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Abstract

Conventional underwater sensors are not well suited to the task of aiding unmanned

underwater vehicles to hover. These sensors suffer from several drawbacks such as

low sampling rates, low resolution, complexity of operations, drift and cost. Un-

derwater video cameras, however, can provide local measurements of position with

respect to a local object. Underwater vision presents several challenges: it suffers

from a limited range and poor visibility conditions. Besides, recovering motion from

images requires high computing power, which is a limited resource on-board most

underwater vehicles.

The main objective of this thesis was therefore to investigate visual control methods

to dynamically position a typical underwater vehicle with respect to a fixed object.

These methods also had to have computing power’s needs compatible with off-the-

shelf embedded computers that can be operated on real vehicles.

A hybrid visual servoing technique, adaptated from the 2 1/2 D visual servoing

scheme, was proposed. Its performance was assessed in simulations using a six

degrees-of-freedom nonlinear dynamic model of an Remotely Operated Vehicle. The

effects of sea current disturbances, the target’s orientation, and noise under sparse

feature tracking conditions was studied. The proposed method proved stable and

took into account the restrictive controllability of the vehicle.

A 2-D visual servoing scheme which employed the Shi-Tomasi-Kanade sparse feature

tracker on unmarked planar targets in a water tank was then proposed. The scheme

controlled a planar Cartesian robot which emulated the dynamic behaviour of the

surge and sway degrees-of-freedom of a typical underwater vehicle. The effect of

sea current disturbances on the stability and performance of the control scheme was

also studied.

An underwater experimental evaluation of the Shi-Tomasi-Kanade feature tracker

under various conditions of lighting and relative speed between the underwater scene

and the camera was also performed.

xx



Chapter 1

Introduction

Unmanned Underwater Vehicles or UUVs, are widely used for sea exploration and

exploitation. Their applications are numerous: inspection and repair of oil and gas

facilities, cable-laying for telecommunications and scientific studies of the deep ocean

are but a few. The majority of these applications requires the ability to dynamically

position the UUV with respect to an object, whether it be a cable, an underwater

structure, a sunken ship or the seabed. The dynamic positioning of an UUV can also

be seen as a prerequisite to docking tasks when the vehicle has to direct itself and

dock onto a seabed structure. This capability, however, poses several challenges.

Unlike terrestrial mobile robots, floating robots move in six degrees-of-freedom, and

are subject to constant and unknown disturbances caused by sea currents. Tethered

UUVs, commonly termed Remotely Operated Vehicles or ROVs, are also subject to

dynamic disturbances due to the drag of their umbilical, which can reach several

kilometres in length! Hydrodynamic characteristics of UUVs contribute to make

them nonlinear time-varying systems. Often, their degrees-of-freedom are coupled,

adding to the motion control problem. Dynamic positioning of UUVs is therefore

not trivial.

One of the requirements of a motion control system is the ability to obtain position or

velocity measurements from sensors. Sensing techniques in water are predominantly

acoustic since electromagnetic waves rapidly attenuate in sea water. There is an

obvious trade-off between range and positioning accuracy: the lower the frequency,

the further the sensor can “sense”, and the worse the positioning accuracy becomes.

Acoustic sensors hardly provide the sub-metre accuracy required by dynamic posi-

tioning. They also suffer from limited sampling rates, rendering the control problem

even more challenging. Other conventional non-acoustic sensors such as compasses,

or inclinometers, can be biased, and when they are integrating devices, exhibit drift
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properties due to measurement noise. They also have limited sampling rates.

Another downfall of conventional underwater sensors is that they generally provide

a measurement relative to an arbitrary datum, such as latitude and longitude. Vi-

sual methods, however, can provide measurements relative to a local object. For

example, when inspecting a ship’s wreck, a video camera would produce informa-

tion on the relative position of the wreck with respect to the camera, whereas a long

baseline triangulation system would supply an absolute position unrelated to the

ship’s location. This fact motivated the investigation of visual techniques to station

keep an UUV with respect to a local target.

This thesis tackles the issue of dynamically position or station-keep an

underwater vehicle with respect to a fixed target by means of a single

on-board video camera. The visual control methods investigated in this thesis

should also be easily implemented on actual UUVs. In particular, Autonomous

Underwater Vehicles or UUVs are equipped with typical and affordable state of the

art embedded computers (such as PC104) and their computing power is limited.

Therefore, sophisticated image processing techniques, however promising, were not

investigated because they were too computationally expensive. Consequently the

thesis was restricted to linear computer vision techniques to meet this computational

cost requirement.

As shall be seen in the following chapters, despite using linear computer vision

techniques, the state of the art embedded computer used restricted the visual control

sampling rate to 5 Hz. In order to validate the visual control techniques presented

in this thesis, a Cartesian robot emulated the typical motion behaviour of an

underwater robot. The emulation was based on an experimental nonlinear dynamic

model of the ROV ANGUS previously operated by the Ocean Systems Laboratory,

and no longer in use. When it was operated, its controllers ran at 50 Hz. One of

the challenges of this thesis was to design a stable visual controller at a much slower

control rate of 5 Hz for this nonlinear time-varying system.

The context and the motivation of this thesis’ work has been briefly introduced. The

chapter now offers a review of visual control methods for underwater vehicles’ dy-

namic positioning. The challenges of underwater vision will also be highlighted. This
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thesis’ contribution to the field will be presented, and the thesis’ plan announced.

1.1 Visual control of robots

The idea of using visual sensors such as cameras to perform robotic tasks is far from

new. The first attempts took place in the early 70’s, and employed a “look and

move” open-loop strategy [76]. The resulting positioning accuracy of the robot was

therefore directly dependent on both the accuracy of the visual sensor and the robot

end-effector. A natural idea to further increase the system’s positioning accuracy

was to “close the loop” around the visual sensor. This is referred to in the literature

as visual servoing, a term that will be used in the remaining of this thesis:

“the task in visual servoing is to use visual information to control the

position and orientation or pose of a robot’s end-effector with respect to

a target object or a set of target features. For a mobile robot, the visual

servoing task is to control the vehicle’s pose (position and attitude) with

respect to some visual landmarks.” (definition adapted from [39])

In this thesis, the focus has been put on closed-loop visual control or visual servoing,

since the open-loop approach lacks robustness. This section is organised as follows:

first, a taxonomy of visual servoing techniques, adapted from [9] is presented, then

a review of visual servoing methods applied to underwater vehicles is given.

1.1.1 Taxonomy

A major classification of visual servoing strategies distinguishes between position-

based (or 3-D) visual servoing and image-based (or 2-D) visual servoing. Recently,

hybrid approaches have also been proposed [16, 50]. This classification is based on

the nature of the feedback information used in the robot control loop.
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Figure 1.1: 3-D visual servoing: the rigid frame transformation T or pose between
the target and the camera is measured at each cycle and compared with the desired
pose T∗. A classic Cartesian controller can be used in the robot control loop.

Position-based visual servoing

In position-based visual servoing [7, 91, 92] (also referred to as 3-D visual servoing)

features are extracted from the image, and used to compute the target’s pose1 with

respect to the camera (see figure 1.1). The error signal fed into the robot’s position

controller is the difference between the desired pose T∗ and the estimated pose T

of the target with respect to the camera.

The main advantages of this type of approach are to allow the use of existing Carte-

sian controllers by the robots, and to separate the issue of pose estimation from

image data from the computation of the feedback signal. The camera trajectory is

directly controlled in Cartesian space.

Nevertheless, 3-D visual servoing raises several difficulties. Since the robot’s trajec-

tory defined by the control is in Cartesian space, there is no control in the image,

and therefore no guarantee that the target will stay in the field of view during the

servoing task. In addition, the pose estimation problem from visual data is not

trivial. In chapter 4, a few linear methods to compute the relative pose of an object

with respect to a camera will be presented. Linear methods are sensitive to noise,

and nonlinear ones are too computationally expensive to be of use for visual servoing

13-D transformation (translation and rotation) relating the target to the camera.
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Figure 1.2: 2-D visual servoing.

applications. Other pose estimation methods are based on a geometric model of a

target, for example, assuming the object is an ellipse, or a square. This restricts

greatly the potential applications of visual servoing. This family of techniques is un-

suitable for use in a “natural” and unstructured environments. Camera calibration

errors or modelling inaccuracies of the target may be the cause of wrong estimates

between the current and desired poses, and the servoing might not converge. Finally,

the stability of this type of system has proved, so far, impossible to solve analytically

[6].

To render the control more robust and to stop the visual target from leaving the

field of view, researchers have investigated visual servoing techniques based solely

on visual information. These techniques are termed image-based visual servoing.

Image-based visual servoing

In image-based control, the pose estimation is solved implicitly: when the current

view of the object matches its desired view, then the camera has reached its desired

configuration [9]. More formally, let r represent the coordinates of the centre of

gravity of a mobile camera in a Cartesian reference frame. Let s be a vector of

image parameters, and ṡ represent the derivative of s with respect to time. Image-
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based visual servoing introduced a linear mapping relating ṡ and ṙ:

ṡ = L(s) ṙ. (1.1)

L(s) is called the interaction matrix or image Jacobian matrix, introduced the

first time by Weiss [88]. Image features can be of diverse nature: image point

co-ordinates, segment length and orientation, ellipse parameters, etc. Chaumette

derived expressions for the interaction matrix for common image features such as

point co-ordinates, ellipses, lines, cylinders [5]. The most common interaction ma-

trix is based on the motion of points in the image ([10, 20, 51, 79] are but a few

examples). Assume that the camera’s velocity vector, with respect to a fixed camera

frame, is ṙ = [VT ,ΩT ]T . Let M = [x, y, z]T be a 3-D point belonging to a rigid ob-

ject expressed in the camera reference frame, and let s = [u, v]T be the image plane

co-ordinates of M. The velocity of M expressed in the camera reference frame is

given by:

Ṁ = Ω × M + V (1.2)

The interaction matrix relating to this point is given by:

L(s) =


f/z 0 −u/z −uv/f (f2 + u2)/f −v

0 f/z −v/f (−f2 − u2)/f uv/f u


 (1.3)

where f is the focal length of the camera. The interaction matrix relates image-

plane velocity ṡ of a point to its relative velocity with respect to the camera Ṁ so

that:

ṡ = L(s) Ṁ. (1.4)

Derivations of L can be found in a number of references including [20, 39].

The simplest approach to image-based visual servoing is to use an interaction matrix

computed from at least four points of which no three of them are collinear. For

instance, four 3-D points forming a square make an adequate visual target (see [5]).
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The interaction matrix is then built by stacking up the 2 × 6 interaction matrices

of equation 1.3 with each image point. If the interaction matrix thus built is non-

singular, one can use its pseudo-inverse L(s)+ to set a desired camera’s speed ṙ∗2:

ṙ∗ = L(s)+ ṡ. (1.5)

However, more sophisticated approaches have been proposed, notably [20] where

the task function paradigm is used [72]. In this thesis, the task function concepts

were employed. As an example, consider that the desired position of the camera is

reached when, in the image, the current s and the desired s∗ feature vectors coincide.

The vision-based task can be defined as the regulation to zero of function e:

e = s − s∗. (1.6)

e is called the task function. Now, using eq. 1.1, the interaction matrix relates the

time derivative of e with respect to the camera velocity:

ė = ṡ = L(s) ṙ. (1.7)

If one wishes an exponential decrease of the task function towards zero such that:

ė = −λ e (1.8)

where λ is a positive scalar, the control law is given by:

ṙ∗ = −λL+(s)e. (1.9)

where ṙ∗ is the desired camera velocity. A functional diagram of 2-D visual servoing

is pictured in figure 1.2.

It has been demonstrated that 2-D visual servoing strategies are less sensitive to

camera calibration errors than 3-D visual servoing schemes [19]. Since the control

is specified in the image plane, the camera’s trajectory can be erratic. Besides, the

2The superscript “+” denotes the pseudo-inverse of a matrix.
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interaction matrix is dependent on the estimation of the imaged point depth, z. Its

value can be estimated by a classic pose estimation algorithm, thus presenting the

same drawbacks as in position-based visual servoing techniques. Adaptive methods

to compute depth have also been explored [80], or direct on-line methods to esti-

mate the interaction matrix combining information about the robot and the image

motion [65]. The interaction matrix may not be of full rank, therefore image-based

visual servoing may be unstable when the computation of the pseudo-inverse of the

interaction matrix is close to a singularity [6]. These singularities have proved, so

far, impossible to compute analytically.

Hybrid methods

In an attempt to combine advantages from both position-based and image-based

visual servoing approaches, hybrid methods have been designed [16, 50, 97]. The

control task is defined partially in the image, and partially in Cartesian space. In

[50], image-based visual servoing is used to control translational degrees-of-freedom,

while the epipolar geometry3 between the current and the desired images is employed

to estimate the rotational degrees-of-freedom. This method, termed 2 1/2 D visual

servoing, has the property of decoupling the control of the axes of rotation from the

control of the axes of translation. A complete mathematical treatment will be given

in chapter 6. A similar approach was proposed in [16]. The principle of the 2 1/2

D visual servoing technique is depicted in figure 1.3. The translational degrees-of-

freedom parallel to the image plane, and the remaining translation along the optical

axis of the camera are estimated and fed into a first controller. The full rotation

(axis u and angle θ) is estimated and fed into a controller constraining the rotational

degrees-of-freedom.

1.1.2 Visual control of underwater vehicles

So far, in the underwater robotics field, few attempts have been made to use vision

sensors for control [52, 44, 69, 61]. One of the main reason is that underwater vision

3See chapter 4 for an account of epipolar geometry.
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Figure 1.3: A hybrid visual servoing method: the 2-D 1/2 approach.

presents several challenges. Due to the properties of water, optical waves are rapidly

attenuated. The range of a video camera is typically between two and ten metres.

Backscattering caused by marine snow, that is the presence of floating organic or

inorganic particles in water which reflect light, degrades the visibility conditions.

Underwater cameras have a comparatively high sampling rate (video rate is 25 Hz)

and their resolution is better than a conventional underwater sensor. For example, a

pixel of a CCD array of a camera one metre away from a target can represent 1 mm

in the real world. However, video information is rich and requires high processing

power.

Dynamic positioning has been studied by Marks et al. [52]. Their method employed

a stereo camera attached to the MBARI’s OTTER vehicle. Laplacian of Gaussian

filtering, and image correlation were performed with dedicated hardware. Assuming

that the vehicle was stable in roll and pitch, and that depth information was avail-

able by means of another sensor, they could estimate the motion on the remaining

degrees-of-freedom. Although results of motion estimation were given and successful

station-keeping was demonstrated, no quantitative performance was available due to
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a lack of an external ground truth measuring device. This method was later trans-

ferred onto the MBARI Ventana ROV, and at sea dynamic positioning results were

given. Proportional-Derivative (PD) linear controllers were employed and again, no

external positioning device was used to provide ground truth. Errors were measured

in the image in pixels.

Negahdaripour et al. proposed a different approach to solve the station-keeping

problem [61]. Motion information was estimated with a single camera by computing

the optical flow between consecutive images. Optical flow is basically an approxi-

mation of the 2-D motion field, i.e. the projection of the 3-D motion field of objects

in the image plane. The camera was rigidly fixed to a three-thruster free floating

vehicle, and was made to look towards the bottom of a water tank. The motion

of the camera, up to a scale factor, was extracted from the optical flow, and fed

into Proportional Integral Derivative (PID) position controllers. Heading, and hor-

izontal degrees-of-freedom were controlled. Since the computation of optical flow is

expensive, images were reduced in size to provide a sample rate of 30 images per

second.

Rives and Borelly used the task function approach [72] to perform pipe-following

with the IFREMER VORTEX ROV in their swimming pool [69]. The edges of

the pipes were extracted and tracked in user-selected windows. The tracking was

improved by Kalman filtering the feature parameters ((ρ, θ) polar representation of

segments).

Finally, a related approach, closer to the active vision field, was proposed by Crétual

et al. [11]. A pan and tilt camera performed a stabilisation task on underwater

images. The 2-D motion was estimated with a multi-resolution optical flow method

called RMR [63], and a task function was devised to constrain the pan and tilt of

the camera. Dry validation was carried out on underwater videos projected on a TV

screen. The camera was able to track successfully a region in the image sequence.
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1.2 The proposed approach

The objective of this thesis was to investigate state of the art visual servoing algo-

rithms to station-keep typical UUVs. The computing power required to run these

algorithms should be compatible with the state of the art embedded computers used

on Autonomous Underwater Vehicles (AUVs). The main contribution of this thesis

was to put together known computer vision and visual control techniques in a novel

difficult application: underwater vehicle dynamic positioning. Therefore, a special

emphasis was placed on the characterisation of each component belonging to the

visual control scheme throughout the chapters.

The visual dynamic positioning techniques proposed in this thesis distinguished

themselves from the previously published methods described in section 1.1.2 in sev-

eral aspects. Contrary to the work of Marks et al. [52], which used a stereo system

with dedicated hardware, a single camera was employed with an off-the-shelf embed-

ded computer. In addition, the vehicle’s motion was not estimated from the optical

flow as in [61], but was based on the ability to track sparse feature points in the

acquired images of an underwater “natural” scene.4

The first method proposed by the thesis can be classified as a hybrid visual servoing

approach. It is an extension of the 2 1/2 D visual servoing technique, specifically

adapted to an underactuated ROV. Its validity is demonstrated in simulation on a

six-degrees-of-freedom model of an ROV. It is able to constrain the four controllable

d.o.f. of the ROV, that is: heading, surge, sway and heave.

The second approach is a more classic 2-D visual servoing technique designed to

perform the dynamic positioning in the horizontal d.o.f. of the ROV. The technique

was implemented on a Cartesian robot moving in a water tank. The surge and

sway dynamics of an ROV were emulated on the Cartesian robot, mixing simulation

components with real hardware. The Cartesian robot was therefore animated with

a motion which closely replicated the dynamics of a typical underwater vehicle.

4By “natural”, it is meant that the scene was not in any way, specifically designed to suit the

visual servoing scheme, such as for example a set of white disks painted on a black board.
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1.3 Thesis’ overview

This thesis is, by its nature, multi-disciplinary. Hence a great deal of background

theory from the underwater robotic and computer vision fields has to be introduced.

Chapter 2 introduces the main concepts and notation on which underwater vehicle

modelling is based. These concepts are then applied to the description of Heriot-

Watt University’s UUV, ANGUS 002, whose hydrodynamic parameters were exper-

imentally derived [29]. Then, in chapter 3, it is showed how, based on the latter’s

dynamic model, it was possible to emulate two of its six degrees-of-freedom on a

Cartesian robot in a water tank.

Chapter 4 provides the reader with the basic terminology of the computer vision

field. In particular, it focuses on a widely used geometric camera model: the pinhole

camera, and recalls how, under this camera’s model assumption and provided a set

of feature correspondences in two images, it is possible to recover the Euclidean 3-D

motion of the camera, up to a scale factor.

Recovering Euclidean motion from a pair of images requires the ability to find, in

both images, a set of corresponding feature points. In the case of a continuous mo-

tion, this correspondence problem has to be solved continuously and is termed feature

tracking. Chapter 5 deals with this aspect. It describes the feature tracking method

used as the basis of this thesis’ visual servoing experiments. More importantly, an

experimental performance evaluation of the latter is carried out underwater on nat-

ural scenes. The tests presented in this thesis are not exhaustive. However, a special

emphasis has been put on their design so that they are indicative and realistic of

the feature tracking performance in harsh underwater environments.

Chapter 6 presents a solution to the visual station keeping problem based on the

2 1/2 D visual servoing technique developed by Malis et al. [50]. It is applied

to a simulation of the full ANGUS six degrees-of-freedom dynamic model. It is

demonstrated that the approach is well suited to solve the station keeping problem.

Its performance is assessed in several adverse conditions. In particular, the thesis

explores and analyses the effects on the visual servoing performances due to sea

current disturbances, of noise on the feature tracking, and the operation of the

12



robot above a sloped seabed.

Finally, in chapter 7, a 2-D visual servoing scheme is proposed for the station keeping

of a reduced order model of an UUV. This model was emulated onto a 2-d.o.f. Carte-

sian robot in a water test tank. Real-time experiments results are then presented

to demonstrate the validity of the approach in presence of sea current disturbances.

These experiments demonstrate that the feature tracking algorithm could be used

for visual servoing with natural underwater images.
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Chapter 2

Underwater vehicle modelling and

control

To investigate the feasibility of the visual station-keeping of UUVs, a nonlinear

dynamic model of an ROV was used. Its parameters were experimentally derived

in a test tank with a planar motion mechanism [29]. This model [3] was employed

both in the simulation studies and in the experiments of this work. The model’s

behaviour was emulated by a planar Cartesian robot in a test tank.

The main objectives of this chapter are:

• to describe the kinematics and dynamics of an UUV, and

• to derive the associated standard equation of motion.

In this description, special care will be taken to underline the assumptions generally

made and the validity of the modelling. From that background, the characteristics

of the aforementioned UUV model are presented.

The control problems encountered in UUV guidance and control are then illustrated,

as well as how these issues have been tackled by the past research.

2.1 Kinematics of an underwater vehicle

Two main reference frames are necessary to describe the vehicle’s motion: an Earth-

fixed frame which is assumed to be inertial, and a body-fixed frame, attached to the

vehicle. The axes (X,Y, Z) of the body-fixed frame coincide with the principal axes

of inertia of the vehicle, and the origin is generally taken at the centre of gravity.

The vehicle position, ηp = [x, y, z]T , and orientation, ηo = [φ, θ, ψ]T , (roll, pitch and

yaw angles) are then described with respect to the inertial reference frame, while
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the linear velocity vector νp = [u, v, w]T (surge, sway, and heave) and the angular

velocity vector νo = [p, q, r]T (roll rate, pitch rate and yaw rate) are expressed

with respect to the body-fixed frame. Figure 2.1 summarises the notation. If ν =

[νT
p ,νT

o ]T and η = [ηT
p ,ηT

o ]T ; the vehicle flight path relative to the earth-fixed co-

ordinate system is given by the velocity transformation:

η̇ = J(ηo) ν (2.1)

where

J =


J1 03

03 J2


 (2.2)

and

J1(ηo) =




cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ


 (2.3)

J2(ηo) =




1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ


 (2.4)

where s·, c·, and t· stand for the sin(), cos() and tan() functions (e.g. sψ = sin(ψ)),

and the attitude angles are defined so that φ ∈ [0, 2π[, θ ∈] − π
2
, π

2
[ and ψ ∈ [0, 2π[.

Note that the velocity transformation matrix J is termed the Jacobian matrix of the

robot.

2.2 Dynamics of an underwater vehicle

One way to derive the equations of motion of an underwater vehicle is to apply

Euler’s axioms (conservation of linear and angular momentum). In this section, the

results of this derivation alone will be presented. Most of the material used can be

found in [23].
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Figure 2.1: UUV co-ordinate frames and motion variables.

Figure 2.2: ROV ANGUS 002.
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According to Euler’s axioms, the general six degrees-offreedom (d.o.f.) equations of

motion of a rigid body can be expressed as:

m[u̇ − vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = X (2.5)

m[v̇ − wq + ur − yG(r2 + p2) + zG(qr − ṗ) + xG(qp + ṙ)] = Y (2.6)

m[ẇ − uq + vp − zG(p2 + q2) + xG(rp − q̇) + yG(rq + ṗ)] = Z (2.7)

Ixṗ + (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy (2.8)

+m[yG(ẇ − uq + vp) − zG(v̇ − wp + ur)] = K (2.9)

Iy q̇ + (Ix − Iz)rp − (ṗ + qr)Ixy + (p2 − r2)Izx + (qp − ṙ)Iyz (2.10)

+m[zG(u̇ − vr + wq) − xG(ẇ − uq + vp)] = M (2.11)

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx (2.12)

+m[xG(v̇ − wp + ur) − yG(u̇ − vr + wq)] = N (2.13)

where m is the dry mass of the vehicle, xG, yG, and zG are the co-ordinates of its

centre of gravity expressed in the body-fixed frame, X,Y, Z,K,M, and N are the

co-ordinates of the external forces and moments exerted on the vehicle in the same

frame. The components of the inertia matrix are Ix, Iy, etc.

Following Fossen’s notation [23], these equations can be written in vectorial form

as:

MRBν̇ + CRB(ν)ν + DRB(ν)ν = τRB (2.14)

These equations are generally simplified in two ways. First, the centre of gravity G is

taken to coincide with the origin O of the body-fixed frame, then xG = yG = zG = 0.

Besides, if some axes of the body-fixed frame are defined so that they coincide with

the principal axes of the vehicle, some cross terms of the inertia matrix disappear.

For example, if OXY is a plane of symmetry (ANGUS’ case, see figure 2.2), then

Ixy = Iyz = 0, and the equations read:
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m[u̇ − vr + wq] = X (2.15)

m[v̇ − wq + ur] = Y (2.16)

m[ẇ − uq + vp] = Z (2.17)

Ixṗ + (Iz − Iy)qr − (ṙ + pq)Izx = K (2.18)

Iy q̇ + (Ix − Iz)rp + (p2 − r2)Izx = M (2.19)

Iz ṙ + (Iy − Ix)pq + (rq − ṗ)Izx = N (2.20)

Now, one needs to identify the external hydrodynamic forces and moments acting

upon the vehicle. For underwater vehicles moving at low speed (to within a few

metres per second), the main hydrodynamic forces are:

• added mass and inertia: τA

• drag forces: τD

• hydrostatic (or restoring) forces: g(η)

• propulsion forces: τ

• environmental disturbances (sea currents, tether): τE

2.2.1 Additional inertial forces

The additional inertial forces are pressure-induced forces and moments proportional

to the acceleration of the vehicle. The vehicle, while moving, is displacing water,

hence creating these forces.

The kinetic energy TA of the fluid displaced is given by:

TA =
1

2
νT MA ν (2.21)

where MA is the added mass matrix, which is expressed as:
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MA = −




Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ




(2.22)

The terms of MA follow the SNAME1 (1950) notation. For example, the hydrody-

namic added mass force ZA along the z-axis resulting from an acceleration v̇ in the

y-direction is written as:

ZA = Zv̇v̇ where Zv̇ =
∂Z

∂v̇
(2.23)

One can derive the expression of the added mass forces and moments from TA by

applying Kirchhoff’s equations (see [23] and references therein). These forces can

be summarised as:

τA = MAν̇ + CA(ν)ν (2.24)

2.2.2 Hydrodynamic damping

Hydrodynamic damping is caused by forced body oscillations, wave drift damping,

vortex shedding damping as well as linear and quadratic skin frictions. A body

moving at large speeds will present a nonlinear and coupled damping term τD =

D(ν)ν. However, for an ROV or for an AUV, it is a good approximation to take into

account the linear and quadratic skin frictions alone, so that D(ν) has a diagonal

structure:

D(ν) = −diag{Xu, Yv, Zw, Kp,Mq, Nr}
− diag{Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|} (2.25)

1Society of Naval and Marine Engineering.
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where Xu|u| = ∂X
∂(u|u|) , etc.

2.2.3 Restoring forces and moments

Restoring forces and moments are hydrostatic forces and moments resulting from the

combined action of the buoyancy and the gravity upon the vehicle. The gravitational

force FG acts through the centre of gravity G of the vehicle, while the buoyant

force FB acts through the centre of buoyancy. Let rG = [xG, yG, zG]T and rB =

[xB, yB, zB]T be the vectors of the centres of gravity and buoyancy respectively,

expressed in the body-fixed frame, then the restoring force and moment (also called

hydrostatic wrench) g(η) is:

g(η) = −

 FG(η) + FB(η)

rG × FG(η) + rB × FB(η)


 =




(W − B)sθ

−(W − B)cθsφ

−(W − B)cθcφ

−(yGW − yBB)cθcφ + (zGW − zBB)cθsφ

(zGW − zBB)sθ + (xGW − xBB)cθcφ

−(xGW − xBB)cθsφ − (yGW − yBB)sθ




(2.26)

where W = ‖FG‖ and B = ‖FB‖.

2.2.4 Propulsion forces

In the general case, the thrusters’ force and moment vector, τ , is a complex nonlinear

function b of the vehicle’s velocity vector ν and the rotational motor speed vector

n = [ni]i∈[1,p], where p is the number of motors [23]:

τ = b(ν,n). (2.27)

Forward and backward thrusts are generally non-symmetrical, unless a special design

is implemented. A classical first-order model approximation of the developed thrust

T and torque Q for a single screw propeller can be found in [62]. Recent research
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work focused on thrusters’ modelling is described in [24, 35, 89, 90, 94], and the

reader is referred to them for in-depth descriptions. The thrusters which equip the

ANGUS ROV will be treated in detail in section 2.3.

2.2.5 Environmental forces

The environmental forces, τE, are caused by sea currents acting on the vehicle body,

and disturbances such as those created by a tether (in the case of an ROV), or a

manipulator mounted on the robot. In this thesis, the focus will be put on sea

current disturbances only. The hydrodynamic forces and moments depend directly

on the velocity of the vehicle with respect to the water surrounding it. Consequently,

the sea current velocity must be involved in the equations of motion. It is convenient

to express the sea current velocity in the world co-ordinate system.

Let Ẋc, Ẏc and Żc be the components of the sea current velocity in the world (inertial)

reference frame, and uc, vc and wc its components in the body-fixed frame. The

transformation between the inertial frame and the body-fixed frame is given by




uc

vc

wc


 = J−1

1




Ẋc

Ẏc

Żc


 = JT

1




Ẋc

Ẏc

Żc


 (2.28)

Let ν̃ = [ũ, ṽ, w̃, p, q, r]T (where ũ = u − uc, etc.) be the velocity vector of the

submersible’s centre of gravity with respect to the water. It is then possible to

express the combined actions of the drag forces and the environment forces as:

τD + τE = D(ν̃)ν̃ (2.29)

Now, taking into account the added mass effects and the environmental disturbances,

it is possible to express eq. (2.14) in a more compact form:

Mν̇ + C(ν)ν + D(ν̃)ν̃ + g(η) = τ (2.30)

where

21



M = MRB + MA

D = DRB

C(ν) = CRB(ν) + CA(ν)

and the relation between η and ν is given by eq. (2.1).

2.3 ANGUS 003 dynamic model

ANGUS 003 is a work-class ROV previously built and characterised in-house by the

Ocean Systems Laboratory of Heriot-Watt University. Although no longer used for

experiments, a nonlinear dynamic model has been experimentally identified in a test

tank with a planar motion mechanism [3]. This vehicle possesses two independent

back thrusters (port and starboard) for forward motion and heading motion (using

differential thruster values to rotate). ANGUS also has four vertical thrusters for

heave motion, and one side thruster for sway. The vertical thrusters cannot be con-

trolled independently, therefore roll and pitch motions are not controllable. Figure

2.3 illustrates the thruster configuration. In the following paragraphs, a mathemat-

ical expression of the dynamic model is described. Numerical values are given in

Appendix A.

The dynamic model of the vehicle can be expressed as:

M ν̇ = B




ũ(|ũ| + Du)

ṽ(|ṽ| + Dv)

w̃(|w̃| + Dw)

p(|p| + Dp)

q(|q| + Dq)

r(|r| + Dr)




+ C(ν) + g(η) + E(ν)Uτ + F(ν) |Uτ | (2.31)

where M is a 6×6 mass matrix as defined by eq. (2.30), B is a 6×6 drag matrix and

D = [Du, Dv, Dw, Dp, Dq, Dr]
T is a 6 × 1 laminar flow drag vector. The hydrostatic

wrench g in ANGUS case has been shown to be [18]:
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g(η) =




(B − W )sθ

(W − B)cθsφ

(W − B)cθcφ

−HBcθsφ

−HBsθ

0




(2.32)

where H is the metacentric height, i.e. the height of the centre of buoyancy above

the centre of gravity.

Since the propellers are less efficient when turning in reverse, the action of the

thrusters has been encoded in the two 6 × 4 thrust matrices E and F. The thrust

forces and moments vector, τ , is then expressed as:

τ = E(ν)Uτ + F(ν) |Uτ | = E(ν)




port

starboard

γ

α




+ F(ν)




|port|
|starboard|

|γ|
|α|




(2.33)

where Uτ is a normalised control vector whose components’ value ranges from

−100 % to +100 %. The control parameter of the lateral thruster is γ, while α

is the control parameter of the four vertical thrusters. As their names suggest,

port and starboard are the control parameters of the port and starboard backward

thrusters respectively.

The vector of centrifugal forces C(ν) has been greatly simplified because of the lack

of knowledge concerning the values of most of its elements. The basic centrifugal

forces, applied by the virtual inertias of the vehicle, have been taken into account

by means of the following vector:
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Figure 2.3: ANGUS 003 thrusters’ configuration.

C(ν) =




M11(vr − wq)

M22(wq − ur)

M33(uq − vp)

(M55 − M66)qr − M46pq

(M66 − M44)pr + M46(p
2 − r2)

(M44 − M55)pq + M64qr




(2.34)

This model, although simplified, is highly nonlinear in many aspects. The thrusters’

efficiency is different depending on the propellers’ direction of rotation, and of the

vehicle’s speed as well. Cross-coupling terms between axes are another element of

nonlinearity. Finally, one of the elements of the drag matrix B depends on the sign

of the surge speed u. Figure 2.4 is a functional diagram of the ANGUS model: the

co-ordinate transformations, the action of a sea current and of the control inputs

are depicted.

2.4 Control of underwater vehicles

In this section, a brief overview of the research in underwater vehicles’ control will

be given. In practice, PI or PID linear controllers are commonly used on ROVs

(see e.g. [42]). They have the advantage of simplicity but require high gains to

achieve the desired performances such as small steady-state and tracking errors.
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Figure 2.4: Block diagram of the dynamic model of ANGUS 003.

Furthermore, their performances are only valid for a given configuration. To tune a

linear controller, the common method is to linearise the model of the robot around

an operating point. For example, a cruise controller at 1 knot would require the

nonlinear model of the UUV to be linearised around a surge speed of 1 knot, and

all other speeds set to zero. Therefore, in theory, as many controllers as operating

modes will be required, which is not practical. In addition, ROVs’ dynamics are

nonlinear, coupled and do not present privileged directions of operation. As a result,

a cruise controller and a heave controller would not be independent if the surge and

heave degrees-of-freedom were coupled. For streamlined AUVs, it is however possible

to design controllers for privileged directions such as in the work of [34] where the

authors assume lightly interacting degrees-of-freedom. Whereas, as stressed in [31],

when significant changes in the vehicle’s dynamics occur, conventional controllers

with fixed gains fail to guarantee the high quality response of the overall system.

This fact lead researchers to investigate nonlinear control methods [41].

A solution that takes into account the nonlinearities of underwater vehicles applies

model-based control schemes such as gain scheduling [4], pole cancellation [94], or
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computed-torque control [102]. However, these schemes assume that the knowledge

of the model is accurate. For underwater vehicles, this is not generally the case.

The hydrodynamic parameters are at best difficult to evaluate. Some parameters

also change depending on the vehicle’s payload configuration. For example, consider

a scientific ROV which is set to carry out different types of mission, the position

and mass of its on-board sensors will change the metacentric height. Alternative

control methods have been devised to cater for the dynamic changes in the model’s

parameters.

Sliding mode control is one such alternative. Yoerger et al. applied sliding control

to the Jason ROV [95], and in a later publication took into account Jason’s thruster

dynamics [94]. Refinements to sliding control were proposed by several other re-

searchers. Cristi et al. reported an adaptive sliding mode controller combined with

a state observer [12]. Healey et al. [34] proposed a multivariable sliding mode tech-

nique for cruise control at high speeds (10 knots) based on state variable errors,

rather than output errors as in [12]. Da Cunha et al. proposed a variable structure

algorithm requiring only position measurements [13]. Adaptive control approaches

have also been investigated by Yuh [96], Fossen and Fjellstad [25], and Fossen and

Sagatun [26]. Another interesting approach proposed by Perrier et al. [64] combined

linear PID controllers with nonlinear PID controllers improving transient responses

to heading and depth control.

In addition to the uncertainties in the dynamic parameters, and the unknown distur-

bances acting on the vehicle such as sea currents and manipulator interactions, the

control of an UUV is made even more challenging by slow rate sensors. Conventional

underwater sensors such as depthmeters, compasses, and acoustic echo-sounders

have an update frequency of a few hertz, hence reducing the available bandwith of

the robot. It is then more difficult to reject disturbances of high frequencies. This

concludes the overview of underwater vehicle control.
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2.5 Conclusions

In this chapter, the necessary theoretical background of underwater vehicles kinetic

and dynamic modelling was introduced. The dynamic model of the ROV ANGUS

003 used in the visual servoing experiments of this thesis was then described. This

dynamic model was used both in simulation and in real-time experiments. For the

latter, it was then necessary to emulate ANGUS’ dynamic behaviour on a Cartesian

robot. The details of the implementation of this emulation will be presented in the

following chapter.
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Chapter 3

Emulating ANGUS model on a

Cartesian robot

Recall the main objective of this thesis which was “to investigate visual servoing

algorithms for the control of underwater vehicles”. To meet this objective, two

different types of experimental work were carried out.

For the first set of experiments, it was assumed that the image processing part, i.e.

the ability to track feature points in underwater images, had been solved. It was

then possible to perform closed-loop simulations based on the dynamic model of

ANGUS, and to concentrate on the visual task design. These simulations and the

visual task design are fully described in chapter 6. These experiments allowed to

assess the adequacy of the proposed visual servoing design to control an underwater

vehicle, and the performances which could be expected from the design. However,

these simulations did not evaluate the solution in underwater conditions with an

actual camera sensor and a robot.

To cater for these limitations, a Cartesian robot, placed above a water tank, was used

to move a camera underwater (see figure 3.1). In order to emulate real underwater

conditions with an UUV, the camera was made to move as if it were attached to

the actual ANGUS robot. The dynamic model of ANGUS (previously described in

chapter 2) generated the trajectory of the camera. In other words, the ANGUS’

dynamic model drove the Cartesian robot. This chapter aims at describing the

experimental setup employed so that the camera attached to the Cartesian robot

moved as it were mounted on a typical underwater vehicle.

This chapter is structured as follows. First, the mechanical components of the Carte-

sian robot are described, as well as its control hardware and software architecture,

in order to better understand its capabilities and its limitations. Then the method
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employed to emulate ANGUS’ dynamic characteristics using the Cartesian robot is

exposed and the performance of the emulation is assessed.

3.1 The Cartesian robot

The Ocean Systems Laboratory possesses a test tank 4 metres long (X), 3 metres

wide (Y) and 2 metres deep (Z) filled with fresh water. A 3-axis Cartesian robot

equipped with stepping motors is placed on top of this tank (see figure 3.1). This

section describes the work performed to emulate the dynamic behaviour of a subset

of ANGUS’ axes with this Cartesian robot. This emulated underwater robot will

then be equipped with an underwater camera to test and validate in real time visual

servoing algorithms. The expected advantage of this approach is the availability of

precise positioning information (to within one millimetre accuracy) in the horizontal

plane. This kind of accuracy cannot be achieved with standard underwater equip-

ment on UUVs. As such, this experimental setup enabled to assess the positioning

performance of the tested algorithms.

The robot was purchased as a complete package from the SIG POSITEC company.

The robot originally consisted of three degrees of freedom: translations in the hor-

izontal plane (X,Y ), and rotation about the Z axis (θ). The rotational degree of

freedom was later converted to a translation in Z.

The communication interface did not allow for the external real-time control of its

motion at a sufficient sampling rate for control purposes (2 Hz through a serial line).

In addition, the positioning information from the optical encoders was not made

available through the communication interface. Therefore, an alternative motion

control solution was required to be able to both control the Cartesian robot from

an external computer and log the position information of its optical encoders.

The following sections describe in more details the mechanical components of the

Cartesian robot, and the control hardware and software used to meet the emulation’s

requirements.
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Figure 3.1: The Cartesian robot in the Ocean Systems Lab water tank.
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3.1.1 Mechanical positioning components

The Cartesian robot was a BERGHER LAHR portal robot PR6/2 + H axis [77]

with an added Z axis (see figure 3.1). The X and Y axis were identical, only their

stroke differed (3850 mm and 2770 mm respectively). The guide was an aluminium

profile, and the rotary motion was transformed into a linear one by a toothed belt,

yielding a positioning resolution of 100 mm per revolution.

The Z axis had a 10:1 planetary gear-box (BERGHER LAHR PL50 10:1) driving a

lead screw which transformed the rotary motion into a linear one. The resolution

of this axis was of 1 mm per revolution. The motion range was approximately 300

mm.

The three 5-phase stepping motors [78] could be operated in two modes: half-step

or full step. In full-step mode, the resolution was of 500 steps per revolution, and

in half-step mode 1000 steps per revolution. Each motor was further equipped with

a 50-500 OTA optical encoder which provided 500 pulses per revolution in each of

its two channels which were 90 degrees out of phase.

The overall system’s ranges and resolutions are summarised in table 3.1; these figures

were taken from [40]. The stepping motors could miss up to 8 steps without it

being reported; this explained why the motors’ accuracy was equal to 8 times the

resolution.

Axis Stroke (mm) Resolution (mm/step) Accuracy (mm) Repeatability (mm)

X 3,850 0.1 0.8 ±0.1

Y 2,770 0.1 0.8 ±0.1

Z 300 0.001 0.008 ?

Table 3.1: Cartesian robot axes characteristics.

It is clear from this description that the Z-axis could not be used to emulate a

vertical motion since it suffered from a reduced stroke, and, as a consequence of

its fine resolution, from slow dynamics. In the following section, the hardware and

software solution employed to control the Cartesian robot is presented.
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3.1.2 Control hardware and software

The motion control card used to servo the stepping motors was a Galil DMC-1360

[30] and was housed in a VME-based real-time system. This card controlled all three

axes, and read the optical encoder values. It had several modes of motion, among

which two were used: the contouring mode and the jogging mode.

1. The contouring mode allowed the user to prescribe an arbitrary position tra-

jectory, and was useful when complex computer-generated trajectories had to

be followed. Position increments over a time interval were specified for each

axis.

2. In jogging mode, each motor ran at a prescribed speed. The user set the jog

speed, the acceleration and the deceleration rates. This mode was useful to

follow velocity profiles.

The VME crate was a multi-processor computer system designed for real-time ap-

plications. It comprised four Motorola processor boards: one of them acted as the

host computer and the other three were the real-time targets. The host computer

was a MVME167 processor board [55]. It had a SCSI disk drive, a SCSI tape

drive and an Ethernet connection. It ran Motorola’s UNIX V/68 operating system

[59, 60, 57, 58], and was provided with a range of development tools for real-time

applications. The target processor boards were MVME162-22 boards and ran the

pSOS+m real-time operating system [56]. All processor boards had built-in SCSI,

Ethernet Centronics and RS-232 interfaces and connectors. The host computer and

the three target boards were sharing the same VME bus, as shown in figure 3.2.

The motion control card had its memory mapped in the VME bus, the software

implementation of its driver was such that the shared memory was accessible both

from the VME host computer, or from one of the target boards. In other words, it

was possible to have a real-time task, running on one of the target boards, controlling

the Cartesian robot’s motion. This task could also act as a “slave” to an external

“master” computer. It could run a visual servoing task, and send commands through

the Ethernet connection. These facilities were employed in the implementation of

ANGUS’ emulation.
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Figure 3.2: VME crate system with host, three targets, and the motion control card.

The following sections present the strategies that have the Cartesian robot emulate

the behaviour of the surge and sway d.o.f. of ANGUS.

3.2 Direct control

The first strategy sent the positions to be reached directly to the Cartesian robot

as they were made available by the ANGUS model. In this strategy, the Cartesian

robot was controlled in contouring mode. Although this approach was simple and

made use of the stepping motors in a consistent way, it proved unsatisfactory. Once

the model’s desired position was reached by the robot, the motion controllers made

the robot stop. The desired trajectory was followed, but the desired velocity profile

was not. In addition, if the desired trajectory was to be followed within the same

time frame as the ANGUS model, the accelerations required for the Cartesian robot

to meet this time constraint would have been greater than the actual accelerations

of ANGUS. In [40], the author attempted to emulate the dynamic behaviour of

ANGUS using the contouring mode of the motion control card. It proved to be

impossible without scaling the model by a factor of 6, i.e. 6 cm travelled by the

ANGUS model corresponded to 1 cm travelled by the Cartesian robot. This “scaled”
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solution was not satisfactory since the goal was to replicate, as best as possible, the

actual motion issued from ANGUS’ simulation.

Since the contouring mode did not meet the set requirements, the independent

jogging mode of the Galil motion card was used instead. In the following section,

the details of this alternative strategy shall be described.

3.3 Velocity control of the Cartesian robot

3.3.1 Implementation

To emulate successfully the dynamic behaviour of ANGUS, the jogging mode pro-

vided by the motion control card had to be used. The implementation had to meet

two main requirements:

1. the update rate between thruster values had to be the same since the visual

servoing sampling time Tvs was 200 ms because of available computer power;

2. in addition, the velocity profile of the ANGUS model had to be replicated by

the Cartesian robot in the same time frame. Both velocity profiles, the model’s

and the robot’s, should be as close to one another as possible.

In order to meet these requirements, the dynamic model code and the jogging com-

mand ran on one of the real-time target boards (overall execution time: Trobot = 6.5

ms) 30 times with the same thruster values to reach a Tvs = 200 ms cycle time. In

addition, it was necessary to implement a simple PI velocity control between the

ANGUS model and the Cartesian robot to reduce the tracking errors observed on

the velocity profiles. In the following sections, Xp(k) and Yp(k) denote the positions

on the X- and the Y-axis of the Cartesian robot respectively. These positions were

measured by the optical encoders of the stepping motors. Similarly, Kix and Kiy

denote the integration coefficients on each axis. The details of the implementation

are shown in figure 3.3 for the X-axis only.
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Figure 3.3: Software architecture and implementation of ANGUS emulation.
Trobot = 6.5 ms and Tvs = 200 ms.

3.3.2 Validation

Ensuring that the motion prescribed by ANGUS’ simulation was followed perfectly

by the Cartesian robot in all situations proved unrealistic for several reasons. First,

the dynamic model of ANGUS was highly nonlinear, therefore, its behaviour differed

whether it was operated at low speeds (station-keeping case), or subject to sea cur-

rent disturbances, or even at its highest accelerations. Second, the Cartesian robot’s

behaviour was also nonlinear and differed according to the demanded speeds on each

axis. Finally, the (relatively) short range of the Cartesian robot’s axes restricted the

scope of motion which could be tested. As a result, the best performance which

could be expected was that the combined dynamic system (Cartesian robot + AN-

GUS’ simulation) responded in a manner “closely resembling” ANGUS’ simulation.

In particular, the demanded position and speed should match the actual position

and speed.

Two types of experiments are now presented:

1. The first three tests assessed how the Cartesian robot followed the simulation

when the latter received as thruster inputs the maximum power values, i.e. ±
100 %. The integration coefficients Kix and Kiy were tuned so as to obtain

the best possible results.

2. The second experiment checked whether the tuning so obtained still yielded a

satisfactory behaviour during the visual servoing experiments of chapter 7.

For all experiments, the control coefficients were Kix = 1 and Kiy = 10.
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Test 1: surge dynamics

In the first test, the port and starboard thruster inputs were set to 100 % for 2.9

s (maximum forward acceleration) and then set to −100 % for 7.1 s (maximum

backward acceleration). The objective was to provide the maximum accelerations

on the X-axis of the Cartesian robot.

Figure 3.4 shows the desired X position of ANGUS (plain line) and the actual X

position travelled by the Cartesian robot (pluses). Note that the order of magnitude

of the small tracking error on the position is in the order of one centimetre.

Figure 3.5 plots the Y-axis, and does not exhibit any noticeable tracking error. In

the test, the displacement on the Y-axis was very small (a few centimetres), and

illustrated the coupling between the surge and sway degrees-of-freedom of ANGUS’

dynamic model.

These two figures demonstrate clearly that the trajectory of ANGUS was followed.

The velocity profiles of ANGUS and the Cartesian robot are presented in figures

3.6 and 3.7 respectively. The “high” acceleration demanded on the X-axis could not

be perfectly followed by the Cartesian robot. It was clear from the inspection of

figure 3.6 that the response time of the X-axis was too slow, causing the Cartesian

robot to overcompensate. It would reach a speed greater than that demanded at

time t = 4 s. The same behaviour occurred again when the Cartesian robot slowed

down before moving backwards. This figure clearly shows that it is not possible

to replicate exactly the velocity profile of ANGUS’ simulation for the surge degree-

of-freedom at “high” accelerations. However, the control coefficient Kix chosen did

give the best results.

Even though the Y-axis velocity profile of ANGUS was perfectly followed, the de-

manded speed was only a few centimetres per second.
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Figure 3.4: Full surge thrusters experiment: X displacement vs time.
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Figure 3.5: Full surge thrusters experiment: Y displacement vs time.
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Figure 3.6: Full surge thrusters experiment: surge velocity vs time.
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Figure 3.7: Full surge thrusters experiment: sway velocity vs time.
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Test 2: sway dynamics

The second test assessed the Y-axis. The sway thruster was set to 100 % for 4.9 s

and then reversed to −100 % for 5.1 s. As in the previous test, the desired position

of ANGUS and the actual position of the Cartesian robot were recorded (figure 3.8

and 3.10), as well as the desired and actual velocities (figure 3.9 and 3.11).

A tracking error in both position and velocity (figures 3.8 and 3.9) is noticeable along

the X-axis. This showed that the controller gains for the X-axis could not be tuned

so that small velocities and high velocities yielded similar performances. However, in

this particular case, the velocity and consequently the displacement were relatively

small, lessening the negative impact of this result on ANGUS’ emulation.

The dynamic response along the Y-axis of the Cartesian robot emulated well AN-

GUS’ response. Figure 3.10 shows that the positioning error between ANGUS’

model Y-position and the Cartesian robot Y-position was close to zero. A slight

overshoot between the actual Cartesian robot’s velocity and the demanded one can

be observed at time t = 5 s, when the sway thruster changed sign (figure 3.11). The

time response delay, which manifested itself as an overshoot, was due to the com-

bined action of the axis inertia and of the mechanical slack on the axis. However,

the high acceleration demand was well followed, especially after the thruster’s sign

change, with the exception of the first two measured points just after the overshoot.
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Figure 3.8: Full sway thrusters: X displacement vs time.
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Figure 3.9: Full sway thrusters experiment: surge velocity vs time.
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Figure 3.10: Full sway thrusters: Y displacement vs time.
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Figure 3.11: Full sway thrusters experiment: sway velocity vs time.
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Test 3: combined surge and sway dynamics

This test illustrates the behaviour of the Cartesian robot when ANGUS’ surge and

sway thrusters were simultaneously used. In this third experiment, the port and

starboard thrusters were concurrently set to 100 % for the first 3.9 s and then set to

−100 % until the end. The sway thrusters were simultaneously set to 100 % during

the first 4.9 s and then reversed to −100 %. Figures 3.12 and 3.13 illustrate the

recorded positions of the ANGUS model and the Cartesian robot, figures 3.14 and

3.15 the recorded velocities.

On the X-axis, the same phenomenon as in test 2 can be observed: a tracking error

and an overshoot of the Cartesian robot’s X-velocity (figure 3.14). This velocity

tracking error caused repercussions on the positioning error (figure 3.12). Neverthe-

less, the tracking error in the positioning remained within a few centimetres, which

was acceptable.

Similarly, tracking errors of the Cartesian robot’s Y-velocity (figure 3.15) within

a few centimetres per second caused repercussions on the positioning error (figure

3.13). The latter also remained within a few centimetres. Again this is deemed

acceptable for the purposes of this thesis.

These tests aimed at finding the best compromise of the PI controllers’ gain values

so that the Cartesian robot replicated ANGUS’ simulation behaviour as “closely” as

possible. These experiments showed that it was difficult to obtain good performances

in both position and velocity. This thesis favours position over speed since the final

objective of the visual servoing algorithms is to serve as a positioning function

(station-keeping).

To conclude these tests, it is interesting to look at the behaviour of this emulation

system in use during the actual visual servoing experiments of chapter 7. Notice

how the behaviour is not affected by introducing vision in the loop.
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Figure 3.12: Combined surge and sway thrusters experiment: X displacement vs
time.
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Figure 3.13: Combined surge and sway thrusters experiment: Y displacement vs
time.
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Figure 3.14: Combined surge and sway thrusters experiment: surge velocity vs time.
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Figure 3.15: Combined surge and sway thrusters experiment: sway velocity vs time.
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Experiment 2: visual servoing

In chapter 7 , this emulation method was used to conduct visual servoing experiments

in real-time. The reader should refer to chapter 7 for details of the experimental

setup. In this section, the comparison between the Cartesian robot’s motion and the

prescribed motion issued from ANGUS’ simulation during one of the visual servoing

experiment is made.

Again, as in the previous tests, it is clearly noticeable that the errors between

the actual position and the demanded position were not significant (less than one

centimetre). Figures 3.16 and 3.17 clearly demonstrate this claim. However, the

errors between the actual speed and the prescribed speed were more significant (see

figures 3.18 and 3.19). The Cartesian robot’s speed signal was noisy. This was due

to the fact that the visual servoing algorithm did not run on a real-time operating

system and that the control loop sampling time Tvs was not constant. For example,

on this experiment, the mean value of Tvs was 213 ms with a standard deviation of

115 ms!

The noise when evaluating the speed was increased, since the speed values were

computed from the position measurements by a straight differentiation and divided

by the sampling time.

The visual servoing test shows that the position of the UUV model was well repli-

cated by the Cartesian robot, but the velocity profiles of the simulation and those

of the Cartesian robot did not match.
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Figure 3.16: Comparison between the demanded X-position of ANGUS (red) and
the actual X-position of the Cartesian robot (blue) vs time.
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Figure 3.17: Comparison between the demanded Y-position of ANGUS (red) and
the actual Y-position of the Cartesian robot (blue) vs time
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Figure 3.18: Comparison between the demanded X-velocity of ANGUS (red) and
the actual X-velocity of the Cartesian robot (blue) vs time
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Figure 3.19: Comparison between the demanded Y-velocity of ANGUS (red) and
the actual Y-velocity of the Cartesian robot (blue) vs time
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3.4 Conclusions

The main contribution of this chapter was the emulation of the dynamic behaviour

of an underwater vehicle on a Cartesian robot for real-time evaluation of underwa-

ter visual servoing techniques. The details of the real-time implementation were

presented, as well as the experimental accuracy of such an emulation.

This chapter shows that the trajectory of the ANGUS simulation could be accurately

followed, in particular during the visual servoing experiments described in chapter

7. However, the positioning accuracy had to be favoured over the velocity. In other

words, by ensuring that both ANGUS and the Cartesian robot followed the same

trajectory, the Cartesian robot was forced to be slightly slower than ANGUS. The

complete system, including the ANGUS simulation and the Cartesian robot, could

be considered as a realistic but slower version of the ANGUS UUV. Thus, the visual

servoing experiments presented in chapter 7 illustrate the control of an hybrid system

which behaved like a typical UUV, but not strictly like ANGUS, since the latter’s

speeds could not be followed exactly.
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Chapter 4

Recovering motion from a pair of

images with a calibrated camera

In this chapter, some background notions of projective geometry, and their applica-

tion to the geometric modelling of a CCD camera are recalled. Since this thesis has

focused on the control of an underwater robot equipped with a single camera, the

geometry of a moving camera and how a set of corresponding feature points in two

images describe the motion of a camera will be discussed.

4.1 Theoretical background

4.1.1 Co-ordinate transformations: the homogeneous ma-

trices

In this section, the notion of the homogeneous matrices and their application to co-

ordinate transformations between Euclidean frames is briefly introduced. Note that

only right-handed co-ordinate systems will be considered in this thesis.

Although left-handed co-ordinate systems are also common, especially within the

computer graphics community. Let F∗ be the Cartesian reference frame, which is

also called the desired frame in the visual servoing framework. The aim is to express

the co-ordinates of a 3-D point M∗ in a new Cartesian frame F . The geometrical

relationship between F∗ and F is illustrated in figure 4.1. If dRc is the rotation

matrix rotating F∗ onto F , and dtc is the translation vector from F∗ to F , then the

corresponding homogeneous transform matrix is:

dTc =


dRc

dtc

0 1


 (4.1)
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Figure 4.1: Co-ordinate frame transformation with homogeneous matrices.

With this notation, the co-ordinates [x∗, y∗, z∗]T of M∗ in F∗ are related to its

co-ordinates [x, y, z]T in F by:




x

y

z

1




=


dRc

dtc

0 1







x∗

y∗

z∗

1




(4.2)

The inverse homogeneous transformation dT−1
c is:

dT−1
c =


dRT

c −dRT
c

dtc

0 1


 =


cRd

ctd

0 1


 (4.3)

4.1.2 Notation and projective geometry

In the following section, column vectors will be denoted by bold letters such as e.g.

t, the corresponding row vector will be its transpose: tT . A matrix will be denoted

by upper case bold letters, e.g. A, and a square identity matrix by In, where n

denotes the matrix dimension. A point in Euclidean space will be written like so:

M, its projective counterpart like this: M̃.

Projective geometry is a mathematical framework commonly used to solve some

geometric computer vision problems. This section provides a brief introduction to

projective geometry. The reader is referred to the classical book of Faugeras [21] or
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to the more recent one written by Zisserman and Hartley [32] for a more in-depth

coverage of the subject, and to the references therein.

A point M̃ in a projective space of dimension n, IPn, is represented by a (n + 1)-

vector of co-ordinates x = [x1, x2, . . . , xn+1]
T . By definition, two (n + 1)-vectors x

and y represent the same projective point M̃, belonging to IPn if and only if ∃λ ∈ IR

so that x = λy. For this reason, the co-ordinates of a projective point are called

homogeneous co-ordinates.

A projective space IPn can be seen as an extension of an n-dimensional Euclidean

space IRn. Indeed, an Euclidean point M = [x1, . . . , xn]T ∈ IRn can be described in

the projective space IPn by a point M̃ using the homogeneous co-ordinates

[x1, . . . , xn, 1]T ∈ IRn+1. In other words, any projective point with a non-zero (n +

1)th co-ordinate represents an Euclidean point. Conversely, given a projective point

M̃ = [x1, . . . , xn+1]
T with xn+1 �= 0, its corresponding Euclidean point is M =

[ x1

xn+1
, . . . , xn

xn+1
]T . Projective points with xn+1 = 0 are called points at infinity and

can be considered as directions of lines in IRn.

By definition, a projective transformation from a space IPn to a space IPm is repre-

sented by a (m+1)× (n+1) matrix. Since the co-ordinates of projective points are

homogeneous, this matrix is unique up to a scale factor. Any non-singular n×n ma-

trix represents an invertible linear projective transformation of IPn on itself, called

homography or collineation. The particular case of homographies in the projective

plane IP2 shall be discussed in more details in section 4.3.1.

In a projective space IPn, points and (n − 1)-dimensional subspaces, called hyper-

planes, are dual. Indeed, a (n+1)-dimensional vector can represent either a point or

a hyperplane, and properties holding for a point will also hold for a hyperplane, and

vice versa. In the case of the projective plane IP2, lines and points are dual entities.

Also in IP2, a line l of equation ax+by+cz = 0 is represented by the vector [a, b, c]T .

A point m̃ = [x, y, z]T belongs to l if and only if lTm̃ = 0. In addition, given two

projective points m̃ and q̃, the line passing through them is m̃ × q̃.
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Figure 4.2: Projective camera model.

4.1.3 Camera modelling

In this section, the classical pinhole camera model, widely used in the computer

vision literature for CCD cameras is discussed. It is shown that it can be represented

as a linear projective mapping from the projective space IP3 to the projective plane

IP2. This modelling only accounts for the geometry of the imaging process. It does

not take into account the radiometric aspects of the scene. For an introduction on

the latter, the reader is referred to [84] and the references therein.

The pinhole camera model is a central projection of points in space onto a plane.

Let the centre of projection C be the origin of an Euclidean co-ordinate system,

and consider the plane of equation z = f , which is called the image plane or focal

plane (see figure 4.2). Under the pinhole camera model, a 3-D Euclidean point

M = [X,Y, Z]T of the scene is mapped to the 2-D Euclidean point m on the focal

plane. The intersection of the line joining the points C and M and the plane of

equation z = f defines m. The co-ordinates of m expressed in the focal plane

reference frame (oxy) are therefore [f X
Z

, f Y
Z
]T .

The centre of projection C is called camera centre or optical centre. The Z-axis,

perpendicular to the image plane, is called the principal axis or optical axis of the
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camera, and the point o where the principal axis meets the image plane is called

the principal point. The plane passing through the camera centre and parallel to

the image plane is called the principal plane.

If the scene point M and its projection onto the image plane are represented by

homogeneous vectors (see 4.1.2), the mapping from the scene to the image becomes

linear and can be expressed by a 3 × 4 matrix thus:

m̃ =




f 0 0

0 f 0

0 0 1


 P̃o M̃ (4.4)

where M̃ = [X,Y, Z, 1]T and m̃ = [f X
Z

, f Y
Z
, w]T (w �= 0) are the homogeneous

counterparts of the aforementioned Euclidean points M and m respectively. The

3 × 4 matrix P̃o is called the canonical projective matrix and reads:

P̃o = [I3 |0] =




1 0 0 0

0 1 0 0

0 0 1 0


 . (4.5)

Expression (4.5) assumes that the origin of the co-ordinates in the image plane is at

the principal point. This is not the case in general, and consequently an offset must

be included. This is done simply in homogeneous co-ordinates. If o = [px, py, f ]T is

the principal point, then the central projection equations read:

m̃ =




f 0 px

0 f py

0 0 1


 P̃o M̃. (4.6)

This model assumes that the image co-ordinates are Euclidean co-ordinates having

equal scales in both axial directions. However, this assumption is not held for CCD

cameras, and an additional scaling must be added. In particular, if the number of

pixels per unit distance in image co-ordinates are kx and ky in the x and y directions,

then eq. (4.6) becomes:
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m̃ =




αx 0 xo

0 αy yo

0 0 1


 P̃o M̃ (4.7)

where αx = fkx and αy = fky represent the focal length in pixels in the x and y

directions respectively. Similarly, o = [xo, yo]
T is the principal point in pixels, with

co-ordinates xo = kxpx and yo = kypy.

If the x and y axis of the camera are not perpendicular, an added parameter s called

skew is incorporated in the projection equations:

m̃ =




αx s xo

0 αy yo

0 0 1


 P̃o M̃ = AP̃o M̃. (4.8)

The matrix A is called the camera calibration matrix. The parameters of A are

called intrinsic parameters of the camera.

In this equation, the world reference frame and the camera reference frame (also

called standard camera frame) coincide. This is not the case in general. If the rigid

transformation from the world reference frame to the camera frame is defined by the

rotation matrix wRc, and the translation vector wtc, then the projective equations

read:

m̃ = A [ wRc| − wRc
wtc ] M̃ = P̃ M̃ (4.9)

where the 3 × 4 matrix P̃ is termed the camera projection matrix and encodes all

the information needed to project a world point of the scene onto its image in the

focal plane of the camera. The parameters of wRc and wtc which relate the camera

orientation and position (its pose) with respect to the world (scene) co-ordinate

system are called the extrinsic parameters.

It is possible to retrieve the intrinsic and extrinsic parameters from the camera

projection matrix P̃, as well as the equations of the image plane, the principal axis,

and the principal point. The derivation of these expressions falls beyond the scope

of this thesis; the reader is therefore referred to [32].
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In this section, the geometric modelling of a perspective camera based on the pin-

hole model has been described. This allows the understanding of the relationship

of scene points with their images on the CCD array. The following sections will

describe the geometric relationships between image points in two views taken by a

camera undergoing a rigid displacement. In section 4.2, a general 3-D scene shall be

considered, and in section 4.3 the special case of planar scenes shall be described.

4.2 Epipolar geometry

The epipolar geometry is the intrinsic geometry between two views, whether they

are taken by two different cameras (the stereo case) or by a single moving camera.

The epipolar geometry is independent of scene structure, and only depends on the

camera’s intrinsic and extrinsic parameters.

In the following sections the epipolar geometry is first described and the terminology

associated to it is introduced. The fundamental equation relating corresponding

points in two views and its key algebraic element, also described with these tools,

the fundamental matrix, is derived. Finally, a classical method to estimate the

fundamental matrix is detailed.

4.2.1 Description

A problem arising in stereo vision is the search for point correspondences in two

views: the stereo matching problem. These correspondences are related by the epipo-

lar geometry. Assume that a point M in Euclidean 3-space is imaged as m in the

first view and m′ in the second view, as depicted in figure 4.3. The points M, m,

m′, C, and C′ are coplanar since m (resp. m′) is the intersection of the optical ray

CM (resp. C′M), and M is common. This plane is called Π. Assume that m only

is known. The aim is to try to determine where its corresponding point m′ lies in

the second view. The plane Π is defined by the baseline (CC′) and the ray passing

through m. It is known that the ray corresponding to the unknown image point m′

lies in Π, hence the point m′ lies on the line of intersection l′ of Π with the second
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Figure 4.3: The epipolar geometry: The camera baseline intersects each image
plane at the epipole e and e′. Any plane Π containing the baseline is an epipolar
plane. The epipolar lines l and l′ are the intersection of the epipolar plane with the
image planes. m and m′ are the projections of 3-D point M on the image planes.

image plane. This line l′ is the image in the second view of the ray back-projected

from m. This means that the search for the corresponding point to m is constrained

to a line: l′, which greatly reduces the search space. Any such line is termed epipolar

line. l′ is an epipolar line of the second camera. All epipolar lines in each image

intersect at one special point called the epipole, as any epipolar plane must contain

the baseline.

To summarise, a few definitions of the geometric entities associated with the epipolar

geometry are given here and illustrated in figure 4.3:

• The epipole is the point of intersection of the line joining the camera centres

(the baseline) with the image plane. It is also the image in one view of the

camera centre of the other view.

• An epipolar plane is a plane containing the baseline and the 3-D point being

projected.

• An epipolar line is the intersection of an epipolar plane with an image plane.
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All epipolar lines intersect at the epipole. An epipolar plane intersects the left

and the right image planes in epipolar lines, and defines the correspondence

between the lines.

The next section will show that the fundamental matrix F is a 3× 3 matrix of rank

2 which encodes the epipolar geometry.

4.2.2 The fundamental matrix

The ray back-projected from m̃ by the camera matrix P̃ is obtained by solving the

equation P̃ M̃ = m̃. The set of solutions is parameterised by a scalar λ so that:

M̃(λ) = P̃+ m̃ + λ C̃ (4.10)

where P̃+ = P̃T (P̃P̃T )−1 is the pseudo inverse of P̃, and C̃ its null vector (i.e.

P̃ C̃ = 0): the camera centre. The camera centre C̃ and the point P̃+ m̃ (for λ = 0)

lie on this ray. Now, these two points are projected by the second camera P̃′ onto

the epipolar line l′ at P̃′ C̃ and P̃′ P̃+ m̃. As seen in section 4.1.2, the equation of l′ is

obtained with the cross product of these two points, namely l′ = (P̃′ C̃)×(P̃′ P̃+) m̃.

By definition, the point P̃′ C̃ is the epipole in the second image which will be denoted

as ẽ′. Consequently, l′ = [ẽ′]× P̃′ P̃+ m̃ = Fm̃, where F is the matrix:

F = [ẽ′]× P̃′ P̃+ (4.11)

Eq. (4.11) defines the fundamental matrix F. If the two camera centres C̃ and C̃′

coincide, then P̃′ C̃′ and the fundamental matrix are null. This corresponds to a

pure rotation about the optical centre of the camera. This algebraic derivation of

the fundamental matrix was found in [93]. A geometric derivation can be found in

[32].

The fundamental matrix has a few basic properties that will be briefly recalled. The

most important being the correspondence condition.

Correspondence condition: for any pair of corresponding points m̃ ↔ m̃′ in two

images,
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m̃′T Fm̃ = 0. (4.12)

This condition is important since it shows that the fundamental matrix can be

estimated from image point correspondences alone (see 4.2.3).

To summarise the properties of the fundamental matrix:

• F is a rank 2 homogeneous matrix with 7 degrees-of-freedom.

• Point correspondence: if m̃ and m̃′ are corresponding image points, then

m̃′T Fm̃ = 0.

• Epipolar lines:

– l̃′ = Fm̃ is the epipolar line corresponding to m̃.

– l̃ = FT m̃′ is the epipolar line corresponding to m̃′.

• Epipoles:

– F ẽ = 0.

– FT ẽ′ = 0.

The F matrix can be computed using a classical linear technique [45]. This technique

shall now be presented.

4.2.3 The normalised 8-point algorithm

Eq. (4.12) suggests that F can be determined from point correspondences alone.

This is done by using appropriate normalisation [33] in conjunction with the al-

gorithm described in [45]. Nonlinear estimation algorithms which would require

iterative methods have not been considered because of their computational cost.

Nevertheless pointers to the appropriate literature on the subject will be given in

section 4.4.

The starting point of the 8-point algorithm is eq. (4.12) which holds true for any

pair of matching points in two images. If m̃ = [x, y, 1]T and m̃′ = [x′, y′, 1]T are
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corresponding points, eq. (4.12) gives rise to one linear equation in the unknown

entries of F. At least seven point matches are required to solve for F. Each pair of

corresponding points yields the following equation:

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0. (4.13)

If f denotes the 9-vector made up of the entries of the fundamental matrix so that

f = [f11, f12, f13, f21, f22, f23, f31, f32, f33]
T , then for a set of n points matches, the

following linear system must be solved:

Qf =




x′
1x1 x′

1y1 x′
1 y′

1x1 y′
1y1 y′

1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′
nx x′

nyn x′
n y′

nxn y′
nyn y′

n xn yn 1


 f = 0 (4.14)

For a solution to this homogeneous system, the system matrix Q must have at most

rank 8 (otherwise, f = 0 is the only solution!). If the data are exact (no noise) and

the rank of Q is exactly 8, then the solution is unique (up to some scale). However,

point matches will be noisy and the system matrix may have rank 9. In this case, a

least-squares solution for f must be found. It is well known that the singular vector

corresponding to the smallest singular value of Q is the solution to eq. (4.14) which

minimises ||Qf || subject to a constraint such as ||f || = 1. Other constraints are

possible [32]. If the singular value decomposition of Q is Q = UDVT , then the

least-squares solution f of the system (4.14) corresponds to the last column of the

matrix V.

In general, the system matrix Q is formed by pixel points, and is consequently ill-

conditioned. Hartley [33] proposed a simple normalisation which greatly improved

the conditioning of the system. It consists of a translation and a scaling: the data

(for each image) are centred in their barycentrum, and scaled so that the RMS

distance of the points to the origin is
√

2 (isotropic scaling).

Deriving the fundamental matrix in this way does not guarantee the property that

its rank is 2 as stated in section 4.2.2. A matrix F′ which obeys that constraint is

one which minimises the Frobenius norm ||F′ − F||, and is subject to det(F′) = 0.
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The normalised 8-point algorithm is summarised below.

1. Transform the image co-ordinates according to:

m̃n = Tm̃

m̃′
n = T′ m̃′

where the transformation matrices T and T′ have the following expression:

T =




1/d 0 −cx/d

0 1/d −cy/d

0 0 1


 T′ =




1/d′ 0 −c′x/d
′

0 1/d′ −c′y/d
′

0 0 1


 (4.15)

and [cx, cy] (resp. [c′x, c
′
y]) are the co-ordinates of the centroid (or barycentrum)

in the first image (resp. the second image), d and d′ are defined by:

d = 1
n
√

2

∑n
i=1

√
(xi − cx)2 + (yi − cy)2

d′ = 1
n
√

2

∑n
i=1

√
(x′

i − c′x)2 + (y′
i − c′y)2

2. Now, the fundamental matrix F̂′ corresponding to the normalised point matches

is estimated.

(i) A linear solution for the fundamental matrix is formed from the singular

vector corresponding to the smallest singular value of the SVD decompo-

sition of the system matrix Q of eq. (4.14). Let F̂ be this matrix.

(ii) Since F̂ does not necessarily obey the rank-2 constraint, this is enforced

in the following manner: if the SVD of F̂ is U diag(σ1, σ2, σ3)V
T , and

σ1 ≥ σ2 ≥ σ3, then the sought matrix F̂′ is:

F̂′ = U diag(σ1, σ2, 0)VT (4.16)
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3. The matrix F̂′ is now a proper fundamental matrix. It needs to be denor-

malised in order to map the original image point correspondences. This is

done simply [33]:

F = T′T F̂′ T (4.17)

F is then the fundamental matrix encoding the two-view geometry of the

original data.

4.2.4 Recovering Euclidean motion

The main focus of this chapter is the study of linear means to recover the rigid motion

of a camera from point correspondences. From the fundamental matrix, this is only

possible up to a projective transformation. In other words, the estimated motion is

expressed in an arbitrary projective basis. To obtain the Euclidean motion, namely

the rotation matrix and the translation from the previous camera position to the

current one in a Euclidean frame, it is necessary to know the camera calibration

matrix A (see section 4.1.3). This statement is now further explained and it is

shown how motion can be derived from a new matrix: the essential matrix E.

The normalised co-ordinates of an image point m̃ are defined by m̃n = A−1 m̃. The

defining equation (4.12) of the fundamental matrix can be rewritten using normalised

co-ordinates as:

0 = m̃′T Fm̃ (4.18)

= m̃n
′T ATFAm̃n (4.19)

= m̃n
′T Em̃n (4.20)

where E is called the essential matrix. Once the fundamental matrix has been

computed, the essential matrix is therefore obtained by the following equation:

E = ATFA. (4.21)
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Now, let P̃ and P̃′ be the projection matrices of a moving camera at two successive

instants t and t′. Assume that at time instant t, the camera frame coincides with the

world reference frame, the first camera projection matrix then reads P̃ = A [I3|0].

Denote the rotation matrix (resp. the translation vector) from the first to the second

view by 1R2 (resp. by 1t2). The second camera matrix is thus: P̃′ = A [1R2|1t2].

With this notation, it can be shown (see e.g. [32] or [27]) that:

E =
[
1t2

]
×

1R2. (4.22)

The essential matrix has rank 2 since [1t2]× is of rank 2 and a rotation matrix is

non-singular. E has only 5 d.o.f. and not 6 (3 for the translation plus 3 for the

rotation as would have been expected). Indeed, the essential matrix is a homoge-

neous quantity, there is therefore a scale ambiguity. The essential matrix obeys a

particular constraint which was proved by Huang and Faugeras in [38]:

A 3 × 3 matrix is an essential matrix if and only if two of its singular values are

equal, and the third is zero.

This constraint is used in the following method to obtain Euclidean motion from

E up to scale, i.e. the rotation matrix can be fully estimated, but the direction of

translation alone can be extracted.

The method described here is the decomposition of the essential matrix as a product

of a skew-symmetric matrix S and a rotation matrix R: the so-called RS decom-

position. If the SVD (Singular Value Decomposition [81]) of E is taken so that

E = U diag(1, 1, 0)VT , then there are two possible factorisations E = SR:

S = UZUT R = UWVT (4.23)

or R = UWT VT (4.24)

where the matrices W and Z have the following expression:
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W =




0 −1 0

1 0 0

0 0 1


 Z =




0 1 0

−1 0 0

0 0 0


 (4.25)

¿From this factorisation of E, the translation vector (up to a scale factor) can be

extracted directly since S = [t]×. In that form, ||t|| = 1 and this unit translation

vector is the third column of the matrix U which will be denoted by u3. The sign of

the essential matrix cannot be determined, therefore there are two solutions for the

direction of t. There are four possible solutions for the motion. The four solutions

are:

R = UWVT t = u3 (4.26)

R = UWVT t = − u3 (4.27)

R = UWT VT t = u3 (4.28)

R = UWT VT t = −u3. (4.29)

The ambiguity on the motion solutions is resolved by taking the solution for which

the depths of the image points are all positive in both views; in other words, that

the image scene must lie in front of the camera. This method is not valid if the

motion undergone by the camera is a pure rotation, or if the scene is planar. In that

case, the essential E is not defined.

In this section a simple method based on the SVD decomposition of the essential

matrix to recover the motion of the camera was described. In the following section,

the special case of a planar scene will be considered, and the computation of the

camera motion in that case is studied.

4.3 Homography of a plane

In section 4.2, it was stated that if the observed scene was planar, it was not possible

to recover the 3-D motion of the camera from the essential matrix. In fact, if
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the scene is planar, there exists a simpler (and better) way to determine motion.

Indeed, two images of a plane taken by a moving camera are related by a linear

projective transformation called homography or collineation. The determination

of this projective transformation allows the recovery of the motion of the camera

[22, 86]. First, a definition of a homography is given, then a linear method to

estimate it is described, and finally a method to recover the camera motion from it

is presented.

4.3.1 Planar projective transformations: homographies

A homography is a non-singular transformation of the projective plane IP2 into

itself. A homography is represented by a non-singular 3 × 3 matrix H operating

on homogeneous 3-vectors so that:

λ




x′
i

y′
i

w′
i


 =




h11 h12 h13

h21 h22 h23

h31 h32 h33







xi

yi

wi


 (4.30)

where [xi, yi, wi]
T (resp. [x′

i, y
′
i, w

′
i]

T ) are the homogeneous co-ordinates of a point in

the first view (resp. in the second view). The homography matrix is defined up to

a scale factor λ, it has therefore 8 degrees-of-freedom which have to be identified.

Four coplanar points in correspondence are required to identify the coefficients of

H, provided that no three of them are collinear.

4.3.2 Homography estimation

Estimating the homography linking two views of a scene can be performed with a

linear method similar to the normalised 8-point algorithm described in section 4.2.3.

Each point correspondence in the plane provides two equations:


 x′

1 (h31 x1 + h32 x2 + h33) = h11 x1 + h12 x2 + h13

x′
2 (h31 x1 + h32 x2 + h33) = h21 x1 + h22 x2 + h23

(4.31)
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It is then necessary to find (at least) four point correspondences to define uniquely

the transformation matrix H (up to a scale factor). As for the eight-point algorithm,

a system matrix Q is built and the homography matrix is written as a 9-vector h.

h is solution to the homogeneous linear system Qh = 0. If the point matches are

written with their last co-ordinates equal to one, for n (n ≥ 4) pairs of corresponding

points, the system matrix Q (2n × 9) is built in the following manner:

Q =




x1 y1 1 0 0 0 −x′
1x1 −x′

1y1 −x′
1

0 0 0 x1 y1 1 −y′
1x1 −y′

1y1 −y′
1

...
...

...
...

...
...

...
...

...

xn yn 1 0 0 0 −x′
nxn −x′

nyn −x′
n

0 0 0 xn yn 1 −y′
nxn −y′

nyn −y′
n




(4.32)

As for the eight-point algorithm, the vector h solution of eq. (4.32) is the singular

vector corresponding to the smallest singular value of the SVD decomposition of

Q. To deal with noisy measurements, one applies the Hartley normalisation as

documented in section 4.2.3.

4.3.3 Extracting motion from an homography

Let Π = [vT , d]T be a plane in Euclidean 3-space so that a point M belongs to it

if and only if vT M + d = ΠT M̃ = 0. The 3-vector v is the normal to the plane

and d is the Euclidean distance of the plane to the centre of the world frame where

every aforementioned entities are expressed. It will be shown, following [32] that

the images of a plane taken from two views induce a homography and vice versa.

Given the projection matrices P̃ = [I3|0] and P̃′ = [B|a] for the two views, and a

plane defined by ΠT M̃ = 0 with Π = (vT , 1), then the homography induced by the

plane is m̃′ = Hm̃ with

H = B − avT . (4.33)

To prove this, consider the following arguments. If m̃ is an image point in the first

view, a 3-D point M̃ lying on the corresponding ray passing through m̃ satisfies the
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relation m̃ = P̃ M̃ = [I3|0] M̃. Thus, any point on the ray M̃ = [m̃T , α]T projects

to m̃, where α is a scalar parameterising the ray. This ray intersects the plane Π

at the point M̃ which satisfies ΠT M̃ = 0. This yields α = −vT m̃. This 3-D point

M̃ = [m̃T ,−vT m̃]T projects into the second view as

m̃′ = P̃′ M̃ = [B|a] M̃

= Bm̃ − anT m̃ = (B − anT ) m̃
(4.34)

as required.

Now, assume that the moving camera is calibrated, and the calibration matrix is A.

If at time instant t, the camera frame coincides with the world reference frame, and

at t′ the motion of the camera consists of a rotation R and a translation t, then the

camera projection matrices read

P̃E = A [I3|0] and P̃′
E = A [R|t]. (4.35)

Consider a world plane ΠE = [nT , d]T , so that any 3-D point M on the plane satisfies

nT M + d = 0. In that case, the homography induced by the plane is, according to

4.33:

H = R − t nT /d (4.36)

for the cameras P̃ = [I3|0] and P̃′
E = [R|t], and where v = n/d. Applying the

transformation A to the images, the camera matrices P̃E and P̃′
E are obtained and

the resulting homography is

H = A (R − t nT /d)A−1 (4.37)

In the previous paragraphs, it was shown that a plane induced a homography and

vice versa, and how the motion parameters of the camera were related to the plane

geometry and the intrinsic parameters of the camera. Tsai in [86] proved that by

applying a simple SVD to the homography matrix, the rotation matrix R and the
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translation vector t could be easily extracted. There exist three distinct solutions

to this problem depending on the multiplicity of the singular values of the SVD

decomposition of H. This method to compute motion parameters was applied in

the visual servoing schemes proposed in this thesis. The method computes the SVD

of the homography Hn = A−1 HA so that Hn = U diag(σ1, σ2, σ3)V
T , and the

singular values are in decreasing order σ1 ≥ σ2 ≥ σ3. Three cases arise depending

of the multiplicity of the singular values:

1. The multiplicity is 1, i.e. all singular values are distinct σ1 �= σ2 �= σ3. There

are two solutions for the motion and the geometrical parameters of the plane

ΠE (normal and distance to optical centre).

R = U




α 0 β

0 1 0

−sβ 0 sα


 VT (4.38)

t = w−1 [−βU1 + (
σ3

σ2

− sα)U3] (4.39)

n = w (δ V1 + V3) where (4.40)

δ = ±
√

(
σ2

1 − σ2
2

σ2
2 − σ2

3

) α =
σ1 + sσ3δ

2

σ2(1 + δ2)
(4.41)

β = ±
√

1 − α2 s = det(U) det(V ) (4.42)

where in each of the two solutions sign(β) = − sign(δ). R is the rotation

matrix from the first view to the second view if Hn maps the first view to the

second one. Similarly, t is the translation vector from the first to the second

view, n is the normal to the plane. In addition, Ui represents the ith row of

matrix U. All entities are expressed in the camera reference frame of the first

camera. Finally, w is an unknown scale factor.

2. The multiplicity is 2, i.e. two of the singular values are equal, e.g. σ1 = σ2 �=
σ3, then the solution for the motion and the geometrical parameters is unique

aside from a common scale factor for the translation vector:
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R = σ−1
1 Hn − (

σ3

σ1

− s)U3 VT
3 (4.43)

t = w−1(
σ3

σ1

− s)U3 (4.44)

n = wV3 (4.45)

(4.46)

where s = det(U) det(V ), and w is a scale factor. The other cases of multi-

plicity σ1 = σ3 and σ2 = σ3 are obtained by cyclic permutation of the indices.

3. The multiplicity is 3, i.e. σ1 = σ2 = σ3, then the solution for the motion is

unique: it consists of a rotation with respect to an axis passing through the

centre of the first camera, there is no translation (t = 0). The normal to the

plane cannot be computed. The rotation matrix is unique and is given by:

R = σ−1
1 Hn. (4.47)

This section shows that, for a moving camera whose intrinsic parameters are known,

the relative motion arising from two different views of a plane can be extracted if at

least four non-collinear points are given.

4.4 Related work

4.4.1 Camera calibration

In this chapter, the issue of calibrating the intrinsic parameters has not been cov-

ered. This falls beyond the scope of this thesis. However, intrinsic calibration is a

prerequisite for every vision task requiring metric measurements (see section 4.2.4).

Until recently, camera calibration was an off-line process requiring a 3-D object

with precisely known 3-D geometry, the so-called calibration pattern. The principle

of camera calibration is simple. Given a set of image points and their corresponding

3-D points expressed in a reference frame attached to the calibration pattern, the

68



camera projection matrix P̃ is estimated, and the intrinsic parameters of the camera

are extracted from P̃. Several approaches have been proposed, among which the one

proposed by Tsai [85] which used a planar grid undergoing known translations, or by

Robert [70] which was used to calibrate the underwater camera used in this thesis.

Robert’s technique requires a wedged calibration pattern with two perpendicular

planes, and does not require feature extraction. Zhang recently proposed a method

to calibrate a camera from a grid on a planar pattern [100], which is easier to build.

However accurate, off-line calibration techniques suffer from a major drawback.

They cannot cope with varying intrinsic parameters. Mechanical and thermal vari-

ations, which are very likely to happen on an underwater camera during UUV oper-

ation, modify the intrinsic parameters. In addition, most “classical” techniques use

a calibration pattern whose geometry is precisely known, such as Tsai’s calibration

method [85], or Robert’s [70]. Autofocussing and zooming, now common features of

modern cameras, are also a cause of continuous change of the parameters. Conse-

quently, on-line camera calibration techniques which did not require any calibration

pattern, have become necessary. Such techniques are referred to in the literature as

self-calibration or auto-calibration. Research is still on-going on this subject (see [32],

chapter 18), and the references therein for an introduction on the matter). Maybank

and Faugeras proved in a theoretical paper that self-calibration was possible [53].

Later on, improvements on the method of Maybank and Faugeras were proposed

by Zeller [98], and Heyden and Aström [36]. Pollefeys and Van Gool described a

stratified approach to the self-calibration problem [67, 68]. From a projective re-

construction, the estimation of the homography of the plane at infinity allows the

recovery of the affine structure, which is then upgraded to the Euclidean structure.

Luong et al. derived a system of polynomial equations which, when solved, found

the camera calibration parameters [48]. The aforementioned self-calibration tech-

niques deal with constant intrinsic parameters. However, advances have been made

to allow self-calibration of cameras with varying parameters. Heyden and Aström

[37] proposed a method based on the assumption that the aspect ratio is known

and that there is no skew to recover the focal length and the principal point [37].

Pollefeys et al. presented a self-calibration technique based on the assumption that
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the camera was unskewed [66]. Other techniques are based on special camera mo-

tion, for instance, the works from De Agapito et al. was restricted to rotating and

zooming cameras [14, 15].

All these techniques are performed in air; a recent paper from Lavest et al. [43]

investigated the case of calibration underwater and showed that, for the pinhole

camera model, the camera focal length in water was equal to the focal length in air

times the water refractive index1. Therefore, it is possible to calibrate the camera

in air, and from it deduce the calibration in water.

4.4.2 Epipolar geometry

Epipolar geometry is covered in many books (e.g. [21, 32, 93]); the problem of

estimating the fundamental matrix has received a lot of attention, in particular a

review on the subject can be found in [99]. This thesis focuses on linear estimation

techniques. However, in order to obtain more accurate results, nonlinear and iter-

ative minimisation methods are commonly used. For example, for the estimation

of the fundamental matrix, the main two robust techniques (robust here is meant

in a statistical sense, i.e. robust to outliers) used in computer vision are RANSAC

and the Least Median of Squares (LMedS). A review of these numerical regression

methods in the context of computer vision can be found in [54].

4.4.3 Homographies

Extensive coverage of homographies and their relation to the epipolar geometry

is given in [32]; the recovery of motion from homographies problem was studied as

early as 1982 by Tsai who proposed a solution based on the SVD of the homography

matrix [86]. Later on, Faugeras in [22], and then Zhang in [101] proposed alternative

proofs.

1See http://www.dai.ed.ac.uk/CVonline/LOCAL COPIES/LAVEST/main.html for an online

and shorter version of this paper.

70



4.5 Conclusions

The main objective of this chapter was to identify linear computer vision methods

to recover the 3-D motion of a camera from two views. To achieve this objective, the

concept of perspective cameras, which models satisfactorily most CCD cameras was

introduced. It was then shown, using this model, that two views of a static scene

were related by the epipolar geometry, and that these constraints and a knowledge

of the camera’s intrinsic parameters allowed the rigid motion of the camera to be

computed. However, this approach fails in several cases, namely when the motion

of the camera is a pure rotation, or when the imaged scene is planar. A classical

technique to recover motion from a planar scene, that does not suffer from singular

cases, was thus reviewed. In the following chapters, this motion recovery technique

will be used for visual servoing purposes.
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Chapter 5

Feature extraction and tracking

A prerequisite to sparse motion estimation techniques is the ability to find point

correspondences in a couple of images. For the purpose of visual servoing how-

ever, finding point correspondences must be performed in real time, as new images

are constantly being grabbed. This thesis must address the issue of tracking cor-

respondences through time rather than matching them. Indeed, common methods

for extraction and matching are unsuitable for our purposes because their com-

putational burden, on standard embedded computer, exceeds “the sampling time

required for successful station-keeping operation”. The next two chapters will show

that a sampling time of 200 ms was sufficient to achieve successful station-keeping

of a typical ROV.

One of the goals of this thesis was the design of an automatic station-keeping algo-

rithm for UUVs. Consequently, the designed algorithm must also be able to work

on real underwater images.

A tracking algorithm, suitable for the application, i.e. able to run on real underwater

images at a 5 Hz sampling rate, is thus presented [28, 83] in this chapter, and an

experimental evaluation of its performances is carried out.

5.1 Introduction

Most visual control techniques in the literature are based on the extraction of image

features such as points, lines, circles or ellipses [20, 39]. Finding these image features

proves difficult, in particular in unstructured and unknown scenes. Researchers have

therefore reduced the image processing load by applying their techniques to simple

and dedicated visual targets (see e.g. figure 5.1). The image processing is then
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Figure 5.1: A simple visual servoing target.

reduced to a thresholding and the matching is straightforward. In this thesis, the

more complex task of working on “natural” images such as the one depicted in figure

5.2 was tackled; the ultimate goal being to perform visual station keeping at sea,

near the sea bottom for instance. Recent visual servoing work on natural images

include that of S. Negahdaripour [61] and A. Crétual [10]. In order to estimate the

relative motion of the scene with respect to the camera, they applied optical flow

techniques. The optical flow is an estimate1 of the 2-D motion field based solely on

the data available in images, that is the spatial and temporal variations of image

brightness. The 2-D motion field is the perspective projection onto the image plane

of the true 3-D velocity field of moving surfaces in space [87]. Optical flow is a

dense motion estimation technique: it is estimated at each point in the images.

Consequently, this approach is computationally expensive, and images have to be

reduced in size to allow real-time performances. For instance Negahdaripour used

64 × 64 images, and Crétual restricted the search area by applying a binary mask

to the image for his pedestrian tracking application.

In this thesis however, experiments have been carried out on full resolution 512×512

images, since a sparse feature tracking method was employed. Reducing the number

of features to track allows faster computation time. However, one still has to search

for feature points correspondences in the whole image contrary to stereo applications.

In stereo, the knowledge of the rigid transformation between the two calibrated

1It is often assumed that the optical flow and the motion field coincide, however this is seldom

the case [87].
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Figure 5.2: A “natural” image: picture of the ship wreck Kirk Pride taken from
a manned submarine at 250 metre depth. Courtesy of Philip Greenspun, M.I.T.,
http://www.photo.net/webtravel/cayman.

cameras reduces the search from 2-D to 1-D, one point in the first image lies on an

epipolar line in the second image. Several methods have been devised to reduce the

search area from the whole image to a more tractable one. One method consists in

assuming that the motion between consecutive images is sufficiently small to restrict

the search in a window around the previous feature position. Applying prediction

schemes on the features’ motion also produces faster searches. Prediction schemes

such as α − β filters (constant velocity filters) [8, 74], or Kalman filters [1] can

be used. The tracking approach which will be introduced in this chapter assumed

that the motion between consecutive images is sufficiently small. The originality of

the approach of Shi, Tomasi and Kanade [75, 82] was to extract, from an image,

features which satisfied properties guaranteeing that they would suitably be tracked

in subsequent images through time. This idea allowed the selection of “good tracking

features”.

This type of approach was used in the visual servoing scheme of chapter 7. The

original algorithm from Shi, Tomasi and Kanade was later improved by Trucco et

al. in [83] with an automatic thresholding scheme.

The details of the modified algorithm will be described in section 5.2. A quantitative
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performance evaluation of the latter in underwater conditions is reported in section

5.3.

5.2 The feature tracker

The feature implementation described in this thesis is a modification of the Shi-

Tomasi-Kanade tracker [75, 82] which employs an automatic outlier rejection scheme

[28, 83]. In this thesis’ context, robust tracking means to automatically detect unre-

liable matches or outliers [71].

The main characteristics of this tracker are the following:

• Features are extracted on the basis of their suitability for tracking: the selected

features are the ones which will be easily tracked.

• The tracking, i.e. the estimation of the motion field for each selected fea-

ture between two consecutive frames, follows a pure translation motion model

(although an affine motion model could be used too).

• Outlier rejection: if a tracked feature is too dissimilar between the first frame

and the current frame, it is discarded as a bad feature or outlier. This selection

is based on an affine motion field model, since too many features would be

discarded if a pure translational model was used.

5.2.1 Motion field models

These models rely on the basic assumption that intensity values within small re-

gions remain practically unchanged after small displacements. If I(x, t) represents

an image sequence, with x = [u, v]T a point in the image and t time, the above

assumption reads:

I(x, t) = I(δ(x), t + τ) (5.1)

where δ(·) is the motion field. For an affine motion model, which takes into account

translation and scaling, the motion field is:
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δ(x) = Dx + d. (5.2)

where

D =


d11 d12

d21 d22


 (5.3)

D is a deformation matrix and d is the translation of point x. If a point x in image

I moves to the point Ax+d in image J , then, omitting the time variable for clarity,

J(Ax + d) = I(x) (5.4)

where A = I2 + D and I2 is the 2 × 2 identity matrix. The motion parameters

sought, D and d = [d1, d2]
T , are obtained by minimising the dissimilarity measure

ε on a chosen window W :

ε =
∑
W

[I(x + d, t + τ) − I(x, t)]2. (5.5)

Shi and Tomasi [75] showed that, approximating the squared differences by their

first-order Taylor expansion, solving eq. (5.5) is equivalent to finding the vector

z = [d11, d12, d21, d22, d1, d2]
T solution of the linear system

Tz = a, (5.6)

in which, if the partial derivation of I with respect to a variable x is denoted by

Ix = ∂I/∂x,

a = −τ
∑
W

It [uIu, uIv, vIu, vIv, Iu, Iv]
T ,

T =
∑
W


 U V

VT Z




with
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U =




u2I2
u u2IuIv uvI2

u uvIuIv

u2IuIv u2I2
v uvIuIv uvI2

v

uvI2
u uvIuIv v2I2

u v2IuIv

uvIuIv uvI2
v v2IuIv v2I2

v




,

VT =


 uI2

u uIuIv v2I2
u vIuIv

uIuIv uI2
v vIuIv vI2

v


 ,

Z =


 I2

u IuIv

IuIv I2
v




These equations allow the estimation of the affine motion field, and are used to

discard possible outliers. However, under the assumption that the motion between

two frames is sufficiently small (a few pixels), a simpler translational motion model is

adequate.2 Indeed, not only is a translational model computationally cheaper, but it

is also preferable to the affine model since for small motions the deformation matrix

D is difficult to estimate accurately [75]. In that case, the deformation matrix is

equal to zero, and the motion field is δ = d, and is estimated by solving a linear

system:

Gd = (
∑
W

Z)d = e (5.7)

where the residual e of a given feature, is made up of the last two entries of a:

e = −τ
∑
W

It [Iu, Iv]
T .

To summarise, the motion of each extracted feature between two consecutive frames

is estimated according to eq. (5.7), assuming small displacements. The affine motion

model is used for larger displacements which do not satisfy the translational model.

2In practice, the vision system must be able to process images at a sufficiently high frame rate

to guarantee that the assumption holds.
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5.2.2 Feature extraction

Features for which eq. (5.7) yields a numerically stable solution for d are good

features. This is the case if both eigenvalues λ1 and λ2 of G are well above noise

level and are not too dissimilar. In practice, if min(λ1, λ2) > λ where λ is a user-

defined threshold3, eq. (5.7) is taken to be sufficiently well-conditioned. In other

words, the goal is to extract features that can be tracked reliably through time.

5.2.3 Automatic outlier rejection

This section summarises the automatic outlier rejection strategy. The reader is

referred to [28] for a complete mathematical treatment. To detect outliers automat-

ically, the tracker assumes that between the first frame and the current frame the

illumination of the windows is constant, and the difference in intensities is caused by

centred Gaussian distributed noise. Fusiello et al. [28] showed that the residuals εi

of the n tracked features, obtained with the affine motion model, follow a Gaussian

distribution, provided that the window size was at least 7× 7 (pixels). If a residual

was not a sample from the Gaussian distribution, it was an outlier, in which case the

corresponding feature was discarded. The criterium (X84) used to decide whether

a residual belonged to the distribution was the Median Absolute Deviation (MAD):

MAD = med
i

{|εi − med
j

εj|} where med {} is the median (see Rousseeuw’s book

for details [71]). The X84 rule prescribed rejecting the values which were k median

absolute deviations away from the median. A value of k = 5.2, under the hypothesis

of a Gaussian distribution, was adequate in practice since it corresponded to about

3.5 standard deviations, and this range around the mean value of the distribution

contained more than 99.9 % of the distribution. In addition, the breakdown point of

the X84 rule was 50 %, which means that any majority of the data overruled any

minority.

Features extracted from the first frame were guaranteed to be tracked reliably in

3In this thesis’ implementation, the threshold was implicitly defined by the number of features

wished to be obtained at the beginning, which depended on the requirements of the visual servoing

application. For example, estimating homographies requires at least four features.
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subsequent frames under a translational model of image motion. The displacement

of a given feature between two frames was approximated by a translation vector

d. To ensure that the tracked features were still reliable at a given point in time,

an affine motion model was fitted to each feature between the first frame and the

current frame. If the residual of this feature was not a sample of the Gaussian

distribution of the residuals of all features, it was discarded.4

5.3 Performance evaluation of a feature tracker

for underwater applications

In order to correctly evaluate the causes of possible visual servoing experiments

failures of chapter 7, it was necessary to estimate the feature tracker performances

and limitations in the same operating conditions. Visual servoing was tested in

an underwater test tank, filled with fresh water, at a short range of 1–2 metres.

The visual servoing schemes were run at a sampling rate of 5 Hz on a non-real-time

operating system.5

Characterising feature trackers proves difficult since performance depends on several

factors such as:

• the nature of the imaged scene (texturedness, albedo, etc.);

• the optical properties of the medium, in this case, water, and in particular,

the absorption and diffusion of the light;

• the nature of light sources, whether it is natural (sunlight filtering from the

surface) or artificial (on-board underwater lights), or a combination of these.

4During this PhD work, a real-time version of the automatic outlier rejection was unfortunately

not available. The feature tracker evaluated underwater was therefore equivalent to the Shi-Tomasi-

Kanade tracker.
5A real-time operating system is meant to be an operating system where it is possible to guarantee

that events will happen at a definite time within known and certified accuracy. For example,

a typical robot controller will have a sampling rate of 5 ms, and new control inputs would be

guaranteed to happen every 5 ms ± 5 µs. For a non real-time operating system, such events may

happen every 5 ms, however it may sometimes happen a few seconds later!
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Consequently, an exhaustive study would be too time consuming and too difficult

to achieve. An evaluation of the following characteristics, relevant to the overall

purpose of this thesis, was carried out:

• maximum admissible interframe displacements,

• influence of window size on tracking performance,

• tracking consistency (to be defined more precisely),

• sensitivity to illumination conditions.

5.3.1 Experimental setup

The following experiments used a black and white CCD Mariscope camera “Micro”

placed into a waterproof housing (see figure 5.3). Its light sensitivity was rated at

0.1 Lux by the manufacturer, and its horizontal viewing angle was 43˚, which meant

that if the camera was placed at one metre above the bottom of the tank, the area

of the imaged scene was roughly 1 × 1m2.

For the purpose of the experiments, the camera was rigidly mounted at the end of

a pole along the Z-axis of the Cartesian robot (see figure 5.4). The camera was

set up so that the image plane was parallel to the flat bottom of the tank. The

camera co-ordinate frame was parallel to the Cartesian robot co-ordinate frame.

Consequently, the relative motion of the camera and the relative motion of the

robot could be assumed to be identical, to within the vibrations of the camera at

the end of the pole, which could not be measured.

A 150-watt underwater light was placed beside the camera to simulate a typical

underwater vehicle lighting configuration (see figure 5.4).

To be able to compare the tracker’s performance in the same conditions as during the

visual servoing experiments, the tests were run at the same rate, i.e. five 512 × 512

pixels 8-bit images were grabbed and processed per second. The search window size

W was set to 13 × 13 pixels in all experiments. Twenty features were extracted

in the first frame, of which a few were systematically lost when they came out of

80



the field of view during the motion experiments. These features were therefore not

taken into account to estimate the tracker’s performance.

Figure 5.3: Underwater camera “Micro” from Mariscope in its original housing.

Figure 5.4: Experimental setup used to evaluate the tracker’s performance. The
underwater light and the camera were fixed at the extremity of the Cartesian robot.

5.3.2 Interframe displacements characterisation

This experiment studied the relationship of the number of tracked features through

time with respect to the velocity of the camera. The tracker was expected to lose
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features more quickly as the average pixel displacement between consecutive frames

was increased. To study this relationship, the Cartesian robot was moved back

and forth at various constant speeds. The amplitude of motion was constrained so

that roughly a third of the original image always stayed within the camera’s field of

view, which meant that the robot was moving no more than 15 cm away from the

starting position. Figure 5.7 illustrates a typical motion of the robot for each axis

(X and Y), while figure 5.5 pictures the robot axes. For each robot’s velocity value

vi (1 cm/s, 2 cm/s, 3 cm/s, 4 cm/s, and 5 cm/s), a set of experiments was performed

with four different velocity angles αk (30˚, 45˚, 60˚ and 135˚), so that the robot’s

velocity vector vi was [vi cos(αk), vi sin(αk)]
T . For each of the twenty experiments,

the number of tracked features was monitored. Figure 5.8 shows the average number

of features over each velocity angle for each velocity value. The experiments were

stopped as soon as the number of tracked features fell below four.

Y

X

Camera looking down

Water Tank

v

α

Figure 5.5: Camera motion in the water tank with axes: top view.

Overall, the number of features successfully tracked decreased markedly as speed

increased. The tracking was best at a velocity of 3 cm/s, contradicting the general

trend. However, there was a noticeable performance drop for velocities greater than

3 cm/s. Note that the first few features were lost because they were moving out of

the field of view. After one motion cycle though, all the lost features were associated

to the tracking algorithm. Thus, no statistics on the number of features itself were

attempted.
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Figure 5.6: Overview of the water tank: Cartesian robot, underwater camera and
light.
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Figure 5.7: Interframe displacements characterisation: (a) Camera’s motion along
the X-axis. (b) Camera’s motion along the Y-axis.
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The focal length of the camera was (fx, fy) = (801.6, 787.0) (see table 5.1). There-

fore, with the bottom of the tank being 1.1 m away from the focal plane, one pixel

in the image corresponded to a square of 1.4 mm sides at the bottom of the tank.

Consequently, and according to the results plotted in figure 5.8, the tracker could

track features for an extended amount of time as soon as the average interframe pixel

displacement was less than 4 pixels. When only 4 features remained, the tracking

algorithm was stopped intentionally.

These experiments gave an approximate idea of the limits of the interframe dis-

placement that could be measured by the feature tracker in a difficult underwater

situation. In the computer vision field, it is difficult to assess an algorithm’s per-

formance on real data and to deduce, from the results on the necessary limited set

of real data, its performance in different conditions. The experiments in this thesis

were chosen to be indicative and realistic.
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Figure 5.8: Average number of tracked features vs time for different camera veloci-
ties.
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αx 801.6 ±0.4 pix

αy 787.0 ±0.4 pix

s 0.0 pix/m

x0 292.1 ±0.6 pix

y0 242.6 ±0.7 pix

Table 5.1: Camera calibration parameters underwater. Data courtesy of Christophe
Leperon, LASMEA, France.

5.3.3 Influence of extraction and search window size

This section studies the influence of the size of the extraction and search window

on the interframe displacement measurement capability of the feature tracker. The

same experiments as the ones mentioned above were performed at a given speed for

a set of window sizes.

The first experiments moved the camera at the observed optimal speed of 0.3 cm/s

with an angle of 45˚. The evolution of the number of tracked features for each

window size through time (from 9 × 9 pixels to 25 × 25) is illustrated by figure 5.9.

An optimal result was obtained in this experiment with a window’s size of 21 × 21

pixels.

These results were also plotted in a different way, figure 5.10. Here the number of

features tracked through time have been integrated and normalised by dividing the

result of this integration by the maximum value at the last iteration.

In other words, if ni(k) was the number of features still tracked by the feature

tracked at iteration k, for window size Wi, the integral Ni(k) plotted was:

Ni(p) =
1

M

k=p∑
k=1

ni(k) (5.8)

where M was the maximum value over all Ni at the last iteration. It is clear that

the best tracking results were obtained for a window size of 21 × 21.

The above results imply that choosing an extracting and search window of size 21×21

would provide the best tracking performance in all conditions. As mentioned earlier,
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Figure 5.9: Number of tracked features vs time for different window’s sizes with
a camera velocity of 0.3 cm/s. An optimal result was obtained in this experiment
with a window’s size of 21 × 21 pixels.
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Figure 5.10: Integrated normalised number of tracked features vs time for different
window sizes with a camera velocity of 0.3 cm/s. An optimal result was obtained in
this experiment with a window size of 21 × 21 pixels.

87



0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Time [s]

N
um

be
r 

of
 fe

at
ur

es

Influence of window size on the number of features tracked (5 cm/s)

17 pix
19 pix
21 pix
23 pix
25 pix

Figure 5.11: Number of tracked features vs time for different window sizes with a
camera velocity of 0.5 cm/s. An optimal result was obtained in this experiment with
a window size of 17 × 17 pixels.

vision research suffers from the difficulty to infer general rules on an — always limited

— number of real world experiments. Indeed, the same experiment, at a higher speed

of 0.5 cm/s found that the optimal window size value was 17 × 17 instead! Figures

5.11 and 5.12 clearly illustrate that result.

The main conclusion to take from these experiments is that the window size has an

influence on the tracking performance but that this influence was not quantifiable,

at least not with only those two experiments. It is also very likely that the results

obtained here would change if the nature of the imaged scene changed. During these

experiments, the bottom of the tank was covered with gravel. The tank had just

been filled up. Therefore lots of dust particules were cloudying the water, altering

the visibility conditions.
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Figure 5.12: Integrated normalised number of tracked features vs time for different
window’s sizes with a camera velocity of 0.5 cm/s. An optimal result was obtained
in this experiment with a window size of 17 × 17 pixels.
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5.3.4 Consistency of tracking

A feature tracker is by nature a velocity sensing device. The noise affecting the

CCD camera, the lighting conditions and the digitisation will therefore affect the

interframe displacement measurements between two consecutive frames. The track-

ing will be consistent if extracted features are reliably found by the tracker at their

initial location when there is no motion in the image.

In order to characterise the consistency of the tracking, some static tests were first

run. The camera was immobile, looking at a static underwater scene. Features were

extracted and subsequently tracked for roughly 1,000 frames. Ideally, the measured

displacement between two consecutive frames should have been zero. Assuming that

the tracking algorithm was affected by Gaussian noise, the consistency of tracking

in the image can be characterised by its mean µ and its standard deviation σ. A

typical consistency plot is shown in figure 5.13.

A series of static tests was performed on 14 different locations of the test tank with

different types of scenes including: gravel, a concrete bottom, a concrete block,

and a yellow plastic tube. For each location, 19 features were tracked for about

1,000 frames. The mean displacement between consecutive frames and its associated

standard deviation over the whole sequence and over all features were calculated.

The results are summarised in table 5.2. The computed mean displacements were

very small, the maximum value was of the order of 10−3 pixel. These mean values

were statistically meaningful since the maximum standard error of the mean: ε =

σ/
√

n, where n = 1000 samples had a maximum value of 3. 10−3 pixel. It can

therefore be safely assumed that under good lighting conditions, there was a bias

smaller than one hundreth of a pixel in the measurement of displacement between

frames. This means that a feature can be located consistently within 0.03 pixels

99.7 % of the time (3σ rule).

Similar tests were also performed for varying lighting conditions. These tests are

described in the next section.
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(a) (b)

Figure 5.13: Typical displacement measurements of one feature in the image when
the camera was not moving: (a) Along the horizontal axis; (b) Along the vertical
axis.

Mean [pixel] Standard deviation [pixel]

Scene type Horizontal Vertical Horizontal Vertical

Concrete block −2.3 10−4 1.1 10−4 0.0837 0.0614

Concrete bottom 1 −4.7 10−4 −0.9 10−4 0.1312 0.0727

Concrete bottom 2 0.1 10−4 −0.8 10−4 0.1251 0.0806

Gravel 1 −1.0 10−4 −0.2 10−4 0.0888 0.0599

Gravel 2 −0.5 10−4 −0.5 10−4 0.0872 0.0662

Gravel 3 15.0 10−4 43.0 10−4 0.1275 0.1171

Gravel 4 −0.2 10−4 −0.4 10−4 0.0889 0.0701

Gravel 5 2.0 10−4 0.0 10−4 0.0780 0.0539

Gravel 6 0.0 10−4 −1.0 10−4 0.0837 0.0589

Gravel 7 −1.9 10−4 −0.7 10−4 0.0818 0.0597

Tube 1 1.5 10−4 −4.0 10−4 0.0811 0.0606

Tube 2 1.0 10−4 0.3 10−4 0.0819 0.0574

Tube 3 9.9 10−4 10.0 10−4 0.0846 0.0610

Tube 4 0.3 10−4 1.2 10−4 0.0780 0.0740

Table 5.2: Mean displacement and its associated standard deviation for a set of 14
static tests in the water tank.
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5.3.5 Sensitivity to illumination

To evaluate the sensitivity of the feature tracker to illumination, the following tests

were performed. The camera was made to look downwards to the bottom of the

water tank. The latter was covered with gravel and other objects as can be seen

in figure 5.14. The camera was attached to the Cartesian robot. An underwater

light was placed beside the latter (see figure 5.4). The input voltage to the light

could be adjusted by means of a variable transformer. The results shown here were

relative to this input voltage, since a luxmeter sensitive enough to measure the

actual illumination of the scene was not available. Indeed, the available luxmeter

could not measure illumination below 1 lux. The underwater camera had a rated

sensitivity of 0.1 lux.

Two sets of experiments were performed. In the first one, the scene was mostly

composed of gravel; in the second, a marked hose pipe was used, as in some of

the author’s early visual servoing experiments [46]. Figure 5.14 shows the two un-

derwater test scenes with the same illumination level. All runs were 1,000 frames

long.6

Gravel scene

This test was carried out with illumination levels ranging from 30 % to 55 %. Below

30 % and over 55 %, the tracker did not run for a meaningful amount of time.

Figures 5.15 and 5.16 illustrate the tracking consistency with respect to illumination

conditions. The mean displacement for the range 30–55 % was very close to zero

(well within a 3σ bound), which meant that in these conditions, the tracking was

not biased. However, for the 30 % illumination level, the tracker lost track very

quickly (279 frames). The study of the standard deviation graph illustrates clearly

the improvement over tracking consistency and hence on the overall performance of

the tracker, as the scene is better lit. The relationship seemed to be exponential on

the studied range. Note that if the scene was too lit, the tracker failed very quickly.

6Except for two extremes illumination cases where all features were lost before 1,000 frames

were grabbed (gravel scene with 30 % illumination level, and tube scene with 55 % illumination

level).
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(a) (b)

(c) (d)

Figure 5.14: Two underwater scenes under the same illumination: (a) Gravel with a
50 % illunination level, (b) Tube with a 50 % illumination level. Note the difference
of contrast due to the nature of the imaged scene. The “tube scene” under two
illumination levels: 35 % (c) and 50 % (d). The difference in contrast is caused here
by the amount of light dispensed to the scene.
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Figure 5.15: Average displacement measures with respect to illumination conditions
on a gravel scene.

Tube scene

The “tube scene” being much brighter than the gravel scene, the tracker failed more

quickly, namely at a 55 % illumination level.7 This shows the necessity of measuring

the illumination reflected by the scene, and not the light dispensed.

Conclusions

In reasonably well-lit conditions, the feature tracker was able to track features con-

sistently to within 0.5 pixel standard deviation and was not biased (zero mean). This

will turn into possible drift (random walk) on the position measurements through

integration of tracking errors through time.

Further tests with a more sensitive luxmeter should be carried out to derive the

relationship between the tracker consistency and the actual illumination of the scene.

7This test was 150 frames long.
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Figure 5.16: Standard deviation of displacement with respect to illumination con-
ditions on a gravel scene.
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Figure 5.17: Average displacement measures with respect to illumination conditions
on a gravel scene.
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Figure 5.18: Standard deviation of displacement with respect to illumination con-
ditions on a gravel scene.
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5.3.6 Other limitations

During the course of these experiments, a small number of undesirable behaviours

were noticed, and are mentioned here. Tracking consistency was affected by mis-

matches, if a given feature was not localised properly. The measure of contrast (eq.

(5.7)) is an approximation of the autocorrelation function (see [73], appendix A),

therefore the location of a given feature is not defined along the edges. This results

in a drift of the estimated feature position in the image which does not fit the global

motion model. Dynamic changes in illumination may also have the same adverse

effect: the camera may not move, but the contrast properties might slightly change,

and the tracked feature might be localised further away than its actual position.

Although undesirable, these behaviours are inherent to this feature extraction and

tracking method which is based on local correlation measurements. The use of pho-

tometric normalisation (see [28] and references therein) should reduce the sensitivity

to dynamic illumination variations.

5.4 Conclusions

This chapter’s main contribution was to characterise the performance of the feature

tracker. The main results have been listed below:

• The maximum admissible interframe displacement was estimated to be of 4

pixels;

• The tracker was able to track features consistently with a standard deviation

of 0.03 pixel. This measurement characterises possible drift;

• In reasonable illumination conditions, the tracking remained consistent (0.5

pixel standard deviation). It was also noted that accuracy was a function of

brightness, less light resulted in less accuracy. Besides, if the scene was overlit,

the tracker could not work.

The investigation of the use of motion prediction schemes such as Kalman filtering [1]

combined with regions or areas of interest [83] could both improve the computation
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time (currently 200 ms on 512×512 8-bit images) and the feature positioning. Also,

a multi-scale approach should prove to be more robust. Multi-scale approaches have

been successfully applied to the computation of optical flow, see for example [63], and

the review paper [2] for a comparison of optical flow techniques. Multi-scaling should

allow coarse positioning when the relative motion of objects with respect to the

camera is important, and a finer positioning when it is small, possibly improving the

maximum admissible interframe displacement at the expense of positioning accuracy.
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Chapter 6

Application of 2 1/2 D visual

servoing to UUV dynamic positioning

This chapter1 demonstrates a visual servoing method to dynamically position a

UUV. The proposed method was applied to the 6 degrees-of-freedom model of AN-

GUS introduced in chapter 2. This method was designed to take into account the

underactuation of ANGUS, and its robustness was tested against sea current distur-

bances, target plane orientation, and noise in the images. The simulations presented

in this chapter did not include the feature tracker — previously evaluated in chapter

5 — within the control loop. This will be considered later in chapter 7.

The chapter introduces the hybrid visual servoing technique proposed by Malis et

al. [50]. A method suitable for UUV visual servoing is then derived from it. The

chapter closes by evaluating the robustness of the proposed method with respect to

sea current disturbances, target orientation, and noise in the image.

6.1 The 2 1/2 D visual servoing approach

This section examines the details of the 2 1/2 D visual servoing approach of Malis et

al. [50]. This approach was chosen as a starting point for it combined the advantages

of both 2-D visual servoing and 3-D visual servoing without any of their drawbacks

(see section 1.1.1). These advantages are recalled in the list below:

• the control was partially carried out in the image, ensuring that the target did

not leave the field of view. This was not possible to achieve with a 3-D visual

servoing task.

1The work presented in this chapter is a revised version of the paper [46].
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• the control of the rotational degrees of freedom were decoupled from the trans-

lational ones. This allowed an easier design of the robot’s control loops.2

• the convergence of the visual control was analytically proven to be the whole

hemisphere in front of the target, even in the presence of camera calibration

errors [50].

• finally, it did not require a model of the target, and was demonstrated to work

on both planar and non-planar scenes.

The objective of visual servoing is to position a robot from the current configuration

to the desired one. Let F be the current reference frame attached to the robot, and

F∗ the reference frame attached to the robot in its desired position3. It was seen

in chapter 4 that from the homography of a plane it was possible to obtain motion

information up to a scale factor. In particular, the rotation cRd between the current

frame F and the desired frame F∗ can be fully recovered. Consequently, a control

law that decouples the rotational degrees-of-freedom from the translational ones can

be designed. The techniques of Malis et al. relating the image information to the

camera velocity screw νs via a matrix will first be presented. Then their proposed

robot control will be introduced.

6.1.1 Interaction matrix

Control of the camera’s orientation

A natural way to control the camera’s orientation is to use the estimated rotation

matrix between F and F∗ : cRd. The camera will reach its desired orientation when

cRd = I3. Let Ω be the angle of the transposed4 aforementioned rotation matrix,

and l the axis of this rotation, i.e. cRT
d , (where ‖l‖ = 1 and 0 ≤ Ω < 2π). Malis

showed that the time derivative of the product of the angle and the support vector

of the rotation axis Ωl was:

2This is obviously true only if the robot’s degrees-of-freedom are decoupled.
3For station keeping purposes, the desired position is also the initial position.
4There was a typo in [50], it is actually the axis and angle of the rotation between F∗ and F

which were used, hence the transpose.
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d(Ωl)

dt
= [03 Lω(Ω, l)] νs (6.1)

where 03 is the 3 × 3 zero matrix , and where Lω is:

Lω(Ω, l) = I3 − Ω

2
[l]× +

(
1 − sinc(Ω)

sinc2(Ω
2
)

)
, (6.2)

and where the cardinal sine function is classically defined as:

sinc(Ω) =




1 if Ω = 2kπ (k ∈ ZZ),

sin (Ω)
Ω

otherwise.

(6.3)

The derivation of the expression of matrix Lω can be found in E. Malis’ PhD thesis

[49]. The determinant of this matrix is:

det(Lω) =
1

sinc2(Ω
2
)
. (6.4)

Therefore the matrix is singular only for angles Ω = 2kπ (k ∈ ZZ∗), i.e. outside the

workspace. Note that eq. (6.1) clearly shows that the rotational d.o.f. of the camera

are decoupled from the translational ones.

Control of the camera’s translation

The purpose of this section is to recall [49] how a point’s extended coordinates (as

defined in eq. 6.5) can be used to determine a relationship between its time derivative

and the camera velocity screw. Let M = [X,Y, Z]T be a 3-D point in Euclidean

space. The projection of M onto the image plane is m̃n = [x, y, 1]T = [X
Z

, Y
Z
, 1]T .

The extended image point m̃e is defined by:

m̃e =




x

y

z


 =




X/Z

Y/Z

ln (Z)


 (6.5)

and z = ln (Z) is an added co-ordinate. The reader should note that, although the

depth Z is unknown, the difference z − z∗ = ln (Z/Z∗) can be obtained from an
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homography. Indeed, if M belongs to a plane, Malis showed that the ratio Z/Z∗ is

given by:

Z

Z∗ =
n∗T m̃∗

nT m̃
det(H) (6.6)

where H is the homography matrix between the desired and the current views.

If the extended image point m̃e is differentiated with respect to time, the following

expression is obtained:

dm̃e

dt
=




ẋ

ẏ

ż


 =




Ẋ
Z
− X

Z
Ż
Z

Ẏ
Z
− Y

Z
Ż
Z

Ż
Z


 =

1

Z




1 0 −X
Z

0 1 −Y
Z

0 0 1







Ẋ

Ẏ

Ż


 = −Lv(m̃e) Ṁ (6.7)

Note that Lv is singular for Z = 0 or Z → ∞ since its determinant det(Lv) = 1/Z3,

which is again outside the considered workspace.

The time derivative of M expressed in the moving frame F is:

Ṁ = [−I3 [M]×] νs. (6.8)

The combination of eq. (6.8) and (6.7) yield:

dm̃e

dt
= [Lv(m̃e) L(v,ω)(m̃e)] νs (6.9)

Now, since M = Z m̃n, the expression of the matrix L(v,ω)(m̃e) is:

L(v,ω)(m̃e) = Z Lv(m̃e) [m̃n]× =




xy −(1 + x2) y

(1 + y2) −xy −x

−y x 0


 (6.10)

Combining both rotation and translation

Now, if eq. (6.9) and (6.1) are combined, the following equation is obtained:
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d

dt


m̃e

Ωl


 =


Lv L(v,ω)

03 Lω





νsp

νso


 = L(m̃e) νs (6.11)

the complete expression of the interaction matrix dL(m̃e) is:

L(m̃e) =




−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

0 0 −1/Z −y x 0

0 0 0 1 − β(1 + l2x) βlylx − αlz βlzlx + αly

0 0 0 βlylx − αlz 1 − β(1 + l2y) βlzly − αlx

0 0 0 βlzlx − αly βlzly + αlx 1 − β(1 + l2z)




(6.12)

where α = Ω
2

and β = 1 − sinc(Ω)

sinc2(Ω
2
)
. The only unknown in the interaction matrix

L(m̃e) is the depth Z = ρ d∗, where ρ is given by:

ρ =
det(H)

nT m̃
. (6.13)

Given the homography matrix H it is possible to estimate the normal vector n to the

planar target. Hence the only real unknown of the interaction matrix is the distance

of the camera to the plane in the desired configuration, that is d∗. Fortunately, Malis

proved that the 2 1/2 D visual servoing scheme was robust to errors in the estimation

of this distance [49, 50]. In practice, it is sufficient to estimate this distance in an

off-line learning stage. The interaction matrix L(m̃e) is always of full rank, except

if Z = 0, Z → ∞ or Ω = 2kπ (k ∈ ZZ∗). Although the lower half of the matrix is

fairly complex, by closing the loop, this part simplifies greatly, as will be seen in the

next section.

6.1.2 A proportional control

As in [72], a robot’s positioning task can be described as the regulation to zero of

an error function: the task function. This function has to obey some properties
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of regularity which are fully described in Samson’s book [72]. The following task

function, e, obeys these conditions. Malis et al. defined e as:

e =


m̃e − m̃∗

e

Ωl


 (6.14)

and m̃e − m̃∗
e = [x − x∗, y − y∗, ln ( Z

Z∗ )]
T can be computed from the current and

the desired (or initial) images, and from ρ (see eq. (6.15)). x∗ and y∗ are the co-

ordinates of the image of a target point in the desired image, and x and y are the

co-ordinates of the same point in the current image. This point is the controlled

point.

Z

Z∗ = ρ
(
n∗T m̃∗) (6.15)

Now, a relationship between the camera velocity νs and the time derivative of the

task function e will be established. If W = sTv
5 denotes the homogeneous trans-

form6 between the camera velocity νs and the vehicle’s ν, so that:

νs = W ν (6.16)

then:

ė = LW ν (6.17)

where L is the interaction matrix given by eq. (6.12). If the target is motionless,

an exponential decrease of the task function vector on each of its components can

be obtained by setting:

ė = −λKP e (6.18)

where λ is a positive scalar and KP is a positive diagonal matrix which tunes the

rate of convergence of e to zero. Combining (6.17) and (6.18) yields:

5The superscript s stands for sensor, and v stands for vehicle.
6See 4.1.1 for the definition of homogeneous transforms.
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ν = −λW−1 L−1 De (6.19)

Finally, expanding eq. (6.19), and choosing the matrix KP as unitary:

ν =


νp

νo


 = −λ


sRT

v −sRT
v [stv]×

0 sRT
v





Lv

−1 −Lv
−1 L(v, ω)Lω

−1

0 Lω
−1





m̃e − m̃∗

e

Ωl




(6.20)

Now, it was proven that [49]:

Lω
−1 Ωl =

(
I3 +

Ω

2
sinc2(

Ω

2
) [l]× + (1 − sinc((Ω))) [l]2×

)
Ωl = Ω l (6.21)

The proportional control of the rotational d.o.f. of the vehicle can hence be written

as νo = −λ sRT
v Ωl, and Lω

−1 can be set as Lω
−1 = I3.

In the following section, the modifications made to accommodate the original 2 1/2 D

visual servoing method to the control particularities of ANGUS are detailed.

6.2 Extension of 2 1/2 D visual servoing to un-

derwater vehicle station keeping

6.2.1 Introduction

The main objective to be achieved in this thesis was to dynamically position a UUV

at a given start position in the presence of sea current disturbances. To simulate a

UUV, the dynamic model of ANGUS presented in chapter 2 was used. Although in

theory, it would be possible to apply the 2 1/2 D approach as proposed in [50], this

was in fact impractical: doing so could lead the task function e to define a trajectory

in 3-D space which would be physically unattainable by the vehicle. Indeed, the roll

and pitch degrees-of-freedom being uncontrollable, any trajectory requiring specific

roll and pitch values to be reached would fail. The best case scenario would be that

these uncontrollable d.o.f. would act as perturbations. At worst, the vehicle could
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reach a dynamic equilibrium (local minimum) and never converge to its desired

position. The approach outlined in section 6.1, well-suited for a fully controllable

robot, such as a 6-d.o.f. manipulator, was therefore not adapted to the specific

control problem outlined in this thesis. A solution to this issue with the example of

ANGUS will be presented now. Note that this could readily be extended to other

types of underactuated7 robots.

6.2.2 Modified control scheme

Since the underwater vehicle only had four controllable d.o.f., namely surge, sway,

heave and heading, it was necessary to take this restriction into account in the visual

servoing design. Failing to do so would lead to trajectories physically impossible to

achieve by the robot. Let νr = [u, v, w, r]T be the vector of the controllable vehicle’s

velocities, that is surge, sway, heave and yaw rate. Let Jr be the 6 × 4 matrix that

maps νr onto νs:

νs = Jr νr (6.22)

In these simulation experiments, the camera reference frame was chosen to coincide

with the vehicle’s body reference frame. In other words, the camera possessed

the dynamic characteristics of ANGUS. Therefore, there was a straight one to one

relationship between the camera velocity components and the vehicle’s ones as per

eq. (6.16). Roll and pitch rates were not controllable. To eliminate them, the

following expression of Jr was chosen:

Jr =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1




(6.23)

7Here by underactuated, it is meant that not all the d.o.f. of the robot are controllable.
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Now, the task function e, being defined as in section 6.1, is related to the camera

velocity screw by eq. (6.17). Hence, combining eq. (6.17) with eq. (6.22) yields:

ė = LJr νr = Lr νr (6.24)

¿From eq. (6.24) and (6.12), the expression of the reduced order interaction matrix

Lr can be obtained:

Lr =




−1/Z 0 x/Z 0 0 y

0 −1/Z y/Z 0 0 −x

0 0 −1/Z 0 0 0

0 0 0 0 0 βlzlx + αly

0 0 0 0 0 βlzly − αlx

0 0 0 0 0 1 − β(1 + l2z)




(6.25)

Achieving an exponential decrease of the task function e can be obtained by choos-

ing a positive scalar λ so that ė = −λ e. λ is controlling the speed of convergence.

This choice would be (and is sufficient) for a conventional positioning task. However,

in an underwater environment, an UUV is likely to be subject to external distur-

bances such as sea currents or, if tethered (ROV), subject to cable disturbances. For

example, the case where ANGUS was subject to a constant step input in sea cur-

rent velocity was studied (see 2.2.5, and 2.3 eq. (2.31)). With a mere proportional

control, the closed loop system: visual controller plus ANGUS model is of type 0.

Therefore, a steady-state error in position would be present. It is then necessary to

add some integrators within the controller to obtain a type 1 system [17], hence no

steady-state error in position.

In order to offset constant sea current disturbances, a vectorial PID control was

included, so that the vehicle’s desired speed was:

νr = −λL+
r

(
KP e + KD ė + KI

∫ t

0

e dt

)
(6.26)

where KP (6× 6), KD (6× 6), and KI (6× 6) are positive diagonal matrices. L+
r is

the pseudo-inverse of Lr. Since Lr is a rank 4 matrix, its pseudo-inverse is given by:
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L+
r = (LT

r Lr)
−1 LT

r (6.27)

Once the desired speeds are computed, a simple thruster mapping with saturation

terms is applied as shown on Fig. 6.1.

-

+

+ starboard

port

r/2

u

+

w

γv

α

Figure 6.1: Thruster mapping and saturation blocks of ANGUS 003.

Simulation results of this technique are given in the following section.

6.3 Performance evaluation of the modified 2 1/2 D

visual servoing

The previous section described the theory of the proposed visual servoing scheme.

The objective of this section is to evaluate the performance of this control scheme

under various conditions.

“Nominal” station-keeping tests were performed. A planar target was placed parallel

to the camera focal plane while ANGUS’ simulation was subject to constant sea

current disturbances.

The effect of the relative orientation between the planar target and the focal plane

on the visual servoing behaviour was studied.

Finally, the position accuracy obtainable if the feature tracking was subjected to

noise was characterised.
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6.3.1 Common setup of the simulation experiments

The vehicle was initially motionless and placed at the origin of the world reference

frame, the initial state was: η(t=0) = [0, 0, 0, 0, 0, 0]T . At time t = 0, a step input

disturbance in sea current was applied to the vehicle’s simulation. The current

was characterised by its velocity vector, expressed in the world reference frame:

Vc = [Ẋc, Ẏc, Żc]
T . The vehicle’s ability to come back to its initial position in stable

equilibrium was then studied. In these simulations, the following assumptions were

made:

• The camera was a pinhole model as described in 4.1.3. The intrinsic param-

eters used were the ones extracted from the underwater camera examined in

chapter 5 (table 5.1).

• The feature matching was perfect. Tracking was also perfect in the first set of

tests, then noise was added to the tracking process in the other tests.

• The target scene was planar and comprised five points of which no three were

collinear so that the homography matrix would not be singular. The 3-D

points were placed 3 metres away from the focal plane of the camera.

It was also assumed that the camera was moving with the dynamics of ANGUS; the

co-ordinate transformation from the camera to the vehicle sTv was thus constant

and equal to:

sTv =


 I3 03

0T
3 1


 . (6.28)

The chosen planar target was made up of five points belonging to the plane of

equation Z = 3, 3 metres away from the camera focal plane at time t = 0:
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M1 = [0.25, 0.25, 3]T

M2 = [0.25,−0.25, 3]T

M3 = [−0.25,−0.25, 3]T

M4 = [−0.25, 0.25, 3]T

M5 = [0.5, 0.1, 3]T

The plane was oriented so that its normal vector n(t = 0) = n∗ = [0, 0, 1]T , was

parallel to the Z-axis of ANGUS. Besides, in that configuration, the initial distance

of the target plane to the vehicle was d∗ = 3 m.

Throughout all the experiments the control parameters of the PID remained con-

stant:

KP = diag(6.0, 4.0, 1.2, 0.0, 0.0, 0.5)

KD = diag(6.0, 6.0, 1.2, 0.0, 0.0, 3.0)

KI = diag(0.1, 0.2, 0.02, 0.0, 0.0, 0.01),

and the sampling period Ts was set to 200 ms. This rather slow control rate (5 Hz)

was chosen to be compatible with the real-time version of the feature tracker and of

the visual servoing on the Cartesian robot. It also proved sufficient to ensure control

stability (see chapter 7).

6.3.2 Influence of sea current disturbances

Protocol

The first set of simulations performed was aimed at assessing the validity and the

performance of the modified control scheme to reject sea current disturbances, and

dynamically position ANGUS. For that purpose, 176 runs with different values of

sea current were carried out. The sea current values were obtained by combining:
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• 11 values for Ẋc: from 0 m/s to -0.9 m/s in steps of -0.1 m/s,

• 4 values for Ẏc: from 0 m/s to -0.3 m/s in steps of -0.1 m/s,

• and 4 values for Żc: from 0 m/s to -0.3 m/s in steps of -0.1 m/s.

All the above runs were successful, i.e. after a transition phase, the robot came back

to its initial and desired position without positioning error and remained stable. As

the magnitude of the sea current increased, the time response increased accordingly.

A run was not considered to fail when the thruster power available was not sufficient

to counteract the action of the sea current. That was the case for sea current

velocities so that Ẋc < −1 m/s , or Ẏc < −0.3 m/s , or Żc < −0.3 m/s. Note that

all sea current velocity components were negative, because ANGUS’ thrusters were

more efficient when operating in forward mode rather than reverse.

Results

For illustrative purposes, three typical experiments with increasing amplitudes of sea

current velocities have been selected. Note that ANGUS’ capabilities to counteract

the action of the current were not exceeded.

• Run 1: weak sea current

For the first simulation, the sea current’s velocity was set to

Vc = [−0.2,−0.1,−0.1]T m/s. The results are shown in figures 6.2, 6.3, 6.4,

6.5, 6.6, 6.7 and 6.8.

The figures are organised as follows:

– Figure 6.2 is the time history of the robot’s position error (ηp(t)−ηp(0)),

expressed in metres, with respect to its starting position at t = 0.

– Figure 6.3 shows the robot’s orientation errors in degree (ηo(t)− ηo(0)).

– Figures 6.4 and 6.5 illustrate the evolution of the task function.

– Figure 6.6 gathers the actual thruster values output of the PID controller.
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– Figure 6.7 shows the evolution of the error in pixel co-ordinates, that is

the difference between the desired horizontal (resp. vertical) co-ordinate

of image point i: u∗
i (resp. v∗

i ) and its current co-ordinate at time t: ui

(resp. vi), i ∈ [1, 5].

– Figure 6.8 represents the feature points’ trajectories in the 512 × 512

image.

• Run 2: moderate sea current

For the second run, the sea current was set to Vc = [−0.6,−0.2,−0.2]T m/s.

The results are similarly shown in figures 6.9, 6.10, 6.11, 6.12, 6.13, 6.14 and

6.15.

• Run 3: strong sea current

For the third run, the sea current was set to Vc = [−0.9,−0.3,−0.3]T m/s.

The results are shown in figures 6.16, 6.17, 6.18, 6.19, 6.20, 6.21 and 6.22.
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Figure 6.2: Run 1: weak sea current Vc = [−0.2,−0.1,−0.1]T m/s: position errors
in metres.
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Figure 6.3: Run 1: weak sea current Vc = [−0.2,−0.1,−0.1]T m/s: orientation
errors in degrees.
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Figure 6.4: Run 1: weak sea current Vc = [−0.2,−0.1,−0.1]T m/s: translational
components of the task function e.
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Figure 6.5: Run 1: weak sea current Vc = [−0.2,−0.1,−0.1]T m/s: rotational
components of the task function e.
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Figure 6.6: Run 1: weak sea current Vc = [−0.2,−0.1,−0.1]T m/s: thruster values.
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Figure 6.7: Run 1: weak sea current Vc = [−0.2,−0.1,−0.1]T m/s: errors in pixel
co-ordinates.
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Figure 6.8: Run 1: weak sea current Vc = [−0.2,−0.1,−0.1]T m/s: trajectory of
feature points in the image.
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Figure 6.9: Run 2: moderate sea current Vc = [−0.6,−0.2,−0.2]T m/s: position
errors in metres.
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Figure 6.10: Run 2: moderate sea current Vc = [−0.6,−0.2,−0.2]T m/s: orientation
errors in degrees.
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Figure 6.11: Run 2: moderate sea current Vc = [−0.6,−0.2,−0.2]T m/s: transla-
tional components of the task function e.
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Figure 6.12: Run 2: moderate sea current Vc = [−0.6,−0.2,−0.2]T m/s: orienta-
tional components of the task function e.
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Figure 6.13: Run 2: moderate sea current Vc = [−0.6,−0.2,−0.2]T m/s: thruster
values.
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Figure 6.14: Run 2: moderate sea current Vc = [−0.6,−0.2,−0.2]T m/s: errors in
pixel co-ordinates.
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Figure 6.15: Run 2: moderate sea current Vc = [−0.6,−0.2,−0.2]T m/s: trajectory
of feature points in the image.
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Figure 6.16: Run 3: strong sea current Vc = [−0.9,−0.3,−0.3]T m/s: position
errors in metres.
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Figure 6.17: Run 3: strong sea current Vc = [−0.9,−0.3,−0.3]T m/s: orientation
errors in degrees.
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Figure 6.18: Run 3: strong sea current Vc = [−0.9,−0.3,−0.3]T m/s: translational
components of the task function e.
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Figure 6.19: Run 3: strong sea current Vc = [−0.9,−0.3,−0.3]T m/s: rotational
components of the task function e.
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Figure 6.20: Run 3: strong sea current Vc = [−0.9,−0.3,−0.3]T m/s: thruster
values.
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Figure 6.21: Run 3: strong sea current Vc = [−0.9,−0.3,−0.3]T m/s: errors in pixel
co-ordinates.
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Figure 6.22: Run 3: strong sea current Vc = [−0.9,−0.3,−0.3]T m/s: trajectory of
feature points in the image
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Discussion

In all three cases, after the initial displacement induced by the sea current’s distur-

bance, the vehicle repositioned itself to within a close vicinity of the starting point.

The dynamic positioning capability was therefore demonstrated in the presence of

constant sea currents.

As expected, as the sea current’s amplitude increased, the vehicle’s response became

slower. Indeed, the settling time varied from 50 s in the first illustrative run (weak

current) up to 150 s in the third run (strong sea current). In fact, the greater the

disturbance was, the more energy8 the vehicle had to provide to regain its equilibrium

point, and since its thruster power was limited, it took longer to come back to the

initial position.9

However, close examination of the positioning errors, run 2 for instance (see figures

6.9 and 6.10), shows that they did not exactly reach zero. There are small static

errors along and about the X and Y axes. In the case of run 2, the positioning errors

are roughly of 0.8 mm along X and -2.5 mm along Y, while the angular errors are

around -0.05˚ in roll and -0.02˚ in pitch. In other words, the vehicle reached a local

minimum. This is due to two facts. Firstly, the roll and pitch degrees-of-freedom

of ANGUS are not controllable. Secondly, angular motions and translation motions

of the camera are coupled at the image level. A rotation of the camera about its

X-axis (roll angle) induces, in the image plane, a translation of the imaged controlled

target’s point along the horizontal axis.10 Conversely, a rotation of the camera about

its Y-axis (pitch angle) produces a translation of the controlled target’s point along

the vertical axis of the image. Therefore, it is possible for the vehicle to reach an

equilibrium point where the first two elements of the task function e (corresponding

to the control of the X and Y position of the vehicle) reach a zero value, while the

rotational components corresponding to roll and pitch angles (i.e. e4 and e5) are

different from zero.11 That was exactly the phenomenon observed in figures 6.11

8Or more exactly work in the physical sense.
9Since it is well-known that work = power × time.

10The controlled point was previously defined in section 6.1.2.
11Recall that e was defined in section 6.1 as a 6 × 1 vector by the equation:

e = [m̃e − m̃∗
e,Ωl]T . (6.29)
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and 6.12.

Finally, noticeable oscillations in the port and starboard thrusters’ curves of all runs

may suggest some instability. In fact, the coefficients of the PID controller for the

surge d.o.f. were deliberately set high. The main reasons behind this design choice

were:

1. To minimise the deviation from the starting position of ANGUS to the furthest

point of its trajectory,

2. To obtain better time response in sea current disturbance rejection.

As an example, reconsider run 1. With PID controller’s gains set at lower values:

KP = diag(0.1, 4.0, 1.2, 0.0, 0.0, 0.5)

KD = diag(0.0, 6.0, 1.2, 0.0, 0.0, 3.0)

KI = diag(0.001, 0.2, 0.02, 0.0, 0.0, 0.01),

(this set of coefficients will be referred to as the “slow PID setting”), the port and

starboard thruster fast oscillations disappear. The port and starboard thrusters

controlled both surge and heading by means of the thruster mapping illustrated in

figure 6.1. It is then legitimate to wonder whether the oscillations originated from

the surge control only, and not from the heading control. Since the heading plots of

runs 1, 2 and 3 did not show any oscillations (see figure 6.3), it was clear that the

oscillations originated from the surge control only. To illustrate the removal of the

thrusters’ ringing phenomenon, compare the evolution through time of the forward

thrust νr1 = (port+stb)/2, when the sea current was Vc = [−0.2,−0.1,−0.1]T m/s,

for both the “slow PID” set of coefficients, and the “fast PID” set of coefficients.

This is illustrated by figure 6.23.

Note as well that a direct consequence of “detuning” the PID is to slow down the

time response of the closed-loop system. Indeed, figure 6.24 clearly shows that the

settling time of X increased from 75 s for the “fast PID setting” up to 160 s. Besides,
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Figure 6.23: Comparison of forward thrust νr1 = (port+ stb)/2 through time when
ANGUS is subject to a constant sea current Vc = [−0.2,−0.1,−0.1]T m/s with a
“fast” (above), and “slow” (below) set of surge PID coefficients. Note that the
“slow” PID did not show any ringing phenomenon on the thrusters’ signal.
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Figure 6.24: Comparison of ANGUS’ X position through time when ANGUS is
subject to a constant sea current Vc = [−0.2,−0.1,−0.1]T m/s with a “fast” (above),
and “slow” (below) set of surge PID coefficients.

since the deviation of the camera from its starting point was much greater with the

slow PID controller, the tracked feature points were more likely to move out of the

field of view of the camera. This was actually the case in that particular example

(see figure 6.25) where the two upper right features went out of the field of view.

In practice, it would have caused the servoing scheme to fail, since there were not

enough features from which the homography could be computed. In this simulation

however, the image plane was infinite in order to remove that constraint from the

tests.
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Figure 6.25: Feature points’ trajectory with the “slow PID setting”. The two upper
right features went out of the field of view, and would have caused a servoing failure
if no special strategy, such as reacquiring features if they came close to the image
borders, was adopted.
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The investigation of the effect that actuation noise on the thrusters’ signals would

have had on the visual servoing performance could have been envisioned. How-

ever, this study was not necessary because realistic actuation noise would have been

outwith the robot’s bandwidth, and the dynamics of ANGUS’ thrusters were not

modelled in the simulation that was used. Indeed, on the actual ROV, the thrusters

were used exclusively in their linear characteristics by means of a limiter [3], and

since the thrusters’ dynamics were much faster than the ROV’s, it was a good ap-

proximation to consider an affine model for the thrusters.

Conclusions

This experiment studied the effects of constant sea current disturbances on the

performance of the proposed visual servoing scheme. It was shown that the station-

keeping objective was met for a variety of sea current’s amplitudes with a given

control parameter set (the “fast PID” setting).

It was also demonstrated that the coupling between the controlled point and the roll

and pitch angles of the camera explained the small steady-state errors in horizontal

positioning.

Finally, the thrusters’ ringing phenomenon was explained by the tight PID setting.

This setting was necessary to obtain fast time responses to sea current disturbances.

It was also required to avoid the tracked features to move out of the camera’s field of

view and cause a visual servoing failure. It is important to note that the tight PID

setting was a design choice. Depending on the application’s requirements and on the

environmental conditions, the PID controller’s setting can be adapted. In practice,

if a slow PID controller is chosen, special strategies would need to be implemented to

deal with lost features. In particular, extracting new features to keep a more or less

constant number of feature points in the camera’s field of view would be an option.

If the lost feature point was the controlled point, this would need to be detected,

and a new controlled point would need to be chosen. The obvious drawback of this

method would be to introduce a positioning bias along the horizontal axes since the

reference point would have been moved. It was however the strategy chosen for the

real-time visual servoing implementation of chapter 7.
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6.3.3 Influence of target orientation

In the previous simulations, it was assumed that the planar target was parallel to the

focal plane of the camera. In other words, since the camera was pointing downwards,

it was supposed that the target points were lying on a horizontal seabed. An issue

that can be raised is whether the proposed visual control scheme would perform as

well if the target points were lying on a sloping seabed. Intuitively, the performance

would be expected to degrade as the slope increased until a breaking point was

reached. Indeed, as the angle between the supporting plane of the tracked points

and the focal plane augments, the projected points in the image move closer to

one another. At the limit, i.e. when the planes cross at a right angle, the target’s

points project onto a single line in the image plane. Under those circumstances, the

points’ configuration is degenerate (see e.g. [32], pp. 74–75 for a proof). Whatever

the camera’s motion, there exists a family of homography transformations mapping

image points from one image to the other. A direct consequence of this fact is

that the more the image points approach the degenerate configuration (i.e. when

the angle between the supporting plane of the focal plane becomes closer to 90˚),

the more ill-conditioned the homography estimation problem is. Therefore, since

the pose estimation is based on the homography, it should degrade accordingly. In

particular, the estimates of the ratio Z/Z∗, the normal n to the target plane, and

Ω l will be affected by the wrong computation of the homography.

Experimental illustration of the target’s orientation influence

In the following paragraphs, the effect of the target’s orientation on the station-

keeping performance of the ROV simulation is examined. Consider the five 3-D

points Mi mentioned earlier (section 6.3.1) and put them in the plane of equation

Z = 0. Note by R a rotation matrix of angle θ, and rotation axis u. To vary the

angle θ between the supporting plane of the points Mi and the focal plane, it suffices

to rotate the Mi with R, and translate them along the Z-axis by 3 metres (to be

consistent with the simulation setup of section 6.3.1)12. The transformed 3-D points

Ni are given by:

12Note that all points’ co-ordinates are expressed in the camera reference frame.
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Ni = RMi +




0

0

3


 (6.30)

In these simulations, the 3-D points Mi were rotated around the camera’s Y-axis

by the angles: 30˚, 45˚, 60˚, 75˚ and 80˚. The sea current was set to Vc =

[−0.2,−0.1,−0.1]T m/s. Figure 6.26 illustrates the effect, in the image plane, of

the variation of the target’s orientation on the projected 3-D points. As the angle

θ increased, the pentagon formed by the five projected points tended to transform

into a line, a degenerate configuration.

Figure 6.27 collects the positioning errors along the X, Y and Z axes. Several remarks

can be made. The settling time augmented as the target inclination increased. This

was very clear on the positioning error in Z, which was the most affected by the

target’s inclination. For instance, when θ = 75˚, the positioning error in Z exhibited

a small but noticeable steady-state error (roughly 2 mm). This angle was so chosen

because it was the limit angle of convergence. Indeed, for angle’s values greater than

75˚, the position in X, Y, Z all exhibited steady-state errors. An illustration of the

loss of convergence to within a few millimetres, can be observed in figure 6.27 (e),

when θ = 80˚. This figure shows steady-states errors of 6.5 cm in X, 4.5 cm in Y,

and up to 40 cm in Z! For angles greater than 80˚, the system became unstable.

Similar remarks can be made on the orientation errors shown in figure 6.28. The

time response of the robot increased as the target orientation augmented. Noticeable

steady-state errors appeared when the target’s orientation reached 75˚ and the

visual control stopped converging, to within a few millimetres, at angles greater

than 75˚. Above 80˚ the system became unstable.

The heave d.o.f. was the most affected by the target’s orientation. Indeed, the ratio

between the desired value along the Z axis, Z∗, and the actual value Z is given by

the determinant of the estimated homography matrix. The estimation of this value

was an ill-posed problem when the target’s orientation approaches 90˚.

Despite the undesirable behaviour of the visual control scheme when the target’s

orientation is important (greater than 75˚), it is necessary to point out that such
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(a) Target orientation: 30˚ (b) Target orientation: 45˚
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(c) Target orientation: 60˚ (d) Target orientation: 75˚
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(e) Target orientation: 80˚

Figure 6.26: Snapshots of the pixel trajectory with a varying target orientation.
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Figure 6.27: Influence of the target orientation on robot’s positioning errors. From
(a) to (d), the time response of the robot increases. Figure (d) exhibits more
noticeable steady-state errors. Finally, plot (e) shows the loss of convergence of
the visual control.
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slopes are seldom met on natural seabeds. So, it is a limitation of the algorithm,

but without real consequences on its exploitation at sea.

Conclusions

The proposed visual scheme proved to be robust with a large range of target plane’s

slant. Problems do occur for slopes greater than 75˚. However, such slopes are

unlikely to be encountered underwater. A typical slope value of an underwater

mountain is about 30˚ (see e.g. Mount Therese, off South East Ireland).

6.3.4 Influence of noise from the feature tracker

This set of simulations aimed at assessing the robustness of the algorithm with

respect to noise from the feature tracker. White Gaussian noise was added to corrupt

the 3-D position of the five target points. The procedure was the following. At each

iteration k of the control loop, each 3-D point Mi, i ∈ [1, 5] was corrupted with noise

of zero mean and standard deviation in metre, σm. Let the realisation of this noise

be n(k). Another random variable following a zero mean Gaussian distribution of

standard deviation 2π: θ(k) was also defined. The noisy 3-D points (denoted by a

bar) were then chosen as:

∀ i ∈ [1, 5] :




X̄i(k) = Xi(k) + n(k) cos (θ(k))

Ȳi(k) = Yi(k) + n(k) sin (θ(k))

Z̄i(k) = Zi(k) + n(k).

(6.31)

The noise in location of the target points was converted to its corresponding noise

in the image using the simple formula:

σpix = f
σm

d∗ =
800

3
σm

where the focal length of the camera was assumed to be f = 800 pix/m (see table

5.1).
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(e) Target orientation: 80˚

Figure 6.28: Influence of the target orientation on robot’s orientation errors. From
(a) to (d), the time response of the robot increases. Figure (d) exhibits more
noticeable steady-state errors. Finally, plot (e) shows the loss of convergence of
the visual control.
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The simulations were run for the case of a moderate strength sea current of velocity

Vc = [−0.6,−0.2,−0.2]T m/s. For each noise level σpix, an experiment would run

for 5,000 iterations. The mean deviation of the robot’s position with respect to its

desired hover position was computed from iteration 500 until the end. This ensured

that the robot would have stabilised in the absence of noise. Each measurement

was therefore computed over a real-world time of 15 minutes13. The noise level was

gradually increased from σpix = 0 to a maximum of σpix = 8 pixels. The robot was

able to hover around the desired position within a 50 cm radius with a noise level

as high as 5 pixels (see figures 6.29, 6.30, and 6.31 for the errors on the X, Y and Z

axes respectively). Even better results were obtained with respect to the heading of

the UUV. Indeed, the heading remained within ±1˚ for the same noise level. The

heading error is shown on figure 6.32.

The results lead to the conclusion that the estimation of the rotation from the

homography is less affected by noise than the estimation in translation. They also

show that the robot did not drift, therefore satisfying, to within a given accuracy,

the requirements of a station-keeping system.

13With a sampling period of Ts = 0.2 s, 4,500 iterations represented 900 seconds, or 15 minutes.
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Figure 6.29: Influence of tracking noise: mean hovering error for the X-axis, and
1-σ bound.
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Figure 6.30: Influence of tracking noise: mean hovering error for the Y-axis, and
1-σ bound.
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Figure 6.31: Influence of tracking noise: mean hovering error for the Z-axis, and 1-σ
bound.
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Figure 6.32: Influence of tracking noise: mean hovering error for heading, and 1-σ
bound.
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6.4 Conclusions

This chapter tackled visual station-keeping of a 6 degrees-of-freedom underwater

vehicle.

Originally based on the 2 1/2 D technique, the proposed visual servoing algorithm

took into account the underactuation of a typical underwater vehicle. The method

employed to consider the uncontrollable degrees-of-freedom of the UUV can be easily

adapted to other types of robots.

The simulation results demonstrated that:

• The proposed approach was robust to noise from the feature tracker.

• The control was robust to various sea disturbances.

• The proposed scheme also worked on steep seabed slopes.

For the homography estimation, the linear algorithm described in chapter 4 was

used. As with any linear estimation algorithm, it is sensitive to noise. Although it

can cope quite well with white noise, outliers in the feature matching would produce

biased results. In this case, a statistical estimator such as RANSAC or LMedS [54]

could be used to eliminate outliers. Alternatively, removing outliers in the tracking

part of the visual servoing process would probably lead to similar results.

The main concern was to prove the feasibility of visual servoing underwater vehicles.

For that reason, a straightforward PID control was applied, rather than a more

advanced controller. A better time response would be expected if a more appropriate

control algorithm were to be used.

The use of the ANGUS 003 dynamic model gave some good clues on how an under-

water vehicle would behave. However, although the dynamic model was complex:

nonlinearities, cross-coupling, and its hydrodynamic parameters were experimen-

tally evaluated, it was still an approximation of the reality. Consequently, further

work would involve the validation of the approach on a real underwater vehicle.

The next chapter will present a first step towards an experimental validation of the

proposed approach.
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Chapter 7

A 2-D visual servoing technique for

underwater vehicle station keeping

The main objective of this chapter1 was to demonstrate the feasibility of visual ser-

voing for underwater vehicles in practice. More specifically, the aim was to demon-

strate that the feature tracker evaluated in chapter 5 could be used for the visual

station keeping of a typical underwater vehicle. For that purpose, the behaviour of

a typical UUV based on a simulation of the ROV ANGUS on a Cartesian robot was

emulated. This simulation was within the limits exposed in chapter 3. However,

the simulation had only two controllable horizontal d.o.f., therefore, only a reduced

order model of ANGUS could be used to validate the proposed approach. The visual

servoing task of chapter 6 was therefore re-designed to better suit the problem at

hand.

In addition, it was possible to evaluate the positioning accuracy of visual servoing in

a water tank with the same experimental setup of chapter 5. Since, as was discussed

in chapter 1, positioning sensors for underwater vehicles are not accurate enough

for the station-keeping process evaluation, the use of the Cartesian robot permitted

this quantitative assessment.

This chapter is organised as follows. First, a reduced order dynamic model of

ANGUS is presented. This model, including only the surge and sway degrees-of-

freedom, was derived from the higher order model presented in chapter 2. Then, a

2-D visual servoing task is proposed to solve the dynamic positioning problem. The

chapter closes by discussing the results of real-time experiments in the water tank.

1The work presented in this chapter is a revised version of the paper [47].
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7.1 A reduced order dynamic model of ANGUS

To experimentally demonstrate the station-keeping capabilities on the Cartesian

robot, its two d.o.f., which emulated the surge and sway axes of ANGUS, must be

constrained.

Let the body-fixed vehicle’s velocity vector be defined as ν = [u, v]T , and the Earth-

fixed velocity vector as η̇ = [ẋ, ẏ]T . It was assumed that the vehicle’s heading angle

ψ remained constant and close to zero (for example using an independent control

loop ) [46]. In addition, since ANGUS was designed to be stable in roll (θ) and

pitch (φ), these angles also remained very small while hovering. As a result, the

2 × 2 Jacobian matrix relating the body-fixed velocity vector ν to the Earth-fixed

velocity vector η̇ could be approximated by the 2 × 2 identity matrix (first-order

Taylor expansion). In the following, the distinction between Earth-fixed position

and velocity, and body-fixed ones will no longer be made. The motion equations for

the ROV can thus be written as:

M11u̇ = B11(u − uc)(|u − uc| + Du) + a1β + a2|β|
M22v̇ = B22(v − vc)(|v − vc| + Dv) + a3γ

where Mii (i = 1, 2) are the mass matrix coefficients, the Bii (i = 1, 2), Du and Dv

are the hydrodynamic drag coefficients, uc and vc are the velocity of the sea current

expressed in the body-fixed frame. The normalised control input of the two back

thrusters is β ∈ [−1, 1], while γ ∈ [−1, 1] is the normalised control input of the sway

thrusters, and ai (i = 1, 2, 3) are the thrusters’ efficiency coefficients. Note that the

back thrusters are less efficient when operated in reverse. The numerical values of

the parameters are gathered in table 7.1.

To assess the dynamic performances of ANGUS, a “ground truth” PID controller was

designed assuming perfect position and velocity measurements at the same sampling

rate as the visual servoing experiments, i.e. Ts = 200 ms. Also included was the

time delay of one sampling period caused by the visual processing. The PID control

law was:
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Figure 7.1: Positioning error of the 2 d.o.f. model of ANGUS subject to a sea
current disturbance (uc, vc) = (−0.2,−0.5) m/s with a PID controller.
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where Kp = diag(1.0, 4.0), Kd = diag(0.4, 0.4), and Ki = diag(0.01, 0.02).

Since surge and sway were decoupled, the parameters of each axis were tuned

independently. The design goal was to obtain a time response similar to a sec-

ond order critically damped system. In figure 7.1, note the slow dynamic re-

sponse of the ROV subject to a sea current velocity step input disturbance of

(uc, vc) = (−0.2,−0.5) m/s. The settling times, corresponding to a positioning er-

ror of less than one centimeter, of the surge and sway axis are: tsurge = 80 s and

tsway = 95 s. Figure 7.2 shows the corresponding thrusters’ values. These numbers

will serve as a basis of comparison for the visual servoing experiments.

In the following section, an image-based visual servoing approach to solve the station

keeping problem is presented. It is a simple 2-D visual servoing scheme [20] using the

centre of gravity of the set of extracted features in the images as the visual feature.

Since the camera was rigidly mounted onto the robot, the frame transformation
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Figure 7.2: Thrusters’ values of the 2 d.o.f. model of ANGUS subject to a sea
current disturbance (uc, vc) = (−0.2,−0.5) m/s with a PID controller.

M11 M22 B11 B22 Du Dv a1 a2 a3

1800 2200 −350 −680 0.6 0.6 500 200 250

Table 7.1: Dynamic model parameters values

between the robot frame and the camera frame was therefore constant. To simplify

the expression of the following equations, the camera reference frame and the robot

frame were assumed to coincide. In other words, controlling the robot was equivalent

to controlling the camera whose motion dynamics were close to those of a typical

underwater vehicle.2

7.2 The 2-D visual servoing task

In section 6.1.2, it was seen that a visual servoing positioning task could be expressed

as the regulation to zero of a task function e(s, t), where s is a visual feature, and

t is the time [72]. If Tc is the camera velocity screw (6-vector), and L(s, t) is an

2Within the limits exposed in chapter 3.

147



appropriate matrix, called the interaction matrix, then the camera velocity screw is

related to the task function e by:

ė = LTc (7.2)

In the case of 2-D visual servoing, if si = [xi, yi]
T is a feature point expressed in the

image (Zi being the depth of the corresponding 3-D point projected on the image

point si), L is made up by stacking the following lines (two lines for each feature

point):


−1/Zi 0 xi/Zi xiyi −(1 + x2

i ) yi

0 −1/Zi yi/Zi 1 + y2
i −xiyi −xi


 (7.3)

An exponential decrease of the task function is obtained by imposing ė = −λ e

(where λ is a positive scalar) so that the corresponding control law would be

Tc = −λL+e, (7.4)

if the interaction matrix L is not singular. For instance, if four 3-D points forming a

square are considered, the interaction matrix made from the projections of these four

points is non-singular (rank 6). The interested reader is referred to F. Chaumette’s

PhD thesis [5] for an expression of L in that case.

As the goal is to constrain the two translational d.o.f. of the camera parallel to the

image plane, the information provided by a single feature point is sufficient. In any

case, for robustness purposes, the centre of gravity [xg, yg]
T of the set of extracted

features was chosen. In this case, the interaction matrix had the simple form:

L =


−1/Zg 0

0 −1/Zg


 (7.5)

If s∗g = [x∗
g, y

∗
g ]

T is the position of the centre of gravity of the features set in the

initial (desired) position, and sg = [xg, yg]
T in the current one, e can be defined as

e = sg − s∗g. Therefore, when e is zero, the camera is in its desired position. A

proportional control law which regulates the camera at its desired position reads as
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eq. (7.4). To be able to reject constant sea current disturbances, since the closed

loop system is of type 0, an integration term in the control law was needed. It was

decided to implement a vectorial PID controller to obtain a better stability than a

simple PI controller. The proposed control law was then:


β

γ


 =


−Zg 0

0 −Zg


 (Kp e + Kd ė + Ki

∫ t

0

e dt) (7.6)

where Kp, Kd, and Ki are 2× 2 diagonal matrices with the proportional, derivative

and integration control gains of the PID, and Zg is the depth of the centre of gravity

in the current image, estimated from:

Zg ≈ Z∗
g det(H). (7.7)

The experimental results obtained with this proposed visual servoing algorithm are

now described.

7.3 Experimental results

7.3.1 Experimental protocol

Each station keeping experiments followed the same procedure. The robot was

initially immobile, and the desired set of features was extracted from the first image

taken from the initial position. A constant sea current disturbance (step input) of

velocity (uc, vc) was applied. As the robot started drifting away from its desired

position, the set of features was tracked in the current image. The depth Zg was

then estimated from the homography between the initial set of features and the

current set of features (eq. 7.7 as described in section 4.3.3. Similarly, the task

function e was calculated using the centre of gravity of the current feature set. If

a feature was lost during tracking, its corresponding feature in the initial set was

removed. As long as at least four features remained tracked, the servoing could

continue (four points, of which no three are collinear, are needed for the estimation

of an homography).
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For the whole set of experiments, the control gains of the PID remained constant

with the following values: Kp = diag(1.0, 2.0), Kd = diag(2.0, 2.0), and Ki =

diag(0.01, 0.01). The estimated distance to the target Z∗
g was roughly measured and

set to 1.1 m.

Experiments with different sea current amplitudes are reported in this chapter. For

each experiment, the position and velocity of the Cartesian robot, the values of

the task function e, the error in features’ co-ordinates, the thrusters values applied

to the ANGUS model, and the features’ trajectory in the image were plotted. In

addition, a set of grabbed and processed images associated to each experiment were

included, such as in figure 7.9 for instance.

7.3.2 Nominal experiments

In this section, the results of four successful station-keeping experiments are pre-

sented and analysed.

In the first experiment, the sea current disturbance was set to Vc = [uc, vc]
T =

[−0.1,−0.1]T m/s. The positioning errors of the Cartesian robot along both axes

are shown in figure 7.3. As expected, after an initial deviation induced by the sea

current’s action on ANGUS’ simulation model, the servoed system came back within

a close vicinity of its initial position. Indeed, in this experiment, the steady-state

errors were of 5 mm for X and 2.5 mm for Y. From a theoretical point of view, it was

not a steady-state error since there was a remaining minute drift on the positions’

signals. However, the residual speed measured was stable and null within the robot’s

positioning accuracy (see figure 7.4). Indeed, for both axis, the mean speed value for

the last 100 samples was of the order of one tenth of a millimeter per second with a

standard deviation smaller than 0.4 mm/s. Since the Cartesian robot’s positioning

accuracy was of 0.8 mm, the measured speed values were too minute to be measured,

and it was more likely that noise on the encoders’ was measured instead. Therefore

the visual servoing scheme was stable and exhibited steady-state positioning errors

from a practical point of view.

Now, since the PID controller included an integral action, the closed-loop system
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would have been expected to reject perfectly constant disturbances. The positioning

steady-state errors contradicted this claim. It is, however, easily explained by figure

7.8, where the feature points’ tracks in the image are collected. At the end of the

experiment, some tracked features’ locations were far from their desired location

(see for instance the fourth central feature, counting from the bottom of the image).

This phenomenon is also noticeable in figure 7.6 where steady-state errors of up to

20 pixels on the horizontal axis can be seen. The steady-state errors in the feature

points’ locations propagated in the task function (see figure 7.5) since it used the

centre of gravity of the feature points and finally these errors propagated to the

robot’s positions.

Although some of the features were badly tracked (up to 20 pixels error on one of

them!), the robot’s positioning errors remained within a few millimetres. This was

a direct consequence of designing the task function using the centre of gravity of

the tracked features. It amounted to average the measurements of all the features’

displacements, therefore reducing the impact of outliers, and thus the bias on the

estimated position of the centre of gravity.

The errors in tracking the feature points’ were the consequence of the drifts of

the integration. Drift of the feature tracking algorithm has been experimentally

evaluated in chapter 5.

For the sake of clarity, selected snapshots of the grabbed images on which the feature

tracking was performed are gathered in figure 7.9. The visual target was, as claimed,

unstructured (or natural). In this particular experiment it was mainly gravel lying

on the concrete bottom of the water tank. Incidentally, note that the two upper

leftmost features were lost during the experiment since they went out of the field of

view. This did not affect the station-keeping’s objective.

The normalised demanded thruster signals were plotted in figure 7.7. Noise in the

estimation of the task function was propagated onto the thruster signals. It did

not, however, affect adversely the outcome of the experiment. Besides, the robotic

system comprised of the Cartesian robot combined with ANGUS’ simulation acted

as a low pass filter, hence lessening the noise effect.
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Figure 7.3: Experimental results with sea current Vc = [−0.1,−0.1]T : Cartesian
robot’s position.
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Figure 7.4: Experimental results with sea current Vc = [−0.1,−0.1]T : Cartesian
robot’s velocities.
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Figure 7.5: Experimental results with sea current Vc = [−0.1,−0.1]T : task function.
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Figure 7.6: Experimental results with sea current Vc = [−0.1,−0.1]T : error on
features’ co-ordinates.
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Figure 7.7: Experimental results with sea current Vc = [−0.1,−0.1]T : surge and
sway thrusters.
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Figure 7.8: Experimental results with sea current Vc = [−0.1,−0.1]T : trajectory of
the features in the image
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(a) Image 0 (b) Image 6

(c) Image 12 (d) Image 32

(e) Image 52 (f) Image 72

Figure 7.9: Experimental results with sea current Vc = [−0.1,−0.1]T : selected
snapshots.
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In the second experiment, the amplitude of the sea current was increased and set

to Vc = [uc, vc]
T = [−0.3,−0.1]T m/s. As in the previous experiment, the same

behaviour with steady-state positioning errors of 1.0 cm in X and 0.4 cm in Y, with

a stable null velocity is apparent (see figures 7.10 and 7.11). Compared to the

previous experiment, the positioning steady-state errors increased. Indeed, there

were more tracking errors between the desired and the final features’ locations (see

figure 7.13). This is most probably due to the fact that the deviation of the robot’s

position along the X axis was more important than in the previous experiment.

It is clearer if the errors in features’ co-ordinates of figure 7.6 and figure 7.13 are

compared: the top tracks of the latter (figure 7.13) are more spread out once the

robot has stabilised itself than in the former experiment (figure 7.6).
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Figure 7.10: Experimental results with sea current Vc = [−0.3,−0.1]T : Cartesian
robot’s position.
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Figure 7.11: Experimental results with sea current Vc = [−0.3,−0.1]T : Cartesian
robot’s velocities.
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Figure 7.12: Experimental results with sea current Vc = [−0.3,−0.1]T : task func-
tion.
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Figure 7.13: Experimental results with sea current Vc = [−0.3,−0.1]T : error on
features’ co-ordinates.
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Figure 7.14: Experimental results with sea current Vc = [−0.3,−0.1]T : surge and
sway thrusters.
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Figure 7.15: Experimental results with sea current Vc = [−0.3,−0.1]T : trajectory
of the features in the image.
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(a) Image 0 (b) Image 10

(c) Image 30 (d) Image 60

(e) Image 100 (f) Image 145

Figure 7.16: Experimental results with sea current Vc = [−0.3,−0.1]T : selected
snaphots.
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The third experiment increased the action of the current along the sway d.o.f. of the

robot. Since the sway thruster provided less power than both the surge thrusters

and as the transverse section of ANGUS was greater than the front section, the sea

current amplitudes ANGUS could counteract in this direction were smaller. The

maximum sea current’s amplitude was indeed 0.2 m/s in sway compared to 0.5 m/s

in surge (see next experiment). Above 0.2 m/s, the vision-controlled system was

unable to meet the station-keeping objective. The general comments made in the

previous experiments are still applicable. In this instance, note the degradation of

the Y positioning accuracy where the steady-state error reached almost 5 cm (figure

7.17). This degradation was mostly due, as in the previous experiments, to the

integration of estimation errors of features’ interframe displacements. Figures 7.20

and 7.22 indeed show that one of the feature exhibited at least a 50 pixels error

in horizontal co-ordinate, and globally the final values of the features’ positioning

errors were noticeably spread about zero.
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Figure 7.17: Experimental results with sea current Vc = [−0.1,−0.2]T : Cartesian
robot’s position.
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Figure 7.18: Experimental results with sea current Vc = [−0.1,−0.2]T : Cartesian
robot’s velocities.
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Figure 7.19: Experimental results with sea current Vc = [−0.1,−0.2]T : task func-
tion.
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Figure 7.20: Experimental results with sea current Vc = [−0.1,−0.2]T : error on
features’ co-ordinates.
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Figure 7.21: Experimental results with sea current Vc = [−0.1,−0.1]T : surge and
sway thrusters.
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Figure 7.22: Experimental results with sea current Vc = [−0.1,−0.2]T : trajectory
of the features in the image.
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(a) Image 0 (b) Image 5

(c) Image 12 (d) Image 33

(e) Image 44 (f) Image 65

Figure 7.23: Experimental results with sea current Vc = [−0.1,−0.2]T : selected
snapshots.
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The last experiment introduced the strongest sea current that the closed-loop sys-

tem could counteract along the surge axis. For this experiment, the sea current

was therefore set to Vc = [−0.5,−0.1]T m/s. The station-keeping was, yet again,

successful with steady-state positioning errors of 3.5 cm in X and 2.2 cm in Y (see

figure 7.24). The behaviour was similar than in the previous experiments. Figures

7.24 to 7.30 present the results of this experiment.
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Figure 7.24: Experimental results with sea current Vc = [−0.5,−0.1]T : Cartesian
robot’s position.
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Figure 7.25: Experimental results with sea current Vc = [−0.5,−0.1]T : Cartesian
robot’s velocities.
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Figure 7.26: Experimental results with sea current Vc = [−0.5,−0.1]T : task func-
tion.
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Figure 7.27: Experimental results with sea current Vc = [−0.5,−0.1]T : error on
features’ co-ordinates.
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Figure 7.28: Experimental results with sea current Vc = [−0.5,−0.1]T : surge and
sway thrusters.
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Figure 7.29: Experimental results with sea current Vc = [−0.5,−0.1]T : trajectory
of the features in the image.
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(a) Image 0 (b) Image 10

(c) Image 20 (d) Image 50

(e) Image 100 (f) Image 140

Figure 7.30: Experimental results with sea current Vc = [−0.5,−0.1]T : selected
snapshots.
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To conclude on this series of “nominal” i.e. successful visual station-keeping exper-

iments, it can be stated that the proposed scheme proved robust to a variety of sea

current amplitudes, as high as 0.5 m/s in surge and 0.2 m/s in sway. Drift in the

feature tracking algorithm explained the observed steady-state positioning errors

which reached a maximum value of 5 cm.

Most experiments that ran with the aforementioned range of sea current amplitudes

were successful. However, the control scheme occasionally failed when too many

features were lost. An example of such a failure will now be given and analysed.

7.3.3 Abnormal behaviour

Obvious failures of the visual servoing scheme occurred when all features3 went out

of the field of view. Features moved out of the field of view in two major cases. In

the first one, the sea current was so strong that the robot could not cancel its action

and eventually no common region between the scene in the first image and the scene

in the current image remained. In the second case, the sea current’s action could be

canceled but the features were extracted mostly from either side of the first image

and moved out of the field of view before the robot could come back towards its

initial position. The experiment presented here fitted in the second case.

The sea current was Vc = [0.0,−0.2]T m/s, i.e. no disturbance was applied along

the surge axis. The main consequence of this choice is that the distance required for

the features to leave the image was considerably small since the motion remained

along the sway d.o.f. This statement is illustrated more clearly by the snapshots of

the underwater scene of figure 7.37.

This experiment’s results were, until time instant t = 146.8 seconds, similar to the

so-called “nominal” experiments of the previous section. At that time instant, one of

the last four remaining features was lost and the homography could not be computed

anymore, and the servoing was stopped.

Although similar, a few other differences were observed, especially on the thrusters’

plot of figure 7.35 where the sway thruster signal exhibited several discontinuities

3Or all but three at least to be more precise.
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(see the peaks). The most probable reason is that this was caused by the succes-

sive loss of features during the servoing process combined with increasing errors on

the estimation of the remaining features’ locations. This can be easily explained.

Assume that there were only four features tracked during the experiment. To build

the task function, the co-ordinates of the centre of gravity of the four features in

the first image of co-ordinates (x∗
g, y

∗
g) were computed, and were compared with

the current co-ordinates (xg, yg). If one of the features was grossly misplaced, the

current location of the centre of gravity would be biased toward that feature point

compared to the “true” location of the centre of gravity if the features were perfectly

tracked. If that happened, a discontinuity in the task function would occur. Such a

discontinuity explained the “peaks” of the sway thruster signal (figure 7.35) as well

as the sudden changes of direction of the robot’s velocity along the sway axis (figure

7.32).

In figure 7.34, at least four important “jumps” in the first twenty seconds are no-

ticeable on the remaining tracked features’ displacements. This can be explained

simply. Indeed, it was seen in chapter 5 that the feature tracker was performing

an approximate local correlation within a search window to track features in a new

image. Since the features were extracted on pieces of gravel, it was very likely that

one piece of gravel and another close one presented almost the same characteristics

at one time instant. If, in addition, the latter also had a higher correlation score

due to slight lighting variations, it would then be chosen (wrongly) as the tracked

feature to the detriment of the true feature.
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Figure 7.31: Experimental results with sea current Vc = [0,−0.2]T : Cartesian
robot’s position.
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Figure 7.32: Experimental results with sea current Vc = [0,−0.2]T : Cartesian
robot’s velocities.
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Figure 7.33: Experimental results with sea current Vc = [0,−0.2]T : task function.
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Figure 7.34: Experimental results with sea current Vc = [0,−0.2]T : error on fea-
tures’ co-ordinates.
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Figure 7.35: Experimental results with sea current Vc = [0,−0.2]T : surge and sway
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(a) Image 0 (b) Image 10

(c) Image 30 (d) Image 60

(e) Image 90 (f) Image 123

Figure 7.37: Experimental results with sea current Vc = [0,−0.2]T : selected snap-
shots.
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7.3.4 Discussion

The results clearly demonstrated that the stabilisation of the robot was possible.

Figures 7.4, 7.11, 7.25, and 7.18, illustrated the asymptotic convergence of the Carte-

sian robot’s velocity to zero.

However, slight steady-state positioning errors were present (figures 7.3, 7.10, 7.24,

and 7.17). This behaviour was explained by the drifting of the tracked features in

the images (see chapter 5). Indeed, if a given feature was drifting from its original

location, the position of the computed centre of gravity of the whole set of features

was biased. In other words, the task function e reached zero as required (figures 7.5,

7.12, 7.26, and 7.19), but its minimum did not correspond anymore to the initial

position of the robot. However, the positioning errors remained smaller than 5 cm

in all “nominal” cases.

The features’ drift was apparent in the plots of the features’ displacements through

time (figures 7.6, 7.13, 7.27). Defining as task function the centre of gravity of the

set of tracked features actually made the proposed method more robust to drift

by averaging its adverse contribution. Comparing for example figures 7.5 and 7.6

illustrates that point. The drift was also obvious in the snapshots of figure 7.30.

Failures in the experiments occurred when the sea current was high enough to pre-

vent the robot to keep enough features in the field of view while trying to counteract

the current’s effect. The PID gains were intentionally set to achieve an overdamped

behaviour, therefore the time response was rather slow.4 Higher gains would have

allowed to counteract greater currents. However, the robot’s accelerations would

have been more important, and, as a result, the feature tracker might have lost

track. Indeed, interframe displacements of more than 4 pixels caused the tracker to

fail as seen in chapter 5.

To avoid a failure such as the one illustrated by the example of section 7.3.3, a

possible solution would have been to extract new features during the control process

and redefine the desired centre of gravity from the new extracted features’ set. Ob-

4In [47], an underdamped behaviour was chosen, thus providing a faster time response to the

cost of some overshooting. As discussed previously in chapter 6, it is clearly a designer’s choice

depending on the exact requirements of the station-keeping application.

177



viously, changing the reference point would provoke a bias in the robot’s positioning

error. Indeed, once the robot had moved of 10 cm at instant t1 > 0 for instance, and

the feature tracking was reinitialised, the new reference point would be 10 cm away

from the initial one. Therefore a systematic error would appear. This thesis did not

implement reinitialisation so as to easily compare the positioning errors and because

the goal of the visual station-keeping control scheme was to stay at the initial refer-

ence point. That was therefore a designer’s choice. For a less strict application, i.e.

staying as immobile as possible and allowing some drift, extracting features when

needed would have been suitable.

7.4 Conclusions

This work showed the validity of 2-D visual servoing for underwater vehicle station

keeping. This approach was robust to various sea current disturbances and achieved

good positioning precisions. The use of a linear PID controller permitted slow,

but very stable hover capabilities. Besides, these experiments were performed on

a number of unmarked planar targets without any changes in the feature tracking

parameters, which demonstrated the robustness of the visual processing part.

The performances of the proposed control scheme were characterised in terms of

admissible sea current disturbances, and positioning accuracies. The effect of un-

desirable feature tracker behaviour on the dynamic positioning performances was

analysed and explained, and in particular the effect of features’ drift, features’ mis-

locations and limited field of view.

Obviously, better transient responses could be obtained if the feature tracking algo-

rithm was faster. In the performed experiments, the average processing time of an

image was of 180 ms, which overall limited the visual control loop to a frequency of

5 Hz. Disturbance rejection could also be improved by implementing a multi-scale

feature tracking algorithm, thus allowing the robot to further accelerate without

causing the visual processing to break down. As discussed in chapter 5, a trade-off

must be made between positioning accuracy and processing speed.

Finally, incorporating nonlinear controllers, that use the vehicle’s dynamics knowl-
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edge, as described in [64], would also improve the disturbance rejection if the de-

manded accelerations met the feature tracker’s limits.
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Chapter 8

Conclusions

8.1 Summary

Unmanned underwater vehicles lack a good ability to hover with conventional un-

derwater sensors. These sensors suffer from several drawbacks such as low sampling

rates, low resolution, complexity of operation, drift and cost, as seen in the intro-

duction. This makes the control design challenging. Underwater video cameras,

however, can provide position information with respect to a local object — a rock

on the seabed for example — with a higher frequency and a better resolution than

most conventional underwater sensors. Therefore, it was natural to consider intro-

ducing a camera into the control loop of underwater vehicles. The main objective

of this thesis was to investigate methods, based on visual information alone, to dy-

namically position a vehicle with respect to a fixed object. These methods also had

to have computing power’s needs compatible with standard off-the-shelf embedded

computers suitable for Autonomous Underwater Vehicles.

Visual control of robots is a multi-disciplinary field at the cross-road of topics such

as robot modelling and control, computer vision and image processing. It was then

necessary to investigate and introduce the basic concepts required in visual servoing

methods.

Chapter 2 provided an introduction to underwater vehicle modelling and control.

It highlighted the peculiarities of mobile robots travelling in water and the control

issues encountered by underwater vehicles.

The ability to measure the location of an underwater vehicle is required to evaluate

the performances of dynamic positioning. Unfortunately, conventional on-board

sensors could not provide this information, and even acoustic transponders could

not yield enough accuracy. Emulating the dynamic behaviour of a typical ROV
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on a Cartesian robot in a water tank solved this issue. Methods to replicate the

behaviour of the ANGUS ROV were investigated and developed (chapter 3). The

Cartesian robot was able to replicate within centimetric accuracy the trajectory

of the two degrees-of-freedom model of ANGUS. It was however not possible to

emulate exactly the velocity profile of the dynamic model with the Cartesian robot.

However, the behaviour of the compounded system: Cartesian robot and underwater

vehicle model, was still representative of a typical, but slightly slower than ANGUS,

ROV. The Cartesian robot allowed to get positioning measurements in the horizontal

plane to within a few millimetres. To the author’s knowledge, it was the first time

that such a method was used to evaluate the positioning accuracy of visual control

techniques for underwater vehicles.

A prerequisite of visual servoing techniques is the ability to infer motion information

from images. This is one of the issues of computer vision research. Chapter 4 gave

an account of linear motion estimation techniques based on the epipolar geometry.

To obtain metric information on the camera motion, it is necessary to know the

intrinsic parameters of the camera. Estimating these parameters is the aim of camera

calibration. It requires 3-D patterns whose geometry is known and is generally

performed off-line, prior to operation. Recently, self-calibration techniques which

allow an automatic and on-line estimation of camera parameters have been proposed.

A review of the main methods was also given in this chapter. These methods could be

of use since the intrinsic parameters of a camera are not always constant. Mechanical

and thermal variations, which are very likely to happen on an underwater camera

during UUV operation, modify the intrinsic parameters. Zooming will also change

the parameters.

Most computer vision and visual servoing algorithms call for point correspondences

between two views. The ability to track features throughout time is therefore cru-

cial. The thesis’ contribution lay in the experimental evaluation of a feature tracker

in underwater conditions. In particular, the tracker’s sensitivity with respect to

illumination, the maximum interframe displacement allowed and the consistency of

tracking were investigated in a water test tank (chapter 5).

The issue of defining the visual servoing task was investigated. In particular, a visual
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control scheme was proposed to station-keep the six degrees-of-freedom model of

ANGUS. This scheme, adapted from the 2 1/2 D visual servoing algorithm [50], took

into account the underactuation of ANGUS (roll and pitch were not controllable).

The visual servoing task was therefore physically achievable by the vehicle. The

proposed algorithm was demonstrated to be robust to sea current disturbances. The

effect on noise on the feature tracking was also assessed. In addition, the consequence

that an inclined visual target would have on the visual servoing scheme was also

investigated. The visual control scheme proved also to be robust with respect to the

orientation of the visual target. The Cartesian robot did not possess enough degrees-

of-freedom to completely emulate ANGUS. Therefore those assessments were carried

out in simulation (chapter 6). The simulations demonstrated the feasibility of visual

dynamic positioning for UUVs. It did not however allow the evaluation of the effect

of real-time feature tracking and robot control.

In order to investigate these aspects, a two degrees-of-freedom version of a typical

ROV model was emulated on the Cartesian robot (as in chapter 2). An underwater

camera was attached to the robot and features were tracked at the bottom of the

water tank while the ROV model was subject to sea current disturbances. Another

visual servoing task was then proposed to station-keep the robot with respect to

unmarked natural objects on the sea floor (chapter 7). The experimental setup

allowed to assess the positioning accuracy of the proposed method. In particular,

it was demonstrated that the visual servoing scheme was robust to sea current

disturbances, accurate to within a few centimetres, and stable. The limitations of

the proposed visual scheme were also pointed out and their cause was analysed.

8.2 Contributions

To sum up, the main achievements of this thesis were:

• the emulation of a typical underwater vehicle’s behaviour on a Cartesian robot

which provided ground truth positioning measurements;

• an experimental evaluation underwater of the feature point tracker properties:

182



sensitivity to illumination, admissible interframe displacements and tracking

consistency;

• the design of a hybrid visual servoing scheme adapted to an underactuated

ROV, and its performance assessment, in simulation, with respect to noise in

the feature tracking, sea current disturbances and target’s orientation;

• and finally, the design of a 2-D visual servoing method for the dynamic posi-

tioning of a 2 d.o.f. underwater vehicle model whose behaviour was replicated

on a Cartesian robot underwater. The feature tracker assessed previously

provided point matches. The positioning performance of the visual station-

keeping method was quantified. The proposed method was also demonstrated

to be robust to sea current disturbances.

8.3 Future work

This thesis’ work demonstrated that the dynamic positioning of a typical underwater

vehicle with visual servoing was possible in a wide range of situations. Limited

hardware did not permit to evaluate experimentally the proposed algorithms for all

six d.o.f. Transfering the visual servoing techniques to an underwater vehicle should

clearly be the next step, and would allow sea trials.

In this thesis, simple linear PID controllers were employed to perform the visual

servoing task. No a-priori knowledge of the underwater dynamics of the vehicle

was used to enhance the control performances. On a “real” underwater robot, if

such knowledge is available, it could be used. More sophisticated nonlinear control

techniques could also be employed to improve transient responses and disturbances

rejection.

The feature tracking was carried out on full resolution 512 × 512 images. As a

result, the admissible interframe displacement was limited to 4 pixels. To allow

greater vehicle velocity and be able to reject higher disturbances, multi-resolution

techniques should be investigated. This should have the advantage of providing

features at a faster rate, therefore increasing the robot’s control bandwidth. The
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tradeoff will obviously reside in positioning accuracy.
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Appendix A

ANGUS dynamic model numerical

values

The numerical values of the dynamic parameters of ANGUS 003 used in this thesis

are listed below.

M =




1800 0 0 0 50 0

0 2200 0 −35 0 110

80 0 3200 0 −50 0

0 −30 0 600 0 15

50 0 −50 0 850 0

0 110 0 15 0 750




B(ν) =




−350 0 0 0 35 0

0 −680 0 −60 0 160

30 u
|u| 0 −1300 0 −33 0

0 −60 0 −300 0 20

35 0 −33 0 −550 0

0 140 0 5 0 −450




E(ν) =




250 250 0 70u

0 0 250 50 v

0 0 0 400

0 0 −15 0

25 25 0 15

100 −100 0 20 r



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F(ν) =




100 100 0 −340 u

0 0 0 −250 v

0 0 0 50

0 0 0 0

5 5 0 0

40 −40 0 −100 r




DT =
[
0.6 0.6 0.4 1.2 1.1 0.6

]

The buoyancy force is W = 6031N , the dry mass is m = 615 kg or a weight of

W = 6027N . The metacentric height is H = 0.165 m.
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Appendix B

Data sheet of the underwater camera

The specifications of the underwater “Micro” camera of Mariscope Meerestechnik,

used in this thesis’ experiments, are extracted “as is” from their product data sheet.

Type 1/3 ” CCD bw-ship

Picture elements 512 (H) × 582 (V) pixel

Resolution 380 TV lines

Shutter ELC-automatic

Output HF frequency modulated

Lens 4.48 mm, F:1.8

Sensitivity 0.1 lux

Viewing angle 48 ˚ in water

Table B.1: Specifications of the underwater camera.
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