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Abstract



Abstract

This thesis is concerned with the study of the dynamics and synchronization of elec-
tromechanical devices consisting of an electrical Duffing oscillator coupled magnetically
and parametrically to linear mechanical oscillators. The interest devoted to such electrome-
chanical devices is due to the fact that the model is widely encountered in various branches
of electromechanical engineering.

Chapter 1 presents some sources of nonlinear components and electromechanical systems
whose dynamics can be described by two coupled oscillators with Duffing nonlinearity.

In chapter 2, we study analytically and numerically the dynamics of forced and parametric
electromechanical devices. Resonance, antiresonance and hysteresis phenomena are observed.
The stability boundaries of the harmonic oscillations are derived and these boundaries are
confirmed by a direct numerical simulation of the equations of motion. The characteristics
of sub- and superharmonic oscillations are also derived. It is observed that chaos appears in
the model for high value of the amplitude of the external excitation. The canonical feedback
controllers algorithm is used to drive the model from chaos to a regular orbit. The effects of
the parametric coupling on the dynamics and stability boundary of the harmonic oscillations
are also analyzed.

Chapter 3 deals with the dynamics of an electromechanical device with multiple functions.
We consider models with double and a large number of functions in series and in parallel, and
derive the amplitudes of the harmonic oscillatory states and their stability, the time-delay,
sub- and superharmonic oscillations which occur in the model. We discuss on the effects of
the number of mechanical oscillators on the dynamics of the electromechanical systems.

In chapter 4, we consider the problem of synchronizing electromechanical devices both in
their regular and chaotic states with and without delay. We derive the stability criteria, the
optimal coupling strength of the synchronization process and the critical values K. under
which, for a given precision, no synchonization is possible. Comparison of the analytical and
numerical results shows an interesting agreement.
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Résumeé

L’objectif de cette theése est d’étudier la dynamique et la synchronisation des disposi-
tifs électromécaniques décrits par le systeme couplé constitué d’un oscillateur électrique de
Duffing couplé magnétiquement et parametriquement aux oscillateurs mécaniques linéaires.
L’intérét porté sur ces dispositifs électromécaniques est di a la présence de ce modele dans
plusieurs branches de 1’électromécanique.

Le premier chapitre présente quelques sources de composantes non linéaires et les systemes
électromécaniques oul la dynamique peut étre décrite par deux oscillateurs couplés, avec la
nonlinéarité de Duffing.

Dans le second chapitre, nous étudions analytiquement et numériquement la dynamique
des systémes électromécaniques avec des sources d’excitation forcée et parametrique. Les
phénomenes de résonance, d’antirésonance et d’hysteresis sont observés. Les frontieres de
stabilité des oscillations harmoniques sont déterminées en utilisant les études analytiques
et la simulation numérique des équations du mouvement. Les caractéristiques des oscil-
lations ”sub-” et ”superharmoniques” sont aussi déterminées. Il apparait a travers nos
études numériques que le chaos apparait dans notre modele pour une valeur tres grande
de 'amplitude de D'excitation extérieure. L’algorithme du controle rétroactif est utilisé
pour orienter le modele du chaos vers une orbite périodique ciblée. Les effets du couplage
parametrique sur la dynamique et sur la frontiére des oscillations harmoniques sont analysés.

Le chapitre 3 est consacré a la dynamique des dispositifs électromécaniques avec des fonc-
tions multiples. Nous considérons le modele avec double et un nombre élevé de fonctions en
série et en paralléle, et nous déterminons les amplitudes des états d’oscillations harmoniques
et leur stabilité, la différence de phase, les oscillations ”sub-" et supeharmoniques qui ap-
paraissent dans ces modeles. Nous discutons les effets du nombre d’oscillateurs mécaniques
sur la dynamique du systeme électromécanique.

Nous considérons dans le chapitre 4 le probleme de synchronisation des états réguliers et
chaotiques des dispositifs électromécaniques avec ou sans delay. Nous déterminons le critere
de stabilité, le coefficient de couplage optimal du processus de la synchronisation, et les
valeurs critiques K., sous lesquelles, pour une précision donnée, on n’a aucune possibilité
de synchonisation. La compatibilité entre les résultats analytiques et numériques est assez
bonne.
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General introduction and statement
of the problem

0.1 Brief history of nonlinear oscillations and chaos

The nonlinear electrical, mechanical and electromechanical oscillators are those in which
the electrical and mechanical components have nonlinear characteristics. Among these non-
linear components, those which are currently used are diodes, resistances, capacitances,
inductances and springs. Two classes of nonlinear oscillators have been considered.

The first class is consisted of the self-excited oscillators described by an electrical circuit
with nonlinear resistance. The Van der Pol oscillator serves as a prototype of the self-
excited oscillator with stable amplitude and frequency. Since its discovery in 1920 by the
electrical engineer Balthazar Van der Pol [O1], extensive studies devoted to the Van der
Pol oscillator have shown that it possesses a rich dynamical behavior. Notably in the absence
of external excitation, it generates a limit cycle wave in sinusoidal form, quasi-periodic or
relaxative oscillations with the fixed amplitude, giving rise to self-excited character of the
oscillator. Submitted to sinusoidal excitation [O2], the Van der Pol oscillator leads to
various phenomena: frequency entrainement [O3], devil’s staircases phenomena and chaotic
behavior with period-doubling cascades [O3, O4]. Recently, Kaiser proposed in ref.[05]
another self-excited model consisting of a Van der Pol oscillator with a nonlinear damping
function of higher polynomial order, which described certain specific processes in biophysical
systems and multi-stable limit-cycle solution in the unforced case [O6]. In biology, this
model is used to describe the coexistence of two stable oscillatory states. This situation can
be found in some enzyme reactions [O7], to explain the existence of multiple frequency and
intensity windows in the reaction of biological systems when they are irradiated with very
weak electromagnetic fields [O8-O11]. We note that the superharmonic resonance structure
[012], symmetry-breaking crisis and intermittency [O13] have also been analyzed in such
model.

In the second class, the oscillations are induced by the external excitation applied in
the electrical circuit. A typical example is the Duffing oscillator whose electrical equiva-
lent can be obtained with nonlinear capacitance or nonlinear inductance. With the external
sinusoidal excitation, the Duffing oscillator shows various phenomena: harmonic, subhar-
monic and superharmonic oscillations, multistability and transitions to chaos [014]. Indeed,
the Duffing oscillator is used in microwave communication as parametric amplifier, HF
converter, mixer, low power and electronic accordability device.

Another phenomenon resulting to the presence of nonlinear components in science is
chaos which is a name for any order that produces confusion in our minds or effectively
unpredictable long time behavior arising in a deterministic dynamical system because of
sensitivity to initial conditions. The first true experimenter in chaos was a meteorologist
named Edward N. Lorenz [O15]. The interest devoted to chaos by many scientist is due

17



to the fact that this new phenomenon appears in various fields, from mathematics, physics,
biology, and chemestry, to engineering, economics and medecine. Consequently, there are
many opportunities for application of chaos. For example, in physics chaos has been used to
refine the understanding of planetory orbits, to reconceptualize quantum level processes, and
to forecast the intensity of solar activity. In engineering, chaos has been used in the building
of better digital filters, and to model the structural dynamics in such structures as buckling
columns. In medecine, it has been used to study cardiac arrhythmias and patterns of disease
communication. In psychology, it has been used to study mood fluctuations, the operation
of the olfactory lobe during perception, and patterns of innovation in organizations. In
economics it is being used to find patterns and develop new types of econometric model
for the stack market to variations in coton prices. There are also many opportunities for
exploitation of chaos: synchronized chaos, mixing with chaos, encoding information with
chaos, anti-control of chaos, tracking of chaos and targetting of chaos.

The study of the nonlinearity effects in coupled nonlinear oscillators including Duffing
and Van der Pol oscillators is an interesting subject. Recent studies on these systems have
shown various types of behavior [016-O20]. As concerns the coupling between two Duffing
oscillators or between the Duffing oscillator and other types of oscillators, some interesting
results have been obtained recently. Kozlowski et al. [O21] have analyzed various bifur-
cations of two coupled periodically driven Duffing oscillators. They are showed that the
global pattern of bifurcation curves in the parameter space consists of repeated subpatterns
similar to the superstructure observed for single, periodically driven, strictly dissipative os-
cillators. For the coupling between Duffing oscillator and self-sustained oscillators, the
problem was considered in ref.[O18] by investigating the dynamics of a system constisting of
a Van der Pol oscillator coupled dissipatively and elastically to a Duffing oscillator. Using
the multiple time scales method, the oscillatory states were analyzed both in the resonant
and non-resonant cases. Chaos was also found using the Shilnikov theorem.

0.2 Statement of the problem

The main purpose of our work is to consider electromechanical devices with Duffing
nonlinearity which are widely encountered in various branches of electromechanical engi-
neering as it is described in chapter 1. Indeed, because of the recent advances in the theory
of nonlinear phenomena, it is interesting to consider such electrodynamic system containing
one or various nonlinear components, or in the state where one or various of its compo-
nents react nonlinearly. We consider the dynamics and synchronization of electromechanical
devices with a Duffing nonlinearity.

The following points are considered:

e The derivation of the amplitudes and stability boundaries of harmonic behavior in the
electromechanical devices using analytical and numerical investigations.

e The numerical simulation of the chaotic behavior of such devices.

e The continuous feedback control of the devices in the chaotic states.

eThe synchronization of electromechanical devices in the regular and chaotic states.

0.3 Outline of this dissertation

This work consists of four chapters.
In chapter 1, which serves as preliminairies to this work, we present generalities on



electromechanical systems. A short description of the nonlinearity sources and some elec-
tromechanical systems are presented.

Chapter 2 deals essentially with the dynamics of forced and parametric electromechan-
ical devices described by a coupled differential equation consisting of an electrical Duffing
oscillator coupled magnetically with a linear mechanical oscillator.

Chapter 3 is devoted to the dynamics of electromechanical devices with multiple func-
tions. We first consider the model with double and a large number of functions in series.
Secondly, the dynamics of the model with double functions in parallel is considered.

In chapter 4, we consider the problem of synchronizing electromechanical devices both
in their regular and chaotic states with and without delay. Our study uses the continuous
feedback scheme of Pyragas. We use the Floquet theory to derive the stability criteria and
the optimal coupling strength of the synchronization process. We derive the critical values
K, under which, for a given precision, no synchonization is possible. Numerical simulations
are used to complement our analytical results.

We end with a conclusion of our work containing a summary of our results and the outline
of other points of interests to be solved in the future.
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(GGeneralities on the electromechanical
systems

1.1 Introduction

In this first chapter, we deal with generalities on electromechanical systems and give
some informations for their interaction with electromechanical engineering. We present in
section 1.2 the sources of nonlinear components which appear in such electromechanical
systems. Section 1.3 is devoted to the description of the electromechanical systems studied
in this thesis. The resulting equations of motion are derived using the Newton second laws
of dynamics and the Kirchhoff law for the voltage. The technological applications of the
device and the useful of nonlinearity are discussed. In section 1.4, a short description of the
piezoelectric and electrostatic transducers is presented. The last section is devoted to the
conclusion.

1.2 Nonlinearity in electromechanical systems

Electromechanical system focusses on all the devices which make electrical and mechan-
ical systems work together. The electrical components (like diodes, resistances, capacitors
and inductances) will be able to have nonlinear characteristics introduced in the electrical
part by the user, while in the mechanical part, the nonlinear components are connected to
the functioning of the device. Our aim in this section is to give some details on the above
two categories of nonlinear components encountered in the electromechanical systems.

1.2.1 Functioning inherent nonlinearity

This type of nonlinearity generally appears in the components of the mechanical part,
particulary to a spring. For hardening spring effect in mechanical problems, it is found
experimentally that the stiffness is not constant but increases with the received constraint.
It is approximately defined by the relation:

K(z) = K, + K27, (1.1)

where K, is the stiffness for small stretching, = the elongation and K a coefficient of nonlin-
earity. An example of an electromechanical device with a nonlinear spring has been studied
recently by Chedjou et al. in ref.[I1, I2] and Chembo et al. in ref.[I3]. Let us note that
other forms of K(z) can be found such as that of the soft spring.
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1.2.2 Introduced nonlinearities

In this case, the sources of nonlinearity can be introduced in three ways: Firstly, the
voltage of the capacitor is a nonlinear function of the instantaneous electrical charge ¢ [I4]
given for instance by

Velg) = Ciq+a2q2+a3q3+----, (1.2)
0
where C, is the linear value of C' and a; are the nonlinear coefficients depending on the type
of the capacitor in use. This is typical of nonlinear reactance components such as varactor
diodes widely used in many areas of electrical engineering to design for instance parametric
amplifiers, up-converters, mixers, low-power microwave oscillators, etc [I5].
Secondly, the nonlinear sources can also be obtained by using a resistor with non-linear
character so that the I-V curve is given as

. ? 1/4\3
Vi = ol [ (z) T3 (z) ] ’ (1.3)
where R, and i, are respectively the normalization resistance and current, 7 is the value
of current corresponding for the limit resistor voltage. In this case, the model have the
property to exhibit self-excited oscillations. This is due to the presence of the nonlinear
resistor whose current-voltage charateristic curve shows a negative slope and the fact that
the model incorporate through its nonlinear resistance a dissipative mechanism to damp
oscillations that grow too large and a source of energy to pump up those that become small.
Because of this particular behavior, we can qualify our physical system with nonlinear resistor
as a self-sustained oscillator. The nonlinear resistor can be realized using a block consisting
of two transistors [I1, 12]. This type of nonlinear resistance with a negative slope was used
recently in ref.[I1] for the dynamics of self-sustained electromechanical transducer.
Thirdly, we also consider an electrical circuit in which the nonlinear oscillation takes
place owing to the presence of a saturable-core coil of inductance L. So that, an inductor L
have a saturable stone, and the saturation law of the magnet can be explained as follows

ni = a1 + az¢® + ..., (1.4)

where the coefficients a; are constants, depend of the stone caracteristic, ¢ the magnetic flux
in the core and n a number of turns of the coil. This is known as the hysteresis effects in the
inductance. The dynamical behavior of various electrical circuits with nonlinear inductance
are analyzed in ref.[I6] by Hayashi.

1.2.3 Useful and unfavorable effects of nonlinearity

The presence of nonlinearity in science can have positive interests and negative effects.
So why the nonlinearity appears to be merely negative? In fact, nonlinear systems exhibit
surprising and complex effects that would never be anticipated by a scientist trained only in
linear techniques. Prominent examples of these are bifurcation, chaos and solitons. Nonlin-
earity has its most profound effects on dynamical systems and we currently not have general
techniques (and very few special ones) for telling whether a particular nonlinear system will
exhibit the complexity of chaos, or the simplicity of order. However, nonlinear science has



applications to a wide variety of fields, ranging from mathematics, physics, biology, and
chemistry, to engineering, economics, and medecine. This is one of its most exciting as-
pects that brings reseachers from many disciplines together with a common language. For
instance, we note that undesired phenomena such as chaos are now applied to problems in
many fields of science and engineering. For example, in physics, chaos has been used to refine
the understanding of planetary orbits, to reconceptualize quantum level processes, and to
forecast the intensity of solar activity. In engineering, chaos has been used in the building
of better digital filters, and to model the structural dynamics in such structures as buckling
columns. In medecine it has been used to study cardiac arrhythmias and patterns of disease
communication. In psychology it has been used to study mood fluctuations, the operation
of the olfactory lobe during perception, and patterns of innovation in organizations. In eco-
nomics it is being used to find patterns and develop new types of econometric models from
the stock markets to variations in good prices.

Other interesting phenomena resulting of the presence of non-linear components in science
is the multistability, which is understand like a coexistence between stability and instability
phenomena encounter in various branches of science, it is usually described by discussing
the possible steady-state solutions of some non-linear process having a single variable and
one or more control or bifurcation parameters. In this case, the system presents the well-
known hysteresis phenomena with two stable harmonic oscillations with different amplitudes,
resulting generaly to the presence of the cubic nonlinearity.

1.3 The electrodynamical transducer

1.3.1 Description of the model and equations of motion

The electromechanical device shown in Figure 1.1 is an electromechanical transducer. It
is composed of an electrical part coupled magnetically with a mechanical part. The coupling
between both parts is realized through the electromagnetic force due to a permanent magnet
which creates a Laplace force in the mechanical part and the Lenz electromotive voltage in
the electrical part. The electrical part of the system consists of a resistor R, an inductor L,
a condenser C and a sinusoidal voltage source e(7') = v, cos Q7' (v, and ) being respectively
the amplitude and frequency, and 7’ the time), all connected in series. The mechanical part
is composed of a mobile beam which can move along the Z' axis on both sides. The rod T
which has the similar motion is bound to a mobile beam with a spring.

In our electromechanical model, the nonlinear term is introduced by considering only the
nonlinear character of the condenser. Assuming that the quadratic term of V,(g) is negligible
(i.e ag = 0), we have

1
Ve(q) = 5-q + asq’. (1.5)

Co

This is typical of nonlinear reactance components such as varactor diodes widely used
in many areas of electrical engineering to design for instance parametric amplifiers, up-
converters, mixers, low-power microwave oscillators, etc [I4]. Applying the Newton second
law of dynamics and the Kirchhoff law for the voltage in the electromechanical transducer
and taken into account the contributions of the Laplace force (f = I(I A B)) and the
Lenz electromotive voltage (€= —I(B A 7)), it is found that the system is described by the
following set of differential equations



L§+ Rqg+ Ci +a3¢® + B2 = wv,cosQr,

o

mzi+ Ne+kz—I1Bn,j = 0,

where [ is the length of the domain of the interaction between B, and the two mobile rods

supporting the beam. The dot over quantities denotes the time derivative. Let us use the
dimensionless variables

z= L y = z t=w,r
Qo’ l 7 € 7
where @), is a reference charge of the condenser and
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Figure 1.1: Non-linear electromechanical transducer.

Then the above two differential equations reduce to the following set of nondimensional
differential equations:

F4+mi+z+ B2+ Ny = E,cosut,
i+ ey +wiy — At = 0. (1.6)

Let us note that in the absence of the coupling (A; = 0), the set of equations (1.6) reduces to
a classical and well-studied Duffing oscillator [I7] and a linear oscillator. Submitted to an
external sinusoidal excitation with one component, the Duffing oscillator leads to various
interesting phenomena like hysteresis, subharmonic and superharmonic oscillations, multi-
stability, and transitions to chaos. For the case of the external sinusoidal excitation with two



components (i.e E(t) = K; cos(wit + 0;) + Ky cos(wat + 6;)), some interesting results have
been obtained recently. Nayfeh and Mook analyzed the problem in ref.[I7] by investigating
the dynamics of the Duffing oscillator submitted to two terms of the external excitation.
Using the multiple time scales method, they showed that it is possible to obtain some reso-
nant combinations leading to subharmonic and superharmonic resonances. Recently, Fotsin
et al. [I8] used the multiple time scales method to obtain the behavior of the oscillator when
it enters in resonance with one of the component of the external excitation. They used the
Melnikov theorem to derive the condition for fractal basin boundary, a sign of a chaotic
motion. Bifurcation diagrams showing transitions from regular to chaotic motion have also
been drawn.

1.3.2 Technological applications and useful of nonlinearity on the
device

The interest on such device is justified by the fact that the model is widely encountered
in various branches of electromechanical engineering. In particular, in its linear version,
it describes the well-known electrodynamic loudspeaker [I9]. In this case, the sinusoidal
signal e(t) represents an incoming pure message. Because of the recent advances in the
theory of nonlinear phenomena, it is interesting to consider such an electromechanical system
containing one or various nonlinear components or in the state where one or various of its
components react nonlinearly. One such state occurs in the electrodynamic loudspeaker due
to the nonlinear character of the diaphragm suspension system resulting in signal distorsion
and subharmonics generation [I9]. Moreover, the model can serve as a servo-command
mechanism which can be used for various applications. Here one would like to take advantage
of nonlinear responses of the model in manufacturing processes.

Before we end with this subsection, let us note other technological applications of such
device

e With the rod T, the device serves as perforator device, precision electrical saw or drill
and sifter or sieve electromechanical device in industry.

e One can used the device like a mechanical vibration for uncrunching a tarred road in
civil engineering.

e The model can also be used as an electromechanical vibration absorber [I10]. In this
case, the electrical part represented an electrical absorber device with linear characteristic
for the vibration of the mechanical part.

The presence of nonlinear components in our electromechanical device can also have
positive effects. As in the case of Duffing oscillator, the electromechanical transducer with
nonlinear components can also exhibits various complex behaviors like hysteresis phenomena,
harmonic, subharmonic and superharmonic oscillations, quasiperiodicity, multiperiodicity
and chaotic behaviors. Our aim is to look if the above mentioned nonlinear phenomena on the
device are interesting for the technological exploitation of such device in electromechanical
engineering.

For example, the hysteresis phenomena is interesting in nonlinear oscillations and gener-
ally manifests itself in any physical systems with cubic nonlinearity. The frequency-response
curves in this case are multivalued while others are single valued. The multiplicity of the
response has a significance from the physical point of view because it leads to hysteresis phe-
nomena with two stable amplitudes. Consequently, the electromechanical transducer can
vibrate in these domains with two stable different amplitudes of the harmonic oscillations
depending to the initial conditions. With the quasiperiodic and chaotic behaviors, the elec-
tromechanical device vibrates with a large frequency band and can be interesting when the



model is used as a sifter or sieve electromechanical device in industry.
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Figure 1.2: Schematic diagram of the functioning electromechanical device.

Concerning the use of the electromechanical device for the manufacturing process, the
prototype schematic diagram of the functioning electromechanical device is shown in Figure
1.2. It is composed of two independently operating elements, transmitter and receiver de-
vices. We note that the transmitter device is represented by the rod T of the mechanical
part of the electromechanical device, while the receiver device stands for the manufacturing
products. The transmitter device, excited by the sinusoidal voltage source of the electrical
part of the electromechanical device, operates with the translatory motion in the vertical
axis. In periodic regime and for any received oscillations of the electrical part, the device
shown in figure 1.2 operates so that the extremity of the mobile beam of the mechanical part
encounters the receiver device in O. It can be noticed that the role of the extremity of the
mobile beam is to execute on any receiver device one single contact during any translatory
motion. This requires the use of the linear or nonlinear periodic oscillations. However, for
some practical or technological reasons, one can need to execute during any oscillation of
the mobile beam more than one contact on any receiver device which passes in O. This
also requires another type of oscillations: period-nT oscillations which appear only in the
nonlinear regime. The generation of the period-nT oscillations in our device is one of the
reasons to introduce nonlinear components in electromechanical transducer.

1.4 Other electromechanical systems

1.4.1 The piezoelectric transducer

Figure 1.3 shows an electromechanical device which converts electrical energy directly to
mechanical energy and vice-versa through the use of the piezoelectric effect in which certain
materials change dimension when an electrical charge is applied to them.

Electrical energy is supplied to the transducer by the generator. This electrical energy is
applied to piezoelectric element(s) in the transducer which vibrate at the same frequency as
that of the applied voltage of the generator. These vibrations are amplified by the resonant
masses of the transducer. Early piezoelectric transducers used such piezoelectric materials
as naturally occuring quartz crystals and barium titanate which were fragile and unstable.
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Figure 1.3: Piezoelectric transducer

Today’s transducers incorporate stronger, more efficient and highly stable ceramic piezo-
electric materials. A large number of transducers used today are based on the piezoelectric
effects. Let us note that the electrical energy is obtained for a RLC circuit as described in
the previous section.

To establish the governed equations of motion of the piezoelectric transducer, we consider
a blade with thickness in the piezoelectric driving elements, and taken inside this blade a slice
with small thickness dx. The stationary motion of the mechanical part is described by the
displacement z of the considering slice of the blade. Using the electrical and mechanical laws,
and taken into account the contributions of the mechanical force produced by the charge
of the material and the electrical voltage produced by the displacement of the slice of the
material induced by reverse piezoelectric effect, it is found that the piezoelectric transducer
is described by the following set of non-linear coupled differential equations consisting of an
electrical Duffing oscillator coupled to a linear oscillator as follows

Li+ Rg+ Ci+a3q3+1‘:r = w,cos 7,
o

mi +wir+ i —Tq = FycosT'. (1.7)

where I' is a piezoelectric coupling coefficient, m is the mass of the slice, A the damping
coefficient, w, the natural frequency of the slice, ¢ denotes the instantaneous electrical charge
of the condenser while z is the displacement of the slice of the piezoelectric element(s). We
have also used a nonlinear component as in the case of electrodynamical transducer.

The piezoelectric transducers serve as transmitters and receivers in imaging systems for
sonar, medical imaging and non-destructive evaluation applications, as well as in nonimag-
ing applications like surface acoustic wave devices in signal processing [I11]. One of most
technical applications is ultrasound (ultrasonic) medical imaging. Operational emphasis for
imaging transducers is broadband (impulsive) rather than narrowband (continuous wave).
Piezoelectric transducers are currently available for diagnostic imaging and Doppler veloc-
ity measurement [I12], as well as a host of speciality applications (intracavity, biospy, etc.)
including disease treatment (lithotripsy, hyperthermia, tissue ablation) [I13].



1.4.2 The electrostatic transducer

Electrostatic transducers point out any type of device that converts an electrical signal
into mechanical signals (as in loudspeakers) or converts a mechanical signals into an electrical
signal (as in the microphone) through the variation of the capacitor of the condenser. This
model is shown in Figure 1.4 and it is composed of a resistance R and inductor L in series
with a high voltage source Fy which polarizes a condenser C'. This condenser is composed
of two conducting plates, one fixed and the other mobile. This mobile plate is linked to
the rest of the system by two conducting spring of constant k. The most popular form of
this type of device is the electret condenser microphone, in which the plates are given a
permanent electrical charge. The interest devoted to this type of transducer is due to the
electromechanical coupling established by the variation of the capacitor of the condenser
versus the electrical and mechanical external excitation.

K fixed plate

acoustic [~ =
waves Eo L

or mechanical D
signals R D
— A ——

_— =

mobile plate

Figure 1.4: Electrostatic transducer.

Applying to the condenser C' a continuous voltage of polarization, superimposed to an
alternative voltage with small amplitude, the two plates are submitted to an attractive or
repulsive force, the mobile plate vibrates giving rise to sound waves (as in electrostatic
loudspeaker). Inversely, when the incident sound waves cause the charged diaphragm to
vibrate, the voltage across the plates changes, creating a signal in the electrical part as one
observes in microphones.

The interest on such devices is justified by the fact that with the revival of the electret old
idea, electrostatic microphones are widely used for various types of technological applications
such as monoscope tube for TV set signals, cassette recorders devices and evidently telephone
devices [I14]. Woafo et al. had carried out a series of studies on this device taking into
account the nonlinearities and applications in communication engineering [I3, I15, 116].

1.5 Conclusion

In this chapter, we have dealed with the generalities on electromechanical systems and
their interactions with electromechanical engineering. Different types of sources of nonlinear
components in the electromechanical systems have been presented. We have presented elec-
tromechanical, piezoelectric and electrostatic transducers, and given the resulting equations
of motion. In the remaining of the thesis, we will consider only the electrodynamical system
with a cubic nonlinearity in the V-q characteristics of the condenser.
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Dynamics of a nonlinear
electromechanical system

2.1 Introduction

This chapter deals with the dynamics of a forced and parametric nonlinear electrome-
chanical system consisting of an electrical Duffing oscillator coupled magnetically with a
linear mechanical oscillator as we have shown in the previous chapter (see equations (1.6)).
Two main points are considered: the first point concerns the dynamics of the model with
external excitation, while in the second point, the excitation also appears in the coupling
coefficient. The chapter is organized as follows. In the next section, we concentrate on the
dynamics of the forced nonlinear electromechanical system. We first consider the regular
dynamics of the system using analytical method [IT1]. We find and analyze the stability
of harmonic oscillatory states using respectively the method of harmonic balance and the
Floquet theory. The analytical results are then compared to the numerical ones. The
numerical simulation of the equations of motion will use the fourth-order Runge-kutta al-
gorithm. Secondly, we derive the characteristics of sub- and superharmonic oscillatory states
in the model. We also analyze the types of transitions from regular behavior to chaos which
appear in such device. The indicators used are the one-dimensional Lyapunov exponent
and the bifurcation diagrams. Thirdly, the canonical feedback controllers algorithm [I12] is
used to drive the electromechanical transducer from chaos to a regular target trajectory. In
section 2.3, we extend our investigations by considering our model with parametric coupling.
We analyze the effects of the parametric coupling on the dynamics and stability boundaries
of the harmonic oscillations, and amplitudes of sub- and superharmonic oscillatory states.
The last section devoted to the conclusion.

2.2 Forced electromechanical transducer

2.2.1 Harmonic oscillatory states

In this subsection, we aim to derive the harmonic oscillations of equations (1.6). It is
assumed that the fundamental component of the solutions has the period of the sinusoidal
voltage source. We use the harmonic balance method [II1]. For this purpose, we express z
and y in the form

r = aycoswt+ aysinwt,
= by coswt + by sin wt. (2.1)
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Set A% = a? + a3 and B? = b? + b2. Inserting equations (2.1) in equations (1.6) and equating
the coefficients of cos wt and sin wt separately to zero (assuming that the terms due to higher
frequencies can be neglected), we obtain:

3
(1 — w2 + ZﬁAz)a1 + nrwas + AMwby, = Eo,

—wvy1a1 + (1 - U)2 + gﬁAQ)CLQ - )\111)[)1 = 0,

=

(w% — w2)b1 + ’)/waQ — /\2’(1]0,2 =
—wyoby + (wi — w?)by + Ngwa; = 0. (2.2)

3 T T T T T 25

Figure 2.1: Frequency-response curves in the linear oscillations. (i) for A(w) and (ii) for B(w)
with Eo = 0.2,’)’1 = 001,’}’2 = 0.1,A2 = 04, Al = 02,11]2 = 10, (a): EO = 02, (b) . EO = 05,
(C) : EO =1.0.
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Figure 2.2: Analytical and numerical frequency-response curves A(w). The parameters are those
of figure 2.1 and Ey = 0.2,8 = 0.95. (i) : wy = 1.0; (%) : wy = 0.5.

After some algebraic manipulations, it comes that the amplitudes A and B satisfy the
following nonlinear algebraic equations

9 3
5 A+ SBRA + (FT + GDA* - B =0,
)\2?1)
B="24 2.3
VD 23)
where
D = (w;—w’)’+wy,
5 A dow? (ws — w?)

F1 = 1—w D s

A1 )\272103

G1 = ’Ylw+ D
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Figure 2.4: Amplitude-response curves. The parameters are the same in figure 2.1 and
(a): y1 =0.01,(b) : 4 =0.1;(¢) : v1 = 0.3.

We first consider the linear case (8 = 0, the condenser C' has the usual linear characteristic
form). The frequency-response curves of the linear electromechanical model are represented
in Figures 2.1(i) for A(w) and 2.1(ii) for B(w) for several values of the amplitude E, of
the external excitation. The curves also show one peak of antiresonances and two peaks of
resonances. Around the resonance peaks, the amplitude and the accumulate energies of the
electromechanical transducer are very high than those received in any oscillation. In this
case, the model can give more interesting applications in engineering, particulary when the
model is used like a perforator electromechanical device, but the model with high energies
is very dangerous since it can give rise to catastrophe damage. For the antiresonance peak,
the electromechanical transducer vibrates with small amplitude and accumulate energies.
This phenomenon is interesting when the model is used as an electromechanical vibration
absorber [I13].

In the nonlinear case (8 # 0), we use the Newton-Raphson algorithm to find the
behavior of the amplitudes A and B when the frequency w is varied. The analytical and
numerical frequency-response curves obtained are provided in Figure 2.2 for A(w) and in
Figure 2.3 for B(w). The curves show antiresonance and resonance peaks besides the hys-
teresis domains. In Figure 2.4, we provide the amplitude-response curves of the model for
three fixed values of the damping coefficient 7; in the resonant case. The curves show the
well-known jump phenomena resulting from a cubic nonlinearity. We note that the curves
are multivalued while others are single valued. The multivaluedness of the response due to
cubic nonlinearity has a significance from the physical point of view because it leads to jump
and hysteresis phenomena with two stable amplitudes. Consequently, the electromechanical
transducer can vibrate in these domains with two stable different amplitudes of the harmonic
oscillations depending on the initial conditions.
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Figure 2.5: Analytical and numerical stability domains in the (w, E,) plane with the parameters
of figure 2.1

2.2.2 Stability of the harmonic oscillations

The electromechanical model shown in Figure 1.1 is physically interesting only so long
as their vibrations described by equations (1.6) are stable. To study the stability of the
harmonic oscillatory states, one considers the following variational equations of equations
(1.6) around the harmonic oscillatory states given by equations (2.1)

8% + 7102 + 0z + 3Bx20x + Moy = 0,
§ij + Y209 + widy — A = 0, (2.4)

where z; is the harmonic oscillatory state defined by equations (2.1). The harmonic os-
cillatory states (zs,ys) are stable if dz and Jy remain bounded as the time goes up. The
appropriate analytical tool to investigate the stability conditions of the harmonic oscillatory
states is the Floquet theory [IT1]. Let us then express dz and ¢y in the form

dr = uexp(—e,7),
0y = wvexp(—eT), (2.5)
where
71 Y2 27'
€, = —, €& = ) € = €y — €q, t:_7
w w w

Inserting equations (2.5) into equations (2.4), we obtain the following coupled canonical
Mathieu equations:

2
O o+ 2 on(47 — 20+ b exp(er) e o exp(er) =,
d*v du
W ~+ 0911 exp(eT) + doov + CQE exp(er) =0, (2.6)

where the new parameters d;;, c; and €;; are given by:

4  3BA? —2)\16 4w?
o = —634——24——2, 012 = —, 522:—61?4'—22,
w w w
26(1)\2 3ﬁA2 2)\1 —2)\2
0g1 = S B a=—, €= .
w 2w w w
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Figure 2.6: Transition from the stability domain to the instability domain. The other parameters
are those in figure 2.2 and w = 1.5. (i) Bifurcation diagram showing the coordinate x versus Ey.
(ii) The variation of the corresponding Lyapunov exponent.

According to the Floquet theory [IT1], equations (2.6) has normal solutions given by

u = exp(ar)a(r) = n:zir:oo oy exp(anT),
b= = 5 e (i), 27

where
a, = a+ 2in, b, = b+ 2in.

This means that
dz(r) = exp((a—e)T)a(T),
6y(r) = exp((b—e)7)B(7). (2.8)

The functions a(7) = a(7+7) and (1) = S(7+m) have been decomposed in Fourier series,
a and b are two complex numbers, while o, and 3, are constants. Substituting equations
(2.7) into equations (2.6) yields

n=+o0o n=-+00

Z (611 + a2 )y exp(a,T) + (€11 exp(—2i¢)) Z O exp(anioT) +

- n=+o00 - n=-+00
(€11 exp(2i0)) Z ap €xXp(an_o7) + (012 + c1by) exp(—eT) Z Bn exp(b,7) = 0,
n=+o0o n=-+o0o

> (60n + b2)Bnexp(baT) + (da1exp(er)) Y anexp(ant) +

n=—oo n=—oo



L L L L
[} 0.2 0.4 0.6 0.8 1 1.2

(@i
T

LYAPUNOV EXPONENT

. . . . .
o 0.2 0.4 0.6 0.8 1 1.2
Eo

Figure 2.7: Transition from the stability domain to the instability domain. The other parameters
are those in figure 2.2 and w = 1.6. (i) Bifurcation diagram showing the coordinate x versus Ey.
(ii) The variation of the corresponding Lyapunov exponent.

n=-+o0o

(c2exp(er)) Y. ana,exp(a,7) = 0. (2.9)

n=—oo

Equating each of the coefficients of the exponential functions to zero yields the following
infinite set of linear, algebraic, homogeneous equations for the «,, and 3,

(011 + @)+ (€11 €xp(—2i9) ) s + (€11 €XP(208)) 12
+(612 + c1by,) exp(—eT) B = 0,
(692 + b2,) B + (821 exp(€T))t, + €2 €Xp(€T) Ay 0, = 0. (2.10)

For the nontrivial solutions the determinant of the matrix in equations (2.10) must vanish.
Since the determinant is infinite, we divide the first and second expressions of equations
(2.10) by (611 — 4m?) and (d92 — 4m?) respectively for convergence considerations. Equating
to zero the Hill’s determinant [II1] and set a = ¢, , b = ¢, we obtain the hypersurface
which separates stability from instability domains. This hypersurface becomes a curve when
two parameters of the system are varied. When the €, is small, approximate solutions can
be obtained considering only the central rows and columns of the Hill’s determinant. The
small Hill determinant for this case is the sixth rows and columns given by

Aea,€p) = [(611+ €)(0a2 + €;) — (612 + cr€p) (da1 + Ca€q)]
{—=(021 + ca(€q + 21)) (612 + 1 (€5 — 21))
{611 + (0 — 20)*) (522 + (& — 20))—
(012 + c1(ep — 21)) (091 + c2(€q — 27)) }



Figure 2.8: Behavior of the model in the unstable domains with the parameters of figure 2.1 and
(i): Eq =0.6; (ii) Eo = 1.0; (i) Eo = 1.4 (iV) Ey = 1.9.

— (692 + (ep + 26)*) (611 + (eq + 21)?)

(012 + c1(€ep — 20)) (021 + co(€q + 20))+

(692 + (€5 — 20)%) (090 + (e + 20)%)

{011 + (€0 — 20)*) (611 + (&0 + 20)*) — €, }} = 0. (2.11)

From this equation, A% can be extracted and then substituted in the equation satisfied by A
from the harmonic balance method (see equations (2.3)). This gives the stability boundary
as a function of the parameters of the electromechanical system. In Figure 2.5, we show
a stability boundary in the (w, Ey) plane both from the analytical treatment (equation
(2.11)) and for the direct numerical checking of the stability boundary from the differential
equations. Good agreement is obtained between the analytical and the numerical results.
We note that the domain of stable harmonic oscillations is the region below the curves. To
look for what really appears to the instability domains, we have drawn bifurcation diagrams
and the variation of the corresponding Lyapunov exponent as Ej varies for w = 1.5 and
w = 1.6. Our results are reported in Figures 2.6 and 2.7 and the following results are
observed. As the amplitude Fj increases, a period-1 orbit exist until £y = 0.55 and 0.78
respectively (critical value corresponding to the limit values of E, for the stability of the
harmonic oscillations) where a transition from a period-1 orbit to a quasiperiodic behavior
appears. Figure 2.8 presents in the (z, ) plane the types of behavior the electromechanical
model exhibits in the unstable domains, for EFy = 0.6; £y = 1.0; £y = 1.4; Ey = 1.5 with
parameters of Figure 2.2 and w = 1.5.

2.2.3 Stability chart

In this subsection, we aim to derive the stability chart using the numerical simulations
of the equations of motion (1.6). For identifying different steady states, the dynamical
transitions are derived using the bifurcation diagram when the amplitude Ej varies for a fixed
frequency w. The resulting phase diagram in the Ey-w plane is shown in Figure 2.9 with the
set of parameters defined in Figure 2.2. The diagram covers the transition threshold in the
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Figure 2.9: Stability chart with the parameter of Figure 2.2.

region of undesired solution 1 < w < 2.5 and the amplitude lying in the region 0.0 < Ey < 9.
The following results are observed. One observes that our electromechanical model exhibits
periodic oscillations when the external excitation enters in resonance with the two oscillators
(wg = w = 1). Consequently, the model could not exhibits undesired behavior in the region
w < 1 (see the frequency-response curves of Figure 2.2). On increasing the frequency w
further w > 1, the system exhibits quasiperiodic and multiperiodic oscillations between two
regular motions, within a range of the frequency w. For example, at w = 1.4, quasiperiodic
oscillations occur in the region E, € [0.36;1.27]U[1.32;1.44] while period-3T oscillations
appear for Fy €]1.27;1.32[. The other scenario is observed for another fixed values of w.
We note that another types of period-nT oscillations appears in Figure 2.9 with n # 3.
This types of behavior are predicted analytically in reference [I14] by Hayashi for electrical
circuits described by cubic non-linear equation. Examples of period-nT oscillations of 3T
and 5T oders are shown respectively in Figures 2.10 and 2.11. The regions of period-T/n
are also presented in the stability chart.
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Figure 2.10: Period-3T oscillations with the parameters of Figure 2.2 and w = 1.6; E = 2.0.

2.2.4 Sub- and superharmonic oscillatory states

Technological exploitation of sub- and superharmonic oscillatory states are important in
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Figure 2.11: Period-5T oscillations with the parameters of figure 2.2 and w = 1.8; E = 4.0.

the field of nonlinear oscillations, and they frequently occur in various branches of electrome-
chanical engineering and physical sciences [II5, I16]. As it appears in the frequency response
curves, when the frequency of the voltage source is very large or very small as compare to
the values of the natural frequencies of the oscillators, the effects of the excitation will be
small unless the amplitude E, is hard. This can be well established using the multiple time
scales method (see ref.[II1]). When E, is large, higher or superharmonic and subharmonic
oscillations can be generated. To deal with such oscillations in our model, one can also use
the harmonic balance method. But the calculations will be more difficult to handle. We
prefer the multiple time scales method which is more indicated to find and establish the am-
plitudes of various orders of resonant states [II1]. For this method, we seek an asymptotic
expansion of equations (1.6) in the form:

v = ex(T,,Ty) + Ex3(T,, Tp) + ...
y = en(T, Th) + ys(T,, Tz) + ... (2.12)

where the independent variables or time scales T, and T, are respectively the fast scale
and the slow scale. ¢ is a small dimensioness parameter. We assumed that ~; = €2v,; and
Ai = €2\ (with i=1,2). The amplitude E, is taken at the order Fy = €¢F to indicate that
E, is hard. Inserting these expansions in equations (1.6) and equating coefficients of like
powers of €, we obtain

Order e,
Dga:l + 21 = FcoswT,,
Dy, + wiy: = 0, (2.13)
Order €3,
Dlzy+1x3 = —2D,Dox1 — Y1 Dot1 — B3 — Aot Doy,
DZys +w3ys = —2D,Doyi — Y2 Dot + A2 Do1, (2.14)

where D, = BiTo’ D, = aiTz and T,, = €"t,n = 0,1, 2.... The solutions of equations (2.13) can

be expressed as:

11 = ATy exp(T,) + Aexp(jwT,) + Ay(T3) exp(—4T,) + A exp(—juT,),

Y1 = A2(T2) exp(ijTo) + AQ(TQ) exp(—ngTO), (215)
where the over-bar represents the complex conjugate, j2 = —1 and
1 FE

91 —w?



Substituting z; and y; into equations (2.14), we obtain

D23+ 13 = —(25A] + jye A1 + 3BATA; + 6A%A;) exp(5T,)
+(jorwA +4BAA Ay + 3A%B) exp(jwT,)
— AT exp(35T,) — 3ATA exp(j (2 + w)T,)
—3BA;A% exp(j(2w + 1)T,) — 38A%A; exp(j(1 — 2w)T,)
—3BAAT exp(j(2 — w)T,) — A*Bexp(3jwT),)
—jwaAo1 Az exp(jweTo) + C.C,
Diys +wyys = —jwz(245 4 Y0242) exp(jwsT,) + jAe2As exp(§T,)
+jwAseA exp(juwT,) + C.C, (2.16)
where the prime (on A;, i=1,2) denotes the differentiation with respect to 75 and C.C stands
for the complex conjugate of the previous terms. From equations (2.16), it comes two
interesting resonant structures: the first one is the superharmonic state wy = 1 and 3w = 1,

and the second one corresponds to the subharmonic state w = 3 with wy = 1. Therefore, we
restrict our attention in this section to the case of sub- and superharmonic resonances.

e Superharmonic resonances
We consider the case where the nonlinear oscillator enters in superharmonic resonance
with the external excitation, that is 3w = 1 + €20,. We also assume that:

wy = 1+ €0y, (2.17)

where 01 and o, are the detuning parameters indicating the accuracy of the reso-
nances. The secular producing terms in equations (2.16) must be eliminated. Hence,
the solvability conditions are defined as

2j AL + jym A1 + 6AA; + 3BATA,
+jwado1 Az exp(jorTs) + A*Bexp(joi To) = 0,
—w2(2A'2 + ’)/02142) exp(jUQTQ) =+ /\02A1 =0. (218)

We express A;(T3), (i=1,2) in the polar form:
1 .
Ai(Tz) = S ai(Tz) exp(jbi(12)), (2.19)
where a; and b; are respectively the amplitudes and the phases of the oscillators.

Substituting equation (2.19) into equations (2.18), we obtain after separating real and
imaginary parts the following set of first order differential equations

3 1
gﬂai’ — a b} + 3A%a; + BA® cos §; — 511)2/\01@ sind, = 0,
1 1
5%1@1 +a) + BA3sin 6, + §w2)\01a2 cosdy = 0,
1
Waazby cos g + wo(ay + 5%2@) sind, = 0,

1 . 1
—wy(ah + §%ga2) 08 8y + wybhay sin g — 5/\02611 = 0, (2.20)

where §; = 0115 — by and do = 0915 + by — by. For the steady-state responses, we must
have a; = 0 and §; = 0. Thus 0} = 07 and by, = 07 — 0y. Eliminating §; from equations



(2.20), we obtain the following set of nonlinear equations:

9 3
aﬁza? + §5M1a% + Nya? — B*A° =0,

)\20,1
a9 =

B UJQ\/Z’

(2.21)

where

Z = 4(0’1 — 0'2)2 —+ 722,
)‘01)\02(01 - 02)
4(or — 02)2 + 7%’

/\01)\02702 2 2
+ + My.
{%1 401 = 09)? + 75 '

M1 = 3A2—0'1+

Nl ==

>~ =
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Figure 2.12: Superharmonic frequency-response curves. (i) corresponding for ai(o1) and
(i1) for as(o1) with the parameters E = 0.5,7,1 = 0.01,v,2 = 1.2, ;1 = 0.12, A2 = 0.2,
8=106,0, = 0.
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Figure 2.13: Superharmonic amplitude-response curves . (i) corresponding for a1(Eo) and
(i) for ax(Eo) with the parameters of Figure 2.6 and (a): o1 = 0.1,(b) : 01 = 0.3;(¢) : 01 = 0.4.

Thus, in the case of superharmonic resonances, the motion of the two oscillators are
coupled and described by:

z(t) = eaycos(3wt+ d;) + eA coswt + 0(e?),
y(t) = eaycos(3wt+ dy — 61) + 0(€®). (2.22)



Using the Newton-Raphson algorithm, we find the amplitudes a; and a; when the
detuning parameter o is varied. In the exact internal resonance (0o = 0), the superhar-
monic frequency-response curves obtained for a given set of parameters are provided
in Figure 2.12(i) for ai(o1) and in Figure 2.12(ii) for as(oy). The behavior of the
frequency-response curves in the superharmonic resonances show the well-known hys-
teresis phenomena. In Figure 2.13, we provide the superharmonic amplitude-response
curves a;(Ey) (i=1,2) obtained for three fixed values of the detuning parameter o;.
The curves of figure 2.13 show the jump phenomena for ¢; = 0.4 and 0, = 0.3. It
appears that for 0, = 0.2, the hysteresis domain disappears. Our investigations show
that, when o, > 0.3, the curves show the hysteresis phenomena.

Subharmonic resonances

To analyze these subharmonic resonances, we set w = 3+ €20,. 0, is another detuning
parameter indicating the accuracy of the subharmonic resonances. Eliminating the
terms in equations (2.23) that produce secular terms in z3,ys; and considering the
expressions given by equations (2.17), we have:

2j AL + (jyor + 6A%) Ay + 36A24, +
jw2)\01A2 eXp(jagTQ) + 3AﬁA% exp(ja4T2) = 0,
—U}g(QAIZ =+ ’)/02142) exp(jUQTg) + )\OgAl =0. (223)

Again, introducing the polar notations (2.19) for A;(i = 1,2) and separating real and
imaginary parts yields after some algebraic manipulations

3 3 1
g,ﬁai’ — a1b} + 3A%a; + Z,BAG% cos 4 — §w2)\01a2 sind, = 0,

1 3 . 1
E%lal + a'l + ZﬁAa? Sin (54 + EUJQ/\MCLQ COS 52 = 0,

1
CLQbIQ COS 62 -+ wWo (GIQ + 5’7@&2) sin 52 = 0,
1 1
wo(ah + 5%2&2) 08 g — Wabhag sin g — 5)\02@1 = 0, (2.24)

where 0, = 0, — 3by, and &9 = 09715 + by — by. For the steady-state responses, we must

have a; = 0 and &; = 0. Thus b} = % and b, = % — 05. Eliminating ¢; from equations

(2.24), we obtain the following set of nonlinear equations:
9 3
_ﬁ + P]_a/1+Qla/1 —0

)\201

woV M’

ay = (2.25)

where

Oo
M = 732 + 4(? - 02)27
/\01/\02(0" - 02)

P = 3M2— 2 _ZBA%+ 3 ,
1 P i o

1 )\01)\02702 2 2

= {9+ + P

@ = {7 VA ) Th



Equations (2.25) show that either a; = 0 or

9

6—452511 + Piai + Q1 =0, (2.26)
which is quadratic in a?. Its solutions are

ai =p+\/p?— ¢ (2.27)
where
—8P1 . 64@1
3B2 ’ q - 9ﬂ2 .
We note that g is always positive, and thus nontrivial oscillation amplitudes occur only
when p? > ¢. These conditions demand that:

p:

(3 — %5)2 _gJAt - gﬁ(Ul - Tz i(vl + V)’ 20, (2.28)

where

Ao1Ao2(% — 02)
5% - ool ¥ 7%

)‘01 )‘02'702
A% -0l %

Uy Vi=

Figure 2.14: Subharmonic frequency-response curves. (i) corresponding for ai(o4) and (ii) for
as(04) with the parameters v,1 = 0.01;0,1 = 0.2; A2 = 0.4;8 = 0.6;02 = 2.0 and (a): E =
0.5,(b) : E = 1.0.

It follows from equations (2.28) that, for a given o,, nontrivial solutions can exist only
if

p— i+ a <A <pr+ i+,

3(U — %) 0 = (Yor + V1)?
a ’ 1= . .
A(% — 02)” + 72 A(% —02)” + 72

where

p1 =

In the Aos-plane, the boundary of the region where nontrivial solutions can exist is

given by:
A? =p, +4/p? +qu. (2.29)
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Figure 2.15: Subharmonic amplitude-response curves. (i) corresponding for ai(o4) and (ii) for
ax(04) with the parameters of Fig.2.8 and (a): o1 = 2.0, (b) : o1 = 4.0;

In the subharmonic resonance, the motion of the two oscillators are described by:
1 3
z(t) = em cos(gwt + d,) + €A coswt + 0(¢),
1
y(t) = eay cos(gwt + 02 — 8,) + 0(€%),
We find the amplitudes a; and ay when the detuning parameter o, is varied. The
subharmonic frequency-response curves obtained for a given set of parameters are

provided in Figure 2.14(i) for a,(0,) and in Figure 2.14(ii) for as(o,). The amplitude-
response curves are reported in Figure 2.15.
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Figure 2.16: Bifurcation diagram (i) and variation of Lyapunov exponent (ii) when E, vary
with the parameters v1 = 0.1;v2 = 0.3; A1 = 0.01; A2 = 0.06; w2 = 1.2;w = 1.3; 8 = 1.32.
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Figure 2.17: Bifurcation diagram (i) and Lyapunov exponent (ii) when 1 vary with the
parameters of Figure 2.16 and Ey = 22.0.

2.2.5 Bifurcations and transitions to chaos

We first consider the behavior of the model as the amplitude Fy of the external excitation
e(t) varies. As in the case of the hard Duffing equation [II7], we have found that chaos
appears in the model only for large value of Ej. Figure 2.16 shows a representive bifurcation
diagram and the variation of the corresponding Lyapunov exponent. Both curves are ob-
tained by solving numerically, using the four-order formulas of the Runge-Kutta algorithm
with the PASCAL code, equations (1.6) and the corresponding variational equations, the
Lyapunov exponent being defined by:

In(d(t))

Lya = tlgglo t

(2.30)

with

d(t) = \/da? + dv2 + dy? + dv?,

where dz, dv,, dy and dv, are the variations of z, &,y and y respectively. That is a measure of
the rate of divergence between initially closed trajectories in the four dimensional phase space
(z,dz/dt,y,dy/dt). As it appears, different types of bifurcations take place before the onset
of chaos. As Fj increases from zero, the amplitude of the symmetrical periodic oscillations
increases until £y = 4.67 where the symmetrical behavior bifurcates into an asymmetrical
oscillatory states. Then at Ey = 6.15, a tiny multiperiodic transition appears and the system
passes into another periodic state. As F increases further, a period doubling transition takes
place at Ey = 13.76. At Ey = 19.17, the period-2 orbit bifurcates to a period-4 orbit and the
period doubling cascade continues leading to a small chaotic window. This window suddenly
bifurcates into a period-3 orbit. Another set of period doubling sequences leads to a more
larger chaotic domain for Ey = 20.65 to Ey = 25. But let us note that for £y = 22.6 to
Ey = 25, the system shows a weak or transient chaos characterized by a sort of fractal nature



of the basin of attraction. In fact, in this domain, it is found that chaos appears only for
some initial conditions. This behavior manifests itself in Figure 2.16(ii) by small values of
the Lyapunov exponent and in Figure 2.16(i) by a sudden expansion of the bifurcation
diagram. This type of behavior is characteristic of the hard Duffing equation as reported
by Pezeshki and Dowell in ref.[II6]. At the other side of the chaotic domain, a reverse
period doubling sequence takes place leading to a period-1 orbit (harmonic oscillations).
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Figure 2.18: Phase portrait of the chaotic electromechanical model with the parameters of Figure
2.16 and Eq = 22.
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Figure 2.19: Phase portrait of the linear mechanical oscillator in the regular motion with the
parameters of Figure 2.16 for several values of Ey.

In Figure 2.17, the control parameter is the damping coefficient ;. As v, increases from
zero, we have the periodic oscillations until v, = 0.025 where the chaotic motions take place.
At the otherside of the chaotic domain, a reverse period doubling sequence takes place at



v1 = 0.2625 leading to a period-1 orbit. We present in Figure 2.18 the phase portrait of
the electromechanical device in the chaotic states while in Figure 2.19, the behavior of the
mechanical oscillator is presented in the regular regime with several values of the control
parameter Ej, and the set of parameters defined in Figure 2.16.

From the above results, we can resort the following comments. Firstly, the presence of
chaos in our model can be considered as a positive or negative issue. In fact, in many situa-
tions, chaos is undesirable since it leads to irregular performance and possible catastrophic
failures. In this case, it should be suppressed or controlled. But in some other cases, chaos
appears to be a beneficial feature such as in mechanical heat and transport phenomena [I19].
Serious progress in the way of using chaos to secure communication [II10] has also been
made recently. Moreover, intensive research is carried out to discuss the wide variety of
applications of chaos in various fields ranging from natural, physical, engineering and social
sciences. For example, in engineering, chaos has been used in the building of better digital
filters, and to model the structural dynamics in such structures as buckling columns. It is in
this spirit that we expect that the presence of chaos in an electromechanical transducer can
be useful both in its irregular structure or in a regular structure obtained after the control.
Let us note that chaos is considered here on our electromechanical device as a positive issue
when the device is used for sifter or sieve device. Secondly, from the nature of the regu-
lar behavior of the mechanical oscillator, particulary for £y = 17.0 and Ey, = 20, we have
respectively the period-2 and period-3 oscillations. In this case, the mechanical oscillator
vibrates respectively with two and three modes of mechanical vibrations.
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Figure 2.20: Stability chart with the parameters of figure 2.13

To identify different steady-states, we use the procedure presented before to derive the
stability chart with the set of parameters of Figure 2.16. The resulting phase diagram in
the Ey — w plane is shown in Figure 2.20. The diagram covers the transition threshold
in the region of undesired solution 0.4 < w < 1.9 and the amplitude lying in the region
10 < Ey < 35. The following results are observed. On increasing the frequency w further
w > 0.4 and amplitude of the external excitation, the electromechanical transducer exhibits
various multiperiodic, chaotic and transient chaotic orbit which depend on the values of E
and w.



2.2.6 Chaos control

Due to the presence of chaos in our electromechanical system, one would like to suppress it
or take avantage of the flexibility and the various infinite number of different unstable orbits
embedded in the chaotic attractor to tune the system to a desired target regular orbit. This
subsection is devoted to this task. We follow the procedure of Chen and Dong [I12]. This
has also been used recently in ref.[II8] for chaos control in electrostatic transducers. Let us
introduce the new variables 1 = x,z9 = #,23 = y,24 = ¥y, equations (1.6) can then be
rewritten as

j)z' = gi(t,$1,$2,$3,$4). (231)

We let (Z1, T2, T3, T4) be the periodic orbit that we are targetting, in the sense that for any
given € > 0, there exists a time 7, > 0 such that |z;(t) — Z;(¢)| < € for all t > T..
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Figure 2.21: Control to a period-T orbit (i) and to period-T/2 orbit (ii) with the parameters of
Figure 2.16

For this purpose, we use the conventional feedback controllers method to convert the
system into:

4

T; = gi(tv $1,$2,$3,$4) - ZKU(‘TJ _a_:j)’ (232)
Jj=1

where the K;; are the feedback gain matrix elements. We restrict ourselves to the case where

all K;; = 0 except, Ko and K43 which are assumed to be strictly positive. Then equation
(2.32) becomes:

T = T,

iy = —mTe— 21 — B — Mwy — Koi (21 — 1) + E, cos wt,

T3 = Iy,

Ty = —"Yoly — w%:rg + Aoxo — K43(373 - -7_33)- (2'33)



The control should not introduce additional instability in the system. It is therefore required
that all the roots of the characteristic equation derived from the Jacobian of equations (2.33)
have their real part less than zero. Using the Routh-Hurwitz criterium, it comes the
following condition:

wi Ky + Koy Kz +wi(1 + 3872,,,) + Kis(1 + 3872,,,) > 0, (2.34)

where T, is the amplitude of the targetting orbit of the first oscillator.
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Figure 2.22: Controlled electromechanical transducer

In view of applying the control strategy, we consider the system with the parameters
of Figure 2.16. In this state, the system has a chaotic behavior as it appears in the phase
portrait of Figure 2.18. Two sets of target trajectories have been considered. The first one
has the same frequency as the external excitation (period-1 targetting orbit) and is defined
as:

(21, T2, T3, T4) = (0.08 cos wt, —0.08w sin wt, 0.08 cos wt, —0.08w sin wt).

The second set defined by:
(@1, o, T3, %4) = (0.08 cos w't, —0.08w" sinw't, 0.08 cos w't, —0.08w sin w't),

has the frequency w' = 2w. The feedback matrix elements are Ky = 40 and K3 = 10. The
results of the control strategy are implemented in Figure 2.21 and show the efficiency of the
control strategy.

With the previous results, the interesting question is how to launch the control at a
given time in electromechanical engineering. Practically, the control of the electromechani-
cal transducer can be realized as follows: in the mechanical part, the rod 7" is coupled with a
spring of constant k£’ where the instantaneous displacement of it extremity is 7, while in the
electrical part, we insert in the electrical circuit a courent source (i) in parallel with a con-
denser (C'). With this consideration, we have in the electrical part a new additional voltage
Vo = % (¢ — g5 coswt) and in the mechanical part a new external force f, = k'(z — 2, cos wt).
So that the feedback gain matrix elements K5 and Ky3 are respectively proportional to



5 and k’. The controlled electromechanical model is represented in Figure 2.22, and the
resulting equations of motion are established in the appendix Ap-1. Our investigation leads
to the following comments. Better chaos control ensures greater values of the coefficients
Ky and K,3, this requires greater energy inputs. It can be practically interesting to find a
suitable balance between the quality of control and the quantity of energy available for the
realization.
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Figure 2.23: Comparison of analytical and numerical frequency-responce curves in the case wa =
1. (i) corresponding for A(w) and (i) for B(w). with vo = 0.2,A; = 0.4, 2 = 0.25,8 =0.4,v, =
0.01,E, =0.2,¢; = 0.5.

2.3 Parametric electromechanical transducer

In some applications depending on the way the coupling is ensured or voluntary for the
engineering purposes, parametric variations of the coupling parameters may occur, leading
to another type of dynamical behavior. In certain circumstances, some parameters of the
electromechanical device can vary with time because of the functioning constraints. This is
particulary the case for the parameters of the electromagnetic coupling: i.e time variations of
the magnetic field B,, and the region of electromagnetic action. The time variation can also
be ordered voluntarily: for the control purposes. We assume that the time variation is peri-
odic with frequency 2w, so that in non-dimensional units, the parametric electromechanical
system is described by the following coupled nonlinear differential equations:

i+t +x+ B2 + A (1+ € cos2wt)y = E,coswt,
i+ oy + wiy — Xo(1 + €, cos 2wt): = 0, (2.35)

where €; is the amplitude of the parametric coupling with 0 < ¢; < 1. Our aim in this
section is mainly to analyze the effects of the parametric coupling on the dynamics, stability,
and bifurcation sequences of the nonlinear electromechanical system.

2.3.1 Harmonic oscillatory states

As we have mentioned in the above section, the harmonic oscillatory solutions of equations
(2.35) can be approximated by the expressions defined by equations (2.1). By a procedure
like that used before, it comes that the amplitudes A and B satisfy the following nonlinear
equations:
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%5‘%10 + I FA + [P F? + S BPNMIA®, +[36F° + 3BFNM — E52153],44
+[(F*+ NM)? — gBFEZ]AQ — (F? + M*)E? =0,

o BB+ $PM + (1= (P + 3547
[(wf — w2+ Fu[(F + 35477 + NMP

(2.36)
where

2
o Adew?’(1 — ) (wh —w?)
(wf — w?)? + 1
)\1)\2721113(1 - %)2
(w] = ) + 5w
)\1)\2’}’2?1)3(1 —+ %)2
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Figure 2.24: Analytical and numerical frequency-responce curves when €1 = 0.8. A(w) with the
parameters of Figure 2.23.

Using again the Newton-Raphson algorithm, we find the amplitudes A and B when
the frequency w is varied. Comparison between analytical and numerical frequency-response
curves is provided in Figure 2.23. The curves show antiresonance and resonance peaks,
hysteresis phenomenon. Analyzing the effects of ¢; on the response curves, we find two
ranges as €; varies. The first range leads to the well-known hysteresis phenomena with two
stable and one unstable values of the amplitudes A and B as it appears in Figure 2.23. In
the second range, we have five values of A (and B) with three values corresponding to stable
harmonic oscillations. This is shown in Figure 2.24 with the parameters of Figure 2.23 (the
boundaries of two ranges occurs at €; = 0.64 with this set of parameters). Consequently,
the electromechanical transducer with parametric coupling can vibrate in these domains
with three stable different amplitudes for ¢; > 0.64 and two stable different amplitudes for
€1 < 0.64 of the harmonic oscillations depending to the initial conditions.

In the linear case, the frequency-response curves are represented in Figure 2.25. As ¢
increases, the values of the amplitudes A and B decrease. The same is observed in the
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Figure 2.25: Effects of the amplitude €1 on the frequency-responce curves A(w) for (i) and B(w)
for (ii) in the linear system: (a) : e, = 0,(b) : ¢ = 0.25,(c) : ¢ = 0.5,(d) : € = 0.9 . The other
parameters are those of figure 2.23.
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Figure 2.26: Effects of the amplitude €1 on the stability boundaries in the (w,E,) plane, (i)
corresponding for the case wa = 1 and (i) for wy = 0.5. The parameters are those of figure 2.23
and (a): €1 = 0.0: (b): ¢ =0.25: (¢): € = 0.5: (d): e, = 0.9.

nonlinear limit where the antiresonant peak (see Figure 2.23) decreases as €; increases. This
behavior is interesting when the model is used as an electromechanical vibration absorber
[I13].

2.3.2 Stability of the parametric harmonic oscillations

To study the stability of the harmonic oscillatory states, one considers the following
variational equations of equations (2.35) around the harmonic oscillatory states given by
equations (2.1) as follows:

83 4+ 7164 + 62 + 38220z + A1 (1 + €1 cos 2wt)dy = 0,
§ij + Y207 4+ wady — Aa(1 + €1 cos 2wt)dz = 0. (2.37)

Let us then express 6z and dy as defined by the expressions (2.5). Inserting equations (2.5)
into equations (2.37), we obtain:

d? d
d—TZ + [011 + 2€11 cos(4T — 2¢)|u + §12 exp(—eT))v + 1 exp(—w)%

d
+2c1€1 cos(4T) exp(—eT)d—U + 2c¢3€; cos(47) exp(—er)v = 0,
T
d*v du
72 + 921 exp(eT)u + dov + 2 exp(eT)E



d
+2cq€1 cos(47) exp(—eT)d—u + 2c4€; cos(47) exp(—er)u = 0, (2.38)
T

where the new parameters c3 and ¢4 are given by
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Figure 2.27: Stability domains (below the curves) in the (e1, E,) plane. The parameters are those
of Figure 2.24 and w = 1.2.
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Figure 2.28: Transition from the stability domain to the instability domain. The parameters
are those of Figure 2.19. (i) Bifurcation diagram showing the coordinate © versus Eq. (i) The
variation of the corresponding Lyapunov exponent.

Following the Floquet theory [II1], the small Hill determinant gives the following equa-
tion:

Aeq, €6) = A11As3A36044 (50 + 62)(511 + Gi) + A1 Agg (022 + 6z)(511 + Gi)



(As3Au — AgzAss) + €167 Aig(000 + €5) (011 + €2) AzeAss —
61162i¢A66(622 + 6%)(511 + EZ)(€11€72Z.¢A44 — AysAyy) +
A52A2561162i¢A16A44A63 + A52A25A6661162i¢(6116_2i¢A44 - A43A14)
+[As1 (822 + €) (611 + €2) — AurAsaAos][Ags(A12A36 — Azalig) +
Ags(e11€7 2P Ags — AzzA1a)] — [Ag1 Az (620 + &) (011 + €2) + Ag1 AsaAos]
(A14Az6 — AgsAsg) + [As1844 (022 + €5) (011 + €5) + Ae1 AsaAos]
(A366116_2i¢ - A33A16) - A11A25A52A66(A33A44 - A43A34) +

A11 85805063036 A4y
= 0, (2.39)
where
Ay = Oy + (6 — 26), Ay =011 + (€ — 20)%,
Ay = (612 + ale — 29)), Ags = (012 + c16p),
Aszg = (012 + c1(ep + 21)), Ay = (021 + co(€ep — 2i)),
Asy = (021 + C2€4), Agz = (091 + c2(€q + 21)),
Ass = (c3+ci(e+ 20))e, Ayz = (cq + o€ — 20)%)ey,
Agi = (ca+calea+ 20))en, Ass = 011 + (€ + 20)7,
A = (c3+ci(en — 2i)%)ey, Age = dgo + (€ + 2i)°.

Figure 2.29: Behavior of the parametric model in the unstable region with the parameters of
Figure 2.23.

In Figure 2.26, we have drawn the stability boundary of the harmonic oscillations in the
(w, E,) plane with the parameters of Figure 2.23 for several different values of the amplitude
€1. The domain of stable harmonic oscillations is the region below the curves. In comparison
to the case ¢, = 0 (constant coupling), it is found that as €; varies, they are ranges of €
where the stability domain is large and other ranges where the stability domain is small.
This is also shown in Figure 2.27 where boundary limit is plotted in the (e, Fy) plane.
In this Figure, we have also plotted the stability boundary obtained from the numerical
simulations of equations (2.35). For €; > 0.45, the numerical and analytical curves show
opposite behavior. This can be explained by the fact that the analytical curve is obtained
from a truncation of the Hill determinant which can be poor for large ;.

Let us consider the particular frequency w = 1.2 and ¢; = 0.5, it appears from Figure
2.27 that the stability domains are comprised in the interval Ey € [0.0;0.2633]. To verify our
analytical results, we have drawn, after solving numerically equations (2.35), a bifurcation



diagram and the variation of the corresponding Lyapunov exponent as F;, varies. Our
results are reported in Figure 2.28. where it is seen that a period-1 orbit exist for £ < 0.29.
After this critical value corresponding to the limit value of Ej for the stability of the harmonic
oscillations, a transition from period-1 orbit to a quasiperiodic behavior appears. Figure 2.29
shows the behavior of the electromechanical transducer for two values of the amplitude Ej
in the instability region.

Figure 2.30 presents the stability chart of the parametric model in the Ey —w plane with
the set of parameter defined in Figure 2.23. One observes that our electromechanical system
with parametric coupling exhibits periodic oscillations when w = 1.0 and quasiperiodic,
period-3T and period-5T oscillations for increasing w.
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Figure 2.30: Stability chart with the parameters of Figure 2.23

2.3.3 Sub- and superharmonic oscillations

With the parametric coupling, the sub- and superharmonic oscillations can be established
in the same manner as in the case of constant coupling. Following the above manipulations,
equations (2.16) take the form:

Dlzs+zs = —(2jA] 4 jmoeAr +3BATA; + 6A%A;1) exp(5T,) + (jriowA + 4BAALA; +
BAB) exp(jwl,) — BA? exp(35T,) — 3BAZA exp(j(2 + w)T,) —
JwaAigAg exp(jwoT,) — 38A1A* exp(j (2w + 1)T,) — A*Bexp(3jwT,)
—3BA?A; exp(j(1 — 2w)T,) — 38A AT exp(j(2 — w)T,)

1. 1.
—§]w2)\1061A2 exp(2w + wy)T,) — 5]1112)\1061142 exp(wy — 2w)T,) + C.C,
Dgyg +wiys = —jwy (245 + vaAs) exp(jwyT,) + jAa0A1 exp(§T,) + jwAaA exp(jwT),)
1. . 1. )
+§]A2061A1 exp(j(2w + 1)T,) + §]A2061A1 exp(j(—2w + 1)T,)

1 1
+§jw)\2061A exp(3jwT,) — ijw/\goelA exp(jwT,) + C.C. (2.40)



Equations (2.40) show that there exist superharmonic resonances (w = 1/3 and wy = 1) and
subharmonic resonances (when w = 3 and we = 1) as analyzed below. Therefore, we restrict
our investigation to the case of sub- and superharmonic resonances.

e Superharmonic resonances.
In the parametric electromechanical system, the secular producing terms in the equa-
tions (2.40) must be eliminated. Hence, the solvability conditions are the following:

2]14/1 + j’)’loAl + 6A2A1 + 3ﬁA%A1 +
jwaAipAs exp(joeTy) + A*Bexp(jo Tz) = 0,

: 1 :
—w2(2A'2 + ")/20142) eXp(_]O'QTQ) + A20A1 + 5’11))\1061A exp(jalTo) = 0, (241)

We express A;(T,), (i=1,2) in the polar form (2.19), and obtain after separating real
and imaginary parts the following set of first order differential equations:

3 1
gﬁa‘;’ — a b} + 3A%a; + BA® cos §; — §w2/\10a2 sind, = 0,

1 1
5’)/1()@1 + a'l + ﬂAs sin 51 + 5’[1)2)\10&2 COS (52 = 0,

1 1
waagby cos 0o + wo(aj + 572()&2) sin 0y — 511»\2061/\ sind; = 0,

1 1 1
—wy(ah + 5720(12) cos 0y + wablas sin dy + Ew)\QoelA cos d; — 5/\20(11 = 0,
(2.42)

where 0; = 01T, — by and 69 = 09T + by — by. For the steady-state responses, we must
have a} = 0 and 6; = 0. Thus b} = o, and b}, = 07 — 0y. Eliminating ¢§; from equations
(2.42), we obtain the following set of nonlinear equations:

9 3
Eﬁ2ZQ[M2 + A2 A5 etw® A%ya,|ad + EﬁZ[Alo)\zoelwAfngNo — MM,)a]
+(M7F + NJ)ai — (M? + X Apeiw?A?5)* = 0,
2 [Mia3 + Niag|? + [Maa? + Noaq |?

? Z2w3[M? + M A5peiw? A2y

(2.43)

where
= 4oy — 02)* + 3,
2A3ﬁZ + 2/\10)\20’(U€1A(0’1 - 0'2),
2A10)\20’U)1(0’1 - 0'2) - Z(6A2 - 2’(1]10'1),
NM + )\10)\2010611\720()\10)\20720 - ’)’10Z),
= M(MoA207Y20 — 710Z) — Ao Aaower Ay N,
3 3
M1 = §ﬁZ/\10)\§06%U)2A2’}/20(0'1 — 0'2) — ZﬁZM’)/Q()’U))\Q()GlA,
Nl = 2w/\2061ANO(0'1 — 0'2) + ’)/20w/\2061AM0
—)\20720[M2 + A%o)‘goeﬁwQAZ’Y%o]a
3 3
M2 = §ﬂZMw)\2061A(01 — 0'2) + ZBZ)\lo)\goe%w2A27§0;
Ny = 2)g(01 — 02)[M? + X ASpeiw” A2y ]
+N0’LU/\2()€1A"}/20 — 2’(U/\2061M0(0'1 — 0'2).

28 =z 2N
!
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Figure 2.31: Effet of the amplitude €1 on the superharmonic frequency-response curves.
(i) corresponding for ai(o1) and (i) for azx(o1) with the parameters E = 0.5,y10 = 0.01,
Ao = 0.12,A20 = 0.2, 8 = 0.6;720 = 1.2;02 = 0 and (a): €1 = 0.0;(b): e2 = 0.25,

(c): &6 = 0.5, (d): e, =0.9.
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Figure 2.32: Effect of the amplitude €, on the superharmonic amplitude-response curves.
(i) corresponding for ai(E) and (ii) for ax(E) with the parameters of Figure 2.31, o1 = 0.5
and (a): e =0.0; (b): e =0.25, (¢): 1 =0.5, (d): e1 =0.9.

Thus, in the case of superharmonic resonances, the motion of the two oscillators are
coupled and described by equations (2.22). We find the amplitudes a; and as when
the detuning parameter o; is varied. In the exact internal resonances (o3 = 0), the su-
perharmonic frequency-response curves obtained for a given set of parameters are pro-
vided in Figure 2.31(i) for a,(0;) and in Figure 2.31(ii) for ay(o;). The behavior of the
frequency-response curves in the superharmonic resonances show the well-known hys-
teresis phenomena. In Figure 2.32, we provide the superharmonic amplitude-response
curves a;(E) (i=1,2) and the curves of Figure 2.32 shows the jump phenomena. The
effect of the amplitude ¢; of the parametric modulation on the behavior of the model
in the superharmonic resonances is analyzed and it appears that the curves also show
the hysteresis and jump phenomena for several values of the amplitude ¢;.

e Subharmonic resonances.
It follows from equations (2.40) that secular terms are eleminated from z3 and y; if

2j A% + (o + 6A2) Ay + 35424, +
ij)\l()AQ eXp(jO'QTz) + 3A5A? exp(jang) = O,
—’lUg(?AIQ + ’YQOAQ) eXp(jO'QTQ) + /\20A1 = 0. (244)

Again, introducing the polar notations (2.19) for A;(i = 1,2) and separating real and
imaginary parts yields after some algebraic manipulations the following first order of



differential equations:
3 3 ! 2 3 2 1 :
gﬁal — by + 3N e, + ZﬁAal COS 04 — §w2A10a2 sind, = 0,

1 3 1
5’710&1 + a'l + ZﬁAa% sin 54 + 5’(1)2)\10&2 COS 52 = 0,

1
agbly cos 0y + wo(asy + 5720@) sindy, = 0,
1 1
wg(a'Q + 5’)/200,2) COS 52 — waIQU/Q sin 52 — 5/\200,1 = 0, (245)

where 54 = 0, — 3by, and &9 = 0975 + by — by. For the steady-state responses, we must

have a; = 0 and §; = 0. Thus b = % and by = % — 0. Eliminating ¢; from equations

(2.45), we obtain the following set of nonlinear equations:

_ﬁQ + P10«1 + Qla/l - 0

)\o2a1

woV M’

9 =

(2.46)

where
Oo
M = ’}/22 =+ 4(§ — 0'2)2,
/\01/\02(% - 02)
732 + 4(% - ‘72)2,

1 )\01>\02702 2 2
= {91+ + Py
o 4 {71 %2"‘4(_ — 09)? '

P1 - 3A2—— —/82

We note that the behavior of the parametrical model in the subharmonic resonance is
not depending for the amplitude ¢; of the parametric modulation. The subharmonic
frequency-response curves obtained for a given set of parameters are provided in Figure
2.14(i) for a,(0,) and in Figure 2.14(ii) for as(o,). The amplitude-response curves are
reported in Figure 2.15 for different values of o,.

2.3.4 Transitions to chaos

The aim of this subsection is to find some bifurcation sequences and how chaos arises in
our parametric model as the parameters of the system evolve. The control parameters are
the amplitude E; of the external excitation and the damping coefficient. Our investigation
shows that a bifurcation diagram and the variation of the corresponding Lyapunov exponent
versus the amplitude Ej for ¢, = 0.5 is not different qualitatively for that presents in Figure
2.16 for the case of constant coupling. The transitions to chaos are those presented in the
case of constant coupling.

2.4 Conclusion

In this chapter, we have considered the dynamics of a forced and parametric nonlinear
electromechanical system consisting of an electrical Duffing oscillator coupled magnetically
to a linear mechanical oscillator. The amplitude and the stability boundaries of the harmonic
behavior have been derived using respectively the harmonic balance method and the Floquet



theory. It appears that the behaviors of the model show various interesting phenomena
(hysteresis, resonant and antiresonance phenomena) for some combinations of the system
parameters. In order to analyze the behavior of the model when the frequency of the voltage
source is very large or very small as compared to the values of the natural frequencies
of the oscillators, we have derived the stability chart using numerical simulations of the
equations of motion. Bifurcation diagrams showing the transitions from regular to chaotic
motion have been drawn. The canonical feedback controllers have been used to drive the
electromechanical device from a chaotic trajectory to a regular target orbit. The effects of
the parametric coupling on the dynamics, stability boundary and bifurcation structures on
the electromechanical system have also been analyzed.
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Chapter 3

Dynamics of electromechanical
systems with multiple functions

3.1 Introduction

In the previous Chapter, we have considered the dynamics of an electromechanical trans-
ducer with one function and discussed in detail the effects of the amplitude of the parametric
modulation on the behaviors of the model. In this Chapter, we consider electromechanical
systems with multiple fonctions. Before dealing with such a model, we note that this exten-
sion can be obtained in two ways. Firstly, we can coupled in series or in parallel an electrical
part to a mechanical part consisting of a large number of linear mechanical oscillators. Sec-
ondly, we can use two or a large number of electromechanical devices coupled unidirectionally
through the feedback coupling, so that the problem of synchronization process of such model
is very important for its technological exploitations in electromechanical engineering (con-
sidered in the next chapter). In this Chapter, the first way will be considered.

Considering the dynamics of an electromechanical transducer with multiple functions
coupled in series and in parallel, two main points are considered. We first concentrate on
the dynamics of the model with double and a large number of functions in series. The
second point is the dynamics of such model with double functions in parallel. After the
presentation of the model and the resulting equations of motion, we derive in section 3.2 the
amplitudes of the harmonic oscillations and time delay using the harmonic balance method.
The presence of hysteresis branches is used to derive the stability boundary of the harmonic
oscillations. The stability chart is presented using the numerical simulations of the equations
of motion. We derive the characteristics of sub- and superharmonic oscillatory states of the
electromechanical model. In section 3.3, we extend our investigations by considering the
electromechanical transducer with a large number of function in series. The effects of the
number of a linear mechanical oscillator on the behavior of the model are discussed and it
appears that for some set of physical parameters, the undesired behavior disappears with
the increase of the number of the linear mechanical oscillators. We consider in section 3.4
the dynamics of the model with double functions in parallel. After describing the model
and giving the resulting equations of motion, we derived the amplitudes of the harmonic
oscillations and time delay. Section 3.5 is devoted to the conclusion of this Chapter.
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3.2 Electromechanical transducer with double
functions in series

3.2.1 Model and equations of motion

The electromechanical transducer with double functions in series is shown in Figure 3.1.
It is composed of an electrical part (Duffing oscillator) coupled magnetically and in series
to a mechanical part governed by two linear mechanical oscillators. The electrical part of the
system is that presented before in the first chapter. The mechanical part is now composed
of two mobile beams which can move respectively along the ¢ and z" axis on both sides. The
rods T and T’ are bound to mobile beams with springs of constants &£ and &’. The motion of
the entire system is governed by the following nondimensional coupled differential equations

&+t +x+ B2+ M1+ iy = FE,coswt,
1 +mnz + wf:m —Anuz = 0,
.’.152 =+ ’)/ijg + ’LU%.’L'Q - )\21.’i7 = 0. (31)

coupling magnet coil

mobile beam (m

.

—
— —_—

: /A//M:W%

\}

coupling magnet coil

ek

Spring (K”)

mobile beam (m’)

Figure 3.1: Electromechanical transducer with double functions in series.

The electrical part is represented by the variable x while z; and z5 stand for the mechan-
ical part (the two linear oscillators). z denotes the instantaneous electrical charge of the
condenser, z; and z, the displacements of the two mobile beams. v and +; are respectively
the damping coefficients of the Duffing oscillator and the linear oscillators. The quanti-
ties A; and \;; are the coupling coefficients, 5 the nonlinear coefficient, w; and wy are the
natural frequencies. F, and w are respectively the amplitude and frequency of the external
excitation (sinusoidal voltage source), while t is the non-dimensional time.

3.2.2 Amplitudes of the harmonic oscillations and time delay

In this subsection, we aim to derive the amplitude of the harmonic oscillations of equa-
tions (3.1). We use the harmonic balance method [III1]. For this purpose, we express x, r;



and z9 in the form

X

T

T2

Inserting equations (3.2) in equations

a1 cos wt + as sin wt,
by cos wt + by sin wt,

¢1 cos wt + ¢y sin wt. (3.2)

(3.1) and equating the coefficients of coswt and sinwt

separately to zero (assuming that the terms due to higher frequencies can be neglected),
it comes after some algebraic manipulations that the amplitudes A, A; and A, satisfy the

following nonlinear equations
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Figure 3.2: Analytical and numerical frequency-response curves. (i) corresponding for A(w),
(i1) for Ai(w) and (iii) for As(w) with Eg =0.2,8 = 0.5, = 0.01,7, = 0.2, = 0.23,
)\1 = 04, )\2 = 015, )\11 = 0.2,)\21 = 0.4,'11)1 = Wy = l.O,EO =0.2.

1—9652A6 + gﬂFgA‘* + (Fy + G5)A* — E; = 0,

where

)\11’(1]
A =——A
1 \/D_l )
A1 W
Ay = %A, (3.3)
A = al+a, Al=b+0, A=d+q,
Dy = (w; —w?)?+w’y,
D, (w; — w?)? +w’y,
o= 11— w2 _ Al)\lle(w% — ’U)2) _ )\2)\21’[1)2(’[1)5 — w2)
2 - D1 l)2 )
Gy = ~w—+ MAyw® n Ao dg1yow?
2 = ;

D, D,

In the linear case (8 = 0), the frequency-response curves of the linear electromechanical
system show antiresonance and resonance peaks as we have shown in the previous Chapter



with the set of physical parameters defined in Figure 3.2. In the nonlinear case (5 # 0), the
frequency-response curves show antiresonnance and resonance peaks, and the well-known
hysteresis and jump phenomena as its appears in Figure 3.2.

In view of practical purpose, it is important to analyze the time delay between the
two linear mechanical oscillators. From the above analysis, the phases ¢; and ¢, of the
mechanical oscillators are given by

by  —(wi —w?)(Fy +§BA%) + unGy

t =2 = :
an ¢1 bl Gg(w% _ wz) +wy (F2 + %5142)
— (w2 — w?)(Fy + 3pA? G
tan ¢y = = = (“’22“’)§ 2+ 4P )+3w7222. (3.4)
c1 Go(wy — w?) + wy(Fy + 35A2)
The time delay is then defined as
w

THETA

w

Figure 3.3: Phase displacement curves between the two mechanical oscillators versus w with the
parameters of Figure 3.2.

This time delay is represented in Figure 3.3 when the frequency of the external excitation
is varied. In the case of an exact resonance between the three oscillators (electrical and
mechanical oscillators: wy = wy = 1) and for a fixed frequency w, ©; remains constant as
the parameters of the system vary. In the particular case for wy = ws = w, both mechanical
oscillators vibrate in phase. We note that the time delay changes very shortly with the
variation of the nonlinearity coefficient .

3.2.3 Stability of the harmonic states and stability chart

The harmonic oscillatory states defined by equations (3.3) are not always realized, but are
actually able to exist only so long as they are stable. To study the stability of the harmonic
oscillations, one considers the first nonlinear equations given by equation (3.3) rewritten as
follows

9 3
E? = 1 B2AS + EﬂFgA‘l + (F3 + G5) A% (3.6)

The appropriate analytical tool to investigate the stability conditions of the harmonic os-
cillatory states is the Floquet theory [III1], but it is difficult here to develop a Floquet



approach for equations (3.1). Due to the presence of hysteresis branches, we know that the
turning points correspond to % = 0 and the stability condition can be written as % > 0.
This shows that the periodic solutions are stable under such conditions that the amplitude A
increases with the increase of the amplitude Ej of the external excitation. From the physical
point of view, this is a plausible conclusion. Differentiating E2 with respect to A%, it comes

that the boundary curve between the stable and unstable regions is given by

27
1—662A3 + 3B A2+ F2 + G5 =0, (3.7)
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Figure 3.4: Analytical and numerical stability boundaries in the (w, Ey) plane with the parameters
of Figure 3.2.
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Figure 3.5: Transition from the stability domain to the instability domain. The other parameters
are those in Figure 3.2 and w = 1.5. (i) Bifurcation diagram showing the coordinate x versus Eq.
(i) The variation of the corresponding Lyapunov exponent.
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Figure 3.6: Stability chart in the (w, Eo) plane with the parameters of Figure 3.2

Extracting A? from this equation and inserting in equation (3.6), it comes that the
stability boundary in the parameters space are given by the following relations:

9 3
Ej. = 1—652A§i + §ﬂF2A3i + (F3 + G3)AZL, (3.8)

where
o, TSP JF? 32
C 9/8 °

In Figure 3.4, we have drawn the stability boundary of the harmonic oscillations in the
(w, Ey) plane with the parameters of Figure 3.2. The domain of stability is the region below

the curves where % is positive. Our analytical results are confirmed by the direct numerical
simulations of equations (3.1). For instance, with w = 1.4, the analytical treatment shows
that the harmonic oscillations are stable for Ey < 0.39 while from the numerical simula-
tion we obtain Fy < 0.40. Before the critical value of Ej, the system shows the periodic
oscillations while after this critical value of Ej, the system exhibits a quasiperiodic behavior
and period-T/n (where n being the integer) oscillations. To look the types of behaviors
the electromechanical model exhibits in the instability domains, we have drawn a bifurca-
tion diagram and the variation of the corresponding Lyapunov exponent as Fj, varies for
w = 1.5 with the parameters of Figure 3.2. Our results are reported in Figure 3.5 and the
following results are observed. As the amplitude Ej increases, a period-T oscillations exist
until Fy = 0.67 (critical value corresponding to the limit value of Fy for the stability of
the harmonic oscillations) where a transition from period-T oscillations to a quasiperiodic
behavior appears.

In Figure 3.6, we derive the stability chart using the numerical simulations of the equa-
tions of motion (3.1). The resulting phase diagram in the (w, Ey) plane is traced out
by using the bifurcation diagram when the amplitude E; varies for a fixed frequency w.
The following results are observed. One observes that as the amplitude Ej increases, the
system exhibits quasiperiodic oscillations, period-T/n and period-nT oscillations, within
a rang of the frequency w. For example for w = 1.6, we have period-T oscillations for



E, € [0.0;1.0], quasiperiodic oscillations for Ey € [1.0;1.8] U [1.9; 2.6] U [3.0; 3.7], period-7T
oscillations for Fy € [1.8;1.9], period-3T oscillations for Fy € [2.6;3.0], period-5T oscillations
for Ey € [3.7;4.0], etc..

3.2.4 Sub- and superharmonic oscillations

As we have explained before when Ej is large, higher or superharmonic and subharmonic
oscillations can be generated. To deal with such oscillations in our model, we use the
multiple time scales method which is more indicated to find and establish the amplitudes of
various orders of resonant states [III1]. For this method, we seek an asymptotic expansion
of equations (3.1) in the form

r = €Xg1 (T ) + 6 T3 (TO, T2)
Ty = 6$11(T ) + € .7,'13(T0, TQ)
To = €T921 (T ) + 6 T93 (TO, T2) (39)

To examine such resonances, we set v; = €27y, 7 = €25, A; = €2A; and \jp = €2\ (With
i,k=1,2), so that in the case of sub- and superharmonic resonances the effects of the damping,
nonlinearity, and coupling coefficients appear in the same perturbation equations. Then the
amplitude E, is taken at the order Ey = €E. Inserting these expansions in equations (3.1)
and equating coefficients of like powers of €, we obtain

Order e,
Dgl'(n + o1 = FE cos ’UJTO,
Dz.’I)H + w%.’lfn = 0,
D239 + wize = 0, (3.10)
Order €3,
D2zg3 + x93 = —2D,Doxor — VoDoZor — BTl — Ao1 D11 — A2 Do,
D2zi3 +wiziz = —2DyDox1i — Vo1 DoT11 + Ao11 DoZor,
Dg$23 + w§$23 = —2D,Dyx91 — Yo2DoT21 + Ao21D0To1- (3.11)

The solutions of equations (3.10) can be expressed in the form

zo1 = A (T2) eXp(jTo) +A eXp(ijo) + Al (TQ) eXp(_jTo) +A eXp(_ijo)a
1 = As(Ty) exp(junT,) + Ax(Tz) exp(—jwiTy),

w91 = As(Ty)exp(jwoT,) + As(T3) exp(—jwsT,), (3.12)
where L E
A=
21— w?
Substituting zo1, 11 and x9; into equations (3.11), we obtain

D2zg3 + x93 = —(25A% + jv.41 + 3BATA; + 6A%A) exp(5T)
+(0wA + 4BAALA; + 30%8) exp(jwT,) — BA? exp(37T))
—3BA3A exp(j(2 + w)T,) — 38A1 A% exp(j (2w + 1)T,)
—3BA%A; exp(j(1 — 2w)T,) — 3BAA2 exp(j(2 — w)T,)
—A*Bexp(35wT,) — jwide1 Ag exp(jw: T,)



_ij)\OQA?) eXp(ijTo) + CC;

D33313 +wiziy = —jwi(24% + o1 4s) exp(jwiTy) + jAor1 A1 exp(Ty)
+jwAoAexp(jwT,) + C.C,

Dizos + wizes = —jwa(245 + Y02 43) exp(jwsT,) + jAea1 A1 exp(§T,)
+jwAei A exp(jwT,) + C.C. (3.13)

From equations (3.13), it comes two interesting resonant structures. The first one is the
superharmonic state w; = wes = 1 and 3w = 1, and the second one corresponds to the
subharmonic state w = 3 with w; = wy = 1. Therefore we restrict our attention in this
subsection to the case of sub- and superharmonic resonances.

e Superharmonic resonances

We consider the case where the nonlinear oscillator enters in superharmonic resonances
with the external excitation, that is 3w = 1 + ¢20. We also assume that

w, = 1+€2O'1,
Wy = 1+€20'2, (314)

where 01,0, and o are the detuning parameters indicating the accuracy of the resonances.
The secular producing terms in the equations (3.13) must be eliminated. Hence, the solv-
ability conditions are

2]14’1 + j’)/oAl + 6A2A1 + jwl)\olAg exp(jang)
3BAIAL + jwadpa Az exp(jooTy) — A*Bexp(joTy) = 0,
—w; (245 + o1 42) exp(jorTz) + Ao11 41 = 0,
_w2(2Ag + %2A3) eXp(jU2T2) + Ao21 A1 = 0. (3.15)
The polar notation A;(Ty) = 3a;(T») exp(jbi(T2)) can be used to show that the amplitudes

and phases of both oscillators are described by the following set of first order differential
equations

3 1 1
gﬁai’ —a b + 3A%a; + BA3 cos S — §w1A01a2 sin 07 — §w2A02a3 sind, = 0,

1 1 1
§%a1 +a) + BA3sin§ + §w1/\01a2 cosdy + §w2A02a3 cosd3 = 0,

1
wlaqbé COS (51 =+ w1 (GIQ + 5’7&&2) sin 51 = 0,
1 1
w1 (0/2 + 5’)@1@2) COS 51 — ’U]1b’20,2 sin 61 — 5)\011@1 = 0,
1
w2a36'3 COS (52 + ’ll)g((lg + 5’)/02663) sin 62 = 0,
1 1
’(Uz(ag + 5’)/02043) COS 52 — ’wgbgag sin 52 — 5)\02104 = 0, (316)

where § = 0Ty — by, 61 = 0115+ by — by and 6y = 0975+ b3 —b;. For the steady-state responses,
we must have af = 0 and 6, = 0. Thus b} = 0,b}, = 0 — 0y and b = 0 — 0y. Eliminating ¢;
from equations (3.16), we obtain the following set of nonlinear equations
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Figure 3.7: Superharmonic frequency-response curves. (i) corresponding for ai(o1) , (ii) for
as(01) and (#3) for as(o1) with the parameters E = 0.5,7v, = 0.1, 7,2 = 0.4, A\o1 = 0.12, Ap11 = 0.2,
)\021 = 027ﬂ = 2.5; /\02 = 0.3,’701 = 0.2;0’2 =03 =0.

9 3
6—45261? + Z,BMN% + Noai — %A% =0,

o = )‘3216@
P wi(hh 4 4(0 — 02)?)’
)\2 2
a2 = o1 (3.17)

wi(v5 +4(0 — 01)?)’
where
)\01)\011(0 - 01) 4 )\02)\021(0 - 02)
Ao —0)?+75 Ao —09)? + 75

2
1 )\01)\011%1 )\02)\021%2 2

Ny, = <, M.
o I T )

My, = 3N -0+

Thus, in the case of superharmonic resonances, the motion of the three oscillators are
coupled and described by

z(t) = eaycos(3wt +d;) + eA coswt + 0(?),
z1(t) = eagcos(3wt+ dy — &) + 0(€%),
12(t) = eazcos(3wt+ d3 — &) + 0(e). (3.18)

Using the Newton-Raphson algorithm, we find the amplitudes a;,as and a3 when the
detuning parameter o is varied. In the exact internal resonances (o2 = 01 = 0), the super-
harmonic frequency-response curves obtained for a given set of parameters are provided in
Figure 3.7(i) for a;(0), in Figure 3.7(ii) for as(o) and in Figure 3.7(iii) for az(c). The behav-
ior of the frequency-response curves in the superharmonic resonance show the well-known
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Figure 3.8: Superharmonic amplitude-response curves. (i) corresponding for ai(E), (ii) for
a2(E) and (iii) for as(E) with the parameters of Figure 3.7 and (a): o1 = 0.0, (b): 01 = 0.2, (¢):
g1 = 0.4

hysteresis phenomena. In Figure 3.8, we provide the superharmonic amplitude-response
curves a;(F) (i=1,2,3) obtained for three fixed values of the detuning parameter o. The
curves of Figure 3.8 shows the jump phenomena for ¢ = 1.5 and ¢ = 2.0. It appears that
for 0 = 1.2, the hysteresis domain disappears. Our analysis show that, when o > 1.2, the
curves show the hysteresis phenomena and dissappears with decreasing of o.

e Subharmonic resonances

To analyze these subharmonic resonances, we set w = 3 + €20,. 0, is another detuning
parameter indicating the accuracy of the subharmonic resonances. Eliminating the terms in
equations (3.16) that produce secular terms in xg3, 13, Z23 and considering the expressions
given by equations (3.14), we have

2j AL + Y. AL + 6A%A; + jwi A Ay exp(joiT5)
3BA2A + jwadeaAs exp(jody) + 3ABA2exp(jo,Th) = 0,
—w1 (245 + 701 42) exp(jo1Ts) + Ao11 A1 = 0,

—wy (245 + Ye243) exp(joeTy) + Apo1 A1 = 0. (3.19)

Again, introducing the polar notations for 4;(i = 1,2, 3) and separating real and imaginary
parts yields

3 3 1 1

gﬁa:{’ —ayb] + 3A2%q; + ZﬁAa% cos 0, — §w1A01a2 sind; — §w2)\02a3 sind, = 0,
1 3 1 1
5’)/010,1 + a'l + —,BACL% sin (50 + Ewl)\olag COS 51 + 511)2)\02&3 COS 52 = 0,

4

1
agby cos 61 + (ah + i%lag) sind; = 0,



1 1
w1 (a'2 + E’yolc@) COS 51 — wlb;ag sin 51 — 5/\0116“ = O,
1
asgbl cos da + (ay + 5%2@,) sind, = 0,

1
—Y02a3) €OS 0y — wabsaz sin by — 5)\021a1 = 0, (3.20)

Wy (ag + 5

where §, = 0,—3by, 61 = 0115 +bs—b; and dy = 0515+ b3 —b;. For the steady-state responses,
we must have a; = 0 and §; = 0. Thus b = %,by, = % — 01 and by = % — 0,. Eliminating
d; from equations (3.20), we obtain the following set of nonlinear equations

[0}

-
i

o
SIGMA,

Figure 3.9: Subharmonic frequency-response curves . (i) for ai(o4) , (ii) for as(o4) and (i) for
as(o4) with the parameters v, = 0.5,7,2 = 0.23, Ao1 = 0.4, A\11 = 0.2, Ap21 = 0.4; 8 = 0.5;
09 = 03 = 0,)\02 :0.5,"}/01 =0.2 and (a) E = 1,(b) E = 5,(0) :E=28.

9 3
6—4ﬁ20€ + 15132@[11 + Q0] =0

ol = )\321“%
w4, + 4(% — 02)?)’
/\2 2
a2 = 01111 (3.21)

(/Yol + 4(_ - 01) )7

where

P, = 3A2 _ _0 _ —,BA2 )\01)\011(§ - 0'1) )\02)\021(%2— 0'22) ’
; ( —o1)? +%1 (30_02) + Yoo

1 Ao1Ao11Yo1 A02X021 702 ? { 3,02
- > + —+ + P+ —BA } .
@ {7 G o +h 4G - o +om) U

Equations (3.21) show that either a; = 0 or

—ﬁ2 1+ ﬂPza1 + Q2 =0, (3.22)
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Figure 3.10: Subharmonic amplitude-response curves. (i) for ai(E), (ii) for az(E) and (i) for
a3 (E) with the parameters of Figure 3.9 and o, = 3

which is quadratic in a?. Its solutions are

a; =p£/p*—gq, (3.23)
where
_ 8P, _ 640,
p - 36 ) q - 952 .
It follows for the procedure use in the previous Chapter that, nontrivial solutions can exist
only if
p2—\/P3+ @ <N <py+ /D3 + o,
with , )
Dy = 36U — %) = (v + Va)
2 — ; 2 — ’
A[(3 - 389 4[(3 - 38)* -9
U )\01)\011(% —o01) /\02/\021(% — 09)
2 Oo To )
42 —o)+7a A% —02)+7%
vV, — Ao1Ao11Y01 A2 021702
h =

AP —o)+re AT —02) +75%

In the Ao,-plane, the boundary of the region where nontrivial solutions can exist is given by

AZ=p, £/P} + o

In the subharmonic resonances, the motion of the two oscillators are described by
1
z(t) = em cos(gwt +8,) + eAcoswt + 0(e?),
1
z1(t) = eas cos(gwt + 61 — &) + 0(e%),

1
z9(t) = eag cos(gwt + 69 — 6,) + 0(%).



We find the amplitudes a;, a; and a3 when the detuning parameter o, is varied. In the exact
internal resonances (03 = o1 = 0), the subharmonic frequency-response curves obtained for
a given set of parameters are provided in Figure 3.9(i) for a;(0,), in Figure 3.9(ii) for ay(o,)
and in Figure 3.9(iii) for a3(0,). We note that there is no jump phenomena in this case
and the curves show the resonance peaks for different values of E. The amplitude-response
curves are reported in Figure 3.10.

3.3 Extension to a large number of functions

3.3.1 Model and equations of motion

As in the previous section, we extend our analysis to the dynamical behavior of an
electromechanical transducer with a large number of functions in series, shown in Figure
3.11. It is composed of an electrical part coupled magnetically and in series to a mechanical
part governed by n linear mechanical oscillators. The mechanical part is now composed of n
mobile beams which can move respectively along the ¥; (i=1,,..,n) axis on both sides. The
rods 7; are bound to mobile beams with springs of constants k;. The motion of the entire
system is now governed by the following n+1 nondimensional coupled nonlinear differential
equations

i+t +z+ B2+ Ni; = Egcoswt,
im1

iy 4+ g +wiry — Apd = 0,

in + Yo + WaTa — Amz = 0. (3.24)

The variable x denotes the instantaneous electrical charge of the condenser while z; stand
for the displacement of the ith mobile beams of the mechanical part. The quantities v and
v; are the damping coeflicients while \; and \;; are the coupling coefficients. w; are the
natural frequencies and 5 the nonlinearity.

F'¥ % spring k1]
C A A AN
R %ﬁj{ﬁ 2 VY =
| P % x1 /
’7 mobileT:Jeam (m1)
I rod
@D ew .
I coupling magnet cool
L]
rod Tn

[ — - — o —

}mf mobilibeam (m )/
o RN
78, % | | spring kny

Figure 3.11: Electromechanical transducer with a large number of functions in series




3.3.2 Amplitudes of the harmonic oscillations and time delay

We derive the amplitudes of the harmonic oscillations of equations (3.24) by express x
and z; in the form

T = aqcoswt+ agsinwt,
z; = by coswt + b sin wt, (i=1,..,n). (3.25)
Setting A% = a? + a2 and A? = b?, + b2, inserting equations (3.25) into equations (3.24) and

make use of the previous Section, it comes that the amplitudes A and A; of the harmonic
oscillations satisfy the following nonlinear equations

DA SEFA 4 (24 G~ B =0,

A = w:;lD_iA, (3.26)
where
D; = (w!—w?)?+wy,
Fp = 1-w’— f; A"A“ng‘f —w),
G, = 7w+z)\ )\zl%

’L

We note that when the n linear mechanical oscillators are identical, we obtain the following
expressions of Fj, and G,

n)\ A\ w?(w? — w?)
D, ’

n)\1)\11’)/1w3

D, ’

F, = 1—w?—

G, = yw+

In the linear case (8 = 0), the frequency-response curves of the linear electromechanical
model with a large number of functions are represented in Figure 3.12 for three values of
n. The effects of a number of linear mechanical oscillators are observed and the curves also
show one peak of antiresonances and two peaks of resonances. It is found that the points of
resonance are moved when the number n of the linear mechanical oscillator increases while
the amplitudes A and A; decrease and vanish with a large value of n.

In the nonlinear case, we use the Newton-Raphson algorithm to find the behavior
of the frequency-response curves when the frequency of the external excitation w varies.
The results are reported in Figure 3.13 where several frequency-response curves are shown.
These Figures illustrate the effects of the number of the linear mechanical oscillators on the
behavior of the electromechanical model. Tt appears the following comments. In the case
of the exact internal and external resonances between the n+1 oscillators (w = w; = 1),
the electromechanical model vibrates with a small value of the amplitude (antiresonance
phenomenon) which decreases when the number of the linear mechanical oscillator increases.
The model with a large number of functions in series can be used as an electromechanical
vibration absorber [II12]. The domain of hysteresis phenomena decreases with the increase
of the number n of the linear mechanical oscillators. Our investigation shows that the
hysteresis phenomena disappears for large n. For instance, with the parameters of Figure
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Figure 3.12: Effects of the number of mechanical oscillators on the linear frequency-response
curves with the parameters y1 = 0.1;v = 0.01; A1; = 0.4; A\ = 0.2;w; = 1.0; By = 0.2.

3.12 and 8 = 0.95, the disapearence of the hysteresis branches is obtained for n > 20. In this
case, the extension of the number of mechanical oscillators is using to absorb the hysteresis
phenomena. In Figure 3.14, the effects of a number of linear mechanical oscillators on the
amplitude-response curves are also presented and it is found that the jump phenomena
disappears when the number n increases.

[0} (i)
T T

Figure 3.13: Effects of the number of linear mechanical oscillators on the nonlinear frequency-
response curves with the parameters of Figure 3.12 and 8 = 0.95.
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Figure 3.14: Effects of the number of a linear mechanical oscillators on the amplitude-response
curves with the parameters of Figure 3.12 and w = 1.5,8 = 0.95.

To determine the time delay between the ith and (i + 1)th mechanical oscillators, let us
express the corresponding phases ¢; and ¢;,1 of any ith and (i+1)th mechanical oscillators
as
o —(w] —w?)(Fip1 + §84%) + wy,Gin

t i = 7 = )
an¢ b Gip(w? — w?) + wyi(Fiqq + 26A?)




by — (i —w?)(Fig + 2BA%) + wYit1Gita
tan ¢i—|—1 = = D) 5 3 on - (327)
bii+1)1 Gi+1(wi+1 —w?) + wyipr (Fip1 + 18A )
The time delay is then defined as:
Osppy = B it (3.28)
w

The behavior of the time delay is not different from that presented in Figure 3.2. When the
frequency of the external excitation is varied and it appears the following results. In the
case of an exact resonance between the n+1 oscillators (electrical and n linear mechanical
oscillators: wy = wy = w3 = .... = 1.0 ) and for a fixed frequency w, ©;,,1 remains constant
as the parameters of the system vary. In the particular case for w; = w, all ith and (i+1)th
linear mechanical oscillators vibrate in phase and we have

Git1

tang;, =tan ;41 = ———=—-.
¢z ¢z+1 E+1 + %ﬁfp

We note that as in the case of electromechanical model with double functions, the time delay

changes very shortly with the variation of the nonlinearity coefficient .

3.3.3 Stability of the harmonic oscillations

We shall now determine the stability of the harmonic oscillations. By the procedure anal-
ogous for that of the model with double functions, we consider the first nonlinear equations
given by equation (3.26) rewritten as follows

E? = 19—652AG + gBFnA‘1 + (F? + G2) A% (3.29)

Due to the presence of hysteresis branches, we know that the turning points correspond to
2 2

Z% = 0 and the stability condition can be written as % > (. Differentiating E2 with

respect to A?, it comes that the boundary curve between the stable and unstable regions is

given by

27
Eﬁmi +3BF, A2+ F? + G2 = 0. (3.30)
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Figure 3.15: Analytical and numerical stability boundaries in the (w, Eg) plane with the param-
eters of figure 8.13 (i):n=1 and (ii): n=2.



Figure 3.16: Behavior of the model in the unstable domains with the parameters of figure 3.8
and n=2 (i): w = 1.4; Ey = 0.5 and (ii): w = 1.6; Ey = 0.8.

Extracting A% from this equation and inserting in equation (3.29), it comes that the
stability boundary in the parameters space are given by the following relations

9 3
Ej, = E52Agi + §ﬁFnA3i + (F:+Gp)AL, (3.31)

where

—8F, +/F2 - 3G2

AL =
ct 95
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Figure 3.17: Effect of the number of mechanical oscillators on the stability boundaries in the
(w, Eo) plane with the parameters of Figure 3.13.

In Figure 3.15, we have drawn the stability boundary of the harmonic oscillations in the
(w, Ey) plane with the parameters of Figure 3.13 and n=1,2. The domain of stability is
the region below the curves. Our analytical results are confirmed by the direct numerical
simulations of equations (3.24). For instance, with w = 1.4 and n = 2, the analytical
treatment shows that the harmonic oscillations are stable for Ey < 0.22 while from the
numerical simulations, we obtain E; < 0.20. Before the critical value of Ey, the system
shows the periodic oscillations while just after this critical value of Ej, the system exhibits
a quasiperiodic and a chaotic behavior. This type of behavior is shown in Figures 3.16(i)
and 3.16(ii) respectively for Ey = 0.5;w = 1.4 and Ey = 0.8;w = 1.6. The effect of the
number of mechanical oscillators on the stability boundaries is shown in Figure 3.17 with
the set of physical parameters of Figure 3.13. In comparison with the stability boundaries
obtained in the previous chapter following the Floquet theory, we have drawn in Figure
3.18 the stability boundaries curves obtained for the two analytical treatment for the case
of the electromechanical transducer with one function. For low frequencies, it appears the
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Figure 3.18: Comparison between stability boundaries obtained follows Floquet theory and those
from the hysteresis effect with the parameters of Figure 8.8 and n=1 (a): Hysteresis effect; (b):
Floquet theory.

difference between the two analytical curves. This can be explained by the fact that one of
the two analytical methods is not more appropriate tool to derive stability boundaries of the
harmonic oscillations on the electromechanical model.

Before closed with the above analysis, we can ressort the following comments about the
two analytical methods using in this thesis to derive stability boundaries of the harmonic os-
cillations on electromechanical devices. Concerning the analytical method connected to the
presence of hysteresis branches, we note that this method give us the stability condition and
stability boundary of the periodic solutions which depending for the parameters of the elec-
tromechanical device and is physically realized. This analytical method is used in ref.[II13] to
derive stability conditions of the harmonic oscillations with symmetrical and unsymmetrical
non-linear characteristics. For the analytical method connected to the Floquet theory, we
only obtained the stability boundary of the harmonic oscillations, which is not physically
realized, because the resulting expressions of the Hill determinant is a complex number. For
the physical point of view and the technological exploitation of the device, the analytical
method connected to hysteresis branches is an appropriate analytical tool to investigate the
stability conditions of the harmonic oscillatory states, this is a plausible conclusion.

3.3.4 Sub- and superharmonic oscillations

In the previous section, we have used the multiple time scale method [III1] to derive
the amplitudes of sub- and superharmonic oscillations of the electromechanical device with
double functions. We are now to extend our investigations to such device with a large
number of functions. As we have briefly noted herebefore, we seek an asymptotic expansion
of equations (3.24) in the following form

r = €Xp1 (To, T2) + 63$03(T0, Tg) 4+ ...
T, = 6.’17i1(T0, T2) + 63.’13i3(T0, TQ) + .., (n = 1, 2, 3, ’ﬂ) (332)

Inserting these expansions in equations (3.24) and equating coefficients of like powers of e,
we obtain
Order e,

Dg:rm + 291 = E coswT,,

D2z 4+ w?zy = 0. (3.33)



Order €3,

n
2 _
D2xo3 + 203 = —2DoDozor — YoDozor — By — A1 Doz11 — Z AoiDoi1,
i=1
2 2
Djxi3 +wizis = —2D,Dox11 — Vo1 DoZ11 + Ao11DoTo1,

Dgxn?: + wzxn?» = —2D,Dxn1 — YnDoTn1 + Aon1 Do%o1 - (334)

The solutions of equations (3.33) can be expressed as

Tor = (T2
Ay (T,
11 = (T2

)
) exp (4T, )+Aexp(JwT)

) exp(—jT5) + A exp(—juwT,),

) exp(jwsT,) + Aa(Ty) exp(—jwaTh),

zp = Aip1(Th) exp(jwyly) + A (To) exp(—jwiyi Ty).

Substituting zo; and x;; into equations (3.35), we obtain

Dgxog + o3 = —(2_]14,1 + j’)/oAl + 3/814%14_1 + 6A2A1) exp(jTo)
+(owA + 48AA L Ay 4 3AB) exp(jwT,) — BA2 exp(35T,)
—3BA3A exp(j(2 + w)T,) — 38A; A% exp(j (2w + 1)T,)
—3BA2A; exp(j(1 — 2w) o) — 3BAAT exp(j(2 — w)T,)
—A3Bexp(3jwT,) — j Z wiAoiAir1 exp(JwiTy,) + C.C,
i=1
Dlziz +wiziy = —jwi(245 + Yo 4s) exp(jwiT,) 4 jAo11 A1 exp(5T5)

+jwAo A exp(jwT,) + C.C,

szn{i + wixn?: = _jwn(2A;z+1 + ’YOnAn—I—l) eXp(jwnTo) + j)‘onlAl eXp(jTo)
+jwAoniA exp(jwT,) + C.C. (3.35)

From equations (3.35), it comes two interesting resonant structures as we have seen here
before. The first one is the superharmonic state w; = 1 and 3w = 1, and the second one
corresponds to the subharmonic state w = 3 with w; = 1.

e Superharmonic resonances

We consider the case where the nonlinear oscillator enters in superharmonic resonance
with the external excitation, that is 3w = 1 + ¢20. We also assume that

w; = 1+ oy, (3.36)

where o; and o are the detuning parameters indicating the accuracy of the resonances.
The secular producing terms in the equations (3.35) must be eliminated and the solvability
conditions are

2]A,1 + j")/oAl + 6A2A1 + 3614%141



+J Z wiAoiAir1 exp(joily) — A’B exp(jo,Tz) =0,

i=1

—w1 (245 + Y01 A2) exp(joiTs) + Ao11 41 = 0,

—wn(2A;1+1 + fYonAn—H) exp(janTg) + AonlAl =0. (337)
With the polar notation of A; = fa;(T») exp(jb;(72)), the amplitudes and phases of n+1
oscillators are described by the following set of first order differential equations
3 1 &
gﬁa:f —a; b} + 3A%a; + BA*cos§ — 3 > widgiaipisind; = 0,

=1

1 ) 12
ifyoal +a) + BA®sin 6 + 3 Z WiApiGiy1 cosd; = 0,
i=1

1
agby cos 1 + (ah + i%lag) sind; = 0,

1 1
w1 (0/2 + E"}/olCLQ) COS 51 — wlb;ag sin 51 — 5)\011611 = O,
' / 1 .
410y, 41 €OS 0y + (a7, + §fyonan+1) sind, = 0,
1 . 1
wy(ay, 4 + §%nan+1) €08 6y, — Wybl, 1 Gny1SID 6, — iAonlal = 0. (3.38)

where § = 0T, — by and §; = 0,15 + b1 — by. For the steady-state responses, b} = o and
b;,, = 0 — 0;. Eliminating J; from equations (3.38), we obtain the following set of nonlinear
equations
9 3
6—452a? + ZﬁMna‘f + Npai — B2A° =0,
a2, = Agin 0t .
T wi (g + 40— 03)?)
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Figure 3.19: Effects of the number of mechanical oscillators on the superharmonic frequency-
response curves with the parameters E = 0.5,7, = 0.01; 7,1 = 1.2, ;1 = 0.12, ;11 = 0.2,
B =0.6;0; =0.
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Figure 3.20: Effects of the number of the linear mechanical oscillators on the superharmonic
amplitude-response curves with the parameters of Figure 3.19 and o1 = 0.5

When the linear mechanical oscillators are identical, M, and N,, take the following expres-
sions

n)‘ol)\oll(a - 01)
4o —o)? +75’

1 n’)’ol)\ol)\oll 2 2
N, = =27 M2,
4{” Tio—a)rrn g

Mn = 3A2—0'1+

Figures 3.19 and 3.20 present the superharmonic frequency-response and amplitude-response
curves respectively when the detuning parameter o and the amplitude E' are vary on the exact
internal resonances (o; = 0). The effects of the number of the linear mechanical oscillators on
the behavior of the model are observed and it appears that the hysteresis domain decreases
with the increase of the number n of linear mechanical oscillator and disappears for large n.

e Subharmonic resonances

To analyze these subharmonic resonances, we set w = 3 + €20,. 0, is the detuning
parameter indicating the accuracy of the subharmonic resonances. Eliminating the terms in
equations (3.35) that produce secular terms in zo3 and z;3 considering the expressions given
by equations (3.36), we have

2j AL + j0Ar + 6A2A; + 3BATA; +
j z wi)\oiA'H—l exp(jaiTg) + SAﬂA% exp(jang) = O,

=1

—w1 (245 + Y1 A2) exp(jor1Ts) + Ao11 41 = 0,

—wy (245, 11 + YonAnt1) exp(jonTs) + Aon1 A1 = 0. (3.40)

Again, introducing the polar notations for A; and separating real and imaginary parts, we
obtain the following first order of differential equations

3 3 1
g,ﬁai’ — a b} + 3M%a; + Z,BAG% cos 8, — 3 > widgiaip sind; = 0,
i—1

1 3 ) 1
5’)@&1 + a'l + Z,BACL% Sin 50 + 5 E wi)\o,-a,url COS 5, = 0,
i=1



1
agby cos 0 + wi (ag + 5'}/01(12) sind; = 0,

1 1
w1 (GIQ —+ 5’)/01a2) COS 51 — wlbéag sin 51 - 5)\011&1 = 0,
1 )
Ant1by, 4 €OS O + wp(ar, | + E%nanﬂ) sind, = 0,
1 . 1
wy (a4 + ifyonanﬂ) €08 &y, — Wybl, 1 Gy SIN 6, — 5/\%1&1 = 0. (3.41)

where 6, = 0,75 — 3b; and §; = 0,15 + b;y1 — b;. For the steady-state responses, we have
by =% and b}, , = % — 044,. Eliminating d; from equations (3.41), we obtain the following
set, of nonhnear equations

Figure 3.21: Effects of the number of linear mechanical oscillators on the subharmonic frequency-
response curves with the parameters v, = 7,1 = 0.01; A1 = 0.1; Ap11 = 0.4; 8 = 0.6; 02 = 0.
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The solutions of equations (3.42) are a? = 0 or

ai =p+/p*—gq, (3.43)

8P, 64Q,
3B2 ) q - 9ﬁ2 :

Nontrivial solutions can exist only if

Prn— /P2 + tn < A < pp+ /D2 + G,

where

p:
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_ 35(Un B %) _ (7 + Vn)2
Pn = 3 2\2 ) n = 3 2\2 )
13- 382 9] (3387 - 9]
- )\oi)\il(@ - Ui) AoiNoil Vi
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The boundary of the region where nontrivial solutions can exist is given by

Az =p, £ \V p% + qn.- (344)

For the case of the identical linear mechanical oscillators, we have the following expressions

n)\oi)\oﬂ(% —o01)
4% —o01)2+7%
1 nA01A01171 2 { 3 2 2

n — ot + Pn+_ A } )
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P, = 30\ -2
3

3 2
BN+
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In the exact internal resonances (o; = 0), we find the behaviors of the amplitudes a; when the
detuning parameter o, and the amplitude E; are vary. The effects of a number of the linear
mechanical oscillators on the boundary of the region where nontrivial solutions can exist are
observed. It is found that for a;(o,), this boundary increases when o, increases while for
the case of a;(Ep), this boundary decreases for the increase of Ey. Our investigations show
that when n > 6, the amplitude-response solutions could not exist in the a; — Fy plane.
Before described and studied the dynamical behavior of another types of electromechanical
device, let us make a following interesting remark for the electromechanical device with a
large number of functions in series. Practically and during the functioning of such device,
the engineer preoccupation is to known the response of the electromechanical device if the
ith linear mechanical oscillator stops functioning, for some reasons tied to a deterioration
of one or some of its components. In this situation, it is found that the mechanical part
could not received faithfully electrical oscillations of the electrical part. Consequently, the
electromechanical model stops to convert electrical oscillations to mechanical oscillations.
This is one of limits and inconvenients of the electromechanical device with double or a large
number of functions in series. Our purposes in the following section is to describ and study
another electromechanical device in which any mechanical oscillator operates independently.

3.4 Electromechanical transducer with double
functions in parallel

3.4.1 Model and equations of motion

We consider now an electromechanical transducer with double functions in parallel. As it
is shown in Figure 3.23, the electrical part is now coupled in parallel with a mechanical part



Figure 3.22: Effects of the number of linear mechanical oscillators on the subharmonic amplitude-
response curves with the parameters of Figure 3.21 and o, = 1.0.

governing by two linear mechanical oscillators. Using again the electrical and mechanical
laws, and taken into account the contributions of the Laplace force and the Lenz electro-
motive voltage, it is found that the system is described by the following nondimensional
differential equations consisting of two electrical Duffing oscillators coupled to two linear
mechanical oscillators as

G+vi+q+ B¢+ i = Eycoswt,
G+7G+q+ B + Xy = Eycoswt,
F4+mi+wiz —A3¢ = 0,
§+ 70+ why — Mage = 0,
q= ¢+ Go. (3.45)

The electrical part is represented by the variable ¢ while z and y stand for the mechanical
parts. The quantities v, v; and w; are respectively the damping and the natural frequencies.
B and \; are respectively the nonlinearity and damping coupling coefficients. We note
that the particularity of this electromechanical device is that the two mechanical oscillators

operate independently. ouping magnetcoi
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Figure 3.23: Electromechanical transducer with double functions in parallel.



3.4.2 Amplitudes of the harmonic oscillations and time delay

To derive the amplitudes of the harmonic oscillations, we express ¢, ¢,z and y in the
form

q = aycoswt+ agsinwt,

g1 = bycoswt+ by sinwt,

T = c¢qcoswt+ cysinwt,
= d; coswt + ds sin wt, (3.46)

Substituting equations (3.46) into equations (3.45) and equating the terms containing cos wt
and sin wt to zero given us the following algebraic equations

3
(1- w? + ZﬁAZ)al +wyas +whica = Ey,
3
—wya; + (1 —w? + ZﬂAQ)ag —whic; = 0,
(1—w?+ ZﬁAz)al +wyaz +wAady = Ey,

3
—wrya; + (1 —w? + ZﬁAQ)ag —whod; =

Y

—wyrcr + (Wi — w?)ey + whshy =

7

0
(w? — w?)ep +wyiep — wAsb, = 0
0
0

(w% — w2)d1 + ’U)’Ygdg - ’U))\4Cl2 + ’U))\4b2 =
—wyody + (w5 — w?)dy +whia; — whb, = 0. (3.47)

Y

After some algebraic manipulations and setting A% = a? + a3, B> = b? + b3, C? = ¢? + ¢2 and
D? = d? + d2, it comes that the amplitudes A, B,C and D satisfy the following nonlinear
equations

9 3
EﬁQAﬁ + §ﬁFA4 + (F?2+ G*)A* - E =0,

B2 _ )‘%)‘EAO 2
h ANX3A T
w2 )\2
02 — 2 4A2
A2A ’
w?\?
D2 — 4A2 4
g (3.48)
where
A = [ (w? —w?) + Mo (w? — w?)]? + [wAsAiye + whidomi]?,
A, = (w]—w?)’ 4wy,
Foo 1wl A A A3 Aqw? (ws — w?) B A2 2w? (w? — w?)
B A A ’
G = W+ /\1)\2)\3)\4’)/2’11)3 i )\%)\Z’yle‘
- r)/ A A 3

With the following set of parameters A\; = 0.2; Ay = 0.6; A3 = 0.19; Ay = 0.15; 71 = 0.13;7, =
0.2;7=0.01; 8 = 0.5;w; = wy = 1.0; Ey = 0.2, the frequency-response curves of the linear



electromechanical system show one peak of antiresonance and two peaks of resonances as we
have shown in the previous Chapter, while the nonlinear frequency-response and amplitude-
response curves show respectively hysteresis and jump phenomena.

We analyze the time delay between the linear mechanical oscillators. From equations
(3.47), we defined the phases ¢; and ¢, of the linear mechanical oscillators as

_ d2 . T
tan ¢1 - d1 - 'rl’
tang, = 2= (3.49)
2= C1 - dlj ‘
where
3
ro = —w)\4(F + Z,BAQ)[)\g)\l(wg — ’LU2) + )\4)\2(’[1)% — w2)]

+UJ/\4G(U)’)/2/\3A1 + w%/\4/\2),
rn = UJ)\4G[)\3)\1 (w% - ’U}2) + )\4)\2(’(1}% — ’LU2)]

3
+w)\4(F + 15A2)(’w’)/2)\3)\1 + W’Yl)\4)\2).

The time delay is therefore defined as

. k
O1a = e N N (3.50)
w w

The time delay of the electromechanical system with double fonctions in parallel depends
only of the frequency w of the external excitation and is independent of the mechanical
device parameters as in the case of devices with n functions in series.

3.5 Conclusion

We have considered in this Chapter the dynamics of an electromechanical system with
multiple functions, consisting of an electrical Duffing oscillator coupled magnetically in
series and in parallel to two and n linear mechanical oscillators. The model with double
functions have first been considered. We have derived the amplitude of the harmonic os-
cillations and time delay between the two linear mechanical oscillators using the harmonic
balance method. It appears that the two linear mechanical oscillators vibrate in phase in
the internal and external resonances. We have also derived the stability condition of the
periodic solutions using the characteristics of the hysteresis branches. The extension of the
model with a large number of functions in series have been considered. The influence of the
number of mechanical oscillators have been analyzed on the behavior of the system. The
electromechanical system with double functions in parallel has been also considered.
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Chapter 4: Synchronization
of electromechanical systems



Chapter 4

Synchronization of electromechanical
systems

4.1 Introduction

In recent years, the field of nonlinear science has seen a growing interest in the syn-
chronization of nonlinear oscillators both in their regular and chaotic states [see ref.[IV1]
and references therein]. The idea of synchronizing two chaotic oscillators was put on by
Pecora and Carrol [IV2] by coupling both oscillators with a common drive signal. Latter
on, Kapitaniak [IV3] shows that one can also synchronize two chaotic oscillators using the
continuous feedback scheme developed by Pyragas [IV4]. The great interest devoted to
such topic is due to the potential applications of synchronization in communications engi-
neering (using chaos to mask the information bearing signals) [IV2,IV5-IV7], in biology and
chemistry [IV8,IV9].

Another field where synchronization is of crucial importance is the automation engineer-
ing where one needs two or many devices to work in a synchronized manner both in their
regular and chaotic regimes. In this field, electromechanical devices with natural and cre-
ated (or introduced) nonlinearities are common and can lead the devices into various types
of behavior [IV10-IV14].

From theoritical and experimental results already obtained, a great deal of effort is still
required to find optimal parameters to shorten the synchronization time, define the syn-
chronization threshold parameters [IV15] to avoid loss of synchronization [IV16], instability
during the synchronization process. This problem is important in all the mentioned fields
where synchronization finds or will find practical interest. For instance, in the communica-
tion engineering, the range of time during which the chaotic oscillators are not synchronized
corresponds to the range of time during which the encoded message can unfortunately not be
recovered or sent. More than a grave and irreversible loss of information, this is a catastro-
phe in digital communications since the first bits of standardized bit strings always contain
the signalization data or identity card of the message.

In this Chapter, we consider the problem of synchronizing two electromechanical devices
both in their regular and chaotic states with and without delay. The device is described by
an electrical Duffing oscillator coupled magnetically to a linear mechanical oscillator. Our
study uses the continuous feedback scheme of Pyragas [IV4]. We use the Floquet theory
to derive the stability criteria and the optimal coupling strength of the synchronization
process. This theory has been used recently to optimize and derive the duration time of
the synchronization of two Duffing oscillators [IV17] as well as that of two Van der Pol
oscillators [IV18].
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The Chapter is organized as follows. After the statement of the problem in the next
Section, we study analytically in Section 4.3 the stability of the synchronization process of
two electromechanical devices in the regular states and give the behavior of the synchro-
nization time. The delay is also taken into account. We derive the critical values K. under
which, for a given precision, no synchonization is possible. In Section 4.4, we extend the
investigation to the synchronization of two electromechanical devices in the chaotic states.
Numerical simulations are used to complement our analytical results. Section 4.5 is devoted
to conclusion.

4.2 Statement of the problem

As we have seen herebefore, the electromechanical device is described by two coupled dif-
ferential equations (see equations (1.6)) consisting of an electrical Duffing oscillator coupled
magnetically to a linear mechanical oscillator. Due to the presence of cubic nonlinearity, the
electromechanical model presents the classical nonlinear resonance, antiresonance, hystere-
sis and jump phenomena, and when the amplitude Ej is large enough, the model exhibits
complex behaviors such as chaos. In this Chapter, we use the following set of parameters
v1 = 0.1;9 = 0.30; A; = 0.01; A3 = 0.06;wy = 1.2;w = 1.3. Two values for 8 are used:
B =0.1 and 8 = 1.32. The values of E; are indicated when needed.

In the regular regime, for some sets of physical parameters and due to nonlinearity, the
response of the system to the external excitation shows what is known as the multistability.
In this case, the system presents the well-known hysteresis phenomena with two stable
harmonic oscillations with different amplitudes. Each harmonic state has its own basin
of attraction in the space of initial conditions. Consequently, if two systems are launched
with different initial conditions belonging to different basins of attraction, they will finally
circulate on different orbits. The objective of the synchronization in this case is to call one
of the system (slave) from its orbit to that of the other system (master). Extension can be
made to include a time delay between the slave and the master.

In the chaotic states, the essence is the high sensitivity to initial conditions. Indeed when
the system is working in the chaotic regime, a very small difference in the initial conditions
will lead to different time histories. The aim of the synchronization is to make so that
two electromechanical devices with different initial conditions finally synchronize their time
history.

As we note in the introduction, our aim is to study the stability and derive the charac-
teristics of the synchronization of two of our electromechanical system. The master system
is described by the components z and y while the slave system has the corresponding com-
ponents u and v. The enslavement is carried out by coupling the slave to the master through
the following scheme

i+ v+ x4+ B® + Ay = Egcoswt,

i+ 72y + wiy — Xoi = 0,

i+t + v+ Bu® + M\ = Egcoswt — K (u(t) —x(t — 7)) H(t — Tp),

B+ Yo + wiv — At = 0, (4.1)

where K is the feedback coupling or synchronization coefficient, 7 is the time delay, Tj the
onset time of the synchronization and H(z;) is the Heaviside function defined by

] 0 forz <O,
H(xl)_{ 1 for z; > 0.



Practically, the above coupling between the master system to the slave system can be
realized as it shown in Figure 4.1. It can be noticed that, in the electrical part of the slave
device, we have in serie a condenser C' and the resulting voltage Vor = &(u — z). So
that, the equivalent of the feedback coefficient is é The resulting equations of motion of
the unidirectionnally coupled electromechanical transducers is established in the Appendix

Ap-2.
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Figure 4.1: Unidirectionnally coupled electromechanical transducers
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4.3 Synchronization of the regular states of
two electromechanical systems

4.3.1 Stability and duration of the synchronization
process without delay
Starting from ¢ = T}, the system changes its configuration and become physically inter-
esting only so long as the dynamics of the slave device described by the components u and
v is stable. We have to determine the range of K for which the synchronization process is

achieve. The stability of the synchronization process is therefore strictly equivalent to the
boundedness of ¢; defined as

a(t) = ult) - (),
) = o(t) - y(b). (4.2)

The new variables ¢; are the measure of the relative nearness of the slave to the master.
From t > T}, ¢; obey to

€1+ 7é + (1+ K 4 382%)er 4+ Aiéy =0,
€2 + Y2€o + ?U;Gz — A€ =0, (4.3)



assuming that they are small. The synchronization is achieved when ¢; goes to zero as t
increases or is less than a given precision. The behavior of ¢; depends on K and on the form
of the master (z,y). In the harmonic state, the master time evolution can be described by

x = Acos(wt — @),
= Bcos(wt — ), (4.4)

where A and B are the amplitudes while ¢ and 1 are the phases. Using the harmonic
balance method [IV19], we insert equations (4.4) into the generating equations (1.6). Then
by equating the coefficients of sinwt and coswt separately (assuming that the terms due
to higher frequencies can be neglected), it is found that A and ¢ are the solutions of the
following equations

1%5%16 + gﬁFA4 + (F?+ G*)A* - EZ =0,

_ G
¢ = tan I{W}’ (4.5)

where

D = (w;—w’)’+wy,

s A dow? (w3 — w?)
_ 5 ’

A g yow?

—p

Using the Newton-Raphson algorithm, one can hence find that the corresponding real
positive solutions of equation (4.5) are

F = 1—w

G = Mw +

e for 5 =0.1 with £, = 0.5

A, = 274, ¢, = —1.05,
A, = 0.76, by = —0.21,
Ay = 3.21, b3 = +1.59,

e and for f = 1.32 with Ey; = 0.2

Al == 064, (bl = —047,
A2 = 034, ¢2 == —023,
A = 0.94, $3 = +1.48.

Only the two last solutions of both sets are stable. With the form of the master given by
equations (4.4), ¢; are now described by the following linear parametric equations

€1+ 71é1 + (22 + neos(2wt — 2¢))e; + M\iéy = 0,
('5.2 —+ ’)/Qé2 —+ ’LU%GQ - )\Qél = 0, (46)

where
Q] = 1+K+n,
3
= ZBA%
n Qﬁ



To discuss the stability of the synchronization process, we use the Floquet theory [IV19].

We set the following rescalings
1 = wi,
u(m) = e exp(mnm/2w),
v(n) = e exp(yem/2w),

Equations (4.6) can be rewritten in the form

d*u d

ar —— + [011 + 2611 cos(4m — 2¢)|u + 012 exp(—ery)v + cld—v exp(—er) = 0,
T1

d2v

d
i ——5 + 021 exp(eT)u + a0 + czd—u exp(ery) = 0,
T

where the new parameters ¢d;;, ¢; and €;; are given by

2 1 1

4 7 w? 4
1 2 ’Y% n
0yp = ﬁ {w2 - Z ) €11 = Ea
— 172 Y1 A2 1
5 = 5 = — = — —
12 ow 21 ow € 2w (72 71);
cT = ﬁ Co = —_)\2
1 — 2’!1]7 2 — 2'[1) J

According to the Floquet theory [IV18], the solutions of equations (4.8) are

n=-+0o0

u(r) = exp(01m1)(11) = Z o exp(a,Ty),
n=—00
n=+00

v(11) = exp(am) (1) = D Bunexp(bumi),

n=—oo

(4.7)

(4.8)

(4.9)

where a,, = 0, +2in, b, = 0+ 2in, and the functions a(m) = a(m +7) and (m) = S(m +7)
replace the Fourier series. The quantities #; and 6, are two complex numbers, while «;,, and

B, are real constants.

Inserting equations (4.9) into equations (4.8) gives an infinite algebraic system, which
may have solutions if and only if the associated Hill’s determinant is set equal to zero. This
condition defines the boundary dividing the parameters space in two domains: the stability
and the instability ones. Limiting ourselves to a Hill determinant containing the sixth rows
and sixth columns, we find that the boundary separating stability to instability domains are

given by
A(Ol, 02) = [(511 =+ 9%)(522 + 0;) — (512 + 6102)(521 + 6201)]
{— (021 + co(61 + 20)) (012 + 1 (02 — 27))
{Gur + (01 = 20%) (6 + (6 — 20)?)—
(012 + ¢1(02 — 21)) (021 + c2(61 + 2i))}
— (022 + (B2 + 20)*) (611 + (61 + 2i)?)
(012 + €1 (02 — 21)) (021 + c2(61 + 21))+
(022 + (02 — 20)) (022 + (02 + 21)?)
{01+ (61 = 20)°) (611 + (01 +20)*) — €, }}
0

?

(4.10)



with #; and 0y given below.
Since, we have

il
€ = GXP((Hl—%)Tl)Oé(Tl),

e = exp((f — ;—;)ﬁ)ﬁ(ﬁ).

Floquet theory states that the transition from stability to instability domains (7-periodic
transitions) occurs at #; = ae and 6, = J2. Thus replacing ¢; by J- and 6, by 32 in
equation (4.10), we obtain an equation which helps to determine the range of K in which
the synchronization process is stable. Considering the case with g = 0.1, it is found from
equation (4.10) that the stability is achieved for K €] — 2.54;0[U |0;4.18[U]5.71; +o0 if the
slave comes from the orbit A, to follow the master at the orbit Az. The results obtained from
equation (4.10) are verified by a direct numerical simulation of equations (4.1) with the fourth
order Runge-Kutta algorithm. The master and the slave are initially launched with the
initial conditions (z(0), £(0),%(0),%(0)) = (0.0,0.01,0.0,0.02) and (u(0),(0),v(0),9(0)) =
(2.0,0.0,0.1,0.3) respectively. These sets of initial conditions lead respectively to periodic
oscillations with amplitudes approximately equal to A, and Aj respectively. Here the slave
is forced to come from A3z to A,. For the case As to Az, we just have to inverse the initial
conditions. For each set of initial conditions, the synchronization is launched at 7, = 200
and K is varied until the synchronization is achieved. With this numerical procedure, we find
that the slave transition from A, to Aj requires at K €]0.0808;4.25[U]4.38; +00[. Despite
the presence of a subdomain with K < 0 obtained from the analytical treatment (and which
does not exist in the numerical results), we find that for K > 0, the agreement between the
analytical and numerical results is quite good.

In the case f = 1.32, our analytical treatment gives that for the transition Aj to
Ay, we need K €| — 1.2275;0[U]0; +00[. From the numerical simulation of the differen-
tial equations (with the initial conditions (z(0),z(0),y(0),%(0)) = (0.0,0.01,0.0,0.02) and
(u(0),u(0),v(0),9(0)) = (1.1,0.01,0.1,0.3)), it is found that the transition A3 to Az occurs
for K > 0.5. Here we find that the agreement between the analytical and numerical results
is not as good as in the case § = 0.1. This can be understood by the increase of the nonlin-
earity effects for § = 1.32. Indeed, in this case, the single harmonic response (4.4) may be
questionable. But despite this fact, the analytical treatment gives a good indication on the
boundary of K for the synchronization to be achieved.
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Figure 4.2: Synchronization time Ty, versus the feedback coupling K coefficient for the transi-
tions Ay to Az for B = 0.1, Ey = 0.5 and the precision h = 10710,
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The synchronization time is defined as
Tsyn = tsyn - TOa (411)

where ,,, is the time instant at which the trajectories of the slave and the master are
close enough to be considered as synchronized. Here, synchronization is achieved when the
deviation €; obeys to the following synchronization criterium

€1 = |z —u| <h, Vt > toym, (4.12)

where h is the synchronization precision or tolerance. Ty, is plotted versus K in Figure 4.2
and Figure 4.3 for different values of the tolerance h. It is found that near the synchronization
boundaries, Ty, is very large. But as K moves from the boundaries, T, decreases quickly
and for large K, it attains a limiting small value depending on h.

4.3.2 Delayed synchronization (7 # 0)

The purpose of delayed synchronization is to achieve the convergence of u(t) and v(t)
towards z(t — 7) and y(t — 7) respectively. This is also an important goal to achieve in the
field of electromechanical engineering. In this case ¢; rather obey to

€ +mé + [1+ K +3B2%)e; + Méy = —2E; sin(wr/2) sin(wt — wr/2),
€2 + ’)/Qég + wgﬁg — Agél = 0, (413)

€; is now submitted to an external sinusoidal excitation whose amplitude depends on E, and
7. When 7 = nT (T = 27 /w is the period of the external excitation and n an integer),
the external term vanishes and equations (4.13) is no more different to equations (4.6).
Therefore, the whole analysis developed in the preceeding section remains valid. For 7 # nT,
the stability domain remains that obtained herebefore but the external excitation induces
steady state oscillations for ¢; and the amplitudes of ¢; can be very large depending on Ej
and 7. When K is varied, 2; is modified, and resonances may occur with the external and
parametric excitations. The method of multiple time scales demonstrates that €2; should be
far beyond w if we want to obtain small amplitudes for ¢;. We can therefore discard the
linear parametric excitation and the variational equations (4.13) reduces to

wT

&+ més+ Qe+ Aiép = —2Bqsin(S1) sin(wt — ),

62 + ’}’Qég + ’LU%GQ — /\Qél = O, (414)
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Figure 4.5: Analytical and numerical K., versus T for the slave transition from Az to As.

Thus, far from the resonance peaks, the amplitudes of the steady state oscillations of ¢;
are given by the following expressions

2D, Ey sin(wt/2)

e (t) = D, cos(wt — wr /2 — 1)y),
62({;) _ 2D1E0/\2w Sin(wT/Q) Cos(wt . ’11)’7'/2 . ¢2)’

vD:D,
(4.15)

where
D, = (wg — ’11)2)2 + 71)2’)’%7
D, = [(Qf —w?*)Di — Mdgw?(w — w?)’ + [nwDs + Adaw’pf,

The analytical expressions of the critical values K, is precisely found by setting the
equality between the amplitude of €; and the precision h, so that |e;| < h. This leads to

Q+ \/(2D1EOZiHWT/2)2 . (’Ylel +)\1/\272w3)2

K Kcr = -1- )
> D, n

(4.16)



where
Q = w2D1 + /\1)\21112(11]; — U)Q).

In Figure 4.4, we have plotted K. versus 7 for the slave transition from A, to As for 8 = 0.1
and Ey = 0.5, and in Figure 4.5, the same is done for the slave transition from Az to A, for
B = 1.32 and Ey = 0.2. The synchronization tolerance used is h = 1072. The agreement
between the analytical and numerical results is fairly good. The maximum value of K,
occurs at 7 = T'/2. Let us note that K, increases when the tolerance h decreases for a given
set of parameters and time delay.
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Figure 4.6: Synchronization time Tsy, versus K in the chaotic motion when T = 0. Initial
conditions are as in Figure 4.3 and h = 1074,
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Figure 4.7: Synchronization time Tyy, versus the delay T in the chaotic motion with the precision
h =101, K =200, and Ey = 22.

4.4 Synchronization of the chaotic states of two
electromechanical systems
In this section, we extend the analysis of the synchronization process to chaotic states.

The objective of this extension is to find if our analytical procedure can also help to derive the
stability boundary of the synchronization of two chaotic electromechanical devices with and
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Figure 4.8: Analytical and numerical K, versus T in the chaotic motion. The initial conditions
and the parameters are as in figure 2, with the precision h = 107! and Eq = 22.

without delay. As it is known for the Duffing equation with a hard spring, chaos appears
for high values of the external excitation amplitude Ej, [IV19]. This is also the case in our
system. We find that with the set of parameters used in this Chapter, chaos appears around
Ey = 22.0. A chaotic phase portrait of the x component of the electromechanical system is
shown in Figure 2.18. To use the analytical procedure (namely equations (4.10) and (4.16)),
we need an approximate expression for the chaotic orbit. This is obviously not possible since
a chaotic orbit is aperiodic and is composed of an infinite number of Fourier components.
But we can however assumed that in the chaotic state, the virtual orbit is that obtained
using the harmonic balance method. Thus, with equations (4.5), 8 = 1.32 and E, = 22.0,
the virtual harmonic orbit has the amplitude A = 2.89. With this approximation, equations
(4.10) gives that the two chaotic systems can be synchronized if K > 5.75. From the
numerical simulation of equation (4.1), we find that the chaotic electromechanical systems
are synchronized if K € [7.2;9.8]U[10.8;14.6]U]15.6; +oo[. Here we find that the difference
between the analytical and the numerical results is large. But this is not due to the basic idea
leading to the stability equation (4.10), but to the fact that with § = 1.32 and E, = 22.0, our
virtual orbit with amplitude A = 2.89 is a very poor approximation and it is expected that
by taking more harmonics, could be reduced the gap between the analytical and numerical
results. Indeed, for other types of chaotic models where chaos does not need high nonlinear
components to appear as the case of the soft Duffing oscillators, one finds good agreement
between the analytical and the numerical results [IV15].

In Figure 4.6, we have plotted the variation of the synchronization time of two chaotic
electromechanical systems with A = 10™*. In Figure 4.7, Ty, versus 7 is also reported
while in Figure 4.8, K., versus 7, obtained from the analytical investigation and numerical
simulation is also presented. For 7 near nT', there is a good agreement between the analytical
and numerical results.

Before conclude with this Chapter, we note that extension to a large number of electrome-
chanical devices can be analyzed. In this case, the control strategy [IV4] can be implemented
in two ways. In the first way, the master system controls directly the motion of the enslaved
devices. Analytical investigations for this case are those presented here before. The second
way consists of a series of cascading control. The master control the first slave which in its
turn controls the second slave, etc... We assume that the slave devices are set in motion at
the same time with different initial conditions and that the control is launched at the same
time in the lattice. One also considers the synchronization of a network of electromechancal



devices in the chaotic states. In this case, the problem of the transitions from spatiotemporal
chaos to complete synchronization states is a particular interest.

4.5 Conclusion

In this Chapter, we have considered the problem of synchronization without and with
delay of two nonlinear electromechanical systems in their regular and chaotic states consists
of a classical electrical Duffing oscillator coupled magnetically to a linear mechanical oscil-
lator. The stability boundaries of the synchronization process has been obtained using the
Floquet theory and numerical investigation. The influence of the synchronization precision
has also be investigated. It has been found that the minimal feedback coefficient K., which
enables the synchronization is a periodic function of the synchronization delay between the
master and the slave devices. Some interesting agreements have been obtained between the
analytical and the numerical results.
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General conclusions
and perspectives

1- Summary of the main results of this thesis

Before ending with this dissertation, let us give a summary of the main results. The aim
purpose of this work has been to consider the dynamics and synchronization of electrome-
chanical devices with a Duffing nonlinearity.

We have presented in the first Chapter the generalities on electromechanical systems
and given some information for their interaction with electromechanical engineering. A
description of the sources of nonlinearity and some electromechanical systems has been
presented.

In chapter 2, we have analyzed analytically and numerically the behavior of forced and
parametric electromechanical systems. We have found and analyzed the stability of harmonic
oscillations using respectively the method of harmonic balance and the Floquet theory.
Resonance, antiresonance and hysteresis phenomena have been observed. The amplitudes
and the boundaries of the stability of the harmonic oscillations have been confirmed by
a direct numerical simulation of the equations of motion. The characteristics of sub- and
superharmonic oscillatory states in the electromechanical model have been derived using the
multiple time scales method. The types of transitions from regular behavior to chaos have
been analyzed using the numerical simulations of the equations of motion. We have used
canonical feedback controllers algorithm to drive the electromechanical model from chaos to
a regular target trajectory. We have analyzed the effects of the parametric coupling on the
dynamics and stability boundary of the harmonic oscillations.

Chapter 3 has been devoted to the dynamics of an electromechanical device with multiple
functions. We have first considered the model with double and a large number of functions
in series. We have derived the amplitudes of the harmonic oscillations and time delay using
analytical method. The effects of the number of linear mechanical oscillators on the behavior
of the device has been analyzed and it appears that the points of resonance move when this
number becomes large. The characteristics of sub- and superharmonic oscillations which
occur in the model have been also derived. Secondly, the dynamics of the model with double
functions in parallel are been considered, and the amplitudes of the harmonic oscillations
and time delay have been also derived.

In Chapter 4, we have considered the problem of synchronizing electromechanical devices
both in their regular and chaotic states with and without delay, using the continuous feedback
scheme of Pyragas. We have used the Floquet theory to derive the stability criteria and
the optimal coupling strength of the synchronization process. We have derived the critical
values K, under which, for a given precision, no synchonization is possible. Numerical
simulations have been used to complement our analytical results.

106



2- Perspectives

Despite the results obtained in this work, other points of interests will be solved in the
future to complement and get a better understanding of this work.

e An interesting point to consider is to carry out the same study in self-sustained elec-
tromechanical devices. Here, the nonlinear component is a resistor whose /—V curve contains
a negative domain as described in chapter one. This will lead us to a system consisting of a
Duffing-Van der Pol electrical oscillator coupled magnetically to a mechanical oscillator.

e When used in industries for cutting and drilling our devices could interact with medium
possessing different elastic and damping coefficient. In this case, we face the problem of the
dynamics of electromechanical devices with piece-wise like parameters. It is thus interesting
to analyze such problem.

e Our study has focussed on the analytical and numerical study of the electromechan-
ical system. To complement our knowledge in such devices, experimental studies should
be carried out for eventual technological exploitation in micro and macroelectromechanical
engineering.

These three points are currently under investigation and preliminary results have already
been obtained.
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Ap-1 Equations of motion of the controlled electrome-
chanical system shown in Figure 2.22

We establish in this section the resulting equations of motion of the controlled electrome-
chanical transducer. For this aim, we also apply the Newton second law of dynamics and
the Kirchhoff law for the voltage in the controlled system. As it shown in figure 2.22; we
have in the electrical part a new additional voltage Vi = é(q — gocos)t) and in the me-
chanical part a new external force f, = K'(z — 25 cost). Taken into account the Laplace
force, the Lenz electromotive voltage, the new additional voltage V- and force f,, it is found
that the controlled electromechanical system is described by the following set of differential
equations:

1 1
Li+ Rqg+ Eq+a3q3 + a(q — qocosQt) + B2 = wv,cost
o

mi+ A+ Kz+ K'(z — zpc080t) —IB,g = 0

With the dimensionless variables defined in chapter one and

qg_ Zo_ 1 K'LC,
= yo=7, Ky = L—C’ K3 =

Lo =

=00
The above two differential equations is reduced to the following set of nondimensional dif-
ferential equations:

F4+mi+a+ B2+ Ny = Eycoswt— Ky (z — x,c08 wt)
G+ 7y +wiy — Mo = —Ky3(y — y, coswt)

Ap-2 Equations of motion of the unidirectionnally cou-
pled electromechanical systems shown in Figure 4.1

As in the previous section, our aim in to establish the equations of motion of the slave
when the synchronization process is launched, as its shown in figure 4.1. We have now in
the electrical part a new additional voltage Vi in the capacitor C' connected in serie with
the components of a RLC circuit and defined by the following expression:

1, 1
VC’:ECI :5(55—“)

109



With this expression of V., it is found that the slave and the master are described by the
following set of nondimensional differential equations:

F4+mi+r+p2°+\y = Eycoswt
J+ vy +wiy — Aot = 0

i+ v+ u+Bud+ A0 = Eycoswt — K(x — u)
b4+ Y0 +wiv — At = O

with K = -5
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