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Abstract

In this thesis, we present a theoretical description of the many-body effects in semi-

conductor quantum wells and the role they play in the absorption phenomenon. The

optical properties of semiconductors and their connections to the thermodynamic

properties of the quasi-2D electron-hole plasma are studied in both nonequilibrium

and equilibrium regimes. This work was motivated by a series of pump and probe

experiments with spin-selective excitation that were performed at Heriot-Watt. The

interpretation of the experimental results is non-trivial given the substantial influ-

ence of Coulomb and many-body effects which give rise to a rich variety of broaden-

ing and energy renormalizations, and hence places heavy demands on the modeling.

We constructed a simple model to describe the nonequilibrium thermodynam-

ics of the hot electron/hole plasma. We accounted for various dynamical processes

such as: relaxation of the carrier distributions, thermalization, plasma cooling, car-

rier spin-flip, recombination (radiative and nonradiative) and light hole scattering

into heavy holes. A full microscopic treatment of the many-body problem being

computationally prohibitive, we focused on a phenomenological approach using rate

equations and the associated characteristic times for each of the dynamical process

included in our analysis. We computed the time dependent energy renormalization

and bleaching of the excitonic resonances by solving the semiconductor Bloch equa-

tions together with the set of coupled rate equations. We obtained a good qualitative

agreement with experiments and further insight into the interplay between the var-

ious dynamical processes by varying the phenomenological parameters entering the

rate equations. In particular we found that the carrier spin-flip occurs on a relatively

long time scale (several tens of picoseconds) compared to the carrier distributions

relaxation and thermalization (a picosecond or less). We also could monitor the

time evolution of the plasma density, energy, temperature and screening.

In this thesis, we also studied the photoluminescence in II−VI quantum wells

at room temperature. We built a mathematical model to account for Coulomb

xi
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correlations that are expected to strongly influence the spontaneous emission rate

in these materials. We assumed the 1s exciton-free electron scattering to be the main

process leading an exciton to the photon line before recombination. The excitonic

wavefunctions in a 2D screened Coulomb potential were calculated using the variable

phase method. The scattering matrix elements computed, we used Fermi’s golden

rule to evaluate the contribution of the 1s exciton-free electron scattering to the

spontaneous emission rate. PL spectra at room temperature were calculated for

various densities, for wide-gap ZnSe and mid-gap GaAs to compare between II−VI

and III−V materials. The ZnSe PL spectra exhibit an exciton resonance below the

band edge that is not observed in the case of GaAs.



Chapter 1

Introduction

In this thesis, we study the many-body effects in semiconductor quantum wells and

the role they play in the absorption phenomenon. A semiconductor quantum well

is an artificially grown structure in which the electron motion is confined in one

spatial dimension, along the growth direction usually referred to as the z axis, and

remains free in the xy plane. For example, it is possible to grow alternatively, on

top of each other, layers of ZnSe with layers of CdxZn1−xSe. In quantum wells,

the kinetic energy of the charge carriers is quantized because of the confinement of

their motion along the z axis; however, in the xy plane the motion of the carriers

being not restricted, their kinetic energy may take continuous values. When excited,

an electron leaves the valence band to go into the conduction band. This creates

an empty valence-band state referred to as a hole that can be modeled as a quasi-

particle with an effective mass, a spin and a momentum. To describe the excited

electrons and holes trapped in a semiconductor quantum well, one usually makes use

of the quasi-two-dimensional electron/hole plasma model [1]. This plasma may be

neutral or not, depending on the excitation conditions achieved by optical pumping

or carrier injection.

The electrons and holes interact through the infinite-range Coulomb interaction.

A direct consequence is that their motion is correlated. Numerous experimental and

theoretical studies have shown that Coulomb correlations between quasi-particles in-

fluence the optical response of semiconductors [2, 3, 4]. For instance, excitons that

are electron-hole bound states dominate the linear optical properties of semicon-

ductors near the electronic bandgap. Another extremely important property of the

carriers is related to their half-integer spin: electrons and holes are Fermions that

obey the Pauli exclusion principle. The Fermionic nature of the carriers strongly

1
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influences the electronic, thermodynamic and optical properties of the electron/hole

plasma (see chapters 2 and 3). In particular, when electrons are already occupying

conduction band states, one cannot observe any optical transition leading a valence

band electron to one of these occupied states. One refers to this as phase-space

filling.

Modeling the properties of excited semiconductors can be tackled by studying

separately the intraband interactions which influence the time evolution of the car-

rier distributions, and the interband transitions to which the optical properties are

mostly related. In order to describe and understand both types of phenomena a

many-body treatment of the problem is required. The many-body effects are essen-

tially due to the Coulomb interaction and carrier-phonon scattering. The transport

properties connected with the intraband kinetics of electrons and/or holes are due

to carrier-carrier interactions within the same band [5]. The consequences of such

carrier-carrier interactions are the rapid equilibration (typically less than a picosec-

ond [6]) of the electrons and holes into quasi-equilibrium Fermi-Dirac distributions,

and the plasma screening which is the carrier density dependent weakening of the

Coulomb interaction potential due to the presence of background charge carriers, i.e.

the range of the Coulomb interaction decreases with increasing the carrier density.

The spectral properties linked with the interband kinetics are due to the many-body

interactions within the electron-hole plasma leading to the renormalization of the

energy states. Thus, carrier-carrier scattering and carrier-phonon scattering1 are

the main contributers to the optical dephasing (the decay of the polarization of

the medium) and influences both the shape (broadening) and the spectral location

(energy shifts) of the absorption and refractive index spectra.

The study of the interplay between the Coulombic forces within the electron-hole

plasma and the Fermionic nature of the charge carriers is a long standing problem

that is still the object of intensive research (an excellent review paper [7] shows

the importance of Coulomb correlations and other many-body interactions in the

1At room temperature.
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physics of semiconductors). Theoretical and experimental work complement each

other to provide information and further insight into the properties of semicon-

ductors. Absorption experiments are often used to study the optical properties of

semiconductors. In particular, ultrafast pump and probe experiments are a control-

lable way of investigating the absorption properties of photoexcited semiconductors

(see for instance [6, 8, 9, 10, 11, 12] and references therein). The main idea of

the pump and probe beam technique is to excite the sample with an intense and

spectrally narrow femtosecond laser beam and to probe changes in the absorption

spectra with a weak2, spectrally broad probe beam. These changes are monitored

by comparing the spectra with the absorption spectrum obtained without the pres-

ence of the pump pulse (linear absorption spectrum). Pump and probe pulse can be

delayed with respect to each other to obtain femtosecond time resolution by mea-

suring the absorption spectra as a function of the time delay. To understand these

experiments a mean-field formalism has been developed: the semiconductor Bloch

equations (SBE) [11, 13] are particularly appropriate to describe the density and

temperature dependence of the light absorption in a semiconductor.

A semiconductor photoexcited by an ultrashort pulse passes through several

regimes before it returns to thermodynamic equilibrium. The initial wavevector of

the electron and of the hole is the same since the photon momentum is negligible.

Thus an initial correlation exists between the electron and the hole. There is also

a coherence between the carriers and the radiation field. This coherence is quickly

broken by carrier-carrier scattering. The amount of time for the loss of coherence is

called the dephasing time. If this time is faster than any other relaxation process,

the carrier distribution functions are nonthermal even after the photo-excited states

have lost their coherence. The appropriate formulation of the carrier dynamics

for the time immediately after the generation of an electron-hole pair, when the

photo-excited carrier states are still driven by their mutual coherence and their

2A crucial point for the pump and probe technique is the weak intensity of the probe beam: it
must be low enough to induce no changes of the optical properties, but it also has to be not too
weak to give a reasonable signal-to-noise ratio.



Chapter 1. Introduction 4

coherence with the electromagnetic field, is based on quantum-mechanical many-

body techniques [14, 15, 16].

Coherent effects can be studied using pump-probe spectroscopy with femtosec-

onds pulses. Indeed, probing the response of a semiconductor with ultrashort laser

pulses yields information on processes occuring faster than the fast equilibration time

of the excited electron/hole system. In this case, the optical properties of direct-gap

semiconductors exhibit some similarities to that of atomic systems. A coherent effect

in semiconductors that has been extensively studied is the excitonic optical Stark

effect (OSE). The OSE in atoms is a well-known phenomenon [11, 17, 18, 19], but its

study in semiconductors has only been done with the possibility of performing ultra-

fast optical experiments, as the dephasing time in semiconductors is much shorter

than in atoms. The OSE process in semiconductors corresponds to a coupling of

the energy levels with a below-gap light beam: there is a coherent modification of

the energy levels in the electric field of the light field. The light is not absorbed,

implying no real creation of quasi-particles in the semiconductor, therefore insur-

ing an ultrafast response time [20]. The effect of the OSE is to shift the exciton

absorption line during a laser pulse whose photon energy is below the absorption

edge. The OSE in semiconductors has been the object of extensive experimental

[21, 22, 23, 24] and theoretical [11, 14, 25, 26, 27, 28] investigations.

Of particular interest are also the effects of high-order correlations on the opti-

cal properties of wide-gap semiconductors (WGSC), where Coulomb correlations are

important because of the large exciton and biexciton binding energies, comparable

to the room temperature thermal energy. For non-resonant (below exciton) excita-

tion a red-shift of the exciton line arising from the influence of virtual transitions to

a bound biexcitonic state has been predicted [27, 29] and observed [30, 31]. For a

gas initially comprised from a bath of free carriers, no spectral shift of the exciton

line is seen [8]. As the carrier motions are increasingly correlated by the Coulomb

interaction, creating bound excitons, the exciton resonance energy blueshifts due

to exciton-exciton correlations [8]. For resonant excitation, the energy renormal-
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izations due to the biexcitons are still unknown: one needs an accurate knowledge

of the nature of the interacting electron-hole plasma to describe and explain both

the magnitude and sign (blue- or red-shift) of these energy renormalizations. In

materials such as ZnSe/ZnCdSe quantum-well, the high exciton binding energy (≈
35 meV) allows resonant ultrafast optical excitation of excitons with negligible free

carrier excitation. Recent experimental results obtained at Heriot-Watt [32] sug-

gest that the interband recombination in WGSC (molecular-beam-epitaxially grown

ZnSe/(Zn, Cd)Se/ZnSe multiple quantum well) at 4K is preceded by a phase dom-

inated by biexcitons which induce a finite blue-shift of the exciton resonance. The

experimental technique involved measuring the transmission of an extremely sta-

ble white-light continuum probe-pulse which was delayed with respect to the 100

fs-long tunable pump pulse. Using circularly-polarized pump pulses resonant with

the heavy hole exciton, a spin-polarized exciton population was generated. Mea-

suring the transmission spectrum of an oppositely polarized probe, the biexciton

absorption feature was directly detected.

Interpreting the experimental spectra is very difficult since it is non-trivial to

estimate both the relative importance of the different contributions once they are

clearly identified and the time-scale of the processes. Based on the interpretation one

has then to build a model in which assumptions and approximations have at least to

lead to results which reflect the qualitative behaviour of the physical quantities of in-

terest. In fact, most of the theoretical treatments neglect the high-order correlations

within the electron gas and they are still lagging the experimental results. Neverthe-

less, as an improved level of the microscopic analysis of the Coulomb-induced many-

body correlations is obviously required, efforts have been made to go beyond the

time-dependent Hartree-Fock (TDHF) approximation. Indeed, some model studies

[33, 34] in one dimension show clearly characteristic signatures of carrier-correlation

effects on the excitonic differential absorption spectra. The analysis is done in both

coherent [33] and incoherent [34] regimes.

Microscopic calculations including higher-order correlations are very numerically
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demanding. Therefore, most of such theoretical investigations were performed in

the coherent limit [33, 35, 36]. But, due to dephasing processes occuring after some

time when the excited system relaxes, the coherent limit is not valid. Then, both

the pair occupations N and the exciton to two-exciton transitions, described by the

six-particle correlation Z (involving three electron-hole pairs) [37, 38] have to be

taken into account as they have finite values in this case. From an experimental

point of view, N can be seen as the result of optical excitation at an earlier time,

such that all coherences have decayed before the system is probed. Denoting p the

optical interband polarization, one can obtain the coupled differential equation of

motion for p and Z from the Heisenberg equation. But, the complete numerical

solutions of these equations are currently not feasible in two dimensions and even

for the one-dimensional systems one has to restrict oneself to small lattices and

simplified Coulomb potential (tight-binding model with no screening).

To obtain further insight into the properties of the electron/hole plasma, it is

possible to perform a series of pump-probe experiments introducing a variable delay

between the two pulses. In particular, ultrafast nonlinear optical experiments allow

one to probe highly nonequilibrium regimes and the possibility of non-degenerate

pump and probe and spin-selective excitations makes the technique very powerful:

one not only investigates the temperature and density dependence of the absorption

spectra in the quasi-equilibrium regime but also tackles the challenging problem of

the time evolution of the hot electron-hole plasma taking into account the spin-

states of the carriers. Treating the full many-body problem is not feasible as it

is computationally prohibitive: as we shall see in the next chapters, the equations

involved become extremely complicated very quickly when one builds a rigorous

model from first principles, and the singular behaviour of terms such as the Coulomb

matrix elements makes the numerical work very challenging (see Chapter 3 and

Appendix C).

In this thesis, we are concerned with ultrafast optical experiments. Interesting

dynamical effects can arise as a result of coherent processes in the interaction of
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the probe pulse with the relaxing electron/hole plasma, producing additional sig-

nals that are not a direct result of carrier occupation functions. This complicates

significantly the interpretation of experimental results. To avoid this type of compli-

cation, we neglect coherent polarization nonlinearities, considering above bandgap

pumping and time scales longer than the dephasing time only. Similar work has

already been done for GaAs quantum wells at room temperature [39], but here,

we account for various dynamical processes which lead the electron/hole plasma to

quasi-equilibrium, at low temperature, and we also investigate the light hole exciton

dynamics. For an in-depth discussion of the nonequilibrium problem see Ref. [6].

In chapter 4, we build a phenomenological model that includes the relaxation of

the carrier distributions, the thermalization of the carriers, the plasma cooling, the

carrier spin-flip, the recombination (radiative and nonradiative) and the light hole

scattering into heavy holes. Solving a system of coupled rate equations, we monitor

the time evolution of the plasma density, energy, temperature and screening. The

time scale for the carrier spin-flip process is poorly known, but by comparing the

computed exciton peaks dynamics with available experimental data in chapter 5,

we aim to extract an order of magnitude. We also explore various possibilities for

the phenomenological times to study the interplay between the dynamical processes

and their influence on the optical spectra.

The work in this thesis is mostly concerned with the absorption phenomenon.

However, in chapter 6, we also investigate the spontaneous emission process in II−VI

quantum-wells where the Coulomb interaction is important. The study of narrow

semiconductor quantum-wells can be tackled by using a model of the 2D electron-

hole plasma [1]. In wide-gap semiconductors at room temperature, the bare exciton

binding energy is of the order of kBT , and the equilibrium in the plasma consists

of an almost equal mixture of correlated electron-hole pairs and uncorrelated free

carriers. Hence, a significant excitonic contribution in the emission mechanisms is

expected as the strong scattering of particles within the plasma plays a crucial role

in its properties. More specifically, we study the effect of Coulomb correlations on
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the photoluminescence and in particular the 1s exciton-free electron scattering. Our

model is an extension of the calculations that were presented about twenty years ago

in Ref. [40] and were used to calculate the bulk gain spectra from photoluminescence

experiments [40, 41].

1.1 Thesis layout

The thesis layout with a brief summary for each chapter is as follows:

• Chapter 2 We begin this chapter by studying the electronic and thermo-

dynamic properties of the quasi-2D electron/hole plasma. In particular, we

address problems arising in realistic systems, considering the finite well-width

of the quantum wells and the presence of light holes. The connection to the

optical properties is made by introducing the coupling of the electronic sys-

tem with a radiation field in the electron/hole Hamiltonian. Then, using the

Heisenberg equation, we derive a set of equations (SBE) that will be solved in

the next chapters.

• Chapter 3 In this chapter, we are concerned with the numerical solutions of

the SBE for quasi-2D electron/hole plasma in quasi-equilibrium. We give a

detailed description of the numerical problems we address. We solve the SBE

for two types of materials: GaAs and ZnSe-based semiconductor quantum

wells and compare the numerical results, discussing the interplay between the

Coulomb interaction and the Fermionic nature of the carriers which influences

the shape of the absorption spectra. We highlight numerical problems that, in

particular, occur when solving the SBE with ZnSe parameters in the case of a

highly degenerate electron/hole plasma. We also have a preliminary discussion

on the limitations of the static plasmon-pole approximation.

• Chapter 4 To move beyond the quasi-equilibrium situation, we construct a

simple model to describe the time evolution of an initially hot electron/hole

plasma produced by spin-selective optical pumping in the absorption contin-
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uum. We include various dynamical processes which eventually lead to a quasi-

equilibrium. A microscopic treatment accounting for these many-body effects

is computationally prohibitive. Instead, we use a phenomenological approach

to account for the nonequilibrium processes. We obtain the time evolution of

the density, energy and temperature for each spin-polarized carrier gas solving

a set of coupled rate equations. We also show that we can use the equilibrium

formulas to evaluate the plasma screening in the long wavelength limit.

• Chapter 5 In this chapter, we make use of the results of the previous chap-

ters to compute the absorption spectra for various pump-probe polarization

configurations and delays. The numerical results are compared to available ex-

perimental data that are also presented. This allows an in-depth discussion of

the dynamical processes that influence the time evolution of the electron/hole

plasma and hence the dynamics of the absorption spectra. We give an estimate

for the time scale of each of these nonequilibrium processes and we also discuss

various scenarios obtained by varying the scattering rates to explore further

the interplay between the dynamical processes. In particular, we investigate

short and long time regimes for the spin-flip, the plasma cooling and the light

holes scattering into heavy holes.

• Chapter 6 In this chapter, we are concerned with the spontaneous emission

rate in narrow II−VI quantum wells where the Coulomb interaction remains

dominant even at room temperature. A significant excitonic contribution in

the emission mechanism is expected. The application of the variable phase

method to a 2D screened Coulomb potential permits scattering and bound

states to be treated on the same footing, so we use it to obtain the expression of

the excitonic wavefunctions in a screened potential. We assume the 1s exciton-

free electron scattering to be the main process leading an exciton to the photon

line before recombination. The exciton-free carrier scattering matrix elements

are calculated to evaluate its contribution to the spontaneous emission rate

using Fermi’s golden rule. In this way, the photoluminescence (PL) spectrum
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is obtained by adding the excitonic contribution to the free-carrier plasma

spectrum. PL spectra at room temperature are computed for various densities,

for two materials: wide-gap ZnSe and mid-gap GaAs. The ZnSe PL spectra

exhibit an exciton resonance below the band edge that we do not observe in

the case of GaAs.

• Chapter 7 We conclude this thesis with a summary of the main results and

suggest directions for possible further work.

Mathematical detail omitted in the main text can be found in a series of appen-

dices that are included at the end of this thesis.

We make use of the parabolic band dispersion in the effective mass approxi-

mation throughout this thesis. The light hole mass, mlh, is taken to be equal to

the electron mass me for both GaAs and ZnSe. We take the following values for

GaAs: mGaAs
lh = mGaAs

e = 0.0665 m0, and mGaAs
hh = 0.457 m0. For ZnSe, the ef-

fective masses are mZnSe
lh = mZnSe

e = 0.13 m0, and mZnSe
hh = 0.57 m0. m0 is the

mass of the free electron. In particular, in chapter 5, we shall use the above values

of the effective masses for ZnSe to model the exciton dynamics in ZnSe/ZnCdSe

multiple quantum well. The dielectric constants are ε = 13.7 for GaAs, and ε =

8.8 for ZnSe. The 3D excitonic Bohr radii are: aGaAs
B = 125 Å, and aZnSe

B = 39 Å.

The 3D excitonic Rydbergs are RGaAs
y = 4.2 meV, and RZnSe

y = 21 meV. The values

of GaAs parameters are taken from Ref. [42] and those of ZnSe from Ref. [43].

Unless specified, the S.I. units are used throughout this thesis.



Chapter 2

Microscopic theory of polarization in

semiconductor quantum-wells

2.1 Introduction

The microscopic description of the absorption and refractive index spectra requires

the knowledge of the polarization P which is the expectation value of the electric

dipole moment er per unit volume [11]. As we shall see in section 2.3, the derivation

of the polarization yields P = dcv
∑

k pk, where pk is the interband polarization

describing the optically-induced coherence between a hole in the valence band v

and an electron in the conduction band c, and the dipole matrix element dcv, the

strength of the optical transition between the two bands. The theoretical study

of the optical dipole transitions in excited semiconductors can be achieved within

the framework of the density matrix theory [44]. Because of the collisions and the

recombination processes in the electron-hole plasma, it is not possible to have a

precise knowledge of the state vector of the system. In other words, electrons and

holes in the plasma are not in pure states described by wavefunctions but rather in

mixed states best described by a density operator. Moreover, so as to have a realistic

analysis of high quality semiconductor samples, the computation of the interband

polarization has to take into account the Coulomb interaction in the definition of

the Hamiltonian of the electron-hole system: the coupled equations of motion for

the carriers distributions nek and nhk, and the interband polarization pk defined as

expectation values of products of two particle field operators are derived using the

Heisenberg equation and the many-body Hamiltonian.

Details of the calculations can be found later in this chapter, but we can al-

ready point out that because of the nature of the problem, solving the Heisenberg

11
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equation is equivalent to solving the many-body Schrödinger equation or an infinite

hierarchy of equations of motion for products of an ever increasing number of field

operators. This is clearly not a solvable problem if one does not make approxima-

tions which consist of a truncation procedure1. The simplest situation is when one

does the truncation at the lowest level of the hierarchy: only the expectation values

of products of two particle field operators are kept. The fourth-order expectation

values are factorized into products of two second-order expectation values, using the

Random Phase Approximation (RPA) method. The three equations for pk, nek and

nhk obtained are called the Hartree-Fock equations [11, 13]. They contain important

Coulomb effects such as the bandgap renormalization and the interband Coulomb

enhancement that will be discussed later in this chapter. If one wants to go beyond

the RPA, the truncation procedure can be applied to the next level of the hierarchy

which describes the plasma screening2 and higher order correlations [44]. Then, the

equations for pk, nek and nhk combined with the collision and screening contribu-

tions form a set of equation referred to as the semiconductor Bloch equations (SBE)

[11, 13, 44].

In this chapter we are mainly concerned with the electronic and thermodynamic

properties of the electron-hole plasma and their connection to the optical properties

of semiconductor quantum-wells. This chapter aims at introducing the framework

in which we shall build our model for the time-dependent absorption spectra in

chapter 5. We shall give preliminary results to explain and illustrate the nature of

the problems we address and assess the limit of validity of our approximations. It

is organised as follows: the object of section 2.2 is to give a brief overview of the

properties of the interacting electron gas in a solid. To keep our model as simple as

possible, we make use of the jellium model: the discrete lattice structure of the ions

in the solid is neglected and the positive charges are treated as a smooth background.

The case of the confined electron gas in a semiconductor quantum well is discussed

1This is typical of the many-body problem, but not just in quantum mechanics: the classical
Liouville equation can be solved using a truncation scheme which leads to the BBGKY hierarchy.

2In this case one has to be careful with the inclusion of an ad hoc screened Coulomb potential
as the plasma screening may be overestimated.
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(specific modifications of the Hamiltonian of the 2D interacting electron system and

effects of the finite well width on the strength of the Coulombic forces). Section 2.3

is devoted to the derivation of the SBE after having introduced the definition of the

interband polarization pk and the carrier distributions, ne,k and nh,k, in terms of

expectation values of field operator products. Calculations are first presented in the

two-band approximation, but the inclusion of the light hole band is also addressed.

In this chapter we discuss the properties of the SBE, but we leave the numerical

treatment and the discussion of the numerical results to the next chapter.

2.2 Electrons in semiconductor quantum wells

The Hamiltonian of an interacting electron system in a solid is the sum of its ki-

netic and Coulomb interaction energies (electron-electron and electron-ion). If one

neglects the interaction energy part, the system behaves like an ideal Fermi gas

whose properties are based on the kinetic energy term only. But, as discussed in the

Introduction, one needs to take into account the Coulombic effects so as to study a

wealth of phenomena leading to energy shifts and broadening of the semiconductor

absorption spectra. Obviously this adds substantially to the complexity of the prob-

lem. A convenient way to deal with the difficulty of the calculations is to use the

field quantization formalism as a framework. Indeed all the observables of interest

polarization, P , density, N ... can be expressed in terms of field operators which

contain the quantum statistical properties of the particles.

2.2.1 Physics of the 2D interacting electron gas

Hamiltonian of interacting electron system

The electron gas Hamiltonian can be expressed as follows [11]:

He =
∑

k

∑
s

Eka
†
k,sak,s +

1

2

∑

k,k′

∑

q6=~0

∑

s,s′
Vq a†k+q,sa

†
k′−q,s′ak′,s′ak,s . (2.1)

The term with q = ~0 vanishes as a consequence of the cancellation between the
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attractive interaction energy between the electrons and the ions of the lattice and

the negative interaction energy between the electrons and between the ions. The

operators a†k,s and ak,s are the creation and annihilation operators for an electron

in a state k with a spin s; the kinetic energy is given by the usual expression:

Ek = h̄2k2/2m, and the Coulomb potential energy Vq depends on the dimensionality

of the system, even though it always takes the same form in real space3:

V (r) =
e2

4πεr
, (2.2)

in MKSA units, ε being the dielectric constant. For a three-dimensional system, the

Fourier transform of Eq. (2.2) is

V 3D
q =

e2

εV
1

q2 , (2.3)

where V is the volume of the 3D system. For a two-dimensional system,

V 2D
q =

e2

2εA
1

q
, (2.4)

where A is the area of the 2D system.

A qualitative difference between both potential energies is due to their q de-

pendence, but both exhibit a radial symmetry in the Fourier space. In this thesis,

we study light absorption in semiconductor quantum-wells. Hence, attention is fo-

cused on 2D systems for which the effective strength of the Coulombic interaction

is greater than in 3D because of the confinement of the motion of the electrons.

Based on the Hamiltonian given by Eq. (2.1) one can evaluate the consequences

of the Coulombic effects on the energy states of the interacting electron system.

3Even for low dimensional systems like semiconductor quantum wells, wires and dots the
Coulomb potential behaves like 1/r since the electric field lines between two charges are not con-
fined within these structures: they also pass through the surrounding material.
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The exchange energy in the Hartree-Fock approximation

At T = 0, all particles are in states below the Fermi level: |k| ≤ kF . The ground-

state wavefunction can be written as:

|0〉HF =
∏

ki≤kF ,σi

a†ki,σi
|0〉, (2.5)

where |0〉 is the vacuum state and σi the spin-states. As the quantities of interest

are those which are a direct consequence of the Coulomb interaction, attention is

focused on the evaluation of the potential energy only [11]:

EHF
pot =

1

2

∑

k,k′

∑

q6=~0

∑

σ,σ′
Vq HF 〈0|a†k+q,σa

†
k′−q,σ′ak′,σ′ak,σ|0〉HF = − e2A2

12π2ε
C (2πN)3/2,

(2.6)

where

C =
∑

l=2p

2

l + 2

(
1

2l
C l

l/2

)2

, p = 0, 1, 2 . . . (2.7)

is a numerical constant and N is the 2D density: N = N /A.

Eq. (2.6) shows that the magnitude of the Hartree-Fock potential energy in the

electron gas is a monotonically decreasing function of the 2D density N ; and, as EHF
pot

is negative, this quantity represents an energy reduction of the whole interacting

electron system which is a consequence of the exchange effects between the electrons.

The inclusion of the spin in the definition of the ground state4 in Eq. (2.5) also

leads to a finite contribution to the total energy of the electron system5 and further

enhances the electron-electron repulsion because of the Pauli blocking. One can

see this effect by evaluating the correlation function of two electrons in the ground

state respectively defined by their position and spin: (r, s) and (r′, s′). This is the

conditional probability to find an electron at r′ with a spin s′ knowing that there is

4As mentionned above, the field operators contain the quantum statistical properties of the
particles.

5The Pauli principle requires the antisymmetry of the wavefunction of the system. This is the
simplest generalization of the Hartree approximation.
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an electron at r with a spin s. It is possible to show that this correlation function

depends only on the separation of both electrons |r − r′|. Precisely, it takes the

following form in 2D [11]:

Fσ,σ′(r, r
′) =

N2

4
−N2δσ,σ′ ×

[
J1(kF |r− r′|)

kF |r− r′|

]2

, (2.8)

where J1 is the first order Bessel function of the first kind.

As shown in Fig. 2.1, if the spins σ and σ′ are different, the correlation function

is a constant; but if the spins σ and σ′ are equal, the correlation function is an

increasing function of the separation |r − r′| which is zero when r = r′: the mean

separation between electrons with equal spins is larger than it is with different spins.

In other words, the electrons with equal spins avoid each other as a consequence of

the Pauli blocking6. Thus, the spin of the electron provokes a further repulsion on

top of the Coulombic repulsion, and each electron is surrounded by a finite area

(in 2D) which is called the exchange hole. This hole acts as a net positive charge

distribution whose attractive interaction with the electron reduces the total energy.

This is the origin of the exchange hole energy term: Eexc = EHF
pot .
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Figure 2.1: Pair correlation function for the two-dimensional electron plasma as a func-
tion of the dimensionless interparticle distance kF |r− r′|.

The Hartree-Fock theory does not include Coulomb correlations which give rise

6This results is also correct for the ideal Fermi gas.
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to the screening effect within the electron gas. These correlations lead to the so-

called Coulomb hole which, as we shall see later in this chapter, has to be taken

into account in the calculations. To treat these Coulomb correlation effects one has

to go beyond the Hartree-Fock theory, using for instance the screened Hartree-Fock

theory as we shall do.

Screened Coulomb potential

The phenomenon of screening is one of the most important manifestations of the

many-body interactions in the electron plasma. The effect of the screening is to

reduce the interaction range of the Coulomb potential as the plasma density in-

creases. More specifically, the collective excitations in the electron plasma, also

called plasmons, effectively reduce the strength of the Coulomb interaction, by in-

creasing the value of the dielectric function with an increasing plasma density at a

given temperature.

Using the RPA and Poisson’s equation (see Appendix A), it is possible to show

that the screened Coulomb potential seen by a test charge can be expressed as

follows:

V s
q =

Vq

εq(ω)
, (2.9)

εq(ω) being the dynamic dielectric function given by the Lindhard formula7:

εq(ω) = 1− Vq

∑

k

nk−q − nk

h̄(ω − iδ + εk−q − εk)
, (2.10)

where h̄εk is the kinetic energy of an electron in a state k. The test charge has been

assumed to be small enough so as to treat its effect on the plasma as a negligible

perturbation; so, the quantity δ appearing in Eq. (2.10) indicates that this perturba-

tion has been switched on adiabatically: the electron plasma was in a homogeneous

state and its quasi-thermal equilibrium has always been maintained.

7In the electron hole picture, one needs to make explicit both the electron and the hole contri-
butions.
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Eq. (2.10) describes the spatial and spectral dispersions of the dielectric function

which is a complex and retarded function: the poles are in the lower complex fre-

quency plane. The Lindhard formula is valid both in three and two dimensions (no

assumptions on the dimension of the potential have been made) and can describe

both equilibrium and nonequilibrium situations8. Nevertheless, one needs to make

approximations to the Lindhard formula to obtain a simpler treatment of the plasma

screening. One of the simplest situation which yields analytical results is when one

uses the 2D static screening where ω− iδ −→ 0. Then one can modify the Lindhard

formula using the static plasmon-pole approximation as shown in Appendix A (see

also Refs. [45, 46, 11, 44], so as to obtain:

1

εq

= 1− ω2
pl(q)

ω2
q

. (2.11)

The quantities entering Eq. (2.11) are ωpl(q), the 2D plasma frequency9:

ωpl(q) =

√
e2n

2εm
q =

√
8πnR2

ya
3
B

h̄2 q, (2.12)

Ry and aB being the excitonic Rydberg energy and Bohr radius and ωq, the 2D

effective plasmon frequency given by:

ω2
q = ω2

pl(q)
(
1 +

q

κ

)
+ ν2

q . (2.13)

In Eq. (2.13) the parameter κ is the 2D screening wavenumber which at equi-

librium is given by:

κ =
me2

2πεh̄2 nk=0 =
me2

2πεh̄2

(
1− e−h̄2βπN/m

)
(2.14)

and ν2
q = Ch̄2q4/16m2 is an additional term which simulates the contribution of

the pair continuum; C being a numerical constant usually taken between 1 and 4

8For a thermal plasma, the particle density operator nk follows the Fermi-Dirac distribution.
9The plasma frequency is the eigenfrequency of the electron plasma density oscillations around

the position of the ions in the lattice.



Chapter 2. Microscopic theory of polarization in semiconductor quantum-wells 19

[11, 45]. For our purposes we shall always use the same value: C = 4.

As mentioned earlier, the excitations in the electron plasma are responsible for

the screening effect. This is reflected in Eqs. (2.9), (2.11), (2.12), (2.13) , and (2.14),

showing that the strength of the Coulomb interaction within the electron gas heavily

depends on its temperature and density.
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Figure 2.2: Screening parameter κ as function of plasma density, for various plasma
temperatures, in a 2D ZnSe electron gas.

For a given temperature, the screening parameter κ, shown in Fig. 2.2 is an in-

creasing function of the density n: the more electrons are present in the plasma, the

less effective the Coulomb interaction between two charges is. However, for a given

density, increasing the plasma temperature, weakens the screening effect. Consider-

ing Eq. (2.14), the interplay between the carrier density and the plasma temperature

becomes clearer if one regards the thermal wavelength, λ = 2πh̄2/mkBT , as the rel-

evant physical quantity to discuss the plasma screening, as it gives a measure of

the average spatial extent of the wave packets that represent the electrons in the

plasma.

The 2D plasma frequency, as shown in Fig. 2.3, is a monotonically increasing

function of the wavenumber q. From Eq. (2.12), one can also see the square root

dependence of ωpl(q) on the plasma density. The higher the density, the faster the

plasma density oscillates. From Eq. (2.13), one can see that for small values of q,
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the 2D effective plasmon frequency and the 2D plasma frequency exhibit a similar

behaviour, i.e. a square root dependence on q. But as the wavenumber increases

the continuum pair contributions becomes significant and ωq behaves like q2. With

increasing plasma density N , the parameter κ becomes larger, but that has a small

effect on the density dependence of ωq as it is more influenced by the plasma fre-

quency ωpl.
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Figure 2.3: Comparison of the 2D plasma frequency and the 2D effective plasmon fre-
quency for two plasma densities, N1 = 1011 cm−2 and N2 = 1012 cm−2, in a 2D ZnSe
electron gas. The plasma temperature is T = 77 K.

2.2.2 Interacting electrons in a semiconductor quantum well

The above analysis of the properties of the electron gas will be helpful in describing

those of semiconductor media in the Hartree-Fock approximation. But, as here

one needs to take into account the specific band structure of these materials, the

Hamiltonian of the interacting electron gas in Eq. (2.1) has to be modified: a band

index is introduced and it is assumed that the excitation is achieved by optical

pumping. Moreover, the finite well width of the quantum wells has a non-negligible

effect on the optical spectra; so, modifications of the Coulomb potential will also be

considered by introducing a form factor.
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Semiconductor quantum wells

The need to improve the performance of the first semiconductor lasers (homostruc-

ture devices) led to the design of semiconductor heterostructures which can be ob-

tained with growth techniques such as molecular beam epitaxy with crystals that

have sufficiently similar lattices. The reduced dimensionality leads to a more effi-

cient population inversion of the confined electrons10 as the allowed electronic energy

states and density of states are modified. With such type of structures the thresh-

old current densities are lowered and one can obtain gain at room temperature and

lasers operating cw.

As there is no quantum confinement in the xy plane one can define the total

electron wavefunction ψn,k||(r) as the product of the two-dimensional free particle

eigenfunction φk||(r||) and ζn(z), solution of the Schrödinger equation including the

confinement potential Vconf (z). The vector r is defined by its transverse component

r||(x, y) and the z component11, and the function φk||(r||) is given by:

φk||(r||) =
1√
A e(±ik.r||). (2.15)

The energy of the in plane motion is simply:

Exy =
h̄2k2

||
2m||

. (2.16)

We obtain then a simple parabolic band structure. With w denoting the quan-

tum well width, one can define the confinement potential as follows:

Vconf (z) =





0 |z| < w/2

Vc |z| > w/2
. (2.17)

In this case the ζn(z) is solution of the Schrödinger equation

10But the strength of the Coulomb interaction increases with lower dimensionality and affects
the efficiency of the population inversion process.

11In the same way one can distinguish between the effective masses m|| and mz.
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[
−h̄2 d

dz

1

mz

d

dz
+ Vconf (z)

]
ζn(z) = Enζn(z). (2.18)

Expression of the Hamiltonian in the two-band approximation

In general, semiconductors are characterized by a band structure consisting of one

conduction band and several valence bands. These bands have asymmetric shapes

and sometimes several energy extrema. The simplest model considers just two

parabolic bands which most of the time is sufficient to describe some of the ba-

sic behaviour of these materials as other completely filled bands do not contribute

directly to the optical transitions of interest (visible region). In this chapter, we fo-

cuse our attention first on such a two-band model before introducing the degenerate

valence band. Furthermore, the following calculations are always based on parabolic

band structures which is a good approximation as we consider only optical transi-

tions with frequencies in the visible. These transitions are direct12 and therefore

we only need to consider a small region of the band structure around the bandgap

minimum where they are most likely to occur and where the dispersion can be taken

as parabolic.

The Hamiltonian of the electron gas in a semiconductor interacting with a ra-

diation field ~E(r, t) can be written as follows [11]:

H = He +HI (2.19)

where

He =
∑

λ

∑

k

Eλ,ka
†
λ,kaλ,k +

1

2

∑

λ,λ′

∑

k,k′

∑

q6=~0

Vq a†λ,k+qa
†
λ′,k′−qaλ′,k′aλ,k (2.20)

describes the dynamics of the electrons within the semiconductor, and

12The photon momentum is so small compared to the electron momenta involved in the optical
transition that its value does not affect significantly the momentum conservation requirement.
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HI = −∑

λ,λ′

∑

k

E(t)
(
dλλ′,k a†λ,kaλ′,k + h.c.

)
(2.21)

describes the interband dipole coupling to the light field ~E(r, t), dλλ′,k being the pro-

jection of the dipole moment dλλ′,k in the field direction ~E/E , and h.c. the Hermitian

conjugate. The wavevector k contains the spin index: (k, σ) ≡ k, unless otherwise

stated. Apart from the inclusion of the interaction with the light field ~E(r, t), the

main difference with the expression of the Hamiltonian given in Eq. (2.1) is the

presence of the band index λ.

In the two-band approximation one deals with one conduction band λ = c and

one valence band λ′ = v. These bands are taken as parabolic so dλλ′,k does not

depend on the wavevector k. Thus, Eqs. (2.20) and (2.21) become:

He =
∑

k

(
Ec,ka

†
c,kac,k + Ev,ka

†
v,kav,k

)

+
1

2

∑

k,k′

∑

q6=~0

Vq

(
a†c,k+qa

†
c,k′−qac,k′ac,k + a†v,k+qa

†
v,k′−qav,k′av,k + 2a†c,k+qa

†
v,k′−qav,k′ac,k

)

−∑

k

E(t)
(
dcv a†c,kav,k + h.c.

)
(2.22)

Denoting Eg the unrenormalized bandgap (absence of excited electrons), the

conduction and valence band energies are given by:

Ec,k = h̄εc,k = Eg + h̄2k2/2mc, (2.23)

and

Ev,k = h̄εv,k = h̄2k2/2mv, (2.24)

using the single particle energies in the effective mass approximation. The effective

masses are defined by the reciprocal of the band curvatures:
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1

mi

=
1

h̄2

d2Ei,k

dk2

∣∣∣∣
k=0

, i = c, v. (2.25)

The valence band having a negative dispersion, the effective mass as defined in

Eq. (2.25) is negative.

Effects of a finite well width

As mentioned earlier, the attention is mainly focused on 2D systems. However, real

quantum wells have a finite width w and one has to deal with quasi-2D systems which

still do not behave like 3D systems. It has been seen earlier that the dimensionality of

the interacting electron gas has an effect on the strength of the Coulomb interaction:

the confinement of the motion of the electron gas to a 2D space makes the Coulomb

interaction stronger. The form factor fq characterizes the well-width-dependent

deviations from the ideal 2D systems of V 2D
q [44]:

Vq = fq
e2

2εA
1

q
. (2.26)

The definition of the form factor fq and the calculations detailed in Appendix

B give:

fq =
2

w


1

q
+

1

2

qw2

q2w2 + 4n2π2 + (e−qw − 1)
1

w

(
1

q
− qw2

q2w2 + 4n2π2

)2

 . (2.27)

The form factor fq is a finite, positive and monotonically decreasing function of

q. For q = 0 fq = 1, and limw→0 fq = 1, which means that there is no alteration of

the 2D potential for a zero well width: one deals with the ideal 2D system.

With increasing the plasma density at a given temperature, the screening effect

becomes important and we saw how we can quantify this effect in the section 2.1.3.

But, at this stage, we did not deal with the more realistic situation of a finite well

width. In the case of a screened Coulomb potential in a quasi-2D system, one has

to alter the expression of the 2D plasma frequency and the 2D effective plasmon
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frequency in Eqs. (2.12) and (2.13) so as to take into account the effect of the finite

well width on the dielectric function, Eq. (2.11).
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Figure 2.4: Form factor as a function of the wavenumber q for various well widths.

Using the calculations detailed in Appendix A together with the above definition of

the Coulomb potential in a quantum-well, Eq. (2.26), yields:

ωpl(q) =

√
e2n

2εm
fq q, (2.28)

for the quasi-2D plasma frequency, and

ω2
q = ω2

pl(q)

(
1 +

q

fq κ

)
+ ν2

q , (2.29)

for the quasi-2D effective plasmon frequency. The screening parameter κ is defined

by Eq. (2.14).

With a finite well width the electrons are not strictly confined in an ideal 2D

space. A direct effect is that the plasma density oscillations are slowed down for a

given density. In other words, the 2D plasma frequency decreases with increasing

the well width, which is coherent with Eq. (2.28) and the definition of the form

factor.
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The screened Coulomb potential in a quantum-well is given by:

V s
q = fqV

2D
q

(
1− ω2

pl(q)

ω2
q

)
, (2.30)

in the static plasmon-pole approximation, with the quasi-2D plasma and effective

plasmon frequencies defined as in Eqs. (2.28) and (2.29).

Quasi-Fermi levels in a semiconductor quantum well

When electrons in a semiconductor are excited, the fast carrier-carrier scattering

drives the electron and hole nonthermal distributions into Fermi-Dirac distributions.

As already briefly discussed in the Introduction this scattering mostly involves in-

traband interactions. So, the equilibrium is only established within the bands and

not amongst them: one does not deal with a proper thermodynamic equilibrium.

Indeed, even if the time scale for quasi-equilibration is much longer than the in-

traband carrier-carrier scattering time, it typically remains much shorter than the

interband relaxation time. Nevertheless, one can define Fermi-Dirac distributions for

each band characterized by a quasi-Fermi level, or chemical potential, µ. Obviously,

as long as the electron system as a whole has not reached the thermodynamic equi-

librium, these quasi-Fermi levels, evaluated with the same temperature and carrier

density provided that the semiconductor is not doped, are not equal.

The Fermi-Dirac distribution is given by:

fk =
1

eβ (Ek−µ) + 1
, (2.31)

where Ek is the energy in the state k, and µ the chemical potential of the system.

The total number of carriers, given by:

N =
∑

k,σ

fk, (2.32)

determines the chemical potential at a given temperature T . To evaluate the above

expression we approximate the discrete sum by an integral. This requires the knowl-
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edge of the free-particle density of states13, D(E). For quasi-2D systems like semi-

conductor quantum wells one can assume that taking the ideal 2D density of states

is a good approximation, so Eq. (2.32) becomes:

N =
N
A =

1

2π

(
2m

h̄2β

) ∫ ∞

0
dE

1

eβ(E−µ) + 1
, (2.33)

After the evaluation of the integral in Eq. (2.33) one finds the expression of the

2D Fermion chemical potential as a function of the 2D carrier density N and the

temperature T :

µ(N, T ) =
1

β
ln

(
eh̄2βπN/m − 1

)
. (2.34)

This will be taken as the expression of the electron and heavy hole quasi-Fermi

levels µe and µhh whose values also depend on the effective mass of the carrier me

and mhh.
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Figure 2.5: Electron chemical potential as a function of plasma density for various tem-
peratures.

The electron and heavy hole chemical potentials are an increasing function of

the plasma density (see Fig. 2.5 for the electron chemical potential), but for a given

density the higher the temperature is the lower the chemical potentials are. For a

13Even though we deal with an interacting electron gas, we assume that the free-carrier approx-
imation is good enough to calculate the quasi-equilibrium chemical potential.
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given density and temperature, the heavy hole chemical potential is smaller than

the electron chemical potential as mhh > me. In the nondegenerate limit, i.e. low

density and high temperature, the chemical potential diverges towards −∞.

2.3 The Semiconductor Bloch Equations

In very low excitation regimes, the Coulomb attraction between the conduction band

electrons and the valence band holes is very important; however, no interactions

between different electron-hole pairs have to be considered as the plasma density

is low. But when the excitations become important, one has to deal with finite

densities of carriers which are coupled dynamically to the interband polarization.

The SBE give a realistic description of this coupling.

2.3.1 Hamiltonian equations

Definition of the interband polarization

The polarization P(t) is defined as the expectation value of the electric dipole er

[11]:

P(t) =
∑
σ

∫
d3r 〈ψ̂†σ(r, t) er ψ̂σ(r, t)〉 =

∑
σ

∫
d3r Tr

(
ρ0ψ̂

†
σ(r, t) er ψ̂σ(r, t)

)
.

(2.35)

In Eq. (2.35):

• ρ0 is the density operator describing the system at the initial time before the

field was switched on.

• ψ̂σ(r, t) is the electron field operator defined as:

ψ̂σ(r, t) =
∑

λ

∑

k

aλ,k,σ(t) φλ,k,σ(r), (2.36)

where φλ,k,σ(r) is the single-particle eigenfunction for an electron in the semicon-

ductor in the state specified by the band index λ, the momentum k and the spin
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σ. In the case of spatially homogeneous system the eigenfunctions φλ,k,σ(r) are the

Bloch functions as one is dealing with delocalized electrons. The operator aλ,k,σ(t)

is the annihilation operator for the electron in that state. The notation 〈Ô〉 stands

for the expectation value of the operator Ô calculated as:

〈Ô〉 = Tr
(
ρ0Ô

)
. (2.37)

Inserting Eq. (2.36) into Eq. (2.35) yields:

P(t) =
∑
σ

∑

λ,λ′

∑

k,k′
〈a†λ,k,σ(t) aλ′,k′,σ(t)〉

∫
d3r φ†λ,k,σ(r) er φλ′,k′,σ(r). (2.38)

And writing the dipole matrix elements as:

∫
d3r φ†λ,k,σ(r) er φλ′,k′,σ(r) = δkk′ dλλ′ , (2.39)

with λ 6= λ′, yields:

P(t) =
∑
σ

∑

λ,λ′

∑

k

〈a†λ,k,σ(t) aλ′,k,σ(t)〉 dλ,λ′ =
∑
σ

∑

λ,λ′

∑

k

Pλλ′,k,σ(t) dλ,λ′ . (2.40)

This defines the interband polarization as:

Pλλ′,k,σ(t) = 〈a†λ,k,σ(t) aλ′,k,σ(t)〉. (2.41)

The function Pλλ′ as defined in Eq. (2.41) would be zero in an equilibrium system

without a permanent dipole moment. However, the presence of the light field induces

optical transitions between the bands; therefore, the interband polarization Pλλ′ in

such an externally driven system is finite.
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Hamiltonian in the electron-hole representation

Another possible representation of the problem is the electron-hole picture which is

equivalent to the previous one provided that one defines the field operators for the

electrons and the holes as follows [11, 44]:





β†−k = av,k

α†k = a†c,k
(2.42)

Inserting the operators defined in Eq. (2.42) into Eq. (2.22) leads to the following

expression for the Hamiltonian of the electron-hole gas interacting with a light field

in the two-band approximation:

H =
∑

k

(
Ee,kα

†
kαk + Eh,kβ

†
−kβ−k

)

+
1

2

∑

k,k′

∑

q6=~0

Vq

(
α†k+qα

†
k′−qαk′αk + β†k+qβ

†
k′−qβk′βk − 2α†k+qβ

†
k′−qβk′αk

)

−∑

k

E(t)
(
dcv α†kβ

†
k + h.c

)
, (2.43)

after restoring the normal ordering of the field operators using the anti-commutation

rules and leaving out the constant terms.

In the electron-hole representation, the single particle energies given by Eqs. (2.23)

and (2.24), become:

Ee,k = Ec,k = h̄εe,k (2.44)

which remains unchanged, and:

Eh,k = −Ev,k +
∑

q6=~0

Vq = h̄εh,k (2.45)

which shows that the kinetic energy of the holes includes the Coulomb energy of the

full valence band; or, in other words: the hole energy is the energy of the completely

filled valence band minus the energy of the valence band with a vacant electronic
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state. Eq. (2.45) shows a positive dispersion of the hole energy whereas Eq. (2.24)

gives a negative dispersion for the valence band electrons: the effective hole mass

mh and the effective valence band electron mass mv have opposite signs. Therefore,

the effective electron mass me simply equals the effective conduction band electron

mass mc and the hole effective mass, mh, is exactly the opposite of the valence band

electron effective mass, mv. Note that the heavy hole dispersion in Eq. (2.45) takes

the Coulomb interaction amongst the carriers into account and changes sign, but

conserves the same curvature.

Derivation of the SBE

The quantities of interest are the electron distribution ne,k(t), the hole distribution

nh,k(t) and the interband polarization pk(t) defined as:





ne,k(t) = 〈α†kαk〉
nh,k(t) = 〈β†−kβ−k〉
pk(t) = 〈β−kαk〉

(2.46)

Based on these definitions and the Hamiltonian given by Eq. (2.43) we can derive

the equation of motion for ne,k(t), nh,k(t) and pk(t), using the Heisenberg equation

of motion:

ih̄
∂

∂t
Ô(t) = [Ô(t),H] (2.47)

for any operator Ô(t) in the Heisenberg picture. Inserting the 2-operator products

given in Eqs. (2.46) into Eq. (2.47), performing lengthy calculations involving the

normal ordering of the Fermion operators, and taking the average defined as in

Eq. (2.37) together with the definitions given in Eqs.(2.46) yields:

h̄

[
i
∂

∂t
− (εe,k + εh,k)

]
pk = (ne,k + nh,k − 1) dcv E(t)

+
∑

k′

∑

q6=~0

Vq

(
〈α†k′−qβ−k−qαk′αk〉+ 〈βk′+qβ−k−qβ

†
k′αk〉 (2.48)

+〈βk′α
†
k′−qαk′αk−q〉+ 〈β−kβk′−qβ

†
k′αk+q〉

)
,
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h̄
∂

∂t
ne,k = −2 Im (dcv E(t) p∗k)

+ i
∑

k′

∑

q6=~0

Vq

(
〈α†kα†k′−qαk−qαk′〉 − 〈α†k+qα

†
k′−qαkαk′〉 (2.49)

+〈α†kαk−qβ
†
k′−qβk′〉 − 〈α†k+qαkβ

†
k′−qβk′〉

)
,

and

h̄
∂

∂t
nh,k = −2 Im (dcv E(t) p∗k)

+ i
∑

k′

∑

q 6=~0

Vq

(
〈β†−kβ

†
k′−qβ−k−qβk′〉 − 〈β†−k+qβ

†
k′−qβ−kβk′〉 (2.50)

+〈α†k′+qαk′β
†
−kβ−k+q〉 − 〈α†k′+qαk′β

†
−k−qβ−k〉

)
.

These equations are essentially exact but the knowledge of the time evolution of

the four-operator products is required in order to solve them. These terms appear

as a direct consequence of the many-body Coulomb interaction in the Hamiltonian

in Eq. (2.43). Indeed if one neglects it, the equations (2.48), (2.49) and (2.50) are

reduced to the optical Bloch equations for free carrier transitions [17, 19]. At this

step of the calculations, the polarization equation, Eq. (2.48), already exhibits an-

other important many-body effect: the phase-space filling due to the Pauli blocking

factor (ne,k + nh,k − 1) which reduces the oscillator strength as the plasma density

increases. To proceed with our calculations, we need to address the problem raised

by the four-operator products. If we want to evaluate the time evolution of the

four-operator products it turns out that six-operator products appear in the calcu-

lations, and so on indefinitely: eventually, one has to deal with an infinite hierarchy

of coupled differential equations containing expectation values of products of higher

and higher number of field operators. As already briefly discussed in the Intro-

duction, one cannot solve these coupled differential equations exactly and needs to

make approximations. The simplest approximation consists of the RPA scheme: one
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splits the four-operator terms into products of densities and interband polarizations.

By neglecting some of the higher order correlations in the system but retaining the

coupling between the density and polarization, we can for instance factorize the

products of four operators 〈α†k′−qβ−k−qαk′αk〉 (appearing in Eq. (2.48)) into one

which is a product of the distribution ne,k and the interband polarization pk+q only:

〈α†k′−qβ−k−qαk′αk〉 = 〈α†k′−qαk〉〈β−k−qαk′〉δk′−q,k (2.51)

The sum over k′ in Eq. (2.48) yields the following term: pk+qne,k, according to the

definitions of ne,k and pk given in Eq. (2.46).

Thus, using the RPA yields the Hartree-Fock equations [11, 13, 44]:

∂

∂t
pk(t) = −i(ee,k + eh,k) pk(t)− i(ne,k(t) + nh,k(t)− 1) ωR,k(t), (2.52)

h̄
∂

∂t
ne,k(t) = −2 Im (ωR,k(t) p∗k(t)), (2.53)

and

h̄
∂

∂t
nh,k(t) = −2 Im (ωR,k(t) p∗k(t)), (2.54)

where

h̄ωR,k(t) = dcv E(t) +
∑

q6=k

V|k−q| pq(t) (2.55)

defines the generalized Rabi frequency ωR,k which appears in the three equations

(2.52), (2.53) and (2.54).

The finite carrier density in the plasma leads to a further renormalization of the

single-particle energies14 because of the finite exchange term Σexc(k) [42]:

14Or shrinkage of the bandgap: the transition energy between the valence band and the conduc-
tion band decreases with increasing the plasma density.
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h̄ei,k = h̄εi,k + Σexc,i(k) = h̄εi,k −
∑

q6=k

V|k−q|ni,q, i = e, h (2.56)

and to the phase space filling effect because of the population inversion described

by the factor 1 − ne − nh. Note that if we have different spin populations, the

exchange term is spin-dependent. In such conditions, the bandgap shrinkage also

depends on the spin populations15. Thus, qualitative effects such as energy shifts

and bleaching of the peaks in the absorption spectra can be explained at the Hartree-

Fock level. Unlike the optical Bloch equations, the Hartree-Fock equations are not

diagonal in the momentum index k. Indeed the expressions of the generalized Rabi

frequency and the exchange term in Eqs. (2.55) and (2.56) show that the Coulomb

interaction leads to a coupling of all momentum states. Eqs. (2.53) and (2.54) also

describe the generation of electrons and holes pairs by absorption of light and show

that the rate of change of the hole population is identical to the rate of change

of the electron population. However, The Hartree-Fock equations do not take into

account the many-body effects which lead to the plasma screening. Nevertheless,

it is possible to replace Vq with a screened Coulomb potential V s
q as defined in

section 2.1.3; but, as the Hamiltonian with the bare Coulomb potential already

contains the mechanism for plasma screening, one has to be careful with an ad hoc

phenomenological inclusion of effects of plasma screening which might be counted

twice if one goes beyond the RPA. Finally, as one deals with a mixture of both types

of quasi-particles, the screening of the Coulomb potential needs to take into account

the effects of both excited electrons and holes at the screened Hartree-Fock level.

Thus, assuming that the total screening is given by the sum of the effects resulting

from the separate electron and hole plasmas16, the 2D plasma frequency, Eq. (2.28),

the 2D effective plasmon frequency,Eq. (2.29), and the 2D screening wavenumber in

Eq. (2.14), become:

15In chapter 5, we shall see that depending on the initial spin populations, the exciton resonances
are differently located.

16We neglect the excitonic screening which at high enough plasma density is a good approxima-
tion.
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ω2
pl = ω2

pl,e + ω2
pl,h

ω2
q = ω2

q,e + ω2
q,h

κ = e2

2πεh̄2

∑
α=e,h mαnα

k=0 = κe + κh

(2.57)

The energy renormalisation of the single particles in the valence band is defined

in Eq. (2.45). If one replaces the bare Coulomb potential Vq by the screened potential

V s
q , Eq. (2.45) becomes

Es
h,k = −Ev,k +

∑

q6=~0

V s
q = h̄εs

h,k. (2.58)

This equation defines the hole energy in the presence of the screened Coulomb

potential and can also be expressed this way:

Es
h,k = −Ev,k +

∑

q 6=~0

Vq −
∑

q6=~0

(
Vq − V s

q

)
= Eh,k +

∑

q 6=~0

(
V s

q − Vq

)
. (2.59)

The last term in Eq. (2.59) which can be considered as an additional contribution

to the bandgap renormalization, is called the Coulomb-hole self energy or Debye shift

∆ECH [42]:

∆ECH =
∑

q6=~0

(
V s

q − Vq

)
. (2.60)

The Debye shift is not dependent on the wave vector and is negative for finite

plasma densities. From now on, we suppose that it is implicitly included in the

definition of the renormalized single-particle energies:

h̄ei,k = h̄εi,k + Σexc,i(k) +
1

2
∆ECH , i = e, h. (2.61)

These renormalized energies will also appear in the Fermi distributions together

with the renormalized quasi-chemical potential:
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fi,k =
1

exp β
[
h̄ei,k −

(
µi + Σexc,i(k) +

1

2
∆ECH

)]
+ 1

=
1

exp β (h̄εi,k − µi) + 1
,

(2.62)

where the index i stands for electrons (e) and holes (h). As the renormalization of

the energies h̄ei is exactly the same as it is for the quasi-chemical potential µi, they

cancel each other in the Fermi distributions which remains unchanged.

Finally, there are several sources of dephasing such as carrier-carrier (e − e,

e − h and h − h) scattering, carrier-phonon scattering, scattering by impurities or

lattice imperfection (inducing local modifications of the Coulomb potential). These

effects can be considered either by including from the beginning of the calculations

additional terms to the Hamiltonian in Eq. (2.43) (which here only describes the

electronic interactions) or by adding phenomenological decay and dephasing con-

tributions to the equations at the end of the calculations. To obtain even more

accurate results, one has to go beyond the Hartree-Fock level. This can be done by

separating the equations of motion for ne,k(t), nh,k(t) and pk(t) into two parts in

the following way:

∂

∂t
〈Ô(t)〉 =

∂

∂t
〈Ô(t)〉HF +

∂

∂t
〈Ô(t)〉

∣∣∣
col

, (2.63)

where the collision terms which have to be evaluated stand for the corrections to the

Hartree-Fock equations (2.52), (2.53) and (2.54). For instance, if one concentrates

on the electronic contributions to carrier scattering and dephasing and this four

operator term 〈α†kα†k′−qαk−qαk′〉, the collision contribution is defined as:

δ〈α†kα†k′−qαk−qαk′〉 = 〈α†kα†k′−qαk−qαk′〉 − 〈α†kαk〉〈α†k−qαk−q〉δk,k′ , (2.64)

where 〈α†kαk〉〈α†k−qαk−q〉δk,k′ comes from the random phase approximation which

leads to the Hartree-Fock equations. The time derivative of the above collision

contribution gives three terms which can be evaluated using the Heisenberg equation
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and the electron-hole Hamiltonian in Eq. (2.43). The calculations involve two-,

four- and six-operator terms. Leading further the calculations yields the carrier

Boltzmann collision rates for the carrier-carrier scattering. This is not the object of

this research work. Extensive studies can be found in the literature [47, 48, 49, 11,

50, 51].

2.3.2 Beyond the two-band approximation: the light hole contribution

Brief overview of the degenerate valence bands

A more realistic study of the semiconductor valence bands has to take into account

the effect of the spin of the carriers: at high speed the spin of an electron interacts

with the magnetic field created by its own motion. This coupling leads to an alter-

ation of the energy levels in the semiconductor17. Band structure calculations done

with Kane’s k.p theory [52] for 3D and 2D systems show that the spin-orbit inter-

action lifts the degeneracy of the valence bands states. In this case only the total

angular momentum J = L + S is conserved (i.e. commutes with the Hamiltonian

of the system), which means that the eigenstates of the system are not eigenstates

of the operators L2 and Lz with the associated spin up and down states, but of J2

and Jz. To illustrate that, we give here some results of calculations of the semicon-

ductor valence bands in the vincinity of the Γ-point of the Brillouin zone. Taking

L = 1 and S = 1/2 leads to four eigenstates for J = 3/2 and two for J = 1/2.

Restricting ourselves to the four optical states for J = 3/2, we find that these four

states have two twofold degenerate energy eigenvalues, depending on the value of

total spin magnetic moment mJ (i.e. the eigenvalue of Jz):

E =
h̄2k2

2m

(
γ1 +

5

2
γ2 − 2γ2m

2
J

)
, (2.65)

γ1 and γ2 are the phenomenological Luttinger parameters [53, 54].

These energies are twofold degenerate because of their quadratic dependence on mJ :

17This leads to an additional relativistic term in the Hamiltonian. Another relativistic effect,
which is not taken into account here, is the alteration of the mass of the electron.
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• For mJ = ±3/2:

Ehh = (γ1 − 2γ2)
h̄2k2

2m
. (2.66)

• For mJ = ±1/2:

Elh = (γ1 + 2γ2)
h̄2k2

2m
. (2.67)

Ehh and Elh are the energies of the heavy-hole and the light-hole bands respec-

tively. Looking at their expressions, one can see that at the point k = 0 these two

bands are still degenerate. The degeneracy is lifted for finite values of k because of

the different effective masses:

mhh = m/(γ1 − 2γ2), (2.68)

and

mlh = m/(γ1 + 2γ2). (2.69)

Eqs. (2.68) and (2.69) show the obvious origin of the terminology of the heavy

and the light holes.

For 2D structures, one has to take into account both the effects of the energy

of the confinement of the carriers (see section 2.2.1) and the strains which appear

when one wants to accommodate a small mismatch of the lattice constants of two

different materials by elastically straining one or both of the components. This leads

to strained layer structures which can also be grown by molecular beam epitaxy. In

this case, even for k = 0 there is no degeneracy since Eq. (2.67) becomes:

Elh = ∆Ecs +
h̄2k2

2mlh

, (2.70)

where ∆Ecs accounts for the band splitting due to strain and confinement. Its value

can be taken from experiments.
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Equations of motion

Since the heavy hole-light hole band splitting observed in the experiments described

in chapter 5, is ∆cs = 30 meV, we neglect the heavy hole and light hole coupling.

In the same fashion as above, calculations lead to:

∂

∂t
pλ
k(t) = −i(ee,k + eλ,k) pλ

k(t)− i(ne,k(t) + nλ,k(t)− 1) ωλ
R,k(t) , (2.71)

h̄
∂

∂t
ne,k(t) = −2 Im (ωλ

R,k(t) pλ∗
k (t)) , (2.72)

and

h̄
∂

∂t
nλ,k(t) = −2 Im (ωλ

R,k(t) pλ∗
k (t)) , (2.73)

for λ = hh, lh and ei,k defined as in the above section18. The Rabi frequency is

defined by:

h̄ωλ
R,k(t) = dλ

cv E(t) +
∑

q6=k

V|k−q| pλ
q(t) . (2.74)

Eqs. (2.72) and (2.73) describe the generation of electrons and holes pairs due

to optical transitions from the valence bands to the conduction band. In these equa-

tions, just the coherent term is considered, and as long as the scattering (dephasing)

terms are ignored, the rate of change of the hole population is identical to the rate

of change of the electron population.

2.4 Conclusion

In this chapter, we gave an overview of the electronic and thermodynamic properties

of semiconductor quantum wells, considering the finite width of the quantum wells.

We assumed the 2D formulas to be valid for the chemical potential, but we intro-

18Including ∆Ecs in the definition of the light hole energy h̄elh,k
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duced a form factor to account for the alteration of the Coulomb potential energy in

real heterostructures. We used the static plasmon-pole approximation to account for

the screening in a 3-component electron/hole plasma. This allowed analytical calcu-

lations to be done in order to simplify the numerical work in the next chapters. The

link between electronic, thermodynamics and optical properties of the electron-hole

plasma was made introducing the electric-dipole interaction energy in the definition

of the Hamiltonian, Eq. (2.22). The knowledge of the interband polarization pk is

required to evaluate the polarization function P (t), and hence the optical suscepti-

bility χ(ω). One obtains pk by solving the SBE, Eqs. (2.71), (2.72) and (2.73). We

assume here that the screened Hartree-Fock approximation is sufficient to describe

the interplay between the thermodynamics of the electron/hole plasma and its opti-

cal properties. As we shall see in the next chapter, the Coulomb many-body effects

as well as the Pauli blocking entering Eq. (2.71) strongly influence the shape of the

absorption spectra.



Chapter 3

Numerical solutions of the semiconductor Bloch

equations

3.1 Introduction

In this chapter we present and discuss the numerical solutions of the SBE. We con-

sider the specific case of quantum wells where Coulombic effects are more important

than in the bulk systems. Although the electronic and thermodynamic properties

of the electron-hole plasma were presented and discussed for ZnSe only in chapter

2, the SBE will be solved considering two different types of materials: the mid-gap

semiconductor GaAs and the wide-gap semiconductor ZnSe. In this chapter we

are also concerned with the comparison between the optical spectra computed for

both type of materials as it will help in obtaining more physical insight as far as the

interplay between the Fermionic nature of the carriers and the Coulombic effects in

the electron-hole plasma is concerned. Moreover, it will also help us in assessing

the quality of the screening model we use: in materials such as ZnSe where the

Coulomb interaction plays an important role, the limitations of the static plasmon-

pole approximation are more visible than in the results obtained with materials such

as GaAs. To discuss the basic properties of the absorption phenomenon, we present

calculations done for GaAs first.

3.2 Formulation of the numerical problem

Solving the SBE even at the screened Hartree-Fock level, i.e. Eqs. (2.52), (2.53) and

(2.54), is a complicated task. As discussed below and in Appendix B, the Coulomb

interaction term which couples all the equations, i.e. all the k-states is the main

source of the difficulties that one has to deal with when solving the SBE (see also

41
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Ref. [44]). It is numerically demanding and one has to find ways of simplifying

the problems that in particular arise from the singular behaviour of the Coulombic

terms and the coupling with the light field (nonlinearity of the SBE).

3.2.1 Simplifying the numerical work

The simplest situation is when one assumes that the plasma is in quasi-equilibrium

and that the probe field E is sufficiently weak not to generate a significant population

of carriers. Under these conditions, Eqs. (2.53) and (2.54) become:

∂

∂t
ne,k(t) =

∂

∂t
nh,k(t) = 0, (3.1)

and we only have to solve Eq. (2.52) which is an equation linear in the field. Fur-

thermore, for the numerical analysis it is convenient to remove the rapidly varying

phase factor from pk and to work with a slowly varying polarization amplitude. To

do so, we make the following substitution:

pk −→ pke
iωt. (3.2)

In this case, Eq. (2.52) becomes:

∂

∂t
pk(t) = −i(ee,k + eh,k − ω − iγ) pk(t)− i(ne,k(t) + nh,k(t)− 1) ωR,k(t), (3.3)

where the Rabi frequency ωR,k(t) is defined as in Eq. (2.55). The envelope of the

electric field E(t) entering the definition of the Rabi frequency ωR,k(t) in Eq. (2.55),

is assumed to be Gaussian, centered on t = 0:

E(t) = exp−(t2/2∆2
t ), (3.4)

where ∆t is half the width of the pulse.

Note that for a more realistic description of the time dependence of the polariza-
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tion P (t) at the screened Hartree-Fock level as discussed at the end of section 2.3.1,

we added a dissipative term to the SBE, by introducing a small phenomenological

damping coefficient γ. Setting ṗk|col ' − γpk is the simplest approximation that

one can make to simulate the collision contribution in Eq. (2.63) which describes

the polarization decay (dephasing) and hence the broadening of the optical spectra,

due to carrier-phonon scattering. This also facilitates the numerical convergence.

Another aspect of the numerical problem is to evaluate the discrete sums over

k-vectors appearing in Eqs. (2.55) and (2.56) for instance. The usual technique is to

transform the discrete sum by an integral, assuming that replacing the discrete set of

k-vectors by a continuous carrier momentum distribution is a good approximation.

In a two-dimensional problem this gives:

∑

k

−→ A
4π2

∫ ∞

0

∫ 2π

0
kdk dφ (3.5)

3.2.2 Evaluation of the Coulomb matrix elements

In Eqs. (2.55) and (2.56) there are terms in which the Coulomb interaction V|k−q|

exhibits a singularity for k = q at low and zero density. This singularity has to be

removed before undertaking any calculation, but considerable care must be taken

when integrating in the vincinity of the singularity. On one hand, one does not

want to perform the whole numerical integration with a dense mesh as it is time

consuming; on the other hand, removing the singular points on a coarse mesh leads

to a rather inaccurate result as an important number of points in the region where

the discontinuous function is fast varying are neglected in the numerical integration.

A way to overcome this sort of problem is to evaluate the difference between calcula-

tions which would be done with a dense mesh and calculations which would be done

with a coarse mesh. This can only be done if V|k−q| is a slow enough varying func-

tion far from the singularity. The correction will be significant in the regions where

k ≈ q (see Appendix C for further detail). In the quasi-equilibrium situation that

is treated in this chapter, the evaluation of the Coulomb matrix elements V|k−q| has
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to be performed only once for a given density as all the physical parameters remain

constant.

To illustrate our discussion, we evaluate the nondiagonal elements that appear

in the Rabi frequency, Eq. (2.55):

∑

q6=k

V|k−q| pq(t) . (3.6)

The above expression can be rewritten this way:

∑

q6=k

V|k−q| pq(t) =
e2

8π2ε

∫ ∞

0
fqqpq dq

∫ 2π

0

dθ√
k2 + q2 − 2kq cos θ

=
∫ ∞

0
V ∗(k, q) pq dq ,

(3.7)

assuming that there is no angular dependence in the interband polarization pq. The

quantity V ∗(k, q) is the angle averaged Coulomb potential energy, defined as follows:

V ∗(k, q) =
e2

8π2ε
fqq

∫ 2π

0

dθ√
k2 + q2 − 2kq cos θ

. (3.8)

The above expression has to be computed numerically.
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Figure 3.1: Singular behaviour of V ∗(k, q), for various values of k.
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Because of the singular behaviour of V ∗(k, q) displayed in Fig. 3.1, its numerical

evaluation is both difficult and time consuming. For further detail on how we treat

this problem, see Appendix C.

3.3 The polarization function

From Eq. (2.40), we compute the complex polarization function P (t) as follows:

P (t) = dcv

∑

k

pk(t) . (3.9)

To calculate P (t) we need to solve first Eq.(3.3). To do so, we solve the coupled

equations for Re pk(t) and Im pk(t):

h̄
∂

∂t
Re pk(t) = −h̄γ Re pk(t) + h̄(ee,k + eh,k − ω) Im pk(t)

+(ne,k + nh,k − 1)
∑

q 6=k

V|k−q| Im pq(t) , (3.10)

and

h̄
∂

∂t
Im pk(t) = −h̄γ Im pk(t)− h̄(ee,k + eh,k − ω) Re pk(t)

−(ne,k + nh,k − 1) (dcv E(t) +
∑

q6=k

V|k−q| Re pq(t)) . (3.11)

Even though Re pk(t) and Im pk(t) are coupled, it is only Im pk(t) whose time

evolution is explicitly governed by E(t). The imaginary and real parts of P (t) are

shown in Fig. 3.2, for both a free carrier plasma and interacting plasma at zero

and finite densities. The probe field E(t), whose center frequency is tuned on the

bandgap, is also shown.

The amplitude of the real part, ReP (t), is larger than the amplitude of the

imaginary part, ImP (t), for both the free carrier and interacting plasmas. The den-

sity dependence of the polarization function appears clearly: the higher the density

is, the more bleached the peak of P (t) is, for both interacting and non-interacting

plasmas. This is due to the Pauli blocking effect reducing the oscillator strength.
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Figure 3.2: Real and imaginary parts of the polarization function as a function of time, in
the case of both a free carrier plasma and interacting plasma for various plasma densities,
in a 4 nm GaAs-based semiconductor quantum well. The plasma temperature is taken to
be T = 77 K.

The decay of the polarization function reflects the presence of the phenomeno-

logical damping coefficient γ in Eq. (3.3), which accounts for the collisions in the

plasma that cause the dephasing. Here h̄γ = 3.4 meV. However, the inclusion of

the Coulomb interaction enhances the amplitude of the polarization function which

decays on a longer time scale (0.3 ps) when compared to the free carrier plasma

(0.05 ps).

As one can see in Fig. 3.3 the behaviour of P (t) is not just dominated by the

damping γ, but is also influenced by the electron-hole attractive interaction.

The knowledge of the polarization function P (t) is required to compute the

optical susceptibility χ(ω) defined as:

χ(ω) =
P̂ (ω)

εÊ(ω)
, (3.12)

where P̂ (ω) and Ê(ω) are the Fourier transform of the polarization function P (t)
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and of the electric field E(t). It is a complex function whose imaginary part gives

the absorption α(ω) [11]:

α(ω) ∝ Imχ(ω) (3.13)

and whose real part gives the refractive index n(ω) [11]:

n(ω) ∝ Reχ(ω). (3.14)

These relations are valid for both interacting and noninteracting plasmas. Most

of the spectra below will be shown as function of the photon energy scaled to the

3D Rydberg, Ry: ∆ = (h̄ω − Eg)/Ry.
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Figure 3.3: Polarization function as a function of time, in the case of both a free car-
rier plasma and interacting plasma for various plasma densities, in a 4 nm GaAs-based
semiconductor quantum well. The plasma temperature is taken to be T = 77 K.



Chapter 3. Numerical solutions of the semiconductor Bloch equations 48

3.4 Absorption in a free carrier plasma

3.4.1 Density dependence of the absorption spectra

In the case of a free carrier plasma, for a given temperature, the density dependence

of the absorption spectra comes only from the Pauli blocking effect. As we can see

in Fig. 3.4, the presence of a finite plasma density affects the oscillator strength

around the band edge.

A finite plasma density influences the shape of the absorption spectra: there is

an overal blue shift and a bleaching of the absorption that becomes more and more

important with increasing the plasma density. The lower energy conduction band

states being occupied, the semiconductor can only absorb light at higher energy

states, and the probability of such optical transition decreases. Another interesting

effect occurs at higher density: the band filling factor 1 − ne − nhh , and therefore

the optical absorption can become negative if the chemical potential, µ = µe + µhh,

is positive and satisfies the inequality: Eg < h̄ω < Eg + µ. For a given temperature

this happens only if the density is high enough: we enter the gain regime and have

stimulated emission.
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Figure 3.4: 2D free carrier plasma absorption spectra for various densities, at T = 77 K.
The Pauli blocking is responsible for the blue shift of the absorption and the gain regime
at high density.
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3.4.2 Temperature dependence of the absorption spectra

The behaviour of the absorption spectra not only depends on the plasma density

but also on the temperature, as shown below. In fact, the band filling factor that

influences the oscillator strength decreases with increasing the plasma temperature.

Indeed, the Pauli blocking effect reflects the Fermionic nature of the electron hole

plasma. However, with increasing temperature the Fermion gas is less and less

degenerate and the density has to be very high so as to have the chemical potential

positive and satisfying the above inequality.

With increasing the plasma temperature for a given density, the absorption

spectra in Fig. 3.5 show an increase of the probability of an optical transition around

the band edge. However, one can also see that higher in the band the absorption is

less effective at high temperature than it is at low temperature for a given density.

This is due to the shape of the Fermi-Dirac distributions: at high temperature,

the higher energy states are occupied which lowers the probability of an optical

transition.
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Figure 3.5: 2D free carrier plasma absorption spectra for various temperatures. The
Pauli blocking that is responsible for the blue shift of the absorption and the gain regime
at high density, becomes less important with increasing the plasma temperature.
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3.5 Inclusion of the Coulomb interaction

The free carrier theory allows us to describe and explain the influence of the Fermionic

nature of the carriers on the response of the electron-hole plasma. To obtain a more

realistic description of the properties of the semiconductor media, one needs to take

the Coulomb interaction into account as electrons and holes are electrically charged

particles that interact. As shown below, the presence of the Coulomb forces in the

plasma modifies significantly the shape of the absorption spectra displayed above as

much as it complicates the analysis as one has to deal with the interplay between

the Fermionic nature of the carriers with their electrical properties.

3.5.1 Many-body corrections

As explained in chapter 2, we solve the SBE at the screened Hartree-Fock level of

approximation. As we shall see below, introducing the Coulomb interaction in the

Hamiltonian, Eq. (2.22), yields many-body corrections arising from the Hartree-Fock

contribution. These corrections are the renormalization of the electric-dipole inter-

action energy which leads to the excitonic enhancement of the interband transition

probability and to the bandgap shrinkage because of energy shifts caused by the

presence of a finite interacting plasma density.

Excitonic enhancement

First, we study the excitonic enhancement shown in Fig. 3.6. When computing

absorption spectra including Coulomb interaction, the first striking feature is the

exciton peak appearing below the band edge. In the case of a perfect 2D system, i.e.

we do not consider the finite width of the quantum well, the location of the exciton

resonance is exactly four times the excitonic Rydberg energy below the band edge:

R2D
y = 4Ry. This is the increased value of the quantum well exciton binding energy,

due to the 2D confinement of the motion of the carriers. Another important feature

is the enhancement of the continuum absorption, above the band edge. These two

features can be well seen in Fig. 3.6. Finding the heavy hole exciton peak exactly
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at R2D
y below the band edge provides a good test for the quality of the numerical

calculations.
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Figure 3.6: 2D interacting and noninteracting plasma linear absorption spectra. We
can clearly see the excitonic resonance four Rydbergs below the band edge as well as the
Coulomb enhancement in the continuum absorption region, above the band edge.

The existence of resonances and the enhancement of the continuum optical spec-

trum has its origin in the renormalization of the electric-dipole interaction energy

which is caused by the attractive Coulomb interaction between the conduction and

the valence bands. In particular, there is a pronounced increase in the optical ab-

sorption around the band edge when compared to the free carrier results. This can

be explained as follows: because of the attractive Coulomb interaction between the

conduction and the valence band, electrons and holes have a greater tendency to be

in the vincinity of each other for a longer duration than would be the case if they

were noninteracting particles. In other words, the interaction time is increased and

leads to a higher probability of an optical transition. The broadening of the exciton

resonance is essentially due to carrier-carrier scattering or carrier-phonon scattering

in the electron-hole plasma. In our calculations, this is simply described by the

phenomenological damping coefficient γ.
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The bandgap renormalization

As stated earlier in this chapter, a finite plasma density causes the shrinkage of

the bandgap because of the energy renormalizations of the single particle energies

(see Eqs. (2.61)). The renormalization of the energy states is essentially due to the

alteration of the Coulomb potential in the Hamiltonian of the electron-hole system.

Indeed, with increasing the carrier density, more vacant valence band states are

available to allow the redistribution of charges for more effective screening. Since

the screening of a repulsive interaction leads to a lowering of the conduction electron

energy, the transition energy decreases. As shown below, it is possible to evaluate the

bandgap renormalization. However, the results that one may obtain heavily depend

on the approximations used to perform the calculations. To be more specific, the

quality of the screening model used to compute the screened Coulomb potential is

of particular importance. The aim of this section is to show some results based on

simplified calculations to support the comments and discussions in the next sections.

To calculate the bandgap renormalization we need to evaluate both the screened

exchange self-energy, Eq. (2.56), and the Debye shift, Eq.(2.61). The screening

model that is used in this work is based on the static plasmon-pole approximation

(see Appendix A) which allows an analytical treatment of the problem of the energy

renormalization. Noting that the k-dependence of the exchange self-energy is weak

in the band-edge region, we can further simplify the calculations approximating

the momentum transfer |k − q| in Eq. (2.56), by the density dependent 2D Fermi

wavevector kF defined as follows:

kF = (2πN)1/2. (3.15)

Inserting Eq. (3.15) into Eq. (2.56), and performing numerical calculations, also

evaluating Eq. (2.60), yield the density dependence of the bandgap shrinkage dis-

played in Figs. 3.7 and 3.8. We also compare the results for low and high temperature

regimes.
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Figure 3.7: Two-dimensional bandgap shift scaled to the two-dimensional GaAs Rydberg
as a function of the two-dimensional density scaled to the exciton Bohr radius at 10 K
and 300 K.
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Figure 3.8: Bandgap shift scaled to the two-dimensional GaAs Rydberg in a 4 nm GaAs-
based semiconductor quantum-well as a function of the two-dimensional density scaled to
the exciton Bohr radius at 10 K and 300 K.

The bandgap renormalization clearly depends on both the plasma density and

temperature. In particular, thanks to the Debye shift we can see the importance

of the screening effect on the energy shifts. For a given temperature, increasing

the plasma density enhances the renormalization of the energy states as both the

Coulomb hole and the exchange energy increase. However, as mentioned earlier,

for a given density, increasing the temperature lowers the plasma screening; as a
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consequence, the strength of the Coulomb interaction becomes bigger; but, while

the exchange self-energy also becomes bigger, the Coulomb hole energy, Eq. (2.60),

becomes smaller. Both the exchange and Coulomb hole energies are additive, but

the Debye shift having a more important contribution on the energy renormalization

than the exchange energy, the overall result is a lowering of the energy shift. Note

that at low temperature and high density, there is a saturation of the screening

parameter as shown in Fig. (2.2). A consequence is that the Debye shift also satu-

rates at low temperature and high density. For a given temperature and density, the

introduction of the form factor in the calculations to account for a finite well-width

modifies both the dielectric function and the strength of the Coulomb interaction

which becomes smaller. That explains why the bandgap shrinkage is bigger in an

ideal 2D system than it is actually in a quantum well. For further discussion, see

Ref. [42].

3.5.2 Density dependence of the absorption spectra

As for the free carrier calculations, it is interesting to study the density dependence

of the absorption spectra for a given temperature, when the Coulomb interaction is

included in the analysis. Indeed, the location of the excitonic resonance as well as

its height depend on the interplay between the Coulombic forces and the Fermionic

nature of the carriers.

The absorption spectra in Fig. 3.9 show that the spectral location of the ex-

citonic resonance is pretty much independent of carrier density as one can see on

experimental spectra. This result is a consequence of the cancellation of two effects:

lowering of the exciton binding energy and bandgap renormalization. Because of

a finite plasma density, the Coulomb interaction is screened, hence weakened; the

effective strength of the Coulombic forces is further decreased because of the phase

space filling: as one can see in Eq. (3.3), the Pauli blocking factor lowers the Coulomb

term entering the definition of the Rabi frequency, Eq. (2.55). This leads to a low-

ering of the exciton binding energy.
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Figure 3.9: Absorption spectra in a GaAs-based semiconductor quantum well, including
the Coulomb interaction, in a low density regime, at T = 77 K. Note the bleaching of the
excitonic peak on essentially the same energy line as the excitonic resonance of the linear
spectrum.

But, as seen in the above section the presence of carriers in the plasma also yields

a bandgap shrinkage, and a consequence is that because of the energy shift of the

band edge, the reduced exciton binding energy does not affect the location of the

exciton peak on the optical spectrum. The bleaching of the exciton peak has also its

origin in plasma screening and phase-space filling: because of plasma screening, the

strength of Coulomb interaction is weakened and so is the excitonic enhancement;

and, because of Pauli blocking, the probability of an optical transition is also lowered.

When we study absorption spectra obtained with pump and probe experiments

with spin-selective excitation, in chapter 5, we shall be in position to evaluate the

relative importance of plasma screening and phase-space filling on the exciton peak

bleaching.

As mentioned in the above sections, the quality of the screening model influences

the accuracy of the results. Both the exciton binding energy and bandgap renormal-

ization crucially depend on the screening. We chose to work using the quasi-static

plasmon-pole approximation as it allows analytical calculations that simplify the dif-

ficult numerical treatment of the problem. Looking at the spectra in Fig. 3.9, one can
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see that there is a slight red shift of the exciton peaks compared with experimental

data, which becomes more and more important with increasing the plasma density.

This shows the limitation of the screening model that we use: it overestimates the

bandgap reduction. Comparison between bandgap renormalization evaluated with

the quasi-static plasmon-pole approximation and with the dynamical plasmon-pole

approximation can be found in the literature [42]. Despite this limitation, we obtain

a good qualitative agreement with experimental results which is sufficient for our

purposes.

In Fig. 3.10, we explore the high density regime. With increasing the density the

plasma screening becomes more and more important. The Coulomb interaction is

weak and exciton bound states tend to disappear. Moreover, as more and more low

energy states are occupied, the probability of absorption becomes smaller. Hence

the oscillator strength decreases with increasing plasma density. The above spectra

show the exciton resonance vanishing as well as an increased absorption around the

band edge. When one enters the gain region, the Coulomb interaction has not much

effect on the shape of the absorption around the gap and the phase space filling

effect becomes the dominant process as described above in the case of free carrier

theory.
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Figure 3.10: Absorption spectra in a GaAs-based semiconductor quantum well, including
the Coulomb interaction, for various densities at T = 77 K.
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3.5.3 Temperature dependence of the absorption spectra

As well as for the free carrier results, it is interesting to discuss the effect of the

temperature on the absorption spectra when the Coulomb interaction is included in

the calculations. As one can see on Figs. 3.7 and 3.8, for a given density, the tem-

perature has an effect on the bandgap renormalization, but does not affect much the

spectral location of the exciton resonance as the binding energy is also temperature

dependent.

We choose to show absorption spectra at high density to show how an increase in

the plasma temperature affects the gain and absorption. At high temperature, the

phase space filling effect is weakened as the plasma is less degenerate. A consequence

is that one needs to have a very high plasma density to enter the gain region at high

temperature. The Coulomb interaction becomes more important as increasing the

temperature lowers the plasma screening. As seen in Fig. 3.11, the absorption is less

effective higher in the band at high temperature than it is at low temperature for

a given density. This is due to the shape of the Fermi-Dirac distributions: at high

temperature, the higher energy states are occupied which lowers the probability of

an optical transition.
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Figure 3.11: Absorption spectra in a semiconductor quantum well, including the
Coulomb interaction, for various temperatures at a given density.
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Note that we simplify the calculations by keeping the phenomenological damping

coefficient γ constant when the plasma temperature and density vary.

3.6 Beyond the simple calculations: more realistic absorption spectra

For quantum wells having a finite well width, the Coulomb interaction between the

confined carriers differs from the one in an ideal 2D system. We have discussed

the effect of a finite well width on the Coulomb interaction in chapter 2, section

2, and the alteration one has to make to the Coulomb potential by introducing a

form factor (see Appendix B). The Coulomb interaction being effectively weaker in a

realistic quantum well heterostructure than it is in an ideal 2D electron-hole system,

the exciton binding energy is smaller than the 2D Rydberg value given above. This

is observed on experimental spectra. Another feature that is also observed is the

presence of a light hole exciton peak just below the band edge. As seen in chapter 2,

section 3, it is possible to derive an equation of motion for the interband polarization

describing the optical transition between the light hole band and the valence band.

We show in Figs. 3.12 and 3.13 absorption spectra taking into account the finite well

width, and absorption spectra that exhibit light hole exciton resonances.

3.6.1 Effect of a finite well width

Including the form factors in the numerical calculations, considering Eqs. (2.28),

(2.29) and (2.30), yields the results displayed in Fig. (3.12).

The linear spectrum in the case of the ideal 2D confinement exhibits an exciton

resonance exactly located at the 2D Rydberg energy, which is four times bigger than

the 3D Rydberg as well known. The introduction of a form factor blue shifts and

bleaches the exciton resonance. One may explain the observed blue shift saying

that the exciton binding energy being smaller, the exciton peak is located closer to

the band edge than it is in the ideal case. As far as the exciton peak bleaching is

concerned, the excitonic enhancement discussed above is less important when the

Coulomb interaction interaction is weaker.
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Figure 3.12: Linear absorption spectra in a semiconductor quantum well. Comparison
between the ideal 2D quantum confinement and a 4 nm quantum-well.

3.6.2 Inclusion of the light hole

To evaluate the absorption spectra describing optical transitions from both the heavy

and light hole bands to the conduction band, we solve Eqs. (2.71), (2.72), and (2.73),

in the same fashion as discussed in section 3.2, at the begining of this chapter.

For our calculations with GaAs parameters we arbitrary take the heavy hole-

light hole band splitting to be ∆Ecs = 10 meV, which is important enough to neglect

the heavy hole and light hole coupling. In the case of ZnSe, we take ∆Ecs = 30

meV from the experiments described in chapter 5. The absorption spectra αhh(∆)

and αlh(∆) being computed, we obtain the total absorption spectrum α(∆) by

adding them up: α(∆) = αhh(∆) + αlh(∆), as shown in Fig. 3.13. The density and

temperature dependent properties we discussed above for the two-band model are

still valid. However, one can see that there is a finite redshift of the light hole exciton

peak which is more pronounced than for the heavy hole exciton peak. This comes

from the screening model: the use of the quasi-static plasmon-pole approximation

leads to an overestimation of the bandgap shrinkage which is not compensated by

the lowering of the light hole exciton binding energy. The light hole exciton peak
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properties are mainly dominated by the electrons in the quasi-equilibrium regime in

which the light hole density is zero.

-8 -6 -4 -2 0 2 4 6

∆

0

α(
∆)

 (
ar

b.
 u

ni
ts

)

-8 -6 -4 -2 0 2 4 6

∆

0

Linear spectrum

5.0 x 10
11

 cm
-2

Heavy hole exciton

Light hole exciton

resonances

resonances

GaAs

Figure 3.13: Absorption spectra in a 4 nm GaAs-based semiconductor quantum well
including the light hole band. Comparison between the full spectra and the contributions
of the heavy hole exciton and light exciton absorption spectra.

3.6.3 Comparison between GaAs and ZnSe

Until now, calculations were done with GaAs parameters to explain and illustrate

the basic properties of the SBE and the absorption spectra. However, the results

we shall present in the next chapters are based on ZnSe parameters as we have

access to experimental data concerning the properties of this II−VI material. So,

in the next section we compare numerical results obtained for GaAs and ZnSe.

Having discussed above the basic properties, we can now proceed with a comparative

analysis of the numerical calculations done with both types of materials, mid-gap

GaAs and wide-gap ZnSe considering the finite well width and both the heavy and

light bands. To do so, we shall work in dimensionless units for the plasma densities

which will be scaled to the exciton Bohr radius aB for each material.
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The bandgap renormalization

In this section, the bandgap renormalization is calculated with ZnSe parameters

and shown in Fig. 3.14.
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Figure 3.14: Bandgap shift scaled to the two-dimensional ZnSe Rydberg in a 4 nm
quantum-well as function of the two-dimensional density scaled to the exciton Bohr radius
at 10 K and 300 K.

Because of the lower values of the dielectric constant ε and of the effective masses,

me and mhh, in GaAs compared to ZnSe, the exciton Bohr radius aB is bigger for

GaAs (see the Introduction for the values of these quantities). So, the first thing

that one can note is that because of the smaller value of the exciton Bohr radius for

ZnSe, the scaled density is smaller than it is for GaAs, whereas the plasma density

is the same. The value of the bandgap shift also appears to be smaller in scaled

units when compared to GaAs, but as the Rydberg energy is about five times bigger

for ZnSe than it is for GaAs, the bandgap shift is in fact much more important.

Differences between ZnSe and GaAs absorption spectra

Various physical parameters such as the bandgap energy, the dielectric constant

and the effective masses play a role in the shape of the semiconductor absorption

spectra (see the Introduction for the values taken for GaAs-based and ZnSe-based
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semiconductor quantum-wells). When one compares the values of these parameters

for GaAs with those of ZnSe, one may think that the differences that are not so big

should not lead to significant alteration on the absorption spectra of these materials.

However, as we show in Fig. 3.15, this is not the case. In particular the optical prop-

erties of these materials crucially depend on the the value of the dielectric constant.
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Figure 3.15: Comparison of the absorption spectra in GaAs and ZnSe 4 nm semicon-
ductor quantum wells for various densities, at T = 77 K. Note that the 3D Rydberg being
about five times bigger for ZnSe than it is for GaAs, the frequency range covered by ∆
is bigger for ZnSe absorption than it is for GaAs.

We have seen in the above section that because of the finite well-width, the 2D

heavy hole exciton binding energy is smaller than the 2D Rydberg. When com-

paring the location of the heavy hole exciton peaks for both materials, GaAs and

ZnSe, one can see that for the same well width, the alteration of the exciton binding

energy is less important for GaAs than ZnSe. This is simply due to the fact that

the dielectric constant for GaAs is smaller than for ZnSe: the Coulomb interaction

being weaker for GaAs, the effect of a finite well width on the Coulomb interaction

is less dramatic than it is for ZnSe. Another striking feature is that for the same

scaled density, Na2
B, the exciton peaks are much more bleached in the ZnSe spectra

than they are in the GaAs spectra. This is essentially due to the bigger value of the
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exciton Bohr radius aB for GaAs, that makes the plasma density smaller for a given

value of Na2
B. However, for the same plasma density at a given temperature, the

exciton peak in a GaAs spectrum is more bleached than it is in a ZnSe spectrum

as we see in Fig. 3.16.
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Figure 3.16: Comparison of the absorption spectra in GaAs and ZnSe 4 nm semicon-
ductor quantum wells for a finite plasma density, at T = 77 K.

This feature can be well explained if one compares the thermal wavelengths

of the carriers for both GaAs and ZnSe. As the effective masses for GaAs are

smaller than they are for ZnSe (see the Introduction), the thermal wavelengths of

the carriers are bigger for GaAs than they are for ZnSe. This means that for a

given temperature and a given density, the electron-hole plasma is more degenerate

in GaAs than it is in ZnSe. A direct consequence is that the phase-space filling

factor is more important in GaAs. Moreover, the Coulomb interaction being weaker

in GaAs, the excitonic enhancement is also weaker.

Numerical problems for the highly degenerate regime

While writing and testing the codes for solving the SBE for both GaAs and ZnSe,

we saw that we had to be careful when evaluating the absorption spectra at high

density and low temperatures as it yields unphysical behaviours such as spikes on
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the absorption spectra as shown in Figs. 3.17 and 3.18.
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Figure 3.17: Unphysical behaviour of the numerical solutions of the SBE when decreasing
the plasma temperature at a plasma density given by Na2

B = 0.2. Comparison between
calculations done for GaAs and ZnSe parameters.
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Figure 3.18: Unphysical behaviour of the numerical solutions of the SBE when decreasing
the plasma temperature at a given high density, here 1012cm−2. Comparison between
calculations done for GaAs and ZnSe parameters.

To discuss this problem we computed absorption spectra for various temper-

atures and evaluated the spectra with the same scaled density: Na2
B = 0.2, i.e.
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NGaAs = 1.275× 1011cm−2 and NZnSe = 1.328× 1012cm−2, and also with the same

plasma density N = 1012cm−2. The numerical solutions of the SBE start being

unphysical when the highly degenerate regime is entered, which for the chosen den-

sities is below T = 30 K. For Na2
B = 0.2, as shown in Fig. 3.17, results obtained

for GaAs do not exhibit a dramatic behaviour as the one observed for ZnSe. This

is due to the fact that NGaAs is ten times smaller than NZnSe. However, for tem-

peratures below than 30 K, two significant peaks appear below and above the band

edge on the GaAs spectra. These peaks are not excitonic as the phase space filling

and plasma screening are too strong, and are not matching any experimental feature

that one can observe for such density and temperature regime. For the same density

N = 1012cm−2, the highly degenerate regime is entered at higher temperature for

GaAs, as the carrier effective masses are lighter in GaAs. However, as one can see

in Fig. 3.18, down to T = 30 K, the computed GaAs absorption spectra are more

reliable than those evaluated for ZnSe. Hence, this issue is not a simple matter

such as using a mesh that is not accurate enough to account for the fast varying

distribution Fermi functions around the chemical potential. Indeed, the Coulomb

potential also seems to play a role, as numerical solutions of the SBE appear to be

more stable for GaAs at low temperature. One would need to take time to explore

the interplay between the number of k-points, the shape of the Fermi distributions

and the Coulomb interaction, so as to find a practical way to overcome this situa-

tion in order to compute absorption spectra at extremely low temperatures. Further

discussion on numerical problems can be found in Ref. [44].

3.7 Refractive index spectra

In this thesis, we do not focus on the study of the refractive index, but it emerges

naturally as a by-product of our calculations. Therefore, we only give a brief de-

scription of the figure below. For more detail, see Ref. [55].

The refractive index spectra in Fig. 3.19, are evaluated for an interacting elec-

tron/hole plasma. We can see clearly that the linear refractive index spectrum
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exhibits a maximum and a minimum. With increasing the carrier density, the maxi-

mum decreases whereas the minimum increases. Keeping increasing the plasma den-

sity, the gain region (see the above section) is entered. Then the initial maximum

disappears and the minimum becomes a maximum. This effect is often exploited in

optical switching devices which are based on dispersive optical bistability [11, 56].
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Figure 3.19: Refractive index spectra for various plasma densities in 4 nm ZnSe-based
quantum-well, at T = 77 K.

3.8 Discussion and conclusion

In this chapter we illustrated in detail the calculations presented in chapter 2. We

studied the interplay between the Fermionic nature of the carriers and the Coulom-

bic forces that acts on them, exploring various regimes in temperature and density.

Comparing results for two different type of material, mid-gap GaAs and wide-gap

ZnSe, we saw the more dominant role played by the Coulomb interaction on the

optical properties of ZnSe-based semiconductor quantum-wells: Coulomb enhance-

ment and bandgap renormalization are more important in ZnSe than they are in

GaAs. The effect of a finite well width was also taken into account and we showed

that the strength of the 2D Coulomb interaction is smaller in real heterostructures

than it is in an ideal 2D electron/hole system. Hence, the exciton binding energy is



Chapter 3. Numerical solutions of the semiconductor Bloch equations 67

not exactly four times the value of the Rydberg energy, but a decreasing function

of the well width. The introduction of the light hole band in the calculations was

necessary to account for the light hole exciton resonance that one can observe on

experimental absorption spectra (see section 5.2 in chapter 5 for instance). We saw

that the static plasmon-pole approximation yields an overestimation of the bandgap

shrinkage as numerical results exhibits a slight redshift of the exciton resonances (see

also Ref. [42]). All the calculations and numerical results presented in this chapter

were done assuming a quasi-equilibrium situation defined by µlh = µhh 6= µe and

Te = Thh, i.e. Nlh ≈ 0 and Ne = Nhh: the intraband scattering has led to a fast equi-

libration of the initial carriers distributions within the bands and the plasma cooling

has led to a cooling of the carriers temperatures down to the lattice temperature.

All the results presented in this chapter as well as in chapter 2, together with the

discussion and comments that we made, will help when we study the nonequilibrium

regime in the next two chapters.



Chapter 4

Nonequilibrium carrier dynamics in

semiconductor quantum-wells

4.1 Introduction

In thermal equilibrium, all elementary excitations in a semiconductor (electrons,

holes, phonons...) can be characterized by a temperature that is the same as the

lattice temperature. Under the influence of an external perturbation such as an

electric field or an optical excitation, the distribution functions of these elementary

excitations deviate from those in thermal equilibrium. In general, the nonequilib-

rium distributions are nonthermal, i.e. they are not characterized by a temperature.

The term “hot carriers” is often used to describe this nonequilibrium situation. In

this chapter, we study the time evolution of an initially hot electron/hole plasma cre-

ated by optical pumping. This can be described as follows: after the fast dephasing

time (see Introduction and Ref. [6]), the energy in the carrier gas is redistributed as a

result of carrier-carrier collisions, and the initial nonthermal distributions approach

thermalized distributions with characteristic temperatures for electrons and holes,

Te and Th. Then, the electrons and holes thermalize with each other by electron-hole

collisions, so that the plasma can be described by a common temperature, Tc. This

temperature can be different from the lattice temperature, Tlat. The next process is

the plasma cooling by interactions with the phonons.

Properties of hot carriers are determined by various interactions between car-

riers and other elementary excitations in the semiconductor. Therefore their in-

vestigation is of fundamental interest as it provides information about scattering

processes. In this chapter, we are concerned with the nonequilibrium thermody-

namics of spin-polarized carrier gases and their mutual interaction as we consider

68
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excitations created by spin-selective optical pumping.

The object of chapters 2 and 3 was to present the theoretical framework in

which one can study the absorption phenomenon in semiconductor quantum-wells

in a quasi-equilibrium situation. Here, based on the available experimental data

(see next chapter) we move beyond such a quasi-equilibrium situation: we include

six dynamical processes which lead eventually to a thermal quasi-equilibrium in the

electron-hole plasma: relaxation of the hot carriers distributions towards Fermi-

Dirac distributions, thermalization, plasma cooling, carrier spin-flip, scattering be-

tween the light and heavy hole bands and recombination (both radiative and non-

radiative). A microscopic treatment accounting for all these many-body effects is

computationally prohibitive. Instead, we use a phenomenological approach to de-

scribe the time evolution of the electron-hole plasma.

The aim of this chapter is to present our model for the time evolution of the

electron-hole plasma created by spin-selective excitation. In section 4.2, we study the

dynamical processes mentioned above to describe the time evolution of the carrier

distributions and the nonequilibrium plasma screening. Section 4.3 deals with the

plasma initial conditions created by the polarized pump beam. In particular, we

account for the selection rules for the optical transitions and we assume the initial

hot carrier distributions to be Gaussian. In section 4.4, we present and discuss

numerical results. Finally, section 4.5 concludes this chapter with a summary and

a discussion on our model.

4.2 Dynamical processes

4.2.1 Time evolution of the carrier distributions

In our model, the time evolution of the distribution function, nσ
c,k(t), of a carrier

c with a spin σ takes several dynamical processes into account. Relaxation of the

carrier distributions, carrier spin-flip, recombination and light hole scattering yield

the following system of six coupled differential equations (σ = ↑ or ↓ indicating

the two spin-states):
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These equations are numerically solved to obtain the time dependence of the

carrier distributions nσ
c,k(t) whose values are between 0 and 1. The various terms

entering the above system are described as follows:

Intraband scattering (τeq terms): the optical pumping creates a popula-

tion of hot carriers. One of the fastest processes (i.e. subpicosecond time scale [6])

that occurs in each band is the rapid equilibration of these carriers: due to carrier-

carrier scattering the initial hot carrier distributions evolve towards Fermi-Dirac

quasi-equilibrium distributions. Extensive work on this specific topic involving the

quantum Boltzmann equation can be found in the literature [47, 48, 49, 50, 51].

Here we use a phenomenological approach to describe the time evolution of the hot

carrier distributions which is characterized by a relaxation time τeq associated with

intraband scattering. Thus, the quantities neq,σ
c,k in Eqs. (4.1) are Fermi-Dirac distri-

butions describing the quasi-equilibrium for each spin-polarized subsystem, having

the same carrier density and energy as the nonequilibrium distribution. Note that

the intraband scattering does not change the carrier densities nor the total kinetic

energy.
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Carrier thermalization (τtherm terms): a process that also influences the

time evolution of the carrier distributions is the thermalisation process amongst

carriers of different types. The scattering between electrons and heavy and light

holes is a process that drives the initial carrier temperatures, T σ
c , to a common

quasi-equilibrium temperature, Teq that can be different from the lattice tempera-

ture, Tlat. To evaluate Teq, one needs to calculate the total plasma energy Etot and

then compute the corresponding temperature Teq assuming a Fermi-Dirac distribu-

tion. To account for the thermalization process, we suppose that the time evolution

of the distribution functions is characterised by a phenomenological time τtherm.

Thus, the quantities ntherm,σ
c,k in Eqs. (4.1) are Fermi-Dirac distributions describing

the quasi-equilibrium for each spin-polarized subsystem, having the same carrier

density but an energy corresponding to the common quasi-equilibrium temperature

Teq.

Carrier spin-flip (τsf terms): the spin-flip is a process by which the spin

orientation of a carrier is reversed. The detailed mechanisms responsible for such a

phenonemon are not yet well understood despite extensive studies [57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67] and we shall consider the spin-flip phenomenologically with

the associated characteristic time τsf . The spin-flip introduces a coupling between

the spin-states σ and σ′ for a given type of carrier c which considerably complicates

the solution of Eqs. (4.1). The value of τsf is poorly known and one of our aims

with this model would be to extract this from the experimental data.

Recombination (τrad and τnr terms): we distinguish here between radiative

and nonradiative recombination. Radiative recombination is a process that occurs

on relatively long time scale compared to the others described above (τrad ∼ 1

ns in ZnSe). Time resolved photoluminescence experiments are used to study this

phenomenon [68, 69]. For an optical transition to occur one needs to have an electron

in the state k together with a light or a heavy hole in the same state k provided
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that their spins satisfy the selection rules described later in this chapter. The total

observed luminescence intensity Ipl(t) is directly linked to the distribution functions

of these carriers:

Iλ
pl(t) ∝

∑

k

|dλ
cv|2 nσ

e,k(t) nσ′
λ,k(t) , (4.2)

for the heavy and light hole optical transitions, where λ = lh or hh, and dcv is the

dipole matrix element.

For a detailed study of radiative recombination and spontaneous emission rate,

see Ref. [70]. Detailed calculations to evaluate τrad can be found in Ref. [71] and in

Appendix D, and its expression is given by Eq. (D.13). The term τnr in the right

hand side of Eq. (4.1) accounts for the nonradiative recombination. Radiative and

nonradiative recombination are two competing processes. Experimental data shown

in chapter 5 show that it is a faster process than the radiative recombination at high

plasma density. Nonradiative recombination occurs either via recombination centers

or by Auger processes. Recombination centers are usually deep impurity levels close

the bandgap center. In Auger processes, the energy released as a consequence of the

recombination is transferred to another electron. This electron gets excited into a

higher state in the band from where it can return step by step to its ground state

without radiation, by scattering with phonons. The likelihood of Auger processes

increases as the carrier density increases. Experimental studies of the nonradiative

recombination can be found in [72, 73, 74]. A theoretical study of Auger processes

including the effects of electron-hole correlations can be found in [75].

Heavy hole and light hole scattering (τlh terms): away from the zone

centre, both heavy and light holes are mixtures of the bulk valence band states.

This enhances the intersubband scattering between the heavy and light hole bands.

Many processes involving other quasi-particles (heavy and light holes, phonons,

excitons...) can facilitate this type of scattering, and it is non-trivial to assess

the relative importance of each of the processes. To avoid such complication we
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make a simple approximation assuming that this scattering is spin-independent, i.e.

|3/2, 1/2〉lh scatters equally into |3/2, 3/2〉hh and |3/2,−3/2〉hh and vice-versa. When

the quasi-equilibrium between the heavy hole and the light hole bands is reached,

their chemical potentials have to satisfy the relation: µlh = µhh − ∆Ecs because

of the band splitting due to the confinement and strain. Solving this equation at

low temperature and for typical electron-hole plasma densities, i.e. of the order of

1011 cm−2 or more, yields a negligible light hole density: Nlh/N ≈ 0. Hence, we

include a simple decay characterised by the time τlh in Eqs. 4.1 to model the light

hole scattering.

4.2.2 Plasma cooling

The intraband scattering dominates the fast carrier distribution relaxation, but is

not a process that dissipates energy. Thus, the initial electron-hole plasma temper-

ature is determined by the kinetic energy of the nonequilibrium distribution created

by the femtosecond pump pulse. Depending on the energy of the excitation pulse,

the effective plasma temperature can be well above the lattice temperature. The

most important source of energy dissipation is due to the coupling of the electronic

system with the lattice. The plasma cooling can be treated by solving the quan-

tum Boltzmann equation describing the carrier-phonon scattering [50, 51], but we

restrict ourselves to a phenomenological approach. Hence, the loss of carrier kinetic

energy obeys a rate equation:

dEσ
tot,c

dt
=

Eeq,σ
tot,c − Eσ

tot,c

τcool

. (4.3)

The total energy Eeq,σ
tot,c per unit area calculated from the quasi-equilibrium dis-

tribution neq,σ
c,E at the lattice temperature is given by:

Eeq,σ
tot,c =

∑

E

E neq,σ
c,E =

mc

2πh̄2 ×
∫ ∞

0

E dE

exp βlat(E − µσ
c ) + 1

. (4.4)

The chemical potential µσ
c (Nσ

c , T σ
c ) is given by:
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µσ
c (Nσ

c , T σ
c ) =

1

βσ
c

ln
(
exp (2πh̄2βσ

c Nσ
c /mc)− 1

)
, (4.5)

where Nσ
c and βσ

c are the 2D density and the inverse thermal energy of the car-

rier of type c in the spin state σ. This integral has to be calculated numerically.

Eσ
tot,c(t = 0) = EG,σ

tot,c is the total energy per unit area calculated from the initial

nonequilibrium distribution nG,σ
c,E

1 as follows:

EG,σ
tot,c =

∑

E

E nG,σ
c,E =

mc

2πh̄2 × Cσ
c

∫ ∞

0
E e−(E−Ēσ

c )2/∆2
E dE . (4.6)

Integrating by parts and using the following definition of the error function

erfc(x) =
2√
π

∫ ∞

x
e−u2

du , (4.7)

leads to:

EGσ
tot,c = ∆E

√
2

π
× Nσ

c e−Ēσ
c /2∆2

E

erfc(−Ēσ
c /∆2

E

√
2)

+ Ēσ
c Nσ

c . (4.8)

Eq. (4.3) has to be solved numerically using Eq. (4.8) as the initial condition.

To evaluate the effective carrier temperatures at each point in time, we use the

time evolution of the nonequilibrium energies Eσ
tot,c(t). We calculate first the quasi-

equilibrium energies as an explicit function of temperature Eeq,σ
c (T σ

c ); then, equating

Eeq,σ
c (T σ

c ) and the nonequilibrium energies Eσ
tot,c(t) gives the effective temperature

T σ
c at the time t:

Eeq,σ
c (T σ

c ) =
mc

2πh̄2

(
e2πh̄2βσ

c Nσ
c /mc − 1

)
×

∫ ∞

0

E dE

eβσ
c E + e2πh̄2βσ

c Nσ
c /mc − 1

, (4.9)

where βσ
c = 1/kBT σ

c .

The initial temperatures T σ
c depend on the characteristics of the pump pulse:

1We assume that the initial nonequilibrium distribution is Gaussian as defined later in section
4.3, Eq. (4.19).
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energy Epump, width ∆E and intensity, i.e. number of carriers Nσ
c created.

The knowledge of the distributions nσ
c,k(t) will allow us to evaluate the time

evolution of the Pauli blocking factor entering the equations of motion for the inter-

band polarizations in Eq. (3.3) that will be solved in the next chapter. It will also

be used to calculate the time evolution of the plasma screening in order to evaluate

the Coulomb matrix elements as the electron-hole plasma evolves.

4.2.3 Time evolution of the plasma screening

As the plasma temperature and the carrier densities evolve, the plasma screening

changes. In chapter 2 and in Appendix A, detail is given on how the density and

temperature dependent screening can be evaluated in a quasi-equilibrium electron-

hole system. In chapters 2 and 3, we chose to work with the static plasmon-pole

approximation as it is an approximation which is good enough to obtain qualitative

results. In this chapter we are concerned with the time evolution of the electron-

hole plasma and we need to find a simple way to evaluate it in a nonequilibrium

situation. As the Lindhard formula given in Eq. (2.10) is valid for both equilibrium

and nonequilibrium situations, it is our starting point:

εq(ω) = 1− Vq

∑

σ,k

∑
c

nσ
c,k−q − nσ

c,k

h̄(ω − iδ + Eσ
c,k−q − Eσ

c,k)
. (4.10)

To ease notations we do not explicitly denote the time dependence of the various

physical quantities above defined in this chapter and in chapter 2. Again, we have

to simplify the above expression as it is not practical to use for numerical purposes

because of its continuum of poles. As in chapter 2, we choose to work in the long

wavelength limit q → 0. Detail of this calculation can be found in Appendix A.

Nevertheless, we need to emphasize a particular step of the calculation which will

help in treating the nonequilibrium problem. From Eq. (A.18) one obtains:

ε(q → 0, ω) ≈ 1 +
Vq

h̄ω

∑

σ,k

∑
c

∑

i

qi

∂nσ
c,k

∂ki

×
(

1 +
h̄

mcω
~k · ~q

)
. (4.11)
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The important point here is that the term proportional to
∑

k ∂nσ
c,k/∂k vanishes

because it yields the value of the distribution function at k → ∞ even if it is a

nonequilibrium function, so Eq. (4.11) becomes:

ε(q → 0, ω) = 1 +
Vq

h̄ω

∑

σ,k

∑
c

∑

i

qi

∂nσ
c,k

∂ki

× h̄

mcω
~k · ~q. (4.12)

Leading further the calculations as in Appendix A yields:

ε(q → 0, ω) = 1− Vq

ω2

∑

σ,k

∑
c

∑

i,j

qiqj

∫ d2k

4π2mc

nσ
c,k

∂ki

∂kj

, (4.13)

which finally gives:

ε(q → 0, ω) = 1− Vq
q2

ω2

∑
c

Nc

mc

. (4.14)

From the above equations it appears that the time dependence of the distribution

functions nσ
c,k due to the relaxation process does not affect the expression of ε(q →

0, ω): it has the same form as in quasi-equilibrium calculations (see Eq. (A.22)). So,

to treat the nonequilibrium problem for the screening, we can choose to calculate the

screening from the quasi-equilibrium formulas as derived in Appendix A and given

in chapter 2. The time dependence of ε(q → 0, ω) is contained in Nc. Together with

the definition of the bare 2D Coulomb potential in a quantum well (i.e. including

the form factor fq) given by Eq. (2.26), Eq. (4.14) also defines the plasma frequency

ωpl(q):

ω2
pl(q) =

∑
c

ω2
pl,c(q) =

e2

2ε
qfq

∑
c

Nc

mc

. (4.15)

As in chapter 2, the plasma screening is evaluated within the static plasmon-pole

approximation. The modified 2D effective plasmon frequency is:

ω2
q =

∑
c

∑
σ

[
e2

2ε
qfq

Nσ
c

mc

(
1 +

q

fqκ
σ
c

)]
+

∑
c

Nc

N

C

4

(
h̄q2

2mc

)2

, (4.16)
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where the screening wavenumber, κσ
c , is given by:

κσ
c =

m2
c

4πεh̄2 nσ
c,k=0 =

m2
c

4πεh̄2

(
1− exp (−2πh̄2βσ

c Nσ
c /mc)

)
. (4.17)

Eq. (4.10) is the generalization of Eq. (2.13) to the case of an electron-hole

plasma composed of six spin-polarized carrier gases. The dielectric function εq in

the static plasmon-pole approximation:

ε−1
q = 1− ω2

pl(q)

ω2
q

. (4.18)

As already discussed in chapter 2, the static plasmon-pole approximation only

gives good qualitative results to explain the density dependent band-gap renormal-

ization. Therefore, we have to bear in mind that the use of this screening model

leads to an overestimation of the band-gap shrinkage.

4.3 Initial conditions for the electron/hole plasma

We now turn to the three pump-probe polarisation configurations and the initial

carrier distributions they produce as the starting point for the solution of Eqs. (4.1):

• opposite circular polarisations (OCP) for which the pump and the probe beams

are both circularly polarised but in opposite senses.

• same circular polarisations (SCP) for which the pump and the probe beams

are circularly polarised in the same sense.

• same linear polarisations (SLP) for which the pump and the probe beams are

both linearly polarized.

4.3.1 Selection rules for optical transitions

Depending on the pump-probe polarisation configuration, we generate different cou-

plings between the ground state and the various spin-states |J,mJ〉. In our analysis

we include the two-fold degenerate conduction band |1/2, 1/2〉e and |1/2,−1/2〉e, the
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two-fold degenerate heavy hole band |3/2, 3/2〉hh and |3/2,−3/2〉hh and the two-fold

degenerate light hole band |3/2, 1/2〉lh and |3/2,−1/2〉lh. The selection rules for zinc

blende semiconductors are used [76] and the relative populations generated by op-

tical pumping in the continuum are as depicted in Fig. 4.1:

Ground state

1/2 lh, 1/2 e 3/2 hh, -1/2 e -3/2 hh, 1/2 e -1/2 lh. -1/2 e

0 0 3/4 1/4

1/4 3/4 0 0

1/8 3/8 3/8 1/8

σ+

LP

σ−

Figure 4.1: Selection rules for optical transitions achieved with polarised pump light.

The ratio of 3 between the populations created from the heavy hole and light

hole transitions comes from the ratio of the dipole matrix elements which describe

the relative strength of these optical transitions [76].

4.3.2 The Gaussian hot carrier distribution

The optical pumping creates a population of hot carriers. The initial nonthermal

distribution is assumed to be Gaussian in energy2 reflecting the spectral width and

the location of the pump pulse:

nσ
c,k(t = 0) = nG,σ

c,Ek
= Cσ

c × exp−(Eσ
c,k−Ēσ

c )2/∆2
E . (4.19)

Cσ
c are the normalization coefficients for each energy distribution of each type of

carriers in each spin-state and the mean values of the energies Ēσ
c are evaluated

from the experimental value of the photon energy of the pump beam, Epump: for the

vertical transition from the heavy hole band to the conduction band, conservation

of energy gives:

2This means that it is not Gaussian in terms of wave-vector k.
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Eg +
h̄2k2

2me

+
h̄2k2

2mhh

= Epump . (4.20)

From the knowledge of Epump, it is straightforward to calculate the corresponding

wavenumber k = kpump:

h̄kpump =
√

2µe,hh (Epump − Eg) , (4.21)

where µe,hh is the reduced mass of the heavy hole - electron system. Then:





Ēσ′
e = h̄2k2

pump/2me

Ēσ
hh = h̄2k2

pump/2mhh .
(4.22)

As heavy holes are heavier than electrons, the energy of the initial hot electron

gas is bigger than the initial hot heavy hole gas energy. In the case of a vertical

transition from the light hole band to the conduction band, the evaluation of kpump

gives:

h̄k′pump =
√

2µe,lh (Epump − Eg −∆Ecs) , (4.23)

according to Eq. (2.70), and:





Ēσ
e = h̄2k′2pump/2me

Ēσ
lh = h̄2k′2pump/2mlh .

(4.24)

where µe,lh is the reduced mass of the light hole - electron system. Here, even if the

effective mass of the light hole is smaller than the effective mass of the heavy hole,

the initial hot light hole gas is colder than the initial hot heavy hole gas. This is

due to the strain and confinement energies ∆Ecs which lowers the light holes kinetic

energies.

Knowing the mean energies Ēσ
c , we can now evaluate the normalization coeffi-

cient Cσ
c of the above Gaussian distributions. Denoting Nσ

c the 2D density of carriers

of type c in the spin-state σ, we have to evaluate Cσ
c such that:
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Nσ
c =

∑

k

nG,σ
c,Ek

. (4.25)

Approximating the above discrete sum by a 2-dimensional integral and perform-

ing the angular integration yields:

Nσ
c =

mc

2πh̄2 Cσ
c

∫ ∞

0
e−(E−Ēσ

c )2/∆2
E dE . (4.26)

Using the definition for the error function, Eq. (4.7), that we substitute into

Eq. (4.26) after making the appropriate change of variables yields:

Cσ
c =

2h̄2
√

2π

mc∆E

Nσ
c

erfc(−Ēσ
c /∆E

√
2)

. (4.27)

Note that Cσ
c are not only defined by the above equation. Indeed, as we deal

with distribution functions, their maximum which is reached for Eσ
c,k = Ēσ

c has

to be 1/2. This creates the following constraint on the value of the normalization

coefficients:

Cσ
c ≤ 1/2 , (4.28)

which means that for a given pump energy Epump and a given pulse width ∆E there

is a maximum density Nσ
c that can be reached.

In the SLP situation, electrons with a given spin σ are created from both the

light and heavy hole transitions. So, the initial distribution for the spin-polarised

electron gases in the SLP is the sum of two Gaussian distributions, each centered

appropriately.

4.4 Numerical results

In this section, we are concerned with the interplay between the various dynamical

processes included in our model and their influence on the time evolution of the

carrier density, plasma energy and temperature. We present results where the ex-
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citations have been performed either by circularly polarised pump light CP or by

linearly polarised light LP. These two cases are sufficient to describe SLP, OCP and

SCP pump-probe experiments.

The lattice temperature is taken to be Tlat = 77 K3 and the initial plasma

density N = 3 × 1011cm−2. The location of the pump pulse is 30 meV above

the bandgap. The material parameters used are those given in the Introduction.

The phenomenological parameters entering Eqs. (4.22) are: τeq = 0.1 ps, τcool =

1 ps, τtherm = 1 ps, τsf = 30 ps, τrad = 1.6 ns, τnr = 30 ps and τlh = 0.5 ps.

The three parameters τeq, τcool and τtherm are chosen according to Ref. [6]. The

radiative recombination time, τrad, is evaluated from Eq. (D.13). The nonradiative

recombination time is taken from the experimental exciton bleaching dynamics that

is shown in chapter 5, Fig. 5.2. No experimental results are available yet to give

us an estimate for the light hole scattering time, τlh, but based on the light hole

exciton peak bleaching dynamics, we find it to be very fast. The spin-flip times have

been chosen comparing numerical results with experimental data shown in chapter

5, Fig. 5.2.

Before presenting and discussing the numerical results, it is useful to describe

the numerical procedure used to calculate the time evolution of the electron/ hole

plasma thermodynamics. This is depicted in Fig. 4.2.

The initial plasma density N , the pumping energy Epump as well as the Gaussian

distribution, Eq. (4.19), define the initial conditions that are fed in the computer

code. Depending on the polarization configuration we impose, the spin-polarized

gases are populated according to the selection rules shown in Fig. 4.1. Then, the

initial energy of each carrier gas, EGσ
tot,c, is calculated as in Eq. (4.8). Equating EGσ

tot,c

and Eeq,σ
c (T σ

c ) in Eq. (4.9) yields the initial effective carrier gas temperatures T σ
c .

The next step consists then of solving the system of coupled equations, Eq. (4.1), to

find the values of the carrier distributions and the carrier densities at the next step

3As discussed in chapter 3, we find in materials with strong Coulomb effects such as ZnSe, that
strongly degenerate cases at 4 K are numerically prohibitive due to the large number of k-states
required around the Fermi energy.
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in time.

Pump photon energy

Lattice temperatureTotal plasma density

INPUT PARAMETERS: INITIAL CONDITIONS:

Polarization configuration

Initial carrier distributions

effective temperatures

Total nonequilibrium energy

effective common temperature

βTotal plasma energy as function of 

INITIAL SPIN-POLARIZED GAS TEMPERATURES

Evaluation of Fermi-Dirac distributions for:
each carrier gas temperature and density
the common temperature and each carrier gas density

Evaluation of spin-polarized gas densities, energies and temperatures

Pump-probe delay

SPIN-POLARIZED GAS DENSITIES, ENERGIES AND TEMPERATURES

Solution of carrier gas energy differential equations (using NAG routines)

(same procedure as above)

CALCULATION OF THE ABSORPTION SPECTRA

Calculation of the absorption spectra

Solution of the interband polarization equations (using NAG routines)

Evaluation of the bandgap renormalization
Evalaution of the Coulomb matrix elements
Evaluation of the plasma screening (static plasmon-pole approximation)
Evaluation of the phase-space filling factor

effective chemical potentials

Solution of carrier distributions coupled differential equations (using NAG routines)

nonequilibrium energiesβplasma energies as function of 

Figure 4.2: Flow chart describing the numerical procedure used to calculate the time
evolution of the distribution functions, the plasma density, energy and temperature in
order to compute the phase-space filling factor and the plasma screening.

Solving Eq. (4.3) gives the carrier gas energies and hence the temperatures using

Eq. (4.9). The plasma screening and the Pauli blocking are then computed and used

to solve the interband polarization equations, Eq. (2.71). The solutions of Eq. (2.71)
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as a function of the pump-probe delay, will be calculated and discussed in the next

chapter.

4.4.1 Time evolution of the carrier densities

First we study the time evolution of the carrier densities obtained solving Eqs. (4.1)

with N = 3 × 1011cm−2, the pumping energy Epump = 2.69 eV, and shown on

Fig. 4.3:

Electrons: the processes responsible for the change in population are the elec-

tron spin-flip and the recombination. The population of spin down electrons de-

creases while the population of electrons with opposite spin increases. The carrier

spin-flip process tends to create equal spin populations over a time scale given by

τ e
sf = 30 ps. Then, the recombination which occurs on the same time scale given by

τnr = 30 ps becomes dominant and drives both populations towards zero. That is

the reason why the initially less populated electron gas exhibits a maximum at early

times (10 ps). Note that in the SLP case, the spin-flip process has no effect on the

dynamics of the electron densities. Hence, the only contributor to the density decay

in the SLP situation is recombination. Also note that the radiative recombination

too slow (1.6 ns) to have much influence on the fast population dynamics.

Heavy holes: similar comments apply for the heavy hole population dynamics

as above with τhh
sf = 30 ps. However, the fast intersubband scattering that drives

the light holes into the heavy hole band on a time scale given by τlh = 0.5 ps has to

be considered here. That explains the fast initial rise of both heavy hole densities,

before they start decaying. Note that the initial spin down heavy hole density is

zero, unlike the electrons whose populations in both spin states is non-zero from the

beginning because of optical transitions from both the heavy and light hole bands.

Light holes: the time evolution of the light hole populations can also be de-

scribed as the electron ones with τ lh
sf = 30 ps. However, as in the case of the heavy
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holes, one has to consider the intersubband scattering. As it is a very fast process,

the population of light holes decreases on a very short time scale given by τlh =

0.5 ps. After one picosecond the light hole density is negligible (but non-zero as

heavy holes still scatter into the light hole band). Note that in the case of the spin

down light hole gas, the population always remains very low: the spin-flip time is

comparatively too long to make any significant change.
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Figure 4.3: Time evolution of the spin-polarized gases populations created by spin-
selective excitation. Note the short time scale for the light hole density decay, and for the
electron spin populations to equilibrate.

4.4.2 Time evolution of the plasma energy

The solutions of Eq. (4.3) are shown in figures below for each spin-polarized gas.

Electrons: the initial total energy of the spin down electron gas in the CP

case corresponds to a temperature above the lattice temperature and hence is a

decreasing function of time because of the cooling process that occurs on a time

scale given by τ e
cool = 1 ps. One can observe that the energy of the electron gas with

opposite spin is an increasing function of time before cooling down to the lattice

energy. It is due to the thermalisation process between carriers of different types

and also to the fact that the density increases over the same amount of time because
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of the spin-flip , and hence increases the total energy. In the LP case, we only ob-

serve a cooling as the spin-flip has no influence on the time evolution of the densities.

Heavy holes: the initial rise of the carrier densities for both heavy hole gases

because of the light hole scattering, influences the behaviour of the energy which

is an increasing function of time at early times. The thermalisation process is also

responsible for this rise as the initial hole gases energies are below the spin down

electron gas energy. In the case of the spin down heavy hole gas, the increase occurs

on a much longer time scale than for the opposite spin heavy hole gas. This is due

to the spin-flip process that increases the population for the spin up heavy hole gas

in the CP case.
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Figure 4.4: Time evolution of the spin-polarized gases energy loss. Note the very short
time scale for the light hole gases energy loss.

Light holes: the initial rise of the energy for the light hole gases is only due to

the thermalisation process. As the light hole density decay is fast, it only takes a

few picoseconds for the light hole gas energy to become negligible. The population

of the spin down light hole gas remains very low, so does the energy.
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4.4.3 Time evolution of the plasma temperature

The temperatures computed from Eq. (4.9) are shown in figures below for each

spin-polarized gas.

Electrons: the time evolution of the electron temperatures follows exactly the

time evolution of the electron gas energies, but converges fast towards the lattice

temperature whereas the electron energies keep decreasing. This is due to the fact

that the electron densities also decrease via recombination, keeping the average

electron kinetic energy constant.
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Figure 4.5: Time evolution of the spin-polarized gases temperatures. Note the very short
time scale for the light hole temperature evolution.

Heavy holes: the heavy hole gas energies increase at very early times, so do

the densities because of the light hole scattering. In the CP case, for the spin down

heavy hole gas, despite this increase in energy, the average heavy hole kinetic energy

decreases. Hence the effective temperature decreases. Then because of the thermal-

isation with the electrons and the lattice, the temperature starts increasing. For

the spin up heavy hole gas, we observe a monotonical increase towards the lattice

temperature as it gains energy from the thermalisation processes with the other

carriers and the lattice. However, as the densities starts decreasing, the heavy holes

energy also start decreasing. But, as in the case of electrons, there is compensation
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between the energy loss and the density decay that makes the average heavy hole

kinetic energy constant when it reaches the lattice temperature.

Light holes: the light hole density decay is so fast compared to the plasma

cooling that the average light hole kinetic energy keeps increasing and the light hole

gases temperatures go beyond the lattice temperature. In fact, the light hole gases

have no time to reach the quasi-equilibrium with the lattice. We stopped calculating

the light hole gas effective temperatures when their population is small enough and

their temperature high enough to have no influence on the absorption spectra.

4.4.4 Time evolution of the plasma screening

As discussed in section 4.2.3, we can make use of the quasi-equilibrium formulas to

evaluate the time evolution of the plasma screening in the long wavelength limit.

The inverse screening lengths for each carrier gas are computed from Eq. (4.14) at

each time step, after having calculated T σ
c (t) and Nσ

c (t). As already mentioned in

chapter 2, the screening parameter κ is a function of the plasma temperature and

density, so its time evolution reflects the interplay between both of them.

Before discussing in detail the time evolution of each spin-polarized gas inverse

screening length shown in Fig. 4.7, we look first at the total inverse screening length

shown in Fig. 4.6. The total screening length, κ, is the sum of each contribution,

κσ
c , described in Fig. 4.7.

The screening is not spin-dependent so the CP case describe both SCP and OCP

configurations. The fast decay at early times is due to the heating of the heavy hole

gas, despite the cooling of the electron gas and the light hole scattering into heavy

holes, as it contributes the most to the total screening. Then, because of the slower

recombination which becomes the dominant process, the plasma screening decreases

with the plasma density.

Electrons: the initial spin down electron density is three times larger than the

initial spin up electron density; but, as its initial temperature is also much larger
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(five times), the screening due to the the spin down electron gas, is smaller. Then,

because of the fast thermalization and cooling (a few picoseconds), the spin down

electron gas contribution to the plasma screening becomes more important as its

density remains the largest. The initial temperature of the spin up electron gas is

below the lattice temperature, so as time passes, the spin up electron gas is heating

up. The spin-flip process is a too slow process (30 ps) to rapidly increase the spin up

electron population, so we just observe a decay of the screening parameter, initially

reflecting the heating and the further enhanced by the recombination process that

occurs on the same time scale as the spin-flip. In the LP case, the spin-flip plays

no role in the time evolution of the screening parameter, so we just observe an ini-

tial increase due to the cooling process followed by a decay due to the recombination.
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Figure 4.6: Time evolution of the inverse screening length.

Heavy holes: the values of the screening lengths in the case of the heavy holes

are larger than the electron ones as the heavy hole gases are much colder and their

effective mass is heavier than the electron one. The time evolution for the heavy

hole contribution to the plasma screening is very similar to the electron one. The

main difference comes from the fact that light holes scatter very fast into the heavy

hole band (0.5 ps time scale). That explains why the maximum observed for the

spin up heavy hole screening parameter occurs earlier than the one for the spin
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down electron one. The spin-flip has no influence in the LP case and the time evolu-

tion of the screening parameter is driven by the recombination on a longer time scale.

Light holes: the time evolution of the light hole screening parameters is only

driven by the fast scattering into the heavy hole bands and the other dynamical ef-

fects (thermalization, cooling, spin-flip, recombination) have no noticeable influence

as they are slower processes. The spin down light hole screening parameter (CP

case) is always negligible as the spin down light hole density is always very small.

Note that the light hole contribution to the screening is zero after 2 ps.
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Figure 4.7: Time evolution of the inverse screening lengths for each spin-polarized gas.
Note the very short time scale for the light hole screening evolution.

4.5 Conclusions

In this chapter we developed a simple model to describe the time evolution of the

quasi-2D electron/hole plasma. We included several dynamical effects: relaxation

of the carrier distributions, thermalization, plasma cooling, carrier spin-flip, recom-

bination (radiative and nonradiative) and light hole scattering into heavy holes. A

full microscopic treatment of all these effects is computationally prohibitive, and we

chose a phenomenological approach using rate equations. We described the time
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dependence of the density, energy and temperature of each spin-polarised gas and

obtained insight in the interplay between the processes mentioned above. We also

found that we could address the problem of the time dependence of the plasma

screening in a simple fashion, using quasi-equilibrium formulas in the long wave-

length limit. In the next chapter, we shall compute the absorption spectra as

a function of the pump-probe delay, solving the interband polarization equation,

Eq. (2.71), together with Eqs. (4.1). The results shown and discussed in this chap-

ter will help in describing and explaining the dynamics of the excitonic peaks in the

next chapter.



Chapter 5

Ultrafast pump-probe dynamics in semiconductor

quantum-wells

5.1 Introduction

From an experimental point of view, one can investigate the optical properties of

semiconductors by exciting carriers (via optical pumping or carrier injection) and

measuring the absorption of a subsequent probe pulse. By comparing with the linear

absorption spectrum, one obtains information on the influence of the excitations on

the absorption phenomenon and insight into the electronic and optical properties of

the electron-hole plasma. The interpretation of experimental results is however non-

trivial given the substantial influence of Coulomb and many-body effects which give

rise to a rich variety of broadening and energy renormalizations. Moreover, the time

evolution of the initial electron/hole plasma makes the whole problem challenging,

both theoretically and numerically. In this chapter, we use the model developed and

discussed in chapter 4 to describe the influence of the nonequilibrium electron/hole

system on the absorption spectra.

As already discussed in the previous chapter, the orders of magnitude of some

of the scattering times describing the dynamical processes included in our model are

known (see Ref. [6], page 282) or can be evaluated (τrad is calculated in Appendix

D, Eq. (D.13)). However, we do not know how fast the light holes scatter into the

heavy hole band, and the spin-flip times are also poorly known despite numerous

studies under various conditions [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. One of our

aims with our model would be to extract these times from the available experimental

data comparing the computed exciton resonances bleaching and shift dynamics with

experimental results. We currently have only one set of reliable experimental results

91
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for the heavy hole exciton dynamics (see Figs. 5.1 and 5.2).

Detail of experiments are given in the next section, but we point out that they

have been performed using a ZnSe/ZnCdSe sample cooled down at a temperature

of 4 K. In chapter 3, we discussed the numerical problems that arise when numerical

calculations are performed in the highly degenerate limit. Here, to obtain reliable

numerical results, the absorption spectra are computed at Tlat = 77 K. This makes

the comparison between the calculations and experiments obviously more difficult

as it is not possible to assess the difference between “good numerical results” at 4

K and the reliable results at 77 K. Nevertheless, we assume that, even if the results

are quantitatively different, the qualitative behaviour is not much affected.

This chapter is organised as follows: the object of section 2 is to give a brief

overview of the pump and probe experiments carried out at Heriot-Watt University1.

The available experimental results will help in extracting an order of magnitude

for the carrier spin-flip times in section 3, where we compare experiments with our

model. We discuss the exciton dynamics, i.e. bleaching and energy shift as functions

of the pump-probe delay, considering the results of chapter 4.

5.2 Ultrafast pump and probe experiments

A femtosecond laser system consisting of a Beamlok Argon ion (Ar+) laser, a

Tsunami mode-locked Ti:Sapphire laser, a Spitfire pulsed Ti:Sapphire RGA and

an ultrafast kHz optical parametric amplifier (OPA), has been used for the gener-

ation of the ultrafast pump pulses. The Ar+ laser and the Merlin laser were the

excitation sources for the Tsunami laser and the Spitfire amplifier respectively. The

Tsunami output was fed to the Spitfire where it was temporally stretched, amplified

and finally temporally compressed. The Spitfire output provided the pump beam

for the frequency conversion processes in the OPA. The overall system was capable

of delivering a 1kHz train of ∼ 150 fs pulses and the wavelength was tuned at 459

nm (∼ 2.69 eV). For the generation of the white light continuum (WLC), ∼ 5%

1The experiments were performed by George Papageorgiou in the Physics Department.
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of the Spitfire output (λ = 800 nm) was focused on a 10 mm thick quartz cuvette

containing de-ionised water. The pump pulse was used to excite the semiconductor

sample, which was mounted on the cryostat and cooled at 4 K. The pump power, and

therefore the carrier density, could be controlled with the use of a neutral density

filter. The pump pulse power incident in the cryostat was 0.06 mW. The changes

induced in the transmitted probe pulse energy were measured as a function of the

time delay between the pump and probe pulses, with an optical spectrum multi-

channel analyser. A small portion of the WLC was selected prior to falling onto the

sample using a glass microscope slide, in order to monitor its stability. The spot

size radius of the probe beam was 190 µm and it was considerably smaller than

that of the pump in order to probe a region of uniform photoexcited density. Both

pump and probe beams were circularly polarized and independently controllable by

λ/4 plates. Opposite circular (OCP) and same circular polarization (SCP) config-

urations were employed. The time resolution was provided by delaying the WLC

pulses to the pump pulses relatively. The experimental work has been performed on

a ZnSe/ZnCdSe multiple quantum well structure of twenty 4nm-wide wells grown

by molecular beam epitaxy on GaAs substrate. The 20% Cd content in the wells

produces light hole heavy hole exciton splitting of more than 30 meV.

The absorption spectra, Fig. 5.1, show that at early times, both the heavy hole

and light hole exciton peaks are bleached but not much shifted. In the SCP case,

the heavy hole exciton peak is more bleached because of the Pauli blocking effect

that reduces the oscillator strength. In contrast, the light hole exciton peak is more

bleached in the OCP case. The detailed description and interpretation of these

experimental results will be given below with our numerical analysis. Increasing the

delay between the pump and the probe beams shows that many dynamical processes

occur in the electron/hole plasma, and change the shape of the absorption spectra.

The dynamics of the absorption spectra is shown in Fig. 5.2.

Experimental data show an overall decay of the exciton peak bleaching as well as

a convergence between the OCP and the SCP curves. They also show an initial blue
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shift at early times and an energy shift that brings the resonances back to the linear

spectrum exciton resonance. The energy shifts exhibits the same type of behaviour

as the exciton bleaching: the OCP and SCP curves converge on a 30 ps time scale.
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Figure 5.1: Measured absorption spectra. Comparison between the OCP and the SCP
absorption.
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Figure 5.2: Measured absorption spectra dynamics. Comparison between the OCP and
the SCP heavy hole exciton peaks bleaching and shift.
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5.3 Numerical results

The computer code developed calculates the absorption spectra for various pump-

probe delays and three polarization configurations, OCP, SCP and SLP, solving

simultaneously Eqs. (2.71), (4.1) and (4.3). In chapter 3, the Coulomb matrix

elements were calculated just once as none of the physical parameters entering the

problem was varying. Here, the plasma density and temperature evolve very fast,

so the Coulomb forces have to be evaluated at each time step. This added to the

computation of the time evolution of the plasma density makes the running time

long.

5.3.1 Comparison between numerical and experimental results

To describe and explain what we observe, we use the theoretical model presented

in chapters 2 and 3, describing the absorption spectra, together with the nonequi-

librium electron/hole plasma model developed in chapter 4. To present and discuss

the dynamics of the absorption spectra, it is useful to refer to chapter 4 where the

time evolution of the electron-hole plasma is described.

We recall the various parameters used: the lattice temperature is taken to be

Tlat = 77 K and the initial plasma density N = 3× 1011cm−2. The effective masses

we use are me = mlh = 0.15m0 and mhh = 0.6m0, where m0 is the mass of the free

electron. The dielectric constant is ε = 8.8 and the bandgap Eg = 2.66 eV. The

phenomenological parameters entering Eqs. (4.22) are: τeq = 0.1 ps, τcool = 1 ps,

τtherm = 1 ps. These characteristic times only give an order of magnitude and are

taken from Ref. [6]. The radiative recombination time τrad = 1.6 ns is calculated

for ZnSe parameters using Eq. (D.13). The nonradiative recombination time τnr is

taken from experiments. The light hole density decay τlh = 0.5 ps is an arbitrary

value that we impose. The spin-flip times, τsf = 30 ps, have been chosen comparing

the present numerical results with experimental data in Fig. 5.1.
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The absorption spectra

In this section we present numerical solution of Eqs. (2.71), (4.1) and (4.3). The

behaviour of the excitonic peak bleaching as well as their energy shift are discussed.

First, we compare the calculated absorption spectra in Fig. 5.3 with experimental

data on Fig. 5.1 for a given delay. The optical pumping is set 30 meV above the

band edge, in the continuum, thus creating an initial unbound electron/hole plasma.
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Figure 5.3: Calculated absorption spectra. Comparison between the OCP, SLP and the
SCP absorption.

The experimental and numerical spectra look similar, but one can observe a

significant redshift of the OCP exciton peak that is not observed in experimental

data. This is due to the screening model we use and will discuss in more detail at the

end of this section. The heavy hole exciton peak is more bleached in the SCP case

than it is in the OCP, and it is more blue shifted. This is due to the phase space

filling effect that is more important in the SCP configuration. For the light hole

exciton, as in the experiment, we observe the opposite: the OCP light hole exciton

peak is more bleached and blue shifted than the SCP light hole exciton peak. This

is due to the fact that the spin up electrons excited with the σ− polarized pump,

from the heavy hole transition, occupy states that would be created from a light hole

transition with the σ+ polarized pump. So, in the OCP situation, the reduction of
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the oscillator strength due to the phase space filling when one probes the light hole

transition is more important than it is in the SCP case. The SLP configuration can

be seen as an “intermediate” case between the OCP and SCP.

Heavy hole exciton peak dynamics

As mentioned above, we are concerned with the time evolution of the absorption

spectra. So, we have computed both the bleaching and energy shift of the exciton

resonances as functions of the time delay between the pump and the probe. The

shifts are expressed in meV, and the bleaching is scaled to the maximum of the

excitonic resonance of the linear spectrum. The location of the exciton peaks is

calculated using a parabolic approximation for each maximum: knowing the highest

point and the two nearest points around it, a parabola equation is calculated, from

which we obtain the maximum. The maxima are plotted against the pump-probe

delay to study the exciton bleaching and energy shift dynamics.
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Figure 5.4: Calculated absorption spectra dynamics. Comparison between the OCP,
SLP and the SCP heavy hole exciton peaks bleaching and shift.

The numerical results in Fig. 5.4 show a decay of the heavy hole exciton peak

bleachings and energy shifts for OCP, SLP and SCP. The three curves converge after

a few tens of picoseconds, because of spin-flip and recombination.
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OCP: the initial state of the electron/hole plasma, given in Fig. 4.3, shows

that the only contribution to the heavy hole exciton bleaching is due to the plasma

screening that lowers the Coulomb enhancement. The rapid equilibration of the

carrier distributions, together with the plasma cooling contribute to the increase of

the bleaching at early times, i.e. less than 5 ps. Although in this case the carrier

spin-flip occurs on the same time scale as the recombination, the latter process is

dominant, and with the decreasing plasma density, the plasma screening and the

phase-space filling become less important. Thus, the amount of bleaching decreases.

Regarding the energy shift, the initial heavy hole exciton peak is redshifted. The

bandgap renormalisation is not strong enough to compensate for the exciton binding

energy which remains large because of the absence of the Pauli blocking effect.

The redshift becomes even more important as the plasma screening is increased

as a result of the fast light hole scattering. Then, because of the carrier spin-

flip and the recombination process, the heavy hole exciton peak shifts towards the

blue region and saturates on a longer time scale (from 30 ps). This behaviour is

qualitatively different from what we observe in the experiments. This is due to

the initial large redshift: if the initial calculated heavy hole exciton peak were not

redshifted because of the screening model we use, it would enter the blue region

because of increasing phase space filling effect due to spin-flip and plasma cooling;

then because of recombination we would observe a shift towards the red region which

would explain the presence of a maximum.

SCP: as well as the plasma screening, the phase-space filling contributes to the

bleaching of the heavy hole exciton peak in this case. Because of the thermalization

and the plasma cooling we observe a slight increase for short pump-probe delays

(≤ 2ps) but the carrier spin-flip lowers the amount of bleaching together with the

recombination process. In the SCP case both processes contribute to lowering the

Pauli blocking effect. The initial SCP heavy hole exciton peak is blue shifted even

though the bandgap renormalisation is more important than it is in the OCP case

(the exchange term is non-zero). This is due to the fact that the phase-space filling
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factor lowers the exciton binding energy in the SCP case. Because of the fast

relaxation of the distributions and the plasma cooling, the heavy hole exciton blue

shift increases at early times (≤ 2ps), then the spin-flip and recombination make

the heavy hole exciton peak shift towards the linear heavy hole exciton peak. In the

OCP situation, carrier spin-flip and recombination have competing effects on the

exciton peak dynamics, whereas they work together in the SCP case.

SLP: as in the SCP case, plasma screening and phase-space filling contribute

to the heavy hole exciton peak bleaching. There is an initial small increase due

to the thermalization and the plasma cooling, but after a few picoseconds, the

recombination process starts influencing effectively the behaviour of the bleaching.

In the SLP case, the spin-flip process plays no role in the dynamics of the bleaching.

The behaviour of the energy shift in the SLP case is similar but less dramatic than

the OCP one, as it is not influenced by the spin-flip process.

Light hole exciton peak dynamics

In the case of the light hole transitions, the contribution of the light hole population

becomes negligible very quickly as the light hole density decays on a very short time

scale, τlh = 0.5 ps. The behaviour of the light hole exciton peak bleaching and shift,

shown in Fig. 5.5, is dominated by the electrons and also by the heavy holes because

of their contribution to the plasma screening. As mentioned above, the bleaching is

here more important in the OCP case than it is in the SCP. Because of the rapid

light hole density decay, the bleaching decreases at very early times (less than 1 ps),

but it increases shortly after because of the electron thermalization and the plasma

cooling. Then, after a few picoseconds, the recombination process dominates the

behaviour of the bleaching which monotonically decreases with increasing pump-

probe delay. The three curves converge in about 30 ps. As far as the energy shift is

concerned, the blue shift quickly becomes very small because of the fast light hole

density decay.

As stated earlier, by comparing numerical results with experimental data, we
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aim to give an estimate for the spin-flip times. Because of the very fast light hole

decay and the lack of experimental data, our results are not conclusive for the light

hole spin-flip time: there is no clear signature of the influence of the light hole gas

on the absorption spectra that allows us to extract even an order of magnitude.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

LH
X

 b
le

ac
hi

ng Opposite circular polarisation
Same linear polarisation
Same circular polarisation

0 10 20 30 40 50 60 70

Pump-probe delay (ps)

-3

-2

-1

0

1

2

E
ne

rg
y 

sh
ift

 (
m

eV
)

Light holes

Figure 5.5: Calculated absorption spectra dynamics. Comparison between the OCP,
SLP and the SCP light hole exciton peaks bleaching and shift.

The spin-flip times were simply extracted from Figs. 5.1 and 5.2, considering the

necessary amount of time to lose the dichröısm. The value τsf = 30 ps reflects only

the order of magnitude of the time needed for the spin populations to equilibrate.

This time scale is comparable to values found for GaAs-based semiconductor quan-

tum wells in various conditions [60]. In the next section we study various spin-flip

time regimes and compare them. However, as stated above, to evaluate light hole

scattering and spin-flip times, more experimental results are needed.

5.3.2 Exploring the parameter space

Comparison between various spin-flip time regimes

In the previous section, the spin-flip times were chosen to be the same for all the

carriers. Here we explore two other regimes: τ e
sf = 1 ps, τhh

sf = 30 ps and τ e
sf = 30

ps, τhh
sf = 1 ps.
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As mentioned earlier, the light hole spin-flip time has not much consequence

on the absorption spectra and on the heavy hole exciton dynamics in particular, as

we assume that both light hole spin-states scatter equally in both the heavy hole

spin-states. Hence, we choose τ lh
sf = τhh

sf .
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Figure 5.6: Heavy hole exciton peak bleaching dynamics. Comparison between various
spin-flip time regimes.

To picture the influence of the spin-flip times on the heavy hole bleaching dynam-

ics, we plot both the bleaching and the differential bleaching dynamics in Figs. 5.6

and 5.7. The differential bleaching is computed as (SCP - OCP)/2(SCP + OCP).

Here, we compare between the OCP and SCP only as the spin-flip time has no

effect on the SLP spectra. The bleaching dynamics, in Fig. 5.6, shows that when

the electron spin-flip time is short, the OCP and SCP curves converge faster than

when it is long, even if the heavy hole spin-flip is short. The interesting feature

that one can see on Fig. 5.7 is the convergence of the two curves that have a long

electron spin-flip time, in about 30 ps. The differential absorption being finite, this

means that after 30 ps, we cannot distinguish between the slow and fast heavy hole

spin-flip time regimes. For a short electron spin-flip time, OCP and SCP bleaching

curves converge much faster, hence the differential bleaching tends to 0 in 30 ps.
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This means that the electrons, being lighter than the heavy holes2, always dominate

the phase space filling, even if the initial electron gas temperature is much higher

than the heavy hole gas one (see Fig. 4.5 in chapter 4).
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Figure 5.7: Heavy hole exciton peak differential bleaching dynamics. Comparison be-
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Slow cooling regime

Calculations made with longer characteristic times for the plasma cooling (≥ 5

ps), shown in Fig. 5.8, lead to results that are qualitatively very different from

experimental data shown in Fig. 5.1.

The time evolution of the heavy hole exciton bleaching is characterized by a

simple decay in the OCP and SCP cases (see Fig. 5.1), whereas our calculations

show the presence of a maximum for short pump-probe delay due to increased Pauli

blocking and screening because of plasma cooling. If the cooling characteristic time

is increased, the numerical results show a plateau-like behaviour for pump-probe

delays up to several picoseconds, before the recombination becomes dominant, as

shown on Fig. 5.8. The early (≤ 5 ps) behaviour observed in Fig. 5.4 for the OCP is

enhanced and the SCP bleaching dynamics is qualitatively the same as in Fig. 5.4,

2In this case, mhh/me = 4 (see the Introduction).
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even though it exhibits a slower decay.
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Figure 5.8: Heavy hole exciton peak bleaching dynamics computed with τcool = 5 ps.

Slow light hole scattering regime

As mentioned at the beginning of this chapter, we do not have experimental data

describing the light hole exciton dynamics. Hence, we cannot obtain enough infor-

mation to extract the light hole scattering time τlh. We supposed it to be very fast,

i.e. τlh = 0.5 ps. In this section, we study the effect of a longer scattering time, τlh

= 30 ps (comparable to the nonradiative recombination time), on the heavy hole

bleaching dynamics.

Except for τlh, all the scattering times involved in the calculation of the above

heavy hole bleaching dynamics are the same as those used to produce the results

shown in Fig. 5.4. Setting τlh longer modifies the Pauli blocking as well as the

plasma screening in the three polarization configurations: OCP, SLP and SCP. The

phase space filling effect is less important at the heavy hole exciton resonance as the

heavy hole population does not increase as fast as in the previous case. Moreover,

the plasma screening is also weaker than it was previously, as the total density of

heavy holes, contributing more to it because of their heavy effective mass, is smaller.

Hence, the bleaching of the heavy hole exciton resonance is smaller with increas-



Chapter 5. Ultrafast pump-probe dynamics in semiconductor quantum-wells 104

ing the light hole scattering time, τlh. Comparing Figs. 5.4 and 5.9, one can also note

that modifying τlh has a more important impact on the OCP bleaching dynamics

than it has on the SCP one. This is due to the fact that both the plasma screening

and phase space filling dictate the amount of bleaching: in the OCP case, the initial

bleaching is only due to plasma screening, whereas Pauli blocking has also to be

taken into account for the SCP. As seen in the previous subsection, the electrons

contribute more to the phase space filling than the heavy holes. As the pace of the

light hole scattering does not affect much the electron gas (only through the very

slow radiative recombination process), the change of τlh plays a more important role

in the OCP bleaching dynamics because of plasma screening.
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Figure 5.9: Calculated absorption spectra dynamics. Comparison between the OCP,
SLP and the SCP heavy hole exciton peaks bleaching.

5.4 Discussion and conclusions

In our model, we considered spin-selective excitations and included various dynami-

cal process. Except for the energy shift of the OCP heavy hole exciton, the numerical

results are in good qualitative agreement with the experiment. According to our cal-

culations, the spin populations equilibrate on a much longer time scale (30 ps) than

the thermalization of the electron/hole plasma (1 ps). The plasma cooling enhances
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the plasma screening and together with the relaxation of the distributions also en-

hances the Pauli blocking effect. These processes are amongst the fastest and we can

observe their influence on the early behaviour of the exciton peaks bleaching and

energy shift. The spin-flip process leads to opposite qualitative behaviours of the

bleaching dynamics, depending on the initial polarization configurations. As seen

above the exciton peaks bleaching and shift can either increase or decrease because

of the spin-flip process depending on the type of exciton (heavy or light) and the

polarizations OCP or SCP. The radiative recombination occurs on a time scale that

is too large (about 1.6 ns in ZnSe) to have any effect on the fast bleaching and

energy shift dynamics (below 100 ps). However, the nonradiative recombination is

fast enough to observe an overall decay on a time scale shorter than 100 ps. As far

as the energy shift is concerned, the screening model that we used for this work fails

to describe at least qualitatively the OCP energy shift. The static plasmon-pole ap-

proximation leads to an overestimation of the bandgap shrinkage [42], which in turn

leads to an important OCP heavy hole exciton peak redshift that is not observed

on experimental data. As far as the SCP heavy hole exciton peak is concerned,

the evaluated exciton binding energy for finite densities is too small because of the

screening model we use. This explains, the initial large blueshift despite the impor-

tant bandgap renormalisation in the SCP case. As for the SLP configuration, the

static plasmon-pole approximation is good enough to describe the balance between

the bandgap shrinkage and the exciton binding energy for finite plasma densities.

With our model, it is possible to control the values of the phenomenological param-

eters in order to obtain further insight in the interplay between various dynamical

processes. In this chapter, we explored various scenarios: different spin-flip times,

slow plasma cooling and slow light hole scattering. Plasma screening and Pauli

blocking depend on the complicated interplay between all the dynamical process.

To go further, it would also be interesting to compare numerical results with more

experimental data, especially for the light hole exciton dynamics.



Chapter 6

Exciton-electron scattering in semiconductor

quantum-wells

6.1 Introduction

The understanding of many aspects of injection lasers requires a detailed knowledge

of the gain spectrum versus photon energy, both for positive gain and optical ab-

sorption loss (negative gain). About twenty years ago, a method for measuring the

absorption and gain spectra of lasers was presented by Henry et al. [40]. With this

method, the absorption and gain spectra are determined from spontaneous emission

spectra together with the measurement of the laser energy and differential quan-

tum efficiency. The deduction of the gain spectrum is based on general relations

between the rates of spontaneous emission, stimulated emission and optical absorp-

tion. These relations are independent of the type of optical transition or the nature

of the initial and final state and absorption and gain spectra are obtained from

spontaneous emission spectra. A derivation based on statistical mechanics shows

the simplicity and generality of these relations. More recently (1990), Blood et al.

[41] published a paper in which they used a method based on the analysis developed

by Henry et al. to analyze the spontaneous emission spectra. With this method they

could construct experimental curves of peak gain versus spontaneous recombination

current from spontaneous emission spectra, without having to take into account op-

tical losses or internal efficiency. Henry asserts that the model published in Ref. [40]

is valid for any semiconductor in which the conduction band and the valence band

are separately in thermal equilibrium and are characterized by quasi-Fermi levels,

which can be the case for low and mid-gap semiconductors such as InP and GaAs

for instance, at room temperature. However, a new generation of lasers operating in

106
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the blue spectral region has been arisen. These lasers are based on ZnSe [77] and

GaN [78]. Along with the large energy gap of these materials comes a large exciton

binding energy of the same order as kBT at room temperature. Therefore we can

observe bound exciton states existing at high temperature which is mainly due to

the strong Coulomb force in the wide-gap semiconductors. The importance of the

excitonic gain processes is even further enhanced in quantum wells structures where

the binding energy may be considerably larger than kBT . It is then obviously not

possible to assume two separate systems with no interaction between them. Hence,

new theoretical treatment of the problem is needed to extend Henry’s model the use

of which would not be appropriate in the case of wide-gap semiconductors.

Models based either on bosonic exciton operators [79] or on Fermionic electron

and hole operators [80, 81] have been proposed, but they are not fully satisfactory.

Indeed, the “bosonic model” fails when one has to deal with high injection: the

screening of the Coulomb potential weakens the binding and then produces an oc-

cupation of unbound scattering states which do not exhibit bosonic character. The

“fermionic model” is too complex when high order excitonic correlations are im-

portant [70]. As we shall see below, another approach based on the concept of the

degree of ionization of the electron-hole plasma [82, 83] deserves attention when ones

needs to incorporate Coulomb correlations in the problem.

The aim of this chapter is to present a simple model to compute the sponta-

neous emission rate in wide-gap semiconductors quantum wells taking into account

the exciton contribution. The object of section 2 is to present the interacting 2D

electron-hole plasma model in the Boltzmann limit and the ionization degree. In

section 3 the spontaneous emission rate in a free carrier plasma in quasi-equilibrium

at room temperature is calculated. Section 4 is devoted to the problem of the ex-

citon correlation. The ionization degree and the modified law of mass action are

presented and studied in detail. We also evaluate the exciton-electron scattering

matrix in a statically screened Coulomb potential after calculating the 2D exciton

wavefunction. Finally, using Fermi’s golden rule, we obtain an expression for the ex-
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citon contribution to the spontaneous emission rate. Numerical results are presented

and discussed in section 5, before concluding this chapter.

6.2 Spontaneous emission rate in semiconductor quantum-wells

6.2.1 The 2D electron/hole plasma

The model of the 2D electron-hole plasma in semiconductors [1] in which we deal

with a mixture of two types of fermions (positively charged holes and negatively

charged electrons) provides an interesting framework for the understanding of the

thermodynamical and optical properties of semiconductor quantum wells. Here, we

consider the case when the 2D carrier density, N , satisfies the following relation

which defines the limit of the Boltzmann regime:

Nλ2
M/g ¿ 1 , (6.1)

where λM = (2πh̄2/MkBT )1/2 is the thermal wavelength and g is the spin degeneracy

of the 2D quasi-particles. The nondegenerate regime gives a realistic picture of the

electron-hole plasma in wide-gap semiconductors in which we can neglect the effects

of the Pauli blocking as long as we consider moderate carrier densities at room

temperature.

As mentioned above, no fully satisfactory model concerning the optical proper-

ties of wide-gap semiconductors exists. Nevertheless, the concept of the degree of

ionization in the interacting electron-hole plasma can help in obtaining some results

which are useful for tackling this problem. Denoting a the type of the particle we

consider (electrons or holes), we can divide the total density of particles a in the

following way:

Na = N0
a + N corr

a , (6.2)

according to Zimmerman’s approach [84]. There are two contributions to the total

density. The first, N0
a , is the density of uncorrelated particles with renormalized
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energies. This term is independent of the inter-particle interaction. The second one,

N corr
a , contains all correlation effects both in the bound and continuum states. The

expression of the degree of ionization is then given by the following simple relation:

α =
N0

e

Ne

=
N0

e

N0
e + N corr

e

. (6.3)

When α is close to unity, the thermodynamic properties of the electron-hole

plasma are those of the ideal gas (defined by α = 1). The dominant lasing mechanism

is then stimulated emission from the free carrier plasma. For lower values of the

degree of ionization we can observe a deviation of the thermodynamic properties

of the plasma from those of the ideal gas which we cannot neglect. Then, several

excitonic gain processes have to be considered. Therefore it is crucial to know the

value of the degree of ionization to determine the main emission mechanism.

6.2.2 Screened Coulomb potential

The interaction between particles in an exciton/electron-hole plasma can be modeled

by the statically screened Coulomb potential. The simplest approach is the use of

the 2D statically screened potential [85]:

Vs(ρ) = ∓e2

ε

∫ ∞

0

qJ0(qρ)

q + qs

dq = ∓e2

ε

[
1

ρ
− π

2
(H0(qsρ)−N0(qsρ))

]
, (6.4)

where qs, in the Boltzmann limit, is the 2D Debye-Hückel screening wavenumber

(which depends on temperature and carrier density), ε is the static dielectric constant

of the semiconductor and J0(x), N0(x) and H0(x) are the Bessel, Neumann and

Struve functions respectively [86, 87]. We distinguish the electron-hole attraction

and the electron-electron or hole-hole repulsion with the ∓ sign.

The validity of the potential Eq. (6.4) can be debated since it does not give a

very realistic description of excitonic effects in a low density electron-hole plasma

according to the authors of Refs. [88, 89]. Nevertheless, it is convenient for simpli-



Chapter 6. Exciton-electron scattering in semiconductor quantum-wells 110

fying the analytical calculations on one hand, and, on the other hand, despite the

numerous realistic corrections and the existence of other approaches, it remains the

most suitable to take into account the shallow bound states and low-energy scat-

tering states [83] which are crucial for a proper description of the physics of the 2D

electron-hole plasma as we shall see later.

6.2.3 The spontaneous emission rate

The spontaneous emission rate is a function of the separation of the quasi-Fermi lev-

els [40, 71]. The first step in building our model consists of considering a free carrier

plasma. The spontaneous emission rate is evaluated assuming a quantized electro-

magnetic field (defined in Appendix D). In the next step, the correlation effects

contained in the correlated density, N corr
a , will be taken into account. At room tem-

perature there are several processes occurring in the exciton/electron-hole plasma,

such as exciton-exciton scattering, phonon-exciton scattering, free carrier-exciton

scattering. Here, only the scattering of 1s excitons with free electrons will be con-

sidered as it is the most likely process leading to photoluminescence (PL) at room

temperature [90]. The knowledge of the 2D wavefunctions of these quasiparticles is

then required to evaluate the scattering matrix and use Fermi’s golden rule to calcu-

late the contribution of the correlated quasi-particles to the total photoluminescence

spectrum.

Here, we give the general expressions of both the free carrier plasma and exciton

contributions to the spontaneous emission rate, Rfc
sp(h̄Ω) [71] and Rcorr

sp (h̄Ω) [91, 92]:

Rfc
sp(h̄Ω) = 2

∑

k∈BZ

rspon(k)

= 2
∑

k∈BZ

1

τrad

fc (Ec(k)) (1− fv (Ev(k))) δ(h̄Ω− Ev − Ec) . (6.5)

The sum
∑

k is performed the over the first Brillouin zone, BZ. The radiative

lifetime, τrad is calculated in Appendix D.
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Rcorr
sp (h̄Ω) =

∑

K

∑

k2

CK,k2NKNk2 , (6.6)

with

CK,k2 =
2π

h̄
|Vscat(K)|2

(
4πβ1Ω/ω0

(1− Ω2/ω2
0)

2 + 4πβ1

)

× δ

(
Eg − Eex

b +
h̄2K2

2M
− h̄Ω− h̄2

2me

(K2 + 2K.k2)

)
, (6.7)

where NK and Nk2 are the exciton and free carrier distributions (see Appendix E for

detail of the calculations). The coefficient β1 ensures that there is no divergence when

the photon energy h̄Ω is equal to the gap energy Eg = h̄ω0. The exciton binding

energy is Eex
b , so the total energy of an exciton is: EX = Eg − Eex

b + h̄2K2/2M .

6.3 Contribution of the free-carrier plasma to the spontaneous emission

rate

We show here the main steps to calculate the spontaneous emission rate Rfc
sp due

to a distribution of carriers in quasi-thermodynamical equilibrium in a semiconduc-

tor quantum well. To do so, we need the knowledge of the radiative lifetime τrad

evaluated in Appendix D.

The wavevectors k, in Eq. (6.5), must satisfy the condition imposed by the

conservation of energy expressed through the delta function:

Ec(k)− Ev(k) = h̄Ω =
h̄2k2

2mr

+ Eg . (6.8)

Approximating the discrete sum by an integral, we find the spectral distribution

of the radiative recombination rate in a semiconductor:

Rfc
sp(h̄Ω) =

m

πh̄2

∫ ∞

0
rspon(E) δ(E − h̄Ω) dE =

m

πh̄2 rspon(h̄Ω)
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=
m

πh̄2τR

fc(Ec) (1− fv(Ev)) . (6.9)

Considering the expression of τrad given in Appendix D, Eq. (D.13), one finds:

Rfc
sp(h̄Ω) =

q2x2
vcnopΩ

3

πc3h̄ε0

m

πh̄2 fc(Ec) (1− fv(Ev)) . (6.10)

At room temperature, the distributions fc(Ec) and fv(Ev) in Eq. (6.10) can be

approximated by Boltzmann functions:





fc(Ec) ≈ exp
(
−Ec − EFc

kBT

)

1− fv(Ev) ≈ exp
(
−EFv − Ev

kBT

) (6.11)

Thus, we can write:

fc(Ec) (1− fv(Ev)) ≈ exp

(
− h̄Ω

kBT
+

∆EF

kBT

)
, (6.12)

where ∆EF is the difference between the two quasi-Fermi levels: ∆EF = EFc −EFv .

The spectral distribution can then be written as follows:

Rfc
sp(h̄Ω) =

mr

πh̄2τrad

e−β(Ec − EFc)e−β(EFv − Ev) . (6.13)

Considering the following relations between the chemical potentials, µe, µh, the

gap, Eg, and the quasi-Fermi levels of the two bands, EFc and EFv , and between the

photon energy and the energies of the two bands, Ec and Ev:





EFc = Eg + µe

EFv = −µh

Ec − Ev = h̄Ω

(6.14)

Eq. (6.9) can be rewritten as follows:

Rfc
sp(h̄Ω) =

mr

πh̄2τrad

e−β(h̄Ω− Eg) eβ(µe + µh) . (6.15)

This expression explicitly depends on the fugacities za = eβµa , which can be
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calculated from the low density limit expansion of the density of the noninteracting

Fermi gas, as we shall see later (see Eqs. (6.22) and (6.61)).

6.4 The exciton contribution to the spontaneous emission rate

The term N corr
a defined in Eq. (6.2), which depends on the inter-particle interaction,

contains all correlation effects both in the bound and in the continuum states. For

significant values of N corr
a (low degree of ionization), several excitonic gain processes

have to be considered for the lasing mechanism [93, 94, 95]. Therefore we need an

accurate study of the bound and scattering states to gain further insight into the

phenomena involved in the optical properties of wide-gap semiconductor quantum

wells. Here, the attention is focused on the scattering between a 1s exciton and a

free electron. Indeed, at room temperature, the population of 1s excitons remains

the most important and their scattering with free electrons is the most likely pro-

cess contributing to the photoluminescence [90]. This can be quickly described as

follows: the exciton leaves its initial state on the band structure and reaches the

photon line, transferring its momentum to the free electron as depicted in Fig. 6.1.

Energy

Wavevector

Electron

Exciton continuum

1s exciton

Photon line

0

o

o

Figure 6.1: 1s exciton-electron scattering leading the exciton to the photon line whereas
the electron gains momentum.

In order to calculate the scattering matrix element, the knowledge of the exciton

wavefunctions is required. The statically screened Coulomb potential chosen to treat
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the problem is given by Eq. (6.4). It increases for small values of ρ and vanishes

at large distances as 1/ρ3 (ρ → ∞). Such behavior permits the application of the

variable phase method to this potential.

6.4.1 The ionization degree and modified law of mass action

To be able to calculate the ionization degree of the plasma, the knowledge of the

partition function describing all the interactions between the particles is required.

Therefore, we have to take into account the scattering state contributions in addition

to the bound state sum. Indeed, if the scattering term is neglected the bound state

energies increase towards the continuum with increasing screening. As such a state

reaches zero energy, a partition function that contains only the bound state sum will

be discontinuous. The variable phase method [96] allows on the one hand to calculate

these shallow-state binding energies and low-energy scattering phase shifts, and, on

the other hand, is a way to compute the number of bound states in the attractive

potential Eq. (6.4) thanks to the 2D Levinson’s theorem [97]:

lim
k→0

δm(k) = νmπ , (6.16)

where m is the value of the projection of the angular momentum onto the symmetry

axis of the potential and νm the number of bound states. It is possible to show

that using the 2D Levinson’s theorem Eq. (6.16), a proper account of scattering

eliminates the singularities in the partition function and thus in the thermodynamic

properties of the nonideal gas [97].

The relation between the 2D scattering phase shift and the two-body interaction

part of the partition function of 2D interacting Boltzmann particles is given by the

2D analogue of the Beth-Uhlenbeck formula [98]:

Zint =
∑
m

∑
ν

e−βEm,ν +
1

π

∫ ∞

0

( ∞∑

m=−∞

dδm(q)

dq

)
e−q2/q2

T dq . (6.17)
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m is the projection of the angular momentum onto the axis normal to the plane

of 2D motion (m is an integer), δm(q) is the 2D scattering phase shift dependent

on the relative-motion momentum q [98, 85], q2
T = 2µkBT/h̄2, µ being the reduced

mass, and the double sum ranges only over bound states which energies are given

by Em,ν (the index ν enumerates bound states with given m).

Integrating by parts the scattering term in Eq. (6.17) and using the expression

Eq.(6.16) of the 2D Levinson’s theorem leads to the following expression of the

two-body interaction part of the 2D interacting Boltzmann particles:

Zint =
∑
m

∑
ν

(
e−βEm,ν − 1

)
+

2

πq2
T

∫ ∞

0

( ∞∑

m=−∞
δm(q)

)
e−q2/q2

T dq . (6.18)

The zero-energy part of the phase shift integral exactly cancels the zero-energy

part of the bound-state sum, removing the discontinuities in the partition func-

tion. Thus, the thermodynamic properties of the system do not exhibit singularities

anymore [97].

Another aspect of the problem is that electrons and holes are Fermions. For a

Fermion system, the symmetric spin states have to be multiplied by antisymmetric

spatial states, for which we have odd values for m, and the antisymmetric spin

states have to be multiplied by symmetric spatial states for which we have even

values for m. So, to calculate the partition functions we have to consider the Pauli

exclusion principle for identical particles. A direct consequence will be the change

of the expression in the sum over m. In the case of repulsive fermions (spin 1/2

for electrons and holes) which do not form bound states, the electron-electron and

hole-hole parts of the partition functions Zee and Zhh contain the scattering term

only. The “a-a” (a = electron or hole) part of the partition function is then deduced

from Eq. (6.18) [83]:

Zaa =
1

2π

∞∑

m=−∞

(
2− (−1)m

) ∫ ∞

0

dδm(q)

dq
e−βh̄2q2/madq , (6.19)
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where ma is the effective mass of the particle a. Here we assume that both electron

states in quantum wells are two-fold degenerate (the spin degeneracy being given by

2s+1). The only difference between Zhh and Zee comes from the difference between

electron and hole effective masses.

The partition functions being calculated, we can derive the expression of the

degree of ionization. In the low-density limit the total density of particles of type a

is given by [83]:

Na ≈ ga

λ2
ma

za ± 1

2

ga

λ2
ma

z2
a

+ λ2
µaa

(
ga

λ2
ma

)2

Zaaz
2
a + λ2

µab

ga

λ2
ma

gb

λ2
mb

Zabzazb (6.20)

where za and zb are the fugacities, z = eβµ, of the particles of types a and b respec-

tively with effective masses ma and mb, and spin degeneracy ga and gb. The reduced

masses are noted µaa and µab. As mentioned in Eq. (6.2), the total density na is

split into two contributions:

⇒ the uncorrelated density N0
a

N0
a =

ga

λ2
ma

za − 1

2

ga

λ2
ma

z2
a , (6.21)

which corresponds to the low-density expansion of the density of the noninteracting

Fermi gas:

N0
a =

ga

λ2
ma

ln (1 + za) . (6.22)

⇒ the interaction-dependent correlated density N corr
a

N corr
a ≈ ∑

b

N0
aN0

b λ2
µab

Zab . (6.23)

Eq. (6.23) constitutes the modified law of mass action in 2D [82] and allows a
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proper description of the screening of excitons by the 2D electron-hole plasma and

strong scattering of particles within the plasma which both play a crucial role in the

properties of wide-gap semiconductors.

For a two-component electron-hole plasma the 2D screening wavenumber ap-

pearing in Eq. (6.4) is given in the Boltzmann limit by [99]:

qsaB =
2πh̄2

µehkBT

(
N0

h + N0
e

)
= 4π

Ry

kBT

(
N0

e a2
B + N0

ha2
B

)
, (6.24)

where aB is the exciton Bohr radius and Ry is the excitonic Rydberg. In Eq. (6.24),

it is assumed that the screening by the correlated carriers (excitons) is much smaller

then the free carrier screening when correlated and uncorrelated densities are of

the same order. The use of the model semiconductor allows to go further in the

calculations: having N0
h = N0

e = αN , we can rewrite Eq. (6.24) as follows:

qsa
∗ = 8πα

R∗
y

kBT
Na∗2 . (6.25)

The role of the degree of ionization α appears now more clearly: there is a

direct link between the behaviour of α and the values of the screening wavenumber

qs which determines the strength of the interaction between charged particles in the

plasma. For the model semiconductor the modified law of mass action, Eq. (6.23),

can be rewritten as

N corr
e a∗2 = 4π

(
N0

e a∗2
)2 R∗

y

kBT
(Zeh + Zee) , (6.26)

and the degree of ionization has the explicit form [83]:

α =

[
1 +

qsa
∗

2
(Zeh + Zee)

]−1

, (6.27)

considering Eqs. (6.25) and (6.26). The ionization degree, α, is shown in Fig. 6.2 as

a function of the 2D plasma density, for ZnSe and GaAs. The degree of ionization

of the electron-hole plasma in a ZnSe quantum well is significantly lower than in
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a GaAs quantum well with the same carrier density and temperature. This is due

to the strong Coulomb forces in ZnSe quantum wells that are the source of corre-

lations even at room temperature. Moreover, the qualitative behaviour is different

as α exhibits a minimum for ZnSe at low density, whereas it is a monotonically

decreasing function of the 2D plasma density for GaAs. This has the following

explanation: at low density, the correlated density is proportional to the square of

the total plasma density (see Eq. 6.26), as at low density and high temperature,

the electron/hole plasma behaves as an ideal gas with α close to 1 (see Eq. 6.3).

Hence the degree of ionization decreases with increasing plasma density. However,

with a further increase in the total density, plasma screening becomes important and

the inter-particle correlations caused by the Coulomb interaction start to decrease.

Correspondingly, the degree of ionization changes the character of its density de-

pendence. In GaAs, the Coulomb forces are small compared to ZnSe even at low

density, so their influence on the density-dependence of α is not as important as it

is in ZnSe. Further detail and discussion can be found in Ref. [83].
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Figure 6.2: Ionization degree evaluated for GaAs and ZnSe in the Boltzmann regime for
T = 300K, as a function of the 2D plasma density (from M. E. Portnoi and I. Galbraith’s
calculations in Ref. [83]).

One of the main results of the application of the variable phase method to

scattering and bound states in a 2D screened Coulomb potential is that it leads to

a strong deviation [83] from the standard law of mass action whose weakness is that
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we cannot use it to treat the screening of excitons by the electron-hole plasma and

the strong scattering of particles within the plasma which both play a crucial role

in its properties.

6.4.2 The 2D exciton wave function

To calculate the matrix elements in Eq. (6.7), we must obtain an explicit expres-

sion of the 2D exciton wave function. Work based on a varational calculation has

already been done in Ref. [99], but for our purposes, we make use of the results of

the scattering theory with the variable phase method, neglecting the intrinsic spin

effects. As we suppose that the interaction between the two particles just depends

on the relative distance, we can split the problem into two parts: the study of the

relative motion of the two particles and the study of the motion of the center of

mass which does not depend on the interaction. Then the total Hamiltonian can be

written in the following way: Ĥtot = Ĥcm + Ĥrel.

First, let us study the relative in-plane motion of an electron interacting with

a hole via the symmetric 2D screened Coulomb potential Vs(ρ), where ρ is the

relative distance between both particles. The energy of the relative motion is E. It

is possible to picture this situation as the motion of a particle with energy E and

which mass is given by the reduced mass of the electron and hole, µeh, in an external

central potential Vs(ρ). This motion is described by the wave function satisfying the

stationary Schrödinger equation. Since we deal with a central potential, the angular

momentum L is a constant of the motion. It is then possible to find stationary states

with a defined momentum. As we are working in a 2D situation, these states are

eigenstates common to the Hamiltonian Ĥrel, and the angular momentum L which

can be identified to its only component Lz perpendicular to the plane of the motion.

The wave functions associated to these eigenstates are the partial waves.

We can use the radial symmetry to separate the variables in the expression for

the wavefunction: ψm(ρ, ϕ) = Rm(ρ)eimϕ where Rm(ρ) is the radial wave function

and m the value of the projection of the angular momentum onto the symmetry axis
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of the potential. The angular dependence is contained in eimϕ which is an eigenstate

of Lz, and the radial dependence in Rm(ρ) on which Vs(ρ) acts. We just need then

a couple of numbers: the principal quantum number, n, and the projection of the

angular momentum onto the symmetry axis of the potential, m, to characterize

these eigenstates. We readily obtain the following radial Schrödinger equation:

d2

dρ2 Rm(ρ) +
1

ρ

d

dρ
Rm(ρ) +

(
κ2 − U(ρ)− m2

ρ2

)
Rm(ρ) = 0 , (6.28)

for a given value of m and where k2 = 2µehE/h̄2 and U(ρ) = 2µehVs(ρ)/h̄2.

Considering Eq. (6.28), we can see that R−m(ρ) = Rm(ρ); so, we just need to

take into account the positive values of m (m ≥ 0).

For the bound states, the energy E is negative. We introduce then the imaginary

wavenumber k = iκ. As we chose a potential vanishing at large distances, the

solution of the radial equation Eq. (6.28) can be approximated for large ρ by the

solution of the free Bessel equation, a linear combination of the modified Bessel

functions of the first and second kind. Then, the solution of the radial Schrödinger,

Eq. (6.28), can be written as follows [83]:

Rm(ρ) = Am

(
Im(κρ) cos ηm +

2

π
Km(κρ) sin ηm

)
, (6.29)

where Am and ηm are the amplitude and the scattering phase shift; Im(κρ) and

Km(κρ) are the modified Bessel functions of the first and second kinds respectively.

Im(κρ) and Km(κρ) are two linearly independent solutions of the free Bessel equation

for the negative value of k2 and are respectively the diverging and the converging

contributions of the free radial wave function whose weights are characterized by

cot ηm.

Let us picture our problem speaking in terms of incoming and outgoing waves.

If we compare both of the situations for which we consider and do not consider

respectively the central potential, we can say that even if the incoming wave is

obviously the same, the outgoing wave of the stationary scattering state differs from
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that of the plane wave by the presence of a phase factor e2iηm . In other words, the

effect of the scattering potential is to shift the phase of each outgoing partial wave.

To solve the problem for all ρ, not just ρ −→ ∞, the scattering phase shift ηm

and the amplitude Am are both considered not as constants but as explicit functions

of ρ and κ in the variable phase method. With Eqs. (6.28) and (6.29) it is possible

to find a condition on ηm(ρ, κ) so as to have Rm(ρ) satisfying Eq. (6.28) within the

framework of the variable phase method. This condition will also help us in finding

an equation from which we shall be able to obtain the amplitude Am(ρ, κ).

The scattering phase shift satisfies the following first order, non-linear differential

equation of the Ricatti type [83]:

d

dρ
ηm(ρ, κ) = −π

2
ρ U(ρ)×

(
Im(κρ) cos ηm(ρ, κ) +

2

π
Km(κρ) sin ηm(ρ, κ)

)2

,

(6.30)

provided that we consider the following definition for the first derivative of Rm(ρ)

which is just a condition we are free to choose to treat our problem:

d

dρ
Rm(ρ) = Am(ρ, κ)

(
d

dρ
Im(κρ) cos ηm(ρ, κ) +

2

π

d

dρ
Km(κρ) sin ηm(ρ, κ)

)
,

(6.31)

and we use the Wronskian of the modified Bessel functions:

W{Im(x), Km(x)} = Im(x)
d

dx
Km(x)−Km(x)

d

dx
Im(x) = −1

x
. (6.32)

Eq. (6.30) is called the phase equation and must be solved with the following bound-

ary condition:

ηm(0, κ) = 0 , (6.33)

thus ensuring that the radial function does not diverge at ρ = 0. The phase equation
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is a self-consistent calculated constraint on ηm(ρ, κ) which allows to use Eq. (6.29)

as a solution of the radial Schrödinger Eq. (6.28).

The following differential equation defines the amplitude Am(ρ, κ):

d

dρ
Am(ρ, κ) = −π

2
ρU(ρ)Am(ρ, κ)

×
((

I2
m(κρ)− 4

π2 K2
m(κρ)

)
sin 2ηm(ρ, κ)

2
+

2

π
Im(κρ)Km(κρ)

(
1− 2 cos2 ηm(ρ, κ)

))
.

(6.34)

Eq. (6.34) is obtained from the radial Schrödinger equation, Eq. (6.28), whose

solution is given in Eq. (6.29). Differentiating Eq. (6.31) and comparing the resulting

expression with Eq. (6.29) we obtain:

(
Im(κρ) cos ηm(ρ, κ) +

2

π
Km(κρ) sin ηm(ρ, κ)

)
d

dρ
Am(ρ, κ)

= Am(ρ, κ)
(
Im(κρ) sin ηm(ρ, κ)− 2

π
Km(κρ) cos ηm(ρ, κ)

)
d

dρ
ηm(ρ, κ) . (6.35)

To solve Eq. (6.35), one needs to first calculate the scattering phase shift by

solving Eq. (6.30) and this is done numerically.

Hence, the final expression of the relative wave function ψm(ρ, ϕ) is:

ψm(ρ, ϕ) = Am(ρ, κ)
(
Im(κρ) cos ηm(ρ, κ) +

2

π
Km(κρ) sin ηm(ρ, κ)

)
eimϕ . (6.36)

where ηm(ρ, κ) is defined by the phase equation, Eq. (6.35), and the boundary

condition given by Eq. (6.33), and the amplitude Am(ρ, κ) by Eq. (6.34).

For the bound states the diverging solution vanishes, thus implying the asymp-

totic condition:

lim
ρ→∞ η(ρ, κ) = (ν − 1/2)π , (6.37)

where ν enumerates the bound states for a given m. The number of non-zero nodes
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of the radial wave function is given by ν − 1.

The total exciton wave function is simply given by the product of the wave

function of the center of mass of the two particles {electron;hole} by the relative wave

function calculated above. The motion of the center of mass is only characterized

by the kinetic energy Ecm which can be identified to the Hamiltonian Ĥcm. Then

the plane wave φkcm(R) has to satisfy the stationary Schrödinger equation:

Ĥcmφkcm(R) = − h̄2

2M

−→∇2

R φkcm(R) = Ecmφkcm(R) , (6.38)

where R is defined by R = (mere + mhrh)/(me + mh) and M = me + mh.

The solution of Eq. (6.38) is simply a plane wave:

φkcm(R) =
1√
A exp(−ikcm ·R) , (6.39)

where A is the area of the 2D system and kcm =
√

2MEcm/h̄.

Considering Eqs. (6.29) and (6.39) the exciton wave function reads:

Ψex
m,κ,kcm

(R, ρ, ϕ) = φkcm(R)× ψm(ρ, ϕ) =

1√
A exp(−ikcm ·R)×Am(ρ, κ)

(
Im(κρ) cos ηm(ρ, κ) +

2

π
Km(κρ) sin ηm(ρ, κ)

)
eimϕ .

(6.40)

6.4.3 The scattering matrix elements

Knowing the explicit expression of the exciton (bound state) wave function given

by Eq. (6.40), it is possible to evaluate the influence of the correlated part of the

total plasma density on the spontaneous emission. We only consider the scattering

of an electron of the continuum with a 1s exciton which will transfer its momentum

to reach the photon line. Both Coulomb attraction and repulsion between the free

electron in the continuum and the hole and the electron of the exciton have to be

taken into account. They respectively interact via the screened potentials defined

in Eq. (6.4) which can be explicitly written as follows in the Fourier space [96]:
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Ṽ ∓
s (q) = ∓ e2

2εA
1

q + qs

, (6.41)

where the upper sign is for the electron-hole attraction and the lower sign is for the

electron-electron or hole-hole repulsion.

In the Boltzmann limit, the screening wavenumber qs for a 2D electron gas is:

qs =
e2N0

e

2ε0kBT
. (6.42)

This result is known as the 2D Debye-Hückel screening wavenumber.

In this work we are concerned with the scattering of a 1s exciton with a free

electron. The population of 1s excitons being the most important at room temper-

ature, it is very likely that they can scatter with a free carrier in the plasma. The

exciton has to transfer its momentum to the free electron to reach the photon line

to be able to ionize and emit photons.

The general form of the scattering matrix element Vscat can be written as follows:

Vscat =
∫∫∫

φ
†e2,f

ke2+kcm
(re2)Ψ

†ex,f

0,κ,~0
(ρ) Vs(ρ−) Ψex,i

0,κ,kcm
(R, ρ)φe2,i

ke2
(re2)dre1dre2drh

+
∫∫∫

φ
†e2,f

ke2+kcm
(re2)Ψ

†ex,f

0,κ,~0
(ρ) Vs(ρ+) Ψex,i

0,κ,kcm
(R, ρ)φe2,i

ke2
(re2)dre1dre2drh , (6.43)

where R and ρ are defined as above and ρ+ and ρ− are respectively the distances

between the free electron and the one forming the exciton, and between the hole

and the electron in the exciton: ρ− =‖ rh− re2 ‖ and ρ+ =‖ re2− re1 ‖. The signs −
and + characterize the nature of the potentials Vs between the particles: attractive

and repulsive respectively. The upper indices i and f indicate the initial and final

states of the particles.

It is possible to rearrange the above equation so as to obtain a simpler expres-

sion of Vscat. This is shown now with the calculation of the attractive part of the

scattering matrix element, V −
scat:
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V −
scat =

∫∫∫
φ
†e2,f

ke2+kcm
(re2)Ψ

†ex,f

0,κ,~0
(ρ) Vs(ρ−) Ψex,i

0,κ,kcm
(R, ρ)φe2,i

ke2
(re2)dre1dre2drh .

(6.44)

The definition of the wave function Ψex
m,kcm,κ(R, ρ, ϕ) given by Eq. (6.40) com-

bined with Eq. (6.44) leads to:

V −
scat =

1

A2

∫∫∫
ei(ke2+kcm)·re2R0(ρ, κ) Vs(ρ−) e−ikcm·(mere1+mhrh)/M

×R0(ρ, κ)e−ike2 ·re2dre1dre2drh , (6.45)

which gives:

V −
scat =

1

A2

∫∫∫∫∫
dre1dre2drh dqdq− exp[i(ke2+kcm)·re2 ] R̃2

0(q, κ) exp[iq·(rh−re1)]

×Ṽs(q−) exp[iq− ·(rh−re2)] exp[−ikcm ·(mere1 +mhrh)/M ] R̃2
0(q, κ) exp[−ike2 ·re2 ],

(6.46)

considering the following definitions of the Fourier transform for the square of the

relative motion part of the excitonic wave function Eq. (6.29) and the scattering

potential Vs(ρ−) Eq. (6.4):





R2
0(ρ, κ) =

∫
R̃2

0(q, κ) eiq·(rh−re1)dq

Vs(ρ−) =
∫

Ṽs(q−, κ) eiq−·(rh−re2 )dq

(6.47)

The 10-dimensional integral Eq. (6.46) can be simplified using the identity:

∫
eiq.xdq = δ(x), and doing the same calculations with V +

scat, Eq. (6.43) can be

reduced to the following expression in the Fourier space:

Vscat(kcm, κ) =
1

A
(
R̃2

0(−
me

M
kcm, κ)Ṽs

−
(kcm) + R̃2

0(
mh

M
kcm, κ)Ṽs

+
(kcm)

)
. (6.48)
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Eq. (6.48) combined with Eq. (6.41) can finally be written as follows:

Vscat(kcm, κ) =
e2

2εA
1

kcm + qs

(
R̃2

0(−
mh

M
kcm, κ)− R̃2

0(
me

M
kcm, κ)

)
. (6.49)

Since the scattering phase shift and the amplitude of the wave function have to

be evaluated solving numerically the phase and the amplitude equations, Eqs. (6.30)

and (6.34), Vscat(kcm, κ) in Eq. (6.49) has to be also evaluated numerically.

6.4.4 Fermi’s golden rule

The scattering matrix element describing how the free carriers scatter with the

1s excitons being calculated, the next step consists of evaluating the spontaneous

emission rate due to the correlated particles in the plasma.

The distributions of correlated particles, NK, and free carriers, Nk2 , are given

by (see Appendix E):





NK = 2πβh̄2

M (1− α)N exp
(
−β h̄2K2

2M

)

Nk2 = 2πβh̄2

me
αN exp

(
−β

h̄2k2
2

2me

) (6.50)

NK is the approximated distribution of the 1s excitons for a wide-gap semicon-

ductor at room temperature.

The contribution of the correlated particles in the plasma, Rcorr
sp , is calculated

combining Eqs. (6.6), (6.7) and (6.50):

Rcorr
sp (h̄Ω) =

2π

h̄

(
4πβ1Ω/ω0

(1− Ω2/ω2
0)

2 + 4πβ1

)

×∑

K

[
2πβh̄2

M
(1− α)N exp

(
−β

h̄2K2

2M

)
|Vscat(K)|2

×∑

k2

2πβh̄2

me

αN exp

(
−β

h̄2k2
2

2me

)
δ

(
Eg − Eex

b +
h̄2K2

2M
− h̄Ω− h̄2

2me

(K2 + 2K.k2)

)
 ,

(6.51)
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where N is the plasma density. The first step of the calculation of Eq. (6.51) is the

evaluation of the discrete sum over all the vectors k2. To do so, one can approximate

the sum S:

S =
∑

k2

exp

(
−β

h̄2k2
2

2me

)
δ

(
Eg − Eex

b +
h̄2K2

2M
− h̄Ω− h̄2

2me

(K2 + 2K.k2)

)
, (6.52)

by a 2D integral:

S =
A

4π2

∫ kmax
2

kmin
2

∫ 2π

0
k2 exp

(
−β

h̄2k2
2

2me

)

× δ

(
Eg − Eex

b +
h̄2K2

2M
− h̄Ω− h̄2

2me

(K2 + 2Kk2 cos θ)

)
dk2dθ .(6.53)

The integral over θ can be calculated:

∫ 2π

0
δ(X − Y cos θ)dθ =

2

|Y sin[cos−1 X/Y ]| (6.54)

if |X| < |Y |.
Defining X = EX − h̄Ω − h̄2K2/2me and Y = h̄2Kk2/me, and with the above

condition on X and Y, the limits of the integral Eq. (6.53) are:





kmin
2 = me

h̄2K

(
EX − h̄Ω− h̄2

2me
K2

)

kmax
2 →∞

(6.55)

Thus
∫ 2π

0
δ

(
Eg − Eex

b +
h̄2K2

2M
− h̄Ω− h̄2

2me

K2 − h̄2

me

Kk2 cos θ

)
dθ

=
2∣∣∣∣∣

h̄2

me

Kk2 sin

[
cos−1

(
EX − h̄Ω− h̄2K2/2me

h̄2Kk2/me

)]∣∣∣∣∣

. (6.56)

Considering the identity |sin[cos−1 Θ]| =
√

1− cos2[cos−1 Θ] =
√

1−Θ2 and
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combining Eqs. (6.53) and (6.56) lead to:

S =
A

2π2

∫ ∞

kmin
2

k2 exp

(
−β

h̄2k2
2

2me

)
dk2

(
h̄4K2k2

2/m
2
e − (EX − h̄Ω− h̄2K2/2me)

2
)1/2

. (6.57)

With two successive changes of variables: K2 = k2
2 and K ′

2 = K2/k
min2

2 , Eq. (6.57)

becomes:

S =
Amek

min
2

4π2h̄2K

∫ ∞

1

exp


−β

h̄2kmin2

2

2me

K ′
2




(K ′
2 − 1)

1/2
dK ′

2 . (6.58)

Eq. (6.58) can be easily calculated if one considers the following identity:

∫ ∞

1

e−µx

(x− 1)1/2
dx =

√
π

µ
e−µ .

Indeed, we find:

S =
Amek

min
2

4π2h̄2K

(
2πme

βh̄2kmin2

2

)1/2

exp


−β

h̄2kmin2

2

2me


 . (6.59)

Finally, approximating the discrete sum over all the vectors K by an integral

and inserting Eq. (6.59) into Eq. (6.51) lead to the following expression of the spon-

taneous emission rate, Rcorr
sp (h̄Ω), due to the scattering of free electrons with 1s

excitons:

Rcorr
sp (h̄Ω) =

√
2πmeβ

3

M2

(
4πβ1Ω/ω0

(1− Ω2/ω2
0)

2 + 4πβ1

)
α(1− α)N2

×
∫ ∞

0
e
−β

h̄2K2

2M |Vscat(K)|2e
−β

me

2h̄2K2

(
Eg − Eex

b − h̄Ω− mh

me

h̄2K2

2M

)2

dK . (6.60)

The contribution of the correlated particles in the exciton/electron-hole plasma

to the spontaneous emission rate appears explicitly: both the degree of ionization α
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and the scattering matrix element Vscat in Eq. (6.49) give the information we need.

Rcorr
sp (h̄Ω) has to be evaluated numerically.

6.5 Numerical results

The wavefunctions are evaluated for various plasma densities. In the table given

below, we give the values of the corresponding screening parameter and degree of

ionization (taken from Ref. [83]).

GaAs

qsa
∗
B 2.5 1.25 1.0 0.32 0.10

N(1011cm−2) 4.27 2.06 1.62 0.48 0.14

α(N) 0.741935 0.769433 0.781595 0.856583 0.928092

ZnSe

qsa
∗
B 2.5 1.25 1.0 0.32 0.10

N(1011cm−2) 13.31 8.0 6.78 2.51 0.66

α(N) 0.49682 0.412371 0.389361 0.339291 0.410779

6.5.1 The 2D exciton wavefunction

In this section we show the solution of Eqs. (6.34) and (6.30) computed for two

values of the plasma densities. The radial wavefunctions, R0(ρ), shown in Fig. 6.3,

are the 1s 2D exciton wavefunctions.

At low density, i.e. qsaB = 0.1, the screening effect is small and the binding

energy high (about a 2D Rydberg). Hence, the probability of having a bound elec-

tron/hole pair is high when their relative distance is small, i.e. ≤ aB. However,

at very low density, it is not very likely that an electron and hole will meet and

form a bound state. This explains the fast decay of the wavefunction as the relative

distance increases (over aB). At high density, i.e. qsaB = 2.5, it is more likely that

electrons and holes will form bound states. Thus, the wavefunction has a slower

decay. But with increasing the plasma density, the plasma screening becomes more

important. A consequence of high plasma screening is a very low exciton binding
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energy. This explains why the wavefunction is lower when qsaB = 2.5 than when

qsaB = 0.1 for small relative distances.
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Figure 6.3: Normalized 2D exciton wavefunction as a function of the distance between
the electron and the hole, in exciton Bohr radius unit.

6.5.2 The scattering matrix

In Fig. 6.4 we show the behaviour of the scattering matrix versus kcm, for the same

two values of the plasma screening: qsaB = 0.1 and qsaB = 2.5.
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Figure 6.4: Scattering matrix element as function of wavenumber, describing the 1s
exciton-electron scattering with a screened Coulomb potential.

In both cases, the qualitative behaviour of Vscat is the same: for low values of
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the wavenumber (up to about 3 a−1
B ), Vscat is a decreasing function which reaches

a minimum for the same value of kcm. Then, for values greater than 3 a−1
B , Vscat is

an increasing function of kcm. The main difference between Vscat calculated for qsaB

= 0.1 and for qsaB = 2.5 is the amplitude: it is greater for low screening. This is

due to the fact that the Coulomb potential is smaller for high plasma screening. In

this case, the scattering potential being small, the scattering matrix is small too.

For large values of kcm ≥ 30 a−1
B , the distance between the electron and the hole

forming the exciton is very small and the free electron would see this bound system

as a neutral quasi-particle that it cannot scatter with.

6.5.3 The free carrier contribution to the spontaneous emission rate

In section 6.3, we stopped our calculations when we obtained Rfc
sp(h̄Ω) as a function

of the fugacities ze = eβµe and zh = eβµh , in Eq. (6.15). In section 6.4.1, we obtained

the expression of the uncorrelated density, N0
a , in the low density limit, in Eq. (6.21).

As N0
a is an explicit function of the fugacity za = eβµa , it is possible to modify the

expression of Rfc
sp(h̄Ω) in Eq. (6.21) to obtain the free carrier spontaneous emission

rate as a function of the plasma density.

From Eq. (6.21) we obtain:

za = eβµa = 1−
√√√√1− 2

λ2
ma

ga

N0
a . (6.61)

Then, from Eqs. (6.3), (6.15) and (6.61) we deduce the final expression for the

spontaneous emission rate in a 2D noninteracting electron-hole plasma:

Rfc
sp(h̄Ω) =

h̄2

mrτR

(
1−

√
1− λ2

me
αe(N)N

) (
1−

√
1− λ2

mh
αh(N)N

)

× lim
η→0

∫ ∞

0
k exp

(
−β

h̄2k2

2mr

)
η

(Eg +
h̄2k2

2mr

− h̄Ω)2 + η2

dk, (6.62)

where the broadening in the spectrum is modeled taking the limit of a Lorentzian
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function for the delta function in Eq. (6.5).
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Figure 6.5: Spontaneous emission rate evaluated for GaAs and ZnSe in the Boltzmann
regime for T = 300K. The corresponding values of the densities for the screening param-
eters are given in Tab.(6.1). Note that the spontaneous emssion rate in ZnSe is much
bigger than it is for GaAs.

The free carrier spontaneous emission rate, Rfc
sp(h̄Ω), decreases with decreasing

the plasma density at a given temperature. Rfc
sp(h̄Ω) also depends on the material

parameters such as the bandgap and the dielectric constant, through the presence of

the radiative lifetime τrad. For ZnSe, τrad is bigger than for GaAs. Hence, it is more

likely to observe photoluminescence with ZnSe-based materials than with GaAs.

The PL spectra shows that for the same scaled density, and at a given temperature,

the PL spectra are greater for ZnSe than they are for GaAs.

6.5.4 The exciton contribution to the spontaneous emission rate

The numerical evaluation of Eq. (6.60) gives the exciton contribution to the spon-

taneous emission rate, due to exciton-electron scattering as shown in Fig. 6.6. The

behaviour of Rcorr
sp (h̄Ω) reflects the behaviour of the scattering matrix: at high den-

sity, Vscat is small, then it is not likely that an exciton will find a partner to scatter

with to reach the photon line. Comparing results obtained for ZnSe and GaAs, it

appears clearly that the exciton contribution to the spontaneous emission rate at

room temperature is much more important in Znse than it is in GaAs. This is due
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to the fact that with a smaller dielectric constant the Coulomb forces are greater in

ZnSe which makes Vscat bigger.
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Figure 6.6: Contribution of the 1s exciton-electron scattering to the spontaneous emis-
sion rate evaluated for GaAs and ZnSe in the Boltzmann regime for T = 300K. The
corresponding values of the densities for the screening parameters are given in Tab. 6.1.
Note that the contribution of the correlations to the spontaneous emssion rate in ZnSe is
much more important for ZnSe than it is for GaAs.

Also, because of the large exciton binding energy, the exciton contribution to the

spontaneous emission rate is much more important for ZnSe than it is for GaAs

(about 20 times), as at room temperature there is barely no exciton in a GaAs

electron/hole plasma.

6.5.5 The total spontaneous emission rate

In Fig. 6.7, we obtain the total luminescence spectra by simply adding both con-

tributions. Here, the spontaneous emission rates are shown normalized in order

to compare the relative importance of the contribution of the 1s exciton-electron

scattering contribution for various densities.

A significant peak appears below the band edge only for ZnSe. As mentioned

earlier, this is due to the more important exciton population at room temperature

because of the large binding energy and greater scattering matrix. Hence, GaAs and

ZnSe have different qualitative behaviours at room temperature: excitonic processes
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have to be taken into account for ZnSe. The lower the density is, the lower the

plasma screening is and the stronger the Coulomb interaction is; moreover, the free-

carrier spontaneous emission rate rapidly decreases with a decreasing density. This

explains why one sees an exciton peak becoming relatively more important at low

density. However, if one looks carefully, one can see that the exciton peak is more

important for qsa
∗
B = 0.32 than it is for qsa

∗
B = 0.10. This reflects the nonmonoton-

ical behaviour of the ionization degree as a function of density for ZnSe: one can

see clearly in Fig. 6.2, the presence of a minimum at low density.
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Figure 6.7: Total spontaneous emission rate evaluated for GaAs and ZnSe in the Boltz-
mann regime for T = 300K. The corresponding values of the densities for the screening
parameters are given in Tab.(6.1). Note that the excitonic contribution at 300 K is only
significant for ZnSe because of the large exciton binding energy for this material.

6.6 Discussion and conclusion

Our approach was based on an accurate study of the thermodynamical properties

of a 2D exciton/electron-hole plasma in which two types of densities are defined:

correlated and uncorrelated, Eqs. (6.21) and (6.23). Some analytical results were

quickly found in the case of a free carrier plasma. Eq. (6.62) giving the spontaneous

emission rate as a function of the products of the total density and the ionisation

degrees showed that even if the behaviour of the ionization degree is qualitatively
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different from GaAs for ZnSe , spectra are qualitatively the same for both types of

semiconductors. This could be expected since we only dealt with the contribution

of the free carrier plasma. Nevertheless, we could evaluate the separation of the

quasi-Fermi levels which is now directly known from the calculation of the degrees

of ionization, Eq. (6.27), for which the modified law of mass action, Eq. (6.23), was

used.

Concerning the contribution of the correlated quasiparticles in the plasma, most

of the attention was paid to the 1s exciton-free electron scattering process for mainly

two reasons: on the one hand, this is the most likely process leading to the photolu-

minescence due to correlated quasiparticles at room temperature, and on the other

hand, it is really convenient for analytical calculations and numerical work. The ex-

citon distribution was approximated by taking the distribution of all the correlated

quasiparticles given by Eq. (6.50) into account. It obviously gives an overestimation

of the number of the bound states in the plasma, but it is reasonable to think that

it is a good approximation for a wide-gap semiconductor. Indeed, in this case the

scattering part of the partition function is small compared to the bound state part

[83] and at room temperature the exciton population remains important.

The function, Vscat, representing the scattering matrix describing the 1s exciton-

hole scattering was found to be the exact opposite of the one for the 1s exciton-

electron scattering. But, because of the conservation of energy, the domain of def-

inition of this function in the Fourier space is restricted to the small values of the

wavenumber which clearly gives very small values for the scattering element. A sim-

ple way to picture this result is to consider that because of its heavy effective mass,

it is less likely that a hole will meet a partner to scatter with in the low-density

exciton/electron-hole plasma. Thus, this process was not taken into account in this

work.

When the correlated part is added to the free carrier PL spectra a significant

peak appears below the band edge for ZnSe whereas we do not observe any signifi-

cant change for GaAs. So, the simple model proposed in Ref. [40] clearly needed to
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be extended to account for excitons and hence to describe PL spectra for wide-gap

materials such as ZnSe. The relative height of the excitonic peak is not a simple

function of the plasma density as it depends on the value of the ionization degree

which is not a monotonic function of the density.



Chapter 7

Conclusion

In this thesis, we developed a model to describe the many-body effects in semicon-

ductor quantum wells and the role they play in the absorption phenomenon. The

optical properties of semiconductors and their connections to the thermodynamic

properties of the quasi-2D electron-hole plasma were studied in both nonequilibrium

and equilibrium regimes.

We began in chapter 2 by giving an overview of the electronic and thermody-

namic properties of semiconductor quantum wells in the quasi-equilibrium regime.

We considered the finite width of the quantum wells, introducing a form factor to

account for the alteration of the Coulomb potential energy in real heterostructures.

However, we assumed the 2D formulas to be valid to compute the chemical po-

tentials. We also made the assumption that the electron gas and heavy hole gas

densities, as well as their temperatures, were the same. Using the static plasmon-

pole approximation to account for the screening in the electron/hole plasma allowed

analytical calculations which simplified the numerical work in the next chapters.

We showed the main steps for the derivation of the semiconductor Bloch equations

assuming that the screened Hartree-Fock approximation was sufficient to describe

the connection between the thermodynamics of the electron/hole plasma and its

optical properties.

In chapter 3, we illustrated in detail the calculations presented in chapter 2. We

studied the interplay between the Fermionic nature of the carriers and the Coulom-

bic forces that acts on them, and saw how the Coulomb many-body effects as well

as the Pauli blocking strongly influence the shape of the absorption spectra. Com-

paring the numerical results for two different type of material, mid-gap GaAs and

wide-gap ZnSe, we obtained further insight on the role played by the Coulomb

137
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interaction on the optical properties of semiconductor: Coulomb enhancement and

bandgap renormalization are more important in ZnSe than they are in GaAs. The

effect of a finite well width was also taken into account and we showed that the

strength of the 2D Coulomb interaction is smaller in real heterostructures than it

is in an ideal 2D electron/hole system. Hence, the exciton binding energy is not

exactly four times the value of the Rydberg energy, but a decreasing function of

the well width. The introduction of the non-degenerate valence bands in the calcu-

lations was necessary to account for the light hole exciton resonance that one can

observe on experimental absorption spectra. We saw that the static plasmon-pole

approximation yields an overestimation of the bandgap shrinkage as numerical re-

sults exhibits a slight redshift of the exciton resonances (see also Ref. [42]). All the

calculations and numerical results presented in this chapter were done assuming a

quasi-equilibrium situation defined by µlh = µhh 6= µe and Te = Thh, i.e. Nlh ≈ 0

and Ne = Nhh: the intraband scattering has led to a fast equilibration of the initial

carriers distributions within the bands and the plasma cooling has led to a cooling

of the carriers temperatures down to the lattice temperature. We chose the lattice

temperature to be T = 77 K to avoid the unphysical behaviour of the numerical

solutions of the SBE in order to explore the high density regime.

In chapter 4, we constructed a simple model to describe the time evolution of the

quasi-2D electron/hole plasma. Several dynamical effects were included: relaxation

of the carrier distributions, thermalization, plasma cooling, carrier spin-flip, recom-

bination (radiative and nonradiative) and light hole scattering into heavy holes.

A full microscopic treatment of all these effects being computationally prohibitive,

we chose a phenomenological approach using rate equations. We considered spin-

selective excitations via optical pumping. Some of the scattering times, such as the

spin-flip times, were taken from available experimental data presented in chapter 5.

The time dependence of the density, energy and temperature of each spin-polarised

gas was described, and we obtained insight in the interplay between the processes

mentioned above. In particular, we saw that the light hole gases do not reach ther-
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modynamical equilibrium with the other carrier gases, nor with the lattice: the

light hole density decay being very fast compared to the other processes, the light

hole gases effective temperatures keep increasing far beyond the lattice tempera-

ture. We also found that we could address the problem of the time dependence of

the plasma screening in a simple fashion, using quasi-equilibrium formulas in the

long wavelength limit.

The results found in chapter 4 were used to study the time evolution of the

absorption spectra in chapter 5. We focused on the heavy and light hole excitons

bleaching and shift dynamics. By comparing our numerical results with available

experimental data, we attempted to extract a time scale for the carrier spin-flip

times. Except for the energy shift of the OCP heavy hole exciton, the numerical

results are in good qualitative agreement with the experiment. According to our

calculations, the spin populations equilibrate on a much longer time scale (30 ps)

than the thermalization of the electron/hole plasma (1 ps). The plasma cooling

enhances the plasma screening and together with the relaxation of the distributions

also enhances the Pauli blocking effect. These processes are amongst the fastest and

we can observe their influence on the early behaviour of the exciton peaks bleaching

and energy shift. The spin-flip process leads to opposite qualitative behaviours of

the bleaching dynamics, depending on the initial polarisation configurations. The

exciton peaks bleaching and shift can either increase or decrease because of the spin-

flip process depending on the type of exciton (heavy or light) and the polarisations

OCP or SCP. The radiative recombination occurs on a time scale that is too large

(about 1.6 ns in ZnSe) to have any effect on the fast bleaching and energy shift

dynamics (below 100 ps). However, the nonradiative recombination is fast enough

to observe an overall decay on a time scale shorter than 100 ps. As far as the energy

shift is concerned, the screening model that we used for this work seems to be not

good enough to describe at least qualitatively the OCP energy shift. The static

plasmon-pole approximation leads to an overestimation of the bandgap shrinkage

[42], which in turn leads to an important OCP heavy hole exciton peak redshift that
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is not observed on experimental data. As far as the SCP heavy hole exciton peak

is concerned, the evaluated exciton binding energy for finite densities is too small

because of the screening model we use. This explains, the initial large blueshift

despite the important bandgap renormalisation in the SCP case. As for the SLP

configuration, the static plasmon-pole approximation is good enough to describe the

balance between the bandgap shrinkage and the exciton binding energy for finite

plasma densities.

In this thesis, we essentially focused our efforts on computing absorption spectra

in ZnSe-based quantum wells. However, the computer codes we developped can also

be used to produce refractive index spectra in both equilibrium and nonequilibrium

regimes. Moreover, as we saw in chapter 3 with GaAs, we can also feed the codes

with material parameters other than those of ZnSe, and it is possible to explore a

wide domain in density and temperature. With our model, it is possible to control

the values of the phenomenological parameters in order to obtain more understand-

ing in the interplay between various dynamical processes and/or fit experimental

data. More experiments need to be carried out to obtain reliable data for the light

hole exciton dynamics. At the present time, we cannot produce more conclusive

results for the light hole exciton dynamics as we cannot compare numerical data

with experiments.

As we saw in chapter 3, the evaluation of the Coulomb matrix elements is difficult

and hence time consuming. In the case of the nonequilibrium regime, they need to

be computed at each time step, which make the execution time for the codes very

long. This is the reason why we chose to work with a statically screened Coulomb

potential which can be treated analytically, whereas the dynamical screening is much

more complicated and more demanding numerically. However, if one wishes to avoid

the problem of the large redshift of the exciton peak leading to the results described

in chapter 5, one would need to use a dynamically screened Coulomb potential in

the calculations [42]. Another time consuming process, is the numerical treatment of

the nonequilibrium problem. We chose in this work the simplest approach possible
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to account for various dynamical processes, but the approximation for the light

holes scattering into the heavy hole band is too simple and would require some

improvement.

In chapter 6, we constructed a simple model to study the influence of Coulomb

correlations on the photoluminscence phenomenon. We computed the spontaneous

emission rate taking into account the 1s exciton-free electron scattering at room

temperature. We found that the contribution of the excitons to the PL spectra is

negligible for low- and mid-gap materials such as GaAs, whereas it is significant in

the case of a wide-gap semiconductor such as ZnSe, because of the strong exciton

binding energy comparable to kBT at room temperature. The calculation of the

1s exciton-free electron scattering included direct terms only, so a suggestion for

further work would be to account for the exchange terms. To evaluate the exciton

and the free carriers populations, we used the ionization degree calculated with the

modified law of mass action. The 1s exciton population was overestimated, but it

remained a good approximation for our purposes. It is possible to calculate the

wavefunctions of the exciton states (bound and unbound) other than the 1s in order

to account for most of the correlations in the electron-hole plasma, but calculating

their populations remains to be done. Working at room temperature the vibrations

in the lattice are important, i.e. the phonon population is important. It is then

very likely that the correlations between the carriers in the plasma are affected by

the scattering with the phonons which is really faster compared to the time taken

for the other processes such as exciton-free carrier scattering. Clearly, we have to

deal with two different time scales. This means that we can consider the processes

involving phonons as a noise affecting the correlations between the charged particles.

A stochastic equation of the Langevin type could be derived in order to evaluate

the effect of the phonons at room temperature on the correlations. Finally, if one

is interested in the low temperature regime with a simple model, one should extend

the calculations presented above to the degenerate limit.



Appendix A

Plasma screening in the static plasmon-pole

approximation

In chapters 3 and 5 we solved numerically the semiconductor Bloch equations in the

screened Hartree-Fock approximation. For reasons already mentioned in the main

text we chose to use a rather simple model for the plasma screening: we simplify the

Lindhard formula using the static plasmon-pole approximation. In this appendix

we give physical and mathematical detail that was omitted in the main text. We

want to evaluate the effect of a test charge whose location defines the origin in an

electron gas, i.e. how it affects the carrier distribution n(r) = δ3(r) which in turn

modifies the electrostatic potential U(r). The approach presented here uses a self-

consistent quantum theory of plasma screening involving arguments from classical

electrodynamics and quantum mechanics (see Refs. [11, 44]).

A.1 Derivation of the Lindhard formula

The screened density distribution operator in an electron gas is given by the product

of two electron field operators:

n̂s(r) = ψ̂†(r)ψ̂(r) =
1

V
∑

k,k′
ei(k−k′).ra†k′ak =

∑
q

n̂s
qe

iq.r , (A.1)

where

n̂s
q =

1

V
∑

k

a†k−qak (A.2)

is the Fourier amplitude of the density distribution operator and V the volume of the

semiconductor medium. The sums
∑

k contain the summation over the spin-states

to avoid onerous notations.
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The determination of the density distribution ns
q involves the solution of the

equation of motion for n̂s
q. The effective single-particle Hamiltonian is:

Heff =
∑

k

εka
†
kak + V ∑

q

V s
q n̂s

−q , (A.3)

where

V s
q =

1

V
∫

d3rV s(r)e−iq.r . (A.4)

The screened Coulomb potential energy V s(r) is simply given by:

V s(r) = eU s(r) , (A.5)

where U s(r) is the screened electrostatic potential that describes the the electrostatic

potential modified by the presence of a test charge in an electron gas taking into

account the background dielectric constant of the semiconductor medium. One can

calculate U s(r) from Poisson’s equation as we shall see. First, we need to calculate

ns
q = 〈n̂s

q〉. We start from Heisenberg equation for each product a†k−qak:

ih̄
d

dt
a†k−qak = [a†k−qak, Heff ]

= (εk − εk−q) a†k−qak +
∑

q′
V s

q′
(
a†k−qak+q′ − a†k−q−q′ak

)
. (A.6)

Because of the product of V s
q′ with terms like a†a, products of four operators

appear. The simplest treatment of this problem as we have already seen in the main

text is to use the RPA (see the derivation of the SBE in section 2.3.1 and Eq. (2.49)

in particular). So, taking the expectation value and only keeping the slowly varying

term, i.e. those with q′ = −q leads to:

ih̄
d

dt
〈a†k−qak〉 = (εk − εk−q) 〈a†k−qak〉+ V s

q (nk−q − nk) . (A.7)

To go further we make the following assumption: 〈a†k−qak〉 varies like e(δ−iω)t.
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The infinitesimal quantity δ indicates an adiabatic switch-on of the test charge

potential. We also assume that the induced charge distribution has the same time

dependence. So, from Eq. (A.7) we obtain:

ns
q = 〈a†k−qak〉 = V s

q

nk−q − nk

h̄(ω + iδ) + εk−q − εk
. (A.8)

Now that we know ns
q we can solve Poisson’s equation which reads:

∇2U s(r) = −e

ε
(n(r) + ns(r)) , (A.9)

in real space. In Fourier space Eq. (A.9) becomes:

U s
q =

e

εq2

(
1

V + ns
q

)
, (A.10)

as

nq =
1

V
∫

d3r δ3(r)e−iq.r =
1

V . (A.11)

As V s
q = eU s

q , we can insert Eq. (A.8) into Eq. (A.10) and solve for V s
q to find:

V s
q (ω) = Vq

[
1− Vq

∑

k

nk−q − nk

h̄(ω + iδ) + εk−q − εk

]−1

, (A.12)

where Vq is the Fourier transform of the unscreened Coulomb potential V (r). One

has to note that here, V s
q (ω) is the dynamically screened Coulomb potential as it

is also function of ω. This ω dependence comes from the the dynamic dielectric

function εq(ω):

εq(ω) = 1− Vq

∑

k

nk−q − nk

h̄(ω + iδ) + εk−q − εk
. (A.13)

Eq. (A.13) is the full RPA dielectric function also known as the Lindhard formula

that is described in chapter 2, section 2.1.3. In the more general case of an electron-

hole plasma, one can simplify the problem by assuming that the total screening

is given by the sum of the effects resulting from the separate electron and holes
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plasmas1. As such we also neglect the excitonic screening which at high enough

plasma density is a good approximation. Eq. (A.13) then becomes:

εq(ω) = 1− Vq

∑

k

∑
c

nc,k−q − nc,k

h̄(ω + iδ) + εc,k−q − εc,k

, (A.14)

where c = e, lh and hh.

In Eq. (A.13) or Eq. (A.14) one sees that the Lindhard formula exhibits a con-

tinuum of poles which makes the numerical evaluation of the screened Coulomb

potential from the Lindhard formula rather difficult. To avoid such difficulties, it is

possible to modify this formula using appropriate approximations.

A.2 The static plasmon-pole approximation

A.2.1 The long wavelength limit

To simplify the Lindhard formula we explore first the long wavelength limit: q →
0. We expand the terms in Eq. (A.13) which are functions of q dropping the

higher-order corrections. Then, letting δ → 0, the denominator and numerator

in Eq. (A.13) become:

εk−q − εk =
h̄2

2m
(k2 − 2k.q + q2)− h̄2k2

2m
' − h̄2k.q

m
, (A.15)

and

nk−q − nk = nk − q.∇knk + · · · − nk ' − q.∇knk . (A.16)

Then inserting Eqs. (A.15) and (A.16) in Eq. (A.14) leads to:

ε(q → 0, ω) = 1 + Vq

∑

k

∑

i

qi
∂n

∂ki

h̄ω − h̄2

m
k.q

. (A.17)

We can further simplify the above expression, noting that in the limit q → 0,

1In this work we deal with both light and heavy holes
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the denominator can also be expanded to the first order:

ε(q → 0, ω) = 1 +
Vq

h̄ω

∑

k

∑

i

qi
∂n

∂ki

(
1 +

h̄

mω
k.q

)
. (A.18)

The term proportional to
∑

∂n/∂k vanishes because it yields the distribution

function for k →∞; so Eq. (A.18) becomes:

ε(q → 0, ω) = 1 +
Vq

mω2

∑

k

∑

i

qi
∂n

∂ki

k.q . (A.19)

Replacing the discrete sum
∑

k by a 2D integral and integrating by parts yields:

ε(q → 0, ω) = 1− Vq

mω2

∑

i

∑

j

qiqj

∫ d2k

4π2 nk
∂ki

∂kj

, (A.20)

which simply gives:

ε(q → 0, ω) = 1− Vq

mω2

∑

i

∑

j

qiqj Nδi,j , (A.21)

where N is the 2D electron density. Performing the sums over i and j leads to:

ε(q → 0, ω) = 1− Vq
q2

mω2 N , (A.22)

thanks to the Kronecker symbol δi,j. Eq. (A.22) is nothing else but the classical

Drude dielectric function:

ε(q → 0, ω) = 1− ω2
pl

ω2 , (A.23)

where the plasma frequency is defined as in Eq. (2.12)

A.2.2 The static plasmon-pole approximation

For many practical applications, one ignores the damped response of the screening

represented by ω + iδ in Eq. (A.13). In the long wavelength limit, the inverse

dielectric function can be written as
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ε(q → 0, ω)−1 = 1 +
ω2

pl

(ω + iδ)2 − ω2
pl

. (A.24)

The above expression exhibits just one pole. We can use this observation to

construct an approximation for the full RPA dielectric function εq(ω) which replaces

the continuum of poles contained in the Lindhard formula by one effective plasmon

pole at ωq:

ε(q → 0, ω)−1 = 1 +
ω2

pl

(ω + iδ)2 − ω2
q

. (A.25)

The effective plasmon frequency for a two-dimensional electron gas is:

ω2
q = ω2

pl(q)
(
1 +

q

κ

)
+ ν2

q , (A.26)

where κ and νq are defined as in chapter 2, section 2.2.1. In the static limit ω+iδ → 0,

the above expression simply becomes:

ε(q → 0, ω)−1 = 1− ω2
pl

ω2
q

. (A.27)

Practical applications show that it is often sufficient to use the much simpler

plasmon-pole approximation instead of the full RPA dielectric function to obtain

good qualitative results. Finally, generalization of the above formulas to a multi-

component plasma can be easily obtained as seen in chapters 2 and 3.



Appendix B

The form factor

In chapter 2, section 2, we saw that the Coulomb potential in a quantum well is

not purely two-dimensional because of the finite well width. Therefore, to account

for the finite carrier wavefunction extent in the growth direction, we introduce a

quasi-two-dimensional effective Coulomb potential defined as:

V (r||) =
−e2

4πε

∫ w

0
dz

∫ w

0
dz′

|un(z)|2|un(z′)|2√
(z − z′)2 + r2

||
, (B.1)

where u(z) is the envelope function of an infinitely deep well extended from 0 to w:

un(z) =

√
2

w
sin

(
nπz

w

)
(B.2)

The wavefunction u(z) can be calculated from the Schrödinger equation given

in Eq. (2.18) with an infinite confinement potential. Performing the 2D Fourier

transform of Eq. (B.1) leads to:

Vk||,k′|| =
−e2

2ε|k|| − k′|||
∫ w

0
dz

∫ w

0
dz′ |un(z)|2|un(z′)|2 e−|k||−k′||||z−z′| . (B.3)

Defining the wavevector q as q = k||−k′||, Eq. (B.3) can be rewritten as follows:

Vq = fq V 2D
q , (B.4)

fq being the form factor defined as:

fq =
∫ ∞

−∞
dz

∫ ∞

−∞
dz′|un(z)|2|un(z′)|2 eq|z−z′| , (B.5)

Using the above definition for the function un(z) is a good approximation which
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makes the computation of fq easier; indeed, choosing the eigenfunctions for a finite

well depth to define un(z) leads to complications which have no significant effect on

the final result [44].

By inserting Eq. (B.2) into Eq. (B.5) one obtains:

fq =
4

w2

∫ w

0
dz sin2

(
nπz

w

)
F (z) , (B.6)

with

F (z) = q−qz
∫ z

0
sin2

(
nπz′

w

)
eqz′ +

∫ w

z
sin2

(
nπz′

w

)
e−qz′ dz′. (B.7)

The calculation of the integrals gives:

F (z) =
1

q
− qw2

q2w2 + 4n2π2 cos

(
2πnz′

w

)
− q

2

(
1

q2 −
w2

q2w2 + 4n2π2

)
(e−qz +e−q|w−z|) .

(B.8)

Inserting Eq. (B.8) into Eq. (B.6) and performing the integration leads to:

fq =
2

w


1

q
+

1

2

qw2

q2w2 + 4n2π2 + (e−qw − 1)
1

w

(
1

q
− qw2

q2w2 + 4n2π2

)2

 . (B.9)



Appendix C

Numerical evaluation of the Coulomb matrix

elements

In chapter 3, the main difficulty of the numerical problem is the evaluation of the

sum over the vectors q of the angle averaged potential

V ∗(k, q) =
e2

8π2ε
q

∫ 2π

0

dθ√
k2 + q2 − 2kq cos θ

, (C.1)

at zero and low density as V ∗(k, q) becomes singular for q = k. This singularity has

to be removed before leading further the calculations, but considerable care must

be taken when integrating in the vincinity of the singularity. As already stated in

chapter 3, a way to overcome this problem without wasting computing time using

a dense mesh for the numerical integration, is to evaluate the difference between

calculations which would be done with a dense mesh and calculations which would

be done with a coarse mesh. This difference is regarded as the correction that has

to be added to the result of the integration performed with a coarse mesh. The

calculation of the correction is not very time consuming. This can only be done if

V ∗(k, q) is a slow enough varying function far from the singularity. The function

V ∗(k, q) is depicted on Fig. 3.1 which shows that its behaviour is suitable for the

simple treatment of the numerical problem that follows.

We use the trapezoidal rule for the integration of V ∗(k, q). The k-vectors

on the uniform coarse mesh are defined by the array whose components are ki

with i = 0, 1, . . . nc − 1. The lower and upper limits are kmin = 0 and kmax =
√

µeh(h̄ωmax − Eg)/h̄, where µeh is the reduced mass of the electron/hole system.

The step dk is defined as dk = (kmax−kmin)/nc. The uniform dense mesh is defined

as follows: between two consecutives k-points ki+1 and ki, there are nd k′-points
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equally spaced, the step being dk′ = dk/(nd − 1).

For a given value of q, the difference between the areas below the singular point

k[j] = q, Aj
d and Aj

c, evaluated with the trapezoidal rule on the dense and coarse

meshes is:

Aj
d −Aj

c = Xj = dk′
nd−2∑

l=1

k′l V ∗(kj, k
′
l) F (kj, k

′
l)

+
dk′

2

[
k′l=0V

∗(kj, k
′
l=0) F (kj, k

′
l=0) + k′l=nd−1V

∗(kj, k
′
l=nd−1) F (kj, k

′
l=nd−1)

]

−dk

2
[ki=j−1V

∗(ki=j−1, kj) F (ki=j−1, kj) + ki=j+1V
∗(ki=j+1, kj) F1(ki=j+1, kj)]

(C.2)

after removing the divergent contribution, V ∗(kj, kj). The function F (k, q) is a

smoothing function, chosen such that F (k, k) = 1 and that
∑

q F (k, q) V ∗(k, q) can

be evaluated analytically. For our problem we take:

F (k, q) =
4q4

(k2 + q2)2 . (C.3)

As stated before: far from the singularity, the difference between the areas

calculated with the dense and coarse meshes is negligible. So, we just have to

calculate the difference between the areas Aj
d and Aj

c between kj−1 and kj+1, which

is not very time consuming. To proceed with the calculations, we note that k′l=0 =

ki=j−1 and k′l=nd−1 = ki=j+1, so Xj can be rewritten as follows:

Xj = dk′
nd−2∑

l=1

k′l V ∗(kj, k
′
l) F (kj, k

′
l)

+
1

2
(dk′−dk) [ki=j−1V (ki=j−1, kj) F (ki=j−1, kj) + ki=j+1V

∗(ki=j+1, kj) F (ki=j+1, kj)] .

(C.4)

For j = 1, . . . , nc − 2, Xj is calculated, and we just have to add it to the result

obtained integrating V ∗(k, q) using a coarse mesh.



Appendix D

Spontaneous emission and radiative lifetime in

semiconductors

When atoms in a gas are excited, they can de-excite thanks to inelastic collisions.

However, it is possible to observe that even in a very low pressured gas, where

inelastic collisions are very unlikely, atoms de-excite in a very little time (∼ µs)

compared to the scattering time of these dilute atoms. It is in fact an apparent

paradox, and we can show that if we quantize both the energy levels of a system and

the electromagnetic field it interacts with, the concept of spontaneous emission arises

naturally. In this Appendix, we show derivations made for a two-level system which

illustrates in a simple way the physics of the spontaneous emission phenomenon.

This is not only convenient to avoid unecessary complicated calculations, but the

results can be applied within the two-band model used in chapter 6.

The interaction Hamiltonian including the quantized electric field corresponding

to the mode l has the following expression:

Ŵ = iqFl

(
âle

ikn.r − â†l e
−ikn.r

)
~εl · r̂ , (D.1)

where âl and â†l are the annihilation and creation operators of photons in the mode

l, ~ε the polarization of the electric field. The quantity Fl is the vacuum fluctuation

field of the mode l in a cavity with a volume V, given by:

Fl =

√
h̄Ωl

2ε0V
. (D.2)

The Hamiltonian Ŵ acts in the Hilbert space given by the tensorial product of

the two Hilbert spaces corresponding to the photons and the charged system. To

ease notations (and calculations), we consider just a single mode. Thus, we assume
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that we have an optical transition between the two states |1, n〉 and |2, n′〉 where

n and n′ are the number of photons, and 1 and 2 the two levels of the quantum

system.

We study the absorption mechanisms first. The initial state is described by

|1, n〉 and the final state by |2, n − 1〉. Fermi’s golden rule gives the probability of

absorption:

P1,2 =
2π

h̄
|〈1, n|Ŵ |2, n− 1〉|2 δ(Efinal − Einitial) , (D.3)

where





Einitial = E1 + h̄Ω(n + 1/2)

Efinal = E2 + h̄Ω ((n− 1) + 1/2)
(D.4)

Thus, the condition on conservation of energy is h̄Ω = E2 − E1. Considering

Eq. (D.1), Eq. (D.3) can then be written as follows:

P1,2 =
2π

h̄
q2F2

l |〈1, n|
(
âle

ikn.r − â†l e
−ikn.r

)
~εl.r̂|2, n− 1〉|2δ(h̄Ω− E2 + E1) . (D.5)

As we suppose that the photonic states are independent of the states of the

system, we can write Eq. (D.5) as follows:

P1,2 =
2π

h̄
q2F2

l |〈n−1|
(
âle

ikn.r − â†l e
−ikn.r

)
|n〉|2|〈1|~εl.r̂|2〉|2δ(h̄Ω−E2+E1) . (D.6)

As the annihilation operator has the following property: â|n〉 =
√

n|n− 1〉, the

only photonic term remaining from the above equation is n, and the probability of

absorption becomes:

P1,2 =
π

h̄

h̄Ωln

ε0V
|〈1|q~εl.r̂|2〉|2 δ(h̄Ω− E2 + E1) , (D.7)
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after having substituted for Fl.

we consider now n photons in the mode l, but the initial state defined as the

state |2〉. The emission is described as the transition from the state |2, n〉 to the

state |1, n + 1〉 and the transition probability is given by:

P1,2 =
2π

h̄
q2F2

l |〈n+1|
(
âle

ikn.r − â†l e
−ikn.r

)
|n〉|2|〈1|~εl.r̂|2〉|2δ(h̄Ω−E2 +E1) . (D.8)

This time, the only non zero photonic term is n+1 as we have â†|n〉 =
√

n + 1|n〉,
thus Eq.(D.8) leads to:

Pem =
πωl

ε0V
(n + 1)|〈1|q~εl.r̂|2〉|2δ(h̄Ω− E2 + E1) . (D.9)

The above equation is important because it shows that we deal with two distinct

physical processes which both contribute to the emission:

1. an emission mechanism which transition rate Pstim is proportional to the num-

ber of photons present in the cavity: it is the stimulated emission.

2. an emission mechanism which exists even if the cavity is empty of any photon:

it is the spontaneous emission.

The spontaneous emission rate in the mode l, P l
spon is given by:

P l
spon =

πΩl

ε0V
|〈1|q~εl.r̂|2〉|2δ(h̄ω − E2 + E1) . (D.10)

It is also possible to interprete this term as an emission rate due to a stimulation

because of the vacuum fluctuation Fl. Under the influence of this vacuum fluctua-

tion, the system can de-excite emiting a photon in a certain mode. The total rate

of the spontaneous emission can be obtained with an integration over all the modes

of the cavity with a frequency equal to Ω = (E2 − E1)/̄h:
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Γspon =
∫ ∫ ∫

P l
spond3k (D.11)

We can use the expression of the electromagnetic modes density:

ρ(Ω) =
2Ω2

πc3
, (D.12)

to obtain the following expression of the spontaneous emission rate and the lifetime

for a two-level system:

Γspon =
q2r2

12Ω
3nop

3πc3h̄ε0

=
1

τrad

. (D.13)

Let us emphasise on the fact that this expression is valid for an isotropic emis-

sion. Also note that for a constant dipole matrix element, the higher the energy

transition is, the shorter the spontaneous lifetime is. This gives the reason why it is

more difficult to obtain X-ray lasers rather than infrared lasers.



Appendix E

Calculation of the exciton and free electron

distributions

In chapter 6, section 4, we need the knowledge of the 1s exciton and electron distri-

butions, NK and Nk2 .

• The electron distribution

Keeping the same notations as in chapter 5, the probability of finding a free

electron in the electron-hole plasma with energy Ek2 = h̄2k2
2/2me is:

Nk2 = γ αN exp−
[
β

h̄2k2
2

2me

− βµe

]
, (E.1)

where αN is the total number of free electrons, according to the definition of the

degree of ionization α in Eq. (6.15). The normalization coefficient γ is evaluated

from the following equation:

∑

k2

Nk2 = αN . (E.2)

Inserting Eq. (E.1) into Eq. (E.2) and approximating the discrete sum by a 2D

integral yield:

γ eβµe
∑

k2

exp−
(
β

h̄2k2
2

2me

)
=

A
4π2 γ eβµe

∫ ∞

0

∫ 2π

0
k2 exp−

[
β

h̄2k2
2

2me

]
dk2 dθ = 1 .

(E.3)

Performing the integration and rearranging the result give the normalization

coefficient γ:
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γ =
2πβh̄2

Ame

e−βµe . (E.4)

Finally the electron distribution Nk2 is given by:

Nk2 =
2πβh̄2

me

αN exp

(
−β

h̄2k2
2

2me

)
, (E.5)

N being the total electron density: N = N/A.

• The 1s exciton distribution

The total number of excitons in the electron-hole plasma is given by:

∑

K

NK = (1− α)N =
∑

K

γ′(1− α)N exp

(
−β

h̄2K2

2M

)
. (E.6)

In the same fashion as above we find:

γ′ =
2πβh̄2

AM
. (E.7)

The exciton distribution reads:

NK =
2πβh̄2

M
(1− α)N exp

(
−β

h̄2K2

2M

)
. (E.8)

The degree of ionization α takes into account any type of correlation in the

electron hole plasma. However, we make the simplifying assumption that the corre-

lations are essentially excitonic at room temperature and that this is the 1s exciton

population which is dominant in quasi-equilibrium.
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[21] A. N. D. Fröhlich and K. Reimann. Phys. Rev. Lett. 55, 1335 (1985).

[22] A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and

H. Morkoc. Phys. Rev. Lett. 56, 2748 (1986).

[23] A. von Lehmen, J. E. Zucker, J. P. Heritage, and D. S. Chemla. Optics Lett.

11, 609 (1986).

[24] B. Fluegel, N. Peyghambarian, G. Olbright, M. Lindberg, S. W. Koch, M. Jof-

fre, D. Hulin, A. Migus, and A. Antonetti. Phys. Rev. Lett. 59, 2588 (1987).

[25] S. W. Koch, N. Peyghambarian, and M. Lindberg. J. Phys. C21, 5229 (1988).

[26] C. Ell, J. F. Müller, K. E. Sayed, and H. Haug. Phys. Rev. Lett. 62, 306 (1989).

[27] M. Combescot and R. Combescot. Phys. Rev. B40, 3788 (1989).

[28] M. Combescot. Phys. Rev. B41, 3517 (1990).

[29] M. Combescot and R. Combescot. Phys. Rev. Lett. 61, 117 (1988).



Bibliography 161

[30] D. Hulin and M. Joffre. Phys. Rev. Lett. 65, 3425 (1990).

[31] C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner,
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