this

association (Post-criterion memorization errors). This measure was intended to detect

difficulties in holding in memory a successfully learned association. We also calculated the

number of times an incorrect response to a given stimulus was repeated (Incorrect

association perseveration). This measure could either denote a working memory problem (if

subjects did not remember their previous choices and/or their consequences) or a difficulty in

switching to another response. 

We then examined the chronological order of the subjects’ responses. Each of the

three stimuli appeared once per three-trial blocks, hence, a given stimulus was seldom

repeated over two consecutive trials. We calculated the number of times the subjects: 1)

inappropriately repeated a correct response when a different stimulus was presented ('motor

perseverative errors') and 2) appropriately repeated the same motor response until they

found the correct stimulus associated to this response ('motor strategy'). 

Statistical analysis. The controls, PD patients ON medication and PD patients OFF

medication were compared using one-way ANOVAs, following by 1-sided Dunnett's tests.

The effect of L-Dopa medication in the PD patients was assessed using paired t-tests. Finally,

the links between the different variables measured were explored using Pearson correlations.
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III. RESULTS

The patients and controls did not significantly differ in age [F(1,15) = 1.079, p =

0.315], nor in their level of education [F(1,15) = 0.049, p = 0.828]. They both used labels to

identify the visual stimuli. 

1. Standard Mapping task (SM)

Both groups performed this task without any difficulty (Figure C3-A). There were no

significant difference in the performance or in the mean response times between the controls

and the PD groups, OFF or ON medication. Not surprisingly, PD patients tended to be slower

OFF medication as compared to the ON state. However, this difference failed to reach the

significance level.

Single association learning, without (SLnoWM) or with (SL_WM) working

memory. 

Theoretically, learning to associate a single visual stimulus with the correct motor

response among four possible ones requires 1 to 4 trials if the 3 trials of the learning criterion

are excluded, that is between 3 and 6 trials if the learning criterion is included. All subjects

completed 2 associations per task (with or without working memory). As represented in

Figure C3-B, the controls and PD (ON and OFF medication) groups learned the single

associations within 3 to 6 trials (learning criterion included), irrespective of the demands

imposed on working memory. Following an incorrect response, none of the subjects repeated

the same error, instead they switched to another response until they found the correct one. 

No significant difference was found in mean response times between groups in single

association learning, without [F(2,23) = 0.043, p = 0.958] or with working memory F(2,23) =

0.095, p = 0.910]. Furthermore, L-dopa treatment did not significantly ameliorate or

deteriorate the performance or the response times in PD patients. 
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Visuo-motor Conditional Associative Learning

The number of sets actually completed by each subject (out of the intended three) is

summarized in Table C5. All but one control subjects were tested on three sets each. By

contrast, PD patients often completed only two sets, due to fatigue and/or to OFF/ON

dependent motor difficulties (i.e. either dyskinesia or rigidity).

Overall, as compared to controls, the group of nine PD patients included in the present

study were impaired in CAL, in the OFF medication condition. However, examination of

individual scores indicated that this deficit was actually present in six patients (patients 1, 2,

3, 4, 5, and 8), but not in the remaining three (patients 6, 7, and 9). Therefore, in the following

paragraphs, the results will be described separately for each of these two subgroups of patients

that will be referred to as PD-I and PD-II, respectively. Under dopaminergic medication,

neither of the two subgroups significantly differed from controls. 

a. Comparison between the controls and PD-I OFF medication

As compared to controls, PD-I patients, OFF medication, first failed to reach the

learning criterion for more than 50 % of the sets tested3 (Figure C4-A). Second, they needed

significantly more trials to reach (or fail to reach) the learning criterion whether the three

associations of each sets were considered together [Figure C4-B; F(2,17) = 11.956, p = 0.001;

Dunnett p < 0.001], or separately (Figure C5-B; all Dunnett p's < 0.05). Accordingly, they

made more errors, whether expressed in terms of number of errors [Figure C4-B; F(2,17) =

8.680, p = 0.003; Dunnett p = 0.001], or in percent incorrect responses [Figure C4-C; F(2,17)

= 6.346, p = 0.009; Dunnett p = 0.004]. In addition, detailed examination of individual

performance revealed a non significant increase in post-criterion memorization errors, as well

as a significantly greater number of association perseveration errors, i.e. repetition of the same

incorrect association [Table C6; (2,17) = 12.191, p < 0.001; Dunnett p < 0.001].

b. Comparison between the control and PD-II OFF medication

Overall, PD-II patients, OFF medication did not significantly differ from controls.

Learning criterion was achieved for all sets tested and all three patients learned the three

associations at the same rate as controls. The only difficulty detectable in PD-II subgroup was

a tendency to make more post-criterion memorization errors [Table C6; F(2,11) = 1.875, p =

0.199; Dunnett p = 0.073]. 

                                                
3 For the failed sets, patients' scores were based on the number of trials actually completed before

interruption of testing. These scores therefore underestimate the severity of the difficulty encountered by the
patients. 
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c. Strategies. As described in PART B in the monkey, humans learned the associations

in a sequential manner and this strategy was present in controls and patients alike, and for the

patients, irrespective of the medication condition. By contrast, differences emerged regarding

the motor strategy. OFF medication, none of the PD-I patients developed it whereas, all

three PD-II did so. Accordingly, when all PD patients were considered together, the use of

the motor strategy was found to be negatively correlated (1) with the total number of trials (p

= 0.065), (2) with the number of errors (p = 0.052), (3) with the percent errors (p = 0.040), (4)

with the number of trials needed to reach the learning criterion for the second (p = 0.026) and

third (p = 0.083) associations, and most significantly (5) with the perseveration in incorrect

associations (p = 0.008, Figure C6). By contrast, only four out of the eight controls relied on

the motor strategy, thus the use of this strategy was not correlated with any of the controls'

scores.

d. L-Dopa treatment effect 

Overall, L-Dopa treatment ameliorated PD performance. This effect was most salient

for the PD-I subgroup (Figures C4 and C5). Paired t-tests revealed that, compared to the OFF

state, these patients ON medication needed less trials to achieve the learning criterion

(Dunnett p = 0.057), to learn the second (Dunnett p = 0.034) and third (Dunnett p = 0.052)

associations, and made less errors (Dunnett p = 0.06) and perseveration in incorrect

associations (Dunnett p = 0.018).  L-Dopa treatment also increased the use of the motor

strategy in PD-I subgroup (Dunnett p = 0.006, Table C6). 

Under L-dopa treatment, PD-II subgroup tended to make less post-criterion

memorization errors although this difference did not reach statistical significance (Table C6).
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IV. DISCUSSION

2. Summary of the results

Preserved performance on standard mapping and single association learning tasks

We used a series of tasks in order to rule out some alternative interpretations before

coming to the conclusion that patients were specifically impaired in learning conditional

visuo-motor associations. First, PD patients were not impaired because of a motor deficit.

They were able to move the joystick in the four possible directions in the standard visuomotor

task. Second, they were able to form single arbitrary associations between complex visual

stimuli and motor responses, whether feedback was provided continuously or had to be stored

in working memory. This indicated that our sample of patients retained the abilities to 1)

select one particular movement among competing ones, 2) inhibit an incorrect response, and

3) ensure on-line maintenance of a limited number of items in working memory. All the

above functions were found to be spared whether the patients were ON or OFF L-Dopa

treatment. 

Conditional associative learning impairment in a majority of PD patients 

Like controls, all PD patients used verbal labels to discriminate the different stimuli

forming a set, and learned the three concurrent associations sequentially. This suggested that

the disease did not interfere with at least some forms of auto-generated strategies that can

facilitate performance in conditional visuomotor learning, such as verbal organization of

sensory information and breaking down a complex problem into several separate, more easily

manageable elements. Nonetheless, six out of the nine patients (PD-I) displayed a significant

deficit when tested OFF medication. These patients failed to reach the learning criterion for

half of the sets tested, and even when they did reach criterion, took more trials and made more

errors than controls. Detailed examination of their performance revealed two types of

difficulty. The first type occurred early in learning (pre-criterion) and consisted in an

abnormal number of repetitions of the same incorrect stimulus-response association. Two

interpretations may account for this first type of difficulty. One is that the patients forgot

incorrect associations from one block of (three) trials to the next, due to the intervening trials

with the other stimuli, that is, presented a deficit in monitoring competing information in

working memory. Another, not exclusive, possibility is suggested by the observation that

some subjects seemed to display spontaneous preferences that led them to, a priori, favor one
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specific response for a given stimulus. Thus, repetition of the same incorrect association

might reflect a failure to inhibit those spontaneous biases following negative feedback

information. The second type of difficulty detectable in PD-I subgroup was a tendency to

make more post-criterion errors than controls. This could signal a problem in the late stages of

learning, during which consolidation and automatization of stimulus-response bonds take

place.

Spared conditional associative learning in some PD patients

Three of the nine patients acquired sets of three visuomotor associations as readily as

control subjects, irrespective of the medication condition.  No clear-cut difference could be

found between these three patients and the remaining of the PD group in terms of age,

duration of the disease, amount of dopatherapy, or education level.  As a result, and pending

testing of a greater number of patients, we favor the hypothesis that these three patients did

suffer from the same deficit as that observed in the other patients, but successfully devised a

compensatory strategy that allowed them to perform as accurately as control subjects. This

hypothesis is based upon the fact that CAL performance within the PD group was tightly

correlated with the use of a 'motor strategy' that consisted in repeating the same motor

response until finding its associated stimulus. The three patients (PD-II) who performed as

controls OFF medication, used this motor strategy, whereas the other six (PD-I) did not

develop the strategy, and displayed a deficit. Since in controls, the motor strategy was present,

but was not correlated with performance, it seems that only for the patients was this additional

strategy mandatory to achieve normal learning. Focusing on a single motor response until its

associated stimulus is found was appropriate in our protocol since each stimulus was

presented once per three-trial block and stimuli were not re-presented after an incorrect

response. The motor strategy could thus efficiently circumvent the difficulty in monitoring

competing associations in working memory encountered by PD-I patients (see above).

Finally, it is of interest to note that despite their normal pre-criterion performance, PD-II

subgroup did show the same tendency to commit an abnormal number of post-criterion errors

as that seen in PD-I. This suggests that difficulty in the automatization phase of CAL may be

common to all PD patients.

L-Dopa treatment effect

Dopaminergic treatment did alleviate the deficit of PD-I subgroup. This improvement

of performance was correlated with the use of the motor strategy, thereby raising the
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possibility that L-Dopa did not restore normal functions, but rather facilitated the

development of compensatory strategies. In addition, L-Dopa tended to decrease the number

of post-criterion errors found in the two PD subgroups.

Comparison with earlier studies 

As already summarized in the above introduction, the impairment of PD patients on

CAL has been controversial in the literature (Canavan et al., 1989; Gotham et al., 1988; Marié

et al., 1999; Pillon et al., 1998; Postle et al., 1997; Sprengelmeyer et al., 1995; Taylor et al.,

1990; Vriezen & Moscovitch, 1990). Cross-study comparison is inevitably hindered by the

fact that the conclusions of any single study, including the present one, depend not only on the

particular sample of patients investigated, but also on the exact tasks used. Hence, the present

data can usefully be confronted to the results of only two of the previous studies on CAL in

PD patients. One because it constitutes the only other investigation of sensory-motor (rather

than sensory-sensory) conditional learning (Canavan et al., 1989); the other because it

constitutes the only other study including a homogeneous group of advanced PD patients (as

opposed to a homogeneous group of early patients or a mixed group).

Canavan et al. (1989) submitted 19 early PD patients (mean age, 58 years; average

disease duration, 34 months; testing done prior to initiation of L-Dopa therapy) to a visuo-

motor task requiring trial-and-error mapping of six colors onto six possible handle

displacements. The results can be viewed as a mirror-image of our findings in advanced PD

patients (mean age 53 years, disease duration, 7-13 years).  Namely, overall early patients

were found not to be impaired (unlike patients with frontal lobe lesions), but examination of

individual scores nevertheless revealed a deficit in a minority of subjects (six out of 19). It is

therefore possible that a deficit in visuo-motor CAL is more likely to emerge in advanced than

in early PD patients. Alternatively, the sparing of function observed by Canavan et al. might

have been be due to the method of testing.  First, colors are simple visual stimuli that are

easier to verbalize and remember than the complex stimuli used in the present study. Second,

in Canavan et al's experiment (as in all previous neuropsychological investigations), after an

incorrect response, subjects were presented with the same stimulus until they found the

correct response, whereas in our protocol, no such correction method was used (in order to

allow direct comparison with the monkey study).   

Pillon et al. (1998) submitted 16 advanced PD patients (mean age, 63 years; average

disease duration, 10 years) to two tasks requiring trial-and-error mapping of either six
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complex visual stimuli onto six locations (visuo-spatial CAL), or six animal names onto six

given names (verbo-verbal CAL). Unlike in our study, patients under L-Dopa treatment were

found to be impaired (performance was not evaluated OFF medication). Since the main

characteristics of Pillon et al.'s group of patients closely resembled that of our sample, this

discrepancy likely results from task differences. One of them is the number of associations

(six versus three). Another is the correction method evoked above. Indeed, although repetition

of the same stimulus until the correct response is found may facilitate learning, it also

precludes the use of the compensatory motor strategy seen in our protocol (where stimuli

repetitions were rare). Notwithstanding, a finding common to the two studies is that, when

occurring, CAL impairment in PD patients is accompanied by an excessive number of

repetitions of the same incorrect association. 

Basal ganglia and CAL

Behavioral studies of Parkinson's disease demonstrate that the characteristic clinical

symptoms of bradykinesia, rigidity, and resting tremor are frequently accompanied by

impairments in cognitive functions. The pattern of cognitive impairments seen even in the

early stages of PD resembles that produced by frontal lobe damage, insofar as it includes

deficits in executive functions such as planning and monitoring information in working

memory (Taylor et al., 1990; Owen et al., 1997; Lewis et al., 2003; Dubois & Pillon, 1997). 

Anatomically, Parkinson's disease is characterized first by a dopamine denervation in

the nigrostriatal system, which although extensive is not complete. In later stages of the

disease, this denervation extends into the mesocorticolimbic dopaminergic system (Agid et

al., 1993). Additionally, other neuromodulatory systems are affected in Parkinson’s disease

(Javoy-Agid et al., 1984, Everitt & Robbins, 1997) and Lewis bodies have been found

disseminated in different cortical brain areas such as the frontal and temporal lobes (Braak &

Braak, 2000). Thus, although executive dysfunction in PD has been shown to be dopamine-

dependent (Lange et al., 1992), one has to be cautious in interpreting the behavioral

manifestations of this complex disease. In particular, it remains unclear whether cognitive

parkinsonian symptoms are attributable to basal ganglia or to frontal lobe dysfunction.  

The heterogeneity of the CAL performance in our group of patients denotes this

complexity, and confirms the inter-individual variability reported previously in cognitive

performance among PD patients who were otherwise matched for most clinical characteristics

such as same disease duration (e.g. Lewis et al., 2003). As for the dopamine-dependent
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compensatory mechanism observed here, it may be subserved either by the nigrostriatal or the

mesocorticolimbic system (Rakshi et al., 1999; Kaasinen et al., 2001). 

In light of electrophysiological data in monkeys (including those reported in Part B),

we propose that the CAL deficits observed in PD patients result, at least in part, from basal

ganglia dysfunction. Further, we hypothesize that the BG are involved in both the early

(monitoring competing information in working memory) and late (consolidation and

automatization of stimulus-response bonds) phases of CAL. 
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I. INTRODUCTION

As already mentioned in Part A, a few neuroimaging studies (using fMRI or PET)4

have investigated the cerebral network underlying arbitrary visuo-motor mapping (e.g. Toni et

al., 2001a,b; Toni & Passingham, 1999, Toni et al., 2002; Deiber et al, 1997). According to

these different studies, a large network, including prefrontal, premotor, temporal, and parietal

cortical areas, as well as the cerebellum and the basal ganglia, was recruited during arbitrary

visuo-motor mapping. 

Among earlier studies using PET, one (Toni et al., 2001a) assessed the contribution of

this network to two different types of visuo-motor transformation, i.e. standard versus non

standard mapping. In the standard mapping task, subjects were instructed to grasp the

presented object whereas in the non-standard mapping task (conditional task), they were

instructed to perform the hand gesture arbitrarily associated with the presented stimuli,

according to previously learned rules. No learning effect was measured during scanning in

this study. Direct comparison between these two tasks revealed a selective activation of the

anterior part of the left putamen/globus pallidus (Talairach coordinates : x = -14, y = 6, z = -2)

while subjects performed the conditional task. In another PET study, CAL was studied using

either spatial or object cues (Deiber et al., 1997). Depending on the task condition, subjects

had to associate either the stimulus (object) or its location (spatial) with the correct motor

response using a joystick. In this study, subjects were given the rules linking the sensory

information and the movement to be performed before the scanning session. During scanning,

no feedback was provided about the correctness of the response, and the errors were very rare

(13/106 and 10/106 in the object and spatial paradigms, respectively). As in the previous

study, performing such associations elicited a selective increase of activation in the left

putamen in both the spatial (Talairach coordinates :  x = -28, y = -4, z =  4) and object

((Talairach coordinates : x = -30, y = -10, z =  8) paradigms.

Learning to associate new visual cues to movements has also been investigated using

functional imaging (Toni & Passingham, 1999, Toni et al., 2001b). In one PET study, Toni

and Passingham (1999) compared the network recruited while subjects learned visuo-motor

                                                
4 functional Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET) measure

the hemodynamic or metabolic changes that accompany changes in neural activity.

http://www .cog.brown.edu/~tarr/stimuli.html
http://www .cog.brown.edu/~tarr/stimuli.html
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arbitrary associations versus while they learned a visuo-motor sequence. In both tasks,

subjects had to learn by trial and error. Direct comparison of these two tasks denoted a

selective increase of activation over time in the left caudate nucleus (Talairach coordinates : x

= -12, y = 8, z = 18) in relation to learning arbitrary rules. However, direct comparison of the

baseline (sensory control) and CAL revealed a decreased activation over time of the right

caudate nucleus (Talairach coordinates : x = 24, y = 18, z = 16). Thus, as previously

mentionned, anterior striatal regions seem to be recruited during early stages of learning

whereas posterior ones seem to be recruited during later stages. In another study using event

fMRI, the same authors compared the execution of well-learned associations with learning of

new ones (Toni et al, 2001b). In this study, before scanning, subjects were trained on a set of

4 associations between visual cues and motor responses (finger movements). During

scanning, they were presented with these well-learned associations as well as new ones.

Following the temporal dynamic of brain activity while subjects learned the new associations,

the authors found a selective increase of activation for the caudate nucleus (Talairach

coordinates : x = -18, y = 18, z = 4) that correlated with performance. According to this study,

the ventrolateral prefrontal cortex and the hippocampal formation are first recruited before the

implication of the striatum. Finally, this group also studied the effective connectivity, i.e. the

strength of the cortico-striatal interactions, during learning (Toni et al., 2002). They found that

during learning projections arising from the ventral prefrontal cortex and the medial temporal

lobe and directed toward the striatum, as well as those arising from the striatum and directed

toward the dorsal premotor cortex were strengthened. They concluded that the striatum is in a

position to ‘bind together cortical sensory information (temporal) with action selection

(anterior PF) in order to bias motor programs (PMd)’

To summarize, according to these studies, the striatum seems to be involved in CAL.

Anterior striatal regions seem to be recruited during early stages of learning whereas more

posterior regions are recruited during later stages. However, these results come from different

studies. Only one study has investigated the role of striatum in the different stages of learning

(Toni et al., 2001b), but subjects were trained occurred just prior to scanning, not allowing a

strong consolidation (FAMILIAR condition, one training session : 93 blocks of 18 trials were

performed by each subject). Furthermore, different types of stimuli were used in the

FAMILIAR (simple arrows) and NOVEL (complex patterns) conditions. In addition, Toni et

al. (2001b) used a single set of associations to study learning-related changes of brain

activation. 
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Taking into account these different parameters, the aim of the present study was to

pursue the investigation of brain activation across different stages of CAL. In this study, as in

the previous Parts (B-C), subjects had to form arbitrary associations between visual cues and

movements (in this case, finger movements). We overtrained subjects on 3 stimulus-response

associations prior to scanning (Familiar). Training took place across several days (4 days) to

ensure that the associations were perfectly learned and maintained in memory. During

scanning, each subject was presented successively with 4 different sets of 3 novel stimulus-

response associations (Novel) as well as the Familiar ones. The same types of stimuli were

used in the Novel and Familiar conditions. In the Novel conditions, subject was required to

learn by trial and error to associate each stimulus with the correct movement. Furthermore, 2

different modalities were used here. Likewise, using the same type of stimuli, subjects were

either required to form the associations according to the stimulus (object) or its location

(spatial). 

II. MATERIALS AND METHODS 

1. Subjects and setup 

Ten healthy volunteers were studied (5 males, 5 females; mean age 24.7 ± 1.4 years).

All subjects were strongly right-handed, as assessed by a French adaptation of the Edinburgh

Handedness Scale (Oldfield, 1971). Experiments were conducted with the understanding and

consent of each subject. 

Visual stimuli were generated by a Power Macintosh 9600 computer (Apple,

Cupertino, CA, USA) using Psyscope V1.2.2 software (Carnegie Mellon Department of

Psychology; Cohen et al. 1993). They were presented using a video projector (Eiki LC 6000,

Eiki Industrial Co. Ltd., Osaka, Japan), a projection screen fixed on the back of the magnet

and a mirror placed atop of the head coil. The stimuli were taken from the "Greeble" series of

objects provided courtesy of Michael J. Tarr (Brown University, Providence, RI; http://www

.cog.brown.edu/~tarr/stimuli.html).  As depicted in Figure D1-A, Greebles are computer-

generated, abstract colored stimuli that are difficult to verbalize.  The stimuli (1.4° x 1.4°

each) were presented on a dark background at one of 15 predefined locations on the screen.

Subjects responded by pressing one of the four keys positioned under their right thumb, index,
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middle, and ring fingers. The computer was used for both stimulus presentation and data

acquisition (key presses, and response times) in real time.

2. Behavioral paradigms

The subjects were tested using sets of three items presented over three of the 15

possible locations, with a pseudorandom order ensuring that each stimulus and location

appeared once per block of three consecutive trials.  The subjects were required to learn, by

trial and error, which of the four possible motor responses was associated with each stimulus

(OBJECT paradigm) or each location (SPATIAL paradigm). They were explicitly informed

that there was no direct link between the stimulus or location and the correct motor response,

i.e. that the associations were arbitrarily predetermined by the experimenter. The sequence

and timing of events were identical in the two paradigms. As illustrated in Figure D1-B, a trial

started with the presentation of one stimulus at one position for a maximum of 2 seconds. The

subjects were asked to select and execute a motor response as quickly as possible.

Immediately after response completion, a feedback was provided for 300 ms. A green square

indicated a correct response and a red square an incorrect response. Then, a white fixation

point was presented at the center of the screen until presentation of the next stimulus. The

interstimulus interval lasted 4 seconds. The specific stimuli used for the OBJECT and

SPATIAL paradigms were different in order to avoid interference. Otherwise, the two

paradigms differed only by the instruction given to the subjects, i.e. to pay attention either to

the morphological characteristics or to the spatial locations of the visual stimuli. 

3. Testing procedure

The OBJECT and SPATIAL paradigms were administered separately over 2

consecutive weeks, with a counterbalanced order of presentation across subjects. For each

paradigm, testing took place over five consecutive days and comprised four training sessions

followed by one scanning session.  

During the four days before scanning, subjects were trained with a single set of three

stimulus-response or location-response associations. They performed a total of 600 trials (150

trials per day), which ensured that each subject reached a criterion of at least 90 % correct

responses with stable reaction times at the end of training. This over-learned set of three

associations will be referred to as the FAMILIAR task condition. 
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The scanning session occurred on the fifth day of testing and lasted a total of 80 min.

It consisted of a sequence of five epochs of equal duration (4 min. each) that was repeated

four times (Figure D1-C). The five epochs comprised a rest condition, the FAMILIAR task

condition and three Novel conditions. Switching between epochs was signaled by a 2-sec text

instruction. In the rest condition, subjects were asked to passively fixate a central fixation

point. In the FAMILIAR task condition, subjects performed 12 trials during which they had to

retrieve and execute the three associations acquired during the training sessions. In the Novel

conditions, a new set of items was presented and the subjects performed 36 trials during

which they were required to learn, by trial and error, to associate each stimulus or location

with one of the four possible movements. Based on preliminary behavioral testing, the 36

trials performed with new sets of three associations were divided into three successive stages

of learning, which included 12 trials each, and were respectively termed the EARLY,

MIDDLE and LATE task conditions. 

4. Behavioral analysis

Performance and response times during the scanning session were measured for each

subject, and averaged over the four 12-trial blocks composing each task condition (EARLY,

MIDDLE, LATE and FAMILIAR). Performance refers to the percentage of correct responses,

and response times correspond to the time from the onset of the visual stimulus on the screen

until the subject pressed a key. Comparisons between different conditions of the same

paradigm or between the same conditions across the two paradigms were carried out using

paired t-tests or parametric analyses of variance (ANOVAs) with repeated measures. 

5. MR acquisition 

Measurements were performed at 3 Tesla on a clinical MR imager (Brucker MedSpec

S300). The body coil was used for excitation while the head coil was used for detection. A

volume composed of 48 slices (slice thickness = 3 mm) parallel to the anterior commissure-

posterior commissure (AC-PC) axis was measured 12 times during each epoch. The volume

encompassed the whole brain except the posterior lobe of the cerebellum. Positioning of the

volume was performed on scout images acquired in the sagittal plane. The volume was

measured twice in a dummy fashion prior to testing, so that system stability could be

achieved. The functional scans were performed by means of a gradient-recalled echo, echo-

planar imaging MR sequence. T2*-weighted images were acquired. The major MR sequence
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parameters were: TR = 4000 ms, TE = 45 ms, pulse angle = 90°, acquisition matrix = 72 * 72,

field-of-view = 216 * 216 mm2, in-plane resolution = 3 mm. Prior to acquisition, a chemically

selective RF pulse was applied in order to suppress the signals from fat. Finally, a high-

resolution 3D T1-weighted MR scan was acquired to provide anatomical information about

the volume examined functionally.

6. Image processing and statistical analysis 

Data analysis was performed using SPM-99 software (Wellcome Department of

Cognitive Neurology, London, UK; see Friston et al. 1995a) running on a Unix workstation

under the MATLAB environment (Mathworks, Sherbon, MA, USA). MR images were

subjected to three pre-processing steps. All images within a functional scan were first

realigned by means of a rigid body transformation for motion correction (Friston et al.

1995b). Then, the anatomical volume was spatially normalized using as template a

representative brain from the MNI series (Montreal Neurological Institute, Quebec, Canada;

Evans et al. 1993) and linear transformations (Friston et al. 1995b); these normalization

parameters were subsequently applied to the functional images. Finally, the functional images

were spatially smoothed with a Gaussian kernel of 8 mm width. 

Statistical contrasts were performed both individually for each subject and for the

overall group of subjects using the general linear model (fixed effects) (Worsley et al. 1992;

Friston et al. 1995a, Worsley and Friston 1995). Clusters of activated voxels were then

identified on the basis of the intensity of the individual responses and the spatial extent of the

clusters. Statistical significance thresholds were established at p = .00001 for individual

voxels, and at p = .05  for cluster size (corrected for multiple comparisons in both cases). 

Analysis focused, as a first step, on the pattern of brain activation specifically related

to the early stage of trial-and-error learning of arbitrary sensori-motor associations. To this

aim, we compared the activation observed during the first twelve trials of learning novel

associations (EARLY condition), first to that observed during execution of perfectly mastered

associations (FAMILIAR condition), and then to that observed during the final phase of

learning, that is, during the last 12 trials performed with novel associations (LATE condition).

These single subtraction contrasts were computed separately for the OBJECT and SPATIAL

paradigms. Then, to identify the brain areas that were equally involved in object and spatial

learning, conjunction analyses were performed (Price and Friston 1997). These SPM

conjunction analyses summed over the two paradigms [(EARLY_OBJECT +
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EARLY_SPATIAL) – either (FAMILIAR_OBJECT + FAMILIAR_SPATIAL) or

(LATE_OBJECT + LATE_SPATIAL)] and removed the voxels showing a significant

interaction across paradigms. The resulting activation maps were masked (p < 10-8) with the

two single contrasts to ensure that all voxels identified by the conjunction analyses were

significantly active in both paradigms. Finally, to identify the areas preferentially involved in

spatial learning, two interaction analyses were performed. These analyses summed the two

paradigms and retained the voxels for which the single subtraction contrasts [either (EARLY

– FAMILIAR) or (EARLY – LATE)] were significantly larger for the SPATIAL than for the

OBJECT paradigm. The resulting activation maps were masked (p < 10-3) by the SPATIAL

contrast to ensure that effects due to OBJECT negative activation were excluded. Similar

interaction and masking procedures were used to identify the brain regions that were

preferentially involved in object learning. For all analyses, coordinates of the activated brain

areas in the MNI system of reference were transformed into the Talairach and Tournoux

stereotaxic space (Talairach and Tournoux 1988), using the following equations : XT = 0.88

XMNI + 0.8 ; YT = 0.97 YMNI -3.32 ; ZT = 0.05 YMNI + 0.88 ZMNI - 0.44.
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III. RESULTS

1. Behavioral data

Due to failure to complete the task or to improper imaging data acquisition, two

subjects were discarded from the analysis of the OBJECT paradigm, and one from that of the

SPATIAL paradigm. The results presented here are therefore based on 8 subjects for the

OBJECT paradigm and 9 subjects for the SPATIAL paradigm. 

Behavioral performance as well as response times measured during the scanning

session for these subjects are summarized in Figure D2. For the FAMILIAR condition, the

subjects' performance did not differ significantly across paradigms [paired t-test t(7) = -0.4, p

= n.s.], reaching 98.2 ± 0.7 percent correct responses in the OBJECT paradigm and 98.3 ± 0.6

percent correct responses in the SPATIAL paradigm. Response times for the FAMILIAR

condition were, however, significantly shorter in the SPATIAL paradigm (656.1 ± 31.1 ms)

than in the OBJECT paradigm (850.1 ± 36.8 ms) [paired t-test t(7) = -3.2, p = 0.015]. 

Likewise, in the Novel conditions, the subjects' performance did not differ

significantly across paradigms [F(1,7) = 2.4, p = 0.164], although response times were again

shorter for the SPATIAL paradigm [F(1,7) = 17.3, p = 0.004]. Paradigm * condition, 2*3

ANOVAs, with repeated measures for the latter factor, confirmed that, for both paradigms,

performance did improve [F(2,14) = 118.1, p < 0.0001] and response times decreased [F(2,14)

= 5.9, p = 0.014] over the three 12-trial blocks of learning (EARLY, MIDDLE, and LATE

task conditions). Additional 2*2 ANOVAs indicated, however, that subjects were slightly, but

significantly, less accurate during the LATE learning condition than during the FAMILIAR

one [F(1,7) = 7.4, p = 0.03], reaching approximately 95 % correct responses at the end of both

the SPATIAL and OBJECT learning instead of 98 % for the familiar conditions. Response

times at the end of learning were also consistently longer than those observed for over-learned

associations  [F(1,7) = 21.3, p = 0.002]. Note that as observed in monkeys and PD patients,

the novel associations were learned sequentially in both paradigms (see Figure D2-C). 
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2. fMRI activation data: Early learning of novel versus execution of familiar stimulus-

response or location-response associations

Learning-related effects were first studied by contrasting the EARLY condition to the

FAMILIAR one for each paradigm separately. The patterns of brain activation revealed by

these comparisons are illustrated in Figures D3-A and D3-B, and detailed in Tables D1 and

D2, for the OBJECT and SPATIAL paradigms, respectively.  

For both paradigms, the EARLY – FAMILIAR contrast revealed a bilateral pattern of

activation involving the medial and lateral surfaces of the frontal lobe, the parietal and

temporal cortex, and the cerebellum.  Direct statistical comparison of the two paradigms using

a conjunction analysis confirmed the vast overlap between the networks engaged by object

and spatial conditional learning.  The results of this conjunction analysis are illustrated in

Figure D4 and listed in Table D3.  Within the medial wall of the frontal lobe, this overlap

included a large focus of activation located rostral to the anterior commissure, and involving

both the anterior cingulate cortex and the overlying presupplementary motor area (pre-SMA;

Picard and Strick, 1996).  The lateral premotor cortex also presented a site of activation

common to both versions of the task.  This site was located near the intersection between the

superior frontal and precentral sulci, and was more extensive in the left than in the right

hemisphere.  Within the prefrontal cortex, both the dorsolateral (superior and middle frontal

gyri) and the ventrolateral (inferior frontal gyrus) regions were recruited by the two

paradigms. The clusters found in the anterior portion of the superior and middle frontal gyrus

involved Brodmann's areas 9/46 and extended rostrally into polar area 10. Those found  in the

anterior extent of the inferior frontal gyrus involved Brodmann's area 47 and extended

caudally into area 44.  The other sites of activation common to the OBJECT and SPATIAL

paradigms were located in the parietal cortex (intraparietal sulcus, bilaterally, and precuneus),

the right inferior temporal gyrus, and the right and left cerebellum.

Based on the individual EARLY – FAMILIAR contrasts, some qualitative differences

were noticeable between the two paradigms (compare Figures D3-A and D3-B).  The lateral

premotor site of activation was more extensive and more bilaterally symmetrical for the

SPATIAL than for the OBJECT paradigm, whereas the reverse was true for the ventrolateral

prefrontal site of activation.  In addition, only the OBJECT paradigm yielded a significant

subcortical activation within the thalamus. However, none of these differences was confirmed

by the interaction analyses. These analyses identified only one significant difference across

the two paradigms.  Namely, the left focus lying over the intraparietal sulcus (Talairach
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coordinates: -20, -63, 58) and extending into the precuneus (Talairach coordinates: -2, -77,

46) was found to be significantly more active during spatial than during object conditional

learning.

3. fMRI activation data: Early versus late learning of novel stimulus-response or

location-response associations

To further investigate the effect of learning on brain activation, the EARLY condition

was contrasted with the LATE condition.  Analyses performed for each paradigm separately

suggested a nearly complete overlap of the patterns of activation yielded by object and spatial

conditional learning.  This overlap was confirmed by a conjunction analysis, which is

illustrated in Figure D5 (interaction analyses again failed to identify any significant difference

between the OBJECT and SPATIAL paradigms). The network outlined by this EARLY –

LATE conjunction analysis was remarkably similar to that described above for the EARLY –

FAMILIAR conjunction analysis (compare Figures D4 and D5). Namely, both networks

involved the same medial premotor, lateral premotor, dorsolateral prefrontal, ventrolateral

prefrontal, parietal, and cerebellar foci of activation.  One major difference between the two

comparisons, however, concerned the subcortical sites of activation.  Unlike the EARLY –

FAMILIAR comparisons, the EARLY – LATE comparisons revealed an engagement not only

of the thalamus, but also of the striatum, in the early phases of both object and spatial

conditional learning (Figure D6).  These activation extended more anteriorely into the caudate

nucleus in the OBJECT paradigm (Talairach coordinates, y = +10) as compared to the

SPATIAL paradigm (Talairach coordinates, y = -3). Overall, in the OBJECT paradigm, the

activation peak was centered on the caudate nucleus (Talairach coordinates: 16, 8, 8) and

extended more posteriorely into the putamen as well as into the thalamic nuclei, including the

mediodorsal nucleus. In the SPATIAL paradigm, the activation peak was more posterior

(Talairach coordinates: x = -10, y = -13, z = 8), and centered on the lentiform nucleus

(putamen/globus pallidus). As in the OBJECT paradigm, this activation extended posteriorely

into the mediodorsal thalamic nucleus.
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IV. DISCUSSION

In this study, we investigated brain activation changes during a visuo-motor

conditional associative learning task in healthy subjects using fMRI. Subjects were required to

learn by trial and error arbitrary associations between visual cues and finger movements,

according to either the physical features of the stimulus (object) or its location (spatial).

Learning-related changes were studied by comparing brain activation accompanying early

stages of learning (EARLY) with those involved in subsequent stages (LATE versus

FAMILIAR). For the FAMILIAR stage, subjects were overtrained across several days.

Overall, comparing EARLY - FAMILIAR stages outlined a pattern of activation in the

anterior cingulate cortex and overlying presupplementary motor area (pre-SMA; Picard and

Strick, 1996), the lateral premotor cortex, the dorsolateral (Brodmann's areas 9/46 - 10) and

ventrolateral (Brodmann's areas 47/44) prefrontal cortex, the parietal cortex (intraparietal

sulcus, precuneus), the right inferior temporal gyrus, and the cerebellum. Interestingly, the

contrast EARLY - LATE yielded an additional activation in the striatum and thalamus. These

patterns of activation were obtained for both the object and spatial paradigms. Indeed, except

for a preferential engagement of the parietal cortex in the spatial version of the task, little

difference was observed across paradigms. 

1. OBJECT versus SPATIAL paradigms

Performance of the subjects did not significantly vary across paradigms, confirming

that the level of difficulty of the object and spatial versions of the task were equivalent, as

intended. Subjects did respond more promptly in the spatial paradigm as compared to the

object paradigm, indicating that they adequately focused on the location information during

the SPATIAL paradigm, that is, they skipped the time-consuming identification of the

physical features of the stimulus required by the OBJECT paradigm. 

Regarding the cerebral activation elicited learning during both the OBJECT and

SPATIAL paradigms, some qualitative differences were noticeable (compare Figures D3-A

and D3-B). The PMd seemed to be more extensively recruited by the SPATIAL paradigm,

whereas the reverse was true for the PFvl and the thalamus. However, none of these

differences was confirmed by quantitative, interaction analyses. These analyses indicated that

only the left intraparietal sulcus was significantly more active for spatial than for object

conditional learning. It is now well established that the visual cortex contains two relatively



D. Neuroimaging study in healthy humans

- 140 -

separate anatomical pathways, a dorsal occipito-parietal one and a ventral occipito-temporal

one (Ungerleider & Mishkin, 1982) which have preferential (albeit overlapping) connections

with the PFdl and PFvl, respectively. Each of these pathways is thought to convey specific

visual information. The occipito-parietal pathway terminating in the PFdl, is thought to be

specialised for the "where" (spatial) information, whereas the occipito-temporal pathway

terminating in the PFvl, is thought to be specialised for the "what" (object) information.

Although the foci of activation found in both paradigms tended to obey this dichotomy,

statistical analyse failed to reach the significance level for the observed difference apart from

this concerning the parietal cortex. However, it is important to note that in our study, even if

the instruction given to the subjects varied according to the paradigm, in both cases, stimuli

were presented at different locations, introducing a spatial component in both paradigm. In the

SPATIAL paradigm, both the response times and the parietal activation indicate that the

subjects ignore the physical properties of the stimulus. However, in the OBJECT paradigm,

the absence of a selective temporal activation, could indicate that the subjects may not ignore

the spatial information as efficiently as in they ignore the 'object' component in the spatial

paradigm. This could explain the lack of significance in the interactions analysis.

2. Learning related changes 

First, as compared to previous studies investigating brain activation underlying CAL

(e.g. Toni et al., 2001a,b; Toni & Passingham, 1999, Toni et al., 2002; Deiber et al, 1997),

and other forms of motor learning (e.g. Doyon et al., 2002; 2003; Jueptner et al., 1997a,b,

Toni et al., 1998), brain activation in our study was more extensive. This difference may be

due to the fact that, measurements were performed at 3 Tesla whereas in previous studies,

measurements were performed either at 1.5 or 2T. Indeed, direct comparison using the same

tasks, between fMRI data acquired at 1.5 and 3T fields did show that the latter yielded

considerably larger activation especially in the prefrontal and parietal cortices (Krasnow et al.,

2003). For example, in this study while subjects performed a 'n-back working' memory task,

increases in activated voxels of 78 % and 59 % in the prefrontal and parietal cortices were

found when data were acquired at 3T as compared to 1.5T. 

Notwithstanding, the cerebral network activated in the present study resembles those

previously described. This network includes the ventrolateral prefrontal cortex, the lateral and

medial premotor cortices, the intraparietal sulcus and the cerebellum. All these structures are
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thought to play distinct, complementary roles in CAL. The ventrolateral prefrontal cortex may

be necessary for stimulus identification and working memory processes (Fuster et al., 2000;

Murray et al., 2000; Passingham & Rushworth, 2000). Medial premotor areas activation could

be related to the role of the anterior cingulate in error detection (see e.g. Dancause et al.,

2002; Gehring & Fencsik, 2001; Paulus et al., 2002; Gehring & Willoughby, 2002, Bush et

al., 2002), as neurons in this structure have been found to fire in relation to positive as well as

negative feedback (Niki & Watanabe, 1979, Procyk & Joseph, 2001). Such structures, able to

detect the consequences of a given action, appear to be of particular interest in learning

processes. The parietal and most importantly the cerebellar activations are probably involved

in the more direct sensori-motor transformations and parameters of movement execution (see

for example Jenkins et al., 1994; Jueptner & Weiller, 1998). Activation of the cerebellum, but

not the basal ganglia, have been found to be correlated to the force of movement (Dettmers et

al., 1995). 

Unlike previous studies, especially that of Toni et al. (2001b) who compared familiar

versus novel conditional associations, our study revealed a significant activation in the PMd

as well as in the dorsal prefrontal cortex. These differences could be due to the greater

sensitivity of the magnet field used. Nonetheless, the activation found in the PMd is not

surprising as electrophysiological recordings in monkeys found learning-dependent changes

in these cortical areas in CAL (Mitz et al., 1991; Chen & Wise, 1995 a,b). This is also

supported by lesion studies in humans (Halsband & Passigham, 1985) and animals (Kurata &

Hoffmann, 1994). The activation found in the PFdl was however not expected. As previously

mentioned, the specific role of the dorsal and ventral aspects of the lateral PF has been related

to the type of information processed, such that PFdl is involved principally in spatial

processing, whereas PFvl is involved in object processing ("domain specific" modularity,

Goldman-Rakic, 1995). However, recent neuroimaging studies in humans (Haxby et al., 2000;

Postle et al., 2000) and neurophysiology studies in monkeys (Rainer et al., 1998a,b; Rao et al.,

1997) report an intermixing of "what" and "where" properties in the lateral PF cortex.

Accordingly, Petrides and Owen have suggested that the dorsal and ventral regions mediate

distinct processes ("process specific" modularity), rather than distinct sensory domains. In

their view, PFvl is concerned with 'first order executive processes, such as active selection,

comparison and judgement of stimuli held in short-term and long term memory' [Petrides,

1996, page 1457] whereas PFdl is concerned with more demanding processes, such as the

active manipulation and monitoring of series of information (Petrides, 1995). Two
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interpretations could thus be proposed to explained the PFdl recruitment in our study. First,

because in both paradigm, stimuli were presented in various locations, the activation of the

PFdl could reflect the spatial component of the task ("domain specific" hypothesis). Second, it

is possible that as compared to the previous study by Toni et al. (2001b), the stimuli used in

our study were more complex. Indeed, in each learning set, stimuli from the same family were

used (cf. Figure D1-A), making more difficult their manipulation in working memory,

probably introducing 'organisational strategies' such as verbalisation and categorisation

thereby leading to the recruitment of the PFdl (Frey & Petrides, 2000, "process specific"

hypothesis). Our experiment does not allow us to favour one hypothesis. 

3. Subcortical activation 

Interestingly, the EARLY – LATE contrast, but not the EARLY - FAMILIAR one,

yielded an activation in the striatum, in both paradigms. This seems to suggest that this

structure was equally recruited in the EARLY and FAMILIAR stages, but less recruited

during the LATE stages of learning. This is quite surprising as, according to previous studies,

an antero-posterior gradient was found in the striatum concerning its recruitment along the

different stages of learning. In this study, we failed to demonstrate such a gradient. This could

be explained by spatial localisation limits inherent to imaging techniques (see for example,

Brett et al., 2002) and the high voxel threshold used in our study as compared to others.

Indeed, for example, in Toni et al.'s study a volume of interest and a less conservative

statistical threshold (p < 0.001, uncorrected) have been especially applied to reveal basal

ganglia activation. Such analysis will be performed in our study in order to provide more

informative results about this key structure (in perspective). However, the quantitatively equal

activation observed during the EARLY and FAMILIAR stages could in fact reflect 2

qualitatively different processes: an early recruitment of the striatum during the formation of

novel stimulus-response associations on the one hand, and selection according to well-

established stimulus-response associations on the other hand. Indeed, in early stages of

learning, the striatum may participate to short-term maintenance in memory of the stimuli, the

integration of feedback information whereas in late stages, it may contribute to the long term

storage of arbitrary rules and the implementation of action selection. Although, the BOLD

signal has been found to correlate more closely to the Local Field Potential (LFP) signal (e.g

Logothetis, 2003), our electrophysiological findings (see PART A, transient and long lasting

changes during learning) tend to draw similar conclusions. Furthermore, the increase of



D. Neuroimaging study in healthy humans

- 143 -

cortico-striatal effective connectivity during learning also supports this view (Toni et al.,

2002). Interestingly, in this line, in early stages of learning, the subjects’ performance in the

SPATIAL paradigm tended to be better compared to the OBJECT paradigm, although this

difference did not reach the significance level. When comparing brain activation elicited by

both paradigms, OBJECT-related activation was more anterior in the striatum than SPATIAL

activation. This difference could be correlated with the subjects’ performance and could thus

denote an anteroposterior gradient in the involvement of the striatum during learning as

previously demonstrated. 

Finally, the subcortical activation also included part of the thalamus. This activation

was also found in the EARLY – FAMILIAR contrast in the object paradigm only.

Accordingly, other studies have reported an involvement of the mediodorsal thalamic nucleus

during new sequence learning but not during automatic execution (Jueptner et al., 1997).

Indeed, this structure belongs to the basal ganglia thalamo-cortical loops and is heavily and

reciprocally interconnected with the prefrontal cortex (Alexander et al., 1986).

4. Limits

Ten other subjects will be added to the sample presented here. Indeed, using 20

subjects, it will be possible to run more sensitive and accurate statistical approaches such as

'the random-effect' instead of a 'fixed-effect' analysis as been used in the present study.

Indeed, the use of a 'random effect', but not the 'fixed effect' takes into account the variability

across individual subjects of the localisation and weight of the activation foci ('fixed-effect

analysis assume that each subject makes the same, fixed contribution to the observed

activation and therefore discount random variations from subjects to subject', Friston et al.,

1999, p. 386). In other words, a strong focus of activation found in only one subject could be

misleadingly reported in the group analysis using a 'fixed-effect', but not a 'random-effect'

analysis. However, in the present study, the number of subjects used did not allow us to run a

random effect analysis. Nevertheless, the activation reported here were consistent across

subject as been verified in each individual subjects contrast.
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GENERAL DISCUSSION

Within the basal ganglia (BG), the striatum receives various signals including sensory,

motor and motivational (feedback-related) signals, and its particular architecture is suitable

for complex integration of these incoming information. Based on this observation, the present

research was undertaken to investigate the role of the striatum in learning conditional visuo-

motor associations. Three complementary approaches were combined: neurophysiology in

behaving monkeys, functional neuroimaging (fMRI) in healthy humans, and neuropsychology

in patients suffering from Parkinson's disease (a neurodegenerative pathology affecting the

BG). The same type of task was used in all three experiments, where subjects had to learn

associations or rules that linked a visual cue and a movement. These associations were

arbitrary, and had to be learned by trial and error using the provided feedback.

Electrophysiological study : results and perspectives

Striatal activity was recorded in awake monkeys in two conditions: while the animals

executed well-learned (familiar) associations, and during trial-and-error learning of novel

associations. During learning, four associations were presented concurrently, instead of two,

as in the only earlier previous study that has investigated striatal activity during associative

learning (Tremblay et al., 1998). This allowed us to follow changes of neuronal activity over a

long period of time and different stages of learning.  In addition, our protocol was comparable

to that used earlier to explore the changes of activity in the premotor cortex (Mitz et al.,

1991). Thus, learning-induced changes in the striatum and premotor cortex, two critical nodes

in the cortico-basal ganglia-thalamo-cortical loops, could be directly compared. 

During the execution of familiar associations, the majority of the recorded cells

exhibited selectivity for a particular association. This confirmed that striatal cells possess

neural properties that can code specific stimulus-response bonds once they have become

automatic, thereby differing from premotor cells whose activity during familiar associations is

essentially movement-oriented (Boussaoud & Kermadi, 1997). During learning, striatal

activity displayed significant changes. These changes were either transient, consisting in a

time-limited increase in activity (above the level recorded in the familiar condition) during

early learning stages, or long-lasting, consisting in a gradual increment of activity over the

entire course of the learning session, up to the level of activity characteristic of the familiar
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condition. These learning-related changes closely resemble, both in their nature and their

temporal dynamics, those recorded in premotor cortical areas with tasks comparable to that

used in the present study (Mitz et al. 1989; Chen & Wise, 1995a, b). Interestingly, similar

transient and long-lasting changes have also been observed in both the orbital and lateral

portions of the prefrontal cortex with different visuo-motor conditional tasks (Assad et al.,

1998; Tremblay & Schultz, 2000), as well as in the hippocampus during learning of visuo-

visual (location-scene) associations. These two types of learning-related changes could

therefore represent rather ubiquitous brain plasticity mechanisms whose functional meaning

depends on the specific structure in which they occur. Within the basal ganglia, we proposed

that they reflect different processes necessary for the establishment of arbitrary visuo-motor

rules. Transient changes could mediate monitoring of competing information in short-term

(working) memory, and/or the development of strategies aimed at diminishing the working

memory load. These time-limited changes could be related to the phasic response of

dopamine neurons (Schultz, 2002). By contrast, long-lasting changes may mediate the slow,

incremental establishment of stimulus-response bonds preceding the automatization of

arbitrary associations. These durable changes may be related to the tonic dopaminergic

influence on striatal functions (Schultz, 2002).

In the future, the testing of the animals involved in the first experiment will be pursued

in order to address two questions that remain to be answered. First, in our initial working

hypothesis (see Part A), we had surmised that neuronal changes in the striatum would occur

earlier during learning than those observed in the PMd, suggesting a possible causal

relationship, in the sense that premotor changes would result partly from those taking place in

the striatum. To date, our electrophysiological data do not confirm this prediction. Therefore,

to dissect the respective contributions of the striatum and premotor cortex, we are planning to:

1) record simultaneously the activity in the two structures, and 2) reversibly inactivate the

striatum and follow the resulting changes in the activity of PMd cells. Second, it is still

unclear how the integration of different types of information takes place in the striatum. To

shed some light on this issue, we are planning to analyze the synchronization of activity at the

level of population of neurons using simultaneous recordings of both multiple single-cell

responses (see Aosoaki et al., 1994; Raz et al., 1996; and Kimura et al., 2003) and local field

potentials in the striatum. 
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Functional imaging study : results and perspectives

We investigated the global network involved in different stages of conditional

associative learning using fMRI.  The early stage of learning yielded selective activation in

several brain regions, including the premotor areas, the prefrontal cortex, the parietal cortex,

the inferior temporal cortex, and the cerebellum. The striatum was found to be equally

recruited during the early learning stage and execution of well-established associations. By

contrast, it was relatively less engaged during the late stage of learning. 

We observed no antero-posterior functional segregation within the striatum during

learning, unlike previous imaging studies (e.g. Jueptner et al., 1997) which reported that the

anterior and posterior striatal regions participated in the acquisition and consolidation phases,

respectively. Our perspective is therefore to re-analyze our data using a finer analysis (based

on a region-of-interest design) to improve spatial resolution and determine whether this

observation also holds true for conditional associative learning. We are also planning to study

the brain activation underlying the intermediate stage of learning and to examine the temporal

evolution of the signal along the process of learning. Finally, we will also investigate the

cerebral activation underlying the execution of well-learned association by studying the

activation elicited by the following contrasts: FAMILIAR - EARLY  (or MIDDLE or LATE)

as well as LATE - EARLY (or MIDDLE or LATE) and FAMILIAR - LATE. 

Neuropsychological study : results and perspectives

The ability of advanced Parkinson patients to perform a visuo-motor conditional

associative learning task was investigated both with and without L-Dopa treatment. OFF

medication, we found that, within a relatively homogeneous group of nine patients, learning

was significantly retarded in six patients, whereas it appeared normal in the remaining three.

When it did occur, the learning impairment was accompanied by an excessive number of

repetitions of the same incorrect associations, which suggested inadequate monitoring of

competing items in working memory or inhibition of spontaneous preferences. We have

hypothesized that this deficit was in fact present in all patients, and that the inter-individual

variability evoked above simply reflects whether or not the patient was able to devise a

compensatory strategy in order to circumvent it. The development and/or use of such a

strategy seemed to be dependent upon the dopaminergic system. Of particular interest, in light
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of the data obtained in the other two experiments, is the fact that retention of newly learned

associations was mildly disrupted in all patients alike, indicating that disruption of the

retention phase was present whether or not an impairment was detectable during the

acquisition phase. This dissociation again suggests an implication of the striatum in at least

two processes, one required only during the early stages of learning, and one necessary at later

stages for long-term storage of newly acquired associations. 

Relative to previous reports on the ability of Parkinson patients to learn conditional

associations, we demonstrated a complex pattern of deficits and the use of a dopaminergic-

dependent compensatory strategy. In order to study the underlying processes accompanying

the deficits observed and the development of the compensatory mechanism, it would be

interesting to use Positron Emission Tomography, with a marker of the dopaminergic system

such as the [18F]-6-fluoro-L-Dopa. 

What does conditional associative learning tell us about basal ganglia functions ?

The research presented here combines three different, albeit complementary

approaches. Results from all three approaches converge to indicate that the striatum plays a

key role in the learning of arbitrary visuo-motor associations, as measured by conditional

learning tasks. These tasks require to concurrently learn, by trial and error, several

associations, each linking a specific visual stimulus with a particular motor response. They

therefore tax at least two different types of processes, short-term (working memory) processes

necessary to guide performance during the acquisition phase, and long-term (habit memory)

processes to ensure the slow and incremental formation of each individual stimulus-response

bond. Interestingly, all three studies argue for a role of the striatum in both types of processes.

In the electrophysiological study, transient learning-related changes may reflect the

monitoring of previously tried associations in working memory, and/or the development of a

particular strategy. By contrast, the long-lasting changes may mediate the long-term storage

of each newly learned associations, and lead to the striatal properties find in the familiar

conditions. In the fMRI study, the equal recruitment of the striatum in the early learning of

novel associations and the execution of well-learned ones could be related to the data obtained

in the electrophysiological study, although the BOLD signal may be more linked to local field

potentials than to single-cell responses (Logothetis, 2003). Finally, the deficits found in

advanced Parkinson patients are also compatible with the idea that the basal ganglia are
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involved in the acquisition as well as in the retention phase of conditional associative

learning. 

In summary, the basal ganglia have long been seen as a motor center. More recently,

they have been involved in various cognitive functions. However, to date, the exact non-

motor functions of these structures remain obscure. Numerous authors have postulated a role

in habit memory (e.g. Mishkin et al., 1984; Jog et al., 1999), whereas a few others have

proposed a direct implication in working memory (e.g. Levy et al., 1997). Here, by using

complementary approaches and by dissecting the different processes underlying a single

behavioral task, we have provided evidence that the basal ganglia is involved in both of these

functional domains. 



- 150 -

Bibliography



BIBLIOGRAPHY

- 151 -

BIBLIOGRAPHY

Afsharpour S (1985) Light microscopic analysis of Golgi--impregnated rat subthalamic neurons. J Comp Neurol
236:1-13.

Agid Y, Ruberg M, Dubois B, Pillon B (1987) Anatomoclinical and biological concepts of subcortical dementia.
In: Cognitive neurochemistry. Stahl SM, Iversen SD, Goodman EC (ed.) Oxford: Oxford Science Publications.
pp. 248-271.

Agid Y, Ruberg M, Javoy-Agid F, Hirsch E, Raisman-Vozari R, Vyas S, Faucheux B, Michel P, Kastner A,
Blanchard V (1993) Are dopaminergic neurons selectively vulnerable to Parkinson's disease? Adv Neurol
60:148-164.

Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, Greengard P, Aperia A (2000)
Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons.
Nat Neurosci 3:226-230.

Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci
12:366-375.

Alexander GE, Crutcher MD (1990a) Preparation for movement: neural representations of intended direction in
three motor areas of the monkey.  J Neurophysiol 64:133-150.

Alexander GE, Crutcher MD (1990b) Neural representations of the target (goal) of visually guided arm
movements in three motor areas of the monkey. J Neurophysiol 64:164-178.

Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking
basal ganglia and cortex. Annu Rev Neurosci 9:357-381.

Allen GI, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54:957-1006.

Aosaki T, Graybiel AM, Kimura M (1994) Effect of the nigrostriatal dopamine system on acquired neural
responses in the striatum of behaving monkeys. Science 265:412-415.

Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the
primate's striatum. J Neurophysiol 73:1234-1252.

Apicella P (2002) Tonically active neurons in the primate striatum and their role in the processing of information
about motivationally relevant events. Eur J Neurosci 16:2017-2026. 

Apicella P, Scarnati E, Ljungberg T, Schultz W (1992) Neuronal activity in monkey striatum related to the
expectation of predictable environmental events. J Neurophysiol  68:945-960.

Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative
learning. Neuron 21:1399-1407.

Bennett BD, Wilson CJ (1999) Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci
19:5586-5596.

Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the
subthalamic nucleus. Science 249:1436-1438.

Bolam JP, Hanley JJ, Booth PA, Bevan MD (2000) Synaptic organisation of the basal ganglia. J Anat 196:527-
542.

Bolam JP, Somogyi P, Takagi H, Fodor I, Smith AD (1983) Localization of substance P-like immunoreactivity
in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study. J
Neurocytol 12:325-344.



BIBLIOGRAPHY

- 152 -

Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A
combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy.
Neuroscience 12:711-718.

Boussaoud D, Kermadi I (1997) The primate striatum: neuronal activity in relation to spatial attention versus
motor preparation. Eur J Neurosci 9:2152-2168.

Boussaoud D, Di Pellegrino G, Wise SP (1996) Frontal lobe mechanisms subserving vision-for-action versus
vision-for-perception. Behav Brain Res 72:1-15.

Boussaoud D, Wise SP (1993a) Primate frontal cortex: neuronal activity following attentional versus intentional
cues. Exp Brain Res 95:15-27.

Boussaoud D, Wise SP (1993b) Primate frontal cortex: effects of stimulus and movement. Exp Brain Res 95:28-
40.

Braak H, Braak E (2000) Pathoanatomy of Parkinson's disease. J Neurol 247 Suppl 2:II3-10.  

Brett M, Johnsrude IS, Owen AM (2002) The problem of functional localization in the human brain. Nat Rev
Neurosci 3:243-249.

Brown LL, Feldman SM, Smith DM, Cavanaugh JR, Ackermann RF, Graybiel AM (2002) Differential
metabolic activity in the striosome and matrix compartments of the rat striatum during natural behaviors. J
Neurosci 22:305-314.

Brown VJ, Desimone R, Mishkin M (1995) Responses of cells in the tail of the caudate nucleus during visual
discrimination learning.  J Neurophysiol 74:1083-1094.

Bussey TJ, Wise SP, Murray EA (2001) The role of ventral and orbital prefrontal cortex in conditional
visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav Neurosci115:971-982.

Cajal SR (1911) Histologie du système nerveux de l'homme et des vertébrés. Paris: Maloine.

Calabresi P, De Murtas M, Bernardi G (1997) The neostriatum beyond the motor function: experimental and
clinical evidence. Neuroscience 78:39-60.

Canavan AGM, Nixon PD, Passingham RE (1989b) Motor learning in monkeys (macaca fascicularis) with
lesions in motor thalamus. ExpBrain Res 77:113-126.

Canavan AGM, Passingham RE, Marsden CD, Quinn N, Wyke M, Polkey CE (1989) The performance on
learning tasks of patients in the early stages of Parkinson's disease. Neuropsychologia 27:141-156.

Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic
nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513:43-59.

Carli M, Evenden JL, Robbins TW (1985) Depletion of unilateral striatal dopamine impairs initiation of
contralateral actions and not sensory attention. Nature 313:679-682.

Carman JB, Cowan WM, Powell TP.  The organization of cortico-striate connexions in the rabbit. Brain 86:525-
562.

Carpenter M (1981) Anatomy of the corpus striatum and brainstem integrating systems. Handbook of Physiology
- The Nervous System 2:947-995.

Chang HT, Wilson CJ, Kitai ST (1982) A Golgi study of rat neostriatal neurons: light microscopic analysis. J
Comp Neurol 208:107-126.

Chen LL, Wise SP (1995a) Neuronal activity in the supplementary eye field during acquisition of conditional
oculomotor associations. J Neurophysiol 73:1101-1121.



BIBLIOGRAPHY

- 153 -

Chen LL, Wise SP (1995b) Supplementary eye field contrasted with the frontal eye field during acquisition of
conditional oculomotor associations. J Neurophysiol 73:1122-1134.

Cheney DL, Seyfarth RM (1990) The representation of social relations by monkeys. Cognition 37:167-196.

Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends
Neurosci 13:277-280.

Cohen SM (1972) Electrical stimulation of cortical-caudate pairs during delayed successive visual discrimination
in monkeys. Acta Neurobiol Exp (Warsz) 32:211-233.

Cohen JD, Mc Whinney B, Flatt, Provost J (1993) Psyscope: a new graphic interactive environment for
designing psychology experiments. Behav Res Meth Instr Comp 25:257-271.

Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Mechanisms of cognitive set flexibility in Parkinson's
disease. Brain 124:2503-2512. 
 
Cossette M, Levesque M, Parent A (1999) Extrastriatal dopaminergic innervation of human basal ganglia.
Neurosci Res 34:51-54.

Cowan WM, Powell TP (1956) A study of thalamo-striate relations in the monkey. Brain 79:364-390.

Crowne DP, Dawson KA, Richardson CM (1989) Unilateral periarcuate and posterior parietal lesions impair
conditional position discrimination learning in the monkey. Neuropsychologia 27:1119-1127.

Crutcher MD, Alexander GE (1990) Movement-related neuronal activity selectively coding either direction or
muscle pattern in three motor areas of the monkey.  J Neurophysiol  64:151-163.

Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398-399.

Dancause N, Ptito A, Levin MF (2002) Error correction strategies for motor behavior after unilateral brain
damage: short-term motor learning processes. Neuropsychologia 40:1313-1323.

Deiber MP, Wise SP, Honda M, Catalan MJ, Grafman J, Hallett M (1997) Frontal and parietal networks for
conditional motor learning: a positron emission tomography study. J Neurophysiol 78:977-991.

Delacour J, Libouban S, McNeil M (1972) Premotor cortex and instrumental behavior in monkeys Physiol Behav
8:299-305.

DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281-
285.

DeLong MR, Georgopoulos AP (1981) Motor function of the basal ganglia. Handbook of physiology, Section 1:
The nervous system; American physiological Society, Bethesda, Maryland. pp. 1017-1061.

DeLong MR, Georgopoulos AP, Crtucher MD (1983) Cortici-basal ganglia relationships and coding of motor
performances. Exp Brain Res Suppl 7: 30-40.

Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D, Holmes A, Ridding MC,
Brooks DJ, Frackowiak RS (1995) Relation between cerebral activity and force in the motor areas of the human
brain. J Neurophysiol 4:802-815.

Di Chiara G, Morelli M, Consolo S (1994) Modulatory functions of neurotransmitters in the striatum:
ACh/dopamine/NMDA interactions. Trends Neurosci 17:228-233.

DiFiglia M (1987) Synaptic organization of cholinergic neurons in the monkey neostriatum. J Comp Neurol
255:245-258.



BIBLIOGRAPHY

- 154 -

DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res
114:245-56.

DiFiglia M, Pasik P, Pasik T (1982) A Golgi and ultrastructural study of the monkey globus pallidus. J Comp
Neurol 212:53-75.

Divac I, Rosvold HE, Szwarcbart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J
Comp Physiol Psychol 63:184-190.

Dominey PF, Ventre-Dominey J, Broussolle E, Jeannerod M (1995) Analogical transfer in sequence learning.
Human and neural-network models of frontostriatal function. Ann N Y Acad Sci 769:369-373.

Doyon J, Penhune V, Ungerleider LG (2003) Distinct contributions of the cortico-striatal and cortico-cerebellar
systems in motor skill learning. Neuropsychologia 41:252-262.

Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG (2002) Experience-dependent changes in
cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA 99:1017-1022.

Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2-8.

Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993) 3D statistical neuroanatomical models
from 305 MRI volumes. Proc IEEE Nucl Sci Symp Med Imaging Conf  pp.1813-1817.

Evarts EV, Thach WT (1969) Motor mechanisms of the CNS: cerebrocerebellar interrelations. Annu Rev Physiol
31:451-498.

Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649-684. 

Felten DL, Laties AM, Carpenter MB (1974) Monoamine-containing cell bodies in the squirrel monkey brain.
Am J Anat 139:153-165.

Fernandez-Ruiz J, Wang J, Aigner TG, Mishkin M (2001) Visual habit formation in monkeys with neurotoxic
lesions of the ventrocaudal neostriatum. Proc Natl Acad Sci USA 98:4196-4201.

Ferrier (1876) The functions of the brain. London

Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine
neurons. Science 299:1898-1902.

Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system.
Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249-1263.

Flaherty AW, Graybiel AM (1993) Output architecture of the primate putamen. J Neurosci 13:3222-3237.

François C, Percheron G, Yelnik J, Heyner S (1984) A Golgi analysis of the primate globus pallidus. I.
Inconstant processes of large neurons. Other neuronal types, afferent axons. J Comp Neurol 227:182-199.

Frey S, Petrides M (2000) Orbitofrontal cortex: A key prefrontal region for encoding information. Proc Natl
Acad Sci USA 97:8723-8727.

Friston KJ, Frith CD, Frackowiak RS, Turner R (1995b) Characterizing dynamic brain responses with fMRI: a
multivariate approach. Neuroimage 2:166-172.

Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995a) Analysis of
fMRI time-series revisited. Neuroimage 2:45-53
 
Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN (2002) Amygdaloid projections to ventromedial striatal
subterritories in the primate. Neuroscience 110:257-275.



BIBLIOGRAPHY

- 155 -

Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal
cortex. Nature 405:347-351.

Gaffan D (1996) Memory, action and the corpus striatum: current developments in the memory-habit distinction.
Seminars in the Neurosciences 8:33-38.

Gaffan D, Harrison S (1989) A comparison of the effects of fornix transection and sulcus principalis ablation
upon spatial learning by monkeys. Behav Brain Res 31:207-220.

Gardiner TW, Nelson RJ (1992) Striatal neuronal activity during the initiation and execution of hand movements
made in response to visual and vibratory cues. Exp Brain Res 92:15-26.

Gehring WJ, Fencsik DE (2001) Functions of the medial frontal cortex in the processing of conflict and errors. J
Neurosci 21:9430-9437.

Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and
losses. Science 295:2279-2282.

Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output
systems. Nature 311:461-464.

Gerfen CR (1989) The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination.
Science 246:385-388.

Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci
15:133-139. 

Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: compartmental distribution of calcium-
binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 82:8780-
8784.

Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine
receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429-1432.

Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal
dopaminergic and non-dopaminergic systems. J Neurosci 7:3915-3934.
.
Germain L, Lamarre Y (1993) Neuronal activity in the motor and premotor cortices before and after learning the
associations between auditory stimuli and motor responses. Brain Res 611:175-179.

Gimenez-Amaya JM, McFarland NR, de las Heras S, Haber SN (1995) Organization of thalamic projections to
the ventral striatum in the primate. J Comp Neurol 354:127-149.

Goldman-Rakic PS (1995) Architecture of the prefrontal cortex and the central executive  Ann NY Acad Sci
769:71-83.

Gotham AM, Brown RG, Marsden CD (1988) 'Frontal' cognitive function in patients with Parkinson's disease
'on' and 'off' levodopa. Brain 111:299-321.

Grafton ST, Fagg AH, Arbib MA (1998) Dorsal premotor cortex and conditional movement selection: A PET
functional mapping study. J Neurophysiol 79:1092-1097.

Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei
in the primate and rodent neostriatum. Brain Res 327:307-311.

Graybiel AM (1995) Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin
Neurobiol 5:733-741.

Graybiel AM (1998) The Basal Ganglia and Chunking of Action Repertoires. Neurobiol Learn Mem 70:119-136.



BIBLIOGRAPHY

- 156 -

Graybiel AM (2000) The basal ganglia. Curr Biol 10:R509-511.

Graybiel AM, Baughman RW, Eckenstein F (1986) Cholinergic neuropil of the striatum observes striosomal
boundaries. Nature 323:625-627.

Graybiel AM, Hirsch EC, Agid YA (1987) Differences in tyrosine hydroxylase-like immunoreactivity
characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity. Proc Natl Acad
Sci USA 84:303-307.

Graybiel AM, Ohta K, Roffler-Tarlov S (1990) Patterns of cell and fiber vulnerability in the mesostriatal system
of the mutant mouse weaver. I. Gradients and compartments. J Neurosci 10:720-733.

Graybiel AM, Ragsdale CW Jr., Moon Edley S (1979) Compartments in the striatum of the cat observed by
retrograde cell labeling. Exp Brain Res 34:189-195.

Graybiel AM, Ragsdale CW Jr. (1978) Histochemically distinct compartments in the striatum of human,
monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723-5726.

Graybiel AM, Ragsdale C (1983) Biochemical anatomy of the striatum. in Emson, P. (Ed.). Chemical
Neuroanatomy Raven Press. New York.

Haber SN, Fudge JL (1997) The interface between dopamine neurons and the amygdala: implications for
schizophrenia. Schizophr Bull 23:471-482.

Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in
the monkey. J Comp Neurol 329:111-128.

Haber SN, Ryoo H, Cox C, Lu W (1995) Subsets of midbrain dopaminergic neurons in monkeys are
distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2
receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362:400-410.

Hadj-Bouziane F, Boussaoud D (2001) Activity of neurons in the striatum during learning of arbitrary visuo-
motor associations. Soc Neurosci Abstr. 514.11.

Hadj-Bouziane F, Meunier M, Boussaoud D Conditional visuo-motor learning in primates: a key role for the
basal ganglia (Journal of Physiology-Paris, in press).

Halsband U, Freund HJ (1990) Premotor cortex and conditional motor learning in man. Brain 113:207-222.

Halsband U, Passingham RE (1982) The role of premotor and parietal cortex in the direction of action. Brain Res
240:368-372.

Halsband U, Passingham RE (1985) Premotor cortex and the conditions for movement in monkeys (Macaca
mulatta). Behav Brain Res 18:269-276.

Hartmann-von Monakow K, Akert K, Kunzle H (1981) Projection of precentral, premotor and prefrontal cortex
to the basilar pontine grey and to nucleus reticularis tegmenti pontis in the monkey (Macaca fascicularis).
Schweiz Arch Neurol Neurochir Psychiatr 129:189-208.

Haxby JV, Petit L, Ungerleider LG, Courtney SM (2000) Distinguishing the functional roles of multiple regions
in distributed neural systems for visual working memory. Neuroimage 11:380-391.

Hazrati LN, Parent A (1991) Projection from the external pallidum to the reticular thalamic nucleus in the
squirrel monkey. Brain Res 550:142-146.

Heimer L, Wilson RD (1975) The subcortical projections to the allocortex: similarities in the neural associations
of the hippocampus, the piriform cortex, and the neortex. In: Golgi Centennial Symposium: Perspectives in
Neurobilogy. Santini M (ed.) Raven press, New york. pp. 173-197.



BIBLIOGRAPHY

- 157 -

Herkenham M, Pert CB (1981) Mosaic distribution of opiate receptors, parafascicular projections and
acetylcholinesterase in rat striatum. Nature 291:415-418.

Hikosaka O, Sakamoto M, Usui S (1989a) Functional properties of monkey caudate neurons. I. Activities related
to saccadic eye movements. J Neurophysiol 61:780-798.

Hikosaka O, Sakamoto M, Usui S (1989b) Functional properties of monkey caudate neurons. II. Visual and
auditory responses. J Neurophysiol 61:799-813.

Hikosaka O, Sakamoto M, Usui S (1989c) Functional properties of monkey caudate neurons. III. Activities
related to expectation of target and reward. J Neurophysiol 61:814-832.

Hollerman JR, Tremblay L, Schultz W (1998) Influence of reward expectation on behavior-related neuronal
activity in primate striatum. J Neurophysiol 80:947-963.

Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259:819-821.

Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral
cortex: their role in planning and controlling action. Cereb Cortex 5:95-110.

Inase M, Li BM, Takashima I, Iijima T (2001) Pallidal activity is involved in visuomotor association learning in
monkeys. Eur J Neurosci 14:897-901. 

Javoy-Agid F, Ruberg M, Taquet H, Bokobza B, Agid Y, Gaspar P, Berger B, N'Guyen-Legros J, Alvarez C,
Gray F (1984) Biochemical neuropathology of Parkinson's disease. Adv Neurol. 40:189-198.  

Jeannerod M (1997) The cognitive neuroscience of action. Oxford, Blackwell.

Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RSJ, Passingham RE (1994) Motor sequence learning : a study
with positron emission tomography. J Neurosci 14:3775-3790

Joel D, Weiner I (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected
rather than closed segregated. Neuroscience 63:363-379.

Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an
analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96:451-
474.

Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM (1999) Building neural representations of habits.
Science 286:1745-1749.

Johnson BJ, Bruno JP (1990) D1 and D2 receptor contributions to ingestive and locomotor behavior are altered
after dopamine depletions in neonatal rats. Neurosci Lett 118:120-123.

Jones EG, Coulter JD, Burton H, Porter R (1977) Cells of origin and terminal distribution of corticostriatal fibers
arising in the sensory-motor cortex of monkeys. J Comp Neurol 173:53-80.

Jones EG, Wise SP (1977) Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex
of monkeys. J Comp Neurol 175:391-438.

Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997b) Anatomy of motor learning. II.
Subcortical structures and learning by trial and error. J Neurophysiol 77:1325-1337.

Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997a) Anatomy of motor
learning. I. Frontal cortex and attention to action. J Neurophysiol 77:1313-1324.

Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of
movements as revealed by functional imaging studies. Brain 121:1437-1449.



BIBLIOGRAPHY

- 158 -

Juraska J, Wilson C, Groves P (1977) The substantia nigra of the rat: A Golgi study. J Comp Neurol 172:585-
600.

Kaasinen V, Nurmi E, Bruck A, Eskola O, Bergman J, Solin O, Rinne JO (2001) Increased frontal
[(18)F]fluorodopa uptake in early Parkinson's disease: sex differences in the prefrontal cortex. Brain 124:1125-
1130. 
 
Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive signals in the basal
ganglia. Nat Neurosci 1:411-416.

Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and
morphological characterization. Trends Neurosci 18:527-535. Erratum in: Trends Neurosci 1996 19:143.

Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by
intracellular injection of biocytin. J Neurosci 10:3421-3438.

Kemp JM, Powell TPS (1970) The cortico-striate projection in the monkey. Brain 93:525-546.

Kemp JM, Powell TPS (1971) The structure of the caudate nucleus of the cat: light and electron microscopy.
Philos Trans R Soc Lond B Biol Sci 262:383-401.

Kermadi I, Joseph JP (1995) Activity in the caudate nucleus of monkey during spatial sequencing. J
Neurophysiol 74:911-933.

Kimura M, Matsumoto N (1997) Neuronal activity in the basal ganglia. Functional implications. Adv Neurol
74:111-118.
 
Kimura M, Rajkowski J, Evarts E (1984) Tonically discharging putamen neurons exhibit set dependent
responses. Proc Natl Acad Sci USA 81:4998-5001.

Kincaid AE, Zheng T, Wilson CJ (1998) Connectivity and convergence of single corticostriatal axons. J
Neurosci 18:4722-4731.

Kita H (1996) Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and
cortical stimulation recorded in slice preparations. Neuroscience 70:925-940.

Kita H, Kitai ST (1990) Amygdaloid projections to the frontal cortex and the striatum in the rat.  J Comp Neurol
298:40-49.

Kitai ST, Deniau JM (1981) Cortical inputs to the subthalamus: intracellular analysis. Brain Res 214:411-415.

Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399-
1402.

Krasnow B, Tamm L, Greicius MD, Yang TT, Glover GH, Reiss AL, Menon V (2003) Comparison of fMRI
activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 18:813-826.

Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and
brainstem in the rat and cat. J Comp Neurol 178:225-254.

Kurata K, Hoffman DS (1994) Differential effects of muscimol microinjection into dorsal and ventral aspects of
the premotor cortex of monkeys. J Neurophysiol 71:1151-1164. 

Kurata K, Tsuji T, Naraki S, Seino M, Abe Y (2000) Activation of the dorsal premotor cortex and pre-
supplementary motor area of humans during an auditory conditional motor task. J Neurophysiol 84:1667-1672.

Levine B, Stuss DT, Milberg WP (1997) Effects of aging on conditional associative learning: process analyses
and comparison with focal frontal lesions. Neuropsychology 11:367-381. 



BIBLIOGRAPHY

- 159 -

Levy R, Friedman HR, Davachi L, Goldman-Rakic PS (1997) Differential activation of the caudate nucleus in
primates performing spatial and nonspatial working memory tasks. J Neurosci 17:3870-82.

Lewis SJ, Cools R, Robbins TW, Dove A, Barker RA, Owen AM (2003) Using executive heterogeneity to
explore the nature of working memory deficits in Parkinson's disease. Neuropsychologia 41:645-654. 
 
Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical
stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105-1111.

Lindvall O, Bjorklund A (1979) Dopaminergic innervation of the globus pallidus by collaterals from the
nigrostriatal pathway. Brain Res 172:169-173.

Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of
behavioral reactions. J Neurophysiol 67:145-163.

Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J
Neurosci 23:3963-3971.

Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the ventral striatum in the primate.
Neuroscience 59:609-623.

MacLean PD (1972) Cerebral evolution and emotional processes: new findings on the striatal complex. Ann N Y
Acad Sci 193:137-149.

Marié RM, Barre L, Dupuy B, Viader F, Defer G, Baron JC (1999) Relationships between striatal dopamine
denervation and frontal executive tests in Parkinson's disease. Neurosci Lett 260:77-80.

Marsden CD (1982) The mysterious motor function of the basal ganglia: the Robert Wartenburge lecture.
Neurology 32:514-539.

Maurice N, Deniau JM, Glowinski J, Thierry AM (1998) Relationships between the prefrontal cortex and the
basal ganglia in the rat: physiology of the corticosubthalamic circuits. J Neurosci 18:9539-9546.

Mengual E, de las Heras S, Erro E, Lanciego JL, Gimenez-Amaya JM (1999) Thalamic interaction between the
input and the output systems of the basal ganglia. J Chem Neuroanat 16:187-200.

Mensah PL (1977) The internal organization of the mouse caudate nucleus: evidence for cell clustering and
regional variation. Brain Res 137:53-66.

Mettler FA (1945) Effects of bilateral simultanous subcortical lesions in the primate. J Neuropathol Exp Neurol
4:2013-2122.

Middleton FA, Strick PL (1996) The temporal lobe is a target of output from the basal ganglia.
Proc Natl Acad Sci USA 93:8683-8687.

Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res
Brain Res Rev 31:236-250.

Miller JJ, Richardson TL, Fibiger HC, McLennan H (1975) Anatomical and electrophysiological identification
of a projection from the mesencephalic raphe to the caudate-putamen in the rat. Brain Res 97:133-136.

Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine
neurons. J Neurophysiol 72:1024-1027.

Mishkin M, Petri HL (1984) Memories and habits: Some implications for the analysis of learning and retention.
In: Neuropsychology of memory. Squire L,  Butters N (ed.) The Guildford press, New York pp. 287-296.

Mitz AR, Godschalk M, Wise SP (1991) Learning-dependent neuronal activity in the premotor cortex: Activity
during the acquisition of the conditional motor associations. J Neurosci 11:1855-1872.



BIBLIOGRAPHY

- 160 -

Miyachi S, Hikosaka O, Lu X (2002) Differential activation of monkey striatal neurons in the early and late
stages of procedural learning. Exp Brain Res 146:122-126.

Miyachi S, Hikosaka O, Miyashita K, Karadi Z, Rand MK (1997) Differential roles of monkey striatum in
learning of sequential hand movement. Exp Brain Res 115:1-5.

Moore RY, Bhatnagar RK, Heller A (1971) Anatomical and chemical studies of a nigro-neostriatal projection in
the cat. Brain Res 30:119-135. 

Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4
receptors in GABAergic neurons of the primate brain. Nature 381:245-248.

Murray EA, Bussey TJ, Wise SP (2000) Role of prefrontal cortex in a network for arbitrary visuomotor
mapping. Exp Brain Res 133:114-129.

Nakano K, Hasegawa Y, Tokushige A, Nakagawa S, Kayahara T, Mizuno N (1990) Topographical projections
from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese
monkey, Macaca fuscata. Brain Res 537:54-68.
Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic
nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the
supplementary motor area. J Neurosci 16:2671-2683.

Nauta WJH, Mehler WR (1966) Projections from the lentiform nucleus in the monkey. Brain Res 1:3-42.

Niki H, Watanabe M (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain
Res 171:213-224.

Nobin A, Bjorklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in
fetuses. Acta Physiol Scand 388:1-40.

Noda H, Manohar S, Adey WR (1968) Responses of cat pallidal neurons to cortical and subcortical stimuli. Exp
Neurol 20:585-610.

Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000)
Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 23 Suppl 10:S8-19. 

Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia
9:97-113.

Olpe HR, Koella WP (1977) The response of striatal cells upon stimulation of the dorsal and median raphe
nuclei. Brain Res 122:357-360.

Olson L, Seiger A, Fuxe K (1972) Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent
islands in developing and adult rats. Brain Res 44:283-288. 

Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at
different stages of Parkinson's disease. Neuropsychologia 35:519-532.

Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci
25:563-593.

Parent A (1986) Comparative Neurobiology of the Basal Ganglia. Wiley New York.

Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13:254-258.

Parent A (2002) Jules Bernard Luys and the subthalamic nucleus. Mov Disord 17:181-185.

Parent A, Bouchard C, Smith Y (1984) The striatopallidal and striatonigral projections: two distinct fiber
systems in primate. Brain Res 303:385-390.



BIBLIOGRAPHY

- 161 -

Parent A, Cicchetti F (1998) The current model of basal ganglia organization under scrutiny. Mov Disord
13:199-202.

Parent A, Hazrati LN (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-
cortical loop. Brain Res Brain Res Rev 20:91-127.

Parent A, Hazrati LN (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and
external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128-154.

Parent A, Mackey A, De Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in
primate: a fluorescence retrograde double labeling study. Neuroscience 10:1137-1150.

Parent A, Sato F, Wu Y, Gauthier J, Levesque M, Parent M (2000) Organization of the basal ganglia: the
importance of axonal collateralization. Trends Neurosci 23 Suppl 10:S20-27.

Park M, Falls W, Kitai S (1982) An intracellular HRP study of the rat globus pallidus: I. Responses and light
microscope analysis. J Comp Neurol 211:284-294.
  
Parker A, Gaffan D (1998) Memory after frontal/temporal disconnection in monkeys: conditional and non-
conditional tasks, unilateral and bilateral frontal lesions. Neuropsychologia 36:259-271.

Passingham RE (1985) Premotor cortex: sensory cues and movement. Behav Brain Res 18:175-185.

Passingham RE (1986) Cues for movement in monkeys (Macaca mulatta) with lesions in premotor cortex. Behav
Neurosci 100:695-703.

Passingham RE (1987) Two cortical systems for directing movement. Ciba Found Symp 132:151-164.

Passingham RE (1993) The frontal lobe and voluntary action. Oxford University Press, Oxford.

Passingham RE, Toni I, Rushworth MF (2000) Specialization within the prefrontal cortex: the ventral prefrontal
cortex and associative learning. Exp Brain Res 133:103-113.

Paulus MP, Hozack N, Frank L, Brown GG (2002) Error rate and outcome predictability affect neural activation
in prefrontal cortex and anterior cingulate during decision-making. Neuroimage 15:836-846.

Petrides M (1982) Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav
Brain Res 5:407-413.

Petrides M (1985) Conditional learning and the primate frontal cortex. In: The frontal lobe revisited. Perecman E
(ed.), IBRN press, New York, pp. 91-108.

Petrides M (1986) The effect of periarcuate lesions in the monkey on the performance of symmetrically and
asymmetrically reinforced visual and auditory go, no-go tasks. J Neurosci 6:2054-2063.

Petrides M (1995) Functional organization of the human frontal cortex for mnemonic processing. Evidence from
neuroimaging studies. Ann N Y Acad Sci 769:85-96.

Petrides M (1996) Specialized systems for the processing of mnemonic information within the primate frontal
cortex. Philos Trans R Soc Lond B Biol Sci 351:1455-1461.

Petrides M (1997) Visuo-motor conditional associative learning after frontal and temporal lesions in the human
brain. Neuropsychologia 35:989-997.

Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the
human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011-1036.

Phelps PE, Houser CR, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase within
the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J
Comp Neurol 238:286-307.



BIBLIOGRAPHY

- 162 -

Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation.
Cereb Cortex 6:342-353.

Pillon B, Deweer B, Vidailhet M, Bonnet AM, Hahn-Barma V, Dubois B (1998) Is impaired memory for spatial
location in Parkinson's disease domain specific or dependent on 'strategic' processes? Neuropsychologia 36:1-9.

Pochon JB, Levy R, Poline JB, Crozier S, Lehericy S, Pillon B, Deweer B, Le Bihan D, Dubois B (2001) The
role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb Cortex
11:260-266.

Postle BR, Stern CE, Rosen BR, Corkin S (2000) An fMRI investigation of cortical contributions to spatial and
nonspatial visual working memory. Neuroimage 11:409-423.

Powell TP, Cowan WM (1954) The connexions of the midline and intralaminar nuclei of the thalamus of the rat.
J Anat 88:307-319.

Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat
20:207-213.

Prensa L, Gimenez-Amaya JM, Parent A (1999) Chemical heterogeneity of the striosomal compartment in the
human striatum. J Comp Neurol 413:603-618.

Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and
surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol
310:429-474.

Procyk E, Joseph JP (2001) Characterization of serial order encoding in the monkey anterior cingulate sulcus.
Eur J Neurosci 14:1041-1046.

Rainer G, Asaad WF, Miller EK (1998) Memory fields of neurons in the primate prefrontal cortex. Proc Natl
Acad Sci USA 95:15008-15013.

Rainer G, Asaad WF, Miller EK (1998) Selective representation of relevant information by neurons in the
primate prefrontal cortex. Nature 393:577-579.

Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human
cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex 5:307-322.

Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science
276:821-824.

Ragsdale CW Jr, Graybiel AM (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate
striosomes in the caudate nucleus of the cat. J Comp Neurol 269:506-522.

Ragsdale CW Jr, Graybiel AM (1991) Compartmental organization of the thalamostriatal connection in the cat. J
Comp Neurol 311:134-167.

Rakshi JS, Uema T, Ito K, Bailey DL, Morrish PK, Ashburner J, Dagher A, Jenkins IH, Friston KJ, Brooks DJ
(1999) Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease. A 3D
[(18)F]dopa-PET study. Brain 122:1637-1650. 
 
Rolls ET (1994) Neurophysiology and cognitive functions of the striatum. Rev Neurol (Paris) 150:648-660.

Rolls ET (2000) Precis of The brain and emotion. Behav Brain Sci 23:177-191.

Rosvold HE, Delgado JM (1956) The effect on delayed-alternation test performance of stimulating or destroying
electrically structures within the frontal lobes of the monkey's brain. J Comp Physiol Psychol 49:365-372.



BIBLIOGRAPHY

- 163 -

Rowe JB, Toni I, Josephs O, Frackowiak RSJ, Passingham RE (2000) The prefrontal cortex: response selection
or maintenance within working memory. Science 288:1656-1660. 

Russchen FT, Price JL (1985) Amygdalostriatal projections in the rat. Topographical organization and fiber
morphology shown using the lectin PHA-L as an anterograde tracer. Neurosci Lett 47:15-22.

Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An
anterograde tracing study. Brain Res. 329:241-257. 

Sadikot AF, Parent A, Smith Y, Bolam JP (1992) Efferent connections of the centromedian and parafascicular
thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in
relation to striatal heterogeneity. J Comp Neurol 320:228-242.

Saint-Cyr JA (2003) Frontal-striatal circuit functions: context, sequence, and consequence. J Int Neuropsychol
Soc 9:103-27. 

Saka E, Iadarola M, Fitzgerald DJ, Graybiel AM (2002) Local circuit neurons in the striatum regulate neural and
behavioral responses to dopaminergic stimulation. Proc Natl Acad Sci USA 99:9004-9009.

Sarazin M, Deweer B, Merkl A, Von Poser N, Pillon B, Dubois B (2002) Procedural learning and striatofrontal
dysfunction in Parkinson's disease. Mov Disord 17:265-273.

Schacter DL, Tulving E (1994) What are the memory systems of 1994? In: Memory systems. Schacter DL,
Tulving E (ed.), MIT Press, Cambridge, Ma., pp. 1-38.

Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241-263.

Schultz W, Apicella P, Ljungberg T, Romo R, Scarnati E (1993) Reward-related activity in the monkey striatum
and substantia nigra. Prog Brain Res  99:227-235.

Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593-1599.

Schultz W, Romo R (1992) Role of primate basal ganglia and frontal cortex in the internal generation of
movements. I. Preparatory activity in the anterior striatum. Exp Brain Res 91:363-384.

Schultz W, Tremblay L, Hollerman JR (2003) Changes in behavior-related neuronal activity in the striatum
during learning. Trends Neurosci 26:321-328.
 
Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal
projections in the rhesus monkey. J Neurosci 5:776-794.

Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in
the rhesus monkey. J Comp Neurol 297:359-376.

Shibuya H, Yamamoto T (1998) Electrophysiological and morphological features of rat claustral neurons: an
intracellular staining study. Neuroscience 85:1037-1049. 

Sidibe M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the
squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol
382:323-347.

Sidman RL, Rakic P (1982) Development of the human central nervous system: regional development. In:
Histology and Histopathology of the Nervous System. Webb H, Raymond DA (ed.), Charles C. Thomas,
Springfield. pp. 25-67.

Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal
ganglia. Neuroscience 86:353-387.

Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23 Suppl
10:S28-33. 



BIBLIOGRAPHY

- 164 -

Smith Y, Parent A, Seguela P, Descarries L (1987) Distribution of GABA-immunoreactive neurons in the basal
ganglia of the squirrel monkey (Saimiri sciureus). J Comp Neurol 259:50-64.

Sprengelmeyer R, Canavan AG, Lange HW, Homberg V (1995) Associative learning in degenerative neostriatal
disorders: contrasts in explicit and implicit remembering between Parkinson's and Huntington's diseases. Mov
Disord 10:51-65.

Squire LR, Zola SM (1996) Structure and function of declarative and non declarative memory systems. Proc
Natl Acad Sci USA 93:13515-13522.

Swainson R, Rogers RD, Sahakian BJ, Summers BA, Polkey CE, Robbins TW (2000) Probabilistic learning and
reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects
of dopaminergic medication. Neuropsychologia 38:596-612. 
 
Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27:1-15.

Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. New York: Thieme.

Taylor AE, Saint-Cyr JA, Lang AE (1990) Memory and learning in early Parkinson's disease: evidence for a
"frontal lobe syndrome". Brain Cogn 13:211-232.

Thobois S, Mertens P, Guenot M, Hermier M, Mollion H, Bouvard M, Chazot G, Broussolle E, Sindou M (2002)
Effect of subthalamic nucleus stimulation in Parkinson’s disease : a clinical study of 18 patients. J Neurol
249:529-534.

Thorndike EL (1911) Animal Intelligence, Macmillan Press.

Thorner G, Lange H, Hopf A (1975) Morphometrical-statistical structure analysis of human striatum, pallidus
and subthalamic nucleus. II. Globus pallidus. J Hirnforsch 16:401-413.

Toni I, Krams M, Turner R, Passingham RE (1998) The time course of changes during motor sequence learning:
a whole-brain fMRI study. Neuroimage 8:50-61.

Toni I, Passingham RE (1999) Prefrontal-basal ganglia pathways are involved in the learning of arbitrary
visuomotor associations : a PET study. Exp Brain Res 127:19-32.

Toni I, Ramnani N, Josephs O, Ashburner J, Passingham RE (2001a) Learning arbitrary visuomotor
associations: temporal dynamic of brain activity. Neuroimage 14:1048-1057.

Toni I, Rowe J, Stephan KE, Passingham RE (2002) Changes of cortico-striatal effective connectivity during
visuomotor learning. Cereb Cortex 12:1040-1047.

Toni I, Rushworth MF, Passingham RE (2001b) Neural correlates of visuomotor associations. Spatial rules
compared with arbitrary rules. Exp Brain Res 141:359-369.

Tremblay L, Hollerman JR, Schultz W (1998) Modifications of reward expectation-related neuronal activity
during learning in primate striatum. J Neurophysiol 80:964-977.

Tremblay L, Schultz W (2000) Modifications of reward expectation-related neuronal activity during learning in
primate orbitofrontal cortex. J Neurophysiol 83:1877-85. 

Ungerleider LG, Mishkin M (1982) Two cortical visual systems, in Ingle J., Goodale M.A., Mansfield R.J.W.
(Eds), Analysis of visual behavior, MIT Press, Cambridge, MA; 1982, pp. 549-589.

Vogt C,  Vogt O (1920) Zur Leher der Erkrankungen des striären Systems. Z Psychol Neurol 25:627-846.

Voorn P, Gerfen CR, Groenewegen HJ (1989) Compartmental organization of the ventral striatum of the rat:
immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein. J Comp
Neurol 289:189-201.



BIBLIOGRAPHY

- 165 -

Vriezen ER, Moscovitch M (1990) Memory for temporal order and conditional associative-learning in patients
with Parkinson's disease. Neuropsychologia 28:1283-293.

Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature
411:953-956.

Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382:629-632.

Watanabe K, Kimura M (1998) Dopamine receptor-mediated mechanisms involved in the expression of learned
activity of primate striatal neurons. J Neurophysiol 79:2568-2580.

Weinrich M, Wise SP, Mauritz KH (1984) A neurophysiological study of the premotor cortex in the rhesus
monkey. Brain 107:385-414.

White NM (1997) Mnemonic functions of the basal ganglia. Curr Opin Neurobiol 7:164-169.

White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126:315-
335.

Wilson SAK (1914) An experimental research into the anatomy and physiology of the corpus striatum. Brain
36:427-492.

Wilson CJ (1993) The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 99:277-297.

Wilson CJ, Chang HT, Kitai ST (1983) Origins of post synaptic potentials evoked in spiny neostriatal projection
neurons by thalamic stimulation in the rat. Exp Brain Res 51:217-226.

Wilson CJ, Groves PM (1981) Spontaneous firing patterns of identified spiny neurons in the rat neostriatum.
Brain Res 220:67-80.

Wilson CJ, Xu ZC, Emson PC, Feler C (1990) Anatomical and physiological properties of the cortical and
thalamic innervations of neostriatal tissue grafts. Prog Brain Res 82:417-426.

Winn P, Brown VJ, Inglis WL (1997) On the relationships between the striatum and the pedunculopontine
tegmental nucleus. Crit Rev Neurobiol 11:241-261.

Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, Suzuki WA (2003) Single neurons in the monkey
hippocampus and learning of new associations. Science 300:1578-81.

Wise SP, Murray EA (1999) Role of the hippocampal system in conditional motor learning: mapping
antecedents to action. Hippocampus 9:101-117.

Wise SP, Murray EA (2000) Arbitrary associations between antecedents and actions. Trends Neurosci 23:271-
276.

Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol
10:317-356.

Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation
studies in human brain. J Cereb Blood Flow Metab 12:900-918.

Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited--again. Neuroimage 2:173-181.

Wu Y, Richard S, Parent A (2000) The organization of the striatal output system: a single-cell juxtacellular
labeling study in the rat. Neurosci Res 38:49-62.

Yelnik J (2002) Functional anatomy of the basal ganglia. Mov Disord 17 Suppl 3:S15-21.



BIBLIOGRAPHY

- 166 -

Yelnik J, Francois C, Percheron G, Heyner S (1987) Golgi study of the primate substantia nigra. I. Quantitative
morphology and typology of nigral neurons. J Comp Neurol 265:455-472. 

Yelnik J, Francois C, Percheron G, Tande D (1991) Morphological taxonomy of the neurons of the primate
striatum. J Comp Neurol 313:273-294.

Yelnik J, Percheron G, (1979) Subthalamic Neurons in primates: A quantitative and comparative analysis.
Neuroscience 4:1717-1743.  

Yelnik J, Percheron G, Francois C (1984) A Golgi analysis of the primate globus pallidus. II. Quantitative
morphology and spatial orientation of dendritic arborizations. J Comp Neurol 227:200-213.

Yeterian EH, Pandya DN (1991) Prefrontostriatal connections in relation to cortical architectonic organization in
rhesus monkeys. J Comp Neurol 312:43-67.


	UNIVERSITE CLAUDE BERNARD - LYON 1
	
	Fadila HADJ-BOUZIANE
	
	Pr. Marc Jeannerod, Président

	Dr. Burnod, examinateur



	SECTION 1 - basal ganglia anatomy
	I. The basal ganglia concept : Historical evolution
	II. The Basal ganglia components (figure A2)
	1. The striatum
	a. Anatomical subdivisions
	b. Cytology
	c. Functional domains : matrix/striosome compartments

	2. The Globus pallidus (GP)
	3. The substantia nigra (locus niger)
	4. The Subthalamic nucleus (Luys Body)

	Inputs to the basal ganglia and 'the basal ganglia loops'
	1. The cortico-striatal projections : a funneling or a parallel processing?
	a. Kemp & Powell's proposal
	b. Alexander, Delong and Strick's proposal
	c. Parent's poposal (Figure A7)

	2. The Nigrostriatal projections
	3. The Thalamostriatal projections
	4. Amygdalostriatal projections
	5. Other sources of striatal inputs
	6. Integration by striatal neurons of different inputs

	IV. Output of the basal ganglia and 'the basal ganglia loops'
	Basal ganglia intrinsic circuits: the direct and indirect pathways
	VI. Information processing in the basal ganglia: a re-evaluation of the classical model
	1. The striatum and the GPi/SNr complex: input and output structures, respectively?
	2. Direct/indirect model?
	3. Information processing in the basal ganglia: feedfoward/feedback - parallelism/convergence?
	4. New perspectives?
	a. Joel and Weiner model: the “split circuits"
	b. Striatal compartments (figure A10)


	SECTION 2 - Conditional visuo-motor learning in primates :
	a key role for the basal ganglia
	I. Role of the fronto-striatal system in conditional visuomotor associations
	1. The frontal cortex: brief anatomical description
	2. Role of the frontal cortex in conditional visuomotor associations
	a. Neuropsychology in humans and monkeys
	b. Brain imaging in humans and neurophysiology in monkeys

	3. The basal ganglia and conditional visuomotor associations
	a. Neuropsychology in humans and monkeys
	b.Brain imaging in humans and neurophysiology in monkeys


	II. Linking sensory information to motor responses: a specific role for the striatum
	1. The striatum: a site of convergence for sensory, motor, and reward signals
	2. Coding for stimulus versus movement in frontal cortex and striatum

	III. A model for distributed processing in the fronto-striatal system during learning
	1. Lateral prefrontal cortex (PFdl and PFvl)
	2. The dorsal premotor cortex (PMd)
	3. The striatum

	I. Introduction
	II. Materials and METHODS
	1. Subjects and apparatus
	2. Training and behavioral paradigm
	3. Surgery and recordings
	4. Data analysis

	III. Results
	1. Behavior
	2. Neuronal activity
	a. General properties of the striatal neurons
	b. Modification of striatal activity during learning


	IV. Discussion
	1. Summary of the principal findings
	2. General properties of striatal neurons during the execution of well-learned arbitrary visuo-motor associations.
	3. Modulation of activity in the striatum during learning of novel visuo-motor arbitrary associations: a comparison with changes in the frontal lobe
	4. Alternative explanations
	5. Limits

	Introduction
	Subjects and Methods
	Subjects
	a. Patients
	b. Controls

	Materials
	Procedure
	Standard mapping task (SM)
	Single association learning without working memory (SLnoWM)
	Single association learning with working memory (SL_WM)
	Visuo-motor Conditional associative learning task (CAL)

	Data analysis

	III. Results
	Standard Mapping task (SM)
	Single association learning, without (SLnoWM) or with (SL_WM) working memory.
	Visuo-motor Conditional Associative Learning
	a. Comparison between the controls and PD-I OFF medication
	b. Comparison between the control and PD-II OFF medication
	d. L-Dopa treatment effect


	�
	IV. Discussion
	Summary of the results
	Preserved performance on standard mapping and single association learning tasks
	Conditional associative learning impairment in a majority of PD patients

	Comparison with earlier studies
	Basal ganglia and CAL

	I. Introduction
	II. Materials and methods
	1. Subjects and setup
	2. Behavioral paradigms
	3. Testing procedure
	4. Behavioral analysis
	5. MR acquisition
	6. Image processing and statistical analysis

	III. Results
	1. Behavioral data
	2. fMRI activation data: Early learning of novel versus execution of familiar stimulus-response or location-response associations
	3. fMRI activation data: Early versus late learning of novel stimulus-response or location-response associations

	IV. Discussion
	1. OBJECT versus SPATIAL paradigms
	2. Learning related changes
	3. Subcortical activation
	4. Limits
	Electrophysiological study : results and perspectives
	Functional imaging study : results and perspectives
	Neuropsychological study : results and perspectives
	What does conditional associative learning tell us about basal ganglia functions ?


