
HAL Id: tel-00006129
https://theses.hal.science/tel-00006129

Submitted on 19 May 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Modeling From Images Using Geometric Constraints
Marta Wilczkowiak

To cite this version:
Marta Wilczkowiak. 3D Modeling From Images Using Geometric Constraints. Human-Computer
Interaction [cs.HC]. Institut National Polytechnique de Grenoble - INPG, 2004. English. �NNT : �.
�tel-00006129�

https://theses.hal.science/tel-00006129
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

N◦ attribué par la bibliothèque
| | | | | | | | | | |

THÈSE

pour obtenir le grade de

DOCTEUR DE L’INPG

Spécialité:
Imagerie Vision et Robotique

Ecole Doctoral:
Mathématiques, Sciences et technologies de l’information, Informatique

présentée et soutenue publiquement
par

Marta Wilczkowiak

le 27 Avril 2004

3D Modelling From Images
Using Geometric Constraints

Directeurs de thèse: Edmond Boyer, Peter Sturm et Radu Horaud.

JURY
Roger Mohr Président

Roberto Cipolla Rapporteur
Michel Dhome Rapporteur
Edmond Boyer Examinateur

Peter Sturm Examinateur
Gilles Trombettoni Examinateur

Thèse préparée au laboratoire gravir - imag au sein du projet MOVI

INRIA Rhône-Alpes, 655 av. de l’Europe, 38334 Sant Ismier, France

Abstract

Image-based 3D modelling is often an underconstrained and noise-sensitive process.
Incorporation of geometrical constraints increases the robustness of this process,
especially when dealing with small image sets. This relies on a human operator
and his intuitive knowledge of the main properties of the objects commonly present
in scenes. In this thesis we propose various approaches for the camera and model
constraints satisfaction. In particular, we propose an original method for the satis-
faction of constraints in an exact way. Contrary to most existing work, each proposed
method is completed by algorithms dealing with problems engendered by insufficient
user-provided input. The introduced methods are validated by reconstruction of 3D
models from small image sets, and even from single images. The images used for
reconstructions are taken from various sources, such as the Internet, postcards or
architectural drawings.

Keywords : Reconstruction, Calibration, Geometric Constraints.

Résumé

La modélisation tridimensionnelle à partir d’images est un processus souvent sous-
contraint et sensible au bruit. L’usage de contraintes géométriques permet de rendre
ce processus plus robuste, même à partir de peu d’images, en prenant en compte les
connaissances intuitives de l’utilisateur sur les objets présents dans la scène. Nous
proposons dans cette thèse différentes approches pour la satisfaction de contraintes
sur la scène et les caméras. En particulier, nous introduisons une approche novatrice
pour la satisfaction de contraintes de manière exacte. Contrairement à la plupart
des approches existantes, chaque méthode proposée est accompagnée d’algorithmes
pour gérer des cas dans lesquels l’information fournie par l’utilisateur n’est pas
suffisante pour reconstruire un modèle unique. Les méthodes proposées dans cette
thèse sont validées par la reconstruction de modèles tridimensionnels à partir de
petits ensembles d’images, voire à partir d’une seule image. Les images utilisées
proviennent de sources très variées, telles que l’Internet, des cartes postales ou des
dessins architecturaux.

Mots Clès : Reconstruction, Calibrage, Contraintes Géométriques.

Remerciements

Tout d’abord, je tiens à exprimer mes remerciements à Radu Horaud, qui m’a accueilli dans
l’équipe MOVI, et à Long Quan, qui m’a offert la possibilité d’effectuer cette thèse dans le cadre
du projet européen VISIR. Je souhaite également remercier Roger Mohr pour m’avoir fait l’honneur
de présider mon jury de thèse, ainsi que Roberto Cipolla et Michel Dhome, rapporteurs de thèse,
pour avoir montré de l’intérêt et avoir accepté de juger mon travail.

Je souhaite remercier tout particulièrement Edmond Boyer et Peter Sturm, qui ont encadré cette
thèse, d’une part pour leur disponibilité et les nombreuses discussions qui ont apporté énormément
à ce travail, et d’autre part pour leur confiance et de m’avoir laissé toujours beaucoup de liberté
dans mes choix. Je voudrais également les remercier pour leur sympathie et leur soutien moralăqui
m’ont beaucoup aidé tout au long de la préparation de cette thèse.

Je tiens aussi à remercier très chaleureusement Gilles Trombettoni. Notre collaboration a été
une grand aventure, pleine de moments de désespoir, mais grâce à sa bonne humeur, patience et
amitié, ce fut une expérience extraordinaire; le fait que nous ayons réussi à donner une forme à nos
idées m’a apporté beaucoup de satisfaction.

Je voudrais adresser aussi un très très très grand merci à Thomas, Dave, Norman, Ankur,
Navneet, Keneth, Jean-Sebastien et Laks qui ont relu et corrigé les parties de cette thèse écrites en
anglais, et Hélène, Thomas, Laurence et Frank qui se sont occupés des parties en français. Quand
vous aurez des traductions polonaises à faire, vous pourrez toujours compter sur moi !

Et bon, maintenant ça devient difficile, je voudrais remercier toutes les personnes grâce à qui
mon séjour à Grenoble a été un temps très agréable et qui m’ont donné beaucoup de sympathie et
de soutien, surtout au cours des derniers mois de la rédaction. Surtout Laurence, Veronika, Hélène,
Thomas, Christophe, Virginie, Raph, Ann, Laure, Monika, Pawel, Wiktor et Frank, vous resterez
toujours dans mon coeur !

Finalement, je tiens à remercier ma famille de leur soutien et confiance, et particulièrement mes
parents pour être venus à ma soutenance.

3

Contents

Introduction (in French) 7

Introduction 19

I Background 31

Notations 33

1 Geometric Concepts in Computer Vision 35
1.1 Projective Geometry: Basic Concepts . 37
1.2 From Projective to Euclidean Space . 38
1.3 Camera Representation . 42
1.4 Scene Representation . 45

2 A State of the Art on Using Geometric Constraints in Computer Vision 57
2.1 Camera Constraints . 58
2.2 Scene Constraints . 59

II Linear Approaches for Using Geometric Primitives for Calibration
and 3D Modeling 71

Introduction 73

3 Parallelepipeds and Their Projections 75
3.1 Representation of Parallelepipeds . 76
3.2 One Parallelepiped in a Single View . 77
3.3 n Parallelepipeds in m Views . 78

4 Intrinsic and Orientation Parameters 81
4.1 Using Prior Knowledge . 83
4.2 Reference Primitive Method . 84
4.3 Factorization Method . 87
4.4 Some Minimal Cases . 93
4.5 Singularities . 93

5 Position and Size 99
5.1 The Algorithm . 100

5

6

6 3D Reconstruction 103
6.1 Extraction of Uniquely Defined Variables in Linear Systems 105
6.2 Multi-linear Reconstruction System . 106

7 Experimental Results 113
7.1 Synthetic Scenes . 114
7.2 Real Scenes . 120

III Towards a Minimal Model Parameterization 129

Introduction 131

8 Method Overview and Background 133
8.1 Overview of the Approach . 134
8.2 Scene Modeling and Background . 137

9 Constraint Solving 143
9.1 Automatic R-Method Addition Phase . 144
9.2 Computing a Plan and a Set of Input Parameters 146
9.3 Dealing with Singularities and Redundant Constraints 151

10 Optimization Phase 155
10.1 Backtracking Phase . 156
10.2 Optimization . 157
10.3 Reprojection Error and Constraint Violation Cost 157

11 Experimental Results 159
11.1 Reconstruction Results . 160
11.2 Performance Tests . 162
11.3 Details . 163
11.4 Comparison with the penalty function method . 167

12 Comparing GPDOF with Equation Decomposition Systems and Geometric Solvers171
12.1 Geometric Solvers . 172
12.2 Equation Decomposition Systems . 173

13 Conclusion and Perspectives 175

A Singular Value Decomposition 179

B Proof for Singular Configurations of Cameras of Type C 181

C Implementation of r-Methods 187

Bibliography 199

Introduction (in French)

Contexte et Motivation

La plupart des inventions techniques ont été inspirées par la nature. Aujourd’hui, nous sommes
capable de comprendre et d’imiter un grand nombre des phénomènes naturels, cependant, il existe
encore des domaines où les réalisations scientifiques sont loin d’égaler leur modèle naturel. C’est
le cas du projet qui a inspiré des générations de chercheurs: la création d’un être à notre image.
De nouvelles perspectives pour s’approcher de ce défi sont apparues avec le développement des
ordinateurs. Nous sommes toujours dans l’incapacité de créer une machine capable de raisonner
et d’agir indépendamment, mais le progrès de la science a rendu possible le développement de
nombreux appareils pouvant remplacer ou imiter le fonctionnement de certaines parties du corps
humain.

L’intérêt de la Vision Par Ordinateur est de simuler diverses fonctionnalités de la vision hu-
maine telles que la reconnaissance des objets présents dans une scène observée, l’estimation de leur
distance, de leur forme, de leur vitesse. Pour accomplir ces taches, la vision humaine emploie des
mécanismes très variés tels que la vision stéréoscopique, l’analyse des perspectives ou des variations
de luminosité, ou encore des connaissances acquises sur la structure de la scène.

L’analyse simultanée de toute cette information est très complexe. C’est pourquoi la majorité

Ciliary muscle

Cornea

Lens

Iris

Pupil

Retina

Fovea

Optic nerve

Figure 1: Principe de la création d’image par l’oeil.

8

des algorithmes de Vision Par Ordinateur sont basés seulement sur une partie de l’information
accessible. Dans cette thèse nous nous intéressons aux méthodes combinant l’utilisation des con-
naissances de la structure de la scène avec l’information contenue dans les images en vue d’obtenir
un modèle tridimensionnel de la scène. Afin d’expliquer comment une structure tridimensionnelle
peut être extraite à partir d’images bidimensionnelles et pourquoi des informations supplémentaires
sur la scène peuvent être utiles dans ce processus, résumons d’abord quels sont les instruments
basiques de la Vision Par Ordinateur et comparons les avec les éléments de la vision humaine.

Naturellement, l’outil de base de la vision humaine est un oeil. Biologiquement, sa structure est
extrêmement complexe. Pourtant, le principe de la création d’une image est très simple. Comme
montre la figure 12, les rayons lumineux sont focalisés par la cornée et le cristallin sur la rétine.
Cette image est ensuite transmise au cerveau.

En Vision Par Ordinateur, l’équivalent de l’oeil est la caméra (figure 13). Le modèle sténopé
de la caméra, utilisé dans cette thèse, est similaire au modèle de l’oeil décrit ci-dessus. Les rayons
lumineux sont focalisés dans le centre de projection sur un plan image. C’est un modèle très
simplifié, qui ne prend pas en compte les effets non-linéaires qui se produisent en réalité, tels que
la distorsion radiale. Cependant, ce modèle parâıt être un bon compromis entre la simplicité et la
précision de modélisation des processus de la création d’images.

Les images créées par une seul caméra sont bidimensionnelles et, sans information complémen-
taire, ne permettent pas d’estimer la nature tridimensionnelle de la scène (figure 14–(a)). Dans le
système de la vision humaine, les images créées dans chacun des yeux sont transmises au cerveau.
Ce dernier combine ces deux images en analysant leurs similarités et leurs différences. Le résultat
est une image stéréoscopique (du grec stereos: solide).

Plus précisément, étant donné le centre de projection d’une image, il est possible de calculer le
rayon de projection passant par le centre de projection et le point image. Des rayons de projection
correspondants à un point dans l’espace se coupent en ce même point, définissant ainsi sa position.
Par conséquent, un système stéréoscopique est basé sur sa capacité à mettre en correspondance
les éléments différentes images et sa connaissance de la géométrie des capteurs. Chez lez hommes
dès la naissance la partie du cerveau responsable du traitement des images est entrâınée à recevoir
et interpréter les données accumulées par la rétine. Nous pensons rarement à la complicité de ce
processus. Pourtant, un bébé n’est capable de suivre des objets en mouvement que plusieurs jours
après sa naissance. L’établissement de toutes les connections neurales de la rétine dure près de
quatre ans. Le résultat finale est notre système de vision constitué par nos yeux dont la géométrie
est parfaitement comprise et par la partie de cerveau associée, permettant la perception et analyse
du monde extérieur.

Projection centre

Image plane

Figure 2: Principe de la création d’image par un caméra.

9

(a) (b)

Figure 3: (a) La vision monoculaire. L’information dans l’image n’est pas suffisante pour estimer
des profondeurs de points sur des rayons de projection. (b) La vision stéréoscopique. Etant donné
deux rayons de projection d’un même point, il est possible d’estimer sa position dans l’espace.

Considérons maintenant un système d’acquisition composé de caméras projectives. Les pre-
miers indices sur la structure tridimensionnelle de la scène sont donnés, en analogie avec la vision
humaine, par une étude de correspondances entre les images et les simples propriétés des caméras
sténopés. En effet, tous les rayons de projection d’une caméra se croisent en son centre de projec-
tion (figure 14–(b)). De plus, tous les rayons de projection d’un point se croisent en ce point. Ces
observations sont suffisantes pour estimer les propriétés importantes d’une scène tridimensionnelle,
sous la condition cependant que les points présents dans plusieurs images soient mis en correspon-
dance. En utilisant des séquences d’images suffisamment denses, il est donc possible d’estimer ces
correspondances et de calculer ainsi automatiquement le modèle tridimensionnel. Cependant, sans
informations supplémentaires, la structure estimée de cette façon n’est définie qu’à une transfor-
mation projective près. En conséquence, la solution du problème de reconstruction est constituée
d’une famille de modèles, dont chacun peut être créé à partir de l’autre par une transformation
projective, i.e. transformation qui préserve la colinéarité. La reconstruction projective a de nom-
breuses applications en robotique. Cependant, elle ne donne pas accès aux propriétés euclidiennes,
telles que distances et angles, qui sont habituellement utilisées pour décrire les objets.

Quels mécanismes supplémentaires sont donc utilisés par le système de la vision humain pour
estimer correctement les distances et les angles même à partir d’une seule image?

Comme nous l’avons déjà mentionné, la géométrie du système composé d’une paire d’yeux est
parfaitement connue par la partie du cerveau associée. Dans les systèmes calibrés, il est possible
d’établir des propriétés euclidiennes du modèle. En Vision Par Ordinateur cela correspond à la
situation où l’ensemble des caméras est calibré, i.e. leurs paramètres intrinsèques et poses sont
connus. Malheureusement, les applications de systèmes de reconstruction basés sur des ensembles
précalibrés de caméras sont limitées. Le processus d’acquisition d’images est très laborieux et doit
être préparé à l’avance. En conséquence, ils ne permettent pas de reconstruire des modèles à partir
d’images arbitraires, telles que les photos d’arches ou amateur. Une solution plus intéressante
est d’autocalibrer une séquence d’images en utilisant les correspondances entre elles ainsi que
l’information sur certains paramètres de caméras ou dee leur mouvement. Malheureusement ce
genre d’approche nécessite une séquence dense d’images alors qu’un être humain est capable de
décrire les propriétés tridimensionnelles d’une scène à partir d’une seule photo.

10

Une des raisons pour lesquelles notre système de vision est si difficile à imiter est le fait, que
grâce à l’observation et l’apprentissage permanent, nous sommes capable d’extraire et d’interpréter
de nombreuses informations supplémentaires servant à estimer les propriétés tridimensionnelles des
scènes observées.

(a) (b)

Figure 4: Un exemple d’effets utiles pour estimer la nature tridimensionnelle de la scène; (a) Des
variations de couleurs dues aux effets atmosphériques et changements d’illumination peuvent être
utilisés pour estimer des distances et formes des objets; (b) L’effet perspectif. Des images de droites
parallèles s’intersectent en un seul point de l’image.

Considérons par exemple la figure 15–(a). L’effet atmosphérique change les couleurs des mon-
tagnes selon leur distance par rapport au point de vue. Le changement d’éclairage de la surface
des montagnes permet d’estimer leurs formes. Un autre indice est donné par l’effet perspective
propre au modèle sténopé de caméra (figure 15–(b)). Toutes les images de droites parallèles dans
la scène s’intersèctent dans un seul point de l’image, permettant d’estimer les relations spatiales
entre les objets.

Plusieurs choses nous permettent d’interpréter rapidement des informations très variées : nos
capacités à synthétiser rapidement les données provenant de nombreuses sources et celles à utiliser
des connaissances sur des objets communs dans notre environnement acquis auparavant.

(a) (b)

Figure 5: L’information contenue dans une seule image n’est pas suffisante pour estimer les pro-
priétés telles que l’orthogonalité ou la symétrie. La connaissance des propriétés géométriques
communes des objets peut être utile dans la résolution des ambiguı̈tés.

11

Considérons par exemple la figure 16–(a). Ayant reconnu que l’objet au centre d’image est un
tableau d’échecs, il est naturel de faire l’hypothèse que des polygones blancs et marrons sont carrés.
Analogiquement, regardant l’image 16–(b) il serait intuitif de dire que la façade du bâtiment sur
la photo est symétrique, avec des fenêtres distribuées régulièrement, etc.

Pourtant, l’information explicite délivrée par l’image est minime dans les deux cas. Des occul-
tations, des reflectances ainsi que la mauvaise qualité des images, font que la détection automatique
des éléments importants du modèle est très difficile. En outre, une seule image non-calibrée n’est
pas suffisante pour établir des propriétés du modèle telles que les angles droits, le parallélisme ou
la symétrie. En regardant les images dans la figure 16 nous devinons ces propriétés grâce aux
connaissances que nous avons sur les propriétés des objets souvent présents dans notre entourage.
Ce type d’information n’est pas toujours fiable, mais joue un rôle très important dans la façon que
nous avons d’interpréter les images.

On peut constater que les connaissances sur les caméras et les propriétés euclidiennes de la
scène sont complémentaires, et les images peuvent être utilisées comme une liaison projective,
permettant d’exprimer des dépendances mutuelles entre ces deux entités. En effet, un ensemble
d’images calibrées permet de reconstruire un modèle euclidien de la scène. D’un autre côté, des
informations sur la structure euclidienne de la scène permettent de calibrer les caméras. Finalement,
certaines connaissances sur les caméras et sur la structure euclidienne de la scène peuvent être
utilisées simultanément pour calculer tous les paramètres des caméras et du modèle à partir de
très peu d’images (voire une seule image).

Introduction de l’information sur la scène soulève plusieurs difficultés. D’abord, l’apprentissage
de propriétés des objets et l’utilisation de ces connaissances sont des processus très compliqués.
Ils nécessitent des capacités d’analyser la scène sur le niveau de détail approprié, de sélectionner
des éléments pertinents de la scène et de les comparer avec l’information acquise auparavant.
Deuxièmement, la fusion de toutes les données dans un modèle cohérent nécessite des méthodes de
représentation et de synthèse de données de types très variés et des moyennes de détection, si les
données sont suffisantes et cohérentes.

L’énoncé du problème

Dans cette thèse nous nous intéressons à la reconstruction euclidienne des environnements ur-
bains à partir de petits ensembles d’images 1 en utilisant des combinaisons d’informations sur les
paramètres des caméras et de la scène. Puisque la détection des éléments pertinents dans les images
est un problème très complexe, l’entrée des nos méthodes est interactive, ce qui permet d’utiliser
l’expérience de l’utilisateur. Parmi de nombreuses propriétés relevant la nature 3D de la scène,
nous nous concentrons sur l’exploitation des informations géométriques, telles que le parallélisme,
les angles ou les distances. Ces propriétés sont bien adaptées à la description de scènes urbaines et
sont relativement faciles à introduire par l’utilisateur. L’introduction de contraintes géométriques
dans la modélisation 3D réduit le nombre de configurations singulières pour le calibrage ainsi que
pour la reconstruction. Ceci permet la création de modèles tridimensionnels à partir de très peu
d’images, même en présence des nombreuses occultations.

En conséquence une scène peut être reconstruite même à partir d’une seule image. Par exemple,
une ancienne carte postale de l’Ecole Polytechnique de Varsovie (figure 16–(b)) est suffisante pour
reconstruire le modèle dans la figure 17. Un autre exemple est présenté dans la figure 20. Deux
images trouvées sur Internet (Page Web de M. Kevin Quick, un photographe amateur), ont été
utilisées pour la reconstruction d’un modèle presque complet de l’église de Chetwode. Ceci montre
l’utilité d’un système basé sur des contraintes pour la conservation du patrimoine. En effet, un tel
système permet de mesurer et de visualiser des bâtiments anciens, même s’il n’existent plus.

1des algorithmes proposés ont été validés sur des ensembles contenants de 1 à 15 images

12

Figure 6: Un modèle reconstruit à partir d’une photo d’archive sur la figure 16–(b).

(a) (b) (c)

Figure 7: Reconstruction à partir d’une seule image: combinaison de modèles; (a) Une photo
originale d’une chambre; (b) Une photo d’une peinture (Uffizi Gallery, Florence); (c) Combinaison
de modèles construits à partir des images (a) et (b).

Une autre application directe d’un tel système est la réalité augmentée. Une fois le modèle de
la scène réelle reconstruit, il peut être mélangé avec d’autres modèles d’objets réels ou synthétisés
(figure 18), ou encore édités (figure 19). Ceci peut être particulièrement utile pour des applications
architecturales. En effet, avant qu’un projet soit accepté, il est intéressant de voir son influence
sur l’environnement existant. Actuellement cette influence est visualisée en utilisant des maquettes
ou des modèles CAO. La construction de ce genre de modèles est très laborieux et nécessite des
informations très précises de la scène. Un système basé sur des images permet de limiter le nombre
d’informations nécessaires pour la construction du modèle, en donnant la possibilité d’incorporer
des sources traditionnelles d’information, comme les cartes ou les dessins architecturaux (figure 21).

Comme nous l’avons mentionné dans la section précédente, l’introduction des contraintes sup-
plémentaires dans un système de reconstruction à partir des images, nécessite des choix au niveau
de :

• la représentation des données d’entrée ;

• des méthodes de synthèse de plusieurs sources de données ;

• des méthodes de détection si l’information sur la scène est cohérente et suffisante pour re-
construire le modèle.

Dans les paragraphes suivants nous décrivons brièvement des solutions possibles pour ces trois

13

(a) (b) (c)

Figure 8: Reconstruction à partir d’une seule image: édition de modèles; (a) Une photo originale;
(b),(c) Le modèle après l’édition.

(a) (b) (c)

Figure 9: l’Eglise de Chetwode. Reconstruction à partir de 2 images en provenance d’Internet; (a),
(b) Des images originales (remerciements à M. Kevin Quick); (c) Le modèle reconstruit.

(a) (b) (c)

Figure 10: La mairie de Montbonnot. Reconstruction à partir de sept images. (a) Une photo
de la séquence utilisée pour la reconstruction; (b) Le plan du château avec des points du modèle
surimposés; Cette carte peut être incorporée dans le système interactif de la reconstruction; (c) Le
modèle 3D texturé.

14

problèmes.

Représentation de données. La performance de chaque algorithme est dépendante de la
représentation des données d’entrée. Pour la représentation d’informations sur les environnements
urbains auxquels nous nous intéressons dans cette thèse, nous pouvons distinguer deux approches
principales:

• La représentation de la scène par des primitives simples, telles que points, droites et plans
et des relations spatiales telles que le parallélisme, l’orthogonalité, la symétrie ou la dis-
tance. Une telle représentation est très flexible. Elle permet le traitement des problèmes
de calibrage et de reconstruction à l’aide de simples techniques d’optimisation. Cependant
la définition des scènes complexes peut être très laborieuse et peut aboutir à des systèmes
de variables et d’équations très complexes. Par exemple, la définition d’un parallélépipède
nécessite l’introduction de 8 points, 12 droites, 9 parallélismes et 3 distances.

• La représentation de la scène par des primitives complexes telles que des cubes, prismes ou
cylindres ainsi que les relations spatiales telles que l’incidence, le plan commun etc. Une
telle représentation réduit la quantité d’interaction et le nombre de paramètres à estimer.
Cependant, l’utilisation de primitives complexes nécessite souvent l’utilisation de techniques
complexes de résolution de contraintes et d’optimisation.

Le choix d’algorithmes. L’introduction d’une information supplémentaire dans la modélisation
3D à partir d’images peut aboutir à des systèmes complexes de variables et dépendances. Cette
complexité augmente avec l’homogénéité des primitives et contraintes contenues dans le système.
Il existe plusieurs approches pour la gestion de l’information géométrique de la scène. Première-
ment, la modélisation 3D peut être décomposée en plusieurs étapes. Par exemple, les contraintes
introduites dans le système peuvent être d’abord utilisées pour calibrer des caméras et ensuite, les
caméras calibrées peuvent être utilisées pour la reconstruction. Ceci permet une simplification de
problèmes résolus à chaque étape et permet souvent l’utilisation de méthodes linéaires. Cepen-
dant, une telle décomposition ne permet pas de traiter toutes les données simultanément et peux
aboutir par une propagation systématique d’erreurs. Une autre approche consiste à utiliser des
techniques d’optimisation non-linéaire prenant en compte toutes les informations simultanément.
Malheureusement, la traduction de dépendances tridimensionnelles en un ensemble d’équations
algébriques mène à des systèmes très complexes, qui sont difficiles à résoudre à l’aide de méthodes
d’optimisation classiques.

Vérification de données d’entrée. Pour assurer un fonctionnement correct des algorithmes,
il est nécessaire de vérifier si les données d’entrée permettent de construire un modèle unique et
correct.

Premièrement il est nécessaire de vérifier si les informations introduites dans le système sont
suffisantes pour calculer une solution unique pour des problèmes de calibrage et de reconstruction.
L’information n’est pas suffisante quand le nombre de contraintes indépendantes est inférieur au
nombre de paramètres libres du problème. Ceci peut être du à une mauvaise définition de la scène
par l’utilisateur ou par une configuration singulière des objets et des caméras.

Deuxièmement, il est nécessaire de vérifier si l’information introduite dans le système est co-
hérente, c’est-à-dire si les contraintes introduites ne sont pas contradictoires entre elles.

15

Contributions

Dans cette thèse nous proposons plusieurs algorithmes qui permettent le passage d’un ensemble
des photos non-calibrées vers un modèle tridimensionnel de la scène. Tous ces algorithmes sont
basés sur une exploitation des connaissances des propriétés géométriques de la scène. La figure 22
donne une intuition sur l’entrée et la sortie du système.

L’entrée du système contient:

• un ensemble d’images non-calibrées et éventuellement une information sur certains paramètres
des caméras;

• un ensemble de primitives marquées et une mise en correspondance par l’utilisateur;

• un ensemble de relation géométrique entre les primitives.

La sortie du système contient:

• le calibrage et les poses des caméras;

• un modèle euclidien de la scène.

Dans cette thèse nous proposons des algorithmes qui permettent de calculer une solution pour
trois étapes de modélisation tridimensionnelle.

D’abord, nous présentons une approche de calibrage basée sur des parallélépipèdes, introduit
initialement dans [Wilczkowiak et al., 2001, 2002, 2003c]. Les parallélépipèdes encodent naturelle-
ment des propriétés géométriques de la scène et sont très souvent présentes dans les environnements.
Nous introduisons une notion de dualité entre les paramètres des caméras et des parallélépipèdes.
Sur le plan théorique, une des conséquences de cette dualité est le fait que le problème du calibrage
peut être formulé dans les termes d’un cube canonique plutôt que dans les termes d’une conique
absolue. Sur le plan pratique, cette dualité permet de proposer des algorithmes qui regroupent
les avantages d’une représentations de la scène par des primitives simples et complexes. En effet,
grâce à l’utilisation de parallélépipèdes l’interaction de l’utilisateur est réduite. Grâce à la notion
de dualité, il est possible d’exploiter toutes les informations sur des parallélépipèdes et des caméras
simultanément en utilisant des algorithmes linéaires. La structure obtenue de manière linéaire peut
être ensuite raffinée dans un processus non- linéaire. De plus, grâce à l’utilisation de primitives
complexes, le nombre de paramètres est réduit.

Notre approche pour le calibrage est accompagnée par une étude détaillée des configurations
singulières. Nous proposons aussi une approche originale pour la détection de variables sous-
contraintes du système.

Une fois les caméras calibrées, il est possible de reconstruire la structure euclidienne de la
scène. Pour assurer la flexibilité de la définition de la scène, nous proposons de représenter le
modèle par des primitives simples, telles que des points, des droites et des plans, ainsi que par des
contraintes géométriques entre eux. Nous limitons l’ensemble des contraintes géométriques utilisées
aux contraintes qui peuvent être exprimées par des relations bilinéaires, tels que le parallélisme,
l’orthogonalité ou l’incidence. Grâce à cette limitation, il est possible de proposer une approche
itérative, basée sur des méthodes d’algèbre linéaire. En effet, quand les coordonnées d’un des objets
liés à une contrainte bilinéaire sont connues, il est possible de formuler des équations linéaires sur
le deuxième objet et d’estimer sa position. De cette façon, l’information peut être propagée jusqu’a
l’estimation de tous les objets présents dans la scène. La méthode de la reconstruction décrite dans
ce document a été présentée initialement dans [Wilczkowiak et al., 2003a]. L’algorithme principal
derrière cette méthode est une approche pratique pour la détection de variables suffisamment con-
traintes dans des systèmes linéaires sous-contraints. Cette approche est basée sur la Décomposition

16

(a) (b) (c)

(d) (e)

Figure 11: Exemples d’entrée et de sortie du système; L’entrée: (a),(b) Des images de primitives
sont mises en correspondance entre les images; (a)(c) Des propriétés euclidiennes telles que les
paramètres de primitives ou les distances sont introduites de manière interactive. La sortie: (d)
Une étape intermédiaire : une estimation des poses des caméras et une reconstruction partielle de
la scène; (e) Un modèle complet de la scène.

en Valeurs Singulières de la matrice formée par des contraintes et peut être appliquée directement
à tous les systèmes linéaires. Dans le système de reconstruction proposée dans cette thèse, nous
utilisons cette approche pour détecter les objets dont la position peut être estimée uniquement à
partir de contraintes géométriques définis dans le système. Une telle détection est nécessaire pour
un fonctionnement correct de la propagation d’information.

La méthode de reconstruction proposée est très rapide et donne une très bonne solution initiale
pour un éventuel raffinement non-linéaire.

Finalement, nous décrivons une approche pour la satisfaction de contraintes géométriques dans
un processus non-linéaire. Certaines problématiques liées à cette approche ont été publiés dans
[Wilczkowiak et al., 2003d; Trombettoni and Wilczkowiak, 2003]. Contrairement à la plupart des

17

approches existantes, notre méthode permet de gérer de grands ensembles de objets et de contrain-
dre des types très variées. En générale, la représentation géométrique d’un problème géométrique
tridimensionnelle résulte en un systèmes de variables et d’équations très complexes et difficile à ré-
soudre à l’aide de méthodes numériques classiques. Nous proposons une approche différente, basée
sur la Propagation Générale de Degrés de Liberté (General Propagation of Degrees of Freedom
(GPDOF)), dérivée de celle connue dans la communauté de Programmation par Contraintes. Notre
approche permet de transformer un système représenté par un ensemble de variables et d’équations
en un système représenté par un ensemble de variables libres (input parameters) et une séquence
de routines (plan), dont l’exécution mène à un modèle satisfaisant de contraintes. Une fois que le
modèle est représenté par un ensemble des variables libres, il est possible d’utiliser des méthodes
d’optimisation classiques pour estimer un modèle conformant aux images. Contrairement aux ap-
proches existantes, notre méthode permet un paramétrage du modèle dans un temps polynomial
et assure de trouver une solution satisfaisant toutes les contraintes si seulement une telle solution
existe. Nous montrons que le paramétrage de la scène trouvé par notre méthode n’est pas minimal,
mais que ce n’est pas contradictoire avec le fait que toutes les contraintes soient respectées. Nous
montrons aussi, comment un paramétrage minimal pourra être calculé.

Le problème majeur des systèmes satisfaisant des contraintes exactement est la gestion des
contraintes redondantes. Ceci est un problème encore ouvert. Cependant, notre algorithme permet
de séparer tous les objets et contraintes inclus dans un sous-système contenant des contraintes
redondantes. Nous proposons aussi des algorithmes pour enlever certains types d’ensembles de
contraintes redondantes qui sont souvent présentes dans environnements urbains.

Structure de la thèse

Cette thèse est composée de trois parties. La première partie introduit des conceptes basiques
de la géométrie projective et la représentation des objets et contraintes utilisés dans cette thèse
(chapitre 1) ainsi que l’état de l’art en utilisation de contraintes géométriques en Vision par Ordi-
nateur (chapitre 2).

La seconde partie introduit des approches linéaires pour la modélisation 3D à l’aide de con-
traintes géométriques. D’abord nous décrivons une approche pour le calibrage à l’aide de paral-
lélépipèdes dans les chapitres 3-5. Dans le chapitre 7 nous proposons une approche multi-linéaire
pour la reconstruction de la scène. Des résultats de ces méthodes sont présentés dans le chapitre 7.

La troisième partie décrit une approche pour un paramétrage quasi-minimal de la scène et son
application au raffinement non-linéaire du modèle basée sur la Propagation Générale de Degrés de
Liberté GPDOF. Des chapitres 8- 10 présentent l’algorithme proposé. Chapitre 11 décrit des expéri-
ences validant notre méthode. Dans le chapitre 12 nous comparons GPDOF aux autres systèmes de
décomposition développés dans le domaine de la Programmation par Contraintes.

18

Introduction

Context and Motivation

The inspiration for most of the technical inventions lies in nature. We can understand and imitate
many natural phenomena, but there are still fields where achievements of science are modest
compared to their natural models. This is the case which has inspired generations of scientists:
making a creature in our image and similitude. New perspectives to approach this challenge have
appeared with the development of computers. We are still far from creating a machine which can
think and act independently, but progress in science has led to the development of many devices
which can replace or imitate the functionality of separate parts of our bodies. Sensors analyzing
smells, noises, or images are often exploited in different contexts to replace our imperfect senses.

The interest of Computer Vision is the simulation of various mechanisms of human sight such
as: recognition of objects present in the observed scene, estimation of their distances, shapes, or
velocities. To perform these tasks, the human vision system exploits very different mechanisms,
starting from stereo information, through the analysis of perspective or shading effects and finishing
with using the knowledge of the scene acquired previously.

Using all of this information simultaneously is very complicated and in Computer Vision algo-
rithms only a subset of this information is usually treated at once. In this thesis we are mainly

Ciliary muscle

Cornea

Lens

Iris

Pupil

Retina

Fovea

Optic nerve

Figure 12: The principle of the image creation in human eye.

20

interested in methods allowing the use of prior knowledge of the scene together with the image
information in order to obtain a three-dimensional scene model. To give an idea of how 3D scene
structure can be extracted from 2D images and why incorporation of prior information can be very
useful in this process let us first review basic tools used in Computer Vision and compare them to
the elements of the human vision system.

Naturally, the basic tool of the human vision system is the eye. Biologically, its structure is
extremely complicated. For example, in spite of many efforts, researchers are still not able to create
an artificial retina, the most important part of the eye. However, the principle of image creation is
very simple. As shown in figure 12, light rays are focused through the transparent cornea and lens
upon the retina. The central point for image focus in the retina is the fovea. Here a maximally
focused image initiates resolution of the finest details and direct transmission of those details to
the brain for higher operations needed for perception.

An equivalent to an eye used in Computer Vision is a camera (see figure 13). The pinhole
camera model, used in this thesis, is very similar to the model of the human eye described above.
The light rays are focused in the projection center upon the image plane. This model is simplified
and do not model non-linear effects occurring in real cameras, such as radial distortion. It seems
to be however a good compromise between the simplicity and the precision of the image creation
process modeling.

Images created by a single eye or camera are only two-dimensional, and without any further
information do not allow the estimation of a three-dimensional nature of the scene (see figure 14–
(a)). However, in the human vision system images captured by each eye are analyzed subsequently
by the brain, which combines the two images by matching up the similarities and adding in the
small differences, forming stereoscopic images (from ancient Greek stereos: solid).

More precisely, when the image projection center is known, it is possible to lead a projection
ray joining the projection center and the image point. Projection rays corresponding to one spatial
point must intersect at this point, defining its position. Thus, the ability to match features between
images and understanding the geometry of image sensors lies at the ground of stereoscopic vision
systems. Starting from birth, the part of the brain responsible for image processing is trained to
receive and interpret the visual data received in the retina. We rarely think about the complexity
of this process. It takes several weeks until a child is able to follow moving objects. It takes up
to four years before all the necessary neuronal connections are established in the retina. The final
result is our vision system, consisting of a pair of eyes, whose geometry is well understood by the
associated part of the brain, allowing for the automatic and efficient perception of the surrounding
world.

Projection centre

Image plane

Figure 13: The principle of the image creation in camera.

21

(a) (b)

Figure 14: (a) Mono vision. The image information is not sufficient to recover depths of points
along projection rays. (b) Stereo vision. When two projection rays of a point are given, it is
possible to compute its position in space.

Let us consider now an acquisition system composed of projective cameras. First, important
clues about the 3D scene structure are given, as in stereo human vision, by a study of correspon-
dences between the image points and simple dependencies engendered by basic properties of pinhole
camera projection. Let us consider again figure 14–(b). All of the projection rays of the cameras
meet at the projection center. On the other hand, all of the projection rays of a point meet at one
point. These observations are sufficient to recover important properties of a 3D scene, provided
that the inter-image point correspondences are known. Using sufficiently dense image sequences it
is possible to compute the inter-image correspondences and thus the 3D model automatically. How-
ever, without any additional information, such a 3D structure is computed only up to a projective
transformation. This means that any transformation of the model preserving collinearity satisfies
all of the correspondence information as well. Projective reconstruction has multiple applications
in machine vision and robotics. However, it does not reveal euclidean properties such as angles
and distances which are most commonly used for the description of objects.

Thus what enables us to correctly estimate distances and angles not only when watching objects
with both eyes, but even from single photos, where no stereo information is given?

First, as already mentioned, the geometry of our eyes is taken well into account by the associated
part of the brain. Indeed, during our whole life their relative position does not change, and focusing
is steered by the brain. When sensors are calibrated, it is possible to uniquely define the projection
rays corresponding to scene points and recover the euclidean scene properties. In Computer Vision
this corresponds to the situation where cameras are calibrated, i.e. their intrinsic parameters
and poses are known. However, reconstruction using image sequences taken with precalibrated
sets of cameras has very limited applications. The image acquisition is laborious and does not
allow for reconstruction from arbitrary images, such as archive or amateur photos. Much more
interesting solutions consist of the self-calibration of cameras, i.e. camera calibration using the
image correspondences and information about only some camera parameters or special movements.
But again, such approaches for the estimation of camera intrinsic parameters and poses require
dense sequences of images in general positions, while a human can well describe the 3D character
of a scene from a single photo.

One of the most important reasons why our vision system is so difficult to imitate is the

22

fact, that thanks to continuous observation and learning we are able to extract and interpret
various complementary information revealing the 3D character of the scene. Consider for example

(a) (b)

Figure 15: Example of image information useful to recover three-dimensional nature of the scene;
(a) Variation of colors due to the atmospheric and shading effects help in estimation of distances
and shapes of objects. (b) Perspective effect. Parallel lines meet at one image point.

figure 15–(a). The atmospheric effect changes the colors of the mountains depending on their
distance. The shading of mountain surfaces and contours allows the estimation of their shape.
Another helpful hint is given by the perspective effect proper to the pinhole projection model.
This is illustrated in figure 15–(b). All of the parallel lines meet at one image point. As a result,
the further the object is away, the smaller it seems to be in the image, revealing important spatial
properties of the scene. What allows us to rapidly interpret very different visual information is
the fact that we cannot only synthesize efficiently various types of data, but that we are also able
to exploit previous experience and learned knowledge about properties of objects present in our
environment.

(a) (b)

Figure 16: Image information is not sufficient to establish information about orthogonality or
symmetry from a single image. Knowledge of common geometrical properties of objects is helpful
in solving the ambiguities.

Consider for example figure 16–(a). Since the object in the image is a chessboard, naturally
white and brown polygons should be squares. Similarly, analyzing image 16–(b) it is rather in-
stinctive to say that the facade of the building is symmetric, with regularly distributed windows

23

of the same shape, etc.
However, the image information is very poor in both cases. Numerous occlusions, reflectances,

and bad image quality make it difficult to locate the important model features automatically. But
even if the image data was perfect, a single projection is not sufficient to establish information such
as right angles, parallelism or symmetry in the scene. These properties of a scene are guessed by
using known common properties of objects from the scene. Such information is not always reliable,
but is very important in the process of image interpretation.

Thus camera and scene euclidean properties are complementary and images can be used as a
projective link between them, allowing the expression of mutual dependencies. Indeed, a set of
calibrated images is sufficient to reconstruct a 3D model. On the other hand, known euclidean
scene features allows the calibration of cameras. Finally, partially calibrated cameras and some
prior information about the scene can be used together to recover both scene and camera parameters
from small image sets, or even a single image.

However, using prior information about the scene reveals several difficulties. Firstly, the process
of learning and using acquired knowledge is very complicated. It necessitates the ability to analyze
the scene at a correct description level, to select the pertinent features, and to compare it to
already acquired information. Secondly, fusion of all the input data into a coherent model requires
the ability to describe and synthesize different types of information and to detect if the given
information is sufficient and consistent.

Problem Statement

In this thesis we are interested in the euclidean reconstruction of man-made environments from
small sets of uncalibrated images2 using a combination of available information about camera and
scene parameters. As the detection of relevant features in images is a very complex problem, we
take advantage of human experience and rely on interactive user input. Among various types of
properties revealing the 3D nature of the scene, we concentrate on exploiting euclidean information
such as parallelism, angles and distances between objects. Euclidean properties are well adapted to
describing man-made environments and are relatively easy to provide by the user. Introduction of
scene constraints into the model acquisition process reduces the number of singular configurations
for calibration and allows for model reconstruction using small sets or even single images despite
the presence of numerous occlusions.

This means that a scene can be reconstructed, for instant, even from a single (e.g. archival)
image. For example, an old postcard of the main building of Warsaw University of Technology
(figure 16–(b)) is sufficient to reconstruct the model in figure 17. Another example is shown in
figure 20. Two images found on Mr. Kevin Quick web page of, an amateur English countryside
photographer, were used to reconstruct an almost complete model of the Chetwode church. This
reveals the utility of a constraint-based system for the conservation of cultural heritage. Indeed,
using such a system enables for example the measurement and visualization of buildings, even if
they do not exist anymore.

Another straightforward application of such a system is augmented reality. Once real scene
models are reconstructed, they can be mixed with other reconstructed or synthesized models (see
figure 18), or edited (see figure 19). This can be especially useful in architectural applications.
Indeed, before an architectural project can be accepted, its impact on the existent environment is
visualized using hand-made or CAD city models. The process of building such models is laborious
and requires more prior information than scene reconstruction from images. Moreover, when
needed, traditional tools used by architects, such as maps and architectural drawings are easy to
incorporate into an interactive reconstruction approach (see figure 21).

2proposed algorithms were validated on sets containing from 1 to 15 images

24

Figure 17: Model reconstructed from archival photo shown in figure 16–(b).

(a) (b) (c)

Figure 18: Single image reconstruction: model mixing; (a) Original photo of a room; (b) Photo of
a painting in Uffizi Gallery (Florence); (c) Combination of models build from images (a) and (b).

(a) (b) (c)

Figure 19: Single image reconstruction: model edition; (a) Original photo; (b),(c) Model after
removal of stairs.

25

(a) (b) (c)

Figure 20: Chetwode Church. Reconstruction from 2 images found on the Internet; (a), (b) The
original images (courtesy of Mr. Kevin Quick); (c) The reconstructed model.

(a) (b) (c)

Figure 21: Montbonnot Townhall. Reconstruction based on seven images of the castle. (a) One
of the seven images used for the reconstruction; (b) The castle plane with superimposed model
points; Such map can be easily included into a reconstruction system; (c) The textured 3D model.

26

As mentioned at the end of the previous section, when introducing additional constraints into
an image-based 3D model acquisition system it is necessary to make choices concerning how to
represent the input data, how to synthesize different types of information and how to detect if the
given information is sufficient and consistent. Let us briefly resume important issues related to
these problems addressed in this document.

Data representation. Note, that depending on the problem, humans automatically use different
descriptions for objects. Similarly, depending on the expected algorithm performance and results,
the scene objects will be represented in different ways. For man–made environments, which are of
special interest in this thesis, we can distinguish two main trends:

• Representation of the scene using simple primitives, such as points, lines and planes and
the spatial relations between them, such as parallelism, orthogonality, symmetry, distances.
Such a representation has the advantage of being very flexible. Using a limited set of simple
primitives and constraints allows the solution of calibration and reconstruction problems
using standard optimization techniques. However, the definition of complex scenes can be
laborious. For example, a full definition of a parallelepiped in such a system may require
introducing 8 points, 12 lines, 9 parallelism and 3 distance constraints.

• Representation of the scene using complex primitives, such as cubes, prisms, cylinders and
the spatial relation between them, such as incidence, common ground plane etc. Using such
primitives decreases the amount of necessary user interaction and the number of parameters
to estimate. However, using complex structures, usually requires using advanced constraint
solving and optimization techniques.

Choice of algorithms. Introducing additional information into the modeling results in a more
complicated system of dependencies between the variables of the system. This complexity increases
with the number of homogeneous types of objects and constraints added to the system. Several
approaches to deal with information about scene geometry are possible. First, the model acquisition
process can be decomposed into several stages. For example the available data can first be used
to calibrate the cameras and then the calibrated cameras can be used for the reconstruction.
This simplifies the problem considered at every stage and enables the use of simple (e.g. linear)
methods. However, this does not allow for the simultaneous use of information and can cause
the systematic propagation of errors. Another approach consists of using non-linear optimization
techniques solving all constraints simultaneously. Unfortunately, translating 3D dependencies into
a set of algebraic equations leads to complex equation systems which are difficult to solve using
standard optimization methods. To avoid such problems, the scene is sometimes modeled by a
parameterized model and the acquisition problem consists only of finding the parameters which
define the model conforming to the image data.

Dealing with missing and redundant data. In order to insure a correct solution consid-
eration must be given to the verification of the input data. First, it is necessary to test if the
given information is sufficient to compute a unique solution for the calibration and reconstruction
problem. The data is insufficient when the number of independent constraints is smaller than
the number of free model parameters. This can be caused by wrong user input or by a singular
configuration of cameras or model features. Consideration must also be given to verify that the
input is consistent, i.e. the introduced constraints are not contradictory. In order to insure good
performance of the algorithms it is necessary to detect such situations.

27

Contributions

In this thesis we propose several algorithms covering different stages of the reconstruction of the
euclidean structure of a scene from a set of uncalibrated images. All these algorithms are based on
the exploitation of prior information about geometrical properties in the scene. Figure 22 gives an
indication of the input and output of the system.

The input consists of:

• a set of uncalibrated images with possible prior knowledge of certain intrinsic parameters;

• a set of scene primitives depicted and matched over the images;

• a set of geometrical relations between the primitives.

The output of the system consists of:

• calibration and pose estimation for the cameras;

• a euclidean model of the scene.

Let us resume briefly the algorithms proposed in this thesis.
First, we present a parallelepiped-based calibration method introduced in [Wilczkowiak et al.,

2001, 2002, 2003c]. Parallelepipeds encode naturally the geometric properties of a scene, are very
common in man–made environments, and are easy to depict by the user. We introduce a notion
of duality between camera and parallelepiped parameters. On the theoretical level, one of the
consequences of this duality is the fact that the calibration problem can be formulated in terms
of a canonic cube instead of an absolute conic. On the practical level the duality can be used
to propose algorithms joining advantages of simple and complex representations. While input is
through complex primitives, the proposed algorithms are linear. The geometry of the cameras and
parallelepipeds are computed simultaneously. The obtained structure can be refined in a non-linear
optimization step. Then, thanks to the use of parallelepipeds the number of parameters to optimize
is reduced. The approach is accompanied by a detailed study of singular configurations for intrinsic
parameter estimation. We also propose an original method for the detection of underconstrained
features for intrinsic and extrinsic parameter computation.

Once the cameras are calibrated, it is possible to reconstruct the euclidean structure of the scene.
To insure maximal flexibility in the scene definition for the reconstruction task we model the scene
using simple primitives, such as points, lines and planes. Together with geometrical constraints,
they can describe most man–made structures. By limiting the set of available constraints to
constraints which can be expressed by bilinear equations in terms of related primitives, it is possible
to propose an iterative approach based upon linear methods. Indeed, when coordinates of one of
the primitives involved in a relation are known, it is possible to express the constraints on the other
primitive through linear equations. The computed information can be propagated until the whole
scene is reconstructed. The reconstruction method described in this document was presented first
in [Wilczkowiak et al., 2003a]. The main algorithm behind this method is a practical approach
for the detection of well-constrained variables in linear equation systems. This approach is based
on the SVD of the equation system’s matrix and can be applied straightforwardly. Its application
domain covers in particular all computer vision algorithms based on linear algebra. It can be
used for example to detect cameras which are underconstrained for intrinsic parameters or pose
estimation in the parallelepiped-based calibration approach described above. In the implemented
reconstruction system it enables the detection of features which are sufficiently constrained and,
consequently, to propagate the available geometrical information. The proposed reconstruction
method is very fast and gives a very good initial solution for a possible non–linear refinement step.

28

(a) (b) (c)

(d) (e)

Figure 22: Examples of input and output of the system; Input: (a),(b) Images of primitives are
matched between images; (a)(c) Euclidean properties such as parameters of primitives or distances
are introduced interactively. Output: (d) Reconstructed calibration primitives and cameras; (e)
Full textured scene model.

Finally, we describe an approach for the satisfaction of the introduced geometrical constraints
in a non-linear optimization process. Some of the results were published in [Wilczkowiak et al.,
2003d; Trombettoni and Wilczkowiak, 2003]. The most important feature of our approach is that
contrary to most of the existing methods it is able to deal with a large set of various types of
objects and constraints. In the general case, the 3D geometrical problem is translated into a
large system of linear, bilinear, or quadratic equations which are difficult to solve using numerical
methods. We propose a different approach, based upon an algorithm called General Propagation
of Degrees of Freedom (GPDOF), derived originally from local propagation methods. This allows
the transformation of a system composed of a set of variables constrained by a set of equations
into a system described by a set of free variables, called input parameters and a sequence of
routines, called plan, whose execution results in a model satisfying the constraints. Having such a
parameterized model it is possible to use standard optimization techniques to find a model fitting

29

the image data. Contrary to existing approaches, our method allows for scene parameterization
in a polynomial time and insures finding a solution satisfying all the constraints if only one exists.
In such a case, although the model parameterization is only quasi-minimal, all the constraints are
satisfied. We outline also how a minimal scene parameterization might be found, however as long
as the constraints remain satisfied, the interest of such a minimization remains marginal due to
the computation cost significantly high comparing to the proposed method.

When using such an approach, the main problem arising occurs when the introduced constraints
are redundant. Generally, dealing with redundant data is still an open problem. Our algorithm is
able to specify all of the objects and constraints involved into an over constrained subsystem. We
also propose some algorithms to remove some frequently occurring redundancies.

Outline

This thesis is composed of three parts. The first part introduces basic concepts of projective
geometry and representation of objects used in the thesis (chapter 1) as well as a state of the art
in the use of geometrical constraints for Computer Vision algorithms (chapter 2).

The second part introduces linear approaches for 3D modeling using geometrical primitives.
First, the parallelepiped-based calibration approach is introduced in chapters 3-5. Then a multi-
linear reconstruction method based on a scene description by simple primitives is presented in
chapter 6. Results of both methods are presented in chapter 7.

The third part describes our approach for quasi-minimal scene parameterization and its appli-
cation to non-linear optimization of the scene and camera parameters. An overview of the method
and necessary background are presented in chapter 8. Chapter 9 details various methods used
during the constraint satisfaction process, such as the automatic r-method addition phase and the
GPDOF algorithm. The chapter is completed by a discussion about difficulties linked to constraint
satisfaction, that is, the cases of singularity and the consequences of redundant constraints. The
optimization phase is described in chapter 10. Chapter 11 shows the experiments which have
been performed on two models significantly differing in the number of objects and images used for
reconstruction. Chapter 12 compares GPDOF to other equation system decomposition algorithms,
some of them being developed by the Computer Aided Design Community.

30

Part I

Background

Notations

a, λ scalars
v, V vectors
A, Ω matrices
∧ join operator
∨ meet operator
× vector product

[x]× skew-symmetric matrix defined for 3-vectors x = (
T
x1, x2, x3) of the form

−x3 x2
x3 −x1
−x2 x1

.

For any 3-vector y holds [x]×y = x× y

eni elementary n-vectors of the form (0, · · · ,
i

︷︸︸︷

1 , · · · , 0)>
‖x‖ 2-norm ‖x‖2 corresponding to euclidean vector length

Φ(A) nullspace of matrix A
A+ pseudoinverse of matrix A
In identity n× n matrix
0n zero n-vector
An affine n-dimensional space
Mn metric n-dimensional space
Pn projective n-dimensional space
R set of real numbers
∼ equality of two vectors up to a scalar factor

34

Chapter 1

Geometric Concepts in Computer

Vision

This chapter resumes the basic concepts of geometry essential to read this thesis. Generally, the
image-scene relations are of a projective nature, thus the projective properties of space are reviewed
at first. Then affine and euclidean subspaces are defined in order to formulate the conditions neces-
sary to calibrate the cameras, i.e. pass from the projective scene description level to the euclidean
one, which is the interest of the methods presented in this thesis. The exhaustive description of
the concepts adressed in this chapter can be found in classical books concerning projective geom-
etry and computer vision, in particular [Semple and Kneebone, 1952; Faugeras, 1993; Hartley and
Zisserman, 2000]. This overview was mainly inspired by [Hartley and Zisserman, 2000] and Marc
Pollefeys’ tutorial on 3D modelling from images [Pollefeys, 2000].

After a general overview, the details of the scene representation are given. First the linear
camera model is described in terms of its projective and euclidean properties. Then the scene 3D
structure modelling is discussed. The choice of the scene representation influences the performance
of any method. General models allow for easy extensions. On the other hand, models strictly
adapted to the given information and required results increase the computation efficiency.

In this thesis we use two different scene representations. In the reconstruction algorithms (sec-
tion 6 and part III) stress is put on the flexibility of the representation of different objects and
constraints, and so the scene is represented by simple primitives such as points, lines and planes
and the constraints between them. Such primitives are often represented using homogeneous coor-
dinates [Semple and Kneebone, 1952; Stolfi, 1991; Carlsson, 1993; Hartley and Zisserman, 2000].
This representation is discussed here with special consideration of its euclidean interpretation, par-
tially following the formalism used in [Heuel, 2001]. It is followed by an overview of the various
representations of geometrical constraints used in reconstruction approaches.

Contrary to reconstruction algorithms, our calibration algorithms are based on scene descrip-
tions using complex primitives, which are discussed at the end of this chapter. Complex primitives
allow the representation of many useful properties in a compact form, and constrain the calibration,
and reconstruction tasks. However, with such scene representations it is not always convenient to
model non-standard shapes. First a classical approach [Debevec et al., 1996] is discussed. Then it
is compared to the parameterisation used in our calibration method (part II).

36 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

As most of the readers are familiar with the geometrical framework provided in this chapter,
we give only the definitions and properties necessary to situate our work in the state of the art,
and focus mainly on giving geometrical interpretations of the presented concepts.

1.1. PROJECTIVE GEOMETRY: BASIC CONCEPTS 37

1.1 Projective Geometry: Basic Concepts

The elements of the n-dimencsional projective space Pn are represented by n + 1-vectors of ho-
mogeneous coordinates. We make no distinction between objects and their vector or matrix rep-
resentations. For example point x is represented by an n + 1 dimensional homogeneous vector
x = (x0, · · · , xn) such that x 6= 0n+1. Two representations x1, x2 in the projective space Pn
correspond to the same element if there exists a scalar λ such that x1 = λx2, or, equivalently
x1 ∼ x2.

1.1.1 Points and Hyperplanes

0-dimensional elements of Pn are called points. The (n−1) dimensional subspaces of Pn are called
hyperplanes. Both points and hyperplanes are represented by (n + 1)-vectors of homogeneous
coordinates. A point x is incident with a hyperplane π if:

πTx = 0⇔ xTπ = 0.

This means that a hyperplane can be defined as the join of (minimal linear space spanned by)
n points and vice versa a point can be defined by the meet (intersection) of n hyperplanes. This
leads to the following Duality Principle:

To any theorem in projective space Pn which includes points and hyperplanes there exists a
dual theorem, which can be derived by interchanging the role of the points and the hyperplanes
and the operators (for example join and meet).

For example, in P2, points and lines are dual, and in P3, points and planes are dual.

1.1.2 Conics and Quadrics

Let us consider a quadratic form

Q(v) = vTQv (1.1)

represented by a symmetric matrix Qn+1×n+1.
A quadric (quadric locus) Q in Pn consists of the points x in Pn satisfying the equation

Q(x) = 0.
A dual quadric (quadric envelope) Q∗ in Pn consists of the hyperplanes π in Pn satisfying the

equation Q∗(π) = 0.
It is easy to show, that the symmetric matrix Qn+1×n+1 representing a quadric in Pn is defined

only up to a scale factor, and has n2+3n
2 degrees of freedom. A quadric (locus and envelope) is

called proper when represented by a full-rank matrix Q and degenerated otherwise.
A point x and a quadric Q define a hyperplane π ∼ Qx. The hyperplane π is called the polar

of x with respect to Q and the point x is called the pole of π with respect to Q (this relation for
points and lines in P2 is shown on the figure 1.1–(a)).

Points x and y are conjugate with respect to quadric Q if x lies on the polar hyperplane of y
and vice versa. This means that for two conjugate points x, y we have:

yTQx = 0⇔ xTQy = 0.

The hyperplane π polar with respect to Q to a point x lying on Q is tangent to Q in point x.
Hyperplanes tangent to a quadric Q belong to the quadric dual to quadric Q: Q∗ (see figure 1.1–

(a) and 1.1–(b)).
A quadric dual to a proper quadric Q represented by matrix Q is represented by matrix Q∗ =

Q−1.

38 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

ytCx = 0

x

y

C

l = Cx

C

x

C∗

l

(a) (b) (c)

Figure 1.1: Basic conic properties. (a) Conjugacy and polarity concept. Point x is the pole of line
l with respect to C. Points x and y are conjugate with respect to C; (b) Point conic; (c) Dual conic
(envelope).

In the literature, the term quadric is usually used for the quadric of P3. In the following we will
use the following definitions: A quadric (surface) Q is a quadric in P3 defined by points lying on
the surface or, dually, by planes tangent to the quadric surface. It is defined by nine independent
parameters. A conic (curve) C is a quadric in P2 defined by points lying on the conic curve or,
dually, by 2D lines tangent to the conic curve. It is defined by five independent parameters.

1.1.3 Projective Transformation

An invertible linear mapping Pn → Pn is called a projectivity, projective transformation, collineation
or homography. It can be represented by a n+ 1× n+ 1 matrix T. The transformation equations
for points, hyperplanes and quadrics under transformation T are the following:

point: x → Tx

hyperplane: π → T−Tπ

quadric: Q → T−TQT−1

dual quadric: Q∗ → TQ∗TT

1.1.4 Projection

A linear mapping Pn → Pm where n > m is called a projection and can be represented by an
(m+ 1)× (n+ 1) matrix P.

1.2 From Projective to Euclidean Space

A 3D space can be described at different levels. When describing the geometry of 3D objects we
generally use euclidean attributes such as distances and angles. However in a perspective image of
a 3D scene only projective invariants, such as cross-ratio, incidence and collinearity are preserved.
Consequently, without any additional information, we can recover at most those properties from
a set of images. Depending on the given information, it is possible to recover different properties
of the scene. Usually we use three different ”layers”-strata of the space: projective, affine and

1.2. FROM PROJECTIVE TO EUCLIDEAN SPACE 39

euclidean. The transformations, which applied to an object, leave the result in the same stratum,
are respectively called, projective, affine and euclidean. The group of euclidean transformations
is a subgroup of the group of affine transformations which is a subgroup of the group of projec-
tive transformations. Every type of transformation can be characterized by its invariants: the
spatial properties it leaves unchanged. Invariants are the basis of all the existing calibration and
reconstruction algorithms. In the following we resume the properties of the projective, affine, and
euclidean spaces necessary to understand the theorical foundations of calibration and reconstruc-
tion algorithms proposed in this thesis. By default, all the given properties apply to P3, however
some equivalents are also given for P2.

1.2.1 Projective Stratum

The group of projective transformations is the most general group of linear transformations, i.e.
transformations mapping any line to a line.

As stated in the previous section a projective transformation in P3 is represented by a 4 × 4
invertible matrix:

TP ∼

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

(1.2)

Projective transformations have 15 degrees of freedom and preserve collinearity, incidence and
conjugacy.

Other invariants of projective transformations are cross-ratios, e.g. the point cross-ratio. Let
us consider four collinear points X1 · · ·X4. They can be represented as Xi ∼ X0+λiX

′ for certain
X0,X

′, X0 6∼ X′. The cross-ratio of X1 · · ·X4 is defined as follows:

{X1;X2;X3;X4} =

(
λ1−λ3

λ1−λ4

)

(
λ2−λ3

λ2−λ4

) .

The cross-ratio can be seen as the coordinate of a fourth point in the basis consisting of the
remaining three, since three points form a basis for the projective line P1. It is defined also for
points at infinity and does not depend on the choice of X0 and X′. The cross-ratio of three points
and a point at infinity is the ratio of distances of two of the three points with the third one. As
already mentioned the value of cross-ratio remains constant under any projective transformation.

1.2.2 Affine Stratum

The affine space A3 is embedded in P3 under the mapping:

A3 → P3 : (x, y, z)T → (x, y, z, 1)
T
. (1.3)

It is easy to see that points from P3 of the form (x, y, z, 0) do not belong to the range of this

transformation. Those points could be seen as limit points of the form (x, y, z, 1t)
T
for t → ∞.

Consequently, they are called points at infinity. The plane π∞ = (0, 0, 0, 1) formed by those points
is called plane at infinity. Mapping (1.3) can be seen as a one-to-one mapping between the affine
space and the projective space minus the plane at infinity. Note that lines characterized by the
same direction vector always meet at points lying on the plane at infinity. Thus direction d in 3D
space can be identified with a point at infinity d = (xd, yd, zd, 0). Since such points do not belong
to the affine space, parallel lines never intersect in the affine space.

40 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

In the projective plane P2, all the points at infinity lie on the line at infinity l∞, so the affine
plane corresponds to the projective plane minus the line at infinity.

The affine transformation is a projective transformation represented by a 4×4 invertible matrix:

TA ∼

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 0 1

(1.4)

Affine transformations have 12 degrees of freedom and, unlike general projective transforma-
tions, leave the plane at infinity globally unchanged, although individual points at infinity may
vary. In consequence, parallelism (points at infinity remain at infinity) and distance ratios on
parallel lines (cross-ratios with points at infinity) are also preserved.

From projective to affine. Let us consider a structure that is known up to a projective trans-
formation. As was already stated, generally projective transformations do not preserve the plane
at infinity (see figure 1.2). Thus, to resolve the projective ambiguity, the plane at infinity first
has to be located in P3 (or line at infinity for the projective plane P2). Usually this can be done
by using information about characteristics of the ”true” scene which are invariant under affine
transformations: parallelism and length ratios on parallel lines.

1.2.3 Metric and Euclidean Stratum

The euclidean stratum corresponds to euclidean transformations which can be represented by the
composition of a rotation R and translation t. The metric stratum corresponds to the group of
similarities, i.e. euclidean tranformations combined with a scaling by factor s.

It is represented by a 4× 4 invertible matrix:

TM ∼

sr11 sr12 sr13 t1
sr21 sr22 sr23 t2
sr31 sr32 sr33 t3
0 0 0 1

, (1.5)

where rij are the elements of matrix R and ti are the elements of vector t. A metric transformation
has 3 (rotation) + 3 (translation) + 1 (scaling) = 7 degrees of freedom.

Absolute Conic and Dual Absolute Quadric. The metric properties of a projective space
are encoded in the absolute conic Ω∞ or its dual entity, the dual absolute quadric Q∗

∞.
The absolute conic is a conic curve constituted of pointsX = (x1 · · ·x4) lying on the intersection

of the imaginary sphere defined by xTI4x with the plane at infinity π∞ : x4 = 0. Thus it could be
seen as an imaginary circle located in the plane at infinity. In a metric space the absolute conic is
the conic Ω∞ ∼ I3 of the plane at infinity. Note the following properties of the absolute conic:

• All spheres intersect π∞ in Ω∞.

• Any circle intersects Ω∞ in two points: the circular points of the plane supporting the circle.

• Ω∞ can be used to express the angle Θ between two directions in space d1, d2:

cos(Θ) =
(dT
1Ω∞d2)

√

(dT
1Ω∞d1)(dT

2Ω∞d2)

Thus two vectors d1 and d2 are orthogonal if (dT
1Ω∞d2) = 0, which is equivalent to the

conjugacy of d1 and d2 with respect to Ω∞.

1.2. FROM PROJECTIVE TO EUCLIDEAN SPACE 41

x1

x2

x3

Π∞ x1

x2

x3

Π∞

(a) (b)

x1

x2

x3

Π∞
x2

Π∞

x1

x3

(c) (d)

Figure 1.2: Cube under (a) metric; (b) affine; (c), (d) two projective transformations differing in
the position of the plane at infinity Π∞ and locations of points at infinity x1, x2, x3 on Π∞. Pairs
of points xi, xj are conjugated with respect to the absolute conic Ω∞.

42 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

principal axis

Pixels

Scene

Image plane

Camera

f

x

z

C

x

z

y

M

0

m

πi

y

p

principal axis

Image plane

C = (0, 0, 0) p

m
fY
Z

M = (X,Y, Z)

f

z

πi

y

(a) (b)

Figure 1.3: Pinhole camera geometry. (a) Scene, camera, image plane and pixel coordinate frames;
(b) The projection to the image plane in camera coordinate frame.

The Absolute dual quadric Q∗
∞ in metric space is represented in canonical form by the rank 3

symmetric matrix

Q∗
∞ =

(
I3 0
0 0

)

Geometrically, the dual absolute quadric Q∗
∞ is formed by the the planes tangent to Ω∞.

Q∗
∞ has the following properties:

• The plane at infinity π∞ is the null vector of Q∗
∞.

• The angle Θ between two planes π1, π2 in the metric space are given by:

cos(Θ) =
(πT
1Q

∗
∞π2)

√

(πT
1Q

∗
∞π1)(πT

2Q
∗
∞π2)

It is easy to check that the absolute conic and the dual absolute quadric and, consequently,
angles and distance ratios, are preserved under the metric transformations. The absolute distances
are preserved only under euclidean transformations.

From affine to metric and euclidean. To obtain a metric reconstruction of the scene, the
absolute conic must be located on the plane at infinity π∞ (or the circular points on the line at
infinity in P2). Usually this can be done using information about characteristics of the ”true”
scene which are invariant under metric transformations: angles and length ratios. An euclidean
reconstruction can be obtained when the absolute scene scale is known.

1.3 Camera Representation

A camera induces a mapping between the 3D world and the 2D image. A camera model inducing
a linear mapping is called a pinhole camera, and will be used all over this thesis. It is a simplified
model, not taking lense distortion into consideration; however it turns out to be sufficient for many
applications and allows an important reduction of computational complexity. In the following we
briefly describe its properties.

1.3. CAMERA REPRESENTATION 43

The action of the pinhole camera on 3D points is depicted on figure 1.3. The camera is defined
by its projection centre C and the image plane πi. The axis orthogonal to the image plane and
passing through the projection centre C is called the principal axis and its intersection with the
image plane is called the principal point. Under the pinhole camera model, a 3D point X is mapped
to the point x lying on the intersection of the image plane with the line joiningX and the projection
centre C.

Algebraically the projection can be represented by a projection matrix P3×4:

x ∼ PX. (1.6)

This mapping has 11 degrees of freedom, which, as explained below, correspond to 5 intrinsic
and 6 position and orientation parameters. It can be represented as a product of mappings between
four coordinate frames:

3D scene coordinate frame Coordinate frame in which the 3D scene points, as well as camera
position and orientation are expressed.

3D camera coordinate frame Coordinate frame centered at projection centre C and such that
its z-axis is the camera principal axis and the image plane is represented by: z = f . f is
called the focal length. The axes of this coordinate frame will be called the camera axes.

2D image plane coordinate frame Coordinate frame on the image plane, centered in the prin-
cipal point and such that axes x, y are parallel to the camera x, y axes.

2D image pixel frame Coordinate frame associated to pixels inside the image plane, such that
at least one axe is parallel to one of the axes of the image plane coordinate frame.

The mapping from the scene frame to the image pixel frame is composed of the following
mappings:

1. Euclidean mapping from the scene to camera coordinates:

T =

(
R3×3 −Rt3
0T
3 1

)

,

where R is the rotation matrix representing the camera orientation and t is the camera
position in the scene frame.

2. Perspective projection from the 3D camera frame to the image plane (see also figure 1.3–(b):

PP ∼

f 0 0 0
0 f 0 0
0 0 1 0

3. Affine transformation between the image plane coordinate frame and the pixel frame:

K =

ku −ku cotΘ u0
0 kv

sinΘ v0
0 0 1

 ,

where ku, kv correspond to number of pixel per milimetr, Θ the angle between the pixel axes
and (u0, v0) coordinates of the principal point in the image pixel frame.

44 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

Thus, the projection matrix P can be decomposed as:

P ∼ APPT ∼

kuf −kuf cotΘ u0 0

0 f kv

sinΘ v0 0
0 0 1 0

(
R3×3 −Rt3
0T
3 1

)

∼

αu s u0 0
0 αv

sinΘ v0 0
0 0 1 0

︸ ︷︷ ︸

K

(
R3×3 −Rt3
0T
3 1

)

.

where αu = kuf , αv = fkv and s = −kuf cotΘ together with the principal point (u0, v0) depend
on the internal camera settings, and are called the intrinsic camera parameters, while R and t corre-
spond to the camera orientation and position in space and are called the extrinsic camera parame-
ters. The projection such defined has 3 (rotation) +3 (translation) +5 (intrinsic parameters) = 11
degrees of freedom, which confirms the statement referring to equation (1.6). Matrix K is called the
camera calibration matrix. In the following we will only consider a camera model with rectangular
pixels (Θ = 90◦), so matrix K will be of the form:

K ∼

αu 0 u0
0 αv v0
0 0 1

The ratio τ = αu

αv
is called the aspect ratio.

Note, that when matrix P is known, it is possible to decompose it into K, R, t, using for example
QR decomposition [Tsai, 1986].

Infinite homography and image of the absolute conic (IAC). The image of the absolute
conic plays a special role in the theorical basis of calibration algorithms and is strictly connected to
the camera internal parameters. First let us consider the action of the projection transformation
on points at infinity. For a point X ∼ (X,Y, Z, 0)

T
and its image x ∼ (x, y, t)

T
this transformation

can be expressed as:

x
y
t

 ∼ K
(
R3×3 −Rt3

)

X
Y
Z
0

∼ KR

X
Y
Z

Thus, the image of points at infinity does not depend on the camera position, and H = KR is a
homography between the plane at infinity and the image plane. The homography Hij between two
images i, j induced by the plane infinity, such that Hij = HjH

−1
i is called the infinite homography.

Using results presented in section 1.1 the IAC (image of the absolute conic) is:

ω ∼ H−TI3H
−1 ∼ K−TK−1 ∼

1 0 −u0
0 τ2 −τ2v0
−u0 −τ2v0 τ2α2v + u20 + τ2v20

 (1.7)

This means that given the IAC, the camera’s intrinsic parameters can be recovered, as the IAC
depends solely and bijectively on these parameters. This can be done via the Cholesky factorization
of ω for example. The absolute conic and dual absolute quadric and their images are depicted on
figure 1.4.

1.4. SCENE REPRESENTATION 45

Π∞

C

Ω∞

Q∗
∞ ω

Figure 1.4: Absolute conic Ω∞ and dual absolute quadric Q∗
∞ and their projection in a camera.

1.4 Scene Representation

The elegancy and efficiency of any algorithm depend crucially on the internal object representation.
Choosing a general method facilitates its extensions. On the other hand, using a model strictly
adapted to the given information and required results usually increases the computation efficiency.
Thus the choice of object representation is the first problem that must be solved before the algo-
rithm can be implemented. The algorithms for calibration and for scene reconstruction presented
in this thesis differ in the level of the scene representation. In the reconstruction algorithms pre-
sented in section 6 and part III the stress is put on the flexible definition of various types of scene
primitives and constraints. The scene is thus represented by simple primitives such as points, lines
and planes and constraints between them. This allows easy modelling of various shapes in 3d
scenes, however may require considerable amount of human interaction. On the contrary, complex
primitives allow the representation of many useful properties in a compact form and constrain the
calibration and reconstruction task. As the interest of the calibration method presented in part II
is to obtain results using a minimal amount of data, we decided to use a complex primitive, the
parallelepiped, which naturally encodes many interesting scene properties.

The scene modelisation using simple primitives and constraints is discussed in section 1.4.1.2.
Two examples of scene parameterisation using complex primitives are then given in section 1.4.2.

1.4.1 Basic Primitives and Constraints

Here, all objects are represented using homogeneous vectors [Hartley and Zisserman, 2000]. An
elegant description of the relations between them is given by the Grassman-Cayley algebra. A
good introduction to this algebra for scene and camera modelling can be found in [Carlsson, 1993].
Here, we focus on giving an intuition of the geometric interpretation, and a practical expression
which can be used directly to impose the geometrical constraints.

Various relations in projective space can be described using two operators: meet ∨ and join
∧ (mentioned already in section 1.1.1). Applied on geometric entities, they respectively result in
their intersection and the minimal linear space containing the entities. For example, a point can
be computed as the meet of 3 planes, or a plane can be computed as the join of 3 points.

However the Grassmann-Cayley algebra is designed to describe the projective object properties,
when dealing with objects not lying at infinity it is possible to reformulate its results in euclidean
terms, using properties like distances and orthogonality. As the interest of work presented in this
thesis is the euclidean reconstruction, such a euclidean understanding of objects and constraints

46 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

will often be considered.

1.4.1.1 Primitives

Generally, the primitives in space are represented by homogeneous vectors V defined up to scale.
When working in a euclidean space, such vector V, for any type of primitive considered, can be
decomposed [Förstner et al., 2000; Heuel, 2001] in a homogeneous part Vh and euclidean part V0.
When the vector V is scaled such that ‖Vh‖ = 1, the distance of the object from the origin is
represented by d = ‖V0‖. From now on, when this decomposition is used we assume that all the
objects are not at infinity and that the homogeneous part has unit length.

Apart from coordinate vectors, the matrix representation of objects is introduced. Such matrices
are very useful to express the inter-object constraints and were used in the implementation of
methods presented in part III and appendix 6. Although it is not necessary in order to understand
the algorithms presented in this thesis, we find the geometric interpretation of these matrices
interesting and describe it according to [Förstner et al., 2000].

The object descriptions are sorted by their dimensionality, but for readers unfamiliar with the
Plücker line representation we suggest they first read the line representation description further
below.

Points. A 3D point has 3 degrees of freedom and is represented by a homogeneous vector:

X =

x
y
z
t

=

X0

Xh

.

In a euclidean space, when the homogeneous part Xh = t is scaled such that ‖Xh‖ = 1 the
euclidean part ‖XT

0 ‖ corresponds to the distance from the point to the origin.

Matrix representation A point can be localised in space by its coordinates, but other
definitions are also possible.

First, let us consider four lines passing through the point X, three of which are parallel to the
coordinate frame axes, and one passing through the origin (see figure 1.5–(a)). Actually, those four
lines are joins of the point X and the points from the basis e4i . Such representation is unique for
all the points in space. Evidently, it is redundant.

Similarly, as shown on figure 1.5–(b), the point X can be uniquely defined by six planes passing
through X and six lines represented by vectors e6i (see next paragraph for the line representation).
For a given point X = (x, y, z, t) a 4 × 6 matrix Π, whose rows and columns are respectively
composed of the coordinates of the 4 lines and 6 planes representing X, is of the form:

Π(X) =

(
XhI3×3 [X0]×
−X0

> 0>

)

=

t 0 0 0 z −y
0 t 0 −z 0 x
0 0 t y −x 0
−x −y −z 0 0 0

Lines. A line in space has 4 degrees of freedom and can be represented in Plücker coordinates
as a homogeneous 6-vector:

L = (l1, l2, l3, l4, l5, l6)
T
= (Lh

T,L0
T)

1.4. SCENE REPRESENTATION 47

y

z

x

L2

L4

X

L3

L1

x y

z

X

A2

A1

A3

(a) (b)

Figure 1.5: Point X can be represented as the meet of (a) 4 lines defined as join of X and 4 points
represented by e4i ; (b) 6 planes defined as the meet of X and 6 lines represented by e6i (only the
planes A1-A3 are shown on the picture).

respecting the Plücker condition 1

l1l4 + 2l5 + l3l6 = L>
hL0 = 0. (1.8)

Another interpretation of the Plücker condition is based on the fact that in euclidean space the
sub-vector Lh represents the line’s direction, and L0 the normal of the plane passing through the
line and the origin. The Plücker condition imposes the orthogonality of these two vectors. When
the vector is scaled such that ‖Lh‖ = 1, ‖L0‖ represents the distance of the line from the origin
(see figure 1.6–(b)).

A dual Plücker representation L of line L holds the following relation with the line representation
L:

L ∼ (l1, l2, l3, l4, l5, l6)
T ∼ (Lh

T
,L

T

0) ∼ (LT
0 ,L

T
h).

Note, that for two dual line representations L, L we have:

l1l1 + 2l2 + l3l3 + l4l4 + 5l5 + l6l6 ∼ (l4, l5, l6, l1, l2, l3) ∼ LT
0L

T

h + LT
hL

T

0 ∼ 0. (1.9)

The dual representation of lines is convenient for expressing geometrical dependencies between
objects and will be discussed in the following.

Matrix representation Similarly to points, a line L can be represented canonically as:

• A join of four points lying on the intersection of L with four planes represented by e4i (fig-
ure 1.6–(a)), three of which are parallel to planes xy, yz, zx, and a fourth one is the plane at

1Note that this representation differs from the one used in [Hartley and Zisserman, 2000]

48 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

y

z

x

L

X4

X2

X3

X3

x y

z

A1

A4

n4

n1

L = (d>,n>)

n

‖n‖ = n

(a) (b)

Figure 1.6: Line L can be represented as (a) join of 4 points defined as meet of L and 4 planes
represented by e4i ; (b) meet of 4 planes defined as join of L and 4 points represented by e4i (for
clarity of the figure only the planes A1 and A4 are shown).

infinity. The skew-symmetric matrix Γ(L) whose rows (and columns) contain the coordinates
of those points is of the following form:

Γ(L) ∼ Γ(L) ∼
(
−[L0]× −Lh

L>
h 0

)

∼

0 l6 −l5 −l1
−l6 0 l4 −l2
l5 −l4 0 −l3
l1 l2 l3 0

.

• Dually, as meet of four planes spanned by line L and the points represented by e4i (figure 1.6–
(b)). The skew-symmetric matrix Γ(L) whose rows (and columns) contain the coordinates
of those planes is of the following form:

Γ(L) ∼
(
−[Lh]× −L0

L>
0 0

)

∼

0 l3 −l2 −l4
−l3 0 l1 −l5
l2 −l1 0 −l6
l4 l5 l6 0

.

Planes. A 3D plane has 3 degrees of freedom and is represented by a homogeneous vector:

AT ∼ (a, b, c, d) ∼ (AT
h , A0).

In euclidean space, when the homogeneous part (the plane normal) Ah = (a, b, c)
T
is scaled

such that ‖Ah‖ = 1 the euclidean part ‖d = A0‖ corresponds to the distance between the plane
and origin.

Matrix representation Similarly to points, a plane A can be represented by:

1.4. SCENE REPRESENTATION 49

y

z

x

L2

L1

L3

A

y

z

x

X1

X2

X3

A

(a) (b)

Figure 1.7: Plane A can be represented as join of (a) 4 lines defined as meet of A and 4 planes
represented by e4i (only the lines L1-L3 are depicted); (b) 6 points defined as join of A and 6 lines
represented by e6i (only the points X1-X3 are depicted).

object dof vector representation related matrix

point 3
XT = (x, y, z, t)

= (XT
0 , Xh)

Π(X) =

(
XhI3×3 [X0]×
−X0

> 0>

)

line 4
LT = (l1, l2, l3, l4, l5, l6)

= (LT
h,LT

0)

Γ(L) =

(
−[Lh]× −L0

L>
0 0

)

Γ(L) = Γ(L) =

(
−[L0]× −Lh

L>
h 0

)

plane 3
AT = (a, b, c, d)

= (AT
h, A0)

Π(A) =

(
−[Ah]× A0I3×3

0T −AT
h

)

Table 1.1: Representation of points, lines and planes in 3D.

• A join of four lines lying on the intersection of A with planes xy, yz, zx, and the infinite
plane (represented by e4i -figure 1.7–(a)).

• A join of 6 points lying on the intersection of A with six lines represented by vectors e6i
(figure 1.7–(b)).

For a given plane AT ∼ (a, b, c, d), a 4× 6 matrix Π, whose rows and columns are composed of
coordinates of, respectively, lines and points representing A is of the form:

Π(A) ∼
(
−[Ah]× A0I3×3
0T −AT

h

)

∼

0 c −b d 0 0
−c 0 a 0 d 0
b −a 0 0 0 d
0 0 0 −a −b −c

The object representation is summarised in table 1.1.

50 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

1.4.1.2 Relations Between Primitives

Incidence and distances. Incidence is one of the projective invariants and can be expressed
using meet and join operators. In euclidean space, incidence can be considered as a special case
of a distance constraint between two objects v1, v2: d(v1,v2) = 0. In the following, we resume
the incidence and distance constraints between points, lines and planes, and show how the same
expressions can be used to express both constraints when working in euclidean space.

As stated in section 1.1.1, a plane can be defined as the join of three points and dually a point
can be defined as meet of three planes. The incidence between point X and plane A is expressed
by:

ATX = 0. (1.10)

However, when X and A do not lie at infinity and are both scaled such that their homogeneous
parts Xh and Ah have unit length, the absolute value of the left side of equation (1.10) gives the
distance between point X and plane A.

In the following, we analyse the properties which can be derived using meet and join operators
on points, lines and planes.

A join of two points X, Y is a line L expressed by:

L ∼ Π>(X)Y ∼
(
XhY0 − YhX0

X0 ×Y0

)

(1.11)

The above expression reduces to 06×1, if the vectorsX andY represent the same point: X ∼ Y.
Otherwise, the norm of the upper part of the vector corresponds to the distance between points
d(X,Y) = ‖XhY0 − YhX0‖ = ‖Y0 − X0‖ (as mentioned on the beginning, we assume that the
vectors are scaled such that ‖Xh‖ = ‖Yh‖ = 1).

Dually, a line L can be defined by the meet of two planes A, B:

L ∼ Π
>
(A)B ∼

(
Ah ×Bh

A0Bh −B0Ah

)

(1.12)

The above expression reduces to 06×1, if the vectorsA and B represent the same plane: A ∼ B.
When the planes are parallel (the upper part of the vector L is 03) the norm of the lower part
of the vector corresponds to the distance between the two planes: d(A,B) = ‖A0Bh − B0Ah‖ =
‖A0 −B0‖.

The join of line L and point X results in the plane A passing through L and X:

A ∼ Γ(L)X ∼
(
X0 × Lh −XhL0

LT
0X0

)

(1.13)

The above expression reduces to 04×1, if X is incident with L. Otherwise, the norm of the
upper part of the vector corresponds to the distance between the point and the line: d(X,L) =
‖X0 × Lh −XhL0‖.

The meet of line L and plane A gives the point X lying on the intersection of L and A:

X ∼ Γ(L)A ∼
(
Ah × L0 −A0Lh

LT
hAh

)

(1.14)

The above expression reduces to 04×1, if line L is incident with A. When the plane and line
are parallel (the lower part of the vector is 0) the norm of the upper part of the vector corresponds
to the line-plane distance d(L,A) = ‖Ah × L0 −A0Xh‖.

Table 1.2 summarises the incidence relations. They are bilinear in the coordinates of the objects.
Thus, when one object is known, linear constraints in terms of the other object can be formulated.

Incidence of two objects V1, V2 of the same type can be expressed in two different ways:

1.4. SCENE REPRESENTATION 51

incidence unknown
known ↓ (dof) point X (dof) line L (dof) plane A

point Y (3) Π>(Y)X = 0 (2) Π(Y)L = 0 (1) Y>A = 0

line M (2) Γ(M)X = 0 (4) Γ(M)Γ(L) = 0 (2) Γ(M)A = 0
plane B (1) B>X = 0 (2) Π(B)L = 0 (3) Π>(B)A = 0

Table 1.2: Incidence relations. The number of degrees of freedom fixed by a constraint is equal to
the number of independent equations in the expression.

distance point Y line L plane B
point X ‖X0 −Y0‖ - -

line L ‖Y0 × Lh − L0‖
‖M0 − L0‖ ; (Mh ‖ Lh);

‖MT
0Lh+LT

0Mh‖
‖Mh×Lh‖

; otherwise
-

plane A ‖ATY‖ ‖Ah ×M0 −A0Mh‖ ‖A0 −B0‖

Table 1.3: Equations induced by distance constraints, provided that ‖Vh‖ = 1. The distance
between two objects always fixes 1 degree of freedom. The distance between two planes or a line
and a plane can only be defined if they are parallel. The distance between two non-parallel lines is
derived using the fact that the distance between lines is the distance between two parallel planes
containing the lines. The corresponding expression is composed of two terms corresponding to the
signed distances of the two planes from the origin.

1. through the equations specific to object type, given in table 1.2;

2. associating the coordinates the objects: V1 := V2

The distance relations are summarized in table 1.3.

Angles. Angles are not projective or affine invariants and are only used here between lines
and planes. They can be expressed in terms of the homogeneous subvectors Vh of vectors V
representing lines or planes. In the following we describe in brief equations related to angles
between directions.

Parallelism Two directions V1h V2h are parallel when their vector representations are equal
up to a scalar factor: V1h ∼ V2h. The parallelism, in the same way as the incidence of two objects
of the same typem can be expressed in two ways:

1. through the equation: [V1h]×V2h ∼ 03;

2. associating the coordinates of the objects: V1h := V2h

The parallelism constraints are summarized in table 1.4.

Orthogonality Two directions V1h V2h are parallel when the vector product of their vector
representations is null: V1h

TV2h = 0. It fixes 1 degree of freedom between the vectors.
Parallelism between a line and a plane is equivalent to orthogonality between the line direction

and the plane normal vector. On the other hand, the line and plane are orthogonal when the line
direction and plane normal vector are identical.

Other angles General angle constraints are summarized in table 1.5.

52 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

‖ unknown
known ↓ (dof) line L (dof) plane A
line M (2) [Mh]×Lh = 0 (1) M>

hAh = 0
or Lh := Mh

plane B (1) B>
hLh = 0 (2) [Bh]×Ah = 0

or Ah := Bh

Table 1.4: Equations induced by parallelism constraints. The number of degrees of freedom fixed
by a constraint is equal to the number of independent equations in the expression.

∠α unknown
known ↓ (dof) line L (dof) plane A
line M (1) MT

hLh = cosα (2) MT
hAh = − sinα

plane B (2) BT
hLh = − sinα (1) BT

hAh = cosα

Table 1.5: Equations induced by angle constraints. The number of degrees of freedom fixed by a
constraint is equal to number of independent equations in the expression.

Affine point configurations. An affine point configuration (or affine shape) is defined by co-
ordinates of points belonging to the configuration in an arbitrary affine coordinate system. These
coordinates stay invariant under affine transformations. Affine point configurations were introduced
first by Sparr [Sparr, 1991b,a, 1992b] for the reconstruction from single and multiple images. Here
we use a different formulation of those constraints.

Relations like points lying on a parallelogram or the symmetry of point configurations are very
useful in practice and can be described in a common framework. Generally, all the constraints of
the type

∑n
i=1 αiXi = 0 can be expressed as:

α1e
>
1 α1e

>
1 · · · αne

>
1

α1e
>
2 α1e

>
2 · · · αne

>
2

α1e
>
3 α1e

>
3 · · · αne

>
3

X1
...
Xn

 = 0; (1.15)

For example, constraints arising from a parallelogram consisting of vertices X0 · · ·X3, can be
written in the form (1.15), with n = 4 and setting α0 = α2 = −α1 = −α3. The coefficients αi
remain constant under any affine transformation of the parallelogram. Other examples are shown in
figure 1.8. All the constraints of this type give three linearly independent equations in all involved
points.

Constraints expressed using known directions. When some directions in space are known,
it becomes possible to express the distances between points in a linear framework. Using known
lengths on lines with known directions was used for example in [Shum et al., 1998]. Different possi-
bilities of expressing symmetries were proposed in [Grossmann and Santos-Victor, 2002]. Figure 1.9
shows some examples of using this information.

1.4.2 Complex Primitives

Using complex primitives allows enclosing the major scene features in a compact representation.
This reduces the complexity of the human interaction needed to define scene constraints and
computation. Indeed, the user has to depict in the image only the corners of the predefined
primitive, after which and then only its shape parameters have to be computed. On the other

1.4. SCENE REPRESENTATION 53

X0 X1

X2X3

X0 −X1 +X2 −X3 = 0

X0 X1

X4 X3 X2

X4 −X3 = 1
4 (X0 −X1)

X4 −X3 = 1
2 (X3 −X2);

X3

X0

X2 X1

X0 +X1 +X2 − 3X3 = 0

(a) (b) (c)

Figure 1.8: Examples of affine point configurations. (a) Parallelogram; (b) Known distance ratios
on parallel lines; (c) Triangle centre. All known configurations of this type give 3 equations in
terms of points coordinates (xi, yi, zi).

X0 X1

X4

v1
>(X4 −X3) = −v1

>(X4 −X2)

X5 X2X3

v1

‖v1
>(X4 −X2)‖‖v1

>(X4 −X3)‖

X0 X1

v2

X4

v3
>(X4 −X3) = −v3

>(X4 −X1)

v3 = v1 × v2

X3 −X2 = av1; X2 −X1 = av2

X3 X2

v1

(a) (b)

Figure 1.9: Examples of using known scene directions to impose euclidean constraints: symmetry,
distances and distance ratios: (a) Symmetry of vectors X5X3 and X5X2 with respect to plane
perpendicular to both vectors and passing through X5: projections of vectors X3X4 and X4X2
on direction v1 have the same length; (b) Symmetry of vectors X4X3 and X4X1: projections of
vectors X1X4 and X3X4 on direction v3 have the same length. Distances: known distances on
lines with known directions give linear constraints in terms of unknown points X1, X2, X3. When
only the distance ratio is known, the expression remains linear in terms of unknown points and
distance a.

54 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

X1 = L1(λ1, λ2, λ3)
>

X2 = L2(λ1, λ2, λ3)
>

λ3 λ2

λ1
X1 = L1(λ1, λ2, λ3)

>

λ3 λ2

λ1

X2 = L2(λ1, λ2, λ3)
>

(a) (b)

Figure 1.10: Examples of linearly parameterized models [Debevec et al., 1996; Jelinek and Tay-
lor, 2000]. (a) Cube; points X1 and X2 are parameterized by, respectively, matrices L1 =
diag(12 ,− 12 ,− 12), L2 = diag(− 12 , 12 , 12); (b) Prism; points X1 and X2 are parameterized by, re-
spectively matrices L1 = diag(12 ,− 12 ,− 12), L2 = diag(0, 12 ,

1
2).

hand, using only complex primitives decreases the flexibility of a scene definition. Also the inter-
primitive relations are often more complicated to model (this will be discussed further in section 2).

1.4.2.1 Linearly Parameterized Models

The classical approach for scene modelling from images using complex primitives was introduced to
Computer Vision in the Façade system [Debevec et al., 1996] and extended in [Jelinek and Taylor,
2000]. The scene primitives are represented as linearly parameterized models (examples are given
in figure 1.10). The position of every vertex Xi is defined as

Xi = Li

λ1
...
λn

where the 3× n matrix Li is known and depends on the vertex location on the primitive and λ is
the primitive dimension vector. Thus only the dimension vector has to be estimated to obtain the
model reconstruction.

1.4.2.2 Our Approach

We propose to represent a primitive by a shape matrix, whose parameters define metric shape of
the primitive (e.g. angles and length ratios for a parallelepiped). All the vertices of a primitive can
be computed by multiplying the shape matrix and a matrix containing the coordinates of vertices
forming a canonical primitive (e.g. a cube for a parallelepiped).

As will be shown in part II, contrary to the previous approach, this allows using information
about the primitive in a linear framework.

Parallelepipeds. The scene constraints used for calibration in part II are modelled using a
parallelepiped. It encodes naturally the affine properties of the scene and facilitates modelling
the remaining metric part. The representation of a parallelepiped given below is based on the
formalism proposed in [Wilczkowiak et al., 2001, 2002].

1.4. SCENE REPRESENTATION 55

x

y

z

θ12

θ13

θ23

0

2l2

2l3

L̃(−1, 1, 1, 1)> L̃(1, 1, 1, 1)>

2l1

Figure 1.11: Parameterization of a parallelepiped: 2li are the edge lengths; θij are the angles
between non-parallel edges.

A parallelepiped is defined by twelve parameters: six extrinsic parameters describing its ori-
entation and position, and six intrinsic parameters describing its metric shape: three dimension
parameters (edge lengths l1, l2 and l3) and three angles between edges (θ12, θ23, θ13). These intrinsic
parameters are illustrated in figure 1.11. They can be represented compactly in a triangular 4× 4
matrix L̃ (see section 3.1 for details), representing the affine transformation between a canonical
cube and a parallelepiped with the given shape. Full transformation between the canonical cube
and the world coordinate frame can be represented by matrix

N =

(
S v
0T 1

)

L̃

where S is a rotation matrix and v a vector, representing the parallelepiped’s pose (extrinsic

parameters). Thus, a vertex (±1,±1,±1, 1)T of the canonical cube is mapped, by L̃, to a vertex of
our parallelepiped’s intrinsic shape.

Other primitives. The same model can be used to parameterize other 3D objects defined by
affine properties, such as a parallelogram and prism.

56 CHAPTER 1. GEOMETRIC CONCEPTS IN COMPUTER VISION

Θ

L̃(0, 0, 0, 1)>

L̃(1, 1, 0, 1)>

21

2l2

L̃(1,−1,−1, 1)>

2l3 2l2

2l1

L̃(0, 1, 1, 1)>

θ13
θ12

θ23

(a) (b)

Figure 1.12: Examples of primitive parameterisation. (a) Parallelogram; (b) Prism.

Chapter 2

A State of the Art on Using

Geometric Constraints in

Computer Vision

In this chapter we present different approaches for introducing the prior information on camera
and scene parameters into the 3D model acquisition process. As mentioned in section 1.2, de-
pending on the available information, a 3D scene can be reconstructed from 2D image data up
to a certain transformation, for example, projective, affine, or metric. Using projective informa-
tion, e.g. projections of points or lines in the images, only the projective nature of the scene can
be recovered [Faugeras, 1992; Hartley et al., 1992]. Additional information enables us to locate
the plane at infinity and the absolute conic in the projective reconstruction. As explained in the
previous chapter, this allows to upgrade the reconstruction to, respectively, an affine or metric
one. There is a substantial variety of information which can be incorporated into a 3D modeling
process. It can be simple knowledge about camera intrinsic parameters or pose (camera moving by
pure rotation, pure translation, etc.) or on 3D scene structure (calibration patterns); it can also
be the information about scene elements such as points, lines and planes, as well as more complex
primitives like cubes, prisms, cylinders. Nonetheless, note that whatever the information is, it can
often be used at different stages of the 3D modeling process, including the initial intrinsic cali-
bration, the pose estimation, the model reconstruction or an additional non-linear adjustment of
the initial estimate at every step. Incorporation of geometrical constraints allows to disambiguate
many calibration scenarios (rotating cameras, planar point configurations) singular for the generic
calibration algorithms and allows 3D reconstruction even when essential parts of the model are
occluded in the images. Sometimes using prior information about scene structure also simplifies
the algebraic complexity of problems and allows solutions based on linear algebra. Finally, in-
corporation of prior information on the scene reduces significantly number of images needed for
the reconstruction, making possible even a single-image reconstruction. In this chapter, different
approaches for using constraints will be summarized briefly.

58
CHAPTER 2. A STATE OF THE ART ON USING GEOMETRIC

CONSTRAINTS IN COMPUTER VISION

m1

Ω∞

m2
ω1

π

C1

e1

e2
C2

ω2

π∞

M

R

π∞

C

πi1 πi2

H∞

(a) (b)

Figure 2.1: (a) Interpretation of Kruppa equations. An epipolar plane tangent to the absolute
conic Ω∞ defines corresponding epipolar lines which are tangent to the absolute conic images ω1,
ω2. When the camera parameters are constant (ω ∼ ω1 ∼ ω2) epipoles e1, e2 can be used to
constrain ω. (b) Principle of calibration of rotating cameras. All the corresponding points are
related by infinite homography H∞.

2.1 Camera Constraints

In this section we provide a brief overview of information about camera parameters useful for
calibration and reconstruction. Evidently, simple information about camera intrinsic parameters
give direct constraints on calibration matrices. However, constant camera intrinsics, pose, or
orientation constrain the calibration and reconstruction process as well. We first review methods
based on known or constant intrinsic camera parameters, and subsequently, based on special camera
motions. We finish with methods splitting the self-calibration process into two steps, consisting on
localization, in order of the plane at infinity, and the absolute conic.

2.1.1 Information on Intrinsic Parameters

The idea of camera self-calibration has first appeared in [Faugeras et al., 1992] and [Maybank and
Faugeras, 1992] in the context of calibration of cameras with constant intrinsic parameters. The
camera parameters are recovered using the Kruppa equations. They are based on the observation
that the epipolar planes 1 tangent to the absolute conic project to epipolar lines tangent to the
image of the absolute conic in each view (see figure 2.1(a)).

In [Triggs, 1997] the self-calibration problem is formulated in terms of the absolute quadric. The
projection of the absolute quadric has to be constant in each view (see figure 1.4), which, for every
image pair gives five independent constraints on the calibration parameters. [Pollefeys and Van
Gool, 1997] introduces the modulus constraint, based on the fact that with two identical cameras
the infinite homography is conjugated to a rotation, thus has eigenvalues of equal modulus. It is
then possible to formulate quadratic constraints on the plane at infinity equation.

1In this thesis we do not directly use, and consequently, do not introduce, in section 1 the epipolar geometry. A
good overview can be found in [Hartley and Zisserman, 2000].

2.2. SCENE CONSTRAINTS 59

In practice, camera parameters do not always remain constant over the sequence, especially
when using several photos rather than a video sequence. In [Heyden and Åström, 1997], is proposed
a non-linear self-calibration approach based only on known values of camera skew and aspect ratio.
[Pollefeys et al., 1998] proves that the information about the zero skew ratio only is sufficient,
and proposes a non-linear optimization procedure. The linear estimation of initial parameters is
computed using approximate positions of principal points.

2.1.2 Special Camera Motions

Besides known or constant intrinsic camera parameters, information about a camera’s movements
can also be used for calibration. The idea that, in cameras with constant orientation (thus purely
translating) the infinite homography is the identity, was used in [Moons et al., 1993; Armstrong
et al., 1994] for an affine reconstruction. Also a less restricted planar motion leaves three particular
points at infinity constant over the sequence. Locating them is equivalent to the location of the
plane at infinity and an affine reconstruction [Armstrong et al., 1996; Faugeras et al., 1998].

It has been shown that a setup consisting of purely rotating cameras has interesting properties
as well. In the absence of translation there is no depth information enclosed in the point projections
(see figure 2.1–(b)). On one hand, it makes a 3D reconstruction impossible. On the other hand, it
means that homography exists between each pair of views: the infinite homography. Thus, simply
using points matched between the images it is possible to compute infinite homographies between
all views. Then they can be used to formulate calibration constraints in the case of the constant
[Hartley, 1994] or varying [de Agapito et al., 1999] values of certain camera parameters.

2.1.3 Stratified Approaches

Independently from the used constraints, most of the self-calibration algorithms [Hartley, 1993;
Armstrong et al., 1994; Pollefeys and Van Gool, 1997], tend to split the metric reconstruction
process into three steps, recovering, in order, the projective, affine and Euclidean strata, the
projective-affine step being considered as the most non-linear and thus most difficult step. It is
due to the fact, that without any information about the infinite plane, most of the constraints
on the calibration parameters which can be delivered on the camera intrinsic parameters are non-
linear [Triggs, 1997; Heyden and Åström, 1997; Pollefeys et al., 1998]. Once the infinite plane is
known, it is possible to use the infinite homographies to incorporate directly the prior knowledge
on camera parameters in a linear framework, in a way analogous to the methods proposed for
rotating cameras [Hartley, 1994; de Agapito et al., 1999].

Unfortunately, self-calibration algorithms suffer from critical motion sequences for which there
is no unique solution [Sturm, 1997]. To get stable results with self-calibration, a large number
of images in general positions is usually necessary. To solve the remaining ambiguities it is ad-
vantageous to incorporate prior knowledge about the scene [Zisserman et al., 1998; Liebowitz and
Zisserman, 1999].

2.2 Scene Constraints

2.2.1 Simple Primitives and Constraints

2.2.1.1 Points and Lines

Points and lines are the basic features used in the 3D modelling from images: it is relatively easy
to extract and match them automatically in the images, as well as constrain them using simple

60
CHAPTER 2. A STATE OF THE ART ON USING GEOMETRIC

CONSTRAINTS IN COMPUTER VISION

m2

m1

π

C3

m3

M

C2

C1 C1

l1

l2

C2

C3

l3

L

(a) (b)

Figure 2.2: (a) Relations engendered by images of a point in two and three views. Points M, C1,
C2, m1, m2 are coplanar (they form the epipolar plane π). Point m2 must lie on the epipolar
line of point m1. Lines C1m1, C2m2, C3m3 intersect in point M. Point m3 might be computed
by intersecting the epipolar lines of points m1 and m2 in the third image unless it belongs to the
plane C1C2C3. The trifocal geometry describes the geometry of three images simultaneously. (b)
The three backprojection planes of a line must intersect in one space line.

geometrical relations. In the following we summarize point and line properties useful for calibration
and reconstruction algorithms.

3D positions. The classical calibration approach consists of the computation of the projection
matrix based on correspondences between the 3D world coordinates of points on a calibration
object and their 2D positions in the image. Such a computed matrix represents the transformation
between a 3D and an image frame. Thus, as mentioned in section 1.3, it can be decomposed
simply using the QR decomposition [Tsai, 1986; Faugeras and Toscani, 1986] resulting in the
camera intrinsic parameters as well as its orientation and position in the world coordinate frame.

Projections. Projections of 3D points and lines in images are information of projective nature,
thus without any other information the scene structure and projection matrices can only be re-
covered up to a projective transformation [Faugeras, 1992; Hartley et al., 1992]. The fundamental
projective relation is that lines and planes back-projected from matching image points and lines
must intersect in the 3D space (see figure 2.2). The multi-view dependencies can be described
using tensor calculus (fundamental matrix, trifocal and quadrifocal tensor) [Triggs, 1995; Hart-
ley, 1995, 1997a], or using the Grassmann-Cayley (double) algebra [Carlsson, 1993; Faugeras and
Mourrain, 1995]. The tensors can be computed directly from the image correspondences, and then
used directly to compute projection matrices and 3D feature positions.

When dealing with more than four images, the data furnished by image pairs, triplets or quadru-
ples, can be registered into a common framework using sequential [Avidan and Shashua, 1998;
Beardsley et al., 1996] or hierarchical [Fitzgibbon and Zisserman, 1998] methods. To use all the

2.2. SCENE CONSTRAINTS 61

available data simultaneously, the factorization-based approaches has been proposed [Tomasi and
Kanade, 1992; Sturm and Triggs, 1996; Sparr, 1996; Triggs, 1996]. Indeed, a measurement matrix
composed of all the image-point or -line projections can be factorized into two parts, correspond-
ing respectively to camera projection matrices and 3D point positions. Before the factorization,
however, two conditions must be satisfied: the measurement values must be scaled correctly and
defined for every feature-image pair. Various strategies exist for satisfying these two conditions.
First, the factorization algorithm was proposed for the affine camera model [Tomasi and Kanade,
1992], where the problem of ambiguous scalar factors is easy to solve. [Sturm and Triggs, 1996]
computes the scalar factors for the projective model using the epipolar geometry. [Sparr, 1996;
Triggs, 1996] introduce an iterative method for the estimation of these factors. As for dealing with
the missing data, [Tomasi and Kanade, 1992] propose choosing the maximal complete submatrix
of the measurement matrix to compute an initial solution, and then propagate the computed in-
formation. However, finding such a maximal matrix is an NP-complete problem. [Jacobs, 1997]
introduces an approach based on the fact that for every triple (n-tuple in general) of columns in
the original matrix, the space spanned by all possible completions of these columns must contain
the column space of the completely filled matrix. Solutions satisfying these partial constraints can
be found using standard techniques of linear algebra, however the size of matrices that have to be
dealt with increases very quickly with the amount of missing data. Since, different approaches com-
bining the above ideas were proposed for both points and lines represented in various ways [Quan
and Kanade, 1996; Triggs, 1996; Morris and Kanade, 1998; Martinec and Padjla, 2002; Martinec
and Pajdla, 2002].

Vanishing points. A vanishing point is the image of an intersection of a point at infinity. Thus,
it can be computed from the projections of a set of parallel lines. Several properties make the
vanishing points interesting for calibration and reconstruction algorithms:

• Three vanishing points matched across the images define the plane at infinity which allows
to establish an affine reconstruction and facilitates formulation of calibration equations (sec-
tion 2.1.3).

• Vanishing points of orthogonal directions are conjugate with respect to the Image of Absolute
Conic, which results in linear expressions on the IAC. This property is useful especially in
calibration of small sets of images, e.g. a single image. Vanishing points were first used for a
camera calibration in photogrammetry [Gracie, 1968]. Since the seminal work of Caprile and
Torr [Caprile and Torre, 1990], they were commonly exploited in computer vision algorithms
[Debevec et al., 1996; Cipolla and Boyer, 1998; Jelinek and Taylor, 2000; Liebowitz and
Zisserman, 1999; Svedberg and Carlsson, 2000]. When the scene can be characterised by
three dominant orthogonal directions, it is possible to estimate automatically up to three
camera intrinsic parameters and rotation form single images [Coughlan and Yuille, 1999] or
sequences [Kosecka and Zhang, 2002].

• Knowing the plane at infinity and vanishing points, it is possible to compute line directions up
to a global affine transformation, and when cameras are calibrated, up to a euclidean trans-
formation. This can be done even before the scene structure is recovered and is commonly
used in reconstruction approaches ([Shum et al., 1998; Criminisi et al., 2000; Grossmann and
Santos-Victor, 2002; Rother, 2003a]).

2.2.1.2 Planes

Planes, differently from points and lines, can not be represented by a single image feature. However,
identification of image correspondences of coplanar points can furnish very useful constraints for

62
CHAPTER 2. A STATE OF THE ART ON USING GEOMETRIC

CONSTRAINTS IN COMPUTER VISION

C1

C2

Hπ

X

X′

x2

x1

e1

e2

π

x′2

Figure 2.3: The concept of plane induced parallax. Point x′2 = Hπx1 is the image of point X′ lying
on the intersection of ray C1x1 and plane π. It is collinear with the point x2 being the true image
of point X and the epipole e2. The vector x2x

′
2 is the parallax relative to homography Hπ.

camera self-calibration and reconstruction.

Inter-image homographies. Knowing four inter-image correspondences between coplanar points
it is possible to compute homographies induced by the underlying plane. Those homographies have
many interesting properties useful for calibration and reconstruction algorithms:

• The homography induced by a plane, when applied to points not lying on the plane, generates
a virtual parallax (see figure 2.3–(a)). Its specific properties can be used to simplify the
computation of the fundamental matrix [Luong and Faugeras, 1993; Szeliski and Torr, 1998].
The definition of a reference plane in an image sequence simplifies also the reconstruction
task, whether using linear algorithms [Kaucic et al., 2001; Hartley and Zisserman, 2000;
Rother and Carlsson, 2001, 2002; Rother, 2003b], or factorization methods [Kumar et al.,
1994; Triggs, 2000; Rother et al., 2002]. The reconstruction computed this way is generally
of a projective nature. When using the affine camera model the obtained reconstruction is
affine.

• Let us consider homographies Hijk , H
ij
l between two images i, j induced by two planes k, l.

A relative homography Hijkl = H
ij
k

−1
H
ij
l was proven to be a planar homology [Semple and

Kneebone, 1952], i.e. two of its eigenvalues are equal. This fact can be used to stabilize the
homography computation [Zelnik-Manor and Irani, 2002], compute the fundamental matrix
[Johansson, 1999] and estimate the euclidean reconstruction from two views [Xu et al., 2000].

• Metric information about planar structures is very useful for calibration. Indeed, every plane
contains two points which are invariant under metric transformations: the circular points
(see section 1.2.3). The circular points lie on the intersection of the plane with the absolute
conic. Therefore, their projections must lie on the absolute conic’s image. Once the inter-
image homographies are known, the images of circular points can be propagated between the
images. Known circular points of a plane give two constraints on the IAC per plane-image
pair. This observation lies at the ground of several calibration methods. When the metric
structure of a plane is known (thus circular points are known), the plane-image homographies

2.2. SCENE CONSTRAINTS 63

can be computed directly and used as constraints on the IAC [Sturm and Maybank, 1999a;
Zhang, 1999; Gurdjos and Payrissat, 2001]. [Liebowitz and Zisserman, 1998] show how, when
the metric structure of a plane is not known directly, it can be rectified using the accessible
metric information, for example on angles between lines in the plane. Even when no metric
information is given, it is still possible to use planar structures for self-calibration. Several
methods for the non-linear self-calibration process based on the properties of the circular
points projections were proposed [Triggs, 1998; Malis and Cipolla, 2002; Gurdjos and Sturm,
2003]. The most delicate point of those methods is the initialization step.

• When the metric structure of a plane and the intrinsic parameters of a camera are computed
it is easy to compute the positions and orientations of the cameras and planes in a common
frame [Sturm, 2000].

• The coplanarity constraints are often incorporated in a final non-linear optimization step.
Such methods specific to planes are discussed, for example, in [Szeliski and Torr, 1998; Xu
et al., 2000; Bartoli and Sturm, 2001]. An overview of methods dealing with a larger variety
of constraints, including coplanarity, is given in section 2.2.1.3.

Maps. A map can be considered as an orthographic projection of a scene onto a ground plane.
Including it into the image sequence as an affine image simplifies the calibration and reconstruction
tasks [Zhang et al., 1999; Navab et al., 2003; Bondyfalat et al., 1999; Robertson and Cipolla, 2002].
Also, additional information furnished by maps, such as parallelism and orthogonality of scene
directions can be included into the calibration and reconstruction process [Bondyfalat et al., 1999;
Robertson and Cipolla, 2002].

Vanishing line. A vanishing line is the image of an intersection of a line at infinity. The vanishing
points of lines on a world plane lie on the vanishing line of the plane. Two or more such points define
the vanishing line. [Liebowitz and Zisserman, 1998] uses the plane vanishing lines to rectify the
plane structure up to an affine stratum. [Criminisi et al., 2000] uses the vanishing line of a reference
plane together with a vanishing point of a reference direction(not parallel to the plane) to compute
affine properties, such as distance ratios on, and between, planes parallel to the reference plane.
Given the plane at infinity and vanishing lines it is possible to compute plane normals (up to a
global affine transformation), which was used by [Rother, 2003a] among others for the simultaneous
reconstruction of camera and plane positions. When the camera is calibrated, the vanishing line
defines the plane normal in the euclidean frame. This is used in many algorithms for reconstruction
of piecewise planar scenes [Shum et al., 1998; Sturm and Maybank, 1999b; Robertson and Cipolla,
2000; Grossmann and Santos-Victor, 2002].

2.2.1.3 Geometrical Constrains

The way scene’s geometrical properties are modeled depends on many factors, including the object
representation, whether the constraints should be hard or soft, the scene size, the required com-
putation speed. While it is relatively easy to find an optimal representation when using a small
number of objects and constraint types, it is much more difficult to find a general representation
which can deal with multiple types of primitives and constraints in a common framework. In the
previous section we have presented properties of points, lines or planes projections useful for cali-
bration and reconstruction. In this section we briefly describe strategies for dealing simultaneously
with those objects and different kinds of constraints between them.

We describe first approaches based on linear algebra. Introducing the constraints allows ob-
taining quickly a model respecting approximately the geometrical constraints and avoiding the

64
CHAPTER 2. A STATE OF THE ART ON USING GEOMETRIC

CONSTRAINTS IN COMPUTER VISION

degeneracies of non-constrained methods. However, due to the multilinear nature of the problem,
using only the linear algebra it is usually not possible to deal optimally with noise introduced by
image projections and the solution obtained this way is not always satisfactory. That is why a non-
linear structure and motion refinement is usually applied. Algorithms of this type are described in
the second part of this section.

Approaches based on linear algebra. A simple source of information about the scene struc-
ture simplifying the reconstruction algorithms is the presence of a reference plane visible in all the
images. [Triggs, 2000] suggests an algorithm for simultaneous factorization of points, lines, and
planes, using the inter-image homographies induced by a reference plane. As in all factorization
methods, the missing parts of a measurement matrix caused by features occluded in some images
from the sequence have to be filled in. [Triggs, 2000] hallucinates the missing projections. [Rother,
2003a] uses the reference plane to reconstruct points, lines and planes and camera positions in a
linear framework. First the vanishing points of lines and vanishing lines of planes are computed,
in order to recover the directions in a common frame. Then, linear constraints on the remaining
unknowns, such as positions of the primitives and cameras, are applied, forming a constraint ma-
trix. Finally, the solution is obtained as a null vector of the constraint matrix. The algorithm
results generally in a reconstruction of projective nature, except in the case where the reference
plane is the plane at infinity, and the reconstruction is of affine nature. In spite of the fact that
the reconstruction of all primitives is done simultaneously, there is no possibility to impose in-
cidences between the different scene primitives. It is also not clear how the system deals with
underconstrained features.

In their presence the dimension of the nullspace of the constraint matrix is bigger then 1 and
the reconstruction is ambiguous. The method offers no possibility of detecting such situations.

An approach for imposing point and line incidences together with parallelism and orthogonality
constraints on line directions was presented in [Robertson and Cipolla, 2000]. First scene structure
is approximatively estimated in unconstrained bundle adjustement process. Then lines are grouped
into parallel sets and for every set the direction fitting optimally the image data is computed. The
orthogonality constraints are imposed via an SVD decomposition of matrices containing triples of
orthogonal directions. Next, the computed directions are used together with the image data to
constrain the scene points. This method is the base of PhotoBuilder, system for semi-automatic
modeling of man-made environments.

One of the first methods dealing with point, line, and plane features and constraints between
them appeared in [Shum et al., 1998], in the context of single or multiple view reconstruction
from panoramic images. The input consists of precomputed intrinsic camera parameters and
rotations as well as line and plane normal directions computed using the camera parameters and
the vanishing points and lines. First, parallelism and orthogonality constraints can be used to
adjust the scene directions. Then equations representing coplanarity, collinearity, and distances
on parallel directions are collected into a constraint matrix. Depending on the requirements, the
geometric information can be included into the system as either hard or soft constraints. Indeed,
the matrix including equations generated only by the hard constraints can be decomposed via
QR decomposition (SVD might be used as well) to generate the multidimensional linear space of
solutions respecting exactly the constraints. Then the remaining model parameters can be fitted
in the least squares sense to the soft constraints, again using linear methods. In order to check
if the furnished data are consistent and provide a unique solution, a test based on counting the
number of equations and variables, as well as zero values in the right hand vector of the equation
system, is proposed. However such a test is not sufficient to detect degeneracies caused by singular
camera positions or redundant constraints. Indeed, in such cases, the lack of data is not caused by
an insufficient number of equations but by linear dependencies between them (examples are shown

2.2. SCENE CONSTRAINTS 65

x

C

X1

d1

X2

l

X0

a1

d2

a2

l1 X2

d2

l2
a1 d1

l1 a2

X1

π

n

X0

(a) (b)

Figure 2.4: Examples of singularities of scene definition using points, lines and planes. (a) Let lines
l, l1 and points X1, X2 are given. Point X0 can be computed using the backprojection line l and
the collinearity constraint X1 −X0 = a1d1. However, using the same set of constraints involving
X2 and direction d2 leads to dependent set of equations. (b) Generally, a point can be defined
as intersection of a line and a plane (line l1 and plane π for example). When the line direction is
parallel to the plane however, this definition is ambiguous (line l2 and plane π for example).

in figure 2.4).

A different approach for dealing with the underconstrained data in a similar context was pre-
sented in [Grossmann and Santos-Victor, 2002; Grossmann, 2002]. The constraint matrix is created
using the same input as in the previous method. Additionally, symmetry constraints with respect
to lines with known directions are allowed. The system is not degenerated when the corank of the
constraint matrix is 4 (scale factor plus a global translation). Usually in practice this is not the
case due to noisy image data. That is why the authors propose to generate randomly ”perfect”
image data using randomly distributed cameras and test the rank of the constraint matrix based
on this data. When the corank of such constructed matrix is 4, the SVD of the matrix containing
real measurements gives a solution for all the features simultaneously. In contrary to the previous
approach, such a test can detect singularities caused by underconstrained definitions of scene ob-
jects, provided that there is no degeneracy caused by camera positions (see figure 2.4–(b)). As the
camera information used for the test is not the true one, when a point is defined, for example, as
in figure 2.4–(a), the system will not take it into account.

All the mentioned methods need the directions of all the lines and planes involved in the
reconstruction to be precomputed, which usually requires an additional interactive step. Also,
only the objects which are initially involved in a sufficient number of constraints with precomputed
objects can be computed. Sometimes it is advantageous to proceed in iterations, and propagate
the values computed in the previous steps in order to reconstruct the remaining objects. A simple
example where such a procedure would increase the number of reconstructed objects is given in
figure 2.5. [Poulin et al., 1998; Heuel, 2001; Sturm and Maybank, 1999b] propose approaches
which propagate sequentially the accessible information. They exploit the fact that basic relations
between objects, such as incidence, parallelism, orthogonality, are bilinear in terms of the involved
objects. This implies that if coordinates of one object involved in the bilinear relation are known, it
gives linear constraints on the second related object. Thus, iteratively, the known information can
be propagated in the scene, leading to the reconstruction of all sufficiently constrained elements

66
CHAPTER 2. A STATE OF THE ART ON USING GEOMETRIC

CONSTRAINTS IN COMPUTER VISION

l

C2

X3
X2X1

C1

x2
1 x2

2 x3
2

x1
1

x1
2

Figure 2.5: Points X1, X2, X3 lie on line l. When a line equation is not given, at first only points
X1 and X2, visible in both images, can be computed. In the second step it would be possible to
compute the line l coordinates, and, subsequently, the point X3.

of the scene. [Poulin et al., 1998] proposes also to alternate the reconstruction step with a camera
re-calibration step.

A method for propagation of the computed data was proposed also in the Constraint Pro-
gramming community in the Desargues system [Lhomme et al., 1997]. It uses local propagation
techniques to obtain a 3D scene consistent with 2D sketches and user-provided constraints. Using
predefined geometrical rules, the known object coordinates are propagated in the system. Projec-
tion constraints are used in the same way as scene constraints, which can lead to problems when,
for example, a point is defined in three images, and thus is overconstrained. The way that the
rules are defined and values propagated does not assure that system will find a correct solution,
even if one exists.

A drawback of sequential methods is that, together with the object coordinate values, the error
is also propagated, which can decrease the quality of the reconstruction.

To avoid such a problem, [van den Heuvel and Vosselman, 1997; van den Heuvel, 1998] pro-
pose to start the reconstruction by adjusting the measurements to fit the prior information. The
constraints like coplanarity, collinearity, parallelism, orthogonality are transformed into condition
equations on observations (points and lines projections). The condition equations are first lin-
earized and then used to adjust sequentially the observations. Finally, closed-form expressions
involving the adjusted observations allow a sequential reconstruction of the 3D objects.

A principle of adjusting the measurements before a reconstruction appears also in [Sun et al.,
2002] in the context of a factorization framework for an affine camera model. In a preliminary step,
the measurement matrix is iteratively updated to satisfy the conditions engendered by collinearity,
coplanarity and parallelism constraints. Then the factorization of the measurement matrix provides
the feature coordinates satisfying the desired properties.

In section 6 we propose an iterative algorithm for the reconstruction of constrained scenes
introduced originally in [Wilczkowiak et al., 2003a]. It is similar in spirit to [Grossmann and
Santos-Victor, 2002; Shum et al., 1998; Poulin et al., 1998] in the sense that at every step all the
accessible constraints are gathered into a common constraint matrix. It does not require the scene
directions to be precomputed, however this information can be included into the system. As in
[Shum et al., 1998] soft as well as hard constraints can be involved. All the objects sufficiently
constrained at a given stage are computed simultaneously. Moreover, we propose a technique
for detecting underconstrained features and excluding them from the reconstruction until enough

2.2. SCENE CONSTRAINTS 67

objects constraining the unknown features are computed.

Non-linear methods. The most strightforward approach to satisfy geometrical constraints in a
model is to represent them as a set of algebraic equations among real-valued model parameters and
solve the system in a non-linear numerical optimization process. A classical approach consists on
incorporation of penalties corresponding to unsatisfied constraints into the cost-function. An ap-
proach of this type is presented in [McGlone, 1995]. Constraints like coplanarity, collinearity, angles
are incorporated in the bundle adjustment process. A detailed study on the effect of constraints
on the final precision and the liability of solutions is provided. This solution does not guarantee
however that the final model respects exactly the constraints. This problem can be dealt with by
using constrained minimization techniques. [McLauchlan et al., 2000] use the Lagrange multipliers
to impose the coplanarity constraints exactly on the model. Other constraints like parallelism can
be added in the same way.

However, in a general case, the geometrical problem in 3D is translated into a large system of
linear, bilinear or non-linear equations that are difficult to solve, which makes model reconstruction
using purely numerical approaches unfeasible. That is why several authors searched for other ways
to incorporate the constraints into the non-linear optimization.

Dedieu et al. in the Reality system [Dedieu et al., 2001] propose an ad-hoc method for adjusting
the scene objects to the given constraints. After the primary camera calibration, the constraints are
satisfied in an iterative approach, alternating the reconstruction and calibration steps. After each
reconstruction step, the 3D points’ positions are updated to satisfy the geometrical constraints.
For example, if two 3D points do not respect the given distance constraints, they are arbitrarily
moved into positions satisfying the constraint.

An original approach for the scene parameterization called the dual representation was proposed
in [Grossmann and Santos-Victor, 2000]. The constrained scene points belonging to different sets
of parallel lines and planes are represented by functions f ∗ : R3 → R: the elements of the dual
space to R3. Thus it is possible to split the scene representation into shape and its parameters.
Then the parameters are computed using Maximum Likehood estimator.

Another group of authors tends to find a parameterization of the model satisfying all the
given constraints and then optimize only on the remaining parameters. [Bazin, 2000] proposes
a quasi-minimal parameterization of the scene containing constraints like collinearity, coplanarity,
parallelism and orthogonality. The scene directions (line and plane normal directions) are combined
in parallel sets represented by 2 common parameters. Then orthogonality constraints are imposed
by removing parameters from the remaining set. Collinear points are represented by an origin
point and vectors with common direction and coplanar points are represented by an origin point
and vectors orthogonal to the plane normal. The choice of the point representing a plane or line is
random. In consequence, especially when dealing with strongly constrained scenes, it is not sure
that the minimal parameterization will be found, even if one exists.

[Cornou et al., 2003] uses the same model to parameterize complex primitives, like cubes, prisms
etc. Such parameterized scenes are optimized using the Levenberg-Marquardt algorithm. [Cornou
et al., 2003] presents also a fusion method for combining the pre-optimised structures from smaller
image sequences into a global model.

An algorithm for the minimal scene parameterization inspired by theorem proving techniques is
described in [D.Bondyfalat et al., 1999]. A propagation mechanism is used to place one object after
the other. The constraints must be binary (relating at most 2 objects), and only linear or bilinear
constraints are taken into account. Although efficient heuristics have been made to choice the next
object to place, this algorithm cannot guarantee finding a correct order without a backtracking
step, i.e. in a polynomial time. This approach is described in more details in section 12.1.

The same authors [Bondyfalat and Bougnoux, 1998] propose a minimal parameterization algo-

68
CHAPTER 2. A STATE OF THE ART ON USING GEOMETRIC

CONSTRAINTS IN COMPUTER VISION

rithm using theorem proving algorithms. A set of independent monomials characterizing the scene
is found by the Wu-Ritt triangulation method. Then the whole model, satisfying naturally the
imposed constraints, can be expressed as a polynomial function of the characteristic set. Optimiza-
tion over variables containted in the characteristic set allows to find the model fitting the image
data. As the authors admit, the algorithms for theorem proving are designed rather for small data
sets and the complexity of computation increases very quickly with the model size, especially when
dealing with constraints more complicated than bilinear. Also the polynomial reduction causes
the necessity of dealing with polynomials of very high degree. As in every approach based on the
elimination of model parameters, the system fails if redundant data was not removed from the
system before the parameter elimination step.

In part III we present an original method for quasi-minimal scene parameterization. The scene
is represented, as in [D.Bondyfalat et al., 1999] by an object-constraint graph. The algorithm uses
a dictionary of predefined geometric rules to find a set of model parameters and the sequence of
methods propagating the known model parameters until all the objects are reconstructed. Thanks
to using advanced constraint decomposition techniques the propagation algorithm does not require
the backtrack step and its complexity is linear. In the final step the model parameters are fitted
to the image data. This algorithm was published in [Wilczkowiak et al., 2003d; Trombettoni and
Wilczkowiak, 2003]

2.2.2 Model-Based Approaches

Model-based approaches are treated in this section, that is, approaches based on a scene description
using primitives more complex than points, lines or planes. Using a compact model, naturally
enclosing important scene features, it is possible to reduce the number of interactions needed for
the scene definition and reduce the search space for the scene parameters. However, as applications
of algorithms are limited to scenes which can be well described by the predefined model, the more
complex are the primitives, the less flexible becomes the scene definition. We give several examples
of models used to represent scene features for calibration and reconstruction. We focus on models
enclosing relations considered in this thesis, such as parallelism, coplanarity or distances.

Affine shape. In a series of articles, Sparr introduces the notion of affine shape for N-point
configurations (see section 1.4.1.2. Some examples of affine point configurations are shown in fig-
ure 1.8. Shape is defined as the nullspace of the measurement matrix containing image coordinates
of points constituting the configuration. It is invariant under affine transformations. Using its
properties, eventually combined with available information about point configuration (coplanar
configurations, parallelograms...), depths of points can be computed from single [Sparr, 1992a] or
multiple [Sparr, 1991b,a, 1998] images, up to a euclidean, affine or projective transformation.

Parallelograms, parallelepipeds. Special cases of affine point configurations, parallelograms
and parallelepipeds, are very convenient for the modeling of basic scene properties. Very common
in man-made environments and easy to depict for the user, they naturally enclose the information
about parallelism in the scene. It is also easy to use them to impose orthogonality and length
ratios. The information contained in a parallelepiped projection is usually sufficient to model
scene elements from single images.

An original approach for single image modeling was presented in [Horry et al., 1997]. The
scene is modeled by a kind of a rectangular corridor, with the observer at one, and the infinitely
distant background at the other side. The central perspective and user-defined billboards are used
to navigate inside the 2D image.

2.2. SCENE CONSTRAINTS 69

A classical approach for using the parallelepiped structure is to use the information about two
adjacent rectangles [Svedberg and Carlsson, 2000] or cubes [Caprile and Torre, 1990; Cipolla and
Boyer, 1998] to compute the vanishing points of orthogonal directions in the scene and calibrate the
cameras from single images. However, decomposing the information enclosed in the parallelepiped
into 3 directions and treating them separately causes loss of information. Indeed, the projection
of a parallelepiped has only 11 degrees of freedom (see section 3 for details). Thus representa-
tion of the same information in terms of 12 degrees of freedom of 3 distinct vanishing points is
overparameterized. It is particularly important in close-to-degenerated positions, e.g. when one
of the parallelepiped’s faces is parallel to the image plane. [Chen et al., 1999] proposes a method
for simultaneous use of the projections of 6 parallelepiped vertices for camera calibration and re-
construction. The information about the parallelepiped angles is used to formulate polynomial
constraints on camera intrinsic parameters. These polynomials are of degree 4 in case of a general
parallelepiped and linear for a rectangular parallelepiped. Once camera intrinsic parameters are
computed, the parallelepiped can be reconstructed in 3D in a separate step.

In this thesis we propose an approach which recovers simultaneously the camera’s and par-
allelepiped’s intrinsic parameters and rotations up to an affine transformation directly from the
parallelepipeds vertices projections. Every known parameter of a camera or a parallelepiped can
then be used simultaneously to upgrade the reconstruction to a euclidean one. Some of the results
were published in [Wilczkowiak et al., 2001, 2002].

Complex primitives. Depending on the application, a variety of models of objects commonly
present in man-made environments can be defined and located in the scene. In the Facade system
[Debevec et al., 1996] the scene is defined using the user-provided projections of library objects, such
as cubes, prisms, polygons. Every such primitive is defined by a set of dimension parameters, for
example length, width and height for a cube, as well as by rotation and translation parameters. It is
also possible to introduce inter-primitive relations, such as common orientation or base plane. The
relation between two objects is defined by their relative rotation and translation. All the objects
are grouped in a hierarchical tree structure, where links represent the inter-object constraints. The
position of each node is defined as the composition of all the relative rotations and translations
between objects situated higher in the hierarchy. Such a representation is more complex than
dealing with the simple primitives described in the previous section. Also, it does not allow for
loops in the object-constraint graph. This subject will be discussed further in part III. After
the constraint analysis, the scene is reconstructed in a non-linear optimization process, where
the remaining camera and primitive parameters are estimated. In [Jelinek and Taylor, 2000] a
mathematical model of the scene parameterization via complex primitives is developed. Every
primitive is represented by a linearly parameterized model: its coordinates can be expressed as a
linear function of a dimension vector (see section 1.4.2.1 for examples).

In both approaches the initial calibration and reconstruction are done using parallelism and
orthogonality constraints engendered by scene primitives. When enough constraints are provided,
the reconstruction can be done using only a single image, which was used to create the commercial
software Canoma [Schrand and Seidl, 2000].

Generally, model-based methods constraining strongly the scene are well adapted for single
image applications. An interesting approach for reconstruction of human models from single or-
thographic images is presented in [Taylor, 2000]. Using stick-model of a human body with known
distance ratios between the segments and eventual coplanarity and coplanarity constraints the pose
of a human can be detected using close-form solutions.

Recently, several works [Dick et al., 2001; Werner and Zisserman, 2002] have been devoted to
the automatic detection of predefined architectural elements in the scene in order to include them
into reconstruction frameworks.

70
CHAPTER 2. A STATE OF THE ART ON USING GEOMETRIC

CONSTRAINTS IN COMPUTER VISION

The use of different kinds of primitives has been investigated also in photogrammetry, espe-
cially in the context of (semi-) automatic reconstruction of cities from aerial images. [Henricsson
et al., 1996; Brunn et al., 1998] propose approaches using roof and corner models, respectively.
The 3D reconstruction is based on the hypothesize and verify paradigm: in the approximately re-
constructed scene, first the image interest points and segments are used to create the corner (roof)
hypotheses. The next step consists of the verification of the corner(roof) belonging to predefined
classes. Additionally hard and soft constraints, like symmetry and orthogonality are introduced
by the specific corner class definition and included into a non-linear optimization process.

Part II

Linear Approaches for Using
Geometric Primitives for

Calibration and 3D Modeling

Introduction

In this part of the thesis, we study linear approaches for 3D model acquisition from non-calibrated
images. First, the intrinsic and extrinsic camera calibration is taken into consideration. In partic-
ular, we study the use of a specific calibration primitive: the parallelepiped. Parallelepipeds are
frequently present in man-made environments and naturally encode the affine structure of the scene.
Any information about their euclidean structure (angles or ratios of edge lengths), possibly com-
bined with information about camera parameters is useful to obtain the euclidean reconstruction.
We propose an elegant formalism to incorporate such information, in which camera parameters
are dual to parallelepiped parameters, i.e. any knowledge about one entity provides constraints
on the parameters of the others. Consequently, an image a parallelepiped with known euclidean
structure allows to compute the intrinsic camera parameters, and reciprocally, a calibrated image
of a parallelepiped allows to recover its euclidean shape (up to size). On the conceptual level, this
duality can be seen as an alternative way to understand camera calibration: usually, calibration is
considered to be equivalent to localizing the absolute conic or quadric in an image, whereas here
we show that other primitives, such as canonic parallelepipeds, can be used as well.

The camera and parallelepiped parameters are recovered in two steps. First, their intrinsic
and orientation parameters are computed. The original approach for this step was introduced in
[Wilczkowiak et al., 2002] and consists on parameterization of the intrinsic matrices of all the objects
(cameras and parallelepipeds) in terms of the intrinsic matrix of a reference object. The algorithm
proposed later [Wilczkowiak et al., 2003c] exploits the fact that the parallelepipeds projection
matrices can be factorized into two parts, representing respectively camera and parallelepiped
parameters and allows to treat the available data simultaneously without privileging any primitive.

To complete the calibration, a least squares optimization is used to simultaneously recover the
scale and position parameters in the common euclidean frame. The use of the well-constrained
calibration primitives allows to obtain good calibration results even from a very small number of
images.

Our calibration approach is conceptually close to self-calibration methods, especially those that
upgrade affine to euclidean structure [Hartley, 1993; Pollefeys and Van Gool, 1997] or those that
consider special camera motions [Hartley, 1997b; de Agapito et al., 1999; Armstrong et al., 1994].
The way metric information on a parallelepiped is used is also similar to vanishing point based
methods [Caprile and Torre, 1990; Cipolla and Boyer, 1998; Chen et al., 1999; Kosecka and Zhang,
2002]. Some properties of our algorithm are also common with plane-based approaches [Sturm and
Maybank, 1999a; Zhang, 1999; Triggs, 1998; Malis and Cipolla, 2002; Triggs, 2000; Sturm, 2000].
While more flexible than standard calibration techniques, plane-based approaches still require
either euclidean information or, for self-calibration, many images in general position [Triggs, 1997].
In this sense, our approach is a generalization of plane-based methods with metric information
to three-dimensional parallelepipedic patterns. This allows to handle missing data and unknown
scale factors and simplifies the formulation of calibration constraints. Finally, our approach can
be compared to methods using complex primitives for the scene representation. However, unlike

74

most methods of this type, we use the parallelepiped parameters directly to solve the calibration
problem without requiring non-linear optimization methods.

Depending on the prior information about the scene, singularities might occur. They are col-
lected into a detailed dictionary, accompanied by a sketch of methodology used for its construction.

While the main contributions of this work concern the estimation of camera and parallelepiped
parameters, we show how the results can be combined with a multi-linear reconstruction approach,
using other primitives than parallelepipeds, described in chapter 6. The complete system allows
both calibration and 3D model acquisition from a small number of arbitrary images with a reason-
able amount of user interaction.

Outline

In chapter 3, the major properties of the parallelepiped-camera projections are described and
the concept of camera-parallelepiped duality is introduced. Then in chapter 4, our algorithms
for the estimation of camera and parallelepiped intrinsic and rotation parameters are described
(sections 4.2 and 4.3). These algorithms are completed by a study of minimal and singular config-
urations in sections 4.4 and 4.5. Chapter 5 describes our approach for pose and scale estimation.
Chapter 6 contains an overview of the full algorithm used to reconstruct scenes containing prim-
itives other than parallelepipeds. Chapter 7 presents experimental results on synthetic and real
data of calibration and reconstruction algorithms.

Chapter 3

Parallelepipeds and Their

Projections

In this chapter, we present our parameterization of parallelepipeds and study the properties of
their perspective images. We show that, in analogy to points, projection of a parallelepiped can
be represented by a projection matrix. As shown in figure 3.1, it can be computed assuming that
the vertices of a parallelepiped projected in the image belong to a canonical cube, and thus will
be called in the following the canonical parallelepiped projection matrix. This matrix naturally
encodes the affine structure of the scene. Thus, once computed, it directly provides an affine
reconstruction. In a similar way like standard point-image projection matrices, it can be split into
two parts, representing the homography between the plane at infinity and the image plane as well
as the relative pose of objects. Using the canonical parallelepiped projection matrix it is possible to
introduce a concept of duality between camera and parallelepiped intrinsic parameters. Apart from
theoretical, this duality has an important practical value, allowing to use the prior information on
all the cameras and parallelepipeds in a common frame.

76 CHAPTER 3. PARALLELEPIPEDS AND THEIR PROJECTIONS

3.1 Representation of Parallelepipeds

A parallelepiped encodes naturally the affine properties of the scene and facilitates modeling the
remaining metric part. The representation of a parallelepiped given below is based on the formalism
proposed in [Wilczkowiak et al., 2001, 2002].

A parallelepiped is defined by twelve parameters: six extrinsic parameters describing its ori-
entation and position, and six intrinsic parameters describing its metric shape: three dimension
parameters (edge lengths l1, l2 and l3) and three angles between edges (θ12, θ23, θ13). These intrin-
sic parameters are illustrated in figure 1.11. The parallelepiped may be represented compactly in
matrix form by a 4× 4 matrix N:

N =

(
S v
0T 1

)

L̃

where S is a rotation matrix and v a vector, representing the parallelepiped’s pose (extrinsic
parameters). The 4× 4 matrix L̃ represents the parallelepiped’s shape:

L̃ =

l1 l2c12 l3c13 0
0 l2s12 l3

c23−c13c12
s12

0

0 0 l3

√
s212−c

2
13s

2
12−(c23−c13c12)

2

s212
0

0 0 0 1

with: cij = cos θij , sij = sin θij , θij ∈]0 π[, li > 0.

The matrix L̃ represents the affine transformation between a canonical cube and a parallelepiped
with the given shape. Formally, a vertex (±1,±1,±1, 1)T of the canonical cube is mapped, by L̃,
to a vertex of our parallelepiped’s intrinsic shape. Then, the pose part of N maps the vertices into
the world coordinate system.

Other parameterizations for L̃ may be chosen, but the above one is attractive due to its upper
triangular form. This underlines the fact that L̃ plays the same role for the parallelepiped as the
calibration matrix K for a camera (see section 1.3).

The analogous entity to a camera’s IAC ω, is the matrix µ, defined by:

µ ∼ LTL ∼

l21 l1l2 cos θ12 l1l3 cos θ13
l1l2 cos θ12 l22 l2l3 cos θ23
l1l3 cos θ13 l2l3 cos θ23 l23

 , (3.1)

where L is the upper left 3× 3 matrix of L̃.
Hence, there is a seemingly perfect symmetry between intrinsic parameters of cameras and

parallelepipeds. The only difference is that in some cases, the size of a parallelepiped matters, as
will be explained below. As for cameras, the fact that K33 = 1 allows us to fix the scale factor in
the relation ω ∼ K−TK−1, and thus to extract K uniquely from the IAC ω, e.g. using Cholesky
decomposition. As for parallelepipeds, however, we have no such constraint on its “calibration
matrix”L, so the relation µ ∼ LTL gives us a parallelepiped’s Euclidean shape, but not its (absolute)
size. This does not matter in general, since we are usually only interested in reconstructing a scene
up to some scale. However, when reconstructing several parallelepipeds, one needs to recover at
least their relative sizes.

There are many possibilities of defining the size of parallelepipeds. We choose the following
definition, due to its appropriateness in the equations underlying our calibration and reconstruction
algorithms below: the size of a parallelepiped is defined as

s = (det L)1/3 .

This definition is actually directly linked to the parallelepiped’s volume: s3 = det L = Vol/8 (the
factor 8 arises since our canonic cube has an edge length of 2).

3.2. ONE PARALLELEPIPED IN A SINGLE VIEW 77

virtual canonical cubeobserved parallelepipedcamera

(R, t)

K L

(S,v)

X̃ ∼ [KRSL|KRv + Kt]

Figure 3.1: The projection of the canonic parallelepiped (cube) into the image. Matrices K, L
correspond to intrinsic parameters of camera and parallelepiped and (R, t), (S,v) correspond to
extrinsic parameters of camera and parallelepiped, respectively.

3.2 One Parallelepiped in a Single View

In this section, we introduce the concept of duality between the intrinsic characteristics of a camera
and those of a parallelepiped.

Consider the projection of the parallelepiped’s vertices into the camera. Let Ci,i∈[1...8] be the

homogeneous coordinates of the canonic cube’s vertices of the form (±1,±1,±1, 1)T. Let matrices
K and L̃ (with affine part L) correspond to intrinsic, and matrices (R, t), (S,v) correspond to
extrinsic camera and parallelepiped parameters, as described in section 3.1. The corresponding
vertex of the parallelepiped is given as:

Pi = NCi =

(
S v
0T 1

)

L̃Ci

and its image point is:

pi ∼ MPi = K
(
R t

)
(
S v
0T 1

)

L̃Ci . (3.2)

In the above equation, we define the canonical parallelepiped projection matrix:

X̃ ∼ K
(
R t

)
(
S v
0T 1

)

L̃ . (3.3)

This matrix represents a perspective projection that maps the vertices of the canonic cube onto
the image points of the parallelepiped’s vertices. This is illustrated in figure 3.1. Given image
points for sufficiently many vertices1, the canonic projection matrix can be computed, even in the
absence of prior knowledge on intrinsic or extrinsic parameters. Our calibration and pose estimation
algorithms are based on the link between the canonic projection matrix (which we suppose given
from now on) and the camera’s and parallelepiped’s intrinsic and extrinsic parameters.

Let us consider this in more detail. First, we may identify the relative pose between camera
and parallelepiped in (3.3), represented by the following 3× 4 matrix:

(
R t

)
(
S v
0T 1

)

=
(
RS Rv + t

)

1Five image points and one image direction are in general sufficient to solve for the 11 degrees of freedom of the
parallelepiped’s image projection. Additional points make the computation more stable.

78 CHAPTER 3. PARALLELEPIPEDS AND THEIR PROJECTIONS

Second, let us consider the leading 3×3 sub-matrix X of the canonic projection matrix X̃, which
is given by:

X ∼ K (RS) L. (3.4)

This matrix will be called in the following the reduced canonical projection matrix.

Due to the orthogonality of the rotation matrices R and S, it is simple to derive the following
relation between the camera’s IAC ω and the corresponding entity µ of the parallelepiped:

XTωX ∼ µ, or, dually: YTµY ∼ ω, for Y = X−1. (3.5)

This equation establishes an interesting duality between the intrinsic parameters of a camera
and those of a parallelepiped. It shows (unsurprisingly) that knowing the parallelepiped’s shape
µ allows to calibrate the camera from a single image. Conversely, knowing the camera’s intrinsic
parameters allows to directly compute the parallelepiped’s metric shape, also from a single image.

In the next chapters, we generalize the use of this duality for calibration and pose estimation
to the case of multiple parallelepipeds seen in multiple cameras and to the use of partial knowledge
about the camera’s or parallelepiped’s intrinsic parameters. Before doing so, let us describe a few
interesting links between our and other (self-) calibration scenarios.

Classical self-calibration proceeds usually in two main steps: first, a projective 3D reconstruc-
tion of the scene is obtained from correspondences across two or more images. Then, the projec-
tive reconstruction is transformed to a metric one using the available prior knowledge on intrinsic
parameters. This upgrade is sometimes interlaced by an intermediate upgrade to an affine recon-
struction.

In our scenario, we have a 3D reconstruction of the scene already from a single rather than
multiple images, which is furthermore of affine rather than projective nature: we know that the
observed parallelepiped’s shape is that of a cube, up to some affine transformation. Analogously,
our canonic projection matrix is equal to the true one up to an affine transformation. Hence,
self-calibration in our scenario does not need to recover the plane at infinity, which is known to be
the hardest (“most non-linear”) part of classical self-calibration. Indeed, our calibration method is
somewhat similar to the affine-to-Euclidean upgrade of stratified self-calibration approaches, e.g.
[Hartley, 1993; Pollefeys and Van Gool, 1997].

Similarities also exist with (self-) calibration approaches based on special camera motions:
calibrating a rotating camera [Hartley, 1997b; de Agapito et al., 1999] is more or less equivalent
to self-calibrating a camera in general motion once affine structure is known. Other approaches
recover the affine structure by first performing pure translations and then general motions or to
approaches that consider special camera motions [Armstrong et al., 1994; Pollefeys et al., 1996].

Our scenario is similar to these. In the following chapters we show how it allows to efficiently
combine the usual self-calibration constraints with constraints on scene structure. This enables
to perform calibration (and 3D reconstruction) from very few images; one image may actually be
sufficient.

3.3 n Parallelepipeds in m Views

The main motivation for the work described in this part of the thesis is to generalize the use
of the duality introduced in the previous section: we consider the general case where multiple
parallelepipeds are seen by multiple cameras (not all parallelepipeds need to be seen by all cam-
eras). Furthermore, we do not in general suppose that some cameras or parallelepipeds are fully
calibrated. We rather want to make efficient and complete use of any kind of partial calibration
information. As for the cameras, this amounts to partial knowledge on their intrinsic parameters

3.3. N PARALLELEPIPEDS IN M VIEWS 79

that is routinely used for self-calibration. As for parallelepipeds, we rather consider them as “ve-
hicles” to jointly express simple yet useful geometric scene constraints. Defining orthogonality or
parallelism constraints between for example “only”pairs of lines, amounts to providing information
about the structure of individual planes in the scene. Parallelepipeds however allow to directly
express richer couplings of constraints on 3D scene structure.

Let us now consider the general case where n parallelepipeds are seen by m cameras. Let X̃ik
be the canonic projection matrix associated with the projection of the kth parallelepiped in the
ith camera:

X̃ik ∼ Ki
(
Ri ti

)
(
Sk vk
0T 1

)

L̃k

Let us explicitly introduce scale factors λik such that the equality up to scale in the above
equation can be turned into a component-wise equality:

λikX̃ik = Ki
(
Ri ti

)
(
Sk vk
0T 1

)

L̃k (3.6)

Just as a sidenote, observe that, for two views i and j, and a parallelepiped k, the infinite
homography between the two views is given by the product XikX

−1
jk .

We may group together these equations for all m cameras and n parallelepipeds, into the
following single matrix equation:

λ11X̃11 · · · λ1nX̃1n
...

. . .
...

λm1X̃m1 · · · λmnX̃mn

︸ ︷︷ ︸

X3m×4n

=

K1
(
R1 t1

)

...
Km

(
Rm tm

)

︸ ︷︷ ︸

M̃3m×4

[(
S1 v1
0T 1

)

L̃1 · · ·
(
Sn vn
0T 1

)

L̃n

]

︸ ︷︷ ︸

S̃4×4n

(3.7)

The matrix X̃ contains all information that can be recovered from the parallelepipeds’ image
points alone (in section 4.3, we discuss the issue of computing the scale factors λik). In analogy
with [Tomasi and Kanade, 1992], we call it the measurement matrix.

In analogy to the reduced canonical projection matrix we will consider also a reduced mea-
surement matrix X consisting of the matrices Xik. The reduced measurement matrix encodes the
intrinsic parameters and orientation of all the cameras and parallelepipeds in the system. It will
be used in chapter 4 for the estimation of those parameters. The remaining part, consisting of the
fourth columns xik of matrices X̃ik encodes the relative positions of cameras and parallelepipeds,
as well as the parallelepipeds’ sizes and will be discussed in chapter 5.

80 CHAPTER 3. PARALLELEPIPEDS AND THEIR PROJECTIONS

Chapter 4

Intrinsic and Orientation

Parameters

In this chapter, we explain in detail, how the parallelepiped projection matrices can be used
to incorporate scene constraints into the calibration process. Using parallelepipeds as natural
calibration objects offers several advantages over standard self-calibration approaches. Firstly,
fewer correspondences are needed; five and a half points extracted per image are sufficient, and
even fewer inter-image correspondences are needed. For instance, the joint calibration of two
cameras that view a parallelepiped from opposite viewpoints, is possible. Secondly, as mentioned
in section 3, the reduced canonical parallelepiped projection matrices encode the affine properties of
the scene, i.e., the infinite homography. In consequence, the calibration problem is reduced to a self-
calibration problem where the plane at infinity is already localized [Hartley, 1993; Pollefeys and Van
Gool, 1997] or where the cameras are stationary [Armstrong et al., 1994; Hartley, 1997b; de Agapito
et al., 1999]. This observation is the foundation of the two calibration algorithms proposed in this
chapter. The first algorithm, described in section 4.2, was introduced originally in [Wilczkowiak
et al., 2002]and is conceptually close to the algorithms proposed for rotating cameras [Hartley,
1997b; de Agapito et al., 1999]. Using the inter-image homographies formed by reduced canonical
parallelepiped projection matrices, the matrices representing intrinsic parameters of cameras and
parallelepiped are parameterized in terms of one, reference object. Thus, the calibration of all
the objects is reduced to the computation of five independent parameters of a 3 × 3 symmetric
matrix defined up to a scalar factor. In the following step, the metric information provided by the
cameras and parallelepipeds is used to form equations on the reference objects. When the intrinsic
calibration is computed, the rotation parameters can be estimated in a factorization framework,
extending plane-based approach described in [Sturm, 2000]. The intrinsic calibration algorithm is
very fast, as the solution is provided by the resolution of a small linear equation system. However,
due to the parameterization step, which requires distinguishing one object in the scene and the
fact that rotation parameters are computed separately, this algorithms has worst properties that
algorithm proposed later and described in section 4.3. Here, we a give factorization-based algorithm
for simultaneous recovery of parallelepiped and camera intrinsic and orientation parameters. Such
an estimation is only up to an affine transformation. However, as in the first approach, the metric
information can be used to compute the transformation updating the affine reconstruction to the

82 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

metric one. This transformation is represented by a 3× 3 triangular matrix defined up to a scalar
factor, thus reducing the calibration problem to the estimation of five independent parameters, as
in the first approach. Interestingly, the use of the three-dimensional structure allows to deal very
easily with the classical problems of the factorization methods: the unknown scale factors and the
missing data.

In both the proposed algorithms, the way the metric information of a parallelepiped is used to
stratify the reconstruction from affine to euclidean is similar to the vanishing point based methods
[Caprile and Torre, 1990; Cipolla and Boyer, 1998; Chen et al., 1999; Kosecka and Zhang, 2002].
However, the constrained 3D structure of a parallelepiped improves the performance of the algo-
rithm compared to the process of vanishing points computation and when registering images. Some
properties of our algorithm are also common with plane-based approaches [Sturm and Maybank,
1999a; Zhang, 1999; Triggs, 1998; Malis and Cipolla, 2002; Rother et al., 2002; Sturm, 2000]. While
more flexible than techniques based on calibration patterns [Tsai, 1986], plane-based approaches
still require either euclidean information or, for self-calibration, many images in general position
[Triggs, 1997], or at least one plane visible in all images [Rother et al., 2002]. In this sense, our
approach is a generalization of plane-based methods with metric information to three-dimensional
parallelepipedic patterns.

This chapter is organized as follows. In section 4.1 we resume the constraints provided by
information on the metric structure of parallelepipeds and known intrinsic camera parameters.
Next, in sections 4.2 and 4.3, we present the two calibration algorithms. Then we give some
examples of minimal configurations for both the algorithms in section 4.4. We complete the chapter
by a study of singular configurations in section 4.5.

4.1. USING PRIOR KNOWLEDGE 83

4.1 Using Prior Knowledge

In this section we summarize the prior information on camera and parallelepiped intrinsic param-
eters which can be used for calibration. The parallelepiped-based calibration methods described
in this part use the same constraints, and differ only in the problem parameterization.

4.1.1 Using Prior Information about Camera Intrinsics

Known values of camera intrinsics. Knowing respectively the aspect ratio and principal
point coordinates of a camera i gives the following linear constraints on its IAC ωi (based on
equation (1.7)):

τ2i ωi,11 − ωi,22 = 0 (4.1)

ui,0ωi,11 + ωi,13 = 0 (4.2)

vi,0ωi,22 + ωi,23 = 0 (4.3)

A known value of the focal length αv can only be used to formulate linear equations if the other
intrinsics are also known [Sturm and Maybank, 1999a]. In such a fully calibrated case, other
algorithms might be better suited, so we neglect that case in the following, i.e we assume unknown
focal lengths.

Constant camera intrinsics. In the case that two cameras i and j are known to have the same,
yet unknown value for one intrinsic parameter, we in general obtain quadratic equations on ωi and
ωj . For example, the assumption of equal aspect ratios leads to the equation:

ωi,11ωj,22 = ωj,11ωi,22

The situation is different if all intrinsic parameters of two (or more) views are known to be identical.
In that case, we can obtain linear equations instead of quadratic ones, as shown in [Hartley, 1997b].
It will be detailed in sections 4.2 and 4.3.

In practice, we only use available linear equations. In some minimal cases, quadratic equations
as above might be useful to find a unique solution or a finite set of solutions, if the available linear
constraints are insufficient.

4.1.2 Using Prior Information about Parallelepiped Intrinsics

Knowledge on parallelepiped intrinsics can be used in an analogous way as knowledge about camera
parameters.

Known values of parallelepiped intrinsics. Suppose we know the length ratio of two edges
of a parallelepiped k: rk,uv =

lk,u

lk,v
. Referring to (3.1), we get the following linear equation:

r2k,uvµk,vv − µk,uu = 0. (4.4)

Similarly, the assumption that θk,uv is a right angle, i.e. cos θk,uv = 0, leads also to a linear
equation:

µk,uv = 0. (4.5)

A known angle of a parallelepiped θk,uv 6= 90◦ gives a quadratic constraint on the associated
matrix µk:

µ2k,uv = cos2 θk,uvµk,uuµk,vv.

84 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

Constant parallelepiped intrinsics. As for cameras, quadratic equations may be derived from
assumptions about two or more parallelepiped having the same, yet unknown value for some
intrinsic parameter. Furthermore, information about two parallelepipeds k, l having the same
shape, leads to a set of 4 linear equations on µk and µl. This holds even if the parallelepipeds are
of a different size. Knowing in addition that they are of the same size, gives an additional linear
equation, but constraining rather their positions and sizes than intrinsic parameters.

Currently, we only exploit constraints on individual parallelepipeds (right angles and length
ratios), since they are easier to provide for the user.

4.2 Reference Primitive Method

The calibration algorithm described in this section is the first approach we proposed for the multi-
view calibration problem in [Wilczkowiak et al., 2002]. It is based on the parameterization of the
intrinsic matrices of all the objects (cameras and parallelepipeds) in terms of the intrinsic matrix of
a reference primitive. This is done using parallelepiped projection matrices. Due to the necessity
of choice of reference object the properties of this algorithm are less interesting than properties of
the factorization algorithm given in the following section, but we sketch this method to keep this
thesis self-contained.

4.2.1 Calibration of the Reference Primitive

We assume that n parallelepipeds are seen by m cameras. The geometric information that can be
computed from the projection of a parallelepiped k in image i is enclosed in the reduced measure-
ment matrix Xik = Y−1

ik . From such matrices and prior information, we can derive constraints on
the calibration by using the duality equations. In this section, we will show how the constraints
arising from the prior knowledge on the elements of ωi or µk given is section 4.1 can be used in
practice.

The duality equations between µ0 and image i, respectively parallelepiped k, are:

{
ωi ∼ Y>

i0µ0Yi0,
µk ∼ X>ikY>i0µ0Yi0Xik i ∈ [0 . . .m− 1].

(4.6)

which may be rewritten in several different forms, by nested applications of the duality equations,
e.g.:

ωi ∼ Y>
ilX

>
jlY

>
j0µ0 Yj0XjlYil

︸ ︷︷ ︸

Gi

∼ G>i µ0 Gi,

µk ∼ X>jkY>jlX>0lY>00µ0 Y00X0lYjlXjk
︸ ︷︷ ︸

Gk

∼ G>k µ0 Gk.
(4.7)

where j ∈ [0 . . .m − 1], l ∈ [0 . . . n − 1]. Thus for every parallelepiped and camera in the
scene there exist a transformation G parameterizing its internal parameters in terms of parameters
of an arbitrary µ0. Such forms of the duality equations do in principle not provide additional
independent equations on the elements of µ0. However, they are useful for example in the case
where the parallelepiped associated to µ0 is occluded in view i (e.g. due to occlusion), thus Xi0 is
not available. Using extensions of the duality equations such as (4.7), it is possible to express the
information on any of the parallelepipeds or cameras in terms of µ0.

We therefore derive the statements given in the following two paragraphs. When we speak of
independent equations, we mean that they are independent in general, i.e. non-singular, situations.

4.2. REFERENCE PRIMITIVE METHOD 85

Known values of camera and parallelepiped intrinsics. Table 4.1 summarizes the prior
knowledge on intrinsic parameters which results in linear equations on µ0.

Known parameters Constraints

parallelepiped

right angle θk,uv
(
G>k µ0Gk

)

uv
= 0

length ratio rk,uv =
lk,u

lk,v
r2k,uv

(
GTk µ0Gk

)

vv
−
(
GTk µ0Gk

)

uu
= 0

camera

skew s = 0
(
G>i µ0Gi

)

12
= 0

aspect ratio τ2i τ2i
(
GTi µ0Gi

)

11
−
(
GTi µ0Gi

)

22
= 0

principal point ui,0 ui,0
(
G>i µ0Gi

)

11
+
(
G>i µ0Gi

)

13
= 0

vi,0 vi,0
(
G>i µ0Gi

)

22
+
(
G>i µ0Gi

)

23
= 0

Table 4.1: Exemplary equations on matrix µ0 engendered by prior knowledge on camera and
parallelepiped parameters.

As mentioned before, any of these constraints can be enforced using one or several redundant
equations of the types (4.6) and (4.7) for example. Note that due to the above facts, an acquisition
system with five different cameras viewing an arbitrary parallelepiped can be fully calibrated under
the assumption of the skew parameters being zero. Equivalently, a system with one camera viewing
five parallelepipeds with one right angle, or two parallelepipeds with three right angles can be
fully calibrated. An extended list of the minimal cases for our calibration algorithm is given in
section 4.4.

Constant values of camera and parallelepiped intrinsics. As shown in section 4.1 in a
case when two cameras i and j are known to have the same, yet unknown value for one intrinsic
parameter, we in general obtain quadratic equations on ωiand ωj . For example, the assumption of
equal aspect ratios leads to the equation:

(
GT
i µ0Gi

)

11

(
GT
j µ0Gj

)

22
=
(
GT
j µ0Gj

)

11

(
GT
i µ0Gi

)

22

In analogy to cameras cameras, quadratic equations may be derived from assumptions about
two or more parallelepiped having the same, yet unknown value for some intrinsic parameter.

The situation is different if all intrinsic parameters of two (or more) views are known to be
identical. In that case, we can obtain linear equations instead of quadratic ones, as shown in
[Hartley, 1997b]. When all the matrices Gi are scaled such as to have unit determinants, we can
write the following component-wise matrix equality between any pair (i, j) of views:

GT
i µ0Gi − GT

j µ0Gj = 03×3

This represents 6 linear equations on µ0 for each pair of views, among which 4 are independent.
In a similar way, two parallelepipeds having the same shape, leads to a set of 4 linear independent

equations on µ0.

4.2.2 Rotational Part of the Pose

When the intrinsic parameters of the cameras (Ki,i∈[0..m−1]) and the parallelepipeds (Λk,k∈[0..n−1])
are computed, it turns out to be easy to compute the orientation of all the objects in a common
frame. Indeed, from every matrix Xik (see section 3.3) we can compute the matrix X̃′ik, which
represents a relative rotation between a camera i and a parallelepiped k:

X′ik = K−1
i XikΛk

−1 ∼ RiSk. (4.8)

86 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

In practice, X′ik will not be a perfect rotation matrix, but this can easily be corrected using
SVD [Kanatani, 1996].

Let us first consider the case where all parallelepipeds are seen in all views. Then, all matrices
X′ik can be grouped and written as:

X′0,0 X′0,1 s X′0,n−1
X′1,0 X′1,1 s X′1,n−1
...

...
. . .

...
X′m−1,0 X′m−1,1 s X′m−1,n−1

︸ ︷︷ ︸

X′

=

R0
R1
...

Rm−1

︸ ︷︷ ︸

R

(
S0 S1 s Sn−1

)

︸ ︷︷ ︸

S

(4.9)

The matrices Ri and Sk can be extracted by factorizing X′, due to the fact that its rank is
3. The factorization leads to solutions defined up to a global rotation. One might thus attach
the reference frame to any camera or parallelepiped. All the issues concerning the unknown scale
factors or missing data discussed in the following chapter 4.3 are valid also for the factorization
problem presented in this section.

4.2.3 Complete Algorithm

In the current implementation, a scene is represented by a bi-partitioned graph, whose nodes are
the cameras as well as parallelepipeds and the edges are the projections. We assume that the graph
is connected and, consequently, for each object i the transformation Gi such that Gi

Tµ0Gi can be
computed. When this is not a case, all the connected parts of the graph have to be calibrated
separately. Our calibration approach consists of two stages. First, all the available linear equations
are used to determine µ0 (the system is solved using SVD). If there is a unique solution, then we
are done (from µ0, all the camera and parallelepiped intrinsics can be computed using the Gik).
Note that in a general case(where no singularities occur) only five constraints of any of the type
listed in table 4.1 are needed to recover the five unknown parameters of µ0. If however the linear
system is under-constrained, then the quadratic equations arising from constant but unknown
parameters can be used to reduce the ambiguity in the solution. The decision if the system is
under-constrained may be taken on the basis of a singular value analysis. This also gives the
degree of the ambiguity (dimension of the solution space). In practice, this is usually two or lower.
Hence, two quadratic equations are in general sufficient to obtain a finite number of solutions (if
more than the minimum number of equations are available, then a best initial solution might be
found using a RANSAC-type approach [Fischler and Bolles, 1981]). Once the matrices ωi and µk
are estimated, the matrices Ki and Li can be computed via Cholesky decomposition.

Finally, we propose the following algorithm:

1. Construct the graph with cameras and parallelepipeds as nodes and projections as edges.

2. Estimate the canonical projection matrices X̃ik.

3. Choose a reference parallelepiped represented by µ0 (choose the one projected to the bigest
number of images).

4. Compute paths (shortest for example) connecting all the cameras i and parallelepipeds k to
µ0 and use them to compute transformations Gi, Gk.

5. Establish linear equation system on µ0 based on prior knowledge of intrinsic parameters of
cameras and parallelepipeds.

6. Solve the system to least squares.

4.3. FACTORIZATION METHOD 87

7. If necessary, use the non-linear equations to resolve the remaining ambiguities on µ0.

8. Compute the matrices ωi, µk using µ0 and transformations Gi, Gk.

9. Extract the Ki, Lk from the ωi and the µk using e.g. QR-decomposition. Note that at this
stage the Lk can only be recovered up to scale, i.e. the parallelepipeds’ (relative) sizes remain
undetermined.

10. Compute rotation matrices by factorization of a measurement matrix composed of matrices
X′ik.

4.3 Factorization Method

Equation (3.7) naturally leads to the idea of a factorization-based calibration algorithm, which will
be developed in this section. It is based on the following observation. The measurement matrix
X (see equation (3.7)) contains all information that can be recovered from the parallelepipeds’
image points alone (below, we discuss the issue of computing the scale factors λik). Since the
measurement matrix is the product of a “motion matrix” M̃ of 4 columns, with a “shape matrix”
S̃ of 4 rows, its rank can be 4 at most (in the absence of noise).

We might aim at extracting intrinsic and extrinsic parameters of cameras and parallelepipeds
directly from a rank-4-factorization of X̃ . One step of many factorization methods for structure
and motion recovery is to disambiguate the result of the factorization: in general, for a rank-r-
factorization, motion and shape are recovered up to a transformation represented by an r×r matrix
(in our case, this would be a 3D projective transformation). The ambiguity can be reduced using
e.g. constraints on intrinsic camera parameters. In our case, we observe that the 4× 4 sub-blocks
of the shape matrix S̃ are affine transformations (last row consists of three zeroes and a one).
We would have to include this constraint into the disambiguation, but nevertheless, the result
would not in general exactly satisfy the affine form of these sub-blocks. We thus cut the problem
into two steps, which allows to easily guarantee that the sub-blocks of the shape matrix be affine
transformations. In the first step described in this section, we consider the reduced measurement
matrix Xik, defined in section 3.3. We extract intrinsic parameters and orientation of our cameras
and parallelepipeds based on a rank-3-factorization and a disambiguation stage using calibration
and scene constraints. The second step, consisting of the computation of position parameters and
parallelepiped size is described in section 5.

As mentioned previously, we first restrict our attention to the leading 3× 3 submatrices of the
X̃ik, like we did in section 3.2 for the establishment of the duality between intrinsic parameters of
cameras and parallelepipeds. We thus deal with the corresponding subpart of equation (3.7):

λ11X11 · · · λ1nX1n
...

. . .
...

λm1Xm1 · · · λmnXmn

︸ ︷︷ ︸

X3m×3n

=

K1R1
...

KmRm

︸ ︷︷ ︸

M3m×3

[
S1L1 · · · SnLn

]

︸ ︷︷ ︸

S3×3n

(4.10)

In the following sections, we describe the different steps of our factorization-based method. We
first deal with the important problem of missing data. Then we describe how the scale factors λik
needed to construct the measurement matrix X̃ , can be excluded from the intrinsic and rotation
parameters estimation process. The factorization itself is described in section 4.3.3, followed by the
most important aspect: how to disambiguate the factorization’s result in order to extract intrinsic
and orientation parameters.

88 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

4.3.1 Missing Data

As with all factorization problems, our method might suffer from the problem of missing data, i.e.
missing Xik. Indeed, in practice, the condition that all parallelepipeds are seen in all views can
not always be satisfied. However, each missing matrix Xik can be deduced from others if there is
at least one camera j and one parallelepiped l such that the transformations Xjl, Xjk and Xil are
known. The missing matrix can then be computed using:

Xik ∼ Xil (Xjl)−1
Xjk. (4.11)

Several equations of this type may be used simultaneously to increase the accuracy. In that case,
care has to be taken since equation (4.11) is defined up to scale only. This problem can be
circumvented very simply though, by normalizing all Xik to unit determinant.

These observations motivate a simple recursive method1 to compute missing matrices Xik: at
each iteration, we compute the one for which most equations of type (4.11) are available. Previously
computed matrices Xik can be involved at every successive iteration of this procedure.

4.3.2 Recovery of Scale Factors

The reduced measurement matrix X in (4.10) is, in the absence of noise, of rank 3, being the
product of a matrix of 3 columns and a matrix of 3 rows. This however only holds if a correct
set of scale factors λik is used. For other problems, these are often non trivial to compute, see
e.g. [Malis and Cipolla, 2002; Sturm and Triggs, 1996; Zelnik-Manor and Irani, 2002]. In our case
however, this turns out to be rather simple.

Let us first write Ai = KiRi and Bk = SkLk. What we know is that (in the absence of noise),
there exist matrices Ai, i = 1..m and Bk, k = 1..n such that:

∀i, k : Xik ∼ AiBk

Since this equation is valid up to scale only, we also have:

∀i, k : Xik ∼ (aiAi) (bkBk)

for any non-zero scale factors ai, i = 1..m and bk, k = 1..n. Consequently, this is also true for the
scale factors with:

det (aiAi) = 1

det (bkBk) = 1

Note that we do not need to know these scale factors; it is sufficient to know they exist.

Hence:

∀i, k : Xik ∼ aibkAiBk,

with det (aibkAiBk) = det (aiAi) det (bkBk) = 1.

To achieve a component-wise equality λikXik = (aiAi)(bkBk), we need to use scale factors2 λik
such that det(λikXik) = 1. Hence:

λik = (detXik)
−1/3

1Compare with the analogous method in [Sturm, 2000].
2It is well known that two non-singular 3 × 3 matrices that are equal up to scale and whose determinants are

equal, are also equal component-wise.

4.3. FACTORIZATION METHOD 89

In the following, we assume that the Xik are already normalized to unit determinant, i.e. that
λik = 1. Equation (4.10) becomes:

X11 · · · X1n
...

. . .
...

Xm1 · · · Xmn

︸ ︷︷ ︸

X3m×3n

=

a1K1R1
...

amKmRm

︸ ︷︷ ︸

M3m×3

[
b1S1L1 · · · bnSnLn

]

︸ ︷︷ ︸

S3×3n

(4.12)

The scale factors ai and bk do not matter for now; all that counts is that the measurement
matrix X containing the normalized Xik, is of rank 3 at most, and can thus be factorized as shown
below.

4.3.3 Factorization

As usual, we use the SVD (Singular Value Decomposition) to obtain the low-rank factorization of
the measurement matrix. Let the SVD of X be given as:

X3m×3n = U3m×3nΣ3n×3nV
T
3n×3n

The diagonal matrix Σ contains the singular values of X . Let them be ordered:
σ1 ≥ σ2 ≥ · · · ≥ σ3n. In the absence of noise, X is of rank 3 at most and σ4 = · · · = σ3n = 0. If
noise is present, X is of full rank in general. Setting all singular values to zero, besides the three
largest ones, leads to the best rank-3 approximation of X (in the sense of the Frobenius norm [Reid
and Murray, 1996]).

In the following, we consider the decomposition of the rank-3 approximation of X (for ease of
notation, we denote this also as X):

X = U3m×3n diag(σ1, σ2, σ3, 0, . . . , 0) VT
3n×3n

In the matrix product on the right, only columns of U and rows of VT that correspond to non-zero
singular values, contribute. Hence:

X = U′3m×3

σ1
σ2

σ3

(

V′
T
)

3×3n

where U′ (resp. V′) consists of the first three columns of U (resp. V). Let us define

U′′ = U′

√
σ1 √

σ2 √
σ3

V′′ = V′

√
σ1 √

σ2 √
σ3

Thus:
X = U′′V′′

T

This represents a decomposition of the measurement matrix X into a product of a matrix of 3
columns with a matrix of 3 rows. Note however, that this decomposition is not unique. For any
non-singular 3× 3 matrix T, the following is also a valid decomposition:

X =
(
U′′T−1

) (

TV′′
T
)

90 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

Making the link with equation (4.12), we obtain:

a1K1R1
...

amKmRm

[
b1S1L1 · · · bnSnLn

]
=
(
U′′T−1

) (

TV′′
T
)

(4.13)

Let us write U′′ and V′′ as follows as a composition of 3× 3 submatrices:

U′′ =

U1
...
Um

 V′′ =

V1
...
Vn

Equation (4.13) thus becomes:

a1K1R1
...

amKmRm

[
b1S1L1· · · bnSnLn

]
=

U1T
−1

...
UmT

−1

[
TVT

1 · · ·TVT
n

]
(4.14)

How to estimate T is explained in section 4.3.4. Once a correct estimate is given, we can directly
extract the matrices Ai = aiKiRi and Bk = bkSkLk, from which in turn the individual rotation
matrices and calibration matrices can be recovered using a Cholesky or QR-decomposition. The
Cholesky decomposition of AiA

T
i for example, results in an upper triangular matrix Mi = aiKi.

Based on the requirement Ki,33 = 1, we can compute the unknown scale factor ai as ai = Mi,33.
The calibration matrix is finally obtained as Ki =

1
ai
Mi.

As for the parallelepipeds, we do not have any global constraint on the entries of their calibration
matrices Lk. Hence, we can compute them only up to the unknown scale factors bk. This means
that we can compute the shape of each parallelepiped, but not (yet) their size (or, volume). In
section 5, we explain how to compute their (relative) size.

We now briefly discuss the structure and geometric signification of the matrix T. Note that T
actually represents the non-translational part of a 3D affine transformation (its upper left 3 × 3
submatrix). This is just another expression of the previously mentioned fact that due to the
observation of parallelepipeds, we directly have an affine reconstruction (of scene and cameras).

The matrix T can only be computed up to an arbitrary rotation and scale. Indeed, consider
expression RTVk ∼ SkLk. For given T right side of the expression can be decomposed into rotation
matrix Sk and upper triangular matrix Lk. However, decomposition of expression T′Vk ∼ RTVk ∼
(RSk)Lk would result in the same triangular matrix Lk. This ambiguity is natural and expresses
the fact that the global Euclidean reference frame for the reconstruction of our parallelepipeds
and cameras can be chosen arbitrarily. Thus without loss of generality, we may assume that it is
chosen in a way that T is upper triangular. This highlights the fact that our estimation problem
has only 5 degrees of freedom (6 parameters for an upper triangular 3 × 3 matrix minus one for
the arbitrary scale) which can also be explained in more geometric terms: as explained previously,
our problem is somewhat equivalent to self-calibration with known affine structure. The 5 degrees
of the problem may be interpreted as the coefficients of the absolute conic on the plane at infinity.

4.3.4 Disambiguating the Factorization

We now deal with the estimation of the unknown transformation T appearing in equation (4.14).
As will be seen below, and as is often the case in self-calibration problems, it is simpler to not
directly estimate T, but the symmetric and positive definite 3× 3 matrix Z defined as:

Z = TT T (4.15)

4.3. FACTORIZATION METHOD 91

We may observe that this matrix represents the absolute conic on the plane at infinity. Once Z
is estimated, T may be extracted from it using Cholesky decomposition. As described above, T
is defined up to a rotation and scale, so the upper triangular Cholesky factor of Z can directly be
used as the estimate for T.

The matrix Z (and thus T), can be estimated in various ways, using any information about
the cameras or the parallelepipeds, e.g. prior knowledge on relative positioning of some entities.
Here, we concentrate on exploiting prior information on intrinsic parameters, of both, cameras and
parallelepipeds. As explained in section 4.1, there are two types of information that we consider:

• knowledge of the actual value of some intrinsic parameter for some camera or parallelepiped.

• knowledge that two or more cameras (or parallelepipeds) have the same value for some
intrinsic parameter. We also sometimes speak of “constant” intrinsic parameters.

4.3.4.1 Using Knowledge on Camera and Parallelepiped Intrinsics

Before considering how the knowledge on camera and parallelepiped intrinsics can be used to
estimate the transformation Z, let us show how the matrices ω and µ representing these intrinsics
and the transformation Z can be related to each other.

Let us first consider relation between Z and camera intrinsic parameters.
From equation (4.14), we have:

aiKiRi = UiT
−1

Due to the orthogonality of Ri, we get:

a2i KiK
T
i

︸ ︷︷ ︸

ω−1
i

= Ui T
−1T−T

︸ ︷︷ ︸

Z−1

UT
i

Neglecting the unknown scale factor ai and taking the inverse of both sides of the equation, we
obtain (note that the Ui are not orthogonal in general):

ωi ∼ U−T
i ZU−1

i . (4.16)

In similar way, a relation between Z and parallelepiped intrinsic parameters can be established.
From equation (4.14), we have:

bkSkLk = TVT
k

Due to the orthogonality of Sk, we get:

b2k L
T
kLk
︸ ︷︷ ︸

µk

= Vk T
TT
︸︷︷︸

Z

VT
k

Neglecting the unknown scale factor bk, we obtain:

µk ∼ VkZVT
k . (4.17)

We are now ready to formulate constraints on Z based on prior knowledge on the cameras’ and
parallelepipeds intrinsics in a way similar as in section 4.2.

Known values of camera and parallelepiped intrinsics. Table 4.2 summarizes the prior
knowledge on intrinsic parameters which results in linear equations on Z.

92 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

Known parameters Constraints

parallelepiped

right angle θk,uv
(
VkZV

T
k

)

uv
= 0

length ratio rk,uv =
lk,u

lk,v
r2k,uv

(
VkZV

T
k

)

vv
−
(
VkZV

T
k

)

uu
= 0

camera

skew s = 0
(
U−T
i ZU−1

i

)

12
= 0

aspect ratio τ2i τ2i
(
U−T
i ZU−1

i

)

11
−
(
U−T
i ZU−1

i

)

22
= 0

ui,0 ui,0
(
U−T
i ZU−1

i

)

11
+
(
U−T
i ZU−1

i

)

13
= 0

vi,0 vi,0
(
U−T
i ZU−1

i

)

22
+
(
U−T
i ZU−1

i

)

23
= 0

Table 4.2: Examples of linear equations on the matrix Z engendered by prior knowledge on camera
and parallelepiped parameters.

Constant values of camera and parallelepiped intrinsics. As shown in section 4.1 in the
case when two cameras i and j are known to have the same, yet unknown value for one intrinsic
parameter, we in general obtain quadratic equations on Z. For example, the assumption of equal
aspect ratios leads to the equation:

(
U−T
i ZU−1

i

)

11

(
U−T
j ZU−1

j

)

22
=
(
U−T
j ZU−1

j

)

11

(
U−T
i ZU−1

i

)

22
.

In analogy to cameras, quadratic equations may be derived from assumptions about two or
more parallelepiped having the same, yet unknown value for some intrinsic parameter.

In practice, we only use available linear equations. In some minimal cases, quadratic equations
as above might be useful to find a unique solution or a finite set of solutions, if the available linear
constraints are insufficient.

The situation is different if all intrinsic parameters of two (or more) views or parallelepipeds
are known to be identical. In that case, we can obtain linear equations instead of quadratic ones,
as shown in [Hartley, 1997b]. When the matrices Ui and Vk are scaled such as to have unit
determinant, we can write the following component-wise matrix equality between any pair (i, j) of
views:

U−T
i ZU−1

i − U−T
j ZU−1

j = 03×3

This represents 6 linear equations on Z for each pair of views, among which 4 are independent
[Hartley and Zisserman, 2000].

In a similar way, two parallelepipeds having the same shape, leads to a set of 4 independent linear
equations on Z. This holds even if the parallelepipeds are of different size. Knowing in addition
that they are of the same size, gives an additional linear equation, which constrain the objects
position in space rather than their intrinsic parameters. Currently, we only exploit constraints on
individual parallelepipeds (right angles and length ratios), since they are easier to provide for the
user.

4.3.5 Complete Algorithm

1. Estimate the canonical projection matrices X̃ik.

2. Compute missing Xik.

3. Normalize the Xik to unit determinant.

4. Construct the measurement matrix and compute its SVD.

4.4. SOME MINIMAL CASES 93

5. From the SVD, extract the matrices Ui and Vk.

6. Establish a linear equation system on Z based on prior knowledge of intrinsic parameters of
cameras and parallelepipeds.

7. Solve the system to least squares.

8. If necessary, use additional quadratic equations to resolve the remaining ambiguities on Z.

9. Extract T from Z using Cholesky decomposition.

10. Extract the Ki,Ri, Lk,Sk from the UiT
−1 and the TVT

k using e.g. QR-decomposition. Note
that at this stage the Lk can only be recovered up to scale, i.e. the parallelepipeds’ (relative)
sizes remain undetermined.

4.4 Some Minimal Cases

parallelepipeds cameras
constraint(s) # constraint(s)

0 5 • K1: {s, τ , u0, v0} known;
K2: s known
• 5 cameras with known s

1 • 1 known length ratio 4 • 2 cameras with known s and τ
• 1 right angle • 4 cameras with known s

2 • 2 right angles 3 • 1 camera with {s, u0, v0} known
• 1 right angle and 1 known length ratio • 3 cameras with known s

3 • 3 right angles 2 • 1 camera with known s and τ
• 2 right angles and 1 known length ratio • 1 camera with known u0 and v0
• 1 right angle and 2 known length ratios • 2 cameras with known s

4 • 3 right angles and 1 known length ratio 1 • 1 camera with known τ
• 2 right angles and 2 known length ratios • 1 camera with known s

5 • 3 right angles and 2 length ratios 0
• L0: 2 and L1: 3 right angles

Table 4.3: Some minimal cases for the linear calibration algorithm. The problem has five degree
of freedom (see text). The table contains a non-exhaustive list of cases where the number of
constraints on parallelepipeds and on cameras, sum up to five.

As mentioned in the last section, all constraints provided by knowledge on the cameras and
parallelepipeds can be expressed in terms of the 5 independent parameters of the matrix Z. Thus,
information about a total of only five intrinsic parameters of cameras or parallelepipeds is in general
sufficient to calibrate the whole system. In table 4.3 we give a non-exhaustive list of practical
minimal cases. Note however that certain configurations, i.e. relative positioning of cameras and
parallelepipeds, represent singularities, depending on the amount of prior information available.
Such singularities are discussed in section 4.5.

4.5 Singularities

Many self-calibration algorithms are subject to more or less severe singularities, i.e. there exist
situations, where the algorithm is bound to fail. Furthermore, even in situations that are not exactly

94 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

singular, but close to a singularity, the results become usually very unstable. In this section, we
examine the singularities for the linear calibration algorithms described above. First, we study
the singularities in the case of one parallelepiped being seen by one camera. We then study some
multi-view cases, where we exploit results on critical motions for classical self-calibration.

4.5.1 One Parallelepiped in a Single View

We have studied all possible combinations of a priori knowledge, on both camera and parallelepiped
intrinsic parameters leading to the linear equations (see section 4.1). In the following we will sketch
the methodology followed, give a proof for one sample configuration and provide the results for all
configurations studied.

We first formulate the meaning of a singularity in terms of the ingredients of the calibration
algorithm. The existence of a singularity in our case means exactly that equation (3.5) has more
than one solution for ω and µ that conform to all available a priori information, i.e. that there
is at least one solution that is different from the true one. It is easy to show that the existence
of a singularity does not depend on the relative position of the camera and the parallelepiped,
only on the relative orientation and the a priori knowledge on camera and parallelepiped intrinsic
parameters.

Let K = KkKu be the true calibration matrix, and K′ = KkK
′
u the estimated one (we de-

compose in known and unknown parts, so K′ and K share of course the known part Kk). As for
parallelepipeds, a similar decomposition into known and unknown parts is not always possible. If
however, we only consider constraints arising from prior knowledge leading to linear equations (see
section 4.1.2, then we can decompose as above: L = LuLk and L′ = L′uLk are respectively the true
and estimated intrinsic parameters of a parallelepiped.

With these definitions, a singularity exists if there are solutions for (3.5) with K′
u 6= Ku and

L′u 6= Lu. From (3.5), it is easy to derive the following equality (using X ∼ KkKuRLuLk, ω′ ∼
K′−T

K′−1
and µ′ ∼ L′TL′):

RTKT
uK

′−T
u K′−1

u KuR ∼ L−T
u L′

T
uL

′
uL

−1
u .

A singularity, as defined above, is then equivalent to the existence of matrices
ω′′ = KT

uK
′−T
u K′−1

u Ku and µ′′ = L−T
u L′

T
uL

′
uL

−1
u , with K′

u and L′u of the desired form (given by the
constraints), but which are different from the identity (otherwise, ω′ ∼ ω and µ′ ∼ µ, i.e. we would
look at the true solution).

Depending on the a priori knowledge, ω′′ and µ′′ have special forms (as shown in table 4.4 for
ω′′), independently of the actual values of the known or unknown intrinsic parameters. Hence,
the configuration is singular for calibration if the relative orientation R between parallelepiped and
camera is such that there are solutions ω′′ and µ′′ of the required special form and different from
the identity, satisfying:

∃(ω′′ 6= I3, µ′′ 6= I3) : R
Tω′′R ∼ µ′′ (4.18)

Based on this definition, it is a rather mechanical, though sometimes tricky, task, to derive
singular relative orientations. Table 4.5 shows all singularities for nearly all combinations of the
above cases. We explain the singularities in geometrical terms, by describing the relative orientation
of the parallelepiped with respect to the camera. In the following paragraphs, we give a few
comments on different cases of prior knowledge on the parallelepiped.

Three right angles, two length ratios. In this case, the metric structure of the parallelepiped
is completely given (up to scale), and it can be used as a classical calibration object. There are
singularities proper to the use of a parallelepiped, but of course the generic singularities described
in [Buchanan, 1988] apply here too.

4.5. SINGULARITIES 95

Known camera parameters
(A) None (B) τ (C) u0, v0 (D) τ, u0, v0

a 0 d

0 b e

d e c

1 0 d

0 1 e

d e c

a 0 0
0 b 0
0 0 c

1 0 0
0 1 0
0 0 c

Table 4.4: Structure of ω′′ depending on prior knowledge on intrinsic camera parameters. Structure
of µ′′ is similar.

(a) (b) (c)

Figure 4.1: Examples of singular and non-singular configurations for calibration based on a paral-
lelepiped with three right angles; (a) The parallelepiped’s vertical edge is parallel to the camera’s
y-axis; this configuration is singular if the camera aspect ratio and principal point are not given
(cf. cases B-3-0 and C-3-0 in table 4.5). (b) The parallelepiped’s vertical edge is parallel to the
image plane; this configuration is singular if the camera’s principal point is not given (case B-3-0
in table 4.5). (c) A rotation of the camera as shown here removes the singularities of (a) and (b).

Three right angles, one length ratio (cases *-3-1 in table 4.5). In table 4.5, v represents
the direction of the parallelepiped’s edges which are not “involved” in the known length ratio.

Two right angles (cases *-2-* in table 4.5). In this case, the parallelepiped can be visualized
as built around two rectangles sharing an edge v (see figure 4.2). The role of w can be played by
one of the two rectangles’ edges not parallel to v.

An example of the derivation of the singularities for the case C-3-0 is described in the appendix
B.

Several singular situations that might occur in practice, are illustrated in figure 4.1.

a rectangle

a r
ect

angle

v w

6= 90◦

Figure 4.2: Illustration of the case of two right angles.

96 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

Case Conditions for singularity

A-3-1 v is orthogonal to the x or y camera axis
B-3-1 v is parallel to the optical axis
C-3-1 v is parallel to any of the three camera axes
D-3-1 v is parallel to the optical axis

A-3-0 always (3 constraints for 4 camera intrinsics)
B-3-0 any edge is parallel to the image plane
C-3-0 any edge is parallel to a camera axis
D-3-0 any edge is parallel to the optical axis

A-2-2 too difficult to describe
B-2-2 v ‖ image plane and w ‖ optical axis or image plane
C-2-2 v ‖ x or y axis and w at 45◦ angle with image plane

v ‖ z and w ‖ image plane and at 45◦ to both x and y

D-2-2 never!

A-2-1 always (three constraints for four camera intrinsics)
B-2-1 v is parallel to the image plane
C-2-1 v parallel to either camera axis

v and w are both orthogonal to the x camera axis
v and w are both orthogonal to the y camera axis
v and w are parallel to the image plane

D-2-1 v and w are parallel to the image plane

A-2-0 always (two constraints for four camera intrinsics)
B-2-0 always (two constraints for three camera intrinsics)
C-2-0 v orthogonal to the x or y camera axis or ‖ image plane
D-2-0 v parallel to image plane or to optical axis

Table 4.5: Singular relative orientations for the case of one parallelepiped seen in one camera, for
various combinations of prior knowledge. Cases are denoted X-Y-Z, where X ∈ {A,B,C,D} refers
to table 4.4 and Y and Z are the number of known right angles respectively length ratios. For
further explanations, see text.

4.5.2 One Parallelepiped in Multiple Views

Two observations are useful to characterize the singularities in the case when one parallelepiped is
seen in multiple images:

• The way the canonic parallelepiped projection matrix X is computed implies that there is
only an affine ambiguity in the calibration process. Thus the singularities of calibration of
images viewing one parallelepiped are equivalent to singularities of generic self-calibration
when the plane at infinity is known;

• It is natural to suppose that the nature of prior knowledge on the intrinsic parameters is
the same for all the cameras used, thus all the matrices ωi belong to only one of the groups
defined in table 4.4.

These two observations make it possible to adapt the studies on critical motions for self-calibration.
In particular, we use the results presented in [Kahl, 1999] and [Kahl et al., 2000] for scenarios with
known plane at infinity. Depending on the type of the knowledge about the camera (cf. table 4.4),
the following rotations are singular for the calibration:

A Always critical with fewer than 5 cameras. Critical motions for 5 or more cameras are difficult
to explain.

B Critical if the cameras’ optical axes point into at most two different directions.

4.5. SINGULARITIES 97

C Critical if one axis of each camera is pointing in some common direction (see figure 4.3).

D Critical if the optical axes of all cameras point into the same direction.

Results for the cases A, B, D were given in [Kahl et al., 2000] and a proof of the case C is given in
the appendix B.

y1

x2

x1

z1

z2

y2

x3

z3

y3

Figure 4.3: Illustration of critical motion for cameras of type C (only principal point is known):
one axis per camera (axes y1, z2 and y3) is pointing in some common direction.

98 CHAPTER 4. INTRINSIC AND ORIENTATION PARAMETERS

Chapter 5

Position and Size

In this chapter we assume that the intrinsic and orientation parameters were already computed,
as described in chapter 4, using the leading 3 × 3 matrices of the canonical projection matrices.
In the following we propose a linear framework for the estimation of the positions of the cameras
and parallelepipeds, as well as the sizes of the parallelepipeds using the remaining, 4th columns of
the canonical projection matrices. In chapter 4 we showed, that when estimating the intrinsic and
orientation parameters, it is possible to neglect the scale ambiguity in estimation of the canonical
projection matrices. However, when estimating the relative pose and size parameters, it is nec-
essary to take them into consideration. Consequently, there exist configurations, when the prior
information on the scene, even if sufficient to calibrate the intrinsic and orientation parameters is
not sufficient to estimate the relative pose and size parameters.

100 CHAPTER 5. POSITION AND SIZE

5.1 The Algorithm

Consider equation (3.6):

λikX̃ik = Ki
(
Ri ti

)
(
Sk vk
0T 1

)

L̃k

The leading 3× 3 sub-part of the two sides of the equation were used in chapter 4 to compute the
intrinsic camera parameters Ki and the rotation matrices Ri and Sk. As for the parallelepipeds’
intrinsic parameters Lk, they were computed up to scale only, i.e. up to the “size” of the paral-
lelepipeds.

Let us consider this in detail. In the following, we suppose that the matrices X̃ik are already
scaled such that the sub-matrices Xik have unit determinant, as in section 4.3, i.e. λik = 1. Let
K̄i and L̄k be the calibration matrices scaled to unit determinant. We know all matrices in the
following equation:

Xik = (Xikxik) K̄iRiSkL̄k

What we don’t know is the size sk of the parallelepipeds (see section 3.1 for definition of paral-
lelepiped’s size). Let us observe the following:

L̃k =

(
skL̄k 0
0T 1

)

∼
(
L̄k 0
0T 1/sk

)

We may now rewrite equation (3.6):

X̃ik = K̄i
(
Ri ti

)
(
Sk vk
0T 1

)(
L̄k 0
0T 1/sk

)

Let xik be the fourth column of X̃ik. We have the following equation:

xik = K̄i
(
Ri ti

)
(
Sk vk
0T 1

)(
0

1/sk

)

=
1

sk
K̄i(Rivk + ti)

From this, we get equations that are linear in all unknowns (sk, ti and vk):

skxik − K̄iRivk − K̄iti = 0

We may now compute the unknowns by solving a straightforward linear least squares problem:
minimizing the sum of the squared L2 norms of the vectors on the left hand side of the above
equation, over all camera-parallelepiped pairs.

Note, that there exist configurations, when the prior information on the scene is sufficient to
calibrate the intrinsic and orientation parameters but is not sufficient to estimate the relative pose
and size parameters. Indeed, in chapter 4 we showed, that when estimating the intrinsic and
orientation parameters, it is possible to neglect the scale ambiguity in estimation of the canonical
projection matrices. However, when estimating the relative pose and size parameters, it is necessary
to take them into consideration. Thus missing information about the scalar factors or insufficient
number of parallelepipeds projections causes ambiguities.

Such a configuration is shown in figure 5.1. Even if cameras and parallelepipeds are calibrated,
unless the ratio of parallelepipeds’ sizes s1

s2
is known, the depth of parallelepiped 1 in the first image

is arbitrary. Consequently there exist one parameter family of solutions for its size and position.
The underconstrained features can be detected using the algorithm presented in the section 6.

After chapter 4, this concludes our complete method for intrinsic and extrinsic calibration.

5.1. THE ALGORITHM 101

C1 C2

s1

s2

X̃22X̃12
X̃11

P1

P2

Figure 5.1: Example of a camera-parallelepiped configuration, where the relative pose and size
remains ambiguous even when intrinsic and orientation parameters are known. Indeed, the depth
of parallelepiped P1 is arbitrary unless the ratio of parallelepipeds’ sizes s1

s2
is given.

102 CHAPTER 5. POSITION AND SIZE

Chapter 6

3D Reconstruction

The calibration approach presented in chapters 3-5 is well adapted to interactive 3D modeling
from a few images. It has a major advantage over other methods: simplicity. Indeed, only a small
amount of user interaction is needed for both calibration and reconstruction: a few points must be
picked in the image to define the primitives’ image positions. It thus seems to be an efficient and
intuitive way to build models from images of any type, in particular from images taken from the
Internet for which no information about the camera is known.

To reconstruct scene elements not belonging to the parallelepiped, constrained by bilinear
relations such as collinearity, coplanarity or parallelism, we have implemented a multi-linear re-
construction method, introduced originally in [Wilczkowiak et al., 2003d]. The reconstruction step
is actually independent from the calibration method, although it uses the same input in the first
step. Interestingly, it allows 3D models to be computed from non-overlapping photographs (see
e.g. figure 7.16). The global scheme of our system is presented in figure 6.1.

In this chapter we resume briefly the proposed reconstruction method. First, we propose a
method for extraction of uniquely defined variables in linear systems, which is the basis of the

Calibration

Intrinsic parameters

of cameras

and parallelepipeds

Canonic projection

matrices

Point correspondences

Pose

estimation

3D positions

of cameras and

parallelepipeds

TEXTURED

FINAL

3D MODEL
of points, lines and planes

Iterative reconstruction Texture

mapping

Calibration

Reconstruction

Calibration primitives

(parallelepipeds)

Prior information

about cameras

Interaction phase

Linear Euclidean constraints

and polygons

Figure 6.1: The calibration and reconstruction algorithms.

104 CHAPTER 6. 3D RECONSTRUCTION

reconstruction method. Then we describe shortly the algorithm and certain related practical
issues. The results are presented in the next chapter.

6.1. EXTRACTION OF UNIQUELY DEFINED VARIABLES IN LINEAR SYSTEMS105

6.1 Extraction of Uniquely Defined Variables in Linear Sys-
tems

Consider the following linear equation system:

Am×nXn = Bm, (6.1)

and assume that the solution for X is not unique. We then want to determine if there exists a
subset of coefficients of X which can nevertheless be unambiguously estimated. This proves to be
very useful in many approaches based on linear constraints, such as intrinsic and extrinsic camera
calibration or 3D reconstruction, as described in the following sections of this chapter.

Our approach is based on the analysis of the nullspace of matrix A . Using Singular Value
Decomposition (Appendix A), matrix A can be decomposed as follows:

Am×n = Um×nWn×nVn×n
T,

where the matrices U and V are column-orthogonal and W is diagonal, with the singular values wi

of A on its diagonal, in decreasing order. Let X0 be any vector satisfying the equation system.
From (A.4), any vector X satisfying (6.1) must be of the form:

X = X0 +

n∑

i=r+1

λiv
i, λi ∈ R. (6.2)

where vectors vi are the columns of V corresponding to zero singular values wi, constituting the
nullspace of A and λi are arbitrary scalar factors, and r state for rank of matrix A.

The solution for a coefficient of X, say X(k), is unique, if

∀λi : X(k) = X0(k),

which implies that

∀λi :
n∑

i=r+1

λiv
i(k) = 0

and is equivalent to:

∀i ∈ {r + 1, . . . , n} : vi(k) = 0. (6.3)

Hence, all variables xk = X(k) corresponding to rows rk of matrix V[1 . . . n, r + 1 . . . n], such
that ‖rk‖ = 0, have unique values xk = X0(k). Geometrically, this means that the axis represented
by vector enk of the solution space Rn corresponding to such a sufficiently constrained variable is
orthogonal to the nullspace of matrix A.

Choice of thresholds. Using equation (6.3), it is in principle straightforward to split the un-
knowns of the system into well-defined and ambiguous ones. Note that this requires deciding if
certain numerical values (singular values and coefficients vi(k)) are equal to zero. It is well known
that due to noise and round-off errors, the numerically computed singular values of a matrix are
never exactly zero. We thus use the approach proposed in [Press et al., 1988; Golub and van Loan,
1989; Bjorck, 1990] where singular values wi are set to 0 when they satisfy the following condition:
wi < ε w1), for a given threshold ε. Similarly, the detection of the well-constrained set of variables
is based on the comparison of elements vi(k) with a given threshold ε1. Of course, the results
of the method depend on the choice of the thresholds ε and ε1, which may depend themselves

106 CHAPTER 6. 3D RECONSTRUCTION

on the underlying application1. If thresholds are too large, then there is a possibility that some
variables which are sufficiently constrained, will be classified as underconstrained. On the other
hand, if they are too small, some underconstrained variables will be classified as having been well
estimated, disadvantageously influencing the overall results of an underlying algorithm.

Applications and extensions. The application domain of the proposed approach covers all
computer vision algorithms based on linear algebra. In particular, it can be useful in any cali-
bration algorithm based on linear equations (an example for plane-based calibration is given in
[Wilczkowiak et al., 2003a]), as well as for the reconstruction methods, as explained on an example
described in the next section.

A main advantage of the proposed approach is simplicity. The test for underconstrained vari-
ables needs very small additional computation effort. Indeed, the necessary SVD of the constraint
matrix, is usually computed anyway to solve the linear problems. A main drawback is the reliance
of the approach on the predefined thresholds. It would be advantageous to incorporate to the
method a statistical analysis and uncertainty propagation of the data.

6.2 Multi-linear Reconstruction System

In this section we propose an approach for interactive scene modelling. First, in section 6.2.1 a
brief overview of available objects and constraints is given, followed by a general study of how
thay can be exploited in the system. Then in section 6.2.2 the algorithm implemented in our
system is detailed and illustrated by a detailed example in section 6.2.3. Finally, an approach for
incorporation of soft and hard constraints into the system is given in section 6.2.4.

6.2.1 Overview

The scene is modelled using points, lines and planes, represented like described in section 1.4.1.
Three general types of constraints (described in details in section 1.4.1) between objects are con-
sidered:

Projections. Every known projection of a point or a line gives linear constraints on the 3D
coordinates of the corresponding object. Reciprocally, known 3D points or lines give linear
constraints on the camera projection matrices. Moreover, geometrical constraints or known
plane homographies allow to constrain directly the intrinsic camera parameters.

Bilinear constraints. Incidence, parallelism and orthogonality between two objects X, Y can
be expressed as bilinear forms F(X,Y) = 0 [Heuel, 2001; Poulin et al., 1998; Hartley and
Zisserman, 2000]. Thus, knowing coordinates of one of the objects induces linear constraints
on the other one.

Affine point configurations. Relations like points lying on a parallelogram or symmetry are
useful in practice and are linear in terms of all the involved objects.

The scene is represented by a graph whose nodes are objects and whose edges are constraints.
For example, four coplanar points will be represented by five nodes (4 points and 1 plane) and 4
incidence constraints (each point with the plane). Except for the affine point configurations, all the
geometrical relations incorporated into the system involve two objects of different types and can be
used to constrain any of the related objects (see figure 6.2–(a)). These relations are bilinear with
respect to coordinates of the two related objects. Thus, they can be used in a linear framework

1However, we observed in our experiments that the choice for ε1 was not very critical.

6.2. MULTI-LINEAR RECONSTRUCTION SYSTEM 107

cameras

planes

lines

points

cameras

planes

lines

points

reconstruction

(a) (b)

Figure 6.2: The concept of the multi-linear reconstruction algorithm; (a) The projections and
scene constraints are bilinear and can be used to reconstruct any of the related objects. (b) The
spiral form represents the reconstruction algorithm and corresponds to the iteratively growing set
of reconstructed objects and, in consequence, accessible constraints. Every dot illustrates a single
step of the algorithm, when the constraint matrix is formed and computed, solving the active
constraints for one type of objects.

only when at least coordinates of one of the involved objects are known. For example, known 3D
positions of points can be used simultaneously to constrain the camera projection matrices [Tsai,
1986] as well as calibrated cameras alone or together with some prior scene information can be used
simultaneously to compute 3D points positions [Hartley and Zisserman, 2000; Shum et al., 1998;
Robertson and Cipolla, 2000; Grossmann and Santos-Victor, 2002]. However, if a method proceeds
in a single step, it is possible that not all the accessible data is used. For example, it is not possible
to impose the orthogonality of two scene directions and use them in the same step to constrain
the 3D scene points. Similarly, when a 3D line direction is not known, it is not possible to use the
collinearity constraint on the associated points (a simple example of such a point configuration,
which can be recovered only in three steps is shown in figure 2.5).

There are two reasons why the extraction of the sufficiently constrained variables in the system
defined above is crucial for the efficiency of the algorithm.

Firstly, at each iteration underconstrained variables may exist. Especially at initial iterations,
only few constraints are active: the coordinates of 3D lines and planes are still unknown, thus
only the projection and symmetry/parallelogram constraints are active. Also, even when the
reconstruction process is in an advanced stage, it is common that some objects are underconstrained
due to missing or redundant data. By redundant data we mean that the result is very sensitive to
noise (e.g. 2 projections available for a 3D point, but for 2 views with a very small baseline; or, a
3D point defined to be the intersection of a line and a plane, but when these two are near parallel).

Secondly, and contrary to existing approaches, our system allows constraints influencing several
objects at once, which means that equation systems to be solved may contain simultaneously well
constrained and underconstrained unknowns. Without selecting the solvable subset of unknowns,
one would either propagate wrong values to subsequent iterations, or would have to stop the whole

108 CHAPTER 6. 3D RECONSTRUCTION

algorithm. In the following, we give details on the implementation of our algorithm and explain,
how the introduced geometrical dependencies can be treated as soft or hard constraints. The
experimental evaluation of the method can be found in [Wilczkowiak et al., 2003b,a]. All the
scenes illustrating our calibration approach presented in part II, as well as initial values used for
the reconstruction approach presented in part III, were computed using the above method.

6.2.2 Algorithm

In the previous section, we have detailed the constraints used in the system and sketched how they
can be exploined for the reconstruction. Let us consider now some practical issues concerning the
implemented version of the algorithm. Firstly, we use precalibrated cameras and do not update
their parameters during the reconstruction process, but as suggested in the last section, it is easy
to add the re-calibration step into the system.

Secondly, due to the fact that any of the linear constraints used in the system do not involve
both points and lines or planes at the same time, point features and line and plane features are
computed in two separated steps. Computing line and plane features together allows, if desired,
to represent parallel line and plane normal directions by a single vector and use the constraints on
lines and planes simultaneously.

Finally, we propose the following reconstruction algorithm:

1: while !stop condition do
2: for objects=points,lines+planes: do
3: N:=

∑n
i=1 nb of coordinates(objects[i])

4: initialize an empty linear equation system A0×NXN×1 = B0×1
5: compute the indexing function (bijection) F : idx→ (i, j); idx ∈ [1 . . .N],

where idx is the index in XN×1 of the j-th coordinate of the i-th object.
6: for all constraint c[k]: do
7: compute

(Akmk×N
, Bk

mk×1
) := equations(c[k].type, c[k].objects)

8: add equations to the system: A :=

[
A

Ak

]

Bk :=

[
B

Bk

]

9: end for
10: solve AX = B

11: for idx=1 . . . N : do
12: if variable computed(idx) then
13: set (i, j) := F(idx)
14: set objects[i].coords[j]:=X(idx)
15: end if
16: end for
17: end for
18: end while

Algorithm 1: Iterative Reconstruction Algorithm

6.2.3 Example

6.2.3.1 Numerical Analysis

The principle of our method is depicted in Fig. 6.3. The elements in this figure are parts of more
complex model shown in section 6.2.3.2.

6.2. MULTI-LINEAR RECONSTRUCTION SYSTEM 109

P3 P1

q1

l5

l2

q2 q0

l3

l4

l1

l0

P0P2

P3 P1

l5

l2

q0

l3

l4

l1

l0

P0P2

q2

q1

P3 P1

l5

l2

q0

l3

l4

l1

l0

P0P2

q2

q1

(a) (b) (c) (d)

matrix 15× 12 matrix 37× 12 matrix 43× 12
(e) (f) (g) (h)

Figure 6.3: Illustration of the reconstruction process. 1st column: fragments of the original images
with marked interest points. P1, P3 are occluded in all images. 2nd, 3rd, 4th column: the
constraints influencing the interest points. 1st row: the relations between the considered objects.
Lines and planes which can influence the interest points P1 - P3 (their coordinates are reconstructed
at this step) are marked with black continuous line (lines) or in dark gray (planes); 2nd row: the
corresponding constraint matrices. Black fields correspond to non-zero matrix elements.

The nullspace analysis and the associated variable splitting performed at each iteration make
all the available information effective. The configuration shown in Fig. 6.3 consists of four points
P0-P3 related by a parallelogram constraint. The points P0 and P2 are visible in several images,
while the points P1 and P3 are occluded by a fence. Points P0-P3 are incident with 3 planes
and 6 lines (See Fig. 6.3–(b) - 6.3–(d)), which are connected with other elements of the model
by incidence and parallelism constraints. The columns 2-4 in Fig. 6.3 show the reconstruction
achieved at the 1st, 2nd and 4th iteration. The corresponding numerical results are displayed in
Tab. 6.1. At each reconstruction step (See Sec. 6.2.2) all the equations resulting from projection
and geometrical constraints are added to the common equation system. In this particular case, the
system contains 12 variables: the coordinates (x, y, z) of the points P0-P3.

1st iteration. The matrix A15×12 contains only the equations corresponding to the projection
and the parallelogram constraints. The resulting matrix structure is shown in Fig. 6.3–(b). A
straightforward analysis of this matrix shows that the variables associated to the points P1 and
P3 are underconstrained (only 3 equations are defined for 6 variables). The nullspace analysis
confirms this result. The singular values of the constraint matrix are detailed in Fig. 6.1. The
choice of the 3 singular values which should be zeroed is obvious. The vectors spanning the
nullspace correspond to the zeroed singular values. The rows of the nullspace basis which should
be zeroed are also easily detected. The process result confirms the intuition that only the values
corresponding to coordinates of points P0 and P2 are well-constrained.

2nd iteration. The equations yielded by the planes q1, q2 and the lines l0, l1, l2 reconstructed
in the first iteration are added to the new system matrix A37×12. The structure of this matrix

110 CHAPTER 6. 3D RECONSTRUCTION

(Fig. 6.3–(c)) suggests that there are enough constraints to solve the whole system. However, the
nullspace analysis (see 4th column of Tab. 6.1) shows that the system is still degenerate. Indeed,
the parallelogram constraint is partially redundant with the constraints coming from the incidences
of points P0-P3 with the plane q1.

3rd iteration. The plane q0 and the line l3 are reconstructed. The resulting constraints are
sufficient to reconstruct the whole configuration.

iteration 0 iteration 1

W Φ(A) W Φ(A)
3.9 -9.4e-17 1.9e-17 3.6e-18 1.6e+02 3.2e-17

3.4 1.5e-16 1.7e-17 -6.3e-17 1.3e+02 3.6e-17

3.2 -7.1e-17 2.5e-18 4.3e-17 77 2.8e-17

2.7 -0.63 0.14 -0.29 77 0.71
2.3 -0.23 0.25 0.62 3.8 -0.046
1.5 -0.23 -0.65 0.18 3.2 -0.0041
1.3 9.2e-17 -1.7e-17 3.8e-17 1.7 -3.2e-17

1.2 -8.3e-17 -2.7e-17 -1.7e-17 1.6 -2.1e-17

0.77 -4.1e-17 -3.0e-18 -3.3e-18 1.4 -7.3e-17

2.1e-16 -0.63 0.14 -0.29 1.0 0.71
8.3e-17 -0.23 0.25 0.62 0.61 -0.046
3.2e-17 -0.23 -0.65 0.18 1.1e-15 -0.0041

Table 6.1: Numerical results obtained for example in Fig. 6.3. For each iteration the 1st column
contains the singular values of the constraint matrix A. The horizontal line separates the values
which were zeroed. Following columns contain vectors forming the matrix nullspace, with zeroed
values in italic. Variables corresponding to rows containing only zero values were classified as
reconstructed. These values correspond to coordinates of points P0 and P2 in Fig. 6.3.

6.2.3.2 Full Reconstruction

The full reconstruction of the castle is based on 7 images of a castle, one of which is shown in Fig.
6.4–(a). The cameras used were calibrated using mixed approaches [Sturm and Maybank, 1999a;
Wilczkowiak et al., 2001]. This reconstruction raises several difficulties:

• the images overlap only slightly, decreasing the quality of the camera calibration;

• some of the model points are either not visible in any image or visible only in image regions
where the camera distortion, which is not taken into account, is important;

• the geometrical constraints that can improve the reconstruction are not numerous: vertical
edges of the castle are slightly pointing to the center, and its faces are not parallel (see Fig.
6.4–(b)). Thus geometric constraints are rather used to reconstruct castle elements which
are occluded in images (e.g. see Sec. 6.2.3).

Fig. 6.4–(b) displays the map of the castle with the reprojected model points. Points marked with
circles are those reconstructed from geometrical constraints only. Experiments were also conducted
using a ground plane map of the castle as an additional image for the reconstruction. However it
did not significantly change the results. The reconstructed model is shown in Fig. 6.4–(c).

The second row in Fig. 6.4 shows results for the first three iterations of the reconstruction.
Again, at each iteration the model is enriched by new objects computed using the previously
reconstructed set and the newly defined constraints.

6.2. MULTI-LINEAR RECONSTRUCTION SYSTEM 111

(a) (b) (c)

(d) (e) (f)

Figure 6.4: (a) One of the seven images used for the reconstruction; (b) The castle plane; (c)
The textured 3D model; (d)-(f) Screen-shots of the model at different steps of the reconstruction
process.

6.2.4 Soft and Hard Constraints

While defining the geometric constraints, the user might wish to enforce some “highly reliable”
constraints in an exact manner, instead of incorporating them in a least squares computation.
This of course is only possible if these constraints do not contradict one another.

Let us consider a system withm equations, where r of them are to be respected exactly. Without
loss of generality, we can permute the rows of A and the coefficients of B and write:

Am×n =

[
Ae r×n

A′(m−r)×n

]

; Bm×n =

[
Be r×n

B′(m−r)×n

]

(6.4)

where Ae and Be correspond to equations to be respected exactly and A′ B′ to equations whose
residuals are to be minimised (subject to the exact constraints), i.e.:

find the vector X minimizing the function

f(X) = ‖A′X−B′‖
and satisfying the linear constraints AeX = Be.

The solution to this problem can be found using standard constrained optimization techniques,
e.g. Langrange multipliers (see e.g. [Gill et al., 1981]). [Shum et al., 1998] proposes to use the
properties of QR factorisation to solve this problem. We propose another method, based on the
SVD (see also [Hartley and Zisserman, 2000], Appendix 5).

Let us consider the system AeX = Be. As mentioned in section A, the set of solutions can be
expressed using the SVD of Ae:

Xe = X0e +
∑n

k=r+1 λkv
k; λk ∈ R;

X0e = A+e Be;
(6.5)

All vectors Xe respect the equations 1 . . . r exactly. Now the resolution of the system AX = B is
reduced to finding coefficients λk such that Xe is satisfying the equation A′Xe = B′ in the optimal
way (usually, least squares).

112 CHAPTER 6. 3D RECONSTRUCTION

Using equation (6.5) we can reformulate the problem:

A′Xe = B′

⇔ A′A+e Be + A
′(

n∑

k=r+1

λkv
k) = B′

⇔
A′′

︷ ︸︸ ︷

A′
[
vr+1 · · · vn

]

λr+1
λr+2
...
λn

=

B′′

︷ ︸︸ ︷

B′ −A′A+e Be

This is again a linear minimisation problem wich can be solved using the SVD decomposition.
The undetermined values can be detected like described in the last section. The advantage over
using e.g. Lagrange multipliers, is that here, the equation system is of smaller size.

Chapter 7

Experimental Results

In this chapter we present experimental results for calibration of from both, synthetic and real
images. The results of real image calibration are validated via subsequent reconstructions of full
scenes, containing other primitives besides the parallelepipeds. The experiments on synthetic and
real data are respectively described in sections 7.1 and 7.2.

114 CHAPTER 7. EXPERIMENTAL RESULTS

7.1 Synthetic Scenes

This section presents results of evaluation of the performance of the calibration method described
in section 4.3. The tests performed with 600 × 400 synthetic images, taken by cameras with the
following intrinsic parameters: (αu, αv, s, u0, v0) = (1000, 1000, 0, 300, 200). Parallelepiped param-
eters were varying over the different tests. The most important parameter of the experiments is the
relative orientation between parallelepipeds and cameras. For a given orientation, parallelepiped
vertices were projected into the images, and random Gaussian noise was added to image points.
For a given setting (relative orientation, standard deviation of noise, etc.), 100 such data sets were
created randomly, and used as input for calibration. Calibration was considered to have failed if
any of the estimated matrices ω′ or µ′ was not positive definite (in that case, K′ or L′ can not
be retrieved). In the following, we indicate the number of failures, as well as median values and
standard deviations for estimated parameters (computed using valid calibration results only).

In the first experiment, we also compare our method with an approach based on vanishing
points.

7.1.1 A minimal case: 1 camera and 1 parallelepiped

This test was performed mostly to compare the performance of the calibration method described
in this part of the thesis and calibration based on vanishing points, especially in the proximity
of singular configurations. To estimate vanishing points, the MLE estimator method described in
[Liebowitz and Zisserman, 1998] was used. Then intrinsic camera parameters were computed using
standard method [Caprile and Torre, 1990]. In all tests, only 6 parallelepiped vertices are used for
the calibration, which is the most common case in practice.

(a) (b) (c) (d)

Figure 7.1: Parallelepiped and camera positions in the experiment 7.1.1. (a) 1st camera position;
(b) intermediate camera position; (c) maximum parallelepiped rotation; (d) minimal parallelepiped
size.

Setup. Prior information used were: the parallelepiped has only right angles and known camera
parameters were (s, τ) = (0, 1) (corresponding to case B-3-0 in section 4.5). This is one of the
minimal cases for calibration.

Tests were performed for different sizes and orientations of the parallelepiped and Gaussian
noise with a standard deviation of σ=1. The relative parallelepiped-camera rotation varies from
position P0 (x axes of parallelepiped and camera are parallel, cf. figure 7.1–(a)) to position Pn (the
x and y axes of the parallelepiped are parallel to the image plane, cf. figure 7.1–(c)). According to
section 4.5, both these positions are singular for the calibration. The maximal and minimal sizes
of parallelepiped are shown on figure 7.1–(a) and 7.1–(d), respectively.

Results. Figure 7.2 shows the number of successful calibrations, median calibration values for αv
and errors in rotation estimation as functions of the rotation angle and the size of the parallelepiped.

7.1. SYNTHETIC SCENES 115

Figure 7.2: Calibration results as a function of the size and relative camera-parallelepiped rotation
angle. First and second column are corresponding, respectively, to parallelepiped-based and van-
ishing point-based calibration; Rows are corresponding to (1) Number of successful calibrations;
Black color correspond to 0% and white to 100% of successful calibrations;(2) Median values for
αv. Dark colors, i.e. red and blue, correspond to important calibration errors (estimated values
are larger than 150% or smaller than 50% of the true values, respectively); (3) Median errors in
relative camera-parallelepiped rotation estimation.

116 CHAPTER 7. EXPERIMENTAL RESULTS

The values on x axes of figures correspond to angle between relative parallelepiped-camera rotation.
The extremities correspond to the positions P0 to Pn, which are singular for the calibration, thus
results are expected to be instable at their proximity. Values on x axes of figures correspond to
sizes of parallelepiped in image. Results are shown for both the parallelepiped based approach
(first column) and the vanishing point approach (second column). It can be seen that the range of
rotations where calibration succeeds, is about 5◦ larger on the rotation axis and 10% on the size
axis for the parallelepiped-based method. Results of successful calibrations are also slightly more
accurate for the parallelepiped method.

7.1.2 Scenario with two cameras

1st camera2nd camera

parallelepipeds

xc2

zc2

xp2

Cp1

x′c2

yc2‖v2

xc1‖v2

zp1‖v1

xp1‖v2

z′c2‖v3

zc1‖v3

yc1y′c2

Cc2

C′
c2

Cc1

zp2‖v1

Cp2
yp2

yp1

Figure 7.3: Experimental setup for tests on synthetic data: one camera is static (Cc1) and the
second one moving (from position Cc2 to C′

c2). They are watching two parallelepipeds (at Cp1

and Cp2). Parallel directions are drawn using the same line style and label vi∈{1,2,3}.

The goal of this test was to evaluate calibration results in the proximity of singular positions,
and with different numbers of calibration primitives as well as different types of prior information.
We also compare the results of tests obtained by the reference primitive method described in
section 4.2 with the factorization method described in section 4.3.

7.1.2.1 Scene Configuration

Setup. The experimental setup is sketched in figure 7.3. Tests were performed using paral-
lelepipeds with parameters (l1, l2, l3, θ1, θ2, θ3) = (1, 1, 1, 90◦, 90◦, 90◦) and

7.1. SYNTHETIC SCENES 117

1

2

2

1

1

2

(a) (b) (c)

Figure 7.4: Three projections of parallelepipeds as seen from: (a) camera 1 (Oc1); (b)-(c) camera
2 in initial and final positions (Oc2 and O′

c2) respectively.

(l1, l2, l3, θ1, θ2, θ3) = (4, 2, 3, 90◦, 90◦, 90◦). Two cameras with zero skew and known principal
points (case C, cf. section 4.5.2) are watching these parallelepipeds. The first camera is static and
its x-axis is parallel to the first parallelepiped’s x-axis. The second camera is rotating from the
position P0, where its y-axis is parallel to the first parallelepiped’s x-axis (and thus parallel to the
first camera’s x-axis) to the position Pn where its z-axis is parallel to the first camera’s z-axis. As
explained below, both positions P0 and Pn correspond to singular configurations.

All charts illustrating the results are separated into two parts, depending on the smallest relative
angle between camera axes, or equivalently, the proximity to a singular position. The first part
shows errors as a function of the angle between the first camera’s y-axis and the 2nd camera’s
x-axis (these two axes being parallel in the initial position P0). The second part shows results
as a function of the angle between the z-axes of both cameras (parallel in the final position Pn).
Thus left extremity of left parts and right proximity of right parts of graphs correspond to singular
configurations, where the results are expected to be unstable. Labels (F-1) and (F-2) correspond
to calibration using the factorization method based on 1 and 2 parallelepipeds, and labels (P-1)
and (P-2) correspond to calibration using the reference primitive method. Here, white Gaussian
noise with a σ = 1 pixel standard deviation was added to image point positions.

Singular configurations. Using no prior information about the parallelepipeds is equivalent to
doing self-calibration of our 2 cameras, with a known plane at infinity1. According to section 4.5.2,
singularities for the camera type C occur when two of the cameras’ axes (optical axes or pixel axes)
are parallel. Thus, both positions P0 and Pn are singular. Note however that the focal lengths
αv,1 of the first camera, and αu,2 of the second camera can be determined in P0, and that camera
aspect ratios τ1 and τ2 of both cameras can be determined in Pn (see appendix B). The charts
7.5-7.8, showing the intrinsic and extrinsic calibration results, reflect clearly the proximities of the
singular positions (left and right extremity of figures).

The situation is different, when the information about the right parallelepiped angles is added
to the calibration process. This corresponds to case C-3-0 in section 4.5. Singularities only occur
when each of the parallelepipeds has one axis parallel to one common direction. This is the case
with position P0 for calibration based on the first parallelepiped only, where the estimation of αv,2
remains ambiguous.

Let us study in more details the results of the intrinsic and extrinsic calibration.

1Note that the presence of a second parallelepiped, as long as its Euclidean shape is completely unknown, does
not remove any calibration ambiguity.

118 CHAPTER 7. EXPERIMENTAL RESULTS

0 10 20 30
0

10

20

30

40

50

60

70

80

90

100

Angle(x
1
,y

2
) [°]

N
um

be
r

of
 s

uc
ce

sf
ul

 c
al

ib
ra

tio
ns

 [%
]

(F−1)
(F−2)
(P−1)
(P−2)

0102030
0

10

20

30

40

50

60

70

80

90

100

Angle(z
1
,z

2
) [°]

N
um

be
r

of
 s

uc
ce

ss
fu

l c
al

ib
ra

tio
ns

 [%
]

0 10 20 30
0

1

2

3

4

5

6

7

8

9

10

Angle(x
1
,y

2
) [°]

R
ep

ro
je

ct
io

n
er

ro
r:

 m
ed

ia
n

(F−1)
(F−2)
(P−1)
(P−2)

0102030
0

1

2

3

4

5

6

7

8

9

10

Angle(z
1
,z

2
) [°]

R
ep

ro
je

ct
io

n
er

ro
r:

 m
ed

ia
n

(a) (b)

Figure 7.5: (a) Number of successful calibrations; (b) Median values of reprojection errors. Plots
described by (F-*) and (P-*) correspond, respectively, to factorization and reference primitive
methods; plots described by (*-1) and (*-2) correspond to calibration based on 1 and 2 paral-
lelepipeds.

7.1.2.2 Results

Discussion of the results for intrinsic calibration. Let us first consider the behavior of
our calibration method in a proximity of singular configurations (left and right extremities of
figures 7.5-7.7). It can be seen that at both initial and final positions P0 and Pn, calibration is
very unstable, as expected. However, when the minimal angle between the camera axes is larger
than 15◦ the method can be considered stable. All calibrations are successful (figure 7.5–(a)), the
relative error on the obtained median values is not larger than 7% (figure 7.6).

As expected, calibration results obtained with the reference primitive method are less stable
than those obtained with the factorization method. Indeed, as shown in figure 7.6 the relative
error on median values obtained with the reference primitive method is up to 9% (vs 7% for the
factorization method). Also, reprojection error is more important (∼ 1.5 pixel for 1 primitive and
∼ 8 pixels for 2 primitive based calibration vs ∼ 0.5 pixel and ∼ 6 pixels for the factorization
method).

Naturally, calibration results are more stable using two parallelepipeds than with a single one.
First, using larger number of primitives decreases the possibility for singulararity. Figure 7.7–(b)
shows results for the second camera for one and two parallelepiped based calibration using informa-
tion on right parallelepiped angles. While a relative position between the first parallelepiped and
second camera is singular for the calibration, adding a second parallelepiped stabilizes the configu-
ration. In non-singular configurations the larger number of primitives and related increased number
of equations result in more accurate calibration (figures 7.6- 7.7). However, introducing additional
primitives increases the reprojection error (see figure 7.5–(b)). Indeed, the calibration tends to
conform both to prior information on scene and projection information. The more constraints are
given on the scene structure, the smaller is impact of projection constraints, and consequently,
they are not as well satisfied as in a less constrained scene.

Comparing figures 7.6 and 7.7 it can be seen that using the information about the right paral-
lelepiped angles decreases importantly the number of singularities. Also in non-singular positions
it increases slightly the stability of the method.

7.1. SYNTHETIC SCENES 119

0 10 20 30
700

800

900

1000

1100

1200

1300

Angle(x
1
,y

2
) [°]

α v: m
ed

ia
n

(F−1)
(F−2)
(P−1)
(P−2)
original value

0102030
700

800

900

1000

1100

1200

1300

Angle(z
1
,z

2
) [°]

α v: m
ed

ia
n

0 10 20 30
700

800

900

1000

1100

1200

1300

Angle(x
1
,y

2
) [°]

α v: m
ed

ia
n

(F−1)
(F−2)
(G−1)
(G−2)
original value

0102030
700

800

900

1000

1100

1200

1300

Angle(z
1
,z

2
) [°]

α v: m
ed

ia
n

(a) (b)

Figure 7.6: Median values obtained for the focal length of (a) first camera; (b) second camera.
Notations are similar to figure 7.5.

0 10 20 30
700

800

900

1000

1100

1200

1300

Angle(x
1
,y

2
) [°]

α v: m
ed

ia
n

(F−1)
(F−2)
original value

0102030
700

800

900

1000

1100

1200

1300

Angle(z
1
,z

2
) [°]

α v: m
ed

ia
n

0 10 20 30
700

800

900

1000

1100

1200

1300

Angle(x
1
,y

2
) [°]

α v: m
ed

ia
n

(F−1)
(F−2)
original value

0102030
700

800

900

1000

1100

1200

1300

Angle(z
1
,z

2
) [°]

α v: m
ed

ia
n

(a) (b)

Figure 7.7: Calibration results using the factorization method for the estimation of focal length of
(a) the 1st camera and (b) the second camera, using the known right parallelepipeds angles.

Extrinsic calibration. Figure 7.8 presents the results for the estimation of the camera’s rotation
and translation. Extrinsic calibration was performed only when the previous internal calibration
was successful. Displayed error values on recovered rotations (figure 7.8–(a)) are the angle of the
relative rotation between the true R and the estimated R′ (the presented values are computed as
the mean rotation error for both cameras). Translation error (figure 7.8–(b)) is represented by
the mean of the two angles between the true and estimated relative camera-parallelepiped position
vectors. This allows to evaluate the geometry of the reconstructed cameras independently from
errors caused by global scaling and errors on the rotation. For a standard deviation of σ = 1 and a
minimal angle of 10◦ between the camera axes, the rotation error is never larger than 10◦, with a
5◦ median value, and the translation error is similar. Those errors quite significant, but note, that
were obtained using projections of at most 12 points per image (6 per parallelepiped projection.

As expected, the rotation and translation estimation is most stable and accurate with the factor-

120 CHAPTER 7. EXPERIMENTAL RESULTS

ization method using two parallelepipeds. Independently from the number of calibration primitives,
the factorization method gives slightly better results than the reference primitive method. How-
ever, increasing the number of scene constraints (i.e. number of calibration primitives) increases
also the reprojection error. The increase of the reprojection error for the methods based on two
calibration parallelepipeds can be seen in chart 7.5–(b).

0 10 20 30
0

5

10

15

20

25

30

35

40

45

Angle(x
1
,y

2
) [°]

R
ot

at
io

n
er

ro
r:

 m
ed

ia
n

(F−1)
(F−2)
(P−1)
(P−2)

0102030
0

5

10

15

20

25

30

35

40

45

Angle(z
1
,z

2
) [°]

R
ot

at
io

n
er

ro
r:

 m
ed

ia
n

0 10 20 30
0

5

10

15

20

25

30

35

40

45

Angle(x
1
,y

2
) [°]

R
el

. t
ra

nl
at

io
n

an
gl

e
er

ro
r:

 m
ed

ia
n

[°]

(F−1)
(F−2)
(P−1)
(P−2)

0102030
0

5

10

15

20

25

30

35

40

45

Angle(z
1
,z

2
) [°]

R
el

. t
ra

nl
at

io
n

an
gl

e
er

ro
r:

 m
ed

ia
n

[°]

(a) (b)

Figure 7.8: Extrinsic calibration results. (a) Median values of the rotation error; (b) Median values
of the angle between the true and the estimated direction between the cameras-parallelepiped
relative translation vectors. Notations are similar to figure 7.5.

7.2 Real Scenes

In this section, we present 3D reconstruction results of our method when applied to indoor and
outdoor scenes. These examples correspond to situations where automatic methods are bound
to fail: small sets of images are used and occlusions occur frequently. Each reconstruction was
performed in two steps: first, one or more parallelepipeds were used to calibrate the intrinsic and
extrinsic camera parameters; second, scene points and geometrical constraints were used for the
reconstruction (see section 6). Results from both, single, and multiple images are shown.

7.2.1 Warsaw Scene

Figure 7.9–(a) shows a postcard used for the reconstruction of the main building of Warsaw Uni-
versity of Technology in its shape at the beginning of the century. The calibration primitive based
on the main solid constituting the building is shown on the image. Note that facade of the building
is not contained into the calibration primitive. Prior information used for the calibration were:
right parallelepiped angles, unit ratio between two parallelepiped edges parallel to the ground plane
and camera parameters except for the focal distance. Note that without information about the
parallelepiped length ratio and camera aspect ratio the camera is in a singular position (compare
with figure 4.1–(a)). For the reconstruction, the walls were defined as parallelograms and the addi-
tional elements of the facade were defined using symmetry and coplanarity constraints, resulting in
smooth, round shape of model contours. Definition of calibration primitives took about 5 minutes.
Definition of the full model took approximately 40 minutes. Figure 7.9–(b) shows the reconstructed

7.2. REAL SCENES 121

(a) (b)

(c) (d)

Figure 7.9: Warsaw scene: (a) The postcard used for the reconstruction; (b) Reconstruction of
the calibration parallelepiped and camera poses; (c), (d) The textured model seen from different
viewpoints.

parallelepiped as well as the camera pose, and figures 7.9–(c) and 7.9–(d) show the scene rendered
from new viewpoints.

7.2.2 Bedroom Scene

Figure 7.10–(a) shows the original image used for the reconstruction of a bedroom scene. It was
taken with a short camera focal length, therefore leading to a slight optical distortion which was
not corrected here. The calibration was based on the cupboard in the central part of the image.
Note that the camera was almost frontoparallel with respect to the cupboard, and thus close
to a singular situation for calibration. The prior information used for calibration were: right
parallelepiped angles, null camera skew parameter and principal point in the image center. The
full model was reconstructed using 29 points, constrained by 2 parallelepipeds (the cupboard and
the wooden belt), 3 parallelograms and 6 collinearity and coplanarity constraints. Figure 7.10–(b)
shows the reconstructed parallelepipeds as well as the camera pose, and figures 7.10–(c-e) show the
scene rendered from new viewpoints.

7.2.3 House Scene

Figure 7.11–(a) shows the original image used for the reconstruction of a house. The calibration
was based on the parallelepiped marked in the image. The prior information used for calibration

122 CHAPTER 7. EXPERIMENTAL RESULTS

(a) (b)

(c) (d) (e)

Figure 7.10: Bedroom scene: (a) The original image; (b) The parallelepipeds present in the model;
(c)-(e) The textured model seen from different viewpoints.

(a) (b) (c)

Figure 7.11: House scene: (a) The original image; (b) The textured model seen from different
viewpoints.

were: two right parallelepiped angles, null camera skew parameter and principal point in the
image center. The full model was reconstructed using 26 points, constrained by 1 parallelepiped, 5
parallelograms and 7 collinearity and coplanarity constraints. Figures 7.11–(b) and 7.11–(c) show
the scene rendered from new viewpoints.

7.2. REAL SCENES 123

7.2.4 Notre Dame Square Scene

(a) (b) (c)

Figure 7.12: Notre-Dame square scene: (a) The original image; (b), (c) Screen-shots of the model
obtained using image (a) only.

In this section, we present reconstructions of Notre-Dame square in Grenoble from single and
multiple images. In both cases, radial image distortion was corrected in a preliminary step.

Reconstruction from a single image. The image and the calibration primitive for the single
image reconstruction are shown in figure 7.12–(a). The prior information used for calibration were:
right parallelepiped angles, null camera skew parameter and principal point in the image center.
The final model is composed of 42 points, 3 parallelepipeds, 4 parallelograms and 4 lines and planes.
New viewpoints of the model are shown in images 7.12–(b-c).

Figure 7.13: Notre-Dame square scene: 4 images from the 15 used for the reconstruction. Paral-
lelepipeds used for the reconstruction are white painted.

Reconstruction from multiple images. The sequence used for the reconstruction is composed
of 15 images whose sizes vary from 768×1024 to 960×1280 pixels. The calibration was based on 3
parallelepipeds (shown in figure 7.13). The prior information used for calibration were: right angles
for parallelepipeds 1 and 2, null skew parameters, unit aspect ratios and principal points in the im-
age center for all images. Definition of calibration primitives took about 20 minutes. Parallelepiped

124 CHAPTER 7. EXPERIMENTAL RESULTS

(a) (b) (c)

Figure 7.14: Notre-Dame square scene: reconstruction results (a) Cameras and parallelepipeds
as estimated by the proposed linear factorization method; (b) Cameras and parallelepipeds pa-
rameters optimized by a non-linear method; (c) Cameras and 194 model points optimized by an
unconstrained non-linear method.

3 is relatively small in the images where both parallelepipeds 2 and 3 appear. Consequently, the
estimation of its vertices is unstable, and thus its parameters were not used for the calibration.
The calibration was performed in two steps: first, the proposed linear factorization approach was
applied, and second, the parameters obtained from the previous step were optimized. Before the
second step, the mean reprojection error of parallelepipeds’ vertices used for the calibration was
28 pixels. The errors occurred mainly in the images that were calibrated using parallelepiped 3.
The non-linear optimization step reduced this error to 3 pixels.

After the calibration step, primitives were added and reconstructed so that the final model is
composed of 194 points, 19 planes and 25 lines. Definition of the full model took approximately
4 hours. This time was dominated by input of the inter-image point correspondences. The mean
reprojection error over all the model points increased up to 8 pixels. As might be expected, the
most important errors always occurred in images calibrated using parallelepiped 3.

For comparison, a global bundle adjustment was performed over all the model points and the
camera focal lengths. This reduced the reprojection error to 2 pixels. It did not reduce, how-
ever, the small artifacts occurring in the final model. Both non-linear methods were implemented
without code optimization and derivatives were computed numerically. The parallelepiped-based
optimization converged after 24 iterations and 15 seconds, and the standard point-based optimiza-
tion converged after 51 iterations and 20 minutes (on a Pentium III, 733 Mhz).

The calibration primitives and the cameras reconstructed using the factorization method, the
parallelepiped-based non-liner optimization and the point-based non-linear optimization are shown
in figure 7.14. Synthetic views of the scene reconstructed using the parallelepiped-based calibration
are shown in figure 7.15–(h-j).

7.2.5 Opposite Viewpoint Scene

Figure 7.16 shows the reconstruction of a modern building from 2 images taken from opposite
viewpoints. The parallelepiped used for calibration and the estimated cameras’ positions are shown
in the two original images (see figures 7.16–(a-b)). In the first image, intersections of lines were
computed to obtain the six points required to define a parallelepiped (see figure 7.16–(a)). The
parallelepiped and the cameras reconstructed by the factorization algorithm are shown in the
image 7.16–(c). New viewpoints of the whole model, composed of 32 points, 13 parallelograms and
6 planes are shown in the figures 7.16–(d-f).

7.2. REAL SCENES 125

Figure 7.15: Notre-Dame square scene: New viewpoints of the textured model.

126 CHAPTER 7. EXPERIMENTAL RESULTS

(a) (b) (c)

(d) (e) (f)

Figure 7.16: (a),(b) The original images used for the reconstruction taken from opposite viewpoints;
(c) The reconstruction scenario with the computed model and the cameras’ positions; (d),(e) New
viewpoints of the model.

7.2.6 Chetwode Church

The Chetwode church reconstruction was based on 2 images found in the Internet and 1 calibration
primitive. Both images used for the reconstruction and the calibration primitive are shown in
figures 7.17–(a-b). The information used for calibration were: 3 right angles of the church tower,
null camera skew parameters, unit aspect ratios and principal points in the image center. The
final model consists of 34 points, 28 lines and 13 planes, constrained by 35 parallelism and 3
orthogonality constraints. The cameras and primitives reconstructed are shown in figure 7.18–(c)
and a new viewpoints of the scene are shown in figures 7.18–(d) and 7.18–(e).

7.2.7 Kio Towers

The Kio towers reconstruction was based on 3 images and 2 calibration primitives. One of the
images used for the reconstruction is shown in figure 7.18–(a). The information used for calibration
were: 2 right angles in each tower, null camera skew parameters, unit aspect ratios and principal
points in the image center. The cameras and primitives reconstructed are shown in figure 7.18–(b)
and a new viewpoint of the scene is shown in figure 7.18–(c).

7.2. REAL SCENES 127

(a) (b)

(c) (d) (e)

Figure 7.17: Chetwode church: (a),(b) The original images (courtesy of Mr. Kevin Quick); (c)
Reconstructed calibration primitive and cameras; (d),(e) Screen-shots of the reconstructed model.

(a)

(b) (c)

Figure 7.18: Kio towers in Madrid: (a) The original image; (b), (c) Screen-shots of the reconstructed
model.

128 CHAPTER 7. EXPERIMENTAL RESULTS

Part III

Towards a Minimal Model
Parameterization

Introduction

In this part of the thesis we propose an approach for incorporation of a large set of various geomet-
rical constraints into an image-based 3D model acquisition system. User-defined primitives, such
as points, lines or planes and geometrical dependencies between them, such as parallelism, orthog-
onality, or distance constraints are used to build a model satisfying all the constraints, conforming
to the image information (by minimization of the reprojection error).

The related work in Computer Vision is overviewed in section 2.2.1.3. An important feature
differing our approach from most of the existing systems is the fact that it is able to deal with
various types of objects and constraints. In classical computer vision systems, this complexity is
usually reduced by considering only a limited set of objects and constraints, such as exclusively
collinearity or coplanarity constraints. Indeed, in sufficiently restricted contexts, the constraint
satisfaction problem can be solved using numerical, symbolic or ad-hoc techniques. In a general
case however, the geometrical problem in 3D is translated into a large system of linear, bilinear,
or quadratic equations that are difficult to solve, which makes classical approaches unfeasible.

The Computer-Aided Design community has designed numerous algorithms for solving geo-
metric constraints. These methods are usually based on an analysis of the inter-object relations,
a structural analysis of the corresponding equation system, the application of basic rules of eu-
clidean geometry, local propagation mechanisms or the assembly of rigid subparts in the system
[Kwaiter and Gaildrat, 1998]. However, in Computer Vision, an important part of the constraints
are projections of model features in images. The projections could constitute an additional set
of geometrical constraints that are imposed in the same way as constraints between the model
elements. However, due to the image noise, the projection information is usually less reliable that
prior information on the model. Thus, giving the same priority to all these constraints may lead
to important reconstruction errors. Moreover, typically to compensate the low reliability of pro-
jection contraints, most model features are projected onto several images. This means that the
model is highly overconstrained. On the contrary, when the projections are not considered, the
introduced geometrical constraints do not fully fix all the degrees of freedom of the model and
the corresponding system of equations is under-constrained. Unfortunately, there are no standard
methods to treat under- or over-constrained systems.

We propose an approach to adapt algorithms developed by the Constraint Programming com-
munity to Computer Vision. Our reconstruction system transforms the constrained model (defined
by a set of variables and constraints) into a reduced parametric model defined by a set of free vari-
ables, called input parameters in this thesis. The input parameters, combined with the geometric
constraints, fully fix all the degrees of freedom and completely describe the model.

Our reconstruction system makes use of a dictionary of so-called r-methods, based on theorems
of geometry. R-methods are hard-coded procedures that can solve a subset of geometric constraints
exactly and in a very efficient way2. Graph-based algorithms are used to find a set of input

2In addition, the clear geometrical interpretation of r-methods allows us to control singular configurations (such
as a plane defined by three collinear points) and to favor solving routines that are well-conditioned numerically.

132

parameters in the scene, and to decompose the constraint system into a sequence of r-methods,
called plan. When a value is given to the input parameters, a plan execution gives a finite set of
solutions for the rest of the system satisfying the imposed constraints. In order to (bundle) adjust
the model to the images, the model is refined using a standard model optimization applied only
over the values of the input parameters. At each iteration of an optimization step, the r-methods
in the computed sequence are executed to produce a model that satisfies all the constraints.

The constraint satisfaction is based on an algorithm called “General Propagation of Degrees
of Freedom” (GPDOF), derived originally from local propagation methods. GPDOF has several ad-
vantages. First, GPDOF can produce a set of input parameters and a sequence of r-methods in
polynomial-time. Second, we should highlight that, provided that the system contains no redun-
dant equation, GPDOF can always compute a sequence of r-methods if such a sequence exists. Finally,
using r-methods corresponding to ”ruler and compass” rules or theorems of geometry allows GPDOF
to handle a system of geometric constraints while working at the equational level with a simple
and general scheme.

Our system has been validated on two architectural models including several hundreds of linear,
bilinear and quadratic constraints. In both models, the computation of the plan requires a few
seconds while the optimization takes a few minutes. The obtained models are geometrically and
visually correct, and fit well the images.

Outline

Chapter 8 starts by an overview of our method, illustrated by an example. Then details on objects
and constraints modelling, as well as the background necessary to understand the constraint satis-
faction process are given. Chapter 9 details various methods used during the constraint satisfaction
process, such as the automatic r-method addition phase and the GPDOF algorithm. The chapter is
completed by a discussion on the difficulties linked to constraint satisfaction, that is, the cases of
singularity and the consequences of redundant constraints. The optimization phase is described
in chapter 10. Chapter 11 shows the experiments we have performed on two models. Chapter 12
compares GPDOF to other equation system decomposition algorithms, some of them being developed
by the Computer Aided Design Community. Chapter 13 concludes this thesis.

Chapter 8

Method Overview and

Background

Many of the concepts used in this part of the thesis were developed within the Constraint Pro-
gramming community and might be unknown to most of our readers. In this chapter, we give a
brief outline of our approach as well as the necessary background to understand the algorithms
presented in the following chapters. We start by a short overview of the different steps in our
approach for the model acquisition process in section 8.1. The proposed method is illustrated by
an example in section 8.1.1. Section 8.2 details the modelling of different structures used in the
system. A scene is described by a complex system of relations between objects at the same descrip-
tion level (e.g. coordinates-variables, objects-constraints) as well as objects at different description
levels (e.g. coordinate-object-scene). Thus a good insight of the used representation is necessary
to understand the algorithms described in the following chapters.

134 CHAPTER 8. METHOD OVERVIEW AND BACKGROUND

8.1 Overview of the Approach

Our model acquisition approach makes use of geometric constraints. It is divided into three main
phases: initialization, constraint planning and optimization.

Initialization

In the current implementation the model is defined by points, lines and planes. They are subject to
linear, bilinear and quadratic constraints such as distance, incidence, parallelism and orthogonality.

Any other constraint which can be expressed via equations in terms of object coordinates, like
angles, distance and angle ratios can be incorporated.

The model is initialized using methods described in part II. However, any other approach for
calibration and reconstruction could be used here. After this phase, we should highlight that all
the variables (camera and model parameters) have an initial value.

Constraint Planning

The goal of the constraint planning phase is to transform a model defined by constraints among
objects into a parametric model. Thus, the output of this step is composed of:

• Input parameters: a set of variables whose values, together with the inter-object constraints,
define the shape of the whole model. Input parameters are a subset of the scene object
coordinates. Ideally, the number of input parameters equals to the number of degrees of
freedom of the model nm = no − nc, where no is the sum of degrees of freedom of the model
objects and nc is sum of degrees of freedom of the model constraints (i.e., the number of
independent equations). Such a model parameterization is called minimal.

• Plan: A sequence of routines (called r-methods) which, given values assigned to the input
parameters, compute the coordinates of all the scene objects such that all the inter-object
relations are satisfied.

As shown in section 9.2.3, our approach can be used to compute a minimal parameterization.
However, in order to draw the greatest benefit from r-methods and reach a better performance, we
are satisfied with a quasi-minimal parameterization. Note, inspite of the fact that the parameteri-
zation is not minimal, all the imposed constraints are satisfied.

The model reconstruction system we propose requires an input set of r-methods which allows
us to decompose the whole equation system into small subsystems. An r-method [Trombettoni,
1998, 1997] is a hard-coded procedure used to solve a subset of geometric constraints. An r-method
computes the coordinates of output objects based on the current value of input object coordinates
with respect to the underlying constraints between input and output objects.

An example is an r-method that computes the parameters of a line based on the current position
of two points incident to this line. Another example is an r-method that computes the position
of some 3D point A located at known distances from three other points B, C, D. This r-method
computes the (at most) two possible positions for A by intersecting the three spheres centered
respectively in B, C, and D. 60 r-method patterns have been incorporated in a dictionary used by
our system. They correspond to ruler-and-compass routines used in geometry or, more generally,
to standard theorems of geometry.

The geometric constraint system and the corresponding algebraic equations are represented by
graphs, called respectively constraint graph and equation graph. These graphs yield the depen-
dencies between constraints and objects (constraint graph), and between equations and variables
(equation graph). Based on these graphs, the constraint planning uses two algorithms:

8.1. OVERVIEW OF THE APPROACH 135

1. R-method addition phase: Add automatically in the equation graph all the r-methods corre-
sponding to r-method patterns present in the dictionary. For instance, the r-method pattern
“line incident to two known points” may occur a lot of times in the system. Every time two
points incident to a line are recognized in the constraint graph, a corresponding r-method is
added to the equation graph (see example below).

This phase thus produces an equation graph “enriched” with r-methods.

2. Planning phase: Perform GPDOF [Trombettoni, 1998] on the enriched equation graph. GPDOF
produces:

• a set of input parameters, that is, a subset of the variables describing the scene such
that, when a value is given to them, there exists a finite set of solutions for the rest of
the system satisfying the constraints;

• a sequence of r-methods (called plan) to be executed one by one.

Model Optimization

The model is refined by an unconstrained optimization process run over the input parameters
only. The optimization produces values for all the model variables such that all the constraints
are satisfied (exactly) and the sum of reprojection errors is minimal. At each iteration of the
optimization algorithm, the input parameter values are modified and the plan is executed, resulting
in new coordinate values for all the other scene objects. The cost function is then computed as the
reprojection error of all the points (and possibly lines).

8.1.1 Example of Constraint Planning

To illustrate the algorithms presented in this article, we will take a small example describing a
parallelogram in 2D in terms of lines, points, incidence constraints and parallelism constraints
(see figure 8.1). Of course, the scenes we handle with our tool are in 3D, and this example is
just presented for didactic reasons. figure 8.1 also shows the bipartite constraint graph containing
four points Pa,...,Pd with coordinates (xpa, ypa), ..., (xpd, ypd), four lines La,...,Ld with coordinates
(ala, bla, cla), ..., (ald, bld, cld), eight incidence constraints C1,...,C8 and two parallelism constraints
C9, C10.

The equation graph corresponding to the 2D scene is shown in figure 8.2-left. The right side
of figure 8.2 shows the equation graph enriched with a set of r-methods that can be used to solve
subparts of the system. These r-methods belong to one of the three following categories (which
could appear in a dictionary of 2D r-methods):

• line incident to two points (e.g., r-methods m1 and m7);

• point at the intersection of two known lines (e.g., m2, m4, m6, m8);

• line passing through a known point and parallel to another line (e.g., m3, m5).

The GPDOF algorithm, presented in section 9.2, works on the enriched equation graph. It is
able to select for example the coordinates of Pa, Pb and Pd as a set of input parameters. It also
produces a plan, e.g., the sequence of r-methods (m1, m7, m3, m5, m4), whose execution results
respectively in coordinates of objects La, Ld, Lb, Lc, Pc. Figure 8.3 illustrates an execution of this
plan.

136 CHAPTER 8. METHOD OVERVIEW AND BACKGROUND

C1

C2

C3

C4C5

C7

C8

C6

PbPa

PcPd

Ld

Lc

La

Lb

C9

C10

Pa

La

LbLd

Pd

Lc

Pc

Pb

(a) (b)

Figure 8.1: A didactic example of a 2D scene (a) and the corresponding constraint graph (b).

bld blb

xpb

ypb

c lab laala

c ld

ald a lb

c lb

xpd

ypd

alc c lc

xpc

blc

ypc

m1

m2

m3

m4

m5

m6

m7

m8

bld blb

xpb

ypb

c lab laala

c ld

ald a lb

c lb

xpd

ypd

alc c lc

xpc

blc

ypc

y
xpa

pay
xpa

pa

(a) (b)

Figure 8.2: (a) The equation graph of the 2D scene. Variables are represented by circles and
equations are represented by black rectangles. An equation implying only the a and b coordinates
of a line has the form a2 + b2 = 1 and allows a unique representation of a line. (b) The enriched
equation graph. An r-method is represented by a hyper-arc including its equations and its output
variables. Only eight of the sixteen possible r-methods are depicted for the sake of clarity.

8.2. SCENE MODELING AND BACKGROUND 137

PbPa

PcPd

Ld

Lc

La

Lb

PbPa

Pd

Ld

Lc

La

Lb

PbPa

Pd

Ld

La

PbPa

Pd

b

c d

a

Figure 8.3: Execution of r-methods in the plan (m1, m7, m3, m5, m4). (a) The input parameters
(i.e., coordinates of Pa, Pb and Pd) are replaced by their current value. (b) m1 and m7 place lines
La and Ld resp. (c) m3 and m5 place Lb and Lc resp. (d) Finally, m4 places point Pc.

8.2 Scene Modeling and Background

8.2.1 Geometric Objects

In the current implementation of the system, available objects are points, lines and planes. Their
representation has a significant impact on the performance of the system. It is necessary to use a
representation corresponding to the number of degrees of freedom characterizing the objects and
allowing for an efficient computation. Section 1.4.1.1 gives algebraic representation of objects. We
briefly detail how the objects are represented in the system.

Points (see figure 8.4–(a)). the 3 degrees of freedom (dof) of a point are represented by 3
variables x, y, z.

Lines (see figure 8.4–(b)). the 4 degrees of freedom of a line are represented in Plücker coor-
dinates by 6 variables and 2 internal relations. The line coordinates are related by two conditions:
the directional vector is constrained to be of unit length (equation rd) and all the line coordinates
are constrained by Plücker condition (equation rl).

Planes (see figure 8.4–(c)). the 3 degrees of freedom of a plane are represented by 4 variables
and 1 internal relation. The plane normal vector n is constrained to be of unit length (equation
rd).

Note that the solving process described in this article can also support other parameterizations
and other types of primitives. Also note that the final model is represented by a set of points, i.e.,
lines and planes are only used to define constraints between points.

138 CHAPTER 8. METHOD OVERVIEW AND BACKGROUND

� �� � � �

��� �
	

�� � � ��

���

(a) (b) (c)

Figure 8.4: Representation of points, lines and planes. Circles correspond to variables (coordinates)
and rectangles correspond to internal equations constraining the variables.

�� �

� � � �

���

��� � !"�

�$# # !%#& #

& �

')('%(

(a) (b)

Figure 8.5: Representation of dependencies between object coordinates induced by constraints. (a)
a point-plane incidence constraint (1 dof) is represented by the equation: ax+by+cz+d = 0 relating
all the variables of both objects. (b) a plane-plane parallelism constraint (2 dofs) is represented by
equation (a1, b1, c1) ∼ (a2, b2, c2) relating only the variables representing both plane normals.

8.2.2 Geometric Constraints

In the current implementation, we consider the following constraints:

• distance: point-point, point-line, point-plane;

• incidence: point-line, point-plane, line-plane;

• parallelism: line-line, line-plane, plane-plane;

• orthogonality: line-line, line-plane, plane-plane.

The equations engendered by these constraints are given in section 1.4.1.2. Any other constraint
which can be expressed as equations in terms of objects coordinates, like angles, distance and angle
ratios can be incorporated.

8.2.3 Variables and Equations

The geometric constraints in the scene induce a set of equations between the parameters of the
objects. The scene can then be modelled by:

• a set V of variables over the reals with a current value each; the variables are the coordinates
(or parameters) of geometric objects;

• a set E of equations generated by geometric constraints; the equations are linear or non-linear.

Examples of dependencies between the variables induced by inter-object constraints are given
in figure 8.5.

8.2. SCENE MODELING AND BACKGROUND 139

�� �

� � � �

�	�

���� �	�
���� ���
���� �	�

���� ���

� � � �� �

(a) (b)

Figure 8.6: Representation of r-methods by hyper-arcs that include the satisfied equations and the
output variables. (a) An r-method fixing the remaining degrees of freedom of a point incident to a
plane. (b) An r-method computing the position of a point using 3 point-point distance constraints.

8.2.4 R-Methods

Our model reconstruction system is based on a dictionary containing an input set M of r-methods.
An r-method is a routine executed to satisfy a subset Em of equations in E by calculating

values for its output variables as a function of the other variables implied in the equations. Two
examples of r-methods are shown in figure 8.6.

Definition 1 An r-method m in M is a function over a set of input variables I. The variables
involved in the equations Em ⊂ E are divided into a non-empty set of output variables O ⊂ V ,
and a set of input variables I ⊂ V .

Given a set of values I, the r-method m yields the set of solutions for O satisfying Em. This
operation is called execution of the r-method m.

The r-method m is free if no variable v in O is involved in a constraint in E \ Em. Thus,
executing a free method cannot violate other equations in E \ Em.

Note that a given equation can generally be solved by several r-methods (e.g., 3 r-methods
could be used to solve the point-plan incidence shown in figure 8.6(a)), making the problem of
computing a sequence of r-methods to solve all the equations combinatorial.

The current dictionary of our system contains 60 r-methods. These r-methods use only 40
different generic execution procedures. For instance, parallelism of planes and parallelism of lines
are solved by the same procedure.

The dictionary includes all the r-methods that solve constraints by computing (output) parame-
ters of one object. Details on the design and implementation of r-methods are given in Appendix C.
More complicated r-methods computing more than one object at a time can be envisaged. The
algorithms used in our system can deal with any type of r-method, although the time complexity
will grow with the number of constraints involved in r-methods (see section 11.3).

When we detail the automatic r-method addition phase, we will often talk about r-method
patterns present in the dictionary. An r-method pattern of an r-method m is a generic constraint
graph corresponding to the equations solved by m. We design this constraint graph by a pattern
because a similar constraint graph (pattern) may occur several times in the actual constraint graph
corresponding to the model, thus leading to the creation of several similar r-methods. For instance,
the r-method pattern “line incident to two known points” is a graph made of 4 vertices (3 objects
and 1 constraint). Every time two points incident to a line are recognized in the constraint graph
(as a subgraph), a corresponding r-method is added to the equation graph.

Finally, it is important for our system to distinguish so-called linear r-methods giving one
solution and non-linear r-methods giving several solution.

140 CHAPTER 8. METHOD OVERVIEW AND BACKGROUND

Definition 2 Let m be an r-method, Em be the set of equations solved by m, and O (resp. I) be
the set of output (resp. input) variables of m.

The r-method m is a linear r-method iff all the equations in Em are linear in terms of
variables in O (i.e., Em in which the variables in I are replaced by a constant become linear). R-
method m is a non-linear r-method iff at least one equation in Em (in terms of O) is non-linear:
m may produce several solutions.

For instance, an r-method which computes the position of some 3D point A located at known
distances from three other points B, C, D is a non-linear r-method. This r-method generally
produces two possible positions for A.

An r-method which computes the parameters of a line based on the current position of two
points incident to this line is a linear r-method. Even though an incidence constraint is bilinear,
when the coordinates of the involved points are known, this gives linear equations relating line
coordinates.

Hypotheses on r-Methods

R-methods must compute a finite set of solutions for the output variables. In other words, the
dimension of the variety of the solutions is 0. Therefore r-methods have generally as many equations
as output variables. This is the case for the r-methods in our dictionary.

In addition, an r-method, especially a non-linear r-method, must be able to compute all the
solutions satisfying the involved equations. Indeed, this allows the backtracking phase described
in Section 10.1 to combine the solutions computed by the different r-methods in the plan, without
losing any solution (see section 10).

The remark above highlights that local numerical minimization methods cannot be used for
executing an r-method because they cannot obtain all the solutions for the output variables.

To build fast non-linear r-method execution procedures, we made symbolic manipulations of
the equations involved in r-methods as shown in Appendix C.

Interests of r-Methods

Using r-methods for decomposing the constraint system of the model has a lot of advantages:

• The code of an r-method allows a very good performance. Executions of r-methods in our
dictionary run in several microseconds.

• A lot of r-methods in our dictionary are linear while the implied constraints are bilinear
(e.g., incidence, parallelism). This highlights that using r-methods to decompose a system of
equations is a significant way to lower the complexity of the equations and thus to improve
the performance.

• The semantics behind a given r-method (i.e., the fact that it is a theorem of geometry)
ensures that the implied geometric constraints can be solved and helps to detect singular
configurations. On the contrary, the subsystems of equations created by pure graph-based
decomposition methods, such as the maximum-matching (see chapter 12), are arbitrary and
may even correspond to contradictory equations. An example is shown in [Trombettoni,
1998].

• As said above, r-methods yield all the solutions to the implied equations.

8.2. SCENE MODELING AND BACKGROUND 141

8.2.5 Graph Representation of the Model and Data Structures

The algorithms used by our system require a structural view of the entities in the scene. The
geometric constraint system and the equation system are respectively represented by a constraint
graph and an equation graph (see figure 8.1 and 8.2). An equation graph indicates the dependencies
between equations and variables in the scene.

Definition 3 A constraint graph is a bipartite graph where nodes are constraints and objects,
represented by rectangles and circles respectively. Each constraint is connected to its objects.
An equation graph is a bipartite graph (V,E,A) where nodes are equations in E and variables
in V , represented by rectangles and circles respectively. Each equation is connected to its variables
by an edge in A.
An enriched equation graph (V,E,A,M) is an equation graph (V,E,A) enriched with a set M
of r-methods.

Our system is implemented in the C++ programming language. The different entities (con-
straints, geometric objects, equations, variables and r-methods) are represented by structured
objects. Several fields have been added to allow a direct access to the entities. For example, for a
given variable v, we can know in constant time the set of equations involving v, in which r-method
v is an output variable, to which geometric object v belongs, and so on. In this implementation,
the constraint graph, the equation graph and the enriched equation graph share the same data
structures.

The dictionary of r-methods is implemented as a hash table in order to make the automatic
r-method addition phase quicker. Details about this hash table are given in section 9.1.

The next chapter details the algorithms necessary for the constraint planning: adding automati-
cally r-methods in the equation graph based on the dictionary, computing a set of input parameters
and a sequence of r-methods, based on the enriched equation graph.

142 CHAPTER 8. METHOD OVERVIEW AND BACKGROUND

Chapter 9

Constraint Solving

This chapter presents the algorithms used to satisfy the geometrical constraints imposed on the
model. These algorithms work on constraint and equation graphs introduced in the previous
chapter. First, the constraint graph is used to find object-constraint configurations which can
be solved by r-methods contained in the r-method dictionary. Then the matched r-methods are
superimposed on the equation graph. This process is described in section 9.1. Subsequently, the
GPDOF algorithm, outlined in section 9.2 is run to find a set of input parameters and a sequence
of r-methods describing the model. As the constraints used in the system are user provided,
it is possible that the input is incorrect, e.g contains redundant constraints or singular object
configurations. Using the geometrical analysis of the scene via r-methods it is possible to overcome
these problems. Approaches implemented in our system are described in section 9.3.

144 CHAPTER 9. CONSTRAINT SOLVING

9.1 Automatic R-Method Addition Phase

This phase consists in enriching the equation graph with r-methods found in the dictionary. It
considers as input:

• the constraint graph corresponding to the scene;

• the dictionary of r-method patterns.

This phase works on the constraint graph. It performs a subgraph matching between subgraphs
(made of constraints and objects) in the constraint graph and r-method patterns present in the
dictionary. More precisely, we handle a subgraph isomorphism problem. All the connected sub-
graphs of the constraint graph with a “small” size are explored. When a subgraph corresponds to
an entry in the dictionary, the corresponding r-methods are added to the equation graph.

For instance on the 2D scene, a certain iteration of the r-method addition phase considers the
subgraph made of nodes Pa, C8, La, C1, Pb (see figure 8.1). A corresponding subgraph pattern
(i.e, 2 points incident to a same line) is found in the dictionary, so that the r-method m1 (i.e., line
La passing through two known points Pa and Pb) is created and added to the equation graph.

The algorithm explores all the connected subgraphs of size less than a small value k (see next
paragraph). For every found subgraph, the procedure Subgraph_recognition compares it with
the subgraph patterns in our dictionary. If the subgraph matches, the corresponding r-methods
are added to the equation graph1.

9.1.1 Exploring all Connected Subgraphs of Size at Most k

algorithm All_connected (S: set of nodes; d: current depth; k: max size; G: constraint graph):
Subgraph_recognition (S)
if d < k then

N ′ ← Selected_neighbors (S, d, k, G)
for every neighbor n in N ′ do

All_connected (S ∪ {n}, d+ 1, k, G)

end

end

end.

The value k is the maximum number of nodes (objects+constraints) implied in any r-method of
the dictionary (e.g., 7 in our system). Starting from a single node (S is a singleton), the subgraphs
are built by incrementally adding a neighbor node to the current connected subgraph S until the
size k is reached. This depth-first search algorithm detailed in Algorithm All_connected is a
simplification of the algorithmic scheme presented in [Avis and Fukuda, 1996].

Note that a given subgraph of size l can be built from l different subgraphs of size l− 1. Thus,
the key idea allowing the algorithm to explore a tree of subgraphs (and hence to explore a given
subgraph only once instead of l times) is to consider at each step only a specific subset N ′ of selected
neighbors: The property taken into account by the function Selected_neighbors is based on a
unique numbering of the nodes [Avis and Fukuda, 1996]. The property states: a subset S ∪ {n} is
a “son” of S iff n has the smallest number among the objects in S ∪ {n} such that S is connected.
Thus, if the property holds for S ∪ {n} then S ∪ {n} will be considered; otherwise this subgraph
is discarded because handled at another iteration.

1Remember that several r-methods may exist for the same set of constraints.

9.1. AUTOMATIC R-METHOD ADDITION PHASE 145

The time complexity of this algorithm2 is O(N × a × k4), where N is the actual number of
connected subgraphs of size k or less (N is O(nk)) and a is the maximum degree of nodes in the
graph.

9.1.2 Subgraph Recognition

The function Subgraph_recognition compares every subgraph S found in the constraint graph
with the subgraph patterns in our dictionary. However, the problem of deciding whether two graphs
are isomorphic is still an open problem for which no polynomial algorithm is known [Papadimitriou,
1994]. In order to quickly know whether a subgraph S is isomorphic with a subgraph S ′ in the
dictionary, we proceed as follows:

1. We first compute a string e corresponding to the number of nodes in S in every category: the
number of points in S, its number of lines, number of planes, number of point-line incidence
constraints, and so on. The dictionary is implemented as a hash table, and theses types
of strings represent hash functions. If the hash function e corresponds to no entry in the
dictionary, the second step below must not be performed and no r-method will be created
based on the subgraph S.

Otherwise, this means that an entry in the hash table contains one set ES ′ of subgraphs
(having the same number of nodes in every category). The step 2 below checks whether one
subgraph pattern S′ ∈ ES′ is isomorphic with S.

2. To know whether two graphs S and S ′ (with the same number of nodes in every category)
are isomorphic, we use a combinatorial process inspired by the solving process of Constraint
Satisfaction Problems (chronological backtracking). In short, objects in the subgraph S are
reordered to be matched with objects in the pattern S ′. Two objects at the same rank in the
order must have the same type and also the same types of constraints with objects placed
before.

3. If S and S′ match, then the r-methods associated to S ′ are added to the equation graph.

In our dictionary, the 60 r-method patterns are generated by 45 different subgraph patterns.
The hash table contains 45 entries, which means that all the subgraph patterns are discriminated
by their number of nodes in every category (i.e., the size of ES ′ is always 1 in our current version).
The example in figure 9.1 highlights why the combinatorial process (step 2) remains necessary.

9.1.3 Practical Time Complexity

In practice, as detailed in chapter 11, the time complexity of the r-method addition phase is
negligible (one or two seconds for our models). Two reasons explain this good behavior. First,
in our current dictionary, the subgraph patterns are small, so that the size k is small. Second,
constraint graphs corresponding to scenes are rather sparse (the number of constraints is close to
the number of objects).

The situation would worsen if the designer wanted to add in the dictionary more complicated
r-methods, especially r-methods with more than one object as output. In this case, we think that
more sophisticated subgraph isomorphism algorithms should be envisaged [Ullman, 1976; Régin,
1995; Sorlin and Solnon, 2004].

2The call to Subgraph_recognition is not taken into account.

146 CHAPTER 9. CONSTRAINT SOLVING

P1 P2

P3Q1 c

d

d

c

dd

1

1

2

3

P’

P’

P’

Q’

(a) (b)

Figure 9.1: Two subgraphs with the same entry in the hash table, i.e. characterized by the same
number of points, planes, distance constraints and incidences. (a) a “bad” subgraph found in the
constraint graph with no corresponding r-method; (b) a subgraph pattern in our dictionary made
of 3 points P ′

1, P
′
2, P

′
3, a plane Q′

1, two distance constraints and one incidence.

9.2 Computing a Plan and a Set of Input Parameters

These computations are obtained by the GPDOF algorithm [Trombettoni, 1998]. GPDOF3 computes
a sequence of r-methods to be executed for satisfying all the equations (the plan). GPDOF solves
this combinatorial problem in polynomial-time. The main advantages of GPDOF are the following:

• GPDOF is very fast (quasi-linear in practice).

• GPDOF can find a sequence of r-methods if such a plan exists.

• A set of input parameters can be immediately deduced from the plan. Thus, GPDOF is also a
procedure to determine a set of input parameters in polynomial time.

These attractive properties come under the assumption that the constraint system contains no
redundant constraints, that is, the system must include only independent equations. Section 9.3
details this point and explains the first procedures used by our tool for removing redundant con-
straints before the use of GPDOF.

Chapter 12 highlights that GPDOF compares favorably with local propagation solvers and geo-
metric solvers for decomposing equation systems or geometric constraints.

9.2.1 Description of GPDOF

GPDOF [Trombettoni, 1998] is a generalization of a local propagation algorithm used to solve mul-
tiway dataflow constraints [Sutherland, 1963]. It works on an enriched equation graph (see sec-
tion 9.1). GPDOF runs the three following steps until no more equation remains in the equation
graph G (success) or no more free r-method is available (failure):

1. select a free r-method 4 m,

2. remove from G the equations and the output variables of m,

3. create all the submethods of an r-method mi that share equations or output variables with
m (see section 9.2.2).

3GPDOF stands for General Propagation of Degrees of Freedom.
4Recall that output variables of a free r-method appear in no “external” equations (see Definition 1).

9.2. COMPUTING A PLAN AND A SET OF INPUT PARAMETERS 147

A plan can be obtained by reversing the selection order: the first selected r-method will be
executed last. The work of GPDOF is illustrated in figure 9.2.

The first two steps above define the standard PDOF algorithm [Sutherland, 1963] on which GPDOF

is based (PDOF accepts only r-methods solving one equation). Iteratively selecting free r-methods
ensures that no loop is created in the plan.

It appears that, when r-methods can solve several equations, there is no guarantee that the
standard PDOF finds a plan, even if one exists. This highlights the importance of submethod ap-
pearing in the third step above which guarantees that GPDOF can find a plan if one exists. The
following section details this important notion.

GPDOF may fail when it is not able to remove some equations because no more free r-method is
available. In this case, it is ensured that no complete plan can be computed (with the r-method
patterns defined in the dictionary). One obtains an incomplete plan which solves only a subset
of the equations (i.e., the equations removed by step 2 of GPDOF) and which contains thus more
input parameters. This incomplete plan can nevertheless be used during the model optimization.
Of course, the constraints corresponding to the equations that have not been removed from the
equation graph by GPDOF will not be satisfied.

9.2.2 Overlap of R-Methods and Submethods

Theoretically, the case may occur that any possible plan contains at least two r-methods which
overlap, that is, two r-methods which share the same constraints or output variables5. In other
words, if the selection of overlapping r-methods was forbidden, then we could not ensure that
an existing plan would be found. A plan that contains overlapping r-methods means that some
constraints will be solved several times during one plan execution.

As shown in the example (see figure 9.3), the notion of submethod and step 3 of GPDOF have
been introduced in GPDOF precisely in order to make it able to select r-methods which overlap.
Informally, a submethod m′

i of r-method mi is created when a free r-method m is removed in step
2, which removes some equations and/or output variables from mi. For example, r-methods m′

5,
m′
7 are the submethods of resp. m5, m7 due to the selection of m6 and the removal of equations

solved by m6 (black rectangles). [Trombettoni, 1998, 1997] detail how submethods are precisely
constructed and why submethods always remain available for a future selection.

It is important to understand that the notion of submethod is only used during the execution
of GPDOF whose work is purely structural. This notion is then forgotten, so that the obtained
plan contains no submethod. Indeed, every time GPDOF selects a submethod, the corresponding
r-method is added to the plan.

The example also shows that, due to the selection of overlapping r-methods, some constraints
are solved several times by different r-methods in the plan. For instance the two r-methods m2

and m3 belong to the same plan so that the incidence constraint between point Pb and line Lb will
be solved twice.

Solving several times a same equation has no significant impact on the plan execution. Espe-
cially, all the constraints are solved at the end. The only drawback is that a plan with overlapping
r-methods contains generally more r-methods (e.g., the plan shown in figure 9.2 contains 5 r-
methods, while the plan in figure 9.3 contains 7 r-methods). As a result, we could expect a loss in
performance.

However, r-methods are executed in microseconds (see chapter 11). Moreover, the phenomenon
of selecting overlapping r-methods can be easily limited by heuristics: when GPDOF can choose
several free r-methods at a given iteration (step 1), GPDOF selects one r-method which is not a
submethod (if any).

5An example is shown in [Trombettoni, 1998]. The case does occur in real size applications.

148 CHAPTER 9. CONSTRAINT SOLVING

bld blb

xpb

ypb

c lablaala

c ld

ald alb

clb

xpd

ypd

alc clc

xpc

blc

ypc

m1

m2

m3

m4

m5

m6

m7

m8
y

xpa

pa

b ld b lb

xpb

ypb

c lab laa la

c ld

a ld a lb

c lb

xpd

ypd

alc c lcblc

m1

m2

m3

m4

m5

m6

m7

m8

b ld

xpb

ypb

c lab laala

c ld

a ld

xpd

ypd

m1

m2

m3

m6

m7

m8

m5

xpd

ypd

m1

ypb

xpb

m7

y
xpa

pa

(b)(a)

y
xpa

pa y
xpa

pa

(c) (d)

Figure 9.2: A constraint planning phase performed by GPDOF on the 2D scene. (a) At the beginning,
r-methods m2, m4, m6, m8 are free, so that one of them is selected, e.g., m4. (b) This selection
implies the removal of the equations and the output variables of m4 from the equation graph.
(c) This frees r-methods m3 and m5 which are selected and removed next in any order. (d) The
r-methods m1 and m7 become then free and can be selected. The process ends since no more
constraint remains in the equation graph. The obtained plan is the sequence (m1, m7, m3, m5,
m4) and the input parameters are the remaining variables.

9.2. COMPUTING A PLAN AND A SET OF INPUT PARAMETERS 149

bld blb

xpb

ypb

c lab laala

c ld

ald a lb

c lb

xpd

ypd

alc c lc

xpc

blc

ypc

m1

m2

m3

m4

m5

m6

m7

m8
y

xpa

pa

’

’

’

’

Figure 9.3: GPDOF may first select m6 which is free. Step 3 of GPDOF then creates the submethod
m′
5 of m5 and the submethod m′

7 of m7. The process continues and selects m4, m
′
5, m1 (creation

of submethod m′
2), m

′
2 (creation of submethod m′

3), m
′
3, and finally m′

7. The obtained plan is the
sequence (m7, m3, m2, m1, m5, m4, m6). Selected r-methods (m1, m4, m6) and submethods (m′

2,
m′
3, m

′
5, m

′
7) are represented by thick hyper-arcs.

Properties of GPDOF

In [Trombettoni, 1998], and due to the notion of submethod, it is proven that GPDOF guarantees to
compute a sequence of r-methods, if one such sequence exists.

In addition, GPDOF solves this combinatorial problem in polynomial time. Its worst-case time
complexity is O(n× dc× dv×m× (g× dc+ g2)) (see [Trombettoni, 1998]), where n is the number
of equations, m is the maximum number of r-methods per equation, dc and dv are the maximum
degrees of respectively equations and variables in the equation graph, and g is the maximum number
of equations and output variables involved in an r-method. This complexity is a polynomial function
of the input parameters: dv ≤ n; g ≤ n; dc ≤ |V |; m ≤ |M |.

GPDOF runs in a few seconds on our two models with several hundreds equations, showing that
it should be acceptable for scene modelling applications.

9.2.3 Computing the Input Parameters

The values of the input parameters must be known before the plan is executed. This is the case in
our scene modeling system since all the variables have an initial value after the initialization phase
(see Section 8.1). Every time new values are computed for the input parameters by the numerical
algorithm in the optimization process, the plan is executed.

Since GPDOF computes the plan in a reverse order, obtaining the input parameters is a side-effect
of GPDOF.

When no r-method in the plan corresponds to a submethod selection, the input parameters
simply consist of the variables which are output of none of the r-methods in the plan. This yields
the 6 coordinates of points Pa, Pb, Pd for the plan illustrated in figure 9.2.

The general case is a little bit more complicated and produces two disjoint subsets of input

150 CHAPTER 9. CONSTRAINT SOLVING

parameters:

• The set P1 contains the variables which are output by no r-method in the plan (as above).

• The set P2 comes from the overlap phenomenon (submethods). P2 contains variables v such
that:

– v /∈ P1,
– v is an input variable of an r-method mj in the plan,

– v is not an output variable of any r-method mi placed before mj in the sequence,

– v is an output variable of an r-method mk placed after mj in the sequence.

In the plan illustrated in figure 9.3, the subset P1 contains the 2 coordinates of point Pa. The
subset P2 contains the parameters of points Pb, Pc, Pd and lines La, Lb.

The values of variables in P1 must be known before the plan is executed and will not be modified
by this execution. On the opposite, the initial value of a variable v in P2 is used when an r-method
mj is executed, but this value will be modified later by another r-method mk in the plan.

Towards a Minimal Parameterization of the Model

The example has been chosen to illustrate the two subsets of input parameters and contains a large
set P2. In practice however, due to the heuristics avoiding the selection of submethods by GPDOF,
P2 is small. This will be underlined in the experiments made on the two realistic models presented
below.

Anyway, a natural question arises: what is the number of input parameters?
Assume that all the r-methods are square, that is, they have as many output variables as

equations6. Let n be the number of variables in the equation system, let e be the number of
equations.

If P2 is empty (because no submethod has been selected by GPDOF), then it is straightforward
to prove that |P1| = n−e. This means that, in this case, GPDOF builds a minimal parameterization
of the model.

In the general case however, it can be shown that:

• |P1| ≤ n− e and

• |P1|+ |P2| ≥ n− e

Roughly, this means that the more GPDOF must select submethods to calculate a plan, the larger
will be the set of input parameters.

To our knowledge, no algorithm is known in the Computer Vision community to compute a
minimum set of input parameters (i.e., a set of minimum size equal to n− e) for a scene defined by
general set of constraints and objects in a polynomial time. However, although the practical interest
is low, two such algorithms exist, assuming that the constraint system contains only independent
equations.

First, applying the well-known standard graph-based algorithm called Maximum-matching on
the equation graph yields a minimal parameterization [Dulmage and Mendelsohn, 1958; Pothen and
Chin-Fan, 1990]. The input parameters are the variables which are not matched by the algorithm,
as shown in Chapter 127.

6This the case for the 60 r-methods in our dictionary.
7Unfortunately, there exists no fast solving method to tackle the different subsystems built by Maximum-

matching.

9.3. DEALING WITH SINGULARITIES AND REDUNDANT CONSTRAINTS 151

Second, and more interesting in practice, the plan produced by GPDOF can be used to yield a
minimal parameterization:

• The first subset P1 of input parameters is computed as above.

• A second subset P ′
2 is built such that |P1|+ |P ′

2| = n− e

The set P ′
2 is built by applying a Maximum-matching on every equation (sub)graph corre-

sponding to a submethod: the non-matched variables are added to P ′
2. For instance, applying

Maximum-matching on the submethods of the plan illustrated in figure 9.3 leads to a set P ′
2 made

of cld (non matched in the equation graph of m′
7), clc (m′

5), clb (m′
3) and xpb (m′

2; ypb could be
indifferently be chosen). In addition to the 2 input parameters xpa and ypa, we thus obtain a
minimal parameterization with 6 variables.

Unfortunately, no hard-coded procedure exists to solve the “remaining” equation systems in
the submethods, so that the plan can roughly be executed as follows. Consider every r-method m
in the plan. If m is not a submethod, execute m. If m is a submethod, solve the corresponding
equation system with a standard algorithm (able to compute all the solutions), such as a symbolic
method, a continuation method [Lahaye, 1934] or an interval based algorithm [Van Hentenryck
et al., 1997].

The performance of the second approach above would be even better than the use of Maximum-
matching (alone). However, we suspect that it is far from being as efficient as the proposed approach
(executing overlapping r-methods). Indeed, several orders of magnitude are gained in performance
when a hard-coded procedure is executed.

In conclusion, the heuristics used by GPDOF to select in priority free r-methods that are not
submethods gives a quasi-minimal parameterization. Considerations about performance let us
think that the variant presented above to compute a minimal parameterization is not promising.

9.3 Dealing with Singularities and Redundant Constraints

One problem of our approach is that our graph-based algorithms may be misleaded by redundant
constraints. Also, singular configurations may be left undetected. However, these problems can
often be fixed in practice by making use of geometric information.

9.3.1 Redundant Constraints

Redundant constraints involve non-independent equations. Because they correspond to theorems of
geometry, the r-methods selected by GPDOF in the plan correspond necessarily to non-contradictory
and independent systems of equations. However, GPDOF may fail in presence of redundant con-
straints because the selection of free r-methods is purely structural. As an example, consider
figure 9.4 where an additional parallelism constraint has been added between lines Lb and Ld.
This constraint is redundant with the existing parallelism constraint and prevents GPDOF from
finding a plan. Since the selection step of GPDOF is structural, all occurs as if all equations were
independent.

It is of course not acceptable to rely on the user to not introduce redundant constraints. Dealing
with constraint redundancy has been a subject of research in the CAD community for a long time
and it is still an open problem in the general case.

Two straightforward procedures have been introduced in our tool to remove very common
causes of redundancy:

152 CHAPTER 9. CONSTRAINT SOLVING

b ld b lb

c ld

ald a lb

c lb

m1

m2

m3

m4

m5

m6

m7

m8

b ld blb

xpb

ypb

c lab laala

c ld

ald a lb

c lb

xpd

ypd

alc c lc

xpc

blc

ypc

m1

m2

m3

m4

m5

m6

m7

m8
y

xpa

pa

C1

C2

C3

C4C5

C7

C8

C6

C9

C 10

Pa

La

LbLd

Pd

Lc

Pc

Pb

(a) (b) (c)

Figure 9.4: Failure of GPDOF in presence of a redundant parallelism constraint. (a) The parallelism
constraint is redundant to the parallelism C10 (in the constraint graph). (b) The enriched equation
graph with the corresponding additional equation (white rectangle) and two additional r-methods
(only one is represented). (c) After having removed all possible free r-methods and submethods,
GPDOF is stuck because the redundant equation prevents r-method m3 from being free.

• A redundancy occurs if the user adds an incidence C1 between a point P and a line L, an
incidence c2 between the line L and a plane A, and an incidence c3 between the point P
and the plane A. In this case, our procedure removes from the whole system all redundant
constraints such as c3 .

• Another straightforward redundancy occurs if the user adds a parallelism p1 between two
lines L1, L2, a second parallelism p2 between the line L2 and a third line L3, and a third
parallelism p3 between the line L1 and the line L3. In this case, our procedure removes c3,
and is able to apply on a “cycle” of parallelisms of any length.

We found these procedures helpful in practice although we know that many occurring redundan-
cies cannot be handled this way (imagine slightly more tricky configurations combining parallelisms
and orthogonalities...).

We hope that special r-methods whose pattern corresponds to a redundant subsystem could be
used in a preprocessing step (by searching for the pattern in the whole system) to remove a lot of
occurring redundancies8. Several works performed by the CAD community follow this idea [Sosnov
and Macé, 2002; Sosnov, 2003]. Also, a generalization of the numerical technique mentioned below
could be used to detect redundant constraints.

9.3.2 Singularities

We should admit that the singularity issue turned out to be the biggest difficulty we had to overcome
in our experiments. While redundant constraints have been rather easily removed automatically
or manually, singularities have been the major cause of occasional divergence of the optimization
process. We made an effort to make our tool more robust, and we give the main guidelines below.

Let us take an example to illustrate the main difficulty. Assume that 3 defined points are really
collinear in the 3D scene, but that the user has not made this information explicit, that is the user
has not created a line and has not defined the 3 incidence constraints between every point and this
line. The problem is that the automatic r-method addition phase would add the corresponding
r-method (i.e., plane based on 3 points) which is singular, thus yielding an infinite number of

8“Infinite” patterns must be envisaged for redundant parallelisms for example...

9.3. DEALING WITH SINGULARITIES AND REDUNDANT CONSTRAINTS 153

solutions. In practice however, only one arbitrary solution will be returned in the output, leading
to distortions in the model. To avoid singularities, we have made several improvements based on
basic properties of our system.

First, a singularity occurs only during an r-method execution, and depends only on the values
of the input variables and on the constraints satisfied by the r-method. It is thus important to
highlight that the system decomposition induced by r-methods (due to their local aspect) is a
precious help for handling this issue (manually by the designers at first, and then automatically
by the tool).

Second, note that initial values of all the system variables have already been assigned when the
r-method addition phase is performed. Thus, it is possible to use a heuristics against a singularity
directly after an r-method m has been created and before it is added to the equation graph.
Depending on the type of constraints satisfied by the r-method m, different tests are possible. For
linear r-methods, we have implemented a test based on the Singular Value Decomposition (SVD) of
a matrix formed by the equations of the r-method (where the input variables are replaced by their
value). When the matrix is singular, at least one of the singular values vanishes. The r-method m
is added to the equation graph only if m is not claimed singular by this procedure.

Since the input data is not perfect, deciding which values should be zeroed is based on a
threshold ε fixed arbitrarily [Press et al., 1988]. Obviously the performance of this heuristics
depends on the choice of ε. We have observed however that, for relatively correct input data, the
procedure is not very sensitive to modifications of ε.

The SVD of the matrix is also used at the r-method creation step in order to choose the input
variables ensuring the best conditioning of the r-methods. Details are discussed in Appendix C.

154 CHAPTER 9. CONSTRAINT SOLVING

Chapter 10

Optimization Phase

The plan computed by the constraint planning phase is executed numerous times in the optimiza-
tion phase. As said in the overview, the optimization process produces values for the variables
such that all the constraints are satisfied exactly and the reprojection error is minimum1.

The optimization process is piloted by a standard numerical algorithm. Our tool currently
uses the Levenberg-Marquardt algorithm [Press et al., 1988] (we use vxl interface [VXL, 2003] for
MINPACK routines). However, other optimization methods and libraries could be used instead in
our modular architecture. At present, the gradient of the cost function is computed numerically.

The numerical algorithm only modifies the values of the input parameters (P1 and P2) . Every
time it does so, the plan is executed, resulting in new coordinate values for all the other scene
objects. The cost function is then computed as reprojection error of all the points (and possibly
lines).

Notice that, due to non-linear r-methods, the execution of a plan can yield several solutions for
the variables. Indeed, if the execution of a non-linear r-method in the plan produces k solutions,
the number of total solutions given by the plan execution can potentially be multiplied by k. Thus,
the total number of solutions is majored by kr, where r is the number of non-linear r-methods in
the plan2.

Since the optimization process can call thousands of plan executions, we want to avoid a com-
binatorial explosion during one plan execution. Therefore, a preprocessing phase is performed to
select one solution to be followed among the kr ones. This phase, called backtracking phase below,
selects, for every r-method in the plan, the solution (index) such that the reprojection error is
minimized.

To sum up, the optimization phase is divided into two steps:

1. Based on the plan computed by GPDOF and the variable values calculated by the initialization
phase, the backtracking phase selects solution indices to be followed during a plan execution.
This step is described in section 10.1.

2. Then, the numerical optimization algorithm interleaves input variable modifications and plan
executions following the solution indices. This step is described in section 10.2.

1Subtleties are detailed below.
2Our dictionary contains 7 non-linear r-methods (among 60), each yielding (at most) k = 2 solutions.

156 CHAPTER 10. OPTIMIZATION PHASE

10.1 Backtracking Phase

This phase performs a combinatorial process which computes a solution with a lowest cost. The
precise cost C to be minimized is detailed below. The backtracking executes all the r-methods
(m1, ...,mi, ...mp) in the plan in order:

• When all the r-methods have been executed (i.e., the execution of mp has succeeded), then
the new lowest cost Cbest is updated: Cbest ← C 3.

• When an r-method mi is executed giving possibly k solutions (with k ≥ 1), the backtracking
performs the k choice points, that is, it iteratively replaces the output variables by the values
given by the k different solutions and executes the rest of the plan. For every choice point j
(1 ≤ j ≤ k), it updates the output variables of mi with the values corresponding to the jth

solution. The total cost (reprojection error) C is also updated with this modification. Two
cases may occur:

– If C < Cbest, then the backtracking continues with r-method mi+1.

– Otherwise, if C ≥ Cbest, then it is not necessary to continue the process because the
cost (error) of the current solution will never be less than the best cost previously found.
This branch of the search is cut and one backtracks to the level i − 1, considering the
next solution of mi−1 (if any).

• The case may also occur that the execution of an r-method mi gives no solution.

– If r-method mi is linear, then this means that a singularity has occurred during this
computation. For example, if mi wants to place a plane incident to three points which
are aligned. In this case, the algorithm does not follow the plan. It cuts this branch and
backtracks to the level i − 1, considering the next solution of mi−1 (if any). By doing
this, we hope that another branch of the backtracking will change the values of the
input variables (e.g., the position of the three points) so that mi would not be singular
anymore.

– If r-method mi is non-linear, we preferred to continue with r-method mi+1 (no back-
track), and we update the cost C with a measure of the cost violations, as detailed
below. This choice increases the computation time but makes the process more robust
in case all the solutions obtained during the backtracking have a non-linear r-method
giving no solution.

As a result, for every non-linear r-method, the backtracking phase stores the solution number
that minimizes the global cost (reprojection error and constraint violations).

Note that the current backtracking algorithm might terminate with no solution in case an r-
method selected in the plan is singular in all the branches. We then consider that the whole process
fails and that our prototype must be improved to avoid singularities. Most of the features described
in section 9.3 come from this strict attitude. However, it is easy to modify the current backtracking
scheme to ignore singular r-methods, leaving the corresponding constraints unsatisfied.

The backtracking results depends on the initial values of model variables. It may happen that
the solution is not visually correct, especially when the initial reconstruction does not satisfy well
the geometrical constraints. However, our experiences have shown that the reprojection error
criterion is quite reliable.

In the current implementation, the backtracking step is performed only once before the op-
timization. Following the remark above, some other backtracking steps could also be performed
during the optimization in case the initial reconstruction was very bad.

3Before the backtracking, the cost C is initialized to +∞ and is updated every time a new solution is computed.

10.2. OPTIMIZATION 157

10.2 Optimization

As explained in the overview, the optimization interleaves the value modification of input param-
eters (by a Levenberg-Marquardt algorithm) and plan executions.

A plan execution executes the r-methods one by one and updates the cost function incrementally.
Several cases must be considered when a non-linear r-method mi is executed:

• If mi fails, the constraint violations are added to the cost function.

• If mi succeeds, the reprojection error corresponding to the output variables of mi is added
to the current cost.

Note that, after several optimization iterations, the model quality increases and the case occurs
that a given r-method mi succeeds for the first time. That is, mi had always given 0 solution during
the backtracking phase and in the previous plan execution steps as well. Consider for example an
r-method computing the position of a point using distance constraints from 3 other points. It may
happen that the initial positions of these points are inconsistent with the distance contraints, so
that the r-method yields no solution. However, with the increasing quality of the reconstruction,
the point positions can be moved to positions allowing the distance constraints to be satisfied, and
the r-method to give the two possible positions for the output point. When mi succeeds for the
first time, among the k possible solutions yielded by mi, our optimization process selects the one
leading to the lowest reprojection error.

This means that the number of unsatisfied constraints decreases as long as the model quality
increases. This great behavior highlights the interest of our fast plan execution step included inside
the numerical algorithm.

10.3 Reprojection Error and Constraint Violation Cost

The same cost function is taken into account in the backtracking phase and in the optimization.
This cost function has two components: the well-known reprojection error R, but also a constraint
violation cost. The latter is the sum of the constraint violation costs induced by all non-linear
r-methods in the plan. The constraint violation cost associated to an r-method mi is 0 if the
r-method succeeds and gives one or more solutions. Otherwise, according to a parameter given by
the user, the constraint violation cost of mi is equal to:

• either the number of equations CN handled by mi,

• or a “smoother”measure CS of the error related to the semantics of constraints. For instance,
the error of a point-point distance is the square difference between the distance value in the
equation and the actual distance between the points. The error of an incidence constraint is
the square of the actual distance between the two related objects.

The two components yield a multi-criteria minimization problem and the overall cost is a
weighted sum between both components: R + αCN or R + αCS where α is a weight allowing us
to tune the ratio between the components. Experiments detail the results obtained with the two
different constraint violation costs and different weights.

158 CHAPTER 10. OPTIMIZATION PHASE

Chapter 11

Experimental Results

The approach presented in this part of the thesis has been validated on two models. The first
model has been based on 120 objects and 5 images, and the second model has been based on
238 objects and 15 images. Section 11 contains a detailed description of the main characteristics
of both models. Qualitative results of reconstruction are presented in section 11.1. Section 11.2
contains performance tests of algorithms and section 11.3 details some practical issues concerning
the reconstruction process.

160 CHAPTER 11. EXPERIMENTAL RESULTS

Model Characteristics

We have used our approach to build a model of the Place Notre-Dame in Grenoble. A set of images
have been used, together with architectural plans from which several distance measurements have
been extracted. We have first built a medium-size model constructed from 5 images, called ND

hereafter. A larger model, called E_ND, including peripheric walls and additional details, has then
been built from 15 images. The characteristics of these two models are reported in Table 11.1.
Three of the images used for reconstructing these models are shown on figure 11.1.

ND E_ND ND E_ND

#images 5 15 #point projections 286 546

#variables 436 819 #equations 273 452
#objects 120 238 #constraints 151 279
#points 90 189 #incidences 124 234
#lines 23 28 #angles 17 34
#planes 7 21 #distances 10 11

Table 11.1: The two scenes: Notre Dame (ND) and Extended Notre Dame (E_ND)

(a) (b) (c)

Figure 11.1: Three images from the sequence Notre Dame. Image (c) has been included only into
the E_ND sequence.

11.1 Reconstruction Results

The multi-linear approach used during the initialization phase takes into account only some bilinear
constraints. Thus, for example, distance constraints are not taken into account in the reconstruction
of the initial model and may be unsatisfied. Indeed, the maximum relative error of distance
constraints is 7% for the ND scene and 6% for E_ND. The maximum distance between two objects
constrained to be incident are 80 cm for ND and 60 cm for E_ND (to give an idea, the height of the

11.1. RECONSTRUCTION RESULTS 161

tower is∼ 14m). The maximum angle error is 0.25◦ for ND and 2.54◦ for the E_ND scene. The relative
error of the violated distance constraints comes down to 0.26% after the optimization process
performed by our system (due to 2 distance constraints that are not satisfied). The reconstructed
models are presented in figures 11.2 and 11.3.

(a) (b) (c)

Figure 11.2: Reconstruction of ND scene. (a) Initial model with reconstructed cameras; (b), (c)
Views of the final model.

The interest of our method is especially well illustrated in figure 11.3. The reconstruction results
highlight that models are visually and geometrically correct. The first column contains the top and
side views of the initial model, where contraints are respected approximately. The second column
contains the top and side views of the model obtained using a standard unconstrained optimization
method. One of the points is visible only in two images with a very small baseline and its position
is false due to divergence of the optimization process. Other parts of the model also suffer from
several artifacts such as an unsatisfied coplanarity. By imposing appropriate constraints, we have
overcome these problems. The third column of figure 11.3 contains the top and side views of the
model produced by our method. We show how the parts of the model mentioned above have been
corrected, leading to a visually correct model.

Several artifacts have been corrected after several optimization steps, which highlights the
interest of our optimization phase and of our fast plan execution (due to r-methods). Also, when
in the initial reconstruction the constraints are not sufficiently satisfied, it may happen that a plan
execution causes artifacts in the scene, such as in the center of figure 11.5–(a). The optimization
corrects the errors created this way (see figure 11.5–(b)).

Different stages of the model reconstruction, from the set of input parameters, is shown in
figure 11.6. For the sake of clarity, we show results of only the smaller scene ND. In the top left
image are represented objects whose coordinates are included into input parameters. Onto the
bottom right image, used for the reconstruction, are superimposed all the model objects. At each
r-method execution, the corresponding output object is added to the model.

Table 11.2 reports statistics about the number of r-methods added automatically to the equa-
tion graph (#r-methods), the number of r-methods selected in the plan (plan size), the number
of bundle adjustment iterations (#iterations) and plan executions (#executions) performed by
the optimization. The reprojection error (reproj. error) and the number of violated constraints
(#violated) is given before the optimization (i.e., after a single plan execution), and also after the
optimization.

162 CHAPTER 11. EXPERIMENTAL RESULTS

initial unconstrained optimization our method

Figure 11.3: Reconstruction of the E_ND scene. Top (1st row) and side (2nd row) views of the initial
model (1st column), model obtained using unconstrained optimization method (2nd column) and
using our method (3rdcolumn).

11.2 Performance Tests

All the times reported below have been obtained with a Linux operating system on a Pentium IV

2 Ghz processor.

Recall that our r-method dictionary contains 60 r-methods. The most complex r-methods solve
3 geometric constraints (6 equations) and imply 4 geometric objects (1 as output and 3 as input).

We have first evaluated the time required to execute one r-method. This time varies from
1 · 10−15 s to 90µs and depends on the type of r-method. For example, an r-method satisfying a
parallelism constraint between two directions needs only 3 assignment operations and is very fast.
The execution time of linear r-methods depend on the number of (output) variables and varies
from 4µs to 90µs (∼ 30µs on average). The execution time of non-linear r-methods varies from
2µs to 30µs (∼ 28µs on average). The execution time of non-linear r-methods is shorter because
the corresponding procedures are hard-coded, while linear r-method routines use a generic SVD
(Singular Value Decomposition).

Table 11.3 details the times spent in the different phases of our model reconstruction system.

The time for the initialization phase is dominated by the non-linear unconstrained optimisation
process (∼ 80% of time) which is executed to refine the initial, parallelepiped-based calibration.
This step could be skipped. A very interesting characteristic of our system is that the constraint
planning phase (automatic r-method addition, GPDOF and backtracking) requires only a few seconds.

11.3. DETAILS 163

(a) (b) (c)

Figure 11.4: Screenshots of the textured model obtained by our method.

11.3 Details

Exploration of All the Connected Subgraphs of Size k at Most

Table 11.2 (right) clearly shows that the exploration of all the connected subgraphs of size at most
k is fast (0.72 s on ND). As mentioned in Section 9.1.1, the time complexity of this phase is highly
dominated by the number of connected subgraphs. This number strongly depends on the size k
of the largest subgraph. In the first version of our tool Wilczkowiak et al. [2003d]; Trombettoni
and Wilczkowiak [2003], this phase was even more time-consuming (253 s on ND). The exploration
of the constraint graph considered connected subgraphs in terms of objects and constraints. The
value of k was 7 because the largest r-methods in the dictionary include 3 geometric constraints

(a) (b)

Figure 11.5: Part of the E_ND scene after (a) one step of GPDOF; (b) optimization: initial artifacts
are corrected.

164 CHAPTER 11. EXPERIMENTAL RESULTS

Figure 11.6: Plan execution for the ND scene. In grey are objects whose coordinates are fully
fixed (input parameters), in orange objects whose coordinates are partially fixed and in red objects
reconstructed in the last executed method. The 1st and 2nd lines present objects after the execution
of the five first r-methods in the plan; the 3rd line presents the scene after having executed the two
last r-methods in the plan, and one of the images with superimposed primitives representing the
complete model.

11.3. DETAILS 165

ND E_ND ND E_ND

r-methods 3017 6695 Plan size 118 228
iterations 11 17 P1 158 352
executions 2040 7866 P2 10 25

Reproj. error before 20.42 23.01 Reproj. error after 4.038 4.16
violated before 2 2 # violated after 2 1

Table 11.2: Statistics on the model reconstruction.

Phase ND E_ND

Initialization 21 331
R-method addition 0.7 1.7

GPDOF 1.4 3.9
Backtracking 0.2 0.2
Optimization 53 467

Table 11.3: Performance of the different phases of our model reconstruction system (in seconds)

and 4 objects. In the new version, k = 3 because the connected subgraphs are built in terms of
constraints only. Two constraints are neighbors in the constraint graph iff they share an object.

k # subgraphs # con. subgraphs time [s] # con. subgraphs time [s]
(objects+constraints) (constraints)

2 3.6× 104 1.5× 103 0.03 944 0.06
3 3.3× 106 4.5× 103 0.11 6578 0.72
4 2.2× 108 1.5× 104 0.5 48304 5.2
5 1.2× 1010 7× 104 3.6 348310 75
6 5.3× 1011 3.8× 105 31 2.4× 106 767
7 2× 1013 2.55× 106 253 1.6× 107 6774

Table 11.4: Exploration of all the connected subgraphs of size at most k in ND. The results highlight

three interesting points. First, limiting the search to connected subgraphs is crucial and leads to gain 7

orders of magnitude for k = 7. Second, searching for connected subgraphs in terms of constraints is more

time-consuming, but only a constant factor of value around 25 is lost. Anyway, the number of connected

subgraphs increases exponentially with k and our approach cannot be used in practice for patterns of size

more than 10.

In conclusion, we believe that our simple automatic r-method addition algorithm can handle
in practice any type of r-method that outputs a single object (point, line or plan), even if other
types of constraints are added, such as angles, distance ratios. Indeed, the degree of freedom of a
rigid object is at most 6 in 3D and so the implied geometric constraints cannot retrieve more than
6 degrees of freedom, bounding k by 6, but rather 4 (since basic objects have at most 4 degrees of
freedom and constraints retrieve at least 1 degree of freedom).

Playing with the Multi-Criteria Cost Function

In the backtracking phase, we have experimented different cost functions on our two models by
using CN (number of violated constraints) or CS (degree of violation of the constraints) and making

166 CHAPTER 11. EXPERIMENTAL RESULTS

the weight α vary in the set {1, 10, 100}. This has led to choose CS for the constraint cost and
α = 1. Especially, a large value for α leads to occasional divergences of the optimization.

We suspected that CS gives better results because the constraint part and the reprojection part
of the cost have a similar order of magnitude. Choosing a large value for α gives a great importance
to the violation of a non-linear constraint c solved by an r-method m. However, if the values of
the input variables of m are bad (recall that the optimization has yet been performed), respecting
the constraint c implies that the subsequent r-method executions will imply a large reprojection
error. The same principle would suggest to attach an increasing importance to the satisfaction of
non-linear equations during the optimization.

11.4. COMPARISON WITH THE PENALTY FUNCTION METHOD 167

11.4 Comparison with the penalty function method

In order to give an intuition about the performance of our method comparing to the existing
constrained optimization methods we have implemented the penalty function method. The most
important advantage of this method is its universality. Indeed, the constraints are imposed by
simply adding corresponding penalty terms to the cost function.

More precisely, the solution to the reconstruction problem is found as:

x = argmin(Ĉ), Ĉ = f(x) +
1

2
K‖g(x)‖2, (11.1)

where:

• vector x contains terms corresponding to camera intrinsic and extrinsic parameters, as well
as to coordinates of all the objects (points, lines and planes);

• f(x) contains terms corresponding to point reprojection errors;

• g(x) contains terms corresponding to the model constraints;

• K is a weight corresponding to the model constraints.

The solution is found using the same Levenberg-Marquardt routine which is used to optimize
the model parameterized using GPDOF. The function gradient is computed numerically. In each
cost function calculation step the camera and object parameters are updated using current val-
ues contained in vector x and used to compute the point reprojection errors as well as terms
corresponding to the model constrains.

11.4.1 The experimental results

In order to perform the experiments we have created first a data set respecting all the geometrical
and projection constraints perfectly. The model ND was first parameterized using GPDOF and
optimized, providing a model respecting the geometrical constraints. Then the model points were
reprojected using the computed camera projection matrices, providing perfect 2D data.

We have tested performance of both GPDOF-based and penalty function methods with varying
values for parameter K in expression (11.1) and by application of increasing Gaussian noise on 2D
data and initial values of 3D object coordinates. Applying noise to the values of coordinates of 3D
objects, we have distinguished coordinates corresponding to direction vectors for lines and planes,
which are scaled to unit length and the remaining coordinates, defining the positions of objects
in space. The noise applied to the directions was constant and corresponding to angle α ∼ 0.33◦

on average. The errors on 3D positions are given in meters to give an idea of the real errors on
the model of dimensions ∼ 60x30 meters. The results shown below are the median results from
15 randomly generated data sets. We illustrate the values for the obtained reprojection errors as
well as errors on distance constraints. The values are given for the initial model, the model after
satisfaction of constraints using one execution of the GPDOF plan, the model optimized using the
GPDOF-based method and the model optimized using the penalty function method.

Varying parameter K. Figure 11.7 shows results of tests with a varying parameter K. The
initial solutions for the optimization methods were obtained by application of a Gaussian noise
to the image data and the initial 3D object with respectively, σ=1.0 pixels and σ = 0.13m. The
parameterK was varying from 10−2 to 106. The time needed for convergence was oscillating around
50 seconds for the GPDOF-based method and 200 seconds for the penalty function method. Figure
11.7–(a) illustrates the impact of the parameter K on the reprojection error. For K up to 1 both

168 CHAPTER 11. EXPERIMENTAL RESULTS

1e−2 1 1e+2 1e+4 1e+6
0

2

4

6

8

10

12

14

16

18

20

K

R
ep

ro
je

ct
io

n
er

ro
r:

 m
ed

ia
n

[p
ix

el
s]

initial error
1 execution
OPT−GPDOF
OPT−CNST

1e−2 1 1e+2 1e+4 1e+6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

K

D
is

ta
nc

e
er

ro
r:

 m
ed

ia
n

[m
]

initial error
1 execution
OPT−GPDOF
OPT−CNST

(a) (b)

Figure 11.7: Optimization results as a function of increasing K factor; (a) Median reprojection
error; (b) Median distance error. Note that after at least one GPDOF execution the distance con-
straints are respected exactly, so the curves corresponding to the model after 1 GPDOF execution
and after the GPDOF-based optimization are identical to the x-axis.

methods give similar reprojection error results with a mean reprojection error smaller than 1 pixel.
As expected, an increasing value K leads to an increasing reprojection error. For K = 106 the
penalty function method diverges. Figure 11.7–(b) illustrates the satisfaction of distance errors as
a function of the increasing factor K. The initial median error of the distance constraints is around
0.13m. While the GPDOF-based method results in models respecting exactly the constraints, the
Penalty Function method for factor K smaller than 100 results in models with a median distance
error of about 2-3 cm.

Varying 3D noise. Figure 11.8 illustrates results of tests as a function of the Gaussian noise
applied to the 3D object coordinates with σ varying from 0.032m to 1.92m. The penalty function
method was executed with K=1. The execution time varied from 100 to 150 seconds for the
GPDOF-based method and from 200 to 400 seconds for the penalty function method.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

3D noise [m]

R
ep

ro
je

ct
io

n
er

ro
r:

 m
ed

ia
n

[p
ix

el
s]

initial error
1 execution
OPT−GPDOF
OPT−CNST

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

3D noise [m]

D
is

ta
nc

e
er

ro
r:

 m
ed

ia
n

[m
]

initial error
1 execution
OPT−GPDOF
OPT−CNST

(a) (b)

Figure 11.8: Optimization results as a function of increasing 3D noise; (a) Median reprojection
error; (b) Median distance error. Note that after at least one GPDOF execution the distance con-
straints are respected exactly, so the curves corresponding to the model after 1 GPDOF execution
and after the GPDOF-based optimization are identical to the x-axis.

11.4. COMPARISON WITH THE PENALTY FUNCTION METHOD 169

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

2

4

6

8

10

12

Image noise [pixels]

R
ep

ro
je

ct
io

n
er

ro
r:

 m
ed

ia
n

[p
ix

el
s]

initial error
1 execution
OPT−GPDOF
OPT−CNST

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.05

0.1

0.15

Image noise [pixels]

D
is

ta
nc

e
er

ro
r:

 m
ed

ia
n

[m
]

initial error
1 execution
OPT−GPDOF
OPT−CNST

(a) (b)

Figure 11.9: Optimization results as a function of increasing 2D noise; (a) Median reprojection
error; (b) Median distance error. Note that after at least one GPDOF execution the distance con-
straints are respected exactly, so the curves corresponding to the model after 1 GPDOF execution
and after the GPDOF-based optimization are identical to the x-axis.

The median reprojection error of the penalty function method remains smaller than 1 pixel
(figure 11.8–(a)). The error for the GPDOF-based optimization method is not larger then 7 pixels
for a 3D noise smaller than 1.3m. For larger values the reprojection error increases importantly.
This is mainly due to the fact, that with very inaccurate initial object coordinates, one execution
of the GPDOF-plan, satisfying the model constraints, can violate the reprojection constraints (see
the red curve). The optimization of the model decreases the reprojection error, however is easily
stuck in a local minimum. The satisfaction of the distance errors is illustrated on figure 11.8–(b).
The penalty function method leads to errors not larger than 0.04m.

Varying 2D noise. Figure 11.9 illustrates results of tests as a function of noise applied to the
2D point projections with σ varying from 0.8 to 2.4 pixels. In all experiments also a Gaussian noise
with σ =0.13m was applied to the 3D object positions. The penalty function method was executed
with K=1. The execution time was approximately 60 seconds for the GPDOF-based method and
160 seconds for the penalty function method.

Due to the application of the 3D noise, the initial values of the reprojection errors are about
6 pixels for all the values of the applied 2D noise. After one execution of the GPDOF plan the
reprojection error increases to about 10 pixels. After the optimization however, both GPDOF-
based and the penalty function methods converge to models with similar average reprojection
error not larger than 2 pixels (figure 11.9–(a)). The median error on distance constraints is slightly
increasing for the Penalty Function method, but remains smaller than 0.02m.

The above results show, that the convergence time of the GPDOF-based method is on average
between 2 and 4 times smaller than for the penalty function method. The GPDOF method
is more sensitive to the accuracy of the initial data, however up to a relative error 3% on the
initial object positions reveals very good convergence properties. When the satisfaction of the
geometrical constraints is really important, for example for visualization goals, it seems also to
be more convenient than the penalty function, which tends to diverge for important values of the
penalty factor K. When the initial data is too noised to obtain a satisfying solution using GPDOF-
based optimization, a possible way to proceed is to use the penalty function optimization to refine
the 3D structure and then run the GPDOF-based optimization method to impose the constraints
exactly.

170 CHAPTER 11. EXPERIMENTAL RESULTS

Chapter 12

Comparing GPDOF with Equation

Decomposition Systems and

Geometric Solvers

This chapter shows that GPDOF compares favorably with other algorithms for decomposing a system
of geometric constraints. Section 12.1 focuses on algorithms developed by the Computer Aided
Design community, while section 12.2 describes general-purpose algorithms that have been applied
to geometric constraint systems.

172
CHAPTER 12. COMPARING GPDOF WITH EQUATION DECOMPOSITION

SYSTEMS AND GEOMETRIC SOLVERS

12.1 Geometric Solvers

Some systems use algorithms which are specific to restricted subclasses of constraints. Owen’s
method [Owen, 1991] is limited to 2D points and lines with distance and angular constraints.
Sunde’s method [Sunde, 1986] (extended by Verroust in [Verroust et al., 1992]), considers points
and segments in 2D with distance and angular constraints.

Several algorithms ([Kramer, 1992; Fudos and Hoffmann, 1997; Hoffmann et al., 1997; Jermann
et al., 2003]) try to recursively rigidify subparts of the constraint system (i.e., rigid subparts
are detected and assembled together). However, these algorithms are not convenient for under-
constrained systems. Indeed, they cannot decompose non rigid subparts and cannot compute input
parameters.

The algorithm designed by Bondyfalat et al. [D.Bondyfalat et al., 1999] for scene modeling
uses a propagation mechanism to place one object after the other. The constraints must be binary
(relating at most 2 objects), and only linear or bilinear constraints are taken into account. Although
efficient heuristics have been made to choose the next object to place (step 1 below), this algorithm
cannot guarantee finding a correct order without a backtracking step, i.e. in polynomial time.

Figure 12.1 shows an example. Let us first recall its principle. The algorithm is based on a
constraint graph labeled with the degrees of freedom of objects and constraints. The propagation
is performed as follows:

1. Select one unbuilt object O with a minimal degree of freedom. (Other heuristics are also used
to discriminate the objects.) All different choices are performed when no solution is found,
making the whole propagation process combinatorial.

2. Compute coordinates of O by using the equations engendered by constraints related to the
object.

3. Consider every object O′ linked to O by a constraint C. Decrease the degree of freedom of
O′ by the degree of freedom of C.

���

��� ��� ���

���

��	��
���

���

��

�� �� ��

��

������

��

(a) (b)

Figure 12.1: An example for which the algorithm proposed in [D.Bondyfalat et al., 1999] fails with-
out a backtracking step. Circles represent points p0-p8 in 3D. Lines represent distance constraints.
Lines are solid when the constraints are already satisfied. The subfigure (a) illustrates the initial
graph. At first, all the objects have three degrees of freedom. Point p0 is reconstructed first be-
cause it is involved in six constraints. Then, points p2,p1,p5,p4 are reconstructed in order, giving
the graph shown in subfigure (b). Point p3 cannot be reconstructed based on the four distance
constraints implying it (overconstrained configuration), which causes a backtracking.

Note that GPDOF can easily find a plan reconstructing in order p1,p2,p3,p4,p5,p0,p6,p7,p8.

12.2. EQUATION DECOMPOSITION SYSTEMS 173

It appears that the backtracking mechanism cannot be avoided in reactive propagation mech-
anisms1 because “bad” choices of input parameters can be made by them (e.g., the point p0 in
figure 12.1).

12.2 Equation Decomposition Systems

Numerous interactive applications, such as [Ducasse et al., 1995], use a variant of a reactive algo-
rithm (like the one described above but at the variable-equation level), to decompose a constraint
system. As explained in [Trombettoni, 1997], this approach is blind and cannot guarantee finding
an order without backtracking.

Other approaches are more sophisticated and proceed in two phases: a planning phase computes
the order and the execution (or evaluation) phase solves the found sub-systems. Two among these
approaches come from a field called local propagation [Sutherland, 1963; Borning, 1979; Freeman--
Benson et al., 1990] that intended to solve interactive systems, such as drawing applications and
advanced user interfaces. They can compute a plan including r-methods that solve only one
constraint and have only one output variable. Roughly, the propagation of conflicts computes the
sequence of r-methods from the first to the last one, while the PDOF scheme does it in reverse
order. As shown in [Trombettoni, 1997], the propagation of conflicts scheme becomes exponential
if general r-methods are allowed while PDOF remains polynomial (giving GPDOF).

Another algorithm has been used for the planning phase, first, by the local propagation commu-
nity [Gangnet and Rosenberg, 1992], second, for solving very large systems of linear equations [Dul-
mage and Mendelsohn, 1958; Pothen and Chin-Fan, 1990], and third for solving geometric con-
straints [Ait-Aoudia et al., 1993; Lamure and Michelucci, 1997]: the Maximum-matching of the
equation graph performed by the well-known standard graph-based algorithm. We show an exam-
ple to highlight why GPDOF compares favorably to Maximum-matching for decomposing a system
of geometric constraints.

A maximum matching of a bipartite graph yields a subset of edges in the graph with a maximum
size and such that every pair of edges in the matching does not share a vertex. Briefly, applying a
Maximum-matching on the equation graph yields:

• a sequence of subsystems of equations (an edge in the matching yields an equation and an
output variable of one subsytem),

• a minimal set of input parameters (the variables that are not incident to an edge in the
matching),

Applied to our 2D scene, Maximum-matching could yield exactly the same plan as the one given
by GPDOF. Unfortunately, the algorithm may also produce subsystems of arbitrary size and for
which no specific solving procedure exists. Figure 12.2 shows that Maximum-matching could yield
a bad plan with one large subsystem including the whole system.

To sum up, Maximum-matching is a pure graph-based algorithm that produces any type of
sub-system2 and of arbitrary size, while GPDOF yields geometrically correct subsystems associated
to a fast solving routine (i.e., an r-method).

1A reactive algorithm has no planning phase. It selects a subsystem and solves it immediately (on the fly).
2A subsystem may also contain contradictory equations due to a bad choice of input variables (see [Trombettoni,

1998]).

174
CHAPTER 12. COMPARING GPDOF WITH EQUATION DECOMPOSITION

SYSTEMS AND GEOMETRIC SOLVERS

b ld b lb

xpb

ypb

c lab laa la

c ld

a ld a lb

c lb

xpd

ypd

alc c lc

xpc

b lc

ypc

b ld b lb

xpb

ypb

c lab laa la

c ld

a ld a lb

c lb

xpd

ypd

alc c lc

xpc

b lc

ypc

y

xpa

pa y

xpa

pa

(a) (b)

Figure 12.2: Applying Maximum-matching to the 2D scene. (a) The edges of the matching are
bold-faced; (b) Only one subsystem is computed. No general and efficient method is known to
solve such systems of bilinear equations.

Chapter 13

Conclusion and Perspectives

Image-based reconstruction of photorealistic three-dimensional models of objects is often an under-
constrained problem. This is mainly due to the fact that, while the human vision system is able to
simultaneously process various types of incoming information, only a subpart of this information
is usually treated at once by computer vision algorithms. Among the various features revealing
three-dimensional characteristics of a scene we were mainly interested in the use of geometrical
constraints, such as collinearity, parallelism, orthogonality, etc. These are common in man-made
environments, and relatively easy to introduce interactively by a user, and to model in the system.

Using prior information on a scene together with camera information enables the reconstruction
of models from a small set of images. Indeed, approaches presented in this thesis were validated
on models reconstructed from 1 to 15 images. When only a small number of images is used it is
possible to rely on a human operator and his intuitive knowledge of the main properties of the
objects commonly present in scenes. The experimental results presented in this thesis illustrate
that interactive input enables the reconstruction of models from sets of sparse images, with small
overlap and numerous occlusions.

The three concepts and accompanying methods proposed in this thesis cover initial calibration,
initial reconstruction and non-linear refinement steps of 3D model acquisition from uncalibrated
sets of images. Although all the approaches exploit prior information about scene and camera
parameters, they differ in the way the available data is represented and incorporated into the
system. Let us separately discuss the proposed algorithms and their possible extensions.

Parallelepiped-based calibration. An approach for calibration and pose estimation using pro-
jections of parallelepipeds was presented in chapters 3-5. We have shown that useful constraints
such as parallelism, coplanarity and right angles, can often be nicely modeled via parallelepipeds.
Especially, this allows to couple constraints between neighboring scene primitives (points, lines,
planes), which potentially induces a higher stability than only using constraints between pairs of
primitives. Moreover, a satisfying solution can already be obtained with a small number of im-
ages and correspondences (starting from 4 correspondences per image pair or 6 per image and
parallelepiped).

We have introduced the notion of duality between the calibration primitives: parallelepipeds
and cameras. One of the consequences of this duality is the fact that the calibration problem

176 CHAPTER 13. CONCLUSION AND PERSPECTIVES

can be formulated in terms of a canonic cube instead of an absolute conic. The notion of duality
was used to propose a factorization framework for the estimation of camera intrinsic parameters
and euclidean shapes of parallelepipeds, as well as their poses. Using well constrained, three-
dimensional structures allows to easily deal with common problems of factorization approaches:
missing data and unknown scale factors.

The calibration method is completed by a detailed study on singular cases. Singularities are
derived theoretically, and the impact on the method’s performance due to the proximity to singular
configurations is shown by simulated experiments. Experiments with real images show that our
calibration approach gives excellent initial results for general 3D model reconstruction methods.

We believe that the presented approach is a useful tool for easily calibrating cameras using
images of unknown though constrained scenes. Also, it allows to efficiently obtain models of the
global structure of scenes (including camera pose), which are good starting points for methods
aiming at a more automatic and/or flexible model definition, such as the two methods described
below.

A possible extension of this system consists of formulating the calibration constraints based on
other types of primitives, like prisms, rectangles etc, which would allow to linearly exploit all the
prior scene information. Such an approach might be coupled with the multi-linear reconstruction
method presented below.

Multi-linear reconstruction approach. In chapter 6 a multi-linear method for the recon-
struction of models defined by points, lines and planes and bilinear constraints between them was
presented. The main algorithm behind this method is a practical approach for the detection of
well-constrained variables in linear equation systems. This approach is based on the SVD of the
equation system’s matrix and can be applied straightforwardly. Its application domain covers in
particular all computer vision algorithms based on linear algebra. In the implemented reconstruc-
tion system it enables the detection of features which are sufficiently constrained and, consequently,
to propagate the available geometrical information.

Although the reconstruction results are very promising, the performance of the method would
be improved by the incorporation of an uncertainty analysis. It would allow to vary the influence
of the objects on the reconstruction process, depending if their definition is close to singular or
well defined. In order to introduce a more systematic error analysis, solutions based on Total
Least Squares [Van Huffel and Vanderwalle, 1991] are for example possible. On the other hand,
interchanging reconstruction with camera recalibration steps, exploiting all the currently avail-
able object and constraints, would increase applications and robustness of the method. Indeed,
this would allow the refinement of the camera calibration during the process, leading to better
reconstruction results. This would enable also reconstruction from sets containing uncalibrated
images.

Scene modeling based on constraint system decomposition techniques. In part III we
have presented a solution to the problem of 3D scene modeling under geometric constraints, based
on techniques for constraint system decomposition. The proposed method is original and efficient.
A quasi-minimal set of input parameters and a sequence of routines whose execution results in a
model respecting the constraints (plan) are extracted in polynomial-time. Executing a sequence
of fast r-methods (which take into account geometrical properties) can build a model that satisfies
the constraints exactly. Compared to related approaches, our reconstruction system is very fast,
and flexible enough to accept different types of constraints.

Our system has been validated on two models with several hundreds of primitives and geo-
metric constraints, the constraints being linear, bilinear or quadratic. The obtained results are
geometrically correct (all bilinear constraints and most of the distances are satisfied exactly) and

177

fit well to the images.

Several improvements can be thought of, as described in the following.

Several implementation issues related to singularities and redundant constraints have been im-
plemented. Further developments could be performed to detect other cases of redundant constraints
(see section 9.3).

In the current version, the backtracking is performed only once. It seems interesting to incorpo-
rate several backtracking phases inside the optimization to change the backtrack solution followed
(among all the possible solutions) as long as the reprojection error decreases.

Numerous different plans can be built by GPDOF depending on the r-method selection order.
Without going into details, we think that the shape of the model depends on the computed plan.
Several heuristics for the r-method selection should be compared, e.g., so as to uniformly distribute
the input parameters throughout the model.

For the plan computation, we have proposed a variant that can obtain a minimal parameter-
ization (see section 9.2.3). Although not promising because of performance considerations, this
variant should be compared to the current version. In this case, the submethods could be solved
by interval techniques [Van Hentenryck et al., 1997].

We hope that our work will be considered an original and significant advance in model recon-
struction under constraints and will be followed by other developments.

As mentioned above, the approaches proposed in this thesis cover all the stages needed to extract
a three-dimensional model from an uncalibrated set of images. However, several extensions can
be thought of to make the model acquisition process less laborious and easier for an inexperienced
user.

First, incorporation of techniques enabling at least partially automatic input would decrease
the amount of necessary user interaction.

At the preliminary stage, matching methods for sparse image sequences might be used to
detect and match simple primitives such as points, lines or planes. Knowing these pertinent image
features, some assumption on the scene, such as the dominant orthogonal directions, combined
with information on camera parameters might be used to create hypotheses concerning geometric
dependencies between objects.

More difficult is the detection and matching of more complicated objects, such as cubes and
prisms. Indeed, a human operator can perform these tasks mainly thanks to experience in analysis
of 3D scenes from images. Introducing equivalent expert reasoning into a reconstruction system
would require complicated learning and recognition procedures.

Interesting possibilities appear when the model is partially reconstructed. Indeed, when ap-
proximate 3D structure and camera calibration are known, it is possible to compare reprojection
of model features with the original image data. This can be used to refine the reconstruction:
feature positions and camera parameters might be adjusted and new features could be detected
and matched between images. Moreover, approximate scene structure can be used again to create
hypotheses on inter-object dependencies or presence of complex primitives. Finally, the surface
of the model can be automatically computed, for example by generating hypotheses on triangles
belonging to the model and comparing them to the image data. Surface reflectance can then be
computed by fusion of color information from the images.

The main problems concerning automatic matching and surface generation methods are oc-
clusions and variation of color between images. Indeed, depending on the point of view, different
parts of objects are visible, and the angle between camera and light source varies, changing the
appearance of the observed surface. Moreover, depending on the exposure settings and current
illumination, whole ranges of color may change between two images taken from the same point
of view. Progress in the understanding of color variations between images has been significant in
the last decade, however it remains an open problem for general scenes viewed by uncalibrated

178 CHAPTER 13. CONCLUSION AND PERSPECTIVES

cameras.
Another possible extension is related to the fact that when working with small image sets it

is very common to encounter singular configurations, both for calibration and reconstruction. We
have proposed algorithms to detect which cameras and objects are underconstrained. However, a
more precise analysis of the underconstrained features might give directions to the user how to add
supplementary images or information in order to improve the reconstruction.

In this thesis we were interested in using geometric constraints in a most general way possible.
We studied large variety of primitives and constraints and proposed approaches to combine all
the available data. However more general systems, able to deal with other sources of information
can be thought of. Firstly, integration of dense data acquired using scanners, shape-from shading,
or visual hull approaches would significantly increase the possibility of modeling irregular scene
elements. Secondly, integration of an image-based reconstruction system into a CAD system would
allow to take advantage of the scene modeling methods developed in this field.

Appendix A

Singular Value Decomposition

The Singular Value Decomposition (SVD) methods are based on the following theorem of linear
algebra [Press et al., 1988; Golub and van Loan, 1989; Bjorck, 1990]:

Theorem 1 Any m × n matrix A can be represented as product of an m × n column-orthogonal
matrix U, an n× n diagonal matrix W and the transpose of an n× n orthogonal matrix V:

A

m×n

=

U

m×n

w1
. . .

wn

n×n

 VT

n×n

. (A.1)

This decomposition is unique up to:

• making the same permutations of the columns of U, elements of W and colums of V;

• forming linear combinations of any columns i, j of U and V corresponding to equal values
wi, wj.

In the following we suppose that the values wi are sorted in a decreasing order: w1 ≥ w2 ≥
· · · ≥ wn. Let us summarise some useful properties of the decomposition (A.1):

• The elements wi, i ∈ [1 . . . n] are the singular values of matrix A.

• One definition of condition number of a matrix is defined as the ratio wmax

wmin
, where wmax is

the largest of the absolute values of the wi and wmin is the smallest one [Press et al., 1988].
The matrix is singular if its condition number is infinite and ill-conditioned if its reciprocal
approaches the machine’s floating point precision (e.g. 1e−6 for single precision and 1e−12

for double).

• The (Moore-Penrose) pseudo-inverse of a matrix is defined as

A+ = V

[

diag

(
1

wi

)]

UT, (A.2)

180 APPENDIX A. SINGULAR VALUE DECOMPOSITION

where the expression 1
wi

is replaced by 0 for wi=0. Indeed, due to the column-orthogonality

of U and V, A+A = In. For square non-singular matrices, the expression (A.2) gives the
inverse of the matrix: A−1 = A+.

• Let us consider a linear mapping Rn → Rm represented by matrix A:

AX = B. (A.3)

When A is singular, then there exist a subspace of Rn mapped to zero: AX = 0. This
subspace is called the nullspace Φ(A) of matrix A and its dimension is called the nullity of A.
The nullspace of A is spanned by columns of matrix V corresponding to the zero values wi.
The subspace of Rm containing vectors which are mapped to by expression (A.3) is called
the range of A. The range of a matrix A is spanned by columns of matrix U corresponding
to the non-zero values wi. The dimension of the range is called the rank r of the matrix and
is equal to the number of non-zero values of wi. Rank plus nullity of a matrix equals n.

• All the vectors X satisfying (A.3) are given by:

X = A+B+
n∑

i=r+1

λiv
i, λi ∈ R, (A.4)

where vectors vi are the columns of V and λi are arbitrary scalar factors. For vectors B not
lying in the range of A the expression (A.4) returns a vector from the range of A minimising
the residual ‖AX−B‖. For singular matrices A, the expression A+B returns a vector of the
minimal length satisfying (A.3). In homogeneous systems we have A+B = 0, thus any linear
combination of vectors vi spanning the nullspace Φ(A) satisfies (A.3).

Appendix B

Proof for Singular Configurations

of Cameras of Type C

In this section we derive the relative rotation matrices that are singular for cameras of type C
(cf. table 4.4), i.e. cameras with known skew factor and principal point. Two sub-cases will
be considered: one camera viewing a parallelepiped with only right angles and multiple cameras
viewing one parallelepiped with unknown shape.

Let e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) be the usual three elementary vectors. We
now prove the following proposition, that will be used below to derive singularities.

Proposition 1 Let matrices A = diag(a1, a2, a3) and B = diag(b1, b2, b3) be diagonal and matrix
R be a rotation matrix. There exist matrices A and B different from I3 satisfying

A ∼ R>BR (B.1)

in two following cases:

(i) all columns rj of R are elementary vectors (up to sign), i.e. there exist permutations (j1, j2, j3)
and (i1, i2, i3) of (1, 2, 3) with:

∀k ∈ {1, 2, 3} : rjk
= ±eik

(ii) a single column j1 of R is an elementary vector (up to sign): rj1 = ±ei1 . In such a case
matrices A and B must satisfy aj2 = aj3 and bi2 = bi3 , where {j2, j3} = {1, 2, 3} \ {j1} and
{i2, i3} = {1, 2, 3} \ {i1}.

Note that in case (ii) there is no ambiguity in the estimation of values
aj2

aj3

and
bi2

bi3

.

Proof: Consider matrices A and B that satisfy equation (B.1), and let k be the scale factor
such that: A = kR>BR. It follows that A and B are similar and that their spectra are identical up
to the scale factor k, i.e. (a1, a2, a3) = kP (b1, b2, b3), where P may denote any permutation [Golub
and van Loan, 1989].

182
APPENDIX B. PROOF FOR SINGULAR CONFIGURATIONS OF CAMERAS

OF TYPE C

Equation (B.1) can be rewritten as:

R

a1
a2

a3

 = k

b1
b2

b3

R (B.2)

In the following the elements of matrix R will be denoted as rij .

”⇒” Let us begin by multiplying equation (B.2), successively, by e1, e2, e3. The following equa-
tions are obtained:

∀i, j ∈ {1..3} : (aj − kbi)rij = 0. (B.3)

The condition (a1, a2, a3) = kP (b1, b2, b3) can be satisfied in six possible ways, corresponding
to the six permutations of elements (b1, b2, b3). In the following let us consider, without loss of
generality, that (a1, a2, a3) = k(b1, b2, b3). The reasoning for the remaining permutations can be
done analogously.

Let us consider separately the three following cases:

(i) the ai are mutually different.

According to the assumptions:

(a1 6= kb2)
(a1 6= kb3)
(a2 6= kb1)
(a2 6= kb3)
(a3 6= kb1)
(a3 6= kb2)

⇒

(r21 = 0)
(r31 = 0)
(r12 = 0)
(r32 = 0)
(r13 = 0)
(r23 = 0)

r>j rj = 1

detR = 1. (B.4)

All the conditions (B.4) are satisfied if and only if the matrix R is of the form

R =

±1 0 0
0 ±1 0
0 0 ±1

such that detR = 1. Thus, R is of form (i) given in proposition 1.

Performing the analogous reasoning for the other permutations, it is easy to show that all
singular cases for the assumptions made here, are described by case (i) of the proposition.

(ii) a1 = a2 6= a3 .

According to the assumptions:

(a1 6= kb3)
(a2 6= kb3)
(a3 6= kb1)
(a3 6= kb2)

⇒

(r31 = 0)
(r32 = 0)
(r13 = 0)
(r23 = 0)

r>j rj = 1

detR = 1. (B.5)

183

The conditions (B.5) imply that r3 = ±e3. Together with the assumption a1 = a2 (which
implies b1 = b2), we identify here the conditions corresponding to case (ii) of the proposition.
Again, applying the same reasoning to all possible cases of aj1 = aj2 and all permutation
P in (a1, a2, a3) = kP (b1, b2, b3), leads always to case (ii) of the proposition. Note that all
matrices R satisfying condition (i) satisfy also condition (ii).

(iii) a1 = a2 = a3.

This is equivalent to A ∼ B ∼ I3, which is excluded in the proposition.

”⇐” Let (i1, i2, i3) and (j1, j2, j3) be two permutations of (1, 2, 3) and the rotation matrix R such
that one of its columns is an elementary vector: rj1 = ei1 . Applying the orthogonality condition
on R, its elements rij must satisfy, for some angle θ:

aj1 = ±kbi1
aj2 cos θ = kbi2 cos θ
aj2 sin θ = kbi3 sin θ
aj3 sin θ = kbi2 sin θ
aj3 cos θ = kbi3 cos θ

(B.6)

Equation (B.2) implies that all elements rij must satisfy rijaj = krijbi. Developing this ex-
pression for i = i1, i2, i3 and j = j1, j2, j3 and applying conditions (B.7) leads to:

ri1j1 = ±1
ri1j2 = ri1j3 = ri2j1 = ri3j1 = 0
ri2j2 = ri3j3 = cos θ
ri3j2 = −ri2j3 = − sin θ

. (B.7)

Conditions (B.6) are satisfied if and only if:

(sin θ = 0 ∧ aj , bi ∈ R)

∨(cos θ = 0 ∧ aj , bi ∈ R)

∨(θ ∈ {0..2π} ∧ aj2 = aj3 = kbi2 = kbi3)

Thus, equation (B.1) is satisfied for the following forms of matrices A, B, R:

1. All columns rj = ei and the values aj , bi are arbitrary. This corresponds to case (i) of the
proposition.

2. One column rj1 = ei1 and the values aj2 = aj3 = kbi2 = kbi3 . Only matrices with two
equal diagonal elements satisfy equation (B.1). This means that there is no ambiguity in the

computation of ratios of elements
aj2

aj3

and
bi2

bi3

. This corresponds to case (ii) of the proposition.

184
APPENDIX B. PROOF FOR SINGULAR CONFIGURATIONS OF CAMERAS

OF TYPE C

One Parallelepiped Seen by One Camera

In the following, the rotation matrices that are singular for case C-3-0 (cf. section 4.5) will be
derived. Case C-3-0 corresponds to a known principal point and skew and parallelepiped with three
right angles, i.e. ω′′ and µ′′ are diagonal matrices: ω′′ = diag(b1, b2, b3) and µ′′ = diag(a1, a2, a3).

According to the definition of singularity given in section 4.5, proposition 1 gives us directly
the singular relative rotations R:

(i) R = (±ei1 ,±ei2 ,±ei3), where (i1, i2, i3) is a permutation of (1, 2, 3) and such that detR = +1.
In that case, none of the elements of ω′′ and µ′′ can be estimated, i.e. calibration fails
completely. This case corresponds to configurations where each edge of the parallelepiped is
parallel to one of the three camera axes.

(ii) One of the columns of R is an elementary vector. This corresponds to the case when one
camera axis is parallel to one axis of the parallelepiped. In that case, although calibration
fails overall, some individual parameters may indeed be estimated successfully. According to
the results of proposition (1) and to the form of matrices ω and µ, we can summarize this in
the following table. For example, if r2 = ±e3, the aspect ratio τ as well as the length ratio
l1
l3

of parallelepiped edges, can be estimated.

= ± e1 e2 e3
r1

l2
l3
, αv

l2
l3
, αu

l2
l3
, τ

r2
l1
l3
, αv

l1
l3
, αu

l1
l3
, τ

r3
l1
l2
, αv

l1
l2
, αu

l1
l2
, τ

185

One Parallelepiped Seen in Two Cameras

As mentioned previously, due to the observation of a parallelepiped, we know affine scene structure,
i.e. the plane at infinity in a projective reconstruction. We can thus apply the appropriate results
of [Kahl, 1999] on singularities for general self-calibration. We will show that self-calibration of
cameras with known principal point and zero skew is singular for the same type of rotations as
the calibration in case C-3-0 described above. Let the true intrinsic parameters of the cameras be
represented by diagonal matrices ω1 and ω2 and the estimated matrices be represented by diagonal
matrices ω′

1, ω′
2. The coordinate system is defined such that the rotation of the first camera is

R1 = I3 and the rotation of the second camera is R2. Let Cf denote a 3× 3 matrix corresponding
to a false absolute conic on the plane at infinity. The image of a conic lying on the plane at infinity
is [Kahl, 1999] represented by

ω′
i ∼ Ki−TRiCfR

>
i Ki

T, (B.8)

Let us consider matrices ω′′
i = Ki

Tω′
iKi

−T. Then:

ω′′
i ∼ RiCfR>i . (B.9)

Matrices ω′′
i must be diagonal. Let us represent them as

ω′
1 ∼ diag(a1, a2, a3) and ω′′

2 ∼ diag(b1, b2, b3). Using the equation (B.9) and due to R1 = I3 we
have Cf ∼ diag(a1, a2, a3). Equation (B.9) aplied to the second camera is ω′′

2 ∼ R2CfR
>
2 . The

rotation is singular when there exist matrices Cf and ω′′
2 different from the identity that satisfy

equation (B.9). According to proposition 1 the following cases are singular:

(i) R2 = (±ei1 ,±ei2 ,±ei3), where (i1, i2, i3) is a permutation of (1, 2, 3) and detR2 = +1. No
intrinsic parameter can be estimated. This corresponds to cases where each axis of the first
camera is parallel to some axis of the second camera (not necessarily to the corresponding
axis).

(ii) One column of R2 is an elementary vector. This corresponds to cases where one axis of the
first camera is parallel to one axis of the second camera. Using the results of proposition 1
and the form of matrices ω1 and ω2, in the following special cases some individual intrinsic
parameters can be estimated:

= ± e1 e2 e3
r1 αv,1, αv,2 αv,1, αu,2 αv,1, τ2
r2 αu,1, αv,2 αu,1, αu,2 αu,1, τ2
r3 τ1, αv,2 τ1, αu,2 τ1, τ2

186
APPENDIX B. PROOF FOR SINGULAR CONFIGURATIONS OF CAMERAS

OF TYPE C

Appendix C

Implementation of r-Methods

The current implementation of the system contains a dictionary including about sixty methods. It
includes r-methods that solve constraints by computing (output) coordinates of one output object.
Note that certain r-methods compute only a subset of the coordinates in the output object (for
example only a normal vector of a plane).

How to Not Forget Any Possible r-Method

Our dictionary contains all the r-methods which compute coordinates of a single object. To build
all the r-methods in an exhaustive way, we have proceeded as follows. In order to compute a finite
number of solutions, the equation system satisfied by an r-method must be well-constrained. A
necessary condition is that the r-method is “square”, that is the number of equations (internal
or not) must be equal to the number of output variables. This rule has been used to design
methodically the r-methods included in our dictionary. Based on the allowed set of geometric
constraints, it is easy to find all the combinations of constraints whose number of degrees of freedom
sums up to the one of the output object. However, this simple count is not a sufficient condition to
ensure that the corresponding system is well-constrained. As an example, let us consider a plane
as output object. Both point-plane incidence constraint and plane-plane orthogonality constraint
fix 1 degree of freedom of a plane. However, the orthogonality constraint is related only to plane
coordinates corresponding to the plane normal. It is thus not possible to compute a plane position
using 3 orthogonality constraints. On the opposite, a plane-point incidence constraint relates all
the coordinates belonging to both objects so that 3 plane-point incidence constraints can determine
a plane.

A more robust methodology is based on graph properties. Without going into details, a well-
constrained equation system corresponding to a “correct” r-method has a perfect matching, that
is a maximum matching including all the output variables and all the equations (see [Pothen and
Chin-Fan, 1990]).

188 APPENDIX C. IMPLEMENTATION OF R-METHODS

Design of r-Methods

Linear r-method routines use linear algebra. To build fast non-linear r-method execution procedures
able to yield all the solutions, we made symbolic manipulations of the equations involved in r-
methods.

An example of an r-method solving 3 quadratic distance equations is sketched in figure 8.6–(b).
A point is computed using distance constraints from 3 other points. Using the known coordinates
of 3 points (as input variables), the equations on coordinates (x, y, z) of the 4th point are:

F1 := x2 + y2 + z2 + c11x+ c12y + c13z + c14;

F2 := x2 + y2 + z2 + c21x+ c22y + c23z + c24;

F3 := x2 + y2 + z2 + c31x+ c32y + c33z + c34;

Solving 3 quadratic equations is a very difficult problem for automatic symbolic methods.
However using the assignment G1 = F1 − F2 and G2 = F1 − F3 allows expressing two of the
variables (x, y, z) in terms of the third one using linear equations. Thus, using one of equations Fi,
two solutions satisfying the whole system are obtained. Finally, the r-method execution procedure
will result in a sequence of fast atomic steps: evaluations of polynomial terms and solving of
equations of the form: a x2 + b x + c = 0 (giving the at most two possible solutions over the real
numbers).

Only Well-Conditioned r-Methods Are Created in the Equa-
tion Graph

Certain r-methods are symetric in a sense that output and input variables are interchangeable. For
example, when a point P (x, y, z) is constrained only by a point-line incidence constraint (fixing
2 dofs), 3 symetric r-methods could be applied: any of the coordinates x, y, or z are used as
input variable (together with the coordinates of the line), and the values of the two other variables
are computed by the r-method. Among the 3 r-methods that could be built, we create the best-
conditioned one (according to the values of input variables given by the initialization phase).
Indeed, depending on the initial line position, the choice of the input coordinate influences the
numerical properties of the linear system used to compute the two (output) point coordinates, as
illustrated in figure C.1. Using initial values of input variables, these properties can be analysed
using SVD.

189

���

���

�

� �

Figure C.1: Well-conditioned and bad conditioned computations. Based on the represented line
equation, the computation of the coordinate y using values of x is much more sensitive to noise
than the computation of coordinate x using values of y.

190 APPENDIX C. IMPLEMENTATION OF R-METHODS

Bibliography

S. Ait-Aoudia, R. Jegou, and D. Michelucci. Reduction of constraint systems. In Compugraphic,
1993.

M. Armstrong, A. Zisserman, and P. Beardsley. Euclidean structure from uncalibrated images. In
E. Hancock, editor, Proceedings of the fifth British Machine Vision Conference, York, England,
volume 2, pages 509–518, September 1994.

M. Armstrong, A. Zisserman, and R. Hartley. Self-calibration from image triplets. In B. Buxton and
R. Cipolla, editors, Proceedings of the 4th European Conference on Computer Vision, Cambridge,
England, volume 1064 of Lecture Notes in Computer Science, pages 3–16. Springer-Verlag, April
1996.

S. Avidan and A. Shashua. Threading fundamental matrices. Lecture Notes in Computer Science,
1406:124–140, 1998.

D. Avis and K. Fukuda. Reverse Search Enumeration. Discrete Applied Mathematics, 6:21–46,
1996.

A. Bartoli and P. Sturm. Constrained structure and motion from N views of a piecewise planar
scene. In Proceedings of the First International Symposium on Virtual and Augmented Architec-
ture, VAA’01, Dublin, Ireland, pages 195–206, June 2001.

P.-L. Bazin. A parametric scene reduction algorithm from geometric relations. In Proceedings of
Vision Geometry IX, SPIE’s 45th annual meeting, San Diego, June 2000.

P. Beardsley, P. Torr, and A. Zisserman. 3D model acquisition from extended image sequences.
In B. Buxton and R. Cipolla, editors, Proceedings of the 4th European Conference on Computer
Vision, Cambridge, England, volume 1065 of Lecture Notes in Computer Science, pages 683–695.
Springer-Verlag, April 1996.

A. Bjorck. Numerical Methods For Least Squares Problems. SIAM, 1990.

D. Bondyfalat and S. Bougnoux. Imposing euclidean constraints during self-calibration processes.
In R. Koch and L. Van Gool, editors, Proceedings of the SMILE Workshop on 3D Structure from
Multiple Images of Large-Scale Environments, Freiburg, Germany, volume 1506 of Lecture Notes
in Computer Science, pages 224–235. Springer-Verlag, June 1998.

D. Bondyfalat, T. Papadopoulo, and B. Mourrain. Using scene constraints during the calibration
procedure. In Proceedings of the 8th International Conference on Computer Vision, Vancouver,
Canada, pages 124–130, July 1999.

A. Borning. ThingLab: A Constraint–Oriented Simulation Laboratory. PhD thesis, Stanford
University, 1979.

192 BIBLIOGRAPHY

A. Brunn, F. Lang, E. Gülch, and W. Förstner. A hybrid concept for 3d building acquisition.
isprs Journal of Photogrammetry and Remote Sensing, 53(2):119–129, April 1998.

T. Buchanan. The twisted cubic and camera calibration. Computer Vision, Graphics and Image
Processing, 42(1):130–132, April 1988.

B. Caprile and V. Torre. Using vanishing points for camera calibration. International Journal of
Computer Vision, 4:127–140, 1990.

S. Carlsson. Multiple image invariants using the double algebra. In J.L. Mundy and A. Zissermann,
editors, Proceeding of the darpa–esprit workshop on Applications of Invariants in Computer
Vision, Azores, Portugal, pages 335–350, October 1993.

C.S. Chen, C.G. Yu, and Y.P. Hung. New calibration-free approach for augmented reality based on
parameterized cuboid structure. Proceedings of the 7th International Conference on Computer
Vision, Kerkyra, Greece, 4:30–37, 1999.

R. Cipolla and E. Boyer. 3d model acquisition from uncalibrated images. In Proceedings of IAPR
Workshop on Computer Vision, Chiba, Japan, pages 559–568, November 1998.

S.C. Cornou, M. Dhome, and P. Sayd. Architectural reconstruction with multiple views and
geometric constraints. In Proceedings of the 14th British Machine Vision Conference, Norwich,
England, pages 739–749, September 2003.

J.M. Coughlan and A.L. Yuille. Manhattan world: Compass direction from a single image by
bayesian inference. In Proceedings of the 7th International Conference on Computer Vision,
Kerkyra, Greece, pages 941–947, June 1999.

A. Criminisi, I. D. Reid, and A. Zisserman. Single view metrology. International Journal of
Computer Vision, 40(2):123–148, 2000.

D.Bondyfalat, B. Mourrain, and T. Papadopoulo. An application of automatic theorem proving
in computer vision. In Automated Deduction in Geometry, pages 207–231, 1999.

L. de Agapito, R.I. Hartley, and E. Hayman. Linear self-calibration of a rotating and zooming
camera. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Fort
Collins, Colorado, USA, 1999.

P.E. Debevec, C.J. Taylor, and J. Malik. Modeling and rendering architecture from photographs:
a hybrid geometry-and image-based approach. In siggraph ’96, New Orleans, August 1996.

S. Dedieu, P. Guitton, C. Schlick, and P. Reuter. Reality: An interactive reconstructiuon tool of
3d objects from photographs. In Proceedings of the 6th International Fall Workshop VISION,
MODELING, AND VISUALIZATION, Stuttgart, Germany, pages 195–202, November 2001.

A.R. Dick, P.H.S. Torr, S.F. Ruffle, and R. Cipolla. Combining single view recognition and mul-
tiple view stereo for architectural scenes. In Proceedings of the 8th International Conference on
Computer Vision, Vancouver, Canada, 2001.

S. Ducasse, M. Blay-Fornarino, and A.M. Pinna-Déry. A reflective model for first class dependen-
cies. In Tenth Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA, pages 265–280, October 1995.

A.L. Dulmage and N.S. Mendelsohn. Covering of bipartite graphs. Canad. J. Math., 10:517–534,
1958.

BIBLIOGRAPHY 193

O. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In G. Sandini,
editor, Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita
Ligure, Italy, pages 563–578. Springer-Verlag, May 1992.

O. Faugeras. Three-Dimensional Computer Vision - A Geometric Viewpoint. Artificial intelligence.
The MIT Press, Cambridge, MA, USA, Cambridge, MA, 1993.

O. Faugeras and B. Mourrain. On the geometry and algebra of the point and line correspondences
between n images. Technical Report 2665, inria, October 1995.

O. Faugeras, L. Quan, and P. Sturm. Self-calibration of a 1d projective camera and its application
to the self-calibration of a 2d projective camera. In Proceedings of the 5th European Conference
on Computer Vision, Freiburg, Germany, pages 36–52, June 1998.

O.D. Faugeras, Q.T. Luong, and S.J. Maybank. Camera self-calibration: Theory and experiments.
In G. Sandini, editor, Proceedings of the 2nd European Conference on Computer Vision, Santa
Margherita Ligure, Italy, pages 321–334. Springer-Verlag, May 1992.

O.D. Faugeras and G. Toscani. The calibration problem for stereo. In Proceedings of the Conference
on Computer Vision and Pattern Recognition, Miami Beach, Florida, USA, pages 15–20, June
1986.

M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Graphics and Image Processing, 24
(6):381 – 395, June 1981.

A.W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open image sequences.
In European Conference on Computer Vision, pages 311–326, june 1998.

W. Förstner, A. Brunn, and S. Heuel. Statistically testing uncertain geometric relations. In
G. Sommer, N. Krüger, and Ch. Perwass, editors, Mustererkennung 2000, pages 17–26. Springer,
September 2000.

B. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint solver. Communica-
tions of the ACM, 33(1):54–63, January 1990.

I. Fudos and C.M. Hoffmann. A graph-constructive approach to solving systems of geometric
constraints. ACM Transactions on Graphics, 16(2):179–216, 1997.

M. Gangnet and B. Rosenberg. Constraint programming and graph algorithms. In Second Inter-
national Symposium on Artificial Intelligence and Mathematics, 1992.

P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, 1981.

G.H. Golub and C.F. van Loan. Matrix Computation. The Johns Hopkins University Press,
Baltimore, 1989.

G. Gracie. Analytical photogrammetry applied to single terrestrial photograph mensuration. In
Proceedings of the XIth International Congress of Photogrammetry, Lausanne, Switzerland, July
1968.

E. Grossmann. Maximum Likelihood 3D Reconstruction From One or More Uncalibrated Views
Under Geometric Constraints. Ph.d. thesis, Universidade Técnica de Lisboa, Portugal, 2002.

194 BIBLIOGRAPHY

E. Grossmann and J. Santos-Victor. Dual representations for vision-based 3d reconstruction. In
The Eleventh British Machine Vision Conference, University of Bristol, UK, pages 516–526,
2000.

E. Grossmann and J. Santos-Victor. Single and multi-view reconstruction of structured scenes.
In Proceedings of the Fifth Asian Conference on Computer Vision, Melbourne, Australia, pages
93–104, January 2002.

P. Gurdjos and R. Payrissat. Plane-based calibration of a camera with varying focal length: the
centre line constraint. In Proceedings of the 12th British Machine Vision Conference, Manchester,
UK, pages 623–632, September 2001.

P. Gurdjos and P. Sturm. Methods and geometry for plane-based self-calibration. In Proceedings of
the Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, pages
491–496, 2003.

R.I. Hartley. Euclidean reconstruction from uncalibrated views. In Proceeding of the darpa–esprit

workshop on Applications of Invariants in Computer Vision, Azores, Portugal, pages 187–202,
October 1993.

R.I. Hartley. Self-calibration from multiple views with a rotating camera. In Proceedings of the 3rd
European Conference on Computer Vision, Stockholm, Sweden, pages 471–478. Springer-Verlag,
May 1994.

R.I. Hartley. A linear method for reconstruction from lines and points. In E. Grimson, editor,
Proceedings of the 5th International Conference on Computer Vision, Cambridge, Massachusetts,
USA, pages 882–887. ieee Computer Society Press, June 1995.

R.I. Hartley. Lines and points in three views and the trifocal tensor. International Journal of
Computer Vision, 22(2):125–140, 1997a.

R.I. Hartley. Self-calibration of stationary cameras. International Journal of Computer Vision, 22
(1):5–23, 1997b.

R.I. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, Urbana-Champaign, Illinois, USA,
pages 761–764, 1992.

R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University
Press, June 2000.

O. Henricsson, A. Streilein, and A. Gruen. Automated 3-D reconstruction of buildings and visu-
alization of city models. In Proceedings of the Workshop on 3D City Models, Bonn, Germany,
October 1996.

S. Heuel. Points, lines and planes and their optimal estimation. In Pattern Recognition, 23rd
DAGM Symposium, number 2191 in LNCS, pages 92–99. Springer, September 2001.

A. Heyden and K. Åström. Euclidean reconstruction from image sequences with varying and
unknown focal length and principal point. In Proceedings of the Conference on Computer Vision
and Pattern Recognition, Puerto Rico, USA, pages 438–443. ieee Computer Society Press, June
1997.

C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Finding solvable subsets of constraint graphs.
In Principles and Practice of Constraint Programming CP’97, pages 463–477, 1997.

BIBLIOGRAPHY 195

Y. Horry, K.I. Anjyo, and K. Arai. Tour into the picture: using a spidery mesh interface to
make animation from a single image. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 225–232. ACM Press/Addison-Wesley Publishing Co.,
1997. ISBN 0-89791-896-7.

D. Jacobs. Linear fitting with missing data: Applications to structure-from-motion and to char-
acterizing intensity images. In Proceedings of the Conference on Computer Vision and Pattern
Recognition, Puerto Rico, USA, pages 206–212. ieee Computer Society Press, June 1997.

D. Jelinek and C.J. Taylor. Reconstruction of linearly parameterized models from single images
with a camera of unknown focal length. ieee Transactions on Pattern Analysis and Machine
Intelligence, 23(7):767–774, July 2000.

C. Jermann, B. Neveu, and G. Trombettoni. Algorithms for Identifying Rigid Subsystems in
Geometric Constraint Systems. In Proc.of IJCAI’03, International Joint Conference on Artificial
Intelligence, pages 233–238, 2003.

B. Johansson. View synthesis and 3D reconstruction of piecewise planar scenes using intersection
lines between the planes. In Proceedings of the 7th International Conference on Computer Vision,
Kerkyra, Greece, pages 54–59, Kerkyra, Greece, September 1999. IEEE press.

F. Kahl. Critical motions and ambiguous euclidean reconstructions in auto-calibration. In Pro-
ceedings of the 7th International Conference on Computer Vision, Kerkyra, Greece, volume 2,
pages 469–475, 1999.

F. Kahl, B. Triggs, and K. Åström. Critical motions for auto-calibration when some intrinsic
parameters can vary. Journal of Mathematical Imaging and Vision, 13(2):131–146, October
2000.

K. Kanatani. Statistical Optimisation for Geometric Computation: Theory and Pra. Elsevier
Science, 1996.

R. Kaucic, R.I. Hartley, and N.Y. Dano. Plane-based projective reconstruction. In Proceedings
of the 8th International Conference on Computer Vision, Vancouver, Canada, pages 420–427,
2001.

J. Kosecka and W. Zhang. Video compass. In Proceedings of the 7th European Conference on
Computer Vision, Copenhagen, Denmark, pages 476–491, May 2002.

G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

R. Kumar, P. Anandan, and K. Hanna. Direct recovery of shape from multiple views: a parallax
based approach. In Proceedings of the 12th International Conference on Pattern Recognition,
Jerusalem, Israel, pages 685–688, 1994.

G. Kwaiter and V. Gaildrat. Modelling with constraints : A bibliographical survey. In International
Conference on Information Visualisation, IV’98, pages 211–219, 1998.

E. Lahaye. Une méthode de résolution d’une catégorie d’équations transcendantes. Compte-rendu
des Séances de L’Académie des Sciences, 198:1840–1842, 1934.

H. Lamure and D. Michelucci. Qualitative study of geometric constraints. In Beat Brüderlin
and Dieter Roller, editors, Workshop on Geometric Constraint Solving and Applications, pages
134–145, Technical University of Ilmenau, Germany, 1997.

196 BIBLIOGRAPHY

O. Lhomme, P. Kuzo, and P. Mace. Desargues : a constraint-based system for 3d projective
geometry. In Workshop on Geometric Constraint Solving and Applications. Ilmenau, Allemagne,
September 1997.

D. Liebowitz and A. Zisserman. Metric rectification for perspective images of planes. In Proceedings
of the Conference on Computer Vision and Pattern Recognition, Santa Barbara, California,
USA, pages 482–488, June 1998.

D. Liebowitz and A. Zisserman. Combining scene and auto-calibration constraints. In Proceedings
of the 7th International Conference on Computer Vision, Kerkyra, Greece, September 1999.

Q.T. Luong and O.D. Faugeras. Determining the fundamental matrix with planes: Instability and
new algorithms. In Proceedings of the Conference on Computer Vision and Pattern Recognition,
New York, USA, pages 489–494, June 1993.

E. Malis and R. Cipolla. Camera self-calibration from unknown planar structures enforcing the
multi-view constraints between collineations. ieee Transactions on Pattern Analysis and Ma-
chine Intelligence, 4(9), September 2002.

D. Martinec and T. Padjla. Structure from many perspective images with occlusions. In Proceedings
of the 7th European Conference on Computer Vision, Copenhagen, Denmark, pages 355–369,
2002.

D. Martinec and T. Pajdla. Structure from many perspective images with occlusions. In Proceedings
of the 7th European Conference on Computer Vision, Copenhagen, Denmark, pages 355–369,
May 2002.

S.J. Maybank and O.D. Faugeras. A theory of self calibration of a moving camera. International
Journal of Computer Vision, 8(2):123–151, 1992.

C. McGlone. Bundle adjustment with object space geometric constraints for site modeling. In
D.M. McKeown and Dowman, editors, Proceedings of the spie Conference on Integrating Pho-
togrammetric Techniques with Scene Analysis and Machine Vision II, Orlando, Florida, USA,
volume 2486, pages 25–36, April 1995.

P. McLauchlan, X. Shen, A. Manessis, P. Palmer, and A. Hilton. Surface-based structure-from-
motion using feature groupings. In Proceedings of the Fourth Asian Conference on Computer
Vision, pages 699–705, 2000.

T. Moons, L. Van Gool, M. van Diest, and E. Pauwels. Affine reconstruction from perspective
image pairs. In Proceeding of the darpa–esprit workshop on Applications of Invariants in
Computer Vision, Azores, Portugal, pages 249–266, October 1993.

D.D. Morris and T. Kanade. A unified factorization algorithm for points, line segments and planes
with uncertainty models. In Proceedings of the 6th International Conference on Computer Vision,
Bombay, India, pages 696–702, January 1998.

N. Navab, Y. Genc, and M. Appel. Lines in one orthographic and two perspective views. ieee

Transactions on Pattern Analysis and Machine Intelligence, 25(7):912–917, July 2003.

J. Owen. Algebraic solution for geometry from dimensional constraints. In Proceedings of the 1st
ACM Symposium on Solid Modeling and CAD/CAM Applications, pages 397–407. ACM Press,
1991.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

BIBLIOGRAPHY 197

M. Pollefeys. Tutorial on 3d modelling from images. In http://www.esat.kuleuven.ac.be/ polle-
fey/tutorial/, 2000.

M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruction in spite of vary-
ing and unknown internal camera parameters. In Proceedings of the 6th International Conference
on Computer Vision, Bombay, India, pages 90–95, January 1998.

M. Pollefeys and L. Van Gool. A stratified approach to metric self-calibration. In Proceedings of
the Conference on Computer Vision and Pattern Recognition, Puerto Rico, USA, pages 407–412.
ieee Computer Society Press, June 1997.

M. Pollefeys, L. Van Gool, and M. Proesmans. Euclidean 3D reconstruction from image sequences
with variable focal lengths. In B. Buxton and R. Cipolla, editors, Proceedings of the 4th Eu-
ropean Conference on Computer Vision, Cambridge, England, volume 1064 of Lecture Notes in
Computer Science, pages 31–42. Springer-Verlag, April 1996.

A. Pothen and J. Chin-Fan. Computing the block triangular form of a sparse matrix. ACM
Transactions on Mathematical Software, 16(4):303–324, 1990.

P. Poulin, M. Ouimet, and M.-C. Frasson. Interactively modeling with photogrammetry. In
Proceedings of Eurographics Workshop on Rendering 98, pages 93–104, June 1998.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C. Cam-
bridge University Press, 1988.

L. Quan and T. Kanade. A factorization method for affine structure from line correspondences.
In Proceedings of the Conference on Computer Vision and Pattern Recognition, San Francisco,
California, USA, pages 803–808, 1996.

I.D. Reid and D.W. Murray. Active tracking of foveated feature clusters using affine structure.
International Journal of Computer Vision, 18(1):41–60, April 1996.

J.C. Régin. Développement d’outils algorithmiques pour l’Intelligence Artificielle. Application à la
chimie organique. PhD thesis, LIRMM, Montpellier, France, 1995.

D.P. Robertson and R. Cipolla. An interactive system for cosntraint-based modelling. In The
Eleventh British Machine Vision Conference, University of Bristol, UK, pages 536–545, Septem-
ber 2000.

D.P. Robertson and R. Cipolla. Building architectural models from many views using map con-
straints. In Proceedings of the 7th European Conference on Computer Vision, Copenhagen,
Denmark, pages 155–169, May 2002.

C. Rother. Linear multi-view reconstruction of points, lines, planes and cameras. In Proceedings
of the 9th International Conference on Computer Vision, Nice, France, pages 1210–1217, 2003a.

C. Rother. Multi-view reconstruction and camera recovery using a real or virtual reference plane.
PhD thesis, KTH, Stockholm, Sweden, 2003b.

C. Rother and S. Carlsson. Linear multi view reconstruction and camera recovery. In Proceedings
of the 8th International Conference on Computer Vision, Vancouver, Canada, pages 42–49, July
2001.

C. Rother and S. Carlsson. Linear multi view reconstruction and camera recovery using a reference
plane. International Journal of Computer Vision, 9(49(2/3)):117–141, 2002.

198 BIBLIOGRAPHY

C. Rother, S. Carlsson, and D. Tell. Projective factorization of planes and cameras in multiple
views. In Proceedings of the 15th International Conference on Pattern Recognition, Quebec,
Canada, pages 737–740, 2002.

R.H. Schrand and R. Seidl. Canoma Visual Insight. Coriolis Value, 2000. URL http://www.

metacreations.com/products/canoma/.

J.G. Semple and G.T. Kneebone. Algebraic Projective Geometry. Oxford Science Publication,
1952.

H.-Y. Shum, M. Han, and R. Szeliski. Interactive construction of 3d models from panoramic
mosaics. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Santa
Barbara, California, USA, pages 427–433, June 1998.

S. Sorlin and C. Solnon. A global constraint for graph isomorphism problems. In Proc of the first
conference CP-AI-OR’2004, Nice, France, 2004.

A. Sosnov. Modélisation Géométrique par Séparation de Contraintes. Thèse de doctorat, Université
de Nantes, 2003.

A. Sosnov and P. Macé. Rapid algebraic resolution of 3d geometric contraints and control of their
consistency. In Fourth International Workshop on Automated Deduction in Geometry (ADG’02),
2002.

G. Sparr. An algebraic/analytic method for reconstruction from image correspondences. In Proceed-
ings of the 7th Scandinavian Conference on Image Analysis, Aalborg, Denmark, pages 274–281,
1991a.

G. Sparr. Projective invariants for affine shapes of point configurations. In Proceeding of the
darpa–esprit workshop on Applications of Invariants in Computer Vision, Reykjavik, Iceland,
pages 151–170, March 1991b.

G. Sparr. Depth computations from polyhedral images. In G. Sandini, editor, Proceedings of the
2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pages 378–386.
Springer-Verlag, May 1992a.

G. Sparr. On the “reconstruction” of impossible objects. In Proceedings Swedish Society for Auto-
mated Image Analysis, Uppsala, Sweden, pages 109–112, 1992b.

G. Sparr. Simultaneous reconstruction of scene structure and camera locations from uncalibrated
image sequences. In Proceedings of the 13th International Conference on Pattern Recognition,
Vienna, Austria, volume I, pages 328–333. ieee Computer Society Press, August 1996.

G. Sparr. Euclidean and affine structure/motion for uncalibrated cameras from affine shape and
subsidiary information. In SMILE, pages 187–207, 1998.

J. Stolfi. Oriented Projective Geometry. Academic Press, 1991.

P. Sturm. Critical motion sequences for monocular self-calibration and uncalibrated euclidean
reconstruction. In Proceedings of the Conference on Computer Vision and Pattern Recognition,
Puerto Rico, USA, pages 1100–1105, June 1997.

P. Sturm. Algorithms for plane-based pose estimation. In Proceedings of the Conference on Com-
puter Vision and Pattern Recognition, Hilton Head Island, South Carolina, USA, pages 1010–
1017, June 2000.

BIBLIOGRAPHY 199

P. Sturm and S. Maybank. On plane-based camera calibration: A general algorithm, singularities,
applications. In Proceedings of the Conference on Computer Vision and Pattern Recognition,
Fort Collins, Colorado, USA, pages 432–437, June 1999a.

P. Sturm and S.J. Maybank. A method for interactive 3D reconstruction of piecewise planar objects
from single images. In T. Pridmore and D. Elliman, editors, Proceedings of the tenth British
Machine Vision Conference, Nottingham, England, pages 265–274. British Machine Vision As-
sociation, September 1999b.

P. Sturm and B. Triggs. A factorization based algorithm for multi-image projective structure and
motion. In B. Buxton and R. Cipolla, editors, Proceedings of the 4th European Conference on
Computer Vision, Cambridge, England, volume 1065 of Lecture Notes in Computer Science,
pages 709–720. Springer-Verlag, April 1996.

Z. Sun, A. M. Tekalp, N. Navab, and V. Ramesh. Short papers - shape extraction and analysis -
interactive optimization of 3d shape and 2d correspondence using multiple geometric constraints
via pocs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4):562–568, 2002.
ISSN 0162-8828.

G. Sunde. Specification of shapes by dimensions and other geometric constraints. In IFIP WG 5.2
Geometric Modeling, 1986.

I. Sutherland. Sketchpad: A Man-Machine Graphical Communication System. PhD thesis, De-
partment of Electrical Engineering, MIT, 1963.

D. Svedberg and S. Carlsson. Calibration, pose and novel views from single images of constrained
scenes. Pattern Recognition Letters, 21(13–14):1125–1133, December 2000.

R. Szeliski and P.H.S. Torr. Geometrically constrained structure from motion : Points on planes.
In 3D Structure from Multiple Images of Large-scale Environments SMILE’98. Springer Verlag,
June 1998.

C.J. Taylor. Reconstruction of articulated objects from point correspondences in a single image. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, Hilton Head Island,
South Carolina, USA, pages 677–684, June 2000.

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factor-
ization method. International Journal of Computer Vision, 9(2):137–154, November 1992.

B. Triggs. Matching constraints and the joint image. In E. Grimson, editor, Proceedings of the 5th
International Conference on Computer Vision, Cambridge, Massachusetts, USA, pages 338–343.
ieee Computer Society Press, June 1995.

B. Triggs. Factorization methods for projective structure and motion. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, San Francisco, California, USA, pages
845–851, 1996.

B. Triggs. Autocalibration and the absolute quadric. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, Puerto Rico, USA, pages 609–614. ieee Computer Society Press,
June 1997.

B. Triggs. Autocalibration from planar scenes. In Proceedings of the 5th European Conference on
Computer Vision, Freiburg, Germany, 1998.

200 BIBLIOGRAPHY

B. Triggs. Plane + parallax, tensors and factorization. In Proceedings of the 6th European Con-
ference on Computer Vision, Dublin, Ireland, pages 522–538. Springer-Verlag, 2000.

G. Trombettoni. Algorithmes de maintien de solution par propagation locale pour les systèmes de
contraintes. Thèse de doctorat, Université de Nice–Sophia Antipolis, 1997.

G. Trombettoni. A Polynomial Time Local Propagation Algorithm for General Dataflow Constraint
Problems. In Proc. Constraint Programming CP’98, LNCS 1520 (Springer Verlag), pages 432–
446, 1998.

G. Trombettoni and M. Wilczkowiak. Scene Reconstruction based on Constraints: Details on the
Equation System Decomposition. In Proc. International Conference on Constraint Programming,
CP’03, volume 2833 of LNCS, pages 956–961, Kinsale,Ireland, 2003. Springer.

R.Y. Tsai. An efficient and accurate camera calibration technique for 3d machine vision. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, Miami Beach,
Florida, USA, pages 364–374, 1986.

J.R. Ullman. An Algorithm for Subgraph Isomorphism. Journal of the ACM, 23(1):31–42, 1976.

F.A. van den Heuvel. 3D reconstruction from a single image using geometric constraints. isprs

Journal of Photogrammetry and Remote Sensing, 53:354–368, 1998.

F.A. van den Heuvel and G. Vosselman. Efficient 3D-modeling of buildings using a priori geometric
object information. In Proceedings of the spie Conference on Videometrics V, volume 3174, pages
38–49, 1997.

P. Van Hentenryck, L. Michel, and Y. Deville. Numerica : A Modeling Language for Global
Optimization. MIT Press, 1997.

S. Van Huffel and J. Vanderwalle. The total least squares problem: Computational aspects and
analysis. In Frontiers in Applied Mathematics, volume 9. SIAM, 1991.

A. Verroust, F. Schonek, and D. Roller. Rule oriented method for parametrized computer aided
design. Computer Aided Design, 24(6):531–540, 1992.

VXL. http://vxl.sourceforge.net/, 2003.

T. Werner and A. Zisserman. New techniques for automated architectural reconstruction from
photographs. In Proceedings of the 7th European Conference on Computer Vision, Copenhagen,
Denmark, pages 541–555, May 2002.

M. Wilczkowiak, E. Boyer, and P. Sturm. Camera calibration and 3D reconstruction from single
images using parallelepipeds. In Proceedings of the 8th International Conference on Computer
Vision, Vancouver, Canada, volume 1, pages 142–148. ieee Computer Society Press, July 2001.

M. Wilczkowiak, E. Boyer, and P. Sturm. 3D modelling using geometric constraints: A paral-
lelepiped based approach. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Pro-
ceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, volume
2353 of Lecture Notes in Computer Science, pages 221–236. Springer-Verlag, May 2002.

M. Wilczkowiak, P. Sturm, and E. Boyer. The analysis of ambiguous solutions in linear systems and
its application to computer vision. In Proceedings of the 14th British Machine Vision Conference,
Norwich, England, pages 53–62, September 2003a.

BIBLIOGRAPHY 201

M. Wilczkowiak, P. Sturm, and E. Boyer. Modélisation 3d à l’aide de contraintes géométriques. In
Journées ORASIS 2003, Gérardmer, France, pages 77–86, May 2003b.

M. Wilczkowiak, P. Sturm, and E. Boyer. Using geometric constraints through parallelepipeds for
calibration and 3d modelling. Research Report 5055, inria, Grenoble, France, 2003c.

M. Wilczkowiak, G. Trombettoni, C. Jermann, P. Sturm, and E. Boyer. Scene modeling based on
constraint system decomposition techniques. In Proceedings of the 9th International Conference
on Computer Vision, Nice, France, pages 1004–1010, October 2003d.

G. Xu, J.-I. Terai, and H.-Y. Shum. A linear algorithm for camera self-calibration, motion and
structure recovery for multi-planar scenes from two perspective images. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,
USA, June 2000.

L. Zelnik-Manor and M. Irani. Multi-view constraints on homographies. ieee Transactions on
Pattern Analysis and Machine Intelligence, 24(2):214–223, February 2002.

Z. Zhang. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings
of the 7th International Conference on Computer Vision, Kerkyra, Greece, September 1999.

Z. Zhang, P. Anandan, and H.Shum. What can be determined from a full and a weak perspective
image? In Proceedings of the 7th International Conference on Computer Vision, Kerkyra, Greece,
pages 680–688, 1999.

A. Zisserman, D. Liebowitz, and M. Armstrong. Resolving ambiguities in auto-calibration. Philo-
sophical Transactions of the Royal Society of London, SERIES A, 356(1740):1193–1211, 1998.

