N
N

N

HAL

open science

reconstruction de formes pour la chirurgie assistée par
ordinateur basée sur I’enregistrement
Markus Fleute

» To cite this version:

Markus Fleute. reconstruction de formes pour la chirurgie assistée par ordinateur basée sur
Penregistrement. Autre [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2001. Frangais. NNT: .

tel-00005365

HAL Id: tel-00005365
https://theses.hal.science/tel-00005365
Submitted on 17 Mar 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-00005365
https://hal.archives-ouvertes.fr

Laboratoire TIMC - IMAG, Equipe: GMCAO

de I"Université Joseph Fourier - Grenoble |

Shape Reconstruction for
Computer Assisted Surgery based on
Non-Rigid Registration of Statistical Models
with Intra-Operative Point Data
and X-ray Images

THESE

présentée par
Markus FLEUTE
pour obtenir le titre de
Docteur de I’Université Joseph Fourier

Spécialité : Modeles et Instruments en Médecine et Biologie

Date de soutenance : 03 Octobre 2001

Composition du Jury :

Président : Bernard Peroche

Rapporteurs :  Isabelle Bloch
Christian Roux

Examinateurs :  Stéphane Lavallée (Directeur de these)

Laurent Desbat (Codirecteur de these)
Rémi Julliard






Abstract

This thesis addresses the problem of reconstructing 3D anatomical surfaces based on intra-
operatively acquired sparse scattered point data and few calibrated X-ray images. The approach
consists in matching the data with a statistical deformable shape model thus incorporating a
priori knowledge into the reconstruction process.

Computing such a statistical model requires prior shape analysis in a given population. A
new method based on a generic model of the object is used to segment training shapes and
to establish point to point correspondence simultaneously in a set of CT images. Scattered
point data are then matched with the statistical model using a non rigid 3D/3D registration
algorithm. The application of this method for intra and extrapolation of sparse point data
is demonstrated within a system for computer assisted reconstruction of the anterior cruciate
ligament. To reconstruct a surface from few calibrated X-ray images the statistical shape model
is matched to the object contours segmented on the calibrated X-ray images based on a new non
rigid 3D /2D registration method. Experiments are performed on a statistical model of lumbar
vertebrae for the clinical application of pedicle screw placement.

It is further shown that hybrid matching combining both, 3D/3D and 3D /2D registration,
might be an interesting option for certain Computer Assisted Surgery Applications.

Keywords: Computer Assisted Surgery, Medical Imaging, Data Fusion, X-Ray images, Scat-
tered Point Data, Shape Reconstruction, Shape Analysis, Deformable Model, Statistical Shape
Model, Model Based Segmentation, Non-Rigid 3D/3D Registration, Non-Rigid 3D/2D Regis-
tration

Résumé

L’objectif de cette these est la reconstruction de surfaces anatomiques a partir d’un nombre
restreint de radiographies et de points acquis en phase per-operatoire. L’approche proposée
repose sur une mise en correspondance des données avec un modele déformable statistique afin
d’incorporer de la connaissance & priori sur la forme de ’objet a reconstruire.

L’élaboration d’un tel modele statistique nécessite I’analyse de forme dans une population
donnée. Pour cette analyse un modele générique de I'objet est utilisé afin d’effectuer simul-
tanément la segmentation des structures et la mise en correspondance de points appariés dans
un ensemble d’examens tomodensitométriques. La reconstruction a partir d’un nuage de points
est effectuée par une méthode de recalage 3D /3D non rigide. L’application de cette technique
d’interpolation et d’extrapolation de données incompletes est montrée dans un systéme pour
la reconstruction du ligament croisé antérieur. Pour la reconstruction a partir de radiographies
une méthode de recalage 3D/2D non rigide est proposée afin de mettre en correspondance le
modele statistique avec les contours de I'objet segmenté dans les radiographies calibrées. Des
expérimentations ont été effectuées avec un modele statistique de vertebres lombaires, en vue de
I’application clinique du vissage pédiculaire.

De plus il est montré que la mise en correspondance hybride combinant le recalage 3D /3D
et le recalage 3D /2D pourrait étre une option intéressante pour certaines applications dans le
domaine des Gestes Médicaux Chirurgicaux Assistés par Ordinateur.

Mots clés: Gestes Médico-Chirurgicaux Assistés par Ordinateur, Imagerie Médicale, Fusion de
Données, Radiographies, Nuage de Points, Reconstruction de Formes, Analyse de Forme, Modele
Deformable, Modele Statistique de Forme, Segmentation Basée sur un Modele, Recalage 3D /3D
non-rigide, Recalage 3D /2D non-rigide
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Chapter 1

Introduction

1.1 Background

There are about 15000 Orthopaedic surgeons in the European Community (EC) perform-
ing more than 1,000,000 interventions per year. This number is increasing due to several
social and economic phenomena such as increasing life expectancy and increasing sportive
activity for instance. In spite of the highly trained surgeons there are still important failure
rates with large discrepancies of success between surgeons and hospitals. More precisely
current limitations of surgical practice occur ([LCT97]).

e Limited ability to implement surgical planning based on pre-operative images or to
integrate adequate medical imaging devices into Operating Room (OR) practice.

o Lack of tools, sensors or measurement devices allowing to measure accurately intra-
operative data such as the position of bones, tool and cutting guide orientation or
location of implants.

In current practice pre-operative image information is transferred to the OR through
the surgeon’s sometimes limited ability to synthesize and integrate complex 3-D informa-
tion. To overcome the limitations and thus to improve the patients’ outcomes Computer
Assisted Surgery (CAS) systems have begun to emerge from the laboratories and are
being used in clinical practice.

The methodology of existing CAS systems follows the classical Perception-Decision-
Action paradigm. At the Perception level, multi-modal data are acquired (pre-operative
data and models, intra-operative data, post-operative data) and intrinsically calibrated.
For imaging devices this means that the raw sensor data are transformed into standardized
geometrical entities and expressed in a coordinate system associated with the sensor. At
the same stage the image data are segmented (that means labeled and classified) and
modeled. At the Decision level, the medical strategy is defined on the basis of all the
available models and data. At the Action level, the strategy is carried out through the
use of passive, semi-active or active guiding systems. A flow diagram of this methodology
is represented in Fig.1.1.

Perception is performed both pre-operatively and intra-operatively. The relevant
information mostly originates from medical imaging devices : Computed Tomography
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(CT), Magnetic Resonance Imaging (MRI), Digital Radiography, Ultrasound Imaging
(US), endoscopic video images are the most frequent examples. Information originating
from other types of sensors such as video cameras, 3D localizers, optical shape sensors, is
also available.

The different imaging devices and sensors provide different kinds of data with different
dimensionality:

e projections (X-rays), 2D

e sections (ultrasound), 2D

e series of sections or volumes (CT, MRI), 3D
e anatomical surfaces (shape sensors), 3D

e scattered point data (3D localizer), 3D

Breakthroughs in this stage include development of new sensors, taking surgical con-
straints into account, and accurate calibration of the imaging devices. For instance, the
introduction of 3D localizers in the Operating Room (OR) opened the way for many
passive navigation techniques.

Decision is an important step involving both construction of patient models and
intervention planning based thereon. Construction of patient models means merging all the
available information in order to build a virtual patient and implies accurate registration
of all information sources, to make optimal use of each one.

Intervention planning is the modeling of an intervention and the simulation of its mor-
phological and functional consequences. Simulation has a visual component (navigation
through complex anatomical structures) and a gesture component (based on modeling
the interaction between medical instruments and the human body). The result of this
simulation is the selection of an optimal strategy.

Action consists in guiding the selected strategy while it is performed. This implies
that the patient model needs to be registered to physical space. Thus when intra-operative
sensors are combined with the already created ”virtual patient”, the surgeon is provided
with "augmented reality”, which is an effective combined mixture of the real and virtual
world. Different levels of assistance exist to perform a selected strategy, including robots
in some cases. In all cases, safety is essential, and requires massive redundancy of sensors,
processors and actuators. Most existing applications rely on navigation techniques, where
surgical tools are tracked, which allows adjustment of their position with respect to the
previously defined optimal strategy. In some cases, semi-active systems are used: a robot
performs part of the strategy (typically positioning of a guide), and the human operator
performs the final part (typically, introduction of a surgical tool in the guide carried by
the robot, in Stereotactic Neurosurgery, for instance). Few systems are really active (the
robot drives an active surgical tool).

Prof. Russell H. Taylor, Director of the NSF Engineering Research Center for
Computer-Integrated Surgical Systems and Technology at the Johns Hopkins Univer-
sity Baltimore, MD, USA predicts a similar evolution for CAS-technology as it has been
seen already for Computer Integrated Manufacturing in industry:
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The impact of Computer-Integrated Surgery (CIS) on medicine in the next
20 years will be as great as that of Computer-Integrated Manufacturing on in-
dustrial production over the past 20 years. A novel partnership between human
surgeons and machines, made possible by advances in computing and engineer-
ing technology, will overcome many of the limitations of traditional surgery.
By extending human surgeons’ ability to plan and carry out surgical inter-
ventions more accurately and less invasively, CIS systems will address a vital
national need to greatly reduce costs, improve clinical outcomes, and improve

the efficiency of health care delivery. (...)

Historically, stereotactic neurosurgery has probably been the first surgical discipline
to benefit from CAS technology. The fact that some accurate mechanical systems had
been in use for a long time (stereotactic frames) and the conjunction of the advent of
CT imaging and sufficiently powerful low cost computers may explain that phenomenon.
Now, the situation has changed and many physicians and surgeons from very different
disciplines have realized the potential benefit of CAS technology.

This thesis focuses on CAS technology applied to orthopaedics, Computer Assisted
Orthopaedic Surgery (CAOS). Orthopaedic surgery lends itself well to the application of
image guided and robotic technology. Many orthopaedic procedures involve the manip-
ulation or machining of bone, the most rigid structure in the body. The skeletal system
can be imaged easily using existing diagnostic techniques, such as X-ray images or CT
scans which can be converted to 3D computer models that are used for planning and
simulations. Because of the inherent rigidity of bone, the location of the skeletal system
during surgery can be correlated dynamically and consistently to a pre-operative com-
puter model. Additionally, unlike soft tissues, bones are able to withstand an applied
force from tools such as drills or saws without significant deformation. Thus, a computer
model can be built that permits meaningful simulation of the natural motions for bones
and joints and their modification during operative procedures.

The potential benefits of integrated CAOS technology are manifold:

o [Improved accuracy of the surgical act: Improving the accuracy of an intervention
strongly influences its success rate. Two different aspects of accuracy must be dis-
tinguished:

— First, it is desirable to be able to define a surgical planning accurately. This
means that morphological and functional consequences of an intervention must
be taken into account quantitatively. CAS systems have the potential to ensure
a more accurate model which is used to predict the results of the surgery.

— The second aspect of accuracy concerns the implementation of the defined
surgical planning. This implies to set up guiding systems that are provided with
the exact planning information defined by the therapist, allowing to improve
the accuracy of the surgeon’s act without obstructing him to take advantage
of his dexterity.

o Minimized invasiveness of surgery: A major goal is to make surgery less invasive, try-
ing to get close to ambulatory treatment, with limited post-operative consequences.
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Reduced intra-operative and post-operative complication rates and post-operative pain
for the patient: Improving the accuracy of the intervention and decreasing the access
size of surgery, obviously tends to limit the post-operative consequences such as the
the risks of infections for the patient.

Shortened hospital inpatient time, reduced subsequent outpatient expenses: Perform-
ing small incisions in the skin instead of large open surgery decreases the duration
of post-operative stay for the patient at the hospital and may return the patient to
the work force earlier.

Reduced intervention time: Although the major objective of CAS technology is to
improve the intervention quality, an interesting clinical added value is the reduction
of the surgery time causing less contamination risks, reduced anesthesia and less
tourniquet duration. From an economical point of view it allows to perform more
interventions.

Reduced X-ray dose delivered to the patient and to the medical staff: Time exposure
to X-rays should be reduced for the medical staff and for the patient by reducing
redundant and unnecessary exposures.

Decreased variability of results between different surgeons and decreased stress load:
Relieving the surgeon of the duty to mentally integrate and fuse the medical images
should reduce the stress load for the surgeon. The data fusion being performed in
a more quantitative objective way by the computer, there should be less intra and
especially inter surgeon variability with respect to the surgical result.

Global cost of intervention: The cost issue is a somehow superordinated one since it
is directly or indirectly influenced by all of the above mentioned points.

CAS systems should save money because they improve the success rates of inter-
ventions. More precisely the savings in terms of reduced OR costs for the hospital
and reduced patient morbidity as a result of the decreased blood loss and decreased
operating time may be the most important immediate cost savings as a result of the
use of CAS technologies. Near-term cost savings may include decreased rehabilita-
tion time and thus decreased hospital stays and decreased loss of time from work.
Longer-term cost savings may include delay or elimination of costly re-operations
as well as an associated increase in worker productivity over time.

Not all of these goals are (fully) met by current CAS systems.
When considering the aim of minimizing the invasiveness of surgery, several aspects

have to be considered. First minimal invasive surgery can only be performed at a cost: The
human operator has no longer any direct visual or manual access to the operated organs.
His eyes are relayed by various sensors (x-ray intensifiers, ultrasound probes, endoscopes,
...); his hands are relayed by surgical tools. Not all current CAS systems succeed in helping
the surgeon optimally in this difficult task. One also has to keep in mind that current

CAS systems quite often are still relying on fiducial markers for registration requiring the
patient to undergo an additional surgery for pin implantation. This is an additional risk
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of infection for the patient which has to be balanced against the minimized invasiveness
of the main surgery. It also increases the pain for the patient and the hospital inpatient
time.

Although one of the aims of CAS technology is to reduce the time for each intervention
current systems tend actually at best not to reduce the intervention time but usually
to increase it. This is very often due to sometimes complicated registration procedures
between pre-operative images and physical space or intra-operative data.

Regarding a potential reduction of X-ray dose delivered to the patient for instance,
a smaller intra-operative dose could be counterbalanced by the dose delivered by a CT
exam that requires small slice spacing for model construction or registration purpose.

Whether the variability of results among surgeons and their stress load is decreased
is strongly dependent on the reliability and ergonomics of the system. Complicated regis-
tration procedures between pre-operative images and physical space necessitating several
trials before being validated by the system are a potential source of frustration for the
surgeon for instance.

Concerning the cost issue, only the future can show whether the above mentioned
potential savings outweigh the investment required for hospitals or clinics to purchase (or
develop), train on, utilize and maintain the CAS systems.

However, patients demand a higher level of service in terms of newer procedures, which
are specifically designed to minimize trauma and recovery time. This means that the new
technology will be pulled at least partly by customers (patients) into the market and thus
can be used as a marketing instrument as has been seen in Germany and some other
countries, where clinics that utilize CAS technologies have seen their business jump (at
least temporally) soon after adopting such systems. Those clinics that refuse to adopt
these technologies run the risk of being viewed as providing lower quality care.

1.2 Objectives / Scope of the thesis

As mentioned above, one key issue in CAS systems is the availability of patient specific
3D models of the anatomical structures on which the surgery is performed.

To obtain these models and to overcome some of the problems occurring when using
pre-operative images, some authors have proposed to use these rather "heavy” imaging
devices directly in the operating room (see for instance [HB80, KHJH88]), thus aban-
doning the need for any registration for instance. However, these devices are not easily
available in standard operating rooms, and imaging systems of radiological departments
already have difficulties to meet current demands. The very impressive and recent de-
velopments of open magnetic resonance imaging devices that enable surgeons to perform
interventions directly inside the MRI device may favour this solution significantly [JB94],
but long-term validation and cost reduction is necessary before these devices become
widely accepted in standard surgical rooms.

For many applications the computation of a detailed (and precise) 3D attenuation
map is not mandatory, i.e. reconstruction of the organ shape is sufficient. Therefore it is
desirable to be able to infer 3D-information from intra-operative data only to facilitate

6
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the navigation within the patient and thus allowing to abandon CT data acquisition (pre-
or intra-operatively) at least for many standard surgical applications.

This dissertation focuses therefore on the development of new methods and algorithms
for the reconstruction of 3D anatomical surfaces for multiple purposes such as surgical
planning and visualization relying on intra-operative data only, more precisely on in-
complete point data and two or three calibrated X-ray projections.

Both, X-ray images and point data are available in standard CAS environments, but
in order to infer the 3D shape of the object of interest it is necessary to incorporate a
priori knowledge into the reconstruction algorithm. The idea in this work is to formulate
the reconstruction problem as a matching problem between a statistical shape model and
the intra-operative data.

Two-dimensional statistical shape models have been in use for years now and are well
established. Two crucial problems have prevented them so far from being widely used
in the 3D case. First, the necessary segmentation of a sufficient high number of train-
ing shapes for the statistical analysis, usually available in the form of a CT exam, is a
cumbersome and tedious task using today’s available manual or semi-automatic segmen-
tation tools. Second, it is necessary to establish point to point correspondence between
all training shapes. This is a nontrivial task and becomes manually infeasible. Few known
automatic methods address this problem and rely on already segmented images.

The present work proposes a new approach to address both above mentioned problems
simultaneously. A generic model of the object is used to segment the training shapes in
CT images and to establish point to point correspondence (semi-landmark positioning).
A volumetric coarse to fine deformation method based on free form deformations is used
to match the generic model to the image data.

In many existing CAS-systems optical localizers or laser scanners are used to acquire
scattered point data on patients’ bone surfaces in order to register physical space with
pre-operative images. A new approach is investigated allowing to inter- and extra-polate
intra-operatively acquired point data to obtain a complete surface representation of the
actual bone. The idea is to fit a statistical shape model to the available data. Its application
is demonstrated for a system for computer assisted reconstruction of the anterior cruciate
ligament.

X-ray images are the dominating image modality in the operating room. Thanks to his
anatomical knowledge the surgeon is used to mentally fuse 2D images taken from different
view points. However for many applications this mental registration is not sufficient to
obtain all necessary information about the anatomical situation to properly perform the
surgery. Another objective of this thesis is therefore to investigate a method to recover
the 3D shape of patient bones or organs intra-operatively using a very limited number (2
or 3) of calibrated X-ray images. The proposed method deforms a previously computed
statistical shape model to match the contours segmented on the x-ray images. The fitting
of the model to the contours is achieved by using a generalization of a standard registration
method (Iterative Closest Point Algorithm) to nonrigid 3D/2D registration. Experiments
are performed on a statistical model of lumbar vertebrae suggesting the clinical application
of pedicle screw placement.

It is further shown in this work that the combination of both data sources - X-ray

7
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images and 3D point data - allowing to perform hybrid registration with the statistical
shape model, might be a very interesting option for certain applications.

Obviously only healthy organs and shape pathologies that can be captured by statis-
tical analysis of a population may be reconstructed with these methods. Fractured organs
cannot be modeled. However, various interventions could benefit from such methods. In
the case of reconstruction of a torn cruciate ligament for instance, there is no pathologic
shape variation of the adjacent bones (tibia, femur). Considering pedicle screw placement
for spine instrumentation in the case of a vertebra compression fracture for instance, the
shape of the vertebrae the screws are attached to (which are adjacent to the fractured
one), is not pathologic; at least there is no pathologic shape variation associated to the
reason for the surgery - the fracture. The possible benefits range from reduced radiation
dose delivered to the patient, over decreased intervention time and overall inpatient time
to the fact that the development of CAS systems with a more favourable cost /benefit ratio
would be facilitated. This would help increasing the number of cases where sophisticated
CAS technology is applicable and affordable.

The development of dedicated hardware involving a light X-ray imaging system similar
to a standard C-arm, using a new distortion free flat 2D silicon X-ray detector is part
of a Kuropean project aiming at developing an innovative integrated system for Minimal
Invasive Image Guided Surgery. This project is carried out in the TIMC lab in collab-
oration with several other European scientific institutions and industrial partners [mi3].
For experiments carried out in the course of this thesis a first prototype of this system is
used.

1.3 Chapter Overview

The thesis is further outlined as follows: Chapter 2 presents two clinical orthopaedic sce-
narios with a significant potential to benefit from the contributions of this thesis in the
future. For both of them industrial CAS systems are yet available and some of them will
be presented exemplary in order to point out their limitations and the potential added
value provided by the proposed methods. Chapter 3 presents the main CAS specific hard-
ware components on which the proposed methods for intra-operative shape reconstruction
rely and that are used for experiments carried out within the context of this thesis. This
specific hardware comprises an optical localizer system, an interventional X-ray imaging
system (image intensifier, C-arm) and a new flat panel X-ray detector. Chapter 4 pro-
vides a brief introduction to basic concepts of registration methods, segmentation and
deformable models. Special attention is paid to the statistical shape model by Cootes
and Taylor whose 3D version is used throughout this work. The following three chapters
comprise the main contributions of this dissertation. Chapter 5 presents a new method for
highly automated model based extraction of bony structures from CT images. The pro-
posed method is based on the fitting of a generic shape template to the data and aims at
establishing simultaneously anatomical point-to-point correspondence between the shape
template and the data. Thus statistical 3D shape analysis of large unsegmented image
databases becomes more feasible in practice. Chapter 6 presents a method for shape tem-
plate based surface reconstruction based on scattered point data, and then investigates
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a new method for Non-Rigid 3D/3D Registration of intra-operatively acquired scattered
point data with a statistically based shape model and its application to computer as-
sisted reconstruction of the anterior cruciate ligament. Chapter 7 investigates how the
same statistical shape model can be used for nonrigid 3D /2D registration with contours
segmented on few calibrated X-ray views. At the end of the chapter a hybrid approach
for surface reconstruction, relying on both point data and X-ray images, is proposed and
first experimental results are presented. Chapter 8 provides a summary and gives some
indications for future work.
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Introduction

1.1 Contexte

Il 'y a environ 15000 chirurgiens orthopédistes dans la communauté européenne (CE)
réalisant plus de 1000000 interventions par an. Ce nombre est en augmentation pour
diverses raisons socio-économiques comme l'augmentation de 'espérance de vie et de
I’activité sportive par exemple. En dépit du haut niveau de formation des chirurgiens, il
subsiste un important taux d’échecs et de grandes variations dans les résultats entre les
différents chirurgiens et hépitaux. Plus précisément la pratique chirurgicale est limitée
par :

o des difficultés pour réaliser un planning chirurgical a partir d’images préopératoires
ou pour mettre en place des systemes d’imagerie adéquats dans le bloc opératoire.

e un manque d’outils, de capteurs ou d’appareils de mesure permettant de mesurer
avec précision des données peropératoires comme la position des os, des outils et
des orientations de guides de coupes ou la localisation des implants.

En pratique courante le chirurgien fusionne mentalement les images préopératoires
avec la réalité peropératoire. Toutefois cette fusion mentale est limitée lorsque il s’agit
d’informations tridimensionnelles complexes. Afin de surmonter ces limitations et ainsi
améliorer les résultats cliniques, des systemes de chirurgie assistés par ordinateur com-
mencent a émerger des laboratoires et sont utilisés en routine clinique. La méthodologie
de ces systemes suit le paradigme classique de perception - décision - action. Dans
la phase de perception des données multimodales sont acquises (données et modeles
préopératoires, données postopératoires) et intrinsequement calibrées. Pour les systemes
d’imagerie médicales ceci implique que les données brutes du capteur soient transformées
en parametres géométriques standards et exprimées dans le référentiel du capteur. Du-
rant cette méme phase I'image est segmentée (labellisée et classifiée) et modélisée. Dans la
phase de Décision la stratégie opératoire est déterminée a partir de toutes les données et
modeles disponibles. Dans la phase d’Action la stratégie est reproduite par 'intermédiaire
de systemes de guidage passifs, semi actifs ou actifs. L’organigramme décrivant cette
méthodologie est représenté dans la figure 1.1.

La perception se réalise a la fois en phase préopératoire et peropératoire.
L’information pertinente provient principalement de systemes d’imagerie médicales :
Tomodensitométrie (TDM), imagerie a résonance magnétique (IRM), radiographies
numériques, imagerie a ultrason et images vidéo endoscopiques sont les exemples les plus
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fréquents. L’information provenant d’autres types de capteurs comme les cameras vidéos,
les localisateurs optiques, les capteurs de forme optiques sont aussi disponibles. Les divers
systemes d’imagerie et de capteurs fournissent différents types de données de dimensions
différentes :

e Projections (rayons X), 2D

e Coupes (ultrason), 2D

Séries de coupes ou volumes (TDM, IRM), 3D

Surfaces anatomiques (capteurs de forme), 3D

Nuages de points (localisateur 3D), 3D

Les innovations a ce stade incluent le développement de nouveaux capteurs prenant en
compte les contraintes chirurgicales, et le calibrage des systemes d’imagerie. Par exemple,
I'introduction de localisateurs 3D au bloc opératoire a permis ’avenement de beaucoup
de techniques de navigation passives.

La décision est une étape importante qui comprend a la fois la construction de modeles
de patients et le planning de I'intervention. La construction de modeles de patient implique
la fusion de toutes les informations disponibles afin de construire un patient virtuel; ceci
implique également une mise en correspondance précise de toutes les sources dinformation,
afin d’utiliser chacune de ces sources de facon optimale.

Le planning opératoire consiste en une modélisation de I'intervention et la simulation
de ces conséquences morphologiques et fonctionnelles. La simulation se décompose en une
composante visuelle (navigation a travers des structures anatomiques) et une composante
gestuelle (basée sur la modélisation de I'interaction entre les instruments chirurgicaux et
le corps humain). Le résultat de ces simulations est la sélection d’une stratégie optimale.

L’action consiste a guider le chirurgien lors de la réalisation de la stratégie optimale
sélectionnée. Ceci implique que le modele du patient soit mis en correspondance avec la
réalité opératoire. Ainsi lorsque les capteurs peropératoires sont combinés avec le "pa-
tient virtuel”, le chirurgien dispose d’une réalité augmentée . Il existe différents niveaux
d’assistance pour réaliser la stratégie optimale, y compris dans certains cas 1’utilisation
des robots. Dans tous les cas, la sécurité est essentielle et ceci implique une redondance im-
portante de capteurs, processeurs et actionneurs. La plupart des applications existantes
repose sur des techniques de navigation ou les instruments chirurgicaux sont localisés,
permettant ainsi d’ajuster leur position par rapport a la trajectoire optimale définie au
préalable. Dans certains cas, des systemes semi-actifs sont utilisés: un robot réalise une
partie de la stratégie (typiquement le positionnement d’un guide), et le chirurgien réalise
lautre partie (typiquement 'introduction d’un outil chirurgical dans le guide porté par
le robot, en neurochirurgie stéréotaxique par exemple). Peu de systemes sont réellement
actifs (le robot pilote un outil chirurgical).

Prof. Russell H. Taylor, directeur du NSF Engineering Research Center for Computer-
Integrated Surgical Systems and Technology a I’Université de Johns Hopkins a Balti-
more, Maryland, USA, prédit une évolution similaire pour la technologie de systemes
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GMCAO a celle observée avec I'arrivée du Computer Integrated Manufacturing (CIM)
dans I'industrie.

The impact of Computer-Integrated Surgery (CIS) on medicine in the next
20 years will be as great as that of Computer-Integrated Manufacturing on in-
dustrial production over the past 20 years. A novel partnership between human
surgeons and machines, made possible by advances in computing and engineer-
ing technology, will overcome many of the limitations of traditional surgery.
By extending human surgeons’ ability to plan and carry out surgical inter-
ventions more accurately and less invasively, CIS systems will address a vital
national need to greatly reduce costs, improve clinical outcomes, and improve
the efficiency of health care delivery. (...)

Historiquement, la neurochirurgie stéréotaxique a probablement été la premiere dis-
cipline chirurgicale a bénéficier de la technologie des GMCAQO. Le fait que des systemes
mécaniques de précision aient été utilisés depuis longtemps (cadre stéréotaxique), associé
a l’arrivée conjointe de I'imagerie TDM et d’ordinateurs suffisamment puissants et peu
onéreux, peuvent expliquer ce phénomene. Maintenant, la situation a changé et beau-
coup de médecins et chirurgiens provenant de disciplines variées ont réalisé I'intérét de la

technologie des GMCAOQ.

1.2 Objectifs / Cadre de la these

Comme susmentionné, un des aspects fondamentaux des systemes de GMCAQ tient a
la disponibilité des modeles tridimensionnels spécifiques aux structures anatomiques du
patient, sur lesquels s’exerce la chirurgie. Pour obtenir ces modeles et surmonter certains
des problemes qui se posent lors de 1'utilisation des images préopératoires, certains au-
teurs ont proposé d’utiliser ces procédés d’imagerie plutot lourds directement dans la salle
opératoire (voir par exemple , [HB80, KHJHS88]), rendant ainsi inutile tout recalage. Toute-
fois, ces systemes ne peuvent pas étre installés aisément dans toutes les salles opératoires,
et les systemes d’imagerie des départements de radiologie ont déja du mal a répondre a
la demande actuelle. Les impressionants développements récents des systemes d’imagerie
a résonance magnétique ouverts (qui permettent aux chirurgiens de faire des interven-
tions directement a l'intérieur du systeme IRM) peuvent permettre cette solution, mais
une validation sur le long terme ainsi qu'une baisse des cotits est nécessaire avant que
ces procédés soient diffuses dans les salles opératoires. Pour de nombreuses applications,
I’élaboration d’une carte d’atténuation a la fois détaillée et précise n’est pas obligatoire,
la reconstruction de la forme des organes suffit. Il est ainsi souhaitable de pouvoir déduire
de I'information 3D uniquement a partir des données peropératoires pour faciliter la nav-
igation a l'intérieur du patient et permettre ainsi d’abandonner 1’acquisition de données
CT (pré ou peropératoires), au moins pour de nombreuses applications chirurgicales stan-
dards.

Cette these est dédiée au développement de nouvelles méthodes et algorithmes afin de
reconstruir des surfaces anatomiques 3D pour des taches multiples tels que le planning
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chirurgical et la visualisation basée uniquement sur des données peropératoires, plus
précisément, sur un faible nombre de points palpés et 2 ou 3 radiographies calibrées.

Les images radiographiques et les données palpées sont disponibles dans les envi-
ronnements GMCAQ classiques, mais afin de déduire la forme 3D de 'objet visé il est
nécessaire d’incorporer de la connaissance a priori dans ’algorithme de reconstruction.
L’objectif de ce travail est de formuler le probleme de reconstruction comme un probleme
de recalage entre un modele de forme statistique et les données peropératoires.

Les modeles de formes statistiques 2D sont utilisés depuis des années maintenant et
sont bien établis. Deux problemes cruciaux ont freiné jusqu’a présent ’extension de leur
utilisation au cas 3D. Premierement, la nécessaire segmentation d’'un nombre suffisant
de formes d’apprentissage pour l’analyse statistique, disponible habituellement sous la
forme d’un examen TDM, est une tache laborieuse si on utilise les outils de segmentation
manuels ou semi-automatiques disponibles aujourd’hui. Deuxiemement, il est nécessaire
d’établir une correspondance point par point entre toutes les formes d’apprentissage. C’est
une tache complexe qui devient infaisable manuellement. Peu des méthodes automatiques
connues s’attaquent a ce probleme et la plupart repose sur des images déja segmentées.

Le travail présenté ici propose une nouvelle approche pour résoudre simultanément les
deux problemes mentionnés ci-dessus. Un modele générique de I'objet est utilisé pour seg-
menter les formes d’apprentissage dans les images TDM et pour rétablir 'appariement des
points. Une méthode de déformation volumétrique multi-échelle basée sur les déformations
de formes libres est utilisée pour recaler le modele générique avec les images.

Dans beaucoup de systemes de GMCAQ existants, des localisateurs optiques ou des
scanners laser sont utilisés pour acquérir des nuages de points sur les surfaces osseuses
des patients afin de mettre en correspondance les images préopératoires avec la réalité
opératoire. Une nouvelle approche est étudiée permettant d’interpoler et d’extrapoler
des données palpées en phase peropératoire afin d’obtenir une représentation surfacique
complete de 'os. L’idée consiste a adapter un modele statistique aux données disponibles.
Une application de cette méthode est réalisée dans le cadre d’un systeme de recon-
struction du ligament croisé antérieur assisté par ordinateur. Les images radiographiques
sont la modalité d’image dominante dans la salle dopération. Grace a ses connaissances
anatomiques le chirurgien est habitué a fusionner mentalement des images 2D d’incidences
différentes. Cependant dans beaucoup d’applications cette fusion mentale n’est pas suff-
isante pour obtenir toute I'information importante sur la situation anatomique afin de
réaliser 'intervention correctement. Un autre objectif de cette these est donc d’étudier une
méthode permettant de reconstituer la forme 3D des os du patient en phase peropératoire
en utilisant un nombre limité d’images radiographiques calibrées (2 ou 3). La méthode
proposée consiste a déformer un modele de forme statistique calculé au préalable afin
de le recaler avec les contours segmentées dans les radiographies. Le recalage du modele
avec les contours est réalisé en utilisant une généralisation d’'une méthode standard pour
le recalage (Iterative Closest Point Algorithm, ICP) au recalage 3D /2D non rigide. Des
tests ont été réalisés sur un modele statistique de vertebres lombaires en vue d’aborder
I’application clinique du vissage pédiculaire.

De plus, il est montré dans ce travail que la combinaison de deux sources de données,
radiographies et nuages de points 3D, permettant de réaliser un recalage hybride avec le
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modele statistique, pourrait étre une option intéressante pour certaines applications.

Bien évidement, seul des organes sains et des formes pathologiques qu’il est possible de
modéliser par une analyse statistique d’une population peuvent étre construits avec cette
méthode. Des os fracturés ne peuvent pas étre reconstruits. Cependant, certaines interven-
tions peuvent bénéficier de telles méthodes. Dans le cas de la reconstruction d’un ligament
croisé antérieur rompu, par exemple, il n’y a pas de variations pathologiques de forme des
os avoisinants (tibia, fémur). En ce qui concerne le vissage pédiculaire dans le cas d’une
vertebre fracturée en compression par exemple, la forme des vertebres dans lesquelles le vis
sont insérées (qui sont adjacents a la vertebre fracturée), ne sont pas pathologiques. Les
avantages de cette méthode sont nombreux. Il vont de la réduction de la dose délivrée au
patient, a la diminution du temps d’intervention et de la durée d’hospitalisation jusqu’au
développement des systemes de GMCAQ avec un rapport cott/bénéfice plus avantageux.
Ceci pourrait aider a accroitre le nombre des cas oft une technologie de GMCAQO sophis-
tiquée serait applicable et envisagable.

Le développement de matériel approprié comprenant un systeme d’imagerie radio-
graphique mobile, comparable a un amplificateur de brillance classique et utilisant un
nouveau détecteur numérique plat 2D sans distorsion, fait parti d’un projet européen
dont 1'objectif est le développement d’un systeme intégré novateur pour la chirurgie mini
invasif guidée par I'image (projet MI3). Ce projet est conduit par le laboratoire TIMC
en collaboration avec plusieurs autres institutions scientifiques et partenaires industriels.
Pour les travaux réalisés dans le cadre de cette these, un premier prototype de ce systeme
a été utilisé.

1.3 Organisation des chapitres

Les travaux de cette these sont présentés de la maniere suivante: le chapitre 2 présente deux
exemples d’applications cliniques qui peuvent potentiellement profiter des contributions
de cette these dans un avenir proche. Pour ces deux applications, des systemes de GMCAQO
sont commercialisés et certains d’entre eux sont présentés comme exemple, afin de montrer
leurs limites et la possible valeur ajoutée apportée par les méthodes proposées. Le chapitre
3 présente les principaux composants spécifiques aux GMCAQO sur lesquelles reposent
les méthodes proposées pour la reconstruction de formes en phase peropératoire, et qui
sont utilisés dans les tests réalisés dans le cadre de cette these. Ce matériel spécifique
comprend un localisateur optique, un systeme d’imagerie radiographique interventionnel
(amplificateur de brillance) et un nouveau détecteur plat numérique de rayons X . Le
chapitre 4 fournit une breve introduction aux concepts de base des méthodes de recalage
et de segmentation, et aux modeles déformables. Une attention particuliere sera apportée
au modele de forme statistique de Cootes et Taylor dont la version 3D est utilisée tout
au long de ce travail. Les 3 chapitres suivants constituent les contributions principales de
cette these. Le chapitre 5 présente une nouvelle approche d’extraction quasi automatique
de structures osseuses a partir des images TDM. Cette méthode est basée sur I’ajustement
d’un modele générique aux images et a pour objectif d’établir simultanément des points
anatomiques entre le modele générique et I'examen scanner. Ainsi ’analyse statistique de
formes 3D de base de données d’images non segmentées devient plus facile. Le chapitre 6
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présente une méthode pour la reconstruction des surfaces a partir d’'un nuage de points.
Ensuite une nouvelle méthode est étudiée pour le recalage 3D/3D non rigide entre un
nuage de points acquis en phase peropératoire et un modele statistique de forme, et
son application est montrée pour la reconstruction du ligament croisé antérieur assisté
par ordinateur. Le chapitre 7 étudie la possibilité d’utiliser le méme modele statistique
pour le recalage 3D /2D non rigide avec des contours segmentés sur quelques radiographies
calibrées. A la fin de ce chapitre une approche hybride pour la reconstruction des surfaces,
reposant a la fois sur des points palpés et des radiographies, est proposée et décrite, les
premiers résultats expérimentaux sont aussi présentés. FEnfin le chapitre 8 résume les
travaux effectués et propose quelques indications pour des développements futurs.
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Chapter 2

Orthopaedic Scenarios

2.1 Introduction

In this chapter two exemple clinical orthopaedic scenarios are presented. For both of them
industrial CAS systems are yet available and some of them will be presented in order to
point out their limitations and the potential added value provided by the contributions
of this thesis.

2.2 Reconstruction of the Anterior Cruciate Liga-
ment

The anterior cruciate ligament (ACL), connects the tibia to the femur at the center of
the knee. Its function is to limit rotation and forward motion of the tibia with respect to
the femur. The rupture of the ACL has become one of the most common injuries among
young athletes [SF93]. Because of the instability of an ACL deficient knee and the risk of
secondary damage, an increasing number of them needs to have reconstructive surgery.
During surgery a substitute ligament is implanted between the femur and the tibia to
restore stability. Most frequently, ligamentous tissue of the patient is used, such as the
middle third of the patella tendon or the hamstring tendon of the injured knee (Fig 2.1).

In recent literature the accuracy of graft placement has been shown to influence the
longevity of ACL reconstruction [ea94]. There is a general consensus that the graft should
be placed according to two main criteria [FLST97, HT93, HB95, ABGT97, MKG95,
Mor95, JLD9S].

First, the lowest possible anisometry should be obtained, which corresponds to the
smallest change in length between the tibial attachment point T and the femoral attach-
ment point F (Fig. 2.2) as the knee moves through the functional range of motion.

With weak anisometry, the graft is subjected to nearly constant tensile forces. There-
fore, the risk of rupture during extension or flexion is reduced, and knee stability is
improved. In reality, the graft is not of uniform diameter; it approximates the form of a
cylinder that widens at its extremities. However, if the centers of the femoral and tibial
attachment sites are nearly isometric, then at least the central part of the graft is exposed
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Figure 2.1: ACL reconstruction; drilling the tunnels (left), using the middle third of the patella
tendon to replace the original graft (right) [sco]

FLEXION-EXTENSION

Figure 2.2: Anisometry of the ACL : variation of length between attachment points F and T
of the graft along with knee motion
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2.2, RECONSTRUCTION OF THE ANTERIOR CRUCIATE LIGAMENT

to constant forces.

The second major constraint for the graft placement regards possible notch impinge-
ment: If the tibial attachment point lies too far anterior, the graft impinges on the roof of
the notch (Fig.2.3). This collision during knee extension may lead to early failure of the
implant.

Femur

Tibia

No Impingement Notch Impingement

Figure 2.3: Impingement of the graft with the roof of the femoral notch must be prevented

Usually, the surgeon uses mechanical drill guides to achieve reproducible placement of
the graft. These instruments rely on freehand technique and visual control, either by open
or by arthroscopic viewing, to identify the graft locations. A more objective technique for
drilling these holes and placing grafts at desired locations is needed to allow a planning
based on quantitative data and thus helping to reduce the variability of this intervention
with respect to the clinical results.

Computer Assisted ACI surgery based on pre-operative CT-images and a sur-
gical robot

One commercial system for computer assisted reconstruction of the ACL (developed by
Orto Maquet, Rastatt, Germany, now URS Universal Robot Systems, Schwerin, Germany)
is based on a pre-operative planning using CT scans of both the injured and the uninjured
contralateral knee joint. The planning that means the determination of the position of
the graft attachment sides at the tibia and at the femur is based on the relative position
of these two bones to each other at the uninjured contralateral side in hyperextension.
By this procedure mal-positioning of the graft caused by pathological hyperextension and
mal-rotation during the intra-operative planning on the unstable injured side shall be
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avoided. The CT-scan is acquired after positioning of a metallic registration pin in the
femur and tibia in the injured side. The planning itself is accomplished by either using
predefined templates or free navigation relying on anatomical landmarks visible in the
CT scan. Subsequently the planning of the graft position is transfered to the injured knee
joint by manual alignment and carried out by a surgical robot (CASPAR-robot, Computer
Assisted Surgery And Planning), see figure 2.4.

.

Figure 2.4: The CASPAR robot

2.3 Pedicle Screw Placement

Transpedicle screw insertion (see figure 2.5) is commonly used for rigid segmental fixation
for various spinal disorders, including scoliosis (abnormal lateral curvature of the spine),
and fractures. Unfortunately, the variability in width, height, and spatial orientation of
spinal pedicles makes pedicle screw insertion a delicate surgical intervention, especially
in the surgical procedure of scoliosis, and for thin pedicles. Surgical techniques are com-
plex relying on image intensifiers and anatomical landmarks. A thorough knowledge of
the regional anatomy is mandatory because deformed vertebrae have skewed anatomical
landmarks.

Pilot holes are prepared and screws are inserted into the pedicle without any direct
visual control. A slight error in direction may result in a significant error in the position of
the tip of the screw. X-ray monitoring is possible but very difficult in practice (e.g. control
of the screw position with respect to the spinal canal on lateral and AP X-ray images may
lead to misjudgment), see figure 2.6. In addition to mechanical instability of the screws,
the complications associated with misplaced pedicle screws in the lumbosacral spine are
mostly neurological, or vascular [MAS191]. Previous studies of surgical procedures have
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Figure 2.5: Pedicle screw placement

—1— lateral view

g : anterior posterior view

Figure 2.6: Lateral X-ray image may lead to misjudgement of the screw position. Only the
axial plane provides the appropriate information.

cortex penetration —

axial view
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shown a significant rate of incorrect placement of the screws ranging from 10% to 40%

[ROSMS6, WSS+88, Sim93, JMC+93, Sai95, VRBa93).

2.3.1 Computer Assisted pedicle screw placement based on pre-
operative CT images

To overcome the problems associated with pedicle screw placement based on pure image
intensifier images, CT-based navigation systems can be used. These systems help the
surgeon to look for the correct spatial position and orientation and the correct length
of the pedicle screw as well as to avoid crucial anatomical structures by providing 3D
information. At the same time intra-operative irradiation of the surgical staff and the
patient is reduced, since the image-intensifier is only used to identify the correct vertebrae
but not to guide the screw placement itself.

One example of such a CT-based navigation system is the Stealth-Station(Sofamor-
Danek, Memphis, USA). The use of the system is divided into a pre-operative planning
stage and an intra-operative execution stage. First, the pre-operative CT images are ac-
quired and transferred to the planning computer. Subsequently the surgeon plans the
position and orientation of the screws using either resliced CT images for the princi-
ple views (frontal, axial, sagittal) or a 3D presentation of the spine extracted from the
CT-data (see figure 2.7).

Intra-operatively, the surgeon first attaches a so called dynamic reference frame to
the patient’s spine allowing to dynamically track its position using an optical localizer.
Subsequently the CT-data and associated planning needs to be registered with the physical
space using surface based registration methods based on scattered point acquisitions on
the (dorsal) vertebral surface. Afterwards the surgeon can carry out the planning using
passive freehand navigation.

While undoubtly improving the success rate in pedicle screw placement ([ea01b]) CT-
based navigation systems come along with drawbacks. The necessary pre-operative CT-
scan is time consuming, relatively expensive and irradiating for the patient and the nec-
essary registration between CT-scan and physical space is not always straightforward.

2.3.2 Computer Assisted pedicle screw placement based on
intra-operative fluoroscopic images

The FluroroNav system (Sofamor-Danek, Memphis, USA) relies only on intra-operative
fluoroscopic images, that means no pre-operative imaging is required. It allows real-time
navigation in several X-ray projections simultaneously with the fluoroscope turned off and
removed from the operating scene. This reduces radiation exposure of both the patient and
surgical staff. During the intervention, the surgeon first attaches a dynamic reference frame
to the patient’s spine as it is the case for the CT-based navigation system. Subsequently
a sequence of X-ray images from desired view points is acquired using a calibrated image
intensifier, which is also tracked with the localizer. Afterwards the surgeon can navigate
with his tracked tools in the 2D images, see Figure 2.8).
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Iraj. ¥iew #

Figure 2.7: The position and orientation of the pedicle screws can be planned preoperatively
using a CT scan and a planning computer
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Figure 2.8: The acquired C-arm images can be used for navigation

There is no need for registration between fluoroscopic images and physical space be-
cause the transform between both is known during image acquisition by the optical tracker.
This results in a gain of time and comfort for both surgeon and patient and decreases
potential infection risks. The acquired images reflect the intra-operative anatomy unlike
pre-operative CT-images which reflect by nature the pre-operative anatomy. Pre-operative
and intra-operative anatomy might differ from each other. On the other hand there is no
real 3D information. Specially the axial view which is the most important to watch for
hazardous screw placement (see Figure 2.6) is not available.

2.4 Conclusion

Existing CAS systems for knee and spine surgery based on pre-operative images allow
precise planning of the intervention. Either passive navigation devices or active robots aid
the surgeon to implement the plan. Though providing very precise geometric information
the necessary pre-operative imaging is time consuming, expensive and exposes the patient
to considerable radiation. Surgical navigation systems based on intra-operative calibrated
X-ray images (virtual fluoroscopy) only, aim at overcoming these problems but do not
provide often important real 3D information. In many cases knowledge about the 3D
shape of the organ is sufficient, i.e. a 3D gray level map as provided by a CT scanner is
not required. In this dissertation new approaches are proposed to recover the 3D shape of
an organ based on the matching of a deformable shape model relying on intra-operative
data only. Chapter 6 presents a method to match a statistical shape model of the femur to
intra-operatively acquired point data, applied to a system for ACL reconstruction, which
does not require pre-operative imaging. It will be shown that the two main criteria for
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correct graft placement, low anisometry and notch impingement can be met relying on
intra-operatively acquired cinematic and surface point data extrapolated to a complete
model of the bones. In Chapter 7 such a shape model is used to infer the shape of a
bone from its partly segmented contours on calibrated intra-operative X-ray projections
by matching the model to the computed projection rays. Both methods combine the
advantage of pre-operative CT-imaging (real 3D information) with the advantages of
intra-operative X-ray imaging (availability in the operating room, low radiation, etc.) for
procedures where the expected shape variation of the organ of interest can be captured
by a statistical analysis of a population.
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Chapter 3

Hardware Components

This chapter presents the main CAS specific hardware components on which the proposed
methods for intra-operative shape reconstruction rely and that are used for experiments
carried out within the context of this thesis. First a short overview of intra-operative
tracking devices is given. Then the basics of interventional X-ray imaging systems are
explained and subsequently a new flat panel X-ray detector is described. In the last
section the mechanical deformation of the interventional imaging device is discussed.

3.1 Intra-Operative Position/Orientation Tracking
Devices

Position tracking devices are fundamental components for virtually all CAS systems and
are used during surgery to precisely localize conventional surgical tools, rigid anatomical
structures, other medical imaging equipment (e.g., image intensifiers), surgical implants
etc. and to capture the kinematics of a limb or to digitize anatomical surfaces. During
knee surgery for instance it may be desirable to measure the relative movement of the
tibia with respect to the femur. In computer-assisted spine surgery, it might be necessary
to determine the position and orientation of a drill relative to a vertebra.

There are a number of attributes which characterize a given intra-operative position
sensor including sensing modality, accuracy, resolution, speed, robustness, active vs. pas-
sive, and cost. Mechanical sensors determine the position of a sensor endpoint based upon
measurements of joint angles and information regarding the kinematics of the device. One
advantage of mechanical sensors is their constant activity, i.e they cannot be obscured. On
the other hand they tend to be bulky and thus ergonomically challenging for the surgeon.
Magnetic sensors measure electrical currents induced in receiver coils when the receiver
is moved within a magnetic field generated by the emitter. These sensors suffer from in-
accuracies due to other magnetic fields and objects close to the localizer with a magnetic
susceptibility £ >> 0. Acoustic sensors receive signals which are emitted by ultrasonic
emitters and determine location via time-of-flight. These sensors are sensitive with respect
to temperature shift, humidity and occlusion. The most commonly used tracking devices
use optical sensors which track the positions of one or more actively or passively illumi-
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nated markers with either three 1D or two 2D cameras(Figure 3.1). They use geometric
triangulation to determine the 3D locations of these markers. However optical sensors re-
quire a non-occluded line of sight. The achievable accuracy is about 0.1mm —0.5mm (root
mean square error between estimated and correct measurement values) [CL98, Sim97]. If
a rigid body is equipped with several (at least 3) non-colinearly arranged markers (called
dynamic reference base, dynamic reference frame or simply rigid body), it is also possible
to determine the spatial orientation of these bodies in addition to their position. These
tracking devices are therefore often referred to as 6D localizers. For the experiments con-
ducted in this dissertation two optical localizers are used, Optotrak®™ and Active/Passive

Polaris™ (Northern Digital Inc. Ontario Canada), see Figure 3.1.

Figure 3.1: Two optical localizers based on 3 1D cameras or 2 2D cameras

3.2 X-ray imaging overview

Conventional medical imaging with X-rays is based on transmission through the patient.
X-ray transmission is useful because structures vary in their X-ray absorption, and thus
alter the transmitted x-ray beam based on their particular absorption properties. The
mono-energetic transmission of an X-ray beam along a path s through an object of thick-
ness t with an (energy-dependent) attenuation coefficient u(x,y, z) can be written as:

Iy = 1l,e” Jo wlaanz)ds

Y

where I is the known intensity of the incident X-ray beam and 1, is the detected inten-
sity. The projected attenuation coefficient is then the natural logarithm of the measured
transmission:

i 1
/ p(w,y, 2)ds =In =
0 [d

Different technologies exist to measure the transmission. Intra-operatively the most
common used technique is based on image intensifiers.

3.3 Interventional X-ray imaging

An image intensifier is a mobile X-ray imaging system comprising an X-ray source and
a detector unit, the intensifier. Both are attached to a C-shaped metal arc. The entire
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system (C-arm 4+ gantry) usually provides six degrees of freedom, 3 translational and 3
rotational, thus enabling to move the so called fluoroscope in a position according to the
spatial location of the object being imaged, see figure 3.2.

Figure 3.2: Surgical C-arm

Fluoroscopy is routinely used for intra-operative localization of patient anatomy and
surgical instrument position.

By providing this information, it facilitates improved accuracy and reduced surgical
exposure for a wide variety of procedures when compared to non-image based interven-
tions. Furthermore, fluoroscopy has enabled the development of many interventional and
surgical techniques, such as intra-medullary nailing of long bone fractures. The use of flu-
oroscopy 1is familiar to most surgeons, particularly in trauma management. It is also very
helpful in a variety of spinal procedures. Many spine surgeons routinely use fluoroscopic
assistance for the placement of pedicle screws for instance.

3.3.1 Image Intensifiers

Conventional fluoroscopy is performed using image intensifiers that consist of an input flu-
orescent layer and photocathode, electrostatic lens, anode, and output fluorescent screen.
The input fluorescent layer converts the X-rays into light photons, which are then con-
verted to electrons by the photocathode. As the electrons are accelerated towards the
anode by a high potential difference, the electrostatic lens focuses them. These electrons
are then converted back to photons by the smaller output screen. The combination of
geometrical reduction and electron acceleration results in a large gain in brightness for
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the image intensifier, which allows the device to be used in the lower dose conditions of
fluoroscopy.

Imaging intensifiers, however, also have drawbacks. The output images exhibit a large
amount of distortion, due to both the curvature of the input fluorescent layer and the
deflection of the electrons by the earth’s magnetic field ([ea97], Figure 3.3). Moreover,
the latter effect is dependent on the position of the image intensifier, which changes in
a system undergoing motion. As in film screen systems a digitization step is required
for post-processing techniques. For systems requiring detector motion, the large size and
weight of an image intensifier may complicate mechanical engineering requirements. In
order to use X-ray image intensifiers for surgical planning or for registration, it is necessary
to correct distortions of the images acquired with these sensors.

pin cushion
distortion

Figure 3.3: Imaged vertebrae with superimposed calibration cage. The pin cushion distortion
is visible

3.3.2 Flat panel digital X-ray detectors
Technology issues

To replace film-screen systems and image intensifiers, medical imaging companies have
been developing digital distortion-free, flat-panel X-ray detectors, which can be divided
into two main groups: direct detectors, and indirect detectors. Direct detectors directly
convert X-rays to electrons for signal detection, while indirect detectors include an in-
termediate step which converts X-rays to light photons (which are then converted to
electrons). The electric image is stored in each pixel until the panel is read out, when
a transistor acts as a switch to send the pixel charge to an analog-to-digital converter
(ADC), and from there to a computer.
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The experimental set up used in this dissertation comprises a new 43cm x 43cm digital
flat panel detector developed by Trixell, Moirans, France which is dedicated to General
Radiography, see Figure 3.4.

Figure 3.4: The Pixium 4600 digital X-ray detector from Trixell

Detector matrix X-Rays Scintillator

Readout ICs

TRIXELL

Figure 3.5: Technology of the Pixium 4600 X-ray detector

Figure 3.5 shows the schematics of the (indirect) detector structure. The heart of the
flat panel detector is a Cesium lodide (CSI) scintillating screen, coupled to a 3120 x 3120
pixel, 143y pitch array of amorphous Silicon (a-Si) diodes deposited on a glass substrate.
Sensitive to visible light, these photodiodes are activated by the scintillator covering the
matrix, which converts the X-ray quanta. The detective panel is connected to dedicated
low noise electronics which provide line addressing and column multiplexing into a serial
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electrical signal. The signal is then digitized over 14 bits to provide a direct digital image
output, available for the radiographic system via an optical fiber.

Low Level Image Processing

Imperfections in the detector and electronics result in serious imaging artifacts in uncor-
rected images. Typical imaging artifacts include bad pixels, bad lines, non-uniform readout
gain, dark current, and regions of non-uniform X-ray conversion. Thus pre-processing of
the images is necessary and includes several basic corrections and associated calibrations.
Basically offset correction, gain correction and defect interpolation is applied thus all fixed
pattern noise is removed by this pre-processing.

The gain and the dark current (offset) are measured by the collection of two additional
images: a flat field , i.e. no object present, and a dark field, i.e. X-ray beam blocked.

At first a pixelwise offset subtraction is performed, subsequently sensitivity normal-
ization is, usually referred to as gain correction is carried out. Each pixel is multiplied
with its individual gain factor. The gain correction is based on a linear signal model.
Alternatively, a non-linear correction scheme could be used (a second-order model, based
on a dark measurement and several flat fields at different intensities for instance).

The last procedure is the defect interpolation. Fach pixel that shows unusual behav-
ior is marked in a defect map and is replaced in the final images by the interpolation
of its neighbor values in either direction. Unusual behavior in first instance means com-
pletely insensitive pixels, but also too large or too low offset, more than certain sensitivity
deviation from the average sensitivity (25%).

3.4 Calibration of the imaging system

Before the imaging devices can be used for quantitative measurements and subsequent
surgical planning, they need to be intrinsically and extrinsically calibrated.

3.4.1 Intrinsic Calibration

Intrinsic calibration models the imaging system (detector + source) itself, thus providing
a function that transforms raw sensor data into geometrical entities, which are expressed
in a coordinate system associated with the sensor.

As said before, conventional interventional X-ray imaging systems using an image
intensifier suffer from geometric distortions. The correction of these distortions is thus
usually part of the intrinsic calibration. Since a fully digital distortion free detector is
used for experiments in this work, the intrinsic calibration only implies the determination
of the source position in the detector reference system.

The basis for the projection from 3D space into the 2D image is is modeled as a linear
cone beam projection model (pinhole camera model), see Figure 3.6. It is assumed that
the origin of the source-centered coordinate system coincides with the focal spot of the
X-ray source, and the z axis coincides with the system’s optical axis, as illustrated in
Figure 3.7. f is the effective focal length, i.e. the distance between the X-ray source and
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Figure 3.6: 3D cone beam projection model
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Figure 3.7: Geometry of the perspective-projection camera model

the image plane. The relationship between the position of a point P in world coordinates,
and its projection in the detector coordinate system is defined by a sequence of coordinate
transformations. The first is a rigid body transformation from the world coordinate system
(Xw, Y, Z,) to the X-ray source centered coordinate system(X,, Y., Z.). This is expressed
as

T Ty T,
Ye = R Yo ‘I’ Ty
Ze Zay T,

where R is a rotation matrix and T a translation vector. The second transformation is
a perspective projection of point P in the source coordinates to the position of its detector
coordinates. This is described by

X,
X, = f—
and
Y.
o
fZ

C

where f is the focal length of the pinhole camera.
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The projection parameters i.e. the coordinates (x,y,z) of the source position are de-
termined in a calibration procedure. For this purpose a calibration probe is used, which
contains 200 steel spheres placed coplanar in a regular grid together with 3 intersecting
cylinders (Figure 3.8). This probe is imaged twice by the C-arm for two different pre-
cisely known distances to the image intensifier (figure 3.9). Since the calibration probe
is tracked by the position sensor, the 3D position of the center of every sphere in the
global coordinates system can be calculated. This allows subsequently to calculate the 2D
positions of the projections of the spheres in the detector coordinates system. First the
exact projection of the 3 cylinders are determined using a Hough transformation (figure
3.10). Then the known geometry of the calibration plate allows in conjunction with ded-
icated image processing algorithms to determine the sphere center positions in the two
images and for each position its corresponding sphere in the calibration plate. Searching
for the parameters describing the projection of the spheres into the image plane for both
calibration plate positions results in solving an over-determined system of equations. This
is accomplished using an iterative error minimizing algorithm; the method is described in

detail in [Tsa86].

Figure 3.8: The calibration cage

Mechanical deformations of a C-arm

During the C-arm motion the intrinsic geometry of the X-ray imaging system will not
remain constant due to the mechanical non-rigidity of the C-arm structure and the weight
inequity due to the detector end of the C-arm being heavier than the source. The resulting
minor orientation dependent bending of the C-arm affects the optical axis of the X-ray
system, which is defined as the normal dropping from the X-ray source onto the detector
plane. That means in principle that for each new C-arm position a new intrinsic calibration
step is necessary. In fact several commercially available systems do this. Intensifier based
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b)

Figure 3.9: Corrected calibration cage images for two different positions

Figure 3.10: Hough transformation of the calibration cage image
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C-arm systems for CAS applications do need this calibration step anyway because of the
geometric distortions due to the Farth’s magnetic field mentioned in section 3.4.1 and
the effect of external electromagnetic fields in the vicinity of the C-arm generated by
other electrical devices. Therefore CAS systems based on image intensifiers usually have a
calibration cage attached to the image intensifier that remains during image acquisition.
This further reduces the already limited workspace and also decreases the image quality
due to the calibration landmarks superimposed to the object (patient) being imaged.

Since digital X-ray detectors do not suffer from geometric distortions there is no need
for such a calibration target. However to account for the mechanical instability, it is
necessary to precisely quantify the deformation for each possible position of the C-arm.
Assuming that the mechanical deformations are perfectly elastic, the deformation can be
measured once offline and subsequently modeled and corrected for during intra-operative
image acquisition. Figure 3.11 shows the result of a preliminary study; the source to
detector distance as a function of the orbital angle of a prototype of a C-arm based X-
ray imaging system equipped with angle encoders and the above presented digital X-ray
detector (Figure 3.12).
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Figure 3.11: Source to detector distance as a function of the orbital angle

3.4.2 Extrinsic Calibration

The extrinsic calibration of the C-arm i.e. the determination of the transformation between
the detector coordinate system and the global system wide used reference system is carried
out using the angle encoders and an optical tracking system.

3.5 Conclusion

Position tracking devices are fundamental components for CAS systems and most com-
monly based on optical sensors, either using actively or passively illuminated markers.
They are used to track the position and orientation of patient organs, surgical tools, im-
plants etc. Within the context of this thesis the function of such a device is to acquire
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Figure 3.12: First prototype of a new interventional X-ray imaging system dedicated to CAS
surgery, equipped with angle decoders and optical markers for position/orientation tracking.

intra-operatively points on a bony surface and to track the position and orientation of an
interventional X-ray imaging device (C-arm) equipped with a new digital distortion free
flat panel detector. Calibration of the imaging device taking the mechanical deformation
of the C-arm into account is necessary for quantitative measurements which is essential
for the shape matching method proposed in chapter 7.
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Chapter 4

Segmentation, Registration and
Deformable models for Image

Analysis and CAS

The goal of any image analysis system is to infer information required for a specific task.
The inter- and intra-subject variability inherent to biological structures makes medical
image interpretation a difficult task in general.

A commonly applied subdivision scheme of image analysis tasks into five abstraction
levels according to the degree of a priori knowledge involved in operations at that level is
shown in Figure 4.1. The lowest level includes filtering and normalization of the raw im-
ages. At the next higher level (low level) segmentation on the filtered image is performed.
At the low level vision level geometric scene elements like surfaces, volumes or contours
are extracted. At the object recognition level, single objects are recognized and labeled.
At the high-level vision level interpretation of entire scenes is performed.

Segmentation is an essential part of any image analysis system. Within the context of
this dissertation it is used to extract shapes in 3D gray level images in order to perform
subsequent shape analysis (chapter 5) and to define the outline of an object’s projection
in X-ray images (chapter 7). In section 4.1 some of the most common low level segmen-
tation algorithms are presented and it is discussed why they often lead to unsatisfactory
results when applied alone. Registration is part of virtually any CAS system (see chap-
ter 1). A brief introduction to this topic is given in section 4.2 following [Lav96, MV98].
Prior to any registration, so-called reference structures have to be segmented in general.
Registration is dual to segmentation in such a way that conversely the knowledge of the
correct registration (transformation) would facilitate the often difficult segmentation. This
issue is discussed further in [HLC98] for instance. Deformable models can provide efficient
means to take into account this duality and to incorporate a priori knowledge into the
segmentation/registration process. This is discussed in section 4.3, where special atten-
tion is paid to the statistical shape model by Cootes and Taylor [TCCG92], that provides
an attractive framework for image interpretation tasks based on the statistical analysis
of object shapes. This model is applied in subsequent chapters for surface reconstruction
using sparse data.
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Figure 4.1: General classification of image analysis methods

The last section of this chapter introduces the concept of iterative corresponding point
matching which is likewise applied in the subsequent chapters.

4.1 Segmentation

The segmentation of anatomical structures - the partitioning of the original set of image
points into subsets corresponding to features characteristic for the structures - is an es-
sential stage of most medical image analysis tasks, such as registration, shape analysis,
object recognition, etc.

4.1.1 Manual Segmentation

Most segmentation of 3D medical images is currently performed using manual slice editing,
which is extremely labor-intensive and time-consuming. Usually a skilled operator, using
a computer mouse or trackball, manually traces the region of interest on each slice of an
image volume. Manual slice editing suffers from several drawbacks, such as the difficulty
in achieving reproducible results, operator bias, forcing the operator to view each 2D
slice separately to deduce and measure the shape of 3D structures, and operator fatigue.
Therefore more automatic methods are of high interest. Exemplary some of the more
common low-level segmentation methods are summarized in the following section (see

also [ACCT96] for further details).
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4.1.2 Low-Level Segmentation methods and their limitations

Usually the features to be searched for are either edges or regions. Therefore two conceptu-
ally different approaches can be distinguished. Region segmentation consists in searching
for homogeneous areas in the image. Edge detection consists in searching local discontinu-
ities of the gray-level function of the image. Region based segmentation methods always
yield closed (region) boundaries, which is not the case for edge-finding techniques.

Region based segmentation

Thresholding The most basic segmentation procedure that may be carried out is
thresholding of a gray level image. Thresholds may be applied globally across the im-
age (static threshold) or may be applied locally so that the threshold varies dynamically
across the image. The success of this approach depends on whether suitable thresholds
exist and whether they can be inferred from the image.

Region Growing and Split-and-Merge Algorithms Region growing algorithms
start with a number of seed pixels or seed regions and grow these regions by adding
to a region previously unassigned neighboring pixels that correspond to some similarity
criterion for that region [GW92]. This method proceeds to successively divide an image
into smaller non-overlapping regions if some similarity criterion is not met, otherwise no
split of that region is carried out. The final result of the splitting is an over-segmented
image. A merging procedure is then applied to merge neighboring regions under the same
homogeneity predicate that was used for splitting.

Watershed Segmentation For this algorithm the gradient magnitude at each pixel of
a 2D image is considered as the height of a surface in 3D, regions are formed by simulating
a flooding of the image that begins at local minima of the gradient image function [BM93].
The boundaries of each region stop advancing when neighboring flooding regions meet and
the boundaries thus correspond to ridge-paths of the gradient magnitude. The regions
defined by the closed boundaries represent an over-segmentation of the image, since there
will usually be many such regions corresponding to each object. If the gradients are
computed at successively higher scales, the number of local minima (flood basins) in the
gradient magnitude image will decrease.

Edge based segmentation

Gradient Operators, Edge and Zero-Crossing Detectors The boundaries of struc-
tures in images correspond to local gradient extrema or Laplacian zero crossings of the
gray-level function. Due to sensor imperfections, discretization, object irregularities etc.
this implies differentiating a noisy signal. Usually the design of an edge detection oper-
ator is preceded by defining a set of performance criteria such as one response to one
edge, good edge localization, high probability of detecting true edge points and low prob-
ability of falsely detecting non-edge points. Canny proposed in [Can86] a derivative of
a Gaussian filter as a near-optimal filter with respect to the above criteria. In [Der87]
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Deriche proposes a recursive and separable filter with an impulse response similar to that
of the derivative of a Gaussian, allowing an efficient implementation especially in the case
of large filter masks. Shen and Castan [JC92] propose a derivative filter optimizing the
trade-off between edge detection and edge localization.

Thresholding of the filtered image is usually performed in two steps. First, local max-
ima in the gradient direction are extracted (Figure 4.2 left). Second, hysteresis threshold-
ing is applied in order to eliminate false isolated edge points but keep high connectivity
of edge chains (Figure 4.2 right).

Figure 4.2: After applying a Canny-Deriche filter to an image, thresholding is performed in
two steps: First local maxima in the gradient direction are extracted (left). Then hysteresis
thresholding is applied in order to eliminate false isolated edge points but keep high connectivity
of edge chains (right). Due to considerable variability within the subject perfect edge detection
is not possible.

Segmentation using low-level image processing techniques, usually still requires consider-
able amount of expert interactive guidance or manual post-processing to obtain acceptable
results. Furthermore, automating these approaches is difficult because of the shape com-
plexity and variablity within and across individuals and varying imaging conditions. In
general, the underconstrained nature of the segmentation problem limits the efficiency
of approaches, that consider local information only. Noise and other image artifacts can
cause incorrect regions or boundary discontinuities in objects recovered by these meth-
ods. Without a priori knowledge medical image segmentation is an ill posed problem and
therefore only in specific cases one of the above mentioned methods is able to solve a
given segmentation task alone.

42



4.2. REGISTRATION

4.1.3 Incorporating a priori knowledge

Knowledge can be incorporated into image analysis systems in general in different ways.
Procedural (algorithmic) knowledge is incorporated implicitly in the algorithm or method
to interprete the image. Procedural knowledge representation is not very modular, and
little reusable but at the same time very efficient. Declarative (expert) knowledge is rep-
resented explicitly and symbolically and is independent of the methods that perform in-
ferences on it. It can be represented using formal methods like predicate logic, production
rules or semantic nets. Declarative knowledge can be represented in contrast to procedural
knowledge as highly modular and is often reusable but on the other hand less efficient. It
is also possible to combine both kinds of knowledge representations.

Often methods working at the abstraction level of low level image segmentation are
combined with methods working at one of the three highest abstraction levels to exploit
(bottom-up) constraints derived from the image data together with (top-down) a priori
knowledge about the structure to be analyzed

4.2 Registration

In computer integrated surgery and therapy, registration of all the information available
for a given patient i.e. the establishment of a graph of relations between all the coordinate
systems involved, is an essential step (see also Figure 1.1) and links together all available
information. Figure 4.3 shows a typical CAS scenario where various coordinates systems
have to be related to each other:

e

Csmcalizﬁ‘r k .{
Ccs .
S patient CS
pre-operative images intra-operative sensor
CSglobal

Figure 4.3: Different coordinate systems in a typical CAS setting

e Medical images or Models/Atlases with different modalities such as Computed
Tomography, Magnet Resonance Imaging, Ultra Sound, X-ray images and different
dimensionalities (2D, 3D, 2D + time, 3D 4+ time).
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e Positioning information gathered by

— 6D localizers (optical tracking devices), providing the position/orientation of
organs or tracked tools (passive guiding systems)

— position/angle encoders of intra-operative imaging devices, semi-active or ac-
tive guiding systems (robots).

When considering registration of medical images, one can distinguish between three
main application areas:

Intra-operative registration usually aims at estimating an accurate relation between
pre-operative images/models and intra-operative data of the same patient thus performing
intra-patient registration. Differences between data can be due to

e Different viewpoints
o Different imaging modalities

e Different acquisition times

Inter-patient registration refers to registration of data of different patients.

Atlas-patient registration refers to registration between an atlas or a deformable
model and data of a patient. It is a generalization of inter-patient registration, if the
model/atlas incorporates the same kind of information as the patient data. The problem
of registering sparse intra-operative patient data with a statistical shape model can be
thought of as being such an application.

According to Lavallee [LCT97], the registration process can be divided into 3 steps:

1. Definition of a relation between coordinate systems,

2. Definition of reference features and definition of a disparity (or similarity) function
between them,

3. Optimization of the disparity (or similarity) function.

4.2.1 Definition of a relation between coordinate systems
Definition of coordinate systems

In order to register two modalities of information A and B, the first step is to associate
a coordinate or reference system to each of both modalities. The objective is then to
estimate the transformation T between Refs and Refp.
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Definition of a relation

Limiting to static cases the transformation T is a function that transforms coordinates

My = (X4a,Ya,Z4) in Refy into coordinates Mg = (X, Yp, Z5) in Refp:
My = T(Mg)

Nature and domain of the transformation:

The transformation T can vary in its nature and regarding its domain.

Rigid transformations: An image coordinate transformation is called rigid, when
only translations and rotations are allowed. Rigid-body transformations can be repre-
sented by a 3-parameters translation vector T" and a 3x3 rotation matrix R that depends
likewise on 3 parameters. This transformation can be described using a single matrix M
equation: b = Ma, where a and b are the old and new homogeneous coordinate vectors:

by g
by | R T ay
b. | a.
1 0 0 0 1 1

Several possibilities exist to represent rotation matrices. The most popular represen-
tation uses Euler angles corresponding to 3 successive rotations with angles ¢, 8, ¢ around
the x,y and z axis, resulting in the following rotation matrix:

cos ¥ cos f — sint cos sin §
R = costsinfsing 4+ sinycos¢d —sinysinfsing + cos cos¢d — cosbsin @
—cosyPsinfcosp+sinysing  sinysinf cosp 4 cosyPsing  cosf cos o

The drawbacks of the Euler representation are first, that the matrix coefficients are non-
linear and second, that this representation is not differentiable at some singular values (
where § = —m/2) [Aya9l].

Another well-known representation makes use of unit quaternions that are an ex-
tension of complex numbers [FH86]. The unit quaternion is a 4 components vector
q = [qoq1 q2 q3]", where qo > 0, and ¢ + ¢? + g5 + ¢ = 1. Each unit quaternion cor-
responds uniquely to a 3 x 3 rotation matrix :

@wtai—a—4a¢  2qq — qqs) 2(q193 + qo042)

R = 2(q1942 + Gogs) qS + q% - Q% - Q§ 2(q293 — qoq1)
2 2 2 2

2(q195 — qq2) 20q2q3 + Qo) a5+ G — G — 4

Unit quaternions have some advantages amongst which simple derivatives and efficient
formulations to find rotation matrices directly for point matching problems [FH86, Hor87,
BM92].

Another less known representation that is minimal and that equally avoids singularities
is the rotation vector r = (r,,r,,r.) where the direction of r is the rotation axis and the
norm of r is the rotation angle (see details in [Aya9l]).
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Due two their above mentioned advantages quaternions are used throughout this thesis.

Nonrigid transformations: For the tasks addressed in this work, the transformation
T has to take deformations into account. The deformations can be global or local, elastic
or plastic. The registration may be affine, projective, curved or even completely arbitrary.
Figure 4.4 shows how each of the transformations affects an image.

projective curved
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Figure 4.4: Different kinds of deformations

4.2.2 Definition of a disparity function between reference fea-
tures

Once a relation between Ref4 and Refp has been defined, the second step is to extract
corresponding features in Refs and Refg, and to define a disparity function (or a similar-
ity function) between these features. Reference systems Ref4 and Refp will be assumed
to be registered when the defined disparity function (or similarity function) will be min-
imal (or maximal). Such an optimization will constitute the last step of the registration
process. Obviously, the choice of reference features and of the corresponding optimization
method is the core of any registration strategy, most methods differ at this level.

Reference Features

Following the classification proposed in [MV98], reference features can be extrinsic or
intrinsic.
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One classical example for extrinsic references features are fiducial markers that are
attached to preferably rigid structures (bones) of the patient. Subsequent imaging of the
patient allows the registration between physical space and the images based on segmen-
tation of the fiducials in the images. This can be very precise but implies an invasive
intervention prior to the imaging and real surgery of the patient in order to implant
these reference structures. The system for Computer Assisted ACL surgery presented in
section 2.2, applies this method.

Intrinsic features can be based on voxel properties, anatomical landmarks or on seg-
mented features like points, curves, surfaces or deformable models (see [Lav96, MV98] for
further details).

An interesting concept is to determine virtual points using a functional criterion. This
idea has been introduced in [LWM™94] for robot-assisted knee surgery: The center of the
femoral head defined on CT images can be registered with the femur’s center of motion
with respect to the pelvic bone when a passive rotation is applied by the surgeon (or by
a robot) during an operation. It also offers interesting options for initializing the rigid
parameters of registration algorithms.

Definition of a disparity function

Assuming a set of reference features Fa = {F4;,1 = 1... N} has been extracted in Ref},
with a corresponding set of features Fg = {Fpj;,7 = 1... M} in Refp, the disparity
function must involve some function of the distances between features F'y; and the features
Fg; transformed by the transformation T to be found.

If features are points, the Euclidean distance is perfect, but for more complex, higher-
level features, more sophisticated distance functions have to be used such as the Hausdorff
distance for instance which is defined by the maximum of the minimum euclidean distances
between each point of a feature and the other features (see also [LCT97]). Most existing
methods minimize a weighted least-square criterion of the type

D = Z wi[distance( Fa;, T(Fgiyt))]?

where w; are scalar weights for each feature. Nonrigid transformations T tend to de-
form a model A until it fits perfectly a model B, thus reducing the disparity function
to zero, which is conflicting with the existence of noise and the fact that the nonrigid
matching is in general an ill posed problem in general, i.e. the system of equations defin-
ing the problem is underdetermined. One solution is to set constraints directly on the
transformation T by limiting the number of degrees of freedom or parameters which are
necessary to define an elastic transformation T. For instance, T can be defined as an
adaptive hierarchical spline function [SL96]. Another solution is to set constraints during
the optimization process, using regularization theory [Ter88, TF88, Boo89, SL96]. In the
latter case, the criterion to be minimized is a weighted sum of the errors between features
and a regularization (smoothing) term. Both methods are used in this work.
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4.2.3 Robustness

As said before, most methods minimize a least square criterion. This is appropriate if the
noise in the data has a Gaussian distribution (Maximum-likelihood estimation). Noise is
introduced by sensors, calibration errors, data approximation through inexact representa-
tions, errors of the feature extraction procedures and phenomena not taken into account
in the model of the transformation.

In many applications, visual data are not only noisy, but also contain outliers, data
that are in gross disagreement with a postulated model. Outliers, which are inevitably
included in an initial fit, can so distort a fitting process that the fitted parameters become
arbitrary. A similar situation occures when there is only a partial overlap between the
model and the data.

In such circumstances, robust estimation methods [HRRS86, Hub81] can be applied.
Robust methods aim at continuing to recover meaningful parameters even when the data
contain spurious data. Elementary procedures imply iteratively repeated rejection of data
above a given threshold [L.S95] (Regression Diagnostics) or using only a pre-defined frac-
tion of the best data (for instance 80%) [BLS93, JRH92, HR93].

The least median of squares (LMS) method [Rou84] minimizes the square (or absolute
value) of the median residual for the data. This ignores the largest residuals in the sample,
therefore this method is robust in the presence of outliers. Since sorting to find the median
becomes expensive if the data set is very large, usually random subsets are considered in
this case.

So called M-estimators (that maximize the likelihood for a particular error distribu-
tion) are an other class of robust estimators. A robust estimator based on the least square
error norm p(z) = z? has the advantage of being convex near the minimum, but gives
unbounded influence as the data error goes to infinity. More precisely this influence is
proportional to the derivative ¢ (called influence function) of p. For the least square case
() = 2x. To increase the robustness, one can think of error norms that are more forgiv-
ing about outlying measurements, i.e. increasing less rapidly than x*. Some of the more
commonly M-estimators use the following error norms p:
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In [ea99c¢]| for instance authors use robust estimators for single modality image regis-
tration based on optical flow. In [Nik98] authors use the Geman-McClure error norm for
registration of multi modality images. In [MEF99] the Tukey error norm is used to reject
outliers in surface based registration methods for orthopedic surgery.

4.2.4 Optimization of the disparity function

The defined disparity function has to be minimized using a dedicated optimization pro-
cedure. Some possible criteria for classification of optimization methods are given in the
following.
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Global versus local matching: First, one can distinguish two main categories: In
global methods, only one criterion depends on the searched parameters. This criterion
takes all features of the model space and all features of the data space into account. In
local methods, features of the model space are matched individually with features of the
data space, and each matched pair of features gives directly some possible parameters of
the transformation T, or at least some constraints on these parameters.

Nonlinear optimization: Very few methods give a direct solution: this is only the
case for rigid registration of points or planes. Therefore, minimization techniques often
require nonlinear optimization using iterative procedures. If the disparity function does
not allow to compute the derivatives in a reasonable time (analytically or numerically),
algorithms using only function evaluations have to be applied. Otherwise more powerful
techniques using first or second derivatives can be used. As it will be seen in the subsequent
chapters, for the registration methods proposed in this dissertation, the partial derivatives
with respect to the disparity function can be calculated analytically, thus gradient descent
techniques can be applied.

Local minima: When iterative optimization is used, there is always a risk that the
method fails into a local minimum, raising the issue of initialization and interaction. Fo-
cusing first on rigid-body registration, two kinds of local minima can be distinguished
qualitatively. A first class contains a series of many local minima spread in a small neigh-
borhood of the true global minimum. These minima occur when registration is performed
between two surfaces that differ only in fine details. They can be avoided by an appropri-
ate discretization or data smoothing. A second category includes large local minima which
are quite far away from the true global minimum. Their existence, location and number
is very shape-dependent. However, for application in the medical field, there is very often
some a priori knowledge about the region where the minimum has to be searched. This is
due to the fact that physicians, surgeons and radiologists already use a reference system,
which is the patient reference system (see appendix B.1). Typically, the rotation matrix
between the data space and the model space is known with uncertainties of about +30°
around each axis. For translation components, using an initial translation superimposing
the feature centroids of both spaces is usually suitable. In this work simple interactive
pre-alignment is used. In [Rot00] some more sophisticated initialization methods are dis-
cussed in more detail. For nonrigid registration where the parameter space has a much
higher dimension, local minima are more likely to occur. In this case, it is possible to
use a stochastic method (e.g. based on genetic algorithms as used in [JR93] for instance)
in order to find the global minimum. Multi-resolution algorithms also provide an effi-
cient solution: A well known implementation is presented in [BK89a] for elastic volume
registration. In this work the later approach is applied in chapter 5.

Figure 4.5 summarizes some of the given classification criteria for registration methods

of medical images [MV98].

4.3 Deformable models

In recent years there has been considerable interest in methods that use deformable mod-
els, or atlases, to interpret images. Although originally developed for application to prob-
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Figure 4.5: Classification of registration methods
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lems in computer vision and computer graphics, the potential of deformable models for
use in medical image analysis has been quickly realized. The applications include segmen-
tation, registration, shape analysis, motion tracking etc. The inherent (forced) continuity
and smoothness of a model can compensate for noise, gaps and other irregularities in
object boundaries. Furthermore, the representation of a model can provide a compact
description of object shape. These properties lead to a robust and elegant technique for
lining sparse or noisy local image features into a coherent and consistent model of the
object. A deformable-model based segmentation scheme, used in connection with image
preprocessing, can overcome many of the limitations of manual slice editing and tradi-
tional image processing techniques. Connected and continuous geometric models consider
an object boundary as a whole and can make use of a priori knowledge to constrain the
segmentation problem. Deformable models can be used for matching anatomic structures
by exploiting (bottom-up) constraints derived from the image data together with (top-
down) a priori knowledge about the location, shape, etc. of these structures. For a general
overview about deformable models see for instance [MT96, Lel99]. In [MDSAO00] authors
discuss the different possible representations for deformable surfaces.

The different anatomical modeling methods described in the literature can be placed
mainly at the top three levels of the image interpretation pyramid in figure 4.1 depending
on the amount of a priori knowledge incorporated into the model.

4.3.1 Incorporating a priori knowledge

The need to incorporate prior knowledge into image segmentation methods is nowadays
widely recognized especially in medical imaging, where many aspects of the imaging con-
ditions are difficult to control. The incorporation of knowledge about the shape, location,
orientation, appearance and spatial context of an organ is essential and may be incor-
porated into a deformable model in the form of initial conditions, data constraints, con-
straints on the model shape parameters or into the model fitting procedure. The use of
implicit or explicit anatomical knowledge to guide shape recovery is especially important
for robust and automatic interpretation of medical images. It is essential to have a model
that not only describes the

e shape (smoothness, variability, topology, etc.)

® size

location, orientation

boundary

texture (for volumetric models only)

of the target object but that also permits expected variations in these characteristics.
The knowledge can be gathered by different means; regarding the shape it can be for
instance physically or population based.
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Automatic interpretation of medical images can relieve clinicians of the time consuming
aspects of their work, while increasing the accuracy, consistency and reproducibility of the
interpretations. As the task addressed in this work does not only consist in interpolating
but especially in eztrapolating data, incorporating a priori knowledge about the shape to
be recovered in a suitable manner, is one of the key problems to solve.

As pointed out in [MT96] it is difficult to classify deformable models, due to the variety
of different approaches. According to the requirements in this work, the following criteria
are important:

e Automation, accuracy and robustness: High automation is always the long
term goal for image analysis systems but often only semi-interactive tools provide
robust and accurate results in existing systems. Actually, interactivity can be con-
sidered as a basic way to introduce a priori knowledge in the segmentation process,
i.e. the anatomical knowledge of the expert.

e Generality versus specificity: Generality is the basis of deformable model formu-
lations with local shape parameters such as snakes (see 4.3.2). Alternatively, highly
specific or constrained deformable models exist. The objective of this work is to
investigate a general method to build specific models for each object-class (femur,
vertebra, etc.) to be reconstructed.

e Surface versus solid models: Depending on the task, either surface models or
volumetric models can be more appropriate.

e Geometric Nature: One can distinguish between the shape description and the
deformation description. The shape description may confine the model to represent
shapes of restricted or not restricted topology (e.g. fourier descriptors), and may or
may not allow a topology change throughout the evolution of the model. Within
this dissertation the goal is to recover the shape of an object with known, stable but
possibly complex topology as a vertebra for instance. The complexity of possible
model deformation may be unrelated to the complexity of the model shape. A high
resolution surface mesh for instance may be restricted to undergo simple affine
transformation only.

4.3.2 Popular Deformable Models

In the following section some of the more popular deformable models are briefly presented.

Snakes

A widely acknowledged object representation applied for segmentation of medical images
was described by Kass [KWT88], who introduced the active contours, also referred to as
snakes. This flexible contour is an energy minimizing spline curve with associated stiff-
ness and elasticity. A parametric snake is a curve expressed in coordinate functions(x(s)
and y(s)); where s represents the parametric domain (0,1). The shape of the contour is
governed by an energy functional:
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where the first integral term represents an internal deformation energy of the model,
which is balanced with an external scalar field P(v), typically defined from an image
feature, such as the local image gradient. Parameter functions wy(s) and wz(s) represent

two physical properties of the contour, i.e. the ability to stretch and bend respectively.
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These functions can be used to impose a preferred shape on the model and to locally
control shape characteristics like the object smoothness of the resulting segmentation.
The third term E represents shape constraints introduced by the user, e.g. by fixating
a point of the contour to an image point. The final shape of an active contour in an
image corresponds to a minimum in E(v), which can be found by numerically solving the
Euler-Lagrange equation. Extensions of the 2D snake model to 3 dimensions (deformable
balloons) have since been reported, as well as many modifications of the original energy
formulation to improve robustness of the snake and balloon methods with respect to
spurious feature points and initial positioning, transitions in topology and simultaneous
detection of multiple objects.

The drawback of such models is that they are free to take almost any smooth shape,
and are therefore non-specific. That is, they can produce examples of the object of interest
which are outside the normal variation of shape for that object.

“Hand Crafted” models

Flexible models can be built up from simple subcomponents, such as circles, lines, or arcs,
which are allowed some degree of freedom to move around relative to one another, and
possibly change scale and orientation. In [YCH92] for instance parts of the face, such as
the eyes and mouth, are modeled in this way. Lipson et al. [ea90] apply a similar scheme
to map elliptical models of vertebrae onto CT images of the spine.

Superquadrics

Deformable models based on superquadrics are one example of deformable models in-
corporating a priori knowledge by applying constraints on global shape parameters. Su-
perquadrics form a family of implicit surfaces obtained by extension of usual quadrics.
They are obtained by the spherical product [Bar81] of two 2-D curves. Their advantage
is their capability of covering a wide variety of shapes with only a small number of pa-
rameters.

However, if superquadric shapes give a good approximation of a shape, they are not
sufficient to describe more complex (anatomic) surfaces. To overcome this restriction,
they can be coupled with local shape parameters. Bardinet et al. [BCA94] for instance
fit a deformable superquadric to 3D cardiac data and refine the superquadric fit using a
volumetric deformation technique known as free-form deformations (FFDs) [SP86].
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Finite Element Models

Finite element methods can be used to model variable image objects as physical entities
with internal stiffness and elasticity. Pentland and Sclaroff [PS91] use three-dimensional
models which act like lumps of elastic clay. They derive modes of vibration of a suitable
base shape, such as an ellipsoid, and build up shapes from different modes of vibration. The
first modes are large-scale variations of shape; the higher order modes are more localized.
They fit models to range data by an iterative process. Terzopoulos and Metaxas [TM91]
present a similar idea using deformable superquadrics (see above). Nastar and Ayache
[NA92] apply a finite element approach using the vibrational modes of an example of the
shape to be modeled.

Volumetric models

Volumetric templates consist of a segmented voxel set and are matched to image data
by deforming the model on the basis of attraction forces, which are derived from local
similarity measures. The dimensionality of the defined transformations determines the
matching accuracy that can be achieved with these deformations. Several approaches
have been described based on elastic [BK89b, CRM94] and thin-plate spline interpolants
spanned by landmarks [ECNM91] for instance. Such models are most commonly applied to
segmentation of brain structures. Due to the locally distributed nature of shape knowledge
in these models, the model-image matching is computationally an order of magnitude
more expensive than for boundary template approaches described so far. Since volumetric
templates are matched as a whole, the topological structure of the model is preserved
throughout the matching procedure, which makes it suitable to segment multiple objects in
a scene simultaneously. Therefore, these models can be placed on the scene interpretation
level in the image interpretation pyramid in figure 4.1.

All mentioned methods have the advantage that the models are relatively easy to con-
struct and allow a compact parametric representation of a family of shapes, but they
do not represent the actual variation of shape within a (natural) population. Therefore,
investigations have been made to develop models which can only deform in ways which
are characteristic of the objects they represent. To limit the number of shape parameters,
it is necessary to find (uncorrelated) model parameters describing typical modes of shape
variation.

4.3.3 Statistical shape models
Fourier Series Shape Models

Different population based models are known from the literature. One possibility is to use
statistical models based on Fourier representations such as [SD92, SKBGY96].

In [SD92], a method of modeling shapes by an expansion of trigonomic functions is
proposed. The authors derive distributions for each of the parameters over a training set,
and while fitting the model to an image, maximize a probability measure determining
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how likely it is that the current example is the desired object. Trigonomic basis functions
are not suitable for describing general shape; for example, using a finite number of terms,
they can only approximate a square corner. The relationship between variations in shape
and variations in the parameters of the trigonometric expansion is not straightforward.

Volumetric models

A second important statistical shape modeling method for segmentation purposes is based
on spatial normalization of a set of voxel maps. By optimally registering a set of segmented
volumes into a standardized space by applying affine or higher dimensional transforma-
tions, an image scene can be expressed as a probability map or as an average shape with
a locally defined variance measure respectively. These models are generally applied to
segmentation problems by weighting a feature-based probability density function with
a spatial probability distribution of an organ shape in a Bayesian formulation (see also
section 4.3.2. These types of models are commonly applied for brain warping.

Another approach is to consider a model with modal representation based on statistical
analysis directly applied to the nodal representation of a mean contour [CTCG95a]. This
thesis is based on the latter approach which is therefore explained in further details in
the next section.

The Statistical Shape model of Cootes and Taylor

A widely acknowledged statistical shape model is the Point Distribution Model (PDM) as
introduced by Cootes et al. [TCCG92] A PDM describes the average shape and charac-
teristic shape variations of a set of training samples, which are given in the form of a set
of points on the sample boundaries. principal component analysis (PCA), also known as
Karhunen-Loeve transformation is used to decompose the model in eigenmodes obtained
from the shape training set. The decomposition basis size depends on the number of
shapes contained in the training set. Since only shapes composed by a linear combination
of the eigenmodes can be represented, PCA restricts the shape variation of the model
close to the known statistical shape variation.

Given a collection of NV 3D training shapes of an object, the Cartesian coordinates of M
corresponding points are recorded for each image. Each training example is represented
by a vector m = (&1,Y1, 21, ..y Tar, Yur, 201 ). After alignment of the training shapes the
pointwise mean shape

1 N
n=—— i 4.1
m N;m (4.1)

is then calculated. Modes of variation are found by applying principal component analysis
to the data. That is the modes are represented by the 3M orthonormal eigenvectors e;
of the covariance matrix describing the deviations of the training shapes from the mean
shape:
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A new instance of the shape is generated by adding linear combinations of the ¢ most
significant variation vectors to the mean shape

¢
m=m -+ Z w;e; (42)
i=1

where w; is a weighting for the i variation vector. PCA is based on the hypothesis that
the data correspond to a single multidimensional Gaussian distribution, thus justifying
a linear representation. Vector m; varies inside an N dimensional hyper ellipsoid. The
eigenvectors of C represent the hyper ellipsoid axis directions while the eigenvalues are
the axis amplitudes. By applying limits to the variation of w;, for instance |w;| < £3v/A;,
it can be prevented that a new shape instance varies too much from the mean shape.

Usually, NV is much lower than 3M and diagonalization of the covariance matrix results
in N eigenvectors associated to N non zero eigenvalues. It can be shown that the eigenvec-
tors of the covariance matrix can be calculated from a smaller N x N matrix derived from
the same data in this case [CTCG95b, TP91]. Because the eigenvector calculation time is
proportional to the cube of the size of the matrix, this can give substantial time savings,
as 3M may be in the range of several thousands, while N normally is much smaller. The
number of usable modes ¢ depends on the size of the training set. It must be large enough
compared to the parameter vector size 3M to allow the model to recover an object.

One important difference between matching methods based on such a PDM and the
matching mechanism for snake models for instance is the absence of an energy functional
based on elastic material properties. For PDMs, the image matching is performed by
calculating a suggested boundary location for each point in the PDM, based on image
information. This allows an elegant coupling between high-level knowledge about object
shapes and low-level image features. The model pose and shape-parameters are iteratively
updated to optimally fit the hypothesized shape, where the model is only allowed to deform
along the most characteristic eigen deformations.

Because statistical shape models allow a coupling between low-level image data and
higher level knowledge about individual organ shape and their spatial context in a scene,
they correspond to the scene interpretation level in the image interpretation hierarchy in
figure 4.1.

4.3.4 Shape Analysis

The construction of a training set implies to define M corresponding points on a set of
N shape instances. In two dimensions this point correspondence is often defined manually.
This is fastidious and may become easily impractible in the 3D case. Indeed, determining
corresponding points on smooth surfaces is a difficult task for a human operator except for
feature points such as curvature extrema. Such visually determinable homologous points
are called anatomical landmarks.
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These landmarks are usually sparse (depending on the complexity of the shape) and
thus not sufficient to build a PDM upon; A PDM requires a dense set of corresponding
points, which are not necessarily determinable on a certain specimen alone but that corre-
spond across all the specimens of a data set under a reasonable model of deformation from
their common mean. Thus they can be used as if they were anatomical landmarks and
are therefore called semi or pseudo landmarks [Boo96]. Some authors propose methods
to define dense corresponding point sets based on an application dependent assumption,
often necessitating very specific acquisition protocols. The development of more generic
methods to define point correspondence for two and especially three dimensions is cur-
rently an active field of research. Most known methods from the literature rely on nonrigid
registration of deformable models and assume that the training objects have been already
segmented. One class of methods relies on a known sparse set of landmarks; a dense set of
semi-landmarks is then defined by registering the corresponding landmark set applying a
specific deformation. In [STA96] a set of anatomical landmarks called crest-lines are com-
puted to perform shape analysis on a skull population. Crest-lines are also used in [ea00b]
to establish initial correspondence. A dense set of corresponding points is then computed
by applying a diffusion algorithm. In [LKO00] initial correspondence is based on a manu-
ally defined set of sparse landmarks on each object. A dense mapping is then computed
using thin-plate interpolation. To achieve a final precise mapping between the two object
boundaries and to regularize the surface mesh, a mesh relaxation is applied subsequently.
In [BT99] two shapes are represented by dense triangle meshes which are matched via
sparse triangulations obtained by triangle decimation from the dense mesh. The matching
is based on a symmetrical version of the iterative closest point algorithm (see section 4.4).
To overcome the problems of possible surface folding related to this approach, the same
authors propose in [BT00] to transform the surface to a planar domain by means of har-
monic maps. This approach is only applicable to single part shapes that are topologically
isomorphic to a disk. In [ea99a] Kelemen et al. use Fourier-descriptors to automate the
landmark generation. As mentioned in section 4.3.3 models based on Fourier-descriptors
likewise suffer from topological restrictions. Kotchefl and Taylor [KT98] use direct opti-
mization to place landmarks on sets of closed 2D curves. Though good results are reported,
possible extension to three dimensions is questionable due to the extremely high compu-
tational costs for the applied optimization method based on a genetic algorithm. Caunce
and Taylor [CT98] describe a method to match sulcal fissures using a modified ICP algo-
rithm; the landmarks are progressively improved by adding more structural information
into the matching process. However, an extension of this application specific method for a
general use outside the brain does not seem straightforward. Wang et al. [ea00c] use a sur-
face registration technique to find 3D point correspondences taking curvature information
into account. Authors suggest to use their method to build 3D point distribution models
but no results are reported. In [ea0lc] authors propose a method for building statistical
shape models, where no segmentation of the training shapes prior to the shape matching
is required. A free-form elastic registration technique based on maximization of normal-
ized mutual information is used to establish correspondence between images. As proposed
in [FL98] subsequent principal component analysis is applied directly to the deformation
lattice instead of to the semi-landmarks. For more fundamental work on shape analysis
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and morphometrics the reader is referred to [Boo96, GM98, Lon98].
In the following chapter, a method which performs an automatic landmark point
generation while ensuring point correspondence between the training shapes is described.

4.4 TIterative Corresponding Point Matching

In many cases the registration problem can be formulated as an iterative corresponding
point matching problem. Starting from an initial position and orientation, during the
first step of each iteration corresponding points in the data space and model space are
determined. During the second step a new transformation is computed by applying one
iteration of the chosen optimization method. The result is applied to the data space and
the whole procedure is iterated until convergence.

Data Space Model Space
\ A /
Initial _ Actual Determination of
Transformation " | Transformation Corresponding Points

A

Optimization
Step

Figure 4.6: Flow diagram for Iterative Corresponding Point Matching

The rigid and non rigid parameters (if existing) of the transformation can be coupled
and optimized together or treated separately. The optimal rigid registration between two
corresponding points is a well-known problem for which a direct method exists in the
3D case. It is based on quaternions and its mathematical description can be found in
appendix C. If the correspondence between the data set and the model set is defined by
simply assigning the closest model point to each data point (using Euclidean distance
measure) the above described iterative procedure is well known as the Iterative Closest
Point algorithm [BM92]. It is possible to speed up this algorithm considerably by extrap-
olating the last 3 quaternions [BM92]. See for instance [SHK95] for further improvements.
The ICP can also be applied to surface registration. For intra-operative application it is
mandatory to find nearest points on the model surface very quickly, which is not obvious
for complex shapes. One possibility to speed up the search is to use k-d-trees, a form of
hierarchical space-decomposition, which is discussed further in section 6.4. Of course more
complicated correspondences can be defined, thus allowing registration of a 3D model with
3D gray level images (chapter 5), registration of a 3D model with sparse 3D point data
(chapter 6) and registration of a 3D model with 2D images (chapter 7).
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4.5 Conclusion

Deformable models are very interesting for computer vision problems such as segmentation
and registration due to their capability of exploiting (bottom-up) constraints derived from
the image data together with (top-down) a priori knowledge about the structure to be
analyzed. For problems such as the ones addressed in this thesis, where only incomplete
information about the object is available (sparse scattered point data, few X-ray images)
to uniquely determine the solution, models that are limited to deform in ways which are
characteristic of the object they represent seem most promising. Models that do not limit
their shape to the actual variation of the target object within a natural population, might
be capable of fitting the available data very well, but are not sufficiently constrained in
regions without data.

The statistical shape model introduced by Cootes and Taylor describes the average
shape and characteristic shape variation of a set of training samples that are defined by a
corresponding set of boundary points. Along with its simple representation, the capability
of dealing with aribitrary shape topologies favours the use of this model as the objective
is to develop a generally applicable concept for any specific anatomical shape.

Figure 4.7 shows a flow diagram of the chosen global approach whose different compo-
nents are presented in the next three chapters. Chapter 5 presents a method for automatic
extraction of training shapes from unsegmented CT images using a generic model. Chap-
ter 6 presents a method to obtain training shapes if shape data is available in the form of
unorganized sparse surface point sets (gathered by manual digitization for instance). The
subsequently computed statistical shape model can be matched to sparse scattered point
data in order to obtain a patient specific model (nonrigid 3D/3D registration), as shown
in the same chapter. Chapter 7 explains how to obtain such a patient specific model by
fitting the statistical model to a small set of calibrated X-ray images (nonrigid 3D/2D
registration). It is also demonstrated that the combination of both methods resulting in
a hybrid registration is straightforward.
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Figure 4.7: Flow diagram for Shape Recovery by Nonrigid Registration of a Statistical Shape
Model with intra-operative data. The statistical shape model is computed offline and can be
matched intra-operatively with scattered point data or X-ray images. It is also possible to use
both type of data simultaneously (hybrid matching)
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Chapter 5

Non-Rigid Registration of a generic
deformable surface model to gray
level images: Application to
automatic shape extraction from CT
images

As discussed in section 4.3.4 manual determination of a dense set of corresponding 3D
points in a group of training shapes are practically infeasible. Most known methods from
the literature aiming to automate this process rely on binary images.The necessary prior
segmentation is often done (semi) manually, i.e the segmentation and registration of the
training shapes is usually performed in separate independent steps. This chapter presents
an approach trying to perform both steps simultaneously, thus allowing to take into ac-
count existing duality between segmentation and registration (see section 4) that is ne-
glected in most methods described in section 4.3.4. As discussed in section 4.1.2, unsuper-
vised segmentation based on purely local operators can be very difficult,while adequate
a priort knowledge contained in a deformable model can make the segmentation process
easier and more robust. In the case of vertebra segmentation in CT-images for instance,
using standard low level segmentation tools poses the following problems:

e [t is difficult to isolate one vertebra from the others, because of the limited spa-
tial resolution of the 3D scalar field and the extremely narrow bone gaps at the
articulating surfaces (see Figure 5.1)

o It is difficult to differentiate the external cortical surface from the internal cortical
surface.

The primary objective of the method presented here is the automatic shape extrac-
tion of bones in CT images. Based on a general shape template a representation of the
external cortical surface is inferred from the model to the data providing a dense set of
corresponding points between the template and the data, which can be used for subse-
quent statistical analysis. It is worth to note that the matching will be based only on
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Figure 5.1: Thresholding does not allow to separate a single vertebrae in a CT image: Gray
level image (a), high threshold (b), low threshold (c), intermediate threshold (d)
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object boundaries, in contrast to the work in [ea0la] for instance, where the gray level
information of the whole volume is used to drive the deformation. However the resulting
deformation will be volumetric thus allowing for automatic inference of other structures
embedded in the volume.

5.1 Approach

The method performs a least square minimization of the distances between model bound-
ary points and matched feature points. The deformation defined by the computed displace-
ment field are described as a warping of the space containing the surface model, based on
3D tensor-product deformation splines. For increased efficiency, these so-called Free-Form
Deformations [SP86] are applied in a multi-resolution framework. The result is a rapid
and efficient registration algorithm which does not require the prior segmentation (manual
or automatic) of features in the data image, and which can work on arbitrarily shaped
surfaces. The proposed method is conceptually following [SLI6, LBCT99] but introducing
important improvements and extensions sharing ideas from [ea99b, Pic97, CMT98, ea00a.
The problem can be formulated as a minimization of a cost function

N
Bp) = Yoldist (P Ty M) + R(p), 5.1)
i=1
where dist is the euclidean distance between a model point M; and its corresponding
data point F; in the gray level image. T is a suitable deformation function depending on
the parameter vector p and where R defines a regularization term which is applied to T'
in order to smooth the deformation.
To solve the minimization problem, four components are required:

Generation of a suitable generic shape template

A strategy to define a correspondence between the model points and the image data

A suitable representation for the geometric transformation describing the deforma-
tion D.

An iterative minimization algorithm

The data flow diagram of the proposed approach is shown in figure 5.2.

5.2 Construction of a generic Shape Model

In the following subsections the different necessary steps for the construction of a generic
shape template are detailed for the example case of a lumbar vertebra.
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Figure 5.2: Data Flow Diagram of the proposed method for automatic shape extraction from
CT images

5.2.1 Manual slice based segmentation

The template model is based on a single CT scan of a non pathologic lumbar spine.
The vertebra is segmented using conventional two-dimensional interactive segmentation
techniques resulting in a binary volume.

5.2.2 Shape based interpolation

Usually CT voxel data are not isotropic i.e. the out of plane resolution is much lower
than the in plane resolution. Therefore slice interpolation becomes necessary. Interpo-
lation techniques may be broadly divided into two categories [GU97]: scene-based and
object-based. In scene-based methods, interpolated values are determined directly from
the density values of the given scene. Object-based methods such as shape based inter-
polation, on the other hand, extract some object information from the original gray level
data and then use this information to guide the interpolation process. Due to their better
performance ([GU9T], see Figure 5.3) a shape-based contour interpolation method, based
on a distance transformation of the binary volume has been implemented.

5.2.3 Isosurface Extraction

In order to obtain a mesh-based boundary representation of the segmented vertebra from
the resampled interpolated volume the marching cube algorithm [Lor87] is applied. The
extracted isosurface f(x,y,z) = ¢ contains large sets of triangles even in regions where
the curvature is very low, see Figure 5.5 b.
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Original Slices

Linear interpolation

Shape based interpolation

Figure 5.3: Better performance of shape based interpolation (bottom) when compared to linear
interpolation (middle).

5.2.4 Model simplification

A smoothing and triangle decimation algorithm is therefore subsequently used to reduce
the number of triangular surface elements in these model regions. Models of different
resolutions can be generated according to the accuracy requirements. A highly decimated
model can be fitted faster to the data. As mentioned before, the deformation is applied to
the volume in which the generic model is embedded; therefore the resolution of the model
can be altered without interfering with the deformation process.

Decimation and smoothing are two distinct operations that can be performed on the
model. With decimation, triangles are selectively removed from the model. With smooth-
ing, vertices of the existing triangles are adjusted in order to reduce the curvature varia-
tions of the model. Assuming that vertex points are adjusted along the direction of their
surface normals to establish correspondence with the data (see section 5.3), it is important
that the model is smoother than the data (Figure 5.4 a). A so-called overfitted model will
otherwise lead to wrong correspondences (Figure 5.4 b).

Mesh smoothing

The overall effect of smoothing is reduced high frequency surface information. During
smoothing only the geometry of the data set is modified, the topology remains the same.
The most common method for performing smoothing is called Laplacian smoothing and
consists in replacing the value of a vertex location with the mean of its adjacent vertices.
This simple algorithm will tend to flatten the surface and shrink the object, see Fig-
ure 5.5 d. To overcome these problems, a variation of the Laplacian smoothing method is
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Figure 5.4: Arising problems if the generic model is overfitted

therefore used ([VMH99]) that reduces the effect of shrinking, while preserving the effect
of smoothing, see Figure 5.5 e.

Mesh Simplification/Decimation

Polygon reduction algorithms simplify the mesh depending on local curvature, they are
therefore most efficient when applied after the mesh smoothing. Various techniques ex-
ist, based on vertex decimation, vertex clustering, simplification envelopes or wavelets for
instance (see [HG97] for a survey). The method used in this work is based on edge con-
traction [GHI7]. The algorithm takes the two endpoints of the target edge, moves them
to the same position, links all the incident edges to one of the vertices, deletes the other
vertex, and removes any faces that have degenerated into lines or points. Typically, this
removes two triangular faces per edge contraction. The result of this operation is shown

in Figure 5.5 f.

5.3 Establishing Correspondences

In [SL96] a 3D Canny-Deriche filter to compute image gradients at each voxel location is
applied to the model and the data. Non-maxima suppression processing is then performed
to extract the local maxima of gradients on each 3D image. Hysteresis thresholding [HM93]
is finally applied on both images of local maxima to retain only a reasonable set of features.
The threshold values for the data image are chosen such that the resulting image is
oversegmented with respect to the model image, thus increasing the likelihood that a
model point can be matched with a data point.

Correspondence between the model and the data is then established by assigning the
closest data point to a model point (based on a FEuclidean distance measure) using 3D
precomputed distance maps. This can easily lead to wrong correspondences as shown in
Figure 5.6 a, for the case that extremities of thin parts of the model are not attracted by
extremities of the data. Another case may occur when internal surfaces are attracted by
external surfaces.

To cope with these issues, the same authors extended the method in [LBCT99] by
using a 6D distance function as proposed by Feldmar et al. [FA96]. This distance is defined
between a 6D data point D; = (xp,,yp,,2p,,Gxp,,Gyp,,Gzp,) and a 6D model point
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NG

Figure 5.5: a) marching cube high resolution mesh (257914 facets), b) close up of high resolution
mesh, ¢) decimated mesh (10000 facets), d) smoothed mesh using laplacian filtering, e) smoothed
mesh using improved laplacian filtering, f) further reduced mesh (4000 facets)
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Figure 5.6: Wrong correspondences with the closest point approach (a). The correspondence
depicted by the dark arrow is obviously wrong; searching for a corresponding point in the direc-
tion of the surface normal (dashed arrow) yields a better result. Five different vertex matching
scenarios are shown in (b). Only points P1 and P5 are considered valid matches because (1) the
angle between the model surface normal and the direction of the gradient in the image is lower
than Agpge, and (2) the distance between the model point and the matching point in the data
is lower than A,qpge.

M! = (xpm;, ynis 20, Gy, Gyn,, Gz, ) constituted of 3D positions of gradient points and
3D coordinates of gradients by the following expression :

d?iD(D]7 MZ/)
(zp, = (wa))*  +(yp, — (ya))* +(zp, — (2a1,)" +
o(Gap, — Gaa,)* +a(Gyp, — Gym,)? +a(Gep, — Gzuy)?

where o is a weighting factor. Although qualitative results are given it is not clear if a high
gradient distance can reliably compensate for a low (wrong) gradient position distance.

The surface based representation of the model used in this work (opposed to the point
wise representation in the above method) allows to take normal information into account
and to restrict the search for corresponding points to the surface normal as shown in
Figure 5.6 a. Two methods are investigated in order to detect a corresponding (data)
shape boundary point lying on the model surface normal.

5.3.1 Correspondence based on threshold

As proposed in [Pic97], correspondence can be established by searching along the direction
of the surface normal near the vertex, in both the positive and negative directions until
a voxel is found that matches the bone threshold value. The exact location within a
voxel is found by applying a quadratic line search root-finding [PFTV92] using trilinear
interpolation. If a threshold is found in both the positive and negative search directions,
both threshold positions are saved for further analysis, as described below.

In addition to matching the surface threshold value, the image gradient at the matching
voxel must be consistent with the surface normal of the model. If the normals are not
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consistent, it is quite likely that the surface that is being matched is invalid. For example,
in Figure 5.7, the surface normal near the vertebral body surface at a given vertex may
intersect the vertebral surface at three different points: two on the current vertebra (P1
and P2) and one on the adjacent vertebra (P3). It is assumed that in general only voxel
(P1) will have an image gradient that is consistent with the vertex normal of the model.

Figure 5.7: Because the model surface normal and the image gradient at the surface must be
consistent, only P1 is chosen as the correct matching voxel. See text for details

The vertex normal of a vertex is defined as the average of the normals of all the
triangles adjacent to that vertex. The above methods for isosurface extraction and triangle
decimation ensure that the orientation of the normals is consistent for all vertices of the
model.

Five distinct scenarios can occur when searching for correspondence between the ver-
tices in the model and the image data. They are illustrated in Figure 5.6 b. The best-case
scenario occurs when a vertex matches a nearby image point and the direction of the
gradient in that point and the direction of the model vertex normal are consistent (P1).
This point i1s considered to be a valid match. If the distance between the matched data
point and the model vertex exceeds a (empirically) pre-defined limit A, 4,4 (P2, P3), then
regardless of whether the surfaces are consistent or not, the vertex is considered to be a
bad match. If the search distance falls within the search limit tolerance it depends on
the angular deviation of the surface normal from the gradient direction if the vertex is
considered to be a good match (P5) or a bad match (P4).

Unmatched vertices

After the initial surface matching is performed, a certain percentage of the vertices remain
unmatched either due to an exceeded search range or due to an exceeded angular deviation.
Instead of applying a local surface based relaxation technique to assign updated positions
for these vertices as proposed in [Pic97], the new locations will implicitly be defined by
the volumetric deformation applied to the entire model (section 5.4).
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Hot Spots Regularization of the deformation ensures that few wrong correspondences
only have a minor impact on the result. However, experiments show that in some cases
wrong matches accumulate at the articulating facets of the vertebra (Figure 5.8, inferior
and superior articular process) resulting in incorrect segmentation results. One possibility
to deal with this problem is to infer the necessary deformation by the volumetric deforma-
tion guided by neighboring matched points. Those areas where this inferred deformation
shall be applied can be defined interactively on the generic model.

Figure 5.8: Hot Spots

5.3.2 Correspondence based on a statistical gray level model of
the model boundary

The above method is only applicable for CT images, where a well defined bone threshold
exists. However it is desirable to use the presented approach for automatic shape extraction
also with other image modalities such as MRI.

Therefore a second more general approach for establishing correspondence between
the model and the data image is investigated.

A set of pre-segmented training images is used to learn how the border of a specific
model vertex should look like [ea99a]. This can be accomplished by sampling each image
along the surface normal of the model matched to a set of training images around each
vertex and subsequent construction of a statistical model of the grey-level distribution.
It is important to note that by this procedure, no statistical information about the shape
itself is gathered; it is only learned what a valid object boundary is.

Supposing that for a given point a profile of k£ pixels on both sides of the model point
in the ¢ training image is sampled, there are 2k + 1 samples yielding a vector g;. This is
repeated for each training image, to get a set of samples {g;} for the given model point.
Under the assumption that they correspond to a single Gaussian distribution, their mean
g and covariance C, can be estimated. This gives a statistical model for the grey-level
profile about the point. This is repeated for every model point, giving one grey-level model
for each model vertex. The quality of fit of a new sample, gs, to the model is then given

by
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flgs) = (8s —8)"Cy' (g — &)

This is the Mahalanabonis distance of the sample from the model mean, and is linearly
related to the log of the probability that gs is drawn from the distribution. Minimizing
f(gs) is equivalent to maximizing the probability that gs is drawn by the distribution.

During search, a profile of m pixels on both sides of the current point (m > k) is
sampled. Then the quality of fit of the corresponding grey-level model at each of the
2(m — k) 4 1 possible positions along the sample (figure 5.9 b) is assessed and the one
resulting in the best match (lowest value of f(gs)) is chosen. This is repeated for every
model point, giving correspondence for each model point.

Figure 5.9: (a) The computation of a suggested movement for a single surface point. (b) Illus-
tration of a vertebral shape with its outwards pointing profile vectors

5.4 Representation for the geometric transformation

The transformation T}, looked for, is the combination of a rigid-body transform R, and a
multi resolution displacement function D:

Ty=RoD

where p is a vector which gathers the 6 parameters that define R, and the deformation
parameters that define D.

Assuming that M = {M;,e = 1...N1} and P = {F;,1 = 1...N; } are the sets of matched
model and data points, obtained by one of the two above explained methods the non-rigid
registration algorithm minimizes the least-squares criterion defined in equation 5.1.

The deformation is modeled using a family of volumetric tensor product splines,

D= Z W S () Sk () Si(2:),

5kl
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where the u,j; are the spline deformation coefficients which comprise the parameter vector
p, and 5;, S, and 5; are spline basis functions. The u;;; vectors are located on a regular
3D grid, where each basis function (a piecewise polynomial function) has a local support
range. For the experiments reported in this dissertation a first order (trilinear) deformation
spline is used. If the control points are left in their original positions, every point within
the box will stay in its original position, too. By pulling a control point P;j;; to a new

*

location P7;;, a smooth local transformation is imposed to the points within the box, as

shown in figure 5.10.

Figure 5.10: Hierarchical Free Form Deformations (FFD) applied to a vertebra model. Unde-
formed model (a), first level deformation (b,c), second level deformation (d,e)

The term R in equation 5.1 defines a regularization term which is applied to D in
order to constrain the deformation and to obtain a smooth displacement function (see
also section 4.2.2). As explained before the proposed method separates the representation
of the model (triangle mesh) from the representation of the applied deformation (multi
resolution FFDs). Thus regularization can be applied independently to either the defor-
mation or the model itself. To regularize the deformation one can penalize for example
the control point displacements from their original position, or the difference between dis-
placements of adjacent control points. Regularization applied to the surface model can be
performed by constraining the change of the model surface normal, the change of model
surface curvature, or the change of the distances between model nodes (edge length) for
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instance. A comparison study has been carried out in [ea99b]; authors conclude that good
results can be obtained by applying any of the investigated methods. Furthermore they
report that results are rather insensitive to the weight applied to the regularization term
in equation 5.1. For experiments carried out in this thesis, the following regularization
term that penalizes the control point displacement is used:

1 a b c . §
R(p) = a(a + 1)(() + 1)(0 + 1) ZZ Z dlSt(Pijka ijk)

1=0 j=0 k=0

The regularization term is normalized to keep it independent of the number of grid points;
« 1s a tunable weighting factor.

5.5 Optimization / Least square minimization

The optimization of E(p) is performed using a conjugate gradient algorithm [PFTV92]
and a multi resolution representation of 7' in order to smooth the solution and to speed
up the minimization. Initial registration is performed by manual alignment. Subsequently
the rigid-body transform parameters are estimated based on the concept of iterative corre-
sponding point registration presented in section 4.4. Afterwards the nonrigid parameters
are computed beginning on the coarsest level of the displacement grid. The subdivision is
refined until a given resolution level is reached, (typically 32 or 64°). Depending on the
number of model points a few seconds or minutes are required to reach the convergence
of the algorithm on an Alpha station.

When using a gradient descent technique such as the Conjugate Gradient method,
there is a possibility that the minimization might fail because of local minima in the
high-dimensional parameter space. By applying a coarse to fine strategy the parameters
are always close to the optimal solution and thus the risk of local minima is reduced.

5.6 Results

To test the registration algorithm, experiments have been performed using a generic model
of a lumbar vertebra and a set of lumbar spine CT images. Figure 5.11 shows the generic
shape model (yellow points) and its corresponding points in a CT image for different values
for Argnge and Ay, 4. Valid correspondences are shown in green, invalid correspondences
due to angular inconsistence are shown in red. The intersection of the model with the
image plane is depicted as a thick red curve. Case (a) shows parameter values found to
work well in practice, in (b) A, 4nge is too low, in (¢) Ayqnge is too high, in (d) Agpge is
too low, and in (e) Agpge is too high.

Figure 5.12 shows the generic shape model after manual alignment with a vertebra in
a CT image (left), and after automatic rigid registration (right). One may observe, that
the distances between corresponding points (the displacement vectors) decrease.

Figure 5.13 shows the effect of varying the bone threshold on the final registered model.
In (a) the chosen threshold is too low, in (b) it is optimal and in (c) it is too high.
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Figure 5.11: The generic shape model (yellow points) and its corresponding points in a CT
image for different values for A,y and Agpge.(a) Avgnge = 15mm, Agpgie = 90°, (b) Aygpge =
Smm, Agpgie = 90°, ¢) Apgnge = 100mm, Agngie = 90°, d) Aygnge = 15mm, Agpgie = 15°, €)
Apange = 1omm, Agpgie = 180°
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Figure 5.12: Rigid matching of the generic model with the CT exam (top axial view, bottom
lateral view): after manual alignment (left), after automatic rigid registration (right)

Figure 5.13: The influence of different bone thresholds on the resulting model. The mesh

represents the registered model, the solid model represents the manually segmented CT model
for comparison : (a) too low threshold , (b) optimal threshold , (c) too high threshold.

75



CHAPTER 5. NON-RIGID REGISTRATION OF A GENERIC
DEFORMABLE SURFACE MODEL TO GRAY LEVEL IMAGES:
APPLICATION TO AUTOMATIC SHAPE EXTRACTION FROM CT
IMAGES

Figure 5.14 illustrates the evolution of the energy as a function of the number of
iterations. The steps correspond to resolution changes of the deformation grid.

600
Iterations

Figure 5.14: Evolution of the energy during function minimization

Figure 5.15 presents intermediate stages of the registration algorithm for different
resolutions of the deformation grid. One may observe that the model boundary (red curve)
gets closer to the vertebra for higher resolutions. One can also see the displacement of the
FFD control points.

Table 5.1 summarizes RMS errors for 10 experiments. The average RMS error decreases
from approximately 2.4mm after rigid registration to approximately 0.8mm after non rigid
registration. Interactive prior selection of ’hot spots’ as explained in section 4.4 yields
slightly better results. Figure 5.16 visualizes the spatial distribution of the RMS error
between the generic model and the underlying manually segmented CT-model after rigid
registration (top) and after non-rigid matching (bottom). One can observe a considerably
more homogeneously distributed error after non-rigid matching.

The overlap measure defined as the ratio between the volume of intersection and the
volume of the union of the shape obtained by manual segmentation and the registered
model, is very sensitive to even small differences in overlap, both inside and outside of
the object model and is therefore a strong test for segmentation accuracy. It is calculated
by comparing the voxelized generic model with the voxel map. Table 5.2 summarizes the
results for the 10 performed experiments. The average overlap increases from approxi-
mately 64% after rigid registration to approximately 85% after non rigid registration.
Slightly better results for interactive prior selection of "hot spots’ are confirmed by the
overlap measure. Figure 5.17 visualizes the overlap for one case in three orthogonal cross
sections. Figure 5.17 shows axial slices for an entire vertebra. First experiments performed
with the statistical boundary model yield similar results as those carried out using the
threshold based approach.
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Figure 5.15: Intermediate stages of the registration method (from left to right, from top to
bottom): after rigid registration, after first level deformation, after second level deformation,
after third level deformation, after fourth level deformation, after fifth level deformation (shown
without deformation)
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rigid RMS non rigid RMS | non rigid RMS

Nr. without hot spots | with hot spots
1 1.46 0.64 0.61

2 1.74 0.72 0.69

3 3.26 0.79 0.74

4 4.16 0.98 0.93

5 2.42 0.61 0.65

6 1.67 0.66 0.63

7 1.58 0.88 0.85

8 3.29 0.63 0.63

9 1.37 0.89 0.77
10 3.38 0.86 0.75
mean 2.43 0.77 0.73

Table 5.1: RMS error for 3D segmentation (in mm)

oo = 0014755 oo = 13.073500 ovine = 0.014755 ok = 13073500 oo = 00147535 roax = 13.073500

AT AT AT
rovin = 0.00073% L2 0z rovin = 0.00073% [N 2 rovin = 0.00073% [

Figure 5.16: Error visualization for segmented vertebra axial, sagittal and coronal view: after
rigid matching (top), after non-rigid matching (bottom)
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rigid overlap | non rigid overlap | non rigid overlap

Nr. without hot spots with hot spots
1 61.69 86.34 85.80

2 59.32 85.69 86.04

3 66.21 86.82 86.94

4 57.74 84.53 85.78

5 62.29 85.52 84.54

6 56.67 83.82 84.92

7 58.01 79.43 80.36

8 65.05 89.29 89.10

9 60.08 79.35 81.25
10 63.97 84.67 87.12
mean 61.10 84.56 85.19

Table 5.2: Overlap measure for 3D segmentation(in percent)

Figure 5.17: The overlap measure can be computed by voxelizing the matched shape model and
then comparing it to the manually segmented model. The figure shows an a) axial, b) sagittal
and c) coronal slice through the resulting volume. Gray pixels are false positives and black pixels

are false negatives.
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5.7. CONCLUSION

5.7 Conclusion

In this chapter a method for automatic shape extraction from CT images has been pre-
sented. A volumetric coarse-to-fine registration method based on Free Form Deformations
is used to match a generic model to the image data. Two methods methods have been
investigated to attract the model boundary to the object contours in the gray-level image.
The first methods is based on the bone threshold in the gray level image. Experiments
performed on CT images of the vertebral column have shown that good segmentation re-
sults can be obtained except for regions where two neighboring vertebrae are articulating
and thus the bone gaps are too narrow. The possibility to determine those areas prior to
the registration manually and define the matching implicitly by neighboring mesh vertices
and the volumetric deformation has also been studied and leads to slightly better results.
A second approach based on a statistical gray-level model for each model vertex leads to
similar results.
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Chapter 6

Non-Rigid 3D /3D Registration of
sparse scattered point data with a
statistical shape model and its
application to computer assisted
ACL surgery

In this chapter a method for Non-Rigid 3D /3D Registration of intra-operatively acquired
scattered point data with a statistically based shape model and its application to com-
puter assisted reconstruction of the anterior cruciate ligament is investigated. The rupture
of the ACL has become one of the most common knee injuries. One problem during re-
construction is to find the optimal attachment points for the graft. Therefore a system
for computer assisted reconstruction of the ACL has been proposed at TIMC labora-
tory [JLD98]. During surgery the surgeon collects several data points on the tibial and
femoral joint surface with a 3D localizer system. These 3D data are used to find those
attachment points resulting in a low anisometry of the graft while preventing impinge-
ment between the graft and the femoral notch. As the collected data points only cover
a small surface patch of the femur, it is desirable to extrapolate these data to have also
a visualization in those areas where no data points are available. A sufficiently good ap-
proximation of the actual femur by a model would further allow to better deal with the
notch impingement problem of the graft. The chosen approach is to fit a deformable model
to the data points. It can be subdivided in 2 steps, constructing the model and fitting
this model to the data. To incorporate a priori knowledge into the model, the allowed
deformations are determined by the statistics of the shape variation of a set of train-
ing objects. Matching the training objects together is obtained by elastic registration of
surface points using octree-splines. The fitting process of the sparse intra-operative data
with the statistical model results in a nonlinear multidimensional function minimization.
Experimental results with a model generated from 10 dry femurs are presented, including
fitting of the model with both simulated and real intra operative data.

The rest of this chapter is organized as follows: In section 6.1 the current status of the
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system that has been developed for computer assisted ACL reconstruction is detailed and
the motivation for the work of statistically based shape modeling that is presented in the
rest of the chapter is further clarified.

Section 6.2 provides a brief overview of the work in the domain of surface reconstruction
using scattered point data. In section 6.3, an original method to build a statistical surface
model using a population of samples represented by unorganized sets of 3D points is
proposed. Then the fitting method of the model to the point data is presented in section
6.4. Results are shown in section 6.5 and discussed in section 6.6.

6.1 ACL reconstruction

6.1.1 Background

The rupture of the Anterior Cruciate Ligament (ACL) has become one of the most com-
mon injuries among young athletes. Approximately 50,000 reconstructions of this ligament
are performed each year in the United States [FJ97]. Because of the instability of an ACL
deficient knee and the risk of secondary damage, an increasing number of them need to
have reconstructive surgery. During surgery a substitute ligament is implanted between
the femur and the tibia to restore stability. Most frequently, ligamentous tissue of the
patient is used for the graft, such as the middle third of the patella tendon or the ham-
string tendon of the injured knee. The graft is inserted and fixed into a femoral and tibial
tunnel according to two main criteria, low anisometry of the graft and avoiding notch
impingement (see section 2.2).

The following criteria also influence the short and long term results of ACL recon-
struction but are not further addressed here.

e Choice of the graft material (autologous, homologous, synthetic) [Des96]
e Tibia and femur tunnel orientation [SAGDI7]
e Tunnel length

e Conflicts with other intra-articular structures[Des96]

6.1.2 Computer assisted technique for ACL reconstruction

A system has been investigated which allows positioning of the central part of the
ligament graft at the least anisometric sites, while preventing notch impingement
[DLO195, DLJ*95]. It provides the surgeon with the predicted anisometry and the profile
of the length variation of the graft as a function of flexion angles for any attachment
points on the femoral notch and tibial surfaces. A demonstration of the clinical interest
of this method is presented in a study performed on 23 patients [JLD9S§].

The system uses only intra operative data obtained with an optical localizer (Opto-
trak, Northern Digital, Toronto). This system enables the surgeon to digitize 3D points
interactively, to track relative bone motion, and to locate the pose of surgical tools in real

84



6.1. ACL RECONSTRUCTION

time. Dynamic reference rigid bodies made of infra-red LEDs are attached to the bones,
the pointers, and the tools (Fig.6.1). Neither pre-operative CT or MRI exams, nor pre- or
intra-operative X-ray images are required. The method can be divided into three steps:

Passive Flexion-Extension

At the beginning of the surgical procedure, the relative movement of the femur with
respect to the tibia is captured with the optical localizer system by applying a passive
flexion-extension. A series of matrices My; describing the transformation between the
femoral reference system Ref; and the tibial reference system Ref; is computed for
about N = 20 flexion angles of the knee 6;,: = 1...N.

3D Points Acquisition

The surgeon interactively collects surface points arthroscopically on the femoral and tibial
joint surface using a 3D optical pointer (Fig.6.1). In practice, 3 areas are digitized on the
flexed knee:

area A: Femoral surface candidate for insertion

The surgeon acquires Ny = 20 to 50 surface points f;,2 = 1...N; on the femoral
notch, in an area that corresponds to all the possible candidate points for the femoral
attachment site. These points are approximated by a bicubic spline patch sy, in the
form of z = s¢(x,y) where (z,y) denotes the least-square fitting plane of the points

fi-

area B: Anterior border of the femoral notch

The surgeon digitizes a few points on the anterior part of the notch, which corre-
sponds to a horse shoe shaped 3D curve that defines the location of possible conflict
(impingement) between the graft and the femoral surface. The digitized points are
linearly interpolated to provide a 3D curve. Each line segment defines the axis of
a cylinder with a 3-mm radius, which is represented graphically as a thick curve in
order to visualize possible notch impingement with a clearance of 3 mm, as recom-

mended by some authors [YDP92].

area C: Tibial surface candidate for insertion

The surgeon acquires Ny = 20 to 50 surface points ¢;,7 = 1...V; on the tibial plateau,
in an area that corresponds to all the possible candidate points for the tibial attach-
ment site. These points are approximated by a bicubic spline patch s;, in the form
of z = si(x,y) where (z,y) denotes the least-square fitting plane of the points ¢,.

The approximate accessible area on the femur during arthroscopic surgery only in-
cludes the condyles and the femoral notch (Fig. 6.2).
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Figure 6.1: Surface digitizing during surgery. Rr and R denote rigid bodies attached to the
femur and tibia using pin fixation in the bones. Rp denotes a rigid body attached to a pointer for
surface digitization. Several infra-red LEDs are attached to each rigid body. Thus the position
and orientation of Ry, Ry and Rp are tracked in real-time using an external optical localizer.

Interactive selection of the attachment points

Based on the geometric and kinematic data acquired with the optical localizer, the system
displays 3D views and images that enable the surgeon to optimize anisometry and notch
impingement criteria in real-time based on the following information provided by the
computer:

e Anisometry profile

For any pair of points F and T on the interpolated femoral and tibial spline surfaces,
the system can compute the predicted ligament length variation curve. The tibial
point is defined in Ref ; for any flexion angle 6;,¢ = 1...N by T; = My, T'. Therefore,
the length of the graft fiber at the flexion angle 0; is d; = ||F'T;||, and the variation of
length with 6, can be displayed; it is referred to as the anisometry profile (Fig.6.4).
Anisometry is defined as the variation of length along flexion-extension:

ANI(F,T)= max d; — min d, (6.1)

i=1.. i=1..N
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Figure 6.2: Maximal accessible area for data acquisition on the femoral surface: distal part of
the condyles and intra-articular notch.

e Anisometry maps

For a given point Tj on the tibial surface, AN is a scalar function of F. Therefore, it
can be represented as a pseudo-color map that plots the values of ANT(F,Ty) on the
femoral surface. This defines the femoral anisometry map. A value of ANI(F,Tp)
below 2 mm is represented as dark green, a value between 2 mm and 4 mm is rep-
resented as light green, etc. (Fig.6.3). Similarly, for a given point Fg, the system
computes the tibial anisometry map ANI(Fy, T'). Both femoral and tibial anisome-
try maps can be projected on the (x,y) planes that represent the definition domains
of the spline patches. This defines the developed anisometry maps (Fig.6.4).

e Graft envelope

For any pair of points F' and T, the computer predicts the envelope of the graft
as follows: In the surgical technique considered in this paper, the surgeon drills the
tibial tunnel from the outside with a knee positioned at 90° of flexion, then the
surgeon drills the femoral tunnel from the inside by passing a drill guide through
the tibial tunnel. Therefore, the system selects the matrix My_gge which reflects
the closest position to 90° of flexion. For this position of the knee, a cylindrical
tunnel centered in points F' and Mjs—_gge T with 5-mm radius is drilled virtually in
the femoral and tibial surfaces, i.e. that the intersection curves between the infinite
cylinder and the surfaces are generated (Fig.6.3). Considering the line segments
that link the intersection points on the femoral and tibial surfaces respectively, one
obtains a representation of the external envelope of the graft that can be displayed
for any flexion angle of the knee. In particular, the envelope generated for this 90°
position is flattened when the knee is in extension, which reflects the real behavior
of the graft. Note that this construction makes it possible to consider various fibers
of the graft in its periphery instead of a single central graft. By placing the virtual
model in full extension, the surgeon can observe in lateral and axial 3D views if
there is a risk of intersection (impingement) between the graft envelope and the
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anterior border of the femoral notch (Fig.6.3).

The system is initialized with two points F' and T' selected in the middle of the femoral
and tibial spline patches and the surgeon can navigate interactively in both surfaces using
a pointer or any surgical tool such as a drill equipped with a rigid body that is localized
in Ref or Refp. First, by pressing a foot switch, a tibial point Tj is selected such that
the 3D view does not show lateral or axial impingement between the graft envelope and
the anterior border of the notch. Then, the surgeon navigates on the femoral surface until
a point Fj is found with a low anisometry and a profile that corresponds to loosening
along with knee flexion. This process is iterated if necessary.

6.1.3 Definition of the problem

Fig.6.4 shows the graphical user interface of the current system for computer assisted
ACL surgery with the anisometry maps, and a 3D view with the spline surfaces. As only
a small surface area has been digitized and no pre-operative data such as CT or MRI are
used, it is very difficult to recognize the actual pose of the tibia and the femur only from
the small surface patches generated by the bicubic splines. In order to provide the surgeon
with a more complete and realistic view of the scene it is desirable to have a visualization
of the whole femur (respectively tibia) as shown in fig. 6.5 (only the femur is visualized).

As illustrated in Fig. 6.6, the addressed problem is to recover the complete shape of
the bones (proximate to the joint) from the few available data points.

More precisely the objectives are quadruple:

o Visualization of a complete anatomical model

As already mentioned, the primary objective is to provide the surgeon with a better
visualization of the complete relevant anatomy, including not only the shape of the
femur and tibia, but also any information contained in the model such as anatomical
landmarks for instance.

e Post-operative referencing

Fitting a complete model with a few data points also means that the results of each
surgical case can be reported in the model post-operatively, which is an essential
element of clinical studies.

e Shape-based interpolation

Performing shape-based interpolation such that the least a minimal number of points
has to be digitized manually by the surgeon. This aims at saving time which is critical
for this surgical procedure. For example, the delineation of the anterior part of the
notch (area B) is currently performed manually but it is rather delicate because the
edge is not sharp. Using the proposed technique, it becomes possible to consider
the complete surface in the area of the anterior part of the notch, and not only an
approximate curve, as candidate for possible impingement.
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\ [ anterior border of the notch | 7/ T

trajectory of the tibial /
insertion point in the
femoral reference system

femur spline

lateral view of the knee in full extension

axial view of the knee placed at 90° of flexion

Figure 6.3: Lateral (up) and axial (bottom) views of the 3D objects reconstructed by the
computer from raw data. Those images show the femoral and tibial spline patches on which
anisometry maps have been superimposed. In this example, the envelope of the graft displayed
in a transparent mode does not intersect the anterior arch of the femoral notch (horse shoe

shape).
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Figure 6.4: Graphical User Interface (GUI) for computer assisted ACL reconstruction. Top
left: 3D view including femoral and tibial surfaces, with the predicted graft envelope. Bottom
left: anisometry profile. Top right: developed femoral anisometry map. Bottom right: developed
tibial anisometry map.
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RINL0ZD4

Figure 6.5: GUI using a complete model of the femur instead of a bicubic spline in the 3D view
window (up left). The global orientation and anatomy of the knee can be understood.

Figure 6.6: Problem: How to extrapolate a few data points to a complete femur?
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e Extrapolation

Assuming the resulting model is of sufficient accuracy outside the digitized areas,
the extrapolated shape can be used to define additional criteria for optimal ACL
reconstruction. For example, using a complete surface of the bone, the length of
the tunnels in the bones can be easily determined, which is important to predict
and compare with the graft length before drilling. If necessary, additional points
can be acquired in the external parts of the bones using transcutaneous direct or
ultrasound-based digitization for instance.

In this thesis experiments are conducted concentrating on the isolated femur, but the
approach can be applied to the tibia as well, or preferably to the pair of femur and tibia
in extension.

6.2 Related Work

The literature of computer vision proposes a large variety of methods for shape recon-
struction from scattered object data, also referrered to as scattered data interpolation. An
overview is presented in [BV91]. More recent references can be found in [OG98, GM97].
Here, the problem is to fit a surface to scattered, unorganized data associated with
an isolated object. The data is unorganized in the sense that the adjacency relation
between surface points is not known. When surface data is obtained from a laser surface
scanner for instance, the relationship between surface points is usually known by virtue
of the methodical way in which an object is scanned. Consequently, many techniques for
recovering surfaces from range data require the adjacency relationship to be known.
Following [MM97], methods for surface reconstruction from scattered point data not
relying on this information can be based on spatial subdivision, on distance functions,
on warping and on incremental surface growing. One example for a surface oriented sub-
division technique is the work by Algorri and Schmitt [AS96]. In a first step of their
algorithm a rectangular bounding box of the given data set is subdivided by a regular
voxel grid. In a second step, the algorithm extracts those voxels which are occupied by at
least one point of the sampling set. Subsequently, the outer quadrilaterals of the selected
voxels are taken as a first approximation of the surface. Afterwards the surface can be
transferred into a triangular mesh by diagonally splitting the quadrilaterals. The work
in [Boi] belongs to the volume-based subdivision approaches, and relies on the removal of
tetrahedra from the tetrahedral decomposition of the objects convex hull. 3D alpha shapes
used in [EM94] are a kind of generalization of the latter method. In order to reconstruct
roughly an object a user must provide an appropriate value of the parameter alpha. The
method by Hoppe [HDDW92] is based on the evaluation of a signed distance function f
which is defined for each point in the space such that f estimates the signed geometric
distance to the unknown surface. This is accomplished by associating an oriented plane
with each of the data points, which serve as local linear approximations to the surface.
The function has positive, negative, or zero values for points outside, inside, or on the
border of an object, respectively. The zero set Z(f) is the estimate of the surface. In the
second stage a variation of the marching cube algorithm is used to extract the isosurface
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Z(f) from the scalar function f. See [MM97] for an overview. However, none of these
references can be applied to the here present problem , because a) they deal with surfaces
for which the global shape is usually unconstrained, b) they usually require the point set
to be sufficiently dense and to have a more or less uniform density, and c¢) they are not
capable of accomplishing shape extrapolation.

In particular because of the latter reason literature relevant to deformable models is
more appropriate to the present problem. An introduction to deformable models was given
in section 4.3. Most of the methods, which are based on the snakes formalism [KWTS88],
are successful for interpolating data but they cannot perform extrapolation in a reliable
manner. Hence models capable of incorporating more specific priori knowledge have to be
considered. One class of methods use parametric models based on deformable templates
[YHC92]. Such templates may be built from sets of primitives such as circles, lines or arcs
each of which has some degree of freedom to move relative to the others. However, this
method is not general - it is difficult to apply using general a priori knowledge, i.e. a new
template and fitting scheme must be produced for each application. Another possibility is
to consider models such as deformable superquadrics [MT93]; however those models are
appropriate to capture shapes defined by many data but not to extrapolate local data (the
superquadrics convey information about the global shape but this part of the model is
not accurate enough for the present application). Similarly, using volumetric deformations
with regularization constraints such as presented in [SL96] can be expected to preserve
the shape of an organ, but this will be true only in the local neighborhood of the collected
data. Statistical shape models permit to provide a "reasonable” shape estimate not only
in those areas covered by the acquired points but also outside. One possibility is to use
statistical models based on Fourier representations, such as [SD92, SKBG96]. Another
method is based on a decomposition of shapes into a basis of fundamental deformations
using modal analysis [PS91]. It is also possible to use features such as crest-lines and to
perform modal analysis on the features [STA96].

In section 4.3.3 a statistical shape model with modal representation based on principal
component analysis directly applied to the nodal representation of the shape contour
[CTCGY95a] has been presented and will be used for the present problem.

6.3 Building a 3D statistical shape model from point
data

Building the statistical model requires 3 steps:
o Acquiring the training shapes
o Establishing point to point correspondence between all training shapes
e Principal component analysis
These three steps are detailed in the following.
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Figure 6.7: Shape database comprising 11 right femurs

6.3.1 Acquisition of Training Shapes

In chapter 5 a highly automatic method for extracting training shapes from CT-images
including automatic landmark placement was presented. For the first experiments ad-
dressing the issues related to the computer assisted ACL-surgery system presented in this
chapter, a small population of 11 dry right human femurs was available, see Fig. 6.7. Ten
of them had been digitized manually using a 3D optical localizer Optotrak, resulting in
10 point sets, each representing the surface of one femur as a non-organized set of points.
Each point set contains approximately 1500 points randomly distributed on the bone sur-
face (while covering approximately the same distal femur area) thus constituting a point
set P! = {P/,i =1...N’} for each case j = 1..10.

The available additional eleventh femur was considered separately as a template. A
larger area is digitized in this case as it must be guaranteed for the matching algorithm
presented in the next section that the 10 training shapes are a subset of this template.
The algorithm proposed by Hoppe [HDDWO92] (see section 6.2) is used to compute a
triangle mesh from this point cloud. Since it requires a high point density, the template
was digitized with a higher density of approximately 6000 points.

Subsequently the resulting triangle mesh is decimated and smoothed as explained in
section 5.2.4. The result is a triangular mesh T'M,..; of approximatively 1500 vertices.

6.3.2 Definition of a point to point correspondence between
Training Shapes

Now each of the 10 point sets P7 has to be matched to the template mesh in such a way
that each vertex of the template mesh T'M, . is mapped to its anatomically corresponding
point on the femur represented by the set of points P7.

This alignment and matching process is accomplished using a multiresolution approach
proposed by Szeliski and Lavallée, based on hierarchical adaptive space subdivision tech-
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nique called octree-splines [SL96]. The method performs a least squares minimization of
the distances between a sparse and unorganized set of points and a dense set of points
used to build a 3D octree-spline distance map [LSB91]. In the present case, the dense set
of points is obtained by resampling each facet of the template triangular mesh T'M,.; up
to 10,000 points.

The deformations between the 3D surfaces are described as a warping of the space
containing one of the surfaces based on concepts from free-form deformations, octree
splines and hierarchical basis functions. This technique does not require the extraction
(manual or automatic) of features on the two surfaces. Fig. 6.8 shows the octree containing
the two shapes to be registered after rigid registration (top) and after non rigid registration
(bottom).

The result of the octree-spline based registration technique is a smooth volumetric
transformation 7' that maps every point P; of the actual data space to a point M = T(F;)
of the model space. As T is isomorphic, it is possible to inverse this transformation.
Given a point M of the template mesh, an iterative search is performed to find the point
P! = T=Y(M) such that ||[M — T(P!)|| becomes smaller than a given bound e. By this
process, each point M of the template mesh is assigned to a data point P/ for each data
set j of the N data spaces. Note that the points P/ were not in the data sets initially, but
they were implicitly interpolated using the octree-spline deformation. The iterative search
is necessary, because there is no analytical expression for 77!, For the experiments ¢ was
chosen to be 0.01mm.

In the case where the data points would have been represented by dense sets of points
(with a higher density than the template model), one could have applied the octree-spline
mechanism directly from the model towards the data. But the presented technique is more
general in the sense that it only needs one single case (the template) with guaranteed high
point density but allows holes or non dense regions in the rest of the population, possibly
collected by different means (direct digitization, image segmentation, etc.).

The mean shape which is necessary for further computation is computed using an
iterative algorithm. At first all training shapes are matched to the template mesh as
described above. After calculating the mean shape, now all training shapes are matched
to this current mean. This process is repeated until convergence occurs. This approach
avoids proceeding with a mean calculation based on matching results between shapes
possibly differing too much in shape, thus causing incorrect point correspondence within
the matching algorithm. Matching each training shape only with the mean rather than
with another training shape helps avoiding this problem as shape differs less between the
mean and a training shape than it may differ between two arbitrary training shapes. This
issue has been addressed in further detail in [ea0la] for instance. However, using the given
population, convergence occurs after 2-3 iterations. Subsequently the deformation modes
can be computed by applying PCA to the data as epxlained in section 4.3.3.

6.4 Model Fitting

To recover the whole surface of an object given few sparse data, it is necessary to find the
rigid transformation (rotation R, translation T') between the data and the model and the
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Figure 6.8: Hierarchical volumetric deformation of a low density training set with a high density
template mesh, using octree splines. Top: after rigid alignment. Bottom: after elastic registration.
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decomposition of the ¢ preserved eigenvectors in such a way that the distances between
the data points and the model are minimized. The objective function to be minimized is
defined as follows:

D
min  f =3 min(||d; —myl}) 1<j<m (6.2)
i=1

with m; = R(m + Y'_, wye;) + T, D the number of data points, and d; the :"* data
point. The computationally most expensive step in the registration process is finding the
closest point in the model to each data point. The computational complexity evaluating
fis O(DM) using exhaustive search. It is not possible to speed up the computation by
pre-computing a 3D distance map as proposed in [SL96] for instance, because the model
to be registered is deformed at each iteration.

Therefore k-dimensional binary trees (3-d trees, in this case k=3) are used to speed
up the computation [FBF77].

The k-d tree is a binary tree in which each node represents a subset of the data records
(3D points in the present case) and a partitioning of that subset. Each nonterminal node
has two children that represent the two subsets defined by the partitioning. The terminal
nodes represent mutually exclusive small subsets of the records. A 3-d tree divides space
into a collection of rectangular parallelepipeds that correspond to the terminal nodes.
This data structure provides an efficient method for examining only those points closest
to a given point. Fig. 6.9 shows exemplarily the space partition by a two dimensional k-d
tree.

A k-d tree can be constructed in O(M log(M)). Searching the closest point in the tree
to the given data points can then be performed in O(D log(M)). Notice that for each
function evaluation the k-d tree has to be reconstructed since using different weights w;
for the shape parameters results in a different point distribution.

As the model is a triangular mesh surface, computation of the closest point on the
model surface requires an additional step. The output of the k-d tree based search will
return the vertex of the triangle mesh which is closest to the data point. Assuming that
the closest surface point lies within one of the triangles of which the vertex is a member,
each of these triangles is examined (Fig.6.10) to find this closest point.

The defined function f is a nonlinear function depending on 6 + ¢ parameters.

In theory, one could simultaneously optimize the rigid and the nonrigid parameters.
However, experiments have shown that it is more efficient to adjust them sequentially.
Given an estimate for the pose parameters R, T by applying the ICP algorithm (see sec-
tion 4.4) the deformation parameters w;...w; are adjusted using the Levenberg Marquard
Method [PFTV92]; the partial derivatives of the objective function with respect to each of
the deformation parameters can be computed analytically. The following overall strategy
is applied to avoid local minima: Beginning with the first (most significant) deformation
mode, the number of modes used to fit the data is increased successively in each itera-
tion until the chosen maximal number of modes is reached. To decrease the search space,
bounds to the parameters are applied. The change in rotation is limited to £30° around
the initial guess and, the change in translation is limited to £10% of the size of the object
after the initial rigid registration. The allowed change in deformation is limited to £31/A;,
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where ); is the i** eigenvalue of the corresponding mode.

6.5 Results

Ten right femurs have been used to build the statistical shape model as explained earlier in
this chapter. Then both, simulated and real data have been used to carry out experiments.

Table 6.1 shows the relative importance of the modes of variation for the computed
statistical knee model. It can be seen from Fig.6.11 that the first four modes already
represent more than 90% of the shape variation in the model.

‘ Nr. H Eigenvalue ‘ Percentage ‘

1 7375.37 75.60
2 814.50 8.35
3 530.53 5.44
4 218.55 2.24
3 199.29 2.04
6 165.28 1.69
7 153.29 1.57
8 132.40 1.36
9 101.81 1.04
10 65.54 0.67

Table 6.1: Relative importance of the modes of variation for the model

Excluding each of the other remaining 10 femurs from the 11 specimens, 10 further
models can be computed. Table 6.2 shows the relative importance of the modes of variation
for the knee model built while excluding the fourth specimen, which was recognized to
be one of the smallest femurs after careful visual examination. As can be seen from
the table, this results in a somewhat smaller relative importance of the first deformation
mode describing the global scaling, but the general distribution of the eigenvalues does not
change greatly. Computing the other 9 models gives similar results. The results presented
in section 6.5.1 refer to the model built of the first 10 femurs.

Figure 6.12 shows the effect of applying £3 standard deviations of the first our modes
of the obtained model to the mean shape. Mode 1, which accounts for almost 70% of the
total variance within the model, can be seen to be primarily concerned with describing
global scaling.

6.5.1 Simulated Data

Experiments with simulated data have been performed following the scheme shown in
Fig. 6.14. To simulate the intra-operative data acquisition, the triangulated surface of the
remaining femur (test shape) has been arbitrarily resampled. Afterwards several point sets
each containing different numbers of points all lying in the accessible area on the femoral
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‘ Nr. H Eigenvalue ‘ Percentage ‘ Sum ‘
1 5500.59 69.40 | 69.40
2 880.37 11.11 | 80.50
3 548.97 6.93 | 87.43
4 227.88 2.87 | 90.30
5 191.34 241 | 92.72
6 155.18 1.96 | 94.67
7 128.95 1.63 | 96.30
8 107.22 1.35 | 97.65
9 104.08 1.31 | 98.97

10 81.91 1.03 | 100.00

Table 6.2: Relative importance of the modes of variation for the model built while excluding
the fourth specimen

joint surface during surgery have been acquired interactively. After aligning these simu-
lated test data manually with the mean shape, the above detailed optimization strategy
is applied to minimize the objective function.

As expected the final root mean square error (RMS) between the test data and the
registered model decreases using more deformation modes (~ 0.7mm using one mode to
~ 0.4mm using 5 modes) while this is not always the case for the RMS between the test
shape and the registered model. 60 data points were used for this experiment, resulting
in an execution time of approximately 8 seconds using 5 deformation modes.

Fig.6.15 (top) shows the model (triangle mesh) and the test femur after the initial
rigid registration with the ICP algorithm. Fig.6.15 (bottom) shows the model and the
test femur after the non rigid registration. The white spots represent the data points. One
may observe that the fit between the test femur and the model also increases in those
areas where no data points are available.

This is confirmed when computing the distance between the reconstructed model and
the original test surface, for each point of the surface, thus providing spatial error distri-
bution. Fig. 6.16 shows an error histogram and visualizes the error after the initial rigid
registration (top) and after the nonrigid registration (bottom) by assigning a color to each
surface point representing the local error.

Tests including different simulated data sets as well as different initial rigid body
transformations lead to similar results.

6.5.2 Experiments with real intra-operative data

For two clinical cases, the surgeon acquired about 100 points randomly distributed on
the femoral notch surface (not limiting the acquisition to a small patch and the anterior
border of the notch). For these cases, it was possible to test the proposed statistical model
fitting.

Results are provided in Table 6.3. Fig. 6.17 shows the deformed statistical model (tri-
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angle mesh) that fits the points (black spots) collected during surgery (case 1). Although
additional local deformation of the model would be necessary for perfect fitting, the result
seems satisfactory. However, these tests do not evaluate the method’s extrapolative power
since the real shape is unknown, they only demonstrate two points:

e A sufficiently large collection of points is possible during surgery (compared with
the necessary area defined by simulation tests)

e Interpolation by this technique provides sufficient accuracy for visual feedback

To evaluate the extrapolation quality for clinical cases, the deformed model would
have to be compared with the complete shape of the femur from which the acquired 3D
data originate. This could be done using a CT scan for instance.

‘ RMS error H Case 1 ‘ Case 2 ‘

Rigid alignment 2.23 2.82
Model fitting with 2 modes 2.07 217
Model fitting with 4 modes 1.75 1.90
Model fitting with 6 modes 1.61 1.83

Table 6.3: Residual fitting errors (in mm) for two clinical cases using rigid alignment and model
fitting with 2, 4 or 6 modes.

6.6 Discussion

It is considered that the results presented in this chapter show that the assumption of
shape stability of the femur seems to be valid. Obviously, this needs further investigation,
with particular attention to pathological deformations of the knee. For fresh ruptures
of young athlete knees, it is reasonable to assume that the shape of the knee surfaces
are normal, which corresponds to most of cases of ACL reconstruction. It is likely that
pathological cases can be captured using a few additional statistical modes because the
deformations often originate from the same problem and create the same effects.

The conducted experiments show that reconstruction from sparse data is possible using
few modes of the model. This validates the statistical approach in the particular instance
of the femur although it needs to be confirmed on a larger population. Using this method,
it still needs to be investigated how many points and at which location are necessary for
correct reconstruction. As a side effect of the method, the model can interpolate the data
in a more robust manner than a single spline, without any topology consideration.

Actually, one major issue of the method is to know if a few data points (and at what
location) are sufficient to capture the rigid body pose of the model, with an accuracy
suitable for the application. This is highly dependent on the shape complexity and the
number of modes necessary to capture the deformation. Clearly, a roughly flat surface
with a high number of statistical modes cannot be reconstructed by this method. If too
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many modes are used, there is a risk that extra-modes are used to compensate rigid body
motion partially. Therefore, the method is suitable in two cases:

e The rigid body pose of the model is known independently of the method using
least-squares fitting of anatomical or functional landmarks.

e The shape is reasonably complex and its deformations can be captured by using a
low number of modes.

The second case is validated for the femur, on the basis of the experiments presented here.

Further investigations must show whether the accuracy of the model is sufficient to
outperform the bicubic spline in interpolating the data points in terms of a more accurately
computed surface. However, the method is not intended to cope with fine adjustments.
Therefore, if accuracy is a severe requirement and strict interpolation of data points is
mandatory, then it is necessary to perform additional unconstrained deformation of the
model, for instance an FFD based volumetric deformation method that has been used in
chapter 5.

6.6.1 Global Scaling

In the presented approach the effects of global scaling are captured by the statistical
analysis rather then applying a scale normalization before performing the PCA as it is
common. This enables the model to capture shape changes correlated with scale. On the
other hand 1t biases the results to modes of the larger shapes. Further investigations must
show which approach allows better shape recovery.

6.6.2 Tibia Model

The method would have probably difficulties in the case of the tibia considered alone. As
less intra operative data are available for the tibia than for the femur, one can build one
model including both tibia and femur taken in the blocked extension position of the knee.
This seems a reasonable approach because the shape of femur and tibia belonging to one
knee joint do not vary independently.

6.6.3 Improving the initial rigid registration between the intra
operative data and the model

In the current implementation, a first rough alignment between the data points and the
model is performed interactively by the user, followed by rigid registration using the
ICP algorithm. For further automation, investigations must show how far other reference
features can guide the matching process. Although the flexion-extension axis of the knee
joint does not remain constant over the range of motion, it nevertheless could for instance

serve as a functional reference feature similar to the concept of functional points described
in 4.2.2.
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6.6.4 Establishing the minimum number of points that meet the
accuracy criteria for the application

Currently about 60 data points are acquired during surgery more or less arbitrarily dis-
tributed over the accessible area. As the operation time shall be kept as short as possible,
it is desirable to acquire as few data points as possible while still meeting the accuracy
criteria for the application. Obviously, not only the amount of data points but also their
distribution over the surface, heavily influences the achievable accuracy. See, for instance
[SHK95], for more about this (geometric constraint analysis).

6.6.5 Other Applications

The method can be applied to reconstruction of surfaces for which the shape is reasonably
stable. For instance it can be applied to reconstruction of human faces using range images,
or reconstruction of vertebrae using direct digitization of the posterior surface of the
vertebra during surgery (see section 7.6), etc. Applications outside the medical world are
also possible, for example in cases where it is necessary to digitize the surface of several
instances of the same object. Not only the reconstruction is robust, but the model can
also be used to infer some properties to the data. Labeling a region is thus automatic.

6.7 Conclusion

The main contribution in this chapter concerns a new method for inter and extra polating
sparse scattered point data acquired on an anatomical surface. It is based on the fitting
of a statistical shape model to the data points. First experimental results show that the
chosen approach may be successfully applied to a system for computer-assisted anterior
cruciate ligament reconstruction, although it must be mentioned that the 10 training
shapes from which the model has been built are not sufficient to represent the natural
shape variation of the femur. Therefore further experiments with a larger shape data base
must be performed to further validate the chosen approach.
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Figure 6.9: The two-dimensional k-d tree
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Figure 6.10: Searching the closest model point on the triangular mesh surface

103



CHAPTER 6. NON-RIGID 3D/3D REGISTRATION OF SPARSE
SCATTERED POINT DATA WITH A STATISTICAL SHAPE MODEL
AND ITS APPLICATION TO COMPUTER ASSISTED ACL SURGERY

75

Sum of variability [%]

~
o

@
al

Number of parameters (n)

Figure 6.11: Captured variability of the statistical model of the distal femur as a function of
the first n eigenmodes in percent

-3SD Mean Shape -3SD Mean Shape

Mode 1 Mode 2

Figure 6.12: Applying 3 standard deviations of the first and second deformation mode on the
mean shape
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Figure 6.13: Applying 3 standard deviations of the third and fourth deformation mode on the
mean shape
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Figure 6.14: Flow chart of the performed experiments
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Figure 6.15: The model after rigid (top) and after non rigid registration (bottom)
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Figure 6.16: Error visualization after rigid (top) and after nonrigid (bottom) registration
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Figure 6.17: Clinical case 1: the model after non-rigid fitting using 6 modes in comparison with
the sparse set of points.
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Chapter 7

Nonrigid 3D /2D registration of a
statistical shape model with few
X-ray images

This chapter investigates how a statistical shape model can be used for nonrigid 3D /2D
registration with very few X-ray projections. X-ray images are the dominating image
modality in the operating room. Despite its widespread acceptance and utility, however,
fluoroscopy is associated to several disadvantages. One important issue is the radiation
exposure, particularly to the surgeon’s hands. Recent data suggest that spinal surgeons,
in particular, are at significant risk for fluoroscopy-related radiation exposure [ea, ea93].
The most obvious disadvantage perhaps is the fact that only 2D images are available.
More precisely only one single real-time planar view is usable at any given time. Conse-
quently, for procedures requiring multiplanar fluoroscopic visualization, the C-arm has to
be repositioned throughout the procedure. This process is often tedious, time-consuming,
and frustrating. Under ideal circumstances the surgeon holds an instrument perfectly still
in one plane while correcting its position in the other. The X-ray technologist efficiently
repositions the C-arm to obtain the perfect view in each desired plane while maintaining
ideal sterility and without ergonomically challenging the surgeon with the C-arm.

Thanks to his anatomical knowledge the surgeon is used to mentally fusing 2D images
taken from different view points. However for many applications this mental registration is
not sufficient to obtain all necessary information about the anatomical situation in order
to properly perform the surgery.

In many applications of surgery such as orthopedics for instance, it is desirable to
define a surgical planning on 3D images and then to execute this plan on the patient.
Therefore, since the advent of Computed Tomography, various surgical interventions are
preceded by the construction of a CT-based 3D model of the object of interest to provide
the surgeon with spatial information which is lacking when using only 2D images. Since
the introduction of computer assisted surgery systems it became possible to register these
pre-operative acquired CT data with intra-operatively acquired X-ray images using fidu-
cial based or surface based registration methods (see section 4.2), thus unburdening the
surgeon from fusing the images with the patient mentally.
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But CT based CAS systems are associated with several drawbacks: First, the total
X-ray dose for the patient raises significantly by the CT exam. Further it significantly
increases the overall intervention costs as well as its duration due to the necessary reg-
istration procedure. Furthermore, for many applications the computation of a detailed
(though very precise) 3D attenuation map is not mandatory, i.e. reconstruction of the or-
gans shape would be sufficient. Therefore it is desirable to be able to infer 3D-information
from the intra-operatively acquired 2D X-ray images to facilitate the navigation within
the patient and thus allowing to abandon CT data acquisition at least for many standard
surgical applications, where this data is not otherwise required for diagnosis purposes.
Abandoning the CT scan also eliminates the often time consuming registration process
between pre-operative and intra-operative images.

By combining current C-arm fluoroscopy with computer-aided surgical technology,
many advantages of fluoroscopy can be enhanced, while minimizing or eliminating its
disadvantages. In [Hof97] for instance, authors propose to acquire several images using
a classical C-arm equipped with an image intensifier and to track the position and ori-
entation of the surgical tools, the image intensifier and a patient’s reference with an
optical localizer, thus allowing to compute relative movements of the patient or the sur-
gical tools with respect to each acquired image during the intervention. Although this
system is a considerable improvement, real 3D information is still missing. Recent pub-
lications ([ea01b]) at least raise doubt about sufficient obtainable precision for these so
called ”virtual fluoroscopy” systems for pedicle screw placement in the case of scoliosis
for instance.

The objective of this chapter is to explore a method to recover the 3D shape of the
patient bones or organs intra-operatively using a very limited number (2 - 3) of calibrated
X-ray images. This is accomplished by deforming a statistical 3D model to the contours
segmented on the X-ray images. Here work is concentrated on the application of this
method to bone reconstruction. The algorithm starts from segmented contours of the
bone on the x-ray images and an initial estimate of the pose of the 3D model in the
common coordinate system of the set of X-ray projections.

Fitting the model to the contours is then achieved by using a generalization of the
iterative closest point algorithm to nonrigid 3D /2D registration, following the concept of
section 4.4. As a matter of course, only healthy organs or shape pathologies which are
possible to capture by statistical analysis of a population, may be reconstructed with this
method; e.g. fractured organs can not be handled.

The remainder of this chapter is organized as follows: Section 7.1 provides a brief
overview. Section 7.2.1 presents a generalization of the Iterative Closest Point algorithm
for contour based 3D /2D registration. The next section shows how to efficiently compute
matched point pairs by computing the model’s contour generators. Subsequently it is
shown how to fit the model to the projection data. Section 7.4 provides results obtained
with simulated and real data.The experiments carried out are based on segmented X-
ray images; in this dissertation work is not focused on the vast field of 2D segmentation
methods. However, section 7.5 briefly presents some preliminary results obtained with
a model based approach combining a low level pre-segmentation of the X-ray images
with model based approach, as proposed in [[on98]. Section 7.6 presents the results of an
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experiment combining the methods proposed in this and the previous chapter, constituting
a hybrid registration approach relying on both 2D projective and 3D point data. Section
7.7 summarizes this chapter.

Image intensifiers, are subject to geometric distortions due to non planar shape of the
image intensifier and external magnetic fields (see section 3.1). Calibration techniques
such as the NPBS method [CLSC92] for instance can be used to correct these distortions
as well as to compute a pseudo focal point of the source. This calibration is not further
addressed here. However full digital X-ray detectors without any geometric distortion
[CCDT98] begin to appear on the market and are likely to replace the image intensifiers
in the future.

7.1 Related Work

7.1.1 X-Ray Tomography

In (X-ray) absorption tomography, the selective absorption of X-ray photons by the dif-
ferent tissues being imaged is used for the reconstruction of a density image from a
complete set of projections (complete with respect to the Shannon sampling theorem) on
the grounds of the Radon theorem [Nat86]. Reconstruction algorithms are usually either
based on filtered back projection methods or algebraic reconstruction techniques (ART)
[KS87].

Common CT-scanners are based on 1D X-ray detectors thus providing a stack of
reconstructed 2D images (fan beam projections). However 3D tomography systems (based
on cone-beam projections) begin to appear on the market [ea98]. There are also attempts
to use intra-operative fluoroscopy systems for Computed Tomography [Eea00]. Although
promising results are reported, this is associated to several problems. One serious problem
is the mechanical instability of the C-arm. Although it is possible to construct more stable
C-arms (up to a certain extent, since the C-arm must still fit the OR and must remain
ergonomic) most known reconstruction algorithms require a specific trajectory.

One objective is to reduce the dose delivered to the staff and the patient. Contrary
to the patient, the staff can be protected from the radiation during intra-operative image
acquisition. For good image quality, tomography usually requires several hundred projec-
tions. Fig. 7.1 shows reconstructed images of the lumbar spine when vigorously reducing
the number of used projections. With less than 16 projections image structures become
impossible to recognize. It is reminded that the objective is to obtain acceptable shape
reconstruction using 2-3 projections only.

Boundary detection

As said before, for many medical applications such as orthopedics, determination of the
object shape i.e. boundaries (e.g. bone surfaces) is sufficient to perform the task. In many
cases it 1s not necessary to compute the 3D attenuation map.

Therefore several authors addresses the problem of segmentation of objects based on
the sinogram, i.e. without prior reconstruction. In [Thi91] authors propose to reconstruct
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Figure 7.1: Spine images reconstructed with Feldkamp algorithm using different number of
projections. The projections were forward-projected from a regular CT scan (Visible Human
Project, VHP). The original image size is 512% with 0.9375mm? pixel size, slice thickness 1.0mm.
The projection image size was 300% with 1.43mm? pixel size. (Courtesy of Xuan Liu, Brussel
{!n]ri%ersity, Belgium) Number of projections used for reconstruction: a) 512, b) 128, ¢) 32, d) 8
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object boundaries from raw CT data without first computing the attenuation map, but
their algorithm requires a dense set of x-ray projections. In [KCD98] the former approach
is applied to non destructive testing (NDT), extended by incorporating a priori knowledge
in the form of parameterized object models, which are detected using the Hough Transfor-
mation. But the models are limited to simple objects like ellipses. In [Ela01, ER01] the use
of a level-set surface model in the context of segmentation of spiny dendrites from limited
angle electron microscope tomographic data, segmentation of vascular structures from
simulates sparse-angle angiography data and segmentation of lungs and the torso from
simulated transmission scans is investigated. The level-set approach is a rather low level
model; it provides topological flexibility but may not be contrained enough to cope with
very few projections and noisy data. In [BBLRT99] authors use a free form deformation
model to reconstruct shapes of constant interior density in the context of SPECT imaging.
Robustness to noisy data is shown, but the effect of incomplete data is not investigated.

Ordinary x-ray tomography is global, i.e., reconstruction at a certain point requires
integrals over lines far from this point. In cases, where the region of interest (ROI) is
much smaller than the whole object, local tomogography methods can be considered to
find discontinuities (object contours)in the ROI [FKH*01]. Local tomography is based on
X-rays passing through the ROI only and thus helps reducing patient X-ray exposure. Due
to the non-local nature of the Radon transform, a perfect reconstruction of the attenuation
map is impossible with only local projections data.

When the number of available projections is small, image reconstruction becomes an
extremely ill-posed problem that can be (approximately) solved only with the formulation
of a set of strong assumptions about the structures in the scene.

Discrete Tomography

One possibility is to consider regularization by limiting the solution space to a reduced
set. For instance, constraining the solution to be binary is a possibility (discrete tomog-
raphy). Examples arise e.g. in NDT, where a common problem is to detect and identify
fabrication defects in homogeneous industrial pieces. In [VD97] authors take into account
a small number of cone-beam projections (3-7 projections) considering a priori knowl-
edge about the object given in general form. Results are presented for binary objects, but
the authors claim that the algorithm is extensible to objects with multi-level structure.
In [KI1i90] authors present an iterative two step algorithm for 3D reconstruction using a
limited number of projections (3). The first step of the algorithm is a classical iterative
reconstruction ART type method which provides a rough volumetric reconstructed 3D
zone containing a flaw. Then in the second step this reconstructed zone is modeled by a
Markov Random Field (MRF).

In the medical domain binary reconstruction arises for instance when reconstructing
a vascular tree from a small number of radiographs using a conventional angiography
device. The acquisition is performed before and after injecting a contrast agent in the
arteries, which may be assumed to provide a homogeneous medium. When the two pro-
jections are subtracted, the problem is equivalent to reconstructing a binary image where
zero corresponds to the background and one to the contrast agent, thus determining the
geometry of the vascular tree. In [LBM*96] authors present a method for cerebral vascu-
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lar reconstruction from six projections. The approach is based on a regularization of the
inverse problem by a smoothness function using the discrete smooth interpolation (DSI)
formulation. In [RTAR*95] authors present a method for reconstruction of binary objects
from two orthogonal projections using graph theory and its application to dentistry. In
general these methods aim more at reconstructing the topology of objects than their more
or less precise shape. Considering vessels for instance it is sometimes more important to
know about all the branchings than the exact shape of the vessel. Unfortunately the con-
ditions allowing to make the assumption of binary circumstances are not given in the case
of orthopedic, because there is not enough contrast between the object of interest and the
surrounding tissues.

7.1.2 Model based 3D Surface Reconstruction Techniques Using
few 2D X-Ray Projections

Before discussing the more general shape fitting problem different concepts for rigid reg-
istration are reviewed.

Rigid 3D /2D Registration (Pose Estimation)

Basically two different concepts can be distinguished:

Contour based Registration One type of algorithm is based on contours and re-
quires prior segmentation of the object in the 3D-image as well as in the 2D-image
[LS95, FAB94, Gue98] although in [HSLC95] authors propose a cooperative approach

between registration and 2D segmentation.

Intensity based Registration The other concept does not need segmentation and
is based on comparing the gray value distribution of the 2D-image with the projection
of the 3D-image under current registration parameters into the image plane (Digitally
Reconstructed Radiographs, DRR) [LFK94, GDT*96, RBB*99, GBB96]. Due to the
high computational cost for computing the DRR, this method is rather slow although
in [Wee99] authors recently proposed a promising technique for considerable acceleration
by using the shear-warp factorization [LL94]. Authors claim to achieve full 6 degree of
freedom registration of a CT model of a vertebrae within 4 seconds. Currently low cost
hardware architectures are under development which achieve fast ray casting (up to 30
frames per second) of rectilinear grids using this acceleration technique [RPSC99]. But
so far only parallel projection is available. Other techniques use rather standard graphics
hardware (2D or 3D texture mapping hardware) to speed up the volume rendering pro-
cess [WE98, DKC*98]. See [PWLT98] for a comparison of similarity measures used for
intensity based registration.

A typical assumption formulated when a very small number (2-3) of projections is
available for shape reconstruction, is that only a single structure is present in the scene.
The additional hypotheses that the structure has a constant density, that the rest of the
imaged volume is empty and /or that the cross sections of the structure respect predefined
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constraints allow the reconstruction of such a structure. The strong assumptions described
above prevent the applicability of these methods to most anatomical structures of diag-
nostic interest. In general neither the single object nor the constant density assumption is
valid in the case of bone reconstruction for example. Abandoning these restrictions needs
more a priori knowledge.

3D Surface Reconstruction based on projections and Deformable Surface Mod-
els

One of the first works concerning the reconstruction of a 3D object from silhouettes was
proposed by Martin and Aggarwal [MAS83]. They produce polygonal 3D objects backpro-
jecting the silhouettes. Benjamin et al. [Ben95] generate surface information using common
points, present in different projections, and the tracks between the points, extracted from
about 10 projection images. Caponetti and Fanelli [CF93] present a method to extract 3D
geometry of bones from two orthogonal projections. The initial estimation of the 3D bone
structure, produced by backprojected profile points, is refined by B-spline interpolation.
In [Nik96] authors reconstruct femurs from 2 orthogonal X-ray images. They separate
the femur into 3 subparts each of them assumed to be round. They fit cubic paramet-
ric surface patches to the subparts and then assemble them to a complete model. Kita
[Kit96] developed a method to analyze X-ray images of the stomach using a deformable
3D model. The model is a tube which is first initialized using only one projection. After-
wards, the model is deformed using the other projections. Theoretical work concerning
surface reconstruction from 2D silhouettes has been discussed in [Lau95]. Lotjonen et alt.
[LMNK99] use a geometric prior model of the lung to reconstruct the organ from manually
segmented 2D X-ray projections. In [HL96] authors present a method for constructing a
3D individualized head model by fitting a generic head model to facial features extracted
from the side and front views of the head. Based on local maximum curvature tracking,
corresponding point pairs are found on the side and front view and their 3D location is
used to compute a distortion vector field for specializing the generic model for the input
images. The work of [PV97] is one example where authors aim to recover shape from
one single X-ray image by exploiting both, geometric and densitometric constraints while
making two assumptions: the density of the structure to be recovered is approximately
constant and the surface of each structure is smooth. This approach shares ideas from the
work of [TWKS88] where authors recover the 3D shape from the 2D profiles of an object
using a deformable tube and a deformation technique which is controlled by physically
based intrinsic and extrinsic forces. Both geometric and intensity information are also used
in [SNP95] where authors reconstruct 2D objects from 1D projections using deformable
spline curves.

Deformable models require an initial position in order to converge properly to the
desired solution. This is generally achieved by a suitable initialization (see section 4.2.4).
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7.2 Matching a statistical shape model with seg-
mented X-ray projections

Here the shape recovery problem is formulated as a nonrigid registration between a sta-
tistical deformable shape model and the contour data extracted from the X-ray images.

7.2.1 The ICP algorithm for 2D /3D registration

Following the concept of section 4.4 it is possible to use a generalization of the ICP
to perform the 3D/2D registration. Therefore it is necessary to define correspondences
between the model and each projection ray p;;=1..p of the X-ray images, which are defined
by the coordinates of the contour points x;, y; in the image plane and the focal point f of
the source. This can be accomplished by associating the endpoints of that line segment
originating on the projection ray and ending on the model surface such that their distance
to each other is minimal. It is interesting to note that at each iteration step new points
on both the model and the projection rays may be selected, while in the 3D/3D case
(chapter 6) the points in the data set remain the same throughout all iterations. In
[WHO96] authors describe this approach for rigid 2D/3D registration of CAD models to
video camera images but do not address the problem of quickly finding those points on
the projection ray and the model that have the smallest distance to each other. This is a
key step for applicability within intra-operative applications and is addressed in the next
section.

7.2.2 Efficient matched point pair building

To efficiently find the above defined correspondence an approach described in [Gue98] is
used. First the actual contour generators g; ;=1 of the model are computed. Contour
generators are those object features constituting the (inner and outer) contours of the
object in image space with respect to the current projection parameters. As the geomet-
rical presentation of the model is triangle mesh, the contour generators are a subset of
all triangle edges. Thus establishing correspondence results in the simple computation of
shortest lines between two 3D line segments. When the model is perfectly aligned with the
projection rays, the latter intersect those triangle edges previously found to be contour
generators. In [Gue98] authors call the contour generators "apparent contours” and use
them for a rigid registration algorithm to match a CT model with fluoroscopic images. In
the chosen implementation, the triangles in the mesh are defined by pointers to an edge
list. Each edge in the edge list points to the two vertices in a vertex list defining the edge.
This representation allows to efficiently compute the contour generators using the follow-
ing criterion: For each triangle the viewing direction is defined as the vector originating
from the center of projection to the triangle centroid. If the triangle normal, defined by
the cross product of ordered oriented triangle edges constitutes an obtuse angle with the
viewing direction, the triangle is said to be visible and invisible otherwise. An edge is a
contour generator if the triangle on one side of the edge is visible and the triangle on the
other side of the edge is invisible. All edges meeting this criterion are stored in a list and
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rather than performing brute force search within the complete edge list of the model the
search only has to take place within this subset to find matched point pairs. For a model
consisting of about 5000 edges for instance, there are only about 300 contour generators
for each perspective projection. Fig 7.2 shows the correspondence between one projection
ray and the current contour generators of a model of the distal part of the femur.

contour generators

\ shortest line segment

between the projection ray
e and all contour generators

projection ray

Figure 7.2: Correspondence between one projection ray and the current contour generators of
a model of the distal part of a femur

7.3 Model Fitting

To recover the shape from the projection rays it is necessary to find the rigid transforma-
tion (rotation R, translation T) between the matched point pairs and the decomposition
of the ¢ preserved eigenvectors of the statistical model in such a way that the distances
between them are minimized. The objective function to be minimized is defined as follows:

P
ER, T, wy...w;) = Z IIIE&G lp; — (Rgr(wy...w;) + T)]|? (7.1)

J=1

As for the 3D /3D case in section 6.4 the rigid and the nonrigid parameters are adjusted
sequentially. Given an estimate for the pose parameters R, T by applying the generalized
ICP algorithm, the deformation parameters wy...w; are adjusted using the Levenberg-
Marquardt algorithm; the partial derivatives of the objective function with respect to
each of the deformation parameters can be computed analytically as in the 3D/3D case
that was discussed in section 6.4.

The following strategy is applied to avoid local minima: Beginning with the first (most
significant) deformation mode, the number of modes used to fit the data is increased suc-
cessively in each iteration until the chosen maximal number of modes is reached. Bounds
to the deformation parameters are applied to force the model to deform only in an anatom-
ical reasonable range as in the 3D case.
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7.4 Results

7.4.1 Simulated Data

Experiments with simulated data were carried out using the shape model of the distal
part of the femur (section 6.5) and a statistical model of lumbar vertebrae. By means
of a simulator tool rotation and translation parameters of a 3D model can be changed
interactively and the contour generators can be projected on a virtual detector plane thus
providing contours for known projection parameters. The experiments were performed
using an image plane / focal point distance of 1000mm thus roughly approximating real
conditions when using a C-arm.

Experiments with the femur model

Figure 7.3 shows 2 simulated X-ray shots taken for two approximately orthogonal view
points around a model of the distal part of the femur (one lateral and one AP view).

Fig 7.4 shows the shape model before registration (a), after rigid (b) and after nonrigid
(c) registration. One recognizes that the projection rays are tangential to the object surface
after the nonrigid registration.

Figure 7.3: Two simulated X-ray shots acquired around a femur surface model

Experiments using different numbers of X-ray images show that within the current
implementation two orthogonal views establish the best compromise between accuracy and
computation time. Table 7.1 shows registration results for different numbers of calculated
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Figure 7.4: Surface model of the distal part of the femur: (a) before registration, (b) after
initial rigid registration, (c) after nonrigid registration

projection rays per X-ray image. In this experiment two orthogonal X-ray views and four
deformation modes were used. Shown are the RMS between the projection rays and the
model (left column) and the RMS between the surface model of the shape to be recovered
(reference) and the deformed model (right column).

RMS (mm)
rays || model-projections ‘ model-reference
10 0.34 1.3
20 0.52 1.2
50 0.49 1.13
100 0.55 1.05
200 0.77 0.99

Table 7.1: RMS error for different number of projection rays per view (in mm)

Comparing the accuracy of 2D/3D matching algorithm with the 3D /3D registration
algorithm presented in chapter 6 yields the following results: Approximately 500 points
(randomly distributed on the surface of a CT-model to be recovered) were first registered
rigidly with the mean shape, resulting in a RMS of 2.44mm. The nonrigid registration
between the 3D data set of the test femur and the deformable model using 4 deformation
modes results in a final RMS of 0.85mm. Using 2 (orthogonal) views, each with about
200 projection rays results in a final RMS between the deformed model and the shape to
be recovered of 0.99mm, which is only slightly more with respect to the results obtained
with the 3D data set.
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Experiments with a vertebra model

A shape model of lumbar vertebrae incorporating 30 data sets was computed. Fig. 7.5
shows the effect of applying the first 5 deformation modes to the mean shape. Fig. 7.6
shows the captured variability of the statistical vertebra model as a function of the first
n eigenmodes.
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Figure 7.5: The first 5 deformation modes (covering 85 percent of the deformation contained
in the 30 training shapes)

Experiments were performed using 2 orthogonal simulated X-ray views (Fig. 7.7) based
on 10 different CT-models that were not contained in the population used to build the
model.

122



7.4. RESULTS

Sum of variability [%]
(o2} ~ ~ [0} [oc] ©
al o [9)] o a o

[o2]
(=]

1 1 1 1
5 10 15 20 25 30
Number of parameters (n)

a
al

Figure 7.6: Captured variability of the statistical vertebra model as a function of the first n
eigenmodes in percent

Figure 7.7: Reconstruction of a lumbar vertebra using 2 orthogonal x-ray projections
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In each simulated projection 400 randomly chosen (internal or external) contour points
were maintained thus taking into account the fact that in practice not all contour points
will be reliably detectable (Figure 7.8 (b)). One additional data set was generated by
deleting all internal contours taking into account that those are less likely to be reliably
detectable in practice (Figure 7.8 (c)).

Figure 7.8: Contours for reconstruction using simulated projections: a) high density inner and
outer contours, b) low density inner and outer contours, ¢) low density outer contours (top AP
view, bottom lateral view)

Each of both low density datasets containing the two projections was then registered
with the vertebrae shape model using all deformation modes following the strategy de-
tailed in section 7.3. Fig 7.9 shows the shape model (mesh) after manual alignment (a),
after rigid (b) and after non rigid (c) registration together with the CT-model from which
the projections used for this experiment were generated. Fig. 7.10 shows the evolution
of the RMS error between the projection rays and the model surface throughout the
optimization process using increasing numbers of modes.

Table 7.2 summarizes the resulting RMS errors between the model and the projection
rays and between the model and the underlying CT-model for the 10 cases using the data
set containing only the external contours. The final average RMS between the deformed
shape model and the underlying CT-model (reference) was 0.62 mm. The same experiment
carried out using internal and external contours results in slightly lower final RMS errors
(A &~ 0.lmm) Fig. 7.11 visualizes the final RMS error distribution on the surface for one of
the cases.One may observe that after non rigid registration only small surfaces patches of
the model remain relatively distant to the underlying CT model surface; this is confirmed
when comparing the error histograms after rigid and non rigid matching. Table 7.3 shows
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a) b) <)

Figure 7.9: Shape model of a lumbar vertebra matched to 2 orthogonal X-ray views: a) after
manual alignment, b) after rigid registration, c) after non-rigid registration.

30 35
Number of modes

Figure 7.10: Evolution of the RMS error between the projection rays and the model surface
using increasing number of modes for minimization. The first data point represents the RMS
after manual alignment the second one after rigid registration.
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the overlap measure between the shape model and the underlying CT-model after rigid
and after nonrigid registration for each of the 10 cases; The average overlap between
the deformed shape model and the underlying CT-model was 91.12 percent. Results are
consistent with the RMS based results.

rigid RMS non rigid RMS rigid RMS | non rigid RMS

Nr. || model-projections | model-projections | model-reference | model-reference
1 1.29 0.35 1.69 0.44

2 1.44 0.19 1.89 0.36

3 1.52 0.22 1.81 0.29

4 1.32 0.31 1.78 0.42

5 1.49 0.50 1.88 1.32

6 1.49 0.18 1.62 0.38

7 1.32 0.36 1.91 0.63

8 1.20 0.45 1.78 1.29

9 1.37 0.29 1.77 0.54
10 1.44 0.32 1.73 0.56
mean 1.39 0.32 1.79 0.62

Table 7.2: Matching errors (in mm) for 2D/3D registration after rigid and non-rigid matching
using two orthogonal projections containing the external contours of a vertebra
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Figure 7.11: Error visualization for reconstruction of a vertebra using 2 orthogonal views

7.4.2 Real Data

To obtain more realistic results an experiment using real data was performed. A cadav-
eric lumbar spine was attached to a computer controlled turn-table and imaged twice for
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‘ Nr. H rigid overlap ‘ non rigid overlap ‘

1 76.37 94.76
2 74.21 93.35
3 74.92 95.42
4 75.10 94.37
5 73.81 82.21
6 77.49 94.59
7 72.97 91.27
8 75.33 80.52
9 75.42 92.57
10 75.96 92.18
mean 75.16 91.12

Table 7.3: Overlap measure for 2D /3D registration (in percent)

orthogonal turntable-angles using a prototype of an interventional X-ray imaging system
equipped with the digital X-ray detector described in section 3.3.2 (Figure 3.12). Pre-
processing of the images was performed following section 3.3.2. The source position was
calculated as explained in section 3.4.1. The turntable axis was was determined using a
dedicated calibration algorithm. Prior to the experiment a CT-scan of the cadaver was
acquired (voxel size: 0.273438 x 0.273438 x 1.0mm?>). The vertebra used for the experi-
ment (L2) was segmented manually for later evaluation (see below). L2 was segmented
likewise manually in the two orthogonal X-ray images, see Fig. 7.12 for the lateral view.
Subsequently the extracted contours were registered with the vertebra shape model using
all deformation modes. Table 7.4 shows the results for this experiment. The experiments
with simulated data showed that the rigid parameters can always be recovered reliably
using one lateral and one AP view. Taking this into account, allows to evaluate the result
of the non rigid registration by rigidly registering the deformed model with the segmented
CT-model (reference) of the vertebra. This procedure supersedes otherwise necessary fidu-
cial based registration. There are at least several possible reasons for the poorer result
with respect to the experiment carried out with simulated projective data. The outliers
in the experiments using simulated data (cases 5 and 8) are in the same range as the
result for real data. This indicates that the statistical model does not contain sufficient
representative information about the encountered shape variations. Further the calibra-
tion procedure might have introduced geometrical errors and it must certainly be taken
into account that the cadaver spine belongs to a 80 year old specimen; the vertebrae
show heavy degenerative changes. The computed shape model was based on a younger
population, thus such shape variations occurring in older specimen are not gathered by
the model.
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Figure 7.12: Manually segmented contour points on a lateral X-ray image of a cadaver spine
(segmented points are enlarged for visualization).

rigid RMS non rigid RMS rigid RMS | non rigid RMS
model-projections | model-projections | model-reference | model-reference
| 1.43 | 0.83 | 1.52 | 1.27 |

Table 7.4: Matching errors for real data (in mm)
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7.5 Model based Segmentation of X-ray images

The above experiments were carried out based on manually segmented X-ray images. As
said in the introduction, this issue (though very important for the practical relevance of
the method) is not of primary interest in this work. However, this section presents some
preliminary qualitative results obtained with a model based approach combining low level
pre-segmentation with knowledge based subsequent high-level segmentation, taking into
account the segmentation-registration duality ([lon98]).

In a first step low-level pre-segmentation is performed using a Canny-Deriche filter
with subsequent thresholding, resulting in an oversegmented image. False positives are
then detected by establishing correspondence between all detected contour pixels and the
actual contour generators of the shape model. After projection of the contour generators
into the image plane using current projection parameters, a deformation grid is associated
to the contours (Figure 7.13). Each node of the grid is associated to displacement vector
Viii(i,7) €10, 1] x[0, 1], where I.(I,), is the number of horizontal (vertical) nodes. Thus
each point P of all contour points can be locally deformed by bi-linear interpolation of
the positions of the four nodes the point P is associated to, (Vi;, Viz1.j, Vi1, Vie1.i+1),
followed by a rigid transformation T'(«;t,,1,) where « is the rotation angle and (¢,t,)
the translation.

Vi j+

Figure 7.13: Grid deformation: The displacements are represented by the vectors associated
to the grid nodes.

The objective function used to determine the optimal parameters for the grid displace-
ment comprises three different components. The first term represents the distance from
the transformed point P; to the nearest point (); in the pre-segmented image, the second
term regularizes the dimension of the vectors V; ; associated with the (7, j) grid node and
the third term regularizes the similarity of vectors associated with neighboring nodes. To
speed up the distance computations, a precomputed distance map is used.

Figure 7.14 shows different stages of this method using a multi-resolution approach.
The projected contours of the model (yellow) get closer to the contour pixel obtained with
the Canny filter (white) for higher grid levels. The different gray levels in the background
represent the different distance values that are pre-computed and stored in a distance
map to speed up the optimization. At the final resolution, only those pixels in the image
that were matched with a contour generator of the model are retained for the 2D/3D
registration. Assuming a sufficient accurate initialization of the rigid parameters for the
model, the idea of the overall approach is to iterate this process until convergence.
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I U |
L1

Figure 7.14: 2D image segmentation using model guided multi-grid deformation

7.6 Hybrid Matching

In chapter 6 it was shown that the shape of a femur can be reconstructed with sufficient
accuracy for certain applications using relatively few scattered point data acquired in
a highly restricted surface area. However, due to insufficient geometrical constraints (
depending on the shape and on the spatial distribution of the acquired points ), it might
be mandatory to provide the correct pose parameters prior to the non rigid matching.

In [ea01b] authors report that the intra-operative rigid registration of a point cloud
that has been acquired on a restricted dorsal surface area of a vertebra with a pre-
operative acquired CT-model, can lead to unstable results (rotational uncertainty around
the transversal axis) due to insufficient geometrical constraints in the accessible surface
area of the vertebra. It is interesting to investigate if an additional X-ray image could
provide sufficient extra information to sufficiently constrain the solution. This results in
combining the methods proposed in this and the previous chapter, constituting a hy-
brid registration approach relying on both 2D projective and 3D point data. This is not
only interesting for rigid registration but also for the more difficult problem of non rigid
registration.

In this section it is investigated how far it is possible to reconstruct the shape of a
vertebra using few 3D point data plus one lateral X-ray view. Using a single X-ray image
alone does not provide sufficient information for the 2D /3D registration algorithm: Using
a lateral view for instance (see Figure 7.15), doesn’t provide a stable solution for the
parameter determining the translation in the indicated (AP) direction. The instability
increases the more parallel the beam becomes (i.e for greater source-detector distances).

An experiment was carried out using approximately 70 data points acquired on a CT
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Figure 7.15: If only a single X-ray image is acquired there is no stable solution for the trans-
lation in the indicated direction.

based model in a small area accessible during spine surgery thus simulating the situation
encountered in CAS systems where rigid registration with a pre-operative CT-scan is
performed (see section 2.3.1). One lateral X-ray shot was then taken from the same model
(see Fig. 7.16). Subsequently the shape model was fitted to both data - the 3D points
and the segmented contours in the X-ray image - simultaneously. The results for this
experiment are summarized in table 7.5. They compare well to the results for pure 2D /3D
registration using two orthogonal X-ray views presented in section 7.4.1.

rigid RMS non rigid RMS rigid RMS | non rigid RMS
model-(projections,data points) | model-projections | model-reference | model-reference
| 118 | 0.40 | 1.88 | 0.68 |

Table 7.5: Matching errors for hybrid Matching using 70 data points and one lateral X-ray
image (in mm)

7.7 Conclusion

Statistical shape models have been proven to be effective for different tasks in the field of
computer vision such as segmentation of 2D and 3D images. While the previous chapter
presented a new approach for nonrigid 3D /3D registration using such a model, this chapter
investigated a new approach to perform nonrigid 3D /2D registration between such a model
and very few calibrated X-ray images. Contour based registration algorithms suffer from
the potential drawback that their accuracy directly depends on the correct segmentation
of the objects contour in the image. The presented approach is relatively robust with
respect to this problem in such a way that good matching results are obtained even
if the object can be segmented only partially in the X-ray images. Computation time

131



CHAPTER 7. NONRIGID 3D/2D REGISTRATION OF A STATISTICAL
SHAPE MODEL WITH FEW X-RAY IMAGES

3D point cloud

lateral X-ray view

Figure 7.16: Hybrid matching using one lateral X-ray projection plus 70 points acquired in a
small area accessible during spine surgery.
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of the current implementation directly depends on the number of used projection rays
and is less than one minute on a standard workstation when using two images with
a total number of 400 projection rays and 30 deformation modes. A first experiment
based on real data acquired with a digital X-ray detector has been presented as well and
showed encouraging first results. However further work has specially to be addressed to
the problem of reliable automatic segmentation of a certain portion of contour points.
First qualitative results using a model based 2D /2D segmentation algorithm taking into
account the duality between segmentation and registration are encouraging but further
investigation must show, whether accuracy and especially robustness are sufficient for the
given task. Finally, combining 3D and 2D data in a hybrid approach to recover shape
seems very promising, but again further investigation and experiments are necessary to
study how many data points at what locations and how many X-ray projections are
necessary to allow reliable reconstruction.
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Chapter 8

Discussion and perspectives

This dissertation focused on the development of new methods for the reconstruction of
3D anatomical surface models for multiple purposes such as surgical planning and visual-
ization relying on intra-operative data only, more precisely on incomplete point data and
two or three calibrated X-ray projections. The proposed approach consists in matching
the data with a statistical deformable shape model thus incorporating a priori knowledge
into the reconstruction process. The computation of such a statistical model is a non-
trivial task due to the necessary segmentation and registration of shapes in a potentially
large database. A method based on a generic model of the object is proposed to segment
training shapes and to establish point to point correspondence simultaneously in a set of
CT images. A volumetric coarse to fine deformation method based on free form defor-
mations is used to match the generic model to the image data. Two methods have been
investigated to attract the model boundary to the object contours in the gray-level image.
The first method is based on the bone threshold in the gray level image. Experiments per-
formed on CT images of the vertebral column have shown that good segmentation results
can be obtained except for regions where two neighboring vertebrae are articulating and
thus the bone gaps are too narrow. A second approach based on a statistical gray-level
model for each model vertex leads to similar results.

The computed shape model can be matched to scattered point data using a non rigid
3D/3D registration algorithm, based on a least square fitting. The application of this
method for intra and extrapolation of sparse point data is demonstrated within a system
for computer assisted reconstruction of the anterior cruciate ligament using simulated and
real data.

To reconstruct a surface from few calibrated X-ray images the statistical shape model
is matched to the object contours segmented on the calibrated images based on a new
non rigid 3D/2D registration method. Experiments are performed on a statistical model
of lumbar vertebrae based on a data base containing 30 specimens. Experimental results
indicate that the obtainable resolution is sufficient for the given task. It is further shown
that hybrid registration combining both 3D /3D and 3D /2D registration, might be a very
interesting option for certain computer assisted surgery applications. Contour based regis-
tration algorithms suffer from the potential drawback that their accuracy directly depends
on the correct segmentation of the object contours in the image. The presented approach
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is relatively robust with respect to this problem in such a way that good matching results
are obtained even if the object can be segmented only partially in the X-ray images. How-
ever further work has to be addressed specifically to the problem of reliable automatic
segmentation of a sufficient portion of contour points. First qualitative results using a
model based 2D /2D segmentation algorithm taking into account the duality between seg-
mentation and registration are encouraging but further investigation must show, whether
accuracy and especially robustness are sufficient for the given task. Finally, combining 3D
and 2D data in a hybrid approach to recover shape seems very promising, but again fur-
ther investigation and experiments are necessary to study how many data points at what
locations and how many X-ray projections are necessary to allow reliable reconstruction.

One of the most obvious limitations of the approach is the fact that only shape whose
expected variation can be captured by a statistical analysis of a population can be re-
constructed; fractured organs can not be modeled. However, various interventions could
benefit from such methods. In the case of reconstruction of a torn cruciate ligament for in-
stance, there is usually no pathologic shape variation of the adjacent bones (tibia, femur).
Considering pedicle screw placement for spine instrumentation in the case of a vertebra
compression fracture for instance, the shape of the vertebrae the screws are attached to
(which are adjacent to the fractured one), is not pathologic; at least there is no pathologic
shape variation associated to the reason for the surgery - the fracture.

8.1 Future Work

8.1.1 Awutomatic Shape extraction and landmarking

The presented algorithm for automatic shape extraction from CT images shows promising
results. As the primary goal was to reconstruct surfaces, it has not been investigated
quantitatively how reliably landmarks or semi-landmarks respectively are generated.

Tasks going further than reconstruction of the surface only, may require very accurate
landmark setting. Considering the clinical application of pedicle screw placement for in-
stance it could be interesting to propose an ideal screw trajectory and/or the diameter of
the screw to be inserted together with the surface reconstruction. These tasks rely on pre-
cise landmarking in contrast to the pure reconstruction task where gliding of landmarks
tangential to the surface do not alter the reconstruction result, though would influence
the computation of the ideal screw trajectory.

It would be interesting to perform a comparison between the models built with different
methods. In order to carry out a quantitative comparison it is necessary to define a
measure of model quality. The definition of such a measure is in itself an interesting
issue. Obviously, different methods will yield different sets of landmarks which precludes
a landmark based comparison. If one defines a given segmentation task, a comparison
could be established on the basis of the segmentation accuracy. Although these measures
can have a prominent practical value to determine the best model-building technique for
a given problem, the conclusion will remain task-dependent. Possibly, other more task-
independent criteria related to the compactness and generalizability of the built models
could be within the interesting candidate measures to explore.
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The type of model used throughout this thesis is a boundary model. An interesting
alternative is to use volumetric models taking into account not only boundary information
but also the gray level distribution (texture) inside the model. One example of such a
model would be the 3D version of the Active Appearance Model [TT00]. However even
with modern computers especially extreme memory requirements prohibit straightforward
implementation. Initial work on extending AAMs to 3D has been done by Wolstenholme
et al. [WT99], where it was shown that wavelet compression successfully could be used
to reduce the memory requirements without noteworthy loss of quality. The texture PCA
was simply performed on wavelet coefficients instead of the raw pixels. Reliable image
interpretation was obtained at a compression ratio of 20:1.

To improve the robustness of the shape extraction algorithm one could use a bootstrap
method and compute a preliminary statistical model of all already segmented objects of
a given class and then use this temporary model to approximately segment a new image.
Final finer shape adjustments could then be established using the FFDs.

8.1.2 Statistical Model

The set of shapes used to build the statistical model forms a cloud of points in the 3M
dimensional space, which is thought of to be drawn from a single Gaussian probability
distribution. This might be incorrect in the general case. For example one can imagine
that the female femur shapes and the male femur shapes are each drawn from a single
Gaussian distribution with different parameters. Clustering techniques have to be applied
to study this problem. A general approach to overcome the problem is to use a density
estimation technique, such as the kernel method [Sil86] representing the distribution as a
sum of Gaussians, one placed at every original data point. To approximate the distribution
further, a mixture of a small number of Gaussians can be used instead [MB88]. See [CT97]
for further details of this method.

Instead of capturing the statistics of the vertices of the triangle meshes representing
the shapes, one could apply the PCA directly to the vertices of the deformation octree
spline, which is used to find corresponding points within the population. This would result
in a volume-based model rather than a surface-based model.

8.1.3 Matching of the statistical model with intra-operative
data

For the 3D /3D registration algorithm it is interesting to investigate the minimal number
and the optimal spatial distribution of points necessary to reconstruct a surface with a
given accuracy. Furthermore more work has to be done to evaluate the extrapolation power
of the proposed method. In the presented clinical application the reconstructed shape has
been used for visualization purposes. Thus millimetric or even submillimetric precision
is not mandatory. However if the model shall be used to incorporate other criteria for
optimal graft placement in the case of ACL surgery, a certain guaranteed precision will
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become an issue.

The scattered point data are usually acquired with an optical localizer system but also
could originate from other intra-operatively available sensors like laser scanners, or 2.5D
ultrasound sensors. In this case the least square criterion must be replaced by a more
robust criterion, since outliers are inevitable. Further investigations have to show whether
the accuracy of the model is sufficient to outperform the bicubic spline in interpolating the
data points in terms of a more accurately computed isometry map. The first experiments
show that reconstruction from very limited data is possible using only a few modes of
the model. This validates the statistical approach in the particular instance of the femur
although it needs to be confirmed on a large population. Using this method, it needs to be
investigated how many points, at which location are necessary for correct reconstruction.

138



Appendix A

Glossary of Terms

Computer Assisted Surgery Systems use methods and systems to help the surgeon
or the physician use multimodality data (mainly medical images) in a rational and quan-
titative way, in order to plan but also to perform medical interventions through the use
of passive, semi-active or active guiding systems.

Segmentation is the process of delineating and labeling image regions (of any di-
mensionality) as distinct structures.

Registration is the determination of a geometrical transformation or mapping be-
tween any two spaces in such a way that points in one space are aligned with corresponding
(homologous) points in the other space.

Deformable Shape Models can be characterized as models, which under an implicit
or explicit optimization criterion, deform a shape to match a known object in a given
image.

Shape is the characteristic surface configuration of an object (outline, contour) and
invariant to translation, rotation and scaling.

Anatomical Landmarks are salient and homologous points of the morphology of
the visible anatomy and are accurately locatable for every example of a given object class
and correspond between different specimens.

Semi-landmarks or pseudo-landmarks are points that are not necessarily deter-
minable on a certain specimen alone but that correspond across all the specimens of
a data set under a reasonable model of deformation from their common mean [Boo96].
Thus they can be used as if they were anatomical landmarks.
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Anatomy

B.1 Anatomical terms for directions

\\“ —1  Sagittal or
Coronal or Lateral Plane
Frontal Plane Anatomic Terms |Direction
Medial Toward the midline of the body
Lateral Away from the midline of the body
B v Axial or Proximal Toward a reference point (extremity)
Transverse Plane |Distal Away from a reference point (extremity)
2 > Inferior Lower or below
/3 S~ Superior Upper or above
/ \ Transversal Cranial He.ad F
_ Mediolateral ér Caudgl Tail, tail end
Sagittalor Horizontal Axis | Anterior Toward the front
Anteriorposterior Axis Posterior Toward the back
Dorsal Posterior
L} Ventral Anterior
Vertical or

—— Longitudinal Axis

Figure B.1: Anatomical reference system and anatomical terms for directions

B.2 Basic Bone Structure

Bones are organs composed of hard living tissue providing structural support to the body,
its scaffolding. It is a hard matrix of calcium salts deposited around protein fibers. Minerals
make bone rigid and proteins (collagen) provide strength and elasticity.

The outer layer of bone is called cortical bone. 80% percent of skeletal bone mass is
cortical bone. Cancellous bone (also called trabecular bone) is an inner spongy structure
that resembles honeycomb, which accounts for 20% of bone mass. The inner bone cavities
contain bone marrow where red blood cells are produced.
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B.3 The Vertebral Column

The vertebral column (or spinal column) (Figure B.2 ¢) extends from the skull to the
pelvis and is made up of 33 individual bones termed vertebrae. The vertebrae are stacked
on top of each other and are grouped under the names cervical, thoracic, lumbar, sacral,
and coccygeal, according to the regions they occupy. Starting from the top there are seven
in the cervical region, twelve in the thoracic, five in the lumbar, five in the sacral, and four
in the coccygeal. The purpose of the vertebral column is to give the body its stability and
structure. The spine supports the muscles, discs and the nerves of the back. In between
the vertebrae of the column, there are the inter vertebral discs which act as a cushion for
absorbing shocks and giving the spine its flexibility. Besides that they give room for the
nerves to exit the spinal canal. The natural curves in the spine, kyphotic and lordotic,
provide resistance and elasticity in distributing body weight and axial loads the spine is
exposed to during movement.

Vertebral foramen

Vertebral body i }
Superior articular

/ process

Spinous process |

Lumbar vertebrae

pd Pedicle Pedicle
Transverse process Inferior articular process
a) Axial view b) Lateral view c)

Figure B.2: Anatomy of the spine

A typical vertebra (see Figure B.2 a, b) consists of two essential parts: an anterior
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segment, the body, and a posterior part, the vertebral or neural arch; these enclose a
foramen, the vertebral foramen. The vertebral arch consists of a pair of pedicles and a
pair of laminae, and supports seven processes: four articular, two transverse, and one
spinous.

The pedicles are strong, cylindrical, anatomic bridges between the dorsal spinal ele-
ments and the vertebral body consisting of a strong shell of cortical bone and a core of
cancellous bone.

B.4 The Knee Joint

The knee joint (Figure B.3) consists of three bones: the femur, the tibia and the patella.
The two major articulations within the knee are the tibiofemoral and the patellofemoral
joints. Motion of the tibiofemoral joint is complex. The knee does not move as a simple
hinge but there is a complex combination of gliding and rolling of the femur on the
tibia. The motion of the patellofemoral articulation is an up and down gliding on the
front surface of the femur as the knee flexes and extends. The joint is cushioned by
articular cartilage which covers the ends of the tibia and femur, as well as the underside
of the patella. The lateral meniscus and the medial meniscus are cartilage pads which
further cushion the joint, acting as shock absorbers between the bones. Ligaments help
to stabilize the knee. The collateral ligaments run along the sides of the knee and limit
sideways motion. The anterior cruciate ligament, or ACL, connects the tibia to the femur
at the center of the knee. Its function is to limit rotation and forward motion of the tibia.
The posterior cruciate ligament, or PCL limits backward motion of the tibia. For details
about knee anatomy see for instance [JS92].

femur

ACL

meniscus
~collateral ligaments-

! .
Knee in Flexion

Knee in Extension

Figure B.3: Anatomy of the knee joint [sco]

143






Appendix C

Optimal rigid registration of two
corresponding 3D point sets

In the following it is explained in detail, how to directly compute the optimal rotation R
and translation T in the least square sense between a data point set and a model point set
(taken from [BM92]). It is assumed that point correspondence between the data points
and the model points has been established yet.

Assuming q is the unit quaternion qr = [w z y z]" describing the rotation and
qr = [q495q6]" a translation vector. The complete registration state vector can then be
written as q = [qgr|qr]’. P = {p;} is the data point set to be aligned with the model
point set X = {x;}, where the number of model points N, = N, and where each point p;
corresponds to the point x; with the same index. The mean square objective function to
be minimized is

1 e
fla) = N > 1% — R(qr)p: — arl[*.
P =1

The "center of mass” 1, of the measured point set P and the center of mass p, for
the X point set are given by

1 Np 1 Ny
- 7 d r — 1
iy Np;p and NGU;X

The cross-covariance matrix )_,, of the sets P> and X is given by

> = Sl = )] = 5 o] —

P =1 P =1
The cyclic components of the anti-symmetric matrix A; = (3,, — ng)ij are used
to form the column vector A = [Ay3 Az Alz]T. This vector is then used to form the

symmetric 4 x 4 matrix Q(3 px)

B tr(pr) AT
QR pr)=| % Yo+ 2L (3, I
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where I3 is the 3 x 3 identity matrix. The unit eigenvector qr = [w = y 2] correspond-
ing to the maximum eigenvalue of the matrix Q(3_ px) is selected as the optimal rotation.
The optimal translation vector is then given by

ar = e — R(qR) 1y
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