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Abstract|We present a class of time-delay anisotropic dif-
fusion models for image restoration. These models lead to
asymptotic states which are selected on the basis of a con-

trast parameter and bear some analogy with neural net-
works with hebbian dynamical learning rules. Numerical
examples show that these models are e�cient in removing
even high levels of noise, while allowing an accurate tracking
of the edges.
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I. Introduction

I
N recent years di�usion models for image restoration have
received much attention frommathematicians. Since the

pioneering work of Perona and Malik [12], a great deal of
work has been done in particular towards the derivation of
e�cient adaptive, non-linear, di�usion Partial Di�erential
Equations.
The goal of these models is to selectively �lter the im-

ages without loosing its signi�cant features. In some cases,
contrast enhancement is also sought as a desirable prop-
erty of the �lter. One common trend in all these models
is the need to embed them within a mathematically sound
theoretical framework. The motivation for that is twofold.
First, it is natural to require the model to reproduce some
natural features of image processing which can be easily
translated into mathematical terms, e.g. maximum prin-
ciple, monotony. Secondly, a mathematical framework is
necessary to make sure that discretizations of the model
itself will retain most of its properties.
One striking illustration of this mathematical approach

is the fundamental work of [1], where a class of PDEs of
mean curvature type is rigorously analyzed in the light of
natural axioms for multi-scale image processing. For other
recent works on non linear di�usion for image �ltering, we
refer to [2], [3], [13], [14].

In the models generally discussed in the literature, the
time variable is connected to space scales and the di�usion
equation yields a continuous range of �lters acting within
the corresponding scales. Our paper deals with a di�erent
approach for the construction of e�cient �lters. Rather
than providing a multi-scale description of the image, we
will consider the image as a perturbation of a unique "true"
image that we wish to restore, in a way which does not re-
quire from the user the de�nition of any stopping time,
something which in practice can be di�cult to a priori de-
cide.
We are thus looking for a dynamical system equipped

with a satisfactory attractor. By satisfactory, we mean that
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it should be large enough to contain the images we wish to
restore, while allowing the basin of attraction of these to
extend to images deteriorated by a signi�cant level of noise.
We also wish to avoid as much as possible the notion of
minimal scale or to keep it as small as possible, typically
the minimal number of pixels necessary to detect coherent
patterns within the image.

Our model results from the combination of two tools:
anisotropic non-linear di�usion and time-delay regulariza-
tion. Although not as popular as the above mentioned
techniques, these tools have indeed already been consid-
ered in the literature. Anisotropic di�usion tensors lead
to models where the anisotropy is built-in rather than re-
sulting from the geometry of the image itself. They have
been used in combination with reaction terms [7] or in the
context of multi-scale image analysis [15]. Compared to
scalar di�usion models they seem to allow a more accurate
tracking of the edges.
On the other hand, time-delay regularization is an alter-

native to spatial regularization in the construction of dif-
fusion coe�cients from the image itself which has already
been proposed to stabilize the Perona-Malik model [11].
The originality of our approach lies in the combination of

these two tools and in the form of the forcing term in the
time-delay equation governing the di�usion matrix. Our
guideline to choose an e�cient time-regularization has been
the analogy between PDE's of di�usion type and neural
networks [4], [9]. This analogy results from integral ap-
proximations of di�usion equations and allows to translate
the di�usion tensor in terms of synaptic weights linking
neurons lying within a short synaptic range. While neu-
ral networks are particularly appealing in the context of
signal processing, we believe that their PDE counterparts
yield a more immediate intuition on how the relevant pa-
rameters a�ect their dynamics. Motivated by this obser-
vation we were looking for PDE's with time-delay regu-
larization which would translate, at the continuous level,
natural learning rules in neural networks. These so-called
hebbian learning rules allow to dynamically either enhance
or decrease the connections between nearby neurons, de-
pending on the coherence of the activities of these neurons
as observed on a certain time window.
As a matter of fact, while our �rst choice was actually

directly inherited from the spatial regularization used in
[7], it was recognized that this model was related to a neu-
ral network where, in the learning rule, the coherence of
the neurons was not evaluated in a satisfactory way [5].
Moreover a threshold parameter, necessary to distinguish
between coherence and noise, was missing in this model. In
the �nal model we present here, such a contrast parame-
ter is introduced, with the e�ect of selecting steady states:



these steady states consist in images made of homogeneous
patterns (with constant grey levels), separated by fronts
with sti�ness controlled by the contrast parameter. In the
applications we have considered, this class of steady states
proved to ful�ll our goals. The analogy with neural net-
works proved also useful in suggesting a strategy by which
the di�usion tensor obtained on a �rst steady-state is rein-
jected together with the original unprocessed image for a
new calculation cycle. We believe that this possibility is a
striking feature which distinguishes time-delay from spatial
regularization. In practice, our calculations indicate that it
allows image restoration on �ne scales even when starting
from highly degraded images.

The outline of this paper is as follows. In section 2 we
present our model in a general abstract form and prove
some mathematical results, namely its well-posedness when
additional spatial smoothing is used in the construction of
the di�usion tensor. Section 3 focuses on the particular
model we just sketched. We discuss the various parameters
involved in the model, describe our numerical discretiza-
tion and give numerical illustrations based both on syn-
thetic and natural images. In section 4 we brie
y derive the
neural network approximation of a related di�usion model.
This model di�ers from the one presented in the previ-
ous section essentially by allowing anti-di�usion and thus
strong contrast enhancement. Although its well-posedness
is questionable, it turns out that its discrete neural network
implementation exhibits a Lyapunov function and thus can
be proved to lead to stable steady-state asymptotics.
In closing this introduction, let us mention that, although

we focus here on 2d applications, all the ideas presented
here readily extend to 3d. Applications for 3d image pro-
cessing will be presented elsewhere.

II. The Abstract PDE Model

Let us consider an initial image in the unit square 
 =
]� 1;+1[2 whose grey level is given by a function u0 with
values in [�1;+1]. Our �lter is based on the following
general system of partial di�erential equations:

@u

@t
� div (Lru) = 0 (1)

@L

@t
+ L = F (r�u) (2)

where

r�u = r(u ? f�) ; f�(y) = ��2f(
y

�
) ;

Z
f dx = 1

This system has to be supplemented with initial values u0
and L0 and periodic boundary conditions. As a matter of
fact boundary conditions are not an important issue in im-
age processing and periodic boundary conditions are only
dictated by our wish to get rid of any technical unessential
di�culties. In particular it will enable us to avoid bound-
ary terms in the integrations by parts encountered in the
sequel.

In the above system L and F are 2 � 2 matrices. Al-
though the precise form of F will be discussed later, one
can already recognize that (1) is an anisotropic di�usion
equation and that the di�usion matrix takes into account
information, as time goes on, from the gradient of u.
As for �, it is a positive smoothing parameter needed for

the mathematical well-posedeness of the system, although
in practice the value � = 0 (for which r� = r) proved to
be satisfactory. In any case it is important to emphasize
immediately that this parameter should be considered as
case independent, in contrast with other di�usion models
(for instance [3], [7]), where the smoothing parameter has
to be adjusted in particular to the noise level of the image.
The model parameters which are relevant for practical ap-
plications are discussed in section 3.
Let us now indicate the smoothness assumptions on f

and F that we will make throughout this paper:

F is a non-negative symmetric matrix:
< F (v)w;w >� 0; 8v; w 2 R2 (3)

F and its derivatives are bounded:
jF (v)j+ jrF (v)j � C; 8v 2 R2 (4)

f and its derivatives are bounded (5)

The goal of (3) is clearly to avoid anti-di�usion in (1): if
one starts from a positive di�usion matrix

L0 � �Id; � > 0 (6)

the explicit integration of (2), combined with (3) yields

L(�; t) � �e�tId

and (1) is a parabolic equation. The rest of this section is
devoted to the proof of the following result

Theorem 1: Assume (u0; L0) 2 L1(
)��L1(
) \H1(
)
�4

and L0 satis�es (6). Then the system (1)-(2) has, for � > 0,
a unique solution satisfying, for T > 0,

u 2 L2 �0; T ;H1(
)
� \ L1 (0; T ;L1(
)) ;

L 2 L1 �
0; T ; (L1(
) \H1(
))4

�
:

(7)

Our strategy to prove the existence of a solution will be
based on compactness arguments: we will construct ap-
proximate solutions and derive a priori estimates which
will enable us to pass to the limit and get a solution to
our problem. A simple way to construct approximate so-
lutions is to work on retarded-molli�ed versions of (1)-(2).
More precisely we proceed as follows: we �rst extend the

initial conditions L0 and u0 to negative times. Then, given
a small parameter h and a one dimensional smooth cut-o�
function � with support in ]� 2;�1[ and integral 1, we set

�h(t) =
1

h
�(
t

h
)

and we denote by ?t the convolution with respect to the
time variable. We now look for uh and Lh solutions to

@uh
@t

� div ([Lh ?t �h]ruh) = 0 (8)

@Lh
@t

+ Lh = F (r�uh) (9)



Dividing the time interval into time steps of size h and
using a straightforward induction argument con�rms that
this problem is well-posed (the time delay introduced by
the cut-o� is actually nothing else than an explicit, with
respect to the non-linear terms, time-discretization of the
original equation (1)).
To be able to pass to the limit as h tends to 0, we need a

priori estimates on (uh; Lh). Such estimates can easily be
derived due to the parabolic nature of (8):

Lemma 2: Let T > 0. Then

Lh is bounded in L1
�
0; T ; (L1(
) \H1(
))4

�
(10)

Lh is uniformly positive-de�nite for t � T (11)

uh is bounded in L1 (0; T ;L1(
)) \ L2 �0; T ;H1(
)
�
(12)

Proof: Integrating (9) yields

Lh(t) = e�tL0 +

Z t

0

es�tF (r�uh(�; s)) ds

which, by (3),(4) and (6), implies

jLh(x; t)j � C; Lh(x; t) � �e�T Id 8 x 2 
;�1 < t < T

(recall that Lh(t) = L0 for negative t). Since � is non-
negative and is bounded this implies

jLh ?t�hj � C ; Lh ?t�h � �e�T Id 8 x 2 
;�1 < t < T

This proves the L1 bound in (10), and (11), and enables us
to apply the maximum principle to obtain the L1 bound
in (12). To get the H1 estimate in (12), we classically
multiply (8) by uh and integrate over 
 to obtain

1

2

d

dt
kuhk2L2+ < [Lh ?t �h]ruh;ruh >= 0

and, after integrating in time,

�e�T
Z T

0

kruh(�; s)k2L2 ds�
Z T

0

Z



< [Lh ?t �h]ruh;ruh > dt

� 1=2ku0k2L2 :

Finally, to obtain the H1 estimate in (10), we di�erentiate
(9) to get (with the notation @i for @=@xi)

@

@t
(@iLh) + @iLh =

X
j

(@iuh ? @jf�)
@F

@uj
(r�uh)

Using (4),(5) and multiplying the above equation by @iLh
we obtain

d

dt
k@iLhk2L2 � Ckruhk2L2

from which the H1 estimate for Lh follows.
Thanks to the a priori estimates just proved, we are

now able to give the following result, where Q stands for
]0; T [�
,

Lemma 3: There exists a subsequence, still noted (Lh; uh),
and (L; u) satisfying (7) such that

Lh ! L strongly in L2(Q) (13)

uh ! u
strongly in L2(Q)
and weakly in L2

�
0; T ;H1(
)

� (14)
F (r�uh) ! F (r�u) strongly in L2(Q) (15)
Proof: The 2 �rst assertions easily follow, through

classical compactness properties, from (10) and (12), if
in addition we observe that, due to (8),(9),(10) and (12),
@uh=@t and @Lh=@t are respectively bounded in
L2(0; T ;H�1(
)) and L2(Q). Assertion (15) then easily
follows from (14) and the smoothness of F .

It is now straightforward to pass to the limit in (8),(9),
and in particular in the right hand side of (9), and in the
non linear term of (8), to obtain that (u; L) is a weak so-
lution to our system.

Let us now prove the uniqueness of the solution. Let
(u; L) and (v;M ) be 2 solutions and set e = u � v, E =
L�M . By substraction, we have E(�; 0) = e(�; 0) = 0 and

@e

@t
� div (Mre) = �div (Eru) (16)

@E

@t
+E = F (r�u)� F (r�v) (17)

Multiplying (16) by e we obtain, for t � T ,

1

2

d

dt
kek2L2 + �e�Tkrek2L2 � kErukL2krekL2

� 1

2

�
eT

�
kEruk2L2 + �e�Tkrek2L2

�

and therefore

d

dt
kek2L2 � CkEruk2L2 � CkEk2L1kruk2L2 (18)

From (17) and (4) we deduce that

kE(�; t)kL1 � C

Z t

0

ke(�; s) ?rf�kL1 ds

� C

Z t

0

ke(�; s)kL2 ds

and (18) yields

ke(�; t)k2L2 � C

Z t

0

kru(�; s)k2L2 ds

Z t

0

ke(�; s)k2L2 ds

Since ru 2 L2(Q), this implies that e � 0, and thus E � 0.

Note that, as a by-product, the uniqueness proof gives
also the continuous dependence of the solution on the initial
conditions. Together with the conservation of the mean
grey value, which results from the conservative form of (1),
and the maximum principle, this is a desirable qualitative
feature for any di�usion model. Let us point out that, as



we will see below, the model has no monotony property.
In closing this section, we now shortly comment on the
important case � = 0, that is when equation (2) does not
induce any spatial smoothing. After explicit integration of
(2), our system can be rewritten as

@u

@t
�e�tdiv (L0ru)�

Z t

0

es�tdiv [F (ru(�; s))ru(�; t)]ds = 0

This is a Volterra equation. This kind of equation is typi-
cally involved in modeling 
uids or material with memory.
However our model has some speci�c features which do not
seem to have been addressed in the literature, namely the
fact that the time variables t and s are coupled in the di-
vergence term inside the time integral, and the strong non-
linearity introduced by F . These features seem to preclude
the use of classical monotony or �xed point arguments. So
far, we were unable to extend to this case the compactness
arguments employed in our proof for � > 0.

III. Applications

In the discussion below as well as in all the calculations
to follow, the parameter � has been taken equal to 0. We
do not think that taking a positive value would have an im-
portant impact on our numerical results, as long as � would
remain small. As a matter of fact, taking for f a tensor
product of hat functions and for � the pixel resolution of
the image, would lead to an evaluation of r�u through
the trapezoidal rule which coincide with the usual centered
�nite di�erence formula for ru. However it is fair to men-
tion that the steady-states discussed below for � = 0, and
observed in our computations, would not strictly speaking
persist for � > 0.

In this section we �rst specify the right hand side of (2)
and discuss the choice of the various parameters in our
model, then show some numerical experiments.

A. Choice of F and relaxation time in (2)

As already mentioned, our choices are dictated by our
wish to prevent di�usion across the signi�cant edges of the
image. The distinction between signi�cant edges and high
gradient zones resulting from noise will be classically based
on averaging. Our �rst choice is

F0(ru) = Pru? (19)

(orthogonal projection on the direction orthogonal to the
gradient of the image).
In 2D, this means that, with the notation ru = (u1; u2)

F = jruj�2
�

u22 �u1u2
�u1u2 u21

�

We also introduce a time scale factor � in the relaxation
equation (2) so that the evolution equation for the di�usion
tensor reads

@L

@t
+

1

�
L =

1

�
F0(ru) (20)

Roughly speaking, the meaning of (20) is that the di�usion
direction is a time average, over a time scale of � , of the
directions perpendicular to the edges, while the e�ect of the
initial choice for L fades away. This model is reminiscent
to the one introduced in [7], where these directions where
based on space (rather than time) averages of the gradients.
One advantage we found in this new model however is that
it allows for stable steady states, while in the model of
[7] the di�usion equation had to be supplemented with a
reaction term to allow to obtain the processed image on the
asymptotic states. In practice the choice of the levels of the
reaction term is not always straightforward, and we could
experience that a pure di�usion equation is more tractable
than a reaction-di�usion equation.

Our next choice results from the observation that (19)
actually leads to too many steady states (clearly, any image
together with the di�usion tensor along directions perpen-
dicular to the edges is a steady state), reducing henceforth
the attraction basins of these steady states. In practice
we have observed that, when used on an image perturbed
with a high noise level, this �lter converges too fast and
the processed image retains a substantial amount of noise
(note in addition that F0 does not satisfy (4)).
To overcome this di�culty we have chosen to select the

steady states on the basis of a contrast threshold parame-
ter. We de�ne

Fs(ru) =
�
Pru? if jruj � s
3
2
(1� jruj2

s2
)Id + jruj2

s2
Pru? if not

�

(21)
When the gradients are not large enough (as seen on a time
span of � ) the di�usion matrix will thus still be fed with
isotropic di�usion, allowing to further �lter the image away
from the edges. We refer to section 4 for the explanation
of the speci�c form chosen for the right hand side above,
and in particular the coe�cient 3/2.
By considering images such that Lru = 0 where L has

the form of the right hand side above, one easily �nds that
the steady states resulting from this model are imagesmade
of homogeneous patterns separated by fronts of sti�ness
larger than s (of course, as we already said, these steady-
states would not persist for � > 0).
While the parameter s has a clear meaning in our sys-

tem, there are 2 additional parameters which need to be
clari�ed: the initial di�usion matrix L0 and the relaxation
time � . Concerning the �rst one, it is easy to verify that
the only relevant parameter is the coercivity parameter �
which governs the amount of initial dissipation in the sys-
tem (refer back to the mathematical analysis in section
2). Moreover, through appropriate time change of vari-
ables, one can switch from one initial di�usion matrix to
another by changing the relaxation time. Notice that one
is only interested in asymptotics of the system, and, un-
like for multi-scale di�usion models, we are not interested
in transient states. We can thus assume that L0 is, say,
the identity and restrict our discussion to the relaxation
parameter � .



This relaxation parameter can actually be related to a
minimal scale parameter, as shown by the following simple
calculation. Assume several homogeneous patterns orga-
nized in concentric rings inside a ball ! of radius ", so that
ru vanishes for all time on the boundary of !. To check
for the possibility for the fronts to be preserved inside ! we
look at the di�erence between u and its mean value �u in !.
First we observe that, in view of the conservative form of
(1) and of the fact that ru = 0 on the boundary of !, �u
remains constant. If we set e = u� �u we thus have

@e

@t
� div (Lre) = 0

We have assumed that Lo = Id, therefore L � e�t=� Id.
Multiplying by e and integrating by part we thus get

d

dt
kek2L2 + e�t=�krek2L2 � 0

Now by the Poincar�e inequality we have

krek2L2 � c"�2kek2L2

where c is a constant independent of ", and Gronwall's
theorem yields

kek2L2 � ke0k2L2 exp
n
c
�

"2

h
e�t=� � 1

io

As a result we get

kekL2 ! ke0kL2 exp
�c�
"2

This means that patterns on scales which are small com-
pared to

p
� are averaged out, or, in other words, that

fronts will spread on scales of the order of
p
� .

From this point of view, our parameter � can be related
to stopping times involved in multi-scale �lters, with, how-
ever, the crucial di�erence that, where the �lter does not
detect coherent fronts, the right hand side of (21) still con-
tains isotropic di�usion, allowing to keep removing noise
within each detected coherent pattern. In practice, as we
will see in the numerical examples which follow, we found
this feature very important to allow for e�cient noise re-
duction together with preservation of �ne scale coherent
patterns.
To summarize, our �lter acts as follows: in a �rst smooth-

ing stage, gradient directions are detected; then, within
each pattern surrounded by a sti� enough front, grey val-
ues are averaged, enhancing the contrast with the neighbor-
ing patterns (the non-monotony of our model is apparent
here: large grey values with no-contrast will be washed out,
while smaller grey values, but with su�cient contrast, will
be preserved).

B. Numerical examples

Let us �rst brie
y describe our numerical procedure.
Equation (1) is discretized by using classical one-sided dif-
ference schemes for the operators divergence and r, to-
gether with an explicit time-discretization. If we denote by
upq the value of u at the pixel (x = ph; y = qh) we set

�x
+up;q = up+1;q � up;q ; �x

�up;q = up;q � up�1;q

and similar formulas for �nite-di�erences in the y direction.
Let us denote by

[Lpq]xx; [Lpq]yx; [Lpq]xy; [Lpq]yy

the entries of the di�usion tensor L at the pixel (ph; qh)
and use superscripts to refer to time levels. The time step
is denoted by �t. Then (1) is solved by

un+1pq � unpq
�t

�
�x
+

�
[Lpq]

n
xx�

x
�u

n
pq + [Lpq]

n
xy�

y
�u

n
pq

�
h2

(22)

�
�y
+

�
[Lpq]

n
yx�

x
�u

n
pq + [Lpq]

n
yy�

y
�u

n
pq

�
h2

= 0

Note that, for a scalar tensor L, these formulas yield the
classical 5-points box. As for (20), it is solved by the semi-
implicit scheme:

Ln+1 � Ln

�t
+
Ln+1

�
=
Fn

�

which gives

Ln+1pq = (
1

1 + �
)
�
�Lnpq + Fn

pq

�
(23)

where � = �=�t and Fpq is computed on the basis of (21)
with gradients obtained through centered �nite di�erences.
The reason for choosing this time-discretization is that,

since F is positive, it enforces that L is at all time step pos-
itive de�nite. Therefore, if we rewrite (22) in the following
matrix form

un+1 =

�
Id +

�t

h2
M

�
un

it easily results from discrete integration by parts (which as
a matter of fact are made possible by the combined use of
�+ and �� �nite di�erence formulas) that M is a positive
de�nite matrix. We thus have a L2-stable scheme, as soon
as

�t � 2

�max
h2

where �max is the maximum eigenvalue of M . Looking at
the entries ofM as given from (22), a crude estimate of this
quantity is 16maxp;q fj[Lpq]xxj; j[Lpq]yxj; j[Lpq]xyj; j[Lpq]yyjg.
Our time step is updated at every time on the basis of this
estimate (as time goes on, this actually yields only minor
variations of the time step).

We now come to our �rst example, which is the classi-
cal triangle over rectangle image. This example will enable
us to illustrate the point of view on Image Processing em-
phasized in the introduction, namely that our goal is to
recover underlying exact images on the asymptotics of our
PDE system.



Fig. 1. (128 � 128) triangle-rectangle image with 70% noise (left), and the processed image after thresholding (right). Parameters are
� = 10�t; s = 5.

Given a black and white image where a proportion r of
the pixels have been replaced by random values, we will
compare in energy norm, the results of our algorithm with
the exact image where the grey levels are 1� r and �1+ r.
Figure 1 shows the result for a 128� 128 image and r = :7
(that is a noise level of 70%). The parameters used in this
calculation are � = 10�t, and s = 5. This value of s cor-
responds to a maximal spreading of the fronts connecting
grey levels :3 to �:3 over about 13 pixels. The bottom
pictures show the residual (di�erence between the images
at two successive iterations) in a logarithmic scale and the
error. These curves illustrate the convergence of the result
of our model to a steady state. The top right picture shows
a thresholded version of the result of the algorithm after
100 iterations. One can see that, except for 2 locations,
the edges are accurately recovered within one-pixel. Let
us stress the fact that the rectangle below the triangle is
rather narrow (10 pixels wide).

Our second example is a 256 � 256 MRI image of the
brain (left picture of Figure 2). The processed image (right
picture) shows the relevant coherent zones in the image,
corresponding to homogeneous tissues in the tumor, and
the compressed zones of the brain around it. This result
compares well to that obtained by the reaction-di�usion
method in [7], with the di�erence that here it was not nec-
essary to a priori select the grey levels of the asymptotics
to tune the reaction term. The parameter used in this cal-
culation were � = 3�t and s = 5. Due to the relatively
small amount of noise in this image, our calculation con-

verged (on the basis of a residual threshold of 10�4) in 10
iterations.

Fig. 2. 256� 256 MRI image (left: original, right: processed image).
Parameters are � = 3�t; s = 5.

We borrowed our two next examples fromWeickert's the-
sis [16]. In the �rst one (left column of Figure 3) the goal is
to extract the light, coherent quasi-one dimensional curve
in the middle of the picture. This could be done on the
basis of our contrast parameter whose value was chosen as
6. The relaxation time was 4�t. The top picture shows the
original image, the middle one gives the processed image af-
ter 300 iterations, and the bottom one is what results form
a thresholding of this image. It must be pointed out that
selecting a smaller value of � would extract more �ne scale
structures, but not a�ect edges obtained here. One conclu-
sion that can be drawn from this calculation, is that our
�lter is able to achieve a substantial amount of smoothing



in non coherent zones, while respecting very well �ne coher-
ent structures (see the circled area in the pictures, where
the curvature of the white curve is rather well preserved).

Fig. 3. Image processing on a fabric image (left column) and a wood
surface image (right column). Top: The original image. Mid-
dle: processed images (respectively with � = 6�t; s = 9 and
� = 4�t; s = 6). Bottom: processed images after thresholding

The same observation can be made from the right pic-
tures of Figure 3, which show how some defect in a piece of
wood can be successfully extracted by our algorithm (note
the small right leg of the defect).

We now come to more challenging tests, which combine
high noise levels with �ne scales details. First we go back to
the triangle-rectangle example with a noise level of 90%. In
this case we had to widen slightly the rectangle (12 pixels
instead of 10). Below this value, it seems that the statistics
of the random generator could not allow to recognize any
kind of coherence. Due to the high level of noise, we had
either to take a large value of � or a large value of s to
allow su�cient amount of Gaussian �lter in the di�usion
tensor. In the experiment we show, we took � = 10, as
for the 70% case, and s = 13 (notice however that simi-
lar results were obtained by taking s = 5, like in the 70%

case, and � = 20). A direct implementation of our code re-
sulted in a spreading of the fronts in the initial stage of the
computation which eventually destroyed the already small
contrast of the image. The edges of the rectangle could not
resist to this processing. An interpretation of this, is that,
in these parameter ranges, the behavior of the algorithm is
very sensitive to the initial dissipation choice in L0.
To overcome this di�culty, we used the following proce-

dure, using the same parameters as above: once the resid-
ual falls below some threshold, yielding a �rst asymptotic
state (�u; �L), we restart the algorithm with initial values
u0 and �L. It is not di�cult to check that, provided the
fronts do not spread beyond the contrast threshold param-
eter, this procedure does recover exactly the steady states
of the model.

We believe that this idea is indeed rather natural, in par-
ticular in view of the analogy (see section 4) between our
�lter and neural networks: it means that, while processing
the signal and adapting its connections, the network is able
to recall at any time the original information it had to deal
with. Moreover it is worth noticing that this procedure can
be repeated automatically on the basis of a residual thresh-
old, which makes it simple to use. In some sense, the e�ect
of this iterative process is to make the ultimate asymptotic
states essentially independent of the initial choice of L0.
The bottom-left picture in Figure 4 shows the e�ect of 2
reinitializations on the decay of the error. In the thresh-
olded image (top-right picture) one can recognize that, even
if the result is clearly not as good as for the 70% case, the
edges have been reasonably well restored.

Fig. 4. (128 � 128) triangle-rectangle image with 90% noise (top-
left: original image, top-right: processed image after thresh-
olding, bottom-left: L2 error, bottom-right: residual; curves A,
B, C correspond to 0, 1 or 2 reinitializations). Parameters are
� = 10�t; s = 5.



Our next example is a landscape image which has been
degraded by noise at a 30% level, then processed in 2 suc-
cessive sweeps. While the �rst steady state shows a reason-
able result on large scale patterns, the second sweeps has

dramatically improved the restoration of �ne scale details
(like the windows in the wall of the main building in the
foreground).

Fig. 5. (512� 768) Landscape image (top-left: original image, top-right: image with 30% noise); bottom: processed noisy image after 0
(left) or 1 (right) reinitialization. Parameters are � = 10�t; s = 5.

Our �nal example will be an ultrasound image. This
kind of image combines high level noise and low contrast,
which makes it di�cult to deal with. The top-left picture
of Figure 6 is the original image, the top-right is the �rst
asymptotic and the bottom picture is the result of restart-
ing the algorithm afterwards. One can see in the last pic-
ture a better preservation of the edges in the bottom part

of the darkest area, and, what is more important in this
particular image, of the intermediate grey large structure
(prostate) underneath. The combination of our �lter with
snake-splines techniques has actually allowed the segmen-
tation of similar ultra-sound images, something which did
not seem possible when conventional �lters were used [10],
[6].



Fig. 6. Ultrasound image: top-left: original image, top-right: pro-
cessed image; bottom: processed image after one reinitialization

IV. A related Neural Network

In this section, we will start from a di�usion model which
is a variant of (1),(2),(21), and derive a neural network ap-
proximation which exhibits learning rules and enjoys nice
stability properties. This variant is obtained by removing
the thresholding of F in (21), and using instead a saturat-
ing coe�cient in the di�usion equation (1). More precisely
our starting point will be the system

@u

@t
� �(u)div (Lru) = 0 (24)

@L

@t
+ L =

3

2
(1� jruj2)Id + jruj2Pru? (25)

where � is a smooth, positive, even, function satisfying

�(u)! 0 as u!�1
and decreasing for u > 0 (notice that, for a sake of simplic-
ity, we have chosen � = s = 1).
Observe that, in this model, the di�usion tensor can ac-

tually induce anti-di�usion, where fronts sti�ness is larger
than s = 1, in principle allowing for strong contrast en-
hancement. The e�ect of the coe�cient � is to prevent
the image from reaching unacceptable high grey levels. Al-
though the mathematical well posedness of this system is
far from clear, we think it is of interest in view of the neural
network discretization we now describe.
For a sake of simplicity, we will use single index nota-

tions: we will denote by xp the locations of the pixels, or
neurons, on a regular lattice of meshsize h and write up for
the value of u at xp. We set

G(u) =

Z u

0

1

�(v)
dv

G is an odd, increasing function. We will assume that

G(u)!�1 as u!�1

something which is clearly satis�ed, provided the decay of
� to 0 when u tends to �1 is fast enough. We then denote
by g the reciprocal function of G: it is an increasing, odd
function, mapping R onto ]� 1;+1[. Finally we denote by
U the function G � u.
In the terminology of neural networks u is the output

of the network, U its state, and g is the transfer function
linking these variables. Typically g is a sigmoid function
often chosen as the hyperbolic tangent. Most often a gain
parameter, that we will omit here for a sake of simplicity,
is used to control the sti�ness of this transfer function.
In view of (24), the di�erential equation satis�ed by the

the state variable U is

dU

dt
� div (Lru) = 0 (26)

To derive a neural network approximation of (26), the
rule is essentially to work on integral approximations of
the di�usion operators, then to discretize the integrals on
the neurons considered as quadrature points (see [4], [9],
[5]).
For a di�usion operator of the form

Du = div(Fru)
a general framework is given in [8], where integral approx-
imation are built in the following form

D"v =

Z
�"(x; y)[v(y) � v(x)] dy (27)

where

�"(x; y) = "�4
X
i;j

mij(
x+ y

2
) ij(

y � x

"
) (28)

In the above formulas, " is a small parameter, which will
be interpreted later as a synaptic range,  ij are cut-o�
functions which need to be related to the functions mij

and the original di�usion tensor L through second order
momentum properties (indices i; j run from one to the di-
mension of the image, which for the present discussion will
be 2).
Several recipes are provided in [8] to actually construct

these parameters. Our choice here is a variant of one of
these. Let us consider a smooth radially symmetric func-
tion � with compact support (or decaying fast enough at
in�nity) normalized such thatZ 1

o

r5�(r) dr =
4

�
:

We take
 ij(x) = x?i x

?
j �(x)

where x?i denotes the i-th component of x?. One can
then show along the same lines as in [8], that is, essen-
tially through order 2 Taylor expansions, that a matrix
m leading to a consistent approximation of Du by D"u is
given through (28) by

m = �F +
3

4
(trF )Id (29)



trF denoting the trace of the matrix F . Applying this con-
struction to our di�usion equation yields functions 
"(x; y; t)
which have to satisfy

d
"
dt

+ 
" = �"

where �" is derived from the right hand side F of (25)
through (28),(29). We �rst observe that

trF = jruj2+ 3(1� jruj2) = 3� 2jruj2

Moreover, if we set Pru? = [Pij], we have

X
i;j

Pij(
x+ y

2
)(x � y)?i (x� y)?j =

1

jru(x+y
2
)j2 jru(

x+ y

2
) � (x� y)j2

which yields

d
"
dt

(x; y; t) + 
"(x; y; t) =

"�4
�
jru(x+ y

2
) � (x� y)j2 + 3

4
jy � xj2

�
�(
y � x

"
)

In the above equality, only points x and y within a distance
of the order of " need to be considered, so it is consistent
to make the following additional approximation

ru(x+ y

2
) � (x� y) ' u(x)� u(y)

and we are left with

d
"
dt

(x; y; t) + 
"(x; y; t) =

"�4jy � xj2�(y � x

"
)

�
3

4
� ju(y)� u(x)j2

jy � xj2
�

It now remains to do a numerical integration of (27) on
quadrature points xp to obtain the following dynamical
system

dUp
dt

= h2
X
q


"(xp; xq; t)(uq � up) (30)

d
"
dt

+ 
" = "�4jxq � xpj2�(xq � xp
"

)

�
3

4
� juq � upj2
jxq � xpj2

�
(31)

It is important to point out that this approximation is valid
only in the limit of a large number of neurons within the
synaptic range.
The system (30),(31) can be interpreted as a neural net-

work dynamic, with learning ability: the synaptic connec-
tions, as measured by the coe�cients 
"(xp; xq; t), are en-
hanced or inhibited, depending on the coherence, evaluated
over a time window � , between neurons p and q as com-
pared to some threshold (which can vary depending on the
coe�cient s, which we recall was taken equal to 1 in this
derivation).

Besides this interpretation, which sheds a di�erent light
on our PDE model, one nice feature of the system (30),(31)
is that it is possible to construct for it a Lyapunov function
[17]. Let us denote by � the time-dependent vector (
pq ) =

"(xp; xq) and set

apq = "�4jxq � xpj2�(xq � xp
"

) ; bpq = jxq � xpj�2

and

H(u;�) =
1

2

X
p;q


2pq +
X
p;q


pq

�
bpq(up � uq)

2 � 3

4

�

We have

dH

dt
=
X
p;q


pq
d
pq
dt

+
X
p;q

d
pq
dt

�
bpq(up � uq)

2 � 3

4

�

+2
X
p;q


pqbpq(up � uq)

�
dup
dt

� duq
dt

�

Using (31), we obtain

dH

dt
= �

X
p;q

(
d
pq
dt

)2

+2
X
p;q


pqbpq(up
dup
dt

+ uq
duq
dt

� uq
dup
dt

� up
duq
dt

)

We then observe that, due to (31) and the symmetry of �,

pq = 
qp, which allows to rewrite the second sum in the
right hand side above as

2
X
p;q


pq
dup
dt

(up � uq)bpq

and thus, from (30),

dH

dt
= �

X
p;q

(
d
pq
dt

)2 � 4
X
p;q


pqbpq(
dup
dt

)2
1

g0(up)
(32)

Therefore
dH

dt
� 0

We next observe that, by de�nition, u remains between �1
and +1 and thus 
pq is bounded. As a result, when t!1
H(u;�) tends to a minimum, where dH=dt = 0. Moreover
it results from (32) that, at such point, one must have

d
pq
dt

= 0 and
dup
dt

= 0

for all p; q. In other words, the dynamical system (30),(31)
tends to a steady state.
We performed some numerical experiments which con-

�rm this theoretical result together with the contrast en-
hancement ability of this model. However this model only
produces binary asymptotic images, which in our opinion
makes it less 
exible for general applications than the orig-
inal PDE system (1),(2).



V. Conclusion

We have presented a non-linear di�usion model for image
restoration which combines time-delay regularization and
anisotropic di�usion. Partial results concerning its well-
posedness have been proved. The links of the model with
natural neural networks with desirable stability properties
have been demonstrated. The model allows to select the
steady states that will be obtained on the processed im-
ages on the basis of a contrast parameter. An iterative
strategy allows to remove the dependence of the model on
the choice of the initial di�usion tensor. Numerical ex-
amples illustrates its ability to remove large amounts of
noise while keeping small scale details of the image. This
feature makes the model suitable for pre-processing highly
degraded images in order to allow segmentation techniques
to be successfully used.
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