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Introduction

Comme son titre l’indique, cette thèse consiste en une série d’applications assez variées du
calcul stochastique aux mathématiques financières. Elle est structurée en quatre chapitres:

1. Chapitre 1: A note on extremality and completeness in financial markets with in-
finitely many risky assets;

2. Chapitre 2: Arbitrage and completeness in financial markets with givenN -dimensional
distributions;

3. Chapitre 3: Mean-variance hedging in large financial markets;

4. Chapitre 4: Some results on quadratic hedging with insider trading.

Dans la section suivante, on va donner une brève description de leur contenu.

0.1 Présentation des résultats principaux.

0.1.1 Chapitre 1: A note on extremality and completeness in financial
markets with infinitely many risky assets

Dans le Chapitre 1, on étudie les relations existantes entre la complétude des marchés fi-
nanciers avec une infinité d’actifs (MFIA) et l’extremalité des mesures martingale équivalentes.

Tout d’abord, on considère un marché financier fini, c.-à-d. présentant un actif sans
risque et un nombre fini d’actifs risqués. Plus formellement, on se donne un espace de prob-
abilités (Ω,F , P ) muni d’une filtration F =(Ft)t∈[0,T ] satisfaisant les conditions habituelles
(complétude et continuité à droite), où T > 0 est un horizon fini fixé, et on suppose F0

triviale et FT = F . On suppose aussi que le processus de l’actif sans risque S0 satisfait
S0 ≡ 1. D’autre part, l’évolution des prix des actifs risqués est décrite par une semimartin-
gale S = (St) = (S1

t , ..., S
d
t ) à valeurs dans Rd.

Dans ce marché, non seulement on peut investir dans ces actifs “de base”, mais aussi
dans des produits dérivés plus complexes (appellés actifs contingents), qui peuvent être
formalisés par un certain sous-espace de L0(Ω,F , P ), l’ensemble de toutes les fonctions
mesurables à valeurs réelles.

Un problème fondamental des mathématiques financières est l’évaluation de ces produits
dérivés. Une façon de le résoudre consiste à utiliser la notion d’arbitrage.

1



2 Introduction

Un arbitrage est une stratégie auto-financée qu’un investisseur peut suivre avec zéro
investissement initial et telle que son processus de valeur en T est presque sûrement positif
et strictement positif avec probabilité strictement positive. On dit que le marché satisfait
AOA si il n’admet aucun arbitrage.

On sait très bien que pour un marché financier fini, AOA est équivalent à l’existence
d’une mesure martingale (locale) équivalente Q, c.-á-d. une mesure de probabilité equiva-
lente (à P ) sous laquelle S est une martingale (locale) (pour une formulation plus précise de
ce résultat, voir Delbaen and Schachermayer (1994)). De plus, cette mesure Q est unique si
et seulement si le marché est complet; dans ce cas, tout actif contingent F est atteignable (ou
simulable), c.-à-d. il existe une stratégie auto-financée ϑ telle que V ϑ

T = F . Par conséquent,
dans un marché financier complet, tout actif contingent F admet un unique prix compati-
ble avec la condition AOA et il est donné par l’espérance EQ[F ], où Q est l’unique mesure
martingale équivalente du marché.

La différence principale entre le cas fini et le cas infini a été soulignée par Artzner et
Heath (1995). Dans leur article, ils ont construit un marché financier à deux dates et avec
une infinité dénombrable d’actifs risqués, admettant deux mesures martingale équivalentes
sous lesquelles le marché est approximativement complet, c.-á-d. l’espace de tous les valeurs
finales des stratégies est dense dans l’ensemble L1(Ω,F , Q) de tous les actifs contingents,
où Q est une mesure martingale équivalente. Alors, avec cette notion de complétude,
dépendant de la mesure martingale Q, l’équivalence entre complétude et unicité de la mesure
martingale équivalente n’est plus valable. En effet, cette équivalence est valable si l’une des
deux conditions est satisfaite:

1. tout processus de prix est à trajectoires continues (voir Delbaen (1992));

2. la filtration sous-jacente, disons (Ft), est strictement continue, c.-à-d. pour tout temps
d’arrêt τ , on doit avoir Fτ = Fτ− (voir Pratelli (1996)).

Plus tard, pour étendre cette équivalence à un MFIA, Bättig (1999) a proposé une
notion de complétude invariante par changement de mesure de probabilité équivalente et
donc indépendante de la condition AOA: complétude veut dire que l’image d’un certain
opérateur agissant sur les stratégies simples est dense dans l’espace des variables aléatoires
bornées L∞(P ) muni de la topologie faible*. On précisera plus tard cette notion. De ce
point de vue, l’exemple de Artzner et Heath (1995) n’est plus si pathologique: si le marché
est complet (au sens de Bättig) alors il existe au plus une mesure martingale équivalente,
et le marché de Artzner et Heath devient incomplet.

Dans le premier chapitre, on étudie le lien existant entre la complétude des MFIA
et l’extrémalité des mesures martingales équivalentes. Notre point de départ est la car-
actérisation de la complétude des MFIA obtenue par Bättig (1999).

Il considère une famille V = {(Zα
t )t∈[0,1]}α∈A∪{∆} de processus de prix, où A est un

ensemble d’actifs risqués (éventuellement infini) et ∆ indique l’actif sans risque. Il suppose,
comme d’habitude, Z∆

t ≡ 1. De plus, chaque agent peut investir dans un nombre fini
d’actifs selon des strategies simples du type (x, (Hα)α∈A), où x ∈ R est la valeur initiale du
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portefeuille et Hα est donné par

Hα
t =

nα∑
i=1

hα
i−11(τα

i−1,τα
i ] (t)

où 0 ≤ τα
0 ≤ ... ≤ τα

nα
≤ 1 sont des temps d’arrêt, hα

i ∈ L∞(Fτα
i
, P ) et Hα ≡ 0 sauf

pour un nombre fini de α ∈ A. Il désigne par Y l’espace de toutes ces stratégies et par
C=L∞(F1, P ) l’espace de tous les actifs contingents. Alors l’opérateur linéaire T : Y → C
donné par

T
(
x, (Hα)α∈A

)
= x+

∑
α∈A

∫ 1

0
Hα

t dZ
α
t

est bien défini et donne la valeur à l’instant 1 d’une certaine stratégie.
Il désigne par M le dual topologique de C, c.-à-d. l’espace de toutes les mesures signées

définies sur F1 absolument continues par rapport à P . Il introduit deux autres opérateurs,
π0 et T ∗ en posant π0

(
x, (Hα)α∈A

)
= x et pour µ ∈ M

(T ∗µ)
(
x, (Hα)α∈A

)
=
∫
T
(
x, (Hα)α∈A

)
dµ

et il munit Y de la topologie plus fine, qui rend continues les fonctionnelles linéaires
{T ∗µ}µ∈M ∪ {π0}. En notant X le dual topologique de Y, il est facile de voir que T ∗

est l’opérateur adjoint de T . Enfin, A1 indique l’ensemble de tous les actifs contingents
atteignables, c.-à-d.

A1 =

{
x+

∑
α∈A

∫ 1

0
Hα

t dZ
α
t :
(
x, (Hα)α∈A

)
∈ Y

}
.

Il adopte les deux définitions suivantes de complétude de marché:

1. (complétude) le marché est dit complet si A1 = ImT est dense dans C par rapport à
la topologie faible*;

2. (Q-complétude) en supposant qu’il existe une mesure martingale (locale) équivalente
Q, le marché est Q-complet si A1 = ImT est dense dans C par rapport à la topologie
L1(F1, Q).

Bättig (1999) montre que si le marché est complet, alors il existe au plus une mesure
martingale (locale) équivalente. La preuve de ce résultat est basée sur l’équivalence entre
la complétude de marché et l’injectivité de l’opérateur adjoint T ∗.

Dans le premier chapitre, on démontre le même résultat mais avec des techniques
différentes et plus élémentaires, basées sur la notion d’extrémalité de mesures. En partic-
ulier, on obtient une version du théorème de Douglas-Naimark pour un système dual 〈X,Y 〉
d’espaces topologiques réels localement convexes munis de la topologie faible σ(X,Y ), et
on l’applique notamment à l’espace L∞ avec les topologies faibles σ(L∞, Lp), p ≥ 1. Grâce
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à ces résultats, nous obtenons des conditions équivalentes à la complétude du marché et
basées sur la notion d’extrémalité de mesure. Plus rigoureusement, soit K un ensemble
convexe de mesures finies, alors une mesure Q ∈ K est extrémale dans K, si et seulement si
Q = βQ1 + (1− β)Q2 pour Q1, Q2 ∈ K et β ∈ (0, 1) entrâıne Q = Q1 = Q2. Notre résultat
principal est la caractérisation suivante de la complétude de marché (voir Theorem 11):

le marché est complet si et seulement si toute mesure de probabilité Q� P est extrémale
dans l’ensemble de toutes les mesures martingale équivalentes à Q.

Cette caractérisation nous permet de donner une preuve nouvelle et plus simple de la
version de Bättig du deuxième théorème fondamental de l’évaluation des actifs contingents.

Enfin, le premier chapitre contient une discussion plus générale des différents types
de complétude, dépendant de la topologie définie sur C, et une application à l’exemple
pathologique construit par Artzner et Heath (1995).

0.1.2 Chapitre 2: Arbitrage and completeness in financial markets with
given N-dimensional distributions

Motivé par la formule de Breeden et Litzenberger (1978), qui établit l’équivalence entre
les prix des options calls européens et les marginales du processus des prix sous la mesure
de probabilité risque-neutre, on s’intéresse au problème suivant: on se donne un marché
financier, modelisé par un processus S = (St)t∈T , et une famille

MN = {µt1,...,tN : t1, . . . , tN ∈ T }

de mesures de probabilité sur B(RN ), où N est un entier positif et T l’espace des temps; on
cherche ensuite des proprietés équivalentes à l’existence et l’unicité d’une mesure martingale
(locale) équivalente (MME)Q telle que le processus de prix S ait sous Q les marginales de di-
mension N (abbr. N -marginales) MN données. On appelle ces deux conditions équivalentes
N -mixed no free lunch et N -complétude du marché, respectivement. Elles se basent sur une
classification des actifs contingents par rapport à leur dépendance trajectorielle de S et
sur la notion de stratégie N -mélangée (en anglais “N -mixed strategy”). On montre aussi
que pour le modèle de Black-Scholes avec sauts, l’ensemble des MMEs avec 1-marginales
données se réduit à un seul élément.

Une telle étude est motivée par le fait que l’observation des prix des calls donne un
aperçu de la loi des prix des actifs. En effet, si on suppose que sur le marché on peut
trouver une famille d’options call pour tout strike k et avec maturité t, et si on désigne
par C(k, t) le prix d’un call européen avec strike k et maturité t, la formule de Breeden-
Litzenberger établit une relation entre la famille des prix des calls {C(k, t) : k > 0} et
la loi (sous une certaine mesure martingale équivalente Q) de St à t fixé (voir Breeden et
Litzenberger (1978) ou Dupire (1997)):

∂

∂k+
C (k, t) = −Q (St > k) .

On peut donc affirmer que des prix des calls on peut déduire la loi de St sous Q. On pourrait
même généraliser cette remarque, en disant que plus le marché est liquide plus on peut en
tirer d’informations sur la loi de S sous Q.
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Si le marché S considéré est incomplet, alors il existe une infinité de mesures martingales
équivalente et, en utilisant l’information additionnelle sur la loi de S, on peut espérer de
réduire l’ensemble des mesures martingale équivalentes à un seul élément. D’habitude, dans
la littérature sur les marchés incomplets, choisir la “bonne” mesure martingale équivaut à
trouver la mesure qui minimise une certaine “distance” entre la probabilité objective P et
l’ensemble M. Par exemple, en utilisant l’entropie relative, on obtient le mesure à entropie
minimale (voir Frittelli (2000a)); d’autre part, en utilisant la distance L2, on obtient la
mesure à variance optimale (voir Delbaen et Schachermayer (1996)). Tous ces critères
sont étroitement liés à la maximisation d’une certaine fonction d’utilité (voir par exemple
Frittelli (2000b)). Le choix de la “bonne” mesure martingale dépend des préférences de
l’agent économique.

Au lieu de ces critères “subjectifs”, on pourrait utiliser l’information “objective” con-
tenue dans le prix de marché de quelques actifs contingents “liquides”, et concentrer l’attention
sur les mesures martingale compatibles avec cette information.

Donc, en suivant cette approche, il serait plutôt naturel, une fois fixés un marché fi-
nancier S et une famille de probabilités MN définies sur B(RN ), de s’intéresser aux deux
questions suivantes:

1. est-qu’il existe une mesure martingale équivalente Q telle que les N -marginales de S
soient dans MN?

2. Si une telle mesure existe, est-ce qu’elle est unique?

Dans le deuxième chapitre, on montrera (voir Theorem 34, quand l’espace de probabilité
est fini et l’espace des temps est discret, et Theorem 44, pour le cas à temps continu) qu’une
mesure Q avec ces propriétés existe si et seulement si on ne peut construire aucune position
d’arbitrage à travers une strategie admissible et en investissant de façon statique dans les
actifs contingents dépendants d’au plus N coordonnées temporelles du processus de prix S
(par exemple une option lookback calculée sur une grille de N instants de temps).

D’autre part, Q est l’unique mesure martingale sous la quelle les lois N -dimensionnelles
du processus de prix sont dans MN si et seulement si tout actif contingent peut être atteint
par un investissement initial, une stratégie admissible et, encore, en investissant statique-
ment en actifs contingents dépendant d’au plus N coordonnées temporelles de S (voir
Theorem 38, pour le cas à temps discret, et Subsection 2.3.3 pour le cas à temps continu).

Enfin, comme application, on montrera que, si on se donne une famille de 1-marginales
M, le modèle de Black-Scholes avec sauts, quand tous ses coefficients sont fonctions détérministes
du temps, admet au plus une mesure martingale équivalente Q dans Υ 1, sous laquelle les
1-marginales du processus de prix sont dans M (Proposition 52).

0.1.3 Chapitre 3: Mean-variance hedging in large financial markets

Dans le troisième chapitre, on considère un problème de couverture moyenne-variance
(CMV) dans un “large financial market”, c.-à.-d. un marché financier avec une infinité

1Υ est le sousensemble des mesures martingale équivalentes induite par des paramètres ht fonctions
détérministes du temps (voir la section 2.3.4).
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dénombrable d’actifs risqués modélisés par une suite de semimartingales continues.
Comme dans le cas fini, si le marché est incomplet, il existe au moins un actif con-

tingent qui n’est atteignable par aucune stratégie. On a donc le problème d’évaluer cet
actif (évaluation ou “pricing”) et de gérer le risque dû à son achat ou sa vente (couverture
ou “hedging”). Dernièrement, plusieurs techniques d’évaluation et de couverture des act-
ifs contingeants dans les marchés incomplets ont été developpées. On se concentre ici sur
l’approche CMV, qui consiste à chercher une stratégie auto-financée qui minimise le risque
résidu entre l’actif contingent et la valeur du portefeuille. Du point de vue mathématique, il
s’agit d’une projection sur l’espace des intégrales stochastiques. Plus rigoureusement, on se
donne un “large financial market” X = {S0, S}, où S0 est le processus de prix de l’actif sans
risque S0

t = exp
∫ t
0 rsds et S = (Si)i≥1 est une suite de semimartingales à valeurs réelles,

qui modélisent la dynamique des prix des actifs risqués, et un actif contingent F ∈ L2(P ).
On voudrait résoudre le problème de minimisation (introduit par Föllmer et Sondermann
(1986)) suivant:

min
ϑ∈Θ

E
[
F − V x,ϑ

T

]2
, (1)

où

V x,ϑ
T = S0

T

(
x+

∫ T

0
ϑtd

(
S/S0

)
t

)
(2)

est la valeur finale du portefeuille autofinancé dans les actifs de base, avec l’investissement
initial x et les quantités ϑ investies dans les actifs risqués. L’existence d’une solution est
liée au fait que l’espace des intégrales stochastiques choisi soit fermé dans L2(P ), où P est
la “vraie” probabilité du marché. Evidemment, dans un marché fini ce problème a bien un
sens et il a été résolu par des méthodes différentes par Rheinländer et Schweizer (1997) et
Gourieroux et al. (1998).

Dans leur article, Gourieroux et al. (1998) introduisent la notion d’extension artificielle,
qui consiste à ajouter aux actifs de base X un numéraire, défini comme un portefeuille
autofinancé dans X tel que son processus de valeur soit strictement positif. Ce numéraire
est utilisé soit comme facteur d’actualisation soit comme actif sur lequel on peut investir,
élargissant ainsi la famille des actifs risqués. Ils montrent l’invariance de l’ensemble des
mesures martingale équivalentes et aussi que cet extension ne change pas l’ensemble des
opportunités d’investissement, défini comme l’ensemble des actifs contingents atteignables.
Mais leur résultat principal est la preuve qu’on peut transformer le problème de CMV initial
en un autre plus simple, grâce à un bon changement de numéraire (hedging numéraire) et à
la méthode de l’extension artificielle. Plus rigoureusement, en indiquant par ã ce numéraire,
par V (ã) son processus de valeur, et par X(ã) = (S0/V (ã), S/V (ã)) le processus de prix de
la famille d’actifs de base renormalisée par rapport au nouveau numéraire, il montrent que
le problème de minimisation initial est équivalent à

min
φ(ã)∈Φ(ã)

E
P̃ (ã)

[
F

VT (ã)
− x−

∫ T

0
φt (ã) dXt (ã)

]2

(3)

où φt(ã) désigne les quantités investies dans les actifs de base d’un portefeuille autofinancé
par rapport à la famille élargie, et P̃ (ã) est une probabilité équivalente à P , définie de



Introduction 7

façon unique par ã, et telle que X(ã) soit une martingale locale sous P̃ (ã). Cette dernière
propriété leur permet de résoudre (3) par la decomposition de Galtchouk-Kunita-Watanabe.

On considère maintenant un marché financier avec une infinité dénombrable d’actifs
risqués. Motivés par le Capital Asset Pricing Model (CAPM) et le Arbitrage Pricing Theory
(APT), Kabanov et Kramkov (1994) introduisent la notion de large financial market comme
une suite de marchés finis de dimension croissante. Ils se donnent une suite de bases
stochastiques Bn := (Ωn,Fn,Fn = (Fn

t ), Pn), n ≥ 1, avec, pour simplifier, la tribu initiale
triviale. Les prix des actifs risqués sont modelisés par une semimartingale Sn = (Sn

t ) définie
sur Bn et à valeurs dans Rd

+ pour un certain d = d(n). Ils fixent aussi une suite d’horizons
temporels Tn. La suite M = {(Bn, Sn, Tn)} est appellée large financial market. Ils étudient
les propriétés de AOA et en particulier la relation existante entre l’arbitrage asymptotique
et la contiguité de la mesure martingale équivalente.

Dans le troisième chapitre, en utilisant la théorie de l’intégration stochastique pour une
suite de semimartingales développée par De Donno et Pratelli (2003), on montre qu’il est
possible donner un sens au problème CMV même en présence d’une infinité dénombrable
d’actifs. En particulier, on montre que l’ensemble des opportunités d’investissement est
fermé dans L2(P ) (Proposition 63) et qu’il est invariant par changement de numèraire
(Proposition 67), mais on n’a pas d’expression explicite de la bijection correspondante.
Cette différence fondamentale avec le cas fini est dûe au fait qu’on a élargi l’espace des
stratégies en incluant les intégrands généralisés (à valeurs dans l’espace des opérateurs non
nécéssairement bornés) et donc on ne peut plus multiplier les stratégies par le processus de
prix.

On considère aussi, pour tout n ≥ 1, le marché formé des premiers n actifs risqués
et on montre que les solutions aux problèmes CMV n-dimensionnels correspondants con-
vergent dans L2(P ), quand n tend vers l’infini, vers l’unique solution du problème infini-
dimensionnel initial (Proposition 72).

0.1.4 Chapitre 4: Some results on quadratic hedging with insider trading

Dans le dernier chapitre, on considère le problème de couverture dans un marché financier
sous l’hypothèse AOA et avec deux catégories d’investisseurs, qui basent leur décisions sur
deux differents flots d’informations concernant l’évolution future des prix, décrites par deux
filtrations F et G = F ∨ σ(G) où G est une variable aléatoire donnée (à valeurs dans un
espace polonais (U,U)) représentant l’information additionnelle.

On se concentre ici sur deux types d’approche quadratique pour couvrir un actif contin-
gent donné X ∈ L2(P,Ft) avec t < T : minimisation du risque local (abbr. MRL) et CMV.
En utilisant des techniques de grossissement initial des filtrations, on va pouvoir résoudre le
problème de couverture pour les deux investisseurs et comparer leurs stratégies optimales
sous les deux approches.

Plus précisement, sous la condition

P [G ∈ · |Ft](ω) ∼ P [G ∈ · ]

pour tout t ∈ [0, T ) et P -p.p. ω ∈ Ω, on sait d’après Jacod (1985) qu’il existe un processus
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(ω, t, x) 7→ px
t (ω), avec les bonnes propriétés de mesurabilité, et tel que la mesure px

t P [G ∈
dx] sur (U,U) soit une version de la loi conditionnelle P [G ∈ dx|Ft]. De plus, on a le résultat
suivant, qui est dû à Amendinger et al. (1998): il existe une (P,G0)-martingale locale Ñ
issue de 0, (P,G0)-orthogonale à M̃ (c.-à.-d. 〈M̃ i, Ñ〉 = 0 pour i = 1, ..., d) et telle que

1
pG

t

= E
(
−
∫ (

µG
)′
dM̃ + Ñ

)
t

, t ∈ [0, T ). (4)

Donc, pour la MRL, on montre que pour toute variable aléatoire additionnelle G telle que
la martingale orthogonale Ñ dans la representation (4) soit identiquement nulle, les deux
investisseurs adoptent la même strategie minimisant le risque local et que le processus de
coût de l’agent ordinaire peut s’exprimer comme la projection sur F de celui de l’initié
(Proposition 84).

Pour ce qui concerne l’approche CMV, on montre que les “stratégies optimales” des
deux agents sous leurs mesures respectives à variance optimale cöıncident, c.-à-d.

ϑopt,G
s = ϑopt,F

s , s ∈ [0, t],

pour tout t ∈ [0, T ). On étudie aussi un modèle à volatilité stochastique assez général,
incluant les modèles de Hull et White, Heston et Stein et Stein. Dans ce contexte plus
spécifique et pour une variable aléatoire G mesurable par rapport à la filtration engendrée
par la volatilité, on obtient (Proposition 92) la caractérisation feedback suivante du pro-
cessus ξMV H = ϑMV H,G − ϑMV H,F défini comme différence entre la strategie optimale de
l’initié et celle de l’ordinaire:

ξMV H
s = ρopt

s

(
V opt,G

s− − V opt,F
s− +

∫ s

0
ξMV H
u dSu

)
, s ∈ [0, t] (5)

où V opt,H
s := Eopt[X|Hs] pour H ∈ {F,G} et ρopt

s := ζopt,F
s /Zopt,F

s = ζopt,G
s /Zopt,G

s , s ∈
[0, t]. Zopt,G et ζopt,H sont, respectivement, le processus de densité de la mesure à variance
optimale et l’intégrand dans sa représentation intégrale par rapport à S, sous la filtration
H ∈ {F,G}.



Chapter 1

A note on extremality and
completeness in financial markets
with infinitely many risky assets

This chapter is based on the technical report n. 655 of the Laboratoire de Probabilités
et Modèles Aléatoires of the Universities of Paris VI and VII, entitled “A weak version of
Douglas theorem with applications to finance”, submitted to the review Journal of Applied
Probability. I am indebted to Marc Yor for his help, support and suggestions, and to
Massimo Marinacci for his interest in this work.

1.1 Introduction

Artzner and Heath (1995) constructed a market with an infinite number of equivalent mar-
tingale probability measures, which is complete under two of such measures, the extremal
ones. This market has the essential property that the set of risky assets is infinite, in other
words it is a large financial market. The possibility of such an economy implies that the
equivalence between completeness and uniqueness of the equivalent martingale measure is
not verified in an infinite assets setting.

Bättig (1999), Jin, Jarrow and Madan (1999) and Jarrow and Madan (1999) adopted
a different notion of market completeness in order to extend this equivalence even to a
large financial market. They give a definition of completeness which is independent from
the notion of no-arbitrage, and show that if the market is complete, then there exists at
most one equivalent martingale signed measure and if the market is arbitrage-free, then this
signed measure is in fact a probability. In order to demonstrate them, these authors have
to verify the surjectivity of a certain operator and then the injectivity of its adjoint.

Here we will examine the interplay existing between the extremality of martingale prob-
ability measures and the various notions of market completeness introduced by Artzner and
Heath (1995) and Jin, Jarrow and Madan (1999). For this we will need two versions of the
Douglas Theorem, which is a functional analysis result connecting the density of the subsets

9
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of some space Lp with the extremality on a certain subset of measures of the underlying
probability. Now, we quote them without proofs, for which one can consult Douglas (1964)
(Theorem 1, p. 243) or Naimark (1947) for the first and Yor (1976) (Proposition 4 of the
Appendice, p. 306) for the second.

Theorem 1 Let (Ω,F , P ) a probability space and let F be a subspace of L1(P ) such that
1 ∈ F . The following two assertions are equivalent:

1. F is dense in (L1(P ), ‖ · ‖1);

2. if g ∈ L∞(P ) satisfies
∫
fgdµ = 0 for each f ∈ F , then g = 0 P -a.s.;

3. P is an extremal point of the set

Ξ̃1 (P ) =
{
Q ∈ P : for each f ∈ F , f ∈ L1 (Q) and EQ (f) = EP (f)

}
,

where P is the space of all probability measures over (Ω,F).

We denote ba(Ω,F), or simply ba, the space of additive bounded measures on the mea-
surable space (Ω,F). It is well known that one can identify ba with the topological dual
of the space L∞(P ) equipped with the strong topology. Finally, with an obvious notation,
one has the decomposition ba = ba+ − ba+. For further information on ba, one can consult
Dunford and Schwartz (1957).

Theorem 2 Let ba+(P ) = {ν ∈ ba+; ν � P}, and let F be a subspace of L∞(P ) such that
1 ∈ F . The following two assertions are equivalent:

1. F is dense in (L∞(P ), ‖ · ‖∞);

2. every additive measure ν ∈ ba+(P ) is an extremal point of the set

Ξba (ν) =
{
λ ∈ ba+ (ν) : for each f ∈ F , λ (f) = ν (f)

}
.

We note that the spaces Lp considered in the previous theorems are equipped with their
respective strong topologies.

In Section 1.2 we obtain a version of the Douglas-Naimark Theorem for a dual system
〈X,Y 〉 of ordered locally convex topological real vector spaces, and we apply it to the special
case 〈X,Y 〉 = 〈L∞, Lp〉 for p ≥ 1.. In Subsection 1.2.3 we obtain also a Douglas-Naimark
Theorem for L∞ with Lp-norm topologies for p ≥ 1, which we will use for the discussion of
the completeness of the AH-market.

In Section 1.3, we apply these results to mathematical finance. In particular, in subsec-
tions 1.3.2 and 1.3.3 we give new proofs of the versions of the Second Fundamental Theorems
of Asset Pricing (abbr. SFTAP) obtained by Jarrow, Jin and Madan (1999) and Bättig
(1999), based on the notion of extremality of measures thanks to the results established
in Section 1.2. The advantage of this approach is that it permits to work directly on the
equivalent martingale measures set of the market, using only some elementary geometrical
argument. In Subsection 1.3.4 we discuss the completeness of the Artzner and Heath market
with respect to several topologies and we obtain a more general construction of it.
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1.2 A weak version of the Douglas-Naimark Theorem

1.2.1 Weak Douglas-Naimark Theorem for a dual system

We recall some basic facts about duality for a locally convex topological real vector space
(abbr. LCS). Let X,Y be a pair of real vector spaces, and let f be a bilinear form on X×Y ,
satisfying the separation axioms:

f (x0, y) = 0 for each y ∈ Y implies x0 = 0,
f (x, y0) = 0 for each x ∈ X implies y0 = 0.

The triple (X,Y, f) is called a dual system or duality (over R). To distinguish f from other
bilinear forms on X×Y , f is called the canonical bilinear form of the duality, and is usually
denoted by (x, y) 7→ 〈x, y〉. The triple (X,Y, f) is more conveniently denoted by 〈X,Y 〉.

If 〈X,Y 〉 is a duality, the mapping x 7→ 〈x, y〉 is, for each y ∈ Y , a linear form fy on
X. Since y 7→ fy is linear and, by virtue of the second axiom of separation, biunivocal, it
is an isomorphism of Y into the algebraic dual X∗ of X; thus Y can be identified with a
subspace of X∗. Note that under this identification, the canonical bilinear form of 〈X,Y 〉
is induced by the canonical bilinear form of 〈X,X∗〉.

We recall that the weak topology σ(X,Y ) is the coarsest topology on X for which the
linear forms fy, y ∈ Y , are continuous; by the first axiom of separation, X is a LCS under
σ(X,Y ).

Let 〈X,Y 〉 be a duality between LCS’s and let K ⊂ X be a cone, which introduce in X
a natural order ≤, which we call K-order, i.e. x ≤ x′ if x′ − x ∈ K. Now, we set

HK = {y ∈ Y : 〈x, y〉 ≥ 0 for each x ∈ K}

and we observe that it is a cone contained in Y . If there is no ambiguity about the cone K
we will consider, we will simply write H instead of HK .

We assume that Y is a vector lattice. We recall that a vector lattice is an ordered vector
space Y over R such that for each pair (y1, y2) ∈ Y , sup(y1, y2) and inf(y1, y2) exist. Thus,
we can define the positive and the negative part of each y ∈ Y by

y+ = sup (0, y)
y− = sup (0,−y)

and its absolute value |y| = sup(y,−y) which satisfies |y| = y+ + y−. Finally, we have
y = y+ − y−.

We need some additional notation. If y ∈ Y and F ⊂ X, we set

Ξy,F = {z ∈ HK : 〈x, z〉 = 〈x, y〉 for every x ∈ F} .

If there is no confusion about the subset F , we will simply write Ξy. Finally, we set
K0 = K\{0} and H0 = H\{0}.

For more information on topological vector spaces, see e.g. Schaefer (1966) or Narici
and Berenstein (1985).
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Theorem 3 Let F be a subspace of X.The following assertions are equivalent:

1. F is dense in (X,σ(X,Y ));

2. every y ∈ H0 is extremal in Ξy.

Proof. Firstly, we show that 1. implies 2.. It is known (e.g. exercise 9.108(a) in Narici
and Berenstein (1985), p.222) that F is dense in (X,σ(X,Y )) if and only if, for every y ∈ Y ,
〈x, y〉 = 0 for each x ∈ F implies y = 0. Now, we proceed by contradiction and we assume
that there exists y ∈ H0 not extremal in Ξy, i.e. we can write y = αy1 + (1 − α)y2 where
α ∈ (0, 1) and yi ∈ Ξy for i = 1, 2. Then, we have

〈x, y1〉 = 〈x, y2〉 = 〈x, y〉 ,

which implies
〈x, y1 − y2〉 = 0.

Then y1 = y2 = y.
In order to demonstrate the other direction of the equivalence, we note that it is sufficient

to show, for every y ∈ Y , that if 〈x, y〉 = 0 for each x ∈ F , then y = 0. We assume that
there exist y0 ∈ Y and x0 ∈ X\F such that 〈x, y0〉 = 0 for every x ∈ F and 〈x0, y0〉 6= 0.
Since Y is a vector lattice, we can write y0 = y+

0 − y−0 and |y0| = y+
0 + y−0 ∈ H0, where

y+
0 , y

−
0 ∈ H0. Now, we observe that

|y0| =
1
2
(
2y+

0 + 2y−0
)

and, since 2y+
0 , 2y

−
0 ∈ Ξ|y0|, we have, by the extremality hypothesis, that |y0| = 2y+

0 = 2y−0 ,
which implies y0 = 0. �

We note that we have used the assumption that Y is a lattice only in the second part
of the proof. Then, even if Y is not a lattice, 1. still implies 2..

1.2.2 The space L∞ equipped with weak topologies

Let (Ω,F , µ) be a measure space, where µ is a positive finite measure.
Now, we want to apply Theorem 3 to the special case X = L∞(µ) equipped with a

family of weak topologies. In this case, the order we consider is the usual one, i.e. for each
f, g ∈ L∞(µ), f ≥ g if f(ω) ≥ g(ω) for every x ∈ Ω. In other words, we choose K = L∞+ (µ).

Corollary 4 Let F be a subspace of L∞(µ), where µ is a non null finite positive measure
and let p ≥ 1. The following assertions are equivalent:

1. F is dense in (L∞(µ), σ(L∞, Lp));
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2. every g ∈ Lp(µ), such that g ≥ 0 and µ({g > 0}) > 0, is extremal in

Ξp (g) =
{
h ∈ Lp (µ) : h ≥ 0 and

∫
fhdµ =

∫
fgdµ for each f ∈ F

}
;

3. every non null finite positive measure ν � µ, such that dν
dµ ∈ L

p(µ), is extremal in

Ξp (ν) =
{
ρ ∈Mp (ν) :

∫
fdρ =

∫
fdν for each f ∈ F

}
where Mp(ν) is the space of finite positive measures ρ absolutely continuous with
respect to ν and such that dρ

dν ∈ L
p(ν).

Proof. It is an immediate application of Theorem 3. �

Corollary 5 Under the same assumptions of Corollary 4, if µ is a probability measure and
1 ∈ F , the following two assertions are equivalent:

1. F is dense in (L∞(µ), σ(L∞, Lp));

2. every probability measure ν � µ, such that dν
dµ ∈ L

p(µ), is extremal in

Ξ̃p (ν) =
{
ρ ∈ Pp (ν) :

∫
fdρ =

∫
fdν for each f ∈ F

}
where

Pp (ν) = {ρ ∈Mp (ν) : ρ (1) = 1} .

Proof. If F is dense in (L∞(µ), σ(L∞, Lp)), then, by Corollary 4, every probability
measure ν � µ such that dν

dµ ∈ L
p(µ) is extremal in Ξp(ν) ⊃ Ξ̃p(ν) and it follows that ν is

extremal in Ξ̃p(ν). Then, 1. implies 2..
Now, we assume that there exists a positive finite measure ν � µ, such that dν

dµ ∈ L
p(µ),

which satisfies ν = αρ1 + (1 − α)ρ2 with α ∈ (0, 1) and ρi ∈ Ξp(ν) for i = 1, 2. By setting
ν = γ

ν(1) , we have

ν = α
ρ1

ν (1)
+ (1− α)

ρ2

ν (1)
,

and, since 1 ∈ F , ρ1(1) = ρ2(1) = ν(1) and so ρi = ρi

ν(1) ∈ Ξ̃p(ν) for i = 1, 2. �

1.2.3 The space L∞ equipped with Lp-norm topologies

In this subsection, we obtain a Douglas-Naimark Theorem for L∞(µ) equipped with Lp-
norm topologies, i.e. the topologies induced by the norms ‖ · ‖p for p ≥ 1. In the proof we
will essentially use the same argument as in the proof of Theorem 3.
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Theorem 6 Let F be a subspace of L∞(µ) such that 1 ∈ F and let p, q > 1 such that
1
p + 1

q = 1. The following assertions are equivalent

1. F is dense in (L∞(µ), ‖ · ‖p);

2. for each g ∈ Lq such that g ≥ 0 and
∫
gdµ = 1, the probability ν = g ·µ is extremal in

Ξ̃q(ν).

Proof. We first show that 1. implies 2.. The Hölder inequality shows that if F is dense
in L∞(µ) for the Lp(µ)-topology, then it is dense even for the σ(L∞, Lq)-topology. So
Corollary 5 applies and the thesis follows.

In order to show that 2. implies 1. it is sufficient to show that if h ∈ Lq(µ) verify∫
fhdµ for each f ∈ F , then h = 0 µ-a.s.. We assume, without loss of generality, that

ν = |h| · µ is a probability. As usually, we denote by h+ and h− the positive and negative
parts, respectively, of h. Hence, we have∫

fh+dµ =
∫
fh−dµ

for every f ∈ F . Hence

ν = |h| · µ =
1
2
[
(2h)+ · µ+ (2h)− · µ

]
is a middle-sum of two points of the set Ξ̃q(ν). But, by assumption, ν is an extremal point
of Ξ̃q(ν) and then |h| = 2h+ = 2h− µ-a.s., which implies h = 0 µ-a.s.. �

An immediate consequence of Corollary 5 and Theorem 6 is the following

Corollary 7 Let F ⊂ L∞(µ) be a subspace such that 1 ∈ F and let p, q > 1 such that
1
p + 1

q = 1. F is dense in (L∞(µ), σ(L∞, Lp)) if and only if it is dense in (L∞(µ), ‖ · ‖q).

Remark 8 For the case p = 1, being L∞(µ) dense in (L1(µ), ‖ · ‖1), we have the same
equivalence as in Theorem 1.

1.3 Applications to finance

1.3.1 The model

Let (Ω,F , P ) be a probability space. We consider a financial market where the set of
trading dates is given by T ⊆ [0, 1] with T ={0, 1} or T =[0, 1] and we denote S the set of
discounted price processes of this economy, i.e. S is a family of stochastic processes indexed
by T and adapted to the filtration F =(Ft)t∈T , where F0 is the trivial σ-field and F1 = F .
For simplicity, we assume that, for each S = (St)t∈T ∈ S, S0 = 1. We note that the set
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S may be infinite. In the continuous-time case, we will always suppose that F satisfies the
usual conditions and each price process S ∈ S is càdlàg.

Following Jin, Jarrow and Madan (1999) and Bättig and Jarrow (1999), we identify
the set of contingent claims with the space of essentially bounded random variables L∞ =
L∞(Ω,F , P ) equipped with some topology τ . We call P the true probability of the market.

Finally, throughout the sequel, R will be the set of real numbers and, if A is an arbitrary
subset of L∞, v.s.(A) will denote the vector space generated by A. We recall that A is
total in L∞ if, by definition, v.s.(A) is dense in L∞.

Now, we give two notions of market completeness for the discrete and the continuous-
time cases.

Definition 9 (discrete-time case) Let T = {0, 1}. The market S is said to be τ -complete
if the set

Yd = v.s. ((S1 ∪ R) ∩ L∞)

where S1 = {S1;S ∈ S}, is total in L∞ for the topology τ .

Definition 10 (continuous-time case) Let T = [0, 1]. The market S is said to be τ -complete
if the set

Yc = v.s. ((I ∪ R) ∩ L∞)

is dense in L∞ for the topology τ , where

I = {Y (Sτ − Sσ) : σ ≤ τ F-stopping times, Y ∈ L∞ (Fσ, P ) , S ∈ S} .

Throughout the sequel we will assume that the sets Yd and Yc are nonempty.
The space L∞ will be equipped with the strong topology, i.e. the topology induced by

the supremum norm ‖ · ‖∞, and the weak topologies σ(L∞, Lp) for p ≥ 1. If the market is
τ -complete with τ = ‖ · ‖∞ or τ = σ(L∞, L1), we will say that it is strongly complete or,
respectively, weakly* complete.

A detailed discussion of the economic interpretation of the topology σ(L∞, L1) can be
found in Bättig and Jarrow (1999).

If we apply Corollary 4 to these notions of market completeness, we obtain immediately
the following equivalence.

Theorem 11 Let p ≥ 1. The following two assertions are equivalent:

1. The market is σ(L∞, Lp)-complete;

2. every probability measure P�Q such that dQ
dP ∈ Lp(P ) is extremal in Ξ̃p(Q).

Proof. Choose F = Yd for the discrete time case and F = Yc for the continuous time
one. �
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1.3.2 The SFTAP: the discrete-time case

In this subsection we will treat the case T = {0, 1}. Finally, we denote by M the set of all
martingale probability measures for S and we set

Ma = {Q ∈M : Q� P}

and
Me = {Q ∈M : Q ∼ P} .

In this case a process S ∈ S is a Q-martingale if S1 ∈ L1(Q) and EQ(S1) = 1.
Thanks to Theorem 11, we can re-demonstrate, using only some geometrical argument

based on the notion of extremality, two results which have been initially obtained by Jarrow,
Jin and Madan (1999).

Theorem 12 Let p ≥ 1 and let the market be σ(L∞, Lp) -complete. Then, there exists at
most one Q∈Me such that dQ

dP ∈ Lp(P ).

Proof. We assume that there exists two equivalent martingale probability measures Q1

and Q2 for S. Since Me is a convex set, for each α ∈ [0, 1], Qα = αQ1 + (1 − α)Q2 is
an equivalent martingale probability measure for S. But, since the market is σ(L∞, Lp)-
complete, by Theorem 11, every Qα must be extremal in Ξp(Qα) = M⊇ [Q1, Q2], which is
a contradiction if we choose α ∈ (0, 1). �

Let ν be a finite signed measure over the measurable space (Ω,F). We will say that
S = (1, S1) ∈ S is a ν-martingale if S1 is |ν|-integrable and ν(S1) =

∫
S1dν = 1.

We denote by Ms the space of all finite signed measures ν which are absolutely contin-
uous with respect to P , such that ν(Ω) = 1 and each S ∈ S is a ν-martingale.

Theorem 13 Let Ms be nonempty. The following two assertions are equivalent:

1. the market is weakly*-complete;

2. Ms is a singleton.

Proof. Firstly, we show that 2. implies 1.. We fix ν ∈ Ms, which exists by assumption,
and assume that the market is not weakly*-complete, i.e. by Theorem 11 there exists a
probability Q� P such that

Q = αQ1 + (1− α)Q2

where α ∈ (0, 1) and Qi ∈ Ξ̃1(Q) for each i = 1, 2. Now, we set

νi = Qi −Q+ν

for i = 1, 2. Then, since νi(S1) = EQi(S1) − EQ(S1) + ν(S1) = 1, for each i = 1, 2, νi is
martingale signed measure for S. Furthermore, since Q1 ≤ 1

αQ and Q2 ≤ 1
1−αQ, we have
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Qi � Q� P for every i = 1, 2... Then, since |νi| ≤ Qi +Q+ |ν|, we have |νi| � P for each
i = 1, 2. This shows that ν is not unique in Ms and so 2. implies 1..

To show that 1. implies 2., proceed by contradiction and suppose that Ms ⊇ {ν1, ν2},
with ν1 6= ν2. Observe now that, by the definition of Ms, ν1(S1) = ν2(S1) = 1 and
ν1(Ω) = ν2(Ω) = 1, that is

ν+
1 (S1)− ν−1 (S1) = ν+

2 (S1)− ν−2 (S1) = 1

and
ν+
1 (Ω)− ν−1 (Ω) = ν+

2 (Ω)− ν−2 (Ω) = 1,

where ν+
i and ν−i (i = 1, 2) are, respectively, the positive and the negative part of νi in its

Hahn-Jordan decomposition. This implies

ν+
1 (S1) + ν−2 (S1) = ν+

2 (S1) + ν−1 (S1)

and
ν+
1 (Ω) + ν−2 (Ω) = ν+

2 (Ω) + ν−1 (Ω) =: k > 0.

Thus, define the two probability measures Q1 and Q2 as follows:

Q1 =
ν+
1 + ν−2
k

, Q2 =
ν+
2 + ν−1
k

.

Observe that Q1 = Q2 on Yd and define Q := αQ1 + (1 − α)Q2 for some real α ∈ (0, 1).
It is straightforward to verify that Q � P (since |νi| � P , for i = 1, 2) and that Q1 and
Q2 are absolutely continuous to Q, which implies that Q1, Q2 ∈ Ξ̃1(Q). We have so built a
probability measure Q absolutely continuous to P that is not extremal in Ξ̃1(Q). Finally,
Theorem 11 applies and gives that 1.⇒ 2. �

We recall that a necessary and sufficient condition for the existence of a martingale
equivalent probability (resp. the existence of a finite signed measure) for S is the absence
of free lunch with free disposal (resp. free lunch). For the precise definition of these two
conditions, see Jin, Jarrow and Madan (1999). Here, we note only that, under the absence
of free lunch, there can exist arbitrage opportunities.

1.3.3 The SFTAP: the continuous-time case

Here we pass to the continuous-time case, i.e. we take T = [0, 1], for which our main
reference is Bättig (1999). We suppose that the filtration F satisfies the usual conditions
and that each price process S ∈ S is càdlàg (right continuous with left limit).

We denote Mloc the set of all local martingale probability measures for S and we set

Ma
loc = {Q ∈Mloc : Q� P}

and
Me

loc = {Q ∈Mloc : Q ∼ P} .
If we use exactly the same argument as in the proof of Theorem 12, we obtain its

analogue in the continuous-time case. In order to avoid repetitions, we omit its proof.
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Theorem 14 Let p ≥ 1 and let the market be σ(L∞, Lp) -complete. Then, there exists at
most one Q ∈Me

loc such that dQ
dP ∈ Lp(P ).

Now, let ν be a signed finite measure over (Ω,F) such that ν(Ω) = 1. We will say that
S ∈ S is a ν-local martingale if ν(f) = 0 for all f ∈ I and ν-integrable. We let Ms

loc denote
the space of all finite signed measures ν which are absolutely continuous to P and such that
ν(Ω) = 1 and each S ∈ S is a ν-local martingale .

Remark 15 For a complete treatment of martingales under a finite signed measure but
with a definition slightly different from ours, one can consult Beghdadi-Sakrani (2003); for
a striking extension to signed measures of Lévy’s martingale characterization of Brownian
Motion, see Ruiz de Chavez (1984).

Theorem 16 Let Ms
loc be nonempty. The following two assertions are equivalent:

1. the market is weakly*-complete;

2. Ms
loc is a singleton.

Proof. One may proceed exactly in the same way as in the proof of Theorem 35. �

1.3.4 The Artzner-Heath example

In this subsection, we study the τ -completeness of an Artzner-Heath market (abbr. AH-
market), which is a slight generalization of the pathological economy constructed in Artzner
and Heath (1995). Now we give its precise definition. We use the same notation as in the
previous section.

Definition 17 We say that a financial market S is of the AH-type or that it is an AH-
market if, P0 and P1 being two different equivalent probability measures,

M = [P0, P1] = {Pα = αP0 + (1− α)P1;α ∈ [0, 1]} .

In this market we can choose P0 as the true probability measure. So, applying the
different versions of Douglas Theorem, one has the following result.

Proposition 18 An AH-market satisfies the following three properties:

1. it is ‖ · ‖1-complete under Pα if and only if α ∈ {0, 1};

2. it is not strongly complete under Pα for each α ∈ [0, 1];

3. it is not weakly* complete under Pα for each α ∈ [0, 1].
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Proof. The first and the third property are simple consequences of, respectively, Theorem
1 and Theorem 11. In order to prove the second property, we assume that there exists
α ∈ [0, 1] such that the market is complete w.r.t. Pα. By Theorem 2, this is equivalent to
the extremality of every ν ∈ ba+(Pα) in Ξba(ν). But, if we choose ν = Pβ for β ∈ (0, 1), Pβ

has to be extremal in Ξba(Pβ) ⊃ [P0, P1], which is obviously absurd. �

Remark 19 The previous proposition is a generalization of Proposition 4.1 of Artzner and
Heath (1995) and of the content of Section 6 of Jarrow, Jin and Madan (1999).

Now, we give a little more general construction of an AH-market than the original one
contained in Artzner and Heath (1995).

Firstly, we set (Ω,F) = (Z∗,P(Z∗)), where Z∗ is the set of integers different from zero,
and S = {Sn : n ∈ Z}. Now, we assume that every random variable Sn

1 has a two-points
support, i.e.

suppSn
1 = {n, n+ 1} for n > 0 (1.1)

Sn
1 (k) = S−n

1 (−k) for n < 0

S0
1 =

1
K (p1 + q1)

(
1{1} + 1{−1}

)
.

Remark 20 The hypothesis on the support of the price processes is not at all restrictive. In
fact, thanks to Lemme A of Dellacherie (1968), we know that the extremality of a probability
P in the set of martingale probabilities for a process S = (1, S1) ∈ S, implies S ≡ 1 or that
the support of the law of S1 is a two-points set. In financial terms the result of Dellacherie
means that, in a two-period setting, the only market model which is both arbitrage-free and
complete is the binomial one.

Then, we fix two different equivalent probabilities P0 and P1 over (Ω,F) and we denote,
for every n ∈ Z∗, p0

n = P0({n}) and p1
n = P1({n}).

We want that every process S ∈ S is a martingale under P0 and P1. Then, we have

Q ({n})Sn
1 (n) +Q ({n+ 1})Sn

1 (n+ 1) = 1 for every n > 0, (1.2)

for Q ∈ {P0, P1}, i.e. for every n > 0

p0
nS

n
1 (n) + p0

n+1S
n
1 (n+ 1) = 1, (1.3)

p1
nS

n
1 (n) + p1

n+1S
n
1 (n+ 1) = 1.

We solve (1.3) with respect to Sn
1 and we found for each n > 0

Sn
1 =

(
p0

n+1 − p1
n+1

)
1{n} −

(
p0

n − p1
n

)
1{n+1}

p1
np

0
n+1 − p0

np
1
n+1

. (1.4)

Hence, we have constructed a class S of processes, which are martingales under both P0

and P1, i.e.
[P0, P1] ⊂M.



20 A note on extremality and completeness . . .

Now, we fix Sn
1 and interpret (1.3) as an equation with respect to the vector Q and we

found that its solutions are of the form Pλ = λP0 + (1− λ)P1 for λ ∈ R. This implies, for
this kind of market,

M⊂ {Pλ;λ ∈ R} .

Now, we look for some conditions on P0 and P1 such that Pλ is not a probability when
λ /∈ [0, 1].

Lemma 21 Let P0 and P1 be two different equivalent probabilities over an arbitrary mea-
surable space (Ω,F). The following two properties are equivalent:

1. Pλ = λP0 + (1− λ)P1 is a probability if and only if λ ∈ [0, 1];

2. dP0
dP1

and dP1
dP0

are not bounded.

Proof. Firstly, we assume that the Radon-Nikodym derivative dP1
dP0

is bounded, i.e. there
exists a constant M > 1 such that dP1

dP0
≤M almost surely. Let f : Ω → R be a measurable,

positive and bounded function. If λ > 1, we have∫
fdPλ =

∫
f

(
λ+ (1− λ)

dP1

dP0

)
dP0

≥
∫
f (λ+ (1− λ)M) dP0.

Then, if one chooses λ > 1 such that λ+ (1− λ)M ≥ 0, i.e. λ ≤ M
M−1 , Pλ is a probability

measure. If we assume that the other Radon-Nikodym derivative is bounded, then we found
that there exists λ < 0 such that Pλ is a probability.

Now, let dP1
dP0

be unbounded, i.e. for every M > 0

Pα

(
dP1

dP0
≥M

)
> 0 for α = 0, 1.

Let f = 1{ dP1
dP0

≥M} and λ > 1. Then, we have

∫
fdPλ =

∫
{

dP1
dP0

≥M
}
(
λ+ (1− λ)

dP1

dP0

)
dP0

≤ (λ+ (1− λ)M)P0

(
dP1

dP0
≥M

)
< 0

for M sufficiently large. For the case λ < 0, we proceed exactly in the same way, using the
fact that dP1

dP0
is supposed unbounded. �

Finally, thanks to Lemma 20, we have the following result, which is a generalization of
the construction contained in Section 3 of Artzner and Heath (1995).
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Proposition 22 Let P0 and P1 two different equivalent probability measures on (Z∗,P(Z∗))
which satisfy condition 2 of Lemma 21. Then the class S defined by (1.1) and (1.4) is an
AH-market, i.e.

M = [P0, P1] .

Example 23 (Artzner and Heath (1995)) Let 0 < p < q < 1 be two real numbers. We set,
for every n > 0,

P0 ({n}) = Kpn1{n>0} +Kq−n1{n<0}

P1 ({n}) = P0 ({−n}) for every n ∈ Z∗,

where K is a renormalizing constant. In this case, it is obvious that

lim
n→+∞

dP1

dP0
(n) = lim

n→+∞

(
q

p

)n

= +∞

and

lim
n→−∞

dP0

dP1
(n) = lim

n→−∞

(
p

q

)n

= +∞.

So the previous proposition applies, and we find that for

Sn
1 =

(
qn+1 − pn+1

)
1{n} + (qn − pn)1{n+1}

Kpnqn (q − p)
(1.5)

the set of all equivalent martingale probabilities for S is equal to the segment [P0, P1].

1.4 Conclusions

In this chapter, we have established in a very easy way a weak version of the Douglas-
Naimark theorem, which relates the density (with respect to the weak topology) of a sub-
space of a vector topological locally convex space with the extremality of a certain family of
linear functionals. Then, in Subsection 1.2.2, we have applied this result to the space L∞(µ)
equipped with the topologies σ(L∞, Lp) for p ≥ 1, where µ is a probability measure, and
in Subsection 1.2.3 we have shown an analogue result for the spaces (L∞(µ), ‖ · ‖p), p ≥ 1.
Finally, thanks to these results, we have obtained, in Section 1.3, a condition equivalent to
the market completeness and based on the notion of extremality of measures, which has
permitted us to give new elementary proofs of the SFTAP and to discuss the completeness
of a more general construction of the Artzner-Heath example.
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Chapter 2

Arbitrage and completeness in
financial markets with given
N-dimensional distributions

This chapter is based on the technical report n. 766 of the Laboratoire de Probabilités
et Modèles Aléatoires of the Universities of Paris VI and VII, entitled “Financial markets
with given marginals via fundamental theorems of asset pricing”, to appear in the review
Decisions in Economics and Finance, date of publication: May 2004. I am grateful to Marc
Yor for helpful suggestions and remarks.

2.1 Introduction

In this chapter we are interested in the existence and uniqueness of an equivalent martingale
measure (EMM) Q with the following additional property: under Q the finite-dimensional
distributions of order N (abbr. N -dds) of the price process must belong in a given family
of probabilities on B(RN ), where N is a fixed non negative integer.

More precisely, given an arbitrage-free and incomplete financial market consisting of a
single stock whose price evolution is described by a process S = (St)t∈T (defined on a filtered
probability space (Ω,F , (Ft), P )) and given a family MN = {µt1,...,tN : t1, ..., tN ∈ T } of
probability measures on (RN ,B(RN )), we search for economically meaningful properties
which are equivalent to the existence and uniqueness of an EMM Q under which the N -dds
(N being fixed) of S are precisely given by MN .

Such a problem is motivated by the following remark: suppose that the European call
prices have arisen as the expected pay-off under a EMM Q in the financial market S, where
the instantaneous interest rate rt is a deterministic function of time, that is we can represent
the price C(k, t) of a call with strike price k and maturity t as

C(k, t) = βtEQ[(St − k)+],

where βt := exp (−
∫ t
0 rsds) is a discounting factor, e.g. the current price (time 0) of a

23
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zero-coupon bond with maturity t. When we take a right-derivative with respect to k we
find that (see Breeden and Litzenberger (1978) or Dupire (1997))

∂

∂k+
C(k, t) = −βtQ(St > k).

Thus from call prices it is possible to infer the Q-distribution of St for all t.
When the instantaneous interest rate rt is random, the above formula still holds, but to

obtain from the previous formula the law of each St under Q the agent has to know calls
and zero-coupon bonds prices.

Obviously, behind this reasoning there is the assumption that on the market there exists
a family of zero-coupon bonds and call options traded with all maturities t ∈ T , and (for call
options) all potential strike prices k. This assumption seems to be quite realistic. In fact
many authors (see e.g. Dupire (1997) or Hobson (1998)) observe that call options market
is now so liquid that one can realistic treat calls no longer as derivatives but as primary
assets, whose prices are fixed exogeneously by market sentiments .

This viewpoint drives us to interpret MJ,N as a family of exogeneous measures, obtained
by the observation of market prices.

From this discussion we can also argue, at least theoretically, that when the given
financial market is incomplete, it would be possible to reduce (even to a singleton) the set
of EMMs, by considering only those that match these N -dds.

This approach could facilitate even considerably the choice of the “good” EMM. Fur-
thermore, if the set of EMMs matching the N -dds inferred from the market is still infinite,
one could even apply the various criteria which have been developed in, e.g., Delbaen and
Schachermayer (1996) (variance-optimal martingale measure), Föllmer and Schweizer (1991)
(minimal martingale measure) and Frittelli (2000) (minimal entropy martingale measure,
see also Miyahara (1996)). This would provide a kind of mixed approach in order to select
the “right” EMM: use first some “objective” additional information on the distribution of
the stock inferred from the market prices and then one of the above “subjective” criteria.
Some authors already begin to explore this research field, e.g. see Goll and Ruschendorf
(2002) for minimal distance martingale measures, Tierbach (2002) for the mean-variance
hedging approach and the book by Föllmer and Schied (2002) (pp. 298-308) for the super-
hedging approach.

In the financial literature, there exist several articles whose topics are closely related
with ours. For instance, Hobson (1998) finds bounds on the prices of exotic derivatives
(in particular, lookback options), in terms of the market prices of call options. This is
achieved without making explicit assumptions about the dynamics of the price process of
the underlying asset, but rather by inferring information about the potential distribution
of asset prices from the call prices. Also, quite connected to this approach is the article
by Madan and Yor (2002), that contains three explicit constructions of martingales that
all have the Markov property and pre-specified marginal densities (see also Carr, Geman,
Madan and Yor (2003)). On the other hand, Brigo and Mercurio (2000) construct stock-
price processes with the same marginal lognormal law as that of geometric brownian motion
and also with the same transition density between two instants in a given discrete-time grid.
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The main difference between this part of the literature and our approach is that we fixed
also the market model and not only the N -dds and, to avoid trivialities, we assume that
the market under consideration is incomplete.

The remainder of this paper is structured as follows. Section 2.2 contains the fundamen-
tal theorems of asset pricing (abbr. FTAP) with given N -dds in a market model, where the
underlying probability space is finite; we find that the existence of a EMM with given N -dds
is equivalent to a property of no-arbitrage, which is stronger than the usual one (see Har-
rison and Pliska (1981) or Schachermayer (2001)) in the sense that it even allows to trade
(statically) in some non-replicable contingent claims. On the other hand, the uniqueness of
such a measure is equivalent to the replicability of all contingent claims by a dynamic strat-
egy in S and a static strategy in contingent claims depending on at most N time-coordinates
of the underlying price process, i.e. a weaker market completeness condition.

Section 2.3 presents the FTAP in a market with finite horizon and one risky asset,
whose price dynamics is modelled by a continuous-time, real-valued and locally bounded
semimartingale.

Finally, in Subsection 2.3.4 we apply our approach to the Black-Scholes model with
jumps and we find that, given a family of marginals such that there exists a EMM matching
them, and under some standard assumptions on the coefficients, the subset of all such EMMs
belonging to Υ 1 reduces to a singleton.

2.2 The finite case

2.2.1 The model

Let (Ω,F , P ) be a finite probability space with a filtration F = {Ft : t ∈ T } where T =
{0, ..., T} for T positive integer chosen as a fixed finite horizon, i.e.

Ω = {ω1, ω2, ..., ωK}

is a finite set, the σ-algebra F is the power set of Ω and we may assume without loss of
generality that P assigns strictly positive value to all ω ∈ Ω. We also assume that F0 is
trivial and FT = F .

We consider a financial market with d ≥ 1 risky assets modelled by an Rd+1-valued
stochastic process S = (St)t∈T = (S0

t , S
1
t , ..., S

d
t )t∈T based on and adapted to the filtered

stochastic base (Ω,F , (Ft)t∈T , P ). We shall assume that the cash account S0 satisfies S0
t ≡ 1

for all t ∈ T . As usual, this means that the stock prices are expressed in discounted terms.
We denote by H the set of trading strategies for the financial market S, i.e. the set

of all Rd-valued stochastic processes H = (Ht)t∈T = (H1
t , ...,H

d
t )t∈T which are predictable

with respect to the given filtration, i.e. each Ht is Ft−1-measurable.

1Υ is the subset of all equivalent martingale measures Qh corresponding to some parameter h deterministic
function of time (see 2.3.4).
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We then define the stochastic integral (H · S) as the real valued process ((H · S)t)t∈T
given by (H · S)0 = 0 and

(H · S)t =
t∑

j=1

Hj∆Sj , t = 1, ..., T, (2.1)

where ∆St = St − St−1.
We observe that, having defined the zero coordinate S0 of S to be identically equal to

1 so that ∆S0
t ≡ 0, this coordinate do not contribute to the stochastic integral (2.1).

We denote by Ma (resp. Me) the set of absolutely continuous (resp. equivalent) mar-
tingale measures, i.e. the set of all P -absolutely continuous (resp. P -equivalent) probability
measures Q on F such that S is a martingale under Q.

Throughout the paper we make the following standing assumption: Me is not empty
and it does not reduce to a singleton, i.e. the market is arbitrage-free and it is not complete.

Let N be a positive integer less than K and let

MN = {µt1,...,tN : ti ∈ T , 1 ≤ i ≤ N}

be a family of probability measures on B(RN×d).
We let Ma

N denote the subset of Ma formed by the probability measures under which
the law of every N -dimensional vector (St1 , ..., StN ) is precisely µt1,...,tN , and by

Me
N = {Q ∈Ma

N : Q ∼ P}

we denote the set of all EMMs with N -dds in MN , that is the subset of Ma
N containing

the probability measures that are equivalent to P .
Throughout the sequel, we will always suppose the consistency of the set MN with

respect to the martingale property, i.e. that there exists a martingale, on some stochastic
base, such that its N -dds are in MN .

When N = 1, a necessary and sufficient condition for this property can be found in
Strassen (1965) (see also the book by Föllmer and Schied (2002), pp. 103-111). We quote
it without proof.

Theorem 24 (Strassen (1965), Theorem 8, pp. 434-435) Let d a positive integer and
(µn)n≥0 be a sequence of probability measures on the measurable space (Rd,B(Rd)). A
necessary and sufficient condition for the existence of a d-dimensional martingale, say
(Mn)n≥0 = (M1

n, · · · ,Md
n)n≥0, on some filtered stochastic base, such that the distribution

of Mn is µn for all n ≥ 0 is that all µn have means, i.e.
∫
|x|µn(dx) < ∞, and that for

any concave function ψ : Rd → R µn-integrable for each n ≥ 1, the sequence (µn(ψ))n≥0 is
non-increasing (the values of the integrals may be −∞).
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Remark 25 When N is an arbitrary integer less than K, a necessary condition to the
existence of a martingale M such that the law of every N -dimensional vector (Mt1 , . . . ,MtN )
is µt1,...,tN is the following: for every concave function φ : RN → R, every N -uple tN =
(t1, . . . , tN ) and every s ∈ T , one must have∫

RN

φ(x)µtN (dxN ) ≤
∫

RN

φ(xN )µtN∧s(dxN ),

where tN∧s = (t1∧s, . . . , tN∧s). Indeed, it suffices to use the conditional Jensen inequality.
Generalizing this to the d-dimensional case is not difficult and is left to the reader.

In this paper, we treat only the case d = 1 (i.e. only one risky asset), the multidimen-
sional case being a straightforward extension.

The following proposition shows that, in order to reduce the set of EMMs and facilitate
the choice of the ”good” one, fixing a nonempty subset of marginals (i.e. 1-dds) of the
price process is not a useless operation, unless the price process is trivial, i.e. almost surely
constant.

We work on the canonical space Ω = {x1, x2, . . . , xm}T (xi real for all i = 1, . . . ,m, with
m a positive integer such that mN = K), F = P(Ω). S will be the coordinate process, that
is St(ω) = ωt for all t ∈ T and ω = (ω1, ω2, . . . , ωN ) ∈ Ω, and P a probability measure on
F . This is the right setting for the application of Strassen’s theorem (Theorem 24), stating
in particular that under the convex-order condition there exists a martingale measure Q
(not necessarily P -equivalent) for the coordinate process S.

Proposition 26 Let Me be not empty. The following statements hold:

1. If the process S is a.s. constant under P , then for every given family of marginals
M1 = (µt)t∈T , either Ma

1 = ∅ or Ma
1 = Ma.

2. Let M1 = (µt)t∈T be a given family of marginals such that Ma
1 is not empty. If

Ma = Ma
1, then S is P -a.s. constant.

Proof.

1. We assume that St = c P -a.s. for some real c ∈ {x1, . . . , xm} and for all t ∈ T . Then,
either µt 6= δc for some t ∈ T or µt = δc for all t ∈ T . In the first case Ma

1 = ∅, in the
second one Ma

1 = Ma. Indeed, obviously Ma
1 ⊆Ma, and, on the other hand, if R is

in Ma then St = c for all t ∈ T R-a.s., which implies R(St ∈ dx) = µt(dx) = δc(dx)
for all t ∈ T .

2. We assume without loss of generality that P ({ω}) > 0 for all ω ∈ Ω, and proceed
by contradiction. Let Q be a given measure in Me ⊆ Ma

1. If S is not degenerate
under P , there exist a set A and an instant t0 ∈ T such that Q(St0 ∈ A) > 0. So,
we can define, for every such A, on F a probability measure Qt0,A(•) = Q(•|St0 ∈
A). We observe now that Qt0,A is a P -absolutely continuous martingale measure for
the process S(t0) := (St)t>t0 , i.e. it is an element of Ma(S(t0)). We assume that
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Ma(S(t0)) = Ma
1(S

(t0)). Since Q ∈ Ma
1 ⊆ Ma

1(S
(t0)), this assumption implies in

particular that
Q(St0 ∈ A,St0 ∈ B) = Q(St0 ∈ A)Q(St0 ∈ B) (2.2)

for all A such that Q(St0 ∈ A) > 0 and for all B. This equality implies that St0 is
independent from itself and so St0 must be degenerate under Q and so even under P ,
which is absurd. To complete the proof, it remains to show that Ma = Ma

1 implies
Ma(S(t0)) = Ma

1(S
(t0)) for every instant t0. We proceed again by contradiction, by

assuming that there exists a probability Q′ ∈Ma(S(t0)) \Ma
1(S

(t0)) for some t0 ∈ T .
We denote by (νt)t>t0 its family of marginals, that is by assumption different from
(µt)t>t0 and satisfies the convex-order condition in Strassen’s theorem. We consider
now the following family of marginals:

ν ′t := νt01{t=0,...,t0−1} + νt1{t>t0}, t ∈ T . (2.3)

Also the family (ν ′t)t∈T satisfies the convex-order condition of Strassen’s theorem,
so that there exists, on the canonical space, a probability measure R such that the
coordinate process S is an R-martingale and, for all t ∈ T , R(St ∈ dx) = ν ′(dx).
Moreover, since the space Ω is finite, R is P -absolutely continuous, that is R ∈
Ma \Ma

1. The proof is now complete. �

2.2.2 Path-dependent contingent claims and N-mixed trading strategies

We identify the set of all contingent claims to the space L0(P ) = L0(Ω,F , P ) of all a.s.
finite random variables defined on (Ω,F , P ), and we introduce a classification of its elements
based on the notion of path-dependence, which has been introduced by Peccati (2001) in a
slightly different framework.

In order to formalize this notion, we need to define the following spaces: let Π0 be the
whole real line R and, for N ∈ {1, ..., T}, let

ΠN := v.s.
{
ϕ(St1 , ..., StN ) : ϕ ∈ L0(RN ), t1 ≤ ... ≤ tN ∈ T

}
denote the vector space spanned by all random variables that depend on at most N time-
coordinates of the process S, where L0(RN ) is the space of all real-valued Borel-measurable
functions defined on RN . Obviously, if N ′ ≤ N we have ΠN ′ ⊆ ΠN .

We say that a contingent claim f ∈ L0(P ) has a path-dependence degree (abbr. pdd) less
than or equal to N ∈ T if f ∈ ΠN . Furthermore, we say that f has pdd N if it belongs in
ΠN\ΠN−1.

Example 27 Two examples of contingent claims with pdd equal to 1 are an European call
(or put) option with maturity t and strike price k, whose pay-off function is (St − k)+ and,
assuming the price process S positive, an Asian option paying the mean value obtained by
the spot price over any subset J of T , whose pay-off function is (1/|J |)

∑
t∈J St.
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Example 28 More generally, two examples of contingent claims with pdd equal to N are
a lookback option calculated over any subset J of T and with strike price k whose pay-off
function is (supt∈J St − k)+, and an asian option with maturity N and strike price k with
pay-off (1/|J |)

∑
t∈J(St − k)+.

Remark 29 We observe that the spaces ΠN are the analogues, in the finite space case, of
the Föllmer-Wu-Yor spaces

ΠN (X) = v.s.{f(Xt1 , ..., XtN ) : f ∈ L∞(RN ), 0 ≤ t1 < ... < tN ≤ T},

where X = (Xt)t∈[0,T ] is a standard Brownian Motion, introduced by Föllmer, Wu and Yor
(2000) for the study of weak Brownian Motions (see also Peccati (2003), for their financial
interpretation in terms of space-time chaos).

We can now introduce the new notion of N -mixed trading strategy.

Definition 30 A N -mixed trading strategy is a triplet (x,H, ψ), where x ∈ R is an initial
investment, H ∈ H is a dynamic trading strategy in S and ψ is a contingent claim with pdd
less then or equal to N .

The denomination ”mixed trading strategy” comes from the fact that it is a combination
of a dynamic strategy in the underlying and a static strategy in a certain contingent claim
(i.e. buy it at t = 0 and keep it until the end).

Finally, we define another family of spaces, related to the sets ΠN and with a clear
financial interpretation: for N = 0 we set

G0 := {0}

and for N ≥ 1
GN := {ψ −EN [ψ] : ψ ∈ ΠN} (2.4)

where for all contingent claims ψ =
∑p

i=1 ϕi(St
(i)
1

, ..., S
t
(i)
N

) ∈ ΠN we have denoted

EN [ψ] :=
p∑

i=1

µ
t
(i)
1 ,...,t

(i)
N

(ϕi)

:=
p∑

i=1

∫
ϕi (x1 , ..., xN )µ

t
(i)
1 ,...,t

(i)
N

(dx1 , ..., dxN )

the price of the contingent claim ψ based on the N -dds MN , which can be viewed as the
price observed on the market.

The elements of GN are the gains which an investor can obtain by pursuing the N -mixed
strategies (0, 0, ψ), i.e. by investing statically in the contingent claim ψ at the market price
EN [ψ].



30 Arbitrage and completeness in financial markets with given N -dds

2.2.3 The first FTAP with given N-dds

In this subsection we study the problem of the existence of an EMM with given N -dds
MN for the financial model previously described. We will find that this is equivalent to a
stronger notion of no-arbitrage, involving also the contingent claims with pdd less than or
equal to N .

Following Schachermayer (2001), we denote by

K = {(H · S)T : H ∈ H} (2.5)

the set of attainable contingent claims at price zero.
On the other hand, the vector subset of L0(P ) defined by

K0
N = v.s. (K ∪ GN ) (2.6)

is called the set of contingent claims N -attainable at price zero, i.e. the set of all random
variables f ∈ K0

N of the form

f = (H · S)T + (ψ −EN [ψ]) (2.7)

for some H ∈ H and ψ ∈ ΠN . They are precisely those contingent claims that one may
replicate by pursuing some N -mixed trading strategy (0,H, ψ).

We call the cone CN in L0(P ) defined by

CN =
{
g ∈ L0 (P ) : there is f ∈ K0

N , f ≥ g
}

(2.8)

the set of contingent claims N -superreplicable at price zero, i.e. the set of all contingent
claims g ∈ L0(P ) that an investor may replicate with zero initial investment, by pursuing
some N -mixed trading strategy (0,H, ψ) and then, eventually, ”throwing away money”.

Definition 31 A financial market S satisfies the N -mixed no-arbitrage condition (N -
MNA) if

K0
N ∩ L0

+ (P ) = {0} (2.9)

or, equivalently,
CN ∩ L0

+ (P ) = {0} (2.10)

where 0 denotes the function identically equal to zero.

The previous definition formalizes a more refined notion of arbitrage: an N -mixed arbi-
trage possibility is a N -mixed trading strategy (0,H, ψ), such that the replicated contingent
claim

f = (H · S)T + (ψ −EN [ψ])

is non-negative and not identically equal to zero. So, if a financial market does not allow
for this type of arbitrage, we say that it satisfies N -MNA.



The finite case 31

Remark 32 If a market model satisfies N -MNA, then it also satisfies N ′-MNA for each
0 ≤ N ′ ≤ N , where

MN ′ =
{
µt1,...,tN′−1,tN′ ,...,tN′ ; t1, ..., tN ′ ∈ T

}
,

but the converse does not necessarily hold.

Remark 33 By the definition of G0, the condition 0-MNA is the usual condition of no-
arbitrage (e.g. see Harrison and Pliska (1981) or Schachermayer (2001)).

The first FTAP establishes the equivalence between the condition of no-arbitrage and
the existence of an EMM for the stock price process S (e.g. see Harrison and Pliska (1981)
or Schachermayer (2001)). The next theorem generalizes this equivalence to our setting. It
claims that the existence condition is equivalent precisely to N -MNA.

Theorem 34 For a financial market S the following are equivalent:

1. S satisfies N -MNA,

2. Me
N 6= ∅.

To prove this result we need the following preliminary lemma:

Lemma 35 For a probability measure Q on (Ω,F) the following are equivalent:

1. Q ∈Ma
N ,

2. EQ[f ] = 0, for all f ∈ K0
N ,

3. EQ[g] ≤ 0, for all g ∈ CN .

Proof. The implication 1.⇒ 2. is obvious. On the other hand if 2. holds we have

EQ [(H · S)T + ϕ (St1 , ..., Stn)− µt1,...,tn (ϕ)] = 0

for H ∈ H, ϕ ∈ L0(RN ) and t1, ..., tN ∈ T . So, if we take alternatively H ≡ 0 or ϕ ≡ 0, we
obtain, respectively, the martingale and the N -dds property of the price process S.

The equivalence of 2. and 3. is straightforward. �

Proof. (of Theorem 34) We use the separation Hahn-Banach Theorem as in the proof of
Theorem 2.8, Schachermayer (2001):

2.⇒ 1. If there is some Q ∈Me
N then by Lemma 35 we have that

EQ [g] ≤ 0, for g ∈ CN .

But, if there were some g ∈ CN ∩ L0
+\{0}, then, since Q ∼ P , we would have

EQ [g] > 0
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a contradiction.
1.⇒ 2. We consider the convex hull of the unit vectors (1{ωi})

K
i=1 in L0

+(P ), i.e. the set

P =

{
K∑

i=1

λi1{ωi} : λi ≥ 0,
K∑

i=1

λi = 1

}
.

P is a convex, compact subset of L0
+(P ) disjoint from K0

N . Hence there exists a random
variable φ ∈ L0(P ) and two constants α < β such that

E [φf ] ≤ α < β ≤ E [φh] for f ∈ K0
N and h ∈ P.

As K0
N is a linear space, we may replace, without loss of generality, α by 0. Hence, we may

normalize φ such that E[φ] = 1 and, by setting dQ/dP = φ and thanks to Lemma 35, it is
now easy to verify that Q ∈Me

N . �

2.2.4 The second FTAP with given N-dds

In mathematical finance, one says that a market S is complete if each contingent claim
f ∈ L0(P ) can be replicated, with a certain initial investment x ∈ R, by a predictable
(dynamic) trading strategy H ∈ H, i.e. one can write

f = x+ (H · S)T .

Here we introduce a weaker notion of market completeness named N -completeness, allowing
the agents to invest even in some non-replicable contingent claims with a certain path-
dependence on the stock S.

Definition 36 A financial market S is N -complete if for each contingent claim f ∈ L0(P )
there exists a N -mixed trading strategy (x,H, ψ) such that

f = x+ (H · S)T + (ψ −EN [ψ]) . (2.11)

Economically speaking, a financial market S is N -complete if every contingent claim
may be attained by a combination of an initial investment x ∈ R, a predictable trading
strategy H ∈ H and a contingent claim ψ with pdd less than or equal to N .

Remark 37 Two easy consequences of the definition are the following:

1. if the market is N -complete, then it is N ′-complete for all 0 ≤ N ≤ N ′;

2. a market which is N -complete is even complete if and only if GN ⊂ K.

The second FTAP is a very well-known result which relates, under the assumption of
no-arbitrage (which is equivalent to the existence of an EMM), the market completeness and
the uniqueness of the EMM, so that the problem of evaluating a contingent claim reduces
to take its expected value with respect to this measure.

Here, we state and prove an analogue of this theorem, but with the new notion of
N -completeness.
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Theorem 38 For a financial market S satisfying the condition N -MNA the following are
equivalent:

1. Me
N consists of a single element Q,

2. the market S is N -complete.

Proof. First we remark that L0(P ) = L0(Q) for each probability Q ∼ P . For the
implication 2. ⇒ 1. note that (2.11) implies that, for elements Q1, Q2 ∈ Me

N , we have
EQ1 [f ] =EQ2 [f ] for every f ∈ L0(P ) and so Q1 = Q2.

For the implication 1. ⇒ 2., we denote NN the subspace of all contingent claims
f ∈ L0(P ) which may be represented as in (2.11) and we proceed by contradiction. By
assumption NN  L0(P ). So, there exists a contingent claim g ∈ L0(P )\{0} which is
orthogonal to NN , and we can define a probability measure Q̃ 6= Q, by setting

dQ̃

dQ
= 1 +

g

2 ‖g‖∞
.

It is easy to verify that Q̃ ∈Me
N . �

2.3 The continuous-time case

2.3.1 Terminology and definitions

Let (Ω,F , P ) be a probability space with a filtration F ={Ft : t ∈ [0, T ]} satisfying the
usual conditions of right continuity and completeness, where T > 0 is a fixed finite horizon.
We also assume that F0 is trivial and FT = F . Let S = (St)t∈[0,T ] be a real-valued, F-
adapted, càdlàg, locally bounded semimartingale modelling the discounted price of a risky
asset. Furthermore let be given a family of probability measures on B(RN )

MN = {µt1,...,tN : t1 ≤ ... ≤ tN ∈ [0, T ]}

where N is a fixed positive integer, such that the usual consistency condition with respect to
the martingale property holds, i.e. there exists a filtered probability space and a martingale
with precisely these laws as N -dds (see remark below).

In these sections we will investigate the problem of the existence and uniqueness of an
equivalent local martingale measure (ELMM) Q for the price process S such that

Q (St1 ∈ dx1, ..., StN ∈ dxN ) = µt1,...,tN (dx1, ..., dxN )

for every t1 ≤ ... ≤ tN ∈ [0, T ].
In the continuous-time case, a necessary and sufficient condition for the consistency of a

N -dds family with respect to the martingale property has been obtained by Kellerer (1972)
for N = 1:
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Theorem 39 (H. G. Kellerer (1972), Theorem 3, p. 120) Let (µt)t∈[0,T ] be a family of
probability measures on B(Rd), with first moment, such that for s < t µt dominates µs in
the convex order, i.e. for each convex function φ : Rd → R µt-integrable for each t ∈ [0, T ],
we must have ∫

Rd

φdµt ≥
∫

Rd

φdµs.

Then there exists a d-dimensional Markov process (Mt) with these marginals for which it is
a submartingale. Furthermore if the means are independent of t then (Mt) is a martingale.

Proof. See Kellerer (1972), page 120.

Remark 40 As a matter of fact, Kellerer (1972) proved the above result in the case d = 1,
but its proof is essentially based on his Theorem 1 which holds for any family µt of probability
measures and each µt is defined on a polish space Et.

Remark 41 When N is arbitrary, it is immediate to adapt the necessary condition formu-
lated in Remark 25 to the continuous case.

A probability measure Q on (Ω,F) is called an ELMM for S with N -dds MN if Q ∼ P and
S is a local martingale under Q such that, for each N -uple of instants t1 ≤ ... ≤ tN ∈ [0, T ],
the law of the vector (St1 , ..., StN ) is given by µt1,...,tN .

We denote by Me
loc the set of ELMMs and by Me

N,loc the subset of Me
loc containing the

ELMMs for S with N -dds MN .
Finally, µt1,...,tN (ϕ) will frequently denote the integral

∫
RN ϕ(x)µt1,...,tN (dx), for any

bounded measurable function ϕ : RN → R.
As in the finite space case, we can introduce a classification on the space of contingent

claims L∞(P ) = L∞(Ω,F , P ), based on the notion of path-dependence. We denote by Π0

the whole real line and for N ≥ 1, we set

ΠN ≡ v.s.
{
ϕ (St1 , ..., StN ) : ϕ ∈ L∞

(
RN
)
, t1 ≤ ... ≤ tN ∈ [0, T ]

}
,

where L∞(RN ) is the space of all Borel-measurable essentially bounded functions ϕ : RN →
R.

We say that a contingent claim f ∈ L∞(P ) has a path-dependence degree (abbr. pdd)
less than or equal to N if f ∈ ΠN . On the other hand, we will say that a contingent claim
f ∈ L∞(P ) has a pdd equal to N if f ∈ ΠN\ΠN−1. Obviously, if 0 ≤ N ′ ≤ N we have
ΠN ′ ⊆ ΠN .

One can easily adapt the finite-case examples (subsection 2.2) to the continuous-time
model.

2.3.2 The first FTAP with given N-dds

In this subsection we obtain an extension of the Kreps-Yan first FTAP (see Theorem 4.7
in Schachermayer (2001), p. 43), which states the equivalence between the no-free lunch
condition and the existence of an ELMM for S.
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We recall that an admissible trading strategy is a predictable, S-integrable process H =
(Ht)t∈[0,T ] such that there exists a constant a ∈ R which satisfies Ht ≥ −a for each t ∈ [0, T ],
and such that (H · S)T is bounded. We denote by A the set of all such strategies.

Asimple denotes the subset of A formed by all simple trading strategies H, i.e. of the
type

H =
n∑

i=1

hi1]τi−1,τi],

where 0 = τ0 ≤ τ1 ≤ ... ≤ τn ≤ T are stopping times such that each stopped process Sτk

is uniformly bounded and hi are Fτi−1-measurable bounded real-valued random variables,
and K the set

K =
{

(H · S)T : H ∈ Asimple
}

of all attainable contingent claims at price zero.

Definition 42 A N -mixed admissible (simple) trading strategy is a triplet (x,H, ψ), where
x ∈ R is an initial investment, H ∈ A (Asimple) is a admissible (simple) trading strategy in
S and ψ is a contingent claim with pdd less then or equal to N .

We call the subspace K0
N of L∞(P ) defined by

K0
N := v.s.

(
K ∪ G0

N

)
, (2.12)

the set of contingent claims N -attainable at price zero, where

G0
N = {ψ −EN [ψ] : ψ ∈ ΠN} .

Then, all random variables f ∈ K0
N are of the form

f = (H · S)T + (ψ −EN [ψ]) (2.13)

= (H · S)T +
p∑

i=1

[
ϕi

(
S

t
(i)
1

, ..., S
t
(i)
N

)
− µ

t
(i)
1 ,...,t

(i)
N

(ϕi)
]

(2.14)

for some H ∈ Asimple, ϕi ∈ B(RN ), and t
(i)
1 , ..., t

(i)
N ∈ [0, T ] for 1 ≤ i ≤ p, i.e. they are

precisely those contingent claims that an economic agent may replicate with zero initial
investment, by pursuing some simple admissible N -mixed trading strategy (0,H, ψ).

On the other hand, the elements of G0
N are the gains which an investor can obtain by

buying some contingent claim in ΠN (i.e. whose pdd is less than or equal to N) at the price
given by MN .

We call the cone CN in L∞(P ) defined by

CN :=
{
g ∈ L∞ (P ) : f ≥ g for some f ∈ K0

N

}
(2.15)

the set of contingent claims N -superreplicable at price zero, i.e. the set of all contingent
claims that may be replicated with zero initial investment, by pursuing some N -mixed
trading strategy (0,H, ψ) and then, eventually, ”throwing away money”.
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Definition 43 We say that a financial market S satisfies the N -mixed no-free lunch con-
dition (N -MNFL) if

CN ∩ L∞ (P ) = {0} (2.16)

where the closure is taken with respect to the weak∗ topology σ(L∞, L1) of L∞(P ).

By following exactly the same steps as in the proof of the Yan-Kreps Theorem (e.g.
see Schachermayer (2001), Theorem 4.7, page 43), we can arrive, without any additional
difficulty, to the following result, whose proof is so omitted.

Theorem 44 The following properties are equivalent:

1. S satisfies N -MNFL,

2. Me
N,loc 6= ∅.

2.3.3 The second FTAP with given N-dds

We identify the set of contingent claims with the space L∞(P ) of all essentially bounded
random variables and we denote by τ any topology on this space. We recall that L∞ is
invariant under equivalent change of probability.

Definition 45 Let τ be some topology on L∞(P ). A financial market S is N -complete for
τ if the set

KN :=
{
x+K0

N : x ∈ R
}

is dense in L∞ equipped with the topology τ .

KN is the set of all essentially bounded contingent claims that can be perfectly replicated
by a N -mixed admissible strategy (x,H, ψ), where x is the initial investment, H is an
admissible (dynamic) strategy in S and ψ is a contingent claim with pdd less or equal to
N .

Now, we establish an analogue of the second FTAP, with the new notion ofN -completeness
and for two kind of topologies on the set of contingent claims. Recall that, given a subset C
of a vector space E, an element x ∈ E is extremal in C if the relation x = αy1 + (1− α)y2

with y1, y2 ∈ C and α ∈ (0, 1) implies x = y1 = y2.

Theorem 46 Let Q ∈Me
N,loc. The following are equivalent:

1. Q is extremal in Me
N,loc,

2. the market S is N -complete for L1(Q)-topology.

Proof. It is an easy application of Theorem 1 in Douglas (1964) (see also Naimark (1947)).
�
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Corollary 47 Let Q ∈ Me
N,loc. If Me

N,loc = {Q}, then the market S is N -complete for
L1(Q)-topology.

The previous corollary means that if there exists an ELMM with given N -dds MN and
if this measure is unique, then each contingent claim can be approximately replicated (with
respect to the topology induced by L1(Q)) by a N -mixed trading strategy.

At present, we do not know if the converse of Corollary 47 holds true. Nonetheless, we
are able to give a partial answer to this problem if we change the topology on the contingent
claims set L∞.

To prove the next results, we need the following functional analytical result (for more
general results of this type with some applications to finance, see Campi (2001)):

Lemma 48 Let P be a probability measure on (Ω,F) and let F be a subspace of L∞(P )
containing the unit function 1. F is dense in (L∞(P ), σ(L∞, L1)) if and only if every
probability measure Q � P , is an extremal point of the set of all probability measures
R� Q on (Ω,F) such that ∫

fdR =
∫
fdQ for all f ∈ F.

Proof. See Campi (2001). �

Theorem 49 Let the market S be N -complete for the weak* topology. Then, there exists
at most one Q ∈Me

N,loc.

Proof. Assume that there exists two different probability measures Q0, Q1 ∈ Me
N,loc.

Since Me
N,loc is a convex set, for each α ∈ [0, 1] Qα = αQ1 + (1− α)Q0 is in Me

N,loc. But,
since the market S is N -complete for the weak* topology, by Lemma 48, every Qα must be
extremal in the set of all probability measures R� Qα on (Ω,F) such that

∫
fdR =

∫
fdQ

for all f ∈ KN . This set containing [Q0, Q1], we have obtained a contradiction. �

To have an equivalence in Theorem 49, we have to consider a measures set larger than
Me

N,loc. Thus, if we denote by Ms
N,loc the set of all finite signed measures ν � P on (Ω,F)

such that ν(Ω) = 1 and
∫
fdν = 0 for every f ∈ KN , we have the following

Theorem 50 Let Ms
N,loc be nonempty. The following are equivalent:

1. the market S is N -complete for the weak* topology;

2. Ms
N,loc is a singleton.

Proof. 2.⇒ 1. Given a measure ν ∈ Ms
N,loc, which exists by assumption, we proceed by

contradiction. Assume that the market is not N -complete for the weak* topology, i.e. by
Lemma 48 there exists a probability Qα�Q such that

Qα= αQ1 + (1− α)Q2
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where α ∈ (0, 1) and, for each i = 1, 2, Qi is a probability measure on (Ω,F) absolutely
continuous to Q such that ∫

fdQi =
∫
fdQ for all f ∈ KN .

Now, consider the measures

νi = Qi −Q+ν

for i = 1, 2. For each i = 1, 2, νi ∈Ms
N,loc. Furthermore, since Q1 ≤ 1

αQα and Q2 ≤ 1
1−αQα,

we have Qi � Qα�Q for every i = 1, 2. Then, since |νi| ≤ Qi +Qα+|ν|, we have |νi| � Q
for each i = 1, 2. This shows that ν is not unique in Ms

N,loc and so 2. implies 1..
1. ⇒ 2. Proceed by contradiction and suppose that Ms

N,loc ⊇ {ν1, ν2}, with ν1 6= ν2.
Observe now that, by the definition of Ms

N,loc, ν1(f) = ν2(f) = 1 for all f ∈ KN and
ν1(Ω) = ν2(Ω) = 1, that is

ν+
1 (f)− ν−1 (f) = ν+

2 (f)− ν−2 (f) = 1, for all f ∈ KN ,

and

ν+
1 (Ω)− ν−1 (Ω) = ν+

2 (Ω)− ν−2 (Ω) = 1,

where ν+
i and ν−i (i = 1, 2) are, respectively, the positive and the negative part of νi in its

Hahn-Jordan decomposition. This implies

ν+
1 (f) + ν−2 (f) = ν+

2 (f) + ν−1 (f), for all f ∈ KN ,

and

ν+
1 (Ω) + ν−2 (Ω) = ν+

2 (Ω) + ν−1 (Ω) =: k > 0.

Thus, define the two probability measures Q1 and Q2 as follows:

Q1 =
ν+
1 + ν−2
k

, Q2 =
ν+
2 + ν−1
k

.

Observe that Q1 = Q2 on Yd and define

Q := αQ1 + (1− α)Q2

for some real α ∈ (0, 1). It is straightforward to verify that Q � P (since |νi| � P , for
i = 1, 2) and that Q1 and Q2 are absolutely continuous to Q. We have so built a probability
measure Q absolutely continuous to P that is not extremal in the set of all probability
measures R � Q on (Ω,F) such that

∫
fdR =

∫
fdQ for all f ∈ KN . Finally, Lemma 48

applies and gives that 1.⇒ 2. �
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2.3.4 An application: the Black-Scholes model with jumps

Now, as an application of our approach, we will study the Black-Scholes model with jumps
(BSJ) and we will show that when its coefficients (drift, volatility, intensity and jump size)
are time-deterministic functions, it admits at most one EMM with pre-specified marginals
(1-dds). Our presentation of BSJ is based on the survey article by Runggaldier (2002).

Let (Ω,F , P ) be a probability space on which are defined a Wiener process (Wt)t∈[0,T ]

and a Poisson process (Nt)t∈[0,T ] with deterministic intensity (λt)t∈[0,T ], so the compensated
process Mt = Nt −

∫ t
0 λsds is a P -martingale adapted to the natural filtration of N . Fur-

thermore we assume that these two processes are independent. As usual we will work on
the augmented filtration

Ft = σ (Ws, Ns : s ≤ t) t ∈ [0, T ]

jointly generated by the Wiener and Poisson processes.
We now suppose that the discounted price process (St)t∈[0,T ] satisfies the following SDE

dSt = St− [atdt+ σtdWt + γtdNt] t ∈ (0, T ] (2.17)

with S0 > 0 constant and where at, σt, ϕt are three time-deterministic functions such that:

•
∫ T
0 |at| dt <∞;

•
∫ T
0 σ2

t dt <∞, and σt > 0 for all t ∈ [0, T ];

•
∫ T
0 |γt| dt <∞ and γt > −1 for all t ∈ [0, T ].

By applying Itô’s formula to the process lnSt we find

St = S0e
∫ t
0 (as− 1

2
σ2

s)ds+
∫ t
0 σsdWs+

∫ t
0 ln(1+γs)dNs . (2.18)

It is well-known that this model admits an infinite number of EMMs Qh, depending on
a parameter h = (ht) and which can be represented as

dQh

dP
= e

∫ T
0 (λt(1−ht)− 1

2
ϑ2

t )dt+
∫ T
0 ϑtdWt+

∫ T
0 ln htdNt , (2.19)

for any couple of predictable processes (h, ϑ) where ht ≥ 0 is arbitrary and

ϑt = σ−1
t (−at − htλtγt) . (2.20)

Then, under the EMM Qh the dynamic of the price process (St)t∈[0,T ] is given by

dSt = St−

[
σtdW̃

h
t + γtdM̃

h
t

]
(2.21)

where for every t ∈ [0, T ]

W̃ h
t := Wt −

∫ t

0
ϑsds (2.22)
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and

M̃h
t := Nt −

∫ t

0
hsλsds (2.23)

are, respectively, a Wiener process and a compensated Poisson process under Qh. More-
over, we denote Υ the set of all equivalent martingale measures Qh corresponding to some
parameter h = (ht) deterministic function of time.

Remark 51 We point out that Υ is a quite remarkable set, because it contains the pricing
measure used by Merton (1976) and also the main equivalent martingale measures investi-
gated in the incomplete markets literature: the Föllmer-Schweizer minimal martingale mea-
sure, the Frittelli-Miyahara minimal entropy martingale measure and the Esscher transform
martingale measure (see the paper by Henderson and Hobson (2001)).

We are now able to study the set Υ(M1) of EMMs belonging to Υ with given marginals
M1 = (µt). The main result is the following:

Proposition 52 Let M1 = {µt : t ∈ [0, T ]} be a family of marginals for the price process
S such that Υ(M1) is not empty. If

σt > 0, γt > −1, λt > 0

where at, σt, γt are deterministic functions of time, there exists only one EMM Q ∈ Υ for
S such that for all t ∈ [0, T ]

Q (St ∈ dx) = µt (dx) .

Furthermore we have the following formulae for h = (ht): if n ∈ Z \ {0} and (1 + γt)n −
(n− 1)γt − 1 6= 0 then

ht =
d
dtm

(n)
t − σ2

t
2 n(n− 1)m(n)

t

λt[(1 + γt)n − (n− 1)γt − 1]m(n)
t

, (2.24)

where for t ∈ [0, T ],

m
(n)
t =

∫
R
xnµt (dx) .

Proof. Letting f ∈ C2(R), we apply Itô’s formula for discontinuous semimartingales to
f(St) and obtain

f (St) = f (S0) +
∫ t

0
f ′ (Ss)Ssasds

+
∫ t

0
f ′ (Ss)Ss−σsdWs +

1
2

∫ t

0
f ′′ (Ss)σ2

sS
2
sds

+
∫ t

0
[f (Ss− (1 + γs))− f (Ss−)] dNs. (2.25)
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By the relations (2.22) and (2.23) for a given value of the parameter h, we have

f (St) = f (S0) +
∫ t

0
f ′ (Ss)Ssasds

+
∫ t

0
f ′ (Ss)Ss−σs(dW̃ h

s + ϑsds) +
1
2

∫ t

0
f ′′ (Ss)σ2

sS
2
sds

+
∫ t

0
[f (Ss− (1 + γs))− f (Ss−)] (dM̃h

s + hsλsds). (2.26)

If we choose f(x) = xn, n ∈ Z \ {0}, take the expectation with respect to the EMM
Qh ∈Me

1, and use relation (2.20), we obtain

EQh [Sn
t ] = Sn

0 + (n− 1)
∫ t

0
EQh

[Sn
s ](as −

as + hsλsγs

σs
σs)ds

+
n(n− 1)

2

∫ t

0
EQh [Sn

s ]σ2
sds

+
∫ t

0
EQh [Sn

s ]hsλs[(1 + γs)
n − 1]ds

= Sn
0 +

n(n− 1)
2

∫ t

0
EQh [Sn

s ]σ2
sds

+
∫ t

0
EQh [Sn

s ]hsλs[(1 + γs)
n − (n− 1)γs − 1]ds.

Since under Qh the price process has marginals (µt), we have

EQh [Sn
t ] = m

(n)
t :=

∫
R
xnµt (dx)

and then

m
(n)
t = m

(n)
0 +

n(n− 1)
2

∫ t

0
σ2

sm
(n)
s ds

+
∫ t

0
hsλs [(1 + γs)

n − (n− 1)γs − 1]m(n)
s ds. (2.27)

Thus, the application t 7→ m
(n)
t is absolutely continuous, and we can take its Radon-

Nikodym derivative with respect to t and, having assumed (1 + γt)n − (n − 1)γt − 1 6= 0,
after an easy calculation, we obtain

ht =
d
dtm

(n)
t − σ2

t
2 n(n− 1)m(n)

t

λt[(1 + γt)n − (n− 1)γt − 1]m(n)
t

, dt-a.e.,

which is well-defined since m(n)
t > 0. This ends the proof. �
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Remark 53 Actually, formula (2.24) implies that in order to reduce the subset Υ of EMMs
of the model to a singleton it suffices to know, for example, the second positive moments of
the price process S under one of them. In this case (i.e. n = 2) the condition (1 + γt)n −
(n− 1)γt − 1 6= 0 reduces to assume γt 6= 0 for all t ∈ [0, T ].

Remark 54 We can interpret equation (2.27) as a family of constraints on the moments of
the marginals µt considered as unknown. Formally, if we assume that h is a deterministic
function of time and that every µt satisfies µt(dx) = g(t, x)dx with g(t, x) sufficiently regular,
from (2.27) and by several simple integrations by parts, it is easy to see that g(t, x) must be
the solution of the following EDP:

−σ
2
t

2
d2

dx
(x2g(t, x)) + htλtγt

d

dx
(xg(t, x)) +

d

dt
g(t, x)

= htλt
1

1 + γt
g(t,

x

1 + γt
) + (γt − 1)htλtg(t, x).

Remark 55 If the coefficients of the model are constant we have an even stronger conclu-
sion: to reduce the EMMs subset Υ to a singleton, it suffices to know only one marginal,
e.g. the terminal one µT . Indeed, in this case the price process S is the exponential of a
Lévy process and it is well known that any finite-dimensional distributions of a Lévy process
is uniquely determined by any of its (one-dimensional) marginals.

2.4 Conclusions

In this chapter, given a financial market S, and a family of probability measures MN =
{µt1,...,tN : t1, ..., tN ∈ T } on B(RN ), we have obtained equivalent conditions for the existence
and uniqueness of an EMM Q such that the Q-distribution of every vector (St1 , ..., StN ) is
µt1,...,tN .

When the probability space is finite (Section 2.2), the existence of such a measure Q
is equivalent to the following no-arbitrage property: one cannot construct any arbitrage
position by trading dynamically in the underlying and statically in a contingent claim with
pdd less or equal to N , bought at the price given by MN . We have called this condition
N -mixed no-arbitrage. On the other hand, Q is unique in the set of all EMMs that match
the set MN , if and only if each contingent claim may be replicated by a predictable trading
strategy and a contingent claim with pdd less or equal to N .

When the probability space is arbitrary and the price of the stock is modelled by a
locally bounded real-valued semimartingale (Section 2.3), we had to consider a topological
notion of N -mixed no-arbitrage, that we have named N -mixed no-free-lunch. In this setting,
by considering two different topologies on the set of all contingent claims, we have defined
two corresponding notions of N -completeness. We have so established two versions of the
second FTAP.

In the last subsection, we have shown that for the Black-Scholes model with jumps,
when the coefficients are deterministic and given a family of marginals for the price process,
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the subset of Υ of all EMMs induced by a parameter h deterministic in time and under
which the price process has exactly the pre-specified marginals reduces to a singleton.

We finally remark that our main results have an immediate generalization if, more
generally, we fix the N -dds of the price process only on a given subset (finite or infinite) J
of T . This easy extension is left to the reader. Future work will be devoted to investigate,
with this approach, other concrete and more general examples.
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Chapter 3

Mean-variance hedging in large
financial markets

This chapter is based on the homonymous technical report n. 758 of the Laboratoire de
Probabilités et Modèles Aléatoires of the Universities of Paris VI and VII, submitted to the
review Mathematical Finance. I would like to thank Huyên Pham for fruitful suggestions
and Marc Yor for his remarks. I am also grateful to Marzia De Donno and Maurizio Pratelli
for their interest in this work.

3.1 Introduction

In this chapter we study the hedging problem for a future stochastic cash flow F , delivered
at time T , in a large financial market.

Let us consider first a market consisting of n + 1 primitive assets X = {S0, S}: one
bond with price process S0

t = exp(
∫ t
0 rsds) and n risky assets whose price process is a

continuous n-dimensional semimartingale S = (S1, · · · , Sn). A criterion for determining a
“good” hedging strategy is to solve the mean-variance hedging (MVH) problem introduced
by Föllmer and Sondermann (1986):

min
ϑ∈Θ

E
[
F − V x,ϑ

T

]2
, (3.1)

where

V x,ϑ
T = S0

T

(
x+

∫ T

0
ϑtd

(
S/S0

)
t

)
(3.2)

is the terminal value of a self-financed portfolio in the primitive assets, with initial invest-
ment x and quantities ϑ invested in the risky assets.

This problem has been solved by Föllmer and Sondermann (1986) and Bouleau and
Lamberton (1989) in the martingale case: S0 deterministic and S/S0 is a martingale under
the objective probability P thanks to direct application of the Galtchouk-Kunita-Watanabe
(abbr. GKW) projection theorem. Extensions to more general cases were later studied by

45
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Gourieroux, Laurent and Pham (1998) (abbr. GLP), Rheinländer and Schweizer (1997)
and Pham et al. (1998), in a continuous-time framework under more or less restrictive
conditions.

In particular GLP, by adding a numéraire as an asset to trade in, show how self-financed
portfolios may be expressed with respect to this extended assets family, without changing the
set of attainable contingent claims. They introduce the hedging numéraire V (ã), relate it to
the variance-optimal martingale measure P̃ and, using this numéraire both as a deflator and
to extend the primitive assets family {S0, S}, transform the original MVH problem (3.1) into
an equivalent and simpler one; this transformed quadratic optimization problem is solved
by the GKW projection theorem under a martingale measure for the hedging numéraire
extended assets family {V (a), S0, S}. This procedure gives an explicit description of the
optimal trading strategy for the original MVH-problem.

Here, motivated by the papers by Kabanov and Kramkov (1994, 1998), Klein and
Schachermayer (1996) and, more recently, Bjork and Näslund (1998) and De Donno (2002),
we seek to extend this approach to a large financial market, i.e. a market with one bond
with price process S0

t = exp(
∫ t
0 rsds) and countably many risky assets whose price process

is a sequence of continuous semimartingales S = (Si)i≥1.
The main problem of this extension is that we have to adopt a stochastic integration (SI)

theory with respect to a sequence of semimartingales, i.e. with respect to a semimartingale
taking values in the space RN of all real sequences, which is much more delicate to use
than the vectorial one. Mikulevicius and Rozovskii (1998, 1999) developed a SI theory for
cylindrical martingales, i.e. martingales taking values in a topological vector space (see also
De Donno (2002), De Donno and Pratelli (2002) and De Donno et al. (2003) for financial
applications). More recently, De Donno and Pratelli (2003) have proposed a stochastic
integral for a sequence of semimartingales, generalizing the SI theory by Mikulevicius and
Rozovskii in this particular case. We will use their construction for making our MVH
problem meaningful.

This chapter is organized as follows. In Section 3.2, we recall some basic facts on
stochastic integration with respect to a sequence of semimartingales S = (Si)i≥1. Moreover,
we obtain an infinite-dimensional version of the GKW-decomposition theorem.

In Section 3.3, we describe the model and define the set Θ of trading strategies, by using
the SI theory of the previous section, and we show that the set of all attainable contingent
claims G(x,Θ) is closed in L2 (P ) for every initial investment x ∈ R.

In Section 3.4, following GLP, we define a numéraire as a self-financed portfolio based on
the primitive assets family with unit initial investment and whose value is strictly positive
at every date; then we generalize the artificial extension method to our setting, by showing
invariance properties of state-price densities and especially of self-financed portfolios: the
infinite-dimensional Memin’s theorem turns out to be crucial to show this property. We
recall here that the original finite version of Memin’s theorem (see Memin (1980)) states
that, if S is an Rd-valued semimartingale, then the set of all stochastic integrals

∫
ξdS, for

ξ predictable and S-integrable, is closed with respect to the Emery topology.
In Section 4.4, we show how to use the artificial extension method for solving the MVH

problem in this framework. The main difference with respect to the finite assets case is
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that here we have not an explicit expression of the correspondences relating the solutions of
the initial and the transformed MVH-problem. Finally in Section 3.6, we define the finite-
dimensional MVH problems, corresponding to consider only the market formed by the bond
S0 and the first n risky assets Sn := (S1, . . . , Sn), n ≥ 1; we show that the sequence of
solutions to these finite-dimensional problems converges to the solution of the original one
(3.1).

3.2 Some preliminaries on stochastic integration with re-
spect to a sequence of semimartingales

In this section we will follow very closely the treatment of the stochastic integration for
countable many semimartingales, that the reader can find in De Donno and Pratelli (2003).
For unexplained notations we refer to Jacod (1979).

Furthermore, we remark that there is a huge literature on stochastic integration for
martingales and semimartingales taking values in infinite-dimensional spaces. Here we
quote only the pioneering work by Kunita (1970) and the book by Métivier (1982).

Let (Ω,F , P ) be a probability space with a filtration F ={Ft, t ∈ [0, T ]} satisfying the
usual conditions of right-continuity and completeness, where T > 0 is a fixed finite horizon.
Letting p ≥ 1, we will denote by Hp(P ) the set of all real-valued martingales M on the given
filtered probability space, such that M∗ = supt∈[0,T ] |Mt| is in Lp(P ) (see Jacod (1979)).
We recall that Hp(P ), equipped with the norm

‖M‖Hp(P ) = ‖M∗‖Lp(P )

is a Banach space. Moreover, we denote by S(P ) the space of real semimartingales, equipped
with Emery’s topology (see Emery (1979)). S(P ) is a complete metric space.

Let S = (Si)i≥1 be a sequence of semimartingales. We denote by E the set of all
real-valued sequences (i.e. RN), endowed with the topology of pointwise convergence and
by E′ its topological dual, namely the space of all signed measures on N which have a
finite support; each of them can be identified with a sequence with all but finitely many
components equal to 0. We will denote by ei the element, both of E′ and E such that
eij = δi,j (where δi,j is the Dirac delta); 〈·, ·〉E′,E will denote the duality between E′ and E.

We denote by U the set of not necessarily bounded operators on E and, for all h ∈ U , we
denote by D(h) the domain of h (D(h) ⊂ E). We say that a sequence (hn) ⊂ E converges
to h ∈ U if limnh

n(x) = h(x), for every x ∈ D(h).
We say that a process ξ taking values in U is predictable if there exists a sequence (ξn)

of E′-valued predictable processes, such that for all (ω, t), and for all x ∈ D(ξt(ω)), one has
ξt(ω) = limnξ

n
t (ω).

Finally, a E′-valued predictable process ξ is called simple integrand if it has the form ξ =∑
i6n ξ

iei = (ξ1, ξ2, · · · , ξn, 0, · · · ), where ξi are real-valued predictable bounded processes.
We note that one can define the stochastic integral of a simple integrand ξ with respect to
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S in the following obvious way: ∫
ξdS =

∫ ∑
i6n

ξidSi.

We are now able to give the following definition:

Definition 56 (De Donno and Pratelli (2003)) Let ξ be a predictable U-valued process. We
say that ξ is integrable with respect to S if there exists a sequence (ξn) of simple integrands
such that:

1. ξn converges to ξ pointwise;

2.
∫
ξndS converges to a semimartingale Y in S(P ).

We call ξ a generalized integrand and define
∫
ξdS := Y . Moreover, we denote by L(S,U)

the set of generalized integrands.

This notion of stochastic integral is well-defined, as shown by De Donno and Pratelli
(2003) (Proposition 5.1), and moreover there is a infinite-dimensional extension of Memin’s
theorem (Théorème III.4 in Memin (1980)), which states that the set of stochastic integrals
with respect to a semimartingale is closed in S(P ):

Theorem 57 (De Donno and Pratelli (2003), Theorem 5.2) Let be given a sequence of
semimartingales S = (Si)i>1 and a sequence (ξn) of generalized integrands: assume that
(
∫
ξndS) is a Cauchy sequence in S(P ). Then there exists a generalized integrand ξ such

that
∫
ξndS →

∫
ξdS.

In the sequel, we will need an infinite-dimensional version of the GKW-decomposition for
a sequence of continuous local martingales. For this reason, we briefly recall the Mikulevicius
and Rozovskii (1998) theory of SI for a sequence of locally square integrable martingales
and show how to extend it to a sequence of continuous local martingales.

We assume that Si = M i ∈ H2(P ) for all i > 1. It is easy to see that there exist:

1. an increasing predictable real-valued process (At) with E[AT ] <∞,

2. a family C = (Cij)i,j>1 of predictable real-valued process, such that C is symmetric
and non-negative definite, in the sense that Cij = Cji and

∑
i,j6l xiC

ijxj > 0, for all
l ∈ N, for all x ∈ Rl, dPdA a.s.,

such that 〈
M i,M j

〉
t
(ω) =

∫ t

0
Cij

s,ωdAs(ω). (3.3)

For a simple integrand ξ =
∑

i6n ξ
iei, the Itô isometry holds:

E

[(∫ T

0
ξsdMs

)2
]

= E

∫ T

0

∑
i,j6n

ξi
sξ

j
sd
〈
M i,M j

〉
s

 = E

∫ T

0

∑
i,j6n

ξi
sξ

j
sC

ij
s dAs

 . (3.4)
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Consider C for fixed (ω, t) and assume for simplicity that C is definite positive. The
above Itô isometry makes it natural to define on E′ a norm by setting:

|x|2E′
t,ω

= 〈x,Ct,ωx〉E′,E =
∞∑

i,j=1

xiC
ij
t,ωxj , (3.5)

where the sum contains a finite number of terms. The norm is induced by an obvious scalar
product, which makes E′ a pre-Hilbert space. This norm depends on (ω, t): for simplicity,
we omit ω, but we keep t to remind us about this dependence and denote by E′t the space
E′ with norm induced by Ct. It is not difficult to see that E′t is not complete, but we can
take its completion which we denote by H ′

t and which is an Hilbert space. H ′
t is generically

not included in E, hence the canonical injection from E′ to E cannot be extended to an
injection from H ′

t to E.
Moreover, H ′

t can be characterized as the topological dual of the completion Ht of the
pre-Hilbert space CtE

′ with respect to the norm induced by the scalar product

(Ctx,Cty)CtE′ = 〈x,Cty〉E′,E = 〈y, Ctx〉E′,E .

The following theorem is essentially due to Mikulevicius and Rozovskii (1988) (see their
Proposition 11, p. 145). But we prefer to follow the formulation given by De Donno and
Pratelli (2003) of this result, since it fits better into their more general theory of SI for a
sequence of semimartingales, as introduced before.

Theorem 58 (De Donno and Pratelli (2003), Theorem 3.1) Let ξ be a U-valued process
such that:

1. D(ξω,t) ⊃ Hω,t for all (ω, t);

2. ξω,t|Hω,t ∈ H ′
ω,t;

3. ξt(Cten) is predictable for all n;

4. E[
∫ T
0 |ξt|2H′

t
dAt] <∞.

Then, there exists a sequence ξn of simple integrands, such that ξn
ω,t converges to ξω,t in

H ′
ω,t for all (ω, t) and

∫
ξndM is a Cauchy sequence in H2(P ). As a consequence, we can

define the stochastic integral
∫
ξdM as the limit of the sequence

∫
ξndM .

Remark 59 (Mikulevicius and Rozovskii (1998), De Donno (2002)) When Ct is only non
negative-definite, (3.5) defines a seminorm on E′. The construction of H ′

t and of the
stochastic integral can be carried on replacing E′ with the quotient space E′/ kerCt.

Remark 60 The set of all stochastic integrals
∫
ξdM , with ξ fulfilling the four conditions

of Theorem 58, is a closed set in H2(P ) and coincides with the stable subspace generated by
M in H2(P ). It is an immediate extension of the analogous result in the finite-dimensional
case.
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When M = (M i)i>1 is a sequence of continuous local martingales, it is quite easy to
extend the previous construction. Indeed, from Dellacherie (1978) we know that there exists
a uniform localization for the sequence (M i), i.e. a sequence (τn) of stopping times such
that τn → T and M i

·∧τn
is a bounded martingale for all i > 1. To see this, it suffices to

apply Théorème 2 and Théorème 3 of Dellacherie (1978), p. 743, to the sequence M .
This property allows us to define by localization, in the usual way, a stochastic integral

with respect to M and for all U-valued processes ξ such that:

1. D(ξω,t) ⊃ Hω,t for all (ω, t);

2. ξω,t|Hω,t ∈ H ′
ω,t;

3. ξt(Cten) is predictable for all n;

4.
∫ T
0 |ξt|2H′

t
dAt <∞ P -a.s..

Finally, again by using the uniform localization, it is easy to prove a GKW-decomposition
theorem in our infinite-dimensional setting:

Proposition 61 Let M = (M i)i>1 be a sequence of continuous local martingales and N be
a real-valued local martingale. Then, there exist an integrand ξ satisfying conditions 1.-4.
above, and a real-valued local martingale L vanishing at zero and orthogonal to each M i,
such that

N = N0 +
∫
ξdM + L. (3.6)

Proof. Apply the Dellacherie uniform localization and Remark 60 and proceed exactly as,
for instance, in Jacod (1979), Théorème (4.27) if N is locally square-integrable. Otherwise,
use the following argument by Ansel and Stricker (1993) (D.K.W. cas 3): write N as the
sum N = N c + Nd, where N c and Nd are its continuous and purely discontinuous parts.
Nd is orthogonal to all continuous local martingales and N c is locally bounded and then
it can be written as N c =

∫
ξdM + U with U orthogonal to M and ξ satisfying conditions

1.-4.. To conclude, it suffices to set L = U +Nd. �

3.3 The model

Let (Ω,F , P ) be a probability space with a filtration F ={Ft, t ∈ [0, T ]} satisfying the usual
conditions of right-continuity and completeness, where T > 0 is a fixed finite horizon. We
also assume that F0 is trivial and FT = F . There exists countably many primitive assets
modelled by a sequence of real valued processes X = (Si)i≥0: one bond whose price process
is given by S0

t = exp
∫ t
0 rsds, with r a progressively measurable process with respect to F,

interpreted as the instantaneous interest rate, and countably many risky assets, whose price
processes Si are continuous semimartingales for every i ≥ 1. In the rest of the paper, we
shall make the standing assumption on the bond process S0:

S0
T ,

1
S0

T

∈ L∞ (P ) , (3.7)
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which is equivalent to assuming that |
∫ T
0 rsds| ≤ c, P a.s. for some positive constant c.

An important notion in mathematical finance is the set of equivalent martingale mea-
sures, also called risk-neutral measures. We let

M2 =
{
Q� P :

1
S0

T

dQ

dP
∈ L2 (P ) , every Si/S0 is a Q-local martingale

}
denote the set of P -absolutely continuous probability measures Q on F with square in-
tegrable state price density (1/S0

T )dQ/dP and such that each component of the sequence
S/S0 is a local martingale under Q. By

Me
2 = {Q ∈M2 : Q ∼ P}

we denote the subset of M2 formed by the probability measures that are equivalent to P .
Throughout the paper, we make the natural standing assumption:

Me
2 6= ∅. (3.8)

This assumption is related to some kind of no-arbitrage condition and we refer to Delbaen
(1992) and to the seminal paper by Kreps (1981) for a general version of this fundamental
theorem of asset pricing for a potentially infinite family of price processes. For the more
specific framework of large financial markets, one could see also Kabanov and Kramkov
(1994, 1998) and Klein and Schachermayer (1996).

We now define the space of trading strategies and the related notion of self-financed
portfolio.

We denote by Θ the space of all generalized integrands ϑ ∈ L(S/S0,U) such that∫ T
0 ϑtd(S/S0)t is in L2(P ) and for all Q ∈Me

2

∫
ϑd(S/S0) is a Q-martingale.

We observe (see the discussion in De Donno (2002), pp. 8-11) that in general one cannot
define the value process of a trading strategy ϑ in the usual way: the expression ϑt · (S/S0)t

is not always well-defined. This is because ϑt takes values in the space U which, in most
cases, is strictly bigger than E′, and so we cannot use duality to define a product between
the strategy and the price process. For this reason we give the following:

Definition 62 For a trading strategy ϑ ∈ Θ the value process of the corresponding self-
financed portfolio with respect to the primitive asset family {S0, S} and with initial value
x ∈ R is given by

Vt = V x,ϑ
t = S0

t

(
x+

∫ t

0
ϑsd

(
S/S0

)
s

)
t ∈ [0, T ] (3.9)

Finally we denote by GT (x,Θ) the set of investment opportunities (or attainable claims)
with initial value x ∈ R:

GT (x,Θ) :=
{
S0

T

(
x+

∫ T

0
ϑsd

(
S/S0

)
s

)
: ϑ ∈ Θ

}
⊆ L2 (P ) .
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Proposition 63 The set GT (x,Θ) is closed in L2(P ).

Proof. Let ϑn be a sequence in Θ such that S0
T (x +

∫ T
0 ϑn

s d(S/S
0)s) converges in L2(P )

to a random variable V . Take some Q ∈ Me
2 and set Y n

t :=
∫ t
0 ϑ

n
s d(S/S

0)s, t ∈ [0, T ]. By
(3.7) and since the identity mapping from L2(P ) to L1(Q) is in fact a continuous operator
into H1(Q), there exists a real constant c > 0 such that

‖(Y n
t )‖H1(Q) ≤ c ‖Y n

T ‖L2(P ) .

This shows that the sequence of Q-martingales (Y n
t )t∈[0,T ] converges in H1(Q). Now, since

convergence in H1(Q) implies that in S(Q) (see Theorem 14 in Protter (1980), p. 208)
and Emery’s topology is invariant under a change of an equivalent probability measure (see
Théorème II.5 in Memin (1980), p. 20), the sequence (Y n

t )t∈[0,T ] converges in S(P ) too.
Now, thanks to Theorem 57 we can exhibit a generalized integrand ϑ ∈ L(S/S0,U) such
that

V = S0
T

(
x+

∫ T

0
ϑsd

(
S/S0

)
s

)
.

The other two properties, characterizing the set Θ, are obviously satisfied by the process ϑ
(use the same arguments as in Delbaen and Schachermayer (1996b), proof of Theorem 1.2).
�

This proposition makes our MVH-problem meaningful, ensuring the existence and unique-
ness of its solution.

3.4 Numéraire and artificial extension

Definition 64 A numéraire is defined as a self-financed portfolio with respect to the prim-
itive assets family {S0, S}, characterized by a trading strategy a ∈ Θ and a value process
V (a) = V 1,a as in (3.9) with unit initial value and intermediate values assumed to be almost
surely strictly positive.

Remark 65 To avoid misunderstandings of our notation, observe that we have denoted by
“a” the strategy used as numéraire, instead of the integrand in its exponential representation
as in GLP.

To such a numéraire a we can associate a new countable family of assets consisting of this
numéraire and the primitive assets. This assets family is called, as in GLP, an a-extended
assets family and its price process is given by {V (a), X}. Its price process renormalized in
the new numéraire is

{1, X (a)} := {1, X/V (a)} .

Notice that when a = 0, V (a) is the initial bond price process S0 and X(a) = (1, S/S0).



Numéraire and artificial extension 53

The notion of equivalent martingale measures may also be applied with respect to the
a-extended assets family {V (a), X}. Given a numéraire a ∈ Θ, we define

M2(a) =
{
Q (a) � P :

1
VT (a)

dQ (a)
dP

∈ L2 (P ) , every X (a)i is a Q (a) -local martingale
}

and
Me

2 (a) = {Q (a) ∈M2 (a) : Q (a) ∼ P} .

As in GLP Proposition 3.1, and with the same proof, we have the following characterization
of the set Me

2(a) of equivalent a-martingale measures in terms of the set Me
2 of equivalent

martingale measures:

Proposition 66 Let a ∈ Θ be a numéraire and V (a) its value process. There is a one-to-
one correspondence between M2(a) (resp. Me

2(a)) and M2 (resp. Me
2): Q(a) ∈ M2(a)

(resp. Me
2(a)) if and only if there exists Q ∈M2 (resp. Me

2) such that

dQ (a)
dP

=
VT (a)
S0

T

dQ

dP
. (3.10)

We now define the notion of trading strategy and the self-financed portfolio with respect
to the a-extended assets family.

We denote by Φ(a) the space of trading strategies with respect to the a-extended assets
family {V (a), X}, i.e. the set of all φ(a) ∈ L(X(a),U) such that VT (a)

∫ T
0 φt(a)dXt(a) ∈

L2(P ) and V (a)
∫
φ(a)dX(a) is a local Q(a)-martingale for all Q(a) ∈Me

2(a).
For a trading strategy φ(a) ∈ Φ(a) the value process of the corresponding self-financed

portfolio with respect to the a-extended assets family {V (a), X} and with initial value x ∈ R
is given by

Vt = V
x,φ(a)
t = Vt (a)

(
x+

∫ t

0
φs (a) dXs (a)

)
t ∈ [0, T ] (3.11)

Let us denote by GT (x,Φ(a)) the set of terminal values of self-financed portfolios with
respect to the a-extended assets family {V (a), X}, and with initial value x:

GT (x,Φ (a)) :=
{
VT (a)

(
x+

∫ T

0
φs (a) dXs (a)

)
: φ (a) ∈ Φ (a)

}
.

In the finite assets case (GLP, Proposition 3.2, p. 186-188) the artificial extension leaves
invariant the investment opportunity set, and there are explicit expressions for the corre-
spondences linking the investment opportunities sets. We briefly recall this result: let an

be a n-dimensional numéraire and V (an) = V 1,an
its value process,

• to a self-financed portfolio (V n, ϑn) with respect to {S0, S
n}, corresponds the self-

financed portfolio (V n, φn(an)) = (V n, (ηn(an), ϑn(an))) w.r.t. {V (an), S0, S} given
by

ηn
t (an) =

V n
t − ϑn

t S
n
t

S0
t

and ϑn
t (an) = ϑn

t , t ∈ [0, T ]; (3.12)
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• to a self-financed portfolio (V n, φn(an)) = (V n, (ηn(an), ϑn(an))) w.r.t. {V (an), S0, S}
corresponds the self-financed portfolio (V n, ϑn) w.r.t. {S0, S

n} given by

ϑn
t = ϑn

t (an) + an
t

V n
t − φn

t (an)Xn
t

Vt(an)
, t ∈ [0, T ]. (3.13)

Note that the above expressions involve some scalar product between strategies and
price processes, which in our infinite-dimensional setting are not well-defined. This makes
very difficult to find the infinite-dimensional analogues of the GLP-correspondences above.
Nonetheless, the following proposition states their existence for our large financial market
and, as a direct consequence, the invariance of the investment opportunities set under a
change of numéraire.

Proposition 67 Let a ∈ Θ be a numéraire and V (a) its value process.

1. Let ϑ ∈ Θ be a trading strategy with respect to the primitive assets family {S0, S}
and let V denote the value process of the corresponding self-financed portfolio. Then
there exists a trading strategy φ(a) ∈ Φ(a) with respect to the a-extended assets family
{V (a), X} with the same value process V .

2. Let φ(a) = (η(a), ϑ(a)) ∈ Φ(a) be a trading strategy with respect to the a-extended
assets family {V (a), X} and let V denote the value process of the corresponding self-
financed portfolio. Then there exists a trading strategy ϑ ∈ Θ with respect to the
primitive assets family {S0, S} with the same value process V .

3. We have then in particular that

GT (x,Θ) = GT (x,Φ (a)) . (3.14)

Proof. 1. Let ϑ ∈ Θ be a trading strategy with respect to the primitive assets family
{S0, S} with value process V = S0(V0 +

∫
ϑd(S/S0)). By Definition 56 there exists a

sequence ϑn of simple integrands w.r.t. S/S0 such that
∫
ϑnd(S/S0) converges in S(P ) to∫

ϑd(S/S0).
We associate to each approximating strategy ϑn a self-financed portfolio with respect to

the primitive assets family, whose value process is given by

V n
t = S0

t

(
V0 +

∫ t

0
ϑn

s d
(
Sn/S0

)
s

)
, t ∈ [0, T ].

By GLP, Proposition 3.2 (i), there exists a trading strategy φn(a) = (ηn(a), ϑn(a)) given
by (3.12) with V n(a) instead of V n(an) and with the same value process V n, i.e.

S0
t

(
V0 +

∫ t

0
ϑn

s d
(
S/S0

)
s

)
= Vt(a)

(
V0 +

∫ t

0
φn

s (a)dXs(a)
)
, t ∈ [0, T ].
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By the multidimensional version of Proposition 4 in Emery (1979), we have that

S0

V (a)

(
V0 +

∫
ϑnd

(
S/S0

))
→ S0

V (a)

(
V0 +

∫
ϑd
(
S/S0

))
in S(P ), as n→∞, and so the sequence

∫
φn(a)dX(a) is convergent in S(P ). Now, by the

infinite-dimensional version of Memin’s theorem (Theorem 57) there exists a generalized
integrand φ(a) ∈ L(X(a),U) such that V0 +

∫
φn(a)dX(a) → V0 +

∫
φ(a)dX(a) in S(P ), as

n→∞, and obviously for all t ∈ [0, T ]

S0
t

(
V0 +

∫ t

0
ϑsd

(
S/S0

)
s

)
= Vt (a)

(
V0 +

∫ t

0
φs (a) dXs (a)

)
.

Finally, by Proposition 66 and since ϑ ∈ Θ, the process
∫
φ(a)dX(a) is a local Q(a)-

martingale for all Q(a) ∈Me
2(a), and also VT (a)

∫ T
0 φs(a)dXs(a) ∈ L2(P ), i.e. φ(a) ∈ Φ(a).

2. Let φ(a) ∈ Φ(a) be a trading strategy with respect to the a-extended assets family
{V (a), X} with value process of the corresponding self-financed portfolio given by V (a)(V0+∫
φ(a)dX(a)).

By definition of Φ(a), there exists a sequence of simple integrands φn(a) = (ηn(a), ϑn(a)),
with ηn(a) real-valued, converging pointwise to φ(a) and such that∫

φn(a)dX(a) →
∫
φ(a)dX(a)

in S(P ) as n→∞.
Denote by V n the value process of the approximating self-financed portfolio correspond-

ing to φn(a), i.e. V n = V (a)(V0 +
∫
φn

s (a)dX(a)), and consider the following sequence of
strategies ϑn with respect to {S0, S} defined by the GLP correspondence (3.13):

ϑn
t = ϑn

t (a) + atψ
n
t (a), t ∈ [0, T ],

where

ψn =
V n − φn(a)Xn

V (a)
.

We remark that the process ϑn takes values in U . Now, if we proceed as in the second part
of the proof of Proposition 3.2 in GLP (observe that, by definition of generalized integrand,
φn(a) is bounded, which implies ψn(a) locally bounded), we obtain

d(V n/S0)t = ψn
t d(V (a)/S0)t + ϑn

t (a)d(S/S0)t.

Being d(V (a)/S0)t = atd(S/S0)t with a ∈ L(S/S0,U), if we approximate a by a sequence
ak of simple integrands converging pointwise to a and such that

∫
akd(S/S0) →

∫
ad(S/S0)

in S(P ), also the sequence
∫
ψn(a)akd(S/S0) converges in S(P ) with n fixed and k tending

to infinity and then, by Theorem 57, there exists a generalized integrand ζn such that

ψn
t (a)d

(
V (a)
S0

)
t

= ζn
t d

(
S

S0

)
t

,



56 MVH in large financial markets

and moreover, since ψn(a)ak converges pointwise to ψn(a)a, ζn = ψn(a)a. Furthermore

S0
t

(
V0 +

∫ t

0
ϑn

s d(S/S
0)s

)
= Vt(a)

(
V0 +

∫ t

0
φn

s (a)dXs(a)
)
, t ∈ [0, T ].

Finally, by letting n tend to infinity and by using the same argument (infinite-dimensional
version of Memin’s theorem) as in the previous part of the proof (after having inverted the
rôles of ϑn and φn(a)), one can easily show that there exists a strategy ϑ ∈ Θ, whose value
process equals V . The proof of the point 2 is now complete.

3. It is clear from the first two points of this proposition. �

As we have discussed just before this proposition, since it is not possible in this setting
to define a product between strategies and price processes, we are not able to find an explicit
expression for the infinite-dimensional GLP correspondences. We only know that the two
strategies sets are related by the equality of their value processes, i.e. given a strategy ϑ
(resp. φ(a)) its corresponding strategy φ(a) (resp. ϑ) satisfies the following equation:

S0
t

(
V0 +

∫ t

0
ϑsd(S/S0)s

)
= Vt(a)

(
V0 +

∫ t

0
φs(a)dXs(a)

)
, t ∈ [0, T ].

The previous proposition ensures the existence of a unique solution to this equation when
ϑ (resp. φ(a)) is fixed. Nonetheless, we observe that if, given a trading strategy ϑ w.r.t.
{S0, S}, its approximating sequence ϑn is such that ϑnS

n converges pointwise to some
process U , then the corresponding trading strategy φ(a) = (η(a), ϑ(a)) is given by

ηt(a) =
Vt − Ut

S0
t

ϑt(a) = ϑt, t ∈ [0, T ].

Analogously, if, given a trading strategy φ(a) w.r.t. {V (a), S0, S}, its approximating se-
quence φn(a) is such that φn(a)Xn converges pointwise to a process W , then the corre-
sponding trading strategy ϑ is given by

ϑt = ϑt(a) + at
Vt −Wt

Vt(a)
, t ∈ [0, T ].

Remark 68 In Section 3.6, we will see that there exists a sequence of predictable trading
strategies ϑn,∗, that both solve the MVH-problem arisen by considering only the first n risky
assets, and its value processes converge to the value process of ϑ∗, solution to problem (3.1),
in L2(P ) as n tends to infinity.

3.5 The MVH problem

We would like to apply the artificial extension method introduced by GLP to the following
“large” mean-variance hedging optimization problem:

J(x, F ) := min
ϑ∈Θ

E
[
F − S0

T

(
x+

∫ T

0
ϑtd

(
S/S0

)
t

)]2

. (H (x))
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where F ∈ L2(P ) and x ∈ R are fixed. In financial terms, given an FT -measurable con-
tingent claim F ∈ L2(P ), we are looking for a self-financed portfolio with respect to the
primitive assets family {S0, S}, with initial investment x, that minimizes the expected
square of the hedging residual. Mathematically speaking, we would like to project the FT -
measurable square integrable random variable F − S0

Tx on the closed subspace GT (0,Θ)
of L2(P ). There exists a unique solution ϑ∗ = ϑ∗(x,H) to the problem (H (x)) called the
optimal hedging strategy, with associated value process

V ∗
t = V ∗

t (x, F ) = S0
T

(
x+

∫ T

0
ϑ∗t (x, F ) d

(
S/S0

)
t

)
.

The couple (V ∗, ϑ∗) is called optimal hedging portfolio.
Let us consider first the following optimization problem:

min
ϑ∈Θ

E
[
S0

T

(
1 +

∫ T

0
ϑtd

(
S/S0

)
t

)]2

(P)

which is a particular case of (H (x)) for a zero cash flow F = 0 and with initial wealth
x = 1. Since, by Proposition 8, GT (1,Θ) is a non-empty closed convex set in L2(P ) under
the standing assumptions (3.7) and (3.8), problem (P) has a solution ã ∈ Θ ,which leads to
a unique terminal wealth VT (ã) = V 1,ã

T = S0
T (1 +

∫ T
0 ãtd(S/S0)t). Let us consider also the

dual quadratic problem of (P):

min
Q∈M2

E
[

1
S0

T

dQ

dP

]2

. (D)

Under the standing assumption (3.7) and (3.8), the set

D2 : =
{

1
S0

T

dQ

dP
: Q ∈M2

}
is a non-empty closed convex set in L2(P ), and therefore problem (D) admits a unique
solution P̃ ∈M2.

Our aim, as in GLP, is to prove that VT (ã) is strictly positive so that it can be chosen
as a numéraire. It is possible to extend all results of GLP, Section 4, to our case, i.e. for
countably many risky assets. We summarize them in the following:

Theorem 69 Assume (3.7) and (3.8).

1. The variance-optimal martingale measure (abbr. VOMM) P̃ solution to problem (D)
is related to the terminal wealth VT (ã) corresponding to the solution ã of problem (P)
by

1
S0

T

dP̃

dP
= E

[
1
S0

T

dP̃

dP

]2

VT (ã). (3.15)

2. P̃ is equivalent to P ; that is , P̃ ∈Me
2.
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3. The self-financed portfolio value process V (ã) is strictly positive:

Vt(ã) > 0, P a.s., t ∈ [0, T ] .

Proof. The proof is exactly as in the case of a finite number of risky assets, for whom see
GLP, Theorem 4.1, for point 1 and Theorem 4.2 for points 2 and 3. �

Since the self-financed portfolio value process V (ã) is strictly positive, we can use it as
a numéraire that we call the hedging numéraire. From (3.15), the VOMM is then related
to the hedging numéraire by

dP̃

dP
=

VT (ã)S0
T

E
[
VT (ã)S0

T

] (3.16)

Following GLP, we will solve problem (H (x)) by transforming it into a simpler one
corresponding to the martingale case thanks to the artificial extension method. Let us
consider the hedging numérare ã and the associated ã-extended assets family {V (ã), S0, S}.
We can define the equivalent ã-martingale measure P̃ (ã) given by the relation

dP̃ (ã)
dP

=
VT (ã)2

E [VT (ã)]2
(3.17)

and we call it the variance-optimal ã-martingale measure. Let us consider the quadratic
optimization problem

J ã(x, F ) = min
φ(ã)∈Φ(ã)

E
P̃ (ã)

[
F

VT (ã)
− x−

∫ T

0
φt (ã) dXt (ã)

]2

(Hã (x))

It is easy to see (this is a straightforward extension of Proposition 5.1 in GLP) that problems
(H (x)) and (Hã (x)) are equivalent in the following sense: if ϑ∗ and φ∗(ã) are the unique
solutions of, respectively, problem (H (x)) and problem (Hã (x)), then they have the same
value process, i.e.

S0
t

(
V0 +

∫ t

0
ϑ∗sd(S/S

0)s

)
= Vt(ã)

(
V0 +

∫ t

0
φ∗s(ã)dXs(ã)

)
, t ∈ [0, T ]. (3.18)

Moreover, the relation (5.2) in GLP, between their minimal quadratic risks, is still verified,
i.e. we still have

J (x, F ) = E [VT (ã)]2 J ã (x, F ) . (3.19)

Now since P̃ (ã) ∈ Me
2(ã), the continuous process X(ã) is a locally square integrable mar-

tingale under P̃ (ã). Furthermore, being F square integrable under P , the claim F/VT (ã) is
square integrable under P̃ (ã). The infinite-dimensional GKW-projection theorem (Propo-
sition 61) implies that there exists a U-valued predictable process φF (ã) satisfying

E
P̃ (ã)

[〈∫
φF (ã) dX (ã)

〉
T

]
<∞
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and a real-valued square integrable P̃ (ã)-martingale R̃(ã), orthogonal to X(ã) under P̃ (ã),
such that

F

VT (ã)
= E

P̃ (ã)

[
F

VT (ã)

]
+
∫ T

0
φF (ã) dX (ã) + R̃T (ã) .. (3.20)

It is now easy to see (use the same argument as in Lemma 5.1 of GLP) that the solution
φ∗(ã) to problem (Hã (x)) is given by the integrand in the decomposition (4.18), i.e. φ∗(ã) =
φF (ã), and that the associated minimal quadratic risk of problem (Hã (x)) is given by

J ã (x, F ) =
(
E

P̃ (ã)

[
F

VT (ã)

]
− x

)2

+ E
P̃ (ã)

[
R̃T (ã)

]2
. (3.21)

We now summarize how to “theoretically” solve our initial infinite-dimensional MVH-
problem (H (x)): compute the hedging numéraire ã and consider the MVH-problem (Hã (x))
corresponding to the price process X(ã), the strategies set Φ(ã) and the probability P̃ (ã),
which is a martingale measure for the new integrator; the GKW-projection theorem gives
its unique solution φ∗(ã). Now, in order to find the optimal strategy ϑ∗, solve with respect
to ϑ the following stochastic equation:

S0
t

(
V0 +

∫ t

0
ϑsd(S/S0)s

)
= Vt(ã)

(
V0 +

∫ t

0
φ∗s(ã)dXs(ã)

)
, t ∈ [0, T ]. (3.22)

Observe that Proposition 67 ensures the existence of a unique solution for this equation.
We conclude this section by considering the problem

min
x∈R

J (x, F ) , (H)

which corresponds to the projection of F on the closed subspace {GT (x,Θ) : x ∈ R} of L2(P )
(to see this use the same argument as in GLP, p. 195). The solution x∗(F ) to problem
(H) is called the approximation price for F (see Schweizer (1996)) and it is obviously a
generalization of the usual arbitrage-free price for F . From (3.19) and (3.21) one can easily
deduce that the approximation price for F is given by

x∗ (F ) = E
P̃ (ã)

[
F

VT (ã)

]
and so, by Proposition 66,

x∗ (F ) = E
P̃

[
F

S0
T

]
. (3.23)

This shows that, even in a market with countably many assets, the VOMM can be inter-
preted as a viable price system corresponding to a mean-variance criterion, and also extends
Theorem 5.2 of GLP.
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3.6 Finite-dimensional MVH problems

For all n ≥ 1, we denote by Fn = {Fn
t : t ∈ [0, T ]} the (completed) filtration generated by

the n-dimensional primitive assets family {S0, S
n}, Fn = Fn

T , by Pn the restriction on Fn

of the probability measure P and we set

Mn
2 = {Qn probability measure on Fn : Qn � Pn,

1
S0

T

dQn

dP
∈ L2 (P ) , Sn

/S0 is a local Qn-martingale
}

and
Mn,e

2 = {Qn ∈Mn
2 : Qn ∼ Pn} .

Assumption (3.8) ensures that, for all n ≥ 1, the set Mn,e
2 is not empty. Recall that

S
n = (S1, · · · , Sn), n ≥ 1.

In this section we consider for all n ≥ 1 the following n-dimensional mean-variance
hedging (n-MVH) problem:

min
ϑn∈Θn

E
[
F − S0

T

(
x+

∫ T

0
ϑn

t d
(
S

n
/S0

)
t

)]2

, (Hn (x))

where we have denoted by Θn the set of all Rn-valued S
n
/S0-integrable Fn-predictable

processes ϑn such that S0
T

∫ T
0 ϑn

t d(S
n
/S0)t ∈ L2(Fn, P ) and for all Qn ∈ Mn

2 , the process∫
ϑnd(Sn

/S0) is a Qn-martingale, F ∈ L2(P ) and x ∈ R being fixed.
All the objects that we have introduced in the previous two sections have their n-

dimensional counterparts, their notations and financial interpretations will be self-evident.
The aim of this section is to study the asymptotical behaviour, as n → ∞, of the

sequence (ϑn,∗)n≥1, where ϑn,∗ is the unique solution to problem (Hn (x)).
Let us consider the following finite-dimensional dual problem associated to the assets

family {S0, S
n}, n ≥ 1:

min
Qn∈Mn

2

E
[

1
S0

T

dQn

dPn

]2

. (Dn)

Under the standing assumptions (3.7) and (3.8), problem (Dn) admits a unique solution
P̃n ∈ Mn

2 , which we call n-dimensional variance-optimal martingale measure (abbr. n-
VOMM).

Now some other notations from Delbaen and Schachermayer (1996a): for all n ≥ 1, we
denote by Kn

0 the subspace of L∞(Fn, P ) spanned by the stochastic integrals of the form

fn = h′n

((
S

n
/S0

)
τ2
−
(
S

n
/S0

)
τ1

)
where τ1 ≤ τ2 are Fn-stopping times such that the stopped process (Sn

/S0)τ2 is bounded
and hn is a bounded Rn-valued Fn

τ1-measurable function.
We denote by K̂n

0 the closure of Kn
0 in L2(P ) and by K̂n the closure of the span of Kn

0

and the constants in L2(P ), i.e. K̂n = span(Kn
0 , 1).
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On the other hand we denote by K0 the subspace of L∞(Fn, P ) given by the union of
all Kn

0 , i.e. K0 := ∪n≥1K
n
0 , by K̂0 the closure of K0 in L2(P ) and by K̂ the closure of

the span of K0 and the constants in L2(P ), i.e. K̂ = span(K0, 1). Obviously a probability
measure Qn on Fn (resp. a probability measure Q on F) is a local martingale measure for
S

n
/S0 (resp. for S/S0) if and only if EQn [fn] = 0 for every fn ∈ Kn

0 (resp. EQ[f ] = 0 for
every f ∈ K0).

We recall the following characterizations of the VOMM P̃ and the n-VOMM P̃n (here
we identify any measure Q with the linear functional EQ[·] and linear functionals on L2(P )
with elements of L2(P )):

Lemma 70 (Lemma 2.1(c) in Delbaen and Schachermayer (1996a)) Assume (3.7) and
(3.8).

1. P̃ is the unique element of K̂ vanishing on K̂0 and equaling 1 on the constant function
1;

2. For all n ≥ 1, P̃n is the unique element of K̂n vanishing on K̂n
0 and equaling 1 on

the constant function 1.

We have then the following

Proposition 71 Assume (3.7) and (3.8). The sequence P̃n converges in L2(P ), as n→∞,
to the VOMM P̃ solution to problem (D).

Proof. It is an immediate application of the projection theorem for Hilbert spaces. �

Now, we consider the following n-MVH problem:

min
ϑn∈Θn

E
[
S0

T

(
1 +

∫ T

0
ϑn

t d
(
S

n
/S0

)
t

)]2

(Pn)

and we set

Gn
T (x,Θn) :=

{
S0

T

(
x+

∫ T

0
ϑn

s d
(
S

n
/S0

)
s

)
: ϑn ∈ Θn

}
.

We remark that for all n ≥ 1

Gn
T (x,Θn) ⊆ Gn+1

T

(
x,Θn+1

)
⊆ GT (x,Θ) .

It is well known that, under the assumptions (3.7) and (3.8), Gn
T (0,Θn) is closed in L2(P )

and so each problem (Pn) has a unique solution ãn ∈ Θn , which leads to a unique terminal
wealth V n

T (ãn) = V 1,ãn

T = S0
T (1 +

∫ T
0 ãn

t d(S
n
/S0)t). As in GLP and in the previous section,

the n-VOMM P̃n satisfies the following properties (see Theorems 4.1 and 4.2 in GLP):
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1. the n-VOMM P̃n is related to the terminal wealth V n
T (ãn) corresponding to the solu-

tion ãn of problem (Pn) by

1
S0

T

dP̃n

dPn
= E

[
1
S0

T

dP̃n

dPn

]2

V n
T (ãn) (3.24)

2. P̃n ∈Mn,e
2

3. V n
t (ãn) > 0, Pn a.s., t ∈ [0, T ].

We can so use the self-financed portfolio value process V n(ãn) as a numéraire that
we call n-dimensional hedging numéraire.. We define the n-dimensional variance-optimal
ãn-martingale measure by the relation

dP̃n (ãn)
dPn

=
V n

T (ãn)2

En

[
V n

T (ãn)
]2

and consider the n-dimensional analogue of problem (Hã (x)):

min
φn(ãn)∈Φn(ãn)

E
P̃ n(ãn)

[
F

V n
T (ãn)

− x−
∫ T

0
φn

t (ãn) dXt (ãn)
n
]2

(Hãn

n (x))

whereX(ãn)
n

= X
n
/V n(ãn) and Φn(ãn) is the set of all Rn+1-valuedX(ãn)

n
-integrable pre-

dictable processes such that V n
T (ãn)

∫ T
0 φn

t (ãn)dXt(ãn)
n ∈ L2(Fn, P ) and for all Qn(ãn) ∈

Mn
2 (ãn) (which has an obvious meaning), the process

∫
φn(ãn)dX(ãn)

n
is a local Qn(ãn)-

martingale.
We recall that, for all n ≥ 1, the solution to problem (Hãn

n (x)) is given by the Rn+1-
valued predictable integrand φn,∗(ãn) satisfying the integrability condition

E
P̃ n(ãn)

[〈∫
φn,∗ (ãn) dX (ãn)

n
〉

T

]
<∞

in the following GKW-decomposition

F

V n
T (ãn)

= E
P̃ n(ãn)

[
F

V n
T (ãn)

]
+
∫ T

0
φn,∗ (ãn) dX (ãn)

n
+ R̃n

T (ãn) , (3.25)

where R̃n(ãn) is a real-valued square integrable (Fn, P̃n(ãn))-martingale, orthogonal to
X(ãn)

n
under P̃n(ãn), and then the associated minimal quadratic risk of problem (Hãn

n (x))
is given by

J ãn
(x, F ) =

(
E

P̃ n(ãn)

[
F

V n
T (ãn)

]
− x

)2

+ E
P̃ n(ãn)

[
R̃n

T (ãn)
]2
. (3.26)
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Proposition 72 Let ϑn,∗ and φn,∗ be solutions to problems (respectively) (Hn (x)) and
(Hãn

n (x)) for all n ≥ 1. Then we have the following assertions:

1.
∫ T
0 ϑn,∗

t d(Sn
/S0)t converges to

∫ T
0 ϑ∗td(S/S

0)t in L2(P ) as n → ∞, where ϑ∗ is the
solution to problem (H (x));

2. V n
T (ãn)

∫ T
0 φn,∗

t (ãn)dXt(ãn)
n

converges to VT (ã)
∫ T
0 φ∗t (ã)dXt(ã) in L2(P ) as n→∞,

where φ∗ is the solution to problem (Hã (x)).

Proof. 1. It suffices to note that for all n ≥ 1, S0
T

∫ T
0 ϑn,∗

t d(Sn
/S0)t is the orthogonal

projection of S0
T

∫ T
0 ϑ∗td(S/S

0)t onto the subspace Gn
T (0,Θn) closed in L2(P ).

2. By Proposition 3.2 of GLP and Proposition 67 we have, respectively, that for all
n ≥ 1

S0
T

(
x+

∫ T

0
ϑn,∗

t d
(
S

n
/S0

)
t

)
= V n

T (ãn)
(
x+

∫ T

0
φn,∗

t (ãn) dXt (ãn)
n
)

and

S0
T

(
x+

∫ T

0
ϑ∗td

(
S/S0

)
t

)
= VT (ã)

(
x+

∫ T

0
φ∗t (ã) dXt (ã)

)
.

Then assertion 2. follows easily. �

Proposition 72 suggests the following natural procedure to compute, at least asymptot-
ically, the optimal strategy ϑ∗:

1. instead of (H (x)), consider the n-dimensional problem (Hn (x));

2. solve the equivalent problem associated (Hãn

n (x)), by means of the GKW-projection
theorem;

3. come back to the solution ϑn,∗ of the original n-dimensional problem (Hn (x)), by
means of the correspondence given in GLP, Theorem 5.1, p. 198;

4. let n tend to infinity.

Remark 73 Firstly, we point out that, with respect to the Emery topology, used to prove
Proposition 67, the L2(P )-convergence works only for the finite-dimensional optimal hedg-
ing strategies. Then, to establish the correspondence between the sets Θ and Φ(a) of all
strategies, one has to deal with convergence in S(P ).
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3.7 Conclusions

In this chapter, we have generalized the artificial extension method, developed in a market
with a finite number of risky assets by GLP, to a large financial market. The more delicate
point is the use of the SI theory (by De Donno and Pratelli (2003)) with respect to a
sequence of semimartingales to define the “good” set of trading strategies and to extend the
invariance property (under the change of numéraire) of the set of all attainable contingent
claims. Indeed, since in the infinite-dimensional setting the strategies are allowed to take
values in the space U of non necessarily bounded operators on E, it is not possible multiply
the strategies and the price process S. This observation has two consequences: firstly,
we can not define the value process in the usual way but directly as a stochastic integral
(Definition 62); secondly, to pass from the solution of the artificial MVH problem to the
original one, we have to solve equation (3.22), whose solution is known explicitly in the
finite case, but it is not in this infinite-dimensional setting.

We have also studied (Section 3.6) the asymptotic behaviour of the solutions of the finite-
dimensional MVH problems and shown their convergence in L2(P ) sense to the optimal
strategy ϑ∗, which suggests a practical method to approximate it.

A further generalization of this approach could be to a market with a continuum of
stochastic processes modelling the dynamics of forward rates, i.e. to a process taking values
in the space C([0, T ]) of all continuous real functions defined on the time interval [0, T ].
Applications to more concrete models, e.g. interest rate or “large” stochastic volatility
models, will be the subject of a future work.



Chapter 4

Some results on quadratic hedging
with insider trading

This chapter is based on the homonymous technical report n. 841 of the Laboratoire de
Probabilités et Modèles Aléatoires of the Universities of Paris VI and VII, submitted to
the review Stochastic Processes and their Applications. I wish to thank Marc Yor for his
support and also Huyên Pham and Francesca Biagini for their interest in this work.

4.1 Introduction

In this chapter we begin the study of an hedging problem for a future stochastic cash flow
X (delivered at some instant t < T , where T is a given finite horizon) in an arbitrage-free
and incomplete financial market characterized by the presence of two kinds of investors,
which have different levels of information on the future price evolution.

When the given financial market is complete, every contingent claim can be perfectly
replicated by a self-financing portfolio strategy based on the underlying assets, usually
modelled by an Rd-valued semimartingale S. In this case, one can reduce to zero the risk of
the claim by a suitable dynamic strategy. In the incomplete case, this is no longer possible
for a general claim. Every agent then faces the problem of managing the risk they incur by
buying or selling the claim.

In the mathematical finance literature, there are two main quadratic approaches to
tackle this difficulty: local risk minimization (abbr. LRM) and mean-variance hedging
(abbr. MVH). Since one cannot ask simultaneously for the perfect replication of a given
general claim by a portfolio strategy and the self-financing property of this strategy, we
have to relax one of these two conditions. The LRM keeps then the replicability and relaxes
the self-financing condition, by requiring it only on average. On the other hand, the MVH
keeps the self-financing condition and relaxes the replicability, by requiring it approximately
in L2-sense.

To be a little more precise, Föllmer and Sondermann (1986) introduced the risk min-
imization approach, which consists in comparing strategies by means of a risk measure in

65
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terms of a conditional mean square error process. When the price process is a (local) mar-
tingale under P , it was shown that a unique risk-minimizing strategy exists and it can be
computed using the Galtchouck-Kunita-Watanabe (abbr. GKW) decomposition (for a short
review on this topic, see Ansel and Stricker (1993)). The case of a semimartingale price pro-
cess is much more delicate and it induced Schweizer (1988) to introduce the concept of LRM.
Existence of a LRM-strategy is now related to the existence of a so-called Föllmer-Schweizer
decomposition, which can be viewed as a generalization of the GKW-decomposition and
characterized by means of the minimal martingale measure (abbr. MMM) introduced by
Föllmer and Schweizer (1991).

On the other hand, in the MVH approach, one looks for self-financing strategies which
minimize the residual risk between the contingent claim and the terminal portfolio value.
Again, existence and construction of an optimal strategy in the martingale case are stated
by means of the GKW-decomposition of the given claim we search to hedge. In the semi-
martingale case, we have two kinds of characterization of the optimal strategy obtained by
Gourieroux et al. (1998) (by means of a suitable change of numéraire) and by Rheinländer
and Schweizer (1997), who obtained a representation of it in a feedback form. Anyway,
in both papers, the variance-optimal martingale measure (abbr. VOMM), introduced by
Schweizer (1996) plays a fundamental rôle.

All these papers deal with financial market models in which all agents have the same
information flow, represented by a filtration which in most cases is generated either by the
underlying price processes or by the driving brownian motions, as in the classical diffusion
models as well as in the stochastic volatility models.

An important and natural development of this study is the introduction, in a general
semimartingale model, of an insider. While the ordinary agent chooses his trading strategy
according to the “public” information flow F = (Ft)t∈[0,T ], the insider possesses from the
beginning additional information about the outcome of some random variable G and there-
fore has the large filtration G = (Gt)t∈[0,T ] with Gt = ∩ε>0(Ft+ε∨σ(G)) at his disposal. For
instance, the insider may know the price of a stock at time T , or the price range of a stock
at time T , or the price of a stock at time T distorted by some noise and so on.

In the past few years, there has been an increasing interest in asymmetry of information,
and the enlargement of filtrations techniques, developed by the French School of Probability,
revealed a crucial mathematical tool to investigate this topic. The reader could look at the
paper by Brémaud and Yor (1978), the Lecture Notes by Jeulin (1980) and the series
of papers in the Séminaire de Calcul Stochastique (1982/83) of the University Paris VI
published in 1985, containing among others the important paper by Jacod (1985).

On the other hand, the mathematical finance literature focuses mainly on the problem
of portfolio optimization of an insider. We refer here to Karatzas and Pikovsky (1996),
Amendinger et al. (1998), Grorud and Pontier (1998) and Imkeller et al. (2001). All these
works consider the differential of utility between the two agents (as previously described)
and one important conclusion is that the differential is the relative entropy of the additional
r.v. G with respect to the original probability measure P . We quote also a recent paper by
Biagini and Øksendal (2002), which adopts a different approach based on forward integrals
with respect to the brownian motion, and a preprint by Baudoin and Nguyen-Ngoc (2002),
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who study a financial market where the price process may jump and there is an insider
possessing some weak anticipation on the future evolution of a stock (i.e. he knows the law
of some functional of the price process).

The present chapter uses the same probabilistic tools as in these articles, but deals with
the hedging problem of a given contingent claim X ∈ L2(P ) in a general semimartingale
financial market admitting the phenomenon of asymmetry of information as formalized
above. In particular, we would compare the hedging strategies of the ordinary agent and
the insider, when they both adopt the LRM or the MVH approach. We will search to
answer the following natural questions: for what kind of additional information will the two
agents pursue the same optimal hedging strategies? How are the two optimal strategies and
the two intrinsic risks of the claim different? The remainder of the chapter is structured as
follows.

In Section 4.2 we collect the main results about initial enlargement of filtrations. In
particular, we recall that if the additional r.v. G satisfies P [G ∈ · |Ft](ω) ∼ P [G ∈ · ] for
all t ∈ [0, T ), then there exists a version of the conditional density (px

t )t∈[0,T ) of G pos-
sessing good measurability properties (Jacod (1985) and Amendinger (2000)). We quote
also a result by Jacod (1985) who states that, under the above assumptions, S is also a
semimartingale with respect to the enlarged filtration G and provides its canonical de-
composition. Finally, we recall the representation of pG and its inverse as a stochastic
exponential (Amendinger et al. (1998)).

Section 4.3 deals with LRM for a claim X ∈ L2(P,Ft) with t < T given. We first
review the definitions of cost process and locally risk minimizing strategy (abbr. LRM-
strategy) and then its characterization in terms of the Föllmer-Schweizer decomposition
and the minimal martingale measure. We then establish a relation between the MMMs of
the ordinary agent and the insider and we use it to compare the LRM-strategies for a large
class of r.v.s G. More precisely, we show that for such a G the two agents pursue the same
optimal strategy and the cost process of the ordinary agent is just the projection on his
filtration F of that of the insider.

In Section 4.4 we investigate the MVH approach with insider trading. After having
recalled the main features of this approach, in particular the Rheinländer-Schweizer feedback
representation of the optimal strategy ϑMV H,H for H ∈ {F,G}, we compare the MVH-
strategies in the martingale case, when the price process S is a (local) P -martingale under
both F and G, and we that their optimal strategies are equal. Then, we show that this
equality still hold for the “optimal strategies” of the two agents calculated under their
respective VOMMs. Unfortunately, we are not able to compare the MVH-strategies in the
general case, but nonetheless we can give a feedback representation of the difference process
ξMV H = ϑMV H,G − ϑMV H,F in a quite general stochastic volatility model (including Hull
and White, Stein and Stein and Heston models) for all r.v.s G that are measurable with
respect to the filtration generated by the volatility process.
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4.2 Preliminaries on initial enlargement of filtrations

Let a probability space (Ω,F , P ) be given and equipped with a filtration F = (Ft)t∈[0,T ]

satisfying the usual conditions of completeness and right continuity, where T ∈ [0,∞] is a
fixed time horizon. We also assume that F0 is trivial.

Given an F-measurable random variable G taking values in a Polish space (U,U), we
denote by G = (Gt)t∈[0,T ] the filtration F initially enlarged by G and made right-continuous,
i.e.

Gt :=
⋂
ε>0

(Ft+ε ∨ σ(G)) t ∈ [0, T ].

Furthermore, we set F0 := (Ft)t∈[0,T ) and G0 := (Gt)t∈[0,T ); note the difference between
[0, T ] and [0, T ). For a given t ∈ [0, T ), we will frequently use also the notations Ft :=
(Fs)s∈[0,t] and Gt := (Gs)s∈[0,t].

Now, we make the following fundamental technical assumption:

P [G ∈ · |Ft](ω) ∼ P [G ∈ · ] (4.1)

for all t ∈ [0, T ) and P -a.e. ω ∈ Ω. In other words we are assuming that the regular
distributions of G given Ft, t ∈ [0, T ), are equivalent to the law of G for P -almost all
ω ∈ Ω. It is known that, under this assumption, also the enlarged filtration G satisfies the
usual conditions (Proposition 3.3 in Amendinger (2000)).

We now quote a result by Amendinger (2000), which is based on a previous lemma by
Jacod (1985), and which states that there exists “nice” version of the conditional density
process resulting from the previous assumption. By O(H0) (H0 ∈ {F0,G0}) we will denote
the optional σ-field corresponding to the filtration H0.

Lemma 74 Under assumption (4.1), there exists a strictly positive O(F0)⊗U-measurable
process (ω, t, x) 7→ px

t (ω), which is right-continuous with left-limits (RCLL) in t and such
that

1. for all x ∈ U , px is a (P,F0)-martingale, and

2. for all t ∈ [0, T ), the measure px
t P [G ∈ dx] on (U,U) is a version of the conditional

distributions P [G ∈ dx|Ft].

We now assume that on the stochastic basis (Ω,F ,F, P ) a continuous, F-adapted, Rd-valued
semimartingale S = (St)t∈[0,T ] is defined, which models the discounted price evolution of d
risky assets and with canonical decomposition S = S0 +M + A, where M ∈ H2

0,loc(F) and
A is an F-predictable process with locally square-integrable variation |A|.

For H ∈ {F,G}, we will denote by M2(H) (resp. Me
2(H)) the set of all (P,H)-

absolutely continuous (resp. equivalent) (local) martingale measures with square-integrable
Radon-Nikodym densities. More formally

M2(H) =
{
Q� P : dQ/dP ∈ L2(P ), S is a (Q,H)-local martingale

}
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and
Me

2(H) = {Q ∈M2(H) : Q ∼ P} ,

where L2(P ) = L2(P,F). In order to stress the dependence from the underlying probability
measure, we will write sometimes Me

2(H, P ).
We make the following standing assumption:

Me
2(H) 6= ∅, (4.2)

for H ∈ {F,G}. By Girsanov’s theorem, the existence of an element Q ∈ Me
2(F) implies

that the predictable process A in the canonical decomposition of S must have the form:

At =
∫ t

0
λ′sd 〈M〉s , t ∈ [0, T ],

for some predictable Rd-valued process λ. We denote

K̂t =
∫ t

0
λ′sd 〈M〉s λs, t ∈ [0, T ],

and call this the mean-variance tradeoff process of S under F (F-MVT process).
The following fundamental results by Amendinger (2000), Jacod (1985) and Amendinger

et al. (1998), respectively, will be very useful in the sequel of the paper.

Theorem 75 Let Q be in Me
2(F) and let Z denote its density process with respect to P .

Moreover, let pG = (px)|x=G. Then, under assumptions (1) and (2), the following assertions
hold for every t ∈ [0, T ]:

1. Z̃ := Z/pG is a (P,G0)-martingale, and

2. the [0, t]-martingale preserving probability measure (abbr. t-MPM) (under initial
enlargement)

Q̃t(A) :=
∫

A

Zt

pG
t

dP for A ∈ Gt (4.3)

has the following properties

(a) the σ-algebra Ft and σ(G) are independent under Q̃t,

(b) Q̃t = Q on (Ω,Ft), and Q̃t = P on (Ω, σ(G)), i.e. for all A ∈ Ft and B ∈ U ,

Q̃t[A ∩ {G ∈ B}] = Q[A]P [G ∈ B] = Q̃t[A]Q̃t[B]

3. for every p ∈ [1,∞], Hp
(loc)(Q,F

t) = Hp
(loc)(Q̃t,Ft) ⊆ Hp

(loc)(Q̃t,Gt).

Proof. See Amendinger (2000), Theorem 3.1 and Theorem 3.2, p. 104. �
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Remark 76 Theorem 75 implies that, under assumption (4.2) for H = F, there exists
an equivalent local martingale measure for S also under the enlarged filtration G, whose
Radon-Nikodym derivative with respect to P is not necessarily in L2(P ). Assumption (4.2)
is then necessary also for H = G.

The next theorem (due to J. Jacod) claims that under the fundamental assumption (4.1),
the price process S is also a G0-semimartingale and it gives its canonical decomposition
under the enlarged filtration.

Theorem 77 For i = 1, ..., d, there exists a P(F0)-measurable function (ω, x, t) 7→ (µx
t (ω))i

such that 〈
px,M i

〉
=
∫

(µx)ipx
−d
〈
M i
〉
.

For every such function (µ·)i, we consider (µG)i = (µx)i
|x=G and we have

1.
∫ t
0 |(µ

G
s )i|d〈M i〉s <∞ P − a.s. for all t ∈ [0, T ), and

2. M i is a (P,G0)-semimartingale, and the continuous local (P,G0)-martingale in its
canonical decomposition is

M̃ i
t := M i

t −
∫ t

0

(
µG

s

)i
d
〈
M i
〉
s
, t ∈ [0, T ). (4.4)

Proof. See Théorème 2.1 of Jacod (1985). �

This theorem with the standing assumption (4.2) for H = G implies that the finite
variation process Ã in the canonical decomposition of S under G must satisfy

Ãt =
∫ t

0

(
λs + µG

s

)′
d
〈
M̃
〉

s
=
∫ t

0

(
λs + µG

s

)′
d 〈M〉s , t ∈ [0, T ],

and then the corresponding G-MVT process of S is given by

K̂G
t =

∫ t

0

(
λs + µG

s

)′
d 〈M〉s

(
λs + µG

s

)
, t ∈ [0, T ].

Finally, the theorem quoted below gives a stochastic exponential representation of the
conditional density pG and its inverse.

Theorem 78 1. There exists a local (P,G0)-martingale Ñ null at 0, which is (P,G0)-
orthogonal to M̃ (i.e. 〈M̃ i, Ñ〉 = 0 for i = 1, ..., d) and such that

1
pG

t

= E
(
−
∫ (

µG
)′
dM̃ + Ñ

)
t

, t ∈ [0, T ). (4.5)
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2. Given x ∈ U , there exists a local F0-martingale Nx null at 0 which is orthogonal to
S and such that

px
t = E

(∫
µxdS +Nx

)
t

, t ∈ [0, T ]. (4.6)

Proof. See Proposition 2.9, p. 270, of Amendinger et al. (1998). �

Remark 79 In the sequel, without further mention, all equalities between strategies or
integrands will hold a.s. d〈M〉dP .

4.3 The LRM approach

4.3.1 Preliminaries and terminology

We collect in this subsection the main definitions and results of the LRM approach and
to do this, we will essentially follow the two survey papers by Pham (2000) and Schweizer
(2001). All the objects we will introduce in this section refer to the initially non-trivial
filtration H ∈ {F,G}.

A portfolio strategy is a pair ϕ = (V, ϑ) where V is a real-valued adapted process such
that VT ∈ L2(P ) and ϑ belongs to Θ = ΘH, which denotes the set of all H-predictable,
Rd-valued, S-integrable processes ϑ such that

∫ T
0 ϑsdSs ∈ L2(P ) and

∫
ϑdS is a (Q,H)-

martingale for all Q ∈Me
2(H), which is closed in L2(P ).

We now associate to each portfolio strategy ϕ = (V, ϑ) a process, which will be very
useful in the sequel in describing the main features of the LMR approach: the cost process
C(ϕ).

The cost process of a portfolio strategy ϕ = (V, ϑ) is defined by

Ct(ϕ) = Vt −
∫ t

0
ϑudSu, t ∈ [0, T ].

A portfolio strategy ϕ is called self-financing if its cost process C(ϕ) is constant P a.s.. It
is called mean self-financing if C(ϕ) is a martingale under P .

Fix now a square-integrable, FT -measurable contingent claimX. We say that a portfolio
strategy ϕ = (V, ϑ) is X-admissible if VT = X, P a.s.. Therefore, an X-admissible portfolio
strategy ϕ is called locally risk minimizing (abbr. LRM-strategy) if the corresponding cost
process C(ϕ) belongs to H2(P,H) and is orthogonal to S under (P,H). There exists a
LRM-strategy if and only if X admits a decomposition:

X = X0 +
∫ T

0
ϑX

t dSt + LX
T , P a.s., (4.7)

where X0 is H0-measurable, ϑX ∈ Θ and LX ∈ H2(P,H) is orthogonal to S. Such a de-
composition is called Föllmer-Schweizer decomposition of X under (P,H), and the portfolio
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strategy ϕLRM = (V LRM , ϑLRM ) with ϑLRM = ϑX and

V LRM
t = X0 +

∫ t

0
ϑX

s dSs + LX
t , P a.s., t ∈ [0, T ].

is a LRM-strategy for X.
There exists also a very useful characterization of the LRM-strategy by means of the

Galtchouk-Kunita-Watanabe decomposition (abbr. GKW-decomposition) of X under a
suitable equivalent martingale measure, namely the minimal martingale measure (abbr.
MMM) introduced by Föllmer and Schweizer (1991). We recall now some basic facts about
this measure and its very deep relation with the LRM approach.

We denote by Zmin,H, for H ∈ {F,G}, the minimal martingale density under H, i.e.
for the ordinary agent

Zmin,F
t = E

(
−
∫
λdM

)
t

, t ∈ [0, T ),

and for the insider

Zmin,G
t = E

(
−
∫ (

λ+ µG
)
dM̃

)
t

, t ∈ [0, T ).

Since our goal is comparing the LRM-strategies, we have to assume that, given a contingent
claim X ∈ L2(Ft) for some t < T , there exists a LRM-strategy (to hedge X) for the ordinary
agent as well as for the insider. We make then the following

Assumption 80 Zmin,H is a uniformly integrable H0-martingale satisfying R2(P ) for H0 ∈
{F0,G0}, i.e. for all t ∈ [0, T ) there exists a constant C > 0 such that

E

(Zmin,H
t

Zmin,H
s

)2
∣∣∣∣∣∣Hs

 ≤ C, s ∈ [0, t].

Since Delbaen et al (1997) we know that this assumption is equivalent to assuming the
existence of a Föllmer-Schweizer decomposition (and so of a unique LRM-strategy) for
every X ∈ L2(P,Ft), for any t ∈ [0, T ), under both F and G.

Moreover, under Assumption 80, we can define on Ft, for all t ∈ [0, T ), a P -equivalent
H-martingale measure Pmin,H for S, given by

dPmin,H

dP

∣∣∣∣
Ht

= Zmin,H
t ,

which is called minimal martingale measure for S under H (abbr. H-MMM).
We now quote without proof (for whom we refer to Föllmer and Schweizer (1991),

Theorem 3.14, p. 403) the following fundamental result relating the MMM and the LRM-
strategy:
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Theorem 81 (We drop here, for simplicity, the dependence on H) Let X be a contingent
claim in L2(P,Ft) for some t ∈ [0, T ). The LRM-strategy ϕLRM , hence also the correspond-
ing Föllmer-Schweizer decomposition (4.7), is uniquely determined. It can be computed in
terms of the MMM Pmin: if (V min,X

s )s∈[0,t] denotes a right-continuous version of the Pmin-
martingale (E[X|Hs])s∈[0,t] with GKW-decomposition

V min,X
s = V min,X

0 +
∫ s

0
ϑmin,X

u dSu + Lmin,X
s , s ∈ [0, t],

then the portfolio strategy ϕmin,X = (V min,X , ϑmin,X) is the LRM-strategy for X and its
cost process is given by C(ϕLRM ) = Emin[X|H0] + Lmin,X .

4.3.2 Comparing the LRM-strategies

In this subsection, we want to compare the LRM-strategies of the two differently informed
agents. We start with a simple but very useful lemma establishing a relation between the
respective MMMs. We recall that if Q is any P -absolutely continuous martingale measure
for S and Z its density process under F, then Q̃ and Z̃ denote respectively the corresponding
MPM and its density process (under G).

Lemma 82 The minimal martingale densities Zmin,H for H ∈ {F,G} satisfy the following
relation:

E(Ñ)Zmin,G = Z̃min,F, (4.8)

where Ñ is the local (P,G0)-martingale, null at 0 and (P,G0)-orthogonal to S appearing in
Theorem 78.

Proof. By developing the stochastic exponential, we find immediately that

Zmin,G = E
(
−
∫ (

λ+ µG
)
dM̃

)
= E

(
−
∫
λdM

)
E
(
−
∫
µGdM̃

)
= Zmin,FE

(
−
∫
µGdM̃

)
.

If we multiply both sides of the above equality by E(Ñ) and apply Yor’s formula on stochastic
exponentials, we have

E(Ñ)Zmin,G = Zmin,FE
(
−
∫
µGdM̃ + Ñ +

[∫
µGdM̃, Ñ

])
.

Since M̃ is continuous and orthogonal to Ñ , we have[∫
µGdM̃, Ñ

]
=
〈∫

µGdM̃, Ñ

〉
= 0
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Then the representation of 1/pG provided by Theorem 78 implies

E(Ñ)Zmin,G = Zmin,F 1
pG

= Z̃min,F

and the proof is now complete. �

Remark 83 The previous lemma states in particular that if the orthogonal part Ñ in the
stochastic exponential representation (4.5) of the conditional density pG vanishes, then the
MMM of the insider is just the MPM corresponding to the MMM of the ordinary agent.

We now compare the LRM-strategies of both agents when the additional r.v. G is
such that Ñ = 0. The next proposition shows that in this case they will adopt the same
behaviour and their cost processes satisfy a simple projection relation.

Proposition 84 Assume Ñ = 0 and let X be a contingent claim in L2(P,Ft) for some
t < T . Then:

1. ϑLRM,F
s = ϑLRM,G

s for all s ∈ [0, t];

2. Lmin,F
t + (Emin,F[X]− Emin,G[X|G0]) = Lmin,G

t .

In particular, Cs(ϕLRM,F) = E[Cs(ϕLRM,G)|Fs] for all s ∈ [0, t].

Proof. Associate firstly to X the (Pmin,G,G)-martingale Xmin,G
s := Emin,G[X|Gs], s ≤ t,

and consider its GKW-decomposition under (Pmin,G,G):

Xmin,G
s = Emin,G[X|G0] +

∫ s

0
ϑmin,G

u dSu + Lmin,G
s , s ∈ [0, t], (4.9)

where ϑmin,G ∈ L1(S, Pmin,G) and Lmin,G is a (Pmin,G,G)-martingale, orthogonal to S.
On the other hand consider the (Pmin,F,F)-martingale Xmin,F

s := Emin,F[X|Fs], s ≤ t. Its
GKW-decomposition under (Pmin,F,F) is given by

Xmin,F
s = Emin,F[X] +

∫ s

0
ϑmin,F

u dSu + Lmin,F
s , s ∈ [0, t], (4.10)

where ϑmin,F ∈ L1(S, Pmin,F) and Lmin,F is a (Pmin,F,F)-martingale, orthogonal to S.

Observe now that ϑmin,F ∈ L1(S, Pmin,G) and moreover, since Pmin,G = P̃min,F, item 3 of
Theorem 75 implies that Lmin,F is also a (Pmin,G,G)-martingale orthogonal to S and so is
Lmin,F + (Emin,F[X] − Emin,G[X|G0]). Finally, since the two processes we are considering
have the same terminal value X, the uniqueness property of the LRM-strategies implies the
first two items of the proposition. The claimed relation between the cost processes is now
quite clear. Indeed, since Lmin,H is a local (P,H)-martingale for H ∈ {F,G} (see Ansel and
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Stricker (1992) or Schweizer (1995)), the usual localization procedure allows us to assume,
without loss of generality, that it is a true (P,H)-martingale and then, for all s ∈ [0, t],

Cs(ϕLRM,F) = Emin,F[X] + Lmin,F
s =

= E
[
Emin,F[X] + Lmin,F

t |Fs

]
=

= E
[
Emin,G[X|G0] + Lmin,G

t |Fs

]
=

= E
[
Emin,G[X|G0] + Lmin,G

s |Fs

]
=

= E
[
Cs(ϕLRM,G)|Fs

]
.

The proof is now complete. �

Remark 85 The conclusion of Proposition 84 is not so surprising. Indeed, under the MPM
corresponding to the insider MMM the additional r.v. G is independent to the claim X,
which is assumed to be Ft-measurable. Then, in this case the additional knowledge of the
insider does not produce any effect on his behaviour.

Even if it is clearly hard to check the assumption Ñ ≡ 0 on G in a general incomplete
market, it is nonetheless not difficult to exhibit several examples of such r.v.s. Indeed,
it suffices to consider the stochastic volatility model described in Subsection 4.3 with G
equaling the terminal value of the first driving brownian motion W 1

T or G = 1{W 1
T∈(a,b)}

with a, b ∈ R∪{−∞,∞}, or G = αW 1
T +(1−α)ε where the random variable ε is independent

of FT and normally distributed with mean 0 and variance σ2 > 0, and α is a real number in
(0, 1). To verify this the reader could easily adapt the computations contained in the paper
by Amendinger et al. (1998) to the incomplete market setting provided by our stochastic
volatility model.

4.4 The MVH approach

4.4.1 Preliminaries and terminology

Given a contingent claimX ∈ L2(P ) and an initial investment h ∈ L2(H0), we are interested
in the following two quadratic optimization problems:

min
ϑH∈ΘH

E
[
X − h−

∫ T

0
ϑH

t dSt

]2

(4.11)

for H ∈ {F,G} and where the H-admissible strategies set ΘH is as in the previous section.
The financial interpretation is the usual one: two investors search to replicate (approxi-

mately, in the L2-sense) a given future cash-flow X by trading dynamically in the underlying
S.

The ordinary investor uses only the information contained in the filtration F, e.g. if F
is the natural filtration of S, he observes only the market prices of the underlying assets.
On the other hand, the informed agent or insider, has an additional information which is
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described by the random variable G, so that the filtration, on which he bases his decisions,
is given by G.

From a mathematical viewpoint, this corresponds to project the random variable X
onto the following subset of L2(P )

G(h,ΘH) :=
{
h+

∫ T

0
ϑH

t dSt : θH ∈ ΘH

}
,

that is named set of investment H-opportunities. Since G(h,ΘH) is closed in L2(P ) then
problem (4.11) is meaningful and it admits a unique solution that we will denote by ϑMV H,H,
for H ∈ {F,G}.

We are interested also in the following minimization problem:

JH(X) := min
h∈L2(H0)

JH(h,X) (4.12)

where

JH(h,X) := min
ϑH∈ΘH

E
[
X − h−

∫ T

0
ϑH

t dSt

]2

h ∈ L2(H0),

is the associated risk function of the investor with information H.
The solution hMV H to this problem is named approximation price of X (see Schweizer

(1996)).

Assume now that P ∈ Me
2(H). In this case ΘH = L2(S, P,H) (see Remark 5.3 in

Pham (2000)). We recall that every contingent claim X ∈ L2(P ) admits a unique GKW-
decomposition

X = E[X|H0] +
∫ T

0
ϑH,X

t dSt + LH,X
T

whereH0 is the initial σ-field of H and LH,X
T is the terminal value of the uniformly integrable

(P,H)-martingale (LH,X
t )t∈[0,T ], which orthogonal to S under (P,H) and whose initial value

is zero.

Proposition 86 Assume that P ∈Me
2(H).

1. There exists a unique solution ϑMV H,H to problem (4.11), for all h ∈ L2(H0), given
by the process ϑH,X in the decomposition (4.4.1), and

JH(h,X) = E [E[X|H0]− h]2 + E
[
LH,X

T

]2
h ∈ L2(H0),

2. the approximation price for the agent is given by hMV H = E[X|H0], and

JH(X) = E
[
LH,X

T

]2
.

Proof.
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1. By using GKW-decomposition of X with respect to the filtration H, and conditioning
to H0, which is not necessarily trivial, one obtains

E
[
X − h−

∫ T

0
ϑH

t dSt

]2

= E
[
E[X|H0]− h+

∫ T

0

(
ϑH,X

t − ϑH
t

)
dSt + LH,X

T

]2

= E [E[X|H0]− h]2 + E
[∫ T

0

(
ϑH,X

t − ϑH
t

)
dSt

]2

+

+ E
[
LH,X

T

]2
. (4.13)

Then the strategy ϑH,X solves problem (4.11) and we also have the desired formula
for the associated value function JH(h,X), for all h ∈ L2(H0).

2. By relation (4.13),

JH(h,X) = E [E[X|H0]− h]2 + E
[
LH,X

T

]2
,

that implies hMV H = E[X|H0] and concludes the proof of the proposition. �

If P is not an H-martingale measure, Rheinländer and Schweizer (1997) and Gourieroux
et al. (1998) (see also Pham (2000)) have nonetheless obtained two characterizations of the
solution of problem (4.11), under the assumption H0 trivial. But it is very easy to check
that all those results still hold even without this assumption. We now recall some basic
facts of the first approach.

We know since Delbaen and Schachermayer (1996) that, being the price process S con-
tinuous, the variance optimal martingale measure (abbr. VOMM) can be defined as the
unique martingale probability measure PH,opt solution to the problem

min
Q∈M2(H)

E
[
dQ

dP

]2

, (4.14)

and that this measure is in fact equivalent to P . Moreover, the process

ZH,opt
t := EH,opt

[
dPH,opt

dP

∣∣∣∣Ht

]
, t ∈ [0, T ]

can be written as

ZH,opt
t = Zopt

0 +
∫ t

0
ζH,opt
s dSs, t ∈ [0, T ] (4.15)

for some constant Zopt
0 (independent from the underlying filtration) and some process

ζH,opt ∈ ΘH. The following theorem contains the characterization of the optimal mean-
variance strategy for a given contingent claim X ∈ L2(P ) in a feedback form.
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Theorem 87 Let X ∈ L2(P ) be a contingent claim and let h ∈ L2(H0) be an initial
investment. The GKW-decomposition of X under (PH,opt,H) with respect to S is

X = EH,opt[X|H0] +
∫ T

0
ϑH,opt

s dSs + LH,opt
T = V H,opt

T (4.16)

with

V H,opt
t = EH,opt[X|Ht] = EH,opt[X|H0] +

∫ t

0
ϑH,opt

s dSs + LH,opt
t , t ∈ [0, T ].

Then, the mean-variance optimal strategy for X is given by

ϑMV H,H
t = ϑH,opt

t − ζH,opt
t

ZH,opt
t

(
V H,opt

t− − h−
∫ t

0
ϑMV H,H

s dSs

)
, t ∈ [0, T ]. (4.17)

Moreover the approximation price for X is given by hMV H = EH,opt[X|H0].

For the proof of this result and many remarks, the reader may look at the survey article
by Schweizer (2001).

4.4.2 Comparing the optimal MVH-strategies

The martingale case under both F and G

Firstly we assume that the price process S is a P -martingale with respect to both F and G.
Given an instant t ∈ [0, T ) and a contingent claim X ∈ L2(P,Ft) we compare the strategies
and the risk functions of the informed and the ordinary agent. This means that we are
considering a MVH-problem for the ordinary agent and the insider until time t < T .

For a given t ∈ [0, T ), we will denote by ϑMV H,H(X) the optimal strategy for an H-
investor to hedge the claim X. Moreover, we fix two initial investments for the agents,
c ∈ R for the ordinary one and g ∈ L2(G0) = L2(G) for the informed one. It is important
to point out that in this case the information drift µG vanishes.

The next technical result states a relation between the insider optimal hedging strategies
ϑMV H,G(X) under P and the integrand ϑ̃X/Z̃t,G in the GKW-decomposition of the claim
X/Z̃t under the corresponding MPM P̃ .

Lemma 88 Assume that P ∈Me
2(G) and let X ∈ L2(P,Ft) for a given t ∈ [0, T ). Then

ϑMV H,G(X) = Z̃−ϑ̃
X/Z̃t,G

and

JG(g,X) = E[E[X|G0]− g]2 + E
[∫ t

0
Z̃s−dL

G,X̃
s +

∫ t

0
V G

s−dNs

]2

,

where V G
s := E[X|Gs], ϑ̃X/Z̃t,G is the integrand with respect to S in the GKW-decomposition

of X/Z̃t under (P̃ ,G), LG,X̃ is a (P,G)-martingale strongly orthogonal to S, and N as in
Theorem 78.
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Proof. We start by considering the (P,G)-martingale V G
s := E[X|Gs], s ∈ [0, t]. Since

Ṽ G := V G/Z̃ is a local (P̃ ,Gt)-martingale, we can write the following GKW-decomposition

Ṽ G
s = V G

0 +
∫ s

0
ϑ̃G,X̃

u dSu + L̃G,X̃
s , s ∈ [0, t], (4.18)

where ϑ̃G,X̃ ∈ Lloc(S, P̃ ,Gt) and L̃G,X̃ is a (P̃ ,Gt)-martingale orthogonal to S.
Integration by parts formula gives

dV G
s = d

(
Ṽ GZ̃

)
s

= Z̃s−dṼ
G
s + Ṽ G

s−dZ̃s +
[
Z̃, Ṽ G

]
s
.

By using the decomposition (4.18) and since, by Theorem 78, Z̃ satisfies dZ̃s = Z̃s−dNs (in
this easy case the process µ of Theorem 78 is null), where N is a local (P,Gt)-martingale
orthogonal to S, we also have

dV G
s = Z̃s−ϑ̃

G,X̃
s dSs + Z̃s−dL̃

G,X̃
s + Ṽ G

s−Z̃s−dNs + Z̃s−d
[
N, L̃G,X̃

]
s
.

Now, we use Girsanov’s Theorem to write

L̃G,X̃ = LG,X̃ +AG,X̃

where LG,X̃ := L̃G,X̃ − 1

Z̃−
〈L̃G,X̃ , Z̃〉 is a local (P,Gt)-martingale, orthogonal to S and

AG,X̃ = 1

Z̃−
〈L̃G,X̃ , Z̃〉.

But since V G is a (P,Gt)-martingale, we must have Z̃sd(AG,X̃ + [N, L̃G,X̃ ])s = 0 and
so

dV G
s = Z̃s−ϑ̃

G,X̃
s dSs + Z̃s−dL

G,X̃
s + Ṽ G

s−Z̃s−dNs.

This concludes the proof of the lemma. �

Finally, the next proposition gives a complete answer to the comparison problem in the
martingale case.

Proposition 89 Assume that P ∈Me
2(G).

1. If X ∈ L2(P,Ft), then

ϑMV H,G
s = ϑMV H,F

s , s ∈ [0, t].

2. The risk functions of both agents satisfy

JF(X)− JG(X) = E [E[X]− E[X|G0]]
2 .

Proof.
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1. To the random variable X ∈ L2(Ft) we associate the (P,Ft)-martingale Vs := V F
s :=

E[X|Fs], for which the GKW-decomposition holds:

Vs = V0 +
∫ s

0
ϑF,X

u dSu + LF,X
s s ∈ [0, t] (4.19)

where ϑF,X ∈ ΘF and LF,X is a (P,Ft)-martingale, strongly orthogonal to S for
(P,Ft). Moreover, Ys := Vsp

G
s is a (P̃ ,Gt)-local martingale and its GKW-decomposition

under (P̃ ,Gt) is given by

Ys = Y0 +
∫ s

0
ϑ̃G,Y

u dSu + L̃G,Y
s s ∈ [0, t]. (4.20)

By (4.6) the process pG
s satisfies

pG
s = 1 +

∫ s

0
pG

u−dN
G
u

and by the integration by parts formula applied to Ys, we obtain

Ys = Vsp
G
s = Y0 +

∫ s

0
pG

u−ϑ
X,F
u dSu +

∫ s

0
pG

u−dL
X,F
u

+
∫ s

0
Vu−p

G
u−dN

G
u +

[
V, pG

]
s
.

Since Y is a (P̃ ,Gt)-local martingale, the finite variation part in the above decompo-
sition vanishes and then

Ys = Vsp
G
s = Y0 +

∫ s

0
pG

u−ϑ
X,F
u dSu +

∫ s

0
pG

u−dL
X,F
u

+
∫ s

0
Vu−p

G
u−dN

G
u . (4.21)

If we compare this orthogonal decomposition with (4.20), we obtain that

ϑ̃Y,G
s = pG

s−ϑ
X,F
s .

We finally apply Lemma (88) and we have

ϑMV H,G
s (X) = Z̃s−ϑ̃

X/Z̃t,G
s

= Z̃s−ϑ̃
Yt,G
s

= Z̃s−p
G
s−ϑ

X,F
s

= ϑX,F
s .
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2. From the GKW-decompositions of X under F and G, one can deduce

LF,X
t = X − E[X]−

∫ t

0
ϑF,X

s dSs

= (E[X|G0]− E[X]) +X − E[X]−
∫ t

0
ϑG,X

s dSs

+
∫ t

0

(
ϑG,X

s − ϑF,X
s

)
dSs

= (E[X|G0]− E[X]) +
∫ t

0

(
ϑG,X

s − ϑF,X
s

)
dSs + LG,X

t .

By item 1 of this proposition, we have

E
[
LF,X

t

]2
= E[E[X|G0]− E[X]]2 + E

[
LG,X

t

]2
,

that is
JF(X) = JG(X) + E[E[X|G0]− E[X]]2.

The proof is now complete. �

Remark 90 If both investors are allowed to minimize only over all pairs (c, ϑ) ∈ R×ΘH

(H ∈ {F,G}), then the risk functions are equal, i.e. JF(X) = JG(X).

The semimartingale case

For the general case, that is S is a continuous (P,F)-semimartingale, the Rheinländer-
Schweizer feedback representation (4.17) of the optimal MVH-strategies suggests to compare

• the “optimal strategies” ϑopt,F := ϑX,P opt,F
and ϑopt,G := ϑX,P opt,G

of the ordinary
agent and the insider under their own VOMMs P opt,F and P opt,G, and

• the ratios ζopt,F/Zopt,F and ζopt,G/Zopt,G in the Rheinländer-Schweizer backward rep-
resentation (4.17).

We assume that both agents start with the same initial investment c ∈ R. We begin by the
first item and, to do this, we will use the results of the previous subsection. Before this, we
need some more results on the VOMM P opt,H (H ∈ {F,G}), for which our main reference
remains the paper by Delbaen and Schachermayer (1997).

Let KH
0 denote the subspace of L∞(P ) spanned by the “simple” stochastic integrals of

the form
f = φ′ (Sτ2 − Sτ1)

where τ1 6 τ2 are stopping-times (with respect to the filtration H) such that the stopped
process Sτ2 is bounded and φ is a bounded Rd-valued Hτ1-measurable function. In this
paper, S is assumed to be a continuous semimartingale under both F and G and so a
probability measure Q on F is a local H-martingale measure for S iff Q vanishes on K0.
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Moreover, by K̂H we denote the closure of the span of KH
0 and the constants in L2(P ):

K̂H := span
(
KH

0 , 1
)
.

By Delbaen-Schachermayer (1997) (Lemma 2.1) and our standing assumption (4.2), we
know that P opt,H is the unique element of K̂H vanishing on K̂H

0 and equaling 1 on the
constant function 1. (Here we have identified any measure Q with the linear functional
EQ[·] and linear functionals on L2(P ) with elements of L2(P ))

Now, since K̂F ⊆ K̂G, it is easy to see, by a standard Hilbert space argument, that
P opt,F is just the projection of P opt,G into K̂F.

Indeed, denote by f this projection, i.e. f := π(P opt,G, K̂F). Then, we have E[fg] =
Eopt,G[g] = 0 for all g ∈ K̂G

0 and, since 1 ∈ K̂G, E[f ] = E[f1] = Eopt,G[1] = 1. By
the previously mentioned Lemma 2.1 in Delbaen-Schachermayer (1997), we conclude that
f = P opt,F. Furthermore this property of the VOMM does not depend on the structure of
the filtration G.

A first consequence of this remark is that, for the ordinary agent, solving the MVH-
problem under either P opt,F or P opt,G leads to the same optimal strategy, i.e. ϑF,P opt,F

=
ϑF,P opt,G

.
Finally, since P opt,G is a local martingale measure for S under both F and G, item 1.

of Proposition 89 applies and provides the equality between ϑopt,G and ϑopt,F. We have so
proved the following:

Proposition 91 If X ∈ L2(P,Ft) for some t ∈ [0, T ), then for all s ≤ t

ϑopt,G
s = ϑopt,F

s . (4.22)

Comparing now the VOMM ratios in our general framework is a quite difficult problem.
We are able to give an answer by considering some particular insider’s information in some
particular incomplete model. In fact, in the next subsection, we will see that in a given
stochastic volatility model (including Hull and White, Heston and Stein and Stein models) if
the additional r.v. G is measurable with respect to the filtration generated by the volatility
process, then the two VOMM ratios coincide. This result will allow us to obtain a feedback
representation for the difference process between the two optimal strategies ϑMV H,F and
ϑMV H,G.

4.4.3 Stochastic volatility models

We consider the following stochastic volatility model for a discounted price process S:

dSt = σ(t, St, Yt)St[λ(t, St, Yt)dt+ dW 1
t ] (4.23)

where W 1 is a brownian motion and Y is assumed to satisfy the following SDE

dYt = α(t, St, Yt)dt+ γ(t, St, Yt)dW 2
t (4.24)
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with W 2 another brownian motion independent from the first one. The coefficients are as-
sumed to satisfy the usual hypotheses ensuring the existence of a unique strong solution and
of an equivalent local martingale measure with square integrable Radon-Nikodym density.
Furthermore, we assume that the underlying filtration F = (Ft) is that generated by the
two driving brownian motions, i.e. Ft = σ(W 1

s ,W
2
s : s 6 t) for all t ∈ [0, T ], and that λ

does not depend on the process S, that is λ(t, St, Yt) = λ(t, Yt). We point out that this
assumption is satisfied by the Hull and White, Heston and Stein and Stein models (e.g. see
Hobson (1998b)).

We will denote by F1 = (F1
t ) (resp. F2 = (F2

t )) the filtration generated by W 1 (resp.
W 2).

We assume that the additional random variable G is F2
T -measurable, e.g. G = W 2

T ,
G = 1(W 2

T∈[a,b]) with a < b < ∞ or G = YT when Y and W 2 generate the same filtration
(for example, in the Hull and White model).

In this case, the VOMM is the same for the ordinary and the informed agent. Indeed,
by Biagini et al. (2000) (Theorem 1.16), we have for H ∈ {F,G},

dPH,opt

dP
=

E
(
−
∫ ·
0 β

H
t dSt

)
T

E
[
E
(
−
∫ ·
0 β

H
t dSt

)
T

] (4.25)

with βH
t = λ(t,Yt)−hH

t
σ(t,St,Yt)St

. So, we focus on the process hH. Now, by assumption the process λ
does not depend on S and then, again by Biagini et al. (2002) (Section 2), hF = 0.

Moreover, being G F2
T -measurable and since W 1 and W 2 are independent, the dynamics

of S does not change if we pass from F to G. Indeed, since in this case assumption (4.1) is
equivalent to assume P (G ∈ · |F2

t ) ∼ P (G ∈ · ) for all t ∈ [0, T ), it is easy to see that the
conditional density process (pG

s )s∈[0,T ) can be chosen F0
2-optional, where F0

2 := (F2
t )t∈[0,T ).

The equality

d

〈
pG,

∫
σ(u, Su, Yu)SudW

1
u

〉
t

= σ(t, St, Yt)Std
〈
pG,W 1

〉
t
= 0, t ∈ [0, T ),

implies, thanks to Theorem 77, µG ≡ 0.
So, always by Biagini et al. (2002) (Section 2), hG = 0. This implies βF = βG and then

PF,opt = PG,opt =: P opt.

Proposition 92 Let G be F2
T -measurable and X ∈ L2(P,Ft) with t < T . Then

ϑMV H,G
s = ϑMV H,F

s + ξMV H
s , s ∈ [0, t], (4.26)

where the process ξMV H has the following backward representation:

ξMV H
s = ρopt

s

(
V opt,G

s− − V opt,F
s− +

∫ s

0
ξMV H
u dSu

)
, s ∈ [0, t] (4.27)

where V opt,H
s := Eopt[X|Hs] for H ∈ {F,G} and ρopt

s := ζopt,F
s /Zopt,F

s = ζopt,G
s /Zopt,G

s ,
s ∈ [0, t].
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Proof. Since P opt,F = P opt,G = P opt, it is easy to remark that by isometry ζopt,F
s = ζopt,G

s

and so ζopt,F
s /Zopt,F

s = ζopt,G
s /Zopt,G

s =: ρopt
s for s 6 t. Indeed, since by localization we

can assume that S is a true martingale under P opt, it suffices to note that Zopt,F
T = Zopt,G

T

implies
∫ T
0 ζopt,F

s dSs =
∫ T
0 ζopt,G

s dSs and so, by isometry, we have

Eopt

[∫ T

0

(
ζopt,F
s − ζopt,G

s

)2
d 〈S〉s

]
= 0.

Then, by Proposition 89, the optimal strategies of the two agents under the VOMM are
equal, i.e. ϑF,opt = ϑG,opt.

Finally, by comparing the backward representations of the two optimal hedging strate-
gies ϑMV H,F and ϑMV H,G, we have the claimed representation of the difference process
ξMV H . �

4.5 Conclusions

This chapter represents a first attempt to analyze the sensitivity of the hedging strategies
to a change of the information flow. We have studied this problem for the locally risk
minimization and the mean-variance hedging separately. We have shown in particular that
if both agents use the first approach and the additional information of the insider satisfies
a certain property, namely the orthogonal part in the stochastic exponential representation
of its conditional density process vanishes, their hedging strategies coincide and the cost
processes of the ordinary investor is just the projection on his filtration F of the insider cost
process.

On the other hand, the asymmetry of information in the MVH approach is much more
delicate to investigate. Motivated by the feedback characterization of the optimal strategies
yielded by Rheinländer and Schweizer (1997), we have shown that the integrands in the
GKW-decomposition of a claim X under the respective VOMMs of the two agents are
equal. Finally, we have obtained a feedback representation for the difference between the
hedging strategies in a rather general stochastic volatility model where the additional r.v.
G is measurable with respect to the filtration generated by the volatility process.

The problem of comparing the hedging strategies of the two investors in the semimartin-
gale case and for all r.v. G satisfying assumption (4.1) remains open in the LRM as well as
in the MVH approach.

Moreover, a natural development of this study would be to investigate the hedging
problem in a financial market with an insider possessing either a weak anticipation on the
future evolution of the stock price (Baudoin (2003) and Baudoin and Nguyen-Ngoc (2002))
or an additional dynamical information (as in Corcuera et al. (2002)).
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Publ. Inst. Statist. Univ. Paris 17 (2), 1-17.

[31] Dellacherie, C. (1978): Quelques applications du lemme de Borel-Cantelli à la théorie
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