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Abstract

The objective of image segmentation is to give a practical representation of object shapes. Filtering
methods usually obtain nice results but do not extract explicitely objects of interest from images. Mean-
while active contour algorithms directly deal with objects but are far less e�cient than local methods. So,
a grey-level approach of both contrast enhancement and segmentation is presented using B-spline active
contours and anisotropic di�usion equations. The goal of this combination is the use of a pre-processing
method based on a selective �lter that exhausts crest lines on a grey-level image. Then an active contours
method permits the grouping of contour's indices in a parametric representation. The interest of such a
method resides in the complementary performances of these two tools. Experimental results are shown
on both synthetic and real images.
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Animus fert dicere formas mutatas in corpora nova
(Ovide, Metamorphoses, 1st Book)

I. Introduction

T
HE study of grey-level images generally involves pattern segmentation. For several
years such a procedure has been discussed through a large variety of operator [13].

However end user needs are not satis�ed, because used operators often propose non truely
modi�able results (according to some parameters).
Active contours and relative methods seem to present the best result form, because it can
be easily displayed through a graphical user interface and manually modi�ed. The main
advantage of active contours resides in the knowledge to be gained about the targeted
object edges. We know that these edges are closed and can be described with a parametric
representation. Of course, the segmentation problem can not be solved in this way since
parameter optimisation requires information from the image such as gradient values, which
are often noisy. Furthermore, whatever deformation an active contour may undergo, it
retains at least its own geometric properties as originally formulated in a mathematical
framework.
The method [15], [19], [17], [2], [5], [24] identi�es a function which describes the boundary
of the object to be segmented. A classical way for �nding the right border (the curve
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C) is to solve the variational problem where the function for �nding C(u) = (x(u); y(u))
minimizes the energy: Z 1

0

�
�G(C(u))| {z }

geometrical constraint

+ 
E
f(C(u))| {z }

image constraint

�
du (1)

The snake equation 1 contains an image constraint induced by the image to be pro-
cessed, and a geometrical constraint corresponding to the properties we expect for the
curve. In the geometrical term, a function G models tension energy and/or smoothing
energy using di�erent derivatives of the curve C. f represents the initial image, and E
is some sort of energy adapted to image segmentation (for instance Ef = �jjr(f)jj2). �,
and 
 are parameters that can be optimized to �nd a compromise between intrinsic and
extrinsic terms.
On the opposite, �ltering methods or contrast enhancement algorithms now o�er a higher
performance in image treatment. The method discussed here is based on nonlinear
anisotropic di�usion. The property sought for these operators is to reduce noise in the
original image without altering its signi�cant features. If too much noise persists, the
contours used in the segmentation step will be drastically slowed, whereas too much
smoothing will prevent accurate edge detection by the operators.
A solution for a really useful segmentation operator may use an e�cient �ltering operator
coupled with a snake method. In the present work, quality of �ltering was optimized in
order to obtain highly constraining hypothesis for the active contour method. Such a
characteristic permits to only deal with \interesting" contours, without special cases for
impulsional noise for instance. In the following, both aspects are detailed. In Section
2 snake strategy is explained while Section 3 details di�usion operator. Then Section 4
shows results of method combination.

II. The active contour method

A. Sketch of the method

A.1 The snake model

As presented above, snake searches for a compromise between curve internal constraints
and image constraints. Snake parametrisation is usually a polygonal approximation, and
in the present case we have chosen to use B-spline functions to model the active contour
or snake. We called this method snake-splines [19]. In the intrinsic term, a smoothing
term controls the tension of the curve, and a perimeter term controls the inner size. The
smoothing term is already satis�ed by the spline functions [18]. So when B-splines are
used, only a perimeter constraint adapted to the image constraint needs to be managed.
We can specify these constraints as :

� Intrinsic energy : a perimeter tension, and a local surface minimization (Section II-C.3).
� Extrinsic energy : a growth procedure (Section II-B.2) which maximizes the area inside
the curve. The domain within which the curve can move remains in the object's interior.

Therefore, although the snake-splines solution starts with uncertain initial edge indices,
by using a growth rule these indices will be interpolated to the contour targeted.
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A.2 Target points

During curve growth information contained by the image must be respected. It is well
known that in an image the object's boundaries are closed to the maximumof the gradient
norm applied on the grey level function. Two di�erent methods can be used to extract
these borders:
� Canny-Deriche �ltering [3], [10]. Points to reach are locally maximum along a direction.
� Use of a �rst order operator. Image is binarized using the following rule: if the value
of a point is greater than the average value of its neighborhood (a parameter b de�nes
its size), result value will be 1, else 0. Points to reach are the frontiers between 0 and 1
areas.
The set of points extracted by these methods de�nes the targeted edges. They are called
edge indices. As demonstrated earlier, the active contour starts inside the object to be
modeled and will grow until it reaches the edge indices.

A.3 Finding the edge parametrisation

Let us de�ne the active contour C with n parameters. These parameters are the control
points of the control polygon and correspond to the expression of the B-spline curve.
Details about the B-spline expression itself will be explained in Section II-C because its
properties are mainly useful for the re�nement method. Two problems are encountered
in de�ning C:
1. �nding the expression of the curve itself, or in other words, �nding n parameters;
2. �nding the value of the parameters (position of control points).
Both the number and the values of the parameters have to be optimized. So a loop is
constructed to optimize the position of a reduced set of points (Section II-B). Then this
set (Section II-C) is gradually increased. For a given set of control points, we use a growth
procedure (Section II-B.2) in order to locate the points. A local adaptive procedure is
then used to make a perimeter length adjustement (Section II-C.3) in order to preserve
the necessary properties during the growth of the curve.

B. Positioning control points

B.1 De�nitions

To clarify discussion some de�nitions need to be given. Algorithms rely on the notion
of control points of the spline curve. This term is used so often here that we simply
call them points. When we refer to the real points along the curve, we explicitly say
points of the curve. We are working with closed curves, so an interior and an exterior
can be de�ned. Because of the growth procedure (Section II-B.2) used, the vertices of a
closed polygon are classi�ed using two types : e-points and i-points. The criterion which
distinguishes the two types of points is that an external point (e-point) forms a bump on
the polygon while an internal point (i-point) creates a hollow. This is closely related to
the orientation of the curve, and we de�ne an e-point (resp. an i-point) as : Let Pi be

a vertex of a polygon (Pn), and ~k the normal to the plane where the polygon is de�ned.
We assume the polygon has a trigonometric orientation, then :

~k � (
����!
Pi�1Pi ^

�����!
Pi�1Pi+1) � 0 ( resp. < 0), Pi is an e-point (resp. an i-point) (2)
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Fig. 1. Naming rule for points, assuming curve has a trigonometric orientation.

B.2 The growth procedure

The growth procedure consists in moving each e-point in order to increase the area
inside the closed curve. The curve is de�ned at each iteration by its control polygon
(Pn). Depending of spline order o in use, a part of the curve is de�ned by �o+1, which
is a subset of the main polygon. Such a part of the curve de�nes a set of points into
the �ltered image, which are used as the start of a �lling algorithm. Using a bowl of
parametrized size, the algorithm connects all points of same value under the part of the
curve. Getting this new area frontier will give the new shape of the curve (Fig.6) :

1. starting as �rst position with the old part of the curve, new frontier is found using an
edge following algorithm. New control points interpolate such an edge and replace �o+1.
2. some structures can exist inside this new area. They are detected by comparing area
surface with number of pixels �lled. In the case a new curve is born. If it has a su�cient
surface (surface thresholding parameter sp), it belongs to the solution. Parametrization
of such an inner border is made in the same manner, with detection of a �rst point, and
then border following.
3. if the new area border reaches a point of another part of the old curve position, the
curve will be split, and inner part will be kept if it has a su�cient surface (same surface
thresholding parameter sp).
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Fig. 2. Growing principle. Starting from the same shape (top-left), three di�erent results can be obtained
as explained above.

C. Increasing the number of control points

C.1 Spline curves subdivision algorithm

The polynomial property of the snake and the proposed spline evaluation algorithm can
be explained in detail.
The active contour C has a classical B-spline [16], [9], [28], [17] expression :

8x 2 [0; 1]; C(x) =
i=n�1X
i=0

Pi�i(x) (3)

where Pi 2 <
2, 0 � i < n � 1 are the control points, and �i is the basis of the spline

functions. The number n of coe�cients is of course adapted to the order o of the spline
basis. The method (Section II-A), requires the use of a spline function that is easy to
evaluate and that can be re�ned using more coe�cients. So a subdivision algorithm [20]
[25] is used which is a variation of the Oslo algorithm to quickly give a discretisation of the
curve. This is useful for testing the position of the curve in the image. However, starting
with (Pn) polygon this algorithm yields to double the number of control points (Q2n) at
each iteration, until this new set of points converges to the set of points of the curve
itself. This property will permit us to continuously increase the number of parameters of
the curve. Figure 3 shows an example of this subdivision algorithm. Starting with the
(P0; : : : ; P5) polygon, at the �rst step we obtain the (Q0; : : : ; Q11) subdivided polygon.
A second order spline has been used to provide this example. The sequence of polygons
converges to the B-spline curve when the number of iterations tends to in�nity.
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Fig. 3. subdivision algorithm : (P6) polygon subdivided into (Q12) polygon.

C.2 Re�nement of a spline curve

The re�nement method is clearly explained in Figure 4 on which we can see that the
point Q3 of the Figure 3 can be moved in order to locally modify the curve. The technique
consists in using some of theQj control points in order to locally re�ne the curve expression
[11]. In fact, (Pn) and (Q2n) de�ne the same curve but if we want to locally adapt it, the
curve must be de�ned hierarchically with (Pn) and some of Qi. So Figure 4 shows how
to locally re�ne the (P0; : : : ; P5) polygon when Q3 is moved. The re�ned curve can be
de�ned by the (Q0; : : : ; Q11) polygon or by the (P0; P1; P2; P3; P4; P5; Q3) polygon. This
technique manages only the signi�cant parameters of the curve's representation.
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Fig. 4. re�nement method : (P6) polygon re�ned in (P0; P1; P2; P3; P4; P5; Q3).

C.3 Local adaptation

This paragraph describes how parameters can be modi�ed in order to perform intrinsic
constraints. Snake has to keep a certain rigidity, de�ned by user. After any new point
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generation, an adjustment is performed in order to optimize the curve's shape. Con-
cerned points are e-points, because a smoothing on i-points would permit to the curve
to go outside the object. Both following methods can be used according to weighting
parameters:

1. Decrease the perimeter length by moving Qi point to the center of its neighbours Qi�1

and Qi+1 (Figure 5). This method takes advantage of the homogeneous repartition of
points.

Q

Q
i-1

i+1

Q
i

Fig. 5. minimizing perimeter length : moving Qi to Qi�1+Qi+1

2
, or delete Qi if it controls a too little

area.

2. Decrease the inner surface by computing local controlled surface. Such a surface is
de�ned by the vector product

����!
Qi�1Qi ^

����!
QiQi+1. This area is compared with all other

corresponding areas of the curve, and if it is the smallest, the point Qi will be removed.

C.4 Global smoothing

In order to avoid a large set of control points, a smoothing procedure was designed.
Some points have to be removed and a useful criterion must take into account the in
uence
of the removed point on the curve shape. This in
uence is due to the angle between the two
vertices of which the point belongs and to their length. The removing criterion consists in
determining the controlled area within the control polygon. As shown on Figure 5, such
an area is de�ned by jj ~Qi�1Qi ^ ~QiQi+1jj.
Then an area threshold called sm can be determined in order to smooth the curve.
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Fig. 6. Results on synthetic images using increasing noise (clockwise). Starting from center point of the
rectangle, the curve grows. Noise on image is 10%, 20%, 30% and 50%. On the two �rst images,
the edges are correctly detected, but on the third a corner is missed. Then on last image noise is too
important to determine anything.

III. Low-level operator : Anisotropic diffusion

Many methods for contrast enhancement have been used in the past to reinforce the
grey level gradient on the boundary of objects of interest. This step obviously precedes
the steps of segmentation and contouring which give the �nal shape of these objects and
allow them to be viewed as targets of a robotized action. Classical Gaussian �lters [8]
and the Gaussian scale-space [30] are unfortunately inadequate as an e�ective compromise
solution for these two goals which in the absolute condition are mutually exclusive in the
present state of the art. More sophisticated di�usion operators [23], [4], [1], [7], [22] have
recently been designed where di�usion is somewhat inhibited across signi�cant edges of
the signal. However these operators, which must be understood in the framework of multi-
scale analysis, require the de�nition of a minimum scale to be preserved. This minimum
scale must then be translated into an integration time after which the �lter has to be
extinguished. The notion of minimum scale is not always clear on a given image. This is
particularly true when very thin objects are studied. In this case, a relevant orientation
for a scale would be along the longest uni-directional series of points of an object, but
not across them. A multi-scale approach does not adequately distinguish between both.
The class of operators presented below have the striking feature that they preserve the
1-D objects as long as their contours are smooth enough [7]. Moreover, they exhibit
strong stability properties which permit acquisition of the desired �ltered image on the
asymptotic (in time) state of the system. In other terms, their use does not require any
a priori knowledge about the desired image.
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A. The model

The starting point in the derivation of e�cient �lters is always to inhibit di�usion across
edges. If u is the grey level representation of an image (u maps [0; 1]2 onto [�1;+1]), the

normal to these edges coincides rather well with the vector ~ru", where u" denotes a
regularized version of u. A natural idea is thus to allow di�usion only along the direction
orthogonal to these vectors. If we denote the orthogonal projection by P~ru?

"

on the

direction ~ru?" , this leads to the following �lter equation:

@u

@t
� div(P~ru?

"

~ru) = f(u): (4)

The parameter " above is a scale parameter, which in practice is a few pixels wide, and u"
is typically the average of u over the nearest neighbors of a given pixel, and the reaction
term f(u) is used for contrast enhancement. Model (4) is decribed in [7]. In this reference
it is proved that the di�usion is strongly inhibited at the edges of coherent signals, no
matter how thin these signals are. Unlike an isotropic scale parameter, the parameter "
turns out to be the scale on which the contours de�ned by the edges must be smooth.
On the other hand, where the signal is noisy, no coherence between ~ru and ~ru" can be
detected, and the di�usion operator acts as a purely isotropic di�usion operator, which is
highly e�cient for noise reduction.
We now come to a variant of this method which will be implemented in the next section.
The underlying idea is still to prevent di�usion across the edges. However the edge
directions are now determined using time references averages of the image instead of
spatial references averages. More precisely the model is based on the following system:

@u

@t
� div(L[ ~ru]) = 0 (5)

dL

dt
+

1

�
L =

1

�
F [ ~ru] (6)

where

F [ ~ru] =

8<
: s2 P ~ru

? ifj ~ruj > s

j ~ruj2P ~ru
? + 3

2(s
2 � j ~ruj2)Id ifj ~ruj � s.

The notation P stands for the orthogonal projection, in 2D:

P ~ru
? =

1

j ~ruj2

 
u2y �uxuy
�uyux u2x

!
;

and L denotes a 2�2 matrix. This system has to be supplemented with initial conditions:
u(�; 0) = u0 which is the grey level of the original image, while the initial value of L is the
identity, denoted by Id. This corresponds to the isotropic Gaussian �lter. Unlike other
di�usion models, the idea is that the image to process is a perturbation of an exact one
that we wish to obtain on the asymptotic states of (5)-(6).
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Let us now comment on the form of the right hand side of (6). A direct integration of (6)
in zones where the gradient is larger than our parameter s yields

L(t) = Id exp (�t=�) +
s2

�

Z t

0
P ~ru(�;�)

? exp(�
t� �

�
) d�

This is why we presented our method as a counterpart of (5)-(6) where space averages
are somehow, although not exactly, replaced by time averages (averages do not commute
with the operator P ).
The (small) parameter � is the time scale on which averaging is essentially performed.
The e�ect of the threshold s in (6) is to select stationary stable states. If it was not
present, all couples of the form (u; P ~ru

?) would be stationary solutions to (5)-(6), and
thus candidates for asymptotic states. Because of s, only solutions which have gradients
that are either vanishing or stronger than s correspond to steady-states.
These solutions correspond to patterns separated by layers sti�er than s. The parameter
s is thus a contrast parameter whose e�ect allows di�usion to homogenize coherent struc-
tures. Let us observe that these patterns include those with edges having corners.
The equation (6) can then be interpreted as a Hebbian dynamic learning rule [14] for the
synaptic weights as follows. Starting from a translation invariant synaptic matrix associ-
ated to isotropic di�usion, that is L � Id, equation (6) allows the system to recognize the
signi�cant edge and to make di�usion vanish across these edges on a time scale ' �. At
the discrete level this means that the synaptic weights linking neurons on opposite sides
of the edges are strongly inhibited. In this analogy, the parameter s is directly related to
the threshold above which variations of activity must exist between two neurons in order
to tend to render inhibitory the connection between these 2 neurons.
For a mathematical analysis of (5)-(6) refer to [6].
Numerical experiments suggest that even though no reaction terms compensate for di�u-
sion, this model has strong stability properties around steady states consisting of piecewise
constant signals. Another convenient feature is that it requires the choice of only two pa-
rameters which are � (the learning relaxation time) and the contrast parameter s.
In practice, � is of the order of a few time steps. A general rule is that the more noisy
the original image is, the bigger � must be chosen to allow isotropic di�usion to remove
noise. However, the numerical results that we present below seem to indicate that the
�nal results are not very sensitive to the choice of �. As for s, the smaller it is, the �ner
will be the structures extracted from the picture.

B. Numerical experiments

B.1 Discretisation

First let us give some notations. We denote by unij an approximation of u(ih; jh; n�t)

where h = 1
N
, 0 � i; j � N , by � = k�t the relaxation time and by

Ln
ij =

 
Ln
(ij)xx Ln

(ij)xy

Ln
(ij)yx Ln

(ij)yy

!
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an approximation of L. The divergence and the gradient are approximated by classical
one-sided �nite di�erences as follows:

divh(u1; u2) = h�1(�x
+u1 +�y

+u2)

~rhu = h�1

0
B@ �x

�
u

�y
�u

1
CA

where

�x
+ui;j = ui+1;j � ui;j ; �x

�
ui;j = ui;j � ui�1;j;

and similarly for �y by exchanging the roles of i and j. These are the formulas which
lead to the classical �ve points scheme for the Laplacian operator.
Then we discretise L( ~ru) by:

h�1

0
B@ Ln

(ij)xx�
x
�
unij + Ln

(ij)xy�
y
�u

n
ij

Ln
(ij)yx�

x
�
unij + Ln

(ij)yy�
y
�u

n
ij

1
CA (7)

and div(L( ~ru)) by:

h�2

2
664
�x

+

�
Ln
(ij)xx�

x
�
unij + Ln

(ij)xy�
y
�u

n
ij

�
+

�y
+

�
Ln
(ij)yx�

x
�
unij + Ln

(ij)yy�
y
�u

n
ij

�
3
775 (8)

We use an explicit time discretisation for equation (5), and an implicit one for equation
(6). The resulting algorithm is given by :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

un+1ij = unij+

�t

h2

2
664
�x

+

�
Ln
(ij)xx�

x
�
unij + Ln

(ij)xy�
y
�u

n
ij

�

+�y
+

�
Ln
(ij)yx�

x
�
unij + Ln

(ij)yy�
y
�u

n
ij

�
3
775

Ln+1
ij = ( k

1+k
)( 1

k
P n
ij + Ln

ij)

u0ij = u0(ih; jh) 0 � i; j � N

(9)

where P n
ij is the evaluation of the right-hand side of (6) at time tn.

To ensure stability in (9), we have to choose a time step satisfying

�t �
h2

6

���max
i;j

Lij

���: (10)
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IV. Experimental results

The snake-spline tool is now ready to be used in the segmentation process. The method
is the following:
After applying the anisotropic di�usion algorithm (9) with parameters (threshold s and
memory coe�cient �) the snake parameters are de�ned (scale space sp, radius b, and
smooth sm).

� In the �rst experiment, the classical benchmark image of Lena is shown. Since the
original image (top left on Figure 7) is very textured in the searched area, a large number
of iterations and a large memory coe�cient (� = 20�t, and s=5) is needed for restoration.
Snake is manually initialized on the di�used image with four control points (Figure 3).
Then snake (sp=3, b=1,sm=0) reaches the boundary of the searched area.
� In the second experiment, especially hard to analyze images were chosen (heart ultra-
sound images). Such a noisy image requires an appropriate �ltering, and a large number
of iterations is needed too (� =6.E-5, and s=10). Nevertheless searched areas (ventricles)
are smooth and snake parameters are (sp=8, b=3, and sm=14). Two snakes were used to
obtain both right and left ventricles. Gradient image (Canny-Deriche [3], [10] with � =
0.35) (top right of Figure 8) shows dashed gradient crests which are su�cient to correctly
reconstruct the borders.
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//

Fig. 7. Lena image. From top to bottom and left to right: the original image (512 � 512), the Canny-
Deriche gradient image (� = :35), the snake-spline intialization on the di�used image (100 iterations,
�=6 E-05, s=5 and time to calculate equals 245 secondes), and the snake spline result with (sp=3,
b=1, sm=0).
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Fig. 8. Ultrasound image processing. From top to bottom and left to right: the original image (286�384),
the Canny-Deriche gradient image (�=1.5), the di�used image (100 iterations, �=6.-05, s=5 and time
to calculate equals 102 secondes), the snake-spline intialization on it, the snake spline processing with
(sp=8, b=3, sm=25 and 19.), and the snake -spline result.

V. Discussion and Conclusion

We have presented a tool for image restoration which combines nonlinear anisotropic
di�usion and snake-splines. A didactic way was chosen here in presenting 2-D version of
algorithms, but a 3-D generalization is already available since both processes were par-
allelisable. We showed examples on very noisy and very textured images. Parameters
correspond to speci�c geometrical features and their choice is closely related to edges.
This permits to obtain a �rst result with reasonable accuracy, and its parametrical struc-
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ture is fully available for any post-treatment. For example it allows a graphical interface
to display or it can also be directly used in modeling algorithms such as shape tracking
along image sequences.
Certain classical techniques already exist based on linear approximations of the trajecto-
ries [27]. They are Gaussian �ltering of the velocity vector �eld [26], and Markov random
�eld estimation. Real-time optical 
ow calculation using neural networks and parallel
implementation techniques are now beginning to appear in the literature [29], [21]. Real-
time contrast enhancement followed by real-time segmentation and real-time optical 
ow
calculation is now possible for 2-D imaging. Fast 3-D acquisition like CT-morphometer
at the macroscopic level and confocal microscopy even permit prediction of technical im-
provements for moving 3-D structures [12]. These techniques will soon be avalaible at
the cellular level in order to follow the motion of micro-organisms and scar formation.
These examples involve a �nal modeling step in order to explain which parameters and
observables are critical for these dynamic processes. Such models already exist for Dyc-
tiostelium motion, cardiac motion, cicatrisation, and tumor growth. Improvements in the
�rst steps of data processing like those shown here will certainly push forward production
of such explanatory models. An interesting example is �tting simple discrete models of
insect motion with real data obtained through the procedures described here. Identify-
ing parameters using these new methods represents a real progress, since motion can be
quanti�ed in reference to qualitative dynamic modeling approaches, possibly in real-time
studies within a near future.
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